

HEC MONTRÉAL
École affiliée à l’Université de Montréal

Quantifying the Impacts of Innovative Business Models in Last-Mile Delivery

par
Xin Wang

Thèse présentée en vue de l’obtention du grade de Ph. D. en administration
(spécialisation Sciences de la décision)

Décembre 2024

© Xin Wang, 2024

HEC MONTRÉAL
École affiliée à l’Université de Montréal

Cette thèse intitulée :

Quantifying the Impacts of Innovative Business Models in Last-Mile Delivery

Présentée par :

Xin Wang

a été évaluée par un jury composé des personnes suivantes :

Maryam Daryalal
HEC Montréal

Présidente-rapportrice

Erick Delage
HEC Montréal

Directeur de recherche

Okan Arslan
HEC Montréal

Codirecteur de recherche

Sanjay Dominik Jena
Université du Québec à Montréal

Membre du jury

Michael Hewitt
Loyola University Chicago

Examinateur externe

Raf Jans
HEC Montréal

Représentant du directeur de HEC Montréal

Résumé

La livraison du dernier kilomètre, l’étape finale critique dans la chaîne d’approvisionnement

du commerce électronique, joue un rôle essentiel pour assurer la satisfaction des clients et

le succès commercial dans le marché du commerce électronique, évalué à plusieurs mil-

liers de milliards de dollars. Il est essentiel d’assurer des livraisons rapides, ponctuelles

et efficaces avec une haute qualité de service, une grande fiabilité, une haute efficacité

opérationnelle et des coûts réduits.

Pour atteindre cet objectif, nous étudions trois modèles de livraison innovants, no-

tamment la livraison par partage d’espace (crowdkeeping), la livraison ultra-rapide et la

livraison multi-magasins, tout en quantifiant leurs impacts sur les livraisons du dernier

kilomètre. Les services de livraison par partage d’espace exploitent des espaces inutilisés

pour le stockage temporaire et le transfert flexible de colis afin de réduire les coûts de

livraison, éliminer les livraisons échouées et bénéficier à l’ensemble des participants du

système. Les services de livraison ultra-rapide se concentrent sur des livraisons rapides

et fiables malgré l’incertitudes dans les temps de trajet et dans la demande, en équilibrant

la rapidité des livraisons et la rentabilité opérationnelle. Les services de livraison multi-

magasins permettent aux clients de consolider leurs commandes provenant de plusieurs

magasins et aux chauffeurs de transférer des articles aux nœuds de transbordement, tout

en intègrant des stratégies d’attente pour répondre aux commandes arrivant de manière

dynamique, facilitant ainsi des livraisons rapides et de courts temps de trajet.

Du point de vue de la modélisation, nous développons des programmes mathéma-

tiques pour relever ces défis et les reformulons en versions plus simples afin d’obtenir des

solutions de haute qualité efficacement. Pour le problème de la livraison par partage

d’espace, nous modélisons un programme bi-niveaux, le reformulons en programmes

équivalents à un seul niveau et dérivons des approximations précises pour obtenir des

solutions de qualité élevée et efficaces. Pour le problème de livraison ultra-rapide, nous

développons des programmes avec contraintes probabilistes robustes pour gérer les in-

certitudes, les reformulons comme des programmes linéaires semi-infinis équivalents et

proposons leurs approximations internes et externes avec des contraintes linéaires finies,

qui peuvent être résolues de manière optimale avec efficacité. Pour le problème de la

livraison multi-magasins, nous formulons un programme linéaire en nombres entiers avec

de nombreuses contraintes et variables liées à la planification des trajets et aux consid-

érations temporelles, puis adoptons une approche d’optimisation par apprentissage qui

intègre l’apprentissage automatique et l’optimisation pour atteindre efficacement des so-

lutions de haute qualité.

Nous réalisons des expériences numériques avec des ensembles de données réelles

afin de fournir des informations managériales pour améliorer l’efficacité, la rentabilité, la

fiabilité et la satisfaction des clients dans la logistique du dernier kilomètre. Les services

de livraison par partage d’espace génèrent des profits élevés en consolidant les livraisons

et en éliminant les livraisons échouées. Cela s’explique par le fait que les "crowd keep-

ers" ont une flexibilité accrue, une meilleure disponibilité et des coûts plus faibles que les

options de stockage fixes telles que les casiers automatisés, conduisant à un système de

livraison du dernier kilomètre plus efficace et plus rentable. Pour assurer des services de

livraison ultra-rapides avec une grande fiabilité et rentabilité, un niveau de service quo-

tidien, qui donne la priorité aux périodes avec une fréquence de commandes plus élevée

et utilise une protection par couches multiples, s’avère efficace malgré les incertitudes

liées aux arrivées de commandes ou aux conditions de trafic. Les services de livraison

multi-magasins utilisant la consolidation, le transbordement et une stratégie d’attente de

courte durée, permettent de réduire les temps de complétion des commandes et les temps

de trajet des conducteurs grâce à une meilleure consolidation spatio-temporelle.

iv

Mots-clés

Livraison du dernier kilomètre; Conception de réseau; Niveau de service; Tarification

et routage; Ramassage et livraison; Consolidation et transbordement; Programmes bi-

niveau; Programmes contraints par des enveloppes probabilistes; Optimisation robuste;

Optimiser par apprentissage

Méthodes de recherche

Recherche quantitative; Programmation mathématique; Optimisation en incertitude;

Apprentissage automatique

v

Abstract

Last-mile delivery, the critical final step in the e-commerce supply chain, plays a vital

role in ensuring customer satisfaction and business success in the multi-trillion-dollar e-

commerce market. It is essential to provide on-time, on-demand deliveries efficiently with

high service quality, high reliability, high operational efficiency, and low costs.

To achieve this goal, we investigate three innovative delivery models, including crowd-

keeping delivery, ultra-fast delivery, and multi-store order delivery, as well as quantify

their impacts in last-mile deliveries. The crowdkeeping delivery services leverage the

availability of the crowd for temporary parcel storage and flexible parcel transfers to re-

duce delivery costs, decrease delivery failures, and benefit all system participants. The

ultra-fast delivery services focus on rapid and reliable deliveries under uncertainties in

travel times and demand arrivals, balancing delivery speed and operational profitability.

The multi-store order delivery services enable customers to consolidate orders from multi-

ple stores, allow drivers to transfer items at transshipment nodes, and incorporate waiting

strategies to serve dynamically arriving orders, facilitating fast deliveries and short travel

times.

From the modeling perspective, we develop mathematical programs to tackle these

challenges and reformulate them into more tractable formulations to obtain high-quality

solutions efficiently. For the crowdkeeping delivery problem, we model a bilevel program

to consider the preferences of different participants, reformulate it into equivalent single-

level programs for exact solutions, and derive tight approximations for high-quality and

efficient solutions. For the ultra-fast delivery problem, we develop robust probabilistic

vii

envelope constrained programs to handle uncertainties, reformulate them as semi-infinite

linear programs equivalently, and propose their inner and outer approximations with finite

linear constraints, which can be solved to optimality efficiently. For the multi-store order

delivery problem, we formulate a mixed-integer linear program and adopt a learning-

to-optimize approach that integrates machine learning and optimization to achieve high-

quality solutions efficiently.

We conduct numerical experiments using real-world datasets to derive managerial

insights for improving efficiency, profitability, reliability, and customer satisfaction in

last-mile logistics. The crowdkeeping delivery services generate high profits by consoli-

dating deliveries and reducing failed deliveries. This is because crowd keepers have extra

flexibility, more availability, and lower costs compared to fixed storage options such as

automated lockers, leading to a more efficient and profitable last-mile delivery system. To

provide ultra-fast delivery services with high reliability and profitability, a daily service

level that prioritizes time periods with higher order frequencies and employs multi-layer

partial protection proves effective despite uncertain order arrivals or traffic conditions.

The multi-store order delivery services with consolidation, transshipment, and a short-

duration waiting strategy yield short order completion times and total driver travel times

through superior spatial and temporal consolidation.

Keywords

Last-mile delivery; Network design; Service level; Pricing and routing; Pickup and de-

livery; Consolidation and transshipment; Bilevel programs; Probabilistic envelope con-

strained programs; Robust optimization; Learning-to-optimize

Research Methods

Quantitative research; Mathematical programming; Optimization under uncertainty;

Machine learning

viii

Contents

Résumé iii

Abstract vii

List of Tables xiii

List of Figures xv

List of Acronyms xix

Acknowledgements xxi

Preface xxiii

General Introduction 1

1 Crowdkeeping in Last-Mile Delivery 5

Abstract . 5

1.1 Introduction . 6

1.2 Literature Review . 8

1.2.1 Last-Mile Delivery Types, Challenges, and Innovations 8

1.2.2 Self-Service Locker Systems . 9

1.2.3 Crowdsourcing . 10

1.2.4 Demand Management . 12

1.2.5 Traveling Salesman Problem and Variants 13

ix

1.3 Problem Description . 14

1.3.1 Operational Framework . 14

1.3.2 Implementation . 15

1.3.3 Participants and Their Behaviors 16

1.3.4 Benefits and Challenges . 19

1.4 Bilevel Program for Crowdkeeping Delivery Problem 20

1.4.1 Customer and Keeper Models 23

1.4.2 Platform Model . 25

1.4.3 Bilevel Program with Multiple Followers 27

1.5 Solution Procedure . 28

1.5.1 Reformulation as a Single-level Program 28

1.5.2 Customer Best Response Set . 31

1.5.3 Approximation Model with Estimated Travel Time 33

1.6 Numerical Study . 36

1.6.1 Dataset and Implementation Details 36

1.6.2 Selection and Calibration of Optimal Tour Length Estimator . . . 39

1.6.3 Effectiveness and Efficiency of Solution Procedures 40

1.6.4 Sensitivity Analysis . 42

1.7 Conclusion . 51

1.8 Appendix . 54

References . 66

2 Network Design and Service Guarantee in Ultra-Fast Delivery 71

Abstract . 71

2.1 Introduction . 72

2.2 Literature Review . 75

2.2.1 Facility Location . 76

2.2.2 Ultra-fast Delivery . 77

2.2.3 Robust Chance Constraints and Probabilistic Envelope Constraints 79

x

2.3 Network Design Problem for Ultra-fast Delivery 80

2.3.1 Notation . 80

2.3.2 Demand Function . 82

2.3.3 Deterministic Formulation . 83

2.4 Probabilistic Envelope Constrained Programs 85

2.4.1 Chance Constraints . 85

2.4.2 Probabilistic Envelope Constraints 86

2.4.2.1 Reformulation with Known Distribution. 87

2.4.2.2 Reformulation with Unknown Distribution. 89

2.4.3 Probabilistic Envelope Constraints with Two Forms of Uncertainty 91

2.4.3.1 Reformulation with Known Distribution. 91

2.4.3.2 Reformulation with Unknown Distribution. 92

2.4.4 Stochastic Program and Linear Reformulation 94

2.4.5 Stochastic Program with Optimized PEC and Linear Reformulation 95

2.5 Numerical Study . 97

2.5.1 Dataset and Implementation Details 97

2.5.2 Benchmark . 99

2.5.3 Performance of β Step Function 100

2.5.4 Comparison Under Different Service Levels and Uncertainties . . 101

2.5.5 Sensitivity Analysis . 104

2.5.5.1 The impact of the initial target delivery time. 104

2.5.5.2 The impact of the competitor delivery time. 105

2.5.5.3 The impact of the setup cost. 106

2.5.5.4 The impact of the layers of protection. 107

2.5.6 Efficient Frontier of Four Regions for Varying Service Guarantees 107

2.6 Conclusion . 111

2.7 Appendix . 113

References . 123

xi

3 Learning-to-optimize for Consolidation and Transshipment in Multi-store

Order Delivery 129

Abstract . 129

3.1 Introduction . 130

3.2 Literature Review . 135

3.2.1 Last-mile Delivery . 135

3.2.2 Pickup and Delivery Problem . 137

3.2.3 Machine Learning-based Optimization 139

3.3 Multi-store Order Delivery Problem . 141

3.3.1 Delivery System Description and Problem Definition 141

3.3.2 Mathematical Model . 143

3.3.3 Dynamic Problem and Waiting Strategy 148

3.4 Solution Procedure . 149

3.4.1 Learning-to-optimize Method 149

3.4.2 Learning Methods . 150

3.4.3 MILP-based Restoration and Refinement Problem 155

3.5 Numerical Study . 156

3.5.1 Dataset and Implementation Details 156

3.5.2 Comparison of delivery systems 158

3.5.3 Comparison of learning algorithms 160

3.5.4 Experimentation in a Dynamic Environment 166

3.6 Conclusion . 170

3.7 Appendix . 173

References . 185

General Conclusion 189

References 191

xii

List of Tables

1.1 Implementation details . 17

1.2 Notations . 21

2.1 Reformulations of different service level under different level of uncertainty . 100

2.2 Results of different formulations . 102

2.3 Notations . 113

3.1 Best Learning Method for Uniformly Sampled Customers in the Learning

Process . 161

3.2 Best Learning Method for Uniformly Sampled Customers in the Optimization

Process . 161

3.3 Best Learning Method for Clustered Customers in the Learning Process . . . 162

3.4 Best Learning Method for Clustered Customers in the Optimization Process . 162

3.5 Problem Notation . 173

3.6 Comparison of Learning Methods for Uniformly Sampled Customers in the

Learning Process . 174

3.7 Comparison of Learning Methods for Uniformly Sampled Customers in the

Optimization Process . 175

3.8 Comparison of Learning Methods for Clustered Customers in the Learning

Process . 176

3.9 Comparison of Learning Methods for Clustered Customers in the Optimiza-

tion Process . 177

xiii

3.10 Dynamic Experimentation Process . 178

3.11 Dynamic Experimentation Process with Driver-Availability-Triggered Opti-

mization . 180

3.12 Comparison between Earliest-Available-Driver-Assignment Strategy and Driver-

Availability-Triggered Strategy . 184

xiv

List of Figures

1.1 Comparison of the standard and the new operational frameworks for delivery

systems . 15

1.2 Implementation of the crowdkeeping operational framework. 16

1.3 Problem setting of the crowdkeeping delivery system. 18

1.4 Timeline of decisions made by the platform, customers, and keepers 22

1.5 The region where a sample set of 118 nodes are assigned to a single vehicle

in Los Angeles. 36

1.6 Estimation of the optimal minimum TSP tour duration 39

1.7 Efficiency and effectiveness of solution procedures under different number of

customers . 41

1.8 The impact of the service range . 43

1.9 The impact of the pickup cost . 45

1.10 The impact of the delivery cost . 46

1.11 The impact of the keeping cost . 48

1.12 The impact of the customer absence ratio . 49

1.13 The impact of the penalty for rescheduling deliveries 50

1.14 Different systems. 58

1.15 Sample cases with varying distributions of non-customer keepers, featuring a

fixed number and changing locations. 63

1.16 Sample cases with varying distributions of non-customer keepers, including

changes in both the number and locations. 63

xv

1.17 The effect of non-customer keeper distribution on the relative gap between

exact and approximated solutions. 64

1.18 The effect of non-customer keeper distribution on the proportions of partici-

pants visited in the optimal tour. 64

2.1 β (v) envelope for selected sample α and γ values. 87

2.2 Inner and outer approximations of β (v). 89

2.3 Statistic description of simulation environment 99

2.4 Performance of approximation for different numbers of steps 101

2.5 Performance on profit, coverage proportion, and violation 102

2.6 The impact of radius Γ of the uncertainty set Q for the period probability q. . 103

2.7 The impact of the initial target delivery time on PEC and PECP 105

2.8 The impact of the competitor delivery time on PEC and PECP 106

2.9 The impact of the setup cost on PEC and PECP 107

2.10 The impact of protection layers . 108

2.11 Customer distributions and efficient frontiers (EF) under varying service guar-

antees . 109

2.12 The impact of initial target delivery time on PEC and PECP 121

3.1 Delivery systems for multi-store order services 143

3.2 Learning-to-optimize Method . 149

3.3 Graph-based Neural Network structure for the case with 2 drivers, 2 stores,

and 4 customers. 153

3.4 Learning models for allocation decisions with different ways of generating

data samples . 154

3.5 Comparison of delivery systems with various number of customers and drivers 159

3.6 Comparison of performances in optimization of four learning methods 164

3.7 Customer arrival process and dynamic experimentation process 167

3.8 Completion time under varying re-optimization intervals 168

xvi

3.9 Best re-optimization interval for varying ratios of customer number to driver

number . 170

3.10 Delivery time, wait time, travel time, and customer number under varying

re-optimization intervals . 179

3.11 Completion time under varying re-optimization intervals for the driver-availability-

triggered strategy . 181

3.12 Delivery time, wait time, travel time, and customer number under varying

re-optimization intervals for the driver-availability-triggered strategy 182

3.13 Best re-optimization interval for varying ratios of customer number to driver

number . 183

xvii

List of Acronyms

ABBR Abréviation

BAA Baccalauréat en administration des affaires

DESS Diplôme d’études supérieures spécialisées

HEC Hautes études commerciales

MBA Maîtrise en administration des affaires

MSc Maîtrise

PhD Doctorat

xix

Acknowledgements

Deep gratitude to my supervisors, my co-authors, my family, my friends, and everyone

who has supported and guided me throughout this long journey of exploration. A special

thanks to myself for persevering and overcoming every challenge along the way.

xxi

Preface

This thesis consists of three articles listed as follows:

1. Xin Wang, Okan Arslan, Erick Delage. (2024). Crowdkeeping in Last-mile Deliv-

ery. Transportation Science, 58(2), 474-498.

2. Xin Wang, Okan Arslan, Jean-François Cordeau, Erick Delage. Optimizing Ultra-

fast Delivery Networks and Service Guarantees under Uncertainty. Under review.

3. Xin Wang, Okan Arslan, Jean-François Cordeau, Erick Delage. Learning-to-

optimize for Consolidation and Transshipment in Multi-store Order Delivery. Under re-

view.

xxiii

General Introduction

E-commerce has experienced unprecedented growth during and after the COVID-19 pan-

demic, encompassing a wide range of sectors such as essentials, furniture, fashion, and

food. Online retailers such as Amazon and Ikea, along with food delivery services such

as UberEats and DoorDash, have become indispensable in daily life. By 2024, the e-

commerce market reached a revenue of USD 4.12 trillion, with projections suggesting

hat it will grow to USD 6.48 trillion by 2029, driven by an annual growth rate of 9.49%

(Statista 2024). This rapid expansion has significantly reshaped consumer expectations,

fueling a demand for fast, reliable, and cost-efficient last-mile deliveries. Last-mile de-

livery, the final step in the e-commerce supply chain where products are transported from

depots to customers, is critical for ensuring customer satisfaction and driving business

success. It accounts for a substantial portion of delivery costs, with estimates suggesting

it can comprise up to 41% of the total logistics cost (Jacobs et al. 2019).

From a research perspective, Savelsbergh and Van Woensel (2016) review and discuss

the challenges and opportunities in last-mile logistics, emphasizing its critical role in

modern supply chains. In the realm of on-time and on-demand last-mile delivery, much

of the research focuses on improving delivery times to enhance service quality or reducing

travel costs to meet demand and improve efficiency. This is achieved through empirical

studies demonstrating the importance of on-demand delivery (Mao et al. 2022; Li and

Wang 2024), optimizing driver-to-customer assignments or driver routing for efficient

dispatch (Liu, He, and Max Shen 2021; Carlsson et al. 2024), introducing innovative

business models (Cao and Qi 2023; Raghavan and Zhang 2024) to improve the overall

system efficiency, and applying advanced learning techniques (Hildebrandt and Ulmer

2022; Auad, Erera, and Savelsbergh 2024) for efficient practical implementation .

In line with this body of research, the focus of this thesis is to develop models and

algorithms that foster on-time and on-demand deliveries while improving delivery ef-

ficiency, reducing costs, enhancing reliability, and achieving high-quality solutions effi-

ciently. To this end, we investigate three distinct delivery models, each addressing specific

challenges and opportunities in last-mile logistics.

In Chapter 1, we explore crowdkeeping delivery services, a novel form of crowd-

sourcing that leverages unused crowd space for temporary parcel storage. This approach

reduces delivery costs, decreases delivery failures, and enhances service quality. The

"crowd keepers", driven by incentives to provide services, temporarily store parcels on

behalf of delivery companies and transfer them to customers at their earliest convenience.

Companies such as Pickme (2024) in France and CaiNiao (2023) in China are implement-

ing these crowdkeeping delivery services. This business model motivates the crowd to

provide the service by offering compensation and encourages customers to use it through

a lower pickup fee. It respects the independent decision-making of both customers and

keepers while balancing cost minimization for customers with profit maximization for

keepers. We present a bilevel program for the problem that jointly determines the as-

signment, routing, and pricing decisions while considering customer preferences, keeper

behaviors, and platform operations. We then develop equivalent single-level programs

that can be solved to optimality using a row generation algorithm, as well as high-quality

approximations with estimated optimal travel times to solve the problems approximately

but more efficiently. The numerical study using a real-world dataset from Amazon shows

that the crowdkeeping delivery system has the potential to generate higher profits due to

its ability to consolidate deliveries and eliminate failed deliveries.

In Chapter 2, we examine ultra-fast delivery services, which focus on transporting

food, groceries, and essentials from micro-depots to customers within tight timeframes,

often as short as 15 minutes. For instance, Getir (2022) in Turkey, Gorillas (2022) in

Europe, and Goodfood (2022) in Canada have aimed to provide fast delivery services

2

within 15 to 30 minutes. Sharing the same principles of proximity, sustainability, and

accessibility as the 15-minute city (Moreno et al. 2021), this model reduces reliance on

cars, cuts fuel consumption and pollution, and improves customer satisfaction. By strate-

gically locating micro-depots and allocating customers while accounting for uncertainties

in travel times and demand arrivals, the model aims to maximize profits while ensuring

reliable and timely service. We develop robust probabilistic envelope constrained (PEC)

programs to handle uncertainties and optimize the protection level to avoid both excessive

risk and conservatism. To enhance the tractability of PEC models, we derive their equiva-

lent semi-infinite linear programs and propose inner and outer approximations with finite

linear constraints. The numerical study using a real-world dataset from Amazon and the

Google API shows that a daily service level that prioritizes time periods with higher order

frequencies and applies multi-layer partial protection yields high profitability with mild

violations of service level guarantees. This strategy proves to be effective for profitable

and reliable ultra-fast delivery without over-committing or under-performing, regardless

of ordering times or traffic conditions. Additionally, empirical evidence indicates that

providing ultra-fast delivery in rural areas poses unique challenges compared to urban

settings.

In Chapter 3, we investigate multi-store consolidated-order delivery services, which

enable customers to place orders from multiple stores in a single transaction, with the

orders fulfilled through combined deliveries. For instance, DoubleDash (2023) and In-

stacart (2022) in the US and Epipresto (2023) in Canada allow customers to shop from

multiple stores in a single transaction without an additional delivery charge, ensuring that

all items are delivered together by the same driver. We further consider that orders can be

handled by different drivers for pickup, allowing partial order transfers among drivers at

transshipment points. Consolidation saves on delivery fees for customers and enhances

operational efficiency for companies, while transshipment can further improve delivery

times by avoiding unnecessary detours to multiple far-apart stores. The process involves

optimizing driver assignments to pick up and deliver customer orders, planning efficient

delivery routes under time and capacity constraints, and facilitating partial order trans-

3

fers at selected transshipment points. We develop a mixed-integer linear program for the

multi-store order problem with consolidation and transshipment and adopt a learning-

to-optimize approach that integrates machine learning and optimization to provide high-

quality solutions efficiently through offloading a portion of the computational workload

to the offline phase. The numerical study using a real-world dataset and implemented

in a dynamic environment shows that the consolidated-order delivery with transshipment,

coupled with a short-duration waiting strategy, consistently delivers superior performance

through spatial and temporal consolidation. The optimal waiting strategy varies depend-

ing on customer arrival rates and driver availability relative to customer demand.

In summary, the business models considered in this thesis focus on efficient delivery

operations that address the diverse and dynamic needs of modern consumers for fast, flex-

ible, and reliable services. These models contribute to the overall success of e-Commerce

by ensuring seamless integration between order fulfillment, last-mile logistics, and cus-

tomer experience. Additionally, they emphasize the balance between operational effi-

ciency and service quality, both of which are essential in modern online retail. For each

business idea, we formulate mathematical programs that capture real-world challenges in

last-mile logistics and develop efficient solution methods to obtain high-quality solutions.

Through conducting numerical experiments using real-world datasets, we provide man-

agerial insights into how emerging delivery strategies can transform last-mile logistics

into a more cost-effective, reliable, and customer-centric process, ultimately enhancing

the efficiency and competitiveness of e-Commerce operations.

4

Chapter 1

Crowdkeeping in Last-Mile Delivery

Abstract

In order to improve the efficiency of the last-mile delivery system when customers are

possibly absent for deliveries, we propose the idea of employing the crowd to work as

keepers and to provide storage services for their neighbors. Crowd keepers have extra

flexibility, more availability, and lower costs than fixed storage such as automated lock-

ers, and this leads to a more efficient and a more profitable system for last-mile deliveries.

We present a bilevel program that jointly determines the assignment, routing, and pricing

decisions while considering customer preferences, keeper behaviors, and platform oper-

ations. We develop an equivalent single-level program, a mixed-integer linear program

with subtour elimination constraints, that can be solved to optimality using a row gener-

ation algorithm. To improve the efficiency of the solution procedure, we further derive

exact best response sets for both customers and keepers, and approximate optimal travel

times using linear regression. We present a numerical study using a real-world dataset

from Amazon. The fixed-storage and the no-storage systems are used as benchmarks to

assess the performance of crowdkeeping system. The results show that the crowdkeeping

delivery system has the potential to generate higher profits due to its ability to consolidate

deliveries and to eliminate failed deliveries.

1.1 Introduction

E-commerce is thriving. The number of sales has almost tripled from 2014 to 2019 (De-

loison et al. 2020). This boom has led to an unprecedented volume of goods being shipped

every day. Customers are more demanding than ever in terms of the quality of delivery

services: they are expecting to receive orders at any time they want (M. Ulmer and Savels-

bergh 2020), and their expectations for speed forces e-tailers to offer same-day delivery

with small time windows (Savelsbergh and Van Woensel 2016; Koch and Klein 2020).

Such services lead to costly last-mile deliveries, which constitute the final stage in the de-

livery process when a product is transported and delivered to a customer. Indeed, last-mile

services can comprise up to 41% of the total cost to move goods (Jacobs et al. 2019).

Several novel technologies and business models, including crowdshipping, drones, au-

tonomous robots, and parcel lockers, have emerged. Common goals in such innovations

are cost reduction or improved service quality. Sharing the same goals, we propose an

innovative business model in last-mile delivery, referred to as crowdkeeping. Crowdkeep-

ing, a new form of crowdsourcing in last-mile delivery, aims to utilize the unused space

within the crowd for storage and has the potential to reduce delivery costs, eliminate de-

livery failures, and improve service quality. Broadly defined, it involves employing the

crowd to keep parcels locally until customers pick them up. In other words, the ‘crowd

keepers’, who volunteer to act as keepers and provide keeping services, initially attend the

delivery on behalf of customers and transfer parcels to customers on behalf of the delivery

company.

Compared to pickup points and automated lockers that are used in the real world, the

availability and capacity of crowd keepers are higher, the cost of using crowd keepers

is lower, and crowd keepers are more flexible to adapt to different customer groups in

different time periods. Moreover, it can be implemented without substantial additional

infrastructure and with modest operational cost. We consider an online service platform

that coordinates customers and keepers to reduce the delivery costs and to improve the

overall profitability of the delivery company.

6

We contribute to the current research on delivery logistics from three aspects:

• We propose the idea of crowdkeeping for last-mile delivery systems, and present its

concept, viability, benefits, and operational framework.

• To model the behaviors of all participants in the delivery system, including cus-

tomers, keepers, and the platform, we present a bilevel program that jointly con-

siders the assignment, routing, and pricing decisions. We make use of the duality

theory to obtain an equivalent mixed-integer linear programming formulation, and

develop a row generation algorithm to find the exact optimal solutions. To further

improve the efficiency of the solution procedure without sacrificing the effective-

ness, we derive explicit expressions for the best responses of customers and keepers,

and propose an approximation model by approximating optimal travel times using

linear regression.

• We carry out extensive experiments on a real-world dataset to investigate the effec-

tiveness of the delivery system, the efficiency of the solution procedure, and how

these are influenced by factors such as the number of customers, customer absence

ratio, keeper service range, and various related costs. We find that crowdkeeping

has the potential to improve customer service levels, increase platform profits, and

enhance the overall cost-efficiency and environmental friendliness of the delivery

system.

The paper is organized as follows. Section 1.2 reviews the related literature in last-

mile delivery. We define the problem setting in Section 1.3, present a bilevel program in

Section 1.4, and develop the solution methodology in Section 1.5. We finally carry out

an extensive numerical study in Section 1.6 and present our conclusions in Section 1.7.

We also refer the reader to Appendix for a list of alternative delivery systems and for all

proofs.

7

1.2 Literature Review

In this section, we first review the three most common types of last-mile delivery and their

associated challenges. Subsequently, we delve into the most-recent innovations address-

ing these challenges, including lockers in Section 1.2.2, crowdsourcing in Section 1.2.3,

and demand management in Section 1.2.4. Undoubtedly, the problem considered here is

closely related to the traveling salesman problem (TSP) and its variants, constituting a

vast body of knowledge. We lastly review the related literature in Section 1.2.5.

1.2.1 Last-Mile Delivery Types, Challenges, and Innovations

There is a wide range of products being shipped and delivered every day. According to

the necessity of the customer presence and the coordination of delivery time windows,

deliveries are categorized into three types. In ‘unattended home delivery’ (UHD), cus-

tomer presence is not needed since a parcel is left at the doorstep with no attendance

requirement. In ‘attended home delivery’ (AHD), the customer is required to be present

at the time of delivery, for instance, an important document that requires a signature, a

high-tech computer, or groceries shipped from a local store. In AHD, the company and

the customer can either agree or not on a delivery time window, a.k.a. coordinated AHD

(c-AHD) and uncoordinated AHD (u-AHD), respectively.

Each delivery type poses different challenges. In UHD, coordination and customer

absence is not a concern. However, theft and weather conditions pose important risks.

There are also risks associated with denial-of-receipt or burglary at the house (McKinnon

and Tallam 2003). In u-AHD, not finding the customer at home causes inefficiencies

since it requires a second trip to the same customer. In c-AHD, timing is important.

Companies offer limited number of delivery time slots to customers and each time slot

comes potentially with a different delivery price (M. W. Ulmer 2020; Koch and Klein

2020). Time windows can increase the delivery costs significantly, because consolidation

may not be possible for parcels destined to the same region. When customers cannot find

a suitable time slot that fits their needs, the demand (and therefore the revenue) is lost.

8

Last-mile delivery is a growing field to deal with these challenges, that is, to make the

deliveries on-time and low-risk, to eliminate failed deliveries, and to reduce the delivery

costs. The goals are achieved either by improving the operational procedures with self-

service lockers and crowdsourcing, or by managing the demand.

1.2.2 Self-Service Locker Systems

Self-service locker systems are proposed to alleviate the risk of theft, to protect from

unfavorable weather conditions, and to provide consolidation of parcels. Motivated by

an example of Singaporean companies experimenting with a set of shared parcel lockers,

Lin et al. (2020) propose a quantitative approach to determine the optimal locker locations

with the objective to maximize the overall quality of services. Schwerdfeger and Boysen

(2020) further consider the dynamic relocation of parcel lockers during the day. Rohmer

and Gendron (2020) extensively investigate different delivery concepts that exploit parcel

locker stations and their associated decision problems.

There are unfortunately major disadvantages of employing lockers. First, setting up

a network of lockers requires large initial investment costs, which can eventually lead

to small returns. Currently, there is a lack of a dense locker network. The ownership

of lockers is also a major problem. Hasija, Shen, and Teo (2020) argue that, due to the

proprietary nature of such systems, the utilization of lockers tends to be low. The lockers

can also be shared among multiple firms, in which case the assignment of capacities

becomes a concern. Shared or not, the use of lockers may result in rental costs, which

could eventually be imposed on customers. Joerss et al. (2016) also report that “Somewhat

surprisingly, unattended delivery to parcel lockers does not really appeal to consumers

despite the possibility of picking up their parcel 24/7”. The authors report that customers

put large value on home delivery instead of going to the lockers and conclude that their

wide utilization is unlikely.

In our understanding, the locker system is a viable option for delivery, especially

when the confidentiality of items is a concern. Therefore, lockers represent an important

9

option of the last-mile delivery problem and add value to the overall system. However,

the benefits of using automated lockers are limited due to setup and maintenance costs,

as well as the restricted number of available locations. The crowdkeeping system, on

the other hand, provides a comparable service without requiring substantial additional

infrastructure, other than setting up an online platform. Even though compensation is

necessary to offer keepers proper incentives, it can be adapted as capacity changes. In the

new system, the cost for unused capacities is avoided.

1.2.3 Crowdsourcing

Carbone, Rouquet, and Roussat (2017) conceptualize the applications of crowdsourcing in

logistics by reviewing the websites of 57 initiatives. The authors argue that most of these

initiatives mainly offer two types of logistics services: crowdshipping and crowd storage.

Crowdshipping is the transportation of parcels by the crowd in return for a compensation

and is offered as an option in the last-mile delivery. There is a high level of interest for

crowdshipping both in practical applications and in the scientific literature. A. M. Arslan

et al. (2019) report that several companies use crowdshipping partially or completely in

their delivery operations. The authors investigate the benefits of crowdshipping by con-

sidering a platform that matches parcel delivery tasks and ad hoc drivers in real time. All

requests are essentially served. A related problem is the online vehicle routing problem

with occasional drivers (Archetti, Guerriero, and Macrina 2021), in which a penalty is in-

curred for not serving a customer or for violating the time window constraints. Dayarian

and Savelsbergh (2020) consider crowdshipping by employing in-store customers to de-

liver online orders. M. Ulmer and Savelsbergh (2020) study the problem of keeping a

scheduled delivery workforce along with crowdsourcing to hedge against the uncertainty

in crowdsourced delivery capacity. Qi et al. (2018) study shared mobility in last-mile

delivery by optimally sizing the service zones. They argue that crowdshipping is not a

scalable alternative of the conventional truck-only system in terms of operating costs, but

that a combined operational mode can provide flexibilities and benefits. For a recent re-

10

view on multiple dimensions of crowdshipping, we refer to Le et al. (2019) and Alnaggar,

Gzara, and Bookbinder (2021). Crowd storage, on the other hand, is considered as a lo-

gistics operation in rental of storage areas such as cellars, spare rooms, garages, or yards.

It is considered as a local service that is particularly suitable in urban areas for those who

need to store furniture or similar items for long terms. To the best of our knowledge,

crowd storage is still not considered for last-mile deliveries.

We define crowdkeeping by introducing the idea of crowd storage into the last-mile

delivery. That is, keepers can provide storage services for their neighbors, or neighbors

can temporarily store parcels for absent customers. In fact, delivering a parcel to a neigh-

bor is not an entirely new idea. Jacobs et al. (2019) report that “55% of consumers can

accept the service of delivering products to neighbors in their vicinity”. There are also

empirical evidences that neighbors can cooperatively undertake delivery tasks with little

or no compensation, and that 70% of customers in a survey reported that they can make

deliveries for less than $5 (Devari, Nikolaev, and He 2017). Nevertheless, there is no

formal way of delivering to a neighbor. In the current operations, the courier needs to

search for an available neighbor to deposit the parcel when the customer is absent from

the delivery (McKinnon and Tallam 2003). In our study of crowdkeeping, neighbors are

incentivized by a monetary compensation to participate in the delivery process as crowd

keepers. Then keepers are selected by the platform to serve multiple customers before

deliveries. In this case, deliveries are consolidated, and the additional task of searching

for an available neighbor is eliminated. Customers then pick up their parcels possibly by

walking. At this point, it is worth mentioning that walking is also reported as a mode

of transportation in crowd logistics (Carbone, Rouquet, and Roussat 2017): “Transport

resources can be vans, cars, scooters, bicycles, public transport, or even walking”. We

identified a single study in the literature considering walking as a form of transportation

in crowdshipping. Martinez-Sykora et al. (2020) consider drivers making deliveries in

dense urban areas by walking at the end of their vehicle trip in crowdshipping to avoid

heavy traffic.

11

1.2.4 Demand Management

There is extensive research in the area of demand management for last-mile deliveries.

Our work is most related to the service time slot, the service price, and customer incen-

tives. E-tailers can offer different delivery time windows and associated prices to manage

the demand. Several static and dynamic demand management strategies have been inves-

tigated including differentiated time slot allocation and differentiated time slot pricing.

In the time slot allocation dimension, Agatz et al. (2011) study assigning time slots

to zip codes in a service region to minimize the delivery costs. Spliet and Gabor (2015)

introduce the time window assignment vehicle routing problem, in which time windows

have to be assigned before demand is realized. Bruck, Cordeau, and Iori (2018) study the

problem of creating time slot tables and routing technicians in a cost-effective way. A

decision support system for an Italian company is also developed for a related problem

(Bruck, Castegini, et al. 2020).

In the time slot pricing dimension, Yang and Strauss (2017) present a delivery cost

approximation scheme by decomposing the delivery problem into a collection of smaller

problems. The customers’ delivery time slot choices are estimated using a multinomial

logit model. Klein, Neugebauer, et al. (2019) study differentiating the time-slot pricing

by considering the routing phase. The customers’ choice behavior is modeled as a general

nonparametric rank-based choice model. These authors study two policies for incorporat-

ing the routing costs, by explicitly incorporating the routing constraints to their model or

by using a model-based approximation and find that the latter can be used in real-world

applications. In a similar line of research, Klein, Mackert, et al. (2018) present a cost

approximation approach for dynamic time slot pricing decisions by forecasting the poten-

tial future customers. Koch and Klein (2020) additionally combine dynamic pricing with

dynamic vehicle routing.

Another interesting idea in demand management is incentivizing customers. One of

the first papers in customer incentives is Campbell and Savelsbergh (2006), who investi-

gate the use of incentives for demand management to reduce the delivery costs. M. W.

12

Ulmer (2020) considers anticipatory pricing and routing policy method for the same-day

delivery, in which customers are incentivized to select delivery deadline options efficiently

to align with routing considerations. Yildiz and Savelsbergh (2020) consider offering a

discount to customers on their delivery fee in return for flexibility to adjust a previously

agreed upon delivery window. The authors report that the cost savings of offering dis-

counts can exceed 30%.

These studies on demand management reveal the importance of the time slot manage-

ment, the pricing for services and incentives, and the integration of pricing and routing.

However, some customers may be unavailable in any of the offered time slots, and this

implies lost revenues. Our approach can provide on-time deliveries but does not have

to enforce the time slot management, and it can jointly consider the service pricing, the

incentive pricing, and the routing decisions.

1.2.5 Traveling Salesman Problem and Variants

The Traveling salesman problem is one of the most classical problems in logistics and

its extensions attract significant attention due to their economic importance, theoretical

challenge, and applicability in many real-world contexts (Vidal, Laporte, and Matl 2020).

It consists of finding one route from a depot such that all customers are visited and the

total cost is minimized. We refer the reader to Applegate et al. (2007) and to Toth and

Vigo (2014) for related problems, methods, and applications. When customers are not

necessarily visited by a vehicle and it is sufficient to visit another close-by node in the

network, the problem is then called covering-tour problem (CTP) (Gendreau, Laporte, and

Semet 1997). The problem we consider in this paper is closely related to CTP, because

keepers in the same vicinity of customers cover the customer nodes. Exact solutions of

CTP and its variants are notoriously difficult to obtain. A branch-and-price algorithm

is introduced by Jozefowiez (2014) for solving CTP. The pricing subproblem is a ring-

star problem, which is solved using a branch-and-cut algorithm. Kartal, Hasgul, and

Ernst (2017) introduce the single allocation p-hub median location and routing problem

13

with simultaneous pick-up and delivery. Other closely related problems are location-or-

routing problem (LoRP) by O. Arslan (2021), and location-and-routing problem (LRP)

by Kartal, Hasgul, and Ernst (2017). In LoRP, the location decision is related to depots,

the vehicles are dispatched from the selected depots, the depots are not connected to

each other, and a customer is served either by being covered by a located depot or by

being visited by a vehicle routing. In LRP, the depots are connected, the vehicles are

dispatched from the selected depots, and all customers are visited by a vehicle routing.

In our crowdkeeping delivery problem (CDP), the location decision is related to keepers

and customers, a vehicle is assumed to visit a subset of nodes (i.e., the active nodes), and

the inactive nodes are covered by the active nodes. The CDP bears similarities with two-

echelon vehicle routing problems (Perboli, Tadei, and Vigo 2011), but it is enriched by

the inclusion of pricing mechanisms and coordination among the different participants.

1.3 Problem Description

This section introduces the crowdkeeping framework by comparing it with the standard

operational framework for deliveries. It describes the behaviors and decisions of keepers,

customers, and the platform and lists the potential benefits and real-world applications of

crowdkeeping.

1.3.1 Operational Framework

In the standard operational framework for delivery systems (Figure 3.2(a)), the delivery

phase is a combination of order preparation and parcel transportation. In the order prepa-

ration phase, companies receive order requests, pick up items, and pack them as parcels

for deliveries. In the transportation phase, parcels are in transit from their origin depots

to their destination depots, and delivered to customers in last mile delivery.

In our new business model (Figure 3.2(b)), we decompose the last-mile delivery pro-

cess into two steps. First, parcels are delivered to keepers who store them for customers.

14

Order
request

Pick &
pack

Trip Delivery

TransportationOrder preparation

(a) The standard operational framework

Order
request

Pick &
pack

Trip Storage (by
crowd keeper)

Pickup (by
customer)

Transportation

Delivery with crowdkeepingOrder preparation

(b) The crowdkeeping operational framework

Figure 1.1 – Comparison of the standard and the new operational frameworks for delivery
systems

Second, customers pick up their parcels from their selected keepers to finish the delivery

process. Decomposition of tasks allows deliveries to be coordinated with absent cus-

tomers and also with crowd keepers who have more flexibility to consolidate orders in

their neighborhood.

1.3.2 Implementation

We now explain the implementation details of crowdkeeping in reality by taking Pickme

(2024) as an example, which is a platform that provides parcel reception service, allows

keepers to earn compensation by storing parcels for their neighbors, and aims to avoid

failed deliveries. Detailed steps of implementation are shown in Table 1.1 and Figure 1.2.

In the first stage, the platform determines the pricing for the service and pre-assigns po-

tential keepers to customers. In the second stage, customers and keepers make decisions

based on their preferences. After observing the behavior of keepers and customers in this

stage, the platform makes the final assignment decisions in the third stage and plans the

deliveries. Finally, upon receiving the parcels, keepers notify customers of the pickup

15

location and time slots, and hand over the parcels to complete the deliveries.

Figure 1.2 – Implementation of the crowdkeeping operational framework.

1.3.3 Participants and Their Behaviors

In the crowdkeeping delivery system, there are three groups of players: customers, keep-

ers and the platform. The customers are people who purchase products online and expect

their parcels to be delivered. The keepers are individuals, such as homemakers, stay-

at-home parents, people working from home, and unemployed persons, that can receive

parcels and temporarily store them. This term makes a clear reference to the duty that

such an individual performs and emphasizes the functional difference from the “courier”

generally used in crowdshipping. Similar to other supply sides on crowdsourcing plat-

forms, keepers work in reputation-based systems and normally receive a compensation

for every customer they serve. Different from other crowdsourcing platforms, the entry

to the crowdkeeping market is simpler, because it only requires a smart phone and no in-

vestment or special equipment is necessary. Coupled with the mobile application, a smart

phone is capable of updating the tracking information, specifying the pickup location and

duration, and collecting the customer signature to ensure the safety and the convenience

of the delivery process. The third participant, the platform, coordinates the deliveries be-

tween customers and keepers. The delivery company delivers the product to the keeper

and, in doing so, has more flexibility to consolidate orders in the same neighborhood.

16

Table 1.1 – Implementation details

Stage Description
Stage
1:

Platform pricing and pre-assignment: The platform commits to compensating
the crowd for their crowdkeeping services, encouraging them to register as po-
tential keepers by providing their information, including address and available
time slots. It also displays delivery and pickup fees to customers and encour-
ages them, including those who may be absent, to use the parcel storage service.
Additionally, the platform presents the proximity of potential keepers to nearby
customers, helping them estimate the walking time for the pickup option and
provides a minimum guaranteed compensation to keepers, helping them decide
whether to provide the service or not.

Stage
2:

Keeper availability: Potential keepers who are pleased with the proposed com-
pensation can choose to make themselves available and provide the requested
capacity. Otherwise, they make themselves unavailable.
Customer choice: Customers choose between two options: pickup and attended-
home delivery. If customers agree to be assigned by the platform subsequently
to pick up their parcels from any of the listed pre-assigned keepers, they will
be charged a lower pickup fee than the delivery fee. Attended-home delivery
includes two choices: direct delivery, which takes place as soon as possible,
and rescheduled delivery, which is delayed to another day. If customers prefer
attended-home delivery but declare themselves as absent, then their delivery will
be rescheduled for another day. Otherwise, the default option is direct delivery.
Additionally, customers who choose direct delivery can also work as keepers.

Stage
3:

Platform assignment and delivery: The platform assigns inactive customers, who
prefer the pickup option, to available keepers while respecting the preferences of
keepers and customers. Carriers deliver the parcels to active keepers who serve
customers and to active customers who choose the direct delivery. Keepers and
customers are allowed to modify their availability before the delivery. If the
selected keeper refuses to receive parcels due to any reason, the parcels will be
redirected to another available keeper. In the case that all keepers are unavailable,
rescheduling the delivery becomes the backup option.

Stage
4:

Notification: Keepers are notified of the arrival of the delivery by the platform.
After receiving parcels, keepers use their smartphone to scan these parcels,
which updates the tracking information and contacts customers to arrange an
appointment for picking up.
Pickup: Customers who choose the pickup option receive an identification code
beforehand by email or text message, and must show this code to the keeper to
secure the exchange when collecting their parcels.
Confirmation: Keepers enter the customer’s code and scan the package to con-
firm the transaction, and they are instantly rewarded once the delivery of the
parcel to its recipient is confirmed.

17

From the platform’s perspective, customers represent the demand, and keepers represent

the supply, and the objective is to match the demand and supply in this market.

Participants Decisions

Unavailable
customers

Available customers
(Customer keepers)

Non-customer
keepers

C
us

to
m

er
s

K
ee

pe
rs

Attended-home delivery

Rescheduled delivery

Direct delivery

Pickup option

Being a keeper

Pl
at

fo
rm

fir
st

-s
ta

ge
de

ci
si

on
s

Notes. The participants are on the left side and each arrow represents a potential option for
a participant. They make their own decisions, which are guided (or filtered) by the platform’s
first-stage decisions.

Figure 1.3 – Problem setting of the crowdkeeping delivery system.

Observe that customers may be absent during deliveries. Therefore, we categorize

customers as available customers, who are present for attended home deliveries, and un-

available customers, who are absent during deliveries. The available customers are also

referred to as customer keepers because they can additionally provide storage services

in their neighborhood. In our problem setting, we also consider keepers who may not

necessarily be a customer receiving a parcel but declare their availability to provide stor-

age services. This group is called non-customer keepers. Both customer keepers and

non-customer keepers are included in the group of keepers (i.e., crowd keepers). These

participants and their options are displayed in the left side of Figure 1.3.

We now discuss the choices of each participant. The platform prices the pickup fee,

18

which is lower than the standard delivery fee to encourage customers to use the crowd-

keeping service. The platform also prices the compensation, an incentive to attract the

crowd to work as keepers and provide the crowdkeeping service. Customers then choose

between the attended-home delivery (subject to a delivery fee) and the pickup option (sub-

ject to a pickup fee and a short walking distance). For the available customers who prefer

the attended-home delivery, the direct delivery is the default option. The deliveries of the

unavailable customers that prefer the attended-home delivery yet cannot attend the direct

delivery are rescheduled to another day. Both the non-customer keepers and available

customers that choose the direct delivery have the option to be potential keepers and pro-

vide storage services. Finally, the platform assigns the customers that prefer the pickup

option to the available keepers, and the carrier visits the active customers (who prefer the

direct delivery) and the active keepers (who serve the other customers).

1.3.4 Benefits and Challenges

The concept of using pickup locations to reduce failed deliveries and improve last-mile

delivery efficiency is well-established. Companies such as Amazon and IKEA operate

dedicated pickup points in cities, allowing customers to retrieve their orders. These lo-

cations are typically staffed by full-time employees, remain fixed, and are designed for

long-term use, making them less adaptable to changing demands. Similarly, automated

lockers provide self-service pickup options, providing convenience and flexibility. We de-

fine such pickup points and lockers as fixed storage since they both operate from perma-

nent locations. For further details on delivery systems using fixed storage, see Appendix

1.8.

Compared to fixed storage, crowd keepers have the advantages of offering extra flexi-

bility, more availability, and lower costs. There are concrete benefits of crowdkeeping for

distribution companies, customers, and keepers. For distribution companies, crowdkeep-

ing improves operational efficiency by consolidating deliveries in both time and space.

The flexibility and availability of the crowd helps increase delivery capacity while re-

19

ducing failed deliveries. For customers, crowdkeeping enhances convenience as they can

pickup parcels in person whenever they are available. It also increases parcel security

through direct supervision by the keepers. Additionally, customers gain an alternative to

standard home delivery by opting for a lower-cost pickup service. For keepers, individu-

als acting as crowd keepers can earn compensation or rewards with minimal investment

or setup costs. Unlike fixed storage, which incurs setup costs regardless of usage, crowd

keepers are only compensated when they are assigned tasks, making the system more

adaptable and cost-efficient.

Despite its benefits, crowdkeeping introduces concerns about legal responsibility and

parcel security, as non-professional keepers temporarily store customer packages. While

legal and regulatory issues are beyond the scope of this study, lessons from existing

crowdshipping platforms can be applied to crowdkeeping. Furthermore, in local neigh-

borhood settings, established relationships between participants reduce legal risks. Real-

world applications such as Pickme (2024) and CaiNiao (2023) demonstrate the viability

of crowdkeeping, reinforcing its potential as a practical alternative to fixed storage.

1.4 Bilevel Program for Crowdkeeping Delivery

Problem

We define the Crowdkeeping Delivery Problem (CDP) and present models for the cus-

tomer, the keeper, and the platform. Subsequently, we formulate a bilevel program for

the CDP, with the platform as the leader and customers and keepers making decisions

simultaneously as followers.

Definition 1 The Crowdkeeping Delivery Problem is defined as pricing the compensa-

tion and the pickup fee that maximize the platform profit by respecting independent de-

cision making mechanisms of customers and keepers, which involve minimization of the

delivery service cost for each customer and maximization of the profit for providing stor-

age services for each keeper.

20

Table 1.2 – Notations

Sets Description
N the set of all customers, including the unavailable customers and customer keepers
M the set of non-customer keepers
Variables for platform decisions made in the first stage
f p the pickup fee offered to customers
c the compensation offered to keepers
mi the maximum number of customers proposed to be served by keeper i,

(i.e., the requested capacity by the platform)
vi j 1 if platform shows potential keeper j to customer i, 0 otherwise
Variables for customer or keeper decisions made in the second stage
ui 1 if customer i chooses the direct delivery, 0 otherwise
wi 1 if customer or keeper i makes themselves available to serve others, 0 otherwise
zi 1 if customer i chooses to reschedule the delivery, 0 otherwise
Variables for platform decision made in the third stage
v̂i j 1 if platform assigns keeper j to serve customer i, 0 otherwise
xi j 1 if arc (i, j) appears on tour, 0 otherwise
y j 1 if participant j is active and needs to be visited, 0 otherwise
ẑi 1 if the delivery of customer i is rescheduled by the platform due to the lack of

available nearby keepers, 0 otherwise
Parameters
f d the standard delivery fee offered to customers
ti j the travel time between i and j
ai 1 if customer i is absent for deliveries, 0 otherwise
b j the capacity of keeper j
ei 1 if node i is a customer, 0 if node i is a non-customer keeper
ri j 1 if customer i and keeper j are located in the service zone, 0 otherwise

(with rii = 0 to model the infeasibility of serving oneself)
cp the inconvenience cost per minute of walk time for picking up
cd the truck delivery cost per minute of travel time
cr the inconvenience cost of rescheduling a delivery incurred by customers themselves
ĉr the penalty for rescheduling a delivery as a result of the platform’s decision
ck the fixed inconvenience cost of being available as a keeper
cs the marginal inconvenience cost for serving each parcel as a keeper

21

Descriptions of the notation are given in Table 1.2. According to the implementation

details shown in Section 1.3.2 and the decisions of each participant involved in the CDP

as presented in Section 1.3.3, Figure 1.4 illustrates the timeline of decisions made by each

of them.

Decisions:

Decision makers: Platform

f p,c,m,v
Stage 1

Customer/keeper i

ui,wi,zi

Stage 2

Platform

v̂,x,y, ẑ
Stage 3

Timeline

Figure 1.4 – Timeline of decisions made by the platform, customers, and keepers

We assume that the delivery operations are carried out under the condition of full

information. In the first stage, the platform prices the pickup fee (f p), shows the poten-

tial keepers to each customer (v), prices compensation (c), and determines the maximum

number of customers to be served by each keeper (m). In the second stage, given the

first-stage decisions, customers choose between the delivery and the pickup options. Cus-

tomers who prefer the attended-home delivery choose the direct delivery (ui = 1) if avail-

able, or reschedule the delivery (zi = 1) if absent. Keepers, including customer keepers

who choose direct delivery, show their availability and become potential active keepers

(wi = 1) if they are satisfied with the to-be-earned compensation by serving a certain num-

ber of customers. In the third stage, the platform assigns those customers who prefer the

pickup option to potential keepers (v̂) by respecting their preferences, or reschedules the

delivery (ẑ) if those customers cannot be served by any nearby available keeper. The plat-

form then plans the visit to all active nodes (x,y) to complete the deliveries. In summary,

the service fee, the compensation and the pre-assignment are revealed before customers

and keepers make their decisions, and customer demands and keeper availabilities are re-

vealed before the assignment and routing planning takes place. These assumptions lead

to a form of three-stage Stackelberg game, in conformity to the first three stages in Table

1.1 and Figure 1.2.

22

1.4.1 Customer and Keeper Models

Available customers have three choices. The first one is to pay the standard delivery fee

and to have their parcels delivered to their doorstep (Direct delivery in Figure 1.3). The

second one is to pay the pickup fee and to pick up their parcels from one of those potential

keepers (Pickup option). They also have the third option of working as a crowd keeper

in addition to receiving their own parcels (Being a keeper). Absent customers, on the

other hand, have two choices: they can pick up their parcels or reschedule their delivery

(Rescheduled delivery). The model for customer keeper i is as follows:

Hi(f p,c,mi,vi:), min
ui,wi,zi

f d(ui + zi)+
[
ck +(cs− c)mi

]
wi

+(f p + cp max
j∈M∪N

ti jvi j)(ei−ui− zi) (1.1a)

s.t. ui ≤ ei(1−ai) (1.1b)

zi ≤ eiai (1.1c)

eiwi ≤ ui (1.1d)

miwi ≤ bi (1.1e)

ui,wi,zi ∈ {0,1}. (1.1f)

Given the platform’s decision on the pickup fee f p, the compensation c, the maximum

number of to-be-served customers mi, and the potential keepers from where customer i

could pick up their parcels vi: (denoting a row vector), Hi(f p,c,mi,vi:) is the optimization

model of customer i. Using this model, customers decide whether they prefer a direct

delivery (ui), acting as a keeper (wi) for a total compensation of cmi, rescheduling the

delivery (zi), or picking up from any of the pre-assigned keepers that will be designated

by the platform later. The objective function (1.1a) states that each customer minimizes

the total amount they pay to receive their parcels. If customers choose the delivery option,

whether it is the direct delivery or rescheduled delivery, they need to pay the delivery fee

f d . When working as crowd keepers, they earn a compensation c for keeping each parcel

and incur both a fixed inconvenience cost ck for making themselves available and at a

marginal cost cs for serving each parcel. If customers choose the pickup option, they

23

need to pay the pickup fee f p and the inconvenience cost cp for each minute of pickup

walk time. Customers anticipate the walk time according to the travel duration from their

homes to the farthest pre-assigned keeper. This means that if customers prefer pickup,

they are open to being assigned to any of the pre-assigned keepers. Note that a fixed

inconvenience cost for walking can also be accounted as part of the pickup fee f p. The

parameter ei indicates whether participant i is a customer or non-customer keeper. This

implies that ei = 1 for all customer i ∈N , and that ei− ui− zi = 1 when the customer

chooses the pickup option. Constraints (1.1b) and (1.1c) state that customers preferring

the attended-home delivery have to reschedule the delivery if absent (ai = 1), and that they

have no reason to delay the delivery if available (ai = 0). Constraints (1.1d) and (1.1e)

state that customers can work as crowd keepers only when they are available for the direct

delivery and when they have enough capacity to serve mi customers. Constraints (1.1f)

are domain restrictions. We finally note that one could easily modify the model to account

for the inconvenience of rescheduling the delivery, compared to receiving it on the same

day, by adding some cr
i zi to the objective function. We omit this detail for simplicity of

presentation and because customers never formally choose between ui = 1 or zi = 1 in our

model.

When ei = 0, the formulation (1.1) models a non-customer keeper i ∈M and it re-

duces to:

Hi(c,mi), min
wi

[
ck +(cs− c)mi

]
wi (1.2a)

s.t. miwi ≤ bi (1.2b)

wi ∈ {0,1}. (1.2c)

Hence, when ei = 0, i is a non-customer keeper and is willing to provide crowdkeeping

service only if the total to-be-earned compensation cmi is higher than the inconvenience

cost ck +csmi and if the number of to-be-served customers mi is lower than their capacity

bi.

Finally, it is worth observing that in the case that mi ≤ bi, both models (1.1) and (1.2)

can be reformulated as linear programs, as described in the following proposition.

24

Proposition 1 Models (1.1) and (1.2) with relaxed integrality requirements always have

an optimal solution in which all variables assume binary values when mi ≤ bi, for all

i ∈N ∪M .

In other words, the constraint matrices of models (1.1) and (1.2) are totally unimodular.

The proof is presented in Appendix B, Section B.1.

1.4.2 Platform Model

The platform attracts the crowd on the supply side to provide storage services by offer-

ing them compensation, and it encourages customers on the demand side to use storage

services by offering them convenience and a lower fee. The platform matches supply and

demand in the first stage by pricing the compensation c and the pickup fee f p, and by

showing the maximum number of to-be-served customers m to keepers and those poten-

tial keeper locations v to customers; and in the third stage by assigning inactive customers

choosing the pickup option to available keepers using v̂ variables, and by determining a

vehicle route using x variables for visiting all active customers and keepers identified by

y. The platform model is:

HP , max
f p,c,m,v

∑
i∈N

[
f d(ui + zi)+ f p(ei−ui− zi)

]
− c ∑

j∈M∪N
m j−h(m,u,v,w,z)

(1.3a)

s.t. vi j ≤ ri j,∀i ∈N ,∀ j ∈M ∪N (1.3b)

f p ∈ [0, f̄ p],c ∈ [0, c̄],m j ∈ [0, m̄],vi j ∈ {0,1},

∀i ∈N ,∀ j ∈M ∪N , (1.3c)

with the third-stage model

h(m,u,v,w,z), min
v̂,x,y,ẑ

cd
∑

i∈M∪N
∑

j∈M∪N
ti jxi j + ∑

i∈N
(crzi + ĉr ẑi) (1.4a)

s.t. ∑
i∈N

v̂i j ≤ m j,∀ j ∈M ∪N (1.4b)

v̂i j ≤ w j,∀i ∈N ,∀ j ∈M ∪N (1.4c)

25

v̂i j ≤ vi j,∀i ∈N ,∀ j ∈M ∪N (1.4d)

∑
i∈N

v̂i j ≤ m̄y j,∀ j ∈M ∪N (1.4e)

yi ≥ ui,∀i ∈N (1.4f)

∑
j∈M∪N

v̂i j +ui + zi + ẑi = 1,∀i ∈N (1.4g)

∑
i∈M∪N

xi j = y j,∀ j ∈M ∪N (1.4h)

∑
i∈M∪N

x ji = y j,∀ j ∈M ∪N (1.4i)

∑
i, j∈S

xi j ≤ |S |−1,

∀S ⊂M ∪N ,2≤ |S | ≤ |M ∪N |−2 (1.4j)

v̂i j,xi′ j,y j, ẑi ∈ {0,1},

∀i ∈N ,∀i′ ∈M ∪N ,∀ j ∈M ∪N .(1.4k)

Model HP is the optimization model of the platform. The objective function (1.3a) max-

imizes the platform’s profit. The first term is the revenue generated from the delivery and

pickup fees paid by customers, the second term is the compensation paid to keepers, and

the third term is the cost of making deliveries and rescheduling deliveries. Constraints

(1.3b) ensure that the platform only pre-assigns customers to those keepers located in the

same zone. Constraints (1.3c) are domain restrictions for the first-stage decisions, where

f̄ p, c̄, m̄ are the upper bounds of f p,c,m, respectively.

The third-stage model h(m,u,v,w,z) assigns active keepers to serve inactive customers,

builds a vehicle tour for visiting all active nodes, and reschedules other deliveries. Objec-

tive function (1.4a) is the minimization of the total cost for visiting all active nodes and for

rescheduling deliveries, including the active ones rescheduled by customers themselves

(z = 1) and the passive ones rescheduled by the platform due to the lack of available keep-

ers (ẑ= 1). Constraints (1.4b)− (1.4d) state that the platform can only assign customers to

one of those available keepers that are accepted by customers and have enough capacity.

Specifically, the platform ensures that active keeper j does not receive more deliveries

than the promised maximum number m j, and allocates customers to pick up from one

26

of their pre-assigned keepers. Constraints (1.4e) and (1.4f) require that active nodes are

visited. Constraints (1.4g) ensure that if customers prefer the pickup option but cannot

be served by any keeper, their delivery along with those deliveries of absent customers

will be rescheduled. Constraints (1.4h) and (1.4i) are degree constraints, (1.4j) are sub-

tour elimination constraints (SECs), and (1.4k) are domain restrictions for the third-stage

decisions.

1.4.3 Bilevel Program with Multiple Followers

Considering the platform as the leader and customers and keepers as followers, the bilevel

program (BP) for the Crowdkeeping Delivery Problem is presented as follows:

(BP) max
f p,c,m,v,

u,w,z,v̂,x,y,ẑ

∑
i∈N

[
f d(ui + zi)+ f p(ei−ui− zi)

]
− c ∑

j∈M∪N
m j

−cd
∑

i∈M∪N
∑

j∈M∪N
ti jxi j− ∑

i∈N
(crzi + ĉr ẑi)

s.t. (1.3b)− (1.3c), (1.4b)− (1.4k)

〈ui,wi,zi〉 ∈ argminHi(f p,c,mi,vi:),∀i ∈M ∪N , (1.5)

where constraints (1.5) indicate that 〈ui,wi,zi〉 are the best responses of customer or

keeper i.

The CDP is a generalization of the Traveling Salesman Problem (TSP) and therefore

is NP-hard (Dantzig, Fulkerson, and Johnson 1954). The CDP is closely related to the

Covering Tour problem (CTP), since customers who choose delivery and keepers who

serve customers are nodes to be visited in the optimal tour, and customers who choose to

pick up are nodes to be covered. Compared to CTP, the main difference in CDP is that

the platform, keepers and customers optimize their respective objective functions, and

that the decisions are decentralized to three stages to be in accordance with the imple-

mentation. In addition to the covering and routing decisions, we also consider the pricing

decisions. Note that, in this study, customers are assumed to pick up their parcels from

the keeper, which is in line with the current practice. Nevertheless, the keeper could also

27

do the deliveries to customers. A model that accommodates such a feature is presented in

Appendix 1.8.

1.5 Solution Procedure

In order to solve the BP in Section 1.4.3, we first reformulate it into an equivalent single-

level model using the strong duality theorem and then solve the model exactly using

a row generation algorithm. We then derive the exact best response sets of followers

and develop an approximation of the optimal travel time to improve the efficiency of the

solution procedure.

1.5.1 Reformulation as a Single-level Program

Due to Proposition 1, the integrality requirement of the variables ui,wi,zi can be relaxed

into {ui,wi,zi ≥ 0}. The upper bounds {ui,wi,zi ≤ 1} can be omitted since they are

implied by constraints (1.1b) − (1.1d). Due to the fact that models (1.1) and (1.2) are

feasible, we can use the strong duality to represent the followers’ optimal decisions in the

first level of BP. Additionally, mi≤ bi can be added to the BP without affecting the optimal

solution (see proof in Appendix 3.7), which in turn makes constraint (1.1e) redundant. Let

ν , φ , and ψ be the dual variables corresponding to constraints (1.1b)−(1.1d), respectively,

and let λ be the dual variables corresponding to constraints w ≤ 1, we then reformulate

the BP into an equivalent single-level program (SP1):

(SP1) max
f p,c,m,v,u,w,z,
v̂,x,y,ẑ,ν ,φ ,ψ,λ

∑
i∈N

[
f d(ui + zi)+ f p(ei−ui− zi)

]
− c ∑

j∈M∪N
m j

−cd
∑

i∈M∪N
∑

j∈M∪N
ti jxi j− ∑

i∈N
(crzi + ĉr ẑi) (1.6a)

s.t. [(1.1b)− (1.1d),∀i ∈M ∪N], (1.3b)− (1.3c), (1.4b)− (1.4k)

(f d− f p)(ui + zi)+ [ck +(cs− c)mi]wi− cp
(

max
j∈M∪N

ti jvi j

)
(ui + zi)

≤ ei(ai−1)νi− eiaiφi +(ei−1)λi,∀i ∈M ∪N(1.6b)

−eiψi +(ei−1)λi ≤ ck +(cs− c)mi,∀i ∈M ∪N (1.6c)

28

−νi +ψi ≤ f d− f p− cp max
j∈M∪N

ti jvi j,∀i ∈N (1.6d)

−φi ≤ f d− f p− cp max
j∈M∪N

ti jvi j,∀i ∈N (1.6e)

ui,w j,zi,νi,φi,ψi,λ j′ ≥ 0,m j ∈ [0,b j],

∀i ∈N ,∀ j ∈M ∪N ,∀ j′ ∈M ,(1.6f)

where constraints (1.3b)−(1.3c) and (1.4b)−(1.4k) are constraints of the platform model,

constraints (1.1b)−(1.1d) ensure the primal feasibility and (1.6c)−(1.6e) ensure the dual

feasibility of the customer model, constraints (1.6b) guarantee the optimality of the cus-

tomer model, and (1.6f) are domain restrictions.

Due to the bilinear and nonlinear terms f pui, f pzi, cm j, (cs−c)miwi, and max j∈M∪N ti jvi j,

the SP1 is a mixed-integer nonlinear program. Therefore, we first define the auxiliary vari-

able γi to model max j∈M∪N ti jvi j,(i.e., γi ≥ ti jvi j, for all j ∈M ∪N), and then linearize

the bilinear terms by letting τ j = m jw j, θ j = cm j, ρ j = θ jw j, ρ1i = f pui, ρ2i = f pzi,

ρ3i = γiui, ρ4i = γizi, and by adding auxiliary linear constraints (1.7f) − (1.7v). This way,

the SP1 is reformulated into a linear single-level program (LSP1):

(LSP1) max
f p,c,m,v,u,w,z,v̂,x,y,ẑ,

ν ,φ ,ψ,λ ,γ,τ,θ ,ρ

∑
i∈N

[
f d(ui + zi)+(f pei−ρ1i−ρ2i)

]
− ∑

j∈M∪N
θ j

−cd
∑

i∈M∪N
∑

j∈M∪N
ti jxi j− ∑

i∈N
(crzi + ĉr ẑi) (1.7a)

s.t. [(1.1b)− (1.1d),∀i ∈M ∪N],

(1.3b)− (1.3c), (1.4b)− (1.4k), (1.6f)

f d(ui + zi)−ρ1i−ρ2i + ckwi + cs
τi−ρi− cp(ρ3i +ρ4i)

≤ ei(ai−1)νi− eiaiφi +(ei−1)λi,∀i ∈M ∪N (1.7b)

−eiψi +(ei−1)λi ≤ ck + csmi−θi,∀i ∈M ∪N (1.7c)

−νi +ψi ≤ f d− f p− cp
γi,∀i ∈N (1.7d)

−φi ≤ f d− f p− cp
γi,∀i ∈N (1.7e)

γi ≥ ti jvi j,∀i ∈N ,∀ j ∈M ∪N (1.7f)

0≤ τ j ≤ m j, ∀ j ∈M ∪N (1.7g)

m j−M1(1−w j)≤ τ j ≤M1w j, ∀ j ∈M ∪N (1.7h)

29

θ j ≥ 0, ∀ j ∈M ∪N (1.7i)

θ j ≥ c̄m j + cm̄− c̄m̄, ∀ j ∈M ∪N (1.7j)

θ j ≤ c̄m j, ∀ j ∈M ∪N (1.7k)

θ j ≤ cm̄, ∀ j ∈M ∪N (1.7l)

0≤ ρ j ≤ θ j, ∀ j ∈M ∪N (1.7m)

θ j−M2(1−w j)≤ ρ j ≤M2w j, ∀ j ∈M ∪N (1.7n)

0≤ ρ1i ≤ f p, ∀i ∈N (1.7o)

f p−M3(1−ui)≤ ρ1i ≤M3ui, ∀i ∈N (1.7p)

0≤ ρ2i ≤ f p, ∀i ∈N (1.7q)

f p−M3(1− zi)≤ ρ2i ≤M3zi, ∀i ∈N (1.7r)

0≤ ρ3i ≤ γi, ∀i ∈N (1.7s)

γi−M4(1−ui)≤ ρ3i ≤M4ui, ∀i ∈N (1.7t)

0≤ ρ4i ≤ γi, ∀i ∈N (1.7u)

γi−M4(1− zi)≤ ρ4i ≤M4zi, ∀i ∈N . (1.7v)

The program LSP1 is an equivalent reformulation of SP1 that takes the form of a single-

level mixed-integer linear program (MILP), where M1,M2,M3,M4 can be set to m̄, c̄m̄, f̄ p,max ti j,

respectively.

Remark 1 SP1 is a non-linear program with O((|M |+|N |)2) variables and O(2|M |+|N |)

constraints. LSP1 is a MILP with O((|M |+ |N |)2) variables and O(2|M |+|N |) con-

straints containing big M values. To be exact, the number of variables in SP1 is 2+

5|N |+ 4(|M |+ |N |)+ 2|N |(|M |+ |N |)+ (|M |+ |N |)2, and the number of con-

straints is 4+ 11|N |+ 10(|M |+ |N |)+ 3|N |(|M |+ |N |)+ (|M |+ |N |)2. To lin-

earize SP1 into LSP1, an additional 5|N |+3|M | variables and 8|N |+8(|M |+ |N |)+

|N |(|M |+ |N |) constraints are added.

We then use the row generation method to solve the linear single-level model LSP1

with exponentially many SECs (1.4j) to optimality by separating at all integer solutions

30

(Padberg and Rinaldi 1991). Specifically, we first solve the relaxed LSP1 model (LSPR
1),

which is obtained by removing the SECs. Let h∗ be an optimal solution of the LSPR
1 .

We then identify a member of the SECs that is violated by h∗ by searching for a subset

S ⊂M ∪N with ∑i, j∈S x∗i j > |S |−1 and 2≤ |S | ≤ |M ∪N |−2. If such a subset S

exists, then constraint ∑i, j∈S xi j ≤ |S |−1 is violated. It is then added to the LSPR
1 using

a lazy constraint callback routine, and optimization is resumed. This process is repeated

until all the SECs are satisfied by h∗.

1.5.2 Customer Best Response Set

We now derive a linear program representation of each customer’s and keeper’s optimal

solution set (also referred as “best response set”) in order to further improve the solution

efficiency of BP. Since each customer has finite number of choices, it is possible to enu-

merate the objective values achieved by all possible choices to confirm that a response is

indeed best.

Proposition 2 Given i∈M ∪N , f p, c, and mi, a solution (ui,wi,zi) is optimal for model

(1.1) if and only if it satisfies constraints (1.1b)-(1.1e) and there exists ηi ∈ℜ such that:

f d(ui + zi)+
[
ck +(cs− c)mi

]
wi +(f p + cp max

j∈M∪N
ti jvi j)(ei−ui− zi)≤ ηi (1.8a)

ηi ≤

 f d +(1−ai)
[
ck +(cs− c)mi

]
if i ∈N

ck +(cs− c)mi otherwise
(1.8b)

ηi ≤

 f d if i ∈N

0 otherwise
(1.8c)

ηi ≤

 f p + cp max j∈M∪N ti jvi j if i ∈N

0 otherwise.
(1.8d)

31

The proof of Proposition 2 is presented in Appendix 3.7. Using Proposition 2, we refor-

mulate the BP into an equivalent single-level program (SP2):

(SP2) max
f p,c,m,v,u,w,z,

v̂,x,y,ẑ,η

∑
i∈N

[
f d(ui + zi)+ f p(ei−ui− zi)

]
− c ∑

j∈M∪N
m j

−cd
∑

i∈M∪N
∑

j∈M∪N
ti jxi j− ∑

i∈N
(crzi + ĉr ẑi)

s.t. [(1.1b)− (1.1f),∀i ∈M ∪N], (1.3b)− (1.3c), (1.4b)− (1.4k),

(1.8a)− (1.8d),

ηi ∈ℜ,∀i ∈M ∪N .

Similarly, we linearize the bilinear and nonlinear terms to derive a linear single-level

program LSP2 by letting γi = max j∈M∪N ti jvi j, τ j = m jw j, θ j = cm j, ρ j = θ jw j, ρ1i =

f pui, ρ2i = f pzi, ρ3i = γiui, ρ4i = γizi, and adding linear constraints (1.7f) − (1.7v).

(LSP2) max
f p,c,m,v,u,w,z,

v̂,x,y,ẑ,η ,γ,τ,θ ,ρ

∑
i∈N

[
f d(ui + zi)+(f pei−ρ1i−ρ2i)

]
− ∑

j∈M∪N
θ j

−cd
∑

i∈M∪N
∑

j∈M∪N
ti jxi j− ∑

i∈N
(crzi + ĉr ẑi) (1.9a)

s.t. [(1.1b)− (1.1f),∀i ∈M ∪N], (1.3b)− (1.3c),

(1.4b)− (1.4k), (1.7f)− (1.7v)

f d(ui + zi)+ ckwi + cs
τi−ρi +(f p + cp

γi)ei

−ρ1i−ρ2i− cp(ρ3i +ρ4i)≤ ηi (1.9b)

ηi ≤

 f d +(1−ai)
(
ck + csmi−θi

)
if i ∈N

ck + csmi−θi otherwise
(1.9c)

ηi ≤

 f d if i ∈N

0 otherwise
(1.9d)

ηi ≤

 f p + cpγi if i ∈N

0 otherwise
(1.9e)

ηi ∈ℜ,∀i ∈M ∪N . (1.9f)

32

Remark 2 SP2 is a non-linear program, while LSP2 is a MILP, both with O((|M |+

|N |)2) variables and O(2|M |+|N |) constraints. Compared to SP1, SP2 has 2|N | fewer

variables and 6|N | fewer constraints. To linearize SP2 into LSP2, an additional 5|N |+

3|M | variables and 8|N |+ 8(|M |+ |N |)+ |N |(|M |+ |N |) constraints are added.

Consequently, LSP2 also features 2|N | fewer variables and 6|N | fewer constraints com-

pared to LSP1.

Formulation SP2 has the potential of being more efficient than formulation SP1 be-

cause the search space of the former is smaller than that of the latter. Specifically, the

difference between SP1 and SP2 is that the feasible solutions of (ui,wi,zi) in the former

formulation are partially constructed by the constraints (1.6b)−(1.6f), while those in the

latter one are characterized by the constraints (1.8a)− (1.8d). By comparing these two

sets of constraints, we note that SP1 has 3|N |+ |M | more dual variables that need to be

considered in order to find the optimal value of the objective function. In contrast, SP2

directly sets the upper bound of the objective function with |N |+ |M | new variables

without the need to search for the optimal values of dual variables. Therefore, its search

space is smaller, yielding a more efficient formulation. For more details, please refer to

Appendix 1.8. Similar results also applied to LSP2 and LSP1, since they are equivalent

linear formulations of SP2 and SP1, respectively.

1.5.3 Approximation Model with Estimated Travel Time

Solving the SP1 model exactly for large instances may be computationally inefficient. The

paradigm of crowdkeeping assumes that all participants (i.e. unavailable customers, avail-

able customers, and non-customer keepers) are drawn from the same group of people, the

so-called crowd. It is therefore reasonable to assume that locations are drawn from the

same distribution. Moreover, the decision of being available for crowdkeeping or not is

typically made without knowledge of who are the other participants. This suggests that

one might approximate the locations of the nodes that need to be visited as independent

and identically distributed (i.i.d.) locations drawn from a probability density function f ,

33

which captures the high and low population density areas in this region. Given a probabil-

ity density function f on a two-dimensional region R, when nodes are i.i.d., Beardwood,

Halton, and Hammersley (1959) show in their seminal work that:

lim
n→∞

TSP∗n√
n
≈ β

∫∫
R

√
f (x,y)dxdy,

where TSP∗n is the optimal travel time, n is the number of nodes, ∫∫
R

√
f (x,y)dxdy is

the integral density of the region R, and β is a constant. If nodes are uniformly and

independently scattered, the integral density is equal to the area of the region, A. In

this case, β
√

nA is asymptotically a good approximation for the optimal travel time as

n→ ∞. Considering that our model is meant to serve real-world cases, where the node

dispersion is unknown, the integral density cannot be computed. Therefore, we consider∫∫
R

√
f (x,y)dxdy as part of the approximation, similar to (Cavdar and Sokol 2015). We

then use regression to approximate the term β
∫∫

R

√
f (x,y)dxdy as β̂ (n) for each instance

region, since β also depends on the number of nodes (Franceschetti, Jabali, and Laporte

2017) and ∫∫
R

√
f (x,y)dxdy depends on the node distribution. That is,

TSP(n)≈ β̂ (n)
√

n, (1.10)

where TSP(n) is the approximated optimal travel time of visiting n number of nodes.

Both TSP(n) and β̂ (n) are functions of n, which is a auxiliary decision variable in our

model with n = ∑
j∈M∪N

y j. To rephrase, we aim not only to find the optimal tour given

a certain number of nodes but also to determine the set of nodes to be visited in CDP.

Therefore, among sets with the same number of nodes capable of covering the remaining

nodes, a set is considered optimal only if it incurs the minimum travel time. To estimate β̂

as a function of n for each region, we first find the minimum value of optimal travel times

TSP∗(n) among all instances with n visited nodes, and then use the pair data (n,TSP∗(n))

as input for model fitting. This approximation (1.10) may yield a more efficient formula-

tion without an exponential number of constraints. We present the approximation model

(AM1) below:

34

(AM1) max
f p,c,m,v,u,w,z,v̂,y,ẑ,

ν ,φ ,ψ,γ,τ,θ ,ρ,n

∑
i∈N

[
f d(ui + zi)+(f pei−ρ1i−ρ2i)

]
− ∑

j∈M∪N
θ j

−cdβ̂ (n)
√

n− ∑
i∈N

(crzi + ĉr ẑi)

s.t. [(1.1b)− (1.1d),∀i ∈M ∪N], (1.3b)− (1.3c), (1.4b)− (1.4g),

(1.6f), (1.7b)− (1.7v)

n = ∑
j∈M∪N

y j

v̂i j,y j, ẑi ∈ {0,1},∀i ∈N ,∀ j ∈M ∪N ,

where n represents the number of active nodes to be visited. We elaborate more on the

shape of the function β̂ (n) in Section 1.6.2.

The approximation model (AM2) with the estimated travel time is:

(AM2) max
f p,c,m,v,u,w,z,

v̂,y,ẑ,η ,γ,τ,θ ,ρ,n

∑
i∈N

[
f d(ui + zi)+(f pei−ρ1i−ρ2i)

]
− ∑

j∈M∪N
θ j

−cd
β̂ (n)
√

n− ∑
i∈N

(crzi + ĉr ẑi)

s.t. [(1.1b)− (1.1f),∀i ∈M ∪N], (1.3b)− (1.3c), (1.4b)− (1.4g),

(1.7f)− (1.7v), (1.9b)− (1.9f)

n = ∑
j∈M∪N

y j

v̂i j,y j, ẑi ∈ {0,1},∀i ∈N ,∀ j ∈M ∪N .

The term β̂ (n)
√

n may yield a non-linear program, depending on the form of β̂ (n).

There are several possible approximation functions for β̂ (n) Franceschetti, Jabali, and

Laporte (2017), such as a constant, β̂ (n) = β1 +β2
1
n , β̂ (n) = β1

√
n+β2

1√
n , or β̂ (n) =

β1 + β2
1√
n . If β̂ (n) = β1

√
n + β2

1√
n provides the best fit, the term

√
n is eliminated,

resulting in a linear program. In other non-linear cases, we have a finite number of feasible

solutions for n since n = ∑ j∈M∪N y j and y j is binary. Therefore, both AM1 and AM2

can be solved to optimality by solving a finite number of linear programs. In the case that

n is large, we can use piecewise linear functions to approximate the term
√

n and obtain a

linear program.

35

1.6 Numerical Study

We now present the implementation details, the experimental settings, the computational

performances, and the results.

1.6.1 Dataset and Implementation Details

We use a real-world dataset of vehicle routes that were executed by Amazon delivery

trucks between July 19, 2018 and August 26, 2018 (Merchan et al. 2021). These routes

are located in densely populated urban areas across the United States. The number of

customers ranges between 33 and 238 with an average value of 146. The dataset contains

information on customer locations including their latitudes, longitudes, zone IDs, and the

travel time between customers. A sample customer set is shown in Figure 1.5.

Notes. The exact coordinates are perturbed by the data providers to anonymize the data.
Google Map data ©2021.

Figure 1.5 – The region where a sample set of 118 nodes are assigned to a single vehicle
in Los Angeles.

36

We now describe parameter settings in the benchmark instance and in the experimental

design. We use 20 randomly selected instances for numerical studies. In each instance,

we randomly draw 90% of points as customer locations who have parcels to be delivered

and can be potential crowd keepers. We change this ratio between 10% and 90% to obtain

samples with different number of customers. The customer absence ratio measures the

percentage of customers who are absent from home among all customers. It is 5% for

the benchmark instance and changes between 0 and 100% in the sensitivity analysis. The

remaining 10% of the locations in the benchmark instance are taken as non-customer

keepers who do not have parcels to be delivered but can store parcels for their neighbors.

For each area, the customer set dynamically changes in different time periods (e.g. days).

Thus, each instance will be drawn for 20 times to obtain the samples over 20 periods,

which are used to evaluate the average performances of crowd keepers and fixed storage.

The standard delivery fee f d is set to $2, which is high enough to obtain a positive profit.

The inconvenience cost of rescheduling deliveries incurred by customers cr is the same

as the delivery fee as if the delivery has not yet taken place. The penalty for rescheduling

a delivery ĉr is set to $4, and changes between $0.6 and $4 in the sensitivity analysis.

The capacity of each keeper b is 10 parcels. We take the truck speed to be 4 times the

walking speed. Considering the oil prices and the driver wages, the truck delivery cost

per minute cd is set as $1 in the benchmark instance (implying truck travel costs equal

to travel time) and changes between $0 and $2 in the sensitivity analysis. We take the

customer inconvenience cost per minute of walking cp as $0.1 and change it between $0

and $2 in the sensitivity analysis. Both the keeper inconvenience cost ck and the setup

cost of fixed storage is taken as $0.1. This implies that the setup cost of fixed storage

is minimal and almost negligible, ensuring a fair comparison with crowd keepers. The

marginal inconvenience cost for serving each parcel as a keeper cs is set to $0.01 in the

benchmark instance and changes between $0 and $2 in the sensitivity analysis. Crowd

keepers can only serve those customers located in the same zone and within a limited walk

time. Zone IDs are given in the dataset, and the maximum walk time is set as 4 minutes in

the benchmark instance and changes between 0 and 6 minutes in the sensitivity analysis.

37

We compare the performances of the “crowdkeeping”, the “fixed-storage", and the

“no-storage" systems. For the system, two cases are considered: the high density fixed-

storage system, in which the fixed storage has the density as high as the potential crowd

keepers (j∈M ∪N), and the low density fixed-storage system in which the fixed storage

has the density as high as the non-customer keepers (j ∈M). The main difference among

different systems is that in the fixed-storage system, storage locations are always fixed

in different periods and a fixed setup cost is incurred regardless of whether the storage

is used or not. In the crowdkeeping system, on the other hand, crowd keeper selection

decisions can adapt to the changing customer sets in different periods and the fixed cost

is incurred only when the keeper is active. The no-storage system represents the case

when there is no storage in the system, only delivering to doorsteps is considered, but

rescheduling deliveries is possible. Different special cases of our model can solve these

systems and the details are presented in Appendix 3.7.

To evaluate the performances of different formulations and different systems, we com-

pare the platform profit (i.e., the optimal value of the platform model), the customer costs

(i.e., the optimal values of the follower models), the truck delivery time implying pollu-

tion, and the average customer walk time for picking up. We also report the standard de-

livery fee, and the optimal values of the pickup fee and the compensation, to demonstrate

how pricing decisions change in different scenarios. Additionally, the pickup proportion

(defined as the percentage of customers who choose the pickup option) and the resched-

uled proportion (defined as the percentage of rescheduled deliveries among all deliveries)

are reported in order to investigate if keepers consolidate deliveries and eliminate failed

deliveries.

We implement our algorithms using Python 3.7 on a computer with one 2 GHz Quad-

Core Intel Core i5 processor and 16GB of RAM. We use Gurobi 9.0.2 as the solver, which

employs piecewise linear functions to represent the term
√

n. The time limit is set as two

hours.

38

1.6.2 Selection and Calibration of Optimal Tour Length Estimator

We consider various approximation functions for β̂ (n) to determine the best fit, including

a constant, β̂ (n) = β1+β2
1
n , β̂ (n) = β1

√
n+β2

1√
n , or β̂ (n) = β1+β2

1√
n . In each region,

for every n, we repeatedly draw 20 different instances and obtain the optimal travel time

TSP∗k(n) for each instance k, where k = {1,2, ...,20}. Considering that determining the set

of nodes to visit is the key decision within CDP, we cannot precisely know the exact num-

ber and locations of customers and keepers in the tour. Consequently, we treat customers

and keepers as a unified distribution, drawing random samples from it. For each n, we

find the minimum TSP∗(n) among all instances with n visited nodes (i.e., mink TSP∗k(n)),

and use the pair data (n,TSP∗(n)) to estimate the continuous approximation formulation

by linear regression. The reason for using the minimum value of the in-sample optimal

travel time, rather than considering all in-sample values or the average value, is that in

the CDP, our objective is not only to find the optimal tour given a certain set of nodes

but also to determine the optimal set of nodes to be visited. Specifically, among sets with

the same number of nodes capable of covering the remaining nodes, a set is considered

optimal only if it incurs the minimum travel time. In other words, the n customers and

keepers to be visited are not randomly selected.

Figure 1.6 – Estimation of the optimal minimum TSP tour duration

For example, Figure 1.6 is the estimation model of the optimal travel time under the

sample region in Figure 1.5, where the total number of nodes is 118. For this instance,

39

the function TSP(n) = 9
√

n− 17 for n ∈ [11,118] can accurately estimate the minimum

travel time of visiting n nodes with the out-of-sample R2 = 0.96. With this approximation

for the delivery time, we do not have to run the exact algorithm for each customer group

everyday in this instance region, but instead use the approximation model and obtain the

approximated solution with high efficiency and accuracy. We evaluate the performance of

the optimal tour length estimator under various customer and keeper distributions in the

next section and Appendix 1.8.

1.6.3 Effectiveness and Efficiency of Solution Procedures

We compare the efficiency and effectiveness of four different formulations: LSP1, LSP2,

AM1, and AM2. The effectiveness represents the quality of the solutions in terms of real-

ized costs, while the efficiency represents the computing time for obtaining the solutions.

Regarding efficiency, Figure 1.7(a) shows the runtime of LSP1, LSP2, AM1, and AM2

models for instances with different number of customers. The approximate reformulation

with best responses AM2 yields the best performance with the highest efficiency. Regard-

ing effectiveness, we compare the exact and approximated values. The exact solution is

the output of the exact model LSP1 (LSP2), which are solved to optimality using the row

generation algorithm. The approximated solution is the realized output by applying the

optimal solution of approximation model AM1 (AM2) and by visiting the active nodes

using the exact optimal tour. Figure 1.7(b) illustrates the change in the relative gap be-

tween exact and approximated solutions with varying customer densities. We observe

fluctuations in the relative gaps for both platform profit and delivery time, always staying

under 6%. The absolute gaps between exact and approximated solutions, shown in Fig-

ures 1.7(c)−(d), are also within an acceptable range. The runtime of the approximation

model shown in Figure 1.7(a) decreases, on average, by more than 70% compared to that

of the exact model. Therefore, both AM1 and AM2 have good performances on efficiency

and effectiveness, but AM2 is superior overall as it achieves good accuracy with higher

efficiency.

40

(a) Runtime of exact and approximated formulations(b) The relative gap proportion

(c) Platform profit per customer (d) Delivery time per customer

(e) Pickup proportion (f) Pickup fee and compensation of crowdkeeping

Figure 1.7 – Efficiency and effectiveness of solution procedures under different number
of customers

41

Figure 1.7 also presents detailed results on the platform profit, delivery time, pickup

proportion for different systems, and the delivery fee, pickup fee, and compensation for

the crowdkeeping system. We find that the crowdkeeping delivery system benefits from

economies of scale due to the observation in Figures 1.7(c)−(d) that the platform obtains

more profits by serving a larger group of customers with an increasing marginal profit and

with a decreasing marginal delivery time for serving one more customer.

As shown in Figures 1.7(c)−(e), the profit of serving one more customer increases

in both the fixed-storage and no-storage systems, similar to the crowdkeeping system. A

high-density fixed-storage system ensures the highest pickup proportion and the shortest

delivery time. However, its higher setup costs reduce marginal profit compared to the

crowdkeeping system. Conversely, a low-density fixed-storage system lowers costs but

also reduces usage, as fewer locations limit pickup opportunities. This reflects real-world

trade-offs: opening more locations increases costs but attracts more pickups, whereas

fewer locations lower costs but limit convenience for customers. In contrast, crowdkeep-

ing offers a more flexible balance between cost and utilization. Crowd keepers are acti-

vated only when customers choose to pick up from them, allowing the system to flexibly

adapt to customer demand and distribution. As a result, the crowdkeeping system achieves

a pickup proportion slightly lower than the high-density fixed-storage system but higher

than the low-density fixed-storage system, while maintaining the highest marginal profit.

Therefore, we conclude that the crowdkeeping system offers the best overall performance,

striking an optimal balance between delivery time, pickup proportion, and profitability.

Additionally, as depicted in Figure 1.7(f), the pickup fee offered to customers slightly

decreases, while the compensation offered to keepers slightly increases as the crowdkeep-

ing system accommodates more customers, resulting in benefits for both parties.

1.6.4 Sensitivity Analysis

We now investigate the factors that may affect the decisions of participants in the delivery

system and lead to different results. These sensitivity analyses are conducted by solving

42

the model LSP2 to optimality with the exact solution method.

(1) The impact of the service range: The keeper service range is defined as the

customer walk range. The larger the maximum walk time that customers can tolerate

for picking up, the larger the service range. When the service range is zero, keepers

cannot serve any customers, resulting in a scenario where the pickup proportion is zero.

However, if keepers can serve customers, the pickup proportion may be higher. Note

that this ratio is not necessarily 100%, as, for some customers, the closest pickup option

might already be too inconvenient compared to a delivery. Figures 1.8(a)−(d) report the

changes in the pickup proportion, the delivery time, the platform profit, and the customer

cost, respectively, as the maximum walk time changes.

(a) Pickup proportion (b) Delivery time

(c) Platform profit (d) Customer cost

Figure 1.8 – The impact of the service range

We find that when the service range increases, more customers choose the pickup op-

43

tion (see Figure 1.8(a)), and the platform earns more profits (see Figure 1.8(c)). Moreover,

the total delivery time for visiting all active nodes decreases (see Figure 1.8(b)), and this

leads to less pollution for the environment (due to less truck utilization). In other words,

the delivery system becomes more cost-efficient and environmentally friendly with larger

service range. However, if the customer tolerance for walk time is higher than 4 minutes,

the crowdkeeping system will be outperformed by the high density fixed-storage system

(Figures 1.8(a)−(c)). This is because the availabilities of crowd keepers shrink and stay

in short supply when there is a high pickup proportion, and because the marginal cost of

serving one more customer increases, whereas the capacities of fixed storage are stable

and its marginal cost of serving one more customer decreases. In addition, customer costs

are always no higher than the delivery fee (Figure 1.8(d)), since the direct or rescheduled

delivery to doorstep is always an alternative for customers and they have the potential to

pay less for receiving parcels by choosing the pickup option and to earn compensation

by working as keepers. When the service range increases, customers may face a longer

walk time and find pickup less efficient than delivery, in which case, the platform has to

decrease the pickup fee to make the pickup option more attractive (Figure 1.8(d)).

(2) The impact of the pickup cost: Customers who choose the pickup option need

to walk to their appointed keepers, and this creates inconvenience for them. Therefore, in

addition to the maximum pickup walk time, the inconvenience cost per minute for picking

up (i.e., pickup cost) may also affect customer decisions. Figures 1.9(a)−(c) present how

the pickup proportion, the delivery time, and the platform profit change, respectively, as

the pickup cost changes, and Figure 1.9(d) shows how fees and compensation change.

We find that the increasing pickup cost makes the delivery option more attractive for

more customers and thus there is a tendency for customers to choose the pickup option

less often (see Figure 1.9(a)). This tendency reduces the efficiency of the system with an

increasing delivery time (see Figure 1.9(b)) and cuts down the benefits of the platform

(see Figure 1.9(c)), because both the platform and the delivery system benefit from the

consolidation of deliveries. The lower pickup proportion leads to less consolidation, and

performance deterioration. Therefore, to discourage more customers from changing their

44

(a) Pickup proportion (b) Delivery time

(c) Platform profit (d) Pickup fee and compensation of crowdkeeping

Figure 1.9 – The impact of the pickup cost

minds and relinquishing the pickup option, the platform must keep lowering the pickup

fee to make up for the increasing pickup cost (see Figure 1.9(d)). The higher the pickup

cost, the larger the gap between the standard delivery fee and the pickup fee, and the

lower the platform’s benefits. Although the crowdkeeping system continues to perform

better than other systems on profit, the increasing pickup cost narrows the gap between

their performances. Therefore, to maintain the high efficiency of the delivery system and

guarantee a decent profit for the platform, crowd keepers with more accessible locations

should be selected and used to decrease the pickup cost and reduce the inconvenience for

customers.

(3) The impact of the delivery cost: Truck delivery costs account for a significant

part of the total cost. Thus, the delivery cost per minute of travel time influences the

45

efficiency of the delivery system. Figures 1.10(a)−(d) present how the pickup propor-

tion, the truck delivery time, the walk time per customer, and the platform profit change,

respectively, as the delivery cost changes.

(a) Pickup proportion (b) Delivery time

(c) Walk time per customer (d) Platform profit

Figure 1.10 – The impact of the delivery cost

Figure 1.10(a) shows that the increasing delivery cost increases the pickup proportion

both for the crowd-keeper system and for the fixed-storage system, leading to a decrease

in truck delivery time (see Figure 1.10(b)) accompanied with a stable customer walk time

(see Figure 1.10(c)). The pickup proportions and the customer walk time stabilize due to

the limited keeper service range, and the crowd-keeper system always has a higher pickup

proportion than the fixed-storage system due to the higher availability and flexibility. For a

fixed delivery fee, the platform profit inevitably decreases when the delivery cost becomes

larger, but the crowdkeeping system always yields the best performance in terms of the

46

profit, compared to the no-storage and fixed-storage systems (see Figure 1.10(d)). The

low density fixed-storage system has a higher profit than the high density one when the

pickup proportion is low (i.e., the delivery cost is lower than $0.8). Put differently, there

is no reason to set up numerous fixed-storage locations when the delivery cost is low and

when the pickup option is not attractive.

(4) The impact of the marginal keeping cost: Both for fixed storage and crowd keep-

ers, the same fixed cost is taken. However, an additional inconvenience cost for keeping

each parcel is included for crowd keepers, which may stem from reserving space, con-

tacting the customer, and the associated hassle. This marginal keeping cost is also viewed

as a lower bound of the marginal earnings for keepers, and therefore keeper availability

highly depends on the keeping cost. Figures 1.11(a)−(c) present how the pickup propor-

tion, the delivery time, the platform profit change, respectively, as the marginal keeping

cost changes, and Figure 1.11(d) shows how the fees and compensation change.

When the marginal keeping cost increases, the pickup proportion decreases (see Fig-

ure 1.11(a)), the delivery time increases (see Figure 1.11(b)), and the platform profit de-

creases (see Figure 1.11(c)). In other words, the increasing keeping cost makes the system

less efficient and reduces the platform benefits. When crowd keepers suffer higher incon-

venience, the platform has to increase the compensation offered to them to ensure their

availability thus sacrificing part of its profits (see Figure 1.11(d)). Even in this case, many

customers end up switching to the delivery option due to the reduced availability. When

the marginal keeping cost increases to $2, the inconvenience is so high that no keeper of-

fers to provide their services, both the pickup proportion and the compensation decrease to

zero, and the crowdkeeping system converges to the no-storage system. The crowdkeep-

ing system performs worse than the high-density fixed-storage system when the keeping

cost increases up to $0.6, and worse than the low-density fixed-storage system when the

keeping cost increases up to $0.9, due to that the marginal cost of using crowd keepers

becomes unreasonably expensive, while the fixed cost is $0.1. We note that our study of-

fers a rather optimistic view of fixed storage with the same fixed cost for being available

as crowd keepers but without any extra cost of keeping one more parcel. We therefore

47

(a) Pickup proportion (b) Delivery time

(c) Platform profit (d) Pickup fee and compensation of crowdkeeping

Figure 1.11 – The impact of the keeping cost

suspect that, in practice, crowdkeeping may still be the most beneficial option in some of

these settings.

(5) The impact of the absence ratio: In the no-storage system, deliveries have to

be rescheduled when customers are absent, leading to inefficiencies. We investigate if

the fixed-storage and the crowd-keeper systems can eliminate this inefficiency. Figures

1.12(a)−(d) present how the pickup proportion, the rescheduled proportion, the delivery

time, and the platform profit change, respectively, as the customer absence ratio changes.

When the customer absence ratio increases, the pickup proportion of the crowdkeeping

system is overall stable, but has a decreasing tendency (see Figure 1.12(a)). The resched-

uled proportion increases (see Figure 1.12(b)), leading to a decrease in delivery time and

profit (see Figures 1.12(c) and (d)). This is because the availability of customer keep-

48

(a) Pickup proportion (b) Rescheduled proportion

(c) Delivery time (d) Platform profit

Figure 1.12 – The impact of the customer absence ratio

ers decreases when more customers are absent. Both fixed-storage systems have an in-

creasing pickup proportion and rescheduled proportion, and the high density one tends

to encourage customers to pick up with the highest pickup proportion, whereas the low

density one tends to reschedule the deliveries with the high rescheduled proportion. For

the no-storage system, the delivery time and the platform profit decrease to zero when the

absence ratio is 100%. That is, all absent customers have no choice but reschedule their

deliveries. For the crowd-keeper and fixed-storage systems, in addition to the resched-

uled delivery, absent customers can choose to be served by keepers or storages, therefore

leading to a positive profit. When the absence ratio is lower than 10%, the high density

fixed-storage system has the worst performance on profit, but tends to become better as

the absence ratio increases. It has the best performance due to a high consolidation of

49

parcels when the absence ratio is higher than 50%. As long as the absence ratio is lower

than 50%, which is a common setting in the real world, the crowdkeeping system has the

best performance on profit.

(a) Pickup proportion (b) Rescheduled proportion

(c) Delivery time (d) Platform profit

Figure 1.13 – The impact of the penalty for rescheduling deliveries

(6) The impact of the penalty for rescheduling deliveries: We model two types of

rescheduled deliveries in the crowdkeeping system. The first one is incurred by customers

due to their absence, and the second one is determined by the platform if those customers

who prefer the pickup option cannot be served by any nearby available keeper. We fix the

cost of the first type, and investigate the impact of the penalty for the second type. Figures

1.13(a)−(d) respectively show how the pickup proportion, the rescheduled proportion,

the delivery time, and the platform profit change as the penalty of rescheduling deliveries

changes. When the penalty of rescheduling deliveries increases, the pickup proportion

50

tends to increase but is overall stable (see Figure 1.13(a)), the rescheduled proportion

decreases rapidly (see Figure 1.13(b)), leading to an increased delivery time (see Figure

1.13(c)) and a decreased profit (see Figure 1.13(d)). The crowdkeeping system always

has the highest profit whether the penalty is high or low. Even though the low penalty

yields a high profit, when implementing the system in practice, the penalty should be at

least as high as the delivery fee in order to avoid unnecessary rescheduled deliveries, since

customers would prefer to receive their parcels as soon as possible.

1.7 Conclusion

We have presented a new business model in last-mile deliveries, the key idea of which is

to make use of the unused space owned by the crowd to provide crowdkeeping services.

Crowd keepers have more flexibility, larger availability, and lower costs than what is of-

fered by fixed storage, and this leads to a more efficient and a more profitable system

for last-mile deliveries. We have constructed a bilevel program by considering customer

preferences, keeper behaviors, and platform operations. We have used the strong duality

to reformulate the bilevel program into an equivalent single-level program, have derived a

mixed-integer linear programming model with subtour elimination constraints by apply-

ing linearization techniques, and have solved the model to optimality using a row gener-

ation algorithm. To improve the efficiency of the solution procedure, we have derived a

more compact representation of the best response set of customers and keepers, and have

developed an approximation model for the bilevel program by approximating the optimal

travel time using linear regression.

The numerical study is implemented on a real-world dataset provided by Amazon.

The results indicate that the crowdkeeping delivery system benefits from economies of

scale, as platform profits increase by serving more customers with an increasing marginal

profit and a decreasing marginal delivery time for serving one more customer. Addition-

ally, both the platform and the system benefit from delivery consolidations. Specifically,

the platform earns more profits, and the system causes less pollution in cases with a larger

51

service range, lower pickup costs, higher delivery costs, lower keeping costs, and higher

customer keeper availabilities. These cases always accompany a higher pickup propor-

tion, implying that more deliveries are consolidated. Compared to the no-storage and

fixed-storage systems, the crowd-keeper system is beneficial for all participants in the

last-mile delivery system by improving platform profits, reducing environmental pollu-

tions due to fewer truck deliveries, and bringing about more savings for customers and

extra earnings for keepers. The reason is that crowd keepers are capable of consolidating

deliveries and eliminating failed deliveries, and this capability is higher than fixed storage

due to their greater flexibility and larger availability provided by the crowd. If it was pos-

sible to set up a very dense fixed storage network with a low cost, crowdkeeping may not

be advantageous (1) when customers have high tolerance for walking long time to pick

up their parcels, (2) when crowd keepers have high marginal cost for keeping each parcel

but fixed storage have no marginal cost, or (3) when most of the customers are absent

to attend their deliveries. In these cases, the capability of fixed storage to consolidate

deliveries is higher than that of crowd keepers. However, in all other common cases, the

crowdkeeping system may deliver the best performance on the profitability.

The study can be extended in multiple directions. First, we assumed that the informa-

tion is completely shared among all participants before optimizing the delivery operations.

However, in practice the customer density may not be known when the pickup fee and the

compensation decisions are made, and the keeper final availability could be uncertain

before the delivery takes place. It would be interesting to consider both uncertainties.

Additionally, a promising direction for future research is to accommodate multi-period

real-time optimization by considering the sequential arrival of keepers and customers and

facilitating dynamic service allocation among evolving groups of customers and keepers.

In this case, modeling time-windows is an also important facet and can potentially better

highlight the importance of crowd keepers. Moreover, co-existence of multiple delivery

types such as store points, automated lockers and crowd keepers can be considered in

the same problem under a customer choice model. Lastly, even though the new business

model offers a win-win situation for participants, there may be additional complications

52

in real-world, such as the incentive of a long-term cooperation with e-commerce and de-

livery companies, which we leave for future studies.

53

1.8 Appendix

Appendix A: Delivery systems

We develop models for the no-storage system, the fixed-storage system, and the crowd-

delivering-keeper system, and demonstrate their main differences.

A.1: The No-Storage System

In the no-storage setting, the distribution company has to deliver all the parcels to cus-

tomers’ home addresses. If customers are absent, a second visit is necessary. In this case,

we consider the situation where customers can delay and reschedule their deliveries. Let

N be the set of customers to be visited and N ′ be the set of absent ones. Since there is

no storage or keeper in the system, the deliveries of absent customers have to be resched-

uled, and the profit will not be captured. The optimization model aims to maximize the

profit for visiting customers in N \N ′.

A.2: The Fixed-Storage System

The fixed storage, including the automated locker and pickup location, is safe and effi-

cient, and has been implemented in real-world. If customers are not available, their parcels

are kept in storages, from where customers can pick up at their convenience. However,

the pickup locations are fixed, their capacities are limited, and they may have a high setup

cost. In this case, customers have the choice of picking up from fixed storage by paying

a lower pickup fee than the standard delivery fee (e.g., IKEA, Walmart, and Zara). The

main difference between the fixed-storage and crowd-keeper systems is that in the former

system, there is always a fixed setup cost whether being used or not but no compensa-

tion for serving each parcel. Since there is a trade-off between the setup cost and the

storage density, we consider two versions of the fixed-storage system: (1) a “low density

fixed-storage system” where the potential fix-storage locations, j ∈M , have the same

density as the non-customer keepers, and (2) a “high density fixed-storage system” where

54

the potential fix-storage locations, j ∈N ∪M , have the same density as the union set

of keepers and customers. Even though it may be very costly in practice to set up such a

high density fixed storage network, we take it as the best case on the performance of fixed

storage. The optimal solutions can be obtained using the same methods as presented in

Section 1.5.

A.3: The Crowd-Delivering-Keeper System

The Pickme company recently piloted a new service where customers have the option of

requesting home delivery of their parcels by keepers. Keepers, who not only keep the

parcels but also deliver them to customers, are named as crowd-delivering-keepers and

earn C1.25 by serving each customer. In this setting, customers do not have to pick up

from their specified keepers. Therefore, they do not have to make any decisions, but need

to pay the delivery fee to receive their parcels at their location. In other words, there is no

difference from customers’ point of view between the no-storage and crowd-delivering-

keeper systems. Crowd-delivering-keepers need to determine if they are willing to work

as a keeper (represented by the variable w) and if they accept each request of visiting the

customer assigned to them (v̂). A bilevel program is constructed when both the platform

and keepers maximize their profits.

The model for the crowd-delivering-keeper j ∈M ∪N is

G j(c,v), max
v̂: j,w j

(
∑

i∈N
(c− cpti j)v̂i j

)
− ckw j (1.11a)

s.t. w j ≤ 1−a j, (1.11b)

v̂i j ≤ vi j,∀i ∈N (1.11c)

∑
i∈N

v̂i j ≤ b jw j,∀i ∈N (1.11d)

v̂i j,w j ∈ {0,1},∀i ∈N , (1.11e)

where v: j denotes a column vector. Objective function (1.11a) states that keepers accept

the allocated deliveries only when the total to-be-earned compensation is higher than

the inconvenience cost for keeping and delivering services. In other words, keepers are

55

active only when the total profit is positive. The constraint (1.11b) states that the crowd

can be keepers only when they are available. The constraints (1.11c) imply that keepers

can only choose to serve the customers that are assigned to them by the platform. The

constraints (1.11d) state that only active keepers can serve customers and that the number

of customers served by each keeper should not be greater than its capacity. The constraints

(1.11e) are domain restrictions.

The platform model is

GP , max
c,v

n f d− c ∑
i∈N

∑
j∈M∪N

v̂i j−g(w, v̂) (1.12a)

s.t. vi j ≤ ri j,∀i ∈N ,∀ j ∈M ∪N (1.12b)

vi j ∈ {0,1},c ∈ [0, c̄], (1.12c)

with the third-stage model

g(w, v̂), min
x,y,ẑ

cd
∑

i∈M∪N
∑

j∈M∪N
ti jxi j + ĉr

∑
i∈N

ẑi (1.13a)

s.t. y j ≥ w j,∀ j ∈M ∪N (1.13b)

yi + ∑
j∈M∪N

v̂i j + ẑi = 1,∀i ∈N (1.13c)

yi ≤ 1−ai,∀i ∈N (1.13d)

ẑi ≤ ai,∀i ∈N (1.13e)

∑
i∈M∪N

xi j = y j,∀ j ∈M ∪N (1.13f)

∑
i∈M∪N

x ji = y j,∀ j ∈M ∪N (1.13g)

∑
i, j∈S

xi j ≤ |S |−1,∀S ⊂M ∪N ,2≤ |S | ≤ |M ∪N |−2

(1.13h)

xi j ∈ {0,1},∀i ∈M ∪N ,∀ j ∈M ∪N (1.13i)

y j,zi ∈ {0,1},∀i ∈N ,∀ j ∈M ∪N . (1.13j)

The parameters (f d,cd, ĉr, ti j,ai,b j,ri j) and decisions (c,v,x,y, ẑ) are described in Table

1.2, where c,v are the first-stage decisions, and x,y, ẑ are the third-stage decisions after

56

keepers make their decisions v̂,w in the second-stage. Objective function (1.12a) repre-

sents the platform revenue, which is equal to the delivery fee paid by all n customers, mi-

nus the total cost of offering the compensation, visiting all active nodes, and rescheduling

deliveries. The constraints (1.12b) ensure that customers can only be assigned to keep-

ers in the same zone. The constraints (1.12c) are domain restrictions for the first-stage

decisions. The constraints (1.13b) and (1.13c) enforce that active keepers and customers

are visited. The constraints (1.13c) also ensure that customer i has to be served either

by direct delivery (yi = 1), by rescheduled delivery (ẑi = 1), or by a keeper (∑ j v̂i j = 1).

The constraints (1.13d) and (1.13e) state that absent customers cannot be served by di-

rect delivery, and that available customers’ deliveries should not be rescheduled. The

constraints (1.13f)−(1.13j) are degree constraints, subtour elimination constraints, and

domain restrictions for visiting all active customers and keepers.

The bilevel program is

max
c,v̂,x,y,z,w,v

n f d− c ∑
i∈N

∑
j∈M∪N

v̂i j− cd
∑

i∈M∪N
∑

j∈M∪N
ti jxi j− ∑

i∈N
ĉr ẑi

s.t. (1.12b)− (1.12c), (1.13b)− (1.13j)

(v̂: j,w j) ∈ argmaxG j(c,v),∀ j ∈M ∪N .

Then, we reformulate the bilevel program into an equivalent single-level program.

max
c,v̂,x,y,z,w,v

n f d− c ∑
i∈N

∑
j∈M∪N

v̂i j− cd
∑

i∈M∪N
∑

j∈M∪N
ti jxi j− ∑

i∈N
ĉr ẑi

s.t. [(1.11b)− (1.11e),∀ j ∈M ∪N], (1.12b)− (1.12c), (1.13b)− (1.13j)

c ∑
i∈N

vi j ≥ ckw j + ∑
i∈N

cpti jv̂i j,∀ j ∈M ∪N

cpti jv̂i j ≤ c,∀i ∈N ,∀ j ∈M ∪N .

Compared to BP, the main differences in this model are the following. (1) Some decisions

made by the platform are reduced, including the pickup fee, the maximum number of

customers proposed to be served by keepers, and the final assignment. (2) Customers do

not express their preferences since the form of delivery is decided through the negotiation

between the platform and the crowd-delivering-keepers. (3) Keepers decide which subset

57

of customers they accept to serve and are responsible for the delivery of their parcels.

This model can be solved to optimality using the same techniques applied in Section 1.5.

A.4: Figures of Delivery Systems

To demonstrate the main differences of different delivery systems more explicitly, we

show the graph for each system when serving the same customer set. Figure 1.14(a) is the

Figure 1.14 – Different systems.

no-storage system, in which all customers in each period are visited by a route. Figure

1.14(b) represents the fixed-storage system, in which customers pick up their parcels from

fixed storage. However, storage locations such as automated lockers are always fixed and

they need a fixed setup cost to be installed. Figure 1.14(c) represents the crowd-keeper

system. In addition to the consolidation, keepers locations are flexible and adapt to the

different customer locations. Furthermore, a cost is paid only when the keeper is active,

58

leading to a higher flexibility than fixed storage. In the crowd-delivering-keeper system

in Figure 1.14(d), keepers make deliveries to customers. The main difference between

Figure 1.14(c) and 1.14(d) is the direction of the dashed arrows. That is, (c) represents

that customers pick up parcels from keepers and (d) represents that keepers deliver parcels

to customers.

Appendix B: Proofs

B.1: Proof of Proposition 1

Proof. When mi≤ bi, let HR
i be the model formed by relaxing the integrality requirements

in model (1.1). Suppose that all optimal solutions to HR
i have fractional entries. We study

the cases ei = 1 and ei = 0 separately. (1) When ei = 1, let (u∗i ,w
∗
i ,z
∗
i) be an optimal

solution to HR
i with 0 < u∗i < 1. Due to the constraints (1.1b) and (1.1c) and the fact that

u∗i > 0, we have ai = 0 and z∗i = 0. Next, we consider the case that ck +(cs− c)mi ≥ 0,

where w∗i := 0 is necessarily optimal. In this case, either we can set u∗i := 0 as optimal

when f d ≥ f p + cp max j ti jvi j, or set u∗i := 1 as optimal when f d < f p + cp max j ti jvi j.

Alternatively, we have the case that ck +(cs− c)mi < 0 with w∗i := u∗i being optimal. In

this case, either we can set u∗i := 0 when f d + ck +(cs− c)mi ≥ f p + cp max j ti jvi j, or set

u∗i := 1 when f d + ck +(cs− c)mi < f p + cp max j ti jvi j. This contradicts the fact that all

optimal solutions are fractional. Similar yet simpler arguments also apply to zi.

(2) When ei = 0 (i.e., model (1.2)), let w∗i with 0 < w∗i < 1 be an optimal solution.

Given that mi ≤ bi, we can set w∗i = 1 if ck +(cs− c)mi ≤ 0, or set w∗i = 0 otherwise,

without increasing the objective function value. Again, we observe a contradiction.

B.2: Proposition 3 and its Proof

Proposition 3 A feasible solution in the BP always satisfies m j ≤ b j. Therefore, a relaxed

customer model without the constraint m jw j ≤ b j can be used when the bilevel model is

transformed into its single-level equivalent.

59

Proof. Consider a feasible solution of the BP in which there exists a keeper j such that

m j > b j. Since the solution is feasible, constraint (1.1e) (m jw j ≤ b j) is satisfied, and this

implies that w j = 0. Furthermore, constraint (1.4c) (v̂i j ≤ w j for all i ∈N) implies that

vi j = 0 for all i ∈N . Due to that we minimize c∑ j m j in the objective function (1.4a),

m j is zero when the constraint (1.4b) (∑i∈N v̂i j ≤ m j) holds, leading to a contradiction.

We therefore conclude that the BP necessarily has an optimal solution with m j ≤ b j for

all j ∈M ∪N , and that a relaxed customer model without the constraint m jw j ≤ b j can

be used when the bilevel model is transformed into its single-level equivalent.

B.3: Proof of Proposition 2

Proof. We prove that the optimal solution set of model (1.1) can be characterized by the

set of constraints in (1.8). Let η∗i be the optimal objective function value of model (1.1).

The optimal solution set is:(ui,wi,zi)

∣∣∣∣∣∣∣(1.1b)− (1.1e),

 f d(ui + zi)+ [ck +(cs− c)mi]wi

+

(
f p + cp max

j∈M∪N
ti jvi j

)
(ei−ui− zi)

≤ η
∗
i

 .

We are therefore left with the task of showing that:

η
∗
i = min

{
f d +(1−ai)[ck +(cs− c)mi], f d, f p + cp max

j∈M∪N
ti jvi j

}
,∀i ∈N ,

and

η
∗
i = min

{
ck +(cs− c)mi, 0

}
,∀i ∈M .

We start with the case i ∈N and exploit the fact that there are three feasible solutions

to model (1.1). Namely, the feasible solutions are:

X := {(ui = 1−ai,wi = 1−ai,zi = ai), (ui = 1−ai,wi = 0,zi = ai), (u1 = 0,wi = 0,zi = 0)},

Hence, by replacing (ui,wi,zi) with their feasible value, we have

η
∗ = min

(ui,wi,zi)∈X
f d(ui + zi)+ [ck +(cs− c)mi]wi +

(
f p + cp max

j∈M∪N
ti jvi j

)
(ei−ui− zi)

60

= min
{

f d +(1−ai)[ck +(cs− c)mi], f d, f p + cp max
j∈M∪N

ti jvi j

}
.

In the case that i ∈M , the argument is similar and relies on the feasible solution set

taking the form:

X := {(ui = 0,wi = 1,zi = 0), (ui = 0,wi = 0,zi = 0)} .

Hence,

η
∗ = min

{
ck +(cs− c)mi, 0

}
.

Appendix C: Comparison of SP1 and SP2

We let the customer objective function be Fi(ui,zi,wi):

Fi(ui,zi,wi) := f d(ui + zi)+
[
ck +(cs− c)mi

]
wi +(f p + cp max

j∈M∪N
ti jvi j)(ei−ui− zi).

In SP2, we have that

(1) If ei = 1 (if i ∈N):

Fi ≤min
{

f d +(1−ai)
[
ck +(cs− c)mi

]
, f d, f p + cp max

j∈M∪N
ti jvi j

}
.

(2) If ei = 0 (if i ∈M):

Fi ≤min
{

ck +(cs− c)mi,0
}
.

In SP1, we have less tight upper bounds of Fi. However, we can always derive the

same upper bounds as in SP2 by fixing the value of dual variables φ , ν , and λ . To be

specific,

(1) If ei = 1 (if i ∈N):

1.1) When ai = 1 and φi = min
{

f p + cp max j∈M∪N ti jvi j− f d,0
}

,

Fi ≤min
{

f d, f p + cp max
j∈M∪N

ti jvi j

}
.

61

1.2) When ai = 0 and νi = min


f p + cp max

j∈M∪N
ti jvi j− f d−

[
ck +(cs− c)mi

]
,

f p + cp max
j∈M∪N

ti jvi j− f d,0

,

Fi ≤min
{

f d +
[
ck +(cs− c)mi

]
, f d, f p + cp max

j∈M∪N
ti jvi j

}
.

(2) If ei = 0 (if i ∈M):

When λi = min
{
−ck− (cs− c)mi,0

}
,

Fi ≤min
{

ck +(cs− c)mi,0
}
.

Overall, we observe that SP2 is more efficient than SP1 because it does not require a

search for optimal dual variables and therefore has a smaller search space. Since LSP1

and LSP2 are the equivalent formulations of SP1 and SP2, respectively, we conclude that

LSP2 is also more efficient than LSP1 for the same reason.

Appendix D: TSP(n) for Varying Non-customer Keeper Distributions

In Section 1.6.2, we proposed a procedure to calibrate an optimal tour length estimator

based on randomly selected locations from a dataset of historical customer locations for

the region of interest. In Section 1.6.3, we then evaluated the quality of estimation under

varying customer locations and densities by fixing the non-customer keeper locations.

In this appendix, we further evaluate the performance of estimator with varying non-

customer keeper locations and densities.

To distinguish the non-customer keeper distribution from the customer distribution,

we consider their distributions as follows. The entire region (e.g., Figure 1.5) is divided

into “left” and “right” parts. In each instance, we choose 72 points as customer locations

and designate the remaining 44 nodes as potential locations of non-customer keepers.

Customers are uniformly distributed on both parts, while non-customer keeper distribu-

tions may vary. For example, in Figure 1.15, we distinguish non-customer keeper distri-

butions in the left and right regions by adjusting the number of keepers in each part, while

maintaining the total number of keepers fixed. From Figure 1.15(a) to (f), non-customer

62

keepers are initially spatially clustered in the right region, and then they gradually transi-

tion to a more uniform distribution across the entire region. In Figure 1.16, we alter the

non-customer keeper distributions by varying the total number of non-customer keepers

from 0 to 44 across the entire region.

(a) Case with P1 = 0 and P2 = 22(b) Case with P1 = 2 and P2 = 20(c) Case with P1 = 4 and P2 = 18

(d) Case with P1 = 7 and P2 = 15(e) Case with P1 = 9 and P2 = 13(f) Case with P1 = 11 and P2 = 11

Figure 1.15 – Sample cases with varying distributions of non-customer keepers, featuring
a fixed number and changing locations.
Notes. There are a total of 72 customers and 22 potential keepers. P1 and P2 are the numbers of

keepers in the left and right region, respectively. Cases are obtained with a random seed of 0.

(a) Case without keepers (b) Case with 22 keepers (c) Case with 44 keepers

Figure 1.16 – Sample cases with varying distributions of non-customer keepers, including
changes in both the number and locations.
Notes. There are a total of 72 customers and at most 44 potential keepers.

63

(a) Effect of keeper proportion in the left region (b) Effect of number of keepers

Figure 1.17 – The effect of non-customer keeper distribution on the relative gap between
exact and approximated solutions.

(a) Effect of keeper proportion in the left region (b) Effect of number of keepers

Figure 1.18 – The effect of non-customer keeper distribution on the proportions of partic-
ipants visited in the optimal tour.

We derive the exact solutions and utilize the optimal tour length estimator TSP(n) =

9
√

n−17 specifically to obtain the approximated solutions. We present the results as fol-

lows. In Figure 1.17, we reported the relative gap between the exact and approximated

solutions by changing two factors: the non-customer keeper proportion in the left region,

defined as the proportion of non-customer keepers located in the left region among all

non-customer keepers in the entire region, and the number of non-customer keepers in

the entire region. The average approximation performance across all these instances, as

measured by the relative gap in delivery time or platform profit, is below 6% and 5%,

64

respectively. We note that the optimal tour length estimator and its performance may

vary from region to region. As a future direction to enhance the estimator’s performance

further, we could consider incorporating more instances collected from daily life, catego-

rizing them into different distributions, and developing specific fits for each distribution.

We also presented the proportions of different participants visited in the optimal tour,

including the active customers (who choose delivery but do not serve others), active cus-

tomer keepers (who receive direct deliveries and serve others), and active non-customer

keepers (who are not customers but declare availability to serve others), while varying

the non-customer keeper proportion in the left region in Figure 1.18(a), and while vary-

ing the total number of non-customer keepers in Figure 1.18(b). When non-customer

keepers are more uniformly distributed, there is a slight increase in the proportion of ac-

tive non-customer keepers from 16% to 19%, indicating that more non-customer keepers

are selected to serve customers. However, the proportion of active non-customer keep-

ers remains stable regardless of their locations, as most customers who choose pickup

are served by customer keepers instead of non-customer keepers. This is evidenced by

the active customer keeper proportion being 38.6% and the active non-customer keeper

proportion being 19%. As the total number of non-customer keepers increases, the pro-

portion of active non-customer keepers significantly increases, while the proportions of

active customers and customer keepers both decrease. This is because there are more

available non-customer keepers to be selected to serve customers, and more customers

opt for pickup, being served by non-customer keepers.

65

References

Agatz, Niels et al. (2011). “Time slot management in attended home delivery”. In: Trans-

portation Science 45.3, pp. 435–449.

Alnaggar, Aliaa, Fatma Gzara, and James H. Bookbinder (2021). “Crowdsourced deliv-

ery: A review of platforms and academic literature”. In: Omega 98, p. 102139.

Applegate, David L et al. (2007). The Traveling Salesman Problem: A Computational

Study. Princeton: Princeton University press.

Archetti, Claudia, Francesca Guerriero, and Giusy Macrina (2021). “The online vehicle

routing problem with occasional drivers”. In: Computers & Operations Research 127,

p. 105144.

Arslan, Alp M et al. (2019). “Crowdsourced delivery—A dynamic pickup and delivery

problem with ad hoc drivers”. In: Transportation Science 53.1, pp. 222–235.

Arslan, Okan (2021). “The location-or-routing problem”. In: Transportation Research

Part B: Methodological 147, pp. 1–21.

Beardwood, Jillian, John H Halton, and John Michael Hammersley (1959). “The shortest

path through many points”. In: Mathematical Proceedings of the Cambridge Philo-

sophical Society 55.4, pp. 299–327.

Bruck, Bruno P., Filippo Castegini, et al. (2020). “A Decision Support System for At-

tended Home Services”. In: INFORMS Journal on Applied Analytics 50.2, pp. 137–

152.

Bruck, Bruno P., Jean-François Cordeau, and Manuel Iori (2018). “A practical time slot

management and routing problem for attended home services”. In: Omega 81, pp. 208–

219.

CaiNiao (2023). How to make money by being a keeper? (In Chinese). Last accessed on

Jan 01, 2023. URL: https://cn.alicdn.com/video/cainiao/yizhan/main.

mp4.

Campbell, Ann Melissa and Martin Savelsbergh (2006). “Incentive schemes for attended

home delivery services”. In: Transportation Science 40.3, pp. 327–341.

66

https://cn.alicdn.com/video/cainiao/yizhan/main.mp4
https://cn.alicdn.com/video/cainiao/yizhan/main.mp4

Carbone, Valentina, Aurélien Rouquet, and Christine Roussat (2017). “The rise of crowd

logistics: a new way to co-create logistics value”. In: Journal of Business Logistics

38.4, pp. 238–252.

Cavdar, Bahar and Joel Sokol (2015). “A distribution-free TSP tour length estimation

model for random graphs”. In: European Journal of Operational Research 243.2,

pp. 588–598.

Dantzig, George, Ray Fulkerson, and Selmer Johnson (1954). “Solution of a large-scale

traveling-salesman problem”. In: Journal of the operations research society of Amer-

ica 2.4, pp. 393–410.

Dayarian, Iman and Martin Savelsbergh (2020). “Crowdshipping and same-day delivery:

Employing in-store customers to deliver online orders”. In: Production and Opera-

tions Management 29.9, pp. 2153–2174.

Deloison, T et al. (2020). The Future of the Last-Mile Ecosystem. Tech. rep. World Eco-

nomic Forum, Switzerland.

Devari, Aashwinikumar, Alexander G Nikolaev, and Qing He (2017). “Crowdsourcing

the last mile delivery of online orders by exploiting the social networks of retail store

customers”. In: Transportation Research Part E: Logistics and Transportation Review

105, pp. 105–122.

Franceschetti, Anna, Ola Jabali, and Gilbert Laporte (2017). “Continuous approximation

models in freight distribution management”. In: Top 25.3, pp. 413–433.

Gendreau, Michel, Gilbert Laporte, and Frédéric Semet (1997). “The covering tour prob-

lem”. In: Operations Research 45.4, pp. 568–576.

Hasija, Sameer, Zuo-Jun Max Shen, and Chung-Piaw Teo (2020). “Smart city opera-

tions: Modeling challenges and opportunities”. In: Manufacturing & Service Opera-

tions Management 22.1, pp. 203–213.

Jacobs, K et al. (2019). The last-mile delivery challenge. Tech. rep. Capgemini Research

Institute, Paris.

Joerss, Martin et al. (2016). Parcel delivery: The future of last mile. Tech. rep. McKinsey

& Company, Chicago.

67

Jozefowiez, Nicolas (2014). “A branch-and-price algorithm for the multivehicle covering

tour problem”. In: Networks 64.3, pp. 160–168.

Kartal, Zuhal, Servet Hasgul, and Andreas T Ernst (2017). “Single allocation p-hub me-

dian location and routing problem with simultaneous pick-up and delivery”. In: Trans-

portation Research Part E: Logistics and Transportation Review 108, pp. 141–159.

Klein, Robert, Jochen Mackert, et al. (2018). “A model-based approximation of oppor-

tunity cost for dynamic pricing in attended home delivery”. In: OR Spectrum 40.4,

pp. 969–996.

Klein, Robert, Michael Neugebauer, et al. (2019). “Differentiated time slot pricing under

routing considerations in attended home delivery”. In: Transportation Science 53.1,

pp. 236–255.

Koch, Sebastian and Robert Klein (2020). “Route-based approximate dynamic program-

ming for dynamic pricing in attended home delivery”. In: European Journal of Oper-

ational Research 287.2, pp. 633–652.

Le, Tho V et al. (2019). “Supply, demand, operations, and management of crowd-shipping

services: A review and empirical evidence”. In: Transportation Research Part C:

Emerging Technologies 103, pp. 83–103.

Lin, Yun Hui et al. (2020). “Last-mile delivery: Optimal locker location under multino-

mial logit choice model”. In: Transportation Research Part E: Logistics and Trans-

portation Review 142, p. 102059.

Martinez-Sykora, Antonio et al. (2020). “Optimised solutions to the last-mile delivery

problem in London using a combination of walking and driving”. In: Annals of Oper-

ations Research 295.2, pp. 645–693.

McKinnon, Alan C and Deepak Tallam (2003). “Unattended delivery to the home: an

assessment of the security implications”. In: International Journal of Retail & Distri-

bution Management 31(1), pp. 30–41.

Merchan, Daniel et al. (2021). Amazon Last Mile Routing Research Challenge Dataset.

Accessed January 6, 2022. Seattle: Amazon.com. URL: https://registry.opendata.

aws/amazon-last-mile-challenges.

68

https://registry.opendata.aws/amazon-last-mile-challenges
https://registry.opendata.aws/amazon-last-mile-challenges

Padberg, Manfred and Giovanni Rinaldi (1991). “A branch-and-cut algorithm for the res-

olution of large-scale symmetric traveling salesman problems”. In: SIAM review 33.1,

pp. 60–100.

Perboli, Guido, Roberto Tadei, and Daniele Vigo (2011). “The two-echelon capacitated

vehicle routing problem: Models and math-based heuristics”. In: Transportation Sci-

ence 45.3, pp. 364–380.

Pickme (2024). Let’s build tomorrow’s delivery together! (In French). Last accessed on

Feb 11, 2023. URL: https://www.mypickme.com/.

Qi, Wei et al. (2018). “Shared mobility for last-mile delivery: Design, operational pre-

scriptions, and environmental impact”. In: Manufacturing & Service Operations Man-

agement 20.4, pp. 737–751.

Rohmer, Sonja and Bernard Gendron (2020). A Guide to Parcel Lockers in Last Mile Dis-

tribution: Highlighting Challenges and Opportunities from an OR Perspective. Tech.

rep. Montreal: CIRRELT.

Savelsbergh, Martin and Tom Van Woensel (2016). “50th anniversary invited article—city

logistics: Challenges and opportunities”. In: Transportation Science 50.2, pp. 579–

590.

Schwerdfeger, Stefan and Nils Boysen (2020). “Optimizing the changing locations of

mobile parcel lockers in last-mile distribution”. In: European Journal of Operational

Research 285.3, pp. 1077–1094.

Spliet, Remy and Adriana F. Gabor (2015). “The Time Window Assignment Vehicle

Routing Problem”. In: Transportation Science 49.4, pp. 721–731.

Toth, Paolo and Daniele Vigo (2014). Vehicle Routing: Problems, Methods, and Applica-

tions. Ed. by Daniele Vigo and Paolo Toth. Philadelphia: Society for Industrial and

Applied Mathematics.

Ulmer, Marlin and Martin Savelsbergh (2020). “Workforce Scheduling in the Era of

Crowdsourced Delivery”. In: Transportation Science 54.4, pp. 1113–1133.

Ulmer, Marlin W (2020). “Dynamic pricing and routing for same-day delivery”. In: Trans-

portation Science 54.4, pp. 1016–1033.

69

https://www.mypickme.com/

Vidal, Thibaut, Gilbert Laporte, and Piotr Matl (2020). “A concise guide to existing and

emerging problem variants”. In: European Journal of Operational Research 286.2,

pp. 401–416.

Yang, Xinan and Arne K Strauss (2017). “An approximate dynamic programming ap-

proach to attended home delivery management”. In: European Journal of Operational

Research 263.3, pp. 935–945.

Yildiz, Baris and Martin Savelsbergh (2020). “Pricing for delivery time flexibility”. In:

Transportation Research Part B: Methodological 133, pp. 230–256.

70

Chapter 2

Network Design and Service Guarantee

in Ultra-Fast Delivery

Abstract

Ultra-fast delivery revolutionizes food and grocery services, with several companies ad-

vertising delivery times under 15 to 30 minutes. Motivated by the multi-billion-dollar

industry that has emerged in recent years within the delivery business, we investigate

the network design problem for ultra-fast delivery services. This involves decisions on

micro-depot locations and customer allocations, considering various service guarantee

levels. We develop robust probabilistic envelope constrained (PEC) programs to handle

uncertainties in travel times and customer order arrivals, and jointly optimize the protec-

tion level to avoid both excessive risk and conservatism. To enhance the tractability of

PEC models, we derive their equivalent semi-infinite linear programs and propose inner

and outer approximations with finite linear constraints. We validate the accuracy of these

approximations through extensive experiments using real-world data from Amazon and

the Google API, along with a comparative study of different formulations. Varying ser-

vice levels in ultra-fast delivery affect profitability and reliability, contingent on service

level definitions and compliance probabilities of these guaranteed service levels. We find

that a daily service level with multi-layer partial protection outperforms other policies in-

vestigated in this paper, yielding higher profitability and mild violations of service level

guarantees, and it proves to be an effective strategy for profitable and reliable ultra-fast de-

livery without over-committing or under-delivering, regardless of ordering times or traffic

conditions. Additionally, empirical evidence indicates that providing ultra-fast delivery

in rural areas poses unique challenges compared to urban settings.

2.1 Introduction

Ultra-fast delivery is a new form of the fast and reliable delivery of food and groceries

from micro-depots to customers. For example, an ultra-fast delivery company, Getir,

promises to deliver groceries to the customer’s doorstep within 15 minutes (Kavuk et al.

2022). Investors and entrepreneurs (e.g., Getir, Gopuff, Gorillas) invest heavily in such

services and the projected market volume reaches up to $251.50 billions by 2028 (Statista

2023). They expect to attract a large market share by offering urgently needed items

without customers having to leave the comfort of their homes, and aim to reduce waste

by taking the role of the traditional fridge and storage (Repko 2021).

Ultra-fast delivery has its roots in the 15-minute city concept proposed by Carlos

Moreno in 2016 (Moreno et al. 2021). This concept suggests that cities could be designed

with the intention of having amenities and most services located within a 15-minute walk-

ing or driving distance, thereby fostering a new neighborhood approach. To relieve or

confront the climate crisis and potential future pandemics, the 15-minute city and other

similar ideas such as the 20-minute neighborhood (Capasso Da Silva, King, and Lemar

2019) have recently gained popularity. The key idea is decentralization in city design,

that is, developing different services for each district, encouraging local shops, facilitat-

ing short commutes, and enabling access to key services within proximity.

Similar to the 15-minute city, ultra-fast delivery promises to bring advantages of prox-

imity, sustainability, and accessibility, and therefore reduce car dependency, fuel con-

sumption and pollution, and improve customer satisfaction. However, the reality shows

72

that many startups providing ultra-fast delivery services are facing severe capital shortages

or even go bankrupt (Chandler 2022) because of four main reasons: costly infrastructure,

high labor cost, low coverage, and unsafe driver behaviors (W. Zhang et al. 2022). Deliv-

ery companies have competed for customers in two main ways: being faster or offering

large discounts. Companies set up numerous micro-depots near customers and employ

many drivers to quickly respond to customer orders and ensure fast, on-time deliveries.

However, the setup costs for rent and essential equipment to open micro-depots are quite

expensive. Due to the substantial investments and narrow profit margins, these ultra-

fast delivery companies struggle to survive once venture capitalists stop funding them

(Senzamici 2024). Despite setting up numerous micro-depots, many regions still remain

unserved due to a shortage of micro-depot locations. Additionally, customers have a low

tolerance for delivery delays, especially when they are provided with an estimated time of

arrival (ETA) at the time of placing their orders (Salari, S. Liu, and Shen 2022). Usually,

the ETA is calculated based on historical expected travel times, which can sometimes be

overly optimistic, as they do not account for real-time traffic and weather conditions. Con-

sequently, this can result in frequent delivery delays and decreased customer satisfaction.

In fact, many companies have begun to reconsider the necessity of serving all customers

within 15 minutes and attempt to backtrack on their initial delivery promise. For instance,

Getir (2022), which initially operated in Turkey and recently expanded its services to Eu-

rope and the United States, originally offered deliveries within 15 minutes but extended

its delivery time to up to 45 minutes with customer approval. Meanwhile, Gorillas (2022)

in Europe initially focused on delivering within 10 minutes but later extended their de-

livery time to around 60 minutes. Goodfood (2022) in Canada, which aimed to provide

fast delivery services within 30 minutes, is discontinuing its on-demand grocery delivery

service due to financial struggles (Goodfood 2022).

To help bridge the gap between the theory and practice, we aim to investigate how

ultra-fast delivery can be a profitable and reliable business while maintaining high cus-

tomer service levels that are neither overly optimistic nor pessimistic. In particular, we

investigate how different measures of service can lead to distinct levels of cost and cus-

73

tomer satisfaction. To maintain a high service level, the hope is to serve customers within

a target delivery time (defined as the duration taken for goods to be delivered) with high

reliability. Our purpose is to introduce models for the network design of ultra-fast delivery

services in the presence of uncertain travel time distributions and unknown time periods

when customers place orders. These models aim to maximize the profit while ensuring

a certain service level by making the optimal decisions of micro-depot location and cus-

tomer order allocation. To reach this goal, our paper makes the following contributions.

• We develop probabilistic envelope constrained (PEC) programs for the ultra-fast

delivery problem with various service measures, including period and daily service

levels, which focus on equal performance for each period and weighted-average

daily performance, respectively. We solve the problem under partial and full pro-

tection of the service level, compare the performance of these measures under dif-

ferent guarantees, and identify the ones that yield a favorable trade-off between the

profit and the violation of service level constraints.

• To address the practical challenge that available data may not fully reflect reality,

we develop robust programs when both the distribution of travel time and the proba-

bility of customers placing orders in different time periods are not explicitly known.

We then derive equivalent semi-infinite linear programs and more tractable linear

approximations with a finite number of constraints, ensuring both high efficiency

and accuracy.

• We carry out extensive experiments on a real-world dataset obtained from Amazon

and the Google API, and derive the following insights:

– There is a trade-off between the profitability and reliability of ultra-fast deliv-

ery. A shorter delivery time promise results in higher demand and increased

profit, but at the cost of more frequent violations of on-time delivery.

– The robust formulation yields better out-of-sample performance, evident from

its lower probability of violating the target delivery time and smaller devia-

74

tions from the target. This, in turn, promotes safer decision-making in sce-

narios with limited data. Although it does entail a slight reduction in profits,

this trade-off could be deemed acceptable in light of the improved reliability

of timely delivery.

– The daily service level with multi-layer partial protection on the promised de-

livery times outperforms other strategies overall due to its higher profitability

and reliability. This approach prioritizes time periods with higher order fre-

quencies, ensuring that delivery targets are more effectively met during peak

demand periods. Additionally, setting hierarchical delivery targets, each asso-

ciated with a corresponding probability of achieving those targets, provides a

more flexible and reliable approach to managing deliveries, helping ultra-fast

delivery companies run a profitable business while maintaining high service

levels.

– Compared to urban areas, providing ultra-fast delivery services in rural areas,

where customers are more dispersed, is more challenging. This is due to the

longer distances between delivery locations and the necessity of setting up

more micro-depots in rural regions.

The rest of the paper is organized as follows. We review the related work in Section

2.2, and then introduce the ultra-fast delivery design problem in Section 2.3. Next, we

present stochastic programming models and their equivalent reformulations in Section

2.4. In Section 2.5, we report the results of numerical studies using real-world datasets to

evaluate the effectiveness of our proposed models. Finally, we conclude with managerial

insights in Section 3.6.

2.2 Literature Review

In this section, we review the main studies relevant to our research from three points of

view: facility location, ultra-fast delivery, and robust chance constraint programming.

75

2.2.1 Facility Location

The network design of ultra-fast delivery services can be seen as a variant of the Fa-

cility Location Problem (FLP), which is a well-known optimization problem in opera-

tions research and has been widely studied (e.g. Aikens 1985; Verter 2011). The FLP

aims to determine the optimal placement of facilities such as stores, warehouses, facto-

ries, hospitals, and schools while satisfying the customer demand, in order to minimize

the cost or maximize the profit. Numerous studies focusing on the FLP and its variants

have taken into account various forms of uncertainty in demand (e.g. Laporte, Louveaux,

and Hamme 1994), risk of facility failure (e.g. Shen, Zhan, and J. Zhang 2011; Cheng,

Adulyasak, and Rousseau 2021), service times at facilities, or travel times between de-

mand points and facilities, leading to stochastic or robust location problems (e.g. Snyder

2006). The stochastic FLP is still a prominent research topic, as researchers explore novel

perspectives to model the problem and develop efficient algorithms to improve solution

procedures. For example, Y. Li et al. (2022) study the reliable uncapacitated facility loca-

tion problem, in which facilities are subject to uncertain and correlated disruptions. They

propose a cutting-plane algorithm that outperforms the best-known algorithm in the lit-

erature for the stochastic problem under independent disruptions, specifically the search

and cut algorithm proposed by Aboolian, Cui, and Shen (2013). T. Liu et al. (2022) focus

on a broad class of facility location problems in the context of adaptive robust stochastic

optimization under state-dependent demand uncertainty, and propose a nested Benders

decomposition algorithm to solve the model exactly. Shehadeh (2023) proposes two dis-

tributionally robust optimization models for a mobile facility fleet-sizing, routing, and

scheduling problem with time-dependent and random demand, and solve the problem

using a decomposition-based algorithm.

In contrast to existing studies on stochastic or robust location problems, our study

focuses on ensuring timely delivery service to customers under two sources of uncertainty:

the travel time from facilities to customers and the time period during which customers

will place their orders.

76

2.2.2 Ultra-fast Delivery

Ultra-fast delivery is a special case of last-mile delivery and is popular in the food and

grocery industry, where it has extensively expanded in recent years with the rise of online

ordering and delivery applications. Some researchers, such as M. Chen, Hu, and J. Wang

(2022) and Feldman, Frazelle, and Swinney (2023), investigate the revenue allocation

between the restaurant and the food delivery platform and propose practical contracts to

improve the profitability of food delivery services. Others propose novel ideas to enhance

the efficiency of food delivery services. For example, Cao and Qi (2023) propose the

idea of selling grocery in public spaces with wheeled stalls (i.e., self-driving mini grocery

stores) to facilitate mobility, proximity, and flexibility of grocery delivery by avoiding

the “last 100 meters”. We share the same goal of providing better service and generating

more benefits for food and grocery delivery. However, our perspective differs from theirs

as we prioritize providing ultra-fast service.

Travel time is an important performance metric for ultra-fast delivery services. Mak

(2022) emphasizes the importance of improving efficiency in city operations and ef-

fectively managing fulfillment operations under tight delivery time windows for omni-

channel retailers. With a common goal of offering efficient operations and on-time deliv-

ery, many researchers also consider delivery time as a key measure in their work. Some

researchers aim to estimate travel times accurately to improve the delivery service. Per-

akis and Roels (2006) investigate the effect of congestion on travel time and derive an ana-

lytical travel-time function that integrates traffic dynamics and shock effects. Hildebrandt

and Ulmer (2022) present offline and online-offline estimation approaches to estimate ar-

rival times, and find that accurate arrival times not only raise service perception but also

improve the overall delivery system by guiding customer selections, effectively resulting

in faster deliveries. Other researchers investigate the impact of delivery time and utilize

optimization to facilitate fast deliveries. Deshpande and Pendem (2023) provide empiri-

cal evidence to show that fast deliveries drive sales by analyzing a mechanism that con-

nects delivery performance to sales through logistics ratings. Fatehi and Wagner (2022)

77

notice that customers demand faster and cheaper delivery services, and propose a crowd-

sourcing optimization model to provide fast and guaranteed delivery services utilizing

independent crowd drivers. Reed, Campbell, and Thomas (2022) develop a capacitated

autonomous vehicle assisted delivery problem involving the vehicle driving time, person

walking time, and package loading time, and demonstrate that autonomous vehicles can

help save time for last-mile deliveries. S. Liu, He, and Max Shen (2021) investigate the

impact of delivery data on the on-time performance of food delivery service, and develop

an order assignment problem with travel-time predictors. Motivated by a large grocery

chain store that offers fast on-demand delivery services, S. Liu and Luo (2023) present

a finite-horizon stochastic dynamic program for driver dispatching and routing problem

where on-time performance is the main target. Among those that utilize optimization

theory to foster fast deliveries, some of them also apply stochastic or robust optimization

since there are many sources of uncertainty when offering last-mile delivery services (see

Fatehi and Wagner 2022; Y. Chen et al. 2022; Mousavi, Bodur, and Roorda 2022; S. Liu,

He, and Max Shen 2021; S. Liu and Luo 2023). However, to the best of our knowledge,

the only paper that mentions ultra-fast delivery is Kavuk et al. (2022), who propose a real-

life application of deep reinforcement learning to address the order dispatching problem

of Getir, an ultra-fast delivery company whose goal is to deliver to as many customers as

possible within 15 minutes. Their deep reinforcement learning models predict which or-

ders to accept and reject based on the order characteristics such as the estimated delivery

time.

Compared to these papers, our work shares the same purpose of facilitating fast deliv-

eries. The difference is that we model it as a network design problem and aim to provide

reliable and flexible ultra-fast delivery services by considering various service measures

across different levels of protection, by accounting for uncertainties in travel time and

order placement periods, and by viewing demand as a variable linked to travel time.

78

2.2.3 Robust Chance Constraints and Probabilistic Envelope

Constraints

A robust chance constraint is a type of constraint in optimization models requiring that a

specific condition should be satisfied with a certain probability, even when the underly-

ing probability distribution of the uncertain parameters is not fully known or might vary

within certain bounds. Its goal is to create solutions that are robust and reliable when faced

with perturbations in the uncertain parameters. Calafiore and Ghaoui (2006) introduce a

distributionally robust formulation for chance-constrained linear programs, and propose

a model that considers the worst-case distribution of the uncertain parameters instead of

assuming a specific distribution. Hanasusanto et al. (2015) investigate joint chance con-

straints where uncertain parameter distributions are only known to belong to an ambiguity

set defined by the mean and support or an upper bound on dispersion, giving rise to pes-

simistic or optimistic ambiguous chance constraints. Postek et al. (2018) consider a robust

optimization problem with ambiguous stochastic constraints, where only the mean and

dispersion information of the distribution of the uncertain parameters are known. Ghosal

and Wiesemann (2020) study the distributionally robust chance-constrained vehicle rout-

ing problem, which assumes that the customer demands follow a probability distribution

that is only partially known, and impose chance constraints on the vehicle capacities for

all distributions that are deemed plausible in view of the available information.

A robust probabilistic envelope constraint (PEC), also known as a robust first-order

stochastic dominance (FSD) constraint, is a generalization of the robust chance constraint.

FSD allows a decision-maker to manage risk in an optimization setting by requiring their

decision to yield a random outcome which stochastically dominates a reference outcome

in the first order. This technique has been investigated in Dentcheva and Ruszczyński

(2004), Luedtke (2008), Armbruster and Delage (2015), and Dai et al. (2023). A PEC

compensates for a deficiency in chance constraints, which is that the violation magni-

tude of the bounds can be very large. This is because chance constraints only control the

probability of success but provide no control in the event of a failure. Instead, A PEC is

79

able to bound the uncertainty by restricting both the violation magnitude and probabil-

ity. Xu, Caramanis, and Mannor (2012) consider the robust optimization problem under

probabilistic envelope constraints, show that the problem of requiring different probabilis-

tic guarantees at each level of constraint violation can be reformulated as a semi-infinite

optimization problem, and provided conditions that guarantee polynomial-time solvabil-

ity of the resulting semi-infinite formulation. Peng, Delage, and J. Li (2020) provide a

two-stage stochastic programming model for locating emergency medical service (EMS)

stations, consider probabilistic envelope constraints to account for the uncertainty in the

requests of EMS services, and apply the model to a real-world EMS system to demon-

strate its effectiveness in improving the EMS response times. In contrast to these papers,

we apply robust PEC to offer speedy and reliable delivery services and jointly optimize

the location and allocation decisions and the service level guarantees.

2.3 Network Design Problem for Ultra-fast Delivery

In this section, we define the network design problem for ultra-fast delivery services, de-

rive the demand function that depends on the delivery time, and introduce a deterministic

formulation for the problem.

Definition 2 The network design problem for ultra-fast delivery (NDP-UD) is a multi-

period problem that involves locating micro-depots and determining service quality levels

for customer deliveries while maximizing the profit and ensuring reliable on-time delivery

services. It accounts for the relationship between demand volume and delivery speed, as

well as uncertainties in the distribution of travel times and the probability of customers

placing orders in different time periods.

2.3.1 Notation

Let (N ,A) represent a directed bipartite network, where the node set N includes the

set of customer locations I and the set of potential micro-depot locations J , and where

80

the edge set A contains edges (j, i) from micro-depot j to customer i with travel distance

li j and edges (0, j) from the central depot to micro-depot j with travel distance l0 j. We

consider a planning horizon of |T | time periods and assume that the length of each period

t ∈ T is long enough to travel between nodes. We use boldface letters to denote column

vectors. Row vectors are represented using the transpose (superscript T) of the column

vectors. To distinguish between the uncertain and deterministic values, we use a super-

script ∼ for the random variable and a superscript ∧ for the expected value. The notation

τ̃ ∼F indicates that τ̃ follows the distribution F , and F ∈D states that distribution F

resides in an ambiguity set D . To simplify notation, we use ∀i, ∀ j, and ∀t in place of

∀i ∈I , ∀ j ∈J , and ∀t ∈T , respectively.

We assume that customer orders are homogeneous. The nominal demand (i.e., the

number of potential customers) at location i in period t is d̄it , and the revenue obtained by

fulfilling per unit demand at customer location i is ri. The setup cost to open micro-depot

j is o j, and the delivery cost per unit distance for driving is c. The cost of hiring a driver

for one period is h, and each driver serves an average of m customers in each period. The

delivery time is defined as the duration of delivering the goods. Let s̃i jt represent the travel

time from micro-depot j to customer i in period t, which is the main source of uncertainty

in reality due to real-time traffic and unpredictable weather conditions. Let ai jt denote

the average order preparation time, which includes the required time for selecting and

packing items in each order. The delivery time of serving customer i from micro-depot

j in period t is τ̃i jt = s̃i jt + ai jt , and we let τ̂i jt = E[τ̃i jt]. The target delivery time is τ̄ .

We use variable y j = 1 to denote that micro-depot j is open, and y j = 0 otherwise. The

variable xi jt takes value 1 if the demand at location i is served by micro-depot j in period

t, and 0 otherwise. The variable zt is the number of drivers needed in period t. A summary

of notation is provided in Appendix A.

81

2.3.2 Demand Function

Customers generally have several options when ordering groceries, and they make their

choices by maximizing their utility. Given the demand volume d̄it at location i in period

t, we assume that, customers are more likely to choose deliveries that arrive faster when

all else factors are equal. We use the Multinomial Logit (MNL) customer choice model

to represent the customer behavior and choice probability. The MNL choice model is

defined by the following:

(1) The decision maker is a customer who chooses a mode of ordering groceries.

(2) The choice set contains three options, including the ultra-fast delivery service, the best

competitor, and opting out.

(3) The attributes include the delivery time and an independent source of randomness.

Other features, such as prices, are assumed to be the same for all options, although this

assumption can be relaxed if needed.

(4) The decision rule is based on the customer utility. The higher the customer utility of

an option, the greater the probability of choosing it. The deterministic utility obtained by

a customer at location i from placing an order with the ultra-fast delivery service in period

t is denoted as Vit , and it depends on the ultra-fast delivery time τu
it . The random part is εit

and is assumed to be independent and identically Gumbel distributed (Talluri, Van Ryzin,

and Van Ryzin 2004). Likewise, the deterministic utility derived from placing an order

using the competitor’s delivery service is denoted as V c
it . This utility depends on the best

competitor delivery time τc
it , with the addition of a random component εc

it . We thus have

the total utilities Uit and Uc
it as:

Uit =Vit + εit , where Vit = g(τu
it) = β0 +β1τ

u
it ,

Uc
it =V c

it + ε
c
it , where V c

it = g(τc
it) = β0 +β1τ

c
it .

The utility of opting out is zero (i.e., V o
it = 0). The probability of customers at location i

choosing the ultra-fast delivery in period t is:

Pit(ultra-fast) =
eµVit

eµVit + eµV c
it +1

,∀i, t,

82

where µ is a strictly positive scaling parameter that affects the level of randomness, and

is assumed to be the same for all individuals and alternatives (Ben-Akiva and Bierlaire

1999). We assume that the independence from irrelevant alternatives (IIA) property is

satisfied. That is, the relative likelihood of choosing any two options is independent of the

presence of other alternatives. As stated by R. Wang (2021), to relax the IIA assumption

and allow more flexible substitution within the choice set, some generalizations such as

the nested logit model can be applied. We use the MNL model as a showcase to examine

the effect of travel time on the demand volume.

Given that the delivery time is contingent on the decision of which micro-depot will

serve customers, and that customers base their decisions to place an order on the estimated

delivery time presented to them, we further decompose Pit(ultra-fast) into Pi jt(ultra-fast),

i.e., the probability of customers at location i choosing ultra-fast delivery in period t if

they are served by micro-depot j. Namely,

Pi jt(ultra-fast) =
eµg(τ̂i jt)

eµg(τ̂i jt)+ eµg(τc
it)+1

,∀i, j, t,

where the utility of choosing ultra-fast delivery is g(τ̂i jt) = β0 + β1τ̂i jt , and where the

estimated delivery time displayed to customers is the expected delivery time from micro-

depot j to customer location i in period t, τ̂i jt = ŝi jt +ai jt . Under this choice model, the

expected demand volume at location i for ultra-fast delivery services served by micro-

depot j in period t, di jt , can be calculated as follows:

di jt = Pi jt d̄itxi jt =
eµg(τ̂i jt)

eµg(τ̂i jt)+ eµg(τc
it)+1

d̄itxi jt ,∀i, j, t.

2.3.3 Deterministic Formulation

In practice, due to the real-time traffic congestion and variable weather conditions, the

travel time from a micro-depot to a customer location is uncertain. One way of handling

this uncertainty is to measure the average performance, leading to the following deter-

ministic program (DP) for NDP-UD:

(DP) max
x,y,d,z

∑
i

∑
j
∑
t

(
ri− c li j

)
di jt−∑

j

(
o j + c l0 j

)
y j−∑

t
hzt (2.1a)

83

s.t. ∑
j

xi jt ≤ 1,∀i, t (2.1b)

xi jt ≤ y j,∀i, j, t (2.1c)

di jt =
eµg(τ̂i jt)

eµg(τ̂i jt)+ eµg(τc
it)+1

d̄itxi jt ,∀i, j, t (2.1d)

x ∈XAV G (2.1e)

zt ≥
1
m ∑

i
∑

j
di jt ,∀t (2.1f)

x ∈ {0,1}|I |×|J |×|T |,y ∈ {0,1}|J |,z ∈ Z|J |+ . (2.1g)

The objective (2.1a) is to maximize the expected profit, taking into account the rev-

enue generated from all demands, the outbound cost for deliveries from micro-depots to

customers, the opening cost of micro-depots, the inbound cost for deliveries from a cen-

tral depot to micro-depots, and the driver hiring costs across all periods. We assume that

one driver can on average serve m customers in each time period, and that if the order

is accepted, the duration between the order arrival and the successful assignment to a

driver is included in the preparation time. The constraints (2.1b) and (2.1c) require that

each customer is served by at most one micro-depot in each period, and that only open

micro-depots serve customers. Using the findings in Section 2.3.2, the constraints (2.1d)

indicate that the demand is a function of customer utilities on different delivery choices

and is contingent upon average travel time.

Definition 3 Average Service Level is a service policy that ensures on-time delivery for

every customer in each period by considering the average delivery time performance:

XAV G =

{
x ∈ R|I |×|J |×|T |

∣∣∣∣∣∑j
τ̂i jtxi jt ≤ τ̄,∀i, t

}
,

where XAV G contains all the allocation solutions that satisfy the average on-time delivery

service.

The constraint (2.1e) conveys that the average delivery time of serving each customer

in any period should be no later than the target delivery time τ̄ . The constraints (2.1f)

stipulate that the number of hired drivers in each period must be adequate to fulfill all

84

orders, under the assumption that the supply of drivers is sufficient. The constraints (2.1g)

are domain restrictions. We note that DP is a mixed-integer linear program.

2.4 Probabilistic Envelope Constrained Programs

Bounding only the expected travel time may be too lenient. Therefore, we now present

a probabilistic envelope constraint approach, which is an extension of chance constraint

programming, to achieve different on-time delivery service levels with different probabil-

ities. We then derive tractable formulations when the travel time distribution is explicitly

known or unknown. We define and model the period service level with an equal level at

each period, and the daily service level by considering the average service level through-

out the entire day with uncertain frequency of customer orders. Finally, we present a

stochastic program for the NDP-UD, which can accommodate different service policies

and handle various sources of uncertainty, and also extend the program by jointly opti-

mizing NDP-UD and the service level guarantees to avoid excessive conservatism.

2.4.1 Chance Constraints

The delivery time τ̃i jt is a key performance measure of the service level and it is uncertain

due to the uncertain travel time. The chance constraint (CC) helps us model the condition

that, for every customer served in every period, the uncertain delivery time should be

below the target delivery time τ̄ with probability at least β ∈ [0,1]. This restriction is

represented by the following constraints:

Pτ̃

(
τ̃i jt ≤ τ̄

)
≥ β , ∀i, j, t ∈

{
i ∈I , j ∈J , t ∈T

∣∣∣xi jt = 1
}
.

Since we have x ∈ {0,1} and τ̄ ≥ 0, the chance constraint is equivalent to

Pτ̃

(
τ̃i jtxi jt ≤ τ̄

)
≥ β ,∀i, j, t.

Since ∑ j xi jt ≤ 1, the chance constraint is also equivalent to

Pτ̃

(
∑

j
τ̃i jtxi jt ≤ τ̄

)
≥ β ,∀i, t.

85

2.4.2 Probabilistic Envelope Constraints

A major downside of chance constraints is that they cannot avoid the long tail phe-

nomenon. That is, for the violated cases which might occur with probability 1−β , the

magnitude of the violation could be very large. To deal with this issue, we use the proba-

bilistic envelope constraint (PEC) to bound the uncertain delivery time by restricting both

the probability and the degree of violation.

Compared to the chance constraint that guarantees a good delivery service at one spe-

cific level, the PEC ensures that the customer satisfaction is protected at several levels

under the uncertain delivery time. For instance, to guarantee ultra-fast delivery, the re-

tailer may require that any order should be delivered within 10 minutes with probability

at least 70%, within 30 minutes with probability at least 80%, and within one hour with

probability at least 99%. Some violations are allowed on the initial target (i.e., 10 min-

utes), but for different magnitude (i.e., 20 minutes and 50 minutes), the probability of

the violation (i.e., 20% and 1%) is bounded. Define the magnitude of the violation as v,

and the probability of satisfying the new target τ̄ + v as β (v). For each customer i served

by any micro-depot in each period t, for any non-negative v, the uncertain delivery time

should be below τ̄ +v with probability at least β (v). The probabilistic envelope constraint

is

PEC: Pτ̃

(
∑

j
τ̃i jtxi jt ≤ τ̄ + v

)
≥ β (v),∀i, t,∀v≥ 0, (2.2)

where β : R+→ [0,1], and β (v) is a non-decreasing continuous function in v.

Definition 4 Period Service Level is a service policy that ensures on-time delivery for ev-

ery customer in each period and guarantees a certain level of reliability for every possible

delivery time:

XPEC :=

{
x ∈ R|I |×|J |×|T |

∣∣∣∣∣Pτ̃

{
∑

j
τ̃i jtxi jt ≤ τ̄ + v

}
≥ β (v),∀i, t,∀v≥ 0

}
. (2.3)

In other words, the set XPEC contains all the allocation solutions that satisfy PEC (2.2).

86

Example 1 Suppose that β (v) := 1/(γ

v+α
+1),v≥ 0 with nonnegative γ and strictly pos-

itive α . The inverse function of β (·) is β−1(p) = γ/(1
p −1)−α, for α

γ+α
< p < 1. See

Figure 2.1 for an illustration of the β (·) function for selected sample α and γ values.

Figure 2.1 – β (v) envelope for selected sample α and γ values.

Given a specific value of v̄, the delivery time of any order should not exceed τ̄ + v̄ with

probability at least β (v̄). In this case, the constraint implies a single chance constraint.

Therefore, PEC represents a stronger constraint than CC.

Definition 5 Period Service Level with One-Layer Guarantee is a service policy that

guarantees on-time delivery for a specific delivery time:

XCC(v̄) :=

{
x ∈ R|I |×|J |×|T |

∣∣∣∣∣Pτ̃

(
∑

j
τ̃i jtxi jt ≤ τ̄ + v̄

)
≥ β (v̄),∀i, t

}
,

where v̄ is a given value. The set XCC contains all the allocation solutions that provide

on-time delivery service within τ̄ + v̄ minutes with probability at least β (v̄).

2.4.2.1 Reformulation with Known Distribution.

One can assume that the randomness of the travel time follows a known distribution F

and obtain a tractable reformulation of XPEC.

87

Proposition 4 If uncertainty τ̃ follows a known distribution F , XPEC can be reformu-

lated as

XPEC =
{

x ∈ R|I |×|J |×|T |
∣∣∣xi jt ≤Θi jt ,∀i, j, t

}
, (2.4)

where Θi jt := I
{

supv≥0

(
Ψ
−1
τ̃i jt

(β (v))− τ̄− v
)
≤ 0
}

, I{·} is the indicator function, Ψτ̃i jt

is the cumulative probability function of τ̃i jt , and Ψ
−1
τ̃i jt

(β) is its quantile at probability β .

The proof is presented in Appendix B.1.

Remark 3 While XPEC only imposes an upper bound on x, calculating this bound re-

quires evaluations of a supremum over v ∈ R+. Fortunately, one can exploit a piecewise

constant approximation of β (·).

For any β (v), we can derive an outer and inner approximation of β (v):

β
outer(v) =

|K |

∑
k=1

β (vk+1)I
{

v ∈ [vk,vk+1[
}

(2.5a)

β
inner(v) =

|K |

∑
k=1

β (vk)I
{

v ∈ [vk,vk+1[
}
, (2.5b)

where {vk}k∈K is a discretization of [0,∞) and K = {1,2, ..., |K |}.

As shown in Figure 2.2, β outer(v) and β inner(v) are step functions under a finite

number of steps k ∈K . A smaller step size represents a larger number of steps |K |,

and leads to tighter approximations. Compared to β (v), β outer(v) yields a smaller fea-

sible set for x by requiring a higher probability of meeting the target, while β inner(v)

yields a larger feasible set by requiring a lower probability of meeting the target (i.e.,

β outer(v)≥ β (v)≥ β inner(v),∀v≥ 0).

Corollary 1 When β (v) is approximated by its outer step function (2.5a) and inner step

function(2.5b), the value of the indicator function on the right hand side is known, leading

to the approximated reformulation of XPEC with a finite number of linear constraints, as

follows:

X outer
PEC ⊆XPEC ⊆X inner

PEC

88

(a) |K |= 20 with the step size β = 0.05. (b) |K |= 100 with the step size β = 0.01.

Figure 2.2 – Inner and outer approximations of β (v).

with

X inner
PEC :=

{
x ∈ R|I |×|J |×|T |

∣∣∣xi jt ≤Θ
inner
i jt ,∀i, j, t

}
, (2.6)

X outer
PEC :=

{
x ∈ R|I |×|J |×|T |

∣∣∣xi jt ≤Θ
outer
i jt ,∀i, j, t

}
, (2.7)

where Θinner
i jt := mink I

{
Ψ
−1
τ̃i jt

(β (vk))− τ̄− vk ≤ 0
}

,

and Θouter
i jt := mink I

{
Ψ
−1
τ̃i jt

(β (vk+1))− τ̄− vk+1 ≤ 0
}

.

2.4.2.2 Reformulation with Unknown Distribution.

Under the case where the exact distribution of travel time may not be explicitly known,

we introduce the robust PEC:

Robust PEC: inf
F∈D

Pτ̃∼F

(
∑

j
τ̃i jtxi jt ≤ τ̄ + v

)
≥ β (v),∀i, t,∀v≥ 0, (2.8)

where D is the ambiguity set containing the true distribution.

Assumption 1 We consider that the distribution of travel times is unknown, but partial

information such as moments can be obtained from the dataset. In this case, the ambiguity

set D represents a family of distributions whose mean and covariance information are

given:

D :=
{

F | τ̃ = τ̂ + δ̃ , EF

[
δ̃ t

]
= 0, EF

[
δ̃ δ̃

T
]
= Σ

}
.

89

Let x∈XR−PEC be the solutions that satisfy the robust PEC (2.8). With the ambiguity

set D ,

XR−PEC :=

{
x ∈ R|I |×|J |×|T |

∣∣∣∣∣ inf
δ̃ it∼(0,Σit)

P
{(

τ̂ it + δ̃ it

)T
xit ≤ τ̄ + v

}
≥ β (v),∀i, t,∀v≥ 0

}
,(2.9)

where δ̃ it ∼ (0,Σit) considers all the random vectors δ̃ it ∈ R|J | with mean 0 and covari-

ance Σit such that [Σit] j1, j2 = [Σ](i, j1,t)(i, j2,t).

Remark 4 The NDP-UD with x ∈ XR−PEC is a semi-infinite program with an infinite

number of constraints, since the constraint has to be satisfied under any distribution in

ambiguity set D and for any v.

Similar to Calafiore and Ghaoui (2006) and Xu, Caramanis, and Mannor (2012), who

derived an equivalent and tractable reformulation for the robust CC and PEC, respectively,

we present the following result.

Lemma 1 XR−PEC can be equivalently reformulated as follows:

XR−PEC =

{
x ∈ R|I |×|J |×|T |

∣∣∣∣∣τ̂T
it xit +

√
β (v)

1−β (v)

√
xT

it Σitxit ≤ τ̄ + v,∀i, t,∀v≥ 0

}
.(2.10)

Proposition 5 XR−PEC has an equivalent linear reformulation

XR−PEC =
{

x ∈ R|I |×|J |×|T |
∣∣∣xi jt ≤Θi jt ,∀i, j, t

}
, (2.11)

where Θi jt = I
{

supv≥0 τ̂i jt +
√

β (v)
1−β (v)σi jt− τ̄− v≤ 0

}
. Specifically, in the case defined

in Example 1 that β (v) = 1
γ

v+α
+1

, we have Θi jt = I
{

τ̂i jt +α +
σ2

i jt
4γ
− τ̄ ≤ 0

}
.

The proof is presented in Appendix B.2. The outer and inner approximations of XR−PEC

with discretized v are provided in Appendix C.1.

90

2.4.3 Probabilistic Envelope Constraints with Two Forms of

Uncertainty

In practical scenarios, customers may order more frequently during lunchtime and din-

nertime, and less frequently in the early morning or late at night. Instead of providing

an equal service level in each period, we can evaluate the overall daily service level and

prioritize those time periods with higher order frequencies. Consequently, it becomes

essential to consider the probability distribution of time periods during which orders are

placed and to ensure a certain service level across all periods within the entire day.

For each customer i served by any micro-depot j, the uncertain delivery time under

uncertain period t̃ should be no more than τ̄ + v with probability at least β (v). The prob-

abilistic envelope constraint with period uncertainty (PECP) is

PECP: Pτ̃,t̃

(
∑

j
τ̃i jt̃ xi jt̃ ≤ τ̄ + v

∣∣∣∣∣∑j
xi jt̃ = 1

)
≥ β (v),∀i,∀v≥ 0. (2.12)

Definition 6 Daily Service Level is a service policy that ensures on-time delivery service

for each customer throughout the entire day and guarantees a certain reliability for every

possible delivery time:

XPECP :=

x ∈ R|I |×|J |×|T |
∣∣∣∣∣∣ Pτ̃,t̃

(
∑ j τ̃i jt̃ xi jt̃ ≤ τ̄ + v

∣∣∑ j xi jt̃ = 1
)
≥ β (v),

∀i : P
(
∑ j xi jt̃ = 1

)
> 0,∀v≥ 0

 .(2.13)

The set XPECP contains all the allocation solutions that satisfy PECP (2.12).

2.4.3.1 Reformulation with Known Distribution.

Similar to Section 2.4.2.1, we assume full knowledge of distribution of travel time from

micro-depots to customers. Additionally, we consider a finite number of periods in which

each customer places orders with certain probabilities. We now reformulate XPECP into

a tractable formulation.

Proposition 6 Consider a finite number of periods t ∈ T . In each period t, customer

i places an order with known probability qit . If the uncertainty τ̃i jt follows a known

91

distribution F , we reformulate XPECP into

XPECP =

{
x ∈ R|I |×|J |×|T |

∣∣∣∣∣∑t
qit

(
∑

j

[
Ψτ̃i jt (τ̄ + v)−β (v)

]
xi jt

)
≥ 0,∀i,∀v≥ 0

}
,(2.14)

where Ψτ̃i jt is the cumulative probability function of τ̃i jt .

The proof is presented in Appendix B.3. This formulation states that for each customer i,

the weighted-average difference between the realized frequency and promised frequency

is non-negative. The outer and inner approximations of XPECP are provided in Appendix

C.2.

2.4.3.2 Reformulation with Unknown Distribution.

A second interesting case is when both the travel time distribution and the probability

of customers placing orders in each period are unknown. In this case, we deal with the

robust PECP.

Robust PECP: inf
qi∈Qi

inf
{δ̃ it∼(0,Σit)}|T |t=1

Pt̃∼q

{(
τ̂ it̃ + δ̃ it̃

)T
xit̃ ≤ τ̄ + v

}
≥ β (v),∀i,∀v≥ 0,

(2.15)

where Qi ⊆ ∆|T |, the probability simplex in R|T |.

Let XR−PECP be the set of solutions that satisfy the robust PECP, we have

XR−PECP :=

{
x ∈ R|I |×|J |×|T |

∣∣∣∣∣ inf
qi∈Qi

∑
t

qit

(
∑

j

[
ϒi jt(v)−β (v)

]
xi jt

)
≥ 0,∀i,∀v≥ 0

}
,

where ϒi jt(v) = inf
δ̃i jt∼(0,σ2

i jt)
P
{

τ̂i jt + δ̃i jt ≤ τ̄ + v
}

. Now, the computational challenge

comes from two parts: the uncertainty set Qi and ϒi jt(v). To handle Qi, we make the

following assumption.

Assumption 2 The uncertainty about qi is captured by

Qi :=
{

qi ∈ R|T | | qT
i e = 1, 0≤ qi ≤ 1,

∥∥∥∥Σ
− 1

2
qi (qi− q̂i)

∥∥∥∥
1
≤ Γ

}
,

where q̂i is the center of the uncertainty set, Σqi defines the shape of the set, and Γ is the

radius.

92

Proposition 7 If Assumption 1 and Assumption 2 are satisfied, XR−PECP has an equiva-

lent semi-infinite linear reformulation

XR−PECP =


x ∈ R|I |×|J |×|T |

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀v≥ 0, ∃u1 ∈ R|I |×|T |,θ 1 ∈ R|I |,θ 2 ∈ R|I |

q̂T
i u1i +Γθ1i +θ2i ≤ 0,∀i

u1it +θ2i ≥ β (v)xT
it I− xT

it ϒit(v),∀i, t

θ1i ≥ uT
1i[Σ

1
2
qi]t ,∀i, t

θ1i ≥−uT
1i[Σ

1
2
qi]t ,∀i, t


,

(2.16)

where θ 1,θ 2,u1 are dependent on v, [Σ
1
2
qi]t is the t th column of the matrix Σ

1
2
qi , and [ϒit(v)] j =

(τ̄+v−τ̂i jt)
2
+

(τ̄+v−τ̂i jt)
2
++σ2

i jt
with (y)+ = max(0,y).

Note that ϒit(v) can be preprocessed and taken as a fixed value. The proof is pre-

sented in Appendix B.4. The outer and inner approximations of XR−PECP are provided

in Appendix C.3.

Remark 5 When Γ = 0 and Σqi > 0, the last constraint in the uncertainty set Qi states

that qi is explicitly known and equal to q̂i (i.e., Qi := {q̂i}). In this case, XR−PECP is

reduced to XR−PECP only with uncertain travel time distribution:

XR−PECPT :=

{
x ∈ R|I |×|J |×|T |

∣∣∣∣∣∑t
q̂it

(
∑

j

[
ϒi jt(v)−β (v)

]
xi jt

)
≥ 0,∀i,∀v≥ 0

}
,(2.17)

where ϒi jt(v) =
(τ̄+v−τ̂i jt)

2
+

(τ̄+v−τ̂i jt)
2
++σ2

i jt
.

Remark 6 When Γ is a large value that makes the uncertainty set large enough to cover

any possible distribution of qi, the last constraint in uncertainty set Qi becomes redun-

dant. For example, if Σqi is diagonal, the lowest upper bound of Γ is

maxi ∑t max
{
[Σ
− 1

2
qi]tt(1− q̂it), [Σ

− 1
2

qi]tt q̂it

}
. Intuitively, if Γ is large enough to cover the

furthest node from the average value in terms of standard deviations, the robust PECP is

reduced to robust PEC.

93

Remark 7 If the delivery time follows a known distribution, but the probability of placing

orders in each period is uncertain, XR−PECP is reduced to XR−PECPP only with uncertain

period probability, which has the following equivalent linear reformulation:

XR−PECPP :=


x ∈ R|I |×|J |×|T |

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀v≥ 0, u1 ∈ R|I |×|T |,θ 1 ∈ R|I |,θ 2 ∈ R|I |

q̂T
i u1i +Γθ1i +θ2i ≤ 0,∀i

u1it +θ2i ≥ β (v)xT
it I− xT

it Ψit(v),∀i, t

θ1i ≥ uT
1i[Σ

1
2
qi]t ,∀i, t

θ1i ≥−uT
1i[Σ

1
2
qi]t ,∀i, t


,

where θ 1,θ 2,u1 are dependent on v, and [Ψit(v)] j is the cumulative probability function

of δ̃i jt .

2.4.4 Stochastic Program and Linear Reformulation

If the daily service level is applied, the stochastic program under the uncertainty of the

travel time distribution and period probability is

(SP1) max
x,y,d,z

∑
i

∑
j
∑
t

(
ri− cli j

)
di jt−∑

j

(
o j + cl0 j

)
y j−∑

t
hzt (2.18a)

s.t. (2.1b)− (2.1d), (2.1f)− (2.1g)

x ∈X , (2.18b)

where X can be any one of the following sets: XCC, XPEC, XR−PEC, XPECP, or

XR−PECP. The objective is the maximization of the expected profit. The location and

allocation decisions are made to reach a certain service level that depends on X , in-

cluding the period service level related to XPEC, daily service level related to XPECP,

and their variants. The computational challenge arises from the constraint (2.18b), which

can be reformulated as an equivalent semi-infinite linear program based on the linear

reformulations presented in Propositions 4 to 7. Furthermore, it can be approximated

by a mixed-integer linear program (MILP) with a finite number of constraints using the

outer and inner approximations provided in Corollary 1 and Appendix C. To rephrase,

94

X outer ⊆X ⊆X inner. Take XR−PECP as an example, we have the following formula-

tion SPR
1 , which is an approximation of SP1:

(SPR
1) max

x,y,d,z,u,θ
∑

i
∑

j
∑
t

(
ri− cli j

)
di jt−∑

j

(
o j + cl0 j

)
y j−∑

t
hzt (2.19a)

s.t. (2.1b)− (2.1d), (2.1f)− (2.1g)

∑
t

q̂ituk
1it +Γθ

k
1i +θ

k
2i ≤ 0,∀i,k (2.19b)

uk
1it +θ

k
2i ≥∑

j

[
β (vk+ε)−ϒi jt(vk)

]
xi jt ,∀i, t,k (2.19c)

θ
k
1i ≥∑

t ′
(uk

1it ′)(Σqi)
1
2
tt ′,∀i, t,k (2.19d)

θ
k
1i ≥−∑

t ′
(uk

1it ′)(Σqi)
1
2
tt ′,∀i, t,k (2.19e)

ϒi jt(vk) =
(τ̄ + vk− τ̂i jt)

2
+

(τ̄ + vk− τ̂i jt)2
++σ2

i jt
,∀i, j, t,k. (2.19f)

SPR
1 provides a relaxation or restriction of SP1 depending on whether ε = 0 or 1,

respectively.

2.4.5 Stochastic Program with Optimized PEC and Linear

Reformulation

In the chance constraint Pτ̃

(
∑
j

τ̃i jtxi jt ≤ τ̄ + v̄

)
≥ β (v̄), target τ̄ + v̄ being reached with

probability at least β (v̄) may lead to a high degree of violation on target or lead to a low

profit, depending on the value of v̄ and the shape of the β (·) function. To obtain a better

service level with a lower violation on target, we proposed model SP1, where the ser-

vice level has been fully protected on any possible violations. However, such restrictive

requirements could be too conservative in practice, inspiring us to jointly optimize the

service level along with the decisions. This optimization aims to ensure not only a good

service level but also a decent profit. To be specific, any set X containing v (i.e., XPEC,

XR−PEC, XPECP, or XR−PECP) can be considered as a variant X (v) that depends on v.

In particular, for any v≥ 0,

95

XR−PECP(v) :=
{

x ∈ R|I |×|J |×|T |
∣∣∣infqi∈Qi ∑t qit

(
∑ j
[
ϒi jt(v)−β (v)

]
xi jt
)
≥ 0,∀i,∀v≥ v

}
.

Other sets are similarly defined. In this case, protections are imposed on any v ≥ v in-

stead of v≥ 0, and v is considered as a decision variable to find the optimal service level

guarantees.

(SP2) max
x,y,d,z,v

∑
i

∑
j
∑
t

(
ri− cli j

)
di jt−∑

j

(
o j + cl0 j

)
y j−∑

t
hzt (2.20a)

s.t. (2.1b)− (2.1d), (2.1f)− (2.1g)

x ∈X (v),∀v≥ 0, (2.20b)

where X (v) can be XPEC(v), XR−PEC(v), XPECP(v), or XR−PECP(v). We then dis-

cretize v into finite steps and find the optimal steps that yield the maximum profit while

maintaining a certain service level. Take XR−PECP(v) as an example, the stochastic pro-

gram can be reformulated into

(SPR
2) max

x,y,d,z,u,θ
∑

i
∑

j
∑
t

(
ri− cli j

)
di jt−∑

j

(
o j + cl0 j

)
y j−∑

t
hzt (2.21a)

s.t. (2.1b)− (2.1d), (2.1f)− (2.1g), (2.19c)− (2.19f)

∑
t

q̂ituk
1it +Γθ

k
1i +θ

k
2i ≤ 0,∀i,∀k ∈ [|K |+1−n, |K |], (2.21b)

where n ∈ [0, |K |] is the number of the to-be-guaranteed service levels, and |K | is the

total number of steps in the step function of β (v). When n = |K |, the constraints (2.21b)

are imposed for all service levels. If n = 0, the constraints can be interpreted in the way

that our objective is to serve all the customers without restricting the delivery time. The

constraints (2.21b) specify that the service level is implemented starting from serving

customers within a long delivery duration τ̄ + v|K |, which is defined as a low service

level; and ending with serving customers within a short duration τ̄ , which is defined as a

high service level. If the higher service level is achieved (e.g. k = |K | − 1), the lower

one has to be satisfied (e.g. k = |K |). The larger the number of the guaranteed levels, the

shorter the target delivery duration. Other formulations for SP1 and SP2 under different

scenarios for uncertainty are presented in Appendix D.

96

2.5 Numerical Study

In this section, we first introduce the real-world dataset, the performance metrics, and the

implementation details. We then evaluate the performance of β approximation functions

and compare formulations under different service levels and uncertainties, including the

period and daily service levels, the full, partial and one-layer protection, and the robust

and non-robust models. We also investigate the impact of different factors and finally

analyze the trade-off between the profitability and reliability for urban and rural areas.

2.5.1 Dataset and Implementation Details

We use the customer location dataset from four regions in the US (Los Angeles, Seattle,

Tacoma, and Orange) provided by Amazon (Merchan et al. 2021), which indicates the

locations and density of residents inclined to purchase online. For example, the customer

location and density in Los Angeles are shown in Figure 2.3(a). The darker the point,

the higher the demand volume. For each area, we randomly generate 15 candidate loca-

tions for micro-depots. We obtain the distance and real-time travel time from the Google

API. Specifically, for each arc between customer and micro-depot locations, we collected

500 travel time samples at different time points from Jan 05, 2023, to Jan 19, 2023. For

example, Figure 2.3(b) shows the travel time distribution from micro-depot #1 (MD1) to

customer location #1 (C1). To evaluate the out-of-sample performance of ultra-fast deliv-

ery in terms of profitability and reliability, for each arc in each period, we generate 500

travel time samples using the gamma distribution, which best fits the real-world dataset,

with the same moment information (i.e., mean, variance, skewness) obtained from the

real-world dataset. We use 300 samples as training and 200 samples as testing datasets.

We simulate the demand distribution, the probability of customers placing orders in

each period, and other cost parameters as follows. We generate the nominal demand

distribution for 100 customer locations over 100 days using a normal distribution with a

mean of (5, 16, 14, 22, 6) for five periods (morning, lunchtime, afternoon, dinner time,

and night) and a variance of 10. The demand distribution for each period is presented in

97

Figure 2.3(c). The probability distribution of customers placing orders in each period is

generated based on the demand distribution. In other words, for each location and each

day, the probability of placing orders in each period is proportional to the demand for

that period relative to the total demand. Figure 2.3(d) illustrates the probability of placing

orders in each period for C1. The revenue of each order r is set at $3, the delivery cost

per kilometer c is $1, and the hiring cost h of each driver serving per unit demand in each

period is $1. Each driver serves an average of 10 units of demand in each period. The

setup cost o j for opening the micro-depot j in all periods of one day is $100, and changes

between 0 and $500 in our sensitivity analysis. The initial target delivery time τ̄ is set to

6 minutes, and varies from 5 to 8 minutes in our sensitivity analysis. Since the allowed

violation fluctuates from 0 to 38 minutes, the potential target delivery time changes from

5 to 46 minutes. The competitor delivery time τc is set to 15 minutes, and varies from 2 to

20 minutes in our sensitivity analysis. The customer utility function is set as g(τ) = 1+ 1
τ
,

indicating that faster deliveries result in higher utility. This function is assumed to be the

same for all customers.

To evaluate the performance of different formulations under various service levels and

protection, we compare the profit (i.e., the optimal objective value), the customer coverage

proportion (i.e., ∑i, j,t xi jt
|I ||T | ×100%), the demand fulfillment proportion (i.e., ∑i, j,t d̂i jt

∑i,t d̄it
×100%),

the number of open micro-depots (i.e., ∑ j y j), the violation probability, and the violation

degree. The violation probability V p is defined as the average violation probability among

all customers in all periods for all discretized chance constraints that correspond to each

service level (i.e., V p = 1
|I ||T ||K |∑i,t,k V p

itk). Specifically, for each customer i in each pe-

riod t, if the chance constraint at level k is violated, the violation probability is the gap

between the target probability and the true probability of serving customers on time (i.e.,

V p
itk = β (vk)−PFo

(
∑ j τi jtxi jt ≤ τ̄ + vk), where Fo is the out-of-sample distribution); oth-

erwise, the violation probability is zero (i.e., V p
itk = 0). The violation degree is defined as

the maximum amount of time that is beyond the target delivery time among all customers

in all periods for all discretized chance constraints (i.e., V d = maxi,t,k V d
itk). Specifically,

for each customer i in each period t, if chance constraint k is violated, the delayed time

98

(a) Customer locations and their density (Los Angeles)(b) Travel time distribution from MD1 to C1

(c) Demand distribution (d) Probability distribution of C1 placing orders

Figure 2.3 – Statistic description of simulation environment

V d
itk is the gap between the highest possible delivery time and the target delivery time (i.e.,

V d
itk = maxτ̃∼Fo ∑ j τ̃i jtxi jt− τ̄−vk, where Fo is the out-of-sample distribution). The prof-

itability is the proportion of the profit that can be achieved compared to the best case that

all customers can be served by ultra-fast delivery.

We implement our algorithms using Python 3.7 on a computer with one 2 GHz Quad-

Core Intel Core i5 processor and 16GB of RAM. We use Gurobi 9.0.2 as the solver.

2.5.2 Benchmark

We compare the different formulations from three aspects: (1) Service measures: period

and daily service levels. (2) Service level guarantees: one-layer on the service level

(i.e., n = 1), full protection with the all-layer guarantee (i.e., n = |K |), and partial pro-

tection with the multi-layer guarantee (i.e., n = [2, |K | − 1]). Specifically, we employ

the inner and outer approximations of β (v) as illustrated in Figure 2.2(a), with |K |= 20

99

and a step size of β set to 0.05. In this case, we implement a 20-layer guarantee as

the all-layer guarantee and a 15-layer guarantee (determined to strike an optimal balance

between profitability and reliability) as the multi-layer guarantee. (3) Source of uncer-

tainty: formulations with or without the uncertainty in travel time distribution and period

probability (see Table 2.1).

Table 2.1 – Reformulations of different service level under different level of uncertainty

Service
level

Formulation Uncertainty Set Linear reformu-
lation

Period
PEC None XPEC See Proposition 4
Robust PECT Travel time distribution XR−PEC See Proposition 5

Daily

PECP None XPECP See Proposition 6
Robust PECPT Travel time XR−PECPT See Remark 5
Robust PECPP Period probability XR−PECPP See Remark 7
Robust PECPT P Travel time distribution;

Period probability
XR−PECP See Proposition 7

Notes. The subscript is the uncertainty of the robust formulation. For example, Robust PECPT P

can be read as Robust Probabilistic Envelope Constraint when considering Period probability
under uncertain Travel time distribution and Period probability.

2.5.3 Performance of β Step Function

To derive a linear reformulation with a finite number of constraints, we use the β step

function to approximate the β function. The larger the number of steps, the higher the

accuracy, but the lower the efficiency of the solution procedure. Figure 2.4 illustrates the

performance of the approximation for different numbers of steps. In the PEC formulation,

β outer(v) (i.e., lower bound) and β inner(v) (i.e., upper bound) converge rapidly, resulting

in a gap ratio of 6.63% and an average runtime of 6 seconds when the number of steps

is set to 20. In contrast, for the PECP formulation, convergence is slightly slower, with

a gap ratio of 8.24% and an average runtime of 23 seconds at 20 steps. Moreover, the

upper bound tends to stabilize when the number of steps exceeds 20. In other words,

using the approximation β inner(v) to approximate the original formulation yields limited

100

(a) Optimal objective value (b) Runtime

Figure 2.4 – Performance of approximation for different numbers of steps

improvement when increasing the number of steps from 20 to larger values. The gap ratio

eventually converges to zero at 200 steps, but at the cost of a lengthy preprocessing time,

averaging 20 minutes, and 1-3 minutes runtime for optimization.

Insight 1 The inner and outer approximations are tight when the number of steps exceeds

the number of samples in the travel time distribution, as also noted by Peng, Delage, and

J. Li (2020). The approximations with 20 steps and a step size of β set to 0.05 perform

well, yielding good results in terms of both efficiency and accuracy.

2.5.4 Comparison Under Different Service Levels and Uncertainties

We compare the daily and period service levels with various layers of protection under

different uncertainties, as described in Section 2.5.2. Figure 2.5 displays the profit, cus-

tomer coverage proportion, and the average performance in terms of out-of-sample viola-

tion probability and degree. As shown in each sub-figure, the robust formulation always

yields a lower violation but at the cost of some loss in profit. For example, the robust

formulation with daily service level under partial protection yields a lower out-of-sample

violation probability (i.e., 7.0%), a lower out-of-sample violation degree (i.e., 1.21 min-

utes), but also a lower profit (i.e., $6794) than the non-robust formulation (i.e., 7.9%,

1.54 minutes, and $6901, respectively). That is, the violation probability and violation

101

degree decrease by 13% and 21%, respectively, in a positive manner. However, the profit

decreases by approximately 1.5%.

(a) Profit (b) Customer coverage proportion

(c) Out-of-sample average violation probability (d) Out-of-sample maximum violation degree

Figure 2.5 – Performance on profit, coverage proportion, and violation

Table 2.2 – Results of different formulations

Formulation Optimal
profit
($)

Number
of open
micro-
depots

Unused
micro-
depot
indices

Customer
coverage
proportion

Violation
probability

Violation
degree
(minutes)

PECP 6500 10 [1,4,7,8,14] 96% 4.41% 1.38
PEC 5846 11 [1,4,7,14] 88% 1.74% 1.38
Robust
PECPT

5413 11 [1,6,7,14] 80% 0.31% 1.21

Robust
PECT

5086 12 [1,7,14] 76% 0.27% 0.53

Notes. The number of potential micro-depot locations is 15 to serve 100 customers.

102

(a) Profit (b) Out-of-sample average violation probability

Notes. The three dashed lines represent the cases with the explicitly known travel time distribution,
and the three solid lines represent the cases with the unknown travel time distribution.

Figure 2.6 – The impact of radius Γ of the uncertainty set Q for the period probability q.

Figure 2.6 illustrates the change in the optimal objective value and the out-of-sample

violation probability as the radius Γ of the uncertainty set for the period probability q

varies. When considering PECP with daily service level, increasing Γ leads to larger un-

certainty sets, higher protection against uncertain probabilities of order placement in each

period, worse objective values, decreased customer coverage, and reduced violations. The

best case for PECP occurs when the probability of placing orders in each period is given

(Γ = 0), while the worst case is observed with high uncertainty on the probability of plac-

ing orders (Γ ≥ 60), which reduces to PEC with period service level. This observation

holds true regardless of whether the travel time distribution is explicitly known or not (see

Remark 6).

Table 2.2 displays the open micro-depots under period and daily service levels corre-

sponding to different Γ, ranging from the deterministic case to the most robust scenario.

We observe that greater robustness leads to lower profits, reduced customer coverage,

decreased violation probabilities, and a higher number of open micro-depots. In other

words, the ultra-fast delivery company opens more micro-depots to mitigate risk, yet the

coverage of customer locations still diminishes. This suggests that the significant per-

turbations in customer order frequency and travel time can result in high costs and low

revenue.

103

Insight 2 Value of the robustness: There is a trade-off between high profit and low vi-

olation in serving customers on time. The robust formulations can yield lower violation

probability and degree, but at the cost of a loss in profit, reaching up to 16.7% in the

experimental study.

As illustrated in Figure 2.5(a) and (b), the formulation with one-layer protection yields

the highest profit due to the highest coverage proportion. However, Figure 2.5(c) indicates

that the violation probability under the one-layer protection is much higher than that under

full protection. The profit of the formulation with full protection is significantly lower

than that of the formulation with one-layer protection. Generally, the formulation with

partial protection exhibits the best performance, yielding a decent profit slightly lower

than the best case, an acceptable violation probability that is at least half as low as the

worst case, and a stable violation degree observed in Figure 2.5(d).

2.5.5 Sensitivity Analysis

In this section, we examine the influence of the initial target delivery time, competitor

delivery time, setup cost, and number of layers on the results. We also present the effi-

cient frontiers concerning profitability and violation probability for both period and daily

service levels under various levels of service level protection.

2.5.5.1 The impact of the initial target delivery time.

Figure 2.7 shows the changes in profit, number of open micro-depots, customer coverage

proportion, demand fulfillment proportion, violation probability, and violation degree as

the initial target delivery time changes. A higher initial target delivery time implies less

restriction on service levels, resulting in increased profit and greater demand fulfillment.

This leads to a trade-off between service levels and fulfillment. Compared to the period

service level (PEC), the daily service level (PECP) always yields a higher profit with

higher demand fulfillment and coverage proportion (see Figure 2.7(a) and (b)). This fact is

on account of two reasons: (1) Compared to PEC, PECP considers the weighted-average

104

(a) Profit & Number of open micro-depots (b) Customer coverage & Demand fulfillment proportion

(c) Average violation probability (d) Maximum violation degree

Figure 2.7 – The impact of the initial target delivery time on PEC and PECP

performance among all periods instead of the equivalent performance for each period,

leading to a less restricted requirement on the delivery time. (2) Since customers have a

higher probability of placing orders at the dinner time and lunch time, given the allowed

daily violation, more allowance will be put on these two periods to cover more demand

and to yield a higher profit in PECP. The out-of-sample violation probability is at most

2.6% and the violation degree is at most 1.6, which should be acceptable in practice (see

Figure 2.7(c) and (d)). More detailed results related to the initial target delivery time in

each period are shown in Appendix E.

2.5.5.2 The impact of the competitor delivery time.

Figure 2.8 shows how the profit, number of open micro-depots, customer coverage propor-

tion, and demand fulfillment proportion change as the competitor delivery time changes.

As the competitor delivery time increases, the profit of ultra-fast delivery (with the ini-

105

tial target being 6 minutes) increases with an increasing captured demand. The value is

overall stable when the competitor delivery time exceeds 10 minutes. The coverage pro-

portion and the number of open micro-depots keep consistent, which means the allocation

decisions remain unchanged no matter how the competitor service level changes. In this

case, both the violation probability and degree also remain steady.

Insight 3 The competitor delivery time does not affect the operations of allocating micro-

depots to serve customers, but only impact the demand volume captured by the ultra-fast

delivery company. The slower the competitor delivery, the higher the demand captured

by the ultra-fast delivery.

(a) Profit & Number of open micro-depots (b) Customer coverage & Demand fulfillment proportion

Figure 2.8 – The impact of the competitor delivery time on PEC and PECP

2.5.5.3 The impact of the setup cost.

Figure 2.9 shows the changes in profit, number of open micro-depots, customer coverage

proportion, demand fulfillment proportion, violation probability, and violation degree as

the setup cost varies. The higher the setup cost, the fewer the open micro-depots. In

this case, the profit decreases with decreasing demand fulfillment and customer coverage

proportions. The violation probability and degree remain overall stable.

106

(a) Profit & Number of open micro-depots (b) Customer coverage & Demand fulfillment proportion

Figure 2.9 – The impact of the setup cost on PEC and PECP

2.5.5.4 The impact of the layers of protection.

Figure 2.10 demonstrates the changes in profit, number of open micro-depots, customer

coverage proportion, demand fulfillment proportion, violation probability, and violation

degree with variations in the layers of protection. The more the layers of protection, the

more reliable the ultra-fast delivery service. When the number of layers increases, the

profit first remains unchanged and then decreases, due to a lower captured demand and

a lower coverage proportion (see Figure 2.10 (a) and (b)). Both the violation probability

and degree decrease (see Figure 2.10 (c) and (d)).

Insight 4 Value of the daily service level: Regardless of changes in the initial target de-

livery time, competitor delivery time, setup cost, or layers of protection, the daily service

level consistently outperforms the period service level in terms of higher profit, greater

coverage, and milder violations.

2.5.6 Efficient Frontier of Four Regions for Varying Service

Guarantees

Inevitably, there is trade-off between the profit and the service level. The more the protec-

tion on the service level, the lower the profit. The trade-off changes for different regions

with varying customer densities.

107

(a) Profit & Number of open micro-depots (b) Customer coverage & demand fulfillment proportion

(c) Average violation probability (d) Maximum violation degree

Figure 2.10 – The impact of protection layers

In Figure 2.11, we display customer distributions in four regions and plot their prof-

itability and out-of-sample violation probability under varying layers of service level pro-

tection. Connecting these points forms an efficient frontier of solutions for Los Ange-

les (LA), Seattle, Tacoma, and Orange, respectively. According to the density of cus-

tomer locations per square kilometer, we classify LA (33 customers/km2) and Seattle

(42 customers/km2) as urban areas, while we consider Tacoma (18 customers/km2) and

Orange (17 customers/km2) as rural areas.

Without any protection, each region achieves its 100% profitability by serving all

customers, and the violation probability of serving customers on time for rural areas is

higher than that of urban areas. For all cases, the steepest slope between points is that

between the 10-layer and 15-layer points. By comparing the slope between these two

points of different regions, we find that the slope of urban areas is always steeper than

that of rural areas. That is, the violation probability is almost halved by only sacrificing

108

(a) LA (urban area, 100 customers, 33 customers/km2) (b) EF of LA

(c) Seattle (urban area, 85 customers, 42 customers/km2) (d) EF of Seattle

(e) Tacoma (rural area, 110 customers, 18 customers/km2) (f) EF of Tacoma

(g) Orange (rural area, 135 customers, 17 customers/km2) (h) EF of Orange

Notes. The colored numbers next to points denote the number of layers of protection.

Figure 2.11 – Customer distributions and efficient frontiers (EF) under varying service
guarantees 109

1−2% profitability for urban areas, but by sacrificing 13−25% profitability for rural areas.

Insight 5 Compared to dense urban areas, maintaining a high service level of on-time

delivery is more challenging in rural areas, where customers are more dispersed, making

it harder to sustain profitable and reliable fast deliveries. This is due to the longer dis-

tances between delivery locations, necessitating the setup of more micro-depots in rural

regions.

Insight 6 Value of the multi-layer partial protection: Providing full protection with the

lowest profitability is too conservative, while offering no-layer protection with the highest

probability of violating the promised service level is too risky. A multi-layered partial pro-

tection strategy (e.g., using 15 layers) can strike a better balance between the profitability

and reliability.

In addition, the partial protection on the delivery time is practical in real-life scenar-

ios, as delivery companies are not obligated to guarantee on-time delivery at all levels.

Taking the urban area in Los Angeles with a customer density of 33 customers/km2 (see

Figure 2.11(a)) as an example, promising delivery within an average of 15 minutes might

be too lenient, while guaranteeing delivery within exactly 15 minutes could be too strin-

gent. A stepwise approach to delivery promises, such as ensuring delivery to 99% of

customers within 43 minutes, 75% within 11 minutes, and 40% within 6 minutes, proves

to be a more effective strategy, regardless of when customers place their orders or the

prevailing traffic conditions at that time. Therefore, implementing an optimized service

level with partial protection could be a viable strategy for ultra-fast delivery companies to

operate a profitable business and maintain a good service level without over-committing

or under-delivering. In real-world business, we can customize delivery strategies for dif-

ferent customer groups, each with varying service levels. For example, customers can

choose Premium delivery with full protections, which offers high reliability and guar-

antees high compensation for delays. The lower profitability from this high-reliability

service can be offset by membership fees or higher delivery fee. Standard delivery offers

110

a balanced trade-off with partial protections, providing medium reliability and leading

to decent profitability, catering to customers who value both speed and cost efficiency.

Finally, Economy delivery without protection targets customers who are less sensitive to

delivery time, allowing for a wider service area and lower costs. This service may offer

fewer guarantees and longer delivery times but ensures affordability and access to delivery

services for those who prioritize savings over speed.

2.6 Conclusion

The ultra-fast delivery service industry has emerged suddenly and expanded rapidly, but

it also scales down quickly, often due to business failures or bankruptcies. This prompts

us to consider its profitability while maintaining on-time and fast deliveries. To find an

effective strategy for operating ultra-fast delivery services, we model and solve a network

design problem using probabilistic envelope constrained programs under uncertainty in

travel time distribution and period probability. We investigate both period and daily ser-

vice levels of ultra-fast delivery, considering various layers of service level protection.

While the period service level emphasizes equal service across periods, the daily ser-

vice level prioritizes high-order frequency periods and guarantees a certain service level

for the entire day. The probabilistic envelope constrained programs are computationally

challenging when the distribution of travel time and the probability of customers placing

orders in different time periods are not explicitly known. To address this, we derive equiv-

alent linear constrained programs with an infinite number of constraints and then propose

outer and inner approximations with finite linear constraints. We conduct a numerical

study using a real-world dataset provided by Amazon and obtained through the Google

API.

The results reveal that the outer and inner approximations converge rapidly as the

number of steps increases. Additionally, the approximations becomes tight when the

number of steps surpasses that of the training samples. Notably, the approximation using

20 steps demonstrates good performance in terms of both efficiency and accuracy. By

111

comparing the out-of-sample performance, we observe that the robust formulation can

yield a lower probability of violating the target delivery time, and a reduced degree of

exceeding the bound in case of violation. However, this comes at the expense of a lower

profit. When we compare the performance of period and daily service levels under dif-

ferent layers of protection and investigate the impact of various factors on the results, we

obtain the following managerial insights: (1) The daily service level has an overall better

performance than the period service level with higher profitability, higher coverage, and

mild violation. (2) Full protection provides low profitability and is overly conservative.

On the other hand, offering either one-layer or no-layer protection with a high probability

of violating the promised service level is overly risky. Implementing multi-layered pro-

tection by optimizing the service level guarantee could be a good strategy for an ultra-fast

delivery company to run a profitable and reliable business. (3) The competitor delivery

time may not affect the allocation operations, but only impact the demand volume cap-

tured by the ultra-fast delivery company. (4) Compared to urban areas, maintaining a high

service level is more challenging in rural areas where customers are more dispersed.

Our work has some limitations that could be addressed in future research. Specifi-

cally, we assume that an unlimited number of drivers are available and that each customer

can be served instantly upon placing an order. This assumption can be relaxed to account

for routing decisions with a limited number of available drivers. Additionally, real-world

scenarios often involve batch processing, where a single driver serves multiple customers

located close to each other and who place orders within a short time frame. To address

this, it would be necessary to determine the optimal batch size, the composition of orders

within each batch, and the assignment of batches to drivers. Furthermore, the variation

in products and customer preferences regarding delivery times across different customer

types can be incorporated to develop more complex models and offer insights from a

marketing perspective. Lastly, other methods, such as queuing models, can account for

order preparation and delivery times from a more practical standpoint, while reinforce-

ment learning can enable real-time operational planning for ultra-fast delivery.

112

2.7 Appendix

Appendix A: Summary of Notations

The notation is presented in Table 3.5.

Table 2.3 – Notations

Index Description
I set of customer locations
J set of potential micro-depot locations
T set of time periods
K set of steps in β (v) step functions
X set of allocation decisions
ParametersDescription
o j setup cost of micro-depot j
c delivery cost per unit of distance
r average revenue per order
d̄it nominal demand at location i in period t
li j distance between customer i and micro-depot j
s̃i jt uncertain travel time from micro-depot j to customer i in period t
τ̃i jt uncertain delivery time from micro-depot j to customer i in period t
δ̃i jt random part of uncertain delivery time from micro-depot j to customer i

in period t, i.e., δ̃i jt = τ̃i jt− τ̂i jt

Σ covariance matrix of δ̃

τu
it delivery time from the assigned micro-depot to customer i in period t

τc
it delivery time of the best competitor to serve customer i in period t

ai jt order preparation time for customer i served by micro-depot j in period t
h hiring cost of one driver per period
m average units of demand served by each driver in each period
τ̄ target delivery time
v maximum violation
β probability of meeting the target delivery time
qit probability of customer i placing an order in period t
Σq covariance matrix of the observations of the period probability q
Γ radius of the uncertainty set of the period probability q
Decisions Description
xi jt binary variable taking value 1 if customer i is covered by micro-depot j in

period t, and 0 otherwise
y j binary variable taking value 1 if micro-depot j is open, and 0 otherwise
di jt captured demand at location i served by micro-depot j in period t
zt number of drivers needed in period t

113

Appendix B: Detailed Proofs of Propositions

B.1: Proof of Proposition 4

Proof. We rewrite the PEC (2.2) as

inf
v≥0

Pτ̃

{
∑

j
τ̃i jtxi jt ≤ τ̄ + v

}
−β (v)≥ 0,∀i, t. (A)

Since xi jt ∈ {0,1} and ∑ j xi jt ≤ 1, the above equation is equivalent to

xi jt ≤ I
{

inf
v≥0

Pτ̃

{
τ̃i jt ≤ τ̄ + v

}
−β (v)≥ 0

}
,∀i, j, t, (B)

where I{·} is the indicator function. To show that (A)⇔ (B), we investigate two cases:

(1) When ∑ j xi jt = 0, we have xi jt = 0. In this case, the left-hand side of equation (A)

is equal to 1− β (v) since {0≤ τ̄ + v} is always satisfied with probability 1. Thus, the

equation (A) being 1−β (v)≥ 0 is always feasible. Additionally, the equation (B) is also

feasible with the left hand side being equal to 0.

(2) When ∑ j xi jt = 1, let xi j′t = 1 and xi jt = 0 when j 6= j′. In this case, we have

(B) ⇔ inf
v≥0

Pτ̃

{
τ̃i j′t ≤ τ̄ + v

}
−β (v)≥ 0,∀i, t ⇔ (A).

Our next step is to assume that τ̃ follows a continuous distribution. We define Ψτ̃i jt as

the cumulative probability function of τ̃i jt , and Ψ
−1
τ̃i jt

(β) as its quantile at probability β .

We have

xi jt ≤ I

{
sup
v≥0

Ψ
−1
τ̃i jt

(β (v))− τ̄− v≤ 0

}
,∀i, j, t.

B.2: Proof of Proposition 5

Proof. To simplify the robust PEC (2.8) even more, we can rewrite it as

I

{
inf

v≥0,δ̃ it∼(0,Σit)
P
{(

τ̂ it + δ̃ it

)T
xit ≤ τ̄ + v

}
−β (v)≥ 0

}
≥ 1,∀i, t,

114

where I{·} is the indicator function. Exploiting that xi jt ∈ {0,1} and ∑ j xi jt ≤ 1, we get

∑
j
I

{
inf

v≥0,δ̃i jt∼(0,σ2
i jt)

P
{

τ̂i jt + δ̃i jt ≤ τ̄ + v
}
−β (v)≥ 0

}
xi jt ≥∑

j
xi jt ,∀i, t,

which is equivalent to

xi jt ≤ I

{
inf

v≥0,δ̃i jt∼(0,σ2
i jt)

P
{

τ̂i jt + δ̃i jt ≤ τ̄ + v
}
−β (v)≥ 0

}
,∀i, j, t.

Exploiting the reformulation (2.10) presented in Lemma 1, for each i, j, t, instead of

verifying

inf
δ̃i jt∼(0,σ2

i jt)
P
{

τ̂i jt + δ̃i jt ≤ τ̄ + v
}
−β (v)≥ 0,∀v≥ 0,

one can simply verify whether

sup
v≥0

τ̂i jt +

√
β (v)

1−β (v)
σi jt− τ̄− v≤ 0.

Hence, the robust PEC is equivalent to

xi jt ≤ I

{
sup
v≥0

τ̂i jt +

√
β (v)

1−β (v)
σi jt− τ̄− v≤ 0

}
,∀i, j, t,

which is linear in xi jt , leading to a linear program.

In the case that β (v) := 1
γ

v+α
+1

, the robust PEC is equivalent to

xi jt ≤ I
{

τ̂i jt +α +
σ2

i jt
4γ
− τ̄ ≤ 0

}
,∀i, j, t. This is because we can optimize v out of the

equation and derive the optimal v∗ =
σ2

i jt
4γ
−α . This optimal v∗ exists and is unique since

F(v) = τ̂i jt +
√

β (v)
1−β (v)σi jt− τ̄−v is concave with its second derivative (i.e., −1

4γ
(v+α

γ
)−

3
2)

being negative.

B.3: Proof of Proposition 6

Proof. Suppose that there is a finite number of periods t ∈T . For any customer i in each

period t such that P
(
∑ j xi jt̃ = 1

)
> 0, the PECP (2.12) can be reformulated as

Pτ̃,t̃

(
∑

j
τ̃i jt̃xi jt̃ ≤ τ̄ + v

∣∣∣∣∣∑j
xi jt̃ = 1

)
≥ β (v),∀i,∀v≥ 0 (2.22a)

115

≡
Pτ̃,t̃

(
∑ j τ̃i jt̃xi jt̃ ≤ τ̄ + v & ∑ j xi jt̃ = 1

)
Pt̃
(
∑ j xi jt̃ = 1

) ≥ β (v),∀i,∀v≥ 0 (2.22b)

≡
∑t qitPτ̃

(
∑ j τ̃i jtxi jt ≤ τ̄ + v

)
P
(
∑ j xi jt = 1

)
∑t qitP

(
∑ j xi jt = 1

) ≥ β (v),∀i,∀v≥ 0 (2.22c)

≡ ∑
t

qit

[
Pτ̃

(
∑

j
τ̃i jtxi jt ≤ τ̄ + v

)
I

(
∑

j
xi jt = 1

)]
≥ β (v)∑

t
qitI

(
∑

j
xi jt = 1

)
,

∀i,∀v≥ 0 (2.22d)

≡ ∑
t

qit

[(
∑

j
xi jt

)
Pτ̃

(
∑

j
τ̃i jtxi jt ≤ τ̄ + v

)]
≥ β (v)∑

t
qit ∑

j
xi jt ,∀i,∀v≥ 0(2.22e)

≡ ∑
t

qit

[
∑

j
Pτ̃

{
τ̃i jt ≤ τ̄ + v

}
xi jt

]
≥ β (v)∑

t
∑

j
qitxi jt ,∀i,∀v≥ 0, (2.22f)

≡ ∑
t

qit

[
∑

j
[Ψτ̃(τ̄ + v)−β (v)]xi jt

]
≥ 0,∀i,∀v≥ 0. (2.22g)

In the case that P
(
∑ j xi jt̃ = 1

)
= 0, the constraint is redundant since it is always satisfied.

B.4: Proof of Proposition 7

Proof. According to the strong duality, we obtain the robust counterpart of (2.15) under

the uncertainty set Qi =

{
qi ∈ R|T | | qT

i e = 1, 0≤ qi ≤ 1,
∥∥∥∥Σ
− 1

2
qi (qi− q̂i)

∥∥∥∥
1
≤ Γ

}
:

infqi∈Qi ∑t qit
(
∑ j
[
ϒi jt(v)−β (v)

]
xi jt
)

≥ 0,∀i,∀v≥ 0

≡ supqi∈Qi ∑t qit
(
β (v)xT

it I− xT
it ϒit(v)

)
≤ 0,∀i,∀v≥ 0

≡ supq δ

(
∑t etxT

it (β (v)I−ϒit(v))
∣∣∣Qi

)
≤ 0,∀i,∀v≥ 0

≡ infu1,u2,θ 1 q̂T
i u1i +Γ

∥∥∥∥Σ
1
2
qiu1i

∥∥∥∥
∞

+θ2i ≤ 0,∀i,∀v≥ 0

s.t. u1i +u2i = ∑t etxT
it (β (v)I−ϒit(v)) ,∀i

θ2i ≥ u2it ,∀i, t

≡ infu1,θ 1,θ 2 q̂T
i u1i +Γθ1i +θ2i ≤ 0,∀i,∀v≥ 0

s.t. u1it +θ2i ≥ β (v)xT
it I− xT

it ϒit(v),∀i, t

θ1i ≥ uT
1i[Σ

1
2
qi]t ,∀i, t

θ1i ≥−uT
1i[Σ

1
2
qi]t ,∀i, t,

116

where et ∈ R|T | is the t th column of the identity matrix, δ (ν |Qi) = supqi∈Qi
qT

i ν is the

support function of Qi, and [Σ
1
2
qi]t is the t th column of the matrix Σ

1
2
qi . Note that u1,θ 1,θ 2

are dependent on v. Additionally, ϒi jt(v) = inf
δ̃i jt∼(0,σ2

i jt)
Ψ

δ̃i jt

{
τ̄ + v− τ̂i jt

}
, and can be

reformulated as:

ϒi jt(v) =
(τ̄ + v− τ̂i jt)

2
+

(τ̄ + v− τ̂i jt)2
++σ2

i jt
,

where (y)+ := max(0,y). This is because

ϒi jt(v) = inf
δ̃i jt∼(0,σ2

i jt)
P
{

τ̂i jt + δ̃i jt ≤ τ̄ + v
}

= sup

[
λ : inf

δ̃i jt∼(0,σ2
i jt)

P
{

τ̂i jt + δ̃i jt ≤ τ̄ + v
}
≥ λ

]
= sup[λ : τ̂i jt +σi jt

√
λ/(1−λ)≤ τ̄ + v]

= sup

λ : λ ≤


(τ̄+v−τ̂i jt)

2

(τ̄+v−τ̂i jt)2+σ2
i jt

if τ̄ + v− τ̂i jt ≥ 0

0 otherwise

 .
=

(τ̄ + v− τ̂i jt)
2
+

(τ̄ + v− τ̂i jt)2
++σ2

i jt

Appendix C: Linear Program Representation of Outer and Inner

Approximations

The feasible sets of x, including XPEC, XR−PEC, XPECP, and XR−PECP, can be reformu-

lated into a finite set of linear constraints using their respective outer and inner approxi-

mations. This section covers the presentation of these approximations, with the exception

of the approximations for XPEC, which are discussed in the main text.

117

C.1: Outer and Inner Approximations of XR−PEC

Corollary 2 When β (v) is approximated by its outer and inner step functions (2.5), the

approximated reformulation of XR−PEC(v) is

X outer
PEC

(
{vk}k∈K

)
⊆XPEC(v)⊆X inner

PEC

(
{vk}k∈K

)
with

X inner
R−PEC

(
{vk}k∈K

)
:=
{

x ∈ R|I |×|J |×|T |
∣∣∣xi jt ≤Θ

inner
i jt ,∀i, j, t

}
, (2.23)

X outer
R−PEC

(
{vk}k∈K

)
:=
{

x ∈ R|I |×|J |×|T |
∣∣∣xi jt ≤Θ

outer
i jt ,∀i, j, t

}
, (2.24)

where Θinner
i jt := mink I

{
τ̂i jt +

√
β (vk)

1−β (vk)
σi jt− τ̄− vk ≤ 0

}
and

Θouter
i jt := mink I

{
τ̂i jt +

√
β (vk+1)

1−β (vk+1)
σi jt− τ̄− vk+1 ≤ 0

}
.

C.2: Outer and Inner Approximations of XPECP

Corollary 3 When β (v) is approximated by its outer and inner step functions (2.5), the

approximated reformulation of XPECP(v) is

X outer
PECP

(
{vk}k∈K

)
⊆XPECP(v)⊆X inner

PECP

(
{vk}k∈K

)
with

X inner
PECP

(
{vk}k∈K

)
:={

x ∈ R|I |×|J |×|T |
∣∣∣∣∣∑t

qit

(
∑

j

[
Ψτ̃(τ̄ + vk)−β (vk)

]
xi jt

)
≥ 0,∀i,k

}
,(2.25)

X outer
PECP

(
{vk}k∈K

)
:={

x ∈ R|I |×|J |×|T |
∣∣∣∣∣∑t

qit

(
∑

j

[
Ψτ̃(τ̄ + vk+1)−β (vk+1)

]
xi jt

)
≥ 0,∀i,k

}
.(2.26)

118

C.3: Outer and Inner Approximations of XR−PECP

Corollary 4 When β (v) is approximated by its outer and inner step functions (2.5), the

approximated reformulation of XR−PECP(v) is

X outer
R−PECP

(
{vk}k∈K

)
⊆XR−PECP(v)⊆X inner

R−PECP

(
{vk}k∈K

)
with

X inner
R−PECP

(
{vk}k∈K

)
:=

x ∈ R|I |×|J |×|T |

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃
{

uk
1,θ

k
1,θ

k
2
}|K |

k=1

q̂T
i uk

1i +Γθ k
1i +θ k

2i ≤ 0,∀i,k

uk
1it +θ k

2i ≥ β (vk)xT
it I− xT

it ϒit(vk),∀i, t,k

θ k
1i ≥ (uk

1i)
T [Σ

1
2
qi]t ,∀i, t,k

θ k
1i ≥−(uk

1i)
T [Σ

1
2
qi]t ,∀i, t,k


.(2.27)

X outer
R−PECP

(
{vk}k∈K

)
:=

x ∈ R|I |×|J |×|T |

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃
{

uk
1,θ

k
1,θ

k
2
}|K |

k=1

q̂T
i uk

1i +Γθ k
1i +θ k

2i ≤ 0,∀i,k

uk
1it +θ k

2i ≥ β (vk+1)xT
it I− xT

it ϒit(vk+1),∀i, t,k

θ k
1i ≥ (uk

1i)
T [Σ

1
2
qi]t ,∀i, t,k

θ k
1i ≥−(uk

1i)
T [Σ

1
2
qi]t ,∀i, t,k


.(2.28)

Appendix D: Linear Reformulation of Stochastic Program

The probabilistic envelope constrained program can be reformulated into linear programs

with Corollary 1, 2, 3, and 4 for different scenarios. In this section, we present linear

programs for each scenario, except the one presented in main text (see Section 2.4.4 and

2.4.5).

119

D.1: Linear Reformulation of Stochastic Program with Proposition 4

When the travel time distribution is explicitly known, the probabilistic envelope con-

strained program SP1 and SP2 can be reformulated as

(SPR
1) max

x,y,d,z,u,θ
∑

i
∑

j
∑
t

(
ri− cli j

)
d̂i jt−∑

j

(
o j + cl0 j

)
y j−∑

t
hẑt

s.t. (2.1b)− (2.1d), (2.1f)− (2.1g),

xi jt ≤ I
{

max
k

Ψ
−1
τ̃i jt

(β (vk+ε))− τ̄− vk ≤ 0
}
,∀i, j, t.

(SPR
2) max

x,y,d,z,u,θ
∑

i
∑

j
∑
t

(
ri− cli j

)
d̂i jt−∑

j

(
o j + cl0 j

)
y j−∑

t
hẑt

s.t. (2.1b)− (2.1d), (2.1f)− (2.1g)

xi jt ≤ I
{

Ψ
−1
τ̃i jt

(β (vk+ε))− τ̄− vk ≤ 0
}
,∀i, j, t,k ∈ [|K |+1−n, |K |].

Note that ε = 0 for relaxation and ε = 1 for restriction.

D.2: Linear Reformulation of Stochastic Program with Proposition 5

When the travel time distribution is unknown, the SP1 and SP2 can be reformulated as

(SPR
1) max

x,y,d,z,u,θ
∑

i
∑

j
∑
t

(
ri− cli j

)
d̂i jt−∑

j

(
o j + cl0 j

)
y j−∑

t
hẑt

s.t. (2.1b)− (2.1d), (2.1f)− (2.1g)

xi jt ≤ I

{
max

k
τ̂i jt +

√
β (vk+ε)

1−β (vk)
σi jt− τ̄− vk ≤ 0

}
,∀i, j, t.

(SPR
2) max

x,y,d,z,u,θ
∑

i
∑

j
∑
t

(
ri− cli j

)
d̂i jt−∑

j

(
o j + cl0 j

)
y j−∑

t
hẑt

s.t. (2.1b)− (2.1d), (2.1f)− (2.1g)

xi jt ≤ I

{
τ̂i jt +

√
β (vk+ε)

1−β (vk)
σi jt− τ̄− vk ≤ 0

}
,

∀i, j, t,k ∈ [|K |+1−n, |K |].

Note that ε = 0 for relaxation and ε = 1 for restriction.

120

D.3: Linear Reformulation of Stochastic Program with Proposition 6

When the travel time distribution is explicitly known but the period probability distribu-

tion is unknown, the SP1 and SP2 can be reformulated as

(SPR
1) max

x,y,d,z,u,θ
∑

i
∑

j
∑
t

(
ri− cli j

)
d̂i jt−∑

j

(
o j + cl0 j

)
y j−∑

t
hẑt

s.t. (2.1b)− (2.1d), (2.1f)− (2.1g)

∑
t

qit

(
∑

j

[
Ψ(τ̄ + vk− τ̂i jt)−β (vk+ε)

]
xi jt

)
≥ 0,∀i,k.

(SPR
2) max

x,y,d,z,u,θ
∑

i
∑

j
∑
t

(
ri− cli j

)
d̂i jt−∑

j

(
o j + cl0 j

)
y j−∑

t
hẑt

s.t. (2.1b)− (2.1d), (2.1f)− (2.1g)

∑
t

qit

(
∑

j

[
Ψ(τ̄ + vk− τ̂i jt)−β (vk+ε)

]
xi jt

)
≥ 0,

∀i,k ∈ [|K |+1−n, |K |].

Appendix E: The Detailed Impact of Target Delivery Time

(a) Coverage proportion, PEC (b) Total fulfilled demand, PEC (c) Maximal distance, PEC

(d) Coverage proportion, PECP (e) Total fulfilled demand, PECP (f) Maximal distance, PECP

Figure 2.12 – The impact of initial target delivery time on PEC and PECP

121

Figure 2.12 illustrates how the initial target delivery time affects results in each pe-

riod. Across different time periods, the coverage proportion changes in similar trends,

with captured demand being proportional to the nominal demand in each period. Addi-

tionally, there is a small variation in the maximal distance to travel from micro-depots to

customers.

122

References

Aboolian, Robert, Tingting Cui, and Zuo-Jun Max Shen (2013). “An efficient approach

for solving reliable facility location models”. In: INFORMS Journal on Computing

25.4, pp. 720–729.

Aikens, Charles H (1985). “Facility location models for distribution planning”. In: Euro-

pean Journal of Operational Research 22.3, pp. 263–279.

Armbruster, Benjamin and Erick Delage (2015). “Decision making under uncertainty

when preference information is incomplete”. In: Management Science 61.1, pp. 111–

128.

Ben-Akiva, Moshe and Michel Bierlaire (1999). “Discrete choice methods and their ap-

plications to short term travel decisions”. In: Handbook of Transportation Science.

Boston, MA: Springer, pp. 5–33.

Calafiore, Giuseppe Carlo and L El Ghaoui (2006). “On distributionally robust chance-

constrained linear programs”. In: Journal of Optimization Theory and Applications

130.1, pp. 1–22.

Cao, Junyu and Wei Qi (2023). “Stall economy: The value of mobility in retail on wheels”.

In: Operations Research 71.2, pp. 708–726.

Capasso Da Silva, Denise, David A King, and Shea Lemar (2019). “Accessibility in prac-

tice: 20-minute city as a sustainability planning goal”. In: Sustainability 12.1, p. 129.

Chandler, Adam (2022). America’s Need for Speed Never Ends Well. Last accessed on

Aug 01, 2023. URL: https://www.theatlantic.com/technology/archive/

2022/05/fast-15-minute-delivery-apps-amazon/661145/.

Chen, Manlu, Ming Hu, and Jianfu Wang (2022). “Food delivery service and restaurant:

Friend or foe?” In: Management Science 68.9, pp. 6539–6551.

Chen, Ye et al. (2022). “Data-driven robust resource allocation with monotonic cost func-

tions”. In: Operations Research 70.1, pp. 73–94.

Cheng, Chun, Yossiri Adulyasak, and Louis-Martin Rousseau (2021). “Robust facility

location under disruptions”. In: INFORMS Journal on Optimization 3.3, pp. 298–314.

123

https://www.theatlantic.com/technology/archive/2022/05/fast-15-minute-delivery-apps-amazon/661145/
https://www.theatlantic.com/technology/archive/2022/05/fast-15-minute-delivery-apps-amazon/661145/

Dai, Hanjun et al. (2023). “Learning to Optimize with Stochastic Dominance Constraints”.

In: International Conference on Artificial Intelligence and Statistics. PMLR, pp. 8991–

9009.

Dentcheva, Darinka and Andrzej Ruszczyński (2004). “Semi-infinite probabilistic opti-

mization: first-order stochastic dominance constrain”. In: Optimization 53.5-6, pp. 583–

601.

Deshpande, Vinayak and Pradeep K Pendem (2023). “Logistics performance, ratings, and

its impact on customer purchasing behavior and sales in e-commerce platforms”. In:

Manufacturing & Service Operations Management 25.3, pp. 827–845.

Fatehi, Soraya and Michael R Wagner (2022). “Crowdsourcing last-mile deliveries”. In:

Manufacturing & Service Operations Management 24.2, pp. 791–809.

Feldman, Pnina, Andrew E Frazelle, and Robert Swinney (2023). “Managing relation-

ships between restaurants and food delivery platforms: Conflict, contracts, and coor-

dination”. In: Management Science 69.2, pp. 812–823.

Getir (2022). Getir: groceries in minutes. Last accessed on Nov 01, 2023. URL: https:

//getir.com/us/.

Ghosal, Shubhechyya and Wolfram Wiesemann (2020). “The distributionally robust chance-

constrained vehicle routing problem”. In: Operations Research 68.3, pp. 716–732.

Goodfood (2022). Goodfood is in financial trouble and gives up fast delivery (In French).

Last accessed on Aug 01, 2023. URL: https://www.lapresse.ca/affaires/

entreprises / 2022 - 10 - 14 / goodfood - a - des - ennuis - financiers - et -

laisse-tomber-la-livraison-rapide.php.

Gorillas (2022). Grocery app Gorillas drops 10-minute delivery pledge, adds store pick-

up option. Last accessed on Aug 01, 2023. URL: https://nypost.com/2022/02/

25/grocery- app- gorillas- drops- 10- minute- delivery- pledge- adds-

store-pick-up-option/.

Hanasusanto, Grani A et al. (2015). “A distributionally robust perspective on uncertainty

quantification and chance constrained programming”. In: Mathematical Programming

151, pp. 35–62.

124

https://getir.com/us/
https://getir.com/us/
https://www.lapresse.ca/affaires/entreprises/2022-10-14/goodfood-a-des-ennuis-financiers-et-laisse-tomber-la-livraison-rapide.php
https://www.lapresse.ca/affaires/entreprises/2022-10-14/goodfood-a-des-ennuis-financiers-et-laisse-tomber-la-livraison-rapide.php
https://www.lapresse.ca/affaires/entreprises/2022-10-14/goodfood-a-des-ennuis-financiers-et-laisse-tomber-la-livraison-rapide.php
https://nypost.com/2022/02/25/grocery-app-gorillas-drops-10-minute-delivery-pledge-adds-store-pick-up-option/
https://nypost.com/2022/02/25/grocery-app-gorillas-drops-10-minute-delivery-pledge-adds-store-pick-up-option/
https://nypost.com/2022/02/25/grocery-app-gorillas-drops-10-minute-delivery-pledge-adds-store-pick-up-option/

Hildebrandt, Florentin D and Marlin W Ulmer (2022). “Supervised learning for arrival

time estimations in restaurant meal delivery”. In: Transportation Science 56.4, pp. 1058–

1084.

Kavuk, Eray Mert et al. (2022). “Order dispatching for an ultra-fast delivery service via

deep reinforcement learning”. In: Applied Intelligence, pp. 1–26.

Laporte, Gilbert, François V Louveaux, and Luc van Hamme (1994). “Exact solution to a

location problem with stochastic demands”. In: Transportation Science 28.2, pp. 95–

103.

Li, Yongzhen et al. (2022). “A general model and efficient algorithms for reliable facility

location problem under uncertain disruptions”. In: INFORMS Journal on Computing

34.1, pp. 407–426.

Liu, Sheng, Long He, and Zuo-Jun Max Shen (2021). “On-time last-mile delivery: Or-

der assignment with travel-time predictors”. In: Management Science 67.7, pp. 4095–

4119.

Liu, Sheng and Zhixing Luo (2023). “On-Demand Delivery from Stores: Dynamic Dis-

patching and Routing with Random Demand”. In: Manufacturing & Service Opera-

tions Management 25.2, pp. 595–612.

Liu, Tianqi et al. (2022). “Robust stochastic facility location: sensitivity analysis and exact

solution”. In: INFORMS Journal on Computing 34.5, pp. 2776–2803.

Luedtke, James (2008). “New formulations for optimization under stochastic dominance

constraints”. In: SIAM Journal on Optimization 19.3, pp. 1433–1450.

Mak, Ho-Yin (2022). “Enabling smarter cities with operations management”. In: Manu-

facturing & Service Operations Management 24.1, pp. 24–39.

Merchan, Daniel et al. (2021). Amazon Last Mile Routing Research Challenge Dataset.

Accessed January 6, 2022. Seattle: Amazon.com. URL: https://registry.opendata.

aws/amazon-last-mile-challenges.

Moreno, Carlos et al. (2021). “Introducing the “15-Minute City”: Sustainability, resilience

and place identity in future post-pandemic cities”. In: Smart Cities 4.1, pp. 93–111.

125

https://registry.opendata.aws/amazon-last-mile-challenges
https://registry.opendata.aws/amazon-last-mile-challenges

Mousavi, Kianoush, Merve Bodur, and Matthew J Roorda (2022). “Stochastic last-mile

delivery with crowd-shipping and mobile depots”. In: Transportation Science 56.3,

pp. 612–630.

Peng, Chun, Erick Delage, and Jinlin Li (2020). “Probabilistic envelope constrained mul-

tiperiod stochastic emergency medical services location model and decomposition

scheme”. In: Transportation Science 54.6, pp. 1471–1494.

Perakis, Georgia and Guillaume Roels (2006). “An analytical model for traffic delays

and the dynamic user equilibrium problem”. In: Operations Research 54.6, pp. 1151–

1171.

Postek, Krzysztof et al. (2018). “Robust optimization with ambiguous stochastic con-

straints under mean and dispersion information”. In: Operations Research 66.3, pp. 814–

833.

Reed, Sara, Ann Melissa Campbell, and Barrett W Thomas (2022). “The value of au-

tonomous vehicles for last-mile deliveries in urban environments”. In: Management

Science 68.1, pp. 280–299.

Repko, Melissa (2021). Ultrafast grocery delivery has exploded in New York City. Your

town could be next. Last accessed on Aug 01, 2023. URL: https://www.cnbc.

com/2021/10/21/gopuff-gorillas-and-others-flood-new-york-with-

instant-delivery-options.html.

Salari, Nooshin, Sheng Liu, and Zuo-Jun Max Shen (2022). “Real-time delivery time

forecasting and promising in online retailing: when will your package arrive?” In:

Manufacturing & Service Operations Management 24.3, pp. 1421–1436.

Senzamici, Peter (2024). Getir, grocery app that bought FreshDirect, owes millions of

dollars in NYC back rent: lawsuits. Last accessed on Feb 01, 2025. URL: https://

nypost.com/2024/08/13/us-news/grocery-app-that-bought-freshdirect-

owes-millions-of-dollars-in-nyc-back-rent-lawsuits/?utm_source=

chatgpt.com.

126

https://www.cnbc.com/2021/10/21/gopuff-gorillas-and-others-flood-new-york-with-instant-delivery-options.html
https://www.cnbc.com/2021/10/21/gopuff-gorillas-and-others-flood-new-york-with-instant-delivery-options.html
https://www.cnbc.com/2021/10/21/gopuff-gorillas-and-others-flood-new-york-with-instant-delivery-options.html
https://nypost.com/2024/08/13/us-news/grocery-app-that-bought-freshdirect-owes-millions-of-dollars-in-nyc-back-rent-lawsuits/?utm_source=chatgpt.com
https://nypost.com/2024/08/13/us-news/grocery-app-that-bought-freshdirect-owes-millions-of-dollars-in-nyc-back-rent-lawsuits/?utm_source=chatgpt.com
https://nypost.com/2024/08/13/us-news/grocery-app-that-bought-freshdirect-owes-millions-of-dollars-in-nyc-back-rent-lawsuits/?utm_source=chatgpt.com
https://nypost.com/2024/08/13/us-news/grocery-app-that-bought-freshdirect-owes-millions-of-dollars-in-nyc-back-rent-lawsuits/?utm_source=chatgpt.com

Shehadeh, Karmel S (2023). “Distributionally robust optimization approaches for a stochas-

tic mobile facility fleet sizing, routing, and scheduling problem”. In: Transportation

Science 57.1, pp. 197–229.

Shen, Zuo-Jun Max, Roger Lezhou Zhan, and Jiawei Zhang (2011). “The reliable fa-

cility location problem: Formulations, heuristics, and approximation algorithms”. In:

INFORMS Journal on Computing 23.3, pp. 470–482.

Snyder, Lawrence V (2006). “Facility location under uncertainty: a review”. In: IIE Trans-

actions 38.7, pp. 547–564.

Statista (2023). Market insights into quick commerce of online food and grocery delivery

(Worldwide). Last accessed on Dec 15, 2023. URL: https://www.statista.com/

outlook/dmo/online-food-delivery/grocery-delivery/quick-commerce/

worldwide.

Talluri, Kalyan T, Garrett Van Ryzin, and Garrett Van Ryzin (2004). The Theory and

Practice of Revenue Management. Vol. Vol 3. Boston, MA: Springer.

Verter, Vedat (2011). “Uncapacitated and capacitated facility location problems”. In: Foun-

dations of Location Analysis. New York, NY: Springer, pp. 25–37.

Wang, Ruxian (2021). “Consumer choice and market expansion: Modeling, optimization,

and estimation”. In: Operations Research 69.4, pp. 1044–1056.

Xu, Huan, Constantine Caramanis, and Shie Mannor (2012). “Optimization under proba-

bilistic envelope constraints”. In: Operations Research 60.3, pp. 682–699.

Zhang, Wenchang et al. (2022). “Reducing Traffic Incidents in Meal Delivery: Penalize

the Platform or its Independent Drivers?” In: Kelley School of Business Research Pa-

per, No. 2022–09, Available at SSRN: https://ssrn.com/abstract=4231746.

127

https://www.statista.com/outlook/dmo/online-food-delivery/grocery-delivery/quick-commerce/worldwide
https://www.statista.com/outlook/dmo/online-food-delivery/grocery-delivery/quick-commerce/worldwide
https://www.statista.com/outlook/dmo/online-food-delivery/grocery-delivery/quick-commerce/worldwide

Chapter 3

Learning-to-optimize for Consolidation

and Transshipment in Multi-store

Order Delivery

Abstract

This study investigates multi-store order delivery services that allow customers to place

orders from multiple stores for home delivery. We first consider the case of separated-

order delivery, where orders from different stores are processed and delivered separately

without consolidation. To enhance customer convenience and operational efficiency, we

then introduce a consolidated-order delivery option. This option enables customers to

place a single order across multiple stores and receive all items in one combined deliv-

ery. While consolidated-order delivery increases convenience, assigning a single driver

to pick up and deliver items from multiple stores can increase delivery times due to the

additional routing for visiting multiple stores. To address this shortcoming, we propose

a consolidated-order delivery system with transshipment, which allows drivers to coordi-

nate and transfer orders at transshipment nodes. We develop a mixed-integer linear pro-

gram (MILP) for the multi-store order problem that can model different delivery systems,

including separated-order delivery and consolidated-order delivery with or without trans-

shipment. This formulation presents significant computational challenges due to the large

number of constraints and variables arising from the routing decisions and time variables.

To overcome these challenges, we adopt a learning-to-optimize approach that integrates

machine learning and optimization. Four methods are implemented for learning alloca-

tion decisions, including Nearest Driver Allocation, Driver Assignment Neural Network

(DANN), Driver Classification Neural Network (DCNN), and Graph-based Neural Net-

work (GNN). Our experimental study reveals that GNN consistently performs the best in

terms of accuracy, optimality gap, efficiency, and scalability to larger problem instances

beyond the training set. The DCNN and DANN, on the other hand, are effective with a

sufficiently large training set and they perform well particularly when the instance scale in

the testing set matches those in the training set. We conduct experiments across four U.S.

regions using the learning-to-optimize method in a realistic setting with dynamic cus-

tomer arrivals. We find that the consolidated-order delivery with transshipment, coupled

with short-duration waiting strategy, consistently delivers superior performance, yielding

shorter order completion times and reduced driver travel times through effective spatial

and temporal consolidation. The optimal waiting strategy varies depending on customer

arrival rates and driver availability relative to customer demand.

3.1 Introduction

Online meal and grocery delivery services emerged in the early 2000s and experienced

substantial growth soon thereafter. This expansion accelerated between 2010 and 2020,

with a dramatic surge in 2020 due to the global pandemic. By 2024, the online delivery

market has reached a volume of USD 1.22 trillion, with projections indicating further

growth to USD 1.79 trillion by 2028 (Statista 2024).

To access a wider variety of products or enjoy the convenience of home delivery,

customers increasingly rely on online delivery services for items from multiple types

of stores, such as meals from restaurants, fresh produce from grocery stores, or emer-

130

gency medicine from pharmacies. Companies such as UberEats and DoorDash provide

a multi-store order service that caters to customers who prefer the convenience of home

delivery over visiting multiple stores in person, especially when they are pressed for time.

These platforms conventionally adopt separated-order delivery (SOD), a system where

orders from different stores are treated as distinct transactions and delivered individu-

ally. Customers place separate orders from each store, incurring separate delivery fees for

each, while drivers handle pickups and deliveries for each order independently. Although

this model provides convenient access to products from multiple stores, it can be ineffi-

cient and costly due to multiple delivery fees and minimum order requirements for each

store. Recently, companies such as DoubleDash (DoorDash), Instacart, and Epipresto

have started offering what we term consolidated-order delivery (COD) services. These

services allow customers to order from multiple stores in a single transaction, receiving all

items as a combined delivery, typically without an added delivery fee. For instance, Dou-

bleDash (2023) and Instacart (2022) allow customers to add items from nearby retailers to

their original order without an additional delivery charge, ensuring that all items are deliv-

ered together by the same driver. Similarly, Epipresto (2023) enables customers to shop

from multiple stores at in-store prices with a fixed delivery fee, regardless of distance.

This consolidated-order model offers multiple benefits: customers save on delivery fees,

enjoy the convenience of placing one order for all needed products, and have a single de-

livery experience. Meanwhile, companies may benefit from a decreased need for drivers,

reduced delivery costs, and increased sales. Despite these benefits, consolidated-order de-

livery can introduce new challenges to delivery efficiency. A single driver responsible for

picking up and delivering items from multiple stores may face extended delivery times,

particularly when fulfilling orders from far apart store locations to multiple customers. To

overcome these limitations and optimize the delivery process, we propose a model that

divides multi-store orders among several drivers, who can then transfer orders through

transshipment. In the consolidated-order delivery with transshipment (CODT) system, a

customer’s multi-store order is distributed among multiple drivers, each responsible for

pickups from different stores. These orders are then transferred at selected transship-

131

ment nodes, potentially assigned to a different driver, and delivered as one package to the

customer’s doorstep. This collaborative approach offers the combined benefits of con-

solidation with enhanced efficiency, reducing overall delivery time and improving route

management for drivers handling multi-store, multi-customer orders.

To quantify the value of enabling order consolidation and transshipment for fulfilling

multi-store orders in a combined delivery, we develop a mixed integer linear program

(MILP) that models three delivery systems: separated-order delivery, consolidated-order

delivery without transshipment, and consolidated-order delivery with transshipment. The

MILP for multi-store order services presents substantial computational challenges. From

the drivers’ perspective, this problem resembles a complex vehicle routing problem in-

volving multiple store and customer locations. Conversely, the journey of each item can

be viewed as a shortest path problem within a network defined by the drivers’ delivery

routes, starting at the store and ending at the customer. This requires precise tracking

of each item and driver’s arrival and departure times to meet time windows and ensure

timely deliveries. To mitigate the significant solution times for solving the MILP directly,

we adopt a learning-to-optimize approach. This method replaces the traditional optimiza-

tion process with a machine learning-based approximation (i.e., an optimization proxy).

The learning model estimates allocation decisions, identifying which drivers should pick

up items from stores and which should deliver them to customers. These estimated alloca-

tions are subsequently refined through an MILP with a reduced search space, significantly

enhancing computational efficiency and enabling practical implementation. We evaluate

three delivery systems in a simulated dynamic setting, where both customer arrivals and

the optimization process occur in real-time, making time and space consolidation crucial.

The system can optimize deliveries immediately as each customer arrives or wait to batch

multiple customers for joint optimization. This analysis helps identify the most efficient

delivery system under various waiting strategies.

The four main contributions of this paper are as follows:

• We investigate three delivery systems for multi-store order services, where cus-

132

tomers place orders across multiple stores for home delivery. Beyond separated-

order delivery, in which each order from each store is handled separately, we pro-

pose consolidated-order delivery, with or without transshipment. Consolidated-

order delivery enables customers to order from multiple stores in a single transac-

tion and receive all items as a combined delivery, while transshipment further allows

for driver coordination and order transshipment to enhance delivery efficiency.

• We formulate a mixed-integer linear program to model the multi-store order prob-

lem (MOP) across all three delivery systems. To address the computationally de-

manding problem of optimizing both routing and transfer decisions, we adopt a

learning-to-optimize approach that integrates machine learning with optimization.

In this framework, the estimated allocation decisions act as a lower bound within

the optimization process. This process not only refines the allocation decisions but

also optimizes additional decisions that are not directly learned. By offloading a

portion of the computational workload to the offline phase, this approach enables

the near real-time generation of high-quality solutions.

• We implement four methods to obtain the estimated allocation plans efficiently.

Nearest Driver Allocation (NDA) identifies the closest driver for each customer.

Driver Assignment Neural Network (DANN) uses binary predictions to assign cus-

tomers to drivers, treating each driver independently. Driver Classification Neural

Network (DCNN) frames the allocation of customers to drivers as a classification

problem, with each driver representing a unique class. Finally, Graph-based Neu-

ral Network (GNN) models each instance as a graph and treats customer-to-driver

allocation as edge labels to be learned.

• We conduct numerical experiments across various U.S. regions with varying cus-

tomer arrival rates, comparing the performance of our three delivery systems and

four learning methods. The following insights are derived:

– By applying a learning-to-optimize approach, we enhance the solution effi-

133

ciency of the multi-store order problem and obtain high-quality solutions. This

approach involves learning allocation decisions for assigning drivers to visit

nodes based on historically optimal samples, which narrows the feasible solu-

tion space and facilitates effective decision-making within this refined search

area.

– The GNN outperforms other methods, achieving a better balance between

optimality gap and solution time while also scaling well to larger instances

beyond the training set, due to its ability to facilitate information exchange.

However, it requires significant effort to collect sufficient historical samples,

as each instance corresponds to a single graph. The NDA is simple to imple-

ment, requiring no training or historical samples, but struggles with clustered

customer locations. Both the DCNN and DANN perform well when the test

instance scale matches the training data but face challenges adapting to larger-

scale instances.

– We identify a balance between batching efficiency and individual order fulfill-

ment. As more orders are batched for joint optimization, delivery times rise

due to longer routes, but wait times initially drop significantly because batch-

ing makes better use of drivers. However, beyond a certain point, extending

the re-optimization interval leads to increased wait times as customers expe-

rience longer delays before being served. Consequently, the total order com-

pletion time, which includes both wait and delivery times, initially decreases,

reaching a minimum before increasing again. This indicates the existence of

an optimal waiting strategy, influenced by factors such as customer arrival

rates and the ratio of drivers to customers.

– Consolidated-order delivery shows increasing efficiency over separated-order

delivery as customer scale grows, since consolidating orders from multiple

stores effectively reduces both delivery and driver travel times. The COD with

transshipment and a short-duration waiting strategy consistently achieves the

134

best performance in delivery and travel times, regardless of customer or driver

scales.

The rest of the paper is organized as follows. We review related work in Section 3.2.

Next, we define the problem setting, describe our three delivery systems, and present the

models for these systems in Section 3.3. We develop the learning-to-optimize method

in Section 3.4 and report the results of numerical studies comparing the performance of

our proposed models and their solution quality in Section 3.5. Finally, we conclude with

managerial insights in Section 3.6.

3.2 Literature Review

In this section, we review the main studies relevant to our research from three points of

view: last-mile delivery, pickup and delivery problem, and learning-based optimization.

3.2.1 Last-mile Delivery

Last-mile delivery, which refers to the delivery from distribution points or transshipment

nodes to customer locations, is closely related to online food and grocery delivery. Savels-

bergh and Van Woensel (2016) review and discuss various current and anticipated chal-

lenges and opportunities in last-mile logistics. They claim that customers are increasingly

demanding in terms of price, quality, time, and sustainability. They also highlight the

importance of batching in city logistics, noting that delaying dispatch can allow for ad-

ditional orders, which may lead to more cost-effective delivery routes. However, this

approach also increases the risk of delayed order fulfillment.

In the field of on-time last-mile delivery for food and groceries, most research focuses

on either improving delivery times to enhance service quality or reducing travel costs to

improve efficiency. This is achieved through demonstrating the importance of on-demand

delivery using empirical evidence, optimizing the assignment of drivers to customers or

driver routing for dispatching items, or proposing novel business models and applying

135

learning techniques to improve the overall efficiency of the delivery system. From an

empirical perspective, Mao et al. (2022) develop data analytics models to improve the

delivery performance of a meal delivery platform, emphasizing the need for the platform

to provide superior delivery performance without increasing delivery fees. Similarly, Li

and G. Wang (2024) highlight that restaurants increasingly rely on on-demand delivery

platforms such as DoorDash and Uber Eats to reach customers and fulfill takeout orders,

providing empirical evidence of the overall benefits for restaurants using these platforms.

From an optimization perspective, Liu, He, and Max Shen (2021) investigate the impact

of delivery data on the on-time performance of food delivery services, developing an or-

der assignment problem with travel-time predictors. Carlsson et al. (2024) characterize

the optimal region partitioning policy to minimize the expected delivery time of customer

orders in a stochastic and dynamic setting, assigning each driver to a specific subregion to

ensure drivers are dispatched only within their territories. In terms of novel business mod-

els, Cao and W. Qi (2023) propose selling groceries in public spaces using self-driving

mini grocery stores to enhance mobility, proximity, and flexibility of grocery delivery by

avoiding the last 100 meters. Additionally, Raghavan and Zhang (2024) explore coordi-

nated logistics by evaluating the value of using aides who can assist drivers in last-mile

delivery. The aide can either help the driver prepare and deliver packages, thus reducing

service time at a given stop, or work independently at a location, allowing the driver to de-

liver packages at other sites before returning. From the learning perspective, Hildebrandt

and Ulmer (2022) present offline and online-offline estimation approaches for estimating

arrival times, finding that accurate arrival predictions not only improve service perception

but also enhance the overall delivery system by guiding customer selections, resulting in

faster deliveries. Auad, Erera, and Savelsbergh (2024) study the dynamic management

of courier capacity in a meal delivery system, proposing a deep reinforcement learning

approach to balance the costs of adding couriers and the degradation of service quality

due to insufficient delivery capacity.

We also aim to provide efficient on-demand and on-time delivery for food and gro-

ceries. Our goal is to ensure fast delivery times for customers while also minimizing total

136

travel times. In our proposed setting, the platform allows customers to place orders from

multiple stores and receive all items in a single delivery, enhancing convenience for cus-

tomers. Additionally, drivers can manage parts of the delivery process and coordinate at

intermediate points to transfer orders, with any driver able to complete deliveries from

these points. However, this setup may lead to a complex pickup and delivery problem,

potentially causing inefficiencies in the delivery system. Therefore, we will discuss the

problem formulation and explore how to address it effectively.

3.2.2 Pickup and Delivery Problem

The Pickup and Delivery Problem (PDP) is a classical combinatorial optimization prob-

lem concerned with optimizing vehicle routes for picking up and delivering goods or

passengers at various locations. Its primary goal is the efficient movement of vehicles to

minimize transportation costs. The PDP is an extension of the Vehicle Routing Problem

(VRP), first introduced by Dantzig and Ramser (1959).

There are several variants of the PDP, including single-vehicle PDP, multiple-vehicle

PDP, dynamic PDP, many-origin-to-many-destination PDP, PDP with time windows, PDP

with split delivery, and PDP with transshipment, among others. Berbeglia, Cordeau, and

Laporte (2010) provide a general framework for dynamic PDPs, where objects or people

need to be collected and delivered in real-time, with requests revealed over time. They

also explain how to design waiting strategies and assess their performance. Addition-

ally, Koç, Laporte, and Tükenmez (2020) conduct a detailed survey of vehicle routing

problems with simultaneous pickup and delivery, where goods must be transported from

various origins to different destinations, satisfying both delivery and pickup demands con-

currently.

In the context of the many-to-many PDP with transshipment that we are interested

in, the pickup loads and delivery processes can be split among different drivers, provided

that drivers meet at transshipment nodes to exchange items. Specifically, one vehicle

collects the load at the pickup location, drops it at a transshipment point, and then an-

137

other vehicle transports the load to the delivery location. In terms of empirical studies,

Mitrović-Minić and Laporte (2006) study the pickup and delivery problem with time win-

dows and transshipment, presenting an empirical study on the usefulness of transshipment

points. They propose a heuristic for the static problem setting and evaluate the benefits

of transshipment. Nowak, Ergun, and White III (2009) demonstrate that splitting loads to

complete certain deliveries in multiple trips, rather than in a single trip, is advantageous

for the PDP. They characterize the real-world environments where split loads are most

beneficial through empirical analysis. In terms of optimization, Rieck, Ehrenberg, and

Zimmermann (2014) consider the many-to-many location-routing problem with inter-hub

transport and multi-commodity pickup-and-delivery. To tackle medium- and large-scale

instances, they develop a fix-and-optimize heuristic and a genetic algorithm that construct

promising solutions within an appropriate time limit. While this problem is similar to our

study, it does not account for the importance of time windows, which further complicates

the setting. Rais, Alvelos, and Carvalho (2014) explore the pickup and delivery problem

with time windows and transshipments from an optimization perspective. However, due

to the complexity of the problem, they only consider instances with 10 or 14 nodes, with

five order requests and one transfer station. Lyu and Yu (2023) revise the formulations

proposed by Rais, Alvelos, and Carvalho (2014), successfully solving instances with 25

requests and two transfer stations to optimality within one hour. Both studies consider

the flexibility of drivers picking up items from different locations, exchanging them at

transshipment nodes, and delivering them to customers. However, they do not address

the possibility that orders originated from multiple pickup points can be combined to-

gether and delivered as a single package, nor do they recognize that any node visited

by drivers could serve as a transshipment point for exchanging items, provided time re-

strictions are respected. Ulmer et al. (2021) consider a stochastic dynamic pickup and

delivery problem, model it as a route-based Markov decision process, and propose an an-

ticipatory customer assignment policy that significantly enhances service. However, their

work focuses on single-courier direct deliveries without transshipment, making it less ap-

plicable to multi-driver coordination and exchange-based delivery networks like ours. Su

138

et al. (2023) tackle a pickup and delivery problem with crowdsourced bids and transship-

ment in last-mile delivery, where requests are fulfilled using either the company’s fleet or

crowdshippers with a small compensation via transshipment facilities. Although it opti-

mizes the company’s vehicle routes and bid selection, it does not account for the optimal

routing of crowdshippers and imposes several restrictions on service requests.

The problem we investigate is a many-origin-to-many-destination pickup and delivery

problem with time windows, allowing coordination and transshipment among drivers to

fulfill orders placed from multiple stores. To accurately model this complex setting, we

will consider the allocation decisions of orders to drivers, the transshipment nodes where

drivers meet and exchange items, the routing decisions for each driver and each order, and

the time variables associated with driver and order arrivals and departures.

3.2.3 Machine Learning-based Optimization

Machine learning (ML) has emerged as a transformative tool in operations research (OR)

and operations management, enabling innovative approaches to solve complex decision-

making problems. The integration of ML in OR can broadly be categorized into two

areas: using ML to design and enhance optimization models, and employing optimization

proxies to accelerate or approximate solutions.

In the first category, ML is widely used to design optimization models, improve data

quality, and enhance solution procedures. Sadana et al. (2024) provide a comprehen-

sive review of contextual stochastic optimization, unifying diverse methodologies for

decision-making under uncertainty. They categorize key approaches into decision rule

optimization, sequential learning and optimization, and integrated learning and optimiza-

tion. Maragno et al. (2023) propose a pipeline where constraints and objectives are

learned directly from data and embedded into optimization models. Similarly, S. Wang,

Delage, and Coelho (2024) enhance inputs to vehicle routing problems using techniques

like k-nearest neighbor and kernel density estimation. In practical applications, Liu, He,

and Max Shen (2021) integrate ML-based travel-time predictors into order-assignment

139

optimization for food delivery, improving on-time performance by refining parameter es-

timates. Additionally, Hong, Huang, and Lam (2021) propose a statistical framework

for robust optimization that uses machine learning to provide more accurate parameter

estimates, enhancing optimization outcomes.

In the second category, optimization proxies use ML to approximate solutions, accel-

erate computational processes, or enable inverse optimization. Van Hentenryck (2021)

distinguishes between two main approaches: end-to-end learning, which uses proxies to

directly approximate optimal solutions, and learning-to-optimize, which accelerates ex-

isting optimization algorithms for enhanced efficiency. Kotary, Fioretto, et al. (2021)

review hybrid methods that integrate combinatorial solvers with ML to provide fast, ap-

proximate solutions and support logical inference. Bogyrbayeva et al. (2024) provide

a systematic overview of machine learning methods applied to solve vehicle routing

problems. Several studies highlight the potential of learning-to-optimize for speeding

up solution generation. For example, Ojha et al. (2023) develop ML proxies to predict

loads and ensure constraint compliance in dynamic load planning, significantly improving

decision-making speed. Similarly, Julien, Postek, and Birbil (2024) introduce a machine-

learning-based node selection strategy that accelerates robust optimization by identifying

high-quality solutions faster. In two-stage stochastic programming, Larsen, Lachapelle,

et al. (2022) and Larsen, Frejinger, et al. (2024) use supervised learning to approximate

computationally intensive second-stage solutions, reducing solution time while maintain-

ing accuracy in repeated problem-solving tasks. Kotary, Di Vito, et al. (2024) propose

a learning-to-optimize-from-features framework, aligning traditional methods with the

predict-then-optimize paradigm. Additionally, M. Qi et al. (2023) demonstrate the im-

pact of end-to-end learning by developing a multi-period inventory replenishment model

that directly outputs optimal replenishment decisions from input features. For inverse

optimization, Özarık, Costa, and Florio (2024) leverage ML to estimate key parameters

for last-mile delivery route optimization, illustrating how predictive modeling can inform

complex decision-making.

In this work, we apply the learning-to-optimize method to efficiently address our com-

140

putationally challenging problem. Initially, we use machine learning techniques, includ-

ing neural networks and graph-based neural networks, to estimate allocation decisions.

These estimations then serve as inputs to an optimization process, which refines the al-

location decisions and makes additional decisions, such as optimal routing. Unlike con-

ventional learning-to-optimize methods, our approach maintains flexibility by treating the

estimated decisions as lower bounds rather than fixed inputs. Compared to directly learn-

ing routing decisions, this method has low-dimensional outputs, enhancing both accuracy

and efficiency. Rather than outputting fixed routing decisions, it allows for the explo-

ration of routing solutions within a refined search space during the optimization process.

Additionally, our work focuses on both efficiency and high-quality solutions, while also

evaluating the scalability of different learning algorithms across various cases.

3.3 Multi-store Order Delivery Problem

In this section, we first introduce our three delivery systems of interest and present the

problem definition in Section 3.3.1. We then formulate the mathematical model for the

multi-store order delivery problem under various delivery systems in Section 3.3.2, fol-

lowed by the dynamic problem description incorporating waiting strategies in Section

3.3.3.

3.3.1 Delivery System Description and Problem Definition

Due to the variety of store types, product availability, and special pricing, customers often

purchase products from multiple stores, such as meals from restaurants, fresh produce

from grocery stores, or emergency medicine from pharmacies. To avoid the inconvenience

of visiting multiple stores, customers increasingly rely on online ordering and delivery

platforms, creating the necessity for multi-store order delivery services. We consider

three delivery systems for managing multi-store order deliveries:

(1) Separated-order delivery (SOD): Customers place separate orders from different

141

stores, pay a delivery fee for each order, and receive individual deliveries. Orders from

each store are handled independently, with drivers managing both the pickup and delivery

processes (Figure 3.1(a)). This system serves as a baseline for comparison in the absence

of consolidation.

(2) Consolidated-order delivery (COD): Customers place a combined order from

multiple stores in a single transaction and receive a combined delivery, typically without

additional delivery fees. A single driver collects items from several stores and delivers

them to the customer (Figure 3.1(b)). This system consolidates orders from different

stores and serves as a baseline in the absence of transshipment.

(3) Consolidated-order delivery with transshipment (CODT): Similar to COD, cus-

tomers place a consolidated order from multiple stores and receive a combined delivery.

However, in this system, different drivers can pick up items from different stores and can

transfer them at selected transshipment nodes. A single driver then completes the final

delivery to the customer’s doorstep (Figure 3.1(c)). Transshipment can occur at various

locations, such as stores or customer locations, where drivers can drop off or pick up

items and items can be temporarily held without the presence of drivers. In some cases,

customers acting as transshipment nodes may receive multiple deliveries, while others

receive a single delivery.

We define the problem that accommodates these three delivery systems as follows:

Definition 7 The Multi-store Order Problem (MOP) is an optimization problem address-

ing the fulfillment of customer orders placed across multiple stores using a limited number

of drivers. The objective is to jointly minimize a weighted sum of the latest delivery time

for serving each order and the total driver travel time for fulfilling all requests. This is

achieved by addressing key decisions, including allocating drivers for pickup and deliv-

ery, planning driver routes with time and capacity restrictions, and selecting transship-

ment nodes for transferring items among drivers. In addition to handling orders from

different stores separately, MOP also incorporates consolidation, allowing orders from

multiple stores to be grouped and handled together, and transshipment, permitting partial

142

order transfers among drivers at specified nodes.

(a) Separated-order delivery (b) Consolidated-order delivery (c) COD with transshipment

Notes. This figure illustrates an instance with two drivers, two stores, and four customers.
The same set of customers is served by the same set of drivers across all three systems. The route
of one driver is represented by a black line, while the route of another driver is shown in blue.
The solid lines are the same for each system, while the dashed lines highlight the differences.

Figure 3.1 – Delivery systems for multi-store order services

3.3.2 Mathematical Model

We formulate the multi-store order problem for all three delivery systems using a mixed-

integer linear programming model. This MILP is defined on an undirected network G =

(N ,A), where N represents the set of nodes and A denotes the set of arcs. Customers

are denoted by i ∈I , stores by j ∈J , and drivers by k ∈K . The origin node of driver

k, representing their starting location, is denoted as ok, and the set O comprises the origin

nodes of all drivers. The node set N includes all customer, store, and driver starting

locations, i.e., N = I ∪J ∪O . The binary parameter ei j indicates whether customer i

orders from store j, and the item ordered by customer i from store j is indexed by i j. The

size of item i j is pi j, and the capacity of driver k is qk. The travel time between nodes n

and n′ is denoted by tnn′ , and it satisfies the triangle inequality: tnn′ ≤ tnn′′+ tn′′n′,∀n,n′,n′′.

The time window for customer i is given by [αi,βi]. The decision variables are as follows.

Let zk
n be 1 if and only if driver k visits node n, xk

nn′ be 1 if and only if driver k travels

from node n to node n′, yi j
nn′ be 1 if and only if item i j travels from node n to node

n′ during the trip, vki j+
n be 1 if and only if item i j arrives at node n via driver k, and

143

vki j−
n be 1 if and only if item i j departs from node n via driver k. If item i j is served

by different drivers for arrival and departure at the same node n, it indicates that node

n acts as a transshipment point where the drivers meet and transfer item i j. We assume

that any node n can potentially serve as a transshipment point with sufficient capacity

to temporarily hold the items. The selection of transshipment points will be determined

implicitly through the variables vki j+
n and vki j−

n . The continuous variables are as follows:

τk+
n is the time at which driver k arrives at node n, τk−

n is the time at which driver k departs

from node n, and λ
i j
n is the arrival time of item i j at node n. A summary of the notation is

provided in Appendix A.

The model for the multi-store order problem is presented as follows:

M(I ,J ,K) =

min
x,y,z,
τ,v,λ

ρ1 max
k∈K
i∈I

{
τ

k+
i

}
+ρ2 ∑

k∈K
∑

n∈N
∑

n′∈N ,
n′ 6=n

tnn′x
k
nn′ (3.1a)

s.t. ∑
k∈K

vki j−
j ≥ ei j, ∀i ∈I , j ∈J (3.1b)

∑
k∈K

vki j+
i ≥ ei j, ∀i ∈I , j ∈J (3.1c)

∑
k∈K

vki j+
n = ∑

k∈K
vki j−

n , ∀i ∈I , j ∈J ,n ∈N : n 6= i, j (3.1d)

zk
ok
≥ zk

n ≥max{vki j+
n ,vki j−

n },∀k ∈K , i ∈I , j ∈J ,n ∈N (3.1e)

∑
n′∈N ,n′ 6=n

xk
n′n = zk

n, ∀n ∈N ,k ∈K (3.1f)

∑
n′∈N ,n′ 6=n

xk
nn′ = zk

n, ∀n ∈N ,k ∈K (3.1g)

τ
k+
n′ ≥ xk

nn′(τ
k−
n + tnn′), ∀n,n′ ∈N : n 6= n′,k ∈K (3.1h)

τ
k−
n ≥ τ

k+
n , ∀n ∈N \O,k ∈K (3.1i)

∑
n′∈N ,n′ 6= j

yi j
jn′ = ei j, ∀i ∈I , j ∈J (3.1j)

∑
n′∈N ,n′ 6= j

yi j
n′i = ei j, ∀i ∈I , j ∈J (3.1k)

∑
n′∈N ,n′ 6=n

yi j
nn′ = ∑

n′∈N ,n′ 6=n
yi j

n′n, ∀i ∈I , j ∈J ,n ∈N ,n 6= i, j (3.1l)

144

yi j
nn′ ≤ ∑

k∈K
xk

nn′, ∀i ∈I , j ∈J ,n,n′ ∈N : n′ 6= n (3.1m)

yi j
nok
≤ 0, ∀i ∈I , j ∈J ,n ∈N ,k ∈K (3.1n)

λ
i j
n′ ≥ yi j

nn′(λ
i j
n + tnn′), ∀k ∈K ,n ∈N : n 6= n′,n′ ∈N ∪{k′} (3.1o)

vki j+
n ≥min

{
xk

nn′,y
i j
nn′

}
, ∀i ∈I , j ∈J ,n,n′ ∈N : n 6= n′,k ∈K (3.1p)

vki j−
n′ ≥min

{
xk

nn′,y
i j
nn′

}
, ∀i ∈I , j ∈J ,n,n′ ∈N : n 6= n′,k ∈K (3.1q)

λ
i j
n ≥ vki j+

n τ
k+
n , ∀i ∈I , j ∈J ,n ∈N ,k ∈K (3.1r)

τ
k−
n ≥ vki j−

n λ
i j
n , ∀i ∈I , j ∈J ,n ∈N ,k ∈K (3.1s)

αi ≤ λ
i j
i ≤ βi, ∀i ∈I , j ∈J (3.1t)

∑
i∈I

∑
j∈J

pi jvki j−
n ≤ qk, ∀n ∈N ,k ∈K (3.1u)

xk
nn′ ,y

i j
nn′,z

k
n,v

ki j+
n ,vki j−

n ∈ {0,1}, ∀i ∈I , j ∈J ,n,n′ ∈N ,k ∈K (3.1v)

τ
k+
n ,τk−

n ,λ i j
n ≥ 0, ∀i ∈I , j ∈J ,n ∈N ,k ∈K . (3.1w)

The objective function (3.1a) aims to minimize the weighted average of the latest de-

livery time and the total travel time for serving all orders, where ρ1 is the weight assigned

to the latest delivery time and ρ2 is the weight assigned to the total travel time. Note

that to prioritize on-time delivery, ρ1 should be set significantly larger than ρ2, while a

relatively small value for ρ2 is sufficient to discourage unnecessary long travel times. The

term maxk∈K ,i∈I

{
τ

k+
i

}
can be equivalently replaced by a new variable l, along with the

constraints l ≥ τ
k+
i ,∀i ∈I ,k ∈K .

Constraints (3.1b) and (3.1c) stipulate that if customer i orders items from store j (i.e.,

ei j = 1), item i j should be picked up from store j by a driver and delivered to customer i by

a driver. Constraints (3.1d) ensure that if item i j arrives at node n (except for destination

i and origin j), it must leave this node after being picked up by a driver. Constraints

(3.1e) indicate that if driver k serves item i j by passing through node n, then driver k must

leave its origin location ok and also visit node n. Constraints (3.1f) and (3.1g) impose

degree constraints on the nodes visited by driver k. Constraints (3.1h) specify the arrival

and departure times of driver k at node n. If driver k travels from node n to node n′ (i.e.,

145

xk
nn′ = 1), the arrival time of driver k at node n′ must be no earlier than the departure time

from the previous node n, accounting for the travel time from node n to node n′. These

constraints can be linearized into τk−
n + tnn′ − τ

k+
n′ ≤ M1(1− xk

nn′), where M1 should be

sufficiently large to ensure that M1 ≥ τk−
n + tnn′ . Additionally, constraints (3.1i) ensure

that the departure time at any node of a driver should be no earlier than their arrival time,

except for their origin nodes ok. Constraints (3.1j) to (3.1l) denote that item i j should

leave store j and arrive at customer i, and that if item i j arrives at any other node, it must

also leave this node (i.e., flow balance constraints). Constraints (3.1m) and (3.1n) state

that item i j can traverse the arc (n,n′) only if this arc is visited by a driver, and that arcs

for drivers returning to origin nodes cannot be part of the path for items. Constraints

(3.1o) specify the arrival time of item i j at node n. If item i j travels from node n to

node n′ (i.e., yi j
nn′ = 1), the arrival time of item i j at node n′ must be no earlier than its

arrival time at the previous node n, while accounting for the travel time from node n to

node n′. These constraints can be linearized into λ
i j
n + tnn′ −λ

i j
n′ ≤ M2(1− yi j

nn′), where

M2 must be large enough to ensure that M2 ≥ λ
i j
n + tnn′ . Constraints (3.1p) and (3.1q)

indicate that if item i j passes the arc (n,n′) visited by driver k, then item i j must be

picked up by driver k to leave node n and dropped off by driver k at node n′. Since x,

y, and v are binary, these constraints can be linearized into vki j−
n ≥ xk

nn′ + yi j
nn′ − 1 and

vki j+
n′ ≥ xk

nn′+yi j
nn′−1, respectively. Constraints (3.1r) and (3.1s) state that the arrival time

of item i j at node n should be no earlier than the arrival time of driver k at node n if this

item is served by driver k to arrive at node n. Furthermore, the departure time of driver k

should be no earlier than the arrival time of item i j at node n if this item is about to leave

node n via driver k. These constraints can be linearized into τk+
n −λ

i j
n ≤ M3(1− vki j+

n)

and λ
i j
n − τk−

n ≤ M4(1− vki j−
n), with M3 ≥ τk+

n and M4 ≥ λ
i j
n . Constraints (3.1t) ensure

that the time windows are respected. Constraints (3.1u) represent capacity constraints for

drivers at every node. Constraints (3.1v) and (3.1w) impose domain restrictions.

This model is capable of accommodating both single and multiple deliveries for multi-

store orders placed by customers, while also allowing drivers to coordinate and transfer

orders through transshipment, resulting in consolidated-order delivery with transshipment

146

(CODT). To evaluate the value of consolidation and transshipment in multi-store order

delivery, we demonstrate ways to customize M(I ,J ,K) to model the separated-order

delivery (SOD) and the consolidated-order delivery (COD) without transshipment.

The model for SOD requires that orders from each store are handled and delivered

separately, which can be structured as a series of programs. For all j′ ∈J ,

MSOD(I j′,J j′,K j′) = min
x,y,z,
τ,v,λ

ρ1 max
k∈K j′
i∈I j′

{
τ

k+
i

}
+ρ2 ∑

k∈K j′
∑

n∈N j′
∑

n′∈N j′ ,
n′ 6=n

tnn′x
k
nn′ (3.2a)

s.t. (3.1b)− (3.1w)

vki j−
j = vki j+

i , ∀i ∈I j′, j ∈J j′,k ∈K j′. (3.2b)

The objective function (3.2a) specifies that each store optimizes their delivery operations

separately to serve its respective customers. Here, J j′ denotes the set containing only

store j′ (i.e., J j′ = { j′}). The set I j′ denotes customers who place orders from store

j′ (i.e., I j′ = {i ∈ I |ei j′ = 1}). There may be overlaps between different I j′ since

customers can place orders from multiple stores. Similarly, K j′ denotes the drivers

who serve orders from store j′, and they jointly form a partition of K . Furthermore,

N j′ = I j′ ∪J j′ ∪O j′ , where O j′ is the set of origin nodes for drivers k ∈K j′ . To en-

sure at least one driver is available for each store, we assume that the number of drivers

exceeds the number of stores. Note that the pre-assignment of drivers to stores (i.e., the

set K j′) affects the MSOD. To focus solely on the difference between separation and con-

solidation business models, we evaluate all possible partitions of the driver set K for

the SOD. For each partition, we determine the worst-case performance across all stores

by finding the maximum optimal objective value among them. The partition that yields

the minimum worst-case performance (i.e., min
{

max j′∈J MSOD(I j′,J j′,K j′)
}

) is se-

lected. This method works because our primary objective is to ensure on-time delivery

for all customers, with the main target being to minimize the latest delivery time. By

using this method, we can compare separation and consolidation models fairly without

the results being influenced by the initial pre-assignment of drivers. Constraints (3.1b) -

(3.1w) are applied, with I ,J ,K ,N replaced by I j′,J j′,K j′,N j′ . Constraints (3.2b)

147

state that item i j is served by the same driver k encompassing both the pickup from store

j and the delivery to customer i, implying no transshipment is allowed.

The model for COD without transshipment is:

MCOD(I ,J ,K) = min
x,y,z,

τ,w,v,λ

ρ1 max
k∈K
i∈I

{
τ

k+
i

}
+ρ2 ∑

k∈K
∑

n∈N
∑

n′∈N ,
n′ 6=n

tnn′x
k
nn′ (3.3a)

s.t. (3.1b)− (3.1w)

vki j−
j = vki j+

i , ∀i ∈I , j ∈J ,k ∈K (3.3b)

∑
k∈K

zk
i = 1, ∀i ∈I . (3.3c)

Constraints (3.3b) imply that item i j is assigned to the same driver for both pickup and

delivery, and Constraints (3.3c) enforce a single delivery, ensuring that each customer is

served exactly once for delivery, resulting in a consolidated-order delivery system without

transshipment.

3.3.3 Dynamic Problem and Waiting Strategy

The MOP addresses the problem of serving customers who place orders in a specified time

period, with transshipment facilitating spatial consolidation at both the store and customer

levels. Since customer orders arrive dynamically over time in realistic settings, tempo-

ral consolidation can further improve operations by implementing an effective waiting

strategy.

Assuming that customer arrivals follow a stochastic process, such as a Poisson pro-

cess, the delivery system can be optimized by determining an appropriate re-optimization

interval, defined as the time period between two consecutive optimizations. For each

optimization, the system collects information on new customer orders that arrive within

the interval, updates driver availability, allocates orders to available drivers, and plans the

routing accordingly.

A longer waiting strategy can reduce the total travel time but may increase delivery

delays. Conversely, an event-triggered strategy, which re-optimizes the system upon each

order arrival without waiting, accelerates the delivery speed but may increase the total

148

travel time. The objective of the dynamic problem is to identify the waiting strategy that

balances delivery time and waiting delays by determining the re-optimization interval,

which also corresponds to the customer batching size during that interval. The implemen-

tation of the waiting strategies within the dynamic experimentation process are shown in

Tables 3.10 and 3.11 in Appendix C.

3.4 Solution Procedure

Solving the model for MOP to optimality is computationally demanding due to the large

number of constraints and variables arising from routing and time considerations. To

address this, we adopt a learning-to-optimize approach that combines an offline learning

phase with an online estimation and optimization phase. We next present the details of

this framework in Section 3.4.1, introduce three learning methods in Section 3.4.2, and

explain the optimization process in Section 3.4.3.

3.4.1 Learning-to-optimize Method

Historical instances
with order information
and driver availability

Optimization
problem

Optimal
solutions

Machine learning (ML)
model that maps input to

the optimal allocation plan

Input Exact Solution Procedure Output

(a) The offline learning phase

New instances
with order information
and driver availability

Estimation of the
allocation plan

using the ML model

Restoration
and refinement
optimization

Allocation
plan and other

decisions

Input Optimization Proxies Output

(b) The online estimation and optimization phase

Figure 3.2 – Learning-to-optimize Method

The learning-to-optimize method is illustrated in Figure 3.2 and consists of two key

steps. The first is the offline learning phase, as shown in Figure 3.2(a), where a mapping

149

is trained using machine learning models on historical instances. This step is conducted

only once. Specifically, historical instances, which are solved to optimality using exact

optimization techniques, are used to train a neural network model that learns the mapping

from instance data to optimal allocation plans. The instance data includes order details,

store and customer locations, initial driver positions, travel times between locations, and

driver availability. The allocation plan determines the nodes visited by drivers, ensuring

that each order is picked up from stores and delivered to customers. The second step is

the online estimation and optimization phase, as shown in Figure 3.2(b). For each new

instance, the estimated allocation plans are obtained from the learning model and then

serve as a lower bound for the corresponding variables in the optimization problem. This

optimization problem is a mixed-integer linear program, where restoration and refine-

ment work together to ensure feasibility and improve the solution: restoration addresses

potential infeasibility caused by the estimated allocation (i.e., the optimization input) un-

derestimating time constraints and capacity limitations, while refinement further improves

the estimated allocation decisions, refining the initial solutions to optimal ones through

optimization. This process narrows the feasible solution space, provides flexibility to im-

prove the estimated allocation plans, and completes the optimal driver routes and efficient

paths for the MOP. This approach can offload a portion of the computational workload to

the offline phase, facilitating the near real-time generation of high-quality solutions.

3.4.2 Learning Methods

Three neural network models are implemented to train the mapping from instance in-

formation to allocation plans. Let N denote the set of nodes, including driver origins,

stores, and customers that drivers may visit, K denote the set of drivers, and L denote

the feature space. We use bold symbols to represent vectors. We define the neural network

model g, parameterized by θ , that maps the set of input features f k
n ∈R|L |, for each node

n ∈N and driver k ∈K to a binary allocation plan z̃ ∈ {0,1}|N |×|K |, which represents

150

the decision of assigning driver k to visit node n. The function is presented by

gθ : R|N |×|K |×|L |→{0,1}|N |×|K |. (3.4)

All information related to orders, customers, stores, and drivers constitutes the feature

set. These include store locations for order pickup, customer locations for delivery, driver

initial locations, travel times between nodes, and nearest driver allocation to each node.

Specifically, the features f k
n for node n that can be served by driver k include: (1) node

latitude; (2) node longitude; (3) distance between the driver and the node; (4) nearest

driver allocation indicator, which is 1 if driver k is the nearest to node n; and (5) the ratio

of the number of customers to the number of available drivers. Additionally, we generate

additional features based on a connected node (CN) set for each node and driver. For store

nodes, this set comprises the customers ordering from that store; for customer nodes, it

includes the stores from which they have ordered; and for drivers, it consists of nodes that

would be assigned to each driver based on the nearest allocation method. The additional

features related to the CN set are: (6) the number of nodes in the CN union sets of both

the node and the driver; (7) the Traveling Salesman Problem (TSP) cost for visiting nodes

in this union CN set; and (8) the convex hull area enclosing the nodes in this union CN

set.

1. Driver Assignment Neural Network (DANN): This method uses a neural network

for binary prediction to determine whether driver k is assigned to node n. A training

sample consists of a node-driver pair, where the input features are f k
n and the label is zk

n
∗

for node n and driver k. Each driver is considered independently of all other drivers.

We implement a multi-layer neural network to learn the function gθ , capturing the re-

lationships between the input features and the binary decision outputs. The model predicts

the probability of assigning node n to driver k:

Pr
(

z̃k
n = 1 | f k

n

)
= σ

(
Θ(f k

n)
)
, ∀n ∈N ,k ∈K ,

where Θ(f k
n) : R|L |→ R represents the neural network’s output after multiple layers of

computation on the input features f k
n ∈ R|L |. Since z̃k

n is binary, the final layer of the

151

neural network σ(·) applies the sigmoid activation function, σ(x) = 1
1+e−x , ensuring that

the output is a probability between 0 and 1. If Pr(z̃k
n = 1 | f k

n)> 0.5, then z̃k
n = 1, indicating

that driver k is assigned to visit node n.

2. Driver Classification Neural Network (DCNN): This method treats driver as-

signment as a classification problem, where each driver is considered a distinct class. The

neural network classifies each node into one of the available “driver classes”, ensuring

that at least one driver is assigned to visit each node. A training sample consists of a node

with multiple drivers as potential choices, where the input features are
{

f k
n
}

k∈K and the

labels are
{

zk
n
∗
}

k∈K
for node n.

We again implement a multi-layer neural network to learn the function gθ . For node

n, the model outputs a probability distribution over classes k as follows:

Pr
(

z̃k
n = 1 | fn

)
= [softmax(Θ(fn))]k , ∀n ∈N ,k ∈K ,

where Θ(fn) : R|K |×|L | → R|K | represents the neural network’s computation through

multiple layers on the features fn ∈R|L |×|K | for node n and all drivers. The softmax func-

tion outputs a probability distribution over the |K | classes, ensuring that ∑
|K |
k=1 Pr(z̃k

n =

1 | fn) = 1. The driver k with the highest probability Pr(z̃k
n = 1 | fn) is selected. Thus,

z̃k
n = 1 for the driver with the highest score, and z̃k

n = 0 for all other drivers.

3. Graph-based Neural Network (GNN): This method employs a graph neural net-

work to learn driver allocation plans by predicting edge labels that indicate whether a

driver should visit a node within the graph structure, as illustrated in Figure 3.3, depicting

an instance or area to be served.

Unlike traditional neural networks, the graph structure connects all nodes and includes

edge features, global features, and labels. The node features fn ∈R|L | include: (1) driver

type: 1 if the node represents a driver, 0 otherwise; (2) store type: 1 if the node represents

a store, 0 otherwise; (3) customer type: 1 if the node represents a customer, 0 otherwise;

(4) node latitude; (5) node longitude; (6) the number of nodes in the CN set; (7) the TSP

cost of visiting the nodes in the CN set; and (8) the convex hull area enclosing the nodes

in the CN set. The edge features enn′ ∈ R|M | of all edges from nodes to drivers consist

152

Figure 3.3 – Graph-based Neural Network structure for the case with 2 drivers, 2 stores,
and 4 customers.

of (1) distance between the driver and the nodes; and (2) nearest driver allocation to the

node. The global feature g ∈ R is the ratio of the number of customers to the number of

available drivers. These features are similar to those used in DANN and DCNN, but are

now represented in a graph structure. The edge label to be learned represents the optimal

allocation of drivers to nodes. The GNN model leverages node features, edge features,

and global features through multiple layers to capture complex relationships within the

graph. A training sample consists of all node with all drivers as potential choices, where

the input features are
(
{ fn}n∈N ,{enn′}n,n′∈N ,g

)
and the labels are

{
zk

n
∗
}

k∈K ,n∈N
for

the whole graph.

At each layer t, the embedding of node n, denoted h(t)n , is updated based on information

from its neighboring nodes. The update is computed as:

h(t+1)
n = φ

(
h(t)n , ∑

n′∈Neight(n)
ψ

(
h(t)n ,h(t)n′ ,enn′

)
,g

)
,

where h(t)n is the embedding of node n at layer t with h(0)n = fn and fn ∈ R|L |, Neight(n)

denotes the set of neighbors of node n, enn′ ∈ R|M | is the feature vector for the edge

between node n and its neighbor n′, g is the global feature, and φ and ψ are neural network

layers.

After T layers, the GNN produces final embeddings h(T)n for each node n. For all

edges connecting node n, the final layer applies a softmax function to output a probability

distribution over all possible drivers. The probability of assigning driver k to node n is

153

given by:

Pr
(

z̃k
n = 1 | fn,enn′,g

)
=
[
softmax

(
ϕ

(
h(T)n ,h(T)n′ ,enn′,g

))]
k
, ∀n ∈N ,k ∈K ,

where ϕ :R|N |×|L |×R|K |×|N |×|M |×R→R|K |×|N | is a neural network layer that com-

bines the final node embeddings, edge features, and global features. The softmax function

normalizes the edge outputs from each node n to all driver nodes, providing a probability

distribution over drivers for node n, ensuring that ∑
|K |
k=1 Pr

(
z̃k

n = 1 | fn,enn′,g
)
= 1. The

driver k with the highest probability Pr
(
z̃k

n = 1 | fn,enn′,g
)

is selected to serve node n.

This GNN framework effectively captures node interactions, edge features, and global

features to predict the optimal driver-to-node allocations within the graph.

(a) DANN (b) DCNN (c) GNN

Note. The lines represent allocation decisions for a driver visiting a node. Lines of the
same color indicate a single sample, while different colors correspond to different samples. In
DANN, each driver-node pair is represented by a unique color; in DCNN, each node is assigned
a color; and in GNN, the entire instance uses the same color.

Figure 3.4 – Learning models for allocation decisions with different ways of generating
data samples

4. Summary: Overall, DANN, DCNN, and GNN use the same features but adopt

different graphical structures for generating data samples to learn the allocation decisions.

DANN treats each driver-node pair independently (see Figure 3.4 (a)). DCNN processes

each node independently while incorporating driver information (see Figure 3.4 (b)). In

contrast, GNN considers each instance as an interconnected network, allowing both driver

and node information to be transferable during the learning process (see Figure 3.4 (c)).

154

In addition to these three learning methods, we also include Nearest Driver Allocation

(NDA) as a benchmark, which assigns the closest driver to visit each store and customer

node.

3.4.3 MILP-based Restoration and Refinement Problem

In the optimization phase, we formulate the restoration and refinement problem (RRP)

as an MILP to restore feasibility, refine allocation decisions, and derive optimal solutions

for other decisions. For decision refinement, the estimated allocation z̃k
n serves as a lower

bound for the allocation decision zk
n, allowing flexibility in assigning drivers to additional

nodes and enabling the optimization of other decisions. However, given the lower bounds

of allocation plans, the constraints in equations (3.1t) and (3.1u) may be violated. It is es-

sential to ensure that all items ordered by customer i from store j are delivered within the

specified time window while respecting capacity limitations. In other words, the machine

learning output may underestimate the time constraints and capacity limitations, which

could render Problem 3.1 infeasible given the estimated z̃k
n. To address this, we apply

soft time windows and capacity constraints while also minimizing the slackness to restore

feasibility. The model for the RRP is formulated as follows:

MRRP(I ,J ,K) =

min
x,y,z,

τ,w,v,λ ,s

ρ1 max
k∈K
i∈I

{
τ

k+
i

}
+ρ2 ∑

k∈K
n∈N

∑
n′∈N ,
n′ 6=n

tnn′x
k
nn′+ρ3 ∑

n∈N
k∈K

∑
i∈I
j∈J

(s1i j
n + s2i j

n + s3k
n) (3.5a)

s.t. (3.1b)− (3.1s), (3.1v)− (3.1w)

zk
n ≥ z̃k

n, ∀k ∈K ,n ∈N (3.5b)

αi− s1i j
i ≤ λ

i j
i ≤ βn + s2i j

i , ∀i ∈I , j ∈J (3.5c)

∑
i∈I

∑
j∈J

pi jvki j−
n ≤ qk + s3k

n , ∀n ∈N ,k ∈K (3.5d)

s1i j
i ,s2i j

i ,s3k
n ≥ 0,∀i ∈I , j ∈J ,n ∈N ,k ∈K . (3.5e)

155

The objective function (3.5a) states that, in addition to minimizing the weighted av-

erage of the latest delivery time and the total travel time, we also minimize the penalty

for violating time window and capacity constraints, which cannot be avoided due to the

input allocation. Note that ρ3 represents the penalty weight, and it should be set to a large

value relative to ρ1 and ρ2 to avoid violations as much as possible. Constraints (3.5b)

ensure that the estimated z̃ serves as a lower bound, while Constraints (3.5c) and (3.5d)

represent soft time windows and capacity constraints with slack variables s1i j
i , s2i j

i , and

s3k
n to maintain feasibility. Finally, Constraints (3.5d) impose domain restrictions on the

slack variables.

3.5 Numerical Study

In this section, we first introduce a real-world dataset, performance metrics, and imple-

mentation details. We then compare the performance of three systems to evaluate the ben-

efits of offering consolidation and transshipment for the multi-store order delivery. Due

to the computational challenges involved in solving the problem, we employ learning-to-

optimize techniques to accelerate the solution process through various learning methods

and compare the effectiveness of different learning-based optimization proxies. Finally,

we conduct dynamic experimentations in a practical setting to serve customers in areas

with varying customer locations and arrival rates, aiming to identify the most efficient

delivery system and waiting strategy.

3.5.1 Dataset and Implementation Details

We use a customer location dataset from four regions in the U.S. (Los Angeles, Seattle,

Tacoma, and Orange) provided by Amazon (Merchan et al. 2021), which contains the per-

turbed locations of customers. We obtain the expected travel times using the Google API.

Instances with varying scales are created from the dataset, with customer numbers ranging

from 2 to 20 and driver numbers ranging from two to five. Customer locations are sampled

156

uniformly from the dataset, with each location having an equal probability of selection,

referred to as uniformly sampled customers. We also consider clustered customers, where

a central point is pre-selected, and locations closer to this center have a higher probability

of being chosen as customer locations. Drivers’ initial locations and store locations are

randomly generated and remain fixed within each region for the sensitivity analysis. To

assess the benefits of consolidating orders from multiple stores, we assume that customers

place orders from at least two stores and up to four stores, with whether each customer or-

ders from a particular store, denoted as ei j ∈ 0,1, being randomly generated. For customer

i, the start time windows αi are uniformly generated within a range of 0 to 20, and the

end time windows βi are within a range of 20 to 70. Driver capacity qk is set to 100, with

item sizes pi j randomly generated as integers between 0 and 10. Our primary objective is

to ensure on-time delivery for all customers by minimizing the latest delivery time, so the

weight ρ1 is set to 1. A smaller weight ρ2 = 0.01 is used to discourage unnecessary long

travel times. To minimize constraint violations, a penalty weight ρ3 = 100 is applied.

To compare the performance of three delivery systems and four learning methods, we

define the following metrics. (1) Delivery time is the duration between order assignment

and delivery, with the latest delivery time being the time to serve the last order arriving

within the re-optimization interval. A lower value indicates faster overall delivery. (2)

Total travel time is the total time drivers spend traveling, including the time from their

starting location to pick up orders and deliver them. The travel time for serving one more

customer is calculated as the ratio of total travel time to the number of customers. A

lower value indicates reduced overall costs. (3) Wait time is the duration between order

placement and assignment. A lower value means quicker driver pickup. (4) Order com-

pletion time is the duration from order placement to delivery, including both wait time

and delivery time. (5) Runtime is the time required to find final optimal solutions through

optimization, whether or not learning is used. A lower runtime indicates a more efficient

solution method. (6) Accuracy in learning is the percentage of correct driver-to-customer

allocations. Higher accuracy indicates better learning performance. (7) Allocation per-

centage (pct.) is the percentage of estimated allocation decisions estimated as 1, indicating

157

that the driver will visit that location. A lower value offers more flexibility in optimizing

the solution. (8) Allocation standard deviation (std.) is the standard deviation of alloca-

tion decisions, which indicates the balance of driver workloads. A lower value signifies a

more balanced distribution of work. (9) Gap is the difference between the estimated and

exact optimal values for key metrics such as objective value, latest delivery time, and total

travel time. A lower gap means the learning-based solution is closer to the true optimal

solution.

We implement our algorithms using Python 3.10 and Gurobi 10.0.2 on a local com-

puter equipped with a 2 GHz Quad-Core Intel Core i5 processor and 16 GB of RAM, sup-

plemented by resources from Compute Canada’s Graham cluster, which includes Multi-

Core Intel Xeon processors (20 to 36 cores per node) and standard compute nodes with 64

GB of RAM. The optimization time limit for the exact solution procedure is set to 3600

seconds, while the time limit for learning-to-optimize during the comparison of learning

methods is set to 600 seconds. For implementations in dynamic environments, this limit is

further reduced to 300 seconds when applying learning-to-optimize with GNN, ensuring

efficient real-time decision-making.

3.5.2 Comparison of delivery systems

To compare the three systems, including separated order delivery (SOD), consolidated

order delivery (COD), and consolidated order delivery with transshipment (CODT), we

solve the models MSOD, MCOD, and M using Gurobi within the specified time limit across

various instances.

Figures 3.5(a) and (b) plot the latest delivery time, defined as the maximum duration

between order assignment and delivery across customers. The SOD yields faster delivery

times than the COD when there are few customers to serve, as the benefits of consolidating

requests are minimal. However, as more customers join the system and place orders, the

COD begins to dominate the SOD, and this dominance increases with the number of

customers. Additionally, the COD consistently yields a shorter total travel time, which

158

(a) Latest delivery time (Customer) (b) Latest delivery time (Driver)

(c) Total travel time (Customer) (d) Total travel time (Driver)

(e) Runtime (Customer) (f) Runtime (Driver)

Figure 3.5 – Comparison of delivery systems with various number of customers and
drivers

159

represents the total time drivers take to complete deliveries for all requests (see Figures

3.5(c) and 3.5(d)). It also converges to optimality faster (see Figures 3.5(e) and 3.5(f)).

In contrast, the CODT is always the most efficient among all three systems in terms of

delivery time for serving each customer and the total travel time for fulfilling all requests,

regardless of the instance scale (see Figures 3.5(a)−(d)). However, due to the complexity

of coordination and the flexibility of transshipment at any location, solving the CODT

using exact methods requires substantially more computational time (see Figures 3.5(e)

and (f)). Instances with more than 12 customers are unlikely to converge to optimality

within the 3600-second time limit, and a lower bound may not be found to produce a

feasible solution within 600 seconds. To address this challenge, we implement learning-

to-optimize techniques to explore whether high-quality solutions can be achieved more

efficiently, mitigating this computational drawback.

Insight 7 Consolidated-order delivery with transshipment outperforms other delivery sys-

tems in terms of both the delivery time for serving each customer and the total travel time

for fulfilling all requests. However, the complexity from consolidation and transshipment

increases the computational time required for exact solutions.

Insight 8 Without transshipment, consolidated-order delivery outperforms separated-order

delivery in delivery time, total travel time, and exact solution time, except when the num-

ber of customers is very small.

3.5.3 Comparison of learning algorithms

We compare four methods, including NDA, DANN, DCNN, and GNN, that map instance

information to allocation decisions. We implement the training process under three differ-

ent instance scales: small-scale instances, where the number of customers (|I |) ranges

from two to seven and the number of drivers (|K |) ranges from two to five; medium-scale

instances, where |I | ranges from eight to ten and |K | ranges from two to five; and large-

scale instances that fail to converge to optimality, where |I | ranges from 12 to 20 and

160

|K | ranges from two to five. First, we train using both small and medium-scale instances

and test on small, medium, and large-scale instances. In the second set of experiments, we

train solely on small-scale instances but test on all three scales. This approach allows us

to assess the model’s ability to generalize and predict decisions for larger-scale instances

that may not have been included in the training set.

Table 3.1 – Best Learning Method for Uniformly Sampled Customers in the Learning
Process

Training
Scale

Testing
Type

Testing Scale Best
Method Accuracy Allocation

Pct. (%)
Allocation
Std.|I | |K | NoI

|I |: [2, 10];
|K |: [2, 5];
NoI: 3600

T1 [2, 7] [2, 3] 1200 GNN 0.83 41.67 0.31
T1 [2, 7] [4, 5] 1200 GNN 0.92 22.50 0.43
T1 [8, 10] [2, 3] 600 DCNN 0.84 41.67 0.30
T1 [8, 10] [4, 5] 600 DCNN 0.90 22.50 0.04
T5 [12, 20] [2, 5] 400 GNN 0.74 32.08 0.55
T6 [2, 20] [2, 5] 4000 GNN 0.88 32.08 0.15

|I |: [2, 7];
|K |: [2, 3];
NoI: 1200

T1 [2, 7] [2, 3] 1200 GNN 0.84 41.67 0.30
T2 [2, 7] [4, 5] 1200 GNN 0.92 22.50 0.70
T3 [8, 10] [2, 3] 600 GNN 0.86 41.67 0.35
T4 [8, 10] [4, 5] 600 GNN 0.90 22.50 0.09
T5 [12, 20] [2, 5] 400 GNN 0.73 32.08 0.40
T6 [2, 20] [2, 5] 4000 GNN 0.87 32.08 0.15

Note. |I |: range of customer numbers; |K |: range of driver numbers; NoI: number of instances.
T1 corresponds to testing and training with the same scale, while T2−T5 all involve larger
scales. Specifically, T2 has a larger customer scale, T3 a larger driver scale, and T4 both scales
increased. T5 represents overall large-scale instances, and T6 includes all testing instances.

Table 3.2 – Best Learning Method for Uniformly Sampled Customers in the Optimization
Process

Training
Scale

Testing
Type

Testing Scale Best
Method

Objective
Gap(%)

Delivery
Time
Gap(%)

Travel
Time
Gap(%)

Run-
time
(s)|I | |K | NoI

|I |: [2, 10];
|K |: [2, 5];
NoI: 3600

T1 [2, 7] [2, 3] 1200 DCNN 2.10 2.10 1.19 5
T1 [2, 7] [4, 5] 1200 DCNN 0.94 0.94 0.15 5
T1 [8, 10] [2, 3] 600 DCNN 1.66 1.65 4.92 14
T1 [8, 10] [4, 5] 600 DCNN 1.66 1.68 10.42 30
T5 [12, 20] [2, 5] 400 GNN 1.19 1.23 16.76 457
T6 [2, 20] [2, 5] 4000 DCNN 1.56 1.56 2.75 40

|I |: [2, 7];
|K |: [2, 3];
NoI: 1200

T1 [2, 7] [2, 3] 1200 DCNN 2.07 2.07 1.67 6
T2 [2, 7] [4, 5] 1200 NDA 1.25 1.25 0.37 6
T3 [8, 10] [2, 3] 600 GNN 3.19 3.17 5.30 21
T4 [8, 10] [4, 5] 600 GNN 1.89 1.92 12.13 33
T5 [12, 20] [2, 5] 400 GNN 1.73 1.77 17.56 406
T6 [2, 20] [2, 5] 4000 GNN 2.78 2.78 3.80 38

161

Table 3.3 – Best Learning Method for Clustered Customers in the Learning Process

Training
Scale

Testing
Type

Testing Scale Best
Method Accuracy Allocation

Pct. (%)
Allocation
Std.|I | |K | NoI

|I |: [2, 10];
|K |: [2, 5];
NoI: 3600

T1 [2, 7] [2, 3] 1200 GNN 0.80 41.67 0.57
T1 [2, 7] [4, 5] 1200 GNN 0.90 22.50 0.09
T1 [8, 10] [2, 3] 600 GNN 0.73 41.67 0.29
T1 [8, 10] [4, 5] 600 GNN 0.88 18.71 0.45
T5 [12, 20] [2, 5] 400 GNN 0.69 32.08 0.76
T6 [2, 20] [2, 5] 4000 GNN 0.84 32.08 0.51

|I |: [2, 7];
|K |: [2, 3];
NoI: 1200

T1 [2, 7] [2, 3] 1200 GNN 0.81 41.67 0.19
T2 [2, 7] [4, 5] 1200 GNN 0.89 22.50 0.35
T3 [8, 10] [2, 3] 600 GNN 0.70 41.67 0.76
T4 [8, 10] [4, 5] 600 GNN 0.86 22.50 0.30
T5 [12, 20] [2, 5] 400 GNN 0.69 32.08 0.17
T6 [2, 20] [2, 5] 4000 GNN 0.83 32.08 0.94

Table 3.4 – Best Learning Method for Clustered Customers in the Optimization Process

Training
Scale

Testing
Type

Testing Scale Best
Method

Objective
Gap(%)

Delivery
Time
Gap(%)

Travel
Time
Gap(%)

Run-
time
(s)|I | |K | NoI

|I |: [2, 10];
|K |: [2, 5];
NoI: 3600

T1 [2, 7] [2, 3] 1200 DANN 1.88 1.86 2.08 6
T1 [2, 7] [4, 5] 1200 DANN 0.23 0.23 4.34 5
T1 [8, 10] [2, 3] 600 GNN 1.16 1.12 11.79 12
T1 [8, 10] [4, 5] 600 GNN 1.01 0.97 21.48 24
T5 [12, 20] [2, 5] 400 GNN 1.74 1.69 16.76 450
T6 [2, 20] [2, 5] 4000 DANN 1.93 1.90 1.47 111

|I |: [2, 7];
|K |: [2, 3];
NoI: 1200

T1 [2, 7] [2, 3] 1200 GNN 2.35 2.33 4.30 7
T2 [2, 7] [4, 5] 1200 GNN 1.79 1.73 24.09 8
T3 [8, 10] [2, 3] 600 GNN 2.90 2.89 3.57 15
T4 [8, 10] [4, 5] 600 GNN 1.20 1.18 7.55 31
T5 [12, 20] [2, 5] 400 GNN 2.36 2.30 16.76 457
T6 [2, 20] [2, 5] 4000 GNN 2.07 2.07 9.01 38

To simplify and clarify the results, we present the best-performing learning method

and its learning performance for uniformly sampled customers in Table 3.1, with its re-

optimization performance in Table 3.2. For clustered customers, the best learning method

and its performance are shown in Table 3.3, and the corresponding optimization perfor-

mance by solving MRRP is provided in Table 3.4. To differentiate between the training and

testing scales, we consider six testing types, each comprising distinct testing instances. T1

corresponds to the scenario where the testing scale aligns with the training scale. T2 per-

tains to cases with a larger customer scale, while T3 refers to instances with a larger driver

scale. T4 encompasses situations where both customer and driver scales are increased. T5

includes instances characterized by larger overall scales, and T6 represents all testing in-

162

stances. Both the training scale and testing scale clearly show the range of customer and

driver numbers. For the learning process, we present the best method with the highest

accuracy, along with its percentage and standard deviation of allocation plans. For the

optimization process, we display the best method with the lowest objective gap, including

its delivery time gap, total travel time gap, and optimization runtime. More details on

the metrics can be found in Section 3.5.1. Detailed performance results for each method

under both uniformly sampled customer and clustered customer cases are provided in

Appendix B.

According to Tables 3.1 and 3.3, we find that GNN demonstrates the overall best

performance in the learning process with the highest accuracy under most scenarios, re-

gardless of whether the testing scale is included in the training set. In instances where

both small and medium-scale datasets are included in the training set, DCNN can achieve

performance comparable to GNN for those scales. In other words, GNN excels at gen-

eralizing and predicting decisions for larger-scale instances that may not have been part

of the training data. Both GNN and DCNN perform well if the scale of future instances

matches that of historical instances.

This difference in performance arises because, in DANN, the assignment decision for

each driver-customer pair is considered independently, which means there is no guarantee

that each customer will be served by exactly one driver. This is evident in the unstable

allocation percentages observed with DANN (see Tables 3.6 and 3.8 in Appendix B). In

contrast, NDA, DCNN, and GNN ensure that at least one driver is allocated to serve each

customer. However, in NDA, the allocation of drivers to customers is based solely on the

distances between them. DCNN incorporates more features, leading to higher accuracy

compared to NDA. Nevertheless, DCNN still treats customers independently, as its goal is

to find the best driver for each individual customer. GNN, on the other hand, connects all

customers and drivers through edges, ensuring that every customer is served and allowing

for control over the number of customers each driver serves by summing edge labels.

Tables 3.2 and 3.4 display the optimal outputs when the estimated allocation deci-

sions are used as input for optimizing the restoration and refinement problem. First, we

163

observe that higher accuracy does not always correspond to a lower optimality gap. This

is because there may be multiple good solutions that yield low delivery times during the

optimization process. Second, no single method consistently outperforms the others in

all cases. Overall, GNN has a smaller optimality gap, along with lower delivery time and

travel time, particularly in the clustered customer cases when the testing scale exceeds the

training scale. When the training scale includes the testing scale, DCNN tends to have a

smaller gap in scenarios with uniformly sampled customers, along with a lower alloca-

tion standard deviation. In contrast, DANN exhibits a smaller gap in cases with clustered

customers, accompanied by a lower allocation percentage. A lower allocation standard

deviation indicates a more balanced workload among drivers, while a lower allocation

percentage provides greater flexibility in finding optimal allocation decisions during the

optimization process.

(a) Trade-off between optimality gap and runtime (b) Relative performances of different metrics

Figure 3.6 – Comparison of performances in optimization of four learning methods

A summary of the re-optimization results across both scenarios, based on different

training processes, is provided in Figure 3.6. Figure 3.6(a) displays the trade-off between

expected runtime and optimality gap for the four methods across all scenarios, with circle

size indicating sample size. In terms of runtime for optimizing the restoration and refine-

ment problem, GNN proves more efficient than the other methods, while DANN generally

results in the highest runtime across most scenarios. Overall, NDA and DANN are more

164

time-intensive in the optimization process compared to GNN and DCNN. A lower runtime

for optimization reflects that the input-estimated allocation decisions provide a stronger

lower bound. By using learning-to-optimize techniques, we achieve optimal solutions in

30 seconds for medium-scale instances with 8 to 10 customers, and in 450 seconds for

large-scale instances with 12 to 20 customers. In contrast, pure optimization methods

may take up to 3600 seconds for medium-scale instances and may fail to converge in

3600 seconds for large-scale cases, as shown in Figure 3.5. Figure 3.6(b) presents rela-

tive performance metrics, including accuracy, objective gap, travel time gap, and runtime

efficiency, relative to the best approach among all methods. A value of 1 indicates the

best performance: highest accuracy, lowest objective gap, lowest travel time gap, and

highest efficiency. We conclude that GNN delivers the most comprehensive performance

across metrics and scenarios, consistently achieving the lowest optimization runtime and

smallest optimality gap by providing an effective lower bound.

Insight 9 In a learning-to-optimize framework, we can use learning to obtain a lower

bound for the allocation decision, which helps reduce the search space for optimization,

thereby accelerating the solution procedure.

Insight 10 Overall, GNN performs the best with the highest accuracy, the smallest opti-

mality gap, efficient runtime, and superior scalability for larger instances not included in

the training set.

Insight 11 In the learning-to-optimize framework, higher accuracy during the learning

process does not necessarily lead to a smaller optimality gap in the optimization process.

A lower allocation percentage allows for greater flexibility and may lead to a smaller gap,

but at the cost of a longer optimization runtime. A lower allocation standard deviation,

indicating a balanced workload, may also imply a shorter delivery time and lead to a

smaller gap.

The four learning methods each have their own advantages and disadvantages. (1)

NDA is simple to implement and performs well without historical data, effectively gen-

165

eralizing with an increasing number of drivers. However, it struggles with complex

customer-driver interactions and performs poorly with clustered customer distributions,

as well as struggling to generalize with an increasing number of customers. (2) DANN

achieves high accuracy with sufficient training data and works well for instances of similar

scale, especially in cases with clustered customer distributions. However, it is computa-

tionally inefficient, struggles to generalize with larger customer sets, and yields unstable

allocation percentages that can lead to longer travel times. (3) DCNN also achieves high

accuracy with sufficient data and works well for instances of similar scale, performing ef-

fectively with uniform customer distributions. However, it requires extensive training data

and careful tuning, and it struggles to generalize with larger driver sets. (4) GNN excels

at modeling complex interactions between customers and drivers using structured graphs,

achieving high accuracy across different scenarios while being computationally efficient.

It also generalizes well to instances with more customers and drivers. However, it faces

challenges in collecting sufficient historical samples, as each instance corresponds to a

single graph, and its highest accuracy may not always correlate with the lowest optimality

gap. The detailed evidence can be found in Tables 3.6 to 3.9 in Appendix B.

3.5.4 Experimentation in a Dynamic Environment

In the dynamic delivery problem, the waiting strategy, which groups customer orders

based on arrival time, can reduce total driver travel times for serving all customers but

may increase order completion times (the duration from order placement to delivery). To

evaluate the efficiency of different waiting strategies and delivery systems, we simulate

the dynamic experimentation process under various waiting strategies with limited driver

availability.

As shown in Figure 3.7, customers continuously arrive, and delivery can be optimized

either immediately upon order arrival to ensure the fastest delivery or after a fixed interval,

optimizing delivery for all batched customers. The simulation models customer arrivals

as a Poisson process, with rates varying from 4 to 10 customers every 10 minutes. Sim-

166

Figure 3.7 – Customer arrival process and dynamic experimentation process

ulations are conducted over durations of one and two hours, with the number of drivers

ranging from 10 to 20. Each setup is repeated 40 times to ensure robust results, simulat-

ing real-world conditions while keeping other parameters consistent with the static model.

For a given re-optimization interval, the system optimizes driver assignments and routes

to serve orders arriving during the interval and updates availability based on task comple-

tion for the next interval. This process repeats with new customer arrivals at each interval.

Performance metrics such as completion time, wait time, delivery time, and travel time are

recorded. The detailed experimentation process is presented in Table 3.10 in Appendix

C1. Given limited drivers, two re-optimization strategies are considered when no drivers

are available within the rolling horizon. The first strategy always fixes re-optimization

time points and assigns customers to the earliest available drivers if no driver is free, with

results shown below. The second strategy delays optimization until enough drivers are

available, with details and a comparison of these strategies provided in Appendix C.

Figure 3.8(a) illustrates the trade-off between delivery time and wait time across re-

optimization intervals ranging from event-triggered to 20 minutes, resulting in a function

that initially decreases and then increases for order completion time, which includes both

delivery and wait times. Under the event-triggered strategy, delivery times are shorter, but

wait times are significantly longer. This occurs because drivers are immediately assigned

to serve individual customers, resulting in fast delivery but inefficient use of drivers. As

a result, drivers are occupied with deliveries before they can serve the next customer,

167

(a) Trade-off between wait time and delivery time for consolidated-order delivery with transshipment

(b) Completion time including wait time and delivery time

Figure 3.8 – Completion time under varying re-optimization intervals

and customers must wait longer for the earliest available driver, reducing overall driver

availability and increasing wait times. In contrast, the 20-minute re-optimization interval

results in longer delivery times but more moderate wait times. This is because more

customers are batched together and served by the same driver, improving the utilization of

available drivers. However, since each driver must serve more customers once dispatched,

delivery times are longer. Additionally, as customers must wait for batching, the wait time

before re-optimization (i.e., before drivers are assigned) increases as the re-optimization

interval lengthens. Overall, the five-minute re-optimization interval, which minimizes

completion time, strikes a favorable balance between wait time and delivery time. This

interval ensures that customers spend minimal time waiting for an available driver while

also allowing for prompt delivery once the orders are assigned. Figure 3.8(b) displays the

168

completion times for three systems under varying re-optimization intervals. For all three

systems, order completion time initially decreases before increasing as the re-optimization

interval extends. Notably, all systems achieve the lowest order completion time with the

5-minute re-optimization interval among all waiting strategies. COD outperforms the

other systems in extremely short re-optimization intervals, such as the event-triggered and

one-minute or two-minute intervals, while CODT excels across all other re-optimization

intervals. The detailed distribution of delivery time, wait time, travel time for serving

one additional customer, and customer scale for the three systems under different re-

optimization intervals is presented in Figure 3.10 in Appendix C1.

Insight 12 Consolidated-order delivery is the most efficient system regarding order com-

pletion time and average travel time for serving each customer under the event-triggered

strategy or a short re-optimization interval. This suggests that when there are few cus-

tomers to serve, it is advantageous for drivers to pick up all requests from different stores

without transshipment and deliver them as a combined order, as the savings in wait time

outweigh the costs of delivery time.

Insight 13 Consolidated-order delivery with transshipment with a five-minute re-optimization

interval is the most effective strategy, yielding the lowest order completion time among all

delivery systems across different waiting strategies. This approach entails connecting or-

ders that arrive within each five-minute interval, assigning the earliest available drivers

to visit different stores, meeting at a transshipment node to exchange items, and making a

single delivery to fulfill all requests for each customer.

The best waiting strategy may vary depending on whether it is a busy or leisurely

time for customer arrivals and changes in driver availability. Figure 3.9 illustrates the best

re-optimization interval that results in the minimum order completion time across various

customer arrival rates and different ratios of the customer number to available driver num-

ber. As the customer arrival rate increases, the best re-optimization interval also becomes

larger, leading to a longer completion time. This indicates that when customers arrive

169

(a) Minimum completion time (b) Best re-optimization interval

Figure 3.9 – Best re-optimization interval for varying ratios of customer number to driver
number

more frequently, it is beneficial to wait longer to optimize and fulfill orders. Despite the

increased completion time, this strategy still remains more efficient than the others. This

is because the reduction in wait time for available drivers outweighs the increase in deliv-

ery times. This principle holds true regardless of the customer arrival rate, but it becomes

more pronounced when customers arrive more frequently. Moreover, as the ratio of cus-

tomers to drivers increases, indicating a more limited number of drivers available to serve

the same number of customers at a consistent arrival rate, it is advisable to wait longer.

This is because once a driver is engaged in the early period, it takes more time for them

to become available to serve subsequent customers arriving later.

3.6 Conclusion

The multi-store consolidated-order delivery service allows customers to purchase prod-

ucts from multiple stores in a single transaction without additional delivery fees, ensuring

all items are consolidated and delivered in one combined delivery for greater convenience.

This service provides customers with the flexibility to shop across stores, compare prices,

save on delivery fees, and receive all items in a single delivery. For stores, it can boost

sales by encouraging larger orders, while delivery platforms benefit from reduced driver

170

demand and lower travel times. However, challenges arise in managing longer routes and

extended delivery times when a single driver must detour to multiple stores for pickups

and then deliver items to various locations. Transshipment, which enables drivers to co-

ordinate and transfer items effectively at transshipment nodes, can mitigate this issue and

further improve efficiency.

We develop a mixed-integer linear program for the multi-store order problem with

consolidation and transshipment, which can also be adapted to variants without consoli-

dation or transshipment. Solving the model that incorporates complex routing and time

variables using exact methods is computationally intensive, particularly for large-scale in-

stances. To overcome this problem, we implement a learning-to-optimize framework that

combines neural network-based learning methods with a restoration and refinement opti-

mization process. Using the learning-to-optimize method, the multi-store order problem

can achieve high-quality solutions efficiently. In the learning process for allocation plans,

we implement four methods, each with its own distinct advantages and disadvantages.

The graph-based neural network generally shows superior performance, achieving a bet-

ter trade-off between optimality gap and solution time while adapting well to larger scales

not represented in the training set. This adaptability is due to its ability to exchange in-

formation among nodes, edges, and globally. The nearest driver allocation is the simplest

to implement, requiring no training or historical samples. Both the driver classification

neural network and driver assignment neural network perform well when the testing scale

matches the training scale.

Through experiments conducted in various U.S. regions with varying customer lo-

cations and arrival frequencies, we find a trade-off between delivery time, which is the

duration from order pickup to delivery, and wait time, which is the duration from order

placement to pickup, indicating the existence of an optimal waiting strategy. It is bene-

ficial to wait longer to batch more customers in cases of frequent customer arrivals and

limited driver availability. Overall, the consolidated-order delivery system with transship-

ment and a five-minute waiting strategy consistently outperforms the others in terms of

order completion time and driver travel time, regardless of customer arrival frequency or

171

driver availability relative to customer demand, due to its superior spatial and temporal

consolidation.

Our work has some limitations that can be addressed in future research. It would be

promising to formulate a more complex and realistic setting that includes transshipment

costs, limited capacity, and potential errors. Transshipment nodes can be fixed locations

or provided by stores or customers, each with associated costs and capacity limitations.

Additionally, transshipment nodes may fail to open as scheduled, and deliveries before

transfer could experience unexpected delays due to traffic or bad weather, causing further

delays in both transfer and final delivery. Both the uncertainty in travel time and po-

tential transshipment errors could be considered for more reliable on-time deliveries. In

a rolling horizon implementation, earlier-arriving orders should be prioritized over later

ones when driver availability is limited, and a piecewise linear function that increases with

delivery time for each order could be applied. Future research can also explore stochastic

and dynamic methods to address uncertain and time-dependent travel conditions in con-

solidated delivery services, enabling real-time order allocation and dynamically revised

driver routing decisions. In our learning process, classification neural networks and graph

neural networks are applied independently. However, other efficient machine learning al-

gorithms may yield better performance. For instance, embedding algorithms, which train

models independently before combining them into a stronger overall model, or ensemble

learning algorithms, which sequentially train multiple models and aggregate their outputs,

can enhance performance beyond that of any single model.

172

3.7 Appendix

Appendix A: Summary of Notation

The notation is presented in Table 3.5.

Table 3.5 – Problem Notation

Index Description
I Set of customers
J Set of stores
K Set of drivers
N Set of nodes, including customers, stores, and driver initial locations
Parameters Description
ei j Binary parameter indicating if customer i orders from store j
i j Index of item ordered by customer i from store j
pi j Size of item i j
qk Capacity of driver k
tnn′ Travel time between nodes n and n′

[αi,βi] Time window for customer i
Decisions Description
zk

n Binary variable indicating if driver k visits node n
xk

nn′ Binary variable indicating if driver k travels from node n to node n′

yi j
nn′ Binary variable indicating if item i j travels from node n to node n′ during the trip

vki j+
n Binary variable indicating if item i j arrives at node n via driver k

vki j−
n Binary variable indicating if item i j departs from node n via driver k

τk+
n Continuous variable specifying the time driver k arrives at node n

τk−
n Continuous variable specifying the time driver k departs from node n

λ
i j
n Continuous variable specifying the arrival time of item i j at node n

Appendix B: Detailed Metrics of Learning and

Optimization Processes

We present the detailed performance of each method under both uniformly sampled cus-

tomer and clustered customers in this section. The learning performance for the uniformly

sampled customers is shown in 3.6, and the re-optimization performance is presented in

Table 3.7. The learning performance for the clustered customers is detailed in Table 3.8,

with the corresponding optimization performance displayed in Table 3.9.

173

Table 3.6 – Comparison of Learning Methods for Uniformly Sampled Customers in the
Learning Process

Training
Scale

Testing
Scale

Method Accuracy Allocation
Percentage

Allocation
Std.

|I |: (2, 7);
|K |: (2, 3);
NoI: 1200

|I |: (2, 7);
|K |: (2, 3);
NoI: 1200

NDA 0.79 41.67% 0.26
DANN 0.82 44.02% 0.00
DCNN 0.82 41.67% 0.18
GNN 0.84 41.67% 0.30

|I |: (2, 7);
|K |: (4, 5);
NoI: 1200

NDA 0.88 22.50% 0.39
DANN 0.82 29.95% 0.59
DCNN 0.82 22.50% 0.61
GNN 0.92 22.50% 0.70

|I |: (8, 10);
|K |: (2, 3);
NoI: 600

NDA 0.78 41.67% 0.94
DANN 0.81 52.24% 0.28
DCNN 0.84 41.67% 0.56
GNN 0.86 41.67% 0.35

|I |: (8, 10);
|K |: (4, 5);
NoI: 600

NDA 0.85 22.50% 0.02
DANN 0.78 37.67% 0.42
DCNN 0.81 22.50% 0.43
GNN 0.90 22.50% 0.09

|I |: (12, 20);
|K |: (2, 5);
NoI: 400

NDA 0.71 32.08% 0.97
DANN 0.69 44.32% 0.50
DCNN 0.69 32.08% 0.84
GNN 0.73 32.08% 0.40

|I |: (2, 20);
|K |: (2, 5);
NoI: 4000

NDA 0.83 32.08% 0.07
DANN 0.81 39.09% 0.22
DCNN 0.82 32.08% 0.59
GNN 0.87 32.08% 0.15

|I |: (2, 10);
|K |: (2, 5);
NoI: 3600

|I |: (2, 7);
|K |: (2, 3);
NoI: 1200

NDA 0.79 41.67% 0.26
DANN 0.81 40.24% 0.04
DCNN 0.81 41.67% 0.09
GNN 0.83 41.67% 0.31

|I |: (2, 7);
|K |: (4, 5);
NoI: 1200

NDA 0.88 22.50% 0.39
DANN 0.89 20.55% 0.40
DCNN 0.91 22.50% 0.24
GNN 0.92 22.50% 0.43

|I |: (8, 10);
|K |: (2, 3);
NoI: 600

NDA 0.78 41.67% 0.81
DANN 0.82 49.18% 0.26
DCNN 0.84 41.67% 0.30
GNN 0.82 41.67% 0.70

|I |: (8, 10);
|K |: (4, 5);
NoI: 600

NDA 0.85 22.50% 0.02
DANN 0.85 28.75% 0.34
DCNN 0.90 22.50% 0.04
GNN 0.89 22.50% 0.05

|I |: (12, 20);
|K |: (2, 5);
NoI: 400

NDA 0.71 32.08% 0.20
DANN 0.69 37.09% 0.04
DCNN 0.70 32.08% 0.59
GNN 0.74 32.08% 0.55

|I |: (2, 20);
|K |: (2, 5);
NoI: 4000

NDA 0.83 32.08% 0.06
DANN 0.84 32.38% 0.15
DCNN 0.86 32.08% 0.05
GNN 0.88 32.08% 0.15

174

Table 3.7 – Comparison of Learning Methods for Uniformly Sampled Customers in the
Optimization Process

Training
Scale

Testing
Scale

Method Objective
Gap (%)

Delivery Time
Gap (%)

Travel Time
Gap (%)

Runtime
(s)

|I |: (2, 7);
|K |: (2, 3);
NoI: 1200

|I |: (2, 7);
|K |: (2, 3);
NoI: 1200

NDA 3.06 3.06 1.18 7
DANN 2.97 2.96 4.31 11
DCNN 2.07 2.07 1.67 6
GNN 3.21 3.2 1.55 6

|I |: (2, 7);
|K |: (4, 5);
NoI: 1200

NDA 1.25 1.25 0.37 6
DANN 5.53 5.48 43.79 26
DCNN 10.04 10.01 11.9 10
GNN 2.73 2.72 1.49 6

|I |: (8, 10);
|K |: (2, 3);
NoI: 600

NDA 8.26 8.24 2.77 103
DANN 6.89 6.89 11.04 200
DCNN 3.78 3.78 2.19 28
GNN 3.19 3.17 5.3 21

|I |: (8, 10);
|K |: (4, 5);
NoI: 600

NDA 2.1 2.14 11.94 133
DANN 4.2 4.24 23.79 206
DCNN 12.19 12.28 27.11 86
GNN 1.89 1.92 12.13 33

|I |: (12, 20);
|K |: (2, 5);
NoI: 400

NDA 3.49 3.47 3.74 483
DANN 5.48 5.47 1.84 607
DCNN 2.29 2.33 18.38 532
GNN 1.73 1.77 17.56 406

|I |: (2, 20);
|K |: (2, 5);
NoI: 4000

NDA 2.81 2.8 2.32 50
DANN 4.54 4.56 19.98 92
DCNN 6.01 6.03 9.9 53
GNN 2.78 2.78 3.8 38

|I |: (2, 10);
|K |: (2, 5);
NoI: 3600

|I |: (2, 7);
|K |: (2, 3);
NoI: 1200

NDA 3.06 3.06 1.18 7
DANN 2.28 2.28 0.33 9
DCNN 2.10 2.10 1.19 5
GNN 3.07 3.07 0.77 5

|I |: (2, 7);
|K |: (4, 5);
NoI: 1200

NDA 1.25 1.25 0.37 6
DANN 1.49 1.48 4.36 8
DCNN 0.94 0.94 0.15 5
GNN 2.19 2.19 3.22 5

|I |: (8, 10);
|K |: (2, 3);
NoI: 600

NDA 8.26 8.24 2.77 103
DANN 4.03 4.01 6.57 154
DCNN 1.66 1.65 4.92 14
GNN 2.82 2.81 4.46 12

|I |: (8, 10);
|K |: (4, 5);
NoI: 600

NDA 2.1 2.14 11.94 133
DANN 1.89 1.91 7.17 133
DCNN 1.66 1.68 10.42 30
GNN 2.13 2.15 7.4 25

|I |: (12, 20);
|K |: (2, 5);
NoI: 400

NDA 3.49 3.47 3.74 483
DANN 5.20 5.18 2.99 607
DCNN 1.63 1.67 17.51 528
GNN 1.19 1.23 16.76 457

|I |: (2, 20);
|K |: (2, 5);
NoI: 4000

NDA 2.81 2.8 2.32 50
DANN 2.32 2.31 2.76 67
DCNN 1.56 1.56 2.75 40
GNN 2.52 2.51 1.39 35

175

Table 3.8 – Comparison of Learning Methods for Clustered Customers in the Learning
Process

Training
Scale

Testing
Scale

Method Accuracy Allocation
Percentage

Allocation
Std.

|I |: (2, 7);
|K |: (2, 3));
NoI: 1200

|I |: (2, 7);
|K |: (2, 3);
NoI: 1200

NDA 0.64 41.67% 0.30
DANN 0.73 37.43% 0.01
DCNN 0.77 41.67% 0.58
GNN 0.81 41.67% 0.19

|I |: (2, 7);
|K |: (4, 5);
NoI: 1200

NDA 0.78 22.50% 0.90
DANN 0.76 23.11% 0.51
DCNN 0.82 22.50% 0.26
GNN 0.89 22.50% 0.35

|I |: (8, 10);
|K |: (2, 3);
NoI: 600

NDA 0.58 41.67% 0.7
DANN 0.63 63.14% 0.12
DCNN 0.63 41.67% 0.67
GNN 0.70 41.67% 0.76

|I |: (8, 10);
|K |: (4, 5);
NoI: 600

NDA 0.8 22.50% 1.36
DANN 0.70 27.04% 0.67
DCNN 0.80 22.50% 0.58
GNN 0.86 22.50% 0.30

|I |: (12, 20);
|K |: (2, 5);
NoI: 400

NDA 0.60 32.08% 0.91
DANN 0.63 68.31% 0.566
DCNN 0.63 32.08% 0.76
GNN 0.69 32.08% 0.17

|I |: (2, 20);
|K |: (2, 5);
NoI: 4000

NDA 0.70 32.08% 0.54
DANN 0.73 33.81% 0.27
DCNN 0.78 32.08% 0.55
GNN 0.83 32.08% 0.94

|I |: (2, 10);
|K |: (2, 5);
NoI: 3600

|I |: (2, 7);
|K |: (2, 3);
NoI: 1200

NDA 0.64 41.67% 0.30
DANN 0.72 28.49% 0.51
DCNN 0.77 41.67% 0.93
GNN 0.80 41.67% 0.57

|I |: (2, 7);
|K |: (4, 5);
NoI: 1200

NDA 0.78 22.5% 0.90
DANN 0.86 17.48% 1.37
DCNN 0.90 22.50% 0.03
GNN 0.90 22.50% 0.09

|I |: (8, 10);
|K |: (2, 3);
NoI: 600

NDA 0.58 41.67% 0.11
DANN 0.65 38.15% 0.19
DCNN 0.72 41.67% 0.21
GNN 0.73 41.67% 0.29

|I |: (8, 10);
|K |: (4, 5);
NoI: 600

NDA 0.80 18.71% 0.35
DANN 0.84 18.53% 0.92
DCNN 0.86 18.71% 0.07
GNN 0.88 18.71% 0.45

|I |: (12, 20);
|K |: (2, 5);
NoI: 400

NDA 0.60 32.08% 0.28
DANN 0.66 31.11% 0.59
DCNN 0.66 32.08% 0.30
GNN 0.69 32.08% 0.76

|I |: (2, 20);
|K |: (2, 5);
NoI: 4000

NDA 0.70 32.08% 0.61
DANN 0.78 29.31% 0.88
DCNN 0.82 32.08% 0.63
GNN 0.84 32.08% 0.51

176

Table 3.9 – Comparison of Learning Methods for Clustered Customers in the Optimiza-
tion Process

Training
Scale

Testing
Scale

Method Objective
Gap(%)

Delivery Time
Gap(%)

Travel Time
Gap(%)

Runtime
(s)

|I |: (2, 7);
|K |: (2, 3);
NoI: 1200

|I |: (2, 7);
|K |: (2, 3);
NoI: 1200

NDA 3.64 3.58 25.77 14
DANN 2.94 2.92 8.61 24
DCNN 3.54 3.53 9.96 10
GNN 2.35 2.33 4.3 7

|I |: (2, 7);
|K |: (4, 5);
NoI: 1200

NDA 2.74 2.62 62.36 19
DANN 3.40 3.28 58.73 43
DCNN 4.90 4.87 9.08 13
GNN 1.79 1.73 24.09 8

|I |: (8, 10);
|K |: (2, 3);
NoI: 600

NDA 10.71 10.69 12.31 152
DANN 11.72 11.69 20.47 311
DCNN 4.35 4.30 14.55 82
GNN 2.90 2.89 3.57 15

|I |: (8, 10);
|K |: (4, 5);
NoI: 600

NDA 5.72 5.63 39.31 127
DANN 4.21 4.11 41.43 264
DCNN 6.46 6.38 23.95 98
GNN 1.20 1.18 7.55 31

|I |: (12, 20);
|K |: (2, 5);
NoI: 400

NDA 11.62 11.57 3.4 574
DANN 10.62 10.59 12.5 607
DCNN 4.06 4.00 17.51 542
GNN 2.36 2.30 16.76 457

|I |: (2, 20);
|K |: (2, 5);
NoI: 4000

NDA 4.65 4.58 36.19 47
DANN 4.53 4.48 29.79 109
DCNN 4.39 4.36 12.09 55
GNN 2.07 2.07 9.01 38

|I |: (2, 10);
|K |: (2, 5);
NoI: 3600

|I |: (2, 7);
|K |: (2, 3);
NoI: 1200

NDA 3.64 3.58 25.77 14
DANN 1.88 1.86 2.08 41
DCNN 4.56 4.55 9.97 7
GNN 2.65 2.64 3.17 6

|I |: (2, 7);
|K |: (4, 5);
NoI: 1200

NDA 2.74 2.62 62.36 19
DANN 0.23 0.23 4.34 50
DCNN 2.75 2.72 4.14 6
GNN 1.68 1.64 23.44 5

|I |: (8, 10);
|K |: (2, 3);
NoI: 600

NDA 10.71 10.69 12.31 152
DANN 6.22 6.22 5.96 329
DCNN 5.18 5.15 11.74 83
GNN 1.16 1.12 11.79 12

|I |: (8, 10);
|K |: (4, 5);
NoI: 600

NDA 5.72 5.63 39.31 127
DANN 1.18 1.13 12.16 163
DCNN 2.99 2.97 11.53 35
GNN 1.01 0.97 21.48 24

|I |: (12, 20);
|K |: (2, 5);
NoI: 400

NDA 11.62 11.57 3.40 574
DANN 6.52 6.50 10.02 607
DCNN 2.08 2.03 17.51 525
GNN 1.74 1.69 16.76 450

|I |: (2, 20);
|K |: (2, 5);
NoI: 4000

NDA 4.65 4.58 36.19 47
DANN 1.93 1.90 1.47 111
DCNN 3.60 3.57 8.89 46
GNN 1.96 1.95 11.10 34

177

Appendix C: Dynamic Experiments

Appendix C1: Dynamic Experiments with

Earliest-Available-Driver-Assignment Strategy

The detailed experimentation process for earliest-available-driver-assignment strategy is

presented in Table 3.10.

Table 3.10 – Dynamic Experimentation Process

Step Description
Initialization Initialize the experimentation with the following elements:

• Define the customer arrival process as a Poisson process with a specified arrival rate. Set service duration
|T | to 1 or 2 hours. Generate customer arrival times ai for customer i ∈I arriving within this duration.

• Let |K | available drivers serve customers who order from store j ∈ |J |. For driver k ∈K , generate their
origin node and set availability time τok = 0. Additionally, determine the locations of both customers and
stores.

• Define the re-optimization intervals, which can vary from event-triggered (e.g., upon a new customer ar-
rival) to a fixed interval (e.g., 10 minutes). Obtain the set of optimization time points {p0, p1, p2, . . . , pT},
and define the final time P for the experimentation.

Step 1 For the initial period t = 0, corresponding to the time interval [p0, p1], optimize the system at time point p1,

• Input the information, including the customers that arrive within this period (i.e., i ∈I0 where I0 = {i ∈
I |p0 ≤ ai ≤ p1}) and place orders from stores j ∈J , as well as the drivers k ∈K with their available
times to serve customers being τok = 0.

• Run the optimization problem to assign drivers to customers and plan their routes. If no drivers are cur-
rently available, customers are assigned to the earliest available drivers who can serve the orders once they
complete their assigned tasks.

• Update the drivers’ availability times based on the completion time of their last served customer (i.e.,
τok ←maxi∈I0

{
τ

k−
i

}
), and set the driver location to the last served customer location.

• Record the number of customers served in the interval [p0, p1], as well as the completion time, wait time,
delivery time, and expected travel time for each customer.

Step 2 While t ≤ |T |−1, repeat the following steps:
Increment t and update the time interval to [pt , pt+1]. Optimize the system at the time point pt+1,

• Input the information, including the customers that arrive within this period (i.e., i ∈ It where It = {i ∈
I | pt ≤ ai ≤ pt+1}) and place orders from stores j ∈J , as well as the drivers k ∈K with their earliest
available times to serve customers being τok .

• Run the optimization problem to assign drivers to customers and plan their routes. If no drivers are cur-
rently available, customers are assigned to the earliest available drivers who can serve the orders once they
complete their assigned tasks.

• Update the drivers’ availability times based on the completion time of their last served customer (i.e.,
τok ←maxi∈It{τk−

i }), and set the driver location to the last served customer location.

• Record the number of customers served in the interval [pt , pt+1], as well as the completion time, wait time,
delivery time, and expected travel time for each customer.

Output The experimentation outputs include the total number of customers served during each time interval, and for each
customer, the order completion time, wait time, delivery time, and expected travel time.

178

The dynamic experimentation results for earliest-available-driver-assignment strategy

are shown in Figure 3.10.

(a) Delivery time between order pickup and arrival

(b) Wait time between order placement and pickup

(c) Driver travel time by serving one more customer

(d) Number of customers in each re-optimization interval

Figure 3.10 – Delivery time, wait time, travel time, and customer number under varying
re-optimization intervals

179

Appendix C2: Dynamic Experiments with

Driver-Availability-Triggered Strategy

We present the dynamic experimentation process with driver-availability-triggered opti-

mization in Table 3.11.

Table 3.11 – Dynamic Experimentation Process with Driver-Availability-Triggered Opti-
mization

Step Description
Initialization Initialize the experimentation with the following elements:

• Define the customer arrival process as a Poisson process with a specified arrival rate. Set service
duration |T | to 1 or 2 hours. Generate customer arrival times ai for each customer i ∈I who arrives
within this duration.

• Let |K | available drivers serve customers who order from store j ∈ |J |. For driver k ∈K , generate
their origin node and set availability time τok = 0. Additionally, determine the locations of both
customers and stores.

• Define the re-optimization intervals, which can vary from event-triggered (e.g., upon a new cus-
tomer arrival) to a fixed interval (e.g., 10 minutes). Obtain the set of optimization time points
{p0, p1, p2, . . . , pT}, and define the final time P for the experimentation.

Step 1 For the initial period t = 0, corresponding to the time interval [p0, p1], if there are available drivers k ∈ {k ∈
K |ok ≤ p1}, optimize the system at the time point p1,

• Input the information, including the customers that arrive within this period (i.e., i ∈I0 where I0 =
{i ∈I |p0 ≤ ai ≤ p1}) and place orders from stores j ∈J , as well as the drivers k ∈K with their
available times to serve customers being τok = 0.

• Run the optimization problem to assign available drivers to customers and plan their routes.

• Update the drivers’ availability times based on the completion time of their last served customer (i.e.,
τok ←maxi∈I0

{
τ

k−
i

}
), and set the driver location to the last served customer location.

• Record the number of customers served in the interval [p0, p1], as well as the completion time, wait
time, delivery time, and expected travel time for each customer.

Step 2 While t ≤ |T |−1, repeat the following steps:
Increment t and update the time interval to [pt , pt+1]. If there are available drivers k ∈ {k ∈K |ok ≤ pt+1},
optimize the system at the time point pt+1,

• Input the information, including the customers that arrive within this period (i.e., i ∈It where It =
{i ∈ I | pt ≤ ai ≤ pt+1}) and place orders from stores j ∈J , as well as the drivers k ∈K with
their earliest available times to serve customers being τok .

• Run the optimization problem to assign available drivers to customers and plan their routes.

• Update the drivers’ availability times based on the completion time of their last served customer (i.e.,
τok ←maxi∈It{τk−

i }), and set the driver location to the last served customer location.

• Record the number of customers served in the interval [pt , pt+1], as well as the completion time, wait
time, delivery time, and expected travel time for each customer.

Output The experimentation outputs include the total number of customers served during each time interval, and
for each customer, the order completion time, wait time, delivery time, and expected travel time.

180

(a) Completion time, wait time, and delivery time for consolidated-order delivery with transshipment

(b) Completion time including wait time and delivery time

Figure 3.11 – Completion time under varying re-optimization intervals for the driver-
availability-triggered strategy

Under the dynamic experimentation with the driver-availability-triggered strategy,

Figure 3.11(a) presents the order completion time, including delivery and wait times,

for consolidated-order delivery with transshipment (CODT). Although the trade-off be-

tween delivery and wait times disappears under this strategy, the order completion time

still follows a smooth pattern, with trends that initially decrease and then increase. The

five-minute re-optimization interval yields the lowest delivery time, while the six-minute

interval achieves the lowest wait time and overall order completion times. Figure 3.11(b)

compares completion times across the three systems under varying intervals, while Figure

3.12 provides detailed distributions of delivery time, wait time, travel time per customer,

and customer scale. CODT consistently outperforms the other systems in order comple-

181

(a) Delivery time between order pickup and arrival

(b) Wait time between order placement and pickup

(c) Driver travel time by serving one more customer

(d) Number of customers in each re-optimization interval

Figure 3.12 – Delivery time, wait time, travel time, and customer number under varying
re-optimization intervals for the driver-availability-triggered strategy

182

(a) Minimum completion time (b) Best re-optimization interval

Figure 3.13 – Best re-optimization interval for varying ratios of customer number to driver
number

tion time, delivery time, and driver travel time per customer. Figure 3.13 highlights the

best re-optimization interval that minimizes order completion time across varying cus-

tomer arrival rates and customer-to-driver ratios. As arrival rates or customer-to-driver

ratios increase, longer re-optimization intervals are optimal, reflecting the benefit of wait-

ing longer to batch and fulfill orders. These findings align with insights from the earliest-

available-driver-assignment strategy.

Appendix C3: Comparison of the Two Strategies

We compare the earliest-available-driver-assignment strategy with the driver-availability-

triggered strategy in this section. As shown in Figures 3.8(a) and 3.11(a), the best com-

pletion time under the driver-availability-triggered strategy, at 34.0 minutes, is higher

than the best time of 33.6 minutes under the earliest-available-driver-assignment strategy.

Therefore, we conclude that fixed-interval optimization with the earliest-available-driver-

assignment strategy is slightly superior to the driver-availability-triggered strategy.

Table 3.12 presents the best re-optimization intervals and corresponding minimum

completion times across different customer arrival rates and customer-to-driver ratios,

highlighting how the optimal waiting strategy varies. Overall, the earliest-available-

183

driver-assignment strategy consistently outperforms the driver-availability-triggered strat-

egy, though the gap is small. The best re-optimization interval for the driver-availability-

triggered strategy is approximately one minute longer, as both shorter and longer intervals

can result in larger batching sizes and longer completion times in this approach. In sum-

mary, a shorter-duration waiting strategy is optimal for the consolidated-order delivery

system with transshipment.

Customer
to Driver
Ratio

Arrival Rate
(Num. of
customers every
10 mins)

Earliest-available-driver-assignment Strategy Driver-availability-triggered Strategy

Best
Re-optimization
Interval (mins)

Minimum
Comple-
tion Time
(mins)

Best
Re-optimization
Interval (mins)

Minimum
Comple-
tion Time
(mins)

1 4 3 29.40 3 29.64
1 6 4 30.14 4 30.17
1 8 4 30.99 4 31.53
1 10 4 31.42 5 31.60

2 4 3 29.45 3 29.84
2 6 4 30.44 5 30.52
2 8 4 31.61 5 32.17
2 10 6 32.61 5 32.80

3 4 4 30.04 4 30.00
3 6 5 31.19 5 31.47
3 8 5 32.63 5 32.40
3 10 6 32.85 6 33.00

4 4 4 30.60 4 30.43
4 6 5 31.58 5 31.76
4 8 5 33.00 5 33.21
4 10 6 33.20 7 33.80

5 4 4 30.67 4 30.79
5 6 5 32.04 6 32.66
5 8 5 33.27 6 33.37
5 10 9 33.62 9 34.00

6 4 4 31.29 6 31.88
6 6 6 32.30 6 32.70
6 8 6 33.88 6 33.90
6 10 9 34.30 9 34.30

Table 3.12 – Comparison between Earliest-Available-Driver-Assignment Strategy and
Driver-Availability-Triggered Strategy

184

References

Auad, Ramon, Alan Erera, and Martin Savelsbergh (2024). “Dynamic courier capacity ac-

quisition in rapid delivery systems: A deep Q-learning approach”. In: Transportation

Science 58.1, pp. 67–93.

Berbeglia, Gerardo, Jean-François Cordeau, and Gilbert Laporte (2010). “Dynamic pickup

and delivery problems”. In: European Journal of Operational Research 202.1, pp. 8–

15.

Bogyrbayeva, Aigerim et al. (2024). “Machine learning to solve vehicle routing prob-

lems: A survey”. In: IEEE Transactions on Intelligent Transportation Systems 25.6,

pp. 4754–4772.

Cao, Junyu and Wei Qi (2023). “Stall economy: The value of mobility in retail on wheels”.

In: Operations Research 71.2, pp. 708–726.

Carlsson, John Gunnar et al. (2024). “Provably good region partitioning for on-time last-

mile delivery”. In: Operations Research 72.1, pp. 91–109.

Dantzig, George B and John H Ramser (1959). “The truck dispatching problem”. In:

Management Science 6.1, pp. 80–91.

DoubleDash (2023). Introducing DoubleDash, a new way to shop multiple stores in one

order. Last accessed on Nov 01, 2023. URL: https://about.doordash.com/en-

us/news/introducing-doubledash-a-new-way-to-shop-multiple-stores-

in-one-order.

Epipresto (2023). The place to order from all your specialized and independent stores!

Last accessed on Nov 01, 2023. URL: https://epipresto.ca/en.

Hildebrandt, Florentin D and Marlin W Ulmer (2022). “Supervised learning for arrival

time estimations in restaurant meal delivery”. In: Transportation Science 56.4, pp. 1058–

1084.

Hong, L Jeff, Zhiyuan Huang, and Henry Lam (2021). “Learning-based robust optimiza-

tion: Procedures and statistical guarantees”. In: Management Science 67.6, pp. 3447–

3467.

185

https://about.doordash.com/en-us/news/introducing-doubledash-a-new-way-to-shop-multiple-stores-in-one-order
https://about.doordash.com/en-us/news/introducing-doubledash-a-new-way-to-shop-multiple-stores-in-one-order
https://about.doordash.com/en-us/news/introducing-doubledash-a-new-way-to-shop-multiple-stores-in-one-order
https://epipresto.ca/en

Instacart (2022). Introducing OrderUp, a new way to save time and money on Instacart

with orders from two retailers– with just one delivery fee. Last accessed on Nov 01,

2023. URL: https://www.instacart.com/company/updates/introducing-

orderup- a- new- way- to- save- time- and- money- on- instacart- with-

orders-from-two-retailers-with-just-one-delivery-fee/.

Julien, Esther, Krzysztof Postek, and Ş İlker Birbil (2024). “Machine learning for k-

adaptability in two-stage robust optimization”. In: INFORMS Journal on Computing

Forthcoming. URL: https://doi.org/10.1287/ijoc.2022.0314.

Koç, Çağrı, Gilbert Laporte, and İlknur Tükenmez (2020). “A review of vehicle routing

with simultaneous pickup and delivery”. In: Computers & Operations Research 122,

p. 104987.

Kotary, James, Vincenzo Di Vito, et al. (2024). “Learning Joint Models of Prediction and

Optimization”. In: ECAI 2024. IOS Press, pp. 2476–2483.

Kotary, James, Ferdinando Fioretto, et al. (Aug. 2021). “End-to-end constrained optimiza-

tion learning: A survey”. In: International Joint Conference on Artificial Intelligence.

IJCAI, pp. 4475–4482.

Larsen, Eric, Emma Frejinger, et al. (2024). “Fast continuous and integer L-shaped heuris-

tics through supervised learning”. In: INFORMS Journal on Computing 36.1, pp. 203–

223.

Larsen, Eric, Sébastien Lachapelle, et al. (2022). “Predicting tactical solutions to oper-

ational planning problems under imperfect information”. In: INFORMS Journal on

Computing 34.1, pp. 227–242.

Li, Zhuoxin and Gang Wang (2024). “On-Demand Delivery Platforms and Restaurant

Sales”. In: Management Science Forthcoming. URL: https://doi.org/10.1287/

mnsc.2021.01010.

Liu, Sheng, Long He, and Zuo-Jun Max Shen (2021). “On-time last-mile delivery: Or-

der assignment with travel-time predictors”. In: Management Science 67.7, pp. 4095–

4119.

186

https://www.instacart.com/company/updates/introducing-orderup-a-new-way-to-save-time-and-money-on-instacart-with-orders-from-two-retailers-with-just-one-delivery-fee/
https://www.instacart.com/company/updates/introducing-orderup-a-new-way-to-save-time-and-money-on-instacart-with-orders-from-two-retailers-with-just-one-delivery-fee/
https://www.instacart.com/company/updates/introducing-orderup-a-new-way-to-save-time-and-money-on-instacart-with-orders-from-two-retailers-with-just-one-delivery-fee/
https://doi.org/10.1287/ijoc.2022.0314
https://doi.org/10.1287/mnsc.2021.01010
https://doi.org/10.1287/mnsc.2021.01010

Lyu, Zefeng and Andrew Junfang Yu (2023). “The pickup and delivery problem with

transshipments: Critical review of two existing models and a new formulation”. In:

European Journal of Operational Research 305.1, pp. 260–270.

Mao, Wenzheng et al. (2022). “On-demand meal delivery platforms: Operational level

data and research opportunities”. In: Manufacturing & Service Operations Manage-

ment 24.5, pp. 2535–2542.

Maragno, Donato et al. (2023). “Mixed-integer optimization with constraint learning”. In:

Operations Research Forthcoming. URL: https://doi.org/10.1287/opre.2021.

0707.

Merchan, Daniel et al. (2021). Amazon Last Mile Routing Research Challenge Dataset.

Accessed January 6, 2022. Seattle: Amazon.com. URL: https://registry.opendata.

aws/amazon-last-mile-challenges.

Mitrović-Minić, Snežana and Gilbert Laporte (2006). “The pickup and delivery problem

with time windows and transshipment”. In: INFOR: Information Systems and Opera-

tional Research 44.3, pp. 217–227.

Nowak, Maciek, Ozlem Ergun, and Chelsea C White III (2009). “An empirical study on

the benefit of split loads with the pickup and delivery problem”. In: European Journal

of Operational Research 198.3, pp. 734–740.

Ojha, Ritesh et al. (2023). “Optimization-based Learning for Dynamic Load Planning in

Trucking Service Networks”. In: arXiv preprint arXiv:2307.04050.

Özarık, Sami Serkan, Paulo da Costa, and Alexandre M Florio (2024). “Machine learn-

ing for data-driven last-mile delivery optimization”. In: Transportation Science 58.1,

pp. 27–44.

Qi, Meng et al. (2023). “A practical end-to-end inventory management model with deep

learning”. In: Management Science 69.2, pp. 759–773.

Raghavan, S and Rui Zhang (2024). “The driver-aide problem: Coordinated logistics

for last-mile delivery”. In: Manufacturing & Service Operations Management 26.1,

pp. 291–311.

187

https://doi.org/10.1287/opre.2021.0707
https://doi.org/10.1287/opre.2021.0707
https://registry.opendata.aws/amazon-last-mile-challenges
https://registry.opendata.aws/amazon-last-mile-challenges

Rais, Abdur, Filipe Alvelos, and Maria Sameiro Carvalho (2014). “New mixed integer-

programming model for the pickup-and-delivery problem with transshipment”. In:

European Journal of Operational Research 235.3, pp. 530–539.

Rieck, Julia, Carsten Ehrenberg, and Jürgen Zimmermann (2014). “Many-to-many location-

routing with inter-hub transport and multi-commodity pickup-and-delivery”. In: Eu-

ropean Journal of Operational Research 236.3, pp. 863–878.

Sadana, Utsav et al. (2024). “A survey of contextual optimization methods for decision-

making under uncertainty”. In: European Journal of Operational Research.

Savelsbergh, Martin and Tom Van Woensel (2016). “50th anniversary invited article—city

logistics: Challenges and opportunities”. In: Transportation Science 50.2, pp. 579–

590.

Statista (2024). Market insights into quick commerce of online food and grocery delivery

(Worldwide). Last accessed on Oct 15, 2024. URL: https://www.statista.com/

outlook/dmo/online-food-delivery/worldwide.

Su, E et al. (2023). “An exact algorithm for the pickup and delivery problem with crowd-

sourced bids and transshipment”. In: Transportation Research Part B: Methodological

177, p. 102831.

Ulmer, Marlin W et al. (2021). “The restaurant meal delivery problem: Dynamic pickup

and delivery with deadlines and random ready times”. In: Transportation Science 55.1,

pp. 75–100.

Van Hentenryck, Pascal (2021). “Machine learning for optimal power flows”. In: Tutorials

in Operations Research: Emerging Optimization Methods and Modeling Techniques

with Applications, pp. 62–82.

Wang, Shanshan, Erick Delage, and Leandro C Coelho (2024). “Data-driven stochastic

vehicle routing problems with dead-lines”. In: Les Cahiers du GERAD ISSN 711,

p. 2440.

188

https://www.statista.com/outlook/dmo/online-food-delivery/worldwide
https://www.statista.com/outlook/dmo/online-food-delivery/worldwide

General Conclusion

Last-mile delivery, the final step in the e-commerce supply chain, is important and in-

dispensable, driving extensive research focused on improving service quality, reducing

travel costs, and enhancing operational efficiency. To provide on-time and on-demand

deliveries efficiently with low costs and high reliability, we investigate three challenging

delivery problems. First, crowdkeeping delivery services utilize unused crowd space for

temporary parcel storage to reduce delivery costs, eliminate failed deliveries, and benefit

all system participants. Second, ultra-fast delivery services are designed for rapid and

reliable delivery under uncertainties in travel times and demand arrival times, striking

a balance between the delivery speed and operational profitability. Finally, multi-store

order delivery services with consolidation and transshipment ensure fast deliveries and

short travel times for fulfilling all requests, while also incorporating waiting strategies

to facilitate temporal consolidation. Mathematical programs, including bilevel programs,

probabilistic envelope constrained programs, and mixed-integer linear programs, are de-

veloped to tackle these challenging problems. These models are solved efficiently by

reformulating them into tractable programs and using advanced methods such as state-

of-the-art solvers, the row generation algorithm, or learning-to-optimize approaches that

integrate machine learning with optimization. By leveraging efficient solution techniques

and conducting numerical experiments on real-world datasets, this work offers manage-

rial insights in delivery strategies that can enhance the efficiency, reliability, and customer

satisfaction of last-mile logistics.

This study opens several opportunities for future research. In Chapter 1, the crowd-

keeping delivery model assumes complete information and deterministic conditions. Fu-

ture work could address uncertainties in customer density and keeper availability, as well

as multi-period optimization for dynamic service allocation among evolving groups of

customers and keepers, and the coexistence of various delivery types under a customer

choice model. In Chapter 2, the ultra-fast delivery model currently assumes unlimited

drivers and immediate delivery services from depots to customers. However, a more

accurate model could further account for driver routing, customer batching, product as-

sortment, and customer utility variation in stochastic programming to enhance realism

and applicability. In Chapter 3, the consolidated multi-store delivery model could be im-

proved by considering transshipment costs and capacity, uncertain travel times, potential

transfer errors, and the rolling horizon rescheduling of unfulfilled earlier-arriving orders.

Additionally, integrating advanced machine learning techniques, such as embedding or

ensemble learning algorithms, can improve solution quality and scalability. Together,

these extensions could further refine the models and enhance their relevance to practical

last-mile logistics applications.

Moreover, the synergies between these three business models present an interesting

avenue for further exploration. While each model is designed to optimize delivery in dis-

tinct ways, their integration could offer a comprehensive solution to last-mile logistics

challenges. For example, a hybrid approach that combines consolidated orders from mul-

tiple stores, utilizes crowd space as transshipment nodes or temporary receivers, and in-

corporates hierarchical service levels under uncertain travel times and order arrival times

could significantly enhance operational efficiency, service reliability, and customer satis-

faction. A key challenge for future research is whether these models can be implemented

simultaneously while adapting well to marketing needs, or whether they can be efficiently

optimized to deliver high-quality solutions.

190

References

Auad, Ramon, Alan Erera, and Martin Savelsbergh (2024). “Dynamic courier capacity ac-

quisition in rapid delivery systems: A deep Q-learning approach”. In: Transportation

Science 58.1, pp. 67–93.

CaiNiao (2023). How to make money by being a keeper? (In Chinese). Last accessed on

Jan 01, 2023. URL: https://cn.alicdn.com/video/cainiao/yizhan/main.

mp4.

Cao, Junyu and Wei Qi (2023). “Stall economy: The value of mobility in retail on wheels”.

In: Operations Research 71.2, pp. 708–726.

Carlsson, John Gunnar et al. (2024). “Provably good region partitioning for on-time last-

mile delivery”. In: Operations Research 72.1, pp. 91–109.

DoubleDash (2023). Introducing DoubleDash, a new way to shop multiple stores in one

order. Last accessed on Nov 01, 2023. URL: https://about.doordash.com/en-

us/news/introducing-doubledash-a-new-way-to-shop-multiple-stores-

in-one-order.

Epipresto (2023). The place to order from all your specialized and independent stores!

Last accessed on Nov 01, 2023. URL: https://epipresto.ca/en.

Getir (2022). Getir: groceries in minutes. Last accessed on Nov 01, 2023. URL: https:

//getir.com/us/.

Goodfood (2022). Goodfood is in financial trouble and gives up fast delivery (In French).

Last accessed on Aug 01, 2023. URL: https://www.lapresse.ca/affaires/

191

https://cn.alicdn.com/video/cainiao/yizhan/main.mp4
https://cn.alicdn.com/video/cainiao/yizhan/main.mp4
https://about.doordash.com/en-us/news/introducing-doubledash-a-new-way-to-shop-multiple-stores-in-one-order
https://about.doordash.com/en-us/news/introducing-doubledash-a-new-way-to-shop-multiple-stores-in-one-order
https://about.doordash.com/en-us/news/introducing-doubledash-a-new-way-to-shop-multiple-stores-in-one-order
https://epipresto.ca/en
https://getir.com/us/
https://getir.com/us/
https://www.lapresse.ca/affaires/entreprises/2022-10-14/goodfood-a-des-ennuis-financiers-et-laisse-tomber-la-livraison-rapide.php
https://www.lapresse.ca/affaires/entreprises/2022-10-14/goodfood-a-des-ennuis-financiers-et-laisse-tomber-la-livraison-rapide.php

entreprises / 2022 - 10 - 14 / goodfood - a - des - ennuis - financiers - et -

laisse-tomber-la-livraison-rapide.php.

Gorillas (2022). Grocery app Gorillas drops 10-minute delivery pledge, adds store pick-

up option. Last accessed on Aug 01, 2023. URL: https://nypost.com/2022/02/

25/grocery- app- gorillas- drops- 10- minute- delivery- pledge- adds-

store-pick-up-option/.

Hildebrandt, Florentin D and Marlin W Ulmer (2022). “Supervised learning for arrival

time estimations in restaurant meal delivery”. In: Transportation Science 56.4, pp. 1058–

1084.

Instacart (2022). Introducing OrderUp, a new way to save time and money on Instacart

with orders from two retailers– with just one delivery fee. Last accessed on Nov 01,

2023. URL: https://www.instacart.com/company/updates/introducing-

orderup- a- new- way- to- save- time- and- money- on- instacart- with-

orders-from-two-retailers-with-just-one-delivery-fee/.

Jacobs, K et al. (2019). The last-mile delivery challenge. Tech. rep. Capgemini Research

Institute, Paris.

Li, Zhuoxin and Gang Wang (2024). “On-Demand Delivery Platforms and Restaurant

Sales”. In: Management Science Forthcoming. URL: https://doi.org/10.1287/

mnsc.2021.01010.

Liu, Sheng, Long He, and Zuo-Jun Max Shen (2021). “On-time last-mile delivery: Or-

der assignment with travel-time predictors”. In: Management Science 67.7, pp. 4095–

4119.

Mao, Wenzheng et al. (2022). “On-demand meal delivery platforms: Operational level

data and research opportunities”. In: Manufacturing & Service Operations Manage-

ment 24.5, pp. 2535–2542.

Moreno, Carlos et al. (2021). “Introducing the “15-Minute City”: Sustainability, resilience

and place identity in future post-pandemic cities”. In: Smart Cities 4.1, pp. 93–111.

Pickme (2024). Let’s build tomorrow’s delivery together! (In French). Last accessed on

Feb 11, 2023. URL: https://www.mypickme.com/.

192

https://www.lapresse.ca/affaires/entreprises/2022-10-14/goodfood-a-des-ennuis-financiers-et-laisse-tomber-la-livraison-rapide.php
https://www.lapresse.ca/affaires/entreprises/2022-10-14/goodfood-a-des-ennuis-financiers-et-laisse-tomber-la-livraison-rapide.php
https://www.lapresse.ca/affaires/entreprises/2022-10-14/goodfood-a-des-ennuis-financiers-et-laisse-tomber-la-livraison-rapide.php
https://nypost.com/2022/02/25/grocery-app-gorillas-drops-10-minute-delivery-pledge-adds-store-pick-up-option/
https://nypost.com/2022/02/25/grocery-app-gorillas-drops-10-minute-delivery-pledge-adds-store-pick-up-option/
https://nypost.com/2022/02/25/grocery-app-gorillas-drops-10-minute-delivery-pledge-adds-store-pick-up-option/
https://www.instacart.com/company/updates/introducing-orderup-a-new-way-to-save-time-and-money-on-instacart-with-orders-from-two-retailers-with-just-one-delivery-fee/
https://www.instacart.com/company/updates/introducing-orderup-a-new-way-to-save-time-and-money-on-instacart-with-orders-from-two-retailers-with-just-one-delivery-fee/
https://www.instacart.com/company/updates/introducing-orderup-a-new-way-to-save-time-and-money-on-instacart-with-orders-from-two-retailers-with-just-one-delivery-fee/
https://doi.org/10.1287/mnsc.2021.01010
https://doi.org/10.1287/mnsc.2021.01010
https://www.mypickme.com/

Raghavan, S and Rui Zhang (2024). “The driver-aide problem: Coordinated logistics

for last-mile delivery”. In: Manufacturing & Service Operations Management 26.1,

pp. 291–311.

Savelsbergh, Martin and Tom Van Woensel (2016). “50th anniversary invited article—city

logistics: Challenges and opportunities”. In: Transportation Science 50.2, pp. 579–

590.

Statista (2024). Market insights into e-commerce (Worldwide). Last accessed on Dec 5,

2024. URL: https://www.statista.com/outlook/emo/ecommerce/worldwide?

currency=usd.

193

https://www.statista.com/outlook/emo/ecommerce/worldwide?currency=usd
https://www.statista.com/outlook/emo/ecommerce/worldwide?currency=usd

	Résumé
	Abstract
	List of Tables
	List of Figures
	List of Acronyms
	Acknowledgements
	Preface
	General Introduction
	Crowdkeeping in Last-Mile Delivery
	Abstract
	Introduction
	Literature Review
	Last-Mile Delivery Types, Challenges, and Innovations
	Self-Service Locker Systems
	Crowdsourcing
	Demand Management
	Traveling Salesman Problem and Variants

	Problem Description
	Operational Framework
	Implementation
	Participants and Their Behaviors
	black Benefits and Challenges

	Bilevel Program for Crowdkeeping Delivery Problem
	Customer and Keeper Models
	Platform Model
	Bilevel Program with Multiple Followers

	Solution Procedure
	Reformulation as a Single-level Program
	Customer Best Response Set
	Approximation Model with Estimated Travel Time

	Numerical Study
	Dataset and Implementation Details
	Selection and Calibration of Optimal Tour Length Estimator
	Effectiveness and Efficiency of Solution Procedures
	Sensitivity Analysis

	Conclusion
	Appendix
	References

	Network Design and Service Guarantee in Ultra-Fast Delivery
	Abstract
	Introduction
	Literature Review
	Facility Location
	Ultra-fast Delivery
	Robust Chance Constraints and Probabilistic Envelope Constraints

	Network Design Problem for Ultra-fast Delivery
	Notation
	Demand Function
	Deterministic Formulation

	Probabilistic Envelope Constrained Programs
	Chance Constraints
	Probabilistic Envelope Constraints
	Reformulation with Known Distribution.
	Reformulation with Unknown Distribution.

	Probabilistic Envelope Constraints with Two Forms of Uncertainty
	 Reformulation with Known Distribution.
	Reformulation with Unknown Distribution.

	Stochastic Program and Linear Reformulation
	Stochastic Program with Optimized PEC and Linear Reformulation

	Numerical Study
	Dataset and Implementation Details
	Benchmark
	Performance of Step Function
	Comparison Under Different Service Levels and Uncertainties
	Sensitivity Analysis
	The impact of the initial target delivery time.
	The impact of the competitor delivery time.
	The impact of the setup cost.
	The impact of the layers of protection.

	Efficient Frontier of Four Regions for Varying Service Guarantees

	Conclusion
	Appendix
	References

	Learning-to-optimize for Consolidation and Transshipment in Multi-store Order Delivery
	Abstract
	Introduction
	Literature Review
	Last-mile Delivery
	Pickup and Delivery Problem
	Machine Learning-based Optimization

	Multi-store Order Delivery Problem
	Delivery System Description and Problem Definition
	Mathematical Model
	Dynamic Problem and Waiting Strategy

	Solution Procedure
	Learning-to-optimize Method
	Learning Methods
	MILP-based Restoration and Refinement Problem

	Numerical Study
	Dataset and Implementation Details
	Comparison of delivery systems
	Comparison of learning algorithms
	Experimentation in a Dynamic Environment

	Conclusion
	Appendix
	References

	General Conclusion
	References

