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Résumé

La livraison du dernier kilometre, I’ étape finale critique dans la chaine d’approvisionnement
du commerce électronique, joue un role essentiel pour assurer la satisfaction des clients et
le succes commercial dans le marché du commerce électronique, évalué a plusieurs mil-
liers de milliards de dollars. 11 est essentiel d’assurer des livraisons rapides, ponctuelles
et efficaces avec une haute qualité de service, une grande fiabilité, une haute efficacité

opérationnelle et des cofits réduits.

Pour atteindre cet objectif, nous étudions trois modeles de livraison innovants, no-
tamment la livraison par partage d’espace (crowdkeeping), la livraison ultra-rapide et la
livraison multi-magasins, tout en quantifiant leurs impacts sur les livraisons du dernier
kilometre. Les services de livraison par partage d’espace exploitent des espaces inutilisés
pour le stockage temporaire et le transfert flexible de colis afin de réduire les cofits de
livraison, éliminer les livraisons échouées et bénéficier a I’ensemble des participants du
systeme. Les services de livraison ultra-rapide se concentrent sur des livraisons rapides
et fiables malgré I’incertitudes dans les temps de trajet et dans la demande, en équilibrant
la rapidité des livraisons et la rentabilité opérationnelle. Les services de livraison multi-
magasins permettent aux clients de consolider leurs commandes provenant de plusieurs
magasins et aux chauffeurs de transférer des articles aux nceuds de transbordement, tout
en integrant des stratégies d’attente pour répondre aux commandes arrivant de maniere

dynamique, facilitant ainsi des livraisons rapides et de courts temps de trajet.

Du point de vue de la modélisation, nous développons des programmes mathéma-

tiques pour relever ces défis et les reformulons en versions plus simples afin d’obtenir des



solutions de haute qualité efficacement. Pour le probleme de la livraison par partage
d’espace, nous modélisons un programme bi-niveaux, le reformulons en programmes
équivalents a un seul niveau et dérivons des approximations précises pour obtenir des
solutions de qualité élevée et efficaces. Pour le probleme de livraison ultra-rapide, nous
développons des programmes avec contraintes probabilistes robustes pour gérer les in-
certitudes, les reformulons comme des programmes linéaires semi-infinis équivalents et
proposons leurs approximations internes et externes avec des contraintes linéaires finies,
qui peuvent étre résolues de maniere optimale avec efficacité. Pour le probleme de la
livraison multi-magasins, nous formulons un programme linéaire en nombres entiers avec
de nombreuses contraintes et variables liées a la planification des trajets et aux consid-
érations temporelles, puis adoptons une approche d’optimisation par apprentissage qui
integre 1’apprentissage automatique et I’optimisation pour atteindre efficacement des so-

lutions de haute qualité.

Nous réalisons des expériences numériques avec des ensembles de données réelles
afin de fournir des informations managériales pour améliorer I’efficacité, la rentabilité, la
fiabilité et la satisfaction des clients dans la logistique du dernier kilometre. Les services
de livraison par partage d’espace génerent des profits élevés en consolidant les livraisons
et en éliminant les livraisons échouées. Cela s’explique par le fait que les "crowd keep-
ers" ont une flexibilité accrue, une meilleure disponibilité et des cofits plus faibles que les
options de stockage fixes telles que les casiers automatisés, conduisant a un systeme de
livraison du dernier kilometre plus efficace et plus rentable. Pour assurer des services de
livraison ultra-rapides avec une grande fiabilité et rentabilité, un niveau de service quo-
tidien, qui donne la priorité aux périodes avec une fréquence de commandes plus élevée
et utilise une protection par couches multiples, s’avere efficace malgré les incertitudes
liées aux arrivées de commandes ou aux conditions de trafic. Les services de livraison
multi-magasins utilisant la consolidation, le transbordement et une stratégie d’attente de
courte durée, permettent de réduire les temps de complétion des commandes et les temps

de trajet des conducteurs grace a une meilleure consolidation spatio-temporelle.
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Abstract

Last-mile delivery, the critical final step in the e-commerce supply chain, plays a vital
role in ensuring customer satisfaction and business success in the multi-trillion-dollar e-
commerce market. It is essential to provide on-time, on-demand deliveries efficiently with

high service quality, high reliability, high operational efficiency, and low costs.

To achieve this goal, we investigate three innovative delivery models, including crowd-
keeping delivery, ultra-fast delivery, and multi-store order delivery, as well as quantify
their impacts in last-mile deliveries. The crowdkeeping delivery services leverage the
availability of the crowd for temporary parcel storage and flexible parcel transfers to re-
duce delivery costs, decrease delivery failures, and benefit all system participants. The
ultra-fast delivery services focus on rapid and reliable deliveries under uncertainties in
travel times and demand arrivals, balancing delivery speed and operational profitability.
The multi-store order delivery services enable customers to consolidate orders from multi-
ple stores, allow drivers to transfer items at transshipment nodes, and incorporate waiting
strategies to serve dynamically arriving orders, facilitating fast deliveries and short travel

times.

From the modeling perspective, we develop mathematical programs to tackle these
challenges and reformulate them into more tractable formulations to obtain high-quality
solutions efficiently. For the crowdkeeping delivery problem, we model a bilevel program
to consider the preferences of different participants, reformulate it into equivalent single-
level programs for exact solutions, and derive tight approximations for high-quality and

efficient solutions. For the ultra-fast delivery problem, we develop robust probabilistic

vii



envelope constrained programs to handle uncertainties, reformulate them as semi-infinite
linear programs equivalently, and propose their inner and outer approximations with finite
linear constraints, which can be solved to optimality efficiently. For the multi-store order
delivery problem, we formulate a mixed-integer linear program and adopt a learning-
to-optimize approach that integrates machine learning and optimization to achieve high-
quality solutions efficiently.

We conduct numerical experiments using real-world datasets to derive managerial
insights for improving efficiency, profitability, reliability, and customer satisfaction in
last-mile logistics. The crowdkeeping delivery services generate high profits by consoli-
dating deliveries and reducing failed deliveries. This is because crowd keepers have extra
flexibility, more availability, and lower costs compared to fixed storage options such as
automated lockers, leading to a more efficient and profitable last-mile delivery system. To
provide ultra-fast delivery services with high reliability and profitability, a daily service
level that prioritizes time periods with higher order frequencies and employs multi-layer
partial protection proves effective despite uncertain order arrivals or traffic conditions.
The multi-store order delivery services with consolidation, transshipment, and a short-
duration waiting strategy yield short order completion times and total driver travel times

through superior spatial and temporal consolidation.

Keywords

Last-mile delivery; Network design; Service level; Pricing and routing; Pickup and de-
livery; Consolidation and transshipment; Bilevel programs; Probabilistic envelope con-

strained programs; Robust optimization; Learning-to-optimize

Research Methods

Quantitative research; Mathematical programming; Optimization under uncertainty;
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General Introduction

E-commerce has experienced unprecedented growth during and after the COVID-19 pan-
demic, encompassing a wide range of sectors such as essentials, furniture, fashion, and
food. Online retailers such as Amazon and Ikea, along with food delivery services such
as UberEats and DoorDash, have become indispensable in daily life. By 2024, the e-
commerce market reached a revenue of USD 4.12 trillion, with projections suggesting
hat it will grow to USD 6.48 trillion by 2029, driven by an annual growth rate of 9.49%
(Statista 2024). This rapid expansion has significantly reshaped consumer expectations,
fueling a demand for fast, reliable, and cost-efficient last-mile deliveries. Last-mile de-
livery, the final step in the e-commerce supply chain where products are transported from
depots to customers, is critical for ensuring customer satisfaction and driving business
success. It accounts for a substantial portion of delivery costs, with estimates suggesting

it can comprise up to 41% of the total logistics cost (Jacobs et al. 2019).

From a research perspective, Savelsbergh and Van Woensel (2016) review and discuss
the challenges and opportunities in last-mile logistics, emphasizing its critical role in
modern supply chains. In the realm of on-time and on-demand last-mile delivery, much
of the research focuses on improving delivery times to enhance service quality or reducing
travel costs to meet demand and improve efficiency. This is achieved through empirical
studies demonstrating the importance of on-demand delivery (Mao et al. 2022; Li and
Wang 2024), optimizing driver-to-customer assignments or driver routing for efficient
dispatch (Liu, He, and Max Shen 2021; Carlsson et al. 2024), introducing innovative

business models (Cao and Qi 2023; Raghavan and Zhang 2024) to improve the overall



system efficiency, and applying advanced learning techniques (Hildebrandt and Ulmer
2022; Auad, Erera, and Savelsbergh 2024) for efficient practical implementation .

In line with this body of research, the focus of this thesis is to develop models and
algorithms that foster on-time and on-demand deliveries while improving delivery ef-
ficiency, reducing costs, enhancing reliability, and achieving high-quality solutions effi-
ciently. To this end, we investigate three distinct delivery models, each addressing specific
challenges and opportunities in last-mile logistics.

In Chapter 1, we explore crowdkeeping delivery services, a novel form of crowd-
sourcing that leverages unused crowd space for temporary parcel storage. This approach
reduces delivery costs, decreases delivery failures, and enhances service quality. The
"crowd keepers", driven by incentives to provide services, temporarily store parcels on
behalf of delivery companies and transfer them to customers at their earliest convenience.
Companies such as Pickme (2024) in France and CaiNiao (2023) in China are implement-
ing these crowdkeeping delivery services. This business model motivates the crowd to
provide the service by offering compensation and encourages customers to use it through
a lower pickup fee. It respects the independent decision-making of both customers and
keepers while balancing cost minimization for customers with profit maximization for
keepers. We present a bilevel program for the problem that jointly determines the as-
signment, routing, and pricing decisions while considering customer preferences, keeper
behaviors, and platform operations. We then develop equivalent single-level programs
that can be solved to optimality using a row generation algorithm, as well as high-quality
approximations with estimated optimal travel times to solve the problems approximately
but more efficiently. The numerical study using a real-world dataset from Amazon shows
that the crowdkeeping delivery system has the potential to generate higher profits due to
its ability to consolidate deliveries and eliminate failed deliveries.

In Chapter 2, we examine ultra-fast delivery services, which focus on transporting
food, groceries, and essentials from micro-depots to customers within tight timeframes,
often as short as 15 minutes. For instance, Getir (2022) in Turkey, Gorillas (2022) in

Europe, and Goodfood (2022) in Canada have aimed to provide fast delivery services

2



within 15 to 30 minutes. Sharing the same principles of proximity, sustainability, and
accessibility as the 15-minute city (Moreno et al. 2021), this model reduces reliance on
cars, cuts fuel consumption and pollution, and improves customer satisfaction. By strate-
gically locating micro-depots and allocating customers while accounting for uncertainties
in travel times and demand arrivals, the model aims to maximize profits while ensuring
reliable and timely service. We develop robust probabilistic envelope constrained (PEC)
programs to handle uncertainties and optimize the protection level to avoid both excessive
risk and conservatism. To enhance the tractability of PEC models, we derive their equiva-
lent semi-infinite linear programs and propose inner and outer approximations with finite
linear constraints. The numerical study using a real-world dataset from Amazon and the
Google API shows that a daily service level that prioritizes time periods with higher order
frequencies and applies multi-layer partial protection yields high profitability with mild
violations of service level guarantees. This strategy proves to be effective for profitable
and reliable ultra-fast delivery without over-committing or under-performing, regardless
of ordering times or traffic conditions. Additionally, empirical evidence indicates that
providing ultra-fast delivery in rural areas poses unique challenges compared to urban

settings.

In Chapter 3, we investigate multi-store consolidated-order delivery services, which
enable customers to place orders from multiple stores in a single transaction, with the
orders fulfilled through combined deliveries. For instance, DoubleDash (2023) and In-
stacart (2022) in the US and Epipresto (2023) in Canada allow customers to shop from
multiple stores in a single transaction without an additional delivery charge, ensuring that
all items are delivered together by the same driver. We further consider that orders can be
handled by different drivers for pickup, allowing partial order transfers among drivers at
transshipment points. Consolidation saves on delivery fees for customers and enhances
operational efficiency for companies, while transshipment can further improve delivery
times by avoiding unnecessary detours to multiple far-apart stores. The process involves
optimizing driver assignments to pick up and deliver customer orders, planning efficient

delivery routes under time and capacity constraints, and facilitating partial order trans-



fers at selected transshipment points. We develop a mixed-integer linear program for the
multi-store order problem with consolidation and transshipment and adopt a learning-
to-optimize approach that integrates machine learning and optimization to provide high-
quality solutions efficiently through offloading a portion of the computational workload
to the offline phase. The numerical study using a real-world dataset and implemented
in a dynamic environment shows that the consolidated-order delivery with transshipment,
coupled with a short-duration waiting strategy, consistently delivers superior performance
through spatial and temporal consolidation. The optimal waiting strategy varies depend-
ing on customer arrival rates and driver availability relative to customer demand.

In summary, the business models considered in this thesis focus on efficient delivery
operations that address the diverse and dynamic needs of modern consumers for fast, flex-
ible, and reliable services. These models contribute to the overall success of e-Commerce
by ensuring seamless integration between order fulfillment, last-mile logistics, and cus-
tomer experience. Additionally, they emphasize the balance between operational effi-
ciency and service quality, both of which are essential in modern online retail. For each
business idea, we formulate mathematical programs that capture real-world challenges in
last-mile logistics and develop efficient solution methods to obtain high-quality solutions.
Through conducting numerical experiments using real-world datasets, we provide man-
agerial insights into how emerging delivery strategies can transform last-mile logistics
into a more cost-effective, reliable, and customer-centric process, ultimately enhancing

the efficiency and competitiveness of e-Commerce operations.



Chapter 1

Crowdkeeping in Last-Mile Delivery

Abstract

In order to improve the efficiency of the last-mile delivery system when customers are
possibly absent for deliveries, we propose the idea of employing the crowd to work as
keepers and to provide storage services for their neighbors. Crowd keepers have extra
flexibility, more availability, and lower costs than fixed storage such as automated lock-
ers, and this leads to a more efficient and a more profitable system for last-mile deliveries.
We present a bilevel program that jointly determines the assignment, routing, and pricing
decisions while considering customer preferences, keeper behaviors, and platform oper-
ations. We develop an equivalent single-level program, a mixed-integer linear program
with subtour elimination constraints, that can be solved to optimality using a row gener-
ation algorithm. To improve the efficiency of the solution procedure, we further derive
exact best response sets for both customers and keepers, and approximate optimal travel
times using linear regression. We present a numerical study using a real-world dataset
from Amazon. The fixed-storage and the no-storage systems are used as benchmarks to
assess the performance of crowdkeeping system. The results show that the crowdkeeping
delivery system has the potential to generate higher profits due to its ability to consolidate

deliveries and to eliminate failed deliveries.



1.1 Introduction

E-commerce is thriving. The number of sales has almost tripled from 2014 to 2019 (De-
loison et al. 2020). This boom has led to an unprecedented volume of goods being shipped
every day. Customers are more demanding than ever in terms of the quality of delivery
services: they are expecting to receive orders at any time they want (M. Ulmer and Savels-
bergh 2020), and their expectations for speed forces e-tailers to offer same-day delivery
with small time windows (Savelsbergh and Van Woensel 2016; Koch and Klein 2020).
Such services lead to costly last-mile deliveries, which constitute the final stage in the de-
livery process when a product is transported and delivered to a customer. Indeed, last-mile

services can comprise up to 41% of the total cost to move goods (Jacobs et al. 2019).

Several novel technologies and business models, including crowdshipping, drones, au-
tonomous robots, and parcel lockers, have emerged. Common goals in such innovations
are cost reduction or improved service quality. Sharing the same goals, we propose an
innovative business model in last-mile delivery, referred to as crowdkeeping. Crowdkeep-
ing, a new form of crowdsourcing in last-mile delivery, aims to utilize the unused space
within the crowd for storage and has the potential to reduce delivery costs, eliminate de-
livery failures, and improve service quality. Broadly defined, it involves employing the
crowd to keep parcels locally until customers pick them up. In other words, the ‘crowd
keepers’, who volunteer to act as keepers and provide keeping services, initially attend the
delivery on behalf of customers and transfer parcels to customers on behalf of the delivery

company.

Compared to pickup points and automated lockers that are used in the real world, the
availability and capacity of crowd keepers are higher, the cost of using crowd keepers
is lower, and crowd keepers are more flexible to adapt to different customer groups in
different time periods. Moreover, it can be implemented without substantial additional
infrastructure and with modest operational cost. We consider an online service platform
that coordinates customers and keepers to reduce the delivery costs and to improve the

overall profitability of the delivery company.
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We contribute to the current research on delivery logistics from three aspects:

* We propose the idea of crowdkeeping for last-mile delivery systems, and present its

concept, viability, benefits, and operational framework.

* To model the behaviors of all participants in the delivery system, including cus-
tomers, keepers, and the platform, we present a bilevel program that jointly con-
siders the assignment, routing, and pricing decisions. We make use of the duality
theory to obtain an equivalent mixed-integer linear programming formulation, and
develop a row generation algorithm to find the exact optimal solutions. To further
improve the efficiency of the solution procedure without sacrificing the effective-
ness, we derive explicit expressions for the best responses of customers and keepers,
and propose an approximation model by approximating optimal travel times using

linear regression.

* We carry out extensive experiments on a real-world dataset to investigate the effec-
tiveness of the delivery system, the efficiency of the solution procedure, and how
these are influenced by factors such as the number of customers, customer absence
ratio, keeper service range, and various related costs. We find that crowdkeeping
has the potential to improve customer service levels, increase platform profits, and
enhance the overall cost-efficiency and environmental friendliness of the delivery

system.

The paper is organized as follows. Section 1.2 reviews the related literature in last-
mile delivery. We define the problem setting in Section 1.3, present a bilevel program in
Section 1.4, and develop the solution methodology in Section 1.5. We finally carry out
an extensive numerical study in Section 1.6 and present our conclusions in Section 1.7.
We also refer the reader to Appendix for a list of alternative delivery systems and for all

proofs.



1.2 Literature Review

In this section, we first review the three most common types of last-mile delivery and their
associated challenges. Subsequently, we delve into the most-recent innovations address-
ing these challenges, including lockers in Section 1.2.2, crowdsourcing in Section 1.2.3,
and demand management in Section 1.2.4. Undoubtedly, the problem considered here is
closely related to the traveling salesman problem (TSP) and its variants, constituting a

vast body of knowledge. We lastly review the related literature in Section 1.2.5.

1.2.1 Last-Mile Delivery Types, Challenges, and Innovations

There is a wide range of products being shipped and delivered every day. According to
the necessity of the customer presence and the coordination of delivery time windows,
deliveries are categorized into three types. In ‘unattended home delivery’ (UHD), cus-
tomer presence is not needed since a parcel is left at the doorstep with no attendance
requirement. In ‘attended home delivery’ (AHD), the customer is required to be present
at the time of delivery, for instance, an important document that requires a signature, a
high-tech computer, or groceries shipped from a local store. In AHD, the company and
the customer can either agree or not on a delivery time window, a.k.a. coordinated AHD
(c-AHD) and uncoordinated AHD (u-AHD), respectively.

Each delivery type poses different challenges. In UHD, coordination and customer
absence is not a concern. However, theft and weather conditions pose important risks.
There are also risks associated with denial-of-receipt or burglary at the house (McKinnon
and Tallam 2003). In u-AHD, not finding the customer at home causes inefficiencies
since it requires a second trip to the same customer. In c-AHD, timing is important.
Companies offer limited number of delivery time slots to customers and each time slot
comes potentially with a different delivery price (M. W. Ulmer 2020; Koch and Klein
2020). Time windows can increase the delivery costs significantly, because consolidation
may not be possible for parcels destined to the same region. When customers cannot find

a suitable time slot that fits their needs, the demand (and therefore the revenue) is lost.
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Last-mile delivery is a growing field to deal with these challenges, that is, to make the
deliveries on-time and low-risk, to eliminate failed deliveries, and to reduce the delivery
costs. The goals are achieved either by improving the operational procedures with self-

service lockers and crowdsourcing, or by managing the demand.

1.2.2 Self-Service Locker Systems

Self-service locker systems are proposed to alleviate the risk of theft, to protect from
unfavorable weather conditions, and to provide consolidation of parcels. Motivated by
an example of Singaporean companies experimenting with a set of shared parcel lockers,
Lin et al. (2020) propose a quantitative approach to determine the optimal locker locations
with the objective to maximize the overall quality of services. Schwerdfeger and Boysen
(2020) further consider the dynamic relocation of parcel lockers during the day. Rohmer
and Gendron (2020) extensively investigate different delivery concepts that exploit parcel
locker stations and their associated decision problems.

There are unfortunately major disadvantages of employing lockers. First, setting up
a network of lockers requires large initial investment costs, which can eventually lead
to small returns. Currently, there is a lack of a dense locker network. The ownership
of lockers is also a major problem. Hasija, Shen, and Teo (2020) argue that, due to the
proprietary nature of such systems, the utilization of lockers tends to be low. The lockers
can also be shared among multiple firms, in which case the assignment of capacities
becomes a concern. Shared or not, the use of lockers may result in rental costs, which
could eventually be imposed on customers. Joerss et al. (2016) also report that “Somewhat
surprisingly, unattended delivery to parcel lockers does not really appeal to consumers
despite the possibility of picking up their parcel 24/7”. The authors report that customers
put large value on home delivery instead of going to the lockers and conclude that their
wide utilization is unlikely.

In our understanding, the locker system is a viable option for delivery, especially

when the confidentiality of items is a concern. Therefore, lockers represent an important
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option of the last-mile delivery problem and add value to the overall system. However,
the benefits of using automated lockers are limited due to setup and maintenance costs,
as well as the restricted number of available locations. The crowdkeeping system, on
the other hand, provides a comparable service without requiring substantial additional
infrastructure, other than setting up an online platform. Even though compensation is
necessary to offer keepers proper incentives, it can be adapted as capacity changes. In the

new system, the cost for unused capacities is avoided.

1.2.3 Crowdsourcing

Carbone, Rouquet, and Roussat (2017) conceptualize the applications of crowdsourcing in
logistics by reviewing the websites of 57 initiatives. The authors argue that most of these
initiatives mainly offer two types of logistics services: crowdshipping and crowd storage.
Crowdshipping is the transportation of parcels by the crowd in return for a compensation
and is offered as an option in the last-mile delivery. There is a high level of interest for
crowdshipping both in practical applications and in the scientific literature. A. M. Arslan
et al. (2019) report that several companies use crowdshipping partially or completely in
their delivery operations. The authors investigate the benefits of crowdshipping by con-
sidering a platform that matches parcel delivery tasks and ad hoc drivers in real time. All
requests are essentially served. A related problem is the online vehicle routing problem
with occasional drivers (Archetti, Guerriero, and Macrina 2021), in which a penalty is in-
curred for not serving a customer or for violating the time window constraints. Dayarian
and Savelsbergh (2020) consider crowdshipping by employing in-store customers to de-
liver online orders. M. Ulmer and Savelsbergh (2020) study the problem of keeping a
scheduled delivery workforce along with crowdsourcing to hedge against the uncertainty
in crowdsourced delivery capacity. Qi et al. (2018) study shared mobility in last-mile
delivery by optimally sizing the service zones. They argue that crowdshipping is not a
scalable alternative of the conventional truck-only system in terms of operating costs, but

that a combined operational mode can provide flexibilities and benefits. For a recent re-
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view on multiple dimensions of crowdshipping, we refer to Le et al. (2019) and Alnaggar,
Gzara, and Bookbinder (2021). Crowd storage, on the other hand, is considered as a lo-
gistics operation in rental of storage areas such as cellars, spare rooms, garages, or yards.
It is considered as a local service that is particularly suitable in urban areas for those who
need to store furniture or similar items for long terms. To the best of our knowledge,
crowd storage is still not considered for last-mile deliveries.

We define crowdkeeping by introducing the idea of crowd storage into the last-mile
delivery. That is, keepers can provide storage services for their neighbors, or neighbors
can temporarily store parcels for absent customers. In fact, delivering a parcel to a neigh-
bor is not an entirely new idea. Jacobs et al. (2019) report that “55% of consumers can
accept the service of delivering products to neighbors in their vicinity”. There are also
empirical evidences that neighbors can cooperatively undertake delivery tasks with little
or no compensation, and that 70% of customers in a survey reported that they can make
deliveries for less than $5 (Devari, Nikolaev, and He 2017). Nevertheless, there is no
formal way of delivering to a neighbor. In the current operations, the courier needs to
search for an available neighbor to deposit the parcel when the customer is absent from
the delivery (McKinnon and Tallam 2003). In our study of crowdkeeping, neighbors are
incentivized by a monetary compensation to participate in the delivery process as crowd
keepers. Then keepers are selected by the platform to serve multiple customers before
deliveries. In this case, deliveries are consolidated, and the additional task of searching
for an available neighbor is eliminated. Customers then pick up their parcels possibly by
walking. At this point, it is worth mentioning that walking is also reported as a mode
of transportation in crowd logistics (Carbone, Rouquet, and Roussat 2017): “Transport
resources can be vans, cars, scooters, bicycles, public transport, or even walking”. We
identified a single study in the literature considering walking as a form of transportation
in crowdshipping. Martinez-Sykora et al. (2020) consider drivers making deliveries in
dense urban areas by walking at the end of their vehicle trip in crowdshipping to avoid

heavy traffic.
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1.2.4 Demand Management

There is extensive research in the area of demand management for last-mile deliveries.
Our work is most related to the service time slot, the service price, and customer incen-
tives. E-tailers can offer different delivery time windows and associated prices to manage
the demand. Several static and dynamic demand management strategies have been inves-

tigated including differentiated time slot allocation and differentiated time slot pricing.

In the time slot allocation dimension, Agatz et al. (2011) study assigning time slots
to zip codes in a service region to minimize the delivery costs. Spliet and Gabor (2015)
introduce the time window assignment vehicle routing problem, in which time windows
have to be assigned before demand is realized. Bruck, Cordeau, and Iori (2018) study the
problem of creating time slot tables and routing technicians in a cost-effective way. A
decision support system for an Italian company is also developed for a related problem

(Bruck, Castegini, et al. 2020).

In the time slot pricing dimension, Yang and Strauss (2017) present a delivery cost
approximation scheme by decomposing the delivery problem into a collection of smaller
problems. The customers’ delivery time slot choices are estimated using a multinomial
logit model. Klein, Neugebauer, et al. (2019) study differentiating the time-slot pricing
by considering the routing phase. The customers’ choice behavior is modeled as a general
nonparametric rank-based choice model. These authors study two policies for incorporat-
ing the routing costs, by explicitly incorporating the routing constraints to their model or
by using a model-based approximation and find that the latter can be used in real-world
applications. In a similar line of research, Klein, Mackert, et al. (2018) present a cost
approximation approach for dynamic time slot pricing decisions by forecasting the poten-
tial future customers. Koch and Klein (2020) additionally combine dynamic pricing with

dynamic vehicle routing.

Another interesting idea in demand management is incentivizing customers. One of
the first papers in customer incentives is Campbell and Savelsbergh (2006), who investi-

gate the use of incentives for demand management to reduce the delivery costs. M. W.
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Ulmer (2020) considers anticipatory pricing and routing policy method for the same-day
delivery, in which customers are incentivized to select delivery deadline options efficiently
to align with routing considerations. Yildiz and Savelsbergh (2020) consider offering a
discount to customers on their delivery fee in return for flexibility to adjust a previously
agreed upon delivery window. The authors report that the cost savings of offering dis-

counts can exceed 30%.

These studies on demand management reveal the importance of the time slot manage-
ment, the pricing for services and incentives, and the integration of pricing and routing.
However, some customers may be unavailable in any of the offered time slots, and this
implies lost revenues. Our approach can provide on-time deliveries but does not have
to enforce the time slot management, and it can jointly consider the service pricing, the

incentive pricing, and the routing decisions.

1.2.5 Traveling Salesman Problem and Variants

The Traveling salesman problem is one of the most classical problems in logistics and
its extensions attract significant attention due to their economic importance, theoretical
challenge, and applicability in many real-world contexts (Vidal, Laporte, and Matl 2020).
It consists of finding one route from a depot such that all customers are visited and the
total cost is minimized. We refer the reader to Applegate et al. (2007) and to Toth and
Vigo (2014) for related problems, methods, and applications. When customers are not
necessarily visited by a vehicle and it is sufficient to visit another close-by node in the
network, the problem is then called covering-tour problem (CTP) (Gendreau, Laporte, and
Semet 1997). The problem we consider in this paper is closely related to CTP, because
keepers in the same vicinity of customers cover the customer nodes. Exact solutions of
CTP and its variants are notoriously difficult to obtain. A branch-and-price algorithm
is introduced by Jozefowiez (2014) for solving CTP. The pricing subproblem is a ring-
star problem, which is solved using a branch-and-cut algorithm. Kartal, Hasgul, and

Ernst (2017) introduce the single allocation p-hub median location and routing problem
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with simultaneous pick-up and delivery. Other closely related problems are location-or-
routing problem (LoRP) by O. Arslan (2021), and location-and-routing problem (LRP)
by Kartal, Hasgul, and Ernst (2017). In LoRP, the location decision is related to depots,
the vehicles are dispatched from the selected depots, the depots are not connected to
each other, and a customer is served either by being covered by a located depot or by
being visited by a vehicle routing. In LRP, the depots are connected, the vehicles are
dispatched from the selected depots, and all customers are visited by a vehicle routing.
In our crowdkeeping delivery problem (CDP), the location decision is related to keepers
and customers, a vehicle is assumed to visit a subset of nodes (i.e., the active nodes), and
the inactive nodes are covered by the active nodes. The CDP bears similarities with two-
echelon vehicle routing problems (Perboli, Tadei, and Vigo 2011), but it is enriched by

the inclusion of pricing mechanisms and coordination among the different participants.

1.3 Problem Description

This section introduces the crowdkeeping framework by comparing it with the standard
operational framework for deliveries. It describes the behaviors and decisions of keepers,
customers, and the platform and lists the potential benefits and real-world applications of

crowdkeeping.

1.3.1 Operational Framework

In the standard operational framework for delivery systems (Figure 3.2(a)), the delivery
phase is a combination of order preparation and parcel transportation. In the order prepa-
ration phase, companies receive order requests, pick up items, and pack them as parcels
for deliveries. In the transportation phase, parcels are in transit from their origin depots
to their destination depots, and delivered to customers in last mile delivery.

In our new business model (Figure 3.2(b)), we decompose the last-mile delivery pro-

cess into two steps. First, parcels are delivered to keepers who store them for customers.
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Figure 1.1 — Comparison of the standard and the new operational frameworks for delivery
systems

Second, customers pick up their parcels from their selected keepers to finish the delivery
process. Decomposition of tasks allows deliveries to be coordinated with absent cus-
tomers and also with crowd keepers who have more flexibility to consolidate orders in

their neighborhood.

1.3.2 Implementation

We now explain the implementation details of crowdkeeping in reality by taking Pickme
(2024) as an example, which is a platform that provides parcel reception service, allows
keepers to earn compensation by storing parcels for their neighbors, and aims to avoid
failed deliveries. Detailed steps of implementation are shown in Table 1.1 and Figure 1.2.
In the first stage, the platform determines the pricing for the service and pre-assigns po-
tential keepers to customers. In the second stage, customers and keepers make decisions
based on their preferences. After observing the behavior of keepers and customers in this
stage, the platform makes the final assignment decisions in the third stage and plans the

deliveries. Finally, upon receiving the parcels, keepers notify customers of the pickup
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location and time slots, and hand over the parcels to complete the deliveries.
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Figure 1.2 — Implementation of the crowdkeeping operational framework.

1.3.3 Participants and Their Behaviors

In the crowdkeeping delivery system, there are three groups of players: customers, keep-
ers and the platform. The customers are people who purchase products online and expect
their parcels to be delivered. The keepers are individuals, such as homemakers, stay-
at-home parents, people working from home, and unemployed persons, that can receive
parcels and temporarily store them. This term makes a clear reference to the duty that
such an individual performs and emphasizes the functional difference from the “courier”
generally used in crowdshipping. Similar to other supply sides on crowdsourcing plat-
forms, keepers work in reputation-based systems and normally receive a compensation
for every customer they serve. Different from other crowdsourcing platforms, the entry
to the crowdkeeping market is simpler, because it only requires a smart phone and no in-
vestment or special equipment is necessary. Coupled with the mobile application, a smart
phone is capable of updating the tracking information, specifying the pickup location and
duration, and collecting the customer signature to ensure the safety and the convenience
of the delivery process. The third participant, the platform, coordinates the deliveries be-
tween customers and keepers. The delivery company delivers the product to the keeper

and, in doing so, has more flexibility to consolidate orders in the same neighborhood.
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Table 1.1 — Implementation details

Stage

Description

Stage

Stage

Stage

Stage

Platform pricing and pre-assignment: The platform commits to compensating
the crowd for their crowdkeeping services, encouraging them to register as po-
tential keepers by providing their information, including address and available
time slots. It also displays delivery and pickup fees to customers and encour-
ages them, including those who may be absent, to use the parcel storage service.
Additionally, the platform presents the proximity of potential keepers to nearby
customers, helping them estimate the walking time for the pickup option and
provides a minimum guaranteed compensation to keepers, helping them decide
whether to provide the service or not.

Keeper availability: Potential keepers who are pleased with the proposed com-
pensation can choose to make themselves available and provide the requested
capacity. Otherwise, they make themselves unavailable.

Customer choice: Customers choose between two options: pickup and attended-
home delivery. If customers agree to be assigned by the platform subsequently
to pick up their parcels from any of the listed pre-assigned keepers, they will
be charged a lower pickup fee than the delivery fee. Attended-home delivery
includes two choices: direct delivery, which takes place as soon as possible,
and rescheduled delivery, which is delayed to another day. If customers prefer
attended-home delivery but declare themselves as absent, then their delivery will
be rescheduled for another day. Otherwise, the default option is direct delivery.
Additionally, customers who choose direct delivery can also work as keepers.

Platform assignment and delivery: The platform assigns inactive customers, who
prefer the pickup option, to available keepers while respecting the preferences of
keepers and customers. Carriers deliver the parcels to active keepers who serve
customers and to active customers who choose the direct delivery. Keepers and
customers are allowed to modify their availability before the delivery. If the
selected keeper refuses to receive parcels due to any reason, the parcels will be
redirected to another available keeper. In the case that all keepers are unavailable,
rescheduling the delivery becomes the backup option.

Notification: Keepers are notified of the arrival of the delivery by the platform.
After receiving parcels, keepers use their smartphone to scan these parcels,
which updates the tracking information and contacts customers to arrange an
appointment for picking up.

Pickup: Customers who choose the pickup option receive an identification code
beforehand by email or text message, and must show this code to the keeper to
secure the exchange when collecting their parcels.

Confirmation: Keepers enter the customer’s code and scan the package to con-
firm the transaction, and they are instantly rewarded once the delivery of the
parcel to its recipient is confirmed.
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From the platform’s perspective, customers represent the demand, and keepers represent

the supply, and the objective is to match the demand and supply in this market.

Participants Decisions

! Unavailable
| customers

Available customers
(Customer keepers)

- Attended-home delivery

-

,------- Customers

\( Pickup option )

%( Being a keeper )

Non-customer
keepers

Platform first-stage decisions

Keepers

/
\
/

Notes. The participants are on the left side and each arrow represents a potential option for
a participant. They make their own decisions, which are guided (or filtered) by the platform’s

first-stage decisions.

Figure 1.3 — Problem setting of the crowdkeeping delivery system.

Observe that customers may be absent during deliveries. Therefore, we categorize
customers as available customers, who are present for attended home deliveries, and un-
available customers, who are absent during deliveries. The available customers are also
referred to as customer keepers because they can additionally provide storage services
in their neighborhood. In our problem setting, we also consider keepers who may not
necessarily be a customer receiving a parcel but declare their availability to provide stor-
age services. This group is called non-customer keepers. Both customer keepers and
non-customer keepers are included in the group of keepers (i.e., crowd keepers). These
participants and their options are displayed in the left side of Figure 1.3.

We now discuss the choices of each participant. The platform prices the pickup fee,
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which is lower than the standard delivery fee to encourage customers to use the crowd-
keeping service. The platform also prices the compensation, an incentive to attract the
crowd to work as keepers and provide the crowdkeeping service. Customers then choose
between the attended-home delivery (subject to a delivery fee) and the pickup option (sub-
ject to a pickup fee and a short walking distance). For the available customers who prefer
the attended-home delivery, the direct delivery is the default option. The deliveries of the
unavailable customers that prefer the attended-home delivery yet cannot attend the direct
delivery are rescheduled to another day. Both the non-customer keepers and available
customers that choose the direct delivery have the option to be potential keepers and pro-
vide storage services. Finally, the platform assigns the customers that prefer the pickup
option to the available keepers, and the carrier visits the active customers (who prefer the

direct delivery) and the active keepers (who serve the other customers).

1.3.4 Benefits and Challenges

The concept of using pickup locations to reduce failed deliveries and improve last-mile
delivery efficiency is well-established. Companies such as Amazon and IKEA operate
dedicated pickup points in cities, allowing customers to retrieve their orders. These lo-
cations are typically staffed by full-time employees, remain fixed, and are designed for
long-term use, making them less adaptable to changing demands. Similarly, automated
lockers provide self-service pickup options, providing convenience and flexibility. We de-
fine such pickup points and lockers as fixed storage since they both operate from perma-
nent locations. For further details on delivery systems using fixed storage, see Appendix
1.8.

Compared to fixed storage, crowd keepers have the advantages of offering extra flexi-
bility, more availability, and lower costs. There are concrete benefits of crowdkeeping for
distribution companies, customers, and keepers. For distribution companies, crowdkeep-
ing improves operational efficiency by consolidating deliveries in both time and space.

The flexibility and availability of the crowd helps increase delivery capacity while re-
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ducing failed deliveries. For customers, crowdkeeping enhances convenience as they can
pickup parcels in person whenever they are available. It also increases parcel security
through direct supervision by the keepers. Additionally, customers gain an alternative to
standard home delivery by opting for a lower-cost pickup service. For keepers, individu-
als acting as crowd keepers can earn compensation or rewards with minimal investment
or setup costs. Unlike fixed storage, which incurs setup costs regardless of usage, crowd
keepers are only compensated when they are assigned tasks, making the system more
adaptable and cost-efficient.

Despite its benefits, crowdkeeping introduces concerns about legal responsibility and
parcel security, as non-professional keepers temporarily store customer packages. While
legal and regulatory issues are beyond the scope of this study, lessons from existing
crowdshipping platforms can be applied to crowdkeeping. Furthermore, in local neigh-
borhood settings, established relationships between participants reduce legal risks. Real-
world applications such as Pickme (2024) and CaiNiao (2023) demonstrate the viability

of crowdkeeping, reinforcing its potential as a practical alternative to fixed storage.

1.4 Bilevel Program for Crowdkeeping Delivery
Problem

We define the Crowdkeeping Delivery Problem (CDP) and present models for the cus-
tomer, the keeper, and the platform. Subsequently, we formulate a bilevel program for
the CDP, with the platform as the leader and customers and keepers making decisions

simultaneously as followers.

Definition 1 The Crowdkeeping Delivery Problem is defined as pricing the compensa-
tion and the pickup fee that maximize the platform profit by respecting independent de-
cision making mechanisms of customers and keepers, which involve minimization of the
delivery service cost for each customer and maximization of the profit for providing stor-

age services for each keeper.
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Table 1.2 — Notations

Sets Description
A the set of all customers, including the unavailable customers and customer keepers
A the set of non-customer keepers
Variables for platform decisions made in the first stage
fP the pickup fee offered to customers
c the compensation offered to keepers
m;  the maximum number of customers proposed to be served by keeper i,
(i.e., the requested capacity by the platform)
Vij 1 if platform shows potential keeper j to customer #, 0 otherwise

Variables for customer or keeper decisions made in the second stage

Uj
Wi

Zi

1 if customer i chooses the direct delivery, O otherwise
1 if customer or keeper i makes themselves available to serve others, 0 otherwise

1 if customer i chooses to reschedule the delivery, O otherwise

Variables for platform decision made in the third stage

Vij 1 if platform assigns keeper j to serve customer i, 0 otherwise

x;j  lifarc (i, j) appears on tour, 0 otherwise

Vi 1 if participant j is active and needs to be visited, 0 otherwise

Zi 1 if the delivery of customer i is rescheduled by the platform due to the lack of
available nearby keepers, 0 otherwise

Parameters

f¢  the standard delivery fee offered to customers

tij  the travel time between i and j

a; 1 if customer i is absent for deliveries, O otherwise

b the capacity of keeper j

e; 1 if node i is a customer, O if node 7 is a non-customer keeper

rij 1 if customer i and keeper j are located in the service zone, 0 otherwise
(with r;; = 0 to model the infeasibility of serving oneself)

cP the inconvenience cost per minute of walk time for picking up

c? the truck delivery cost per minute of travel time

c the inconvenience cost of rescheduling a delivery incurred by customers themselves

ol the penalty for rescheduling a delivery as a result of the platform’s decision

ck the fixed inconvenience cost of being available as a keeper

c’ the marginal inconvenience cost for serving each parcel as a keeper
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Descriptions of the notation are given in Table 1.2. According to the implementation
details shown in Section 1.3.2 and the decisions of each participant involved in the CDP

as presented in Section 1.3.3, Figure 1.4 illustrates the timeline of decisions made by each

of them.
Decision makers: Platform  Customer/keeperi  Platform
I | |
I T T
Decisions: fPe,myy Uis Wi Zi v,x,y,Z  Timeline
Stage 1 Stage 2 Stage 3

Figure 1.4 — Timeline of decisions made by the platform, customers, and keepers

We assume that the delivery operations are carried out under the condition of full
information. In the first stage, the platform prices the pickup fee (f?), shows the poten-
tial keepers to each customer (v), prices compensation (¢), and determines the maximum
number of customers to be served by each keeper (m). In the second stage, given the
first-stage decisions, customers choose between the delivery and the pickup options. Cus-
tomers who prefer the attended-home delivery choose the direct delivery (#; = 1) if avail-
able, or reschedule the delivery (z; = 1) if absent. Keepers, including customer keepers
who choose direct delivery, show their availability and become potential active keepers
(w; = 1) if they are satisfied with the to-be-earned compensation by serving a certain num-
ber of customers. In the third stage, the platform assigns those customers who prefer the
pickup option to potential keepers (V) by respecting their preferences, or reschedules the
delivery (2) if those customers cannot be served by any nearby available keeper. The plat-
form then plans the visit to all active nodes (x,y) to complete the deliveries. In summary,
the service fee, the compensation and the pre-assignment are revealed before customers
and keepers make their decisions, and customer demands and keeper availabilities are re-
vealed before the assignment and routing planning takes place. These assumptions lead
to a form of three-stage Stackelberg game, in conformity to the first three stages in Table

1.1 and Figure 1.2.
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1.4.1 Customer and Keeper Models

Available customers have three choices. The first one is to pay the standard delivery fee
and to have their parcels delivered to their doorstep (Direct delivery in Figure 1.3). The
second one is to pay the pickup fee and to pick up their parcels from one of those potential
keepers (Pickup option). They also have the third option of working as a crowd keeper
in addition to receiving their own parcels (Being a keeper). Absent customers, on the
other hand, have two choices: they can pick up their parcels or reschedule their delivery

(Rescheduled delivery). The model for customer keeper i is as follows:

Hi(fP,¢;mivie) & min - f(ui+2) + ck+(cS—C)mi] wi

Ui WiZi
+(fp+ij€%agjtijvij)(ei—ui_Zi) (1.1a)

st u<ei(l—a) (1.1b)

zi < eia; (1.1c)

eiw; < u; (1.1d)

mw; < b; (1.1e)

uj,wi,z; € {0,1}. (1.1f)

Given the platform’s decision on the pickup fee f7, the compensation ¢, the maximum
number of to-be-served customers m;, and the potential keepers from where customer i
could pick up their parcels v;. (denoting a row vector), H;(f?, ¢, m;,v;.) is the optimization
model of customer i. Using this model, customers decide whether they prefer a direct
delivery (u;), acting as a keeper (w;) for a total compensation of c¢m;, rescheduling the
delivery (z;), or picking up from any of the pre-assigned keepers that will be designated
by the platform later. The objective function (1.1a) states that each customer minimizes
the total amount they pay to receive their parcels. If customers choose the delivery option,
whether it is the direct delivery or rescheduled delivery, they need to pay the delivery fee
f¢. When working as crowd keepers, they earn a compensation ¢ for keeping each parcel
and incur both a fixed inconvenience cost ¢* for making themselves available and at a

marginal cost ¢* for serving each parcel. If customers choose the pickup option, they
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need to pay the pickup fee f” and the inconvenience cost ¢ for each minute of pickup
walk time. Customers anticipate the walk time according to the travel duration from their
homes to the farthest pre-assigned keeper. This means that if customers prefer pickup,
they are open to being assigned to any of the pre-assigned keepers. Note that a fixed
inconvenience cost for walking can also be accounted as part of the pickup fee f”. The
parameter e¢; indicates whether participant i is a customer or non-customer keeper. This
implies that ¢; = 1 for all customer i € .4, and that ¢; — u; — z; = 1 when the customer
chooses the pickup option. Constraints (1.1b) and (1.1c) state that customers preferring
the attended-home delivery have to reschedule the delivery if absent (a; = 1), and that they
have no reason to delay the delivery if available (a; = 0). Constraints (1.1d) and (1.1e)
state that customers can work as crowd keepers only when they are available for the direct
delivery and when they have enough capacity to serve m; customers. Constraints (1.1f)
are domain restrictions. We finally note that one could easily modify the model to account
for the inconvenience of rescheduling the delivery, compared to receiving it on the same
day, by adding some c;z; to the objective function. We omit this detail for simplicity of
presentation and because customers never formally choose between u#; =1 or z; = 1 in our
model.

When ¢; = 0, the formulation (1.1) models a non-customer keeper i € .# and it re-

duces to:
H;(c,m;) = min [ck +(c* - c)mi] w; (1.2a)
wi
S.t. mw; < b; (1.2b)
w; € {0,1}. (1.2¢)

Hence, when e; = 0, i is a non-customer keeper and is willing to provide crowdkeeping
service only if the total to-be-earned compensation ¢m; is higher than the inconvenience
cost ¢X 4+ ¢*m; and if the number of to-be-served customers m; is lower than their capacity
b;.

Finally, it is worth observing that in the case that m; < b;, both models (1.1) and (1.2)

can be reformulated as linear programs, as described in the following proposition.
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Proposition 1 Models (1.1) and (1.2) with relaxed integrality requirements always have

an optimal solution in which all variables assume binary values when m; < b;, for all

e N UM,

In other words, the constraint matrices of models (1.1) and (1.2) are totally unimodular.

The proof is presented in Appendix B, Section B.1.

1.4.2 Platform Model

The platform attracts the crowd on the supply side to provide storage services by offer-
ing them compensation, and it encourages customers on the demand side to use storage
services by offering them convenience and a lower fee. The platform matches supply and
demand in the first stage by pricing the compensation ¢ and the pickup fee f7, and by
showing the maximum number of to-be-served customers m to keepers and those poten-
tial keeper locations v to customers; and in the third stage by assigning inactive customers
choosing the pickup option to available keepers using v variables, and by determining a
vehicle route using x variables for visiting all active customers and keepers identified by
y. The platform model is:

Hp = max Z [fd(ui+zi)+fp(€i—ui—2i)] —c Z mj — h(m,u,v,w,z)
fremy jedoN

(1.3a)

s.t. vij<rjpvie N Nje AN (1.3b)
fP €10,fP],c €[0,],m; € [0,m],v;; € {0,1},

Yie ¥ Njed UN,(13c)

with the third-stage model

h(m,u,v,w,z) £ min ¢ Z Z tijxij + Z (c"zi+¢"%) (1.4a)
daids icMON jeMUN ieN
st. Y vy <mpVjedUN (1.4b)
ieN
b <wpVie N NjeMUN (1.4¢)
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ﬂjSV,’j,ViGJV,VjE///UJV (1.4d)

Z ﬁijSMyj,VjE%UW (1.4e)
ieN
yi > up,Vie N (1.4f)

Z Vijtui+zi+2i= LLYie V (1.4g)
JEMIN

Z xij:yj,VjEJ/ZUJV (1.4h)
ieHIN

Y xi=ypVje#uns (1.4i)
ieHMIN

Z Xij § |,5/| — 1,
i,jes

VIS CHMIN 2| <|HMIN| =2 (14))
")ijaxi’jayﬁi\l‘ € {07 1}’

Vie NN e ONNje N (14K)

Model Hp is the optimization model of the platform. The objective function (1.3a) max-
imizes the platform’s profit. The first term is the revenue generated from the delivery and
pickup fees paid by customers, the second term is the compensation paid to keepers, and
the third term is the cost of making deliveries and rescheduling deliveries. Constraints
(1.3b) ensure that the platform only pre-assigns customers to those keepers located in the
same zone. Constraints (1.3¢) are domain restrictions for the first-stage decisions, where
fP, ¢, are the upper bounds of f”, ¢, m, respectively.

The third-stage model i(m, u, v, w, z) assigns active keepers to serve inactive customers,
builds a vehicle tour for visiting all active nodes, and reschedules other deliveries. Objec-
tive function (1.4a) is the minimization of the total cost for visiting all active nodes and for
rescheduling deliveries, including the active ones rescheduled by customers themselves
(z=1) and the passive ones rescheduled by the platform due to the lack of available keep-
ers (£ =1). Constraints (1.4b)— (1.4d) state that the platform can only assign customers to
one of those available keepers that are accepted by customers and have enough capacity.
Specifically, the platform ensures that active keeper j does not receive more deliveries

than the promised maximum number m;, and allocates customers to pick up from one
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of their pre-assigned keepers. Constraints (1.4e) and (1.4f) require that active nodes are
visited. Constraints (1.4g) ensure that if customers prefer the pickup option but cannot
be served by any keeper, their delivery along with those deliveries of absent customers
will be rescheduled. Constraints (1.4h) and (1.41) are degree constraints, (1.4j) are sub-
tour elimination constraints (SECs), and (1.4k) are domain restrictions for the third-stage

decisions.

1.4.3 Bilevel Program with Multiple Followers
Considering the platform as the leader and customers and keepers as followers, the bilevel
program (BP) for the Crowdkeeping Delivery Problem is presented as follows:

(BP) max Y [fd(ui+zi)+f”(e,-—u,-—z,~)]—c Y m

Pcm,y, . .
u{rw,z,cﬁlfc,;ﬁg ieN JEMIN

-y Y, nxii— Y (it

icHON je N ieN
s.t. (1.3b) — (1.3¢),(1.4b) — (1.4k)

(uj,wi,zi) € argminH;(f? ¢,m;,vi.),Vi € M UN, (1.5)

where constraints (1.5) indicate that (u;,w;,z;) are the best responses of customer or
keeper i.

The CDP is a generalization of the Traveling Salesman Problem (TSP) and therefore
is NP-hard (Dantzig, Fulkerson, and Johnson 1954). The CDP is closely related to the
Covering Tour problem (CTP), since customers who choose delivery and keepers who
serve customers are nodes to be visited in the optimal tour, and customers who choose to
pick up are nodes to be covered. Compared to CTP, the main difference in CDP is that
the platform, keepers and customers optimize their respective objective functions, and
that the decisions are decentralized to three stages to be in accordance with the imple-
mentation. In addition to the covering and routing decisions, we also consider the pricing
decisions. Note that, in this study, customers are assumed to pick up their parcels from

the keeper, which is in line with the current practice. Nevertheless, the keeper could also
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do the deliveries to customers. A model that accommodates such a feature is presented in

Appendix 1.8.

1.5 Solution Procedure

In order to solve the BP in Section 1.4.3, we first reformulate it into an equivalent single-
level model using the strong duality theorem and then solve the model exactly using
a row generation algorithm. We then derive the exact best response sets of followers
and develop an approximation of the optimal travel time to improve the efficiency of the

solution procedure.

1.5.1 Reformulation as a Single-level Program

Due to Proposition 1, the integrality requirement of the variables u;, w;, z; can be relaxed
into {u;,w;,z; > 0}. The upper bounds {u;,w;,z; < 1} can be omitted since they are
implied by constraints (1.1b) — (1.1d). Due to the fact that models (1.1) and (1.2) are
feasible, we can use the strong duality to represent the followers’ optimal decisions in the
first level of BP. Additionally, m; < b; can be added to the BP without affecting the optimal
solution (see proof in Appendix 3.7), which in turn makes constraint (1.1e) redundant. Let
Vv, ¢, and y be the dual variables corresponding to constraints (1.1b)—(1.1d), respectively,
and let A be the dual variables corresponding to constraints w < 1, we then reformulate
the BP into an equivalent single-level program (SPy):

(SP;) max Z[fd(ui—kz,-)—i—fp(ei—ui—zi)}—C Z m;

4 U W,Z, . .
S emvuwg, T jeMUN

VX320, .4
Y Y - Y (Cat ) (1.6a)

ieHMON jeMIN ieN
S.t. [(1.1b) —(1.1d),Vi e %UJV],(IBb) —(1.3¢),(1.4b) — (1.4k)
maﬁjtijv,-j) (ui+Zi)

(4 = fP) (ui +zi) + [F + (¢ — )myw; — P (
JEM
<ej(ai—1)vi—eia;¢i+ (e; — 1) A;,Vi € A U.AN(1.6b)
—e Wi+ (ei— DAL <F+(F—oym,NVie M UN (1.6¢)
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—Vl'—f-llliSfd—fp—cpjé?//aé/l‘ijvij,ViEJV (1.6d)
¢ < f—fP—cP tivii,Vic N 1.6
o, < f—f cje%aﬁmjvj i (1.6e)
uiawjvzivvb(Pi?‘l/iaA‘j’ > Ovmj S [O’b]]a
Vie ¥ Nje. M INN] €. (1.6

where constraints (1.3b)—(1.3c) and (1.4b)—(1.4k) are constraints of the platform model,
constraints (1.1b)—(1.1d) ensure the primal feasibility and (1.6¢)—(1.6e) ensure the dual
feasibility of the customer model, constraints (1.6b) guarantee the optimality of the cus-
tomer model, and (1.6f) are domain restrictions.

Due to the bilinear and nonlinear terms fPu;, fPz;, cm;, (¢® — ¢)m;w;, and max jeaun tijvijs
the SP; is a mixed-integer nonlinear program. Therefore, we first define the auxiliary vari-
able ¥ to model max jc 4y tijvij.(i.e., ¥% > tijvij, forall j € .# U.4"), and then linearize
the bilinear terms by letting 7; = m;w;, 0; = cmj, p; = Ojw;, p1; = fPu;, pr = fPz,

P3i = YiUi, Pai = Yizi, and by adding auxiliary linear constraints (1.7f) — (1.7v). This way,

the SP; is reformulated into a linear single-level program (LSPy):

(LSP;) =~ max Y [fd(ui+Zi)+(fpei—Pli_pZi)]_ ) 9
g vl jear
) Y, txi— Y (Cz+E2) (1.7a)
ieHMION jeIN ieN

s.t. [(1.1b) — (1.1d),Vi € .4 U .N],
(1.3b) — (1.3¢),(1.4b) — (1.4k), (1.6f)
(i +zi) — pri— pai + Fwi+ 51— pi — P (p3i + pai)
< ei(ai— 1)Vi—ejaigi+ (ei— DA Yie AUN  (1.7b)
—ei Wi+ (ei— D4 <K +cmi—oNie 40N (1.7c)

—Vi+y < fA—fP—cPyNie N (1.7d)
—¢; < fU—fP— Py Nie N (1.7¢)
Y > tijvij,vie N/ Nje A IN (1.7f)
0<ti<mj, Vje#dUN (1.7g)

m]'—Ml(l—Wj)STJ'Slej', V]G%UJV (1.7h)
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0,>0, Vje.#dUN (1.7i)

0, >tm;+cn—cm, VjeMUN (1.7j)
6, <tm;, Vje.MUN (1.7K)
6, <cm, Vje.MUN (1.71)
0<p;<0;, Vje#UN (1.7m)

9j-M2<1—Wj)§p]’§M2Wj, V]G%UJV (1.7n)

0<pi<fP, VieNs (1.70)
fPr=M3(1 —u;) < p1i < Mau;, Vie N (1.7p)
0<py < fP, VieNs (1.7q)
fP=M5(1—2z) < poi < Mzzi, VieN (1.7r)
0<p3; <y, ViesNs (1.7s)
Vi — Ma(1 —u;) < p3; < Myu;, Vie N (1.7t)
0<psy <y, VieNs (1.7u)
Vi —My(1—z;) < pa; < Myz;, Vi€ N. (1.7v)

The program LSP; is an equivalent reformulation of SP; that takes the form of a single-
level mixed-integer linear program (MILP), where M1, M,, M3, My can be set to i, ¢, fP, maxt; s

respectively.

Remark 1 SP; is a non-linear program with O((|.#|+|.4|)?) variables and O(21-#1+1-71)
constraints. LSPy is a MILP with O((|.#|+ |.#|)?) variables and O(2-71+1"') con-
straints containing big M values. To be exact, the number of variables in SPy is 2 +
S|+ 4| M|+ |N|)+ 2NN (| A+ |N|) + (|| +|A|)? and the number of con-
straints is 4+ 11| A |+ 10(| 4| + | AN |) + 3| A (|| +|N|) + (|4| + |.A )2 To lin-
earize SPy into LSPy, an additional 5| |+ 3| | variables and 8| N |+ 8(|.# |+ |V |) +

| AN (| A |+ |A|) constraints are added.

We then use the row generation method to solve the linear single-level model LSP;

with exponentially many SECs (1.4j) to optimality by separating at all integer solutions
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(Padberg and Rinaldi 1991). Specifically, we first solve the relaxed LSP; model (LSPIf),
which is obtained by removing the SECs. Let 2" be an optimal solution of the LSP’f .
We then identify a member of the SECs that is violated by 42* by searching for a subset
S CMIN WithY; je o x);> || —1and 2 <[] < |4 UA[—2. If such a subset .
exists, then constraint }'; ;e o x;; < || — 1 is violated. It is then added to the LSPIf using
a lazy constraint callback routine, and optimization is resumed. This process is repeated

until all the SECs are satisfied by i*.

1.5.2 Customer Best Response Set

We now derive a linear program representation of each customer’s and keeper’s optimal
solution set (also referred as “best response set”) in order to further improve the solution
efficiency of BP. Since each customer has finite number of choices, it is possible to enu-
merate the objective values achieved by all possible choices to confirm that a response is

indeed best.

Proposition 2 Givenic .# UV, fP, ¢, and m;, a solution (u;,w;,z;) is optimal for model

(1.1) if and only if it satisfies constraints (1.1b)-(1.1e) and there exists ; € R such that:

fd(u,- —|—Z,‘) —+ [ck + (CS — c)m,} w; + (fp +cP jgﬁ}?ﬁﬂtﬁvﬁ)(ei —U;j — Zi) <n (1.8a)

fAr(1—a) [k + (¢ —o)m|  ifie v
M < e J (1.8b)
\ K4 (¢ —o)my otherwise
.
£ ific N
ni < (1.8¢)
| 0 otherwise
(
fp+cpmaxj€<///u</yt,~jvij ifiE:/V
i< (1.8d)
0 otherwise.

\
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The proof of Proposition 2 is presented in Appendix 3.7. Using Proposition 2, we refor-
mulate the BP into an equivalent single-level program (SP5):

(SP;) max Z[fd(ui‘f—Zi)‘f‘fp(ei_ui_Zi)}_C Z m;

IP e myvuwe,

Poryan ieN jeMUN

—Cd Z Z tijx,-j— Z (CrZi+ér2i)

icHON jeMUN eV
s.t. [(1.1b) — (1.1f),Vi € . U.#],(1.3b) — (1.3c), (1.4b) — (1.4k),

(1.8a) —(1.84d),
neERNie AUN.

Similarly, we linearize the bilinear and nonlinear terms to derive a linear single-level
program LSP; by letting ¥; = max jc yu. s tijvij, Tj = mjwj, 0; = cmj, pj = Ojw;, p1; =
SfPui, p2i = fPzi, P3i = Yitti, Pai = YiZi» and adding linear constraints (1.7f) — (1.7v).

(LSP;) max Z [fd(ui+zi)+(fpe,-—pli—pg,-)]— Z 0;

P UW.Z
SPoemyuw, jeMUN

P,x,y,2,1,7,7,0,p
—c Y Y = Y (Cu+E%) (1.9a)
icHON je N N
st. [(1.1b) — (1.1f),Yi € .4 U.#],(1.3b) — (1.3¢),
(1.4b) — (1.4k), (1.7f) — (1.7v)

F i+ zi) + fwit 1= pit (P + P e

—pi1i — p2i — P (p3i+ pai) < M (1.9b)
(
(1 —a) (ck—l—csmi—ei) ifie NV
ni < (1.9¢)
K+ cSmi—6; otherwise
.
¢ ifie NV
ni < (1.9d)

\ 0 otherwise

4
fP+cly ifie N

Ni < 4 (1.9¢)

0 otherwise

\
nERNieEMUN. (1.9)
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Remark 2 SP; is a non-linear program, while LSP, is a MILP, both with O((|.#| +
|.A1)?) variables and Oy constraints. Compared to SP1, SP5 has 2|V | fewer
variables and 6| /'| fewer constraints. To linearize SP; into LSP;, an additional 5|4 | +
3|4 | variables and 8|.N' |+ 8(|A |+ | N|) + | N |(| A |+ |-A|) constraints are added.
Consequently, LSP; also features 2|V | fewer variables and 6|.4| fewer constraints com-

pared to LSP;.

Formulation SP; has the potential of being more efficient than formulation SP; be-
cause the search space of the former is smaller than that of the latter. Specifically, the
difference between SP; and SP; is that the feasible solutions of (u;,w;,z;) in the former
formulation are partially constructed by the constraints (1.6b)—(1.6f), while those in the
latter one are characterized by the constraints (1.8a)— (1.8d). By comparing these two
sets of constraints, we note that SPy has 3|.4"| + |.#| more dual variables that need to be
considered in order to find the optimal value of the objective function. In contrast, SP,
directly sets the upper bound of the objective function with |.4#"| 4 |.#| new variables
without the need to search for the optimal values of dual variables. Therefore, its search
space is smaller, yielding a more efficient formulation. For more details, please refer to
Appendix 1.8. Similar results also applied to LSP, and LSPy, since they are equivalent

linear formulations of SP; and SPq, respectively.

1.5.3 Approximation Model with Estimated Travel Time

Solving the SP; model exactly for large instances may be computationally inefficient. The
paradigm of crowdkeeping assumes that all participants (i.e. unavailable customers, avail-
able customers, and non-customer keepers) are drawn from the same group of people, the
so-called crowd. It is therefore reasonable to assume that locations are drawn from the
same distribution. Moreover, the decision of being available for crowdkeeping or not is
typically made without knowledge of who are the other participants. This suggests that
one might approximate the locations of the nodes that need to be visited as independent

and identically distributed (i.i.d.) locations drawn from a probability density function f,
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which captures the high and low population density areas in this region. Given a probabil-
ity density function f on a two-dimensional region R, when nodes are 1.i.d., Beardwood,

Halton, and Hammersley (1959) show in their seminal work that:

. TSP*
Lim n ~ B [ \/f(x,y) dxdy:

where TSP} is the optimal travel time, n is the number of nodes, Ifx \/m dxdy 18
the integral density of the region R, and f is a constant. If nodes are uniformly and
independently scattered, the integral density is equal to the area of the region, A. In
this case, Bv/nA is asymptotically a good approximation for the optimal travel time as
n — oo, Considering that our model is meant to serve real-world cases, where the node
dispersion is unknown, the integral density cannot be computed. Therefore, we consider

[z \/f(x,y)dxdy as part of the approximation, similar to (Cavdar and Sokol 2015). We

then use regression to approximate the term 3 [Jo /f (x,y) dxdy as 3(11) for each instance

region, since 3 also depends on the number of nodes (Franceschetti, Jabali, and Laporte

2017) and [Jr \/f(x,y) dxdy depends on the node distribution. That is,
TSP(n) ~ f(n)v/n, (1.10)

where TSP(n) is the approximated optimal travel time of visiting n number of nodes.
Both TSP(n) and f3(n) are functions of n, which is a auxiliary decision variable in our
model withn =} y;. To rephrase, we aim not only to find the optimal tour given
a certain numberjeé/f/llLigGes but also to determine the set of nodes to be visited in CDP.
Therefore, among sets with the same number of nodes capable of covering the remaining
nodes, a set is considered optimal only if it incurs the minimum travel time. To estimate 3
as a function of n for each region, we first find the minimum value of optimal travel times
TSP*(n) among all instances with n visited nodes, and then use the pair data (n, TSP*(n))
as input for model fitting. This approximation (1.10) may yield a more efficient formula-

tion without an exponential number of constraints. We present the approximation model

(AM;) below:
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(AM;) ~ max Y [fuitzi)+ (fPei—pri—pau)] — L 6
[P e.myvuwz,byz, ieN jG.///UJV

v,0,v,7,7,0,0,n
—cB(n)n— ¥ (z+é%)
ieN

st [(1.1b)—(1.1d),Vi € .4 U.¥],(1.3b) — (1.3¢),(1.4b) — (1.4g),

(1.61),(1.7b) — (1.7v)

n= Y vy
JEMUIN

‘Qij,)’jafi € {07 1}7Vl € f/I/uv.] € %Uf/j/u
where n represents the number of active nodes to be visited. We elaborate more on the
shape of the function f3(n) in Section 1.6.2.

The approximation model (AM>) with the estimated travel time is:

(AM;) max Z[fd(ui+2i)+(fpei_pli_pZi)]_ Z 0;

P emyvuwz,

P3,21,7,7,0.0,n ieN j€<//UJV

—cBn)vn— Y (c"zi+¢%)
ieN
s.t. [(1.1b) — (1.16),Vi € .4 U.#],(1.3b) — (1.3¢),(1.4b) — (1.4g),

(1.7f) — (1.7v),(1.9b) — (1.91)

n= Z yj

jeMIN
Vi, vj,2i€{0,1}\Vie / Nje A UN.

The term ﬁ(n)\/ﬁ may yield a non-linear program, depending on the form of 3(11)
There are several possible approximation functions for ﬁ(n) Franceschetti, Jabali, and
Laporte (2017), such as a constant, f(n) = f; -I—ﬁz%, B(n) = ﬁl\/ﬁ—l—ﬁz\/iﬁ, or f(n) =
B1 + ﬂz\/lﬁ. If B(n) = Biy/n+ [32\/%7 provides the best fit, the term /n is eliminated,
resulting in a linear program. In other non-linear cases, we have a finite number of feasible
solutions for n since n =} ;c 4.4 y; and y; is binary. Therefore, both AM; and AM;
can be solved to optimality by solving a finite number of linear programs. In the case that
n is large, we can use piecewise linear functions to approximate the term /n and obtain a

linear program.
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1.6 Numerical Study

We now present the implementation details, the experimental settings, the computational

performances, and the results.

1.6.1 Dataset and Implementation Details

We use a real-world dataset of vehicle routes that were executed by Amazon delivery
trucks between July 19, 2018 and August 26, 2018 (Merchan et al. 2021). These routes
are located in densely populated urban areas across the United States. The number of
customers ranges between 33 and 238 with an average value of 146. The dataset contains
information on customer locations including their latitudes, longitudes, zone IDs, and the

travel time between customers. A sample customer set is shown in Figure 1.5.
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Figure 1.5 — The region where a sample set of 118 nodes are assigned to a single vehicle
in Los Angeles.
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We now describe parameter settings in the benchmark instance and in the experimental
design. We use 20 randomly selected instances for numerical studies. In each instance,
we randomly draw 90% of points as customer locations who have parcels to be delivered
and can be potential crowd keepers. We change this ratio between 10% and 90% to obtain
samples with different number of customers. The customer absence ratio measures the
percentage of customers who are absent from home among all customers. It is 5% for
the benchmark instance and changes between 0 and 100% in the sensitivity analysis. The
remaining 10% of the locations in the benchmark instance are taken as non-customer
keepers who do not have parcels to be delivered but can store parcels for their neighbors.
For each area, the customer set dynamically changes in different time periods (e.g. days).
Thus, each instance will be drawn for 20 times to obtain the samples over 20 periods,
which are used to evaluate the average performances of crowd keepers and fixed storage.
The standard delivery fee £ is set to $2, which is high enough to obtain a positive profit.
The inconvenience cost of rescheduling deliveries incurred by customers ¢” is the same
as the delivery fee as if the delivery has not yet taken place. The penalty for rescheduling
a delivery ¢ is set to $4, and changes between $0.6 and $4 in the sensitivity analysis.
The capacity of each keeper b is 10 parcels. We take the truck speed to be 4 times the
walking speed. Considering the oil prices and the driver wages, the truck delivery cost
per minute ¢? is set as $1 in the benchmark instance (implying truck travel costs equal
to travel time) and changes between $0 and $2 in the sensitivity analysis. We take the
customer inconvenience cost per minute of walking ¢? as $0.1 and change it between $0
and $2 in the sensitivity analysis. Both the keeper inconvenience cost ¢* and the setup
cost of fixed storage is taken as $0.1. This implies that the setup cost of fixed storage
is minimal and almost negligible, ensuring a fair comparison with crowd keepers. The
marginal inconvenience cost for serving each parcel as a keeper ¢ is set to $0.01 in the
benchmark instance and changes between $0 and $2 in the sensitivity analysis. Crowd
keepers can only serve those customers located in the same zone and within a limited walk
time. Zone IDs are given in the dataset, and the maximum walk time is set as 4 minutes in

the benchmark instance and changes between 0 and 6 minutes in the sensitivity analysis.

37



We compare the performances of the “crowdkeeping”, the “fixed-storage", and the
“no-storage" systems. For the system, two cases are considered: the high density fixed-
storage system, in which the fixed storage has the density as high as the potential crowd
keepers (j € .# U./"), and the low density fixed-storage system in which the fixed storage
has the density as high as the non-customer keepers (j € .#). The main difference among
different systems is that in the fixed-storage system, storage locations are always fixed
in different periods and a fixed setup cost is incurred regardless of whether the storage
is used or not. In the crowdkeeping system, on the other hand, crowd keeper selection
decisions can adapt to the changing customer sets in different periods and the fixed cost
is incurred only when the keeper is active. The no-storage system represents the case
when there is no storage in the system, only delivering to doorsteps is considered, but
rescheduling deliveries is possible. Different special cases of our model can solve these

systems and the details are presented in Appendix 3.7.

To evaluate the performances of different formulations and different systems, we com-
pare the platform profit (i.e., the optimal value of the platform model), the customer costs
(i.e., the optimal values of the follower models), the truck delivery time implying pollu-
tion, and the average customer walk time for picking up. We also report the standard de-
livery fee, and the optimal values of the pickup fee and the compensation, to demonstrate
how pricing decisions change in different scenarios. Additionally, the pickup proportion
(defined as the percentage of customers who choose the pickup option) and the resched-
uled proportion (defined as the percentage of rescheduled deliveries among all deliveries)
are reported in order to investigate if keepers consolidate deliveries and eliminate failed

deliveries.

We implement our algorithms using Python 3.7 on a computer with one 2 GHz Quad-
Core Intel Core 15 processor and 16GB of RAM. We use Gurobi 9.0.2 as the solver, which
employs piecewise linear functions to represent the term y/n. The time limit is set as two

hours.
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1.6.2 Selection and Calibration of Optimal Tour Length Estimator

We consider various approximation functions for ﬁ (n) to determine the best fit, including
a constant, B (n) = B + BZ% B(n)= Bl\/ﬁ—kﬁz\/iﬁ, or B(n) = B _ng\/%? In each region,
for every n, we repeatedly draw 20 different instances and obtain the optimal travel time
TSP} (n) for each instance k, where k = {1,2,...,20}. Considering that determining the set
of nodes to visit is the key decision within CDP, we cannot precisely know the exact num-
ber and locations of customers and keepers in the tour. Consequently, we treat customers
and keepers as a unified distribution, drawing random samples from it. For each n, we
find the minimum TSP*(n) among all instances with n visited nodes (i.e., ming TSP} (n)),
and use the pair data (n, TSP*(n)) to estimate the continuous approximation formulation
by linear regression. The reason for using the minimum value of the in-sample optimal
travel time, rather than considering all in-sample values or the average value, is that in
the CDP, our objective is not only to find the optimal tour given a certain set of nodes
but also to determine the optimal set of nodes to be visited. Specifically, among sets with
the same number of nodes capable of covering the remaining nodes, a set is considered
optimal only if it incurs the minimum travel time. In other words, the n customers and

keepers to be visited are not randomly selected.
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Figure 1.6 — Estimation of the optimal minimum TSP tour duration

For example, Figure 1.6 is the estimation model of the optimal travel time under the

sample region in Figure 1.5, where the total number of nodes is 118. For this instance,
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the function TSP(n) = 9y/n— 17 for n € [11,118] can accurately estimate the minimum
travel time of visiting n nodes with the out-of-sample R* = 0.96. With this approximation
for the delivery time, we do not have to run the exact algorithm for each customer group
everyday in this instance region, but instead use the approximation model and obtain the
approximated solution with high efficiency and accuracy. We evaluate the performance of
the optimal tour length estimator under various customer and keeper distributions in the

next section and Appendix 1.8.

1.6.3 Effectiveness and Efficiency of Solution Procedures

We compare the efficiency and effectiveness of four different formulations: LSP, LSP»,
AM1, and AM;. The effectiveness represents the quality of the solutions in terms of real-
ized costs, while the efficiency represents the computing time for obtaining the solutions.

Regarding efficiency, Figure 1.7(a) shows the runtime of LSP{, LSP,, AM;, and AM;
models for instances with different number of customers. The approximate reformulation
with best responses AM; yields the best performance with the highest efficiency. Regard-
ing effectiveness, we compare the exact and approximated values. The exact solution is
the output of the exact model LSP; (LSP,), which are solved to optimality using the row
generation algorithm. The approximated solution is the realized output by applying the
optimal solution of approximation model AM; (AM>) and by visiting the active nodes
using the exact optimal tour. Figure 1.7(b) illustrates the change in the relative gap be-
tween exact and approximated solutions with varying customer densities. We observe
fluctuations in the relative gaps for both platform profit and delivery time, always staying
under 6%. The absolute gaps between exact and approximated solutions, shown in Fig-
ures 1.7(c)—(d), are also within an acceptable range. The runtime of the approximation
model shown in Figure 1.7(a) decreases, on average, by more than 70% compared to that
of the exact model. Therefore, both AM; and AM, have good performances on efficiency
and effectiveness, but AM; is superior overall as it achieves good accuracy with higher

efficiency.
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Figure 1.7 also presents detailed results on the platform profit, delivery time, pickup
proportion for different systems, and the delivery fee, pickup fee, and compensation for
the crowdkeeping system. We find that the crowdkeeping delivery system benefits from
economies of scale due to the observation in Figures 1.7(c)—(d) that the platform obtains
more profits by serving a larger group of customers with an increasing marginal profit and
with a decreasing marginal delivery time for serving one more customer.

As shown in Figures 1.7(c)—(e), the profit of serving one more customer increases
in both the fixed-storage and no-storage systems, similar to the crowdkeeping system. A
high-density fixed-storage system ensures the highest pickup proportion and the shortest
delivery time. However, its higher setup costs reduce marginal profit compared to the
crowdkeeping system. Conversely, a low-density fixed-storage system lowers costs but
also reduces usage, as fewer locations limit pickup opportunities. This reflects real-world
trade-offs: opening more locations increases costs but attracts more pickups, whereas
fewer locations lower costs but limit convenience for customers. In contrast, crowdkeep-
ing offers a more flexible balance between cost and utilization. Crowd keepers are acti-
vated only when customers choose to pick up from them, allowing the system to flexibly
adapt to customer demand and distribution. As a result, the crowdkeeping system achieves
a pickup proportion slightly lower than the high-density fixed-storage system but higher
than the low-density fixed-storage system, while maintaining the highest marginal profit.
Therefore, we conclude that the crowdkeeping system offers the best overall performance,
striking an optimal balance between delivery time, pickup proportion, and profitability.

Additionally, as depicted in Figure 1.7(f), the pickup fee offered to customers slightly
decreases, while the compensation offered to keepers slightly increases as the crowdkeep-

ing system accommodates more customers, resulting in benefits for both parties.

1.6.4 Sensitivity Analysis

We now investigate the factors that may affect the decisions of participants in the delivery

system and lead to different results. These sensitivity analyses are conducted by solving
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the model LSP; to optimality with the exact solution method.

(1) The impact of the service range: The keeper service range is defined as the
customer walk range. The larger the maximum walk time that customers can tolerate
for picking up, the larger the service range. When the service range is zero, keepers
cannot serve any customers, resulting in a scenario where the pickup proportion is zero.
However, if keepers can serve customers, the pickup proportion may be higher. Note
that this ratio is not necessarily 100%, as, for some customers, the closest pickup option
might already be too inconvenient compared to a delivery. Figures 1.8(a)—(d) report the
changes in the pickup proportion, the delivery time, the platform profit, and the customer

cost, respectively, as the maximum walk time changes.
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Figure 1.8 — The impact of the service range

We find that when the service range increases, more customers choose the pickup op-
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tion (see Figure 1.8(a)), and the platform earns more profits (see Figure 1.8(c)). Moreover,
the total delivery time for visiting all active nodes decreases (see Figure 1.8(b)), and this
leads to less pollution for the environment (due to less truck utilization). In other words,
the delivery system becomes more cost-efficient and environmentally friendly with larger
service range. However, if the customer tolerance for walk time is higher than 4 minutes,
the crowdkeeping system will be outperformed by the high density fixed-storage system
(Figures 1.8(a)—(c)). This is because the availabilities of crowd keepers shrink and stay
in short supply when there is a high pickup proportion, and because the marginal cost of
serving one more customer increases, whereas the capacities of fixed storage are stable
and its marginal cost of serving one more customer decreases. In addition, customer costs
are always no higher than the delivery fee (Figure 1.8(d)), since the direct or rescheduled
delivery to doorstep is always an alternative for customers and they have the potential to
pay less for receiving parcels by choosing the pickup option and to earn compensation
by working as keepers. When the service range increases, customers may face a longer
walk time and find pickup less efficient than delivery, in which case, the platform has to
decrease the pickup fee to make the pickup option more attractive (Figure 1.8(d)).

(2) The impact of the pickup cost: Customers who choose the pickup option need
to walk to their appointed keepers, and this creates inconvenience for them. Therefore, in
addition to the maximum pickup walk time, the inconvenience cost per minute for picking
up (i.e., pickup cost) may also affect customer decisions. Figures 1.9(a)—(c) present how
the pickup proportion, the delivery time, and the platform profit change, respectively, as
the pickup cost changes, and Figure 1.9(d) shows how fees and compensation change.

We find that the increasing pickup cost makes the delivery option more attractive for
more customers and thus there is a tendency for customers to choose the pickup option
less often (see Figure 1.9(a)). This tendency reduces the efficiency of the system with an
increasing delivery time (see Figure 1.9(b)) and cuts down the benefits of the platform
(see Figure 1.9(c)), because both the platform and the delivery system benefit from the
consolidation of deliveries. The lower pickup proportion leads to less consolidation, and

performance deterioration. Therefore, to discourage more customers from changing their
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Figure 1.9 — The impact of the pickup cost

minds and relinquishing the pickup option, the platform must keep lowering the pickup
fee to make up for the increasing pickup cost (see Figure 1.9(d)). The higher the pickup
cost, the larger the gap between the standard delivery fee and the pickup fee, and the
lower the platform’s benefits. Although the crowdkeeping system continues to perform
better than other systems on profit, the increasing pickup cost narrows the gap between
their performances. Therefore, to maintain the high efficiency of the delivery system and
guarantee a decent profit for the platform, crowd keepers with more accessible locations
should be selected and used to decrease the pickup cost and reduce the inconvenience for

customers.

(3) The impact of the delivery cost: Truck delivery costs account for a significant

part of the total cost. Thus, the delivery cost per minute of travel time influences the
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efficiency of the delivery system. Figures 1.10(a)—(d) present how the pickup propor-

tion, the truck delivery time, the walk time per customer, and the platform profit change,

respectively, as the delivery cost changes.

Pickup proportion (%)

Walk time per customer (min)

100 B 0@ @ @ @ @ O .
—#-- Crowdkeeping system -
Fixed-storage system (high density) 42 4
80 —a— Fixed-storage system (low density) '-,"L"
—e=- No-storage system = L orealsslensiee oo skes e ssksesanntiessnnnases ere e A
60 - % 40 . % --#%-- Crowdkeeping system
£ L Fixed-storage system (high density)
E\ 38 4 . #*-- Fixed-storage system (low density)
40 1 — g " --e-- No-storage system
i 3
7 [a) *
P hal 36 s
20 A
: 4'/'( LA E % 2
A o .
A — A A — A ®eeooLL,,
“/_{/ 7 e UL 1 T
01 T T T T T T T T T T T T T T T T T T
0.00 025 050 0.75 1.00 125 150 175 200 0.00 0.25 050 0.75 1.00 125 150 175 2.00
Delivery cost ($/min) Delivery cost ($/min)
(a) Pickup proportion (b) Delivery time
3.0 ,’\\ —«— Crowdkeeping system
h ".' < \'"’.\“*«’*\ —=— Fixed-storage system (high density)
25 Il‘\\: & A T bup-—palpaly=t L Y 80 1 L —a— Fixed-storage system (low density)
] ' —e— No-storage system
i L o . . B T Ammmm————— - =
2.0 1 1 <
l: ; —-#- Crowdkeeping system £ 60 A
I| ! Fixed-storage system (high density) g
151 Il ' -&- Fixed-storage system (low density) £
1) -e- No-storage system £ 40
109 | i s
[ a
1
1
0.5 I| ‘I 20
..l
1 1
0.0 # ottt -t-t--0-emm e m —
0.00 025 050 075 100 125 150 175 200 0.00 025 050 0.75 1.00 125 150 175 2.00

Delivery cost ($/min) Delivery cost ($/min)

(c) Walk time per customer (d) Platform profit

Figure 1.10 — The impact of the delivery cost

Figure 1.10(a) shows that the increasing delivery cost increases the pickup proportion

both for the crowd-keeper system and for the fixed-storage system, leading to a decrease

in truck delivery time (see Figure 1.10(b)) accompanied with a stable customer walk time
(see Figure 1.10(c)). The pickup proportions and the customer walk time stabilize due to

the limited keeper service range, and the crowd-keeper system always has a higher pickup

proportion than the fixed-storage system due to the higher availability and flexibility. For a
fixed delivery fee, the platform profit inevitably decreases when the delivery cost becomes

larger, but the crowdkeeping system always yields the best performance in terms of the
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profit, compared to the no-storage and fixed-storage systems (see Figure 1.10(d)). The
low density fixed-storage system has a higher profit than the high density one when the
pickup proportion is low (i.e., the delivery cost is lower than $0.8). Put differently, there
1S no reason to set up numerous fixed-storage locations when the delivery cost is low and
when the pickup option is not attractive.

(4) The impact of the marginal keeping cost: Both for fixed storage and crowd keep-
ers, the same fixed cost is taken. However, an additional inconvenience cost for keeping
each parcel is included for crowd keepers, which may stem from reserving space, con-
tacting the customer, and the associated hassle. This marginal keeping cost is also viewed
as a lower bound of the marginal earnings for keepers, and therefore keeper availability
highly depends on the keeping cost. Figures 1.11(a)—(c) present how the pickup propor-
tion, the delivery time, the platform profit change, respectively, as the marginal keeping
cost changes, and Figure 1.11(d) shows how the fees and compensation change.

When the marginal keeping cost increases, the pickup proportion decreases (see Fig-
ure 1.11(a)), the delivery time increases (see Figure 1.11(b)), and the platform profit de-
creases (see Figure 1.11(c)). In other words, the increasing keeping cost makes the system
less efficient and reduces the platform benefits. When crowd keepers suffer higher incon-
venience, the platform has to increase the compensation offered to them to ensure their
availability thus sacrificing part of its profits (see Figure 1.11(d)). Even in this case, many
customers end up switching to the delivery option due to the reduced availability. When
the marginal keeping cost increases to $2, the inconvenience is so high that no keeper of-
fers to provide their services, both the pickup proportion and the compensation decrease to
zero, and the crowdkeeping system converges to the no-storage system. The crowdkeep-
ing system performs worse than the high-density fixed-storage system when the keeping
cost increases up to $0.6, and worse than the low-density fixed-storage system when the
keeping cost increases up to $0.9, due to that the marginal cost of using crowd keepers
becomes unreasonably expensive, while the fixed cost is $0.1. We note that our study of-
fers a rather optimistic view of fixed storage with the same fixed cost for being available

as crowd keepers but without any extra cost of keeping one more parcel. We therefore
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Figure 1.11 — The impact of the keeping cost

suspect that, in practice, crowdkeeping may still be the most beneficial option in some of

these settings.

(5) The impact of the absence ratio: In the no-storage system, deliveries have to
be rescheduled when customers are absent, leading to inefficiencies. We investigate if
the fixed-storage and the crowd-keeper systems can eliminate this inefficiency. Figures
1.12(a)—(d) present how the pickup proportion, the rescheduled proportion, the delivery
time, and the platform profit change, respectively, as the customer absence ratio changes.
When the customer absence ratio increases, the pickup proportion of the crowdkeeping
system is overall stable, but has a decreasing tendency (see Figure 1.12(a)). The resched-
uled proportion increases (see Figure 1.12(b)), leading to a decrease in delivery time and

profit (see Figures 1.12(c) and (d)). This is because the availability of customer keep-
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Figure 1.12 — The impact of the customer absence ratio

ers decreases when more customers are absent. Both fixed-storage systems have an in-
creasing pickup proportion and rescheduled proportion, and the high density one tends
to encourage customers to pick up with the highest pickup proportion, whereas the low
density one tends to reschedule the deliveries with the high rescheduled proportion. For
the no-storage system, the delivery time and the platform profit decrease to zero when the
absence ratio is 100%. That is, all absent customers have no choice but reschedule their
deliveries. For the crowd-keeper and fixed-storage systems, in addition to the resched-
uled delivery, absent customers can choose to be served by keepers or storages, therefore
leading to a positive profit. When the absence ratio is lower than 10%, the high density
fixed-storage system has the worst performance on profit, but tends to become better as

the absence ratio increases. It has the best performance due to a high consolidation of
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parcels when the absence ratio is higher than 50%. As long as the absence ratio is lower

than 50%, which is a common setting in the real world, the crowdkeeping system has the

best performance on profit.
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Figure 1.13 — The impact of the penalty for rescheduling deliveries

(6) The impact of the penalty for rescheduling deliveries: We model two types of
rescheduled deliveries in the crowdkeeping system. The first one is incurred by customers
due to their absence, and the second one is determined by the platform if those customers
who prefer the pickup option cannot be served by any nearby available keeper. We fix the
cost of the first type, and investigate the impact of the penalty for the second type. Figures
1.13(a)—(d) respectively show how the pickup proportion, the rescheduled proportion,
the delivery time, and the platform profit change as the penalty of rescheduling deliveries

changes. When the penalty of rescheduling deliveries increases, the pickup proportion
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tends to increase but is overall stable (see Figure 1.13(a)), the rescheduled proportion
decreases rapidly (see Figure 1.13(b)), leading to an increased delivery time (see Figure
1.13(c)) and a decreased profit (see Figure 1.13(d)). The crowdkeeping system always
has the highest profit whether the penalty is high or low. Even though the low penalty
yields a high profit, when implementing the system in practice, the penalty should be at
least as high as the delivery fee in order to avoid unnecessary rescheduled deliveries, since

customers would prefer to receive their parcels as soon as possible.

1.7 Conclusion

We have presented a new business model in last-mile deliveries, the key idea of which is
to make use of the unused space owned by the crowd to provide crowdkeeping services.
Crowd keepers have more flexibility, larger availability, and lower costs than what is of-
fered by fixed storage, and this leads to a more efficient and a more profitable system
for last-mile deliveries. We have constructed a bilevel program by considering customer
preferences, keeper behaviors, and platform operations. We have used the strong duality
to reformulate the bilevel program into an equivalent single-level program, have derived a
mixed-integer linear programming model with subtour elimination constraints by apply-
ing linearization techniques, and have solved the model to optimality using a row gener-
ation algorithm. To improve the efficiency of the solution procedure, we have derived a
more compact representation of the best response set of customers and keepers, and have
developed an approximation model for the bilevel program by approximating the optimal
travel time using linear regression.

The numerical study is implemented on a real-world dataset provided by Amazon.
The results indicate that the crowdkeeping delivery system benefits from economies of
scale, as platform profits increase by serving more customers with an increasing marginal
profit and a decreasing marginal delivery time for serving one more customer. Addition-
ally, both the platform and the system benefit from delivery consolidations. Specifically,

the platform earns more profits, and the system causes less pollution in cases with a larger
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service range, lower pickup costs, higher delivery costs, lower keeping costs, and higher
customer keeper availabilities. These cases always accompany a higher pickup propor-
tion, implying that more deliveries are consolidated. Compared to the no-storage and
fixed-storage systems, the crowd-keeper system is beneficial for all participants in the
last-mile delivery system by improving platform profits, reducing environmental pollu-
tions due to fewer truck deliveries, and bringing about more savings for customers and
extra earnings for keepers. The reason is that crowd keepers are capable of consolidating
deliveries and eliminating failed deliveries, and this capability is higher than fixed storage
due to their greater flexibility and larger availability provided by the crowd. If it was pos-
sible to set up a very dense fixed storage network with a low cost, crowdkeeping may not
be advantageous (1) when customers have high tolerance for walking long time to pick
up their parcels, (2) when crowd keepers have high marginal cost for keeping each parcel
but fixed storage have no marginal cost, or (3) when most of the customers are absent
to attend their deliveries. In these cases, the capability of fixed storage to consolidate
deliveries is higher than that of crowd keepers. However, in all other common cases, the

crowdkeeping system may deliver the best performance on the profitability.

The study can be extended in multiple directions. First, we assumed that the informa-
tion is completely shared among all participants before optimizing the delivery operations.
However, in practice the customer density may not be known when the pickup fee and the
compensation decisions are made, and the keeper final availability could be uncertain
before the delivery takes place. It would be interesting to consider both uncertainties.
Additionally, a promising direction for future research is to accommodate multi-period
real-time optimization by considering the sequential arrival of keepers and customers and
facilitating dynamic service allocation among evolving groups of customers and keepers.
In this case, modeling time-windows is an also important facet and can potentially better
highlight the importance of crowd keepers. Moreover, co-existence of multiple delivery
types such as store points, automated lockers and crowd keepers can be considered in
the same problem under a customer choice model. Lastly, even though the new business

model offers a win-win situation for participants, there may be additional complications
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in real-world, such as the incentive of a long-term cooperation with e-commerce and de-

livery companies, which we leave for future studies.
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1.8 Appendix

Appendix A: Delivery systems

We develop models for the no-storage system, the fixed-storage system, and the crowd-

delivering-keeper system, and demonstrate their main differences.

A.1: The No-Storage System

In the no-storage setting, the distribution company has to deliver all the parcels to cus-
tomers’ home addresses. If customers are absent, a second visit is necessary. In this case,
we consider the situation where customers can delay and reschedule their deliveries. Let
A be the set of customers to be visited and .4 be the set of absent ones. Since there is
no storage or keeper in the system, the deliveries of absent customers have to be resched-
uled, and the profit will not be captured. The optimization model aims to maximize the

profit for visiting customers in A4\ A,

A.2: The Fixed-Storage System

The fixed storage, including the automated locker and pickup location, is safe and effi-
cient, and has been implemented in real-world. If customers are not available, their parcels
are kept in storages, from where customers can pick up at their convenience. However,
the pickup locations are fixed, their capacities are limited, and they may have a high setup
cost. In this case, customers have the choice of picking up from fixed storage by paying
a lower pickup fee than the standard delivery fee (e.g., IKEA, Walmart, and Zara). The
main difference between the fixed-storage and crowd-keeper systems is that in the former
system, there is always a fixed setup cost whether being used or not but no compensa-
tion for serving each parcel. Since there is a trade-off between the setup cost and the
storage density, we consider two versions of the fixed-storage system: (1) a “low density
fixed-storage system” where the potential fix-storage locations, j € .#, have the same

density as the non-customer keepers, and (2) a “high density fixed-storage system” where
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the potential fix-storage locations, j € .4/ U.#, have the same density as the union set
of keepers and customers. Even though it may be very costly in practice to set up such a
high density fixed storage network, we take it as the best case on the performance of fixed
storage. The optimal solutions can be obtained using the same methods as presented in

Section 1.5.

A.3: The Crowd-Delivering-Keeper System

The Pickme company recently piloted a new service where customers have the option of
requesting home delivery of their parcels by keepers. Keepers, who not only keep the
parcels but also deliver them to customers, are named as crowd-delivering-keepers and
earn €1.25 by serving each customer. In this setting, customers do not have to pick up
from their specified keepers. Therefore, they do not have to make any decisions, but need
to pay the delivery fee to receive their parcels at their location. In other words, there is no
difference from customers’ point of view between the no-storage and crowd-delivering-
keeper systems. Crowd-delivering-keepers need to determine if they are willing to work
as a keeper (represented by the variable w) and if they accept each request of visiting the
customer assigned to them (V). A bilevel program is constructed when both the platform
and keepers maximize their profits.

The model for the crowd-delivering-keeper j € .Z U /¥ is

v;j,wj

Gj(c,v) £ max < ) (c—cprij)ﬁij> —c*w;j (1.11a)

ieN
S.t. w;<1-—aj, (1.11b)
ﬁijﬁvij,ViGJV (1.11¢)
Y 0 <bjw;Vie N (1.11d)
eV
bijwi€{0,1},Vie A, (1.11e)

where v.; denotes a column vector. Objective function (1.11a) states that keepers accept
the allocated deliveries only when the total to-be-earned compensation is higher than

the inconvenience cost for keeping and delivering services. In other words, keepers are
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active only when the total profit is positive. The constraint (1.11b) states that the crowd
can be keepers only when they are available. The constraints (1.11c) imply that keepers
can only choose to serve the customers that are assigned to them by the platform. The
constraints (1.11d) state that only active keepers can serve customers and that the number
of customers served by each keeper should not be greater than its capacity. The constraints
(1.11e) are domain restrictions.

The platform model is

Gpemax nf'—cY Y 9ij—g(w) (1.12a)
o ieN jeMON

s.t. Vijgl’ij,\V/iGJV,VjE%UJV (1.12b)

vij €{0,1},c €[0,d, (1.12c)

with the third-stage model

gw)£min ¢ Y Y s+ Y 4 (1.13a)
0L ieMON jeMIN ieN
s.t. yj>w;Vje AN (1.13b)
yit Y, Vita=1Vies (1.13c)
JEMIN
yi<l—apVie N (1.13d)
Zi<a,vieN (1.13e)
Z x,-j:yj,VjG.///U,/V (1.13f)
icMIN
Z in:yj,VjG%Ur/V (1.13g)
icMIN
Y xj<|S|-1VS CHUN2<|S|<|MUN| -2
i,je
(1.13h)
xijG{O,l},ViG%UJV,VjG.//UJV (1.131)
vz €{0,1},Vie /' Nje M UN. (1.13))

The parameters (f¢,c?,é",t; j»ai,bj,rij) and decisions (c,v,x,y,2) are described in Table

1.2, where c¢,v are the first-stage decisions, and x,y,Z are the third-stage decisions after
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keepers make their decisions ¥,w in the second-stage. Objective function (1.12a) repre-
sents the platform revenue, which is equal to the delivery fee paid by all n customers, mi-
nus the total cost of offering the compensation, visiting all active nodes, and rescheduling
deliveries. The constraints (1.12b) ensure that customers can only be assigned to keep-
ers in the same zone. The constraints (1.12¢) are domain restrictions for the first-stage
decisions. The constraints (1.13b) and (1.13c) enforce that active keepers and customers
are visited. The constraints (1.13c) also ensure that customer i has to be served either
by direct delivery (y; = 1), by rescheduled delivery (Z; = 1), or by a keeper (};Vi; = 1).
The constraints (1.13d) and (1.13e) state that absent customers cannot be served by di-
rect delivery, and that available customers’ deliveries should not be rescheduled. The
constraints (1.13f)—(1.13j) are degree constraints, subtour elimination constraints, and
domain restrictions for visiting all active customers and keepers.
The bilevel program is

max nfd—cz Z ﬁij—cd Z Z tijxij—zérfi

€0 %,y,2,wv eV jeMUN i€ MON jeMON e
s.t. (1.12b) — (1.12¢),(1.13b) — (1.13;j)

(V.j,wj) € argmax G(c,v),Vj€ A UN.

Then, we reformulate the bilevel program into an equivalent single-level program.

max nfd—cz Z Dy —cf Z Z tijxij—zérfi

€ VXY,2, Wy ieN jeMON e MON jeMON eV
S.t. [(l.llb) —(1.11e),Vj € %UJV],(].IZb) —(1.12¢),(1.13b) — (1.13j)

¢ Z Vij = Cij—l— Z Cptijﬁij,Vj e MIN
ieN ieN
Cpl‘l'j\//\,'j <cVie JV,V] eMIN.
Compared to BP, the main differences in this model are the following. (1) Some decisions
made by the platform are reduced, including the pickup fee, the maximum number of
customers proposed to be served by keepers, and the final assignment. (2) Customers do
not express their preferences since the form of delivery is decided through the negotiation

between the platform and the crowd-delivering-keepers. (3) Keepers decide which subset
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of customers they accept to serve and are responsible for the delivery of their parcels.

This model can be solved to optimality using the same techniques applied in Section 1.5.

A.4: Figures of Delivery Systems

To demonstrate the main differences of different delivery systems more explicitly, we

show the graph for each system when serving the same customer set. Figure 1.14(a) is the

(a) No-storage delivery system

(c) Crowd-keeper delivery system (d) Crowd-delivering-keeper delivery system

O Depot O Customers in 1% period A Keepers in 1% period A Keepers in 2% period

/\ Fixed storages (J Customers in 2t period A Customer keepers in 1% period @A Customer keepers in 2% period

Figure 1.14 — Different systems.

no-storage system, in which all customers in each period are visited by a route. Figure
1.14(b) represents the fixed-storage system, in which customers pick up their parcels from
fixed storage. However, storage locations such as automated lockers are always fixed and
they need a fixed setup cost to be installed. Figure 1.14(c) represents the crowd-keeper
system. In addition to the consolidation, keepers locations are flexible and adapt to the

different customer locations. Furthermore, a cost is paid only when the keeper is active,
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leading to a higher flexibility than fixed storage. In the crowd-delivering-keeper system
in Figure 1.14(d), keepers make deliveries to customers. The main difference between
Figure 1.14(c) and 1.14(d) is the direction of the dashed arrows. That is, (c) represents
that customers pick up parcels from keepers and (d) represents that keepers deliver parcels

to customers.

Appendix B: Proofs
B.1: Proof of Proposition 1

Proof. When m; < b;, let HiR be the model formed by relaxing the integrality requirements
in model (1.1). Suppose that all optimal solutions to HX have fractional entries. We study
the cases ¢; = 1 and ¢; = 0 separately. (1) When ¢; = 1, let (u},w},z]) be an optimal
solution to HiR with 0 < u7 < 1. Due to the constraints (1.1b) and (1.1c) and the fact that
u; >0, we have a; = 0 and z; = 0. Next, we consider the case that ck+ (¢*—¢c)m; >0,
where w; := 0 is necessarily optimal. In this case, either we can set u; := 0 as optimal
when f¢ > fr +cPmax;t;v;;, or set u; := 1 as optimal when fé < fp + cPmax;t;;v;;.
Alternatively, we have the case that X + (¢* — ¢)m; < 0 with w? = u; being optimal. In
this case, either we can set u} := 0 when f9 +c* + (¢* — ¢)m; > fP 4 P max;t;;v;j, or set
u? :=1 when fh4 K+ (¢ —c)m; < fP 4 cP max jtijvij. This contradicts the fact that all
optimal solutions are fractional. Similar yet simpler arguments also apply to z;.

(2) When e; = 0 (i.e., model (1.2)), let w with 0 < w} < 1 be an optimal solution.
Given that m; < b;, we can set w; = 1 if F 4 (e — ¢)m; <0, or set wi = 0 otherwise,

without increasing the objective function value. Again, we observe a contradiction. B

B.2: Proposition 3 and its Proof

Proposition 3 A feasible solution in the BP always satisfies mj < b;. Therefore, a relaxed
customer model without the constraint mjw; < bj can be used when the bilevel model is

transformed into its single-level equivalent.
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Proof. Consider a feasible solution of the BP in which there exists a keeper j such that
m; > b;. Since the solution is feasible, constraint (1.1e) (m;jw; < b;) is satisfied, and this
implies that w; = 0. Furthermore, constraint (1.4c) (¥;; < w; for all i € .4") implies that
vij = 0 for all i € .#". Due to that we minimize c}, jm; in the objective function (1.4a),
m; is zero when the constraint (1.4b) (};c_4 V;j < m;) holds, leading to a contradiction.
We therefore conclude that the BP necessarily has an optimal solution with m; < b; for
all j € .# U.#/, and that a relaxed customer model without the constraint m iwj < bjcan

be used when the bilevel model is transformed into its single-level equivalent. R

B.3: Proof of Proposition 2

Proof. We prove that the optimal solution set of model (1.1) can be characterized by the
set of constraints in (1.8). Let n;" be the optimal objective function value of model (1.1).

The optimal solution set is:

fd(ui +2z)+ [ck + (¢* — o)my]w;

U, wi,Zj 1.1b) — 1.16,
(ui,wiyzi) |(1.10) = (1.1e) +(

<n;
fP+cP j;}};&/yﬁjo) (ei —ui—zi)

We are therefore left with the task of showing that:

ni*:min{f”l—k(l—at,-)[c'{4—(cs—c)m,~]7 4 P4l maX/Vtijvij},ViEJV,

JEMU.

and

71" = min {ck + (¢* = o)m;, O} Nie .

We start with the case i € .4 and exploit the fact that there are three feasible solutions

to model (1.1). Namely, the feasible solutions are:
2 ={(wi=1-a,wi=1-a;,zi=a), (i =1-a;,w; =0,z = a;), (w1 =0,w; =0,z =0)},
Hence, by replacing (u;, w;, z;) with their feasible value, we have
*=  min Yui+z)+ [+ (= )milwi+ | fP+c” max tvii ) (ej—ui—zi
n (ui,wi,zi)e%f (i +zi) + | ( Jmilwi f ooy Vi (ei —ui—z)
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. d k s d
= min +(1—a)[c"+(F=c)my], [, fP+cP max ;v .
{f ( al)[c (C )mz] fof c je///L)J(Q/V l]vlj}

In the case that i € .#, the argument is similar and relies on the feasible solution set

taking the form:
X = {(ui = 07wi = 1721' - 0)7 (ui - O,Wi - O,Zi == O)} .

Hence,

n* = min {ck+ (c¢* —¢)m;, 0} .

Appendix C: Comparison of SP; and SP,

We let the customer objective function be F;(u;,z;, w;):

Fi(ui,ziowi) := f*(ui+z) + [CkJr(CS —o)m;| wi+ (fP +c? max tivi;)(e; —ui—z;).
JEMIN

In SP,, we have that
(HIfe;=1(@Gfie N):

F; < min {fd—f— (1 —a;) [ck—i— (c¢f — c)m,-] S fP 4P - max tijVij}'

jeEMIN
2)Ife;=0(ifi e A):
F; < min {ck +(c’ — c)mi,O} .

In SP;, we have less tight upper bounds of F;. However, we can always derive the
same upper bounds as in SP, by fixing the value of dual variables ¢, v, and A. To be
specific,

() Ife;=1(fie AN):
1.1) When a; = 1 and ¢; = min { f” + ¢’ max je_gzu.s tijvij — f¢,0},

F <min{ f¢ fP +cP max ;v 5.
b= {f 7f JEMIN e
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fp +c? _erg/ag/ytijvij — fd — |:Ck —+ (CS — c)m,-] ,
1.2) When a; = 0 and v; = min F= ,

PcP max tvii— 0
J jeaton Y 7

S oa [k s d
F < mm{f + [c +(c’ —C)mz} o f ,fp+cpj€r%§/tijvij}-

2Q)Ife;=0(fie Z):
When 4; = min { —cF — (¢* — ¢)m;,0},

F, < min{ck +(’— c)mi,O} i

Overall, we observe that SP; is more efficient than SP; because it does not require a
search for optimal dual variables and therefore has a smaller search space. Since LSP;
and LSP, are the equivalent formulations of SP; and SP,, respectively, we conclude that

LSP, is also more efficient than LSP; for the same reason.

Appendix D: TSP(n) for Varying Non-customer Keeper Distributions

In Section 1.6.2, we proposed a procedure to calibrate an optimal tour length estimator
based on randomly selected locations from a dataset of historical customer locations for
the region of interest. In Section 1.6.3, we then evaluated the quality of estimation under
varying customer locations and densities by fixing the non-customer keeper locations.
In this appendix, we further evaluate the performance of estimator with varying non-
customer keeper locations and densities.

To distinguish the non-customer keeper distribution from the customer distribution,
we consider their distributions as follows. The entire region (e.g., Figure 1.5) is divided
into “left” and “right” parts. In each instance, we choose 72 points as customer locations
and designate the remaining 44 nodes as potential locations of non-customer keepers.
Customers are uniformly distributed on both parts, while non-customer keeper distribu-
tions may vary. For example, in Figure 1.15, we distinguish non-customer keeper distri-
butions in the left and right regions by adjusting the number of keepers in each part, while

maintaining the total number of keepers fixed. From Figure 1.15(a) to (f), non-customer
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keepers are initially spatially clustered in the right region, and then they gradually transi-

tion to a more uniform distribution across the entire region. In Figure 1.16, we alter the

non-customer keeper distributions by varying the total number of non-customer keepers

from O to 44 across the entire region.
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Figure 1.15 — Sample cases with varying distributions of non-customer keepers, featuring

a fixed number and changing locations.
Notes. There are a total of 72 customers and 22 potential keepers. P, and P, are the numbers of

keepers in the left and right region, respectively. Cases are obtained with a random seed of 0.
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Figure 1.16 — Sample cases with varying distributions of non-customer keepers, including

changes in both the number and locations.
Notes. There are a total of 72 customers and at most 44 potential keepers.
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Figure 1.17 — The effect of non-customer keeper distribution on the relative gap between
exact and approximated solutions.
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Figure 1.18 — The effect of non-customer keeper distribution on the proportions of partic-
ipants visited in the optimal tour.

We derive the exact solutions and utilize the optimal tour length estimator TSP(n) =
9./n — 17 specifically to obtain the approximated solutions. We present the results as fol-
lows. In Figure 1.17, we reported the relative gap between the exact and approximated
solutions by changing two factors: the non-customer keeper proportion in the left region,
defined as the proportion of non-customer keepers located in the left region among all
non-customer keepers in the entire region, and the number of non-customer keepers in
the entire region. The average approximation performance across all these instances, as

measured by the relative gap in delivery time or platform profit, is below 6% and 5%,
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respectively. We note that the optimal tour length estimator and its performance may
vary from region to region. As a future direction to enhance the estimator’s performance
further, we could consider incorporating more instances collected from daily life, catego-
rizing them into different distributions, and developing specific fits for each distribution.
We also presented the proportions of different participants visited in the optimal tour,
including the active customers (who choose delivery but do not serve others), active cus-
tomer keepers (who receive direct deliveries and serve others), and active non-customer
keepers (who are not customers but declare availability to serve others), while varying
the non-customer keeper proportion in the left region in Figure 1.18(a), and while vary-
ing the total number of non-customer keepers in Figure 1.18(b). When non-customer
keepers are more uniformly distributed, there is a slight increase in the proportion of ac-
tive non-customer keepers from 16% to 19%, indicating that more non-customer keepers
are selected to serve customers. However, the proportion of active non-customer keep-
ers remains stable regardless of their locations, as most customers who choose pickup
are served by customer keepers instead of non-customer keepers. This is evidenced by
the active customer keeper proportion being 38.6% and the active non-customer keeper
proportion being 19%. As the total number of non-customer keepers increases, the pro-
portion of active non-customer keepers significantly increases, while the proportions of
active customers and customer keepers both decrease. This is because there are more
available non-customer keepers to be selected to serve customers, and more customers

opt for pickup, being served by non-customer keepers.
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Chapter 2

Network Design and Service Guarantee

in Ultra-Fast Delivery

Abstract

Ultra-fast delivery revolutionizes food and grocery services, with several companies ad-
vertising delivery times under 15 to 30 minutes. Motivated by the multi-billion-dollar
industry that has emerged in recent years within the delivery business, we investigate
the network design problem for ultra-fast delivery services. This involves decisions on
micro-depot locations and customer allocations, considering various service guarantee
levels. We develop robust probabilistic envelope constrained (PEC) programs to handle
uncertainties in travel times and customer order arrivals, and jointly optimize the protec-
tion level to avoid both excessive risk and conservatism. To enhance the tractability of
PEC models, we derive their equivalent semi-infinite linear programs and propose inner
and outer approximations with finite linear constraints. We validate the accuracy of these
approximations through extensive experiments using real-world data from Amazon and
the Google API, along with a comparative study of different formulations. Varying ser-
vice levels in ultra-fast delivery affect profitability and reliability, contingent on service

level definitions and compliance probabilities of these guaranteed service levels. We find



that a daily service level with multi-layer partial protection outperforms other policies in-
vestigated in this paper, yielding higher profitability and mild violations of service level
guarantees, and it proves to be an effective strategy for profitable and reliable ultra-fast de-
livery without over-committing or under-delivering, regardless of ordering times or traffic
conditions. Additionally, empirical evidence indicates that providing ultra-fast delivery

in rural areas poses unique challenges compared to urban settings.

2.1 Introduction

Ultra-fast delivery is a new form of the fast and reliable delivery of food and groceries
from micro-depots to customers. For example, an ultra-fast delivery company, Getir,
promises to deliver groceries to the customer’s doorstep within 15 minutes (Kavuk et al.
2022). Investors and entrepreneurs (e.g., Getir, Gopuff, Gorillas) invest heavily in such
services and the projected market volume reaches up to $251.50 billions by 2028 (Statista
2023). They expect to attract a large market share by offering urgently needed items
without customers having to leave the comfort of their homes, and aim to reduce waste
by taking the role of the traditional fridge and storage (Repko 2021).

Ultra-fast delivery has its roots in the 15-minute city concept proposed by Carlos
Moreno in 2016 (Moreno et al. 2021). This concept suggests that cities could be designed
with the intention of having amenities and most services located within a 15-minute walk-
ing or driving distance, thereby fostering a new neighborhood approach. To relieve or
confront the climate crisis and potential future pandemics, the 15-minute city and other
similar ideas such as the 20-minute neighborhood (Capasso Da Silva, King, and Lemar
2019) have recently gained popularity. The key idea is decentralization in city design,
that is, developing different services for each district, encouraging local shops, facilitat-
ing short commutes, and enabling access to key services within proximity.

Similar to the 15-minute city, ultra-fast delivery promises to bring advantages of prox-
imity, sustainability, and accessibility, and therefore reduce car dependency, fuel con-

sumption and pollution, and improve customer satisfaction. However, the reality shows
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that many startups providing ultra-fast delivery services are facing severe capital shortages
or even go bankrupt (Chandler 2022) because of four main reasons: costly infrastructure,
high labor cost, low coverage, and unsafe driver behaviors (W. Zhang et al. 2022). Deliv-
ery companies have competed for customers in two main ways: being faster or offering
large discounts. Companies set up numerous micro-depots near customers and employ
many drivers to quickly respond to customer orders and ensure fast, on-time deliveries.
However, the setup costs for rent and essential equipment to open micro-depots are quite
expensive. Due to the substantial investments and narrow profit margins, these ultra-
fast delivery companies struggle to survive once venture capitalists stop funding them
(Senzamici 2024). Despite setting up numerous micro-depots, many regions still remain
unserved due to a shortage of micro-depot locations. Additionally, customers have a low
tolerance for delivery delays, especially when they are provided with an estimated time of
arrival (ETA) at the time of placing their orders (Salari, S. Liu, and Shen 2022). Usually,
the ETA is calculated based on historical expected travel times, which can sometimes be
overly optimistic, as they do not account for real-time traffic and weather conditions. Con-
sequently, this can result in frequent delivery delays and decreased customer satisfaction.
In fact, many companies have begun to reconsider the necessity of serving all customers
within 15 minutes and attempt to backtrack on their initial delivery promise. For instance,
Getir (2022), which initially operated in Turkey and recently expanded its services to Eu-
rope and the United States, originally offered deliveries within 15 minutes but extended
its delivery time to up to 45 minutes with customer approval. Meanwhile, Gorillas (2022)
in Europe initially focused on delivering within 10 minutes but later extended their de-
livery time to around 60 minutes. Goodfood (2022) in Canada, which aimed to provide
fast delivery services within 30 minutes, is discontinuing its on-demand grocery delivery
service due to financial struggles (Goodfood 2022).

To help bridge the gap between the theory and practice, we aim to investigate how
ultra-fast delivery can be a profitable and reliable business while maintaining high cus-
tomer service levels that are neither overly optimistic nor pessimistic. In particular, we

investigate how different measures of service can lead to distinct levels of cost and cus-
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tomer satisfaction. To maintain a high service level, the hope is to serve customers within
a target delivery time (defined as the duration taken for goods to be delivered) with high
reliability. Our purpose is to introduce models for the network design of ultra-fast delivery
services in the presence of uncertain travel time distributions and unknown time periods
when customers place orders. These models aim to maximize the profit while ensuring
a certain service level by making the optimal decisions of micro-depot location and cus-

tomer order allocation. To reach this goal, our paper makes the following contributions.

* We develop probabilistic envelope constrained (PEC) programs for the ultra-fast
delivery problem with various service measures, including period and daily service
levels, which focus on equal performance for each period and weighted-average
daily performance, respectively. We solve the problem under partial and full pro-
tection of the service level, compare the performance of these measures under dif-
ferent guarantees, and identify the ones that yield a favorable trade-off between the

profit and the violation of service level constraints.

» To address the practical challenge that available data may not fully reflect reality,
we develop robust programs when both the distribution of travel time and the proba-
bility of customers placing orders in different time periods are not explicitly known.
We then derive equivalent semi-infinite linear programs and more tractable linear
approximations with a finite number of constraints, ensuring both high efficiency

and accuracy.

* We carry out extensive experiments on a real-world dataset obtained from Amazon

and the Google API, and derive the following insights:

— There is a trade-off between the profitability and reliability of ultra-fast deliv-
ery. A shorter delivery time promise results in higher demand and increased

profit, but at the cost of more frequent violations of on-time delivery.

— The robust formulation yields better out-of-sample performance, evident from

its lower probability of violating the target delivery time and smaller devia-
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tions from the target. This, in turn, promotes safer decision-making in sce-
narios with limited data. Although it does entail a slight reduction in profits,
this trade-off could be deemed acceptable in light of the improved reliability

of timely delivery.

The daily service level with multi-layer partial protection on the promised de-
livery times outperforms other strategies overall due to its higher profitability
and reliability. This approach prioritizes time periods with higher order fre-
quencies, ensuring that delivery targets are more effectively met during peak
demand periods. Additionally, setting hierarchical delivery targets, each asso-
ciated with a corresponding probability of achieving those targets, provides a
more flexible and reliable approach to managing deliveries, helping ultra-fast
delivery companies run a profitable business while maintaining high service

levels.

Compared to urban areas, providing ultra-fast delivery services in rural areas,
where customers are more dispersed, is more challenging. This is due to the
longer distances between delivery locations and the necessity of setting up

more micro-depots in rural regions.

The rest of the paper is organized as follows. We review the related work in Section

2.2, and then introduce the ultra-fast delivery design problem in Section 2.3. Next, we

present stochastic programming models and their equivalent reformulations in Section

2.4. In Section 2.5, we report the results of numerical studies using real-world datasets to

evaluate the effectiveness of our proposed models. Finally, we conclude with managerial

insights in Section 3.6.

2.2 Literature Review

In this section, we review the main studies relevant to our research from three points of

view: facility location, ultra-fast delivery, and robust chance constraint programming.
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2.2.1 Facility Location

The network design of ultra-fast delivery services can be seen as a variant of the Fa-
cility Location Problem (FLP), which is a well-known optimization problem in opera-
tions research and has been widely studied (e.g. Aikens 1985; Verter 2011). The FLP
aims to determine the optimal placement of facilities such as stores, warehouses, facto-
ries, hospitals, and schools while satisfying the customer demand, in order to minimize
the cost or maximize the profit. Numerous studies focusing on the FLP and its variants
have taken into account various forms of uncertainty in demand (e.g. Laporte, Louveaux,
and Hamme 1994), risk of facility failure (e.g. Shen, Zhan, and J. Zhang 2011; Cheng,
Adulyasak, and Rousseau 2021), service times at facilities, or travel times between de-
mand points and facilities, leading to stochastic or robust location problems (e.g. Snyder
2006). The stochastic FLP is still a prominent research topic, as researchers explore novel
perspectives to model the problem and develop efficient algorithms to improve solution
procedures. For example, Y. Li et al. (2022) study the reliable uncapacitated facility loca-
tion problem, in which facilities are subject to uncertain and correlated disruptions. They
propose a cutting-plane algorithm that outperforms the best-known algorithm in the lit-
erature for the stochastic problem under independent disruptions, specifically the search
and cut algorithm proposed by Aboolian, Cui, and Shen (2013). T. Liu et al. (2022) focus
on a broad class of facility location problems in the context of adaptive robust stochastic
optimization under state-dependent demand uncertainty, and propose a nested Benders
decomposition algorithm to solve the model exactly. Shehadeh (2023) proposes two dis-
tributionally robust optimization models for a mobile facility fleet-sizing, routing, and
scheduling problem with time-dependent and random demand, and solve the problem

using a decomposition-based algorithm.

In contrast to existing studies on stochastic or robust location problems, our study
focuses on ensuring timely delivery service to customers under two sources of uncertainty:
the travel time from facilities to customers and the time period during which customers

will place their orders.
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2.2.2 Ultra-fast Delivery

Ultra-fast delivery is a special case of last-mile delivery and is popular in the food and
grocery industry, where it has extensively expanded in recent years with the rise of online
ordering and delivery applications. Some researchers, such as M. Chen, Hu, and J. Wang
(2022) and Feldman, Frazelle, and Swinney (2023), investigate the revenue allocation
between the restaurant and the food delivery platform and propose practical contracts to
improve the profitability of food delivery services. Others propose novel ideas to enhance
the efficiency of food delivery services. For example, Cao and Qi (2023) propose the
idea of selling grocery in public spaces with wheeled stalls (i.e., self-driving mini grocery
stores) to facilitate mobility, proximity, and flexibility of grocery delivery by avoiding
the “last 100 meters”. We share the same goal of providing better service and generating
more benefits for food and grocery delivery. However, our perspective differs from theirs

as we prioritize providing ultra-fast service.

Travel time is an important performance metric for ultra-fast delivery services. Mak
(2022) emphasizes the importance of improving efficiency in city operations and ef-
fectively managing fulfillment operations under tight delivery time windows for omni-
channel retailers. With a common goal of offering efficient operations and on-time deliv-
ery, many researchers also consider delivery time as a key measure in their work. Some
researchers aim to estimate travel times accurately to improve the delivery service. Per-
akis and Roels (2006) investigate the effect of congestion on travel time and derive an ana-
lytical travel-time function that integrates traffic dynamics and shock effects. Hildebrandt
and Ulmer (2022) present offline and online-offline estimation approaches to estimate ar-
rival times, and find that accurate arrival times not only raise service perception but also
improve the overall delivery system by guiding customer selections, effectively resulting
in faster deliveries. Other researchers investigate the impact of delivery time and utilize
optimization to facilitate fast deliveries. Deshpande and Pendem (2023) provide empiri-
cal evidence to show that fast deliveries drive sales by analyzing a mechanism that con-

nects delivery performance to sales through logistics ratings. Fatehi and Wagner (2022)
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notice that customers demand faster and cheaper delivery services, and propose a crowd-
sourcing optimization model to provide fast and guaranteed delivery services utilizing
independent crowd drivers. Reed, Campbell, and Thomas (2022) develop a capacitated
autonomous vehicle assisted delivery problem involving the vehicle driving time, person
walking time, and package loading time, and demonstrate that autonomous vehicles can
help save time for last-mile deliveries. S. Liu, He, and Max Shen (2021) investigate the
impact of delivery data on the on-time performance of food delivery service, and develop
an order assignment problem with travel-time predictors. Motivated by a large grocery
chain store that offers fast on-demand delivery services, S. Liu and Luo (2023) present
a finite-horizon stochastic dynamic program for driver dispatching and routing problem
where on-time performance is the main target. Among those that utilize optimization
theory to foster fast deliveries, some of them also apply stochastic or robust optimization
since there are many sources of uncertainty when offering last-mile delivery services (see
Fatehi and Wagner 2022; Y. Chen et al. 2022; Mousavi, Bodur, and Roorda 2022; S. Liu,
He, and Max Shen 2021; S. Liu and Luo 2023). However, to the best of our knowledge,
the only paper that mentions ultra-fast delivery is Kavuk et al. (2022), who propose a real-
life application of deep reinforcement learning to address the order dispatching problem
of Getir, an ultra-fast delivery company whose goal is to deliver to as many customers as
possible within 15 minutes. Their deep reinforcement learning models predict which or-
ders to accept and reject based on the order characteristics such as the estimated delivery

time.

Compared to these papers, our work shares the same purpose of facilitating fast deliv-
eries. The difference is that we model it as a network design problem and aim to provide
reliable and flexible ultra-fast delivery services by considering various service measures
across different levels of protection, by accounting for uncertainties in travel time and

order placement periods, and by viewing demand as a variable linked to travel time.

78



2.2.3 Robust Chance Constraints and Probabilistic Envelope

Constraints

A robust chance constraint is a type of constraint in optimization models requiring that a
specific condition should be satisfied with a certain probability, even when the underly-
ing probability distribution of the uncertain parameters is not fully known or might vary
within certain bounds. Its goal is to create solutions that are robust and reliable when faced
with perturbations in the uncertain parameters. Calafiore and Ghaoui (2006) introduce a
distributionally robust formulation for chance-constrained linear programs, and propose
a model that considers the worst-case distribution of the uncertain parameters instead of
assuming a specific distribution. Hanasusanto et al. (2015) investigate joint chance con-
straints where uncertain parameter distributions are only known to belong to an ambiguity
set defined by the mean and support or an upper bound on dispersion, giving rise to pes-
simistic or optimistic ambiguous chance constraints. Postek et al. (2018) consider a robust
optimization problem with ambiguous stochastic constraints, where only the mean and
dispersion information of the distribution of the uncertain parameters are known. Ghosal
and Wiesemann (2020) study the distributionally robust chance-constrained vehicle rout-
ing problem, which assumes that the customer demands follow a probability distribution
that is only partially known, and impose chance constraints on the vehicle capacities for

all distributions that are deemed plausible in view of the available information.

A robust probabilistic envelope constraint (PEC), also known as a robust first-order
stochastic dominance (FSD) constraint, is a generalization of the robust chance constraint.
FSD allows a decision-maker to manage risk in an optimization setting by requiring their
decision to yield a random outcome which stochastically dominates a reference outcome
in the first order. This technique has been investigated in Dentcheva and Ruszczynski
(2004), Luedtke (2008), Armbruster and Delage (2015), and Dai et al. (2023). A PEC
compensates for a deficiency in chance constraints, which is that the violation magni-
tude of the bounds can be very large. This is because chance constraints only control the

probability of success but provide no control in the event of a failure. Instead, A PEC is
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able to bound the uncertainty by restricting both the violation magnitude and probabil-
ity. Xu, Caramanis, and Mannor (2012) consider the robust optimization problem under
probabilistic envelope constraints, show that the problem of requiring different probabilis-
tic guarantees at each level of constraint violation can be reformulated as a semi-infinite
optimization problem, and provided conditions that guarantee polynomial-time solvabil-
ity of the resulting semi-infinite formulation. Peng, Delage, and J. Li (2020) provide a
two-stage stochastic programming model for locating emergency medical service (EMS)
stations, consider probabilistic envelope constraints to account for the uncertainty in the
requests of EMS services, and apply the model to a real-world EMS system to demon-
strate its effectiveness in improving the EMS response times. In contrast to these papers,
we apply robust PEC to offer speedy and reliable delivery services and jointly optimize

the location and allocation decisions and the service level guarantees.

2.3 Network Design Problem for Ultra-fast Delivery

In this section, we define the network design problem for ultra-fast delivery services, de-
rive the demand function that depends on the delivery time, and introduce a deterministic

formulation for the problem.

Definition 2 The network design problem for ultra-fast delivery (NDP-UD) is a multi-
period problem that involves locating micro-depots and determining service quality levels
for customer deliveries while maximizing the profit and ensuring reliable on-time delivery
services. It accounts for the relationship between demand volume and delivery speed, as
well as uncertainties in the distribution of travel times and the probability of customers

placing orders in different time periods.

2.3.1 Notation

Let (.4, o) represent a directed bipartite network, where the node set .4 includes the

set of customer locations .# and the set of potential micro-depot locations _#, and where
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the edge set .o/ contains edges (j,7) from micro-depot j to customer i with travel distance
l;j and edges (0, j) from the central depot to micro-depot j with travel distance lp;. We
consider a planning horizon of |.7 | time periods and assume that the length of each period
t € 7 is long enough to travel between nodes. We use boldface letters to denote column
vectors. Row vectors are represented using the transpose (superscript 7') of the column
vectors. To distinguish between the uncertain and deterministic values, we use a super-
script ~ for the random variable and a superscript A for the expected value. The notation
T ~ % indicates that T follows the distribution .%, and .% € 2 states that distribution .%#
resides in an ambiguity set . To simplify notation, we use Vi, Vj, and V¢ in place of

Vie S, Vje Z,andVt € .7, respectively.

We assume that customer orders are homogeneous. The nominal demand (i.e., the
number of potential customers) at location i in period ¢ is dj;, and the revenue obtained by
fulfilling per unit demand at customer location i is r;. The setup cost to open micro-depot
J 1s 0}, and the delivery cost per unit distance for driving is c¢. The cost of hiring a driver
for one period is 4, and each driver serves an average of m customers in each period. The
delivery time is defined as the duration of delivering the goods. Let §;; represent the travel
time from micro-depot j to customer i in period ¢, which is the main source of uncertainty
in reality due to real-time traffic and unpredictable weather conditions. Let a;;; denote
the average order preparation time, which includes the required time for selecting and
packing items in each order. The delivery time of serving customer i from micro-depot
Jj in period t is %;j; = §ij: +aij:, and we let 1;;; = E[%;j;]. The target delivery time is 7.
We use variable y; = 1 to denote that micro-depot j is open, and y; = 0 otherwise. The
variable x;j, takes value 1 if the demand at location i is served by micro-depot j in period
t, and O otherwise. The variable z; is the number of drivers needed in period . A summary

of notation is provided in Appendix A.
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2.3.2 Demand Function

Customers generally have several options when ordering groceries, and they make their
choices by maximizing their utility. Given the demand volume d;; at location i in period
t, we assume that, customers are more likely to choose deliveries that arrive faster when
all else factors are equal. We use the Multinomial Logit (MNL) customer choice model
to represent the customer behavior and choice probability. The MNL choice model is
defined by the following:

(1) The decision maker is a customer who chooses a mode of ordering groceries.

(2) The choice set contains three options, including the ultra-fast delivery service, the best
competitor, and opting out.

(3) The attributes include the delivery time and an independent source of randomness.
Other features, such as prices, are assumed to be the same for all options, although this
assumption can be relaxed if needed.

(4) The decision rule is based on the customer utility. The higher the customer utility of
an option, the greater the probability of choosing it. The deterministic utility obtained by
a customer at location i from placing an order with the ultra-fast delivery service in period
t is denoted as Vj;, and it depends on the ultra-fast delivery time 7. The random part is €;
and is assumed to be independent and identically Gumbel distributed (Talluri, Van Ryzin,
and Van Ryzin 2004). Likewise, the deterministic utility derived from placing an order
using the competitor’s delivery service is denoted as V. This utility depends on the best
competitor delivery time 7j;, with the addition of a random component &;;. We thus have

the total utilities U;; and U}, as:
Uir = Vit + &, where Vi = g(1;) = Bo + B1 7,

U; = Vi +¢€j,, where Vi, = g(1;) = Bo + B17}-

The utility of opting out is zero (i.e., Vi{ = 0). The probability of customers at location i

choosing the ultra-fast delivery in period  is:

e.u'Vit

Py (ultra-fast) = Vi, t,

eMVi Vi 417

82



where u is a strictly positive scaling parameter that affects the level of randomness, and
is assumed to be the same for all individuals and alternatives (Ben-Akiva and Bierlaire
1999). We assume that the independence from irrelevant alternatives (IIA) property is
satisfied. That is, the relative likelihood of choosing any two options is independent of the
presence of other alternatives. As stated by R. Wang (2021), to relax the IIA assumption
and allow more flexible substitution within the choice set, some generalizations such as
the nested logit model can be applied. We use the MNL model as a showcase to examine
the effect of travel time on the demand volume.

Given that the delivery time is contingent on the decision of which micro-depot will
serve customers, and that customers base their decisions to place an order on the estimated
delivery time presented to them, we further decompose Py (ultra-fast) into P, (ultra-fast),
i.e., the probability of customers at location i choosing ultra-fast delivery in period 7 if

they are served by micro-depot j. Namely,
e#g (fl jt)

P, j;(ultra-fast) = T AN , Vi, j,t,
where the utility of choosing ultra-fast delivery is g(%;;;) = Bo + Bi%ij;, and where the
estimated delivery time displayed to customers is the expected delivery time from micro-
depot j to customer location i in period ¢, 1;j; = §;j; +a;j; . Under this choice model, the
expected demand volume at location i for ultra-fast delivery services served by micro-

depot j in period ¢, d; j;, can be calculated as follows:

eM8(Tiji)

diji = Pjidixijr = dirxije, Vi, j,t.

eMe(Tij) 1 ohe(Ty) 11

2.3.3 Deterministic Formulation

In practice, due to the real-time traffic congestion and variable weather conditions, the
travel time from a micro-depot to a customer location is uncertain. One way of handling
this uncertainty is to measure the average performance, leading to the following deter-

ministic program (DP) for NDP-UD:

(OP) max ' NN (ri—clij)dij— Y (0j+cloj)y) th, (2.1a)
i j ot J

x,y,d,z
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st Y xi < 1,Vigt (2.1b)
j

Xijt Syj7Vi7j7t (21C)
d et dixijo Vi, j 2.1d
ijt — e.ug(%ijt) -|—g/~‘5’(75§) +1 i[xijh l?.],t ( . )
x € Zwg (2.1e)
1
> ZZZCIU;,VZ‘ (2.11)
ij
xe {0, )ALy e v 1111 2 e 2l 2.1g)

The objective (2.1a) is to maximize the expected profit, taking into account the rev-
enue generated from all demands, the outbound cost for deliveries from micro-depots to
customers, the opening cost of micro-depots, the inbound cost for deliveries from a cen-
tral depot to micro-depots, and the driver hiring costs across all periods. We assume that
one driver can on average serve m customers in each time period, and that if the order
is accepted, the duration between the order arrival and the successful assignment to a
driver is included in the preparation time. The constraints (2.1b) and (2.1c) require that
each customer is served by at most one micro-depot in each period, and that only open
micro-depots serve customers. Using the findings in Section 2.3.2, the constraints (2.1d)
indicate that the demand is a function of customer utilities on different delivery choices

and is contingent upon average travel time.

Definition 3 Average Service Level is a service policy that ensures on-time delivery for

every customer in each period by considering the average delivery time performance:

ZavG = {XE R 117117 Y tijixije < T,Vi,t},
J

where Xy contains all the allocation solutions that satisfy the average on-time delivery

service.

The constraint (2.1e) conveys that the average delivery time of serving each customer
in any period should be no later than the target delivery time 7. The constraints (2.1f)

stipulate that the number of hired drivers in each period must be adequate to fulfill all
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orders, under the assumption that the supply of drivers is sufficient. The constraints (2.1g)

are domain restrictions. We note that DP is a mixed-integer linear program.

2.4 Probabilistic Envelope Constrained Programs

Bounding only the expected travel time may be too lenient. Therefore, we now present
a probabilistic envelope constraint approach, which is an extension of chance constraint
programming, to achieve different on-time delivery service levels with different probabil-
ities. We then derive tractable formulations when the travel time distribution is explicitly
known or unknown. We define and model the period service level with an equal level at
each period, and the daily service level by considering the average service level through-
out the entire day with uncertain frequency of customer orders. Finally, we present a
stochastic program for the NDP-UD, which can accommodate different service policies
and handle various sources of uncertainty, and also extend the program by jointly opti-

mizing NDP-UD and the service level guarantees to avoid excessive conservatism.

2.4.1 Chance Constraints

The delivery time 7;j, is a key performance measure of the service level and it is uncertain
due to the uncertain travel time. The chance constraint (CC) helps us model the condition
that, for every customer served in every period, the uncertain delivery time should be

below the target delivery time T with probability at least 8 € [0,1]. This restriction is

Xijt = 1}.

Since we have x € {0,1} and 7 > 0, the chance constraint is equivalent to

represented by the following constraints:

Pz (T < 7) > B, Vi,j,te{ief,jej,teﬁ

Pf (‘Z‘ij,x,'j; S f) Z B,Vi,j,l‘.

Since }.;x;jr < I, the chance constraint is also equivalent to
Pz (Zfijzxijr < f) > B,Vi,t.
j

85



2.4.2 Probabilistic Envelope Constraints

A major downside of chance constraints is that they cannot avoid the long tail phe-
nomenon. That is, for the violated cases which might occur with probability 1 — f3, the
magnitude of the violation could be very large. To deal with this issue, we use the proba-
bilistic envelope constraint (PEC) to bound the uncertain delivery time by restricting both
the probability and the degree of violation.

Compared to the chance constraint that guarantees a good delivery service at one spe-
cific level, the PEC ensures that the customer satisfaction is protected at several levels
under the uncertain delivery time. For instance, to guarantee ultra-fast delivery, the re-
tailer may require that any order should be delivered within 10 minutes with probability
at least 70%, within 30 minutes with probability at least 80%, and within one hour with
probability at least 99%. Some violations are allowed on the initial target (i.e., 10 min-
utes), but for different magnitude (i.e., 20 minutes and 50 minutes), the probability of
the violation (i.e., 20% and 1%) is bounded. Define the magnitude of the violation as v,
and the probability of satisfying the new target T+ v as 3(v). For each customer i served
by any micro-depot in each period ¢, for any non-negative v, the uncertain delivery time
should be below 7 + v with probability at least (v). The probabilistic envelope constraint
is

PEC: P; (Z Tijexije < f+v> > B(v),Vi,t,¥v >0, (2.2)
j

where §: RT — [0,1], and B(v) is a non-decreasing continuous function in v.

Definition 4 Period Service Level is a service policy that ensures on-time delivery for ev-
ery customer in each period and guarantees a certain level of reliability for every possible

delivery time:

Dope = {x c RIZIX1.711 7]

Pz {Zfiﬁxiﬁ < f+v} > ﬁ(V),Vl',l,Vv > 0} . (2.3)

J

In other words, the set Zpgc contains all the allocation solutions that satisfy PEC (2.2).
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Example 1 Suppose that B(v) := 1/(-L. +1),v > 0 with nonnegative y and strictly pos-

Vv+o

itive o. The inverse function of B(-) is B~ (p) = y/(ll) —1)—a, for #La <p<1. See

Figure 2.1 for an illustration of the B(-) function for selected sample o and 7y values.

1.0 1
0.8 1

Q.

= 0.6

E

(1]

=]

E 0.4 1 — B{v) (a=0.01, y=0.1)

Blv) (@=0.01, y=1)
0.2 - — Blv) (@=0.01, y=2)
— Blv) (a=0.01, y=20)
0.0 — B{v) ({@=0.01, y=100)
6 1I0 2ID 3I0 4ID 5I0
Violation v

Figure 2.1 — B(v) envelope for selected sample ¢ and 7y values.

Given a specific value of v, the delivery time of any order should not exceed 7+ v with
probability at least B(v). In this case, the constraint implies a single chance constraint.

Therefore, PEC represents a stronger constraint than CC.

Definition 5 Period Service Level with One-Layer Guarantee is a service policy that

guarantees on-time delivery for a specific delivery time:

Zec(v) = {x c RIZIXI7 x| 7|

P; (Zf’iﬂx,’j; < ’f—l—\7> > ﬁ(\?),‘v’i,t} ,

J

where v is a given value. The set Z¢c contains all the allocation solutions that provide

on-time delivery service within T -+ v minutes with probability at least (V).

2.4.2.1 Reformulation with Known Distribution.

One can assume that the randomness of the travel time follows a known distribution .%

and obtain a tractable reformulation of Zpgc.

87



Proposition 4 If uncertainty T follows a known distribution %, Zpgc can be reformu-

lated as
Zppc = {x e RV < @4, vi, ot} 2.4

where ©;j; :=1 {suvaO <‘Pgull (B(v))—T— v) < 0}, I{-} is the indicator function, ¥z,

is the cumulative probability function of T;j;, and ‘P%_U]t (B) is its quantile at probability .
The proof is presented in Appendix B.1.

Remark 3 While Zpgc only imposes an upper bound on x, calculating this bound re-
quires evaluations of a supremum over v € R™. Fortunately, one can exploit a piecewise

constant approximation of B ().

For any f(v), we can derive an outer and inner approximation of f(v):

4
Bouter(v> _ Z B(karl)I[{v c [vk,vk+1[} (2.52)
k=1
, |2
Bmer(v) = Y BORI{v e pF A (2.5b)
k=1

where {Vf}c » is a discretization of [0,00) and %" = {1,2,...,|.7|}.

As shown in Figure 2.2, B“¢"(v) and B¢’ (v) are step functions under a finite
number of steps k € #. A smaller step size represents a larger number of steps |%|,
and leads to tighter approximations. Compared to (v), B?“¢"(v) yields a smaller fea-
sible set for x by requiring a higher probability of meeting the target, while B¢ (v)
yields a larger feasible set by requiring a lower probability of meeting the target (i.e.,

ﬁouler(v> > ﬁ(V) > ﬁinner(‘,),‘v’v >0).

Corollary 1 When B(v) is approximated by its outer step function (2.5a) and inner step
function(2.5b), the value of the indicator function on the right hand side is known, leading
to the approximated reformulation of Zpgc with a finite number of linear constraints, as
follows:

outer inner
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(a) || =20 with the step size B = 0.05. (b) |-#'| = 100 with the step size = 0.01.

Figure 2.2 — Inner and outer approximations of f(v).

with
{%‘}%ncer = {x € R|J|><|/|><|7\ ’xijt < ®§;!?eraVi7j7t}7 (26)
X = {x e RZIXIZ X7 ’xijt < ®i0};ter»wa]';t}’ 2.7
where ®Z!;wr = ming [ {‘P%},(B(Vk)) —T-k< 0}’
and @ := miny I {‘P%}I (BOATD)) — 7 -kl < 0}-

2.4.2.2 Reformulation with Unknown Distribution.

Under the case where the exact distribution of travel time may not be explicitly known,

we introduce the robust PEC:
Robust PEC: inf P;_» TiuXipn <T+v | > Vi, Vv >0, 2.8
}}EQ T~ T (ZJ: ijtXijt > V> _ﬁ(V) l v (2.8)
where & is the ambiguity set containing the true distribution.

Assumption 1 We consider that the distribution of travel times is unknown, but partial
information such as moments can be obtained from the dataset. In this case, the ambiguity
set 9 represents a family of distributions whose mean and covariance information are
given:

P = {ﬁ\%:ﬂs, E [S,] —0,E [SST} :z}.



Let x € Zg_prc be the solutions that satisfy the robust PEC (2.8). With the ambiguity
set 9,

ZR-PEC = {x c RIVIXIZIx1Z]

~ T
inf P{ (%i,+5,-t) xXip < f—l—v} > B(v), Vi, 1, ¥y > 0} (2.9)
0ir~(0,Z;)

where Sit ~ (0,X;) considers all the random vectors ) it € RI| with mean 0 and covari-

ance Xy such that [Zi ], j, = [Z](: j, 1), jor)-

Remark 4 The NDP-UD with x € Zg_pgc is a semi-infinite program with an infinite
number of constraints, since the constraint has to be satisfied under any distribution in

ambiguity set 9 and for any v.

Similar to Calafiore and Ghaoui (2006) and Xu, Caramanis, and Mannor (2012), who
derived an equivalent and tractable reformulation for the robust CC and PEC, respectively,

we present the following result.

Lemma 1 Zz_pgc can be equivalently reformulated as follows:

%gxit + 4 / 11_3(—[;}2” x;Zi,xit S f—i—v,Vi,t,VV Z 0}210)

Proposition 5 2 _pgrc has an equivalent linear reformulation

ZR-PEC = {x c RIVIXIZIx]Z]

Zipec = {x e RISy, < 04, ot} .1

where ©;j; =1 {Squzo Tijr +1/ %th —T—v< 0}. Specifically, in the case defined

2
in Example 1 that B(v) = ﬁ, we have ©;j; = H{%ijt+05+% —-7< O}.

v+a

The proof is presented in Appendix B.2. The outer and inner approximations of Zz_pgc

with discretized v are provided in Appendix C.1.
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2.4.3 Probabilistic Envelope Constraints with Two Forms of

Uncertainty

In practical scenarios, customers may order more frequently during lunchtime and din-
nertime, and less frequently in the early morning or late at night. Instead of providing
an equal service level in each period, we can evaluate the overall daily service level and
prioritize those time periods with higher order frequencies. Consequently, it becomes
essential to consider the probability distribution of time periods during which orders are
placed and to ensure a certain service level across all periods within the entire day.

For each customer i served by any micro-depot j, the uncertain delivery time under
uncertain period 7 should be no more than 7+ v with probability at least 3(v). The prob-

abilistic envelope constraint with period uncertainty (PECP) is

PECP: P;; (Z Tiixip <T+v
j

Y xiji= 1) > B(v),Vi,¥v > 0. (2.12)
j

Definition 6 Daily Service Level is a service policy that ensures on-time delivery service
for each customer throughout the entire day and guarantees a certain reliability for every

possible delivery time:

e RIZIXLIIXIZ| Pz 7 (Zj%ijfxijf < f"‘V‘ijijf: 1) > B(v),

(2.13)
Vi: ]P)(Z]Xl]f = 1) > O,VV >0

XpECP =
The set Zppcp contains all the allocation solutions that satisfy PECP (2.12).

2.4.3.1 Reformulation with Known Distribution.

Similar to Section 2.4.2.1, we assume full knowledge of distribution of travel time from
micro-depots to customers. Additionally, we consider a finite number of periods in which
each customer places orders with certain probabilities. We now reformulate Zpgcp into

a tractable formulation.

Proposition 6 Consider a finite number of periods t € 7. In each period t, customer

i places an order with known probability q;. If the uncertainty T;j; follows a known
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distribution .7, we reformulate Zpgcp into

J

Y qir (Z [Pz, (T+v) = B(v)] x; jt> > 0,Vi, Vv > 0}2.14)
1
where W, is the cumulative probability function of T;j.

The proof is presented in Appendix B.3. This formulation states that for each customer i,
the weighted-average difference between the realized frequency and promised frequency
is non-negative. The outer and inner approximations of Zpgcp are provided in Appendix

C.2.

2.4.3.2 Reformulation with Unknown Distribution.

A second interesting case is when both the travel time distribution and the probability
of customers placing orders in each period are unknown. In this case, we deal with the
robust PECP.

N
Robust PECP: inf inf \?I Prq { <f,~,~+ 5,-;) X< T+ v} > B(v),Vi,¥v >0,

%iE2i {8i~(0.2i)},”,

(2.15)
where 2; C A7, the probability simplex in R,
Let Z%_prcp be the set of solutions that satisfy the robust PECP, we have
qigg Z%‘r (Z (Xt (v) —B(v)] xijt) > 0,Vi,Vv > 0} ,

it ;

Dr_pECP = {x e RIZIXIZ1x]7]
J

where Y;j;(v) = inf §,i~(0,02 )IP’ {%i jt + Si it < T+ v}. Now, the computational challenge
Ljt Mgt
comes from two parts: the uncertainty set 2; and Y;;;(v). To handle 2;, we make the

following assumption.

Assumption 2 The uncertainty about q; is captured by

1

2= {qi Rl gle=1,0<q, <1, |27 (g — &)

ot}
1

where §; is the center of the uncertainty set, X, defines the shape of the set, and T is the

radius.
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Proposition 7 If Assumption 1 and Assumption 2 are satisfied, Zr_pgcp has an equiva-
lent semi-infinite linear reformulation

)
Yw>0, Ju e RIXIZ 9, eRIVI 6, e RIVI

Gl uy; +T0);+ 6y <0,Vi

%R—PECP = X e R|J|><|/|><|7\ Uit —I— 92,' Z ﬁ(v)xgl—ngi,(v),‘v’i,t 5
1

01 > ul (5], Vit

1
6,; > —ulTi[Zéi][,Vz,t

(2.16)

1 1
where 01,05,u) are dependent on v, [£], is the t™ column of the matrix £3,, and [Y;(v)]j =
(T+v—1;0)3
(F+v—"tij0) 7 +07,

with (y)4+ = max(0,y).

Note that Y;(v) can be preprocessed and taken as a fixed value. The proof is pre-
sented in Appendix B.4. The outer and inner approximations of Zz_pgcp are provided

in Appendix C.3.

Remark 5 When I = 0 and ¥, > O, the last constraint in the uncertainty set 2; states
that q; is explicitly known and equal to §; (i.e., 2; :={4;}). In this case, Zr_pgcp is

reduced to Zgr_pecp only with uncertain travel time distribution:

AR-PECP; = {x e RIZIXIZ1x|7]
J

Y g (Z [Yije(v) = B(v)] xijt) > 0,Vi, v > 0}(2.17)

- (T+V7f',‘jt)%_
where Y, (v) = it ol
1t)+ ijt

Remark 6 When I is a large value that makes the uncertainty set large enough to cover
any possible distribution of q;, the last constraint in uncertainty set 2; becomes redun-
dant. For example, if ¥4, is diagonal, the lowest upper bound of T is

max; ), max { [Z;i%]n(l —qit), [Zqi;]ttc}il}. Intuitively, if T is large enough to cover the
furthest node from the average value in terms of standard deviations, the robust PECP is

reduced to robust PEC.
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Remark 7 If the delivery time follows a known distribution, but the probability of placing
orders in each period is uncertain, Zr_pgcp is reduced to Zr_pgcp, only with uncertain
period probability, which has the following equivalent linear reformulation:

( )
Ww>0, u eRVXI7 9, eRIVI 0, e RIVI

4l i+ 161+ 6 <0,Vi

Xr—prcp, = § x € R XIS1XI7] ui + 602i > B(v)xjl —xjp P (v), Vit
1

eli > M{;[Zéi]t,Vi,t

1
61 > —ul;[X3] Vit

\ Vs

where 01,0,,u; are dependent on v, and [ (v)] j is the cumulative probability function

Of Sl'j,.

2.4.4 Stochastic Program and Linear Reformulation

If the daily service level is applied, the stochastic program under the uncertainty of the
travel time distribution and period probability is
(SPy) max Y YN (ri—clij)diji =) (0j+cloj)yj =Y hze  (2.18a)
it 1

2V i

J
s.t.  (2.1b)—(2.1d),(2.11) — (2.1g)

xe X, (2.18b)

where 2" can be any one of the following sets: Zcc, Zpec, Zr—pPEC, ZPECP, OF
Zr_pecp- The objective is the maximization of the expected profit. The location and
allocation decisions are made to reach a certain service level that depends on Z°, in-
cluding the period service level related to Zpgc, daily service level related to Zpgcp,
and their variants. The computational challenge arises from the constraint (2.18b), which
can be reformulated as an equivalent semi-infinite linear program based on the linear
reformulations presented in Propositions 4 to 7. Furthermore, it can be approximated
by a mixed-integer linear program (MILP) with a finite number of constraints using the

outer and inner approximations provided in Corollary 1 and Appendix C. To rephrase,
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qoouer C g C gmmer Take Zr—_pecp as an example, we have the following formula-
tion SP’f , which is an approximation of SPy:

SPH max Y Y'Y (ri—clij)dij =Y (0j+cloj) yi— Y hz  (2.19a)
i oj ot t

x,y,d,z,u,0

J
s.t.  (2.1b)—(2.1d),(2.11) — (2.1g)

Y Guul;, +T65+ 65, <0,i,k (2.19b)
t

;s + 6> Z [ﬁ (VKT8 = X35 (V) | X2, Vi, 1, K (2.19c¢)
J

1
elki > Z(ull(it’)<zq,~)[2[/7Viatak (219(1)
t/
1
Q{Ci 2 _Z(ullcit’)<zq,')[2[/7Viat7k (2196)
t/
(T4+v— %)% .
Yiji (V) = — — Vi, j,1,k. (2.19f)
” (T4 =2i)2 + 0,

SP’f provides a relaxation or restriction of SP; depending on whether € =0 or 1,

respectively.

2.4.5 Stochastic Program with Optimized PEC and Linear

Reformulation

In the chance constraint Pz | ¥ Tjjxijr < T+V | > B (V), target T+ v being reached with
J
probability at least 3(v) may lead to a high degree of violation on target or lead to a low

profit, depending on the value of ¥ and the shape of the (-) function. To obtain a better
service level with a lower violation on target, we proposed model SP;, where the ser-
vice level has been fully protected on any possible violations. However, such restrictive
requirements could be too conservative in practice, inspiring us to jointly optimize the
service level along with the decisions. This optimization aims to ensure not only a good
service level but also a decent profit. To be specific, any set 2 containing v (i.e., Zpgc,
Zr-pPEC, ZPECP, O ZR—PECP) can be considered as a variant 2" (v) that depends on v.

In particular, for any v > 0,
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c/gr/VR_pECp(\_/') = {x e RIZIXIZ X7 infqiegi Y qir (ZJ [Y,-jt(v) — ﬁ(v)} X,‘j;) >0,Vi,Vv > \_/} .
Other sets are similarly defined. In this case, protections are imposed on any v > v in-
stead of v > 0, and v is considered as a decision variable to find the optimal service level

guarantees.

J
s.t.  (2.1b)—(2.1d),(2.11) — (2.1g)

(SPy) max YY) (ri—clij)dij— Y (0j+cloj)yj— Y hz  (2.20a)
i oot t

x,y,d,z,v

x€ Z(v),Yv>0, (2.20b)

where 27 (v) can be Zpgc(v), Zr—rec(v), Zpecp(v), or Zr_pecp(v). We then dis-
cretize v into finite steps and find the optimal steps that yield the maximum profit while
maintaining a certain service level. Take Zk_pecp(v) as an example, the stochastic pro-
gram can be reformulated into

SPH max Y Y'Y (ri—clij)diji =Y (0j+cloj) yi— Y bz (2.21a)
i j ot 1

x,y,d,z,u,0

J
s.t.  (2.1b)—(2.1d),(2.11) — (2.1g),(2.19¢) — (2.191)

Z(ji,u’fi, + 1605+ 65 <0,Vi,Vk e [|H|+1—n,| 2], (2.21b)
t

where n € [0,|.%|] is the number of the to-be-guaranteed service levels, and |.#| is the
total number of steps in the step function of B (v). When n = ||, the constraints (2.21b)
are imposed for all service levels. If n = 0, the constraints can be interpreted in the way
that our objective is to serve all the customers without restricting the delivery time. The
constraints (2.21b) specify that the service level is implemented starting from serving
customers within a long delivery duration 7 + vl which is defined as a low service
level; and ending with serving customers within a short duration 7, which is defined as a
high service level. If the higher service level is achieved (e.g. k = |.#| — 1), the lower
one has to be satisfied (e.g. k = |#"|). The larger the number of the guaranteed levels, the
shorter the target delivery duration. Other formulations for SP; and SP; under different

scenarios for uncertainty are presented in Appendix D.
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2.5 Numerical Study

In this section, we first introduce the real-world dataset, the performance metrics, and the
implementation details. We then evaluate the performance of 8 approximation functions
and compare formulations under different service levels and uncertainties, including the
period and daily service levels, the full, partial and one-layer protection, and the robust
and non-robust models. We also investigate the impact of different factors and finally

analyze the trade-off between the profitability and reliability for urban and rural areas.

2.5.1 Dataset and Implementation Details

We use the customer location dataset from four regions in the US (Los Angeles, Seattle,
Tacoma, and Orange) provided by Amazon (Merchan et al. 2021), which indicates the
locations and density of residents inclined to purchase online. For example, the customer
location and density in Los Angeles are shown in Figure 2.3(a). The darker the point,
the higher the demand volume. For each area, we randomly generate 15 candidate loca-
tions for micro-depots. We obtain the distance and real-time travel time from the Google
API. Specifically, for each arc between customer and micro-depot locations, we collected
500 travel time samples at different time points from Jan 05, 2023, to Jan 19, 2023. For
example, Figure 2.3(b) shows the travel time distribution from micro-depot #1 (MD1) to
customer location #1 (C1). To evaluate the out-of-sample performance of ultra-fast deliv-
ery in terms of profitability and reliability, for each arc in each period, we generate 500
travel time samples using the gamma distribution, which best fits the real-world dataset,
with the same moment information (i.e., mean, variance, skewness) obtained from the
real-world dataset. We use 300 samples as training and 200 samples as testing datasets.
We simulate the demand distribution, the probability of customers placing orders in
each period, and other cost parameters as follows. We generate the nominal demand
distribution for 100 customer locations over 100 days using a normal distribution with a
mean of (5, 16, 14, 22, 6) for five periods (morning, lunchtime, afternoon, dinner time,

and night) and a variance of 10. The demand distribution for each period is presented in
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Figure 2.3(c). The probability distribution of customers placing orders in each period is
generated based on the demand distribution. In other words, for each location and each
day, the probability of placing orders in each period is proportional to the demand for
that period relative to the total demand. Figure 2.3(d) illustrates the probability of placing
orders in each period for C1. The revenue of each order r is set at $3, the delivery cost
per kilometer ¢ is $1, and the hiring cost & of each driver serving per unit demand in each
period is $1. Each driver serves an average of 10 units of demand in each period. The
setup cost o for opening the micro-depot j in all periods of one day is $100, and changes
between 0 and $500 in our sensitivity analysis. The initial target delivery time T is set to
6 minutes, and varies from 5 to 8 minutes in our sensitivity analysis. Since the allowed
violation fluctuates from O to 38 minutes, the potential target delivery time changes from
5 to 46 minutes. The competitor delivery time 7€ is set to 15 minutes, and varies from 2 to
20 minutes in our sensitivity analysis. The customer utility function is set as g(7) =1+ %,
indicating that faster deliveries result in higher utility. This function is assumed to be the

same for all customers.

To evaluate the performance of different formulations under various service levels and
protection, we compare the profit (i.e., the optimal objective value), the customer coverage
Yijidiji

Yiidi 100%),
the number of open micro-depots (i.e., }.;y;), the violation probability, and the violation

proportion (i.e., {}’ﬁ ;”( % 100%), the demand fulfillment proportion (i.e.,

degree. The violation probability V7 is defined as the average violation probability among
all customers in all periods for all discretized chance constraints that correspond to each
service level (i.e., VP = W Y.k Vih). Specifically, for each customer i in each pe-
riod ¢, if the chance constraint at level k is violated, the violation probability is the gap
between the target probability and the true probability of serving customers on time (i.e.,
Vifk = B(V¥) — Pz, (Z i TijeXije < T+ vk) , where .7, is the out-of-sample distribution); oth-
erwise, the violation probability is zero (i.e., Vf « = 0). The violation degree is defined as
the maximum amount of time that is beyond the target delivery time among all customers

in all periods for all discretized chance constraints (i.e., yd = max;; Vifk). Specifically,

for each customer i in each period ¢, if chance constraint & is violated, the delayed time
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Figure 2.3 — Statistic description of simulation environment

Vitdk is the gap between the highest possible delivery time and the target delivery time (i.e.,
Vl.fk =maxzwgz, Y TijiXijr — T — v, where .%, is the out-of-sample distribution). The prof-
itability is the proportion of the profit that can be achieved compared to the best case that
all customers can be served by ultra-fast delivery.

We implement our algorithms using Python 3.7 on a computer with one 2 GHz Quad-

Core Intel Core 15 processor and 16GB of RAM. We use Gurobi 9.0.2 as the solver.

2.5.2 Benchmark

We compare the different formulations from three aspects: (1) Service measures: period
and daily service levels. (2) Service level guarantees: one-layer on the service level
(i.e., n = 1), full protection with the all-layer guarantee (i.e., n = |.#'|), and partial pro-
tection with the multi-layer guarantee (i.e., n = [2,|#| — 1]). Specifically, we employ

the inner and outer approximations of f(v) as illustrated in Figure 2.2(a), with |#"| = 20
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and a step size of 8 set to 0.05. In this case, we implement a 20-layer guarantee as
the all-layer guarantee and a 15-layer guarantee (determined to strike an optimal balance
between profitability and reliability) as the multi-layer guarantee. (3) Source of uncer-
tainty: formulations with or without the uncertainty in travel time distribution and period

probability (see Table 2.1).

Table 2.1 — Reformulations of different service level under different level of uncertainty

Service Formulation Uncertainty Set Linear reformu-

level lation

Period PEC None ApEC See Proposition 4
Robust PECr Travel time distribution  Zx_pec See Proposition 5
PECP None A rECP See Proposition 6

Daily Robust PECPy  Travel time Zr-pPECP, See Remark 5
Robust PECPp Period probability Zr-pPECP, See Remark 7
Robust PECP7p  Travel time distribution; 2% _pgcp  See Proposition 7

Period probability

Notes. The subscript is the uncertainty of the robust formulation. For example, Robust PECPrp
can be read as Robust Probabilistic Envelope Constraint when considering Period probability
under uncertain Travel time distribution and Period probability.

2.5.3 Performance of 3 Step Function

To derive a linear reformulation with a finite number of constraints, we use the 3 step
function to approximate the 8 function. The larger the number of steps, the higher the
accuracy, but the lower the efficiency of the solution procedure. Figure 2.4 illustrates the
performance of the approximation for different numbers of steps. In the PEC formulation,
Be“er(v) (i.e., lower bound) and 7" (v) (i.e., upper bound) converge rapidly, resulting
in a gap ratio of 6.63% and an average runtime of 6 seconds when the number of steps
is set to 20. In contrast, for the PECP formulation, convergence is slightly slower, with
a gap ratio of 8.24% and an average runtime of 23 seconds at 20 steps. Moreover, the
upper bound tends to stabilize when the number of steps exceeds 20. In other words,

using the approximation 37" (v) to approximate the original formulation yields limited
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Figure 2.4 — Performance of approximation for different numbers of steps

improvement when increasing the number of steps from 20 to larger values. The gap ratio
eventually converges to zero at 200 steps, but at the cost of a lengthy preprocessing time,

averaging 20 minutes, and 1-3 minutes runtime for optimization.

Insight 1 The inner and outer approximations are tight when the number of steps exceeds
the number of samples in the travel time distribution, as also noted by Peng, Delage, and
J. Li (2020). The approximations with 20 steps and a step size of B set to 0.05 perform

well, yielding good results in terms of both efficiency and accuracy.

2.5.4 Comparison Under Different Service Levels and Uncertainties

We compare the daily and period service levels with various layers of protection under
different uncertainties, as described in Section 2.5.2. Figure 2.5 displays the profit, cus-
tomer coverage proportion, and the average performance in terms of out-of-sample viola-
tion probability and degree. As shown in each sub-figure, the robust formulation always
yields a lower violation but at the cost of some loss in profit. For example, the robust
formulation with daily service level under partial protection yields a lower out-of-sample
violation probability (i.e., 7.0%), a lower out-of-sample violation degree (i.e., 1.21 min-
utes), but also a lower profit (i.e., $6794) than the non-robust formulation (i.e., 7.9%,

1.54 minutes, and $6901, respectively). That is, the violation probability and violation
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degree decrease by 13% and 21%, respectively, in a positive manner. However, the profit

decreases by approximately 1.5%.
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Figure 2.5 — Performance on profit, coverage proportion, and violation

Table 2.2 — Results of different formulations

Formulation Optimal Number Unused Customer Violation Violation
profit of open micro- coverage probability  degree
$) micro- depot proportion (minutes)

depots indices

PECP 6500 10 [1,4,7,8,14] 96% 4.41% 1.38

PEC 5846 11 [1,4,7,14] 88% 1.74% 1.38

Robust 5413 11 [1,6,7,14] 80% 0.31% 1.21

PECPr

Robust 5086 12 [1,7,14] 76% 0.27% 0.53

PECr

Notes. The number of potential micro-depot locations is 15 to serve 100 customers.
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Figure 2.6 — The impact of radius I" of the uncertainty set 2 for the period probability g.

Figure 2.6 illustrates the change in the optimal objective value and the out-of-sample
violation probability as the radius I' of the uncertainty set for the period probability ¢
varies. When considering PECP with daily service level, increasing I" leads to larger un-
certainty sets, higher protection against uncertain probabilities of order placement in each
period, worse objective values, decreased customer coverage, and reduced violations. The
best case for PECP occurs when the probability of placing orders in each period is given
(I' = 0), while the worst case is observed with high uncertainty on the probability of plac-
ing orders (I' > 60), which reduces to PEC with period service level. This observation
holds true regardless of whether the travel time distribution is explicitly known or not (see

Remark 6).

Table 2.2 displays the open micro-depots under period and daily service levels corre-
sponding to different I', ranging from the deterministic case to the most robust scenario.
We observe that greater robustness leads to lower profits, reduced customer coverage,
decreased violation probabilities, and a higher number of open micro-depots. In other
words, the ultra-fast delivery company opens more micro-depots to mitigate risk, yet the
coverage of customer locations still diminishes. This suggests that the significant per-
turbations in customer order frequency and travel time can result in high costs and low

revenue.
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Insight 2 Value of the robustness: There is a trade-off between high profit and low vi-
olation in serving customers on time. The robust formulations can yield lower violation
probability and degree, but at the cost of a loss in profit, reaching up to 16.7% in the

experimental study.

As illustrated in Figure 2.5(a) and (b), the formulation with one-layer protection yields
the highest profit due to the highest coverage proportion. However, Figure 2.5(c) indicates
that the violation probability under the one-layer protection is much higher than that under
full protection. The profit of the formulation with full protection is significantly lower
than that of the formulation with one-layer protection. Generally, the formulation with
partial protection exhibits the best performance, yielding a decent profit slightly lower
than the best case, an acceptable violation probability that is at least half as low as the

worst case, and a stable violation degree observed in Figure 2.5(d).

2.5.5 Sensitivity Analysis

In this section, we examine the influence of the initial target delivery time, competitor
delivery time, setup cost, and number of layers on the results. We also present the effi-
cient frontiers concerning profitability and violation probability for both period and daily

service levels under various levels of service level protection.

2.5.5.1 The impact of the initial target delivery time.

Figure 2.7 shows the changes in profit, number of open micro-depots, customer coverage
proportion, demand fulfillment proportion, violation probability, and violation degree as
the initial target delivery time changes. A higher initial target delivery time implies less
restriction on service levels, resulting in increased profit and greater demand fulfillment.
This leads to a trade-off between service levels and fulfillment. Compared to the period
service level (PEC), the daily service level (PECP) always yields a higher profit with
higher demand fulfillment and coverage proportion (see Figure 2.7(a) and (b)). This factis

on account of two reasons: (1) Compared to PEC, PECP considers the weighted-average
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Figure 2.7 — The impact of the initial target delivery time on PEC and PECP

performance among all periods instead of the equivalent performance for each period,
leading to a less restricted requirement on the delivery time. (2) Since customers have a
higher probability of placing orders at the dinner time and lunch time, given the allowed
daily violation, more allowance will be put on these two periods to cover more demand
and to yield a higher profit in PECP. The out-of-sample violation probability is at most
2.6% and the violation degree is at most 1.6, which should be acceptable in practice (see
Figure 2.7(c) and (d)). More detailed results related to the initial target delivery time in

each period are shown in Appendix E.

2.5.5.2 The impact of the competitor delivery time.

Figure 2.8 shows how the profit, number of open micro-depots, customer coverage propor-
tion, and demand fulfillment proportion change as the competitor delivery time changes.

As the competitor delivery time increases, the profit of ultra-fast delivery (with the ini-
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tial target being 6 minutes) increases with an increasing captured demand. The value is
overall stable when the competitor delivery time exceeds 10 minutes. The coverage pro-
portion and the number of open micro-depots keep consistent, which means the allocation
decisions remain unchanged no matter how the competitor service level changes. In this

case, both the violation probability and degree also remain steady.

Insight 3 The competitor delivery time does not affect the operations of allocating micro-
depots to serve customers, but only impact the demand volume captured by the ultra-fast
delivery company. The slower the competitor delivery, the higher the demand captured

by the ultra-fast delivery.
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Figure 2.8 — The impact of the competitor delivery time on PEC and PECP

2.5.5.3 The impact of the setup cost.

Figure 2.9 shows the changes in profit, number of open micro-depots, customer coverage
proportion, demand fulfillment proportion, violation probability, and violation degree as
the setup cost varies. The higher the setup cost, the fewer the open micro-depots. In
this case, the profit decreases with decreasing demand fulfillment and customer coverage

proportions. The violation probability and degree remain overall stable.
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Figure 2.9 — The impact of the setup cost on PEC and PECP

2.5.5.4 The impact of the layers of protection.

Figure 2.10 demonstrates the changes in profit, number of open micro-depots, customer
coverage proportion, demand fulfillment proportion, violation probability, and violation
degree with variations in the layers of protection. The more the layers of protection, the
more reliable the ultra-fast delivery service. When the number of layers increases, the
profit first remains unchanged and then decreases, due to a lower captured demand and
a lower coverage proportion (see Figure 2.10 (a) and (b)). Both the violation probability

and degree decrease (see Figure 2.10 (c) and (d)).

Insight 4 Value of the daily service level: Regardless of changes in the initial target de-
livery time, competitor delivery time, setup cost, or layers of protection, the daily service
level consistently outperforms the period service level in terms of higher profit, greater

coverage, and milder violations.

2.5.6 Efficient Frontier of Four Regions for Varying Service

Guarantees

Inevitably, there is trade-off between the profit and the service level. The more the protec-
tion on the service level, the lower the profit. The trade-off changes for different regions

with varying customer densities.
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Figure 2.10 — The impact of protection layers

In Figure 2.11, we display customer distributions in four regions and plot their prof-
itability and out-of-sample violation probability under varying layers of service level pro-
tection. Connecting these points forms an efficient frontier of solutions for Los Ange-
les (LA), Seattle, Tacoma, and Orange, respectively. According to the density of cus-
tomer locations per square kilometer, we classify LA (33 customers/km?) and Seattle
42 customers/kmz) as urban areas, while we consider Tacoma (18 customers/kmz) and

Orange (17 customers/kmz) as rural areas.

Without any protection, each region achieves its 100% profitability by serving all
customers, and the violation probability of serving customers on time for rural areas is
higher than that of urban areas. For all cases, the steepest slope between points is that
between the 10-layer and 15-layer points. By comparing the slope between these two
points of different regions, we find that the slope of urban areas is always steeper than

that of rural areas. That is, the violation probability is almost halved by only sacrificing
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Figure 2.11 — Customer distributions and efficient frontiers (EF) under varying service
guarantees
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1—-2% profitability for urban areas, but by sacrificing 13—25% profitability for rural areas.

Insight 5 Compared to dense urban areas, maintaining a high service level of on-time
delivery is more challenging in rural areas, where customers are more dispersed, making
it harder to sustain profitable and reliable fast deliveries. This is due to the longer dis-
tances between delivery locations, necessitating the setup of more micro-depots in rural

regions.

Insight 6 Value of the multi-layer partial protection: Providing full protection with the
lowest profitability is too conservative, while offering no-layer protection with the highest
probability of violating the promised service level is too risky. A multi-layered partial pro-
tection strategy (e.g., using 15 layers) can strike a better balance between the profitability

and reliability.

In addition, the partial protection on the delivery time is practical in real-life scenar-
10s, as delivery companies are not obligated to guarantee on-time delivery at all levels.
Taking the urban area in Los Angeles with a customer density of 33 customers/km? (see
Figure 2.11(a)) as an example, promising delivery within an average of 15 minutes might
be too lenient, while guaranteeing delivery within exactly 15 minutes could be too strin-
gent. A stepwise approach to delivery promises, such as ensuring delivery to 99% of
customers within 43 minutes, 75% within 11 minutes, and 40% within 6 minutes, proves
to be a more effective strategy, regardless of when customers place their orders or the
prevailing traffic conditions at that time. Therefore, implementing an optimized service
level with partial protection could be a viable strategy for ultra-fast delivery companies to
operate a profitable business and maintain a good service level without over-committing
or under-delivering. In real-world business, we can customize delivery strategies for dif-
ferent customer groups, each with varying service levels. For example, customers can
choose Premium delivery with full protections, which offers high reliability and guar-
antees high compensation for delays. The lower profitability from this high-reliability

service can be offset by membership fees or higher delivery fee. Standard delivery offers
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a balanced trade-off with partial protections, providing medium reliability and leading
to decent profitability, catering to customers who value both speed and cost efficiency.
Finally, Economy delivery without protection targets customers who are less sensitive to
delivery time, allowing for a wider service area and lower costs. This service may offer
fewer guarantees and longer delivery times but ensures affordability and access to delivery

services for those who prioritize savings over speed.

2.6 Conclusion

The ultra-fast delivery service industry has emerged suddenly and expanded rapidly, but
it also scales down quickly, often due to business failures or bankruptcies. This prompts
us to consider its profitability while maintaining on-time and fast deliveries. To find an
effective strategy for operating ultra-fast delivery services, we model and solve a network
design problem using probabilistic envelope constrained programs under uncertainty in
travel time distribution and period probability. We investigate both period and daily ser-
vice levels of ultra-fast delivery, considering various layers of service level protection.
While the period service level emphasizes equal service across periods, the daily ser-
vice level prioritizes high-order frequency periods and guarantees a certain service level
for the entire day. The probabilistic envelope constrained programs are computationally
challenging when the distribution of travel time and the probability of customers placing
orders in different time periods are not explicitly known. To address this, we derive equiv-
alent linear constrained programs with an infinite number of constraints and then propose
outer and inner approximations with finite linear constraints. We conduct a numerical
study using a real-world dataset provided by Amazon and obtained through the Google
APL.

The results reveal that the outer and inner approximations converge rapidly as the
number of steps increases. Additionally, the approximations becomes tight when the
number of steps surpasses that of the training samples. Notably, the approximation using

20 steps demonstrates good performance in terms of both efficiency and accuracy. By
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comparing the out-of-sample performance, we observe that the robust formulation can
yield a lower probability of violating the target delivery time, and a reduced degree of
exceeding the bound in case of violation. However, this comes at the expense of a lower
profit. When we compare the performance of period and daily service levels under dif-
ferent layers of protection and investigate the impact of various factors on the results, we
obtain the following managerial insights: (1) The daily service level has an overall better
performance than the period service level with higher profitability, higher coverage, and
mild violation. (2) Full protection provides low profitability and is overly conservative.
On the other hand, offering either one-layer or no-layer protection with a high probability
of violating the promised service level is overly risky. Implementing multi-layered pro-
tection by optimizing the service level guarantee could be a good strategy for an ultra-fast
delivery company to run a profitable and reliable business. (3) The competitor delivery
time may not affect the allocation operations, but only impact the demand volume cap-
tured by the ultra-fast delivery company. (4) Compared to urban areas, maintaining a high
service level is more challenging in rural areas where customers are more dispersed.

Our work has some limitations that could be addressed in future research. Specifi-
cally, we assume that an unlimited number of drivers are available and that each customer
can be served instantly upon placing an order. This assumption can be relaxed to account
for routing decisions with a limited number of available drivers. Additionally, real-world
scenarios often involve batch processing, where a single driver serves multiple customers
located close to each other and who place orders within a short time frame. To address
this, it would be necessary to determine the optimal batch size, the composition of orders
within each batch, and the assignment of batches to drivers. Furthermore, the variation
in products and customer preferences regarding delivery times across different customer
types can be incorporated to develop more complex models and offer insights from a
marketing perspective. Lastly, other methods, such as queuing models, can account for
order preparation and delivery times from a more practical standpoint, while reinforce-

ment learning can enable real-time operational planning for ultra-fast delivery.
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2.7 Appendix

Appendix A: Summary of Notations

The notation is presented in Table 3.5.

Table 2.3 — Notations

Index Description

54 set of customer locations

I set of potential micro-depot locations

T set of time periods

H set of steps in B(v) step functions

Z set of allocation decisions

ParametersDescription

0 setup cost of micro-depot j

c delivery cost per unit of distance

r average revenue per order

d; nominal demand at location i in period ¢

lij distance between customer i and micro-depot j

Sijt uncertain travel time from micro-depot j to customer i in period ¢

Tijt uncertain delivery time from micro-depot j to customer i in period ¢

5i jt random part of uncertain delivery time from micro-depot j to customer i
in period t,1.e., Sijt = %ijt — %ijt

X covariance matrix of &

Ti delivery time from the assigned micro-depot to customer i in period ¢

(4 delivery time of the best competitor to serve customer i in period ¢

ajjr order preparation time for customer i served by micro-depot j in period ¢
hiring cost of one driver per period

m average units of demand served by each driver in each period

T target delivery time

% maximum violation

B probability of meeting the target delivery time

qit probability of customer i placing an order in period ¢

X, covariance matrix of the observations of the period probability ¢

r radius of the uncertainty set of the period probability g

Decisions Description

Xijt binary variable taking value 1 if customer i is covered by micro-depot j in
period ¢, and O otherwise

Vj binary variable taking value 1 if micro-depot j is open, and O otherwise

dijr captured demand at location i served by micro-depot j in period ¢

% number of drivers needed in period ¢
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Appendix B: Detailed Proofs of Propositions
B.1: Proof of Proposition 4

Proof. We rewrite the PEC (2.2) as
inf Pz Toxin < T — >0,Vi,t. A
31210 T{;lelxljt_f+v} B(V)_ ) Vi, ( )
Since x;;; € {0,1} and ;jXijt < 1, the above equation is equivalent to
xijtS]I{Vig(f)Pf{fijtSerV}—ﬁ(V)ZO}NI}J'J, (B)

where [{-} is the indicator function. To show that (A) < (B), we investigate two cases:
(1) When }.;x;js = 0, we have x;;; = 0. In this case, the left-hand side of equation (A)
is equal to 1 — B(v) since {0 < T+ v} is always satisfied with probability 1. Thus, the
equation (A) being 1 — B(v) > 0 is always feasible. Additionally, the equation (B) is also
feasible with the left hand side being equal to 0.

(2) When ¥ x;jj; = 1, let x;, = 1 and x;;y = 0 when j # 7. In this case, we have
(B) <« ig(f)IPf{fi,-/, <T+v}—Bv)>0,Vir < (A).
) :

Our next step is to assume that 7 follows a continuous distribution. We define Wz, as
the cumulative probability function of 7;;;, and ‘P%;(B) as its quantile at probability f3.

We have
Xijr < ]I{sup‘l’%ii(ﬁ(v)) —T—v< O} Vi, j,t.

v>0

B.2: Proof of Proposition 5

Proof. To simplify the robust PEC (2.8) even more, we can rewrite it as

\T
]I{ inf P{(%it+5,~,> xitgf—l—v}—ﬁ(v)ZO} > 1,Vi,r,
v>0,0;~(0,Z;)
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where I[{-} is the indicator function. Exploiting that x;;; € {0,1} and ¥ ;x;;; < 1, we get

ZH _inf P{%ijt+3ij,§f+v}—ﬁ(v)20 x,-j,EZx,-jt,Vi,t,
j VZO,Sith(O,G%I) j

which is equivalent to

xp I8 nf PLag 8 <74 B) 05V
VZO,(sith(O,G[Zj[)
Exploiting the reformulation (2.10) presented in Lemma 1, for each i, j, ¢, instead of

verifying
_inf IP’{%U,—I— ~,~jt < f—l—v} —B(v) >0,Yv >0,
8j~(0,07)

one can simply verify whether

R B(v) _
sup T + —G"—T—VSO.
o T
Hence, the robust PEC is equivalent to

. B(v) . .
Xij S]I sup T + —F—0jj _T_VSO 7VI, g
g {@8 TR !

which is linear in x;;, leading to a linear program.

In the case that B(v) := ﬁ, the robust PEC is equivalent to
v+o

N % - .. - .
Xijr < ]I{’L’ij, + o+ 4;;’ —7< 0} ,Vi, j,t. This is because we can optimize v out of the
2
equation and derive the optimal v* = -2 — ¢¢. This optimal v* exists and is unique since

4y
~ - . cp .. . _ _3
F(v) =1+ %Giﬂ — T —v is concave with its second derivative (i.e., 4—; (VJFTO‘) 2)

being negative. 1

B.3: Proof of Proposition 6

Proof. Suppose that there is a finite number of periods ¢ € .7. For any customer i in each

period ¢ such that P (Z jXiji = 1) > 0, the PECP (2.12) can be reformulated as

P‘E‘f (Z fij;x,-j; S T+v injf = 1) Z ﬁ(V),Vl.,VV Z 0 (2223)
J J
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Pei (X T < T+v& Lxr=1)

Y qiPz (X Tijexije < T+v) P (X x =1)

21 (5 vir = 1) > B(v),Vi,¥v >0 (2.22b)

> B(v),Vi, ¥ >0 (2.22¢)

Y g <injt) Pz <Zfijzxijt < f+v>
= \5 .

Y qilP (ijijt = 1)

ZC]iz Pz (Zfijtxl'jz < T+V> I (injt = 1>] > ﬁ(V)Zqz'rH (injz = 1) )

J
Vi,vv >0 (2.22d)

> B(v) Y i ¥ xije, Vi, Vv > 0(2.22¢)
! J

J J
=Yg |YP:{%; < f+v}xijt] >B()Y. Y qixije, Vi, Wv > 0, (2.221)
! L J tj
= Yai | Y [¥:(T+y) _B(V)]xijz] > 0,Vi,¥v > 0. (2.22g)
L

In the case that P (): iXijf = 1) = 0, the constraint is redundant since it is always satisfied.

B.4: Proof of Proposition 7

Proof. According to the strong duality, we obtain the robust counterpart of (2.15) under

the uncertainty set 2; = {qi cRI7lgle=1,0<¢; <1,

_1
Zqiz (ql - QZ)

gr}:
1

infyco,  Yiqu (Zj [Y,-J-,(v) — ﬁ(v)] xij,) >0,Vi,WVv>0
SUp,co, Lidi (Bv)xET—xL X (v)) <0,Vi,W¥v>0
sup, 5 (zt e (B —Yy(v)) ( Qi> <0,¥i,¥v>0
inf, 0, G ui +r' Zéiuli + 62 <0,Vi,¥v >0
s.t. i+ uzi = Y erxh (BO =Yy (v)), Vi
02 > unjs, Vit

infy, 0,0, 4 u1i+I61;+ 6y <0,Vi,¥v >0
s.t. Ui+ 6 > ﬁ(v)xgl—ngit(v),‘v’i,t

1
61; > ui;[X3] Vit

1
6,;, > —ulTi[Zéi][,Vl,t,

116



where ¢, € RI7| is the 1™ column of the identity matrix, §(v|.2;) = SUp,.c 9, glv is the
1 1
support function of 2;, and [X7], is the " column of the matrix Y. Note that u1, 01,62

are dependent on v. Additionally, Y;j,(v) = inf 50,02,

s, {T+v— 1}, and can be
reformulated as:

(T+v—1e)2

Yiji(v) = ,
lﬂ( ) (f'i'v_%iﬂ)i"f_cizjt

where (y)+ := max(0,y). This is because

Tij,(v): inf P{%ij,+5,-jt§f+v}
8ji~(0,0%,)
=sup [A: inf P{fij;+3ijt§f+v}zl]

Sile(07Gi2j[)

= sup[A < £+ 61 /A (1= A) < T+

(f+v—f‘ij[)2
A< Fvmoy

iff—f-v—fij, >0
= sup
0 otherwise

_ (vt
(T+v—1iu)i+0,

Appendix C: Linear Program Representation of Outer and Inner

Approximations

The feasible sets of x, including Zpgc, Zr—prec, ZpECP, and Zr_pecp, can be reformu-
lated into a finite set of linear constraints using their respective outer and inner approxi-
mations. This section covers the presentation of these approximations, with the exception

of the approximations for Zpgc, which are discussed in the main text.
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C.1: Outer and Inner Approximations of Zx_pgrc

Corollary 2 When B(v) is approximated by its outer and inner step functions (2.5), the

approximated reformulation of Zg_pgc(v) is
PEC ({Vk}ke %) C Zrec(v) C Zppe” ({Vk}ke¢%f>
with

aste ((Fhe ) =

2"k (¥ e ) =

c RIZIx17 1% |9|‘xl @lnner Vi j, }7

,—/H f—’H

x € RIZIXI7Ix |7|‘ ijr < O%, Vljt}

k
where @Z‘f” = ming I {T,Jt + 1ﬁ/(3vv)’< Cijr —T— vk < 0} and
@outer . I B(vk+1) =kt <0
ijt T = miny Tl]t + vk+1 Ojjr —T—V

C.2: Outer and Inner Approximations of .Zprcp

(2.23)

(2.24)

Corollary 3 When B(v) is approximated by its outer and inner step functions (2.5), the

approximated reformulation of Zpgcp(v) is
2505 (P e ) € Zorer(v) € 2 ((Fhier )
with

Zipies (¥ heer ) 1=

{xe RIZIXIA %71

2 (¥ heer ) 1=

{xeﬂwvwm

t
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) i (Z[ (T+v) ﬁ(Vk)] xijt) ZO,Vi,k} (2.25)
d J

Y qi (Z[ (T p(vk+l)}x,~j,>ZO,Vi,k}2.26)
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C.3: Outer and Inner Approximations of Zx_prcp

Corollary 4 When B(v) is approximated by its outer and inner step functions (2.5), the

approximated reformulation of Zr_pecp(v) is
k ' k
22t (¥ her ) € Ziprce(v) € 285 cp ((Fhier )

with

2iker (W her ) =

r |# | )
3{uk, 08,05},
gi uk; + 16+ 65, <0,Vi,k
x € RVHISHTI k4 gk > BT — XDy, (V6), Vit kg (2.27)

1
9{3 > (“lfi)T[Zqzi]thZ7t’k
1

o0f, > —(uf,)T[2g],. Vi 1k

2i%5cr ((Fhier ) =

p n )
3 (i, 0%, 05}
xe RVHIZIIZI k4 gk > BOATDTT— T, (A1), Vi k- §2.28)

1
G{Ci Z (ullci)T[Zéi]t’Vl’t’k
1

G{Ci 2 _(”lfi)T[Z‘%i]ﬂvi’t’k

Appendix D: Linear Reformulation of Stochastic Program

The probabilistic envelope constrained program can be reformulated into linear programs
with Corollary 1, 2, 3, and 4 for different scenarios. In this section, we present linear
programs for each scenario, except the one presented in main text (see Section 2.4.4 and

2.4.5).
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D.1: Linear Reformulation of Stochastic Program with Proposition 4

When the travel time distribution is explicitly known, the probabilistic envelope con-

strained program SP; and SP, can be reformulated as

(SPY) yrgaxe ZZZ(ri_Clij) dAijt Z 0j+cloj) y ZhZ’
Ly dnu it J
s.t. (2.1b) — (2.1d),(2.1f) — (2.1g),

xije <1 {ml?x‘l’%(ﬁ(vk*e)) . O} ,Vi, j,t.

x,v,d,z,u,0

(SPY) max Y Y'Y (ri—clij) diji =} (0j+cloj)y tht
ioj ot J
st (2.1b)—(2.1d),(2.1H) — (2.1g)

xij < T{WLL(BOFH) — 2=k <O} Vi, jir ke ] +1—n, | 7],

Note that € = 0 for relaxation and € = 1 for restriction.

D.2: Linear Reformulation of Stochastic Program with Proposition 5
When the travel time distribution is unknown, the SP; and SP, can be reformulated as
(SPY) max ZZZ(ri_diJ') dijr — Z 0j+cloj)y thz
xﬁy7d7z7u79 i j t ,]
s.t.  (2.1b)—(2.1d),(2.1H) — (2.1g)
R B(~*e) " -
x,-jtgl[{ml?xr,-jt—i— T(vk)(fiﬂ—f—v <0,,Vij,t.

x7y7d72714~,

(SPX) max . Zzg(ri—clij) diji — Z 0j+cloj)y tht
i J
S.t. (2.1b) — (2.1d),(2.1f) — (2.1g)

. vk+e ~
Xijziﬂ{fijz—f— %Gﬁz—f—vkﬁo},
Vi7j7t7k€ H%’—i—l_na’%‘]

Note that € = O for relaxation and € = 1 for restriction.
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D.3: Linear Reformulation of Stochastic Program with Proposition 6

When the travel time distribution is explicitly known but the period probability distribu-

tion is unknown, the SP; and SP; can be reformulated as

(SPY) max
x.y,d 21,0

J
(2.1b) — (2.1d), (2.1) — (2.1g)

Z‘Iit
T

YY) (ri—clij)dij =Y. (0j+cloj) yj — Y 1z
R 7
S.t.

Z [\P(f—k Vk - %ijt) - ﬁ(vk+£)i| Xijt Z O,Vi,k.
J

(SPY) max

x’y’d’z7u79

J
(2.1b) — (2.1d), (2.1f) — (2.1g)

Y g Z[\P(ﬂvk_f,.ﬂ)—ﬁ(vme)} xij | >0,

J

Y YN (ri—clij)diji =Y (0j+cloj) yj— Y hi
A 7

S.t.

Vik € [|A |+ 1—n, |2

Appendix E: The Detailed Impact of Target Delivery Time
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Figure 2.12 — The impact of initial target delivery time on PEC and PECP

121



Figure 2.12 illustrates how the initial target delivery time affects results in each pe-
riod. Across different time periods, the coverage proportion changes in similar trends,
with captured demand being proportional to the nominal demand in each period. Addi-
tionally, there is a small variation in the maximal distance to travel from micro-depots to

customers.
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Chapter 3

Learning-to-optimize for Consolidation
and Transshipment in Multi-store

Order Delivery

Abstract

This study investigates multi-store order delivery services that allow customers to place
orders from multiple stores for home delivery. We first consider the case of separated-
order delivery, where orders from different stores are processed and delivered separately
without consolidation. To enhance customer convenience and operational efficiency, we
then introduce a consolidated-order delivery option. This option enables customers to
place a single order across multiple stores and receive all items in one combined deliv-
ery. While consolidated-order delivery increases convenience, assigning a single driver
to pick up and deliver items from multiple stores can increase delivery times due to the
additional routing for visiting multiple stores. To address this shortcoming, we propose
a consolidated-order delivery system with transshipment, which allows drivers to coordi-
nate and transfer orders at transshipment nodes. We develop a mixed-integer linear pro-

gram (MILP) for the multi-store order problem that can model different delivery systems,



including separated-order delivery and consolidated-order delivery with or without trans-
shipment. This formulation presents significant computational challenges due to the large
number of constraints and variables arising from the routing decisions and time variables.
To overcome these challenges, we adopt a learning-to-optimize approach that integrates
machine learning and optimization. Four methods are implemented for learning alloca-
tion decisions, including Nearest Driver Allocation, Driver Assignment Neural Network
(DANN), Driver Classification Neural Network (DCNN), and Graph-based Neural Net-
work (GNN). Our experimental study reveals that GNN consistently performs the best in
terms of accuracy, optimality gap, efficiency, and scalability to larger problem instances
beyond the training set. The DCNN and DANN, on the other hand, are effective with a
sufficiently large training set and they perform well particularly when the instance scale in
the testing set matches those in the training set. We conduct experiments across four U.S.
regions using the learning-to-optimize method in a realistic setting with dynamic cus-
tomer arrivals. We find that the consolidated-order delivery with transshipment, coupled
with short-duration waiting strategy, consistently delivers superior performance, yielding
shorter order completion times and reduced driver travel times through effective spatial
and temporal consolidation. The optimal waiting strategy varies depending on customer

arrival rates and driver availability relative to customer demand.

3.1 Introduction

Online meal and grocery delivery services emerged in the early 2000s and experienced
substantial growth soon thereafter. This expansion accelerated between 2010 and 2020,
with a dramatic surge in 2020 due to the global pandemic. By 2024, the online delivery
market has reached a volume of USD 1.22 trillion, with projections indicating further
growth to USD 1.79 trillion by 2028 (Statista 2024).

To access a wider variety of products or enjoy the convenience of home delivery,
customers increasingly rely on online delivery services for items from multiple types

of stores, such as meals from restaurants, fresh produce from grocery stores, or emer-
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gency medicine from pharmacies. Companies such as UberEats and DoorDash provide
a multi-store order service that caters to customers who prefer the convenience of home
delivery over visiting multiple stores in person, especially when they are pressed for time.
These platforms conventionally adopt separated-order delivery (SOD), a system where
orders from different stores are treated as distinct transactions and delivered individu-
ally. Customers place separate orders from each store, incurring separate delivery fees for
each, while drivers handle pickups and deliveries for each order independently. Although
this model provides convenient access to products from multiple stores, it can be ineffi-
cient and costly due to multiple delivery fees and minimum order requirements for each
store. Recently, companies such as DoubleDash (DoorDash), Instacart, and Epipresto
have started offering what we term consolidated-order delivery (COD) services. These
services allow customers to order from multiple stores in a single transaction, receiving all
items as a combined delivery, typically without an added delivery fee. For instance, Dou-
bleDash (2023) and Instacart (2022) allow customers to add items from nearby retailers to
their original order without an additional delivery charge, ensuring that all items are deliv-
ered together by the same driver. Similarly, Epipresto (2023) enables customers to shop
from multiple stores at in-store prices with a fixed delivery fee, regardless of distance.
This consolidated-order model offers multiple benefits: customers save on delivery fees,
enjoy the convenience of placing one order for all needed products, and have a single de-
livery experience. Meanwhile, companies may benefit from a decreased need for drivers,
reduced delivery costs, and increased sales. Despite these benefits, consolidated-order de-
livery can introduce new challenges to delivery efficiency. A single driver responsible for
picking up and delivering items from multiple stores may face extended delivery times,
particularly when fulfilling orders from far apart store locations to multiple customers. To
overcome these limitations and optimize the delivery process, we propose a model that
divides multi-store orders among several drivers, who can then transfer orders through
transshipment. In the consolidated-order delivery with transshipment (CODT) system, a
customer’s multi-store order is distributed among multiple drivers, each responsible for

pickups from different stores. These orders are then transferred at selected transship-
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ment nodes, potentially assigned to a different driver, and delivered as one package to the
customer’s doorstep. This collaborative approach offers the combined benefits of con-
solidation with enhanced efficiency, reducing overall delivery time and improving route
management for drivers handling multi-store, multi-customer orders.

To quantify the value of enabling order consolidation and transshipment for fulfilling
multi-store orders in a combined delivery, we develop a mixed integer linear program
(MILP) that models three delivery systems: separated-order delivery, consolidated-order
delivery without transshipment, and consolidated-order delivery with transshipment. The
MILP for multi-store order services presents substantial computational challenges. From
the drivers’ perspective, this problem resembles a complex vehicle routing problem in-
volving multiple store and customer locations. Conversely, the journey of each item can
be viewed as a shortest path problem within a network defined by the drivers’ delivery
routes, starting at the store and ending at the customer. This requires precise tracking
of each item and driver’s arrival and departure times to meet time windows and ensure
timely deliveries. To mitigate the significant solution times for solving the MILP directly,
we adopt a learning-to-optimize approach. This method replaces the traditional optimiza-
tion process with a machine learning-based approximation (i.e., an optimization proxy).
The learning model estimates allocation decisions, identifying which drivers should pick
up items from stores and which should deliver them to customers. These estimated alloca-
tions are subsequently refined through an MILP with a reduced search space, significantly
enhancing computational efficiency and enabling practical implementation. We evaluate
three delivery systems in a simulated dynamic setting, where both customer arrivals and
the optimization process occur in real-time, making time and space consolidation crucial.
The system can optimize deliveries immediately as each customer arrives or wait to batch
multiple customers for joint optimization. This analysis helps identify the most efficient

delivery system under various waiting strategies.

The four main contributions of this paper are as follows:

* We investigate three delivery systems for multi-store order services, where cus-
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tomers place orders across multiple stores for home delivery. Beyond separated-
order delivery, in which each order from each store is handled separately, we pro-
pose consolidated-order delivery, with or without transshipment. Consolidated-
order delivery enables customers to order from multiple stores in a single transac-
tion and receive all items as a combined delivery, while transshipment further allows

for driver coordination and order transshipment to enhance delivery efficiency.

We formulate a mixed-integer linear program to model the multi-store order prob-
lem (MOP) across all three delivery systems. To address the computationally de-
manding problem of optimizing both routing and transfer decisions, we adopt a
learning-to-optimize approach that integrates machine learning with optimization.
In this framework, the estimated allocation decisions act as a lower bound within
the optimization process. This process not only refines the allocation decisions but
also optimizes additional decisions that are not directly learned. By offloading a
portion of the computational workload to the offline phase, this approach enables

the near real-time generation of high-quality solutions.

We implement four methods to obtain the estimated allocation plans efficiently.
Nearest Driver Allocation (NDA) identifies the closest driver for each customer.
Driver Assignment Neural Network (DANN) uses binary predictions to assign cus-
tomers to drivers, treating each driver independently. Driver Classification Neural
Network (DCNN) frames the allocation of customers to drivers as a classification
problem, with each driver representing a unique class. Finally, Graph-based Neu-
ral Network (GNN) models each instance as a graph and treats customer-to-driver

allocation as edge labels to be learned.

We conduct numerical experiments across various U.S. regions with varying cus-
tomer arrival rates, comparing the performance of our three delivery systems and

four learning methods. The following insights are derived:

— By applying a learning-to-optimize approach, we enhance the solution effi-
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ciency of the multi-store order problem and obtain high-quality solutions. This
approach involves learning allocation decisions for assigning drivers to visit
nodes based on historically optimal samples, which narrows the feasible solu-
tion space and facilitates effective decision-making within this refined search

area.

The GNN outperforms other methods, achieving a better balance between
optimality gap and solution time while also scaling well to larger instances
beyond the training set, due to its ability to facilitate information exchange.
However, it requires significant effort to collect sufficient historical samples,
as each instance corresponds to a single graph. The NDA is simple to imple-
ment, requiring no training or historical samples, but struggles with clustered
customer locations. Both the DCNN and DANN perform well when the test
instance scale matches the training data but face challenges adapting to larger-

scale instances.

We identify a balance between batching efficiency and individual order fulfill-
ment. As more orders are batched for joint optimization, delivery times rise
due to longer routes, but wait times initially drop significantly because batch-
ing makes better use of drivers. However, beyond a certain point, extending
the re-optimization interval leads to increased wait times as customers expe-
rience longer delays before being served. Consequently, the total order com-
pletion time, which includes both wait and delivery times, initially decreases,
reaching a minimum before increasing again. This indicates the existence of
an optimal waiting strategy, influenced by factors such as customer arrival

rates and the ratio of drivers to customers.

Consolidated-order delivery shows increasing efficiency over separated-order
delivery as customer scale grows, since consolidating orders from multiple
stores effectively reduces both delivery and driver travel times. The COD with

transshipment and a short-duration waiting strategy consistently achieves the
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best performance in delivery and travel times, regardless of customer or driver

scales.

The rest of the paper is organized as follows. We review related work in Section 3.2.
Next, we define the problem setting, describe our three delivery systems, and present the
models for these systems in Section 3.3. We develop the learning-to-optimize method
in Section 3.4 and report the results of numerical studies comparing the performance of
our proposed models and their solution quality in Section 3.5. Finally, we conclude with

managerial insights in Section 3.6.

3.2 Literature Review

In this section, we review the main studies relevant to our research from three points of

view: last-mile delivery, pickup and delivery problem, and learning-based optimization.

3.2.1 Last-mile Delivery

Last-mile delivery, which refers to the delivery from distribution points or transshipment
nodes to customer locations, is closely related to online food and grocery delivery. Savels-
bergh and Van Woensel (2016) review and discuss various current and anticipated chal-
lenges and opportunities in last-mile logistics. They claim that customers are increasingly
demanding in terms of price, quality, time, and sustainability. They also highlight the
importance of batching in city logistics, noting that delaying dispatch can allow for ad-
ditional orders, which may lead to more cost-effective delivery routes. However, this
approach also increases the risk of delayed order fulfillment.

In the field of on-time last-mile delivery for food and groceries, most research focuses
on either improving delivery times to enhance service quality or reducing travel costs to
improve efficiency. This is achieved through demonstrating the importance of on-demand
delivery using empirical evidence, optimizing the assignment of drivers to customers or

driver routing for dispatching items, or proposing novel business models and applying
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learning techniques to improve the overall efficiency of the delivery system. From an
empirical perspective, Mao et al. (2022) develop data analytics models to improve the
delivery performance of a meal delivery platform, emphasizing the need for the platform
to provide superior delivery performance without increasing delivery fees. Similarly, Li
and G. Wang (2024) highlight that restaurants increasingly rely on on-demand delivery
platforms such as DoorDash and Uber Eats to reach customers and fulfill takeout orders,
providing empirical evidence of the overall benefits for restaurants using these platforms.
From an optimization perspective, Liu, He, and Max Shen (2021) investigate the impact
of delivery data on the on-time performance of food delivery services, developing an or-
der assignment problem with travel-time predictors. Carlsson et al. (2024) characterize
the optimal region partitioning policy to minimize the expected delivery time of customer
orders in a stochastic and dynamic setting, assigning each driver to a specific subregion to
ensure drivers are dispatched only within their territories. In terms of novel business mod-
els, Cao and W. Qi (2023) propose selling groceries in public spaces using self-driving
mini grocery stores to enhance mobility, proximity, and flexibility of grocery delivery by
avoiding the last 100 meters. Additionally, Raghavan and Zhang (2024) explore coordi-
nated logistics by evaluating the value of using aides who can assist drivers in last-mile
delivery. The aide can either help the driver prepare and deliver packages, thus reducing
service time at a given stop, or work independently at a location, allowing the driver to de-
liver packages at other sites before returning. From the learning perspective, Hildebrandt
and Ulmer (2022) present offline and online-offline estimation approaches for estimating
arrival times, finding that accurate arrival predictions not only improve service perception
but also enhance the overall delivery system by guiding customer selections, resulting in
faster deliveries. Auad, Erera, and Savelsbergh (2024) study the dynamic management
of courier capacity in a meal delivery system, proposing a deep reinforcement learning
approach to balance the costs of adding couriers and the degradation of service quality

due to insufficient delivery capacity.

We also aim to provide efficient on-demand and on-time delivery for food and gro-

ceries. Our goal is to ensure fast delivery times for customers while also minimizing total
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travel times. In our proposed setting, the platform allows customers to place orders from
multiple stores and receive all items in a single delivery, enhancing convenience for cus-
tomers. Additionally, drivers can manage parts of the delivery process and coordinate at
intermediate points to transfer orders, with any driver able to complete deliveries from
these points. However, this setup may lead to a complex pickup and delivery problem,
potentially causing inefficiencies in the delivery system. Therefore, we will discuss the

problem formulation and explore how to address it effectively.

3.2.2 Pickup and Delivery Problem

The Pickup and Delivery Problem (PDP) is a classical combinatorial optimization prob-
lem concerned with optimizing vehicle routes for picking up and delivering goods or
passengers at various locations. Its primary goal is the efficient movement of vehicles to
minimize transportation costs. The PDP is an extension of the Vehicle Routing Problem
(VRP), first introduced by Dantzig and Ramser (1959).

There are several variants of the PDP, including single-vehicle PDP, multiple-vehicle
PDP, dynamic PDP, many-origin-to-many-destination PDP, PDP with time windows, PDP
with split delivery, and PDP with transshipment, among others. Berbeglia, Cordeau, and
Laporte (2010) provide a general framework for dynamic PDPs, where objects or people
need to be collected and delivered in real-time, with requests revealed over time. They
also explain how to design waiting strategies and assess their performance. Addition-
ally, Kog, Laporte, and Tiikenmez (2020) conduct a detailed survey of vehicle routing
problems with simultaneous pickup and delivery, where goods must be transported from
various origins to different destinations, satisfying both delivery and pickup demands con-
currently.

In the context of the many-to-many PDP with transshipment that we are interested
in, the pickup loads and delivery processes can be split among different drivers, provided
that drivers meet at transshipment nodes to exchange items. Specifically, one vehicle

collects the load at the pickup location, drops it at a transshipment point, and then an-
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other vehicle transports the load to the delivery location. In terms of empirical studies,
Mitrovié¢-Mini¢ and Laporte (2006) study the pickup and delivery problem with time win-
dows and transshipment, presenting an empirical study on the usefulness of transshipment
points. They propose a heuristic for the static problem setting and evaluate the benefits
of transshipment. Nowak, Ergun, and White III (2009) demonstrate that splitting loads to
complete certain deliveries in multiple trips, rather than in a single trip, is advantageous
for the PDP. They characterize the real-world environments where split loads are most
beneficial through empirical analysis. In terms of optimization, Rieck, Ehrenberg, and
Zimmermann (2014) consider the many-to-many location-routing problem with inter-hub
transport and multi-commodity pickup-and-delivery. To tackle medium- and large-scale
instances, they develop a fix-and-optimize heuristic and a genetic algorithm that construct
promising solutions within an appropriate time limit. While this problem is similar to our
study, it does not account for the importance of time windows, which further complicates
the setting. Rais, Alvelos, and Carvalho (2014) explore the pickup and delivery problem
with time windows and transshipments from an optimization perspective. However, due
to the complexity of the problem, they only consider instances with 10 or 14 nodes, with
five order requests and one transfer station. Lyu and Yu (2023) revise the formulations
proposed by Rais, Alvelos, and Carvalho (2014), successfully solving instances with 25
requests and two transfer stations to optimality within one hour. Both studies consider
the flexibility of drivers picking up items from different locations, exchanging them at
transshipment nodes, and delivering them to customers. However, they do not address
the possibility that orders originated from multiple pickup points can be combined to-
gether and delivered as a single package, nor do they recognize that any node visited
by drivers could serve as a transshipment point for exchanging items, provided time re-
strictions are respected. Ulmer et al. (2021) consider a stochastic dynamic pickup and
delivery problem, model it as a route-based Markov decision process, and propose an an-
ticipatory customer assignment policy that significantly enhances service. However, their
work focuses on single-courier direct deliveries without transshipment, making it less ap-

plicable to multi-driver coordination and exchange-based delivery networks like ours. Su
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et al. (2023) tackle a pickup and delivery problem with crowdsourced bids and transship-
ment in last-mile delivery, where requests are fulfilled using either the company’s fleet or
crowdshippers with a small compensation via transshipment facilities. Although it opti-
mizes the company’s vehicle routes and bid selection, it does not account for the optimal
routing of crowdshippers and imposes several restrictions on service requests.

The problem we investigate is a many-origin-to-many-destination pickup and delivery
problem with time windows, allowing coordination and transshipment among drivers to
fulfill orders placed from multiple stores. To accurately model this complex setting, we
will consider the allocation decisions of orders to drivers, the transshipment nodes where
drivers meet and exchange items, the routing decisions for each driver and each order, and

the time variables associated with driver and order arrivals and departures.

3.2.3 Machine Learning-based Optimization

Machine learning (ML) has emerged as a transformative tool in operations research (OR)
and operations management, enabling innovative approaches to solve complex decision-
making problems. The integration of ML in OR can broadly be categorized into two
areas: using ML to design and enhance optimization models, and employing optimization
proxies to accelerate or approximate solutions.

In the first category, ML is widely used to design optimization models, improve data
quality, and enhance solution procedures. Sadana et al. (2024) provide a comprehen-
sive review of contextual stochastic optimization, unifying diverse methodologies for
decision-making under uncertainty. They categorize key approaches into decision rule
optimization, sequential learning and optimization, and integrated learning and optimiza-
tion. Maragno et al. (2023) propose a pipeline where constraints and objectives are
learned directly from data and embedded into optimization models. Similarly, S. Wang,
Delage, and Coelho (2024) enhance inputs to vehicle routing problems using techniques
like k-nearest neighbor and kernel density estimation. In practical applications, Liu, He,

and Max Shen (2021) integrate ML-based travel-time predictors into order-assignment
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optimization for food delivery, improving on-time performance by refining parameter es-
timates. Additionally, Hong, Huang, and Lam (2021) propose a statistical framework
for robust optimization that uses machine learning to provide more accurate parameter
estimates, enhancing optimization outcomes.

In the second category, optimization proxies use ML to approximate solutions, accel-
erate computational processes, or enable inverse optimization. Van Hentenryck (2021)
distinguishes between two main approaches: end-to-end learning, which uses proxies to
directly approximate optimal solutions, and learning-to-optimize, which accelerates ex-
isting optimization algorithms for enhanced efficiency. Kotary, Fioretto, et al. (2021)
review hybrid methods that integrate combinatorial solvers with ML to provide fast, ap-
proximate solutions and support logical inference. Bogyrbayeva et al. (2024) provide
a systematic overview of machine learning methods applied to solve vehicle routing
problems. Several studies highlight the potential of learning-to-optimize for speeding
up solution generation. For example, Ojha et al. (2023) develop ML proxies to predict
loads and ensure constraint compliance in dynamic load planning, significantly improving
decision-making speed. Similarly, Julien, Postek, and Birbil (2024) introduce a machine-
learning-based node selection strategy that accelerates robust optimization by identifying
high-quality solutions faster. In two-stage stochastic programming, Larsen, Lachapelle,
et al. (2022) and Larsen, Frejinger, et al. (2024) use supervised learning to approximate
computationally intensive second-stage solutions, reducing solution time while maintain-
ing accuracy in repeated problem-solving tasks. Kotary, Di Vito, et al. (2024) propose
a learning-to-optimize-from-features framework, aligning traditional methods with the
predict-then-optimize paradigm. Additionally, M. Qi et al. (2023) demonstrate the im-
pact of end-to-end learning by developing a multi-period inventory replenishment model
that directly outputs optimal replenishment decisions from input features. For inverse
optimization, Ozarik, Costa, and Florio (2024) leverage ML to estimate key parameters
for last-mile delivery route optimization, illustrating how predictive modeling can inform
complex decision-making.

In this work, we apply the learning-to-optimize method to efficiently address our com-
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putationally challenging problem. Initially, we use machine learning techniques, includ-
ing neural networks and graph-based neural networks, to estimate allocation decisions.
These estimations then serve as inputs to an optimization process, which refines the al-
location decisions and makes additional decisions, such as optimal routing. Unlike con-
ventional learning-to-optimize methods, our approach maintains flexibility by treating the
estimated decisions as lower bounds rather than fixed inputs. Compared to directly learn-
ing routing decisions, this method has low-dimensional outputs, enhancing both accuracy
and efficiency. Rather than outputting fixed routing decisions, it allows for the explo-
ration of routing solutions within a refined search space during the optimization process.
Additionally, our work focuses on both efficiency and high-quality solutions, while also

evaluating the scalability of different learning algorithms across various cases.

3.3 Multi-store Order Delivery Problem

In this section, we first introduce our three delivery systems of interest and present the
problem definition in Section 3.3.1. We then formulate the mathematical model for the
multi-store order delivery problem under various delivery systems in Section 3.3.2, fol-
lowed by the dynamic problem description incorporating waiting strategies in Section

3.3.3.

3.3.1 Delivery System Description and Problem Definition

Due to the variety of store types, product availability, and special pricing, customers often
purchase products from multiple stores, such as meals from restaurants, fresh produce
from grocery stores, or emergency medicine from pharmacies. To avoid the inconvenience
of visiting multiple stores, customers increasingly rely on online ordering and delivery
platforms, creating the necessity for multi-store order delivery services. We consider

three delivery systems for managing multi-store order deliveries:

(1) Separated-order delivery (SOD): Customers place separate orders from different
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stores, pay a delivery fee for each order, and receive individual deliveries. Orders from
each store are handled independently, with drivers managing both the pickup and delivery
processes (Figure 3.1(a)). This system serves as a baseline for comparison in the absence
of consolidation.

(2) Consolidated-order delivery (COD): Customers place a combined order from
multiple stores in a single transaction and receive a combined delivery, typically without
additional delivery fees. A single driver collects items from several stores and delivers
them to the customer (Figure 3.1(b)). This system consolidates orders from different
stores and serves as a baseline in the absence of transshipment.

(3) Consolidated-order delivery with transshipment (CODT): Similar to COD, cus-
tomers place a consolidated order from multiple stores and receive a combined delivery.
However, in this system, different drivers can pick up items from different stores and can
transfer them at selected transshipment nodes. A single driver then completes the final
delivery to the customer’s doorstep (Figure 3.1(c)). Transshipment can occur at various
locations, such as stores or customer locations, where drivers can drop off or pick up
items and items can be temporarily held without the presence of drivers. In some cases,
customers acting as transshipment nodes may receive multiple deliveries, while others
receive a single delivery.

We define the problem that accommodates these three delivery systems as follows:

Definition 7 The Multi-store Order Problem (MOP) is an optimization problem address-
ing the fulfillment of customer orders placed across multiple stores using a limited number
of drivers. The objective is to jointly minimize a weighted sum of the latest delivery time
for serving each order and the total driver travel time for fulfilling all requests. This is
achieved by addressing key decisions, including allocating drivers for pickup and deliv-
ery, planning driver routes with time and capacity restrictions, and selecting transship-
ment nodes for transferring items among drivers. In addition to handling orders from
different stores separately, MOP also incorporates consolidation, allowing orders from

multiple stores to be grouped and handled together, and transshipment, permitting partial
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order transfers among drivers at specified nodes.
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Notes. This figure illustrates an instance with two drivers, two stores, and four customers.
The same set of customers is served by the same set of drivers across all three systems. The route
of one driver is represented by a black line, while the route of another driver is shown in blue.
The solid lines are the same for each system, while the dashed lines highlight the differences.

Figure 3.1 — Delivery systems for multi-store order services

3.3.2 Mathematical Model

We formulate the multi-store order problem for all three delivery systems using a mixed-
integer linear programming model. This MILP is defined on an undirected network & =
(A, 4f), where A represents the set of nodes and <7 denotes the set of arcs. Customers
are denoted by i € .#, stores by j € _#, and drivers by k € 2. The origin node of driver
k, representing their starting location, is denoted as o, and the set &' comprises the origin
nodes of all drivers. The node set .4 includes all customer, store, and driver starting
locations, i.e., A4 = # U _¢ UO. The binary parameter ¢;; indicates whether customer i
orders from store j, and the item ordered by customer i from store j is indexed by ij. The
size of item ij is p;;, and the capacity of driver k is g*. The travel time between nodes n
and n’ is denoted by t,,,, and it satisfies the triangle inequality: t,,,y <t +t,, V0,0’ n".
The time window for customer i is given by [0, B;]. The decision variables are as follows.
Let z’,‘, be 1 if and only if driver k visits node n, x’;n, be 1 if and only if driver k travels
from node n to node 7/, y;jn, be 1 if and only if item ij travels from node n to node

n' during the trip, vlf,ij " be 1 if and only if item ij arrives at node n via driver k, and
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vﬁij ~ be 1 if and only if item ij departs from node n via driver k. If item ij is served
by different drivers for arrival and departure at the same node n, it indicates that node
n acts as a transshipment point where the drivers meet and transfer item ij. We assume
that any node n can potentially serve as a transshipment point with sufficient capacity
to temporarily hold the items. The selection of transshipment points will be determined
implicitly through the variables vﬁij T and vlf,ij . The continuous variables are as follows:
7K+ is the time at which driver k arrives at node 7, T8~ is the time at which driver k departs

from node », and l,ij is the arrival time of item ij at node n. A summary of the notation is

provided in Appendix A.

The model for the multi-store order problem is presented as follows:

M(j7j7‘%/):

. k k
min pu}ggg&{‘cﬁ}%—pz Z Z Z b/ Xy (3.1a)
VA ic s ket ne N nen,
n' #n
st Y VT >ey, viesje g (3.1b)
ket
Y T >ey Viedje g (3.1c)
ket
Y it =Y W Vie s je FineN in#ij (3.1d)
ket ket
zlgk > 2k >max (W WITY ke Hie S je Fone N (3.1e)
ik =& VneN kex (3.1f)
n'eN n'#n
xﬁnfzz]fl, Vne N ke (3.1g)
n'eN n'#n
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The objective function (3.1a) aims to minimize the weighted average of the latest de-
livery time and the total travel time for serving all orders, where p; is the weight assigned
to the latest delivery time and p; is the weight assigned to the total travel time. Note
that to prioritize on-time delivery, p; should be set significantly larger than p,, while a
relatively small value for p; is sufficient to discourage unnecessary long travel times. The
term maxye v jc.s {TI."J’} can be equivalently replaced by a new variable /, along with the

constraints [ > ©°7 Vi€ S ke X

Constraints (3.1b) and (3.1c¢) stipulate that if customer i orders items from store j (i.e.,
ejj = 1), item ij should be picked up from store j by a driver and delivered to customer i by
a driver. Constraints (3.1d) ensure that if item ij arrives at node n (except for destination
i and origin j), it must leave this node after being picked up by a driver. Constraints
(3.1e) indicate that if driver k serves item i j by passing through node n, then driver k must
leave its origin location oy and also visit node n. Constraints (3.1f) and (3.1g) impose
degree constraints on the nodes visited by driver k. Constraints (3.1h) specify the arrival

and departure times of driver k at node n. If driver k travels from node n to node n’ (i.e.,
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k —1), the arrival time of driver k at node n’ must be no earlier than the departure time

X g
nn’

from the previous node n, accounting for the travel time from node n to node n’. These
constraints can be linearized into T~ 41, — T,ffr <M (1- xﬁn,), where M; should be
sufficiently large to ensure that M| > 8~ +1,,. Additionally, constraints (3.1i) ensure
that the departure time at any node of a driver should be no earlier than their arrival time,
except for their origin nodes o;. Constraints (3.1j) to (3.11) denote that item ij should
leave store j and arrive at customer i, and that if item ij arrives at any other node, it must
also leave this node (i.e., flow balance constraints). Constraints (3.1m) and (3.1n) state
that item ij can traverse the arc (n,n’) only if this arc is visited by a driver, and that arcs
for drivers returning to origin nodes cannot be part of the path for items. Constraints
(3.10) specify the arrival time of item ij at node n. If item ij travels from node n to
node n’ (i.e., yil];l, = 1), the arrival time of item ij at node n’ must be no earlier than its
arrival time at the previous node n, while accounting for the travel time from node n to
node n’. These constraints can be linearized into M;j +t, — lrllf <M,(1— yil];l,), where
M, must be large enough to ensure that M, > k,l;j +t,,v. Constraints (3.1p) and (3.1q)
indicate that if item ij passes the arc (n,n’) visited by driver k, then item ij must be
picked up by driver k to leave node n and dropped off by driver k at node n’. Since x,

y, and v are binary, these constraints can be linearized into vﬁl" > >, 4+ y;’n ,— 1 and

nn’'
vflfj + > xﬁ o +yZ1, — 1, respectively. Constraints (3.1r) and (3.1s) state that the arrival time
of item ij at node n should be no earlier than the arrival time of driver k at node # if this
item is served by driver k to arrive at node n. Furthermore, the departure time of driver &
should be no earlier than the arrival time of item i at node » if this item is about to leave
node n via driver k. These constraints can be linearized into TV — A< Ms(1— vlflij +)
and M;j — < My(1— vflij ), with M3 > ¢+ and M, > M;j . Constraints (3.1t) ensure
that the time windows are respected. Constraints (3.1u) represent capacity constraints for

drivers at every node. Constraints (3.1v) and (3.1w) impose domain restrictions.

This model is capable of accommodating both single and multiple deliveries for multi-
store orders placed by customers, while also allowing drivers to coordinate and transfer

orders through transshipment, resulting in consolidated-order delivery with transshipment
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(CODT). To evaluate the value of consolidation and transshipment in multi-store order
delivery, we demonstrate ways to customize M(.#, #,.%") to model the separated-order
delivery (SOD) and the consolidated-order delivery (COD) without transshipment.
The model for SOD requires that orders from each store are handled and delivered
separately, which can be structured as a series of programs. For all j/ € ¢,
Msop(Fy, Fj:#y) =min  p {2% {T,~k+} +02 Y Y Y e, (322

keJ{jI nEJi/j»/ n’e,//j/,
n#n

TvA
o iE,yl-/

st.  (3.1b)—(3.1w)

W= ie gy je gy ke Ky, (3.2b)

The objective function (3.2a) specifies that each store optimizes their delivery operations
separately to serve its respective customers. Here, ¢ denotes the set containing only
store j' (i.e., 7 =1 7'}). The set .# '+ denotes customers who place orders from store
j Ge., Iy ={i€ Fle;y = 1}). There may be overlaps between different .#; since
customers can place orders from multiple stores. Similarly, %} denotes the drivers
who serve orders from store j/, and they jointly form a partition of .#". Furthermore,
Ny =I5 U _ZyUOy, where O is the set of origin nodes for drivers k € %} . To en-
sure at least one driver is available for each store, we assume that the number of drivers
exceeds the number of stores. Note that the pre-assignment of drivers to stores (i.e., the
set %) affects the Msop. To focus solely on the difference between separation and con-
solidation business models, we evaluate all possible partitions of the driver set % for
the SOD. For each partition, we determine the worst-case performance across all stores
by finding the maximum optimal objective value among them. The partition that yields
the minimum worst-case performance (i.e., min {max e » Msop(-#}, 1, ) }) is se-
lected. This method works because our primary objective is to ensure on-time delivery
for all customers, with the main target being to minimize the latest delivery time. By
using this method, we can compare separation and consolidation models fairly without
the results being influenced by the initial pre-assignment of drivers. Constraints (3.1b) -

(3.1w) are applied, with ., ¢, %, .4 replaced by .7, &y, %, Ay. Constraints (3.2b)

147



state that item i is served by the same driver kK encompassing both the pickup from store
Jj and the delivery to customer i, implying no transshipment is allowed.

The model for COD without transshipment is:

Meon(-#, /.4 ) = min  pimax{t"}+p ¥ ¥ ¥ i, G30)

TwA e ket ne N nen,
n'#n

s.t.  (3.1b)—(3.1w)

WIS =TT vie s je gket  (33b)
Y d=1 vies. (3.3¢)
ket

Constraints (3.3b) imply that item i is assigned to the same driver for both pickup and
delivery, and Constraints (3.3c) enforce a single delivery, ensuring that each customer is
served exactly once for delivery, resulting in a consolidated-order delivery system without

transshipment.

3.3.3 Dynamic Problem and Waiting Strategy

The MOP addresses the problem of serving customers who place orders in a specified time
period, with transshipment facilitating spatial consolidation at both the store and customer
levels. Since customer orders arrive dynamically over time in realistic settings, tempo-
ral consolidation can further improve operations by implementing an effective waiting
strategy.

Assuming that customer arrivals follow a stochastic process, such as a Poisson pro-
cess, the delivery system can be optimized by determining an appropriate re-optimization
interval, defined as the time period between two consecutive optimizations. For each
optimization, the system collects information on new customer orders that arrive within
the interval, updates driver availability, allocates orders to available drivers, and plans the
routing accordingly.

A longer waiting strategy can reduce the total travel time but may increase delivery
delays. Conversely, an event-triggered strategy, which re-optimizes the system upon each

order arrival without waiting, accelerates the delivery speed but may increase the total
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travel time. The objective of the dynamic problem is to identify the waiting strategy that
balances delivery time and waiting delays by determining the re-optimization interval,
which also corresponds to the customer batching size during that interval. The implemen-
tation of the waiting strategies within the dynamic experimentation process are shown in

Tables 3.10 and 3.11 in Appendix C.

3.4 Solution Procedure

Solving the model for MOP to optimality is computationally demanding due to the large
number of constraints and variables arising from routing and time considerations. To
address this, we adopt a learning-to-optimize approach that combines an offline learning
phase with an online estimation and optimization phase. We next present the details of
this framework in Section 3.4.1, introduce three learning methods in Section 3.4.2, and

explain the optimization process in Section 3.4.3.

3.4.1 Learning-to-optimize Method

Input Exact Solution Procedure Output

T - Y Machine learning (ML)
Optimization Optimal | -
roblem Luti ‘ model that maps input to
. p solutions ) the optimal allocation plan

Historical instances
with order information
and driver availability

(a) The offline learning phase

Input Optimization Proxies Output
New instances (/ Estimation of the Restoration Allocation
with order information , allocation plan and refinement plan and other
and driver availability 1 \_ using the ML model optimization decisions

(b) The online estimation and optimization phase

Figure 3.2 — Learning-to-optimize Method

The learning-to-optimize method is illustrated in Figure 3.2 and consists of two key

steps. The first is the offline learning phase, as shown in Figure 3.2(a), where a mapping
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is trained using machine learning models on historical instances. This step is conducted
only once. Specifically, historical instances, which are solved to optimality using exact
optimization techniques, are used to train a neural network model that learns the mapping
from instance data to optimal allocation plans. The instance data includes order details,
store and customer locations, initial driver positions, travel times between locations, and
driver availability. The allocation plan determines the nodes visited by drivers, ensuring
that each order is picked up from stores and delivered to customers. The second step is
the online estimation and optimization phase, as shown in Figure 3.2(b). For each new
instance, the estimated allocation plans are obtained from the learning model and then
serve as a lower bound for the corresponding variables in the optimization problem. This
optimization problem is a mixed-integer linear program, where restoration and refine-
ment work together to ensure feasibility and improve the solution: restoration addresses
potential infeasibility caused by the estimated allocation (i.e., the optimization input) un-
derestimating time constraints and capacity limitations, while refinement further improves
the estimated allocation decisions, refining the initial solutions to optimal ones through
optimization. This process narrows the feasible solution space, provides flexibility to im-
prove the estimated allocation plans, and completes the optimal driver routes and efficient
paths for the MOP. This approach can offload a portion of the computational workload to

the offline phase, facilitating the near real-time generation of high-quality solutions.

3.4.2 Learning Methods

Three neural network models are implemented to train the mapping from instance in-
formation to allocation plans. Let .4” denote the set of nodes, including driver origins,
stores, and customers that drivers may visit, .#~ denote the set of drivers, and .Z denote
the feature space. We use bold symbols to represent vectors. We define the neural network

|

model g, parameterized by 6, that maps the set of input features f* € R!, for each node

n € 4 and driver k € ¥ to a binary allocation plan z € {0, 1}|°/V XI#1, which represents
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the decision of assigning driver k to visit node n. The function is presented by
go: RIVIIZIXIZI s qo 1yl 1xIAT (3.4)

All information related to orders, customers, stores, and drivers constitutes the feature
set. These include store locations for order pickup, customer locations for delivery, driver
initial locations, travel times between nodes, and nearest driver allocation to each node.
Specifically, the features f,’,f for node n that can be served by driver k include: (1) node
latitude; (2) node longitude; (3) distance between the driver and the node; (4) nearest
driver allocation indicator, which is 1 if driver k is the nearest to node n; and (5) the ratio
of the number of customers to the number of available drivers. Additionally, we generate
additional features based on a connected node (CN) set for each node and driver. For store
nodes, this set comprises the customers ordering from that store; for customer nodes, it
includes the stores from which they have ordered; and for drivers, it consists of nodes that
would be assigned to each driver based on the nearest allocation method. The additional
features related to the CN set are: (6) the number of nodes in the CN union sets of both
the node and the driver; (7) the Traveling Salesman Problem (TSP) cost for visiting nodes
in this union CN set; and (8) the convex hull area enclosing the nodes in this union CN
set.

1. Driver Assignment Neural Network (DANN): This method uses a neural network
for binary prediction to determine whether driver k is assigned to node n. A training
sample consists of a node-driver pair, where the input features are f,’f and the label is zﬁ*
for node n and driver k. Each driver is considered independently of all other drivers.

We implement a multi-layer neural network to learn the function gy, capturing the re-
lationships between the input features and the binary decision outputs. The model predicts

the probability of assigning node n to driver k:
Pr(Z=11f)=c(0Uh), Vet kex,

where @(f¥) : RI#| — R represents the neural network’s output after multiple layers of

computation on the input features f,]f e RIZI. Since Zﬁ is binary, the final layer of the

151



neural network o (-) applies the sigmoid activation function, o (x) = Tle—x’ ensuring that
the output is a probability between 0 and 1. If Pr(zX = 1| %) > 0.5, then X = 1, indicating
that driver k is assigned to visit node 7.

2. Driver Classification Neural Network (DCNN): This method treats driver as-
signment as a classification problem, where each driver is considered a distinct class. The
neural network classifies each node into one of the available “driver classes”, ensuring
that at least one driver is assigned to visit each node. A training sample consists of a node
with multiple drivers as potential choices, where the input features are { fr and the

labels are {Z];l*}k P for node n.
S

}ke%

We again implement a multi-layer neural network to learn the function gg. For node

n, the model outputs a probability distribution over classes k as follows:
Pr (Z’,ﬁ =1| fn> = [softmax (® (f,))],, Vne N ke X,

where O(f,) : RM X121 — RIF represents the neural network’s computation through
multiple layers on the features f;,, € RIZ1XI#1 for node n and all drivers. The softmax func-
tion outputs a probability distribution over the || classes, ensuring that Zyg Pr(z =
1| f,) = 1. The driver k with the highest probability Pr(zX = 1| f,) is selected. Thus,
7% = 1 for the driver with the highest score, and X = 0 for all other drivers.

3. Graph-based Neural Network (GNN): This method employs a graph neural net-
work to learn driver allocation plans by predicting edge labels that indicate whether a
driver should visit a node within the graph structure, as illustrated in Figure 3.3, depicting
an instance or area to be served.

Unlike traditional neural networks, the graph structure connects all nodes and includes
edge features, global features, and labels. The node features f, € Rl include: (1) driver
type: 1 if the node represents a driver, O otherwise; (2) store type: 1 if the node represents
a store, 0 otherwise; (3) customer type: 1 if the node represents a customer, 0 otherwise;
(4) node latitude; (5) node longitude; (6) the number of nodes in the CN set; (7) the TSP
cost of visiting the nodes in the CN set; and (8) the convex hull area enclosing the nodes

in the CN set. The edge features e, € RI1 of all edges from nodes to drivers consist
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Figure 3.3 — Graph-based Neural Network structure for the case with 2 drivers, 2 stores,
and 4 customers.

of (1) distance between the driver and the nodes; and (2) nearest driver allocation to the
node. The global feature g € R is the ratio of the number of customers to the number of
available drivers. These features are similar to those used in DANN and DCNN, but are
now represented in a graph structure. The edge label to be learned represents the optimal
allocation of drivers to nodes. The GNN model leverages node features, edge features,
and global features through multiple layers to capture complex relationships within the
graph. A training sample consists of all node with all drivers as potential choices, where

k*

the input features are ({ Totnen s {enn/}mn,e a g) and the labels are {Zn for

}ke% JmEN
the whole graph.

Ateach layer ¢, the embedding of node n, denoted hg,t) ,is updated based on information
from its neighboring nodes. The update is computed as:

hg—o—l) _ (h,(f), Z llf<h£zl)7h£lt’)ﬂe"”/> 78) )

n' €Neight(n)
where h,(f) is the embedding of node n at layer ¢ with hSZO) = f, and f, € RI, Neight(n)
denotes the set of neighbors of node n, e, € R is the feature vector for the edge
between node n and its neighbor 7/, g is the global feature, and ¢ and y are neural network
layers.
After T layers, the GNN produces final embeddings hng) for each node n. For all
edges connecting node n, the final layer applies a softmax function to output a probability

distribution over all possible drivers. The probability of assigning driver k to node n is
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given by:
Pr <Zﬁ =1| fn,e,,m/,g) = [softmax ((p (h,gT),hEl,T),enn/,g»]k, Yne N ke X,

where @ : R XL RIF IV IXA] 5 R — RIF X1 s a neural network layer that com-
bines the final node embeddings, edge features, and global features. The softmax function
normalizes the edge outputs from each node » to all driver nodes, providing a probability
distribution over drivers for node n, ensuring that Zkﬁl Pr (Z’,‘l =1 fu, e, g) = 1. The
driver k with the highest probability Pr (Zﬁ =1| fn,e,m/,g) is selected to serve node n.

This GNN framework effectively captures node interactions, edge features, and global

features to predict the optimal driver-to-node allocations within the graph.

o 4 °
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(a) DANN (b) DCNN (c) GNN

Note. The lines represent allocation decisions for a driver visiting a node. Lines of the
same color indicate a single sample, while different colors correspond to different samples. In
DANN, each driver-node pair is represented by a unique color; in DCNN, each node is assigned
a color; and in GNN, the entire instance uses the same color.

Figure 3.4 — Learning models for allocation decisions with different ways of generating
data samples

4. Summary: Overall, DANN, DCNN, and GNN use the same features but adopt
different graphical structures for generating data samples to learn the allocation decisions.
DANN treats each driver-node pair independently (see Figure 3.4 (a)). DCNN processes
each node independently while incorporating driver information (see Figure 3.4 (b)). In
contrast, GNN considers each instance as an interconnected network, allowing both driver

and node information to be transferable during the learning process (see Figure 3.4 (c)).
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In addition to these three learning methods, we also include Nearest Driver Allocation
(NDA) as a benchmark, which assigns the closest driver to visit each store and customer

node.

3.4.3 MILP-based Restoration and Refinement Problem

In the optimization phase, we formulate the restoration and refinement problem (RRP)
as an MILP to restore feasibility, refine allocation decisions, and derive optimal solutions

for other decisions. For decision refinement, the estimated allocation Zfl

serves as a lower
bound for the allocation decision zX, allowing flexibility in assigning drivers to additional
nodes and enabling the optimization of other decisions. However, given the lower bounds
of allocation plans, the constraints in equations (3.1t) and (3.1u) may be violated. It is es-
sential to ensure that all items ordered by customer i from store j are delivered within the
specified time window while respecting capacity limitations. In other words, the machine
learning output may underestimate the time constraints and capacity limitations, which
could render Problem 3.1 infeasible given the estimated zX. To address this, we apply

soft time windows and capacity constraints while also minimizing the slackness to restore

feasibility. The model for the RRP is formulated as follows:

Mgrp(-2, J, X ) =
min p1max {T!‘*} +p2 Y, Y, fa X+ P3 Y Y (sh 4 520 1 53%) (3.52)
rw,\;la [gy ke new, neN €S

neN ply kex  je g

s.t.  (3.1b)—(3.15),(3.1v) = (3.1w)

K> ket nens (3.5b)
o —s; <A <B,+s7!, Vied, je g (3.5¢)
Z Z p,-jvl,fj_ qu—l—szk, Vne N ke X (3.5d)
ics je ¢

sV s sk >0vie s je Fone N ke . (3.5¢)
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The objective function (3.5a) states that, in addition to minimizing the weighted av-
erage of the latest delivery time and the total travel time, we also minimize the penalty
for violating time window and capacity constraints, which cannot be avoided due to the
input allocation. Note that p3 represents the penalty weight, and it should be set to a large
value relative to p; and p, to avoid violations as much as possible. Constraints (3.5b)
ensure that the estimated Z serves as a lower bound, while Constraints (3.5¢) and (3.5d)
lij  2ij

s:7, and

represent soft time windows and capacity constraints with slack variables s; ", s;

s3¥ to maintain feasibility. Finally, Constraints (3.5d) impose domain restrictions on the

slack variables.

3.5 Numerical Study

In this section, we first introduce a real-world dataset, performance metrics, and imple-
mentation details. We then compare the performance of three systems to evaluate the ben-
efits of offering consolidation and transshipment for the multi-store order delivery. Due
to the computational challenges involved in solving the problem, we employ learning-to-
optimize techniques to accelerate the solution process through various learning methods
and compare the effectiveness of different learning-based optimization proxies. Finally,
we conduct dynamic experimentations in a practical setting to serve customers in areas
with varying customer locations and arrival rates, aiming to identify the most efficient

delivery system and waiting strategy.

3.5.1 Dataset and Implementation Details

We use a customer location dataset from four regions in the U.S. (Los Angeles, Seattle,
Tacoma, and Orange) provided by Amazon (Merchan et al. 2021), which contains the per-
turbed locations of customers. We obtain the expected travel times using the Google API.
Instances with varying scales are created from the dataset, with customer numbers ranging

from 2 to 20 and driver numbers ranging from two to five. Customer locations are sampled
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uniformly from the dataset, with each location having an equal probability of selection,
referred to as uniformly sampled customers. We also consider clustered customers, where
a central point is pre-selected, and locations closer to this center have a higher probability
of being chosen as customer locations. Drivers’ initial locations and store locations are
randomly generated and remain fixed within each region for the sensitivity analysis. To
assess the benefits of consolidating orders from multiple stores, we assume that customers
place orders from at least two stores and up to four stores, with whether each customer or-
ders from a particular store, denoted as ¢;; € 0, 1, being randomly generated. For customer
i, the start time windows ; are uniformly generated within a range of O to 20, and the
end time windows f3; are within a range of 20 to 70. Driver capacity g is set to 100, with
item sizes p;; randomly generated as integers between 0 and 10. Our primary objective is
to ensure on-time delivery for all customers by minimizing the latest delivery time, so the
weight p; is set to 1. A smaller weight p, = 0.01 is used to discourage unnecessary long

travel times. To minimize constraint violations, a penalty weight p3 = 100 is applied.

To compare the performance of three delivery systems and four learning methods, we
define the following metrics. (1) Delivery time is the duration between order assignment
and delivery, with the latest delivery time being the time to serve the last order arriving
within the re-optimization interval. A lower value indicates faster overall delivery. (2)
Total travel time is the total time drivers spend traveling, including the time from their
starting location to pick up orders and deliver them. The travel time for serving one more
customer is calculated as the ratio of total travel time to the number of customers. A
lower value indicates reduced overall costs. (3) Wait time is the duration between order
placement and assignment. A lower value means quicker driver pickup. (4) Order com-
pletion time is the duration from order placement to delivery, including both wait time
and delivery time. (5) Runtime is the time required to find final optimal solutions through
optimization, whether or not learning is used. A lower runtime indicates a more efficient
solution method. (6) Accuracy in learning is the percentage of correct driver-to-customer
allocations. Higher accuracy indicates better learning performance. (7) Allocation per-

centage (pct.) is the percentage of estimated allocation decisions estimated as 1, indicating
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that the driver will visit that location. A lower value offers more flexibility in optimizing
the solution. (8) Allocation standard deviation (std.) is the standard deviation of alloca-
tion decisions, which indicates the balance of driver workloads. A lower value signifies a
more balanced distribution of work. (9) Gap is the difference between the estimated and
exact optimal values for key metrics such as objective value, latest delivery time, and total
travel time. A lower gap means the learning-based solution is closer to the true optimal
solution.

We implement our algorithms using Python 3.10 and Gurobi 10.0.2 on a local com-
puter equipped with a 2 GHz Quad-Core Intel Core i5 processor and 16 GB of RAM, sup-
plemented by resources from Compute Canada’s Graham cluster, which includes Multi-
Core Intel Xeon processors (20 to 36 cores per node) and standard compute nodes with 64
GB of RAM. The optimization time limit for the exact solution procedure is set to 3600
seconds, while the time limit for learning-to-optimize during the comparison of learning
methods is set to 600 seconds. For implementations in dynamic environments, this limit is
further reduced to 300 seconds when applying learning-to-optimize with GNN, ensuring

efficient real-time decision-making.

3.5.2 Comparison of delivery systems

To compare the three systems, including separated order delivery (SOD), consolidated
order delivery (COD), and consolidated order delivery with transshipment (CODT), we
solve the models Msop, Mcop, and M using Gurobi within the specified time limit across

various instances.

Figures 3.5(a) and (b) plot the latest delivery time, defined as the maximum duration
between order assignment and delivery across customers. The SOD yields faster delivery
times than the COD when there are few customers to serve, as the benefits of consolidating
requests are minimal. However, as more customers join the system and place orders, the
COD begins to dominate the SOD, and this dominance increases with the number of

customers. Additionally, the COD consistently yields a shorter total travel time, which
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Figure 3.5 — Comparison of delivery systems with various number of customers
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represents the total time drivers take to complete deliveries for all requests (see Figures
3.5(c) and 3.5(d)). It also converges to optimality faster (see Figures 3.5(e) and 3.5(f)).
In contrast, the CODT is always the most efficient among all three systems in terms of
delivery time for serving each customer and the total travel time for fulfilling all requests,
regardless of the instance scale (see Figures 3.5(a)—(d)). However, due to the complexity
of coordination and the flexibility of transshipment at any location, solving the CODT
using exact methods requires substantially more computational time (see Figures 3.5(e)
and (f)). Instances with more than 12 customers are unlikely to converge to optimality
within the 3600-second time limit, and a lower bound may not be found to produce a
feasible solution within 600 seconds. To address this challenge, we implement learning-
to-optimize techniques to explore whether high-quality solutions can be achieved more

efficiently, mitigating this computational drawback.

Insight 7 Consolidated-order delivery with transshipment outperforms other delivery sys-
tems in terms of both the delivery time for serving each customer and the total travel time
for fulfilling all requests. However, the complexity from consolidation and transshipment

increases the computational time required for exact solutions.

Insight 8 Without transshipment, consolidated-order delivery outperforms separated-order
delivery in delivery time, total travel time, and exact solution time, except when the num-

ber of customers is very small.

3.5.3 Comparison of learning algorithms

We compare four methods, including NDA, DANN, DCNN, and GNN, that map instance
information to allocation decisions. We implement the training process under three differ-
ent instance scales: small-scale instances, where the number of customers (|.#|) ranges
from two to seven and the number of drivers (|.#"|) ranges from two to five; medium-scale
instances, where |.#| ranges from eight to ten and |.Z"| ranges from two to five; and large-

scale instances that fail to converge to optimality, where |.#| ranges from 12 to 20 and
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|#"| ranges from two to five. First, we train using both small and medium-scale instances
and test on small, medium, and large-scale instances. In the second set of experiments, we
train solely on small-scale instances but test on all three scales. This approach allows us
to assess the model’s ability to generalize and predict decisions for larger-scale instances
that may not have been included in the training set.

Table 3.1 — Best Learning Method for Uniformly Sampled Customers in the Learning
Process

Training Testing Testing Scale Best Accuracy Allocation Allocation
Scale Type |-7] || Nol Method Pct. (%) Std.
Tl [2,7] [2, 3] 1200 GNN 0.83 41.67 0.31
7] 12, 10]: Tl [2,7] [4, 5] 1200 GNN 0.92 22.50 043
) [2’ 5].’ T1 [8, 10] [2, 3] 600 DCNN 0.84 41.67 0.30
Nol: 36(30 > Tl [8, 10] [4, 5] 600 DCNN 0.90 22.50 0.04
T5 [12,20] [2,5] 400 GNN 0.74 32.08 0.55
T6 [2, 20] [2, 5] 4000 GNN 0.88 32.08 0.15
Tl [2,7] [2, 3] 1200 GNN 0.84 41.67 0.30
7] 12,7 T2 [2, 7] [4, 5] 1200 GNN 0.92 22.50 0.70
wl- [2’ 3]" T3 [8, 10] [2, 3] 600 GNN 0.86 41.67 0.35
Nol: 12(’)0 T T4 [8, 10] [4, 5] 600 GNN 0.90 22.50 0.09
' T5 [12,20] [2,5] 400 GNN 0.73 32.08 0.40
T6 [2, 20] [2, 5] 4000 GNN 0.87 32.08 0.15

Note. |9 |: range of customer numbers; | |: range of driver numbers; Nol: number of instances.
T1 corresponds to testing and training with the same scale, while T2—T5 all involve larger
scales. Specifically, T2 has a larger customer scale, T3 a larger driver scale, and T4 both scales
increased. T5 represents overall large-scale instances, and T6 includes all testing instances.

Table 3.2 — Best Learning Method for Uniformly Sampled Customers in the Optimization
Process

Training  Testing Testing Scale Best Objective ]T)ierg‘elery E‘:::;el g:::
Scale Type |7 |2 Nol Method  Gap(%) Gap(%) Gap(%) )
T1 [2,7] [2, 3] 1200 DCNN 2.10 2.10 1.19 5
7] 12, 10]; T1 [2,7] [4, 5] 1200 DCNN 0.94 0.94 0.15 5
%': [2’ 5].’Tl [8, 10] [2, 3] 600 DCNN 1.66 1.65 4.92 14
Nol: 3660 > Tl [8, 10] [4, 5] 600 DCNN 1.66 1.68 10.42 30
’ T5 [12,20] [2,5] 400 GNN 1.19 1.23 16.76 457
T6 [2, 20] [2, 5] 4000 DCNN 1.56 1.56 2.75 40
T1 [2,7] [2, 3] 1200 DCNN 2.07 2.07 1.67 6
7] 2,7 T2 [2,7] [4, 5] 1200 NDA 1.25 1.25 0.37 6
Al [2’ 3]" T3 [8, 10] [2, 3] 600 GNN 3.19 3.17 5.30 21
NoI"12(7)0 > T4 [8, 10] [4, 5] 600 GNN 1.89 1.92 12.13 33
’ T5 [12,20] [2,5] 400 GNN 1.73 1.77 17.56 406
T6 [2, 20] [2, 5] 4000 GNN 2.78 2.78 3.80 38
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Table 3.3 — Best Learning Method for Clustered Customers in the Learning Process

Training  Testing Testing Scale Best Accuracy Allocation Allocation
Scale Type |-Z| || Nol Method Pct. (%) Std.
T1 [2,7] [2, 3] 1200 GNN 0.80 41.67 0.57
7] 2 10].Tl [2,7] [4, 5] 1200 GNN 0.90 22.50 0.09
) [2’ 5].’T1 [8, 10] [2, 3] 600 GNN 0.73 41.67 0.29
Nol: 3660 T Tl [8, 10] [4, 5] 600 GNN 0.88 18.71 0.45
T5 [12,20] [2,5] 400 GNN 0.69 32.08 0.76
T6 [2, 20] [2, 5] 4000 GNN 0.84 32.08 0.51
T1 [2,7] [2, 3] 1200 GNN 0.81 41.67 0.19
7] 12,7 T2 [2,7] [4, 5] 1200 GNN 0.89 22.50 0.35
2 [2’ 3]" T3 [8, 10] [2, 3] 600 GNN 0.70 41.67 0.76
Nol: 1260 * T4 [8, 10] [4, 5] 600 GNN 0.86 22.50 0.30
' T5 [12,20] [2,5] 400 GNN 0.69 32.08 0.17
T6 [2, 20] [2, 5] 4000 GNN 0.83 32.08 0.94

Table 3.4 — Best Learning Method for Clustered Customers in the Optimization Process

Training  Testing Testing Scale Best Objective I;ielgzery }‘;‘::;el g:::
Scale Type |Z] |2 Nol Method  Gap(%) Gap(%) Gap(%)  (5)
T1 [2,7] [2, 3] 1200 DANN 1.88 1.86 2.08 6
72 10],Tl [2,7] [4, 5] 1200 DANN 0.23 0.23 4.34 5
2 [2’ 5].’T1 [8, 10] [2, 3] 600 GNN 1.16 1.12 11.79 12
Nol: 3660 > Tl [8, 10] [4, 5] 600 GNN 1.01 0.97 21.48 24
’ T5 [12,20] [2,5] 400 GNN 1.74 1.69 16.76 450
T6 [2,20] [2, 5] 4000 DANN 1.93 1.90 1.47 111
Tl [2,7] [2, 3] 1200 GNN 2.35 2.33 4.30 7
7] 12, 7); T2 [2,7] [4, 5] 1200 GNN 1.79 1.73 24.09 8
‘%‘ [2’ 3]’. T3 [8, 10] [2, 3] 600 GNN 2.90 2.89 3.57 15
NoI'.12(7)0 > T4 [8, 10] [4, 5] 600 GNN 1.20 1.18 7.55 31
’ T5 [12,20] [2,5] 400 GNN 2.36 2.30 16.76 457
T6 [2,20] [2, 5] 4000 GNN 2.07 2.07 9.01 38

To simplify and clarify the results, we present the best-performing learning method
and its learning performance for uniformly sampled customers in Table 3.1, with its re-
optimization performance in Table 3.2. For clustered customers, the best learning method
and its performance are shown in Table 3.3, and the corresponding optimization perfor-
mance by solving Mggp is provided in Table 3.4. To differentiate between the training and
testing scales, we consider six testing types, each comprising distinct testing instances. T1
corresponds to the scenario where the testing scale aligns with the training scale. T2 per-
tains to cases with a larger customer scale, while T3 refers to instances with a larger driver
scale. T4 encompasses situations where both customer and driver scales are increased. TS

includes instances characterized by larger overall scales, and T6 represents all testing in-
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stances. Both the training scale and testing scale clearly show the range of customer and
driver numbers. For the learning process, we present the best method with the highest
accuracy, along with its percentage and standard deviation of allocation plans. For the
optimization process, we display the best method with the lowest objective gap, including
its delivery time gap, total travel time gap, and optimization runtime. More details on
the metrics can be found in Section 3.5.1. Detailed performance results for each method
under both uniformly sampled customer and clustered customer cases are provided in
Appendix B.

According to Tables 3.1 and 3.3, we find that GNN demonstrates the overall best
performance in the learning process with the highest accuracy under most scenarios, re-
gardless of whether the testing scale is included in the training set. In instances where
both small and medium-scale datasets are included in the training set, DCNN can achieve
performance comparable to GNN for those scales. In other words, GNN excels at gen-
eralizing and predicting decisions for larger-scale instances that may not have been part
of the training data. Both GNN and DCNN perform well if the scale of future instances
matches that of historical instances.

This difference in performance arises because, in DANN, the assignment decision for
each driver-customer pair is considered independently, which means there is no guarantee
that each customer will be served by exactly one driver. This is evident in the unstable
allocation percentages observed with DANN (see Tables 3.6 and 3.8 in Appendix B). In
contrast, NDA, DCNN, and GNN ensure that at least one driver is allocated to serve each
customer. However, in NDA, the allocation of drivers to customers is based solely on the
distances between them. DCNN incorporates more features, leading to higher accuracy
compared to NDA. Nevertheless, DCNN still treats customers independently, as its goal is
to find the best driver for each individual customer. GNN, on the other hand, connects all
customers and drivers through edges, ensuring that every customer is served and allowing
for control over the number of customers each driver serves by summing edge labels.

Tables 3.2 and 3.4 display the optimal outputs when the estimated allocation deci-

sions are used as input for optimizing the restoration and refinement problem. First, we

163



observe that higher accuracy does not always correspond to a lower optimality gap. This
is because there may be multiple good solutions that yield low delivery times during the
optimization process. Second, no single method consistently outperforms the others in
all cases. Overall, GNN has a smaller optimality gap, along with lower delivery time and
travel time, particularly in the clustered customer cases when the testing scale exceeds the
training scale. When the training scale includes the testing scale, DCNN tends to have a
smaller gap in scenarios with uniformly sampled customers, along with a lower alloca-
tion standard deviation. In contrast, DANN exhibits a smaller gap in cases with clustered
customers, accompanied by a lower allocation percentage. A lower allocation standard
deviation indicates a more balanced workload among drivers, while a lower allocation
percentage provides greater flexibility in finding optimal allocation decisions during the

optimization process.
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Figure 3.6 — Comparison of performances in optimization of four learning methods

A summary of the re-optimization results across both scenarios, based on different
training processes, is provided in Figure 3.6. Figure 3.6(a) displays the trade-off between
expected runtime and optimality gap for the four methods across all scenarios, with circle
size indicating sample size. In terms of runtime for optimizing the restoration and refine-
ment problem, GNN proves more efficient than the other methods, while DANN generally

results in the highest runtime across most scenarios. Overall, NDA and DANN are more
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time-intensive in the optimization process compared to GNN and DCNN. A lower runtime
for optimization reflects that the input-estimated allocation decisions provide a stronger
lower bound. By using learning-to-optimize techniques, we achieve optimal solutions in
30 seconds for medium-scale instances with 8 to 10 customers, and in 450 seconds for
large-scale instances with 12 to 20 customers. In contrast, pure optimization methods
may take up to 3600 seconds for medium-scale instances and may fail to converge in
3600 seconds for large-scale cases, as shown in Figure 3.5. Figure 3.6(b) presents rela-
tive performance metrics, including accuracy, objective gap, travel time gap, and runtime
efficiency, relative to the best approach among all methods. A value of 1 indicates the
best performance: highest accuracy, lowest objective gap, lowest travel time gap, and
highest efficiency. We conclude that GNN delivers the most comprehensive performance
across metrics and scenarios, consistently achieving the lowest optimization runtime and

smallest optimality gap by providing an effective lower bound.

Insight 9 In a learning-to-optimize framework, we can use learning to obtain a lower
bound for the allocation decision, which helps reduce the search space for optimization,

thereby accelerating the solution procedure.

Insight 10 Overall, GNN performs the best with the highest accuracy, the smallest opti-
mality gap, efficient runtime, and superior scalability for larger instances not included in

the training set.

Insight 11 In the learning-to-optimize framework, higher accuracy during the learning
process does not necessarily lead to a smaller optimality gap in the optimization process.
A lower allocation percentage allows for greater flexibility and may lead to a smaller gap,
but at the cost of a longer optimization runtime. A lower allocation standard deviation,
indicating a balanced workload, may also imply a shorter delivery time and lead to a

smaller gap.

The four learning methods each have their own advantages and disadvantages. (1)

NDA is simple to implement and performs well without historical data, effectively gen-
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eralizing with an increasing number of drivers. However, it struggles with complex
customer-driver interactions and performs poorly with clustered customer distributions,
as well as struggling to generalize with an increasing number of customers. (2) DANN
achieves high accuracy with sufficient training data and works well for instances of similar
scale, especially in cases with clustered customer distributions. However, it is computa-
tionally inefficient, struggles to generalize with larger customer sets, and yields unstable
allocation percentages that can lead to longer travel times. (3) DCNN also achieves high
accuracy with sufficient data and works well for instances of similar scale, performing ef-
fectively with uniform customer distributions. However, it requires extensive training data
and careful tuning, and it struggles to generalize with larger driver sets. (4) GNN excels
at modeling complex interactions between customers and drivers using structured graphs,
achieving high accuracy across different scenarios while being computationally efficient.
It also generalizes well to instances with more customers and drivers. However, it faces
challenges in collecting sufficient historical samples, as each instance corresponds to a
single graph, and its highest accuracy may not always correlate with the lowest optimality

gap. The detailed evidence can be found in Tables 3.6 to 3.9 in Appendix B.

3.5.4 Experimentation in a Dynamic Environment

In the dynamic delivery problem, the waiting strategy, which groups customer orders
based on arrival time, can reduce total driver travel times for serving all customers but
may increase order completion times (the duration from order placement to delivery). To
evaluate the efficiency of different waiting strategies and delivery systems, we simulate
the dynamic experimentation process under various waiting strategies with limited driver
availability.

As shown in Figure 3.7, customers continuously arrive, and delivery can be optimized
either immediately upon order arrival to ensure the fastest delivery or after a fixed interval,
optimizing delivery for all batched customers. The simulation models customer arrivals

as a Poisson process, with rates varying from 4 to 10 customers every 10 minutes. Sim-
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Figure 3.7 — Customer arrival process and dynamic experimentation process

ulations are conducted over durations of one and two hours, with the number of drivers
ranging from 10 to 20. Each setup is repeated 40 times to ensure robust results, simulat-
ing real-world conditions while keeping other parameters consistent with the static model.
For a given re-optimization interval, the system optimizes driver assignments and routes
to serve orders arriving during the interval and updates availability based on task comple-
tion for the next interval. This process repeats with new customer arrivals at each interval.
Performance metrics such as completion time, wait time, delivery time, and travel time are
recorded. The detailed experimentation process is presented in Table 3.10 in Appendix
C1. Given limited drivers, two re-optimization strategies are considered when no drivers
are available within the rolling horizon. The first strategy always fixes re-optimization
time points and assigns customers to the earliest available drivers if no driver is free, with
results shown below. The second strategy delays optimization until enough drivers are

available, with details and a comparison of these strategies provided in Appendix C.

Figure 3.8(a) illustrates the trade-off between delivery time and wait time across re-
optimization intervals ranging from event-triggered to 20 minutes, resulting in a function
that initially decreases and then increases for order completion time, which includes both
delivery and wait times. Under the event-triggered strategy, delivery times are shorter, but
wait times are significantly longer. This occurs because drivers are immediately assigned
to serve individual customers, resulting in fast delivery but inefficient use of drivers. As

a result, drivers are occupied with deliveries before they can serve the next customer,
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Figure 3.8 — Completion time under varying re-optimization intervals

and customers must wait longer for the earliest available driver, reducing overall driver
availability and increasing wait times. In contrast, the 20-minute re-optimization interval
results in longer delivery times but more moderate wait times. This is because more
customers are batched together and served by the same driver, improving the utilization of
available drivers. However, since each driver must serve more customers once dispatched,
delivery times are longer. Additionally, as customers must wait for batching, the wait time
before re-optimization (i.e., before drivers are assigned) increases as the re-optimization
interval lengthens. Overall, the five-minute re-optimization interval, which minimizes
completion time, strikes a favorable balance between wait time and delivery time. This
interval ensures that customers spend minimal time waiting for an available driver while

also allowing for prompt delivery once the orders are assigned. Figure 3.8(b) displays the
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completion times for three systems under varying re-optimization intervals. For all three
systems, order completion time initially decreases before increasing as the re-optimization
interval extends. Notably, all systems achieve the lowest order completion time with the
S-minute re-optimization interval among all waiting strategies. COD outperforms the
other systems in extremely short re-optimization intervals, such as the event-triggered and
one-minute or two-minute intervals, while CODT excels across all other re-optimization
intervals. The detailed distribution of delivery time, wait time, travel time for serving
one additional customer, and customer scale for the three systems under different re-

optimization intervals is presented in Figure 3.10 in Appendix CI.

Insight 12 Consolidated-order delivery is the most efficient system regarding order com-
pletion time and average travel time for serving each customer under the event-triggered
strategy or a short re-optimization interval. This suggests that when there are few cus-
tomers to serve, it is advantageous for drivers to pick up all requests from different stores
without transshipment and deliver them as a combined order, as the savings in wait time

outweigh the costs of delivery time.

Insight 13 Consolidated-order delivery with transshipment with a five-minute re-optimization
interval is the most effective strategy, yielding the lowest order completion time among all
delivery systems across different waiting strategies. This approach entails connecting or-
ders that arrive within each five-minute interval, assigning the earliest available drivers
to visit different stores, meeting at a transshipment node to exchange items, and making a

single delivery to fulfill all requests for each customer.

The best waiting strategy may vary depending on whether it is a busy or leisurely
time for customer arrivals and changes in driver availability. Figure 3.9 illustrates the best
re-optimization interval that results in the minimum order completion time across various
customer arrival rates and different ratios of the customer number to available driver num-
ber. As the customer arrival rate increases, the best re-optimization interval also becomes

larger, leading to a longer completion time. This indicates that when customers arrive
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Figure 3.9 — Best re-optimization interval for varying ratios of customer number to driver
number

more frequently, it is beneficial to wait longer to optimize and fulfill orders. Despite the
increased completion time, this strategy still remains more efficient than the others. This
is because the reduction in wait time for available drivers outweighs the increase in deliv-
ery times. This principle holds true regardless of the customer arrival rate, but it becomes
more pronounced when customers arrive more frequently. Moreover, as the ratio of cus-
tomers to drivers increases, indicating a more limited number of drivers available to serve
the same number of customers at a consistent arrival rate, it is advisable to wait longer.
This is because once a driver is engaged in the early period, it takes more time for them

to become available to serve subsequent customers arriving later.

3.6 Conclusion

The multi-store consolidated-order delivery service allows customers to purchase prod-
ucts from multiple stores in a single transaction without additional delivery fees, ensuring
all items are consolidated and delivered in one combined delivery for greater convenience.
This service provides customers with the flexibility to shop across stores, compare prices,
save on delivery fees, and receive all items in a single delivery. For stores, it can boost

sales by encouraging larger orders, while delivery platforms benefit from reduced driver
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demand and lower travel times. However, challenges arise in managing longer routes and
extended delivery times when a single driver must detour to multiple stores for pickups
and then deliver items to various locations. Transshipment, which enables drivers to co-
ordinate and transfer items effectively at transshipment nodes, can mitigate this issue and
further improve efficiency.

We develop a mixed-integer linear program for the multi-store order problem with
consolidation and transshipment, which can also be adapted to variants without consoli-
dation or transshipment. Solving the model that incorporates complex routing and time
variables using exact methods is computationally intensive, particularly for large-scale in-
stances. To overcome this problem, we implement a learning-to-optimize framework that
combines neural network-based learning methods with a restoration and refinement opti-
mization process. Using the learning-to-optimize method, the multi-store order problem
can achieve high-quality solutions efficiently. In the learning process for allocation plans,
we implement four methods, each with its own distinct advantages and disadvantages.
The graph-based neural network generally shows superior performance, achieving a bet-
ter trade-off between optimality gap and solution time while adapting well to larger scales
not represented in the training set. This adaptability is due to its ability to exchange in-
formation among nodes, edges, and globally. The nearest driver allocation is the simplest
to implement, requiring no training or historical samples. Both the driver classification
neural network and driver assignment neural network perform well when the testing scale
matches the training scale.

Through experiments conducted in various U.S. regions with varying customer lo-
cations and arrival frequencies, we find a trade-off between delivery time, which is the
duration from order pickup to delivery, and wait time, which is the duration from order
placement to pickup, indicating the existence of an optimal waiting strategy. It is bene-
ficial to wait longer to batch more customers in cases of frequent customer arrivals and
limited driver availability. Overall, the consolidated-order delivery system with transship-
ment and a five-minute waiting strategy consistently outperforms the others in terms of

order completion time and driver travel time, regardless of customer arrival frequency or
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driver availability relative to customer demand, due to its superior spatial and temporal
consolidation.

Our work has some limitations that can be addressed in future research. It would be
promising to formulate a more complex and realistic setting that includes transshipment
costs, limited capacity, and potential errors. Transshipment nodes can be fixed locations
or provided by stores or customers, each with associated costs and capacity limitations.
Additionally, transshipment nodes may fail to open as scheduled, and deliveries before
transfer could experience unexpected delays due to traffic or bad weather, causing further
delays in both transfer and final delivery. Both the uncertainty in travel time and po-
tential transshipment errors could be considered for more reliable on-time deliveries. In
a rolling horizon implementation, earlier-arriving orders should be prioritized over later
ones when driver availability is limited, and a piecewise linear function that increases with
delivery time for each order could be applied. Future research can also explore stochastic
and dynamic methods to address uncertain and time-dependent travel conditions in con-
solidated delivery services, enabling real-time order allocation and dynamically revised
driver routing decisions. In our learning process, classification neural networks and graph
neural networks are applied independently. However, other efficient machine learning al-
gorithms may yield better performance. For instance, embedding algorithms, which train
models independently before combining them into a stronger overall model, or ensemble
learning algorithms, which sequentially train multiple models and aggregate their outputs,

can enhance performance beyond that of any single model.
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3.7 Appendix

Appendix A: Summary of Notation

The notation is presented in Table 3.5.

Table 3.5 — Problem Notation

Index Description

5 Set of customers

I Set of stores

H Set of drivers

N Set of nodes, including customers, stores, and driver initial locations
Parameters Description

ejj Binary parameter indicating if customer i orders from store j

ij Index of item ordered by customer i from store j

Dij Size of item i

g~ Capacity of driver k

tan! Travel time between nodes n and n’

[, Bi] Time window for customer i

Decisions Description

= Binary variable indicating if driver k visits node n

xﬁn, Binary variable indicating if driver k travels from node 7 to node n’
y%, Binary variable indicating if item i travels from node 7 to node n’ during the trip
vlffj * Binary variable indicating if item i arrives at node n via driver k
V= Binary variable indicating if item i departs from node n via driver k
r,’f* Continuous variable specifying the time driver k arrives at node n
r,’f’ Continuous variable specifying the time driver k departs from node n
A Continuous variable specifying the arrival time of item i at node n

Appendix B: Detailed Metrics of Learning and

Optimization Processes

We present the detailed performance of each method under both uniformly sampled cus-

tomer and clustered customers in this section. The learning performance for the uniformly

sampled customers is shown in 3.6, and the re-optimization performance is presented in

Table 3.7. The learning performance for the clustered customers is detailed in Table 3.8,

with the corresponding optimization performance displayed in Table 3.9.
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Table 3.6 — Comparison of Learning Methods for Uniformly Sampled Customers in the
Learning Process

Training Testing Method Accuracy  Allocation Allocation
Scale Scale Percentage  Std.
NDA 0.79 41.67% 0.26
}ﬁ((zz 73)) DANN 0.82 44.02% 0.00
ol 1200 DCNN 0.82 41.67% 0.18
or GNN 0.84 41.67% 0.30
NDA 0.88 22.50% 0.39
iﬂf'((z‘; 75)) DANN 0.82 29.95% 0.59
1 @7 No1a00 DCNN 0.82 22.50% 0.61
] 0.3 : GNN 0.92 22.50% 0.70
Lok NDA 0.78 41.67% 0.94
Nol: 1200 Ifgjj((sz’ 13(;?’ DANN 0.81 52.24% 0.28
Nolison . DCNN 0.84 41.67% 0.56
ot GNN 0.86 41.67% 0.35
NDA 0.85 22.50% 0.02
I:f;"'_(a’ ]5(;?’ DANN 0.78 37.67% 0.42
NoL 6oy DCNN 0.81 22.50% 0.43
or GNN 0.90 22.50% 0.09
NDA 0.71 32.08% 0.97
}{”;'{.((122’52)9)’ DANN 0.69 44.32% 0.50
Nol 400" DCNN 0.69 32.08% 0.84
: GNN 0.73 32.08% 0.40
NDA 0.83 32.08% 0.07
}ﬁ/“(é 250)) DANN 0.81 39.09% 0.22
Nol. 4000 DCNN 0.82 32.08% 0.59
: GNN 0.87 32.08% 0.15
NDA 0.79 41.61% 0.26
};?"((22 73)) DANN 0.81 40.24% 0.04
ol 1200 DCNN 0.81 41.67% 0.09
: GNN 0.83 41.67% 0.31
NDA 0.88 22.50% 0.39
}j;/'i.(é; 75)) DANN 0.89 20.55% 0.40
"2k DONN 0.91 22.50% 0.24
|§|‘_((22’ 15(;) Nol: 1200 NN 0.92 22.50% 0.43
A NDA 0.78 41.67% 0.81
Nol: 3600 Iﬁji.%’ 13(;?’ DANN 0.82 49.18% 0.26
Nol son . DCNN 0.84 41.67% 0.30
ot GNN 0.82 41.67% 0.70
NDA 0.85 22.50% 0.02
}52['(54’ 15(;?’ DANN 085 28.75% 0.34
NoL 6oy DCNN 0.90 22.50% 0.04
: GNN 0.89 22.50% 0.05
NDA 0.71 32.08% 0.20
}{”;"',((122’52)9)’ DANN 0.69 37.09% 0.04
Nol 400 DCNN 0.70 32.08% 0.59
: GNN 0.74 32.08% 0.55
NDA 0.83 32.08% 0.06
}:’;,"((22 250)) DANN 0.84 32.38% 0.15
Nol. 4000 DCNN 0.86 32.08% 0.05
: GNN 0.88 32.08% 0.15
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Table 3.7 — Comparison of Learning Methods for Uniformly Sampled Customers in the
Optimization Process

Training Testing Method Objective  Delivery Time Travel Time Runtime

Scale Scale Gap (%) Gap (%) Gap (%) (s)

NDA 3.06 3.06 1.18 7

Iﬁ/"% 73)) DANN 297 2.96 431 11

NoI'.12(,)0 > DCNN  2.07 2.07 1.67 6

’ GNN 3.21 32 1.55 6

NDA 1.25 1.25 0.37 6

I;?'((i 75)) DANN 553 5.48 43.79 26

7] @, 7): NoI'.12(,)0 > DCNN  10.04 10.01 11.9 10

|%/| (2’ 3)’. ’ GNN 2.73 272 1.49 6
IO NDA 8.26 8.24 2.77 103
Nol: 1200 I;?"% 13(;) DANN  6.89 6.89 11.04 200
NoI'.60(,) > DCNN  3.78 3.78 2.19 28

’ GNN 3.19 3.17 53 21
NDA 2.1 2.14 11.94 133
I;?' ((84 15(;) DANN 4.2 4.24 23.79 206

N I"60(’) > DCNN  12.19 12.28 27.11 86

o GNN 189 1.92 12.13 33
NDA 3.49 3.47 3.74 483
Ij;/‘i-((lzz,Sz)(-))’ DANN 548 5.47 1.84 607
NoI'.40(,) > DCNN 229 2.33 18.38 532
’ GNN 1.73 1.77 17.56 406

NDA 2.81 2.8 232 50

I;?'((ZZ 25(;) DANN 454 4.56 19.98 92

NoI'.40(,)0 ’ DCNN  6.01 6.03 9.9 53

’ GNN 2.78 2.78 3.8 38

NDA 3.06 3.06 1.18 7

I;?'(é 73)) DANN 228 2.28 0.33 9

N I-.12(’)0 > DCNN 210 2.10 1.19 5

or GNN 3.07 3.07 0.77 5

NDA 1.25 1.25 0.37 6

I;?'((i 75)) DANN 149 1.48 4.36 8

o7 DCNN  0.94 0.94 0.15 5

I;?'((zz 150)?’ Nol: 1200 GNN 2.19 2.19 3.22 5
AN NDA 8.26 8.24 2.77 103
Nol: 3600 I;?' ((82 13(;) DANN  4.03 4.01 6.57 154
NoI'.60(,) > DCNN  1.66 1.65 4.92 14

’ GNN 2.82 2.81 4.46 12
NDA 2.1 2.14 11.94 133
I;?'((i 15(;) DANN  1.89 1.91 7.17 133

NoI'.60(,) > DCNN  1.66 1.68 10.42 30

’ GNN 2.13 2.15 7.4 25
NDA 3.49 3.47 3.74 483
Ij;/‘i'((lzz,Sz)(-))’ DANN 520 5.18 2.99 607
NoI'.40(,) ’ DCNN  1.63 1.67 17.51 528
’ GNN 1.19 1.23 16.76 457

NDA 2.81 2.8 2.32 50

I;?'(é 25(;) DANN 232 2.31 2.76 67

NoI-.40(,)0 > DCNN 1.56 1.56 2.75 40

’ GNN 2.52 2.51 1.39 35
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Table 3.8 — Comparison of Learning Methods for Clustered Customers in the Learning
Process

Training Testing Method Accuracy  Allocation Allocation

Scale Scale Percentage  Std.
NDA 0.64 41.67% 0.30

}j}"(é 73)) DANN 0.73 37.43% 0.01

ol 1200 DCNN 0.77 41.67% 0.58

: GNN 0.81 41.67% 0.19

NDA 0.78 22.50% 0.90

}fyi%’ 75)) DANN 0.76 23.11% 0.51

41 2.7 Nok1200  DCNN 0.82 22.50% 0.26
I R o GNN 0.89 22.50% 0.35

Nok: 1200 1#]: .10y, DA 0.58 41.67% 0.7
or ] 0.3 DANN 0.63 63.14% 0.12
Mol sop DONN 0.63 41.67% 0.67

o GNN 0.70 41.67% 0.76

NDA 08 22.50% 136

I f;" ((84’ ]5(;?’ DANN 0.70 27.04% 0.67

NoL 6oy DCNN 0.80 22.50% 0.58

: GNN 0.86 22.50% 0.30

NDA 0.60 32.08% 0.91
}{?i.((lzz’sz)f))’ DANN 0.63 68.31% 0.566

Nol a0 DCNN 0.63 32.08% 0.76

: GNN 0.69 32.08% 0.17

NDA 0.70 32.08% 0.54

g/"(é 250)) DANN 0.73 33.81% 0.27

NoL 4000 DONN 0.78 32.08% 0.55

: GNN 0.83 32.08% 0.94

NDA 0.64 41.67% 0.30

};?"((22 73)) DANN 0.72 28.49% 0.51

ol 1200 DCNN 0.77 41.67% 0.93

: GNN 0.80 41.67% 0.57

NDA 0.78 22.5% 0.90

}j;/'i.(é; 75)) DANN 0.86 17.48% 1.37

)% pONN 0.90 22.50% 0.03

Q'_%’ 15(;) Nol: 1200 NN 0.90 22.50% 0.09
P\ NDA 0.58 41.67% 0.11
Nol: 3600 Iﬁji.%’ 13(;?’ DANN 0.65 38.15% 0.19
Mol oop DCNN 0.72 41.67% 0.21

o GNN 0.73 41.67% 0.29

NDA 0.80 1871% 0.35

}52['(54’ 15(;?’ DANN 084 18.53% 0.92

NoL 6oy DCNN 0.86 18.71% 0.07

or GNN 0.88 18.71% 0.45

NDA 0.60 32.08% 0.28

}?[-((122’52)9)’ DANN 0.66 31.11% 0.59

Nol 400 DCNN 0.66 32.08% 0.30

: GNN 0.69 32.08% 0.76

NDA 0.70 32.08% 0.61

}ﬁ,"(é 250)) DANN 0.78 29.31% 0.88

NoL 4000 DCNN 0.82 32.08% 0.63

: GNN 0.84 32.08% 0.51
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Table 3.9 — Comparison of Learning Methods for Clustered Customers in the Optimiza-
tion Process

Training Testing Method Objective  Delivery Time Travel Time Runtime

Scale Scale Gap(%) Gap(%) Gap(%) (s)
NDA 3.64 3.58 25.77 14

Ij;/"((zz 73)) DANN 294 292 8.61 24

NoI'QIZ(’)O >’ DCNN  3.54 3.53 9.96 10

’ GNN 2.35 2.33 43 7

NDA 2.74 2.62 62.36 19

Ij;/"(é 75)) DANN 340 3.28 58.73 43

7] @, 7): NoI'QIZ(’)O >’ DCNN  4.90 4.87 9.08 13

|%| (2’ 3)’. ’ GNN 1.79 1.73 24.09 8
NoI'QIZ(’)O ’ .7]: (8, 10): NDA 10.71 10.69 12.31 152
’ |%| (2’ 3).’ DANN  11.72 11.69 20.47 311
NoI'.60(,) ’ DCNN 435 4.30 14.55 82

’ GNN 2.90 2.89 3.57 15
NDA 5.72 5.63 39.31 127
Ij;/"((i 15(;) DANN 421 4.11 41.43 264

NoI'.60(,) ’ DCNN 646 6.38 23.95 98

’ GNN 1.20 1.18 7.55 31
NDA 11.62 11.57 34 574
Ij;/‘i'((IZZ,Sz)('))’ DANN  10.62 10.59 12.5 607
NoI'.40(,) > DCNN  4.06 4.00 17.51 542
’ GNN 2.36 2.30 16.76 457

NDA 4.65 4.58 36.19 47
Ij;/"((zz 25(;) DANN 453 4.48 29.79 109

NoI'.40(’)0 > DCNN 439 4.36 12.09 55

’ GNN 2.07 2.07 9.01 38

NDA 3.64 3.58 25.77 14

I;?H((ZZ 73)) DANN  1.88 1.86 2.08 41

NoI'QIZ(’)O > DCNN 4.6 4.55 9.97 7

’ GNN 2.65 2.64 3.17 6

NDA 2.74 2.62 62.36 19

I;?H((i 75)) DANN  0.23 0.23 4.34 50

a7 DCNN - 2.75 2.72 4.14 6

Ij;/‘|((22 150)?’ Nol: 1200 GNN 1.68 1.64 23.44 5
DAt NDA 10.71 10.69 12.31 152
Nol: 3600 Ij;'((gz 13(;) DANN  6.22 6.22 5.96 329
NoI'.60(,) > DCNN  5.18 5.15 11.74 83

’ GNN 1.16 1.12 11.79 12
NDA 5.72 5.63 39.31 127
Ij;'((i 15(;) DANN  1.18 1.13 12.16 163

NoI'.60(,) > DCNN 299 2.97 11.53 35

’ GNN 1.01 0.97 21.48 24
NDA 11.62 11.57 3.40 574
Ij;/‘i'((IZZ,SZ)('))’ DANN  6.52 6.50 10.02 607
NoI'.40(,) > DCNN  2.08 2.03 17.51 525
’ GNN 1.74 1.69 16.76 450

NDA 4.65 4.58 36.19 47
I;?H((ZZ 25(;) DANN 193 1.90 1.47 111

NoI'.40(’)0 > DCNN  3.60 3.57 8.89 46

’ GNN 1.96 1.95 11.10 34
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Appendix C: Dynamic Experiments

Appendix C1: Dynamic Experiments with

Earliest-Available-Driver-Assignment Strategy

The detailed experimentation process for earliest-available-driver-assignment strategy is

presented in Table 3.10.

Table 3.10 — Dynamic Experimentation Process

Step Description
Initialization Initialize the experimentation with the following elements:

* Define the customer arrival process as a Poisson process with a specified arrival rate. Set service duration
|7 to 1 or 2 hours. Generate customer arrival times g; for customer i € .# arriving within this duration.

¢ Let |.#| available drivers serve customers who order from store j € |_#|. For driver k € J#, generate their
origin node and set availability time 7,, = 0. Additionally, determine the locations of both customers and
stores.

* Define the re-optimization intervals, which can vary from event-triggered (e.g., upon a new customer ar-
rival) to a fixed interval (e.g., 10 minutes). Obtain the set of optimization time points {po, p1,p2,...,pr},
and define the final time P for the experimentation.

Step 1 For the initial period = 0, corresponding to the time interval [po, p1], optimize the system at time point pj,

* Input the information, including the customers that arrive within this period (i.e., i € % where % = {i €
#|po < a; < p1}) and place orders from stores j € _#, as well as the drivers k € %" with their available
times to serve customers being 7, = 0.

* Run the optimization problem to assign drivers to customers and plan their routes. If no drivers are cur-
rently available, customers are assigned to the earliest available drivers who can serve the orders once they
complete their assigned tasks.

e Update the drivers’ availability times based on the completion time of their last served customer (i.e.,
To, < MaX;ey, {T;" }), and set the driver location to the last served customer location.

* Record the number of customers served in the interval [po, p;], as well as the completion time, wait time,
delivery time, and expected travel time for each customer.

Step 2 While t < |.7| — 1, repeat the following steps:
Increment ¢ and update the time interval to [p;, p;+1]. Optimize the system at the time point p; 1,

¢ Input the information, including the customers that arrive within this period (i.e., i € .% where % = {i €
S | pr < a; < pr41}) and place orders from stores j € _#, as well as the drivers k € ¢ with their earliest

available times to serve customers being T, .

* Run the optimization problem to assign drivers to customers and plan their routes. If no drivers are cur-
rently available, customers are assigned to the earliest available drivers who can serve the orders once they
complete their assigned tasks.

» Update the drivers’ availability times based on the completion time of their last served customer (i.e.,
Ty, < MaX;gj, {‘L'}‘"}), and set the driver location to the last served customer location.

* Record the number of customers served in the interval [p;, p;+1], as well as the completion time, wait time,
delivery time, and expected travel time for each customer.

Output The experimentation outputs include the total number of customers served during each time interval, and for each
customer, the order completion time, wait time, delivery time, and expected travel time.

178



The dynamic experimentation results for earliest-available-driver-assignment strategy

are shown in Figure 3.10.
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Figure 3.10 — Delivery time, wait time, travel time, and customer number under varying
re-optimization intervals

179



Appendix C2: Dynamic Experiments with

Driver-Availability-Triggered Strategy

We present the dynamic experimentation process with driver-availability-triggered opti-

mization in Table 3.11.

Table 3.11 — Dynamic Experimentation Process with Driver-Availability-Triggered Opti-

mization

Step

Description

Initialization

Initialize the experimentation with the following elements:

 Define the customer arrival process as a Poisson process with a specified arrival rate. Set service
duration |.7| to 1 or 2 hours. Generate customer arrival times a; for each customer i € .# who arrives
within this duration.

¢ Let || available drivers serve customers who order from store j € | #|. For driver k € ", generate
their origin node and set availability time 7,, = 0. Additionally, determine the locations of both
customers and stores.

* Define the re-optimization intervals, which can vary from event-triggered (e.g., upon a new cus-
tomer arrival) to a fixed interval (e.g., 10 minutes). Obtain the set of optimization time points
{po,p1,p2,...,pr}, and define the final time P for the experimentation.

Step 1

For the initial period # = 0, corresponding to the time interval [pg, p1], if there are available drivers k € {k €
A |ox < p1}, optimize the system at the time point py,

* Input the information, including the customers that arrive within this period (i.e., i € .%) where % =
{i € J|po < a; < p1}) and place orders from stores j € _#, as well as the drivers k € % with their

available times to serve customers being 7,, = 0.
* Run the optimization problem to assign available drivers to customers and plan their routes.

« Update the drivers’ availability times based on the completion time of their last served customer (i.e.,

Ty, MaXiep, {rik* }), and set the driver location to the last served customer location.

* Record the number of customers served in the interval [po, p;], as well as the completion time, wait
time, delivery time, and expected travel time for each customer.

Step 2

While r < | 7| — 1, repeat the following steps:
Increment ¢ and update the time interval to [p;, p;+1]. If there are available drivers k € {k € ¢ |o; < pry1},
optimize the system at the time point p; 1,

* Input the information, including the customers that arrive within this period (i.e., i € .% where .%; =
{ie 7 | pr <a; < pi+1}) and place orders from stores j € _#, as well as the drivers k € # with
their earliest available times to serve customers being 7, .

* Run the optimization problem to assign available drivers to customers and plan their routes.

Update the drivers’ availability times based on the completion time of their last served customer (i.e.,
To,  MaXiey, {Ti’"}), and set the driver location to the last served customer location.

* Record the number of customers served in the interval [py, p,+1], as well as the completion time, wait
time, delivery time, and expected travel time for each customer.

Output

The experimentation outputs include the total number of customers served during each time interval, and
for each customer, the order completion time, wait time, delivery time, and expected travel time.
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Figure 3.11 — Completion time under varying re-optimization intervals for the driver-
availability-triggered strategy

Under the dynamic experimentation with the driver-availability-triggered strategy,
Figure 3.11(a) presents the order completion time, including delivery and wait times,
for consolidated-order delivery with transshipment (CODT). Although the trade-off be-
tween delivery and wait times disappears under this strategy, the order completion time
still follows a smooth pattern, with trends that initially decrease and then increase. The
five-minute re-optimization interval yields the lowest delivery time, while the six-minute
interval achieves the lowest wait time and overall order completion times. Figure 3.11(b)
compares completion times across the three systems under varying intervals, while Figure
3.12 provides detailed distributions of delivery time, wait time, travel time per customer,

and customer scale. CODT consistently outperforms the other systems in order comple-
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re-optimization intervals for the driver-availability-triggered strategy
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Figure 3.13 — Best re-optimization interval for varying ratios of customer number to driver
number

tion time, delivery time, and driver travel time per customer. Figure 3.13 highlights the
best re-optimization interval that minimizes order completion time across varying cus-
tomer arrival rates and customer-to-driver ratios. As arrival rates or customer-to-driver
ratios increase, longer re-optimization intervals are optimal, reflecting the benefit of wait-
ing longer to batch and fulfill orders. These findings align with insights from the earliest-

available-driver-assignment strategy.

Appendix C3: Comparison of the Two Strategies

We compare the earliest-available-driver-assignment strategy with the driver-availability-
triggered strategy in this section. As shown in Figures 3.8(a) and 3.11(a), the best com-
pletion time under the driver-availability-triggered strategy, at 34.0 minutes, is higher
than the best time of 33.6 minutes under the earliest-available-driver-assignment strategy.
Therefore, we conclude that fixed-interval optimization with the earliest-available-driver-
assignment strategy is slightly superior to the driver-availability-triggered strategy.

Table 3.12 presents the best re-optimization intervals and corresponding minimum
completion times across different customer arrival rates and customer-to-driver ratios,

highlighting how the optimal waiting strategy varies. Overall, the earliest-available-
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driver-assignment strategy consistently outperforms the driver-availability-triggered strat-
egy, though the gap is small. The best re-optimization interval for the driver-availability-
triggered strategy is approximately one minute longer, as both shorter and longer intervals
can result in larger batching sizes and longer completion times in this approach. In sum-
mary, a shorter-duration waiting strategy is optimal for the consolidated-order delivery

system with transshipment.

Customer  Arrival Rate Earliest-available-driver-assignment Strategy Driver-availability-triggered Strategy
to Driver (Num. of
Ratio customers every
10 mins) Best Minimum Best Minimum
Re-optimization Comple- Re-optimization Comple-
Interval (mins) tion Time Interval (mins) tion Time
(mins) (mins)
1 4 3 29.40 3 29.64
1 6 4 30.14 4 30.17
1 8 4 30.99 4 31.53
1 10 4 31.42 5 31.60
2 4 3 29.45 3 29.84
2 6 4 30.44 5 30.52
2 8 4 31.61 5 32.17
2 10 6 32.61 5 32.80
3 4 4 30.04 4 30.00
3 6 5 31.19 5 31.47
3 8 5 32.63 5 32.40
3 10 6 32.85 6 33.00
4 4 4 30.60 4 30.43
4 6 5 31.58 5 31.76
4 8 5 33.00 5 33.21
4 10 6 33.20 7 33.80
5 4 4 30.67 4 30.79
5 6 5 32.04 6 32.66
5 8 5 33.27 6 33.37
5 10 9 33.62 9 34.00
6 4 4 31.29 6 31.88
6 6 6 32.30 6 32.70
6 8 6 33.88 6 33.90
6 10 9 34.30 9 34.30

Table 3.12 — Comparison between Earliest-Available-Driver-Assignment Strategy and
Driver-Availability-Triggered Strategy
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General Conclusion

Last-mile delivery, the final step in the e-commerce supply chain, is important and in-
dispensable, driving extensive research focused on improving service quality, reducing
travel costs, and enhancing operational efficiency. To provide on-time and on-demand
deliveries efficiently with low costs and high reliability, we investigate three challenging
delivery problems. First, crowdkeeping delivery services utilize unused crowd space for
temporary parcel storage to reduce delivery costs, eliminate failed deliveries, and benefit
all system participants. Second, ultra-fast delivery services are designed for rapid and
reliable delivery under uncertainties in travel times and demand arrival times, striking
a balance between the delivery speed and operational profitability. Finally, multi-store
order delivery services with consolidation and transshipment ensure fast deliveries and
short travel times for fulfilling all requests, while also incorporating waiting strategies
to facilitate temporal consolidation. Mathematical programs, including bilevel programs,
probabilistic envelope constrained programs, and mixed-integer linear programs, are de-
veloped to tackle these challenging problems. These models are solved efficiently by
reformulating them into tractable programs and using advanced methods such as state-
of-the-art solvers, the row generation algorithm, or learning-to-optimize approaches that
integrate machine learning with optimization. By leveraging efficient solution techniques
and conducting numerical experiments on real-world datasets, this work offers manage-
rial insights in delivery strategies that can enhance the efficiency, reliability, and customer

satisfaction of last-mile logistics.

This study opens several opportunities for future research. In Chapter 1, the crowd-



keeping delivery model assumes complete information and deterministic conditions. Fu-
ture work could address uncertainties in customer density and keeper availability, as well
as multi-period optimization for dynamic service allocation among evolving groups of
customers and keepers, and the coexistence of various delivery types under a customer
choice model. In Chapter 2, the ultra-fast delivery model currently assumes unlimited
drivers and immediate delivery services from depots to customers. However, a more
accurate model could further account for driver routing, customer batching, product as-
sortment, and customer utility variation in stochastic programming to enhance realism
and applicability. In Chapter 3, the consolidated multi-store delivery model could be im-
proved by considering transshipment costs and capacity, uncertain travel times, potential
transfer errors, and the rolling horizon rescheduling of unfulfilled earlier-arriving orders.
Additionally, integrating advanced machine learning techniques, such as embedding or
ensemble learning algorithms, can improve solution quality and scalability. Together,
these extensions could further refine the models and enhance their relevance to practical
last-mile logistics applications.

Moreover, the synergies between these three business models present an interesting
avenue for further exploration. While each model is designed to optimize delivery in dis-
tinct ways, their integration could offer a comprehensive solution to last-mile logistics
challenges. For example, a hybrid approach that combines consolidated orders from mul-
tiple stores, utilizes crowd space as transshipment nodes or temporary receivers, and in-
corporates hierarchical service levels under uncertain travel times and order arrival times
could significantly enhance operational efficiency, service reliability, and customer satis-
faction. A key challenge for future research is whether these models can be implemented
simultaneously while adapting well to marketing needs, or whether they can be efficiently

optimized to deliver high-quality solutions.
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