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Résumé

L’intégration de bus électriques dans les réseaux de transport en commun représente

une solution pour limiter les émissions de gaz à effet de serre. Cependant, la mise en

place d’une flotte de bus électriques soulève des questions d’organisation et de dimen-

sionnement, notamment sur les aspects d’infrastructures pour la recharge des batteries

des bus. Cette thèse vise à répondre à certaines de ces questions en étudiant et résolvant

les problématiques liées aux différentes stratégies de recharge (nocturne ou en route) et

de localisation et dimensionnement des chargeurs. Tout d’abord, le premier chapitre de la

thèse aborde un problème d’emplacement de chargeurs dans un réseau de transport, uti-

lisant des bus hybrides, dont les chargeurs sont placés sur le long des lignes et partagées

entre les différentes lignes. Le problème consiste à trouver où placer des chargeurs, com-

bien en installer, et comment les utiliser. Les deux fonctions objectif considérées sont : la

maximisation de la distance parcourue en utilisant le mode électrique et la minimisation

des coûts d’installation. Des perspectives managériales sont présentées et portent sur les

bénéfices opérationnels et économiques d’utiliser des chargeurs partagés et les bénéfices

économiques d’utiliser des bus hybrides à la place de bus électriques. Le deuxième cha-

pitre aborde un problème d’affectation de bus électriques et d’ordonnancement de la re-

charge nocturne sur plusieurs jours. En considérant un ensemble de bloc véhicules (suites

programmées de trajets effectués par le même bus sur une journée) sur plusieurs jours, un

ensemble de bus électriques identiques, et un ensemble de chargeurs disponibles au dépôt,

le problème consiste à affecter un bus électrique à chaque bloc et à planifier la recharge

nocturne au dépôt. L’objectif est de minimiser le coût total de recharge tout en préservant



la durée de vie de la batterie à long terme. Les expérimentations réalisées montrent l’inté-

rêt de considérer un horizon de plusieurs jours ainsi que celui bien gérer l’état de charge

de la batterie. Le dernier chapitre de cette thèse étend les travaux du deuxième chapitre en

considérant qu’il possible d’ajouter des opérations de recharges de batterie d’un bus lors

de son trajet durant la journée. En plus des décisions prises dans le problème de départ,

il faut également ordonnancer les opérations de recharge en route. Les expérimentations

numériques conduites montrent l’intérêt d’utiliser une combinaison de stratégies de re-

charge mais aussi celui de limiter le nombre d’événements de recharge. Pour chacun des

problèmes, des MILP et des méthodes de résolution ont été développées.

Mots-clés

Recherche opérationnelle ; Bus électriques ; Réseau de transport ; Emplacement de

chargeurs ; Ordonnancement de la recharge ; Programmation linéaire ; Branch-and-check ;

Matheuristique

Méthodes de recherche
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Abstract

The integration of electric buses into public transit networks is a solution to limit

greenhouse gas emissions. However, deploying an electric bus fleet raises organizational

and sizing questions, especially regarding infrastructure for battery charging. This thesis

aims to address some of these questions by studying and solving issues related to different

charging strategies (overnight or en-route) and the location and sizing of chargers. The

first chapter addresses a charger location problem in a transit network using hybrid buses,

where chargers are placed along routes and shared between different lines. The problem

involves determining charger location, quantity, and how to use those chargers. The two

objective functions considered are : maximizing the distance traveled using electric mode

and minimizing installation costs. Managerial perspectives highlight the operational and

economic benefits of using shared chargers and the economic benefits of using hybrid

buses instead of electric ones. The second chapter tackles a multi-day electric bus assign-

ment and an overnight charging scheduling problem. The goal is to assign an electric bus

to each vehicle block (pre-computed route sequence performed by the same bus in a day)

and plan overnight charging at the depot to minimize total charging costs while preserving

battery lifespan. Experimentation shows the importance of considering a multi-day plan-

ning horizon and effectively managing battery state of charge. The final chapter extends

the work of the second one by considering the addition of battery charging operations

during a bus trip throughout the day. In addition to decisions made in the initial problem,

en-route charging operations need to be scheduled. Numerical experiments demonstrate

the benefits of using a combination of charging strategies and limiting the number of
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charging events. For each of the problems, MILP formulations and solution methods have

been developed.

Keywords

Operational research ; Electric buses ; Transit network ; Charger location ; Charging

Scheduling ; Linear programming ; Branch-and-check ; Matheuristic

Research Methods
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aventures à Sinnoh.

En espérant que votre lecture de ce manuscrit soit aussi palpitante que mes expériences

vécues pendant mes années de doctorat.

Pierre « Dr Potter » Vendé, PhD, PhD
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Introduction générale

“ Notre maison brûle et nous regardons ailleurs ”, ainsi furent les mots prononcés

par le président Chirac lors du IVe Sommet de la Terre à Johannesburg en 2002, afin de

dénoncer l’inaction des États face aux effets du réchauffement climatique sur l’environ-

nement.

Les sommets de la Terre sont des rencontres décennales organisées par l’Organisa-

tion des Nations unies (ONU ou UN en anglais), où les dirigeants des différents pays

se réunissent pour parler environnement et développement durable. L’objectif principal

de ces conférences est de mettre en avant la coopération mondiale afin de résoudre les

problèmes environnementaux et les problèmes de développement (UN, 2024). Ils ont été

créés pour répondre aux nouveaux défis qui menacent la planète tels que le changement

climatique, la perte de la biodiversité et la désertification. La réponse à ces défis passe par

la création d’accords et de plans d’action sur le long terme, afin de préserver la planète et

d’assurer un avenir durable. Ils rassemblent des représentants de gouvernements, d’orga-

nisations internationales, d’ONG et du secteur privé pour trouver des solutions à ces défis

mondiaux.

Depuis la mise en place de ces conférences sur l’environnement, des conférences non-

régulières ont également fait leur apparition. En effet, se rencontrer une fois tous les 10

ans est trop peu comparativement à la vitesse du changement de l’environnement. Bien

que le thème de ces conférences soit général à travers l’environnement et le développe-

ment durable, le climat fait régulièrement partie des sujets de préoccupation de la com-

munauté internationale. Lors de ces conférences, des plans d’action et des conventions



ont été mises en place par l’ONU, dont la convention-cadre des Nations unies sur les

changements climatiques (CCNUCC ou UNFCCC en anglais) (UN, 1992). C’est dans le

cadre de cette convention que se réunissent les États à travers des conférences des parties

(COP). Les COP sont des réunions internationales où les pays participants à la CCNUCC

se réunissent pour discuter des actions à entreprendre pour lutter contre le changement

climatique (UNFCCC, 2024). Les COP ont pour objectif de coordonner les efforts mon-

diaux pour réduire les émissions de gaz à effet de serre (GES), adapter les sociétés aux

impacts du changement climatique, et mobiliser des financements pour soutenir les pays

en développement dans leurs efforts en matière de lutte contre les changements clima-

tiques.

Afin de prendre des décisions lors de ces différents sommets, les États utilisent des

rapports provenant d’organismes tels que le groupe d’experts intergouvernemental sur

l’évolution du climat (GIEC ou IPCC en anglais). Le GIEC est une organisation scien-

tifique internationale chargée d’identifier les causes et les conséquences du changement

climatique actuel (IPCC, 2024). Le GIEC fournit des rapports réguliers basés sur les der-

nières recherches climatiques pour informer les décideurs politiques et le public sur les

impacts du changement climatique, les risques associés et la manière dont on peut réduire

les effets de ce changement ou comment s’y adapter.

Le dernier rapport du GIEC en date est le 6e rapport d’évaluation publié en 2023

(IPCC, 2023). Ce rapport met en lumière plusieurs observations clés. Il indique que le

changement climatique s’accélère. En effet, sur la période 2013–2022 (période d’étude

du rapport), la température mondiale à la surface de la planète est 1.15◦C plus élevée que

lors de la période 1850–1900 (période de référence). On note que depuis la précédente

période d’observation (2003–2012), l’augmentation a été de 0.19◦C. Ainsi, l’augmenta-

tion observée pendant la période du 6e rapport correspond à une hausse de près de 20%

de l’augmentation entre la période de référence et celle du 5e rapport. Si les politiques ac-

tuelles de lutte contre le réchauffement climatique ne sont pas renforcées, la hausse depuis

la période de référence pourra être jusqu’à 3.2◦C lors de la période 2081–2100, et jusqu’à

4.4◦C si ces politiques sont assouplies ou même supprimées. Ces augmentations de tem-

2



pérature ont déjà un impact sur l’écosystème. Depuis les années 1950, les canicules sont

devenues plus fréquentes sur l’entièreté des surfaces terrestres et les épisodes de grand

froid plus rares. Les sécheresses sont également plus répétées dues à l’évaporation mas-

sive des sols et le nombre de cyclones tropicaux a significativement augmenté pendant les

40 dernières années. Ces épisodes météorologiques dégradent les sols, les rendant moins

adaptés à l’agriculture. On observe donc une diminution des rendements. La baisse de

la production agricole suite à ces événements crée à terme des risques pour la sécurité

alimentaire des populations locales. L’assèchement des sols les a rendu imperméables et

on observe des inondations plus fréquentes. Ces inondations et les phénomènes extrêmes

tels que les tempêtes causent de forts dommages aux infrastructures. Toutes ces modifi-

cations de l’environnement rendent certaines régions moins propices au développement.

Certaines populations décident de migrer afin de vivre dans des zones plus habitables.

Une autre conséquence de ces changements climatiques est donc l’augmentation signi-

ficative des réfugiés climatiques. Le dérèglement du climat provient de l’augmentation

significative des émissions de GES, majoritairement du CO2, provenant principalement

des activités humaines telles que la combustion de combustibles fossiles, pour l’énergie,

et le déboisement, pour l’agriculture, ainsi que des secteurs-clés liés au développement

tels que l’industrie et le transport. Ce sont également ces émissions de GES qui sont le

moteur principal de l’augmentation de température. En 2019, l’énergie représentait 34%

des émissions de GES, l’industrie en produisait 24%, l’agriculture était responsable de

22% et le transport de 15%.

Les rapports d’évaluation du GIEC ne présentent pas seulement les causes et les

conséquences du changement climatique. Ils proposent aussi des solutions afin de limi-

ter ou d’inverser ces changements. Ce 6e rapport insiste sur l’urgence d’actions rapides

et décisives pour réduire les émissions de GES, s’adapter aux impacts du changement

climatique et limiter les dommages futurs. Ces actions ont pour but de limiter l’augmen-

tation à 1.5◦C. Le rapport propose des actions dans les principaux secteurs d’émissions

de GES : l’énergie, l’industrie, l’agriculture, et le transport. Dans le domaine de l’énergie,

il faut réduire la part des énergies fossiles (charbon, pétrole et gaz) dans le mix éner-
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gétique et privilégier les énergies décarbonées (solaire, éolien, hydraulique, nucléaire).

Dans le domaine de l’industrie, il est préconisé de changer les processus de production

afin de les orienter vers des processus moins polluants. Cela peut se faire par l’utilisation

de matériaux plus efficaces, mais aussi en promouvant l’économie circulaire et le recy-

clage des déchets issus de la production vers d’autres systèmes de production. L’objectif

est de limiter les flux d’entrée et de sortie des systèmes industriels et ainsi de diminuer la

consommation des matières premières et la production de déchets ainsi que les transports

qui en résultent. Dans le domaine de l’agriculture, le rapport conseille tout d’abord de

réduire la conversion des écosystèmes naturels, responsable de la moitié des émissions du

domaine agricole. Cette action de contrôle de ces écosystèmes peut même aller jusqu’à

un processus de reforestation, les arbres pouvant capturer naturellement le CO2. Un autre

axe d’action est le changement des régimes alimentaires des populations. L’industrie de

la viande est un grand domaine producteur de GES, de l’élevage des animaux jusqu’à sa

mise sur le marché. Changer les habitudes de consommation changerait les besoins de

production et donc diminuerait les émissions de GES du secteur. Pour finir, dans le do-

maine du transport, le principal axe d’amélioration passe par une réduction de la quantité

de mouvement des biens et des personnes. Une baisse de la distance parcourue dans les

systèmes de transports réduit d’une part les émissions, mais aussi encourage les mobi-

lités décarbonées qui ne sont parfois pas envisageables sur les longues distances. Si les

usagers n’ont pas besoin de parcourir de longues distances, ils peuvent se réorienter soit

vers des transports plus propres tels que la marche ou le vélo, soit vers les transports

en commun pour limiter la quantité d’émission par personne et retirer des véhicules du

système de transport. Le rapport insiste également sur la création de synergies entre les

différents domaines. Par exemple, en utilisant des circuits courts et de proximité pour la

distribution de productions agricoles, une action est réalisée entre les domaines agricoles

et du transport. Dans le cas du transport et de l’énergie, une électrification massive des

réseaux de transport en commun à travers l’utilisation de véhicules électriques permet de

réduire les émissions de GES. Ainsi, il est nécessaire d’intégrer l’impact environnemental

dans toutes les décisions politiques, en créant des synergies dans les différents domaines
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d’activité, afin d’obtenir un effet systémique pour la réduction des émissions de GES. Ces

actions peuvent être catalysées par un investissement massif dans la recherche. Le résul-

tat de ces recherches doit pouvoir être transmis à tous les États, permettant de globaliser

l’action et observer plus rapidement les conséquences.

Le secteur du transport est un des principaux secteurs responsables des émissions de

GES. Une action que les gouvernements peuvent promouvoir pour réduire ces émissions

est l’électrification du transport. Pour le transport en commun, cela se traduit par l’utili-

sation des bus électriques dans les réseaux urbains. L’électrification du transport public

pose cependant des défis stratégiques, tactiques mais aussi opérationnels. De plus, les

bus diesels représentent encore une forte proportion des flottes actuelles de transports pu-

blics, et les remplacer par des bus électriques est un processus complexe qui soulève des

problématiques organisationnelles. Les bus électriques ont une portée de conduite opéra-

tionnelle limitée et ont donc besoin d’être rechargés régulièrement, entre leurs tournées ou

bien pendant la tournée (selon la technologie, la longueur de la ligne, etc.). Une première

stratégie de recharge des bus est l’échange de batteries (AN et al., 2020 ; AYAD et al.,

2021). Pendant ou à la fin de la tournée, les bus passent à des stations d’échange pour

remplacer leur batterie vide avec une batterie pleine et ainsi continuer la tournée. L’avan-

tage de cette stratégie est que le temps de recharge du bus est constant et rapide, le temps

de changer la batterie, ce qui permet une bonne estimation connue à l’avance de la durée

de l’opération. Cependant, cela nécessite d’avoir une réserve de batteries pleines prêtes

à être utilisées. Un facteur important de la conservation de la durée de vie d’une batte-

rie est son état de charge. Le stockage des batteries à des états de charge élevés pendant

de longues périodes réduit significativement la durée de vie de la batterie (PELLETIER

et al., 2017). Les batteries utilisées avec une stratégie d’échange ont donc besoin d’être

remplacées plus régulièrement, augmentant considérablement le coût opérationnel de la

recharge du système de transport. Une seconde stratégie de recharge consiste à recharger

les batteries directement sur les bus. Pour cela, les autorités organisatrices des transports

doivent déployer des infrastructures de recharge installées à des arrêts de bus, dans des

terminaux en fin de ligne ou bien dans des dépôts. Dans ce contexte, deux principales
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stratégies existent pour recharger les bus : la recharge nocturne (HOUBBADI et al., 2019 ;

VENDÉ, DESAULNIERS, KERGOSIEN & MENDOZA, 2023) et la recharge en route (Y.

WANG et al., 2017 ; XYLIA et al., 2017). Lors de la recharge nocturne, les bus sont re-

chargés uniquement au dépôt, principalement pendant la nuit. Afin d’implémenter cette

stratégie, les bus ont besoin d’une portée opérationnelle plus grande, capable de tenir toute

la journée. Ainsi, les bus doivent être équipés de batteries à grande capacité, qui sont plus

onéreuses. De plus, les batteries possédant une capacité pouvant tenir toute une journée

sont peu courantes. Pour surmonter ce problème, les compagnies de transport doivent

s’assurer qu’elles ont plusieurs bus pour couvrir chaque ligne du réseau, permettant aux

conducteurs de changer rapidement de bus quand la batterie est vide. Le nombre addition-

nel de bus augmente le coût d’investissement de la flotte. De plus, la stratégie de recharge

nocturne implique de nombreuses recharges de batterie de bus pendant la nuit. Ainsi, un

grand nombre d’opérations de recharge peuvent se dérouler en simultané, ce qui se traduit

par une infrastructure de recharge onéreuse. La recharge en route implémente la stratégie

opposée. Lors de la recharge en route, les bus sont chargés pendant leurs activités quo-

tidiennes à des terminaux en fin de ligne ou à des arrêts spécifiques (points de transfert

entre des lignes par exemple). Étant donné que les bus ont besoin de recharger rapidement

leur batterie plusieurs fois par jour, la recharge en route nécessite un fort investissement

initial dans l’infrastructure de recharge (chargeurs rapides, lignes à haute tension, trans-

formateurs haute tension, etc.), complexifie les opérations quotidiennes et peut ajouter de

l’incertitude. Cependant, le nombre important d’opportunités de recharge permet d’utili-

ser des bus avec des batteries à capacité plus réduite, ce qui réduit le coût d’investissement

dans la flotte (GOEHLICH et al., 2013). Un facteur important de la conservation de la durée

de vie d’une batterie est son nombre de cycles de recharge. À la construction, une batte-

rie a un nombre prédéterminé de cycles de recharge qu’elle peut endurer (BLOOMBERG

NEW ENERGY FINANCE, 2018). La recharge en route, nécessitant un plus grand nombre

de cycles de recharge, réduit la durée de vie des batteries en général augmentant ainsi

considérablement le coût opérationnel de la recharge du système de transport. Il existe

une variante de la stratégie de recharge en route appelée recharge d’opportunité (KUNITH
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et al., 2017). Lors de la recharge d’opportunité, les bus peuvent recharger sur des char-

geurs installés directement le long de la ligne. Ainsi, le bus n’a pas besoin d’attendre pour

la recharge ni même de dévier de sa trajectoire. Cela permet de ne pas modifier les tour-

nées des bus lorsque la flotte est électrifiée. Cependant, les recharges doivent être encore

plus rapides que pour la recharge en route classique et les bus doivent recharger plus ré-

gulièrement. Il faut donc installer davantage de chargeurs, qui sont d’autant plus onéreux,

pour assurer également la disponibilité du service de recharge. De plus, la technologie

de stockage de l’énergie est différente pour pouvoir supporter cette forte intensité de re-

charge. On utilise des condensateurs à la place de batteries classiques. L’utilisation de

cette stratégie peut s’avérer incompatible avec les autres stratégies car les supports pour

stocker l’énergie sont différents. Pour finir, on peut également penser à une combinaison

de la recharge nocturne et de la recharge en route (WEI et al., 2018). L’idée de cette stra-

tégie est de charger suffisamment les bus pendant la nuit pour qu’ils puissent atteindre

un chargeur installé sur le circuit pendant la tournée. Cette stratégie hybride fournit les

avantages de la recharge en route d’un point de vue du dimensionnement des batteries et

du coût de la flotte, et permet de réduire le nombre de chargeurs installés au dépôt.

Suite aux dernières conférences sur le climat, des États ont commencé à imposer aux

autorités organisatrices de transports de renouveler leurs flottes de véhicules avec des bus

propres. Ainsi, les autorités organisatrices de transports sont confrontées au renouvelle-

ment de leurs flottes de véhicules diesel en véhicules électriques ou hybrides (RATP,

2023 ; SUSTAINABLE BUS, 2023). Ce renouvellement pose de nombreuses probléma-

tiques décisionnelles tant au niveau stratégique qu’au niveau opérationnel. Quelle techno-

logie associant les bornes de recharge et les bus électriques choisir ? Où placer les bornes

de recharge? Comment gérer l’efficacité des bus? Quel type de bus est à affecter à quelle

ligne et à quelle heure? Et encore bien d’autres questions organisationnelles et de pla-

nification. À ces questions s’ajoutent des enjeux économiques et des enjeux de qualité

de services à assurer. Les décisions qui doivent être prises nécessitent la résolution de

problèmes complexes d’optimisation à résoudre dont la combinatoire augmente signifi-

cativement lorsque la taille de la flotte de véhicules est importante. L’objectif de cette
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thèse est de proposer des outils d’aide à la décision pour répondre à ces problématiques

en utilisant les techniques de la recherche opérationnelle. Étant donné que l’électrification

fait face à des enjeux différents selon la politique de recharge choisie, chaque chapitre de

cette thèse explore une des politiques présentées.

Cette thèse, intitulée Outils d’aide à la décision pour la mise en place d’un réseau

de transports en commun électrique, a pour but de répondre aux problématiques d’élec-

trifications présentées précédemment. Elle est réalisée en cotutelle entre l’Université de

Tours et HEC Montréal, au format “thèse par articles”. Ainsi, chaque chapitre correspond

à un article destiné à une publication en revue internationale. Cette thèse a été dirigée par

Jorge E. Mendoza (HEC Montréal), Michel Gendreau (Polytechnique Montréal), et par

Emmanuel Néron (Université de Tours). Cette thèse a également été encadrée par Yannick

Kergosien (Université de Tours) et Guy Desaulniers (Polytechnique Montréal). Les diffé-

rents problèmes abordés pendant cette thèse ont été présentés lors de quatre conférences

nationales : ROADEF 2021 (VENDÉ et al., 2021), ROADEF 2022 (VENDÉ et al., 2022b),

ROADEF 2023 (VENDÉ, DESAULNIERS, GENDREAU et al., 2023), et ROADEF 2024

(VENDÉ et al., 2024b) ; et deux conférences internationales : VeRoLog 2022 (VENDÉ

et al., 2022a), et EURO 2024 (VENDÉ et al., 2024a). Le chapitre 1 a été soumis dans

le journal Transportation Research Part E. Le chapitre 2 a donné lieu à une publication

dans le journal Transportation Research Part C (VENDÉ, DESAULNIERS, KERGOSIEN &

MENDOZA, 2023).

La suite de ce manuscrit se compose de la manière suivante. Le chapitre 1 traite d’un

problème d’emplacement d’une infrastructure de recharge rapide dans un réseau de trans-

port public. Des bus hybrides (présence d’un moteur diesel et d’un moteur électrique) sont

considérés dans ce réseau, les chargeurs sont partagés entre les bus, et une politique de

recharge d’opportunité est appliquée. À partir d’un ensemble de lignes caractérisées par

une séquence d’arrêts desservis par des bus hybrides à des fréquences données, le pro-

blème consiste à trouver où placer des stations de recharge qui peuvent être partagées par

plusieurs lignes, combien en installer, et comment les utiliser en s’assurant qu’un certain

niveau de service soit respecté et qu’un ordonnancement réalisable pour toutes les tâches
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de rechargement existe. Nous considérons deux fonctions objectifs : la maximisation de

la distance parcourue en utilisant le mode électrique et la minimisation des coûts d’ins-

tallation. L’objectif de l’étude de ce problème est de montrer l’intérêt d’utiliser les bus

hybrides et du partage des chargeurs entre plusieurs lignes de bus. Nous proposons un

programme linéaire en nombres entiers (PLNE) et une méthode basée sur le branch-and-

check pour résoudre efficacement le problème. Nous proposons également des perspec-

tives managériales en présentant les avantages opérationnels et économiques de partager

les chargeurs entre les lignes ainsi que les compromis entre l’augmentation du budget et

la réalisation d’une plus grande électrification. Le chapitre 2 traite d’un problème d’af-

fectation de bus électriques et d’ordonnancement de la recharge nocturne sur plusieurs

jours, dans lequel une politique de recharge nocturne est appliquée. Le problème consi-

dère un ensemble de bloc véhicules (suites programmées de trajets en bus effectués par le

même bus sur une journée) devant être effectués sur plusieurs jours, un ensemble de bus

électriques identiques, et un ensemble de chargeurs disponibles au dépôt. L’objectif est

d’affecter un bus électrique à chaque bloc et à planifier la recharge nocturne au dépôt en

s’assurant que les bus ne soient jamais à court d’énergie et que la capacité de recharge au

dépôt ne soit jamais dépassée. Ces décisions sont prises de manière à minimiser le coût

total de recharge tout en préservant la durée de vie de la batterie à long terme. L’objectif de

l’étude de ce problème est de montrer l’intérêt de considérer un horizon de planification

de plusieurs jours dans un contexte de recharge de véhicules électriques ainsi que l’impact

économique de la mauvaise gestion de la recharge de la flotte pendant la nuit. Ce problème

est modélisé sous la forme d’un PLNE. Nous proposons deux matheuristiques basées sur

le modèle de PLNE pour résoudre le problème. Afin de montrer l’intérêt de considérer un

horizon de plusieurs jours, nous présentons deux autres méthodes mimant les pratiques

industrielles actuelles et résolvent le problème séquentiellement, un jour à la fois. Ces

méthodes ont pour but de montrer l’intérêt de considérer un horizon de planification de

plusieurs jours lors de la recharge, en comparant les résultats avec ceux des matheuris-

tiques proposées. Le chapitre 3 est une extension du problème étudié dans le deuxième

chapitre. Cette extension remet en cause les activités journalières effectuées par les bus en
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introduisant des événements de recharge en route effectués pendant la journée. Ainsi, une

politique de combinaison de recharge nocturne et de recharge en route est appliquée. Les

bloc véhicules sont dorénavant vus comme des suites sécables de trajets en bus effectués

par le même bus sur une journée. Entre ces différents trajets, les bus peuvent effectuer

des opérations de recharge en route sur des chargeurs installés sur le réseau de transport.

En plus des décisions prises dans le problème original, nous ordonnançons les opérations

de recharge en journée en s’assurant que les contraintes des différentes ressources soient

respectées : disponibilité et état de charge des bus, et capacité des stations de recharge.

Deux objectifs sont considérés : minimiser le coût total de recharge ainsi que l’impact

des décisions de recharge sur la vie de la batterie à long terme. L’objectif de l’étude de ce

problème est de montrer l’intérêt de diminuer le nombre d’opérations de recharge pendant

la journée. En premier lieu, nous avons modélisé le problème sous la forme d’un PLNE.

Ensuite, nous avons développé une matheuristique dans laquelle, à chaque itération de la

méthode, une partie de la solution est détruite puis reconstruite à l’aide de la partie res-

tante de la solution. Nous avons effectué des analyses pour quantifier l’impact du nombre

d’opérations de recharge effectuées pendant la journée et montrer l’intérêt d’utiliser une

combinaison de ces deux stratégies de recharge. Le chapitre 3.6 apporte une conclusion

sur les problèmes présentés et discute de nouvelles orientations de recherche possibles

concernant ces problématiques d’électrification des réseaux de transport en commun.
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Chapitre 1

Deploying fast-charging infrastructure

on urban transit networks

Résumé

L’électrification des bus circulant sur les réseaux de transport urbain est l’un des nom-

breux outils dans la lutte pour limiter les émissions de gaz à effet de serre. Les bus diesel

existants peuvent être remplacés par de nouveaux bus totalement électriques ou trans-

formés en bus hybrides. Cette dernière solution est intéressante sur les marchés où les

budgets consacrés à l’électrification sont limités. Les bus hybrides peuvent fonctionner

à la fois au diesel et à l’électricité. Ils sont généralement équipés de dispositifs de sto-

ckage d’énergie à faible capacité mais à charge rapide. Par conséquent, leur autonomie

électrique est limitée, mais ils peuvent se recharger rapidement en cours de route pendant

qu’ils effectuent leurs tâches. Dans cet article, nous proposons un modèle de programma-

tion en nombres entiers et deux versions d’un algorithme de type branch-and-check pour

installer des chargeurs sur les réseaux de bus qui utilisent des bus hybrides. Plus précisé-

ment, nos méthodes décident du nombre de chargeurs à installer à chaque emplacement

candidat et du mode de transport sur chaque segment de chaque ligne du réseau. L’objectif

est de maximiser la distance totale parcourue en mode électrique et de minimiser le coût



de déploiement de l’infrastructure de recharge. L’une des nouveautés de nos approches

est qu’elles permettent le partage des chargeurs entre les lignes. Ce dernier permet une

électrification plus rentable du réseau, mais rend le problème plus difficile à résoudre car

les contraintes de niveau de service des lignes et de faisabilité de l’horaire s’entremêlent.

Nous présentons des expériences approfondies sur un ensemble de 210 instances basées

sur le réseau de transport en commun de la ville de Tours (France). Nous fournissons des

perspectives managériales sur les avantages opérationnels et économiques du partage des

chargeurs et sur les compromis entre l’augmentation du budget et la réalisation d’une plus

grande électrification.

Abstract

The electrification of buses running on urban transit networks is one of the many wea-

pons in the battle to limit greenhouse gas emissions. Existing diesel buses can be replaced

by new 100% electric buses or retrofitted to become hybrid. The latter is an interesting al-

ternative in markets where electrification budgets are limited. Hybrid buses can run both

on diesel and electric train modes. They are typically equipped with low-capacity-but-

fast-charging energy storage devices. As a result, their electric range is limited, but they

can quickly charge en-route while executing their tasks. In this paper we device a mix

integer programming model and two versions of a branch-and-check algorithm to locate

chargers on multi-line hybrid bus transit networks. More specifically, our methods de-

cide how many chargers to install at each candidate location and what should be the train

mode on each segment of each line in the network. The objective is to maximize the total

distance driven using the electric mode and minimize the cost of deploying the charging

infrastructure. One novelty of our approaches, is that they allow for charger sharing bet-

ween lines. The latter allows for a more cost-effective electrification of the network but

makes the problem more difficult to solve as line service level and time tabling feasibility

constraints become intertwined. We discuss extensive computational experiments on a set

of 210 instances based on the transit network of the city of Tours (France). We provide ma-
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nagerial insights into the operational and economic benefits of allowing charger sharing

and the trade-offs between increasing the budget and achieving greater electrification.

1.1 Introduction

Greenhouse-gas emissions increased by 80% between 1970 and 2010 (INSEE RÉFÉRENCES,

2019). This increase is mainly owing to the development of energy-intensive sectors, such

as manufacturing and transportation. According to the COP21 report (UNFCCC, 2016),

if no action is performed to stop this rise by 2100, the global temperature is expected to

increase by up to 5◦Celsius. This strong rise could have dramatic consequences such as,

acidification of the oceans, loss of biodiversity, and the rise of climate refugees. To limit

this temperature increase, countries reunited during the COP21 climate conference com-

mitted to reduce emissions of CO2, which account for 70% of greenhouse gases released

into the atmosphere each year.

The transportation sector is responsible for nearly 30% of the European Union CO2

emissions (IPCC, 2014). One leverage that governments can use to reduce these emis-

sions is the electrification of public transit. However, transitioning from diesel-powered

buses, which still constitute a significant portion of current fleets, to electric buses (EBs)

raises several strategic, tactical, and operational challenges. EBs have a considerably li-

mited driving range, necessitating frequent recharging to execute their tasks. Two pri-

mary charging strategies exist : overnight charging (HOUBBADI et al., 2019 ; VENDÉ,

DESAULNIERS, KERGOSIEN & MENDOZA, 2023) and opportunity charging (Y. WANG

et al., 2017 ; XYLIA et al., 2017). With overnight charging, EBs are charged only at the

depots, typically during the night. This strategy requires larger batteries, increasing ve-

hicle upfront costs and reducing payload capacity. Additionally, transit agencies often

require extra buses to rotate during the day while others charge, further increasing fleet

costs. Concentrating charging operations during the night also necessitates more expen-

sive infrastructure and leads to higher electricity bills (because of power-related costs). In

contrast, opportunity charging involves charging EBs during regular operation at end-of-
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line terminals or long-term stops. While this strategy requires a high upfront investment

in charging infrastructure, it allows for smaller batteries, reducing fleet costs (GOEHLICH

et al., 2013). However, it adds complexity to daytime operations and may introduce ad-

ditional uncertainty. Some transit agencies have implemented combinations of overnight

and opportunity charging to leverage the advantages of both strategies (WEI et al., 2018).

In this study, we focus on transportation systems that utilize the opportunity charging

strategy.

The charging infrastructure needed to support an opportunity charging strategy re-

presents a significant capital investment. For instance, according to PELLETIER et al.,

2019, the prices of end-of-line and fast en-route EB chargers are currently in the ranges

of USD 100,000 and USD 700,000, respectively. Owing to limited budgets, transit au-

thorities may not be able to install as many chargers as they need to run the system on

100%-electric buses. In this context, hybrid buses (HB) emerge as a valid alternative. As

the name suggests, HBs are equipped with both an electric engine and a diesel-powered

engine. They provide more flexibility to transit agencies and can lower the upfront cost

of the fleet because they can be obtained by retrofitting existing diesel-powered vehicles

(TOPAL, 2023). Deploying opportunity-charging infrastructure for HBs leads to a chal-

lenging optimization problem. Transit agencies must simultaneously determine i) how

many chargers to install and where to install them, and ii) what drive mode to use (elec-

tric or diesel) on each segment of each line in the network to maximize the benefits of

electrification (e.g., the total distance travelled by HBs in electric mode). While these

decisions are mostly strategic (number and location of the chargers) and tactical (drive

mode), they must be taken considering the operational and managerial constraints of the

transit system (e.g., service frequency, inconvenience for the passengers). The latter is es-

pecially relevant when chargers are shared by HBs covering different lines. This practice

is cost-efficient because it allows for greater levels of electrification at lower costs, but it

complexities the problem because congestion at the chargers must be taken into account

when making location and mode selection decisions.

In this paper, we investigate the fast-charging infrastructure location problem in net-
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works operated with HBs (FCLP-HB). This problem involves optimizing the placement

of fast chargers, scheduling charging events (i.e., determining where and how much HBs

operating on each line must charge), and specifying the drive mode for each segment

of each line. The goal is to maximize the total distance covered by HBs operating in

electric mode. Solutions must adhere to a set of operational and managerial constraints,

including : a maximum electrification budget, a minimum service frequency on each

line, stop-dependent maximum charging times, and mandatory electric-mode segments

on some lines. Our main contributions are five fold :

— We introduce a new, challenging, and practically relevant optimization problem (the

FCLP-HB) to the transportation community.

— We propose a non-trivial mixed-integer linear program (MILP) formulation that can

solve small-sized instances of the problem using a commercial solver.

— We devise both exact and heuristic versions of a branch-and-check algorithm to

efficiently solve the problem.

— We introduce a set of realistic instances built based on real data from the city of

Tours (France).

— We present extensive computational experiments assessing the efficiency and ef-

fectiveness of our approaches and provide managerial insights on the benefits of

considering HBs on the total electrification costs and the advantages of allowing

charger sharing between lines in large transit networks.

The remainder of this paper is organized as follows. Section 1.2 presents a literature

review related to the fast-charging location problem in HB networks. Section 1.3 formally

defines the FCLP-HB. Section 1.4 provides a mixed-integer linear program model. Sec-

tion 1.5 describes the two version of the branch-and-check algorithm. Section 1.6 presents

the results of the computational experiments and provides managerial insights. Finally,

Section 1.7 concludes the paper and discusses possible future research directions.
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1.2 Literature review

The adoption of EBs in urban transit networks has led to the study of several optimiza-

tion problems, including the fleet transformation problem (FTP), the sequence assignment

problem (SAP), the vehicle scheduling problem (VSP), and the charging location problem

(CLP). We will briefly describe these problems and their relevance to ours, directing inter-

ested readers to DIRKS et al., 2022 for a more detailed description and literature review.

The FTP focuses on creating a multi-period plan to replace a fleet of diesel-powered buses

with EBs. This involves decisions on purchasing new EBs, retiring old diesel-powered

buses, and acquiring charging stations for the EBs in the new fleet, all aimed at mini-

mizing operational and acquisition costs (DIRKS et al., 2021 ; PELLETIER et al., 2019).

The SAP involves assembling sequences of trips assigned to EBs, with charging events

scheduled between consecutive trips to ensure feasibility (ROGGE et al., 2018 ; SASSI-

BEN SALAH & OULAMARA, 2017). Deadheading and detours may be considered based

on the charging strategy, and the objective is to minimize charging costs. The VSP aims

to determine the minimum number of buses required to perform a set of trips (JANOVEC

& KOHÁNI, 2019 ; T. LIU & CEDER, 2020). This problem is similar to the SAP, except

that the number of buses used is also a decision variable and the objective function is

to minimize the charging and bus purchase costs. Finally, the CLP considers an existing

fleet of EBs and a given urban bus network, and aims to find the locations of the charging

stations in order to efficiently power the fleet (KUNITH et al., 2017 ; LOTFI et al., 2020).

The CLP and its variants typically arise as a result of adopting an opportunity charging

strategy. Chargers can be located at bus stops, terminals, or hubs in a network. In addition

to the location, the type (e.g., charging speed) of each charger type can also be a decision

variable. The objective function typically minimizes the acquisition costs of the charging

stations and batteries. Our problem belongs to the family of CLPs

With the increasing prominence of electric vehicles (EVs), CLPs have garnered sub-

stantial attention in recent literature. For a comprehensive discussion of recent papers

on these topics, we recommend referring to the works of SHEN et al., 2019, KCHAOU-
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BOUJELBEN, 2021, and MAJHI et al., 2021. Most studies have focused on personal EVs,

utilizing coverage models to determine optimal charger locations based on factors such

as traffic flows and population distribution (FRADE et al., 2011 ; HE et al., 2016). Howe-

ver, in the context of urban bus networks, EBs operate according to daily schedules and

predefined trips, which alters the structure of the charger location problem.

In CLPs for EBs, chargers can be installed at three primary locations : the depot, hubs,

or bus stops (including terminals). Installing chargers at the depot allows EBs to charge

after their trips, typically overnight. In this scenario, the decisions focus on determining

the number of chargers required for the nightly charging plan, rather than the specific

charger locations (ROGGE et al., 2018). With chargers limited to the depot, EBs are sel-

dom charged more than once a day, necessitating short trips constrained by battery range

and potentially increasing the need for a larger fleet to meet demand. To extend EB trip

duration and reduce fleet size, en-route charging can be implemented without returning

to the depot. En-route charging typically occurs at strategic hub locations (SOLTANPOUR

et al., 2022 ; Y. WANG et al., 2022). Unlike depot-based charging, en-route charging in-

volves considering multiple candidate locations and determining the number of chargers

at each site. While en-route charging at hubs extends trip duration, the detours required

for charging consume additional time and energy, resulting in added costs. Furthermore,

shared (among different lines) charging hubs introduce complex scheduling challenges

(YE et al., 2022).

An alternative approach is to install chargers at bus stops, where chargers can be mana-

ged in two ways : either dedicated to a single line or shared by electric buses (EBs) serving

different lines. KUNITH et al., 2017 proposed a mathematical model for deploying line-

exclusive chargers. Their objective is to determine charger locations, battery capacity for

EBs on each line, and the energy charged by each EB at every charging stop. The charging

function is modeled using a piecewise linear function with two segments : a high-power

segment when the state of charge (SOC) of the bus is below a certain threshold and a

low-power segment otherwise. In this model, EBs are charged during predefined dwell

times between consecutive bus trips, ensuring no impact on the bus timetable. However,
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this model does not consider the potential for charger sharing among EBs from different

lines, leading to a potentially higher number of installed chargers.

X. WANG et al., 2017 also studied a CLP within the context of an urban public bus

system. The problem focuses on determining the optimal bus stops for placing charging

stations with the objective of minimizing total installation costs. Each stop can accom-

modate only one charger, which is shared among all-electric buses (EBs). However, the

approach proposed in this study overlooks certain operational constraints such as the sche-

duling of charging operations (to prevent overlapping charging tasks on the same charger),

line service frequencies, and timetables. The authors developed a backtracking algorithm

to optimally solve the special case of a single line. The core idea of this algorithm is to

identify the maximum number of stops that a bus can visit after stopping at the charging

station and then explore all possible charger location solutions using a search tree. In the

case of multiple bus lines, they introduced two heuristic approaches : a greedy algorithm

and a multiple backtracking algorithm based on the first case.

Similarly, Z. LIU et al., 2018 addressed a comparable problem. Similarly to X. WANG

et al., 2017 they did not specifically consider the scheduling of charging operations. On

the other hand, they focused on various types of batteries, charging stations, and uncer-

tainties related to energy consumption. Their objective function aimed to minimize the

overall costs of batteries and the installation of fast-charging stations. Each candidate lo-

cation, such as a bus stop, base station, or terminal station, could accommodate only one

charger of each type. They proposed a robust optimization model using a mixed-integer

linear program to tackle this problem. Their approach underwent testing in a case study

involving a downtown bus system in Salt Lake City, Utah (U.S.).

ZHOU et al., 2022 presented a model that integrates the planning of charging infra-

structure deployment with the scheduling of charging operations, building upon the work

of KUNITH et al., 2017 by allowing chargers to be shared along lines. Chargers are posi-

tioned at end-of-line terminals, and EBs utilize them during predefined dwell times bet-

ween two consecutive trips. The objective is to determine the optimal number of chargers

at each terminal, the appropriate battery size for each EB, and the charging schedule for
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each charger while minimizing the total acquisition costs of chargers and batteries as well

as the charging costs. The proposed model includes several practical considerations, such

as a minimum charging requirement and time-dependent charging costs that account for

peak and off-peak prices. The model also accounts for various factors affecting energy

consumption during a trip, such as EB type, route, battery weight, onboard passengers,

and varying charging power. The authors introduced deterministic and robust optimiza-

tion models to address energy consumption uncertainties, utilizing the box uncertainty

set, budgeted uncertainty set, and ellipsoidal uncertainty set. To validate their approach,

computational experiments were conducted using real data from a case study based on

tower transit data in Singapore.

GAIROLA et NEZAMUDDIN, 2022 introduced a charging infrastructure planning pro-

blem that addresses the installation of chargers both at the depot using plug-in slow char-

gers and at end-of-line terminals using fast opportunity chargers. This problem encom-

passes both overnight and opportunity charging scenarios. Similar to the studies mentio-

ned earlier, electric buses (EBs) are only allowed to utilize the chargers during designa-

ted dwell times. The model incorporates time-limitation constraints that restrict charging

events at fast-opportunity chargers to predefined time windows. Furthermore, capacity

constraints at the chargers are considered using queuing models. The proposed stochastic

optimization model, solved using the Lagrangian relaxation method, aims to determine

the optimal size of bus batteries and the required charging infrastructure. This approach

takes into account various operational and managerial constraints to ensure efficient and

effective utilization of the charging infrastructure.

QUINTANA et al., 2022 tackled a charger location problem where chargers are instal-

led at bus stops, and charging operations must be scheduled for each charger. Each bus

stop can accommodate only one charging station, and the charging rate is assumed to

be a linear function of the charging time. Charging times at the stops are constrained by

minimal deviations from the original timetables, ensuring that the absolute difference bet-

ween expected and actual arrival times remains below a specified threshold. The authors

introduced an iterative local search method to address this problem. The method initiates
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by opening all potential charging stations, and then the neighborhood operator selecti-

vely removes charging stations while maintaining feasibility. To avoid local minima, a

perturbation phase randomly reopens previously removed charging stations.

While there exists a substantial volume of research on charger location problems wi-

thin urban bus networks, limited attention has been given to shared chargers among lines

and the explicit handling of timetabling constraints. To the best of our knowledge, this

study is the first to address a fleet of HBs, shared chargers for opportunity charging, the

scheduling of charging operations on each charger, and service frequency constraints for

each bus line (as opposed to fixed timetables). This approach offers enhanced flexibility

regarding charging times, marking a step forward in the field of charging infrastructure

planning in public transit systems.

1.3 Problem description

Let G(V,A) be an oriented graph representing a public transit network, where V is the

set of nodes representing bus stops (on-street bus stops or terminals), and A is the set of

arcs representing paths connecting two stops on the road network. Define L as the set of

bus lines on the network, and let Gl(Vl,Al) be the sub-graph of G representing line l ∈ L.

Line l corresponds to a set of continuous segments connecting two stops running at a

given frequency. It is assumed that the timetable for line l can be adjusted (with respect

to the current one) as long as the current frequency ( 1
fl

) is maintained. In other words,

after the electrification of the line, a timetable prescribing that an HB will stop at each

stop of the line every fl units of time must exist. The transit network operates with a

homogeneous fleet of HBs, each with a battery capacity of Q. We assume that the fleet

is large enough to run the network meeting all demand and service constraints. The HBs

can switch driving modes (between electric and diesel) at any stop i∈V but cannot switch

modes while traveling between stops. HBs can recharge their batteries at any stop of the

line they are covering if the latter is equipped with a charging station (CS). A CS has one

or more chargers. To limit inconvenience to users, HBs cannot charge at stop i for more
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than wl,i time units. These maximum waiting times are computed offline by the transit

authority, taking into account factors such as the expected number of passengers at that

stop. Charging operations start as soon as the HBs arrive at the CS. In other words, HBs

never wait for a charger.

The maximum budget allocated for the deployment of charging infrastructure is de-

noted by B. The cost of equipping a CS located at stop i ∈ V with a charger is deno-

ted by costi. The installation costs for chargers are stop-dependent to account for diffe-

rences in civil and landscaping work required for installation at different locations. Setting

costi = B+1 prevents the installation of a CS at a given stop. Each arc (i, i′) ∈ A is asso-

ciated with distance di,i′ , travel time tti,i′ (including time required to pick up passengers),

and electric energy consumption ei,i′ . Additionally, each arc (i, i′) is associated with a

boolean parameter mi,i′ indicating if the use of the electric mode is mandatory between

stops i and i′. The latter allows transit agencies to limit pollution, noise, and vibrations in

specific geographic areas such as old towns and school zones. Note that setting mi,i′ = 1

for every pair (i, i′) ∈ A converts the problem into a charger location problem for a fleet

of EBs (instead of HBs). Table 1.1 summarizes the notation.

The problem entails determining (i) the number of chargers to install at each stop

(infrastructure decisions), (ii) the driving mode on each segment of each line (mode deci-

sions), and (iii) the duration of charging operations at each stop of each line (charging and

scheduling decisions). We approach this as a multi-objective problem using a lexicogra-

phic method. Our primary objective is to maximize the total distance covered by the fleet

operating in electric mode, while our secondary objective is to minimize electrification

costs.

Figure 1.1 illustrates a solution to an instance involving two lines (blue and red). The

solution recommends installing a CS with a single charger at the only stop shared between

the blue and red lines. It also specifies that the HBs must operate in electric mode over

seven arcs in the network. The bottom part of the figure displays a feasible schedule for

the charging operations of HBs serving the two lines.
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TABLE 1.1 – Sets and parameters of the problem

Sets
V Set of bus stops
A Set of arcs between stops
L Set of bus lines
Vl Set of bus stops of line l
Al Set of arcs between stops of line l
Pi Set of bus lines that stop at i
Ci Set of potential chargers at the CS located at stop i
Jl Set of charging operations of line l at each charging stop
Ki Set of charging operations carried out at the CS located at stop i

Parameters
Q Battery capacity of a bus
R Charging speed rate of the chargers
fl Time between two consecutive bus arrivals at each stop of line l
stl Index of the first stop of line l
ltl Index of the last stop of line l

wl,i Maximum stop duration at stop i for an HB servicing line l
B Maximum budget allocated for the deployment of charging infra-

structure
costi Installation cost of a charger at stop i
di,i′ Distance between stops i and i′

tti,i′ Travel time between stops i and i′

ei,i′ Electric energy consumption between stops i and i′

mi,i′ Whether the segment connecting stops i and i′ must be driven in
electric mode

λ Length of the scheduling cycle
nl Number of charging operations of line l at each charging stop

1.4 Mixed-integer programming formulation

We model the problem introduced in Section 1.3 as a mixed-integer linear program

(MILP) using eight types of variables. The positive integer decision variables xi indicate

the number of chargers installed at a CS located at stop i. The binary decision variables

yl,i,i′ take value one if the HBs operating on Line l travel on electric mode between stops i

and i′, and zero otherwise. The positive real decision variables ql,i represent the SoC of the

HBs operating Line l when they arrive at Stop i. The positive integer decision variables

tl,i represent the charging time at Stop i of HBs operating Line l. Let Ci = {1, · · · ,
⌊

B
costi

⌋
}

22



Line 

Line 

Mandatory electric segment
(i.e. )

Non mandatory
electric segment

Charging time of bus
operating on line 

Stop with 1
charger

t

Charging time of bus
operating on line 

Segment in
fuel mode

Segment
in electric mode

FIGURE 1.1 – Solution to an instance with 2 lines and 10 stops

be the set of potential chargers at the CS located at Stop i, the binary decision variables

ui,c take value one if Charger c ∈Ci is installed at the CS of Stop i, and zero otherwise.

The next subset of variables is used to model the scheduling of charging operations at

the CSs. Note that because a CS can be used by multiple lines and the service frequency
1
fl

of every line may be different, the constraints preventing the overlapping of charging

operations on a charger must be verified over a cyclic period equal to λ = LCMl∈L( fl),

where the LCM is the least common multiple of a set of numbers. The number of charging

operations to schedule for HBs operating on Line l at Stop i is given by nl =
λ

fl
+1. The

first nl − 2 operations have a duration equal to the value of decision variable tl,i. Each

corresponds to a distinct HB stop for charging at l. On the other hand, operations nl− 1

and nl correspond to the same HB stop. They model charging operations that start in one

scheduling cycle and finish in the next. As it stands, their combined duration is equal to

tl,i. Figure 1.2 illustrates these concepts.
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The figure shows a feasible charging schedule involving four lines (l1, l2, l3, l4). Lines

l1, l2, and l3 share a stop (Stop i), so do lines l3 and l4 (Stop i′). The time between the

arrival of two consecutive HBs (i.e., the inverse of the frequency) for each line is listed

in Table 1.2. In this example, a CS with two chargers is installed at Stop i and a CS with

one charger is installed at Stop i′. The charging times at each stop are listed in Table 1.2.

For simplicity, in this example, the charging operations of a given line at a given CS are

always scheduled on the same charger, but this is not a constraint in our problem. The

duration of the charging cycle is λ = LCM(6,6,4,4) = 12. For the sake of briefness, we

will refer to the starting time of the cycle depicted in the figure as time 0. Lines l1 and l2

stop for charging at the first charger (Charger α) of the CS located at stop i, whereas Line

l3 does it at the second charger (Charger β ).

The number of charging operations to schedule in Charger α is equal to nl1,i =
λ

fl
+1=

12
6 +1 = 3 and nl1,i = 3, for lines l1 and l2, respectively. Note, however, that the duration

of the last operation for each line is equal to 0. This is not the case l3. The number of

operations scheduled at charger β is nl3,i = 4. The first two operations have a duration of

3 units of time. They correspond to the stops for charging of HBs A and B. The last two

operations (3 and 4) correspond to the stop of bus C. Note that their combined duration is

also 3 units of time.

TABLE 1.2 – Instance data with four lines

Line 1 2 3 4
fl 6 6 4 4
tl,i 2 4 3 /
tl,i′ / / 2 2

We define Jl = {1, · · · ,nl} as the set of charging operations of Line l ∈ L and Ki =

{1, · · · ,min{λ ,∑l∈L:
i∈l
|Jl|}} as the set of charging operations carried out at the CS located

at Stop i. The positive real decision variables sl,i, j indicate the starting time of the jth

charging operation of Line l at the CS of Stop i. The binary decision variables pc,k
l,i, j take

value one if the jth charging operation of Line l at the CS of Stop i is scheduled on

Charger c in position k, and zero otherwise. Finally, we use auxiliary variables θl,i to link
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FIGURE 1.2 – Feasible schedule considering four lines and three chargers at two stops

the charging start times at different stops of the same line l and ensure that there are at

least λ

fl
to schedule on every cycle. The example in Figure 1.2 also illustrates the use of

the θl,i variables.

The charging operations of HBs servicing Line l3 at stops i and i′ are linked by the

travel time between i and i′. Take, for instance, the first charging operation scheduled at

Charger β of Stop i (denoted as 4). This operation started in the previous scheduling cycle

(at Time -1) and it is completed at Time 2. The HB (bus C) then continues servicing l3 until

it reaches Stop i′ (at Time 9) where it charges for 2 units of time. The next HB servicing

l3 (bus A) leaves Stop i at Time 6 after completing its charging operation (denoted as

1). The HB arrives at Stop i′ at Time 13, which is out of the depicted scheduling cycle.

To couple the HB’s charging operations at chargers β and γ while framing them within

a single scheduling cycle, we use the θl3,i′ auxiliary variable. More specifically, we set

sl3,i′, j = sl3,i, j + tl3,i + tti,i′ − fl3 · θl3,i′ ∀ j ∈ Jl3 . In our previous example, that is sl3,i′,1 =

3+3+7−4 ·θl3,i′ . By setting θl3,i′ equal to three, we obtain sl3,i′,1 = 1.

The FCLP-HB can be formulated as a MILP as follows (Table 1.3 summarizes all the
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variables).

TABLE 1.3 – Variables of the model

Variables
xi Positive integer decision variable indicating the number of char-

gers to install at the CS located at stop i ∈V
yl,i,i′ Binary decision variable indicating whether the segment connec-

ting stops i ∈Vl and i′ ∈Vl driven by a bus operating on line l ∈ L
is driven in electric mode

ql,i Positive decision variable indicating the SoC of an HB operating
on line l ∈ L at arrival at stop i ∈Vl

tl,i Positive integer decision variable indicating the charging time of
a bus operating on line l ∈ L at stop i ∈Vl

ui,c Binary decision variable indicating if the charger c ∈Ci is instal-
led at the CS located at stop i ∈V

sl,i, j Positive decision variable indicating the starting time of the jth ∈
Jl charging operation of line l ∈ L at stop i ∈Vl

pc,k
l,i, j Binary decision variable indicating whether the jth ∈ Jl charging

operation of line l ∈ L is scheduled at position k ∈ Ki on charger
c ∈Ci of the CS located at stop i ∈Vl

θl,i Positive integer auxiliary decision variable

max ∑
l∈L

∑
(i,i′)∈Al

di,i′

fl
· yl,i,i′ (1.1)

min ∑
i∈V

costi · xi (1.2)

Subject to :

∑
i∈V

costi · xi ≤ B (1.3)

tl,i ≤ wl,i ∀l ∈ L, ∀i ∈Vl (1.4)

yl,i,i′ = 1 ∀l ∈ L, ∀(i, i′) ∈ Al : mi,i′ = 1 (1.5)

ql,i + tl,i ·R− ei,i′ · yl,i,i′ = ql,i′ ∀l ∈ L, ∀(i, i′) ∈ Al (1.6)

ql,i + tl,i ·R≤ Q ∀l ∈ L, ∀i ∈Vl (1.7)

ql,stl ≤ ql,ltl ∀l ∈ L (1.8)

sl,i,1 ≤ fl−1 ∀l ∈ L, ∀i ∈Vl (1.9)
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sl,i,nl = 0 ∀l ∈ L, ∀i ∈Vl (1.10)

sl,i, j + fl = sl,i, j+1 ∀l ∈ L, ∀i ∈Vl, ∀ j, j+1 ∈ Jl\{nl}(1.11)

sl,i,1 + tl,i + tti,i′ = sl,i′,1 + fl ·θl,i′ ∀l ∈ L, ∀(i, i′) ∈ Al (1.12)

∑
c∈Ci

ui,c ≤ xi, ∀i ∈V (1.13)

ui,c ≥ ui,c+1, ∀i ∈V, ∀c,c+1 ∈Ci (1.14)

∑
l∈Pi

∑
j∈Jl

∑
k∈Ki

pc,k
l,i, j ≤ λ ·ui,c ∀i ∈V, ∀c ∈Ci (1.15)

∑
c∈Ci

∑
k∈Ki

pc,k
l,i, j ≤ 1 ∀l ∈ L, ∀i ∈Vl, ∀ j ∈ Jl (1.16)

∑
l∈Pi

∑
j∈Jl

pc,k
l,i, j ≤ 1 ∀i ∈V, ∀c ∈Ci, ∀k ∈ Ki (1.17)

∑
l∈Pi

∑
j∈Jl

pc,k+1
l,i, j ≤ ∑

l∈Pi

∑
j∈Jl

pc,k
l,i, j ∀i ∈V,c ∈Ci, ∀k,k+1 ∈ Ki (1.18)

∑
k∈Ki

pc,k
l,i,nl−1 = ∑

k∈Ki

pc,k
l,i,nl

∀l ∈ L, ∀i ∈Vl, ∀c ∈Ci (1.19)

∑
c∈Ci

∑
k∈Ki

pc,k
l,i, j ≥

R · tl,i
Q

∀l ∈ L, ∀i ∈Vl, ∀ j ∈ Jl (1.20)

sl,i, j + tl,i ≤ sl′,i, j′+λ (2− pc,k
l,i, j− pc,k+1

l′,i, j′ ) ∀l, l′ ∈ L, ∀i ∈Vl ∩Vl′, ∀ j′ ∈ Jl′,(1.21)

∀ j ∈ Jl\{nl}, ∀c ∈Ci, ∀k,k+1 ∈ Ki

sl,i,nl−1 + tl,i−λ ≤ sl′,i, j′+λ (2− pc,k
l,i,nl
− pc,k+1

l′,i, j′ ) ∀l, l′ ∈ L, ∀i ∈Vl ∩Vl′, ∀ j′ ∈ Jl′,(1.22)

∀c ∈Ci, ∀k,k+1 ∈ Ki

xi ∈ N0 ∀i ∈V (1.23)

ql,i ≥ 0 ∀l ∈ L, ∀i ∈Vl (1.24)

yl,i,i′ ∈ {0,1} ∀l ∈ L, ∀(i, i′) ∈ Al (1.25)

sl,i, j ≥ 0 ∀l ∈ L, i ∈Vl, ∀ j ∈ Jl (1.26)

tl,i,θl,i ∈ N0 ∀l ∈ L, ∀i ∈Vl (1.27)

pc,k
l,i, j ∈ {0,1} ∀l ∈ L, ∀i ∈Vl, ∀ j ∈ Jl, (1.28)

c ∈Ci, ∀k ∈ Ki

ui,c ∈ {0,1} ∀i ∈V, ∀c ∈Ci (1.29)
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Objective function (1.1) maximizes the total distance traveled using the electric mode

weighted by line frequency. For simplicity, hereafter we refer to this objective as weigh-

ted electric distance. Objective function (1.2) minimizes the total investment. Constraints

(1.3) ensure that the electrification budget is respected. Constraints (1.4) ensure the maxi-

mum stop durations. Constraints (1.5) enforce the electric mode on certain (predefined)

segments. Constraints (1.6) compute the SoC of HBs covering a given line when arriving

at a given stop. Constraints (1.7) ensure that the SoC never exceeds the battery capacity.

Constraints (1.8) imply that HBs complete the service of their lines with a higher state

of charge than that they had at the beginning. The latter guarantees that no extra char-

ging time is required to start servicing the same line again. Constraints (1.9) and (1.10)

initialize the starting times of the first and last charging operations for each line. The

starting times of the other charging tasks are separated by a fixed period fl , as indica-

ted by constraints (1.11). Constraints (1.12) link the starting times for all the operations

at all stops belonging to the same line. Constraints (1.13) limit the number of chargers

that can be used, depending on the number of installed chargers. Constraints (1.14) are

symmetry-breaking constraints, enforcing the order in which the charges of a CS must

be used. Constraints (1.15) imply that a charger is used if at least one charging operation

is scheduled for it. Constraints (1.16) and (1.17) ensure that each charging operation is

scheduled at most once and that at most one operation exists per position. Constraints

(1.18) are symmetry-breaking constraints, mandating that the first positions are occupied

and the last positions are empty. Constraints (1.19) force the last two charging operations

to be scheduled on the same charger because they both represent a single charging opera-

tion. Constraints (1.20) ensure that the associated charging operations are scheduled for a

given stop and line, if the charging time is not zero. Constraints (1.21) and (1.22) are non-

overlap constraints for all charging operations scheduled on the same charger. Constraints

(1.23)–(1.29) define the domain of the decision variables.

To address the multi-objective aspect, we used a lexicographic approach (ARORA,

2017). The primary objective is to maximize weighted electric distance. Then, we aim

to meet that objective at a minimum cost. We implement the lexicographic approach as
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follows. First, we solve the problem using only the primary objective (1.1). Then, we

set zdist as the value of the retrieved solution. Next, we add the following constraint :

∑l∈L ∑(i,i′)∈Al

di,i′
fl
· yl,i,i′ ≥ zdist and solve the model using (1.2) as the objective function.

It is worth noting that this method always provides a Pareto-optimal solution.

1.5 Branch-and-check

To solve the FCLP-HB, we propose two version (one exact and one heuristic) of a

branch-and-check method (THORSTEINSSON, 2001). Algorithm 1 presents the main steps

in the branch-and-check framework. The main idea is to decompose the original problem

into two smaller problems : the master problem and the subproblem. Both problems are

easier to solve than the original one. During the process of solving the master problem,

whenever an integer solution is found, we check whether this solution is also feasible

for the subproblem. In the case of infeasibility, a cut capable of removing the infeasible

solution is generated and added to the master problem. Note that a feasible solution for

both the master problem and subproblem is feasible for the original problem. In a classic

branch-and-check framework, the master problem is modeled as a mixed integer linear

program, and the subproblem is modeled as constraint logic program. However, in our

method, we used a binary linear programming model to solve the subproblem.

We decompose the problem as follows. The master problem consists of finding : i)

the charger locations, ii) the segments that are driven in electric mode, and iii) the char-

ging operations (where and how much to charge) that maximize the weighted electric

distance (or that minimize the investment). Given a master problem solution, the subpro-

blem checks whether at least one feasible schedule exists. More specifically, it checks that

all the charging operations prescribed by the master problem’s solution can be scheduled

on all the chargers without overlapping. The check cannot be carried on independently

for each charger. As shown on the example in Figure 1.2, the travel times between stops

and the service frequencies of the lines induce coupling constraints between chargers. To

implement the lexicographic approach, we run the branch-and-check twice : once for each
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Algorithme 1 : Branch-and-check framework
1 best_solution←− /0
2 Start the master problem solving
3 while the master problem is not solved to optimality do
4 if an integral solution S to the master problem is found and is better than

best_solution then
5 Solve the subproblem from S
6 if the subproblem is feasible then
7 best_solution←− S
8 else
9 Generate and add a feasibility cut to the master problem

10 end
11 end
12 end

objective function. The best solution found in the first run (i.e., maximizing the distance

travelled on electric mode) is used as a feasible initial solution for the second run (i.e.,

minimizing the investment). All the cuts generated during the first run are also transmitted

to the second run.

1.5.1 Master problem

The master problem is a relaxation of the original problem in which the scheduling of

the charging operations is not considered. Therefore, it uses only the xi, yl,i,i′ , ql,i, and tl,i

decision variables (with the same definition than in the original problem. See Table 1.3).

The mixed integer linear programming model of the master problem consists of objective

functions (1.1) and (1.2), constraints (1.3)–(1.8), domain constraints (1.23)–(1.25), and

two additional constraints (1.30) and (1.31). These constraints bound the charging time at

each stop using the number of installed chargers.

tl,i
fl
≤ xi ∀l ∈ L, ∀i ∈Vl (1.30)

∑
l∈L

tl,i ≤ xi ·max
l∈L

( fl) ∀i ∈V (1.31)
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We solve the master problem using the branch-and-bound algorithm embedded in a

commercial solver (CPLEX). Every time the solver finds a new incumbent, we solve the

subproblem to check whether a feasible charging schedule exists. If that is the case, we

accept the new incumbent ; otherwise, we ignore it. In the latter case, we also add a cut

aiming to prevent the root cause of the infeasibility to reemerge in the later. Our cut

generation procedure is discussed in Section 1.5.3.

1.5.2 Subproblem

Starting from a master problem solution fixing the values of the x̂i (number and lo-

cation of the chargers) and t̂l,i (charging times for every line at every stop) variables, the

subproblem consists in determining if there is a feasible way to schedule the prescribed

charging operations on the installed chargers without violating the service frequency of

the lines. It is worth noting that the subproblem can be decomposed by clusters of char-

gers. A cluster of chargers contains all the chargers installed at the stops belonging to a

subset of lines sharing at least one charger. More formally, if ∃i ∈V : tl,i > 0∧ tl′,i > 0 all

the chargers at stops belonging to l or l′ belong to the same cluster. Note that a cluster

may contain chargers from more than two lines, but a charger can only belong to one

cluster. For example, in the toy-instance depicted in Figure 1.2, chargers α , β , and γ form

a cluster.

The subproblem consists in determining solely the departure time of the first HB from

the initial stop of each line. With these departure times, along with the line frequencies,

travel times, and charging times (established by the solution to the master problem), we

can infer the arrival time of each HB at every stop on every line. These arrival times

most allow for the scheduling of all charging operations on the installed chargers, while

adhering to the constraints of non-preemption and non-overlap. It’s important to note that,

akin to the initial mathematical model outlined in Section 1.4, these constraints need to

be checked only over a cycle of λ time units.

To address the subproblem, we propose a MILP model aimed at selecting a bus time-
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table for each line from a feasible set. The bus timetable for a specific line, denoted as

hl , is fully represented by a single value : the departure time value for the first bus from

the initial stop of line l. The feasible set of bus timetables, denoted as Ωl , encompasses

all potential departure time values for the first bus of line l. The cardinality of the set

Ωl is equivalent to fl since the set of departure time values is {0, · · · , fl − 1}. From the

timetable of a line, we can deduce the timing for all charging operations associated with

that line. We denote ahl
l,i,t as a Boolean variable, equal to one if a charging operation is

executed at time t ∈ 0, · · · ,λ −1 at a CS located at stop i ∈ V on a bus operating on line

l ∈ L with timetable hl ∈Ωl , and zero otherwise.

The proposed mathematical model uses only binary variables xhl
l taking the value of

one if Line l ∈ V is assigned to Timetable hl ∈ Ωl , and zero otherwise. The subproblem

can be formulated as the following MILP :

∑
hl∈Ωl

xhl
l = 1 ∀l ∈ L (1.32)

∑
l∈L

∑
hl∈Ωl

ahl
l,i,t · x

hl
l ≤ x̂i ∀i ∈V, ∀t ∈ {0, · · · ,λ −1} (1.33)

xhl
l ∈ {0,1} ∀l ∈ L, ∀ hl ∈Ωl (1.34)

Constraints (1.32) ensure that a single timetable is selected for each line. Constraints

(1.33) bound the number of charging operations that can be performed simultaneously

at each stop. The latter also guarantees the respect of non-preemption and non-overlap

constraints. Constraints (1.34) define the domain of decision variables. Note that this mo-

del only checks the feasibility of the charging scheduling problem but does not solve it. In

other words, after solving the subproblem we know that feasible charging schedules and

timetables exists for every line, but we do not know the specific assignment of charging

operations to chargers. However, determining these assignments can be done in polyno-

mial time solving a tactical fixed job scheduling problem. The latter consists in finding

the minimum number of machines to schedule N fixed tasks (preemption and overlap are

not allowed) and can be solved in O(N · logN) time (GUPTA et al., 1979).
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1.5.3 Cut generation

As mentioned earlier, if a subproblem is found to be infeasible, we introduce a tai-

lored no-good cut into the master problem to prevent the reoccurrence of infeasibility.

These cuts are designed to not only cut the specific infeasible solution but, potentially, se-

veral other infeasible solutions. In cases where the subproblem is deemed infeasible, it is

typically due to the master handing in a solution with i) an inadequate number of chargers

at a given stop, ii) poorly located chargers, or iii) excessively long charging operations.

Our cuts are crafted to address these underlying issues and minimize the likelihood of

infeasibilities resurfacing later in the search. Given a solution o to the master problem, we

denote x̂o
i as the quantity of chargers to be installed at stop i, and t̂o

l,i as the charging time

at Stop i for an HB operating on Line l. To construct the cut to eliminate this solution o,

additional decision variables are needed :

— bxo
i , ∀i∈V : Binary decision variable taking the value of one if the value of decision

variable xi is strictly greater than a reference value x̂o
i , and zero otherwise.

— bto
l,i, ∀l ∈ L ∀i ∈Vl : Binary decision variable taking the value of one if the value of

decision variable tl,i is strictly lower than a reference value t̂o
l,i, and zero otherwise.

The cut is given by Expression 1.35 in combination with constraints 1.36–1.39.

∑
i∈V

bxo
i + ∑

l∈L i∈Vl

bto
l,i ≥ 1 (1.35)

bxo
i < 1+

xi− x̂o
i

⌊ B
costi
⌋+1

∀i ∈V (1.36)

bto
l,i < 1+

t̂o
l,i− tl,i
wl,i +1

∀l ∈ L ∀i ∈Vl (1.37)

bxo
i ∈ {0,1} ∀i ∈V (1.38)

bto
l,i ∈ {0,1} ∀l ∈ L ∀i ∈Vl (1.39)

To adhere to constraint (1.35), either at least one additional charger must be added

at one stop or at least one charging time must be reduced at one stop compared with the
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given values of solution o. In other words, this constraint eliminates not only solution o

but also any other solution that would contain fewer chargers (with no additional charger

at any stop) and longer charging times (with no reduction in the charging time at any stop)

because if solution o is not feasible, then none of these solutions is feasible. Constraints

(1.36) and (1.37) link the binary decision variables to the corresponding variables of the

master problem (xi and tl,i). Constraints (1.38) and (1.39) define the domains of the addi-

tional variables.

From an implementation perspective, the master problem is not solved from scratch

each time a new cut is generated. Instead, we add cuts as lazy constraints using a callback

routine while solving the master problem. Lazy constraints are checked only when a new

feasible integer solution is obtained during branch-and-bound tree search. In this step,

if the integer solution is not feasible for the subproblem, the cut generation procedure

consists in adding a new violated lazy constraint.

1.5.4 Branch-and-check-based heuristic

To converge to the optimal solution, the branch-and-check may need to generate a

large number of no-good cuts, potentially leading to extended computational times. The-

refore, we also implemented a heuristic version of our algorithm, denoted HBC, to obtain

good solutions within a short computation time. HBC functions similarly to the original

branch-and-check method. However, when an integer solution to the master problem is

found that is not feasible for the subproblem, we simply reject the incumbent solution

without adding a no-good cut or the associated variables/constraints. This results in a

reduction in the exploration of the search tree as well as the loss of the optimality guaran-

tee. When a solution found at a particular node is rejected, we do not explore the subtree

connected to that node. However, it is possible to have a solution at a node that is not

feasible for the subproblem, while another solution at the child node is feasible.
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1.6 Computational experiments

The MILP model and the two version of the branch-and-check method were imple-

mented in C++ using CPLEX 20.1 and its callback library. We set all the parameters in

CPLEX to their default values, except for the number of threads which we set to one. For

the branch-and-check metods we also switched off the dual preprocessing reductions to

use the lazy constraint callback functions. We ran all the experiments on the workstations

of the Digital Research Alliance of Canada’s servers. They are equiped with an Intel Gold

6148 Skylake, 2.4 GHz processor and 50 Gigabyte of memory.

1.6.1 Instances generation

To test our methods we generated a set of instances using real-world data from the city

of Tours (France). This data was provided by the French Ministry of the Ecological Tran-

sition (MINISTÈRE DE LA TANSITION ÉCOLOGIQUE, 2020). The instances are based on

the main and most frequented lines of the Tours’ network, namely, lines 2, 3a, 3b, 4, 5, 10,

11, 12, 14, 15, 16, and A. Bidirectional lines are consider as two different lines that may

or not share stops. Therefore, we have a pool made up of 24 lines. On average, each line

drives through 43 stops. We consider the theoretical transit offer (lines, stops, timetables)

for several weeks. Based on these data, we determined the subgraphs Gl representing the

bus lines and the distance between two stops di,i′ . We considered the service frequency
1
fl

at three different times of the day. These correspond to early morning and late evening

(5AM-7AM and 10PM-12PM) for low service frequency (one bus every [30,60] min),

evening (7PM-10PM) for mid service frequency (one bus every [15,45] min), and wor-

king hours (7AM-7PM) for high service frequency (one bus every [10,30] min). We set

the portion of mandatory electric mode arcs to 10%. For each line, we selected these arcs

such that they form a path in Gl . We set the maximum stop duration wl,i to 2 min for

every stop. We compute the travel time between stops i and i′ as tti,i′ =
di,i′

v , where v is

the average speed of the bus in the network. We set the electric consumption of an arc

connecting two stops as ei,i′ = e ·di,i′ , where e is the average electric consumption in the
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network. After some discussion with public transit practitioners, we set v = 18 km.h−1

and e = 1.22 kWh.km−1. We computed the installation cost of a charger costi as the base

price of a charger, USD 230,000 (BLOOMBERG NEW ENERGY FINANCE, 2018), plus

infrastructure set-up costs ranging between 30% and 50% of the cost of the charger. We

set the charging speed rate R to 300 kW (PELLETIER et al., 2019) and the HB battery

capacity to 19 kWh(BLOOMBERG NEW ENERGY FINANCE, 2018). Considering this fast

charger, it takes a total 3 min 48 s to fully recharge the battery ; this value alights with

current fast-opportunity charging standards observed in practice.

We built instances with |L|= {3, ...,9}. For each instance, we selected the lines from

the pool of 24 ensuring that the resulting bus network is a connected graph. To set the

electrification budget, we used the following expression :

B =
∑l∈L ∑(i,i′)∈Al

ei,i′

|L| ·Q
· ¯costi ·α with ¯costi =

∑i∈V costi
|V |

(1.40)

The maximum budget B is computed from an average electric consumption per line, an

average installation cost ( ¯costi) and a parameter α . This parameter is a coefficient chosen

empirically at 3.6, to set the possible number of chargers to be installed at consistent

values (i.e., insufficient to electrify the entire network but sufficient to electrify more than

half of the network). We generated 10 instances for each combination between number

of lines (i.e., |L|) and service frequency (i.e., low, mid, high). Therefore, our set is made

up of 210 instances (= 7×3×10). Our instances are publicly available at https://github.

com/PVende/tmpRepoInstances.

1.6.2 Efficiency and effectiveness of the proposed methods

The first set of experiments compares the results delivered by MILP and those deli-

vered by the exact (BC) and heuristic (HBC) version of the branch-and-check method.

Recall that we use a lexicographic approach with two objectives. Therefore, we solved

each instance twice using each method. In the first run we maximized the total weighted

electric distance, and in the second, we minimize the total investment. We used 4 key
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performance metrics (KPIs) to assess the efficiency and effectiveness of the methods : i)

the number of instances for which a feasible or optimal solution was found, ii) the value

of the objective function, iii) the optimality gaps, and iv) the computation times.

MILP results

Table 1.4 and 1.5 delivered by the MILP formulation introduced in Section 1.4. In

this experiment we set the time limit to 2h (for each instance and objective). Table 1.4

lists the results of the first run (i.e., maximizing the weighted electric distance). The first

two columns indicate the instance family according to the number of lines and the service

frequency. Each line in the table aggregates the results for ten instances. The next 5 co-

lumns report : the number of feasible solutions found (# Feasible), the number of optimal

solutions found (# Optimal), the average objective values of the best solution found (the

weighted electric distance), the average optimality gap in percentage given by CPLEX

for instances for which no optimal solution is found (Optimality gap), and the average

computation time when a feasible solution is found (Computation time).

The data in the table indicates that the solver provided an optimal solution for 116 out

of the 210 instances (55%), a feasible-but-improvable-optimal solution for an additional

43 instances (20%), and was unable to find a feasible solution for the remaining 51 ins-

tances (24%). Additionally, the results reveal a degradation in the number of both optimal

and feasible solutions, as well as in the optimality gap, as the size of the instances (in

terms of the number of lines) increases. Indeed, as the number of lines increases, so does

the number of charging events nl , the number of shared stops between lines suitable for

charger installation, and the number of charging operations on each charger |Ki|. Intui-

tively, in such circumstances, the model becomes larger and more challenging to solve.

The data also presents a counterintuitive finding : the problem becomes harder to solve

when the service frequency is mid compared to when it is either low or high. A plausible

explanation for this phenomenon is that in the middle-ground situation, the scheduling

component becomes more difficult to manage. When the service frequency is low, the

scheduling problem is simpler because there is ample time between bus arrivals to accom-
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TABLE 1.4 – MILP results - First run (weighted electric distance)

|L| Service
# Feasible # Optimal

Avg. weighted Avg. investment Avg. optimality Avg. CPU
frequency electric distance (×1000 $) gap (%) time (s)

3
Low 10 10 19.6 919.8 − 55.1
Mid 10 10 31.4 951.3 − 199.0

High 10 10 42.0 960.5 − 54.9

4
Low 10 10 28.9 1139.7 − 710.4
Mid 8 6 45.5 1107.5 0.9 2357.7

High 10 10 61.0 1142.0 − 1062.9

5
Low 10 5 35.2 1037.3 2.3 4071.2
Mid 7 2 56.2 1034.3 6.8 5674.9

High 7 2 73.1 1070.8 2.9 5790.5

6
Low 9 6 36.5 922.3 1.3 2893.4
Mid 3 2 46.5 854.8 10.4 3999.9

High 8 7 77.2 922.9 0.1 1209.6

7
Low 10 8 37.9 957.7 0.9 2961.9
Mid 6 5 56.5 937.6 21.3 2005.0

High 9 7 83.5 948.1 3.5 3300.7

8
Low 10 7 46.0 1027.2 0.9 3958.3
Mid 2 1 63.6 945.3 14.0 3851.5

High 6 3 95.9 1064.1 0.6 4569.8

9
Low 10 5 52.2 1070.4 0.0 5009.2
Mid 0 0 − − − −

High 4 0 108.1 1022.4 2.9 7200.0
Total / Average 159/210 116 51.1 1009.0 3.2 2725.3

modate charging operations. Conversely, when the service frequency is high, the solution

space of the scheduling problem tightens, so the solver is more efficient to explore it.

Table 1.5 reports the results for the second run (i.e., minimizing the investment). Note

that for this run the testbed is reduced to 159 instances (= 116+ 43). The first two co-

lumns indicate the instance family. The next 4 columns report the output depending on the

nature of the solution found in the first run. Let F denotes a feasible-but-unproven-optimal

solution and O a proven optimal solution. The third column (# F→F) reports the number

of F solutions obtained when the solution to the first run is an F solution. Similarly, the

fourth column (# F→O) reports the number of F solutions obtained when the solution the

first run is an O solution. The fifth and sixth columns follow a similar logic. The last three

columns report the average investment, the average optimality gap in percentage given by

CPLEX for instances for which no optimal solution is found, and the average computa-

tion time when a feasible solution is found. Similar to Table 1.4, each row aggregates the

results for multiple instances, but not necessarily the 10 belonging to each family.
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TABLE 1.5 – MILP results - Second run (investment)

|L| Service
# F→F # O→F # F→O # O→O

Avg. investment Avg. optimality Avg. CPU
frequency (×1000 $) gap (%) time (s)

3
Low 0 0 0 10 868.2 − 10.1
Mid 0 0 0 10 868.2 − 37.0

High 0 0 0 10 868.2 − 5.6

4
Low 0 1 0 9 1072.5 7.3 883.9
Mid 0 1 2 5 1031.8 3.5 1597.7

High 0 0 0 10 1102.4 − 330.9

5
Low 0 0 5 5 1026.9 − 150.3
Mid 3 0 2 2 1018.6 12.4 3544.6

High 0 0 5 2 1055.0 − 552.2

6
Low 0 0 3 6 908.5 − 1017.8
Mid 1 0 0 2 843.3 13.0 3300.5

High 0 0 1 7 904.8 − 165.9

7
Low 0 1 2 7 939.5 3.6 1927.7
Mid 0 0 1 5 918.5 − 370.8

High 0 1 2 6 935.6 5.4 1035.2

8
Low 1 2 2 5 1019.4 3.0 2666.6
Mid 0 1 1 0 945.3 0.2 4466.1

High 0 1 3 2 1054.9 5.1 2088.1

9
Low 1 2 4 3 1066.3 2.6 2965.7
Mid 0 0 0 0 − − −

High 1 0 3 0 1018.9 3.1 2111.7
Total / Average 7 10 36 106 976.5 5.6 1214.3

In most instances, when an optimal solution is found in the first run, an optimal so-

lution is also found in the second run. Overall, the solver delivered optimal solutions to

142 out of the 159 instances (89%) and feasibile-but-unproven-optimal solutions to the

remaining 17 (11%). These results suggest that the MILP formulation for the second run

is easier to solve than that of the first run. The CPU times in the last column point in

the same direction. The average CPU time over the whole testbed is nearly halved in the

second run. This behaviour is not surprising, since i) the solution space for the MILP in

the second run is smaller (because of the max weighted electric distance constraint) and

ii) the solver starts from an initial solution.

A close examination of the Avg. Investment columns in tables 1.4 and 1.5 highlights

the benefits of the lexicographic approach. As indicated by the overall average (last line in

both tables), the second run results in potential savings of nearly 3.25% (32.5k USD). It’s

worth noting that this reduction in investment does not compromise the primary objective

(the weighted electric distance).
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Results of the Branch-and-Check method

The same computational experiments were conducted to evaluate the effectiveness

of the branch-and-check method (BC) introduced in Section 1.5. Table 1.6 and Table 1.7

present the results obtained using the BC method with a time limit of 2 h for each instance

and step in the lexicographic approach. Table 1.6 presents the results of the first step of

the lexicographic approach. The first five columns have the same meaning as the first

five columns in Table 1.4. The subsequent columns report the average optimality gap

as a percentage given by the BC method for instances for which no optimal solution is

found (Optimality gap), average gap with the MILP resolution if both methods provide

a feasible solution for a same instance (MILP gap), average computational time (Comp.

time), average number of calls to the sub-problem (# Call S.P.), and average total time

spent solving the subproblem per instance (Total S.P. Comp. time). For each instance, the

MILP gap is computed as zMILP−zBC
zMILP

, where zMILP and zBC are the objective functions of

the solution returned by the MILP resolution and BC method, respectively.

Branch-and-Check results

We conducted a similar experiment to assess the effectiveness of BC. Tables 1.6 and

1.7 present, for the first and second run respectively, the results obtained after running

the method for 2 h on each instance. In addition to the metrics reported for the fist run

of the MILP, Table 1.6 also reports the average gap with respect to the MILP solution

(Avg. MILP gap), the average number of calls to the sub-problem (Avg. # Call S.P.), and

the average time spent solving the subproblem per call (Avg. S.P. CPU time). The gap

with respect to the MILP is reported only if both methods provided a feasible solution

for a same instance. It is computed as zMILP−zBC
zMILP

, where zMILP and zBC are the objective

functions of the solution returned by the MILP and BC, respectively.

BC found a feasible solution for 200 out of the 210 instances (95%), 41 more than

MILP (nearly 20%). Moreover, out of those feasible solutions, 128 are proven optimal,

compared to 116 for MILP. A closer look at the Avg. MILP gap column reveals that both
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TABLE 1.6 – BC Results - First run (weighted electric distance)

|L| Service
# Feasible # Optimal

Avg. weighted Avg. optimality Avg. MILP Avg. CPU Avg. # Call Avg. S.P.
frequency electric distance gap (%) gap (%) time (s) S.P. CPU time (s)

3
Low 10 9 19.6 0.5 0.0 1037.5 11.3 1.6

Average 10 8 31.3 2.6 0.4 1674.2 271.8 1.2
High 10 10 42.0 − 0.0 600.2 9.9 0.9

4
Low 10 10 28.9 − 0.0 785.9 15.0 5.1

Average 10 10 45.9 − −0.2 849.8 11.8 3.9
High 10 10 61.0 − 0.0 410.5 12.4 3.1

5
Low 10 8 35.2 5.9 0.0 3137.7 27.2 10.9

Average 10 4 55.7 5.2 −1.7 5537.3 182.4 9.6
High 10 8 75.9 2.6 −0.5 3611.3 86.2 6.5

6
Low 9 6 36.4 12.1 0.3 4688.2 23.1 24.9

Average 8 1 58.3 2.8 −3.0 6499.7 49.5 19.4
High 7 1 79.0 5.8 1.4 6296.3 141.6 13.8

7
Low 10 5 37.8 1.8 0.1 5218.6 18.6 43.1

Average 10 1 60.4 14.0 −0.1 7114.2 31.7 34.2
High 9 5 82.6 3.0 0.9 4377.8 72.8 25.6

8
Low 10 7 46.0 0.0 0.0 4579.4 12.7 77.5

Average 10 6 72.5 2.8 0.0 4867.4 19.0 64.4
High 9 6 95.5 7.8 0.2 4240.7 45.0 56.3

9
Low 10 4 52.2 0.0 0.0 5965.2 13.0 157.1

Average 10 6 84.6 1.4 − 5358.7 18.4 91.8
High 8 3 107.7 15.5 14.6 5740.2 31.6 96.3

Total / Average 200/210 128 56.5 5.7 0.3 3846.2 51.6 35.5

methods deliver solutions of similar quality, at least for those instances in which both

methods found a feasible solution. On the other hand, the data in the Avg. optimality

gap and Avg. CPU time columns paint a more favorable picture for MILP. However, it is

worth noting that these results for BC cover 41 more instances, including the largest and

most challenging ones (the 9-line, mid-frequency family), where MILP could not find a

single feasible solution. More generally, BC outperforms the MILP on larger instances

(specially the difficult mid-frequency ones), while the latter is more effective on small

instances (specially those with low service frequency).

The last two columns in Table 1.6 offer insights into the behavior of BC. As depicted

in the table, with increasing instance size, the average number of calls to the subproblem

decreases, while the average time spent solving a subproblem increases. This trend arises

because as the number of bus lines increases, the total budget also increases, resulting in a

higher number of installed chargers. Consequently, the number of charging operations to

schedule tends to rise, as does the potential number of lines passing through each charger.

This makes the sub-problem more challenging to solve. Another interesting observation

emerges upon closer examination of the number of calls to the subproblem within each

instance size. With a few notable exceptions (e.g., instances with 3 and 5 lines), the num-
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TABLE 1.7 – BC results - Second run (investment)

|L| Service
# F→F # O→F # F→O # O→O

Avg. investment Avg. optimality Avg. MILP Avg. CPU Avg. # Call Avg. S.P.
frequency (×1000 $) gap (%) gap (%) time (s) SP CPU time (s)

3
Low 0 0 1 9 868.2 − 0.0 18.5 2.7 1.0

Average 1 0 1 8 868.0 29.5 0.0 750.7 254.2 1.0
High 0 0 0 10 868.2 − 0.0 28.9 3.1 1.0

4
Low 0 0 0 10 1102.4 − 6.2 874.3 4.3 9.0

Average 0 0 0 10 1102.4 − 0.0 179.5 7.6 30.1
High 0 0 0 10 1102.4 − 0.0 724.4 3.4 4.2

5
Low 0 1 2 7 1026.9 0.7 0.0 793.7 2.0 4.2

Average 3 0 3 4 1023.7 12.2 − 2540.5 79.1 3.4
High 0 0 2 8 1027.2 − − 92.3 1.7 0.9

6
Low 0 1 3 5 915.4 0.4 0.0 1061.1 1.9 2.1

Average 1 0 6 1 911.1 0.5 − 999.5 5.0 2.3
High 2 0 4 1 944.0 1.7 − 3127.7 183.0 19.5

7
Low 0 0 5 5 930.8 − 0.0 608.0 2.1 4.4

Average 4 0 5 1 936.6 3.2 0.0 3496.9 14.1 19.1
High 1 3 3 2 932.0 2.2 1.0 3289.5 31.2 4.0

8
Low 0 1 3 6 1012.5 2.2 0.0 1556.9 1.6 8.6

Average 1 2 3 4 1011.3 5.2 − 2947.6 6.5 13.3
High 1 2 2 4 1011.7 5.2 − 2907.1 23.6 12.9

9
Low 2 2 4 2 1069.5 2.7 −3.4 3414.2 1.2 13.8

Average 1 2 3 4 1063.8 2.9 − 2785.5 1.5 6.6
High 2 0 3 3 1087.0 10.5 − 2249.5 21.4 30.9

Total / Average 19 14 53 114 992.3 5.1 0.9 1606.6 29.3 8.9

ber of calls to the subproblem increases with the service frequency. This suggests that

as the frequency increases, the master problem is more likely to generate solutions that

are infeasible. However, a quick look at column 10 reveals that the subproblem is more

efficient in high-frequency instances. The latter phenomenon can be explained by the size

of the subproblem’s model. When the service frequencies are low, the size of set Ωl (the

possible timetables for a line) increases. Consequently, the model becomes larger to solve

and, notably, to construct.

Table 1.7 displays the results of BC’s second run. The first eight columns maintain

the same meaning as those in Table 1.5. Following these, a column presents the average

gap with the MILP solution, focusing on instances where both methods produce identical

objective values after the first run and provide feasible solutions after the second run.

This gap, calculated for each instance as zBC−zMILP
zMILP

, compares the objective functions of

solutions from the MILP (zMILP) and BC (zBC). The final three columns retain the same

significance as those in Table 1.6.

Out of the 200 instances, BC yielded a Pareto-optimal solution for 114. Additionally,

for 53 instances, BC delivered a second-run optimal solution after after starting from a

feasible-but-unproven first-run solution. Similar to the observations with the MILP, and

for analogous reasons, the results of BC (especially the computation times) suggest that
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the second run tends to be easier to solve than the first. Notably, the number of calls to the

sub-problem and the time spent solving it are significantly lower in the second run. This

outcome can be attributed to i) retaining all cuts generated in the first run for the second

run, thereby substantially reducing the feasible solution space and ii) the upper bound on

the value of the first objective function. On average, the MILP gap stands at 0.9%, with

many instances having a gap of zero. This indicates that when both methods find the same

solutions after the first run, they also produce identical solutions after the second run.

Branch-and-check-based heuristic results

The HBC method introduced in Section 1.5.4 aims to find good solutions with shorter

computation times compared to previous exact methods. To assess the benefits of using

HBC, we conducted the same computational experiments, but this time, we set a time

limit of 10 minutes for each instance and run of the lexicographic approach. Table 1.8

displays the results for the first run, featuring columns similar to those in Table 1.6. In

addition, the table introduces columns 6 and 8, reporting the gap with respect to BC and

the number of times where the method exceeds the time limit, respectively. For the sake of

brevity, we do not report here the results for HBC’s second run, but the interested reader

can find the summary table in Appendix 3.6.

HBC provided feasible solutions for 191 instances in less than 10 minutes, surpassing

MILP but falling short of BC’s performance. However, the BC method is considerably

more time-consuming. Notably, for nearly half of the instances, the HBC concluded be-

fore reaching the time limit. The quality of the solutions obtained by HBC was comparable

to those obtained by the MILP and BC, with average gaps of 0.2% and 0.0% respectively.

HBC even outperformed these methods for some instances, with a negative gap of up to

3.1%. The table also demonstrates that HBC makes a significantly larger number of calls

to the subproblem compared to BC. This finding hints on the capacity of the cuts embed-

ded in BC to eliminate not just one, but several infeasible solutions at once. Regarding

HBC, we observed that : i) in most of the calls to the subproblem, the master problem

solution ended up being infeasible, and ii) the solver efficiently identifies this infeasibi-
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TABLE 1.8 – HBC results - First run (weighted electric distance)

|L| Service
# Feasible

Avg. weighted Avg. MILP Avg. BC Avg. CPU # Time limit Avg. # Call Avg. S.P.
frequency electric distance gap (%) gap (%) time (s) exceeded S.P. CPU time (s)

3
Low 10 19.6 0.0 0.0 221.4 3 8.0 0.0

Average 10 31.4 0.0 −0.4 239.6 3 559.5 0.0
High 10 42.0 0.0 0.0 188.0 3 11.1 0.0

4
Low 10 28.9 0.0 0.0 277.8 4 10.8 0.1

Average 10 45.9 −0.2 0.0 304.5 4 18.6 0.1
High 10 61.0 0.0 0.0 208.5 1 13.0 0.0

5
Low 10 34.9 0.8 0.8 396.9 4 26.5 0.1

Average 10 55.9 −1.2 −0.3 438.6 6 380 0.1
High 10 75.4 0.4 0.8 414.7 6 338.7 0.0

6
Low 9 36.4 0.5 0.1 600.0 9 21.1 0.1

Average 9 58.1 −3.1 0.0 577.1 8 161.2 0.1
High 8 78.7 2.8 1.5 548.8 7 1007.6 0.0

7
Low 10 37.8 0.2 0.0 560.2 9 16.9 0.1

Average 9 59.3 1.5 0.4 537.6 7 215.9 0.1
High 8 84.4 −0.2 −0.5 565.0 6 374.4 0.0

8
Low 10 46.0 0.0 0.0 459.6 3 15.8 0.1

Average 10 72.3 0.0 0.1 544.6 7 24.2 0.1
High 8 95.2 0.0 −0.7 472.5 4 201.8 0.0

9
Low 10 52.2 0.0 0.0 583.6 8 12.6 0.1

Average 7 83.7 − 0.0 544.9 5 13.7 0.1
High 3 124.8 − −3.1 537.1 2 18.3 0.0

Total / Average 191/210 54.7 0.2 0.0 429.0 109.0 161.1 0.1

lity. This behavior is reflected numerically in columns 9 and 10. Upon closer examination

of the results for each instance size, we note that, similar to BC, the number of calls to

the subproblem increases with the service frequency. However, the average time spent

solving the problem decreases, primarily because most of those subproblems are quickly

identified as infeasible.

1.6.3 Managerial insights

In this section, we present the results of two additional computational experiments

aimed at helping managers address two key questions : What is the trade-off between

charging infrastructure investment and weighted electric distance? and How much can the

weighted electric distance be improved by allowing shared chargers between lines, given

a fixed electrification budget ? We conducted all computational experiments reported in

this section using the same set of instances described in Section 1.6.1.
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The trade-off between investment and weighted electric distance

In this experiment, our aim is to measure the additional investment required in char-

ging infrastructure to operate the network in fully electric mode and quantify the addi-

tional decarbonation benefits it represents. To accomplish our goal, we ran BC for 2 h

on each instance in our testbed deactivating the budget constraint (constraint (1.3)) and

forcing all segments to be driven in electric mode. In other words, we set

yl,i,i′ = 1 ∀l ∈ L, ∀(i, i′) (1.41)

Consequently, the resulting optimization problem is simpler than the original one because

it involves fewer decisions. The objective function in this new scenario is the minimization

of the investment (i.e., objective function (1.2)).

Table 1.9 presents a detailed overview of the results. The first two columns catego-

rize instances by family. Following these, the subsequent columns detail the number of

feasible solutions found (#Fea.), number of optimal solutions (#Opt.), average computa-

tion time on instances for which BC found a feasible solution (Avg. CPU time), average

weighted electric distance, and average total investment required for full electrification.

The last two columns compare the differences in terms of the average weighted electric

distance and the average investment between the original full electrification scenarios.

The deltas in the last two columns are computed as ∆X = z(XFE)−z(XHE)
z(XHE)

, where z(XFE)

and z(XHE) represent the value of X for the best solution in the full electrification and

original scenarios, respectively. Note that ∆X is computed only on instances for which

BC provides a feasible solution in both scenarios.

The performance of BC in the full electrification scenario is comparable, both in terms

of the number of feasible and optimal solutions, to that displayed in the original setup.

More interestingly, the results in the last two columns suggest that the increase on the

investment needed to run a fully electrified network disproportionately increases with

respect to the benefits. This is specially true on larger instances. Take for instance the

9-line, low-frequency family. On average, in the solutions for the full electrification sce-

nario, the fleet travels 24.3% more distance on electric mode. However, to accomplish that
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TABLE 1.9 – Computational results - Full electrification scenario

Full electrification Original set up

|L| Service
# Fea. # Opt.

Avg. CPU Avg. weighted Avg. investment ∆ Avg. weighted ∆ Avg.
frequency time (s) electric distance (×1000 $) electric distance (%) investment (%)

3
Low 10 9 897.4 21.3 1047.7 11.2 21.7
Mid 10 10 407.6 33.9 1047.7 11.5 21.7

High 10 10 604.6 44.9 1047.7 10.8 21.7

4
Low 10 10 992.4 30.4 1245.2 5.0 14.7
Mid 10 9 1328.6 48.0 1246.8 4.6 14.8

High 10 10 1012.4 63.0 1245.2 3.5 14.7

5
Low 10 9 1124.1 36.9 1262.9 5.0 24.9
Mid 10 8 2689.7 59.1 1267.3 6.1 25.7

High 10 9 1322.5 78.7 1262.9 3.6 24.9

6
Low 10 4 4803.7 41.1 1625.2 15.6 80.1
Mid 10 4 5389.9 65.6 1625.4 14.6 78.6

High 10 1 6552.6 88.1 1735.8 10.7 91.0

7
Low 10 0 7200.0 47.2 1954.5 26.6 110.3
Mid 9 0 7200.0 74.9 2256.0 25.8 142.2

High 10 0 7200.0 102.6 2073.7 25.4 119.7

8
Low 10 0 7200.0 57.1 2040.8 25.4 102.7
Mid 10 0 7200.0 90.0 2156.2 25.4 115.9

High 10 1 6775.3 120.1 2141.3 27.8 114.7

9
Low 10 1 6915.1 64.4 2147.3 24.3 102.1
Mid 10 1 6881.7 103.2 2228.5 22.5 109.9

High 9 1 7137.7 139.1 2408.1 32.1 138.7
Total / Average 208/210 97 4298.2 66.7 1663.5 15.8 68.7

feat, a two fold investment in charging infrastructure is needed (102.1%). Overall, fully

electrified networks translate into an average of 15.8% more electric distance but 68.7%

more infrastructure investments. In markets where electrification budgets are thigh, BC

can help analysts find a good balance between these two important KPIs.

The benefits of shared chargers

Allowing charger sharing between lines complicates the infrastructure location pro-

blem and adds complexity to the network’s operation. In this experiment, our aim is to

evaluate the advantages of this feature. To achieve this, we solved a new version of the

problem in which each installed charger is strictly assigned to a single line. Consequently,

only HBs servicing that line can utilize it. It is important to note that in this scenario, the

charging operation scheduling component is absent. Therefore, our methods (MILP, BC,

and HBC) are not suitable for solving the problem. Instead, we developed a new MILP

model specifically for this case. For brevity, we do not present the model here, but readers

can find a detailed description in Appendix 3.6. We executed the new model for 2 hours

on a slightly modified version of each of our 210 instances. Specifically, for this expe-
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TABLE 1.10 – Computational results - Non-shared charging stations scenario

Non-shared chargers Shared chargers

|L| Service
# Fea. # Opt.

Avg. CPU Avg. weighted ∆ Avg. weighted
frequency time (s) electric distance electric distance (%)

3
Low 10 7 2856.3 13.0 −33.2
Mid 10 7 3129.7 21.8 −29.7

High 10 7 3303.3 30.2 −27.2

4
Low 10 6 4128.0 14.8 −48.7
Mid 10 4 5442.1 25.2 −45.0

High 10 2 6734.0 36.1 −40.9

5
Low 10 5 4908.6 15.3 −56.4
Mid 10 4 5357.1 27.5 −50.3

High 10 3 5670.0 39.7 −47.4

6
Low 10 10 1499.3 12.7 −63.7
Mid 10 4 4531.5 22.9 −59.9

High 10 2 5764.3 33.1 −57.1

7
Low 10 8 3265.7 13.7 −63.2
Mid 10 0 7200.0 24.8 −58.2

High 10 0 7200.0 36.8 −55.1

8
Low 10 7 2321.1 14.5 −68.5
Mid 10 1 6494.4 26.6 −63.2

High 10 1 6497.4 39.5 −58.2

9
Low 10 10 1054.1 15.5 −70.4
Mid 10 2 6297.4 29.0 −65.8

High 10 2 5841.5 43.3 −58.5
Total / Average 210/210 92 4737.9 25.5 −53.1

riment, we did not enforce the mandatory electric arcs (constraints (1.5)). This decision

was made because, under that constraint, too many instances become infeasible due to

the inability to share chargers while maintaining the budget unchanged. We compared the

results delivered by the new MILP in the non-sharing scenario to those retrieved by BC

in the charging sharing scenario.

Table 1.10 presents the results of this new scenario. The first six columns have the

same meaning as those in Table 1.9. However, the last column reports the average de-

gradation in weighted electric distance when chargers are not shared. These values are

computed as ∆ = z(XNS)−z(XS)
z(XS)

, where z(XNS) and z(XS) represent the weighted electric

distance in the solutions for the non-sharing and sharing scenarios, respectively.

As anticipated, the solver found feasible solutions for all instances because even a so-

lution with no installed charger is feasible. Conversely, the new model reported optimal

solutions for only 92 out of the 210 instances (43%). As indicated in the third column, the
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optimal/feasible ratio is better for instances with low service frequency, regardless of the

instance size. Furthermore, as highlighted in the last column, forbidding charger sharing

leads to an average 53.1% reduction in the weighted electric distance. In other words, by

allowing this practice, we were able to double (on average) the total distance traveled in

electric mode, without increasing the electrification budget. By using BC, analysts can

overcome the difficulty of solving the more complex charger location and charging sche-

duling problem while benefiting from the higher electrification provided by the charger

sharing policy.

1.7 Conclusion

In this paper, we explored a fast-charging location problem on hybrid electric bus net-

works, where charging stations can be shared among different bus lines. Our approach

involves a lexicographic optimization strategy to first maximize the total distance traveled

using the electric mode, weighted by the bus line frequency, and subsequently minimize

the total investment on charger installation. This approach ensures the existence of a fea-

sible charging schedule at each station. We proposed a mixed integer linear programming

model alongside exact and heuristic methods based on a branch-and-check framework

to efficiently solve the problem. Computational experiments conducted using a set of

210 instances derived from the urban transit network in Tours, France, revealed that the

branch-and-check method outperformed the MILP, yielding more feasible and optimal so-

lutions. Furthermore, our proposed heuristic generated solutions close to those obtained

by exact methods, albeit within significantly shorter computation times. Additionally, we

provide several managerial insights for decision-makers to evaluate the trade-offs between

total installation costs and achieved electric distance, as well as the benefits of shared

chargers versus non-shared ones in enhancing the distance traveled by buses in electric

mode.

From a research perspective, extending the problem to incorporate various types of

charging technology, assets (hybrid, full electric, etc.), and battery capacities could be
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valuable. Although this would increase the problem’s complexity, it could provide transit

agencies with a decision support tool that is more flexible to accommodate their specific

needs. Another area for research could involve restructuring bus lines and schedules to

reduce electric consumption and promote charger sharing. For example, the models could

include decision variables to allow modifying a line to include a stop where chargers can

be shared with other lines. However, any modifications should carefully consider factors

such as customer demand, desired service levels, and potential disruptions to user ha-

bits. Additionally, exploring the placement of existing chargers and electrified bus lines

presents another promising research direction. This approach would enable transit agen-

cies to gradually electrify their networks over an extended planning horizon, ultimately

contributing to the overall reduction of greenhouse gas emissions.
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Chapitre 2

Matheuristics for a multi-day electric

bus assignment and overnight recharge

scheduling problem

Résumé

Afin de limiter les émissions de gaz à effet de serre dans le secteur des transports pu-

blics, les autorités organisatrices des transports augmentent constamment la proportion de

bus électriques dans leur flotte. En raison de contraintes d’espace et de budget, le nombre

de chargeurs pouvant être installés dans les dépôts est généralement inférieur au nombre

de bus électriques de la flotte. De plus, même s’il y a un chargeur pour chaque véhicule

électrique, il est pratiquement impossible d’utiliser tous les chargeurs en même temps en

raison des contraintes de puissance maximale pouvant être demandée au réseau électrique.

Il est donc nécessaire de concevoir des techniques d’optimisation qui aident à recharger

les bus de manière efficace, en tenant compte des contraintes de capacité de l’infrastruc-

ture de recharge. Dans cet article, nous considérons un problème d’affectation de bus

électriques sur plusieurs jours et d’ordonnancement de la recharge nocturne qui peut être

brièvement énoncé comme suit. Étant donné un ensemble de blocs véhicules (séquences



de trajets programmés effectués par le même bus pendant un jour donné) parcourus sur

plusieurs jours, un ensemble de bus électriques identiques et un ensemble de chargeurs

disponibles au dépôt dont la fonction de recharge est une fonction linéaire par morceaux,

le problème consiste à affecter un bus électrique à chaque bloc et à programmer les opé-

rations de recharge nocturne au dépôt de telle sorte que les bus électriques ne manquent

jamais d’énergie lorsqu’ils effectuent leurs blocs et que la capacité des chargeurs ins-

tallés au dépôt ne soit jamais dépassée. L’objectif est double : minimiser les coûts de

recharge totaux et minimiser l’impact des décisions de recharge sur la santé à long terme

des batteries. Nous modélisons d’abord ce problème sous la forme d’un programme li-

néaire en nombres entiers (MILP) qui peut être résolu à l’aide d’un solveur commercial.

Ensuite, afin d’obtenir des temps de calcul plus rapides, nous développons deux matheu-

ristiques multiphases basées sur le MILP. Pour montrer l’intérêt de considérer un horizon

de plusieurs jours, nous introduisons deux autres matheuristiques qui imitent les pratiques

industrielles actuelles et résolvent le problème de manière séquentielle, un jour à la fois.

Pour évaluer tous ces algorithmes, nous utilisons un ensemble de 264 instances générées

à partir des données d’un opérateur de bus électriques.

Abstract

To limit greenhouse gas emissions in the public transportation sector, transit autho-

rities are constantly increasing the proportion of electric buses (EBs) in their fleets. Due

to space and budget constraints, more often than not, the number of chargers that can be

installed at the depots is less than the number of EBs in the fleet. Moreover, even if there is

one charger for each EB, it is virtually impossible to use all the chargers at the same time

due to maximum power grid constraints. Thus, there is a need to devise optimization tech-

niques that help to recharge the buses in an efficient and acute way, taking into account

these charging infrastructure capacity constraints. In this study, we consider a multi-day

electric bus assignment and overnight recharge scheduling problem that can be briefly sta-

ted as follows. Given a set of vehicle blocks (sequences of timetabled bus trips performed
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by the same bus on a given day) to be operated over several days, a set of identical EBs,

and a set of chargers available at the depot whose charging function is a piecewise linear

function, the problem consists in assigning an EB to each block and to schedule the over-

night recharging operations at the depot such that the EBs never run out of energy when

performing their blocks and the depot charging capacity is never exceeded. The objective

is twofold : minimizing the total charging costs and minimizing the impact of the char-

ging decisions in the long-term health of the batteries. We first model this problem as a

mixed integer linear program (MILP) that can be solved with a commercial solver. Then,

to yield faster computational times, we develop two multi-phase matheuristics based on

the MILP. To show the interest of considering a multiple-day horizon, we introduce two

other matheuristics that mimic current industrial practices and solve the problem sequen-

tially, one day at a time. To evaluate all these algorithms, we use a set of 264 instances

generated from data of an EB operator.

2.1 Introduction

From 1970 to 2010, greenhouse gas emissions increased by 80% (INSEE RÉFÉRENCES,

2019). This increment is mainly due to the development of energy-intensive sectors such

as manufacturing and transportation. According to the COP21 report (UNFCCC, 2016),

if no action is taken to stop this rise by 2100, the global temperature is expected to increase

by up to 5 ◦C. This strong rise could have dramatic consequences such as the acidification

of the oceans, the loss of biodiversity, and the rise of climate refugees, among others. To

limit this temperature increase, the countries reunited in the COP21 climate conference

committed to reducing emissions of CO2, which accounts for 70% of the greenhouse

gases released into the atmosphere every year.

The transportation sector is responsible for almost 30% of the European Union CO2

emissions (IPCC, 2014). One leverage that governments may use to reduce these emis-

sions is the electrification of public transport, especially city buses. The electrification

of transport systems raises several strategic, tactical, and operational challenges. Indeed,
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replacing classical diesel-powered buses with electric buses (EBs) is not straightforward.

EBs have a considerably limited driving range and therefore often need to be recharged

between services or even en route (depending on the technology, length of the line, loa-

ding time, etc.). To cope with these technological constraints, transport authorities must

deploy charging infrastructure along the lines, as well as at end-of-line terminals and de-

pots. There are two main policies for charging the EBs : opportunity charging (Y. WANG

et al., 2017 ; XYLIA et al., 2017) and overnight charging (HOUBBADI et al., 2019). In the

former, the buses are charged during their regular operation at end-of-line terminals or

long stops (e.g., at transfer points between lines). Since buses must be charged fast and

frequently, opportunity charging requires a high upfront investment in charging infrastruc-

ture (e.g., fast chargers, high tension power lines, high voltage transformers). On the other

hand, for the same reasons, buses need smaller batteries, which reduces the upfront cost

of the fleet and increases its payload. Overnight charging follows the opposite strategy.

As the name suggests, buses are charged at the depots during the night (or more broadly,

between shifts) using slow chargers. Needless to say, to implement the overnight charging

strategy, the buses must be equipped with larger, thus more expensive, batteries but the

purchasing and installing cost of slow chargers is much lower than that of fast chargers

(BLOOMBERG NEW ENERGY FINANCE, 2018). In this paper, we focus on transportation

systems exploiting the overnight charging strategy.

Today, because EBs account for only a small fraction of the vehicles in a fleet and

slow chargers are relatively inexpensive, transit operators can often dedicate one charger

to each EB during overnight charging operations. However, the participation of EBs in

the global fleet is expected to grow up to 50% by 2025 (CAUGHILL, 2018). Due to this

drastic change and the tight budget and space constraints that operators typically face,

the one-charger-per-vehicle practice is not sustainable in the long run. Moreover, even in

cases where these constraints are not critical and the operator can devote one charger to

each EB, it is virtually impossible to use all the chargers at the same time due to maximum

power grid constraints. As a consequence, operators need to develop strategies to sche-

dule overnight EB charging operations taking into account these charging infrastructure
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capacity constraints.

In general, the overnight EB charging scheduling process works as follows. First, se-

quences of timetabled trips, called vehicle blocks, are computed for each day of a planning

horizon (e.g., a week) by solving a vehicle scheduling problem (VSP) or a multi-depot

VSP (BUNTE & KLIEWER, 2009 ; KLIEWER et al., 2006 ; LÖBEL, 1999). Second, every

night, the EBs are assigned to the vehicle blocks to be operated from their depot on the

next day, taking into account their current state of charge (SoC). Third, each EB is rechar-

ged overnight just enough to be able to perform its assigned block. While this day-by-day

process is simple to understand and implement, it may be unsuitable in many practical si-

tuations. For instance, imagine a simplified situation with one EB and two days, each with

a single block (for simplicity Block 1 and Block 2). Now, assume that Block 1 consumes

50% of a full battery charge and Block 2 consumes 90%. Assume also that the EB al-

ways keeps a charge equivalent to 10% of its battery capacity as a safety buffer. A myopic

single-day scheduler may prescribe charging the EB up to 60% of its capacity the night

before Day 1. Then, the EB will return to the depot with a SoC of 10% after executing

Block 1. If Block 1 finishes late at night and Block 2 starts early in the morning, the inter-

block period may not be long enough to fully charge the battery (which is required to

execute Block 2 and meet the minimum buffer constraint). Considering a multi-day sche-

duling horizon may help alleviate this issue. For instance, the scheduler may prescribe

charging the EB up to 80% during the first night, reducing the amount of energy that must

be charged during the second night.

Another issue that operators often neglect is the impact of the charging scheduling de-

cisions on the aging of the batteries ; the most expensive and environmentally unfriendly

component of an EBs. According to technical literature, there are two main types of bat-

tery aging : cycle aging and calendar aging. The former depends on the current rate and the

depth of discharge or DoD (i.e., the charge/discharge cut-off voltages). Charging or/and

discharging the batteries at high rates (e.g., using fast chargers) and draining them to their

maximum DoD reduces the number of charge/discharge cycles in their lifespan (BARRÉ

et al., 2013). Calendar aging depends on the batteries’ average SoC and temperature du-
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ring storage. Storing the batteries at high SoCs and temperatures for long periods of time

also reduces the battery lifespan. PELLETIER et al., 2017 pointed out calendar aging can

be improved by charging the vehicles as closely as possible to their departure times. The-

refore, there is an incentive to embed this logic into the overnight charging scheduling

process, even at the cost of increasing its complexity.

In this paper, we study the multi-day EB assignment and overnight recharge schedu-

ling problem (MDEBAOSP) that can be briefly stated as follows. Given a set of vehicle

blocks to be operated from a depot over several days, a set of identical EBs, and a set

of available chargers at the depot whose charging function is a piecewise linear function,

the MDEBAOSP consists in assigning an EB to each block and scheduling the overnight

recharging operations at the depot such that the EBs never run out of energy when perfor-

ming their blocks, the depot charging capacity is never exceeded, and the sum of the total

charging costs and battery (calendar aging) degradation costs is minimized. The goal is to

provide a decision support tool to the public transit companies that will help them to bet-

ter manage their EB fleet by making decisions based on a multiple-day planning horizon.

To accomplish this goal, we model the MDEBAOSP as a mixed-integer linear program

(MILP) that we later leverage to build two multi-phase matheuristics. To show the in-

terest of considering a multiple-day horizon, we introduce two other matheuristics that

mimic current industrial practices and solve the problem sequentially, one day at a time.

To assess all these algorithms, we report computational results obtained on a set of 264

instances generated from real-life data provided by an IT company that commercializes

optimization software for public transit.

The remainder of this paper is organized as follows. Section 2.2 presents a litera-

ture review on problems related to the MDEBAOSP. Section 2.3 formally defines the

MDEBAOSP and Section 2.4 formulates it as a MILP. Section 2.5 describes the solution

methods proposed to solve this problem. Section 2.6 provides the results of our computa-

tional experiments. Finally, Section 2.7 concludes and discusses possible future research

directions.
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2.2 Literature review

The integration of EBs into an urban transit network is related to several classes of

problems including, but not limited to : fleet transformation problems (FTPs), charging

location problems (CLPs), charging scheduling problems (CSPs), sequence assignment

problems (SAPs), and vehicle scheduling problems (VSPs). In a recent paper, DIRKS

et al., 2021 extensively survey the literature on those problems and analyze the major

contributions to their corresponding streams of research. For the sake of completeness,

we briefly overview the main characteristics of these problems here, but we refer the

reader to their excellent paper for further details. FTPs aim to create a plan spanning

multiple periods (e.g., years) to replace a fleet of classical diesel-powered buses with a

fleet of EBs (DIRKS et al., 2022 ; PELLETIER et al., 2019). The main decisions involve

the purchase of new EBs, the retirement of old diesel-powered buses, and the purchase of

the charging stations needed to power the EBs of the new fleet. The aim is to minimize

the sum of operational and fleet and charger acquisition costs. As their name suggests,

CLPs consist in locating charging stations across a transit network to ensure that the EBs

in a fleet can operate without running out of power (Z. LIU et al., 2018 ; LOTFI et al.,

2020). Usually, CLPs focus on transit systems implementing the opportunity charging

strategy. Therefore, potential charger locations are typically reduced to the bus stops, the

end-of-line terminals, and the hubs making up the network. The main decisions are then

the number, type, and location of the chargers to be installed. Some CLP variants also

consider decisions on the type and size of the batteries that should be installed in the EBs

(KUNITH et al., 2017). In CLPs, the objective function typically aims to minimize the

acquisition and installation cost of the charging stations (and batteries).

At an operational level, CSPs assume that the trip-to-vehicle assignments are gi-

ven, and focus on scheduling charging operations between trips (SASSI-BEN SALAH &

OULAMARA, 2014). Some CSP variants consider capacitated and heterogeneous charging

stations (PELLETIER et al., 2018). In addition to that, some variants also include battery

aging considerations (KLEIN & SCHIFFER, 2023 ; PELLETIER et al., 2018). SAPs consist
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in assembling sequences of trips (i.e., blocks in our jargon) and assigning each of those

blocks to an EB (ROGGE et al., 2018 ; SASSI-BEN SALAH & OULAMARA, 2017). To

ensure the operational feasibility of a block, among other things, SAPs must determine

where and for how long the EB assigned to that block must charge its battery between

two trips. The objective is usually to minimize energy costs. For electric vehicles, SAPs

can be considered an extension of the CSPs where trip-to-vehicle assignments are addi-

tional decisions to the problem. Finally, VSPs aim to determine the minimum number of

vehicles that are needed to perform a set of trips (JANOVEC & KOHÁNI, 2019 ; T. LIU

& CEDER, 2020). They can therefore be seen as SAPs, where the number of vehicles to

acquire is also a decision variable and the objective seeks to minimize not only the total

cost of the energy but also that of purchasing the fleet.

As briefly discussed in Section 2.1, the VSPs take action in the previous step of the

planning process, so their outputs are key inputs to our MDEBAOSP. The literature re-

ports on several electric VSP (eVSP) variants. For instance, WEN et al., 2016 developed

an adaptive large neighborhood search heuristic for an eVSP with multiple depots and a

linear charging function. JANOVEC et KOHÁNI, 2019 proposed a MILP that can be solved

by a commercial solver for an eVSP. Their objective was to assign a set of service trips

and a set of charging events to EBs from a homogeneous fleet, operating from a single

depot, creating a schedule for each vehicle and for each charger, considering partial char-

ging, while minimizing the number of vehicles. RINALDI et al., 2020 introduce a time

decomposition heuristic that solves a series of MILPs for a version of the problem with a

mixed fleet (EBs and hybrid buses), operating from a single depot, while minimizing the

total operational cost. ALVO et al., 2021 design a Benders decomposition algorithm for a

mixed fleet (EBs and diesel buses) eVSP with a linear charging function, while minimi-

zing first the number of diesel buses used and second their total fuel consumption. Their

decomposition is structured as : (i) a master problem creating bus schedules and charger

schedules, without considering charger capacity ; (ii) a satellite problem that checks if

feasible charger schedules can be computed for the given bus schedules. ZHANG et al.,

2021 develop a branch-and-price algorithm that can handle battery degradation through
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cycle aging but does not allow partial charging. ZHOU et al., 2022 tackle a more complex

problem that allows partial charging and considers multiple charger types. They solve

their problem using a MILP, enhanced with problem-specific valid inequalities, running

on a commercial solver. WU et al., 2022 propose a branch-and-price algorithm for solving

a multi-depot eVSP considering a rich time-of-use electricity tarification but forcing the

EBs to always charge to their full capacity and assuming constant charging times. Finally,

KLEIN et SCHIFFER, 2023 design an exact branch-and-price algorithm to solve the route

and recharge scheduling problem, with flexible service operations (i.e. the departure time

of each vehicle is a decision of the problem). To solve large instances involving up to 500

trips, the authors devise a heuristic version of their algorithm that is based on a graph re-

duction technique and a diving heuristic to quickly find good primal solutions. It is worth

noting that, contrary to our case, all the papers discussed above define the problem over

a single-day planning horizon. To the best of our knowledge, this research is the first to

integrate the overnight charging scheduling and the block assignment problems over a

planning horizon of multiple days.

Another common trait in the eVSP literature is the choice of a linear function to mo-

del the battery charging process. As the name suggests, under this modeling paradigm, the

amount of energy that an EB retrieves from the grid is proportional to the time it spends

charging. In reality, however, the relation between charged energy and charging time

is logarithmic. MONTOYA et al., 2017 showed (on an electric vehicle routing problem)

that disregarding the non-linear nature of the charging function may lead to solutions

that are either infeasible in the field or overly conservative (i.e., expensive or resource-

consuming). They also showed that modeling the charging function using a piecewise

linear function instead of a linear one leads to a more accurate representation of the char-

ging process, but also makes the underlying optimization problem considerably harder to

solve. In this research, we build on their findings and use a piecewise linear function to

model the charging process.

All the papers cited in the previous paragraphs consider a planning horizon of one day,

while we are interested in a multiple-day horizon. Given the size of practical multi-day
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eVSPs, they are typically solved in two phases : in the first phase, a series of single-

day eVSPs is first solved to devise vehicle blocks to cover on each day ; in the second

phase, a MDEBAOSP is solved to assign EBs to these blocks and determine the overnight

recharge schedule for each night. The first-phase eVSPs can be solved using one of the al-

gorithms mentioned above. To the best of our knowledge, the second-phase MDEBAOSP

that we study in this paper is new. It can be seen as similar to the eVSP if we consider that

the blocks in the MDEBAOSP play the same role as the trips in the eVSP, except that the

blocks may include recharging events and, therefore, the net energy consumed along them

may be positive, negative or null. On the other hand, the recharge scheduling part in the

MDEBAOSP is much more complex than in the eVSP because of the specific structure of

the charging operations. In the eVSP, charging operations are scattered during the entire

planning horizon. In the MDEBAOSP, they are concentrated in short time windows cor-

responding to each night spent at the depot. This structure makes the classical algorithms

to solve eVSP not suited for the MDEBAOSP. Finally, classical eVSP algorithms do not

consider battery degradation and non-linear charging function.

2.3 The multi-day electric bus assignment and overnight

recharge scheduling problem

In the classical workflow of a transit operator, the MDEBAOSP (an operational pro-

blem) arises after solving an eVSP (a tactical problem) to produce a set of vehicle blocks

for each day in the planning horizon. These blocks may or may not include scheduled en-

route charging events. Formally, the MDEBAOSP can be described as follows. Let D be

the set of days in the planning horizon (numbered from 1 to |D|). Let Bd , d ∈D, be the set

of blocks to be operated on day d and denote by B =
⋃

d∈D Bd the set of all blocks. Each

block i ∈ B is defined as a sequence of bus trips and, possibly, charging events that ensure

that the EB will have enough energy to reach the next charger or the end of the block. A

bus assigned to a block i starts and ends at a depot at time hS
i and hE

i , respectively. Given

64



that the charging operations within each block are predefined, block i is also associated

with a net energy consumption ei (that can be positive, negative or null), a maximum net

SoC increase emaxI
i , and a maximum net SoC decrease emaxD

i . Note that due to the out-of-

depot charging events, the SoC of the EB assigned to a given block may, at some point,

be greater than its initial SoC (i.e., the SoC when the EB leaves the depot). Therefore,

parameter emaxI
i can be used to avoid charging batteries that are already full. Similarly,

parameter emaxD
i ensures that the EB has no energy shortage along the block if it leaves

the depot with a SoC of at least emaxD
i . Figure 2.1 illustrates the intuition behind these two

parameters with a vehicle block performing 3 trips.

FIGURE 2.1 – Energy variation within a vehicle block i

To operate the vehicle blocks in B, the transit company uses a fleet V of identical EBs

with a battery capacity of Q units. At the beginning of the horizon, EB v ∈V is available

from time hinit
v with a SoC of SOCinit

v . Then, its SoC varies throughout the horizon accor-

ding to the sequence of blocks it is assigned to and the overnight recharging operations

it undergoes. At anytime, the SoC must remain between SOCmin and SOCmax. Each EB

in V is assigned to at most one vehicle block per day. Given that the number of blocks

to service might differ from one day to another and that the EB fleet may contain reserve

EBs, some EBs may not be assigned to a block on some days. To deal with this case in

our model, we create dummy blocks for each day that are added to keep the daily number

of blocks constant and equal to the number of EBs. Each dummy block represents an idle
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EB for a day, that has zero energy consumption, the latest possible starting time and the

earliest ending time. These dummy blocks are part of the sets Bd , d ∈ D.

At the depot, there is a set C of identical chargers available to recharge (fully or par-

tially) the EBs overnight. Therefore, at most |C| EBs can recharge simultaneously. We

assume that |C|< |V | and that the overnight charging operations are not preemptive. The

charging function f is a concave piecewise linear function that associates, for a given ini-

tial SoC, the amount of energy recharged with the charging time. We denote by P the set of

linear pieces of f and associate with each piece p three values : (i) the total energy qp that

can be charged on piece p ; (ii) the time θp needed to charge the qp units of energy (see

Figure 2.2) ; and, (iii) the cost γp for charging the qp units of energy. Note that ∑p∈P qp is

equal to the energy required to fully recharge a battery.

FIGURE 2.2 – Concave piecewise linear charging function f

As mentioned earlier, battery calendar aging can be improved by charging the EBs

close to their departure time. The reason is that the battery degrades faster when it stores

energy at high SoC levels (PELLETIER et al., 2018). To favor the generation of charging

schedules that reduce calendar aging, we consider a unit damage cost of δ for every mi-

nute an EB spends at the depot between the end of a charging operation and the start time
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of its next vehicle block. Note that we do not consider cycle aging. The reasons are two-

fold. First, the vehicle blocks, and their energy consumption, are given and unmodifiable.

Second, the chargers are homogeneous and they deliver an invariable current rate. There-

fore, in our setting, there is little room to optimize cycle aging ; but taking it into account

would greatly increase the complexity of our models and methods.

The MDEBAOSP consists in assigning the EBs to the vehicle blocks and scheduling

their overnight recharges such that each block is serviced by an EB, the EBs do not run out

of energy, the number of available chargers is never exceeded, and the sum of the energy

costs and damage costs is minimized. The notation used is summarized in Table 2.1,

which also includes notation introduced in the next section.

2.4 Mixed integer programming formulation

In this section we introduce a two-commodity network flow MILP formulation for

the MDEBAOSP. One commodity models the flow of the EBs through the vehicle blocks

to determine the sequences of blocks assigned to the EBs over the planning horizon. The

other commodity models, for each day, the flow of the chargers through the EB recharging

operations to determine the recharge schedule of the EBs. The latter draws inspiration

from the model proposed by FROGER et al., 2022 for an electric vehicle routing problem

with capacitated charging stations.

The problem is defined on a directed graph G = (N,A), where N = B∪{cd | d ∈ D}

is the node set and A = Abus ∪
(⋃

d∈D Achg
d

)
is the arc set. The EBs’ flow on the subnet-

work that comprises the block nodes B and the arcs in Abus, represents the possible block

successions for an EB. There exists an arc (i, j) ∈ Abus with i ∈ Bd if and only if d ̸= |D|,

j ∈ Bd+1 and there is sufficient time between these two blocks to recharge the minimum

energy to be able to perform both blocks consecutively. A feasible bus assignment solu-

tion corresponds to a set of |V | disjoint paths, all starting from a node in B1 and ending at

a node in B|D|.

To model the charger assignment on day d ∈D, there is a subnetwork that contains the
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TABLE 2.1 – Sets and parameters used in the model

Sets
D Set of days in the planning horizon
B Set of vehicle blocks
Bd Set of vehicle blocks on day d
V Set of available EBs
C Set of chargers
P Set of linear pieces in the charging function
A Set of arcs

Abus Subset of arcs for the bus assignment
Achg

d Subset of arcs for the overnight charger assignment before day
d

N Set of nodes

Parameters
hE

i Ending time of vehicle block i
hS

i Starting time of vehicle block i
ei Net energy consumption along vehicle block i

emaxI
i Maximum net SoC increase along vehicle block i

emaxD
i Maximum net SoC decrease along vehicle block i
Q Battery charging capacity

hinit
v Initial available time of EB v

SOCinit
v Initial SoC of EB v

SOCmax Maximum SoC of the battery
SOCmin Minimum SoC of the battery

f Piecewise linear charging function
qp Maximum SoC difference on piece p
θp Maximum charging time on piece p
γp Maximum charging cost on piece p
δ Unit damage cost spent at the depot after a charging operation
M Large constant (time span of the planning horizon)
cd Charger node on day d

nodes in Bd ∪{cd} and the arcs in Achg
d , representing the possible successions of charging

operations as well as the first and last operations for each available charger. A charging

operation is associated with a block in Bd and is performed on the EB to be assigned to

this block. There is an arc (i, j) ∈ Achg
d if one of the following three sets of conditions is

met : (i) i = cd and j ∈ Bd ; (ii) j = cd and i ∈ Bd ; and (iii) i, j ∈ Bd and i ̸= j. A feasible

charger assignment for day d is obtained as a subset of at most |C| circuits starting and
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ending at cd and visiting exactly each node in Bd exactly once. In this case, we assume

that each EB needs to be recharged every night but possibly for a duration of zero time

units (which, in practice, corresponds to not recharging).

An example of a graph G defined for a MDEBAOSP instance with 3 days, 3 EBs, 3

vehicle blocks per day, and 2 chargers at the depot can be found in Figure 2.3. The set of

paths made up of bold arcs represents a feasible solution where an EB is assigned to the

sequence of blocks 1 – 4 – 8 (the orange EB), another to 2 – 6 – 7 (the green EB), and

the last one to 3 – 5 – 9 (the yellow EB). During the night between days 1 and 2, one of

the chargers recharges the orange EB, while the other one recharges the yellow and green

EBs (in that order). The sequences of charging operations are then 4 and 5 – 6. During

the night between days 2 and 3, the sequences of charging operations are 8, and 7 – 9.

One of the chargers recharges the orange EB and the other the green and yellow EBs (in

that order). It is worth noting that in this example, we assume that the three EBs are fully

charged before Day 1 and, therefore, no charging operations are needed. Node c1 and the

arcs in Achg
1 have, thus, been omitted.

The decision variables of the proposed MILP are as follows :

— xi, j : Binary variable equal to 1 if an EB covers block j immediately after block i

and to 0 otherwise, ∀(i, j) ∈ Abus.

— yi, j : Nonnegative variable indicating the SoC of the EB after performing block i if

xi, j = 1 or set to 0 otherwise, ∀(i, j) ∈ Abus.

— qi : Nonnegative variable indicating the SoC of the EB performing block i before

its charging operation preceding block i, ∀i ∈ B.

— q̄i : Nonnegative variable indicating the SoC of the EB performing block i after its

charging operation preceding block i, ∀i ∈ B.

— αi,v : Binary variable equal to 1 if EB j is assigned to block i on the first day and to

0 otherwise, ∀i ∈ B1,v ∈V .

— ti : Nonnegative variable specifying the required charging time before performing

block i, ∀i ∈ B.
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FIGURE 2.3 – Graph G representing the problem with block node set B in blue and charger
node set C in red.

— ai : Continuous variable indicating the recharge starting time before performing

block i, ∀i ∈ B.

— ∆i : Nonnegative variable indicating the waiting time between the end of the re-

charge and the start of block i, ∀i ∈ B.

— λ
p
i (resp. λ̄

p
i ) : Nonnegative variable indicating the fulfilled fraction of piece p of

the SoC charging function when the EB performing block i arrives at (resp. leaves)

the depot before (resp. after) performing block i, ∀i ∈ B, p ∈ P.

— ui, j : Binary variable equal to 1 if a charger is used to charge the EB assigned to

block j immediately after the EB assigned to block i and to 0 otherwise, ∀d ∈

D,(i, j) ∈ Achg
d .

Figure 2.4 illustrates the relationships between variables and parameters associated

with a block i and its preceding charging operation. If xk,i = 1, then blocks k and i are

assigned consecutively to the same EB. Block k ends at time hE
k while block i starts at hS

i
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and ends at hE
i . The charging operation between these two blocks starts at time ai and lasts

ti units of time. The waiting time after the recharge is, thus, given by ∆i = hS
i − (ai + ti).

From the energy point of view, variable yk,i indicates the SoC of the EB at the end of

block k. This value is equal to the SoC qi before starting the recharge. Then, variable q̄i

indicates the SoC after the recharge and depends on qi and the recharging time ti. Finally,

ei provides the net energy consumed when performing block i.

FIGURE 2.4 – Variables and parameters associated with block i and its preceding
charging operation, performed after block k and before block j (energy-related va-
riables/parameters on top ; time-related ones at the bottom)

To improve readability, we introduce the proposed MILP in two steps. First, we present

the model using the charging function f or, more precisely, its inverse f−1, to englobe all

charging decisions. Then, we discuss how to express this piecewise linear function using

additional variables and constraints.

The objective function (2.1) of the MDEBAOSP minimizes the total charging costs

and the calendar aging costs generated by the idle time between the end of the charging

operations and the start of the blocks. Note that the λ̄
p
i and λ

p
i variables depend on the qi

and q̄i variables and their relationship will be made explicit only in the second part of the

model below.

min ∑
i∈B

∑
p∈P

γp(λ̄
p
i −λ

p
i )+∑

i∈B
δ∆i (2.1)

This MILP includes four sets of constraints : the first set of constraints models the

EB-to-block assignment ; the second one tracks the SoC variations along the nodes of the
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network ; the third set computes the charging times and schedules the charging tasks ; and

the last one models the piecewise linear charging function.

Constraints (2.2)–(2.3) ensure that each block has a successor (except those on the last

day) and a predecessor (except those on the first day), creating a feasible bus assignment

as a set of |V | disjoint paths.

∑
j:(i, j)∈Abus

xi, j = 1, ∀i ∈ B\B|D| (2.2)

∑
j:( j,i)∈Abus

x j,i = 1, ∀i ∈ B\B1 (2.3)

Constraints (2.4) restrict variables yi, j to take a positive value only if there is an EB

flow on arc (i, j). Constraints (2.5)–(2.6) compute the SoC between consecutive blocks.

Constraints (2.7) initialize the SoC at the beginning of the time horizon. Constraints (2.8)–

(2.9) assign each EB to a unique block on the first day. Constraints (2.10)–(2.11) stipulate

that the SoC of the EB assigned to each block i must be within the feasible range.

yi, j ≤ SOCmax xi, j, ∀(i, j) ∈ Abus (2.4)

∑
j:(i, j)∈Abus

yi, j = q̄i− ei, ∀i ∈ B\B|D| (2.5)

qi = ∑
j:( j,i)∈Abus

y j,i, ∀i ∈ B\B1 (2.6)

qi = ∑
v∈V

αi,v SOCinit
v , ∀i ∈ B1 (2.7)

∑
v∈V

αi,v = 1, ∀i ∈ B1 (2.8)

∑
i∈B1

αi,v = 1, ∀v ∈V (2.9)

q̄i ≥ SOCmin + emaxD
i , ∀i ∈ B (2.10)

q̄i ≤ SOCmax− emaxI
i , ∀i ∈ B (2.11)

Constraints (2.12) and (2.13) impose a lower bound on the starting time of the re-

charge before block i depending on its predecessor block or its initial available time, while
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constraints (2.14) allow to compute the waiting time after this recharge. Constraints (2.15)

determine the time required to charge the EB assigned to block i from a SoC of qi to a

SoC of q̄i. These constraints are nonlinear and will be expressed differently below (see

constraints (2.27)–(2.43)). Constraints (2.16)–(2.18) define the flow structure for the char-

gers on each day, while constraints (2.19) impose to schedule a charging task before each

block on each day. Constraints (2.20) ensure that there is no overlap between two conse-

cutive charging operations.

ai ≥ ∑
j:( j,i)∈Abus

x j,i hE
j , ∀i ∈ B\B1 (2.12)

ai ≥ ∑
v∈V

αi,v hinit
v , ∀i ∈ B1 (2.13)

ai + ti +∆i = hS
i , ∀i ∈ B (2.14)

ti = f−1(q̄i)− f−1(qi), ∀i ∈ B (2.15)

∑
i∈Bd

ucd ,i ≤ |C|, ∀d ∈ D (2.16)

∑
i∈Bd

ui,cd ≤ |C|, ∀d ∈ D (2.17)

∑
j∈Bd∪{cd}\{i}

(u j,i−ui, j) = 0, ∀d ∈ D, i ∈ Bd (2.18)

∑
j∈Bd∪{cd}\{i}

u j,i = 1, ∀d ∈ D, i ∈ Bd (2.19)

ai + ti ≤ a j +M(1−ui, j), ∀d ∈ D, i, j ∈ Bd (2.20)

Finally, constraints (2.21)-(2.26) define the domains of the decision variables.

xi, j ∈ {0,1}, ∀(i, j) ∈ Abus (2.21)

yi, j ≥ 0, ∀(i, j) ∈ Abus (2.22)

qi, q̄i, ti,∆i ≥ 0, ∀i ∈ B (2.23)

0≤ λ
p
i , λ̄

p
i ≤ 1, ∀i ∈ B, p ∈ P (2.24)

αi,v ∈ {0,1}, ∀i ∈ B1,v ∈V (2.25)
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ui, j ∈ {0,1}, ∀d ∈ D,(i, j) ∈ Achg
d (2.26)

To model the piecewise linear charging function f , we introduce the following addi-

tional variables :

— wp
i (resp. w̄p

i ) : Binary variable equal to 1 if SoC qi (resp. q̄i) is on piece p of the

charging function f and to 0 otherwise, ∀i ∈ B, p ∈ P.

— θ i (resp. θ̄i) : Nonnegative variable equal to f−1(qi) (resp. f−1(q̄i)), ∀i ∈ B.

We also replace constraints (2.15) by the following constraints :

ti = θ̄i−θ i, ∀i ∈ B (2.27)

∑
p∈P

wp
i = 1, ∀i ∈ B (2.28)

qi ≥
(

∑
p′∈P:
p′<p

qp′
)

wp
i , ∀i ∈ B, p ∈ P (2.29)

qi ≤
(

∑
p′∈P:
p′≤p

qp′
)

wp
i +(1−wp

i ) Q, ∀i ∈ B, p ∈ P (2.30)

λ
p
i ≥ ∑

p′∈P:
p′>p

wp′
i , ∀i ∈ B, p ∈ P (2.31)

λ
p
i ≤ 1− ∑

p′∈P:
p′<p

wp′
i , ∀i ∈ B, p ∈ P (2.32)

qi = ∑
p∈P

qp λ
p
i , ∀i ∈ B (2.33)

θ i = ∑
p∈P

θp λ
p
i , ∀i ∈ B (2.34)

∑
p∈P

w̄p
i = 1, ∀i ∈ B (2.35)

q̄i ≥
(

∑
p′∈P:
p′<p

qp′
)

w̄p
i , ∀i ∈ B, p ∈ P (2.36)

q̄i ≤
(

∑
p′∈P:
p′≤p

qp′
)

w̄p
i +(1− w̄p

i ) Q, ∀i ∈ B, p ∈ P (2.37)

λ̄
p
i ≥ ∑

p′∈P:
p′>p

w̄p′
i , ∀i ∈ B, p ∈ P (2.38)

74



λ̄
p
i ≤ 1− ∑

p′∈P:
p′<p

w̄p′
i , ∀i ∈ B, p ∈ P (2.39)

q̄i = ∑
p∈P

qp λ̄
p
i , ∀i ∈ B (2.40)

θ̄i = ∑
p∈P

θp λ̄
p
i , ∀i ∈ B (2.41)

θ i, θ̄i ≥ 0, ∀i ∈ B (2.42)

wp
i , w̄

p
i ∈ {0,1}, ∀i ∈ B, p ∈ P. (2.43)

Constraints (2.27) are equivalent to constraints (2.15) but expressed linearly using

the θ i and θ̄i variables. For each block i ∈ B, constraints (2.28)–(2.34) are dedicated to

the computation of θ i as a function of qi. Indeed, constraints (2.28) impose that a single

piece be selected, whereas constraints (2.29)–(2.30) ensure that qi is part of this piece.

Constraints (2.31) and (2.32) set the fulfilled fraction of a piece equal to 1 if it is before the

selected piece and to 0 if it is after, respectively. Constraints (2.33) allow to compute the

value of λ
p
i for the selected piece p given the other λ

p′
i values. Ultimately, the value of θ i

is obtained through constraints (2.34) as a function of the λ
p
i variables. Constraints (2.35)–

(2.41) play a similar role but they are used to compute for each block i ∈ B the value of

θ̄i in function of q̄i. Finally, the domains of the new variables are restricted by constraints

(2.42)–(2.43).

In the following, we refer to the MILP (2.1)–(2.14), (2.16)–(2.43) as the MDEBAOSP-

MILP.

2.5 Solution algorithms

The MDEBAOSP-MILP can be solved using the branch-and-cut algorithm embedded

in commercial MILP solvers (see Section 2.6 for details). However, our computational

results indicate that it is difficult to solve instances with a tight recharge scheduling sub-

problem, i.e., instances in which the number of chargers is much lower than the number

of EBs. In order to solve such instances more efficiently, we propose three matheuristics

that are presented in this section.
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2.5.1 Assign-then-schedule heuristic

Our tests revealed that, when solving the MDEBAOSP-MILP, the branching is mainly

done on the ui, j variables that are responsible for the scheduling of the charging opera-

tions. In fact, minimizing the calendar aging costs is what makes the problem difficult

to solve as omitting this criterion yields a large number of feasible charging schedules

with the same cost. From this observation, we propose a first matheuristic that decom-

poses the problem into two subproblems that are solved sequentially : assigning first the

EBs to the blocks, then scheduling the charging operations. Algorithm 2 provides a high-

level description of the proposed Assign-then-Schedule (AtS) heuristic. In the first line

the algorithm solves EB-to-block assignment problem over the whole planning horizon,

minimizing only the charging costs, i.e., setting δ = 0 in the MDEBSP-MILP and solving

it by a MILP solver. In Line 2, we record the EB-to-block assignment and the charging

operations prescribed in this solution. Each charging operation is associated with a du-

ration and a pair of release and due times given by the EB assignment and the start and

end times of the vehicle blocks. Then, assuming that the recharge scheduling problem

becomes separable per day once the EB assignment and the charging operation durations

are known, we solve for each day its corresponding recharge scheduling problem Line 3).

This problem aims at scheduling the charging operations while minimizing the calendar

aging costs. To do so, we first enumerate feasible individual charger schedules (Line 4),

before formulating the problem as a set partitioning model and solving it with a MILP

solver (Line 5). We discuss this model below.

The proposed set partitioning approach assumes that it is possible to enumerate all

possible individual charger schedules. The latter is defined as a sequence of charging

operations, and their starting times, that can be feasibly performed by a single charger.

It is worth noting that in practice, fully enumerating the charging schedules is doable.

Indeed, charging operations are relatively long (with respect to the length of the overnight

period) and therefore each charger only performs a few charging operations per night. For

day d ∈ D, denote by Td the set of charging operations to accomplish before the start of
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the blocks in Bd . We include in this set only the real charging operations, i.e., we exclude

those with a zero duration. Let HR
d , HD

d , and Ud be the earliest release time, the latest due

time, and the minimum duration of the charging operations in Td , respectively. Then, an

upper bound on the maximum number of charging operations that a charger can process

on the night preceding day d is given by : kd =
⌊
(HD

d −HR
d )/Ud

⌋
.

Algorithme 2 : Assign-then-Schedule (AtS) heuristic
1 Solve the MDEBAOSP, minimizing only the total charging costs;
2 From the computed solution, save the EB-to-block assignment and the charging

operations;
3 foreach day d ∈ D do
4 Generate non-dominated feasible charger schedules compatible with the

saved EB-to-block assignment and containing up to kd charging operations
to accomplish before the blocks in Bd;

5 Solve a set partitioning problem to find an optimal subset of charger
schedules;

6 end

In Line 4, the individual charger schedules are generated by enumerating all subsets

of charging operations containing at most kd elements. For each subset, all possible per-

mutations (sequences) of its operations are considered. For a given sequence s, a schedule

is established by scheduling each operation as late as possible (to minimize the calendar

aging costs) in reverse order, i.e., from the last to the first. More precisely, let i1, i2, . . . , in

be a sequence of n charging operations (n ≤ kd), where the release time, the due time,

and the duration of operation i are denoted as hR
i , hD

i and ti, respectively. Then, the star-

ting times ai j , j = 1, . . . ,n, of the operations are computed with the following backward

recursion :

ain = hD
in− tin (2.44)

ai j = min {hD
i j
,ai j+1}− ti j , j = n−1,n−2, . . . ,1. (2.45)

This charger schedule is feasible if and only if ai j ≥ hR
i j

for all j ∈ {1,2, . . . ,n}. The
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(calendar aging) cost ℓs of this schedule s is given by :

ℓs = δ

n

∑
j=1

[hD
i j
− (ai j + ti j)]. (2.46)

Among all feasible permutations of a subset of charging operations, we keep a single one,

namely, the one with the lowest cost. The others are dominated and can, thus, be discar-

ded. An extensive pseudocode of the generation of the non-dominated feasible charger

schedules is given in Appendix, Section 3.6.

The set of all non-dominated feasible charger schedules is denoted as Sd . For each

schedule s ∈ Sd and operation i ∈ Td , we define a binary parameter rsi that takes value

1 if schedule s contains operation i and 0 otherwise. Furthermore, we associate a binary

variable vs with each schedule s ∈ Sd to indicate if charger schedule s is selected or not

for the recharging schedule on day d. The set partitioning model with a side constraint

solved in Line 5 of Algorithm 2 is as follows :

min ∑
s∈Sd

ℓsvs (2.47)

subject to :

∑
s∈Sd

rsivs = 1, ∀i ∈ Td (2.48)

∑
s∈Sd

vs ≤ |C|, (2.49)

vs ∈ {0,1}, ∀s ∈ Sd. (2.50)

The objective function (2.47) aims at minimizing the total calendar aging costs. The

set partitioning constraints (2.48) impose that each charging operation in Td is scheduled

in one of the selected charger schedules, while constraint (2.49) ensures that the available

number of chargers is not exceeded.

When the value of kd is small, model (2.47)–(2.50) is relatively easy to solve using a

commercial MILP solver. Finally, note that the charging schedule obtained for each day

in the solution computed in Line 1 of Algorithm 2 provides an upper bound on the optimal

value of model (2.47)–(2.50) that can be exploited by the solver.
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2.5.2 Daily-assign-then-schedule heuristic

As previously mentioned, the MDEBAOSP combines two subproblems : an assign-

ment problem of EBs to vehicle blocks and a recharge scheduling problem. Once the

assignment of EBs to blocks is determined, the total quantity of energy to recharge on

each EB is fixed, which makes the recharge scheduling problem simpler to solve. From

this observation, we propose a second matheuristic which adds to the AtS heuristic a pre-

liminary phase that identifies successions of blocks to be operated by the same EB. This

new heuristic is called the Daily-Assign-then-Schedule (D-AtS) heuristic as it computes

these block-to-block assignments one day at a time. The D-AtS heuristic is described

in Algorithm 3. It consists of three main phases. The first phase (Lines 1–4) consists in

solving an assignment problem for each day d in D except the first one. It computes for

each block in Bd−1 a successor block in Bd , i.e., it determines the values of the xi, j va-

riables. This assignment problem is discussed in the next paragraph. Given these fixed

xi, j variables, the second phase (Lines 5–6) assigns an EB to each sequence of blocks and

finds the amount of energy to charge in each EB every night seeking to minimize the total

charging costs, omitting the calendar aging costs (δ = 0). Similar to AtS, in the last phase

(Lines 7–10), D-AtSschedules the charging operations in order to minimize the calendar

aging costs, taking into account the decisions fixed in the previous phases.

For each day d ∈ D \ {1}, the goal of the assignment problem solved in Line 2 of

Algorithm 3 is to find a successor block in Bd for each block in Bd−1 in such a way that i)

the minimum energy required to operate all blocks in Bd−1∪Bd is minimized, and ii) the

time available at the depot to carry the charging operations is maximized. This assignment

problem is defined as follows. Consider a bipartite directed graph where the node set is

given by Bd−1∪Bd . The arc set, denoted Ãd , contains an arc (i, j) with i∈Bd−1 and j ∈Bd

if and only if the same EB can be assigned to both blocks i and j, i.e., if

hS
j −hE

i ≥ max{0, f−1(SOCmin + emaxD
j )− f−1(SOCmax− ei)}. (2.51)

In this expression, SOCmin+emaxD
j and SOCmax−ei indicate the minimum SoC of an EB at

the start of block j and the maximum SoC at the end of block i, respectively. Therefore, if
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Algorithme 3 : Daily-Assign-then-Schedule (D-AtS) heuristic
1 foreach day d ∈ D\{1} do
2 Solve an assignment problem to match the vehicle blocks of day d−1 with

those of day d;
3 From the computed solution, save the block-to-block assignment (the xi, j

variable values);
4 end
5 Solve the MDEBAOSP with fixed xi, j variables, minimizing only the total

charging costs;
6 From the computed solution, save the EB-to-block assignment and the charging

operations;
7 foreach day d ∈ D do
8 Generate non-dominated feasible charger schedules compatible with the

saved EB-to-block assignment containing up to kd charging operations to
accomplish before the blocks in Bd;

9 Solve a set partitioning problem to find an optimal subset of charger
schedules;

10 end

SOCmin +emaxD
j > SOCmax−ei, then f−1(SOCmin +emaxD

j )− f−1(SOCmax−ei) provides

the minimum charging time between these two blocks. Hence, condition (2.51) ensures

that block i ends before the start of block j and that there is sufficient time between these

two blocks to recharge the minimum required energy. For each arc (i, j)∈ Ãd , we associate

a cost ci j that is defined as follows :

ci, j =


(SOCmin+emaxD

j )−(SOCmax−ei)

hS
j−hE

i
if (SOCmin + emaxD

j )− (SOCmax− ei)> 0

0 otherwise.
(2.52)

Thus, this cost structure favors matching pairs of blocks that induce a small minimum

amount of energy to recharge and a larger recharge time window availability.

Let us define a binary variable zi, j for each arc (i, j) ∈ Ãd that takes value 1 if block i

is matched with block j. The assignment problem can be formulated as follows :

min ∑
(i, j)∈Ãd

ci, jzi, j (2.53)

subject to :
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∑
i:(i, j)∈Ãd

zi, j = 1, ∀ j ∈ Bd (2.54)

∑
j:(i, j)∈Ãd

zi, j = 1, ∀i ∈ Bd−1 (2.55)

zi, j ∈ {0,1}, ∀(i, j) ∈ Ãd. (2.56)

The objective function (2.53) minimizes the sum of the costs of the selected arcs. Constraints (2.54)

and (2.55) ensure that each block in Bd is matched with a unique block in Bd−1 and vice-

versa. It is well known that this problem can be solved in polynomial time using, for

instance, the Hungarian algorithm (KUHN, 1955).

In practice, bus trip timetables often repeat every weekday during a season (or even

throughout the year). In this case, the vehicle blocks can also be identical every day.

Therefore, the same assignment problem may arise for multiple pairs of consecutive days

in the planning horizon and only one of them needs to be solved. The computed solution

will then be repeated for each identical pair of days, yielding consistent block-to-block

assignment on multiple consecutive days. This consistency is often appreciated by transit

companies as it eases the overnight operations at the depot. One can note that the block-

to-block assignment computed in Line 2 could yield an infeasible MDEBAOSP at Line 5

due to the lack of long-term vision. A smart mechanism to “repair“ the solution would

be to add standby EBs in the set Bd , represented by dummy blocks that has zero energy

consumption, the latest possible starting time and the earliest ending time. The heuristic

would need to be adapted accordingly in order to manage those EBs. Transport companies

usually have such buses in case of breakdown or maintenance on one of their working

buses so this approach is realistic.

To conclude this section, we propose a speedup technique that can be applied in the D-

AtS heuristic. At the end of the first phase, when the successions between the blocks are

known, we can set the values of some of the wp
j variables. Note that SOCmin + emaxD

i − ei

is a lower bound on the SoC of the EB that performs block i ∈ Bd , d ∈ D \ {|D|}, if we

assume that it began this block with a minimal SoC of SOCmin + emaxD
i . Then, if block

j ∈ Bd+1 is the chosen successor of block i (i.e., xi, j = 1), the variables wp
j for p ∈ P such
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that ∑p′≤p qp′ < SOCmin + emaxD
i − ei can be set to 0 in the model solved in Line 5 of

Algorithm 3.

2.5.3 Short-sighted heuristic

The assignment of diesel buses to blocks is traditionally done on a daily basis, because

the buses can be fully refueled overnight and, thus, considered equivalent. This practice is

still in place in many transit companies that have already started integrating EBs into their

fleets. Consequently, decisions on EB assignments and charging times are made every

night to fulfill the needs of the blocks to be operated on the next day only. In this section,

we introduce another matheuristic, called the short-sighted heuristic (or simply SS), re-

plicating this decision process. The main motivation to develop this heuristic is to have

a tool to evaluate the benefits of considering a multi-day planning horizon. Algorithm 4

presents the main steps of this third heuristic. For each day d ∈ D, SS solves (see Line 2)

a single-day problem that assigns the EBs to the blocks in Bd and determines the charging

time of each EB during the night between d−1 and d. This problem is described below.

It is worth mentioning that, more often than not, the rules currently applied by transit

companies to schedule EB overnight charging totally disregard calendar aging costs. To

establish a fair comparison between SS, AtS, and D-AtS on that criterion, Lines 4–5 sche-

dule the fixed-time charging operations prior to day d as described in Section 2.5.1. Once

the block assignment and charging scheduling problems for day d are solved, SS uses the

solution (see Line 7) to set the initial conditions for the next day, that is, the time at which

each EB becomes available and the SoC of each EB at the beginning of the d-to-d + 1

night. This initialization procedure is also discussed below.

The single-day problem solved in Line 2 corresponds to the MDEBAOSP tackled

in Line 1 of the AtS heuristic (Algorithm 2), but restricted to a single day d (still with

δ = 0). We model it using the following restricted version of MDEBSP-MILP (2.1)–

(2.14), (2.16)–(2.43). First, all xi, j and yi, j variables and their related constraints (2.2)–

(2.6), (2.12), and (2.21)–(2.22) are discarded because this problem focuses on a single
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Algorithme 4 : Short-sighted heuristic
1 foreach day d ∈ D do
2 Solve a single-day EB assignment and overnight recharge scheduling

problem for blocks in Bd;
3 From the computed solution, save the EB-to-block assignment and the

charging operations;
4 Generate non-dominated feasible charger schedules compatible with the

saved EB-to-block assignment containing up to kd charging operations to
accomplish before the blocks in Bd;

5 Solve a set partitioning problem to find an optimal subset of charger
schedules;

6 if d < |D| then
7 Set the initial conditions for day d +1;
8 end
9 end

day. Second, all sets B1 and B are replaced by Bd and d ∈ D can be removed as d is

the single day to consider. Third, we change the notation of the parameters SOCinit
v and

hinit
v to SOCinit,d

v and hinit,d
v to highlight that their values vary with day d. The rest of the

model remains unchanged. Hence, the problem defined for each day d ∈D requires initial

conditions for each EB v∈V , namely, their initial available time hinit,d
v and SoC SOCinit,d

v .

When d = 1, these values are provided by the input to the whole problem, i.e., hinit,d
v = hinit

v

and SOCinit,d
v = SOCinit

v for all v ∈V . When d > 1, they are collected from the solution of

the previous iteration in Line 7. More precisely, for EB v ∈V , if it was assigned to block

i ∈ Bd−1 in this solution (αi,v = 1), then we set hinit,d
v = hE

i and SOCinit,d
v = q̄i− ei (where

q̄i is also taken from this solution).

Two variants are proposed regarding the design of the charging operations in the short-

sighted heuristic. The first is the one described, where we look to minimize the total

charging costs in Line 2. This variant is called the Minimum Short-Sighted (Min-SS). In

the second variant, the EBs are charged until their battery is full, they have to leave the

depot or they have to let another EB recharged. This is translated into a maximization

of the total charging costs and yields a variant called the Maximum Short-Sighted (Max-

SS) heuristic. This second variant replicates another widely-applied industrial practice :

83



charge every EB as much as possible every night as it is traditionally done with diesel

buses.

2.6 Computational experiments

We implemented the proposed algorithms in C++. Our implementation uses IBM

ILOG CPLEX 20.1 to solve the MILPs with a default optimality gap tolerance of 0.001%.

To assess the performance of the proposed solution methods, we conducted computational

experiments on instances built based on real operational data provided by our industrial

partner, GIRO Inc., one of the world-leading optimization software providers for public

transit companies. All computations were performed on a 64-bit computer equipped with

an Intel Gold 6148 Skylake CPU (2.40 GHz), 10 gigabytes of main memory, running on

CentOS Linux 7. In the remainder of this section, we first describe the instances and then

we report and discuss our results and findings. All gaps reported in the results are compu-

ted as the relative difference between a reference value and an observed value using the

following expression gap = obs−re f
re f .

2.6.1 Instance generation

GIRO Inc. provided us with two real-world instances coming from two European

public transit operators. The first operates 43 vehicle blocks and the second 54. Both

companies repeat the blocks every weekday. For each block, we received the starting time,

the ending time, the net energy consumption, and the sequence of trips and out-of-depot

charging events making up the block. The latter are especially relevant since they allow

us to compute the emaxI
i and emaxD

i parameters for each block i. In both instances, there is

one EB per block and the fleet is homogeneous. Therefore, we did not need to add dummy

blocks to these two instances. The EBs have a battery with capacity of Q = 363 kWh and

their SoC must remain between SOCmin = 10% and SOCmax = 100%. Both instances have

a nearly 1-to-1 charger-to-block ratio. Indeed, there are 42 and 52 chargers, in the first and
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second instances, respectively. In all our experiments we assumed that the EBs start the

planning horizon with a full battery (SOCinit
v = SOCmax−maxi∈B1(e

maxI
i )) and that they

are all available at the beginning of the planning horizon (hinit
v = 0).

We used the GIRO data to build three sets of instances. The first set referred to as real-

world set, is made up of 4 (= 2 × 2) instances : a 3-day and a 5-day version of each of the

two original instances. To name our instances, we use the following convention B_D_C,

where B is the number of blocks, D is the number of days in the planning horizon, and

C is the number of chargers. As it stands, the 4 instances in the real-world set are named

43_3_42, 43_5_42, 54_3_52, and 54_5_52, respectively.

To build the second and third datasets, we merged the 43 and 54 blocks from the

original instances into a single set S that we randomly sampled to create new instances.

The first new set, called block variation set, is made up of 160 (= 8 × 2 × 10) instances

with 20, 30, 40, 50, 60, 70, 80, or 90 blocks and 3 or 5 days in the planning horizon.

For each combination of a number of blocks and a number of days, we generated 10

instances. To make instances that are harder to solve and to reflect the near future in which

the number of EBs in the fleets is expected to be significantly larger than the number of

chargers available at the depots, we set the charger-to-block ratio to 0.5. In other words,

instances in this set have 1 charger for every 2 blocks.

The third set of instances, called charger variation set, was built to illustrate how our

algorithms can serve as a what if scenario analysis tool to assist operators in finding the

critical number of chargers for their operations (i.e., reducing their charging infrastructure

investments). This set contains 100 instances (= 2 × 5 × 10) with 60 blocks and 3 or 5

days in the planning horizon. In these instances, the number of chargers equals 20, 25,

35, 40, or 45. For each combination of a number of days and a number of chargers,

we generated 10 instances. Note that the block variation set already contains instances

belonging to the 60_3_30 and 60_5_30 families. Therefore, we do not need to generate

them for this set. To facilitate the readability and interpretability of the results, we included

the results obtained on the 60_3_30 and 60_5_30 families in the results for both sets.

As mentioned earlier, transit companies seldom consider calendar aging costs when
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planning their overnight charging operations. Therefore, our partner did not have data to

share on this parameter. To complete our instances, we computed the calendar aging cost

coefficient δ using the battery degradation cost function introduced in HOKE et al., 2014.

In their function, the degradation cost is computed as a function of the battery purchase

costs and the lifetime degradation resulting from the battery’s charge profile. The latter

is computed as a relative gap between i) the lifespan resulting from always charging the

battery using the ideal charging profile (i.e., nominal lifespan) and ii) the lifespan resulting

from charging the battery with a given charging profile in every charging cycle until the

end of the battery’s life (i.e., observed lifespan). For the sake of brevity, we defer the

discussion on how we established the nominal and observed lifespans of the EBs in our

instances to Appendix, Section 3.6. Considering a battery price to be USD 150,000 we

obtained a calendar aging cost δ of USD 0.05 per minute. We also discuss the detail of

our cost estimation in Appendix, Section 3.6.

Another parameter that GIRO did not share with us was the EBs’ battery charging

function f . This function is difficult to establish in close form because it depends on

many different and (sometimes) difficult-to-measure factors (e.g., the power used, the de-

gradation state of the battery, and the room temperature). For this reason, EB operators

are rarely aware of the exact charging function of their vehicles and rely on approxima-

tions when planning their recharging operations. In our instances, we use the piecewise

linear approximation introduced in MONTOYA et al., 2017. In particular, we use their

charging function for a slow charger scaled up to match the average charging rate of the

two operators’ charging infrastructure provided by the industrial partner. Finally, we used

the average energy cost reported in PELLETIER et al., 2018 as our charging cost γp.

2.6.2 Results with the MILP

In the first set of experiments we solved the 264 instances (= 4 + 160 + 100) using the

MILP introduced in Section 2.4 running on CPLEX for 5 hours. Out of the 264 instances,

the solver found optimal solutions for 27 instances, and feasible-but-unproven solutions
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for 184, and could not find a feasible solution to the remaining 53. Table 2.2 summarizes

the results. The first column indicates the instance family ; the second column reports the

number of feasible solutions found for each family ; the third column reports the number

of optimal solutions found for each family ; the fourth column shows the average gap

on the objective function between the best integer solution and the best lower bound

computed by CPLEX; the fifth column reports the average computational time ; the sixth

column shows the average total charging cost ; and the seventh column shows the average

total calendar aging cost. Note that the last line of the table indicates the total or average

value for each column, with instance families 60_3_30 and 60_5_30 recorded only once

because they belong in both block variation set and charger variation set.

As the top of this table shows, CPLEX solved the 4 real-world instances to optima-

lity in a short computational time (20 s on average). These results are explained by the

large charger-to-block ratio in these instances. Indeed, under this scenario, the scheduling

subproblem becomes trivial, so the MDEBAOSP practically reduces to an EB-to-block

assignment problem.

The results on the block variation set paint a different picture. Recall that in these

instances, the number of blocks gradually increases while the charger-to-block ratio re-

mains constant. CPLEX was unable to prove optimality on any of the 187 instances in

the set. On the other hand, the gap is relatively low, ranging from an average of 1.49%

in the 20_3_10 family to 1.91% in the 90_5_45 family. The results show that the gap re-

mains relatively stable in instances with a 3-day planning horizon, while it increases with

the number of blocks in instances with a 5-day horizon. Moreover, in the latter instance

type, CPLEX faces more difficulties delivering feasible solutions (e.g., only 2 out of 10 in

the 90_5_45 family). These results are plausibly explained by the much larger number of

scheduling-related variables. Note (from Columns 6 and 7) that the charging costs largely

dominate the calendar aging costs. Note also that the charging costs are largely driven by

the (predetermined) net energy consumption of the blocks. Therefore, CPLEX is capable

of establishing, very quickly, a high-quality lower bound for this component of the cost.

On the contrary, the calendar aging costs depend only on the scheduling decisions. Hence,
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when there is a large number of scheduling-related variables, the linear relaxation is wea-

ker and so the solver has trouble deriving good lower bounds for the calendar aging cost

component. This observation also sheds some light on the extra complexity that results

from considering the calendar aging criterion in the MDEBAOSP.

Finally, the results on the charging variation set confirm that the difficulty of the ins-

tances decreases with the number of chargers. CPLEX moves from finding no feasible

solution on the 60_3_20 family to finding a feasible solution with a small gap of (on avg.)

0.01% to all 10 instances in the 60_5_45 family. It is worth noting that the solutions to

all instances with a 3-day planning horizon and the solutions to all instances with a 5-

day horizon have the same charging costs (7126 $ and 14904 $, respectively). Therefore,

the difference in the gaps comes exclusively from the calendar aging costs. These results

suggest that companies that do not focus on preserving the batteries of their EBs could

drastically reduce their charging infrastructure investments by implementing tools such

as our MILP to plan their charging operations. For example, a close comparison of the

results obtained for the 60_5_45 and 60_5_35 instances shows that CPLEX was able to

deliver solutions with the same charging costs using 20% fewer chargers.

In conclusion the MILP can efficiently solve the real-world instances. It is worth re-

calling that these instances reflect today’s business scenario, where many operators own

(and can use) one charger per vehicle. However, this scenario is rapidly (and unfavora-

bly) evolving as operators keep adding EBs to their fleets. The data show that when the

charger-to-block ratio tightens, the MILP starts to struggle. This is specially true when the

number of blocks and days approach industrial-scale values (60 and 5 respectively). In the

near future (i.e., when the EBs in the fleet will largely outnumber the chargers) heuristics

that can scale better will be valuable to practitioners.
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TABLE 2.2 – Computational results - MILP running on CPLEX for 5 hours

Instance # Feasible # Optimal Gap w.r.t. Computational Charging Cal. aging
family solutions solutions LB (%) time (s) costs ($) costs ($)
43_3_42 1 1 0.00 3 4520 0.00
54_3_52 1 1 0.00 14 6866 0.04
43_5_42 1 1 0.00 8 9490 0.00
54_5_52 1 1 0.01 54 14355 0.97
20_3_10 10 0 1.49 18000 2379 37.51
30_3_15 10 0 1.54 18000 3568 56.23
40_3_20 10 0 1.75 18000 4788 85.45
50_3_25 10 0 1.70 18000 5954 103.19
60_3_30 10 0 1.65 18000 7126 119.23
70_3_35 10 0 1.61 18000 8282 135.19
80_3_40 10 0 1.60 18000 9453 153.32
90_3_45 10 0 1.64 18000 10630 177.56
20_5_10 10 0 1.64 18000 4984 84.35
30_5_15 10 0 1.67 18000 7465 127.76
40_5_20 10 0 1.85 18000 10014 188.72
50_5_25 9 0 1.76 18000 12479 223.82
60_5_30 8 0 1.79 18000 14903 271.58
70_5_35 7 0 1.87 18000 17406 332.12
80_5_40 4 0 1.84 18000 19797 370.78
90_5_45 2 0 1.91 18000 22225 432.08
60_3_20 0 0 − − − −
60_3_25 7 0 2.81 18000 7152 206.90
60_3_35 10 0 0.81 18000 7126 58.41
60_3_40 10 3 0.16 17820 7126 11.17
60_3_45 10 10 0.01 1065 7126 0.61
60_5_20 0 0 − − − −
60_5_25 0 0 − − − −
60_5_35 10 0 0.94 18000 14904 141.45
60_5_40 10 0 0.29 18000 14904 43.46
60_5_45 10 10 0.01 12302 14904 1.72
Total / Average 211 27 1.32 16663 9335 121.15

2.6.3 Results with the assign-then-schedule and

daily-assign-then-schedule heuristics

In the second set of experiments, we solved the 264 instances using the AtS heuristic

introduced in Section 2.5.1. In these experiments, we set the maximum execution time for

each phase of the heuristic (i.e., EB-to-block assignment & charging and Scheduling) to

1 hour. It is worth noting that the scheduling phase runs in parallel since the problem can

be decomposed by day. The method found feasible solutions for 216 of the 264 instances

in the testbed, and could not find a feasible solution for the remaining 48. Table 2.3 sum-
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marizes the results. The first column indicates the instance family ; the second column

reports the number of feasible solutions found for each family ; the third column shows

the average gap in the objective function with respect to the solutions delivered by the

MILP; the fourth column reports the average computational time ; the fifth column shows

the average absolute and relative gaps for the total charging cost with respect to the MILP

solutions ; and the sixth column shows the average absolute and relative gaps for the total

calendar aging cost with respect to the MILP solutions. Note that we do not compute the

gaps when the MILP or AtS did not find a feasible solution for an instance.

As these results show, AtS solves more instances than the MILP and it is much fas-

ter. However, a close examination of the data reported in the third column shows that the

MILP consistently delivers better solutions. Even if AtS found optimal solutions to the 4

real-world instances, in the remaining families the average gap with respect to the MILP

solutions was 0.82% with a maximum of 1.12% on the 20_5_10 family. A plausible ex-

planation for this behavior is that AtS lacks a mechanism to reconsider decisions made

during the first phase. Once the EB-to-block and the duration of each charging opera-

tion have been decided, the scheduling problem to solve in the second phase becomes

over-constrained. As it stands, it may be impossible for the method to retrieve a charging

schedule leading to the optimal calendar aging cost. A quick look at the data in the fifth

and sixth columns seems to confirm this intuition. As the table shows, the whole gap with

respect to the MILP solutions is due to the calendar aging costs. In other words, the heu-

ristic is capable of finding (during the first phase) a set of EB-to-block assignments and

charging decisions leading to a total energy cost that matches that of the MILP solutions,

but the resulting scheduling problem (even if solved to optimality) cannot lead to global

solutions that also match the calendar aging costs.

In the third set of experiments we solved the 264 instances using the D-AtS heuristic

introduced in Section 2.5.2. On these experiments, we did not set a time limit for the

EB-to-block assignment phase. On the other hand, we set a 1-hour time limit on both the

charging and scheduling phases. Similar to the AtS experiments, the scheduling phase

was run in parallel taking advantage of the natural day-by-day problem decomposition.
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TABLE 2.3 – Computational results - Assign-then-Schedule heuristic

Instance # Feasible Gap w.r.t. Computational Charging Cal. aging
configuration solutions MILP (%) time (s) costs gap ($ (%)) costs gap ($ (%))
43_3_42 1 0.00 3 0(0) 0.00(0)
54_3_52 1 0.00 4 0(0) 0.00(0)
43_5_42 1 0.00 5 0(0) 0.00(0)
54_5_52 1 0.00 9 0(0) 0.00(0)
20_3_10 10 0.92 1 0(0) 22.00(72)
30_3_15 10 0.96 3 0(0) 34.50(66)
40_3_20 10 0.85 9 0(0) 41.61(49)
50_3_25 10 0.93 17 0(0) 56.62(55)
60_3_30 10 0.76 31 0(0) 54.90(46)
70_3_35 10 0.84 139 0(0) 70.73(53)
80_3_40 10 0.75 73 0(0) 72.26(47)
90_3_45 9 0.82 153 0(0) 88.72(50)
20_5_10 10 1.12 3 0(0) 56.65(74)
30_5_15 10 1.03 23 0(0) 78.22(63)
40_5_20 10 0.99 88 0(0) 100.79(54)
50_5_25 10 1.01 86 0(0) 128.54(58)
60_5_30 8 0.88 273 0(0) 134.38(48)
70_5_35 7 0.76 803 0(0) 134.58(41)
80_5_40 5 0.76 1451 0(0) 153.06(41)
90_5_45 4 − 1412 −(−) −(−)
60_3_20 0 − − −(−) −(−)
60_3_25 9 0.93 127 0(0) 68.58(33)
60_3_35 10 0.81 23 0(0) 58.27(103)
60_3_40 10 0.77 19 0(0) 54.65(1444)
60_3_45 10 0.35 18 0(0) 25.14(4061)
60_5_20 0 − − −(−) −(−)
60_5_25 0 − − −(−) −(−)
60_5_35 10 0.82 301 0(0) 122.60(92)
60_5_40 10 0.74 57 0(0) 110.46(278)
60_5_45 10 0.49 48 0(0) 73.02(4862)
Total / Average 216 0.82 151 0(0) 72.71(570)

The results, summarized in Table 2.4, show that D-AtS found feasible solutions for 255

of the 264 instances, and could not find a feasible solution for the remaining 9. This table

contains the same columns as Table 2.3, plus the fourth column providing the gap with

respect to the solutions delivered by AtS. Here again, we do not compute the gaps when

the MILP, AtS or D-AtS did not find a feasible solution for an instance.

As the results show, D-AtS solves more instances than both the MILP and AtS. Fur-

thermore, a quick inspection of Columns 4 and 5 reveals that, in general, D-AtS performs

better than AtS (with an average improvement of 0.15%) and slightly closes the gap with
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the MILP (with an average gap of 0.66%). Similar to the results observed in the AtS expe-

riments, the gap between the D-AtS and MILP solutions comes entirely from the calendar

aging costs. However, that gap is smaller than that reported by AtS (Avg. of 452% vs

570%). This improvement is probably explained by the strategy employed by D-AtS to

build EB-to-block assignments. Indeed, D-AtS assigns EBs to blocks trying to minimize

the charging costs but also trying to maximize the time that the EBs spend at the depot.

Therefore, the scheduling problem that D-AtS solves in the third phase has wider time

windows. Needless to say, the latter allows the heuristic to find schedules with better ca-

lendar aging costs. It is worth noting that D-AtS’s EB-to-block assignment strategy can,

at least in theory, lead to an infeasible scheduling problem. However, we did not observe

this situation in any of our experiments. In terms of computational performance, D-AtS

also outperformed AtS. The explanation is that D-AtS fixes the xi, j variables in the EB-to-

block assignment phase (Lines 1- 4). The latter implicitly decides the energy consumption

of each EB in the fleet along the planning horizon and provides a lower bound on each

EB’s SoC at the beginning and the end of each charging operation. Fixing the xi, j variables

also helps to bound some of the ui, j variables, because of the time constraints generated

by the sequence of vehicle blocks. Another element that contributes to D-AtS’s compu-

tational performance is the low time complexity of the Hungarian algorithm used in the

EB-to-block assignment phase.

2.6.4 Results with the short-sighted heuristics

In the fourth set of experiments, we solved the 264 instances running the Min-SS

heuristic for up to 1 hour. The results are summarized in Table 2.5, which reports the

same statistics as Table 2.4 except for an additional column (Column 5) that shows the

average gap in the objective function with respect to the D-AtS solutions.

As Column 2 shows, Min-SS only found feasible solutions for 206 out of the 264

instances ; the lowest count among the methods tested up to this point. Min-SS did not

find solutions for the remaining 58 instances due to feasibility issues. Not enough energy
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TABLE 2.4 – Computational results - Daily-Assign-then-Schedule heuristic

Instance # Feasible Gap w.r.t. Gap w.r.t. Computational Charging Cal. aging
family solutions MILP (%) AtS (%) time (s) costs gap ($ (%)) costs gap ($ (%))
43_3_42 1 0.05 0.05 2 2(0) 0.00(0)
54_3_52 1 0.00 0.00 2 0(0) 0.00(0)
43_5_42 1 0.02 0.02 2 2(0) 0.00(0)
54_5_52 1 0.00 0.00 3 0(0) 0.00(0)
20_3_10 10 0.97 0.06 0 0(0) 23.31(76)
30_3_15 10 0.66 −0.30 1 0(0) 23.68(46)
40_3_20 10 0.59 −0.26 2 0(0) 28.65(34)
50_3_25 10 0.65 −0.28 3 0(0) 39.03(39)
60_3_30 10 0.63 −0.12 5 0(0) 45.67(39)
70_3_35 10 0.78 −0.06 7 1(0) 64.39(48)
80_3_40 10 0.70 −0.06 15 1(0) 65.68(43)
90_3_45 10 0.69 −0.12 24 2(0) 73.21(41)
20_5_10 10 1.11 −0.01 0 0(0) 56.19(76)
30_5_15 10 0.76 −0.27 1 0(0) 57.66(47)
40_5_20 10 0.72 −0.26 3 0(0) 73.34(39)
50_5_25 10 0.80 −0.22 6 0(0) 100.78(46)
60_5_30 10 0.65 −0.20 10 0(0) 98.83(37)
70_5_35 10 0.61 −0.13 15 1(0) 106.93(33)
80_5_40 10 0.57 −0.15 29 2(0) 112.14(31)
90_5_45 10 0.59 0.02 36 2(0) 132.13(31)
60_3_20 10 − − 338 −(−) −(−)
60_3_25 10 0.70 −0.22 55 0(0) 51.09(25)
60_3_35 10 0.66 −0.15 4 0(0) 46.96(83)
60_3_40 10 0.63 −0.14 5 0(0) 44.44(1363)
60_3_45 10 0.30 −0.05 4 0(0) 21.35(3505)
60_5_20 1 − − 2806 −(−) −(−)
60_5_25 10 − − 87 −(−) −(−)
60_5_35 10 0.61 −0.20 8 0(0) 91.41(70)
60_5_40 10 0.57 −0.17 8 0(0) 85.38(220)
60_5_45 10 0.36 −0.13 7 0(0) 53.96(3632)
Total / Average 255 0.66 −0.15 37 0(0) 59.05(452)

was charged into some EBs during the early days of the planning horizon and the method

could not create a feasible block-to-bus assignment at some point. In further experimen-

tations, we were able to find feasible solutions for the remaining 58 instances by adding

a few reserve EBs (i.e., increasing the size of the fleet). This result highlights the benefits

of considering the multi-day planning horizon rather than following the legacy industrial

practice of solving consecutive single-day problems. In terms of solution quality, the re-

sults suggest that, when it finds a feasible solution, Min-SS is competitive with D-AtS.

While Min-SS delivers a slightly better average performance (with a gap of -0.05%), it

does not dominate D-AtS across all instance families. This good performance may be

explained by Min-SS’s capacity to optimally solve the daily (small) MILPs.
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TABLE 2.5 – Computational results - Minimum short-sighted heuristic

Instance # Feasible Gap w.r.t. Gap w.r.t. Gap w.r.t. Computational Charging Cal. aging
family solutions MILP (%) AtS (%) D-AtS (%) time (s) costs gap ($ (%)) costs gap ($ (%))
43_3_42 0 − − − − −(−) −(−)
54_3_52 1 0.00 0.00 0.00 2 0(0) 0.00(0)
43_5_42 0 − − − − −(−) −(−)
54_5_52 1 0.00 0.00 0.00 3 0(0) 0.00(0)
20_3_10 8 0.71 −0.23 −0.30 0 0(0) 17.06(59)
30_3_15 8 0.63 −0.29 −0.02 1 0(0) 23.05(42)
40_3_20 9 0.64 −0.20 0.05 2 0(0) 31.47(37)
50_3_25 8 0.69 −0.24 0.01 5 0(0) 42.10(41)
60_3_30 8 0.68 −0.09 0.00 8 0(0) 49.36(42)
70_3_35 9 0.68 −0.16 −0.10 16 0(0) 57.29(43)
80_3_40 10 0.66 −0.09 −0.03 31 0(0) 63.79(42)
90_3_45 10 0.65 −0.18 −0.04 46 0(0) 70.53(40)
20_5_10 8 0.75 −0.38 −0.39 1 0(0) 37.73(51)
30_5_15 8 0.64 −0.36 −0.12 2 0(0) 49.29(40)
40_5_20 9 0.62 −0.34 −0.08 5 0(0) 63.97(33)
50_5_25 8 0.76 −0.23 −0.06 8 0(0) 97.27(43)
60_5_30 8 0.63 −0.23 −0.04 14 0(0) 96.26(36)
70_5_35 9 0.52 −0.24 −0.12 27 0(0) 92.44(28)
80_5_40 10 0.51 −0.25 −0.09 59 0(0) 103.69(28)
90_5_45 10 0.44 −0.18 −0.15 82 0(0) 98.93(23)
60_3_20 0 − − − − −(−) −(−)
60_3_25 8 0.95 0.01 0.16 65 0(0) 70.12(34)
60_3_35 8 0.61 −0.24 −0.08 7 0(0) 44.18(78)
60_3_40 8 0.67 −0.09 0.03 8 0(0) 48.07(1652)
60_3_45 8 0.34 −0.02 0.02 6 0(0) 24.22(4051)
60_5_20 0 − − − − −(−) −(−)
60_5_25 8 − − 0.17 104 −(−) −(−)
60_5_35 8 0.61 −0.20 −0.01 13 0(0) 92.61(70)
60_5_40 8 0.60 −0.11 0.02 13 0(0) 90.57(221)
60_5_45 8 0.41 −0.10 0.03 10 0(0) 62.04(4138)
Total / Average 206 0.63 −0.19 −0.05 23 0(0) 58.21(496)

In the fifth, and last, set of experiments, we solved the 264 instances running Max-SS

for up to 1 hour. Table 2.6 summarizes the results under the light of the same metrics used

in Table 2.5. As the table shows, Max-SS hit a new low in terms of feasible solutions

with only 146 out of the 264 instances. Min-SS did not find solutions for the remaining

118 instances because it reaches the time limit. This result is even more notorious in

the 5-day instances where the heuristic could only retrieve feasible solutions for 26% of

the benchmarks (38 out of 142). Recall that Max-SS’s main objective is to reproduce

the widespread industrial practice of charging the EBs as much as possible every night.

For this reason, the problems solved in the scheduling phase typically include jobs (i.e.,

charging operations) with long processing times that are nearly impossible to fit together

due to the charger capacity constraints. This charging policy has a second undesirable

effect : in terms of solution quality, Max-SS also delivers the worst performance among
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the tested methods. The average gap with respect to the MILP solutions is 10.15%, and

this figure is 9.31% and 9.44% with respect to AtS and D-AtS. A close look at Column

6 shows that Max-SS yields significant gaps in terms of the charging costs (the dominant

term in the objective function) with respect to the MILP (Avg. of 7%). These results are

not surprising, since, contrary to the other approaches, Max-SS explicitly seeks to charge

more energy than is really needed to cover the blocks. These results tip again the scales in

favor of considering a multi-period horizon rather than solving sequential daily problems.

TABLE 2.6 – Computational results - Maximum short-sighted heuristic

Instance # Feasible Gap w.r.t. Gap w.r.t. Gap w.r.t. Computational Charging Cal. aging
family solutions MILP (%) AtS (%) D-AtS (%) time (s) costs gap ($ (%)) costs gap ($ (%))
43_3_42 1 9.05 9.05 8.99 4 409(9) 0.00(0)
54_3_52 1 9.24 9.24 9.24 5 624(9) 10.99(25033)
43_5_42 1 4.30 4.30 4.28 6 408(4) 0.00(0)
54_5_52 1 4.50 4.50 4.50 10 624(4) 21.77(2240)
20_3_10 10 12.27 11.25 11.19 2188 217(9) 77.48(250)
30_3_15 10 12.24 11.17 11.50 3600 318(9) 124.40(236)
40_3_20 10 11.95 11.00 11.29 3600 420(9) 162.06(192)
50_3_25 10 11.53 10.49 10.80 3600 502(8) 196.61(192)
60_3_30 8 11.48 10.64 10.79 3600 598(8) 235.21(196)
70_3_35 10 11.26 10.34 10.41 3600 675(8) 273.08(203)
80_3_40 9 11.14 10.3 10.38 3600 769(8) 300.71(196)
90_3_45 5 10.55 9.95 10.06 3600 823(8) 317.55(179)
20_5_10 4 7.67 6.33 6.45 144 224(5) 159.06(216)
30_5_15 2 5.70 4.73 5.03 3600 237(3) 201.34(161)
40_5_20 1 7.49 6.35 6.8 3600 425(4) 352.66(180)
50_5_25 0 − − − − −(−) −(−)
60_5_30 0 − − − − −(−) −(−)
70_5_35 0 − − − − −(−) −(−)
80_5_40 0 − − − − −(−) −(−)
90_5_45 0 − − − − −(−) −(−)
60_3_20 0 − − − − −(−) −(−)
60_3_25 4 7.19 6.84 7.12 3600 353(5) 171.78(82)
60_3_35 10 12.06 11.16 11.33 1145 642(9) 224.25(394)
60_3_40 10 11.63 10.78 10.93 166 642(9) 187.67(5434)
60_3_45 10 10.72 10.33 10.38 48 642(9) 121.54(20125)
60_5_20 0 − − − − −(−) −(−)
60_5_25 0 − − − − −(−) −(−)
60_5_35 9 7.04 6.17 6.39 2000 638(4) 423.81(314)
60_5_40 10 6.68 5.90 6.07 312 642(4) 356.20(891)
60_5_45 10 5.92 5.40 5.54 70 642(4) 240.08(16107)
Total / Average 146 10.15 9.31 9.47 2095 552(7) 218.00(3306)

2.7 Conclusion

In this paper, we introduced the MDEBAOSP and formulated it as a MILP that can

be solved using a commercial solver. To obtain faster computational times, we also de-
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veloped two matheuristics called Assign-then-Schedule and Daily-Assign-then-Schedule,

both having complementary advantages. To evaluate our algorithms, we used a set of 264

instances generated from data of an EB operator. First, the MILP solver is able to find

near-optimal solutions, with an average optimality gap of 1.32%, but it is time and re-

sourceconsuming, reaching the provided time limit for most instances. The Assign-then-

Schedule heuristic offers a good compromise between solution quality and computational

performance, with a small average gap of 0.82% w.r.t. MILP approach and an average

computation time of 151 s. Finally, the Daily-Assign-then-Schedule heuristic provides

good solutions in short computational times, with a small average gap of 0.66% w.r.t.

MILP approach and an average computation time of 37 s. We showed the benefits of the

proposed methods by comparing them to widely-used industrial policies, in which the

problem is solved sequentially, one day at a time. We implemented these policies via two

versions of a short-sighted heuristic, namely, the Minimum Short-Sighted and Maximum

Short-Sighted heuristics. The results provided by the Minimum Short-Sighted method

show the value of considering a multi-day planning horizon, by finding feasible solutions

for only 206 instances against 255 for the Daily-Assign-then-Schedule heuristic. The re-

sults of the Maximum Short-Sighted method also showed the negative impact of using the

trivial policy of charging the EBs as much as possible every night, inducing an average

charging costs gap of 7% w.r.t MILP approach and an average calendar aging costs gap

of more than 3000%.

As a first research perspective, we can propose additionals method to solve the pro-

blem. For instance, MDEBAOSP can be seen as an extension of the CSP. Thus, by using

the assignment step of the D-AtS as an initial step, the charging scheduling algorithm

from KLEIN et SCHIFFER, 2023 can then be applied since it considers battery aging. An

interesting research perspective is to extend the problem to consider a target ending SoC,

higher than the minimum SoC, at the end of the time period. This feature would be useful

in cases in which transit agencies want to build cyclic planning, but the time between

cycles (e.g., the weekend) is not long enough to charge all the EBs to their full capacity.

Another research direction could be to extend the problem to consider the more strate-
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gic objective of minimizing the number of chargers. A final interesting research avenue

would be to consider a more fine-grained EB operation and also schedule out-of-depot

recharges. The latter could be achieved by dividing blocks into smaller atomic units (i.e.,

sub-blocks) and letting the models and methods decide if, where, and for how long, each

EB should charge between two sub-blocks. By having access to the blocks content, the

additional decisions could have an impact on the battery cycle aging. Then, all aspects of

battery aging could be included in the problem.
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Chapitre 3

A matheuristic for a multi-day electric

bus assignment and recharge scheduling

problem

Résumé

La proportion de bus électriques dans les flottes de transport public augmente en ré-

ponse aux émissions de gaz à effet de serre dans le secteur du transport public. En raison

de contraintes d’espace et de budget, il est souvent impossible de recharger l’ensemble

du parc de bus électriques pendant la nuit. Une solution potentielle consiste à équilibrer

les opérations de recharge entre la nuit au dépôt ainsi que la journée pendant leur fonc-

tionnement normal. Il est donc nécessaire de concevoir des techniques d’optimisation qui

permettent de recharger les véhicules à la fois pendant la nuit et en cours de route. Dans

cette étude, nous considérons un problème d’affectation et de programmation de la re-

charge des bus électriques sur plusieurs jours qui peut être brièvement énoncé comme

suit. Étant donné un ensemble de blocs de véhicules (séquences de trajets de bus pro-

grammés qui devraient être effectués par le même bus un jour donné), un ensemble de

bus électriques et un ensemble de chargeurs, l’objectif est d’affecter un bus électrique à



chaque bloc sur plusieurs jours et d’ordonnancer les événements de recharge pendant la

nuit et en route. Des chargeurs sont installés au dépôt et aux arrêts suffisamment longs.

Chaque chargeur a sa propre fonction de charge qui est linéaire par morceaux. Les déci-

sions sont prises en veillant à ce que les bus ne manquent jamais d’énergie pour effectuer

les blocs qui leur sont assignés, que la capacité des chargeurs à n’importe quel endroit

ne soit jamais dépassée et que la somme des coûts de charge totaux et des dommages

à long terme causés à la batterie soit minimisée. Nous modélisons d’abord ce problème

sous la forme d’un programme linéaire en nombres entiers (MILP) qui peut être résolu à

l’aide d’un solveur commercial. Ensuite, pour obtenir des temps de calcul plus rapides,

nous développons une matheuristique basée sur le MILP, dans laquelle certaines parties

des décisions sont reconsidérées à chaque itération de la méthode. Pour évaluer tous ces

algorithmes, nous utilisons un ensemble de 72 instances générées à partir des données

d’un opérateur de bus.

Abstract

The proportion of electric buses (EBs) in public transit fleets is increasing in res-

ponse to greenhouse gas emissions in the public transit sector. Due to space and budget

constraints, more often than not, it is sometimes unfeasible to charge the entire EB fleet

overnight. A potential solution lies in balancing the charging operations between the over-

night time at the depot and the driving daytime during their regular operation. Thus, there

is a need to devise optimization techniques that help to recharge using both overnight

and en-route charging. In this study, we consider a multi-day electric bus assignment and

recharge scheduling problem that can be briefly stated as follows. Given a set of vehicle

blocks (sequences of timetabled bus trips that should be operated by the same bus on a gi-

ven day), a set of EBs and a set of chargers, the objective is to assign an EB to each block

over multiple days and to schedule both overnight and en-route charging events. Chargers

are installed at the depot and at sufficiently long stops. Each charger has its own charging

function that is piecewise linear. The decisions are made to ensure that the EBs never
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run out of energy performing their assigned blocks, the charging capacity at any location

should not be exceeded, and the sum of the total charging costs and long run damages to

the battery are minimized. We first model this problem as a mixed integer linear program

(MILP) that can be solved with a commercial solver. Then, to yield faster computational

times, we develop a matheuristic based on the MILP, in which parts of the decisions are

reconsidered at each iteration of the method. To evaluate all these algorithms, we use a

set of 72 instances generated from data of an EB operator.

3.1 Introduction

In 2014, the Intergovernmental Panel on Climate Change (IPCC) issued a series of

recommendations to mitigate global warming, one of which is the extensive electrification

of transportation networks (IPCC, 2014). The goal is to curb the increase in greenhouse

gas emissions, as the transport sector alone accounts for 15% of global emissions (IPCC,

2023). The overarching objective of these measures is to prevent a 5◦C rise in global

temperatures by 2100, which could result in severe consequences such as water scarcity,

soil degradation, and an influx of climate refugees.

Given that the transportation sector is a major source of these greenhouse gases, one

leverage that governments can use to reduce these emissions is the electrification of public

transit domain, particularly urban buses. The implementation of electric-powered vehicles

in the public transit sector presents various strategic, tactical, and operational challenges

to overcome. Diesel-powered buses still account for a large proportion of the current pu-

blic transit bus fleets, and replacing them with electric buses (EBs) is not straightforward.

EBs typically have a significantly restricted driving range, requiring frequent recharging

events either between trips or even en-route, contingent upon factors such as the techno-

logy used, the length of the bus line, and the charging time available. To address these

technological limitations, transit authorities need to install charging infrastructure along

the line, as well as at terminals located at the end of the lines, and depots. There are two

primary strategies for charging EBs : en-route charging (Y. WANG et al., 2017 ; XYLIA
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et al., 2017) and overnight charging (HOUBBADI et al., 2019 ; VENDÉ, DESAULNIERS,

KERGOSIEN & MENDOZA, 2023). When using the en-route charging strategy, EBs are

charged while performing their regular operation, typically at end-of-line terminals or suf-

ficiently long-term stops, such as at transfer points between lines. This method demands

a substantial initial investment in charging infrastructure, including fast chargers, high-

tension power lines, and high-voltage transformers, as buses need multiple and rapid bat-

tery recharges throughout the day. However, given that EBs can charge frequently, small

batteries can be used, helping to reduce the upfront costs associated with fleet purchases.

Overnight charging implements the opposite strategy. EBs are charged only at depots,

mainly during the night. To implement this strategy, EBs require a longer driving range.

Therefore, they must be equipped with larger-capacity batteries, which are more expen-

sive. Moreover, batteries with a sufficient capacity to operate for an entire day without

recharging are still uncommon. To overcome this problem, transit companies must ensure

that they have several buses to cover each line of the network, enabling drivers to quickly

change buses when their batteries are low. The additional number of buses increases the

upfront cost of the fleet. Finally, the overnight charging strategy implies charging only

during the night ; therefore, a large number of charging events must occur simultaneously,

involving an expensive charging infrastructure.

This issue of managing EBs, including their recharging operations, over a transit net-

work relates to a class of problems known as the electric vehicle scheduling problems

(eVSP). These problems consist in assembling sequences of trips, also called blocks, and

assigning each of those blocks to an EB (SASSI-BEN SALAH & OULAMARA, 2017). To

ensure the feasibility of a solution, among other things, eVSPs must determine where and

for how long the EBs must charge their batteries between two trips. The objective may be

to minimize the energy costs (ROGGE et al., 2018), or to minimize the number of vehicles

that are needed to perform a set of trips (JANOVEC & KOHÁNI, 2019 ; T. LIU & CEDER,

2020).

The literature reports on several eVSP variants. JANOVEC et KOHÁNI, 2019 propose

a variant in which they assign a set of trips and a set of charging events to EBs from a
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homogeneous fleet, while minimizing the number of used vehicles. They formulated the

problem with a mixed-integer linear program (MILP) that can be solved by a commercial

solver. RINALDI et al., 2020 introduce a time decomposition heuristic that solves a series

of MILPs for a version of the problem with a mixed fleet composed of EBs and hybrid

buses, minimizing the total operational cost. YAO et al., 2020 present a multiple vehicle

type version of the problem, each type having its own driving range and charger. They

propose a genetic algorithm to solve the problem. ALVO et al., 2021 design a Benders

decomposition algorithm for an eVSP with a mixed fleet composed of EBs and diesel

buses and a linear charging function. Their objective is to minimize first the number of

diesel buses used and then their total fuel consumption. Their decomposition is struc-

tured as follows : i) a master problem determines bus schedules and charger schedules,

without considering charger capacity ; ii) a sub-problem problem that checks if feasible

charger schedules can be computed from the bus schedules calculated in the previous step.

ZHANG et al., 2021 develop a branch-and-price algorithm that can handle battery degra-

dation due to cycle aging but does not allow partial charging. ZHOU et al., 2022 deal with

a more complex problem that considers multiple charger types. They solve their problem

using a MILP enhanced with problem-specific valid inequalities. WU et al., 2022 propose

a branch-and-price algorithm for solving a multi-depot eVSP considering a time-of-use

electricity pricing but forcing the EBs to always charge to their full capacity and assuming

constant charging times. KLEIN et SCHIFFER, 2023 design an exact branch-and-price al-

gorithm to solve the route and recharge scheduling problem with flexible service opera-

tions (meaning that the departure time for each vehicle is a decision variable). To solve

large instances involving up to 500 trips, the authors devise a heuristic version of their al-

gorithm that is based on a graph reduction technique and a diving heuristic to quickly find

good primal solutions. AVISHAN et al., 2023 present a stochastic variant of the eVSP, with

travel time and energy consumption uncertainty. Their objective is to find the minimum

number of EBs to cover a set of trips. The problem is solved using an evolutionary mat-

heuristic in which subsets of trips are generated based on their start time. Those subsets

of trips are then merged in order to create a set of feasible candidate schedules, describing
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the set of trips assigned to an EB. Finally, a set covering problem is solved to select the

best schedules minimizing the total costs (EB purchasing costs and charging costs). Fi-

nally, de VOS et al., 2023 develop a branch-and-price algorithm to solve the multi-depot

eVSP, considering capacitated charging stations and partial charging. The linear relaxa-

tion is computed using two possible heuristics : truncated price-and-branch and truncated

column generation.

The papers surveyed above focus on a one-day planning horizon, whereas our interest

lies in an extended multi-day horizon. Given the size of multi-day eVSPs in practice, they

are usually solved with a multi-phase approach. First, timetabled trip sequences are com-

puted for each day within the planning horizon (e.g., a week) by solving an eVSP. Then,

each night, EBs are assigned to vehicle blocks scheduled to operate from their depot the

next day, taking into account their current state of charge (SoC). Finally, each EB is re-

charged overnight with just enough energy to fulfill its assigned block. While this day-by-

day process is straightforward to comprehend and implement, VENDÉ, DESAULNIERS,

KERGOSIEN et MENDOZA, 2023 demonstrate its potential unsuitability in practical sce-

narios. Our current research extends their work, in which they solve a multi-day EB as-

signment and overnight recharge scheduling problem (MDEBAOSP) that can be briefly

stated as follows. The problem considers a set of vehicle blocks (sequences of timetabled

trips performed by the same bus on a given day) to be operated over several days, a set

of identical EBs, and a set of chargers available at the depot (whose charging function is

piecewise linear). The MDEBAOSP consists in assigning an EB to each block and to sche-

dule the overnight recharging operations at the depot. The assignment and schedule must

ensure that the EBs never run out of energy when performing their blocks and that the

depot charging capacity is never exceeded. They considered two objectives : minimizing

the total charging costs and the battery degradation costs due to calendar aging. Although

our study share some features with this work, some differences arise. First, in VENDÉ,

DESAULNIERS, KERGOSIEN et MENDOZA, 2023 the vehicle blocks are considered as

unbreakable. In our research, blocks are decomposed into sub-blocks for which charging

events occurring between sub-blocks can be added. This translates into a greater number
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of charging and scheduling decisions. Second, the type of long-term battery degradation

considered is different. The technical literature highlights two types of battery aging :

cycle aging and calendar aging. Cycle aging depends on factors such as the current rate,

and the depth of discharge or DoD (i.e., the charge/discharge cut-off voltages). Charging

or/and discharging the batteries at high rates (e.g., using fast chargers) and draining them

to their maximum DoD reduces the number of charge/discharge cycles in their lifespan

(BARRÉ et al., 2013). Calendar aging is influenced by the average state of charge (SoC)

and the temperature to which batteries are exposed during storage. Prolonged storage at

elevated SoCs and temperatures has the effect of diminishing the overall lifespan of the

batteries (PELLETIER et al., 2017). VENDÉ, DESAULNIERS, KERGOSIEN et MENDOZA,

2023 only considers calendar aging because only the overnight charging was optimized.

In our research, we seek to favor cycle aging, which is influenced by the charging rate ap-

plied. Therefore, we prioritize the on charging overnight at the depot using low charging

rate chargers instead of charging events occurring en-route at a higher charging rate. The-

refore, the goal is to reduce the frequency of charging en-route events to minimize their

long-term impact on the battery’s health. Finally, VENDÉ, DESAULNIERS, KERGOSIEN

et MENDOZA, 2023 consider a multi-day planning horizon with an initial and final SoC

that can be different. This suggests that there is a potential break in operations (e.g., on

a Sunday), during which most of the fleet would remain at the depot and have sufficient

time for full charging. Finally, in our research, we consider a cyclic schedule in which

the SoC of the battery at the end of the last day must be equal to the SoC of the battery

at the beginning of the first day of the planning horizon, which makes the problem more

realistic.

Despite considering a multi-day planning horizon, it is sometimes very difficult to

find a feasible solution for the overnight recharging problem, due to a lack of chargers or

an excessive number of EBs requiring charging. To address this challenge, several transit

companies have implemented a mix of overnight and en-route charging strategies (WEI

et al., 2018). This mix of charging strategies is complex to handle and typically occurs in

three steps. First, EBs leave the depot with a fully charged battery. Then, charging events
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are inserted within EBs blocks if they run out of energy in order to perform the end of

the block. Finally, EBs are recharged overnight at the depot. In this study, we focused on

transit systems that use a mix of both overnight and en-route charging strategies, and we

manage the charging decision regarding both strategies.

In this paper, we study the multi-day EB assignment and recharge scheduling problem

(MDEBARSP), which can be summarized as follows. Given a set of vehicle blocks (se-

quences of timetabled bus trips that should be operated by the same bus on a given day),

a set of EBs, and a set of chargers, the objective of the MDEBARSP is to assign an EB to

each block over a multi-day planning horizon and to schedule both overnight and en-route

recharging events. Chargers are installed at the depot, and at sufficiently long stops. Each

charger has its own charging function, which is by piecewise linear. Decisions are made to

ensure that the EBs never run out of energy while performing their assigned blocks, that

the charging capacity at any location and any time is not exceeded, and that the sum of the

total charging costs and long-run damages to the battery is minimized. We formulate the

MDEBARSP as a MILP and develop a matheuristic to solve this problem. In the proposed

approach, the problem is decomposed into inter-block decisions and intra-block decisions.

Inter-block decisions involve assigning EBs to blocks and sequencing overnight charging

events performed at the depot. Intra-block decisions determine which en-route charging

events can be removed and the duration of all charging events. During each iteration of

the method, the portion of the solution corresponding to inter-block decisions is questio-

ned and then modified according to the intra-block decisions, and vice versa in the next

iteration. To evaluate the performance of our algorithm, we present computational results

obtained on a set of 72 instances generated using data provided by an IT company that

commercializes optimization software for public transit. The goal is to show the interest

of considering a mix of overnight and en-route charging strategies.

The remainder of this paper is organized as follow. Section 3.2 formally defines the

MDEBARSP and Section 3.3 formulates it as a MILP. Section 3.4 describes the proposed

solution method to solve this problem. Section 3.5 provides the results of our computa-

tional experiments. Finally, Section 3.6 concludes and discusses possible future research
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directions.

3.2 The multi-day electric bus assignment and recharge

scheduling problem

In the classical workflow of a transit operator, the MDEBARSP (an operational pro-

blem) arises after solving an eVSP (a tactical problem) to produce a set of vehicle blocks

for each day in the planning horizon. These blocks may or may not include scheduled

en-route charging events. Formally, the MDEBARSP can be described as follows. Let D

be the set of days in the planning horizon (numbered from 1 to |D|). Let Bd , d ∈D, be the

set of blocks to be operated on day d from a given depot and denote by B =
⋃

d∈D Bd the

set of all blocks. Each block i ∈ B is defined by a sequence of bus trips called sub-blocks.

Let Bi, i ∈ B be the set of sub-blocks of vehicle block i. Let L be the set of locations,

where chargers are installed, and Bd,l , d ∈ D and l ∈ L, the set of sub-blocks performed

on day d and starting at location l. A bus assigned to a block i starts and ends the kth

sub-block of the block at time hS
i,k and hE

i,k, and at location lS
i,k and lE

i,k, respectively. Given

that the performed routes within each block are predefined, kth sub-block of block i is also

associated with a net energy consumption ei,k (that can be positive, negative, or null). A

bus assigned to a block i starts and ends at a depot l0.

To operate the vehicle blocks in B, we assume that the transit company employs a fleet

V of identical EBs with a battery capacity of Q. The SoC of each EB varies throughout the

horizon according to the sequence of blocks it is assigned to, and the overnight and en-

route recharging events it undergoes. At any time, the SoC must remain between SOCmin

and SOCmax. Each EB in V is assigned to at most one vehicle block per day. Given that

the number of blocks to operate might differ from one day to another and that the EB

fleet may include reserve EBs, some EBs may not be assigned to a block on some days.

To avoid this case in our model, we create dummy blocks for each day that are added to

keep the daily number of blocks constant and equal to the number of EBs. Each dummy
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block represents an idle EB for a day. It contains a single sub-block, that has zero energy

consumption, the latest possible starting time, the earliest ending time, and the starting

and ending locations set as the depot. These dummy blocks are part of the sets Bd , d ∈D,

and their sub-blocks are part of the sets Bd,l0 , d ∈ D.

At each charging location l ∈ L, there is a set Cl of identical chargers. We denote

C =
⋃

l∈LCl the set of all chargers. Chargers installed at the depot, belonging to set Cl0 , are

used overnight whereas chargers installed on the network, belonging to set Cl , l ∈ L\{l0},

are used en-route during the day. At most |Cl| EBs can recharge simultaneously at each

charging location l. We assume that |Cl|< |V | and that the charging events are not preemp-

tive. The charging function fl is a concave piecewise linear function that associates the

amount of energy recharged by a charger installed at charging location l, l ∈ L, with the

charging time, given an initial SoC. We denote by Pl the set of linear pieces of fl and as-

sociate with each piece p the time θl,p needed to fulfill the segment, the energy recharged

ql,p and the charging cost γl,p for charging these qp units of energy (see Figure 3.1). Note

that ∑p∈Pl
ql,p is equal to the energy required to fully recharge an empty battery.

So
C

Charging time

FIGURE 3.1 – Concave piecewise linear charging function fl

Batteries possess a given number of charging cycles which they can undergo during

their lifespan. Moreover, the higher the charging rate used to recharge a battery, the more

its lifespan decreases over time. Therefore, in order to favor the reduction of battery de-
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gradation and limit the reduction of battery lifespan, a unit damage cost of ρl is charged

for each charging event performed at charging location l, l ∈ L, depending on the char-

ging rate of the installed chargers at that location. By minimizing this total damage cost

for each charging event, the objective is to reduce the number of charging events and prio-

ritize charging events at locations where chargers with lower charging rates are installed.

The MDEBARSP consists in assigning the EBs to the vehicle blocks and scheduling

their recharges, both overnight and en-route, such that each block is serviced by an EB, the

EBs do not run out of energy, the number of available chargers at each charging location

is never exceeded, and the sum of the energy costs and the long-term damage costs is

minimized. The notation used is summarized in Table 3.1, which also includes notation

introduced in the next section.

3.3 Mixed integer programming formulation

In this section, we introduce a two-commodity network flow MILP formulation for

the MDEBARSP. One commodity models the flow of the EBs through the vehicle blocks

to determine the sequences of blocks assigned to the EBs over the planning horizon.

The other commodity models, for each day and each charging location, the flow of the

chargers through the EB recharging events to determine the recharge schedule of the EBs.

Our model builds upon that of VENDÉ, DESAULNIERS, KERGOSIEN et MENDOZA, 2023

for a multi-day EB assignment and overnight recharge scheduling problem.

The problem is defined on a directed graph G = (N,A), where N =
⋃

d∈D
l∈L

(
Bd,l ∪

{cd,l}
)

is the node set and A = Abus ∪
(⋃

d∈D
l∈L

Achg
d,l

)
is the arc set. The arcs subset Abus

represents the possible block successions for an EB. There exists an arc (i, j) ∈ Abus if

one of the following two sets of conditions is met : i) d ̸= |D|, i ∈ Bd and j ∈ Bd+1 ; ii)

d = |D|, i ∈ Bd and j ∈ B1. Thus, the EBs flow on the subnetwork that comprises the

block nodes B and the arcs in Abus. A feasible bus assignment solution corresponds to a

set of |V | disjoint paths, all starting from a node in B1, ending at a node in B1, and visiting

exactly one node in each set Bd , d ∈ D\{1}. The arcs subset Achg
d,l represents the possible
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TABLE 3.1 – Sets and parameters used in the model

Sets
D Set of days in the planning horizon
L Set of charging locations
B Set of vehicle blocks
Bd Set of vehicle blocks on day d
Bi Set of sub-blocks of block i

Bd,l Set of sub-blocks on day d starting at charging location l
V Set of available EBs
C Set of chargers
Cl Set of chargers at charging location l
Pl Set of linear pieces in the charging function at charging loca-

tion l
A Set of arcs

Abus Subset of arcs for the bus assignment
Achg

d,l Subset of arcs for the charger assignment before day d at char-
ging location l

N Set of nodes

Parameters
hE

i,k Ending time of kth sub-block of block i
hS

i,k Starting time of kth sub-block of block i
lE
i,k Ending location of kth sub-block of block i

lS
i,k Starting location of kth sub-block of block i

ei,k Energy consumption along kth sub-block of block i
l0 Depot
Q Battery charging capacity

SOCmax Maximum SoC of the battery
SOCmin Minimum SoC of the battery

fl Piecewise linear charging function at charging location l
ql,p Maximum SoC difference on piece p at charging location l
θl,p Maximum charging time on piece p at charging location l
γl,p Maximum charging cost on piece p at charging location l
ρl Unit damage cost spent for each charging event performed at

charging location l
M Large constant (time span of the planning horizon)
cd,l Charger node at charging location l on day d

successions of charging events and also includes arcs connecting the sequence with the

chargers installed at location l, at the beginning and the end of the charging sequence.

A charging event is associated with a sub-block in Bd,l and is performed on the EB to
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be assigned to the block of this sub-block. To each set Bd,l is associated a node cd,l re-

presenting the chargers installed at location l. There is an arc (i, j) ∈ Achg
d,l if one of the

following three sets of conditions is met : i) i = cd,l and j ∈ Bd,l ; ii) j = cd,l and i ∈ Bd,l ;

and iii) i, j ∈ Bd,l and i ̸= j. Thus, to model the charger assignment on day d ∈ D at char-

ging location l ∈ L, there is a subnetwork that contains the nodes in Bd,l ∪{cd,l} and the

arcs in Achg
d,l . A feasible charger sequence for day d at charging location l is obtained as a

subset of at most |Cl| circuits starting and ending at cd,l and visiting exactly each node in

Bd,l exactly once. In this case, we assume that each EB needs to be recharged every night

and between every sub-blocks but possibly for a duration of zero units of time (which, in

practice, corresponds to not recharging).

Figure 3.2 shows an example of graph G defined for the MDEBARSP with 3 days, 2

EBs, 2 vehicle blocks per day, the first one consisting of 3 sub-blocks and the second one

of 2 sub-blocks, one charger at the depot (O) for overnight charging, and one charger on

the network (E) for en-route charging. The block b for day a is denoted (a,b). The set

of paths represents a feasible solution where the blue EB is assigned to the sequence of

blocks (1,1) – (2,2) – (3,2) – (1,1), and the red EB to (1,2) – (2,1) – (3,1) – (1,2).

The arcs composing these paths belong to Abus. The sub-blocks are denoted by (a,b,c), a

and b have the same meaning as the blocks notation, and c denotes the sub-block. Given

that each sub-block is associated to a unique charging event, (a,b,c) denotes a sub-block

and its preceding charging event. During the night before day one, between days three

and one, the overnight charger (O) recharges the blue EB first then the red EB, resulting

in the following charging event sequence on charger O : (1,1,X) – (1,2,A). During day

one, the en-route charger (E) recharges the blue EB twice and then the red EB once,

resulting in the following charging event sequence on charger E : (1,1,Y ) – (1,1,Z) –

(1,2,B). During the night between days one and two, charger O recharges the red and

blue EBs in that order, resulting in the following charging event sequence on charger O :

(2,1,X) – (2,2,A). During day two, charger E recharges the blue EB, followed by the red

EB, and then the blue EB again, resulting in the following charging event sequence on

charger E : (2,1,Y ) – (2,2,B) – (2,1,Z). During the night between days two and three,
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charger O recharges the blue and red EBs in that order, resulting in the following charging

event sequence on charger O : (3,2,A) – (3,1,X). During day three, charger E recharges

the blue EB once and then the red EB twice, resulting in the following charging event

sequence on charger E : (3,2,B) – (3,1,Y ) – (3,1,Z). The arcs composing these charging

sequences belong to Achg
d,l ,∀d ∈ D, l ∈ L. Note that arcs that are not in the solution have

been omitted.

X Y Z X Y Z X Y Z

A B A BA B

O E O EO E

Bus assignment flow

Charger assignment flow

Day 1 Day 3Day 2

FIGURE 3.2 – Graph G representing the problem with block 1 of each day in purple and
block 2 in orange, sub-block set

⋃
i∈B Bi in brown and charger node set C in green

The decision variables in the proposed MILP are as follows :

— xi, j : Binary variable equal to 1 whether an EB covers block j immediately after

block i, 0 otherwise, ∀(i, j) ∈ Abus.

— yi, j : Nonnegative variable indicating the SoC of the EB after completing block i if

xi, j = 1, 0 otherwise, ∀(i, j) ∈ Abus.

— qi,k : Nonnegative variable indicating the SoC of the EB performing block i right

before starting the charging event preceding the kth sub-block of block i, ∀i∈ B,k ∈
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Bi.

— q̄i,k : Nonnegative variable indicating the SoC of the EB performing block i right

after ending the charging event preceding the kth sub-block of block i, ∀i∈B,k∈Bi.

— ti,k : Nonnegative variable specifying the required charging time of the charging

event preceding the kth sub-block of block i, ∀i ∈ B,k ∈ Bi.

— ai,k : Continuous variable indicating the starting time of the charging event prece-

ding the kth sub-block of block i, ∀i ∈ B,k ∈ Bi.

— ri,k : Binary variable equal to 1 whether a charging event takes place for the EB

performing block i right before the kth sub-block of block i, and 0 otherwise, ∀i ∈

B,k ∈ Bi.

— λ
p
i,k (resp. λ̄

p
i,k) : Nonnegative variable indicating the fulfilled fraction of piece p of

the SoC charging function when the EB performing block i arrives at (resp. leaves)

the charging location right for the the charging event preceding the kth sub-block of

block i, ∀i ∈ B,k ∈ Bi, p ∈ P.

— u j,m
i,k : Binary variable equal to 1 whether a charger is used to charge the EB assigned

to block j immediately after the EB assigned to block i, respectively right before

the mth sub-block of block j and the kth sub-block of block i, and 0 otherwise,

∀d ∈ D,(i, j) ∈ Achg
d,l ,k ∈ Bi,m ∈ B j.

Figure 3.3 illustrates the relationships between variables and parameters associated

with a sub-block k of block i and its preceding charging event. We consider two cases :

either sub-block k is the first of its block, then it would be preceded by an overnight

charging event (a) ; or sub-block k is not the first of its block (so k = 1), then it would

be preceded by an en-route charging event (b). In the first case, if x j,i = 1, then blocks j

and i are assigned consecutively to the same EB, allowing it to be available for charging

at time hE
j,|B j| before performing the first sub-block of block i. In the second case, sub-

blocks k−1 and k are assigned consecutively to the same EB, allowing it to be available

for charging at time hE
i,k−1 before performing the sub-block k of block i. After the charging

event, the assigned EB should start the sub-block k at hS
i,k and should finish at hE

i,k. The
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charging event between these two sub-blocks, whether they belong to the same block or

not, starts at time ai,k and lasts ti,k units of time. From the energy point of view, variable

y j,i indicates the SoC of the EB at the end of block j. This value is equal to the SoC qi,1

before starting the recharge. If the consecutive sub-blocks belong to the same block, qi,k

would be equal to q̄i,k−1−ei,k−1 that indicates the SoC of the EB after operating sub-block

k−1 with the associated energy consumption. Then, variable q̄i,k indicates the SoC after

the recharge and depends on qi,k and the recharging time ti,k. Finally, ei,k provides the net

energy consumed when performing sub-block k of block i.

Charging
Event Sub-block

(a) Overnight charging event

Charging
Event Sub-block

(b) En-route charging event

FIGURE 3.3 – Variables and parameters associated with a sub-block k of block i and its
preceding charging event (energy-related variables/parameters on top ; time-related ones
at the bottom).

To improve readability, we introduce the proposed MILP in two steps. First, we present

the model using the charging functions fl or, more precisely, their inverse f−1
l , to englobe

all charging decisions. Then, we discuss how to express these piecewise linear functions

using additional variables and constraints.

The objective function (3.1) minimizes the total charging costs and the battery de-

gradation costs incurred by the presence of a charging event. Note that the λ̄
p
i,k and λ

p
i,k

variables depend on the qi,k and q̄i,k variables, and their relationship will be made explicit

only in the second part of the model below.

min ∑
i∈B

∑
k∈Bi

(
∑

p∈PlSi,k

[γp,lS
i,k
(λ̄ p

i,k−λ
p
i,k)]+ρlS

i,k
ri,k

)
(3.1)
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This MILP includes four sets of constraints : the first set of constraints models the

EB-to-block assignment ; the second one tracks the SoC variations along the nodes of the

network ; the third set computes the charging times and schedules the charging events ;

and the last one models the piecewise linear charging functions.

Constraints (3.2)–(3.3) ensure that each block has a successor and a predecessor, crea-

ting a feasible bus assignment as a set of |V | disjoint paths.

∑
j:(i, j)∈Abus

xi, j = 1, ∀i ∈ B (3.2)

∑
j:( j,i)∈Abus

x j,i = 1, ∀i ∈ B (3.3)

Constraints (3.4) restrict variables yi, j to take a positive value only if there is an EB

flow on arc (i, j). Constraints (3.5)–(3.7) compute the SoC between consecutive sub-

blocks. Constraints (3.8)–(3.9) stipulate that the SoC of the EB assigned to each sub-block

k from block i must be within a feasible range.

yi, j ≤ SOCmax xi, j, ∀(i, j) ∈ Abus (3.4)

∑
j:(i, j)∈A

yi, j = q̄i,|Bi|− ei,|Bi|, ∀i ∈ B (3.5)

qi,1 = ∑
j:( j,i)∈Abus

y j,i, ∀i ∈ B (3.6)

q̄i,k− ei,k = qi,k+1, ∀i ∈ B,k,k+1 ∈ Bi (3.7)

q̄i,k ≥ ei,k +SOCmin, ∀i ∈ B,k ∈ Bi (3.8)

q̄i,k ≤ SOCmax, ∀i ∈ B,k ∈ Bi (3.9)

Constraints (3.10)–(3.12) impose a lower bound on the starting time of the recharge

before sub-block k from block i depending on its predecessor sub-block, whereas constraints

(3.13) ensure recharge ends before the starting time of the sub-block. Constraints (3.14)

determine the time required to charge the EB assigned to sub-block k from block i from a

SoC of qi,k to a SoC of q̄i,k. These constraints are nonlinear and will be expressed diffe-

rently below (see constraints (3.26)–(3.43)). Constraints (3.15) bound the charging time

with the presence of a charging event. Constraints (3.16)–(3.18) define the flow structure
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for the chargers on each day at each charging location, whereas constraints (3.19) impose

to schedule a charging event before each sub-block on each day at each charging loca-

tion. Constraints (3.20) ensure that there is no overlap between two consecutive charging

events.

ai,1 ≥ ∑
j:( j,i)∈Abus

x j,i hE
j,|B j|, ∀i ∈ B\B1 (3.10)

ai,1 ≥ ∑
j:( j,i)∈Abus

x j,i hE
j,|B j|−|D|M, ∀i ∈ B1 (3.11)

ai,k ≥ hE
i,k−1, ∀i ∈ B,k−1,k ∈ Bi (3.12)

ai,k + ti,k ≤ hS
i,k, ∀i ∈ B,k ∈ Bi (3.13)

ti,k = f−1
lS
i,k
(q̄i,k)− f−1

lS
i,k
(qi,k), ∀i ∈ B,k ∈ Bi (3.14)

ti,k ≤ ri,k ∑
p∈PlSi,k

θp,lS
i,k
, ∀i ∈ B,k ∈ Bi (3.15)

∑
(i,k)∈Bd,l

ui,k
cd,l ,1
≤ |Cl|, ∀d ∈ D, l ∈ L (3.16)

∑
(i,k)∈Bd,l

u
cd,l ,1
i,k ≤ |Cl|, ∀d ∈ D, l ∈ L (3.17)

∑
( j,m)∈Bd,l∪{(cd,l ,1)}\{(i,k)}

(ui,k
j,m−u j,m

i,k ) = 0, ∀d ∈ D, l ∈ L,(i,k) ∈ Bd,l (3.18)

∑
( j,m)∈Bd,l∪{(cd,l ,1)}\{(i,k)}

u j,m
i,k = 1, ∀d ∈ D, l ∈ L,(i,k) ∈ Bd,l (3.19)

ai,k + ti,k ≤ a j,m +M(1−u j,m
i,k ), ∀d ∈ D, l ∈ L,(i,k),( j,m) ∈ Bd,l(3.20)

Finally, constraints (3.21)-(3.25) define the domains of the decision variables.

xi, j ∈ {0,1}, ∀(i, j) ∈ Abus (3.21)

yi, j ≥ 0, ∀(i, j) ∈ Abus (3.22)

ri,k ∈ {0,1}, ∀i ∈ B,k ∈ Bi (3.23)

qi,k, q̄i,k, ti,k ≥ 0, ∀i ∈ B,k ∈ Bi (3.24)

u j,m
i,k ∈ {0,1}, ∀d ∈ D, l ∈ L,(i,k),( j,m) ∈ Bd,l (3.25)
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To model the piecewise linear charging function fl , we introduce the following addi-

tional variables :

— wp
i,k (resp. w̄p

i,k) : Binary variable equal to 1 whether SoC qi,k (resp. q̄i,k) is on piece

p of the charging function flS
i,k

and to 0 otherwise, ∀i ∈ B,k ∈ Bi, p ∈ PlS
i,k

.

— θ i,k (resp. θ̄i,k) : Nonnegative variable equal to f−1
lS
i,k
(qi,k) (resp. f−1

lS
i,k
(q̄i,k)), ∀i ∈

B,k ∈ Bi.

We also replace constraints (3.14) by the following constraints :

ti,k = θ̄i,k−θ i,k, ∀i ∈ B,k ∈ Bi (3.26)

∑
p∈PlSi,k

wp
i,k = 1, ∀i ∈ B,k ∈ Bi (3.27)

qi,k ≥
(

∑
p′∈PlSi,k

:

p′<p

qp′,lS
i,k

)
wp

i,k, ∀i ∈ B,k ∈ Bi, p ∈ PlS
i,k

(3.28)

qi,k ≤
(

∑
p′∈PlSi,k

:

p′≤p

qp′,lS
i,k

)
wp

i,k +(1−wp
i,k) Q, ∀i ∈ B,k ∈ Bi, p ∈ PlS

i,k
(3.29)

λ
p
i,k ≥ ∑

p′∈PlSi,k
:

p′>p

wp′
i,k, ∀i ∈ B,k ∈ Bi, p ∈ PlS

i,k
(3.30)

λ
p
i,k ≤ 1− ∑

p′∈PlSi,k
:

p′<p

wp′
i,k, ∀i ∈ B,k ∈ Bi, p ∈ PlS

i,k
(3.31)

qi,k = ∑
p∈PlSi,k

qp,lS
i,k
·λ p

i,k, ∀i ∈ B,k ∈ Bi (3.32)

θ i,k = ∑
p∈PlSi,k

θp,lS
i,k
·λ p

i,k, ∀i ∈ B,k ∈ Bi (3.33)

∑
p∈PlSi,k

w̄p
i,k = 1, ∀i ∈ B,k ∈ Bi (3.34)

q̄i,k ≥
(

∑
p′∈PlSi,k

:

p′<p

qp′,lS
i,k

)
w̄p

i,k, ∀i ∈ B,k ∈ Bi, p ∈ PlS
i,k

(3.35)
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q̄i,k ≤
(

∑
p′∈PlSi,k

:

p′≤p

qp′,lS
i,k

)
w̄p

i,k +(1− w̄p
i,k) Q, ∀i ∈ B,k ∈ Bi, p ∈ PlS

i,k
(3.36)

λ̄
p
i,k ≥ ∑

p′∈PlSi,k
:

p′>p

w̄p′
i,k, ∀i ∈ B,k ∈ Bi, p ∈ PlS

i,k
(3.37)

λ̄
p
i,k ≤ 1− ∑

p′∈PlSi,k
:

p′<p

w̄p′
i,k, ∀i ∈ B,k ∈ Bi, p ∈ PlS

i,k
(3.38)

q̄i,k = ∑
p∈PlSi,k

qp,lS
i,k
· λ̄ p

i,k, ∀i ∈ B,k ∈ Bi (3.39)

θ̄i,k = ∑
p∈PlSi,k

θp,lS
i,k
· λ̄ p

i,k, ∀i ∈ B,k ∈ Bi (3.40)

θ i,k, θ̄i,k ≥ 0, ∀i ∈ B,k ∈ Bi (3.41)

0≤ λ
p
i,k, λ̄

p
i,k ≤ 1, ∀i ∈ B,k ∈ Bi, p ∈ PlS

i,k
(3.42)

wp
i,k, w̄

p
i,k ∈ {0,1}, ∀i ∈ B,k ∈ Bi, p ∈ PlS

i,k
(3.43)

Constraints (3.26) are equivalent to constraints (3.14) but expressed linearly using

the θ i,k and θ̄i,k variables. For each sub-block k ∈ Bi from block i ∈ B, constraints (3.27)–

(3.33) are dedicated to the computation of θ i,k in function of qi,k. Indeed, constraints (3.27)

impose that a single piece be selected, whereas constraints (3.28)–(3.29) ensure that qi,k

is part of this piece. Constraints (3.30) and (3.31) set the fulfilled fraction of a piece equal

to 1 if it is before the selected piece and to 0 if it is after, respectively. Constraints (3.32)

allow to compute the value of λ
p
i,k for the selected piece p given the other λ

p′
i,k values.

Ultimately, the value of θ i,k is obtained through constraints (3.33) as a function of the λ
p
i,k

variables. Constraints (3.34)–(3.40) play a similar role, but they are used to compute for

each sub-block k ∈ Bi from block i ∈ B the value of θ̄i,k in function of q̄i,k. Finally, the

domains of the new variables are restricted by constraints (3.41)–(3.43).

In the following, we refer to the MILP (3.1)–(3.13), (3.15)–(3.43) as the MDEBARSP-

MILP.
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3.4 An iterative two-phase matheuristic

The MDEBARSP-MILP can be solved using the branch-and-cut algorithm embedded

in commercial MILP solver (see Section 3.5 for details). However, our computational

results indicated that even moderately-sized instances are difficult to solve to optimality.

In order to find better solutions for such instances, we propose an iterative two-phase

matheuristic described below.

The iterative two-phase matheuristic (ITPM) consists of two main stages on each ite-

ration, as the name suggests. The first stage focuses exclusively on decisions related to

the presence of charging events between sub-blocks, and sequencing en-route charging

events. This set of decisions is called intra-block decisions. This stage also determines the

required charging time of overnight and en-route charging events. The second stage fo-

cuses on decisions regarding the EB-to-block assignment and the sequence of overnight

charging events, later referenced as inter-block decisions. The main loop is started and

be restarted by an initialization method, which sets inter-block decisions. Algorithm 5

provides a high-level description of the proposed iterative two-phase matheuristic.

Algorithme 5 : Iterative two-phase matheuristic (ITPM)
1 Initialize inter-block decisions ;
2 while time limit is not exceeded do
3 Improve intra-block and charging time decisions given inter-block decisions :

EB-to-block assignment and sequences of overnight charging events ;
4 if feasible integer solution is found then
5 Improve inter-block decisions given intra-block and charging time

decisions, and EB availability time ;
6 else
7 Reinitialize inter-block decisions with random ;
8 end
9 end
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3.4.1 Intra-block and charging time decisions stage

The first stage of the iteration, Line 3, uses a set of inter-block decisions, for its

decision-making process. Given a fixed set of EB-to-block assignments and a fixed se-

quence for overnight charging events for each charger installed at the depot, the first stage

of the iteration’s method determines : whether a charging event takes place for an EB

before performing a sub-block ri,k ; the required charging time for every charging event

ti,k, for both overnight and en-route ; and the sequence of en-route charging events for

each en-route charger, represented by u j,m
i,k variables. The decision-making process takes

into consideration constraints EB availability time, sub-block consumption, charger capa-

city, and EB’s SoC. These intra-block and charging time decisions are made by solving a

mathematical model, noted INTRA-MILP, corresponding to objective function (3.1) and

constraints (3.4)–(3.13), (3.15)–(3.43), with xi, j, and u j,m
i,k variables fixed at values given

by the inter-block decisions. Note that not all u j,m
i,k are set by the inter-block decisions,

bot only the ones corresponding to overnight charging events. To prevent this stage from

consuming all the allocated computation time for the method, a computation time limit is

imposed.

3.4.2 Inter-block decisions stage

The intra-block and charging time decisions are subsequently passed on to the second

stage. Line 5 uses the intra-block decisions given by the previous stage of the method

and looks for a new set of EB-to-block assignments and a new sequence for the overnight

charging events. In order to make decisions in this stage, a MILP is solved and this MILP

is equivalent to the MDEBARSP-MILP, with fixed ti,k, ri,k, and u j,m
i,k fixed variables fixed

at values given by the intra-block decisions. Note that not all are set by the intra-block

decisions, but only the ones corresponding to en-route charging events. However, the

objective function to evaluate a solution is not the same as the MDEBARSP-MILP. The

problem solved during this stage aims to maximize the total sum of overnight charging
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event durations (3.44).

max ∑
i∈B

ti,1 (3.44)

The resulting MILP, noted INTER-MILP, consists of objective function (3.44) and constraints

(3.2)–(3.13), (3.15)–(3.43). The model determines the EB-to-block assignments and the

charging sequences at the depot during each night in order to maximize the total over-

night charging time. Thus, the intra-block decision stage could use these sequences to

create longer charging events at night, when charging costs are lower. If EBs charge suffi-

ciently at night, this would help to eliminate some of the en-route charging events between

sub-blocks, leading to lower costs in the objective function (3.1).

Given that the intra-block decisions are an input of the model, there are no additional

decisions to make regarding the content of the blocks and those blocks are considered

as unbreakable objects. The problem solved during this stage is similar to the MDE-

BAOSP (VENDÉ, DESAULNIERS, KERGOSIEN & MENDOZA, 2023), which assigns a set

of blocks, considered as unbreakable objects, to EBs and schedules their overnight char-

ging events. The differences between both problems are the objective function and the cy-

clic aspect of the planning horizon, which are not considered in VENDÉ, DESAULNIERS,

KERGOSIEN et MENDOZA, 2023. In order to take into account the SoC variation of the

EB performing the blocks and anticipate discharges occurring during the day, some pre-

processing of the information provided by the intra-block decision stage is necessary.

The net energy consumption ei for each block i ∈ B, uses the consumption of the sub-

blocks that make them up, as well as the en-route charging events and is computed as

ei = q̄∗i,1− (q̄∗i,|Bi|− ei,|Bi|). The maximum decrease of energy emaxD
i for each block i ∈ B,

uses the SoC of the EBs after each en-route charging event during block i and is com-

puted as emaxD
i = maxk∈Bi q̄∗i,1− (q̄∗i,k− ei,k). The maximum increase of energy emaxI

i for

each block i ∈ B, uses the SoC of the EBs after each en-route charging event during block

i and is computed as emaxI
i = maxk∈Bi q̄∗i,k− q̄∗i,1. q̄∗i,k indicates the SoC of the EB perfor-

ming kth sub-block of block i after its preceding charging event as computed during the

intra-block decision stage. By using the MDEBAOSP model instead of the INTER-MILP,
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we would eliminate some continuous variables, some constraints, and some arcs from the

graph describing the problem, which make it easier to solve.

The INTER-MILP is solved using a commercial solver. In order to help the solver, we

determine an upper and a lower bound of the value of the objective function of the INTER-

MILP (3.44). Those bounds are derived from the feasible solution computed in the pre-

vious stage. The lower bound is equal to the total charging duration of EBs overnight

provided by the solution found at the previous intra-block stage. It is computed as LB =

∑i∈B t∗l,1, where t∗i,1 is the required charging time before performing the first sub-block of

block i, i ∈ B. The upper bound is determined as the minimum of two values : the total

time available to use all the chargers installed at the depot, computed as chargers_time =

∑d∈D |Bd|
(

maxi∈Bd hS
i,1 −mini∈Bd−1 hE

i,|Bi|
)

; and an overestimate of the time needed to

fully charge all EBs, computed as EBs_time = |B|
(

f−1
l0

(SOCmax)− f−1
l0

(SOCmin)
)
. Thus,

the upper bound is computed as UB = min(chargers_time,EBs_time). To prevent this

stage from consuming all the allocated execution time for the method, a computation time

limit imposed. Given that it can be difficult to close the optimality gap for the INTER-

MILP, an optimality gap of 5% to reach is provided to the solver.

One could note that the matheuristics proposed by VENDÉ, DESAULNIERS, KERGOSIEN

et MENDOZA, 2023 are not applicable for solving this version of the EB assignment and

overnight charging problem because of the major differences between the MDEBAOSP

and the INTER-MILP. These matheuristics are based on a problem decomposition ap-

proach, where the EB-to-block assignment is computed separately from long-term da-

mages to the battery optimization. In the daily-assign-then schedule method, the EB-to-

block assignment was performed by considering only the block to come and not the entire

sequence of blocks. This method can be effective if an initial day and a final day are consi-

dered. However, in the MDEBARSP, the planning horizon is cyclic, which eliminates the

notion of an initial or final day. This cyclic nature of the problem introduces challenges

in finding feasible assignments. In the assign-then schedule method, the charging events

were rescheduled in order to prevent long-term damages to the battery and only calen-

dar aging was considered. Given that the type of long-term damages to the battery being
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addressed in the MDEBARSP is different, the method is unsuitable for our problem.

3.4.3 Initialization stage

In order to quickly enter into the ITPM’s main loop, some initial inter-block deci-

sions must be made. Line 1 looks for an initial EB-to-block assignment and a sequence

for overnight charging events. This stage unfolds in two steps. First, an initial sequence

for charging events is computed for each charger. For each pair of day d ∈ D and char-

ging location l ∈ L, the charging events associated to day d and location l are sorted by

either increasing starting time of the associated block for an overnight charging event,

i.e. (i,1) < ( j,1)⇔ hS
i,1 < hS

j,1, i, j ∈ Bd ; or by increasing ending time of the associa-

ted previous sub-block for an en-route charging event, i.e. (i,k) < ( j,m) ⇔ hE
i,k−1 <

hE
j,m−1,∀(i,k),( j,m)∈ Bd,l, l ∈ L\{l0}. Then, to schedule the charging events on chargers,

we assign the charging events one by one in the order defined above, to the first available

charger. The first available charger is defined as the charging whose starting time of sub-

block associated with the last assigned charging event is the smallest. A pseudocode of

the charging sequence initialization procedure is given in Section 29. This procedure need

to be called for each day d ∈D and charging location l ∈ L. After the charging sequences

are established, a mathematical model corresponding to constraint s(3.1)–(3.13), (3.15),

(3.20)–(3.43) including the fixed u j,m
i,k variables is solved by a solver that stops at the first

feasible solution found. From this feasible solution, an initial EB-to-block assignment and

a sequence for overnight charging events can be extracted.

3.4.4 Reinitialization stage

During the algorithm’s main loop, the intra-block decisions stage (Line 3) cannot find

a feasible solution from the EB-to-block assignments and the sequences for overnight

charging events determined during the inter-block decision stage (Line 5) in some cases.

During this stage, maximizing the total sum of overnight charging events’ durations may

lead to the creation of a set of charging events with unbalanced durations, some of which
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are very small to allow the creation of larger events. Although the durations of the over-

night charging events are not transmitted to the intra-block decisions stage, they are used

to determine the EB-to-block assignments. This results in sequences of blocks with po-

tentially little time for overnight charging for some blocks. The associated EBs leave the

depot with limited SoC and may fail to reach the first installed en-route charger. Conse-

quently, no feasible solution with these EB-to-block assignments and these sequences for

overnight charging events can be found. In order to continue the iterative process with

a new feasible solution, a randomized version of the initialization method, performed at

Line 1, is called at Line 7 performs a randomized version of the initialization method. Af-

ter the charging events have been sorted, we randomly select a single charging event from

the first K charging events, and we assign it to the first available charger, until there are no

events left to be assigned. A mathematical solver is then called to solve the MDEBARSP-

MILP, with the variables ui, j fixed, however the solver stops at the first feasible solution

found. This randomized method produces new sequences of charging events and thus a

new set of EB-to-block assignments that can be explored by the algorithm. One could

note that if K = 1, this method would produce the exact same result as the initialization

method.

3.5 Computational experiments

We implemented the proposed algorithms in C++. Our implementation uses IBM

ILOG CPLEX 20.1 to solve the MILPs with a default optimality gap tolerance of 0.001%.

To evaluate the effectiveness of our proposed solution methods, we conducted computa-

tional experiments on instances generated from operational data provided by our industrial

partner, GIRO Inc., one of the world-leading optimization software companies for public

transit companies. All computations were carried out on a 64-bit computer with an Intel

Gold 6148 Skylake CPU (2.40 GHz), 10 gigabytes of main memory, and CentOS Linux 7

operating system. In the following section, we first provide a description of the instances

and subsequently present and discuss our results and findings. The reported gaps in the
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results are calculated as the relative difference between a reference value and an observed

value using the following formula : gap = obs−re f
re f .

3.5.1 Instance generation

GIRO Inc. provided us with several real-world instances coming from three European

public transit operators. These instances describe the set of blocks performed during a

single day, with their sub-blocks and all their related information. For each of the three

companies, the set of blocks is repeated every day. For each sub-block of a block, the

instance indicates the starting time, ending time, starting location, ending location and

energy consumption along the sub-block. In all instances, there is one EB per block and

the fleet is homogeneous. Therefore, we did not need to add dummy blocks to these ins-

tances. The EBs have a battery with capacity of Q = 290 kWh and their SoC must remain

between SOCmin = 10% and SOCmax = 100%.

In order to generate instances from these three public transit networks, we used a

parameter, called target SoC threshold, that influences the division of blocks into a set of

sub-blocks by inserting en-route charging opportunities during the day. When a target SoC

threshold is reached by the EB performing the block, the current sub-block is terminated

to allow the EB to set a course for a charger. Thus, the higher the SoC target, the grea-

ter the charging opportunities. Assuming that an EB starts its block with a full battery,

instances have been generated according to three possible SoC targets : 30% SoC (low

charging opportunities), 50% SoC (middle charging opportunities), and 70% SoC (high

charging opportunities). Additionally, each instance is generated with a version where the

duration between sub-blocks, dedicated to charging, is longer. Although the lines covered

by all the buses remain unchanged, the blocks and their composition differ. With these

configurations, the generated instances contain between 38 and 41 blocks per day.

Our industrial partner shared with us a lot of information regarding bus trips, but only

a few regarding the charging infrastructure. A parameter that they did not share with us

was the EBs’ battery charging function f . This function is difficult to establish in close
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form because it depends on many different and (sometimes) difficult to measure factors

(e.g., the power used, the degradation state of the battery, and the room temperature).

Consequently, EB operators have limited knowledge about the precise charging function

of their vehicles and often rely on approximations when planning recharging events. In

our instances, we adopted the piecewise linear approximation proposed by MONTOYA

et al., 2017 to estimate the charging function. Specifically, we adjusted their charging

function to match the average charging rate of the three operators’ charging infrastructure,

provided by the industrial partner, for both the overnight (slow) chargers and en-route

(fast) chargers. Finally, we used the energy costs reported in PELLETIER et al., 2018

as our charging cost γl,p, by considering low energy costs for γl0,p, p ∈ Pl0 because the

associated charging events are usually operated at night during off-peak hours, and high

energy costs otherwise. We also generated instances where energy costs are constants for

all chargers, set as low energy costs.

Transit companies rarely consider battery aging costs when planning their overnight

charging events. Therefore, our partner did not have data to share on this parameter. To

complete our instances, we computed the unit damage cost spent for each charging event

performed, which depends on the charging rate of the used charger and so on the charging

location. This cost is computed as a function of the purchasing cost of the battery and the

time required to fully recharge the battery (ECHEVERRI GUZMAN, 2020). A higher char-

ging rate induces shorter charging durations and, therefore, higher unit damage costs for

each charging event performed. Considering a battery price of USD 150,000 we obtained

a unit damage cost ρl of USD 26.4 for overnight charging events at the depot and USD

38.5 for en-route charging events on the network.

To make instances that are harder to solve and to reflect the near future in which

the number of EBs in the fleets is expected to be significantly larger than the number of

chargers available at the depot, we set the number of chargers as cd,l0 = ⌈
maxd∈D |Bd |

5 ⌋· 52 +5

for the depot l0 and cd,l = ⌈maxd∈D |Bd |
5 ⌋ · 1

2 + 2 for l ∈ L\{l0}, ∀d ∈ D. Each instance is

generated with a 3 or 5 days in the planning horizon. Thus, the set of instances contains

72 instances (= 3 × 3 × 2 × 2 × 2). In the following, we may refer to a configuration as
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an instance family using the following convention cost_nbDays_opportunity, where cost

indicates whether the charging costs are location dependent (L) or constant (C), nbDays

is the number of days in the planning horizon, and opportunity indicates the charging

opportunity (among low, middle and high).

3.5.2 Results with the MILP

In the first set of experiments, we solved the 72 instances using the MILP introduced

in Section 3.3 running on CPLEX for 3 hours. Out of the 72 instances, the solver found

optimal solutions for 35 instances, and feasible-but-unproven solutions for the remaining

37. Table 3.2 summarizes the results. The first column indicates the instance family ; the

second column reports the number of feasible solutions found for each configuration ; the

third column reports the number of optimal solutions found for each configuration ; the

fourth column shows the average gap on the objective function between the best integer

solution and the best lower bound computed by CPLEX; and the fifth column reports the

average computational time.

TABLE 3.2 – Computational results - MILP (computational time limit of 3h)

Instance
# Solved # Optimal

Gap w.r.t. Computational
family LB time (s)
L_3_low 6/6 2 1.2 7390
L_3_middle 6/6 2 2.1 7268
L_3_high 6/6 2 3.3 7297
L_5_low 6/6 2 1.4 7488
L_5_middle 6/6 1 2.2 7333
L_5_high 6/6 2 7.1 7597
Total / Average 36/36 11 2.9 7396
C_3_low 6/6 6 0.0 396
C_3_middle 6/6 5 0.4 2458
C_3_high 6/6 2 5.1 7329
C_5_low 6/6 5 0.0 2563
C_5_middle 6/6 4 0.5 4227
C_5_high 6/6 2 8.3 8048
Total / Average 36/36 24 2.4 4170
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In the upper section of the table, instances where charging costs depend on location

struggle with the challenge of finding optimal solutions. Fewer than a third of such ins-

tances are optimally solved. This results in large computational times. On average, ins-

tances with location dependent costs are either successfully solved within 10 minutes

for the few optimally solved cases, or they reach the maximum computational time of

three hours. The solver seeks a cost-optimal balance between charging at high rates for

en-route charging and charging at minimal costs for overnight charging. Thus, many so-

lutions may show proximity in their objective values while diverging significantly in the

decisions made, making the instances challenging to solve optimally. Note that, the gap

is relatively small at 2.9% on average (including 11 instances with a gap of 0.0%). There-

fore, the MILP approach is not inherently deficient ; rather, it struggles with the challenge

of closing the optimality gap.

The bottom half of the table shows different results. Instances become easier to solve

when charging costs remain constant. A greater number of instances are optimally solved

in this scenario. Given that charging costs are constants, it is more efficient to charge at

locations where charging rates are higher, considering the objective function. There is no

need to find a balance between cost and effectiveness. Thus, this results in shorter com-

putational times and lower gaps with respect to the LB. Instances with location dependent

charging costs with small gaps tend to be solved to optimality when the costs become

constant. Those previously small gaps are then set to 0, contributing to lower average op-

timality gaps. A side effect of the constant charging costs is the charging strategy induced.

The en-route charging is supposed to support the overnight charging. However, given that

EBs charge at locations where charging rates are higher, the overnight charging acquires

the role of support charging in this condition, which is an unexpected side effect.

3.5.3 Results with the iterative two-phase matheuristic

In the second set of experiments, we solved the 72 instances using the iterative two-

phase matheuristic introduced in Section 3.4 with a total time limit of 15 minutes. We set
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a 3 minutes computation time limit for an iteration of the intra-block decision stage, a 5

minutes computation time limit for an iteration of the inter-block decision stage, and K =

3 as the selection span in the initialization method. The method found feasible solutions

for all of 72 instances. Table 3.3 summarizes the results. The first column indicates the

instance family ; the second column reports the number of feasible solutions found for

each configuration ; the third column shows the average gap in the objective function with

respect to the solutions found by the MILP; the fourth column presents the average gap

in the objective function with respect to the solutions found by the initialization stage

(Line 1) ; the fifth column indicates the number of iterations performed by the method ;

the sixth column reports the average computational time ; the seventh column shows the

average total computational time spent to provide an initial EB-to-block assignment and

a charging sequence for overnight charging (Line 1 and 7) ; the eighth column indicates

the average computational time spent by the intra-block decision stage (Line 3) ; and the

ninth columns shows the average computational time spent by the inter-block decision

stage (Line 5). Note that we do not compute the gaps when one of both methods (MILP

resolution or ITPM) did not find a feasible solution for an instance.

TABLE 3.3 – Computational results - ITPM (computational time limit of 15min)

Instance
# Solved

Gap w.r.t. Gap w.r.t.
# Iterations

Computational Line 1 + 7 Line 3 Line 5
family MILP (%) init. step (%) time (s) time (s) time (s) time (s)
L_3_low 6/6 1.2 −22.5 84 900 15 156 727
L_3_middle 6/6 1.1 −24.1 103 900 21 422 456
L_3_high 6/6 1.7 −32.8 75 900 13 675 211
L_5_low 6/6 1.5 −18.7 37 900 39 155 703
L_5_middle 6/6 1.7 −24.9 37 900 33 400 465
L_5_high 6/6 −2.2 −32.4 25 900 31 600 268
Total / Average 36/36 0.8 −25.9 60 900 25 401 472
C_3_low 6/6 0.5 −10.8 41 900 15 118 766
C_3_middle 6/6 0.7 −16.5 31 900 14 278 607
C_3_high 6/6 −1.2 −35 16 900 11 440 449
C_5_low 6/6 0.9 −7.1 17 900 17 175 706
C_5_middle 6/6 1.5 −22.6 12 900 20 304 576
C_5_high 6/6 −4.4 −35.1 8 900 17 392 490
Total / Average 36/36 −0.4 −21.2 21 900 16 284 599

The results show that ITPM finds feasible solutions for all 72 instances, consuming

the allocated the 15 minutes of computation time. Moreover, the method provides good

solutions. The average gap with respect to the MILP is 0.2%. Therefore, the objective

values of the solution found by the ITPM are very close to those of the MILP, however,
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the method consumes much less computing time : 15 minutes versus 3 hours. As that

seventh columns shows, the algorithm finds an initial solution quickly (either at the start

or the restart) given that it only needs less than 30 seconds in average. Then, the method

focuses on improving these initial solutions for the majority of the time. However, we

can still observe some differences depending on whether the charging costs are location-

dependent or constant. Although gaps with respect to the MILP are low (lower than 2%),

gaps for instances with constant charging costs are negative. For those instances, the MILP

found an optimal solution for 24 out of 36 instances and significant gaps for the remaining

ones. The method managed to significantly tighten the gap for the remaining instances,

which is far from optimal, showing that instances with constant charging costs are easier

to solve. Whereas the fact that the computational times dedicated to optimize an initial

solution are close among all instances, we observe a significant difference between the

balance between the total computational times spent on the intra-block decision stage and

the inter-block decision stage, for constant charging cost instances and location-dependent

charging costs instances. For constant charging cost instances, the inter-block decision

stage systematically consumes more computation time. When the cost of recharging does

not depend on the charging location, there is no advantage to use overnight charging, at

low charging rates. Then, most of the charging takes place during the en-route charging

events. The bounds induced as a result of the intra-block decision stage (particularly the

lower bound) are not tight enough and thus do not provide relevant information for the

subsequent step. Therefore, inter-block decision stage struggles to achieve its stopping

condition (optimality gap less than 5%). As a result, each iteration takes longer, leading to

fewer iterations during the same computation time (21 for constant charging cost instances

and 60 for location-dependent costs instances). Finally, the results show the interest of

removing some charging events. The total costs are reduced by 23.5% in average between

the initial solution computed during the initialization stage and the best solution found by

the method.
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3.6 Conclusion

In this paper, we introduced the MDEBARSP and formulated it as a MILP that can

be solved using a commercial solver. To enhance computational efficiency, we proposed a

matheuristic named iterative two-phase matheuristic. To evaluate our algorithm, we used

a set of 72 instances derived from operational data of an EB operator. First, the MILP

solver is able to find optimal solutions for half of instances and feasible solutions for the

remaining instances, with a significant average optimality gap of 2.7%. Despite its effec-

tiveness, the approach demands a significant amount of computational time, reaching the

provided time limit of 3 hours for half of instances. The, the iterative two-phase matheu-

ristic provides good solutions in short computational times, with a small average gap of

0.2% w.r.t. MILP approach and an average computational time of 15 min. It also shows a

reduction of total costs of 23.5% by removing unnecessary en-route charging events.

As a first research perspective, we can propose considering of battery degradation

impact over time. The lifespan of batteries diminishes over time under charging and di-

scharging cycles. Each EB with its own trips, its battery lifespan changes in a specific

way for each EB. Consequently, despite the initial uniformity of the EB fleet, their in-

dividual battery capacities evolve uniquely, resulting in a heterogeneous fleet. Another

research direction could be to extend the problem by considering the more strategic ob-

jective of minimizing the number of chargers for both overnight and en-route charging.

This would add a kind of technology selection decision to the problem. A final interesting

research avenue would be to consider a more fine-grained EB operation and the dynamic

rearrangement of sub-blocks. For instance, swapping sub-blocks between two EBs per-

forming charging events at the same location and time could optimize certain objective

functions or help further charging scheduling. Thus, it would transform the problem into

an EB-to-subblock assignment problem.
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Conclusion générale

L’intégration de bus électriques dans les réseaux de transport en commun représente

une solution pour limiter les émissions de gaz à effet de serre. Cependant, la mise en

place d’une flotte de bus électriques soulève des questions d’organisation et de dimen-

sionnement, notamment sur les aspects d’infrastructures pour la recharge des batteries

des bus. Cette thèse vise à répondre à certaines de ces questions en étudiant et résolvant

les problématiques liées aux différentes stratégies de recharge (nocturne ou en route) et de

localisation et dimensionnement des chargeurs. Cette thèse a abordé trois problématiques

liées à ces différentes stratégies de recharge.

La recharge en route permet d’augmenter la distance pouvant être parcourue et de di-

minuer la fréquence de retour au dépôt. Cependant, seul un nombre limité de chargeurs

peut être installé sur le réseau pour des raisons budgétaires, ce qui entraîne un partage

des stations de recharge et l’utilisation de bus hybrides. Le premier chapitre présente un

problème d’emplacement de chargeurs dans un réseau de transport public. À partir d’un

ensemble de lignes caractérisées par une séquence d’arrêts desservis par des bus hybrides

à des fréquences données, le problème consiste à trouver l’emplacement des stations de

recharge qui peuvent être partagées par plusieurs lignes, combien en installer, et com-

ment les utiliser pour garantir le même niveau de service et s’assurer qu’il existe bien

un ordonnancement de recharge réalisable sur chacune des stations. Nous avons consi-

déré deux fonctions objectifs : la maximisation de la distance parcourue en utilisant le

mode électrique et la minimisation des coûts d’installation. Nous avons proposé un pro-

gramme linéaire en nombres entiers (PLNE) et une méthode basée sur un algorithme



de type branch-and-check pour résoudre efficacement le problème. Dans cette méthode

de type branch-and-check, le problème est séparé en une relaxation du problème origi-

nal et un problème de faisabilité. Le problème relaxé cherche à déterminer le nombre et

l’emplacement des chargeurs ainsi que les durées des recharges des bus de chaque ligne,

sans vérifier la contrainte de ressource, c’est à dire s’il existe un éventuel chevauchement

des tâches de rechargement. Un problème de faisabilité est résolu à chaque fois qu’une

solution est trouvée pour le problème relaxé. Dans ces problèmes de faisabilité, nous

nous assurons qu’un ordonnancement réalisable pour toutes les tâches de rechargement

existe. En plus d’expériences numériques montrant l’efficacité de la méthode proposée,

nous proposons des perspectives managériales en présentant les bénéfices opérationnels

et économiques d’utiliser des chargeurs partagés. Pour ce faire, nous avons comparé deux

scénarios, dans le premier les chargeurs peuvent être partagés entre plusieurs lignes et

dans le deuxième, les chargeurs sont dédiés à une seule ligne. Ensuite, nous avons montré

le compromis entre l’augmentation du budget et la réalisation d’une plus grande électri-

fication en analysant le coût d’installation de chargeurs en fonction du pourcentage de

trajets à réaliser en mode électrique. L’un des principaux résultats montre que, pour utili-

ser uniquement le mode électrique, il faudrait augmenter le budget dédié à l’installation

d’au moins 50%.

Les autorités organisatrices des transports en commun augmentent constamment la

proportion de bus électriques dans leurs flottes. En raison de contraintes budgétaires, d’es-

pace et de puissance électrique disponible, le nombre de chargeurs au dépôt est limité par

rapport au nombre de bus électriques. Se pose ainsi une problématique de gestion et de

planification de la recharge nocturne au dépôt. Dans le deuxième chapitre, nous consi-

dérons un problème d’affectation de bus électriques et d’ordonnancement de la recharge

nocturne sur plusieurs jours, qui peut être défini de la manière suivante. Le problème

considère un ensemble de blocs véhicules (suites programmées de trajets effectués par

le même bus sur une journée) devant être effectués sur plusieurs jours, un ensemble de

bus électriques identiques, et un ensemble de chargeurs disponibles au dépôt. L’objec-

tif est d’affecter un bus électrique à chaque bloc et de planifier la recharge nocturne au
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dépôt en s’assurant que les bus ne soient jamais à court d’énergie et que la capacité de

recharge au dépôt ne soit jamais dépassée. L’objectif est de minimiser le coût total de

recharge tout en préservant la durée de vie de la batterie à long terme. Ce problème est

modélisé sous la forme d’un PLNE et résolu à l’aide d’un solveur commercial. Afin d’ob-

tenir des temps de calcul plus courts, nous avons développé deux matheuristiques. Dans

une première matheuristique assign-then-schedule, la méthode décide de l’affectation des

bus à des blocs et des durées de recharge pendant la nuit dans une première étape. En-

suite, elle ordonnance ces tâches de rechargement de manière à respecter la capacité des

chargeurs, les heures de disponibilité des bus, et à minimiser la dégradation de la durée

de vie de la batterie à long terme. Dans une seconde matheuristique daily-assign-then-

schedule, une étape préliminaire est ajoutée à la méthode précédente. Cette étape affecte

des bus à des blocs, de manière à ce que la suite de blocs effectués par un même bus entre

deux jours consécutifs se répète sur l’horizon de planification. Afin de montrer l’intérêt

de considérer un horizon de plusieurs jours, nous présentons deux autres matheuristiques

appelées short-sighted, simulant les pratiques industrielles actuelles et résolvant le pro-

blème séquentiellement, un jour à la fois. Dans une première matheuristique minimum

short-sighted, la méthode charge un bus de la quantité minimale d’énergie nécessaire

pour effectuer le bloc de la journée suivante. En comparant les résultats de cette méthode

et de daily-assign-then-schedule, nous remarquons qu’il est parfois impossible de trou-

ver des solutions réalisables si on considère un jour après l’autre, montrant l’intérêt de

considérer directement un horizon de planification de plusieurs jours. Dans une seconde

matheuristique maximum short-sighted, la méthode charge un bus jusqu’à ce qu’il doive

partir ou qu’un autre bus ait besoin du chargeur. Avec cette méthode, nous remarquons

que les coûts, et en particulier les coûts liés à la dégradation de la durée de vie de la

batterie à long terme, augmentent significativement comparé aux résultats de la méthode

daily-assign-then-schedule.

Dans le dernier chapitre, nous considérons une extension du problème étudié dans

le deuxième chapitre. Cette extension remet en question les activités journalières effec-

tuées par les bus en introduisant des événements de recharge en route effectués pendant
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la journée. Étant donné que les infrastructures de recharge au dépôt sont limitées, nous

cherchons à réduire les opérations de recharge pendant la nuit en rechargeant également

les bus pendant la journée. Ainsi, nous avons étudié un nouveau problème d’affectation

de bus électriques et d’ordonnancement de la recharge sur plusieurs jours. Les blocs vé-

hicules sont désormais considérés comme des suites sécables de trajets effectués par le

même bus sur une journée. Entre ces différents trajets, les bus peuvent effectuer des opé-

rations de recharge sur des chargeurs installés sur le réseau de transport. En plus des

décisions prises dans le problème original, nous ordonnançons les opérations de recharge

en route, en nous assurant que les bus disposent de suffisamment d’énergie pour effec-

tuer tous leurs trajets, tout en préservant la durée de vie de la batterie à long terme. Pour

résoudre ce problème, nous l’avons modélisé sous la forme d’un PLNE et nous avons

développé une matheuristique. À partir d’une solution initiale, la méthode va remettre

en question les décisions concernant la recharge en route sans modifier celles liées à la

recharge nocturne. Ensuite dans une deuxième phase, la méthode cherche à améliorer

les décisions liées à la recharge nocturne sans modifier les décisions liées à la recharge

en route. La méthode réitère ce processus jusqu’à ne plus pouvoir améliorer la solution

courante. Les expérimentations numériques ont permis de démontrer l’intérêt d’utiliser

une combinaison de ces deux stratégies de recharge mais aussi celui de limiter le nombre

d’événements de recharge. À cette fin, nous avons comparé les coûts associés à des solu-

tions dans lesquelles les bus se rechargent à chaque opportunité disponible avec celles où

le nombre d’événements de recharge en route est optimisé.

Les problématiques liées à l’électrification du transport public sont complexes et de

nombreuses perspectives de recherche peuvent être considérées à partir de ces problèmes

étudiés dans cette thèse.

Le problème d’emplacement de chargeur relève essentiellement d’un niveau straté-

gique, avec des décisions qui ont des implications à long terme et ne sont pas sujettes

à des révisions régulières. Par conséquent, il pourrait être bénéfique d’intégrer d’autres

décisions stratégiques et de considérer l’ensemble de ces décisions simultanément. Par

exemple, on peut envisager d’inclure le choix des technologies (type de chargeur, de bus
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ou de batterie) comme une composante du problème, ce qui permettrait d’introduire des

coûts associés à l’acquisition de ces différentes technologies. Étant donné que l’installa-

tion de chargeur est un processus coûteux qui ne pourrait pas être effectué en une seule

fois par une compagnie de transport, une seconde perspective serait d’aborder le problème

avec une approche itérative. Chaque itération prendrait en compte la présence des char-

geurs déjà installés lors des itérations précédentes comme des données du problème. Cette

approche progressive permettrait d’électrifier graduellement le réseau de transport jusqu’à

l’obtention d’un réseau de transport entièrement électrique. Une autre perspective de re-

cherche pourrait consister à remettre en question les trajets d’une proportion des lignes de

bus existantes. Cette réévaluation permettrait de placer des chargeurs en dehors des lignes

existantes, favorisant ainsi un partage accru des chargeurs entre les lignes. Notons qu’en

fixant cette proportion de changement à 100%, il serait possible de redessiner entièrement

les lignes de bus, les adaptant spécifiquement aux chargeurs installés et permettant ainsi

de réduire les coûts.

Le problème d’affectation des bus et de recharge relève davantage de l’opération-

nel, où les infrastructures de recharge sont considérées comme des données du problème.

Il existe des perspectives de recherche visant à améliorer la gestion des ressources du

réseau de transport. La première ressource à considérer est le bus lui-même, en particu-

lier sa batterie. Identifier et quantifier toutes les sources de dégradation de la durée de

vie d’une batterie permettrait d’intégrer ces aspects de manière plus systématique dans

les problèmes étudiés. Jusqu’à présent, chaque problème aborde un aspect spécifique de

la dégradation, mais une approche intégrant toutes les sources de dégradation en même

temps pourrait être bénéfique, même si elles sont souvent concurrentielles. Par exemple,

vider la batterie à sa profondeur de décharge maximale (différence d’état de charge entre

le début et la fin de la recharge) réduit le nombre de cycles de recharge que peut supporter

une batterie. Ceci induit de recharger très fréquemment afin de limiter les variations de

l’état de charge. Cependant, les batteries ont un nombre de cycles de recharge limité, ce

qui implique d’attendre le plus possible avant de recharger et donc une grande profondeur

de décharge. L’objectif serait de trouver un compromis optimal pour minimiser toutes
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les sources de dégradation et prolonger la durée de vie des batteries. De plus, la durée

de vie des batteries des bus évolue en fonction des différentes sources de dégradations

auxquelles elle est exposée. Ainsi, même après une période assez courte, une flotte de

bus initialement homogène devient hétérogène, avec des capacités de batterie uniques à

chaque bus. Une seconde perspective de recherche sur ce problème opérationnel serait de

considérer une nouvelle ressource : les chauffeurs de bus. Dans les problèmes de transport

public, l’aspect de gestion des ressources humaines est souvent négligé. Étant donné que

les chauffeurs sont affectés à des bus, si les itinéraires des bus présentent des demandes

hétérogènes, les chauffeurs peuvent être confrontés à des charges de travail inégales. Il

serait donc pertinent d’intégrer une notion d’équité dans la répartition de la charge de

travail des chauffeurs, en fonction des parcours des bus.

Tous ces problèmes de transport reposent sur une logistique bien orchestrée. Les

tâches de rechargement peuvent être planifiées efficacement car les horaires d’arrivée et de

départ des bus, ainsi que leur consommation pendant leur trajet, sont précisément connus.

Cependant, les bus ne sont pas les seuls acteurs dans le réseau de transport. Ils partagent

la route avec d’autres véhicules, ce qui peut introduire des incertitudes dans les données

des problèmes. En effet, des événements imprévus tels qu’un trafic dense ou un accident

peuvent entraîner des retards dans les horaires des bus, affectant ainsi leur arrivée prévue

à la station de recharge. Ces retards peuvent à leur tour perturber les horaires des autres

bus, remettant en question les décisions prises par des algorithmes. Dans ce contexte, il

pourrait être judicieux de considérer des versions stochastiques de ces problèmes de re-

charge de véhicules qui pourraient être à l’aide de méthodes d’optimisation robuste. Il est

également important de noter que ces variations de temps de trajet peuvent aussi avoir

un impact non négligeable sur la consommation électrique. Ainsi, en plus de l’incertitude

concernant les horaires de disponibilité des chargeurs, nous devons également prendre en

compte l’incertitude liée à cette consommation.

Enfin, une dernière perspective de recherche essentielle concerne le calcul précis de

la consommation des véhicules électriques. Actuellement, les autorités organisatrices des

transports en commun ont tendance à surestimer significativement les consommations
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pour garantir que les bus ne se retrouvent pas à court d’énergie pendant leurs trajets. Cette

surestimation est ensuite transmise aux modèles d’aide à la décision, entraînant ainsi des

coûts de recharge plus élevés que nécessaire. Cette pratique contribue également à accé-

lérer la dégradation des batteries, augmentant ainsi les coûts de maintenance à long terme

de la flotte de véhicules. Pour éviter cette surestimation, il serait nécessaire d’obtenir des

modèles capables de fournir des estimations précises de la consommation électrique. La

consommation d’un véhicule électrique dépend de plusieurs facteurs tels que la distance

parcourue, le poids total en charge, la température et la pente au sol. Le poids et la tem-

pérature sont des paramètres variables qui peuvent changer d’un jour à l’autre, voire au

cours d’une même journée. Par exemple, un bus transportant un grand nombre de passa-

gers consommera davantage qu’un bus vide. De même, les températures peuvent varier

en fonction des saisons ou des conditions climatiques. Une estimation plus précise de la

consommation des véhicules électriques permettrait de mieux anticiper les besoins en re-

charge et de réduire les coûts associés. Cela nécessiterait une prise en compte plus fine de

tous les paramètres influençant la consommation, ce qui contribuerait à une planification

plus efficace et durable des transports publics.
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Annexe A – Deploying fast-charging

infrastructure on urban transit

networks

Branch-and-check-based heuristic results - Second Run

Table A.1 outlines the results for HBC’s second run. The first two columns categorize

the instances by family. Subsequent columns present the average objective values of the

best solution found (Avg. Investment), as well as the average gap with the MILP (Avg.

MILP gap) and BC (Avg. BC gap). These gaps are calculated for instances meeting two

conditions : 1) both methods find the same objective values after the first run, and 2) both

methods provide a feasible solution after the second run. The last four columns retain

the same meaning as the corresponding columns in Table 1.8. It is worth noting that the

number of feasible solutions remains identical to that in the first run.

Table A.1, shows that HBC discovers 191 solutions with objective function values

similar to those obtained by the MILP resolution and the BC method for comparable ins-

tances. In the case of other instances, the objective function values of the three methods

appear to be closely aligned ; however, comparing them is challenging because each solu-

tion does not correspond to the same weighted electric distance value. The computation

time of HBC in the second run was shorter than that in the first run. Despite this, a small

number of calls to the subproblem with low computation times were still observed, for

i



|L| Service Avg. investement Avg. MILP Avg. BC Avg. CPU # Time limit Avg. # Call Avg. S.P.
frequency (×1000 $) gap (%) gap (%) time (s) exceeded S.P. CPU time (s)

3
Low 868.2 0.0 0.0 8.8 0 3.3 3.3

Average 868.2 0.0 0.0 14.9 0 2.6 3.0
High 868.2 0.0 0.0 12.8 0 2.8 2.9

4
Low 1102.4 8.3 0.0 43.2 0 3.1 3.0

Average 1102.4 0.0 0.0 30.1 0 3.4 3.0
High 1102.4 0.0 0.0 45.2 0 3.6 3.1

5
Low 1023.3 0.0 0.0 86.3 0 2.3 3.0

Average 995.4 0.0 0.0 100.1 1 247.1 33.5
High 997.7 0.0 0.0 47.0 0 2.2 30.0

6
Low 916.7 0.0 0.0 198.4 2 2.0 27.5

Average 912.8 − 0.0 146.6 1 2.2 25.4
High 944.7 − − 388.9 4 1015.3 93.7

7
Low 942.1 1.5 1.2 426.6 6 1.8 86.4

Average 937.6 2.3 − 451.1 6 365.1 104.9
High 951.6 2.2 5.7 458.5 6 1.1 99.1

8
Low 1023.0 3.2 2.0 452.6 7 1.3 92.7

Average 1011.1 − 2.0 324.9 4 31.8 89.0
High 1020.6 − − 386.8 3 36.5 86.5

9
Low 1068.8 − −0.9 280.5 4 1.0 81.8

Average 986.0 − − 324.9 3 1.3 78.8
High 1148.5 − − 421.3 2 1.7 77.6

Total - Average 986.0 1.3 0.3 205.8 49 77.6 1.7

TABLE A.1 – HBC results - Second run (investment)

the same reason as in the previous run.

A MILP model to solve the non-shared charger location

problem in hybrid electric bus networks

The variables of the problem are as follows :

— xl,i : Positive integer decision variable indicating the number of chargers installed

at Stop i of Line l.

— yl,i,i′ : Binary decision variable indicating whether the segment connecting stops

i ∈Vl and i′ ∈Vl on Line l ∈ L is driven in electric mode.

— ql,i : Positive decision variable indicating the SoC when HBs servicing Line l ∈ L

arrive at stop i ∈Vl .

— tl,i : Positive integer decision variable indicating the charging time of an HB opera-

ting on Line l ∈ L at Stop i ∈Vl .
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The non-shared charger location problem in HB networks can be formulated using the

following MILP model.

max ∑
l∈L

∑
(i,i′)∈Al

di,i′

fl
· yl,i,i′ (A.45)

Subject to :

∑
i∈V

∑
l∈L

costi · xl,i ≤ B (A.46)

tl,i ≤ fl · xl,i ∀l ∈ L, ∀i ∈Vl (A.47)

tl,i ≤ wl,i ∀l ∈ L, ∀i ∈Vl (A.48)

ql,i + tl,i ·R− ei,i′ · yl,i,i′ = ql,i′ ∀l ∈ L, ∀(i, i′) ∈ Al (A.49)

ql,i + tl,i ·R≤ Q ∀l ∈ L, ∀i ∈Vl (A.50)

ql,stl ≤ ql,ltl ∀l ∈ L (A.51)

xl,i ∈ N0 ∀i ∈V,∀l ∈ L (A.52)

ql,i ≥ 0 ∀l ∈ L, ∀i ∈Vl (A.53)

yl,i,i′ ∈ {0,1} ∀l ∈ L, ∀(i, i′) ∈ Al (A.54)

tl,i ∈ N0 ∀l ∈ L, ∀i ∈Vl (A.55)

Objective function (A.45) maximizes the total weighted electric distance. Constraints

(A.46) ensure that the total budget for charger installation is adhered to. Constraints (A.47)

limits the charging time according to the number of chargers. Constraints (A.48) ensure

that the maximum stop duration at each stop is satisfied. Constraints (A.49) compute the

SoC on the bus line between two stops based on the charging time of the first stop and

whether the electric mode is used. Constraints (A.50) ensure that the SoC never exceeds

the battery capacity. Constraints (A.51) implies that an HB ends its line with a higher SoC

than at the beginning, such that no extra charging time is required to travel the line again.

Constraints (A.52)–(A.55) define the domains of the decision variables.
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Annexe B – Matheuristics for a

multi-day electric bus assignment and

overnight recharge scheduling problem

Calendar aging

The cost of a battery degradation due to calendar aging is defined in function of a

battery lifetime reduction and the purchase cost of the battery. We denote cbd the cost

of battery degradation due to a charge cycle. From HOKE et al., 2014, it is defined as

cbd = cbat
∆L
L , where cbat is the purchase cost of the battery and ∆L

L is the battery lifetime

reduction due to the charge cycle being evaluated. The battery lifetime reduction depends

on the total battery lifetime (L) and the lifetime degradation (∆L). The battery lifetime

reduction is computed as follows :

∆L
L

=
Lideal−Lobserved

Lideal

where Lobserved and Lideal are the battery lifetimes based on an observed scenario and an

ideal scenario, respectively. The observed scenario is determined using a MILP that mini-

mizes only the total charging cost. The ideal scenario considers the implementation of the

solution obtained in the observed scenario in a setting where there is an unlimited number

of chargers. As it stands, all the charging operations can be performed right before the

corresponding EB leaves the depot to cover its next block, to the EBs never store energy

at high SoCs. Needless to say, in this ideal scenario, there is no battery degradation due
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to calendar aging. From (LUNZ et al., 2012) and given a scenario o ∈ {observed, ideal},

the battery lifetimes Lo can be estimated as follows :

Lo =ρ
driving
o c(SOCdriving

o )+ρ
be f ore
o c(SOCbe f ore

o )

+ρ
charging
o c(SOCcharging

o )+ρ
a f ter
o c(SOCa f ter

o )

where ρs
o is the time proportion that the EB spends in status s∈{driving,be f ore,charging,a f ter}

(with ∑s ρs
o = 1), SOCs

o is the average state of charge in status s and c(SOCs
o) is the capa-

city lifetime in SoC SOCs
o. The 4 possible statuses are : driving when the bus is driving,

be f ore when the bus is idle before its charging operation, charging when the bus is char-

ging, and a f ter when the bus is idle after its charging operation. The capacity lifetime

values are extrapolated from data in LUNZ et al., 2012. Using an exponential regression

to match our battery capacity (363 kWh) and an average temperature of 22 degrees Cel-

sius, we obtain c(x) = 18.438 e−0.014x.

The average values of ρs
o and SOCs

o considering that an entire charging cycle lasts

one day (1440 minutes), are computed from all 264 instances. For the observed scenario,

buses spend an average of 863 minutes per day on the road with an average SoC of 57.5%

and 577 minutes at the depot, i.e. 370 minutes before the charging operation, 137 minutes

of charging and 70 minutes after the charging operation. The average SoC during these

three phases is 20%, 57.5% and 95%, respectively. We thus obtain :

Lobserved =
863

1440
c(0.575)+

370
1440

c(0.20)+
137
1440

c(0.575)+
70

1440
c(0.95)

= 18.31958754 years

For the ideal scenario, buses spend an average of 863 minutes per day on the road with an

average SoC of 57.5% and 577 minutes at the depot, i.e. 440 minutes before the charging

operation and 137 minutes of charging, with an average SoC of 20% and 95%, respecti-

vely. We thus obtain :

Lobserved =
863

1440
c(0.575)+

440
1440

c(0.20)+
137

1440
c(0.575)
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= 18.31025189 years

Then, considering a battery price of USD 150,000 (BLOOMBERG NEW ENERGY

FINANCE, 2018), the cost of a battery degradation per charge cycle can be computed

as follows :

cbd = 150,000
18.31958754−18.31025189

18.31958754

= 76.43990691/cycle

Finally, an entire cycle (charging and discharge) takes one day (1440 minutes), so the

cost of battery degradation per minute is δ = 76.43990691
1440 ≈ 0.05$/min.

Generation of non-dominated feasible charger schedules
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Algorithme 6 : Generation of non-dominated feasible charger schedules
Input : Td := {i1, i2, . . . , in} : Set of charging operations of day d

1 kd ←−
⌊

HD
d −HR

d
Ud

⌋
;

2 current_schedules_set←− {{i1},{i2}, . . . ,{in}};
3 Sd ←− /0;
4 while current_schedules_set ̸= /0 do
5 current_schedule←− current_schedules_set.pop();
6 Sd .push(current_schedule);
7 if current_schedule.size() < kd then
8 foreach Charging operation i j in Td do
9 if i j not in current_schedule then

10 current_schedule.add(i j);
11 permutations←− generate_permutations(current_schedule);

/* Permutations generated using Heap's Algorithm

(Heap, 1963) */

12 best_permutation_cost←− ∞;
13 best_permutation←− /0;
14 foreach Permutation p in permutations do
15 if p is feasible then

/* Permutation is feasible if all its

charging tasks ik ∈ p starts after their

respective release time hR
ik and ends before

their respective due time hD
ik */

16 if eval(p) < best_permutation_cost then
/* Permutation evaluated using

Equation 2.46 */

17 best_permutation←− p;
18 best_permutation_cost←− eval(p);
19 end
20 end
21 end
22 if best_permutation ̸= /0 then
23 current_schedules_set.push(best_permutation);
24 end
25 current_schedule.remove(i j);
26 end
27 end
28 end
29 end
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Annexe C – A matheuristic for a

multi-day electric bus assignment and

recharge scheduling problem

Charging event sequence initialization procedure
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Algorithme 7 : Charging event sequence initialization procedure
Input : Bd,l : Set of sub-blocks on day d associated with an charging event at

location l

Input : Cl : Set of chargers at charging location l

Input : K : Number of considered charging events in the selection at each

iteration

1 E←− Bd,l : Set of charging events associated with a sub-block on day d starting

at location l;

2 availability : Array of size |Cl| indicating the maximum time at which the

charger becomes available;

3 availability[c]←−−∞,∀c ∈Cl;

4 if l = l0 then

5 Sort E according to the increasing starting time of the associated sub-block

hS
i,k;

6 else

7 Sort E according to the increasing ending time of the preceding sub-block

hE
i,k−1;

8 end

9 while E ̸= /0 do

10 e←− A charging event selected randomly from the K first events of E;

11 Remove e from E;

12 Select charger c such as ∀ c′ ∈Cl,availability[c]≤ availability[c′]};

13 Assign e at the end of the charging sequence of charger c;

14 (i,k)←− Sub-block associated with charging event e;

15 availability[c]←− hS
i,k;

16 end
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