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Résumé

Cette thèse se concentre sur les applications liées à l’estimation des paramètres des mod-
èles stochastiques multivariés et à la filtration de la variance stochastique. De plus, les
divergences de prix entre différents produits dérivés sur les marchés de l’électricité sont
explorées.

Le premier essai effectue une comparaison empirique des prix de deux catégories de
produits dérivés sur les marchés de l’électricité NYISO, PJM et ISO-NE : les Financial
Transmission Rights (FTRs) et les contrats à terme. L’objectif est d’évaluer si ces deux
catégories de produits dérivés sont évaluées de manière cohérente, étant donné que leurs
paiements se chevauchent partiellement. Nous calculons des statistiques empiriques qui
révèlent que les prix implicites pour la composante de perte du prix de l’électricité, obtenus
en combinant les informations fournies par les prix des FTRs et des contrats à terme, sont
plus volatils que les valeurs de perte réalisées correspondantes. Cela contredit l’idée qu’un
prix devrait être moins volatil que le paiement et indique donc la présence d’un désaligne-
ment des prix entre les marchés FTR et les contrats à terme des trois marchés de l’électricité
pour la période couverte par l’échantillon de données.

Dans le deuxième essai, nous développons une approximation analytique précise pour
filtrer la variance instantanée dans un modèle à plusieurs facteurs de variance dans un cadre
multi-actifs. Nous utilisons les statistiques intra-journalières, telles que la covariance et la
variance réalisées, pour filtrer les quatre premiers moments conditionnels de l’état latent,
assurant robustesse contre la non-linéarité et les erreurs de mesure, tout en restant efficace
avec une grande dimensionnalité. Nous validons la précision du filtre par des simulations



de Monte Carlo et une analyse en panel. En outre, nous étendons son applicabilité en
intégrant l’erreur de mesure des variances réalisées et proposons une correction pour les
moments conditionnels à des fréquences plus basses de ces statistiques intra-journalières,
offrant ainsi un estimateur caractérisant les quatre premiers cumulants de la variance, in-
cluant les co-moments.

Le dernier essai porte sur les défis de l’estimation des paramètres dans les modèles
de volatilité stochastique avec plusieurs composantes de variance et des effets de levier.
Les données intra-journalières, comme la variance réalisée, sont utilisées pour cette étude
avec une méthode des moments généralisés (MMG). Deux procédures sont comparées : les
moments conditionnels (CM) et les moments inconditionnels (UM). L’étude constate que
les méthodes CM offrent une autocorrélation plus faible dans les moments utilisés dans le
MMG et une plus grande extensibilité grâce aux variables instrumentales. Cependant, elles
sont plus vulnérables au bruit des récursions et aux erreurs de mesure liées à la variance
réalisée. En revanche, les méthodes UM sont plus robustes, en particulier dans le modèle
à deux facteurs de variance, mais sont moins flexibles car elles nécessitent des dérivations
supplémentaires pour obtenir le même nombre de conditions que la méthde CM dans la
MMG.

Mots clés: Marchés de l’électricité, Tarification de la congestion, Produits dérivés, NY-
ISO, PJM, ISO-NE, Filtre, Modèle de volatilité stochastique multivarié, Variance réalisée,
Covariance réalisée, Données intra-journalières, Méthode des moments généralisés.

Méthodes de recherche: Évaluation des produits dérivés, Filtre, Méthode des moments
généralisés, Estimation des paramètres, Analyse multivariée, Analyse en panel.
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Abstract

This thesis concentrates on applications related to multivariate stochastic models pa-
rameter estimation and variance filtration. In addition, it explores pricing discrepancies
between products in electricity markets.

The first essay conducts an empirical comparison of prices for two categories of fi-
nancial derivatives from the NYISO, PJM and ISO-NE power markets, namely Financial
Transmission Right (FTR) and futures contracts. The objective is to assess whether these
two categories of derivatives are priced consistently, as their payoffs partially overlap. Sta-
tistical metrics reveal that implied prices for the loss component of the power price, which
are obtained by combining information provided by both FTR and futures prices, are more
volatile than the corresponding realized loss values. This contradicts the idea that a price
should be less volatile than the payoff and therefore indicates the presence of a pricing
misalignment between the FTR and futures markets of the three power markets during the
period covered by the data sample.

In the second essay, we develop a precise analytical approximation for filtering a multi-
factor variance model within a multi-asset framework, specifically applied to realized vari-
ance data to estimate instantaneous variance. Our approach leverages intraday statistics,
such as realized covariance, to filter the first four conditional moments of the latent state,
ensuring robustness against nonlinearity and non-Gaussian measurement and state equa-
tions while remaining tractable even as the dimensionality of volatility components and
assets increases. Through Monte Carlo simulations and panel analysis, we validate the fil-
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ter’s unbiasedness and precision. Additionally, we extend the filter’s applicability beyond
affine classes by incorporating measurement error of the realized variances and propose
a correction for conditional moments at lower frequencies, resulting in a comprehensive
estimator for the first four cumulants, including co-moments.

The final essay investigates the challenges of parameter estimation in stochastic volatil-
ity models with multiple variance components and leverage effects, using intraday data
such as the realized variance. It compares two GMM procedures: conditional moments
(CM) and unconditional moments (UM) for the one and two variance factor models. The
study finds that CM methods offer lower autocorrelation in moment conditions and greater
extensibility through instrumental variables but are more susceptible to recursion noise
and measurement error. In contrast, UM methods are more robust, particularly in the two-
variance factor model, but are less flexible as they require additional moment derivations.

Keywords: Electricity markets, Congestion pricing, Financial derivatives, NYISO, PJM,
ISO-NE, Filter, Multivariate stochastic volatility model, Realized variance, Realized co-
variance, Intraday data, Generalized Methods of Moments.

Research methods: Derivative pricing, Filter, Generalized Methods of Moments, Param-
eter estimation, Multivariate analysis, Panel analysis.
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Chapter 1

Introduction

Accurately filtering and estimating stochastic volatility remains a key challenge due to the
complex nature of financial markets and the limitations of available data. Volatility mod-
eling is important for understanding asset price movements, managing risk, and pricing
financial derivatives. This thesis explores methods for volatility filtering and estimation,
focusing particularly on multiple latent factors.

The concept of commonality in financial markets has been recognized for some time
and is even more pronounced during significant events like the 2008 financial crisis and the
COVID-19 pandemic. This increased interconnectedness extends to various asset classes,
including commodities. Understanding these shared factors is increasingly important dur-
ing such periods of high commonality.

Isolating these common volatility factors is vital for practical financial applications,
such as portfolio management. The last two essays of this thesis focus on developing
methods to filter out these common factors and improve the parameter estimations of these
models.

The first essay is on ISO-driven power markets like those in New York (NYISO), ISO
New England (ISO-NE), and PJM, where electricity prices fluctuate significantly across
zones, with congestion costs often spiking during periods of high demand. Financial Trans-
mission Rights (FTRs) are critical instruments for hedging against these congestion risks,
providing payouts linked to the price differences between grid nodes. While FTRs are ef-
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fective hedging tools, their auction-based allocation and embedded constraints make them
less accessible or transparent than traditional derivatives like futures contracts.

This study examines the pricing consistency between FTRs and futures contracts in
these markets. Since FTRs cover only the congestion component, while futures contracts
encompass all three components of the energy price (energy, loss, and congestion), we first
compare the payoffs of FTRs and futures contracts. By also subtracting the average price of
the derivatives, which accounts for the energy component that is consistent across the mar-
ket, we succeed in isolating the implied price of the excess loss component. This approach
allows us to compare the implied prices with the realized prices of the loss component
across various zones, seasons and markets. Based on these comparisons, our empirical
analysis reveals significant pricing discrepancies, highlighting inefficiencies and inconsis-
tencies in these derivative markets.

The second essay focuses on developing a filter for multi-asset and multi-factor variance
analysis. The presence of commonality in asset volatilities is well-documented, showing
that not only do stocks within a market share systematic risk, but other markets, such as
commodities. To address this, we propose a filtering method that incorporates multiple la-
tent variance factors within a multi-asset framework. This new analytical filter overcomes
the curse of dimensionality and effectively manages nonlinear frameworks, providing pre-
cise approximations for the first four conditional moments of latent variance components.

While stochastic volatility models and their extensions are widely used for single-asset
analyses, their practical application for parameter estimation and filtering to multi-asset
frameworks faces challenges. Our paper builds upon existing literature in analytical filter-
ing to offer a fast and practical solution for multivariate filtering problems. Our approach
uses intraday data and two types of observable variables, daily forward log-returns and
realized variances and covariances, to identify latent factors driving common volatility
movements.

This methodology also includes a correction for conditional moments of intraday statis-
tics at lower frequencies when they have not yet reached their asymptotic distributions.
The filter extends beyond the affine class, as the conditional moments of the measurement
errors of realized variances are not linear in the instantaneous variance, the latent state.

2
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Furthermore, our filter calculates the first four conditional moments of observables and
latent variables, offering a comprehensive analysis of instantaneous variance components.
Monte Carlo simulations validate the precision and robustness of our filter, demonstrating
its effectiveness in managing increased dimensionality and non-Gaussian frameworks.

The third essay compares two Generalized Method of Moments (GMM) procedures
for stochastic volatility models with one or two variance components: the conditional mo-
ments (CM) method and the unconditional moments (UM) method. Given the challenge
of filtering latent factors, estimating parameters in multi-variance factor models is also a
complex task. This chapter aims to enhance our understanding of GMM by using intraday
data.

Our study uses realized variance, which converges to quadratic variation, as commonly
done in the literature to estimate variance parameters. We compare the CM approach,
as outlined by Bollerslev and Zhou, 2002, with the UM approach through Monte Carlo
simulations.

We find that the CM method generally performs better when measurement error around
realized variance is low, leading to more accurate estimates and lower residual autocorrela-
tion in the moment conditions used in the GMM. However, it struggles with high measure-
ment error and in multi-factor models. The UM method is more robust in these situations
but is more complex to extend because it cannot use instrumental variables as in the CM
method. Consequently, achieving the same number of conditions with UM requires deriv-
ing additional moments.

3





Chapter 2

Pricing Inconsistency between the Futures and
Financial Transmission Right Markets in North
America

Abstract1

An empirical comparison of prices for two categories of financial derivatives of the NY-
ISO, PJM and ISO-NE power markets, namely Financial Transmission Right (FTR) and
futures contracts, is performed. The objective is to assess whether these two categories
of derivatives are priced consistently, as their payoffs partially overlap. Statistical metrics
reveal that implied prices for the loss component of the power price, which are obtained
by combining information provided by both FTR and futures prices, are more volatile than
corresponding realized loss values. This contradicts the idea of a price being a probability-
weighted average of possible realized values, and therefore indicates the presence of the
pricing misalignment between the FTR and futures markets of the three power markets
during the period covered by the data sample.

1Joint work with Geneviève Gauthier and Frédéric Godin. Gauthier is affiliated with HEC Montréal and
Godin is affiliated with Concordia university. This chapter has been published in Energy Economics.
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2.1 Introduction

In power markets driven by Independent System Operators (ISO), power prices vary sub-
stantially throughout their various zones and are subject to spikes, especially when demand
is high. Three of such ISO-driven power markets are considered in this study: New York
(NYISO), ISO New England (ISO-NE) and PJM. They all publish the power prices and
their decomposition into three components: energy cost, thermal loss cost and conges-
tion cost. When electricity demand is high in some of the zones, bottlenecks and capacity
constraints on the power grid can make congestion costs explode. Such scenarios create
hedging needs for market participants seeking to protect themselves from such conges-
tion cost surges. A Financial Transmission Right (FTR)2 provides a payoff equivalent to
the congestion spread (congestion price difference) between two nodes of the power grid,
making it a suitable instrument for hedging congestion risk, as highlighted in Deng and
Oren, 2006. Lyons et al., 2000 argue that FTRs are a superior solution to Physical Trans-
mission Rights, which provide exclusive rights to carry electricity between two nodes of a
grid.

FTRs and congestion management have attracted some attention in the literature, as
demonstrated by the survey papers of Kristiansen, 2005, Kumar et al., 2005, Sarkar and
Khaparde, 2008 and Singla et al., 2014. Congestion-related contracts respond to the need of
having to price inter-nodal risk, an idea first put forward in Hogan, 1992. Such derivatives
are now well integrated into the operations of multiple power markets. These contracts are
sold by the market operator via auction and are funded by congestion revenues, as explained
in Alsac et al., 2004. Revenue adequacy is obtained if the contract allocation satisfies the
network constraints, as detailed in Hogan, 2002, that is, the allocation is simultaneously
feasible, therefore allowing the FTRs to be fully funded, as discussed in Hogan et al., 2013.
While the purpose of such financial products is to provide hedging instruments for market
participants, speculators may also profit from them while facilitating price discovery and
enhancing market efficiency and liquidity. For instance, Adamson and Parker, 2013 show

2These contracts are also referred to by other names in the various electricity markets, such as Transmis-
sion Congestion Contracts (TCC) in the NYISO, Contracts for Difference (CfD) in Nord Pool, and Congestion
Revenue Rights (CRR) in the California ISO.
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that financial firms account for an increasing proportion of transactions in the NYISO’s
FTR market. Celebi et al., 2010, Ledgerwood and Pfeifenberger, 2013 and Prete et al.,
2018 mention that virtual traders can also participate in transactions involving arbitrage
with FTRs, which can unfortunately lead to cross-market manipulations.

The auction mechanism underlying the allocation of FTRs by the ISO, along with par-
ticular embedded allocation constraints, make FTRs harder to access than other power-
related financial derivatives. Indeed, conventional derivatives such as futures and options
are also traded in electricity markets, often through an exchange. The discrepancy between
the trading procedure for FTRs and for conventional derivatives raises the question as to
whether the pricing of FTRs is consistent with that of other electricity derivatives. This
study investigates this topic by comparing prices observed for two categories of electricity
derivatives, namely FTRs and futures contracts. To the best of our knowledge, no article
in the existing literature studies consistency between the FTR and futures markets. It is
precisely at this level that our contribution comes into play.

In other literature peripheral to our research question, several papers study the consis-
tency between the FTRs’ contract price and their realized payoff, as the price discovery
mechanism and liquidity issues are characteristics that could potentially cause inefficien-
cies. Such literature investigates the distinct topic of standalone FTR market efficiency
instead of considering consistency across derivative types as we do. Bartholomew et al.,
2003, Adamson and Englander, 2005 and Siddiqui et al., 2005 question the efficiency of the
TCC auction process in the NYISO through empirical studies or models. The TCC auction
process could benefit from additional competition, which could increase its efficiency, as
discussed by Hadsell and Shawky, 2009. The subject has also been studied by Deng et
al., 2010 who argue that price discovery alone cannot explain the difference between FTR
auction prices and associated realized revenues in the NYISO, and that auction mecha-
nisms produce inefficiencies. The most recent research paper by Opgrand et al., 2022 on
FTRs in PJM establishes that this difference is caused by a trading premium rather than
by flaws in the auction mechanism. Zhang, 2009 reports significant underpricing of the
TCCs relatively to their realized revenues in the early 2000s for the NYISO. He explains
that this mispricing comes mostly from asymmetry of information and from risk aversion
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among bidders. Adamson et al., 2010 argue that efficiency in the NYISO FTR market has
improved over time. Through an ex-ante analysis using VAR models, Mount and Ju, 2014
found no proof of underpricing in six-month TCCs for the specific summer 2006 period.
Leslie, 2021 asserts that a substantial portion of profits are carved out by financial traders
in the TCC auction market placing bids on less liquid nodal TCCs, since zonal TCCs are
more competitively priced. They explain that financial traders earn profit while provid-
ing price discovery and liquidity. However, the TCC prices converge to a fair price as the
several rounds of auctions occur. The efficiency of the FTR auction process has also been
challenged in other markets such as in Ontario, where systematic price biases are identi-
fied by Olmstead, 2018, or the California market where Baltaduonis et al., 2017 observe
persistent abnormal return on FTRs.

Both futures contracts and FTRs provide payoffs related to future electricity prices.
However, whereas FTRs cover only the price’s congestion component, the payoff of fu-
tures is linked to the entire price, which also includes the energy price and the loss price
components. Thus, the overlap in payoffs is only partial. Nevertheless, considering suitable
pricing differentials between the various zones makes it possible to cancel out the implied
pricing of the energy component, and thus deduce implied prices for the loss component
when comparing FTR and futures prices. The basis of the analysis described in this paper
therefore lies in studying whether implied prices for the loss component are commensu-
rate with their realized values. In our empirical study, we compare the variance of the
implied prices and the realized values of the loss component for all three power markets
over various seasonal buckets. If the futures and FTRs are priced consistently, the variance
of implied prices should be lower than that of realized values. Our empirical experiments
highlight that this inequality is violated for 271 of the 272 zone/seasonal bucket combina-
tions studied, which clearly indicates the presence of pricing inconsistencies between the
futures and FTR markets.

This paper is subdivided as follows. Section 2 presents background information on elec-
tricity prices and associated financial derivatives in ISO-driven markets in North America.
Section 3 explains and performs several tests to assess whether FTRs and futures contracts
are priced consistently in the NYISO, the ISO-NE and PJM. Section 4 concludes.
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2.2 Background on ISO-driven Electricity Markets

The NYISO and ISO-NE are the ISOs responsible for electricity flow-related operations
in New York State and New England, respectively. PJM is a Regional Transmission Orga-
nization (RTO) which manages electricity-related operations in an area covering thirteen
states in the eastern United States, as well as the District of Columbia. ISOs and RTOs
serve similar purposes, with an RTO covering more than a single state. Responsibilities of
an ISO (or an RTO) include determining electricity prices by periodically conducting auc-
tions. This involves collecting supply and demand bids from the market’s participants, and
then setting prices by equating supply and demand in the most economical way by means of
an optimization procedure, while ensuring the security and integrity of the electrical grid.
Various types of financial derivatives have been developed for the ISO-driven power mar-
ket. The payoff of such derivatives typically depends on electricity prices determined by
the ISO. The two main classes of derivatives considered in this study are electricity futures
contracts and FTRs. This section provides a brief overview of the price-setting procedure
used by ISO-driven markets and the functioning of related financial derivatives.

2.2.1 Day-ahead and real-time markets

The ISO publicly reports electricity prices using a so-called Locational Marginal Price
(LMP)3 methodology in two main markets referred to as the the real-time market (RTM)
and the day-ahead market (DAM). The LMP approach is meant to reflect the marginal cost
of consumption of an additional megawatt-hour (MWh) of power on a given period and at
a given node of the transmission grid. The DAM, which represents the bulk of electricity
transactions, fixes the price of electricity one day ahead based on expected consumption
and production. Conversely, the RTM acts as a balancing market addressing real-time
deviations in consumption from planned volumes in the DAM. The LMP is published every
five minutes in the RTM and for each hour in the DAM, for every node and zone of the
power grid. This paper focuses on the day-ahead (DA) prices, because the payoff of FTRs
is related to the DA prices and not real-time (RT) prices. Moreover, since futures are mainly

3In the NYISO, it is referred to as the Locational Based Marginal Price (LBMP).
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available for zones and not for more granular nodes, only zonal LMPs are considered. Maps
illustrating the various zones are provided in Figure 2.1 for the NYISO, in Figure 2.2 for
the ISO-NE and in Figure 2.3 for PJM.
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H

I

J K

 A -  WEST
 B - GENESE
 C - CENTRL
 D - NORTH
 E - MHK VL
 F - CAPITL
 G - HUD VL
 H - MILLWD
  I - DUNWOD
 J - N.Y.C.
 K - LONGIL

Source: https://www.nyiso.com.

Figure 2.1: NYISO zones map

Source: https://www.iso-ne.com/about/key-stats/
maps-and-diagrams/.

Figure 2.2: ISO-NE zones map

The LMP, in $/MWh, is decomposed into three components when reported by the ISO.
The first component is the energy price, which is the same for all nodes of the grid at any
point in time. The second one is the energy loss price, which is a price markup resulting
from thermal losses occurring during transmission of power on the grid. The third is the
congestion component representing the extra cost stemming from the physical constraints
of the power grid. For example, consumers located in high-demand locations may need to
buy energy at a higher price from local generators if buying cheaper energy from genera-
tors in other areas of the grid proves impossible due to transmission bottlenecks, i.e. the
lines are at full transmission capacity. The DA LMP for zone i and hour h and its three
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Source: https://www.pjm.com/library/maps. In the data retrieved from the PJM website, some zones have
an alternative associated abbreviation: Atlantic City Electric Company (AECO) and Duke Energy Ohio and
Kentucky (DEOK).

Figure 2.3: PJM zones map
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components are denoted by4

LMPDA
h,i = EnergyDA

h + LossDA
h,i + CongestionDA

h,i . (2.1)

2.2.2 Futures market

A futures contract is a contract between two counterparties stipulating that the holder of
the long position must buy the underlying asset from the holder of the short position at a
certain price (the futures price) and a specified time in the future. To mitigate conterparty
risk, futures contracts are typically marked-to-market daily by the exchange’s clearinghouse
where they are traded. The clearinghouse calculates required margins for both long and
short positions, and daily compensation, i.e. the transfer of funds between the two accounts,
is performed to reflect fluctuations of futures prices on the market.

A futures market is available on the ICE exchange for the New York, New England and
PJM power markets. Although a variety of contracts are available, the analysis is focused
on monthly futures contracts in the DA market. The underlying asset of such a contract
is the monthly average electricity price for a given zone. In the NYISO, there are futures
contracts that are traded for all zones, with the exception of zone H (Milwood). In the ISO-
NE, only zones VT (Vermont) and CT (Connecticut) do not have traded futures contracts.
Lastly, in PJM, all zones have traded futures contracts with the exception of PEPCO, RECO,
EKPC and OVEC.

Two different types of futures contracts are traded to separate high energy demand hours
from low ones. The first type is the on-peak hours futures contract, which covers the hours
from 8 a.m. to 11 p.m., Monday to Friday, for the entire month of the contract. Conversely,
the off-peak hours futures contract covers all remaining hours of the month. On-peak fu-
tures contracts are typically more liquid than off-peak contracts. For a contract size of 1
MW, the payoff of an on-peak hours (T = on) or an off-peak hours (T = off) futures
contract is the arithmetic average of the DA price observed over the set of all covered hours
HT , T ∈ {on, off}. The combined synthetic and not traded futures contract (T = all)

4For the NYISO market, a slightly different convention is used, with the sign in front of the congestion
component being reversed: LBMPDA

h,i = EnergyDA
h + LossDA

h,i + (−CongestionDA
h,i).
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combines both on-peak and off-peak hours, thereby covering all hours in a given month:
Hall = Hon⋃Hoff. For the NYISO and PJM, the construction of synthetic contracts cov-
ering period T ∈ {all} is performed since some of the FTRs apply to all hours rather than
only to on-peak or off-peak hours separately. Therefore, for any zone i and contract type
T ∈ {all, on, off}, the futures payoff can be expressed as

Futures payoffi,HT =
1

|HT |
∑
h∈HT

LMPDA
h,i , (2.2)

where |H| denotes the number of hours in set H.5 Using the notation6

EH ≡ 1

|H|
∑
h∈H

EnergyDA
h , Ci,H ≡ 1

|H|
∑
h∈H

CongestionDA
h,i ,

Li,H ≡ 1

|H|
∑
h∈H

LossDA
h,i , (2.3)

for the average energy, congestion and loss components of the LMP, the futures payoff can
further be decomposed based on (2.1) as

Futures payoffi,HT = EHT + Li,HT + Ci,HT . (2.4)

Denote by Ft,i,HT the day-t closing price of the futures of a type-T contract for zone i.
The combination of on-peak and off-peak futures contracts weighted with their respective
number of hours results in a monthly futures contract covering all hours in a given month.7

Thus, the combined futures price must be the following weighted average of the on-peak

5Due to the short time horizons considered for the futures contracts, the time value of the money is not
considered here because it is immaterial in such a context.

6Due to the alternative reporting convention in the NYISO, the congestion portion of the payoff is given
by Ci,H ≡ 1

|H|
∑

h∈H
(
−CongestionDA

h,i

)
for that market.

7The number of on-peak and off-peak hours per month along with the NERC holidays can be found at
https://www.energygps.com/HomeTools/PowerCalendar
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and off-peak futures price:

Ft,i,Hall =
|Hon|
|Hall|

Ft,i,Hon +
|Hoff|
|Hall|

Ft,i,Hoff . (2.5)

Since the payoff of some of the FTRs cover all hours in a month, the combined off-peak
and on-peak futures contracts are also considered in this study. In what follows, the all, on
or off superscripts are dropped to make the notation more parsimonious.

2.2.3 Financial Transmission Rights

An FTR is a contract paying the day-ahead congestion cost spread, i.e. the difference be-
tween two points of reference8 cumulated over all hours of the associated duration. Such
a duration can be 1, 6, 12 or 24 month, depending on the market. The holder of an FTR
receives the congestion rent which is defined as the difference between the DA conges-
tion cost at the sink (SI) node and the DA congestion cost at the source (SO) node.9 The
congestion10 rent payment per contract for hour h is represented by

Congestion rent paymenth,SO,SI = CongestionDA
h,SI − CongestionDA

h,SO. (2.6)

If the DA congestion is higher at the SI than at the SO, the FTR holder receives the dif-
ference for hour h. Contrarily, if the DA congestion is lower at the SI than at the SO, the
FTR holder will have to pay the difference for that particular hour. The total rent is the
sum of rent payments for all hours in the duration of the contract. FTRs are useful for
hedging against price fluctuations between two zones, particularly when a participant ex-
pects congestion. By securing compensation based on price differences, FTRs help ensure
predictable pricing and protect against unexpected price spikes caused by congestion.

An FTR’s payoff is defined as the sum of congestion rent payments over its contract

8These can be between two zones, two nodes or a node and a zone.
9In the NYISO, the source and sink nodes are called the Point of Injection (POI) and the Point of With-

drawal (POW), respectively.
10For the NYISO market, because the congestion component has a reversed sign, we have

Congestion rent paymenth,POI,POW = (−CongestionDA
h,POW )− (−CongestionDA

h,POI).
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duration, where H includes all hours of the specified duration. Therefore, an FTR from
SO i to SI j has the following average payoff per hour:

FTR payoffi,j,H = Cj,H − Ci,H. (2.7)

The nodal payoff of zone j is represented by setting i = ∅, with C∅,H = 0.11 Since futures
are available only for zonal nodes and have a monthly duration, monthly zonal FTR price
data are considered for this study. The day-tH FTR price with SO i and SI j covering
period H is denoted by FTRtH,i,j,H, where tH is the day on which auction results for FTR
contracts covering period H are published.

2.2.3.1 Auction process

Unlike futures contracts, the FTRs are not traded in an exchange, but rather, are allocated
through an auction process specific to each market. We present in-depth explanations for
the auction process of the NYISO, and provide additional details for those of PJM and
ISO-NE.

In the NYISO, there are two types of auctions in the TCC market. The first is the
Centralized TCC Auction where FTRs with durations of six months and more are awarded
through multiple rounds. These auctions take place twice a year. The second type of
auction is the Balance-of-Period Auction, a monthly auction where only monthly FTRs are
awarded. Before September 2017, only the FTRs for the month following the auction were
traded. FTRs can now be traded up to six months in advance in such auctions, depending
on the time of year. In this study, the nearest auctions are defined as the auctions closest
to the contract month. Only results for such auctions are presented in the main text, with
some results for earlier auctions being displayed in the Online Appendix.

To participate in the auction, market participants must submit their bids during a spec-
ified period. Then, on the day the NYISO publishes the results, participants are informed
of whether their bids were retained and how many FTRs have been allocated to them. The
bidding period is thus known in advance and is typically from a Friday at 8 a.m. to the

11For the NYISO, ∅ is called the NYISO LBMP Reference node.
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following Monday at 5 p.m. for a monthly auction. The NYISO requires several days to
calculate the Market Clearing Price (MCP) for each possible FTR. The results are then
published on the FTR Automation site no later than 9 p.m. on the auction posting day.

The MCP for FTR prices is determined by the market operator through an optimiza-
tion process involving the bids placed by market participants, taking into account physical
constraints on the power grid. Once the bids and offers are received, which must be by
the end of the bidding period as established in the schedule found in Attachment D of the
NYISO website, the market operator validates the bids and offers and performs an Optimal
Power Flow (OPF) analysis. The goal of this optimization process is to maximize the ben-
efit to the market participants, who are the buyers of FTRs, while respecting the physical
constraints and capacity of the power grid.12

One example of price constraints applied during the optimization is additive consis-
tency; the price for an FTR between zone A (SO) and zone B (SI) should be the same as
the sum of prices for the FTR from A to C and for the FTR from C to B. Such constraints
allow NYISO to report FTR MCPs for standalone nodes (referred to as nodal prices) rather
than for pairs. The price of an FTR associated with a node pair can then simply be obtained
by subtracting the nodal MCP of the SO from that of the SI, ensuring that the additive con-
sistency constraint is respected.

As detailed in Ma et al., 2003, the FTRs from the PJM market are also allocated through
an auction bidding process. The Monthly FTR Auctions allow market participants to bid
on residual FTR capability from the Long-term FTR Auction and the Annual FTR Auction.
In this single-round auction, market participants may also offer FTRs that they already
own. PJM has it own calendar13 for the bidding period and the results posting day. FTR
instruments that are offered can take the form of obligations (as in the NYSIO) or options.
Another difference is that FTR contracts are also available separately for the on-peak and
off-peak hours, in addition to the 24-hour contracts being offered.14 The ISO-NE market
also has an auction bidding process with two rounds for annual FTRs and a monthly auction

12Additional details can be found in NYISO, 2021.
13https://www.pjm.com/markets-and-operations/ftr
14The split of hours into the on-peak and off-peak groups is the same as for standard futures contracts.
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based on its own schedule.15 The market only offers obligation FTRs for on-peak or off-
peak hours.

2.2.4 Data

Three datasets are considered in this study: FTR prices and the corresponding allocated
volume from the monthly auctions, daily closing prices of monthly futures and historical
realized values of the DAM LMP with its decomposition (2.1).

FTR prices and the corresponding allocated volume data are publicly available and
informs the market participants of the actual quantity of FTRs that have been awarded for
each SO and SI combination in each auction.16 The standalone nodes data are also available
for all nodes on the grid even if FTR contracts are not necessarily ultimately awarded for
each possible pair of nodes.17 For all three power markets, both nodal price and awarded
quantities data18 are available from the starting point of our study, January 2012.

Quandl, a data supplier that sources its data from ICE, provides the daily prices of zonal
electricity futures. Several contracts are available, but only the monthly futures contracts
(on-peak and off-peak) on the DAM are used herein. We restrict our sample to FTR auction
posting days tH for all months H. For the remainder of this paper, we denote by Zt the set
of zones for which futures price data are available at day t. This set changes over time as
futures availability depends on the power market and zone. For NYISO, futures in zones
{A,C, F,G, J} have been available since January 3, 2012, futures in zone D since June
1, 2015, and futures in zones {B,E, I,K} since June 12, 2017. For PJM, futures are not

15https://www.iso-ne.com/markets-operations/markets/financial-transmission-rights/
#related-documents

16Summary of Awards for NYISO at http://tcc.nyiso.com/tcc/public/view_awards_summary.do, His-
torical FTR Monthly Auction Results for PJM at https://www.pjm.com/markets-and-operations/ftr/
historical-ftr-auction and FTR Auction Results for ISO-NE at https://www.iso-ne.com/isoexpress/web/
reports/auctions/-/tree/auction-results-ftr

17Nodal Prices report for NYISO at http://tcc.nyiso.com/tcc/public/view_nodal_prices.do, PJM at https:
//www.pjm.com/markets-and-operations/ftr/historical-ftr-auction and FTR Auction Clearing Prices for ISO-
NE from https://www.iso-ne.com/isoexpress/web/reports/auctions/-/tree/auction-results-ftr.

18In PJM, from October 2022 on, the off-peak contract is traded as two separate contracts: DailyOffPeak
and WkndOnPeak. The off-peak nodal prices are still provided, but the awarded FTR for the off-peak contract
is no longer available after that auction month.
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available for the 4 zones PEPCO, RECO, EKPC and OVEC. Futures data start in January
2015 for the rest of the zones, with the exception of DAY and DOM where they start in
July 2017 and March 2017, respectively. For ISO-NE, daily closing prices of monthly
on-peak and off-peak futures are available for all zones with the exception of Vermont
(VT) and Connecticut (CT). Maine (ME), New Hampshire (NH), Northeast Massachusetts
(NEMA), Southeast Massachusetts (SEMA) and Western/Central Massachusetts (WCMA)
futures price data are available from January 2015, whereas the data start in January 2016
for Rhode Island (RI).

Historical DA LMP data, including its decomposition into the three components, are
publicly available on each market’s website.19 We retrieve the data from January 2012 for
NYISO and PJM and August 2015 for ISO-NE.

To summarize, the span of our dataset extend from January 2012 to November 2022.
NYISO data have 10 zones and start at three different dates. PJM data cover 17 out of 21
zones; the data for 15 of those zones start in January 2015. ISO-NE data cover 6 out of 8
zones and start in August 2015, with the exception of Rhode-Island, which start in January
2016. Lastly, we also retrieved the auction results posting day from each market’s own FTR
calendar, which makes it possible to match FTR prices to their analogous futures prices on
the day results are posted.

2.3 Pricing the Electricity Derivatives

The main objective of this paper is to assess whether futures and FTR contracts are priced
in a consistent manner in ISO-driven markets of North America. This section describes the
pricing framework considered herein, with empirical tests of consistency being reported
subsequently. The empirical analyses revolve around isolating implied prices for the loss
component of the LMP through proper comparison of FTR and futures price differentials.
As outlined in this section, if the pricing in the futures and FTR markets is consistent,
the variability of implied prices should be smaller than that of realized losses. We verify

19NYISO: http://mis.nyiso.com/public/, PJM: http://dataminer2.pjm.com/feed/da_hrl_lmps/definition
and ISO-NE: https://www.iso-ne.com/isoexpress/web/reports/pricing/-/tree/lmps-da-hourly.
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empirically that this inequality does not hold in any of the three markets considered.

2.3.1 Contract pricing framework

The two financial derivatives products considered, namely the futures and the FTRs, are
not priced in the same market. Rather, futures are traded in an exchange and the FTRs
through a bidding auction process. To formulate the pricing problem mathematically, two
pricing operators are introduced, one for the futures market and one for the FTR market.
A pricing operator ΠtH is a mapping from a risk source—a random variable describing the
contract cash flow—to a time-tH price. Thus, the pricing operator for the futures market
and the FTR market are represented, respectively, by ΠFut

tH
and ΠFTR

tH
, and subsequent tests

will seek to determine if both are identical. A mild and common assumption applied at
this point is that both pricing operators are linear20 and that, for instance, the price of a
set of payoff components can be decomposed as the sum of prices associated with each
component.

Under such an assumption and based on (2.4), for any zone i in ZtH , the time-tH fu-
tures price associated with period H can be decomposed as the following sum of the three
components:

FtH,i,H = ΠFut
tH
(EH + Ci,H + Li,H︸ ︷︷ ︸

Futures payoffi,H

) = ΠFut
tH
(EH) + ΠFut

tH
(Ci,H) + ΠFut

tH
(Li,H).

Moreover, for zones i and j in ZtH , the time-tH price per hour of the FTR for period H can
be decomposed as

FTRtH,i,j,H = ΠFTR
tH

(Cj,H − Ci,H︸ ︷︷ ︸
FTR payoffi,j,H

) = ΠFTR
tH

(Cj,H)− ΠFTR
tH

(Ci,H), (2.8)

with ΠFTR
tH

(C∅,H) = ΠFTR
tH

(0) = 0.

20For any two cash flows X,Y and real numbers a, b, Πt(aX + bY ) = aΠt(X) + bΠt(Y ). Intuitively,
this implies for instance that the price of two contracts is twice that of one contract, regardless of the contract
cash flow.
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The objective is to assess whether futures prices adjust to market information conveyed
by FTR prices, leading to consistency between the pricing of both contracts.

2.3.2 Price consistency tests using zonal FTR prices

The procedure testing for the consistency of pricing operators ΠFut
tH

and ΠFTR
tH

, i.e. the as-
sumption that ΠFut

tH
= ΠFTR

tH
, is now outlined.

Under the assumption that ΠFut
tH

= ΠFTR
tH

= ΠtH for some pricing operator ΠtH repre-
senting a coherent pricing system between the FTR and futures markets, the price for the
two products can be rewritten by combining (2.4) and (2.7), implying that

FtH,i,H − FTRtH,∅,i,H = ΠtH(EH) + ΠtH(Ci,H) + ΠtH(Li,H)− ΠtH(Ci,H)

= ΠtH(EH) + ΠtH(Li,H), ∀i ∈ ZtH . (2.9)

Elements on the left-hand side of (2.9), namely the futures and FTR prices, are observable
variables. On the right-hand side are quantities that are not directly observable: the energy
price ΠtH(EH), which is the same for all zones, and the loss price ΠtH(Li,H), which is
different for each zone.

The price consistency testing approach is based on the isolation of the loss compo-
nent. At each auction time tH, the linear system (2.9) for all zones i has |ZtH| independent
equations for |ZtH | + 1 unknowns. There are |ZtH| different prices for the energy loss
component Li,H, i ∈ ZtH , and one price for the energy marginal cost EH. However, it is
possible to isolate the price of the loss component relative to its cross-sectional average
price among all zones in ZtH as described below.

Differences in the cross-sectional averages of futures and TCC prices are

(
F tH,·,H − FTRtH,∅,·,H

)
=

|ZtH |∑
i=1

FtH,i,H

|ZtH |
−

|ZtH |∑
i=1

FTRtH,∅,i,H

|ZtH |
(2.10)
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= ΠtH(EH) +

|ZtH |∑
i=1

Π(Li,H)

|ZtH |︸ ︷︷ ︸
ΠtH (LH)

.

This leads to

(FtH,i,H − FTRtH,∅,i,H)−
(
F tHt,·,H − FTRtH,∅,·,H

)
= (ΠtH (EH) + ΠtH (Li,H))−

(
ΠtH (EH) + ΠtH(LH)

)
= ΠtH(Li,H)− ΠtH(LH),

= ΠtH(Li,H − LH) (2.11)

with LH =
∑|ZtH |

i=1
Li,H
|ZtH | , where the last equality is obtained from the linearity assumption

on the pricing operator Πt. Li,H − LH is subsequently referred to as the excess loss.

Since the price of energy ΠtH (EH) does not appear on the right-hand side of Equation
(2.11), it becomes possible to calculateΠtH(Li,H−LH) for all zones i ∈ ZtH since there are
now |ZtH| linear equations with |ZtH| unknown values. Comparing prices ΠtH(Li,H−LH)

with realized value Li,H−LH makes it possible to draw conclusions about whether futures
and FTR contracts are consistently priced.

In what follows, operators E and Var refer to unconditional expectation and variance,
whereas EtH and VartH refer to conditional expectation and variance with respect to the
information available at time tH, namely the time of auction for contracts awarded on month
H. To test whether both sets of values, i.e. priced versus realized excess losses over the
cross-section average, are aligned, we assume that market participants value loss risk as
the expected value of its possible outcomes plus a loss risk premium, which is

∀i ∈ ZtH , ΠtH(Li,H) = EtH [Li,H] + λi,tH . (2.12)

Such a premium is assumed to be a deterministic function of time that is constant over
seasonal buckets. The assumption of a piecewise constant risk premium is also used in
other works related to pricing in electricity markets, see for instance Longstaff and Wang,
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2004.
We deem such an assumption to be reasonable since the loss component is typically not

very volatile, at least not relative to the energy and congestion component of the LMP. To
ensure the linearity of the pricing operator, we also make the assumption that the loss risk
premium is also linear; for instanceΠtH(aX+bY ) = aEtH [X]+bEtH [Y ]+aλX,tH+bλY,tH

for all a, b ∈ R and contingent claims X, Y , where λX,tH and λY,tH are their respective risk
premiums.

This leads to the following implications about the price of a zone’s loss component
relative to its cross-sectional average: for all zones i ∈ ZtH ,

ΠtH(LH) =

|ZtH |∑
i=1

EtH [Li,H] + λi,tH

|ZtH|

= EtH

|ZtH |∑
i=1

Li,H

|ZtH|

+

|ZtH |∑
i=1

λi,tH

|ZtH|
= EtH

[
LH
]
+ λ̄tH ,

with λ̄tH =
∑|ZtH |

i=1

λi,tH
|ZtH | , and thus

ΠtH(Li,H − LH) = ΠtH(Li,H)− ΠtH(LH) = EtH

[
Li,H − LH

]
+
(
λi,tH − λ̄tH

)
. (2.13)

As a consequence, the excess loss component prices should be less volatile than their re-
alized values. Indeed, the law of total variance,21 together with Equation (2.13), imply
that

Var
[
ΠtH(Li,H − LH)

]
= Var

[
EtH

[
Li,H − LH

]
+
(
λi,tH − λ̄tH

)]
= Var

[
EtH

[
Li,H − LH

]]
≤ Var

[
EtH

[
Li,H − LH

]]
+ E

[
VartH

[
Li,H − LH

]]
= Var

[
Li,H − LH

]
, (2.14)

21The law of total variance stipulates that for two random variables X and Y , the conditional moments
of X with respect to Y can be used to compute the unconditional variance of X: Var[X] = Var[E[X|Y ]] +
E[Var[X|Y ]].
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that is, the unconditional variance of excess loss prices should be smaller than the uncon-
ditional variance of the excess losses.

The second assumption relates to the stationarity of the premium-augmented excess
loss process {Li,H−LH+

(
λi,tH − λ̄tH

)
} over the various monthly periods H. In practice,

since electricity markets are well known to exhibit seasonality patterns that can break sta-
tionarity, a milder assumption is considered. The assumption we make is that the premium-
augmented excess loss process is stationary within each seasonality bucket. The following
three seasonality buckets, which follow the conventional classification used for FTRs, are
considered herein: winter months (December to March), summer months (June to Septem-
ber) and the remaining months called shoulder months (April, May, October and Novem-
ber). Such an assumption implies first that the excess loss process has a constant variance
within each seasonality bucket: Var

[
Li,H − LH

]
is either V sum, V win or V sho depending

on whether H corresponds to hours of a summer, winter or shoulder month. Assessing
whether Inequality (2.14) holds is the basis of the pricing consistency test applied in this
section. For each seasonality bucket, Var

[
Li,H − LH

]
can be estimated with the sample

variance of excess losses Li,H − LH. Conversely, estimates of Var
[
ΠtH(Li,H − LH)

]
can

be obtained through the sample variance of implied excess loss prices ΠtH(Li,H − LH),
the latter being obtained by applying Equation (2.11). The failure of Inequality (2.14) to
hold implies incompatibilities between market prices for futures and FTR contracts, as the
price variance is estimated by combining price data for these two product types.

Empirical results for such tests, i.e. estimates of both sides of Inequality (2.14), their
difference and their ratio, are presented for each seasonal bucket (or for the aggregation of
the three buckets) in tables 2.1 to 2.6. In these tables, FTR prices used to compute implied
excess loss prices are obtained from the nearest auction corresponding to the underlying
monthly period H.

The fifth column in each panel of tables 2.1 to 2.6, i.e. column (A)− (B), shows that
the variance of implied excess loss prices Var

[
ΠtH(Li,H − LH)

]
is always greater than

Var
[
Li,H − LH

]
for all zones of the three markets and all seasonality buckets,22 a result

that contradicts Inequality (2.14). The price variance is sometimes orders of magnitude

22With the exception of the COMED zone in summer months for the PJM market.
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Chapter 2. Pricing inconsistency between the futures and FTR markets

Panel a: Winter Months

Zone n (A) (B) (A)− (B) (A)/(B)

A 42 21.25 7.46 13.78 2.85
B 20 6.96 2.25 4.71 3.10
C 42 18.20 1.12 17.08 16.32
D 28 9.63 0.55 9.08 17.48
E 20 4.26 0.10 4.16 42.29
F 42 9.56 1.15 8.41 8.30
G 42 5.73 1.48 4.25 3.88
I 20 8.27 0.80 7.47 10.33
J 42 15.25 1.59 13.65 9.58
K 20 23.29 1.45 21.85 16.09

Panel b: Shoulder Months

Zone n (A) (B) (A)− (B) (A)/(B)

A 44 3.43 0.76 2.67 4.50
B 22 3.39 0.23 3.16 14.88
C 44 1.84 0.13 1.71 14.03
D 30 13.30 0.78 12.52 17.01
E 22 6.62 0.04 6.58 179.33
F 44 1.22 0.06 1.17 21.54
G 44 1.91 0.20 1.70 9.32
I 22 3.57 0.22 3.35 16.43
J 44 2.12 0.25 1.87 8.55
K 22 29.98 0.51 29.47 59.03

Panel c: Summer Months

Zone n (A) (B) (A)− (B) (A)/(B)

A 44 2.09 0.98 1.11 2.14
B 23 9.54 0.68 8.86 13.99
C 44 1.22 0.31 0.91 3.94
D 31 10.31 2.46 7.85 4.19
E 23 6.46 0.11 6.35 58.15
F 44 3.11 0.17 2.93 17.79
G 44 3.90 0.36 3.54 10.78
I 23 6.75 0.99 5.76 6.85
J 44 4.83 0.70 4.13 6.91
K 23 36.70 1.64 35.06 22.35

Panel d: All Months

Zone n (A) (B) (A)− (B) (A)/(B)

A 130 9.59 3.43 6.16 2.79
B 65 7.21 1.14 6.06 6.30
C 130 7.26 0.56 6.70 12.86
D 89 10.86 1.42 9.44 7.63
E 65 7.01 0.10 6.92 73.31
F 130 6.11 0.56 5.55 10.83
G 130 3.99 0.72 3.27 5.53
I 65 5.98 0.73 5.26 8.24
J 130 7.56 0.90 6.65 8.37
K 65 29.78 1.32 28.46 22.55

Each panel shows the results for one seasonality bucket: Panel a is for winter months (December to March); panel b is for
shoulder months (April, May, October and November); panel c is for summer months (June to September); panel d covers all
months of the year. For the nearest auction time tH and underlying monthH, implied excess loss pricesΠtH(Li,H)−ΠtH(LH)
are calculated for all zones i ∈ ZtH via Equation (2.11). The second column exhibits the number of nearest auctions for
which the data are available. The sample variance of ΠtH(Li,H)−ΠtH(LH) is represented by (A). The sample variance of
the realized excess loss values Li,H − LH is represented by (B). The difference, column (A)− (B), and the ratio, column
(A)/(B), are also provided in each panel.

Table 2.1: Sample variance of the excess losses Li,H − LH and of their
nearest-auction-implied prices - NYISO 24-hour contract
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Chapter 2. Pricing inconsistency between the futures and FTR markets

Panel a: Winter Months

Zone n (A) (B) (A)− (B) (A)/(B)

AECO 31 11.38 0.72 10.66 15.86
BGE 31 1.67 0.25 1.42 6.75
DPL 31 7.93 1.57 6.36 5.05
JCPL 31 2.68 0.92 1.76 2.93

METED 31 3.36 0.34 3.02 9.93
PECO 31 1.94 0.52 1.42 3.74
PPL 31 3.29 0.22 3.07 15.01

PENELEC 31 2.16 0.07 2.09 32.59
PSEG 31 3.19 1.00 2.19 3.20
APS 31 1.86 0.11 1.75 17.56
AEP 29 1.81 0.73 1.08 2.48

COMED 31 3.39 2.32 1.07 1.46
DAY 20 7.54 0.97 6.57 7.77
DOM 21 1.41 0.07 1.35 21.16
DUQ 31 5.70 1.24 4.47 4.61
ATSI 31 4.74 0.56 4.18 8.47

DEOK 31 7.75 1.79 5.96 4.33

Panel b: Shoulder Months

Zone n (A) (B) (A)− (B) (A)/(B)

AECO 32 23.06 0.08 22.97 285.52
BGE 32 3.13 0.30 2.83 10.41
DPL 32 25.88 0.07 25.81 354.31
JCPL 32 1.67 0.06 1.61 28.59

METED 32 3.19 0.04 3.15 71.03
PECO 32 4.52 0.11 4.41 40.37
PPL 32 2.70 0.12 2.58 22.55

PENELEC 32 0.86 0.05 0.81 16.16
PSEG 32 1.47 0.09 1.38 16.98
APS 32 0.91 0.04 0.87 23.78
AEP 32 0.86 0.06 0.81 15.48

COMED 32 1.92 0.55 1.37 3.47
DAY 22 1.74 0.32 1.41 5.36
DOM 24 2.54 0.37 2.17 6.85
DUQ 32 3.20 0.12 3.07 25.83
ATSI 32 3.78 0.07 3.71 53.67

DEOK 32 2.59 0.20 2.40 13.24

Panel c: Summer Months

Zone n (A) (B) (A)− (B) (A)/(B)

AECO 32 35.11 0.29 34.82 121.92
BGE 32 4.95 0.78 4.17 6.34
DPL 32 42.01 0.47 41.55 90.02
JCPL 32 4.81 0.15 4.66 32.97

METED 32 6.25 0.09 6.16 68.63
PECO 32 14.07 0.14 13.93 102.84
PPL 32 13.22 0.14 13.09 95.23

PENELEC 32 2.27 0.07 2.20 31.99
PSEG 32 12.77 0.14 12.63 89.57
APS 32 1.18 0.08 1.10 14.75
AEP 32 1.28 0.32 0.96 4.01

COMED 32 1.62 0.78 0.84 2.07
DAY 23 2.63 0.55 2.08 4.77
DOM 24 10.11 0.28 9.83 35.98
DUQ 32 2.53 0.61 1.92 4.15
ATSI 32 3.37 0.18 3.19 18.41

DEOK 32 2.99 0.39 2.60 7.73

Panel d: All Months

Zone n (A) (B) (A)− (B) (A)/(B)

AECO 95 22.88 0.43 22.45 52.78
BGE 95 3.41 0.45 2.96 7.59
DPL 95 25.90 0.83 25.06 31.12
JCPL 95 3.14 0.47 2.67 6.62

METED 95 4.94 0.19 4.75 26.44
PECO 95 6.81 0.31 6.50 21.73
PPL 95 6.85 0.20 6.65 34.40

PENELEC 95 1.82 0.07 1.75 27.69
PSEG 95 5.95 0.52 5.42 11.42
APS 95 1.36 0.10 1.27 13.84
AEP 93 1.41 0.42 0.98 3.32

COMED 95 2.42 1.30 1.12 1.87
DAY 65 4.98 0.74 4.24 6.73
DOM 69 5.02 0.28 4.74 18.19
DUQ 95 4.11 0.75 3.37 5.50
ATSI 95 4.20 0.31 3.90 13.77

DEOK 95 5.35 0.94 4.40 5.67

Each panel shows the results for one seasonality bucket: Panel a is for winter months (December to March); panel b is for
shoulder months (April, May, October and November); panel c is for summer months (June to September); panel d covers all
months of the year. For the nearest auction time tH and underlying monthH, implied excess loss pricesΠtH(Li,H)−ΠtH(LH)
are calculated for all zones i ∈ ZtH via Equation (2.11). The second column exhibits the number of nearest auctions for
which the data are available. The sample variance of ΠtH(Li,H)−ΠtH(LH) is represented by (A). The sample variance of
the realized excess loss values Li,H − LH is represented by (B). The difference, column (A)− (B), and the ratio, column
(A)/(B), are also provided in each panel.

Table 2.2: Sample variance of the excess losses Li,H − LH and of their
nearest-auction-implied prices - PJM on-peak contract
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Panel a: Winter Months

Zone n (A) (B) (A)− (B) (A)/(B)

AECO 31 3.70 0.72 2.98 5.16
BGE 31 2.78 0.25 2.53 11.19
DPL 31 4.42 1.57 2.85 2.82
JCPL 31 3.01 0.92 2.09 3.29

METED 31 2.46 0.34 2.13 7.29
PECO 31 1.42 0.52 0.90 2.74
PPL 31 2.04 0.22 1.82 9.33

PENELEC 31 2.68 0.07 2.61 40.48
PSEG 31 3.48 1.00 2.49 3.50
APS 31 1.27 0.11 1.16 11.97
AEP 29 2.86 0.73 2.13 3.91

COMED 31 3.76 2.32 1.44 1.62
DAY 20 10.54 0.97 9.57 10.85
DOM 21 1.74 0.07 1.68 26.13
DUQ 31 4.05 1.24 2.82 3.28
ATSI 31 4.85 0.56 4.29 8.66

DEOK 31 6.59 1.79 4.80 3.68

Panel b: Shoulder Months

Zone n (A) (B) (A)− (B) (A)/(B)

AECO 32 5.61 0.08 5.53 69.48
BGE 32 3.28 0.30 2.98 10.90
DPL 32 6.69 0.07 6.61 91.53
JCPL 32 3.15 0.06 3.09 53.80

METED 32 1.95 0.04 1.90 43.31
PECO 32 0.99 0.11 0.87 8.80
PPL 32 2.42 0.12 2.30 20.24

PENELEC 32 1.53 0.05 1.47 28.70
PSEG 32 1.67 0.09 1.58 19.27
APS 32 0.73 0.04 0.70 19.28
AEP 32 0.31 0.06 0.26 5.60

COMED 32 1.47 0.55 0.92 2.66
DAY 22 0.89 0.32 0.56 2.73
DOM 24 1.83 0.37 1.46 4.93
DUQ 32 1.65 0.12 1.53 13.35
ATSI 32 1.42 0.07 1.35 20.10

DEOK 32 1.36 0.20 1.16 6.95

Panel c: Summer Months

Zone n (A) (B) (A)− (B) (A)/(B)

AECO 32 3.20 0.29 2.91 11.11
BGE 32 8.78 0.78 8.00 11.25
DPL 32 12.59 0.47 12.12 26.98
JCPL 32 0.70 0.15 0.55 4.80

METED 32 1.88 0.09 1.79 20.63
PECO 32 5.55 0.14 5.41 40.57
PPL 32 1.29 0.14 1.15 9.31

PENELEC 32 0.71 0.07 0.64 10.00
PSEG 32 4.92 0.14 4.77 34.47
APS 32 0.84 0.08 0.76 10.53
AEP 32 0.44 0.32 0.11 1.36

COMED 32 0.63 0.78 −0.15 0.80
DAY 23 1.19 0.55 0.64 2.16
DOM 24 2.75 0.28 2.47 9.78
DUQ 32 1.55 0.61 0.94 2.54
ATSI 32 1.49 0.18 1.30 8.11

DEOK 32 1.28 0.39 0.89 3.30

Panel d: All Months

Zone n (A) (B) (A)− (B) (A)/(B)

AECO 95 4.16 0.43 3.72 9.58
BGE 95 5.02 0.45 4.57 11.18
DPL 95 8.27 0.83 7.44 9.94
JCPL 95 3.47 0.47 3.00 7.32

METED 95 2.12 0.19 1.93 11.33
PECO 95 2.91 0.31 2.59 9.27
PPL 95 2.23 0.20 2.03 11.20

PENELEC 95 1.61 0.07 1.54 24.53
PSEG 95 4.58 0.52 4.06 8.79
APS 95 0.97 0.10 0.87 9.80
AEP 93 1.42 0.42 0.99 3.35

COMED 95 2.17 1.30 0.87 1.67
DAY 65 4.05 0.74 3.31 5.46
DOM 69 2.09 0.28 1.81 7.58
DUQ 95 2.86 0.75 2.11 3.82
ATSI 95 2.96 0.31 2.66 9.71

DEOK 95 3.85 0.94 2.91 4.08

Each panel shows the results for one seasonality bucket: Panel a is for winter months (December to March); panel b is for
shoulder months (April, May, October and November); panel c is for summer months (June to September); panel d covers all
months of the year. For the nearest auction time tH and underlying monthH, implied excess loss pricesΠtH(Li,H)−ΠtH(LH)
are calculated for all zones i ∈ ZtH via Equation (2.11). The second column exhibits the number of nearest auctions for
which the data are available. The sample variance of ΠtH(Li,H)−ΠtH(LH) is represented by (A). The sample variance of
the realized excess loss values Li,H − LH is represented by (B). The difference, column (A)− (B), and the ratio, column
(A)/(B), are also provided in each panel.

Table 2.3: Sample variance of the excess losses Li,H − LH and of their
nearest-auction-implied prices - PJM off-peak contract
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Panel a: Winter Months

Zone n (A) (B) (A)− (B) (A)/(B)

AECO 31 6.10 0.72 5.39 8.51
BGE 31 1.44 0.25 1.19 5.81
DPL 31 4.08 1.57 2.51 2.60
JCPL 31 1.99 0.92 1.08 2.18

METED 31 1.65 0.34 1.31 4.88
PECO 31 1.30 0.52 0.79 2.51
PPL 31 1.87 0.22 1.65 8.52

PENELEC 31 2.33 0.07 2.26 35.23
PSEG 31 2.71 1.00 1.72 2.72
APS 31 1.37 0.11 1.26 12.96
AEP 29 2.00 0.73 1.27 2.74

COMED 31 2.96 2.32 0.63 1.27
DAY 20 8.47 0.97 7.50 8.72
DOM 21 1.27 0.07 1.21 19.05
DUQ 31 4.33 1.24 3.10 3.50
ATSI 31 3.14 0.56 2.58 5.61

DEOK 31 6.75 1.79 4.96 3.77

Panel b: Shoulder Months

Zone n (A) (B) (A)− (B) (A)/(B)

AECO 32 10.43 0.08 10.35 129.21
BGE 32 2.37 0.30 2.07 7.86
DPL 32 12.72 0.07 12.65 174.14
JCPL 32 1.33 0.06 1.27 22.78

METED 32 1.98 0.04 1.93 43.96
PECO 32 1.35 0.11 1.23 12.01
PPL 32 2.21 0.12 2.09 18.51

PENELEC 32 0.98 0.05 0.93 18.45
PSEG 32 1.04 0.09 0.95 11.96
APS 32 0.73 0.04 0.69 19.23
AEP 32 0.43 0.06 0.38 7.81

COMED 32 1.09 0.55 0.54 1.97
DAY 22 0.81 0.32 0.49 2.50
DOM 24 1.28 0.37 0.91 3.44
DUQ 32 1.94 0.12 1.82 15.67
ATSI 32 2.12 0.07 2.05 30.08

DEOK 32 1.75 0.20 1.56 8.95

Panel c: Summer Months

Zone n (A) (B) (A)− (B) (A)/(B)

AECO 32 12.42 0.29 12.13 43.13
BGE 32 4.58 0.78 3.80 5.87
DPL 32 21.25 0.47 20.78 45.53
JCPL 32 1.40 0.15 1.26 9.62

METED 32 2.13 0.09 2.04 23.42
PECO 32 4.08 0.14 3.94 29.82
PPL 32 4.48 0.14 4.34 32.25

PENELEC 32 0.98 0.07 0.91 13.77
PSEG 32 5.09 0.14 4.95 35.71
APS 32 0.88 0.08 0.80 10.95
AEP 32 0.55 0.32 0.23 1.71

COMED 32 0.80 0.78 0.02 1.03
DAY 23 1.40 0.55 0.85 2.54
DOM 24 4.70 0.28 4.42 16.74
DUQ 32 1.63 0.61 1.02 2.67
ATSI 32 1.74 0.18 1.56 9.51

DEOK 32 1.65 0.39 1.27 4.28

Panel d: All Months

Zone n (A) (B) (A)− (B) (A)/(B)

AECO 95 9.49 0.43 9.06 21.89
BGE 95 2.86 0.45 2.42 6.38
DPL 95 13.20 0.83 12.37 15.86
JCPL 95 2.06 0.47 1.58 4.34

METED 95 2.16 0.19 1.98 11.58
PECO 95 2.36 0.31 2.05 7.54
PPL 95 3.20 0.20 3.00 16.05

PENELEC 95 1.40 0.07 1.34 21.43
PSEG 95 3.57 0.52 3.05 6.85
APS 95 1.03 0.10 0.93 10.41
AEP 93 1.15 0.42 0.73 2.71

COMED 95 1.79 1.30 0.49 1.38
DAY 65 3.78 0.74 3.04 5.11
DOM 69 2.48 0.28 2.20 8.99
DUQ 95 3.02 0.75 2.27 4.03
ATSI 95 2.62 0.31 2.31 8.58

DEOK 95 4.22 0.94 3.28 4.47

Each panel shows the results for one seasonality bucket: Panel a is for winter months (December to March); panel b is for
shoulder months (April, May, October and November); panel c is for summer months (June to September); panel d covers all
months of the year. For the nearest auction time tH and underlying monthH, implied excess loss pricesΠtH(Li,H)−ΠtH(LH)
are calculated for all zones i ∈ ZtH via Equation (2.11). The second column exhibits the number of nearest auctions for
which the data are available. The sample variance of ΠtH(Li,H)−ΠtH(LH) is represented by (A). The sample variance of
the realized excess loss values Li,H − LH is represented by (B). The difference, column (A)− (B), and the ratio, column
(A)/(B), are also provided in each panel.

Table 2.4: Sample variance of the excess losses Li,H − LH and of their
nearest-auction-implied prices - PJM 24-hour contract
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Panel a: Winter Months

Zone n (A) (B) (A)− (B) (A)/(B)

ME 28 0.70 0.50 0.20 1.40
NH 28 0.18 0.01 0.17 13.27
RI 27 1.22 0.09 1.13 13.13

SEMA 28 0.17 0.05 0.12 3.64
WCMA 28 0.49 0.10 0.38 4.79
NEMA 28 0.70 0.03 0.67 22.53

Panel b: Shoulder Months

Zone n (A) (B) (A)− (B) (A)/(B)

ME 30 0.29 0.14 0.15 2.04
NH 30 0.18 0.04 0.13 4.08
RI 28 0.17 0.08 0.09 2.01

SEMA 30 0.10 0.03 0.07 2.97
WCMA 30 0.32 0.02 0.30 14.06
NEMA 30 0.18 0.02 0.16 8.84

Panel c: Summer Months

Zone n (A) (B) (A)− (B) (A)/(B)

ME 30 0.55 0.18 0.36 2.97
NH 30 0.20 0.03 0.17 7.22
RI 28 0.22 0.04 0.19 6.25

SEMA 30 0.35 0.04 0.31 8.87
WCMA 30 0.34 0.02 0.32 16.45
NEMA 30 0.14 0.03 0.11 4.65

Panel d: All Months

Zone n (A) (B) (A)− (B) (A)/(B)

ME 88 0.51 0.28 0.23 1.82
NH 88 0.18 0.03 0.15 5.50
RI 83 0.52 0.08 0.44 6.43

SEMA 88 0.21 0.04 0.17 4.84
WCMA 88 0.37 0.05 0.33 8.12
NEMA 88 0.34 0.03 0.31 12.92

Each panel shows the results for one seasonality bucket: Panel a is for winter months (December to March); panel b is for
shoulder months (April, May, October and November); panel c is for summer months (June to September); panel d covers all
months of the year. For the nearest auction time tH and underlying monthH, implied excess loss pricesΠtH(Li,H)−ΠtH(LH)
are calculated for all zones i ∈ ZtH via Equation (2.11). The second column exhibits the number of nearest auctions for
which the data are available. The sample variance of ΠtH(Li,H)−ΠtH(LH) is represented by (A). The sample variance of
the realized excess loss values Li,H − LH is represented by (B). The difference, column (A)− (B), and the ratio, column
(A)/(B), are also provided in each panel.

Table 2.5: Sample variance of the excess losses Li,H − LH and of their
nearest-auction-implied prices - ISO-NE on-peak contract

27



Chapter 2. Pricing inconsistency between the futures and FTR markets

Panel a: Winter Months

Zone n (A) (B) (A)− (B) (A)/(B)

ME 28 1.11 0.50 0.61 2.22
NH 28 0.19 0.01 0.18 14.10
RI 27 0.54 0.09 0.45 5.80

SEMA 28 0.26 0.05 0.21 5.66
WCMA 28 1.20 0.10 1.10 11.83
NEMA 28 0.38 0.03 0.35 12.23

Panel b: Shoulder Months

Zone n (A) (B) (A)− (B) (A)/(B)

ME 30 0.31 0.14 0.16 2.17
NH 30 0.05 0.04 0.01 1.24
RI 28 0.17 0.08 0.08 1.98

SEMA 30 0.07 0.03 0.03 1.90
WCMA 30 0.31 0.02 0.29 13.59
NEMA 30 0.12 0.02 0.10 5.92

Panel c: Summer Months

Zone n (A) (B) (A)− (B) (A)/(B)

ME 30 0.26 0.18 0.07 1.39
NH 30 0.08 0.03 0.05 2.83
RI 28 0.21 0.04 0.17 5.78

SEMA 30 0.14 0.04 0.10 3.61
WCMA 30 0.43 0.02 0.41 20.65
NEMA 30 0.15 0.03 0.12 5.03

Panel d: All Months

Zone n (A) (B) (A)− (B) (A)/(B)

ME 88 0.55 0.28 0.27 1.97
NH 88 0.11 0.03 0.07 3.16
RI 83 0.30 0.08 0.22 3.68

SEMA 88 0.15 0.04 0.11 3.49
WCMA 88 0.64 0.05 0.59 13.93
NEMA 88 0.23 0.03 0.21 8.82

Each panel shows the results for one seasonality bucket: Panel a is for winter months (December to March); panel b is for
shoulder months (April, May, October and November); panel c is for summer months (June to September); panel d covers all
months of the year. For the nearest auction time tH and underlying monthH, implied excess loss pricesΠtH(Li,H)−ΠtH(LH)
are calculated for all zones i ∈ ZtH via Equation (2.11). The second column exhibits the number of nearest auctions for
which the data are available. The sample variance of ΠtH(Li,H)−ΠtH(LH) is represented by (A). The sample variance of
the realized excess loss values Li,H − LH is represented by (B). The difference, column (A)− (B), and the ratio, column
(A)/(B), are also provided in each panel.

Table 2.6: Sample variance of the excess losses Li,H − LH and of their
nearest-auction-implied prices - ISO-NE off-peak contract
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higher than that of realized excess losses as evidenced by the sixth column (A)/(B). If our
assumptions holds,23 these numbers unequivocally highlight the fact that futures and FTR
prices are not priced consistently over the corresponding two financial markets.

To better visualize such outcomes, figures 2.4 to 2.6 present time series of zonal excess
losses Li,H − LH (green lines) and of their nearest auction price ΠtH(Li,H − LH) (black
lines) for the three power markets.24 Each panel represents a different zone, and each time
point of the time series corresponds to one contract month. Some black lines do not cover
the full 2012–2021 span as some of the futures contracts were not historically available.

The implied excess loss prices are visually much more volatile than the realized excess
losses, supporting the aforementioned evidence from tables 2.1 to 2.6. It is interesting
to observe that for most of the zones, excess losses are, in some periods, priced at levels
that realized values were never even close to reaching in the data sample. This confirms
that a single pricing operator cannot consistently explain prices in both futures and FTR
markets. Furthermore, the higher volatility for implied excess loss prices than for realized
losses is pervasive throughout the entire duration of the sample; the misalignment between
prices of futures and FTRs is therefore not due to a few standalone events; rather, it occurs
systematically.

2.3.3 Price consistency tests using the most liquid FTR contracts

The results presented in the previous section leave no doubt as to the presence of price
inconsistencies between the FTR and futures markets. However, it is important to assess
whether such inconsistencies occur with liquid FTRs, or if they mostly apply to illiquid
contracts. Indeed, the potential for acting on observed pricing inconsistencies depends
on the ability to transact or place successful bids on identified contacts. The approach
followed herein to answer this question is to perform variance tests similar to those outlined
previously, but this time only on FTR contracts which were traded in the nearest auctions
of the data sample. The results of the previous section are obtained from nodal FTR prices,

23We relaxed the constant loss risk premium assumption by testing with a stochastic risk premium, the
results remained unchanged. Details are in Appendix A.2.

24For better readability, only the 24-hour contracts are presented, and separate on-peak and off-peak
contracts results are omitted.
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Chapter 2. Pricing inconsistency between the futures and FTR markets

but nothing ensures that corresponding contracts are traded with sufficient liquidity.

Traded FTRs apply to zone pairs, i.e. with an SI j and an SO i. Based on Equation
(2.9), the implied price differential between losses of two zones is given by

(FtH,j,H − FtH,i,H)− FTRtH,i,j,H = ΠtH(Lj,H)−ΠtH(Li,H) = ΠtH(Lj,H − Li,H). (2.15)

Moreover,

ΠtH(Lj,H − Li,H) = ΠtH(Li,H)− ΠtH(Li,H) (2.16)

= EtH [Lj,H − Li,H] + (λj,tH − λi,tH) .

The energy component is naturally cancelled out by the differentiation between the two
zones. Using assumptions analogous to those of the previous section, i.e. Equation (2.12)
and the stationarity of premium-incremented losses over a given seasonality bucket, it is
again possible to bound the variance of loss spread price, i.e. zone price differentials, by
the variance of realized loss spreads:

Var [ΠtH(Lj,H − Li,H)] = Var [EtH [Lj,H − Li,H] + (λj,tH − λi,tH)]

= Var [EtH [Lj,H − Li,H]]

≤ Var [EtH [Lj,H − Li,H]] + E [VartH [Lj,H − Li,H]]

= Var [Lj,H − Li,H] . (2.17)

Again, both sides of Inequality (2.17) can be estimated by computing the sample variance
of either implied loss differential prices obtained from Equation (2.15) or realized loss
spread, respectively. However this time, for a given zone pair i, j, data points are only
included in the sample variance if the FTR has been traded in the corresponding months.

Tables 2.7 to 2.12 again report the estimate of Var [ΠtH(Lj,H − Li,H)], the variance of
implied price of loss spreads denoted (A), and the variance of realized loss differentials
Var [Lj,H − Li,H], denoted (B), along with the difference and the ratio of the two former
quantities. For each seasonality bucket, results are reported for the most liquid FTRs. These
are defined as FTRs for which the corresponding SO/SI zone pair had the largest numbers
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Chapter 2. Pricing inconsistency between the futures and FTR markets

of nearest auctions with at least one unit allocated. The column labelled n in the table
reports the number of nearest auctions in the sample for which such FTRs were allocated
at least once.

Once again, the fifth column in each panel of tables 2.7 to 2.12, namely column (A)−
(B), shows that estimates of the implied loss spread price variance are usually higher than
estimates of the realized loss spread variance. Notably, in the NYISO market, this differ-
ence is positive for all ten zone pairs in the shoulder months and in the summer months.
This relationship holds for most presented zone pairs, with the exception of pairs A − C

and C −A in the winter months. In the PJM market, the difference is positive in all zones
for the 24-hour, on-peak and off-peak FTR contracts. In the ISO-NE market, again, the dif-
ference is positive in the vast majority of zones for both contract types and in all seasonsal
buckets.

35
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Panel a: Winter Months

j − i n (A) (B) (A)− (B) (A)/(B)

C-A 40 1.73 3.02 −1.30 0.57
F-G 40 4.09 0.34 3.74 11.93
J-G 36 4.55 0.07 4.48 67.44
A-C 31 1.36 3.10 −1.74 0.44
G-J 30 0.62 0.05 0.57 12.48
G-F 28 3.49 0.14 3.36 25.22
A-G 23 20.25 6.98 13.27 2.90
G-A 23 68.11 21.94 46.17 3.10
C-G 20 29.14 3.32 25.82 8.77
G-C 20 64.86 3.25 61.61 19.97

Panel b: Shoulder Months

j − i n (A) (B) (A)− (B) (A)/(B)

F-G 39 1.62 0.15 1.47 10.92
C-A 38 1.12 0.24 0.87 4.58
J-G 35 0.34 0.03 0.32 12.28
A-C 34 0.73 0.18 0.55 4.04
G-F 33 1.36 0.19 1.17 7.21
G-C 25 2.59 0.35 2.24 7.40
A-G 22 13.94 1.36 12.58 10.24
G-J 22 0.38 0.02 0.37 21.13
I-G 21 1.53 0.02 1.51 73.52
G-A 20 2.15 1.45 0.70 1.49

Panel c: Summer Months

j − i n (A) (B) (A)− (B) (A)/(B)

C-A 40 1.45 0.29 1.16 4.95
G-F 40 1.38 0.22 1.16 6.21
J-G 38 0.34 0.08 0.27 4.46
A-C 35 1.46 0.33 1.13 4.48
F-G 28 0.81 0.13 0.67 6.05
A-G 26 3.72 0.91 2.81 4.09
G-C 24 12.03 1.36 10.68 8.87
G-A 24 3.68 1.15 2.53 3.19
B-A 21 6.33 0.05 6.28 121.92
I-G 20 0.95 0.12 0.83 7.98

Panel d: All Months

j − i n (A) (B) (A)− (B) (A)/(B)

C-A 118 1.54 1.45 0.08 1.06
J-G 109 1.72 0.06 1.66 28.86
F-G 107 2.98 0.22 2.76 13.45
G-F 101 2.99 0.22 2.78 13.85
A-C 100 1.24 1.34 −0.11 0.92
A-G 71 13.07 3.45 9.63 3.79
G-J 69 0.49 0.05 0.44 9.19
G-C 69 24.35 1.71 22.64 14.27
G-A 67 29.88 10.19 19.69 2.93
C-G 58 16.88 1.86 15.02 9.09

Each panel shows the results for one seasonality bucket: Panel a is for winter months (December to
March); panel b is for shoulder months (April, May, October and November); panel c is for summer
months (June to September); panel d covers all months of the year. For the nearest auction time tH and
underlying month H, implied loss prices ΠtH(Lj,H − Li,H) are calculated for the most liquid SO i and
SI j zone combinations in each seasonality bucket via Equation (2.15). The second column exhibits the
number of nearest auctions for which at least one unit of such a contract was traded. The sample variance
of ΠtH(Lj,H−Li,H) is represented by (A). The sample variance of the realized loss spreads Lj,H−Li,H
is represented by (B). The difference, column (A)− (B), and the ratio, column (A)/(B), are also pro-
vided in each panel.

Table 2.7: Sample variance of the loss spreads Lj,H − Li,H and of their
nearest-auction-implied prices for the most liquid FTRs - NYISO 24-hour contract
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Chapter 2. Pricing inconsistency between the futures and FTR markets

2.4 Conclusion

An examination of historical futures and FTR price data for various zones of the NYISO,
the ISO-NE and PJM reveals substantial pricing inconsistencies. By computing futures
and FTR price differences over their cross-sectional averages, market-implied prices of the
zonal LMPs’ excess loss component can be isolated. Such implied loss prices are found to
be incompatible with distributions of realized losses as loss-implied prices exhibit much
higher variability than realized losses; this is incompatible with the loss prices being the
expectation over all possible loss outcomes. Moreover, the loss price sometimes reaches
levels never attained by realized losses, further confirming incompatibilities between the
prices of futures and FTRs in the considered markets.

The misalignment between realized losses and their implied prices has several implica-
tions for the power market participants. The regulator could raise awareness about current
existing pricing inconsistencies, which could lead to investors and specialized firms con-
ducting arbitrage operations that would correct mispricing instances.25 Another possibility
that could be envisioned by the ISO would be to follow the suggestion of Rudkevich et al.,
2005 and Sarkar and Khaparde, 2009, who propose the introduction of novel derivatives
similar to FTRs, whose payoff would be linked to the loss part rather than to congestion.
Indeed, the combination of an FTR and a futures contract on a given zone cannot be used
to hedge standalone loss risk due to the inclusion of the energy component in the futures
payoff. Furthermore, the pricing inconsistencies revealed in this study imply that such a
combination might prove an inadequate loss hedge. The creation of loss-related financial
derivatives could therefore alleviate this issue and potentially provide additional signals
to improve market efficiency. Such contracts could facilitate arbitrage if misaligned prices
persist, which would eventually lead to the market correcting pricing inconsistencies. Elec-
tricity futures would still remain relevant after such an inclusion due to futures being traded
continuously, unlike auctions which occur sporadically. A key requirement for the inclu-
sion of a novel loss-related derivative to work properly is sufficient appetite from market
participants to trade in such contracts.

25Arbitrage operations should account for the fact that the FTRs are auction-based and futures traded in
an exchange as it can hurdle arbitrage opportunities.
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A potential avenue for further work is the development of a pricing scheme for futures
contracts that is compatible with observed FTR data (or conversely an FTR pricing scheme
compatible with observed futures price data), which could be of interest for participants of
such derivatives markets. To help with such an endeavour, statistical analysis on empirical
data such as the PCA-based approach of Godin and Ibrahim, 2021, which demonstrates
strong commonalities between congestion costs of the various zones, could be applied to
provide insight on interrelationships between prices on all nodes of the grid. Such informa-
tion can serve as a basis for the valuation of FTRs involving non-zonal nodes, by relating
them to zonal FTRs.
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Chapter 3

Computationally-Efficient Variance Filtering in
Multidimensional Affine Models

Abstract1

We design a precise analytical approximation to filter a multi-factor variance model in
a multi-asset framework. Building on the informativeness of intraday statistics, such as
the realized covariance, we propose a highly tractable approach to filtering the first four
conditional moments of the latent state. Our filter is robust to nonlinearity and non- Gausian
measurement and state equations while remaining analytical.

1Joint work with Christian Dorion and Geneviève Gauthier. Dorion and Gauthier are affiliated with HEC
Montréal.



Chapter 3. Variance filtering in multidimensional affine models

3.1 Introduction

Commonality in asset volatilities is extensively documented and goes well beyond stocks
on a given market sharing some systematic component. Commonality is observed across
several markets (Aït-Sahalia and Xiu, 2016; Andersen et al., 2013), and across idiosyn-
cratic volatilities within a given market (Herskovic et al., 2016). We develop a filter that
allows for multiple latent variance factors within a multi-asset framework, addressing a
significant challenge in financial modeling. Our precise analytical filter approximation cir-
cumvents the curse of dimensionality inherent in existing techniques, handles nonlinear
frameworks and filter the first four conditional moment of the latent variance components.

In single-asset analyses, stochastic volatility models with multiple components are stan-
dard. Methods like the auxiliary particle filter (APF) and Markov chain Monte Carlo
(MCMC) integrate latent states and can theoretically extend to multi-asset frameworks.
However, the curse of dimensionality hinders their practical application to multiple assets
with shared volatility components. In this paper, we build upon existing literature of ana-
lytical filtering to offer a practical and fast solution to multivariate filtering problems.

To identify latent factors driving common volatility movements in multiple assets, we
exploit intraday data. Our methodology relies on two types of observable variables: the
daily forward log-return on each asset and the corresponding realized variances and covari-
ances aggregated from 5-minute returns (Barndorff-Nielsen and Shephard, 2002, 2004).
Realized covariance provides valuable insights into the relationships between asset volatil-
ities, complementing the information captured by realized variances within each asset.

A popular application of realized variance is in the powerful Heterogeneous Autore-
gressive (HAR) model of Corsi, 2009. When it comes to forecasting daily realized volatili-
ties, the HAR is both straightforward to implement and difficult to outperform. The HARQ
model (Bollerslev et al., 2016) improves on the HAR by allowing for a time-varying AR
parameter that depends linearly on an estimate of realized quarticity.2 Bollerslev et al.,
2018 use the HARQ model to predict not only variances, but also a full covariance matrix.

2Other extensions exist, such as the HAR-Kalman (HARK) model of Buccheri and Corsi, 2021, which
uses a Kalman filter to diminish the effect of measurement errors in parameter estimation, an issue addressed
by Bollerslev et al., 2016.
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Chapter 3. Variance filtering in multidimensional affine models

As the focus of these studies is on predicting (co)variances, our analysis complements
them by proposing a filtering methodology that 1) disentangles the common variance fac-
tors, 2) incorporates the asymptotic behavior of measurement errors, and 3) offers a precise
analytical approximation of the latent state conditional moments. A reliable filter can prove
crucial for parameter estimation based on conditional moments,3 forecasting volatility4 and
derivative pricing. Filtering is also essential for understanding the latent factors driving the
underlying covariances. These factors should ideally be rooted in economic theory to en-
sure that they are economically sound.5

Our filter builds on the extensive literature of term structure and extends it to the stock
market using realized variables. Specifically, when the model is in the affine class, it al-
lows us to have conditional moments with respect to the model filtration that are affine in
the latent variable. By incorporating the measurement error of the realized variables, we
extend the filter’s use beyond affine classes, as it is not linear in the latent state.

We calculate the first four conditional moments of observables and latent variables
with respect to the model filtration. Using the law of total cumulants permits a seamless
transition from model filtration to observed filtration. We propose an update to the latent
variable estimator based on Kalman filter foundations without using classical Kalman equa-
tions. This includes calculating the expectation, variance, third and fourth moments of the
latent variable, providing comprehensive estimators for the first four cumulants, including
co-moments.

Additionally, we propose a correction for conditional moments of measurement error
3Conditional moments are useful tools to estimate parameters by GMM. Bollerslev and Zhou, 2002 show

how to use the conditional moments of the realized variance to estimate the parameters through a GMM
procedure. However, as they do not filter the latent state, their methodology becomes rapidly cumbersome
in multivariate. Filtering the latent state could permit extending their work in multivariate settings more
effectively.

4Buccheri and Corsi, 2021 shows that their HARK model estimates parameters better, especially the
one-lag autoregressive which is a problem pointed out in Bollerslev et al., 2016, and leads to smaller MSE
than both the HARQ and HAR models in MC study. They also present other models such as the SHAR and
SHARK.

5Filtering these factors provide a much better understanding of the comovements between assets, with
future potential applications such as options pricing. Indeed, understanding which risk factors contribute to
the current high (low) covariance could also better inform the next courses of action; a practical example is
the impact of stock market volatility in commodities discussed in Christoffersen et al., 2019.
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at lower frequencies, as they do not reach their asymptotic distribution at these frequencies.
This leads to an unbiased filter for the first four moments of the latent state. Monte Carlo
simulations demonstrate our filter’s unbiasedness and precision across various scenarios,
validating it as a robust and accurate methodology.

In summary, we contribute to the existing literature in four ways. First, our analytical
approach allows for rapid execution while handling increasing dimensionality, and despite
being an approximation, the filter remains remarkably precise. Second, it accommodates
nonlinear and non-Gaussian frameworks, which can be further extended to other finan-
cial applications. Third, we address the realized variance measurement error in intraday
frequency, proposing a correction to account for its not-yet-attained asymptotic behavior.
Lastly, our methodology provides not only the first two conditional moments of the latent
variables but also extends to the fourth cumulant, including all co-moments of the latent
variables, providing a comprehensive characterization of the instantaneous variance com-
ponents.

The paper is organized as follows. After the literature review, Section 3.2 presents the
continuous model, its discretization, and the observable variables. Section 3.3 derives the
filter. Section 3.4 presents the Monte Carlo simulation study, and Section 3.5 concludes
the paper.

Literature review

The Kalman Filter (KF), introduced by Kalman, 1960, has been extensively applied in fi-
nance due to its effectiveness in providing optimal linear state estimates. However, financial
models are often non-linear with conditional non-normal innovations posing significant
challenges for the standard KF.

Popular extensions of the KF include the Extended Kalman Filter (EKF) and the Un-
scented Kalman Filter (UKF). The EKF uses a first-order Taylor expansion to linearize the
state and measurement equations.6 While this approach mitigates some non-linearities, it
can introduce approximation errors, although Li and Zhao, 2006 derived a bias correction

6See Cortazar et al., 2017, Li and Zhao, 2006, and Trolle and Schwartz, 2009 for applications in finance.
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term for their quadratic model. The UKF, introduced by Wan and Van Der Merwe, 2000
and Julier et al., 2000, utilizes a deterministic sampling technique to better capture the
mean and covariance estimates of non-linear functions.

Christoffersen et al., 2014 and Javaheri et al., 2003 compare the performance of the
standard KF, its non-linear extensions, and the Particle Filter (PF) on financial problems,
highlighting the limitations of the standard KF in handling non-linearities. Christoffersen
et al., 2014 findings suggest that the UKF outperforms the KF in handling non-linearities
while being less computationally intensive compared to the PF. In this paper, we intro-
duce an analytical filter that can effectively manage non-linearities without the need for
linearization, sigma points, or particles.

Given that our variance process is based on the Heston model, there is a connection to
the vast literature on the term structure of interest rates. For instance, Duan and Simonato,
1999 address the non-linearity in the state equation, which follows a CIR process, by deriv-
ing a quasi-optimal KF that does not require any Taylor expansion while remaining analyt-
ical. This approach is further explored in the works of Jong, 2000, Chen and Scott, 2003,
Duffee and Stanton, 2012, Monfort et al., 20177 among others. However, these methods
assume linear measurement equations, distinguishing them from the approach presented
in this paper where we generalized the non-linearity of both the measurement and state
equation.

Feunou and Okou, 2018 apply a modified KF to the stock market (S&P 500) options.
They construct risk-neutral cumulants using options data which have a linear relationship
in the latent state and the latent state variance also depending on the latent state. This work
is extended by Brignone et al., 2023 and Feunou et al., 2020.

Li and Zhao, 2006 study a multifactor quadratic term structure models. They use EKF
as an estimation methodology and propose a bias correction for the linearisation. Monfort
et al., 2015 presents a Quadratic Kalman Filter (QKF) where the filter covers the case
when the measurement equation is quadratic in the latent state but with a linear state-space
equation. They shows that it results in a better fit than the EKF and UKF. They create
an augmented latent state vector, which includes the squared latent state to linearize the

7Refer to Appendix A.5.1 for a thorough discussion on the subject.
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measurement equation. They also discuss potential curse of dimensionality problems, as
the filtered vector is of size N(N +1). The filter proposes a practical solution to quadratic
measurement error which is applied in Dubecq et al., 2016 and Roussellet, 2023.

The subtlety in our framework is that we do not need all the conditional cumulants of
the state and measurement equations with respect to the model filtration (where the latent
state is observed) to be strictly linear in the latent state. We show how to pass from the
model filtration to the observed filtration using the law of total expectation, variance and
cumulance. As we have a measurement error regarding the realized variance, the errors
conditional variance are quadratic in the latent state, which is in continuity with the model
presented in Monfort et al., 2015. Furthermore, we derived the higher moments of the
latent state.

Even though the KF and its extentions are a popular choice, other methodologies have
been studied, such as in Bates, 2006, 2012, 2019. Approximate Maximum Likelihood
(AML) is introduced for parameter estimation and latent state filtering, achieving through
the recursive update of the characteristic function. However, AML is less ideal for sce-
narios involving multiple data sources due to its reliance on numerical integration, thus
suffering from the curse of dimensionality. Additionally, other filters such as particle fil-
ters, as demonstrated in Bégin et al., 2020, can filter the latent factors even with variance
jumps. However, PF faces challenges related to dimensionality and computational intensity
as the number of latent states increases. The likelihood function is not smooth with respect
to the parameters, making particle filters less suitable in a multivariate context, especially
when accommodating a large number of latent states.

Alizadeh et al., 2002 study the log range as a volatility proxy instead of the log absolute
returns or others proxies, which is closer to a Gaussian distribution. They use the KF to
retrieve information and acknowledge that if the prediction errors are not Gaussian, the
projections of the KF are not the conditional expectation, which is a challenge we had
to deal with in our framework. They estimate parameters through Gaussian maximum
likelihood estimation. However, the further from the Gaussian distribution the errors are,
the methodology is less effective. They also found that the two factor model performs better
than one factor model on empirical study on exchange rates. Calzolari et al., 2021 study
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log RV series in high dimensions, including commonality in their dynamics. They propose
a dynamic factor model (DFM) that does not suffer from the curse of dimensionality and
captures long persistence. However, working with log RV series was not an option in our
framework, as we wanted to leverage the knowledge of the realized covariance to filter
latent states. Since intraday statistics can be negative, this makes the log transformation
unsuitable.

3.2 The Model

We consider the prices of NS assets, influenced by NV common volatility factors following
a Heston, 1993 dynamics,

dSi,t = αi,tSi,tdt (3.1)

+ St

(
NV∑
k=1

ci,k
√

Vk,t

(
ρkdWk,t +

√
1− ρ2kdBk,t

))
, i ∈ {1, 2, . . . NS},

dVk,t = κk (θk − Vk,t) dt+ σk

√
Vk,tdWk,t, k ∈ {1, 2, . . . , NV }, (3.2)

where {Wk,t, Bk,t}NV
k=1 are independent P−Brownian motions. The continuous-time model

filtration (FC
t )t≥0 is generated by

FC
t = σ

(
{Wk,s, Bk,s}NV

k=1

∣∣ s ≤ t
)
.

The ρk parameters control the correlation between the variance and price shocks, introduc-
ing a multivariate analogue to the so-called leverage effect.

To stay in the affine class, we assume that the drift is linear in the state variables. Namely

αi,t = rt − qi,t +

NV∑
k=1

cikλkVk,t, (3.3)

where rt is the risk-free rate, qi,t is the dividend rate, and λk are the prices of risk the
associated with the volatility factors. Consequently, the time-t log-forward price for a
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contract on asset i expiring at time T evolves according to8

d logFi,t =

NV∑
k=1

(
cikλk −

c2ik
2

)
Vk,tdt+ cik

√
Vk,td

(
ρkWk,t +

√
1− ρ2kBk,t

)
. (3.4)

3.2.1 Discretization

The aim is to use intraday data to filter variances at the daily frequency. We consider the
daily forward log-variation. The log-forward price’s daily quadratic covariation is given
by

QCVi,j,t,t+1 = ⟨logFi,·,T , logFj,·,T ⟩(t+1)∆ − ⟨logFi,·,T , logFj,·,T ⟩t∆

=

NV∑
k=1

ci,kcj,kVk,t,t+1, (3.5)

where ∆ = 1
252

, and the daily integrated variances are

Vk,t,t+1 =

∫ (t+1)∆

t∆

Vk,sds, k ∈ {1, 2, ..., NV }.

The product ci,kcj,k parameterize the level and sign of the covariances.
As usual, filtering the latent variables involves state and measurement equations. Whereas

these equations, in their matrix form, are valid for any number of assets and factors, we il-
lustrate them below for the nested case involving two assets (NS = 2) and three variance
factors (NV = 3). We refer to this example as the 2× 3 economy.

The state equation

Each daily integrated variance satisfies

Vk,t,t+1 = θk∆+ (Vk,t∆ − θk)

(
1− e−κk∆

)
κk

+
σk

κk

(Wk,t,t+1 −Zk,t,t+1) , (3.6)

8This standard result is derived in Online Appendix D.1.
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where

Wk,t,t+1 =

∫ (t+1)∆

t∆

√
Vk,sdWk,s, Bk,t,t+1 =

∫ (t+1)∆

t∆

√
Vk,sdBk,s,

Zk,t,t+1 =

∫ (t+1)∆

t∆
e−κk((t+1)∆−s)

√
Vk,sdWk,s.

The matrix form of the stochastic integrals are

W t,t+1 =


W1,t,t+1

W2,t,t+1

W3,t,t+1

 , Z t,t+1 =


Z1,t,t+1

Z2,t,t+1

Z3,t,t+1

 , Bt,t+1 =


B1,t,t+1

B2,t,t+1

B3,t,t+1

 , (3.7)

where W t,t+1, Z t,t+1 and Bt,t+1 are non-linear functions of the state variables Vk,t∆. How-
ever, the conditional moments of the stochastic integrals are linear in the state variables.9

The matrix form of the integrated variance is

V t,t+1 = G + HVt∆ + JW t,t+1 + UZ t,t+1, (3.8)

2×3
=⇒

[
V1,t,t+1

V2,t,t+1

V3,t,t+1

]
=

θ1∆− (1−e−κ1∆)
κ1

θ1

θ2∆− (1−e−κ2∆)
κ2

θ2

θ3∆− (1−e−κ3∆)
κ3

θ3

+

 (1−e−κ1∆)
κ1

0 0

0
(1−e−κ2∆)

κ2
0

0 0
(1−e−κ3∆)

κ3

[V1,t∆

V2,t∆

V3,t∆

]

+

[
σ1
κ1

0 0

0 σ2
κ2

0

0 0 σ3
κ3

][
W1,t,t+1

W2,t,t+1

W3,t,t+1

]
+

[
−σ1

κ1
0 0

0 −σ2
κ2

0

0 0 −σ3
κ3

][
Z1,t,t+1

Z2,t,t+1

Z3,t,t+1

]

Integrating Equation (3.2) over a day and replacing Vk,t,t+1 with Equation (3.6), the
instantaneous variance satisfies

Vk,(t+1)∆ = Vk,t∆ + θkκk∆− κkVk,t,t+1 + σkWk,t,t+1

= Vk,t∆e
−κk∆ +

(
1− e−κk∆

)
θk + σkZk,t,t+1, (3.9)

9See Appendix B.2 and Online Appendix D.6 for details.
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which leads to the state equation

V(t+1)∆ = F + KVt∆ + SZ t,t+1, (3.10)

2×3
=⇒

[
V1,(t+1)∆

V2,(t+1)∆

V3,(t+1)∆

]
=

(1− e−κ1∆)θ1

(1− e−κ2∆)θ2

(1− e−κ3∆)θ3

+

e
−κ1∆ 0 0

0 e−κ2∆ 0

0 0 e−κ3∆


V1,t∆

V2,t∆

V3,t∆



+

σ1 0 0

0 σ2 0

0 0 σ3


Z1,t,t+1

Z2,t,t+1

Z3,t,t+1

 .

Whereas Equation (3.10) is reminiscent of the state transition in a Kalman filter, it differs
along two important dimensions: 1) the error term is a nonlinear function of the latent state
because

√
Vt∆ appears in the stochastic integral Z t,t+1 and 2) the noise component Z t,t+1

is not Gaussian because the weak solution of the SDE in Equation (3.2) implies that Vk,t∆

is distributed according to a non central χ2.

The measurement equation

From Equation (3.4), the first set of observable variables are the daily forward log-variation

Ri,t,t+1 = logFi,(t+1)∆ − logFi,t∆, i ∈ {1, 2}, (3.11)

=

NV∑
k=1

(
cikλk −

c2ik
2

)
Vk,t,t+1 +

NV∑
k=1

cik

(
ρkWk,t,t+1 +

√
1− ρ2kBk,t,t+1

)
.

The realized variances and covariances associated with assets i and j are computed
from N intraday intervals from the forward log prices of maturity T :

RCVi,j,t,t+1 =
N∑

n=1

(
log

Fi,t∆+n∆
N

F
i,t∆+

(n−1)∆
N

)(
log

Fj,t∆+n∆
N

F
j,t∆+

(n−1)∆
N

)
. (3.12)

Equation (3.12) asymptotically converges to the weighted sum of the integrated variances.
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The link between the realized covariance measures and the variance components is

RCVi,j,t,t+1 =

NV∑
k=1

ci,kcj,kVk,t,t+1︸ ︷︷ ︸
QCVi,j,t,t+1

+ξi,j,t,t+1, (3.13)

where the asymptotic theory of Barndorff-Nielsen and Shephard, 2002 and Barndorff-
Nielsen and Shephard, 2004 of the measurement error ξi,j,t,t+1 are detailed in Appendix
B.1.1.

The matrix form of the observable variables is

O(t+1)∆ = A V t,t+1 + C W t,t+1 + D Bt,t+1 + Q ξt,t+1,

2×3
=⇒


R1,t,t+1

R2,t,t+1

RCV1,2,t,t+1

RCV2,2,t,t+1

RCV1,2,t,t+1

 =


c11λ1 − c211

2
c12λ2 − c212

2
c13λ3 − c213

2

c21λ1 − c221
2

c22λ2 − c222
2

c23λ3 − c223
2

c21,1 c21,2 c21,3
c22,1 c22,2 c22,3

c1,1c2,1 c1,2c2,2 c1,3c2,3


[
V1,t,t+1

V2,t,t+1

V3,t,t+1

]

+


c11

√
(1− ρ21) c12

√
(1− ρ22) c13

√
(1− ρ23)

c21

√
(1− ρ21) c22

√
(1− ρ22) c23

√
(1− ρ23)

0 0 0

0 0 0

0 0 0


[
B1,t,t+1

B2,t,t+1

B3,t,t+1

]

+


c11ρ1 c12ρ2 c13ρ3

c21ρ1 c22ρ2 c23ρ3

0 0 0

0 0 0

0 0 0


[
W1,t,t+1

W2,t,t+1

W3,t,t+1

]
+


0 0 0

0 0 0

1 0 0

0 1 0

0 0 1


[
ξ1,1,t,t+1

ξ2,2,t,t+1

ξ1,2,t,t+1

]
.

Replacing the integrated variance with Equation (3.8),

O(t+1)∆ = AG + AH Vt∆ + AU Z t,t+1 (3.14)

+ (AJ + C) W t,t+1 + D Bt,t+1 + Q ξt,t+1.

The state Equation (3.10) establishes a connection between the updated latent stateV(t+1)∆

and the model constituents Vt∆ and Z t,t+1. The measurement Equation (3.14) links the
observable variables O(t+1)∆ and the model components Vt∆, W t,t+1, Z t,t+1, and Bt,t+1
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along with the error measurement ξt,t+1. Neither the measurement errors and their condi-
tional moments are linear in the latent state and from a Gaussian distribution, posing an
additional challenge to our filter.

3.3 The Filter

3.3.1 An overview

Although our filter is an analytical approximation, it is extremely precise and does not
require numerical integrals, particles, sigma points, or linearization. It can handle high
dimensionality in both latent and observable variables without facing the curse of dimen-
sionality. Furthermore, we propose updates for the first four conditional moments of the
latent state, which offers a proper characterization of the variance components.

The stochastic integrals and measurement error induce a non-linear relationship with
the latent state for both the measurement and state equations. Therefore, we build upon
the work of Duan and Simonato, 1999 among others to extend their modified filter to a
more general class of models and present an analytical approximation to the multivariate
stochastic volatility filtering problem.

The discrete model filtration {Ft∆}Tt=0 associated to Equations (3.10) and (3.14) is
generated by the stochastic integrals:

Ft∆ = σ{Ws−1,s,Zs−1,s,Bs−1,s, ξs−1,s}ts=1. (3.15)

The econometrician filtration {Gt∆}Tt=0 is defined by the observable variables where
Gt∆ = σ{Os}ts=1. Because the instantaneous variances are unobservable variables, the
econometrician filtration G is coarser than the discrete model filtration F .

We do not require that the conditional moments of O(t+1)∆ and V(t+1)∆ with respect to
the model filtrationFt∆, O(t+1)∆|Ft∆ and V(t+1)∆|Ft∆, to have a strictly linear relationship
with Vt∆ (see Subsection 3.3.2).10

10More precisely, the conditional expectation should be linear in the latent state, the conditional variance
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This is a generalization of the current literature as we include non-linearity in the mea-
surement equation11 with the stochastic integrals and the measurement error. We do not
need to augment the latent state as in Monfort et al., 2015 to deal with the quadratic rela-
tionship, which is a potential issue as their augmented latent state dimensionality can grow
rapidly.

Furthermore, we formalize the use of the law of total cumulance to transition from
the model filtration Ft∆ to the observed filtration Gt∆ (see Subsection 3.3.3), allowing us
to accurately express the conditional moments of the measurement O(t+1)∆|Gt∆ and state
equations V(t+1)∆|Gt∆ in terms of the observed conditional moments of the latent state
Vt∆|Gt∆.

With this in hand, we built (see Subsection 3.3.4) our update equations V(t+1)∆|G(t+1)∆

upon the fundamentals of the Kalman Filter, enabling us to reach a precise analytical ap-
proximation despite the nonlinearities and non-Gaussian framework while providing up to
the first four conditional cumulants of the updated latent state V(t+1)∆.

3.3.2 Conditional moments of V(t+1)∆ and O(t+1)∆ with respect to Ft∆

As mentioned in Appendix B.2, W t,t+1, Z t,t+1 and Bt,t+1 are centered at zero and have a
conditional covariance matrix that is a linear function of the instantaneous variances. That
is

Cov


Wt,t+1

Bt,t+1

Zt,t+1


∣∣∣∣∣∣∣Ft∆

 (3.16)

=

PWW
0 + PWW

1 ⊙ (Vt∆11×3) 0 PWZ
0 + PWZ

1 ⊙ (Vt∆11×3)

0 PBB
0 + PBB

1 ⊙ (Vt∆11×3) 0

PWZ
0 + PWZ

1 ⊙ (Vt∆11×3) 0 PZZ
0 + PZZ

1 ⊙ (Vt∆11×3) ,

 ,

where ⊙ is an element-wise matrix multiplication and 11×3 =
[
1 1 1

]
. Since the

Browmian motions are independent under the model filtration, each matrices P0 and P1

should be at most quadratic in the latent state and the conditional third central moment cubic in the latent
state.

11The CIR process as the latent state is covered in the term structure literature.
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in Equation (3.16) are diagonal as derived in Equation (B.10).

As detailed in Appendix B.1, the measurement errors on the realized variances and
covariances are assumed to be uncorrelated with the model components Z t,t+1, W t,t+1,
and Bt,t+1. Furthermore, since E [ξt,t+1| Ft∆] is zero, the second moment Var [ξt,t+1| Ft∆]

is

Cov
[
ξi,j,t,t+1, ξĩ,j̃,t,t+1

∣∣Ft∆

]
(3.17)

= η

NV∑
k=1

NV∑
k̃=1

Ci,i,̃i,j̃

k,k̃

(
Ak,k̃ + Bk,k̃Vk,t∆Vk̃,t∆ +Dk,k̃Vk,t∆ + Ek,k̃Vk̃,t∆

)
,

where the details about the notation are provided in are in Equation (B.6).

Having established the fundamental building blocks, we can now utilize our state and
measurement equations to derive the two conditional moments for V(t+1)∆ and O(t+1)∆

with respect to the model filtration. Based on Equation (3.14), the conditional expectation
is

E[O(t+1)∆|Ft∆] = AG + AH Vt∆, (3.18)

and, using Equations (3.14) and (3.16), the conditional variance is

Var[O(t+1)∆|Ft∆] = AU Var[Z t,t+1|Ft∆] (AU)⊤ + DVar[Bt,t+1|Ft∆]D⊤ (3.19)

+ (AJ + C) Var[W t,t+1|Ft∆] (AJ + C)⊤

+ (AJ + C) Cov[W t,t+1,Z t,t+1|Ft∆] (AU)⊤

+ AUCov[Z t,t+1,W t,t+1|Ft∆] (AJ + C)⊤ + QVar [ξt,t+1| Ft∆]Q⊤.

Based on Equation (3.16),

Var[W t,t+1|Ft∆] = PWW
0 + PWW

1 ⊙ (Vt∆11×3) ,

Var[Z t,t+1|Ft∆] = PZZ
0 + PZZ

1 ⊙ (Vt∆11×3) ,

Var[Bt,t+1|Ft∆] = PBB
0 + PBB

1 ⊙ (Vt∆11×3) ,
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Cov[W t,t+1,Z t,t+1|Ft∆] = PWZ
0 + PWZ

1 ⊙ (Vt∆11×3) .

From Equation (3.10), the conditional moments of the latent variables are

E
[
V(t+1)∆

∣∣Ft∆

]
= F + KVt∆, (3.20)

Var
[
V(t+1)∆

∣∣Ft∆

]
= SVar[Z t,t+1|Ft∆]S⊤ = S

(
PZZ
0 + PZZ

1 ⊙ (Vt∆11×3)
)

S⊤. (3.21)

Using Equations (3.14) and (3.10), the conditional covariance matrix between the observ-
able variables and the latent variables is

Cov[V(t+1)∆,O(t+1)∆|Ft∆] (3.22)

= SVar[Z t,t+1|Ft∆] (AU)⊤ + SCov[Z t,t+1,W t,t+1|Ft∆] (AJ + C)⊤ .

3.3.3 Conditional moments of V(t+1)∆ and O(t+1)∆ with respect to Gt∆

With the help of the law of total expectation, law of total variance,12 and Equations (3.18)
and (3.19), the first two conditional moments of the observables variables are

E[O(t+1)∆|Gt∆] = E[E[O(t+1)∆|Ft∆]|Gt∆],

Var[O(t+1)∆|Gt∆] = Var[E[O(t+1)∆|Ft∆]|Gt∆]︸ ︷︷ ︸
= (AH)Var[Vt∆|Gt∆] (AH)⊤

+E[Var[O(t+1)∆|Ft∆]|Gt∆]︸ ︷︷ ︸
Expected value of Equation (3.19)

.

The second term measures the variability of W t,t+1, Z t,t+1, Bt,t+1 and ξt,t+1. From Equa-
tions (3.20) and (3.21), the conditional moments of the latent variables under the observed
filtration are

E
[
V(t+1)∆

∣∣Gt∆

]
= E[E[V(t+1)∆|Ft∆]|Gt∆],

12The law of total cumulance is a generalization of the law of total expectation and the law of total vari-
ance. It can be used to derive higher-order cumulants with respect to the observed filtration based on the
cumulants with respect to the model filtration. For technical details, see https://en.wikipedia.org/wiki/Law_
of_total_cumulance or Brillinger, 1969.
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Var
[
V(t+1)∆

∣∣Gt∆

]
= Var[E[V(t+1)∆|Ft∆]|Gt∆]︸ ︷︷ ︸

= KVar[Vt∆|Gt∆]K⊤

+E[Var[V(t+1)∆|Ft∆]|Gt∆]︸ ︷︷ ︸
Expected value of Equation (3.21)

.

The second term measures the variability of Z t,t+1. Combining the law of total covariance
and Equations (3.18), (3.20) and (3.22), the covariance matrix between the observable and
the latent variables is

Cov[V(t+1)∆,O(t+1)∆|Gt∆] =

Cov[E[V(t+1)∆|Ft∆],E[O(t+1)∆|Ft∆]|Gt∆]︸ ︷︷ ︸
= KVar[Vt∆|Gt∆] (AH)⊤

+E[Cov[V(t+1)∆,O(t+1)∆|Ft∆]|Gt∆]︸ ︷︷ ︸
Expected value of Equation (3.22)

.

The second term measures the variability of W t,t+1 and Z t,t+1.

3.3.4 Updating the latent variable V(t+1)∆ with respect to G(t+1)∆

To finalize the construction of the filter, we need an updated projection of the latent vari-
ables given the availability of the new set of observations O(t+1)∆. This involves adjusting
the first two moments of V(t+1)∆ to accommodate the newly acquired information.

This process entails computingE
[
V(t+1)∆

∣∣G(t+1)∆

]
andVar

[
V(t+1)∆

∣∣G(t+1)∆

]
, build-

ing upon the preceding expectation and variance represented by E
[
V(t+1)∆

∣∣Gt∆

]
and

Var
[
V(t+1)∆

∣∣Gt∆

]
respectively.

The a posteriori approximation of the latent variables is obtained from its a priori pre-
diction to which a correction term that account for the difference between the actual reali-
sation of the observable vectors and its a priori prediction is added:

E[V(t+1)∆|G(t+1)∆]︸ ︷︷ ︸
a posteriori estimation
of the latent variables

≃ E[V(t+1)∆|Gt∆]︸ ︷︷ ︸
a priori prediction

of the latent variables

+Σt∆

(
O(t+1)∆ − E[O(t+1)∆|Gt∆]

)︸ ︷︷ ︸
ϵO
t+1|t

, (3.23)

where E[V(t+1)∆|G(t+1)∆] is our point estimate of our latent variables.13

13In cases where E[V(t+1)∆|G(t+1)∆] has negative values, we distinguish here between the starting point
in the filter update process and the variances used for application purposes. Therefore, we do as in Feunou
et al., 2020 (p.493) and take the maximum between the right hand side of (3.23) and zero for application
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As our measurement and state equation are neither conditional Gaussian nor linear, we
are unable to analytically calculate the true conditional moment with respect to Gt∆ as in
the Kalman Filter. Indeed, as explained in Duan and Simonato, 1999, since the noise terms
are not Gaussian, the latent variable update may differ from the true conditional mean and
variance.14 We do not provide a theoretical background to quantify the discrepancy from
each side of Equation (3.23). However, we show empirically in Section 3.4 that the filter
is unbiased and precice.

The matrix Σt∆ of Equation (3.23) is constructed by minimizing the conditional vari-
ance of the latent variable estimator with respect to Gt∆. Because

V(t+1)∆ − E[V(t+1)∆|G(t+1)∆]︸ ︷︷ ︸
filtering error: ϵV

t+1|t+1

≃ V(t+1)∆ − E[V(t+1)∆|Gt∆]︸ ︷︷ ︸
ϵV
t+1|t

−Σt∆ϵ
O
t+1|t, (3.24)

the variance matrix of the estimator with respect to the information set Gt∆ is

E
[(

V(t+1)∆ − E[V(t+1)∆|G(t+1)∆]
) (

V(t+1)∆ − E[V(t+1)∆|G(t+1)∆]
)⊤∣∣∣Gt∆

]
≃ E

[(
ϵV
t+1|t −Σt∆ϵ

O
t+1|t

) (
ϵV
t+1|t −Σt∆ϵ

O
t+1|t

)⊤∣∣∣Gt∆

]
= E

[(
ϵV
t+1|t

) (
ϵV
t+1|t

)⊤∣∣∣Gt∆

]
− E

[(
ϵV
t+1|t

) (
Σt∆ϵ

O
t+1|t

)⊤∣∣∣Gt∆

]
− E

[(
Σt∆ϵ

O
t+1|t

) (
ϵV
t+1|t

)⊤∣∣∣Gt∆

]
+ E

[(
Σt∆ϵ

O
t+1|t

) (
Σt∆ϵ

O
t+1|t

)⊤∣∣∣Gt∆

]
= Var

[
V(t+1)∆

∣∣Gt∆

]
+Σt∆Var

[
O(t+1)∆

∣∣Gt∆

]
Σ⊤

t∆

− Cov
[
V(t+1)∆,O(t+1)∆

∣∣Gt∆

]
Σ⊤

t∆ −Σt∆Cov
[
O(t+1)∆,V(t+1)∆

∣∣Gt∆

]
. (3.25)

The posteriori covariance matrix of the right-hand side of Equation (3.25) is minimized

purposes. However, we let the negative value in the filter as the next starting point as it is observed with
uncertainty.

14It is also discussed in Monfort et al., 2017 in section A.5.1, Fasano et al., 2013, Alizadeh et al., 2002
Feunou et al., 2020 in footnote 6. The resulting Kalman Filter is referred in Duan and Simonato, 1999 as the
Quasi-optimal Kalman Filter. A detailed discussion on the impact of the Gaussian and linear assumptions is
provided in Online Appendix D.4.
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(see the Appendix B.3 for details) at

Σt∆ = Cov
[
V(t+1)∆,O(t+1)∆|Gt∆

] (
Var

[
O(t+1)∆|Gt∆

])−1
. (3.26)

Replacing (3.26) in Equation (3.25) leads15 to

E
[(

V(t+1)∆ − E
[
V(t+1)∆

∣∣G(t+1)∆

]) (
V(t+1)∆ − E

[
V(t+1)∆

∣∣G(t+1)∆

])⊤∣∣∣Gt∆

]
≃ Var

[
V(t+1)∆

∣∣Gt∆

]
−Σt∆Cov

[
O(t+1)∆,V(t+1)∆

∣∣Gt∆

]
. (3.27)

While we have minimized the squared error of our estimator akin to the standard Kalman
Filter, we do not have the advantageous properties of a Gaussian linear framework,16 where
Equation (3.27) and Var

[
V(t+1)∆

∣∣G(t+1)∆

]
would be equivalent.17

Furthermore, we also derive the third and fourth cumulants of our latent variables up-
date, where calculations are provided in Appendix B.4. We propose the following updated
values

Cum(3)
[
ϵV
i,t+1|t+1, ϵ

V
j,t+1|t+1, ϵ

V
l,t+1|t+1

∣∣G(t+1)∆

]
(3.28)

≃ E
[
Cum3

[
ϵV
i,t+1|t+1, ϵ

V
j,t+1|t+1, ϵ

V
l,t+1|t+1

∣∣G(t+1)∆

]∣∣Gt∆

]
,

Cum(4)
[
ϵV
i,t+1|t+1, ϵ

V
j,t+1|t+1, ϵ

V
l,t+1|t+1, ϵ

V
m,t+1|t+1

∣∣G(t+1)∆

]
(3.29)

≃ E
[
Cum(4)

[
ϵV
i,t+1|t+1, ϵ

V
j,t+1|t+1, ϵ

V
l,t+1|t+1, ϵ

V
m,t+1|t+1

∣∣G(t+1)∆

]∣∣∣Gt∆

]
.

This permits us to better track the higher moments of all the model components, as under
a Gaussian framework, all these components would be zero.

15We update the Cholesky decomposition of Equation (3.23) to ensure the variance matrix stays semi-
definite-positive using the function cholupdate of Matlab. See Christoffersen et al., 2014 section 3.2 for
details.

16For a comprehensive discussion on this matter, refer to Online Appendix D.4.
17To diminish the distance between the true conditional moments on the left hand side of Equation (3.23)

and the filtered moments on the right hand side of (3.23), we introduce later an additional update step in
Online Appendix D.8.
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3.4 Simulation Study

We conduct a simulation study to assess the performance of the filter. The simulation
procedure is detailed in Section 3.4.1. We simulate T = 4000 days with the realized
measures computed at a frequency18 of 5 minutes (78 intraday steps). We explain how we
compute our filtering error in Section 3.4.2 and finally present our results in Section 3.4.3.

3.4.1 Simulation procedure

This section presents a comprehensive framework for simulating the general model de-
scribed in Section 3.2. The simulation process involves three different time frequencies
and we simulate independent trajectories ℓ ∈ {1, ..., L = 1000}.

The instantaneous variance and return processes are simulated withM = 3900 intraday
time steps, from which we calculate the integrated variances. We then aggregate the high-
frequency returns at an intraday frequency N ∈ {78, 390}, which effectively represents the
intraday returns at a five and one minutes frequencies respectively. Finally, these intraday
returns are utilized to compute daily returns, realized variance and covariances which are
our observable variables. We also aggregate the integrated variance at a daily frequency,
which permits us to isolate the error measurement made on the realized variances and
covariances.

3.4.1.1 High-frequency

The instantaneous variance V (ℓ,M)
k,t is simulated at a high frequency using the Euler approx-

imation with M = 3900 intraday steps with

V
(ℓ,M)

k,t∆+m∆
M

∼= V
(ℓ,M)

k,t∆+
(m−1)∆

M

+ κk

(
θk − V

(ℓ,M)

t∆+
(m−1)∆

M

)
∆

M
(3.30)

+ σk

√
V

(ℓ,M)

k,t∆+
(m−1)∆

M

∆

M
w

(ℓ,M)

k,t∆+m∆
M

.

18Results at a minute frequency (390 intraday steps) are presented in Online Appendix D.10.

66



Chapter 3. Variance filtering in multidimensional affine models

{w(ℓ,M)

k,t∆+m∆
M

}Mm=1 is a sequence of independent standard normal random variables.19 The
integrated variance is approximated by the trapezoidal rule with

V(ℓ,M)

k,t∆+
(m−1)∆

M
,t∆+m∆

M

≈ ∆

M

1

2

(
V

(ℓ,M)

k,t∆+
(m−1)∆

M

+ V
(ℓ,M)

k,t∆+m∆
M

)
.

The log returns on forward prices are approximated with

log
F

(ℓ)

i,t∆+m∆
M

,T

F
(ℓ)

i,t∆+
(m−1)∆

M
,T

∼=
NV∑
k=1

(ci,kλk −
c2i,k
2
)V(ℓ,M)

k,t∆+
(m−1)∆

M
,t∆+m∆

M

(3.31)

+

NV∑
k=1

ci,kρk

√
V

(ℓ,M)

k,t∆+
(m−1)∆

M

∆

M
w

(ℓ,M)

k,t∆+m∆
M

+ ci,k
√

1− ρk

√
V

(ℓ,M)

k,t∆+
(m−1)∆

M

∆

M
b
(ℓ,M)

k,t∆+m∆
M

,

with b
(ℓ,M)

k,t∆+m∆
M

as a standard normal random variables and independent from w
(ℓ,M)

k,t∆+m∆
M

.

3.4.1.2 Intraday frequency

Mimicking what is done in practice, we aggregate the log prices based on a five-minute or
a one-minute frequency, which is represented by N intraday steps return,

R
i,t+

(n−1)
N

,t+ n
N

= log
F

(ℓ)

i,t∆+n∆
N

F
(ℓ)

i,t∆+
(n−1)∆

N

=

M/N∑
s=1

log
F

(ℓ)

i,t∆+
(n−1)∆

N
+ s∆

M

F
(ℓ)

i,t∆+
(n−1)∆

N
+

(s−1)∆
M

, n ∈ {1, ..., N}.

3.4.1.3 Daily frequency

Our first daily observable is the return, which is calculated as

R
(ℓ)
i,t,t+1 =

N∑
n=1

log
F

(ℓ)

i,t∆+n∆
N

F
(ℓ)

i,t∆+
(n−1)∆

N

.

19To ensure the non negativity of V (ℓ,M)

k,t∆+m∆
M

, if it is below 0, we replace the value with 0.
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The realized variances and covariances are

RCV
(ℓ,N)
i,j,t,t+1 =

N∑
n=1

R
(ℓ)

i,t+
(n−1)

N
,t+ n

N

R
(ℓ)

j,t+
(n−1)

N
,t+ n

N

,

The daily quadratic covariation is

QCV
(ℓ,M)
i,j,t,t+1 =

M∑
m=1

ci,kcj,kV(ℓ,M)

k,t∆+
(m−1)∆

M
,t∆+m∆

M

.

The error measurement is a consequence of Equation (3.13)

ξ
(ℓ,N,M)
i,j,t,t+1 = RCV

(ℓ,N)
i,j,t,t+1 −QCV

(ℓ,M)
i,j,t,t+1. (3.32)

The superscripts N , M and ℓ are dropped down for readability.

3.4.2 Filtering error

Table 3.1 presents the cases we are studying, which use different combinations of three vari-
ances. The parameters are inspired by Christoffersen et al., 2009, specifically from Table 3
(Panel A for V1,t∆ and Panel B for V2,t∆ and V3,t∆). Specifically, V1,t∆ has a moderate speed
of mean-reversion (κ1 = 2.00), moderate vol-of-vol (σ1 = 0.15), and a strong negative
leverage effect (ρ1 = −0.85); V2,t∆ exhibits a high speed of mean-reversion (κ2 = 4.00),
high vol-of-vol (σ2 = 0.30), and an even stronger negative leverage effect (ρ2 = −0.95);
while V3,t∆ shows a low speed of mean-reversion (κ3 = 0.20), low vol-of-vol (σ3 = 0.12),
and a moderate negative leverage effect (ρ3 = −0.50). We first study all three variances
individually and then test different combinations. The risk premium parameters are set so
the approximate annual return is 6%, that is e

∑
k ci,kθkλk − 1 ≈ 6%.

The filter outputs for each time step (t) and each trajectory (ℓ) are the first four condi-
tional cumulants in the multidimensional space of the latent state V(ℓ)

t∆, that is

E
[

V(ℓ)
t∆

∣∣∣Gt∆

]
, Var

[
V(ℓ)

t∆

∣∣∣Gt∆

]
, Cum(3)

[
V(ℓ)

t∆

∣∣∣Gt∆

]
and Cum(4)

[
V(ℓ)

t∆

∣∣∣Gt∆

]
.
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Therefore, we have T × L × NV × 4 conditional moments where L = 1000 denotes the
number of trajectories, and T = 4000 the number of days in the simulated time series.

For k ∈ {1, ..., NV }, the filtering error is

ε
(ℓ,1)
k,t = V

(ℓ)
k,t∆︸︷︷︸

simulated

−E
[
V

(ℓ)
k,t∆

∣∣∣Gt∆

]
︸ ︷︷ ︸

filter output

= ϵV
k,t|t. (3.33)

Because the filter output is not only a point estimate, but a characterisation of the posterior
distribution, we can assess the filtering error on higher order20 centered moments:

ε
(ℓ,n)
k,t =

(
ε
(ℓ,1)
k,t

)n
− E

[(
ε
(ℓ,1)
k,t

)n∣∣∣Gt∆

]
︸ ︷︷ ︸

filter output

, for n ∈ {2, 3, 4}. (3.34)

We do not present the co-moments between variance factors. However, the model provides
all co-moments up to the fourth cumulant, which is a strong tool for future applications of
the filter. Indeed, we not only compute the uncertainty on the variance components but
also how these behave together in higher dimensions.

Given the complexity involving time, variance, moment, and simulation axes, we model
the filtering error using panel analysis. Specifically, the filtering error can be represented
as follows:

ε
(ℓ,n)
k,t = b

(ℓ,n)
k,t ε

(ℓ,n)
k,t−1 + ϑ

(n)
k + z

(ℓ,n)
k,t . (3.35)

Here, z(ℓ,n)k,t represents the noises allowing for a random effect, heteroscedasticity and au-
tocorrelation.21 The ϑ(n)

k , k ∈ {1, ..., NV }, n ∈ {1, 2, 3, 4} are the intercepts of the model.
The term b

(ℓ,n)
k,t quantifies the dependence of the current filtering error on past steps, repre-

senting an autoregressive component.22 Fortunately, as detailed in Appendix B.6, b(ℓ,n)k,t is

20Additional details on the filtering error derivation are provided in the Online Appendix D.12.
21The filtering error can also depend on errors from other variances (in a multivariate case) and lower

moment when n ≥ 2. Therefore, in our panel analysis, we account for residual autocorrelation and set the
lag to ⌊4( T

100 )
2/9⌋ = 9.

22Empirical evidence of the importance of b(ℓ,n)k,t is showed in Figure D.1 where the filtering error exhibits
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a known quantity, which is

b
(ℓ,n)
k,t =

(
e−κk∆ − [Σt∆AH]k,k

)n
, (3.36)

where e−κk∆ is constant over time, while [Σt∆AH]k,k varies with time. Not only is the
autoregressive parameter b(ℓ,n)k,t known, but it is also time-varying. Indeed, having a closed-
form expression for the autoregressive parameter is an advantage, as we can quantify how
much our filtered moments are affected by the last step’s error.

In each panel of the Tables 3.2, 3.3 and 3.4, we present summary statistics such as the
time and cross-section averages

¯̄b(k,n) =
1

S

1

T

S∑
ℓ=1

T∑
t=1

b
(k,n)
t,ℓ , ¯̄ε(k,n) =

1

S

1

T

S∑
ℓ=1

T∑
t=1

ε
(k,n)
t,ℓ .

The cross-sectional averages of the filtering error quantify the overall filtering error without
considering the autoregressive component where the significance of this term is highlighted
by the column ¯̄b(k,n). We normalize ¯̄ε(k,n) by θnk to present results as percentages of the
long-term variances. Additionally, we scale this column by multiplying by 10,000, thereby
displaying results in basis points (bp).

We aim to show that our filter is precise and unbiased up to the first four conditional
moments of the latent variable. Therefore, our objective is to estimate ϑ(n)

k , the intercept of
Model (3.36), and test whether it is statistically different from zero as it indicates whether
the filtered moments are biased or not. Appendix B.7 details how we compute our statistical
test where

H0 : ϑ
(n)
k = 0; H1 : ϑ

(n)
k ̸= 0. (3.37)

high sample autocorrelation.
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We estimate with panel analysis the vector ϑ̂ of intercepts of Model (3.36) as

ϑ̂
(n)
k =

1

TL

T∑
t=2

L∑
ℓ=1

(
ε
(ℓ,n)
k,t − b

(ℓ,n)
k,t ε

(ℓ,n)
k,t−1

)
,

along with its covariance matrix Ω̂ (see Appendix B.7 for details). The individual test for
variance (k) and moment (n) is

ϑ̂
(n)
k√
Ω̂

(n,n)
k,k

∼ N (0, 1) . (3.38)

The joint test is: H0 : ϑ
(n)
k = 0, n ∈ {1, 2, 3, 4}, k ∈ {1, ..., NV } where

ϑ̂⊤Ω̂−1ϑ̂ ∼ X4NV
.

Therefore, Tables 3.2, 3.3, and 3.4 present the statistics on ϑ
(n)
k , including its value

(column ϑ
(n)
k ), the t-test of (3.38) (column t-stat), and the p-value (column p-value). We

normalize ϑ
(n)
k by θnk and scale it to present results in basis points (bp). The joint test is

presented at the end of each panels.

3.4.3 The experiment

Tables 3.2, 3.3 and 3.4 present the filter’s performance for three simulated cases: 1) 1 asset
with one variance factor, 2) two assets and two variance factors and 3) two assets and three
variance factors. The main contribution of the paper resides in the case where the number
of latent variables is higher than the number of assets, represented by the last case.

In Equation (3.32), the measurement error is defined as the difference between the
realized variance and the quadratic variance. We show empirically in the Appendix B.5 that
the measurement error does not possess the sample moments of a Gaussian random variable
(Assumption 3.4.1) when the number of intraday time steps N is not large enough.23

23We obtain the same conclusions with one-minute frequency N = 390.
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Assumption 3.4.1. If the number N of intraday steps is large enough, then the error mea-
surement is normally distributed with

ξt,t+1|Ft∆ ∼ N (0,Cov [ξt,t+1| Ft∆]) ,

where Cov [ξt,t+1| Ft∆] is defined in Equation (B.4) and ξt,t+1 is independent from the
stochastic integrals W t,t+1,Bt,t+1 and Z t,t+1.

The leftmost columns of each table assume that computing RV at the 5-minute fre-
quency (N = 82) results in the measurement error

ξ
(N)
i,j,t,t+1 = RCV

(N)
i,j,t,t+1 −QCVi,j,t,t+1

reaching its asymptotic behaviour, as described in Assumption 3.4.1. However, we demon-
strate empirically that this assumption does not hold. We present these results for compar-
ison with our corrected approach, detailed in Assumption 3.4.2 and shown in the rightmost
columns.24

On the other hand, the rightmost columns do not assume that ξ(N)
i,j,t,t+1 reached it asymp-

totic Gaussian distribution.
We adjust the measurement error’s third cumulants25 by applying a Assumption detailed

in Appendix B.5. This Assumption, at an intraday frequency step n, applies the Euler
approximation to the stochastic integrals Zk,t+n−1

N
,t+ n

N
, Wk,t+n−1

N
,t+ n

N
and Bk,t+n−1

N
,t+ n

N
,

that is

Assumption 3.4.2. With N , the number of intraday steps used to compute the realized
variance and covariance, we assume that

Bk,t+n−1
N

,t+ n
N
=

∫ (t+ n
N
)∆

(t+n−1
N

)∆

√
Vk,sdBk,s ≃

√
V
k,t∆+

(n−1)∆
N

∆

N
bk,t∆+n∆

N
,

24Online Appendix D.10.3 presents results where we simulate the realized variance as the QCV plus an
independently simulated error that follows the asymptotic theory.

25We do not correct for the fourth cumulant.
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Wk,t+n−1
N

,t+ n
N
=

∫ (t+ n
N
)∆

(t+n−1
N

)∆

√
Vk,sdWk,s ≃

√
V
k,t∆+

(n−1)∆
N

∆

N
wk,t∆+n∆

N
,

Zk,t+n−1
N

,t+ n
N
=

∫ (t+ n
N
)∆

(t+n−1
N

)∆

e−κk((t+ n
N
)∆−s)√Vk,sdWk,s

≃ e−κk∆(1−n−1
N

)︸ ︷︷ ︸
≈1−κk∆(1−n−1

N
)

√
V
k,t∆+

(n−1)∆
N

∆

N
wk,t∆+n∆

N
,

with wk,t∆+n∆
N

and bk,t∆+n∆
N

iid standard normal random variables.

As N tends to infinity, Assumption 3.4.2 aligns with asymptotic theory.26 However, at
intraday frequencies, we use Assumption 3.4.2 to compute the distributional properties of
measurement errors.

Consequently, as detailed in Appendix B.5, the third cumulants related to the measure-
ment errors are not null and are a function of

E

[∫ (t+1)∆

t∆

Vk,sVk̃,sds

∣∣∣∣∣Ft∆

]
and E

[∫ (t+1)∆

t∆

Vk,sVk̃,sVk̂,sds

∣∣∣∣∣Ft∆

]
,

implying respectively a quadratic (Vk,t∆Vk̃,t∆) and cubic (Vk,t∆Vk̃,t∆Vk̂,t∆) relationship
with the latent state with respect to the model filtration.

The main conclusion of our simulation study is that the filter is unbiased (we do not
reject H0) when the approximation (Assumption 3.4.2) is applied to the realized variance
measurement error. We are able to filter the first four conditional moments of the latent state
with precision, even though our framework is non-linear and does not follow the Gaussian
distribution.

One asset and one variance

Table 3.2 examines cases with one asset and one variance (two observable variables) indi-
vidually for the three variances from Table 3.1.

26Corollary D.7.8 shows that Equation (B.7) still holds under Assumption 3.4.2
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For Panels A and C, the null hypothesis is not rejected in any instance, whether in
individual tests or in the joint test, which follows a chi-square distribution with 4 degrees
of freedom (corresponding to 4 moments). In the leftmost columns of Panel B, there is bias
in the individual test for the third moment of the latent variable. Here, the t-stat is -2.08
with a p-value below 5%, and the joint test value is 9.48 with a p-value of 5.02%, very
close to rejecting the null hypothesis, concluding in a bias in the third central conditional
moment of the latent state when we assume a Gaussian distribution for the measurement
error.

Correcting for the Gaussian Assumption improves the global test on the rightmost
columns significantly, with the joint test statistic dropping from 9.48 to 1.70, and the p-
value increasing from 5.02% to 79.04%.

Therefore, accounting for the approximate distribution of the measurement error per-
mits to solve the issue on the leftmost columns of the table and obtain unbiased filtered
moment in the case one asset and one variance up to the fourth conditional moment.

Two assets and two variances

In Table 3.3, the case with two assets and two variances is considered. Panel A covers the
scenario without any common variance factor, while Panel B includes a common variance
factor. In Table 3.3, each panel has five observable for two latent variables, increasing the
filter’s precision. Panels A and B encounter a similar issue as Panel B of Table 3.2. For
both panels, the second variance’s third moment have a p-value below 5% in the leftmost
columns and global tests a p-value below 20%.

Again, correcting for the Gaussian assumption significantly increases the p-values and
does not reject the null hypothesis for any moments, which indicates a substantial im-
provement in filter precision. These findings align with those from Table 3.2, particularly
concerning Panel B.

Two assets and three variances

Table 3.4 presents the most interesting scenario as it has more latent variables (3) than assets
(2) with five observable variables: two returns, two realized variances, and one realized
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covariance. This table tests the filter’s strength and capacity to estimate latent variables
accurately as the number of latent variables increases. The filter succeed to disentangle the
latent variance components with the help of three realized measures.

In this table, the leftmost columns show issues with the third moment, with a p-value
below 1%. For the rest, the t-statistics are below the rejection zone, but for the fourth
centered moment second variance (2,4), the t-statistic is 8.63%. The global test is 30.58,
rejected with a p-value of 0.23%. This indicates that as the model becomes more complex,
the lack of correction for intraday frequencies affects the overall filter precision.

Applying the correction improves the global test from 30.58 to 9.76 with the p-value
rising to 63.71%, along with the non-rejection of the null hypothesis for all individual tests.
However, the individual test for the fourth moment remains at 5.66% due to the uncorrected
fourth moment measurement error.

In Table 3.4, there is an increase in bias as the filtering error mean is higher than in pre-
vious tables. This increase is expected as adding more latent variables without increasing
the number of observable variables reduces estimation precision. Despite this, the filter
remains highly effective, performing well up to the fourth moment.

In summary,27 the methodology provides a comprehensive and unbiased characteriza-
tion of latent variables up to the fourth moment for multivariate stochastic variance model.
We also present a correction for the third central moment of the measurement error to ad-
dress the bias introduced by the Gaussian Assumption in higher moments. This correction
is proven to be effective in our simulation study.

27Online Appendix D.10 provides results on the most complex case for higher intraday steps, N = 390,
with similar conclusions and a reduction in bias due to increased precision. In Online Appendix D.11, a
comparison of sample moments of the filter with simulated moments shows highly similar characteristics,
affirming the filter’s accuracy.
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V1,t∆ V2,t∆ V3,t∆

Variance process parameters
κk 2.00 4.00 0.20
θk 0.05 0.03 0.02
σk 0.15 0.30 0.12
ρk -0.85 -0.95 -0.50

1 Asset & 1 Variance - vol 1
ci,k 1.00 0.00 0.00
λk 1.15
1 Asset & 1 Variance - vol 2
ci,k 0.00 1.00 0.00
λk 1.95
1 Asset & 1 Variance - vol 3
ci,k 0.00 0.00 1.00
λk 2.90

2 Assets & 2 Variances - no covariation
ci,k 1.00 0.00 0.00
cj,k 0.00 1.00 0.00
λk 1.15 1.95
2 Assets & 2 Variances - with covariation
ci,k 1.00 0.00 0.00
cj,k 3/5 2/3 0.00
λk 1.15 1.20

2 Assets & 3 Variances
ci,k 1.00 0.00 1.00
cj,k 0.00 1.00 1.00
λk 0.75 1.25 1.10

T = 4000, L = 1000, ∆ = 1/252, M = 3900,
N = 78/390 and η = ∆

N
.

The Monte Carlo simulation study follows the simulation pro-
cedure outlined in Appendix 3.4.1. As established in Equation
(B.4), η is not considered as a parameter as it is a function of
known quantities.

Table 3.1: Parameters for the simulation study
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(k, n) ¯̄b(ℓ,n) ¯̄ε(k,n)

θnk

ϑ
(n)
k

θnk
t-stat p-value

(bp) (bp) (%)

Assuming that ξi,j,t,t+1 ∼ Gaussian

Panel A: Variance 1
(1,1) 0.98 −0.3563 −0.0178 −0.16 87.45
(1,2) 0.97 0.0462 −0.0006 −0.05 96.13
(1,3) 0.95 −0.0534 −0.0030 −1.31 19.15
(1,4) 0.93 0.0026 0.0001 0.12 90.54

Joint χ2
4 3.21 52.34

Panel B: Variance 2
(1,1) 0.96 −0.5784 −0.0210 −0.14 89.22
(1,2) 0.92 0.4223 0.0033 0.14 89.21
(1,3) 0.89 −0.1764 −0.0174 −2.08 3.79*
(1,4) 0.85 0.0437 0.0029 0.81 41.91

Joint χ2
4 9.48 5.02

Panel C: Variance 3
(1,1) 0.92 0.9375 −0.0098 −0.05 96.27
(1,2) 0.85 0.1358 −0.0028 −0.04 96.85
(1,3) 0.79 0.0846 −0.0145 −0.25 80.61
(1,4) 0.73 −0.2537 −0.0192 −0.31 75.51

Joint χ2
4 0.17 99.65

¯̄b(ℓ,n) ¯̄ε(k,n)

θnk

ϑ
(n)
k

θnk
t-stat p-value

(bp) (bp) (%)

ξi,j,t,t+1 = RCVi,j,t,t+1 −QCVi,j,t,t+1

0.98 −0.3563 −0.0178 −0.16 87.45
0.97 0.0462 −0.0006 −0.05 96.13
0.95 0.0092 0.0002 0.07 94.70
0.93 0.0035 0.0001 0.23 81.85

χ2
4 0.20 99.52

0.96 −0.5784 −0.0210 −0.14 89.22
0.92 0.4223 0.0033 0.14 89.21
0.89 −0.0163 −0.0019 −0.23 81.65
0.85 0.0473 0.0034 0.93 35.27

χ2
4 1.70 79.04

0.92 0.9375 −0.0098 −0.05 96.27
0.85 0.1358 −0.0028 −0.04 96.85
0.79 0.7569 0.0420 0.71 47.67
0.73 −0.2163 −0.0154 −0.25 80.15

χ2
4 1.28 86.40

This Monte Carlo study simulates L = 1000 independent trajectories for the Model (3.1), using M = 3900 intraday steps over a period
of T = 4000 days. The daily RCV is aggregated at the 5 minutes frequency with N = 78. The measurement error is calculated with
Equation (3.32): ξ(ℓ)i,j,t,t+1 = RCV

(ℓ)
i,j,t,t+1 −QCV

(ℓ)
i,j,t,t+1. Filtering errors,

ε
(ℓ,1)
k,t = V

(ℓ)
k,t∆ − E

[
V

(ℓ)
k,t∆

∣∣∣Gt∆

]
,

are computed daily for each variance component k and each path ℓ. The filtering errors’ higher moments are

ε
(ℓ,n)
k,t =

(
ε
(ℓ,1)
k,t

)n
− E

[(
ε
(ℓ,1)
k,t

)n∣∣∣Gt∆

]
, n ∈ {2, 3, 4}.

The average filtering error ¯̄ε(k,n) = 1
S

1
T

∑S
ℓ=1

∑T
t=1 ε

(k,n)
t,ℓ is normalized by the long-term expected variance component θk raised

to the appropriate power. This ratio, ¯̄ε(k,n)

θn
k

, is expressed in basis points (bp). The panel regression

ε
(ℓ,n)
k,t = b

(ℓ,n)
k,t ε

(ℓ,n)
k,t−1 + ϑ

(n)
k + z

(ℓ,n)
k,t

(as described in Section 3.4.2) accounts for autocorrelation and potential biases through the constants ϑ(n)
k . We test the absence of bias

(H0 : ϑ
(n)
k = 0) and report the associated t-statistic (t-stat) and p-value. Standard errors are estimated considering spatial correlation,

using the Newey-West estimator with a lag Q = ⌊4( T
100

)2/9⌋ = 9. An asterisk (*) denotes rejection of the null hypothesis at 5% and
(**) at 1%. We provide the joint chi-square test statistic and p-value for the null hypothesis H0 : ϑ

(n)
k = 0, n ∈ {1, 2, 3, 4}, k ∈

{1, ..., NV }. The average autocorrelation ¯̄b(k,n) = 1
S

1
T

∑S
ℓ=1

∑T
t=1 b

(k,n)
t,ℓ displays the cross-sectional and time-average of the

autocorrelation.

Table 3.2: Filtering error for case 1 asset and 1 variance
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(k, n) ¯̄b(ℓ,n) ¯̄ε(k,n)

θnk

ϑ
(n)
k

θnk
t-stat p-value

(bp) (bp) (%)

Assuming that ξi,j,t,t+1 ∼ Gaussian

Panel A: Without covariation
(1,1) 0.98 −0.2320 −0.0003 0.00 99.78
(2,1) 0.96 −0.1893 0.0113 0.07 94.19

(1,2) 0.97 0.1194 0.0022 0.19 84.93
(2,2) 0.92 0.1844 −0.0090 −0.38 70.39

(1,3) 0.95 −0.0695 −0.0033 −1.49 13.50
(2,3) 0.89 −0.1777 −0.0163 −2.08 3.78*

(1,4) 0.93 0.0014 0.0000 0.00 99.62
(2,4) 0.85 0.0011 −0.0013 −0.42 67.19

Joint χ2
8 11.59 17.06

Panel B: With covariation
(1,1) 0.98 −0.2347 −0.0003 0.00 99.76
(2,1) 0.96 −0.3036 0.0081 0.05 95.85

(1,2) 0.97 0.1193 0.0022 0.19 84.96
(2,2) 0.92 0.1818 −0.0085 −0.36 72.02

(1,3) 0.95 −0.0696 −0.0033 −1.50 13.48
(2,3) 0.89 −0.1812 −0.0171 −2.18 2.91*

(1,4) 0.93 0.0014 0.0000 0.00 99.64
(2,4) 0.85 0.0009 −0.0012 −0.42 67.41

Joint χ2
8 12.22 14.16

¯̄b(ℓ,n) ¯̄ε(k,n)

θnk

ϑ
(n)
k

θnk
t-stat p-value

(bp) (bp) (%)

ξi,j,t,t+1 = RCVi,j,t,t+1 −QCVi,j,t,t+1

0.98 −0.2320 −0.0003 0.00 99.78
0.96 −0.1893 0.0113 0.07 94.19

0.97 0.1194 0.0022 0.19 84.93
0.92 0.1844 −0.0090 −0.38 70.39

0.95 −0.0067 −0.0002 −0.10 91.83
0.89 −0.0178 −0.0009 −0.11 90.90

0.93 0.0023 0.0001 0.12 90.49
0.85 0.0047 −0.0008 −0.28 78.24

χ2
8 0.24 100.00

0.98 −0.2347 −0.0003 0.00 99.76
0.96 −0.3036 0.0081 0.05 95.85

0.97 0.1193 0.0022 0.19 84.96
0.92 0.1818 −0.0085 −0.36 72.02

0.95 −0.0068 −0.0002 −0.10 91.76
0.89 −0.0234 −0.0014 −0.18 85.97

0.93 0.0023 0.0001 0.12 90.51
0.85 0.0044 −0.0008 −0.27 78.69

χ2
8 0.24 100.00

See the notes of Table 3.2. Panel A displays results where the two assets do not have a common variance factor, whereas Panel B shows
results for two assets with a common variance factor.

Table 3.3: Filtering error for case 2 assets and 2 variances

78



Chapter 3. Variance filtering in multidimensional affine models

(k, n) ¯̄b(ℓ,n) ¯̄ε(k,n)

θnk

ϑ
(n)
k

θnk
t-stat p-value

(bp) (bp) (%)

Assuming that ξi,j,t,t+1 ∼ Gaussian

(1,1) 0.98 −1.9635 −0.0298 −0.23 81.48
(2,1) 0.96 −3.6735 −0.1086 −0.44 66.24
(3,1) 0.98 2.6461 −0.0819 −0.32 74.75

(1,2) 0.97 0.2641 0.0049 0.32 74.96
(2,2) 0.91 1.5650 0.0361 0.66 51.18
(3,2) 0.96 0.4076 −0.0174 −0.19 84.71

(1,3) 0.95 −0.0765 −0.0040 −1.21 22.54
(2,3) 0.87 −0.7556 −0.0842 −3.23 0.12**
(3,3) 0.93 −1.7991 −0.1108 −1.53 12.65

(1,4) 0.93 0.0160 0.0008 0.93 35.24
(2,4) 0.84 0.2651 0.0226 1.72 8.63
(3,4) 0.91 −0.6580 −0.0577 −0.74 45.79

Joint χ2
12 30.58 0.23*

¯̄b(ℓ,n) ¯̄ε(k,n)

θnk

ϑ
(n)
k

θnk
t-stat p-value

(bp) (bp) (%)

ξi,j,t,t+1 = RCVi,j,t,t+1 −QCVi,j,t,t+1

0.98 −1.9635 −0.0298 −0.23 81.48
0.96 −3.6735 −0.1086 −0.44 66.24
0.98 2.6461 −0.0819 −0.32 74.75

0.97 0.2641 0.0049 0.32 74.96
0.91 1.5650 0.0361 0.66 51.18
0.96 0.4076 −0.0174 −0.19 84.71

0.95 0.0092 0.0002 0.07 94.72
0.87 −0.2297 −0.0234 −0.90 36.86
0.93 −0.9102 −0.0505 −0.70 48.57

0.93 0.0173 0.0008 1.03 30.14
0.84 0.2819 0.0252 1.91 5.66
0.91 −0.6021 −0.0529 −0.68 49.62

χ2
12 9.76 63.71

This Monte Carlo study simulates L = 1000 independent trajectories for the Model (3.1), using M = 3900 intraday steps over a period
of T = 4000 days. The daily RCV is aggregated at the 5 minutes frequency with N = 78. The measurement error is calculated with
Equation (3.32): ξ(ℓ)i,j,t,t+1 = RCV

(ℓ)
i,j,t,t+1 −QCV

(ℓ)
i,j,t,t+1. Filtering errors,

ε
(ℓ,1)
k,t = V

(ℓ)
k,t∆ − E

[
V

(ℓ)
k,t∆

∣∣∣Gt∆

]
,

are computed daily for each variance component k and each path ℓ. The filtering errors’ higher moments are

ε
(ℓ,n)
k,t =

(
ε
(ℓ,1)
k,t

)n
− E

[(
ε
(ℓ,1)
k,t

)n∣∣∣Gt∆

]
, n ∈ {2, 3, 4}.

The average filtering error ¯̄ε(k,n) = 1
S

1
T

∑S
ℓ=1

∑T
t=1 ε

(k,n)
t,ℓ is normalized by the long-term expected variance component θk raised

to the appropriate power. This ratio, ¯̄ε(k,n)

θn
k

, is expressed in basis points (bp). The panel regression

ε
(ℓ,n)
k,t = b

(ℓ,n)
k,t ε

(ℓ,n)
k,t−1 + ϑ

(n)
k + z

(ℓ,n)
k,t

(as described in Section 3.4.2) accounts for autocorrelation and potential biases through the constants ϑ(n)
k . We test the absence of bias

(H0 : ϑ
(n)
k = 0) and report the associated t-statistic (t-stat) and p-value. Standard errors are estimated considering spatial correlation,

using the Newey-West estimator with a lag Q = ⌊4( T
100

)2/9⌋ = 9. An asterisk (*) denotes rejection of the null hypothesis at 5% and
(**) at 1%. We provide the joint chi-square test statistic and p-value for the null hypothesis H0 : ϑ

(n)
k = 0, n ∈ {1, 2, 3, 4}, k ∈

{1, ..., NV }. The average autocorrelation ¯̄b(k,n) = 1
S

1
T

∑S
ℓ=1

∑T
t=1 b

(k,n)
t,ℓ displays the cross-sectional and time-average of the

autocorrelation.

Table 3.4: Filtering error for case 2 assets and 3 variances
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3.5 Conclusion

Our research introduces a precise analytical filter for multi-factor variance estimation within
a multi-asset framework. This filter effectively disentangles latent variance components,
an important step in understanding the commonality of asset volatilities across different
markets. By leveraging intraday statistics, such as realized variances and covariances, our
approach provides a tractable solution that overcomes the curse of dimensionality, a com-
mon challenge in multi-asset analysis.

A key strength of our filter lies in its ability to manage nonlinear and non-Gaussian
frameworks, significantly broadening its applicability beyond traditional affine models. A
critical innovation in our approach is the incorporation of measurement errors of realized
variance data, particularly at lower frequencies where asymptotic theory is not fully ap-
plicable. We propose a correction that ensures the filter remains unbiased across the first
four conditional moments, resulting in a more comprehensive and accurate estimation of
the latent state. The robustness and precision of our method are further validated through
extensive Monte Carlo simulations, confirming its reliability across a range of scenarios.
Additionally, our methodology provides estimations up to the fourth cumulant, including
co-moments, offering a detailed characterization of volatility dynamics.
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Chapter 4

Enhancing Parameter Estimation in Stochastic
Volatility Models Using Intraday Data:
Generalized Method of Moments Comparative
Analysis

Abstract1

Estimating stochastic volatility model parameters remains a significant challenge, espe-
cially when observations are limited to proxies of integrated variances. This study in-
troduces a refined approach, building upon the Generalized Method of Moments (GMM)
framework proposed by Bollerslev and Zhou, 2002, with extensions to account for leverage
effects and multi-factor models. Additionally, we compare two GMM procedures widely
discussed in the literature: conditional moments (CM) and unconditional moments (UM).
Our findings suggest that without a filtering mechanism, CM-based GMM is less robust
than UM-based GMM, as the required recursions in the CM approach introduce consider-
able noise into the moment conditions.

1Joint work with Christian Dorion and Geneviève Gauthier. Dorion and Gauthier are affiliated with HEC
Montréal.
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4.1 Introduction

State-of-the-art stochastic volatility models assume multiple variance components. One of
the main challenges in using these frameworks is parameter estimation within the context of
many latent factors using intraday data. The Generalized Method of Moments (GMM) is a
widely adopted tool in the literature, known for its flexibility and robustness across various
model specifications. This paper focuses on comparing two prominent GMM procedures,
those based on conditional moments (CM) and unconditional moments (UM) for one and
two variance factor models.

Realized variance refers to intraday statistics that converge to the quadratic variation
of an asset as the number of intraday steps increases (Barndorff-Nielsen and Shephard,
2002), making it a useful observable for quantifying variance. Bollerslev and Zhou, 2002
popularized a GMM methodology based solely on this observable to estimate variance
parameters. GMM utilizes the conditional moments of the sample data, in this case, the
realized variance, and estimates parameters through an optimization process. As models
become more complex, traditional methods such as quasi-likelihood can pose challenges,
thus creating opportunities for alternative approaches like GMM.2

Our main benchmarks for the two procedures compared here are Bollerslev and Zhou,
2002 for the CM method and Todorov, 2009 for the UM method. We present a thor-
ough Monte Carlo study across multiple scenarios and model specifications to assess the
strengths and weaknesses of each approach.

Our analysis uncovers notable differences in the effectiveness of these methods. The
CM-based approach stands out for its substantially lower autocorrelation in GMM residuals
compared to the UM-based approach, marking a clear advantage of the CM method. More-
over, the use of instrumental variables within the CM framework enhances the method’s
power and potential for extensions while also leading to more accurate estimation results
when the integrated variance is observed without noise.

However, the CM approach is not without limitations. In the absence of a filtered value
2Zhang and Wang, 2023 compare the GMM performance to the MCMC and QML methods with the

Realized Stochastic Volatility (RSV) model, concluding that GMM is faster than MCMC and also more
effective as the QML method is less accurate.
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of the instantaneous variances, the need for performing recursions introduces additional
noise, which compromises the method’s effectiveness. This issue is particularly acute
in multi-factor models, where the recursive techniques proposed by Bollerslev and Zhou,
2002 for the two-factor model are less effective relative to UM methods. Additionally, the
CM approach becomes less performant than the UM methods when measurement error is
disproportionately large relative to the realized variance or the persistence of the variance
is very high.

On the other hand, while UM approaches are generally more robust, especially in the
context of two variance factors, they offer less potential for extension compared to CM
methods combined with a filter. The absence of instrumental variables in UM methods
makes it more difficult and cumbersome to derive additional moments as the model be-
comes more complex, particularly in a multivariate framework.

In addition to comparing these GMM procedures, this paper proposes the introduc-
tion of additional moment conditions within the CM framework to estimate the measure-
ment error parameter. Through a comprehensive analysis of the methodology presented in
Bollerslev and Zhou, 2002, we address the issue of measurement error specification of the
the realized variance. We demonstrate that their specification allows dependence between
the moments used in GMM and the instrumental variables. To rectify this issue, we follow
the asymptotic theory outlined in Barndorff-Nielsen and Shephard, 2002 and introduce an
additional moment to improve overall parameter estimation when the measurement error
parameter is estimated.

In summary, we contribute to the existing literature by comparing two GMM proce-
dures discussed in the literature, highlighting the advantages and limitations of each method
depending on the model specifications and various parameter scenarios in our simulation
study. Finally, we improve the CM procedure by introducing a method to adequately in-
corporate the measurement error parameter.

The paper is organized as follows: After the literature review, Section 4.2 presents the
model, and Section 4.3 details the simulation procedure. Sections 4.4 and 4.5 respectively
present the GMM derivation and Monte Carlo study for the one and two variance factors.
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Finally, Section 4.6 concludes.

Literature Review

Bollerslev and Zhou, 2002 propose a parameter estimation method through GMM for
stochastic volatility models, using intraday data. Their empirical implementation nest mul-
tiple models including multiple latent stochastic volatility factors, leverage effect and jumps
on the returns. They address the measurement error of the realized variance by adding a
nuisance parameter. However, this approach assumes a constant variance for the mea-
surement error, which contradicts the asymptotic theory discussed in Barndorff-Nielsen
and Shephard, 2002. Furthermore, there is no Monte Carlo simulation study for the more
complex frameworks. Bollerslev et al., 2011 introduce an improved methodology for es-
timating the volatility risk premium. Their approach builds upon the insights from the
work of Barndorff-Nielsen and Shephard, 2002. In their methodology, Bollerslev et al.,
2011 include option-implied volatility measures as part of the moment selection process.
However, they do not address the RV measurement error issue, as their methodology relies
solely on first-order conditional moments.

Corradi and Distaso, 2006 propose a GMM moment selection based on unconditional
moments for a larger class of stochastic volatility models, which they apply on three secu-
rities, General Electric, Intel, and Microsoft, for the case of one asset and one variance fac-
tor. Furthermore, they provide the conditions where the measurement error can be ignored
asymptotically, which is used Garcia et al., 2011 among others. Ghosh and Linton, 2023
discuss the double asymptotic framework for the theory of estimated parameters, where N
represents the intra-period returns and T denotes the low-frequency number of periods in
which realized variance (RV) is used. They demonstrate a bias correction method when the
asymptotic conditions are not met and the realized variance is used as a proxy for integrated
variance in the GMM procedure.

As options are also explored as a source of data, Garcia et al., 2011 propose an in-
novative estimation procedure that combines option prices and intraday data to estimate
the parameters of stochastic volatility model using a GMM procedure. By incorporating
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option prices, they effectively integrate a risk premium parameter into their estimations.
Their methodology builds upon the foundational work of Bollerslev and Zhou, 2002 and
enhances it by including higher order moments and option-related moments. However,
their methodology does not include the measurement error associated to RV. Ishida et al.,
2011 detail and compare the estimation methodologies presented in Bollerslev and Zhou,
2002, Garcia et al., 2011 and Corradi and Distaso, 2006. Their model includes a leverage
effect, but excludes a drift component. They estimate the leverage parameter by incorporat-
ing VIX data and numerically compares it to Bollerslev and Zhou, 2002. While their paper
does not address the measurement error parameter issue, they do delve into the implica-
tions of calculating intraday data exclusively during trading hours, which is an additional
contribution.

Todorov, 2009 proposes a GMM approach based on unconditional moments using the
realized variance measure within a general model that includes jumps. He also suggests
an asymptotic refinement for the realized measures, based on asymptotic theory, which
reduces the bias in their estimates, a refinement not present in Todorov, 2010. Todorov,
2009 demonstrates the performance of intraday measures and their asymptotic refinement
in a detailed Monte Carlo simulation study. Furthermore, the paper estimates the parame-
ters for the S&P 500 futures contract using both the two-factor affine jump diffusion model
and the CARMA(2,1) jump-driven SV model, although without the corresponding Monte
Carlo study. Todorov, 2011 extends this analysis to exchange rates. Both papers conclude
that the CARMA model better fits the data. Additionally, the leverage effect is not directly
addressed or estimated in the results presented in these papers. Todorov, 2010 also applies
GMM to isolate the variance risk premium. Ewald and Zou, 2021 implements a similar
GMM procedure based on multipower variations to estimate an extended model with jumps
in both the variance and return processes using S&P 500 data. Finally, Todorov et al., 2011
employs realized Laplace transform instead of realized variance as the observable, imple-
ments a GMM, and runs several model specifications with jumps and multi-factor variances
in both Monte Carlo studies and on S&P 500 data. However, the paper does not include a
Monte Carlo study on two stochastic volatility models, which is discussed in this paper.

Other studies extended the work of Bollerslev and Zhou, 2002 such as Bregantini, 2013
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who perform a Monte Carlo simulation study along with real data estimations from the S&P
500 data for the model with one variance factor. They include the jump case in their paper
along with leverage effect and present all the possible cases for the one-variance factor
model, which make this paper complete for the one variance case. They also comment
on some difficulties with the two-variance factor model of Bollerslev and Zhou, 2002.
However, the error measurement is not considered in this study. In Baum and Zerilli, 2016,
the authors apply the method of Bollerslev and Zhou, 2002 to crude oil futures data and
include a jump component using returns and realized variance measures. They discuss that
the leverage effect parameter is not significant from zero in the case of crude oil, but jumps
are find significance evidence for the presence of jumps. However, they do not directly
address the measurement error in the realized variance measures. They extend their work
in Baum et al., 2021, by including S&P 500 futures data and commodities such as natural
gas and crude oil. In Brix and Lunde, 2015, the authors compared the GMM methods with
prediction-based estimating functions. They also discussed how to handle measurement
error by assuming iid noise in the log process and assessing its impact both parametrically
and non-parametrically. The latter is done by using realized kernels instead of realized
variance. However, their assumption of iid measurement error contradicts the asymptotic
theory, which typically requires different error structure assumptions.

Not all GMM methodologies used realized variance as observables. Indeed, in Feunou
and Tédongap, 2012, they implement a GMM procedure to estimate their stochastic volatil-
ity model with time-varying conditional skewness in a discrete framework. They use a set
of conditions related to higher moments of returns, including lagged returns. They com-
pare their discrete time model with three existing benchmarks with one and two variance
factors for application on real-data. Also, in Jiang and Oomen, 2007, the authors devel-
oped an unbiased estimator of instantaneous variance using the conditional characteristic
function. This approach led to an estimator based on several conditional cumulants, which
are subsequently weighted to yield the final estimator. They then performed a GMM proce-
dure to estimate the parameters. The authors extended their methodology to a two-variance
case, using two different sampling frequencies to isolate each variance. Notably, they did
not use realized variance measures in their study.
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Bolko et al., 2023 present a GMM approach to estimate a log-normal stochastic volatil-
ity model driven by a fractional Brownian motion with an unrestricted Hurst exponent.
They incorporate measurement error on RV by analyzing its theoretical moments, either
through the Central Limit Theorem or its exact distribution while assuming no leverage
effect or drift. Building on these assumptions, they apply GMM to the unconditional mo-
ments of the integrated variance using realized variance measures. While their variance
specifications differ from ours, they demonstrate a proper characterization of measurement
error. Moreover, they employ unconditional moments, as we propose for the case of two
variance factors. However, their model does not account for leverage effects, drift compo-
nents or multiple latent variance factors.

Chaussé and Xu, 2018 compare four different GMM estimators, such as a robust, regu-
larized and a PCA version of the standard GMM, applied to the realized stochastic volatility
(RSV) model proposed by Takahashi et al., 2009. They found that alternatives GMM pro-
cedures improves the quality of the GMM estimator. Chacko and Viceira, 2003 derive a
spectral GMM to estimate continuous-time volatility stochastic models based on character-
istic functions. Jiang and Knight, 2002 also studied GMM using the characteristic function
of the asset returns. In Escobar, 2018, they estimate the multivariate Heston model with the
continuum GMM with the characteristic function on the returns. In Li and Xiu, 2016, they
propose a novel GMM approach where, in the first step, they compute a non-parametric
estimate for the spot variance. In the second step, they apply the GMM, correcting for the
bias introduced by the estimator.

4.2 Theoretical Background

4.2.1 Continuous time model

The asset price is affected byK common volatility factors following a Heston, 1993 model,

dSt = αtStdt+ St

(
K∑
k=1

√
Vk,t dZk,t

)
, (4.1)
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dVk,t = κk (θk − Vk,t) dt+ σk

√
Vk,tdWk,t, k ∈ {1, 2, ..., K}, (4.2)

where Zk,t = ρkWk,t +
√
1− ρ2kBk,t and {Wk,, Bk}Kk=1 are independent P−Brownian

motions. The leverage effect is reflected in the correlation between the Brownian motions
of the price and variance factors.

As shown in Online Appendix E.1, the drift is composed of the risk-free rate r, the
dividend rate q and the risk premium:

αt = r − q +
K∑
k=1

λkVk,t, (4.3)

where λk is the price of risk.
The log-price quadratic variation is

⟨logS⟩t =
K∑
k=1

∫ t

0

Vk,sds.

The model filtration {Ft}t≥0 is generated by the Brownian motions, that isFt = σ{Wk,u, Bk,u :

0 ≤ u ≤ t, k ∈ {1, ..., K}}. In our numerical implementation, we consider the cases
K ∈ {1, 2}.

4.2.2 Discrete time model

4.2.2.1 The returns

For t ∈ {0, 1, 2, ..., T}, the daily return3 satisfies

Rt,t+1 = log
S(t+1)∆

St∆

= (r − q)∆ +
K∑
k=1

(
λk −

1

2

)∫ (t+1)∆

t∆

Vt,sds+
K∑
k=1

∫ (t+1)∆

t∆

√
Vk,tdZk,t. (4.4)

3∆ is intentionally left unspecified at this point. For the single variance case, Bollerslev and Zhou, 2002
use ∆ = 1. However, we propose a simulation study that is more closely related to the stock market and
therefore use ∆ = 1/252.
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4.2.2.2 The realized variance

Let

Vt,t+1 =
K∑
k=1

Vk,t,t+1,

be the daily integrated variance with

Vk,t,t+1 =

∫ (t+1)∆

t∆

Vk,sds, k ∈ {1, ..., K}.

As shown by Barndorff-Nielsen and Shephard, 2002 and Barndorff-Nielsen and Shephard,
2004b, the daily realized variance calculated with N intraday returns

RV
(N)
t,t+1 =

N∑
n=1

(
log

St∆+ n
N
∆

S
t∆+

(n−1)
N

∆

)2

(4.5)

converges weakly to the integrated variance√
N
∆

(
RV

(N)
t,t+1 − Vt,t+1

)
√

2RQ
(N)
t,t+1

L
→

N→∞
N (0, 1) , (4.6)

where the realized quarticity is defined as

RQ
(N)
t,t+1 =

N

3∆

N∑
n=1

(
log

St∆+ n
N
∆

S
t∆+

(n−1)
N

∆

)4

P
→

N→∞

∫ (t+1)∆

t∆

(
K∑
k=1

Vk,s

)2

ds, (4.7)

and P
→

N→∞
refers to a convergence in probability. The weak convergence4 in Equation (4.6)

suggests that the realized variance is a noisy signal of the integrated variance, that is

RV
(N)
t,t+1 = Vt,t+1 + ξ

(N)
t,t+1, (4.8)

4The asymptotic results of Equation (4.6) can be extended to the case where the model exhibit leverage
effect as discussed in Barndorff-Nielsen and Shephard, 2004a. Meddahi, 2002 concludes that the effect of
the drift and the leverage effect are negligible compared to the mean of the integrated variance.
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where the noise term ξ
(N)
t,t+1 is asymptotically Gaussian with

E
[
ξ
(N)
t,t+1

∣∣∣Ft∆

]
= 0, Var

[
ξ
(N)
t,t+1

∣∣∣Ft∆

]
= 2

∆

N
E
[
RQ

(N)
t,t+1

∣∣∣Ft∆

]
, (4.9)

and from Equation (4.7),

E
[
RQ

(N)
t,t+1

∣∣∣Ft∆

]
→

N→∞ E

∫ (t+1)∆

t∆

(
K∑
k=1

Vk,s

)2

ds

∣∣∣∣∣∣Ft∆

 .

As detailed in Appendix C.1, the unconditional variance of the measurement error is

Var
[
ξ
(N)
t,t+1

]
= E

[
2
∆

N
E
[
RQ

(N)
t,t+1

∣∣∣Ft∆

]]
→

N→∞ 2
∆2

N

( K∑
k=1

θk

)2

+
K∑
k=1

σ2
kθk
2κk

 . (4.10)

We assume that ξ(N)
t,t+1 is uncorrelated with the integrated varianceVk,t,t+1, the instantaneous

variance Vk,t,t+1, and the return Rt,t+1. In Appendix C.2, we provide empirical evidence
from Monte Carlo simulations supporting these assumptions, as they are essential for the
GMM moment derivations. Additionally, we empirically confirm the validity of Equation
(4.9) in finite sample.

The observable filtration {Gt}t∈N represents the information available for the investor
at time t and is defined as

Gt = σ{Ru,u+1, RV
(N)
u,u+1, RQ

(N)
u,u+1}tu=0,

where we acknowledge that we do not directly observe the integrated variance.
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4.3 Simulation Procedure

This Section presents a comprehensive framework for simulating the general model de-
scribed in Section 4.2. The simulation process involves three different time frequencies
and we simulate independent trajectories l ∈ {1, ..., S = 1000} over T days.

The instantaneous variance and return processes are simulated with M = 820 intra-
day time steps, approximately every 30 seconds, from which we calculate the integrated
variances (Section 4.3.1). We then aggregate the high-frequency returns at an intraday
frequency N = 82, which effectively represents the intraday returns at a five-minute fre-
quency (Section 4.3.2). Finally, these intraday returns are aggregated to compute daily
returns, realized variance, and realized quarticity, which are our observable variables (Sec-
tion 4.3.3). We also aggregate the integrated variance at a daily frequency, to obtain the
measurement error on the realized variance.

4.3.1 High-frequency

The instantaneous variance Vk,t is simulated at a high-frequency using the Euler approxi-
mation with M = 820 intraday steps

Vk,t∆+m∆
M

∼= V
k,t∆+

(m−1)∆
M

+ κk

(
θk − V

t∆+
(m−1)∆

M

) ∆

M
(4.11)

+ σk

√
V
k,t∆+

(m−1)∆
M

∆

M
wk,t∆+m∆

M
.

{wk,t∆+m∆
M
}Mm=1 is a sequence of independent standard normal random variables.5 The

integrated variance6 is approximated by the trapezoidal rule with

V
k,t∆+

(m−1)∆
M

,t∆+m∆
M

≈ ∆

M

(
V
k,t∆+

(m−1)∆
M

+ Vk,t∆+m∆
M

)
2

.

5To ensure the non negativity of Vk,t∆+m∆
M

, if it is below 0, we replace the value with 0.
6Bollerslev and Zhou, 2002 use the realized variance at the high-frequency to approximate the integrated

variance series.
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The log returns are approximated with

log
St∆+m

M
∆

S
t∆+

(m−1)
M

∆

= (r − q)
∆

M
+

K∑
k=1

(λk −
1

2
)V

k,t∆+
(m−1)∆

M
,t∆+m∆

M

(4.12)

+
K∑
k=1

ρk

√
V
k,t∆+

(m−1)∆
M

∆

M
wk,t∆+m∆

M
+
√

1− ρk

√
V
k,t∆+

(m−1)∆
M

∆

M
bk,t∆+m∆

M
,

with bk,t∆+m∆
M

as a standard normal random variables and independent from wk,t∆+m∆
M

.

4.3.2 Intraday frequency

Mimicking what is done in practice, we aggregate the log returns based on a five-minute
interval, which corresponds to N = 82 intraday steps,

log
St∆+ n

N
∆

S
t∆+

(n−1)
N

∆

=

M/N∑
s=1

log
St∆+n−1

N
∆+ s∆

M

S
t∆+n−1

N
∆+

(s−1)∆
M

, n ∈ {1, ..., N}.

4.3.3 Daily frequency

Our first daily observable is the return calculated as

R
(N)
t,t+1 = log

S(t+1)∆

St∆

.

The realized variance7 and quarticity are

RV
(N)
t,t+1 =

N∑
n=1

(
log

St∆+ n
N
∆

S
t∆+

(n−1)
N

∆

)2

and RQ
(N)
t,t+1 =

N

3∆

N∑
n=1

(
log

St∆+ n
N
∆

S
t∆+

(n−1)
N

∆

)4

.

7We do not use the estimator proposed by Zhang et al., 2005 because there is no microstructure noise in
simulated data. However, if any real data were to be used, an adjustment to the realized measure would be
done to minimize the microstructure noise.
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The daily integrated variance is

V(M)
k,t,t+1 =

M∑
m=1

V
k,t∆+

(m−1)∆
M

,t∆+m∆
M

,

where, from Equation (4.8), the measurement error is

ξ
(N,M)
t,t+1 = RV

(N)
t,t+1 − V(M)

t,t+1. (4.13)

For the remainder of the paper, we omit the superscript M in ξ
(N,M)
t,t+1 and V(M)

t,t+1.

4.4 GMM Estimation with One Variance

We derive the moment conditions that will be used in the GMM. This methodology uses
the information contained in these moment conditions to estimate the model parameters.
By deriving these moment conditions, we can construct a vector based on the sample data,
which will be used in the optimization process to estimate the parameters efficiently.

We present a comprehensive derivation of the two classes of GMM procedures dis-
cussed in the literature on stochastic variance models. The first class is based on condi-
tional moments (CM) as seen in Baum and Zerilli, 2016; Baum et al., 2021; Bollerslev
and Zhou, 2002; Bollerslev et al., 2011; Bregantini, 2013; Garcia et al., 2011; Ishida et al.,
2011, among others. The second class is based on unconditional moments (UM) as exem-
plified in Bolko et al., 2023; Corradi and Distaso, 2006; Ewald and Zou, 2021; Feunou and
Tédongap, 2012; Todorov, 2009 and others.

We also introduce our proposed methodology to handle the measurement error of the
realized variance for CM approaches, as the Bollerslev and Zhou, 2002 approach fails to
estimate the measurement error parameter of the realized variance. In addition, we derive
models with and without leverage effects and drift.
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4.4.1 GMM derivation

4.4.1.1 Without a drift and a leverage effect

The first specification is the base case of Bollerslev and Zhou, 2002. The log price dynamic
has no drift, no leverage effect, and, in opposition to the asymptotic theory, the measure-
ment error on the realized variance is assumed to have a constant standard deviation, that
is

Rt,t+1 =

∫ (t+1)∆

t∆

√
V1,t dB1,t, RV

(N)
t,t+1 = V1,t,t+1 + γϵ

(N)
t,t+1, (4.14)

where ϵ(N)
t,t+1 is centered at zero and of unit variance. There are four parameters to estimate,

that is {θ1, κ1, σ1, γ}.
Based on the unconditional variance (4.10), the asymptotic theory and Appendix C.1,

the specification (4.14) suggests8 a theoretical value for γ2:

γ2 ∼= 2
∆2

N

( K∑
k=1

θk

)2

+
K∑
k=1

σ2
kθk
2κk

 , K = 1. (4.15)

If N is sufficiently large, γ2 is a function of the other parameters. In practice, we can treat
γ2 as a parameter on its own and compare its estimated value to its theoretical value.

The second specification proposes a measurement error9 coherent with the asymptotic
theory (4.7)-(4.8) and the conditional variance (4.9):

Rt,t+1 =

∫ t+1

t

√
V1,t dB1,t, RV

(N)
t,t+1 = V1,t,t+1 +

√√√√√2
∆

N︸︷︷︸
∼=η2

RQ
(N)
t,t+1ε

(N)
t,t+1. (4.16)

where ε(N)
t,t+1 is centered and of variance one and the parameter η2 is asymptotically known.

In specification (4.16), the measurement error is heteroskedastic, but its unconditional vari-
8In Bollerslev and Zhou, 2002, the conditional variance is γ, not γ2. We adjust the notation to emphasize

the positivity of γ2.
9This specification is also coherent with Bollerslev et al., 2016
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ance is

Var [ξt,t+1] = η2 E [E [RQt,t+1| Ft∆]] = γ2, (4.17)

which is coherent with Equation (4.10).

We estimate the parameters using sample moments derived from the realized variance
data. For the CM methods, the first group of conditional moments is an obvious choice
for estimating the long-term variance and mean-reverting parameters, as these conditional
moments relate to the conditional expected value of the realized variance.

Additionally, we introduce instrumental variables, allowing us to increase the number
of conditions with the same theoretical moments, which is not feasible with UM moments.
The instrumental variables exploit the fact that the residuals of the moment conditions
are uncorrelated with them, enabling a different weighting of the sample data and thereby
creating an additional condition.

For parameters related to the volatility of volatility and measurement error variance,
we rely on information from the squared realized variance with instrumental variables.

For the UM approach, we use the unconditional moments of the entire sample. Con-
sequently, the expected value of the realized variance can only be used once in the GMM
for estimating the long-term volatility. The mean-reverting parameter must then be esti-
mated using other moments. As a result, more theoretical moments are required under this
method since there are no instrumental variables involved.

In Table 4.1 we present the set of moment conditions. Panel A outlines the moments
used in Bollerslev and Zhou, 2002 referred as BZ along with our proposed selection10 de-
noted CM to successfully estimate the parameters of both specifications (4.14) and (4.16).

Panel B provides moment selections based on unconditional moments (UM), inspired
from Todorov, 2009. He derives a general model including jumps and estimates parameters
on the S&P data on two nested models, the two-factor affine jump model and the CARMA

10An extensive investigation of the procedures is provided in the Online Appendix E.2, only the final
procedure is exhibited here. While all the procedures we tested were decent, the one presented here minimized
parameter bias.
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jump driven SV model. Because there is no jumps component in our model, we exclude
moments related to jump components parameters while including the asymptotic refine-
ment.11 In particular, from the seven moment conditions associated with the case of one
variance,12 we omit the two conditions moments regarding the bipower variation, resulting
in five moments.13 We use γ2 even though the measurement error is heteroskedastic since,
as showed in Equation (4.17), γ2 is the unconditional variance of the measurement error.
As proposed in Corradi and Distaso, 2006, we subtract the sample average14 to center our
observable variables instead of the theoretical average.

CM moment selection

As we are estimating the measurement error parameter, the BZ procedure faces two signif-
icant challenges that we solve with our CM procedure.15

Firstly, the specification is inadequate as the noise distribution contradicts the asymp-
totic theory. A detailed discussion on this matter is provided in Appendix C.2, where we
demonstrate that moment V) and VI) result in an undesirable dependency between the
square measurement error and the realized variance under the specification (4.14). To
tackle the first challenge, we employ specification (4.16) as it aligns better with the asymp-
totic theory and solve the dependency problem.

Secondly, moments IV), V) and VI) cannot accurately isolate the measurement error
parameter (see Appendix C.5 for details). The main concern is that the moments selected by
BZ do not allow the measurement error parameter to have a relative importance with respect
to the moment condition16 and is drowned in the moment’s residuals. We address this

11The asymptotic refinement is how Todorov, 2009 includes the measurement error in its moment condi-
tions.

12Corradi and Distaso, 2006 used a similar moment selection where h ∈ {1, 2} for moment III).
13We tried to add the unconditional mean of the realized quarticity for the case of one variance as it is

used for the two variance factors, it did not yield to an improvement of the parameter estimates.
14We have tried to subtract the theoretical average RV t,t+1 = RVt,t+1 − θ∆, which is based on param-

eters, instead of the sample average RV t,t+1 = RVt,t+1 − 1
T

∑
t RVt,t+1. It yielded in similar results.

15Garcia et al., 2011 proposed to use the third conditional moment, which we do not cover here as we
include the measurement error. Indeed, this inclusion complicates assumptions and computations for higher
moments.

16The measurement error does not significantly impact moment condition IV) and the addition of IV
instruments did not introduce notable bias, as illustrated in Figure E.2 in Online Appendix E.8. For complete
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Panel A: Moment selection based on conditional moments BZ CM

I) RVt+1,t+2 − αRVt,t+1 − β∆ X X
II) (RVt+1,t+2 − αRVt,t+1 − β∆)×RVt−1,t X X
III) (RVt+1,t+2 − αRVt,t+1 − β∆)×RV 2

t−1,t X

IV)
(
RV 2

t+1,t+2 − η2RQt+1,t+2

)
−H

(
RV 2

t,t+1 − η2RQt,t+1

)
− IRVt,t+1 − J X X

V)
((
RV 2

t+1,t+2 − η2RQt+1,t+2

)
−H

(
RV 2

t,t+1 − η2RQt,t+1

)
− IRVt,t+1 − J

)
×RVt−1,t X X

VI)
((
RV 2

t+1,t+2 − η2RQt+1,t+2

)
−H

(
RV 2

t,t+1 − η2RQt,t+1

)
− IRVt,t+1 − J

)
×RV 2

t−1,t X

VII) RVt,t+1RVt+1,t+2 − H̃
(
RV 2

t,t+1 − η2RQt,t+1

)
− ĨRVt,t+1 − J̃ X

VIII)
(
RVt,t+1RVt+1,t+2 − H̃

(
RV 2

t,t+1 − η2RQt,t+1

)
− ĨRVt,t+1 − J̃

)
×RVt−1,t X

Panel B: Moment selection based on unconditional moments UM

I) RVt,t+1 − θ∆ X
II) RV

2

t,t+1 − γ2 − θσ2

2κ

(
2
κ
(∆− a)

)
X

III) RV t,t+1RV t+h,t+h+1 − αh−1a2 θσ
2

2κ
h ∈ {1, 3, 6}

where RV t,t+1 = RVt,t+1 − 1
T

∑
tRVt,t+1 and the unconditional variance of the measurement error is Var

[
ξ
(N)
t,t+1

]
= γ2.

For Panel A, BZ stands for Bollerslev and Zhou, 2002 and uses specification (4.14) where η2RQt,t+1 is replaced by γ2. CM corresponds
to our proposed conditional moment selection and specification (4.16); the measurement error variance is approximated by η2RQ

(N)
t,t+1.

The moments are derived in Appendix C.3.1. For Panel B, we set Var
[
ξ
(N)
t,t+1

]
equal to γ2 as suggested in Equation (4.15) and moments

are derived in Appendix C.4. Using a Taylor expansion, α ≈ 1− κ∆ , β ≈ κθ∆, H ≈ 1− 2κ∆, H̃ ≈ 1− κ∆ , I ≈
(
σ2 + 2κθ

)
∆2,

Ĩ ≈
(
σ2

2 + 2κθ
)
∆2, J ≈

(
σ2θκ
3 + κ2θ2

)
∆4 and J̃ ≈ −

(
σ2κθ
6 + κ2θ2

2

)
∆4.

Table 4.1: GMM moment selection
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second challenge by including moments VII) and VIII) in our moment selection allowing
us to precisely estimate the measurement error parameter.

As detailed Appendix C.3.1, the construction of the moment VII) is based on

E
[
V2
t,t+1

∣∣Ft∆

]
= A∗V 2

t + B∗Vt + C∗ (4.18)

E [Vt,t+1Vt+1,t+2| Ft∆] = AV 2
t + BVt + C, (4.19)

where E
[
V2
t,t+1

∣∣Ft∆

]
is related to E

[
RV 2

t,t+1 −
(
ξ
(N)
t,t+1

)2∣∣∣∣Ft∆

]
(Corollary E.6.4) and is

affected by the measurement error. When we condition on the observed filtration Gt∆, the
lagged expected value of the realized variance is not affected by the measurement error
(Corollary E.6.6) :

E [RVt,t+1RVt+1,t+2| Gt∆] = E [E [RVt,t+1RVt+1,t+2| Ft∆]| Gt∆]

= E [E [Vt,t+1Vt+1,t+2|Ft∆] |Gt∆] .

By combining Equations (4.18) and (4.19), we obtain

E [Vt,t+1Vt+1,t+2| Ft∆] =
A
A∗ E

[
V2
t,t+1

∣∣Ft∆

]
+

(
B − B∗ A

A∗

)
Vt +

(
C − C∗ A

A∗

)
.

= H̃ E
[
V2
t,t+1

∣∣Ft∆

]
+ Ĩ E [Vt,t+1| Ft∆] + J̃ .

Application to GMM

The GMM estimation method minimises the distance between theoretical moments and
their empirical correspondents. Because BZ works with conditional moments, we define
at each time step a vector gt,θ that, according to the model, should have a conditional
expectation of zero. We add instrumental variables that provide additional valid conditions
in the GMM framework, allowing for more accurate and consistent estimation of model
parameters by leveraging the fact that the instruments are correlated with the observable
variables but uncorrelated with the error term arsing from the moment condition. If θ is

discussion on the subject see Appendix C.5.
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the vector of parameters, the vector of moment conditions is

gt,θ =



RVt+1,t+2 − αRVt,t+1 − β∆

(RVt+1,t+2 − αRVt,t+1 − β∆)×RVt−1,t

(RVt+1,t+2 − αRVt,t+1 − β∆)×RV 2
t−1,t(

RV 2
t+1,t+2 − γ2

)
−H

(
RV 2

t,t+1 − γ2
)
− IRVt,t+1 − J((

RV 2
t+1,t+2 − γ2

)
−H

(
RV 2

t,t+1 − γ2
)
− IRVt,t+1 − J

)
×RVt−1,t((

RV 2
t+1,t+2 − γ2

)
−H

(
RV 2

t,t+1 − γ2
)
− IRVt,t+1 − J

)
×RV 2

t−1,t


,

where the moment selection is augmented with instrumental variables specifically for CM
approaches.

As another example, the UM approach should have a null average over all the time
steps, which we refer as unconditional moment. The vector of GMM moment restrictions,
in that case, is

gt,θ =


RVt+1,t+2 − θ∆

RV
2

t,t+1 − γ2 − θσ2

2κ

(
2
κ
(∆− a)

)
RV t+1,t+2RV t,t+1 − a2 θσ

2

2κ

RV t+3,t+4RV t,t+1 − α2a2 θσ
2

2κ

RV t+6,t+7RV t,t+1 − α5a2 θσ
2

2κ

 ,

where, unfortunately, we cannot use instrumental variables in UM approaches.

The average of the ith moment condition over T observations is given by
ḡi,θ = 1

T

∑T
t=1 gt,i,θ and all the moments conditions form a vector ḡθ. The GMM estimator

minimizes the following objective function

θ̂ = argmin
θ∈Θ

ḡ⊤
θ Wθ ḡθ,

where Wθ is the weighting matrix. All details are provided in Appendix C.6. The weight-
ing matrix plays a central role in the GMM procedure, as it optimally combines moment
conditions by assigning different weights to each moment, with higher variance moments
receiving less weight than more precise ones. Additionally, our choice for the weighting
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matrix accounts for the dependence between moment conditions and autocorrelation. As
commonly done, we do a 2-step procedure using Newey and West, 1987 for the weighing
matrix where the lag is discussed in Online Appendix E.8. Indeed, this Online Appendix
also discusses that the GMM moment conditions under UM approaches exhibit higher auto-
correlation than under CM approaches, increasing the impact of the choice of the weighting
matrix in the estimations.

4.4.1.2 With a drift and leverage effect

We now consider a model that contains a drift in the return dynamics and a leverage effect.
This case was studied in Bollerslev and Zhou, 2002, Ishida et al., 2011 Garcia et al., 2011,
Bregantini, 2013 and Baum et al., 2021 among others. The drift component includes the
risk-free return, a risk premium, and the convexity correction. The proposed model is

Rt,t+1 = r∆+

(
λ− 1

2

)
V1,t,t+1 +

∫ (t+1)∆

t∆

√
V1,t∆ dZ1,t (4.20)

RV
(N)
t,t+1 = V1,t,t+1 +

√
η2RQ

(N)
t,t+1ϵ

(N)
t,t+1.

We adapt the moment selections Table 4.1 to incorporate the two additional parameters,
namely the leverage effect and the risk premium. The proposed additional moments are
presented in Table 4.2.

In Table 4.2, we use moments related17 to the lagged value of the realized variance,
that is, Rt,t+1RVt+h,t+1+h, which is coherent with the moment selection in Bollerslev and
Zhou, 2002; Bregantini, 2013; Garcia et al., 2011.

17We tested the conditional moment Rt,t+1RVt,t+1 − Ĥ
(
RV 2

t,t+1 − ξt,t+1

)
− ÎRVt,t+1 − Ĵ and the

unconditional moment Rt,t+1RV t,t+1 −
(
λ− 1

2

) (
a2 + f(∆, κ)

)
σ2θ
2κ + ρσ

κθ (∆− a), which led to similar
results. All details are provided in Appendix C.3 and Appendix C.4 respectively. Results are available upon
request.
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Panel A: Conditional moments

IX) Rt,t+1 −
(
λ− 1

2

)
RVt,t+1 − r∆

X)
(
Rt,t+1 −

(
λ− 1

2

)
RVt,t+1 − r∆

)
×RVt−1,t

XI)
(
Rt,t+1 − r∆−

(
λ− 1

2

)
RVt,t+1

)
RVt+1,t+2 − IRVt,t+1 − J

XII)
((
Rt,t+1 − r∆−

(
λ− 1

2

)
RVt,t+1

)
RVt+1,t+2 − IRVt,t+1 − J

)
×RVt−1,t

Panel B: Unconditional moments

IV) Rt,t+1 −
(
λ− 1

2

)
θ∆− r∆

V) Rt,t+1RV t+h,t+h+1 − αh−1a2
((

λ− 1
2

)
θσ2

2κ
+ ρσθ

)
, For h, see Table 4.1

where RV t,t+1 = RVt,t+1 − 1
T

∑
t RVt,t+1 and Rt,t+1 = Rt,t+1 − 1

T

∑
tRt,t+1

Table 4.2: Details for Panels A and B are provided in Appendix C.3 and Appendix C.4 re-
spectively.

Table 4.2: Additional moments for specification (4.20)

4.4.2 Simulation study

We conduct a Monte Carlo simulation study using two groups of parameters presented
in Table 4.3. Panel A includes the first group with the three parameter sets proposed in
BZ, which are widely used in the literature. Additionally, we introduce a second group
of parameters that are more closely related to stock markets. The simulation scheme uses
∆ = 1/252. This table also includes the drift and leverage component, which is excluded
in the drift-free specification. The choices for ρ and λ are discussed in the Section 4.4.2.2.

For Panel A, we annualized the parameters18 from BZ, with the initial parameters pre-
sented in parentheses; details on the rescaling are provided in Appendix C.6.3. The second
group of parameters are inspired by Christoffersen et al., 2009, specifically from their Table
3 (Panel A for V1,t∆ and Panel B for V2,t∆ and V3,t∆). In the Panel B of Table 4.3, the com-
ponents have respectively a moderate, high and low speed of mean-reversion, vol-of-vol
and leverage effect.

18The parameters in BZ are in percentage.
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Parameters Vk,t∆ Vk,t∆ Vk,t∆

Panel A. Parameters related to BZ

Scenario A B C
κk 7.56 25.2 25.2

(0.03) (0.10) (0.10)
θk 0.0063 0.0063 0.0063

(0.25) (0.25) (0.25)
σk 0.252 0.252 0.504

(0.10) (0.10) (0.20)
ρk -0.50 -0.50 -0.50
*There is no drift for those scenarios

e−κk∆ 0.9704 0.9048 0.9048
Var[RVt,t+1]

Var[Vt,t+1]
1.0610 1.1463 1.0549

γ2 2.5407e-11 1.8293e-11 2.7439e-11
(0.0025) (0.0018) (0.0027)

η2 9.6787e-05 9.6787e-05 9.6787e-05
(0.0244) (0.0244) (0.0244)

Panel B. Stock Market

Scenario D E F
κk 2.00 4.00 0.20
θk 0.05 0.03 0.02
σk 0.15 0.30 0.12
ρk -0.85 -0.95 -0.50
λk 1.15 1.95 2.90

e−κk∆ 0.9920 0.9842 0.9992
Var[RVt,t+1]

Var[Vt,t+1]
1.2412 1.0894 1.0379

γ2 1.0682e-09 4.7529e-10 4.3016e-10
η2 9.6787e-05 9.6787e-05 9.6787e-05

Table 4.3: The Monte Carlo simulation study follows the simulation procedure outlined in Sec-
tion 4.3 with ∆ = 1/252. In Panel A, we multiply κ by 252, θ by 252/1002 and σ by 252/100.
Initial parameters from BZ are in parenthesis.

Table 4.3: Parameters for the simulation study
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4.4.2.1 Without drift and leverage effect

The model from Section 4.2 is set with K = 1 along with a null drift from Equation (4.1)
and the leverage parameter set to ρ1 = 0. We simulate S = 1000 independent trajectories
of length of T = 4000 days.

For the BZ and CM selections of Panel A of Table 4.1, our procedure (CM) offers two
significant contributions compared to BZ. Firstly, it provides a coherent modeling of the
measurement error process by using specification (4.16) instead of specification (4.14).
Furthermore, by incorporating additional moment conditions VII) and VIII), it improves
the estimations for the measurement error parameter, as evidenced by the lower RMSE for
the vol-of-vol parameter σ of Figure 4.1. The GMM estimation detailed results based on
BZ parameters are provided in Appendix C.7, as it serves as a common benchmark in the
literature.19

We test the methodology with another set of parameters inspired by stock markets. We
first look at the first set of volatility parameters in Table 4.3, Scenario D. As demonstrated
in Figure 4.2, when the integrated variance is observed, the CM moment selection results
in a more precise volatility of volatility parameter than the UM procedure. However, when
observing the realized variance, as shown in Figure 4.3, the CM moment selection experi-
ences significant challenges for all parameters, even when the measurement error is fixed
to its theoretical value.

This issue arises only with this variance. We believe it is because the proportion of
the measurement error is much higher with this variance compared to the other variances.
Indeed, if we examine the theoretical ratio of the variance of the measurement error over
the integrated variance, we have

Var [RVt,t+1]

Var [Vt,t+1]
= 1 +

Var [ξt,t+1]

Var [Vt,t+1]
= 1 +

2∆2

N

(
θ2 + σ2θ

2κ

)
θσ2

2κ

(
2
κ
(∆− a)

)
19An extensive investigation of which CM procedures to use is provided in the Online Appendix E.2;

however, only the final procedure is exhibited here. A detailed comparison of both conditional moment
selection under specification (4.14) is provided in Online Appendix E.3. We conclude that adding additional
moments allows for adequate estimation of the measurement error parameter, which is not achievable under
the BZ procedure alone.
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≈ 1 +
2

N

θ2 + σ2θ
2κ

σ2θ
2κ

= 1 +
2

N

(
1 +

2κθ

σ2

)
,

since 2
κ
(∆− a) ≈ ∆2. Table 4.3 shows the ratio for each parameter set, and the first

variance in Panel B exhibits the highest ratio. Furthermore, running the Scenario A with
θ = 0.02 instead decreases the ratio to 1.11 compared to 1.24 and solves the estimation
problem for the CM procedure. Therefore, we argue that the UM moment selection is more
robust to the presence of a high measurement error.

A potential solution for the CM moment selection would be to derive a moment com-
pletely independent of the measurement error parameter and discard its estimation, such as
the recursionRVt+1,t+2RVt,t+1 on its lagged values instead of the squared realized variance
as it is impacted by the measurement error.

The second set of volatility parameters in Table 4.3 Panel B performs well in the GMM
estimations based on CM and UM moment selection as displayed in Table 4.4. However,
similar to the first set of parameters in Panel A of Table 4.3, the bias and RMSE for the
mean-reverting parameter is smaller with CM, though there is slightly higher RMSE for
the volatility of volatility under CM compared to UM.

The third set of volatility parameters in Table 4.3, Panel B, performs poorly for both
UM and CM, even when using the true integrated variance as the realized variance. We
attribute this to the high persistence of 0.9992. Indeed, when we replace the κ value with 1
instead of 0.20, the UM procedure yields satisfactory results, as demonstrated in Figure 4.5.
However, when the measurement parameter is estimated, the CM procedure encounters
more difficulties compared to UM. Additionally, when the measurement parameter is fixed,
UM is more stable. Therefore, we observe that under conditions of high persistence, UM
outperforms CM procedures.

In summary, UM methodologies seem more consistent and robust to parameter changes
across the three stock market scenarios. While CM methods are generally more powerful
due to their use of instrumental variables, when it is not possible to filter the conditional
moment of the latent instantaneous variance, the errors introduced by the recursions can
be more detrimental than beneficial in some cases, which may explain why UM appears to
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be a more stable methodology.

4.4.2.2 With drift and leverage effect

The model from Section 4.2 is set with K = 1 along with a drift from Equation (4.1) and
the non-null leverage parameter ρ1. For Panel A of Table 4.3, we are using the same param-
eter sets as in Section 4.4.2.1, but with a leverage parameter20 set to ρ = −0.5 as in Garcia
et al., 2011 Table 2. Additionally, Ishida et al., 2011 and Bregantini, 2013 also use the same
leverage parameter for their simulation study.21 Furthermore, we exclude any drift com-
ponent so the results are comparable with the literature, results are presented in Appendix
C.7. The main conclusion is that we do as good or better performance compared to Garcia
et al., 2011 and Bregantini, 2013. Furthermore, CM procedures performs better than UM
procedures when there is no drift in the model, both with and without measurement error
on the realized variance.

For Panel B of Table 4.3, we use use a median, high and lower negative leverage effect
respectively. The Scenario F mean-reverting parameter is set to κ = 1. The risk pre-
mium parameters for stock markets scenarios are set so the approximate annual return of
e
∑

θann×λ − 1 ≈ 6% for the second panel along with an annual risk-free rate to 2%.
When we include a drift and a leverage effect in the stock market scenarios, we arrive

at the same conclusions as in the case without the leverage effect. First, when there is a
high measurement error (Scenario D), the CM performs poorly, particularly for the leverage
parameter (Table C.5 Panel A.2 to B.3), where the estimates fall outside the bounds of a
correlation parameter. However, when there is no measurement error (Table C.5 Panel A.1
and B.1), the opposite is true with the leverage parameter estimated with great precision
under the CM procedure.

Secondly, both CM and UM perform adequately for Scenario E (Table C.6), with CM
performing slightly better. However, the leverage parameter falls outside its bounds espe-

20Baum et al., 2021 estimate the leverage parameter for the S&P500 of -0.44 before the financial crisis
and -0.351 after. Bregantini, 2013 estimated a parameter of -0.46 for the S&P500 from 97-2011. Ishida et al.,
2011 estimated a parameter of -0.57, motivating our parameter choice for our simulation study.

21The paper shows simulation results in Table 3. However, it does not address measurement error.

110



Chapter 4. GMM Parameter Estimation in Stochastic Volatility Models

cially for a leverage parameter of −0.95, which is very close to the boundary where issues
can arise.

Lastly, in Scenario F (Table 4.5), without any measurement error, CM performs better.
With measurement error fixed, UM proves have lower RMSE on θ, σ and ρ, but higher
bias than CM for almost all parameters. However, we believe the UM to be a more robust
procedure for estimating the parameters. Indeed, when the measurement parameter is es-
timated, the CM procedures encounter difficulties. This reinforces the conclusions of the
last section, which suggest that UM procedures are more robust.
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True value Mean Median RMSE CR

Panel A.1: BZ with γ fixed and ξ
(N)
t,t+1 = γϵ

(N)
t,t+1

κ = 4.0000 4.2859 4.2125 1.0578 0.9370
102 × θ = 3.0000 2.9886 2.9762 0.3359 0.9490

σ = 0.3000 0.2957 0.2962 0.0224 0.9370

Panel B.1: CM with η fixed and ξ
(N)
t,t+1 = η

√
RQ

(N)
t,t+1ε

(N)
t,t+1

κ = 4.0000 4.1505 4.0500 1.0267 0.9460
102 × θ = 3.0000 2.9963 2.9867 0.3362 0.9520

σ = 0.3000 0.2968 0.2981 0.0206 0.9430

Panel C.1: UM with γ fixed and ξ
(N)
t,t+1 = η

√
RQ

(N)
t,t+1ε

(N)
t,t+1

κ = 4.0000 4.5932 4.4878 1.2096 0.9040
102 × θ = 3.0000 2.9348 2.9274 0.3308 0.9460

σ = 0.3000 0.2994 0.2993 0.0138 0.9500

Panel A.2: BZ with γ estimated and ξ
(N)
t,t+1 = γϵ

(N)
t,t+1

κ = 4.0000 4.2994 4.2233 1.0929 0.9440
102 × θ = 3.0000 2.9907 2.9868 0.3360 0.9460

σ = 0.3000 0.2892 0.2901 0.0667 0.9500
1010 × γ2 = 4.7529 3.3826 5.9998 23.0157 0.9580

Panel B.2: CM with η estimated and ξ
(N)
t,t+1 = η

√
RQ

(N)
t,t+1ε

(N)
t,t+1

κ = 4.0000 4.1215 4.0284 1.0578 0.9440
102 × θ = 3.0000 2.9984 2.9873 0.3367 0.9480

σ = 0.3000 0.2953 0.2970 0.0288 0.9540
104 × η2 = 0.9679 0.9705 0.9707 0.0472 0.9490

Panel C.2: UM with γ estimated and ξ
(N)
t,t+1 = η

√
RQ

(N)
t,t+1ε

(N)
t,t+1

κ = 4.0000 4.5139 4.4144 1.1751 0.9120
102 × θ = 3.0000 2.9650 2.9574 0.3289 0.9480

σ = 0.3000 0.2997 0.2998 0.0140 0.9550
1010 × γ2 = 4.7529 4.6071 4.5001 1.0759 0.9580

The table shows results obtained from GMM procedures based on Monte Carlo simulations with 1000 in-
dependent trajectories of T time steps of length ∆ = 1/252. The trajectories of the integrated variance are
simulated with 820 intraday steps and the realized variance with 82 intraday steps, see Section 4.3 for details.
The Mean (Median) reports the sample average (median) of the 1000 point estimates. The coverage ratio (CR)
is the proportion of the 95% confidence interval that contains the true parameter. The error measurement pa-
rameter is here compared to its theoretical value. We employ a 2-step GMM procedure using the Newey and
West, 1987 covariance matrix estimator with a Bartlett-kernel with a lag of 5, see Appendix C.6 for details.

Table 4.4: Comparison results for parameter set E for specifications (4.14)-(4.16)
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True value Mean Median RMSE CR

Panel A.1: CM estimations results with no measurement error
κ = 1.0000 1.1715 1.1182 0.4501 0.9150

102 × θ = 2.0000 1.9933 1.9409 0.4287 0.9570
σ = 0.1200 0.1199 0.1199 0.0014 0.9410

ρ = −0.5000 −0.4980 −0.4980 0.0227 0.9540
λ = 2.9000 3.1440 3.0319 1.8448 0.9500

Panel B.1: UM estimations results with no measurement error
κ = 1.0000 1.3928 1.3211 0.6384 0.8670

102 × θ = 2.0000 1.9647 1.9126 0.4073 0.9590
σ = 0.1200 0.1191 0.1191 0.0053 0.9450

ρ = −0.5000 −0.4606 −0.4494 0.1763 0.9440
λ = 2.9000 3.2126 3.1252 1.8715 0.9460

Panel A.2: CM estimations results with η2 fixed
κ = 1.0000 1.1580 1.1034 0.5854 0.9331

102 × θ = 2.0000 2.0516 1.9652 0.6557 0.9777
σ = 0.1200 0.1156 0.1180 0.0248 0.9422

ρ = −0.5000 −0.5420 −0.5053 0.2493 0.9726
λ = 2.9000 3.1320 3.0145 1.8458 0.9513

Panel B.2: UM estimations results with γ2 fixed
κ = 1.0000 1.4227 1.3882 0.6970 0.8820

102 × θ = 2.0000 1.9215 1.8766 0.4055 0.9640
σ = 0.1200 0.1174 0.1182 0.0129 0.9410

ρ = −0.5000 −0.4703 −0.4481 0.2002 0.9590
λ = 2.9000 3.3053 3.2145 1.9270 0.9520

The table shows results obtained from GMM procedures based on Monte Carlo simulations with 1000 independent trajectories
of T time steps of length ∆ = 1/252. The trajectories of the integrated variance are simulated with 820 intraday steps and the
realized variance with 82 intraday steps, see Section 4.3 for details. The Mean (Median) reports the sample average (median)
of the 1000 point estimates. The coverage ratio (CR) is the proportion of the 95% confidence interval that contains the true pa-
rameter. The error measurement parameter is here compared to its theoretical value. We employ a 2-step GMM procedure us-
ing the Newey and West, 1987 covariance matrix estimator with a Bartlett-kernel with a lag of 5, see Appendix C.6 for details.

Table 4.5: Comparison results for parameter set F for specification (4.20)
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4.5 GMM Estimation with Two Variances

4.5.1 GMM derivation

We extend the specification (4.16) by adding an additional variance factor:

Rt,t+1 =

∫ (t+1)∆

t∆

√
V1,t dB1,t +

∫ (t+1)∆

t∆

√
V2,t dB2,t, (4.21)

RV
(N)
t,t+1 ≈ V1,t,t+1 + η

√
RQ

(N)
t,t+1ε

(N)
t,t+1,

where ε
(N)
t,t+1 is a standardized random variable. As for the case with one variance, we

assume that the error measurement is not correlated22 with the Brownian motions B1 and
B2.

The parameter estimation of a two-variance stochastic model is explored in Bollerslev
and Zhou, 2002, where the authors present a conditional moment approach. Additionally,
Todorov et al., 2011, Todorov, 2009, and Todorov, 2011 propose a UM approach to estimate
a two stochastic volatility models, among other more sophisticated models that also account
for jumps.

Table 4.6 presents the moments used for the GMM optimization for approaches BZ and
UM, inspired by Todorov, 2009.

In Appendix C.5.2, we conduct a comprehensive examination of issues related to BZ
moment selection, presented in Panel A of Table 4.6. Particularly for moment II), we
show that the recursions proposed by BZ for the two-variance case introduce a significant
amount of noise, which is detrimental to the signal used for parameter estimation. For
that reason, we do not present any additional CM procedures as the computation become
rapidly cumbersome and unpractical.

In Panel B of Table 4.6, we report the moment selection from Todorov, 2009 without the
two additional moments related to the separate the jump components from the continuous

22A thorough discussion of the one variance factor model is provided in Appendix C.2.
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Panel A: BZ moment selection
I)

((
1− e−κ1∆L

)2 (
1− e−κ2∆L

)2
(RVt+5,t+6 − (θ1 + θ2)∆)

)
×Zt

II)
( (

1− e−κ1∆L
) (

1− e−κ2∆L
) (

1− e−2κ1∆L
)(

1− e−2κ2∆L
) (

1− e−κ1∆e−κ2∆L
)
(RV 2

t+5,t+6 − γ2)
− f(κ1, κ2, θ1, θ2, σ1, σ2)

)
×Zt

where L is the lag operator and Zt represents the instrumental variables: 1, RVt−1,t, RVt−7,t−6, RV 2
t−1,t and RV 2

t−7,t−6

Panel B: UM moment selection
I) RV t,t+1

II) RQt,t+1 − (θ1 + θ2)
2∆−

(
θ1σ2

1

2κ1
+

θ2σ2
2

2κ2

)
∆

III) RV
2

t,t+1 − γ2 − θ1σ2
1

2κ1

(
2
κ1

(∆− a1)
)
− θ2σ2

2

2κ2

(
2
κ2

(∆− a2)
)

IV) RV t,t+1RV t+h,t+h+1 − αh−1
1 a21

θ1σ2
1

2κ1
− αh−1

2 a22
θ2σ2

2

2κ2
, h ∈ {1, 3, 6}

V) 1
10

∑(h+1)10
l=h10+1

(
RV t,t+1RV t+l,t+l+1 − αl−1

1 a21
θ1σ2

1

2κ1
− αl−1

2 a22
θ2σ2

2

2κ2

)
, h ∈ {1, 2, 3}

where RV t,t+1 = RVt,t+1 − 1
T

∑
tRVt,t+1

The details of the moments of Panel A and f(κ1, κ2, θ1, θ2, σ1, σ2) are derived in Appendix C.3.2. Panel B and C are detailed in
Appendix C.4.

Table 4.6: GMM moments selection for specification (4.21)

components. The paper also reparameterizes the model, as it does not estimate the two
long-term variances separately.23 Therefore, the parameter set is κ1, κ2, θ1 + θ2, θ1σ2

1

2κ1
and

θ2σ2
2

2κ2
.
In panel B, moment I) isolates the sum of the long-term variances (θ1 + θ2), while

moment II) deals with the sum of the unconditional variances
(

θ1σ2
1

2κ1
+

θ2σ2
2

2κ2

)
. Moment

III) stands out as the only moment where the measurement error parameter comes into
play. Finally, moments IV) and V) permit to have multiple conditions to disentangle the
mean-reverting parameters and the long-term variances without being affected by the error
measurement parameter.

4.5.2 Simulation study

The model from Section 4.2 is set with K = 2 along with a null drift from Equation (4.1)
and leverage parameters set to zero.

We simulate S = 1000 independent trajectories of T = 7500 days. We did increase
the number of time steps since two-variance factor case is more complex to pin down.

23Todorov et al., 2011 estimated the two long term variances by using realized Laplace Transform.

124



Chapter 4. GMM Parameter Estimation in Stochastic Volatility Models

Our attempt to replicate the results using the BZ-2FSV (Panel A of Table 4.6) proce-
dure, even without introducing any measurement error, did not yield conclusive results;24

a discussion of various potential issues is provided in Appendix C.5.2. In summary, the re-
cursion shown in Panel A requires numerous lags of the realized variance, which amplifies
the noise surrounding the signal. Additionally, the constant in moment II) includes both
the long-term variances and the volatility of volatility parameters, making it challenging
to disentangle these parameters.

However, we simulated a case, namely Scenario G, with the parameters of Table 6 of
Todorov et al., 2011.The parameters are κ = {0.0186, 1.3776}, θ = {0.6100, 0.4434},
σ = {0.1504, 1.1052}.25 The results obtained using the UM procedures are presented
in Figure 4.6. Although there are two cases of high correlation above 70% between the
estimates, it does not appear to be any linear dependency between the parameter estimates.
Furthermore, the black dots in the off-diagonal scatter representing the theoretical value
are centered for almost all parameters, with the exception of κ1, which was the case with
the one variance model.

We also tested all the possible pair combinations of Panel B of Table 4.3 without any
success. Our intuition is that the persistence of each variances are too close.

To further our point, we run Scenario G several times while decreasing the value of
the mean-reverting parameter of the second variance. We adjust the value of the vol-of-vol
parameter to have the same long term variance (and also respect the Feller condition), that
is σ2

2θ2
2κ2

= 0.1965. We try κ2 ∈ {0.90, 0.60, 0.30, 0.10}.
Problems in the parameter estimation start to show when κ2 = 0.10, which is equivalent

to a persistence of 0.90, coupled with κ1 = 0.0186 (persistence of 0.9816). For Panel B
of Table 4.3, the persistence are respectively 0.9920, 0.9842 and 0.9992 (0.9960 if κ = 1),
which are much higher than the one tested with Scenario G. We argue that for the UM
methods to be effective, the two variances must have different levels of persistence.

In summary, estimating a two-factor model with GMM remains challenging, as perfor-
24Footnote 5 of Bregantini, 2013 also discuss issues with the two variances procedure of BZ.
25The parameters are daily and in percentage.
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mance is highly dependent on the nature of the variances. While the results were satisfac-
tory for a single variance, the two-variance model does not guarantee success, particularly
when using CM methods. Additionally, expanding these methods to a multi-asset context
could quickly become computationally burdensome, especially with UM methods, due to
the finite number of moments that can be calculated without using instrumental variables.
Indeed, computing higher order moments could pose a challenge for the practicability of
the method.

The inclusion of a filter for instantaneous variances, where the recursion of the CM
methods could be simplified (reducing noise), could enhance the potential of CM methods
for multi-factor extensions. As detailed in Panel A of Table 4.6, the second moment of
RV 2

t,t+1 requires five lag factors to complete the recursion. With an appropriate filter, we
could compute directly the expected value of RV 2

t,t+1 conditional on the observed filtration,
thereby reducing the need to reference past data and minimizing noise in the moments.
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4.6 Conclusion

In conclusion, this paper presents a detailed comparison of two commonly used GMM
procedures: conditional moments (CM) and unconditional moments (UM), in the context
of one and two factor stochastic volatility models. Our analysis highlights the strengths
and limitations of each approach, providing valuable insights into their suitability under
different model specifications and parameter scenarios.

The CM-based approach stands out for its use of instrumental variables, which mini-
mizes the derivation of additional moment conditions. This feature allows the CM method
to extract more information from the same moment condition, particularly when the mea-
surement error is minimal, resulting in highly precise parameter estimates. Furthermore,
the CM method is relatively easy to implement as less moment are necessary, making it a
practical choice in many applications. However, the absence of a filtering mechanism in
the CM approach means it must rely on recursive techniques, which can introduce addi-
tional noise. This limitation becomes particularly challenging in models with two variance
factors, and the complexity increases rapidly in multi-asset contexts.

On the other hand, the UM approach demonstrates greater robustness, especially in
two-factor models. It also performs well even in the presence of high measurement error
and high persistence in the variance. However, the UM method requires the derivation of
more moments and lacks the benefit of instrumental variables, which can make the process
more cumbersome as models become more complex.
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Concluding Remarks

This thesis presents a filtering and estimation methods for multivariate stochastic volatility
models along with an essay on congestion in power markets.

The first essay concentrates on the relationship between futures contracts and Finan-
cial Transmission Rights in electricity markets, focusing on their respective payoffs. While
FTRs only cover the congestion component of electricity prices, futures contracts encom-
pass the entire price, including energy and loss components. By comparing these instru-
ments and accounting for pricing differentials across zones, we compute implied prices for
the loss component. Our empirical study found significant pricing inconsistencies, with the
variance of implied prices exceeding that of realized values in nearly all cases, indicating
a disconnect in the pricing system between the futures and FTR markets.

The second essay presents a precise analytical filter for a multi-factor variance model
within a multi-asset framework. Using intraday statistics, such as realized variances and
covariances, our filter for instantaneous variances effectively manages dimensionality and
addresses nonlinear, non-Gaussian data. We also tackle measurement errors in realized
variance and incorporate corrections to ensure an unbiased estimation of the latent state’s
filtered moments. Extensive Monte Carlo simulations confirm the robustness and accuracy
of our method, which provides detailed insights for the first four conditional cumulant and
co-moments of the latent state.



Chapter 5. Concluding Remarks

The final essay provides a thorough analysis of two GMM procedures: conditional mo-
ments (CM) and unconditional moments (UM) in the context of stochastic volatility mod-
els and realized variance. The CM method stands out by leveraging instrumental variables,
which enhances precision and simplifies implementation, making it advantageous for sce-
narios with minimal measurement error. However, it can suffer from additional noise due
to its reliance on recursive techniques, especially in complex multi-factor models. Thus,
having a filter for the latent state could help extend the methodology by combining the
contributions of the last two essays of this thesis. In contrast, the UM approach is notably
robust, performing well even with high measurement error and persistence, and is particu-
larly effective in two variance factor models. Despite its advantages, UM methods require
more moment derivations compared to CM methods, which can complicate their applica-
tion in more complex models. This comparison underscores the strengths and trade-offs of
each approach, providing valuable insights for selecting the appropriate method based on
model complexity and data characteristics.
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Chapter A

Appendices of Pricing Inconsistency between the
Futures and Financial Transmission Right
Markets in North America

A.1 Supplementary Material

Results from the main paper are obtained by examining data from nearest auctions, which
are the closest auctions to the corresponding month H. However, in all three markets,
FTRs can be traded up to several months before. This appendix examines whether similar
conclusions can be reached when studying FTRs prices from earlier auctions.

In this appendix, data from all earlier auctions are grouped regardless of the time be-
tween the auction and the contract month. Thus, results presented for earlier auctions in-
corporate all earlier auctions simultaneously, i.e. excluding the nearest auction.

A.1.1 Price consistency tests using nodal FTR prices

From a qualitative perspective, the results for earlier auctions are similar to those presented
in Section 2.3.2 for nearest auctions. When examining the variances in Tables A.1 to A.6,
the conclusions are identical to those made for nearest auctions, namely that Inequality
(2.14) does not hold generally, confirming the presence of pricing misalignment between
futures and FTR contracts. For almost all zones in the NYISO and in PJM, all seasonal
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buckets and all contract types, the inequality does not hold. Exception are the COMED
zone for off-peak and 24-hour contracts during the summer months, or the DEOK off-peak
contracts for winter months. For the ISO-NE, the inequality does not hold in the majority
of the zones.

A.1.2 Price consistency tests using the most liquid FTR contracts

To alleviate potential illiquidity effects in analyses, this section considers the FTRs that
were the most traded instead of looking at FTR nodal prices. The results pertaining to
price and realized loss variance in earlier auction results are provided in Tables A.7 to
A.10, which can be compared with the analogous Tables 2.7 to 2.10 for nearest auctions.
Again, Inequality (2.14) is systematically violated for PJM and the NYISO, reinforcing the
main findings of this paper. Results for ISO-NE are not presented since there is insufficient
liquidity.
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Appendix A. Pricing inconsistency between the futures and FTR markets

Panel a: Winter Months

Zone n (A) (B) (A)− (B) (A)/(B)

A 50 3.55 3.51 0.04 1.01
B 50 5.16 1.98 3.18 2.61
C 50 5.04 0.71 4.34 7.13
D 50 9.36 0.59 8.76 15.75
E 50 2.92 0.09 2.83 31.77
F 50 4.18 0.93 3.24 4.47
G 50 2.68 0.52 2.16 5.16
I 50 5.26 0.72 4.54 7.27
J 50 4.07 0.84 3.23 4.87
K 50 22.87 1.38 21.49 16.55

Panel b: Shoulder Months

Zone n (A) (B) (A)− (B) (A)/(B)

A 51 1.17 0.35 0.81 3.32
B 51 3.47 0.21 3.26 16.53
C 51 1.75 0.11 1.64 15.90
D 51 8.10 0.87 7.23 9.35
E 51 3.73 0.05 3.68 79.65
F 51 2.76 0.03 2.73 85.60
G 51 1.40 0.14 1.25 9.65
I 51 4.15 0.24 3.91 17.63
J 51 1.72 0.35 1.37 4.97
K 51 13.30 0.53 12.78 25.32

Panel c: Summer Months

Zone n (A) (B) (A)− (B) (A)/(B)

A 50 1.48 1.13 0.35 1.31
B 50 6.71 0.74 5.96 9.04
C 50 1.20 0.51 0.70 2.38
D 50 11.10 3.50 7.60 3.17
E 50 5.43 0.11 5.32 47.63
F 50 5.25 0.24 5.00 21.54
G 50 4.57 0.56 4.02 8.23
I 50 5.83 1.09 4.74 5.37
J 50 5.30 1.36 3.94 3.91
K 50 57.81 1.81 56.00 31.87

Panel d: All Months

Zone n (A) (B) (A)− (B) (A)/(B)

A 151 2.10 1.83 0.26 1.14
B 151 5.98 1.09 4.89 5.48
C 151 2.67 0.49 2.18 5.45
D 151 9.40 1.85 7.54 5.07
E 151 6.10 0.10 6.01 63.48
F 151 4.48 0.46 4.03 9.80
G 151 2.99 0.43 2.56 6.90
I 151 5.04 0.74 4.30 6.79
J 151 3.92 0.92 2.99 4.24
K 151 32.58 1.35 31.23 24.06

Each panel shows the results for one seasonality bucket: Panel a is for winter months (December to March); panel b is for
shoulder months (April, May, October and November); panel c is for summer months (June to September); panel d covers all
months of the year. For the earlier auction time tH and underlying monthH, implied excess loss pricesΠtH(Li,H)−ΠtH(LH)
are calculated for all zones i ∈ ZtH via Equation (2.11). The second column exhibits the number of earlier auctions for
which the data are available. The sample variance of ΠtH(Li,H)−ΠtH(LH) is represented by (A). The sample variance of
the realized excess loss values Li,H − LH is represented by (B). The difference, column (A)− (B), and the ratio, column
(A)/(B), are also provided in each panel.

Table A.1: Sample variance of the excess losses Li,H − LH and of their
earlier-auction-implied prices - NYISO 24-hour contract

iii



Appendix A. Pricing inconsistency between the futures and FTR markets

Panel a: Winter Months

Zone n (A) (B) (A)− (B) (A)/(B)

AECO 106 3.62 0.89 2.73 4.06
BGE 106 3.80 0.28 3.51 13.39
DPL 106 3.11 1.77 1.34 1.76
JCPL 106 1.70 1.10 0.59 1.54

METED 106 1.80 0.49 1.30 3.64
PECO 106 0.97 0.64 0.33 1.52
PPL 106 1.22 0.34 0.89 3.62

PENELEC 106 1.23 0.08 1.15 14.54
PSEG 106 2.91 1.21 1.70 2.41
APS 106 1.38 0.12 1.26 11.39
AEP 100 1.56 1.03 0.53 1.51

COMED 106 3.57 2.58 0.99 1.38
DAY 84 4.65 1.35 3.29 3.43
DOM 84 1.62 0.06 1.56 25.76
DUQ 106 3.75 1.22 2.54 3.08
ATSI 106 4.90 0.71 4.19 6.86

DEOK 106 4.12 2.11 2.01 1.96

Panel b: Shoulder Months

Zone n (A) (B) (A)− (B) (A)/(B)

AECO 113 14.35 0.08 14.27 179.01
BGE 113 2.65 0.47 2.18 5.65
DPL 113 12.81 0.08 12.73 160.35
JCPL 113 2.28 0.07 2.21 34.92

METED 113 1.51 0.04 1.46 35.96
PECO 113 2.05 0.15 1.89 13.36
PPL 113 1.35 0.14 1.21 9.80

PENELEC 113 0.70 0.07 0.64 10.68
PSEG 113 1.85 0.10 1.76 19.03
APS 113 1.47 0.05 1.42 28.79
AEP 112 0.59 0.07 0.52 8.93

COMED 113 1.83 0.67 1.15 2.71
DAY 93 1.57 0.36 1.22 4.42
DOM 96 3.30 0.50 2.81 6.67
DUQ 113 2.15 0.16 1.99 13.15
ATSI 113 2.25 0.08 2.17 27.87

DEOK 113 1.75 0.20 1.55 8.58

Panel c: Summer Months

Zone n (A) (B) (A)− (B) (A)/(B)

AECO 43 24.85 0.30 24.55 83.63
BGE 43 3.80 0.93 2.86 4.06
DPL 43 40.87 0.53 40.34 76.67
JCPL 43 4.54 0.13 4.41 33.87

METED 43 5.18 0.09 5.09 56.68
PECO 43 8.15 0.11 8.04 72.62
PPL 43 3.79 0.11 3.68 35.90

PENELEC 43 1.12 0.05 1.07 24.27
PSEG 43 10.30 0.12 10.18 84.44
APS 43 1.54 0.10 1.44 15.35
AEP 43 1.62 0.34 1.27 4.72

COMED 43 1.56 0.95 0.61 1.64
DAY 31 2.97 0.35 2.62 8.44
DOM 33 9.26 0.38 8.88 24.39
DUQ 43 2.56 0.79 1.77 3.23
ATSI 43 2.62 0.24 2.38 10.88

DEOK 43 2.43 0.34 2.09 7.06

Panel d: All Months

Zone n (A) (B) (A)− (B) (A)/(B)

AECO 262 11.66 0.61 11.05 19.13
BGE 262 3.44 0.47 2.97 7.35
DPL 262 13.99 1.13 12.86 12.39
JCPL 262 2.87 0.72 2.14 3.96

METED 262 2.85 0.29 2.55 9.67
PECO 262 2.84 0.48 2.35 5.87
PPL 262 1.95 0.28 1.67 6.94

PENELEC 262 0.99 0.07 0.92 13.56
PSEG 262 4.27 0.81 3.46 5.25
APS 262 1.63 0.12 1.51 13.06
AEP 255 1.71 0.65 1.06 2.62

COMED 262 3.07 1.61 1.45 1.90
DAY 208 4.59 1.05 3.55 4.39
DOM 213 3.87 0.42 3.45 9.28
DUQ 262 4.08 0.85 3.22 4.78
ATSI 262 4.66 0.45 4.20 10.25

DEOK 262 4.26 1.27 2.99 3.35

Each panel shows the results for one seasonality bucket: Panel a is for winter months (December to March); panel b is for
shoulder months (April, May, October and November); panel c is for summer months (June to September); panel d covers all
months of the year. For the earlier auction time tH and underlying monthH, implied excess loss pricesΠtH(Li,H)−ΠtH(LH)
are calculated for all zones i ∈ ZtH via Equation (2.11). The second column exhibits the number of earlier auctions for
which the data are available. The sample variance of ΠtH(Li,H)−ΠtH(LH) is represented by (A). The sample variance of
the realized excess loss values Li,H − LH is represented by (B). The difference, column (A)− (B), and the ratio, column
(A)/(B), are also provided in each panel.

Table A.2: Sample variance of the excess losses Li,H − LH and of their
earlier-auction-implied prices - PJM on-peak contract
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Panel a: Winter Months

Zone n (A) (B) (A)− (B) (A)/(B)

AECO 106 1.83 0.89 0.94 2.05
BGE 106 3.08 0.28 2.80 10.86
DPL 106 2.57 1.77 0.80 1.46
JCPL 106 1.26 1.10 0.15 1.14

METED 106 2.89 0.49 2.40 5.86
PECO 106 1.76 0.64 1.12 2.76
PPL 106 1.95 0.34 1.61 5.78

PENELEC 106 0.88 0.08 0.80 10.40
PSEG 106 2.76 1.21 1.55 2.28
APS 106 0.48 0.12 0.36 3.96
AEP 100 1.68 1.03 0.65 1.62

COMED 106 3.33 2.58 0.74 1.29
DAY 84 3.90 1.35 2.54 2.88
DOM 84 0.96 0.06 0.90 15.27
DUQ 106 2.44 1.22 1.23 2.01
ATSI 106 3.88 0.71 3.16 5.42

DEOK 106 2.09 2.11 −0.02 0.99

Panel b: Shoulder Months

Zone n (A) (B) (A)− (B) (A)/(B)

AECO 113 3.95 0.08 3.87 49.25
BGE 113 3.33 0.47 2.86 7.10
DPL 113 5.04 0.08 4.96 63.13
JCPL 113 1.87 0.07 1.80 28.69

METED 113 1.04 0.04 1.00 24.94
PECO 113 0.87 0.15 0.72 5.68
PPL 113 1.45 0.14 1.31 10.47

PENELEC 113 0.59 0.07 0.52 8.95
PSEG 113 1.12 0.10 1.02 11.48
APS 113 0.61 0.05 0.55 11.86
AEP 112 0.36 0.07 0.30 5.53

COMED 113 0.94 0.67 0.27 1.39
DAY 93 0.80 0.36 0.45 2.26
DOM 96 0.97 0.50 0.47 1.95
DUQ 113 1.36 0.16 1.19 8.28
ATSI 113 1.01 0.08 0.93 12.53

DEOK 113 1.19 0.20 0.99 5.83

Panel c: Summer Months

Zone n (A) (B) (A)− (B) (A)/(B)

AECO 43 2.58 0.30 2.29 8.69
BGE 43 4.85 0.93 3.92 5.19
DPL 43 9.86 0.53 9.32 18.49
JCPL 43 3.68 0.13 3.54 27.43

METED 43 2.05 0.09 1.96 22.40
PECO 43 3.97 0.11 3.86 35.36
PPL 43 1.82 0.11 1.72 17.27

PENELEC 43 0.30 0.05 0.25 6.45
PSEG 43 4.69 0.12 4.57 38.47
APS 43 0.79 0.10 0.69 7.83
AEP 43 0.68 0.34 0.33 1.97

COMED 43 0.84 0.95 −0.11 0.89
DAY 31 0.92 0.35 0.56 2.60
DOM 33 3.08 0.38 2.70 8.12
DUQ 43 1.42 0.79 0.63 1.79
ATSI 43 1.70 0.24 1.46 7.07

DEOK 43 0.80 0.34 0.46 2.33

Panel d: All Months

Zone n (A) (B) (A)− (B) (A)/(B)

AECO 262 2.97 0.61 2.36 4.87
BGE 262 3.49 0.47 3.02 7.45
DPL 262 5.03 1.13 3.90 4.46
JCPL 262 3.06 0.72 2.34 4.23

METED 262 2.16 0.29 1.87 7.34
PECO 262 2.48 0.48 2.00 5.13
PPL 262 2.20 0.28 1.92 7.83

PENELEC 262 0.66 0.07 0.59 9.04
PSEG 262 3.88 0.81 3.07 4.77
APS 262 0.64 0.12 0.51 5.12
AEP 255 1.56 0.65 0.91 2.39

COMED 262 2.61 1.61 1.00 1.62
DAY 208 2.32 1.05 1.28 2.22
DOM 213 1.34 0.42 0.93 3.23
DUQ 262 2.64 0.85 1.79 3.10
ATSI 262 3.44 0.45 2.99 7.58

DEOK 262 2.26 1.27 0.99 1.78

Each panel shows the results for one seasonality bucket: Panel a is for winter months (December to March); panel b is for
shoulder months (April, May, October and November); panel c is for summer months (June to September); panel d covers all
months of the year. For the earlier auction time tH and underlying monthH, implied excess loss pricesΠtH(Li,H)−ΠtH(LH)
are calculated for all zones i ∈ ZtH via Equation (2.11). The second column exhibits the number of earlier auctions for
which the data are available. The sample variance of ΠtH(Li,H)−ΠtH(LH) is represented by (A). The sample variance of
the realized excess loss values Li,H − LH is represented by (B). The difference, column (A)− (B), and the ratio, column
(A)/(B), are also provided in each panel.

Table A.3: Sample variance of the excess losses Li,H − LH and of their
earlier-auction-implied prices - PJM off-peak contract
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Panel a: Winter Months

Zone n (A) (B) (A)− (B) (A)/(B)

AECO 106 2.16 0.89 1.27 2.42
BGE 106 2.95 0.28 2.66 10.38
DPL 106 2.33 1.77 0.57 1.32
JCPL 106 1.18 1.10 0.07 1.06

METED 106 1.89 0.49 1.40 3.84
PECO 106 1.03 0.64 0.39 1.61
PPL 106 1.19 0.34 0.85 3.52

PENELEC 106 0.96 0.08 0.87 11.25
PSEG 106 2.16 1.21 0.95 1.79
APS 106 0.75 0.12 0.63 6.18
AEP 100 1.46 1.03 0.42 1.41

COMED 106 3.02 2.58 0.43 1.17
DAY 84 3.56 1.35 2.20 2.63
DOM 84 1.01 0.06 0.95 16.02
DUQ 106 2.66 1.22 1.44 2.19
ATSI 106 3.82 0.71 3.11 5.35

DEOK 106 2.64 2.11 0.54 1.25

Panel b: Shoulder Months

Zone n (A) (B) (A)− (B) (A)/(B)

AECO 113 7.16 0.08 7.08 89.28
BGE 113 2.23 0.47 1.76 4.75
DPL 113 7.73 0.08 7.65 96.71
JCPL 113 1.13 0.07 1.06 17.26

METED 113 0.94 0.04 0.90 22.39
PECO 113 0.85 0.15 0.69 5.52
PPL 113 1.16 0.14 1.02 8.39

PENELEC 113 0.55 0.07 0.48 8.34
PSEG 113 0.96 0.10 0.86 9.82
APS 113 0.85 0.05 0.80 16.62
AEP 112 0.38 0.07 0.31 5.76

COMED 113 0.83 0.67 0.16 1.24
DAY 93 0.82 0.36 0.46 2.30
DOM 96 1.42 0.50 0.93 2.88
DUQ 113 1.51 0.16 1.35 9.23
ATSI 113 1.33 0.08 1.25 16.53

DEOK 113 1.29 0.20 1.08 6.31

Panel c: Summer Months

Zone n (A) (B) (A)− (B) (A)/(B)

AECO 43 9.54 0.30 9.24 32.10
BGE 43 2.38 0.93 1.44 2.55
DPL 43 20.99 0.53 20.45 39.37
JCPL 43 3.12 0.13 2.99 23.28

METED 43 2.84 0.09 2.75 31.13
PECO 43 2.27 0.11 2.16 20.21
PPL 43 1.89 0.11 1.79 17.95

PENELEC 43 0.42 0.05 0.37 9.03
PSEG 43 5.71 0.12 5.59 46.83
APS 43 0.88 0.10 0.78 8.72
AEP 43 0.75 0.34 0.41 2.20

COMED 43 0.82 0.95 −0.13 0.87
DAY 31 1.34 0.35 0.99 3.80
DOM 33 4.69 0.38 4.31 12.34
DUQ 43 1.53 0.79 0.74 1.94
ATSI 43 1.41 0.24 1.17 5.84

DEOK 43 0.97 0.34 0.63 2.83

Panel d: All Months

Zone n (A) (B) (A)− (B) (A)/(B)

AECO 262 5.53 0.61 4.93 9.08
BGE 262 2.59 0.47 2.12 5.52
DPL 262 8.05 1.13 6.92 7.13
JCPL 262 2.27 0.72 1.54 3.13

METED 262 2.00 0.29 1.71 6.81
PECO 262 1.64 0.48 1.16 3.39
PPL 262 1.67 0.28 1.39 5.95

PENELEC 262 0.69 0.07 0.62 9.49
PSEG 262 3.25 0.81 2.44 4.00
APS 262 0.92 0.12 0.79 7.35
AEP 255 1.47 0.65 0.82 2.25

COMED 262 2.37 1.61 0.76 1.47
DAY 208 2.59 1.05 1.54 2.48
DOM 213 1.78 0.42 1.36 4.27
DUQ 262 2.97 0.85 2.12 3.49
ATSI 262 3.56 0.45 3.11 7.84

DEOK 262 2.84 1.27 1.57 2.24

Each panel shows the results for one seasonality bucket: Panel a is for winter months (December to March); panel b is for
shoulder months (April, May, October and November); panel c is for summer months (June to September); panel d covers all
months of the year. For the earlier auction time tH and underlying monthH, implied excess loss pricesΠtH(Li,H)−ΠtH(LH)
are calculated for all zones i ∈ ZtH via Equation (2.11). The second column exhibits the number of earlier auctions for
which the data are available. The sample variance of ΠtH(Li,H)−ΠtH(LH) is represented by (A). The sample variance of
the realized excess loss values Li,H − LH is represented by (B). The difference, column (A)− (B), and the ratio, column
(A)/(B), are also provided in each panel.

Table A.4: Sample variance of the excess losses Li,H − LH and of their
earlier-auction-implied prices - PJM 24-hour contract
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Panel a: Winter Months

Zone n (A) (B) (A)− (B) (A)/(B)

ME 33 0.29 0.07 0.22 4.28
NH 33 0.10 0.02 0.08 5.86
RI 33 0.07 0.04 0.02 1.57

SEMA 33 0.12 0.01 0.11 21.28
WCMA 33 0.61 0.04 0.57 15.06
NEMA 33 0.19 0.01 0.18 15.64

Panel b: Shoulder Months

Zone n (A) (B) (A)− (B) (A)/(B)

ME 79 0.16 0.19 −0.03 0.83
NH 79 0.39 0.06 0.32 5.97
RI 79 0.10 0.14 −0.05 0.68

SEMA 79 0.13 0.03 0.10 4.82
WCMA 79 0.27 0.03 0.24 10.06
NEMA 79 0.25 0.02 0.22 10.66

Panel c: Summer Months

Zone n (A) (B) (A)− (B) (A)/(B)

ME 78 0.08 0.41 −0.34 0.18
NH 78 0.04 0.04 0.01 1.20
RI 78 0.07 0.03 0.05 2.91

SEMA 78 0.18 0.08 0.11 2.44
WCMA 78 0.22 0.02 0.20 13.17
NEMA 78 0.05 0.04 0.01 1.26

Panel d: All Months

Zone n (A) (B) (A)− (B) (A)/(B)

ME 190 0.17 0.26 −0.09 0.64
NH 190 0.22 0.05 0.17 4.56
RI 190 0.09 0.08 0.01 1.11

SEMA 190 0.15 0.04 0.10 3.34
WCMA 190 0.33 0.03 0.30 10.87
NEMA 190 0.16 0.03 0.13 5.79

Each panel shows the results for one seasonality bucket: Panel a is for winter months (December to March); panel b is for
shoulder months (April, May, October and November); panel c is for summer months (June to September); panel d covers all
months of the year. For the earlier auction time tH and underlying monthH, implied excess loss pricesΠtH(Li,H)−ΠtH(LH)
are calculated for all zones i ∈ ZtH via Equation (2.11). The second column exhibits the number of earlier auctions for
which the data are available. The sample variance of ΠtH(Li,H)−ΠtH(LH) is represented by (A). The sample variance of
the realized excess loss values Li,H − LH is represented by (B). The difference, column (A)− (B), and the ratio, column
(A)/(B), are also provided in each panel.

Table A.5: Sample variance of the excess losses Li,H − LH and of their
earlier-auction-implied prices - ISO-NE on-peak contract
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Panel a: Winter Months

Zone n (A) (B) (A)− (B) (A)/(B)

ME 33 0.28 0.07 0.21 4.08
NH 33 0.12 0.02 0.11 7.02
RI 33 0.07 0.04 0.03 1.62

SEMA 33 0.28 0.01 0.27 48.89
WCMA 33 1.34 0.04 1.30 33.12
NEMA 33 0.29 0.01 0.27 23.27

Panel b: Shoulder Months

Zone n (A) (B) (A)− (B) (A)/(B)

ME 79 0.06 0.19 −0.14 0.29
NH 79 0.05 0.06 −0.02 0.75
RI 79 0.05 0.14 −0.09 0.34

SEMA 79 0.22 0.03 0.19 8.06
WCMA 79 0.44 0.03 0.42 16.59
NEMA 79 0.14 0.02 0.12 6.11

Panel c: Summer Months

Zone n (A) (B) (A)− (B) (A)/(B)

ME 78 0.07 0.41 −0.34 0.17
NH 78 0.08 0.04 0.04 2.21
RI 78 0.11 0.03 0.09 4.32

SEMA 78 0.29 0.08 0.21 3.84
WCMA 78 1.09 0.02 1.07 65.67
NEMA 78 0.29 0.04 0.25 8.03

Panel d: All Months

Zone n (A) (B) (A)− (B) (A)/(B)

ME 190 0.11 0.26 −0.15 0.41
NH 190 0.07 0.05 0.02 1.51
RI 190 0.09 0.08 0.01 1.07

SEMA 190 0.25 0.04 0.21 5.71
WCMA 190 0.87 0.03 0.84 28.55
NEMA 190 0.23 0.03 0.20 8.32

Each panel shows the results for one seasonality bucket: Panel a is for winter months (December to March); panel b is for
shoulder months (April, May, October and November); panel c is for summer months (June to September); panel d covers all
months of the year. For the earlier auction time tH and underlying monthH, implied excess loss pricesΠtH(Li,H)−ΠtH(LH)
are calculated for all zones i ∈ ZtH via Equation (2.11). The second column exhibits the number of earlier auctions for
which the data are available. The sample variance of ΠtH(Li,H)−ΠtH(LH) is represented by (A). The sample variance of
the realized excess loss values Li,H − LH is represented by (B). The difference, column (A)− (B), and the ratio, column
(A)/(B), are also provided in each panel.

Table A.6: Sample variance of the excess losses Li,H − LH and of their
earlier-auction-implied prices - ISO-NE off-peak contract
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Panel a: Winter Months

j − i n (A) (B) (A)− (B) (A)/(B)

A-C 40 1.19 0.96 0.23 1.24
F-G 29 1.83 0.20 1.63 9.25
G-J 28 0.50 0.03 0.47 14.43
G-A 25 11.83 2.77 9.06 4.27
G-F 25 1.18 0.05 1.13 24.18
J-G 24 0.46 0.06 0.41 8.33
E-C 24 2.02 1.65 0.38 1.23
I-G 23 3.03 0.01 3.02 375.61
G-I 23 1.90 0.02 1.88 87.97
D-C 22 0.83 0.16 0.67 5.12

Panel b: Shoulder Months

j − i n (A) (B) (A)− (B) (A)/(B)

A-C 42 1.18 0.10 1.08 11.41
I-G 33 1.73 0.02 1.72 102.72
J-G 30 0.19 0.04 0.15 4.43
G-F 26 0.64 0.12 0.51 5.25
F-G 24 1.54 0.09 1.45 16.35
G-C 23 7.21 0.42 6.80 17.29
C-A 21 1.15 0.12 1.03 9.89
A-G 21 1.18 0.79 0.39 1.49
G-A 20 0.83 0.53 0.29 1.55
G-I 19 2.00 0.04 1.96 55.38

Panel c: Summer Months

j − i n (A) (B) (A)− (B) (A)/(B)

A-C 44 1.31 0.17 1.14 7.67
I-G 36 0.90 0.13 0.77 6.86
G-C 33 7.51 1.49 6.02 5.03
G-F 28 0.81 0.06 0.75 13.68
G-J 24 0.22 0.04 0.18 5.64
J-G 22 0.48 0.23 0.25 2.05
A-G 21 2.30 0.72 1.58 3.20
C-G 21 14.87 3.73 11.14 3.99
C-A 19 1.78 0.18 1.60 10.14
D-C 17 7.95 0.22 7.74 36.71

Panel d: All Months

j − i n (A) (B) (A)− (B) (A)/(B)

A-C 126 1.38 0.47 0.92 2.96
I-G 92 1.89 0.07 1.81 25.64
G-F 79 0.95 0.08 0.87 11.82
J-G 76 0.37 0.11 0.26 3.36
F-G 68 1.45 0.16 1.30 9.17
G-C 67 7.05 1.04 6.01 6.77
G-J 67 0.33 0.05 0.28 6.82
C-A 61 1.67 0.60 1.07 2.78
G-A 58 8.45 2.07 6.38 4.09
C-G 56 12.82 2.96 9.86 4.33

Each panel shows the results for one seasonality bucket: Panel a is for winter months (December to
March); panel b is for shoulder months (April, May, October and November); panel c is for summer
months (June to September); panel d covers all months of the year. For the earlier auction time tH and
underlying month H, implied loss prices ΠtH(Lj,H − Li,H) are calculated for the most liquid SO i and
SI j zone combinations in each seasonality bucket via Equation (2.15). The second column exhibits the
number of earlier auctions for which at least one unit of such a contract was traded. The sample variance
of ΠtH(Lj,H−Li,H) is represented by (A). The sample variance of the realized loss spreads Lj,H−Li,H
is represented by (B). The difference, column (A)− (B), and the ratio, column (A)/(B), are also pro-
vided in each panel.

Table A.7: Sample variance of the loss spreads Lj,H − Li,H and of their
earlier-auction-implied prices for the most liquid FTRs - NYISO 24-hour contract

ix
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Appendix A. Pricing inconsistency between the futures and FTR markets

A.2 Stochastic Risk Premium

We construct a model containing a stochastic risk premium for the loss component and use
it as a robustness check to verify whether our conclusions are robust when dropping the
piecewise deterministic risk premium assumption used in the paper.

As commonly used in derivative pricing, the price of Li,H is its expected discounted
value where the discount factor is the risk-free rate to which we add a risk premium pro-
portional to its conditional variance,

ΠtH(Li,H) = EP
tH

[
e−(r+ηiVar

P
tH [Li,H])Li,H

]
.

Assuming the price of risk is the same for each node, that is ηi = η for all i ∈ ZtH , the risk
premium is node dependent and time-varying only through the conditional variance.

Letting

Li,tH,H = (e−(r+ηVarP
tH [Li,H]) − 1)Li,H,

the price of Li,H is decomposed into two components:

ΠtH(Li,H) = EP
tH

[Li,H] + EP
tH

[Li,tH,H] .

With the cross-sectional averages defined as

LH =

|ZtH |∑
i=1

Li,H

|ZtH|
, and LtH,H =

|ZtH |∑
i=1

Li,tH,H

|ZtH|
,

the relation (2.14) becomes

VarP
[
ΠtH(Li,H − LH)

]
= VarP

[
EP
tH

[
(Li,H − LH)

]
+ EP

tH

[
(Li,tH,H − LtH,H)

]]
(A.1)

≤ VarP
[
EP
tH

[
(Li,H − LH) + (Li,tH,H − LtH,H)

]]
+ EP

[
VarP

tH

[
(Li,H − LH) + (Li,tH,H − LtH,H)

]]
= VarP

[
(Li,H − LH) + (Li,tH,H − LtH,H)

]
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= VarP
[
Li,H − LH

]
+VarP

[
Li,tH,H − LtH,H

]
+ 2CovP

[
Li,H − LH,Li,tH,H − LtH,H

]
.

The left-hand side is measured through the sample variance of the monthly sample of
loss prices {ΠtH(Li,H − LH)}tH obtained from a portfolio of FTR and futures prices.

To compute the right hand-side of Inequality (A.1), we need to construct the monthly
time series {Li,tH,H −LtH,H}tH which depends on the time-varying loss conditional vari-
ance. The latter is captured using a GARCH framework widely used in the derivative pric-
ing litterature. Because Li,H is the aggregation of hourly losses across the whole month
H, then at the auction time tH located sometime in the previous month H− 1, the aggre-
gated loss Li,H−1 is only partially observed. For that reason, the loss model autoregressive
component depends on Li,H−2. The FTR and futures prices are also used as explanatory
variables:

Li,H = ϕ0,i + ϕ1,iLi,H−2 + ϕ2,iFTRtH,i,H + ϕ3,iFtH,i,H + σtH,iϵi,H, (A.2)

σ2
tH,i = ωi + αiϵ

2
i,H−1 + βiσ

2
tH−1,i

,

where ϵi,H is a standard normal random variable and σ2
tH,i stands for the loss conditional

variance. The model is estimated by a maximum likelihood approach and we retrieve the
monthly time series of conditional variance that becomes a proxy for VarP

tH
[Li,H]. We

approximate Li,tH,H ≈
(
e−(r+ησ2

tH,i) − 1
)
Li,H.

For any given value of η, the right hand-side of Inequality (A.1) is evaluated with
the sample variances and covariance of the two monthly time series {Li,H − LH}tH and
{Li,tH,H − LtH,H}tH .

To verify if Inequality (A.1) is empirically verified, we compute

R(η) = VarP
[
Li,H − LH

]
− VarP

[
ΠtH(Li,H − LH)

]
+VarP

[
Li,tH,H − LtH,H

]
+ 2CovP

[
Li,H − LH,Li,tH,H − LtH,H

]
, (A.3)

for many prices of risk η. Because the loss variances vary from one node to the other,
we normalized Equation (A.3) by a positive constant to present all the curves on the same

xiv
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figure, the important point being that Inequality (A.1) is violated if the normalized values
R(η)
|R(0)| are negative.

Figure A.1 shows that for a wide range of η, the curves always take negative values,
which invalidates Inequality (A.1) and supports the main conclusion of the paper.
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Chapter B

Appendices of Computationally-Efficient
Variance Filtering in Multidimensional Affine
Models

B.1 Measurement Error

B.1.1 Asymptotic theory

Section 2.3 of Barndorff-Nielsen and Shephard, 2004b shows that the general asymptotic
convergence of the multivariate realized covariance measures is

√
N

∆

([
RCVi,j,t,t+1 −QCVi,j,t,t+1

RCVĩ,j̃,t,t+1 −QCVĩ,j̃,t,t+1

])(∫ (t+1)∆

t∆

Σijĩj̃,sds

)−1/2

L
→

N→∞
N (0, 1) , (B.1)
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where1

Σijĩj̃,s =

[
Σii,sΣjj,s + Σ2

ij,s Σĩi,sΣjj̃,s + Σij̃,sΣĩj,s

Σĩi,sΣjj̃,s + Σij̃,sΣĩj,s Σĩ̃i,sΣj̃j̃,s + Σ2
ĩj̃,s

]
,

and

Σij,s =

NV∑
k=1

ci,kcj,kVk,s. (B.2)

Furthermore, Barndorff-Nielsen and Shephard, 2004a shows that the leverage effect does
not affect this asymptotic convergence.

The weak convergence in Equation (B.1) suggests that the realized covariance is a noisy
signal of the integrated covariance, as described in Equation (3.13),

RCVi,j,t,t+1 = QCVi,j,t,t+1 + ξi,j,t,t+1,

where the measurement error ξi,j,t,t+1 is asymptotically Gaussian with2

E [ξi,j,t,t+1| Ft∆] = 0, (B.3)

Cov
[
ξi,j,t,t+1, ξĩ,j̃,t,t+1

∣∣Ft∆

]
=

∆

N
E

[∫ (t+1)∆

t∆

Σĩi,sΣjj̃,s + Σij̃,sΣjĩ,sds

∣∣∣∣∣Ft∆

]
. (B.4)

Based on the asymptotic theory,3 we set the variance of the measurement error to

1With Itô’s Isometry, the expected value of quadractic covariation is

E [QCVi,j,t,t+1] =E

[(
NV∑
k=1

∫ (t+1)∆

t∆

ci,k
√
Vk,sdWk,s

)(
NV∑
k=1

∫ (t+1)∆

t∆

cj,k
√
Vk,sdWk,s

)]

=E

[∫ (t+1)∆

t∆

NV∑
k=1

ci,kcj,kVk,sds

]
= E

[∫ (t+1)∆

t∆

Σij,sds

]
,

motivating the shorted notation Σij,s.
2The information available at time t∆, Ft∆, is defined in Equation (3.15).
3Additional discussion on the multivariate properties is provided in Online Appendix D.2.
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ηE
[∫ (t+1)∆

t∆
Σĩi,sΣjj̃,s + Σij̃,sΣjĩ,sds

∣∣∣Ft∆

]
, where η = ∆

N
. However, in practice, the re-

alized variance suffers from microstructure noise (Zhang et al., 2005), which impacts the
variability of the intraday statistics. Therefore, estimating η can be useful to mitigates this
effect and motivates our decision to not replace η by its asymptotic theoretical value.

The forthcoming sections provide a comprehensive derivation of the conditional mo-
ments of the error variance with respect to the model and observed filtration respectively.

B.1.2 Moments of ξt,t+1 with respect to the model filtration Ft∆

Like most modeling approaches, the measurement error is assumed to be uncorrelated with
the model components.

Assumption B.1.1. The error measurement is uncorrelated with the stochastic integrals,
that is

Cov

ξt,t+1,

W t,t+1

Bt,t+1

Z t,t+1


∣∣∣∣∣∣∣Ft∆

 = 0.

A Monte Carlo experiment presented in Online Appendix D.10.2 shows that Assump-
tion B.1.1 is empirically satisfied.

The covariance matrix follows the asymptotic theory as in Equation (B.4)

Cov
[
ξi,j,t,t+1, ξĩ,j̃,t,t+1

∣∣Ft∆

]
= η

NV∑
k=1

NV∑
k̃=1

Ci,i,̃i,j̃

k,k̃
E

[∫ (t+1)∆

t∆

Vk,sVk̃,sds

∣∣∣∣∣Ft∆

]
, (B.5)

where,

Ci,i,̃i,j̃

k,k̃
= ci,kcĩ,kcj,k̃cj̃,k̃ + ci,kcj̃,kcj,k̃cĩ,k̃, (B.6)
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and4

E

[∫ (t+1)∆

t∆

Vk,sVk̃,sds

∣∣∣∣∣Ft∆

]
= Ak,k̃ + Bk,k̃Vk,t∆Vk̃,t∆ +Dk,k̃Vk,t∆ + Ek,k̃Vk̃,t∆, (B.7)

where

Ak,k̃ =

κk̃θk̃+1k=k̃σkσk̃

(κk+κk̃)
θk

(
∆− 1−e

−(κk+κ
k̃
)∆

(κk+κk̃)

)
− θkDk,k̃

+ κkθk
(κk+κk̃)

θk̃

(
∆− 1−e

−(κk+κ
k̃
)∆

(κk+κk̃)

)
− θk̃Ek,k̃

,

Bk,k̃ =
(1− e−(κk+κk̃)∆)

(κk + κk̃)
,

Dk,k̃ =
κk̃θk̃ + 1k=k̃σkσk̃

(κk + κk̃)

(
1− e−κk∆

κk

− e−κk∆
1− e−κk̃∆

κk̃

)
,

Ek,k̃ =
κkθk

(κk + κk̃)

(
1− e−κk̃∆

κk̃

− e−κk̃∆
1− e−κk∆

κk

)
.

Therefore, the expected value of the integrated square variance is a quadratic function of
the latent variable.

B.1.3 Moments of ξt,t+1 with respect to the observed filtration Gt∆

Now that the conditional moments of ξi,j,t,t+1 with respect to the model filtration Ft∆ are
derived, we can compute conditional moments with respect to the observed filtration Gt∆.
For any i, j ∈ {1, 2, ...NS} :

Cov
[
ξi,j,t,t+1,V(t+1)∆

∣∣Gt∆

]
= E

Cov [ξi,j,t,t+1,V(t+1)∆

∣∣Ft∆

]︸ ︷︷ ︸
=0

∣∣∣∣∣∣Gt∆


+ Cov

E [ξi,j,t,t+1| Ft∆]︸ ︷︷ ︸
=0

,E
[
V(t+1)∆

∣∣Ft∆

]∣∣∣∣∣∣Gt∆


= 0.

4Additional details are available in the Online Appendix D.3.
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When substituting V(t+1)∆ with W t,t+1, Bt,t+1, or V t,t+1 in the covariance expression pro-
vided above, the same rationale applies.

The conditional covariance matrix Cov [ξt,t+1| Gt∆] is

Cov
[
ξi,j,t,t+1, ξĩ,j̃,t,t+1

∣∣Gt∆

]
= Cov

E [ξi,j,t,t+1| Ft∆]︸ ︷︷ ︸
=0

,E
[
ξĩ,j̃,t,t+1

∣∣Ft∆

]︸ ︷︷ ︸
=0

∣∣∣∣∣∣Gt∆


+ E

[
Cov

[
ξi,j,t,t+1, ξĩ,j̃,t,t+1

∣∣Ft∆

]∣∣Gt∆

]
.

Using Equation (B.7), the expectation with respect to Gt∆ of Equation (B.5) is

E
[
Cov

[
ξi,j,t,t+1, ξĩ,j̃,t,t+1

∣∣Ft∆

]∣∣Gt∆

]
= η

NV∑
k=1

NV∑
k̃=1

Ci,i,̃i,j̃

k,k̃
E

[
E

[∫ (t+1)∆

t∆

Vk,sVk̃,sds

∣∣∣∣∣Ft∆

]∣∣∣∣∣Gt∆

]

= η

NV∑
k=1

NV∑
k̃=1

Ci,i,̃i,j̃

k,k̃
E
[
Ak,k̃ + Bk,k̃Vk,t∆Vk̃,t∆ +Dk,k̃Vk,t∆ + Ek,k̃Vk̃,t∆

∣∣Gt∆

]
= η

NV∑
k=1

NV∑
k̃=1

Ci,i,̃i,j̃

k,k̃

(
Ak,k̃ +Dk,k̃E [Vk,t∆| Gt∆] + Ek,k̃E

[
Vk̃,t∆

∣∣Gt∆

]
+Bk,k̃

(
Cov

[
Vk,t∆,Vk̃,t∆

∣∣Gt∆

]
+ E [Vk,t∆,| Gt∆] E

[
Vk̃,t∆,

∣∣Gt∆

]) ) ,

which is a non linear function of the conditional moments of the latent variables.

B.2 First two Conditional Moments

This section summarizes the moments related to instantaneous variance, integrated vari-
ance and stochastic integrals that are used in the filter.5

The subscript k is omitted for readability. We denote Vt,t+1 =
∫ (t+1)∆

t∆
Vsds, Wt,t+1 =∫ (t+1)∆

t∆

√
VsdWs, Zt,t+1 =

∫ (t+1)∆

t∆
e−κ((t+1)∆−s)

√
VsdWs and Bt,t+1 =

∫ (t+1)∆

t∆

√
VsdBs.

E [Vt,t+1| Ft∆] = Vt∆

(
1− e−κ∆

κ

)
+ θ

(
∆− 1− e−κ∆

κ

)
,

5Proofs are available upon request.
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Var [Vt,t+1| Ft∆] =
σ2

κ2
Vt∆

(
1− e−2κ∆

κ
− 2e−κ∆∆

)
+

σ2

κ2
θ

(
∆− 1− e−2κ∆

2κ
− 2

1− e−κ∆

κ
+ 2e−κ∆∆

)
,

E [Wt,t+1| Ft∆] = 0,

Var [Wt,t+1| Ft∆] = Vt∆

(
1− e−κ∆

κ

)
+ θ

(
∆− 1− e−κ∆

κ

)
,

E [Bt,t+1| Ft∆] = 0,

Var [Bt,t+1| Ft∆] = Vt∆

(
1− e−κ∆

κ

)
+ θ

(
∆− 1− e−κ∆

κ

)
,

E [Zt,t+1| Ft∆] = 0,

Var [Zt,t+1| Ft∆] = Vt∆e
−κ∆

(
1− e−κ∆

κ

)
+ θ

(
1− e−2κ∆

2κ
− e−κ∆1− e−κ∆

κ

)
,

Cov [Wt,t+1,Bt,t+1| Ft∆] = 0,

Cov [Zt,t+1,Bt,t+1| Ft∆] = 0,

Cov [Wt,t+1,Zt,t+1| Ft∆] = Vt∆e
−κ∆∆+ θ

(
1− e−κ∆

κ
− e−κ∆∆

)
,

Cov [Wt,t+1,Vt,t+1| Ft∆] =
σ

κ
Vt∆

(
1− e−κ∆

κ
− e−κ∆∆

)
+

σ

κ
θ

(
∆− 2

1− e−κ∆

κ
+ e−κ∆∆

)
,

Cov [Vt,t+1,Bt,t+1| Ft∆] = 0.

The strong solution of Equation (3.2) is

V(t+1)∆ = Vt∆e
−κ∆ + θ

(
1− e−κ∆

)
+ σZt,t+1, (B.8)

which leads to

Vt,t+1 = (Vt∆ − θ)

(
1− e−κ∆

)
κ

+ θ∆+
σ

κ
(Wt,t+1 −Zt,t+1) . (B.9)
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The matrices defined in Equation (3.16) are diagonal where

PWW
1,k,k = PBB

1,k,k =

(
1− e−κk∆

κk

)
, PWW

0,k,k = PBB
0,k,k = θk

(
∆− 1− e−κk∆

κk

)
, (B.10)

PZZ
1,k,k = e−κk∆

(
1− e−κk∆

κk

)
, PZZ

0,k,k = θk

(
1− e−2κk∆

2κk

− e−κk∆
1− e−κk∆

κk

)
,

PWZ
1,k,k = e−κk∆∆, PWZ

0,k,k = θk

(
1− e−κk∆

κk

− e−κk∆∆

)
.

B.3 Derivation of the Update Matrix

The goal is to choose Σt∆ such that it minimizes the conditional variance derived in Equa-
tion (3.25). We choose to minimize the trace of Equation (3.25), which corresponds to the
sum of the prediction error variances. The first-order condition is

2Σt∆Var
[
O(t+1)∆

∣∣Gt∆

]
− 2Cov

[
O(t+1)∆,V(t+1)∆

∣∣Gt∆

]⊤
= 0,

which implies that

Σt∆ = Cov
[
V(t+1)∆,O(t+1)∆

∣∣Gt∆

] (
Var

[
O(t+1)∆

∣∣Gt∆

])−1
.

The second derivative is

2Var
[
O(t+1)∆

∣∣Gt∆

]
,

which is positive and confirms that the prediction error variance has been minimized.

B.4 Third and Fourth Conditional Cumulant

Here, we summarize the derivations of the third and fourth cumulants of the stochastic in-
tegrals, observable variables and latent variables. We begin by formally defining these cu-
mulants and establishing their connection with central moments. Subsequently, we present
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the third and fourth cumulants of the latent variance both before and after the update.
We employ cumulants instead of central moments due to the model’s affine nature in

the latent state. Consequently, the model’s conditional cumulants with respect to the model
filtration, excluding measurement errors, exhibit linearity in the latent state up to the fourth
conditional cumulant. This linearity specifically applies to the fourth cumulant rather than
the fourth central moment, simplifying our computations when working with cumulants.

B.4.1 Third cumulant

We define the third cumulant and its application to the law of total cumulance it in Section
B.4.1.1. The latter is useful as it permits the transition from the model filtration to the
observed filtration. In Section B.4.1.2, we show the results regarding the third central
moment of the stochastic integralsBt,t+1, Wt,t+1, andZt,t+1. Finally, we apply these results
to the model’s latent variable and observations before the update in Section B.4.1.3 and
present our update of the latent variable in Section B.4.1.4.

B.4.1.1 Definitions

Definition B.4.1. For a random variableXi, i ∈ {1, 2, 3}, the third cumulant is equivalent
to the third central moment, that is:

Cum(3) [X1, X2, X3] = E [(X1 − E[X1]) (X2 − E[X2]) (X3 − E[X3])] .

Lemma B.4.2. If Gt∆ ⊆ Ft∆, with the random variables Xk,(t+1)∆, k ∈ {i, j, l}, the law
of total cumulance applied to the third cumulant is

Cum(3)
[
Xi,(t+1)∆, Xj,(t+1)∆, Xl,(t+1)∆

∣∣Gt∆

]
= E

[
Cum(3)

[
Xi,(t+1)∆, Xj,(t+1)∆, Xl,(t+1)∆|Ft∆

]∣∣∣Gt∆

]
+ Cum(3)

[
E
[
Xi,(t+1)∆, |Ft∆

]
,E
[
Xj,(t+1)∆, |Ft∆

]
,E
[
Xl,(t+1)∆, |Ft∆

]∣∣Gt∆

]
+Var

[
E
[
Xi,(t+1)∆, |Ft∆

]
,Var

[
Xj,(t+1)∆, Xl,(t+1)∆|Ft∆

]∣∣Gt∆

]
+Var

[
E
[
Xj,(t+1)∆, |Ft∆

]
,Var

[
Xi,(t+1)∆, Xl,(t+1)∆|Ft∆

]∣∣Gt∆

]
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+Var
[
E
[
Xl,(t+1)∆, |Ft∆

]
,Var

[
Xi,(t+1)∆, Xj,(t+1)∆|Ft∆

]∣∣Gt∆

]
.

Proof: Direct application of the law of total cumulance (Brillinger, 1969). □

B.4.1.2 Stochastic integrals

This subsection details how to calculate the third moments of stochastic integrals Bt,t+1,
Wt,t+1 and Zt,t+1 in Corollaries B.4.3 and B.4.4.The subscript k is omitted for readability.

Corollary B.4.3.

E [Bt,t+1Bt,t+1Bt,t+1| Ft∆] = 3

∫ t+1

t

E [Vs∆Bt,s| Ft∆] ds = 0,

E [Wt,t+1Wt,t+1Bt,t+1| Ft∆] =

∫ t+1

t

E [Vs∆Bt,s| Ft∆] ds = 0,

E [Zt,t+1Zt,t+1Bt,t+1| Ft∆] = e−2κ(t+1)∆

∫ t+1

t

E [Vs∆Bt,s| Ft∆] e
2κs∆ds = 0,

E [Wt,t+1Zt,t+1Bt,t+1| Ft∆] = e−κ(t+1)∆

∫ t+1

t

E [Vs∆Bt,s| Ft∆] e
κs∆ds = 0,

E [Wt,t+1Bt,t+1Bt,t+1| Ft∆] =

∫ t+1

t

E [Vs∆Wt,s| Ft∆] ds,

E [Zt,t+1Bt,t+1Bt,t+1| Ft∆] = e−κ(t+1)∆

∫ t+1

t

E [Vs∆Zt,s| Ft∆] e
κs∆ds,

E [Zt,t+1Zt,t+1Zt,t+1| Ft∆] = 3e−3κ(t+1)∆

∫ t+1

t

E [Vs∆Zt,s| Ft∆] e
3κs∆ds,

E [Wt,t+1Wt,t+1Wt,t+1| Ft∆] = 3

∫ t+1

t

E [Vs∆Wt,s| Ft∆] ds,

E [Wt,t+1Zt,t+1Zt,t+1| Ft∆] = 2e−2κ(t+1)∆

∫ t+1

t

E [Vs∆Zt,s| Ft∆] e
2κs∆ds

+ e−2κ(t+1)∆

∫ t+1

t

E [Vs∆Wt,s| Ft∆] e
2κs∆ds,

E [Wt,t+1Wt,t+1Zt,t+1| Ft∆] = 2e−κ(t+1)∆

∫ t+1

t

E [Vs∆Wt,s| Ft∆] e
κs∆ds
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+ e−κ(t+1)∆

∫ t+1

t

E [Vs∆Zt,s| Ft∆] e
κs∆ds.

Proof. Direct application of Lemma D.6.1 and

E [Vs∆Zt,s| Ft∆] ,E [Vs∆Wt,s| Ft∆] and E [Vs∆Bt,s| Ft∆]

are detailed in Corollary B.4.4. □

Corollary B.4.4.

E [Vs∆Zt,s| Ft∆] = σE
[
Z2

t,s

∣∣Ft∆

]
= σe−2κs∆

∫ s

t

E [Vr∆| Ft∆] e
2κr∆dr,

E [Vs∆Wt,s| Ft∆] = σE [Wt,sZt,s| Ft∆] = σe−κs∆

∫ s

t

E [Vr∆| Ft∆] e
κr∆dr,

E [Vs∆Bt,s| Ft∆] = 0.

Proof. Direct application of Lemma D.6.1. □

B.4.1.3 Model components

We show here how the previous section is used to compute the model component’s third
central moment with respect to the model filtration. Indeed, the third central moment (third
cumulant) of the observable variables without measurement error and the latent variables
V(t+1)∆ with respect to the model filtration are a linear combination of the stochastic inte-
grals Z t,t+1,W t,t+1 and Bt,t+1 third cumulant.

Therefore, based on Equations (3.10) and (3.14), we have

Cum(3)
[
Vi,(t+1)∆,Vj,(t+1)∆,Vl,(t+1)∆|Ft∆

]
=

NV∑
k=1

Si,kSj,kSl,kE [Zk,t,t+1Zk,t,t+1Zk,t,t+1| Ft∆] ,

Cum(3)
[
Oi,(t+1)∆ − Qiξt,t+1,Oj,(t+1)∆ − Qjξt,t+1,Ol,(t+1)∆ − Qlξt,t+1|Ft∆

]
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=

NV∑
k=1

E


(

AUi,kZk,t,t+1 + (AJ + C)i,k Wk,t,t+1 + Di,kBk,t,t+1

)(
AUj,kZk,t,t+1 + (AJ + C)j,k Wk,t,t+1 + Dj,kBk,t,t+1

)(
AUl,kZk,t,t+1 + (AJ + C)l,k Wk,t,t+1 + Dl,kBk,t,t+1

)
∣∣∣∣∣∣∣∣∣Ft∆

 ,

Cum(3)
[
Oi,(t+1)∆ − Qiξt,t+1,Oj,(t+1)∆ − Qjξt,t+1,Vl,(t+1)∆|Ft∆

]
=

NV∑
k=1

E


(

AUi,kZk,t,t+1 + (AJ + C)i,k Wk,t,t+1 + Di,kBk,t,t+1

)(
AUj,kZk,t,t+1 + (AJ + C)j,k Wk,t,t+1 + Dj,kBk,t,t+1

)
(Sl,kZk,t,t+1)

∣∣∣∣∣∣∣∣Ft∆

 ,

Cum(3)
[
Oi,(t+1)∆ − Qiξt,t+1,Vj,(t+1)∆,Vl,(t+1)∆|Ft∆

]
=

NV∑
k=1

E

 (
AUi,kZk,t,t+1 + (AJ + C)i,k Wk,t,t+1 + Di,kBk,t,t+1

)
(Sj,kZk,t,t+1) (Sl,kZk,t,t+1)

∣∣∣∣∣∣Ft∆

 ,

To pass from the model filtration to the observed filtration, the law of total cumulance
(Lemma B.4.2) is used. The measurement error is then added depending on the assump-
tion used (asymptotic theory, Assumption 3.4.1, or Gaussian approximation, Assumption
3.4.2).6

B.4.1.4 Latent variable update

Corollary B.4.5.

E
[
Cum(3)

[
ϵV
i,t+1|t+1, ϵ

V
j,t+1|t+1, ϵ

V
l,t+1|t+1

∣∣G(t+1)∆

]∣∣∣Gt∆

]
= E

[
ϵV
i,t+1|t+1ϵ

V
j,t+1|t+1ϵ

V
l,t+1|t+1

∣∣Gt∆

]
Proof. Since Gt∆ ⊆ G(t+1)∆, applying Lemma B.4.2 to the filtering error ϵV

t+1|t+1 third
central moment leads to

Cum(3)
[
ϵV
i,t+1|t+1, ϵ

V
j,t+1|t+1, ϵ

V
l,t+1|t+1

∣∣Gt∆

]
= E

[
Cum(3)

[
ϵV
i,t+1|t+1, ϵ

V
j,t+1|t+1, ϵ

V
l,t+1|t+1

∣∣G(t+1)∆

]∣∣∣Gt∆

]
,

6See Appendix B.5 for higher cumulant of the measurement error under the model filtration.
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as E
[
ϵV
t+1|t+1,

∣∣∣G(t+1)∆

]
= 0, therefore canceling all others terms in Lemma B.4.2.

Cum(3)
[
ϵV
i,t+1|t+1, ϵ

V
j,t+1|t+1, ϵ

V
l,t+1|t+1

∣∣∣Gt∆

]
can be rewritten as

Cum(3)
[
ϵV
i,t+1|t+1, ϵ

V
j,t+1|t+1, ϵ

V
l,t+1|t+1

∣∣Gt∆

]
= E

[
E
[
ϵV
i,t+1|t+1ϵ

V
j,t+1|t+1ϵ

V
l,t+1|t+1

∣∣G(t+1)∆

]∣∣Gt∆

]
= E

[
ϵV
i,t+1|t+1ϵ

V
j,t+1|t+1ϵ

V
l,t+1|t+1

∣∣Gt∆

]
.

We set the latent variable updated third cumulant to its expected value with respect to
Gt∆, and with Corollary B.4.5, we have

Cum(3)
[
ϵV
i,t+1|t+1, ϵ

V
j,t+1|t+1, ϵ

V
l,t+1|t+1

∣∣G(t+1)∆

]
(B.11)

≃ E
[
Cum(3)

[
ϵV
i,t+1|t+1, ϵ

V
j,t+1|t+1, ϵ

V
l,t+1|t+1

∣∣G(t+1)∆

]∣∣∣Gt∆

]
= E

[
ϵV
i,t+1|t+1ϵ

V
j,t+1|t+1ϵ

V
l,t+1|t+1

∣∣Gt∆

]
= E

[(
ϵV
i,t+1|t −Σi,t∆ϵ

O
t+1|t

) (
ϵV
j,t+1|t −Σj,t∆ϵ

O
t+1|t

) (
ϵV
l,t+1|t −Σl,t∆ϵ

O
t+1|t

)∣∣Gt∆

]
,

which is a linear combination of the third cumulant of Ot+1∆ and Vt+1∆ with respect to
the information set Gt∆ (see section B.4.1.3).

B.4.2 Fourth cumulant

We derive here the equivalent of the last section but for the fourth cumulant. We first define
the fourth cumulant and its application to the law of total cumulance in Section B.4.2.1.
In Section B.4.2.2, we show the results regarding the fourth cumulant of the stochastic
integrals Bt,t+1, Wt,t+1, and Zt,t+1. Finally, we apply these results to the model’s latent
variable and observations before the update in Section B.4.2.3 and present our update of
the latent variable in Section B.4.2.4.
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B.4.2.1 Definitions

Definition B.4.6. For a random variable Xi, i ∈ {1, 2, 3, 4}, the fourth cumulant is

Cum(4) [X1, X2, X3, X4] = E [(X1 − E[X1]) (X2 − E[X2]) (X3 − E[X3]) (X4 − E[X4])]

− Var [X1, X2] Var [X3, X4]− Var [X1, X3] Var [X2, X4]

− Var [X1, X4] Var [X2, X3] .

Lemma B.4.7. If Gt∆ ⊆ Ft∆, with the random variables Xk,(t+1)∆, k ∈ {i, j, l,m}, the
the law of total cumulance applied to the fourth cumulant is

Cum(4)
[
Xi,(t+1)∆, Xj,(t+1)∆, Xl,(t+1)∆, Xm,(t+1)∆|Gt∆

]
= E

[
Cum(4)

[
Xi,(t+1)∆, Xj,(t+1)∆, Xl,(t+1)∆, Xm,(t+1)∆|Ft∆

]
|Gt∆

]
+ Cum(4)

[
E
[
Xi,(t+1)∆, |Ft∆

]
,E
[
Xj,(t+1)∆, |Ft∆

]
,

E
[
Xl,(t+1)∆, |Ft∆

]
,E
[
Xm,(t+1)∆, |Ft∆

]
|Gt∆

]
+Var

[
Var

[
Xi,(t+1)∆, Xj,(t+1)∆|Ft∆

]
,Var

[
Xl,(t+1)∆, Xm,(t+1)∆|Ft∆

]
|Gt∆

]
+Var

[
Var

[
Xi,(t+1)∆, Xl,(t+1)∆|Ft∆

]
,Var

[
Xj,(t+1)∆, Xm,(t+1)∆|Ft∆

]
|Gt∆

]
+Var

[
Var

[
Xi,(t+1)∆, Xm,(t+1)∆|Ft∆

]
,Var

[
Xj,(t+1)∆, Xl,(t+1)∆|Ft∆

]
|Gt∆

]
+Var

[
E
[
Xi,(t+1)∆|Ft∆

]
,Cum(3)

[
Xj,(t+1)∆, Xl,(t+1)∆, Xm,(t+1)∆|Ft∆

]
|Gt∆

]
+Var

[
E
[
Xj,(t+1)∆|Ft∆

]
,Cum(3)

[
Xi,(t+1)∆, Xl,(t+1)∆, Xm,(t+1)∆|Ft∆

]
|Gt∆

]
+Var

[
E
[
Xl,(t+1)∆|Ft∆

]
,Cum(3)

[
Xi,(t+1)∆, Xj,(t+1)∆, Xm,(t+1)∆|Ft∆

]
|Gt∆

]
+Var

[
E
[
Xm,(t+1)∆|Ft∆

]
,Cum(3)

[
Xi,(t+1)∆, Xj,(t+1)∆, Xl,(t+1)∆|Ft∆

]
|Gt∆

]
+ Cum(3)

[
E
[
Xi,(t+1)∆|Ft∆

]
,E
[
Xj,(t+1)∆|Ft∆

]
,Var

[
Xl,(t+1)∆, Xm,(t+1)∆|Ft∆

]
|Gt∆

]
+ Cum(3)

[
E
[
Xi,(t+1)∆|Ft∆

]
,E
[
Xl,(t+1)∆|Ft∆

]
,Var

[
Xj,(t+1)∆, Xm,(t+1)∆|Ft∆

]
|Gt∆

]
+ Cum(3)

[
E
[
Xi,(t+1)∆|Ft∆

]
,E
[
Xm,(t+1)∆|Ft∆

]
,Var

[
Xj,(t+1)∆, Xl,(t+1)∆|Ft∆

]
|Gt∆

]
+ Cum(3)

[
E
[
Xj,(t+1)∆|Ft∆

]
,E
[
Xl,(t+1)∆|Ft∆

]
,Var

[
Xi,(t+1)∆, Xm,(t+1)∆|Ft∆

]
|Gt∆

]
+ Cum(3)

[
E
[
Xj,(t+1)∆|Ft∆

]
,E
[
Xm,(t+1)∆|Ft∆

]
,Var

[
Xi,(t+1)∆, Xl,(t+1)∆|Ft∆

]
|Gt∆

]
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+ Cum(3)
[
E
[
Xl,(t+1)∆|Ft∆

]
,E
[
Xm,(t+1)∆|Ft∆

]
,Var

[
Xi,(t+1)∆, Xj,(t+1)∆|Ft∆

]
|Gt∆

]
.

Proof: Direct application of the law of total cumulance (Brillinger, 1969). □

B.4.2.2 Stochastic integrals

We summarize the results detailed in Online Appendix D.6, which includes fifteen different
combinations of the three stochastic integrals. First, six fourth cumulants are null. That is

Cum(4) [Bt,t+1,Bt,t+1,Bt,t+1,Wt,t+1| Ft∆] = 0,

Cum(4) [Bt,t+1,Bt,t+1,Bt,t+1,Zt,t+1| Ft∆] = 0,

Cum(4) [Bt,t+1,Wt,t+1,Wt,t+1,Wt,t+1| Ft∆] = 0,

Cum(4) [Bt,t+1,Zt,t+1,Wt,t+1,Wt,t+1| Ft∆] = 0,

Cum(4) [Bt,t+1,Zt,t+1,Zt,t+1,Wt,t+1| Ft∆] = 0,

Cum(4) [Bt,t+1,Zt,t+1,Zt,t+1,Zt,t+1| Ft∆] = 0.

Finally, the nine non-null fourth cumulants are:

Cum(4)

[
Bt,t+1,Bt,t+1,

Bt,t+1,Bt,t+1

∣∣∣∣∣Ft∆

]
= 6σ

∫ t+1

t

E
[
Zt,sB2

t,s

∣∣Ft∆

]
ds,

Cum(4)

[
Bt,t+1,Bt,t+1,

Wt,t+1,Wt,t+1

∣∣∣∣∣Ft∆

]
= σ

∫ t+1

t

E
[
Zt,s

(
W2

t,s + B2
t,s

)∣∣Ft∆

]
ds,

Cum(4)

[
Bt,t+1,Bt,t+1,

Zt,t+1,Zt,t+1

∣∣∣∣∣Ft∆

]
= σe−2κ(t+1)∆

∫ t+1

t

E
[
Zt,s

(
Z2

t,s + B2
t,s

)
e2κs∆

∣∣Ft∆

]
ds,

Cum(4)

[
Bt,t+1,Bt,t+1,

Wt,t+1,Zt,t+1

∣∣∣∣∣Ft∆

]
= σe−κ(t+1)∆

∫ t+1

t

E
[
Zt,s

(
Zt,sWt,se

κs∆ + B2
t,se

κs∆
)∣∣Ft∆

]
ds,

Cum(4)

[
Wt,t+1,Wt,t+1,

Wt,t+1,Wt,t+1

∣∣∣∣∣Ft∆

]
= 6σ

∫ t+1

t

E
[
Zt,sW2

t,s

∣∣Ft∆

]
ds,

Cum(4)

[
Wt,t+1,Wt,t+1,

Wt,t+1,Zt,t+1

∣∣∣∣∣Ft∆

]
= 3σe−κ(t+1)∆

∫ t+1

t

E
[
Zt,s

(
Wt,sZt,s +W2

t,s

)∣∣Ft∆

]
eκs∆ds,

Cum(4)

[
Wt,t+1,Wt,t+1,

Zt,t+1,Zt,t+1

∣∣∣∣∣Ft∆

]
= σe−2κ(t+1)∆

∫ t+1

t

E

[
Zt,s

(
W2

t,s + Z2
t,s

+4Wt,sZt,s

)∣∣∣∣∣Ft∆

]
e2κs∆ds,
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Cum(4)

[
Wt,t+1,Zt,t+1,

Zt,t+1,Zt,t+1

∣∣∣∣∣Ft∆

]
= 3σe−3κ(t+1)∆

∫ t+1

t

E
[
Zt,s

(
Wt,sZt,s + Z2

t,s

)∣∣Ft∆

]
e3κs∆ds,

Cum(4)

[
Zt,t+1,Zt,t+1,

Zt,t+1,Zt,t+1

∣∣∣∣∣Ft∆

]
= 6σe−4κ(t+1)∆

∫ t+1

t

E
[
Z3

t,s

∣∣Ft∆

]
e4κs∆ds,

which are a function of the third cumulant of the stochastic integrals.

B.4.2.3 Model components

As in section B.4.1.3, we show here how the previous section is used to compute the model
component’s fourth cumulant with respect to the model filtration. Complete details on the
derivation of these cumulants are provided in Online Appendix D.5.

Therefore, based on Equations (3.10) and (3.14), we have

Cum(4)
[
Vi,(t+1)∆,Vj,(t+1)∆,Vl,(t+1)∆,Vm,(t+1)∆|Ft∆

]
=

NV∑
k=1

Si,kSj,kSl,kSm,kCum
(4) [Zk,t,t+1,Zk,t,t+1,Zk,t,t+1,Zk,t,t+1| Ft∆] ,

Cum(4)

[
Oi,(t+1)∆ − Qiξt,t+1,Oj,(t+1)∆ − Qjξt,t+1,

Ol,(t+1)∆ − Qlξt,t+1,Om,(t+1)∆ − Qmξt,t+1

∣∣∣∣∣Ft∆

]

=

NV∑
k=1

Cum(4)



(
AUi,kZk,t,t+1 + (AJ + C)i,k Wk,t,t+1 + Di,kBk,t,t+1

)
,(

AUj,kZk,t,t+1 + (AJ + C)j,k Wk,t,t+1 + Dj,kBk,t,t+1

)
,(

AUl,kZk,t,t+1 + (AJ + C)l,k Wk,t,t+1 + Dl,kBk,t,t+1

)
,(

AUm,kZk,t,t+1 + (AJ + C)m,k Wk,t,t+1 + Dm,kBk,t,t+1

)

∣∣∣∣∣∣∣∣∣∣∣∣
Ft∆

 ,

Cum(4)
[
Oi,(t+1)∆ − Qiξt,t+1,Oj,(t+1)∆ − Qjξt,t+1,Ol,(t+1)∆ − Qlξt,t+1,Vm,(t+1)∆|Ft∆

]

=

NV∑
k=1

Cum(4)



(
AUi,kZk,t,t+1 + (AJ + C)i,k Wk,t,t+1 + Di,kBk,t,t+1

)
,(

AUj,kZk,t,t+1 + (AJ + C)j,k Wk,t,t+1 + Dj,kBk,t,t+1

)
,(

AUl,kZk,t,t+1 + (AJ + C)l,k Wk,t,t+1 + Dl,kBk,t,t+1

)
,

(Sm,kZk,t,t+1)

∣∣∣∣∣∣∣∣∣∣∣
Ft∆

 ,

Cum(4)
[
Oi,(t+1)∆ − Qiξt,t+1,Oj,(t+1)∆ − Qjξt,t+1,Vl,(t+1)∆,Vm,(t+1)∆|Ft∆

]
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=

NV∑
k=1

Cum(4)


(

AUi,kZk,t,t+1 + (AJ + C)i,k Wk,t,t+1 + Di,kBk,t,t+1

)
,(

AUj,kZk,t,t+1 + (AJ + C)j,k Wk,t,t+1 + Dj,kBk,t,t+1

)
,

(Sl,kZk,t,t+1) , (Sm,kZk,t,t+1)

∣∣∣∣∣∣∣∣Ft∆

 ,

Cum(4)
[
Oi,(t+1)∆ − Qiξt,t+1,Vj,(t+1)∆,Vl,(t+1)∆,Vm,(t+1)∆|Ft∆

]
=

NV∑
k=1

Cum(4)

 (
AUi,kZk,t,t+1 + (AJ + C)i,k Wk,t,t+1 + Di,kBk,t,t+1

)
,

(Sj,kZk,t,t+1) , (Sl,kZk,t,t+1) , (Sm,kZk,t,t+1)

∣∣∣∣∣∣Ft∆

 .

B.4.2.4 Latent variable update

Corollary B.4.8.

E
[
Cum(4)

[
ϵV
i,t+1|t+1, ϵ

V
j,t+1|t+1, ϵ

V
l,t+1|t+1, ϵ

V
m,t+1|t+1

∣∣G(t+1)∆

]∣∣∣Gt∆

]
= Cum(4)

[
ϵV
i,t+1|t+1, ϵ

V
j,t+1|t+1, ϵ

V
l,t+1|t+1, ϵ

V
m,t+1|t+1

∣∣Gt∆

]
− Cov

[
Cov

[
ϵV
i,t+1|t+1, ϵ

V
j,t+1|t+1

∣∣G(t+1)∆

]
,Cov

[
ϵV
l,t+1|t+1, ϵ

V
m,t+1|t+1

∣∣G(t+1)∆

]∣∣Gt∆

]
− Cov

[
Cov

[
ϵV
i,t+1|t+1, ϵ

V
l,t+1|t+1

∣∣G(t+1)∆

]
,Cov

[
ϵV
j,t+1|t+1, ϵ

V
m,t+1|t+1

∣∣G(t+1)∆

]∣∣Gt∆

]
− Cov

[
Cov

[
ϵV
i,t+1|t+1, ϵ

V
m,t+1|t+1

∣∣G(t+1)∆

]
,Cov

[
ϵV
i,t+1|t+1, ϵ

V
l,t+1|t+1

∣∣G(t+1)∆

]∣∣Gt∆

]
.

Proof. Since Gt∆ ⊆ G(t+1)∆, applying Lemma B.4.7 to the filtering error ϵV
t+1|t+1 fourth

cumulants leads to the result as E
[
ϵV
t+1|t+1,

∣∣∣G(t+1)∆

]
= 0, therefore canceling all others

terms in Lemma B.4.7. □

We set the latent variable updated fourth cumulant to its expected value with respect to
Gt∆.

Cum(4)
[
ϵV
i,t+1|t+1, ϵ

V
j,t+1|t+1, ϵ

V
l,t+1|t+1, ϵ

V
m,t+1|t+1

∣∣G(t+1)∆

]
(B.12)

≃ E
[
Cum(4)

[
ϵV
i,t+1|t+1, ϵ

V
j,t+1|t+1, ϵ

V
l,t+1|t+1, ϵ

V
m,t+1|t+1

∣∣G(t+1)∆

]∣∣∣Gt∆

]
= Cum(4)

 (
ϵV
i,t+1|t −Σi,t∆ϵ

O
t+1|t

)
,
(
ϵV
j,t+1|t −Σj,t∆ϵ

O
t+1|t

)
,(

ϵV
l,t+1|t −Σl,t∆ϵ

O
t+1|t

)
,
(
ϵV
m,t+1|t −Σm,t∆ϵ

O
t+1|t

) ∣∣∣∣∣∣Gt∆

 ,
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Appendix B. Variance filtering in multidimensional affine models

which is a linear combination of the second and fourth cumulant7 of Ot+1∆ and fourth
cumulant of Vt+1∆ with respect to the information set Gt∆ (see section B.4.2.3).

B.5 Adjustment for Intraday Frequency

We investigate two distinct assumptions regarding error measurement with respect to the
model filtration. The first assumption entails a conditionally Gaussian error measurement,
aligning with asymptotic theory (Assumption 3.4.1). The second assumption considers
a conditional Gaussian distribution of the stochastic integrals at the intraday frequency
(Assumption 3.4.2).

Under Assumption 3.4.1, the error measurement has the following properties:

Corollary B.5.1. If Assumption 3.4.1 holds, for X (t+1)∆ ∈ {O(t+1)∆ − Qξt,t+1,V(t+1)∆},
then

Cum(3)
[
ξt,t+1,X (t+1)∆,X (t+1)∆

∣∣Ft∆

]
= 0,

Cum(3)
[
ξt,t+1, ξt,t+1,X (t+1)∆

∣∣Ft∆

]
= 0,

Cum(3) [ξt,t+1, ξt,t+1, ξt,t+1| Ft∆] = 0.

Cum(4)
[
ξt,t+1,X (t+1)∆,X (t+1)∆,X (t+1)∆

∣∣Ft∆

]
= 0,

Cum(4)
[
ξt,t+1, ξt,t+1,X (t+1)∆,X (t+1)∆

∣∣Ft∆

]
= 0,

Cum(4)
[
ξt,t+1, ξt,t+1, ξt,t+1,X (t+1)∆

∣∣Ft∆

]
= 0,

Cum(4) [ξt,t+1, ξt,t+1, ξt,t+1, ξt,t+1| Ft∆] = 0

Despite satisfying the first two conditional moments of the error measurement, the
measurement error sample moments differ from what would be expected of a normally
distributed random variable. Indeed, in Figure B.1, the sample moments of the simulated
measurement error are not Gaussian, as the skewness and kurtosis differ from 0 and 3,
respectively. Therefore, Assumption 3.4.1 is not valid if N is not large enough.

7If the additional step detailed in the Online Appendix D.8 is used, modifications are required to this
results.
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Appendix B. Variance filtering in multidimensional affine models

Consequently, while Assumption 3.4.1 holds asymptotically, it is invalid for smaller
frequencies. Therefore, we propose a more flexible set of assumptions based on Euler
approximation (see Assumption 3.4.2).

As N tends to infinity, Assumption 3.4.2 aligns with asymptotic theory.8 However, at
intraday frequencies, we still utilize Assumption 3.4.2 to compute the distributional prop-
erties of measurement errors. Indeed, since the realized variance is the sum of N intraday
squared returns, it converges to a Gaussian distribution as N tends to infinity. However, at
intraday frequencies, it does not exhibit such properties. Therefore, if the third or fourth
central moments are not employed in the filter or application, the additional computations
under Assumption 3.4.2 are not useful.

We present the general results of the third central moment of the error measurement.
The proofs are provided in the Online Appendix D.7.

Cum
[
ξi,j,t,t+1, ξĩ,j̃,t,t+1, ξî,ĵ,t,t+1

∣∣Ft∆

]
≈ ∆2

N2

NV∑
k=1

NV∑
k̃=1

NV∑
k̂=1

S i,i,̃i,j̃,̂i,ĵ

k,k̃,k̂
E

[∫ (t+1)∆

t∆

Vk,sVk̃,sVk̂,sds

∣∣∣∣∣Ft∆

]
,

Cum
[
Ri,t,t+1, Rj,t,t+1, ξĩ,j̃,t,t+1

∣∣Ft∆

]
≈ ∆

N

NV∑
k=1

NV∑
k̃=1

Ci,j,̃i,j̃

k,k̃
E

[∫ (t+1)∆

t∆

Vk,sVk̃,sds

∣∣∣∣∣Ft∆

]
,

Cum
[
Vk,t+1, Ri,t,t+1, ξĩ,j̃,t,t+1

∣∣Ft∆

]
≈ ∆

N

NV∑
k̃=1

Hi,̃i,j̃

k,k̃
E

[∫ (t+1)∆

t∆

Vk,sVk̃,sds

∣∣∣∣∣Ft∆

]
,

Cum
[
Vk,t+1, Vk̂,t+1, ξĩ,j̃,t,t+1

∣∣∣Ft∆

]
≈ ∆

N

NV∑
k̃=1

I ĩ,j̃

k,k̃
E

[∫ (t+1)∆

t∆

Vk,sVk̃,sds

∣∣∣∣∣Ft∆

]
,

Cum
[
Vk,t+1, QCVî,ĵ,t,t+1, ξĩ,j̃,t,t+1

∣∣Ft∆

]
8Corollary D.7.8 shows that Equation (B.7) still holds under Assumption 3.4.2
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≈ ∆

N

∆

2

NV∑
k̃=1

Lî,ĵ ,̃i,j̃

k,k̃
E

[∫ (t+1)∆

t∆

Vk,sVk̃,sds

∣∣∣∣∣Ft∆

]
,

Cum
[
Ri,t,t+1, QCVî,ĵ,t,t+1, ξĩ,j̃,t,t+1

∣∣Ft∆

]
≈ ∆

N

∆

2

NV∑
k=1

NV∑
k̃=1

Mi,̂i,ĵ,̃i,j̃

k,k̃
E

[∫ (t+1)∆

t∆

Vk,sVk̃,sds

∣∣∣∣∣Ft∆

]
,

Cum
[
QCVi,j,t,t+1, QCVî,ĵ,t,t+1, ξĩ,j̃,t,t+1

∣∣Ft∆

]
≈ ∆

N

∆2

3

NV∑
k=1

NV∑
k̃=1

J i,j,̂i,ĵ,̃i,j̃

k,k̃
E

[∫ (t+1)∆

t∆

Vk,sVk̃,sds

∣∣∣∣∣Ft∆

]
,

Cum
[
Ri,t,t+1, ξĩ,j̃,t,t+1, ξî,ĵ,t,t+1

∣∣Ft∆

]
≈

NV∑
k=1

NV∑
k̃=1

(
σkci,kρk + σk̃ρk̃ci,k̃

)
C ĩ,j̃ ,̂i,ĵ

k,k̃

∆

N

∆

2
E

[∫ (t+1)∆

t∆

Vk,sVk̃,sds

∣∣∣∣∣Ft∆

]
,

Cum
[
Vk,(t+1)∆, ξĩ,j̃,t,t+1, ξî,ĵ,t,t+1

∣∣Ft∆

]
≈

NV∑
k=1

NV∑
k̃=1

(
σ2
k + σ2

k̃

)
C ĩ,j̃ ,̂i,ĵ

k,k̃

∆

N

∆

2
E

[∫ (t+1)∆

t∆

Vk,sVk̃,sds

∣∣∣∣∣Ft∆

]
,

Cum
[
QCVi,j,t,t+1, ξĩ,j̃,t,t+1, ξî,ĵ,t,t+1

∣∣Ft∆

]
≈

NV∑
k=1

NV∑
k̃=1

(
σ2
kci,kcj,k + σ2

k̃
ci,k̃cj,k̃

)
C ĩ,j̃ ,̂i,ĵ

k,k̃

∆2

N2

∆

3
E

[∫ (t+1)∆

t∆

Vk,sVk̃,sds

∣∣∣∣∣Ft∆

]
.

where

S i,i,̃i,j̃,̂i,ĵ

k,k̃,k̂
= ci,kcĩ,kcj,k̃cî,k̃cj̃,k̂cĵ,k̂ + ci,kcĩ,kcj,k̃cĵ,k̃cj̃,k̂cî,k̂ + ci,kcj̃,kcj,k̃cî,k̃cĩ,k̂cĵ,k̂

+ ci,kcj̃,kcj,k̃cĵ,k̃cĩ,k̂cî,k̂ + ci,kcî,kcj,k̃cĩ,k̃cĵ,k̂cj̃,k̂ + ci,kcî,kcj,k̃cj̃,k̃cĵ,k̂cĩ,k̂

+ ci,kcĵ,kcj,k̃cĩ,k̃cî,k̂cj̃,k̂ + ci,kcĵ,kcj,k̃cj̃,k̃cî,k̂cĩ,k̂,

Hi,̃i,j̃

k,k̃
= σkci,kcĩ,k̃cj̃,k̃2ρk,

I ĩ,j̃

k,k̃
= cĩ,k̃cj̃,k̃σ

2
k2ρ

2
k,

Lî,ĵ ,̃i,j̃

k,k̃
= σ2

kcî,kcĵ,kcĩ,k̃cj̃,k̃2ρ
2
k,
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Appendix B. Variance filtering in multidimensional affine models

Mi,̂i,ĵ,̃i,j̃

k,k̃
= σkci,kcî,kcĵ,kcĩ,k̃cj̃,k̃2ρk,

J i,j,̂i,ĵ,̃i,j̃

k,k̃
= σ2

kci,kcj,kcî,kcĵ,kcĩ,k̃cj̃,k̃2ρ
2
k.

The third cumulant are a function of

E

[∫ (t+1)∆

t∆

Vk,sVk̃,sVk̂,sds

∣∣∣∣∣Ft∆

]
and E

[∫ (t+1)∆

t∆

Vk,sVk̃,sds

∣∣∣∣∣Ft∆

]
,

which implies a cubic and quadratic relationship with the latent state9 respectively.
For the fourth cumulant, we assume the following:

Assumption B.5.2. The fourth cumulant of the measurement error is null and is indepen-
dent of all other model components.

Even though the kurtosis of the measurement error is different from 3, we saw in Section
3.4 that the bias for the fourth central moment is not statistically different from zero under
Assumption 3.4.1, thus not justifying the complete derivation of the fourth cumulant of the
measurement error.10

B.6 Autocorrelation of Filtering Errors

This Appendix assesses the influence of using the observed filtration in contrast to the
model filtration in the filter derived in Section 3.3, resulting in an autocorrelation of the
filtering error.

Based on Equation (3.10), we define the errors made on the variance with respect to
the model and observed filtration, respectively, as follows:

eV
t+1|t = V(t+1)∆ − E

[
V(t+1)∆

∣∣Ft∆

]
= S Z t,t+1 (Model Filtration),

ϵV
t+1|t = V(t+1)∆ − E

[
V(t+1)∆

∣∣Gt∆

]
= KϵV

t|t + eV
t+1|t (Observed Filtration).

9See Online Appendix D.3 for derivations.
10We leave that for future research.
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Appendix B. Variance filtering in multidimensional affine models

Based on Equation (3.8) and (3.14), the errors made on the observation are defined as

eO
t+1|t = O(t+1)∆ − (AG + AH Vt∆)︸ ︷︷ ︸

E[O(t+1)∆|Ft∆]

(Model Filtration),

= A (U Z t,t+1 + J W t,t+1) + C W t,t+1 + D Bt,t+1 + Q ξt,t+1,

ϵO
t+1|t = O(t+1)∆ − E

[
O(t+1)∆

∣∣Gt∆

]
= AHϵV

t|t + eO
t+1|t (Observed Filtration).

Therefore, ϵV
t+1|t+1, the updated filtering error on our latent variables, can be expressed as

follows:

ϵV
t+1|t+1 ≃ ϵV

t+1|t −Σt∆ϵ
O
t+1|t (B.13)

= eV
t+1|t + KϵV

t|t −Σt∆

(
eO
t+1|t + AHϵV

t|t
)

= eV
t+1|t −Σt∆eO

t+1|t + (K −Σt∆AH) ϵV
t|t.

Therefore, the filtering error ϵV
t+1|t+1 is inherently linked to ϵV

t|t.

We can further investigate the variance of the latent variable and disentangle the vari-
ance originating from the variance of ϵV

t|t and the variance implied by the stochastic inte-
grals:

Var
[
ϵV
t+1|t+1

∣∣Gt∆

]
(B.14)

≃ E


(

eV
t+1|t + KϵV

t|t −Σt∆

(
eO
t+1|t + AHϵV

t|t

))
(

eV
t+1|t + KϵV

t|t −Σt∆

(
eO
t+1|t + AHϵV

t|t

))⊤
∣∣∣∣∣∣Gt∆


= E


(

eV
t+1|t −Σt∆eO

t+1|t

)(
eV
t+1|t −Σt∆eO

t+1|t

)⊤
+
(

KϵV
t|t −Σt∆AHϵV

t|t

)(
KϵV

t|t −Σt∆AHϵV
t|t

)⊤
∣∣∣∣∣∣∣Gt∆


= E

[
Var

[
eV
t+1|t −Σt∆eO

t+1|t
∣∣Ft∆

]∣∣Gt∆

]︸ ︷︷ ︸
Variance of the stochastic integrals

+ (K −Σt∆AH)Var
[
ϵV
t|t
∣∣Gt∆

]
(K −Σt∆AH)⊤︸ ︷︷ ︸

Variance due to last step uncertainty

,
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Appendix B. Variance filtering in multidimensional affine models

leading to autocorrelation in the variance of the filtering error.
Regarding the filtering errors studied in Section 3.4, the Equation (B.13) implies that(

ε
(ℓ,1)
k,t

)n
is autocorrelated with

(
ε
(ℓ,1)
k,t−1

)n
for n ∈ {1, 2, 3, 4}. We then define b

(ℓ,n)
k,t as the

autoregressive parameter with

b
(ℓ,n)
k,t =

(
e−κk∆ − [Σt∆AH]k,k

)n
. (B.15)

However, b(ℓ,n)k,t might not capture all autocorrelation in multivariate or higher-order mo-
ments, as the error term has a complex structure and can include other residual terms ex-
hibiting autocorrelation.

Also, since, from Equation (B.14), the filtering error variance E

[(
ε
(ℓ,1)
k,t

)2∣∣∣∣Gt∆

]
has

an autocorrelation parameter of b(ℓ,2)k,t , resulting in an autocorrelation parameter for ε(ℓ,2)k,t of
b
(ℓ,2)
k,t . The same conclusions for central moment 3 and 4 can be obtained with Equations

(3.28) and (3.29).

B.7 Panel Analysis

This Appendix describes the methodology employed to derive our confidence interval for
the Monte Carlo simulation study outlined in Section 3.4.

B.7.1 Model

We have a panel model with a time axis (t), a path axis (l), and a third axis (m), which is
a combination of the factor axis (k) and moment axis (n) with m = nk, n ∈ 1, ...4 and
k ∈ 1, ...NV . Let

yl,m,t = ϑm︸︷︷︸
fixed effect

+ ul,m︸︷︷︸
random effect

+ el,m,t︸︷︷︸
noise

= ϑm + zl,m,t, (B.16)

which is the equivalent to Equation (3.35) without any autoregressive components (yl,m,t =

ε
(k,n)
t,l ). We have modified the notation to adapt it to panel analysis regression.
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Appendix B. Variance filtering in multidimensional affine models

Given that Equation (3.35) does have an autoregressive components b
(ℓ,n)
k,t and it is

known, not estimated, our panel analysis focuses then on the transformed variable:

yℓ,m,t = ε
(ℓ,n)
k,t − b

(ℓ,n)
k,t ε

(ℓ,n)
k,t−1.

Our objective is to estimate the vector of fixed effects11 ϑ̂ (M × 1) and its covariance
matrix Cov[ϑ̂]. The random effects ul,m captures the variability associated with a given
path l. Because paths are simulated independently, there is no covariation in that axis. The
dependence between bins m and m′ is taken into account in the residuals term. Therefore,

E[ul,m] = 0 and Cov[ul,m, ul′,m′ ] =

{
σ2
m if l = l′ and m = m′,

0 otherwise.
(B.17)

The residuals el,m,t have the following moments:

E[el,m,t] = 0 and Cov[el,m,t, el′,m′,t′ ] =

{
Γm,m′ if l = l′ and t = t′,

0 otherwise.
(B.18)

The matrix Γ =
[
Γm,m′

]
m,m′∈{1,...M} is a M×M covariance matrix across bins. The struc-

ture in Equation (B.18) relies on a homoskedasticity and no serial correlation assumption,
which we will soon relax. In addition, we define zl,m,t = ul,m + el,m,t as the combined
error: the random effect plus the residual, that is,

E[zl,m,t] = 0

Cov[zl,m,t, zl′,m′,t′ ] =

{
σ2
m1m=m′ + Γm,m′ if l = l′ and t = t′,

0 otherwise.
(B.19)

11Even though Vogelsang, 2012 discusses how to estimate parameters in panel analysis with fixed effects
using Driscoll and Kraay, 1998 with a complex error structure, it does not apply to our case as they estimate
the coefficient of the regressor, not the fixed effect parameters.
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B.7.2 Covariance estimates

We have two distinct groups of variance parameters to estimate: the variance of the random
effect σ2

m for m = 1, . . . ,M , and the nuisance covariance matrix Γm,m′ .

The first regression is Equation (B.16). Because E[yl,m,t] = ϑm,

ϑ̂m = ¯̄ym =
1

TL

T∑
t=1

L∑
l=1

yl,m,t (B.20)

is a consistent estimator of ϑm. Define the residual ẑl,m,t = yl,m,t − ϑ̂m, and note that

ˆ̄̄zm =
1

LT

∑
l

∑
t

yl,m,t − ¯̄ym︸ ︷︷ ︸
ẑl,m,t

= 0.

The sample covariance

1

LT − 1

∑
l

∑
t

ẑl,m,tẑl,m′,t, (B.21)

is a consistent estimator of

Cov[zl,m,t, zl,m′,t] = Cov[ul,m, ul,m′ ] + Cov[el,m,t, el,m′,t] = σ2
m1m=m′ + Γm,m′ .

The second regression is

yl,m,t − ȳl,m = ϑm + ul,m + el,m,t − (ϑm + ul,m + ēl,m) = el,m,t − ēl,m,

where ȳl,m = 1
T

∑T
t=1 yl,m,t and ēl,m = 1

T

∑T
t=1 el,m,t. The sample covariance

1

L(T − 1)

∑
l

∑
t

(yl,m,t − ȳl,m)(yl,m′,t − ȳl,m′), m,m′ ∈ {1, ...,M} (B.22)

is a consistent estimator of Γm,m′ .
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Therefore, the estimator of σ2
m is given by∑

l

∑
t(yl,m,t − ¯̄ym)(yl,m′,t − ¯̄ym′)

LT − 1
−
∑

l

∑
t(yl,m,t − ȳl,m)(yl,m′,t − ȳl,m′)

L(T − 1)
. (B.23)

Even though other estimates are possible,12 Equations (B.21) and (B.22) are used to es-
timate the variances. However, σ̂2

m is not guaranteed to be positive. Therefore, we do as
suggested by Greene, 2017 and Maddala, 1971: if a negative value arises, we set σ̂2

m = 0

and use ẑl,m,t in Equation (B.22) instead of (yl,m,t − ȳl,m) for the bin m.

The covariance of ϑ̂m is then

Cov
[
ϑ̂m, ϑ̂m′

]
= Cov

[
1

LT

∑
t

∑
l

yl,m,t,
1

LT

∑
t′

∑
l′

yl′,m′,t′

]

=
1

(LT )2
Cov

[∑
t

∑
l

yl,m,t,
∑
t′

∑
l′

yl′,m′,t′

]

=
1

(LT )2

∑
l

Cov

[∑
t

yl,m,t,
∑
t′

yl,m′,t′

]
Independence of trajectories

=
1

(LT )2

∑
l

(
T 2σ̂2

m1m=m′ + T Γ̂m,m′

)
=

1

LT

(
T σ̂2

m1m=m′ + Γ̂m,m′

)
.

B.7.3 Heteroskedastic errors with serial and spatial autocorrelation

The assumption of homoskedasticity is now relaxed for the residual el,m,t, as it includes
noise with serial (t axis) and spatial (m axis) autocorrelation along with heteroskedastic-
ity. Furthermore, the random effect also exhibits heteroskedasticity, as stated in Equation

12The homoskedastic case without spatial correlation is covered in Maddala, 1971. Baltagi, 2021 also
proposes another way to isolate the variance parameters in section 5.1 and discuss the case with het-
eroskedasticity with no serial correlation. Greene, 2017 also proposed two methodologies. See https:
//online.stat.psu.edu/stat503/lesson/14/14.1 as a reference for two-stage nested design model with either fixed
or random effect.
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(B.17). Therefore, Γm,m′ is a T × T matrix where

Cov[el,m,t, el′,m′,t′ ] =

{ [
Γm,m′

]
t,t′

if l = l′,

0 otherwise.

We estimate
[
Γm,m′

]
t,t′

by
[
Γ̂l,m,m′

]
t,t′

for each trajectory l and we follow the Newey and
West, 1987 estimator with Bartlett weights and bandwidth Q:

[
Γ̂l,m,m′

]
t,t′

(B.24)

=


T

T−1

(
1− |t−t′|

Q+1

)
(yl,m,t − ȳl,m)(yl,m′,t′ − ȳl,m′) if |t− t′| ≤ Q,

0 otherwise.

The factor T
T−1

is to adjust for degrees of freedom as suggested in Andrews, 1991. The
random effect parameter is estimated with

σ̂2
m +

∑
l

∑
t(yl,m,t − ȳl,m)

2

L(T − 1)
=

∑
l

∑
t ẑ

2
l,m,t

TL− 1
,

where σ̂2
m is isolated as in Equation (B.23). If σ̂2

m is negative, Equation (B.24) is calculated
with ẑl,m,t instead.

The covariance matrix of the vector ϑ̂ = [ϑ̂1, ..., ϑ̂M ], denoted Ω̂, is then

[Ω̂]m,m′ = Cov
[
ϑ̂m, ϑ̂m′

]
=

1

(LT )2

∑
l

Cov

[∑
t

yl,m,t,
∑
t′

yl,m′,t′

]
=

1

(LT )2

∑
l

(
T 2σ̂2

m1m=m′ + iT Γ̂l,m,m′i⊤T
)
,

where iT is a T × 1 column vector of ones.
We might consider conducting individual estimations and statistical tests for each m

bin. Nevertheless, due to interrelations among the M equations, Zellner, 1962 argue that
it’s more effective to estimate the entire system, incorporating spatial correlation.13 There-

13He elaborates on the estimation procedure in situations where there’s no serial correlation and consistent
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fore, a global test can be made on the vector ϑ̂ = [ϑ̂1, ..., ϑ̂M ], where

ϑ̂⊤Ω̂−1ϑ̂ ∼ XM .

We can also present individual m bin test based on

ϑ̂m√
[Ω]m,m

∼ N (0, 1) .

variance within each group; other explanations can be found in Fiebig, 2003.
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Chapter C

Appendices of Enhancing Parameter Estimation
in Stochastic Volatility Models Using Intraday
Data: Generalized Method of Moments
Comparative Analysis

C.1 Measurement Error Variance

The goal is to derive E
[∫ t∆

0

(∑K
k=1 Vk,s

)2
ds

]
(Corollary C.1.3), which is a key quantity

for computing the conditional and unconditional measurement error variances in Equations
(4.9) and (4.10).

Corollary C.1.1.

E
[∫ t∆

0

V 2
k,sds

]
=

(
σ2
kθk
2κk

+ θ2k

)
t∆.

Proof. From Fubini’s theorem

E
[∫ t∆

0

V 2
k,sds

]
=

∫ t∆

0

E
[
V 2
k,s

]
ds =

∫ t∆

0

(
(E [Vk,s])

2 + Var [Vk,s]
)
ds

=

∫ t∆

0

(
σ2
kθk
2κk

+ θ2k

)
ds =

(
σ2
kθk
2κk

+ θ2k

)
t∆.
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Corollary C.1.2. Let Vk,t∆ and Vk̃,t∆ follow a CIR process with independent Brownian
motions, then

E
[∫ t∆

0

Vk,sVk̃,sds

]
= θk̃θkt∆.

Proof. From Fubini’s theorem,

E
[∫ t∆

0

Vk,sVk̃,sds

]
=

∫ t∆

0

E
[
Vk,sVk̃,s

]
ds =

∫ t∆

0

E [Vk,s]E
[
Vk̃,s

]
ds

=

∫ t∆

0

θk̃θkds = θk̃θkt∆.

Corollary C.1.3.

E

∫ t∆

0

(
K∑
k=1

Vk,s

)2

ds

 =

(
K∑
k=1

θk

)2

t∆+
K∑
k=1

σ2
kθk
2κk

t∆.

Proof. See Corollaries C.1.1 and C.1.2. □

C.2 Measurement Error Empirical Property

This Appendix discusses the model assumptions regarding the measurement error, the as-
sumptions used for the moment calculation for Appendix C.3.1 and the impact of model
specification with the instrumental variables used in the GMM moment selection. We
proceed with the Monte Carlo simulation detailed in Section 4.3 using the parameters1 of
Scenario A from Bollerslev and Zhou, 2002.

1The results for Scenario B and C leads to the same conclusion. They are available upon request.
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C.2.1 Model assumptions regarding the measurement error

For specifications (4.14) and (4.16), we assume a null conditional expectation and two
specifications for the measurement error conditional variance. That is,

E [ξt,t+1| Ft∆] = 0, Var [ξt,t+1| Ft∆] = γ2 and Var [ξt,t+1| Ft∆] = η2 E [RQt,t+1| Ft∆] .

Since the measurement error is not simulated based on the models, but rather calculated
with Equation (4.13), we must evaluate whether the assumptions for the measurement error
are valid.

For each trajectory, we compute the averaged error 1
T

∑T
t=1 ξt,t+1, the squared error

under both specifications, 1
T

∑T
t=1 ξ

2
t,t+1 − γ2 and 1

T

∑T
t=1 ξ

2
t,t+1 − η2RQt,t+1. The results

are shown in Figure C.1. As anticipated by the asymptotic theory, the assumption that the
measurement error is centered at zero (Panel A) appears to be reasonable. Panels B and
C present the second moment of ξt,t+1 under both specifications. Panel B corresponds to
specification (4.14) presented by BZ, while Panel C relates to specification (4.16), which is
supported by the asymptotic theory. Even though both Panels B and C are centered around
zero, specification (4.16)’s panel shows significantly less variation between the squared
error and its conditional assumed variance, providing an initial indication that specification
(4.16) is superior to specification (4.14).

C.2.2 Covariance with model components

To obtain the results of Appendix C.3.1, we rely on three assumptions detailed in the Online
Appendix E.6.1, which are

E [Vt,t+1ξt,t+1|Ft∆] = 0,E [Vt+1ξt,t+1|Ft∆] = 0 and E [Rt,t+1ξt,t+1|Ft∆] = 0. (C.1)

Furthermore, in Appendix C.4, we also use assumptions based on unconditional expecta-
tions:

E [Vk,t,t+1ξt,t+1] = 0,E
[
Vk,(t+1)∆ξt,t+1

]
= 0 and E [Rt,t+1ξt,t+1] = 0. (C.2)
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Figure C.2 shows numerical evidence that Assumptions (C.2) hold, as the sample average
for all 1000 trajectories are centered at zero for all three panels. While we numerically
justify Assumptions (C.2), it does not directly imply (C.1). However, based on the results
of Figure C.2, we assume that Assumptions (C.1) are satisfied.

C.2.3 Interaction with instrumental variables

The GMM moment selection described in Sections 4.4 and 4.5 assumed that the mea-
surement error ξt,t+1 is not correlated with the instrumental variables RVt−1,t and RV 2

t−1,t,
thereafter RV p

t−1,t. However, assuming that the variance of ξt,t+1 is constant over time
can impact the orthogonality of ξ2t,t+1 with RV p

t−1,t via the discrepancy between the time-
varying condition variance Var [ξt,t+1| Ft∆] and the constant γ2.

Panels A.1 and A.2 of Figure C.3 show numerically that the correlations between the
measurement error ξt,t+1 and the instrumental variables RVt−1,t and RV 2

t−1,t are centered
at zero.

Panels B.1 and B.2 illustrate that when we don’t acknowledge for the time-varying
variance of the quadratic variation measurement error, then the residual (ξ2t,t+1 − γ2) is
correlated with RVt−1,t and RV 2

t−1,t. However, when the conditional variance of ξt,t+1 is
measured according to the asymptotic theory, the correlation between (ξ2t,t+1−η2RQt,t+1)

and the instrument variables are centered around zero (Figure C.3, Panels C.1 and C.2).
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Panel A: measurement error and instrumental

Panel B: Squared measurement error and instrumental variable with specification (4.14)
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Panel C: Squared measurement error and instrumental variable with specification (4.16)

1000 independent trajectories with T = 4000 daily steps of length ∆ = 1 are generated with parameter of
scenario A {κ = 0.03, θ = 0.25, σ = 0.10} and one variance factor without drift and leverage effect.
For each path, we simulate the realized variance with 82 intraday steps and the integrated variance with 820
intraday steps. All simulation details are provided in Section 4.3. Panels A are the empirical correlation
between measurement error ξt,t+1 and the instrumental variable RVt−1,t and RV 2

t−1,t over each trajectory.
Panels B are the empirical correlation between ξ2t,t+1−γ2 and the instrumental variableRVt−1,t andRV 2

t−1,t

over each trajectory. Panels C are the empirical correlation between ξ2t,t+1−η2RQt,t+1 and the instrumental
variable RVt−1,t and RV 2

t−1,t over each trajectory. For each path, we compute a point estimate and a 95%
confidence interval for the mean (dashed lines). The desired theoretical value is presented by the solid line.

Figure C.3: Correlation between ξt,t+1 and instrumental variables
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C.3 Conditional Moment Derivation

C.3.1 One-variance factor

This Appendix summarizes the conditional moments related to the instantaneous variance,
the integrated variance and the return. The subscript k is omitted for readability. We
denote Vt,t+1 =

∫ (t+1)∆

t∆
Vsds, Wt,t+1 =

∫ (t+1)∆

t∆

√
VsdWs and Bt,t+1 =

∫ (t+1)∆

t∆

√
VsdBs.

Complete derivations are available in the Online Appendices E.4 and E.6.1.

From Corollaries E.4.3 and E.4.4, the first moment of the instantaneous variance and
integrated variance are

E
[
V(t+1)∆|Ft∆

]
= e−κ∆︸︷︷︸

α

Vt∆ + θ
(
1− e−κ∆

)︸ ︷︷ ︸
β

≈ (1− κ∆)Vt∆ + κθ∆, (C.3)

E [Vt,t+1|Ft∆] = Vt∆
(1− e−κ∆)

κ︸ ︷︷ ︸
a

+ θ∆− θ
(1− e−κ∆)

κ︸ ︷︷ ︸
b

≈ ∆Vt∆ +
1

2
κθ∆2. (C.4)

Their respective variances, detailed in Corollaries E.4.9 and E.4.10, are

Var
[
V(t+1)∆|Ft∆

]
=

σ2

κ
(e−κ∆ − e−2κ∆)︸ ︷︷ ︸

C

Vt∆ +
σ2θ

2κ
(1− e−κ∆)2︸ ︷︷ ︸

D

(C.5)

≈ σ2∆Vt∆ +
σ2κθ

2
∆2,

Var [Vt,t+1|Ft∆] =
σ2

κ2

(
1− e−2κ∆

κ
− 2e−κ∆∆

)
︸ ︷︷ ︸

A

Vt∆ (C.6)

+
σ2θ

κ2

(
∆− 1− e−2κ∆

2κ
− 2

1− e−κ∆

κ
+ 2e−κ∆∆

)
︸ ︷︷ ︸

B

≈ 1

3
σ2∆3Vt∆ +

σ2κθ

12
∆4.
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Finally, from Corollaries E.4.8, E.4.11 and E.4.12, the conditional covariances are

Cov
[
Vt,t+1, V(t+1)∆|Ft∆

]
=

σ2

κ
e−κ∆

(
∆− 1− e−κ∆

κ

)
︸ ︷︷ ︸

F

Vt∆ (C.7)

+ θ
σ2

κ

((
1− e−κ∆

)2
2κ

− e−κ∆

(
∆− 1− e−κ∆

κ

))
︸ ︷︷ ︸

G

≈ σ2

2
∆2Vt∆ +

σ2

6
κθ∆3,

Cov [Vt,t+1,Wt,t+1|Ft∆] =
σ

κ

(
1− e−κ∆

κ
− e−κ∆∆

)
︸ ︷︷ ︸

F̃

Vt∆ (C.8)

+
σ

κ
θ

(
∆− 2

1− e−κ∆

κ
+ e−κ∆∆

)
︸ ︷︷ ︸

G̃

≈ σ

2
∆2Vt∆ +

κσθ

6
∆3,

Cov
[
Wt,t+1, V(t+1)∆

∣∣Ft∆

]
= σe−κ∆∆︸ ︷︷ ︸

F

Vt∆ + σθ

(
1− e−κ∆

κ
− e−κ∆∆

)
︸ ︷︷ ︸

G

. (C.9)

The recursive relationships between conditional moments are

E [Vt+1,t+2|Ft∆] = e−κ∆︸︷︷︸
α

E [Vt,t+1|Ft∆] +
(
1− e−κ∆

)
θ∆︸ ︷︷ ︸

β∆

(C.10)

≈ (1− κ∆)E [Vt,t+1|Ft∆] + (κθ∆2),

E
[
V2
t+1,t+2|Ft∆

]
= α2︸︷︷︸

H

E
[
V2
t∆,(t+1)∆|Ft∆

]
(C.11)

+
1

a
(a2(C + 2αβ) + (α− α2)(2ab+ A))︸ ︷︷ ︸

I

E [Vt,t+1|Ft∆]
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+−bI + (a2(D + β2) + β(2ab+ A) + (1− α2)(b2 +B))︸ ︷︷ ︸
J

≈ (1− 2κ∆)E
[
V2
t∆,(t+1)∆|Ft∆

]
+
(
σ2 + 2κθ

)
∆2 E [Vt,t+1|Ft∆] +

(
κ2θ2 +

σ2κθ

3

)
∆4,

E [Vt+1,t+2Vt,t+1|Ft∆] = α︸︷︷︸
H̃

E
[
V2
t∆,(t+1)∆|Ft∆

]
(C.12)

+
1

a
(a(F + b+ αb+ aβ)− α(2ab+ A))︸ ︷︷ ︸

Ĩ

E [Vt,t+1|Ft∆]

+−bĨ +
(
aG+ b2 + abβ − α(B + b2)

)︸ ︷︷ ︸
J̃

≈ (1− κ∆)E
[
V2
t,t+1|Ft∆

]
+

(
σ2

2
+ 2κθ

)
∆2 E [Vt,t+1|Ft∆]−

(
σ2

6
κθ +

κ2θ2

2

)
∆4,

E [Rt,t+1|Ft∆] =

(
λ− 1

2

)
E [Vt,t+1|Ft∆] + r∆,

E [Rt,t+1Vt,t+1| Ft∆] =

(
λ− 1

2

)
︸ ︷︷ ︸

Ĥ

E
[
V2
t,t+1

∣∣Ft∆

]

+

(
ρF̃

a
+ r∆

)
︸ ︷︷ ︸

Ĵ

E [Vt,t+1| Ft∆] +

(
ρG̃− ρF̃

b

a

)
︸ ︷︷ ︸

Î

,

E [Rt,t+1Vt+1,t+2| Ft∆] = E
[(

r∆+

(
λ− 1

2

)
Vt,t+1

)
Vt+1,t+2

∣∣∣∣Ft∆

]
+ ρF︸︷︷︸

I

E [Vt,t+1| Ft∆] + aρG− bρF︸ ︷︷ ︸
J

.

When the integrated variance is replaced with the observable realized variance, we have:

E [RVt+1,t+2|Gt∆]− αE [RVt,t+1|Gt∆]−∆β = 0,
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E
[
RV 2

t+1,t+2|Gt∆

]
− E

[
ξ2t+1,t+2|Gt∆

]
−H

(
E
[
RV 2

t,t+1|Gt∆

]
− E

[
ξ2t,t+1|Gt∆

])
− I E [RVt,t+1|Gt∆]− J = 0,

E [RVt+1,t+2RVt,t+1|Gt∆]− H̃
(
E
[
RV 2

t,t+1|Gt∆

]
− E

[
ξ2t,t+1|Gt∆

])
− Ĩ E [RVt,t+1|Gt∆]− J̃ = 0.

C.3.2 Two-variance factor

This Appendix summarizes the conditional moments related to the case with two variance
factors, additional details are available in the Online Appendix E.6.2. We have

α1 = e−κ1∆, α2 = e−κ2∆,

β1 = (1− α1)θ1, β2 = (1− α2)θ2,

1− A = (1− α1)(1− α2) = 1− (α1 + α2) + α1α2,

B = (1− α1)β2∆+ (1− α2)β1∆ = (1− A)(θ1 + θ2)∆.

From Lemma E.6.14, the recursive relationship for the integrated variance2 is

(1− α1L)(1− α2L)Vt+k+2,t+k+3 = B +MA(2) = (1− A)(θ1 + θ2)∆ +MA(2),

where L is the lag operator. We can generalized with

(1− α1L)
q(1− α2L)

qVt+k+2q,t+k+2q+1 = (1− α1)
q−1(1− α2)

q−1B +MA(2q)

= (1− A)q(θ1 + θ2)∆ +MA(2q).

Therefore, we have

(1− α1L)
q(1− α2L)

qE[Vt+k+2q,t+k+2q+1|Gt∆]

= (1− α1)
q(1− α2)

q(θ1 + θ2)∆,

2See Equation B.4 of BZ or Proposition 3.3 and 3.4 of Meddahi, 2003.
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where Vt+k+2q,t+k+2q+1 can be replaced with the realized variance RVt+k+2q,t+k+2q+1. To
reproduce the results of Bollerslev and Zhou, 2002, we set q = 2 and k = 1, which implies
that

Vt+5,t+6 − 2(α1 + α2)Vt+4,t+5 + (α2
1 + α2

2 + 4α1α2)Vt+3,t+4

− 2(α2
1α2 + α2

2α1)Vt+2,t+3 + (α2
1α

2
2)Vt+1,t+2 − (1− α1)

2(1− α2)
2(θ1 + θ2)∆,

has a null expected value conditional to the model filtration at time t.

For the second moment, from Equation (B.8) of BZ, we have

(1− α1L) (1− α2L) (1−H1L) (1−H2L) (1− α1α2L)V2
(t+5)∆,(t+6)∆

= f(κ1, κ2, θ1, θ2, σ1, σ2) +MA(5).

Therefore, we have

V2
t+5,t+6 (1− α1α2L)− (α1 + α2 +H1 +H2)︸ ︷︷ ︸

ϕ1

V2
t+4,t+5 (1− α1α2L)

+ (α1α2 +H1H2 + (α1 + α2)(H1 +H2))︸ ︷︷ ︸
ϕ2

V2
t+3,t+4 (1− α1α2L)

− ((α1 + α2)H1H2 + α1α2(H1 +H2))︸ ︷︷ ︸
ϕ3

V2
t+2,t+3 (1− α1α2L)

+ α1α2H1H2︸ ︷︷ ︸
ϕ4

V2
t+1,t+2 (1− α1α2L)− f(κ1, κ2, θ1, θ2, σ1, σ2),

which can be further simplified to

V2
t+5,t+6 − (ϕ1 + α1α2)V2

t+4,t+5 + (ϕ2 + α1α2ϕ1)V2
t+3,t+4 − (ϕ3 + α1α2ϕ2)V2

t+2,t+3

+ (ϕ4 + α1α2ϕ3)V2
t+1,t+2 − (α1α2ϕ4)V2

t,t+1 − f(κ1, κ2, θ1, θ2, σ1, σ2),

which has a null expected value conditional to the model filtration at time t.
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C.4 Unconditional Moment Derivation

This Appendix summarizes the unconditional moments used in the moment selection of
Sections 4.4.1 and 4.5.1. Complete derivations are available in the Online Appendix E.7.
The first two unconditional moments of the realized variance are

E [RVt,t+1] =
∑
k

θk∆ and Var [RVt,t+1] = E
[
ξ2t,t+1

]
+
∑
k

θkσ
2
k

2κk

(
2

κk

(∆− ak)

)
.

The expected value of the realized quarticity is

E [RQt,t+1] =

(∑
k

θk

)2

∆+
∑
k

θkσ
2
k

2κk

∆.

The unconditional moments related to the lagged values of the realized variance are useful
since they are not affected by the measurement error. If we assume that E [ξt,t+1Vt+1] = 0,
then, for h ≥ 1, the unconditional covariance between lagged realized variances is

Cov [RVt,t+1, RVt+h,t+h+1] =
∑
k

αh−1
k a2k

θkσ
2
k

2κk

,

implying the following recursion for a model with two variance factors (K = 2)

Cov [RVt,t+1, RVt+1+2n,t+2+2n] = (αn
1 + αn

2 )Cov [RVt,t+1, RVt+1+n,t+2+n]

− (αn
1α

n
2 )Cov [RVt,t+1, RVt+1,t+2] .

If we assume that E [Rt,t+1ξt,t+1] = 0, then the unconditional covariance between the real-
ized variance and returns is

Cov [RVt,t+1, Rt,t+1] =
∑
k

(
λk −

1

2

)(
a2k + f(∆, κk)

) σ2
kθk
2κk

+ ρk
σk

κk

θk (∆− ak) ,
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where f(∆, κk) = 2
κk

(
∆+ 1−e−2κk∆

2κk
− 21−e−κk∆

κk

)
is derived in Corollary E.7.4. The

covariance between the lagged realized variance and the returns is for h ≥ 1

Cov [RVt+h,t+h+1, Rt,t+1] =
∑
k

αh−1
k a2k

((
λk −

1

2

)
θkσ

2
k

2κk

+ ρkσkθk

)
.

C.5 Linear Regression Study

C.5.1 One variance

In this Appendix,3 we examine the issue regarding the moment selection of BZ as discussed
in Table 4.1 of Section 4.4.1. The BZ moment selection alone does not fully isolate all the
parameters in the GMM estimation when the error measurement parameter is estimated.

More precisely, the parameters κ and θ can be fully identified by using the moment
I) with α = e−∆κ ≈ 1 − κ∆ and β = θ(1 − e−∆κ)∆ ≈ θκ∆ along with instrumental
variables in moments II) and III). The remaining parameters, σ and γ2, appear in moments
IV) to VI). While it appears that the parameter σ can be effectively identified based on the
given moments, the parameter γ2 has very little effect on the moment condition.

To demonstrate our intuition numerically, we write moments I) to III) with the following
regressions and also estimate them using the Monte Carlo Simulation (see Section 4.4.2)

RVt+1,t+2RV p
t−1,t = αRVt,t+1RV p

t−1,t (C.13)

+ (1− α)θ∆RV p
t−1,t + ε

(p)
t+1,t+2, p ∈ {0, 1, 2}.

In Figure C.4, we present the R2 results for the regression (C.13) in red, in panels A and
B, representing Models (4.14) and (4.16), respectively. The R2 values are high and show
that the error ε(p)t+1,t+2 does not dominate the right-hand side of regression (C.13).

Furthermore, we write moments IV) to VI) with the following regressions

RV 2
t+1,t+2RV p

t−1,t = Var
[
ξ
(N)
t+1,t+2

∣∣∣Ft∆

]
−H Var

[
ξ
(N)
t,t+1

∣∣∣Ft∆

]
+HRV 2

t,t+1RV p
t−1,t

3We present the results for parameter set A, the Figures for parameter sets B and C are available upon
request.
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+ IRVt,t+1RV p
t−1,t + JRV p

t−1,t + e
(p)
t+1,t+2, p ∈ {0, 1, 2}. (C.14)

For Model (4.14) Regression (C.14) becomes

RV 2
t+1,t+2RV p

t−1,t = (1−H)γ2 +HRV 2
t,t+1RV p

t−1,t

+ IRVt,t+1RV p
t−1,t + JRV p

t−1,t + e
(p)
t+1,t+2, p ∈ {0, 1, 2},

and for Model (4.16), Regression (C.14) becomes

RV 2
t+1,t+2RV p

t−1,t = η2RQt+1,t+2 −Hη2RQt,t+1 +HRV 2
t,t+1RV p

t−1,t

+ IRVt,t+1RV p
t−1,t + JRV p

t−1,t + e
(p)
t+1,t+2, p ∈ {0, 1, 2}.

From Appendix C.3.1, we have the theoretical values of H , I and J along with the error
measurement parameters γ2 and η2 for Model (4.14) and Model (4.16) respectively. The
regression residuals e(p)t+1,t+2 can therefore be obtained as well as the the R2 associated with
the regression.4

In Figure C.4, we present the R2 results for the regression (C.14) in blue in the panels
A and B, representing Models (4.14) and (4.16), respectively. The R2 values observed in
both panels indicate that a significant proportion of the moment is not explained by the
variables on the right-hand side of the regression.

The GMM procedure uses the average of the residuals e
(p)
t+1,t+2 over the trajectory of

each moments presented in Table 4.1 to estimate its parameters. We also compare the av-
erage of the residuals e(p)t+1,t+2 to the average of Var

[
ξ
(N)
t+1,t+2

∣∣∣Ft∆

]
−H Var

[
ξ
(N)
t,t+1

∣∣∣Ft∆

]
over the 1000 simulations in Figure C.5. Panel A corresponds to Model (4.14), and Panel
B represents Model (4.16); both panels are run on Regression (C.14).

The key observation is that the sample average, denoted E[e
(p)
t+1,t+2] (blue), exhibits

4The coefficients of the linear regression are not subject to estimation; rather, they are determined by
the proofs provided in Appendix C.3. The computation of the coefficient of determination, denoted as R2,
follows the formula 1 − SSE

SST , where SSE represents the sum of squared residuals and SST stands for the
total sum of squares. Given the potential disparity between sample averages and theoretical quantities, it’s
important to note that the classical definition ofR2 might not equate to the square of the correlation coefficient
in our setup. We present here the square of the correlation coefficient.
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significantly more variation compared to the error measurement (black). Furthermore, the
black lines are near zero, which can pose challenges for the GMM to differentiate between
the error measurement and residuals of the moment. These results are consistent for both
Model (4.14) and Model (4.16).

The inclusion of moments VII) and VIII) from Table 4.1 significantly enhances the
identification of the error measurement parameter in the model because Var

[
ξ
(N)
t,t+1

∣∣∣Ft∆

]
is multiplied by H̃ = α =

(
e−κ∆

)
≈ (1− κ∆), which is closer to one than zero, in

opposition to H − 1 = −2κ∆. The regressions for moment VII) and VIII) are

RVt,t+1RVt+1,t+2RV p
t−1,t = −H̃ Var

[
ξ
(N)
t,t+1

∣∣∣Ft∆

]
RV p

t−1,t + H̃RV 2
t,t+1RV p

t−1,t (C.15)

+ ĨRVt,t+1RV p
t−1,t + J̃RV p

t−1,t + ϵ
(p)
t+1,t+2, p ∈ {0, 1, 2}.

The black lines of both panels of Figure C.4 have substantially higher R2 values, indicating
that the residuals’ variance is lower compared to the blue lines. This improvement in R2

reflects an enhanced quality of parameter estimation for the model.
The results presented in Panel C of Figure C.5 offer insights of the contributions of

ẽ
(p)
t+1,t+2 and −H̃ Var

[
ξ
(N)
t,t+1

∣∣∣Ft∆

]
to the averaged moments condition. The latter (black

lines) is distinct from the regression residuals (blue lines), enhancing the capacity to isolate
the error measurement parameter in the GMM procedure, as opposed to panels A and B.

C.5.2 Two variances

We believe that the two moment conditions presented in Panel A of Table 4.6, as used in
Bollerslev and Zhou, 2002, along with their instrumental variables, may not be sufficient
to fully identify all the parameters of Model (4.21), even without any measurement error.

As derived in Appendix C.3.2, the first conditional moment in the case of two variance
factors is, for q ≥ 1 and k ≥ 1,

(1− α1L)
q(1− α2L)

qE[Vt+k+2q,t+k+2q+1|Gt∆] = (1− α1)
q(1− α2)

q(θ1 + θ2)∆

By incorporating instrumental variables, we can identify, at most, the mean-reverting pa-
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rameters κ1 and κ2, along with the sum of the long-term variances (θ1 + θ2) in the Model
(4.21).

We propose two regressions related to the first moment of the integrated variance. The
first is with q = 1 and k = 3, that is

Vt+5,t+6 = (α1 + α2)Vt+4,t+5 − (α1α2)Vt+3,t+4 (C.16)

− (1− α1)(1− α2)(θ1 + θ2)∆ + ϵ
(1)
t+5,t+6,

and the second, with q = 2 and k = 1, is

Vt+5,t+6 = 2(α1 + α2)Vt+4,t+5 − (α2
1 + α2

2 + 4α1α2)Vt+3,t+4 (C.17)

+ 2(α2
1α2 + α2

2α1)Vt+2,t+3 − (α2
1α

2
2)Vt+1,t+2

− (1− α1)
2(1− α2)

2(θ1 + θ2)∆ + ϵ
(2)
t+5,t+6.

Figure C.6 panels A and B display the results for Regressions (C.16) and (C.17) respec-
tively. We show our results with three types of instrumental variables. As we believe it is
Panel B that is used in the BZ paper, we see that the R2 are low.5

To further our point, we also consider the second conditional moment with the follow-
ing result:

E

[ (
1− e−κ1∆L

) (
1− e−κ2∆L

) (
1− e−2κ1∆L

)(
1− e−2κ2∆L

) (
1− e−κ1∆e−κ2∆L

)
V2
t+5,t+6

∣∣∣∣∣Ft∆

]
= f(κ1, κ2, θ1, θ2, σ1, σ2),

where L designate the lag operator and f(κ1, κ2, θ1, θ2, σ1, σ2) is a function of all the vari-
ance parameters. With the use of instrumental variables, we can identify at most the mean
reverting parameters and the constant f(κ1, κ2, θ1, θ2, σ1, σ2). The constants of moments I)
and II) of Table 4.6 Panel A are the only elements that include both the volatility of volatil-
ities σk and long-term variances θk. Consequently, with only two sources of information,
we cannot distinguish between the four parameters even with instrumental variables; thus

5Furthermore, as we calculate the R2 with the sample correlation, we center the regression error; results
calculated with 1− SSE

SST have negative values indicating worse results.
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leading to poor parameter identification in the case of two-variance factor model.
To show our intuition, we propose a regression based on

(1− α1L) (1− α2L) (1−H1L) (1−H2L) (1− α1α2L)V2
t+5,t+6

= f(κ1, κ2, θ1, θ2, σ1, σ2) + ϵ
(3)
t+5,t+6. (C.18)

Figure C.6 panel C displays the results for Regressions (C.18) where the R2 are almost all
below 10%, which is low, reinforcing our point. We also highlight that higher the R2 in all
three panels, better is the GMM parameter estimation is as the regression study indicates
the amount of noise present in the moment conditions.

C.6 Optimization

This Appendix offers a comprehensive explanation of the two-step GMM procedure used in
this paper.6 Additionally, it covers the scaling methodology and parameter transformations
employed.

C.6.1 GMM procedure

Each moment condition is a function of parameters θ and observable variables at time t.
If the model is correct, these entries should have an expectation of zero over the entire
sample. Let gt,i,θ be the entry of moment i at time t with parameter set θ, the average error
of the moment condition is

ḡi,θ =
1

T

T∑
t=1

gt,i,θ,

where all the moments conditions create a vector ḡθ. In a GMM, the objective is to find
the parameters that align the theoretical moments of the model with the corresponding
empirical moments observed in the data. Typically, these moments are weighted with a

6Supplementary materials on the background of GMM and the use of instrumental variables is available
in the Online Appendix E.9
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matrix Wθ, where the weights indicate the relative importance of each moment condition.
Therefore, the parameters that minimize the average weighted moment conditions are

θ̂ = argmin
θ∈Θ

ḡ⊤
θ Wθ ḡθ.

As it is commonly done, we perform a two-step procedure where we first initialize Wθ

to the identity matrix.7 The scaling procedure discussed in the next subsection enables us
to start with scaled observables of the same order of magnitude, significantly aiding the
optimization process, with the identity matrix serving as a suitable initial guess.

We proceed to obtain the first estimate, denoted as θ̂(1), from the first step of the GMM
procedure8 with

θ̂(1) = argmin
θ∈Θ

ḡ⊤
θ ḡθ.

Subsequently, we compute the weighting matrix Ŵθ̂(1) using the estimate θ̂(1) obtained
from the first step and the Newey-West covariance matrix estimator (See Andrews, 1991;
Newey and West, 1987) with a Bartlett-kernel and a lag9 L as it is commonly used in the
literature to handle the heteroscedasticity.10 The weighting matrix is

Ŵθ =

(
L∑

l=−L

(
1− l

L+ 1

)(T−l∑
t=1

gt,θg⊤
t+l,θ

T

))−1

,

7Corradi and Distaso, 2006 derive a slightly different GMM procedure as they do one step where the
weight matrix is set to the sample variance of the moments. Zhang and Wang, 2023 follows the same proce-
dure but also describes an iterative approach that uses the identity matrix for the first step and a HAC matrix
for the subsequent steps. This alternative approach is used by Bolko et al., 2023 and Garcia et al., 2011.
Additionally, Andersen and Sørensen, 1996 use the sample moment weighting matrix in their first step, but
in their second step, they use a kernel weighting matrix.

8We initialize the optimization of both steps at θ∗, the true values of the parameters as we are in a
simulation framework. In a setup where the true parameters are not known, adjustments to the optimization
procedure would be required.

9As in BZ, the lag is set to 5 and 60 for models with one and two variance factors respectively for CM
approaches. For UM approaches, we follow Todorov, 2009 and set the lag to 80. Garcia et al., 2011 set a lag
of 2.

10See Zhang and Wang, 2023 p.5 for a detailed steps description.
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where gt,θ is a vector of all moment conditions gt,i,θ at time t. Finally, we enter the second
step of our GMM procedure using the updated weighting matrix Ŵθ̂(1) . This step refines
our parameter estimates further,11 resulting in the final estimate, denoted as θ̂(2),

θ̂(2) = argmin
θ∈Θ

ḡT
θŴθ̂(1)ḡθ.

C.6.2 Scaling procedure

To prevent certain terms from dominating the objective function, observables for each
trajectory s are scaled with the standard deviation of the realized variance, denoted as
S(s) = std(RV(s)/∆). Our observable transformations12 are

RV
(s)
t,t+1 →

RV
(s)
t,t+1

S(s)
, RQ

(s)
t,t+1 →

RQ
(s)
t,t+1

(S(s))2
, R

(s)
t,t+1 →

R
(s)
t,t+1√
S(s)

.

We must also scale the parameters before optimization13 with

κ → κ, θ → θ

S(s)
, σ → σ√

S(s)
, ρ → ρ,

(
λ− 1

2

)
→
(
λ− 1

2

)√
S(s).

Under specification (4.14), γ2 → γ2

(S(s))2
, while under specification (4.16), η2 remains un-

changed. Additionally, we scale the risk-free rate by
√
S(s). After the optimization is

completed, we apply the reverse transformation to return to the unscaled parameters.

C.6.3 Rescaling the parameters based on the frequency ∆

In Bollerslev and Zhou, 2002, the parameters are presented on a daily basis (∆ = 1).
However, it is more common to present parameters annually (∆ = 1/252) in continuous

11In our optimization process, in the very rare case where the first step did not converge, we run an
additional step θ̂(3) = argminθ∈Θ ḡT

θ Ŵθ̂(2) ḡθ.
12When we use the unconditional moment based the realized quarticity, we additionally scale the moment

condition by dividing with the standard deviation of the realized quarticity. This permits to have moment
with the same order of magnitude.

13The scaling was determined by computing the SDE of d(cV ) and d(c̃R), where c and c̃ are constants.

lxxii



Appendix C. GMM Parameter Estimation in Stochastic Volatility Models

time. Therefore, to align with this convention, we rescale the parameters from Bollerslev
and Zhou, 2002 to annual values. This rescaling accounts for the impact of ∆, the time
step, and transitioning from daily to annual instantaneous variance to ensure consistent
integrated variance results. We rescale the daily parameters to

κ(d) =
κ(a)

252
, θ(d) =

θ(a)

252
, σ(d) =

σ(a)

252
.

However, the parameters on the return, ρ and λ are not affected by this rescaling. Regarding
the error measurement parameter, its theoretical value must be recalculated with the new
scaled parameters and time step ∆.

Furthermore, Bollerslev and Zhou, 2002 performs computations in percent, with re-
turns multiplied by 100. Thus, we adjust the parameters accordingly to reflect this scaling.

C.6.4 Parameters optimization constraints

The constrained parameters directly used within the model require transformations from
the unconstrained parameters given to the optimizer. Certain parameters necessitate pos-
itivity constraints, while others have bounds. Consequently, we implement the following
parameter transformation:

κk = eκk,unc , θk = eθk,unc , σk = eσk,unc , ρk = ρk,unc, λk = λk,unc.

We have purposely not constrained the leverage effect, as this approach allowed us to ac-
knowledge the strengths and weaknesses of certain procedures.14 The unconstrained pa-
rameters are supplied to the optimizer. Regarding the error measurement parameter, when
considering specification (4.16), η2 = η2unc. However, in the case of specification (4.14),
γ2 is intricately linked to the other parameters as outlined in Equation (4.15). Therefore,

14Normally, the transformation would be: ρk = 2

1+e−2ρk,unc
− 1,
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we make the following transformation:

γ2 = γ2
unc

( K∑
k=1

θk

)2

+
K∑
k=1

σ2
kθk
2κk

 .

C.7 Supplementary Results

This Appendix presents the detailed results for parameter sets A, B and C for the case
with one variance in Tables C.1 to C.3. The conclusions from the results remain consistent
with those in the main paper. Panels A of Table C.1, C.2 and C.3 show estimation results
for specification (4.14) under BZ.15 Specification (4.16) under CM moment selection is
presented in panels B of the same Tables. An additional observation from these panels is
the reduction of the bias16 on the mean-reverting parameter κ for the CM procedures. For
the UM selection of Panel B of Table 4.1, the results are presented in the Tables C.1, C.2
and C.3 in panel C.

We conduct an in-depth analysis with Table C.4, focusing on the leverage effect and
comparing our results with those from previous studies by Bregantini, 2013, and Garcia
et al., 2011. By incorporating a leverage effect of −50%, in line with established literature,
we evaluate the performance of our methodologies against these benchmarks.

Starting with Scenario A in Table C.4, we compare our findings with those in Garcia
et al., 2011 Table 2 and Bregantini, 2013 Table 3. Bregantini, 2013 study, which uses
GMM to analyze both integrated volatility and high-frequency returns, serves as a key ref-
erence point. Our analysis reveals that our methods significantly reduce bias in the lever-
age effect parameters and achieve a notably smaller RMSE. Specifically, when focusing
on high-frequency returns and comparing with Panels A.2 and B.2 of our paper, where
measurement error parameter is fixed, our methodology demonstrates a much lower bias
and RMSE compared to Bregantini, 2013 results. However, they cover more complex case
with jumps, extensions not reviewed in the paper.

15Replication of BZ tables are available in Online Appendix E.5.
16Bollerslev et al., 2016 discuss the bias on the persistence parameter when RV measure are used in the

estimation and Hansen and Lunde, 2014 argue that adding instrumental variables help to reduce the bias.
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Turning to Garcia et al., 2011 Table 2, which involves 960 observations and 5000 repli-
cations, we make comparisons with our scenario for T = 1000. Without the use of options,
and focusing on Panels A.2 and B.2, our methods exhibit lower RMSE and bias. Although,
their use of options improves their results, making them comparable to CM methods (with
UM methods showing higher bias), our CM methods still outperform theirs in terms of
RMSE. Even without resorting to additional calculations and data required for options, our
methods achieve comparable or better results. It’s important to note, however, that Garcia
et al., 2011 ignore the measurement error, which could bias our analysis here.

In summary, we were able to provide, for the three parameter sets of Bollerslev and
Zhou, 2002, an additional estimated parameter, the leverage effect, with accuracy. How-
ever, CM methods appear to perform better, as they exhibit lower RMSE and bias compared
to UM methods.
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True value Mean Median RMSE CR
T = 1000 T = 4000 T = 1000 T = 4000 T = 1000 T = 4000 T = 1000 T = 4000

Panel A.1: BZ estimations results with γ fixed and ξ
(N)
t,t+1 = γϵ

(N)
t,t+1

102 × κ = 3.0000 3.6582 3.1856 3.5432 3.1644 1.3376 0.5974 0.9000 0.9330
θ = 0.2500 0.2435 0.2481 0.2371 0.2468 0.0538 0.0275 0.9620 0.9470
σ = 0.1000 0.0982 0.0992 0.0981 0.0992 0.0079 0.0041 0.9490 0.9450

Panel B.1: CM estimations results with η fixed and ξ
(N)
t,t+1 = η

√
RQ

(N)
t,t+1ε

(N)
t,t+1

102 × κ = 3.0000 3.4938 3.0818 3.3454 3.0511 1.2696 0.5885 0.9300 0.9520
θ = 0.2500 0.2421 0.2484 0.2365 0.2470 0.0540 0.0273 0.9610 0.9470
σ = 0.1000 0.0980 0.0994 0.0978 0.0993 0.0075 0.0040 0.9450 0.9450

Panel C.1: UM estimations results with γ fixed and ξ
(N)
t,t+1 = η

√
RQ

(N)
t,t+1ε

(N)
t,t+1

102 × κ = 3.0000 3.9557 3.3453 3.8698 3.2903 1.5652 0.7432 0.8840 0.9160
θ = 0.2500 0.2335 0.2436 0.2270 0.2421 0.0520 0.0273 0.9520 0.9440
σ = 0.1000 0.0986 0.0997 0.0984 0.0998 0.0073 0.0039 0.9500 0.9480

Panel A.2: BZ estimations results with γ estimated and ξ
(N)
t,t+1 = γϵ

(N)
t,t+1

102 × κ = 3.0000 3.7221 3.1934 3.6196 3.1605 1.3647 0.6114 0.9050 0.9380
θ = 0.2500 0.2441 0.2483 0.2381 0.2470 0.0530 0.0274 0.9620 0.9480
σ = 0.1000 0.0917 0.0988 0.0916 0.0976 0.0242 0.0135 0.9340 0.9470

102 × γ2 = 0.2541 0.5006 0.1838 0.5115 0.3572 1.6873 1.1132 0.9490 0.9600

Panel B.2: CM estimations results with η estimated and ξ
(N)
t,t+1 = η

√
RQ

(N)
t,t+1ε

(N)
t,t+1

102 × κ = 3.0000 3.4428 3.0602 3.2784 3.0328 1.2712 0.5918 0.9190 0.9450
θ = 0.2500 0.2436 0.2489 0.2381 0.2476 0.0538 0.0274 0.9630 0.9460
σ = 0.1000 0.0979 0.0992 0.0980 0.0993 0.0106 0.0055 0.9430 0.9500

102 × η2 = 2.4390 2.4472 2.4491 2.4397 2.4503 0.3185 0.1610 0.9500 0.9460

Panel C.2: UM estimations results with γ estimated and ξ
(N)
t,t+1 = η

√
RQ

(N)
t,t+1ε

(N)
t,t+1

102 × κ = 3.0000 3.8804 3.2821 3.7641 3.2483 1.5360 0.7212 0.8900 0.9180
θ = 0.2500 0.2406 0.2467 0.2351 0.2458 0.0522 0.0272 0.9600 0.9470
σ = 0.1000 0.0991 0.0999 0.0989 0.0998 0.0078 0.0040 0.9520 0.9510

102 × γ2 = 0.2541 0.2307 0.2454 0.2087 0.2398 0.1127 0.0591 0.9790 0.9610

The table shows results obtained from GMM procedures based on Monte Carlo simulations with 1000 independent trajectories of T
time steps of length ∆ = 1. The trajectories of the integrated variance are simulated with 820 intraday steps and the realized vari-
ance with 82 intraday steps, see Section 4.3 for details. The Mean (Median) reports the sample average (median) of the 1000 point
estimates. The coverage ratio (CR) is the proportion of the 95% confidence interval that contains the true parameter. The error mea-
surement parameter is here compared to its theoretical value. We employ a 2-step GMM procedure using the Newey and West, 1987
covariance matrix estimator with a Bartlett-kernel with a lag of 5, see Appendix C.6 for details.

Table C.1: Comparison results for parameter set A for specifications (4.14)-(4.16)
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True value Mean Median RMSE CR
T = 1000 T = 4000 T = 1000 T = 4000 T = 1000 T = 4000 T = 1000 T = 4000

Panel A.1: BZ estimations results with γ fixed and ξ
(N)
t,t+1 = γϵ

(N)
t,t+1

κ = 0.1000 0.1085 0.1030 0.1069 0.1028 0.0218 0.0105 0.9210 0.9440
θ = 0.2500 0.2472 0.2491 0.2463 0.2492 0.0161 0.0081 0.9520 0.9480
σ = 0.1000 0.0987 0.0993 0.0986 0.0994 0.0070 0.0034 0.9500 0.9440

Panel B.1: CM estimations results with η fixed and ξ
(N)
t,t+1 = η

√
RQ

(N)
t,t+1ε

(N)
t,t+1

κ = 0.1000 0.1056 0.1010 0.1041 0.1006 0.0199 0.0096 0.9330 0.9480
θ = 0.2500 0.2469 0.2492 0.2462 0.2493 0.0163 0.0081 0.9470 0.9500
σ = 0.1000 0.0988 0.0996 0.0987 0.0995 0.0061 0.0030 0.9460 0.9540

Panel C.1: UM estimations results with γ fixed and ξ
(N)
t,t+1 = η

√
RQ

(N)
t,t+1ε

(N)
t,t+1

κ = 0.1000 0.1082 0.1022 0.1072 0.1015 0.0218 0.0107 0.9310 0.9470
θ = 0.2500 0.2461 0.2487 0.2452 0.2486 0.0165 0.0082 0.9480 0.9460
σ = 0.1000 0.0994 0.0998 0.0992 0.0997 0.0062 0.0031 0.9510 0.9530

Panel A.2: BZ estimations results with γ estimated and ξ
(N)
t,t+1 = γϵ

(N)
t,t+1

κ = 0.1000 0.1085 0.1020 0.1068 0.1017 0.0219 0.0104 0.9330 0.9520
θ = 0.2500 0.2478 0.2494 0.2469 0.2495 0.0160 0.0081 0.9550 0.9490
σ = 0.1000 0.0987 0.1044 0.0994 0.1045 0.0230 0.0122 0.9520 0.9330

102 × γ2 = 0.1829 0.1282 0.0484 0.1680 0.0688 0.4747 0.3020 0.9430 0.9230

Panel B.2: CM estimations results with η estimated and ξ
(N)
t,t+1 = η

√
RQ

(N)
t,t+1ε

(N)
t,t+1

κ = 0.1000 0.1053 0.1007 0.1037 0.1004 0.0215 0.0102 0.9310 0.9450
θ = 0.2500 0.2475 0.2494 0.2468 0.2494 0.0162 0.0081 0.9500 0.9520
σ = 0.1000 0.0991 0.0996 0.0990 0.0995 0.0080 0.0039 0.9520 0.9430

102 × η2 = 2.4390 2.4308 2.4437 2.4176 2.4465 0.2582 0.1300 0.9480 0.9470

Panel C.2: UM estimations results with γ estimated and ξ
(N)
t,t+1 = η

√
RQ

(N)
t,t+1ε

(N)
t,t+1

κ = 0.1000 0.1079 0.1019 0.1057 0.1013 0.0229 0.0109 0.9310 0.9480
θ = 0.2500 0.2477 0.2493 0.2472 0.2495 0.0162 0.0082 0.9530 0.9510
σ = 0.1000 0.0999 0.0999 0.0995 0.0997 0.0071 0.0035 0.9600 0.9500

102 × γ2 = 0.1829 0.1778 0.1816 0.1765 0.1809 0.0299 0.0153 0.9450 0.9500

The table shows results obtained from GMM procedures based on Monte Carlo simulations with 1000 independent trajectories of T
time steps of length ∆ = 1. The trajectories of the integrated variance are simulated with 820 intraday steps and the realized vari-
ance with 82 intraday steps, see Section 4.3 for details. The Mean (Median) reports the sample average (median) of the 1000 point
estimates. The coverage ratio (CR) is the proportion of the 95% confidence interval that contains the true parameter. The error mea-
surement parameter is here compared to its theoretical value. We employ a 2-step GMM procedure using the Newey and West, 1987
covariance matrix estimator with a Bartlett-kernel with a lag of 5, see Appendix C.6 for details.

Table C.2: Comparison results for parameter set B for specifications (4.14)-(4.16)
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True value Mean Median RMSE CR
T = 1000 T = 4000 T = 1000 T = 4000 T = 1000 T = 4000 T = 1000 T = 4000

Panel A.1: BZ estimations results with γ fixed and ξ
(N)
t,t+1 = γϵ

(N)
t,t+1

κ = 0.1000 0.1141 0.1044 0.1124 0.1038 0.0264 0.0121 0.9020 0.9340
θ = 0.2500 0.2398 0.2472 0.2375 0.2470 0.0334 0.0166 0.9490 0.9490
σ = 0.2000 0.1977 0.1989 0.1973 0.1987 0.0114 0.0056 0.9510 0.9490

Panel B.1: CM estimations results with η fixed and ξ
(N)
t,t+1 = η

√
RQ

(N)
t,t+1ε

(N)
t,t+1

κ = 0.1000 0.1102 0.1018 0.1091 0.1013 0.0248 0.0116 0.9240 0.9550
θ = 0.2500 0.2386 0.2470 0.2358 0.2467 0.0339 0.0166 0.9420 0.9480
σ = 0.2000 0.1973 0.1992 0.1969 0.1990 0.0101 0.0051 0.9350 0.9480

Panel C.1: UM estimations results with γ fixed and ξ
(N)
t,t+1 = η

√
RQ

(N)
t,t+1ε

(N)
t,t+1

κ = 0.1000 0.1151 0.1048 0.1132 0.1040 0.0297 0.0141 0.9120 0.9330
θ = 0.2500 0.2392 0.2460 0.2371 0.2457 0.0332 0.0166 0.9530 0.9430
σ = 0.2000 0.1984 0.1993 0.1983 0.1991 0.0118 0.0061 0.9500 0.9470

Panel A.2: BZ estimations results with γ estimated and ξ
(N)
t,t+1 = γϵ

(N)
t,t+1

κ = 0.1000 0.1143 0.1040 0.1130 0.1031 0.0267 0.0123 0.9010 0.9390
θ = 0.2500 0.2429 0.2479 0.2400 0.2477 0.0325 0.0164 0.9530 0.9500
σ = 0.2000 0.1920 0.2006 0.1885 0.1992 0.0306 0.0167 0.9500 0.9590

102 × γ2 = 0.2744 0.4095 0.1648 0.5581 0.2484 1.1906 0.7169 0.9560 0.9550

Panel B.2: CM estimations results with η estimated and ξ
(N)
t,t+1 = η

√
RQ

(N)
t,t+1ε

(N)
t,t+1

κ = 0.1000 0.1087 0.1012 0.1070 0.1009 0.0247 0.0117 0.9340 0.9540
θ = 0.2500 0.2404 0.2477 0.2381 0.2473 0.0333 0.0165 0.9500 0.9500
σ = 0.2000 0.1980 0.1993 0.1974 0.1989 0.0131 0.0067 0.9480 0.9480

102 × η2 = 2.4390 2.4252 2.4461 2.4177 2.4452 0.4690 0.2415 0.9550 0.9480

Panel C.2: UM estimations results with γ estimated and ξ
(N)
t,t+1 = η

√
RQ

(N)
t,t+1ε

(N)
t,t+1

κ = 0.1000 0.1139 0.1037 0.1119 0.1032 0.0322 0.0141 0.9320 0.9410
θ = 0.2500 0.2435 0.2479 0.2418 0.2478 0.0325 0.0165 0.9580 0.9500
σ = 0.2000 0.1995 0.1997 0.1994 0.1995 0.0144 0.0073 0.9510 0.9570

102 × γ2 = 0.2744 0.2535 0.2683 0.2421 0.2658 0.0890 0.0460 0.9510 0.9520

The table shows results obtained from GMM procedures based on Monte Carlo simulations with 1000 independent trajectories of T
time steps of length ∆ = 1. The trajectories of the integrated variance are simulated with 820 intraday steps and the realized vari-
ance with 82 intraday steps, see Section 4.3 for details. The Mean (Median) reports the sample average (median) of the 1000 point
estimates. The coverage ratio (CR) is the proportion of the 95% confidence interval that contains the true parameter. The error mea-
surement parameter is here compared to its theoretical value. We employ a 2-step GMM procedure using the Newey and West, 1987
covariance matrix estimator with a Bartlett-kernel with a lag of 5, see Appendix C.6 for details.

Table C.3: Comparison results for parameter set C for specifications (4.14)-(4.16)
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True value Mean Median RMSE CR
T = 1000 T = 4000 T = 1000 T = 4000 T = 1000 T = 4000 T = 1000 T = 4000

Panel A.1: CM estimations results with no measurement error
102 × κ = 3.0000 3.5049 3.0711 3.4122 3.0604 1.1686 0.4646 0.9349 0.9420

θ = 0.2500 0.2402 0.2470 0.2365 0.2458 0.0482 0.0242 0.9520 0.9520
σ = 0.1000 0.0993 0.0998 0.0994 0.0997 0.0027 0.0013 0.9359 0.9450

ρ = −0.5000 −0.4910 −0.4991 −0.4891 −0.4990 0.0646 0.0251 0.9469 0.9580

Panel B.1: UM estimations results with no measurement error
102 × κ = 3.0000 3.8067 3.2922 3.6841 3.2628 1.4878 0.7145 0.9030 0.9350

θ = 0.2500 0.2332 0.2426 0.2291 0.2411 0.0502 0.0251 0.9470 0.9430
σ = 0.1000 0.0984 0.0993 0.0984 0.0995 0.0067 0.0035 0.9300 0.9430

ρ = −0.5000 −0.4880 −0.4908 −0.4692 −0.4860 0.1551 0.0818 0.9560 0.9590

Panel A.2: CM estimations results with η2 fixed
102 × κ = 3.0000 3.4510 3.0627 3.3951 3.0551 1.1681 0.4909 0.9260 0.9540

θ = 0.2500 0.2446 0.2488 0.2408 0.2477 0.0480 0.0240 0.9550 0.9550
σ = 0.1000 0.0986 0.0995 0.0984 0.0995 0.0073 0.0039 0.9380 0.9490

ρ = −0.5000 −0.4923 −0.4988 −0.4882 −0.4966 0.0862 0.0398 0.9460 0.9510

Panel B.2: UM estimations results with γ2 fixed
102 × κ = 3.0000 3.8809 3.3762 3.7774 3.3419 1.5907 0.7124 0.9129 0.9000

θ = 0.2500 0.2287 0.2391 0.2252 0.2368 0.0501 0.0260 0.9329 0.9260
σ = 0.1000 0.0981 0.0991 0.0981 0.0992 0.0078 0.0041 0.9429 0.9420

ρ = −0.5000 −0.4856 −0.4862 −0.4678 −0.4818 0.1592 0.0809 0.9550 0.9500

Panel A.3: CM estimations results with η2 estimated
102 × κ = 3.0000 3.4265 3.0478 3.2831 3.0272 1.1798 0.5017 0.9290 0.9510

θ = 0.2500 0.2459 0.2492 0.2430 0.2479 0.0486 0.0240 0.9560 0.9570
σ = 0.1000 0.0991 0.0994 0.0989 0.0993 0.0095 0.0056 0.9500 0.9470

102 × η2 = 2.4390 2.4301 2.4451 2.4164 2.4388 0.3073 0.1659 0.9510 0.9490
ρ = −0.5000 −0.4947 −0.5006 −0.4909 −0.4989 0.0907 0.0438 0.9420 0.9530

Panel B.3: UM estimations results with γ2 estimated
102 × κ = 3.0000 3.8902 3.3397 3.8025 3.2646 1.5467 0.7012 0.8952 0.9020

θ = 0.2500 0.2294 0.2411 0.2240 0.2404 0.0507 0.0258 0.9447 0.9342
σ = 0.1000 0.0982 0.0992 0.0983 0.0993 0.0082 0.0042 0.9447 0.9392

102 × γ2 = 0.2541 0.2086 0.2323 0.1910 0.2301 0.1008 0.0539 0.9620 0.9280
ρ = −0.5000 −0.4829 −0.4877 −0.4714 −0.4820 0.1583 0.0802 0.9574 0.9491

The table shows results obtained from GMM procedures based on Monte Carlo simulations with 1000 independent trajectories of T
time steps of length ∆ = 1. The trajectories of the integrated variance are simulated with 820 intraday steps and the realized vari-
ance with 82 intraday steps, see Section 4.3 for details. The Mean (Median) reports the sample average (median) of the 1000 point
estimates. The coverage ratio (CR) is the proportion of the 95% confidence interval that contains the true parameter. The error mea-
surement parameter is here compared to its theoretical value. We employ a 2-step GMM procedure using the Newey and West, 1987
covariance matrix estimator with a Bartlett-kernel with a lag of 5, see Appendix C.6 for details.

Table C.4: Comparison results for parameter set A for specification (4.20)
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True value Mean Median RMSE CR

Panel A.1: CM estimations results with no measurement error
κ = 2.0000 2.1064 2.0813 0.3617 0.9460

102 × θ = 5.0000 4.9820 4.9539 0.4357 0.9510
σ = 0.1500 0.1498 0.1499 0.0017 0.9380

ρ = −0.8500 −0.8482 −0.8483 0.0162 0.9570
λ = 1.1500 1.2541 1.2332 1.1591 0.9450

Panel B.1: UM estimations results with no measurement error
κ = 2.0000 2.3844 2.3278 0.7363 0.8970

102 × θ = 5.0000 4.9591 4.9183 0.4283 0.9540
σ = 0.1500 0.1493 0.1494 0.0048 0.9420

ρ = −0.8500 −0.8111 −0.8010 0.1300 0.9590
λ = 1.1500 1.3061 1.2758 1.1836 0.9470

Panel A.2: CM estimations results with η2 fixed
κ = 2.0000 2.1617 2.1092 1.1175 0.9594

102 × θ = 5.0000 4.9483 4.9500 0.8312 0.9736
σ = 0.1500 0.1447 0.1496 0.0372 0.9421

ρ = −0.8500 −0.9550 −0.8425 0.4826 0.9594
λ = 1.1500 1.2559 1.2156 1.1570 0.9513

Panel B.2: UM estimations results with γ2 fixed
κ = 2.0000 2.4000 2.3088 0.8465 0.9120

102 × θ = 5.0000 4.9130 4.8689 0.4337 0.9490
σ = 0.1500 0.1479 0.1487 0.0139 0.9490

ρ = −0.8500 −0.8252 −0.8022 0.1488 0.9600
λ = 1.1500 1.3988 1.3286 1.2039 0.9440

Panel A.3: CM estimations results with η2 estimated
κ = 2.0000 2.3139 2.1585 1.4204 0.9472

102 × θ = 5.0000 5.0938 4.9501 1.3143 0.9658
σ = 0.1500 0.1493 0.1527 0.0443 0.9409

104 × η2 = 0.9679 0.9626 0.9628 0.0347 0.9534
ρ = −0.8500 −0.9650 −0.8194 0.5686 0.9544
λ = 1.1500 1.2521 1.2222 1.1612 0.9513

Panel B.3: UM estimations results with γ2 estimated
κ = 2.0000 2.3972 2.3187 0.8604 0.9160

102 × θ = 5.0000 4.9334 4.8900 0.4297 0.9500
σ = 0.1500 0.1485 0.1495 0.0151 0.9490

108 × γ2 = 0.1068 0.1033 0.1013 0.0187 0.9560
ρ = −0.8500 −0.8269 −0.8037 0.1527 0.9530
λ = 1.1500 1.3482 1.2980 1.1883 0.9500

The table shows results obtained from GMM procedures based on Monte Carlo simulations with 1000 independent trajectories
of T time steps of length ∆ = 1/252. The trajectories of the integrated variance are simulated with 820 intraday steps and the
realized variance with 82 intraday steps, see Section 4.3 for details. The Mean (Median) reports the sample average (median) of
the 1000 point estimates. The coverage ratio (CR) is the proportion of the 95% confidence interval that contains the true param-
eter. The error measurement parameter is here compared to its theoretical value. We employ a 2-step GMM procedure using
the Newey and West, 1987 covariance matrix estimator with a Bartlett-kernel with a lag of 5, see Appendix C.6 for details.

Table C.5: Comparison results for parameter set D for specification (4.20)
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True value Mean Median RMSE CR

Panel A.1: CM estimations results with no measurement error
κ = 4.0000 4.0783 4.0648 0.5174 0.9490

102 × θ = 3.0000 2.9787 2.9544 0.3348 0.9500
σ = 0.3000 0.2994 0.2993 0.0037 0.9500

ρ = −0.9500 −0.9480 −0.9476 0.0163 0.9550
λ = 1.9500 2.2074 2.1429 1.5200 0.9410

Panel B.1: UM estimations results with no measurement error
κ = 4.0000 4.4556 4.3782 1.0470 0.9210

102 × θ = 3.0000 2.9463 2.9236 0.3265 0.9510
σ = 0.3000 0.2984 0.2985 0.0094 0.9410

ρ = −0.9500 −0.9301 −0.9194 0.0994 0.9520
λ = 1.9500 2.3497 2.2873 1.5537 0.9380

Panel A.2: CM estimations results with η2 fixed
κ = 4.0000 4.0722 4.0758 0.6960 0.9550

102 × θ = 3.0000 2.9869 2.9618 0.3363 0.9530
σ = 0.3000 0.2983 0.2984 0.0193 0.9480

ρ = −0.9500 −0.9490 −0.9478 0.0649 0.9520
λ = 1.9500 2.2123 2.1604 1.5132 0.9420

Panel B.2: UM estimations results with γ2 fixed
κ = 4.0000 4.6391 4.5963 1.1882 0.9110

102 × θ = 3.0000 2.8877 2.8674 0.3418 0.9350
σ = 0.3000 0.2980 0.2980 0.0138 0.9520

ρ = −0.9500 −0.9189 −0.9065 0.1075 0.9510
λ = 1.9500 2.6604 2.5987 1.7351 0.9150

Panel A.3: CM estimations results with η2 estimated
κ = 4.0000 4.0905 4.0860 0.7735 0.9460

102 × θ = 3.0000 2.9907 2.9630 0.3369 0.9520
σ = 0.3000 0.2997 0.2990 0.0275 0.9500

104 × η2 = 0.9679 0.9645 0.9639 0.0476 0.9540
ρ = −0.9500 −0.9495 −0.9445 0.0909 0.9470
λ = 1.9500 2.1893 2.1418 1.5049 0.9380

Panel B.3: UM estimations results with γ2 estimated
κ = 4.0000 4.5641 4.5215 1.1386 0.9170

102 × θ = 3.0000 2.9137 2.8953 0.3335 0.9440
σ = 0.3000 0.2980 0.2977 0.0141 0.9490

1010 × γ2 = 4.7529 4.4347 4.3307 1.0698 0.9530
ρ = −0.9500 −0.9241 −0.9104 0.1074 0.9610
λ = 1.9500 2.5157 2.4329 1.6467 0.9280

The table shows results obtained from GMM procedures based on Monte Carlo simulations with 1000 independent trajectories
of T time steps of length ∆ = 1/252. The trajectories of the integrated variance are simulated with 820 intraday steps and the
realized variance with 82 intraday steps, see Section 4.3 for details. The Mean (Median) reports the sample average (median) of
the 1000 point estimates. The coverage ratio (CR) is the proportion of the 95% confidence interval that contains the true param-
eter. The error measurement parameter is here compared to its theoretical value. We employ a 2-step GMM procedure using the
Newey and West, 1987 covariance matrix estimator with a Bartlett-kernel with a lag of 5, see Appendix C.6 for details.

Table C.6: Comparison results for parameter set E for specification (4.20)
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Chapter D

Online Appendices of Computationally-Efficient
Variance Filtering in Multidimensional Affine
Models

D.1 The Forward Price

The time t value of the self-financing investment strategy that reinvests the dividends to
buy more shares of the risky asset is

exp

(∫ t

0

qi,udu

)
Si,t. (D.1)

From the Girsanov theorem, let WQ
k,t = Wk,t +

∫ t

0
γk,udu and BQ

k,t = Bk,t +
∫ t

0
Γk,udu

where γk,u andΓk,u are predictable processes with respect to the continuous model filtration
(FC

t )t≥0. We assume that the Novikov condition

E

[
exp

(
1

2

∫ T

0

γ2
k,udu

)]
< ∞ and E

[
exp

(
1

2

∫ T

0

Γ2
k,udu

)]
< ∞,
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are satisfied. The associated Radon-Nikodym derivative is

dQ
dP

= exp

(
NV∑
k=1

(
−1

2

∫ T

0

γ2
k,udu−

∫ T

0

γk,udW
P
k,u

)
+

NV∑
k=1

(
−1

2

∫ T

0

Γ2
k,udu−

∫ T

0

Γk,udBk,u

))
.

The absence of arbitrage opportunity requires that{
exp

(
−
∫ t

0

rudu

)
exp

(∫ t

0

qi,udu

)
Si,t

}
t≥0

is a Q−martingale. Therefore,

d exp

(∫ t

0

qi,u − rudu

)
Si,t (D.2)

= Si,td exp

(∫ t

0

qi,u − rudu

)
+ exp

(∫ t

0

qi,u − rudu

)
dSi,t

= exp

(∫ t

0

qi,u − rudu

)
Si,t

(
(αi,t + qi,t − rt) dt

+
∑NV

k=1 cik
√

Vk,td
(
ρkdWk,t +

√
1− ρ2kdBk,t

) )

= exp

(∫ t

0

qi,u − rudu

)
Si,t

(
αi,t + qi,t − rt−∑NV

k=1 cik
√
Vk,t

(
ρkγk,t +

√
1− ρ2kΓk,t

) )
︸ ︷︷ ︸

=0

dt

+ exp

(∫ t

0

qi,u − rudu

)
Si,t

(
NV∑
k=1

cik
√

Vk,td

(
ρkdW

Q
k,t +

√
1− ρ2kdB

Q
k,t

))
,

which implies that

αi,t = rt − qi,t +

NV∑
k=1

cik
√

Vk,t

(
ρkγk,t +

√
1− ρ2kΓk,t

)
.

The model belongs to the exponential affine class if the prices of risk are defined as

γk,t = γ̃k
√

Vk,t and Γk,t = Γ̃k

√
Vk,t. (D.3)
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Therefore,

αi,t = rt − qi,t +

NV∑
k=1

cik

(
ρkγ̃k +

√
1− ρ2kΓ̃k

)
︸ ︷︷ ︸

λk

Vk,t.

The time t forward price Fi,t,T of the contract of maturity T satisfies

0 = EQ

[
exp

(
−
∫ T

t

rs

)
(Si,T − Fi,t,T )

∣∣∣∣FC
t

]
.

Because

dSi,t = (rt − qi,t)Si,tdt+ Si,t

NV∑
k=1

cik
√
Vk,td

(
ρkW

Q
k,t +

√
1− ρ2kB

Q
k,t

)
, (D.4)

the strong solution is

Si,T = Si,t exp

 ∫ T

t

(
ru − qi,u − 1

2

∑NV

k=1 c
2
ikVk,u

)
du

+
∑NV

k=1 cik
∫ T

t

√
Vk,ud

(
ρkW

Q
k,u +

√
1− ρ2kB

Q
k,u

)  . (D.5)

The forward price satisfies

Fi,t,T =
EQ
[
exp

(
−
∫ T
t rsds

)
Si,T

∣∣∣FC
t

]
EQ
[
exp

(
−
∫ T
t rsds

)∣∣∣FC
t

]

=

Si,tE
Q

exp
 −

∫ T
t qi,udu− 1

2

∑NV
k=1

∫ T
t c2ikVk,udu

+
∑NV

k=1 cik
∫ T
t

√
Vk,ud

(
ρkW

Q
k,u +

√
1− ρ2kB

Q
k,u

) ∣∣∣∣∣∣FC
t


EQ
[
exp

(
−
∫ T
t rsds

)∣∣∣FC
t

] .

If rt and qi,t are non-stochastic, it simplifies to

Fi,t,T = Si,t exp

(∫ T

t

(rs − qi,s) ds

)
.
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Therefore, the SDE of the forward is

dFi,t,T = Fi,t,T

 (∑NV

k=1 cikλkVk,t

)
dt

+
∑NV

k=1 cik
√
Vk,td

(
ρkWk,t +

√
1− ρ2kBk,t

)  ,

and the SDE of the log-forward is

d logFi,t,T =

 (∑NV

k=1 cikλkVk,t − 1
2

∑NV

k=1 c
2
ikVk,t

)
dt

+
∑NV

k=1 cik
√
Vk,td

(
ρkWk,t +

√
1− ρ2kBk,t

)  ,

where the subscript T is dropped in the main paper.

D.2 Realized Quarticity and the Measurement Error

This Online Appendix discusses the asymptotic variance of the realized covariance and
compares it with the realized quarticity. We show why in a univariate case we can sub-
stitute the variance of the realized covariance by the realized coquarticity,1 but not in the
multivariate case.

From Equation (3.13),

ξi,j,t,t+1 = RCVi,j,t,t+1 =

NV∑
k=1

ci,kcj,kVk,t,t+1 + ξi,j,t,t+1 (D.6)

is the error measurement on the realized covariance. Equation (B.4) established that

Cov
[
ξi,j,t,t+1, ξĩ,j̃,t,t+1

∣∣Ft∆

]
=

∆

N
E

[∫ (t+1)∆

t∆

Σĩi,sΣjj̃,s + Σij̃,sΣjĩ,sds

∣∣∣∣∣Ft∆

]
,

1The relationship between realized coquarticity and realized quarticity is analogous to the one between
realized covariance and realized variance.
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where

Σij,s =

NV∑
k=1

ci,kcj,kVk,s. (D.7)

However, if ri,t∆,n =

(
log

S
i,t∆+n∆

N

S
i,t∆+

(n−1)∆
N

)
, the realized co-quarticity is

RQi,j,̃i,j̃,t,t+1 =
N

3∆

N∑
n=1

ri,t,nrj,t,nrĩ,t,nrj̃,t,n. (D.8)

Based on Remark 4-iii from p.897 of Barndorff-Nielsen and Shephard, 2004, Equation
(D.8) asymptotically converges to

1

3

(∫ (t+1)∆

t∆

Σij,sΣĩj̃,s + Σĩi,sΣjj̃,s + Σij̃,sΣjĩ,s ds

)
.

Therefore, RQi,j,̃i,j̃,t,t+1 can not be used as a proxy for Equation (B.4) in a multivariate case
as it does not have the same asymptotic convergence as the covariance between ξi,j,t,t+1 and
ξĩ,j̃,t,t+1. However, in the univariate case where NV = 1, the asymptotic theory simplifies
to √

N
∆

(
RVi,t,t+1 − QVi,t,t+1

)√
2
∫ (t+1)∆

t∆
Σ2

i,i,sds

L
→

N→∞
N (0, 1) ,

where we can replace the theoretical quantity in the denominator by the realized quarticity
to obtain the well known result of Barndorff-Nielsen and Shephard, 2002:√

N
∆

(
RVi,t,t+1 − QVi,t,t+1

)√
2RQi,t,t+1

L
→

N→∞
N (0, 1) .
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D.3 Measurement Error Additional Derivation

D.3.1 Derivation of Ci,j,̃i,j̃

k,k̃

We derive here the constant Ci,j,̃i,j̃

k,k̃
defined at Equation (B.6). Starting from Equation (B.4),

Cov
[
ξi,j,t,t+1, ξĩ,j̃,t,t+1

∣∣Ft∆

]
=

∆

N
E

[∫ (t+1)∆

t∆

Σĩi,sΣjj̃,s + Σij̃,sΣjĩ,sds

∣∣∣∣∣Ft∆

]

= η

NV∑
k=1

NV∑
k̃=1

Ci,j,̃i,j̃

k,k̃
E

[∫ (t+1)∆

t∆

Vk,sVk̃,sds

∣∣∣∣∣Ft∆

]
.

Because

Σĩi,sΣjj̃,s =

(
NV∑
k=1

ci,kcĩ,kVk,s

)(
NV∑
k=1

cj,k̃cj̃,k̃Vk̃,s

)
=

NV∑
k=1

NV∑
k̃=1

ci,kcĩ,kcj,k̃cj̃,k̃Vk,sVk̃,s,

and

Σij̃,sΣjĩ,s =

(
NV∑
k=1

ci,kcj̃,kVk,s

)(
NV∑
k=1

cj,k̃cĩ,k̃Vk̃,s

)
=

NV∑
k=1

NV∑
k̃=1

ci,kcj̃,kcj,k̃cĩ,k̃Vk,sVk̃,s,

it leads to
Ci,j,̃i,j̃

k,k̃
= ci,kcĩ,kcj,k̃cj̃,k̃ + ci,kcj̃,kcj,k̃cĩ,k̃.

D.3.2 Derivation of E
[∫ u

t∆ Vk,sVk̃,sds|Ft∆

]
Lemma D.3.1. The SDE of VkVk̃ is

dVk,tVk̃,t = Vk̃,tκk (θk − Vk,t) dt+ Vk̃,tσk

√
Vk,tdWk,t + Vk,tκk̃

(
θk̃ − Vk̃,t

)
dt

+ Vk,tσk̃

√
Vk̃,tdWk̃,t + 1k=k̃σkσk̃

√
Vk,t

√
Vk̃,tdt.

Proof. Direct application of Itô’s lemma to Vk,tVk̃,t. □
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Corollary D.3.2. For 0 < t < u,

Vk,uVk̃,u = Vk,t∆Vk̃,t∆e
−(κk+κk̃)(u−t∆)

+ κkθk

∫ u

t∆

Vk̃,se
−(κk+κk̃)(u−s)ds+ σk

∫ u

t∆

√
V k,sVk̃,se

−(κk+κk̃)(u−s)dWk,s

+ κk̃θk̃

∫ u

t∆

Vk,se
−(κk+κk̃)(u−s)ds+ σk̃

∫ u

t∆

√
V k̃,sVk,se

−(κk+κk̃)(u−s)dWk̃,s

+

∫ u

t∆

1k=k̃σkσk̃

√
Vk,s

√
Vk̃,se

−(κk+κk̃)(u−s)ds.

Proof. Adding Vk,uVk̃,u(κk + κk̃)dt to Lemma D.3.1 on both sides and multiplying with
et(κk+κk̃) leads to

d
(
et(κk+κk̃)Vk,tVk̃,t

)
= et(κk+κk̃)Vk̃,tκkθkdt+ Vk̃,te

t(κk+κk̃)σk

√
Vk,tdWk,t

+ et(κk+κk̃)Vk,tκk̃θk̃dt+ Vk,te
t(κk+κk̃)σk̃

√
Vk̃,tdWk̃,t

+ 1k=k̃σkσk̃e
t(κk+κk̃)

√
Vk,t

√
Vk̃,tdt.

Finally, we obtain the result through integration and multiplying with e−(κk+κk̃)(u−t∆). □

Corollary D.3.3. For 0 < t < u,

∫ u

t∆

Vk,sVk̃,sds =
1

κk + κk̃

 Vk,t∆Vk̃,t∆ − Vk,uVk̃,u + κkθk
∫ u

t∆
Vk̃,sds+ κk̃θk̃

∫ u

t∆
Vk,sds

+σk

∫ u

t∆

√
V k,sVk̃,sdWk,s + σk̃

∫ u

t∆

√
V k̃,sVk,sdWk̃,s

+
∫ u

t∆
1k=k̃σkσk̃

√
Vk,s

√
Vk̃,sds

 .

Proof. Direct application of Lemma D.3.1 by integrating the result. □

Lemma D.3.4. For 0 < t < u,

E

[∫ u

t∆

Vk,sVk̃,sds

∣∣∣∣Ft∆

]
xc
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= E

 1

κk + κk̃


Vk,t∆Vk̃,t∆(1− e−(κk+κk̃)(u−t∆))

+κkθk
∫ u

t∆
(1− e−(κk+κk̃)(u−s))Vk̃,sds

+κk̃θk̃
∫ u

t∆
(1− e−(κk+κk̃)(u−s))Vk,sds

+
∫ u

t∆
(1− e−(κk+κk̃)(u−s))1k=k̃σkσk̃

√
Vk,s

√
Vk̃,sds


∣∣∣∣∣∣∣∣∣∣
Ft∆

 .

Proof. Replacing Vk,uVk̃,u in Corollary D.3.3 by the results of Corollary D.3.2 and taking
the expectation. □

Lemma D.3.5. For u > t∆,

E

[∫ u

t∆

e−(κk+κk̃)(u−s)Vk,sds

∣∣∣∣Ft∆

]
= (Vk,t∆ − θk) e

−κk(u−t∆)1− e−κk̃(u−t∆)

κk̃

+ θk
1− e−(κk+κk̃)(u−t∆)

κk + κk̃

,

Proof. From Equation (B.8),

E

[∫ u

t∆

e−(κk+κk̃)(u−s)Vk,sds

∣∣∣∣Ft∆

]
= E

[∫ u

t∆

e−(κk+κk̃)(u−s)

(
e−κk(s−t∆)Vk,t∆ + θk

(
1− e−κk(s−t∆)

)
+σke

−κks
∫ s

t∆
eκkr

√
Vk,rdWk,r

)
ds

∣∣∣∣∣Ft∆

]

=

∫ u

t∆

e−(κk+κk̃)(u−s)
(
e−κk(s−t∆)Vk,t∆ + θk

(
1− e−κk(s−t∆)

))
ds

=

∫ u

t∆

(Vk,t∆ − θk) e
−(κk+κk̃)(u−s)e−κk(s−t∆) + θke

−(κk+κk̃)(u−s)ds,

leading to the result. □

Lemma D.3.6. For 0 < t < u,

E

[∫ (t+1)∆

t∆

Vk,sVk̃,sds

∣∣∣∣∣Ft∆

]
= Ak,k̃ + Bk,k̃Vk,t∆Vk̃,t∆ +Dk,k̃Vk,t∆ + Ek,k̃Vk̃,t∆,
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where

Ak,k̃ =
κk̃θk̃ + 1k=k̃σkσk̃

(κk + κk̃)
θk

(
∆− 1− e−(κk+κk̃)∆

(κk + κk̃)

)
− θkDk,k̃

+
κkθk

(κk + κk̃)
θk̃

(
∆− 1− e−(κk+κk̃)∆

(κk + κk̃)

)
− θk̃Ek,k̃,

Bk,k̃ =
(1− e−(κk+κk̃)∆)

(κk + κk̃)
,

Dk,k̃ =
κk̃θk̃ + 1k=k̃σkσk̃

(κk + κk̃)

(
1− e−κk∆

κk

− e−κk∆
1− e−κk̃∆

κk̃

)
,

Ek,k̃ =
κkθk

(κk + κk̃)

(
1− e−κk̃∆

κk̃

− e−κk̃∆
1− e−κk∆

κk

)
.

Proof. Direct application from Lemmas D.3.4 and D.3.5 where

E

[∫ (t+1)∆

t∆

(
1− e−(κk+κk̃)((t+1)∆−s)

)
Vk,sds

∣∣∣∣∣Ft∆

]

= (Vk,t∆ − θk)

(
1− e−κk∆

κk

− e−κk∆
1− e−κk̃∆

κk̃

)
+ θk

(
∆− 1− e−(κk+κk̃)∆

(κk + κk̃)

)
.

D.3.3 Derivation of E
[∫ u

t∆ Vk,sVk̃,sVk̂,sds|Ft∆

]
Lemma D.3.7. The SDE of VkVk̃Vk̂ is

dVk,tVk̃,tVk̂,t

= Vk̃,tVk̂,tκk (θk − Vk,t) dt+ Vk,tVk̂,tκk̃

(
θk̃ − Vk̃,t

)
dt+ Vk,tVk̃,tκk̂

(
θk̂ − Vk̂,t

)
dt

+ Vk,tVk̃,tσk̂

√
Vk̂,tdWk̂,t + Vk̃,tVk̂,tσk

√
Vk,tdWk,t + Vk,tVk̂,tσk̃

√
Vk̃,tdWk̃,t

+ Vk̂,t1k=k̃σkσk̃
√

Vk,t

√
Vk̃,tdt+ Vk̃,t1k=k̂σkσk̂

√
Vk,t

√
Vk̂,tdt+ Vk,t1k̂=k̃σk̂σk̃

√
Vk̂,t

√
Vk̃,tdt.

Proof. Direct application of Itô’s lemma to VkVk̃Vk̂. □
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Corollary D.3.8. For 0 < t < u,

E

[∫ u

t∆

Vk,sVk̃,sVk̂,sds

∣∣∣∣Ft∆

]

=
1

κk + κk̃ + κk̂

E


Vk,t∆Vk̃,t∆Vk̂,t∆ − Vk,uVk̃,uVk̂,u

+(κkθk + 1k=k̃σkσk̃)
∫ u

t∆
Vk̃,sVk̂,sds

+(κk̃θk̃ + 1k̃=k̂σk̃σk̂)
∫ u

t∆
Vk,sVk̂,sds

+(κk̂θk̂ + 1k=k̂σkσk̂)
∫ u

t∆
Vk,sVk̃,sds

∣∣∣∣∣∣∣∣∣∣
Ft∆

 .

Proof. Direct application of Lemma D.3.7 by integrating the result and taking the expec-
tation. □

D.4 Kalman Filter Comparison

This section delves into a comparative analysis between our filter and the standard Kalman
Filter (KF) first introduced by Kalman, 1960.

The Kalman filter is designed for a linear model like

Vt+1 = At + BtVt + CtEt+1, (D.9)

Ot+1 = at + btVt + ctet+1. (D.10)

where Et+1|Gt and et+1|Gt are independent multivariate random vectors. These noise vec-
tors are also assumed to be independent from Vt. The standard KF proposes an estimate
Vt+1|t+1 for the latent variable Vt+1, accompanied by its conditional variance Pt+1|t+1 with

Vt+1|t+1 = E[Vt+1|Gt] +Σt(Ot+1 − E[Ot+1|Gt]),

Pt+1|t+1 = Var[Vt+1|Gt]−ΣtCov [Ot+1,Vt+1|Gt] .

As discuss in Uhlmann and Julier, 2022, the common assumption of a Gaussian distri-
bution of the noise terms in the state and measurement equations is not a prerequisite for
the Kalman Filter, although having a Gaussian distribution leads to an optimal estimator.
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The update process, derived in Section 3.3, is computed by minimizing the mean squared
error (MMSE) of Equation (3.25), which does not necessitate any distributional assump-
tion. The update matrix, often referred to as the Kalman update, derived in Equation (3.26),
is

Σt = Cov [Vt+1,Ot+1|Gt] (Var [Ot+1|Gt])
−1 . (D.11)

Proposition D.4.1. Let Yt+1 = Vt+1 −ΣtOt+1 where Σt is defined in Equation (D.11).

Cov[Ot+1,Yt+1|Gt] = 0,

E[Yt+1|Gt] = E[Vt+1|Gt]−ΣtE[Ot+1|Gt],

Var[Yt+1|Gt] = Var[Vt+1|Gt]−ΣtCov[Ot+1,Vt+1|Gt].

Proof: The covariance is

Cov[Ot+1,Yt+1|Gt]

= Cov[Ot+1,Vt+1 −ΣtOt+1|Gt]

= Cov[Ot+1,Vt+1|Gt]− Var[Ot+1|Gt]Σ
⊤
t

= Cov[Ot+1,Vt+1|Gt]− Var[Ot+1|Gt]
(
Cov [Vt+1,Ot+1|Gt] (Var [Ot+1|Gt])

−1)⊤
= 0,

and the variance

Var[Yt+1|Gt] = Var[Vt+1|Gt] +ΣtVar[Ot+1|Gt]Σ
⊤
t

− Cov[Vt+1,Ot+1|Gt]Σ
⊤
t −ΣtCov[Ot+1,Vt+1|Gt]

= Var[Vt+1|Gt]−ΣtCov[Ot+1,Vt+1|Gt].

Assumption D.4.2. With Equations (D.9) and (D.10),

ξt+1|Gt ∼ N (0, Ik) , et+1|Gt ∼ N (0, Im) ,
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and are independent from each other and from Vt conditional to Gt.

Corollary D.4.3. Based on the linear framework of Equations (D.9) and (D.10), if V0 is
normal and Assumption (D.4.2) holds, it implies that Ot+1, Vt+1 and Yt+1 conditional to
Gt follow a multivariate normal distribution.

Proof: Direct application of the normal distribution properties. □

Corollary D.4.3 is based on the linear condition of the framework, which we do not
have in the main paper.

Corollary D.4.4. If Yt+1 = Vt+1 −ΣtOt+1, where Σt is defined in Equation (D.11), and
Assumption D.4.2 is true, then Yt+1 and Ot+1 are independent when conditional on Gt∆.

Proof: From Assumption D.4.2 and Corollary D.4.3, Yt+1 and Ot+1 is multivariate normal
with null conditional covariance from Proposition D.4.1. Therefore, it implies that Yt+1 is
independent from Ot+1 by the properties of the multivariate normal distribution. □

Corollary D.4.5. If Assumption (D.4.2) is true, then

E[Vt+1|Gt+1] = E[Vt+1|Gt] +Σt(Ot+1 − E[Ot+1|Gt]) = Vt+1|t+1,

Var[Vt+1|Gt+1] = Var[Vt+1|Gt]−ΣtCov [Ot+1,Vt+1|Gt] = Pt+1|t+1.

Proof: When conditioned on Gt, Yt+1 is independent of Ot+1, which implies that

E[Yt+1|Gt] = E[Yt+1|Gt+1],

Var[Yt+1|Gt] = Var[Yt+1|Gt+1].

Therefore, from the first equality we conclude that

E[Vt+1|Gt+1] = E[Yt+1 +ΣtOt+1|Gt+1]

= E[Yt+1|Gt] +ΣtOt+1

= E[Vt+1|Gt] +Σt (Ot+1 − E[Ot+1|Gt]) .
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Furthermore,

Var[Vt+1|Gt+1] = Var[Yt+1 +ΣtOt+1|Gt+1]

= Var[Yt+1|Gt]

= Var[Vt+1 −ΣtOt+1|Gt]

= Var[Vt+1|Gt]−ΣtCov [Ot+1,Vt+1|Gt] .

If Assumption (D.4.2) is true, than the KF estimator Vt+1|t+1 and its variance Pt+1|t+1

equal to the exact conditional moments of the latent state E[Vt+1|Gt+1] and Var[Vt+1|Gt+1]

respectively. In Corollary D.4.5, the variance conditioned on Gt+1 is equal to the variance
conditioned on Gt, as opposed to Equation (3.27). This difference arises as the Assumption
D.4.2 is not respected in our framework. The filter proposed in Section 3.3 minimized the
mean squared error of our estimate. However, since it does not benefit from linearity and
Gaussian distribution, it does not yield optimal estimates. In our context, the absence of
the Assumption D.4.2 implies that we cannot conclude that Vt+1 −ΣtOt+1 and Ot+1 are
independent. They are simply uncorrelated.

To summarize, our filter derived in section 3.3 does not follow the standard KF in two
ways 1) the noises are not Gaussian and 2) the state and measurement equations are not lin-
ear in the latent state. Nevertheless, we achieved to obtain analytical conditional moments
of the latent state and observable variables, despite its non-linearity. Consequently, we can
compute the update matrix based on the minimization of mean squared error, as derived
in Equations (3.25) and (3.26), without necessitating any additional assumptions. Due to
the absence of a Gaussian distribution, we derive an additional update for Equation (3.27),
which is detailed in Online Appendix D.8.

D.5 Derivation of Third and Fourth Conditional Cumu-
lant

This Online Appendix provides the complete derivations and proofs of Appendix B.4.1.3
and B.4.2.3, detailing how we compute the third and fourth cumulants including the mea-
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surement error.

D.5.1 Measurement error third cumulant with respect to the observed
filtration

We need to add the measurement error on the third central moments to transit from O(t+1)∆−
Qξt,t+1 to O(t+1)∆. We then derive the third central moments involving to the measurement
error with respect to the observed filtration with the following corollary:

Corollary D.5.1. For X (t+1)∆ ∈ {O(t+1)∆ − Qξt,t+1,V(t+1)∆}, then

Cum(3)
[
ξt,t+1,X (t+1)∆,X (t+1)∆

∣∣Gt∆

]
= E

[
Cum(3)

[
ξt,t+1,X (t+1)∆,X (t+1)∆

∣∣Ft∆

]∣∣∣Gt∆

]
,

Cum(3)
[
ξt,t+1, ξt,t+1,X (t+1)∆

∣∣Gt∆

]
= E

[
Cum(3)

[
ξt,t+1, ξt,t+1,X (t+1)∆

∣∣Ft∆

]∣∣∣Gt∆

]
+ Cov

[
Cov [ξt,t+1, ξt,t+1| Ft∆] ,E

[
X (t+1)∆

∣∣Ft∆

]∣∣Gt∆

]
,

Cum(3) [ξt,t+1, ξt,t+1, ξt,t+1| Gt∆] = E
[
Cum(3) [ξt,t+1, ξt,t+1, ξt,t+1| Ft∆]

∣∣∣Gt∆

]
.

Proof: Direct application of the law of total cumulance (see Lemma B.4.2) and Corollary
B.1.1. □

Corollary D.5.2. For Xl,(t+1)∆ ∈ {Ol,(t+1)∆ − Qlξt,t+1, Vl,(t+1)∆}, if

E
[
Xl,(t+1)∆|Ft∆

]
= βl

 NV∑
k̂=1

α
(1)

k̂
Vk̂,t∆ + α

(0)

k̂

 ,

then

Cov
[
Cov

[
ξi,j,t,t+1, ξĩ,j̃,t,t+1

∣∣Ft∆

]
,E
[
Xl,(t+1)∆

∣∣Ft∆

]∣∣Gt∆

]
= ηCov

βl

 NV∑
k̂=1

α
(1)

k̂
Vk̂,t∆

 ,

NV∑
k=1

NV∑
k̃=1

Ci,j,̃i,j̃

k,k̃

(
Bk,k̃Vk,t∆Vk̃,t∆

+Dk,k̃Vk,t∆ + Ek,k̃Vk̃,t∆

)∣∣∣∣∣∣Gt∆

 ,
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which is a linear sum of the moments of the latent variables.2

Proof: Direct application of Equation (B.5). □

D.5.2 Adding the measurement error third cumulant

The measurement error ξt,t+1 is included in the third cumulant with respect to the observed
filtration as follows

Cum(3)
[
Oi,(t+1)∆,Vj,(t+1)∆,Vl,(t+1)∆|Gt∆

]
= Cum(3)

[
Oi,(t+1)∆ − Qiξt,t+1,Vj,(t+1)∆,Vl,(t+1)∆|Gt∆

]
+ Cum(3)

[
Qi ξt,t+1,Vj,(t+1)∆,Vl,(t+1)∆|Gt∆

]
,

Cum(3)
[
Oi,(t+1)∆,Oj,(t+1)∆,Vl,(t+1)∆|Gt∆

]
= Cum(3)

[
Oi,(t+1)∆ − Qiξt,t+1,Oj,(t+1)∆ − Qjξt,t+1,Vl,(t+1)∆|Gt∆

]
+ Cum(3)

[
Qi ξt,t+1,Oj,(t+1)∆ − Qjξt,t+1,Vl,(t+1)∆|Gt∆

]
+ Cum(3)

[
Oi,(t+1)∆ − Qiξt,t+1,Qj ξt,t+1,Vl,(t+1)∆|Gt∆

]
+ Cum(3)

[
Qi ξt,t+1,Qj ξt,t+1,Vl,(t+1)∆|Gt∆

]
,

Cum(3)
[
Oi,(t+1)∆,Oj,(t+1)∆,Ol,(t+1)∆|Gt∆

]
= Cum(3)

[
Oi,(t+1)∆ − Qiξt,t+1,Oj,(t+1)∆ − Qjξt,t+1,Ol,(t+1)∆ − Qlξt,t+1|Gt∆

]
+ Cum(3)

[
Qi ξt,t+1,Oj,(t+1)∆ − Qjξt,t+1,Ol,(t+1)∆ − Qlξt,t+1|Gt∆

]
2These equations can be rewritten as a function of the central moments:

Var [X,Y Z] = E [(X − E [X])(Y Z − E [Y Z])]

= E [(X − E [X])(Y Z)]

= E [(X − E [X]) ((Y − E [Y ])(Z − E [Z]) + Y E [Z] + ZE [Y ]− E [Y ] E [Z])]

= E [(X − E [X]) ((Y − E [Y ])(Z − E [Z]) + Y E [Z] + ZE [Y ])]

= Cum(3) [X,Y, Z] + E [(X − E [X]) ((Y − E [Y ])E [Z] + (Z − E [Z])E [Y ])]

= Cum(3) [X,Y, Z] + Var [X,Y ] E [Z] + Var [X,Z] E [Y ] .
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+ Cum(3)
[
Oi,(t+1)∆ − Qiξt,t+1,Qj ξt,t+1,Ol,(t+1)∆ − Qlξt,t+1|Gt∆

]
+ Cum(3)

[
Qi ξt,t+1,Qj ξt,t+1,Ol,(t+1)∆ − Qlξt,t+1|Gt∆

]
+ Cum(3)

[
Qi ξt,t+1,Oj,(t+1)∆ − Qjξt,t+1,Ql ξt,t+1|Gt∆

]
+ Cum(3)

[
Oi,(t+1)∆ − Qiξt,t+1,Qj ξt,t+1,Ql ξt,t+1|Gt∆

]
+ Cum(3)

[
Qi ξt,t+1,Qj ξt,t+1,Ql ξt,t+1|Gt∆

]
.

D.5.3 Measurement error fourth cumulant with respect to the ob-
served filtration

We need to add the measurement error on the fourth cumulant to transit from O(t+1)∆ −
Qξt,t+1 to O(t+1)∆. We then derive the fourth cumulant involving to the measurement error
with respect to the observed filtration with the following corollary:

Corollary D.5.3. For X (t+1)∆ ∈ {O(t+1)∆ −Qξt,t+1,V(t+1)∆}, if Assumption 3.4.1 holds,
then

Cum(4)
[
ξt,t+1,X (t+1)∆,X (t+1)∆,X (t+1)∆

∣∣Gt∆

]
= 0,

Cum(4)
[
ξt,t+1, ξt,t+1, ξt,t+1,X (t+1)∆

∣∣Gt∆

]
= 0.

Proof: Direct application of the law of total cumulance (see Lemma B.4.7). □

Corollary D.5.4. For Xl,(t+1)∆ ∈ {Ol,(t+1)∆ − Qlξt,t+1, Vl,(t+1)∆}, if

E
[
Xl,(t+1)∆|Ft∆

]
= βl

 NV∑
k̂=1

α
(1)

k̂
Vk̂,t∆ + α

(0)

k̂

 ,

Var
[
Xl,(t+1)∆,Xm,(t+1)∆|Ft∆

]
= ϕl,m

(
NV∑
k̄=1

φ
(1)

k̄
Vk̄,t∆ + φ

(0)

k̄

)
,

and if Assumption 3.4.1 is respected, then

Cum(4)
[
ξi,j,t,t+1, ξĩ,j̃,t,t+1,Xl,(t+1)∆,Xm,(t+1)∆

∣∣Gt∆

]
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= ηCov

ϕl,m

(
NV∑
k̄=1

φ
(1)

k̄
Vk̄,t∆

)
,

NV∑
k=1

NV∑
k̃=1

Ci,j,̃i,j̃

k,k̃

(
Bk,k̃Vk,t∆Vk̃,t∆

+Dk,k̃Vk,t∆ + Ek,k̃Vk̃,t∆

)∣∣∣∣∣∣Gt∆


+ ηCum(3)

 βl

(∑NV

k̂=1
α
(1)

k̂
Vk̂,t∆

)
, βm

(∑NV

k̄=1
α
(1)

k̄
Vk̄,t∆

)
,∑NV

k=1

∑NV

k̃=1
Ci,j,̃i,j̃

k,k̃

(
Bk,k̃Vk,t∆Vk̃,t∆ +Dk,k̃Vk,t∆ + Ek,k̃Vk̃,t∆

)
∣∣∣∣∣∣Gt∆

 ,

which is a linear sum of the moments of the latent variables.3

Proof: With the law of total cumulance (see Lemma B.4.7), the non-null terms are

Cum(4)
[
ξi,j,t,t+1, ξĩ,j̃,t,t+1,Xl,(t+1)∆,Xm,(t+1)∆

∣∣Gt∆

]
= Var

[
Var

[
Xl,(t+1)∆,Xm,(t+1)∆|Ft∆

]
,Var

[
ξi,j,t,t+1, ξĩ,j̃,t,t+1|Ft∆

]
|Gt∆

]
+ Cum(3)

[
E
[
Xl,(t+1)∆|Ft∆

]
,E
[
Xm,(t+1)∆|Ft∆

]
,Var

[
ξi,j,t,t+1, ξĩ,j̃,t,t+1|Ft∆

]
|Gt∆

]
,

leading to the result. □

Corollary D.5.5. If Assumption 3.4.1 is respected, then

Cum(4)
[
ξi,j,t,t+1, ξĩ,j̃,t,t+1, ξl,m,t,t+1, ξl̃,m̃,t,t+1

∣∣Gt∆

]
= η2Cov

 ∑NV

k=1

∑NV

k̃=1
Cl,m,l̃,m̃

k,k̃

(
Bk,k̃Vk,t∆Vk̃,t∆ +Dk,k̃Vk,t∆ + Ek,k̃Vk̃,t∆

)
,∑NV

k̂=1

∑NV

k̃=1
Ci,j,̃i,j̃

k̂,k̄

(
Bk̂,k̄Vk̂,t∆Vk̄,t∆ +Dk̂,k̄Vk̂,t∆ + Ek̂,k̄Vk̄,t∆

) ∣∣∣∣∣∣Gt∆


+ η2Cov

 ∑NV

k=1

∑NV

k̃=1
Cl,m,i,j

k,k̃

(
Bk,k̃Vk,t∆Vk̃,t∆ +Dk,k̃Vk,t∆ + Ek,k̃Vk̃,t∆

)
,∑NV

k̂=1

∑NV

k̃=1
C l̃,m̃,̃i,j̃

k̂,k̄

(
Bk̂,k̄Vk̂,t∆Vk̄,t∆ +Dk̂,k̄Vk̂,t∆ + Ek̂,k̄Vk̄,t∆

) ∣∣∣∣∣∣Gt∆


3These equations can be rewritten as a function of the central moments:

Cum(3) [X,W, Y Z]

= E [(X − E [X])(W − E [W ])(Y Z − E [Y Z])]

= E

[
(X − E [X]) (W − E [W ])

((Y − E [Y ])(Z − E [Z])− E [Y Z] + Y E [Z] + ZE [Y ]− E [Y ] E [Z])

]
= E [(X − E [X]) (W − E [W ]) (Y − E [Y ])(Z − E [Z])]

+ Cum(3) [X,W, Y ] E [Z] + Cum(3) [X,W,Z] E [Y ]−Var [X,W ] Var [Y,Z] .
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+ η2Cov

 ∑NV

k=1

∑NV

k̃=1
Cl,m,̃i,j̃

k,k̃

(
Bk,k̃Vk,t∆Vk̃,t∆ +Dk,k̃Vk,t∆ + Ek,k̃Vk̃,t∆

)
,∑NV

k̂=1

∑NV

k̃=1
Ci,j,l̃,m̃

k̂,k̄

(
Bk̂,k̄Vk̂,t∆Vk̄,t∆ +Dk̂,k̄Vk̂,t∆ + Ek̂,k̄Vk̄,t∆

) ∣∣∣∣∣∣Gt∆

 ,

which is a linear sum of the moments of the latent variables.4

Proof: With the law of total cumulance (see Lemma B.4.7 for application), the non-null
terms are

Cum(4)
[
ξi,j,t,t+1, ξĩ,j̃,t,t+1, ξl,m,t,t+1, ξl̃,m̃,t,t+1

∣∣Gt∆

]
= Cov

[
Cov

[
ξl,m,t,t+1, ξl̃,m̃,t,t+1|Ft∆

]
,Cov

[
ξi,j,t,t+1, ξĩ,j̃,t,t+1|Ft∆

]
|Gt∆

]
+ Cov

[
Cov

[
ξi,j,t,t+1, ξl̃,m̃,t,t+1|Ft∆

]
,Cov

[
ξl,m,t,t+1, ξĩ,j̃,t,t+1|Ft∆

]
|Gt∆

]
+ Cov

[
Cov

[
ξĩ,j̃,t,t+1, ξl̃,m̃,t,t+1|Ft∆

]
,Cov [ξi,j,t,t+1, ξl,m,t,t+1|Ft∆] |Gt∆

]
,

leading to the results. □

D.5.4 Adding the measurement error fourth cumulant

Therefore, the measurement error ξt,t+1 is included in the fourth cumulant with respect to
the observed filtration as follows

Cum(4)
[
Oi,(t+1)∆,Vj,(t+1)∆,Vl,(t+1)∆,Vm,(t+1)∆

∣∣Gt∆

]
= Cum(4)

[
Oi,(t+1)∆ − Qiξt,t+1,Vj,(t+1)∆,Vl,(t+1)∆Vm,(t+1)∆

∣∣Gt∆

]
,

Cum(4)
[
Oi,(t+1)∆,Oj,(t+1)∆,Vl,(t+1)∆Vm,(t+1)∆

∣∣Gt∆

]
= Cum(4)

[
Oi,(t+1)∆ − Qiξt,t+1,Oj,(t+1)∆ − Qjξt,t+1,Vl,(t+1)∆Vm,(t+1)∆

∣∣Gt∆

]
+ Cum(4)

[
Qi ξt,t+1,Qj ξt,t+1,Vl,(t+1)∆Vm,(t+1)∆

∣∣Gt∆

]
,

4These equations can be rewritten as a function of the central moments:

Cov [XW,Y Z] = Cum(4) [X,W, Y, Z] + Cov [X,Y ] Cov [W,Z] + Cov [X,Z] Cov [W,Y ]
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Cum(4)
[
Oi,(t+1)∆,Oj,(t+1)∆,Ol,(t+1)∆Vm,(t+1)∆

∣∣Gt∆

]
= Cum(4)

[
Oi,(t+1)∆ − Qiξt,t+1,Oj,(t+1)∆ − Qjξt,t+1,Ol,(t+1)∆ − Qlξt,t+1Vm,(t+1)∆

∣∣Gt∆

]
+ Cum(4)

[
Qi ξt,t+1,Qj ξt,t+1,Ol,(t+1)∆ − Qlξt,t+1Vm,(t+1)∆

∣∣Gt∆

]
+ Cum(4)

[
Qi ξt,t+1,Oj,(t+1)∆ − Qjξt,t+1,Ql ξt,t+1Vm,(t+1)∆

∣∣Gt∆

]
+ Cum(4)

[
Oi,(t+1)∆ − Qiξt,t+1,Qj ξt,t+1,Ql ξt,t+1Vm,(t+1)∆

∣∣Gt∆

]
,

Cum(4)
[
Oi,(t+1)∆,Oj,(t+1)∆,Ol,(t+1)∆Om,(t+1)∆

∣∣Gt∆

]
= Cum(4)

[
Oi,(t+1)∆ − Qiξt,t+1,Oj,(t+1)∆ − Qjξt,t+1,

Ol,(t+1)∆ − Qlξt,t+1Om,(t+1)∆ − Qmξt,t+1

∣∣∣∣∣Gt∆

]
+ Cum(4)

[
Qi ξt,t+1,Qj ξt,t+1,Ol,(t+1)∆ − Qlξt,t+1Om,(t+1)∆ − Qmξt,t+1

∣∣Gt∆

]
+ Cum(4)

[
Qi ξt,t+1,Oj,(t+1)∆ − Qjξt,t+1,Ql ξt,t+1Om,(t+1)∆ − Qmξt,t+1

∣∣Gt∆

]
+ Cum(4)

[
Oi,(t+1)∆ − Qiξt,t+1,Qj ξt,t+1,Ql ξt,t+1Om,(t+1)∆ − Qmξt,t+1

∣∣Gt∆

]
+ Cum(4)

[
Qi ξt,t+1,Oj,(t+1)∆ − Qjξt,t+1,Ol,(t+1)∆ − Qlξt,t+1,Qm ξt,t+1

∣∣Gt∆

]
+ Cum(4)

[
Oi,(t+1)∆ − Qiξt,t+1,Qj ξt,t+1, ,Ol,(t+1)∆ − Qlξt,t+1,Qm ξt,t+1

∣∣Gt∆

]
+ Cum(4)

[
Oi,(t+1)∆ − Qiξt,t+1,Oj,(t+1)∆ − Qjξt,t+1,Ql ξt,t+1,Qm ξt,t+1

∣∣Gt∆

]
+ Cum(4)

[
Qi ξt,t+1,Qj ξt,t+1,Ql ξt,t+1,Qm ξt,t+1

∣∣Gt∆

]
.

D.6 Higher Moments of Stochastic Integrals

D.6.1 General result

This Online Appendix derives the cumulant of key quantities. The subscript k is omitted for
readability. We denoteWt,t+∆

u
=
∫ t∆+u

t∆

√
VsdWs, Bt,t+∆

u
=
∫ t∆+u

t∆

√
VsdBs andZt,t+∆

u
=∫ t∆+u

t∆
e−κ((t∆+u)−s)

√
VsdWs = e−κ(t∆+u)Yt,t+∆

u
where Yt,t+∆

u
=
∫ t∆+u

t∆
eκs

√
VsdWs. To

compute the higher moments related to observations and latent variables, we develop the
following general result:
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Lemma D.6.1. For n, p,m, l ∈ N, and

Xt,t+ u
∆
= Yn

t,t+ u
∆
Wp

t,t+ u
∆
Bl
t,t+ u

∆
emκuV m

t∆+u,

we have

E [Xt,t+1| Ft∆]−Xt,t

=

(
mκθ +

1

2
m(m− 1)σ2

)∫ ∆

0

E
[
Xt,t+ u

∆
V −1
t∆+u

∣∣Ft∆

]
du

+
1

2
n(n− 1)

∫ ∆

0

E
[
Xt,t+ u

∆
Y−2

t,t+ u
∆
Vt∆+u

∣∣∣Ft∆

]
e2κsudu

+
1

2
p(p− 1)

∫ ∆

0

E
[
Xt,t+ u

∆
W−2

t,t+ u
∆
Vt∆+u

∣∣∣Ft∆

]
du

+
1

2
l(l − 1)

∫ ∆

0

E
[
Xt,t+ u

∆
B−2
t,t+ u

∆
Vt∆+u

∣∣∣Ft∆

]
du

+ np

∫ ∆

0

E
[
Xt,t+ u

∆
Y−1

t,t+ u
∆
W−1

t,t+ u
∆
Vt∆+u

∣∣∣Ft∆

]
eκsudu

+ nmσ

∫ ∆

0

E
[
Xt,t+ u

∆
Y−1

t,t+ u
∆

∣∣∣Ft∆

]
eκsudu

+ pmσ

∫ ∆

0

E
[
Xt,t+ u

∆
W−1

t,t+ u
∆

∣∣∣Ft∆

]
du.

Proof. The stochastic differential equation of Xt,t+ u
∆

is

dXt,t+ u
∆

= nXt,t+ u
∆
Y−1

t,t+ u
∆
dYt,t+ u

∆
+ pXt,t+ u

∆
W−1

t,t+ u
∆
dWt,t+ u

∆

+ lXt,t+ u
∆
B−1
t,t+ u

∆
dBt,t+ u

∆
+mXt,t+ u

∆
V −1
t∆+udVt∆+u +mκXt,t+ u

∆
du

+
1

2
n(n− 1)Xt,t+ u

∆
Y−2

t,t+ u
∆
d ⟨Y ,Y⟩u +

1

2
p(p− 1)Xt,t+ u

∆
W−2

t,t+ u
∆
d ⟨W ,W⟩u

+
1

2
l(l − 1)Xt,t+ u

∆
B−2
t,t+ u

∆
d ⟨B,B⟩u +

1

2
m(m− 1)Xt,t+ u

∆
V −2
t∆+ud ⟨V, V ⟩u

+ npXt,t+ u
∆
Y−1

t,t+ u
∆
W−1

t,t+ u
∆
d ⟨Y ,W⟩u + nmXt,t+ u

∆
Y−1

t,t+ u
∆
V −1
t d ⟨Y , V ⟩u
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+ pmXt,t+ u
∆
W−1

t,t+ u
∆
V −1
t∆+ud ⟨W , V ⟩u

= nXt,t+ u
∆
Y−1

t,t+ u
∆
eκu
√

Vt∆+udWt∆+u + pXt,t+ u
∆
W−1

t,t+ u
∆

√
Vt∆+udWt∆+u

+ lXt,t+ u
∆
B−1
t,t+ u

∆

√
Vt∆+udBt∆+u +mκθXt,t+ u

∆
V −1
t∆+udu

−mκXt,t+ u
∆
du+mXt,t+ u

∆
V −1
t∆+uσ

√
Vt∆+udWt∆+u +mκXt,t+ u

∆
du

+
1

2
n(n− 1)Xt,t+ u

∆
Y−2

t,t+ u
∆
e2κuVt∆+udu+

1

2
p(p− 1)Xt,t+ u

∆
W−2

t,t+ u
∆
Vt∆+udu

+
1

2
l(l − 1)Xt,t+ u

∆
B−2
t,t+ u

∆
Vt∆+udu+

1

2
m(m− 1)Xt,t+ u

∆
V −2
t∆+uσ

2Vt∆+udu

+ npXt,t+ u
∆
Y−1

t,t+ u
∆
W−1

t,t+ u
∆
eκuVt∆+udu

+ nmXt,t+ u
∆
Y−1

t,t+ u
∆
V −1
t σeκuVt∆+udu+ pmXt,t+ u

∆
W−1

t,t+ u
∆
V −1
t∆+uσVt∆+udu.

The drift of Xt,t+ u
∆

is then composed of(
mκθ +

1

2
m(m− 1)σ2

)
Xt,t+ u

∆
V −1
t∆+u +

1

2
n(n− 1)Xt,t+ u

∆
e2κuY−2

t,t+ u
∆
Vt∆+u

+
1

2
p(p− 1)Xt,t+ u

∆
W−2

t,t+ u
∆
Vt∆+u +

1

2
l(l − 1)Xt,t+ u

∆
B−2
t,t+ u

∆
Vt∆+u

+ npXt,t+ u
∆
eκuY−1

t,t+ u
∆
W−1

t,t+ u
∆
Vt∆+u + nmσXt,t+ u

∆
eκuY−1

t,t+ u
∆

+ pmσXt,t+ u
∆
W−1

t,t+ u
∆
.

Integrating the time variable u from 0 and ∆, taking the expectation from each side and
using Fubini leads to the result. □

D.6.2 Fourth moment calculations

This section details how to calculate the fourth cumulant of the stochastic integrals with
respect to the model filtration. We first derive the relationship between the fourth cumulant
and central moment.

Corollary D.6.2. For the general stochastic integrals Xi,t,t+1 ∈ {Zt,t+1,Wt,t+1Bt,t+1},

civ



Online Appendix D. Variance filtering in multidimensional affine models

∀i ∈ {1, 2, 3, 4}, the relationship between the fourth cumulant and centered moment is:

Cum(4) [X1,t,t+1,X2,t,t+1,X3,t,t+1,X4,t,t+1| Ft∆]

= E [X1,t,t+1X2,t,t+1X3,t,t+1X4,t,t+1| Ft∆]

− E [X1,t,t+1X2,t,t+1| Ft∆] E [X3,t,t+1X4,t,t+1| Ft∆]

− E [X1,t,t+1X3,t,t+1| Ft∆] E [X2,t,t+1X4,t,t+1| Ft∆]

− E [X1,t,t+1X4,t,t+1| Ft∆] E [X2,t,t+1X3,t,t+1| Ft∆] .

Proof. By definition, the fourth cumulant of the random variables X1,t,t+1, X2,t,t+1, X3,t,t+1

and X4,t,t+1 is

Cum(4) [X1,t,t+1,X2,t,t+1,X3,t,t+1,X4,t,t+1| Ft∆]

= E

[
(X1,t,t+1 − E [X1,t,t+1| Ft∆]) (X2,t,t+1 − E [X2,t,t+1| Ft∆])

(X3,t,t+1 − E [X3,t,t+1| Ft∆]) (X4,t,t+1 − E [X4,t,t+1| Ft∆])

∣∣∣∣∣Ft∆

]

−

(
E [(X1,t,t+1 − E [X1,t,t+1| Ft∆]) (X2,t,t+1 − E [X2,t,t+1| Ft∆])| Ft∆]

E [(X3,t,t+1 − E [X3,t,t+1| Ft∆]) (X4,t,t+1 − E [X4,t,t+1| Ft∆])| Ft∆]

)

−

(
E [(X1,t,t+1 − E [X1,t,t+1| Ft∆]) (X3,t,t+1 − E [X3,t,t+1| Ft∆])| Ft∆]

E [(X2,t,t+1 − E [X2,t,t+1| Ft∆]) (X4,t,t+1 − E [X4,t,t+1| Ft∆])| Ft∆]

)

−

(
E [(X1,t,t+1 − E [X1,t,t+1| Ft∆]) (X4,t,t+1 − E [X4,t,t+1| Ft∆])| Ft∆]

E [(X2,t,t+1 − E [X2,t,t+1| Ft∆]) (X3,t,t+1 − E [X3,t,t+1| Ft∆])| Ft∆]

)
.

If these variables are centered at zero, the expression is further simplified, leading to the
result. □

Lemma D.6.3. For the stochastic integralsXi,t,t+1 ∈ {Zt,t+1,Wt,t+1,Bt,t+1}, ∀i ∈ {1, 2, 3, 4},
we have

E [X1,t,t+1X2,t,t+1| Ft∆] E [X3,t,t+1X4,t,t+1| Ft∆]

=

∫ ∆

0

E
[
X1,t,t+ u

∆
X2,t,t+ u

∆

∣∣Ft∆

]
dE
[
X3,t,t+ u

∆
X4,t,t+ u

∆

∣∣Ft∆

]
+

∫ ∆

0

E
[
X3,t,t+ u

∆
X4,t∆,t∆+u

∣∣Ft∆

]
dE
[
X1,t,t+ u

∆
X2,t,t+ u

∆

∣∣Ft∆

]
.
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Proof. For any diffusion process,

dXuYu = XudYu + YudXu + d < Y,X >u,

where we set Yu = E
[
X1,t,t+ u

∆
X2,t,t+ u

∆

∣∣Ft∆

]
andXu = E

[
X3,t,t+ u

∆
X4,t,t+ u

∆

∣∣Ft∆

]
. Based

on Lemma D.6.1, the quadratic covariation term is null, leading to the result. □

Corollary D.6.4.

Cum(4) [Bt,t+1,Bt,t+1,Bt,t+1,Bt,t+1| Ft∆] = 6

∫ t+1

t

σE [Zt,sBt,sBt,s| Ft∆] ds.

Proof. Direct application of Lemma D.6.1 to

E [Bt,t+1Bt,t+1Bt,t+1Bt,t+1| Ft∆] = 6

∫ t+1

t

E [Vs∆Bt,sBt,s| Ft∆] ds

= 6

∫ t+1

t

E [Vs∆| Ft∆] E [Bt,sBt,s| Ft∆] ds+ 6

∫ t+1

t

σE [Zt,sBt,sBt,s| Ft∆] ds,

and application of Lemma D.6.3 to

E [Bt,t+1Bt,t+1| Ft∆] E [Bt,t+1Bt,t+1| Ft∆] = 2

∫ t+1

t

E [Vs∆| Ft∆] E [Bt,sBt,s| Ft∆] ds.

Finally, Corollary D.6.2 is used to obtain the results. □

Corollary D.6.5.

Cum(4) [Bt,t+1,Bt,t+1,Bt,t+1,Wt,t+1| Ft∆] = 0.

Proof. Direct application of Lemma D.6.1 and Corollary B.4.3 to

E [Bt,t+1Bt,t+1Bt,t+1Wt,t+1| Ft∆] = 3

∫ t+1

t

E [Vs∆Wt,sBt,s| Ft∆] ds

= 3

∫ t+1

t

E [Vs∆| Ft∆] E [Bt,sWt,s| Ft∆]︸ ︷︷ ︸
=0

ds+ 3

∫ t+1

t

σ E [Zt,sWt,sBt,s| Ft∆]︸ ︷︷ ︸
=0

ds.
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and where

E [Bt,t+1Wt,t+1| Ft∆]︸ ︷︷ ︸
=0

E [Bt,t+1Bt,t+1| Ft∆] = 0.

Finally, Corollary D.6.2 is used to obtain the results. □

Corollary D.6.6.

Cum(4) [Bt,t+1,Bt,t+1,Bt,t+1,Zt,t+1| Ft∆] = 0.

Proof. Direct application of Lemma D.6.1 and Corollary B.4.3 to

E [Bt,t+1Bt,t+1Bt,t+1Zt,t+1| Ft∆] = 3e−κ(t+1)∆

∫ t+1

t

E [Vs∆Zt,sBt,s| Ft∆] e
κs∆ds

= 3e−κ(t+1)∆

∫ t+1

t

E [Vs∆| Ft∆] E [Bt,sZt,s| Ft∆]︸ ︷︷ ︸
=0

eκs∆ds

+ 3e−κ(t+1)∆

∫ t+1

t

σ E [Zt,sZt,sBt,s| Ft∆]︸ ︷︷ ︸
=0

eκs∆ds.

and where

E [Bt,t+1Zt,t+1| Ft∆]︸ ︷︷ ︸
=0

E [Bt,t+1Bt,t+1| Ft∆] = 0.

Finally, Corollary D.6.2 is used to obtain the results. □

Corollary D.6.7.

Cum(4) [Bt,t+1,Bt,t+1,Wt,t+1,Wt,t+1| Ft∆] =

∫ t+1

t
σE [Zt,s (Wt,sWt,s + Bt,sBt,s)| Ft∆] ds.

Proof. Direct application of Lemma D.6.1 to

E [Bt,t+1Bt,t+1Wt,t+1Wt,t+1| Ft∆]
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=

∫ t+1

t

E [Vs∆Wt,sWt,s| Ft∆] ds+

∫ t+1

t

E [Vs∆Bt,sBt,s| Ft∆] ds

=

∫ t+1

t

E [Vs∆| Ft∆] E [Bt,sBt,s +Wt,sWt,s| Ft∆] ds

+

∫ t+1

t

σE [Zt,s (Wt,sWt,s + Bt,sBt,s)| Ft∆] ds,

and application of Lemma D.6.3 to

E
[
B2
t,t+1

∣∣Ft∆

]
E
[
W2

t,t+1

∣∣Ft∆

]
=

∫ t+1

t

E [Vs∆| Ft∆] E
[
B2
t,s +W2

t,s

∣∣Ft∆

]
ds.

Finally, Corollary D.6.2 is used to obtain the results. □

Corollary D.6.8.

Cum(4) [Bt,t+1,Bt,t+1,Wt,t+1,Zt,t+1| Ft∆]

= σe−κ(t+1)∆

∫ t+1

t

E
[
Zt,s

(
Zt,sWt,se

κs∆ + B2
t,se

κs∆
)∣∣Ft∆

]
ds.

Proof. Direct application of Lemma D.6.1 to

E [Bt,t+1Bt,t+1Wt,t+1Zt,t+1| Ft∆]

= e−κ(t+1)∆

∫ t+1

t

E [Vs∆Zt,sWt,s| Ft∆] e
κs∆ds

+ e−κ(t+1)∆

∫ t+1

t

E [Vs∆Bt,sBt,s| Ft∆] e
κs∆ds

= e−κ(t+1)∆

∫ t+1

t

E [Vs∆| Ft∆] E [Bt,sBt,s +Wt,sZt,s| Ft∆] e
κs∆ds

+ e−κ(t+1)∆

∫ t+1

t

σE [Zt,s (Zt,sWt,s + Bt,sBt,s)| Ft∆] e
κs∆ds,

and application of Lemma D.6.3 to

E
[
B2
t,t+1

∣∣Ft∆

]
E [Wt,t+1Zt,t+1| Ft∆]
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= e−κ(t+1)∆

∫ t+1

t

E [Vs∆| Ft∆] E
[
B2
t,s +Wt,sZt,s

∣∣Ft∆

]
eκs∆ds.

Finally, Corollary D.6.2 is used to obtain the results. □

Corollary D.6.9.

Cum(4) [Bt,t+1,Bt,t+1,Zt,t+1,Zt,t+1| Ft∆]

= e−2κ(t+1)∆

∫ t+1

t

σE
[
Zt,s (Zt,sZt,s + Bt,sBt,s) e

2κs∆
∣∣Ft∆

]
ds.

Proof. Direct application of Lemma D.6.1 to

E [Bt,t+1Bt,t+1Zt,t+1Zt,t+1| Ft∆]

= e−2κ(t+1)∆

∫ t+1

t

E [Vs∆Zt,sZt,s| Ft∆] e
2κs∆ds

+ e−2κ(t+1)∆

∫ t+1

t

E [Vs∆Bt,sBt,s| Ft∆] e
2κs∆ds

= e−2κ(t+1)∆

∫ t+1

t

E [Vs∆| Ft∆] E [Bt,sBt,s + Zt,sZt,s| Ft∆] e
2κs∆ds

+ e−2κ(t+1)∆

∫ t+1

t

σE [Zt,s (Zt,sZt,s + Bt,sBt,s)| Ft∆] e
2κs∆ds,

and application of Lemma D.6.3 to

E
[
B2
t,t+1

∣∣Ft∆

]
E
[
Z2

t,t+1

∣∣Ft∆

]
= e−2κ(t+1)∆

∫ t+1

t

E [Vs∆| Ft∆] E
[
B2
t,s + Z2

t,s

∣∣Ft∆

]
e2κs∆ds.

Finally, Corollary D.6.2 is used to obtain the results. □

Corollary D.6.10.

Cum(4) [Bt,t+1,Zt,t+1,Zt,t+1,Zt,t+1| Ft∆] = 0.
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Proof. Direct application of Lemma D.6.1 and Corollary B.4.3 to

E [Bt,t+1Zt,t+1Zt,t+1Zt,t+1| Ft∆]

= 3e−3κ(t+1)∆

∫ t+1

t

E [Vs∆Zt,sBt,s| Ft∆] e
3κs∆ds

= 3e−3κ(t+1)∆

∫ t+1

t

E [Vs∆| Ft∆] E [Bt,sZt,s| Ft∆]︸ ︷︷ ︸
=0

e3κs∆ds

+ e−3κ(t+1)∆

∫ t+1

t

3σ E [Zt,sBt,sZt,s| Ft∆]︸ ︷︷ ︸
=0

e3κs∆ds,

and where

E [Bt,t+1Zt,t+1| Ft∆] E [Zt,t+1Zt,t+1| Ft∆] = 0.

Finally, Corollary D.6.2 is used to obtain the results. □

Corollary D.6.11.

Cum(4) [Bt,t+1,Wt,t+1,Wt,t+1,Wt,t+1| Ft∆] = 0.

Proof. Direct application of Lemma D.6.1 and Corollary B.4.3 to

E [Bt,t+1Wt,t+1Wt,t+1Wt,t+1| Ft∆]

= 3

∫ t+1

t

E [Vs∆Wt,sBt,s| Ft∆] ds

= 3

∫ t+1

t

E [Vs∆| Ft∆] E [Bt,sWt,s| Ft∆]︸ ︷︷ ︸
=0

ds+ 3

∫ t+1

t

σ E [Zt,sBt,sWt,s| Ft∆]︸ ︷︷ ︸
=0

ds,

and where

E [Bt,t+1Wt,t+1| Ft∆] E [Wt,t+1Wt,t+1| Ft∆] = 0.

Finally, Corollary D.6.2 is used to obtain the results. □
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Corollary D.6.12.

Cum(4) [Bt,t+1,Zt,t+1,Zt,t+1,Wt,t+1| Ft∆] = 0.

Proof. Direct application of Lemma D.6.1 and Corollary B.4.3 to

E [Bt,t+1Zt,t+1Zt,t+1Wt,t+1| Ft∆]

= e−2κ(t+1)∆

∫ t+1

t

E [Vs∆Wt,sBt,s| Ft∆] e
2κs∆ds

+ 2e−2κ(t+1)∆

∫ t+1

t

E [Vs∆Zt,sBt,s| Ft∆] e
2κs∆ds

= e−2κ(t+1)∆

∫ t+1

t

E [Vs∆| Ft∆] E [Bt,sWt,s + 2Bt,sZt,s| Ft∆]︸ ︷︷ ︸
=0

e2κs∆ds

+ e−2κ(t+1)∆

∫ t+1

t

σ E [Zt,s (Bt,sWt,s + 2Bt,sZt,s)| Ft∆]︸ ︷︷ ︸
=0

e2κs∆ds,

and where

E [Bt,t+1Zt,t+1| Ft∆] = 0, E [Bt,t+1Wt,t+1| Ft∆] = 0.

Finally, Corollary D.6.2 is used to obtain the results. □

Corollary D.6.13.

Cum(4) [Bt,t+1,Zt,t+1,Wt,t+1,Wt,t+1| Ft∆] = 0.

Proof. Direct application of Lemma D.6.1 and Corollary B.4.3 to

E [Bt,t+1Zt,t+1Wt,t+1Wt,t+1| Ft∆]

= 2e−κ(t+1)∆

∫ t+1

t

E [Vs∆Wt,sBt,s| Ft∆] e
κs∆ds

+ e−κ(t+1)∆

∫ t+1

t

E [Vs∆Zt,sBt,s| Ft∆] e
κs∆ds

cxi



Online Appendix D. Variance filtering in multidimensional affine models

= e−κ(t+1)∆

∫ t+1

t

E [Vs∆| Ft∆] E [2Bt,sWt,s + Bt,sZt,s| Ft∆]︸ ︷︷ ︸
=0

eκs∆ds

+ e−κ(t+1)∆

∫ t+1

t

σ E [Zt,s (2Bt,sWt,s + Bt,sZt,s)| Ft∆]︸ ︷︷ ︸
=0

eκs∆ds,

and where

E [Bt,t+1Zt,t+1| Ft∆] = 0, E [Bt,t+1Wt,t+1| Ft∆] = 0.

Finally, Corollary D.6.2 is used to obtain the results. □

Corollary D.6.14.

Cum(4) [Wt,t+1,Wt,t+1,Wt,t+1,Wt,t+1| Ft∆] = 6

∫ t+1

t

σE [Zt,sWt,sWt,s| Ft∆] ds.

Proof. Direct application of Lemma D.6.1 to

E [Wt,t+1Wt,t+1Wt,t+1Wt,t+1| Ft∆] = 6

∫ t+1

t

E [Vs∆Wt,sWt,s| Ft∆] ds

= 6

∫ t+1

t

E [Vs∆| Ft∆] E [Wt,sWt,s| Ft∆] ds+ 6

∫ t+1

t

σE [Zt,sWt,sWt,s| Ft∆] ds,

and application of Lemma D.6.3 to

E
[
W2

t,t+1

∣∣Ft∆

]
E
[
W2

t,t+1

∣∣Ft∆

]
= 2

∫ t+1

t

E [Vs∆| Ft∆] E
[
W2

t,s

∣∣Ft∆

]
ds.

Finally, Corollary D.6.2 is used to obtain the results. □

Corollary D.6.15.

Cum(4) [Wt,t+1,Wt,t+1,Wt,t+1,Zt,t+1| Ft∆]

= 3e−κ(t+1)∆

∫ t+1

t

σE [Zt,s (Wt,sZt,s +Wt,sWt,s)| Ft∆] e
κs∆ds.
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Proof. Direct application of Lemma D.6.1 to

E [Wt,t+1Wt,t+1Wt,t+1Zt,t+1| Ft∆]

= 3e−κ(t+1)∆

∫ t+1

t

E [Vs∆Wt,sZt,s| Ft∆] e
κs∆ds

+ 3e−κ(t+1)∆

∫ t+1

t

E [Vs∆Wt,sWt,s| Ft∆] e
κs∆ds

= 3e−κ(t+1)∆

∫ t+1

t

E [Vs∆| Ft∆] E [Wt,sZt,s +Wt,sWt,s| Ft∆] e
κs∆ds

+ 3e−κ(t+1)∆

∫ t+1

t

σE [Zt,s (Wt,sZt,s +Wt,sWt,s)| Ft∆] e
κs∆ds,

and application of Lemma D.6.3 to

E
[
W2

t,t+1

∣∣Ft∆

]
E [Wt,t+1Zt,t+1| Ft∆]

= e−κ(t+1)∆

∫ t+1

t

E [Vs∆| Ft∆] E
[
Z2

t,s

∣∣Ft∆

]
eκs∆ds.

Finally, Corollary D.6.2 is used to obtain the results. □

Corollary D.6.16.

Cum(4) [Wt,t+1,Wt,t+1,Zt,t+1,Zt,t+1| Ft∆]

= e−2κ(t+1)∆

∫ t+1

t

σE [Zt,s (Wt,sWt,s + 4Wt,sZt,s + Zt,sZt,s)| Ft∆] e
2κs∆ds.

Proof. Direct application of Lemma D.6.1 to

E [Wt,t+1Wt,t+1Zt,t+1Zt,t+1| Ft∆]

= e−2κ(t+1)∆

∫ t+1

t

E [Vs∆Wt,sWt,s| Ft∆] e
2κs∆ds

+ 4e−2κ(t+1)∆

∫ t+1

t

E [Vs∆Wt,sZt,s| Ft∆] e
2κs∆ds
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+ e−2κ(t+1)∆

∫ t+1

t

E [Vs∆Zt,sZt,s| Ft∆] e
2κs∆ds

= e−2κ(t+1)∆

∫ t+1

t

E [Vs∆| Ft∆] E [(Wt,sWt,s + 4Wt,sZt,s + Zt,sZt,s)| Ft∆] e
2κs∆ds

+ e−2κ(t+1)∆

∫ t+1

t

σE [Zt,s (Wt,sWt,s + 4Wt,sZt,s + Zt,sZt,s)| Ft∆] e
2κs∆ds,

and application of Lemma D.6.3 to

E
[
Z2

t,t+1

∣∣Ft∆

]
E
[
W2

t,t+1

∣∣Ft∆

]
= 2e−2κ(t+1)∆

∫ t+1

t

E [Vs∆| Ft∆] E
[
Z2

t,s

∣∣Ft∆

]
e2κs∆ds,

and

E [Zt,t+1Wt,t+1| Ft∆] E [Zt,t+1Wt,t+1| Ft∆]

= 2e−2κ(t+1)∆

∫ t+1

t

E [Vs∆| Ft∆] E [Wt,sZt,s| Ft∆] e
2κs∆ds.

Finally, Corollary D.6.2 is used to obtain the results. □

Corollary D.6.17.

Cum(4) [Wt,t+1,Zt,t+1,Zt,t+1,Zt,t+1| Ft∆]

= 3e−3κ(t+1)∆

∫ t+1

t

σE [Zt,s (Wt,sZt,s + Zt,sZt,s)| Ft∆] e
3κs∆ds.

Proof. Direct application of Lemma D.6.1 to

E [Wt,t+1Zt,t+1Zt,t+1Zt,t+1| Ft∆]

= 3e−3κ(t+1)∆

∫ t+1

t

E [Vs∆Wt,sZt,s| Ft∆] e
3κs∆ds

+ 3e−3κ(t+1)∆

∫ t+1

t

E [Vs∆Zt,sZt,s| Ft∆] e
3κs∆ds

= 3e−3κ(t+1)∆

∫ t+1

t

E [Vs∆| Ft∆] E [Wt,sZt,s + Zt,sZt,s| Ft∆] e
3κs∆ds
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+ 3e−3κ(t+1)∆

∫ t+1

t

σE [Zt,s (Wt,sZt,s + Zt,sZt,s)| Ft∆] e
3κs∆ds,

and application of Lemma D.6.3 to

E [Wt,t+1Zt,t+1| Ft∆] E
[
Z2

t,t+1

∣∣Ft∆

]
= e−3κ(t+1)∆

∫ t+1

t

E [Vs∆| Ft∆] E
[
Z2

t,s

∣∣Ft∆

]
e3κs∆ds.

Finally, Corollary D.6.2 is used to obtain the results. □

Corollary D.6.18.

Cum(4) [Zt,t+1,Zt,t+1,Zt,t+1,Zt,t+1| Ft∆] = 6e−4κ(t+1)∆

∫ t+1

t

σE
[
Z3

t,s

∣∣Ft∆

]
e4κs∆ds.

Proof. Direct application of Lemma D.6.1 to

E [Zt,t+1Zt,t+1Zt,t+1Zt,t+1| Ft∆] = 6e−4κ(t+1)∆

∫ t+1

t

E [Vs∆Zt,sZt,s| Ft∆] e
4κs∆ds

= 6e−4κ(t+1)∆

∫ t+1

t

E [Vs∆| Ft∆] E [Zt,sZt,s| Ft∆] e
4κs∆ds

+ 6e−4κ(t+1)∆

∫ t+1

t

σE [Zt,sZt,sZt,s| Ft∆] e
4κs∆ds,

and application of Lemma D.6.3 to

E
[
Z2

t,t+1

∣∣Ft∆

]
E
[
Z2

t,t+1

∣∣Ft∆

]
= 2e−4κ(t+1)∆

∫ t+1

t

E [Vs∆| Ft∆] E
[
Z2

t,s

∣∣Ft∆

]
e4κs∆ds.

Finally, Corollary D.6.2 is used to obtain the result. □
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D.7 Measurement Error under Assumption 3.4.2

D.7.1 General results

Definition D.7.1. Let Xi be a random variable where

Xi = αi +
N∑

n=1

Xi,n,

where αi is a constant and Xi,n are random variable with E [Xi,n | Fn−1] = 0 and

FN = σ{{Xi,n}i∈{1,2}}Nn=1.

The temporal structure is left general.

Lemma D.7.2.

E [Xi] = αi, Cov [X1, X2] =
N∑

n=1

E [Cov [X1,n, X2,n| Fn−1]] .

Proof. With the help of the law of total covariance

Cov [X1, X2] = Cov

[
α1 +

N∑
n=1

X1,n, α2 +
N∑

n=1

X2,n

]

= E

[
Cov

[
α1 +

N∑
n=1

X1,n, α2 +
N∑

n=1

X2,n

∣∣∣∣∣FN−1

]]

+ Cov

[
E

[
α1 +

N∑
n=1

X1,n

∣∣∣∣∣FN−1

]
,E

[
α2 +

N∑
n=1

X2,n

∣∣∣∣∣FN−1

]]

= E [Cov [X1,N , X2,N | FN−1]] + Cov

[
N−1∑
n=1

X1,n,

N−1∑
n=1

X2,n

]
.
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Applying the law of total covariance N − 1 more times to

Cov

[
N−1∑
n=1

X1,n,
N−1∑
n=1

X2,n

]
,

leads to the result. □

Lemma D.7.3.

Cum [X1, X2, X3]

=
N∑

n=1

E [Cum [X1,n, X2,n, X3,n| Fn−1]]

+
N∑

n=1

Cov

[
n−1∑
m=1

X1,m,Cov [X2,n, X3,n| Fn−1]

]

+
N∑

n=1

Cov

[
n−1∑
m=1

X2,m,Cov [X1,n, X3,n| Fn−1]

]

+
N∑

n=1

Cov

[
n−1∑
m=1

X3,m,Cov [X1,n, X2,n| Fn−1]

]
.

Proof. With the help of the law of total cumulance

Cum [X1, X2, X3] = Cum

[
N∑

n=1

X1,n,
N∑

n=1

X2,n,
N∑

n=1

X3,n

]

= E

[
Cum

[
N∑

n=1

X1,n,
N∑

n=1

X2,n,
N∑

n=1

X3,n

∣∣∣∣∣FN−1

]]

+ Cum

[
E

[
N∑

n=1

X1,n

∣∣∣∣∣FN−1

]
,E

[
N∑

n=1

X2,n

∣∣∣∣∣FN−1

]
,E

[
N∑

n=1

X3,n

∣∣∣∣∣FN−1

]]

+ Cov

[
E

[
N∑

n=1

X1,n

∣∣∣∣∣FN−1

]
,Cov

[
N∑

n=1

X2,n,
N∑

n=1

X3,n

∣∣∣∣∣FN−1

]]

+ Cov

[
E

[
N∑

n=1

X2,n

∣∣∣∣∣FN−1

]
,Cov

[
N∑

n=1

X1,n,
N∑

n=1

X3,n

∣∣∣∣∣FN−1

]]
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+ Cov

[
E

[
N∑

n=1

X3,n

∣∣∣∣∣FN−1

]
,Cov

[
N∑

n=1

X1,n,

N∑
n=1

X2,n

∣∣∣∣∣FN−1

]]
= E [Cum [X1,N , X2,N , X3,N | FN−1]]

+ Cum

[
N−1∑
n=1

X1,n,

N−1∑
n=1

X2,n,

N−1∑
n=1

X3,n

]
+ Cov

[
N−1∑
n=1

X1,n,Cov [X2,N , X3,N | FN−1]

]

+ Cov

[
N−1∑
n=1

X2,n,Cov [X1,N , X3,N | FN−1]

]
+ Cov

[
N−1∑
n=1

X3,n,Cov [X1,N , X2,N | FN−1]

]
.

Applying the law of total cumulance N − 1 more times to

Cum

[
N−1∑
n=1

X1,n,
N−1∑
n=1

X2,n,
N−1∑
n=1

X3,n

]
,

leads to the result. □

D.7.2 Approximations

Corollary D.7.4. Based on Assumption 3.4.2, the centered variance Vk,(t+1)∆ is approxi-
mated with

Vk,(t+1)∆ − E
[
Vk,(t+1)∆

∣∣Ft∆

]
≈ σk

N∑
n=1

√
V
k,t∆+

(n−1)∆
N

∆

N
wk,t∆+n∆

N
.

Proof. With Assumption 3.4.2 and Equation (3.9), it implies that

Vk,(t+1)∆ ≈ Vk,t∆e
−∆κk + θk

(
1− e−∆κk

)︸ ︷︷ ︸
E[Vk,(t+1)∆|Ft∆]

+σk

N∑
n=1

e−κk∆(1−n−1
N

)

√
V
k,t∆+

(n−1)∆
N

∆

N
wk,t∆+n∆

N
.

We apply the Taylor expansion to e−κk∆(1−n−1
N

) ∼= 1 − κk∆(1 − n−1
N

) ∼= 1, leading to the
result. □

Corollary D.7.5. Based on Assumption 3.4.2, the integrated variance Vk,t,t+1 is approxi-
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mated with

Vk,t,t+1 − E [Vk,t,t+1| Ft∆] ≈ σk

N∑
n=1

∆
(N − n+ 1)

N

√
V
k,t∆+

(n−1)∆
N

∆

N
wk,t∆+n∆

N
.

The quadratic covariation is approximated with

QCVi,j,t,t+1 − E
[
QCVi,j,t,t+1

∣∣Ft∆

]
≈

NV∑
k=1

N∑
n=1

∆
(N − n+ 1)

N
ci,kcj,kσk

√
V
k,t∆+

(n−1)∆
N

∆

N
wk,t∆+n∆

N
.

Proof. Using Assumption 3.4.2, Corollary D.7.4 and Taylor expansion, the integrated
variance is

Vk,t,t+1 − E [Vk,t,t+1| Ft∆] ≈
σk

κk

N∑
n=1

(
1− e−κk∆(1−n−1

N
)
)√

V
k,t∆+

(n−1)∆
N

∆

N
wk,t∆+n∆

N
,

≈ σk∆
N∑

n=1

(N − n+ 1)

N

√
V
k,t∆+

(n−1)∆
N

∆

N
wk,t∆+n∆

N
,

since we apply the Taylor expansion to 1−e−κk∆(1−n−1
N

)

κk

∼= ∆(1 − n−1
N

) ∼= ∆ (N−n+1)
N

. As
defined in Equation (3.5), the quadratic covariation is a linear sum of the integrated vari-
ances. □

Corollary D.7.6. Based on Assumption 3.4.2, the squared variance Vk,(t+1)∆Vk̃,(t+1)∆ is
approximated with

Vk,(t+1)∆Vk̃,(t+1)∆ − E
[
Vk,(t+1)∆Vk̃,(t+1)∆

∣∣∣Ft∆

]
≈ σk

N∑
n=1

V
k̃,t∆+

(n−1)∆
N

√
V
k,t∆+

(n−1)∆
N

∆

N
wk,t∆+n∆

N

+ σk̃

N∑
n=1

V
k,t∆+

(n−1)∆
N

√
V
k̃,t∆+

(n−1)∆
N

∆

N
wk̃,t∆+n∆

N
.
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Proof. Using Corollary (D.3.2) leads to the results. □

Corollary D.7.7. Using Assumption 3.4.2, the log-returns is approximated with

Ri,t,t+1 − E [Ri,t,t+1| Ft∆] ≈
N∑

n=1

(
NV∑
k=1

ci,k

√
V
k,t∆+

(n−1)∆
N

∆

N
zk,t∆+n∆

N

)
,

and, for the error measurement on the realized variance, we have

ξi,j,t,t+1 − E [ξi,j,t,t+1| Ft∆] ≈
N∑

n=1

(
NV∑
k=1

ci,kcj,kVk,t∆+
(n−1)∆

N

∆

N
(z2

k,t∆+n∆
N

− 1)

)
,

where zk,t∆+n∆
N

= ρkwk,t∆+n∆
N

+
√

1− ρ2bk,t∆+n∆
N

.

Proof. Using Assumption 3.4.2 and Equation (3.11) lead to the results for the log-returns
as the drift is negligible at high-frequency compared to the stochastic integrals. Indeed,

Ri,t,t+1 ≈
N∑

n=1

(
NV∑
k=1

(
cikλk −

c2ik
2

)
V
k,t∆+

(n−1)∆
N

∆

N
+ ci,k

√
V
k,t∆+

(n−1)∆
N

∆

N
zk,t∆+n∆

N

)
.

The realized covariance uses the fact that

RCVi,j,t,t+1 =
N∑

n=1

Ri,t+n−1
N

,t+ n
N
Rj,t+n−1

N
,t+ n

N
,

leading to the results with Equation (3.13). □

D.7.3 Application to second central moments

Corollary D.7.8. If Assumption 3.4.2 holds,

Cov
[
ξi,j,t+n−1

N
,t+ n

N
, ξĩ,j̃,t+n−1

N
,t+ n

N
,
∣∣∣Ft∆+n−1

N
∆

]
≈

NV∑
k=1

NV∑
k̃=1

Ci,i,̃i,j̃

k,k̃
V
k,t∆+

(n−1)∆
N

V
k̃,t∆+

(n−1)∆
N

∆2

N2
,
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with Ci,i,̃i,j̃

k,k̃
defined in Equation (B.6). Furthermore,

Cov
[
ξi,j,t,t+1, ξĩ,j̃,t,t+1

∣∣Ft∆

]
≈ ∆

N

NV∑
k=1

NV∑
k̃=1

Ci,i,̃i,j̃

k,k̃
E

[∫ (t+1)∆

t∆

Vk,sVk̃,sds

∣∣∣∣∣Ft∆

]
.

Proof. With Assumption 3.4.2, we have

Cov
[
ξi,j,t+n−1

N
,t+ n

N
, ξĩ,j̃,t+n−1

N
,t+ n

N

∣∣∣Ft∆+n−1
N

∆

]
≈ E

 (∑NV

k=1 ci,kcj,kVk,t∆+
(n−1)∆

N

∆
N
(z2

k,t∆+n∆
N

− 1)
)(∑NV

k̃=1
cĩ,k̃cj̃,k̃Vk̃,t∆+

(n−1)∆
N

∆
N
(z2

k̃,t∆+n∆
N

− 1)
) ∣∣∣∣∣∣Ft∆+

(n−1)∆
N


=

NV∑
k=1

NV∑
k̃=1

Ci,i,̃i,j̃

k,k̃
V
k,t∆+

(n−1)∆
N

V
k̃,t∆+

(n−1)∆
N

∆2

N2
.

Using Lemma D.7.2 with X1 = ξi,j,t,t+1 and X2 = ξĩ,j̃,t,t+1, leads to second the result. □

Corollary D.7.9. If Assumption 3.4.2 holds,

Cov
[
Ri,t+n−1

N
,t+ n

N
, ξĩ,j̃,t+n−1

N
,t+ n

N
,
∣∣∣Ft∆+n−1

N
∆

]
≈ 0,

Cov
[
Vk,t+ n

N
, ξĩ,j̃,t+n−1

N
,t+ n

N
,
∣∣∣Ft∆+n−1

N
∆

]
≈ 0,

Cov
[
QCVi,j,t+n−1

N
,t+ n

N
, ξĩ,j̃,t+n−1

N
,t+ n

N
,
∣∣∣Ft∆+n−1

N
∆

]
≈ 0,

and

Cov
[
Ri,t,t+1, ξĩ,j̃,t,t+1

∣∣Ft∆

]
≈ 0,

Cov
[
Vk,(t+1)∆, ξĩ,j̃,t,t+1

∣∣Ft∆

]
≈ 0,

Cov
[
QCVi,j,t,t+1, ξĩ,j̃,t,t+1

∣∣Ft∆

]
≈ 0.

Proof. Based on Corollaries D.7.4, D.7.5 and D.7.7 along with Assumption 3.4.2, we have
null covariance as any uneven moments of a standard multivariate normal distribution is
null. Applying the first set of results in Lemma D.7.2 with X1 = Ri,t,t+1, X1 = Vk,(t+1)∆
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or X1 = QCVi,j,t,t+1 and X2 = ξĩ,j̃,t,t+1, leads to the second result. □

D.7.4 Application to moments of ξi,j,t,t+1, ξĩ,j̃,t,t+1, ξî,ĵ,t,t+1

Corollary D.7.10. If Assumption 3.4.2 holds,

Cum
[
ξi,j,t+n−1

N
,t+ n

N
, ξĩ,j̃,t+n−1

N
,t+ n

N
, ξî,ĵ,t+n−1

N
,t+ n

N

∣∣∣Ft∆+n−1
N

∆

]
≈

NV∑
k=1

NV∑
k̃=1

NV∑
k̂=1

S i,i,̃i,j̃,̂i,ĵ

k,k̃,k̂
V
k,t∆+

(n−1)∆
N

V
k̃,t∆+

(n−1)∆
N

V
k̂,t∆+

(n−1)∆
N

∆3

N3
,

with

S i,i,̃i,j̃,̂i,ĵ

k,k̃,k̂
= ci,kcĩ,kcj,k̃cî,k̃cj̃,k̂cĵ,k̂ + ci,kcĩ,kcj,k̃cĵ,k̃cj̃,k̂cî,k̂

+ ci,kcj̃,kcj,k̃cî,k̃cĩ,k̂cĵ,k̂ + ci,kcj̃,kcj,k̃cĵ,k̃cĩ,k̂cî,k̂

+ ci,kcî,kcj,k̃cĩ,k̃cĵ,k̂cj̃,k̂ + ci,kcî,kcj,k̃cj̃,k̃cĵ,k̂cĩ,k̂

+ ci,kcĵ,kcj,k̃cĩ,k̃cî,k̂cj̃,k̂ + ci,kcĵ,kcj,k̃cj̃,k̃cî,k̂cĩ,k̂.

Proof. With Assumption 3.4.2 and Corollary D.7.7, we have

Cum
[
ξi,j,t+n−1

N
,t+ n

N
, ξĩ,j̃,t+n−1

N
,t+ n

N
, ξî,ĵ,t+n−1

N
,t+ n

N

∣∣∣Ft∆+n−1
N

∆

]

≈ E


(∑NV

k=1 ci,kcj,kVk,t∆+
(n−1)∆

N

∆
N
(z2

k,t∆+n∆
N

− 1)
)(∑NV

k̃=1
cĩ,kcj̃,kVk̃,t∆+

(n−1)∆
N

∆
N
(z2

k̃,t∆+n∆
N

− 1)
)(∑NV

k̂=1
cî,kcĵ,kVk̂,t∆+

(n−1)∆
N

∆
N
(z2

k̂,t∆+n∆
N

− 1)
)
∣∣∣∣∣∣∣∣∣Ft∆+

(n−1)∆
N


=

NV∑
k=1

NV∑
k̃=1

NV∑
k̂=1

S i,i,̃i,j̃,̂i,ĵ

k,k̃,k̂
V
k,t∆+

(n−1)∆
N

V
k̃,t∆+

(n−1)∆
N

V
k̂,t∆+

(n−1)∆
N

∆3

N3
,

where S i,i,̃i,j̃,̂i,ĵ

k,k̃,k̂
is found with Isserlis theorem. □
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Corollary D.7.11. If Assumption 3.4.2 holds, based on Corollary D.7.6,

Cov

 ∑n−1
m=1 ξi,j,t+n−1

N
,t+ n

N

Cov
[
ξĩ,j̃,t+n−1

N
,t+ n

N
ξî,ĵ,t+n−1

N
,t+ n

N

∣∣∣Ft∆+n−1
N

∆

] ∣∣∣∣∣∣Ft∆

 ≈ 0.

Proof. With Assumption 3.4.2 and Equation (B.6), we have

Cov

 ∑n−1
m=1 ξi,j,t+n−1

N
,t+ n

N

Cov
[
ξĩ,j̃,t+n−1

N
,t+ n

N
ξî,ĵ,t+n−1

N
,t+ n

N

∣∣∣Ft∆+n−1
N

∆

] ∣∣∣∣∣∣Ft∆


≈ Cov

 (∑n−1
m=1

(∑NV

k=1 ci,kcj,kVk,t∆+
(m−1)∆

N

∆
N
(z2

k,t∆+m∆
N

− 1)
))

,(∑NV

k̃=1

∑NV

k̂=1
C ĩ,j̃ ,̂i,ĵ

k̃,k̂
V
k̃,t∆+

(n−1)∆
N

V
k̂,t∆+

(n−1)∆
N

∆2

N2

) ∣∣∣∣∣∣Ft∆


=

∆3

N3

n−1∑
m=1

NV∑
k=1

NV∑
k̃=1

NV∑
k̂=1

C ĩ,j̃ ,̂i,ĵ

k̃,k̂
ci,kcj,kCov

 (Vk,t∆+
(m−1)∆

N

(z2
k,t∆+m∆

N

− 1)
)
,(

V
k̃,t∆+

(n−1)∆
N

V
k̂,t∆+

(n−1)∆
N

) ∣∣∣∣∣∣Ft∆


≈ 0,

as we use Corollary D.7.6 and that all uneven moments of central normal variable are
null. □

Corollary D.7.12. Based on Assumption 3.4.2,

Cum
[
ξi,j,t,t+1, ξĩ,j̃,t,t+1, ξî,ĵ,t,t+1

∣∣Ft∆

]
≈ ∆2

N2

NV∑
k=1

NV∑
k̃=1

NV∑
k̂=1

S i,i,̃i,j̃,̂i,ĵ

k,k̃,k̂
E

[∫ (t+1)∆

t∆

Vk,sVk̃,sVk̂,sds

∣∣∣∣∣Ft∆

]
.

Proof. Applying the results of Corollaries D.7.10 and D.7.11 in Lemma D.7.3 with X1 =

ξi,j,t,t+1, X2 = ξĩ,j̃,t,t+1 and X3 = ξî,ĵ,t,t+1 leads to the result.
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D.7.5 Application to moments of ξî,ĵ,t,t+1

Corollary D.7.13. If Assumption 3.4.2 holds,

Cum
[
Ri,t+n−1

N
,t+ n

N
, Rj,t+n−1

N
,t+ n

N
, ξĩ,j̃,t+n−1

N
,t+ n

N

∣∣∣Ft∆+n−1
N

∆

]
≈

NV∑
k=1

NV∑
k̃=1

Ci,j,̃i,j̃

k,k̃
V
k,t∆+

(n−1)∆
N

V
k̃,t∆+

(n−1)∆
N

∆2

N2
,

with Ci,j,̃i,j̃

k,k̃
defined in Equation (B.6).

Proof. With Assumption 3.4.2, we have

Cum
[
Ri,t+n−1

N
,t+ n

N
, Rj,t+n−1

N
,t+ n

N
, ξĩ,j̃,t+n−1

N
,t+ n

N

∣∣∣Ft∆+n−1
N

∆

]

≈ Cum


(∑NV

k=1 ci,k
√

V
k,t∆+

(n−1)∆
N

∆
N
zk,t∆+n∆

N

)
,(∑NV

k=1 ci,k
√
V
k,t∆+

(n−1)∆
N

∆
N
zk,t∆+n∆

N

)
,(∑NV

k̃=1
cĩ,k̃cj̃,k̃Vk̃,t∆+

(n−1)∆
N

∆
N
(z2

k̃,t∆+n∆
N

− 1)
)
∣∣∣∣∣∣∣∣∣Ft∆+

(n−1)∆
N


=

NV∑
k=1

NV∑
k̃=1

Ci,j,̃i,j̃

k,k̃
V
k,t∆+

(n−1)∆
N

V
k̃,t∆+

(n−1)∆
N

∆2

N2
.

Corollary D.7.14. If Assumption 3.4.2 holds,

Cov

 ∑n−1
m=1 Ri,t+n−1

N
,t+ n

N
,

Cov
[
Rj,t+n−1

N
,t+ n

N
, ξĩ,j̃,t+n−1

N
,t+ n

N

∣∣∣Ft∆+n−1
N

∆

] ∣∣∣∣∣∣Ft∆

 ≈ 0.

Proof. Direct application of Corollary D.7.9. □

Corollary D.7.15. If Assumption 3.4.2 holds,

Cov

 ∑n−1
m=1 ξĩ,j̃,t+m−1

N
,t+m

N
,

Cov
[
Ri,t+n−1

N
,t+ n

N
, Rj,t+n−1

N
,t+ n

N

∣∣∣Ft∆+n−1
N

∆

] ∣∣∣∣∣∣Ft∆

 ≈ 0.
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Proof.

Cov

 ∑n−1
m=1 ξĩ,j̃,t+m−1

N
,t+m

N
,

Cov
[
Ri,t+n−1

N
,t+ n

N
, Rj,t+n−1

N
,t+ n

N

∣∣∣Ft∆+n−1
N

∆

] ∣∣∣∣∣∣Ft∆


≈ Cov

[ ∑n−1
m=1 ξĩ,j̃,t+m−1

N
,t+m

N
,∑NV

k=1 ci,kcj,kVk,t∆+
(n−1)∆

N

∆
N

∣∣∣∣∣Ft∆

]

≈ Cov

 ∑n−1
m=1

(∑NV

k̃=1
cĩ,k̃cj̃,k̃Vk̃,t∆+

(m−1)∆
N

∆
N
(z2

k̃,t∆+m∆
N

− 1)
)
,∑NV

k=1 ci,kcj,k

(∑n−1
m=1

(
σk

√
V
k,t∆+

(m−1)∆
N

∆
N
wk,t∆+m∆

N

))
∆
N

∣∣∣∣∣∣Ft∆


= 0,

as any uneven moment of a standard Gaussian random variable is null. □

Corollary D.7.16. If Assumption 3.4.2 holds, then

Cum
[
Ri,t,t+1, Rj,t,t+1, ξĩ,j̃,t,t+1

∣∣Ft∆

]
≈ ∆

N

NV∑
k=1

NV∑
k̃=1

Ci,j,̃i,j̃

k,k̃
E

[∫ (t+1)∆

t∆

Vk,sVk̃,sds

∣∣∣∣∣Ft∆

]
.

Proof. Applying the results of Corollaries D.7.13, D.7.14 and D.7.15 in Lemma D.7.3
with X1 = Ri,t,t+1, X2 = Rj,t,t+1 and X3 = ξĩ,j̃,t,t+1, we have

Cum
[
Ri,t,t+1, Rj,t,t+1, ξĩ,j̃,t,t+1

∣∣Ft∆

]
≈

N∑
n=1

E

 NV∑
k=1

NV∑
k̃=1

Ci,i,̃i,j̃

k,k̃
V
k,t∆+

(n−1)∆
N

V
k̃,t∆+

(n−1)∆
N

∆2

N2

∣∣∣∣∣∣Ft∆

 ,

leading to the result. □

Corollary D.7.17.

Cum
[
Vk,t+1, Ri,t,t+1, ξĩ,j̃,t,t+1

∣∣Ft∆

]
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≈ ∆

N

NV∑
k̃=1

Hi,̃i,j̃

k,k̃
E

[∫ (t+1)∆

t∆

Vk,sVk̃,sds

∣∣∣∣∣Ft∆

]
,

where

Hi,̃i,j̃

k,k̃
= σkci,kcĩ,k̃cj̃,k̃2ρk.

Proof. Based on Corollaries D.7.4 and D.7.7, we have

Cum
[
Vk,t∆+n∆

N
, Ri,t+n−1

N
,t+ n

N
, ξĩ,j̃,t+n−1

N
,t+ n

N

∣∣∣Ft∆+n−1
N

∆

]

≈ Cum


(
σk

√
V
k,t∆+

(n−1)∆
N

∆
N
wk,t∆+n∆

N

)
,(∑NV

k̂=1
ci,k̂

√
V
k̂,t∆+

(n−1)∆
N

∆
N
zk̂,t∆+n∆

N

)
,(∑NV

k̃=1
cĩ,k̃cj̃,k̃Vk̃,t∆+

(n−1)∆
N

∆
N
(z2

k̃,t∆+n∆
N

− 1)
)
∣∣∣∣∣∣∣∣∣Ft∆+

(n−1)∆
N


=

NV∑
k̃=1

Hi,̃i,j̃

k,k̃
V
k,t∆+

(n−1)∆
N

V
k̃,t∆+

(n−1)∆
N

∆2

N2
,

which Hi,̃i,j̃

k,k̃
is solved with Isserlis’ Theorem:

E
[
wk,t∆+n∆

N
zk,t∆+n∆

N
(z2

k̃,t∆+n∆
N

− 1)
]
= 2ρk.

Following the the same steps detailed in Corollaries D.7.13 to D.7.16 leads to the results.□

Corollary D.7.18.

Cum
[
Vk,t+1, Vk̂,t+1, ξĩ,j̃,t,t+1

∣∣∣Ft∆

]
≈ ∆

N

NV∑
k̃=1

I ĩ,j̃

k,k̃
E

[∫ (t+1)∆

t∆

Vk,sVk̃,sds

∣∣∣∣∣Ft∆

]
,

where

I ĩ,j̃

k,k̃
= cĩ,k̃cj̃,k̃σ

2
k2ρ

2
k.
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Proof. Based on Corollaries D.7.4 and D.7.7, we have

Cum
[
Vk,t∆+n∆

N
, Vk̂,t∆+n∆

N
, ξĩ,j̃,t+n−1

N
,t+ n

N

∣∣∣Ft∆+n−1
N

∆

]

≈ Cum


(
σk

√
V
k,t∆+

(n−1)∆
N

∆
N
wk,t∆+n∆

N

)
,(

σk̂

√
V
k̂,t∆+

(n−1)∆
N

∆
N
wk̂,t∆+n∆

N

)
,(∑NV

k̃=1
cĩ,k̃cj̃,k̃Vk̃,t∆+

(n−1)∆
N

∆
N
(z2

k̃,t∆+n∆
N

− 1)
)
∣∣∣∣∣∣∣∣∣Ft∆+

(n−1)∆
N


=

NV∑
k̃=1

I ĩ,j̃

k,k̃
V
k,t∆+

(n−1)∆
N

V
k̃,t∆+

(n−1)∆
N

∆2

N2
,

which I ĩ,j̃

k,k̃
is solved with Isserlis’ Theorem

E
[
w2

k,t∆+n∆
N
(z2

k̃,t∆+n∆
N

− 1)
]
= 2ρ2k.

Following the the same steps detailed in Corollaries D.7.13 to D.7.16 leads to the results.□

Corollary D.7.19.

Cum
[
Vk,t+1, QCVî,ĵ,t,t+1, ξĩ,j̃,t,t+1

∣∣Ft∆

]
≈ ∆

N

∆

2

NV∑
k̃=1

Lî,ĵ ,̃i,j̃

k,k̃
E

[∫ (t+1)∆

t∆

Vk,sVk̃,sds

∣∣∣∣∣Ft∆

]
,

where

Lî,ĵ ,̃i,j̃

k,k̃
= σ2

kcî,kcĵ,kcĩ,k̃cj̃,k̃2ρ
2
k.

Proof. Based on Corollaries D.7.4, D.7.5 and D.7.7, we have

Cum
[
Vk,t∆+n∆

N
, QCVî,ĵ,t+n−1

N
,t+ n

N
, ξĩ,j̃,t+n−1

N
,t+ n

N

∣∣∣Ft∆+n−1
N

∆

]
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≈ Cum


(
σk

√
V
k,t∆+

(n−1)∆
N

∆
N
wk,t∆+n∆

N

)
,(∑NV

k̂=1
∆ (N−n+1)

N
cî,k̂cĵ,k̂σk̂

√
V
k̂,t∆+

(n−1)∆
N

∆
N
wk̂,t∆+n∆

N

)
,(∑NV

k̃=1
cĩ,k̃cj̃,k̃Vk̃,t∆+

(n−1)∆
N

∆
N
(z2

k̃,t∆+n∆
N

− 1)
)

∣∣∣∣∣∣∣∣∣Ft∆+
(n−1)∆

N


=

NV∑
k̃=1

∆(N − n+ 1)

N
Lî,ĵ ,̃i,j̃

k,k̃
V
k,t∆+

(n−1)∆
N

V
k̃,t∆+

(n−1)∆
N

∆2

N2
,

which Lî,ĵ ,̃i,j̃

k,k̃
is solved with Isserlis’ Theorem

E
[
w2

k,t∆+n∆
N
(z2

k̃,t∆+n∆
N

− 1)
]
= 2ρ2k.

Following the the same steps detailed in Corollaries D.7.13 to D.7.16 and using Lemma
D.7.3 with X1 = Vk,(t+1)∆, X2 = QCVî,ĵ,t,t+1 and X3 = ξĩ,j̃,t,t+1, we have

Cum
[
Vk,(t+1)∆, QCVî,ĵ,t,t+1, ξĩ,j̃,t,t+1

∣∣Ft∆

]
=

N∑
n=1

E
[
Cum

[
Vk,t∆+n∆

N
, QCVî,ĵ,t+n−1

N
,t+ n

N
, ξĩ,j̃,t+n−1

N
,t+ n

N

∣∣∣Ft∆+n−1
N

∆

]∣∣∣Ft∆

]

≈
N∑

n=1

E

 NV∑
k̃=1

∆(N − n+ 1)

N
Lî,ĵ ,̃i,j̃

k,k̃
V
k,t∆+

(n−1)∆
N

V
k̃,t∆+

(n−1)∆
N

∆2

N2

∣∣∣∣∣∣Ft∆


≈ ∆(N + 1)

2N

N∑
n=1

E

 NV∑
k̃=1

Lî,ĵ ,̃i,j̃

k,k̃
V
k,t∆+

(n−1)∆
N

V
k̃,t∆+

(n−1)∆
N

∆2

N2

∣∣∣∣∣∣Ft∆

 ,

which leads to the result as we approximate ∆(N+1)
2N

with 1
2
. □

Corollary D.7.20.

Cum
[
Ri,t,t+1, QCVî,ĵ,t,t+1, ξĩ,j̃,t,t+1

∣∣Ft∆

]
≈ ∆

N

∆

2

NV∑
k=1

NV∑
k̃=1

Mi,̂i,ĵ,̃i,j̃

k,k̃
E

[∫ (t+1)∆

t∆

Vk,sVk̃,sds

∣∣∣∣∣Ft∆

]
,
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where

Mi,̂i,ĵ,̃i,j̃

k,k̃
= σkci,kcî,kcĵ,kcĩ,k̃cj̃,k̃2ρk.

Proof. Following the same steps as in Corollary D.7.18 leads to the results. □

Corollary D.7.21.

Cum
[
QCVi,j,t,t+1, QCVî,ĵ,t,t+1, ξĩ,j̃,t,t+1

∣∣Ft∆

]
≈ ∆

N

∆2

3

NV∑
k=1

NV∑
k̃=1

J i,j,̂i,ĵ,̃i,j̃

k,k̃
E

[∫ (t+1)∆

t∆

Vk,sVk̃,sds

∣∣∣∣∣Ft∆

]
,

where

J i,j,̂i,ĵ,̃i,j̃

k,k̃
= σ2

kci,kcj,kcî,kcĵ,kcĩ,k̃cj̃,k̃2ρ
2
k.

Proof. Based on Corollaries D.7.5 and D.7.7, we have

Cum
[
QCVi,j,t+n−1

N
,t+ n

N
, QCVî,ĵ,t+n−1

N
,t+ n

N
, ξĩ,j̃,t+n−1

N
,t+ n

N

∣∣∣Ft∆+n−1
N

∆

]

≈ Cum


(∑NV

k=1∆
(N−n+1)

N
ci,kcj,kσk

√
V
k,t∆+

(n−1)∆
N

∆
N
wk,t∆+n∆

N

)
,(∑NV

k̂=1
∆ (N−n+1)

N
cî,k̂cĵ,k̂σk̂

√
V
k̂,t∆+

(n−1)∆
N

∆
N
wk̂,t∆+n∆

N

)
,(∑NV

k̃=1
cĩ,k̃cj̃,k̃Vk̃,t∆+

(n−1)∆
N

∆
N
(z2

k̃,t∆+n∆
N

− 1)
)

∣∣∣∣∣∣∣∣∣Ft∆+
(n−1)∆

N


=

NV∑
k=1

NV∑
k̃=1

∆2(N − n+ 1)2

N2
J i,j,̂i,ĵ,̃i,j̃

k,k̃
V
k,t∆+

(n−1)∆
N

V
k̃,t∆+

(n−1)∆
N

∆2

N2
,

which J i,j,̂i,ĵ,̃i,j̃

k,k̃
is solved with Isserlis’ Theorem

E
[
w2

k,t∆+n∆
N
(z2

k̃,t∆+n∆
N

− 1)
]
= 2ρ2k.

Following the the same steps detailed in Corollaries D.7.13 to D.7.16 and using Lemma
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D.7.3 with X1 = QCVi,j,t,t+1, X2 = QCVî,ĵ,t,t+1 and X3 = ξĩ,j̃,t,t+1, we have

Cum
[
QCVi,j,t,t+1, QCVî,ĵ,t,t+1, ξĩ,j̃,t,t+1

∣∣Ft∆

]
=

N∑
n=1

E
[
Cum

[
QCVi,j,t+n−1

N
,t+ n

N
, QCVî,ĵ,t+n−1

N
,t+ n

N
, ξĩ,j̃,t+n−1

N
,t+ n

N

∣∣∣Ft∆+n−1
N

∆

]∣∣∣Ft∆

]

≈
N∑

n=1

E

 NV∑
k=1

NV∑
k̃=1

∆2(N − n+ 1)2

N2
J i,j,̂i,ĵ,̃i,j̃

k,k̃
V
k,t∆+

(n−1)∆
N

V
k̃,t∆+

(n−1)∆
N

∆2

N2

∣∣∣∣∣∣Ft∆


≈ ∆2(N + 1)(2N + 1)

6N2

N∑
n=1

E

 NV∑
k=1

NV∑
k̃=1

J i,j,̂i,ĵ,̃i,j̃

k,k̃
V
k,t∆+

(n−1)∆
N

V
k̃,t∆+

(n−1)∆
N

∆2

N2

∣∣∣∣∣∣Ft∆

 ,

which leads to the result as we approximate ∆2(N+1)(2N+1)
6N2 with 1

3
. □

D.7.6 Application to moments of ξĩ,j̃,t,t+1ξî,ĵ,t,t+1

Corollary D.7.22. If Assumption 3.4.2 holds,

Cum
[
Ri,t+n−1

N
,t+ n

N
, ξĩ,j̃,t+n−1

N
,t+ n

N
, ξî,ĵ,t+n−1

N
,t+ n

N

∣∣∣Ft∆+n−1
N

∆

]
≈ 0,

Cum
[
Vk,t∆+n∆

N
, ξĩ,j̃,t+n−1

N
,t+ n

N
, ξî,ĵ,t+n−1

N
,t+ n

N

∣∣∣Ft∆+n−1
N

∆

]
≈ 0,

Cum
[
QCVi,j,t+n−1

N
,t+ n

N
, ξĩ,j̃,t+n−1

N
,t+ n

N
, ξî,ĵ,t+n−1

N
,t+ n

N

∣∣∣Ft∆+n−1
N

∆

]
≈ 0.

Proof. Based on Corollaries D.7.4, D.7.5, and D.7.7, the odd moments of a Gaussian
random variable are null. □

Corollary D.7.23. If Assumption 3.4.2 holds,

Cov

 ∑n−1
m=1 ξĩ,j̃,t+m−1

N
,t+m

N
,

Cov
[
Vk,t∆+n∆

N
, ξî,ĵ,t+m−1

N
,t+m

N

∣∣∣Ft∆+n−1
N

∆

] ∣∣∣∣∣∣Ft∆

 ≈ 0,

Cov

 ∑n−1
m=1 ξĩ,j̃,t+m−1

N
,t+m

N
,

Cov
[
Ri,t+n−1

N
,t+ n

N
, ξî,ĵ,t+m−1

N
,t+m

N

∣∣∣Ft∆+n−1
N

∆

] ∣∣∣∣∣∣Ft∆

 ≈ 0,
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Cov

 ∑n−1
m=1 ξĩ,j̃,t+m−1

N
,t+m

N
,

Cov
[
QCVi,j,t+n−1

N
,t+ n

N
, ξî,ĵ,t+m−1

N
,t+m

N

∣∣∣Ft∆+n−1
N

∆

] ∣∣∣∣∣∣Ft∆

 ≈ 0.

Proof. Direct application of Corollary D.7.9. □

Corollary D.7.24. If Assumption 3.4.2 holds,

Cov

 ∑n−1
m=1 Ri,t+m−1

N
,t+m

N
,

Cov
[
ξĩ,j̃,t+n−1

N
,t+ n

N
, ξî,ĵ,t+n−1

N
,t+ n

N

∣∣∣Ft∆+n−1
N

∆

] ∣∣∣∣∣∣Ft∆


≈

NV∑
k=1

NV∑
k̃=1

C ĩ,j̃ ,̂i,ĵ

k,k̃

∆2

N2

∆

2
E
[(
σkci,kρk + σk̃ρk̃ci,k̃

)
V
k,t∆+

(m−1)∆
N

V
k̃,t∆+

(m−1)∆
N

]
.

Proof.

Cov

 ∑n−1
m=1Ri,t+m−1

N
,t+m

N
,

Cov
[
ξĩ,j̃,t+n−1

N
,t+ n

N
, ξî,ĵ,t+n−1

N
,t+ n

N

∣∣∣Ft∆+n−1
N

∆

] ∣∣∣∣∣∣Ft∆


≈ E

 (∑n−1
m=1

(∑NV

k=1 ci,k
√
V
k,t∆+

(n−1)∆
N

∆
N
zk,t∆+n∆

N

))
(∑NV

k̂=1

∑NV

k̃=1
C ĩ,j̃ ,̂i,ĵ

k̂,k̃
V
k̂,t∆+

(n−1)∆
N

V
k̃,t∆+

(n−1)∆
N

∆2

N2

) 

=
n−1∑
m=1

NV∑
k=1

NV∑
k̃=1

NV∑
k̂=1

C ĩ,j̃ ,̂i,ĵ

k̂,k̃
ci,k

∆3

N3
E


(√

V
k,t∆+

(m−1)∆
N

zk,t∆+m∆
N

)
 σk̂Vk̃,t∆+

(m−1)∆
N

√
V
k̂,t∆+

(m−1)∆
N

wk̂,t∆+m∆
N

+σk̃Vk̂,t∆+
(m−1)∆

N

√
V
k̃,t∆+

(m−1)∆
N

wk̃,t∆+m∆
N




=
n−1∑
m=1

NV∑
k=1

NV∑
k̃=1

C ĩ,j̃ ,̂i,ĵ

k,k̃

∆3

N3
E
[(
σkci,kρk + σk̃ρk̃ci,k̃

)
V
k,t∆+

(m−1)∆
N

V
k̃,t∆+

(m−1)∆
N

]

=

NV∑
k=1

NV∑
k̃=1

C ĩ,j̃ ,̂i,ĵ

k,k̃

∆3

N3
E
[
(N − n+ 1)

(
σkci,kρk + σk̃ρk̃ci,k̃

)
V
k,t∆+

(m−1)∆
N

V
k̃,t∆+

(m−1)∆
N

]

≈
NV∑
k=1

NV∑
k̃=1

C ĩ,j̃ ,̂i,ĵ

k,k̃

∆2

N2

∆

2
E
[(
σkci,kρk + σk̃ρk̃ci,k̃

)
V
k,t∆+

(m−1)∆
N

V
k̃,t∆+

(m−1)∆
N

]
.
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Corollary D.7.25. If Assumption 3.4.2 holds,

Cov

 ∑n−1
m=1 Vk,t∆+m∆

N
,

Cov
[
ξĩ,j̃,t+n−1

N
,t+ n

N
, ξî,ĵ,t+n−1

N
,t+ n

N

∣∣∣Ft∆+n−1
N

∆

] ∣∣∣∣∣∣Ft∆


≈

NV∑
k=1

NV∑
k̃=1

C ĩ,j̃ ,̂i,ĵ

k,k̃

∆2

N2

∆

2
E
[
(σkσk + σk̃σk̃)Vk,t∆+

(m−1)∆
N

V
k̃,t∆+

(m−1)∆
N

]
.

Proof.

Cov

 ∑n−1
m=1 Vk,t∆+m∆

N
,

Cov
[
ξĩ,j̃,t+n−1

N
,t+ n

N
, ξî,ĵ,t+n−1

N
,t+ n

N

∣∣∣Ft∆+n−1
N

∆

] ∣∣∣∣∣∣Ft∆


≈ E

 (∑n−1
m=1

(
σk

√
V
k,t∆+

(n−1)∆
N

∆
N
wk,t∆+n∆

N

))
(∑NV

k̂=1

∑NV

k̃=1
C ĩ,j̃ ,̂i,ĵ

k̂,k̃
V
k̂,t∆+

(n−1)∆
N

V
k̃,t∆+

(n−1)∆
N

∆2

N2

) 

=
n−1∑
m=1

NV∑
k̃=1

NV∑
k̂=1

C ĩ,j̃ ,̂i,ĵ

k̂,k̃
σk

∆3

N3
E


(√

V
k,t∆+

(n−1)∆
N

∆
N
wk,t∆+n∆

N

)
 σk̂Vk̃,t∆+

(m−1)∆
N

√
V
k̂,t∆+

(m−1)∆
N

wk̂,t∆+m∆
N

+σk̃Vk̂,t∆+
(m−1)∆

N

√
V
k̃,t∆+

(m−1)∆
N

wk̃,t∆+m∆
N




=
n−1∑
m=1

NV∑
k=1

NV∑
k̃=1

C ĩ,j̃ ,̂i,ĵ

k,k̃

∆3

N3
E
[
(σkσk + σk̃σk̃)Vk,t∆+

(m−1)∆
N

V
k̃,t∆+

(m−1)∆
N

]

=

NV∑
k=1

NV∑
k̃=1

C ĩ,j̃ ,̂i,ĵ

k,k̃

∆3

N3
E
[
(N − n+ 1) (σkσk + σk̃σk̃)Vk,t∆+

(m−1)∆
N

V
k̃,t∆+

(m−1)∆
N

]

≈
NV∑
k=1

NV∑
k̃=1

C ĩ,j̃ ,̂i,ĵ

k,k̃

∆2

N2

∆

2
E
[
(σkσk + σk̃σk̃)Vk,t∆+

(m−1)∆
N

V
k̃,t∆+

(m−1)∆
N

]
.

Corollary D.7.26. If Assumption 3.4.2 holds,

Cov

 ∑n−1
m=1QCVi,j,t+n−1

N
,t+ n

N
,

Cov
[
ξĩ,j̃,t+n−1

N
,t+ n

N
, ξî,ĵ,t+n−1

N
,t+ n

N

∣∣∣Ft∆+n−1
N

∆

] ∣∣∣∣∣∣Ft∆


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≈
NV∑
k=1

NV∑
k̃=1

C ĩ,j̃ ,̂i,ĵ

k,k̃

∆3

N3

∆

3
E
[(
σ2
kci,kcj,k + σ2

k̃
ci,k̃cj,k̃

)
V
k,t∆+

(m−1)∆
N

V
k̃,t∆+

(m−1)∆
N

]
.

Proof.

Cov

 ∑n−1
m=1 QCVi,j,t+n−1

N
,t+ n

N
,

Cov
[
ξĩ,j̃,t+n−1

N
,t+ n

N
, ξî,ĵ,t+n−1

N
,t+ n

N

∣∣∣Ft∆+n−1
N

∆

] ∣∣∣∣∣∣Ft∆


≈ E

 (∑n−1
m=1

(∑NV

k=1 ∆
(N−n+1)

N
ci,kcj,kσk

√
V
k,t∆+

(n−1)∆
N

∆
N
wk,t∆+n∆

N

))
(∑NV

k̂=1

∑NV

k̃=1
C ĩ,j̃ ,̂i,ĵ

k̂,k̃
V
k̂,t∆+

(n−1)∆
N

V
k̃,t∆+

(n−1)∆
N

∆2

N2

) 

=
n−1∑
m=1

NV∑
k=1

NV∑
k̃=1

NV∑
k̂=1

C ĩ,j̃ ,̂i,ĵ

k̂,k̃

∆3

N3
E


(
∆ (N−n+1)

N
ci,kcj,kσk

√
V
k,t∆+

(n−1)∆
N

∆
N
wk,t∆+n∆

N

)
 σk̂Vk̃,t∆+

(m−1)∆
N

√
V
k̂,t∆+

(m−1)∆
N

wk̂,t∆+m∆
N

+σk̃Vk̂,t∆+
(m−1)∆

N

√
V
k̃,t∆+

(m−1)∆
N

wk̃,t∆+m∆
N




=
n−1∑
m=1

NV∑
k=1

NV∑
k̃=1

∆(N − n+ 1)

N
C ĩ,j̃ ,̂i,ĵ

k,k̃

∆3

N3
E

 (
σ2
kci,kcj,k + σ2

k̃
ci,k̃cj,k̃

)
V
k,t∆+

(m−1)∆
N

V
k̃,t∆+

(m−1)∆
N


=

NV∑
k=1

NV∑
k̃=1

C ĩ,j̃ ,̂i,ĵ

k,k̃

∆3

N3
E

∆(N − n+ 1)2

N

(
σ2
kci,kcj,k + σ2

k̃
ci,k̃cj,k̃

)
V
k,t∆+

(m−1)∆
N

V
k̃,t∆+

(m−1)∆
N


≈

NV∑
k=1

NV∑
k̃=1

C ĩ,j̃ ,̂i,ĵ

k,k̃

∆3

N3

∆

3
E
[(
σ2
kci,kcj,k + σ2

k̃
ci,k̃cj,k̃

)
V
k,t∆+

(m−1)∆
N

V
k̃,t∆+

(m−1)∆
N

]
.

Corollary D.7.27.

Cum
[
Ri,t,t+1, ξĩ,j̃,t,t+1, ξî,ĵ,t,t+1

∣∣Ft∆

]
≈

NV∑
k=1

NV∑
k̃=1

(
σkci,kρk + σk̃ρk̃ci,k̃

)
C ĩ,j̃ ,̂i,ĵ

k,k̃

∆

N

∆

2
E

[∫ (t+1)∆

t∆

Vk,sVk̃,sds

∣∣∣∣∣Ft∆

]
,

Cum
[
Vk,(t+1)∆, ξĩ,j̃,t,t+1, ξî,ĵ,t,t+1

∣∣Ft∆

]
≈

NV∑
k=1

NV∑
k̃=1

(
σ2
k + σ2

k̃

)
C ĩ,j̃ ,̂i,ĵ

k,k̃

∆

N

∆

2
E

[∫ (t+1)∆

t∆

Vk,sVk̃,sds

∣∣∣∣∣Ft∆

]
,
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Cum
[
QCVi,j,t,t+1, ξĩ,j̃,t,t+1, ξî,ĵ,t,t+1

∣∣Ft∆

]
≈

NV∑
k=1

NV∑
k̃=1

(
σ2
kci,kcj,k + σ2

k̃
ci,k̃cj,k̃

)
C ĩ,j̃ ,̂i,ĵ

k,k̃

∆2

N2

∆

3
E

[∫ (t+1)∆

t∆

Vk,sVk̃,sds

∣∣∣∣∣Ft∆

]
.

Proof. Application of Lemma D.7.3 and Corollaries D.7.22 to D.7.26.

D.8 Second Update

We outline our approach to manage the transition from the σ-algebra Gt∆ to G(t+1)∆ for the
conditional variance of the latent variable prevision error derived in Equation (3.27).

To update the variance matrix of the latent state estimator

E
[(

V(t+1)∆ − E
[
V(t+1)∆

∣∣G(t+1)∆

]) (
V(t+1)∆ − E

[
V(t+1)∆

∣∣G(t+1)∆

])⊤∣∣∣Gt∆

]
,

we define the variable

Ci,j,(t+1)∆ =
(
Vi,(t+1)∆ − E

[
Vi,(t+1)∆

∣∣G(t+1)∆

]) (
Vj,(t+1)∆ − E

[
Vj,(t+1)∆

∣∣G(t+1)∆

])
≃
(
ϵV
i,t+1|t −Σi,t∆ϵ

O
t+1|t

) (
ϵV
j,t+1|t −Σj,t∆ϵ

O
t+1|t

)
,

where Σi,t∆ is the ith line of the update matrix Σt∆ and

C(t+1)∆ = [C1,1,(t+1)∆,C1,2,(t+1)∆, ...,CK,K,(t+1)∆].

The a posteriori estimation5

E
[
C(t+1)∆

∣∣G(t+1)∆

]︸ ︷︷ ︸
a posteriori estimation
of the latent variables

uncertainty

≃ E
[
C(t+1)∆

∣∣Gt∆

]︸ ︷︷ ︸
a priori prediction

of the latent variables
uncertainty

+Γt∆

(
O(t+1)∆ − E

[
O(t+1)∆

∣∣Gt∆

])︸ ︷︷ ︸
ϵO
t+1|t

. (D.12)

The matrix Γt∆ is now constructed by minimizing the conditional variance of the latent

5In the very rare cases that the update does not yield to a semi definite positive covariance matrix, we
set E

[
C(t+1)∆

∣∣G(t+1)∆

]
≃ E

[
C(t+1)∆

∣∣Gt∆

]
.
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variable estimator given Gt∆. Because

C(t+1)∆ − E[C(t+1)∆|G(t+1)∆]︸ ︷︷ ︸
ϵC
t+1|t+1

≃ C(t+1)∆ − E[C(t+1)∆|Gt∆]︸ ︷︷ ︸
ϵC
t+1|t

−Γt∆ϵ
O
t+1|t,

the variance matrix of the estimator with respect to Gt∆ is

E
[(

C(t+1)∆ − E
[
C(t+1)∆

∣∣G(t+1)∆

]) (
C(t+1)∆ − E

[
C(t+1)∆

∣∣G(t+1)∆

])⊤∣∣∣Gt∆

]
≃ E

[(
ϵC
t+1|t − Γt∆ϵ

O
t+1|t

) (
ϵC
t+1|t − Γt∆ϵ

O
t+1|t

)⊤∣∣∣Gt∆

]
= E

[(
ϵC
t+1|t

) (
ϵC
t+1|t

)⊤∣∣∣Gt∆

]
− E

[(
ϵC
t+1|t

) (
Γt∆ϵ

O
t+1|t

)⊤∣∣∣Gt∆

]
− E

[(
Γt∆ϵ

O
t+1|t

) (
ϵC
t+1|t

)⊤∣∣∣Gt∆

]
+ E

[(
Γt∆ϵ

O
t+1|t

) (
Γt∆ϵ

O
t+1|t

)⊤∣∣∣Gt∆

]
= Var

[
ϵC
t+1|t

∣∣Gt∆

]
+ Γt∆Var

[
ϵO
t+1|t

∣∣Gt∆

]
Γ⊤

t∆

− Cov
[
ϵC
t+1|t, ϵ

O
t+1|t

∣∣Gt∆

]
Γ⊤

t∆ − Γt∆Cov
[
ϵO
t+1|t, ϵ

C
t+1|t

∣∣Gt∆

]
. (D.13)

Therefore, if the a posteriori covariance matrix is minimized (see proof in Appendix B.3)
respective to Γt∆, the second update matrix is

Γt∆ = Cov
[
ϵC
t+1|t, ϵ

O
t+1|t

∣∣Gt∆

] (
Var

[
ϵO
t+1|t

∣∣Gt∆

])−1
. (D.14)

Replacing (D.14) in (D.13) leads to

E
[(

C(t+1)∆ − E
[
C(t+1)∆

∣∣G(t+1)∆

]) (
C(t+1)∆ − E

[
C(t+1)∆

∣∣G(t+1)∆

])⊤∣∣∣Gt∆

]
≃ Var

[
ϵC
t+1|t

∣∣Gt∆

]
− Γt∆Cov

[
ϵO
t+1|t, ϵ

C
t+1|t

∣∣Gt∆

]
.

The covariance term is

Cov
[
ϵC
i,j,t+1|t, ϵ

O
t+1|t

∣∣Gt∆

]
≃ Cov

[(
ϵV
i,t+1|t −Σi,t∆ϵ

O
t+1|t

) (
ϵV
j,t+1|t −Σj,t∆ϵ

O
t+1|t

)
, ϵO

t+1|t
]
|Gt∆

]
= E

[(
ϵV
i,t+1|t −Σi,t∆ϵ

O
t+1|t

) (
ϵV
j,t+1|t −Σj,t∆ϵ

O
t+1|t

)
ϵO
t+1|t

]
|Gt∆

]
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= E
[
ϵV
i,t+1|tϵ

V
j,t+1|tϵ

O
t+1|t

]
|Gt∆

]
− E

[
ϵV
i,t+1|t

(
Σj,t∆ϵ

O
t+1|t

)
ϵO
t+1|t

]
|Gt∆

]
− E

[(
Σi,t∆ϵ

O
t+1|t

)
ϵV
j,t+1|tϵ

O
t+1|t

]
|Gt∆

]
+ E

[(
Σi,t∆ϵ

O
t+1|t

) (
Σj,t∆ϵ

O
t+1|t

)
ϵO
t+1|t

]
|Gt∆

]
,

which is a linear combination of third moments on the latent variable and observable vari-
ables (see Online Appendices D.5 and D.6 for calculations details). Since the state and
measurement equations are not Gaussian, the covariance Cov

[
ϵC
i,j,t+1|t, ϵ

O
t+1|t

∣∣∣Gt∆

]
is not

null.6

If the second update is used, based on Equation (D.12) and with Corollary B.4.8, we
have instead

Cum(4)
[
ϵV
i,t+1|t+1, ϵ

V
j,t+1|t+1, ϵ

V
l,t+1|t+1, ϵ

V
m,t+1|t+1

∣∣G(t+1)∆

]
(D.15)

≃ E
[
Cum(4)

[
ϵV
i,t+1|t+1, ϵ

V
j,t+1|t+1, ϵ

V
l,t+1|t+1, ϵ

V
m,t+1|t+1

∣∣G(t+1)∆

]∣∣∣Gt∆

]
= Cum(4)

 (
ϵV
i,t+1|t −Σi,t∆ϵ

O
t+1|t

)
,
(
ϵV
j,t+1|t −Σj,t∆ϵ

O
t+1|t

)
,(

ϵV
l,t+1|t −Σl,t∆ϵ

O
t+1|t

)
,
(
ϵV
m,t+1|t −Σm,t∆ϵ

O
t+1|t

) ∣∣∣∣∣∣Gt∆


− Γi,j,t∆Cov

[
ϵO
t+1|t, ϵ

O
t+1|t

∣∣Gt∆

]
Γ⊤

l,m,t∆ − Γi,m,t∆Cov
[
ϵO
t+1|t, ϵ

O
t+1|t

∣∣Gt∆

]
Γ⊤

j,l,t∆

− Γi,l,t∆Cov
[
ϵO
t+1|t, ϵ

O
t+1|t

∣∣Gt∆

]
Γ⊤

j,m,t∆,

which is a linear combination of the second and fourth cumulant of O(t+1)∆ and fourth
cumulant of V(t+1)∆ with respect to the information set Gt∆ (see section B.4.2.3). However,
contrary to the third cumulant, Equation (3.29) is affected directly by the second update as
the matrix Γt∆ is present in the equation.

6Indeed, if the framework was Gaussian, the term Γt∆ would be null and the second update useless. A
discussion on the Gaussian assumption is outlined in Online Appendix D.4.
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D.9 Unconditional Moments

Corollary D.9.1. If Vk,(t+1)∆ is stationary, then the first two unconditional moments of the
variance are given by

E [Vk,t∆] = θk and Var [Vk,t∆] =
θkσ

2
k

2κk

.

Proof. The expected value is a direct application of Equation (B.8). The variance is based
on calculations from Appendix B.2, where:

Var
[
Vk,(t+1)∆

]
= E

[
Var

[
Vk,(t+1)∆|Ft∆

]]
+Var [E [Vk,t∆|Ft∆]]

= E
[
σ2
kVar [Zk,t,t+1|Ft∆]

]
+Var

[
e−κk∆(Vk,t∆ − θk) + θk

]
= θkσ

2
k

1− e−2κk∆

2κk

+Var [Vk,t∆] e
−2κk∆,

leading to the result. □

Corollary D.9.2. If Var
[
Vk,(t+1)∆|Ft∆

]
= CkVk,t∆ + Dk, Cum(3)

[
Vk,(t+1)∆|Ft∆

]
=

PkVk,t∆ + Qk and Vk,(t+1)∆ is stationary, then the third unconditional cumulant of the
variance is given by

Cum(3) [Vk,t∆] =
Pkθk +Qk + 3

θkσ
2
k

2κk
e−κk∆Ck

1− e−3κk∆
.

Proof. Based on Appendix B.2 calculations and the law of total cumulance, the third
unconditional cumulant of the variance is:

Cum(3)
[
Vk,(t+1)∆

]
= E

[
Cum(3)

[
Vk,(t+1)∆|Ft∆

]]
+Cum(3)

[
E
[
Vk,(t+1)∆|Ft∆

]]
+ 3Var

[
E
[
Vk,(t+1)∆|Ft∆

]
,Var

[
Vk,(t+1)∆|Ft∆

]]
= Pkθk +Qk + e−3κk∆Cum(3) [Vk,t∆] + 3

θkσ
2
k

2κk
Cke

−κk∆,

leading to the result. See Appendix B.2 for the second conditional cumulant of Vk,(t+1)∆

and Online Appendix D.5 for the third conditional cumulant of Vk,(t+1)∆. □
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Corollary D.9.3. If Var
[
Vk,(t+1)∆|Ft∆

]
= CkVk,t∆ + Dk, Cum(3)

[
Vk,(t+1)∆|Ft∆

]
=

PkVk,t∆ + Qk, Cum(4)
[
Vk,(t+1)∆|Ft∆

]
= MkVk,t∆ + Nk and Vk,(t+1)∆ is stationary, then

the fourth unconditional cumulant of the variance is given by

Cum(4) [Vk,t∆]

=
Mkθ +Nk + 4

θkσ
2
k

2κk
e−κk∆Pk + 3

θkσ
2
k

2κk
C2

k + 6Cke
−2κk∆Cum(3) [Vk,t∆]

1− e−4κk∆
.

Proof. Based on Appendix B.2 calculations and the law of total cumulance, the fourth
unconditional cumulant of the variance is:

Cum(4)
[
Vk,(t+1)∆

]
= E

[
Cum(4)

[
Vk,(t+1)∆|Ft∆

]]
+ Cum(4)

[
E
[
Vk,(t+1)∆|Ft∆

]]
+ 4Var

[
E
[
Vk,(t+1)∆|Ft∆

]
,Cum(3)

[
Vk,(t+1)∆|Ft∆

]]
+ 3Var

[
Var

[
Vk,(t+1)∆|Ft∆

]
,Var

[
Vk,(t+1)∆|Ft∆

]]
+ 6Cum(3)

[
Var

[
Vk,(t+1)∆|Ft∆

]
,E
[
Vk,(t+1)∆|Ft∆

]
,E
[
Vk,(t+1)∆|Ft∆

]]
= Mkθ +Nk + e−4κk∆Cum(4) [Vk,t∆]

+ 4
θkσ

2
k

2κk

e−κk∆Pk + 3
θkσ

2
k

2κk

C2
k + 6Cke

−2κk∆Cum(3) [Vk,t∆] ,

which leads to the result by isolating Cum(4) [Vk,t∆]. See Appendix B.2 for the second con-
ditional cumulant of Vk,(t+1)∆ and Online Appendix D.5 for the third and fourth conditional
cumulants of Vk,(t+1)∆. □

D.10 Additional Results

D.10.1 Stochastic integral sample moments

Figures D.2 to D.3 show the sample skewness and kurtosis respectively of the stochastic
integrals Zk,t,t+1, Wk,t,t+1 and Bk,t,t+1 for case two assets and three variances. Wk,t,t+1 dis-
plays similar distributional properties as Zk,t,t+1. Despite this, their skewness and kurtosis
are not 0 and 3, respectively, suggesting a distribution different from the Gaussian distribu-
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(k, n) ¯̄b(ℓ,n) ¯̄ε(k,n)

θnk

ϑ
(n)
k

θnk
t-stat p-value

(bp) (bp) (%)

Assuming that ξi,j,t,t+1 ∼ Gaussian

(1,1) 0.97 0.0233 −0.0005 −0.01 99.57
(2,1) 0.93 −1.5488 −0.0760 −0.42 67.67
(3,1) 0.95 2.2272 −0.0332 −0.17 86.59

(1,2) 0.95 0.0781 0.0019 0.26 79.55
(2,2) 0.86 0.3496 −0.0001 0.00 99.60
(3,2) 0.91 0.0952 −0.0061 −0.14 88.77

(1,3) 0.92 −0.0057 −0.0005 −0.46 64.86
(2,3) 0.80 −0.1407 −0.0228 −2.49 1.28*
(3,3) 0.87 −0.2418 −0.0279 −1.12 26.15

(1,4) 0.89 0.0025 0.0002 0.99 32.33
(2,4) 0.75 0.0383 0.0050 1.62 10.52
(3,4) 0.83 −0.1223 −0.0178 −1.16 24.62

Joint χ2
12 22.90 2.85*

¯̄b(ℓ,n) ¯̄ε(k,n)

θnk

ϑ
(n)
k

θnk
t-stat p-value

(bp) (bp) (%)

ξi,j,t,t+1 = RCVi,j,t,t+1 −QCVi,j,t,t+1

0.97 0.0233 −0.0005 −0.01 99.57
0.93 −1.5488 −0.0760 −0.42 67.67
0.95 2.2272 −0.0332 −0.17 86.59

0.95 0.0781 0.0019 0.26 79.55
0.86 0.3496 −0.0001 0.00 99.60
0.91 0.0952 −0.0061 −0.14 88.77

0.92 0.0081 0.0005 0.47 64.08
0.80 −0.0746 −0.0113 −1.23 21.71
0.87 −0.1068 −0.0098 −0.40 69.26

0.89 0.0026 0.0002 1.03 30.14
0.75 0.0390 0.0051 1.67 9.48
0.83 −0.1191 −0.0172 −1.12 26.10

χ2
12 13.52 33.26

This Monte Carlo study simulates L = 1000 independent trajectories for the Model (3.1), using M = 3900 intraday steps over a period
of T = 4000 days. The daily RCV is aggregated at the 5 minutes frequency with N = 390. The measurement error is calculated with
Equation (3.32): ξ(ℓ)i,j,t,t+1 = RCV

(ℓ)
i,j,t,t+1 −QCV

(ℓ)
i,j,t,t+1. Filtering errors,

ε
(ℓ,1)
k,t = V

(ℓ)
k,t∆ − E

[
V

(ℓ)
k,t∆

∣∣∣Gt∆

]
,

are computed daily for each variance component k and each path ℓ. The filtering errors’ higher moments are

ε
(ℓ,n)
k,t =

(
ε
(ℓ,1)
k,t

)n
− E

[(
ε
(ℓ,1)
k,t

)n∣∣∣Gt∆

]
, n ∈ {2, 3, 4}.

The average filtering error ¯̄ε(k,n) = 1
S

1
T

∑S
ℓ=1

∑T
t=1 ε

(k,n)
t,ℓ is normalized by the long-term expected variance component θk raised

to the appropriate power. This ratio, ¯̄ε(k,n)

θn
k

, is expressed in basis points (bp). The panel regression

ε
(ℓ,n)
k,t = b

(ℓ,n)
k,t ε

(ℓ,n)
k,t−1 + ϑ

(n)
k + z

(ℓ,n)
k,t

(as described in Section 3.4.2) accounts for autocorrelation and potential biases through the constants ϑ(n)
k . We test the absence of bias

(H0 : ϑ
(n)
k = 0) and report the associated t-statistic (t-stat) and p-value. Standard errors are estimated considering spatial correlation,

using the Newey-West estimator with a lag Q = ⌊4( T
100

)2/9⌋ = 9. An asterisk (*) denotes rejection of the null hypothesis at 5% and
(**) at 1%. We provide the joint chi-square test statistic and p-value for the null hypothesis H0 : ϑ

(n)
k = 0, n ∈ {1, 2, 3, 4}, k ∈

{1, ..., NV }. The average autocorrelation ¯̄b(k,n) = 1
S

1
T

∑S
ℓ=1

∑T
t=1 b

(k,n)
t,ℓ displays the cross-sectional and time-average of the

autocorrelation.

Table D.1: Filtering error for case 2 assets and 3 variances (N = 390)
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tion. However, Bk,t,t+1 has a null skewness since the Brownian motion Bk,t is independent
of the stochastic variances factors.

D.10.2 Sample correlation between the measurement error and stochas-
tic integral

Based on Monte Carlo simulations, we empirically analyze Assumption B.1.1, which pre-
sumes that the stochastic integrals are uncorrelated with the error measurement. We present
the sample correlations in Figures D.4,7 covering the most complex case, 2 assets and 3
variances, presented in this paper. The figures show that Assumption B.1.1 is empirically
satisfied as the sample correlation between the measurement error and the stochastic inte-
grals Wt,t+1, Bt,t+1 and Zt,t+1 are centered around zero.

D.10.3 Second update results under the asymptotic theory

We present our results assuming the asymptotic theory is respected and also simulate an
error according to Assumption (3.4.1). That is

RCV
(⊥)
i,j,t,t+1 = QCVi,j,t,t+1 + ξ

(⊥)
i,j,t,t+1, (D.16)

where the measurement error ξ(⊥)
i,j,t,t+1 is independently and normally distributed with zero

mean and variance set to Assumption 3.4.1. The results are presented in tables D.2 to D.4.
For the right columns of tables D.2 to D.4, in addition to the measurement error sim-

ulated according to Assumption 3.4.1, we introduce the Filter with second order update
(details in Online Appendix D.8). This additional step addresses the non-linear and non-
Gaussian nature of our framework. If our model were completely linear and normally
distributed, it would revert to a standard Kalman filter, which is optimal under Gaussianity
assumptions. However, since we lack these properties, we added an extra step to reduce the
gap between the conditional moments of our latent variables and the estimators obtained.

7Figures on measurement error ξ1,2,t,t+1 and ξ2,2,t,t+1 are available upon request.
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(k, n) ¯̄b(ℓ,n) ¯̄ε(k,n)

θnk

ϑ
(n)
k

θnk
t-stat p-value

(bp) (bp) (%)

Filter with first order update

Panel A: Variance 1
(1,1) 0.98 0.2705 0.0016 0.01 98.89
(1,2) 0.97 0.0359 0.0003 0.03 97.77
(1,3) 0.95 0.0236 0.0010 0.42 67.24
(1,4) 0.93 0.0025 0.0001 0.26 79.16

Joint χ2
4 0.34 98.73

Panel B: Variance 2
(1,1) 0.96 0.1310 0.0125 0.08 93.59
(1,2) 0.92 0.1647 0.0032 0.13 89.44
(1,3) 0.89 0.0622 0.0045 0.56 57.36
(1,4) 0.85 0.0097 0.0007 0.23 82.07

Joint χ2
4 0.41 98.15

Panel C: Variance 3
(1,1) 0.92 1.3299 0.0213 0.10 91.93
(1,2) 0.85 0.7841 0.0341 0.47 63.92
(1,3) 0.79 0.3334 0.0273 0.42 67.51
(1,4) 0.73 0.8320 0.0654 0.81 41.54

Joint χ2
4 0.67 95.44

(k, n) ¯̄b(ℓ,n) ¯̄ε(k,n)

θnk

ϑ
(n)
k

θnk
t-stat p-value

(bp) (bp) (%)

Filter with second order update

(1,1) 0.98 0.2862 0.0018 0.02 98.76
(1,2) 0.97 0.0618 0.0007 0.06 95.59
(1,3) 0.95 0.0247 0.0010 0.44 66.06
(1,4) 0.93 0.0037 0.0002 0.36 72.16

Joint χ2
4 0.41 98.14

(1,1) 0.96 0.1794 0.0131 0.08 93.24
(1,2) 0.92 0.0767 0.0019 0.08 93.61
(1,3) 0.89 0.0602 0.0044 0.55 58.07
(1,4) 0.85 0.0051 0.0004 0.12 90.71

Joint χ2
4 0.42 98.09

(1,1) 0.92 1.3502 0.0219 0.10 91.70
(1,2) 0.85 0.8782 0.0342 0.47 63.85
(1,3) 0.78 0.3465 0.0283 0.44 66.29
(1,4) 0.73 0.8774 0.0664 0.83 40.73

Joint χ2
4 0.70 95.11

This Monte Carlo study simulates L = 1000 independent trajectories for the Model (3.1), using M = 3900 intraday steps over a period
of T = 4000 days. The daily RCV is aggregated at the 5 minutes frequency with N = 78. The measurement error is calculated with
Equation (3.32): ξ(ℓ)i,j,t,t+1 = RCV

(ℓ)
i,j,t,t+1 −QCV

(ℓ)
i,j,t,t+1. Filtering errors,

ε
(ℓ,1)
k,t = V

(ℓ)
k,t∆ − E

[
V

(ℓ)
k,t∆

∣∣∣Gt∆

]
,

are computed daily for each variance component k and each path ℓ. The filtering errors’ higher moments are

ε
(ℓ,n)
k,t =

(
ε
(ℓ,1)
k,t

)n
− E

[(
ε
(ℓ,1)
k,t

)n∣∣∣Gt∆

]
, n ∈ {2, 3, 4}.

The average filtering error ¯̄ε(k,n) = 1
S

1
T

∑S
ℓ=1

∑T
t=1 ε

(k,n)
t,ℓ is normalized by the long-term expected variance component θk raised

to the appropriate power. This ratio, ¯̄ε(k,n)

θn
k

, is expressed in basis points (bp). The panel regression

ε
(ℓ,n)
k,t = b

(ℓ,n)
k,t ε

(ℓ,n)
k,t−1 + ϑ

(n)
k + z

(ℓ,n)
k,t

(as described in Section 3.4.2) accounts for autocorrelation and potential biases through the constants ϑ(n)
k . We test the absence of bias

(H0 : ϑ
(n)
k = 0) and report the associated t-statistic (t-stat) and p-value. Standard errors are estimated considering spatial correlation,

using the Newey-West estimator with a lag Q = ⌊4( T
100

)2/9⌋ = 9. An asterisk (*) denotes rejection of the null hypothesis at 5% and
(**) at 1%. We provide the joint chi-square test statistic and p-value for the null hypothesis H0 : ϑ

(n)
k = 0, n ∈ {1, 2, 3, 4}, k ∈

{1, ..., NV }. The average autocorrelation ¯̄b(k,n) = 1
S

1
T

∑S
ℓ=1

∑T
t=1 b

(k,n)
t,ℓ displays the cross-sectional and time-average of the

autocorrelation.

Table D.2: Filtering error for case 1 asset and 1 variance under Assumption 3.4.1
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(k, n) ¯̄b(ℓ,n) ¯̄ε(k,n)

θnk

ϑ
(n)
k

θnk
t-stat p-value

(bp) (bp) (%)

Filter with first order update

Panel A: Without covariation
(1,1) 0.98 −0.6213 −0.0091 −0.08 93.57
(2,1) 0.96 −1.1229 −0.0170 −0.11 91.29

(1,2) 0.97 0.0887 0.0032 0.27 78.48
(2,2) 0.92 0.1146 0.0044 0.18 85.32

(1,3) 0.95 −0.0103 −0.0005 −0.23 81.42
(2,3) 0.89 0.0173 0.0016 0.20 84.43

(1,4) 0.93 0.0027 0.0002 0.41 68.14
(2,4) 0.85 0.0142 0.0015 0.45 65.28

Joint χ2
8 0.66 99.96

Panel B: With covariation
(1,1) 0.98 −0.6245 −0.0092 −0.08 93.54
(2,1) 0.96 −1.1218 −0.0184 −0.12 90.57

(1,2) 0.97 0.0887 0.0032 0.27 78.48
(2,2) 0.92 0.1143 0.0046 0.20 84.49

(1,3) 0.95 −0.0104 −0.0005 −0.24 81.39
(2,3) 0.89 0.0170 0.0016 0.20 84.12

(1,4) 0.93 0.0027 0.0002 0.41 68.13
(2,4) 0.85 0.0140 0.0015 0.46 64.24

Joint χ2
8 0.68 99.96

(k, n) ¯̄b(ℓ,n) ¯̄ε(k,n)

θnk

ϑ
(n)
k

θnk
t-stat p-value

(bp) (bp) (%)

Filter with second order update

(1,1) 0.98 −0.6243 −0.0092 −0.08 93.49
(2,1) 0.96 −1.1200 −0.0169 −0.11 91.33

(1,2) 0.97 0.1035 0.0035 0.29 76.90
(2,2) 0.92 0.0549 0.0027 0.11 91.04

(1,3) 0.95 −0.0098 −0.0005 −0.23 82.15
(2,3) 0.89 0.0150 0.0014 0.18 85.91

(1,4) 0.93 0.0033 0.0002 0.47 64.07
(2,4) 0.85 0.0108 0.0012 0.35 72.27

Joint χ2
8 0.66 99.96

(1,1) 0.98 −0.6337 −0.0094 −0.08 93.37
(2,1) 0.96 −1.1037 −0.0182 −0.12 90.64

(1,2) 0.97 0.1116 0.0035 0.29 76.88
(2,2) 0.92 0.0281 0.0032 0.14 89.23

(1,3) 0.95 −0.0097 −0.0005 −0.22 82.20
(2,3) 0.89 0.0135 0.0014 0.17 86.11

(1,4) 0.93 0.0037 0.0002 0.49 62.16
(2,4) 0.85 0.0092 0.0011 0.35 72.93

Joint χ2
8 0.69 99.95

See the notes of Table D.2. Panel A displays results where the two assets do not have a common variance factor, whereas Panel B shows
results for two assets with a common variance factor.

Table D.3: Filtering error for case 2 assets and 2 variances under Assumption 3.4.1
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(k, n) ¯̄b(ℓ,n) ¯̄ε(k,n)

θnk

ϑ
(n)
k

θnk
t-stat p-value

(bp) (bp) (%)

Filter with first order update

(1,1) 0.98 −1.6895 −0.0339 −0.27 79.01
(2,1) 0.96 −2.1337 −0.0593 −0.24 81.11
(3,1) 0.98 3.0751 −0.0576 −0.23 82.09

(1,2) 0.97 0.2414 0.0074 0.48 63.09
(2,2) 0.91 0.8088 0.0161 0.29 76.97
(3,2) 0.96 0.2615 −0.0135 −0.15 88.24

(1,3) 0.95 −0.0159 −0.0010 −0.31 75.92
(2,3) 0.87 0.0383 0.0004 0.02 98.71
(3,3) 0.93 −0.7818 −0.0451 −0.59 55.37

(1,4) 0.93 0.0097 0.0006 0.71 47.86
(2,4) 0.84 0.1906 0.0189 1.38 16.84
(3,4) 0.91 0.2850 0.0110 0.13 89.42

Joint χ2
12 4.67 96.81

(k, n) ¯̄b(ℓ,n) ¯̄ε(k,n)

θnk

ϑ
(n)
k

θnk
t-stat p-value

(bp) (bp) (%)

Filter with second order update

(1,1) 0.98 −2.1527 −0.0365 −0.29 77.44
(2,1) 0.96 −1.6641 −0.0481 −0.19 84.60
(3,1) 0.98 2.3843 −0.0658 −0.26 79.57

(1,2) 0.97 0.4226 0.0096 0.63 53.12
(2,2) 0.91 0.1820 0.0120 0.22 82.62
(3,2) 0.96 −0.0748 −0.0052 −0.06 95.41

(1,3) 0.95 −0.0273 −0.0014 −0.43 67.08
(2,3) 0.87 −0.0085 −0.0016 −0.06 95.21
(3,3) 0.93 −0.8385 −0.0478 −0.63 52.85

(1,4) 0.93 0.0098 0.0004 0.49 62.11
(2,4) 0.84 0.0685 0.0086 0.64 52.26
(3,4) 0.91 0.2480 0.0117 0.14 88.66

Joint χ2
12 1.94 99.95

This Monte Carlo study simulates L = 1000 independent trajectories for the Model (3.1), using M = 3900 intraday steps over a period
of T = 4000 days. The daily RCV is aggregated at the 5 minutes frequency with N = 78. The measurement error is calculated with
Equation (3.32): ξ(ℓ)i,j,t,t+1 = RCV

(ℓ)
i,j,t,t+1 −QCV

(ℓ)
i,j,t,t+1. Filtering errors,

ε
(ℓ,1)
k,t = V

(ℓ)
k,t∆ − E

[
V

(ℓ)
k,t∆

∣∣∣Gt∆

]
,

are computed daily for each variance component k and each path ℓ. The filtering errors’ higher moments are

ε
(ℓ,n)
k,t =

(
ε
(ℓ,1)
k,t

)n
− E

[(
ε
(ℓ,1)
k,t

)n∣∣∣Gt∆

]
, n ∈ {2, 3, 4}.

The average filtering error ¯̄ε(k,n) = 1
S

1
T

∑S
ℓ=1

∑T
t=1 ε

(k,n)
t,ℓ is normalized by the long-term expected variance component θk raised

to the appropriate power. This ratio, ¯̄ε(k,n)

θn
k

, is expressed in basis points (bp). The panel regression

ε
(ℓ,n)
k,t = b

(ℓ,n)
k,t ε

(ℓ,n)
k,t−1 + ϑ

(n)
k + z

(ℓ,n)
k,t

(as described in Section 3.4.2) accounts for autocorrelation and potential biases through the constants ϑ(n)
k . We test the absence of bias

(H0 : ϑ
(n)
k = 0) and report the associated t-statistic (t-stat) and p-value. Standard errors are estimated considering spatial correlation,

using the Newey-West estimator with a lag Q = ⌊4( T
100

)2/9⌋ = 9. An asterisk (*) denotes rejection of the null hypothesis at 5% and
(**) at 1%. We provide the joint chi-square test statistic and p-value for the null hypothesis H0 : ϑ

(n)
k = 0, n ∈ {1, 2, 3, 4}, k ∈

{1, ..., NV }. The average autocorrelation ¯̄b(k,n) = 1
S

1
T

∑S
ℓ=1

∑T
t=1 b

(k,n)
t,ℓ displays the cross-sectional and time-average of the

autocorrelation.

Table D.4: Filtering error for case 2 assets and 3 variances under Assumption 3.4.1
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Starting with Table D.2, and comparing it with Table 3.2 from the paper, we observe
that the null hypothesis is never rejected. The joint test statistics are significantly lower,
with values of 0.34, 0.41, and 0.67 for Panels A, B, and C, respectively. In contrast, Table
3.2 shows values of 3.21, 9.48, and 0.17. Despite Panel C being slightly higher, Panels A
and B show a substantial reduction in the joint statistic. For Panel B, we do not reject the
third moment, consistent with the need to correct for the third moment when the measure-
ment error arises from the RV calculation. In the right column, we again find that the null
hypothesis is never rejected. However, the second-order update does not provide signifi-
cant additional benefit, as the results are very similar. This suggests that we have enough
observables to accurately capture our latent variables and that the basic filter performs
adequately without the extra step.

Moving to Table D.3, which examines the case of two assets and two variances, we
compare it with Table 3.3. We find the same conclusion as the previous table: the null
hypothesis is never rejected. The joint tests for Panels A and B are 0.66 and 0.68, much
lower than the values in Table 3.3, which are 11.59 and 12.22. This underscores the sig-
nificant impact of the measurement error Gaussianity assumption on the filter quality and
reinforces the importance of our correction. The right panel, with the second-order update,
again shows very similar results, indicating that this additional step does not add value in
this case. The filter performs effectively with just one step when there are two latent vari-
ables and five observable variables.

Finally, we examine the most interesting table, Table D.4, which considers the case of
two assets with three variances, and compare it with Table 3.4. In the left column, we see
that no statistics fall within the rejection region. The global statistic decreases from 30.51 in
Table D.4 to 4.67, highlighting the importance of Gaussian assumptions in measurement
error. However, for the third variance’s fourth centered moment, the p-value is 16.84%,
double that of Table D.4, indicating potential difficulties.

Using the Filter with second order update on the right panel, we significantly correct
the fourth moment of the second variance, reducing the global test from 4.67 to 1.94. This
further improves the precision of our filter for higher-order moments. While this step may
not be crucial in this context, it could be a valuable tool in other scenarios involving jumps
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or more latent variables. This methodological development holds potential for future re-
search.

D.11 Sample Moments Comparison

We present summary statistics on the sample moments (simulated and filtered) computed
over each variance factor k ∈ {1, ..., K}. For each trajectory ℓ ∈ {1, ..., 1000} and for
n ∈ {2, 3, 4}, we define the sample higher moments as

mn(X(ℓ)
∆:T∆) =

∑T
t=1(X

(ℓ)
t∆ − µ(X(ℓ)

∆:T∆))
n

T
,

with the sample mean

µ(X(ℓ)
∆:T∆) =

∑T
t=1 X(ℓ)

t∆

T
. (D.17)

Based on Joanes and Gill, 1998, the unbiased sample cumulants are

σ2(X(ℓ)
∆:T∆) =

T

T − 1
m2(X(ℓ)

∆:T∆), (D.18)

Cum3(X(ℓ)
∆:T∆) =

T 2

(T − 1)(T − 2)
m3(X(ℓ)

∆:T∆),

Cum4(X(ℓ)
∆:T∆) =

T 2
(
(T + 1)m4(X(ℓ)

∆:T∆)− 3(T − 1)m2(X(ℓ)
∆:T∆)

2
)

(T − 1)(T − 2)(T − 3)
.

where the third cumulant is the third centered moment and the fourth cumulant is compa-
rable to the excess kurtosis, prior to undergoing standardization. These sample moments
are applied to the simulated variance V (ℓ)

k,t∆ and are presented8 in Table D.5 panels A.1, B.1
and C.1 for case with 2 assets and three variances. We compare these sample moments to

8Our samples are not iid; however, we compare these sample moments to assess the distribution fit of
the filtered variance compared to the simulated ones. We present our results on a subset of each trajectory (at
each 20 steps) as the autocorrelation effect has practically vanished, as showed in Figure D.1 . Furthermore,
the filtering errors are expected to be autocorrelated as discussed in Online Appendix B.6.
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the filtered variance first four conditional cumulants in Table D.5 panels A.2, B.2 and C.2.
We use the law of total cumulance as follows

µ∗(V̂(ℓ)

k,∆:T∆) = µ(E[Vk,∆:T∆|G∆:T∆]), (D.19)

σ2∗(V̂
(ℓ)

k,∆:T∆) = µ(Var[Vk,∆:T∆|G∆:T∆]) + σ2(E[Vk,∆:T∆|G∆:T∆]), (D.20)

to recover sample moment based on filtered moments. With the help of the law of total
cumulance, the third cumulant of the filtered moment is

Cum∗
3(V̂

(ℓ)

k,∆:T∆) = Cum3(E[Vk,∆:T∆|G∆:T∆]) + E(Cum3[Vk,∆:T∆|G∆:T∆]) (D.21)

+ 3σ2(E[Vk,∆:T∆|G∆:T∆],Var[Vk,∆:T∆|G∆:T∆]),

and the fourth cumulant of the filtered moment is

Cum∗
4(V̂

(ℓ)

k,∆:T∆) = Cum4(E[Vk,∆:T∆|G∆:T∆]) + E(Cum4[Vk,∆:T∆|G∆:T∆]) (D.22)

+ 3σ2(Var[Vk,∆:T∆|G∆:T∆],Var[Vk,∆:T∆|G∆:T∆])

+ 6Cum3(E[Vk,∆:T∆|G∆:T∆],E[Vk,∆:T∆|G∆:T∆],Var[Vk,∆:T∆|G∆:T∆])

+ 4Var(E[Vk,∆:T∆|G∆:T∆],Cum3[Vk,∆:T∆|G∆:T∆]).

All the sample moments are compared to their theoretical quantities derived in Online
Appendix D.9. Table D.5 shows that the sample moments based on the filter cumulants are
similar to the sample cumulants of the simulated latent variable.
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Theo Mean Median Std Mean Mean

Panel A.1: Simulated variance V1,∆:T∆

µ(V(ℓ)
1∆:T∆/θ1) 1.0000 0.9990 0.9927 0.0840 0.9938 1.0042

σ2(V(ℓ)
1∆:T∆/θ1) 0.1125 0.1037 0.0982 0.0315 0.1017 0.1056

Cum3(V(ℓ)
1∆:T∆/θ1) 0.0253 0.0205 0.0153 0.0200 0.0193 0.0217

Cum4(V(ℓ)
1∆:T∆/θ1) 0.0085 0.0038 0.0003 0.0149 0.0028 0.0047

Panel A.2: Filtered variance V1,∆:T∆

µ∗(V(ℓ)
1∆:T∆/θ1) 1.0000 0.9991 0.9937 0.0822 0.9940 1.0042

σ2∗(V(ℓ)
1∆:T∆/θ1) 0.1125 0.1040 0.0982 0.0304 0.1021 0.1059

Cum∗
3(V

(ℓ)
1∆:T∆/θ1) 0.0253 0.0206 0.0158 0.0189 0.0194 0.0218

Cum∗
4(V

(ℓ)
1∆:T∆/θ1) 0.0085 0.0041 0.0006 0.0139 0.0032 0.0049

Panel B.1: Simulated variance V2,∆:T∆

µ(V(ℓ)
2∆:T∆/θ2) 1.0000 1.0093 1.0082 0.1111 1.0025 1.0162

σ2(V(ℓ)
2∆:T∆/θ2) 0.3750 0.3692 0.3501 0.1100 0.3624 0.3761

Cum3(V(ℓ)
2∆:T∆/θ2) 0.2812 0.2604 0.2102 0.1923 0.2485 0.2723

Cum4(V(ℓ)
2∆:T∆/θ2) 0.3164 0.2534 0.1163 0.4360 0.2264 0.2804

Panel B.2: Filtered variance V2,∆:T∆

µ∗(V(ℓ)
2∆:T∆/θ2) 1.0000 1.0095 1.0070 0.1089 1.0028 1.0163

σ2∗(V(ℓ)
2∆:T∆/θ2) 0.3750 0.3694 0.3520 0.1065 0.3628 0.3760

Cum∗
3(V

(ℓ)
2∆:T∆/θ2) 0.2812 0.2598 0.2127 0.1861 0.2482 0.2713

Cum∗
4(V

(ℓ)
2∆:T∆/θ2) 0.3164 0.2565 0.1228 0.4277 0.2300 0.2831

Panel C.1: Simulated variance V3,∆:T∆

µ(V(ℓ)
3∆:T∆/θ3) 1.0000 0.9729 0.7195 0.7823 0.9245 1.0214

σ2(V(ℓ)
3∆:T∆/θ3) 1.8000 0.8341 0.4152 1.1567 0.7624 0.9058

Cum3(V(ℓ)
3∆:T∆/θ3) 6.4851 0.9515 0.2301 2.4498 0.7997 1.1034

Cum4(V(ℓ)
3∆:T∆/θ3) 35.0476 −0.3835 0.0147 6.6083 −0.7931 0.0261

Panel C.2: Filtered variance V3,∆:T∆

µ∗(V(ℓ)
3∆:T∆/θ3) 1.0000 0.9726 0.7237 0.7776 0.9245 1.0208

σ2∗(V(ℓ)
3∆:T∆/θ3) 1.8000 0.8442 0.4282 1.1561 0.7725 0.9158

Cum∗
3(V

(ℓ)
3∆:T∆/θ3) 6.4851 0.9865 0.2493 2.4532 0.8344 1.1386

Cum∗
4(V

(ℓ)
3∆:T∆/θ3) 35.0476 −0.2352 0.0249 6.3272 −0.6274 0.1569

This Monte Carlo study generates L = 1000 independent trajectories with M = 3900 intraday time steps for
T = 4000 days. The daily RV is aggregated at the 5 minutes frequency with N = 78. The measurement error
is calculated with Equation (3.32): ξ

(ℓ,N)
i,j,t,t+1 = RCV

(ℓ,N)
i,j,t,t+1 − QCV

(ℓ)
i,j,t,t+1. For each trajectory ℓ, the observ-

able variables R(ℓ)
t,t+1 and RCV(ℓ)

t,t+1 are used in the filter described in Section 3.3 to recover the conditional mo-
ments of the latent variable such as EP

[
V

(ℓ)
k,t∆

∣∣∣Gt∆

]
and VarP

[
V

(ℓ)
k,t∆

∣∣∣Gt∆

]
for k ∈ 1, 2, ...,K. Each column

presents summary statistics computed over the 1000 trajectories of sample moments detailed in Equation (D.17) to
(D.20). The columns with theoretical moments are derived in Online Appendix D.9 Mean and Mean are respec-
tively the mean lower and upper bounds at a 5% confidence interval and are calculated across all the trajectories
as X = Avg(X) − 1.96std(X)/

√
1000 and X = Avg(X) + 1.96std(X)/

√
1000 respectively. To ensure that the

results were not skewed by autocorrelation, only information from every 20 daily time step was retained for all tra-
jectories. The realized variance is filtered according to the correction as per Assumption 3.4.2; thus acknowledging
that ξ(N)

i,j,t,t+1 is not Gaussian.

Table D.5: Sample moments comparison for case 2 assets and 3 variances
cli
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D.12 Filtering Error Derivation

This Online Appendix provides additional details on the filtering error ε(ℓ,n)k,t∆ used in Section
3.4. We show that the expected value of ε(ℓ,n)k,t∆ should be 0 if Assumption D.12.1 holds.

Assumption D.12.1. Equations (3.23), (3.27), (3.28), (3.29) have an equality symbol in-
stead of ≃.

We recall the definition of the filtering error for n = 1, that is

ε
(ℓ,1)
k,t∆ = V

(ℓ)
k,t∆︸︷︷︸

Simulated

−E
[
V

(ℓ)
k,t∆

∣∣∣Gt∆

]
︸ ︷︷ ︸

filter output

.

If Assumption D.12.1 holds, E
[
ε
(ℓ,1)
k,t∆

∣∣∣Gt∆

]
= 0.

The first moment condition is

E
[
ε
(ℓ,1)
k,t∆

]
= E

E [ε(ℓ,1)k,t∆

∣∣∣Gt∆

]
︸ ︷︷ ︸

=0

 = 0,

where we verify if the sample average of ε
(ℓ,1)
k,t∆, which is an estimator for E

[
ε
(ℓ,1)
k,t∆

]
, is

statistically different from zero.

With the law of total expectation and variance, the second moment of the filtering error
is

Var
[
ε
(ℓ,1)
k,t∆

]
=E

[(
ε
(ℓ,1)
k,t∆ − E

[
ε
(ℓ,1)
k,t∆

])2]
= E

[(
ε
(ℓ,1)
k,t∆

)2]

= Var

E [ε(ℓ,1)k,t∆

∣∣∣Gt∆

]
︸ ︷︷ ︸

=0

+ E

Var [ε(ℓ,1)k,t∆

∣∣∣Gt∆

]
︸ ︷︷ ︸

filter output

 .
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Therefore, the second panel regression is on

ε
(ℓ,2)
k,t∆ =

(
ε
(ℓ,1)
k,t∆

)2
− Var

[
ε
(ℓ,1)
k,t∆

∣∣∣Gt∆

]
︸ ︷︷ ︸

filter output

,

since the sample average should be zero if Assumption D.12.1 holds.

For the third moment, using the law of total cumulance of Lemma B.4.2, we have:

E

[(
ε
(ℓ,1)
k,t∆ − E

[
ε
(ℓ,1)
k,t∆

])3]
= Cum3

[
E
[
ε
(ℓ,1)
k,t∆

∣∣∣Gt∆

]]
+ E

[
Cum3

[
ε
(ℓ,1)
k,t∆

∣∣∣Gt∆

]]
+ 3Cov

[
E
[
ε
(ℓ,1)
k,t∆

∣∣∣Gt∆

]
,Var

[
ε
(ℓ,1)
k,t∆

∣∣∣Gt∆

]]

= E

E
[(

ε
(ℓ,1)
k,t∆ − E

[
ε
(ℓ,1)
k,t∆

∣∣∣Gt∆

])3∣∣∣∣Gt∆

]
︸ ︷︷ ︸

filter output

 .

The third panel regression is therefore on

ε
(ℓ,3)
k,t∆ =

(
ε
(ℓ,1)
k,t∆

)3
− E

[(
ε
(ℓ,1)
k,t∆ − E

[
ε
(ℓ,1)
k,t∆

∣∣∣Gt∆

])3∣∣∣∣Gt∆

]
︸ ︷︷ ︸

filter output

.

Finally, for the fourth moment, the application of Lemma B.4.7 leads to:

Cum4(ε
(ℓ,1)
k,t∆) = Cum4(E[ε(ℓ,1)k,t∆|Gt∆]) + E(Cum4[ε

(ℓ,1)
k,t∆|Gt∆])

+ 3Var(Var[ε
(ℓ,1)
k,t∆|Gt∆],Var[ε

(ℓ,1)
k,t∆|Gt∆])

+ 6Cum3(E[ε
(ℓ,1)
k,t∆|Gt∆],E[ε

(ℓ,1)
k,t∆|Gt∆],Var[ε

(ℓ,1)
k,t∆|Gt∆])

+ 4Var(E[ε
(ℓ,1)
k,t∆|Gt∆],Cum3[ε

(ℓ,1)
k,t∆|Gt∆])

= E(Cum4[ε
(ℓ,1)
k,t∆|Gt∆]) + 3Var(Var[ε

(ℓ,1)
k,t∆|Gt∆],Var[ε

(ℓ,1)
k,t∆|Gt∆]).
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Since

Cum4(ε
(ℓ,1)
k,t∆) = E

[(
ε
(ℓ,1)
k,t∆ − E

[
ε
(ℓ,1)
k,t∆

])4]
− 3Var

[
ε
(ℓ,1)
k,t∆

]2
,

combining the two above leads to

E

[(
ε
(ℓ,1)
k,t∆ − E

[
ε
(ℓ,1)
k,t∆

])4]

= E(Cum4[ε
(ℓ,1)
k,t∆|Gt∆]) + 3

 Var(Var[ε
(ℓ,1)
k,t∆|Gt∆])︸ ︷︷ ︸

E

[(
Var[ε

(ℓ,1)
k,t∆|Gt∆]

)2
]
−E

[(
Var[ε

(ℓ,1)
k,t∆|Gt∆]

)]2
+Var

[
ε
(ℓ,1)
k,t∆

]2


= E
[
Cum4[ε

(ℓ,1)
k,t∆|Gt∆]

]
+ 3E

[(
Var[ε

(ℓ,1)
k,t∆|Gt∆]

)2]
,

since, based on Assumption D.12.1, we have

Var
[
ε
(ℓ,1)
k,t∆

]2
− E

[(
Var[ε

(ℓ,1)
k,t∆|Gt∆]

)]2
= E

[(
ε
(ℓ,1)
k,t∆

)2]2
− E

[(
Var[ε

(ℓ,1)
k,t∆|Gt∆]

)]2
= E

[(
ε
(ℓ,1)
k,t∆

)2
−
(
Var[ε

(ℓ,1)
k,t∆|Gt∆]

)]
︸ ︷︷ ︸

=0

E

[(
ε
(ℓ,1)
k,t∆

)2
+
(
Var[ε

(ℓ,1)
k,t∆|Gt∆]

)]
.

Therefore, the fourth panel regression is

ε
(ℓ,4)
k,t∆ =

(
ε
(ℓ,1)
k,t∆

)4
− Cum4[ε

(ℓ,1)
k,t∆|Gt∆]− 3

(
Var[ε

(ℓ,1)
k,t∆|Gt∆]

)2
=
(
ε
(ℓ,1)
k,t∆

)4
− E

[(
ε
(ℓ,1)
k,t∆

)4∣∣∣∣Gt∆

]
.
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Chapter E

Online Appendices of Enhancing Parameter
Estimation in Stochastic Volatility Models Using
Intraday Data: Generalized Method of Moments
Comparative Analysis

E.1 Risk-Neutralization Measure and the Drift

The time t value of the self-financing investment strategy that reinvests the dividends to
buy more shares of the risky asset is

exp

(∫ t

0

qudu

)
St. (E.1)

From the Girsanov theorem, let WQ
k,t = Wk,t +

∫ t

0
Λk,udu and BQ

k,t = Bk,t +
∫ t

0
Γk,udu

where Λk,u and Γk,u are predictable processes with respect to the continuous model filtra-
tion (FC

t )t≥0 generated byFC
t = σ

(
{Wk,s, Bk,s}NV

k=1

∣∣ s ≤ t
)
.We assume that the Novikov

condition

E
[
exp

(
1

2

∫ T

0

Λ2
k,udu

)]
< ∞ and E

[
exp

(
1

2

∫ T

0

Γ2
k,udu

)]
< ∞,
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are satisfied. The associated Radon-Nikodym derivative is

dQ
dP

= exp

(
K∑
k=1

(
−1

2

∫ T

0

Λ2
k,udu−

∫ T

0

Λk,udW
P
k,u

)
+

K∑
k=1

(
−1

2

∫ T

0

Γ2
k,udu−

∫ T

0

Γk,udBk,u

))
.

The absence of arbitrage opportunity requires that{
exp

(
−
∫ t

0

rudu

)
exp

(∫ t

0

qudu

)
St

}
t≥0

is a Q−martingale. Therefore,

d exp

(∫ t

0

qu − rudu

)
St (E.2)

= Std exp

(∫ t

0

qu − rudu

)
+ exp

(∫ t

0

qu − rudu

)
dSt

= exp

(∫ t

0

qu − rudu

)
St

(
(αt + qt − ru) dt

+
∑K

k=1

√
Vk,td

(
ρkdWk,t +

√
1− ρ2kdBk,t

) )

= exp

(∫ t

0

qu − rudu

)
St

(
αt + qt − ru−∑K

k=1

√
Vk,t

(
ρkΛk,t +

√
1− ρ2kΓk,t

) )
︸ ︷︷ ︸

=0

dt

+ exp

(∫ t

0

qu − rudu

)
St

(
K∑
k=1

√
Vk,td

(
ρkdW

Q
k,t +

√
1− ρ2kdB

Q
k,t

))
,

which implies that

αt = rt − qt +
K∑
k=1

√
Vk,t

(
ρkΛk,t +

√
1− ρ2kΓk,t

)
.

The model belongs to the exponential affine class if the prices of risk are defined as

Λk,t = Λ̃k

√
Vk,t and Γk,t = Γ̃k

√
Vk,t. (E.3)
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Therefore,

αt = rt − qt +
K∑
k=1

(
ρkΛ̃k +

√
1− ρ2kΓ̃k

)
︸ ︷︷ ︸

λk

Vk,t.

E.2 Moment Selection

To determine the methodology employed in this paper for the case of one variance factor,
we compare five distinct approaches. These various procedures are outlined in Table E.1,
alongside comprehensive outcomes of statistical tests found in Tables E.2 and E.3. In ad-
dition to the Mean and Coverage Ratio tests, we also provide the percentage of trajectories
that did not fail the Sargan–Hansen J-test. All tests are detailed in the Online Appendix
E.10.

As discussed in this paper, we encountered two significant issues. First, the model
misspecification, which we addressed by opting for specification (4.16) instead of specifi-
cation (4.14). Second, for the problem concerning parameter identification, we included
additional moments on the lagged value of the realized variance from Table E.1, namely
VII) to IX), through different combinations.

Tables E.2 and E.3 show the three different tests for the five moment selections pre-
sented in Table E.1. The Mean columns refer to

(
θ̄ − θ∗)⊤ Σ̂−1

(
θ̄ − θ∗). The smaller

the value, the smaller the averaged bias on the estimated parameters. The CR columns
refer to the global coverage ratio across all parameters, while the last column indicates the
percentage of trajectories that passed the Sargan–Hansen J-test, an over-identification test.
A failed test suggests that the moment conditions are not satisfied by the data.

Table E.2 reveals that moment selections CM2 to CM5 exhibit shortcomings for spec-
ification (4.14). This is primarily attributed to model misspecification regarding moments
VIII and IX), as discussed in Appendix C.2. Indeed, all three tests exhibit higher values
than CM1, where the additional instrumental variables worsen the GMM estimator rather
than improving it. This is due to the undesired dependency between the error measure-
ment and the instrumental variables. The same problem would arise in moment conditions
V) and VI). However, as discuss in Appendix C.5.1, the error measurement in moment
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conditions IV) to VI) constitutes a non-significant portion of the moment condition. Con-
sequently, it becomes apparent that adopting procedure CM1 for specification (4.14) is
the most suitable option for facilitating a comparison with the BZ procedure. This very
rationale underpins the using of CM1 for specification (4.14) in the main paper.

In a simulated framework, there’s no need for estimating either γ2 or η2 since we have
precise theoretical values for these parameters. However, when dealing with real-world
data, we encounter additional complexities such as rounding errors and the influence of
bid curves. Additionally, various intra-day statistical methods can be applied. This is why
it’s advantageous to have a methodology that facilitates the estimation of these parameters,
allowing us to adapt to the specificity of real data.

Table E.3 highlights a noteworthy observation: all CM procedures exhibit reasonable
moment selection, with the CR and Sargan-Hansen J tests achieving values higher than
90% for T = 4000. Furthermore, the Mean value is lower compared to those in Table
E.2. Notably, CM3 minimizes the average test statistic in almost all panels, making it the
preferred procedure for the main paper.
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BZ
CM

1
CM

2
CM
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Mean Coverage Ratio Sargan–Hansen J
T = 1000 T = 4000 T = 1000 T = 4000 T = 1000 T = 4000

Panel A.1: Parameter set A with γ2 estimated
CM1 0.3914 0.2243 0.9440 0.9370 0.9820 0.9760
CM2 0.8987 0.9697 0.9430 0.9580 0.0020 0.0000
CM3 0.9501 0.9728 0.9490 0.9600 0.0160 0.0010
CM4 0.9093 0.9616 0.9470 0.9570 0.0180 0.0010
CM5 0.9053 0.9657 0.9460 0.9570 0.0290 0.0010

Panel B.1: Parameter set B with γ2 estimated
CM1 0.3100 0.2417 0.9530 0.9570 0.9820 0.9650
CM2 0.9075 0.9748 0.9620 0.9640 0.0010 0.0000
CM3 0.9202 0.9678 0.9630 0.9640 0.0120 0.0000
CM4 0.9201 0.9695 0.9550 0.9630 0.0170 0.0000
CM5 0.9153 0.9701 0.9560 0.9560 0.0220 0.0000

Panel C.1: Parameter set C with γ2 estimated
CM1 0.4056 0.2770 0.9540 0.9480 0.9550 0.9560
CM2 0.9594 0.9852 0.9580 0.9660 0.0340 0.0000
CM3 0.9502 0.9664 0.9610 0.9650 0.0920 0.0050
CM4 0.9500 0.9683 0.9530 0.9650 0.1290 0.0070
CM5 0.9503 0.9699 0.9610 0.9590 0.1640 0.0090

Panel A.2: Parameter set A with γ2 fixed
CM1 0.4121 0.2361 0.9520 0.9470 0.9880 0.9890
CM2 0.8799 0.9391 0.9550 0.9680 0.0010 0.0000
CM3 0.8445 0.8954 0.9640 0.9630 0.0140 0.0000
CM4 0.8024 0.8635 0.9620 0.9610 0.0240 0.0010
CM5 0.7609 0.8486 0.9590 0.9620 0.0300 0.0010

Panel B.2: Parameter set B with γ2 fixed
CM1 0.3262 0.2511 0.9440 0.9510 0.9900 0.9790
CM2 0.8623 0.9524 0.9590 0.9650 0.0010 0.0000
CM3 0.8387 0.9253 0.9640 0.9650 0.0070 0.0000
CM4 0.8421 0.9288 0.9610 0.9670 0.0120 0.0000
CM5 0.8225 0.9265 0.9550 0.9620 0.0080 0.0000

Panel C.2: Parameter set C with γ2 fixed
CM1 0.4250 0.2989 0.9540 0.9550 0.9650 0.9700
CM2 0.8855 0.9583 0.9610 0.9670 0.0070 0.0000
CM3 0.8393 0.9061 0.9590 0.9680 0.0550 0.0020
CM4 0.8440 0.9107 0.9650 0.9630 0.0690 0.0060
CM5 0.8353 0.9157 0.9710 0.9600 0.0640 0.0050

The table shows results obtained from GMM procedures based on Monte Carlo simulations with
1000 independent trajectories of T time steps of length ∆ = 1. The trajectories of the integrated
variance are simulated with 820 intraday steps and the realized variance with 82 intraday steps, see
Section 4.3 for details. The Mean column is

(
θ̄ − θ∗)⊤ Σ̂−1

(
θ̄ − θ∗), and when multiplied by the

number of simulations, it follows a chi-square distribution. The coverage ratio (CR) is the propor-
tion of the 95% confidence interval that contains the true parameter vector. Sargan–Hansen J col-
umn is the percentage of trajectories that did not failed the overidentification test derived in Equation
(E.12). See Online Appendix E.10 for details.

Table E.2: GMM comparison results for specification (4.14): ξ(N)
t,t+1 = γϵ

(N)
t,t+1
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Mean Coverage Ratio Sargan–Hansen J
T = 1000 T = 4000 T = 1000 T = 4000 T = 1000 T = 4000

Panel A.1: Parameter set A with η2 estimated
CM1 0.3592 0.1333 0.9490 0.9410 0.9730 0.9690
CM2 0.4099 0.1847 0.9420 0.9500 0.9500 0.9440
CM3 0.2538 0.0527 0.9460 0.9470 0.9250 0.9540
CM4 0.2531 0.0481 0.9480 0.9450 0.9330 0.9410
CM5 0.3614 0.1258 0.9460 0.9450 0.9420 0.9380

Panel B.1: Parameter set B with η2 estimated
CM1 0.2588 0.0861 0.9510 0.9510 0.9750 0.9570
CM2 0.3577 0.1529 0.9500 0.9560 0.9570 0.9410
CM3 0.1590 0.0392 0.9520 0.9600 0.9210 0.9470
CM4 0.1988 0.0506 0.9480 0.9500 0.9390 0.9430
CM5 0.2843 0.0980 0.9510 0.9540 0.9550 0.9380

Panel C.1: Parameter set C with η2 estimated
CM1 0.3617 0.1468 0.9490 0.9540 0.9360 0.9270
CM2 0.4595 0.2481 0.9480 0.9560 0.9060 0.9100
CM3 0.2073 0.0432 0.9440 0.9520 0.8570 0.9240
CM4 0.2766 0.0720 0.9440 0.9470 0.8820 0.8960
CM5 0.3971 0.1680 0.9550 0.9570 0.8870 0.9030

Panel A.2: Parameter set A with η2 fixed
CM1 0.3678 0.1355 0.9510 0.9370 0.9650 0.9640
CM2 0.4105 0.1737 0.9500 0.9430 0.9540 0.9510
CM3 0.2835 0.0597 0.9470 0.9480 0.9320 0.9470
CM4 0.2676 0.0548 0.9430 0.9450 0.9430 0.9500
CM5 0.3777 0.1308 0.9450 0.9410 0.9530 0.9520

Panel B.2: Parameter set B with η2 fixed
CM1 0.2687 0.0991 0.9520 0.9490 0.9580 0.9540
CM2 0.3576 0.1592 0.9510 0.9540 0.9400 0.9460
CM3 0.1866 0.0489 0.9530 0.9510 0.9400 0.9500
CM4 0.2129 0.0614 0.9470 0.9460 0.9370 0.9390
CM5 0.2933 0.1095 0.9470 0.9520 0.9440 0.9410

Panel C.2: Parameter set C with η2 fixed
CM1 0.3855 0.1750 0.9510 0.9570 0.9310 0.9240
CM2 0.4608 0.2537 0.9500 0.9560 0.9260 0.9150
CM3 0.2713 0.0759 0.9430 0.9510 0.8970 0.9140
CM4 0.3090 0.1004 0.9430 0.9460 0.9130 0.9030
CM5 0.4141 0.1907 0.9540 0.9580 0.9180 0.9060

The table shows results obtained from GMM procedures based on Monte Carlo simulations with
1000 independent trajectories of T time steps of length ∆ = 1. The trajectories of the integrated
variance are simulated with 820 intraday steps and the realized variance with 82 intraday steps, see
Section 4.3 for details. The Mean column is

(
θ̄ − θ∗)⊤ Σ̂−1

(
θ̄ − θ∗), and when multiplied by the

number of simulations, it follows a chi-square distribution. The coverage ratio (CR) is the propor-
tion of the 95% confidence interval that contains the true parameter vector. Sargan–Hansen J col-
umn is the percentage of trajectories that did not failed the overidentification test derived in Equation
(E.12). See Online Appendix E.10 for details.

Table E.3: GMM comparison results for specification (4.16): ξ(N)
t,t+1 = η

√
RQ

(N)
t,t+1ε

(N)
t,t+1
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E.3 Constant Measurement Error Variance

In our study, we undertake a replication of Table 2 from BZ within the framework of spec-
ification (4.14). A detailed examination of moment selection for CM is provided in Online
Appendix E.2, where we adopt a slightly different moment procedure, specifically CM1,
as outlined in Table E.1. This decision is prompted by the bias in certain moments of Table
4.1 under specification (4.14), as discussed in Appendix C.2.

The comparative findings are presented in Table E.4, alongside our proposed procedure
in Table E.5. In Table E.4, a significant increase in the root mean square error (RMSE) of
the σ parameter1 is noted when estimating the measurement error parameter. However, this
issue is effectively addressed by employing the CM1 procedure, as demonstrated in Table
E.5. Notably, the RMSE of σ remains consistent across the three scenarios, regardless of
whether γ2 is estimated or not.

The inclusion of additional moments notably enhances the quality of estimation. Con-
sequently, all γ2 values derived from the CM1 moment selection are positive, contrasting
with the BZ moment selection’s outcomes illustrated in Figure 4.1, panel A. Indeed, the pa-
rameter γ2 cannot assume negative values, as it represents the variance of the measurement
error.

Moreover, examining panel A of Figure2 E.1, reveals a potential linear dependency in
the estimation between γ2 and σ, contrasting with the observations in Figures the panels B
of the sames three Figures.

We further investigate the estimated γ2 by comparing it with simulated counterparts.
Table E.6 provides summary statistics derived from simulated values, including the sample
variance of the measurement error for each path denoted as Var

[
ξ
(N)
∆t,∆(t+1)

]
, the sample

mean of the realized quarticity denoted as E
[
RQ

(N)
∆t,∆(t+1)

]
, and the sample mean of the

integrated square variance represented by E
[∫ (t+1)∆

t∆
V 2
s ds

]
. These metrics offer valuable

insights into the theoretical value of the parameter γ2 in specification (4.14) when the
variance of the measurement error remains constant.

1This is in concordance with footnote 13 of Brix and Lunde, 2015.
2Figures on other Scenario available upon request.
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Across the three parameter sets (Panels A to C), the parameter γ2
GMM obtained through

the CM1 procedure demonstrates similar summary statistics to those of the first three lines
of each panel compared to the parameter γ2

GMM acquired through the BZ procedure. This
observation underscores the robustness and consistency of the CM1 procedure in estimat-
ing γ2 under various parameter configurations.
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True value Mean Median RMSE CR
T = 1000 T = 4000 T = 1000 T = 4000 T = 1000 T = 4000 T = 1000 T = 4000

Panel A.1: Results with ( ∆ = 1, κ = 0.03, θ = 0.25 & σ = 0.10 ) and γ2 fixed
102 × κ = 3.0000 3.6582 3.1856 3.5432 3.1644 1.3376 0.5974 0.9000 0.9330
θ = 0.2500 0.2435 0.2481 0.2371 0.2468 0.0538 0.0275 0.9620 0.9470
σ = 0.1000 0.0982 0.0992 0.0981 0.0992 0.0079 0.0041 0.9490 0.9450

Panel A.2: Results with (∆ = 1, κ = 0.03, θ = 0.25 & σ = 0.10 ) and γ2 estimated
102 × κ = 3.0000 3.7221 3.1934 3.6196 3.1605 1.3647 0.6114 0.9050 0.9380
θ = 0.2500 0.2441 0.2483 0.2381 0.2470 0.0530 0.0274 0.9620 0.9480
σ = 0.1000 0.0917 0.0988 0.0916 0.0976 0.0242 0.0135 0.9340 0.9470
102 × γ2 = 0.2541 0.5006 0.1838 0.5115 0.3572 1.6873 1.1132 0.9490 0.9600

Panel B.1: Results with (∆ = 1, κ = 0.10, θ = 0.25 & σ = 0.10 ) and γ2 fixed
κ = 0.1000 0.1085 0.1030 0.1069 0.1028 0.0218 0.0105 0.9210 0.9440
θ = 0.2500 0.2472 0.2491 0.2463 0.2492 0.0161 0.0081 0.9520 0.9480
σ = 0.1000 0.0987 0.0993 0.0986 0.0994 0.0070 0.0034 0.9500 0.9440

Panel B.2: Results with (∆ = 1, κ = 0.10, θ = 0.25 & σ = 0.10 ) and γ2 estimated
κ = 0.1000 0.1085 0.1020 0.1068 0.1017 0.0219 0.0104 0.9330 0.9520
θ = 0.2500 0.2478 0.2494 0.2469 0.2495 0.0160 0.0081 0.9550 0.9490
σ = 0.1000 0.0987 0.1044 0.0994 0.1045 0.0230 0.0122 0.9520 0.9330
102 × γ2 = 0.1829 0.1282 0.0484 0.1680 0.0688 0.4747 0.3020 0.9430 0.9230

Panel C.1: Results with (∆ = 1, κ = 0.10, θ = 0.25 & σ = 0.20 ) and γ2 fixed
κ = 0.1000 0.1141 0.1044 0.1124 0.1038 0.0264 0.0121 0.9020 0.9340
θ = 0.2500 0.2398 0.2472 0.2375 0.2470 0.0334 0.0166 0.9490 0.9490
σ = 0.2000 0.1977 0.1989 0.1973 0.1987 0.0114 0.0056 0.9510 0.9490

Panel C.2: Results with (∆ = 1, κ = 0.10, θ = 0.25 & σ = 0.20 ) and γ2 estimated
κ = 0.1000 0.1143 0.1040 0.1130 0.1031 0.0267 0.0123 0.9010 0.9390
θ = 0.2500 0.2429 0.2479 0.2400 0.2477 0.0325 0.0164 0.9530 0.9500
σ = 0.2000 0.1920 0.2006 0.1885 0.1992 0.0306 0.0167 0.9500 0.9590
102 × γ2 = 0.2744 0.4095 0.1648 0.5581 0.2484 1.1906 0.7169 0.9560 0.9550

The table shows results obtained from GMM procedures based on Monte Carlo simulations with 1000 independent trajectories of T
time steps of length ∆ = 1. The trajectories of the integrated variance are simulated with 820 intraday steps and the realized vari-
ance with 82 intraday steps, see Section 4.3 for details. The Mean (Median) reports the sample average (median) of the 1000 point
estimates. The coverage ratio (CR) is the proportion of the 95% confidence interval that contains the true parameter. The error mea-
surement parameter is here compared to its theoretical value. We employ a 2-step GMM procedure using the Newey and West, 1987
covariance matrix estimator with a Bartlett-kernel with a lag of 5, see Appendix C.6 for details.

Table E.4: GMM estimations results for specification (4.14) (RV
(N)
t,t+1 = V1,t,t+1 + γϵ

(N)
t,t+1)

with BZ moment selection
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True value Mean Median RMSE CR
T = 1000 T = 4000 T = 1000 T = 4000 T = 1000 T = 4000 T = 1000 T = 4000

Panel A.1: Results with ( ∆ = 1, κ = 0.03, θ = 0.25 & σ = 0.10 ) and γ2 fixed
102 × κ = 3.0000 3.6962 3.2004 3.5393 3.1651 1.3749 0.6185 0.9040 0.9300
θ = 0.2500 0.2400 0.2471 0.2335 0.2448 0.0531 0.0277 0.9600 0.9500
σ = 0.1000 0.0981 0.0992 0.0981 0.0992 0.0078 0.0040 0.9480 0.9480

Panel A.2: Results with (∆ = 1, κ = 0.03, θ = 0.25 & σ = 0.10 ) and γ2 estimated
102 × κ = 3.0000 3.6851 3.1907 3.5615 3.1711 1.3482 0.5995 0.8970 0.9320
θ = 0.2500 0.2416 0.2478 0.2352 0.2461 0.0532 0.0274 0.9690 0.9470
σ = 0.1000 0.0982 0.0992 0.0980 0.0992 0.0082 0.0042 0.9460 0.9480
102 × γ2 = 0.2541 0.2334 0.2473 0.2098 0.2397 0.1115 0.0583 0.9700 0.9560

Panel B.1: Results with (∆ = 1, κ = 0.10, θ = 0.25 & σ = 0.10 ) and γ2 fixed
κ = 0.1000 0.1079 0.1028 0.1069 0.1028 0.0217 0.0107 0.9260 0.9460
θ = 0.2500 0.2466 0.2493 0.2454 0.2491 0.0174 0.0088 0.9490 0.9490
σ = 0.1000 0.0984 0.0993 0.0981 0.0992 0.0066 0.0032 0.9480 0.9470

Panel B.2: Results with (∆ = 1, κ = 0.10, θ = 0.25 & σ = 0.10 ) and γ2 estimated
κ = 0.1000 0.1085 0.1030 0.1069 0.1028 0.0217 0.0105 0.9200 0.9440
θ = 0.2500 0.2471 0.2492 0.2464 0.2493 0.0161 0.0081 0.9510 0.9460
σ = 0.1000 0.0988 0.0993 0.0986 0.0993 0.0074 0.0036 0.9490 0.9430
102 × γ2 = 0.1829 0.1760 0.1812 0.1740 0.1805 0.0295 0.0151 0.9510 0.9560

Panel C.1: Results with (∆ = 1, κ = 0.10, θ = 0.25 & σ = 0.20 ) and γ2 fixed
κ = 0.1000 0.1140 0.1044 0.1128 0.1038 0.0269 0.0126 0.9020 0.9350
θ = 0.2500 0.2392 0.2469 0.2361 0.2463 0.0345 0.0174 0.9450 0.9470
σ = 0.2000 0.1971 0.1987 0.1967 0.1986 0.0108 0.0054 0.9450 0.9510

Panel C.2: Results with (∆ = 1, κ = 0.10, θ = 0.25 & σ = 0.20 ) and γ2 estimated
κ = 0.1000 0.1144 0.1045 0.1130 0.1039 0.0265 0.0122 0.9010 0.9330
θ = 0.2500 0.2391 0.2471 0.2370 0.2467 0.0334 0.0166 0.9430 0.9480
σ = 0.2000 0.1976 0.1989 0.1973 0.1988 0.0120 0.0059 0.9530 0.9450
102 × γ2 = 0.2744 0.2472 0.2653 0.2362 0.2619 0.0835 0.0438 0.9590 0.9560

The table shows results obtained from GMM procedures based on Monte Carlo simulations with 1000 independent trajectories of T
time steps of length ∆ = 1. The trajectories of the integrated variance are simulated with 820 intraday steps and the realized vari-
ance with 82 intraday steps, see Section 4.3 for details. The Mean (Median) reports the sample average (median) of the 1000 point
estimates. The coverage ratio (CR) is the proportion of the 95% confidence interval that contains the true parameter. The error mea-
surement parameter is here compared to its theoretical value. We employ a 2-step GMM procedure using the Newey and West, 1987
covariance matrix estimator with a Bartlett-kernel with a lag of 5, see Appendix C.6 for details.

Table E.5: GMM estimations results for specification (4.14) (RV
(N)
t,t+1 = V1,t,t+1 + γϵ

(N)
t,t+1)

with CM1 moment selection
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E.4 Moments under the Model Filtration {Ft}t≥0

This Online Appendix derives the conditional moments of the integrated variance and
stochastic integrals. For readability, the subscript k is omitted and we denote the following:
Vt,t+1 =

∫ (t+1)∆

t∆
Vsds, Wt,t+1 =

∫ (t+1)∆

t∆

√
VsdWs and Bt,t+1 =

∫ (t+1)∆

t∆

√
VsdBs.

E.4.1 Summary

E [Vt,t+1| Ft∆] = Vt∆

(
1− e−κ∆

κ

)
+ θ

(
∆− 1− e−κ∆

κ

)
,

Var [Vt,t+1| Ft∆] =
σ2

κ2
Vt∆

(
1− e−2κ∆

κ
− 2e−κ∆∆

)
+

σ2

κ2
θ

(
∆− 1− e−2κ∆

2κ
− 2

1− e−κ∆

κ
+ 2e−κ∆∆

)
,

E [Wt,t+1| Ft∆] = 0,

Var [Wt,t+1| Ft∆] = Vt∆

(
1− e−κ∆

κ

)
+ θ

(
∆− 1− e−κ∆

κ

)
,

E [Bt,t+1| Ft∆] = 0,

Var [Bt,t+1| Ft∆] = Vt∆

(
1− e−κ∆

κ

)
+ θ

(
∆− 1− e−κ∆

κ

)
,

Cov [Wt,t+1,Bt,t+1| Ft∆] = 0,

Cov [Wt,t+1,Vt,t+1| Ft∆] =
σ

κ
Vt∆

(
1− e−κ∆

κ
− e−κ∆∆

)
+

σ

κ
θ

(
∆− 2

1− e−κ∆

κ
+ e−κ∆∆

)
,

Cov
[
Wt,t+1, V(t+1)∆

∣∣Ft∆

]
= σVt∆e

−κ∆∆+ σθ

(
1− e−κ∆

κ
− e−κ∆∆

)
,

Cov [Vt,t+1,Bt,t+1| Ft∆] = 0,

Cov
[
Vt,t+1, V(t+1)∆

∣∣Ft∆

]
=

σ2

κ
Vt∆e

−κ∆

(
∆− 1− e−κ∆

κ

)
+

σ2

κ

θ

2κ

((
1− e−κ∆

)2 − 2e−κ∆

(
∆− 1− e−κ∆

κ

))
.
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E.4.2 Proofs

Lemma E.4.1. For 0 < s < t,

Vt = Vse
−κ(t−s) + θ

(
1− e−κ(t−s)

)
+ σ

∫ t

s

e−κ(t−u)
√

VudWu. (E.4)

Proof. Be Yt =
∫ t

0
eκu

√
VudWu and note that Vt = g (t, Yt) where g (t, y) = V0e

−κt +

θ (1− e−κt) + σe−κty. Itô’s lemma implies that

dVt =
∂g

∂t
(t, Yt) dt+

∂g

∂y
(t, Yt) dYt +

1

2

∂2g

∂y2
(t, Yt) d ⟨Y ⟩t

= −κ
(
V0e

−κt − θe−κt + σe−κtYt

)
dt+ σe−κteκt

√
VtdWt

= κ (θ − Vt) dt+ σ
√
VtdWt,

which means that Equation (E.4) holds when s = 0. Because Vs = V0e
−κs+θ (1− e−κs)+

σe−κs
∫ s

0
eκu

√
VudWu, then

V0 = eκsVs + θ (1− eκs)− σ

∫ s

0

eκu
√
VudWu,

and

Vt =V0e
−κt + θ

(
1− e−κt

)
+ σe−κt

∫ t

0

eκu
√

VudWu

=

(
eκsVs + θ (1− eκs)− σ

∫ s

0

eκu
√
VudWu

)
e−κt

+θ
(
1− e−κt

)
+ σe−κt

∫ t

0

eκu
√
VudWu

=e−κ(t−s)Vs + θ
(
1− e−κ(t−s)

)
+ σe−κt

∫ t

s

eκu
√
VudWu.

Lemma E.4.2.∫ u

t∆

Vsds =
1

κ

(
Vt∆

(
1− e−κ(u−t∆)

)
+ κθ (u− t∆)− θ

(
1− e−κ(u−t∆)

)
+σ
∫ u

t∆

(
1− e−κ(u−s)

)√
VsdWs

)
. (E.5)
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Proof. From the integral form of Equation (E.4),

Vu = Vt∆ +

∫ u

t∆

κ (θ − Vs) ds+ σ

∫ u

t∆

√
VsdWs,

which is equivalent to∫ u

t∆

Vsds =
−Vu + Vt∆

κ
+ θ∆+

σ

κ

∫ u

t∆

√
VsdWs.

From Equation (E.4),

Vu = Vt∆e
−κ(u−t∆) + θ

(
1− e−κ(u−t∆)

)
+ σ

∫ u

t∆

e−κ(u−s)
√
VsdWs.

By substitution,

∫ u

t∆

Vsds =
1

κ

(
−Vt∆e

−κ(u−t∆) − θ
(
1− e−κ(u−t∆)

)
− σ

∫ u

t∆
e−κ(u−s)

√
VsdWs

+Vt∆ + κθ∆+ σ
∫ u

t∆

√
VsdWs

)

=
1

κ

(
Vt∆

(
1− e−κ(u−t∆)

)
+ κθ (u− t∆)− θ

(
1− e−κ(u−t∆)

)
+σ
∫ u

t∆

(
1− e−κ(u−s)

)√
VsdWs

)
. □

Corollary E.4.3.

E [Vu| Ft∆] = Vt∆e
−κ(u−∆t) + θ

(
1− e−κ(u−∆t)

)
.

Proof. Direct application of Lemma E.4.1. □

Corollary E.4.4.

E

[∫ u

t∆

Vsds

∣∣∣∣Ft∆

]
= Vt∆

(
1− e−κ(u−∆t)

κ

)
+ θ (u−∆t)− θ

1− e−κ(u−∆t)

κ
.

Proof. Direct application of Lemma E.5. □

The next Lemma and Corollaries are useful to find the conditional covariance of the
integrated variance and the stochastic integrals.
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Lemma E.4.5. For u > t∆,

E

[∫ u

t∆

eκ̄sVsds

∣∣∣∣Ft∆

]
=


(Vt∆ − θ) eκt∆ e(κ̄−κ)u−e(κ̄−κ)t∆

(κ̄−κ)
+ θ eκ̄u−eκ̄t∆

κ̄
if κ̄ > κ,

(Vt∆ − θ) eκt∆(u− t∆) + θ eκ̄u−eκ̄t∆

κ̄
if κ̄ = κ,

(Vt∆ − θ) 1−e−κ(u−t∆)

κ
+ θ(u− t∆) if κ̄ = 0.

Proof.

E

[∫ u

t∆

eκ̄sVsds

∣∣∣∣Ft∆

]
= E

[∫ u

t∆

eκ̄s
(
e−κ(s−t∆)Vt∆ + θ

(
1− e−κ(s−t∆)

)
+ σe−κs

∫ s

t∆

eκr
√

VrdWr

)
ds

∣∣∣∣Ft∆

]
=

∫ u

t∆

eκ̄s
(
e−κ(s−t∆)Vt∆ + θ

(
1− e−κ(s−t∆)

))
ds

=

∫ u

t∆

(Vt∆ − θ) eκ̄se−κ(s−t∆) + θeκ̄sds,

leading to the result. □

Corollary E.4.6.

E

[∫ u

t∆

e−κ̄(u−s)Vsds

∣∣∣∣Ft∆

]

=


(Vt∆ − θ) e−κ(u−t∆) 1−e−(κ̄−κ)(u−t∆)

(κ̄−κ)
+ θ 1−e−κ̄(u−t∆)

κ̄
if κ̄ > κ,

(Vt∆ − θ) e−κ̄(u−t∆)(u− t∆) + θ 1−e−κ̄(u−t∆)

κ̄
if κ̄ = κ,

(Vt∆ − θ) 1−e−κ(u−t∆)

κ
+ θ(u− t∆) if κ̄ = 0.

and

E

[∫ u

t∆

(
1− e−κ̄(u−s)

)
Vsds

∣∣∣∣Ft∆

]
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=



(Vt∆ − θ)
(

1−e−κ(u−t∆)

κ
− e−κ(u−t∆) 1−e−(κ̄−κ)(u−t∆)

(κ̄−κ)

)
,

+θ
(
(u− t∆)− 1−e−κ̄(u−t∆)

κ̄

) if κ̄ > κ,

(Vt∆ − θ)
(

1−e−κ(u−t∆)

κ
− e−κ̄(u−t∆)(u− t∆)

)
+θ
(
(u− t∆)− 1−e−κ̄(u−t∆)

κ̄

) if κ̄ = κ.

Proof. Direct application of Lemma E.4.5. □

Corollary E.4.7.

e−κuCov

[∫ u

t∆

eκs
√
VsdWs,

∫ u

t∆

√
VsdWs

∣∣∣∣Ft∆

]
= (Vt∆ − θ) e−κ(u−t∆)(u− t∆) + θ

1− e−κ(u−t∆)

κ
,

e−2κuVar

[∫ u

t∆

eκs
√
VsdWs

∣∣∣∣Ft∆

]
= (Vt∆ − θ)

e−κ(u−t∆) − e−2κ(u−t∆)

κ
+ θ

1− e−2κ(u−t∆)

2κ
,

Var

[∫ u

t∆

√
VsdWs

∣∣∣∣Ft∆

]
= (Vt∆ − θ)

1− e−κ(u−t∆)

κ
+ θ(u− t∆).

Proof. Each conditional moment simplifies to

e−κuCov

[∫ u

t∆

eκs
√
VsdWs,

∫ u

t∆

√
VsdWs

∣∣∣∣Ft∆

]
= e−κuE

[∫ u

t∆

eκsVsds

∣∣∣∣Ft∆

]
,

e−2κuVar

[∫ u

t∆

eκs
√
VsdWs

∣∣∣∣Ft∆

]
= e−2κu

(
E

[∫ u

t∆

e2κsVsds

∣∣∣∣Ft∆

])
,

Var

[∫ u

t∆

√
VsdWs

∣∣∣∣Ft∆

]
= E

[∫ u

t∆

Vsds

∣∣∣∣Ft∆

]
,

leading to the results with the application of Corollary E.4.6. □

Corollary E.4.8.

Cov

[∫ u

t∆

√
VsdWs,

∫ u

t∆

Vsds

∣∣∣∣Ft∆

]
=

σ

κ
θ

(
(u− t∆)− 1− e−κ(u−t∆)

κ

)
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+
σ

κ
(Vt∆ − θ)

(
1− e−κ(u−t∆)

κ
− e−κ(u−t∆)(u− t∆)

)
.

Proof. From Equation (E.5)

∫ u

t∆

Vsds =
1

κ

(
Vt∆

(
1− e−κ(u−t∆)

)
+ κθ (u− t∆)− θ

(
1− e−κ(u−t∆)

)
+σ
∫ u

t∆

(
1− e−κ(u−s)

)√
VsdWs

)
.

Therefore, from Corollary E.4.7,

Cov

[∫ u

t∆

√
VsdWs,

∫ u

t∆

Vsds

∣∣∣∣Ft∆

]
= Cov

[∫ u

t∆

√
VsdWs,

σ

κ

∫ u

t∆

(
1− e−κ(u−s)

)√
VsdWs

∣∣∣∣Ft∆

]
=

σ

κ
(Vt∆ − θ)

(
1− e−κ(u−t∆)

κ
− e−κ(u−t∆)(u− t∆)

)
+

σ

κ
θ

(
(u− t∆)− 1− e−κ(u−t∆)

κ

)
.

Corollary E.4.9.

Var [Vu| Ft∆] = σ2 e
−κ(u−t∆) − e−2κ(u−t∆)

κ
Vt∆ +

θσ2

2κ

(
1− e−κ(u−t∆)

)2
.

Proof. From Lemma E.4.1 and Corollary E.4.7,

Var [Vu| Ft∆] = σ2e−2κuVar

[∫ u

t∆

eκs
√
VsdWs

∣∣∣∣Ft∆

]
= σ2 (Vt∆ − θ)

e−κ(u−t∆) − e−2κ(u−t∆)

κ
+ θσ21− e−2κ(u−t∆)

2κ
.

Corollary E.4.10.

Var

[∫ (t+1)∆

t∆

Vsds

∣∣∣∣∣Ft∆

]
=

σ2

κ2
(Vt∆ − θ)

(
1− e−2κ(u−t∆)

κ
− 2e−κ(u−t∆)(u− t∆)

)
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+
σ2

κ2
θ

(
(u− t∆) +

1− e−2κ(u−t∆)

2κ
− 2

1− e−κ(u−t∆)

κ

)
.

Proof. From Lemma (E.5),

∫ (t+1)∆

t∆

Vudu =
1

κ

(
Vt∆

(
1− e−κ∆

)
+ κθ∆− θ

(
1− e−κ∆

)
+σ
∫ (t+1)∆

t∆

(
1− e−κ((t+1)∆−u)

)√
VudWu

)
.

Therefore, from Corollary E.4.7,

Var

[∫ u

t∆

Vsds

∣∣∣∣Ft∆

]
=
σ2

κ2

(
Var

[∫ u

t∆

(
1− e−κ(u−s)

)√
VsdWs

∣∣∣∣Ft∆

])
=
σ2

κ2
(Vt∆ − θ)

(
1−e−κ(u−t∆)

κ
+ e−κ(u−t∆)−e−2κ(u−t∆)

κ

−2e−κ(u−t∆)(u− t∆)

)

+
σ2

κ2
θ

(
(u− t∆) +

1− e−2κ(u−t∆)

2κ
− 2

1− e−κ(u−t∆)

κ

)
.

Corollary E.4.11.

Cov

[∫ u

t∆

Vsds, Vu

∣∣∣∣Ft∆

]
=

σ2

κ
(Vt∆ − θ) e−κ(u−t∆)

(
(u− t∆)− 1− e−κ(u−t∆)

κ

)
+

σ2

κ

θ

2κ

(
1− e−κ(u−t∆)

)2
.

Proof. From Equations (E.4)-(E.5) and Corollary E.4.7

Cov

[∫ u

t∆

Vsds, Vu

∣∣∣∣Ft∆

]
= Cov

[
σ

κ

∫ u

t∆

(
1− e−κ(u−s)

)√
VsdWs, σ

∫ u

t∆

e−κ(u−s)
√
VsdWs

∣∣∣∣Ft∆

]
=

σ2

κ

(
(Vt∆ − θ) e−κ(u−t∆)(u− t∆) + θ

1− e−κ(u−t∆)

κ

)
− σ2

κ

(
(Vt∆ − θ)

e−κ(u−t∆) − e−2κ(u−t∆)

κ
+ θ

1− e−2κ(u−t∆)

2κ

)
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=
σ2

κ
(Vt∆ − θ) e−κ(u−t∆)

(
(u− t∆)− 1− e−κ(u−t∆)

κ

)
+

σ2

κ

θ

2κ

(
1− e−κ(u−t∆)

)2
.

Corollary E.4.12.

Cov [Wt,u, Vu| Ft∆] = σ (Vt∆ − θ) e−κ(u−t∆)(u− t∆) + σθ
1− e−κ(u−t∆)

κ
.

Proof. Direct application from Corollary E.4.7. □

E.5 BZ Replication

We conduct a comparative analysis between the original Table 1 from Bollerslev and Zhou,
2002 (Table E.7) and our replication (Table E.8). Similarly, we extend this comparison to
Table 2 from Bollerslev and Zhou, 2002 (Table E.9) and our corresponding replication
(Table E.10).

The results in Table E.8 align with those in Table E.7. However, our attempt to replicate
Table 2 from Bollerslev and Zhou, 2002, as shown in Table E.9, encountered challenges,
particularly in estimating the measurement error parameter γ2. Furthermore, Bolko et al.,
2023 suggested that Bollerslev and Zhou, 2002 estimated this parameter independently of
the structural parameters, further supporting the validity of the obstacles we encountered
during our replication process.

clxxvii



Online Appendix E. GMM Parameter Estimation in Stochastic Volatility Models

True value Mean Median RMSE
T = 1000 T = 4000 T = 1000 T = 4000 T = 1000 T = 4000

Panel A
GMM with quadratic variation from high-frequency return
κ = 0.03 0.0352 0.0313 0.0340 0.0310 0.0130 0.0054
θ = 0.25 0.2430 0.2487 0.2355 0.2460 00523 0.0258
σ = 0.10 0.1016 0.1030 0.1018 0.1030 0.0080 0.0050

GMM with integrated volatility
κ = 0.03 0.0382 0.0323 0.0374 0.0319 0.0139 0.0055
θ = 0.25 0.2138 0.2456 0.2273 0.2437 0.0521 0.0257
σ = 0.10 0.0992 0.0999 0.0992 0.0098 0.0044 0.0020

Panel B
GMM with quadratic variation from high-frequency return
κ = 0.10 0.1057 0.1023 0.1048 0.1016 0.0214 0.0100
θ = 0.25 0.2478 0.2491 0.2474 0.2489 0.0158 0.0078
σ = 0.10 0.1059 0.1073 0.1061 0.1072 0.0093 0.0082

GMM with integrated volatility
κ = 0.10 0.1102 0.1032 0.1090 0.1027 0.0214 0.0091
θ = 0.25 0.2460 0.2486 0.2459 0.2483 0.0163 0.0078
σ = 0.10 0.0994 0.1000 0.0995 0.0098 0.0042 0.0020

Panel C
GMM with quadratic variation from high-frequency return
κ = 0.10 0.1113 0.1035 0.1091 0.1035 0.0253 0.0111
θ = 0.25 0.2389 0.2468 0.2364 0.2463 0.0326 0.0158
σ = 0.20 0.2031 0.2051 0.2030 0.2049 0.0122 0.0078

GMM with integrated volatility
κ = 0.10 0.1153 0.1048 0.1131 0.1047 0.0270 0.0114
θ = 0.25 0.2346 0.2455 0.2319 0.2449 0.0341 0.0160
σ = 0.20 0.1984 0.1997 0.1982 0.1995 0.0097 0.0046

This table is a direct copy of the Table 1 from Bollerslev and Zhou, 2002.

Table E.7: Table 1 from Bollerslev and Zhou, 2002
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True value Mean Median RMSE CR
T = 1000 T = 4000 T = 1000 T = 4000 T = 1000 T = 4000 T = 1000 T = 4000

Panel A ( κ = 0.03, θ = 0.25 & σ = 0.10 )
GMM with quadratic variation from high-frequency return
102 × κ = 3.0000 3.6247 3.1456 3.5060 3.1275 1.3173 0.5808 0.9040 0.9430
θ = 0.2500 0.2421 0.2481 0.2357 0.2466 0.0537 0.0275 0.9680 0.9470
σ = 0.1000 0.1019 0.1028 0.1017 0.1028 0.0082 0.0049 0.9490 0.8980

GMM with integrated volatility
102 × κ = 3.0000 3.9285 3.2684 3.8246 3.2161 1.4586 0.6101 0.8810 0.9200
θ = 0.2500 0.2355 0.2451 0.2293 0.2440 0.0597 0.0276 0.9780 0.9420
σ = 0.1000 0.0997 0.1000 0.0999 0.1000 0.0043 0.0021 0.9510 0.9490

Panel B ( κ = 0.10, θ = 0.25 & σ = 0.10 )
GMM with quadratic variation from high-frequency return
κ = 0.1000 0.1071 0.1015 0.1057 0.1011 0.0212 0.0101 0.9300 0.9500
θ = 0.2500 0.2468 0.2492 0.2462 0.2492 0.0162 0.0081 0.9500 0.9490
σ = 0.1000 0.1066 0.1070 0.1064 0.1070 0.0098 0.0079 0.8430 0.5000

GMM with integrated volatility
κ = 0.1000 0.1101 0.1027 0.1088 0.1024 0.0205 0.0092 0.9060 0.9350
θ = 0.2500 0.2458 0.2487 0.2453 0.2488 0.0165 0.0082 0.9460 0.9480
σ = 0.1000 0.0996 0.0999 0.0996 0.0999 0.0041 0.0020 0.9500 0.9470

Panel C ( κ = 0.10, θ = 0.25 & σ = 0.20 )
GMM with quadratic variation from high-frequency return
κ = 0.1000 0.1133 0.1033 0.1120 0.1027 0.0260 0.0117 0.9090 0.9370
θ = 0.2500 0.2383 0.2467 0.2361 0.2465 0.0339 0.0167 0.9430 0.9440
σ = 0.2000 0.2038 0.2051 0.2034 0.2049 0.0121 0.0076 0.9360 0.8580

GMM with integrated volatility
κ = 0.1000 0.1165 0.1049 0.1151 0.1045 0.0278 0.0122 0.8840 0.9230
θ = 0.2500 0.2357 0.2454 0.2333 0.2451 0.0346 0.0172 0.9390 0.9410
σ = 0.2000 0.1992 0.1999 0.1992 0.1999 0.0092 0.0045 0.9500 0.9440

The table shows results obtained from GMM procedures based on Monte Carlo simulations with 1000 independent trajectories of T
time steps of length ∆ = 1. The trajectories of the integrated variance are simulated with 820 intraday steps and the realized variance
with 82 intraday steps, see Section 4.3 for details. It uses the moments of column BZ from Table 4.1 without any measurement error.
The Mean (Median) reports the sample average (median) of the 1000 point estimates. The coverage ratio (CR) is the proportion of
the 95% confidence interval that contains the true parameter. We employ a 2-step GMM procedure using the Newey and West, 1987
covariance matrix estimator with a Bartlett-kernel with a lag of 5, see Appendix C.6 for details.

Table E.8: Replication of Table 1 from Bollerslev and Zhou, 2002
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True value Mean Median RMSE
T = 1000 T = 4000 T = 1000 T = 4000 T = 1000 T = 4000

Panel A: GMM with quadratic variation from high-frequency return
κ = 0.03 0.0364 0.0317 0.0354 0.0315 0.0138 0.0056
θ = 0.25 0.2456 0.2491 0.2384 0.2464 0.0520 0.0257
σ = 0.10 0.0909 0.0994 0.0905 0.0983 0.0230 0.0127
γ2 0.0007 0.0004 0.0006 0.0004 0.0008 0.0005

Panel B: GMM with quadratic variation from high-frequency return
κ = 0.10 0.1067 0.1027 0.1061 0.1023 0.0219 0.0104
θ = 0.25 0.2489 0.2494 0.2484 0.2492 0.0157 0.0078
σ = 0.10 0.0990 0.1049 0.0986 0.1046 0.0214 0.0121
γ2 0.0007 0.0004 0.0006 0.0003 0.0009 0.0005

Panel C: GMM with quadratic variation from high-frequency return
κ = 0.10 0.1133 0.1042 0.1109 0.1043 0.0274 0.0119
θ = 0.25 0.2435 0.2481 0.2400 0.2473 0.0314 0.0157
σ = 0.20 0.1893 0.1999 0.1884 0.1987 0.0303 0.0162
γ2 0.0017 0.0010 0.0015 0.0009 0.0019 0.0013

This table is a direct copy of the Table 2 from Bollerslev and Zhou, 2002. The γ2 in this paper is
equivalent to the γ of BZ.

Table E.9: Table 2 from Bollerslev and Zhou, 2002
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E.6 Conditional Moment Derivation

E.6.1 One-variance factor

This Online Appendix details the results summarized in Appendix C.3.1.

Lemma E.6.1. The recursive form of the integrated variance is

E [Vt+1,t+2|Ft∆] = αE [Vt,t+1|Ft∆] + ∆β.

Proof. From Equations (C.3) and (C.4)

E [Vt+1,t+2|Ft∆] = aE
[
V(t+1)∆|Ft∆

]
+ b

= a (αVt∆ + β) + b

= a

(
α

E [Vt,t+1|Ft∆]− b

a
+ β

)
+ b

= αE [Vt,t+1|Ft∆] +
(
1− e−κ∆

)
θ∆

= αE [Vt,t+1|Ft∆] + ∆β.

Corollary E.6.2.

E [RVt+1,t+2|Gt∆]− αE [RVt,t+1|Gt∆]−∆β = 0.

Proof. Based on Equations (4.8)-(4.9) and Lemma E.6.1,

E [RVt+1,t+2|Gt∆] = E [E [RVt+1,t+2|Ft∆] |Gt∆]

= E [E [Vt+1,t+2|Ft∆] |Gt∆]

= αE [E [Vt,t+1|Ft∆] |Gt∆] + ∆β

= αE [RVt,t+1|Gt∆] + ∆β.
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Lemma E.6.3. The recursive form of the squared integrated variance is

E
[
V2
t+1,t+2|Ft∆

]
= H E

[
V2
t,t+1|Ft∆

]
+ I E [Vt,t+1|Ft∆] + J,

where

H = α2,

I =
1

a
(a2(C + 2αβ) + (α− α2)(2ab+ A)),

J = −bI + (a2(D + β2) + β(2ab+ A) + (1− α2)(b2 +B)).

Proof. Using sequentially Equations (C.6), (C.4), (C.5) and (C.3)

E
[
V2
t+1,t+2|Ft∆

]
= Var [Vt+1,t+2|Ft∆] + E [Vt+1,t+2|Ft∆]

2 (E.6)

= a2
(
E
[
V(t+1)∆|Ft∆

]
+ Var

[
V 2
(t+1)∆|Ft∆

])
+ (A+ 2ab)E

[
V(t+1)∆|Ft∆

]
+
(
B + b2

)
= a2(CVt∆ +D + α2V 2

t∆ + 2αβVt∆ + β2) + (A+ 2ab) (αVt∆ + β) +
(
B + b2

)
= a2α2V 2

t∆ +
(
(A+ 2ab)α + a2C + a22αβ

)
Vt∆

+
(
B + b2

)
+ (A+ 2ab) β + a2(D + β2).

Similarly, from Equations (C.4) and (C.6)

E
[
V2
t,t+1|Ft∆

]
= Var [Vt,t+1|Ft∆] + E [Vt,t+1|Ft∆]

2

= AVt∆ +B + (aVt∆ + b)2

= a2V 2
t∆ + (A+ 2ab)Vt∆ +

(
B + b2

)
,

which implies that

α2a2V 2
t∆ = α2 E

[
V2
t,t+1|Ft∆

]
− α2 (A+ 2ab)Vt∆ − α2

(
B + b2

)
.
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Replacing back in Equation (E.6) leads to

E
[
V2
t+1,t+2|Ft∆

]
= α2 E

[
V2
t,t+1|Ft∆

]
+
(
B + b2

)
+ (A+ 2ab) β + a2(D + β2)− α2

(
B + b2

)
+
(
(A+ 2ab)α + a2C + a22αβ − α2 (A+ 2ab)

)
Vt∆

= α2 E
[
V2
t,t+1|Ft∆

]
+ (1− α2)

(
B + b2

)
+ (A+ 2ab) β + a2(D + β2)

+
(
(α− α2) (A+ 2ab) + a2(C + 2αβ)

)(E [Vt,t+1|Ft∆]− b

a

)
(from Eq. (C.4))

= H E
[
V2
t,t+1|Ft∆

]
+ I E [Vt,t+1|Ft∆] + J.

Corollary E.6.4. If E [Vt,t+1ξt,t+1|Ft∆] = 0, ∀t ∈ {1, ..., T}, then

E
[
RV 2

t+1,t+2|Gt∆

]
− E

[
ξ2t+1,t+2|Gt∆

]
−H

(
E
[
RV 2

t,t+1|Gt∆

]
− E

[
ξ2t,t+1|Gt∆

])
− I E [RVt,t+1|Gt∆]− J = 0.

Proof. From Equation (4.8),

E
[
RV 2

t,t+1|Ft∆

]
= E

[
V2
t,t+1|Ft∆

]
+ E

[
ξ2t,t+1|Ft∆

]
+ 2E [Vt,t+1ξt,t+1|Ft∆]︸ ︷︷ ︸

=0

,

which implies that E
[
V2
t,t+1|Ft∆

]
= E

[
RV 2

t,t+1|Ft∆

]
−E

[
ξ2t,t+1|Ft∆

]
. This relation holds

for all t. Therefore, based on Lemma E.6.3,

E
[
RV 2

t+1,t+2|Gt∆

]
− E

[
ξ2t+1,t+2|Gt∆

]
= E

[
E
[
E
[
RV 2

t+1,t+2 − ξ2t+1,t+2|F(t+1)∆

]
|Ft∆

]
|Gt∆

]
= E

[
E
[
V2
t+1,t+2|Ft∆

]
|Gt∆

]
= H E

[
E
[
V2
t,t+1|Ft∆

]
|Gt∆

]
+ I E [E [Vt,t+1|Ft∆] |Gt∆] + J

= H
(
E
[
RV 2

t,t+1|Gt∆

]
− E

[
ξ2t,t+1|Gt∆

])
+ I E [RVt,t+1|Gt∆] + J.
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Lemma E.6.5. The recursive form of the squared lagged integrated variance is

E [Vt+1,t+2Vt,t+1|Ft∆] = H̃ E
[
V2
t,t+1|Ft∆

]
+ Ĩ E [Vt,t+1|Ft∆] + J̃ ,

where

H̃ = α,

Ĩ =
1

a
(a(F + b+ αb+ aβ)− α(2ab+ A)),

J̃ = −bĨ +
(
aG+ b2 + abβ − α(B + b2)

)
.

Proof. Using sequentially Equations (C.4) and (C.7)

E [Vt+1,t+2Vt,t+1|Ft∆]

= E
[
E
[
V(t+1)∆,(t+2)∆|F(t+1)∆

]
Vt,t+1|Ft∆

]
= E

[(
aV(t+1)∆ + b

)
Vt,t+1|Ft∆

]
= aE

[
V(t+1)∆Vt,t+1|Ft∆

]
+ bE [Vt,t+1|Ft∆]

= a (FVt∆ +G+ (αVt∆ + β) (aVt∆ + b)) + b (aVt∆ + b)

= αa2V 2
t∆ +

(
aF + ab+ aαb+ a2β

)
Vt∆ +

(
aG+ b2 + abβ

)
. (E.7)

From Equations Equations (C.4) and (C.6)

E
[
V2
t,t+1|Ft∆

]
= Var [Vt,t+1|Ft∆] + E [Vt,t+1|Ft∆]

2

= AVt∆ +B + (aVt∆ + b)2

= a2V 2
t∆ + (A+ 2ab)Vt∆ +

(
B + b2

)
,

which implies that

αa2V 2
t∆ = αE

[
V2
t,t+1|Ft∆

]
− α (A+ 2ab)Vt∆ − α

(
B + b2

)
.
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Replacing back in Equation (E.7) leads to

E [Vt+1,t+2Vt,t+1|Ft∆]

= αE
[
V2
t,t+1|Ft∆

]
+
(
aG+ b2 + abβ − αB − αb2

)
+
(
aF + ab+ aαb+ a2β − αA− α2ab

)
Vt∆

= αE
[
V2
t,t+1|Ft∆

]
+
(
aG+ b2 + abβ − αB − αb2

)
+
(
aF + ab+ aαb+ a2β − αA− α2ab

)(E [Vt,t+1|Ft∆]− b

a

)
= H̃ E

[
V2
t,t+1|Ft∆

]
+ Ĩ E [Vt,t+1|Ft∆] + J̃ .

Corollary E.6.6. If E [Vt,t+1ξt,t+1|Ft∆] = 0 and E [Vt+1ξt,t+1|Ft∆] = 0 ∀ t ∈ {1, ..., T},
then

E [RVt+1,t+2RVt,t+1|Gt∆]

− H̃
(
E
[
RV 2

t,t+1|Gt∆

]
− E

[
ξ2t,t+1|Gt∆

])
− Ĩ E [RVt,t+1|Gt∆]− J̃ = 0.

Proof. Based on Equations (4.8) and (4.9), Equation (C.4) and Lemma E.6.5

E [RVt+1,t+2RVt,t+1|Gt∆] = E [E [RVt+1,t+2RVt,t+1|Ft∆] |Gt∆]

= E [E [(Vt+1,t+2 + ξt+1,t+2)(Vt,t+1 + ξt,t+1)|Ft∆] |Gt∆]

= E [E [Vt+1,t+2Vt,t+1|Ft∆] |Gt∆] + E
[
E
[
E
[
ξt+1,t+2|F(t+1)∆

]
Vt,t+1|Ft∆

]
|Gt∆

]
+ E

[
E
[
E
[
Vt+1,t+2ξt,t+1|F(t+1)∆

]
|Ft∆

]
|Gt∆

]
+ E

[
E
[
E
[
ξt+1,t+2|F(t+1)∆

]
ξt,t+1|Ft∆

]
|Gt∆

]
= E [E [Vt+1,t+2Vt,t+1|Ft∆] |Gt∆] + E [E [(aVt+1 + b) ξt,t+1|Ft∆] |Gt∆]

= E [E [Vt+1,t+2Vt,t+1|Ft∆] |Gt∆]

= H̃ E
[
E
[
V2
t,t+1|Ft∆

]
|Gt∆

]
+ Ĩ E [E [Vt,t+1|Ft∆] |Gt∆] + J̃

= H̃
(
E
[
RV 2

t,t+1|Gt∆

]
− E

[
ξ2t,t+1|Gt∆

])
+ Ĩ E [RVt,t+1|Gt∆] + J̃ .
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Lemma E.6.7. The returns expectation conditional to the model filtration is

E [Rt,t+1| Ft∆] =

(
λ− 1

2

)
E [Vt,t+1| Ft∆] + r∆.

Proof. Direct application of Equation (4.4). □

Corollary E.6.8. The returns expectation conditional to the observed filtration is

E [Rt,t+1|Gt∆] =

(
λ− 1

2

)
E [RVt,t+1|Gt∆] + r∆.

Proof. Direct application of Lemma E.6.7. □

Lemma E.6.9. The cross-moment between the returns and the integrated variance is

E [Rt,t+1Vt,t+1| Ft∆] = Ĥ E
[
V2
t,t+1

∣∣Ft∆

]
+ Î E [Vt,t+1| Ft∆] + Ĵ ,

where

Ĥ =

(
λ− 1

2

)
,

Î =

(
ρF̃

a
+ r∆

)
≈
(
ρ
σ

2
+ r
)
∆,

Ĵ =

(
ρG̃− ρF̃

b

a

)
≈ − 1

12
ρ∆3κθσ.

Proof. From Equations (4.4), (C.4) and (C.8),

E [ (Rt,t+1 − r∆)Vt,t+1| Ft∆]

=

(
λ− 1

2

)
E
[
V2
t,t+1

∣∣Ft∆

]
+ ρE [Vt,t+1Wt,t+1| Ft∆]

=

(
λ− 1

2

)
E
[
V2
t,t+1

∣∣Ft∆

]
+ ρ

(
F̃ Vt∆ + G̃

)
=

(
λ− 1

2

)
E
[
V2
t,t+1

∣∣Ft∆

]
+ ρ

(
F̃

(
E [Vt,t+1| Ft∆]− b

a

)
+ G̃

)
clxxxvii
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=

(
λ− 1

2

)
E
[
V2
t,t+1

∣∣Ft∆

]
+

ρF̃

a
E [Vt,t+1| Ft∆] +

(
ρG̃− ρF̃

b

a

)
.

Therefore,

E [Rt,t+1Vt,t+1| Ft∆]

=

(
λ− 1

2

)
E
[
V2
t,t+1

∣∣Ft∆

]
+

(
ρF̃

a
+ r∆

)
E [Vt,t+1| Ft∆] +

(
ρG̃− ρF̃

b

a

)
= Ĥ E

[
V2
t,t+1

∣∣Ft∆

]
+ Î E [Vt,t+1| Ft∆] + Ĵ .

Corollary E.6.10. If E [Rt,t+1ξt,t+1|Ft∆] = 0 ∀t ∈ {1, ..., T}, the expectation condi-
tional to the observed filtration of the return multiplied by the realized variance is

E [Rt,t+1RVt,t+1|Gt∆]

= Ĥ
(
E
[
RV 2

t,t+1|Gt∆

]
− E

[
ξ2t,t+1|Gt∆

])
+ Î E [RVt,t+1|Gt∆] + Ĵ .

Proof. Based on Equations (4.8) and (4.9) and the Lemma E.6.9

E [Rt,t+1RVt,t+1|Gt∆]

= E [E [Rt,t+1RVt,t+1|Ft∆] |Gt∆]

= E [E [Rt,t+1 (Vt,t+1 + ξt,t+1) |Ft∆] |Gt∆]

= E [E [Rt,t+1Vt,t+1|Ft∆] |Gt∆]

= E
[
Ĥ E

[
V2
t,t+1

∣∣Ft∆

]
+ Î E [Vt,t+1| Ft∆] + Ĵ

∣∣∣Gt∆

]
= Ĥ E

[
V2
t,t+1

∣∣Gt∆

]
+ Î E [RVt,t+1| Gt∆] + Ĵ .

Lemma E.6.11. The cross-moment between the returns and the lagged integrated variance
is

E
[(

Rt,t+1 − r∆−
(
λ− 1

2

)
Vt,t+1

)
Vt+1,t+2

∣∣∣∣Ft∆

]
= I E [Vt,t+1| Ft∆] + J,
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where

I = ρF , J = aρG− bρF .

Proof. From Equations (4.4), (C.4) and (C.9),

E
[(

Rt,t+1 − r∆−
(
λ− 1

2

)
Vt,t+1

)
,Vt+1,t+2

∣∣∣∣Ft∆

]
= ρCov

[
aV(t+1)∆,Wt,t+1

∣∣Ft∆

]
= aρ

(
FVt∆ +G

)
= aρG+ aρF

E [Vt,t+1| Ft∆]− b

a

= aρG− bρF + ρF E [Vt,t+1| Ft∆] .

leading to the result. □

Corollary E.6.12. The expectation conditional to the observed filtration of the return mul-
tiplied by the lagged realized variance is

E
[(

Rt,t+1 − r∆−
(
λ− 1

2

)
RVt,t+1

)
RVt+1,t+2

∣∣∣∣Gt∆

]
= I E [RVt,t+1|Gt∆] + J.

Proof. Direct application of Lemma E.6.11.

E.6.2 Two-variance factor

This Online Appendix details the moment condition for the two-variance factors as in
Bollerslev and Zhou, 2002.

Corollary E.6.13. In the case of two variances, the integrated variance is defined as

Vt,t+1 = V1,t,t+1 + V2,t,t+1,
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and for k ∈ {1, 2},

E
[
Vk,(t+1)∆|Ft∆

]
= αkVk,t∆ + βk,

E [Vk,t,t+1|Ft∆] = akVk,t∆ + bk,

E [Vk,t+1,t+2|Ft∆] = αk E [Vk,t,t+1|Ft∆] + βk∆,

E
[
V2
k,t+1,t+2|Ft∆

]
= Hk E

[
V2
k,t,t+1|Ft∆

]
+ Ik E [Vk,t,t+1|Ft∆] + Jk.

where αk, βk, ak, bk, Hk, Ik, Jk are the analogous of Equations (C.3)-(C.12) with param-
eters θk, κk and σk.

Proof. Direct generalization the results of section C.3.1. □

Lemma E.6.14. The recursive form of the integrated variance with two-variance factors
is

E [Vt+2,t+3|Ft∆] = (α1 + α2)E [Vt+1,t+2|Ft∆]− (α1α2)E [Vt,t+1|Ft∆]

+ (1− α1)β2∆+ (1− α2)β1∆.

Proof. From Lemma E.6.13

E [Vt+2,t+3|Ft∆]− β1∆− β2∆

= α1 E [V1,t+1,t+2|Ft∆] + α2 E [V2,t+1,t+2|Ft∆]

= (α1 + α2)E [Vt+1,t+2|Ft∆]− α2 E [V1,t+1,t+2|Ft∆]− α1 E [V2,t+1,t+2|Ft∆]

= (α1 + α2)E [Vt+1,t+2|Ft∆]− α1α2 E [Vt,t+1|Ft∆]− α1β2∆− α2β1∆.

Corollary E.6.15.

E [RVt+2,t+3|Gt∆] = (α1 + α2)E [RVt+1,t+2|Gt∆]− (α1α2)E [RVt,t+1|Gt∆]

+ (1− α1)β2∆+ (1− α2)β1∆.
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Proof. Based on Equations (4.8)-(4.9) and Lemma E.6.14,

E [RVt+2,t+3|Gt∆] = E [E [Vt+2,t+3|Ft∆] |Gt∆]

= (α1 + α2)E [E [Vt+1,t+2|Ft∆] |Gt∆]− (α1α2)E [E [Vt,t+1|Ft∆] |Gt∆]

+ (1− α1)β2∆+ (1− α2)β1∆

= (α1 + α2)E [RVt+1,t+2|Gt∆]− (α1α2)E [RVt,t+1|Gt∆]

+ (1− α1)β2∆+ (1− α2)β1∆.

Lemma E.6.16. The recursive form of the square integrated variance with two variance
factors is

E

[
(1− α1L) (1− α2L) (1−H1L) (1−H2L)

(1− α1α2L)V2
t+5,t+6

∣∣∣∣∣Ft∆

]
= f(κ1, κ2, θ1, θ2, σ1, σ2),

(E.8)

where L designate the lag operator and f(κ1, κ2, θ1, θ2, σ1, σ2) a function depending on
the variance parameters.

Proof. See Bollerslev and Zhou, 2002 Appendix B.1.2 for details and Equation (B.8) for
the function details. □

E.7 Unconditional Moment Derivation

This Online Appendix details the summarized results in Appendix C.4.

Corollary E.7.1. The first two unconditional moments of the variance are

E [Vk,t∆] = θk and Var [Vk,t∆] =
θkσ

2
k

2κk

.

Proof. The expected value is a direct application of Corollary E.4.3, The variance is based
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on Corollaries E.4.3 and E.4.9, that is

Var [Vk,t∆] = E [Var [Vk,t∆|Ft∆]] + Var [E [Vk,t∆|Ft∆]]

= θkσ
2
k

1− e−2κk∆

2κk

+ Var [Vk,t∆] e
−2κk∆

⇒ Var [Vk,t∆] =
θkσ

2
k

2κk

.

Lemma E.7.2. The unconditional expected value of the realized variance with K variance
factors is

E [RVt,t+1] =
K∑
k=1

θk∆.

Proof. With Corollary E.7.1 and Lemma E.5

E [RVt,t+1] = E [Vt,t+1] =
K∑
k=1

E [E [Vk,t,t+1|Ft∆]]

=
K∑
k=1

E [akVk,t∆ + bk] =
K∑
k=1

θk∆.

Lemma E.7.3. The unconditional expected value of the realized quarticity withK variance
factors is

E [RQt,t+1] =

(
K∑
k=1

θk

)2

∆+
K∑
k=1

θkσ
2
k

2κk

∆.

Proof. See Appendix C.1. □

Corollary E.7.4. The expected value of the conditional variance of the integrated variance
is

E [Var [Vk,t,t+1|Ft∆]] =
σ2
k

κ2
k

θk

(
∆+

1− e−2κk∆

2κk

− 2
1− e−κk∆

κk

)
=

θkσ
2
k

2κk

f(∆, κk),
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where f(∆, κk) =
2
κk

(
∆+ 1−e−2κk∆

2κk
− 21−e−κk∆

κk

)
.

Proof. Direct application from Corollary E.4.10 □

Corollary E.7.5. The expected value of the conditional covariance between the integrated
variance and the instantaneous variance is

E
[
Cov

[
Vk,t,t+1, Vk,(t+1)∆|Ft∆

]]
=

θkσ
2
k

2κ2
k

(
1− e−κk∆

)2
=

θkσ
2
k

2κk

g(∆, κk),

where g(∆, κk) =
1
κk

(
1− e−κk∆

)2.
Proof. Direct application from Corollary E.4.11. □

Corollary E.7.6. The expected values of conditional covariances between Wt,t+1 and both
the integrated variance and the instantaneous variance are:

E [Cov [Vk,t,t+1,Wk,t,t+1|Ft∆]] =
σk

κk

θk (∆− ak) ,

and

E
[
Cov

[
Wk,t,(t+1)∆, Vk,(t+1)∆

∣∣Ft∆

]]
= σkθkak.

Proof. Direct application from Corollaries E.4.8 and E.4.12. □

Lemma E.7.7. The unconditional variance of the integrated variance with K variance
factors is

Var [Vt,t+1] =
∑
k

θkσ
2
k

2κk

(
2

κk

(∆− ak)

)
.

Proof. With Corollaries E.4.4, E.7.1, adn E.7.4,

Var [Vt,t+1] = E [Var [Vt,t+1|Ft∆]] + Var [E [Vt,t+1|Ft∆]]

=
∑
k

E [Var [Vk,t,t+1|Ft∆]] + Var [E [Vk,t,t+1|Ft∆]]
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=
∑
k

θkσ
2
k

2κk

f(∆, κk) + Var [akVk,t∆ + bk]

=
∑
k

θkσ
2
k

2κk

(
f(∆, κk) + a2k

)
,

where, since a2k =
2(1−e−κk∆)−(1−e−2κk∆)

κ2
k

, we have

(
f(∆, κk) + a2k

)
=

2

κk

∆+
1− e−2κk∆

κ2
k

− 4
1− e−κk∆

κ2
k

+
2(1− e−κk∆)− (1− e−2κk∆)

κ2
k

= ∆
2

κk

− 2
1− e−κk∆

κ2
k

=
2

κk

(∆− ak)

≈ ∆
2

κk

− 2

κ2
k

(κk∆− 1

2
κ2
k∆

2) = ∆2.

Corollary E.7.8. If E [Vk,t,t+1ξt,t+1] = 0, then the unconditional variance of the realized
variance with K variance factors is

Var [RVt,t+1] = E
[
ξ2t,t+1

]
+
∑
k

θkσ
2
k

2κk

(
2

κk

(∆− ak)

)
.

Proof. Direct application of Lemma E.7.7 and Equation (4.9). □

Lemma E.7.9. For h ∈ {1, 2, ...}, the unconditional covariance between lagged integrated
variance is

Cov [Vt,t+1,Vt+h,t+h+1] =
∑
k

αh−1
k a2k

θkσ
2
k

2κk

.

Proof. With Corollaries E.4.11, E.7.1 and E.7.5 along with Lemmas E.4.1 and E.5,

Cov [Vt,t+1,Vt+h,t+h+1]

= E [Cov [Vt,t+1,Vt+h,t+h+1|Ft∆]] + Cov [E [Vt,t+1|Ft∆] ,E [Vt+h,t+h+1|Ft∆]]
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=
∑
k

E
[
Cov

[
Vk,t,t+1, akα

h−1
k V(t+1)∆|Ft∆

]]
+
∑
k

Cov
[
E [Vk,t,t+1|Ft∆] ,E

[
akα

h−1
k Vk,(t+1)∆|Ft∆

]]
=
∑
k

akα
h−1
k

(
g(∆, κk)

θkσ
2
k

2κk

+ (akαk)
θkσ

2
k

2κk

)
=
∑
k

αh−1
k a2k

θkσ
2
k

2κk

,

since

(g(∆, κk) + (akαk)) =
1

κk

(
1− e−κk∆

)2
+

((
1− e−κk∆

)
κk

e−κk∆

)

=

(
1− e−κk∆

)
κk

(
1− e−κk∆ + e−κk∆

)
=

(
1− e−κk∆

)
κk

= ak.

Corollary E.7.10. If E
[
ξt,t+1Vk,(t+1)∆

]
= 0, then for h ∈ {1, 2, ...}, the unconditional

covariance between lagged realized variance is

Cov [RVt,t+1, RVt+h,t+h+1] =
∑
k

αh−1
k a2k

θkσ
2
k

2κk

.

Proof. From Equation (4.9) and Lemma E.7.9, we have

Cov [RVt,t+1, RVt+h,t+h+1]

= Cov [Vt,t+1 + ξt,t+1,Vt+h,t+h+1 + ξt+h,t+h+1]

= Cov [Vt,t+1,Vt+h,t+h+1] + E [ξt,t+1Vt+h,t+h+1]

+ E [Vt,t+1ξt+h,t+h+1] + E [ξt,t+1ξt+h,t+h+1]
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= Cov [Vt,t+1,Vt+h,t+h+1] + E

[
ξt,t+1

(∑
k

αh−1
k akVk,(t+1)∆

)]
+ E

[
Vt,t+1 E

[
ξt+h,t+h+1|F(t+h)∆

]]
+ E

[
ξt,t+1 E

[
ξt+h,t+h+1|F(t+h)∆

]]
= Cov [Vt,t+1,Vt+h,t+h+1]

=
∑
k

αh−1
k a2k

θkσ
2
k

2κk

.

Lemma E.7.11. Forn ∈ {1, 2, ...}, the unconditional covariance recursion between lagged
integrated variance for a model with two variances is

Cov [Vt,t+1,Vt+1+2n,t+2+2n] = (αn
1 + αn

2 )Cov [Vt,t+1,Vt+1+n,t+2+n]

− (αn
1α

n
2 )Cov [Vt,t+1,Vt+1,t+2] .

Proof. With Lemma E.7.9,

Cov [Vt,t+1,Vt+h,t+h+1] = αh−1
1 a21

θ1σ
2
1

2κ1

+ αh−1
2 a22

θ2σ
2
2

2κ2

.

Therefore,

Cov [Vt,t+1,Vt+1+2n,t+2+2n] = α2n
1 a21

θ1σ
2
1

2κ1

+ α2n
2 a22

θ2σ
2
2

2κ2

= (αn
1 + αn

2 )

(
αn
1a

2
1

θ1σ
2
1

2κ1

+ αn
2a

2
2

θ2σ
2
2

2κ2

)
︸ ︷︷ ︸

Cov[Vt,t+1,Vt+1+n,t+2+n]

−
(
α2n
1 α2n

2

)(
a21

θ1σ
2
1

2κ1

+ a22
θ2σ

2
2

2κ2

)
︸ ︷︷ ︸

Cov[Vt,t+1,Vt+1,t+2]

.

Corollary E.7.12. If E
[
ξt,t+1Vk,(t+1)∆

]
= 0, then for n ∈ {1, 2, ...}, the unconditional

covariance recursion between lagged realized variance for a model with two variances is

Cov [RVt,t+1, RVt+1+2n,t+2+2n]

= (αn
1 + αn

2 )Cov [RVt,t+1, RVt+1+n,t+2+n]− (αn
1α

n
2 )Cov [RVt,t+1, RVt+1,t+2] .

Proof. Direct application of Lemma E.7.11, Corollary E.7.10 and Equation (4.9). □
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Lemma E.7.13. The unconditional covariance between the integrated variance and return
is

Cov [Vt,t+1, Rt,t+1] =
∑
k

(
λk −

1

2

)(
a2k + f(∆, κk)

) σ2
kθk
2κk

+ ρk
σk

κk

θk (∆− ak) .

Proof. From Corollary E.7.6

Cov [Rt,t+1,Vt,t+1]

= Cov [E [Rt,t+1| Ft∆] ,E [Vt,t+1| Ft∆]] + E [Cov [Rt,t+1,Vt,t+1| Ft∆]]

=
∑
k

Cov
[(

λk −
1

2

)
E [Vk,t,t+1|Ft∆] ,E [Vk,t,t+1| Ft∆]

]
+
∑
k

E
[
Cov

[(
λk −

1

2

)
Vk,t,t+1 + ρkWk,t,t+1,Vk,t,t+1

∣∣∣∣Ft∆

]]
=
∑
k

(
λk −

1

2

)
a2k Var [Vk,t∆]

+
∑
k

(
λk −

1

2

)
E [Var [Vk,t,t+1|Ft∆]] + ρk E [Cov [Vk,t,t+1,Wk,t,t+1|Ft∆]]

=
∑
k

(
λk −

1

2

)(
a2k + f(∆, κk)

) σ2
kθk
2κk

+ ρk
σk

κk

θk (∆− ak) ,

leading to the result. □

Corollary E.7.14. If E [Rt,t+1ξt,t+1] = 0, then the unconditional covariance between the
realized variance and return is

Cov [RVt,t+1, Rt,t+1] =
∑
k

(
λk −

1

2

)(
a2k + f(∆, κk)

) σ2
kθk
2κk

+ ρk
σk

κk

θk (∆− ak) .

Proof. We have

Cov [RVt,t+1, Rt,t+1] = Cov [Rt,t+1,Vt,t+1 + ξt,t+1]

= Cov [Rt,t+1,Vt,t+1] + E [Rt,t+1ξt,t+1]︸ ︷︷ ︸
=0

,
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which leads to the result with Lemma E.7.13. □

Lemma E.7.15. The unconditional covariance between the lagged integrated variance and
return for h ∈ {1, 2, ...} is

Cov [Vt+h,t+h+1, Rt,t+1] =
∑
k

αh−1
k a2k

((
λk −

1

2

)
θkσ

2
k

2κk

+ ρkσkθk

)
.

Proof. From Corollary E.7.6

Cov [Rt,t+1,Vt+h,t+h+1]

=
∑
k

Cov
[(

λk −
1

2

)
Vk,t,t+1 + ρkWk,t,t+1,Vk,t+h,t+h+1

]
=
∑
k

(
λk −

1

2

)
Cov [Vk,t,t+1,Vk,t+h,t+h+1] + ρk Cov [Wk,t,t+1,Vk,t+h,t+h+1]

=
∑
k

(
λk −

1

2

)
Cov

[
Vk,t,t+1, α

h−1
k akV(t+1)∆

]
+ ρk Cov

[
Wk,t,t+1, α

h−1
k akV(t+1)∆

]
=
∑
k

(
λk −

1

2

)
αh−1
k ak

(
Cov

[
E
[
Vk,t,(t+1)∆

∣∣Ft∆

]
,E
[
Vk,(t+1)∆

∣∣Ft∆

]]
+E

[
Cov

[
Vk,t,(t+1)∆, Vk,(t+1)∆

∣∣Ft∆

]] )
+ ρkakα

h−1
k E

[
Cov

[
Wk,t,(t+1)∆, Vk,(t+1)∆

∣∣Ft∆

]]
=
∑
k

αh−1
k ak

((
λk −

1

2

)
θkσ

2
k

2κk

(g(∆, κk) + αkak) + akρkσkθk

)
=
∑
k

αh−1
k a2k

((
λk −

1

2

)
θkσ

2
k

2κk

+ ρkσkθk

)
,

leading to the result. □

Corollary E.7.16. The unconditional covariance between the lagged realized variance and
return for h ∈ {1, 2, ...} is

Cov [RVt+h,t+h+1, Rt,t+1] =
∑
k

αh−1
k a2k

((
λk −

1

2

)
θkσ

2
k

2κk

+ ρkσkθk

)
.
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Proof. We have

Cov [RVt+h,t+h+1, Rt,t+1]

= Cov [Rt,t+1,Vt+h,t+h+1 + ξt+h,t+h+1]

= Cov [Rt,t+1,Vt+h,t+h+1] + E [Rt,t+1ξt+h,t+h+1]

= Cov [Rt,t+1,Vt+h,t+h+1] + E

Rt,t+1 E
[
ξt+h,t+h+1|F(t+h)∆

]︸ ︷︷ ︸
=0

 ,

which leads to the result with Lemma E.7.15. □

Lemma E.7.17. The third conditional central moment of the instantaneous variance is

E
[(

Vk,(t+1)∆ − E
[
Vk,(t+1)∆|Ft∆

])3∣∣∣Ft∆

]
= Tk (Vk,t∆ − θk) +Qkθk,

where

Tk = 3σ4
k

∫ (t+1)∆

t∆

e−κk(s−t∆)1− e−κk(s−t∆)

κk

e−3κk((t+1)∆−s)ds,

Qk = 3σ4
k

∫ (t+1)∆

t∆

1− e−2κk(s−t∆)

2κk

e−3κk((t+1)∆−s)ds.

Proof. We have

E
[(

Vk,(t+1)∆ − E
[
Vk,(t+1)∆|Ft∆

])3∣∣∣Ft∆

]

= σ3
k E



∫ (t+1)∆

t∆

e−κk((t+1)∆−s)
√
Vk,sdWk,s︸ ︷︷ ︸

Zk,t,t+1


3∣∣∣∣∣∣∣∣∣Ft∆


= 3σ3

ke
−3κk(t+1)∆

∫ (t+1)∆

t∆

E
[
Vk,sZk,t,s/∆

∣∣Ft∆

]
e3κksds. (E.9)

The last step is obtained with Fubini and Itô’s Lemma, as with the stochastic process
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Yk,t,u =
∫ u

t∆
eκks

√
Vk,sdWk,s, we have

dYn
k,t,u = nYn−1

k,t,udYk,t,u +
n(n− 1)

2
Yn−2

k,t,ue
2κkuVk,udu.

Furthermore,

E
[
Vk,sZk,t,s/∆

∣∣Ft∆

]
= σkE

[
Z2

k,t,s/∆

∣∣Ft∆

]
= σk

∫ s

t∆

E [Vk,r| Ft∆] e
−2κk(s−r)dr Fubini

= σk

∫ s

t∆

(e−κk(r−t∆)(Vk,t∆ − θk) + θk)e
−2κk(s−r)dr

= σkθk

∫ s

t∆

e−2κk(s−r)dr + σk(Vk,t∆ − θk)e
−κk(s−t∆)

∫ s

t∆

e−κk(s−r)dr

= σkθk
1− e−2κk(s−t∆)

2κk

+ σk(Vk,t∆ − θk)e
−κk(s−t∆)1− e−κk(s−t∆)

κk

,

and replacing in Equation (E.9) leads to the results. □

Corollary E.7.18. The third unconditional cumulant of the instantaneous variance is

Cum3

[
Vk,(t+1)∆

]
=

Qkθk + 3
θkσ

2
k

2κk
Ckαk

1− α3
k

,

where Qk is defined in Lemma E.7.17.

Proof. Based on Lemma E.7.17 along with Equations (C.3) and (C.5), we have

Cum3

[
Vk,(t+1)∆

]
= E

[
Cum3

[
Vk,(t+1)∆|Ft∆

]]
+ Cum3

[
E
[
Vk,(t+1)∆|Ft∆

]]
+ 3Var

[
E
[
Vk,(t+1)∆|Ft∆

]
,Var

[
Vk,(t+1)∆|Ft∆

]]
= Qkθk + 3

θkσ
2
k

2κk

Ckαk + α3
k Cum3

[
Vk,(t+1)∆

]
⇒ Cum3

[
Vk,(t+1)∆

]
=

Qkθk + 3
θkσ

2
k

2κk
Ckαk

1− α3
k

.
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Lemma E.7.19. The third conditional cumulant of the integrated variance is

Cum3 [Vk,t,t+1| Ft∆] = MkVk,t∆ + θkNk = Mk(Vk,t∆ − θk) + θkPk,

where

Mk =
3σ4

k (−α3
k + 2− 2α2

k(1 + 2∆κk) + αk(1− 2∆κk(1 + ∆κk)))

2κ5
k

,

Nk =
σ4
k (α

3
k + 6α2

k(1 + ∆κk) + 2(−11 + 3∆κk) + 3αk(5 + 2∆κk(3 + ∆κk)))

2κ5
k

,

Pk =
σ4
k (−2α3

k + 18αk − 16 + 6∆κk + 12αk∆κk − 6α2
k∆κk)

2κ5
k

.

Proof. See Garcia et al., 2011. □

E.8 Robustness Checks

We conducted robustness tests on the moments analyzed in Tables 4.1 and E.1, focusing
on two key areas: the mean over 1,000 trajectories with 4,000 time steps (Panels A) and
the sample autocorrelation of the conditional moments (Panels B) derived in Section 4.4.

The results for the notable CM moments are presented in Figures E.2 and E.3, assum-
ing constant conditional variance for the measurement error (Specification 4.14). Figure
E.2 shows no bias, except for Panel A.2, where the blue bar almost falls outside the 95%
confidence interval. This observation is consistent with Appendix C.5, where, if the mea-
surement error is misspecified, its impact on the moments is negligible. Consequently,
the lack of independence between instrumental variables and measurement error does not
significantly affect these moments.

However, Figure E.3 reveals clear biases in the moments, particularly in Panels 2 and
3. While Panel 1 shows no bias due to the absence of instrumental variables, Panels 2 and
3 indicate that the lack of independence between the measurement error and instrumental
variables leads to evident biases. When correcting the model specification, as shown in
Figure E.4, the moments in Panels A are centered around zero, confirming that the condi-
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tional moments are appropriately evaluated for GMM estimation.
For the UM procedures, represented in Figure E.5, we also include the moment re-

lated to Realized Quarticity for completeness. All moments are well-centered around zero,
indicating no issues with the UM moments.3

Additionally, the second important point in these Figures is showed in Panels B. In a
GMM framework, we use two steps and the second step involves a weighting matrix based
on Newey-West HAC matrix. Various papers have proposed different lags to use when
dealing with realized variances. Bollerslev and Zhou, 2002 suggested a lag of 5 for one
variance and 60 for two variances (CM); Todorov, 2009 suggests a lag of 80 (UM).

These figures are insightful as they reveal the autocorrelation structure in our GMM
moments, validating the chosen assumptions. Figures E.2 to E.4 show some autocorre-
lation, but this diminishes to near zero at lag 5, primarily present at lags 1 and 2. This
is expected because subtracting the conditional expectation at time t removes significant
information, reducing autocorrelation, which is not observed in Figure E.5. Here, we sub-
tract the mean over the entire trajectory, not eliminating the temporal dependence structure
at each time step, leading to substantial autocorrelation in our GMM moments.

This highlights the strength of conditional methods over unconditional methods, as
they produce moments with minimal autocorrelation, resulting in more robust outcomes.
However, for other reasons discussed in the text, UM methods have important advantages
depending on the variance nature.

3Figures related to moments condition not presented are available upon request.
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E.9 Background on the Generalized Methods of Moments

This Online Appendix provides an introductory exposition on the Generalized Method
of Moments (GMM) framework, particularly emphasizing its utilization of instrumental
variables for estimating coefficients and their associated standard errors. While initially
discussed in the context of linear models, its applicability extends to nonlinear models,
showcasing its versatility and robustness.

The single linear problem is formulated as follows:

y = Xβ + η, (E.10)

where y represents the observed data and η denotes the error term, both with dimensions
N×1. The matrix X, comprising the regressors, is of size N×K, while β, our parameter
vector, is K × 1, where K signifies the number of coefficients awaiting estimation. Addi-
tionally, E[η|X] = 0 and Cov[η|X] = Ω. The specification is intentionally left general to
encompass a complex error structure in the covariance matrix Ω.

The moment conditions for GMM are expressed as a set of equations leveraging on the
orthogonality between a vector of sample moments and a vector of instrumental variables.
In a general sense, for a sample of size N , the moment conditions can be written as

hn(β) = Z⊤
n (yn − Xnβ) = Z⊤

n ηn, (E.11)

where hn(β) characterizes the moment conditions and Zn represents the instrumental vari-
ables of dimension N×L with L ≥ K and Cov[Z,η] = 0. The moment conditions should
satisfy E[hn(β)] = 0 with

h(β̂) =
1

N

N∑
n=1

hn(β̂) =
1

N
Z⊤η̂.

In a linear regression model, Z is replaced with X.4 The estimated parameters from the

4See Chapter 13.6 of Greene, 2017 for complete details.
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moment conditions derived in Equation (E.11) are

β̂ = argβ minh(β)⊤Wh(β) =
[
(X⊤Z)W(Z⊤X)

]−1
(X⊤Z)W(Z⊤y),

where W is a weighting matrix of dimensionL×L. The parameters have following asymp-
totic property:

√
N
(
β̂ − β

)
→ N

(
0,
[
(X⊤Z)W(Z⊤X)

]−1
(X⊤Z)WΩ̃W(Z⊤X)

[
(X⊤Z)W(Z⊤X)

]−1
)
,

where Ω̃ = Z⊤ΩZ. If W is chosen to be proportional to Ω̃−1, the asymptotic expression
simplifies to

√
N
(
β̂ − β

)
→ N

(
0,
[
(X⊤Z)Ω̃−1(Z⊤X)

]−1
)
.

In practice, since Ω is typically unknown, an iterative procedure is employed. Initially, we
set Ŵ(0) =

(
Z⊤Z

)−1 and obtain

β̂(0) =
[
(X⊤Z)

(
Z⊤Z

)−1
(Z⊤X)

]−1

(X⊤Z)
(
Z⊤Z

)−1
(Z⊤y).

With Ŵ(1) =
(

Z⊤Ω̂(η̂(1))Z
)−1

, where Ω̂(η̂) is a function of the residuals, the subsequent
step estimator would be

β̂(1) =

[
(X⊤Z)

(
Z⊤Ω̂(η̂(1))Z

)−1

(Z⊤X)

]−1

(X⊤Z)
(

Z⊤Ω̂(η̂(1))Z
)−1

(Z⊤y).

If Z = X, each step (i) estimates simplifies to

β̂(i) = (X⊤X)−1(X⊤y),

since the choice of the weighting matrix is inconsequential.5 Consequently, only a single

5When the GMM problem is exactly identified, there is a unique solution; therefore, the weighting matrix
is irrelevant.
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step is necessary, resulting in the Ordinary Least Squares (OLS) estimation.

E.10 Confidence Interval and Ellipse

This Online Appendix explains how we compute our p-value for the parameter average and
the coverage ratio, along with the Sargan–Hansen J-test. After conducting simulations for
S = 1000 independent trajectories using the procedure described in Section 4.3 with the
parameter values θ∗ (1× p), we obtain the observables Ot+1 = {RVt,t+1, Rt,t+1, RQt,t+1}
at each time step. These observables, along with the GMM procedure outlined in Ap-
pendix C.6, allow us to estimate our parameters depending on the specific model used.
Consequently, we obtain S sets of parameter estimates θ̂ (S× p) corresponding to the true
parameters θ∗ used in the simulations.

E.10.1 Parameter average

If θ̂s (1× p) is the point estimate for the sth simulated path, we define the estimator for θ∗

as the average of the optimized parameters θ̂s, that is

θ̄ =
1

S

S∑
s=1

θ̂s.

We estimate the covariance matrix, denoted as Σ̂ (p× p), with

Σ̂ =
1

S − 1

S∑
s=1

(
θ̂s − θ̄

)⊤ (
θ̂s − θ̄

)
.

For S large enough, the estimator θ̄ tends to a multivariate normal distribution, that is

√
SΣ̂−1/2

(
θ̄ − θ∗)→ N (0, 1) .
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Thus, the quantity

S
(
θ̄ − θ∗)⊤ Σ̂−1

(
θ̄ − θ∗) ,

follows a chi-squared distribution with p degrees of freedom, which can be used for hy-
pothesis testing and constructing confidence intervals. The p-value is calculated with

p-valueavg = 1− FX ,p

(
S
(
θ̄ − θ∗)⊤ Σ̂−1

(
θ̄ − θ∗)) ,

where FX ,p is the cumulative function of the chi-squared distribution with p degrees of
freedom.

E.10.2 Coverage ratio

To compute the coverage ratio on all the parameters, we individually test each simulation
s to see if it rejects the chi-squared distribution at a confidence level of α = 0.05, which is

ĈRs =
(
θ̂s − θ∗

)⊤
Σ̂−1

(
θ̂s − θ∗

)
< F−1

X ,p(1− α),

where F−1
X ,p(1−α) represents the inverse of a chi-square distribution with probability 1−α

and degrees of freedom p. The estimator for the overall coverage ratio (1− α), denoted as
ĈR, is calculated as follows

ĈR =
1

S

S∑
s=1

ĈRs.

Since we have S independent coverage ratios, we can compute a p-value for ĈR

p-valueCR = 2

(
1− Φ

(
|ĈR− (1− α) |√

(1− α)α/S

))
.
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E.10.3 Sargan–Hansen J-test

For each trajectory and under some standard regularity conditions, we do as in Bollerslev
and Zhou, 2002 and define the test6 defined as

T
(
ḡθ̂s

)⊤
Ŵ−1

θ̂s

(
ḡθ̂s

)
→ X 2

m−p, (E.12)

with ḡθ̂s
= 1

T

∑T
t=1 gt,θ̂s

, p as the number of parameters and m the number of moments
in the GMM. Ŵ−1

θ̂s
is the weighting matrix of the second step of the GMM for trajectory

s. gt,θ̂s
represents the vector of moment conditions at each time step t, see Section 4.4 for

examples.

6The test is also derived in Jiang and Oomen, 2007 and Bolko et al., 2023. See Lemma 4.2 of Hansen,
1982 for additional reference.
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