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Résumé

La crise de 2008 a révélé les implications systémiques du risque de contrepartie lorsque

la faillite de Lehman Brothers, un acteur majeur sur le marché de gré à gré, a déclenché une

instabilité généralisée. En réponse, les institutions financières et régulateurs ont adopté des

mesures permettant de se protéger du risque de contrepartie, dont l’ajustement de la valeur

de crédit (AVC, mieux connu sous le vocable de CVA en anglais).

Le CVA représente la valeur de marché du risque de contrepartie. Il permet d’ajuster la

valeur d’un contrat pour tenir compte d’un défaut potentiel. Le Comité de Bâle préconise

l’utilisation du CVA pour gérer le risque de contrepartie, et recommande aux institutions

financières de maintenir des réserves de capital adéquates sur la base de la valeur du CVA.

Estimer avec précision le CVA est par conséquent important pour assurer la compétitivité

et la résilience des institutions.

Cette thèse traite du calcul du CVA dans le cas de portefeuilles sujets à un accord

de compensation comportant des titres avec possibilité d’exercice anticipé. La compen-

sation, en consolidant la valeur de contrats bilatéraux en cas de défaut, est une pratique

d’atténuation du risque de contrepartie. Elle se traduit généralement par un CVA inférieur

à la somme des CVA individuels, du fait de la diminution globale du risque de contrepar-

tie. Cependant, un accord de compensation peut modifier la stratégie d’exercice des in-

struments financiers avec possibilité d’exercice anticipé.



Cette thèse présente une approche pour l’évaluation du CVA (ou BVA dans le cas de

risque bilatéral) pour des portefeuilles d’instruments dérivés comportant des caractéris-

tiques d’exercice anticipé, lorsque ces portefeuilles sont soumis à un accord de compensa-

tion. À notre connaissance, il s’agit de la première analyse des effets de la compensation

sur l’évaluation du risque de contrepartie lorsque les deux parties ont des droits d’exercice

anticipé.

Dans le premier essai, nous développons un modèle récursif pour déterminer la valeur

d’un jeu à somme nulle représentant l’interaction entre les deux parties. Cette valeur

permet de calculer le CVA/BVA en la comparant à celle d’un portefeuille équivalent, mais

sans risque. La solution par programmation dynamique caractérise l’ajustement comme

une fonction des divers facteurs risque, de la composition du portefeuille, en tout moment

jusqu’à l’échéance.

Dans le deuxième essai, nous montrons comment les accords de compensation peu-

vent modifier les stratégies d’exercice, même en cas de risque unilatéral. Nous illustrons

également l’impact de la variation de divers paramètres sur les stratégies d’exercice. Nos

résultats remettent en question les méthodes conventionnelles d’évaluation du CVA qui

négligent l’effet d’un accord de compensation sur le risque de contrepartie et sur les straté-

gies d’exercice.

Dans le troisième essai, nous estimons le quantile (VaR) du CVA pour divers horizons

dans le cas de portefeuilles comportant un accord de compensation. Contrairement à ce

qui pourrait être attendu, nous constatons que la présence d’un accord de compensation

n’atténue pas systématiquement les valeurs extrêmes du CVA. Il est même possible que

la volatilité du CVA augmente en cas de compensation, en raison de la modification des

décisions d’exercice anticipé, qui affectant l’exposition au risque.
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Abstract

The 2008 financial crisis revealed the systemic implications of counterparty credit risk

(CCR) when the bankruptcy of Lehman Brothers, a major over-the-counter (OTC) market

player, triggered widespread instability. In response, financial institutions and regulators

adopted measures to protect against CCR, including credit valuation adjustment (CVA).

The CVA represents the market value of counterparty credit risk. It adjusts the value

of a contract to account for the counterparty’s potential default. The Basel Committee

advocates for using CVA to manage CCR and mandates financial institutions to maintain

adequate capital reserves based on the CVA calculation. Thus, accurately estimating CVA

is important to ensure the competitiveness and resilience of institutions.

This thesis addresses the calculation of CVA for portfolios subject to a netting agree-

ment involving securities with early exercise features. Netting, by consolidating the value

of bilateral contracts in the event of default, is a CCR mitigation practice. It generally re-

sults in a lower CVA than the sum of individual CVAs, due to offsetting positions reducing

overall CCR exposure. However, a netting agreement can change the exercise strategy of

financial instruments with early exercise features.

This thesis presents an approach for the valuation of CVA (or BVA in the case of

bilateral risk) for portfolios of derivative instruments with early exercise features, when

these portfolios are subject to a netting agreement. To our knowledge, this is the first

vii



analysis of the effects of netting on CCR valuation when both parties have early exercise

rights.

In the first essay, we develop a recursive model to determine the value of a zero-sum

game representing the interaction between the two parties. This value allows the calcula-

tion of CVA/BVA by comparing it to that of an equivalent portfolio, but without risk. The

dynamic programming solution characterizes the adjustment as a function of the various

risk factors, the portfolio composition, at any time until maturity.

In the second essay, we show how netting agreements can change exercise strategies,

even for the party that is not exposed to CCR. We also illustrate the impact of changing

various parameters on exercise strategies. Our results call into question conventional CVA

valuation methods that neglect the effect of a netting agreement on CCR and exercise

strategies.

In the third essay, we estimate the Value-at-Risk (VaR) of the CVA for various horizons

in the case of portfolios with a netting agreement. Contrary to expectations, we find that

the presence of a netting agreement does not systematically mitigate CVA extreme values.

It is even possible for CVA volatility to increase with netting, due to changes in early

exercise decisions affecting risk exposure.

Keywords

Counterparty risk, CVA, BVA, Early exercise, Netting, CVA VaR.

Research methods

Dynamic programming, Game theory, Mathematical modeling.
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Introduction

Risk management has evolved from a protection mechanism into a central component

in financial decision-making. This evolution is due to the rising complexity of financial

markets, the emergence of innovative instruments, and the increased interconnectedness

of global economies. Today, risk management enables informed decisions that shape in-

stitutions’ trajectories, and influence capital allocation, product development, and market

entry.

One critical aspect of risk management that has gained prominence is Counterparty

Credit Risk (CCR). CCR is the risk that a counterparty in a financial contract may default

or fail to meet its obligations, leading to potential financial loss for the other party. This

element of risk management has gained significant prominence, particularly in the context

of the Over-the-Counter (OTC) market. The OTC market is a domain of customized fi-

nancial contracts, traded away from public view, yet holding significant impact on global

financial stability.

The over-the-counter (OTC) market facilitates the direct exchange of various financial

instruments such as derivatives, swaps, and forwards. These instruments address specific

risk management, hedging, and speculation needs, making them key tools for financial in-

stitutions and companies. The scale of the OTC derivatives market is immense - the Bank

for International Settlements estimates the notional value of outstanding OTC derivatives



exceeded $600 trillion as of June 2022, see OTC derivatives statistics at end-June 2022

(2022). This vast market not only offers companies avenues for raising capital but also

provides investors with a broader investment spectrum, enhancing liquidity. However, the

decentralized nature and lack of a centralized clearinghouse amplify counterparty credit

risk in the OTC market. Consequently, implementing rigorous risk management strate-

gies and regulatory measures is necessary to mitigate adverse effects and ensure financial

stability.

The 2008 financial crisis highlighted the far-reaching impacts of CCR on the financial

system. The 2008 global financial crisis highlighted the systemic risks posed by coun-

terparty credit risk (CCR) in the OTC market. The failure of Lehman Brothers, a major

OTC derivatives participant, triggered a chain reaction of defaults that led to widespread

instability. This demonstrated the potential for a single institution’s failure to produce a

systemic crisis in an interconnected system. The crisis underscored inherent OTC market

vulnerabilities and the critical need for robust risk management tools and strict regulations

to protect against such events. In response, financial institutions and regulators world-

wide focused on risk management tools, one being the credit valuation adjustment (CVA).

While CVA was not a new concept (refer to Duffie and Singleton (2003), Bielecki and

Rutkowski (2004), and Brigo and Masetti (2005) for early review), the crisis emphasized

its critical role and need for its careful implementation.

CVA serves as a modification to the fair value of derivative contracts, accounting for

CCR. It quantifies the market value of credit risk embedded in a transaction. CVA can

also be viewed as an expected discounted loss - a measure of the potential loss a financial

institution could incur due to a counterparty’s default, discounted to its present value. This

perspective underscores CVA’s risk management role.

The Basel Committee on Banking Supervision has introduced the Basel Accords, reg-

ulatory frameworks aimed at strengthening banking regulation, supervision, and risk man-
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agement. The Basel II Accord marked a significant shift in the regulatory landscape for

financial institutions in CCR management. It mandated that banks maintain adequate capi-

tal to cover potential counterparty credit losses, a requirement directly influenced by CVA.

By quantifying risk for each counterparty, CVA plays a crucial role in determining the

capital banks must set aside.

The Basel III Accord, see Basel III: A global regulatory framework for more resilient

banks and banking systems (2011), has placed a renewed emphasis on CVA. It requires

financial institutions to calculate a CVA risk capital charge, which is an amount of capital

that banks must set aside to absorb potential losses from CVA fluctuations due to changes

in counterparty credit spreads and market factors. Introducing the CVA risk capital charge

has not only increased capital requirements but also necessitated a more integrated ap-

proach to accurately measure and manage this risk.

The accuracy of CVA calculations holds significant implications for an institution’s fi-

nancial health. Overestimating CVA can lead to excessive risk provisions, over-allocation

of capital, and diminished returns and competitiveness. Conversely, underestimating CVA

results in an inadequate buffer against potential losses, exposing the institution to height-

ened risk and instability. Therefore, a precise CVA level protects the institution’s interests

and ensures sound risk management.

Several factors shape CVA computation, including the counterparty’s default likeli-

hood, exposure at default, and underlying asset market risk. Exposure at default (EAD)

assesses the potential loss if a counterparty defaults, representing the positive mark-to-

market value of a contract at the default date. This introduces non-linearities in counter-

party risk pricing, making CVA akin to a zero-strike call option on a default-free asset, but

with a twist. The "option’s" maturity date is not fixed but tied to the counterparty’s poten-

tial default date. This means pricing a CVA can be as, if not more, intricate as pricing the

derivative instrument itself.
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Calculating CVA is relatively straightforward for simple financial instruments like

bonds or European options, thanks to analytical formulas. However, complexity increases

for products with early exercise features. Here, counterparty risk can alter the exercise

strategy, making CVA more than a simple expected loss. The early exercise decision de-

pends not just on market conditions but also on counterparty credit risk. If that risk is high,

the option holder may exercise earlier to reduce exposure, significantly affecting the CVA

value.

The CVA computation becomes even more complex when considering a portfolio of

contracts under a netting agreement. Netting, commonly used to mitigate counterparty

credit risk, refers to the agreement that should a default occur, all transactions between the

two parties will be consolidated and treated as one. This is particularly beneficial when

a financial institution has multiple derivatives with the same counterparty, as it allows

balancing positive and negative exposures, thereby reducing potential loss upon default.

CVA assessment fulfills two primary roles: modifying pricing to reflect counterparty

risk and determining regulatory capital needs for effective risk management. In the con-

text of netted portfolios, the emphasis is predominantly on calculating the capital charge,

owing to the risk mitigation advantages provided by netting agreements. Effective CVA

assessment enables firms to balance risk management, capital planning, and regulatory

compliance for consolidated exposures across netted portfolios.

When the netted portfolio contains derivatives with early exercise opportunities, the

exercise decision for each claim cannot be made individually. It can depend on the condi-

tion of all contracts and the default probabilities of parties. This interdependence within

a portfolio adds another layer of complexity to CVA computation. To benefit from the

mitigating effect of netting on counterparty credit risk, it is imperative to compute CVA

values at the portfolio level rather than individual contracts, accounting for the complex

interplay between various risk factors, default probabilities, and exercise decisions.
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Moreover, achieving this level of accuracy in CVA evaluation can be computationally

challenging. The portfolio-level calculation may necessitate advanced computational tech-

niques to handle the high dimensionality. High dimensionality arises from the multitude of

risk factors influencing the contracts within the netted portfolio. As the number of factors

increases, computational complexity grows exponentially, making it difficult for tradi-

tional methods to cope. Despite these challenges, the benefits of accurate portfolio-level

CVA computation far outweigh the costs, justifying the investment for financial institu-

tions.

In situations where both contract parties have a default probability, CVA alone does

not fully capture the intricacies of counterparty credit risk. It neglects the potential im-

pact of the institution’s own default risk on the risk adjustment value. To address this gap,

the Bilateral Valuation Adjustment (BVA) was introduced, incorporating both CVA and

the institution’s credit risk, known as Debt Valuation Adjustment (DVA). This dual risk

perspective embodied in BVA provides a more comprehensive CCR measure, acknowl-

edging risk as a two-way street where both parties’ creditworthiness plays a crucial role in

determining the overall contract risk.

This thesis comprehensively examines CCR within netting agreements. It offers an

in-depth understanding of the dynamics of CCR and netting agreements on managing

portfolios with derivatives having early exercise features, and evaluating risk adjustments

for these portfolios.

The first essay develops an approach for calculating risk adjustment values (CVA or

BVA) for a portfolio of options subject to CCR. It focuses on general situations where

both parties have early exercise opportunities and are exposed to default risk. We show

netted sets are dynamic games when both parties have early exercise chances. We intro-

duce a model embodying strategic interactions among parties and a dynamic programming

algorithm to determine the netted portfolio value and optimal exercise strategies. It also
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contains numerous illustrations offering a deeper understanding of risk adjustment values

within the context of netting agreements.

Our goal in the second essay is to fill an existing literature gap by providing valuable

insights into managing options with early exercise opportunities within a netted portfolio.

We offer a thorough analysis of the impact of default risk under netting agreements on the

exercise strategy of Bermudan options. The essay also critically examines conventional

methodologies used for assessing the risk adjustment value of netted portfolios, arguing

these methods often neglect the role of netting on the exercise mechanism, potentially

leading to misestimation of CVA and BVA.

In the third essay, we leverage the CVA pricing model from the first essay to assess

CVA variability across risk horizons in netted portfolios. Our objective is exploring the

impact of netting agreements on CVA tail risk. Through numerical experiments, we show

the influence of netting on CVA tail risk is not as straightforward as its general CVA reduc-

tion ability. Complex dynamics from the interplay of netting agreements, early exercise

frequencies, and default probabilities result in distinct outcomes for each case. Therefore,

conducting thorough, portfolio-specific analyses is crucial to accurately evaluate these ef-

fects.

The remainder of this thesis is organized into five chapters. Chapter One provides

a literature review. Chapter Two presents the first essay, introducing the approach for

calculating risk adjustment values for netted portfolios subject to CCR. Chapter Three,

including the second essay, examines how default risk influences exercise strategies for

Bermudan options under netting. Chapter Four, presenting the third essay, explores the

impact of netting on CVA tail risk. The thesis concludes with Chapter Five, summarizing

key findings and implications.
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Chapter 1

Literature Review

1.1 The Evolution of CVA and Netting Research

The computation of Credit Valuation Adjustment (CVA) has been a key focus of exten-

sive research, as various models have been proposed to address the impact of Counterparty

Credit Risk (CCR) on financial contract values. These models can generally be divided

into two main categories: structural and intensity models.

Structural models, as the name suggests, are based on the structure of the firm’s balance

sheet. First introduced by Merton (1974), these models utilize variables such as a firm’s

debt-to-equity ratio or asset value to predict default likelihood. The fundamental assump-

tion is that default occurs when a firm’s liabilities exceed its assets at debt maturity. This

approach offers a comprehensive perspective on credit risk by considering the complex

interplay between a firm’s assets, liabilities, and equity. Notable works on the structural

credit risk framework include Hull and White (1995), Klein (1996), Leland (1998), and

Zhou (2001).

Intensity models, on the other hand, are based on the hazard rate, which represents the



instantaneous probability of default. First proposed by Jarrow and Turnbull (1995), these

models assume default events result from exogenous jump processes. The key advantage

is their ability to capture the randomness of defaults and ease of calibration to market data.

Significant contributions to the literature on credit risk intensity models include Lando

(1998), Duffie and Singleton (1999), and Brigo and Alfonsi (2005).

Regardless of the chosen model—structural or intensity—the CVA for European-style

options can be achieved through an analytical formula. Moreover, for advanced cases with

many stochastic factors or complex correlation structures, semi-analytical approaches have

recently been proposed to compute the CVA for European-style options (see Kim and Le-

ung (2016), Brigo and Vrins (2018), and Antonelli, Ramponi, and Scarlatti (2022)). How-

ever, American-style options, exercisable before expiration, lack a closed-form solution.

The potential for early exercise requires incorporating an optimal stopping problem into

the CVA computation, adding complexity. The holder must determine the best exercise

time, and the interplay between defaults and early exercise must be considered.

In the context of contracts with optional exercise features, financial institutions often

employ simulation-regression techniques, primarily based on Least Square Monte Carlo

(LSMC), for CVA computation (see Longstaff and Schwartz (2001), Tsitsiklis and Van

Roy (2001), Glasserman (2004), and Broadie, Glasserman, et al. (2004)). As explained in

Cesari et al. (2009) and Brigo, Morini, and Pallavicini (2013), these methods consider ex-

ercise policy and counterparty risk as independent phenomena. However, Klein and Yang

(2013) and Breton and Marzouk (2018) have shown that counterparty risk can influence

exercise behavior, suggesting they should not be treated in isolation.

Building on the topic of netted portfolio valuation, this review turns to exploring var-

ious issues in calculating risk adjustments under netting agreements. As noted by Brigo

and Masetti (2005), netting agreements offer a means to decrease counterparty credit risk,

as the CVA of a netted portfolio is often less than the sum of individual CVAs. This
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is predominantly driven by offsetting positions within the portfolio, which reduce overall

exposure. Notably for derivatives products, this benefit is evident in portfolios with a com-

bination of long and short positions towards a counterparty, underscoring the importance

of calculating CVA at the portfolio level rather than per claim.

To address this need, Brigo and Masetti (2005) introduced an approximate formula

to assess the CVA of a netted portfolio of interest rate swaps, assuming counterparty de-

fault follows an intensity model. Building on this, Brigo and Pallavicini (2007) employed

Monte Carlo techniques to evaluate the CVA for a netted portfolio of swaps, accounting

for the correlation between defaults and interest rates.

The exploration of bilateral risk for netted portfolios has also been the focus of nu-

merous studies. Key contributions to discussions around assessing bilateral counterparty

risk for individual claims have been made by Brigo and Capponi (2008), Brigo, Buescu,

and Morini (2011), and Gregory (2017). For netted portfolios, Brigo, Pallavicini, and Pa-

patheodorou (2009) extended the work of Brigo and Pallavicini (2007), showing that risk

adjustment with both parties at default risk involves a long position in a put option and

a short position in a call option, both with zero strikes. These options are written on the

residual net portfolio value at relevant default times. Furthering this, Durand (2010) pro-

posed an iterative evaluation procedure for the bilateral CVA (BVA) of a netted portfolio.

Recent studies have delved deeper into the challenges of evaluating netted portfolios,

focusing on complications from netting agreements. Burgard and Kjaer (2017) and Brigo,

Francischello, and Pallavicini (2019) studied portfolios across various netting sets with dif-

ferent defaultable counterparties. As emphasized by Brigo, Francischello, and Pallavicini

(2019), counterparty credit risk introduces inherent nonlinearity, such that overall port-

folio value differs from the sum of netting set values. Additionally, Ballotta, Fusai, and

Marazzina (2019) introduced a structural method to compute CVA for a netted portfolio,

analyzing the impacts of collateralization and wrong-way risk on CVA.
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While the existing literature on risk adjustment evaluation with netting agreements pro-

vides a substantial foundation, it predominantly focuses on European-style contracts. This

leaves a significant gap concerning portfolios incorporating early exercisable contracts.

To the best of our knowledge, the only study venturing into this domain is Andersson and

Oosterlee (2020), which considers the early exercise feature for only one party in the net-

ting agreement. It proposes a deep learning technique to estimate the exercise policy of

portfolio options and the CVA. Therefore, there is a clear opportunity for further research

to delve deeper into this under-explored area. By doing so, we can gain a more compre-

hensive understanding of the intricate interplay between CVA, netting, and early exercise

features, significantly enhancing our knowledge in managing counterparty credit risk.

1.2 The Methodological Evolution in this research

The CVA can be determined by differentiating between the value of a position exposed

to counterparty credit risk (CCR) and a similar position not subject to this risk. This per-

spective allows us to view CVA calculation as valuing a contract or portfolio of contracts

in the presence of CCR.

Dynamic programming (DP) is a well-established technique for pricing American-style

financial contracts and determining optimal exercise policies. As an optimization tech-

nique, DP excels at solving recursive problems in Markov decision processes (MDPs).

MDPs are mathematical structures used for modeling decision-making in stochastic dy-

namic environments. For a detailed understanding of DP and MDPs, refer to Bertsekas

(2012). Formulating American financial derivatives as MDPs enables applying DP for

pricing such contracts and determining optimal exercise policies. For further reading on

evaluating derivatives with early exercise features in the absence of CCR, consider Ben-

Ameur, Breton, and L’Ecuyer (2002), chapter 8 of Glasserman (2004), Ben-Ameur, Bre-
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ton, Karoui, et al. (2007), and Breton and Frutos (2012).

1.2.1 Dynamic Games: A Multi-Agent Framework for Portfolio

Evaluation

In the presence of counterparty credit risk (CCR), Breton and Marzouk (2018) demon-

strates that dynamic programming (DP) is an effective method for valuing a single con-

tract. This method accounts for the interdependence of exercise behavior and counterparty

risk, enabling the accurate computation of credit valuation adjustment (CVA) and optimal

exercise strategies throughout the contract’s lifespan. Thus, it overcomes the limitations

of prevalent simulation-regression techniques, which often incorrectly assume exercise

policy and default events are independent occurrences. This can potentially result in sub-

optimal exercise behavior and imprecise CVA calculations.

The evaluation scenario evolves when transitioning from a single-agent dynamic prob-

lem to a multi-agent environment with multiple decision makers, similar to portfolio eval-

uation under a netting agreement. Here, both parties can make decisions regarding ex-

ercising the contracts within the portfolio. This shift necessitates introducing a Dynamic

Game to accommodate the interdependence of decision-makers.

Dynamic games model sequential strategic interactions between agents selecting ac-

tions from a set of possible choices. These strategic decisions are made simultaneously

and independently, but their outcomes are interdependent, creating a dynamic interaction.

In a dynamic game, the prevailing conditions of the game at a particular moment are repre-

sented by states. The actions undertaken by the agents cause these states to evolve, leading

to different possible future states. The model’s future state then depends not only on the

current state and one party’s decisions but also on other parties’ decisions.

Game theory, a branch of mathematics examining strategic interactions, provides the

11



theoretical foundation for dynamic games. It offers a framework to analyze how rational

decision-makers select strategies to maximize their benefits given others’ choices. In this

context, equilibrium strategies represent joint decisions where no agent has an incentive

to deviate. For a comprehensive review of games and dynamic games, refer to Fudenberg

and Tirole (1991) and Haurie, Krawczyk, and Zaccour (2012).

Dynamic games offer a relevant framework for evaluating netted portfolios, where one

party’s actions can significantly impact portfolio value and the other party’s decisions. This

section traced the progression from dynamic programming to dynamic games, having the

potential to evaluate netted portfolios with early exercisable contracts under counterparty

credit risk (CCR). This study aims to apply these methodologies to unravel CVA evalua-

tion complexities under netting agreements, offering a unique perspective not previously

explored. Further sections will demonstrate applying dynamic games and refinements to

address real-world complexities in netted portfolio valuation.
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Chapter 2

Counterparty Risk under Netting

Agreements: A Dynamic Game

Interpretation

2.1 Introduction

In the complex world of over-the-counter (OTC) contracts, the Credit Valuation Ad-

justment (CVA) has become an essential tool for accounting for counterparty credit risk

(CCR). The CVA modifies the default-free valuation of an OTC contract to reflect the

potential losses if the counterparty fails to meet its payment obligations. Calculating the

CVA requires differentiating between the value of a position exposed to CCR (default-

able) and an equivalent position without counterparty risk (default-free). Brigo, Morini,

and Pallavicini (2013) and Gregory (2012) provide an extensive review of credit risk eval-

uation.

As explained in Breton and Marzouk (2018), evaluating claims with early-exercise



features under CCR poses challenges, mainly due to the influence of counterparty risk

on the optimal exercise strategy. A dynamic programming (DP) approach offers a viable

solution, allowing concurrent computation of a defaultable claim’s value and the exercise

strategy adjusted for CCR. Breton and Marzouk (2018) demonstrates this methodology’s

efficiency for low-dimensional state spaces.

A pivotal mechanism for alleviating CCR is netting, a common agreement among

counterparties managing large portfolios of OTC derivative products. Netting involves

the aggregation of contractual obligations, translating them into net cash flows from one

party to the other over the contract’s lifespan. Under a netting agreement, all financial

obligations are offset upon one counterparty’s default. The inclusion of derivatives with

early exercise features in the netted portfolio adds another layer of complexity to credit

risk evaluation, as the exercise strategies of both parties could be influenced by netting.

As we broaden our analytical lens, we begin to see the emergence of a new paradigm

where both contractual parties are subject to CCR. This bilateral perspective, as Brigo,

Buescu, and Morini (2011) points out, has gained relevance in the post-2008 financial

crisis era, an era marked by multiple default events involving financial institutions. The

traditional assumption of unilateral default risk seems increasingly untenable in the con-

temporary financial environment. In such bilateral risk contexts, the adjustment, referred

to as the Bilateral Valuation Adjustment (BVA), is contingent upon the first-to-default risk.

(see Brigo, Buescu, and Morini (2011)).

In light of these complexities, this chapter aims to propose a novel approach for com-

puting the risk adjustment value (CVA or BVA) for a portfolio of options subject to CCR

when the parties have early exercise opportunities and are involved in a netting agree-

ment. We introduce a model that captures the strategic interactions among the parties in

the evaluation of a vulnerable options portfolio within a netting agreement. Complement-

ing this, we introduce a recursive algorithm for determining the netted portfolio value and
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optimal exercise strategies of both parties, thereby offering an approach to tackling CCR

challenges within netting agreements.

2.1.1 Content and Organization

In this chapter, we initiate our discussion with a simplified example to illuminate the

strategic aspect of netting when parties hold options with early exercise features, giving

rise to a dynamic zero-sum game between the counterparties. Subsequently, we introduce

a model, underpinned by a dynamic programming technique, that facilitates the evaluation

of a netted derivatives portfolio under Counterparty Credit Risk (CCR) and, correspond-

ingly, the risk adjustment for both parties. This approach enables the efficient computation

of the CVA and the BVA for a low-dimensional netted portfolio.

We employ a robust array of numerical illustrations to analyze risk adjustments within

the framework of netting agreements. We delve into the implications of neglecting net-

ting in risk adjustment evaluations for a netted portfolio, supported by relevant examples.

Moreover, we elucidate the influence of variation in various elements, notably the default

risk of the involved parties, on the magnitude of the final adjustment applicable to them.

The chapter is structured as follows: Section 2.2 serves as the motivation, illustrating

the effect of netting and CCR on optimal exercise behavior. Section 2.3 introduces the

dynamic game model, a tool designed to evaluate the risk adjustment of the portfolio

within the context of the netting agreement. Section 2.4 provides illustrative examples and

numerical results, while Section 2.5 concludes the chapter, summarizing the key insights

and implications of our research.
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2.2 Motivating Example

Consider two parties, named C1 and C2, involved as counterparties in a portfolio of two

Bermudan put options, identified by O1 and O2, where Ci has a long position on Oi and

a short position on O3−i, i = 1,2. Since all the cashflows generated by this portfolio are

from C1 to C2 or conversely, the value of the portfolio from the point of view of C1 is the

negative of its value from that of C2. Assume that both parties can exercise their option at

a single given date before maturity (the decision date).

Table 2.1 provides the exercise and holding values of the two Bermudan put options

at the decision date, in the absence of CCR. From these values, it is straightforward to

conclude that both parties should hold. The value of the portfolio is then v1 = h1−h2 = 1

for C1 (and v2 =−1 for C2).

O1 O2
Exercise value e1 = 8 e2 = 6
Holding value h1 = 10 h2 = 9

Table 2.1: Exercise and holding value of options O1 and O2 at the decision date from the respective
viewpoints of their holder, when both parties are risk-free.

Now suppose that there is a p2 = 0.3 probability that C2 defaults, so that C1 does not

recover anything upon maturity of O1. Table 2.2 shows the updated exercise and holding

values of both options, where the expected holding value ĥ1 accounts for counterparty

default risk. In that case, it becomes optimal for C1 to exercise O1, and the portfolio value

for C1 is now v1 = e1−h2 =−1.

O1 O2
Exercise value e1 = 8 e2 = 6
Holding value ĥ1 = (1− p2)h1 = 7 h2 = 9

Table 2.2: Exercise and holding value of options O1 and O2 at the decision date from the respective
viewpoints of their holder when the default probability of C2 is p2 = 0.3.
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Note that the exercise strategy is modified by the presence of CCR. Using the risk-free

exercise strategy to value this portfolio would result in the erroneous value of ĥ1−h2 =−2.

Now suppose that the portfolio is subject to a netting agreement, so that the contractual

cash-flows are no longer independent. Assuming that the probability of default by C2 is

p2 = 0.3, Table 2.3 contains the cash-flows from C2 to C1 under a netting agreement in the

form of a matrix game, where C1 (resp. C2) is the row (resp. column) player and where E

(resp. H) stands for "exercise" (resp. "hold").

C2

E H

C1
E e1− e2 = 2 e1−h2 =−1
H ĥ1− e2 = 1 (1− p2)

(
h1−h2

)
= 0.7

Table 2.3: Matrix-game representation of the netted portfolio’s value from the viewpoint of C1
at the decision date. Risk-free holding and exercise values are provided in Table 2.1. Default
probability of C2 is p2 = 0.3.

Table 2.3 is a representation of a zero-sum matrix game where C1 is the maximizer

and C2 is the minimizer. The security strategy for C1, maximizing the worst (smallest)

outcome, is to hold, which guarantees an outcome of at least 0.7. Conversely, the security

strategy for C2, minimizing the worst (largest) outcome, is also to hold, which guarantees

an outcome of at most 0.7. In that specific example, the security strategies yield the same

expected outcome, so that each party’s decision is the optimal response to the other’s, and

neither party has an incentive to depart from it, yielding a Nash equilibrium. In that case,

the equilibrium strategy consists of holding both options, and the equilibrium value of the

netted portfolio is 0.7.

Since C1 is the only party vulnerable to CCR, the CVA for C1 is computed by deducting

the value of the vulnerable portfolio from that of the corresponding risk-free portfolio.

Results are reported in Table 2.4. Examination of Table 2.4 shows that both CCR and
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Case
Decisions

portfolio value (C1) CVA
O1 O2

Risk-free H H h1−h2 = 1 −
CCR without netting E H e1−h2 =−1 2

CCR with netting H H (1− p2)
(
h1−h2

)
= 0.7 0.3

Table 2.4: Impact of CCR and of netting on exercise decisions and CVA. Risk-free holding and
exercise values are provided in Table 2.1 and default probability of C2 is p2 = 0.3.

netting affect the exercise strategy and, therefore, the CVA. One also observes that netting

does reduce the portfolio’s CVA in this case.

We now consider the case of bilateral counterparty risk by assuming a default proba-

bility of p1 = 0.25 for C1 and p2 = 0.15 for C2. Table 2.5 reports the exercise and holding

values of the vulnerable options, without netting, at the decision date. In that case, the

optimal decision for both parties is to hold its option, and the value of the portfolio for C1

is v1 = ĥ1− ĥ2 = 1.75.

O1 O2
Exercise value e1 = 8 e2 = 6
Holding value ĥ1 = (1− p2)h1 = 8.5 ĥ2 = (1− p1)h2 = 6.75

Table 2.5: Exercise and expected holding values of O1 and O2 at the decision date from the re-
spective viewpoints or their holder when the default probabilities of C1 and C2 are respectively
p1 = 0.25 and p2 = 0.15.

Table 2.6 reports the cash-flows from C2 to C1 in the presence of a netting agreement

and bilateral counterparty risk. According to these values, the security strategy of C1 is to

exercise O1 and that of C2 is to hold O2, guaranteeing in both cases a portfolio value of

v1 = 1.25. The strategy pair (E,H) is then a Nash equilibrium for the matrix game, and

differs from the optimal strategies obtained when there is no netting agreement.

Similar to the CVA, the BVA is computed by subtracting the vulnerable portfolio’s

value from its non-vulnerable counterpart. The BVA can be negative or positive; its sign
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C2

E H

C1
E e1− e2 = 2 e1− ĥ2 = 1.25
H ĥ1− e2 = 2.5 (1− p2)

(
h1−h2

)
= 0.85

Table 2.6: Matrix-game representation of the netted portfolio’s value from the viewpoint of C1
at the decision date. Risk-free holding and exercise values are provided in Table 2.1. Default
probabilities of C1 and C2 are respectively p1 = 0.25 and p2 = 0.15.

depends on the two parties’ relative vulnerability to CCR. The impact of a netting agree-

ment on the exercise decisions of defaultable parties and on the BVA for this example

is summarized in Table 2.7. Again, one observes that netting affects the portfolio’s risk

adjustment value and decreases the absolute value of the BVA.

Case
Decision

portfolio value (C1) BVA
O1 O2

Risk-free H H h1−h2 = 1 −
CCR without netting H H ĥ1− ĥ2 = 1.75 −0.75

CCR with netting E H e1− ĥ2 = 1.25 −.25

Table 2.7: Impact of CCR and netting agreement on exercise decisions and BVA. Risk-free holding
and exercise values are provided in Table 2.1. Default probabilities of C1 and C2 are respectively
p1 = 0.25 and p2 = 0.15.

Finally, Table 2.8 reports an instance where the default probabilities for C1 and C2 are

respectively p1 = 0.1 and p2 = 0.35. In that case, the security maxmin strategy of C1 is

to hold, guaranteeing a payoff of at least 0.5, while the security minmax strategy of C2 is

to hold, guaranteeing a payoff of at most 0.65. The matrix game does not admit a Nash

equilibrium in pure strategies since the minmax and maxmin values do not coincide.1

In such a situation, we can propose various conjectures about the way the parties will

act, which will affect the value of the portfolio. One plausible assumption is that each

1The best response of C2 when C1 holds is to exercise.
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party will adhere to its own security strategy. In the case of the matrix game in Table

2.8, both parties would then choose to hold their option, resulting in a portfolio value of

v1 = 0.65 for C1 (and v2 =−0.65 for C2).

A second assumption is that parties adopt a mixed strategy, that is, they randomize

their decision by choosing a probability to exercise their option at the decision date. This

assumption is founded on the game-theoretical interpretation of managing the netted port-

folio, as zero-sum matrix games always admit a Nash equilibrium in mixed strategies. For

the game presented in Table 2.8, the equilibrium mixed strategy is for C1 to exercise with a

probability of 2/30 and for C2 to exercise with a probability of 1/3. It is straightforward to

check that, if C1 exercises with a probability of 2/30, C2 cannot reduce the expected value

of the portfolio below 0.6 (actually, the value of the portfolio is 0.6 whether C2 exercises

or holds). In the same way, if C2 exercises with a probability of 1/3, C1 can not do better

than an expected value of 0.6. Under this equilibrium mixed strategy, the portfolio value

is then v1 = 0.6.

C2

E H

C1
E e1− e2 = 2 e1− ĥ2 =−0.1
H ĥ1− e2 = 0.5 (1− p2)

(
h1−h2

)
= 0.65

Table 2.8: Matrix-game representation of the netted portfolio’s value from the viewpoint of C1
at the decision date. Risk-free holding and exercise values are provided in Table 2.1. Default
probabilities of C1 and C2 are respectively p1 = 0.1 and p2 = 0.35.

It is interesting to note that in a two-party zero-sum game, if one party has a dom-

inant strategy, a pure strategy Nash equilibrium exists. A dominant strategy represents

the uniformly best choice for a player, regardless of the other’s decision. If counterparty

Ci, i = 1,2 has a dominant strategy, counterparty C3−i’s best response is the pure strategy

that minimizes Ci’s maximum payoff against that dominant strategy. When Ci chooses
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their dominant strategy and C3−i selects the minimizing response, this forms an equilib-

rium in pure strategies, since neither counterparty can unilaterally improve their payoff.

Thereby, the zero-sum property aligns incentives such that one counterparty’s dominance

introduces sufficient structure to yield a mutually optimal equilibrium.

To demonstrate, consider the case where the exercise value of option O1 in our ex-

ample model is e1 = 3 instead of 2. The new matrix game payoffs are shown in Table

2.9, replacing the prior values in Table 2.8. Here, C1 has a dominant strategy to exercise

O1. The best response for C2 is then to hold O2. The strategy pair (E,H) forms a Nash

equilibrium for this matrix game, and the portfolio value is v1 = 0.9. This illustrates how a

dominant strategy for one counterparty provides a structure for both parties to play mutual

best responses, creating a pure strategy Nash equilibrium.

C2

E H

C1
E e1− e2 = 3 e1− ĥ2 = 0.9
H ĥ1− e2 = 0.5 (1− p2)

(
h1−h2

)
= 0.65

Table 2.9: Matrix-game representation of the netted portfolio’s value from the viewpoint of C1 at
the decision date. Risk-free holding and exercise values are provided in Table 2.1, but with modified
exercise value e1 = 3 for O− 1. Default probabilities of C1 and C2 are respectively p1 = 0.1 and
p2 = 0.35.

These simple examples reported in this section illustrate the impact of CCR and netting

on the exercise decisions of the parties and, therefore, on the value of the portfolio. In the

absence of a netting agreement, each claim is examined individually to determine the

optimal exercise strategy, where the holding value of each individual claim is adjusted

to account for the possibility of loss upon default. Under a netting agreement, however,

losses upon default are applied to the net value of the portfolio; specifically, upon default

of C2, losses are only incurred if the net value of the portfolio claims is positive for C1. This

makes the expected payoff for each counterparty dependent on the exercise decisions of the
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other. Clearly, a portfolio of claims should include both positive and negative cashflows

for netting to have an impact on the expected payoffs to the counterparties. When, in

addition, the portfolio includes claims with early exercise features, netting can also impact

the exercise strategy and, therefore, further modify the risk adjustment.

The following section proposes a general model to evaluate a portfolio of claims having

early exercise features under CCR and netting.

2.3 Risk valuation adjustment under CCR and netting

We consider two parties (C1 and C2) involved in a portfolio of claims under a netting

agreement, where the portfolio includes contractual payments in both directions (from C2

to C1 and from C1 to C2), possibly with early exercise features. We assume that both parties

have at least one early exercise opportunity.

Since all cash flows from this portfolio are from one party to the other, its value from

the perspective of one party is the negative of that of the other. In the sequel, the netted

portfolio value is expressed from the perspective of C1.

The essential feature of a netting agreement is the consolidation of contractual obli-

gations upon default of one of the parties. Accordingly, the agreement and the portfolio

ceases to exist on the date of the first default event; at that date, the values of the claims

are netted and the result is recovered by C1 (if positive) or C2 (if negative). Since, on the

date of the first default event, some claims can include optional rights, we will assume in

this paper that, upon default, the value of the netted portfolio corresponds to the expected

value of its future cash flows under a risk- and netting-adjusted exercise strategy.

22



2.3.1 Notation

To simplify the exposition, we assume that the portfolio is composed of n = n1 + n2

Bermudan options with different features (maturity, exercise payoffs and dates, underlying

asset), where C1 holds the optional rights of the first n1 options and C2 holds the optional

rights of the remaining n2 options.2 Let t = 0 denote the inception of the netting contract

and t = T the longest maturity among the n options included in the portfolio. Denote by

(Xt)0≤t≤T the (possibly multidimensional) process of the underlying risk factors, including

the price process of the options’ underlying assets. We assume that (Xt)0≤t≤T is a finite

Markov process, where (Ft)0≤t≤T is the filtration generated by (Xt)0≤t≤T .

Let T = {tm,m = 0,1, ...,M} be a set of discrete evaluation dates that includes all

possible exercise dates for all options in the portfolio, where tM ≡ T . The notation Em[·]

represents the expectation at date tm, under the risk-neutral measure, conditional on no

prior default and on the filtration (Ftm). For j = 1, ...,n, Fm j(x) then denotes the exercise

payoff of option j at (tm,Xtm = x) from the perspective of C1, where Fm j(x) = 0 when

exercise of option j is not allowed at tm.

Let r denote the risk-free interest rate, assumed constant. To simplify the notation,

we assume that evaluation dates are evenly distributed in [0,T ], so that the discount factor

corresponding to a single time step ∆≡ tm+1− tm,m = 0, ...,M−1, is given by β ≡ e−r∆.

We denote by τi the stochastic default date (possibly infinite) of Ci and by ρi ∈ [0,1]

the deterministic recovery rate upon default by Ci, i ∈ {1,2}. The recovery rate is applied

to the netted portfolio value eventually recovered by C3−i.

To compute the CCR valuation adjustment, one needs to compare the value of the

vulnerable portfolio with that of a risk-free portfolio with the same characteristics. It is

important to emphasize that by "risk-free portfolio" in this thesis, we refer to a portfolio

2It is straightforward to adapt the model to the general case of derivatives with multiple contractual cash
flows.
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free of counterparty risk. To this end, we introduce a state vector b = (b1,b2) of binary

variables indicating which options of the portfolio are still alive, that is, for j = 1, ...,n,

b j = 1 if option j has not yet been exercised or expired, whereas b j = 0 indicates that

option j no longer exists in the portfolio. At a given evaluation date tm where Xtm = x

and given no prior default, let V̂m(x,b) and Vm(x,b) denote respectively the value of the

vulnerable portfolio and that of the corresponding risk-free portfolio, under the risk-neutral

measure.

Finally, the indicator function 1A is defined by

1A ≡

1 if A is true

0 otherwise,

and, for a given y ∈ R,

y+ ≡max{0,y}

y− ≡min{0,y}.

2.3.2 The risk-free portfolio

It is easy to show that netting has no impact on the optimal exercise of the individual

options in a risk-free portfolio, so that

Vm(x,b) =
n

∑
j=1

b jVm j(x) (2.1)

where, for j = 1, ...,n, Vm j(x) is the value (from the perspective of C1) of Option j at

(tm,Xtm = x), under its holder’s optimal exercise strategy, assuming Option j has not been
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exercised yet. The risk-free value of the n options satisfy the following recursive equations

Vm j(x) = max{Fm j(x);βEm[Vm+1, j(Xtm+1)]} for j = 1, ...,n1 and m < M (2.2)

Vm j(x) = min{Fm j(x);βEm[Vm+1, j(Xtm+1)]} for j = n1+1, ...,n and m < M (2.3)

VM j(x) = FM j(x) for j = 1, ...,n. (2.4)

2.3.3 The vulnerable netted portfolio

However, as shown in Section 2.2, netting can impact the exercise strategies of the

vulnerable portfolio’s claims, giving rise to a dynamic game interpretation for the value

of the netted portfolio. We therefore proceed to characterize the payoffs and exercise

strategies of the counterparties involved in a netting agreement in order to obtain the value

of a netted portfolio of vulnerable options.

Exercise payoff

At a given evaluation date, let a = (a1,a2) represent a vector of binary decisions with

respect to each of the n options, where, for j = 1, ...,n, option j is exercised by its holder

if a j = 1. Note that feasible decision vectors satisfy a ≤ b, and recall that Fm j(x) = 0 if

exercise of option j is not allowed at tm. The exercise payoff Rm(x,a) corresponding to a

feasible action vector a at (tm,Xtm = x) is defined by

Rm(x,a)≡
n

∑
j=1

a jFm j(x). (2.5)

Holding value

The holding value Wm(x,b) of the portfolio at (tm,Xtm = x), given no prior default,

is the expected value of all the remaining options in the netted portfolio, described by

the vector b. Accordingly, using a recursive interpretation and assuming that the value
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of the vulnerable portfolio is known at the next evaluation date as a function of the state

vector, the holding value is computed by considering the expected discounted value of the

portfolio upon three mutually exclusive and collectively exhaustive events during the time

interval until the next evaluation date, namely, survival of both parties, first default of C1,

or first default of C2, given no prior default. We can then write

Wm(x,b) =W 0
m(x,b)+W 1

m(x,b)+W 2
m(x,b), (2.6)

where W 0
m(x,b), W 1

m(x,b) and W 2
m(x,b) correspond respectively to the holding value upon

each of these three mutually exclusive events, defined as follows:

Case 0: Let D0
m = 1tm+1<τ21tm+1<τ1 indicate the event that both parties will survive until

tm+1. In this case, the holding value at tm is the discounted value of the portfolio

value at the next evaluation date, yielding

W 0
m(x,b) = βEm

[
D0

mV̂m+1(Xtm+1,b)
]
. (2.7)

Case 1: Let D1
m = 1tm<τ1≤tm+11τ1<τ2 indicate the event that C1 is the first to default during

the time interval (tm, tm+1]. In this case, if the expected value of the portfolio at

(tm +1,Xtm+1) is negative, C2 will recover a portion ρ1 of this (discounted) value at

τ1; otherwise, C2 will deliver the total of the portfolio’s expected discounted value

to C1 at τ1. We then have

W 1
m(x,b) = βEm

[
D1

m
(
V̂m+1(Xtm+1,b)

++ρ1V̂m+1(Xtm+1 ,b)
−)] . (2.8)

Case 2: Let D2
m = 1tm<τ2≤tm+11τ2<τ1 indicate the event that C2 is the first to default during

the time interval (tm, tm+1]. Similarly to Case 1, if the expected value of the portfolio

at the next evaluation date is positive, C1 will recover a portion ρ1 of it, otherwise

C2 will recover the total value, yielding

W 2
m(x,b) = βEm

[
D2

m
(
ρ2V̂m+1(Xtm+1,b)

++V̂m+1(Xtm+1,b)
−)] . (2.9)
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Using (2.7)-(2.9), Equation (2.6) reduces to

Wm(x,b) = βEm
[(

1− (1−ρ2)D2
m
)

V̂m+1(Xtm+1 ,b)
+

+
(
1− (1−ρ1)D1

m
)

V̂m+1(Xtm+1,b)
−] . (2.10)

It is important to note that the above characterization of the holding value implicitly

assumes that, upon default, both parties agree on the value of the portfolio, that is, on the

expected discounted value of its future cash flows. Clearly, the future cash flows of an

option with early exercise opportunities depend on the exercise strategy of its holder, and

the value of an option is obtained by assuming an optimal exercise strategy. As shown in

Section 2.2, the holder’s exercise strategy should account for counterparty risk and for the

impact of netting on its exposure.

Security strategies

A security strategy for C1 at (tm,Xtm = x,b) prescribes a decision vector maximizing

the outcome against all the possible decisions of the other party. The lower value of the

portfolio at (m,x,b) is defined by

V S1
m (x,b)≡ max

a1≤b1

{
min

a2≤b2
{Rm(x,a)+Wm(x,b−a)}

}
, (2.11)

where b−a indicates the contracts remaining in the portfolio after the exercise decisions

designated by the vector a = (a1,a2). A security strategy for C1 then satisfies

aS1
m (x,b) ∈ arg max

a1≤b1

{
min

a2≤b2
{Rm(x,a)+Wm(x,b−a)}

}
. (2.12)

In the same way, a security strategy for C2 at (tm,Xtm = x,b) is a decision vector

aS2
m (x,b) minimizing the outcome against all the possible decisions of C1. The upper value

of the portfolio at (m,x,b) is defined by

V S2
m (x,b)≡ min

a2≤b2

{
max
a1≤b1

{Rm(x,a)+Wm(x,b−a)}
}
, (2.13)
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and a security strategy for C2 satisfies

aS2
m (x,b) ∈ arg min

a2≤b2

{
max
a1≤b1

{Rm(x,a)+Wm(x,b−a)}
}
. (2.14)

Security strategies are pure strategies, of dimension n1 for C1 and n2 for C2. They indicate

the vector of decisions (exercise or hold) corresponding to all the options in the portfolio

held by each counterparty, as a function of tm, x = Xtm and b. Note that the feasibility

condition a≤ b ensures that options that are no longer alive cannot be exercised.

2.3.4 Equilibrium

At a given evaluation date tm where Xtm = x and the options still included in the port-

folio are described by the vector b, if the lower value and the upper value of the portfolio

coincide, the security strategies of the counterparties define a Nash equilibrium at (m,x,b).

In that case, it is reasonable to assume that the counterparties will use the strategy pair

(aS1
m (x,b),aS2

m (x,b)) since neither party can improve its outcome by changing its strategy.3

The value of the netted portfolio is then defined by

V̂m(x,b)≡V S1
m (x,b) =V S2

m (x,b). (2.15)

If however, the upper and lower values do not coincide at (m,x,b), there exists no

equilibrium in pure strategies at (m,x,b), and the value of the portfolio is open to interpre-

tation. As illustrated in Section 2.2, we propose three ways to determine the value of the

netted portfolio in that case, based on plausible conjectures about the exercise strategies

used by the counterparties.

3To simplify the exposition, we assume in the sequel that the solutions to the optimization problems
(2.11) and (2.13) are unique. Note that the portfolio value is well-defined even when this is not the case. The
issue of multiple solutions is addressed in Section 2.4.
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Robust intepretation

In the first case, we assume that each counterparty uses its security strategy, a robust

behavior avoiding the worst possible outcomes and ensuring that the value of the portfolio

lies between its lower and upper values. The strategy pair used by the counterparties is

then aS
m(x,b)≡ (aS1

m (x,b),aS2
m (x,b)) and the value of the portfolio is given by

V̂m(x,b) ≡ Rm(x,(aS
m(x,b))+Wm(x,b−aS

m(x,b)) (2.16)

∈
[
V S1

m (x,b),V S2
m (m,b)

]
.

Mixed strategies

In the second case, we consider the possibility that counterparties randomize their

decisions by choosing a probability distribution over the set of actions available to them.

A mixed strategy for Ci, i∈{1,2} is a vector zi of dimension 2ni such that each element is in

[0,1] and the elements sum to 1. The exercise payoff and holding value corresponding to a

mixed strategy is the weighted average of the values corresponding to each of the 2ni pure

strategy vectors available to counterparty Ci, denoted by aik , k = 1, ...2ni . Accordingly,

under a mixed strategy z1, the exercise payoff of the netted portfolio at (tm,Xtm = x) when

C2 uses the action vector a2 is defined by

R̃m(x,z1,a2) =
2n1

∑
k=1

z1kRm(x,a1k ,a2). (2.17)

In the same way, under a mixed strategy z1, the holding value of the netted portfolio at

(tm,Xtm = x) when C2 uses the action vector a2 is defined by

W̃m(x,z1,a2) =
2n1

∑
k=1

z1kWm(x,b− (a1k ,a2)). (2.18)

The exercise payoff and holding value of the netted portfolio corresponding to the use of

a mixed strategy by C2 are defined similarly.
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Note that a Nash equilibrium in mixed strategies always exists.4 The value of the

portfolio

V̂m(x,b)≡ v (2.19)

can be obtained by solving the following linear program at (m,x,b):

max
z,v

v (2.20)

s.t.

v ≤ R̃m(x,z,a2l)+W̃m(x,z,a2l) for l = 1, ...2n2 (2.21)
2n1

∑
k=1

zk = 1 (2.22)

zk ≥ 0, k = 1, ...,2n1 . (2.23)

The equilibrium mixed strategy for C1 is the vector z∈R2n1 solving (2.20)-(2.23). The

equilibrium mixed strategy for C2 is the vector of dual variables corresponding to the 2n2

constraints (2.21).

Conservative values

Finally, we consider the possibility that parties do not agree on the value of the portfo-

lio, so that each party computes its own estimation of the value of the vulnerable portfolio,

a conservative value corresponding to either the lower (for C1) or the upper (for C2) value,

obtained using Equations (2.11) or (2.13), respectively.

To summarize, we propose three distinct assumptions about the behavior of the parties

in a netted agreement, leading to four different ways to compute the value of a vulnerable

portfolio, namely:

4Again, the equilibrium value is unique even though multiple equilibrium strategies may exist.
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A1 Parties agree on the value of the portfolio, which corresponds to a Nash equilibrium. In

that scenario, parties use mixed strategies when a Nash equilibrium in pure strategies

does not exist. The value of the portfolio is obtained using Equation (2.19).

A2 Parties agree on a robust interpretation of the value of the portfolio. In that scenario,

each party uses its security strategy, which is not necessarily in equilibrium, but

guarantees that the value of the portfolio, obtained using Equation (2.16) lies be-

tween the upper and the lower value.

A3 Parties do not agree on the value of the portfolio and use a conservative value obtained

using Equations (2.11) for C1 and Equation (2.13) for C2.

Clearly, both counterparties should agree that the value of the portfolio lies between

its lower and upper values. Note that Equations (2.16) and (2.19) satisfy this condition

and yield the same result, corresponding to Equation (2.15), when the lower and the upper

values coincide.

2.3.5 Computation of valuation adjustments

Given that the value of the vulnerable portfolio is a known function of (x,b) at maturity,

V̂M(x,b) =
n

∑
j=1

b jFM j(x), (2.24)

Equations (2.6)-(2.9) provide a backward recursive formulation to compute the holding

value Wm(x,b) at tm when the value of the vulnerable netted portfolio is known at tm+1 as a

function of the state vector (x,b). Under Assumptions A1 or A2, the vulnerable portfolio

value can then be obtained at tm using Equations (2.16) or (2.19), respectively. Note that

the two equations yield the same value when the upper and lower values of the vulnerable

portfolio coincide.
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The BVA at (tm,Xm = x,b) is then given by the difference

BVAm(x,b) =Vm(x,b)−V̂m(x,b). (2.25)

When only one party is exposed to default risk, say Ci, the stochastic default time τi is

set to = ∞ in Equations (2.7)-(2.9). The CVA at (m,x,b) is then given by

CVAm(x,b) =Vm(x,b)−V̂m(x,b). (2.26)

When parties do not agree on the value of the vulnerable portfolio (Assumption A3),

and, therefore, on the price of counterparty risk (BVA or CVA), each party will compute

its own conservative value of the risk adjustment, yielding the conservative BVAs

BVA1
m(x,b) = Vm(x,b)−V S1

m (x,b)

BVA2
m(x,b) = Vm(x,b)−V S2

m (x,b).

These conservative BVA values are likely to differ and to be higher (in absolute value)

than the BVA computed using either the mixed strategy or the robust assumptions.

The general model proposed in this section provides an analytical characterization of

the price of counterparty risk under various default risk models and various assumptions

about the state process (Xt)0≤t≤T , provided the expectations in (2.7)-(2.9) can be com-

puted or approximated efficiently. In particular, it can accommodate both intensity-based

and structural default models by including the risk factors (e.g. structural or exogenous

variables) in the state vector.

However, while analytic, Equations (2.2)-(2.4) and (2.11), (2.13), (2.16) or (2.19) do

not admit closed-form solutions in general and require some form of numerical approx-

imation. In the numerical illustrations presented in the next section, we solve Equations

(2.2 )-(2.4) and (2.11), (2.13), (2.16) or (2.19) on a set of grid points for the state vector

X and approximate the value of the portfolio using linear spline interpolation (see Breton

and Frutos 2012).
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2.3.6 Implementation

In our implementation of the algorithm, we utilize the linear spline interpolation ap-

proach outlined in Ben-Ameur, Breton, and François (2006). This approximation tech-

nique has been shown in Breton and Frutos (2012) to be both efficient and numerically ro-

bust for pricing Bermudan options. The resulting approximation provides a good balance

between accuracy and computational efficiency, making it well-suited for our purposes.

In this regard, we can write Equations (2.7)-(2.10) as the general form of

Wm(x,b) = βEm
[
Gm fm+1(Xtm+1,b)

]
, (2.27)

where Gm is an event, fm+1 is a known function, and the joint density of (Gm,Xtm+1),

conditional on Xtm = x, is known under the risk-neutral measure.

For a clearer understanding, we consider the case where the state space related to the

risk factor is unidimensional, with x ∈ [0,∞). We define a set G = {xk,k = 1, ..., p} of p

grid points such that

0 < x1 < x2 < ... < xp < ∞

and a family of p basis functions, denoted by (ψk){k=1,..,p}. An interpolation function is

then defined by

Ŵm(x,b) =

∑
p
k=1 cm

k (b)ψk(x) if x ∈ [x1,xp]

o(x) if x /∈ [x1,xp],
(2.28)

where o(x) is an extrapolation function characterizing the behavior of W outside the local-

ization interval, and where the coefficients cm
j satisfy the linear system.

Wm(xi,b) =
p

∑
k=1

cm
k (b)ψk(xi), i = 1, ..., p. (2.29)

Knowing the function of V̂m+1(Xtm+1,b), we proceed to compute the expected values

Em[G1mV̂m+1(Xtm+1,b)|Xtm = x]+ and Em[G2mV̂m+1(Xtm+1 ,b)|Xtm = x]− over the grid points
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set G. Subsequently, the holding value function Ŵm for the netted portfolio, indicated by

b, is determined by applying the spectral interpolation scheme outlined in Equation (2.28).

To determine the value function V̂m using either strategy, the conservative strategy

as described in Equations (2.11) and (2.13), the security strategy in Equation (2.16), or

the mixed strategy delineated in the linear program (2.19), it is essential to compute the

holding value function for every subset of the portfolio. This necessitates that the function

V̂m+1 be known for all sub-portfolios corresponding to b′ ≤ b. Therefore, the valuation

process is initiated by recursively evaluating the smallest sub-portfolios, then progressively

assessing larger subsets under the netting agreement, and culminating with the valuation

of the entire netted portfolio. Consequently, with Ŵm known for all b′≤ b, we are equipped

to derive the function of V̂m(Xtm,b) using any of these outlined methods.

The complete backward recursive algorithm to compute the value of a netted portfolio

is shown in Algorithm 1. This algorithm provides the BVA as a function of the state vector

(x,b), obtained by mixed strategy, for a set of discrete evaluation dates in T using dynamic

programming.

In the pseudocode, we use decimal numbers φ1 = 1,2, ...,2n1 and φ2 = 1,2, ...,2n2 to

describe the binary vectors b1 and b2, respectively, in ascending order. For a given binary

vector u, we denote by Φ(u) as the set of positive indexes in the vector u. The notation h(.)

denotes a decimal number to binary vector converter and ⊙ represents the element-wise

multiplication.

2.4 Numerical illustration

This section reports on numerical experiments addressing the sensitivity of counter-

party risk to various parameters and the impact of netting and CCR on adjustment values

using the dynamic program proposed in Section 2.3.
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Algorithm 1 Backward Recursive Algorithm to Evaluate BVA of Netted Portfolio Using
Mixed Strategy

1: Input: {Fm j(x),m = 1, . . . ,M, j = 1, . . . ,N}, β , n1, n2, ρ1, ρ2, M, grid points in set of
G, (ψk){k=1,..,p}, and defaults models.

2: for φ1 = 1 to 2n1 do
3: for φ2 = 1 to 2n2 do
4: b = (b1,b2)← h(φ1−1,φ2−1)
5: V̂M(xk,b) = ∑ j∈Φ(b)FM j(xk), for k = 1, . . . , p
6: ŴM(xk,b) = 0, for k = 1, . . . , p
7: for m = M−1 down to 0 do
8: for κ1 = 1 to φ1 do
9: for κ2 = 1 to φ2 do

10: aκ = (aκ1
1 ,aκ2

2 )← h(κ1−1,κ2−1)
11: b′ = b−b⊙aκ

12: Compute cm
k (b
′) via Eq. (2.29), for k = 1, . . . , p.

13: Compute Ŵm(xk,b′) using Eq. (2.28) , for k = 1, . . . , p.
14: Rm(xk,aκ) = ∑ j∈Φ(aκ )FM j(xk), for k = 1, ..., p
15: V̂κ1κ2,m(xk,b) = Rm(xk,aκ)+Ŵm(xk,b′), for k = 1, . . . , p

16: Compute V̂m(xk,b) using Eq. (2.19), for k = 1, ..., p
17: Compute Vm(xk,b) = ∑ j∈Φ(b)Vm j(xk) using Eq. (2.1), for k = 1, ..., p
18: BVAm(xk,b) =Vm(xk,b)−V̂m(xk,b)

2.4.1 Base case specification

We consider a portfolio consisting of n = n1 + n2 Bermudan put options written on

the same underlying asset, with possibly distinct strike prices denoted by Ki j, j = 1, ...,ni

for Option j, that is held by Ci. All options have the same maturity T = 1 and Ne = 50

equally spaced exercise opportunities, which, along with the inception date, form the set

T. Counterparty C1 and C2 are in a netting agreement, where C1 holds a long position on

n1 options with the strike prices of K1 j, j = 1, ...,n1 and a short position on n2 options with

the strike prices of K2 j, j = 1, ...,n2 and C2 holds the opposite position.

We assume that the underlying asset price process is described by a geometric Brown-
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ian motion, so that the price process under the risk-neutral measure is given by

Xt = X0 exp
(
(r− σ2

2
)t +σBt

)
, (2.30)

where X0 is the asset price at inception, σ is the volatility ¸of the price process, and B

denotes a standard Brownian motion. The benchmark values characterizing the underlying

asset process are reported in Table 2.10.

Parameters
Underlying asset

T Ne
r X0 σ

Base value 0.05 100 0.35 1 50

Table 2.10: Benchmark values for the numerical experiments.

We use an intensity-based model of default and assume that the parties’ defaults are

exogenous events governed by the first jump of independent Poisson processes with con-

stant hazard intensities, denoted respectively by λi, i = 1,2. Accordingly, the probability

that counterparty Ci defaults first during a time interval ∆, given that it has not defaulted

yet, is a constant given by

pi ≡ Em
[
1tm<τi≤tm+11τi<τ3−i

]
=

λi

λ1 +λ2
(1− exp(−∆(λ1 +λ2))), m = 1, ...,M−1, i ∈ {1,2}. (2.31)

In that case, Equation (2.10) simplifies to

Wm(x,b) = β
(
(1− p1(1−ρ1))Em

[
V̂m+1(Xtm+1,b)

+
]

+(1− p2(1−ρ2))Em
[
V̂m+1(Xtm+1 ,b)

−]) . (2.32)

Finally, note that if the following condition is satisfied

p1(1−ρ1) = p2(1−ρ2)≡ s, (2.33)
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the holding value further simplifies to

Wm(x,b) = β (1− s)Em
[
V̂m+1(Xtm+1,b)

]
. (2.34)

In this specific instance, where both parties are subject to the exact same counterparty

default risk, it is easy to see that netting has no impact on the valuation of the portfolio,

risk adjustment value, and the early exercise strategy.

2.4.2 Behavioral assumptions

As delineated in Section 2.3.4, the dynamic-game model employed for evaluating the

price of CCR within a netted portfolio—where both parties have optional rights - can

be used under distinct assumptions about the way to compute the value of a vulnerable

portfolio. The three assumptions proposed in Section 2.3.4 can yield four distinct values

for the CVA/BVA. This holds true even in scenarios where the portfolio’s upper and lower

value functions coincide, provided that there exists, at minimum, one region within the

state space over the portfolio’s remaining horizon where such coincidence is absent. This

is due to the fact that the portfolio value is an expectation of future cash flows, contingent

to the exercise strategies of both parties.

This section explores scenarios in which the upper and lower boundaries of the port-

folio value are not equal. Specifically, the discussion focuses on how the default risk of

counterparties and the portfolio value interact in these particular instances.

Unilateral risk

To analyze unilateral risk, we posit that C1 is devoid of default risk (λ1 = 0), while C2

is susceptible to default, characterized by a recovery rate of ρ2 = 0. For our initial set of

experiments, we examine a portfolio consisting of two Bermudan put options with strike
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prices of K11, as specified in each plot, and K21 = 100. These options are written on the

same underlying asset, with parameter values specified in Table 2.10. Figure 2.1 illustrates

the four portfolio values and their corresponding CVA calculations, undertaken under dis-

tinct assumptions proposed in Section 2.3.4 for the netted portfolio of two Bermudan put

options. These are evaluated as functions of C2’s hazard rate under two distinct condi-

tions: when K11 = K21 (Panels a and c) and when K11 = 1.02K21 (Panels b and d). As

(a) K11 = K21 = 100 (b) K11 = 1.02K21 = 102

(c) K11 = K21 = 100 (d) K11 = 1.02K21 = 102

Figure 2.1: Comparison of the netted portfolio value (Panels a and b) and CVA value (Panels c and
d) at inception, as a function of λ2 when λ1 = 0 and ρ2 = 0, according to the assumption used to
compute the portfolio value. Other parameter values are reported in Table 2.10
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illustrated, when K11 = K21, the CVA value is precisely the negative of the portfolio value

calculated using the same exercise strategy. This inverse relationship arises due to the

risk-free portfolio value becoming zero when the strike prices are identical.

One discerns that under Assumption A3, the CVA values manifest discrepancies be-

tween the counterparties. Both parties tend to overestimate their expected losses by adopt-

ing worst-case outcomes, particularly when a Nash equilibrium in pure strategies is not

attainable.

A noticeable consequence of increasing the parameter λ2 is a more pronounced dif-

ference between the portfolio’s upper and lower value functions. This difference is due

to the increased number of states that lack a Nash equilibrium in pure strategies. Such

states, within a portfolio of two Bermudan put options, are graphically represented in Fig-

ure 2.2. Panels a to c pertain to scenarios where K11 = K21 = 100, while Panels e to g

correspond to those where K11 = 1.02K21 = 102. The depicted states represent the price

of the underlying asset at each potential exercise date

Upon closely examining Figure 2.2, it is apparent that increasing the default risk of

C2 within the subject portfolio results in a greater number of states that lack a Nash equi-

librium in pure strategies. This phenomenon can be traced back to the deterioration of

the most unfavorable outcome for C1 as C2’s default probability escalates, while the least

favorable outcome for C2 remains static. Consequently, in a heightened number of states,

the portfolio’s lower value tends to descend below its upper value, thus precluding the

existence of a Nash equilibrium in pure strategies.

In a follow-up experiment, we delve into the interplay between the value of a risk-free

portfolio and the divergence between the upper and lower values. Extending beyond the

earlier portfolio comprising two Bermudan put options, a portfolio of four such options

with strike prices of K11, K12 = 100, K21 = 105, K22 = 103 is considered. The results

are depicted in Figure 2.3, where Panels a and b showcase the vulnerable and risk-free
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(a) λ2 = 0.1 (b) λ2 = 0.5 (c) λ2 = 1

(d) λ2 = 0.1 (e) λ2 = 0.5 (f) λ2 = 1

Figure 2.2: Representation of states without Nash equilibrium in pure strategy for a portfolio of
two Bermudan put options when K11 = K21 = 100 (Panels a-c) and K11 = 1.02K21 = 102 (Panels e
- f) for λ2 = 0.1, λ2 = 0.5, and λ2 = 1 when λ1 = 0 and ρ2 = 0. Other parameter values are reported
in Table 2.10.

portfolio values for portfolios of two and four Bermudan put options, respectively, as

functions of the strike price K11 under the conditions λ2 = 0.5 and ρ2 = 0. Panels c and

d offer a comparison of the lower, upper, security, and equilibrium values of the CVA for

these portfolios. Furthermore, Figure 2.4 presents the states that lack a Nash equilibrium

in pure strategies for portfolios as a function of varying K11.

Our findings suggest that with a constant default probability, the gap between the upper

and lower bounds tends to narrow as the absolute value of the portfolio increases. This

phenomenon is attributed to a higher likelihood of dominant strategies emerging when the

portfolio’s value deviates substantially from zero. Specifically, a larger positive (negative)

portfolio value from the viewpoint of C1 implies that the relative moneyness of options

within C1’s subportfolio exceeds (is below) those held by C2. In such cases, there is a
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(a) K21 = 100 (b) K12 = 100,K21 = 105,K22 = 103

(c) K21 = 100 (d) K12 = 100,K21 = 105,K22 = 103

Figure 2.3: Illustration of the conservative value (from C1’s viewpoint) of the vulnerable and risk-
free portfolio (Panels a and b) and CVA (Panels c and d) at inception for the portfolio of two
Bermudan put options with strike prices of K11 and K21 = 100 and portfolio of four Bermudan put
options with strike prices of K11, K12 = 100, K21 = 105, K22 = 103 when λ2 = 0.5 and ρ2 = 0. All
options are written on the same underlying asset with parameter values in Table 2.10.

greater probability that a dominant strategy exists for C1, including early exercising its

deeper ITM options (holding its deeper OTM options). As discussed in Section 2.2, the

emergence of dominant pure strategies in this manner increases the likelihood of Nash

equilibrium across more underlying risk factor states over the portfolio’s lifespan, thereby

reducing the spread between bounds.

This pattern is evident in Panel c of Figure 2.3 for the two-option portfolio, where a
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sufficient disparity in the degree of moneyness between options held by C1 and C2 leads to

the convergence of the bounds. Similarly, in the four-option portfolio (Panel d of Figure

2.4), as the relative moneyness of C1’s options diverges further from those of C2, influ-

encing the portfolio’s value, we observe a reduced distance between the lower and upper

bounds.

(a) K11 = 97 (b) K11 = 100 (c) K11 = 103

(d) K11 = 104 (e) K11 = 107 (f) K11 = 110

Figure 2.4: Representation of states without Nash equilibrium in pure strategy for the portfolio of
two Bermudan put options with strike prices of K11 and K21 = 100 (Panels a-c) and portfolio of
four Bermudan put options with strike prices of K11, K12 = 100, K21 = 105, K22 = 103 (Panels e -
f) when λ2 = 0.5 and ρ2 = 0. All options are written on the same underlying asset with parameter
values in Table 2.10.

Bilateral risk

To explore the case of bilateral risk, we consider a scenario in which both counterpar-

ties are subject to default risk. Throughout the experiments detailed in this section, we fix

λ2 = 0.5 and set ρ1 = ρ2 = 0. For the predetermined portfolio of two options, we draw
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a comparative analysis between the four distinct portfolio values calculated based on as-

sumptions articulated in Section 2.3.4 and their corresponding BVA, as a function of the

parameter λ1, which is illustrated in Figure 2.5.

It is worth recalling that when Condition (2.33) is met, the portfolio’s valuation is

equivalent to the aggregated values of the individual options, making netting effects ir-

relevant. This matching among the four interpretations becomes evident in Figure 2.5,

particularly when λ2 = λ1 = 0.5.

Figure 2.5 demonstrates that the BVA can be either negative or positive. This is contin-

gent upon the interplay between the counterparties’ relative default risks and the valuation

of the sub-portfolios each party holds. A negative BVA signifies that Counterparty C2 is

more susceptible to the default risk of the other party and thus necessitates the allocation

of additional capital as a contingency measure for possible losses. This effect is especially

salient in Figure 2.5c, where the portfolio comprises options with identical riskless values,

yet a negative BVA arises when the default risk of C1 surpasses that of C2 (i.e., λ1 > λ2).

Extending the observations from the unilateral risk scenario, it is evident that an aug-

mented disparity between the default risks of the two counterparties results in a broader

divergence between the portfolio’s upper and lower valuations. This observation is coher-

ent with earlier analyses; as the default risk of one counterparty (Ci) exceeds that of its

opposite number (C2−i), the least favorable financial outcomes against C2−i deteriorate ac-

cordingly. Consequently, in an increased number of states, the portfolio’s lower valuation

is more likely to fall below its upper valuation. Figure 2.6 depicts these particular states,

characterized by an absence of Nash equilibrium in pure strategy when both parties are

exposed to bilateral risk.

In Figure 2.7, we further illustrate the portfolio value and BVA as functions of the

strike price K11, for portfolios containing either two or four Bermudan put options when

λ1 = 0.2 and λ1 = 0.5. In line with previous discussions of unilateral risk, the gap between
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(a) K11 = K21 = 100 (b) K11 = 1.02K21 = 102

(c) K11 = K21 = 100 (d) K11 = 1.02K21 = 102

Figure 2.5: Comparison of the netted portfolio value (Panels a and b) and BVA value (Panels c and
d) at inception, as a function of λ1 when λ2 = 0.5 and ρ1 = ρ2 = 0, according to the assumption
used to compute the portfolio value. Other parameter values are reported in Table 2.10

the portfolio’s upper and lower limits narrows when the portfolio’s value substantially

diverges sufficiently from zero.

Synthesizing the outcomes from both unilateral and bilateral scenarios, the divergence

in the various interpretations of CCR pricing can be notably diminished under certain con-

ditions. Specifically, our numerical experiments indicate that the gap between the lower

and upper bounds of a vulnerable portfolio—and by extension, their associated risk ad-

44



(a) λ1 = 0.1 (b) λ1 = 0.3 (c) λ1 = 1

(d) λ1 = 0.1 (e) λ1 = 0.3 (f) λ1 = 1

Figure 2.6: Representation of states without Nash equilibrium in pure strategy for a portfolio of
two Bermudan put options when K11 = K21 = 100 (Panels a-c) and K11 = 1.02K21 = 102 (Panels e
- f) for λ1 = 0.1, λ1 = 0.3, and λ1 = 1 when λ2 = 0.5 and ρ1 = ρ2 = 0. Other parameter values are
reported in Table 2.10.

justment values— tends to narrow notably when:

• The portfolio’s value significantly deviates from zero;

• The default risks of both counterparties are more evenly balanced.

In the context of bilateral risk, a particularly intriguing phenomenon emerges when

both counterparties adopt a conservative approach in portfolio evaluation, utilizing the

BVA as the foundational metric for capital adjustment calculations. Figure 2.8 serves as

an empirical illustration of this occurrence; specifically, the conservative BVA value for

Counterparty C1 and the negation of the conservative BVA value for Counterparty C2,

presented in Figure 2.8a), provide insights into the resultant capital adjustments, which

are delineated in Figure 2.8b. Within the parameter interval where λ2 varies from 0.21
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(a) K21 = 100 (b) K12 = 100,K21 = 105,K22 = 103

(c) K21 = 100 (d) K12 = 100,K21 = 105,K22 = 103

Figure 2.7: Illustration of the conservative value (from C1’s viewpoint) of the vulnerable and risk-
free portfolio (Panels a and b) and BVA (Panels c and d) at inception for the portfolio of two
Bermudan put options with strike prices of K11 and K21 = 100 and portfolio of four Bermudan put
options with K11, K12 = 100, K21 = 105, K22 = 103 when λ1 = 0.2, λ2 = 0.5 and ρ1 = ρ2 = 0. All
options are written on the same underlying asset with parameter values in Table 2.10.

to 0.26, the capital adjustment for both parties attains a positive value. However, such an

outcome is impossible when the portfolio is evaluated using a mixed strategy.

It is important to note that if counterparties employ different strategies in exercising

their options, they may obtain disparate pricing for risk adjustment value. Nonetheless,

this discrepancy can be relatively small when compared to the magnitude of error arising

from disregarding the netting impact in the evaluations. The analyses presented in subse-
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(a) BVA as a function of λ2 (b) Capital adjustment as a function of λ2

Figure 2.8: BVA value and capital adjustment at inception for both parties for a portfolio of two
Bermudan put options with K11 = 101 and K21 = 100, λ1 = 0.5 and ρ1 = ρ2 = 0. Other parameter
values are reported in Table 2.10

quent sections in this chapter are all obtained under the assumption that parties use mixed

strategies.

2.4.3 Analyzing the Sensitivity of portfolio value and CVA/BVA in

parameter values

This section conducts an analytical examination to understand how variations in de-

fault probability and recovery rates for both counterparties influence the risk adjustment

values. To enhance the robustness of our findings, sensitivity analyses related to varia-

tions in σ , X0, and K11 are performed. To further elucidate the intricate behaviors of the

CVA/BVA with respect to these parameter shifts, an investigation is executed on a port-

folio that includes three Bermudan options. These options have benchmark strike prices

K11 = 120, K21 = 100, and K22 = 90, all of which are written on the same underlying asset.

The parameter values for this analysis are provided in Table 2.10.
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Unilateral risk

In Figure 2.9, the netted portfolio value is depicted across Panels a-c, while CVA is

presented in Panels d - f, as functions of λ2 under the assumption that ρ2 = 0. Figures 2.9a

and 2.9d, serve to contrast the benchmark results, where the underlying asset volatility σ

is 0.35, against cases when σ is altered to 0.2 and 0.5. Similarly, in Figures 2.9b, 2.9d,

2.9c, and 2.9f, comparative evaluations are performed for benchmark parameter values

X0 = 100 and K11 = 120 via scenarios where X0 is modified to 80 and 120, and K11 is set

to 110, 130, and 140 respectively.

(a) Changes in regard to σ (b) Changes in regard to X0 (c) Changes in regard to K11

(d) Changes in regard to σ (e) Changes in regard to X0 (f) Changes in regard to K11

Figure 2.9: Sensitivity analysis of the portfolio value (Panels a-c) and the CVA (Panels e - f) at
inception as a function of λ2, with ρ2 = 0, for various values of σ , X0, and K11 in the portfolio of
three Bermudan options with benchmark strike prices of K11 = 120, K21 = 100, and K22 = 90. All
options are written on the same underlying asset with parameter values reported in Table 2.10.

In line with expectations, our analysis substantiates that the CVA of a netted portfolio

consistently escalates as counterparty risk increases. While it is possible to discern a
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pattern for the netted portfolio value in response to parameter modifications (σ , X0, and

K11), such predictable behavior is absent for CVA. Changing these parameters affects both

risk-free and risky portfolios, but the degree of impact is inconsistent across them. In

certain portfolios, the parameter changes have a greater influence on the risk-free portfolio

compared to the one exposed to counterparty risk, and vice versa. Consequently, it’s

difficult to generalize the CVA’s sensitivity to these parameter adjustments. Our numerical

investigations confirm this unpredictability, indicating that there are no broad trends in

how such adjustments influence CVA.

In Figure 2.10, we illustrate the portfolio value and the CVA as functions of ρ2 with

a constant hazard rate λ2 = 0.3. Similarly, the sensitivity of these results to variations in

σ , X0, and K11 is explored. The trends we see here are consistent with what we found in

Figure 2.9.

As we expected, the CVA value goes down when the counterparty’s recovery rate goes

up. This happens because a higher ρ2 means that the counterparty (C2) can take care of

more debt if they default. This finding lines up with the basic theory behind calculating

CVA. However, when we look at Figure 2.10, we don’t see a clear pattern for how CVA

changes with other parameters’ values. This lack of a consistent pattern highlights that

calculating CVA for portfolios under a netting agreement can be complicated.

Bilateral risk

Figure 2.11 presents the value and the corresponding BVA level for the netted portfolio

as a function of hazard rate λ1, given that λ2 = 0.3 and ρ1 = ρ2 = 0. Similar to the previous

analysis, we compare the benchmark outcomes with different values of σ , X0, and K11.

When we look at the BVA from C1’s point of view, we see a consistent and decreasing

trend in all the graphs as λ1 goes up. This shows that when C1 considers its own risk of
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(a) Changes in regard to σ (b) Changes in regard to X0 (c) Changes in regard to K11

(d) Changes in regard to σ (e) Changes in regard to X0 (f) Changes in regard to K11

Figure 2.10: Sensitivity analysis of the portfolio value (Panels a-c) and the CVA (Panels e - f)
at inception as a function of ρ2 with fixed λ2 = 0.3, for various values of σ , X0, and K11 in the
portfolio of three Bermudan options with benchmark strike prices of K11 = 120, K21 = 100, and
K22 = 90. All options are written on the same underlying asset with parameter values reported in
Table 2.10.

default, the need for capital reallocation to mitigate potential default risks is reduced.

Figure 2.12 shows how changing the recovery rate ρ1 affects the benchmark portfolio’s

value and its BVA when λ1 = 0.2, λ2 = 0.3, and ρ2 = 0. All the graphs show that BVA goes

up as C1’s recovery rate increases, which makes sense because the risk of losing money if

C1 defaults goes down. In Figures 2.11 and 2.12, it’s clear that, as we said earlier, there’s

no one rule that links how changes in σ , X0, or K11 affect BVA.

Numerical studies in both unilateral and bilateral cases reveal that there’s no general

trend in how risk valuation adjustments react to changes in model parameters in a netted

portfolio. The only exceptions are the trends we see related to default risk and recovery

rates of the counterparties, as mentioned earlier.
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(a) Changes in regard to σ (b) Changes in regard to X0 (c) Changes in regard to K11

(d) Changes in regard to σ (e) Changes in regard to X0 (f) Changes in regard to K11

Figure 2.11: Sensitivity analysis of the portfolio value (Panels a-c) and the BVA (Panels e - f) at
inception as a function of λ1 with fixed λ2 = 0.3 and ρ1 = ρ2 = 0, for various values of σ , X0,
and K11 in the portfolio of three Bermudan options with benchmark strike prices of K11 = 120,
K21 = 100, and K22 = 90. All options are written on the same underlying asset with parameter
values reported in Table 2.10.

2.4.4 Netting impact

We conclude this chapter by discussing and illustrating the netting impact, which we

define as the difference in CVA or BVA values for a netted portfolio compared to a non-

netted one. In the absence of a netting agreement, the portfolio’s value is computed by

summing up the values of each individual vulnerable option, employing a risk-adjusted

strategy. Our analysis specifically focuses on a portfolio containing two Bermudan options

with strike prices K11 = 120 and K21 = 100. While our study is specific to this particular

portfolio, the insights gained can be applied to other portfolios.
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(a) Changes in regard to σ (b) Changes in regard to X0 (c) Changes in regard to K11

(d) Changes in regard to σ (e) Changes in regard to X0 (f) Changes in regard to K11

Figure 2.12: Sensitivity analysis of the portfolio value (Panels a-c) and the BVA (Panels e - f) at
inception as a function of ρ1 with fixed λ1 = 0.2, λ2 = 0.3 and ρ2 = 0, for various values of σ ,
X0, and K11 in the portfolio of three Bermudan options with benchmark strike prices of K11 = 120,
K21 = 100, and K22 = 90. All options are written on the same underlying asset with parameter
values reported in Table 2.10.

Unilateral risk

We contrast the CVA of the portfolio with and without netting, expressed as a per-

centage of the risk-free portfolio value, as a function of λ2. Figure 2.13a displays this

comparison, while Figure 2.13b demonstrates the netting impact, which is the difference

between the two CVAs. Our analysis verifies that incorporating a netting agreement can

substantially decrease the CVA, as the netted portfolio value is always greater than or equal

to the sum of individual option values. Consequently, excluding netting from calculations

can lead to a significant overestimation of the CVA for the netted portfolio.

To delve deeper, Figure 2.14 examines how the netting impact varies with changes
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(a) CVA value (b) Difference

Figure 2.13: Netting impact on the CVA at inception as a function of λ2: presented for a portfolio
of two Bermudan put options with K11 = 120 and K21 = 100 when ρ2 = 0. Other parameter values
are reported in Table 2.10

in λ2 for different levels of σ , X0, and (K21). The analysis reveals that the CVA gap

between the netted and non-netted portfolios initially widens with increasing counterparty

risk but later grows at a diminished rate. This slowing down occurs because, as C2’s default

risk increases, C1 is more likely to exercise the option with the strike price K11, thereby

reducing the netting impact.

Figure 2.15 extends the sensitivity analysis to explore how the netting impact varies

with correlation parameter ρ2. These findings are consistent with those from Figure 2.14.

Generally, ignoring netting agreements amplifies the CVA overestimation, especially when

there is an increase in the risk of loss from the counterparty’s default, either due to a rise

in default risk or a decrease in recovery rates.

Bilateral risk

In Figure 2.16, the netting impact on the BVA is evaluated as a function of λ1, assuming

fixed values of λ2 = 0.3 and ρ1 = ρ2 = 0. The figure indicates that integrating a netting
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(a) Changes in regard to σ (b) Changes in regard to X0 (c) Changes in regard to K21

Figure 2.14: Sensitivity of the netting impact on the CVA at inception as a function of λ2, when
ρ2 = 0, for various values of σ , X0, and K21 in the portfolio of two Bermudan options with bench-
mark parameter values of K11 = 120, K21 = 100. Other benchmark parameter values are reported
in Table 2.10.

(a) Changes in regard to σ (b) Changes in regard to X0 (c) Changes in regard to K21

Figure 2.15: Sensitivity of the netting impact on the CVA at inception as a function of ρ2, when
λ2 = 0.3, for various values of σ , X0, and K21 in the portfolio of two Bermudan options with
benchmark parameter values of K11 = 120, K21 = 100. Other benchmark parameter values are
reported in Table 2.10.

agreement notably reduces the risk adjustment for the counterparty with lower default risk.

This observation is further supported by Figure 2.17, which performs a sensitivity analysis

using different values of σ , X0, and K21.

Neglecting the netting effect can result in an overestimation of the BVA. Specifically,

an overestimation occurs for C1 when λ1 < λ2 and for C2 when λ2 < λ1. Furthermore,

the magnitude of this overestimation intensifies as the disparity in default probabilities

between the two counterparties enlarges.
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(a) BVA value (b) Difference

Figure 2.16: Netting impact on the BVA as a function of λ1: presented for a portfolio of two
Bermudan put options with K11 = 120 and K21 = 100 when λ2 = 0.3 and ρ1 = ρ2 = 0. Other
parameter values are reported in Table 2.10

(a) Changes in regard to σ (b) Changes in regard to X0 (c) Changes in regard to K21

Figure 2.17: Sensitivity of the netting impact on the BVA at inception as a function of λ1, when
λ2 = 0.3 and ρ1 = ρ2 = 0, for various values of σ , X0, and K21 in the portfolio of two Bermudan
options with benchmark parameter values of K11 = 120, K21 = 100. Other benchmark parameter
values are reported in Table 2.10.

Note that the netting impact becomes null when Condition (2.33) is met. Specifically,

this occurs when both parties exhibit identical default intensities, regardless of the differ-

ences in their relative exposures.

Figure 2.18 exhibits the sensitivity of the netting impact on the BVA at inception with

respect to ρ1. In line with Figure 2.17, increasing the recovery rate of C1, which signifies
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(a) Changes in regard to σ (b) Changes in regard to X0 (c) Changes in regard to K21

Figure 2.18: Sensitivity of the netting impact on the BVA at inception as a function of ρ1, when
λ1 = 0.2, λ2 = 0.3 and ρ2 = 0, for various values of σ , X0, and K21 in the portfolio of two Bermudan
options with benchmark parameter values of K11 = 120, K21 = 100. Other benchmark parameter
values are reported in Table 2.10.

a decrease in the risk of loss from C1 default, results in an increased netting impact.

Portfolio value

Figure 2.19 provides an analytical depiction of the netting impact on risk adjustment

valuation in relation to K11, considering a portfolio of four Bermudan put options on the

underlying asset as outlined in Table 2.10. The strike prices for these options are K12 =

100, K21 = 103, and K22 = 105. The evaluation incorporates both unilateral and bilateral

cases for a comprehensive understanding.

The figure highlights that the efficacy of netting is maximized when the portfolio’s

value nears zero. This phenomenon occurs due to the offsetting effect between options

with positive and negative market values within the portfolio, thereby minimizing the net-

ted expected loss. In contrast, if netting is disregarded, risk adjustment calculations solely

focus on options with positive market value, leading to substantial inflation in the risk

adjustment values.

Moreover, the analysis conveyed by the figure suggests a noteworthy trend. As the

option with strike price K11 becomes increasingly in-the-money, a decline is observed in
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both CVA and BVA values, irrespective of whether netting is applied. This reduction

in value is attributed to the increasing optimality of early exercise in numerous states,

resulting in lower expected loss. This early exercise also eliminates the netting impact in

those states, contributing to a narrowing gap in CVA/BVA between portfolios with and

without netting.

(a) Portfolio value (b) CVA value (c) Netting impact

(d) Portfolio value (e) BVA value (f) Netting impact

Figure 2.19: Netting impact as a function of K11 for a portfolio of four Bermudan put options when
K12 = 100, K21 = 103, and K22 = 105 for when λ1 = 0 (Panels a-c) and λ1 = 0.3 (Panels e - f), and
λ2 = 0.5, ρ1 = ρ2 = 0. All options are written on the same underlying asset with parameters values
reported in Table 2.10.

Based on the empirical findings presented in this section, it can be concluded that the

netting impact on risk adjustment valuation is likely to increase under specific conditions.

These conditions include:

• When the portfolio value approaches zero, which indicates a balanced relationship

between the positive and negative market values of the claims within the portfolio.

57



• When there is a widening disparity in potential loss exposure between the two parties

involved. This amplification can be attributed to scenarios such as an increase in the

default probability of one party in comparison to the other or a decrease (increase)

in the recovery rate of party C2 (C1).

2.5 Conclusion

In the financial sector, netting is extensively used to reduce counterparty credit risk, es-

pecially among institutions handling multiple over-the-counter transactions. Yet, to fully

benefit from the risk-mitigation advantages of netting, institutions must accurately deter-

mine risk adjustment values at the portfolio level. This becomes particularly complex for

portfolios containing claims with early exercise features. In this chapter, we address the

estimation of the CVA of portfolios of contracts under a netting agreement, when these

contracts can include early-exercise features.

We introduce a dynamic programming methodology that comprehensively examines

scenarios in which both counterparties have exercise rights and are susceptible to default.

This methodology facilitates the accurate calculation of risk adjustment values at the port-

folio level. Our analysis reveals that netted portfolios represent dynamic zero-sum games

when parties have early exercise options. The proposed algorithm is enabled to compute

exercise strategies for options within vulnerable portfolios while incorporating both net-

ting and default risks. Furthermore, Our method allows us to characterize the CVA or BVA

of a portfolio of contracts, for all possible values of the underlying market factors and all

possible compositions of the portfolio, at all evaluation dates until maturity.

Our research identifies the possibility for divergence in the valuation of a risk adjust-

ment for a netted portfolio, especially when counterparties adopt conservative strategies.

Such divergence can occasionally result in a positive risk adjustment for both parties and

58



is directly related to the absence of a Nash equilibrium in pure strategies within certain

states. To address this issue, we propose the adoption of mixed strategies, which inher-

ently ensure the existence of a Nash equilibrium, thereby aligning the valuation of the

netted portfolio and risk adjustments from both parties’ perspectives.

Further, our empirical analysis demonstrates that neglecting the role of netting can re-

sult in an overestimation of CVA/BVA values. This is notably true when there are signif-

icant disparities in default probabilities among counterparties. The findings also validate

that netting efficacy increases when there is a greater balance between the positive and

negative market values of the claims constituting the portfolio.

Finally, this chapter emphasizes the complex interplay involved in risk adjustments

within the framework of netting agreements. Our findings suggest that while risk adjust-

ment values generally exhibit an upward trend in relation to increasing counterparty risk,

their response to changes in other parameters is less straightforward. This complexity

challenges the feasibility of a universal approach to parameter changes at the portfolio

level, underscoring the need for context-specific assessments.
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Chapter 3

Beyond Counterparty Risk: The

Influence of Netting Agreements on

Exercise Strategies

3.1 Introduction

The early exercise feature in a derivative provides a distinctive combination of adapt-

ability and potential profitability. However, this feature also introduces complexity to the

derivative’s evaluation, as the optimal exercise strategy, essential for maximizing the op-

tion’s value, requires careful determination. In a scenario devoid of counterparty risk, the

decision to exercise or retain these options is shaped by several factors, including the price

of the underlying asset, time to maturity, volatility, and interest rates.

Computational methods have been extensively employed to solve the intricate opti-

mization problems associated with determining the optimal exercise strategy. Longstaff

and Schwartz (2001) develop a least squares Monte Carlo method for the determination



of the exercise strategy and the evaluation of American-style options. Concurrently, Tsit-

siklis and Van Roy (2001) devise a simulation-based approximate dynamic programming

method for computing the optimal exercise strategy. These methods, which have been

widely adopted in the industry, do not account for counterparty risk. Breton and Marzouk

(2018) address this limitation by introducing a dynamic programming-based method that

incorporates counterparty risk in the calculation of the exercise strategy.

3.1.1 Context and objectives

This chapter examines the often-overlooked impact of netting agreements between

defaultable counterparties on the exercise strategy of Bermudan options, using various nu-

merical experiments. The insights gained are crucial for financial institutions, investors,

and regulators, shedding light on managing options with early exercise opportunities in

a netted portfolio. The previous chapter discussed the effect of netting on the risk ad-

justment value of derivatives with early exercise options and introduced a dynamic game

representation method. This chapter continues by exploring the influence of netting on

portfolio management, particularly the exercise strategies of options.

3.1.2 Content and organization

This chapter begins with an exploration of the conservative and mixed strategies’ im-

plications on the optimal exercise decisions for Bermudan options in the netted portfolio,

explained through a representative example. We then explore the complex dynamics of

how changes in default hazard rate and the recovery rate of parties can significantly influ-

ence the exercise strategy of options within a netted portfolio. Our investigation continues

to look at how a netting agreement can alter the exercise strategy, even for a party not

exposed to counterparty default risk. Additionally, we examine the position of the exer-
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cise boundary within the netted portfolio, comparing it to the risk-free and risk-adjusted

boundaries in the absence of netting. This comparison is conducted for both parties in both

unilateral and bilateral default risk scenarios.

We also question traditional methodologies used to evaluate the risk adjustment value

of netted portfolios. We argue that these methods, which are based on a risk-free exercise

strategy or even the risky one in the absence of netting, often miss the impact of netting on

the exercise process. This lack of attention can potentially lead to overestimations of the

CVA and BVA of the netted portfolio.

The structure of this chapter is as follows: Section 3.2 compares the exercise behavior

of options in the netted portfolio using the conservative strategy and mixed strategy in the

presence of counterparty risk. Section 3.3 provides a detailed analysis of how changes

in the default probability of parties and their recovery rate affect the exercise strategy of

an option within a netted portfolio. Section 3.4 offers a foundational understanding of

the exercise boundaries in scenarios involving unilateral and bilateral default risk, both

with and without a netting agreement. Section 3.5 shows how using the risk-free exercise

strategy or the isolated risky one, instead of the one that is adjusted for both netting and

party’s default risk, can lead to incorrect CVA or BVA of a netted portfolio. Finally,

Section 3.6 concludes the chapter, highlighting the key findings.

3.1.3 Notation and settings

This chapter adheres to the notational conventions and symbols established in the pre-

ceding chapter, ensuring consistency across the discourse. The notations introduced in

Chapter 2 persist throughout this chapter. The numerical experiments in subsequent sec-

tions are based on a portfolio comprising Bermudan put options, each written on the same

underlying asset but potentially with distinct strike prices. The benchmark parameter val-
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ues employed in the numerical experiments of the next sections are presented in Table

3.1.

Parameters
Underlying asset

T Ne
r X0 σ

Base value 0.05 100 0.35 1 50

Table 3.1: Benchmark values for the numerical experiments.

3.2 Comparison of conservative and mixed strategies

In this section, we assume that C1 is immune to default (λ1 = 0), while C2 is vulnerable

to default with a constant hazard rate of λ2 = 0.5 and a recovery rate of ρ2 = 0. Our anal-

ysis centers around a portfolio comprising four Bermudan put options, each with distinct

strike prices: K11 = 110, K12 = 100, K21 = 105, and K22 = 100. These options are written

on the same underlying asset, with parameter values specified in Table 3.1. Figure 3.1

represents the exercise strategies of the two options held by C1 over time, assuming that

no option has been exercised yet.

The red curves in Figure 3.1 depict the security strategy of the C1, that is aS1
m (.), repre-

senting the exercise barrier as a function of the date and the price of the underlying asset.

These boundaries define the underlying asset price threshold, dependent on the exercise

date, beneath which the immediate exercise of the put options held by C1 becomes the

optimal decision under the most adverse outcome.

Panels b and e of Figure 3.1 illustrate the exercise behavior using the mixed strategy for

the options with strike prices K11 and K12. It delineates the probability of exercising that

option given a specific underlying asset price and exercise date, especially in the regions

where the upper and lower values of the portfolio differ (in grey).
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(a) Conservative strategy (b) Mixed strategy (c) Both strategies

(d) Conservative strategy (e) Mixed strategy (f) Both strategies

Figure 3.1: Equilibrium exercise strategies (security and mixed) under netting for the options with
strike prices of K11 (panels a-c) and K12 (panels d-f), given λ2 = 0.5, λ1 = 0 and ρ2 = ρ1 = 0. The
netted portfolio comprises four Bermudan put options with strike prices K11 = 110, K12 = 100,
K21 = 105, and K22 = 100, written on the same underlying asset, with parameter values detailed in
Table 3.1

From Panel c of Figure 3.1, it is clear that both the mixed and conservative strategies

lead to the same decision-making for the option with a strike price of K11. Yet, Panel f of

Figure 3.1 shows that for the option with a strike price of K12, the mixed strategy results

in a different exercise approach. This shows that there can exist significant regions for the

underlying asset price, along the life of the portfolio, where there exists no equilibrium in

pure strategies.

It is noteworthy that the existence of a netting agreement can alter the exercise strategy

of options held by a party, even when that party is not exposed to counterparty default

risk. This is exemplified in Figure 3.2, where we illustrate the optimal exercise decisions

for options held by C2 using the conservative strategy for C2, that is aS2
m (.), and mixed
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(a) Conservative strategy (b) Mixed strategy (c) Both strategies

(d) Conservative strategy (e) Mixed strategy (f) Both strategies

Figure 3.2: Equilibrium exercise strategies (security and mixed) under netting for the options with
strike prices of K21 (panels a-c) and K22 (panels d-f), given λ2 = 0.5, λ1 = 0 and ρ2 = ρ1 = 0. The
netted portfolio comprises four Bermudan put options with strike prices K11 = 110, K12 = 100,
K21 = 105, and K22 = 100, written on the same underlying asset, with parameter values detailed in
Table 3.1

strategy, assuming that no option has been exercised yet. It is evident that the exercise

strategy, derived from the mixed strategy for the option held by C2, is influenced by the

netting agreement. This can be attributed to the fact that C2 no longer makes decisions for

the options independently. Rather, the decision-making process is influenced by the other

party’s decisions and consequently its own default probability. We discuss this effect on

decision-making using the conservative strategy in the following sections.

In the subsequent sections, we present our analysis on the exercise boundary based

on the conservative strategy, primarily due to its straightforward representation. However,

these results can be extrapolated when the mixed strategy is employed.
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3.3 Impact of parameter values on exercise strategies

The next set of experiments illustrates the impact of CCR on the equilibrium strategies

in a netted portfolio in both unilateral and bilateral cases. We consider a portfolio consist-

ing of three Bermudan options on the same underlying asset, with strike prices K11 = 120,

K21 = 100, and K22 = 90 as outlined in Table 3.1. It is worth noting that the findings from

this analysis can be extrapolated to other portfolios.

3.3.1 Unilateral risk

Figure 3.3 provides a detailed visual presentation of the effects of changing λ2, when

λ1 = 0, and ρ2 = 0, on the exercise strategy of the option with a strike of K11. This figure

is divided into three sections, each focusing on the change of λ2 for different parameter

values while keeping the others at their benchmark levels. Panels a-c and Panels d-f of the

figure illustrates this effect for different values of K11, and K21, respectively, while panels

g-i show this effect for various levels of σ . In a similar way, we present a corresponding

illustration for the effect of varying ρ2, when λ1 = 0, and λ2 = 0.3 on the exercise strategy

of the option with a strike of K11 in Figure 3.4.

Upon examination of the figures, it is clear that an increase in the risk of loss stem-

ming from counterparty default, either due to a higher default risk or a lower counterparty

recovery rate, results in exercising the put option at higher prices of the underlying asset

(earlier). This occurrence can be primarily attributed to the fact that an increase in the

counterparty default risk or a decrease in the recovery rate leads to a reduction in the hold-

ing value of the portfolio Wm(x,b), as defined in the preceding chapter. Consequently, the

option holder C1 is motivated to exercise the option when the exercise payoff is lower,

corresponding to higher prices of the underlying asset.

Our exploration suggests that the impact of increasing default risk on the exercise
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(a) K11 = 110 (b) K11 = 120 (c) K11 = 130

(d) K21 = 90 (e) K21 = 100 (f) K21 = 110

(g) σ = 0.2 (h) σ = 0.35 (i) σ = 0.5

Figure 3.3: Effect of λ2 variations on the exercise boundary of the option with a strike price of
K11 in the netted portfolio containing two Bermudan options on the same underlying asset when
λ1 = 0, and ρ2 = 0. Benchmark parameter values are K11 = 120, K21 = 100, and K22 = 90, and
others as reported in 3.1. The figure illustrates the effect of varying K11 (panels a-c), K21 (panels
d-f), and σ (panels g-i) while keeping the other values constant at their benchmark levels.

barrier is heightened with a rise in K11. We also observe that this impact increases with a

decrease in K21. The reason is that both these adjustments elevate the value of the portfolio

for C1, increasing C1’s exposure to default risk and prompting C1 to exercise its option

earlier. However, the influence of σ on the increasing default risk’s effect on the exercise
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(a) K11 = 110 (b) K11 = 120 (c) K11 = 130

(d) K21 = 90 (e) K21 = 100 (f) K21 = 110

(g) σ = 0.2 (h) σ = 0.35 (i) σ = 0.5

Figure 3.4: Effect of ρ2 variations on the exercise boundary of the option with a strike price of
K11 in the netted portfolio containing two Bermudan options on the same underlying asset when
λ1 = 0, and λ2 = 0.3. Benchmark parameter values of K11 = 120, K21 = 100, and K22 = 90, and
others as reported in 3.1. The figure illustrates the effect of varying K11 (panels a-c), K21 (panels
d-f), and σ (panels g-i) while keeping the other values constant at their benchmark levels.

barrier is not straightforward. An increase in σ affects all options in the portfolio. As

the volatility of the underlying asset changes, it impacts both the overall exposure and the

value of individual options, potentially in contrasting manners. Thus, predicting the effect

of a σ change on the impact of the counterparty’s default risk on each option’s exercise
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boundary is not possible.

It is important to note that this example illustrates not only how the parameters of an

individual option can influence its exercise decision but also how parameters associated

with other options in the portfolio can significantly impact the exercise decision of an

option within the netted portfolio.

3.3.2 Bilateral case

In the bilateral case, we illustrate the effect of changing λ1 with conditions λ2 = 0.3,

and ρ1 = ρ2 = 0 on the exercise strategy of the option with a strike of K11 in Figure 5.

Similarly, we show the impact of changing ρ1 when λ2 = 0.3, λ1 = 0.2, and ρ2 = 0 on the

exercise strategy of the option with a strike of K11 in Figure 6.

The interesting result from both figures is the observation that an increase in the risk

of loss from the option holder (C1), either due to a higher default risk or a lower recovery

rate, results in earlier option exercise. In essence, combining the results from the unilateral

case, it is clear that no matter whose risk increases, a rise in the default risk of both parties

can lead to earlier exercise of the options in the netted portfolio. The reason is as follows:

an increase in the risk of loss from C1’s default leads to an earlier exercise of the option

held by C2, as explained in the previous section. Consequently, the benefit of C1 from

netting mitigation could disappear or be significantly reduced for a larger portfolio. To

avoid this, C1 is also encouraged to exercise the option in the netted portfolio sooner.

Expanding on our findings, as K21 rises or K11 falls, the influence of an increase in C1’s

default risk on its option’s exercise boundary becomes more pronounced. These changes

increase the portfolio’s value for C2, heightening C2’s default risk exposure and leading

C2 to exercise its options earlier. Consequently, C1 is also inclined to exercise its options

sooner.
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(a) K11 = 110 (b) K11 = 120 (c) K11 = 130

(d) K21 = 90 (e) K21 = 100 (f) K21 = 110

(g) σ = 0.2 (h) σ = 0.35 (i) σ = 0.5

Figure 3.5: Effect of λ1 variations on the exercise boundary of the option with a strike price of
K11 in the netted portfolio containing two Bermudan options on the same underlying asset when
λ2 = 0.3, and ρ1 = ρ2 = 0. Benchmark parameter values of K11 = 120, K21 = 100, and K22 = 90,
and others as reported in 3.1. The figure illustrates the effect of varying K11 (panels a-c), K21
(panels d-f), and σ (panels g-i) while keeping the other values constant at their benchmark levels.
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(a) K11 = 110 (b) K11 = 120 (c) K11 = 130

(d) K21 = 90 (e) K21 = 100 (f) K21 = 110

(g) σ = 0.2 (h) σ = 0.35 (i) σ = 0.5

Figure 3.6: Effect of ρ1 variations on the exercise boundary of the option with a strike price of
K11 in the netted portfolio containing two Bermudan options on the same underlying asset when
λ2 = 0.3, λ1 = 0.2 and ρ2 = 0. Benchmark parameter values of K11 = 120, K21 = 100, and K22 = 90,
and others as reported in 3.1. The figure illustrates the effect of varying K11 (panels a-c), K21 (panels
d-f), and σ (panels g-i) while keeping the other values constant at their benchmark levels.

3.4 A comparative analysis: Netting impact on exercise

boundaries

In this section, the focus is on understanding the exercise boundaries in contexts of

both unilateral and bilateral default risk, with and without a netting agreement. We set ex-
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ercise boundaries under risk-free conditions as a baseline, and then conduct a comparative

analysis to highlight the impacts of default risk and netting on the exercise boundaries of

options. The studied portfolio includes four Bermudan put options with strike prices of

K11 = 110, K12 = 100, K21 = 105, and K22 = 103, written on the underlying asset as delin-

eated in Table 3.1, and insights drawn from this analysis are applicable to other portfolios

as well.

3.4.1 Unilateral case

Figure 3.7 compares the exercise boundaries for C1 under risk-free conditions and

unilateral risk conditions, both with and without a netting agreement. Panels a-c display

results for the option with a strike price of K11, and panels d-f present results for the option

with a strike price of K12 at various λ2 levels (0.1, 0.5, and 1).

The figure indicates that as counterparty risk increases, C1 tends to exercise options

earlier, which aligns with previous discussions. Notably, without a netting agreement

and when counterparty risk is present, C1 exercises the option sooner than it would with

a netting agreement. Essentially, the exercise boundary in a netted portfolio resides be-

tween—or matches—the risk-free and risky exercise boundaries in isolation. This is a

general rule, linked to the risk mitigation offered by the netting agreement. When coun-

terparty risk increases, the exercise boundary shifts upward, but a netting agreement can

moderate this shift.

Figure 3.8 extends the comparative analysis to options with strike prices of K21 and

K22, held by C2. Initially, and as anticipated, when C2 is not exposed to counterparty risk,

the exercise boundary of the options, in the absence of a netting agreement, coincides

exactly with the risk-free boundary.

The inclusion of a netting agreement changes this, potentially triggering a rise in the
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(a) λ2 = 0.1 (b) λ2 = 0.5 (c) λ2 = 1

(d) λ2 = 0.1 (e) λ2 = 0.5 (f) λ2 = 1

Figure 3.7: Comparison of the exercise boundaries for two options held by C1, under risk-free
conditions, and in the presence of unilateral default risk with and without netting. The portfolio
consists of four Bermudan puts with strike prices K11 = 110, K12 = 100, K21 = 105, and K22 = 103,
on the underlying asset specified in Table 3.1 when λ1 = 0. panels a-c show the results for the option
with the strike price of K11, while panels d-f show the results for the option with the strike price of
K12.

exercise boundary. This can be linked to the mutual decision-making necessitated by a

netting agreement. Specifically, exercise decisions are not made independently but are

impacted by the other party’s actions. As C1 tends to exercise earlier, C2 may also be

motivated to exercise earlier than in a risk-free situation, to counter C1’s strategies, who

aims to utilize netting benefits.

It is important to highlight that, as shown in Figure 3.8, the exercise boundary with

netting, derived using the conservative strategy, might display non-smooth behavior. This

stems from the intricate nature of the represented game between the parties and the lack

of a Nash equilibrium in pure strategies in certain states, causing possible abrupt decision
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(a) λ2 = 0.1 (b) λ2 = 0.5 (c) λ2 = 1

(d) λ2 = 0.1 (e) λ2 = 0.5 (f) λ2 = 1

Figure 3.8: Comparison of the exercise boundaries for two options held by C2, under risk-free
conditions, and in the presence of unilateral default risk with and without netting. The portfolio
consists of four Bermudan puts with strike prices K11 = 110, K12 = 100, K21 = 105, and K22 = 103,
on the underlying asset specified in Table 3.1 when λ1 = 0. panels a-c show the results for the option
with the strike price of K21, while panels d-f show the results for the option with the strike price of
K22.

changes by the parties and non-smoothness in the exercise boundary.

3.4.2 Bilateral case

In the following analysis, where bilateral default risk is considered and λ1 = 0.3, Fig-

ures 3.9 and 3.10 present a comparative analysis of exercise boundaries for options held

by C1 and C2 respectively, exploring both risk-free and risky scenarios, with and without

netting, across varying levels of λ2 (0.1, 0.5, and 1).

Combining results from the unilateral case and various numerical tests, we observe: As

a party’s default risk increases, the other party’s option exercise boundary rises, regardless
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(a) λ2 = 0.1 (b) λ2 = 0.5 (c) λ2 = 1

(d) λ2 = 0.1 (e) λ2 = 0.5 (f) λ2 = 1

Figure 3.9: Comparison of the exercise boundaries for two options held by C1, under risk-free
conditions, and in the presence of Bilateral default risk (λ1 = 0.3) with and without netting. The
portfolio consists of four Bermudan puts with strike prices K11 = 110, K12 = 100, K21 = 105, and
K22 = 103, on the underlying asset specified in Table 3.1. panels a-c show the results for the option
with the strike price of K11, while panels d-f show the results for the option with the strike price of
K12.

of netting. Within a netted portfolio, the exercise boundary sits between the risk-free

boundary and the risk-adjusted one when the option holder’s default risk is lower than the

counterparty’s. This is attributable to the risk-mitigating role of netting.

For example, in Panels b-c and e-f of Figure 3.9, with λ1 < λ2, the exercise boundary

for C1’s options falls between risk-free and risky scenarios without netting. Similarly, in

Panels a and d of Figure 3.10 for C2, where λ2 < λ1, a similar pattern emerges.

When the option holder’s default risk exceeds the counterparty’s, the exercise boundary

for the riskier party’s options aligns with or surpasses the risk-adjusted boundary for op-

tions without netting. This is visible for C1 in Panels a and d of Figure 3.9, where λ2 < λ1,
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(a) λ2 = 0.1 (b) λ2 = 0.5 (c) λ2 = 1

(d) λ2 = 0.1 (e) λ2 = 0.5 (f) λ2 = 1

Figure 3.10: Comparison of the exercise boundaries for two options held by C2, under risk-free
conditions, and in the presence of Bilateral default risk (λ1 = 0.3) with and without netting. The
portfolio consists of four Bermudan puts with strike prices K11 = 110, K12 = 100, K21 = 105, and
K22 = 103, on the underlying asset specified in Table 3.1. panels a-c show the results for the option
with the strike price of K21, while panels d-f show the results for the option with the strike price of
K22.

and for C2 in Panels b-c and e-f of Figure 3.10, where λ1 < λ2. The exercise boundary of

an option without netting is solely determined by counterparty risk and remains unaffected

by the option holder’s default risk. Yet, under a netting agreement, it can be influenced

by the holder’s default risk. The less risky party’s earlier exercise decision in a netting

scenario can potentially reduce the riskier party’s netting mitigation benefits, prompting

the latter to exercise options within the netted portfolio earlier than when without netting.

To view it differently: when Condition (2.33) is met, implying that both counterparties

exhibit an identical default risk, the netting has no impact and the equilibrium exercise bar-

rier coincides with the risk-adjusted optimal one. Examination of Equation (2.32) shows
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that netting benefits the party less likely to default first (potentially adjusted for recov-

ery). As a result, for vulnerable (put) options under netting, the exercise barrier is lower

(or higher) than its risk-adjusted counterpart for the counterparty with a correspondingly

lower (or higher) default probability.

Under a netting agreement, it may be optimal not to exercise identical options simul-

taneously, since the exercise decision depends on the portfolio composition. Figure 3.11

demonstrates this in a unilateral case (λ2 = 0.5) with a portfolio of four Bermudan put

options, all with the same strike price (K11 = K12 = K21 = K22 = 100), and written on the

same underlying asset as specified in Table 3.1. Panel (a) contrasts the exercise boundaries

of options with identical strike prices within the netted portfolio. Panels b and c offer a

comparative view of exercise boundaries for options held by C1 and C2 respectively.

Under netting, a region exists where both options are exercised and another where only

one option is exercised, applicable to parties both exposed and not exposed to counterparty

credit risk (CCR). For C1, exposed to CCR, both exercise barriers are higher (indicating

earlier exercise) than in the risk-free case, yet lower than without a netting agreement.

Conversely, C2, not exposed to CCR, will exercise one of its options at a higher price

(earlier) than the risk-free barrier when in a netting agreement, while the exercise barrier

for the second option aligns with the risk-free barrier.

Our study reveals that options will be exercised according to their intrinsic value (or

equivalently, their expected loss upon default). This occurs because, in a bilateral netting

agreement, all vulnerable contracts held by one party share the same risk level. However,

multiple solutions may arise when deciding about an exercise strategy, for instance when

a portfolio holds many identical options. This does not mean that identical options should

be exercised together, but rather that any subset of those identical options can be exercised

in the corresponding region.
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(a) Comparison of exercise boundaries of options for
the case of the risky party with netting

(b) Comparison of exercise policies for options held
by C1

(c) Comparison of exercise policies for options held
by C2

Figure 3.11: Illustration of the effect of netting and counterparty risk on the exercise boundaries of
identical options with the same strike price of 100 on the same underlying asset as characterized in
Table 3.1 when λ1 = 0, λ2 = 0.5, and ρ2 = 0. Panel a compares the exercise strategies of options
for the case of the risky party under the netting agreement. Panels b and c show the comparison of
the exercise boundaries for options held by C1 and C2, respectively, under risk-free conditions, and
in the presence of default risk with and without netting
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3.5 Methodological choices

The conventional methodology used for assessing the risk adjustment value of deriva-

tives with early-exercise features typically employs two successive steps. The exercise

strategy is initially obtained for all derivatives, disregarding counterparty default risk. Sub-

sequently, a Monte Carlo simulation of the default process and of the market risk factors

is conducted in order to estimate the expected loss corresponding to the risk-free exercise

strategy. This approach, however, works under the assumption that counterparty risk does

not influence the exercise mechanism.

As shown in Breton and Marzouk (2018), this two-step technique, while widely used in

the industry, can lead to significant inaccuracies in the estimation of the CVA of individual

derivative products. The numerical experiments presented in previous sections show that

netting can further modify the exercise strategy of options, leading to unpredictable effects

on the value of the CVA or BVA.

At the portfolio level, our method calculates the portfolio’s risk adjustment and the ex-

ercise policy of the claims concurrently. This method adjusts the obtained exercise strategy

for both default risk and netting. Our next set of experiments illustrates the misestimation

that can arise when disregarding the impact of CCR and netting on the exercise strategies

of derivatives. We use the simplest example of a portfolio of two Bermudan options with

K11 = 120 and K21 = 100, written on the same underlying asset, described in Table 3.1,

under the assumption that the parties can use mixed strategies

Figure 3.12 compares the CVA at the inception obtained using the risk-free, risk-

adjusted, and netting-adjusted exercise strategies. This is presented as a function of λ2,

under the condition that ρ2 = 0 for the unilateral case. Panel a compares the CVA as a

percentage of the risk-free portfolio value, while Panel b reveals the potential CVA over-

estimation, expressed as a percentage of risk-free portfolio value if an exercise strategy,
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(a) CVA value (b) Difference

Figure 3.12: Impact of using risk-free and risk-adjusted (without netting) exercise strategy on the
CVA at inception as a function of λ2: illustrated for a portfolio of two Bermudan put options with
K11 = 120 and K21 = 100 given ρ2 = 0. Other parameter values are reported in Table 3.1

(a) Changes in regard to σ (b) Changes in regard to K11 (c) Changes in regard to K21

Figure 3.13: Impact of using risk-free exercise strategy instead of risk and netting adjusted one on
the CVA at inception as a function of λ2: Illustrated for variations in σ , X0, and K21 in a portfolio
of two Bermudan options with benchmark parameter values of K11 = 120, K21 = 100, under the
condition ρ2 = 0. Additional benchmark parameter values are detailed in Table 3.1.

adjusted for both netting and counterparty risk, is not utilized.

Figure 3.13 further investigates the implications of using a risk-free exercise strategy

instead of the one that adjusted for both risk and netting on the CVA at the inception date.

This is examined as a function of λ2 across varying levels of σ , K11, and K21.

Similarly, for the bilateral case, Figure 3.14 and 3.15 show the impact of using risk-free
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(a) CVA value (b) Difference

Figure 3.14: Impact of using risk-free and risk-adjusted (without netting) exercise strategy on the
BVA at inception as a function of λ1: illustrated for a portfolio of two Bermudan put options with
K11 = 120 and K21 = 100 given λ2 = 0.3 and ρ1 = ρ2 = 0. Other parameter values are reported in
Table 3.1

(a) Changes in regard to σ (b) Changes in regard to K11 (c) Changes in regard to K21

Figure 3.15: Impact of using risk-free exercise strategy instead of risk and netting adjusted one on
the BVA at inception as a function of λ1: Illustrated for variations in σ , X0, and K21 in a portfolio
of two Bermudan options with benchmark parameter values of K11 = 120, K21 = 100, under the
conditions λ2 = 0.3 and ρ1 = ρ2 = 0. additional benchmark parameter values are detailed in Table
3.1.

and risk-adjusted exercise strategies, with and without netting, on the BVA at inception,

presented as a function of λ1, given λ2 = 0.3 and ρ1 = ρ2 = 0.

Note that calculating the risk adjustment value of the portfolio using either the risk-free

or risk-adjusted strategy singularly utilizes the model introduced in the preceding chapter,
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with a key difference: decision-making is not necessitated in each state of the model, and

known exercise strategies are used instead.

In the unilateral-risk case, using either the risk-free or the risk-adjusted strategy with-

out accounting for the netting impact always leads to an overestimation of the CVA. This

is because both strategies are not optimal compared to the optimal one derived from the

dynamic game model, leading to an underestimated portfolio value and consequently, an

overestimated risk adjustment. For the portfolio we studied, this overestimation can even

reach about 20% of its risk-free value. However, in the bilateral case, the error in the esti-

mation of the BVA can be positive or negative, depending on the relative parties’ exposure

to CCR, as can be observed from Panel a of Figure 3.15.

3.6 Conclusion

The introduction of a netting agreement fundamentally changes the decision-making

process related to the exercise strategies of options in a portfolio. This is because the

decision to exercise an option becomes closely tied to the counterparty’s actions, rather

than being an isolated action. In this chapter, we explore the impact of a netting agreement

on the exercise strategy of defaultable parties for Bermudan options.

Our research indicates that a netting agreement can modify the exercise strategy, even

for a party not exposed to counterparty default risk. This is because the decision-making

process is influenced by the other party’s decisions and, consequently, its own default

probability. We demonstrate that changes in the default probability and recovery rate can

significantly affect the exercise strategy of options within a netted portfolio. In both uni-

lateral and bilateral cases, an increased counterparty default risk or a decreased recovery

rate motivates the earlier exercise of the options in the netted portfolio. This effect can

be intensified with changes in the portfolio value. Moreover, our study highlights that the
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parameters of individual options and those associated with other options in the portfolio

can significantly influence the exercise decision of an option within the netted portfolio.

Our study also reveals that the exercise boundary within the netted portfolio lies be-

tween the risk-free and risk-adjusted boundaries in the absence of netting, assuming the

option holder’s default risk is less than that of the counterparty. This is due to the risk-

mitigating role of netting. Additionally, our research emphasizes the dynamic nature of a

netted portfolio, where the exercise of each option alters the portfolio’s condition, thereby

affecting the exercise boundary of the remaining options.

Lastly, our findings challenge traditional methodologies used to assess the risk adjust-

ment value of netted portfolios. These methods often neglect the impact of counterparty

risk and netting on the exercise mechanism. We demonstrate that even when netting is in-

corporated into the calculation, the industry’s prevalent two-step methods, which employ

either risk-free or risk-adjusted exercise strategies without considering netting, tend to in-

accurately estimate the CVA or BVA of the netted portfolio. This misestimation, which

can reach up to 20% of the risk-free portfolio value in a simple scenario, is due to the sub-

optimality of these strategies compared to the strategy derived from the dynamic game

model.
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Chapter 4

CVA Variability in Netted Portfolios

4.1 Introduction

The 2008 financial crisis highlighted the importance of managing CVA variability to

maintain banking sector stability. Reflecting on the crisis, Basel III noted that approxi-

mately two-thirds of the losses related to counterparty credit risk came from changes in

CVA, exceeding losses from actual defaults. Consequently, Basel III introduced a require-

ment for banks to hold regulatory capital against CVA variability. This aims to ensure

banks have enough capital reserves to absorb potential future CVA changes, strengthening

the financial system’s resilience.

Effectively determining the appropriate capital charge relies on assessing the future

probability distribution of CVA at relevant risk horizons. This enables computing ana-

lytical risk metrics like CVA Value-at-Risk (VaR) to quantify inherent volatility. Ade-

quate capital can then be determined based on these volatility-dependent risk measures

that quantify exposure to adverse CVA movements. Overall, this CVA capital charge pro-

vides an additional layer of protection against the systemic risk associated with unmanaged



CVA variability.

For CVA variability estimation, the financial industry often uses nested Monte Carlo

simulations, especially for exotic derivatives. This involves two simulation levels: the

outer loop generates market scenarios, while the inner evaluates counterparty credit risk

exposure in each scenario over a timeframe. However, this approach relies on conducting

a large number of simulations, demanding extensive computational resources and time.

Estimating CVA VaR using nested simulations becomes more challenging for a port-

folio in the presence of a netting agreement. It must simulate numerous underlying risk

factors impacting the exposure to counterparty default. This complexity is further com-

pounded in portfolios where both parties in a netting set have opportunities for early exer-

cise. Including these strategic decisions that can substantially alter the netted set’s expo-

sure, adds another layer of complexity. This amplifies the problem’s dimensionality and,

consequently, the computational demands, sometimes to the extent that nested simulation

may not be a feasible choice for accurately estimating CVA risk.

Building on the CVA evaluation method for netted portfolios introduced in the previous

chapter, this chapter presents an alternative approach for calculating the CVA VaR for such

portfolios with potential early exercise rights. This method is inspired by the approach of

Breton and Marzouk (2019) for individual contracts, adapted here to address the netted

portfolios.

In this chapter, through a series of numerical experiments, we investigate the influence

of netting agreements on the distribution of CVA and its tail risk. We examine how factors

such as early exercise rights and the length of the risk horizon can change the movement of

CVA. These explorations provide deeper insights into the complexities of netted portfolio

management and counterparty risk assessment.

This chapter continues as follows: Section 4.2 outlines the methodology for calculating

the CVA VaR. In Section 4.3, we present various numerical examples for illustration. The
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chapter concludes with Section 4.4.

4.2 Estimating the Distribution of CVA Changes for

Netted Portfolios

To assess the risk of adverse CVA changes over a time horizon, we must analyze the

potential CVA distribution at the horizon’s end. This involves generating scenarios for risk

factors affecting net counterparty credit exposure. By simulating these scenarios, we can

then calculate CVA values at the horizon close under each one. With sufficient sample

sizes, we can approximate the full CVA distribution and compute associated risk measures

like CVA VaR.

The previously introduced dynamic game algorithm provides a function approximating

CVA across market conditions and dates for each portfolio subset. Requiring only a single

run, it eliminates the need for nested simulations. We utilize this CVA function to evaluate

CVA changes across a risk horizon for the netted portfolio.

Specifically, given an initial portfolio b0 under a netting agreement at the inception,

our goal is to determine the CVA VaR on a time horizon H. To achieve this, we use

the dynamic game method to derive the CVA as a function of risk factors x and portfolio

composition binary vector b≤ b0, for each valuation date in set T.

We start by observing the risk factor values X0 at inception, and then simulate their

evolution over the interval [0,H] to obtain trajectories starting from X0 and ending with

XH at the horizon date H.

In scenarios where no options within the portfolio can be exercised before date H, the

process is straightforward: we simply simulate the risk factors up to date H to observe XH ,

and then determine the corresponding CVA value for the initial portfolio composition b0.
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However, if the portfolio contains options with exercise opportunities before date H,

the situation becomes more complex. We must account for potential changes in the port-

folio composition along each simulated path of risk factors. At each decision point, we

compare the simulated path against the exercise strategy for each option in the alive port-

folio to determine whether the option is exercised. If an option is exercised, the portfolio

composition changes and this new composition informs subsequent exercise strategy of

remaining options along the path. This process continues until date H, allowing us to de-

termine which options remain alive and the final composition of the portfolio, denoted bH ,

at the end of the risk factor path.

Once we have determined the portfolio composition at date H for each simulated sce-

nario, we can calculate the corresponding CVA using the function CVAH(x,b), which is

derived from our dynamic programming algorithm. The change in CVA is obtained by

subtracting the CVA value at inception, CVA0(X0,b0), from the CVA values at date H,

CVAH(XH ,bH). This yields a distribution of potential CVA changes across all simulated

paths.

The algorithm to calculate the CVA VaR at a future date H for netted portfolios:

1. Execute the dynamic programming algorithm to derive function CVAm(x,b) for all

x ∈ Rn and for all subsets of the initial portfolio on each evaluation date tm in set T.

2. On the initial date, observe the current risk factors X0. Simulate vector process Xt over

the interval (0,H] to generate [X0,XH ].

3. Determine the final portfolio composition bH for each simulated path based on process

Xt over the interval (0,H].

4. For each simulation resulting in XH and bH , apply the CVA function to obtain CVAH(XH ,bH).

Determine the CVA changes by ∆CVAH = CVAH(XH ,bH)−CVA0(X0,b0).
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5. Compile all the ∆CVAH values to construct a distribution of potential CVA changes.

Estimate the CVA VaR from the quantiles of this distribution, corresponding to the

desired confidence level.

It is important to note that based on recent research by Breton and Marzouk (2019),

the transition between the real-world probability measure P and the risk-neutral measure

Q does not exert a substantial impact on the tail risk associated with CVA. Their analysis

shows that the CVA VaR estimates exhibit remarkable similarity under either measure.

This phenomenon is attributed to the fact that the measure change solely influences the

drift terms in the process dynamics. The influence exerted by drift on generating extreme

values of risk factors is generally less pronounced in comparison to volatility. Conse-

quently, while alterations in drift may induce minor adjustments to the distribution’s shape,

they are less likely to significantly affect the likelihood of extreme events that contribute to

tail risk. As a result, we perform both the CVA calculation in the first step of the algorithm

and the simulation in the second step of the algorithm under the risk-neutral measure Q.

4.3 Numerical experiments

In this section, we aim to explore the influence of netting agreements, the existence

of early exercise opportunities, and other parameter changes on the distribution of CVA

and CVA VaR. This exploration builds on the notational framework established in earlier

chapters.

For each set of experiments, we focus on a portfolio comprising Bermudan put op-

tions, each on the same underlying asset but with potentially different strike prices. These

options share a common maturity of T = 1 and offer Ne equally spaced exercise opportuni-

ties. In our benchmark model, we set Ne = 12, indicating that the options can be exercised
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monthly.

We model the underlying asset price following a GBM. Under the risk-neutral measure

Q, the asset price dynamics are represented as:

dXt = rXtdt +σXtdBt , (4.1)

where B indicates a standard Brownian motion under Q. The benchmark parameters for

our numerical experiments are outlined in Table 4.1.

We consider the unilateral case, where the counterparty default follows an intensity

model with a hazard rate of λ2. In all experiments, the recovery rate is assumed to be zero,

and the CVA VaR is estimated at a 99% confidence level.

Parameters
Underlying asset

T Ne
r X0 σ

Base value 0.05 100 0.2 1 12

Table 4.1: Benchmark values for the numerical experiments.

4.3.1 Netting impact on CVA variability

This section examines the effects of netting agreements and counterparty risk levels

on CVA changes through a series of illustrative examples. We conduct a comparative

analysis, represented in Figures 4.1 and 4.3, which show CVA distributions over a 10-

day risk horizon. The figures illustrate the influence of netting under different scenarios:

varying strike prices (K11) and counterparty hazard rates (λ2) for two four-option Portfolios

I and II. The strike prices of the options comprising these portfolios are outlined in Table

4.2.

Figures 4.2 and 4.4 present the effects of netting agreements on CVA VaR for Portfo-

lios I and II. These figures demonstrate potential deviations in CVA VaR calculations for
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Holder C1 C2
Strike price K11 K12 K21 K22

Portfolio I 95−100−105 95 110 110
Portfolio II 95−100−105 95 90 90
Portfolio III 115 110 100 100
Portfolio IV 115 110 90 90

Table 4.2: Strike prices of put options within Portfolio I-IV for the numerical experiments. All
options in portfolios are written on the same underlying asset, with parameter values detailed in
Table 4.1.

the netted portfolios, illustrating overestimations or underestimations when netting is not

incorporated into the valuation. Note that in these analyses due to the options’ monthly

exercisability and the 10-day risk horizon, exercise opportunities do not arise before the

horizon. Therefore, for the estimation of CVA VaR, we consider the entire portfolio as

remaining active up to H.

Our analysis of the CVA distribution plots shows that as counterparty default risk rises,

the frequency of data around the modal CVA value noticeably declines, regardless of net-

ting agreements. This decreasing density indicates a reduced probability that CVA will

remain near the initial CVA (CVA0). In turn, this pattern signals greater uncertainty in

expected losses. The diminishing frequency suggests potential CVA movements may vary

over a wider range, reflecting heightened unpredictable credit risk. Overall, the chang-

ing shape of the distribution demonstrates that rising default risk translates to increased

unpredictability in credit valuation adjustments.

Contrary to our initial expectations, we observe that the presence of a netting agree-

ment does not necessarily decrease tail risk – indicated by extreme values at the upper end

of the distribution – or CVA VaR, although it can mitigate CVA in general. This trend is

particularly noticeable for Portfolio I. Our observations suggest that this counterintuitive

risk increase may be tied to the impact of netting on exercise opportunities of the options
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within portfolios.

In Portfolio I, with C2 holding options that are more in-the-money (ITM) than C1, there

is an increased likelihood of earlier exercise by C2. As discussed in the previous chapter,

the presence of netting can encourage earlier exercise for the party not exposed to default

risk, in this case C2. As a result, netting may accelerate the exercise of options with strikes

K21 and K22 held by C2. This, in turn, could reduce the effectiveness of netting in reducing

CCR, thereby potentially elevating the CVA tail risk within the risk horizon.

In contrast, for Portfolio II, where C1 holds options that are more ITM compared to

C2, netting might lead to a higher CVA VaR compared to non-netted scenarios. This effect

could be also explained by alterations in exercise strategy, albeit in a different manner.

Options held by C1 are more likely to be exercised earlier. As we highlighted in a previous

chapter, without netting agreements, options tend to be exercised sooner, which reduces

(a) With netting - K11 = 105 (b) With netting - K11 = 100 (c) With netting - K11 = 95

(d) Without netting - K11 = 105 (e) Without netting - K11 = 100 (f) Without netting - K11 = 95

Figure 4.1: CVA movements distribution for Portfolio I, on a risk horizon of H = 10 days. The
scenarios depicted include those with (Panels a - c) and without (Panels d - f) netting agreements.
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(a) K11 = 105 (b) K11 = 100 (c) K11 = 95

Figure 4.2: Netting Impact on CVA VaR for Portfolio I: The figures show the netting effect over a
10-day risk horizon by subtracting the portfolio’s CVA VaR without netting from that with netting
for various levels of K11.

(a) With netting - K11 = 105 (b) With netting - K11 = 100 (c) With netting - K11 = 95

(d) Without netting - K11 = 105 (e) Without netting - K11 = 100 (f) Without netting - K11 = 95

Figure 4.3: CVA movements distribution for Portfolio II, on a risk horizon of H = 10 days. The
scenarios depicted include those with (Panels a - c) and without (Panels d - f) netting agreements.

exposure to potential default events. Therefore, under rising default risk, these options

in a non-netted portfolio might be exercised earlier than those in a netted portfolio, thus

potentially reducing credit exposure for those particular positions. Hence the absence of a

netting agreement might, in some cases, result in a lower CVA VaR.
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(a) K11 = 105 (b) K11 = 100 (c) K11 = 95

Figure 4.4: Netting Impact on CVA VaR for Portfolio II: The figures show the netting effect over a
10-day risk horizon by subtracting the portfolio’s CVA VaR without netting from that with netting
for various levels of K11.

(a) With netting - K11 = 105 (b) With netting - K11 = 100 (c) With netting - K11 = 95

(d) Without netting - K11 = 105 (e) Without netting - K11 = 100 (f) Without netting - K11 = 95

Figure 4.5: CVA movements distribution for Portfolio I, on a risk horizon of H = 180 days. The
scenarios depicted include those with (Panels a - c) and without (Panels d - f) netting agreements.

The potential for early exercise before the risk horizon can significantly alter the CVA

distribution structure. Such opportunities introduce the potential to modify the composi-

tion of the portfolio, which can lead to a fundamental change in the exposure to CCR.

This is demonstrated in Figures 4.5 and 4.7, showing CVA movements for Portfolios
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(a) K11 = 105 (b) K11 = 100 (c) K11 = 95

Figure 4.6: Netting Impact on CVA VaR for Portfolio I: The figures show the netting effect over a
180-day risk horizon by subtracting the portfolio’s CVA VaR without netting from that with netting
for various levels of K11.

I and II with and without netting across a 180-day risk horizon. Furthermore, Figures

4.6 and 4.8 highlight the impact of netting on CVA VaR for these portfolios. As shown,

netting may amplify CVA risk versus non-netted cases. Given the potential for up to

5 early exercises within the 180-day timeframe, the effects of netting on CVA VaR are

shown to be highly variable and challenging to predict. We explore the effects of exercise

opportunities on CVA distributions further in the next section.

The impact of the volatility parameter σ on the CVA VaR exhibits a complex and

unpredictable nature. This intricate behavior is exemplified in Figure 4.9, which depicts

the CVA VaR for a portfolio comprising four Bermudan put options with strike prices

K11 = 120, K12 = 110, K21 = 100, and K22 = 90, under the condition λ2 = 0.5. The under-

lying reason for this lack of unpredictability is similar to the previously discussed effect of

σ on the CVA itself. While an increase in σ generally amplifies the potential for extreme

market values, consequently increasing the exposure and potentially leading to an eleva-

tion in the CVA VaR for an individual option, the portfolio containing both long and short

positions does not exhibit the same straightforward relationship. As σ increases, the ex-

posure associated with each option within the portfolio is increased differently, rendering

the net impact on the overall portfolio exposure indeterminate. Consequently, it becomes
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(a) With netting - K11 = 105 (b) With netting - K11 = 100 (c) With netting - K11 = 95

(d) Without netting - K11 = 105 (e) Without netting - K11 = 100 (f) Without netting - K11 = 95

Figure 4.7: CVA movements distribution for Portfolio II, on a risk horizon of H = 180 days. The
scenarios depicted include those with (Panels a - c) and without (Panels d - f) netting agreements.

(a) K11 = 105 (b) K11 = 100 (c) K11 = 95

Figure 4.8: Netting Impact on CVA VaR for Portfolio II: The figures show the netting effect over a
180-day risk horizon by subtracting the portfolio’s CVA VaR without netting from that with netting
for various levels of K11.

challenging to predict the cumulative effect on the portfolio’s CVA VaR.

96



Figure 4.9: Impact of σ on the CVA movements distribution for a portfolio of four Bermudan put
options with K11 = 120, K12 = 110, K21 = 100, and K22 = 90, when λ2 = 0.5, and H = 10 days.
Other parameter values are reported in Table 4.1.

4.3.2 European vs. Bermudan vs. American: A tail risk comparison

In this section, we examine the impact of varying the exercise frequencies of options

within a netted portfolio on that portfolio’s CVA distribution. Figure 4.10 illustrates the

distribution of CVA movements across a 10-day risk horizon for Portfolios III and IV. The

strike prices of these portfolios are outlined in Table 4.2. This analysis considers scenarios

where all options within these portfolios are European, monthly exercisable Bermudan, or

American, under different counterparty hazard rates λ2 of 0.1, 0.5, and 1. Table 4.3 pro-

vides further details on the CVA values and 99% CVA Value-at-Risk estimates observed

in Portfolios III and IV for these λ2 levels over the same 10-day horizon.

Our findings indicate that the presence of early exercise opportunities can markedly

influence the distribution of CVA changes. This impact is particularly pronounced for

American-style options, which allow for exercise before the risk horizon, leading to changes
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in portfolio composition. As the default risk increases, the impact on portfolio composi-

tion, and consequently on CVA distribution, can become increasingly significant.

In portfolios where options held by C1 are significantly ITM compared to those held

by C2, we generally observe a less extreme tail risk in American and Bermudan compared

to European portfolios for a given risk horizon. The flexibility to adjust American and

Bermudan portfolios in response to market changes tends to mitigate extreme CVA vari-

ations. In contrast, European portfolios, where the options remain active until maturity,

show a wider distribution of CVA changes. This wider spread suggests higher potential

risk due to sustained exposure to default risk throughout the option’s lifespan.

Interestingly, the comparison between American and Bermudan portfolios is not straight-

forward. Figure 4.10, Panel b, shows that Bermudan portfolios, despite fewer exercise op-

portunities compared to American ones, can have lower tail risk and CVA VaR, yet might

report higher CVA. This paradoxical behavior stems from the fact that, in portfolios con-

taining American options, the frequent exercise of these options might lead to a portfolio

composition that inadvertently amplifies CCR exposure.

Note that these observations, primarily applicable to portfolios with deeper ITM op-

tions for C1 over C2, do not consistently extend across all portfolio types. Our analysis of

various portfolios reveals diverse responses to netting and exercise frequency, underscor-

ing the absence of a universal pattern in the effects on CVA VaR. Each portfolio’s distinct

characteristics necessitate a customized evaluation to accurately assess the influence of

netting and option exercisability on CVA variability.

4.4 Conclusion

In this chapter, we demonstrated the practical application of the CVA pricing model

introduced previously, illustrating its capability to estimate the CVA distribution for netted
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(a) λ2 = 0.1 (b) λ2 = 0.5 (c) λ2 = 1

(d) λ2 = 0.1 (e) λ2 = 0.5 (f) λ2 = 1

Figure 4.10: CVA movements distribution in Portfolio III (Panels a - c) and Portfolio IV (Panels d
- f) with European, Bermudan, and American options over H = 10 days risk horizon.

Options type: European Bermudan American
Portfolio λ2 CVA CVA VaR CVA CVA VaR CVA CVA VaR

0.1 1.2639 0.3042 0.4328 0.0705 0.3841 0.0959
III 0.5 5.2298 1.3003 1.5340 0.4175 1.0648 0.7917

1 8.4084 2.1994 2.3865 0.6830 1.1893 -0.6807
0.1 1.8782 0.5723 0.6763 0.0451 0.6131 0.0729

IV 0.5 7.7715 2.5174 2.4557 0.3250 1.9001 -0.7735
1 12.4948 4.1990 3.8209 0.5498 2.4136 -0.6077

Table 4.3: CVA and 99% CVA VaR Dynamics in Portfolios III and IV with European, Bermudan,
and American Options Over H = 10 days risk horizon

portfolios with early exercise rights. The model’s backward incursion approach allows it

to compute CVA as a function of risk factors, portfolio composition, and the evaluation

date. This functionality enables efficient CVA VaR estimation across risk horizons for

netted portfolios, overcoming computational challenges of nested Monte Carlo methods,
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while also providing insights into parameters influencing CVA risk.

We examine the impacts of netting agreements on CVA variability across different

portfolio constructs and counterparty risk levels. Contrary to expectations, the presence of

netting does not uniformly decrease tail risk or CVA VaR. While netting can reduce credit

exposures, its effects on CVA risk depend greatly on the portfolio structure and potential

for early exercise. We show that netting may amplify tail risk compared to non-netted

portfolios, attributed to differences in early exercise behavior altering exposures.

The ability to exercise options before the risk horizon can change portfolio composi-

tion, significantly impacting CVA tail risk in complex, unpredictable ways across different

portfolios. As substantiated by our illustrative examples and comparative figures, the inter-

play between netting, early exercise frequencies, and counterparty hazard rates introduces

complex portfolio-specific dynamics. This precludes general conclusions about the uni-

versal effects of netting agreements on CVA risk.
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Chapter 5

General Conclusion

This thesis explored how netting agreements between counterparties affect the pricing

of counterparty credit risk (CCR), specifically when the contracts contain early exercise

rights. It is widely accepted that netting serves as an effective tool for reducing risk in

dealings involving multiple contracts between two parties. However, its impact on CCR

pricing has not been studied thoroughly in the context of portfolios including contracts

with optional rights.

We demonstrated that the presence of netting agreements fundamentally alters the

decision-making process for exercising contracts within netted portfolios. This change

stems from the fact that exercise strategies become interdependent under netting, directly

affecting the expected payoffs for both counterparties. This interlinked payoff structure

converts the exercise decisions into a stochastic zero-sum game.

In the first essay, we introduced a dynamic programming model to recursively de-

termine the value of this game, enabling the valuation of the market price of CCR for

netted portfolios. We numerically implemented this recursive algorithm to facilitate as-

sessment across diverse scenarios. Our approach provides a comprehensive assessment



of Credit Valuation Adjustment (CVA) or Bilateral Valuation Adjustment(BVA), consid-

ering all possible underlying market conditions and portfolio compositions until portfolio

maturity.

In the second essay, through extensive numerical experiments, we demonstrated how

a netting agreement could change the exercise strategies of both parties involved in the

portfolio, even when only one party is exposed to default risk. We also illustrated the con-

siderable impacts that shift in default probabilities and other factors influencing exposure

have on exercise decisions within a netted portfolio.

Our findings challenge the conventional methods employed for evaluating the risk ad-

justment value of netted portfolios. We show these approaches fail to capture how netting

and counterparty risk affect decision-making, causing significant CVA and BVA miscalcu-

lations. Essentially, overlooking these effects when managing optional rights reduces the

expected value of netted portfolios. Therefore, our investigation offers valuable insights

into optimally exercising options under netting to maximize the risk-adjusted payoffs.

Our model enables efficient computing of CVA as a function of risk factors, portfo-

lio composition, and date using backward recursion. In the third essay, we leverage this

capability to estimate CVA value-at-risk (VaR) across risk horizons for netted portfolios.

Contrary to expectations, we find that netting introduction does not reliably reduce CVA

tail risk. While netting can decrease CVA, it may also increase CVA volatility versus

non-netted portfolios in certain cases. This stems from different early exercise behav-

iors under netting agreements affecting counterparty credit exposures. The interactions

between netting, early exercise frequencies, and default probabilities create highly case-

specific dynamics. Given this complexity, we cannot generalize netting’s impact on CVA

VaR; instead, accurate assessment requires portfolio-by-portfolio analysis.

Expanding upon the findings of this thesis, one potential research direction involves

addressing the computational challenges of backward recursion for larger netted portfo-
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lios. Increasing portfolio size can exacerbate the well-known ’curse of dimensionality’ -

the exponential rise in computational and memory loads as problem dimensions grow. Ad-

dressing this can enhance the efficiency of our model for extensive portfolios with large

state and action spaces. A promising avenue to investigate is the application of Multi-

agent Reinforcement Learning (RL). Unlike backward recursion, RL uses forward-looking

learning based on simulated interactions, bypassing the need to exhaustively compute all

potential state values. This presents a pathway to help mitigate the curse of dimensionality.

However, adopting RL introduces trade-offs in solution accuracy. While substantially

reducing computational burden, RL provides approximate solutions, unlike the precise

outcomes achievable with backward recursion in dynamic games. Still, as existing lit-

erature shows, we can bound errors in these RL solutions, offering a balanced approach

between computational efficiency and solution accuracy. Future research should exam-

ine RL’s potential for netted portfolio evaluation, providing robust, near-optimal solutions.

This highlights a promising direction for advancing methodologies to extend counterparty

risk pricing models to bigger, more intricate netted portfolios.
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