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Résumé

La crise de 2008 a révélé les implications systémiques du risque de contrepartie lorsque

la faillite de Lehman Brothers, un acteur majeur sur le marché de gré à gré, a déclenché une

instabilité généralisée. En réponse, les institutions financières et régulateurs ont adopté des

mesures permettant de se protéger du risque de contrepartie, dont l’ajustement de la valeur

de crédit (AVC, mieux connu sous le vocable de CVA en anglais).

Le CVA représente la valeur de marché du risque de contrepartie. Il permet d’ajuster la

valeur d’un contrat pour tenir compte d’un défaut potentiel. Le Comité de Bâle préconise

l’utilisation du CVA pour gérer le risque de contrepartie, et recommande aux institutions

financières de maintenir des réserves de capital adéquates sur la base de la valeur du CVA.

Estimer avec précision le CVA est par conséquent important pour assurer la compétitivité

et la résilience des institutions.

Cette thèse traite du calcul du CVA dans le cas de portefeuilles sujets à un accord

de compensation comportant des titres avec possibilité d’exercice anticipé. La compen-

sation, en consolidant la valeur de contrats bilatéraux en cas de défaut, est une pratique

d’atténuation du risque de contrepartie. Elle se traduit généralement par un CVA inférieur

à la somme des CVA individuels, du fait de la diminution globale du risque de contrepar-

tie. Cependant, un accord de compensation peut modifier la stratégie d’exercice des in-

struments financiers avec possibilité d’exercice anticipé.



Cette thèse présente une approche pour l’évaluation du CVA (ou BVA dans le cas de

risque bilatéral) pour des portefeuilles d’instruments dérivés comportant des caractéris-

tiques d’exercice anticipé, lorsque ces portefeuilles sont soumis à un accord de compensa-

tion. À notre connaissance, il s’agit de la première analyse des effets de la compensation

sur l’évaluation du risque de contrepartie lorsque les deux parties ont des droits d’exercice

anticipé.

Dans le premier essai, nous développons un modèle récursif pour déterminer la valeur

d’un jeu à somme nulle représentant l’interaction entre les deux parties. Cette valeur

permet de calculer le CVA/BVA en la comparant à celle d’un portefeuille équivalent, mais

sans risque. La solution par programmation dynamique caractérise l’ajustement comme

une fonction des divers facteurs risque, de la composition du portefeuille, en tout moment

jusqu’à l’échéance.

Dans le deuxième essai, nous montrons comment les accords de compensation peu-

vent modifier les stratégies d’exercice, même en cas de risque unilatéral. Nous illustrons

également l’impact de la variation de divers paramètres sur les stratégies d’exercice. Nos

résultats remettent en question les méthodes conventionnelles d’évaluation du CVA qui

négligent l’effet d’un accord de compensation sur le risque de contrepartie et sur les straté-

gies d’exercice.

Dans le troisième essai, nous estimons le quantile (VaR) du CVA pour divers horizons

dans le cas de portefeuilles comportant un accord de compensation. Contrairement à ce

qui pourrait être attendu, nous constatons que la présence d’un accord de compensation

n’atténue pas systématiquement les valeurs extrêmes du CVA. Il est même possible que

la volatilité du CVA augmente en cas de compensation, en raison de la modification des

décisions d’exercice anticipé, qui affectant l’exposition au risque.
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Abstract

The 2008 financial crisis revealed the systemic implications of counterparty credit risk

(CCR) when the bankruptcy of Lehman Brothers, a major over-the-counter (OTC) market

player, triggered widespread instability. In response, financial institutions and regulators

adopted measures to protect against CCR, including credit valuation adjustment (CVA).

The CVA represents the market value of counterparty credit risk. It adjusts the value

of a contract to account for the counterparty’s potential default. The Basel Committee

advocates for using CVA to manage CCR and mandates financial institutions to maintain

adequate capital reserves based on the CVA calculation. Thus, accurately estimating CVA

is important to ensure the competitiveness and resilience of institutions.

This thesis addresses the calculation of CVA for portfolios subject to a netting agree-

ment involving securities with early exercise features. Netting, by consolidating the value

of bilateral contracts in the event of default, is a CCR mitigation practice. It generally re-

sults in a lower CVA than the sum of individual CVAs, due to offsetting positions reducing

overall CCR exposure. However, a netting agreement can change the exercise strategy of

financial instruments with early exercise features.

This thesis presents an approach for the valuation of CVA (or BVA in the case of

bilateral risk) for portfolios of derivative instruments with early exercise features, when

these portfolios are subject to a netting agreement. To our knowledge, this is the first
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analysis of the effects of netting on CCR valuation when both parties have early exercise

rights.

In the first essay, we develop a recursive model to determine the value of a zero-sum

game representing the interaction between the two parties. This value allows the calcula-

tion of CVA/BVA by comparing it to that of an equivalent portfolio, but without risk. The

dynamic programming solution characterizes the adjustment as a function of the various

risk factors, the portfolio composition, at any time until maturity.

In the second essay, we show how netting agreements can change exercise strategies,

even for the party that is not exposed to CCR. We also illustrate the impact of changing

various parameters on exercise strategies. Our results call into question conventional CVA

valuation methods that neglect the effect of a netting agreement on CCR and exercise

strategies.

In the third essay, we estimate the Value-at-Risk (VaR) of the CVA for various horizons

in the case of portfolios with a netting agreement. Contrary to expectations, we find that

the presence of a netting agreement does not systematically mitigate CVA extreme values.

It is even possible for CVA volatility to increase with netting, due to changes in early

exercise decisions affecting risk exposure.

Keywords

Counterparty risk, CVA, BVA, Early exercise, Netting, CVA VaR.

Research methods

Dynamic programming, Game theory, Mathematical modeling.
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Introduction

Risk management has evolved from a protection mechanism into a central component

in �nancial decision-making. This evolution is due to the rising complexity of �nancial

markets, the emergence of innovative instruments, and the increased interconnectedness

of global economies. Today, risk management enables informed decisions that shape in-

stitutions' trajectories, and in�uence capital allocation, product development, and market

entry.

One critical aspect of risk management that has gained prominence is Counterparty

Credit Risk (CCR). CCR is the risk that a counterparty in a �nancial contract may default

or fail to meet its obligations, leading to potential �nancial loss for the other party. This

element of risk management has gained signi�cant prominence, particularly in the context

of the Over-the-Counter (OTC) market. The OTC market is a domain of customized �-

nancial contracts, traded away from public view, yet holding signi�cant impact on global

�nancial stability.

The over-the-counter (OTC) market facilitates the direct exchange of various �nancial

instruments such as derivatives, swaps, and forwards. These instruments address speci�c

risk management, hedging, and speculation needs, making them key tools for �nancial in-

stitutions and companies. The scale of the OTC derivatives market is immense - the Bank

for International Settlements estimates the notional value of outstanding OTC derivatives



exceeded $600 trillion as of June 2022, seeOTC derivatives statistics at end-June 2022

(2022). This vast market not only offers companies avenues for raising capital but also

provides investors with a broader investment spectrum, enhancing liquidity. However, the

decentralized nature and lack of a centralized clearinghouse amplify counterparty credit

risk in the OTC market. Consequently, implementing rigorous risk management strate-

gies and regulatory measures is necessary to mitigate adverse effects and ensure �nancial

stability.

The 2008 �nancial crisis highlighted the far-reaching impacts of CCR on the �nancial

system. The 2008 global �nancial crisis highlighted the systemic risks posed by coun-

terparty credit risk (CCR) in the OTC market. The failure of Lehman Brothers, a major

OTC derivatives participant, triggered a chain reaction of defaults that led to widespread

instability. This demonstrated the potential for a single institution's failure to produce a

systemic crisis in an interconnected system. The crisis underscored inherent OTC market

vulnerabilities and the critical need for robust risk management tools and strict regulations

to protect against such events. In response, �nancial institutions and regulators world-

wide focused on risk management tools, one being the credit valuation adjustment (CVA).

While CVA was not a new concept (refer to Duf�e and Singleton (2003), Bielecki and

Rutkowski (2004), and Brigo and Masetti (2005) for early review), the crisis emphasized

its critical role and need for its careful implementation.

CVA serves as a modi�cation to the fair value of derivative contracts, accounting for

CCR. It quanti�es the market value of credit risk embedded in a transaction. CVA can

also be viewed as an expected discounted loss - a measure of the potential loss a �nancial

institution could incur due to a counterparty's default, discounted to its present value. This

perspective underscores CVA's risk management role.

The Basel Committee on Banking Supervision has introduced the Basel Accords, reg-

ulatory frameworks aimed at strengthening banking regulation, supervision, and risk man-
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agement. The Basel II Accord marked a signi�cant shift in the regulatory landscape for

�nancial institutions in CCR management. It mandated that banks maintain adequate capi-

tal to cover potential counterparty credit losses, a requirement directly in�uenced by CVA.

By quantifying risk for each counterparty, CVA plays a crucial role in determining the

capital banks must set aside.

The Basel III Accord, seeBasel III: A global regulatory framework for more resilient

banks and banking systems(2011), has placed a renewed emphasis on CVA. It requires

�nancial institutions to calculate a CVA risk capital charge, which is an amount of capital

that banks must set aside to absorb potential losses from CVA �uctuations due to changes

in counterparty credit spreads and market factors. Introducing the CVA risk capital charge

has not only increased capital requirements but also necessitated a more integrated ap-

proach to accurately measure and manage this risk.

The accuracy of CVA calculations holds signi�cant implications for an institution's �-

nancial health. Overestimating CVA can lead to excessive risk provisions, over-allocation

of capital, and diminished returns and competitiveness. Conversely, underestimating CVA

results in an inadequate buffer against potential losses, exposing the institution to height-

ened risk and instability. Therefore, a precise CVA level protects the institution's interests

and ensures sound risk management.

Several factors shape CVA computation, including the counterparty's default likeli-

hood, exposure at default, and underlying asset market risk. Exposure at default (EAD)

assesses the potential loss if a counterparty defaults, representing the positive mark-to-

market value of a contract at the default date. This introduces non-linearities in counter-

party risk pricing, making CVA akin to a zero-strike call option on a default-free asset, but

with a twist. The "option's" maturity date is not �xed but tied to the counterparty's poten-

tial default date. This means pricing a CVA can be as, if not more, intricate as pricing the

derivative instrument itself.
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Calculating CVA is relatively straightforward for simple �nancial instruments like

bonds or European options, thanks to analytical formulas. However, complexity increases

for products with early exercise features. Here, counterparty risk can alter the exercise

strategy, making CVA more than a simple expected loss. The early exercise decision de-

pends not just on market conditions but also on counterparty credit risk. If that risk is high,

the option holder may exercise earlier to reduce exposure, signi�cantly affecting the CVA

value.

The CVA computation becomes even more complex when considering a portfolio of

contracts under a netting agreement. Netting, commonly used to mitigate counterparty

credit risk, refers to the agreement that should a default occur, all transactions between the

two parties will be consolidated and treated as one. This is particularly bene�cial when

a �nancial institution has multiple derivatives with the same counterparty, as it allows

balancing positive and negative exposures, thereby reducing potential loss upon default.

CVA assessment ful�lls two primary roles: modifying pricing to re�ect counterparty

risk and determining regulatory capital needs for effective risk management. In the con-

text of netted portfolios, the emphasis is predominantly on calculating the capital charge,

owing to the risk mitigation advantages provided by netting agreements. Effective CVA

assessment enables �rms to balance risk management, capital planning, and regulatory

compliance for consolidated exposures across netted portfolios.

When the netted portfolio contains derivatives with early exercise opportunities, the

exercise decision for each claim cannot be made individually. It can depend on the condi-

tion of all contracts and the default probabilities of parties. This interdependence within

a portfolio adds another layer of complexity to CVA computation. To bene�t from the

mitigating effect of netting on counterparty credit risk, it is imperative to compute CVA

values at the portfolio level rather than individual contracts, accounting for the complex

interplay between various risk factors, default probabilities, and exercise decisions.
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Moreover, achieving this level of accuracy in CVA evaluation can be computationally

challenging. The portfolio-level calculation may necessitate advanced computational tech-

niques to handle the high dimensionality. High dimensionality arises from the multitude of

risk factors in�uencing the contracts within the netted portfolio. As the number of factors

increases, computational complexity grows exponentially, making it dif�cult for tradi-

tional methods to cope. Despite these challenges, the bene�ts of accurate portfolio-level

CVA computation far outweigh the costs, justifying the investment for �nancial institu-

tions.

In situations where both contract parties have a default probability, CVA alone does

not fully capture the intricacies of counterparty credit risk. It neglects the potential im-

pact of the institution's own default risk on the risk adjustment value. To address this gap,

the Bilateral Valuation Adjustment (BVA) was introduced, incorporating both CVA and

the institution's credit risk, known as Debt Valuation Adjustment (DVA). This dual risk

perspective embodied in BVA provides a more comprehensive CCR measure, acknowl-

edging risk as a two-way street where both parties' creditworthiness plays a crucial role in

determining the overall contract risk.

This thesis comprehensively examines CCR within netting agreements. It offers an

in-depth understanding of the dynamics of CCR and netting agreements on managing

portfolios with derivatives having early exercise features, and evaluating risk adjustments

for these portfolios.

The �rst essay develops an approach for calculating risk adjustment values (CVA or

BVA) for a portfolio of options subject to CCR. It focuses on general situations where

both parties have early exercise opportunities and are exposed to default risk. We show

netted sets are dynamic games when both parties have early exercise chances. We intro-

duce a model embodying strategic interactions among parties and a dynamic programming

algorithm to determine the netted portfolio value and optimal exercise strategies. It also
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contains numerous illustrations offering a deeper understanding of risk adjustment values

within the context of netting agreements.

Our goal in the second essay is to �ll an existing literature gap by providing valuable

insights into managing options with early exercise opportunities within a netted portfolio.

We offer a thorough analysis of the impact of default risk under netting agreements on the

exercise strategy of Bermudan options. The essay also critically examines conventional

methodologies used for assessing the risk adjustment value of netted portfolios, arguing

these methods often neglect the role of netting on the exercise mechanism, potentially

leading to misestimation of CVA and BVA.

In the third essay, we leverage the CVA pricing model from the �rst essay to assess

CVA variability across risk horizons in netted portfolios. Our objective is exploring the

impact of netting agreements on CVA tail risk. Through numerical experiments, we show

the in�uence of netting on CVA tail risk is not as straightforward as its general CVA reduc-

tion ability. Complex dynamics from the interplay of netting agreements, early exercise

frequencies, and default probabilities result in distinct outcomes for each case. Therefore,

conducting thorough, portfolio-speci�c analyses is crucial to accurately evaluate these ef-

fects.

The remainder of this thesis is organized into �ve chapters. Chapter One provides

a literature review. Chapter Two presents the �rst essay, introducing the approach for

calculating risk adjustment values for netted portfolios subject to CCR. Chapter Three,

including the second essay, examines how default risk in�uences exercise strategies for

Bermudan options under netting. Chapter Four, presenting the third essay, explores the

impact of netting on CVA tail risk. The thesis concludes with Chapter Five, summarizing

key �ndings and implications.
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Chapter 1

Literature Review

1.1 The Evolution of CVA and Netting Research

The computation of Credit Valuation Adjustment (CVA) has been a key focus of exten-

sive research, as various models have been proposed to address the impact of Counterparty

Credit Risk (CCR) on �nancial contract values. These models can generally be divided

into two main categories: structural and intensity models.

Structural models, as the name suggests, are based on the structure of the �rm's balance

sheet. First introduced by Merton (1974), these models utilize variables such as a �rm's

debt-to-equity ratio or asset value to predict default likelihood. The fundamental assump-

tion is that default occurs when a �rm's liabilities exceed its assets at debt maturity. This

approach offers a comprehensive perspective on credit risk by considering the complex

interplay between a �rm's assets, liabilities, and equity. Notable works on the structural

credit risk framework include Hull and White (1995), Klein (1996), Leland (1998), and

Zhou (2001).

Intensity models, on the other hand, are based on the hazard rate, which represents the



instantaneous probability of default. First proposed by Jarrow and Turnbull (1995), these

models assume default events result from exogenous jump processes. The key advantage

is their ability to capture the randomness of defaults and ease of calibration to market data.

Signi�cant contributions to the literature on credit risk intensity models include Lando

(1998), Duf�e and Singleton (1999), and Brigo and Alfonsi (2005).

Regardless of the chosen model—structural or intensity—the CVA for European-style

options can be achieved through an analytical formula. Moreover, for advanced cases with

many stochastic factors or complex correlation structures, semi-analytical approaches have

recently been proposed to compute the CVA for European-style options (see Kim and Le-

ung (2016), Brigo and Vrins (2018), and Antonelli, Ramponi, and Scarlatti (2022)). How-

ever, American-style options, exercisable before expiration, lack a closed-form solution.

The potential for early exercise requires incorporating an optimal stopping problem into

the CVA computation, adding complexity. The holder must determine the best exercise

time, and the interplay between defaults and early exercise must be considered.

In the context of contracts with optional exercise features, �nancial institutions often

employ simulation-regression techniques, primarily based on Least Square Monte Carlo

(LSMC), for CVA computation (see Longstaff and Schwartz (2001), Tsitsiklis and Van

Roy (2001), Glasserman (2004), and Broadie, Glasserman, et al. (2004)). As explained in

Cesari et al. (2009) and Brigo, Morini, and Pallavicini (2013), these methods consider ex-

ercise policy and counterparty risk as independent phenomena. However, Klein and Yang

(2013) and Breton and Marzouk (2018) have shown that counterparty risk can in�uence

exercise behavior, suggesting they should not be treated in isolation.

Building on the topic of netted portfolio valuation, this review turns to exploring var-

ious issues in calculating risk adjustments under netting agreements. As noted by Brigo

and Masetti (2005), netting agreements offer a means to decrease counterparty credit risk,

as the CVA of a netted portfolio is often less than the sum of individual CVAs. This
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is predominantly driven by offsetting positions within the portfolio, which reduce overall

exposure. Notably for derivatives products, this bene�t is evident in portfolios with a com-

bination of long and short positions towards a counterparty, underscoring the importance

of calculating CVA at the portfolio level rather than per claim.

To address this need, Brigo and Masetti (2005) introduced an approximate formula

to assess the CVA of a netted portfolio of interest rate swaps, assuming counterparty de-

fault follows an intensity model. Building on this, Brigo and Pallavicini (2007) employed

Monte Carlo techniques to evaluate the CVA for a netted portfolio of swaps, accounting

for the correlation between defaults and interest rates.

The exploration of bilateral risk for netted portfolios has also been the focus of nu-

merous studies. Key contributions to discussions around assessing bilateral counterparty

risk for individual claims have been made by Brigo and Capponi (2008), Brigo, Buescu,

and Morini (2011), and Gregory (2017). For netted portfolios, Brigo, Pallavicini, and Pa-

patheodorou (2009) extended the work of Brigo and Pallavicini (2007), showing that risk

adjustment with both parties at default risk involves a long position in a put option and

a short position in a call option, both with zero strikes. These options are written on the

residual net portfolio value at relevant default times. Furthering this, Durand (2010) pro-

posed an iterative evaluation procedure for the bilateral CVA (BVA) of a netted portfolio.

Recent studies have delved deeper into the challenges of evaluating netted portfolios,

focusing on complications from netting agreements. Burgard and Kjaer (2017) and Brigo,

Francischello, and Pallavicini (2019) studied portfolios across various netting sets with dif-

ferent defaultable counterparties. As emphasized by Brigo, Francischello, and Pallavicini

(2019), counterparty credit risk introduces inherent nonlinearity, such that overall port-

folio value differs from the sum of netting set values. Additionally, Ballotta, Fusai, and

Marazzina (2019) introduced a structural method to compute CVA for a netted portfolio,

analyzing the impacts of collateralization and wrong-way risk on CVA.
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While the existing literature on risk adjustment evaluation with netting agreements pro-

vides a substantial foundation, it predominantly focuses on European-style contracts. This

leaves a signi�cant gap concerning portfolios incorporating early exercisable contracts.

To the best of our knowledge, the only study venturing into this domain is Andersson and

Oosterlee (2020), which considers the early exercise feature for only one party in the net-

ting agreement. It proposes a deep learning technique to estimate the exercise policy of

portfolio options and the CVA. Therefore, there is a clear opportunity for further research

to delve deeper into this under-explored area. By doing so, we can gain a more compre-

hensive understanding of the intricate interplay between CVA, netting, and early exercise

features, signi�cantly enhancing our knowledge in managing counterparty credit risk.

1.2 The Methodological Evolution in this research

The CVA can be determined by differentiating between the value of a position exposed

to counterparty credit risk (CCR) and a similar position not subject to this risk. This per-

spective allows us to view CVA calculation as valuing a contract or portfolio of contracts

in the presence of CCR.

Dynamic programming(DP) is a well-established technique for pricing American-style

�nancial contracts and determining optimal exercise policies. As an optimization tech-

nique, DP excels at solving recursive problems inMarkov decision processes(MDPs).

MDPs are mathematical structures used for modeling decision-making in stochastic dy-

namic environments. For a detailed understanding of DP and MDPs, refer to Bertsekas

(2012). Formulating American �nancial derivatives as MDPs enables applying DP for

pricing such contracts and determining optimal exercise policies. For further reading on

evaluating derivatives with early exercise features in the absence of CCR, consider Ben-

Ameur, Breton, and L'Ecuyer (2002), chapter 8 of Glasserman (2004), Ben-Ameur, Bre-
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ton, Karoui, et al. (2007), and Breton and Frutos (2012).

1.2.1 Dynamic Games: A Multi-Agent Framework for Portfolio

Evaluation

In the presence of counterparty credit risk (CCR), Breton and Marzouk (2018) demon-

strates that dynamic programming (DP) is an effective method for valuing a single con-

tract. This method accounts for the interdependence of exercise behavior and counterparty

risk, enabling the accurate computation of credit valuation adjustment (CVA) and optimal

exercise strategies throughout the contract's lifespan. Thus, it overcomes the limitations

of prevalent simulation-regression techniques, which often incorrectly assume exercise

policy and default events are independent occurrences. This can potentially result in sub-

optimal exercise behavior and imprecise CVA calculations.

The evaluation scenario evolves when transitioning from a single-agent dynamic prob-

lem to a multi-agent environment with multiple decision makers, similar to portfolio eval-

uation under a netting agreement. Here, both parties can make decisions regarding ex-

ercising the contracts within the portfolio. This shift necessitates introducing aDynamic

Gameto accommodate the interdependence of decision-makers.

Dynamic games model sequential strategic interactions between agents selecting ac-

tions from a set of possible choices. These strategic decisions are made simultaneously

and independently, but their outcomes are interdependent, creating a dynamic interaction.

In a dynamic game, the prevailing conditions of the game at a particular moment are repre-

sented by states. The actions undertaken by the agents cause these states to evolve, leading

to different possible future states. The model's future state then depends not only on the

current state and one party's decisions but also on other parties' decisions.

Game theory, a branch of mathematics examining strategic interactions, provides the

11



theoretical foundation for dynamic games. It offers a framework to analyze how rational

decision-makers select strategies to maximize their bene�ts given others' choices. In this

context, equilibrium strategies represent joint decisions where no agent has an incentive

to deviate. For a comprehensive review of games and dynamic games, refer to Fudenberg

and Tirole (1991) and Haurie, Krawczyk, and Zaccour (2012).

Dynamic games offer a relevant framework for evaluating netted portfolios, where one

party's actions can signi�cantly impact portfolio value and the other party's decisions. This

section traced the progression from dynamic programming to dynamic games, having the

potential to evaluate netted portfolios with early exercisable contracts under counterparty

credit risk (CCR). This study aims to apply these methodologies to unravel CVA evalua-

tion complexities under netting agreements, offering a unique perspective not previously

explored. Further sections will demonstrate applying dynamic games and re�nements to

address real-world complexities in netted portfolio valuation.
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Chapter 2

Counterparty Risk under Netting

Agreements: A Dynamic Game

Interpretation

2.1 Introduction

In the complex world of over-the-counter (OTC) contracts, the Credit Valuation Ad-

justment (CVA) has become an essential tool for accounting for counterparty credit risk

(CCR). The CVA modi�es the default-free valuation of an OTC contract to re�ect the

potential losses if the counterparty fails to meet its payment obligations. Calculating the

CVA requires differentiating between the value of a position exposed to CCR (default-

able) and an equivalent position without counterparty risk (default-free). Brigo, Morini,

and Pallavicini (2013) and Gregory (2012) provide an extensive review of credit risk eval-

uation.

As explained in Breton and Marzouk (2018), evaluating claims with early-exercise



features under CCR poses challenges, mainly due to the in�uence of counterparty risk

on the optimal exercise strategy. A dynamic programming (DP) approach offers a viable

solution, allowing concurrent computation of a defaultable claim's value and the exercise

strategy adjusted for CCR. Breton and Marzouk (2018) demonstrates this methodology's

ef�ciency for low-dimensional state spaces.

A pivotal mechanism for alleviating CCR isnetting, a common agreement among

counterparties managing large portfolios of OTC derivative products. Netting involves

the aggregation of contractual obligations, translating them into net cash �ows from one

party to the other over the contract's lifespan. Under a netting agreement, all �nancial

obligations are offset upon one counterparty's default. The inclusion of derivatives with

early exercise features in the netted portfolio adds another layer of complexity to credit

risk evaluation, as the exercise strategies of both parties could be in�uenced by netting.

As we broaden our analytical lens, we begin to see the emergence of a new paradigm

where both contractual parties are subject to CCR. This bilateral perspective, as Brigo,

Buescu, and Morini (2011) points out, has gained relevance in the post-2008 �nancial

crisis era, an era marked by multiple default events involving �nancial institutions. The

traditional assumption of unilateral default risk seems increasingly untenable in the con-

temporary �nancial environment. In such bilateral risk contexts, the adjustment, referred

to as the Bilateral Valuation Adjustment (BVA), is contingent upon the �rst-to-default risk.

(see Brigo, Buescu, and Morini (2011)).

In light of these complexities, this chapter aims to propose a novel approach for com-

puting the risk adjustment value (CVA or BVA) for a portfolio of options subject to CCR

when the parties have early exercise opportunities and are involved in a netting agree-

ment. We introduce a model that captures the strategic interactions among the parties in

the evaluation of a vulnerable options portfolio within a netting agreement. Complement-

ing this, we introduce a recursive algorithm for determining the netted portfolio value and
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optimal exercise strategies of both parties, thereby offering an approach to tackling CCR

challenges within netting agreements.

2.1.1 Content and Organization

In this chapter, we initiate our discussion with a simpli�ed example to illuminate the

strategic aspect of netting when parties hold options with early exercise features, giving

rise to a dynamic zero-sum game between the counterparties. Subsequently, we introduce

a model, underpinned by a dynamic programming technique, that facilitates the evaluation

of a netted derivatives portfolio under Counterparty Credit Risk (CCR) and, correspond-

ingly, the risk adjustment for both parties. This approach enables the ef�cient computation

of the CVA and the BVA for a low-dimensional netted portfolio.

We employ a robust array of numerical illustrations to analyze risk adjustments within

the framework of netting agreements. We delve into the implications of neglecting net-

ting in risk adjustment evaluations for a netted portfolio, supported by relevant examples.

Moreover, we elucidate the in�uence of variation in various elements, notably the default

risk of the involved parties, on the magnitude of the �nal adjustment applicable to them.

The chapter is structured as follows: Section 2.2 serves as the motivation, illustrating

the effect of netting and CCR on optimal exercise behavior. Section 2.3 introduces the

dynamic game model, a tool designed to evaluate the risk adjustment of the portfolio

within the context of the netting agreement. Section 2.4 provides illustrative examples and

numerical results, while Section 2.5 concludes the chapter, summarizing the key insights

and implications of our research.
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2.2 Motivating Example

Consider two parties, namedC1 andC2, involved as counterparties in a portfolio of two

Bermudan put options, identi�ed byO1 andO2, whereCi has a long position onOi and

a short position onO3� i , i = 1;2. Since all the cash�ows generated by this portfolio are

from C1 to C2 or conversely, the value of the portfolio from the point of view ofC1 is the

negative of its value from that ofC2. Assume that both parties can exercise their option at

a single given date before maturity (thedecision date).

Table 2.1 provides the exercise and holding values of the two Bermudan put options

at the decision date, in the absence of CCR. From these values, it is straightforward to

conclude that both parties should hold. The value of the portfolio is thenv1 = h1 � h2 = 1

for C1 (andv2 = � 1 for C2).

O1 O2

Exercise value e1 = 8 e2 = 6
Holding value h1 = 10 h2 = 9

Table 2.1: Exercise and holding value of optionsO1 andO2 at the decision date from the respective
viewpoints of their holder, when both parties are risk-free.

Now suppose that there is ap2 = 0:3 probability thatC2 defaults, so thatC1 does not

recover anything upon maturity ofO1. Table 2.2 shows the updated exercise and holding

values of both options, where the expected holding valueĥ1 accounts for counterparty

default risk. In that case, it becomes optimal forC1 to exerciseO1, and the portfolio value

for C1 is nowv1 = e1 � h2 = � 1.

O1 O2

Exercise value e1 = 8 e2 = 6
Holding value ĥ1 = ( 1� p2)h1 = 7 h2 = 9

Table 2.2: Exercise and holding value of optionsO1 andO2 at the decision date from the respective
viewpoints of their holder when the default probability ofC2 is p2 = 0:3.
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Note that the exercise strategy is modi�ed by the presence of CCR. Using the risk-free

exercise strategy to value this portfolio would result in the erroneous value ofĥ1 � h2 = � 2.

Now suppose that the portfolio is subject to a netting agreement, so that the contractual

cash-�ows are no longer independent. Assuming that the probability of default byC2 is

p2 = 0:3, Table 2.3 contains the cash-�ows fromC2 toC1 under a netting agreement in the

form of a matrix game, whereC1 (resp. C2) is the row(resp. column)player and where E

(resp. H)stands for "exercise"(resp. "hold").

C2

E H

C1
E e1 � e2 = 2 e1 � h2 = � 1
H ĥ1 � e2 = 1 (1� p2)

�
h1 � h2

�
= 0:7

Table 2.3: Matrix-game representation of the netted portfolio's value from the viewpoint ofC1

at the decision date. Risk-free holding and exercise values are provided in Table 2.1. Default
probability ofC2 is p2 = 0:3.

Table 2.3 is a representation of azero-summatrix game whereC1 is the maximizer

andC2 is the minimizer. The security strategy forC1, maximizing the worst (smallest)

outcome, is to hold, which guarantees an outcome of at least 0:7. Conversely, the security

strategy forC2, minimizing the worst (largest) outcome, is also to hold, which guarantees

an outcome of at most 0:7. In that speci�c example, the security strategies yield the same

expected outcome, so that each party's decision is the optimal response to the other's, and

neither party has an incentive to depart from it, yielding aNash equilibrium. In that case,

the equilibrium strategy consists of holding both options, and the equilibrium value of the

netted portfolio is 0:7.

SinceC1 is the only party vulnerable to CCR, the CVA forC1 is computed by deducting

the value of the vulnerable portfolio from that of the corresponding risk-free portfolio.

Results are reported in Table 2.4. Examination of Table 2.4 shows that both CCR and
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Case
Decisions

portfolio value (C1) CVA
O1 O2

Risk-free H H h1 � h2 = 1 �
CCR without netting E H e1 � h2 = � 1 2

CCR with netting H H (1� p2)
�
h1 � h2

�
= 0:7 0:3

Table 2.4: Impact of CCR and of netting on exercise decisions and CVA. Risk-free holding and
exercise values are provided in Table 2.1 and default probability ofC2 is p2 = 0:3.

netting affect the exercise strategy and, therefore, the CVA. One also observes that netting

does reduce the portfolio's CVA in this case.

We now consider the case of bilateral counterparty risk by assuming a default proba-

bility of p1 = 0:25 forC1 andp2 = 0:15 forC2. Table 2.5 reports the exercise and holding

values of the vulnerable options, without netting, at the decision date. In that case, the

optimal decision for both parties is to hold its option, and the value of the portfolio forC1

is v1 = ĥ1 � ĥ2 = 1:75.

O1 O2

Exercise value e1 = 8 e2 = 6
Holding value ĥ1 = ( 1� p2)h1 = 8:5 ĥ2 = ( 1� p1)h2 = 6:75

Table 2.5: Exercise and expected holding values ofO1 andO2 at the decision date from the re-
spective viewpoints or their holder when the default probabilities ofC1 andC2 are respectively
p1 = 0:25 andp2 = 0:15.

Table 2.6 reports the cash-�ows fromC2 to C1 in the presence of a netting agreement

and bilateral counterparty risk. According to these values, the security strategy ofC1 is to

exerciseO1 and that ofC2 is to holdO2, guaranteeing in both cases a portfolio value of

v1 = 1:25. The strategy pair (E,H) is then a Nash equilibrium for the matrix game, and

differs from the optimal strategies obtained when there is no netting agreement.

Similar to the CVA, the BVA is computed by subtracting the vulnerable portfolio's

value from its non-vulnerable counterpart. The BVA can be negative or positive; its sign
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C2

E H

C1
E e1 � e2 = 2 e1 � ĥ2 = 1:25
H ĥ1 � e2 = 2:5 (1� p2)

�
h1 � h2

�
= 0:85

Table 2.6: Matrix-game representation of the netted portfolio's value from the viewpoint ofC1

at the decision date. Risk-free holding and exercise values are provided in Table 2.1. Default
probabilities ofC1 andC2 are respectivelyp1 = 0:25 andp2 = 0:15.

depends on the two parties' relative vulnerability to CCR. The impact of a netting agree-

ment on the exercise decisions of defaultable parties and on the BVA for this example

is summarized in Table 2.7. Again, one observes that netting affects the portfolio's risk

adjustment value and decreases the absolute value of the BVA.

Case
Decision

portfolio value (C1) BVA
O1 O2

Risk-free H H h1 � h2 = 1 �
CCR without netting H H ĥ1 � ĥ2 = 1:75 � 0:75

CCR with netting E H e1 � ĥ2 = 1:25 � :25

Table 2.7: Impact of CCR and netting agreement on exercise decisions and BVA. Risk-free holding
and exercise values are provided in Table 2.1. Default probabilities ofC1 andC2 are respectively
p1 = 0:25 andp2 = 0:15.

Finally, Table 2.8 reports an instance where the default probabilities forC1 andC2 are

respectivelyp1 = 0:1 andp2 = 0:35. In that case, the security maxmin strategy ofC1 is

to hold, guaranteeing a payoff of at least 0.5, while the security minmax strategy ofC2 is

to hold, guaranteeing a payoff of at most 0.65. The matrix game does not admit a Nash

equilibrium in pure strategies since the minmax and maxmin values do not coincide.1

In such a situation, we can propose various conjectures about the way the parties will

act, which will affect the value of the portfolio. One plausible assumption is that each

1The best response ofC2 whenC1 holds is to exercise.
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party will adhere to its own security strategy. In the case of the matrix game in Table

2.8, both parties would then choose to hold their option, resulting in a portfolio value of

v1 = 0:65 forC1 (andv2 = � 0:65 forC2).

A second assumption is that parties adopt a mixed strategy, that is, they randomize

their decision by choosing a probability to exercise their option at the decision date. This

assumption is founded on the game-theoretical interpretation of managing the netted port-

folio, as zero-sum matrix games always admit a Nash equilibrium in mixed strategies. For

the game presented in Table 2.8, the equilibrium mixed strategy is forC1 to exercise with a

probability of 2=30 and forC2 to exercise with a probability of 1=3. It is straightforward to

check that, ifC1 exercises with a probability of 2=30,C2 cannot reduce the expected value

of the portfolio below 0:6 (actually, the value of the portfolio is 0:6 whetherC2 exercises

or holds). In the same way, ifC2 exercises with a probability of 1=3,C1 can not do better

than an expected value of 0:6. Under this equilibrium mixed strategy, the portfolio value

is thenv1 = 0:6.

C2

E H

C1
E e1 � e2 = 2 e1 � ĥ2 = � 0:1
H ĥ1 � e2 = 0:5 (1� p2)

�
h1 � h2

�
= 0:65

Table 2.8: Matrix-game representation of the netted portfolio's value from the viewpoint ofC1

at the decision date. Risk-free holding and exercise values are provided in Table 2.1. Default
probabilities ofC1 andC2 are respectivelyp1 = 0:1 andp2 = 0:35.

It is interesting to note that in a two-party zero-sum game, if one party has a dom-

inant strategy, a pure strategy Nash equilibrium exists. A dominant strategy represents

the uniformly best choice for a player, regardless of the other's decision. If counterparty

Ci ; i = 1;2 has a dominant strategy, counterpartyC3� i 's best response is the pure strategy

that minimizesCi 's maximum payoff against that dominant strategy. WhenCi chooses
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their dominant strategy andC3� i selects the minimizing response, this forms an equilib-

rium in pure strategies, since neither counterparty can unilaterally improve their payoff.

Thereby, the zero-sum property aligns incentives such that one counterparty's dominance

introduces suf�cient structure to yield a mutually optimal equilibrium.

To demonstrate, consider the case where the exercise value of optionO1 in our ex-

ample model ise1 = 3 instead of 2. The new matrix game payoffs are shown in Table

2.9, replacing the prior values in Table 2.8. Here,C1 has a dominant strategy to exercise

O1. The best response forC2 is then to holdO2. The strategy pair(E;H) forms a Nash

equilibrium for this matrix game, and the portfolio value isv1 = 0:9. This illustrates how a

dominant strategy for one counterparty provides a structure for both parties to play mutual

best responses, creating a pure strategy Nash equilibrium.

C2

E H

C1
E e1 � e2 = 3 e1 � ĥ2 = 0:9
H ĥ1 � e2 = 0:5 (1� p2)

�
h1 � h2

�
= 0:65

Table 2.9: Matrix-game representation of the netted portfolio's value from the viewpoint ofC1 at
the decision date. Risk-free holding and exercise values are provided in Table 2.1, but with modi�ed
exercise valuee1 = 3 for O� 1. Default probabilities ofC1 andC2 are respectivelyp1 = 0:1 and
p2 = 0:35.

These simple examples reported in this section illustrate the impact of CCR and netting

on the exercise decisions of the parties and, therefore, on the value of the portfolio. In the

absence of a netting agreement, each claim is examined individually to determine the

optimal exercise strategy, where the holding value of each individual claim is adjusted

to account for the possibility of loss upon default. Under a netting agreement, however,

losses upon default are applied to the net value of the portfolio; speci�cally, upon default

of C2, losses are only incurred if the net value of the portfolio claims is positive forC1. This

makes the expected payoff for each counterparty dependent on the exercise decisions of the
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other. Clearly, a portfolio of claims should include both positive and negative cash�ows

for netting to have an impact on the expected payoffs to the counterparties. When, in

addition, the portfolio includes claims with early exercise features, netting can also impact

the exercise strategy and, therefore, further modify the risk adjustment.

The following section proposes a general model to evaluate a portfolio of claims having

early exercise features under CCR and netting.

2.3 Risk valuation adjustment under CCR and netting

We consider two parties (C1 andC2) involved in a portfolio of claims under a netting

agreement, where the portfolio includes contractual payments in both directions (fromC2

toC1 and fromC1 toC2), possibly with early exercise features. We assume that both parties

have at least one early exercise opportunity.

Since all cash �ows from this portfolio are from one party to the other, its value from

the perspective of one party is the negative of that of the other. In the sequel, the netted

portfolio value is expressed from the perspective ofC1.

The essential feature of a netting agreement is the consolidation of contractual obli-

gations upon default of one of the parties. Accordingly, the agreement and the portfolio

ceases to exist on the date of the �rst default event; at that date, the values of the claims

are netted and the result is recovered byC1 (if positive) orC2 (if negative). Since, on the

date of the �rst default event, some claims can include optional rights, we will assume in

this paper that, upon default, the value of the netted portfolio corresponds to the expected

value of its future cash �ows under a risk- and netting-adjusted exercise strategy.
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2.3.1 Notation

To simplify the exposition, we assume that the portfolio is composed ofn = n1 + n2

Bermudan options with different features (maturity, exercise payoffs and dates, underlying

asset), whereC1 holds the optional rights of the �rstn1 options andC2 holds the optional

rights of the remainingn2 options.2 Let t = 0 denote the inception of the netting contract

andt = T the longest maturity among then options included in the portfolio. Denote by

(Xt)0� t� T the (possibly multidimensional) process of the underlying risk factors, including

the price process of the options' underlying assets. We assume that(Xt)0� t� T is a �nite

Markov process, where(Ft)0� t� T is the �ltration generated by(Xt)0� t� T .

Let T = f tm;m = 0;1; :::;Mg be a set of discreteevaluation datesthat includes all

possible exercise dates for all options in the portfolio, wheretM � T. The notationEm[�]

represents the expectation at datetm, under the risk-neutral measure, conditional on no

prior default and on the �ltration(Ftm). For j = 1; :::;n, Fm j(x) then denotes the exercise

payoff of option j at (tm;Xtm = x) from the perspective ofC1, whereFm j(x) = 0 when

exercise of optionj is not allowed attm.

Let r denote the risk-free interest rate, assumed constant. To simplify the notation,

we assume that evaluation dates are evenly distributed in[0;T], so that the discount factor

corresponding to a single time stepD� tm+ 1 � tm;m= 0; :::;M � 1, is given byb � e� rD.

We denote byt i the stochastic default date (possibly in�nite) ofCi and byr i 2 [0;1]

the deterministic recovery rate upon default byCi , i 2 f 1;2g. The recovery rate is applied

to the netted portfolio value eventually recovered byC3� i .

To compute the CCR valuation adjustment, one needs to compare the value of the

vulnerable portfolio with that of a risk-free portfolio with the same characteristics. It is

important to emphasize that by "risk-free portfolio" in this thesis, we refer to a portfolio

2It is straightforward to adapt the model to the general case of derivatives with multiple contractual cash
�ows.
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free of counterparty risk. To this end, we introduce a state vectorb = ( b1;b2) of binary

variables indicating which options of the portfolio are still alive, that is, forj = 1; :::;n,

b j = 1 if option j has not yet been exercised or expired, whereasb j = 0 indicates that

option j no longer exists in the portfolio. At a given evaluation datetm whereXtm = x

and given no prior default, let̂Vm(x;b) andVm(x;b) denote respectively the value of the

vulnerable portfolio and that of the corresponding risk-free portfolio, under the risk-neutral

measure.

Finally, the indicator function 1A is de�ned by

1A �

8
><

>:

1 if A is true

0 otherwise,

and, for a giveny 2 R,

y+ � maxf 0;yg

y� � minf 0;yg:

2.3.2 The risk-free portfolio

It is easy to show that netting has no impact on the optimal exercise of the individual

options in a risk-free portfolio, so that

Vm(x;b) =
n

å
j= 1

b jVm j(x) (2.1)

where, for j = 1; :::;n, Vm j(x) is the value (from the perspective ofC1) of Option j at

(tm;Xtm = x), under its holder's optimal exercise strategy, assuming Optionj has not been
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exercised yet. The risk-free value of then options satisfy the following recursive equations

Vm j(x) = maxf Fm j(x);bEm[Vm+ 1; j (Xtm+ 1)]g for j = 1; :::;n1 andm< M (2.2)

Vm j(x) = minf Fm j(x);bEm[Vm+ 1; j (Xtm+ 1)]g for j = n1+ 1; :::;n andm< M (2.3)

VM j (x) = FM j (x) for j = 1; :::;n: (2.4)

2.3.3 The vulnerable netted portfolio

However, as shown in Section 2.2, netting can impact the exercise strategies of the

vulnerable portfolio's claims, giving rise to a dynamic game interpretation for the value

of the netted portfolio. We therefore proceed to characterize the payoffs and exercise

strategies of the counterparties involved in a netting agreement in order to obtain the value

of a netted portfolio of vulnerable options.

Exercise payoff

At a given evaluation date, leta = ( a1;a2) represent a vector of binary decisions with

respect to each of then options, where, forj = 1; :::;n, option j is exercised by its holder

if a j = 1. Note that feasible decision vectors satisfya � b, and recall thatFm j(x) = 0 if

exercise of optionj is not allowed attm. Theexercise payoff Rm(x;a) corresponding to a

feasible action vectora at (tm;Xtm = x) is de�ned by

Rm(x;a) �
n

å
j= 1

a jFm j(x): (2.5)

Holding value

The holding value Wm(x;b) of the portfolio at(tm;Xtm = x), given no prior default,

is the expected value of all the remaining options in the netted portfolio, described by

the vectorb. Accordingly, using a recursive interpretation and assuming that the value
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of the vulnerable portfolio is known at the next evaluation date as a function of the state

vector, the holding value is computed by considering the expected discounted value of the

portfolio upon three mutually exclusive and collectively exhaustive events during the time

interval until the next evaluation date, namely, survival of both parties, �rst default ofC1,

or �rst default ofC2, given no prior default. We can then write

Wm(x;b) = W0
m(x;b)+ W1

m(x;b)+ W2
m(x;b); (2.6)

whereW0
m(x;b), W1

m(x;b) andW2
m(x;b) correspond respectively to the holding value upon

each of these three mutually exclusive events, de�ned as follows:

Case 0: Let D0
m = 1tm+ 1< t 21tm+ 1< t 1 indicate the event that both parties will survive until

tm+ 1. In this case, the holding value attm is the discounted value of the portfolio

value at the next evaluation date, yielding

W0
m(x;b) = bEm

�
D0

mV̂m+ 1(Xtm+ 1;b)
�
: (2.7)

Case 1: Let D1
m = 1tm< t 1� tm+ 11t 1< t 2 indicate the event thatC1 is the �rst to default during

the time interval(tm; tm+ 1]. In this case, if the expected value of the portfolio at

(tm+ 1;Xtm+ 1) is negative,C2 will recover a portionr 1 of this (discounted) value at

t 1; otherwise,C2 will deliver the total of the portfolio's expected discounted value

to C1 at t 1. We then have

W1
m(x;b) = bEm

�
D1

m
�
V̂m+ 1(Xtm+ 1;b)+ + r 1V̂m+ 1(Xtm+ 1;b)� ��

: (2.8)

Case 2: Let D2
m = 1tm< t 2� tm+ 11t 2< t 1 indicate the event thatC2 is the �rst to default during

the time interval(tm; tm+ 1]. Similarly to Case 1, if the expected value of the portfolio

at the next evaluation date is positive,C1 will recover a portionr 1 of it, otherwise

C2 will recover the total value, yielding

W2
m(x;b) = bEm

�
D2

m
�
r 2V̂m+ 1(Xtm+ 1;b)+ + V̂m+ 1(Xtm+ 1;b)� ��

: (2.9)
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Using (2.7)-(2.9), Equation (2.6) reduces to

Wm(x;b) = bEm
��

1� (1� r 2)D2
m

�
V̂m+ 1(Xtm+ 1;b)+

+
�
1� (1� r 1)D1

m
�
V̂m+ 1(Xtm+ 1;b)� �

: (2.10)

It is important to note that the above characterization of the holding value implicitly

assumes that, upon default, both parties agree on the value of the portfolio, that is, on the

expected discounted value of its future cash �ows. Clearly, the future cash �ows of an

option with early exercise opportunities depend on the exercise strategy of its holder, and

the value of an option is obtained by assuming an optimal exercise strategy. As shown in

Section 2.2, the holder's exercise strategy should account for counterparty risk and for the

impact of netting on its exposure.

Security strategies

A security strategyfor C1 at (tm;Xtm = x;b) prescribes a decision vector maximizing

the outcome against all the possible decisions of the other party. Thelower valueof the

portfolio at(m;x;b) is de�ned by

VS1
m (x;b) � max

a1� b1

�
min

a2� b2
f Rm(x;a)+ Wm(x;b� a)g

�
; (2.11)

whereb� a indicates the contracts remaining in the portfolio after the exercise decisions

designated by the vectora = ( a1;a2). A security strategy forC1 then satis�es

aS1
m (x;b) 2 arg max

a1� b1

�
min

a2� b2
f Rm(x;a)+ Wm(x;b� a)g

�
: (2.12)

In the same way, a security strategy forC2 at (tm;Xtm = x;b) is a decision vector

aS2
m (x;b) minimizing the outcome against all the possible decisions ofC1. Theupper value

of the portfolio at(m;x;b) is de�ned by

VS2
m (x;b) � min

a2� b2

�
max
a1� b1

f Rm(x;a)+ Wm(x;b� a)g
�

; (2.13)
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and a security strategy forC2 satis�es

aS2
m (x;b) 2 arg min

a2� b2

�
max
a1� b1

f Rm(x;a)+ Wm(x;b� a)g
�

: (2.14)

Security strategies arepurestrategies, of dimensionn1 for C1 andn2 for C2. They indicate

the vector of decisions (exercise or hold) corresponding to all the options in the portfolio

held by each counterparty, as a function oftm, x = Xtm andb. Note that the feasibility

conditiona � b ensures that options that are no longer alive cannot be exercised.

2.3.4 Equilibrium

At a given evaluation datetm whereXtm = x and the options still included in the port-

folio are described by the vectorb, if the lower value and the upper value of the portfolio

coincide, the security strategies of the counterparties de�ne a Nash equilibrium at(m;x;b):

In that case, it is reasonable to assume that the counterparties will use the strategy pair

(aS1
m (x;b);aS2

m (x;b)) since neither party can improve its outcome by changing its strategy.3

The value of the netted portfolio is then de�ned by

V̂m(x;b) � VS1
m (x;b) = VS2

m (x;b): (2.15)

If however, the upper and lower values do not coincide at(m;x;b), there exists no

equilibrium in pure strategies at(m;x;b), and the value of the portfolio is open to interpre-

tation. As illustrated in Section 2.2, we propose three ways to determine the value of the

netted portfolio in that case, based on plausible conjectures about the exercise strategies

used by the counterparties.

3To simplify the exposition, we assume in the sequel that the solutions to the optimization problems
(2.11) and (2.13) are unique. Note that the portfolio value is well-de�ned even when this is not the case. The
issue of multiple solutions is addressed in Section 2.4.
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Robust intepretation

In the �rst case, we assume that each counterparty uses its security strategy, a robust

behavior avoiding the worst possible outcomes and ensuring that the value of the portfolio

lies between its lower and upper values. The strategy pair used by the counterparties is

thenaS
m(x;b) � (aS1

m (x;b);aS2
m (x;b)) and the value of the portfolio is given by

V̂m(x;b) � Rm(x; (aS
m(x;b))+ Wm(x;b� aS

m(x;b)) (2.16)

2
h
VS1

m (x;b);VS2
m (m;b)

i
:

Mixed strategies

In the second case, we consider the possibility that counterparties randomize their

decisions by choosing a probability distribution over the set of actions available to them.

A mixedstrategy forCi , i 2 f 1;2g is a vectorzi of dimension 2ni such that each element is in

[0;1] and the elements sum to 1. The exercise payoff and holding value corresponding to a

mixed strategy is the weighted average of the values corresponding to each of the 2ni pure

strategy vectors available to counterpartyCi , denoted byaik, k = 1; :::2ni . Accordingly,

under a mixed strategyz1, the exercise payoff of the netted portfolio at(tm;Xtm = x) when

C2 uses the action vectora2 is de�ned by

R̃m(x;z1;a2) =
2n1

å
k= 1

z1kRm(x;a1k;a2): (2.17)

In the same way, under a mixed strategyz1, the holding value of the netted portfolio at

(tm;Xtm = x) whenC2 uses the action vectora2 is de�ned by

W̃m(x;z1;a2) =
2n1

å
k= 1

z1kWm(x;b� (a1k;a2)) : (2.18)

The exercise payoff and holding value of the netted portfolio corresponding to the use of

a mixed strategy byC2 are de�ned similarly.
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Note that a Nash equilibrium in mixed strategies always exists.4 The value of the

portfolio

V̂m(x;b) � v (2.19)

can be obtained by solving the following linear program at(m;x;b):

max
z;v

v (2.20)

s.t.

v � R̃m(x;z;a2l ) + W̃m(x;z;a2l ) for l = 1; :::2n2 (2.21)
2n1

å
k= 1

zk = 1 (2.22)

zk � 0; k = 1; :::;2n1: (2.23)

The equilibrium mixed strategy forC1 is the vectorz2 R2n1 solving (2.20)-(2.23). The

equilibrium mixed strategy forC2 is the vector of dual variables corresponding to the 2n2

constraints (2.21).

Conservative values

Finally, we consider the possibility that parties do not agree on the value of the portfo-

lio, so that each party computes its own estimation of the value of the vulnerable portfolio,

a conservative value corresponding to either the lower (forC1) or the upper (forC2) value,

obtained using Equations (2.11) or (2.13), respectively.

To summarize, we propose three distinct assumptions about the behavior of the parties

in a netted agreement, leading to four different ways to compute the value of a vulnerable

portfolio, namely:

4Again, the equilibrium value is unique even though multiple equilibrium strategies may exist.
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A1 Parties agree on the value of the portfolio, which corresponds to a Nash equilibrium. In

that scenario, parties use mixed strategies when a Nash equilibrium in pure strategies

does not exist. The value of the portfolio is obtained using Equation (2.19).

A2 Parties agree on a robust interpretation of the value of the portfolio. In that scenario,

each party uses its security strategy, which is not necessarily in equilibrium, but

guarantees that the value of the portfolio, obtained using Equation (2.16) lies be-

tween the upper and the lower value.

A3 Parties do not agree on the value of the portfolio and use a conservative value obtained

using Equations (2.11) forC1 and Equation (2.13) forC2.

Clearly, both counterparties should agree that the value of the portfolio lies between

its lower and upper values. Note that Equations (2.16) and (2.19) satisfy this condition

and yield the same result, corresponding to Equation (2.15), when the lower and the upper

values coincide.

2.3.5 Computation of valuation adjustments

Given that the value of the vulnerable portfolio is a known function of(x;b) at maturity,

V̂M(x;b) =
n

å
j= 1

b jFM j (x); (2.24)

Equations (2.6)-(2.9) provide a backward recursive formulation to compute the holding

valueWm(x;b) attm when the value of the vulnerable netted portfolio is known attm+ 1 as a

function of the state vector(x;b). Under Assumptions A1 or A2, the vulnerable portfolio

value can then be obtained attm using Equations (2.16) or (2.19), respectively. Note that

the two equations yield the same value when the upper and lower values of the vulnerable

portfolio coincide.
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The BVA at(tm;Xm = x;b) is then given by the difference

BVAm(x;b) = Vm(x;b) � V̂m(x;b): (2.25)

When only one party is exposed to default risk, sayCi , the stochastic default timet i is

set to= ¥ in Equations (2.7)-(2.9). The CVA at(m;x;b) is then given by

CVAm(x;b) = Vm(x;b) � V̂m(x;b): (2.26)

When parties do not agree on the value of the vulnerable portfolio (Assumption A3),

and, therefore, on the price of counterparty risk (BVA or CVA), each party will compute

its ownconservativevalue of the risk adjustment, yielding the conservative BVAs

BVA1
m(x;b) = Vm(x;b) � VS1

m (x;b)

BVA2
m(x;b) = Vm(x;b) � VS2

m (x;b):

These conservative BVA values are likely to differ and to be higher (in absolute value)

than the BVA computed using either the mixed strategy or the robust assumptions.

The general model proposed in this section provides an analytical characterization of

the price of counterparty risk under various default risk models and various assumptions

about the state process(Xt)0� t� T , provided the expectations in (2.7)-(2.9) can be com-

puted or approximated ef�ciently. In particular, it can accommodate both intensity-based

and structural default models by including the risk factors (e.g. structural or exogenous

variables) in the state vector.

However, while analytic, Equations (2.2)-(2.4) and (2.11), (2.13), (2.16) or (2.19) do

not admit closed-form solutions in general and require some form of numerical approx-

imation. In the numerical illustrations presented in the next section, we solve Equations

(2.2 )-(2.4) and (2.11), (2.13), (2.16) or (2.19) on a set of grid points for the state vector

X and approximate the value of the portfolio using linear spline interpolation (see Breton

and Frutos 2012).
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2.3.6 Implementation

In our implementation of the algorithm, we utilize the linear spline interpolation ap-

proach outlined in Ben-Ameur, Breton, and François (2006). This approximation tech-

nique has been shown in Breton and Frutos (2012) to be both ef�cient and numerically ro-

bust for pricing Bermudan options. The resulting approximation provides a good balance

between accuracy and computational ef�ciency, making it well-suited for our purposes.

In this regard, we can write Equations (2.7)-(2.10) as the general form of

Wm(x;b) = bEm
�
Gm fm+ 1(Xtm+ 1;b)

�
; (2.27)

whereGm is an event,fm+ 1 is a known function, and the joint density of(Gm;Xtm+ 1),

conditional onXtm = x, is known under the risk-neutral measure.

For a clearer understanding, we consider the case where the state space related to the

risk factor is unidimensional, withx 2 [0;¥ ). We de�ne a setG = f xk;k = 1; :::; pg of p

grid points such that

0 < x1 < x2 < ::: < xp < ¥

and a family ofp basis functions, denoted by(y k)f k= 1;::;pg. An interpolation function is

then de�ned by

Ŵm(x;b) =

8
><

>:

å p
k= 1cm

k (b)y k(x) if x 2 [x1;xp]

o(x) if x =2 [x1;xp],
(2.28)

whereo(x) is an extrapolation function characterizing the behavior ofW outside the local-

ization interval, and where the coef�cientscm
j satisfy the linear system.

Wm(xi ;b) =
p

å
k= 1

cm
k (b)y k(xi); i = 1; :::; p: (2.29)

Knowing the function ofV̂m+ 1(Xtm+ 1;b), we proceed to compute the expected values

Em[G1mV̂m+ 1(Xtm+ 1;b)jXtm = x]+ andEm[G2mV̂m+ 1(Xtm+ 1;b)jXtm = x]� over the grid points
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setG. Subsequently, the holding value functionŴm for the netted portfolio, indicated by

b, is determined by applying the spectral interpolation scheme outlined in Equation (2.28).

To determine the value function̂Vm using either strategy, the conservative strategy

as described in Equations (2.11) and (2.13), the security strategy in Equation (2.16), or

the mixed strategy delineated in the linear program (2.19), it is essential to compute the

holding value function for every subset of the portfolio. This necessitates that the function

V̂m+ 1 be known for all sub-portfolios corresponding tob0 � b. Therefore, the valuation

process is initiated by recursively evaluating the smallest sub-portfolios, then progressively

assessing larger subsets under the netting agreement, and culminating with the valuation

of the entire netted portfolio. Consequently, withŴm known for allb0� b, we are equipped

to derive the function of̂Vm(Xtm;b) using any of these outlined methods.

The complete backward recursive algorithm to compute the value of a netted portfolio

is shown in Algorithm 1. This algorithm provides the BVA as a function of the state vector

(x;b), obtained by mixed strategy, for a set of discrete evaluation dates inT using dynamic

programming.

In the pseudocode, we use decimal numbersf 1 = 1;2; :::;2n1 andf 2 = 1;2; :::;2n2 to

describe the binary vectorsb1 andb2, respectively, in ascending order. For a given binary

vectoru, we denote byF (u) as the set of positive indexes in the vectoru. The notationh(:)

denotes a decimal number to binary vector converter and� represents the element-wise

multiplication.

2.4 Numerical illustration

This section reports on numerical experiments addressing the sensitivity of counter-

party risk to various parameters and the impact of netting and CCR on adjustment values

using the dynamic program proposed in Section 2.3.

34



Algorithm 1 Backward Recursive Algorithm to Evaluate BVA of Netted Portfolio Using
Mixed Strategy

1: Input : f Fm j(x);m= 1; : : : ;M; j = 1; : : : ;Ng, b , n1, n2, r 1, r 2, M, grid points in set of
G, (y k)f k= 1;::;pg, and defaults models.

2: for f 1 = 1 to 2n1 do
3: for f 2 = 1 to 2n2 do
4: b = ( b1;b2)  h(f 1 � 1; f 2 � 1)
5: V̂M(xk;b) = å j2F (b) FM j (xk), for k = 1; : : : ; p
6: ŴM(xk;b) = 0, for k = 1; : : : ; p
7: for m= M � 1 down to 0do
8: for k1 = 1 to f 1 do
9: for k2 = 1 to f 2 do

10: ak = ( ak1
1 ;ak2

2 )  h(k1 � 1;k2 � 1)
11: b0= b� b� ak

12: Computecm
k (b0) via Eq. (2.29), fork = 1; : : : ; p.

13: ComputeŴm(xk;b0) using Eq. (2.28) , fork = 1; : : : ; p.
14: Rm(xk;ak ) = å j2F (ak ) FM j (xk), for k = 1; :::; p
15: V̂k1k2;m(xk;b) = Rm(xk;ak ) + Ŵm(xk;b0), for k = 1; : : : ; p

16: ComputeV̂m(xk;b) using Eq. (2.19), fork = 1; :::; p
17: ComputeVm(xk;b) = å j2F (b) Vm j(xk) using Eq. (2.1), fork = 1; :::; p
18: BVAm(xk;b) = Vm(xk;b) � V̂m(xk;b)

2.4.1 Base case speci�cation

We consider a portfolio consisting ofn = n1 + n2 Bermudan put options written on

the same underlying asset, with possibly distinct strike prices denoted byKi j , j = 1; :::;ni

for Option j, that is held byCi . All options have the same maturityT = 1 andNe= 50

equally spaced exercise opportunities, which, along with the inception date, form the set

T . CounterpartyC1 andC2 are in a netting agreement, whereC1 holds a long position on

n1 options with the strike prices ofK1j , j = 1; :::;n1 and a short position onn2 options with

the strike prices ofK2j , j = 1; :::;n2 andC2 holds the opposite position.

We assume that the underlying asset price process is described by a geometric Brown-
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ian motion, so that the price process under the risk-neutral measure is given by

Xt = X0exp
�

(r �
s 2

2
)t + s Bt

�
; (2.30)

whereX0 is the asset price at inception,s is the volatility ¸of the price process, andB

denotes a standard Brownian motion. The benchmark values characterizing the underlying

asset process are reported in Table 2.10.

Parameters
Underlying asset

T Ne
r X0 s

Base value 0:05 100 0:35 1 50

Table 2.10: Benchmark values for the numerical experiments.

We use an intensity-based model of default and assume that the parties' defaults are

exogenous events governed by the �rst jump of independent Poisson processes with con-

stant hazard intensities, denoted respectively byl i ; i = 1;2. Accordingly, the probability

that counterpartyCi defaults �rst during a time intervalD, given that it has not defaulted

yet, is a constant given by

pi � Em
�
1tm< t i � tm+ 11t i< t 3� i

�

=
l i

l 1 + l 2
(1� exp(� D(l 1 + l 2))) ; m= 1; :::;M � 1; i 2 f 1;2g: (2.31)

In that case, Equation (2.10) simpli�es to

Wm(x;b) = b
�
(1� p1(1� r 1))Em

�
V̂m+ 1(Xtm+ 1;b)+ �

+( 1� p2(1� r 2))Em
�
V̂m+ 1(Xtm+ 1;b)� ��

: (2.32)

Finally, note that if the following condition is satis�ed

p1(1� r 1) = p2(1� r 2) � s; (2.33)
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the holding value further simpli�es to

Wm(x;b) = b(1� s)Em
�
V̂m+ 1(Xtm+ 1;b)

�
: (2.34)

In this speci�c instance, where both parties are subject to the exact same counterparty

default risk, it is easy to see that netting has no impact on the valuation of the portfolio,

risk adjustment value, and the early exercise strategy.

2.4.2 Behavioral assumptions

As delineated in Section 2.3.4, the dynamic-game model employed for evaluating the

price of CCR within a netted portfolio—where both parties have optional rights - can

be used under distinct assumptions about the way to compute the value of a vulnerable

portfolio. The three assumptions proposed in Section 2.3.4 can yield four distinct values

for the CVA/BVA. This holds true even in scenarios where the portfolio's upper and lower

value functions coincide, provided that there exists, at minimum, one region within the

state space over the portfolio's remaining horizon where such coincidence is absent. This

is due to the fact that the portfolio value is an expectation of future cash �ows, contingent

to the exercise strategies of both parties.

This section explores scenarios in which the upper and lower boundaries of the port-

folio value are not equal. Speci�cally, the discussion focuses on how the default risk of

counterparties and the portfolio value interact in these particular instances.

Unilateral risk

To analyze unilateral risk, we posit thatC1 is devoid of default risk (l 1 = 0), whileC2

is susceptible to default, characterized by a recovery rate ofr 2 = 0. For our initial set of

experiments, we examine a portfolio consisting of two Bermudan put options with strike
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prices ofK11, as speci�ed in each plot, andK21 = 100. These options are written on the

same underlying asset, with parameter values speci�ed in Table 2.10. Figure 2.1 illustrates

the four portfolio values and their corresponding CVA calculations, undertaken under dis-

tinct assumptions proposed in Section 2.3.4 for the netted portfolio of two Bermudan put

options. These are evaluated as functions ofC2's hazard rate under two distinct condi-

tions: whenK11 = K21 (Panels a and c) and whenK11 = 1:02K21 (Panels b and d). As

(a)K11 = K21 = 100 (b) K11 = 1:02K21 = 102

(c) K11 = K21 = 100 (d) K11 = 1:02K21 = 102

Figure 2.1: Comparison of the netted portfolio value (Panels a and b) and CVA value (Panels c and
d) at inception, as a function ofl 2 whenl 1 = 0 andr 2 = 0, according to the assumption used to
compute the portfolio value. Other parameter values are reported in Table 2.10
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illustrated, whenK11 = K21, the CVA value is precisely the negative of the portfolio value

calculated using the same exercise strategy. This inverse relationship arises due to the

risk-free portfolio value becoming zero when the strike prices are identical.

One discerns that under Assumption A3, the CVA values manifest discrepancies be-

tween the counterparties. Both parties tend to overestimate their expected losses by adopt-

ing worst-case outcomes, particularly when a Nash equilibrium in pure strategies is not

attainable.

A noticeable consequence of increasing the parameterl 2 is a more pronounced dif-

ference between the portfolio's upper and lower value functions. This difference is due

to the increased number of states that lack a Nash equilibrium in pure strategies. Such

states, within a portfolio of two Bermudan put options, are graphically represented in Fig-

ure 2.2. Panels a to c pertain to scenarios whereK11 = K21 = 100, while Panels e to g

correspond to those whereK11 = 1:02K21 = 102. The depicted states represent the price

of the underlying asset at each potential exercise date

Upon closely examining Figure 2.2, it is apparent that increasing the default risk of

C2 within the subject portfolio results in a greater number of states that lack a Nash equi-

librium in pure strategies. This phenomenon can be traced back to the deterioration of

the most unfavorable outcome forC1 asC2's default probability escalates, while the least

favorable outcome forC2 remains static. Consequently, in a heightened number of states,

the portfolio's lower value tends to descend below its upper value, thus precluding the

existence of a Nash equilibrium in pure strategies.

In a follow-up experiment, we delve into the interplay between the value of a risk-free

portfolio and the divergence between the upper and lower values. Extending beyond the

earlier portfolio comprising two Bermudan put options, a portfolio of four such options

with strike prices ofK11, K12 = 100, K21 = 105, K22 = 103 is considered. The results

are depicted in Figure 2.3, where Panels a and b showcase the vulnerable and risk-free
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(a) l 2 = 0:1 (b) l 2 = 0:5 (c) l 2 = 1

(d) l 2 = 0:1 (e) l 2 = 0:5 (f) l 2 = 1

Figure 2.2: Representation of states without Nash equilibrium in pure strategy for a portfolio of
two Bermudan put options whenK11 = K21 = 100 (Panels a-c) andK11 = 1:02K21 = 102 (Panels e
- f) for l 2 = 0:1, l 2 = 0:5, andl 2 = 1 whenl 1 = 0 andr 2 = 0. Other parameter values are reported
in Table 2.10.

portfolio values for portfolios of two and four Bermudan put options, respectively, as

functions of the strike priceK11 under the conditionsl 2 = 0:5 andr 2 = 0. Panels c and

d offer a comparison of the lower, upper, security, and equilibrium values of the CVA for

these portfolios. Furthermore, Figure 2.4 presents the states that lack a Nash equilibrium

in pure strategies for portfolios as a function of varyingK11.

Our �ndings suggest that with a constant default probability, the gap between the upper

and lower bounds tends to narrow as the absolute value of the portfolio increases. This

phenomenon is attributed to a higher likelihood of dominant strategies emerging when the

portfolio's value deviates substantially from zero. Speci�cally, a larger positive (negative)

portfolio value from the viewpoint ofC1 implies that the relative moneyness of options

within C1's subportfolio exceeds (is below) those held byC2. In such cases, there is a
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(a)K21 = 100 (b) K12 = 100;K21 = 105;K22 = 103

(c) K21 = 100 (d) K12 = 100;K21 = 105;K22 = 103

Figure 2.3: Illustration of the conservative value (fromC1's viewpoint) of the vulnerable and risk-
free portfolio (Panels a and b) and CVA (Panels c and d) at inception for the portfolio of two
Bermudan put options with strike prices ofK11 andK21 = 100 and portfolio of four Bermudan put
options with strike prices ofK11, K12 = 100,K21 = 105,K22 = 103 whenl 2 = 0:5 andr 2 = 0. All
options are written on the same underlying asset with parameter values in Table 2.10.

greater probability that a dominant strategy exists forC1, including early exercising its

deeper ITM options (holding its deeper OTM options). As discussed in Section 2.2, the

emergence of dominant pure strategies in this manner increases the likelihood of Nash

equilibrium across more underlying risk factor states over the portfolio's lifespan, thereby

reducing the spread between bounds.

This pattern is evident in Panel c of Figure 2.3 for the two-option portfolio, where a
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suf�cient disparity in the degree of moneyness between options held byC1 andC2 leads to

the convergence of the bounds. Similarly, in the four-option portfolio (Panel d of Figure

2.4), as the relative moneyness ofC1's options diverges further from those ofC2, in�u-

encing the portfolio's value, we observe a reduced distance between the lower and upper

bounds.

(a)K11 = 97 (b) K11 = 100 (c) K11 = 103

(d) K11 = 104 (e)K11 = 107 (f) K11 = 110

Figure 2.4: Representation of states without Nash equilibrium in pure strategy for the portfolio of
two Bermudan put options with strike prices ofK11 andK21 = 100 (Panels a-c) and portfolio of
four Bermudan put options with strike prices ofK11, K12 = 100,K21 = 105,K22 = 103 (Panels e -
f) whenl 2 = 0:5 andr 2 = 0. All options are written on the same underlying asset with parameter
values in Table 2.10.

Bilateral risk

To explore the case of bilateral risk, we consider a scenario in which both counterpar-

ties are subject to default risk. Throughout the experiments detailed in this section, we �x

l 2 = 0:5 and setr 1 = r 2 = 0. For the predetermined portfolio of two options, we draw
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a comparative analysis between the four distinct portfolio values calculated based on as-

sumptions articulated in Section 2.3.4 and their corresponding BVA, as a function of the

parameterl 1, which is illustrated in Figure 2.5.

It is worth recalling that when Condition (2.33) is met, the portfolio's valuation is

equivalent to the aggregated values of the individual options, making netting effects ir-

relevant. This matching among the four interpretations becomes evident in Figure 2.5,

particularly whenl 2 = l 1 = 0:5.

Figure 2.5 demonstrates that the BVA can be either negative or positive. This is contin-

gent upon the interplay between the counterparties' relative default risks and the valuation

of the sub-portfolios each party holds. A negative BVA signi�es that CounterpartyC2 is

more susceptible to the default risk of the other party and thus necessitates the allocation

of additional capital as a contingency measure for possible losses. This effect is especially

salient in Figure 2.5c, where the portfolio comprises options with identical riskless values,

yet a negative BVA arises when the default risk ofC1 surpasses that ofC2 (i.e., l 1 > l 2).

Extending the observations from the unilateral risk scenario, it is evident that an aug-

mented disparity between the default risks of the two counterparties results in a broader

divergence between the portfolio's upper and lower valuations. This observation is coher-

ent with earlier analyses; as the default risk of one counterparty (Ci) exceeds that of its

opposite number (C2� i), the least favorable �nancial outcomes againstC2� i deteriorate ac-

cordingly. Consequently, in an increased number of states, the portfolio's lower valuation

is more likely to fall below its upper valuation. Figure 2.6 depicts these particular states,

characterized by an absence of Nash equilibrium in pure strategy when both parties are

exposed to bilateral risk.

In Figure 2.7, we further illustrate the portfolio value and BVA as functions of the

strike priceK11, for portfolios containing either two or four Bermudan put options when

l 1 = 0:2 andl 1 = 0:5. In line with previous discussions of unilateral risk, the gap between
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(a)K11 = K21 = 100 (b) K11 = 1:02K21 = 102

(c) K11 = K21 = 100 (d) K11 = 1:02K21 = 102

Figure 2.5: Comparison of the netted portfolio value (Panels a and b) and BVA value (Panels c and
d) at inception, as a function ofl 1 whenl 2 = 0:5 andr 1 = r 2 = 0, according to the assumption
used to compute the portfolio value. Other parameter values are reported in Table 2.10

the portfolio's upper and lower limits narrows when the portfolio's value substantially

diverges suf�ciently from zero.

Synthesizing the outcomes from both unilateral and bilateral scenarios, the divergence

in the various interpretations of CCR pricing can be notably diminished under certain con-

ditions. Speci�cally, our numerical experiments indicate that the gap between the lower

and upper bounds of a vulnerable portfolio—and by extension, their associated risk ad-
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(a) l 1 = 0:1 (b) l 1 = 0:3 (c) l 1 = 1

(d) l 1 = 0:1 (e) l 1 = 0:3 (f) l 1 = 1

Figure 2.6: Representation of states without Nash equilibrium in pure strategy for a portfolio of
two Bermudan put options whenK11 = K21 = 100 (Panels a-c) andK11 = 1:02K21 = 102 (Panels e
- f) for l 1 = 0:1, l 1 = 0:3, andl 1 = 1 whenl 2 = 0:5 andr 1 = r 2 = 0. Other parameter values are
reported in Table 2.10.

justment values— tends to narrow notably when:

• The portfolio's value signi�cantly deviates from zero;

• The default risks of both counterparties are more evenly balanced.

In the context of bilateral risk, a particularly intriguing phenomenon emerges when

both counterparties adopt a conservative approach in portfolio evaluation, utilizing the

BVA as the foundational metric for capital adjustment calculations. Figure 2.8 serves as

an empirical illustration of this occurrence; speci�cally, the conservative BVA value for

CounterpartyC1 and the negation of the conservative BVA value for CounterpartyC2,

presented in Figure 2.8a), provide insights into the resultant capital adjustments, which

are delineated in Figure 2.8b. Within the parameter interval wherel 2 varies from 0:21

45




	Résumé
	Abstract
	List of Tables
	List of Figures
	List of Acronyms 
	Acknowledgements 
	Introduction
	Literature Review
	The Evolution of CVA and Netting Research
	The Methodological Evolution in this research
	Dynamic Games: A Multi-Agent Framework for Portfolio Evaluation


	Counterparty Risk under Netting Agreements: A Dynamic Game Interpretation
	Introduction
	Content and Organization

	Motivating Example
	Risk valuation adjustment under CCR and netting
	Notation
	The risk-free portfolio
	The vulnerable netted portfolio
	Equilibrium
	Computation of valuation adjustments
	Implementation

	Numerical illustration
	Base case specification
	Behavioral assumptions
	Analyzing the Sensitivity of portfolio value and CVA/BVA in parameter values
	Netting impact

	Conclusion

	Beyond Counterparty Risk: The Influence of Netting Agreements on Exercise Strategies
	Introduction
	Context and objectives
	Content and organization
	Notation and settings

	Comparison of conservative and mixed strategies
	Impact of parameter values on exercise strategies
	Unilateral risk
	Bilateral case

	A comparative analysis: Netting impact on exercise boundaries
	Unilateral case
	Bilateral case

	Methodological choices
	Conclusion

	CVA Variability in Netted Portfolios
	Introduction
	Estimating the Distribution of CVA Changes for Netted Portfolios
	Numerical experiments
	Netting impact on CVA variability
	European vs. Bermudan vs. American: A tail risk comparison

	Conclusion

	General Conclusion
	Bibliography

