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Résumé 

Bien que le concept de charge cognitive imposée aux utilisateurs ait été étudié dans le 

domaine des systèmes d’information pendant de nombreuses années, certaines difficultés 

de mesure ont empêché les chercheurs d’en explorer différents aspects. 

L’approche « NeuroIS », utilisant les outils et les théories des neurosciences dans le 

domaine des SI, nous fournit un outil puissant pour étudier les processus cognitifs des 

utilisateurs. En utilisant l'électroencéphalographie (EEG), les chercheurs sont en mesure 

de mesurer la charge cognitive avec une précision et une résolution temporelle élevées, et 

celle-ci peut être étudiée dans divers contextes d'interaction entre utilisateurs et TI, tels 

que les achats en ligne. 

Cette thèse, composée de deux essais, présente différentes mesures du concept de charge 

cognitive et montrent comment ces dernières peuvent être utilisées pour évaluer un 

artefact TI. Le premier essai comprend deux expériences dont l’objectif est de mesurer la 

charge cognitive puis de tester ces mesures en pratique. La première expérience détermine 

la charge de travail instantanée de l'utilisateur et en extrait trois mesures objectives: charge 

accumulée, charge moyenne et charge de pointe. Cette expérience explore également 

l’effet de la difficulté et de l’incertitude de la tâche sur les mesures objectives et 

subjectives de la charge de travail. Dans la seconde expérience, nous utilisons le concept 

de charge accumulée pour évaluer la commodité d'un site Web d’achat en ligne et nous 

montrons comment cette charge accumulée est associée à la satisfaction de l'expérience 

d'achat. Finalement, le deuxième essai examine l’effet combiné du tri des produits et de 

l’objectif des utilisateurs sur leur charge de travail, en utilisant plusieurs mesures de la 

charge cognitive. Cette thèse contribue au champ des SI en introduisant de nouvelles 

mesures du construit de charge de travail et les établit comme critères pour évaluer les 

artefacts TI. 

Mots clés : Charge cognitive, NeuroIS, Conception des SI, Charge accumulée, EEG, PGI 

Méthodes de recherche : Expérience	en	laboratoire 
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Abstract 

While user cognitive load has been studied in the field of information systems for many 

years, measurement difficulties have prevented researchers from exploring different 

aspects of it. NeuroIS, which seeks to use neuroscience tools and theories in the IS field, 

provides us with a powerful tool to study users’ cognitive processes. Using 

Electroencephalography (EEG), researchers are able to measure cognitive load with high 

precision and temporal resolution, and it can be studied in various user-IT interaction 

contexts such as online shopping 

This thesis, based on two essays, aims to introduce different measures of the cognitive 

load construct, and to show how they can be used to evaluate an IT artifact. The first essay 

includes two experiments to address both the challenge of measuring cognitive load and 

also testing new measures in practice. The first experiment measures the user’s 

instantaneous cognitive load and extracts three objective measures from it: accumulated 

load, average load, and peak load. Then, the effect of task difficulty and task uncertainty 

on both objective and subjective measures of cognitive load is explored. In the second 

experiment of this essay we use the accumulated load construct to evaluate the 

convenience of an online shopping website, and show how accumulated load is associated 

with satisfaction with the shopping experience. Finally, the second essay examines the 

contingent effect of product sorting and the users goal on user workload using multiple 

measures of cognitive load. This thesis contributes to the IS field by introducing new 

measures of the workload construct and establishing them as criteria for evaluating IT 

artifacts. 

 

Keywords : Cognitive Load, NeuroIS, IS design, Accumulated load, EEG, ERP 

Research methods : Laboratory Experiment 
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Chapter 1- Thesis Introduction 

Cognitive load (or mental workload) can be defined as the amount of working memory 

resources allocated to perform a task (DeStefano & LeFevre, 2007). The cognitive load 

construct has been studied in information systems (IS) research as a measure — mostly a 

self-perceived measure— of efficiency, and has been used as an element of decision 

quality to evaluate how decision support systems can help users reduce their level of 

cognitive load (Todd & Benbasat, 1992, Todd & Benbasat, 1999). In recent years, 

researchers have started to apply this construct in design science research (Schmutz et al., 

2010, Gwizdka, 2010, lo Storto, 2013). IS researchers are mostly interested in measuring 

the user’s cognitive load during human-IT interaction and examining the effect of IT-

induced cognitive load on the user’s behavior.  

The amount of load imposed by IT artifacts on a user’s working memory is an important 

criterion for evaluating efficiency because people’s cognitive resources are limited in 

nature (Wickens, 2002). Efficient use of these resources prevents users from being 

overloaded by the system demands thus experiencing negative consequences (lo Storto, 

2013). However, measurement difficulties have prevented IS researchers from thoroughly 

investigating this construct (Paas & Sweller, 2012, Schmutz et al., 2010). Traditional self-

perceived measures of cognitive load are subject to different types of bias (Dimoka et al., 

2011) and unable to capture all variations of the cognitive load construct. De Guinea et 

al., (2014) distinguish between the explicit (self-perceived) and implicit (automatic or 

unconscious antecedents of cognitive beliefs since there are mental processes beyond a 

user’s consciousness which nevertheless affect his/her behavior. 

Recent developments in the NeuroIS field and the use of neuroscience tools and theories 

have enabled IS researchers to uncover different aspects of cognitive load. Besides their 

ability to capture automatic and unconscious mental processes, tools such as 

Electroencephalography (EEG) increase the temporal resolution of measuring cognitive 

load (Riedl et al., 2014), providing us with a richer measurement of the construct. 

Cognitive load can be measured over any time period during user-IT interaction. For 

instance, user cognitive load while working with a specific menu in a software application 
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can be captured using EEG. This capability provides IS researchers with a powerful tool 

to inform IT design. 

Information systems design research includes building and evaluating IT artifacts 

(Hevner, 2007). To improve existing artifact design, researchers must evaluate IT artifacts 

against an identified business need. Neuroscience tools and theories can contribute to this 

cycle by identifying the neurophysiological determinants of such business needs (Brocke 

et al., 2013) which can then be employed as criteria for design.  

Prior to using the concept of working memory load in an information systems context, we 

need to identify its components and explain the processes within working memory. A 

good conceptual model of working memory is important in helping IS researchers 

understand how it functions. Research in the fields of psychology and neuroscience has 

employed various approaches to theorizing working memory. Differences between them 

derive chiefly from the methods used, and also the type of phenomena they emphasize. In 

this thesis, Baddeley’s theory of working memory (Baddeley, 2007) is used since it is well 

established in the field of psychology and has also been strongly confirmed by 

neuroimaging experiments. The latter is of great importance since this study also measures 

cognitive load using a neuroimaging tool (EEG). 

Working memory theories have evolved through the years and have been tested against 

competing theories. The preliminary conception of brain function was a two-component 

model consisting of a short term memory (STM) and a long term memory (LTM). This 

line of theories proposed that short-term memory is simply a temporary memory storage, 

and information can be transferred to long-term memory upon repetition and through 

learning practices. Although some evidence was found in the early years to support this 

model, further experiments rejected the idea that short term memory is simply a storage 

system. The term “working memory” was then used to emphasize the functional role of 

this system in the brain. Experiments showed that working memory is responsible for a 

wide range of storage and processing tasks; thus it is very likely that the system comprises 

multiple components (Smith, Jonides, & Koeppe, 1996). 



3	
	

It is now well established that there are separate storage systems with different 

responsibilities within working memory, along with a processor component which 

performs critical functions such as coordinating storage systems and managing attention 

(Baddeley, 2007). Figure 1 shows the four-component model proposed by (Baddeley, 

2007) which is composed of three storage systems: visuospatial sketchpad, phonological 

loop, and episodic buffer which are coordinated by the fourth component, central 

executive. 

  

 

Figure 1- Four component model of working memory (Baddely 2007) 

 

A feature common to all four components is that their capacity is limited in nature. This 

limitation is the key point in understanding the effect on user performance of a high load 

on working memory. In the following paragraph each component is briefly introduced.  

The phonological loop: This system is responsible for storing phonological and speech-

based information. This storage system is temporary and can be retained if it is refreshed 

by rehearsal. There is evidence that our brain stores phonological information in a separate 

memory system (Baddeley, 2007). For instance, Conrad & Hull (1964) found that the 
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sequence of phonologically similar letters such as B D T G C P were remembered less 

precisely than a dissimilar sequence such as F K Y W R Q. Thus, other than storing purely 

acoustic information such as a tone, voice or music, our brain also stores the phonologic 

information of letters, words, and sentences in the phonological loop. 

The visuospatial sketchpad: Visual and spatial information is stored in this system. It 

performs the same type of storage as the phonological loop but for visual information 

(Postle et al., 2006, Baddeley, 2007). 

The central executive: This is the most important component of the working memory 

system as it performs the vital processing of coordinating and linking sub-systems. 

(Baddeley, 2007) identified four executive functions which are performed by the central 

executive component, “the capacity to focus attention, to divide attention, to switch 

attention and to provide a link between working memory and long-term memory”. In this 

sense it is similar to the supervisory attentional system (SAS) model proposed by Shallice 

(1988). The central executive component possesses the capacity to direct and focus 

attention, which is the most fundamental function of working memory. Research on SAS 

and the central executive have strongly supported the fact that this capacity is limited, 

thus restricting the processing ability of the brain in any context. 

Generally, our behavior is controlled by two mechanisms. The first is habitual action 

which relies mostly on long term memory (Norman & Shallice, 1986). The second 

mechanism activates when our brain perceives a deviation from a habitual process and 

needs to conduct a novel behavior Norman and Shallice (de Guinea & Webster, 2013). 

The latter mechanism is heavily dependent on central executive capacity. In situations 

where habitual responses are not relevant, the central executive is responsible for finding 

new solutions. Therefore, our performance is limited by the capacity of the central 

executive. 

Three factors affect loading on the central executive. 1- Task complexity: complex tasks 

demand more working memory resources; performance is impaired as the load on 

working memory components increases. (Baddeley, 2007). 2- Degree of practice: as 

people gain more experience in performing a task, the demand on their working memory 
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decreases (Baddeley, 2007). This happens because the mechanism for coordinating 

attention, thought, and behavior shifts gradually to one of habitual action which employs 

long term memory. In an information systems context, the degree of a user’s experience 

with the the IT artifact and with the task itself, influences the level of cognitive load. 3- 

Task switching: research on this topic shows that there is an attentional cost when people 

switch between tasks, and it can heavily weaken their performance (Baddeley, 2007). 

The episodic buffer: This system acts as an interface between all subsystems within 

working memory and long-term memory. Information from sub-systems and long-term 

memory will be integrated in the episodic buffer for processing by the central executive. 

The episodic buffer is accessible via conscious awareness. Thus, working memory needs 

the episodic buffer in order to have any access to long-term memory. As stated before, 

working memory is more than just a temporary storage; it is an interface that controls 

behavior and performs temporary manipulation and storage. It connects perception and 

memory, and attention and action (Baddeley, 2007). Given this crucial role, it affects 

perception, behavior, memory, and emotion.  

Within working memory, there exist mental processes beyond users’ conscious awareness 

(de Guinea et al., 2014). Although a portion of functions carried out by sub-systems of 

working memory is controlled through conscious awareness, there are also implicit 

processes ongoing in working memory (Baddeley, 2007). These processes are difficult to 

capture using a self-perceived measure since by definition they are beyond the awareness 

of people. Although these processes are implicit, they affect behavior, perception and 

emotion (Baddeley, 2007). For instance, subjects’ perception of words will be affected by 

the brief presentation of a prior word. Subjects denied hearing the word money before 

presenting the ambiguous word bank, although they perceived it as a financial institution 

rather than the edge of a river. The effect of implicit processes has been strongly supported 

in relation to both working memory and long term-memory for a wide range of stimuli. 

Thus, in studying the effect of working memory on behavior, emotion and perception, 

both explicit and implicit processes must be taken into account. Finally, neuroimaging 

studies have well supported the fact that working memory processes are located in the 

frontal lobe (Roberts, Hager, & Heron, 1994). 
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Given the above, this thesis aims at introducing new measurements of cognitive load and 

the use of them as criteria for evaluating IT artifacts. We designed three experiments to 

examine the measurement of the cognitive load construct, and then to use them to evaluate 

the design elements of an online shopping website based on various types of cognitive 

load measures. 

In the first essay, we designed two experiments to address both the challenge of measuring 

cognitive load and also evaluating an IT artifact against the newly developed measure. In 

the first experiment, we measured the user’s instantaneous cognitive load during an online 

shopping task and extracted three features from it: Average load, Accumulated load, and 

Peak load. The traditional subjective cognitive load was measured as well in order to 

compare it with other metrics. Two task factors (task difficulty and task uncertainty) were 

manipulated in an online shopping task to test their effect on four different types of 

cognitive load (three implicit and one explicit). The results show that while all four 

measures were sensitive to task difficulty, accumulated load was the only measure that 

could capture the effect of task uncertainty. We therefore conclude that accumulated load 

is the most comprehensive measure among these four because it simultaneously captures 

both cognitive load and time dimensions.  

The second experiment of the first essay uses accumulated load to evaluate the 

convenience of an IT artifact. We studied the effect of search convenience on the user’s 

accumulated load and the effect of the latter on user satisfaction with the shopping 

experience. The literature suggests that inconvenience has two consequences:  high 

workload and longer time on task (Jiang et al., 2013). Both of these factors can be captured 

by the accumulated load construct (Xie & Salvendy, 2000), so we hypothesize that 

convenience is negatively associated with accumulated load. As cognitive load increases, 

less working memory resources will remain for other mental processes, resulting in a less 

satisfying shopping experience. Thus, we hypothesize a negative link between 

accumulated load and satisfaction with the shopping experience. A single-factor (search 

convenience) experiment was designed to test the hypotheses, and three levels of search 

convenience were manipulated using three search functions. The results show that 

convenience is negatively linked to accumulated load, confirming our expectation that 
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low convenience results in higher accumulation of cognitive load over time. Our analyses 

also show that accumulated load negatively influences users satisfaction with the 

shopping experience. It links accumulated load to an identified business need of users in 

the online shopping context. 

Event-Related-Potential (ERP) is a technique developed to increase the reliability of EEG 

(Luck, 2012) by presenting an event several times to users and measuring their reaction 

to the stimulus in terms of the user’s EEG. In the second essay, we design an ERP 

experiment in a natural setting where users have to perform a shopping task. More 

specifically, we investigate the contingent effect of product-sorting and the user’s goals 

on user cognitive load. Products can be sorted based on different attributes (price, value, 

brand name, etc.). We argue that different types of sorting will result in cognitive load 

reduction if the user’s criteria for choosing a product matches that attribute. For instance, 

users who are looking for a cheap product will have an easier shopping experience if the 

products are sorted based on price. We also hypothesize the effect of cognitive load on 

shopping performance. The less the cognitive load the more cognitive resources are 

available to users to process the task at hand, which means better performance. To 

measure cognitive load two different analyses were performed: ERP and frequency 

analysis. The ERPs were generated at two distinct events: 1- the moment that the task was 

presented to the user and 2- the moment that the user clicked on the target product. The 

frequency analysis was also performed to provide multiple evidence for the link between 

the match variable (i.e. between product sorting and user’s goal) and cognitive load. The 

results strongly support the link between the fit construct and multiple cognitive load 

measures. Our results also support the link between cognitive load and task performance.  

This thesis is an instance of NeuroIS potential to inform IS research. It is expected to 

contribute to research by advancing methods of measuring the cognitive load construct. 

The relevance of cognitive load for IS research had been emphasized in the past, however, 

the difficulty of measuring this construct stalled researchers in practically testing 

cognitive load theories. Using brain imaging tools, the two essays of this thesis provide 

various methods of measuring the cognitive load construct in an authentic human-
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computer interaction context. We discuss in detail how these measures differ from each 

other and how they can be used in IS research. 

The first essay of this thesis provides an explanation for the causal link between 

convenience and one of the cognitive load measures (i.e. accumulated load). Convenience 

had been studied in the online shopping literature (Jiang et al., 2013), but never examined 

as an antecedent of consumers’ accumulated load. The unique feature of the accumulated 

load construct allows us to link it to consumer convenience and also study it as a predictor 

of user satisfaction with online shopping. 

In the first essay, we establish the accumulated load construct as a criterion for evaluating 

the convenience of shopping websites. The evaluation process of design science research 

requires researchers to test an existing IT artifact design against an identified business 

need (Hevner, 2007). By linking accumulated load to convenience and user satisfaction, 

this essay introduces accumulated load as one of the business needs that can be used to 

evaluate IT artifact design. 

This thesis contributes to methodology by advancing the current experimental design 

practices in NeuroIS and IS. In the second essay, an Event-Related-Potential experiment 

is designed, within which one of the user’s natural activities is used as an event to generate 

ERP waves. This practice can be replicated for other phenomena of interest in  a user-IT 

interaction context. 

This thesis contributes to practice by providing user-experience practitioners with a 

powerful tool for evaluating user interfaces. The first essay provides designers with a 

method to evaluate how a user’s cognitive load varies in an authentic user-IT interaction 

context. This technique is useful not only because it precisely measures the user’s’ 

cognitive load, but also because it has high temporal resolution which enables designers 

to understand what users experience when they encounter every detail of the IT design.   

The second essay shows that IT artifacts need to provide users with the right sequence of 

information, otherwise their cognitive load is increased and performance decreased,  

possibly resulting in their satisfaction being reduced when using the IT artifact. More 
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specifically, online consumers have to be given the right sorting feature according to their 

shopping preference.  
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Chapter 2-  
Essay I - Accumulated Cognitive Load as a Criterion for 

Evaluating IT Artifacts 
 

 

Abstract 

Two studies were conducted to investigate how users’ accumulated cognitive load can be 

used to evaluate the convenience of an IT artifact, defined as any interface element that 

adds to users’ comfort. The first study addressed the challenge of measuring cognitive 

load. An experiment was designed to manipulate two antecedents of convenience (task 

difficulty and task uncertainty) in an online shopping context. Users’ instantaneous 

cognitive load was measured using electroencephalography (EEG). Three features of 

cognitive load, including accumulated load (the sum of instantaneous cognitive load over 

time) were then extracted from the EEG data and compared against self-reported cognitive 

load. Results suggest that, although all four cognitive load measures (accumulated load, 

peak load, average load, and self-reported load) are sensitive to task difficulty, only 

accumulated load is able to capture task uncertainty. In the second study, we investigated 

the effect of search convenience on users’ accumulated load and the effect of the latter on 

user satisfaction in an online shopping context. A between-subject experiment was 

designed. Results suggest that convenience negatively influences accumulated load, and 

the latter negatively influences user satisfaction. Overall, our findings show that 

accumulated cognitive load can be used to accurately evaluate the convenience of IT 

artifacts. 
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1.1 Introduction 

Design science research deals with the design and evaluation of IT artifacts. In the 

evaluation process of design science research, an IT artifact (e.g., online grocery shopping 

website) is tested against an identified business need (e.g., user cognitive load) (Hevner, 

2007). Brocke et al. (Brocke, Riedl, & Léger, 2013) proposed three strategies for the use 

of neuroscience in design science research. The first strategy deals with the use of 

neuroscience theories to inform the building and evaluation of IT artifacts. The second 

strategy includes using neuroscience tools to test IT artifacts, and finally the third strategy 

is the use of neuroscience tools as built-in elements of IT artifacts. Neuroscientists have 

progressed in explaining the neurophysiological basis of a number of constructs that are 

interesting for us in the IS field, such as trust, cognitive load, and emotions (vom Brocke 

& Liang, 2014). Therefore, this knowledge base can be used to study design problems and 

find solutions to them. For instance, electroencephalography (EEG) can be used to 

monitor users’ level of cognitive load and emotion during their interaction with an IT 

artifact (Brocke et al., 2013). Although users’ cognitive load can be theoretically linked 

to design criteria, to the best of our knowledge it is not yet considered as a criterion for 

designing IT artifacts in research and practice. 

Cognitive load is considered as the cost of decision making (Todd & Benbasat, 1999) and 

reflects how efficiently a task is performed by a human brain. Users prefer to minimize 

this cost in order to have a more satisfying experience with an IT artifact (lo Storto, 2013). 

Cognitive load has been found to be an antecedent of a wide range of behavioral and 

perceptual constructs (Baddeley, 2007), such as user performance, negative emotions, 

fatigue, and satisfaction (Garbarino & Edell, 1997; Gwizdka, 2010). For instance, users’ 

satisfaction with a shopping task is negatively associated with the amount of cognitive 

load they spend on the task (lo Storto, 2013). Therefore, it is important to find ways to 

evaluate IT artifacts based on users’ cognitive load. To achieve this goal, two challenges 

need to be overcome. First, one needs to measure cognitive load precisely. Cognitive load 

is a temporal variable, meaning that users have different levels of cognitive load 

depending on the moment. Thus, cognitive load measurement is about not only validity 

and reliability of the measures, but how we aggregate these measures over time. A highly 
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temporal measurement of cognitive load provides users’ instantaneous level of cognitive 

load at any moment during a user-IT interaction. However, running typical statistical 

analysis requires to aggregate these measures into a single value. The type of aggregation 

(e.g., maximum, minimum, average, sum) may result in very different outcomes. 

Second, an appropriate theoretical lens needs to be chosen in order to explain how 

cognitive load can improve IT artifact design. The theoretical framework should be able 

to link well-developed design concepts to users’ cognitive load. We designed two 

experiments to address the measurement challenge and also propose a theoretical model 

to explain how cognitive load relates to design related concepts.  

Measuring a cognitive load construct has been a challenging task for researchers across 

different fields (Gopher & Braune, 1984; Paas & Sweller, 2012; Paas, Tuovinen, Tabbers, 

& Van Gerven, 2003). Cognitive load is among the complex cognitive processes that 

people are unable to self-report truthfully (vom Brocke & Liang, 2014). It encompasses 

different aspects which are beyond users’ consciousness, meaning that using the 

traditional self-reported scales are not sufficient to capture all aspects of this construct (de 

Guinea, Titah, & Léger, 2014). Developments in the field of neuroscience have provided 

researchers in other fields such as marketing and information systems with new tools and 

methods to capture a wide range of cognitive, emotional, and behavioral constructs.  

The use of neurophysiological measures of cognitive load can alleviate these 

shortcomings to some extent. Researchers have compared self-reported and 

neurophysiological measures of mental workload and suggested that the latter can provide 

a more comprehensive and richer understanding of the workload construct (De Guinea, 

Titah, & Léger, 2013). However, thus far, research has only used some of many possible 

measures of implicit workload when comparing it to self-reported workload (Xie & 

Salvendy, 2000). Given that multiple measures of neurophysiological workload can be 

extracted from EEG signals (e.g., Average load, Accumulated load, and Number of 

peaks), an even richer understanding of cognitive load could be attained. 

In our first study, we use EEG to measure users’ instantaneous workload, i.e. users’ 

cognitive load at any time, and extracting various types of cognitive load measures from 
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it. Two task characteristics (i.e., difficulty and uncertainty) are manipulated in an online 

shopping environment to capture different types of cognitive load. Task difficulty and 

uncertainty are two factors that increase the time and effort consumers need to perform a 

shopping task, which consequently reduce their shopping convenience (Jiang, Yang, & 

Jun, 2013). We find that one of the measures extracted from instantaneous cognitive load, 

called accumulated load can be used as a proxy to evaluate the convenience of an online 

shopping experience. 

The second study is designed to use accumulated load to evaluate the convenience of a 

shopping website. Users’ convenience refers to any factor during the online shopping 

process that adds to their comfort (Moeller, Fassnacht, & Ettinger, 2009). We argue that 

accumulated load reflects users’ comfort in the shopping process because it measures two 

resources that are associated with users’ convenience: mental effort and time. Our results 

show that accumulated load is influenced by user convenience, and predicts user 

satisfaction. 

This research makes several contributions to theory, and also has implications for practice. 

First, it addresses the challenge of measuring cognitive load, proposing a valid EEG-based 

cognitive load measure that captures relevant IT interaction constructs such as task 

difficulty and user satisfaction. We use EEG to measure users’ instantaneous cognitive 

load, which can be used to generate other types of cognitive load measures. These 

measures, although extracted from the same baseline measure (i.e., instantaneous 

cognitive load), represent different aspects of the cognitive load construct. Average load 

is the mean of users’ instantaneous load over time, and gives an overall measure of a user-

IT interaction. Peak load shows the highest cognitive load experienced by users during a 

transaction, and can be used to understand the inefficient elements of an IT artifact. This 

contribution is in line with the first strategy proposed by Brocke et al. (Brocke et al., 2013) 

in the use of neuroscience to inform the building and evolution of IT artifacts. 

Second, our paper contributes to theory by proposing a causal link between consumer 

convenience and accumulated load. This contribution also matches the first strategy 

suggested by Brocke et al. (Brocke et al., 2013). This strategy requires that mental 
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processes and perceptions be linked to human brain activities. Our study explains how the 

accumulated load  is associated with the consumers perception of convenience. 

Third, and in line with the second strategy proposed by Brocke et al. (Brocke et al., 2013), 

we evaluate an IT artifact based on users’ accumulated load. This strategy includes the 

use of neuroscience measures to evaluate IT artifacts. Our research evaluated the 

convenience of an existing IT artifact against users’ accumulated load. The results, 

suggest that accumulated load can be used as a tool to evaluate IT artifacts. 

Our research also has implications for practice by providing a metric for designers for 

assessing the convenience of an IT artifact and increasing user satisfaction. Accumulated 

load could be used by designers to identify the inconvenient parts of a user-IT transaction 

and evaluate the modified IT artifact against the old ones. 

 

1.2 Literature Review 

Cognitive Load 

Cognitive load can be defined as the set of working memory resources used to perform a 

task (DeStefano & LeFevre, 2007). Despite the fact that there are different definitions of 

cognitive load in the literature (Baddeley, 2007; Todd & Benbasat, 1999; Wickens, 2002), 

there are two common elements among them which are the essential components of the 

cognitive load construct: 1- working memory resources and 2- the interplay between 

mental resources and task demands. Theories developed in the fields of cognitive 

psychology and neuroscience state that working memory is responsible for a wide range 

of processing tasks and short term storages (Baddeley, 2007; Smith, Jonides, & Koeppe, 

1996). Working memory has four components, which include three storage systems and 

a central executive unit. The three storage systems (i.e., visuospatial sketchpad, episodic 

buffer, and phonological loop) are responsible for temporarily retaining different types of 

sensory information. The central executive unit, which is the most important component, 

performs the crucial task of coordinating and linking working memory subsystems and 

attention. Therefore, task demands that require users to encode, activate, store, and 
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manipulate information are imposing cognitive load on their working memory (DeStefano 

& LeFevre, 2007). 

All components of working memory have limited resources which bound the processing 

and storage capabilities of the human brain (Baddeley, 2007; Liang, Peng, Xue, Guo, & 

Wang, 2015; Wickens, 2002). Researchers from various disciplines such as education, 

psychology, and management studied how cognitive load affects different types of 

individual performance (De Jong, 2010; Ryu & Myung, 2005; Wickens, 2002). For 

instance, in education, students’ learning performance is found to be affected by their 

level of cognitive load (Paas, Renkl, & Sweller, 2003). Cognitive load theory has 

conceptualized three types of cognitive load with respect to students’ learning 

performance. Intrinsic load, which refers to the load generated by the interaction between 

the nature of the instructional material and the learners’ expertise (Sweller, 1994). 

Extraneous load is the ineffective load imposed by ill-designed instructional materials. 

Finally, germane load is the amount of load that contributes to the main mechanisms of 

learning (Paas, Renkl, et al., 2003). Cognitive load theory suggests that in high cognitive 

load situations, extraneous load should be decreased to enhance students’ learning 

performance (Sweller, 1994). 

The link between performance and cognitive load has been studied in the information 

systems field as well. Users perform well as long as their level of cognitive load is within 

their cognitive capacity limit (Liang et al., 2015). Exceeding this level results in cognitive 

overload, meaning that there are not enough cognitive resources to process the 

information required to perform the task. For the same reason, users cannot pay attention 

to details when experiencing high cognitive overload, thus, they make poor decisions even 

though the information is clearly presented (Minas, Potter, Dennis, Bartelt, & Bae, 2014). 

Cognitive load has been linked to efficiency in decision making; it is conceptualized as 

the cost of decision making (Hoque & Lohse, 1999). This cost, which refers to the amount 

of cognitive resources used by the brain to make a decision, should be minimized to 

achieve efficiency in decision making. Reducing this cost is one of the two ways that 
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decision aid tools help users (the other is increasing decision quality) (Todd & Benbasat, 

1992). 

The limitation of working memory resources not only affects user performance and 

efficiency but users’ perception and cognition (Baddeley, 2007). Research shows that 

high cognitive load results in experiencing negative consequences such as frustration, 

negative affect, or mental fatigue (Mizuno et al., 2011). Lower cognitive load has also 

been related to users’ satisfaction with online tasks(Gwizdka, 2010). In the online 

shopping context, consumers are more satisfied with websites that show only the 

necessary information and avoid presenting excessive information to users (lo Storto, 

2013). It is thus important to identify and study the elements, for instance in an online 

shopping task, that contribute to users’ cognitive load. 

Cognitive overload can be a result of either a task or system demand or both. For instance, 

cognitive overload due to problematic use of social networking sites worsens the 

academic performance of students (Turel & Qahri-Saremi, 2016). System elements can, 

on the one hand, be the source of cognitive overload or, on the other hand, help users to 

decrease their level of cognitive load leading them to perform better on a task. For 

instance, online consumers sometimes have difficulty in selecting a product when there 

are many alternatives; they need to gather, screen, and evaluate product information, and 

this can be cumbersome if the consideration set is relatively large (Sénécal, Léger, Riedl, 

& Davis, 2018). Product recommendation agents can assist users in processing 

information about products , and spare them with cognitive overload (Aljukhadar, 

Senecal, & Daoust, 2012; Qiu & Benbasat, 2009). Aljukhadar et al. (Aljukhadar et al., 

2012) suggest that information overload influences consumers’ decision making 

strategies. As information load increases on a website, consumers rely more on 

recommendation agents to cope with the situation. Group support systems play a similar 

role in facilitating collaboration among members thus decreasing their cognitive load 

level (Briggs, De Vreede, & Nunamaker Jr, 2003). 
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Cognitive Load Measurement 

There are three types of cognitive load measures: self-report, performance based, and 

neurophysiological (Gopher & Donchin, 1986; O'Donnell & Eggemeier, 1986). Self-

report measures, which are the most mature ones, have been used for many years to study 

users’ behavior (Colle & Reid, 1999). In this type of measure, users are asked to reflect 

on their experience of the task or system, and report the level of difficulty they 

experienced in their interaction with the task or system. 

With performance-based measures, users’ performance on the task they perform is used 

as an indicator of their workload level. There are two variations of this type of 

measurements. The performance could be measured on either a) the primary task or b) a 

secondary task that interrupts the primary task. This measurement approach assumes that 

users’ performance on a task is a direct measure of task difficulty, which implies the 

amount of workload used to perform that task (Gopher & Donchin, 1986).  

Finally, signals generated by different parts of the body can be used to draw inference 

about users’ cognition and emotion. Psychophysiological tools such as eye tracking, skin 

conductance, and brain imaging tools such as EEG and fMRI lie in this category of 

measures (Dimoka et al., 2012). A summary of different types of measures can be found 

in Table 1. For a review of methodological issues relating to different measurement tools 

see (Dimoka et al., 2012; Gopher & Donchin, 1986).  
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Table 1- Cognitive Load Measurement 

Measurement 
Method Description Example Strength Weakness Example from 

IS Research 

Self-reported 

Users are asked to 
report the 
experience they 
had with the task 
and the system 

Questionnaires Face validity 

-Consciousness 
assumption 
- Retrospective 
bias 

Hender et al. 
(2014) 
Blohm et al. 
(2016) 

Performance 

Measuring users’ 
workload based on 
their performance 
on the primary task 
or a secondary task 

Using participants' 
performance on a 
secondary 
arithmetic task as a 
measure of their 
workload on a 
primary task (e.g. 
online shopping) 

	

-Assumption of 
association 
between 
performance 
and workload 

	

Neurophysiol
ogical 

Measuring users' 
workload based on 
various 
neurophysiological 
metrics 

-Pupil dilation 
-Cardiovascular 
measures 
-
Electroencephalogr
aphy 

-Measuring 
beyond users' 
consciousness 
-Temporal 
resolution 

-Artificial 
Setting 
- Content 
Validity 

Minas et al. 
(2014) 
Ortiz de Guinea et 
al. (2013) 

 

Borrowing from neuroscience and neuropsychology, researchers in the Management field 

have started to use neurophysiological instruments to measure cognitive load (Gwizdka, 

2010). Researchers have developed several algorithms based on EEG signals to calculate 
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mental workload metrics (Coyne, Baldwin, Cole, Sibley, & Roberts, 2009). EEG signals 

are high dimensional noisy time series (e.g., 500 data points per second), which 

encompass a high volume of information (Garrett, Peterson, Anderson, & Thaut, 2003). 

In order to relate EEG signals to specific mental states (e.g., mental workload), first of all, 

the signal has to be cleaned (i.e., noise and artifacts should be removed), and more 

importantly, relevant signal features that represent the desired mental state should be 

extracted (Brouwer, Zander, van Erp, Korteling, & Bronkhorst, 2015). In this research, 

we define four types of cognitive load, which reflect different aspects of human cognitive 

load (Figure 1). 

 

 

 

 

 

 

 

 

 

 

Xie and Salvendy (Xie & Salvendy, 2000) define four types of workload based on users’ 

instantaneous load: peak load, average load, accumulated load, and self-reported load. 

Instantaneous load shows users’ cognitive load at any given moment (see Figure 1). Peak 

load is the maximum load an individual experiences during a task, while accumulated 

load is the summation of all the cognitive load. Average load reflects the mean load an 

individual experiences in performing a task. Self-reported load is the amount of cognitive 

���������������������������
Figure 2- Workload Features 
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load reported by users after performing a task (Xie & Salvendy, 2000). Figure 1 illustrates 

how peak load, accumulated load, and average load are related to instantaneous load. 

Despite the fact that all workload measures represent users’ cognitive load level, they are 

nevertheless different. Average load is a general measure which represents the amount of 

cognitive resources that a task requires on average. Accumulated load shows the whole 

amount of load that is experienced taking into account the time needed to perform a task; 

it includes a time dimension in addition to instantaneous load measures. Peak load yields 

unique information about users’ cognitive load when interacting with a task/system; it 

cannot be obtained using a self-reported measure, average load, or accumulated load. We 

know from the literature that cognitive capacity is limited (Wickens, 2002) and that there 

will be negative consequences (e.g., decline in performance and satisfaction) if users 

exceed this limit (Colle & Reid, 2005). Apart from accumulated load, workload measures 

do not reflect the temporal aspects of cognitive load. This information can be useful for 

studying users’ coping behavior with high workload situations. For instance, if users 

experience high cognitive load during a difficult task they might withdraw from the task 

(Venables & Fairclough, 2009).  

 

Shopping Convenience 

Convenience can be defined as any element in the shopping process that adds to a 

consumer’s comfort (both physical and mental) (Jiang et al., 2013). There are two factors 

associated with a convenient shopping activity: 1) time saving and 2) effort minimization 

(Seiders, Berry, & Gresham, 2000). Berry et al. (Berry, Seiders, & Grewal, 2002) suggest 

that time costs are negatively associated with consumers’ perception of convenience. For 

example, the longer the online shopping process, the less consumers’ convenience would 

be. Berry et al. (Berry et al., 2002) also point out that convenience perception is negatively 

linked to consumers’ perception of cognitive, physical, and emotional effort. Therefore, 

any factor (e.g., design element) that induces effort in users, will decrease their 

convenience, and consequently their satisfaction (lo Storto, 2013). 
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Convenience is analogous to perceived ease of use as both concepts reflect the effort 

needed to perform a task using an information system; however, for the purpose of our 

study, we suggest that the convenience construct is more relevant for five main reasons. 

1. Although convenience and PEOU are conceptually similar, research findings 

show that convenience is an antecedent of PEOU (Kim, Mirusmonov, & Lee, 

2010). Convenience explains the amount of time and effort required by an IT 

artifact to perform a task, thus more convenience results in perceiving more ease 

of use. 

2. The convenience construct developed by Jiang et al. (Jiang et al., 2013) is a well-

suited lens for studying design elements because it is developed based on shopping 

sub-processes that reflect website elements. Jiang et al. (Jiang et al., 2013) break 

down consumer convenience in online shopping environments into several 

dimensions: a) access convenience, b) search convenience, c) evaluation 

convenience, d) transaction convenience, and e) possession/post-purchase 

convenience. 

An explanation of each convenience dimension is provided in Table 2 
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Table 2- Convenience dimensions based on Jiang et al. (2013) 

 

3. Consumer convenience has been studied in marketing and found to be a predictor 

of several dependent variables such as customer satisfaction (Colwell, Aung, 

Kanetkar, & Holden, 2008), behavioral intentions (Seiders, Voss, Godfrey, & 

Grewal, 2007), online service quality, customer service, and trust (Colwell et al., 

2008). Research suggests that convenience is a major factor in intensifying 

consumers’ relationships with a service provider and inconvenience is found to be 

one of the reasons that consumers exit such relationships (Moeller et al., 2009). 

4. It is closely related to users’ level of cognitive load. Berry et al. (Berry et al., 2002) 

suggest that consumers’ perception of convenience is negatively associated with 

their perception of cognitive and emotional effort. Therefore, the conceptual 

Convenience 
dimension Definition Example 

Access convenience It deals with the accessibility of the 
shopping website 

- Availability of the website at 
any time from any location 
- Availability of products and 
brands 

Search convenience It concerns any factor that facilitates 
or hinders finding a product. 

-  Website navigation 
- Search function 
- Product classification 

Evaluation 
convenience 

It is related to the availability of 
detailed product description so that 
consumers can compare products. 

- Product information 
- Product categorization 

Transaction 
convenience 

It concerns easy payment methods 
and finishing a shopping transaction 
on a website. 

- Check out process 
- Payment methods 

Possession/post-
purchase 
convenience 

It is about the convenience of 
receiving the product and any 
possible post-purchase issue. 

- Delivery 
- Product undamaged 
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relationship between convenience and cognitive load has already been 

acknowledged in the literature. 

5. Convenience captures a wide range of costs associated with online shopping. Any 

factor that contributes to the extent to which consumers avoid time and effort in 

an online shopping task influence their convenience (Moeller et al., 2009). For 

instance, information uncertainty reduces the quality of information provided to 

consumers, which negatively influence the evaluation convenience of the 

shopping process (Jiang et al., 2013). Task difficulty (e.g., difficulty to assess the 

quantity to purchase) increases the time and mental effort required to perform the 

shopping task and reduces the shopping convenience. 

In Study 2, we examine how search convenience affects users’ cognitive load and 

satisfaction. Thus, in the next section we briefly define the dimensions of online search 

convenience. 

 

Search Convenience 

Jiang et al. (Jiang et al., 2013) suggest that consumers mention search inconvenience and 

difficulty in finding the desired product is one of the major obstacles to efficient online 

shopping. They found that search convenience accounts for the largest portion of 

explained variance (31%) among the five dimensions of online shopping convenience. 

Any barrier related to searching and finding a product in the website is categorized under 

the search convenience construct. Search inconvenience factors can be grouped into four 

major categories: 1) Download speed, 2) Website design 3) Search functions, and 4) 

Product classification (Jiang et al., 2013). 

Download speed relates to the quality of the internet connection. Website design 

represents the extent to which it is difficult to navigate through website pages and 

understand its structure. Search functions explains how fast and easy users can search for 

products and find what they want. Finally, Product classification relates to the right use 

of product categories and sorting in a way that makes finding a product easy. For instance, 

users on an online grocery website should be able to easily find the entry field to search 
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for products or locate the website filters to search for organic products (Website design), 

search for multiple products and compare them (Search function), and use product 

categories to browse and reach their target products (Product categories) 

Based on the literature of convenience and the abovementioned findings, we suggest that 

accumulated load is conceptually linked to the convenience concept. Accumulated 

workload has two primary dimensions: 1- overall level of workload experienced during a 

task and 2- the total time spent on a task (Paas, Tuovinen, et al., 2003). To calculate 

accumulated load, we need to sum users’ instantaneous mental workload over time. It thus 

takes into account both mental effort and time costs, which are two primary factors of 

consumers’ convenience (Berry et al., 2002). We argue that convenience influences 

accumulated load. This is not the case with the other measures of cognitive load (Average 

load, peak load, and self-reported load) because they do not include the time dimension, 

and consequently represent different aspect of the cognitive load construct. Our two 

studies are designed to examine the effect of user convenience on accumulated load and 

user satisfaction. The first study addresses the measurement challenge of cognitive load. 

We measure users’ instantaneous workload by manipulating two task factors (difficulty 

and uncertainty) and extract three features (average, accumulated, and peak) from it. Task 

uncertainty and difficulty are both determinants of online shipping convenience. In the 

second study, we investigate the relationships between convenience, accumulated load, 

and user satisfaction. 
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1.3 Study 1: Cognitive Load Measurement and Consumer 
Convenience  
 

The objective of the first study is to measure instantaneous workload, extract three 

features from it (i.e. average load, peak load, and accumulated load), and study how two 

determinants of online consumer convenience, which induce workload, affect the three 

measures along with a self-reported measure of workload. A frequency analysis on users’ 

EEG is performed to calculate their instantaneous cognitive load and then the three 

abovementioned features are extracted. We chose difficulty and uncertainty as the two 

task factors because they are both relevant in the context of online shopping and also 

determinants of online consumer convenience. The two factors are predictors of cognitive 

load, which enables us to address the challenge of measuring cognitive load. 

Cognitive load imposed on users’ working memory can come from different sources such 

as task characteristics or system demands. In general, any factor that makes decision 

making more difficult will impose more load on users’ cognitive resources. For instance, 

research suggests that mathematical complexity and arithmetic operations increase users’ 

mental workload (Ryu & Myung, 2005). Difficulty and cognitive load are so linked 

together that many studies ask participants to rate their perception of task difficulty as a 

measure of cognitive load (Gopher & Donchin, 1986). Task difficulty refers to the extent 

to which performing a task is difficult. It is the main driver of workload because task 

demands impose load directly on working memory resources. Therefore, we hypothesize 

that task difficulty will affect users’ mental workload. 

H1: Task difficulty is positively associated with all workload types (self-reported, 

average, accumulated, and peak loads). 

Information processing includes three stages: information perception, decision/response 

selection, and response execution (Xie & Salvendy, 2000). The information flows from 

the first stage to the last where a decision is made and executed by the user. There are 

various factors that can impair this process and make the decision process more difficult 

for users. For instance, irrelevant information or information overload makes the first 
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stage more difficult for the user to perceive the information. In a similar way, information 

uncertainty affects the first stage by making it more difficult for users to assess the critical 

information required for making product decisions, which consequently imposes more 

cognitive load on users (Aljukhadar et al., 2012). 

Uncertainty can be classified into two types: 1- affective uncertainty, which relates to 

affective factors of the task/situation such as pessimism or optimism, and 2- cognitive 

state uncertainty, which relates to the ambiguities involved in rational decision making on 

the part of the user (Wilson, Ford, Foster, & Spink, 2000). Cognitive state uncertainty 

includes factors such as information ambiguity, meaning that the whole or part of the 

critical information required to make a decision is not presented clearly to the user. Under 

such conditions, more cognitive effort is required of the user to process the information 

and make a decision. Thus we hypothesize that task uncertainty increases users’ cognitive 

load. 

H2: Task uncertainty is positively associated with all workload types (self-reported, 

average, accumulated, and peak loads). 

	

Method 

Experimental Design and Procedure 

To test our hypotheses, a 2 level task difficulty (Low (L) or High (H)) X 2 task level 

uncertainty (Low (L) or High (H)) within-subject experiment was designed. This 

experiment was approved by our Institutional Review Board (IRB). Ten subjects 

participated in the experiment and 50% were male. Each subject performed four tasks 

(HH, HL, LH, LL) which were randomly ordered. Participants first filled out a 

questionnaire and then moved on to the first shopping task. For each task, participants had 

to shop on a selected online grocery website. The task started on an online grocery recipe 

page. Participants were instructed to shop for five given items for each assigned recipe. 

After finishing each task, subjects completed a questionnaire assessing their level of 

cognitive load (self-perceived load). The experimental procedure is presented in Figure 3. 
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Figure 3- Experimental Procedure of Study 1 

 

Online grocery is a suitable context for this study because it is a time-consuming user-IT 

transaction which includes several decision-making points (Desrocher, Leger, Sénécal, 

Pagé, & Mirhoseini, 2015). As opposed to other online shopping contexts which are 

mostly composed of single product decisions, online grocery usually includes several 

decisions and allows us to observe the dynamics of users’ cognitive load. Moreover, there 

are a number of workload antecedents which are unique to this context such as performing 

simple arithmetic operations in order to find the right quantity of a product or the 

uncertainty involved in buying perishable products. 

Task difficulty was manipulated by asking subjects to change the quantity of ingredients 

suggested for the recipe. Recipe pages suggested the right amount of each grocery item to 

use for 4 people. In the low task difficulty condition, participants had to choose the same 

quantity and in the high difficulty condition, they were asked to perform simple arithmetic 

operations in order to find the right quantity of each ingredient for 20 people.  
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We used product type (perishable or non-perishable) to manipulate task uncertainty. 

Based on transaction cost theory, Chintagunta et al. (Chintagunta, Chu, & Cebollada, 

2012) propose nine types of costs involved in a decision to buy groceries. One of these 

costs is quality inspection or product evaluation cost. In online grocery shopping, 

consumers use product descriptions and product images to infer the quality of products. 

Comparing in-store and online grocery shopping, product image of non-perishable 

products (e.g., shampoo, box of chocolate) gives the same visual information about the 

product. However, for perishable products (e.g., meat, vegetables), consumers need to 

touch, smell, see, or even taste them before making a decision. Industry reports also show 

that the adoption rate of perishable products is the lowest among all product types in the 

online grocery sector1. Therefore, there is more uncertainty involved in product quality 

inspection of perishable products compared to non-perishable products. In the current 

experiment, participants had to shop for 5 specified non-perishable products (e.g., olive 

oil) in the low uncertainty condition, and 5 specified perishable products (e.g., meat) in 

the high uncertainty condition.  

 

Measures 

Self-reported cognitive load was measured using a five item scale developed by Cameron 

(Cameron, 2007). Instantaneous measure of cognitive load was measured using a linear 

EEG algorithm. In general, EEG oscillations are categorized into four frequency bands: 

Delta (0 to < 4 Hz), Theta (4 to < 8Hz), Alpha (8 to 13 Hz), and Beta (>13 Hz) (Libenson, 

2012). In this experiment, we use a linear formula based on three frequency bands to 

measure the cognitive load of users. This algorithm includes calculating the 

((delta+theta)/alpha) power ratio over a moving 2 second window and comparing it to the 

average of the previous 20 seconds (Coyne et al., 2009). The average of users’ workload 

over a task period was used to represent Average load. The area under the instantaneous 

workload curve which equals the sum of instantaneous load over time was used to 

																																																													
1	 Nielsen	 Report,	 The	 Future	 of	 Grocery	 E-commerce,	 Digital	 Technology	 and	 Changing	 Shopping	
Preferences	AroundThe	World,	April	(2015).	
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calculate Accumulated load. To calculate the Peak load, we counted the number of times 

that the amplitude of instantaneous load exceeded 99% of the whole instantaneous load 

measures (2.5 standard deviations), indicating the number of times participants 

experienced nearly peak load. In other words, our measure of peak load counts the number 

of times the instantaneous load value lies in the top 1% of the total instantaneous load 

values. 

Apparatus, Data Acquisition, and Analysis 

EEG data was recorded using 32 electrodes using EGI’s dense array 

electroencephalography (dEEG). To clean the data, three filters were applied in MATLAB 

to the EEG signals: a high pass filter at 1.5 Hz, a low pass at 50Hz, and a notch between 

55Hz and 65Hz. Then the DC component of the signal was removed using detrend 

command in MATLAB, which is equivalent to removing the mean value from the signal 

vector. Artifact removal was performed in two steps. First a continuous EEG rejection 

function in EEGLAB toolbox was used. The function included a 500 ms moving window 

with steps of 250 ms that calculates the max-min voltage in each interval and removes the 

data if the voltage difference exceeds 400 uv. In the next step, independent component 

analysis (ICA) was performed on the signal in order to decompose the signal into 32 

independent components. The ADJUST plugin in EEGLAB toolbox was used according 

to Mongnon et al. (Mognon, Jovicich, Bruzzone, & Buiatti, 2011) to identify artifacts such 

as eye blinks, eye movements, and generic discontinuities. After identifying and removing 

bad components, the signal was reconstructed in time domain for calculating 

instantaneous workload. We used Fast Fourier Transformation (FFT) to quantify the 

signal power based on four frequency ranges.  Delta 0 to < 4 Hz, Theta 4 to < 8Hz, Alpha 

8 to 13 Hz, and Beta >13 Hz. Then the ratio of (delta+theta)/alpha was calculated 

according to the procedure suggested by Mikulka et al. (Mikulka, Scerbo, & Freeman, 

2002) and Charland et al. (Charland et al., 2015). The resulting curve was used as the 

instantaneous workload of each user. 

In order to test the hypotheses, we used a regression analysis with task difficulty and 

uncertainty as independent variables and mental workload (Self-reported, Average, 
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Accumulated, Peak loads) as the dependent variable. The data analysis was performed 

using the Stata software package (StataCorp, Texas, United States). Since the 

observations are non-independent, we used panel regression analysis to account for 

within-subject dependencies (Xtreg command in Stata). We also controlled for learning 

effect in the regression model by including the order in which participants performed the 

task.  

Results 

The manipulation checks show that both difficulty (MLow=3.05, MHigh=4.70, p<.01) and 

uncertainty (MLow=2.85, MHigh=3.40, p<.05) manipulations were perceived differently, as 

expected. H1 proposed that task difficulty is positively associated with all measures of 

mental workload. Results show significant relationships between difficulty and self-

reported load (b= 0.88, p<0.01), average load (b=0.02, p<0.05), accumulated load 

(b=44.45, p<0.01), and the number of peaks (b=4.87, p<0.05). Therefore, H1 is supported. 

Our second hypothesis proposed that task uncertainty is an antecedent of all workload 

types. Regression results show that the relationships between uncertainty and self-

reported load (b=0.51, p=0.18), average load (b=0.01, p=0.15), and number of peaks 

(b=3.12, p=0.15) are not significant. However, a significant result was found for the 

relationship between uncertainty and accumulated load (b=35.24, p<0.05). Thus, H2 is 

partially supported. 

To better understand the difference between workload measures, we conducted a post hoc 

analysis and compared the effect of task difficulty and uncertainty on each workload 

measure. We used four regression models with the same independent variables (Task 

difficulty and uncertainty) but with four different measures of workload as dependent 

variable (Self-reported, accumulated, average, and number of peaks). Since the number 

of independent variables are the same, we compare R-square across the regression models. 

Accumulated load explained more variance than other models (21%).  It was followed by 

number of peaks (16%), self-reported load (14%), and average load (5%). 
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Discussion  

Our results suggest that all the extracted features of instantaneous load and the subjective 

measure of workload (i.e., self-reported load) are sensitive to task difficulty; however only 

accumulated load was able to capture the mental workload induced by task uncertainty. 

Based on the definition of accumulated load, we can expect more comprehensiveness of 

this measure compared to average load or self-reported load. Accumulated load measures 

the fluctuations in users’ instantaneous workload over time, thus accounting not only for 

Self-reported load but also the total time that user has been performing the task. “Time on 

task” has been used as a measure for workload before (DeLeeuw & Mayer, 2008), thus it 

may capture more dimensions of the workload construct.  

The post hoc analysis confirms our results, i.e., that accumulated load captures more 

variability caused by workload inductors. It also shows a relatively high R-square for 

number of peaks. In addition to being used as a workload measure, peak load can reflect 

the moments that users experience high workload. Research findings suggest that 

exceeding users’ cognitive capacity limit results in a number of negative consequences 

(Liang et al., 2015).  Peak load measurement enables us to identify the number of times 

that users approach their cognitive capacity limits. This type of information, which can 

only be gained using peak load, may provide a proper lens to study users’ coping behavior 

in dealing with high workload situations. 

This study shows that the total cognitive load experienced (i.e., accumulated load) in a 

task is sensitive to both task difficulty and uncertainty, showing that accumulated load is 

more powerful in capturing users cognitive load compared to the other three measures. 

Accumulated load dimensionality (i.e., time and instantaneous load) allows us to link it 

to other constructs in the online shopping literature that are conceptually related to time 

and mental effort. This leads us to the concept of online consumer convenience, which 

reflects users’ comfort in online shopping including time costs and mental effort. In the 

next study, we examine how users’ accumulated load is influenced by convenience. 
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1.4 Study 2: Accumulated Cognitive Load as a Criterion to Evaluate 
Information Systems Convenience 

 

In line with the first and the second strategies proposed by Brocke et al. (Brocke et al., 

2013), our second study aims at introducing the accumulated load construct as a criterion 

for evaluating IT artifacts. In this study, we use the measures tested in the first study to 

examine the search convenience of an IT artifact. Search convenience includes all 

activities that users perform in the process of finding a product. Any difficulty that results 

from search convenience factors (i.e. search function, website design, product categories, 

and download speed) is considered as search inconvenience. Inconvenience causes more 

cognitive load and more time spent on a task both of which are dimensions of accumulated 

load (Paas, Tuovinen, et al., 2003).  Therefore, we expect that the less convenient the IT 

artifacts is, the more cognitive load users experience and the more time they need to 

perform a task using that artifact. Hence: 

H3: Search convenience negatively influences users’ accumulated cognitive load. 

Website interfaces should provide users with the information necessary for shopping, and 

prevent them from being overloaded with excessive information (lo Storto, 2013). Ill-

designed websites occupy the user’s working memory resources more than necessary 

either by failing to provide critical information for decision making or by providing 

redundant information, leading to an unsatisfying shopping experience (lo Storto, 2013). 

In a user-IT transaction, high accumulated cognitive load means that the user has 

experienced a relatively high cognitive load for a long period of time, which leads to the 

user feeling frustration and negative affects (Mizuno et al., 2011). This may affect the 

emotional aspect of satisfaction (Spreng & Mackoy, 1996) and strengthen the negative 

relationship between accumulated load and satisfaction. 

H4: Accumulated load negatively influences user satisfaction. 

In the literature, it is suggested that convenience has a direct positive relationship with 

satisfaction (lo Storto, 2013). However, as mentioned before, search inconvenience has 
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two consequences, increasing cognitive load and shopping time, both of which are 

dimensions of the accumulated load construct. This means that accumulated load should 

mediate the relationship between convenience and satisfaction, and since both 

consequences of inconvenience are captured by accumulated load, no other effect will 

remain by which convenience can affect satisfaction. Thus, we expect a full mediation 

effect. 

H5: The relationship between convenience and user satisfaction is fully mediated by 

accumulated load. 

Figure 4 illustrates our research model. 

 

�

Figure 4- Research Model of Study 2 

Method 

In the second experiment, we study the effect of convenience on cognitive load, and the 

effect of the latter on user satisfaction. Similar to Study 1, we chose online grocery to test 

our research model. The experiment was designed with the cooperation of a well known 

online grocery retailer in Canada (Sobeys Corporate). This process brought further 

practical implications to this research by applying the results to the design of an existing 

online grocery website. 

 

Experimental Design 

A single-factor (low/medium/high search convenience) within-subject experiment was 

designed to test the convenience of an online shopping website. The low convenience 
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condition is represented by a manual product search to find the desired products. Manual 

search is the basic search function of the website; users have to write product keywords 

in the website’s search box and select their desired products among the items presented 

on the results page. However, online grocery shopping is a type of IT task that usually 

includes shopping for several items. Thus, many online groceries have developed a feature 

on their website that enables users to search for multiple items within a single search 

query. For instance, Tesco2, the largest online grocery retailer in the UK, provides its 

online consumers with the multiple product search feature. This multi-search feature lets 

users type the keywords of all products in a search box separated by a space (e.g., milk 

bread orange juice). The website responds by showing a results page for each product 

respectively. The multi-search function of the online grocery website was used as the 

medium convenience condition. In order to improve the convenience of the multi-search 

function, we developed a modified multi-search feature in collaboration with a local 

online grocer. Following a review of the current multi-search features used by grocery 

companies across the world, two focus groups provided the designers with the ways to 

improve the convenience of the existing multi-search feature of the online grocer. More 

specifically, three features of the function were improved: 1) Accessibility to the multi-

search function was improved. 2) Product presentation and comparison were improved. 

The modified multi-search allowed users to scroll horizontally to compare products in the 

same category (e.g., chocolate bars) and vertically to see other products they are searching 

for. 3) Multiple product keywords could be entered in a list (this feature has been 

implemented in a few online grocery websites such as Sainsbury’s3 and Waitrose4). The 

modified multi-search was used as the third condition, i.e., high convenience. Figure 5 

illustrates the difference between the three search functions. 

 

																																																													
2	https://www.tesco.com/.	The	largest	grocery	retailer	in	the	UK	with	28.4%	market	share	
3	https://www.sainsburys.co.uk/.	Sainsbury’s	is	the	second	largest	grocery	chain	in	the	United	Kingdom	
4	http://www.waitrose.com/.	Waitrose	is	a	UK	based	grocery	chain,	which	has	5.1%	share	of	the	UK	
market	
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Figure 5- Experimental Condition 
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Sample and Procedure 

Thirty subjects (N=30, 15 males) participated in the experiment. The subjects first 

performed the low convenience task to understand the website design and structure, and 

to become familiar with the experimental task. They then performed the two other tasks 

in random order. All participants were recruited from the university panel and 

compensated with a $30 gift card for participating in the study. This research was 

approved by the institution’s ethics committee. 

Each experimental task included shopping for 10 grocery items. Participants started their 

task on a recipe page and were asked to search for ingredients and add their product 

choices to the shopping cart. Participants used a single search function in the first task 

(Low convenience) and had to search for each item separately. In the Medium 

convenience condition, participants used the current multi-search function. They could 

search for multiple items by typing the names of all products in the search box with a 

space between the names. In the High convenience condition, participants performed the 

same task using the modified multi-search function. At the end of each task, participants 

filled out a questionnaire measuring their self-reported cognitive load and satisfaction. 

The experimental procedure is presented in Figure 6. 

 

�

Figure 6- Experimental Procedure of Study 2 
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A pretest with five participants was performed in order to test measurement tools and  the 

experimental procedure.  

 

Apparatus and Measures 

We used the same linear algorithm as Study 1 to measure instantaneous workload. The 

area under the instantaneous workload curve was used as accumulated load. EEG data 

was recorded with a 32 electrodes using EGI’s (Electrical Geodesics, Inc., Eugene, United 

States) dense array electroencephalography (dEEG).  

To test our manipulation of convenience, the psychometric measure of convenience was 

measured following each task. The Likert scale developed by Jiang et al., (Jiang et al., 

2013) was used. Low values show participants’ agreement with the convenience of search 

tools (All Study 2 measurement scales are presented in Appendix 1). User satisfaction 

with the shopping experience was measured after finishing each task using a scale 

developed by Maxham & Netemeyer (Maxham III & Netemeyer, 2002). 

We measured four control variables in this study. Need for cognition is defined as “an 

individual's tendency to engage in and enjoy effortful cognitive endeavors” [59, p. 197]. 

It is an individual difference construct, which is expected to affect the user’s level of 

mental workload. High need for cognition individuals tend to engage cognitively in a task 

more than low need for cognition individuals (Cacioppo, Petty, Feinstein, & Jarvis, 1996). 

This construct was measured with an 18-item scale developed by Cacioppo et al. 

(Cacioppo et al., 1996). Three types of experience were measured to control for the user’s 

familiarity with the task: 1) Experience with online shopping, 2) Experience with grocery 

shopping, and 3) Experience with online grocery shopping. Each of the variables was 

measured with a single item asking how much experience participants have. We expect 

users who are more experienced with online shopping, grocery shopping, or online 

grocery shopping to use less time and effort in making their product decision. 
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Data Processing 

EEG data cleaning and processing was performed according to the same steps provided 

in Study 1 in NeuroRT Studio 2.5.0.3 (Mensia Technologies, Paris, France). This 

application enables us to create a scenario to process the signal and product the desired 

output.  

 

Results 

	

Manipulation Check 

To ensure that our experimental design was able to manipulate three different levels of 

search convenience, the participant’s perception of search convenience was measured 

following the conclusion of each shopping task. Reliability analysis shows that the scale 

is reliable (Cronbach alpha=.88). ANOVA for repeated measures shows that perceived 

search convenience differs between experimental tasks (MLow=1.94, MMedium=3.69, 

MHigh=4.85, p< .001). Next, we compared the groups pairwise to make sure there are 

significant differences between all groups (Low vs. Medium, p< .01; Low vs. High, p< 

.05; Medium vs. High, p<.01). All pairwise comparisons show significant differences 

between the three groups in terms of the participants’ perception of search convenience. 

Therefore, our experimental manipulation was satisfactory. 

 

Hypothesis Testing 

H3 suggests a relationship between search convenience and the user’s accumulated load. 

We performed panel regression analysis using the Stata software package (StataCorp, 

Texas, United States), which allows us to account for the dependence of within-subject 

observations. Table 1 shows that the relationship between convenience and accumulated 
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load is significant (p <.001), providing support for Hypothesis 3. Results also show that 

task order (p=0.529) had no effect on the user’s accumulated load. No effect was found 

for Need for cognition (p=0.695), Experience with grocery shopping (p=0.281), and 

Experience with online grocery shopping (p=0.652); however, Experience with online 

shopping (p<0.05) was found to be a significant control variable. 

 

	

Table 3- Regression Analysis. DV=Accumulated Load 

Accumulated load	 Coefficient	 Std. Err.	 Z	 P Value	 95% conf. Interval	

Online shopping experience	 -0.23	 0.10	 -2.22	 0.027	 -0.439	 -0.026	

Grocery shopping experience	 -0.09	 0.08	 -1.08	 0.281	 -0.265	 0.077	

Online grocery shopping 
experience	

0.07	 0.16	 0.45	 0.652	 -0.249	 0.397	

Need for Cognition	 0.14	 0.36	 0.39	 0.695	 -0.561	 0.844	

Task order	 -0.02	 0.04	 -0.63	 0.529	 -0.120	 0.062	

Convenience	 -0.15	 0.04	 -3.39	 0.001	 -0.249	 -0.066	

Constant	 10.97	 0.86	 12.71	 0.000	 9.2795	 12.664	

 

 

Our fourth hypothesis suggests a negative relationship between accumulated load and user 

satisfaction. Similar to the first hypothesis, we performed a panel regression analysis. As 

provided in Table 4, results show that the relationship between satisfaction and 

accumulated load is negative and significant at p<.05, which provides support for the 

Hypothesis 4. Results provide no effect for Order (p=0.655), Need for cognition (p=607), 

Experience with online shopping (p=0.151), Experience with grocery shopping 

(p=0.760), and Experience with online grocery shopping (p=0.694). 

 

	



45	
	

Table 4- Regression Analysis. DV=Satisfaction 

Satisfaction	 Coefficient	 Std. Err.	 Z	 P Value	 95% conf. Interval	

Experience/online 
shopping	

-0.33	 0.23	 -1.44	 0.151	 -0.791	 0.121	

Experience/grocery 
shopping	

-0.05	 0.18	 10.31	 0.760	 -0.416	 0.303	

Experience/online grocery 
shopping	

0.14	 0.36	 0.39	 0.694	 -0.565	 0.850	

NFC	 0.05	 0.10	 0.51	 0.607	 -0.156	 0.267	

Order	 0.09	 0.21	 0.45	 0.655	 -0.325	 0.517	

Accumulated Load	 -0.72	 0.32	 -2.23	 0.026	 -1.363	 -0.086	

Constant	 10.85	 3.94	 2.75	 0.006	 3.131	 18.582	

	

 

H5 posits that accumulated load fully mediates the relationship between convenience and 

satisfaction. We used MLmed (Rockwood & Hayes, 2017) macro in SPSS to estimate the 

mediation effect. Our data structure is 1-1-1, meaning that all the variables are measured 

at the lowest level of measurement (i.e. 1 measure per individual per condition). The 

MLmed Macro estimates the indirect effect and Monte Carlo confidence intervals. The 

results suggest that there is no mediating effect of accumulated load in the relationship 

between convenience and satisfaction, thus H5 is not supported. The results are provided 

in Table 5. 
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Table 5- Mediation Analysis Result 

Mediation Analysis: Indipendent Variable = Conveniece, Dependent Variable = 
Satisfaction, Mediator = Accumulated load	

 	
Observed 
Coef.	 SE	 Z	 P>|z|	

Monte Carlo 
Confidence 
Interval	

Indirect effect	 0.006	 0.08	 0.07	 0.93	 -0.156	 0.1719	

	

	

	

Discussion 

We designed an experiment to introduce an accumulated load construct as a criterion to 

evaluate IT artifacts. We used EEG to measure the user’s accumulated load, which sums 

all cognitive load that the user experiences over time. The convenience construct which 

had been studied before in marketing literature (Jiang et al., 2013; Moeller et al., 2009), 

was linked to accumulated load because it relates to both dimensions of accumulated load. 

On the other hand, accumulated load is related to user satisfaction, an already identified 

business need in an online shopping context. Our results provide support for the causal 

relationships between accumulated load and convenience, and between accumulated load 

and satisfaction (H3 and H4) 

Our fifth hypothesis, which hypothesized the full mediating effect of accumulated load 

on the link between convenience and user satisfaction, was not supported. There is a 

possible explanation for this result. Zhao et al. (Zhao, Lynch Jr, & Chen, 2010) suggest 

that in conditions where only the direct effect is significant, it is possible that there are 

other mechanisms for the effect of an independent variable on the dependent variable. It 

means that convenience has possibly other means of affecting user satisfaction, i.e., other 

than cognitive load and time. Satisfaction is an affective reaction to an experience with a 

product or service (Spreng & Mackoy, 1996). It also has a cognitive dimension resulting 
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from the user’s appraisal of the experience with the product or service. Consumers feel 

satisfied insofar as their expectations are confirmed by their use of the system 

(Bhattacherjee, 2001). One possible explanation of other mechanisms through which 

convenience influences satisfaction could be the effect of convenience on user 

expectations. High convenience may induce a high perception of information or system 

quality which increases the confirmation of the user’s expectations prior to using the 

system, and consequently increase user satisfaction.  Although H5 is not supported, it 

provides an interesting result which can be a motivation to further advance the theoretical 

foundation of consumer convenience. 

 

1.5 General Discussion and Concluding Remarks 

The general goal of this research was to address the potential of NeuroIS to inform design 

science research. To accomplish this goal, we designed two studies to 1) develop a tool 

for evaluating an IT artifact, 2) theoretically link it to a design criterion and 3) evaluate 

an existing IT artifact using the new measure. 

In our first study, we measured the user’s instantaneous workload using EEG. Then, we 

extracted three different variables reflecting different aspects of the cognitive load 

construct: average load, peak load, and accumulated load. These measures had already 

been conceptualized in the literature (Paas, Tuovinen, et al., 2003; Xie & Salvendy, 2000) 

but, to the best of our knowledge, had not been empirically tested. Our results show that 

all workload measures (self-reported, average, peak, accumulated) are sensitive to task 

difficulty (H1). This effect had been found in prior studies only for one type of cognitive 

load (Gopher & Braune, 1984). Our results show that only accumulated load was sensitive 

to the task uncertainty factor (H2). As mentioned, uncertainty impairs information 

perception, which is the first step in decision making (Xie & Salvendy, 2000). One 

interpretation of the result is that this effect prolongs the decision making process. Thus, 

the only measure that could capture its effect is accumulated load. 
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In our second study, we provided a theoretical explanation for the importance of the 

accumulated load construct. Our results show that convenience affects accumulated load 

(H3). Lack of convenience had been associated with time and mental effort in the 

literature by Jiang et al. (Jiang et al., 2013). Accumulated load however had not been 

studied in relation to consumer convenience. Our results support prior knowledge that 

cognitive load is a predictor of user satisfaction (H4).  

Our study contributes to theory by differentiating between the four types of cognitive load. 

The importance of different cognitive load measures had been proposed in the education 

literature before (Paas, Tuovinen, et al., 2003), but had not been discussed in relation to 

user-IT interactions. We proposed that these measures reflect different types of cognitive 

load, therefore the use of them in research or practice depends on the conceptual 

framework and purpose of the project.   

Our study contributes to research by developing a measurement tool to capture various 

types of cognitive load. To the best of our knowledge, this study is the first that has 

measured different types of cognitive load and examined the effect of two workload 

factors (task difficulty and uncertainty) on these four measures. Our results show that 

although all four measures are labeled as cognitive load measures, they explain different 

aspects of this multi-faceted construct. 

Another contribution of our study is explanation of the relationship between accumulated 

load and convenience and also accumulated load and user satisfaction. It enriches design 

theories by introducing a new construct for evaluating the convenience of an information 

technology. Although time and effort had been proposed as convenience factors (Liang et 

al., 2015), the relationship between convenience and accumulated load had not been 

studied before. Furthermore, our research model presents the nomological net in which 

convenience, accumulated load, and satisfaction exist. It provides an explanation for one 

of the many mechanisms by which consumers perceive satisfaction.  

Our study also has implications for practice by giving designers a validated measure and 

method to increase user satisfaction and convenience. This method is powerful not only 

because it is more comprehensive in capturing the cognitive load construct than self-
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reported measures, but also because of its high temporal resolution, which enables 

designers to evaluate major and even minor elements of an IT artifact with high precision. 

For instance, a user’s experience with an IT artifact can be broken down to experience 

with different features of the website. A shopping experience can be divided into the 

user’s primary experience with the home page, then search experience, evaluation 

experience etc. A user’s accumulated cognitive load can be calculated for each of the 

activities on the website and be used to evaluate the respective design elements. 

 

Another contribution of this study to practice is the introduction of the peak load measure. 

Our study provides a sigle measurement of peak load which could be used to understand 

a unique aspect of users experience with IT. Specifically, it can be used to highlight the 

moments that users have experienced high cognitive load relative to other moments in a 

user-IT interaction, and to study why such a phenomenon is observed. For instance, in an 

online shopping task, users engage in various types of activities in order to accomplish 

the task. Peak load informs us at what moment during the task users have had difficulty 

in performing the task. Practitioners can then modify the IT artifact components that cause 

the high cognitive load, and provide users with a more satisfying shopping experience. 

As with any other research endeavor, this research has certain limitations that need to be 

mentioned. Although neuroscience tools enable us to measure a wide range of cognitive 

variables that are hard to capture using conventional methods, there is a need to replicate 

studies using these neurophysiological measures across different contexts in order to 

improve their generalizability. Thus, we believe that more research is needed to test our 

method and measures on various IT artifacts in order to further validate them. 

There are a number of avenues for advancing this research. First, we believe that other 

measures extracted from instantaneous workload can be interesting for certain purposes, 

especially peak load which provides unique information about the exact moments that 

users are overloaded with an event or feature during their transaction with an IT artifact. 

Second, experimenting the effect of high peak load versus high accumulated load to see 

if a very high peak load experienced by a user over a short period (exceeding a cognitive 
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capacity red line) will have a larger impact on the user than experiencing the same amount 

of accumulated load but over a longer time period. This can help us to have a better 

understanding of how cognitive load affects user satisfaction. Third, accumulated load 

can be possibly linked to other design-related criteria such as negative feelings, fatigue, 

and frustration. Finally, as suggested by prior studies (de Guinea et al., 2014), there could 

be a difference between implicit (automatic or unconscious) and explicit (self-reported) 

type of constructs in terms of their effect on user behavior since they represent different 

aspects of the cognitive load construct. It is possible that the research model of our second 

study could be revised, and explicit cognitive load be added to it. For instance, it could be 

interesting to test if explicit cognitive load mediates the relationship between convenience 

and satisfaction or if it can be used to improve the research model proposed in our second 

study. 
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Appendix I – Measures 

  

Convenience 

The web site is user-friendly for making purchases.  

The web site is easy to understand and navigate.  

I am able to find desired products quickly.  

The product classification is intuitive and easy to follow.  

 

Satisfaction 

I am satisfied with my overall experience with … 

As a whole, I am not satisfied with … 

How satisfied are you overall with the quality of … 

 

Cognitive Load 

I spent a lot of mental effort doing the task 

The task required a great deal of mental effort 

The task required a great deal of concentration  

The task did not require much mental effort  

I had to work mentally to do the task  
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Need for Cognition 

I would prefer complex to simple problems. 

I like to have the responsibility of handling a situation that requires a lot of thinking. 

Thinking is not my idea of fun. 

I would rather do something that requires little thought than something that is sure to 

challenge my thinking abilities? 

I try to anticipate and avoid situations where there is a likely chance I will have to think 

in depth about something." 

I find satisfaction in deliberating hard and for long hours. 

I only think as hard as 1 have to. 

I prefer to think about small, daily projects to long-term ones? 

I like tasks that require little thought once I've learned them? 

The idea of relying on thought to make my way to the top appeals to me. 

I really enjoy a task that involves coming up with new solutions to problems. 

Learning new ways to think doesn't excite me very much? 

I prefer my life to be filled with puzzles that I must solve. 

The notion of thinking abstractly is appealing to me. 

I would prefer a task that is intellectual, difficult, and important to one that is somewhat 

important but does not require much thought. 

1 feel relief rather than satisfaction after completing a task that required a lot of mental 

effort? It's enough for me that something gets the job done; I don't care how or why it 

works? 
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I usually end up deliberating about issues even when they do not affect me personally.



Chapter 3-  
Essay II - Investigating the Effect of the Match Between 
Product Sorting and User Goals on Cognitive Load and 

Shopping Performance 
 

Abstract 

This study investigates the contingent effect of product sorting and users’ goal on 

cognitive load and performance. Our research model posits that product sorting will help 

users by reducing their cognitive load level provided that the sorting type matches users’ 

criteria for choosing products. A 2 X 2 (Product Sorting X User goal) within subject was 

designed to test the hypotheses. Multiple measures of cognitive load was obtained using 

Event-Related-Potentials and frequency power analysis methods. Our results show that 

the match between user goal and product sorting reduce user cognitive load. All six 

measures of cognitive load were influenced by the match variable. Our analysis also 

shows that cognitive load negatively predicts user performance as hypothesized. Time to 

perform the shopping task (performance) is affected by five measures of cognitive load. 

Contributions for theory and practice are discussed. 
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2.1 Introduction 

Information display is an important element in online shopping, because on the one hand 

it can be flexible and be designed in very different ways (West et al., 1999) and on the 

other hand it affects consumers’ decisions and behaviors (Cai & Xu, 2008). Product result 

pages often provide different types of item sorting (e.g., alphabetical, price), which is an 

instance of changing information display. Sorting may act as a decision support tool for 

consumers (Sharkey et al., 2009). It changes information display in order to help 

consumers find their desired products (Ariely, 2000). Similar to other decision support 

tools, sorting can be used to improve the user’s decision making. However, it is not clear 

under what conditions various types of sorting may decrease or increase the user’s 

cognitive effort during the decision-making process. 

Minimizing cognitive load is important for users in online shopping, and it is even more 

important when it comes to shopping for low value products. There are two ways that 

sorting may contribute to the enhancement of consumer decision making: 1- Improving 

decision quality and 2- Saving the user’s cognitive effort (Todd & Benbasat, 1992). 

Researchers have found that the trade-off between the two factors (i.e., maximizing 

accuracy and minimizing effort) depends on the task and the context (Payne et al., 1988, 

Beach & Mitchell, 1978). For instance, it is more likely that a typical consumer puts more 

effort into obtaining accuracy when buying an apartment than grocery items. We use the 

same logic to explain how sorting may affect the user’s level of mental effort in shopping 

for low price goods. In shopping for these goods, consumers are expected to show lower 

decision accuracy in favor of minimizing their mental effort. It is also important to 

understand how sorting affects the user’s cognitive load since it is a predictor of user 

satisfaction and performance in online shopping (lo Storto, 2013). Product sorting could 

increase user satisfaction and performance; however, these relationships need to be 

explained theoretically with respect to the user’s goal and be tested empirically. 

Previous research suggests that an appropriate information sequence can result in an easier 

decision making process (Schkade & Kleinmuntz, 1994). This effect is contingent upon 

the alignment of the information sequence with what the user is looking for. Information 

sequence can facilitate the decision process if it increases the user’s accessibility to the 
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right information. For instance, if a consumer is looking for a specific price or brand name, 

sorting products based on price or alphabetically can help make their product decision, 

In this research, we design a two factor within-subject experiment (Product sorting X 

Users goal) and hypothesize that if product sorting matches the user’s goal, it decreases 

user cognitive load. We also expect a negative relationship between cognitive load and 

shopping performance, because the less cognitive load consumed in a task greater is the 

efficiency in performing it. 

Our study contributes to theory by showing how the presentation sequence of information 

(i.e., sorting) affects user cognitive load in a decision making process. We model this 

effect as a relationship between a fit construct (i.e., match between product sorting and 

user goal) and cognitive load. It contributes to methodology by providing a new 

experimental design to study user behavior using an Event-Related-Potential (ERP) 

method in a user-IT transaction. Unlike traditional ERP research, we use one of the users’s 

activities during the shopping session to generate ERPs. It also has practical implications 

since it shows how various types of product sorting, currently used in shopping websites, 

can reduce the user’s mental workload. Our study also shows that not offering users the 

appropriate product sorting variables (e.g., date, price, and alphabet) reduces their 

shopping performance. 
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2.2 Literature Review 

Researchers propose that users seek to maximize their decision quality and minimize the 

cognitive effort exerted during this process (Todd & Benbasat, 1992). Consumers, 

depending on the context, find a trade-off between the two factors, and make their product 

decision. However, in some contexts, the importance of decision quality is lower 

compared to minimal cognitive effort (Bettman et al., 1998). For instance, compare 

shopping for an apartment and grocery items. Any mistake in the former decision may 

have serious effects on the user’s life and be hard to recover from, whereas in the latter 

the user is less sensitive to the accuracy of the decision since in the worst case it will be 

easy to buy another product. Even generally, cognitive effort is proposed to bear more 

weight than accuracy (Todd & Benbasat, 1992). The reason behind this phenomenon is 

that the feedback from effort expenditure is immediate in comparison to feedback from 

accuracy, which takes more time to operate (Kleinmuntz & Schkade, 1993). Therefore, 

accuracy is sacrificed in favor of saving cognitive load, and the intensity of such sacrifice 

depends on the decision making task and context. 

Cognitive effort is an important factor in explaining human decision making. It is 

considered as the cost of decision making for users (Todd & Benbasat, 1992). Cognitive 

load is defined as the set of mental resources used by people to encode, activate, store, 

and manipulate information while they perform a task (DeStefano & LeFevre, 2007). A 

key to understanding cognitive load and its effect on human behavior is that these mental 

resources are limited (Wickens, 2002). Therefore, efficient use of working memory is a 

key factor in preventing users from overload situations and providing them with a 

satisfying shopping experience (Aljukhadar et al., 2012; lo Storto, 2013). In an online 

shopping session, any website element that fails to provide users with the critical 

information needed for making product decisions reduces cognitive efficiency of the 

website (lo Storto, 2013). This failure could be either not providing necessary information 

or presenting redundant information to users. Poor design of shopping websites results in 

consumers needing to devote more working memory resources (e.g., attentional capacity 

of working memory) to accomplish the shopping task. A number of factors affect the 

user’s cognitive workload, among them are different ways of presenting information, 
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which include form (numerical, pictorial, verbal), organization (table, matrix, list, 

paragraph, hierarchical cluster), and sequence (random, ascending or descending on an 

attribute value, alphabetical, chronological) (Kleinmuntz & Schkade, 1993, Todd & 

Benbasat, 1992). 

In the online shopping environment, product sorting is a form of information sequence 

modification. It presents information to the consumer in a new way to assist in making a 

product decision. Sorting arranges products based on a specific attribute and helps 

consumers to narrow down their consideration set (Sharkey et al., 2009). In this sense, 

sorting can be considered as a simple decision support tool because one of the functions 

of decision support systems is screening and sorting alternatives (Van der Heijden, 2006). 

It supports consumer decision making by determining the relative utility of alternatives 

(Häubl & Trifts, 2000). It contributes to the minimization of the consumer’s’ mental 

workload. Consumers will be able to screen alternatives and more easitly reduce the 

universal set to a consideration set. 

Online shopping tasks can be classified into two general groups based on the consumer’s 

goals: searching versus browsing tasks (Carmel et al., 1992). In searching tasks, the 

consumers’ objectives and criteria are clear (Hong et al., 2004) since they know in 

advance what product they are looking for. For instance, they may know the brand name 

of the product. In contrast, consumers engaged in a browsing task have no specific criteria 

(Hong et al., 2004). For instance, they may simply have the intention of buying a TV, 

however, this does not mean that they do not have any criteria when it comes to actually 

purchasing the TV. In the current study, we are focusing on search tasks. 

2.3 Hypotheses Development 

We theorize that product sorting affects the user’s mental workload depending on the 

user’s goal. Product sorting (i.e., listing products based on the sequence of their values) 

can decrease the user’s cognitive effort if it is aligned with the user’s goal. Cognitive load 

also negatively influences user performance. Figure 7 illustrates our research model. 
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Figure 7- Research Model 

We model the contingent effect of product sorting and the user’s goal as a fit construct. 

Venkatraman (1989) proposed six conceptualizations of a fit construct including fit as 

matching. Matching represents the fit between two constructs without reference to a 

criterion construct, however its effect on different sets of criterion variables can be 

investigated. Therefore, we have either “match” or “mismatch” conditions between the 

user’s goal and product sorting. In match conditions, product sorting assists users to find 

the target product whereas in mismatch conditions, there is no complementarity between 

the two variables, and users experience more mental workload to find the target product 

compared to a match condition. Table 6 shows match (1 and 4) and mismatch conditions 

(2 and 3). 

Table 6- Match Table 

  Goal 

Sorting 

  Price Name 

Price 1 2 

Brand 3 4 
 

 

 

As stated, product sorting as a decision support tool helps consumers to make their product 

decision more efficiently (Cai & Xu, 2008). Consumers will be able to remove a number 

of items from the universal set without devoting attentional capacity of their working 

Light Grey: Match Conditions 
Dark Grey: Mismatch Condition 
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memory. We argue that if a user’s goal matches the product sorting on a website, it reduces 

the user's mental workload. For instance, users who are looking for the cheapest product 

will be supported by sorting products based on price. Sorting based on brand name will 

not be useful to them because they need to screen all the product prices. 

The reason why a mismatch condition imposes high load on the user’s working memory 

is also explained by eye movements. Eye movement is linked to the attentional focus of 

users (Postle et al., 2006; Baddeley, 2007). As the eyes move over a screen and explore 

different objects, the user switches attention from one object to another. This consumes 

the available attentional resources of working memory, which explains why the user’s 

short term memory performance declines as eye movements increase (Hale el al., 1996). 

The mismatch condition forces the user to explore objects one by one until finding the 

target product. It increases eye movements and consequently imposes more load on the 

user’s working memory. Based on the above, our hypothesis is: 

H1: Users experience less mental workload when their goal matches product sorting 

compared to when it does not match. 

Cognitive load explains the amount of working memory resources used by consumers in 

a task. Therefore, saving cognitive effort is one of the criteria for improving decision 

making in online shopping (Todd & Benbasat, 1992). As the level of cognitive load 

required for the same task decreases, users are able to perform the task more easily and 

faster (Hong et al., 2004). Users are obliged to create their consideration set by manually 

screening every product presented to them and remove those which do not meet their 

criteria. Thus, we hypothesize the negative relationship between mental workload and 

task performance. 

H2: Mental workload negatively influences task performance. 
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2.4 Methodology 

 

Experimental Design 

A 2 (Product sorting) X 2 (Users’ goal) within-subject experiment was designed to test 

the research hypotheses. Two types of product sorting (Price and Alphabetical) were 

manipulated in a search result page with ten products (in two rows) as shown in Figure 8. 

Ten experimental tasks were designed for each condition with different products, which 

means each participant performed 40 tasks in total. There was no time limit for performing 

each task, and after selecting the product, subjects were automatically presented with the 

next task. The product results pages presented to the participants were screenshots whose 

design was based on a popular regional online grocery website. Participants were asked 

to select a product based on either a specific price or a brand name, while the products 

were sorted either by price or alphabetically. The experiment was designed using E-prime 

3.0 software (Psychology Software Tools, Pittsburgh, PA). The product brand names were 

fictitious and unknown to participants. We used product pictures from a real online 

grocery website.  
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Before the presentation of each screenshot, an instruction appeared on the screen asking 

the participant to select a product either based on the price (Goal=price) or a brand name 

(Goal=brand name). An instruction example for each goal type is provided in Table 7. 

 

Table 7- Instruction Examples 

Goal Instruction Examples 

Price Click on the cheapest product / Click on the product with 16.99 price 

Brand name Click on the product with Jetpro brand 

Figure 8- A Sample Result Page with Price Sorting 
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Sample and Procedure 

Twenty subjects (N=20; 50% female) were recruited from a university panel to participate 

in the experiment. They were compensated with a $30 gift card. Participants were first 

greeted and then asked to read and sign the consent forms. Then, a 64-channel Brainvision 

EEG headset (Brain Products GmbH, Gilching, Germany) was placed on participants’ 

head and impedance was tested to ensure the quality of EEG data. Then, the experiment 

started and participants followed the experimental protocol according to Figure 9. They 

first filled out the questionnaire, then read the experiment introduction message. A sample 

page was shown to participants to familiarize them with the experimental task. As part of 

the introduction, three pages were presented to subjects in which the sort box, price tag, 

and brand names were highlighted respectively to make sure they knew where to find 

them on the page. Participants were instructed to click on the image of the target product. 

Then, subjects were asked to perform a practice task and ask any question about the 

experiment. Finally, they started performing the forty tasks, which were randomized. This 

study was approved by the ethics committee of our institution. 

 

Figure 9- Experiment Procedure 
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Measurement 

	

Cognitive Load 

We used EEG to measure cognitive load. More precisely, we used two methods to capture 

the user’s cognitive load: 1- Event-related Potential (ERP) and 2- Fast Fournier Transform 

(FFT) analysis. The ERP method is a measure of cognitive load approximately at the time 

of the event presentation, while the FFT analysis provides the overall amount of cognitive 

load for the specified time window. Although the ERP gives an instantaneous measure of 

user workload at the moment of event presentation, given the accumulative nature of 

cognitive load, it will be affected by the task requirements in the preceding moments. 

Therefore, we expect that cognitive load measures obtained both by ERP and FFT analysis 

will be affected by the experimental manipulation.  

1. Event-Related-Potential (ERP) 

The ERP method is based on EEG (Luck, 2012). Generally, EEG measures the activity of 

a large group of neurons firing at the same time, and therefore, it is difficult to separate a 

specific cognitive process associated with that neural activity (Müller-Putz et al., 2015). 

The ERP method overcomes this problem by presenting stimuli several times and 

measuring the user’s response to them. This would cancel the neural activities unrelated 

to experimental manipulation (Luck, 2012). Thus, it is crucial to have the exact timing of 

stimulus presentation to measure the neural activities in phase with it. In classical ERP 

studies, a task-relevant stimulus such as an oddball task is used to elicit ERPs. This 

method works well provided that the stimulus presented to the user is phased locked with 

the investigated cognitive processes (Léger et al., 2014), otherwise the richness of data 

will be reduced by averaging the epochs and losing the user’s real neural response to the 

stimulus.  In this experiment, we use two events to create ERPs: i) the participant’s mouse 

click time stamps and ii) the image presentation time stamps (i.e. the moment that the 

screenshot of the product result page is presented to the participant). A description of each 

event is provided in Table 8. The exact time that participants click on the target product 

is when they have made their decision. The phenomenon of interest in our experiment 
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(i.e. user’s’ cognitive load at the time of decision making) justifies the selection of this 

event because we would like to be temporally as close as possible to the moment that 

users make their product decision. Thus, we generate the ERPs based on the time stamps 

of the user’s decision. We also use the image presentation time to create the ERPs. 

Subjects performed 10 experimental tasks of each condition sequentially to maintain their 

cognitive load at the manipulated level (low or high) for the entire duration of the 

condition. Therefore, ERP measures are affected by the task requirements. 

Table 8- Description of image presentation and mouse click events 

Event Name Description 

Image Presentation 

Right after the instruction page, the screenshot of product 
results page is presented. The moment that the screenshot is 
projected on the screen is used as the image presentation 
event. 

Mouse Clicks The moment that user clicks on the target product in the 
results page is marked as the mouse click event. 

	

	

Generally, ERPs consist of a number of important components. These components are 

found to be sensitive to different cognitive, emotional, and behavioral variables. An ERP 

sample is illustrated in Figure 10. Components names represent both the polarity and 

approximate latency of the element. For instance, N100 is a negative peak, which occurs 

approximately 100 ms after stimulus presentation. 
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In this experiment we use the P3 component to measure the user’s mental workload. This 

component is a positive peak, which can be observed approximately 300 ms after the 

event presentation	(i.e.,	stimulus). It has been found that the amplitude and latency of P3 

are sensitive to the user’s cognitive load (Murata et al., 2005, Uetake & Murata, 2000). 

Research shows that P3 amplitude is negatively related to the user’s level of cognitive 

processing load (Ullsperger et al., 1988). Changes in P3 amplitude reflect the distribution 

of processing resources (Isreal et al., 1980). For instance, if the user performs two 

concurrent tasks, meaning that cognitive resources are being distributed to meet the 

requirements of both tasks, the P3 amplitude decreases or disappears (Wickens et al., 

1977). Furthermore, P3 amplitude is affected by the difficulty of the ongoing task. For 

instance, research by Ullsperger et al. (2001) shows that the P3 amplitude drops when 

users perform difficult arithmetic tasks. P3 latency also increases with the task difficulty 

(Ullsperger et al., 1986). The latency represents the timing of mental processes, which in 

a difficult task will take a longer to appear in the EEG (Käthner et al., 2014). Therefore, 

consistent with the abovementioned study, we use P3 amplitude and latency at thePz 

electrode to measure the user’s’ cognitive load associated with making product decisions.  

Figure 10- Event Related Potential Components	
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To generate ERP waves, one needs to average the user’s’ cognitive response to an 

experimental event. Such event needs to be discrete and also temporally relevant for 

measuring the phenomenon of interest (Kramer, 1991). The following explains why both 

the user’s mouse click on the target product and the image presentation moment meet both 

criteria and are relevant for measuring their cognitive load. First, both events are discrete 

events within the experimental condition. They can be identified precisely as opposed to 

other moments during the shopping task. Second, the P3 component of mouse clicks and 

image presentation events reflect the user’s cognitive load during the past few seconds of 

the event. We explain this based on the nature of cognitive load and the literature.  Second, 

cognitive load is cumulative in nature (Baddeley, 2007) and not necessarily the user’s 

instantaneous reaction to a stimulus. It means that the user’s cognitive load at each 

moment is a function of task requirements in the past. Other experiments in the literature 

have measured the user’s cognitive load on a task using the P3 component of their 

response to an event during the primary task (Kramer, 1991). These events might or might 

not be relevant to the primary task (Kramer, 1991), but since they happen within the 

experimental condition, the P3 component reflects the amount of accumulated cognitive 

load the user experiences at the moment. Both mouse clicks and image presentations are 

events within the experimental condition (match or mismatch), which reflect the user’s 

level of cognitive load. In each condition, users click 10 times on the target product, 

therefore the ERP is measured 10 times using this event for each condition. The images 

are also presented to users 10 times, however we exclude the first task in each condition 

because the user’s cognitive load has not yet been affected by the condition when they are 

presented with this first task. Therefore, 9 events of this type are used to generate another 

set of ERPs. 
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2. Fast Fourier Transform (FFT) Analysis 

	

The EEG signal can be decomposed into a number of frequency band oscillations 

including delta (0 to < 4 Hz), theta (4 to < 8Hz), alpha (8 to 13 Hz), and beta (>13 Hz). 

Research has shown the sensitivity of these oscillations to different cognitive and 

emotional states of individuals. For instance, alpha and theta band EEG has been found 

sensitive to the user’s workload level (Gevins et al., 1998; Gevins & Smith, 2003). It is 

suggested that as workload increases alpha band power decreases and theta band power 

increases (Kramer, 1991; Gevins et al., 1998). The FFT measures of workload are able to 

capture the total amount of cognitive load experienced by users during a task performance 

period (Mirhoseini et al., 2017). We use Fast Fourier Transform to calculate the power 

spectral density of EEG and measure the changes in frequency characteristics. We 

calculate the average power of both alpha and theta bands for the last second of each task. 

The average of powers across experimental tasks is used as a measure of cognitive 

workload for each condition. We expect alpha band power to increase for match 

conditions compared to mismatch conditions (i.e., negatively associated with cognitive 

load) and theta band power to decrease for match conditions compared to mismatch 

conditions (i.e., it is positively associated with cognitive load). 

	

Performance 

The	measure	of	shopping	performance	was	task	duration	(i.e.,	find	the	focal	product),	

but	for	the	correct	responses	only.	The	incorrect	responses	were	removed	from	the	ERP	

sample.	For	instance,	if	there	was	one	wrong	answer,	then	the	ERP	was	calculated	based	

on	 the	 other	 9	 responses	 out	 of	 ten.	 Instead	 of	 including	 these	 tasks	 with	 a	 0	

performance	measure,	we	removed	them	because	the	cognitive	load	measure	of	wrong	

responses	is	likely	to	be	affected	by	the	other	tasks	in	the	same	condition	i.e.	including	

them	in	the	analysis	with	a	performance	of	0	for	wrong	answers	would	be	inaccurate.	

Task	duration	represents	how	efficiently	users	were	able	to	correctly	locate	the	target	
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product.	As	stated	before,	 in	each	experimental	condition,	users	performed	10	tasks.	

Thus,	we	have	a	maximum	of	10	performance	measures	for	each	condition.	We	used	the	

average	duration	 time	of	 successful	 tasks	 as	 the	 task	performance	measure	 for	 each	

condition.	

	
Data Analysis 

To process the EEG data, we used Brainvision Analyzer and MATLAB software. EEG 

raw data was filtered using a FIR filter of order 96 between 0.1 and 30 Hz (Zeyl et al., 

2016). For the MATLAB code, please see Appendix 1. The EEG was then re-referenced 

to the average of all electrodes. Independent component analysis (ICA) was performed to 

identify the bad components such as eye-blinks and muscle movements (Jung et al., 1998). 

The bad components were removed using the ADJUST plugin in EEGLAB toolbox 

(Mognon et al., 2011). Then, the signal was reconstructed in the time domain using 

inverse ICA. The signal was then segmented with respect to the mouse click time stamps 

between -200 and 800 ms of the events (Kramer, 1991). As explained, each participant 

performed 10 product choice tasks per condition, giving 10 segments per condition per 

participant for mouse click events and 9 segments per condition per participant for image 

presentation events. An artifact rejection transformation was applied to remove segments 

where the EEG amplitude was abnormal. There were also a few instances where few 

segments were removed from the data because participants made the wrong product 

choice (for more information about segmentation please see Appendix 1). 

Then, segments were averaged for each condition, and peak and latency of the P3 

component were extracted for the Pz electrode (Murata et al., 2005). Peak and latency are 

two indicators of the participant’s cognitive load during the task performance.  

Table 9 provides the average of the P3 amplitude and latency for each experimental 

condition for both mouse click and image presentation events.  
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Table 9- The average of P3 amplitude and latency per experimental condition for both 

events 

Goal Sorting Fit 
P3 Amplitude 
(µv) 

(Mouse Click) 

P3 Latency 
(ms) 

(Mouse Click) 

P3 Amplitude 
(µv) 

(Image 
Presentation) 

P3 Latency 
(ms) 

(Mouse Click) 

Price Price Match 24.74 423.2 31.20 366.0 

Brand 
name Price Mismatch 14.50 438.5 27.68 427.5 

Price Brand 
Alphabet Mismatch 15.75 450.1 27.14 

422.8 

Brand 
name 

Brand 
Alphabet Match 21.15 397.0 32.37 

403.2 

	

To extract alpha and theta band powers, Fast Fourier Transforms (FFT) in MATLAB were 

performed for the last second of each task. Then, the power was calculated according to 

the following formula: 

! = 1
$ |& ' |(,

*+,

-./
	

where X denotes the FFT representation of the signal and N is the length of the signal 

(Oppenheim et al., 1978). Then, the power values were averaged for each condition. Table 

10 shows the average of alpha and theta band powers for each experimental condition. 
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Table 10- The average of Alpha and Theta band powers per experimental condition 

Goal Sorting Fit Alpha Power Theta Power 

Price Price Match 5.21 4.19 

Brand name Price Mismatch 4.77 4.79 

Price Brand Alphabet Mismatch 4.42 4.11 

Brand name Brand Alphabet Match 5.44 4.12 

	

To run regression analysis, the independent variables and the fit constructs were coded. 

A matching table was created which reflects the fit between goal and sorting variables. 

The value of the fit variable was equal to 1 for match conditions and 0 for mismatch 

conditions. Since each of the Sorting and Goal variables have only two levels, they are 

coded as a binary variable (Table 11). 

 

Table 11- Binary codes of the Sorting and Goal variables 

Variable = Sorting 

Code	 Description 

1	 Product are sorted based on price 

2	 Product are sorted based on brand alphabet 

Variable = Sorting  

Code	 Description 

1	 Users are asked to chose a product based on a specific price 

2	 Users are asked to chose a product based on a specific brand name 
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2.5 Results 

According to H1, we expect P3 amplitude to be higher for match conditions compared to 

mismatch conditions, and P3 latency to be be less for the match conditions compared to 

mismatch conditions. Since this experiment has a within-subject design, a panel 

regression analysis was done to test the effect of match on the latency and amplitude of 

the P3 component. Four regression models were tested using the Xtreg command in the 

Stata software package (StataCorp, Texas, United States) for each event: Two models 

with P3 amplitude and P3 latency of the mouse click events as the dependent variable and 

two models with P3 amplitude and P3 latency of the image presentation events as the 

dependent variable.  

The first two models show that P3 amplitude of mouse click events was affected by the 

match between the product sorting variable and user’s goal. Our results show that P3 

amplitude is positively linked to the match construct (b=7.90, p<0.05). Given the coding 

of the match construct based on Table 3 (i.e., 0 = mismatch and 1=match), P3 amplitude 

was lower in the match condition compared to the mismatch condition, and this confirms 

our expectations. To control for any learning effect, we also included the order in which 

the tasks were performed. Table 12 provides the results of the P3 amplitude regression 

model. 
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Table 12- Regression results for H1/ DV=P3 Amplitude (Mouse Click events) 

P3 Amplitude 
(Mouse Clicks) Coefficient Std. 

Err. Z P Value 
(one-tailed) 95% conf. Interval 

Order 1.59 1.54 1.03 0.152 -1.446 4.627 

Goal -2.08 3.46 -0.60 0.273 -8.877 4.701 

Sorting -1.16 3.44 -0.34 0.367 -7.928 5.590 

Match 7.90 3.45 2.29 0.011 1.141 14.663 

Constant -9.52 12.71 -0.75 0.227 -34.441 15.387 

sigma_u 39.647           

 sigma_e 15.031 	 	 	 	   

rho 0.874   	       

 

The second regression model with P3 latency as the dependent variable shows that a 

match between the user’s goal and the product sorting variable significantly decreased P3 

latency. As illustrated in Table 13, as the match variable increases (i.e., there is a fit 

between Goal and Sorting variables) the P3 latency decreases (b=-33.99, p<0.01); this is 

according to our expectations. 
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Table 13- Regression results for H1/ DV=P3 Latency (Mouse Click events) 

P3 Latency 
(Mouse Clicks) Coefficient Std. Err. Z P Value 

(one-tailed) 95% conf. Interval 

Order 3.13 5.83 0.54 0.295 -8.288 14.564 

Goal -18.23 13.03 -1.40 0.081 -43.777 7.309 

Sorting -7.31 12.97 -0.56 0.286 -32.745 18.114 

Match -33.99 12.97 -2.62 0.004 -59.429 -8.555 

Constant 474.71 34.02 13.95 0.001 408.03 541.398 

sigma_u 28.021           

 sigma_e 56.555 	 	 	 	   

rho 0.197   	       

	

	

We performed two other regression models similar to the first two ones but with P3 

amplitude and latency of image presentation events as dependent variables. The third 

regression models shows that P3 amplitude is positively influenced by the match variable 

(b=4.29, p<0.05). P3 amplitude of the image presentation events is affected in a similar 

way to that of the mouse click events. As hypothesized, they both decrease as difficulty 

of the task increases. The regression results are presented in Table 14.  
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Table 14- Regression results for H1/ DV=P3 Amplitude (Image Presentation events) 

P3 Amplitude 
(Image 

Presentation) 
Coefficient Std. 

Err. Z P Value 
(one-tailed) 95% conf. Interval 

Order -1.55 0.86 -1.80 0.036 -3.245 0.140 

Goal 0.52 1.93 0.27 0.392 -3.258 4.311 

Sorting 0.31 1.92 0.16 0.434 -3.452 4.084 

Match 4.29 1.92 2.23 0.012 0.526 8.065 

Constant 30.07 5.22 5.76 0.001 19.834 40.309 

sigma_u 7.256 	 	 	 	 	

 sigma_e 8.380 	 	 	 	 	

rho 0.428 	 	 	 	 	

	

	

The fourth regression model tests the effect of the match between the sorting  variable and 

goal on the P3 latency of the image presentation events. As presented in Table 15, the P3 

latency is negatively influenced by the match variable (b=-40.31, P<0.01), confirming our 

expectation that P3 latency increases with task difficulty. 
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Table 15- Regression results for H1/ DV=P3 Latency (Image Presentation events) 

P3 Latency 
(Image 

Presentation) 
Coefficient Std. Err. Z P Value 

(one-tailed) 95% conf. Interval 

Order 5.04 5.94 0.85 0.198 -6.606 16.688 

Goal 22.06 13.28 1.66 0.049 -3.976 48.098 

Sorting 16.26 13.22 1.23 0.109 -9.658 42.184 

Match -40.31 13.23 -3.05 0.001 -66.242 -14.384 

Constant 354.98 35.26 10.07 0.001 285.873 424.102 

sigma_u 39.860 	 	 	 	 	

 sigma_e 57.649 	 	 	 	 	

rho 0.323 	 	 	 	 	

	

	
	

All four regression models show that P3 amplitude and latency are affected by the fit 

between sorting and goal variables. We further analyze the link between the match 

variable and cognitive load by testing the effect of the match variable on theta and alpha 

band powers. As stated, we expect that alpha power will decrease and theta power increase 

as cognitive load increases. Therefore, the next two regression models investigate how 

the match variable affects theta and alpha band powers. 

	

The results presented in Table 16 show that alpha power is positively linked to the match 

variable (b=0.73, p<0.01), meaning that it is greater for match conditions compared to 

mismatch conditions. As we expected, alpha band power decreases as task difficulty 

increases. 
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Table 16- Regression results for H1/ DV= Alpha Band Power 

Alpha Power Coefficient Std. 
Err. Z P Value 

(one-tailed) 95% conf. Interval 

Order 0.04 0.12 0.39 0.349 -0.181 0.271 

Goal 0.30 0.26 1.15 0.125 -0.209 0.802 

Sorting -0.06 0.26 -0.23 0.409 -0.562 0.444 

Match 0.73 0.26 2.85 0.002 0.229 1.236 

Constant 4.13 0.89 4.65 0.001 2.387 5.872 

sigma_u 2.590 
	 	 	 	 	

 sigma_e 1.119 
	 	 	 	 	

rho 0.843 
	 	 	 	 	

	
The	next	model	investigates	the	effect	of	the	match	variable	on	theta	power.		

Table 17 shows that Theta power is negatively influenced by the match variable (b=-0.83, 

P<0.001). It confirms our expectation that theta power increases as task difficulty 

increases. 
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Table 17- Regression results for H1/ DV= Theta Band Power 

Theta Power Coefficient Std. 
Err. Z P Value 

(one-tailed) 95% conf. Interval 

Order -0.17 0.11 -1.53 0.064 -0.388 0.048 

Goal -0.26 0.25 -1.04 0.151 -0.745 0.230 

Sorting 0.15 0.25 0.59 0.279 -0.341 0.631 

Match -0.83 0.25 -3.36 0.001 -1.319 -0.347 

Constant 5.58 0.76 7.33 0.000 4.087 7.073 

sigma_u 1.926 	 	 	 	 	

 sigma_e 0.831 	 	 	 	 	

rho 0.843 	 	 	 	 	

	

All the six regression models show that user cognitive load, measured by P3 amplitude 

and latency of mouse click events, P3 amplitude and latency of image presentation events, 

and theta and alpha band powers, was less in match conditions compared to mismatch 

conditions. The two types of measures (i.e., ERP and Frequency analysis) reflect different 

aspects of the cognitive load construct. The ERPs are momentary measures of workload 

at the time of event presentation while the alpha and theta power yield an overall measure 

of cognitive load over a time window. Based on the evidence from both methods, H1 is 

strongly supported. 

H2 suggests that cognitive load is negatively linked to task performance. Similar to the 

previous hypotheses, we performed six regression models to test the effect of cognitive 

load on performance. The first two regressions used P3 amplitude and latency of mouse 

click events as independent variables. The first model, tests the effect of P3 amplitude on 

task performance. Our results show that an increase in P3 amplitude (i.e. when cognitive 

load decreases) is associated with a decrease in the time required to perform a task, which 

means that performance increases (b=-0.02, P<0.05). The results are provided in Table 

18. 
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Table 18- Regression results for H2/ IV=P3 Amplitude (Mouse Clicks) 

Performance Coefficient Std. 
Err. Z P Value 

(one-tailed) 95% conf. Interval 

Order 0.24 0.24 0.990 0.162 -0.238 0.719 

P3 Amplitude 
(Mouse Clicks) -0.02 0.01 -1.820 0.035 -0.050 0.001 

Constant 4.44 0.70 6.380 0.000 3.077 5.804 

sigma_u 0           

 sigma_e 2.419 	 	 	 	   

rho 0   	       

 

	

The second model uses P3 amplitude as the independent variable to test the effect of 

cognitive load on task performance. Our results show that as P3 latency increases (i.e., 

cognitive load increases), the time to perform a task increases as well, which means that 

performance decreases (b=0.01, P<0.01) as expected based on H2. The results are 

provided in Table 19. 

Table 19- Regression results for H2/ IV=P3 Latency (Mouse Clicks) 

Performance Coefficient Std. Err. Z P Value 
(one-tailed) 95% conf. Interval 

Order 0.16 0.24 0.68 0.250 -0.310 0.637 

P3 Latency 
(Mouse Clicks) 0.01 0.00 2.17 0.015 0.001 0.017 

Constant 0.27 1.87 0.14 0.443 -3.398 3.936 

sigma_u 0           

 sigma_e 2.355 	 	 	 	   

rho 0   	       
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The next two models investigate the effect of P3 amplitude and latency of image 

presentation events on user performance. As provided in Table 20, the first model does 

not provide support for the expected relationship between P3 amplitude and user 

performance (b=-0.03, P =0.128).  

Table 20- Regression results for H2/ IV=P3 Amplitude (Image Presentation) 

Performance Coefficient Std. 
Err. Z P Value 

(one-tailed) 95% conf. Interval 

Order 0.16 0.25 0.62 0.266 -0.334 0.646 

P3 Amplitude 
(Image Presentation) -0.03 0.03 -1.14 0.128 -0.078 0.021 

Constant 5.04 1.08 4.65 0.000 2.914 7.159 

sigma_u 0           

 sigma_e 2.407 	 	 	 	   

rho 0   	       

	

	
	

The next regression tests the link between P3 latency of image presentation events and 

user performance. Similar to the P3 latency of mouse click events, the results show that 

an increase in cognitive load (i.e. an increase in P3 latency) results in more time on the 

task and a reduction in performance (b=0.01, P<0.05). The results are provided in  

 

 

Table 21. 
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Table 21- Regression results for H2/ IV=P3 Latency (Image Presentation) 

Performance Coefficient Std. Err. Z P Value 
(one-tailed) 95% conf. Interval 

Order 0.17 0.24 0.71 0.239 -0.306 0.653 

P3 Latency 
(Image Presentation) 0.01 0.00 1.67 0.048 -0.001 0.014 

Constant 1.59 1.63 0.97 0.166 -1.615 4.785 

sigma_u 0           

 sigma_e 2.403 	 	 	 	   

rho 0   	       

	

Finally, we further investigate the relationship between cognitive load and user 

performance by using FFT measures of cognitive load. The next two models use theta and 

alpha band powers respectively as independent variables. As provided in Table 22, the 

first regression analysis shows that increasing theta power (i.e. increase in cognitive load) 

positively influences time on task (b=0.25, P<0.05). 

Table 22- Regression results for H2/ IV= Theta Power 

Performance Coefficient Std. 
Err. Z P Value 

(one-tailed) 95% conf. Interval 

Order 0.24 0.24 0.99 0.161 -0.234 0.713 

Theta Power 0.25 0.13 1.84 0.033 -0.016 0.508 

Constant 2.86 0.94 3.05 0.001 1.022 4.698 

sigma_u 0           
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 sigma_e 2.132 	 	 	 	   

rho 0   	       

	

The last model shows that alpha power is negatively linked to user performance (b=-0.17, 

P<0.05). As cognitive load increases (i.e. alpha power decreases) the time required to 

perform the task increases as well, which signifies a reduction in user performance. The 

results for this regression model are provided in Table 23. 

Table 23- Regression results for H2/ IV= Alpha Power 

Performance Coefficient Std. 
Err. Z 

P Value 
(one-
tailed) 

95% conf. Interval 

Order 0.21 0.24 0.86 0.195 -0.265 0.678 

Alpha Power -0.17 0.10 -1.68 0.046 -0.378 0.029 

Constant 4.93 0.84 5.87 0.000 3.286 6.577 

sigma_u 0           

 sigma_e 2.08 	 	 	 	   

rho 0   	       

 

	
	

Multiple evidence from different cognitive load measures shows that cognitive load 

negatively influences user performance in selecting the target product. Therefore, H2 is 

supported. 

A summary of all the results for H1 and H2 is provided in Table 24. 
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Table 24- Summary of results for H1 and H2 

 

 

 

 

H1 / Match ---------> Cognitive Load 

IV DV supported 

Match 
P3 Amplitude (Mouse 
Click Events) � 

Match 
P3 Latency (Mouse 
Click Events) � 

Match 
P3 Amplitude (Image 
Presentation Events) � 

Match 
P3 Latency (Image 
Presentation Events) � 

Match Alpha Power � 

Match Theta Power � 

H2 / Cognitive Load ---------> Task Performance 

IV DV supported 

P3 Amplitude (Mouse Click 
Events) Task Performance � 

P3 Latency (Mouse Click 
Events) Task Performance � 

P3 Amplitude (Image 
Presentation Events) Task Performance � 

P3 Latency (Image Presentation 
Events) Task Performance � 

Alpha Power Task Performance � 

Theta Power Task Performance � 
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2.5 Discussion 

In this study, we argued that a match between a user’s goal and product sorting on 

shopping websites would decrease the amount of cognitive load required to make a 

product decision. Results indeed show that users experience less cognitive load when the 

product sorting matches their goal (H1). This is in line with the general framework 

proposed by Todd & Benbasat (1992) on the effect of using computer-based decision aids 

on users’ cognitive load. Sorting products is one instance of helping consumers to narrow 

down their consideration set and find their desired products. Consequently, they use less 

cognitive resources in making a product decision. 

Two different EEG-based methods were used to measure cognitive load. The frequency 

analysis captures the total cognitive load that users experience during the selected time 

window (Mirhoseini et al., 2017). On the other hand, the ERP measure reflects the amount 

of cognitive load that the user experiences at the moment of event presentation. Although 

the two measures represent different types of cognitive load, we expected that they would 

be affected similarly by the task characteristics -  specifically because the cognitive load 

is cumulative in nature and is affected by the task requirements of the past moments. 

Therefore, the ERPs should be influenced by the requirements of the task that was 

performed about 300 ms before the measurement point.  

Our second hypothesis links cognitive load to task performance. Our results show that as 

cognitive load increases, task performance decreases, which is consistent with the 

framework proposed by Todd & Benbasat (1992) because cognitive load reflects how 

efficiently a task is performed by the users. P3 latency significantly predicts user 

performance. As P3 latency increases (i.e., cognitive load increases), user performance 

decreases (i.e., longer time spent on the task).  

Our study contributes to research by showing the link between ERP components and user 

objective performance measures. Our results show that as the latency of the P3 component 

increases, user performance decreases (H2). It shows that as the load on working memory 
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increases, it slows down the processing speed of the central executive unit indicated by 

the latency of P3, which consequently decreases user performance. 

This research contributes to methodology by introducing a new method of measuring 

cognitive load during online shopping tasks. Similar to other ERP studies in the literature, 

which aimed at measuring cognitive load, we used the amplitude and latency of P3 

components of the user’s event-related potential. Two types of events were used to 

generate ERPs. The image presentation event is the moment that the task is presented to 

the participant. This type of event has been used in the past to measure cognitive load 

(Horst et al., 1984). However, unlike traditional ERP research, we also used one of the 

user’s activities during the main task as an event to generate ERPs. In our experiment, we 

used the user’s mouse clicks, which are natural events during the shopping session, to 

create ERPs. We believe that this design has potential for researchers in studying user-IT 

interactions for three reasons. First, mouse clicks are discrete events which can be 

segmented within a continuous user-IT interaction. They represent the user’s cognitive 

response to the experimental task i.e. finding the target product. Second. they are 

temporally as close as possible to the user’s decision moment. We can assume that the 

mouse clicks are the moments that users make their decision and locate the target product. 

Therefore, mouse click events show the user’s cognitive status after making the decision. 

Finally, mouse clicks are natural events in an online shopping context. This type of design 

is more suitable for studying user behavior in a business context since it does not distract 

the user from the main task which is an interaction with information technology. 

Therefore, in studying user behavior in a user-IT interaction, the choice of events is 

crucial. Such events need to be discrete and temporally relevant to the phenomenon of 

interest. 

This research also has implications for practice by showing how product sorting can 

reduce the user’s cognitive load. Website designers need to offer users the type of sorting 

they desire in order to reduce their cognitive load and increase their performance. This is 

important since cognitive load is a predictor of user satisfaction in an online shopping 

context (lo Storto, 2013). It means that a no match condition reduces user satisfaction with 

the shopping experience. 
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Our research has limitations with respect to accounting for all possible user goals in online 

shopping. To be able to test our model, we limited our study to two simple goals. 

However, this opens avenues for future research to investigate other user goals. In this 

research, we studied how users with pre-defined goals (i.e., finding the cheapest product 

or finding a specific brand) are affected by a website’s product sorting features. However, 

the constructive view of consumer decision making suggests that many users do not have 

a clearly predefined set of preferences to make product decisions (Payne, Bettman, 

Coupey, & Johnson, 1992). Their preferences and criteria for making a product decision 

are constructed in response to a number of tasks, contextual, and individual difference 

factors. Prior knowledge or expertise can affect the construction of individual preferences 

(Payne et al., 1992). Therefore, users who have no predefined strategy for decision 

making, may construct a set of preferences based on a number of factors. It is interesting 

to study how sorting products may affect users who do not have any predefined 

preference. Shopping websites also provide various type of filters for users to screen out 

the products that do not meet their minimum requirements. This feature is another instance 

of manipulating the presentation of information.  If users engage in a shopping task 

without any predefined goal, how do different types of sorting or filtering affect their 

cognitive load and performance? 
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2.5 Conclusion 

In this study, we investigate the contingent effect of product sorting and the user’s goal 

on cognitive load. We argue that product sorting will decrease the user’s’ cognitive load 

in making a product decision if it matches the user’s goal. Our study contributes to theory 

by uncovering the effect of the presentation order of information on the user’s cognitive 

load. Another contribution is the demonstration of the mechanism by which information 

ordering affects task performance. Our analysis shows that providing the correct 

information ordering results in a more efficient use of working memory resources, which 

in turn increases task performance. 
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Appendix1- EEG Data Analysis  

	
• The	MATLAB	Code	for	filtering	the	EEG	data:	

  

 FilterOrd=96; 

CutOffFreq1=0.1; 

CutOffFreq2=30; 

SamplingFreq=500; 

DataMatrix_Raw= EEGData; 

bpFilt = designfilt('bandpassfir', 'FilterOrder', FilterOrd, 'CutoffFrequency1', 

CutOffFreq1, 'CutoffFrequency2', CutOffFreq2, 'SampleRate', SamplingFreq); 

DataMatrix_Filtered = filtfilt(bpFilt,DataMatrix_Raw); 

 

This code was executed using the MATLAB transformation tool of Branvision Analyzer 

2.0. This transformation first exports the data into MATLAB, executes the code and 

then imports it back to the Brainvision software. 

 

 

Number of Segments per participant and the reason each segment was removed: 

 

Table 25- EEG segments details 

participant Condition Number of segments 
removed Reason Total Segments 

1 

1 0   10 

2 0   10 

3 0   10 

4 0   10 

2 
1 2 Artifacts 8 

2 0   10 
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3 0   10 

4 0   10 

3 

1 0   10 

2 0   10 

3 0   10 

4 0   10 

4 

1 1 Wrong 
Answer 9 

2 0   10 

3 0   10 

4 0   10 

5 

1 0   10 

2 0   10 

3 0   10 

4 0   10 

6 

1 0   10 

2 0   10 

3 0   10 

4 0   10 

7 

1 0   10 

2 0   10 

3 0   10 

4 0   10 

8 

1 0   10 

2 0   10 

3 0   10 

4 0   10 

9 
1 0   10 

2 0   10 
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3 0   10 

4 0   10 

10 

1 0   10 

2 0   10 

3 0   10 

4 0   10 

11 

1 0   10 

2 0   10 

3 0   10 

4 0   10 

12 

1 0   10 

2 0   10 

3 0   10 

4 0   10 

13 

1 0   10 

2 0   10 

3 0   10 

4 0   10 

14 

1 0   10 

2 0   10 

3 0   10 

4 0   10 

15 

1 0   10 

2 0   10 

3 0   10 

4 0   10 

16 

1 0   10 

2 0   10 

3 0   10 
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4 0   10 

17 

1 0   10 

2 1 Artifacts 9 

3 1 Artifacts 9 

4 0   10 

18 

1 0   10 

2 0   10 

3 0   10 

4 0   10 

19 

1 1 Artifacts 9 

2 0   10 

3 0   10 

4 0   10 

20 

1 0   10 

2 0   10 

3 0   10 

4 0   10 
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Chapter 4- 
Thesis Conclusion 

Conclusion 

Based on two essays, this thesis investigated the measurement and use of the cognitive 

load construct in information systems design research. We argued that complications in 

measuring cognitive load have been preventing IS researchers from using it to evaluate 

and improve the design of IT artifacts. This thesis is expected to contribute to IS research 

by introducing different metrics of cognitive load that can be used in various design 

studies.  

NeuroIS is a subfield in information systems which aims at informing IS researchers using 

neuroscience tools and theories (Loos et al., 2010). In this thesis, one of these tools (EEG) 

was used to propose new metrics of cognitive load. Thanks to the high temporal resolution 

of EEG, we were able to measure the user’s instantaneous workload in an online shopping 

experience. When we extracted three metrics from it, accumulated load, peak load, and 

average load, our results showed that accumulated load is the most comprehensive 

measure among them since it was the only measure that could capture the effect of both 

factors that contribute to workload (Task difficulty and task uncertainty). As cognitive 

load is associated with different behavioral constructs such as user satisfaction and 

emotion (Gwizdka, 2010), it can be used to evaluate the design of IT artifacts. High 

temporal resolution of workload metrics such as accumulated load and peak load allows 

us to study the efficiency of IT artifacts in a natural way, and avoid traditional biases 

associated with the use of subjective measures. 

A second experiment was designed as a continuation of the first experiment to test the 

convenience of an online shopping interface. We hypothesized the effect of search 

convenience on accumulated load. Convenience reflects user efficiency in online 

shopping. An inconvenient shopping website will have two consequences: increase in 

shopping time and increase in mental effort. The accumulated load construct captures both 

of these factors (Mirhoseini et al., 2016),  therefore, it can be used to assess user 
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convenience in any stage of the shopping process. We also hypothesized the effect of 

accumulated load on user satisfaction. We expect that this study will contribute to IS 

research by establishing accumulated load as a criterion for designing more convenient 

IT artifacts. 

In the second essay, we studied the contingent effect of product sorting and user goal on 

the user’s cognitive load. Information display is an important aspect of online shopping 

websites because it affects users behavior (Schkade & Kleinmuntz, 1994). We argued that 

if the user’s goal (the specific criteria that the user has for choosing a product) is aligned 

with product sorting, it helps the user make product decisions more easily and save 

working memory resources. To capture a user’s cognitive load in we used two types of 

cognitive load measures: 1- Event-Related-Potentials (ERP) and 2-Frequency analysis. 

We also used different events in order to provide multiple evidence for the effect of the 

fit between the user’s goal and product sorting on the user’s cognitive load. We further 

investigated the effect of cognitive load on user performance. Therefore, we expect that 

our third essay contribute to IS research by explaining the contingent effect of a user’s 

goal and product sorting on user mental workload. It also contributes to research by using 

multiple measures of cognitive load in an online shopping context and proposing a new 

way of evaluating IT design elements. 
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