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Résumé

La prise de décision sous incertitude est une tâche difficile mais inévitable dans de nombreuses

applications de la chaîne d’approvisionnement. Lors de la planification de production, les déci-

sions concernant le moment optimal et les quantités à produire sont prises lors de la résolution

de ce qui est communément appelé le problème de lotissement. Le problème de lotissement est

affecté par de nombreux facteurs incertains, notamment la demande des clients. Dans cette thèse,

nous étudions différentes variantes du problème de lotissement stochastique sous incertitude de la

demande, dans lesquelles différents types de niveaux de service sont utilisés pour faire face à cette

stochasticité. Considérant le problème de lotissement stochastique avec les niveaux de service

comme problème principal de ces travaux, nous en étudions différentes extensions. Chacune de

ces extensions étudie différents types de flexibilité dans le système et mesure la valeur de l’ajout

de ces flexibilités en termes d’économies monétaires. Plus précisément, nous étudions la valeur de

la flexibilité obtenue en imposant un niveau de service agrégé sur différents produits, en appliquant

une stratégie plus adaptative en réponse à la demande stochastique dans un cadre multi-niveaux, et

en ajoutant la possibilité de substitution de produits. Nous appliquons différentes méthodologies

de résolution et techniques d’approximation pour résoudre nos problèmes, y compris des formu-

lations de programmation mixte en nombres entiers, un algorithme de branchement et de coupes,

des approximations linéaires par morceaux et une approximation par la moyenne d’échantillon.

Enfin, nous montrons que la prise en compte de ces flexibilités dans le système de production se

traduit par des économies monétaires notables. Les extensions mentionnées sont organisées en

trois parties distinctes comme suit.

Le premier projet généralise le problème de lotissement stochastique avec des contraintes de

niveau de service dans un contexte multi-produits en considérant les niveaux de service agrégés en

plus des niveaux de service individuels. Le niveau de service agrégé a une pertinence pratique dans



les situations où il existe une grande variété de produits, par exemple, pour un produit disponible en

différentes couleurs ou tailles. Un niveau de service agrégé peut alors être imposé sur l’ensemble

des produits, alors que des niveaux de service spécifiques sont imposés au niveau des articles

individuels. Dans ce projet, différents types de niveaux de service sont considérés dans des versions

individuelles et agrégées, et une stratégie de planification statique est utilisée. La stratégie statique

est une stratégie dans laquelle les configurations et les décisions de production sont définies au

début de l’horizon de planification, décisions qui restent fixes lorsque les demandes réelles sont

observées. Les problèmes sont modélisés comme des modèles de programmation stochastique à

deux étapes et ils sont approximés à l’aide de fonctions linéaires par morceaux, en raison de leur

non-linéarité. Grâce à des expériences numériques, nous montrons que les niveaux de service

agrégés fournissent une flexibilité qui se traduit par une réduction des coûts, comparativement à

une situation où des niveaux de service traditionnels sont imposés indépendamment sur chaque

produit individuel. Cette réduction des coûts varie en fonction du type de niveau de service utilisé

et des différents paramètres du problème. En plus de la valeur des niveaux de service agrégés,

nous montrons que lorsqu’une certaine flexibilité de planification est autorisée dans le système,

nous pouvons tout de même utiliser des modèles statiques dans un horizon de temps glissant /

reculant, pour surmonter la limitation inhérente de ces modèles statiques et augmenter la réactivité

des modèles à la réalisation de la demande. Cela entraîne une diminution des niveaux de stocks et

des coûts dans le système.

Le deuxième projet est consacré au problème stochastique de lotissement à multi-niveaux dans

lequel nous avons une nomenclature (BOM) et des contraintes de capacité. Le niveau de service

utilisé dans ce problème est un niveau de service orienté sur le temps et la quantité. Nous avons

considéré un cadre général dans lequel, en plus des produits finaux, la demande indépendante

peut également se présenter au niveau des composants. Dans ce projet, nous étudions l’intérêt

d’avoir une stratégie adaptative comparativement à une stratégie statique dans le problème de lo-

tissement stochastique multi-niveaux. Dans la stratégie statique, les décisions de configuration et

de production pour tous les articles de la nomenclature restent fixes, tandis que dans la stratégie

adaptative, certains ou tous les produits suivent une stratégie statique-dynamique, dans laquelle

les décisions de production sont mises à jour lorsque la demande réelle est observée. Nous mod-

élisons le problème sous la forme d’un modèle stochastique à deux étapes et le résolvons à l’aide de

iv



modèles d’approximation par la moyenne d’échantillons dans lesquels l’incertitude est reflétée via

des ensembles de scénarios discrets. Trois structures de nomenclature différentes, à savoir, série,

assemblage, et générale, sont considérées. Nous montrons numériquement que l’ajout de flexibil-

ité au système entraîne des économies monétaires et que l’ampleur de ces économies dépend de

l’endroit où nous ajoutons la flexibilité dans la nomenclature. Des expériences numériques et des

simulations approfondies sont réalisées pour étudier l’impact de différents paramètres, notamment

le niveau de service, la structure des coûts de stockage dans la nomenclature, et le temps entre les

commandes, sur les économies de coûts lorsque nous appliquons une stratégie plus adaptative.

Le troisième projet est une extension du problème de lotissement stochastique avec une con-

trainte de niveau de service considérant la possibilité de substitution de produits. Plus précisé-

ment, ce projet présente le problème de lotissement stochastique multi-étapes avec substitution

et un niveau de service α jumelé. Nous considérons un horizon temporel infini dans lequel dif-

férentes décisions, à savoir la configuration de la production, et la quantité de production et de

substitution, sont dynamiquement mises à jour lorsque la demande est révélée. Nous proposons

différentes politiques d’horizon glissant pour résoudre ce problème et déterminer différentes déci-

sions de production à chaque étape de planification. Ces politiques reposent sur des modèles de

programmation mixte en nombres entiers et sont fondées sur des approximations de la version finie

du problème. Le modèle de politique avec des contraintes de niveau de service est résolu à l’aide

d’une méthode de séparation et coupes proposée pour les modèles avec des contraintes de chance

conjointes. Nous testons différentes politiques dans une procédure à horizon glissant à l’aide d’une

simulation, et les comparons en ce qui concerne leur temps d’exécution et la qualité de leur solu-

tion. A l’aide d’expériences numériques, nous montrons que la possibilité de substitution réduit

considérablement le coût total, à niveau de service identique ou supérieur.

Mots-clés

Planification de la production, lotissement, demande stochastique, prise de décision dans l’incertitude,

niveau de service, multi-niveaux, substitution de produits, approximation de la moyenne de l’échantillon,

branche et coupe
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Abstract

Decision-making under uncertainty is a challenging but inevitable task in many supply chain ap-

plications. In production planning, decisions about the optimal timing and production quantities

are known as lot sizing problems. The lot sizing problem is affected by many uncertain factors

including customer demand. In this thesis, we study different variants of the stochastic lot sizing

problem under demand uncertainty, in which different types of service levels are used to deal with

this stochasticity. Considering the stochastic lot sizing problem with service levels as the main

focus in this research, we study different extensions of it. Each of these extensions investigates

different types of flexibility in the system and measures the value of adding these flexibilities in

terms of cost savings. More specifically, we study the value of flexibility obtained by imposing

an aggregate service level over different products, applying a more adaptive strategy in response

to stochastic demand in a multi-level setting and adding the possibility of product substitution.

We apply different solution methodologies and approximation techniques to solve our problems,

including mixed integer programming formulations, a branch-and-cut algorithm, piece-wise lin-

ear approximations, and sample average approximation. Finally, we show that considering these

flexibilities in production systems results in noticeable cost savings. The mentioned extensions are

organized in three separate studies as follows.

The first study generalizes the stochastic lot sizing problem with service level constraints in

a multi-product context by investigating aggregate service levels in addition to individual ones.

The aggregate service level has practical relevance in situations where there is a lot of product

variety, e.g., for a specific type of product that comes in different colors or sizes. An aggregated

service level can then be imposed at the general product level, while specific service levels are

imposed at the individual item levels. In this research, different types of service levels are studied

in both individual and aggregate versions. The static strategy is considered, in which both setups
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and production decisions are defined at the beginning of the planning horizon, and they remain

fixed when the actual demands are observed. The problems are modeled as two-stage stochastic

programming models and they are approximated using piece-wise linear functions, due to their

nonlinearity. Through extensive numerical experiments, we show that the aggregate service levels

will provide flexibility which results in cost reduction, as opposed to traditional service levels

imposed independently on each individual item. This cost reduction varies based on the type of

service level and the different parameters of the problem. In addition to the value of aggregate

service levels, we show that when some planning flexibility is allowed in the system, we can still

use static models in a rolling/receding horizon environment to overcome its inherent limitation,

and increase the responsiveness of the models to the demand realization which leads to a decrease

in inventory levels and costs in the system.

The second study is dedicated to the stochastic multi-level capacitated lot sizing problem in

which we have a bill of material (BOM). The service level used in this problem is a time and

quantity-oriented service level. We addressed a general setting in which, in addition to the end

items, the independent demand may be present at the component levels as well. In this research,

we study the value of having an adaptive strategy compared to the static strategy in stochastic

multi-level lot sizing. In the static strategy, the setup and production decisions for all the items in

the BOM remain fixed, while in the adaptive strategy, some or all items follow a static-dynamic

strategy, in which the production decisions are updated when the demand is observed. We model

the problem as a two-stage stochastic model and solve it using sample average approximation mod-

els in which the uncertainty is reflected in discrete scenario sets. Three different BOM structures,

i.e., serial, assembly, and general, are considered and we numerically show that adding flexibility

to the system results in cost savings and the magnitude of these savings depends on where we

add the flexibility in the BOM. Extensive numerical experiments and simulations are performed to

investigate the impact of different parameters including the service level, the holding cost structure

in the BOM, and the time between orders on the cost savings when we apply a more adaptive

strategy.

The third study is an extension of the stochastic lot sizing problem with a service level con-

straint considering the possibility of product substitution. More specifically, this study presents the

multi-stage stochastic lot sizing problem with substitution and a joint α service level. We consider
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an infinite time horizon in which different decisions, including production setup, and the amount of

production and substitution are dynamically updated when the demand is realized. We propose dif-

ferent rolling-horizon policies to solve this problem and determine different production decisions

at each planning stage. These MIP-based policies are based on approximations of the finite version

of the problem. The policy model with service level constraints is solved using a branch-and-cut

method proposed for models with joint chance constraints. We test different policies in a rolling

horizon procedure using a simulation and compare them with respect to their execution time and

their solution quality. Using numerical experiments, we show that considering substitution will

reduce the total cost significantly, at the same or better service level.

Keywords

Production planning, lot sizing, stochastic demand, decision making under uncertainty, service

level, multi-level, product substitution, sample average approximation, branch-and-cut

Research methods

Operations research, mathematical programming, stochastic programming
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General Introduction

For companies manufacturing products, having an efficient Material Requirement Planning (MRP)

system is important to minimize different costs in the production system. A central component of

an MRP system is the production lot sizing problem. In dynamic lot sizing problems, proper inven-

tory control and production decisions are crucial to achieve a balance between customer demand

satisfaction and cost management. While insufficient inventory will lead to shortages, unnecessary

stocks will increase the holding cost, which is charged for the quantity being stored at the end of

each period. Furthermore, in each period in which production occurs, a setup has to be performed

which incurs a fixed setup cost. The basic lot sizing problem is a multi-period production planning

problem which considers the trade off between the setup costs and inventory holding cost and its

goal is to define the optimal timing and quantity of production to minimize the total cost over a

finite and discrete time horizon (Pochet and Wolsey, 2006). The lot sizing problem has been exten-

sively studied and applied in real world situations and extended to include several practical cases

such as multiple products, capacitated machines, or backlog costs (Jans and Degraeve, 2008).

The standard assumption in the basic lot sizing problem is that the demand is known. However,

the plans created by these techniques are often very sensitive to even a small change in the demand.

Decisions that do not incorporate uncertainty are known to be inferior and sometimes costly and

meaningless compared to decisions resulting from models in which the uncertainty is explicitly

taken into account. In this thesis, three different extensions of the lot sizing problem with demand

uncertainty are investigated. In this section, we will explain briefly two common concepts which

are important in all three articles in the thesis, and then introduce each of these papers, separately.

The first concept is the service level and the second one relates to the possible strategies which can

be used in stochastic lot sizing problems.

One common approach that the planners use to deal with uncertainty is to impose some demand



fulfillment criteria known as service levels to satisfy the uncertain demand. There are different

types of service levels which can be classified into event-oriented, quantity-oriented, and time and

quantity-oriented service levels. For example, the α service level is an event-oriented service level

which puts limits on the probability of stock outs. The β service level put limits on the amount of

unsatisfied demand in each period, and is hence a quantity-oriented service level. The γ service

level put limits on the backlog which is the cumulative unsatisfied backorder. There are different

forms of service levels. Some are defined for each period separately, and some over the whole

planning horizon. Different types of service levels are investigated in this research. The details of

the service levels and their formulations used in our research will be explained separately in the

corresponding chapters.

The other concept which is important throughout this thesis is the strategy which is used in

case of uncertainty. There are three main strategies in stochastic lot sizing problems which differ

based on the timing of the setup and production decisions. These strategies are static, dynamic,

and static-dynamic strategy (Bookbinder and Tan, 1988). In the static strategy, both the setup

and production decisions are determined at the beginning of the planning horizon and they remain

fixed when the demand is realized. In the dynamic strategy, both the setup and production decisions

can be dynamically changed to react to the demand realizations. The static-dynamic strategy is a

combination of these two strategies in which the setups are fixed at the beginning of the planning

horizon and the production decisions can be adjusted when the demands are realized.

Each of these strategies has specific characteristics and is suitable for different situations. The

dynamic strategy is the most responsive strategy which results in the lowest cost among the three.

However, in practice, it may lead to high variations in setups and production quantities. This

may be undesirable in some situations. A static strategy results in plans which do not exhibit

nervousness (Tunc et al., 2013), since the setups and the production quantity, will remain the same

regardless of the demand realization. The static-dynamic strategy is a compromise between the

two extremes and compared to the static strategy results in less cost as it is more responsive, and

more cost and less nervousness compared to the dynamic strategy.

Each of the chapters in this thesis considers a different extensions related to the lot sizing

problem with stochastic demand and service levels.

In Chapter 1, we investigate the value of aggregate service levels in a two-stage stochastic lot
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sizing problem. The service levels which are mentioned before are usually defined for each of the

products separately, in the literature. In this work, we study the aggregate service levels which

are defined jointly over all different products. Through extensive numerical experiments, we show

that these joint service levels will provide flexibility which results in cost reduction, as opposed to

traditional service levels imposed independently on each item. This cost reduction varies based on

the type of service level and the parameters of the problem. All three categories of service levels,

i.e., event-oriented, quantity-oriented, and time and quantity-oriented service levels are studied

in this research. The strategy which is used in this research is the static strategy. The problems

are modeled as two-stage stochastic models. Due to the fact that some service levels result in

nonlinear functions for some of the service levels, such models are approximated and solved using

piece-wise linear functions.

One of the disadvantages of the static strategy is that this strategy is not responsive to demand

realizations, which potentially leads to large inventory levels and costs in the system. In this

research, we will show that we can still use static models in a rolling/receding horizon environment

to overcome some of their inherent limitations, when we allow production recourse decisions. In

such an implementation, only the decisions related to the first planning periods under the static

strategy are implemented. The planning horizon is next moved forward and the input parameters

are updated. This process is next repeated until the end of planning horizon. This implementation

leads to a plan in which production quantities in further periods can still be changed, and hence

results in a reduction in the inventory levels and total cost.

The second chapter is dedicated to another extension of the stochastic lot sizing with service

levels. In this research, we study the stochastic multi-level capacitated lot sizing problem in which

we have a bill of material (BOM). The service level used in this problem is a time and quantity-

oriented service level. We address a more general setting in which, in addition to the end items,

their components can also have independent demand. We investigate and compare two different

strategies, which are the static strategy and a more adaptive one in which we apply the static-

dynamic strategy for some or all of the items. We model the problem as a two-stage stochastic

model and solve it using sample average approximation models in which the uncertainty is reflected

using a set of discrete scenarios. We numerically show that adding flexibility to the system can

result in cost savings depending on the flexibility level in the BOM.
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The third chapter considers another important extension to the stochastic lot sizing problem

by considering substitution. More specifically, this chapter presents the multi-stage stochastic lot

sizing problem with substitution and joint α service level. In this research, we consider the dy-

namic strategy in which both the setup and production decisions can be updated after the demands

realization. We propose a dynamic programming formulation for this problem and apply different

policies to determine different production decisions including setups, production, and substitution

at each planning stage. We test the problem in a rolling horizon procedure using a simulation. In

the following chapters, we will explain each of these research projects separately.
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Chapter 1

The value of aggregated service levels in

stochastic lot sizing problems

Chapter information: This chapter has been published as a research article in Omega: Sereshti,

Narges, Adulyasak, Yossiri and Jans, Raf, The value of aggregated service levels in stochastic lot

sizing problems, Omega, 102335, (2021) *Awarded the Esdras-Minville best student paper award

in 2022, HEC Montréal

Abstract

Dealing with demand uncertainty in multi-item lot sizing problems poses huge challenges due

to the inherent complexity. The resulting stochastic formulations typically determine production

plans which minimize the expected total operating cost while ensuring that a predefined service

level constraint for each product is satisfied. We extend these stochastic formulations to a more

general setting where, in addition to the individual service level constraints, an aggregate service

level constraint is also imposed. Such a situation is relevant in practical applications where the

service level aggregated from variety of products must be collectively satisfied. These extended

formulations allow the decision maker to flexibly assign different individual service levels to differ-

ent products while ensuring that the overall aggregate service level is satisfied and these aggregated

service level measures can be used in conjunction with the commonly adopted individual service

levels. Different mathematical formulations are proposed for this problem with different types of



service levels. These formulations are a piece-wise linear approximation for the β , γ , and δ ser-

vice levels and a quantile-based formulation for the αc service level. We also present a receding

horizon implementation of the proposed formulations which can be effectively used in a dynamic

environment. Computational experiments are conducted to analyze the impact of aggregate ser-

vice levels and demonstrate the value of the proposed formulations as opposed to standard service

levels imposed on individual items.

1.1 Introduction

In dynamic lot sizing problems, proper inventory control and production decisions are crucial to

achieve a balance between customer demand satisfaction and cost management. While insufficient

inventory will lead to shortages, unnecessary stocks will increase the holding cost. An inventory

holding cost is charged for the quantity being stored at the end of each period. Furthermore, in each

period in which production occurs, a setup has to be performed which incurs a fixed setup cost. The

basic lot sizing problem hence considers the trade-off between setup costs and inventory holding

costs. The goal of the standard lot sizing problem is to determine the optimal timing and production

quantities in order to satisfy a known demand over a finite and discrete time horizon (Pochet and

Wolsey, 2006). The lot sizing problem has been extended to include several practical cases such

as multiple products, capacitated machines, or backlog costs (Jans and Degraeve, 2008).

While the standard assumption in lot sizing problems is that all the parameters are determinis-

tic, it is inevitable that some parameters are actually uncertain in practice. From a practical point

of view, even a small level of uncertainty may heavily affect the nominal solution determined by a

deterministic model and make it infeasible or more costly than anticipated (Ben-Tal et al., 2009).

To deal with the uncertainty in demand, safety stock levels are usually predetermined for each

item under strict assumptions such as stationary demand, normality, as well as the independence

of demand. The decisions resulting from models that do not incorporate uncertainty are known to

be sub-optimal compared to the solution of the models in which the uncertainty has explicitly been

taken into account (Mula et al., 2006). Consequently, there is a need to have methods to mitigate

the risk of uncertainty and simultaneously determine the time-dependent lot size and buffer stock

decisions in the dynamic lot sizing problem.
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The stochastic lot sizing problem is an extension of the deterministic case in which the problem

is to determine the production schedules and quantities to satisfy stochastic demand over a finite

planning horizon. In the context where the planner must ensure that a service level is satisfied, the

objective is to minimize the total expected cost whereas the decisions are subject to certain demand

fulfillment criteria (Tempelmeier, 2007). These criteria are usually modeled as chance constraints

in which the probability of reaching a service level must be greater than or equal to a predefined

value (Brahimi et al., 2017). In this paper, several service level measures have been investigated.

The α service level considers the probability of no stock out during the production or procurement

cycle, the β service level or the fill rate is the proportion of the demand directly filled from stock,

the γ service level limits the proportion of expected backlog to expected demand, and the δ service

level limits the proportion of total expected backlog to the maximum expected backlog. These

service levels are typically defined for each product separately.

In this research, we study an aggregate service level which is defined aggregately for multiple

products in addition to individual service levels when uncertainty in the demand is present (Akçay

et al., 2016). Such a situation is relevant in practical applications where there is a lot of product

variety. For a specific type of clothing that comes in different colors or sizes, an aggregated service

level can be imposed at the product level (i.e., for a specific piece of clothing), while specific

service levels are imposed at the individual levels (i.e., for the different sizes). Consider a situation

where a firm is concerned with its aggregate service level across multiple products. While it is clear

that an aggregate service level of, for example, 95% can be achieved by imposing an individual

service level of 95% for each item, this solution does not take advantage of the possible flexibility

to have different individual service levels. The firm can impose a specific aggregate service level

(e.g. 95%) while also imposing individual service levels which are less strict (e.g. 90%). This

provides the flexibility to have a solution in which the resulting individual service levels for some

products are less strict than the imposed aggregate level, while others are stricter. This flexibility

can result in an overall cost reduction.

Different mathematical models are proposed to approximate this problem when considering

different types of service level. These formulations are a piece-wise linear approximation and a

quantile-based formulation. The contributions of this paper are as follows. The first contribution

of this paper is to propose the idea of an aggregate service level for the stochastic lot sizing prob-
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lem which generalizes the formulations presented in the literature. Next, we propose mathematical

formulations to model an aggregate service level for different types of service levels considered

in the literature (i.e., the α , β , γ , and δ service levels). In this problem, the imposed aggregate

service levels allow the flexibility to choose a separate service level for each item and can be used

in conjunction with minimum individual service level constraints used in the literature. While the

aggregate service levels are parameters in the model, the individual service levels are a result of the

optimization process. The proposed piece-wise linear approximation formulations for the β , γ , and

δ service levels in this research are extensions of existing formulations, while the quantile-based

formulation is newly proposed for these problems. Finally, we provide computational experiments

and investigate the value of the aggregate service level in different situations. Another strength

of the paper is the use of a unified simulation procedure for the evaluation of the approximation

formulations in order to have a fair comparison of the different models and service levels. In

the situations in which some level of nervousness is acceptable, the formulations under the static

uncertainty can be used in a rolling/receding horizon environment to overcome some of their inher-

ent limitations. The analysis of the application of the proposed formulations in a receding horizon

fashion is also another contribution of this paper.

This paper is structured into nine different sections. In the second section, we review the ex-

isting literature. In Section 3, different aggregate service levels are introduced. Sections 4 to 6 are

dedicated to the formulations for the various aggregate service levels. In each of these sections, the

mathematical models and different approximations are presented. Section 7 discusses the imple-

mentation of the model in a receding horizon environment. Section 8 discusses the experimental

results. Section 9 concludes the paper and discusses possible future research.

1.2 Literature review

Although imposing individual demand fulfillment criteria is the most common approach to deal

with multiple products in inventory management, the idea of defining an integrated service level

has been investigated in the inventory management literature. Kelle (1989) stated that having

different items with different demand, cost, and delivery characteristics, requires different service

levels, and defining fixed service levels for different groups of items to insure an aggregate service
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level is a challenge. A common approach to deal with the huge numbers of products or stock-

keeping units (SKUs) in the inventory system in many real cases, is using ABC classification to

group the items. Companies usually impose a fixed service level for all the products in the same

group. Teunter et al. (2010) showed that this approach based on the classical classifications results

in solutions which are far from the optimal solutions. They introduce a more efficient approach for

ABC classification in which they define an overall fill rate over all SKUs, but they did not consider a

setup cost in their calculations (Teunter et al., 2010). Akçay et al. (2016) introduce a multi-product,

joint service-level model for an inventory control problem without any lot sizing decisions. They

used order fill rate, line item fill rate and dollar fill rate. Each of these service levels is joint across

random customer orders with different products and correlated demands. Escalona et al. (2019)

investigated the effect of not having similar service levels for fast-moving items under different

inventory policies. In their study, they consider different types of service levels (α and β ) and

propose different models for the combination of them for two categories of items belonging to a

different customers’ class. Shivsharan (2012) considered an inventory control system for a large

number of spare parts with highly random and in some cases sparse demand. He mentioned that

in such a case achieving the desired service level imposes a huge inventory cost. To deal with

this problem, he proposed a model to minimize the safety stock cost while achieving an aggregate

service level. Gruson et al. (2018) and Stadtler and Meistering (2019) investigate different types

of service levels including various aggregate service levels in the deterministic lot sizing problem.

It is worthwhile to mention that there is a difference between joint and aggregate service levels.

Although both of these ideas consider multiple products simultaneously, in the literature, the joint

service levels refer to the case where the service level requirements are imposed on all of the

products simultaneously as chance-constraints based on the joint distributions of product demands

whereas the aggregate service levels we consider here refer to the case where the constraints are

imposed on aggregated values of the service levels associated with individual products. The use

of the aggregate service levels allows us to extend the models with individual service levels in

a scalable manner to deal with a practical case where companies must ensure that the aggregate

service level of a group of products is collectively satisfied. Assuming the same value for joint,

aggregate, and individual service levels, the joint service levels results in more strict constraints

compared to individual service level while the aggregate service level results in more relaxed and

9



flexible constraints. In addition, the models with joint service level can be much more difficult to

solve and not tractable (Jiang et al., 2017).

In the literature, several service level measures have been proposed when dealing with demand

uncertainty (Helber et al., 2013). The α service level ensures that the probability of no stock out

during the production or procurement cycle is more than α . The β service level or the fill rate is

the proportion of the demand directly filled from stock and it is equal to one minus the expected

backorders to the expected demand. The γ service level is one minus the proportion of expected

backlog to expected demand. Note that while the γ service level considers backlog, the β service

level deals with backorders. The backorder level in period t is the quantity of unmet demand

in period t whereas the backlog in period t represents the cumulative backorders from period 1

to period t that have not been filled by the end of period t (Gade and Küçükyavuz, 2013). The

δ service level ensures that the proportion of total expected backlog to the maximum expected

backlog is less than or equal to 1− δ . It is stated that this service level transparently considers

the amount of backlog and the waiting time together (Helber et al., 2013). These service levels

are defined for each of the products individually. These service levels and their mathematical

representations will be further discussed in Section 3.

Many papers studied the lot sizing problem with service level constraints using different strate-

gies and different types of service levels (Tempelmeier, 2007; Helber et al., 2013; Tempelmeier,

2011; Tempelmeier and Herpers, 2011; Tempelmeier and Hilger, 2015; Tunc et al., 2014). Ta-

ble 1.1 summarizes the most relevant papers. As can be seen in this table, none of the reviewed

papers consider the aggregate service level in a stochastic context. This research addresses this gap

in the literature.

Bookbinder and Tan (1988) investigated three different strategies to deal with a probabilistic

single-stage lot sizing problem with service level constraints. The first strategy is the static un-

certainty in which the decisions for all periods are made at the beginning of the planning horizon

and cannot be changed. These decisions are the setup and production level decisions. In the sec-

ond strategy, which is called dynamic uncertainty, the setups and production levels are decided

dynamically as the information is revealed during the planning horizon. The third strategy is the

combination of the two previous strategies in which the setup periods are determined at the begin-

ning of the planning horizon and remain fixed, whereas the production quantities are determined

10



dynamically depending on the realized demand. This strategy is called the static-dynamic strategy.

Each of these strategies has specific characteristics and are suitable for different situations. In this

research, we select the static strategy. A static strategy results in plans which do not exhibit any

nervousness ( Tunc et al. (2013), Koca et al. (2018)), since the production plan, both with respect to

the setups and the production quantity, will remain the same regardless of the demand realization.

In addition, among the three strategies only the static strategy is able to deterministically consider

the capacity requirements (Tempelmeier, 2013). In other words, in this strategy once a feasible

production plan has been found, it will be fixed and the production quantities remain the same,

and hence the capacity limitation will not be violated (Tempelmeier, 2011). As can be seen in Ta-

ble 1.1, all of the papers with capacity constraints are analysed under the static strategy. For sure,

the static-dynamic uncertainty strategy results in less cost as it is more responsive, however, in

practice, it may lead to high variance in production quantities which may be undesirable in some

situations. For example, in MRP systems, changes in the production of the parent item lead to

changes in the replenishment of its components, and there may be some negative consequences for

the whole supply chain due to the bullwhip effect. Second, the random changes in the timing and

quantity of production results in random resource requirements, which is referred to in the litera-

ture as planning nervousness. In some cases it may make the problem infeasible, the planned due

dates may be missed, and the changes may be also unfavorable or prohibited by labour agreements

(Tempelmeier, 2013).

In the situations in which production quantity fluctuations are acceptable, we can still use static

models in a rolling/receding horizon environment to overcome some of their inherent limitations.

In such an implementation, only the decisions related to the first (or first few) planning period(s)

are implemented. The planning horizon is next moved forward and the information is updated.

This process is next repeated. The difference between the rolling and receding horizon approach

is that in the rolling horizon approach the end of the planning horizon is also moved, while in

the receding horizon the end of the planning horizon remains fixed. This implementation will

automatically lead to a plan in which production quantities in further periods can still be changed.

While it is true that for a given static horizon, the static-dynamic model will result in lower costs

compared to the static models, Bookbinder and Tan (1988) conclude (for the α service level) that

“this advantage will be lost in the rolling schedule situation”, and hence it is sensible to use a static
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model in a rolling horizon fashion. Dural-Selcuk et al. (2019) showed for the single-item non-

stationary stochastic lot sizing problem with backorders that the performance of both the static-

dynamic and static policies is improved in a receding horizon. The authors also mentioned that

the improvement is substantial for the static policy and the performance difference between these

policies becomes very small in a receding horizon. Bookbinder and Tan (1988) discussed how to

implement the static uncertainty strategy in a rolling-schedule environment for the α service level.

Meistering and Stadtler (2017) proposed a stabilized-cycle strategy which combines the idea of

static strategy and rolling schedule and come up with the concept of stabilized-cycle to use the

production stability of the former and the ability of responding to uncertain data of the latter. In

this research we also explain how to apply the proposed model in a receding horizon plan.

Table 1.1: Overview of literature on lot sizing with service level constraints

Authors Strategy Service level type Individual Aggregate Capacity
static dynamic static-dynamic α β γ δ

Bookbinder and Tan (1988) + + + + +
Tarim and Kingsman (2004) + + +
Tempelmeier (2007) + + + +
Tempelmeier and Herpers (2010) + + + +
Tempelmeier (2011) + + + +
Tempelmeier and Herpers (2011) + + +
Gade and Küçükyavuz (2013) + +
Helber et al. (2013) + + + +
Tunc et al. (2014) + + +
Rossi et al. (2015) + + + +
Tempelmeier and Hilger (2015) + + + +
Tunc et al. (2018) + + + +
Gruson et al. (2018) Deterministic + + + + + +
Stadtler and Meistering (2019) Deterministic + + + + +
Our Work + + + + + + + +
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1.3 Individual and aggregate service levels

In all the models proposed in this paper, a static strategy in which all the decisions are made at the

beginning of the planning horizon is considered and the production quantity decisions cannot be

changed when demands are realized. In addition to the deterministic multi-item lot sizing problem

assumptions, we assume that the demand for different products in different periods is not known,

but the distributions are known and they are independent for each product. In the case of a stock

out, the unmet demand is backlogged and fulfilled as soon as possible.

In this research, we investigate four different types of aggregate service levels. These service

levels are based on the αc, β , γ , and δ service levels (Tempelmeier, 2013). Table 1.2 defines these

different types of service levels in separate and aggregate format. Some of these service levels

are defined globally over the whole planning horizon (Tempelmeier, 2013) and some others are

imposed for each planning period. The αc is the minimum service level provided in each planning

period considering the total planning horizon. It is also possible to consider the average service

level across the planning horizon which is called αp (Tempelmeier, 2013). Let K be the set of

products and T the set of time periods. The first type of service level is the β service level which

is a quantity oriented service level. Considering BOkt as the backorder and Dkt the demand of

product k in period t, E[BOkt ] and E[Dkt ] are the expected backorder and expected demand for

product k in period t, respectively. The aggregate service level in the global case and based on the

β service level is equal to 1 minus the total expected backorders for all products in all planning

periods divided by the total average demand over all products and periods. Another format of

this service level is βp which is imposed in each period. This service level considers the expected

backorder divided by the expected demand in each planning period.

The second type of aggregate service level is based on the γ service level which is time and

quantity oriented. This service level in the global case is equal to one minus the total expected

backlog divided by total expected demand (Helber et al., 2013). In this service level Bkt is the

backlog and E[Bkt ] is the expected backlog for product k in period t. We can define γp as the

gamma service level per period.

The third type of aggregate service level is based on the δ service level which is equal to 1

minus the total expected backlog divided by the total maximum expected backlog (Helber et al.,
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Table 1.2: Different types of service level and their separate and aggregate forms

SL Separate Aggregate

Quantity oriented service level

β
∑t∈T E[BOkt ]

∑t∈T E[Dkt ]
≤ 1−β ∀k ∈ K

∑t∈T ∑k∈K E[BOkt ]

∑t∈T ∑k∈K E[Dkt ]
≤ 1−β

βp
E[BOkt ]

E[Dkt ]
≤ 1−βp ∀k ∈ K,∀t ∈ T

∑k∈K E[BOkt ]

∑k∈K E[Dkt ]
≤ 1−βp ∀t ∈ T

Time and quantity oriented service level

γ
∑t∈T E[Bkt ]

∑t∈T E[Dkt ]
≤ 1− γ ∀k ∈ K

∑t∈T ∑k∈K E[Bkt ]

∑t∈T ∑k∈K E[Dkt ]
≤ 1− γ

γp
E[Bkt ]

E[Dkt ]
≤ 1− γp ∀k ∈ K,∀t ∈ T

∑k∈K E[Bkt ]

∑k∈K E[Dkt ]
≤ 1− γp ∀t ∈ T

δ
∑t∈T E[Bkt ]

∑t∈T (T − t +1)E[Dkt ]
≤ 1−δ ∀k ∈ K

∑t∈T ∑k∈K E[Bkt ]

∑t∈T ∑k∈K(T − t +1)E[Dkt ]
≤ 1−δ

δp
E[Bkt ]

t
∑
j=1

E[Dk j]

≤ 1−δp ∀k ∈ K,∀t ∈ T
∑k∈K E[Bkt ]

t
∑
j=1

∑k∈K E[Dk j]

≤ 1−δp ∀t ∈ T

Event oriented service level

αc min
t∈T

(pr(Ik0 +
t
∑
j=1

(xk j−Dk j)≥ 0))≥ αc ∀k ∈ K ∑
k∈K

wk min
t∈T

(pr(Ik0 +
t
∑
j=1

(xk j−Dk j)≥ 0))≥ α
agg
c

2013) in the global case. This service level is also a time and quantity oriented service level. The

δp service level is defined as the δ service level per period. This service level is 1 minus the

expected backlog in each period divided by the maximum expected possible backlog until period

t. The maximum expected backlog in period t is equal to the cumulative expected demand until

period t.

The fourth type of service level is the α service level which ensures that the probability of

having a stock-out for each product is less than or equal to 1−α . This service level is an event

oriented one which is typically measured over each replenishment cycle (αc). In order to model this

in a multi-period problem, the required service level must be imposed in each specific period and

the resulting service level is the minimum service level over all planning periods (Tempelmeier,

2013). The initial inventory of product k is indicated by Ik0. Considering wk as the non-negative
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weight of each product such that ∑k∈K wk = 1 and xkt the production for product k in period t, the

separate and aggregate version of this service level are shown in Table 1.2. The aggregate service

level guarantees that the weighted average of the resulting individual service levels is at least α
agg
c

(αagg
c ∈ [0,1]).

For the global aggregate β , γ , and δ service levels and for specific weights (wk), the weighted

sum of the separate service levels is equal to the aggregate service level as defined in Table 2.

More explanations and the proofs are given in Appendix A. For the per period service levels, we

can define such weights for each planning period, as there are T constraints for each service level

(See Appendix A). Note that the aggregate version of the αc service level is already defined as a

weighted sum of separate service levels.

It is also possible to define different aggregate service levels for different product families. In

this case, the service levels are aggregately defined over all products within a family of products

(See Appendix B).

Before moving forward to the mathematical models of each service level, we will provide an

example based on the β service level. The main purpose of the example is to illustrate the new

concepts of aggregate service levels and compare it to the traditional individual service levels.

Table 1.3 provides this example with 5 products and 5 periods for 3 different situations. The

first column shows the result for the 95% service level imposed for each individual product. The

second and third columns show the result for the less tight individual service levels of 90% and

85%, respectively, in addition to an aggregate service level of 95% which is defined over all SKUs.

Adding the flexibility of the aggregate service level to the model results in a cost reduction and

different individual service levels. In the case of aggregate service level, the assigned individual

service levels are not arbitrary and are the result of the optimization process. In this example, the

SKUs are sorted based on their holding costs. The first SKU has the lowest holding cost and the last

one has the highest. The model satisfies the aggregate service level by stocking less of the products

with a high inventory cost, leading to a lower individual service level for these products. At the

same time, the model compensates this by stocking more of the products with a low inventory cost,

leading to a higher individual service level for these products. Hence, adding the flexibility of an

aggregate service level results in a 7% cost reduction and an increase in the service level for 3

products at the expense of a service level reduction for two other products.
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Table 1.3: Small example with β separate and aggregate service levels

Separate 95%
Aggregate 95%
Separate 90%

Aggregate 95%
Separate 85%

Individual
service
level

SKU 1 95% 99% 99%
SKU 2 95% 98% 99%
SKU 3 95% 98% 97%
SKU 4 95% 90% 94%
SKU 5 95% 90% 85%

Aggregate Service Level 95% 95% 95%
Total Cost 23,563 23,165 22,023
Cost Decrease 0% 2% 7%

1.4 Models with aggregate β service levels

In this section, we investigate the aggregate β service level, imposing that the total expected

amount of backorder divided by the total expected demand should be less than a predefined per-

centage. The expected inventory and backorder in each planning period is a non-linear function

of the cumulative production in each planning period. To solve this problem we use a piece-wise

linear approximation.

1.4.1 Problem definition and mathematical model

The parameters and decision variables are presented in Table 1.4. The mathematical model for the

stochastic capacitated lot sizing problem with aggregate β service level is as follows:

Min ∑
t∈T

∑
k∈K

(scktykt +hcktE[Ikt ]) (1.1)

subject to:

Ik,t−1 + xkt +Bkt = Ikt +Dkt +Bk,t−1 ∀t ∈ T,∀k ∈ K (1.2)

xkt ≤Mykt ∀t ∈ T,∀k ∈ K (1.3)

∑
k∈K

(stktykt + ptktxkt)≤Capt ∀t ∈ T (1.4)
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Table 1.4: Parameters and decision variables of the models with β service level

Sets

K Set of products
T Set of planning periods
Parameters

β Target fill rate as an aggregate service level
capt Production capacity in period t
hckt Inventory holding cost for product k in period t
Ik0 The initial inventory for product k
M A sufficiently large number
ptkt Unit production time for product k in period t
sckt Setup cost for product k in period t
stkt Setup time for product k in period t
Random variables

Bkt Amount of backlog for product k at the end of period t
BOkt Amount of backorder for product k at the end of period t
Dkt Demand for product k in period t (model input)
Ikt Amount of physical inventory for product k at the end of period t
Decision variables

xkt Amount of production for product k in period t
ykt Binary variable which is equal to 1 if there is a setup for product k in period t, 0

otherwise

E[BOkt ] = E[max{0,
t

∑
j=1

(Dk j− xk j)− Ik0}]

−E[max{0,
t−1

∑
j=1

Dk j−
t

∑
j=1

xk j− Ik0}]
∀t ∈ T,∀k ∈ K (1.5)

∑t∈T ∑k∈K E[BOkt ]

∑t∈T ∑k∈K E[Dkt ]
≤ 1−β (1.6)

ykt ∈ {0,1} ∀t ∈ T,∀k ∈ K (1.7)

xkt ≥ 0 ∀t ∈ T,∀k ∈ K (1.8)

Ikt ≥ 0 ∀t ∈ T,∀k ∈ K (1.9)

Bkt ≥ 0 ∀t ∈ T,∀k ∈ K (1.10)

The objective function of the model (1.1) minimizes the setup and expected inventory holding

costs. Constraints (1.2) are the flow conservation constraint. Constraints (1.3) guarantee the setup

forcing in case there is production. Constraints (1.4) enforce the capacity limitation. Constraints

(1.5) calculate the expected backorder level for product k in period t (Van Pelt and Fransoo, 2018).

The first part calculates the backlog in period t, and the second part calculates the amount of
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cumulative demand until the period (t − 1) which is not satisfied by the cumulative production

up to period t . This calculation is based on the FIFO assumption. Constraint (1.6) ensures the

aggregate β service level. Constraints (1.7) to (1.10) show the domain of the different variables in

the model. In this model the expected value of inventory level (E[Ikt ]) can also be calculated by

equation (1.11) instead of having constraint (1.2).

E[Ikt ] = E[max{0, Ik0 +
t

∑
j=1

(xk j−Dk j)} ∀t ∈ T,∀k ∈ K (1.11)

As can be seen, in this mathematical formulation, E[BOkt ] and E[Ikt ] are non-linear functions

of the cumulative production which are shown in (1.5) and (1.11), respectively. In the next section,

a mathematical model is presented to approximate this non-linear model.

1.4.2 Piece-wise linear approximation

Rossi et al. (2014) performed a comprehensive study on the first order loss function and its linear

upper and lower bounds. They also presented efficient piece-wise linear upper and lower bounds

for normally distributed random variables which have been used in piece-wise linear approximation

models for stochastic lot sizing problem with demand uncertainty (Rossi et al., 2015; Tempelmeier

and Hilger, 2015; Tunc et al., 2018; Van Pelt and Fransoo, 2018). Considering the static strategy,

the formulation presented here is an extension of the model proposed by Van Pelt and Fransoo

(2018), in which, the expected inventory, backlog, and backorder are calculated by (1.12), (1.13),

and (1.14) respectively. Qkt is the cumulative production of product k up to period t, which is

equal to ∑
t
j=1 xk j. CDkt is the cumulative demand for product k until period t, and Γ1

CDkt
(Qkt) is the

first order loss function of CDkt based on Qkt . Equations (1.5), (1.11), and (1.24) are equivalent

to (1.14),(1.12), and (1.13), respectively, but take into account the initial inventory. These non-

linear functions can be approximated using piece-wise linear functions based on the cumulative

production quantities. Assuming the normal distribution for demand, Van Pelt and Fransoo (2018)

show that the expected backorder (1.14) is a non-convex function and to insure that the pieces

are selected sequentially, additional binary variable need to be added to the model. These addi-

tional variables are not needed in case of convexity of the functions. The parameters and decision

variables are presented in Table 1.5.

E[Ikt ] = Qkt−E[CDkt ]+Γ
1
CDkt

(Qkt) (1.12)
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E[Bkt ] = Γ
1
CDkt

(Qkt) = E[max{0,CDkt−Qkt}] (1.13)

E[BOkt ] = Γ
1
CDkt

(Qkt)−Γ
1
CDk,t−1

(Qkt) (1.14)

Table 1.5: Parameters and decision variables of piece-wise linear model

Sets

L Set of linear segments
Parameters

u0kt Lower limit of segment 1 for product k in period t
ulkt Upper limit of segment l for product k in period t
∆I0kt Expected physical inventory associated with 0 cumulative production for product k in pe-

riod t
∆BO0kt Expected backorder associated with 0 cumulative production for product k in period t
∆Ilkt Slope of inventory function associated with segment l for product k in period t
∆BOlkt Slope of backorder function associated with segment l for product k in period t
Decision variables

wlkt Cumulated production quantity associated with segment l for product k in period t
λlkt The binary variable which is equal to 1 if wlkt takes a positive value.

Min ∑
t∈T

∑
k∈K

(scktykt +hckt(∆I0kt +∑
l∈L

∆Ilkt wlkt)) (1.15)

subject to constraints (1.3), (1.4), (1.7), (1.8), and:

xkt = ∑
l∈L

wlkt−∑
l∈L

wlk,t−1 ∀t ∈ T,∀k ∈ K (1.16)

wl−1,kt ≥ (ul−1,kt−ul−2,kt)λlkt ∀t ∈ T,∀k ∈ K,∀l ∈ L, l ≥ 2 (1.17)

wlkt ≤ (ulkt−ul−1,kt)λlkt ∀t ∈ T,∀k ∈ K,∀l ∈ L (1.18)

∑
l∈L

wlk,t−1 ≤∑
l∈L

wlkt ∀t ∈ T,∀k ∈ K (1.19)

∑t∈T ∑k∈K(∆BO0kt +∑l∈L ∆BOlkt wlkt)

∑t∈T ∑k∈K E[Dkt ]
≤ 1−β (1.20)

wlkt ≥ 0 ∀t ∈ T,∀k ∈ K,∀l ∈ L (1.21)

λlkt ∈ {0,1} ∀t ∈ T,∀k ∈ K,∀l ∈ L (1.22)

The objective function (1.15) is to minimize the setup cost plus the approximated expected

value of the holding costs. Constraints (1.16) calculate the production amount based on the selected

segments. Constraints (1.17) to constraints (1.19) guarantee that the segments are selected in
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sequential order as proposed in Van Pelt and Fransoo (2018). Constraint (1.20) is the aggregate

service level constraint in which the total average backorders divided by the total average demand

is less than or equal to 1− β . Constraints (1.21) and (1.22) show the domain of the different

variables in the model.

1.5 Models with aggregate γ and δ service levels

In this section, we investigate an aggregate version of time and quantity oriented service levels (i.e.,

γ and δ ). First, we explain the model for the γ service level which imposes that the total expected

backlog divided by the total expected demand should be less than a predefined percentage. We

then modify the model to consider an aggregate δ service level.

1.5.1 Problem definition and mathematical model

The mathematical model for this problem is presented as follows:

Min ∑
t∈T

∑
k∈K

(scktykt +hcktE[Ikt ]) (1.23)

subject to constraints (1.2), (1.3), (1.4), (1.7), (1.8), (1.9), (1.10), and:

E[Bkt ] = E[max{0,
t

∑
j=1

Dk j−
t

∑
j=1

xk j− Ik0}] ∀t ∈ T,∀k ∈ K (1.24)

∑t∈T ∑k∈K E[Bkt ]

∑t∈T ∑k∈K E[Dkt ]
≤ 1− γ (1.25)

The objective function of the model (1.23) minimizes the setup and expected inventory holding

costs. The expected value of backlog (E[Bkt ]) is calculated by constraint (1.24). Constraint (1.25)

guarantees the γ aggregate service level.

It is also possible to define the aggregate γ service level in each planning period (γp). In this

case, constraint (1.25) is replaced by constraints (1.26).

∑k∈K E[Bkt ]

∑k∈K E[Dkt ]
≤ 1− γp ∀t ∈ T (1.26)
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It is also possible to use the δ service level instead of the γ service level. In this case, constraint

(1.25) is replaced by constraint (1.27). Both the γ and δ service levels work with the expected

backlog for each product in each planning period.

∑t∈T ∑k∈K E[Bkt ]

∑t∈T ∑k∈K(T − t +1)E[Dkt ]
≤ 1−δ (1.27)

In this mathematical formulation E[Ikt ] and E[Bkt ] are non-linear functions of the cumulative

production which are shown in (1.11) and (1.24), respectively. In the next section, a mathematical

model is presented to approximate this non-linear model.

1.5.2 Piece-wise linear approximation

The expected inventory and backlog in each planning period are non-linear functions of the cu-

mulative production in each planning period. In this formulation, these non-linear functions are

approximated based on the linearization of the first order loss function of the normal distribution

which is convex in cumulative production (Rossi et al., 2014). As the non-linear functions for the

expected inventory and expected backlog are convex, different segments on the piece-wise linear

functions will be selected in sequential order and there is no need to add extra binary decision vari-

ables to ensure this, which is different from the model with the β service level. Table 1.6 indicates

the new parameters and decision variables of this model.

Table 1.6: Parameters and decision variables of piece-wise linear model

Parameters

∆Blkt Slope of backlog function associated with segment l product k in period t
γ Target aggregate γ service level
δ Target aggregate δ service level

Min ∑
t∈T

∑
k∈K

(scktykt +hckt(∆I0kt +∑
l∈L

∆Ilkt wlkt)) (1.28)

subject to constraints (1.3), (1.4), (1.7), (1.8), (1.16), (1.21), and:

wlkt ≤ ulkt−ul−1,kt ∀t ∈ T,∀k ∈ K,∀l ∈ L (1.29)
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∑t∈T ∑k∈K(∆B0kt +∑l∈L ∆Blkt wlkt)

∑t∈T ∑k∈K E[Dkt ]
≤ 1− γ (1.30)

The objective function (1.28) is to minimize the setup cost plus the expected value of the hold-

ing costs. Constraints (1.29) define the maximum amount that the production quantity associated

with segment l can take in period t. Constraint (1.30) is the aggregate service level constraint in

which the total average backlog divided by total average demand is less than or equal to 1− γ .

To change the model to consider the δ service level, constraint (1.30) should be replaced by

constraint (1.31) in which the total average backlog divided by the total maximum expected back-

log is less than or equal to 1−δ .

∑t∈T ∑k∈K(∆B0it +∑l∈L ∆Blkt wlkt)

∑t∈T ∑k∈K(T − t +1)E[Dkt ]
≤ 1−δ (1.31)

1.6 Models with αc aggregate service level

In this section, we present the model for the αc aggregate service level with a capacity constraint.

First we define the mathematical model for this case. Next we present a quantile-based mathemat-

ical model to approximate the actual model.

1.6.1 Problem definition and mathematical model

This model is an extension of the model presented by Tempelmeier (2007) in which the αc ser-

vice levels are defined for each product separately. We investigate the combination of aggregate

and individual service levels. The value of the minimum individual and aggregate αc level are

decided by the managers based on the cost of shortfalls and it is possible to ignore this cost in

the model (Bookbinder and Tan, 1988). The minimum aggregate service level is a parameter in

the model. Each item also has an individual minimum service level, which is less tight than the

minimum aggregate service level. The actual individual service level is an output of the model

since it depends on the decisions and can be better than the minimum imposed one. The αc service

level is considered in both the aggregate and individual constraints. The parameters and decision

variables are presented in Table 1.7.
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Table 1.7: Parameters of the model with α service level

Parameters

wk The weight of product k such that ∑k wk = 1
α

agg
c Minimum aggregate service level

αmin
c Minimum required service level for each product

Min ∑
t∈T

∑
k∈K

(scktykt +hcktE[Ikt ]) (1.32)

subject to constraints (1.2), (1.3), (1.4), (1.7), (1.8), (1.9), (1.10) and:

pr(Ik0 +
t

∑
j=1

(xk j−Dk j)≥ 0)≥ α
min
c ∀k ∈ K,∀t ∈ T (1.33)

∑
k∈K

wk min
t∈T

(pr(Ik0 +
t

∑
j=1

(xk j−Dk j)≥ 0))≥ α
agg
c (1.34)

The objective function (1.32) minimizes the setup and expected holding cost. The minimum

service level for each product is imposed through the chance constraints (1.33). These constraints

guarantee that the probability of a stock out is not larger than (1−αmin
c ). Constraint (1.34) imposes

the aggregate service level. This constraint guarantees that the weighted sum of the resulting

individual service levels is greater than or equal to the imposed aggregate service level.

1.6.2 Quantile-based approximation

In this section, we approximate the model with aggregate αc service level using a quantile ap-

proach. The α service level is an event oriented service level which is expressed as a chance

constraint to model the individual service level. In the literature, the common approach to model

this problem under the static strategy with an individual service level is to use a predetermined

service level as an input parameter (Bookbinder and Tan, 1988; Tempelmeier, 2013). However, in

the model with the aggregate service level, the choice of the service level αc becomes the decision

variable for each product which will be used in the aggregate service level constraint, as they will

be defined in the model and the minimum aggregate service level is the model parameter. In other

words, in addition to setups and production amounts, the individual service levels are also decision

variables. This will require a model that is different from the piece-wise linear approximations
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which were used for the β , γ and δ service levels. In this model, we assume that the average

net inventory is positive. This is a reasonable assumption for high service levels as the amount of

negative inventory is negligible (Tempelmeier, 2007). In this formulation, the choices of possible

service levels for each item are discretized using the set N, which leads to an approximation for

the real problem. For each of the products one of the service levels in set N will be selected in the

model such that the actual service level can take any value equal to or above the selected service

level. The minimum service level (αmin
c ) for each of the products is imposed by the minimum value

in the set N. The new notation is presented in Table 1.8. The mathematical model is as follows:

Table 1.8: Parameters and decision variables of the quantile-based model

Set

N Set of service levels
Parameters

CDkt Cumulative demand for product k until period t
F−1

CDkt
(αc) The minimum value of cd of cumulated t-period demand for which P{CDkt ≤ cd} ≥ αc

(Tempelmeier, 2013)
αkn

c Minimum probability of no stock out for item k based on service level n in each planning
period

Decision variables

Ikt The amount of inventory for product k at the end of period t
skn The binary variable which is equal to 1 if service level αkn

c is selected for product k

24



Min ∑
t∈T

∑
k∈K

(scktykt +hcktIkt) (1.35)

subject to constraints (1.3), (1.4), (1.7), (1.8), and:

Ikt = Ik0 +
t

∑
j=1

(xk j−E[Dk j]) ∀t ∈ T,∀k ∈ K (1.36)

Ik0 +
j

∑
t=1

xkt ≥ F−1
CDk j

(αkn
c )skn ∀ j ∈ T,∀k ∈ K,∀n ∈ N (1.37)

∑
n∈N

skn = 1 ∀k ∈ K (1.38)

∑
k∈K

∑
n∈N

wkα
kn
c skn ≥ α

agg
c (1.39)

skn ∈ {0,1} ∀k ∈ K,∀n ∈ N (1.40)

Ikt ≥ 0 ∀k ∈ K,∀t ∈ T (1.41)

The objective function (1.35) minimizes the sum of setup and holding costs. Constraints (1.36)

are the inventory balance constraints in which E[Dkt ] is the expected value of demand of product

k in period t. It should be noted that Ikt is not a random decision variable in this model since we

consider only the average demand. Constraints (1.37) are the individual service level constraints

in which the discrete choice service level is defined for each item using a binary variable. These

constraints ensure that the sum of the initial inventory and production quantities up to period t is

at least equal to the cumulative demand required for the selected minimum service level. These

constraints are equal to the chance constraints (1.42) and for cases that the demand follows a nor-

mal distribution the value of F−1
CDk j

(αkn
c ) is easy to calculate. These chance constraints ensure that

for each period the probability of a stock out is less than or equal to (1−αkn
c ) for the chosen level

n of the service level. For the case where there is only one choice of service level, this constraint

will be the same as constraint (1.43) proposed for the single item problem (Tempelmeier, 2013).

Constraints (1.38) guarantee that exactly one service level for each item is selected. Constraint

(1.39) imposes the aggregate service level in which the weighted average of the selected individual

service levels is larger than or equal to the imposed aggregate service level.

pr(Ik0 +
t

∑
j=1

xk j−
t

∑
j=1

Dk j ≥ 0)≥ α
kn
c skn ∀t ∈ T,∀k ∈ K,∀n ∈ N (1.42)
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Ik0 +
j

∑
t=1

xkt ≥ F−1
CDk j

(αk
c ) ∀ j ∈ T,∀k ∈ K (1.43)

1.7 Receding horizon model

The models which are presented in this paper, assume the static strategy in which the setup and

production quantity decisions remain unchanged during the planning horizon. Although this char-

acteristic is important in some applications to avoid nervousness, it will reduce the responsiveness

of the plan and potentially incur additional costs to the system. In order to deal with the case

when the setup and quantity decisions can be continuously adjusted once the demand information

is revealed, we can apply the receding approach using the static models proposed in this paper. In

the first step, the complete model (with static strategy assumption) is solved for the horizon 1 to

T , and the setup and production decisions of the first period are fixed. Then, based on the realized

demand in the first period, the amounts of backlog and inventory are calculated at the end of the

first period which will be the initial inventory and backlog at the beginning of the second period.

In the following steps the model will be run for the rest of the periods in the planning horizon

with updated initial inventory and backlog. This procedure continues until the end of the planning

horizon.

As the service level constraint may be violated with the demand realization, the violation of this

constraint will be incorporated in the objective function with a high penalty (P). Table 1.9 illus-

trates the new parameters for this model in the ith iteration which are calculated based on the fixed

production in the periods before period i. The mathematical model for the ith iteration is as follows:

Table 1.9: Parameters and decision variables of the ith iteration of the receding horizon model

Parameters

B̂Okt The backorder for product k in period t, t < i, which is calculated by (1.44)
B̂kt The backlog for product k in period t, t < i, which is calculated by (1.45)
dkt The realized demand for product k in period t, t < i
Îkt The inventory for product k in period t, t < i, which is calculated by (1.46)
P The penalty cost for service level violation
x̂kt The fixed amount of production for product k in period t, t < i
Decision variable

ε The service level violation
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B̂Okt = max{0,
t

∑
j=1

(dk j− x̂k j)− Ik0}−

max{0,
t−1

∑
j=1

dk j−
t

∑
j=1

x̂k j− Ik0} ∀k ∈ K,∀t < i (1.44)

B̂kt = max{0,
t

∑
j=1

dk j−
t

∑
j=1

x̂k j− Ik0} ∀k ∈ K,∀t < i (1.45)

Îkt = max{0, Ik0 +
t

∑
j=1

x̂k j−
t

∑
j=1

dk j} ∀k ∈ K,∀t < i (1.46)

Min
T

∑
t=i

∑
k∈K

(scktykt +hcktE[Ikt ])+Pε (1.47)

subject to:

Îk,i−1 + xki +Bki = Iki +Dkt + B̂k,i−1 ∀k ∈ K (1.48)

Ik,t−1 + xkt +Bkt = Ikt +Dkt +Bk,t−1 ∀t ∈ T, t > i,∀k ∈ K (1.49)

xkt ≤Mykt ∀t ∈ T, t ≥ i,∀k ∈ K (1.50)

∑
k∈K

(stktykt + ptktxkt)≤Capt ∀t ∈ T, t ≥ i (1.51)

ykt ∈ {0,1} ∀t ∈ T, t ≥ i,∀k ∈ K (1.52)

xkt ≥ 0 ∀t ∈ T, t ≥ i,∀k ∈ K (1.53)

Ikt ≥ 0 ∀t ∈ T, t ≥ i,∀k ∈ K (1.54)

Bkt ≥ 0 ∀t ∈ T, t ≥ i,∀k ∈ K (1.55)

The objective function (1.47) minimizes the total setup cost, expected inventory holding cost,

and the violation of the service level for period i until the end of the horizon. Constraints (1.48) are

the inventory balance constraints for period i in which we have the initial inventory and backlog

from period i− 1. Constraints (1.49) are the inventory balance constraints for the periods after

period i until the end of planning horizon. Constraints (1.50) and (1.51) are the setup production

constraints and the capacity constraints, respectively. Constraints (1.52) to (1.55) define different

variables of the model.

In addition to these constraints, based on the type of service level, the following constraints should
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be added to the model. For the β service level, constraints (1.56) and (1.57), for the γ service level

constraint (1.58), for the δ service level constraint (1.59), and for the αc service level constraint

(1.60) will be added to the model.

E[BOkt ] = E[max{0,
t

∑
j=i

(Dk j− xk j)− Îk,i−1 + B̂k,i−1}]

−E[max{0,
t−1

∑
j=i

Dk j−
t

∑
j=i

xk j− Îk,i−1 + B̂k,i−1}]
∀t ∈ T, t ≥ i,∀k ∈ K (1.56)

∑
i−1
t=1 ∑k∈K B̂Okt +∑

T
t=i ∑k∈K E[BOkt ]

∑
i−1
t=1 ∑k∈K dkt +∑

T
t=i ∑k∈K E[Dkt ]

≤ 1−β + ε (1.57)

∑
i−1
t=1 ∑k∈K B̂kt +∑

T
t=i ∑k∈K E[Bkt ]

∑
i−1
t=1 ∑k∈K dkt +∑t∈T ∑k∈K E[Dkt ]

≤ 1− γ + ε (1.58)

∑
i−1
t=1 ∑k∈K B̂kt +∑

T
t=i ∑k∈K E[Bkt ]

∑
i−1
t=1 ∑k∈K(T − t +1)dkt +∑t∈T ∑k∈K(T − t +1)E[Dkt ]

≤ 1−δ + ε (1.59)

∑
k∈K

wk min
t∈T,t≥i

(pr(Ik0 +
i−1

∑
j=1

x̂k j +
t

∑
j=i

xk j−
i−1

∑
j=1

dk j−
t

∑
j=i

Dk j ≥ 0))≥ α
agg
c + ε (1.60)

It is important to note that the efficiency of the rolling/receding horizon scheduling depends

on the defined parameters such as the frozen horizon (which is equal to one in our case), and the

length of the planning interval (Meistering and Stadtler, 2017). This opens a new direction for

research which is not within the scope of this paper.

1.8 Computational experiments

To investigate the effect of an aggregate service level and gain computational insights into the

benefits of the solutions based on different types of service levels, we conduct different computa-

tional experiments. First, the data generation procedure is explained. Next, the parameters of the

different models such as the number of service level options in the quantile-based approximation

and the number of segments in the piece-wise linear models are analysed. In the third section, we

evaluate the results of different service levels based on an initial data set. The fourth section is

dedicated to extensive sensitivity analysis of the value of the aggregated service levels based on

different parameters and service levels. In the last sections, the effect of individual service levels

on the value of aggregate service level is presented.
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1.8.1 Instance generation

In this section, we explain the data which are used to test the models. We have two different

sets, one set for the initial and more general tests (set A) and one for more specific tests and the

sensitivity analysis (set B). For both sets, we follow the same procedure to generate data as in

Helber et al. (2013) with some modification.

The set A is used to investigate the difference between the aggregate and individual service level

for all types of service levels. As the original data set which was proposed by Helber et al. (2013)

is generated based on the δ service level, for other service levels some instances may be infeasible

due to the capacity constraint. The first modification is to reduce the utilization factor to increase

the capacity. The other modification is to assign different holding costs to different products. If all

the products have the same holding cost, the aggregate service level does not show a big advantage

over the separate service levels (as indicated later in the sensitivity analysis). Table 1.10 shows the

average long-term demand for each of the products (E[Dk]) and Table 1.11 shows the parameters

used for the generation of these test instances. VCip is the inter-period coefficient of variation

which is used to generate dynamic time series based on E[Dk] and defines the average demand for

each product in each planning period (E[Dkt ]). More specifically, the average demand for product

k in period t (E[Dkt ]) is taken from a normal distribution with an average equal to the average long-

term demand (E[Dk]) and a coefficient of variation of VCip. A lower VCip results in more moderate

variability between demands in different periods and a higher one results in larger differences. The

VCd refers to the coefficient of variation of the demand in a specific period. The standard deviation

of the demand is equal to the average demand multiplied by the VCd . Note that in practice, if the

forecasted demand is used, one can calculate VCd of forecast errors and use it here. T BO is the

time between orders, which shows the number of periods between two consecutive orders. T BO is

used to define the value of the setup cost based on the average demand and holding cost. A detailed

explanation of the data generation procedure can be found in (Helber et al., 2013). In set A there

are 432 instances with all the combinations of parameters presented in Table 1.11. The sizes of

these samples which are defined based on the number of products |K| and number of periods |T |,

are {|K|= 5, |T |= 5}, {|K|= 10, |T |= 5}, and {|K|= 5, |T |= 10}.

The second data set, set B, is used for the sensitivity analyses. To this end, 10 base instances
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Table 1.10: Series of expected demand E[Dk] (Helber et al., 2013)

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E[Dk] 67 135 105 80 79 72 85 136 56 100 150 108 150 126 63 114 66 75 117 93

Table 1.11: Parameters of the test instances

Parameters

Inter-period coefficient of variation of expected demand VCip = 0.2 , 0.3
Coefficient of variation of demands VCd = 0.1 , 0.3
Time between orders TBO = 1, 2, 4
Utilization of resource due to processing Util = 0.4 , 0.5
Setup time as fraction of period processing time ST = 0.0 , 0.25
Service-level target Service Level = 0.8 , 0.9 , 0.95
Holding cost hc = 1, 2, 3 , ..., |K|
Product weight wk = 1/|K|

with the size of {|K|= 10, |T |= 10} are generated with the same parameters and different demand

values which are randomly generated based on the normal distribution. The parameters used to

generate the instances are listed in Table 1.12. In the sensitivity analysis section, we will explain

how different scenarios for each of the parameters are generated.

Table 1.12: Parameters of the base case instances for the sensitivity analysis

|K| = 10 |T | = 10 VCip = 0.3 VCd = 0.3
TBO = 3 Util = 0.65 ST = 0.0 Service Level = 0.95
hc ∈ {1,2,3, ..., |K|}

To evaluate the solutions formed by the approximate formulations, we use simulation. The

results of the models including the setup decisions and production levels for each product and in

each period are the input of this process. 10,000 demand scenarios are generated based on a normal

distribution with the same average and variance as the input to the model. The objective function

and service levels are then evaluated using the simulation. Using exactly the same 10,000 scenario

set for all the service levels, will help us to have a fair comparison between different service levels.

1.8.2 Determining the number of linear segments and service levels

To define the number of linear segments for the piece-wise linear models, we performed tests

using the model with separate γ service levels and solved it with different numbers of segments for

each of the 432 small instances. Assuming that the models have the same characteristics, among
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different models, the model with separate γ service level is selected. Each instance is solved

with 5, 10, 15, 20, 30, 40, and 50 linear segments and evaluated using the same set of scenarios.

Figure 1.1 shows the average solution time and average accuracy of the solution over all solved

instances. The accuracy measures are the cost accuracy (1.61) and service level accuracy (1.62).

The cost accuracy is the percentage of absolute difference between the model objective function

and the evaluated objective function. The service level accuracy is the absolute difference between

the evaluated service level and the target service level which is calculated in percentage point (%p).

Each of these accuracy measures are calculated for each instance (in), and their average over all

instances are used for the analysis. Considering the trade-off between solution time and accuracy

measures, the model with 20 segments is selected. The result of this study is generally in line

with the study of Helber et al. (2013) who used 18 segments for their piece-wise linear model for

the δ service level and Tempelmeier and Hilger (2015) for the β service level. Without loosing

generality the pieces are in equidistant intervals and we will use the same number of segments for

all the piece-wise linear models. These intervals will be the same for all the service levels with

piece-wise linear approximation (i.e., β , γ , δ ).

Cost Accuracyin(%) =
|Evaluated total costin−Model ob jective f unctionin|

Model ob jective f unctionin
(1.61)

Service Level Accuracyin(%p) = |Evaluated service levelin−Target service levelin| (1.62)

Figure 1.1: Execution time and accuracy of the piece-wise linear model for the γ service level
based on the number of linear segments
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To test the impact of the number of service level options for each of the products in the quantile

approach, we solve the aggregate model for the αc service level with different numbers of service

level options. Each instance is solved with 2, 5, 11, 15, 21, and 30 service level options and

evaluated using the same set of scenarios. The service levels are equally distributed between the

minimum service level, which is 80%, and 99.99%. For example, the 21 service levels are 80%,

81%, ...,99%, 99.99%. Note that the option 99.99% is used instead of 100% since the 100%

service level results in an infinite amount of inventory. Figure 1.2 shows the average solution time

and accuracy of the solutions. Considering the trade-off between time and accuracy measures, and

the fact that the accuracy measures do not decrease notably when increasing the number of service

level options to more than 11, 11 service level choices are used in the subsequent experiments.

Figure 1.2: Execution time and accuracy of the quantile model for the αc service level based on
the number of service level options

1.8.3 Performance evaluation based on different service levels

This section shows the results of the experiments for different types of service levels using the 432

instances in set A. The aim of these experiments is to provide insights with respect to the models

with different service levels and to give a general overview of the difference between the aggregate

and separate service levels. For the experiments, we used the CPLEX 12.8.1.0 and Python libraries.

We performed these experiments on a 2.1 GHz Intel Broadwell processor with only one thread on

the Compute Canada Graham computing grid. Table 1.13 summarizes these results. To analyze
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the results, two versions of the models, i.e., with aggregate and separate service levels, are solved

using the approximated models for each type of service levels. In our comparisons, in addition to

average cost accuracy and average service level accuracy, new measures are considered. Again,

each of these measures are calculated for each instance (in), and their averages over all instances are

used for the analysis. We analyze the average cost from the evaluation (Average Cost), the average

deviation of the actual service level from the defined target (Service Level Deviation (1.63)), the

average percentage difference between the evaluated cost of the model objective and the model

objective function (Cost Deviation (1.64)), the average solution time in seconds (Average Time),

and the average difference between models with aggregate and separate service levels (∆Cost).

∆Cost is shown in the last column of Table 1.13 and shows the advantage of the aggregate service

level over the separate one based on the total cost increase percentage (1.65).

Service Level Deviationin(%p) = Evaluated service levelin−Target service levelin (1.63)

Cost Deviationin(%) =
Evaluated total costin−Model ob jective f unctionin

Model ob jective f unctionin
(1.64)

∆Costin(%) =
Cost o f separate service levelin −Cost o f aggregate service levelin

Cost o f aggregate service levelin
(1.65)

The first service level is the β service level. To analyze the results, the two versions of the model,

Table 1.13: Results of the approximation models for different types of service level

Service Version Average Service Level Service level Cost Cost Average ∆Cost(%)
Level Cost Deviation (%p) Accuracy

(%p)
Deviation
(%)

Accuracy
(%)

Time(s)

β Aggregate 27441.9 0.1 0.1 -0.1 0.1 394.1 6.2
Separate 29452.7 0.2 0.2 -0.2 0.2 247.7

βp Aggregate 29836.5 0.0 0.3 -0.3 0.3 309.4 15.1
Separate 34607.3 0.1 0.2 -1.0 1.0 22.3

γ Aggregate 28090.6 0.1 0.1 -0.1 0.1 0.5 5.2
Separate 29877.7 0.3 0.3 -0.2 0.2 3.1

γp Aggregate 30753.0 0.0 0.1 -0.2 0.3 14.2 12.5
Separate 34732.6 0.1 0.2 -1.0 1.0 30.1

δ Aggregate 17070.3 0.0 0.0 -0.1 0.1 0.3 9.7
Separate 18622.7 0.1 0.1 -0.5 0.5 0.6

δp Aggregate 22593.2 0.0 0.0 -0.4 0.4 8.5 26.6
Separate 27818.0 0.0 0.1 -1.1 1.1 16.7

αc Aggregate 38453.8 -0.2 0.2 1.5 1.5 2478.8 1.5
Separate 38970.9 -0.2 0.2 1.1 1.1 0.3

aggregate and separate, are solved using the piece-wise linear approximation. As can be seen, the
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average cost which is the result of the evaluation has the lower value when there is an aggregate

service level constraint compared to the separated one. It is worthwhile to mention that the piece-

wise linear model generally overestimates the inventory and backlog. The average β deviation,

cost deviation and both accuracy measures are close to 0, which shows that the piece-wise linear

model provides a very good estimation. The positive percentage of service level deviation shows

that the imposed service levels are satisfied. The last column shows the advantage of the aggregate

β service level over the separate one which is about 6%. In terms of execution time the separate

model is faster on average. When the β service level is defined per period (βp) the ∆Cost is

increased to 15.2% which is more than twice the value for the global case (β ). Furthermore,

the execution time for the aggregate model is slightly increased but remains in the same order

of magnitude, whereas the time for the separate service level has been reduced by an order of

magnitude. The execution time is reduced from aggregate to separate and from global service level

to per period service level.

The next service level is the γ service level. The deviations and accuracy measures are close

to 0 for both aggregate and separate models. This means that the piece-wise linear model provides

a good approximation. The ∆Cost is about 5% which shows the average cost reduction for the

aggregate case compared to the separate case. In terms of execution time the model is very fast

compared to the β service level. One of the main reasons is the presence of extra binary variables

in the models for the β service level. It is also possible to investigate the difference between the

separate and aggregate service level per period (γp). The advantage of the aggregate service level

over the separate one is about 12%. These differences are more distinctive compared to the global

case (γ) where the service level is defined over the whole planning horizon. The execution time is

higher compared to the global version.

The next service levels are the δ and δp service levels. As can be seen, the difference between

the model and evaluated cost and service level is very small and in most cases close to 0. For both

service levels, the cost of the aggregate models are less than the cost of the separate models and

the average differences are 9.7% and 26.6% for δ and δp, respectively. The execution times of

the models with δ and δp are slightly lower than for the γ and γp service levels, respectively, but

follow the same pattern and they are lower in the global cases compared to per period ones.

The last service level is the αc service level. Based on the preliminary test, 11 service levels for
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the quantile-based model are selected. The minimum service level for each product is set to 80%.

The models are solved with the aggregate and separate αc service levels using the quantile-based

model. Same as previous service levels, we have three levels for the αc target: 80%, 90%, and

95%. For example, for the case with αc equal to 90%, we solve the separate model imposing indi-

vidual αc levels of 90% for each product, and we solve the aggregate model imposing individual

αc levels of 80% and an aggregate αc level of 90%. The αc deviation and accuracy are close to 0%

and therefore the model has a very good performance in terms of service level. Based on the cost

accuracy, although the quantile-based approximation has a good performance, the performance of

the piece-wise linear approximation for other service levels outperforms quantile-based approxi-

mation for the defined number of segments and service level options. In terms of execution time

the separate model is much faster than the aggregate model. The difference between the cost of

the models with aggregate and separate αc service level is about 1.5%. Note that the case with the

aggregate service level equal to 80% results in 0% ∆Cost since we assume a minimum individual

service level of 80%. Excluding this case the ∆Cost is equal to 2.53%.

In general, the ∆Cost for the global service levels (β ,γ,δ ) are less than the ∆Cost for the service

levels imposed in each period (βp,γp,δp). Based on the total cost, we can conclude that with the

same value for the service levels, the αc service level is the most strict and the δ service level is

the least strict service level among the four. This can conclude that the advantage of an aggregate

service level is more noticeable for the less strict service levels because of the higher flexibility in

these service levels. In more strict service levels there is less possibility for the aggregate model to

maneuver.

1.8.4 Sensitivity analysis

To have a better understanding of the effect of different parameters on the cost difference between

aggregate and separate service levels, sensitivity analyses are conducted. In these experiments, the

effect of holding cost, demand variation, capacity, TBO, service level, number of products, and

periods are investigated. Different values which are used for the sensitivity analysis are provided

in Table 2.8. A low level for Util shows the loose capacity and a high level for Util pertains to the

tight one. Table 1.15 shows different cases for the holding cost and their variance.

Figure 1.3 presents the results for the sensitivity analysis of the γ service level. The capacity
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Table 1.14: Parameter values for the sensitivity analysis

Parameter Values

|K| 5, 10, 15, 20
|P| 5, 10, 15, 20
Util 0.45, 0.55, 0.65, 0.75, 0.85

TBO 1, 2, 3, 4, 5
VCd 10%, 20%, 30%, 40%, 50%
Service Level 91%, 93%, 95%, 97%, 99%

Table 1.15: Different options of the holding cost for the sensitivity analysis

Case Holding cost for 10 products Standard Deviation

1 [1, 1, 1, 1, 1, 10, 10, 10, 10, 10] 4.74
2 [ 1, 1, 1, 5.5, 5.5, 5.5, 5.5, 10, 10, 10 ] 3.67
3 [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 3.03
4 [3, 3, 3, 5.5, 5.5, 5.5, 5.5, 8, 8, 8 ] 2.04
5 [4, 4, 4, 5.5, 5.5, 5.5, 5.5, 7, 7, 7 ] 1.22
6 [5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5] 0.00

constraints affect more the models with separate service level compared to aggregate ones as in

the separate case it is not possible to compensate the production of some products with others.

Because of the aggregate model flexibility, the capacity does not affect it at lower utilization. At

higher utilization when the capacity is tighter, the capacity will affect the aggregate model as well

and this causes a very small reduction in ∆Cost.

For the TBO, there is a reduction in ∆Cost when TBO increases from 1 to 3 and there is an

increase in ∆Cost when TBO increase from 3 to 5. When TBO is 1 the advantage of the aggre-

gate model is reflected in the total inventory cost. The aggregate model satisfies the service level

constraint by storing less from the products which have the higher holding costs. This flexibility

does not exist in the model with the separate service level. When TBO is equal to 5 the advantage

of the aggregate model is more reflected in the total setup cost. There is the possibility of not

producing a product in the aggregate model as it is possible to compensate it with other products.

This flexibility does not exist in the separate model.

The ∆Cost generally decreases when the variance increases. The higher variance will increase

the total expected cost in general for both the aggregate and separate model. Due to the flexibility of

the aggregate model, it is less affected at the lower variance, and this causes the ∆Cost to decrease

as the variance increases.
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The ∆Cost generally decreases when the target aggregate service level increases. This is logical

because, when there is a lower service level, the aggregate model has a higher flexibility, which is

not the case for higher service levels.

Based on the plots, the ∆Cost for the γ service level in its global version exibits no obvious

trend for the number of products and periods. The lowest value for the ∆Cost is when the number

of products is equal to 5 and highest value is when it is equal to 10.

Figure 1.3: Sensitivity analysis plots for γ service level
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The last plot in Figure 1.3 shows the sensitivity analysis based on the holding cost. The ∆Cost

increases as the variance in the holding costs increases as the variation of holding costs increase

from case 6 to case 1. The advantage of the aggregate service level is more noticeable when the

products have higher differences in their holding costs. This shows that, when there is a limited

capacity and high variation in holding costs an aggregate service level will allow us to obtain

significantly lower costs. Figure 1.4 illustrates different plots for the sensitivity analysis of the γp

service level. The advantage of the aggregate service level in this case is much higher than for the γ

service level as indicated by the general higher level of ∆Cost. Unlike for the γ service level, which

was defined globally, at higher capacity utilization ∆Cost will increase for the γp service level. In

addition to the cost saving with the aggregate service level, there is also a higher probability of

infeasibility in the model with a separate service level. It is worthwhile to mention that there is

also a higher probability of infeasibility in γp compared to the γ service level. For example, when

the utilization factor is equal to 0.85, the models with γp service levels are infeasible which is not

the case for the γ service level.

Similar to the case of the γ service level, in the case of the γp service level, the ∆Cost decreases

when the target aggregate service level increases. This is because, when there is a lower service

level, the aggregate model has a higher flexibility, which is not the case for higher service levels.

When the service level is equal to 99% all the 10 models with separate service levels were infeasi-

ble, while 6 of them were infeasible in the aggregate case. Unlike the global version, γ , in which

the ∆Cost is not sensitive to the number of periods, for the γp service level the ∆Cost increases as

the number of periods increases.

The last plot in Figure 1.4 shows the sensitivity analysis based on the holding cost. This plot

follows a similar trend as in the case of the γ service level but the values of ∆Cost are much higher

in all cases. The ∆Cost increases as the variance in the holding costs increases. The advantage of

the aggregate service level is more distinctive when the products have higher differences in terms

of holding cost.

Appendix C shows the sensitivity analysis diagrams for β ,βp,δ , and δp service levels. In these

diagrams the global service levels, β and δ have similar trends as observed for γ . The βp and δp

service levels show similar patterns as the γp service level.
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Figure 1.4: Sensitivity analysis plots for γp service level

1.8.5 The effect of minimum individual service level

In the previous section, there was no minimum individual service level imposed in the aggregate

models except for the αc service level since this model requires the explicit modeling of a discrete

number of service level options. In this section, we investigate the case when both the individual

and aggregate service levels are imposed collectively for selected service levels. To avoid infeasi-

bilities the Util is changed from 0.65 to 0.5. Figure 1.5 shows the plots for the γ service level.
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Figure 1.5: Effect of individual service levels (γ)

There are two series in this plot. One of them shows the cost difference between the aggregate

and separate service levels when there is an individual γ service level of 80% imposed together with

an aggregate γ constraint. The other series which is shown by the dashed line is the cost difference

when the individual service level of 90% is imposed together with an aggregate constraint. Both

of these series follow a similar pattern. When the separate service level is equal to the minimum

individual service levels in the aggregate model, ∆Cost is equal to 0. When the difference between

the minimum individual and aggregate service level increases, the ∆Cost will also increase to a

certain point. After that there is a decrease in the ∆Cost. This shows that at high service levels

the difference between aggregate and separate service levels will decrease. This is logical as in

the lower service levels there is more flexibility for the aggregate model, while at higher service

levels the amount of allowable backlog for both separate and aggregate service level is very low.

Figure 1.6 shows the similar diagrams for β ,βp,γp,δ , and δp. Note that for convenience, we

include the diagram for the γ service level as well. The trends in these diagrams for the global

service levels are similar to the γ service level which is explained before. The trends for the per

period service levels (βp,γp,δp) are also similar to each other. In these latter diagrams there is no

point for the 99.9% as in all of these cases the models with separate service levels were infeasible

and it was not possible to calculate the ∆Cost. Despite the similar trends in the diagrams, there are
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Figure 1.6: Effect of individual service levels

differences in the value of ∆Cost. Based on these diagram we can conclude that the value of the

aggregate service level in the per period cases is more than for the global case at the same value of

service level. The β and γ service level are very close to each other in terms of the value of ∆Cost,

and δ service has the highest ∆Cost at the same value of service level.

1.8.6 Receding horizon implementation

In this section, we discuss experiments for the receding horizon implementation for the γ service

level. To this end, we use the 10 instances of the base case in set B and for each instance we
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generate 1,000 scenarios (which are different in the realized demand).

We first evaluate the static model when applied in a static way. In order to do this, we proceed

as in the previous experiments. For each of the 10 instances, we solve the static model one time

(taking into account the information about the average demand and the demand variability) over

the full horizon. Next, this static solution is evaluated over 1,000 scenarios.

In order to evaluate the application of the static model in a receding horizon fashion, we need

a slightly different approach. This approach is also evaluated over 1,000 scenarios. However, for

the different scenarios, the resulting solution can be different. Hence, for each scenario we need

to determine first the decisions that we would have taken using the static model in a receding

horizon way, if that scenario happened. We hence need to resolve the model multiple times for

each scenario. In our case, following the procedure explained in Section 8, the model is resolved

at every period once the demand realization of the period preceding it has been revealed. Thus, for

the problem with 10 periods and 1,000 scenarios, we solve the model 10×1,000 = 10,000 times

for each instance. Second, once these decisions for a specific scenario are determined, we calculate

the resulting service level and total cost for that specific scenario. This procedure is repeated for

all scenarios and the results are aggregated to evaluate the quality of the solutions determined by

the receding horizon implementation over the entire scenario set.

The results of these experiments are presented in Table 1.16. As can be seen, the aggregate

service level results in a cost reduction in the receding horizon model as well. In both the separate

and the aggregate service level, the receding horizon approach results in a cost reduction compared

to the static approach. This is because the amount of inventory will be modified after each demand

realization and hence the receding horizon approach provides a higher level of flexibility. This

finding is in line with the experimental results in Dural-Selcuk et al. (2019) who find that for the

single item non-stationary stochastic lot sizing problem with backorders, the application of the

static strategy in a receding horizon framework provides very good results.

Figure 1.7 illustrates the total inventory of all products in each period for the static and reced-

ing horizon approach. The left diagram presents the case of the individual γ service level and the

right diagram presents the case of the aggregate γ service levels. In the first period, the amount

of inventory is the same for the static and receding horizon approach as the initial inventory and

backlog quantities are the same for both cases. As we move forward through the planning hori-
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Table 1.16: Static model VS receding horizon model (Service level = 95%)

Static γ-separate Static γ-aggregate Receding γ-separate Receding γ-aggregate

# SL Total Cost SL Total Cost SL Total Cost SL Total Cost

1 96.2% 143517.7 95.5% 138657.3 96.7% 137078.1 95.2% 125529.5
2 96.3% 157445.4 95.6% 153294.4 96.3% 148328.2 95.2% 136340.4
3 96.1% 151985.9 95.4% 148021.8 96.3% 144516.0 95.2% 132131.7
4 96.1% 145469.0 95.6% 141612.7 96.7% 139169.4 95.3% 127617.8
5 96.1% 154312.7 95.4% 150089.6 96.5% 146423.8 95.3% 135092.9
6 96.0% 145791.0 95.2% 141559.2 96.6% 140404.8 95.2% 129132.2
7 96.1% 150583.3 95.4% 146112.8 96.4% 142223.8 95.3% 131618.1
8 96.2% 144425.4 95.5% 140364.5 96.5% 137671.5 95.2% 126662.5
9 96.2% 153857.0 95.5% 149216.9 96.4% 144683.2 95.2% 132660.1
10 96.0% 141645.6 95.4% 137595.8 96.6% 134989.5 95.2% 124515.5

Average 96.1% 148903.3 95.4% 144652.5 96.5% 141548.8 95.2% 130130.1

zon, the receding approach determines the setups and production amounts considering the realized

demand whereas the inventory and backlog quantities are updated. The difference in the amounts

of inventory between these two approaches increases gradually towards the end of the planning

horizon. This shows that applying the static model in the receding horizon approach can reduce

the stock level which alleviates some of the inherent limitations of the static model, in which the

inability to react to changes during the horizon leads to large levels of inventory towards the end of

the planning horizon. In practice, the use of the rolling/receding horizon implementation depends

largely on the flexibility in the production to allow the production plan to be changed reactively

in order to realize the benefits. This receding horizon implementation of the static model can be

adapted to specific production configurations in practice by changing the update mechanisms to be

aligned with the frozen periods used in the configuration.

Figure 1.7: Average of total inventory per period (Static model VS receding horizon approach)
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1.9 Conclusion

In this research, different aggregate service levels have been investigated in the context of multi-

item capacitated lot-sizing problems. Such aggregate service levels allow the planner to flexibly

assign different service levels to individual products so that they collectively satisfy the aggregate

service level measures. These aggregate service levels can be used in conjunction with the com-

monly adopted service levels imposed on individual products. These service levels are the exten-

sions of the well-known αc, β , γ , and δ service levels. Having all these service levels investigated

simultaneously, this research helps the companies to understand the difference and computational

implications of the different service levels.

Since the mathematical models are non-linear, different approximations schemes are developed

which are piece-wise linear and quantile-based approximations. Extensive numerical experiments

are conducted to analyze the flexibility and cost savings of the aggregate service level. Using the

aggregate service level provides flexibility to the problem which result in overall cost reductions.

This cost reduction varies depending on different service levels and parameters. The numerical

experiments show that the cost reduction is higher in the case where the aggregate service level

is imposed in each period compared to the global case, and in quantity and time oriented service

levels (β ,γ,δ ) compared to the event oriented one (αc). The value of the aggregate service level

is more obvious when there is a higher variability in the holding cost of the different products.

This is also the case when service levels are more loose. With looser service levels there is more

flexibility and the plant can save a lot considering an aggregate service level. At more strict service

levels, when there is a limited capacity, there is a higher probability for the models with individual

service level to be infeasible compared to the aggregate one. In general, the aggregate service level

will provide some flexibility to the model which allows the production system to use its limited

capacity more efficiently. It is also possible to consider the individual service level simultaneously

with the aggregate service levels.

Investigating the static-dynamic strategy in the non-capacitated version of the problem and

comparing it with the static strategy and the rolling/receding horizon approach is an interesting

future research direction. Extending the problem to more general cases such as the distribution

free case and no i.d.d assumption in demand also constitutes an interesting research direction.
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To this end, the next step of this research is to approximate the problem using scenario-based

formulations which can be used in dealing with any demand distributions. Such modeling scheme,

albeit general, may not be scalable and this hence also justifies further research on the development

of efficient solution frameworks.
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Chapter 2

Flexibility in the Stochastic Multi-level Lot

Sizing Problem with Service Level

Constraints

Abstract

We investigate the stochastic multi-level lot sizing problem with a service level and in a general

setting in which it is possible to have independent demand for the components as well. In this

work, we present a systematic approach to evaluate the value of adding flexibility in such context.

To this end, the problem with uncertain demand is modeled as a two-stage stochastic program

considering different demand scenarios. We first consider at all levels a static strategy in which

both the setup decisions and the production quantities are determined in the first stage before the

demand is realized. We also model a more adaptive strategy to be more responsive to the realized

demand when production quantity decisions of some items can be treated as recourse decisions.

We investigate the value of applying such an adaptive strategy and adding more flexibility in the

system under different settings. Three different bill of material (BOM) structures (serial, assembly,

and general) are considered. We numerically show that adding flexibility to the system results in a

cost savings depending on where we add the flexibility in the BOM. While controlling the variation

in the plans is very important in the multi-level system, this research show that even having a small



degree of flexibility may result in a reasonable amount of cost savings.

2.1 Introduction

Being cost efficient is a crucial imperative in a competitive business environment. For manufac-

turing companies, having an efficient production plan in the context of a material requirements

planning (MRP) system is important to minimize different costs of production and inventory con-

trol. In MRP, time-phased production and inventory plans are crucial decisions to make a balance

between customers’ demand satisfaction and cost management. While insufficient inventory will

lead to shortages, unnecessary stocks will increase the inventory holding cost.

The standard lot sizing problem aims to determine the optimal timing and production quantities

in order to satisfy known demand over a finite and discrete time horizon (Pochet and Wolsey,

2006). One of the extensions to the standard lot sizing problem is to consider the multi-level

product structure which is common in MRP systems. While only independent demand exists for

each of the products in the single level lot sizing problem, there is also dependent demand due to

the bill of material (BOM) structure in a multi-level lot sizing problem. There are different product

structures in the literature including serial, assembly, and general structures (Pochet and Wolsey,

2006).

Within the optimization models for production planning, where all the levels of the BOM are

optimized simultaneously, the decision variable related to the backlog only exists for the items that

have independent demand. This is due to the fact that, in order to produce the items at the lower

levels, their components need to be available at the required time, and it is hence not possible

to have backlog for the dependent demand (Hung and Chien, 2000). Indeed, if we would allow

backlog at the component level, then a solution can exist in which there is some backlog at the

component level, while there is no backlog at the end item level. In this research, we address a

more general setting in which, in addition to the end items, each of the components in the BOM

may also have an independent demand. Therefore, it is possible to have backlog for them due

to this independent portion. This problem with demand at multiple levels in the BOM structure

has practical relevance in industries with production and aftermarket services, which require spare

parts (Wagner and Lindemann, 2008). A good example is the aerospace industry where, in addition

50



to the demand for end items, the components also have independent demand, which has to be taken

into account in the planning process.

Even though demand is typically stochastic in nature, the calculations used in the MRP systems

are based on the deterministic demand assumption while safety stocks of items with independent

demand are separately determined to hedge against demand uncertainty. The use of safety stocks

in such context can potentially lead to sub-optimal solutions since the calculations are performed

in isolation under different assumptions than the deterministic model (Tempelmeier and Herpers,

2011). Unlike this approach which can potentially result in sub-optimal decisions, in this research,

we will use stochastic optimization models to deal with demand uncertainty in a single framework.

In these models, the lot sizing and safety stock level decisions are jointly determined as the de-

mand’s probability distributions are considered in the model (Helber et al., 2013; Thevenin et al.,

2021).

Different forms of service levels are widely used in the calculations of safety stock to deal with

demand uncertainty in stochastic lot-sizing problems. However, most of the research has been

focused on the single level problem. In the multi-level problem, as it is not possible to have backlog

for the dependent demand in the BOM, the service levels are defined only for the independent

demand of the end products and the components. The service level which we consider in this

research is closely related to the δ service level proposed by Helber et al. (2013). Here, instead of

limiting average backlog, we limit the maximum proportion, taken over all demand realizations,

of total backlog to the total possible backlog over the whole planning horizon.

In the single level lot sizing problem, there are three main strategies to deal with multi-period

lot sizing problems with stochastic demand and these have a different approach for the setup and

production decisions, namely the static, dynamic, and static-dynamic strategy (Bookbinder and

Tan, 1988). In the static strategy, the setup and production decisions will be defined at the be-

ginning of the planning horizon and they remain unchanged with the demand realization. In the

dynamic strategy, both setups and production decisions may be modified after the demand realiza-

tion. The static-dynamic strategy is the combination of these two strategies in which the setups

are fixed at the beginning of the planning horizon and the production decisions are made after the

demand realization. These strategies can also be applied in multi-level lot sizing problems. In the

system in which we have independent demand for the components as well, we can apply different
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strategies at different levels in the BOM to increase the responsiveness in the system, while keep-

ing the nervousness under control. By allowing some production level decisions to be made in the

second stage, we gain more flexibility and hence lower costs. We provide an illustrative example

to demonstrate the benefits of such flexibility, later in this section.

In this research, we model the stochastic multi-level lot sizing problem as a two-stage stochas-

tic programming model which is solved using the sample average approximation (SAA) formula-

tion (Kleywegt et al., 2002; Shapiro et al., 2014). The contributions of this research can be stated

as follows. First, we investigate the stochastic multi-level lot sizing problem with service level

constraints. We specifically consider the case where independent demand exists not only for the

end items but at the component level as well. Second, we model different variants of the problem

which allow a different level of flexibility (i.e., static strategy versus static-dynamic strategy) at

different levels in the BOM structure. Third, we apply the SAA method to empirically evaluate

the solution quality with different number of scenarios. Fourth, we propose a systematic way to

calculate the cost savings. Based on that, we perform extensive computational experiments to

empirically validate the value of flexibility and derive managerial insights for this problem under

different settings.

2.1.1 An illustrative example

The aim of this short section is to offer some intuition on how we may benefit from the production

recourse in a multi-level lot sizing problem. We will use a small example which only considers

one period. Assume we have two items in the BOM, one end item and one component. The av-

erage external demand for each of the items is 100 units. The stochastic demand for each item is

represented by 3 independent demand scenarios with equal probability and the demand values of

50, 100, 150. Therefore, we have 9 scenarios in total based on different combinations of external

demand for the two items as illustrated in Table 2.1. Based on these demand scenarios, we consider

and compare three different cases. One without any flexibility and two with flexibility in which we

have recourse for the end item production. In the first case, there is no flexibility, and the produc-

tion decisions for both the component and end product are taken before the demand realization. For

illustrative purposes, we assume that we will produce equal to the average demand. This results in

a production of 100 for the end item and 200 for the component. The 200 units for the component
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are based on the average external demand of the component itself and the internal demand coming

from the end item. Since the production of both the end item and the component is fixed, there is

no flexibility. More specifically, the 200 available units of the component will always be allocated

in the same way: 100 units to satisfy the internal demand generated by the fixed production of 100

units of the end item, and the other 100 units to satisfy the external demand of the component.

These allocation decisions are indicated in the table for each scenario. Because there is no flexi-

bility, a situation might arise such as in scenario 3, where we have enough components (i.e., 200)

to satisfy the external demand of the component (i.e., 50) and end item (i.e., 150), but because of

the fixed production at of 100 units the end item level we end up with an inventory of 50 units at

the component level while having a backlog of 50 at the end item level. The average backlog and

inventory levels are calculated over the 9 different scenarios.

In the second case, we consider some level of flexibility in which we have a production recourse

for the end item. As in the first case, we will produce 200 units for the component, but how

much to produce for the second item is a recourse decision and will be defined based on the

observed demand. The flexibility with respect to the production quantity of the end item results

in flexibility in the allocation of the 200 units of the component, to satisfy the external demand

of the component or to produce end item. This flexible allocation will define what portion of the

produced component should be used for its own external demand and how much should be used for

the end item production. In the second case, the production quantity for the end item is determined

so that it satisfies as much as possible the external demand for this end item, while avoiding any

inventory for the end item. In Table 2.1, the allocation of the 200 available units of the component

to the component and to the end product are given. These decisions are now different in each

scenario because the production decision for the end item is now a recourse decision. We observe

here that for scenario 3, the flexibility in the production quantity for the end product now allows a

flexible allocation of the 200 components: 50 to satisfy the external demand for the component and

150 to be allocated to the end product. The result is that demand for both the end product and the

component is exactly satisfied without creating any backlog or inventory. In this case, the recourse

decisions taken lead to an average of 22.2 units backlog and the same amount of inventory for the

component, while the average backlog and inventory for the end item is equal to zero.

Case 3 is similar to case 2, but with slightly different recourse decisions taken, resulting in
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Table 2.1: An illustrative example
Demand scenarios Solution 1 with no flexibility Solution 2 with flexibility at the end item Solution 3 with flexibility at the end item

Comp End Comp End Comp End Comp End Comp End Comp End Comp End Comp End Comp End
Production 200 100 200 Recourse 200 Recourse

# Comp End Alloc Alloc Inv Inv Back Back Alloc Alloc Inv Inv Back Back Alloc Alloc Inv Inv Back Back
1 50 50 100 100 50 50 0 0 150 50 100 0 0 0 100 100 50 50 0 0
2 50 100 100 100 50 0 0 0 100 100 50 0 0 0 100 100 50 0 0 0
3 50 150 100 100 50 0 0 50 50 150 0 0 0 0 50 150 0 0 0 0
4 100 50 100 100 0 50 0 0 150 50 50 0 0 0 150 50 50 0 0 0
5 100 100 100 100 0 0 0 0 100 100 0 0 0 0 100 100 0 0 0 0
6 100 150 100 100 0 0 0 50 50 150 0 0 50 0 50 150 0 0 50 0
7 150 50 100 100 0 50 50 0 150 50 0 0 0 0 150 50 0 0 0 0
8 150 100 100 100 0 0 50 0 100 100 0 0 50 0 100 100 0 0 50 0
9 150 150 100 100 0 0 50 50 50 150 0 0 100 0 100 100 0 0 50 50
Avg 100 100 100 100 16.7 16.7 16.7 16.7 100 100 22.2 0 22.2 0 100 100 16.7 5.6 16.7 5.6

an average inventory and backlog level of 16.7 units for the component and 5.6 units for the end

item. This result dominates the result of the first case. As we can see, in general the flexibility

can reduce the average inventory and backlog in the system, but we may have several solutions

to use this flexibility, which can be defined optimally based on the structure and different costs in

the system. This small illustration makes clear that the flexibility with respect to the production

quantity of the end product results in a flexible decision on the allocation of the fixed production

quantity of the component.

2.2 Literature review

We organized the literature review into two sections. The first part discusses the lot sizing problem

with service level constraints, and the second one discusses the multi-level lot sizing problem.

2.2.1 Stochastic lot sizing problem with service level constraints

The stochastic lot sizing problem with service level constraints has been studied extensively. Sev-

eral service level measures have been proposed which can be classified as event-oriented service

levels, quantity-oriented service levels, and time and quantity-oriented service levels (Sereshti

et al., 2020). The α service level is an event-oriented service level which imposes a limit on

the probability of stock out. The β service level or the fill rate is the proportion of the demand

directly filled from stock and it is calculated based on the expected backorders to the expected

demand. This service level is a quantity oriented service level. The γ service level limits the pro-
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portion of expected backlog to expected demand. The δ service level is based on the proportion

of total expected backlog to the maximum expected backlog. Both γ and δ service levels are time

and quantity oriented service levels.

Many papers studied the lot sizing problem with service level constraints using different strate-

gies and different types of service levels (Helber et al., 2013; Tavaghof-Gigloo and Minner, 2021;

Tempelmeier, 2011; Tempelmeier and Herpers, 2011; Tempelmeier and Hilger, 2015; Tunc et al.,

2014). These service levels are commonly considered in systems with one item, or multiple end

items, but they are not considered in multi-level systems where we have BOM structures. The ser-

vice level which we consider in this research is closely related to the δ service level proposed by

Helber et al. (2013). Here, instead of limiting average backlog we limit the maximum proportion,

taken over all demand realisations, of total backlog, to the total possible backlog over the whole

planning horizon, for each product with external demand. This service level which we denote by

δ ′ is more strict compared to the standard δ service level. While the δ service level is defined

based on the averages over all scenarios, δ ′ is imposed for each of the scenarios separately. This

per-scenario service level is also adopted in other similar problems. For example, Alvarez et al.

(2020) investigate the inventory routing problem with stochastic supply and demand with a service

level in which they limit the proportion of total lost sale to the total demand for each scenario.

2.2.2 Multi-level lot sizing problem

Several formulations have been considered for the multi-level lot sizing problem. Some formula-

tions use the concept of echelon stock Afentakis et al. (1984); Afentakis and Gavish (1986), Pochet

and Wolsey (2006) Akartunalı and Miller (2009)). This reformulation results in a separation of the

different levels and allows the use of strong cuts or reformulations based on the single-level lot siz-

ing problem, resulting in better bounds. Wu et al. (2011) investigated the capacitated multi-level

lot sizing problem with backlogging, and proposed different mathematical models. These models

are the common multi-level lot sizing model, the model based on echelon variables, the model

based on the facility location formulation, and the model based on the shortest path formulation.

As mentioned before, it is not possible to allow backlog decisions for the dependent demand in the

BOM structure, and these backlogs are defined only for the independent demands in the system.

Hung and Chien (2000) proposed a mathematical model for a multi-class multi-level capacitated
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Table 2.2: Multi-level lot sizing research

Authors Capacity Backlogging Independent demand Stochasticity Service level
at the component level

Tempelmeier and Derstroff (1996) + - - - -
Hung and Chien (2000) + + + - -
Stadtler (2003) + - - - -
Sahling et al. (2009) + - - - -
Akartunalı and Miller (2009) + + - - -
Almeder (2010) + - - - -
Wu et al. (2011) + + - - -
Seeanner et al. (2013) + - - - -
Xiao et al. (2014) - - - - -
Toledo and da Silva Arantes (2015) + + - - -
You et al. (2019) - - - - -
Thevenin et al. (2021) - - - + -
Quezada et al. (2020) - - + + -
Gruson et al. (2021) - - - + -

Our work + + + + +

lot sizing problem, where two classes of orders, i.e., confirmed and predicted, are considered. In

this model, there are three different constraints for the inventory balance constraints; one for end

products, one for components with external demand, and one for components without external

demand. In addition to these constraints, there is also a set of constraints to ensure that there

is no backlog for the dependent demand of the components. To solve this problem, the authors

used simulated annealing, tabu search, and genetic algorithm heuristics. Table 2.2 shows some of

the related works on multi-level lot sizing problem, and their similarities and differences with our

work.

2.3 Mathematical formulation

In this section, we propose the mathematical models for the deterministic and stochastic multi-

level lot sizing problems with a service level constraint. As mentioned, in this model, there is a

possibility of having external (independent) demand for the components as well.

2.3.1 Deterministic model

The deterministic model is an extension of the model proposed by Hung and Chien (2000) in

which, for each type of product in the system, there is a different set of inventory balance con-

straints. Table 2.3 provides the list of sets, parameters and decision variables in the model. In this
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model, the structure of the BOM is considered by the successors of each item. We have multiple

machines and the capacity is also defined for each machine separately. Furthermore, we consider

the possibility of overtime.

Table 2.3: Notation for the multi-level deterministic lot sizing problem

Sets Definition

K Set of products, indexed by 1, ...,K
Sk Set of immediate successors of product k
T Set of planning periods, indexed by 1, ...,T
E I Set of end items
C W Set of components without external demand
C E Set of components with external demand
MC Set of machines
Km Set of products that are produced on machine m
Parameters Definition

capmt Production capacity for machine m in period t
dkt External demand of item k in period t
bckt Backlog cost for product k in period t
hckt Inventory holding cost for product k in period t
M̄kt ,M′kt A sufficiently large number
ptkt Unit production time for product k in period t
rki Number of units of item k required to produce one unit of the immediate successor item i
ocmt Overtime cost for machine m in period t
sckt Setup cost for product k in period t
stkt Setup time for product k in period t
δ ,δ ′ Target service level
Decision variables Definition

ykt Binary variable which is equal to 1 if there is a setup for product k in period t, 0 otherwise
xkt Amount of production for product k in period t
omt Overtime for machine m in period t
Bkt Amount of backlog for product k at the end of period t
Ikt Amount of physical inventory for product k at the end of period t

Min ∑
t∈T

∑
k∈K

(scktykt +hcktIkt)+ ∑
t∈T

∑
m∈MC

ocmtomt + ∑
k∈K

bckT BkT (2.1a)

Subject to:

Ik,t−1 + xkt +Bkt = Ikt +Bk,t−1 +dkt ∀t ∈T ,∀k ∈ E I (2.1b)

Ik,t−1 + xkt = Ikt + ∑
i∈Sk

rkixit ∀t ∈T ,∀k ∈ C W (2.1c)

Ik,t−1 + xkt +Bkt = Ikt +Bk,t−1 +dkt + ∑
i∈Sk

rkixit ∀t ∈T ,∀k ∈ C E (2.1d)
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Bkt−Bk,t−1 ≤ dkt ∀t ∈T ,∀k ∈ C E (2.1e)

xkt ≤ M̄ktykt ∀t ∈T ,∀k ∈K (2.1f)

∑
k∈Km

(stktykt + ptktxkt)≤ capmt +omt ∀m ∈MC ,∀t ∈T (2.1g)

∑t∈T Bkt

∑t∈T (T − t +1)dkt
≤ 1−δ ∀k ∈ E I ∪C E (2.1h)

ykt ∈ {0,1} ∀t ∈T ,∀k ∈K (2.1i)

B ∈ RKT
+ , I ∈ RKT

+ ,x ∈ RKT
+ ,o ∈ RMCT

+ (2.1j)

The objective function (2.1a) minimizes the setup cost, holding cost, overtime cost and the cost

of unsatisfied demand at the end of the planning period. Constraints (2.1b-2.1d) are the inventory

balance constraints. Constraints (2.1b) are the inventory balance constraints for each of the end

items in each planning period, and constraints (2.1c) and (2.1d) are for the components without

and with external demand, respectively. Constraints (2.1e) ensure that the amount of backorder in

each planning period cannot be more than the period external demand (Hung and Chien, 2000).

These constraints are only imposed for the components with external demand and they ensure

that any backlog is only directly related to the independent demand of the component and there is

no backlog for dependent demands. Constraints (2.1f) are the production setup constraints. M̄kt

which is the maximum possible production is calculated using equations (2.2) and (2.3) in a similar

fashion as in Toledo and da Silva Arantes (2015). These calculations need to be done recursively,

starting from the end items. Constraints (2.1g) are the capacity constraints. Constraints (2.1h) are

the δ service level constraints in the deterministic setting (Gruson et al., 2018).

Dk(t..T ) =
T

∑
u=t

dku + ∑
i∈Sk

rkiDi(t..T ) ∀t ∈T ,∀k ∈K (2.2)

M̄kt = Dk(1..T ) ∀t ∈T ,∀k ∈K (2.3)

2.3.2 Static stochastic model with service level

In this section, we present the model for the stochastic capacitated multi-level lot sizing problem.

In this first variant, as in (Bookbinder and Tan, 1988) we assume that the strategy is static which

58



Figure 2.1: Sequence of events for the case with no flexibility

implies that the setup and production quantity decisions are determined at the beginning of the

planning horizon and cannot be changed. Figure 2.1 illustrates the sequence of decisions in this

problem. The setup and production, and overtime decisions are the first stage variables which are

defined before the demand realization. It is worthwhile to mention that in general the overtime

is a part of the recourse decisions in our problem definition. However, in the static case, there

is no benefit in defining overtime as a second stage variable since all the production amounts are

determined in the first stage and hence the overtime does not depend on the demand realization.

Thus, for the static case, we include this variable in the first-stage model for simplicity. After the

demand realization (for the entire planning horizon), the resulting inventory and backlog levels

are determined for each scenario in the second stage (Helber et al., 2013). In this problem, the

model guarantees that for each product with external demand, the proportion of backlog divided

by the maximum possible backlog considering any realization is less than (1−δ ′). As mentioned

earlier, this service level is more strict than the standard δ service level which is defined based

on the expected value of the backlog (Helber et al., 2013). We model this problem as a two-

stage stochastic mixed integer program. To account for the stochasticity, a random vector d =

(d̃11, ..., d̃KT ) is considered, where d̃kt represents the random demand for product k, in period t.

This model is represented in (2.4a)-(2.4e).

ν
∗ := Min F(y,o)+Ed[Q(x,d)] (2.4a)

Subject to:

xkt ≤M′ktykt ∀t ∈T ,∀k ∈K (2.4b)

∑
k∈Km

(stktykt + ptktxkt)≤ capmt +omt ∀m ∈MC ,∀t ∈T (2.4c)

y ∈ {0,1}KT (2.4d)
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x ∈ RKT
+ ,o ∈ RMC,T

+ (2.4e)

In this model, the first-stage cost function is defined as (2.5a) which minimizes the setup and

overtime costs, and the second stage cost function is represented in (2.5b-2.5h).

F(y,o) = ∑
t∈T

( ∑
k∈K

scktykt + ∑
m∈MC

ocmtomt) (2.5a)

Q(x,d) = min ∑
t∈T

∑
k∈K

hcktIkt + ∑
k∈K

bckT BkT (2.5b)

Subject to:

Ik,t−1 + xkt +Bkt = Ikt +Bk,t−1 + d̃kt ∀t ∈T ,∀k ∈ E I (2.5c)

Ik,t−1 + xkt = Ikt + ∑
i∈Sk

rkixit ∀t ∈T ,∀k ∈ C W (2.5d)

Ik,t−1 + xkt +Bkt = Ikt +Bk,t−1 + d̃kt + ∑
i∈Sk

rkixit ∀t ∈T ,∀k ∈ C E (2.5e)

Bkt−Bk,t−1 ≤ d̃kt ∀t ∈T ,∀k ∈ C E (2.5f)

∑t∈T Bkt

∑t∈T (T − t +1)d̃kt
≤ 1−δ

′ ∀k ∈ E I ∪C E (2.5g)

I ∈ RKT
+ ,B ∈ RKT

+ (2.5h)

The objective function (2.5b) minimizes the holding cost, and the cost of unsatisfied demand

at the end of the planning period. Constraints (2.5c-2.5e) are the inventory balance constraints.

Constraints (2.5f) limit the maximum amount of backorder in each planning period. Constraints

(2.5g) are the service level constraints.

2.3.3 Stochastic model with service level and production recourse

In the previous section, we presented the model based on the static strategy which does not allow

any flexibility in the production decisions. In this section, we consider the case where we have

production recourse and flexibility can be allowed for some products by assuming that they can

follow a static-dynamic strategy, while other products keep following the static strategy.

In this model, the production amounts of the products with no flexibility are part of the first-

stage decisions, and the production for the rest of them are part of the second stage decisions which
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Figure 2.2: Sequence of events for the case with flexibility

are determined after the demand realization (Figure 2.2). Table (2.4) presents the additional set and

variables required for this model.

Table 2.4: Additional notation for the stochastic model with production flexibility

Set Definition

Flex Set of products with flexible production
Random variables Definition

Xkt Amount of production for product k ∈ Flex in period t
Decision variables Definition

xkt Amount of production for product k ∈K \Flex in period t

The stochastic multi-level lot sizing problem with flexibility is presented in (2.6a)-(2.6d).

ν
∗ := Min F ′(y)+Ed[Q′(y,x,d)] (2.6a)

Subject to:

xkt ≤M′ktykt ∀t ∈T ,∀k ∈K ,k \Flex (2.6b)

y ∈ {0,1}KT (2.6c)

x ∈ RKT
+ (2.6d)

In model 2.6, the first-stage cost function is defined as (2.7a) and the second stage recourse

model is represented in (2.7b-2.7m).

F ′(y) = ∑
t∈T

∑
k∈K

scktykt (2.7a)

Q′(y,x,d) = ∑
t∈T

( ∑
k∈K

hcktIkt + ∑
m∈MC

ocmtOmt)+ ∑
k∈K

bckT BkT (2.7b)
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Subject to:

Xkt ≤Mktykt ∀t ∈T ,∀k ∈K ,k ∈ Flex (2.7c)

∑
k∈Km

stktykt + ∑
k∈Km\Flex

ptktxkt + ∑
k∈Km∩Flex

ptktXkt

≤ capmt +Omt ∀m ∈MC ,∀t ∈T (2.7d)

Ik,t−1 + xkt +Bkt = Ikt +Bk,t−1 + d̃kt ∀t ∈T ,∀k ∈ E I ,k \Flex (2.7e)

Ik,t−1 +Xkt +Bkt = Ikt +Bk,t−1 + d̃kt ∀t ∈T ,∀k ∈ E I ,k ∈ Flex (2.7f)

Ik,t−1 + xkt = Ikt + ∑
i∈Sk\Flex

rkixit + ∑
i∈Sk∩Flex

rkiXit ∀t ∈T ,∀k ∈ C W ,k \Flex (2.7g)

Ik,t−1 +Xkt = Ikt + ∑
i∈Sk\Flex

rkixit + ∑
i∈Sk∩Flex

rkiXit ∀t ∈T ,∀k ∈ C W ,k ∈ Flex (2.7h)

Ik,t−1 + xkt +Bkt = Ikt +Bk,t−1 + d̃kt + ∑
i∈Sk\Flex

rkixit

+ ∑
i∈Sk∩Flex

rkiXit ∀t ∈T ,∀k ∈ C E ,k \Flex (2.7i)

Ik,t−1 +Xkt +Bkt = Ikt +Bk,t−1 + d̃kt + ∑
i∈Sk\Flex

rkixit

+ ∑
i∈Sk∩Flex

rkiXit ∀t ∈T ,∀k ∈ C E ,k ∈ Flex (2.7j)

Bkt −Bk,t−1 ≤ d̃kt ∀t ∈T ,∀k ∈ C E (2.7k)

∑t∈T Bkt

∑t∈T (T − t +1)dkt
≤ 1−δ

′ ∀k ∈ E I ∪C E (2.7l)

I ∈ RKT
+ ,B ∈ RKT

+ ,X ∈ RKT
+ ,O ∈ RMCT

+ (2.7m)

Notable differences between model 2.5 and model 2.7 are in the presence of the recourse vari-

able Xit which shows the adaptive production, and of the recourse variable Oit which shows the

overtime and cannot be moved to the first stage decisions anymore. Each of the inventory balance

constraints in model 2.5 should be separately considered for the items with and without adaptive

production in model 2.7.

2.4 Sample average approximation

We cannot directly solve the two-stage programming models (2.4) and (2.6) due to the presence

of the random demand vector d and the expectation terms in their objective functions (2.4a) and
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(2.6a). Having different random variables, we need to consider all possible realizations of the ran-

dom parameters to have exact evaluation of this expectation term. To tackle this computational

difficulty, we apply the sample average approximation (SAA) method. SAA is a Monte Carlo

simulation-based method to solve the stochastic optimization problems in which the random dis-

tribution is replaced by a finite number of scenarios and the true expected value of the objective

function is approximated by the average cost over the scenarios (Shapiro et al., 2014). To generate

a scenario sample for the random vector d = {ds}s∈S, Monte Carlo sampling is used and an equal

probability is assigned to each scenario.

The quality of the approximation in the stochastic approach mainly depends on the number of

scenarios used (Mousavi et al., 2021). The challenge here is to define a proper number of scenarios

which can provide a near-optimal approximation of the original problem. This number is defined

based on the statistical lower bound and upper bound of the optimal solution. The SAA procedure,

the definition of these bounds, and the gap between them are explained next.

In the SAA procedure, we have a set of scenario S = {1,2, ...,S}. First we choose the initial

sample sizes S, and the number of SAA replications M. Then, for each replication m = 1 to M, an

instance with S scenarios is generated and the corresponding SAA model is solved based on the

chosen set of scenarios. Let the ν̂S
m and σ̂S

m, be the optimal objective function value and the solution

for replication m, respectively. Equation (2.8) defines the expected value of the lower bound of ν∗,

the optimal objective value for the original problem, based on M replications of size S, denoted by

Lmean
M,S .

Lmean
M,S = E(v̂M) =

1
M

M

∑
m=1

v̂S
m (2.8)

To estimate the upper bound, we generate a large enough sample set S eval = {1,2, ...,Seval},

where Seval ≫ S. Having a solution σ̂ as the first stage decision, UM,S (2.9) is an estimation of the

upper bound, in which ĝ(S eval, σ̂) is the objective function of the SAA formulation when the first

stage solution, σ̂ , is fixed and when scenario set Seval is used.

UM,S = ĝ(S eval, σ̂) (2.9)

It should be noted that in this procedure, we have M different feasible solutions to calculate

the upper bound. Among those we will choose the one with the smallest estimated objective value
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which is calculated based on a scenario set S eval , denoted by σ∗ (Verweij et al., 2003) (see eq.

2.10).

σ
∗ = arg min{ĝ(S eval, σ̂) : σ̂ ∈ {σ̂S

1 , ..., σ̂
S
M}} (2.10)

The empirical gap between the UM,S and Lmean
M,S is used to define the proper number of scenarios

to run the experiments to investigate the flexibility. In the following section we will present the

SAA formulation of the two-stage models (2.4) and (2.6), as models (2.11) and (2.14), respectively.

Applications of this method can also be found in Contreras et al. (2011), Taş et al. (2019), and

Mousavi et al. (2021).

2.4.1 Reformulating the SAA problem

In this section, we present the extensive forms of SAA formulation (Mousavi et al., 2021), for

both the static and adaptive models. Additional parameters and decision variables are presented in

Table 2.5 and the stochastic models are presented afterward.

Table 2.5: Additional parameters and variables used in the SAA formulations

Parameters Definition
dkts Demand for product k in period t in scenario s
Decision variables Definition

Xkts The production amount for product k,k ∈ Flex, in period t for scenario s
Omts The backorder for machine m in period t for scenario s
Bkts Backlog for product k in period t for scenario s
Ikts Amount of inventory for product k at the end of period t in scenario s

The static SAA model

Following the static strategy, the setup and production, and overtime variables are the first stage

variables and they do not have any index for the different scenarios in this model. The resulting

inventory and backlog for each scenario are determined in the second stage.

Min ∑
t∈T

∑
k∈K

scktykt + ∑
t∈T

∑
m∈MC

ocltomt + ∑
t∈T

∑
k∈K

hckt
∑s∈S Ikts

S
+ ∑

k∈K
bckT

∑s∈S BkT s

S

(2.11a)
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Subject to constraints (2.4b) - (2.4d), and:

Ik,t−1,s + xkt +Bkts = Ikts +Bk,t−1,s +dkts ∀t ∈T ,∀k ∈ E I ,∀s ∈S (2.11b)

Ik,t−1,s + xkt = Ikts + ∑
i∈Sk

rkixit ∀t ∈T ,∀k ∈ C W ,∀s ∈S (2.11c)

Ik,t−1,s + xkt +Bkts = Ikts +Bk,t−1,s +dkts + ∑
i∈Sk

rkixit ∀t ∈T ,∀k ∈ C E ,∀s ∈S (2.11d)

Bkts−Bk,t−1,s ≤ dkts ∀t ∈T ,∀k ∈CE,∀s ∈S (2.11e)

∑t∈T Bkts

∑t∈T (T − t +1)dkts
≤ 1−δ

′ ∀k ∈ E I ,CE,∀s ∈S (2.11f)

B ∈ RKT S
+ , I ∈ RKT S

+ (2.11g)

The objective function (2.11a) is to minimize the setup cost, overtime cost, and the expected

value of the inventory holding costs and the backlog in the last period. Constraints (2.11b-2.11d)

are the inventory balance constraints which are defined for all products in all periods, and for all

the scenarios. Constraints (2.11e) define the limit for the maximum amount of backorder for each

component with external demand in each period for each scenario. Constraints (2.11f) show the

service level for each product and each scenario, in which the proportion of total backlog to the

maximum possible backlog for each scenario should not exceed the threshold percentage set by

service level δ ′. The parameter M′kt in the production setup constraint is calculated recursively

using equations (2.12) and (2.13).

Dk(t..T )s =
T

∑
u=t

dkus + ∑
i∈Sk

rkiDi(t..T )s ∀t ∈T ,∀k ∈K ,∀s ∈S (2.12)

M′kt = max
s∈S

Dk(1..T )s ∀t ∈T ,∀k ∈K (2.13)

The SAA model with flexibility

Similar to the model without flexibility, in the SAA formulation for case with flexibility, the

model (2.6) is reformulated as model (2.14).

Min ∑
t∈T

∑
k∈K

(scktykt +hkt
∑s∈S Ikts

S
)+ ∑

t∈T
∑

m∈MC

ocmt
∑s∈S Omts

S
+ ∑

k∈K
bck

∑s∈S BkT s

S
(2.14a)
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Subject to constraints (2.6b), (2.6c), (2.11e), (2.11f), and:

∑
k∈Km

stktykt + ∑
k∈Km\Flex

ptktxkt + ∑
k∈Km∩Flex

ptktXkts

≤ capmt +Omts ∀s ∈ S,∀m ∈MC ,∀t ∈T (2.14b)

Ik,t−1,s + xkt +Bkts = Ikts +Bk,t−1,s +dkts ∀s ∈ S,∀t ∈T ,∀k ∈ E I ,k\Flex (2.14c)

Ik,t−1,s +Xkts +Bkts = Ikts +Bk,t−1,s +dkts ∀s ∈ S,∀t ∈T ,∀k ∈ E I ,k ∈ Flex (2.14d)

Ik,t−1,s + xkt = Ikts + ∑
i∈Sk\Flex

rkixit

+ ∑
i∈Sk∩Flex

rkiXits ∀s ∈ S,∀t ∈T ,∀k ∈ C W ,k\Flex (2.14e)

Ik,t−1,s +Xkts = Ikts + ∑
i∈Sk\Flex

rkixit

+ ∑
i∈Sk∩Flex

rkiXits ∀s ∈ S,∀t ∈T ,∀k ∈ C W ,k ∈ Flex (2.14f)

Ik,t−1,s + xkt +Bkts = Ikts +Bk,t−1,s +dkts

+ ∑
i∈Sk\Flex

rkixit + ∑
i∈Sk∩Flex

rkiXits ∀s ∈ S,∀t ∈T ,∀k ∈ C E ,k\Flex (2.14g)

Ik,t−1,s +Xkts +Bkts = Ikts +Bk,t−1,s +dkts

+ ∑
i∈Sk\Flex

rkixit + ∑
i∈Sk∩Flex

rkiXits ∀s ∈ S,∀t ∈T ,∀k ∈ C E ,k ∈ Flex (2.14h)

Xkts ≤M′ktykt ∀s ∈ S,∀t ∈T ,∀k ∈ Flex (2.14i)

B ∈ RKT S
+ , I ∈ RKT S

+ ,x ∈ RKT
+ ,X ∈ RKT S

+ ,O ∈ RMC,T
+ (2.14j)

The objective function (2.14a) minimizes the setup cost, plus the expected value of inventory hold-

ing cost, overtime cost, and unsatisfied demand at the end of planning period. Constraints (2.14b)

are the capacity constraints for each production level, each scenario in each period. In this con-

straint the overtime is different for each demand scenario. Constraints (2.14c - 2.14h) are the

inventory balance constraints. The difference between these constraints and inventory balance

constraints in the model without any flexibility is that we have separate constraints for the items

that have flexibility and the items that do not have it.
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SAA implementation

In the SAA procedure, we first solve the SAA model to define the first stage decisions which we

refer as the planning phase. In this phase, we solve the models using a set of sampled demand

scenarios. In the second phase or evaluation phase, after fixing the first stage solution, we solve

the model using a new and larger set of scenarios. Since each of the evaluation scenarios differ

from the scenarios considered initially in the planning phase, this may cause infeasibility due to

the service level constraint. Note that the overtime decision, even in the case of the static-dynamic

strategy, does not rule out this infeasibility if the flexibility level is insufficient. More specifically,

we may have some cases where we are not allowed to produce more of an item since the item’s

component production is fixed in the planning phase or the first stage and it is not possible to

increase it. In case of full flexibility, i.e., all the production quantities are determined after the

demand realization, the model will always be feasible with the larger set of scenarios.

The SAA method requires that the model must be feasible in order to calculate the SAA bounds.

Thus, to alleviate this issue, we make use of a set of auxiliary variables which are associated with

a penalty cost. To this end, we need to change the service level constraint from a hard one to a soft

constraint in the the evaluation model. There is an additional penalty variable, εks, for the violation

in the service level constraint and a penalty cost, P, for this violation in the objective function. To

have a consistent model in both the planning and the evaluation, we use constraints (2.16) instead

of the service level constraints (2.11f) and (2.15) instead of the objective function (2.14a) in the

extensive form model (2.14) which will be used both in planning and evaluation.

Min ∑
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) (2.15)

∑t∈T Bkts

∑t∈T (T − t +1)dkts
≤ 1−δ

′+ εks ∀k ∈K ,∀s ∈S (2.16)

In our experiments, the value of P is set high enough so that the value of ε in the planning phase

becomes zero, which guarantees that the plan is feasible with respect to all the demand scenarios

used in the planning phase, and the service level constraint (2.11f) is not violated in this phase.
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For the evaluation of the decisions, we generate a large number of scenarios, and we solve the

extensive form of the problem. The average of the objective functions over all of these scenarios

will be the result of the evaluation which is also the the upper bound of the optimal value which

was explained in section 5 in the SAA procedure. In the numerical experiments, the percentage of

violated scenarios and how much the service level constraint is violated are also calculated in the

evaluation phase.

2.5 Numerical experiments

2.5.1 Instance generation

This research combines a multi-level lot sizing problem with external demand for the components,

and the stochastic lot sizing with service level constraints. To the best of our knowledge, instances

for this problem are not available in the literature. To this end, we make use of two data sets in the

literature and adapt them to the problem considered in this paper. More specifically, we modified

the method used by Helber et al. (2013) for the stochastic lot sizing problem with service level,

and adapted the instance generation method presented by Tempelmeier and Derstroff (1996) for

the multi-level lot sizing and different BOM structures, as follows:

• We consider three different structures, serial, assembly and general (Figure 2.3). For the last

two structures, we follow the Tempelmeier and Derstroff data (Tempelmeier and Derstroff,

1996).

• The holding cost of an item is equal to the sum of the holding cost of its components, multi-

plied by (1+HValue). A High HValue means higher value adding operations at each level.

We will also consider a case in which all the values for HValue are equal to 0 which means

that the holding cost of an item is equal to the sum of the holding costs of its components,

without any added value (Tempelmeier and Derstroff, 1996).

• Following Tempelmeier and Derstroff (1996), five different Time Between Orders (TBO)

profiles are considered (Table 2.6). For example, for the serial BOM, in the first profile, the
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T BO for all the items is equal to 1, and in the fourth profile, the T BO for the first 2 items is

equal to 1, for the second item it is equal to 2 and for the last two items it is equal to 4.

• The capacity is defined for each machine. In our instances, exactly one machine is assigned

to each level of BOM, and all the unit processing times are equal to 1. The capacity of

each machine is equal to the sum of the average demand of the items assigned to a machine,

divided by a parameter Util. The average demand of an item is equal to the sum of dependent

and independent demand. Note that Util is a parameter for data generation and it does not

show the actual utilized capacity. We also considered the case without any capacity.

• The setup cost is determined based on the T BO, average demand and the holding cost, using

equation (2.17) (Helber et al., 2013).

sckt =
E[Dkt ]×T BO2×hckt

2
(2.17)

• We will have different levels of flexibility, which is defined based on the items for which

production quantities are not fixed at the beginning of the planning horizon and they may be

modified when the demand is observed. 0 means no flexibility, and i means flexibility for all

the items until the (i+1)th level of BOM structure.

• Average demand profile for different structures. There are three different patterns for the

external demand average. The first one is constant average independent demand for all

the items at different levels. The second one is in increasing order and the third one is in

decreasing orders from the end item level to the following levels (lowest to the highest level).

For a given item, the average demand remains the sames over the horizon. The patterns and

their detailed demand generations are summarized as follows:

1. Constant external demand in which the average external demand (dl = 100) is multi-

plied by 1 at subsequent levels. For example if there is an external demand for any of

the items at different levels it is equal to 100.

2. The increasing order of demand in which the average external demand (dl = 100) is

multiplied by the (level of the item +1). For example the external demand for the items

at level 0 is equal to 100, and for the items at level 1 is equal to 200, is there is any.
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Table 2.6: Different TBO profiles

Serial product structure Assembly product structure General product structure
TBO profile TBO = 1 TBO = 2 TBO = 4 TBO = 1 TBO = 2 TBO = 4 TBO = 1 TBO = 2 TBO = 4

1 1 . . . 5 - - 1 . . . 10 - - 1 . . . 10 - -
2 - 1 . . . 5 - - 1 . . . 10 - - 1 . . . 10 -
3 - - 1 . . . 5 - - 1 . . . 10 - - 1 . . . 10
4 1,2 3 4,5 1 2 . . . 4 5 . . . 10 1 . . . 4 5 . . . 7 8 . . . 10
5 4,5 3 1,2 5 . . . 10 2 . . . 4 1 8 . . . 10 5 . . . 7 1 . . . 4

3. The decreasing order of demand in which the average external demand (dl = 100) is

multiplied by (Max level - level of the item +1). For example, the external demand

for the item at level 0 of the serial structure is equal to 500, and for the assembly and

general structures it is equal to 300.

• The various combinations of average demand profiles and external demand profiles are pro-

vided in Table 2.7. In the assembly and general structure, the external demand is added level

by level to some of the components. This is in line with reality in which some of the compo-

nents may have external demand, and some may not. Based on these classes and numbers,

the demand for each item in each period is randomly generated based on the normal distri-

bution, the average demand profiles, and a 30% coefficient of variance. For each of these

settings, 5 different random replications are generated.

• We consider 5 planning periods and 1 machine at each level. Without loss of generality,

we assume that the lead time is equal to 0. The processing time (ptkt) and the setup times

(stkt) are equal to 1 and 0, respectively. The BOM coefficient (rki) is equal to 1. Table 2.8

illustrates the value of the parameters, in the base case (set A) and for the sensitivity analysis.

In the following sections, we provide the numerical results for different product structures and

investigate the value of flexibility in the multi-level lot sizing problem. For the experiments, we

used the CPLEX 12.8.1.0 and Python libraries. We performed these experiments on a 2.4 GHz

Intel Gold processor with only one thread on the Compute Canada computing grid.
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Figure 2.3: Different BOM structure (adapted from (Tempelmeier and Derstroff, 1996))

Table 2.7: Demand Profiles for different structures

Average demand category
1 2 3

E
xternaldem

and

Serial structure

1 (100,0,0,0,0) (100,0,0,0,0) (500,0,0,0,0)

2 (100,100,0,0,0) (100,200,0,0,0) (500,400,0,0,0)

3 (100,100,100,0,0) (100,200,300,0,0) (500,400,300,0,0)

4 (100,100,100,100,0) (100,200,300,400,0) (500,400,300,200,0)

5 (100,100,100,100,100) (100,200,300,400,500) (500,400,300,200,100)

E
xternaldem

and

Assembly structure

1 (100,0,0,0,0,0,0,0,0,0) (100,0,0,0,0,0,0,0,0,0) (300,0,0,0,0,0,0,0,0,0)

2 (100,100,0,0,0,0,0,0,0,0) (100,200,0,0,0,0,0,0,0,0) (300,200,0,0,0,0,0,0,0,0)

3 (100,100,100,0,0,0,0,0,0,0) (100,200,200,0,0,0,0,0,0,0) (300,200,200,0,0,0,0,0,0,0)

4 (100,100,0,0,100,0,0,0,0,0) (100,200,0,0,300,0,0,0,0,0) (300,200,0,0,100,0,0,0,0,0)

5 (100,100,100,0,100,0,100,0,0,0) (100,200,200,0,300,0,300,0,0,0) (300,200,200,0,100,0,100,0,0,0)

E
xternaldem

and

General structure

1 (100,100,100,100,0,0,0,0,0,0) (100,100,100,100,0,0,0,0,0,0) (300,300,300,300,0,0,0,0,0,0)

2 (100,100,100,100,100,0,0,0,0,0) (100,100,100,100,200,0,0,0,0,0) (300,300,300,300,200,0,0,0,0,0)

3 (100,100,100,100,100,100,0,0,0,0) (100,100,100,100,200,200,0,0,0,0) (300,300,300,300,200,200,0,0,0,0)

4 (100,100,100,100,100,0,0,100,0,0) (100,100,100,100,200,0,0,300,0,0) (300,300,300,300,200,0,0,100,0,0)

5 (100,100,100,100,100,100,0,100,0,100) (100,100,100,100,200,200,0,300,0,300) (300,300,300,300,200,200,0,100,0,100)

2.5.2 SAA analysis

In this section, we perform the SAA analysis on the basic set A which has been defined in Ta-

ble 2.8, with different numbers of scenarios. We determine a reasonable number for the rest of the

experiments based on the SAA Gap, solution time and memory limits. Table 2.9 illustrates these

experiments with M = 10, and Seval = 10000 for different numbers of scenarios S in each replica-

tion. To calculate the gap and its standard deviation for each instance, and to determine a proper

71



Table 2.8: Parameter values for the base case and the sensitivity analysis

Parameter Base case Sensitivity analysis

Util 0.5 0.1 , 0.5 , 0.9
HValue 1 0, 1, 10

TBO profile 2 1, 2, 3, 4, 5
Service Level 95% 80%, 90%, 95% , 99%

number of scenarios in the SAA, we used the version with full flexibility. The time per replication

in seconds (labeled as Time) is also reported for the version with full flexibility, which has the

highest execution time compared to all versions with lower levels of flexibility. For the case with

S= 1000 and full level of flexibility, for about 54% of the instances with an assembly structure and

for all of the instances with a general structure, an optimal solution could NOT be found within

the time limit of 7200 seconds or due to memory limitations. Considering the execution time, we

will use 500 scenarios for the rest of the experiments to solve the model, and 10000 scenarios for

evaluation. Among the three structures, the general structure has the highest execution time and

the serial structure has the lowest one.

Table 2.9: SAA analysis

Serial Assembly General
# Avg Std Time Avg Std Time Avg Std Time
Scenario Gap (%) Gap (%) Gap (%) Gap (%) Gap (%) Gap (%)

100 0.17 0.010 8.2 0.32 0.008 54.5 0.21 0.005 129.6
250 0.14 0.006 39.9 0.25 0.005 390.8 0.17 0.003 800.5
500 0.14 0.004 219.8 0.14 0.005 1314.7 0.16 0.003 3802.0
1000 0.14 0.006 524.7 0.13 0.004 5544.7

Table 2.10: SAA analysis, infeasibility percentage

Serial Assembly General
# Scenario Infeasibility ε (%) Infeasibility ε (%) Infeasibility ε (%)

percentage percentage percentage

100 3.35 0.07 3.79 0.08 7.14 0.13
250 1.82 0.04 1.76 0.03 3.49 0.06
500 1.11 0.02 1.10 0.02 2.19 0.04
1000 0.37 0.01 0.59 0.01 1.14 0.02

As discussed in Section 2.4.1, it is possible to have violated service levels for some scenarios

in the evaluation phase of the SAA method, except for the case with full flexibility. We analyse
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the extent of these infeasibilities. In Table 2.10, the “Infeasibility percentage" shows the average

percentage of scenarios for which a violation occurs out of the 10000 scenarios in the evaluation

phase. The average value of service level violation is reported as ε . These two measures are

calculated based on all levels of flexibility for each instance, except the full flexibility. We can see

that these two measures are also acceptable for 500 scenarios.

2.5.3 The value of stochastic solution

In this section, we calculate the value of stochastic solution for the problem which is the cost

difference between the cost of the optimal solution of the stochastic model and the deterministic

model. To this end, the deterministic model (2.1) is solved in which the demand is equal to the

expected demand. The solution of this model is then fixed as the first stage solution, and the cost

of this model is calculated by optimally solving the second stage problem using the 10000 demand

scenarios.

However, the current problem requires an additional consideration because of the service level.

Although we can also consider the service level in the deterministic case, it is calculated based

on the expected demand, and not several scenarios. This will result in a significant difference in

the level of production between between the deterministic and stochastic case. This difference

is more pronounced, when there is no flexibility in the model and all production decisions are

defined in the first stage based on the expected value. In the deterministic case, based on the level

of flexibility, the total evaluated cost (excluding the service level violation penalty) may be lower

than the cost of the stochastic solution due to this lower level of production, but it also results

in a high service level violation. Therefore, we do two separate analyses to show the value of

the stochastic solution. First, for the case with full flexibility, we calculate the traditional VSS,

calculated as the relative cost difference between the value of the deterministic solution and the

stochastic solution. This VSS is equal to 10.6% for the serial structure, 11.9% for the assembly

structure and 1.8% for the general structure. The second analysis focuses on the cases with a lower

level of flexibility. For these cases, we focus on the service level violations in order to show the

superiority of the stochastic model. Table 2.11 shows the service level violation of the mean value

solution at different levels of flexibility for different structures. We conclude hence that the mean

value deterministic approach cannot provide solutions that satisfy the service level.
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Table 2.11: Service level violation, ε(%)

LoF Serial Assembly General

0 9.7 8.2 13.9
1 7.6 6.5 9
2 5.9 5.4 6.4
3 4.8 n/a n/a
4 4.2 n/a n/a

2.5.4 Serial structure

In this section, we investigate the effect of adding flexibility in the serial structure. This effect is

measured using the ratio of the total cost decrease (∆Cost) when we have some level of flexibility

(LoF) compared to the case when there is no flexibility and every decision is fixed at the beginning

of the planning horizon. To solve the models we use 500 scenarios for the first stage, and the

evaluation phase is performed using 10000 randomly generated scenarios.

Figure 2.4 shows the effect of adding flexibility for the base case, set A, as defined in Table 2.8.

When referring to the BOM, the lowest level (starting from 0) refers to the level of the end item

and the highest level refers to the incoming components. The horizontal axis is classified in two

categories, the upper one for the level of flexibility which is from 0 to 5, and the lower one for

the external demand profile from 1 to 5. In demand profile 1, only the end item has the external

demand. In demand profile 2, we also have the external demand for the component at level 1 of

the BOM. This is explained in detail in the previous section and Table 2.7. Figure 2.4 illustrates

that increasing the flexibility will result in cost reduction in all the demand profile. Even if there

is external demand only for the end items (External demand profile 1), it is still beneficial (with

decreasing marginal benefits) to increase the flexibility at the component levels. If external demand

exists also at the component level, the benefits (in terms of relative cost reduction) will increase

compared to the case with only external demand for the end item. So both an increased level of

flexibility and the presence of external demand at the component level lead to larger relative cost

reductions.

In the next set of experiments, we perform sensitivity analyses, in which all the parameters of

the base case A, except the parameter of interest, remain fixed. Figure 2.5 illustrates the sensitivity

analysis on the effect of adding flexibility, considering changes in the T BO profile, service level,
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Figure 2.4: Effect of adding flexibility for serial structure

HValue, and Util parameters.

The smaller the T BO, the higher is the cost decrease by adding the flexibility. Low T BO means that

you have many setup periods, and hence many opportunities to adjust the production (if flexible).

As can be seen ∆Cost is the highest in T BO profile 1 compared to the other profiles. Comparing

the T BO profiles 4 and 5, we can see that a high T BO at the lower level in the BOM (i.e., end items

and lower level components) as in T BO profile 5 leads to lower benefits compared to a high T BO

at the higher levels. This is logical as the production of the products at the lower level, determines

the internal demand for the higher level components in the BOM and directly influences their

production. T BO profile 4 has a higher rate of cost decrease as the T BO for the items at the lower

level is less than the T BO of the items at the higher level.

HValue is related to the amount of added value to the components at different levels of the

BOM. When it is equal to 0, it means there is no difference in the holding cost of different items

at different levels. Adding some flexibility only provides a limited cost decrease. Indeed, because

the inventory holding cost is the same for holding an end item or for holding all its components,

the total holding cost cannot be improved by a better redistribution of the inventory at different

levels in the BOM. In case of full flexibility, we observe a sudden jump in the cost reduction as the

production of all items is now reactive to the demand realization and the total amount of inventory

in the system is reduced. This will be further explained when we provide a more detailed analysis

of this at the end of this section. On the other hand, when HValue is high, for example equal to 10,

the inventory holding cost of the end item compared to other components is very high, and adding

flexibility at higher levels where the inventory cost is much lower, will not result in a very high cost

reduction. However, adding flexibility only for the end item reduces the costs by almost 30% since
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Figure 2.5: Sensitivity analysis for serial structure

this flexibility with respect to the production of the end item already allows some redistribution

of the inventory between levels 0 and 1. If demand for the end items is low, we do not have to

produce excess end items (with a high holding cost) and we can keep inventory at the component

level (where holding costs are cheaper).

At the higher service level, the value of flexibility is bigger compared to the lower ones. Having

a higher service level result in more production and inventory to mitigate the uncertainty. In this

case, having more reactive inventory system will cause a higher cost reduction. It is also interesting

that adding only one level of flexibility will result in higher cost reduction at higher service level

compared to lower ones.

The last diagram presents the effect of capacity on ∆Cost. When there is no capacity limitation

or when the capacity is loose, we have a slightly higher cost reduction. This is logical as the

capacity limitation and overtime cost will limit the production even if it is flexible. To show the

scale of the total costs in different setting, Table 2.12 illustrates the sensitivity analysis for the total
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cost. As can be seen, in the average column, by increasing the HValue, the total cost increases as

this parameter has a direct effect on the holding cost. Regarding the T BO profiles, profile 1 which

has a T BO of 1 for all the items, has the lowest cost, while T BO profile 3 which has the T BO

equal to 4 for all the items has the highest cost as this value increases the setup cost. Comparing

the total cost of profile 4 and 5 shows that, when the item at the lower level of BOM has a higher

T BO, the total cost is higher compared to the case when the higher T BO is at the higher level.

Increasing the service level results in a total cost increase as the total production increases in the

system. Increase in Util means tighter capacity which imposes more cost to the production system.

All the mentioned trends are valid not only for the average cost over all levels of flexibility, but

also at each level of flexibility individually.

As can be seen in Figure 2.5, the trend of ∆Cost for different options of T BO profiles, Service

levels, and Util parameter are relatively similar. However, for the parameter HValue, the trends are

also different for different options. Figure 2.6 presents a more detailed analysis for this parameter.

In addition to the level of flexibility and HValue, the horizontal axis is also categorized based on

the external demand profile which is shown in the second level from 1 to 5. When HValue is equal

to 0, and the external demand profile is equal to 1, i.e., we have only external demand for the end

item at level 0, adding flexibility does not decrease the cost unless we have the full flexibility at

all levels. The reason behind it is that there is no advantage in keeping inventory at a higher level

of BOM, as the unit holding cost is not different. However, when we have full flexibility, the total

amount of inventory decreases in the system and the total cost will decrease. When HValue is

equal to zero and when we have independent demand for the components as well (demand profile

2 to 5), depending on the level of these components, we have a cost decrease. The reason is

that when we have proper level of flexibility, the amount of production is reactive to the demand

realization, and it result in more efficient production and a cost decrease. At the levels where there

is no independent demand, we see that the cost remains unchanged, until having the full flexibility.

Having full flexibility, the total production is reactive to the demand realization and the the total

amount of inventory is reduced in the system. When HValue is equal to 10, we have a very high

added value BOM. As can be seen, the marginal cost decrease is most significant when adding the

first level of flexibility, compared to adding the further levels of flexibility. This is due to the fact

that the cost of inventory for the item which is stored at the lowest level of the BOM is much lower
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Table 2.12: Sensitivity analyses of the total cost for the serial structure

Level of flexibility
Parameter 0 1 2 3 4 5 Average
External demand
1 89633 79940 73356 69428 66876 63617 73808
2 81441 67467 61108 56013 53048 49969 61508
3 91223 74407 62840 58016 55006 51873 65561
4 94821 79508 68198 59693 56895 53371 68748
5 94753 78750 67842 59697 55732 52213 68165
TBO profile
1 48842 35491 26368 21035 18400 15657 27632
2 89267 74842 65458 59444 56495 53021 66421
3 227301 211502 201694 195318 191472 187463 202458
4 73859 60001 50601 45025 42305 39010 51800
5 192183 176345 165968 159916 157022 153779 167536
HValue
0 12835 12045 11382 10767 10550 8484 11010
1 90427 75734 66191 59937 56842 53537 67111
10 35885935 26206487 24374210 24079449 24037381 24020933 26434066
Service Level
80% 61672 54832 50850 48413 47256 46067 51515
90% 76737 66782 58787 53618 51149 48542 59269
95% 90277 75801 66172 59907 56812 53495 67078
99% 109196 89797 77158 69896 66069 61492 78935
Util
No cap 81026 66436 56428 50199 47140 44005 57539
0.1 80797 66558 56626 50373 47299 44168 57637
0.5 90943 76176 66217 60010 56880 53469 67282
0.75 122711 95964 84240 78668 75814 72549 88324

compared to the same amount of inventory stored for an item at a higher level. When the HValue

is equal to 1, which is between the two extreme cases of HValue = 0 and HValue = 10, we can

see a smooth cost reduction by adding multiple levels of flexibility.

2.5.5 Assembly structure

In this section, we investigate the value of flexibility for the assembly structure. Similar to the serial

structure, we will compare the possible cost decrease (∆Cost) when we consider a more adaptive

strategy. For this structure, flexibility will be added to the BOM level by level. Having 3 levels in

the BOM for the assembly structure, we define 4 options for flexibility, from no flexibility to full
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Figure 2.6: Effect of adding flexibility for serial structure

Table 2.13: Levels of flexibility for assembly structure

# Flexibility # product
1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
2 1 1 1 1 0 0 0 0 0 0
3 1 1 1 1 1 1 1 1 1 1

Level 0 1 1 1 2 2 2 2 2 2

flexibility. Assuming 0 as no flexibility for an item, and 1 for flexibility, Table 2.13 illustrates these

levels of flexibility considered for this structure. The first option (0) has no flexibility, the second

option (1) has flexibility for the end item only. The last option (3) has flexibility for all the items.

Figure 2.7 illustrates the cost decrease percentage (∆Cost) when increasing the flexibility level

by level for different external demand profile (see Table 2.7). For all cases, adding flexibility

only for the end item results in the highest rate of cost decrease, compared to the case of adding

flexibility to the component levels. Comparing Figure 2.7 and Figure 2.4, we can see similar trends

in the assembly structure compared to what has been observed for the serial structure.

Figure 2.8 illustrates the sensitivity analysis of ∆Cost for the assembly structure based on the

T BO, HValue, service level and Util parameters considering full flexibility options at different

levels of BOM.

When the T BO is equal to 1 for all the items (T BO profile 1), we have the highest percentage

of cost decrease, and when T BO is at its highest value for all the items (T BO profile 3), we have

the lowest rate for the cost decrease by adding flexibility. Between these two extreme cases, having

lower values of T BO for the items at the lower levels of BOM (TBO profile 4), results in higher

rate of cost decrease compared to the case when we have higher value of T BO at these levels (TBO
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Figure 2.7: Analysis of adding flexibility per level for the base case in assembly structure

Figure 2.8: Sensitivity analysis for assembly structure

profile 5). Considering the HValue parameter, we can see that different patterns for the added

value in the product structure, result in different pattern of cost decrease, when we add flexibility.

When the HValue is equal to 0, there is no advantage to keep the components at the higher level

of BOM to save the holding cost. In this case, when we add the flexibility at the highest level of
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BOM, we see a significant increase in the rate of decrease, as the total amount of inventory in the

system will decrease. We hence observe a similar effect as in the serial case.

At different service levels, we have the same pattern for ∆Cost but there is a higher cost de-

crease at the higher service level when we add the flexibility. While at 80% of service level we

have about 25% of cost decrease at the full flexibility, the same value is about 45%, when the

service level is equal to 99%. Considering different values for the Util parameter, we see a similar

trend for all cases. When we have a very tight capacity (Util = 0.75), we have a slightly higher

rate of cost decrease.

Table 2.14 illustrates the sensitivity analysis for the total costs. The patterns we can see in

assembly structure are similar to ones of the serial structure. In summary, higher HValue, higher

T BO, and higher service levels result in higher cost. In addition, higher Util which means tighter

capacity imposes extra cost to the system.

2.5.6 General structure

In this section, we study the general structure and adding different levels of flexibility to different

items in this structure. Table 2.15 illustrates different levels of flexibility for this structure. The

levels of flexibility start from no flexibility to full flexibility. In this section, we only discuss the

full flexibility per level.

Figure 2.9 illustrates the cost decrease percentage (∆Cost) with respect to the level of flexibility

for different external demand profiles. Having more items with external demand generally results

in a slightly higher cost decrease. For all cases, adding flexibility only for the end items (flexibility

level 1) results in a rate of cost decrease of about 25%. In this structure, we have higher cost

decrease compared to the assembly structure, and in general lower variability in different trends

per external demand profiles, where there are more items with external demand, in the system.

Figure 2.10 shows the sensitivity analysis for the general structure based on different param-

eters. The sensitivity analysis for the TBO shows similar patterns of cost decrease when adding

flexibility compared to the serial and assembly structures. A lower TBO results in a higher cost de-

crease when adding flexibility. At higher service levels, it is more beneficial to add the flexibility.

We can see that the diagrams for different service levels have similar patterns, but ∆Cost increases
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Table 2.14: Sensitivity analyses of the total cost for the assembly structure

LoF
Parameter 0 3 5 8 Average

TBO profile
1 41734 31217 22266 14661 27469.5
2 79300 65849 56977 48566 62673
3 201413 177611 165053 152651 174182
4 73000 60797 51697 43066 57140
5 148742 130453 120892 110171 127564.5

Hvalue
0 28858 26828 26494 19796 25494
1 78454 64894 57787 49030 62541.25
10 1539484 1002998 913605 869498 1081396

Service Level
80% 55965 51072 46423 42162 48905.5
90% 68036 58752 51168 44083 55509.75
95% 80408 66805 57606 49191 63502.5
99% 97996 77919 65430 54406 73937.75

Util
No cap 64093 53203 40662 35488 48361.5
0.1 72615 58412 49203 40304 55133.5
0.5 80817 66925 57873 49378 63748.25
0.75 131791 111196 79101 62467 96138.75

Table 2.15: Levels of flexibility for general structure

# Flexibility # product
1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0
2 1 1 1 1 1 1 1 0 0 0
3 1 1 1 1 1 1 1 1 1 1
Level 0 0 0 0 1 1 1 2 2 2

as we increase the service levels. When the capacity is very tight, where the model should use a

significant amount of overtime, adding flexibility results in a higher cost reduction.
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Figure 2.9: Analysis of adding flexibility per level for the base case in general structure

Table 2.16: Sensitivity analyses of the total cost for the general structure

LoF
Parameter 0 3 5 8 Average

TBO profile
1 60103 37252 26928 18910 35798
2 103831 79093 67675 58054 77163
3 227132 196767 184271 172151 195080
4 82730 58683 48221 39423 57264
5 188368 160128 148268 138152 158729

Hvalue
0 32983 28602 26563 19518 26917
1 104371 79535 68062 58196 77541
10 2494477 1497842 1386434 1364212 1685741

Service Level
80% 64460 51680 46521 41379 51010
90% 84653 65693 57226 49164 64184
95% 104102 79415 67851 58239 77402
99% 124723 90922 77581 67258 90121

Util
No cap 96557 72533 61467 52223 70695
10% 98110 73387 62160 52826 71621
50% 104147 79254 67829 58105 77334
75% 147411 88238 74653 64337 93660

In the previous experiments, the flexibility was added to the system level by level. Having

multiple items per level in the assembly and general structures, we may add flexibility to some of
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Figure 2.10: Sensitivity analysis for general structure

the items in each level. We investigate the value of partial flexibility with extra experiments for the

base case which presented in Appendix D.

2.5.7 Insights

In this section we will present some insight based on our findings in the numerical experiments.

First and in general, adding flexibility reduces the cost in the system. This cost reduction depends

on the level where the flexibility happens and the external demand as well. In all structures, adding

flexibility at the lower level, i.e., for the end items leads to more cost saving.

Second, different parameters in the problem affect the cost savings as well. The ratio between

the setup cost and the inventory holding cost plays an important role in the cost savings obtained

by adding flexibility. When the time between orders is low, for example one, based on the trade-

off between the ordering costs and the holding costs, it is less costly that the production covers a
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smaller number of periods and there are hence more frequent setups. The value of adding produc-

tion recourse is higher in this case, as you can adjust the production levels in each period. As the

ratio between setup cost and holding cost may be different for different items, we should note that

the end items, and the items at the lower levels of BOM have a higher impact in this matter.

Third, having flexibility results in holding cost reduction and there are two reasons behind

that. First, production flexibility generally reduces the amount of inventory in the system, as the

production are more responsive to the demand and there is less need for safety stock. Second,

having flexibility will increase the option of where we can keep our inventory. More specifically,

considering the added value in the BOM, keeping stock at higher level of BOM, where we have

lower holding cost, and use them when needed, will reduce the total holding cost in the system.

2.6 Conclusion

In this research, we study the stochastic multi-level lot sizing problem with service level and in-

vestigate the benefits of production flexibility in the BOM based on static and adaptive strategies.

The problems are modeled as two-stage stochastic models which are approximated using a finite

number of scenarios and solved by the SAA method. Extensive numerical experiments and sim-

ulations are conducted for different BOM structures and under different parameter settings. The

results show that increasing the production flexibility leads to a cost reduction, even in the case

where there is no external demand for any of the components, in all BOM structures. Sensitivity

analyses have been performed to demonstrate the effect of changing different parameters on the

cost reduction by adding flexibility and allowing more adaptive decisions. In general, the value

of adding flexibility is more significant at higher service levels compared to lower ones and with

lower TBO compared to higher ones. The value added in the BOM structure also has effect on the

pattern of cost decrease in different structures. In the adaptive version of problem, we consider the

static-dynamic strategy for some or all items and we modeled it as a two-stage stochastic model.

Considering the dynamic strategy for these items is an interesting future research direction which

needs a multi-stage stochastic model. This will make the problem more challenging to solve but it

may result in more responsive plans.
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Chapter 3

Stochastic dynamic lot sizing with

substitution and service level constraints

This study is done as part of an internship at the University of Toronto, funded by FRQNT. The

result of this work will be submitted as a research article and the coauthors are Merve Bodur and

James Luedtke.

Abstract

We consider a multi-stage stochastic lot-sizing problem with service level constraints and product

substitution. A firm has multiple products and it has the option to meet demand from substitutable

products at a cost. Considering the uncertainty in future demands and the production leadtime,

the firm wishes to make ordering decisions in every period such that the probability that all de-

mands can be met in the next period is at least equal to a minimum service level. We propose a

rolling-horizon policy in which a two-stage joint chance-constrained stochastic program is solved

to make decisions in each time period. We demonstrate how to effectively solve this formulation.

In addition, we propose two policies based on deterministic approximations and demonstrate that

the proposed chance-constraint policy can achieve the service levels more reliably and at a lower

cost. We also explore the value of product substitution in this model, demonstrating that the substi-

tution option allows achieving service levels at significantly reduced costs, about 7% to 25% in our

experiments and that the majority of the benefit can be obtained with limited levels of substitution



allowed.

3.1 Introduction

The basic lot sizing problem is a multi-period production planning problem that considers the

trade-off between setup costs and inventory holding costs and defines the optimal timing and quan-

tity of production to minimize the total cost. In situations where there exists uncertainty in demand,

which is inevitable in real-world applications, the decision-maker needs to determine the produc-

tion policy to minimize the expected cost. Here, it is inevitable to have stock outs and the challenge

is to keep them under control. Common approaches to deal with this challenge are to consider the

backorder cost which includes both tangible and intangible effects which are difficult to estimate

or to impose a service level criterion. In this research, we study the stochastic lot sizing problem

with an α service level which is an event-oriented service level and impose limits on the probabil-

ity of stock outs. This service level which is frequently used in a variety of applications is usually

defined as a chance constraint.

When an item is out of stock, sometimes the firm has the option to substitute it with another

product. This type of substitution which is initiated by the supplier is called supplier-driven sub-

stitution and may result in reducing the stock outs, increasing revenue, cost savings, and customer

satisfaction, especially when dealing with demand uncertainty. This problem has practical rele-

vance in the electronics and steel industries where it is possible to substitute a lower-grade product

with a higher-grade one. Semiconductors or microchips are good examples of these types of prod-

ucts (Lang and Domschke, 2010).

In this research, we consider the stochastic lot sizing problem with substitution and joint service

level constraint over multiple products. The possibility of product substitution results in risk-

pooling associated with uncertain demand (Shin et al., 2015). The substitution option and joint

service level are hence in line with each other as in both cases, we consider the risk of stockouts

jointly over all products. In other words, having the substitution option, it is not appropriate to

impose the service levels individually for each product.

We consider an infinite-horizon problem in which we need to sequentially make decisions on

setup timings, and production and substitution amounts based on the current state of the system
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reflected as the amount of available inventory and backlog. We follow the “dynamic" strategy

(Bookbinder and Tan, 1988) for which different decisions can be dynamically updated throughout

the planning horizon when the demands are observed. As determining the optimal solution is

computationally intractable, to solve this problem, we consider a finite-horizon problem and apply

it in a rolling-horizon environment. The aim is to propose decision policies which map the state of

the system to different decisions. These policies are based on mixed integer programming model

for the problem, in which the random demand is represented as a scenario set.

The challenge of these stochastic models is that with increasing the number of scenarios the

solution time will increase extensively and this makes it difficult to reach a reasonable solution

in a reasonable amount of time. To deal with this challenge we choose two different approaches.

First, we propose policies based on the deterministic approximation of the model, without directly

imposing a service level constraint. Second, we propose a two-stage approximation for the multi-

stage model and an efficient branch-and-cut (B&C) algorithm to solve the model with service level

constraint.

We simulate the rolling-horizon framework and demonstrate that the proposed chance-constraint

policy has the advantage of respecting the service levels more reliably and at a lower cost, over the

deterministic policies. We illustrate and analyze this superiority under different settings. We also

explore the value of product substitution in this model, demonstrating that the substitution option

allows achieving service levels at significantly reduced costs and that the majority of the benefits

can be obtained with limited levels of substitution allowed.

The contribution of this research can be summarized as follows.

• Consider an infinite-horizon multi-stage lot sizing problem with substitution and joint ser-

vice level constraints, which to the best of our knowledge is new to the literature.

• Propose a finite-horizon stochastic dynamic program for this problem and derive approximation-

based rolling-horizon policies to define different decisions at each point of time. The approx-

imations are based on the deterministic models and the two-stage stochastic programming,

using sample average approximation.

• Apply a B&C algorithm to solve the model which explicitly considers the service level.
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• Compare different policies including deterministic ones and a chance-constraint policy, us-

ing simulation, illustrate the value of substitution and provide other managerial insights un-

der different settings.

The rest of this paper is organized as follows. In section 2, we survey the related literature. In

section 3, we define the problem and the dynamics of decisions in the system. We also provide

the dynamic programming formulation for the finite-horizon problem. In section 4, we explain the

process of making different decisions at each stage, using different decision policies. In section 5,

we present the B&C algorithm to solve the chance-constraint policy model, in which we explicitly

consider the service level. In section 6, we illustrate the computational experiments, including

the rolling-horizon implementation and simulation procedure, policy comparison, and insights.

Finally, we conclude in section 7.

3.2 Literature review

The related literature of this work can be categorized in two streams. The first part is dedicated to

the lot sizing and inventory models with substitution in both deterministic and stochastic versions

and the second part is dedicated to the stochastic lot sizing problem with joint service level. To the

best of our knowledge, no research has investigated stochastic lot sizing problem with substitution

and joint service levels.

3.2.1 Lot sizing and inventory problems with substitution

In the literature, there are two types of substitution, the customer-driven substitution and supplier-

driven substitution (Shin et al., 2015). In the customer-driven substitution, the customer decides

which product to substitute (Zeppetella et al., 2017), while in the supplier-driven (firm-driven)

case, it is the supplier, firm, or the vendor who makes the substitution decisions (Rao et al., 2004).

The substitution possibility in inventory decisions is addressed in both deterministic and stochastic

settings which are explained as follows.

Deterministic models
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Hsu et al. (2005) study two different versions of the dynamic uncapacitated lot sizing problem

with substitution, when there is a need for physical conversion before substitution, and when it

does not require any conversion. The authors propose a mathematical model for this problem and

solve it using a backward dynamic programming algorithm and a heuristic algorithm based on

Silver-Meal heuristic to solve the problem. Lang and Domschke (2010) consider the uncapacitated

lot sizing problem with general substitution in which a specific class of demand can be satisfied

by different products based on a substitution graph. They model the problem as a mixed-integer

linear program and propose a plant location reformulation in which the amount of production for

an item is broken down into different amounts based on the period where they are used to satisfy

the demand. The authors also propose some valid inequalities for the original model and solve the

model using the CPLEX solver.

Stochastic models

Many studies in the field of the stochastic inventory planning have considered the possibility

of substitution. While the majority of them investigated the customer-driven substitution, some

research considered the supplier-driven substitutions. In the customer-driven substitution, the cus-

tomer may choose another product, if the original item cannot be found. This is also known as

“stock out substitution". Akçay et al. (2020) investigate a single-period inventory planning prob-

lem with substitutable products. Considering the stock out substitution, they propose an optimiza-

tion based method, which jointly defines the stocking of each product, while satisfying a service

level. Nagarajan and Rajagopalan (2008) consider the inventory problem with customer-driven

substitution, and propose an optimal policy and heuristic algorithm for different versions of the

problems in terms of planning periods and number of products.

In this research, we consider the supplier-driven substitution. In the same stream of research,

Bassok et al. (1999) investigate the single-period inventory problem with random demand and

downward substitution in which a lower-grade item can be substituted with the ones with a higher-

grade. This model is an extension of the newsvendor problem and there is no setup cost in case

of ordering. The sequence of decisions is as follows: first, they define the order quantity for each

of the items, namely ordering decision. Second, when the demand is observed, they define the

allocation decisions. The authors propose a profit maximization formulation and characterize the

structure of the optimal policy for this problem. Using some decomposition ideas they propose
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bounds on the optimal order amount and use them in an iterative algorithm to solve the model.

Rao et al. (2004) also consider a single-period problem with stochastic demand and downward

substitution, and model it as a two-stage stochastic program. In their model, they consider the

initial inventory and the ordering cost as well. In addition to the extensive form of the model, the

author propose two heuristic algorithms to solve this problem.

Another similar research stream considers the possibility of having multiple graded output

items from a single input item, which is known as “co-production" (Ng et al., 2012). In these prob-

lems, there is a hierarchy in the grade of output items and it is possible to substitute a lower-grade

item with the ones with higher-grade (Bitran and Dasu, 1992). (Hsu and Bassok, 1999) consider

the single-period production system with random demand and random yields. They model the

problem as a two-stage stochastic program which defines the production amount of a single item

and the allocation of its different output items to different demand classes (Hsu and Bassok, 1999).

They propose three different solution methods to solve the problem, including a stochastic lin-

ear model. In addition, two decomposition based methods in which the subproblems are network

flow problems, are proposed for this problem. Bitran and Dasu (1992) study an infinite-horizon,

multi-item, multi-period co-production problem with deterministic demand and random yields. As

solving this problem in a infinite-horizon is intractable, they proposed two approximation algo-

rithms to solve it. The first approximation is based on a rolling-horizon implementation of the

finite-horizon stochastic model. For the second approximation, they consider a simple heuristic

based on the optimal allocation policy, in a multi-period setting. This heuristic includes two mod-

ules; a module to determine the production quantities, and module to allocate produced items to

the customers. This heuristic can be also applied in a rolling-horizon procedure. Bitran and Leong

(1992) consider the same problem and propose deterministic near-optimal approximations within a

fixed planning horizon. To adapt their model to the revealed information, they apply the proposed

model using simple heuristics in a rolling planning horizon. Bitran and Gilbert (1994) consider

the co-production and random yield in a semiconductor industry and propose heuristic methods to

solve it.
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3.2.2 Stochastic lot sizing problem and service level constraints

This section is dedicated to the stochastic lot sizing problem with random demand. Most of the

research in this context consider a scenario set or a scenario tree to represent the stochasticity

in demand and propose efficient methodologies to solve them. Haugen et al. (2001) consider

the multi-stage uncapacitated lot sizing problem and propose a progressive hedging algorithm to

solve it. Guan and Miller (2008) propose a dynamic programming algorithm for a similar ver-

sion. Using the same algorithm, Guan (2011) study the capacitated version of the problem with the

possibility of backlogging. Lulli and Sen (2004) propose a branch-and-price algorithm for multi-

stage stochastic integer programming and apply their general method to the stochastic batch-sizing

problem. In this problem, they consider that the demand, production, inventory and set up costs

are uncertain. The difference between this problem and the lot sizing problem is that the produc-

tion quantities are in batches and the production decisions are the number of batches that will be

produced, as such integer-valued. This problem is a more general case of lot sizing problem. In

another research, Lulli and Sen (2004) proposed a scenario updating method for the stochastic

batch-sizing problem.

A common approach to deal with stochastic demand is using service levels. In this context the

planners put a demand fulfillment criterion to mitigate the risk of stock outs. Stochastic lot sizing

problems with service level constraints have been studied extensively (Tempelmeier, 2007) and

many types of service levels exist in the literature. One of the main service levels is the α service

level which is an event-oriented service level, and imposes limits on the probability of a stock out.

This service level is represented as a chance-constraint and is usually defined for each period and

product separately. Bookbinder and Tan (1988) investigate stochastic lot sizing problems with an α

service level and propose three different strategies for this problem based on the timing of the setup

and production decisions. These strategies are the static, dynamic, and static-dynamic strategies.

In the static strategy, both the setup and production decisions are determined at the beginning of

the planning horizon and they remain fixed when the demand is realized. In the dynamic strategy,

both the setup and production decisions are dynamically changed with the demand realization

throughout the planning horizon. The static-dynamic strategy is between these two strategies in

which the setups are fixed at the beginning of the planning horizon and the production decisions
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are updated when the demands are realized.

There are some studies which define the service level constraint jointly over different planning

periods. Liu and Küçükyavuz (2018) consider the uncapacitated lot sizing problem with a joint

service level constraint. They study the polyhedral structure of the problem and propose different

valid inequalities and a reformulation for this problem. Jiang et al. (2017) consider the same

problem with and without pricing decisions. Gicquel and Cheng (2018) investigate the capacitated

version of the same problem. Jiang et al. (2017) and Gicquel and Cheng (2018) use a sample

approximation method to solve their problems. This method is a variation of the sample average

approximation method which is proposed by Luedtke and Ahmed (2008) to solve models with

chance-constraints using scenario sets. All the mentioned studies consider single item models in

which the joint service level is defined over all periods. There are few Studies that consider the

service level jointly over all the products. Akçay et al. (2020) adapt the Type II service level or “fill

rate" for each individual product and overall within a category of products, having customer-driven

substitution assumption. This type of service level consider the expected value of backorder and

it is not modeled as a chance constraints. Sereshti et al. study different type of aggregate service

level for the lot sizing problem which are defined over multiple products, but they didn’t consider

substitution in their models. In this research, we consider supplier-driven substitution and a joint

service level that is defined over all products.

Table 3.1 summarises the characteristics of the studied paper and illustrates their similarities

and the differences to our work.

3.3 Problem definition and formulation

We consider a stochastic lot sizing problem with the possibility of substitution in an infinite time

horizon which is discretized into planning periods. There are multiple types of products with ran-

dom demand, and at each stage, we need to make decisions about the production setups, production

and substitution amounts, and accordingly define the potential inventory and backlog levels. There

is a production lead time of one, i.e., what is produced in the current stage is available in the next

stages. These decisions are made sequentially at each stage, based on the available inventory and

backlog in the system, random future demand, and the history of realized demands, such that a
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Table 3.1: Review of the related papers

Planning Horizon Uncertainty Problem Substitution Service level Strategy Methodology

Bitran and Leong (1992) F Yield Co-production V J (Products) S,D A
Bitran and Dasu (1992) I Yield Co-production V I D LP, H
Bassok et al. (1999) S Dem and Yield Periodic review inventory model V G
Hsu and Bassok (1999) S Dem and Yield Co-production V MILP, G
Rao et al. (2004) S Dem Inventory planning + setup V H
Hsu et al. (2005) F Det Lot sizing V DP
Nagarajan and Rajagopalan (2008) S, F Dem Inventory planning C D H
Lang and Domschke (2010) F Det Lot sizing V MILP
Ng et al. (2012) S Dem Co-production C M LP
Zhang et al. (2014) F Dem Inventory planning J (Period) D B&C
Gicquel and Cheng (2018) F, I Dem Lot sizing J (Period) S SAA, MILP
Jiang et al. (2017) F Dem production planning J (Period) S SAA
Liu and Küçükyavuz (2018) F Dem Lot sizing J (Period) S B&C
Chen and Chao (2020) Dem Inventory control C Online learning
Akçay et al. (2020) S Dem C I A
Our work I Dem Lot sizing V J (Products) D MILP, B&C

Acronyms
Planning Horizon .. I: infinite F: Finite S: Single period
Uncertainty .. Det: Deterministic Dem: Random Demand Yield : Random Yiled
Substitution .. V: supplier-driven C: Customer driven
Service level .. I: Individual J (Period): Joint over multiple periods J (Products): Joint over multiple products M: Maximizing service level
Strategy .. S: Static D: Dynamic
Methodology .. MILP: Mixed integer linrear programming H: Heuristics SAA: Sample average approximation, DP: Dynamic programming
B&C: Branch-and-Cut G: Greedy algorithm A: Model approximation LP: Linear programming

joint service level over all products is to be satisfied in the following stage. This is in line with

the “dynamic” strategy that is defined for the stochastic lot sizing problem (Bookbinder and Tan,

1988).

To provide a decision policy for this infinite-horizon problem we propose a rolling-horizon ap-

proach, where at each time period we solve a finite-horizon version of the problem and implement

the first-period decision obtained from this problem, as illustrated in Figure 3.1. Being at period t̂

as the actual time, for the T planning periods for the finite-horizon models, the actual time indices

(t̂, ..., t̂ +T −1) are mapped into (1, ...,T ) for convenience.

In this section, we provide the problem definition of the ideal finite-horizon problem we solve

in each time period. This problem is a dynamic stochastic program with chance constraints to

represent the service level constraints, and hence is intractable to solve exactly. In Section 3.4 we

discuss our proposed approximate solution strategies.

In the finite-horizon problem, we have multiple types of products, whose index set is K =

{1, ...,K}, and T planning periods indexed by t ∈ T = {1, ...,T}. We propose a multi-stage

stochastic programming model with joint chance-constraints. Being at period t = 1 (which is

equivalent to an actual decision-making period t̂ in the infinite-horizon model), given the state of

the system the model considers decisions for the T stages to guide the implementable first-stage

(t = 1) decisions that would satisfy the joint service level in the next period, t = 2. It should be
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noted that although we consider the service level in the next period, but by considering the rolling

horizon framework we intend to satisfy the service level in all coming periods.

Figure 3.1: Rolling-horizon framework

Figure 3.2 illustrates the dynamics of decisions for the finite-horizon problem at each stage.

At each point of time, t, the demand realization vector D̂t = (D̂t1, D̂t2, ..., D̂tK) is observed, and

also given the initial state of the system, described by the vector of current on-hand inventory,

v̂t−1 =(v̂t−1,1, v̂t−1,2, ..., v̂t−1,K), and the backlog vector, B̂t−1 =(B̂t−1,1, B̂t−1,2, ..., B̂t−1,K), two sets

of decisions are made. The first set includes substitution, inventory, and backlog decisions denoted

by St = (St11,St12, . . . ,StKK), It = (It1, It2, ..., ItK),Bt = (Bt1,Bt2, . . . ,BtK) vectors, respectively. The

rest of the decisions in the current period are production, setup, and inventory level after production

at the end of current period which are denoted by xt = (xt1,xt2, ...,xtK),yt = (yt1,yt2, ...,ytK),vt =

(vt1,vt2, ...,vtK) vectors, respectively. It should be noted that all these decisions are made simul-

taneously, but having lead time of one period and assuming that demand in period t is observed

at the beginning of the period, the production quantities made during period t can be used only

in the next periods, i.e., they are not available to satisfy the same period demand or backlogged

demand. Therefore, we defined two different inventory level vectors, namely, It as the inventory

level immediately after demand satisfaction, but before production, and vt as the inventory level at

the end of the period, also taking into account the production in period t. The values of vt and Bt

will be the inputs for the next period, describing the next state of the system.

The inventory of a product can be used to satisfy its own demand or another product demand

based on the substitution graph G with vertex set K and arc set A . If (k, j)∈A then product k can

fulfill demand of product j but a substitution cost of csub
tk j per unit is incurred at period t. Note that

(k,k) ∈A for all k ∈K , and Stkk corresponds to the amount of product k which is used to satisfy

its own demand. Demand for a specific product is met either from the inventory of that product
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Figure 3.2: Dynamics of decisions at each stage

or from the inventory of another product through substitution, or else the demand is backlogged.

In each period t, while insufficient inventory will lead to backlog denoted by Btk, unnecessary

stocks will increase the holding cost. An inventory holding cost of chold
tk per unit is charged for the

quantity being stored after the demand satisfaction in each period, denoted by Itk. Furthermore, in

each period where production occurs, a setup has to be performed which incurs a fixed setup cost

of csetup
tk . We consider the trade-off between these costs while making decisions at each period, also

ensuring that the random demand in the next period can be satisfied with high probability based on

a predefined service level.

We model the underlying stochastic process of the demand as a scenario tree, for the finite

model with T stages. Dtk is the random demand variable for product k in period t, whereas D̂tk

denotes its realization at time t. DHist
tk represents the random demand path from period 1 to period

t for product k, and D̂Hist
tk denotes its realization (the history) until period t.

We next present our proposed multi-stage stochastic programming model with chance-constraint

for the finite-horizon variant of the considered lot sizing problem with substitution. Notation for

different sets, parameters and the decision variables are presented in Table 3.2.

We present a dynamic programming formulation where Ft(.) denotes the cost-to-go function at

each period t = 1,2, ...,T and is defined as follows:

Ft(vt−1,Bt−1, D̂Hist
t ) = min ∑

k∈K

csetup
tk ytk + cprod

tk xtk + chold
tk Itk + ∑

j∈K +
k

csub
tk j Stk j

+

EDt+1

[
Ft+1(vt ,Bt ,DHist

t+1 |DHist
t = D̂Hist

t )
]

(3.1a)

s.t. xtk ≤Mtkytk ∀k ∈K (3.1b)
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Table 3.2: Notation for the mathematical model

Sets Definition

T Set of planning periods, indexed by 1, ...,T
K Set of products, indexed by 1, ...,K
G = (K ,A ) Substitution graph
A ⊆K ×K Directed arcs of substitution graph denoting feasible substitutions, which include self loops
K +

k = { j | (k, j) ∈A } Set of products whose demand can be fulfilled by product k
K −

k = { j | ( j,k) ∈A } Set of products that can fulfill the demand of product k

Parameters Definition

csetup
tk Setup cost for product k in period t

chold
tk Inventory holding cost for product k in period t

csub
tk j Substitution cost if product k is used to fulfill the demand of product j in period t

cprod
tk Production cost for product k in period t

cback
tk Backlog cost for product k in period t

α Minimum required joint service level
Mtk A sufficiently large (Big-M) number (to model the logical constraint)
Dtk Random demand variable for product k in period t
DHist

tk Random demand history from period 1 to period t for product k
v̂k The amount of initial inventory level for product k
B̂k The amount of initial backlog for product k
P The probability distribution of the demand process

Decision variables Definition

ytk Binary variable which is equal to 1 if there is a setup for product k at period t, 0 otherwise
xtk Amount of production for product k at period t
Stk j Amount of product k used to fulfill the demand of product j at period t
Itk Amount of physical inventory for product k immediately after the demand satisfaction for period t
Btk Amount of backlog for product k at the end of period t
vtk The inventory level after production for product k at the end of period t

∑
j∈K −

k

St jk +Btk = D̂tk +Bt−1,k ∀k ∈K (3.1c)

∑
j∈K +

k

Stk j + Itk = vt−1,k ∀k ∈K (3.1d)

vtk = Itk + xtk ∀k ∈K (3.1e)

PDt+1{(vt ,Bt) ∈ Q(Dt+1)|DHist
t = D̂Hist

t } ≥ α (3.1f)

xt ,vt , It ,Bt ∈ RK
+,St ∈ R|A |+ ,yt ∈ {0,1}K (3.1g)

The objective function of the model at time t shown as (3.1a). F(·) represents the optimal

objective value from period t to the end of the horizon given the initial inventory level vector and

backlog vector. More specifically it minimizes the current stage total cost plus the expected cost-

to-go function, which includes the total setup cost, production cost, holding cost, and substitution

cost. It should be noted that FT+1(·) = 0. Constraints (3.1b) are the set up constraints which

guarantee that when there is production, the setup variable is forced to take the value 1. Constraints
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(3.1c) show that the demand of each product is satisfied by its own production and the substitution

by other products or it will be backlogged to the next period. Constraints (3.1d) show that the

inventory of product k at the beginning of the current period may be used to satisfy its own demand

or other products demand through substitution or it will be stored as inventory for future periods.

Constraints (3.1e) define the inventory level after production at the end of the current period which

is equal to the amount of inventory (immediately after demand satisfaction) plus the amount of

production during the current period.

Constraint (3.1f) is to ensure the joint service level for period t + 1 which is modeled as a

chance-constraint. In this constraint, Q(Dt+1) is the set of inventory levels after production and

backlog quantities such that customer demands given by Dt+1 can all be met and there is no stock

out for any of the products.

Q(Dt+1) := {(vt ,Bt) ∈ R2K
+ : ∃S ∈ R|A |+ s.t. ∑

j∈K −
k

S jk = Dt+1,k +Btk ∀k ∈K and

∑
j∈K +

k

Sk j ≤ vtk ∀k ∈K } (3.2)

The service level constraint guarantees that the probability of having no stock out in the next period

is greater than or equal to α . This probability is defined over Dt+1, the demand distribution until

period t + 1, having that part of the demand history until period t is realized and known. Lastly,

constraints (3.1g) define the domains of different variables in the model. In addition to these

constraints it is possible to add different types of constraints such as capacity constraints to the

model.

The main goal of our finite-horizon model is to compute F1(·), which is the cost-to-go function

for the period t = 1. In this case, vt−1,Bt−1 are equal to v̂0, B̂0 which indicate the vectors for

the initial state of the system, and the service level constraint is defined for the second period in

finite-horizon model.

It should be noted that in this model, the feasibility of the next stage service level should be

guaranteed. This can be satisfied if we have at least one uncapacitated production option for each

product whether by its own production or substitution. As there is no capacity constraint in our

model, this feasibility is guaranteed.
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3.4 Approximate solution policies

In this section, we explain how to make different decisions at each period using different policies.

These policies map the state of the system to different decisions and can be used in a rolling-horizon

framework. More specifically, we define a type of policies, namely, “production substitution pol-

icy" to be applied at each period, guided by our proposed multi-stage stochastic programming

model, and inspired by the dynamics of the decision-making process, as shown in Figure 3.2.

A “production substitution policy"aims to make the setup, production, and substitution decisions

such that the service level in the next period can be satisfied. Ideally, we would solve the multi-

stage stochastic programming model, apply its optimal solution for t = 1, update the state of the

system based on the observed demand, and repeat this process as we move forward in the rolling-

horizon framework. However solving this model is challenging due to its complexity and recursive

nature. We hence propose different alternative policies in which we use mixed-integer program-

ming (MIP) models as an approximation of the multi-stage model. We propose two deterministic

approximations (average and quantile policies), and a two-stage approximation (chance-constraint

policy).

In our multi-stage model and similarly in its approximations, we consider the next period de-

mand where we have the uncertainty, due to one period delay in the order arrivals, whether by

considering its expected value, quantile value, or the service level. Therefore, it is possible that

in period 1, based on the solution of the model we do not meet all demands, or even reach the

service level even though our model would generally prioritize meeting demands when possible.

In other words, model (3.1) and its approximation policy models do not impose any constraints to

minimize the amount of backorder or satisfy the service level in the first period after the demand is

observed. To resolve this challenge, in each issue, we first apply an initial step in which we focus

on satisfying the current period observed demand. In this step, we define which product observed

demand has the potential to be fully satisfied without any backlog, and based on this result extra

constraints will be added to the first planning period of the policy model. This initial step and

different types of “production substitution policy" are explained in detail in the following sections.
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3.4.1 Backlog determination in the first period

The backlog determination step is a prerequisite for a “production substitution policy" which fo-

cuses on substitution, inventory and backlog decisions only for the first period to satisfy period

t = 1 demand (or rather to guarantee the feasibility of the current-stage demand satisfaction). To

this end, we solve the linear programming (LP) model (3.3) which minimizes the total backlog in

the current period (corresponding to t = 1 in the model). This is also applicable in reality, as the

companies try to satisfy their available orders simultaneously as much as possible. The result of

this model is a subset of products for which it is possible to fully satisfy their demand without any

backlog. We then force the backlog for this subset equal to zero in period 1 in “production substi-

tution policy" model. It should be noted that in this step, we do not define how the demand should

be satisfied, and this will be later defined in the “production substitution policy". The mentioned

LP model is presented as follows:

min ∑
k∈K

B1k (3.3a)

s.t. ∑
j∈K −

k

S1 jk +B1k = D̂1k + B̂0k ∀k ∈K (3.3b)

∑
j∈K +

k

S1k j + I1k = v̂0k ∀k ∈K (3.3c)

I1,B1 ∈ RK
+,S1 ∈ R|A |+ (3.3d)

The objective function (3.3a) is to minimize the total backlog. Constraints (3.3b) guarantee that

the demand and backlog is either satisfied in the current period or it will be backlogged. Constraints

(3.3c) show that the available inventory is either used to satisfy the demand of different products,

or will be stored as an inventory. If the optimal value of B1k is equal to zero, we add product k to

set ˆK . Constraints B1k = 0 will be added to the model of the “production substitution policy" for

all k ∈ ˆK . How the demand of this product is satisfied is also defined in the policy model based

on different cost parameters.

It should be noted that it is also possible to use other models in this step. For example, mini-

mizing the backlog for each product separately. However, it is not possible to consider substitution

options as the products should not have a link together. Another option is to add some constraints
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in the policy model to satisfy the service level; however, we may have an infeasibility issue, or in

the case of using soft constraints, we have the challenge of parameter tuning.

The advantage of our proposed method is its simplicity and the fact that it can be easily applied

to different versions of “production substitution policy" by adding extra constraints. In addition,

minimizing the total backlog is in line with the notion of joint service level and the possibility of

substitution. It is also possible to minimize the weighted sum of backlog, in case the company has

priority in satisfying different products demand.

3.4.2 Decision policy

At period t = 1, based on the current state of the system we apply a “production substitution

policy", which takes v̂0, B̂0, D̂1, and the set ˆK from the backlog determination step as inputs. In

this section, we explain two policies with deterministic models (average and quantile policies) and

a policy with a chance-constrained two-stage stochastic programming model (chance-constraint

policy) as an approximation for the multi-stage model. We later show that while the deterministic

policy models have the advantage of faster execution time, the chance-constraint policy model

results in more accurate solutions.

(a) Average policy (b) Quantile policy (c) Chance-constraint policy

Figure 3.3: Demand approximation in different decision policies

Deterministic policies

In these policies, we represent the future demand by a single scenario, and we propose two different

deterministic policies based on that. These policies’ model approximate the dynamic programming

model by eliminating the chance-constraint and substituting the stochastic demand with the deter-

ministic value. In the first policy, namely the “average policy", the stochastic demand for all the

products and in all periods is substituted by its expected value. The second policy which is called
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the “quantile policy" differs from the “average policy" by substituting the stochastic demand for

the next immediate period (which corresponds to t = 2) by the quantile of the future demand distri-

bution, which is defined based on the service level. Figure 3.3 illustrates the demand pattern for the

average and quantile policies in sub-figures (a) and (b), respectively. For both of these policies, we

assume that there is no backlog for t > 1, which means that we should at least satisfy the expected

demand in all future periods. Model (3.4) represents the “average policy".

min ∑
t∈T

∑
k∈K

csetup
tk ytk + cprod

tk xtk + chold
tk Itk + ∑

j∈K +
k

csub
tk j Stk j

 (3.4a)

s.t. xtk ≤Mtkytk ∀t ∈T ,∀k ∈K (3.4b)

∑
j∈K −

k

S1 jk +B1k = D̂1k + B̂0k ∀k ∈K (3.4c)

∑
j∈K −

k

St jk = E[Dtk]+Bt−1,k ∀t ∈T \{1},∀k ∈K (3.4d)

∑
j∈K +

k

S1k j + I1k = v̂0k ∀k ∈K (3.4e)

∑
j∈K +

k

Stk j + Itk = vt−1,k ∀t ∈T \{1},∀k ∈K (3.4f)

vtk = Itk + xtk ∀t ∈T ,∀k ∈K (3.4g)

B1k = 0 ∀k ∈ ˆK (3.4h)

xt ,vt , It ,Bt ∈ RK
+,St ∈ R|A |+ ,yt ∈ {0,1}K ∀t ∈T (3.4i)

The objective function (3.4a) minimizes the total cost of setup, production, holding and substi-

tution cost. Constraints (3.4b) guarantee that in each planning period, when there is a production,

there will be a setup. Tight big-M values for these constraints can calculated as follows:

Mtk = ∑
j∈K +

k

(
B̂0 j + D̂1 j +

T

∑
t=2

E[Dt j]

)
∀t ∈T ,∀k ∈K (3.5)

Constraints (3.4c) to (3.4f) are the inventory, backlog, and substitution balance constraints, which

are defined for t = 1 and t > 1 separately. In constraints (3.4d) there is no backlog variable for

period t, which guarantee the average demand satisfaction in periods t > 1. In this model, we may

have backlog only in period 1. Constraints (3.4g), define the available inventory after production.
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Constraints (3.4h) are defined based on the result of backlog determination step and force the

backlog equal to 0 in the first period for all the products in set ˆK .

The quantile policy model is the same as model (3.4), except for one set of constraints. In this

policy, for t = 2 constraints (3.4d) are replaced by constraints (3.6). The difference between the

average policy and the quantile policy is that in the second period, where we need to consider the

service level, the average demand is replaced by the α quantile of the demand, denoted by Qα . In

the quantile policy the M values in constraints (3.4b) are calculated by equations (3.7).

∑
j∈K −

k

S2 jk =Qα(D2k)+B1k ∀k ∈K (3.6)

Mtk = ∑
j∈K +

k

(
B̂0 j + D̂1 j +Qα(D2 j)+

T

∑
t=3

E[Dt j]

)
∀t ∈T ,∀k ∈K (3.7)

Chance-constraint policy

The deterministic policies that we explained in the previous section did not consider the service

level constraint explicitly in their models. To consider the service level we add a chance constraint

to the deterministic policy models in the second period. To this end, we consider a set of demand

scenarios, Ω, for period t = 2. Dω
tk denotes the demand of product k ∈K in period t ∈ T under

scenario ω ∈Ω. The drawback of this idea is that it fails to capture the cost of substitution implicit

in the chance constraint. More specifically, the chance constraint ensures that with high probabil-

ity there exists substitutions that can meet all demands, but ignores the cost of the substitutions

which result in choosing low order quantity so that significant substitution is necessary to meet

demands. To solve this issue, we consider different cost elements for each single scenario ω ∈Ω,

in addition to defining the service level constraint using these scenarios. For periods t ≥ 3, the

stochastic demand is substituted by its expected value, similar to the deterministic policies. The

demand pattern used in this policy in depicted in sub-figure (c) in Figure 3.3. We next present

the mathematical model for this policy. In addition to previous decision variables, new decision

variables are defined for each of the scenarios in the period 2. In this model, I′ωtk and B′ωtk denote

the inventory and backlog at period t for product k under scenario ω , respectively. S′ωtk j represents

the substitution amount of product k for product j at period t under scenario ω . The mentioned

variables are then connected to the related variable in period 3 by using additional constraints in
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the model. This model is presented as follows:

min ∑
k∈K

csetup
1k y1k + cprod

1k x1k + ∑
j∈K +

k

csub
1k jS1k j + chold

1k I1k

+

∑
k∈K

csetup
2k y2k + cprod

2k x2k + chold
2k I2k + cback

2k B2k +
1
|Ω| ∑

ω∈Ω

∑
j∈K +

k

csub
2k jS

′ω
2k j

+

T

∑
t=3

∑
k∈K

csetup
tk ytk + cprod

tk xtk + ∑
j∈K +

k

csub
tk j Stk j + chold

tk Itk

 (3.8a)

s.t. xtk ≤Mtkytk ∀t ∈T ,∀k ∈K (3.8b)

∑
j∈K −

k

S1 jk +B1k = D̂1k + B̂0k ∀k ∈K (3.8c)

∑
j∈K −

k

St jk = E[Dtk]+Bt−1,k ∀t ∈T , t ≥ 3,∀k ∈K (3.8d)

∑
j∈K +

k

S1k j + I1k = v̂0k ∀k ∈K (3.8e)

∑
j∈K +

k

Stk j + Itk = vt−1,k ∀t ∈T , t ≥ 3,∀k ∈K (3.8f)

vtk = Itk + xtk ∀t ∈T ,∀k ∈K (3.8g)

B1k = 0 ∀k ∈ ˆK (3.8h)

∑
j∈K −

k

S′ω2 jk +B′ω2k = Dω
k +B1k ∀k ∈K ,∀ω ∈Ω (3.8i)

∑
j∈K +

k

S′ω2k j + I′ω2k = v1k ∀k ∈K ,∀ω ∈Ω (3.8j)

1
|Ω| ∑

ω∈Ω

I′ω2k = I2k ∀k ∈K (3.8k)

1
|Ω| ∑

ω∈Ω

B′ω2k = B2k ∀k ∈K (3.8l)

∑
ω∈Ω

1{(v1,B1) ∈ Q(Dω
2k)} ≥ ⌈α|Ω|⌉ (3.8m)

xt ,vt , It , I′2,Bt ,B′2 ∈ RK
+,St ,S′2 ∈ R|A |+ ,yt ∈ {0,1}K (3.8n)
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To have a more clear description, the objective function of the extensive form model (3.8a)

has broken into three parts, the cost of period 1, the cost of period 2, and the cost of periods 3 to

T . In period 2, the substitution cost is defined for each of the scenarios separately, and the aver-

age substitution cost over all scenarios is used as the total substitution cost. Only in this period,

we also consider backlog cost so that the cost function matches with the service level constraint.

Constraints (3.8b) are production setup constraints for which the value of M is calculated using

equation 3.9. Constraints (3.8c) to (3.8f) are the inventory, backlog, and substitution balance con-

straints. Constraints (3.8c) and (3.8e) are for period 1 period and constraint (3.8d) and (3.8f) are

for the periods 3 to T . Constraints (3.8g) define the inventory after production.

Mtk = ∑
j∈K +

k

(
B̂0 j + D̂1 j +max

ω∈Ω

Dω
2 j +

T

∑
t=3

E[Dt j]

)
∀t ∈T ,∀k ∈K (3.9)

Constraints (3.8i) and (3.8j) are the inventory, backlog, and substitution balance constraints

for period 2 and each individual scenario. Constraints (3.8k) and (3.8l) recombine the scenarios

in period 2 and link the average inventory and backlog over all scenarios in this period to the

inventory and backlog amount in the same period. These averages are used in the inventory and

backlog balance constraints for period 3. Constraint (3.8m) is the service level constraint in which

the sum of feasible scenarios based on the values of v1 and B1 should be greater than α percent of

the number of scenarios. This model is challenging to solve mostly due to the constraints for the

joint service level. In the next section we propose an efficient B&C algorithm to solve this model.

3.5 Solving the chance-constrained model

We now discuss how to solve the proposed model (3.8). We first present a MIP formulation for the

service level constraint (3.8m) based on the demand scenario set Ω, and then substitute it with the

service level constraint in model (3.8).

We define the binary variables zω , where zω = 0 indicates the available inventory is adequate to

meet demands in scenario ω without backlogging, and zω = 1 otherwise. Bω represents the backlog

vector and Sω represents the substitution vector for scenario ω . The joint chance-constraint (3.8m)
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in model (3.8) is then replaced by constraints (3.10a)-(3.10d). It should be noted that it is possible

to use the previously defined decision variables for each of the scenarios (namely B′ωtk j and S′ωtk j)

in the resulting extensive formulation. However, as the B&C algorithm is used to only deal with

the joint chance constraint MIP formulation, we need to define a separate set of decision variables

for this set of constraints. To match the service level constraint and the objective function cost for

each scenario and the service level constraint, we need to tune the backlog cost parameter, cback
2k ,

in (3.8a).

Bω

k + ∑
j∈K −

k

Sω

jk = Dω
k +B1k ∀ω ∈Ω,∀k ∈K (3.10a)

∑
j∈K +

k

Sω

k j ≤ v1k ∀ω ∈Ω,∀k ∈K (3.10b)

Bω

k ≤Mω

k zω ∀ω ∈Ω,∀k ∈K (3.10c)

∑
ω∈Ω

zω ≤ ⌊(1−α)|Ω|⌋ (3.10d)

Constraints (3.10a) and (3.10b) define the backlog and substitution for each scenario ω . Con-

straints (3.10c) guarantee that when there is a backlog for any of the product in scenario ω , the

indicator variable is turned on, i.e., zω = 1. In these constraints, the M values are defined using

equation (3.10e). Constraint (3.10d) is the service level constraint.

Mω

k = Dω
k + D̂1k + B̂0k ∀ω ∈Ω,∀k ∈K (3.10e)

Constraints (3.10c) make the mathematical model challenging to solve, therefore, we propose a

B&C algorithm to solve the extensive form of the two-stage chance constrained formulation. This

method is based on the algorithm proposed by Luedtke (2014) for joint chance constraints, which

is tailored for our problem. Considering variable zω for each ω ∈ Ω, when zω = 0, we should

enforce that v1,B1 lie within the Q(Dω) polyhedron.

Q(Dω) := {(v,B) ∈ R2K
+ : ∃Sω ∈ R|A |+ s.t. ∑

j∈K −
k

Sω

jk = Dω
k +B1k ∀k ∈K and

∑
j∈K +

k

Sω

k j ≤ v1k ∀k ∈K }
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To solve the model, we consider a master problem where we eliminate constraints (3.10a)-

(3.10c) from the extensive form of the model. Assume we have solved a master problem and

obtained a solution (ẑ1, v̂1, B̂1) for period 1. Note that this solution may or may not satisfy the

integrality constraints (e.g., if we have solved an LP relaxation of the master problem). Given a

demand scenario ω ∈Ω with ẑω
1 < 1, our task is to assess if (v̂1, B̂1) ∈ Q(Dω), and if not, attempt

to generate a cut to remove this solution. In the case of an integer feasible solution, we will always

be able to do so when (v̂1, B̂1) /∈ Q(Dω).

We can test if given (v̂1, B̂1) ∈ Q(Dω) by solving the following LP:

Vω(v̂1, B̂1) := min
w,Sω

∑
k∈K

wk

s.t. ∑
j∈K −

k

Sω

jk +wk = Dω
k + B̂1k ∀k ∈K (πk)

− ∑
j∈K +

k

Sω

k j ≥−v̂1k ∀k ∈K (βk)

w ∈ RK
+,S

ω ∈ R|A |+

By construction, (v̂1, B̂1) ∈ Q(Dω) if and only if Vω(v̂1, B̂1) ≤ 0, which means that there is no

backlog for this scenario. Furthermore, if (π̂, β̂ ) is an optimal dual solution, then by weak duality,

the cut

∑
k∈K

π̂k(Dω
k +B1k)− ∑

k∈K
β̂kv1k ≤ 0

is a valid inequality for Q(Dω). Rearranging this, it takes the form:

∑
k∈K

β̂1kv1k− ∑
k∈K

π̂kB1k ≥ ∑
k∈K

π̂kDω
k .

If Vω(v̂1, B̂1)> 0 then the corresponding cut will be violated by (v̂1, B̂1).

The inequality derived above is only valid when zω = 0. We thus need to modify it to make it

valid for the master problem. To derive strong cuts based on this base inequality, we can solve an

additional set of subproblems once we have the coefficients (π̂, β̂ ). In particular, for every scenario

ω ′, we can solve:

min
v1,B1,S1,S

ω ′
∑

k∈K
β̂kv1k− ∑

k∈K
π̂kB1k
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s.t. ∑
j∈K −

k

Sω ′

jk = Dω ′
k +B1k ∀k ∈K

∑
j∈K +

k

Sω ′

k j ≤ v1k ∀k ∈K

∑
j∈K −

k

S1 jk +B1k = D1k + B̂0k ∀k ∈K

∑
j∈K +

k

S1k j ≤ v̂0k ∀k ∈K

v1,B1 ∈ RK
+, S1,S

ω ′ ∈ R|A |+

Note that in this problem we consider substitution variables both for the period 1 and for each

scenario in period 2 under consideration, ω ′. The substitution variables for the scenario ω ′ are to

enforce that (v1,B1) ∈ Q(Dω ′). The substitution variables for the period 1 are to enforce that B

satisfies this period constraints.

Considering hω ′(π̂, β̂ ) as any lower bound on the optimal objective value, Vω ′(v̂1, B̂1), and

given the structure of this problem, we can obtain potentially weaker cuts, but saving significant

work. In particular, we use hω ′(π̂, β̂ ) = ∑k∈K π̂kDω ′
k for each ω ′ ∈Ω, instead of solving the above

defined LP and using its optimal solution. This should be valid because the dual feasible region

of the set Q(Dω ′) is independent of ω ′, so a dual solution from one ω can be used to define an

inequality valid for any other ω ′.

After evaluating hω ′(π̂, β̂ ) for each ω ′ ∈ Ω, we then sort the values to obtain a permutation σ

of Ω which satisfies:

hσ1(π̂, β̂ )≥ hσ2(π̂, β̂ )≥ ·· · ≥ hσ|Ω|(π̂, β̂ )

Then, letting p= ⌊(1−α)|Ω|⌋, the following inequalities are valid for the master problem (Luedtke,

2014):

∑
k∈K

β̂kv1k− ∑
k∈K

π̂kB1k+
(

hσ1(π̂, β̂ )−hσi(π̂, β̂ )
)

zσ1 +
(

hσi(π̂, β̂ )−hσp+1(π̂, β̂ )
)

zσi ≥ hσ1(π̂, β̂ ),

∀i = 1, . . . , p

Any of these inequalities could be added, if violated by the current solution (ẑ1, v̂1, B̂1).

The final step for obtaining strong valid inequalities is to search for mixing inequalities, which

have the following form. Given a subset T = {t1, t2, . . . , tℓ}⊆ {σ1,σ2, . . . ,σp}, where htl+1 = hσp+1 ,
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the inequality

∑
k∈K

β̂kv1k− ∑
k∈K

π̂kB1k +
ℓ

∑
i=1

(
hti(π̂, β̂ )−hti+1(π̂, β̂ )

)
zti ≥ ht1(π̂, β̂ )

is valid for the master problem. Although the number of such inequalities grows exponentially

with p, there is an efficient algorithm for finding a most violated inequality (Günlük and Pochet,

2001) for given (ẑ1, B̂1, v̂1), which is provided in Algorithm 1.

Algorithme 1 : Finding the most violated inequality

OUTPUT: A most violated mixing inequality defined by ordered index set t ;

INPUT: ẑσi,σi,hσi(π̂, β̂ ), i = 1, . . . , p+1 ;

Sort the ẑσi values to obtain permutation ρ of the indices satisfying:

ẑρ1 ≤ ẑρ2 ≤ ·· · ≤ ẑρp+1 ;

v← hσp+1(π̂, β̂ );

T ←{};

i← 1;

while v < hσ1(π̂, β̂ ) do

if hρi(π̂, β̂ )> v then

T ← T ∪{ρi};

v← hρi(π̂, β̂ );

end

i← i+1;

end

3.6 Computational experiments

In this section, we explain the instance generation, and the rolling-horizon framework that we use

to conduct the numerical experiments.

3.6.1 Instance generation

To evaluate different policies and algorithms, we generate a variety of instances based on Rao et al.

(2004) and Hsu et al. (2005) for the substitution part, and Helber et al. (2013), for the lot sizing
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related parameters, with some justifications for our problem. Table 3.4 illustrates different cost

parameters in the model and how to define them based on the data generation parameters. Table

3.3 summarizes the data generation parameters, their base value and their variation for sensitivity

analysis. Considering 10 products, in the base case, one way substitution is available for four

consecutive products ordered based on their values. It should be noted that τ should start from 1 to

include the production cost difference in the substitution cost. In other words, more than average

production of a product means lower than average production of some other products due to the

substitutions and these variation from averages is considered in the substitution cost. Due to this

cost structure, we can ignore the production cost in the objective function as it constant under

different policies.

Table 3.3: Parameters for the base case and the sensitivity analysis

Parameters Base Case Variation

T 6 6, 8, 10
K 10
η 0.2 0.1, 0.2, 0.5
τ 1.5 1, 1.25, 1.5, 1.75, 2, 2.5
ρ 0.05 0.02, 0.05, 0.1, 0.2 ,0.5
T BO 1 1, 1.25, 1.5, 1.75, 2
α 95% 80%, 90%, 95%, 99%

Table 3.4: Data generation for the cost parameters

cprod
tk 1+η× (K− k)

csub
tk j max(0,τ× (cprod

tk − cprod
t j ))

chold
tk ρ× cprod

tk
csetup

tk E[Dtk]×T BO2× chold
tk /2

In addition to the mentioned cost parameters, in the chance-constraint policy formulation we

have a backlog cost which needs to be tuned. This parameter is calculated by equation (3.11),

which is equal to the maximum possible cost of substitution.

cback
2k = max

l∈K , j∈K −
k

csub
2 jl ∀k ∈K (3.11)
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To generate the random demand we used autoregressive process model (Jiang et al., 2017)

which considers the correlation in different stage demand as

Dt+1,k =C+AR1×Dkt +AR2× εt+1,k ∀k ∈K ,∀t ∈T (3.12)

where C,AR1, and AR2 are parameters of the model, and εt+1,k is a random noise with normal

distribution with the mean of 0 and standard deviation of 1. In our data sets, C = 20, AR1 = 0.8,

and AR2 = 0.1× 100. With these data, the expected demand for each product in each period is

equal to 100. To apply this autoregressive process, we generated a random noise set and used it for

both observed demand and the stochastic scenario sets generation for different policy formulations.

For the observed demand, we choose one random number out of the noise set for each product and

we define the new observed demand based on that and the last observed demand. For the random

demand in the next period we generate a scenario set based on all the elements in the random noise

set and the observed demand. The scenarios are assigned equal probabilities.

As we have no production in the first period, without loss of generality, we assume that the

demand in the first period is equal to zero, otherwise, if there is no initial inventory, the service

level constraint will not be satisfied. In the AR data generation procedure, we start with the defined

average in the first period and then follow the procedure for the rest of the periods. Then to make

the first period demand equal to 0 we subtract this average from the first period demand.

The algorithms are implemented in Python and MIP models are solved using IBM ILOG

CPLEX 12.8. All the experiments are performed on a 2.4 GHz Intel Gold processor with only

one thread on the Compute Canada computing grid.

3.6.2 Rolling-horizon framework

The original problem we consider in this research is an infinite-horizon problem and the decision

policies proposed based on the finite-horizon version of this problem are applied and evaluated in

a rolling-horizon framework. The infinite-horizon time period is indexed by t̂ ∈ {1,2, ...,TSim} and

the finite-horizon model periods are indexed by t ∈{1,2, ...,T}. In this framework, at each period t̂,

a model with T planning periods is solved, and only the decisions corresponding to the first period

are implemented. Based on these decisions and the observed demand, the state of the system is

updated and the next T planning period model is solved, as we roll the horizon. We simulate the
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decision-making process in a rolling-horizon framework using Algorithm (2) in which at each time

period t̂ we first execute the backlog determination model, and then solve a finite-horizon model

depending on the selected policy. We use two different measures to evaluate different policies, the

actual total cost and the actual service level. At each period t̂, we calculate the total cost based

on the observed demand and implemented solution values, in this period. We consider the average

of this cost over all simulated time periods as the total cost of a policy. It should be noted that

we ignore the production cost in this calculation as it is constant under different policies. For the

service level we consider the percentage of the periods in which the joint service level is satisfied

by checking if there is any backlog after observing the demand in each period. For calculating the

confidence intervals on these measures, we use batch-based estimations, with a batch size of 25

periods. The simulation time horizon (TSim) is 4000 periods, and we ignore 10 initial periods as

the warm-up periods.
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Algorithme 2 : Rolling-horizon implementation
OUTPUT: The confidence interval of the total cost and the service level

INPUT: Demand simulation over TSim periods, Production policy

t̂ = 1, v̂t0 = 0, B̂t0 = 0,O = /0,Z = /0

while t̂ ≤ TSim do
Solve the backlog determination model (3.3) for period t̂ and let B∗t̂ be the optimal

backlog solution.

Let ˆK = {k ∈K : B∗t̂k = 0}

Solve the model (3.1) approximation based on selected policy, v̂t̂−1,k, B̂t̂−1,k, the

observed demands D̂t̂ , and set ˆK .

Let x∗t̂ ,y
∗
t̂ ,S
∗
t̂ ,B
∗
t̂ be the resulting solution for period t̂, i.e., the first-period solution of

model (3.1), and the Ob jt̂ be the total cost of period t̂ based on this solution.

if ∃k ∈K ,B∗t̂k ≥ 0 then
Zt̂ = 1

else
Zt̂ = 0

end

Add Ob jt̂ to the set O

Add Zt̂ to the set Z

t̂← t̂ +1
end

Build confidence intervals for the cost and service level using O and Z , respectively.

3.6.3 Methodology evaluation

In this section, we analyze the efficiency of the proposed B&C algorithm used to solve the chance-

constraint policy model against the extensive form formulation (Model (3.8) in which the joint

chance-constraint (3.8m) is replaced by constraints (3.10a)-(3.10d). To this end, we generate some

instances with different parameters and solve each instance for 5 different periods of the problem

with two different methods. Based on some preliminary analysis we select 24 different challenging

instances as follows. T ∈ {6,8,10}, K = 10, η = 0.2, τ = 0.5, ρ = 0.1, T BO ∈ {1,2}, and α ∈

{80%,90%,95%,99%}. We consider partial substitution in which a product can be substituted by
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three consecutive higher-grade products. The time limit is set to 7200 seconds. We used the stages

after the warm-up periods with similar initial state for all the methods. For the B&C algorithm

we use the faster version instead of the stronger version, as the preliminary results do not show

significant difference between the two versions. More specifically, the faster version shows slightly

better performance.

We analyze the performance of the two methods using three measures, the average CPU time

in second (Time), the average integrality gap (Gap), and the average number of optimal solutions

found out of 5 (# OPT) over all the instances in one group. The results are given in Table 3.5 .

Table 3.5: Comparison of methodologies to solve the model with the service level

B&C Extensive form

|Ω| Time Gap (%) # Opt Time Gap(%) # Opt

100 10.3 0.0 5.0 74.6 0.0 5.0
200 34.6 0.0 5.0 400.8 0.0 5.0
300 60.6 0.0 5.0 1152.5 0.0 4.8
500 206.1 0.0 5.0 3356.3 0.4 4.0
1000 990.1 0.0 4.9 6170.3 1.4 1.3

α (%)
80 417.2 0.0 5.0 2486.6 0.3 3.9
90 299.5 0.0 5.0 2690.7 0.4 3.8
95 202.2 0.0 5.0 2166.3 0.4 3.9
99 122.5 0.0 5.0 1579.9 0.3 4.5

T
6 131.4 0.0 5.0 1780.3 0.4 4.2
8 261.8 0.0 5.0 2040.1 0.3 4.2
10 387.9 0.0 5.0 2872.3 0.8 3.7

Average 260.4 0.1 5.0 2230.9 0.5 4.0

The first analysis is based on the size of the scenario set. The B&C hold its superiority in all

the scenario set sizes. By increasing the number of scenarios the solution time is increased sig-

nificantly, but the B&C algorithm finds the optimal solution in most cases in a reasonable amount

of time. When we have 1000 scenarios, the extensive form finds the optimal solution in about

25% of the cases and considering the time limit the average gap is about 1.4%. Considering the

service level, we can see that increasing the service level results in faster solution time in both

methods. In the last analysis, we can see that by increasing the number of periods in the finite-
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horizon model, the solution time is also increased, but this increase is such that the B&C method

is still a reasonable method to use.

In general, the B&C algorithm has a significantly better performance compared to the extensive

form, and hence we use this method for the rest of the experiments. In the following experiments,

due to the large number of simulation iterations (4000) the instances are solved with 100 branches.

However, based on the reported solution time of the B&C algorithm, we can easily scale up the

number of scenario set, when we want to solve the problem for one or couple of stages ahead.

3.6.4 Policy evaluation

We first compare the three policies, namely, average, quantile, and chance-constraint policies

against each other. This comparison is based on the objective function and the joint service level,

using the procedure explained in section 3.6.2. Table 3.6 compares the three policies using these

measures and their 95% confidence interval at two different TBOs and four different service lev-

els. TBO or time between orders is the parameter which defines the trade off between the setup

cost and inventory holding cost. Among the three policies the chance-constraint policy is the only

policy which respects the service level in all the instances. In all the instances with acceptable

service level the chance-constraint policy has the lower cost. Among the three policies the average

policy is not sensitive to the service level and it has poor performance in this measure, in which

at TBO equal to 1 the joint service level is about 21%. When the TBO is equal to 2 the service

level is slightly more than 78% for this policy. This result shows that this policy is not a reliable

policy, and it will not be used in the rest of experiments. The quantile policy has an acceptable

performance in both measures.

The rest of this section is dedicated to the comparison between the chance-constraint and quan-

tile policies using the additional instances presented in Table 3.3. To this end, we use two measures,

the joint service level and the relative cost change, ∆Cost, which is defined as:

∆Cost(%) =
Total CostQuantile−Total Costchance-constraint

Total CostQuantile
×100 (3.13)

Figure 3.4 shows the comparison of the quantile policy and the chance-constraint policy under

different values of TBO. Figure 3.4-(a) shows the service level, labeled as SL, and its 95% con-

fidence interval for each of the policies at different values of TBO. Figure 3.4-(b) illustrate the
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Table 3.6: Policy comparison based on total cost and service level

TBO α (%) Total cost Service level (%)

Average Quantile Chance-constraint Average Quantile Chance-constraint

1 80 74.4±0.4 66.4±0.2 66.7±0.2 21.4±1.4 76.5±1.4 84.9±1.3
90 74.4±0.4 68.2±0.1 67.1±0.2 21.4±1.4 90.6±1.1 90.3±1.1
95 74.4±0.4 71.0±0.1 67.6±0.2 21.4±1.4 94.1±0.9 95.3±0.7
99 74.4±0.4 76.1±0.1 69.1±0.2 21.4±1.4 99.1±0.3 99.1±0.3

2 80 204.3±0.6 204.3±0.5 191.2±0.6 78.1±2.7 93.2±1.2 98.7±0.4
90 204.3±0.6 207.2±0.4 192.4±0.6 78.1±2.7 97.4±0.6 99.5±0.3
95 204.3±0.6 210.0±0.4 193.5±0.6 78.1±2.7 98.5±0.5 99.8±0.2
99 204.3±0.6 215.3±0.4 195.4±0.6 78.1±2.7 99.7±0.2 100.0±0.0

∆Cost for each value of TBO. The positive percentages show the superiority of chance constraint

policy. In all cases, the chance-constraint policy has a better performance in terms of service level.

The chance-constraint policy has a lower cost in all cases in which both policies have an accept-

able service levels. When TBO is more than 1 the service level is over satisfied. This is mostly

because of the backlog determination step. We later discuss the necessity of this modification and

if it imposes any extra costs.
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Figure 3.4: Comparison based on TBO

Figure 3.5 shows the comparison based on different values of η under two different values of

TBO, 1 and 2. This parameter defines the production cost of different item. Higher η means higher

variety in products and the lower ones refer to the situations with higher similarities. When TBO
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Figure 3.5: Comparison based on η

is equal to 1, quantile policy service level is lower than the target service level. In all cases, the

chance-constraint policy has a better performance in terms of joint service level and the total cost.

Figure 3.6 shows the comparison based on different service level values under two different

values of TBO, 1 and 2. In all cases, the chance-constraint policy respects the service level and

in cases where both policies have acceptable service level, the chance-constraint policy has better

performance in terms of the total cost. It should be noted that when the service level increases,

the performance of the chance-constraint policy against the quantile policy improves. Figure 3.7 is

complementary to Figure 3.6 and illustrates the trend of the total cost for different values of service

level. As can be seen in this figure, the total cost of the quantile policy increases significantly with

an increase in the target service level, which is not the case in the chance-constraint policy.

Figure 3.8 shows a similar comparison based on τ values. This parameter define the substitution

cost based on the difference in the production cost of two products. In all cases, the chance-

constraint policy has better performance compared to the quantile policy.

We can conclude that although the quantile policy has an acceptable performance in general and

under different parameter settings, the proposed chance-constraint policy has consistent superiority

against it. In other words, using the chance-constrained policy results in lower cost, at the same or

better service level values.
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Figure 3.6: Comparison based on the target service level
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3.6.5 Sensitivity analysis

In this section, we perform some sensitivity analysis for different elements of the cost function,

namely the setup cost, inventory holding cost and the substitution cost. Figure 3.9 shows the cost

change based on different values for TBO. It is intuitive that in the lot sizing problem, by increase

in TBO, there will be an increase in setup cost plus the inventory holding cost. In addition to this

increase, we can see a constant increase in the substitution cost, which means an increase in the
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Figure 3.8: Comparison based on τ
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Figure 3.9: Cost analysis based on TBO

Figure 3.10 illustrates different cost changes based on changes in parameter τ for two different

TBO values. When TBO is equal to 1, by increasing the substitution cost, the inventory cost

slightly increases, and the substitution cost does not increase. We can conclude that by increasing

the substitution cost, the amount of inventory will increase and the amount of substitution will

decrease. This is more obvious when TBO is equal to 2. In this case, the increase in the substitution

cost per unit results in total substitution cost reduction, total holding cost increase, and a slight

setup cost increase.
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3.6.6 The necessity of backlog determination step

When TBO is greater than 1 the service level is over satisfied (See Figure 3.4-(a)). This is due to

the fact that to save up on the setup cost the production amount will be higher than the average

demand of one period. With this higher production level, many of the demands can be satisfied

in the current period when we apply the backlog determination step. In this section, we discuss

the necessity of the backlog determination step, without which it is not possible to satisfy the

target service level. In these experiments, we cancel the backlog determination step, and calculate

the total cost and service level. Figure 3.11-(a) illustrates the service level and Figure 3.11-(b)

shows the relative cost decrease without and with backlog determination step. Without this step

the service level falls under 20%. We see that, even with very low service levels, there is a small

cost reduction compared to the case in which the model tries to minimize the backlog in the current

stage as much as possible. This means that the over satisfaction of the service level will not impose

a huge cost on the model.
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Figure 3.11: The necessity of backlog determination

3.6.7 Effect of substitution

In this section, we investigate the effect of substitution. To this end, we run some experiments and

eliminate the possibility of substitution. We compare this case with the possibility of partial and

full substitution, for different target service levels. In full substitution a product can be substituted

by all the higher-grade products. Figure 3.12 illustrates the percentage of cost decrease when

adding the possibility of substitution to the model, fully and partially. The value of substitution is

more at the higher values of the target service level and larger TBO. We can see that having the

option of substitution can result in substantial cost savings, about 7% to 25% in our experiments.

We can also see that considering the possibility of full substitution does not result in more cost

savings compared to the partial flexibility option.

3.7 Conclusion

We study an infinite-horizon stochastic lot sizing problem with a supplier-driven product substi-

tution option and the service level constraint which is defined jointly over different products. To

solve this problem, we consider a finite-horizon version of this problem and apply it in a rolling-

horizon framework. We propose different MIP-based policies for decision-making in each period.

The mathematical models in these policies are approximations of the finite-horizon multi-stage
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model. We propose two deterministic policies and a policy based on the two-stage approximation,

namely, the chance-constraint policy. While the deterministic policy models are very efficient to

solve, the chance-constraint extensive formulation is very challenging. To solve this model we

proposed a B&C algorithm.

To compare different policies and evaluate different solutions, we simulate the rolling frame-

work. The random demand is generated through an autoregressive process and stochasticity is

considered as a discrete scenario set. We show that while the deterministic policy based on the

quantile value of the scenario set is very efficient, our proposed chance-constraint policy results

in more reliable and accurate decisions. In addition, we show that limited levels of substitution

possibility results in noticeable cost savings.
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General Conclusion

We conclude with a general overview of this study, mentioning the contributions of the thesis and

the future research avenues. We study the stochastic lot sizing problem with random demand,

where we wish to define the optimal timing and production quantities to minimize the total ex-

pected costs while considering a service level to mitigate the risk of stock outs.

Considering the main focus of this research as the stochastic lot sizing problem with service

level constraints, we study three extensions of this problem. Our main focus is on multi-product

and multi-period problems under various types of service levels. To this end, we investigate dif-

ferent solution methodologies to find the solutions. Strategies in stochastic lot sizing refer to the

level of adaptability with respect to adjusting the setup and quantity decisions when the demand is

observed. We first present a panoramic view of the three studies and chapters in this thesis which is

followed by a more detailed discussion of the contributions of these studies and the notable results

and the possible future research.

The first study, presented in Chapter 1, extends the stochastic lot sizing problem with ser-

vice level constraints by investigating aggregate service levels. The service levels are commonly

defined for each product separately, while the aggregate service levels are defined based on the

averages over several products. We investigate various service levels in both individual and aggre-

gate versions. We use the static strategy, in which both setups and production decisions are defined

at the beginning of the planning horizon, and they remain unchanged even when the demands are

observed.

The second research, presented in Chapter 2, is dedicated to the stochastic multi-level capaci-

tated lot sizing problem in which we have a bill-of-material (BOM). The service level used in this

problem is a time and quantity-oriented service level. We address a general setting in which, in

addition to the end items, the components can also have independent demand. In this research,



we study the value of having an adaptive strategy at different levels of the BOM. In the adaptive

strategy, some or all items follow a static-dynamic strategy, in which the production amounts may

be updated when the demand is observed and we compare it to the case in which all the items in

BOM follow the static strategy.

The third research, presented in Chapter 3, is an extension to our main problem by adding the

possibility of product substitution. We consider an infinite time horizon in which different deci-

sions, including production setup, and the amount of production and substitution are dynamically

updated when the demand is realized, hence we follow the dynamic strategy. We use the α service

level defined jointly over multiple products. More specifically, this study presents the multi-stage

stochastic lot sizing problem with substitution and a joint service level.

Contributions

This research presents several contributions in operations and inventory management. In this

thesis, we introduce several extensions to the stochastic lot sizing problem with service level con-

straints, which can be considered as the main contribution of this thesis. These extensions in-

vestigate the value of adding various types of flexibility, which are interesting both scholastically

and in practice. This thesis provides mathematical models and solution methodologies for these

new problems and their approximations. Finally, this thesis provides extensive numerical experi-

ments by generating many test instances, simulation, and sensitivity analyses to test and evaluate

the methodologies and derive managerial insights. The detailed contributions of this thesis are as

follows.

I. Investigating the value of aggregate service levels in stochastic lot sizing

Most of the research in the literature of stochastic lot sizing problems with service level con-

straints consider the service levels individually for each SKU. We address this gap in the literature,

by investigating the value of aggregate service level. Through extensive numerical experiments,

we show that the aggregate service levels will provide some flexibility which results in cost re-

ductions, as opposed to the traditional service levels imposed independently on each item. This

cost reduction varies based on the type of service level and under different parameters settings.

Using the same scenario set for all the variations of service levels, we provide a fair comparison

environment, which helps the decision makers to choose an appropriate service level and assign a
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reasonable value to that. The results show that, at the same value for all the service levels, consid-

ering the aggregate version of the δ service level provides the highest cost decrease, and for the α

service level the decrease is at its lowest value. In general, a lower service level, higher variance

in random demand, higher capacity, and higher variability in the holding cost will increase the

benefit of an aggregate service level compared to separate service levels. Using a tight aggregate

service level in combination with less strict minimum individual service levels, is a reasonable

approach which will enable companies to benefit from the value of aggregate service level, while

guaranteeing a minimum service level for each individual product.

II. Investigating the value of a static strategy in a receding horizon framework

In the first research, we choose to use the static strategy due to the capacity constraint. One

of the disadvantages of the static strategy is the lack of responsiveness to the demand realization

which leads to large inventory levels and costs in the system. We show that when some levels of

planning flexibility is allowed in the system, we can still use static models in a rolling/receding

horizon environment to overcome this inherent limitation. In this research, we illustrate that this

implementation leads to a plan with lower inventory levels and total cost.

III. Investigating the value of flexibility in stochastic multi-level lot sizing

We consider a stochastic multi-level lot sizing problem, and we investigate the value of having

an adaptive strategy compared to a fully static strategy for all the items. In the adaptive strategy,

the production level for some of the items in the BOM can be updated when the demand is ob-

served. Three BOM structures, serial, assembly, and general, are considered, and we also address

a more general setting in which in addition to the end items some of the components may also

have independent demand. We numerically show that adding flexibility to the system by applying

an adaptive strategy results in cost savings depending on where we add the flexibility in the BOM.

Adding the flexibility only for the end item will result in about 20% of cost savings. Extensive

numerical experiments show that the cost savings depend on some parameters, such as the service

level, holding cost structure in the BOM, and time between orders. In situations with a higher

service level and lower time between orders, we can benefit more by adding some levels of flexi-

bility in the system. While controlling the variation in the plans is very important in the multi-level

system, this research shows that even having a small degree of flexibility whenever possible may

result in a significant amount of cost savings.
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IV. Investigating the value of substitution in stochastic lot sizing

We study an infinite-horizon stochastic lot sizing problem with a supplier-driven product sub-

stitution option and a service level constraint which is defined jointly over multiple products. To

solve this problem, we consider a finite-horizon version of this problem and apply it in a rolling

horizon framework. We propose MIP-based policies for decision-making in each period. The

mathematical models in these policies are approximations of the finite-horizon multi-stage model,

in which the stochasticity is represented in a scenario set. We propose two deterministic policies

and a policy based on the two-stage approximation, namely, the chance constraint policy. While

the deterministic policy models are very efficient to solve, the chance constraint extensive formu-

lation is very challenging. To compare the policies and evaluate the solutions, we simulate the

rolling framework. The random demand is generated through an autoregressive process. We show

that while the deterministic policy based on the quantile value of the scenario set is very efficient

with respect to the solution time, the proposed chance constraint policy results in more reliable and

accurate decisions. In addition, we show that the substitution possibility results in noticeable cost

savings of about 10% to 25% at high service levels.

V. Solution methodologies

The stochastic nature of the problem in this thesis makes the proposed mathematical models

challenging to solve. The problems in the first two studies, i.e., the aggregate service level and

stochastic multi-level lot sizing, are modeled as two-stage stochastic programming problems. In

the first research, due to the non-linearity of the objective function, we apply piece-wise linear

approximations. In the second research, the stochasticity is represented as a scenario set and we

apply the sample average approximation technique. In the third research where we investigate the

product substitution option, we model the problem as a multi-stage stochastic problem, in which

the random demand is represented as a scenario set. Different types of policies are used to make

the decisions at each stage. For the policy which explicitly considers the service level, we apply

a branch-and-cut algorithm to solve the extensive form of the joint service level constraint. The

branch-and-cut algorithm finds the solution in a significantly lower time compared to the extensive

form.

VI. Extensive numerical experiments

All three studies include extensive numerical experiments, from instance generation to sensi-
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tivity analysis. As the problems are new to the literature, we generate new instances or modify

existing data sets for lot sizing problems to be able to address and evaluate new assumptions. One

of the unique strengths of the first study is that all the service levels in aggregate and individual

versions under both static and receding horizon implementations are compared under the same set

of scenarios, which enables a fair comparison between them. In the second research, we address

different demand profiles, different levels of flexibility, and different parameter settings under three

BOM structures. For each structure, we test more than 1000 instances at each flexibility level. In

the third research, we generate new test instances by modifying and merging related instances.

We apply and evaluate different policies in a rolling horizon framework to simulate the dynamic

decision-making and derive acceptable confidence intervals for the performance measures. We per-

form extensive sensitivity analyses to show the superiority of our proposed policy under various

settings.

Future work
We will conclude this research by highlighting some potential future research directions. We

classify potential extensions to the current research into two main categories, i.e., modelling per-

spective, and solution techniques, and present them separately as follows:

I. Modeling perspective

All the studied problems in this research were exploring new problems as an extension to the

lot sizing problem. Therefore, adding transportation decisions such as routing to these problems

is a new research avenue that needs further investigation. Except for the first research which

addresses different types of service levels, the last two studies consider one type of service level.

Investigating other types of service levels for the last two problems is another stream for future

research. For example, considering the α service level, which imposes limits on the probability

of stock-outs, for stochastic multi-level lot sizing is one of such streams, which may result in new

insights and is worthwhile to investigate.
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II. Solution techniques

Stochastic lot sizing problems are challenging to solve and increasing the size of the problems

requires faster algorithms to find a high-quality solution in a reasonable amount of time. Applying

decomposition-based algorithms such as the ones developed for stochastic programming problems

and proposing heuristic algorithms for larger size instances of the mentioned problems are inter-

esting research avenues.

As shown in the first research, it is not possible to apply the same methodology for problems

with various types of service levels. Considering different types of service levels for the mentioned

problem does not only change the problem formulation and insights but also requires different

solution methodologies.
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Appendix A – Proofs for service level

weights

In this appendix we prove that for specific weights, the weighted sum of the individual service

levels is equal to the aggregate service level.

For the β service level the Left Hand Side (LHS) of the individual service level (βk) constraint

(See Table 1.2) is
∑t∈T E[BOkt ]

∑t∈T E[Dkt ]
. When we take the weighted sum of these individual LHSs using

the proposed weights of wk =
∑t∈T E[Dkt ]

∑t∈T ∑l∈K E[Dlt ]
, we obtain:

∑k∈K(
∑t∈T E[Dkt ]

∑t∈T ∑l∈K E[Dlt ]

∑t∈T E[BOkt ]

∑t∈T E[Dkt ]
) =

∑k∈K ∑t∈T E[BOkt ]

∑t∈T ∑l∈K E[Dlt ]
. The latter term is the LHS of the

aggregate β service level constraint (See Table 1.2).

For the γ service level the LHS of the individual service level (γk) constraints (See Table 1.2)

is
∑t∈T E[Bkt ]

∑t∈T E[Dkt ]
. When we take the weighted sum of these individual LHSs using the proposed

weights of wk =
∑t∈T E[Dkt ]

∑t∈T ∑l∈K E[Dlt ]
, we obtain:

∑k∈K(
∑t∈T E[Dkt ]

∑t∈T ∑l∈K E[Dlt ]

∑t∈T E[Bkt ]

∑t∈T E[Dkt ]
) =

∑k∈K ∑t∈T E[Bkt ]

∑t∈T ∑l∈K E[Dlt ]
. The latter term is the LHS of the

aggregate γ service level constraint (See Table 1.2).

For the δ service level the LHS of the individual service level (δk) constraints (See Table 1.2)

is
∑t∈T E[Bkt ]

∑t∈T (T − t +1)E[Dkt ]
. When we take the weighted sum of these individual LHSs using the

proposed weights of wk =
∑t∈T (T − t +1)E[Dkt ]

∑t∈T ∑l∈K(T − t +1)E[Dlt ]
, we obtain:

∑k∈K(
∑t∈T (T − t +1)E[Dkt ]

∑t∈T ∑l∈K(T − t +1)E[Dlt ]

∑t∈T E[Bkt ]

∑t∈T (T − t +1)E[Dkt ]
)=

∑k∈K ∑t∈T E[Bkt ]

∑t∈T ∑l∈K(T − t +1)E[Dlt ]
. The

latter term is the LHS of the aggregate δ service level constraint (See Table 1.2).

For the βp service level the LHS of the individual service level (βpk) constraints (See Table 1.2)
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is
E[BOkt ]

E[Dkt ]
. When we take the weighted sum of these individual LHSs using the proposed weights

of wk =
E[Dkt ]

∑l∈K E[Dlt ]
, we obtain:

∑k∈K(
E[Dkt ]

∑l∈K E[Dlt ]

E[BOkt ]

E[Dkt ]
) =

∑k∈K E[BOkt ]

∑l∈K E[Dlt ]
. The latter term is the LHS of the aggregate βp

service level constraints (See Table 1.2).

For the γp service level the LHS of the individual service level (γpk) constraints (See Table 1.2)

is
E[Bkt ]

E[Dkt ]
. When we take the weighted sum of these individual LHSs using the proposed weights

of wk =
E[Dkt ]

∑l∈K E[Dlt ]
, we obtain:

∑k∈K(
E[Dkt ]

∑l∈K E[Dlt ]

E[Bkt ]

E[Dkt ]
) =

∑k∈K E[Bkt ]

∑l∈K E[Dlt ]
. The latter term is the LHS of the aggregate γp ser-

vice level constraints (See Table 1.2).

For the δp service level the LHS of the individual service level (δpk) constraints (See Table

1.2) is
E[Bkt ]

∑
t
j=1 E[Dk j]

. When we take the weighted sum of these individual LHSs using the proposed

weights of wkt =
∑

t
j=1 E[Dk j]

∑l∈K ∑
t
j=1 E[Dl j]

, we obtain:

∑k∈K(
∑

t
j=1 E[Dk j]

∑l∈K ∑
t
j=1 E[Dl j]

E[Bkt ]

∑
t
j=1 E[Dk j]

) =
∑k∈K E[Bkt ]

∑l∈K ∑
t
j=1 E[Dl j]

. The latter term is the LHS of the

aggregate δpk service level constraints (See Table 1.2).
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Appendix B – Aggregate service level for

product families

It is possible to define different aggregate service levels for different product families. In this case,

the service levels are aggregately defined over all products within a family of products. Table 1

shows the new sets and parameters for these models.

Table 1: Parameters and decision variables of the models with aggregate service level over product
family

Sets

F Set of product families
K f Set of products in product family f , K f ∈ K
Parameters

α
agg
c f Target aggregate αc service level for product family f

β f Target fill rate as an aggregate service level for product family f
γ f Target aggregate γ service level for product family f
δ f Target aggregate δ service level for product family f

∑t∈T ∑k∈K f
E[BOkt ]

∑t∈T ∑k∈K f
E[Dkt ]

≤ 1−β f ∀ f ∈ F (14)

∑t∈T ∑k∈K f
E[Bkt ]

∑t∈T ∑k∈K f
E[Dkt ]

≤ 1− γ f ∀ f ∈ F (15)

∑t∈T ∑k∈K f
E[Bkt ]

∑t∈T ∑k∈K f
(T − t +1)E[Dkt ]

≤ 1−δ f ∀ f ∈ F (16)

∑
k∈K f

wk min
t∈T

(pr(Ik0 +
t

∑
j=1

(xk j−Dk j)≥ 0))≥ α
agg
c f ∀ f ∈ F (17)

The objective function and all the constraints except the aggregate service level constraints of

all the models will remain the same. In the case of product families, for the models with β , γ ,
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δ , and αc service levels the constraints (1.6), (1.25), (1.27), and (1.34) will change to constraints

(14), (15), (16), and (17), respectively.
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Appendix C – Sensitivity analysis

In this appendix the diagrams of sensitivity analysis for the β ,βp,δ , and δp service levels are

presented. The β and δ service levels have similar trends as γ service level. βp and δp service

levels are similar to γp service level which was explained in the section of sensitivity analysis.

Despite these similarities, the value of ∆Cost differ for different types of service level. In general,

at the same service level, the ∆Cost has its highest value for the δp and its lowest value for the γ

service level, if the models are feasible. What is common in all the diagrams is that the ∆Cost is

more sensitive to the holding cost and it increases when the variation in holding cost increases. In

addition to that, in all the diagrams, the ∆Cost decreases when the service level increases.
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Figure 1: Sensitivity analysis plots for β service level
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Figure 2: Sensitivity analysis plots for βp service level
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Figure 3: Sensitivity analysis plots for δ service level
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Figure 4: Sensitivity analysis plots for δp service level
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Appendix D – Partial flexibility

Partial flexibility

In the previous sections, the flexibility was added to the system level by level. Having multiple

items per level in assembly and general structures, we may add flexibility to some of the items in

each level. In this section, we study the value of flexibility when it is added to different single

items at each level. To this end, we calculate the cost decrease percentage when we add the

flexibility to only one item compared to the case where we do not have any flexibility in that

specific level. Tables 2 and 3 illustrate the cases with partial flexibility in assembly and general

structures, respectively. The highlighted rows are the base case at the specific level based on which

we calculate the cost decrease when we add the flexibility to a single item at the same level.

Table 2: Levels of flexibility for assembly structure

# Flexibility # product
1 2 3 4 5 6 7 8 9 10

1 1 0 0 0 0 0 0 0 0 0
1-2 1 1 0 0 0 0 0 0 0 0
1-3 1 0 1 0 0 0 0 0 0 0
1-4 1 0 0 1 0 0 0 0 0 0
2 1 1 1 1 0 0 0 0 0 0
2-5 1 1 1 1 1 0 0 0 0 0
2-6 1 1 1 1 0 1 0 0 0 0
2-9 1 1 1 1 0 0 0 0 1 0
2-10 1 1 1 1 0 0 0 0 0 1

Level 0 1 1 1 2 2 2 2 2 2

Figure 5 shows the diagram of adding flexibility to different items at level 1 and level 2 based

on different external demand patterns for the assembly structure. We can see that adding flexibility

to any item regardless of its place in BOM and the external demand result in cost decrease, but

the amount of this decrease is affected by the mentioned two factors. When there is no external
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demand for any of the components (external demand profile 1), the cost decrease is the same for all

the products as there is no difference between different items. In external demand profile 3 adding

flexibility to item 5 and 6 results in higher cost reduction compared to item 9 and 10. We can

conclude that adding flexibility to the items whose parent have external demand results in higher

cost decrease compared to the items whose parent does not have external demand.

Figure 5: Analysis of adding partial flexibility at different levels (Assembly structure)

Figure 6 shows the diagram of adding flexibility to different items at levels 0, 1, and 2 based on

different external demand patterns for the general structure. We can conclude that even adding flex-

ibility to a single item can decrease the total cost of the system. In our experiments, the minimum

decrease is about 2% for general structure. The cost decrease depends on the external demand of an

item, the demand of its components or parents, and its position in the BOM. Having many factors,

it makes it difficult to address the effect of each individually. Here are some general, conclusion

that we can draw regarding partial flexibility.

Considering the flexibility for an item with external demand, result in a higher cost decrease

compared to the item without any external demand, with other similar characteristics. Adding

flexibility to the item with a higher number of direct or indirect components has a higher impact
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Table 3: Levels of flexibility for general structure

# Flexibility # product
1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 0
0-1 1 0 0 0 0 0 0 0 0 0
0-2 0 1 0 0 0 0 0 0 0 0
0-3 0 0 1 0 0 0 0 0 0 0
0-4 0 0 0 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0
1-5 1 1 1 1 1 0 0 0 0 0
1-6 1 1 1 1 0 1 0 0 0 0
1-7 1 1 1 1 0 0 1 0 0 0
2 1 1 1 1 1 1 1 0 0 0
2-8 1 1 1 1 1 1 1 1 0 0
2-9 1 1 1 1 1 1 1 0 1 0
2-10 1 1 1 1 1 1 1 0 0 1
Level 0 0 0 0 1 1 1 2 2 2

compared to the items with a lower number of components. For example, in our experiments for

the general structure, adding flexibility to item 2 which has the highest number of components,

result in the highest cost decrease compared to other items at level 0.
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Figure 6: Analysis of adding partial flexibility at different levels (General structure)
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