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Résumé

Le remplacement des énergies fossiles par des énergies renouvelables (ERs) est la princi-

pale solution pour pallier au problème du réchauffement climatique. Cependant, comme

certaines ERs sont intrinsèquement intermittents, leur intégration dans les réseaux élec-

triques pose de sérieux défis opérationnels, tels que la réduction de la fiabilité et de la

stabilité du réseau. Une solution potentielle est la réponse à la demande (RD), qui con-

siste en un changement de la consommation en cas de déficit de production. La RD

est considérée comme une sorte de réserve de capacité qui permet plus de flexibilité du

côté de la demande et, par conséquent, une plus grande intégration des énergies renou-

velables dans les réseaux électriques intelligents. D’autre part, l’expansion des véhicules

électriques (VEs) dans les systèmes de transport urbain offre aux réseaux électriques la

possibilité de mettre en œuvre des programmes de RD à grande échelle. En effet, la plu-

part des véhicules électriques privés sont garés pendant les heures de travail et la nuit. Par

conséquent, leur calendrier de charge peut être décalé en fonction du prix de l’électricité

ou des besoins du réseau. De plus, comme les VEs sont alimentés par des batteries, ils

peuvent fournir au réseau des capacités de stockage mobiles pour améliorer la fiabilité et

la qualité du réseau.

Cette thèse se décline sous la forme de trois articles qui tirent parti des méthodes

de recherche opérationnelle pour analyser la future transformation des systèmes énergé-

tiques et analyser les obstacles opérationnels à l’intégration de la RD, en particulier par

les VEs, dans les réseaux électriques intelligents. Les trois articles adoptent et améliorent

la formulation du modèle Énergie-Technologie-Environnement (ETEM) pour modéliser



l’expansion de la capacité des systèmes énergétiques. En particulier, dans le premier ar-

ticle, nous adoptons ETEM pour modéliser le système énergétique de la grande région

de Montréal (GM). Nous analysons l’impact de différentes voies de décarbonation sur

l’expansion future du système énergétique dans cette région. Cet article donne un aperçu

des principaux changements technologiques, dans les secteurs résidentiel, commercial et

des transports, nécessaires à l’atteinte de l’objectif de réduction des émissions de gaz à

effet de serre (GES).

Ensuite, dans le deuxième article, nous introduisons l’incertitude de la DR dans ETEM

et transformons le modèle en un problème d’optimisation robuste ajustable sur plusieurs

périodes. Pour résoudre l’ETEM robuste (R-ETEM), nous approchons le problème de

manière conservatrice en utilisant des règles de décision affines et développons une ver-

sion améliorée de la décomposition de Benders pour résoudre efficacement le problème.

Une illustration numérique est présentée pour évaluer les performances de notre approche

sur une étude de cas réel qui étudie le système énergétique de la région « Arc Lémanique

» en Suisse.

Enfin, dans le dernier article, nous nous intéressons exclusivement à la DR liée à la

flotte de VEs connectés au réseau électrique. Dans cet article, le comportement de charge

moyen de la batterie des utilisateurs de VEs est simulé à l’aide d’un jeu quadratique

linéaire. Ensuite, nous développons une procédure de couplage entre R-ETEM et le mod-

èle de comportement de charge pour ajuster le niveau d’incertitude dans R-ETEM. De

cette façon, nous identifions des stratégies d’expansion de capacité robustes et cohérentes

sur le plan comportemental. Tout comme dans le second article, l’étude de cas se base sur

le système énergétique de la région « Arc Lémanique » pour évaluer la performance de

notre approche.

Mots-clés

Réponse à la demande, véhicules électriques, grille intelligente, planification de l’extension

de capacité.
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Méthodes de recherche

Prise de décision robuste en plusieurs étapes, optimisation robuste, programmation linéaire.
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Abstract

Replacing fossil fuels with renewable energies (RE) is the primary solution to overcome

the issue of global warming. However, as RE are inherently intermittent, a large inte-

gration of them in electricity networks poses serious operational challenges, such as the

reduction of reliability and stability of the network. One potential solution is demand

response (DR), which is defined as the shifting of demand by consumers, in response

to supply-side incentives offered at times of high wholesale market prices or when sys-

tem reliability is jeopardized. DR is seen as a kind of reserved capacity that improves

the demand side flexibility, and consequently, makes possible a larger integration of RE

into smart grids. On the other hand, the expansion of electric vehicles (EVs) in urban

transportation systems provides the power grids with the opportunity to implement DR

programs at large scale. This is because most private EVs are parked during working

hours and nights. Therefore, their charging schedule can be shifted in response to the

price of electricity or network requirements. In addition, as EVs run on batteries, they can

provide the grid with spatially mobile storage capacities to improve network reliability

and quality.

This dissertation is a collection of three articles that leverage modern operational

research techniques to analyze the expansion of the future energy system, and address

operational obstacles on the integration of DR, specifically by EVs, into smart power

grids. In all these papers, we have adopted and developed the formulation of the Energy-

Technology-Environment-Model (ETEM) to model the capacity expansion of the energy

system. In particular, in the first article, we adopt ETEM to model the energy system

vii



of the greater Montreal (GM) region. We analyze the impact of different decarboniza-

tion pathways on the future expansion of the energy system in this region. This article

provides insight into the main technological shifts, in the residential, commercial, and

transportation sectors, to achieve a greenhouse gas (GHG) emission reduction target.

Next, in the second article, we introduce demand response uncertainty (DRU) into

ETEM and cast it as a multi-period adjustable robust optimization problem. To solve

the robust ETEM (R-ETEM), we conservatively approximate the problem using affine

decision rules and develop an enhanced version of Benders decomposition to efficiently

solve the approximated problem. A numerical illustration is presented to evaluate the

performance of our approach on a real case study that surveys the energy system of the

“Arc Lémanique” region in Switzerland.

Finally, in the last article, we exclusively focus on the DR provided by a large fleet

of EVs connected to the electricity network. In this article, the average battery charging

behavior of EV users is simulated using a linear quadratic game. Then, we propose a

coupling algorithm between the R-ETEM and the charging behavior model to adjust the

level of uncertainty in R-ETEM. In this way, we identify behaviorally consistent robust

capacity expansion strategies. Similar to the second paper, a case study, based on the

energy system of the “Arc Lémanique” region evaluates the performance of our approach.

Keywords

Demand response, electric vehicles, smart grid, capacity expansion planning

Research methods

Multi-stage robust decision making model,robust optimization, linear programming, mean-

field game theory.
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General Introduction

Over the last 150 years, the global temperature has increased mainly due to the human

activities, especially their greenhouse gas (GHG) emissions (Wuebbles et al., 2017). The

emission of GHG, such as carbon dioxide (CO2), has a long-lasting and devastating ef-

fect on our environment. According to an estimation by International Panel on Climate

Change (IPCC), 15% to 40% of the total CO2, emitted by human activities, will remain

in the atmosphere longer than 1000 years (DeAngelo et al., 2017). Therefore, there exist

a general consensus among environmental scientists about the urgent need for serious ac-

tions to mitigate GHG emissions. One strategy is to replace fossil fuels with renewable

sources of energy. However, a large-scale adoption of renewables faces serious challenges

such as low reliability and high cost of renewable technologies.

The intermittent nature of renewable energies, particularly wind and solar power,

poses important operational challenges to ensure the reliability and stability of the electri-

cal networks. In other words, electricity cannot be stored in large scale, therefore, electric

power systems need to continuously and perfectly balance their production and consump-

tion. To ensure this balance, traditional power systems relied on the flexibility of the

supply side, i.e. adjusting the level of production by spinning reserve and fast ramping

power plants. However, with higher penetration levels of renewables, the control over

the output of generation technologies decreases. Therefore, modern smart grids incor-

porate demand side flexibility, through demand response (DR) programs, to achieve the

essential balance. DR is defined as the shifting of demand by consumers, in response

to supply-side incentives offered at times of high wholesale market prices or when sys-



tem reliability is jeopardized (DOE, 2006). Unfortunately, implementing DR programs in

large scale requires a great penetration of advanced smart metering devices and flexible

loads.

Charging electric vehicles (EVs) is a growing and potentially significant load that

provides not only large-scale demand response, but also large storage capacity. The duty

cycles of most privately owned EVs are limited to only a few hours in the day (mostly

mornings and afternoons). Therefore, a large number of these cars are usually parked

during working hours and during nights. So, the charging schedule of these vehicles

can be shifted in response to the requirements of the electric networks or the price of

electricity. In addition, as EVs run on batteries, they can be seen as almost free , spatially

mobile storage capacities that can provide the network with sufficient reserved capacity

and ancillary services. For example, Montreal consumes around 230 GWh of electricity

per day1. On the other hand, the capacity of the battery for Tesla Model S is around

100 kwh. This implies that less than 2 million of such EVs can provide enough storage

to power the entire city for one day. This amounts to only 75% of the total number

of registered vehicles in this city2. Nevertheless, integrating this load into the electric

network is challenging because the mobility and charging behavior of EV users is not

known, and a temporally-spatially imbalanced charging behavior might lead to network

failure.

The overall objective of this dissertation is to develop models, analytics and insights to

mitigate the operational obstacles of a large scale integration of renewable resources into

the electric network by leveraging the opportunities offered by recent socio-economic-

technical innovations that occurred in the smart energy-mobility systems, namely the ex-

pansion of DR programs and the emergence of EVs. This is achieved by modeling the

entire energy chain using a generation expansion planning (GEP) problem, and modeling

the DR offered by a large fleet of EVs which are connected to the network. GEP is a

classical energy network problem that consists of determining the optimal sizes and types

of production facilities to be installed, and the associated times at which they should be

available to satisfy the growing demand of energy at a minimum cost (Luss, 1984). In
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particular, we use, and extend the formulation of an open source GEP problem, called the

Energy-Technology-Environment-Model (ETEM) (Babonneau et al., 2017), to model the

energy system.

Next, we briefly summarize the three contributions of this dissertation which are writ-

ten as scientific papers.

The first chapter is an original application of ETEM for the energy database of the

Greater Montreal (GM) region. We model the entire energy system of the GM region to

analyze different transition pathways to a low-carbon energy system. We adapt the for-

mulation of the ETEM to model the capacity expansion of the generation technologies as

well as the penetration of final energy consumption technologies in the residential, com-

mercial and transportation sectors. The planning model covers the years 2020-2050 and

quantifies the potential contribution of each sector in the total GHG reduction target. In

addition, it provides insights, for each sector, on the main technological transition needed

to achieve carbon-neutrality. Finally, the developed model quantifies the optimal share of

renewable energies in the total energy consumption of this region. This chapter reveals

that the transportation sector plays a significant role in the decarbonizing the energy sys-

tem. More specifically, the results show that to achieve a deep decarbonization target,

all fossil fuel vehicles must be replaced with EVs by 2050. The electrification of the

transportation sector not only phases out fossil fuels consumption in this sector, but also

results in a larger integration of renewables in the electricity network by offering demand

flexibilities.

The second chapter models demand response uncertainty (DRU) in ETEM. In pre-

vious work, ETEM had modeled DR as a decision variable which is entirely controlled

by the supply side. In other words, the policy maker plans for a target DR in the future.

Then, by implementing DR programs, network operators actualize the targeted level of

DR. However, in practice there is always a deviation between the planned and the actual

DR. In this chapter we model the relative demand response deviation (RDRD) as an im-

plementation error of the DR decision variable. The resulting model takes the form of

an adjustable multi-period robust optimization problem. In a first stage, before having
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any information about the actual level of DR, the planner decides on a robust capacity

expansion, as well as, a planned demand response. Afterward, on a season to season

basis, the planner decides on the optimal energy procurement, taking into account the

actual contribution to DR programs in that season. The performance of the proposed ro-

bust ETEM model is evaluated on a real-world case study based on the energy system

of the Arc Lémanique region in Switzerland. To solve the problem, we derive a Robust

Multi-Period Conservative Approximation (RMPCA) of the problem, and develop a new

Benders decomposition algorithm (inspired from Ardestani-Jaafari and Delage, 2018) to

solve it. Therefore, this chapter’s contribution is summarized as i) introducing DRU in a

GEP problem and proposing a robust multi-period formulation of the problem in which

the procurement decisions are adjustable to the realized DR, ii) developing a new Benders

decomposition algorithm in which we seek Pareto Robustly Optimal (PRO) solutions (see

Iancu and Trichakis, 2014) of the master problem in order to accelerate the convergence

of the algorithm in large scale instances, and iii) solving a realistic case study whose size,

in deterministic setting, is two orders of magnitude larger than the largest instance in the

literature. The findings of this chapter reinforces the importance of considering the uncer-

tainty of DR in GEPs. In particular, it shows that an adjustable robust capacity expansion

strategy can reduce the average total cost of the system by 33% (equivalent to 9 billion

Swiss Frank) compared to a deterministic capacity expansion plan.

In the third chapter, we turn our focus on the DR provided by a large fleet of EVs

connected to the electricity network. The objective of this chapter is to seek a behaviorally

consistent, robust capacity expansion strategy in the sense that it would be immune against

the demand response deviations observed in a battery charging behavior model. To do

so, we adopt, develop and calibrate the battery charging behavior model introduced in

Tchuendom et al. (2019) to estimate the actual DR for the entire fleet of EVs. Then, we

propose an original approach to integrate the information provided by this model when

adjusting the size of the uncertainty set of the robust ETEM (R-ETEM). The performance

of this approach is numerically evaluated on a real case study that surveys the energy

system of the “Arc Lémanique” region in Switzerland. The contribution of this chapter
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is to develop a new coupling algorithm between the R-ETEM and a short-term higher-

precision battery charging behavior model. The results show that a behaviorally consistent

robust strategy is able to reduce the average total cost of the system by 6.2% compared to

a deterministic expansion strategy.

Overall, the proposed approach in this thesis could be used by policy makers to plan

the expansion of the energy system while considering the interconnection between the

energy sector and the transportation sector. In addition, we provide a framework to deal

with the uncertainty in the capacity expansion planning.
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Chapter 1

Energy Transition Pathways for Deep

Decarbonization of the Greater

Montreal Region: An Energy

Optimization Framework

Chapter information

This article is a joint work with my supervisors, Olivier Bahn and Erick Delage, and

other co-authors: Azadeh Maroufmashat, Frederic Babonneau, Alain Haurie, Normand

Mousseau, and Kathleen Vaillancourt. It is under preparation and will be submitted to the

journal of Energies.

Abstract

More than half of the world’s population are living in cities, and by 2050, it is expected

that this number will reach almost 68%. These densely populated cities consume more

than 75% of the world’s primary energy and are responsible for the emission of around

70% of anthropogenic carbon. Providing sustainable energy for the growing demand



in cities requires multi-faceted planning approach. In this study, we have modeled the

energy system of the Greater Montreal region to evaluate the impact of different environ-

mental mitigation policies on the energy system of this region over a long-term horizon

(2020-2050). In doing so, we have used the open-source optimization-based model called

Energy-Technology-Environment-Model (ETEM). ETEM is a long-term bottom-up en-

ergy model that provides insight on the best city’s options to procure energy, and satisfy

useful demands while reducing carbon dioxide (CO2) emissions. Results shows that,

under a deep decarbonization scenario, the transportation, commercial, and residential

sectors will contribute to the emission reduction by 6.9, 1.6, and 1 million ton CO2-eq in

2050, respectively, compared to their 2020 levels. This is mainly achieved by i) replacing

the fossil fuel cars with electric-based vehicles in private and public transportation sec-

tors, ii) replacing fossil fuel furnaces with electric heat pumps to satisfy heating demand

in buildings, and iii) improving the efficiency of buildings by isolating walls and roofs.

1.1 Introduction

Human activities in recent years have increased levels of greenhouse gases (GHG), in-

cluding carbon dioxide (CO2), resulting in global warming. A projection of the current

trends (Masson-Delmotte. et al., 2018) shows that the global temperature may exceed

the Paris Accord goal of 1.5◦C by 2030. To avoid dangerous disruptions in the climate

system, one thus need to implement urgent mitigation measures.

Energy production is among the most important human activities that are responsible

for more than three fourths of the global GHG emissions (IEA, 2021). Therefore, the

decarbonization of energy systems is one of the most important measures against global

warming. On the other hand, cities, as the main consumers of energy commodities, can

play an important role in GHG reduction. Currently, over 55% of humans live in urban

areas, and it is expected that this number will reach 68% by 20501. The economic activ-

1see https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-
prospects.html
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ities in cities form nearly 80% of the global gross domestic production (GDP), and they

consume more than 75% of the world’s primary energy, and emit more than 70% of an-

thropogenic carbon (Dias et al., 2019; IEA, 2021). Studies show that a proper city-level

energy management can potentially reduce emissions from urban buildings and trans-

portation systems up to 90% by 2050 (CFUT, 2019). Therefore, in recent years, signif-

icant actions have been taken by many cities, sub-national states, and private sectors to

mitigate emissions at an urban scale. A summary of these actions can be found in a study

by Coelho et al. (2018) for Portuguese municipalities, in another study by Albana et al.

(2016) for European municipalities, and in “Climate Innovation Program”2 for Canada.

This paper proposes a framework to model and analyze the energy transitions path-

ways of the Greater Montreal (GM) region in the province of Quebec in Canada. The

province of Quebec plans to reduce its GHG emissions to 37.5% of their 1990 level by

2030, and to reach carbon neutrality by 2050 (Municipal, 2020; Whitmore and Pineau,

2019). To this end, Quebec has developed a green economy plan for 2020-2030, with

the purpose of stimulating the economy, creating jobs, etc., while reducing GHG emis-

sions. Specifically, the government of Quebec plans to i) spend over 6 billion dollars

during the first five years ( i.e., 2021-2026) to accelerate the widespread deployment of

electrification for infrastructures in transportation, industrial, residential, and commercial

sectors, ii) promote the utilisation of bio-energies, renewables, natural gas, and hydrogen

for decarbonizing the heating demand in commercial and industrial sectors, and iii) im-

prove the performance of final energy consumption technologies, and energy efficiency

(Municipal, 2020; Whitmore and Pineau, 2019). However, these provincial plans need

to be broken-down into city-level targets in order to become achievable. The purpose of

the current study is to analyze the entire energy system of the GM region to highlight

the potentials of GHG reductions by considering different technological options on both

the supply and demand sides. Different technological options in the transportation sec-

tor include hybrid, electric hybrid, biomass-based and natural-gas vehicles in the private

and public transportation sectors. In addition, we have considered different electric and

2See https://fcm.ca/en/programs/municipalities-climate-innovation-program
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biomass furnaces and plinthes to satisfy the heating and cooling demand in the residential

and commercial sectors. Finally we consider installing more capacities of solar and wind

turbine power plants as possible future technologies to generate electricity.

Our methodology is to optimize the configuration of energy systems at an urban

level. Specifically, we adapt the formulation of the open-source Energy-Technology-

Environment-Model (ETEM), proposed by Babonneau et al. (2017), to model the capacity

expansion of generation technologies as well as final energy consumption technologies

in different sectors. ETEM minimizes the total energy system costs, including invest-

ment, fixed and variable operational costs, while satisfying demand and environmental

constraints. One salient feature of ETEM is its ability to consider necessary details on

the demand side, such as how energy is used by consumers, and how electrical networks

perform demand response programs. Such a detailed emphasis on the demand side tech-

nologies makes this model well-suited to analyze the energy value chains and different

GHG reduction policies at a city level. Finally, we perform a sensitivity analysis to evalu-

ate the impact of different GHG reduction scenarios on the expansion of the energy sector

in the GM region. Therefore, the main contribution of this paper is to present an original

application of ETEM for analyzing the energy system of the GM region under different

decarbonization scenarios.

The structure of the paper is as follows: Section 1.2 provides a literature review on the

related studies. In Section 1.3, we present the methodology and the description of ETEM.

Section 1.4 elaborates on the definition of scenarios. Section 1.5 describes the results,

and Section 1.6 provides further discussion on our major findings. Finally, we conclude

in Section 1.7.

1.2 Literature review

In this section, we first review recent publications that study the impacts of environmental

policies on energy systems. Specifically, we investigate their methods and their case stud-

ies. Then, we give a summary of the history of ETEM, and introduce the most important
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case studies that have been analyzed using ETEM.

One related stream of research is to study the energy transition and evaluate the en-

vironmental impact of a single sector, such as transportation (Forsberg, 2021), buildings

(Acha et al., 2018), or power distribution networks (Mehleri et al., 2013). Forsberg and

Krook-Riekkola (2021) developed a local energy transition model for transportation sec-

tor using the TIMES-City model in Sweden. Yuan et al. (2018) investigated techno-

economic impacts of the electrification of transportation systems using energy PLAN for

a region in China. Although these studies consider a detailed dynamic of a specific sector,

they abstract away the interactions between different energy sectors, so they lack a holis-

tic view point. On the other hand, one stream of research studies the optimal design of

urban multi-energy hub networks, including their location, capacity and other technical

characteristics (see for example Maroufmashat et al., 2016, 2015; Heinisch et al., 2019),

with the purpose of reducing GHG emissions. Although these papers consider the in-

teraction of different energy hubs, they ignore the dynamic of investment, and therefore

do not provide insight on the expansion strategies in a long-term horizon planning. An-

other stream of research is to study the energy transition at a national level. Vaillancourt

et al. (2017, 2018) investigate decarbonization pathways for Canada until 2050 using the

“North American TIMES Energy Model” (NATEM). Shakouri and Aliakbarisani (2016)

developed a framework to consider sustainable development criteria in modeling the en-

ergy system at a national level. These national models provide a detailed modeling of

the supply technologies, but, in order to avoid the curse of dimensionality, they fail to

model the demand side characteristics, such as demand response, detailed description of

final energy technologies, and distribution-level electrical network services (e.g., voltage

control or reactive power compensations).

Energy planning of an urban scale requires a detailed modeling of how the final energy

is used in cities, what are possible options to satisfy energy services, and how the con-

sumption behavior in one section might affect the energy consumption in other sections.

To this end, urban energy planning models have a holistic viewpoint that integrates differ-

ent sectors, such as transportation, residential, commercial, etc. Mirakyan and De Guio
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(2013) and Scheller and Bruckner (2019) presented a review of methods and approaches

to model the energy system at an urban scale. Dagoumas (2014) explores the intercon-

nection between socioeconomics, energy, and environmental components for the city of

London. Xydis (2012) develop an optimization model to identify the optimal strategy

to meet the energy requirements of Athens while satisfying techno-economic constraints.

Elizondo et al. (2017) evaluates different decarbonization scenarios of the energy system

in Mexico City by 2050 using an integrated approach. Finally, Lind and Espegren (2017)

use the TIMES model to design an optimal low-carbon pathway for the energy system of

the city of Oslo, Norway. But it remains that there is only a limited number of paper at

the city level. This paper contributes to this limited body of literature by proposing an

application for the city of Montreal.

In this paper, we use ETEM to analyze the energy system of the GM region and eval-

uate different energy transition pathways. ETEM provides the planner with a decision

making framework that not only considers a detailed description of the useful demand

technologies, but also models some important characteristics of the demand side, such as

demand response in electrical networks. ETEM was first formulated by Andrey, Christo-

pher et al. (2015) and Babonneau et al. (2012) to model the energy system of the Midi-

Pyrénées region in France and the Arc Lémanique region in Switzerland. Babonneau et al.

(2017) and Babonneau et al. (2016) further developed the ETEM model by introducing

a linear approximation of power flow constraints and distribution module. In addition,

the new formulation, called ETEM-SG, explicitly modeled the reserve capacities pro-

vided by demand response and ancillary services, such as reactive power compensation

offered by flexible loads. Babonneau et al. (2017) and Babonneau and Haurie (2019)

presented a version of the ETEM-SG that considers the uncertainty of investment costs

and of availability of technologies and transmission capacity lines. A static robust op-

timization approach is used to solve the problem. Aliakbarisani et al. (2020) developed

a robust multi-period formulation of ETEM, with uncertain demand response, to better

control the level of conservatism in planning. Finally, Babonneau et al. (2020) and Ali-

akbarisani et al. (2021) linked two robust versions of ETEM to a mean-field-game model
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that presents the charging behavior of a large fleet of electric vehicles (EVs). This paper

is an original application of ETEM for the energy database of the GM region.

1.3 Methodology

This research paper proposes a model for optimal expansion planning of the existing and

future technologies in the energy sector of the GM region up to 2050, while meeting GHG

emission reduction targets. To do so, we use the formulation of the Energy-Technology-

Environment-Model (ETEM). Introduced for the first time by Andrey, Christopher et al.

(2015); Babonneau et al. (2012), ETEM is an open-source energy model designed to

analyze the energy system at an urban scale. We slightly modify the formulation of ETEM

to adapt it to the Montreal database. For example, contrary to the original version which

calculates the emission at the process level, we are calculating emissions based on the

total primary energy consumption in the entire system. More specifically, we measure

the amount of primary energy consumed in the entire energy system (either to generate

electricity or to satisfy the useful demand, such as residential heat), and calculate the total

emission by multiplying the total consumption of each primary energy with its emission

factor.

1.3.1 ETEM model description

ETEM is an open-source, long-term, regional, bottom-up energy model cast as a linear

programming problem. ETEM belongs to the MARKAL-TIMES family of models, and in

a more general framework is a capacity expansion problem. ETEM models the entire en-

ergy sector from primary resources to useful demands and suggests the best combination

of the generation and end-user technologies to satisfy the growing demands at a minimum

cost. Because of a detailed description of the demand side technologies, ETEM is mostly

used to analyze the energy system at regional and urban scales. For example, ETEM has

been applied to model the energy system of the Midi-Pyrénées region in France (Andrey,
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Christopher et al., 2015) or the Arc Lémanique region in Switzerland (Babonneau et al.,

2017; Babonneau and Haurie, 2019).

In ETEM, the planning horizon is typically 30 - 50 years which includes several de-

cision making periods. Each decision making period typically represents a duration of

5 years. Moreover, in order to capture the consumption and generation short-term pat-

terns, each year is divided into several time-slices with similar demand loads. For ex-

ample, Babonneau et al. (2017) and Babonneau and Haurie (2019) divide each year into

3 seasons; and a typical day in each season is divided into 4 load-parts: morning, peak-

day, peak-night and night. Therefore, in total, they introduce 12 time-slices in a year

that capture different demand load patterns. However, in this research we are model-

ing higher-resolution time-slices with hourly load parts. In other words, we consider 4

seasons, including winter, spring, summer and autumn. In addition, each season is rep-

resented with a typical day with 24 hourly load parts. Therefore, we consider in total 96

time-slices in a year.

The objective function in ETEM is to minimize the total discounted cost of the system

over the entire planning horizon. The total cost consists of i) investment cost, ii) fixed

and variable operational and maintenance cost, iii) net import and export cost, iv) energy

transmission cost and finally v) the salvage value that considers the end-of-life value of the

retired technologies. The model provides insights on the optimal capacity expansion and

the optimal level of production for each technology as well as the optimal level of import

and export for each primary energy or energy resource. In addition, ETEM gives insights

on the optimal level of demand response by flexible loads. The demand response, which

is defined as shifting the electricity demand from peak to off-peak time-slices, reduces the

need to build extra reserved capacity in the system.

Different constraints in ETEM are categorized into technical, network, environmental

and economic constraints. Technical constraints guarantee that the solution of the model

meet technical characteristics of the generation technologies. For example, technology

efficiency and capacity factor constraints limit the level of input and output energy of each

technology according to its efficiency and capacity factor. Network constraints guarantee
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the balance of energy in the entire energy sector. In addition, network constraints limit

the energy flow between regions to the capacity of the transmission lines. Environmental

constraints limit the total, and annual, GHG emissions of the system to a desired level.

And finally the economic constraints refer to a group of constraints that force the solutions

of the model to meet realistic economic limitations. For example, market penetration,

annual or total constraints on capacity addition, and annual or total constraint on import

or export of the energy commodities are among economic constraints that are considered.

1.3.2 Adapting ETEM for the Montreal database

We have modeled the energy system of the GM region in the province of Quebec in

Canada. This region consists of 5 main sub-regions, including Montreal agglomeration,

Laval, Longueuil, Couronne Nord and Couronne Sud. The planning horizon runs from

2020 to 2050 and is divided into 6 decision making periods with a length of 5 years.

Moreover, each year has 96 time-slices. We use 2015 as a base year to calibrate the model.

In other words, we have calibrated the input parameters so that the results of ETEM for

2015 (including the total energy consumption, emission, etc.) correspond to the actual

statistics in this year. In 2015, the total energy consumption of the GM region was 642

PJ with 20.8 Mt CO2-eq emissions (Vaillancourt et al., 2017). The region imported 201

PJ of electricity, and generated 34 PJ internally. In the transportation sector, the region

consumed 101 PJ, 2.7 PJ and 0.3 PJ of gasoline, diesel and electricity respectively. In

total, the transportation sector emitted 6.9 Mt CO2-eq. In the residential and commercial

sectors, there were 67 and 51 PJ of energy consumed respectively, resulting in emissions

of 2.9 Mt CO2-eq.

Fig. 1.1 gives an overview of the reference energy system (RES) in the GM region.

In this figure, each horizontal line represents a category of energy commodities, and each

box represents a family of conversion technologies. In total, the model includes 51 energy

commodities, and 130 conversion technologies in different sectors. We have modeled 13

types of useful demands which are categorized into industrial (IND), agricultural (AGR),
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Figure 1.1: Overview of the reference energy system (RES) in the Greater Montreal region. SOL
stands for solar, HYD for hydro, NGA for natural gas, PP for power plant, DG for distributed
generation, ELC for electricity, EBAT for the electricity of batteries, IND for industry, AGRI for
agriculture, Spa for space, TRNS for transportation, EV for electric vehicles, RES for residential,
and COM for commercial.

commercial (COM), residential (RES), and transportation (TRNS). The usefull demand in

the transportation sector is divided into 5 modes, including i) light duty vehicles, ii) pub-

lic transportation, iii) trains, iv) metros, and v) other kinds of transportation (including

maritime and air transportation). While a generic technology represents the fuel con-

sumption in “other transportation” mode, a detailed breakdown of all current and possible

future technologies are considered for light duty vehicles, public transportation trains and

metros. Gasoline, natural gas, diesel, and electricity are the main fuels consumed in the

transportation sector. Residential and commercial demands include useful energy demand

for space heating, space cooling, and “other consumption” (including lighting, electrical

appliances, etc.). Similar to transportation, a generic technology represents the energy

consumption in the “other consumption” category, but detailed technology choices are

modeled for space heating and cooling, including furnaces, different types of heaters, as

well as heat pumps. Industrial demand includes coal, natural gas, electricity, heat, diesel,

light and heavy fuel oil, propane, and bio fuels. Finally, the agricultural sector consumes
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natural gas, electricity, gasoline, diesel, light and heavy fuel oil, and propane.

Energy commodities are either generated by the already available generation tech-

nologies inside the GM region, or imported from the outside. Specifically, we have mod-

eled two existing hydro-power stations (Beauharnois in Couronne Sud and the Prairies

river station in Laval), two existing biogas electricity and heat generation units (one in

Couronne Nord and one in the Montreal agglomeration), and the potential to install wind

and solar power plants in the north and south of the Montreal island. In addition, we have

modeled the Montreal refinery that produces diesel, gasoline, light and heavy fuel oil,

propane, and other oil products. Finally, there are two existing bio-ethanol and bio-diesel

generation units in Couronne Sud. These generation units can satisfy more than the inter-

nal demand and exports part of its production outside the GM region. Beside the internal

production, the model also considers the imports of resources and secondary energies.

The imported resources include, crude oil, natural gas, and coal. And the imported sec-

ondary energies include oil products (gasoline, diesel, light and heavy fuel oil, propane,

petroleum coke and jet fuel), ethanol, bio resources (bio diesel, bio gas) and electricity.

Fig. 1.2 provides a summary of the important input and output of the ETEM model

calibrated for the GM region. The input data includes energy demand, energy prices,

resource availability, technical and economical information for technologies, as well as

carbon content of different fuels. The input data are extracted and aggregated from the

NATEM database (Vaillancourt et al., 2017). This database includes 475 energy form,

4500 energy conversion technologies, 70 final energy services in the north America. The

database provides a periodically prediction of demand and technological characteristics

for the period 2010 to 2050 (The periods include 9 decision making intervals of variable

length). All costs are transformed to the level of prices in 2011 and are expressed in

Canadian dollars. Finally, an annual discount rate of 5% is considered (Vaillancourt et al.,

2018). Outputs correspond to optimal capacity expansion plan, optimal import and export

of the energy commodities, and the marginal cost of CO2 emissions.
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Figure 1.2: A summary of inputs, outputs and the main characteristics of ETEM adapted for the
Greater Montreal region.

1.4 Scenarios

Quebec aims at achieving 37.5% GHG emission reduction by 2030 (compared to 1990

levels), and reaching carbon neutrality by 2050 (Municipal, 2020; Whitmore and Pineau,

2019). Motivated by this target, we define four scenarios by imposing different CO2

emission constraints on the main energy sub-sectors, including secondary energy gener-

ation, transportation, commercial, and residential. More specifically, the CO2 constraint

imposes a maximum emission ceiling to the main generation units and final energy con-

sumption sectors. The generation units include power plants, bio-fuel, and oil product

generation units. The energy consumption sectors include transportation (light duty vehi-

cles, public transportation, trains, and metros), commercial, and residential (heating and

cooling demand). We give below the details of each scenario:

• Business as usual (BAU): This scenario is a reference scenario that includes all

current provincial policies, such as governmental financial incentives for a large

adoption of electric vehicles. But, this scenario imposes no limitation on GHG

emissions. In other words, this scenario is a disengagement from the state targets

in the sense that no further climate measures are enforced beyond those already in

place.
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• GHG1: A GHG emission reduction scenario with a 37.5% reduction target by

2030, and a 53% reduction target by 2050 (relative to 1990).

• GHG2: A more stringent reduction scenario with a 37.5% GHG reduction target

by 2030, and continuing the same reduction trend until 2050, which yields a 73%

emission reduction (relative to 1990).

• GHG3: A deep decarbonization scenario which assumes a linear GHG reduction to

achieve a 44% reduction by 2030 and a 93% reduction by 2050 (relative to 1990).

1.5 Results

In this section, we present the main results obtained. Our purpose is to show how each sec-

tor contributes to the GHG emission reduction, what are the main technological changes,

and how the pattern of primary energy consumption changes.

1.5.1 GHG emission

In this section, we present the total GHG emissions of the transportation, residential and

commercial sectors, and evaluate how each sector contributes to the reduction target.

Fig. 1.3 shows the total emission of these sectors from 2020 to 2050. In GHG1, GHG2 and

GHG3 scenarios, emission reductions follow the emission constraints. Besides, emissions

are decreasing in the BAU scenario due to the increasing share of electric-based vehicles

in the transportation sector, but partly offset by the growing fossil fuel consumption in the

residential and commercial sectors.

Fig. 1.4 gives next the breakdown of emissions by sector. It shows that transportation

with 6.9 Mt CO2-eq has the largest share in 2020 (60% of the total), as the current trans-

portation system mostly relies on petroleum fuels. Over time, the share of the electric

vehicles (EVs) increases following an assumed price reduction for these technologies.

This price reduction is partly due to governmental incentives to promote the purchase

EVs, and partly to a long-term technological price reduction. Consequently, the share of
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Figure 1.3: Total GHG emissions for different environmental scenarios.

the transportation sector in the total GHG emission, in the BAU scenario, reduces to 15%

by 2050. Imposing CO2 emission constraints further reduces the share of the transporta-

tion sector in the total emission by replacing conventional and hybrid cars with plug-in

electric vehicles. In particular, emissions of the transportation sector reduce to almost

zero in 2050 in GHG3.

Emissions of the residential sector increase in the BAU scenario as ETEM relies

mostly on natural gas in order to satisfy the heating and cooling demands. However,

imposing environmental constraints forces ETEM to electrify this sector. In particular,

emissions of the residential sector reduces from 0.7 in 2020 to 0.3 Mt CO2-eq in 2050 in

GHG3. Finally, the commercial sector is responsible for 23% of the total CO2 emission

in 2020. In the BAU scenario, emissions of this sector increases from 2.2 in 2020 to 2.5

Mt CO2-eq in 2050. But under a deep decarbonization scenario (GHG3), this sector will

only emit 0.6 Mt CO2-eq in 2050.

Fig. 1.5 depicts how each sector contributes to the total CO2 emission reduction when

a deep decarbonization constraint (in GHG3) is imposed. Specifically, this constraint

reduces the total emission to around 3 and 10 Mt CO2-eq in 2030 and 2050, respectively,

compared to the BAU scenario. This figure also reveals that imposing such environmental

constraint mostly affects the residential sector. On the other hand, the lower effect is on the

transportation sector, as it is already largely decarbonized in the BAU scenario, following

an assumed price reduction for EVs.
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Figure 1.4: Breakdown of GHG emission reductions by sectors and environmental scenarios.

Figure 1.5: Contribution of each sector in the total GHG reductions in the deep decarbonization
environmental scenario (GHG3) compared to the reference scenario (BAU).

1.5.2 Final energy consumption

Fig. 1.6 illustrates the final energy consumption by type of fuel in the GM region under

different environmental scenarios. While natural gas will be the dominant source of en-

ergy in 2050 in the BAU scenario, GHG3 proposes a combination of technologies that

mostly consume electricity. Namely, electricity consumption will be tripled in 2050 com-

pared to 2020 in GHG3. In addition, the consumption of gasoline, as one of the most

important fuels in the current energy system (2020), will be gradually reduced even in

BAU. More specifically, the consumption of gasoline reduces from 101 PJ in 2020 to 19.2

in 2050 in BAU, and to almost zero in GHG1, GHG2 and GHG3. Besides the shift in

the primary energy composition, the total level of consumption is also affected by the
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environmental constraint scenarios. For example, total primary energy used in GHG3 is

13% and 30% less than in BAU in 2030 and 2050, respectively. The reason is that im-

posing environmental constraints encourages to invest on more efficient technologies. In

addition, total primary energy used in the residential and commercial sectors decreases

because of investments in buildings insulation.

Figure 1.6: Total final energy consumption by type of energy and environmental scenarios.

With around 108 PJ in 2020, the transportation sector is the largest primary energy

consumer in the GM region (compared to the residential and commercial sectors). In

addition, gasoline, with 101 PJ, is the dominant fuel in this sector in 2020 (see Fig. 1.7).

Diesel and ethanol are the second and third fuels with 3 PJ and 2.1 PJ, respectively, in

2020. Finally, light duty vehicles consume the largest amount of energy compared to

other transportation vehicles, such as public buses and metros. Fig. 1.7 also indicates that

the consumption of gasoline and diesel is gradually reduced over time, as these fuels are

substituted by electricity, even in BAU. This is due to i) an assumed increasing cost of

fossil-based fuels, and ii) an assumed price reduction of the electric-hybrid vehicles over

time, as a consequence of governmental incentives to promote these cars and the long-

term lowering in the price of hybrid and electric cars. In addition, stringent environmental

constraints (in GHG1, GHG2 and GHG3, respectively) result in bigger electrification

rates for the transportation sector. Finally, a transition to electricity reduces total energy

consumption in this sector due to the higher efficiency of EVs and electric public buses.

The residential sector is the second largest energy consumer in the GM region in

2020, with a primary energy consumption of around 91 PJ to satisfy heating and cooling
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Figure 1.7: Final energy consumption by type in the transport sector.

demands. Electricity corresponds to around 58% of total energy consumption in 2020,

followed by biomass, natural gas, and oil products with 15.4%, 14.8%, and 11.5%, re-

spectively (see Fig. 1.8). But by 2050, in BAU, natural gas dominates. More precisely,

natural gas-based furnaces and stoves are the main technologies to satisfy heating de-

mands, followed by electrical baseboard heaters. This is due to a lower marginal cost of

natural gas compared to electricity. However, imposing more restrictions on CO2 emis-

sions (in GHG1, GHG2, and GHG3), encourages a higher penetration of electrical base-

board heaters and heat pumps, and consequently reduces further the share of natural gas

in total energy consumption. This also triggers larger investments in residential build-

ings insulation, which reduces final energy consumption. Finally, one can note that the

electrification rate is highly sensitive to the severity of the CO2 reductions, with by 2050

levels of 28%, 63%, and 92%, in GHG1, GHG2, and GHG3, respectively. Transitioning

to near-zero emissions in this sector requires thus stringent environmental restrictions.

Figure 1.8: Final energy consumption by type in the residential sector.
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Concerning the commercial sector, it uses 50.8 PJ of primary energies in 2020. Nat-

ural gas, with 73% of total energy consumption, is dominant in 2020. Electricity and oil

products are second and third with 18% and 9%, respectively (see Fig. 1.9). With no or

less-stringent environmental restrictions (in BAU, GHG1 and GHG2), natural gas remains

dominant by 2050. Similarly to the residential sector, this is due to a lower marginal cost

for natural gas compared to electricity. However, under a deep decarbonization (GHG3),

a transition from fossil-based furnaces to electrical heat pumps takes place to satisfy heat-

ing demands. The share of electricity in this scenario thus increases from 18% in 2020

to 71% in 2050. In addition, imposing environmental constraints (in GHG1, GHG2 and

GHG3) increases investments in commercial buildings insulation, and thus reduces final

energy consumption compared to BAU.

Figure 1.9: Final energy consumption by type in the commercial sector.

1.5.3 Sensitivity Analysis

As seen in Section 1.5.1, the transportation sector plays an important role when decar-

bonizing the energy sector. On the other hand, total energy consumption in the transporta-

tion sector, and accordingly total CO2 emissions, depend on the mode of transportation.

If a larger share of the mobility demand is met by public transportation facilities, the re-

quired trip per passenger-kilometer demand reduces, resulting in lower primary energy

consumption. In this section, we evaluate the sensitivity of our results to the share of each

transportation mode (public and private) in the total mobility demand. To do so, we ex-
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ogenously shift 20% and 50% of the mobility demand from light-duty vehicles to public

transport (buses and metros). These transport modal shifts start in 2030 and continue until

2050.

Fig. 1.10 compares total CO2-eq emissions of the transportation sector under the dif-

ferent modal shifts. While MS_0% represents the default modal share, MS_20% and

MS_50% correspond to the 20% and 50% modal shifts, respectively. This figure relates

to the BAU scenario. In 2030, total emissions under MS_50% are 36% lower than in

MS_0%. However, this emission gap reduces afterwards following the electrification of

light-duty vehicles. In other words, shifting to public transportation can be a temporary

strategy to reduce emissions before electrifying the transportation sector.

Figure 1.10: GHG emissions from the transportation sector for different modal shifts in BAU, as
the mobility demand is partially shifted from light-duty vehicles to public transportation.

Fig. 1.11 compares next final energy consumption of the transportation sector, in

2050, under different scenarios and modal shifts. In general, a shift from private to pub-

lic transportation not only reduces primary energy consumption, but also increases the

share of electricity in final energy consumption. The former trend is because buses and

metros are able to move more passengers with a lower energy consumption per passen-

ger. The latter is due to the higher electrification rate in public transportation compared

to the private one. Namely, a large portion of public transportation is already electrified

thanks to metros. In addition, because the number of buses used is much lower than the

one of private cars, electrifying them is faster and easier. Therefore, shifting to public
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transportation reduces fossil fuels consumption.

Figure 1.11: 2050 Final energy consumption for the transportation sector under different scenarios
and transport modal shifts.

1.6 Discussion

In this paper, we examine different decarbonization pathways for the GM region, and

evaluate their impacts on the energy sector. Results show that the GM region can reach

a near zero-emission energy sector by electrifying the transportation, commercial and

residential sectors, and by increasing the energy efficiency of buildings. This is mainly

because i) the majority of electricity produced in Quebec is carbon-free coming from low-

cost hydro-power, and ii) there are limited sources of industrial emissions in the region.

In addition, when shifting from private to public transportation, final energy consumption

can be further reduced.

With 30% of the total energy-related emissions in Quebec, road transportation is cur-

rently the largest source of GHG emissions in the GM area (Municipal, 2020; Whitmore

and Pineau, 2019). In addition, gasoline is the main primary energy used in this sector

with a 94% share. Our findings suggest that promoting the use of EVs reduces the share

of gasoline. In particular, under a deep decarbonization scenario (GHG3), this share drops

to 78% by 2030, 59% by 2040, and 0% by 2050. In addition, a (partial) shift from private

to public transportation can reduce total energy consumption of the transportation sector
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by up to 30%. Our modal shift scenarios are in line with a city goal to shift around 25%

of private transport to public transport. Residential and commercial buildings account for

28% of GHG emissions in the GM area (Municipal, 2020; Whitmore and Pineau, 2019).

Our results suggest that lowering emissions can be achieved through electric heating and

cooling technologies, in particular baseboard heaters and heat pumps. In parallel, invest-

ments in energy efficiency lead to a decrease in total energy consumption. Here again,

these findings are in line with the GM plan in terms of energy efficiency improvements

for residential and commercial buildings.

Finally, our results are consistent with the main strategies proposed in other related

papers. For instance, according to Elizondo et al. (2017), Mexico city plans to reach am-

bitious GHG emission reductions by using more renewable energies, energy efficiency

improvements, and shifting toward cleaner and electrified public transport. Likewise, as

presented by Lind and Espegren (2017), the city of Oslo has ambitious decarbonization

targets ( i.e., 50% GHG emission reduction by 2030, and no fossil fuels by 2050), and it

can meet the target by i) shifting from private to public transportation powered by renew-

able energy, ii) electrification of heating systems, and iii) energy efficiency improvements.

We acknowledge some important limitations of this paper as follows: i) we do not

explicitly consider uncertainties in the energy system (uncertainty of prices, demands,

technological innovations, etc.); ii) we do not carry out a life-cycle GHG emission assess-

ment; and iii) we abstract away some details of the energy system, such as technological

choices in industry, agriculture, and specific consumption in the transportation, residen-

tial, and commercial sectors.

1.7 Conclusion

In this paper, we have adopted the formulation of ETEM (Energy-Technology-Environment

Model) to assess the long-term energy transition of the greater Montreal (GM) region in

Quebec. The proposed model covers the years 2020-2050 and provides insights on the

capacity expansion of generation technologies, technological shifts in the demand side,
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total primary energy consumption, and total energy-related CO2-eq emissions. We have

evaluated the impact of imposing different CO2-eq emission reduction constraints on en-

ergy transition pathways for the GM region. Results show that the transportation sector,

with a 6.9 million ton (Mt) emission reduction compared to the 2020 level, plays an im-

portant role in a deep decarbonization (GHG3 scenario) of the GM region. This reduction

is achieved by electrifying private and public vehicles. Moreover, commercial and resi-

dential sectors will contribute to the deep decarbonization by respectively reducing 1.6 Mt

and 1 Mt CO2-eq (compared to their 2020 levels). The most important decarbonization

strategies in these sectors include i) replacing fossil fuel-based furnaces with electric-

based heat pumps to satisfy heating demands, and ii) reducing energy consumption by

increasing buildings insulation.

Several directions could be considered for future work. First, it is worth considering

explicitely uncertainty in our analysis. Because of the long-term horizon of planning in

ETEM, there are many sources of uncertainties that affect results. Demands, prices of

fuels and technologies, efficiency of technologies are among these influential uncertain

parameters. Therefore, a first direction is to consider these uncertainties and obtain re-

sults that are robust against perturbations of these parameters. Second, our analysis does

not model a complete list of hydrogen technologies. Given the potential importance of

hydrogen-based technologies in different sectors, it is worthwhile investigating the energy

transition considering as well all these technologies. Finally, expanding the boundaries of

the energy system to include a detailed description of industrial and agricultural technol-

ogy choices could also be the subject of a future research.
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in Smart Grids’ Capacity Planning
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Abstract

Generation expansion planning is a classical problem that determines an optimal invest-

ment plan for the expansion of electricity network. With the advent of demand response

as a reserved capacity in smart power systems, recent versions of this class of problems

model demand response as an alternative for the expansion of the network. This adds

uncertainties, since the availability of this resource is not known at the planning phase. In

this paper, we model demand response uncertainty in a multi-commodity energy model,

called ETEM, to address the generation expansion planning problem. The resulting model



takes the form of an intractable multi-period adjustable robust problem which can be con-

servatively approximated using affine decision rules. To tackle instances of realistic size,

we propose a Benders decomposition that exploits valid inequalities and favors Pareto

robustly optimal solutions at each iteration. The performance of our new robust ETEM is

evaluated in a realistic case study that surveys the energy system of the Swiss “Arc Lé-

manique” region. Results show that an adjustable robust strategy can potentially reduce

the expected cost of the system by as much as 33% compared to a deterministic approach

when accounting for electricity shortage penalties. Moreover, an adjustable procurement

strategy can be responsible for a 9 billion Swiss francs cost reduction compared to a

naive static robust strategy. The proposed decomposition scheme improves the run time

of the solution algorithm by 40% compared to the traditional Benders decomposition.

To conclude, we provide a discussion on other possible problem formulations and imple-

mentations.

2.1 Introduction

Generation expansion planning (GEP) is a classical energy problem that aims at determin-

ing the required power capacity to satisfy demand over a long-term horizon at minimum

cost, while satisfying economic, environmental and technical constraints (see Koltsak-

lis and Dagoumas, 2018, for a recent review). For this, one must consider existing and

future electricity generation technologies to determine an optimal investment and retire-

ment plan for the power sector. Computationally speaking, in a deterministic setting, the

GEP problem is a large-scale optimization problem that typically accounts for more than

hundreds of thousands of decision variables and constraints in order to identify realistic

solutions. Motivated by advances in the structure of smart grids, recent versions of GEP

problems have become even more complex as they attempt to model the notion of de-

mand response (DR) (see e.g. Babonneau et al., 2017; Lohmann and Rebennack, 2017).

DR can be defined as the shifting of demand by consumers, in response to supply-side

incentives offered at times of high wholesale market prices or when system reliability is

34



jeopardized (DOE, 2006). Development of sophisticated data-gathering devices such as

smart meters and voltage sensors, as well as increasing penetration of flexible loads such

as electric vehicles (EV) and heating pumps, provide the technical possibility of imple-

menting DR programs through utilities. In the wholesale capacity market, the participants

bid on providing DR resources as an alternative for expensive generation and transmission

expansion strategies. DR resources can drastically reduce marginal production costs, as

they are substitutes for technologies that help meet peak loads. However, including DR

in the GEP problem is challenging. Indeed, DR is a price-sensitive resource, whose avail-

ability is not fully known, especially in the capacity expansion planning phase. As the

planning horizon in a GEP problem is typically several decades, any planning or predic-

tion of the availability of DR resources will be affected by two sources of uncertainties: i)

errors in the prediction of total demand; and ii) changes in the response behavior. Failure

to properly consider DR uncertainty (DRU) is likely to lead to situations in which there

are insufficient capacity resources to satisfy realized demands.

Robust Optimization (RO) and Stochastic Programming (SP) are the two main method-

ologies to address uncertainty. The underlying assumption in SP is that the probability

distribution of an uncertain parameter is known (Birge and Louveaux, 2011). Conversely,

RO does not assume information about the distribution of an uncertain parameter, but in-

stead assumes that uncertain parameters lie in a user-defined uncertainty set. RO aims at

finding solutions that are immunized to all perturbations of the uncertain parameters in

the uncertainty set (Bertsimas et al., 2011). In multi-stage versions of SP and RO, it is

assumed that decisions are taken at different points of time. The simplest form, known

respectively as two-stage SP or Adjustable RO (ARO), considers here-and-now decisions

that need to be made before having any information about the uncertain parameters and

wait-and-see decisions that can be adjusted according to the realized uncertain parame-

ters at a later time. It is generally known that ARO (Ben-Tal et al., 2004) provides less

conservative optimal solutions than RO, since it has more flexibility to adjust the deci-

sions with respect to the uncertain parameters. However, the better performance comes

at the price of problem intractability. To circumvent this issue, Ben-Tal et al. (2004) pro-
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pose using affine decision rules for the delayed decisions, a technique also referred as

the affinely adjustable robust counterpart (AARC). Following Ben-Tal et al. (2004), other

types of decision rules have been proposed for ARO problems (Bertsimas and Georghiou,

2018; Georghiou et al., 2020). For a review of the ARO approach, we refer the reader to

Yanıkoğlu et al. (2019).

A number of different multi-stage robust or stochastic approaches have been previ-

ously used in the literature to address uncertainties in GEP problems (Dehghan et al.,

2014; Mejía-Giraldo and McCalley, 2014; Domínguez et al., 2016; Amjady et al., 2018;

Baringo and Baringo, 2018; Han et al., 2018; Zou et al., 2018). Because of the inher-

ent computational challenges that emerge with these models, there should be a compro-

mise between the level of details and the size of the problem. For example, Han et al.

(2018) propose a two-stage stochastic program that only considers a single-period plan-

ning horizon, while the multi-stage model proposed in Domínguez et al. (2016) is only

implemented in a case study involving four periods. It therefore appears that tackling un-

certainty in long-term industrial-size GEP problems is out of reach for currently available

methods. Improving the computational efficiency of algorithms for solving such problems

is also crucial in helping to understand better the interactions between demand and sup-

ply side, as such studies can require iterating through the resolution of a number of GEP

problems to identify market equilibria (see Babonneau et al., 2016, 2020, for examples of

this approach).

In this paper, we propose a numerical method for addressing DRU on a realistic

large-scale GEP problem. To do so, we use the Energy-Technology-Environment Model

(ETEM) proposed in Babonneau et al. (2017) to model the market mechanism that matches

flexible load and supply, where we introduce for the first time DRU as an implementation

error of the DR decision variable. We formulate the problem as a robust multi-period

linear program. In a first stage, the policy-maker decides how to invest in the capacity of

each generation technology and plans for a target DR for each future time period. Then,

periodically, depending on the actual level of contribution in DR programs for this pe-

riod, the planner decides on optimal energy procurement based on available resources.
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We evaluate the performance of the proposed robust ETEM model on a real-world case

study based on the energy system of the “Arc Lémanique” region in Switzerland. To solve

the problem, we derive a Robust Multi-Period Conservative Approximation (RMPCA) of

the problem, and develop a Benders decomposition algorithm (inspired from Ardestani-

Jaafari and Delage, 2018) to solve it. In order to focus on the effects of DRU on the design

of smart electricity networks, we have limited the model in this paper to only consider the

uncertainty of DR. However, the proposed methodology could be extended to accommo-

date supply-side uncertainties, such as availability of intermittent resources, or investment

costs. We however leave this as the subject of future work as discussed in Section 2.7.

Overall, the contributions of this paper can be summarized as follows:

1. We introduce DRU in a GEP problem, addressed using the ETEM energy model,

and propose a robust multi-period linear program in which the procurement deci-

sions are adjustable to the actual DR. The approach that we propose is flexible in

the sense that, with minor modifications, it could accommodate other sources of

uncertainties in GEP problems such as uncertainty of intermittent energy resources

and investment costs.

2. We propose, for the first time, to seek Pareto Robustly Optimal (PRO) solutions

(see Iancu and Trichakis, 2014) of the master problem in a Benders decomposi-

tion algorithm in order to accelerate convergence. When combined with the valid

inequalities proposed in Ardestani-Jaafari and Delage (2020), solution time is im-

proved by 40% on average in our randomly generated instances. Note that this

idea differs from the idea of Pareto optimal cut, introduced by Magnanti and Wong

(1981), in the way that the latter seeks a Pareto optimal solution among multiple

optimal solutions of the sub-problems. In contrast, we seek a PRO solution in the

master problem, i.e., a solution that is guaranteed not to be dominated by any other

optimal solutions in terms of its constraint margin profile.

3. Compared to previous work in the literature, we solve an adjustable robust multi-

commodity GEP problem whose size, in deterministic form, is two orders of magni-
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tudes larger than the largest instance addressed in previous case studies. Moreover,

our case study confirms in a simulation that adjustable robust policies can signifi-

cantly improve (i.e., around 33%) the expected total cost of the energy system com-

pared to the solution of the deterministic version when accounting for electricity

shortage penalties. Furthermore, it shows that the flexibility of energy procurement

decisions can be responsible for a reduction of 9 billion Swiss francs (CHF) in

expected total expansion planning costs.

The remainder of the paper is organized as follows. In the next section, we present

an overview of different approaches to model DRU, and summarize studies that use a

multi-stage approach to model uncertainties in GEP problems. In Section 2.3, we intro-

duce briefly the ETEM model. In Section 2.4, we present how we have modeled DRU in

ETEM and derive the multi-period robust optimization problem as well as its conserva-

tive approximation. In Section 2.5, the Benders decomposition is detailed. Section 2.6

presents the case study and provides numerical results. Finally, Section 2.7 provides con-

cluding remarks.

2.2 Literature Review

In this section, we first review papers that use a multi-period approach to model a robust

or stochastic GEP problem. We specifically summarize their solution method and the

size of the instances they solve. Usually, the size of a GEP problem is dependent on the

number of time periods, load duration curve (LDC) steps, technologies, and commodities.

Hence, we will summarize the size of studied instances with the product of these quanti-

ties, referred as the Deterministic Size Indicator (DSI) index. In a second part, we review

recently proposed strategies to model DRU in different energy-related problems. Finally,

we review the literature on the ETEM model.

Bloom (1983) and Bloom et al. (1984) are among the first papers that propose a two-

stage stochastic programming formulation for GEP problems with uncertain demand and
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supply. They propose a general Benders decomposition, where a master problem ac-

counts for investment decisions, and a set of subproblems represent the annual operation

cost and reliability level of the installed capacities while enforcing probabilistic reliability

constraints. Han et al. (2018) develop a two-stage stochastic program to model the un-

certainty of load demand and wind output in a GEP problem. Using affine decision rules,

they reformulate the problem as a deterministic second-order cone optimization problem.

They solve an instance with 1 period, 5 LDC steps, and 32 technologies to test their al-

gorithm (DSI=160). Mejía-Giraldo and McCalley (2014) propose an adjustable robust

optimization framework to address the uncertainty of fuel price, demand, and transmis-

sion capacities in a GEP problem. In this setting, investment decisions are set as an affine

function of fuel price, whereas voltage angle (decision) is parameterized as an affine func-

tion of demand and transmission capacities. They reformulate the problem as an LP and

test it on a simplified version of the US power system with 20 periods, 3 LDC steps,

and 13 technologies (DSI=780). Domínguez et al. (2016) use linear decision rules to

reformulate a multi-stage GEP problem and cast it as a tractable LP. They solve a GEP

problem with 4 decision periods, 18 technologies and 100 LDC steps (DSI=7200). Zou

et al. (2018) propose a partially adaptive multi-stage stochastic GEP problem. In this

setting, the capacity expansion plan is adaptive to the uncertain parameter up to a certain

point. Fuel price and demand are two sources of uncertainties in this study. They test their

algorithm on a case study with 10 periods, 3 LDC steps, and 6 technologies (DSI=180).

Dehghan et al. (2014) develop a two-stage robust optimization problem in which the load

demand and investment cost are uncertain. They solve their problem, using a cutting

plane method. The case study is a 10-period planning of a network with 120 technologies

and 3 LDC steps (DSI=3600). None of the above studies model neither DR nor DRU. In

addition, all of them are a single-commodity GEP problem, meaning that they only model

the electricity network and account for an aggregated electricity demand over the plan-

ning horizon. By contrast, in a multi-commodity energy model such as ETEM, one also

models the interactions of the electricity sector with other sectors of the energy system

(e.g., heat, transportation sectors), as well as the demands for final energy services (such
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as heat and lighting). This increases the size of the deterministic problem. In this paper,

we solve a case study with 10 decision-making periods, 12 LDC steps, 142 technologies,

and 57 energy commodities (DSI=971,280).

DR is also modeled in other power system planning problems such as unit commit-

ment, transmission or distribution expansion planning, and wholesale electricity market

problems. In general, there are two strategies one can follow to implement DR programs:

dispatchable and non-dispatchable. In the former, the utility directly controls the timing

of some loads of the customers who voluntarily participate in the program. More pre-

cisely, the utility cuts down the consumption during peak periods to ensure system relia-

bility, and in return, remunerates participants with annual payments. In non-dispatchable

strategies, the utility sends to customers a price signal with the purpose of flattening the

demand curve. Automatic price-responsive devices adjust the timing of the consumption.

While developing an optimal consumption schedule is the focus of some research (Liu

et al., 2019), another stream studies the conditions under which the dynamic price sig-

nals improve social welfare (see, e.g., Adelman and Uçkun, 2019; Venizelou et al., 2018).

Elaboration on the different strategies to implement DR and an overview on the success

of these programs in the US electricity market is presented in Shariatzadeh et al. (2015).

The effect of DR on the wholesale and capacity market is another stream of re-

search. Vatani et al. (2017) introduce DR to a capacity market problem in which the

cost-minimizer capacity planner trades off between new generation and transmission ca-

pacity expansion and DR expenses. Arasteh et al. (2015) model a trade-off between DR

expenses and distribution expansion costs. Zhang and Zhang (2019) model DR as an al-

ternative procurement strategy for an electricity retailer. Namely, the electricity retailer

must procure energy in a day-ahead wholesale market. Given that the prices in this mar-

ket are highly uncertain, DR is introduced as a leverage to manage the retailer’s risk.

In this approach, the retailer solves its problem to determine a procurement strategy as

well as DR incentive prices. Then, consumers respond to the signaled price in order

to minimize their consumption cost. Babonneau et al. (2016) model DR in a capacity

expansion planning problem considering distribution constraints. They develop a game
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framework between the retailer and many small consumers. The retailer solves a mini-

mization model to determine his desired DR and capacity expansion plan. Then, using

marginal cost of production, which corresponds to dual variables, he signals consumers

to adjust their consumption. They argue that, if the price function, with which the retailer

signals consumers, is convex with respect to both demand and required level of reserved

capacity, their approach can be cast as a linear programming problem. Finally, Lohmann

and Rebennack (2017) model DR in a long-term capacity expansion planning problem.

In all the above research, DR was mostly modeled in a deterministic way. In other

words, when DR was modeled using a price elastic demand curve, no uncertainty af-

fected this curve. Alternatively, when it was modeled as a decision variable, no imple-

mentation error was affecting optimal DR decisions. However, due to a variety of reasons,

including demand prediction errors and changes in response behavior, in practice DR nec-

essarily ends up different from what the supply side expected. According to Chatterjee

et al. (2018), a lack of DR forecasting and estimation tools is one of the most impor-

tant barriers to wider adoption of DR. On this regard, an active stream of literature has

proposed a number of statistical learning methods for predicting demand response associ-

ated to storage-like flexible loads such as residential and industrial air conditioning (see,

e.g., Dyson et al., 2014; Qi et al., 2020), and a stand-alone micro-grid with the presence

of photovoltaic and wind generation units (see Amrollahi and Bathaee, 2017). Another

stream of research investigates the influence of DRU on its integration to the network.

Li et al. (2015) model incentive-based DR as an alternative for transmission upgrade in-

vestments and consider consumer’s bid for load reduction uncertainty. They develop a

stochastic programming model and use Monte Carlo simulation and Benders decompo-

sition for resolution. Ströhle and Flath (2016) model DRU in a local online market to

match flexible load and uncertain electricity supply. Gärttner et al. (2018) formulate DRU

in a demand aggregator’s problem where the scheduling of demand and the optimal dis-

patch are optimized at the same time. He et al. (2019) develop a two-stage distributionally

robust problem to model DRU in a distribution network expansion problem. Prices are

modeled as a decision variable to optimally shape the desired demand response. How-
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ever, the price elasticity is considered to be a random parameter. Moreover, distributed

generation resources are also affected by uncertainty. They propose a column and con-

straint generation approach to solve the resulting problem. Zhao et al. (2013) model the

uncertainty of DR and wind generation in a unit commitment problem. DR is modeled

through a price-elastic demand curve with price uncertainty. They propose a three-stage

robust optimization formulation. First stage decisions consider unit commitment plan-

ning, i.e., turning on and off the generators. Second stage decisions include the dispatch

of electricity and are implemented after the actual wind power output is realized. Finally,

in a third stage, the demand response is observed. Moreover, they propose a Benders

decomposition to solve the three-stage problem. An overview of the different techniques

to model ancillary services in unit commitment problems is presented in Knueven et al.

(2020). Asensio et al. (2018) model the DRU through a price-sensitive demand curve in

a distribution network expansion problem and use a scenario-tree approach to solve the

resulting stochastic programming model. Roveto et al. (2020) develop a data-driven dis-

tributionally robust optimization model of the demand response auction, where the risk of

the retailer is controlled using value-at-risk and conditional value-at-risk measures. They

model DRU by considering DR bid uncertainty. In other words, the aggregator receives

bids from consumers to reduce their consumption at a specific time. However, consumers

might not actually reduce their consumption to this full amount. The aggregator aims to

ensure a certain level of demand response procurement at minimum cost. Huang et al.

(2020) develop a multi-stage stochastic programming model to optimally schedule power

generation assets when the system operator has access to the ancillary service market. In

this paper, we model DRU in a multi-commodity energy planning model, called ETEM

(Babonneau et al., 2017), to address a GEP problem. In ETEM, DR is modeled through a

decision variable which is optimized by the supply-side. It is assumed that the supply-side

can shape consumer’s response behavior through different long-term DR programs. For

the first time, we model DRU as an implementation error of the DR decision in ETEM,

and develop an adaptive robust multi-period conservative approximation formulation of

the problem.
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ETEM first was formulated by Babonneau et al. (2012). Although the developed for-

mulation is deterministic, they also provide a stochastic programming model with differ-

ent scenarios for the electricity import cost. As an extension to the primary ETEM model,

Babonneau et al. (2016) propose a linear approximation of distribution system and power

flow constraints in ETEM. The new formulation, called ETEM-SG, accounts for provi-

sion of reserved capacities provided by demand response in smart grids. Babonneau et al.

(2017) and Babonneau and Haurie (2019) propose robust versions of ETEM to address

the uncertainty of investment costs and of availability of technologies and transmission

capacity of electricity transmission lines. In both papers, a static robust version of ETEM

is developed and a relaxed version of the model is solved to reduce conservatism of the

solution. Babonneau et al. (2020) is the first version of ETEM that employs robust opti-

mization to handle uncertain demand response. Specifically, it proposes a robust ETEM

model coupled with a mean-field game equilibrium model that represents the charging

behavior of electric vehicle owners. The paper models the uncertainty of DR by introduc-

ing in ETEM two upper and lower bounding constraints on the sum of DR over all time

periods. The bounding constraints are calibrated based on the confidence intervals of the

random demand which is simulated using a mean-field game model. We note that Babon-

neau et al.’s way of accounting for DRU in ETEM is fundamentally different from ours.

First, they again only involve static decisions and focus on a single-period investment

problem. More importantly, a careful analysis of their approach reveals that it effectively

offers no protection against the DR deviations in our setting. A more detailed demonstra-

tion of this weakness is presented in Appendix 2.8.1. Our paper should therefore be seen

as presenting a significant extension of ETEM that identifies adaptive long term strategies

to immunizes for the first time the energy system against DR deviations.

2.3 The ETEM Energy Model

As proposed in Babonneau et al. (2012), ETEM is a long-term, bottom-up energy model

cast as a linear programming problem. It is a member of the MARKAL-TIMES family of
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models, and represents the entire energy sector from primary resources to useful energy

demands. ETEM is a demand-driven model in which the objective is to provide energy

services at minimum cost. The planning horizon is typically more than 50 years and the

model gives insights on both long-term strategic and short-term operational decisions.

While the long-term decisions include capacity expansion and strategic targeting for a

desired demand response, short-term decisions consist of energy procurement planning,

which includes optimal generation, import, export and regional transmissions. ETEM can

also account for technical, economic and market constraints (see Babonneau et al., 2017).

ETEM is based on the concept of a reference energy system (see Figure 2.1 for the

depiction of the energy system of the Arc Lémanique region in Switzerland considered in

our case study). The model considers different energy commodities (captured by vertical

lines in the figure) namely “resources" (i.e., a mix of primary energy resources and some

imported secondary energy forms), selected secondary forms (i.e., electricity and heat),

and useful energy demands. More precisely, resources correspond to coal, oil products,

gas, hydro, intermittent renewables (wind and solar), as well as other sources such as mu-

nicipal solid waste and wood. Useful energy demands belong to four categories: industry,

residential electricity, residential heat, and transportation. The boxes correspond to the

different energy technologies, from generators to technologies providing energy services

to end-users. In our implementation, we also add an energy resource (denoted “ExR")

with a high cost that represents the cost of shortage in the system. A dummy technology

(denoted “EXT") links this expensive resource to the useful demands (see Assumption 1

and following discussion for more details).

The planning horizon in ETEM spans over several decades to simulate the long in-

vestment cycles typical of the energy sector. We denote by t ∈ T := {1, . . . , |T|} the index

representing the decision-making periods. In addition, to capture short-term operational

patterns of the demand load, each period is divided into smaller time-slices s ∈ S, repre-

senting load duration curve steps. In ETEM, 12 time-slices are assumed (S= {1, · · · ,12}),

which are partitioned among a set J of 3 typical seasons (winter, summer, and interme-

diate), and each day of these seasons is divided into 4 time slots (morning, midday, mid-
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Figure 2.1: Arc Lémanique reference energy system, where Int-Res stands for intermittent re-
sources (solar and wind), N-Gas for natural gas, Oil-fuel for processed oil products, Other for
hydrogen and additional sources of energy (such as solid waste and wood and geothermal), ELC
for electricity, RES for residential, PP for power plant, CHP for combined heat and power plant,
IMP for electricity import, Ind-Machinery for industrial machinery, ExR for a dummy expensive
resource added to avoid in-feasibility, ExT for a dummy expensive technology used to avoid in-
feasibility. Other-PP includes geothermal, fuel-cell and municipal waste power plants.

night, and night), as shown in Figure 2.2.

Before describing ETEM’s mathematical formulation, it is worth introducing our

nomenclature. Let C be the set of energy commodities and let P be the set of energy

technologies. The set of indices F identifies the different input-output energy flows asso-

ciated to each technology. For instance, in Figure 2.1, Combined Heat and Power (CHP)

uses natural gas, solid waste and wood as input to generate both electricity and heat.

Finally, let L be a set of buses in different geographical zones. A full nomenclature is

presented in Table 2.1. Below, we present the main elements of ETEM. Interested readers

can refer to Babonneau et al. (2017) for more details:
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Figure 2.2: Sequence of time-slices
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Table 2.1: Nomenclature for ETEM formulation

Indices Parameters
t ∈ T Index for time period αt,p Investment cost
s ∈ S Index for time-slices βt,s,p Capacity factor
p ∈ P Index for technologies ηc Network efficiency
c ∈ C Index for energy commodities η t

f , f ′
Technology efficiency

cs ∈ CS Index for energy storage λ
′′
t,s,l,l′,c Transmission cost

f ∈ F Index for energy flows λ ′t,s,c Export cost
l ∈ L Index for buses (geographical zones) λt,s,c Import cost
j ∈ J Index for seasons νt,s,c Maximum deviation from
i ∈ I Index for period-seasons (t, j) nominal demand response
Sets νt,p Variable cost
PC

c ⊆ P Set of technologies consuming c Ωt,l,p Available capacity of technology p
PP

c ⊆ P Set of technologies producing c πt,p Fixed production cost
PR ⊆ P Set of intermittent technologies ρ Discount factor
CI ⊆ C Set of imported commodities θ c

p Proportion of output c from technology
CD ⊆ C Set of useful demands p that can be used in peak period
CEX ⊆ C Set of exported commodities lp Life duration of technology p
CT R ⊆ C Set of transmitted commodities Θt,l,d Annual final demand
C f ⊆ C Set of commodities linked to flow f υt,s,c Nominal demand response
CG ⊆ C Set of commodities with margin reserve ρt,s,c Required reserve for commodity c ∈ CG

S j ⊆ S Set of time-slices s in season j Variables
Ss ⊆ S Set of successive time-slices of s CCCt,l,p Variable for new capacity addition
SG ⊆ S Set of time-slices in peak period PPPt,s,l,p,c Variable for activity of technology p
FIp ⊆ F Set of inputs to technology p IIIt,s,l,c Variable for import
FOp ⊆ F Set of outputs from technology p EEEt,s,l,c Variable for export

TTT t,s,l,l′,c Variable for regional transmission
VVV t,s,l,d Variable for demand response

∑
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The objective function (2.1a) minimizes a discounted sum of all costs of the system

over all regions (l ∈ L) and time periods (t ∈ T), where parameters αt,p, πt,p, νt,p, λt,s,c,

λ ′t,s,c, and λ
′′
t,s,l,l′,c are unit costs of investment, fixed, variable, import, export, and regional

transmission respectively .

Constraint (2.1b) is a commodity balance constraint. It ensures that the regional pro-

curement of each energy commodity c is greater or equal than its total consumption at

each period t and time-slice s. Specifically, the left-hand side of this constraint consists

of i) total production of commodity c in region l by all technologies producing it (PP
c )

ii) import of commodity c, and, iii) net transmission of commodity c into region l. It is

worth mentioning that in ETEM, import (and similarly export) of energy refers to amount

of input (output) energy to (from) the energy system from outside of it, but energy trans-

mission refers to amount of energy which is produced in one region and transmitted to

another region inside energy system. Parameter ηc is the network efficiency with respect

to commodity c, e.g., the efficiency of electricity transmission lines. On the right-hand

side, the consumption is equal to the total consumption by technologies consuming the

commodity, i.e., PC
c , added to the amount of commodity that is exported.

Constraint (2.1c) introduces a safety margin in procurement of commodity c ∈ CG ,

mostly electricity, during peak time-slices s ∈ SG , to protect against random events not

explicitly represented in the model. Parameter ρt,s,c ∈ [0, 1] represents the fraction of

reserved capacity needed to ensure covering the peak load. The left-hand side of this

constraint models the maximum amount of commodity c ∈ CG that can be procured in

period t and time-slice s. This amount is equal to the sum of i) the maximum production

capacity of commodity c by technologies that produce it as their main output (Pc), ii)

the production of commodity c by technologies that produce c as their by-product of

their main activity, and iii) the import of commodity c. The left-hand side is the total

consumption similar to constraint (2.1b). Parameter θ c
p is the proportion of technology

production that can be used during the peak period. Constraint (2.1d) models the balance

of energy storage between consecutive time-slices. Amount of storage at time-slice c can

be consumed at subsequent time-slice s′. The notion of subsequency of time-slices is
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presented in Figure 2.2. Constraints (2.1e) - (2.1g) are the key constraints that model the

use of demand response. Parameter Θt,l,c is the total demand of service c ∈ CD in the

period t and zone l. Variable VVV t,s,c is the demand response which optimally distributes

the total demand of period t into all time-slices s inside period t. Constraint (2.1f) limits

the demand response to vary between an interval around the nominal value, i.e., υt,s,c. In

addition, the sum of the demand response must be equal to the sum of the nominal values

in each season, according to constraint (2.1g).

Constraint (2.1h) limits the maximum production or consumption of each technology

to the available capacity of that technology. The parameter βt,s,p is the capacity factor.

The capacity factor of technology p is defined as the average power generated divided

by the rated peak power. This simply represents the fraction of the total capacity which

is available at each time-slice. In addition, since renewable generation is usually given

priority in dispatch over conventional forms of generation (see for example Knueven

et al., 2020; Lohmann and Rebennack, 2017), their production is imposed to take its

maximum production capacity in constraint (2.1i). Constraint (2.1j) models the efficiency

of technology p. In ETEM, the efficiency of a technology is modeled through the annual

parameter η t
f , f ′ that links each output flow f

′ ∈ FOp to an input flow f ∈ FIp. The

constraint ensures that the sum of all output energy commodity c which is linked to output

flow f
′
, i.e., C f ′ , is equal to a fraction of the sum of all input energy commodities c which

is linked to input flow f , i.e., C f .

We note that constraints (2.1k) and (2.1l) impose upper and lower bounds for seasonal

production of technology p in region l, and seasonal import of energy commodity c in

region l. Moreover, in constraint (2.1m) the seasonal procurement of commodity c, over

all regions in L, is imposed an upper bound. This departs slightly from the original ETEM

formulation, which only imposed annual bounds but is reasonable and enables the decom-

position scheme presented in Section 2.5. We will discuss later that seasonally indepen-

dent procurement decisions enable us to decompose the problem into several independent

sub-problems where one decides on the optimal procurement given a capacity plan and

demand response. This structure benefits the efficiency of the solution method. Finally,
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space X and Y represent other operational, technical, and economical constraints that

define a desirable space for capacity and procurement decisions. Moreover, X and Y

contain constraints that define the structure of the energy network. In particular, these

constraints enforce energy productions, PPPt,s,l,p,c, that do not exist in the energy network

to be zero. Since these constraints do not affect our analysis, we omit to report them and

refer the reader to Babonneau et al. (2017) for a complete list of constraints.

2.4 A Demand Response Robust Version of ETEM

The ETEM model presented in Section 2.3 optimizes the future evolution of the energy

system by assuming full information. However, in reality, there is always uncertainty.

In particular, demand response is an important source of uncertainty. ETEM assumes

that demand response is completely controlled by the supply side. From a decentralized

electricity market point of view, this structure can be interpreted as a situation where the

supply side targets an optimal level of DR, and encourages the actual demand load to be

close to target DR using DR programs such as incentive real-time pricing. But, one must

expect some realized deviations from the plans. Such deviations can either be caused

by differences in the actual overall daily demand loads, as time evolves over a 50-year

horizon, or by the level of participation and compliance of consumers in DR programs. In

this paper, we model both types of uncertainties as implementation errors of the planned

demand response VVV and we immunize ETEM against such error (see Ben-Tal et al., 2015,

for a seminal work on robust optimization with implementation error). Specifically, given

a set CU ⊆CD of useful demand, such as residential electricity, with error-prone demand

response, the demand Θt,l,cVVV t,s,c for time period t ∈ T, time-slice s ∈ S, region l ∈ L,

and commodity c ∈ CU , is replaced with Θt,l,c
(
VVV t,s,c + δδδ t,s,c

)
, where δδδ t,s,c captures the

Relative Demand Response Deviations (RDRD) from the planned response. In a general

presentation, we will consider the vector of relative deviations δδδ ∈ Rd , to be the vector

that is obtained from arranging the parameters δδδ t,s,c for all t ∈ T,s ∈ S and c ∈ CU into

a vector. For simplicity of exposure, we assume that the vector of each seasonal subset
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of RDRDlies in a scaled budgeted uncertainty set (as introduced in Bertsimas and Sim,

2004) defined as:

∆ =

δδδ ∈ Rd

∣∣∣∣∣∣∣∣∣
∃ζζζ ∈ [−1, 1]d

δδδ t,s,c = βt,s,cζζζ t,s,c, ∀t,s,c ∈ CU

∑s∈S j ∑c∈CU |ζζζ t,s,c| ≤ Γt, j ∀t, j ∈ J

 , (2.2)

where d := |T| · |S| · |CU |, βt,s,c captures the maximum possible RDRD, while Γt, j is a

seasonal budget that represents the fact that we expect a maximum of Γt, j RDRDto take on

their extreme values in season j of time period t. The idea of decomposing the uncertainty

information structure over each season has three important advantages. First, from a

numerical perspective, it will help by enabling us to employ decomposition schemes based

on Benders decomposition. Second, it is also attractive from a statistical perspective

as it allows us to calibrate the size of each seasonal uncertainty set using seasonal data

which is usually readily available, while data over joint realizations over many seasons

can be scarce. Finally, imposing uncertainty budgets on subsets of perturbed parameters

is known to lead to less conservative solutions in robust optimization as it enforces the

worst-case scenario to distribute the damage over parameters of different subsets instead

of focusing on a single one (see Bertsimas and Thiele, 2006, where similar techniques are

used).

In what follows, we present first, in Section 2.4.1, how we modify ETEM in order

to identify capacity and demand response plans that are immunized against RDRD. The

modified model is cast as a robust multi-period linear program. Unfortunately, this class

of problems is known to be generally intractable. To address this issue, Section 2.4.2

presents a tractable conservative approximation that can be reformulated as a large-scale

linear program.

2.4.1 A Robust Multi-Period Linear Programming Formulation

With the introduction of the RDRDin ETEM, the problem has the potential of turning into

a multi-stage decision-making problem where different decisions are allowed to depend
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Figure 2.3: Sequence of decisions and uncertainty observations in our multi-period problem

on the observed realization of RDRD. Indeed, we will assume that in the first stage the

energy network planner decides on the capacity expansion of the system (variable CCC) and

the planned demand response (variable VVV ). Then, in later stages, on a season-by-season

basis, the seasonal RDRDare revealed to the planner who responds by deciding on the

optimal energy production, energy transfers between regions, and energy imports and

exports. To simplify the analysis of such a multi-stage model, we will further assume that

the planner’s response only depends on the current seasonal RDRDinstead of reacting to

all the observations made since the first season.

To be mathematically precise and help with presentation, decision variable xxx ∈ Rm,

with m = |T| · |L| · |P|+ |T| · |S| · |CD |, will capture the vector of all first stage decisions

(CCC,VVV ) in the demand response robust version of ETEM. Furthermore, for each time pe-

riod t and season j, let i ∈ I denote the seasonal period (t, j), and consider that yyyi ∈ Rki ,

with ki = |S j| · |L| · |P| · |C|+ |S j| · |L| · |CI|+ |S j| · |L| · |CEX |+ |S j| · |L|2 · |CT R|, captures all

adaptive “procurement” decisions (PPPt,s,l,p,c, IIIt,s,l,c∈CI ,EEEt,s,l,c∈CEX ,TTT t,s,l,l′,c∈CT R)t,s∈S j,l∈L,l′∈L

implemented in season j and time period t. For simplicity, we will refer to seasonal peri-

ods as i ∈ I instead of (t, j) ∈ T×J and consider Ai := {(t,s)}s∈S j as the set of all (t,s)

pairs associated to seasonal period i. Finally, we refer to ζζζ i ∈ [−1,1]di as the vector of

seasonal RDRDperturbances {ζζζ t,s,c}(t,s)∈Ai,c∈CU .

The chronology of our multi-period decision-making model is depicted in Figure 2.3.

In particular, this model can be shown to take the following form:

min
xxx,{yyyi}

|I|
i=1

max
{ζζζ i∈Zi}

|I|
i=1

f⊤xxx+
|I|

∑
i=1

h⊤i yyyi(ζζζ i) (2.3a)

s.t. Aixxx+Biyyyi(ζζζ i)≤ bi +Ciζζζ i ∀ζζζ i ∈Zi(Γi), ∀i ∈ {1...|I|} (2.3b)

Dxxx≤ e , (2.3c)
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where constraint (2.3c) describes the polyhedral feasible set for CCC and VVV based on X

and constraints (2.1f) and (2.1g), while constraint (2.3b) describes for each i the con-

straints imposed on {PPPt,s,l,p,c, IIIt,s,l,c∈CI ,EEEt,s,l,c∈CEX ,TTT t,s,l,l′,c∈CT R}(t,s)∈Ai,(l,l′)∈L2 . Namely,

the latter include the constraints in Y , which in Babonneau et al. (2017) decompose

over each season, and constraints (2.1b)-(2.1e), (2.1h)-(2.1m). Finally, Zi(Γi) := {ζζζ i ∈

Rdi |∥ζζζ i∥∞ ≤ 1, ∥ζζζ i∥1 ≤ Γi} is the traditional budgeted uncertainty set while Ci ∈ Rni×di

models the linear effect of the standardized perturbances on each constraint. For com-

pleteness, we note that f ∈ Rm, hi ∈ Rki , Ai ∈ Rni×m, Bi ∈ Rni×ki , and bi ∈ Rni .

2.4.2 Affinely Adjustable Approximation

Given the known numerical intractability of problem (2.3) (see Ben-Tal et al., 2004),

one can instead solve a conservative approximation model obtained by enforcing that

adjustable variables yyyi(ζζζ i) be affine functions of ζζζ i; i.e., yyyi(ζζζ i)= yyyi+YYY iζ̄ζζ i, where yyyi ∈Rki

and YYY i ∈ Rki×ri become the decision variables. We follow this approach after employing

a commonly used lifting of the uncertainty set:

Zi = PiZ̄i ,

where

Z̄i =
{

ζ̄ζζ i ∈ Rri
∣∣∣Wiζ̄ζζ i ≤ νi, ζ̄ζζ i ≥ 0

}
,

with

Wi :=

 Idi Idi

1111×di 1111×di

 , νi :=

111di×1

Γi

 , Pi :=
[
Idi −Idi

]
,

and Idi is the di× di identify matrix, ri = 2di. In other words, problem (2.3) is con-

servatively approximated by the following robust linear program (referred as the Robust

Multi-Period Conservative Approximation model):

(RMPCA) min
xxx,{YYY i,yyyi}

|I|
i=1

max
{ζ̄ζζ i∈Z̄i}

|I|
i=1

f⊤xxx+
|I|

∑
i=1

h⊤i
(

yyyi +YYY iζ̄ζζ i

)
(2.4a)
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s.t. Aixxx+Bi

(
yyyi +YYY iζ̄ζζ i

)
≤ bi +CiPiζ̄ζζ i ∀ζ̄ζζ i ∈ Z̄i ∀i ∈ {1...|I|}

(2.4b)

Dxxx≤ e . (2.4c)

Applying standard robust reformulation techniques, we obtain the following tractable lin-

ear program:

min
xxx,{ψψψ i,ΦΦΦi,YYY i,yyyi}

|I|
i=1

f⊤xxx+
|I|

∑
i=1

ν
⊤
i ψψψ i +h⊤i yyyi (2.5a)

s.t. Dxxx≤ e (2.5b)

W⊤i ψψψ i ≥ (h⊤i YYY i)
⊤ ∀i ∈ {1, .., |I|} (2.5c)

ΦΦΦiνi ≤ bi−Aixxx−Biyyyi ∀i ∈ {1, .., |I|} (2.5d)

ΦΦΦiWi ≥ BiYYY i−CiPi ∀i ∈ {1, .., |I|} (2.5e)

ΦΦΦi,ψψψ i ≥ 0 , (2.5f)

where ψψψ i ∈ R(di+1)×1 and ΦΦΦi ∈ Rni×(di+1) are new variables added to the model to guar-

antee the feasibility of the decision variables in the worst-case scenario. It is worth men-

tioning that problem (2.5) provides an upper-bound and feasible first-stage decision for

problem (2.3) as the space of decision rule has been reduced to affine functions.

2.5 Improving Numerical Efficiency using Benders

Decomposition

Because of the capacity expansion decisions with a horizon of several decades, alongside

with the procurement decisions with daily resolution, ETEM is already in its deterministic

form a large-scale LP model. The size of LP that needs to be solved is further exacerbated

when considering the robust reformulation presented in (2.5). In this regard, Section 2.6

will consider instances where the number of decisions and constraints is increased twenty-

fold and nine-fold respectively. For this reason, we propose here a decomposition scheme

to reduce the computational burden.
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Specifically, we start by reformulating problem (2.4) as follows:

min
xxx,ρρρ,{yyyi}

|I|
i=1

f⊤xxx+
|I|

∑
i=1

h⊤i yyyi +ρρρ i (2.6a)

s.t. Dxxx≤ e (2.6b)

ρρρ i ≥ gi(xxx,yyyi) ∀i ∈ {1...|I|} (2.6c)

Aixxx+Biyyyi ≤ bi ∀i ∈ {1...|I|} , (2.6d)

with

gi(xxx,yyyi) := min
YYY i

max
{ζ̄ζζ i∈Z̄i}

|I|
i=1

h⊤i YYY iζ̄ζζ i (2.7a)

s.t. (2.4b) ,

where constraint (2.6d) is a redundant constraint that describes the fact that (2.4b)

must be satisfied for ζ̄ζζ i = 0 since 0 ∈ Z̄i. Given that gi(xxx,yyyi) is jointly convex, we iden-

tify a supporting plane representation that will enable the use of a constraint generation

approach, also commonly referred to as a Benders decomposition scheme, which re-

lies on iteratively solving a master and set of subproblems until convergence. Note that

constraint (2.6c) should be considered violated if xxx and yyyi are such that problem (2.7) is

infeasible.

In what follows, we start by describing the algorithm, then present two schemes that

can be employed to improve its numerical efficiency by refining the quality of the upper

and lower bounding process. In the latter case, the refinement will make use for the

first time of the notion of Pareto robustly optimal solution (Iancu and Trichakis, 2014) in

decomposition schemes for robust optimization.

Remark 1. It is worth noting that our scheme is strongly inspired by the one used in

Ardestani-Jaafari and Delage (2018) and Ardestani-Jaafari and Delage (2020), yet we

depart from that work in three ways. First, unlike this prior work we choose to keep in

problem (2.6) the yyyi variables, which describe what the affine strategy prescribes for the

nominal scenario ζ̄ζζ = 0. This allows us to more easily interpret the optimal solution.
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We also observed empirically that this led to a significant reduction in the number of

iterations. Second, we derive conditions that are specific to this application under which

we can ensure that the solution of the master’s problem always leads to a set of feasible

subproblems. Third, we identify a new scheme, which is based on the theory of Pareto

robust optimality, to identify optimal solutions of the master problem that accelerate the

convergence of the algorithm.

2.5.1 The Benders Decomposition Algorithm

To simplify the presentation of this algorithm we make the following assumption.

Assumption 1. (Uncapacitated technology) ETEM includes a technology px ∈ PP
c /PR

with c ∈ CU generated from a resource cx ∈ CI/CD , with infinite capacity, i.e., Ωt,l,px =

∞. Furthermore, X and Y do not impose additional constraints on PPPt,s,l,px,c and IIIt,s,l,cx .

The role of the above assumption is to ensure that when removing constraint (2.6c)

from problem (2.6), we do not end up with solutions for (xxx,{yyyi}
|I|
i=1) that make problem

(2.7) infeasible. Note also that in our description of ETEM, the EXT technology and ExR

energy resource respectively play the role of px and cx.

Lemma 1. Given that an uncapacitated technology exists (i.e., Assumption 1), problem

(2.7) is feasible for any xxx and {yyyi}
|I|
i=1 that satisfy (2.6d).

Proof. One needs to show that for any given xxx and yyyi, i = 1, · · · , |I|, that satisfy (2.6b) and

(2.6d), there exists a YYY i so that the constraint (2.4b) is feasible. To do so, given that we

already now that xxx and yyyi are such that they can cover the nominal demand response, i.e.,

ζζζ
+
= ζζζ

−
= 0, we will show how to construct a YYY i that will simply cover any deviation

of the demand coming from the RDRDusing the uncapacited technology. Specifically,

we let all values of YYY equal to zero except for the terms that model the influence of δδδ
+

on PPPt,s,l,px,c with c ∈ CU , PPPt,s,l,px,cx , and IIIt,s,l,cx . In particular, when setting all other

terms to zero, most constraints reduce exactly to the constraints imposed in (2.6d) and are
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straightforwardly satisfied. The only constraints that need to be verified consist of a few

members of (2.1b), (2.1e), (2.1h) and (2.1j), which can be described as follows:

(2.1b)→ ( ∑
p∈PPcx

P̄PPt,s,l,p,cx + ĪIIt,s,l,cx + ∑
c∈CU

III+t,s,l,cx,cδδδ
+
t,s,c)ηcx + ∑

l′ ̸=l
(ηcx T̄TT t,s,l′,l,cx− T̄TT t,s,l,l′,cx)

≥ ∑
p∈PC

c

P̄PP+
t,s,l,p,c + ∑

c∈CU

PPP+
t,s,l,px,cx,cδδδ

+
t,s,c + ĒEEt,s,l,cx

∀(δδδ+
i ,δδδ

−
i ) ∈ Z̄i, ∀l ∈ L

∀(t,s) ∈Ai,∀i ∈ I

(2.8)

(2.1e)→ ∑
p∈PP

c

P̄PPt,s,l,p,c +PPP+
t,s,l,px,cδδδ

+
t,s,c ≥Θt,l,c

(
V̄VV t,s,c +δδδ

+
t,s,c−δδδ

−
t,s,c
)

∀(δδδ+
i ,δδδ

−
i ) ∈ Z̄i,∀c ∈ CU

∀(t,s) ∈Ai,∀i ∈ I
(2.9)

(2.1h)→ ∑
c:px∈PP

c

P̄PPt,s,l,px,c + ∑
c∈CU

PPP+
t,s,l,px,cδδδ

+
t,s,c ≤ ∞

∀(δδδ+
i ,δδδ

−
i ) ∈ Z̄i, ∀l ∈ L

∀(t,s) ∈Ai,∀i ∈ I

(2.10)

(2.1j)→ ∑
c∈C f′

P̄PPt,s,l,px,c + ∑
c∈CU

PPP+
t,s,l,px,cδδδ

+
t,s,c = η

t
f , f ′

( ∑
c∈C f

P̄PPt,s,l,px,c+

∑
c′∈CU

PPP+
t,s,l,px,cx,c′

δδδ
+
t,s,c′)

∀(δδδ+
i ,δδδ

−
i ) ∈ Z̄i, ∀l ∈ L

∀(t,s) ∈Ai,∀i ∈ I
, (2.11)

where P̄PP, V̄VV , C̄CC, ĪII, T̄TT , and ĒEE refer to the assignments made through the fixed xxx and

yyyi’s, while PPP+
t,s,l,px,c, PPP+

t,s,l,px,cx,c, and III+t,s,l,cx,c model the influence of δδδ
+
t,s,c on PPPt,s,l,px,c,

PPPt,s,l,px,cx , and IIIt,s,l,cc respectively, for c ∈ CU . In order to get a feasible assignment

for YYY , for all t, s, c ∈ CU , we let PPP+
t,s,l,px,c := Θt,l,c, PPP+

t,s,l,px,cx,c := PPP+
t,s,l,px,c/η t

f , f ′
, and

III+t,s,l,cx,c = PPP+
t,s,l,px,cx,c/ηcx . One can readily verify that constraints (2.8), (2.10), and (2.11)

reduce to the constraint already accounted for in (2.6d). On the other hand, constraint

(2.9) reduces to:

∑
p∈PP

c

P̄PPt,s,l,p,c ≥Θt,l,c
(
V̄VV t,s,c−δδδ

−
t,s,c
) ∀(δδδ+

i ,δδδ
−
i ) ∈ Z̄i,∀c ∈ CU

∀(t,s) ∈Ai,∀i ∈ I
,
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which is necessarily satisfied since Θt,l,c ≥ 0 and δδδ
−
i ≥ 0. A similar argument can be

used to confirm that all non-negative constraints on P̄PPt,s,l,px,c +PPP+
t,s,l,px,cδδδ

+
t,s,c, P̄PPt,s,l,px,cx +

∑c∈CU PPP+
t,s,l,px,cx,cδδδ

+
t,s,c, and ĪIIt,s,l,cx +∑c∈CU III+t,s,l,cx,cδδδ

+
t,s,c are also satisfied.

In practice, if Assumption 1 is not satisfied, a few remedies exist. First, one can create

an artificial technology with either infinite or very large capacity, whose price is set to an

arbitrarily large amount. One can interpret the price of this artificial technology as the

marginal cost of shortages in the system. If this technology is not used in the optimal

solution that is identified, then shortages do not occur and the solution is optimal for

the problem without this artificial technology. Alternatively, one could also modify the

algorithm that is presented below to have it identify “feasibility cuts” when the current

candidate solution makes (2.7) infeasible (see Rahmaniani et al., 2017, for details).

We now focus on presenting a support plane representation of g(xxx,yyyi).

Theorem 2. Given that Assumption 1 is satisfied,

gi(xxx,yyyi) = max
θθθ i≥0,ζ̄ζζ i≥0,λλλ i≥0

(−bi +Aixxx+Biyyyi)
⊤

θθθ i−Tr(CiPiλλλ i) (2.12a)

s.t. θθθ iν
⊤
i −λλλ iW⊤i ≥ 0 (2.12b)

B⊤i λλλ i =−hiζ̄ζζ
⊤
i (2.12c)

Wiζ̄ζζ i ≤ νi , (2.12d)

where θθθ i ∈ Rni×1,λλλ i ∈ Rni×ri and ζ̄ζζ i ∈ Rri×1.

Proof. In the first step, we identify the robust counterpart of constraint (2.4b). For each

i ∈ I, given that Z̄i is non-empty, LP duality applies on each robust constraint thus intro-

ducing auxiliary variables that we denote in matrix form in ΦΦΦi. Namely, constraint (2.4b)

can be said equivalent to

∃ΦΦΦi ∈ Rni×(di+1), ∀i ∈ {1 · · · |I|}

ΦΦΦiνi ≤ bi−Aixxx−Biyyyi ∀i ∈ {1 · · · |I|} (2.13)

ΦΦΦiWi ≥ BiYYY i−CiPi ∀i ∈ {1 · · · |I|} . (2.14)
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Therefore, problem (2.7) can be reformulated as:

min
YYY i,ΦΦΦi

max
ζ̄ζζ i∈Z̄i

(
h⊤i YYY iζ̄ζζ i

)
s.t. (2.13), (2.14) ,

which is a feasible minimization problem according to Lemma 1 since we assumed that

Assumption 1 holds. In the next step, since Z̄i is a compact and convex set, Sion’s

minmax theorem (Sion, 1958) holds and one can reverse the order of minimization over

{YYY i,ΦΦΦi} and maximization over ζ̄ζζ i’s. Finally, since the set defined by (2.13) and (2.14)

is feasible, one can employ LP duality to replace the inner minimization problem with its

dual maximization problem to obtain:

g(xxx,yyyi) = max
ζ̄ζζ i∈Z̄i,θθθ i,λλλ i

(−bi +Aixxx+Biyyyi)
⊤

θθθ i−Tr(CiPiλλλ i)

s.t. θθθ iν
⊤
i −λλλ iW⊤ ≥ 0

B⊤i λλλ i =−hiζ̄ζζ
⊤
i

θθθ i ≥ 0, λλλ i ≥ 0 ,

where λλλ i ∈ Rni×ri , θθθ i ∈ Rni×1 are dual variables associated with constraints (2.13) and

(2.14) respectively.

Equipped with Theorem 2, we can define the following Benders decomposition algo-

rithm. Intuitively, the procedure consists in solving a so-called master problem in which

constraint (2.6c) is removed thus producing a sequence of lower bounds for problem (2.4).

Given a current optimal solution of the master problem, the latter is refined by progres-

sively reintroducing the constraints that are the most violated from the set:

ρρρ i ≥ (−bi +Aixxx+Biyyyi)
⊤

θθθ i−Tr(CiPiλλλ i),

∀(λλλ i,θθθ i) ∈ {(λλλ i,θθθ i) ∈ Rn1×ri
+ ×Rni

+ |∃ζ̄ζζ i ∈ Z̄i, (2.12b), (2.12c)}, ∀i ∈ I .

For each i, the most violated constraint can be found by solving the LP presented in (2.12),

which optimal value can be used to update an upper bound problem (2.4). We refer the

reader to the pseudo-code presented in Algorithm 1.
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Algorithme 1 : Benders Decomposition (BD) algorithm
1 Set UB = ∞,LB =−∞,v = 0 ;
2 Let i be the index for each subproblem;
3 Let v = v+1 and solve the deterministic problem, i.e., problem (2.4) when

Z̄i = {0}, and store the value of xxx as xxx(v) and yyyi as yyy(v)i ;
4 while (UB−LB)/LB≥ ε do
5 ∀i = {1 · · · |I|} solve problem (2.12) with (xxx(v),yyy(v)i ) and store the optimal

value in ρρρ∗i and decision variables in θθθ
v
i ,λλλ

v
i ,ζζζ

v
i ;

6 Update upper bound UB = min(UB, f⊤xxxv +∑
|I|
i=1 ρρρ∗i +h⊤i yyyv

i );
7 Solve the updated master problem :

min
xxx,{ρρρ i,yyyi}

|I|
i=1

f⊤xxx+
|I|

∑
i=1

h⊤i yyyi +ρρρ i (2.15a)

s.t. (2.6b), (2.6d) ,

ρρρ i ≥ (−bi +Aixxx+Biyyyi)
⊤

θθθ
v′

i −Tr(CiPλλλ
v′

i ), ∀v′ ≤ v,∀i ∈ {1 · · · |I|} .
(2.15b)8

Let v = v+1 and store the optimal value of the master problem variables in
xxxv,yyyv

i and ρρρ
v;

9 Update the lower bound: LB = f⊤xxxv +∑i h⊤i yyyv
i +ρρρ

v .

10 end

2.5.2 Improving the Algorithm’s Convergence

In order to improve the algorithm convergence, we apply two strategies. First, as proposed

in Ardestani-Jaafari and Delage (2018) and Ardestani-Jaafari and Delage (2020), we add

a set of valid inequalities to the master problem (2.15) based on violated scenarios from

previous iterations in order to tighten the lower bounding problem. Specifically, for any

i ∈ I and finite set of scenarios {ζ̄ζζ l
i}l∈Ω ⊂ Z̄i, the following constraint necessarily holds

in problem (2.6):

∀l ∈Ω,∃yyyl
i ∈ Rdi, ρρρ i ≥ h⊤i (yyy

l
i− yyyi) & Aixxx+Biyyyl

i ≤ bi +CiPiζ̄ζζ i
l
,

given that for all l ∈Ω:

ρρρ i ≥ g(xxx,yyyi) = min
YYY i:(2.4b)

max
ζ̄ζζ i∈Z̄i

h⊤i YYY iζ̄ζζ i ≥ min
YYY i:Aixxx+Bi

(
yyyi+YYY iζ̄ζζ

l
i

)
≤bi+CiPiζ̄ζζ

l
i

h⊤i YYY iζ̄ζζ
l
i
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= min
yyyl

i ,YYY i:yyyl
i=yyyi+YYY iζ̄ζζ

l
i ,Aixxx+Biyyyl

i≤bi+CiPiζ̄ζζ
l
i

h⊤i (yyy
l
i− yyyi)

≥ min
yyyl

i :Aixxx+Biyyyl
i≤bi+CiPiζ̄ζζ

l
i

h⊤i (yyy
l
i− yyyi) ,

where yyyl
i plays the role of an adjustable plan specifically designed for scenario ζ̄ζζ

l
i and

which can depart from the affine decision rule. Finally, In our implementation, we choose

to set {ζ̄ζζ l
i}l∈Ω to be the violated scenarios in the last v iterations of the algorithm. For

completeness, we include the new master problem below:

min
xxx,{ρρρ i,yyyi,yyyl

i}
|I|
i=1

f⊤xxx+
|I|

∑
i=1

h⊤i yyyi +ρρρ i (2.16a)

s.t. (2.6b), (2.6d), (2.15b) ,

ρρρ i ≥ h⊤i (yyy
l
i− yyyi) ∀l ∈Ω,∀i ∈ {1 · · · |I|} (2.16b)

Aixxx+Biyyyl
i ≤ bi +CiPiζ̄ζζ i

l ∀l ∈Ω,∀i ∈ {1 · · · |I|} . (2.16c)

The second proposed improvement has to do with how the upper bound is obtained.

In particular, this bound comes from evaluating the true worst-case cost of the current

best candidate based on the master problem (2.15), or its tighter version (2.16). Yet,

since the master problem is itself a robust optimization problem, we can expect based

on the findings of Iancu and Trichakis (2014) that at each iteration there exists a large

set of optimal solutions for (2.15). In a traditional Benders decomposition approach

(such as in Ardestani-Jaafari and Delage, 2018), the candidate that is used to calculate

the upper bound and generate an optimality cut is arbitrarily chosen by the LP solver

used to solve (2.15). While such a solution is optimal for (2.15), it could have a much

worst performance in problem (2.12) compared to other optimal solutions. We therefore

recommend, after solving (2.15), to identify a Pareto robustly optimal solution of (2.15)

by solving the following LP:

min
xxx,{ρρρ ′i,ρρρ i,yyyi}

|I|
i=1

f⊤xxx+
|I|

∑
i=1

h⊤i yyyi +ρρρ
′
i (2.17a)

s.t. (2.6b), (2.6d), (2.15b), (2.16b), (2.16c) ,
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f⊤xxx+
|I|

∑
i=1

h⊤i yyyi +ρρρ i ≤ (1+ ε)M ∗
v (2.17b)

ρρρ
′
i ≥ ∑

v′≤v

1
v
((−bi +Aixxx+Biyyyi)

⊤
θθθ

v′

i −Tr(CiPλλλ
v′

i )) ∀i ∈ {1 · · · |I|} ,

(2.17c)

where M ∗
v is the optimal solution of the master problem (2.15) in iteration v of Algo-

rithm 1, and ε > 0 allows for some small ε sub-optimality in order to help numerically.

The new candidate (xxxv,yyyv
i ) remains approximately optimal for (2.15) yet is guaranteed to

not be Pareto dominated by other solutions of (2.15). This follows from the fact that

constraint (2.17c) is equivalent to:

ρρρ
′
i ≥ (−bi +Aixxx+Biyyyi)

⊤(∑
v′≤v

1
v

θθθ
v′

i )−Tr(CiP(∑
v′≤v

1
v

λλλ
v′

i )) ∀i ∈ {1 · · · |I|},

and that ((∑v′≤v
1
v

θθθ
v′

i ),(∑v′≤v
1
v

λλλ
v′

i )) is in the relative interior of the convex hull of

{(θθθ v′

i ,λλλ
v′

i )}v′≤v. Hence, Corollary 1 in Iancu and Trichakis (2014) can be applied to

obtain the Pareto non-dominance guarantee.

We refer the reader to Iancu and Trichakis (2014) for more details about how to iden-

tify Pareto robustly optimal solutions.

2.6 Computational Results

In this section, we evaluate the performance of the proposed robust ETEM approximation

model (i.e., RMPCA) on a case study based on the energy system of the Arc Lémanique

region in Switzerland. To do so, we compare the performance of the RMPCA formu-

lation with a static robust model (SRM), which considers all decisions as here-and-now

decisions, and a deterministic model (DET), which disregards demand response uncer-

tainty. The purpose of these computational experiments is to empirically show that: i)

considering DRU in a capacity expansion planning problem and solving it using robust

optimization can decrease both worst-case and expected total costs of the system com-

pared to a deterministic formulation of the problem; and ii) assuming flexibility of the
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procurement decisions with respect to observed actual DR decreases the level of conser-

vatism of the model and consequently the expected total cost of the system. Recall that

in RMPCA the planner first decides on the capacities and planned DR, then in seasonal

periods, after observing the actual DR, he decides on the optimal procurement of energy.

Theoretically, it is known that the policies proposed by SRM are more conservative com-

pared to policies proposed by RMPCA. In addition, we present a detailed comparison of

the structure of the RMPCA, SRM, and DET policies. The purpose is to understand how

considering the uncertainty of the demand response affects the long-term capacity expan-

sion strategies. Finally, we provide a computational analysis to compare the performance

of the different decomposition algorithms presented in Section 2.5. All numerical studies

are performed on a 64-bit computer with 128 GB of RAM and Intel(R) Xeon(R) 3.1 GHz

(40 CPUs). The deterministic version of ETEM is originally written in AMPL. However,

we extract the standard form matrices from AMPL and carry out robust optimization using

the YALMIP toolbox and GUROBI solver in a MATLAB R2019a environment.

2.6.1 A Swiss Case Study

The ETEM model describing the Arc Lémanique region (Cantons of Geneva and Vaud,

in Switzerland) encompasses 142 different technologies, including centralized electricity

and heat production plants, decentralized electricity production, conventional and flexible

loads, and end-use transportation technologies. In addition, 57 energy commodities, in-

cluding 21 types of useful demand, are modeled. We choose to immunize ETEM against

residential electricity demand response deviations (i.e., Res-ELC in Figure 2.1), which

implies that the robust model is subject to 120 independent sources of perturbations.

This choice is motivated by the fact that the response behavior of residential electric-

ity is more prone to uncertainty in the long-run compared to industrial and large-scale

electricity consumers, as the former corresponds to a larger and more diverse group of

consumers. Table 2.2 presents techno-economic features of both presently available and

expected future electricity generation technologies in the Arc Lémanique region. As we
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Table 2.2: Characteristics of electricity generation technologies considered in the Arc Lémanique
region model

Category1 Technology Status Input2 Output3 Investment cost
(MCHF/GW)

Fixed cost
(MCHF/GW)

Variable cost
(MCHF/PJ) Efficiency Life

(year)
Gas-PP Gas Turbine existing NGA ELC,CO2 300 25 0.22 0.3 4

Gas CC new NGA ELC,CO2 450 25 0.55 0.6 5
Hydro-PP Veytaux (turbine) existing HYD ELC - 130 0 0.89 10

Hydroelectric VAUD existing HYD ELC - 130 0 0.39 10
Hydroelectric GENEVA existing HYD ELC - 130 0 0.39 10

PV Photovoltaic new SOL ELC 6000-2000 25 0 0.39 6
Wind-pp Wind new WND ELC 1500-1250 40 0 0.4 5
Oil-Fired-PP Oil-Fired Steam-Cycle new DSL ELC,CO2 - 92 0.52 0.39 6

Oil-Fired Steam-Cycle (CPD) new NGA,DSL ELC,CO2 1100 68 0.55 0.4 7
CHP Gas CC (CHP) new NGA ELC,CO2 1000 46 0.55 0.85 7

Centrale de Cheneviers (heat and electricity) existing MSW ELC,CO2 1200 30 0.0 0.38 10
Enerbois (Vaud) existing WOR ELC,CO2 - 0 0.0 1 10
Pierre-de-Plan (heat+electricity) existing NGA ELC,CO2 450 25 0.55 0.9 5
Industrial Cogen. Gas Turbine (5 MW) existing NGA ELC,CO2 800 78 0 0.28 5
Industrial Cogen. STEAM Turbine (5 MW) existing NGA ELC,CO2 1000 208 0 0.15 5
Industrial Combined Cycle CC (5 MW) existing NGA ELC,CO2 1200 68 0 0.37 5
Cogeneration INDustry (Motor) existing NGA ELC,CO2 4160 104 0 0.35 3
Cogeneration COMM (Motor) existing NGA ELC,CO2 5434 65 0 0.53 3
Cogeneration RESID (Motor) existing NGA ELC,CO2 6136 92 0 0.53 3
Chatillon Plant (heat) existing WOR ELC,CO2 - - - 1 10
CHP combined heat production new NGA ELC,CO2 1800 15 0.71 0.9 4
CHP combined heat production new NGA ELC,CO2 1200 12 0.71 0.9 4

Other-PP Geothermie (Vaud) existing HTH ELC - - - 1 10
Tridel (Vaud) Electricity existing MSW ELC,CO2 - - - 0.38 10
Gas fuel cell new NGA ELC 2000-1250 78 4.78 0.42 6

1 Definition of technology categories is presented in Fig 2.1.
2 NGA: Natural gas, HYD: Hydro power, SOL: Solar, WND: Wind, DSL: Diesel, MSW: Municipal solid waste, WOR: Wood residential,

HTH: High temperature heat.
3 ELC: Electricity, CO2: CO2 emissions.

wish to avoid as much as possible energy shortages in the system, we set the cost of the

additional energy source (ExR) high enough so that there is no capacity shortage in the

optimal solution of RMPCA model when the largest amount of deviations are assumed.

Finally, in order to better investigate the influence of robust optimization on the solutions,

no upper bound limits the installation of renewable technologies (wind and photovoltaic

power plants) in the model. For interested readers, we note that our deterministic version

of ETEM presents 171,620 variables and 431,652 constraints while the LP reformulation

of RMPCA, i.e., problem (2.5), presents 3,540,720 variables and 3,708,658 constraints.

While we refer the reader to Babonneau et al. (2017) for a complete description of

all input parameters and assumptions, it is worth mentioning that we consider here a case

where CO2 emissions are curbed to 2.5 Mt in 2050, a 45% reduction compared to 2010

levels (5.48 Mt).
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2.6.2 Performance Analysis

In this section, we study the performance of strategies proposed by RMPCA, SRM, and

DET in the average and worst-case scenarios. For a specific budget size Γ and box size

β , xxxΓ,β
RMPCA represents the RMPCA strategy obtained by solving problem (2.5). Simi-

larly, xxxΓ,β
SRM is the static robust strategy obtained by solving problem (2.5) when forcing

YYY i = 0 ∀i ∈ {1 · · · |I|}. It should be noted that, because problem (2.5) is computationally

demanding and cannot be solved in a 72-hour time limit, we have used the PRO-BD-VI

algorithm proposed in Section 2.5. Finally, the DET strategy xxxDET is obtained by solving

the deterministic model, i.e., problem (2.4) when Z̄i = {0} ∀i∈{1 · · · |I|}. After obtaining

all the strategies from the different models, in a next step, we generate a set of 1000 DR

random scenarios ζζζ
j
i (∀i ∈ {1, · · · , |I|}, j ∈ [1, · · · ,1000]) using a uniform distribution on

the [−β ,β ] interval. For each scenario, we then re-optimize problem (2.4) with the value

of xxx and ζζζ i fixed to the corresponding strategy and random scenario. In the first period

( i.e., t = 1), we have no uncertainty given that a full information about the level of DR

is available. If, for a specific policy and scenario, problem (2.4) becomes infeasible, this

implies a capacity shortage. Table 2.3 reports the proportion of scenarios with capacity

shortage for the different strategies and different budget sizes (expressed in percentage

of |di| and denoted as Γ%). When the budget size increases, the chances of capacity

shortage of RMPCA and SRM reduces. This is because a larger budget size increases the

conservatism of the model, and consequently, the model installs more capacity to avoid

shortage, which obviously is more expensive. Nevertheless, for budget sizes in the range

of [50%, 60%], the capacity shortage of RMPCA can be as low as 2%. To have a fair

comparison between the expected total cost of different strategies, we report the average

total cost both over all scenarios and over the scenarios without capacity shortage.

Figure 2.4a presents statistics of the total cost for the RMPCA and SRM strategies,

over all scenarios, for different budget sizes and β = 0.6. Figure 2.4b gives similar results

when the average costs are taken over only scenarios without capacity shortage. We can

first note that the average cost for the SRM strategy remains fixed for budget sizes greater
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Table 2.3: Proportion of random scenarios with capacity shortage
when β = 0.6.

Γ%1 RMPCA SRM DET
10% 100% 100% 100%
20% 98% 96% 100%
30% 29% 0% 100%
40% 9% 0% 100%
50% 4% 0% 100%
60% 2% 0% 100%
70% 10% 0% 100%
80% 0% 0% 100%
90% 0% 0% 100%
100% 0% 0% 100%
1 Γ% denotes that the units are in percent of |di|.

than 25%. This is because when Γ% = 25%, |di| = 1, the SRM already considers each

constraint to be maximally perturbed due to the fact that each one only involves one

demand deviation. Second, we note that Figures 2.4 (a) and (b) show that the average

RMPCA cost is considerably lower than the SRM cost for all budget sizes. This already

suggests that the flexibility of energy procurement decisions can significantly reduce the

expected total cost. More precisely, the maximum difference occurs when Γ% = 30%

yet this difference comes at the price of 29% chances of capacity shortage (see again

Table 2.3). A better trade-off is achieved when Γ% = 50%, where the average total cost

of RMPCA is around 4% less than for SRM (i.e., a 9 billion CHF reduction) while the

chances of capacity shortage are estimated at only 4% . In comparison, the average total

cost (including shortage penalties) from implementing the DET strategy is around 256

billion CHF, which is about 33% more than the total cost of RMPCA. Overall, this

evidence supports the importance of: i) accounting of uncertainty of the demand response

in ETEM; and ii) the importance of considering that the procurement is adjustable with

respect to the actual DR.

Figure 2.5 is similar to Figure 2.4, but we have fixed the budget size to 50% and let

the box size β vary. For example, β = 0.2 means that the actual demand response at

each time-slice can deviate from the planned demand response by up to 20% of the total
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(a) (b)

Figure 2.4: Statistics of the total cost of RMPCA and SRM strategies for different budget sizes
and β = 0.6. (a) presents the distribution of the total cost over all 1000 random scenarios,

whereas (b) presents the conditional distributions given that no shortages occurred. The curves
present the mean values while each box presents the min, max, 25th and 75th percentile and some

extreme realizations (+).

demand. As expected, increasing the support of ζζζ leads to an increase of the average total

cost of the system. Interestingly, the rate of increase of the DET cost is larger than for

RMPCA and SRM. Indeed, as SRM and RMPCA are sensitive to worst-case values of

DR, more capacity is built under these strategies. This gives more production flexibility

with cheaper prices for the system when the actual DR is lower than planned DR. Finally,

the figure also illustrates that the average total cost (∼192.5 billion CHF) of preventing

96% of shortages when β = 0.6 is only about 5% more expensive than the cost estimated

by the deterministic model (i.e. ∼182.5 billion CHF).

Figure 2.6 corresponds to the Cumulative Distribution Function (CDF) diagram of the

simulated total cost of RMPCA, SRM and DET strategies when Γ% = 50% and β = 0.6.

We can note that RMPCA stochastically dominates SRM, while SRM stochastically dom-

inates DET. In fact, the maximum cost of the RMPCA strategy over all random scenarios

is less than the minimum cost of the SRM strategy, and similarly for the DET strategy.

Again, this figure shows the importance of considering uncertainty of the DR in capacity

expansion models.
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(a) (b)

Figure 2.5: Statistics of the total cost of RMPCA, SRM and DET strategies for different box
sizes and Γ% = 50%. (a) presents the distribution of the total cost over all 1000 random

scenarios, whereas (b) presents conditional distributions given that no shortages occurred.

(a) (b)

Figure 2.6: Comparison of the cumulative distribution functions of simulated total cost associated
with RMPCA, SRM and DET policies when Γ% = 50% and β = 0.6. (a) presents the

distribution for all 1000 random scenarios, while (b) presents the distribution for the scenarios
without capacity shortage.
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Figure 2.7: Worst-case performance of RMPCA
and SRM as a function of budget size (for β =
0.6)

Next, Figure 2.7 shows the worst-case total cost of the system when implementing the

RMPCA and SRM strategies for different budget sizes. As this figure shows, RMPCA

performs up to 6% better than SRM which is equivalent to approximately 12 billion CHF

over the entire planning horizon.

Figure 2.8 provides finally an analysis on the trade-off between rate of capacity short-

age and the average total cost for RMPCA and SRM strategies when the budget size varies

from 10% to 100% and the box size β = 0.6. As it is also shown in Table 2.3, for bud-

get sizes greater than 30%, the rate of capacity shortage for SRM is 0%. However, this

zero-shortage comes at the cost of building too much capacity (see Figure 2.9, below). As

Figure 2.8 suggests, allowing a certain degree of shortage can reduce the total cost dras-

tically. For example, for Γ% = 60% allowing a 2% chance of capacity shortage reduces

the average total cost by around 7 billion CHF (equivalent to 4% of the total system cost).

2.6.3 Electricity Generation Structure

In this section, we discuss how the different modeling schemes impact the evolution over

time of electricity generation. Figure 2.9 presents first the total installed capacity for the

different strategies. SRM is the most conservative approach, as it yields more capacity

than RMPCA and DET (around 1.5 times more than RMPCA, and 3 times more than

DET). It is indeed reasonable that RMPCA is less conservative than SRM, as it enjoys the
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Figure 2.8: Trade-off between capacity shortage
frequency and average total cost of RMPCA and
SRM for different budget sizes and β = 0.6.

Figure 2.9: Total installed capacity for RMPCA, SRM and DET.

flexibility of the energy procurement decisions to adjust for the actual (observed) demand

response.

Figure 2.10 presents next the installed capacity by type of technology for the RMPCA,

SRM and DET strategies. It highlights the importance of wind power to decarbonize the

electricity generation sector. Specifically, wind power will form around 88% of the total

installed capacity by 2050. It is followed by hydro power plant with 8%, and other tech-

nologies (including CHP, PV, geothermal, fuel-cell, and municipal-waste power plants)

with less than 4% share in the total installed capacity. In addition, Figure 2.11 reports

on the average annual electricity generation by different technology types for RMPCA,

SRM, and DET policies. A more detailed description of the installed capacity and the

average annual electricity generation is presented in Appendix 2.8.2.
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Figure 2.10: Total installed capacity (in MW) by type of technology for DET,
RMPCA, and SRM models. Other technologies include geothermal,fuel-cell
and municipal-waste power plant.

Figure 2.11: Average annual electricity generation (in GWh) by type of tech-
nology for DET, RMPCA, and SRM models over 1000 random scenarios.
Other technologies include geothermal,fuel-cell and municipal-waste power
plant

2.6.4 Computational Analysis

In this section, we numerically evaluate the performance of the decomposition algorithms

presented in Section 2.5. Specifically, we investigate how considering PRO and valid

inequalities can improve the solution time and the number of iterations of Algorithm 1.

In order for our results to be more general, we have designed smaller versions of ETEM

with 16 technologies and 9 energy commodities, in which parameters (including differ-

ent costs, demand, nominal demand response, technological capacity factor, availability
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Table 2.4: Solution time (ST) in seconds, number of iterations (It), percentage of improvement (%
impr.) with respect to BD for different versions of the decomposition algorithms. Four problem
sizes are considered, for which the number of variables (VAR) and constraints (CON) are reported
together with the solution time of solving (2.5) with CPLEX.

T DET (2.1) size RMPCA (2.5) size CPLEX BD PRO-BD PRO-BD-VI
VAR CON VAR CON ST ST It ST It % impr. ST It % impr.

3 4,644 11,830 97,112 103,095 71.8 47.0 15 37.5 10 20% 26.0 4 45%
5 7,740 19,718 161,860 171,837 227.5 92.8 15 78.1 11 16% 68.9 5 26%
7 10,836 27,601 226,583 240,534 519.2 78.0 10 68.0 7 13% 48.0 3 39%
9 13,932 35,486 291,316 309,249 1242.8 97.0 9 82.1 6 15% 81.3 3 16%
11 17,028 43,380 356,094 378,045 2336.4 141.8 11 90.5 7 36% 58.6 3 59%
13 20,124 51,263 420,817 446,742 4350.4 154.4 10 105.6 7 32% 69.7 3 55%

Average 1458.0 101.8 12 77.0 8 22% 58.75 4 40%

of technologies, etc.) are randomly assigned. Moreover, the size of the model changes

with different problem horizons T ∈ {3, 5, 7, 9, 11, 13}. Then, for each problem size, we

generate 20 random instances and solve these random instances for different budget sizes

Γ% ∈ {20%, 40%, 60%, 80%}. Table 2.4 reports, for different problem sizes, the aver-

age solution time (ST) of CPLEX for solving the RMPCA problem (2.5), together with

the average solution time and the number of iterations (It) for different versions of our

decomposition algorithm. Specifically, BD refers to the traditional Benders decomposi-

tion, i.e., Algorithm 1. PRO-BD refers to the algorithm with improved upper bound based

on PRO solutions while PRO-BD-VI additionally exploits valid inequalities. It is worth

mentioning that based on our numerical experiments, restricting Ω to the last 4 worst-case

scenarios led to the best solution time. Results show that PRO-BD improves the solution

time of the BD by up to 36%, whereas PRO-BD-VI is able to improve it by up to 59%.

On average, PRO-BD improves the solution time by 22% and PRO-BD-VI improves by

40%. Finally, a considerable improvement in terms of the number of iterations is observed

when comparing PRO-BD-VI and BD.

2.7 Concluding Remarks

In this paper, we model demand response uncertainty in an adjustable multi-period robust

generation capacity expansion problem. In a first stage, the planner decides on capacity

expansion, as well as, planned demand response. Then, in sequence of seasonal stages, the
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actual DR is revealed, and accordingly, the optimal procurement decisions are taken. As

the resulting adjustable model is intractable, we use a conservative approximation scheme

based on affine decision rules to solve the problem. We present a general formulation of

the problem, where with slight modifications of the formulation one could accommo-

date other sources of uncertainty such as the level of production one can achieve from

intermittent resources. We test our algorithm on a real-world case study based on the en-

ergy system of the Arc Lémanique region (Cantons of Geneva and Vaud, in Switzerland).

Numerical results reinforce the importance of adjustable robust formulation. Namely,

RMPCA can reduce the average total cost of the system by 33% compared to the solution

of the deterministic problem, while keeping the chances of shortage near 4%. RMPCA

also performs 4% better than a more naive static robust counterpart (SRM). Finally, we

develop a Benders type of decomposition to solve our large-scale RMPCA problem. In

this algorithm, the speed of convergence is improved through i) adding valid inequalities

to the master problem, and ii) identifying PRO solutions of the master problem. One

alternative strategy to calculate the optimal investment decisions is to sequentially solve

forward-shifting horizon RMPCA problems, and provide the investment plan over the en-

tire horizon by assembling the capacity addition decisions made at the beginning of each

forward-shifting horizon. However, this practical implementation of RMPCA problem is

beyond the scope of this paper and shall be considered as future work. Moreover, it is

worth mentioning that although this paper has focused on the uncertainty of demand re-

sponse, one can easily introduce a group of supply-side uncertainties, such as availability

of intermittent resources, or uncertainty of investment costs, to the general formulation

of the problem (2.4). In this case, matrices Ai and vector f will be affected by these un-

certainties. As our problem still preserves the “fixed recourse" condition, the approach

presented in Sections 2.4.2 and 2.5 remains valid. Conversely, considering another group

of supply-side uncertainties, such as fuel cost, or efficiency uncertainties, will affect ma-

trices hi and Bi, and thus consists of more significant changes to the structure of the

decision model. In conclusion, here follows some interesting directions to expand on this

paper. One idea is to consider investment decisions to be adaptive to the evolution of the
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uncertainty. Another extension is to consider other sources of uncertainties, especially the

ones that do not preserve the fixed recourse characteristic of the problem. One could also

control the loss of loads through reliability constraints. Finally, another possible exten-

sion would be to link the robust ETEM with a collective behavior demand model to more

precisely adjust the size of the specific uncertainty sets of each period.

2.8 Appendix

2.8.1 Comparison with robust ETEM from Babonneau et al. (2020)

In this section, we first summarize the technique proposed in Babonneau et al. (2020) to

model the demand response uncertainty in ETEM. Then, we discuss issues that arise when

using their proposed approach to account for demand response uncertainty that is present

in our case study. Namely, we will show that Babonneau et al. (2020)’s approach ends up

simply adding redundant constraints to the deterministic problem (2.1). We also encour-

age interested readers to have a look at Appendix B in Aliakbarisani et al. (2021), which

additionally argues that the constraints proposed in Babonneau et al. (2020) to model

demand response uncertainty fail to offer protection against observed demand response

deviations.

A summary of the method used in Babonneau et al. (2020)

In Babonneau et al. (2020), the authors propose an iterative procedure to robustify the

deterministic version of ETEM presented in (2.1) in context of uncertainty. They first rec-

ommend solving the deterministic version of ETEM to obtain an initial demand response

plan Θt,l,cV t,s,c. This plan can then be used to produce distributions of realized demand

responses Ṽt,l,s,c for each period, time slice, region, and commodity. Descriptive statistics

of each Ṽt,l,s,c are then extracted in the form of a mean value ∆̂
l,c
t,s and a confidence re-

gion [∆l,c,−
t,s , ∆

l,c,+
t,s ]. Finally, they use arguments based on moment inequalities to suggest

“robustifying” the ETEM by adding the following constraints:

∆
min
l,c ≤ ∑

t∈T
∑
s∈S

Θt,l,cVVV t,s,c ≤ ∆
max
l,c , ∀ l ∈ L,c ∈ CU , (2.18)
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with

∆
min
l,c := sup

ξ∈[0,1]T×S
∑

(t,s)∈T×S
∆

l,c,−
t,s +(∆̂l,c

t,s−∆
l,c,−
t,s )ξt,s

s.t. ∑
(t,s)∈T×S

ξt,s ≤ Γ ,

and

∆
max
l,c := inf

ξ∈[0,1]T×S
∑

(t,s)∈T×S
∆

l,c,+
t,s +(∆̂l,c

t,s−∆
l,c,+
t,s )ξt,s

s.t. ∑
(t,s)∈T×S

ξt,s ≤ Γ .

This iterative process is repeated until the robustified model starts producing the same

solutions in two consecutive iterations.

Implementing Babonneau et al. (2020)’s approach in our Swiss Case study

In the Swiss case study presented in Section 2.6, the random demand response is

modeled as the summation of the planned demand and the relative demand response de-

viations (RDRDs), i.e., Ṽt,l,s,c := Θt,l,c(V t,s,c +δt,s,c), where each δt,s,c follows a uniform

distribution over the interval [−βt,s,c,βt,s,c]. Therefore, in the first iteration of Babonneau

et al. (2020)’s, V is the solution of the deterministic ETEM (i.e. problem (2.1)) and the

following descriptive statistics are obtained from the observed realized demand responses:

∆
l,c,−
t,s := Θt,l,c

[
V t,s,c− (1− ε)βt,s,c

]
, (2.19)

∆
l,c,+
t,s := Θt,l,c

[
V t,s,c +(1− ε)βt,s,c

]
, (2.20)

∆̂
l,c
t,s := Θt,l,cV t,s,c (2.21)

where 1−ε is the level of confidence for the confidence interval [∆l,c,−
t,s , ∆

l,c,+
t,s ]. Lemma 3

demonstrates that V remains optimal after adding constraint (2.18) to problem (2.1).

Lemma 3. The solution V satisfies constraint (2.18).

Proof. We will first show that the lower bounding part of constraint (2.18) is satisfied.

Namely,

∆
min
l,c = sup

ξ∈Ξ̂

∑
(t,s)∈T×S

∆
l,c,−
t,s +(∆̂l,c

t,s−∆
l,c,−
t,s )ξt,s
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= sup
ξ∈Ξ̂

∑
(t,s)∈T×S

Θt,l,cV t,s,c−Θt,l,c(1− ε)(1−ξt,s)βt,s,c

= ∑
(t,s)∈T×S

Θt,l,cV t,s,c− inf
ξ∈Ξ̂

∑
t,s

Θt,l,c(1− ε)(1−ξt,s)βt,s,c

≤ ∑
(t,s)∈T×S

Θt,l,cV t,s,c ,

where Ξ̂ := {ξ ∈ [0, 1]T×S∑(t,s)∈T×S ξt,s ≤ Γ}, and which would confirm that V satisfies

the lower bound. In details, the first two equalities follow from the definition of ∆min
l,c and

∆
l,c,−
t,s (see equation (2.19)), while the first inequality follows from the fact that all terms

in Θt,l,c(1− ε)(1− ξt,s)βt,s,c are non-negative. A similar analysis can be done to prove

that V also satisfies the upper bound in constraint (2.18).

Interestingly, Lemma 3 implies that the procedure proposed by Babonneau et al.

(2020) will converge in the second iteration and prescribe the solution of the deterministic

version of ETEM in this case study. As reported in Aliakbarisani et al. (2021), it therefore

once again seems that Babonneau et al. (2020)’s approach is unable to immunize ETEM

from demand response uncertainty.

2.8.2 Details on electricity generation structure

In this section we present a table format of Figures 2.10 and 2.11. Table 2.5 reports on the

total installed capacity by type of power plant for each of DET, RMPCA, and SRM mod-

els. While, DET is proposing to build around 270 MW of power plant, RMPCA and RSM

are proposing to build 513 and 800 MW of power plants. According to the capacity ex-

pansion strategy of all models, the wind power plant will prevail. The second technology

is hydro power plant with around 23 MW by 2050. Finally, the capacity of other tech-

nologies, including photovoltaic, CHP, geothermal, fuel-cell, and municipal-waste power

plants will be around only 9 MW. Table 2.6 reports on the average annual electricity pro-

duction by each technology for RMPCA, SRM, and DET models. According to RMPCA

strategy, Wind power plants will produce up to 88% of the total electricity generated in
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the region in 2050. Hydro power will produce 11%, and other technologies will produce

only 0.2% of the total electricity produced in this region in 2050.

Table 2.5: Total installed capacity (in MW) by type of technology for RMPCA, SRM and DET
models.

2025 2030 2035 2040 2045 2050
RMPCA SRM DET RMPCA SRM DET RMPCA SRM DET RMPCA SRM DET RMPCA SRM DET RMPCA SRM DET

Hydro-PP 21.3 21.3 18.9 22.4 22.4 22.4 22.4 22.4 22.4 22.6 22.6 22.6 22.8 22.8 22.8 23 23 23
PV-PP 0.2 0.2 0.2 0.2 0.2 0.2 0.8 0.8 0.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8
Wind-PP 168.4 297.6 110.8 282.5 504.1 211.3 431.1 697.3 216.5 446.2 721.9 230.0 471.2 750.1 239.1 480.9 767.2 240.7
CHP 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7
Other1 0.5 0.5 0.5 1.2 0.5 0.5 1.2 3.1 0.5 1.2 3.1 0.5 1.2 3.1 0.5 3.1 3.1 3.1

1 Other technologies include geothermal,fuel-cell and municipal-waste power plants.

Table 2.6: Average annual electricity generation (in GWh) by type of technology for RMPCA,
SRM and DET models over 1000 random scenarios.

2025-2029 2030-2034 2035-2039 2040-2044 2045-2049 2050-2055
RMPCA SRM DET RMPCA SRM DET RMPCA SRM DET RMPCA SRM DET RMPCA SRM DET RMPCA SRM DET

Hydro-PP 2010 1943.6 1642.8 2210.6 2086.8 2306 2153.4 2088 2146.1 2173.3 2108.7 2202.4 2188.5 2129.7 2244.5 2214.1 2152 2210.8
PV-PP 4.9 4.9 4.9 3.7 3.7 3.7 16.7 16.7 16.7 38.3 38.3 38.3 38.3 38.3 38.3 38.3 38.3 38.3
Wind-PP 9238 16323 6076 9506 21654 5744 14495 22233 6033 15233 23583 6537 16602 24892 7038 17137 25749 7124
CHP 12.5 0.5 40.3 10.2 0.0 39.4 1.6 0 15.8 1.6 0 15.8 1.5 0 16.6 1.5 0 16.6
Other1 16.2 0.7 32.5 13.8 0.0 29 2.4 0 0 2.3 0 0 2.2 0 6.8 2.3 0 8.9

1 Other technologies include geothermal,fuel-cell and municipal-waste power plants.
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Abstract

Battery charging of electric vehicles (EVs) needs to be properly coordinated by electricity

producers to maintain the network reliability. In this paper, we propose a robust approach

to model the interaction between a large fleet of EV users and utilities in a long-term

generation expansion planning problem. In doing so, we employ a robust multi-period

adjustable generation expansion planning problem, called R-ETEM, in which demand

responses of EV users are uncertain. Then, we employ a linear quadratic game to simulate

the average charging behavior of the EV users. The two models are coupled through a



dynamic price signal broadcasted by the utility. Mean field game theory is used to solve

the linear quadratic game model. Finally, we develop a new coupling algorithm between

R-ETEM and the linear quadratic game with the purpose of adjusting in R-ETEM the

uncertainty level of EV demand responses. The performance of our approach is evaluated

on a realistic case study that represents the energy system of the Swiss “Arc Lémanique”

region. Results show that a robust behaviorally-consistent generation expansion plan can

potentially reduce the total actual cost of the system by 6.2% compared to a behaviorally-

inconsistent expansion plan.

3.1 Introduction

Modeling the interaction between electric vehicles (EVs) and utilities (electricity produc-

ers) is an important problem in smart grid (SG) management because utilities need to

properly coordinate the EVs load. On the one hand, EVs are a mobile load that is highly

spatial and temporally uncertain, on the other hand, due to their vehicle-to-grid (V2G)

features, EVs can provide the network with ancillary services and distributed storage if

they are properly coordinated. In other words, utilities need to partially control the EV

load profile to prevent network congestions and load imbalances. In addition, since EVs

run on battery, utilities can take advantage of this distributed storage in order to increase

the reliability of the network by valley-filling and peak-shaving of the power consump-

tion profile. Usually, utilities use incentive pricing as a leverage to coordinate EV load in

so-called demand response (DR) programs. Nevertheless, the operational planning is still

challenging because the response of EV users to the price signals is uncertain. This uncer-

tainty becomes even more important in a generation expansion planning (GEP) problem,

where the planner needs to estimate the reserved capacity provided by DR programs over a

long-term horizon. Let us recall here that GEP is the problem of determining the required

capacity of a power network to satisfy demand at minimum cost, while also satisfying

economic, environmental and technical constraints (see for a recent review Koltsaklis and

Dagoumas, 2018).
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Game theory and bi-level optimization are the main mathematical tools used to model

the interaction between EV users, or consumers/prosumers in a broader perspective, and

the electricity network (for example, see Mohsenian-Rad et al., 2010; Zugno et al., 2013;

Wang et al., 2019; Zeng et al., 2020). In this literature, EV users play a non-cooperative

game to decide on i) when and how much to consume electricity to charge the battery,

and ii) when and how much to provide service to the network. Their behavior is impacted

by the electricity price broadcasted by a utility or a local DR aggregator. Whereas the

utility solves its own problem to maximize its profit from generating electricity or buy-

ing it from a wholesale market. This implies that the utility needs to design a dynamic

price signal to induce consumers/prosumers to behave in such a way that their aggre-

gated behavior maximizes its profit. To solve these models, a complementarity problem

or Karush–Kuhn–Tucker conditions are usually used to reformulate the original problem

into a mixed integer linear programming (MILP) problem, which is solved using column

and constraint generation techniques. This approach works well when the number of

players is small. From an application point of view, these problems model a short-term

interaction between a local utility and a limited number of EVs connected to its network.

But when the number of players increases, finding some equilibrium becomes computa-

tionally challenging. For example, to model the effect of EV interactions on the strategic

long-term GEP problem, one needs to model the behavior of a fleet of EVs with a very

large number of players connected to the whole network. To circumvent this issue, the

theory of mean field games (MFG), introduced simultaneously by Huang et al. (2006)

and Lasry and Lions (2006), provides a methodology to obtain some ε-Nash equilibrium,

with vanishing errors as the pool size goes to infinity.

While there are many papers that address the interaction between a local utility and a

small group of EVs over a short-term horizon, there is only a limited number of papers

that address the influence of charging behavior of a large fleet of EVs on a long-term

GEP problem (see Babonneau et al., 2016, 2020, as two examples). Babonneau et al.

(2016) model the influence of the aggregated EV charging on GEP using a large-scale

LP problem. In order to to do so, it is necessary to assume that i) all EVs share the
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same constraints concerning their utilization, ii) EV users are only seeking to minimize

their cost, and iii) the latter is a convex function with respect to the total load. Moreover,

the analysis in Babonneau et al. (2016) is limited to a deterministic setting. In a more

realistic formulation of the interaction between a large population of EVs connected to

a distribution network and a GEP problem, Babonneau et al. (2020) couple a long-term

GEP problem, called ETEM, with a Wardrop equilibrium-based model. Moreover, in

order to analyze the interaction in a stochastic setting, they develop a MFG model of

battery charging and couple it with a robust version of ETEM.

In this paper, we propose a new scheme for robustly integrating the average collective

charging behavior of a fleet of EVs in a long-term GEP problem. Specifically, we use

the approach in Aliakbarisani et al. (2020) to robustify a specific GEP problem, called

ETEM, against the perturbations of the demand response of a fleet of EVs connected

to the network. We have chosen ETEM because, compared to other GEP problems: i)

it provides a detailed description of useful demand technologies, ii) it models demand

response by end-use technologies, and iii) it is an open-source commercially-used GEP

model. The proposed robust ETEM (R-ETEM) is a multi-stage robust optimization prob-

lem, where in a first stage one decides on the capacity expansion and planned demand

response, then after observing the actual demand response one can decide on the optimal

procurement of energy in each period. It is well known that the adjustability of the deci-

sions in multi-stage RO problem provides less conservative optimal solutions (compared

to a static robust model). Similar to Aliakbarisani et al. (2020), we apply the affinely

adjustable robust optimization technique, introduced by Ben-Tal et al. (2004), to solve

R-ETEM. To model the EV users’ behavior, we employ the linear quadratic game (LQG)

presented in Tchuendom et al. (2019). This LQG is a finite horizon game among a large

number of EV users, who selfishly optimize a cost function that accounts for their daily

usage, desired level of charge of the EV battery, its degradation due fast charging, and

regional dynamic electricity prices that correspond to the marginal costs of electricity in

R-ETEM. Because of the very large population of small interacting EVs in the game,

MFG theory is used to formulate and solve the LQG.
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The main contribution of this paper consists in developing a new coupling algorithm

between a long-term risk averse expansion planning model (R-ETEM) and a short-term

higher-precision consumer behavior model (LQG). The aim of this coupling is to identify

a robust optimal capacity expansion plan that is immunized against the demand response

deviations observed in the behavioral model when it is implemented. Such optimal ro-

bust plans will be referred to as being behaviorally-consistent and will be optimized using

a bisection method that converges in O(log(1/ε)) iterations. We further provide a nu-

merical illustration that highlights the impact of our approach on the expansion planning

of electricity generation capacities in the real context of the Arc Lémanique region (in

Switzerland), where our robust strategy significantly reduces the realized total cost.

The remainder of the paper is organized as follows. In Section 3.2, we present an

overview of different methods to model the interaction between consumers, prosumers

(and EV users in particular), and utilities. Moreover, we position our work with respect

to closely related studies that address uncertainty in a GEP problem, with a special focus

on ETEM. In Section 3.3, we present the formulation of R-ETEM. Section 3.4 formulates

the LQG and describes how MFG theory is used to identify an ε-Nash equilibrium. Sec-

tion 3.5 presents the new coupling algorithm that identifies behaviorally-consistent robust

capacity expansion plans. Section 3.6 presents and discusses numerical results for our

case study. Finally, Section 3.7 provides concluding remarks.

3.2 Literature review

In this section we briefly review the methods that are used in the literature to formu-

late the interaction between EV users, or other consumers/prosumers, and the electricity

network. In a more general perspective, we then review papers that integrate short-term

operational characteristics of the power network into a long-term GEP problem. Finally,

we summarize some closely related studies that address uncertainties in a GEP problem.

Modeling the interaction between EV users and the electricy network has been ad-

dressed in many studies. Zeng et al. (2020) develop a bi-level robust optimization to
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model the effect of charging behavior of a number of EVs on the configuration of a charg-

ing station. The charging station is connected to the network and dynamically decides

on the amount of energy to be purchased from, and injected to the network. They apply

a complementarity theory to reformulate the so-called adversarial problem into a MILP

and use a column-and-constraint generation algorithm to solve it. Zugno et al. (2013)

propose a bi-level optimization model to formulate the interaction between the energy

retailer and a number of partially flexible consumers. The retailer faces uncertainties in

market price and in demand (due to weather conditions). They reformulate the problem

to be cast as a single-level MILP problem. Wang et al. (2019) develop a stackelberg game

between an electricity aggregator and EV users. The upper level optimization problem

maximizes the profit of the aggregator who purchases electricity from the wholesale mar-

ket and signals a dynamic price to a group of EV users. The lower level problem, on

the other hand, minimizes the charging cost of each EV. They use an iterative algorithm

to solve the problem. Mohsenian-Rad et al. (2010) propose a game theoretic approach

for modeling the interaction between N prosumers who want to schedule a set of flexible

loads in response to the dynamic tariffs which are broadcasted by the utility. They show

that under some assumptions, including that the prosumers would be only cost minimizer

and their total cost function would be convex, a unique Nash equilibrium can be obtained

from solving a MILP problem. They propose a distributed algorithm as well in order to

find the Nash equilibrium and solve an example with N=20 players. As discussed before,

these papers use a game theoretic approach to formulate the interactions. They then use

complementarity condition to turn the problem into a single optimization problem. From

a computational point of view, this type of approach works well with a limited number of

players. However, when the number of players increases, other methodologies, like MFG,

become more appropriate (see, for example, Couillet et al., 2012; Ma et al., 2013; Chen

et al., 2014; Zhu et al., 2016; Lindholm et al., 2017; Gomes and Saude, 2018; Tchuendom

et al., 2019).

The current paper, in a broader perspective, contributes to a stream of research that

investigates the integration of short-term operational decisions into a long-term GEP prob-
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lem. Power systems planning requires decision making in two different timescales: short-

term operational decisions and long-term strategic capacity expansion decisions. While

the GEP problem addresses long-term investment decisions, due to the large size of the

problem, it overlooks some important details of short-term operational characteristics of

the network. Short-term operational decisions in power networks deal with issues such

as unit commitment, demand response management, ancillary service operations, power

flow, and economic dispatching. Poncelet et al. (2016) and Helistö et al. (2021) discuss

how and to what extent the simplification of the short-term operational details in a long-

term GEP problem affects the quality of the results. To address this drawback, a group of

studies has developed methods to link a short-term power network operational model and

a GEP problem. For example, a widespread practice is to link a short-term unit commit-

ment problem with a GEP problem (Deane et al., 2012; Collins et al., 2017; Gaur et al.,

2019; de Queiroz et al., 2019; Wyrwa et al., 2022). Koltsaklis and Georgiadis (2015) cou-

ple a short-term unit commitment problem that considers maintenance scheduling with a

GEP problem. Ringkjøb et al. (2020) study the integration of short-term wind and solar

production variability in the long-term GEP problem of TIMES. Short-term demand re-

sponse management is an influential operation decision that is neglected in the traditional

GEP problems. These problems assumed that, since consumers cannot see and immedi-

ately respond to prices, electricity demand is inelastic in the short term. However, with

the penetration of smart meters that makes it possible to respond to real-time prices, this

assumption is not valid anymore. To address this issue, a related stream of papers studies

the integration of a short-term demand response model into the GEP problem (De Jonghe

et al., 2011; Lohmann and Rebennack, 2017). In doing so, they introduce price-elastic

demand response alongside dynamic operational constraints into GEP problems in order

to enhance their solutions. The current study contributes to this literature by coupling a

high-resolution demand response predicting model into a long-term GEP problem. We

propose an original approach to integrate the information of the demand response model

in the uncertainty model of a robust GEP problem.

GEP is a classical power system problem that plans the capacity expansion strategy
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of the entire electricity network over a long-term horizon to satisfy demand at minimum

cost (see Koltsaklis and Dagoumas (2018) for a recent review). With the advent of smart

grids, recent versions of the GEP problem consider DR as a reserved capacity (see e.g.

Babonneau et al., 2017; Lohmann and Rebennack, 2017). Because of the long-term hori-

zon of the planning in a GEP, this problem is plagued with many uncertainties. To tackle

this issue, multi-stage versions of Robust Optimization (RO) and Stochastic Programming

(SP) have been widely used (Dehghan et al., 2014; Mejía-Giraldo and McCalley, 2014;

Han et al., 2018; Zou et al., 2018; Aliakbarisani et al., 2020). Specifically, Bloom (1983)

and Bloom et al. (1984) are among the first papers to propose a two-stage SP formulation

for the GEP problem with uncertain demand and supply. In Dehghan et al. (2014), the

uncertainties of demand and investment cost are modeled in a two-stage RO model, while

Mejía-Giraldo and McCalley (2014) uses such a formulation to address uncertainty in

fuel price, demand and transmission capacity. Han et al. (2018) model the uncertainty of

load demand and wind output in a GEP using a two-stage SP. Zou et al. (2018) propose a

partially adaptive multi-stage SP GEP problem, where fuel price and demand are the two

sources of uncertain.

Recently, Aliakbarisani et al. (2020) developed a robust multi-period conservative ap-

proximation formulation to address the uncertainty of DR in the ETEM model. This is

the formulation that will be used in this paper for handling demand response uncertainty

caused by a large fleet of EV users. Unlike Aliakbarisani et al. (2020), who simply as-

sumed that DR deviations were exogenous to the expansion plan and thus that the size of

the uncertainty set could be calibrated using historical data, our proposed approach will

consider DR deviations to be endogenous, i.e. that they are affected by the marginal cost

of useful energy production under the optimized expansion plan. Such endogeneity will

be modeled using a continuous time linear quadratic game played by the EV users. The

novelty in our approach consists in designing a procedure that will ensure that the robust

expansion plan is both minimal with respect to worst-case cost and immunized against

EV users’ behavior as they react to the resulting marginal cost of energy.

Our work is similar in spirit to Babonneau et al. (2020), who were the first to attempt
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to integrate EV charging behavior in a robust version of ETEM. There are however cru-

cial distinctions between the two works. First, the robust expansion planning model in

Babonneau et al. (2020) only considers “here and now” decisions (a.k.a. static policies)

and accounts for uncertainty about the maximum and minimum value that the demand

response decision can take. They also take an optimistic view on robustness by robustify-

ing only the sum of demand responses over the horizon instead of on a period by period

basis. Secondly, the nature of the solution that they obtain when reaching a solution at

equilibrium between the R-ETEM formulation and the LQGs is very different. To the

best of our knowledge, their “robust” solution is only guaranteed to prescribe a plausible

demand response plan, i.e. within the range of the more likely demand response profiles

produced by the LQGs under market clearing prices. Such a solution actually has no

guarantees regarding worst-case cost when the actual demand response deviates from the

optimally selected plausible one. In opposition, our solution will provide (and minimize)

a guarantee on the worst-case cost achieved by the expansion plan under all demand re-

sponse deviation profiles produced by the LQGs under market clearing prices. We refer

interested readers to Appendix 3.8.2 for more details about these distinctions. Finally,

unlike Babonneau et al. (2020), which only present a simple step by step illustration of

their algorithm, we perform a more detailed numerical investigation of how our new ro-

bust modeling approach affects the expansion planning of the electricity network of the

Arc Lémanique region.

3.3 A robust multi-period ETEM model

In this work we consider the ETEM model proposed in Babonneau et al. (2017) (and sum-

marized in Appendix 3.8.1). ETEM is a multi-regional multi-commodity GEP problem,

and it is a member of the bottom-up family of energy models that integrates the entire

energy value chains, from the resources to useful demands, aiming to obtain the best

combination of supply and demand technologies at minimum cost. One salient feature

of ETEM is a detailed description of demand technologies and the modeling of demand
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response by end-use technologies. This feature, alongside with the fact that ETEM is an

open-source model, makes it well suited to the purpose of this study.

The description in ETEM is based on a list of geographical regions indexed by l ∈L, a

list of energy commodities c ∈C, and a list of technologies p ∈ P. The planning horizon,

which typically spans over 40 years or more, is divided into different decision making

periods, denoted as t ∈ T, that are themselves divided into several time-slices in each pe-

riod that capture the pattern of production and consumption i.e., s ∈ S := H× J based

on the hour of the day h ∈ H and season of the year j ∈ J. ETEM is able to model both

consumers and prosumers on the demand side, but in this paper we focus on consumers.

The reason is that considering EVs as prosumers requires a detailed modeling of battery

degradation as a result of additional discharge cycling in V2G operations, and designing

an appropriate compensation scheme (Dubarry et al., 2017; Uddin et al., 2018), which is

beyond the scope of this research. Our implementation will consider a T = 8 decision

making periods each representing 5 years, while the time-slices will model the differ-

ences in consumption at a seasonal level (J := {winter, summer, intermediate seasons})

and hourly level (with 4 different hour blocks as shown in Table 3.1). In total, there are

12 time-slices in a year |S|= 12 (see Figure 3.1). Decisions in ETEM include (i) annual

installation of each technology in each region, (ii) energy production by each technology

in each region and each period and time slice, (iii) import of energy commodity from

outside of the energy system, (iv) export of energy to outside of the energy system, (v)

transmission of energy from one region to another region inside the boundary of the en-

ergy system, and finally (vi) planned demand response for the useful demand. In this

paper, in order to simplify the presentation, we use a similar vector representation as used

in Aliakbarisani et al. (2020), where xxx∈Rm captures the technology installation decisions

(i) in all periods and all regions while yyyi captures the procurement decisions (ii-v) of all

commodities, in all regions and time slices that belong to season i ∈ I := T× J, the set

of seasonal periods. We depart from the notation in Aliakbarisani et al. (2020) by using

a dedicated sssi to relate to demand response decisions in order to permit us to define the

interaction with the consumption behavior model. Overall, the deterministic version of
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ETEM takes the form:

min
xxx,{yyyi,sssi}

|I|
i=1

f⊤xxx+∑
i∈I

h⊤i yyyi (3.1a)

s.t. Aixxx+Eisssi +Biyyyi ≤ bi, ∀i ∈ I (3.1b)

Fisssi ≤Ui, sssi ≥ 0 ∀i ∈ I (3.1c)

Dxxx≤ e , (3.1d)

where constraint (3.1b) represents the set of constraints on capacity, seasonal procure-

ment and useful demand. For example, these constraints include, but are not limited to,

energy balance, minimum required reserve capacity for peak periods, demand, and capac-

ity factor constraints (see Appendix 3.8.1). On the other hand, constraint (3.1c) limits the

feasible space for demand response and constraint (3.1d) imposes technical and econom-

ical constraints on the newly installed capacity. More importantly for what will follow, in

terms of demand response modeling, constraint (3.1b) includes:

∑
p∈PP

c

PPPt,s,l,p,c ≥Θt,l,cVVV t,s,l,c ∀t,s, l,c ∈ CD (3.2)

while (3.1c) contains:

υt,s,l,c(1−νt,s,l,c)≤VVV t,s,l,c ≤ υt,s,l,c(1+νt,s,l,c) ∀t,s, l,c ∈ CD (3.3)

∑
s∈S j

VVV t,s,l,c = ∑
s∈S j

υt,s,l,c ∀t, l,c ∈ CD , j ∈ J (3.4)

Together, these constraints model the idea that for each commodity c in the set of useful

demand CD , the total production of useful energy accounted for by PPP must satisfy the

demand in each time-slice and region. The latter demand is a result of relative demand

response plan denoted by VVV that attempts to optimally distribute the total demand of

period t into all time-slices s inside period t, while staying within a certain ν margin from

the nominal demand distribution v. Finally, note that sssi captures all VVV t,s,l,c with i = (t, j),

l ∈ L, s ∈ S j, and all c ∈ CD .

As described previously, beside the optimal expansion of the generation technologies,

the planner decides in ETEM of the optimal level of DR contributions. It is therefore
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Figure 3.1: Sequence of time-slices

Table 3.1: Definition of hourly blocks H

h1 23 pm - 6 am
h2 6 am - 12 pm
h3 12 pm - 17 pm
h4 17 pm- 23 pm

assumed that the consumers can be convinced to behave according to the planned demand

response by using incentive programs such as real-time pricing. While, in long-term

planning problem such as GEPs, there are necessarily many uncertainties that may af-

fect the performance of the expansion plans, in this paper we focus on the influence of

consumer behavioral uncertainties on the performance that can be expected from planned

demand response. In particular, we assume that the planner wishes to immunize his ex-

pansion plan against possible deviations between the planned and actual DR. As shown

in Aliakbarisani et al. (2020), this can be done by employing a R-ETEM model, which

offers a protection against relative demand response deviations (RDRDs) in ETEM. More

specifically, R-ETEM is a multi-period adjustable RO formulation of ETEM, which is a

standard technique to model uncertainties in long term planning problems. R-ETEM also

exploits affinely adjustable policies, a widely used approximation technique introduced

by Ben-Tal et al. (2004) to efficiently identify conservative solutions to multi-stage robust

optimization problem.

Mathematically speaking, R-ETEM considers that the total demand of final energy is

perturbed by a relative demand response deviation (RDRD) denoted by δδδ t,s,l,c, i.e that

Θt,l,cVVV t,s,l,c in constraint (3.2) is replaced with Θt,l,c
(
VVV t,s,l,c + δδδ t,s,l,c

)
with δδδ in some
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Figure 3.2: Sequence of decisions and uncertainty observations in our multi-period prob-
lem

uncertainty set Ξ(η) defined as:

Ξ(η) =

δδδ ∈ Rd

∣∣∣∣∣∣∣∣∣
∃ζζζ ∈ [−1, 1]d

δδδ t,s,l,c = ηζζζ t,s,l,c, ∀t,s, l,c ∈ CU

∑s∈S j ∑l∈L∑c∈CU |ζζζ t,s,l,c| ≤
√
|S j||CU ||L| ∀t, j ∈ J

 , (3.5)

where d is the total number of perturbations while η captures the level of uncertainty in

Ξ and can be used to model the level of robustness (or conservatism) of the R-ETEM

formulation. Note that unlike the budgeted uncertainty set used in Aliakbarisani et al.

(2020), which assumes a known bounded support, our choice of Ξ encodes the Cartesian

product of polyhedral outer approximations of norm-2 balls of radius η , which can be

adjusted to include any arbitrarily large perturbation. Furthermore, based on constraints

(3.3) and (3.4), one can establish the largest possible amount of deviation implied by the

ETEM model to be:

η̄ := max
δδδ

min
η :δδδ∈Ξ(η)

η (3.6a)

s.t. VVV t,s,l,c +δδδ t,s,l,c ≥ υt,s,l,c(1−νt,s,l,c) ∀t,s, l,c ∈ CD (3.6b)

VVV t,s,l,c +δδδ t,s,l,c ≤ υt,s,l,c(1+νt,s,l,c) ∀t,s, l,c ∈ CD (3.6c)

∑
s∈S j

VVV t,s,l,c +δδδ t,s,l,c = ∑
s∈S j

υt,s,l,c ∀t, l,c ∈ CD , j ∈ J . (3.6d)

This in turns motivates to restrict the attention to levels of robustness in the range [0, η̄ ].

In response to this observed demand deviation, the R-ETEM in Aliakbarisani et al.

(2020) assumes that the planner is able to adjust his procurement decisions. The chronol-

ogy of decision making is presented in Figure 3.2 and the general formulation of R-ETEM
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can be summarized as follows:

min
xxx,{yyyi(·),sssi}

|I|
i=1

max
{ζζζ i∈Zi(Γi)}

|I|
i=1

f⊤xxx+∑
i∈I

h⊤i yyyi(ζζζ i) (3.7a)

s.t. Aixxx+Eisssi +Biyyyi(ζζζ i)≤ bi +Ciζζζ i ∀ζζζ i ∈Zi(Γi), ∀i ∈ I (3.7b)

Fisssi ≤Ui, sssi ≥ 0 ∀i ∈ I (3.7c)

Dxxx≤ e , (3.7d)

where Zi(Γi) := {ζζζ i |∥ζζζ i∥∞ ≤ 1, ∥ζζζ i∥1 ≤ Γi}, Γi =
√
|S j|× |CU |× |L| with i = (t, j),

and where the seasonal procurement variable yyyi(·) is adjustable with respect to the realized

uncertain parameter in the same time period and season ζζζ i. Because such a multi-stage ro-

bust optimization problem is generally intractable (see Ben-Tal et al., 2004), Aliakbarisani

et al. (2020) proposes a conservative approximation where the adjustable variable yyyi(ζζζ i)

are affine functions of ζ̄ζζ i, i.e., yyyi(ζζζ i) = yyyi +YYY iζ̄ζζ i, where yyyi and YYY i become the decision

variables, and ζ̄ζζ i ∈ Z̄i is a lifted representation of ζζζ i that distinguishes between positive

and negative deviations and such that Zi(Γi) = PiZ̄i for some projection matrix Pi. The

final conservative approximation of the R-ETEM takes the form:

min
xxx,{yyyi,YYY i,sssi}

|I|
i=1

max
{ζ̄ζζ i∈Z̄i}

|I|
i=1

f⊤xxx+∑
i∈I

h⊤i (yyyi +YYY ζ̄ζζ i) (3.8a)

s.t. Aixxx+Eisssi +Bi(yyyi +YYY ζ̄ζζ i)≤ bi +CiPiζ̄ζζ i ∀ζ̄ζζ i ∈ Z̄i, ∀i ∈ I (3.8b)

Fisssi ≤Ui, sssi ≥ 0 ∀i ∈ I (3.8c)

Dxxx≤ e , (3.8d)

After applying standard robust reformulation technique, problem (3.7) is conservatively

approximated using a single finite-dimensional linear program that can be solved using

either off-the-shelf solvers, or more efficiently using a Bender’s decomposition scheme.

We refer interested readers to Aliakbarisani et al. (2020) for more technical details and to

Appendix 3.8.2 for a formal summary of the differences between R-ETEM and the robust

model proposed in Babonneau and Haurie (2019).
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3.4 A behavioral model for exchangeable EVs

Inspired by Tchuendom et al. (2019), we employ a LQG to model the charg-

ing/discharging behavior of a fleet of N exchangeable EVs. Each EV user is a price taker,

but the aggregated charging profile affects the real time electricity price. EV users choose

their charging profile rationally (i.e. they seek to minimize a given cost function). The

cost function, beside the price of energy consumption, takes into account that i) EV users

have a preferable state of the charge during the day, and any deviation from it is costly,

and ii) EV users want to protect their batteries from the consequences of fast charging.

Therefore the cost function is the summation of energy price, cost of deviation from the

Desired Level of Charge (DLC) and cost of fast charging. In the limit as the fleet’s size N

goes to infinity, the LQG becomes a Mean Field Game (MFG) model. MFG theory is a

well known technique to study the strategic behavior of large population of exchangeable

interacting agents and can be used to approximate the solution of the LQG model when

N is large.

3.4.1 Linear quadratic game formulation

Consider a N-player stochastic game of exchangeable EV users who want to charge their

batteries in a finite horizon (T > 0) at minimum cost. We consider T = 1 represents one

day, τ ∈ [0,T ] is the continuous index for all time slots inside this day. It is assumed that

the discharge profile i.e., (ντ)τ∈[0,T ], is estimated from the mobility data and exogenously

given to the model, and it is common to all EV users. But, vehicle specific Brownian

motions, i.e., W i := (W i
τ)τ∈[0,T ], i ∈ {1, . . . ,N}, account for driver to driver independent

idiosyncratic deviations from the common discharge profile.

Every EV user’s control consists in the charging rate at time τ denoted by

(ui
τ)τ∈[0,T ], i ∈ {1, . . . ,N}. Also, the process (X i

τ)τ∈[0,T ], i ∈ {1, . . . ,N} denotes fleet’s

states of charge which dynamics are captured by the following linear stochastic system of
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equations:

X i
τ = x0 +

∫
τ

0
(ui

r− vr)dr+ εW i
τ ∀i ∈ {1, . . . ,N},τ ∈ [0,T ],

where ε is a strictly positive constant and the initial state x0 is a random parameter with a

normal distribution N (a0,s2). We also denote by aτ the preferrable/comfortable state of

the charge profile common to all agents, which is exogenously defined.

Because the EV users are exchangeable, we can highlight a representative EV user,

which we identify by i ∈ {1, ..,N}. The study of the finite behavioral game model is

formulated as a stochastic linear system with quadratic cost function, reveals that, any

rationally chosen control by the representative EV user must be an affine function of its

state of the charge process, which is modelled as a Gaussian process. Thus, thanks to the

Gaussian nature of the state of charge, the control process ui
τ , for any i ∈ {1, ..,N}, and

their sample mean process, will also be Gaussian.

Given the set of N players control processes, one can define the sample mean of the

finite fleet of EVs, denoted ∆N(Uτ), where Uτ := {ui
τ , i = 1, . . . ,N} , as:

∆
N(Uτ) :=

1
N

N

∑
i=1

ui
τ , ∀τ ∈ [0,T ].

The finite behavioral game model assumes that the charging/discharging marginal

price is a function of the fleet’s aggregate demand profile through its mean demand as

below:

pτ := λ (τ)∆N(Uτ), ∀τ ∈ [0,T ], (3.9)

where λ : [0, T ]→ [0, ∞) is a function, smooth outside of a set of measure zero. (Note

that, we consider functions that are smooth outside of a set of measure zero because we

will solve the associated MFG model numerically).

Given the fixed marginal price function defined above, each player i = 1, . . . ,N mini-

mizes the following cost function:

Ji(ui,u−i) = E
[q

2
(X i

T −aT )
2 +

∫ T

0

(
κ

2
(ui

τ)
2 +ui

τ pτ +
q
2
(X i

τ −aτ)
2
)

dτ

]
. (3.10)
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Observe that the cost function of any player i ∈ {1, ..,N} depends on the controls of

all other players, denoted u−i := (u1, . . . ,ui−1,ui+1, . . . ,uN), through the marginal price

which is a function of the fleet’s aggregate demand profile.

In the cost function, the constants q > 0 and q > 0 model the cost associated to the

deviation from the desired level of charge (aτ)τ∈[0,T ], and the term
κ

2
(ui

τ)
2 represents the

cost of battery deterioration from fast charging/discharging (the quadratic term, i.e. (ui
t)

2,

penalizes large charging rates hence fast charging). Even in this linear quadratic Gaussian

setting, finding a Nash equilibrium to such a behavioral game model quickly becomes

intractable as the number of players increases.

3.4.2 Mean field game formulation and solvability

To circumvent the problem that finding the Nash equilibrium in the formulated linear

quadratic game becomes intractable when N becomes very large, we consider the MFG

model as a method to find an approximate Nash equilibrium, for which the approximation

error decreases as N goes to infinity. In a nutshell, the solution of a MFG model, referred

to as a MFG equilibrium corresponds to the exact Nash equilibrium of the game with

infinitely many players.

We define a Brownian motion (Wτ)τ∈[0,T ] on a complete probability space denoted

(Ω,F = (Fτ)τ∈[0,T ],P) satisfying the usual conditions, where, Fτ = σ{x0,Ws, 0 ≤ s ≤

τ}, defines the filtration at time τ ∈ [0,T ]. Consider the set of admissible controls, denoted

by A ([0,T ]), below:

A ([0,T ]) =
{

x : Ω× [0,T ]−→ R | E
[∫ T

0
|xt |2dt

]
< ∞

}
. (3.11)

Below, we define the mean field game associated to the finite behavioral game model

above, in three steps :

1. Fix a candidate average aggregate (mean) demand profile ∆ := (∆τ)τ∈[0,T ]
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2. Solve the control problem of finding u∗ ∈A ([0,T ]) such that it is a minimizer of:

min
u∈A ([0,T ])

E
[

q
2
(XT −aT )

2 +
∫ T

0

(
κ

2
(uτ)

2 +uτ pτ(∆τ)+
q
2
(Xτ −aτ)

2
)

dτ

]
,

(3.12)

where, pτ(∆) := λ (τ)∆τ , and

Xτ = x0 +
∫

τ

0
(us− vs)ds+ εWτ , x0 = N (a0,s2).

3. Show that, the MFG equilibrium is achieved. That is:

∆τ := E[u∗τ ], ∀τ ∈ [0,T ]. (3.13)

Observe that the MFG model defined above consists of a control problem coupled with

a fixed-point problem. The MFG equilibrium, denoted by (u∗τ ,∆τ)τ∈[0,T ], is composed of

the optimal demand profile of the representative player and the mean demand profile of

the infinite population of players.

The following theorem, recalled from Tchuendom et al. (2019), characterizes the so-

lution to the mean field game defined above.

Theorem 4. There is a solution (u∗τ ,∆τ)τ∈[0,T ] to the mean field game defined above if

and only if there is a solution (ητ ,wτ ,Φτ ,∆τ)τ∈[0,T ] for the following Forward-Backward

Ordinary Differential Equations (FBODE):

dητ

dτ
=

η2
τ

κ
−q, ηT = q, (3.14)

dwτ

dτ
=
(

ε2η2
τ

κ2 −
2q
ητ

wτ

)
, w0 =

s2η2
0

κ2 , (3.15)

d∆τ

dτ
=−F1(τ)Φτ −F2(τ)∆τ +F3(τ), (3.16)

dΦτ

dτ
= B1(τ)Φτ +B2(τ)∆τ +B3(τ), (3.17)

∆0 = I1(0)Φ0 + I2(0), ΦT =−qaT . (3.18)

The coefficients of the FBODEs are defined as:

I1(τ) =
−1

κ +λ (τ)
, I2(τ) =−I1(τ)

(
ητ(sF−1[0.5;0,1]−a0)

)
,
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B1(τ) =
ητ

κ
, B2(τ) =

ητλ (τ)

κ
, B3(τ) = qaτ +

ητ(κvτ)

κ
,

F1(τ) =−
q

ητ

I1(τ), F2(τ) =−I1(τ)
(dλ (τ)

dτ
+

q
ητ

[λ (τ)+κ]
)
,

F3(τ) =−κI1(τ)
(

ε2η2
τ F−1[0.5;0,1]
2κ2√wτ

− q
κ
[aτ +

λ (τ)

ητ

]
)
.

where F [r;0,1] denotes the Cumulative Distribution Function of a standard normal ran-

dom variable with mean 0 and variance 1.

Theorem 4 states that solving the mean field game above is equivalent to solving the

FBODEs (3.14-3.15-3.16-3.17). Existence and uniqueness of solutions to the FBODEs

(3.14-3.15-3.16-3.17), is garanteed under contraction type conditions (see Tchuendom

et al. (2019)).

We recall that in this setting, the process (u∗τ)τ∈[0,T ] denotes to the optimal demand

of the representative EV user at equilibrium and (∆τ)τ∈[0,T ] denotes the average optimal

demand of all EV users at equilibrium (i.e ∆τ = E[u∗τ ], τ ∈ [0,T ] ).

Thanks to the linear-quadratic nature of the control problem, the optimal state of the

charge and demand of the representative EV user at equilibrium (u∗τ)τ∈[0,T ], is given by

the feedback formula below:

X∗τ = x0−
∫

τ

0

1
κ

[
ηrX∗r +Φr +λ (r)∆r +κvr

]
dr+ εWτ , τ ∈ [0,T ], (3.19)

u∗τ =−
1
κ

[
ητX∗τ +Φτ +λ (τ)∆τ

]
, τ ∈ [0,T ]. (3.20)

We note that, solving the FBODEs (3.14-3.15-3.16-3.17) is not straightforward, even

in our linear setting. The difficulty stems from the fact that the associated initial and

terminal conditions. Observe that, the initial mean demand profile (∆0) depends on the

initial value (Φ0), which is not available at time τ = 0. To circumvent this difficulty, the

following proposition exploits the linear structure of the FBODEs (3.14-3.15-3.16-3.17),

to obtain a representation of the deterministic profile (Φτ)τ∈[0,T ] as a linear function of

the average optimal demand of EV users, (∆τ)τ∈[0,T ].
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Proposition 5. Assume that there is a unique solution, (ητ ,wτ ,Φτ ,∆τ)τ∈[0,T ], to the the

FBODEs (3.14-3.15-3.16-3.17) and a unique solution (Ψτ ,Πτ)τ∈[0,T ], to the backwards

ordinary differential equations (BODEs) below: ∀τ[0,T ]

dΨτ

dτ
= F1(τ)Ψ

2
τ +F2(τ)Ψτ +B1(τ)Ψτ +B2(τ), ΨT = 0, (3.21)

dΠτ

dτ
= F1(τ)ΨτΠτ −F3(τ)Ψτ +B1(τ)Πτ +B3(τ), Πτ =−q̄aT , (3.22)

then, the following representation formula holds:

Φτ = Ψτ∆τ +Πτ , ∀τ ∈ [0,T ]. (3.23)

Proof. We prove the proposition by applying a chain differentiation rule to representation

formula (3.23) and obtaining the ODE (3.17).

dΦτ

dτ
= ∆τ

dΨτ

dτ
+Ψτ

d∆τ

dτ
+

dΠτ

dτ
∀τ ∈ [0,T ],

= ∆τ

[
F1(τ)Ψ

2
τ +F2(τ)Ψτ +B1(τ)Ψτ +B2(τ)

]
+Ψτ

[
−F1(τ)(Ψτ∆τ +Πτ)−F2(τ)∆τ +F3(τ)

]
+

[
F1(τ)ΨτΠτ −F3(τ)Ψτ +B1(τ)Πτ +B3(τ)

]
, ∀τ ∈ [0,T ],

= B1(τ)Φτ +B2(τ)∆τ +B3(τ), ∀τ ∈ [0,T ],

and at terminal condition, τ = T , we have:

ΦT = ΨT ∆T +ΠT = 0×∆T +(−q̄aT ) =−q̄aT . (3.24)

As a direct consequence of the proposition 5, and equation (3.20), the representative

EV user’s optimal demand at equilibrium can be rewritten as follows:

u∗τ =−
1
κ

[
ητX∗τ +Φτ +λ (τ)∆τ

]
, ∀τ ∈ [0,T ], (3.25)

=− 1
κ

[
ητX∗τ +(Ψτ∆τ +Πτ)+λ (τ)∆τ

]
, ∀τ ∈ [0,T ]. (3.26)
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From this updated formula for the representative EV user’s optimal demand, we can

derive another formula for the representative EV user’s mean optimal demand.

Indeed, since at MFG equilibrium it holds that E[u∗τ ] = ∆τ , ∀τ ∈ [0,T ], it follows that:

∆τ = E[u∗τ ], ∀τ ∈ [0,T ],

⇐⇒ ∆τ =−
1
κ

[
ητE[X∗τ ]+ (Ψτ +λ (τ))∆τ +Πτ

]
, ∀τ ∈ [0,T ],

⇐⇒ ∆τ

(
−κ−Ψτ −λ (τ)

)
= ητE[X∗τ ]+Πτ , ∀τ ∈ [0,T ],

⇐⇒ ∆τ =−
ητE[X∗τ ]+Πτ

κ +Ψτ +λ (τ)
, ∀τ ∈ [0,T ], (3.27)

where the process
(
E[X∗τ ]

)
τ∈[0,T ] denotes the EV users’ average optimal state of charge :

E[X∗τ ] = E[x0]−
∫

τ

0

1
κ

[
ηrE[X∗r ]−

(
Ψr +λ (r)

) ηrE[X∗r ]+Πr

κ +Ψr +λ (r)
+Πr +κvr

]
dr

= E[x0]−
∫

τ

0

[
ηrE[X∗r ]+Πr

κ +Ψr +λ (r)
+ vr

]
dr, , (3.28)

for all τ ∈ [0, T ].

Finally, to compute the EV users’ average optimal state of charge and average de-

mand, it is enough to compute the solution, (ητ ,wτ) to FBODEs (3.14− 3.15), and the

solution, (Ψτ ,Πτ)τ∈[0,T ], to the FBODEs (3.21−3.22). Then evaluate the feedback for-

mulas (3.28) and (3.27). A detailed implementation algorithm is presented in Appendix

3.8.3.

3.5 Coupling R-ETEM and LQGs

Up to this point, we have proposed a R-ETEM model that immunizes the expansion plan

against possible behavioral deviations from the planned response over a 40+ years hori-

zon. We also presented a linear quadratic game that can be used to simulate the continu-

ous time charging behavior of EV users on a typical day. Focusing on the case where EV

charging is the only useful demand with behavioral uncertainty (i.e. CU := {c̄} with c̄ as

electricity used to charge EVs, we are left with the task of describing the interactions be-

tween the two types of models. Specifically, for each time-season i ∈ I and region l ∈ L,
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one can envision having recourse to the linear quadratic game formulation to simulate

the behaviour of EV users on a typical day of this period based on available information

regarding N, a, q, and κ . In doing so, we first will ensure that the price function used in

the LQG is consistent with the market clearing price (i.e. marginal cost) implied by the

solution of R-ETEM. We will also propose a bisection algorithm that calibrates the level

of uncertainty in R-ETEM in a way that ensures R-ETEM produces a robust expansion

plan that is behaviorally-consistent with the LQG models. In simple terms, the final ro-

bust plan should be immunized against the demand response deviations observed in the

ensemble of behavioral model when it is implemented.

3.5.1 Extracting the marginal cost in R-ETEM

In this subsection, we indicate how to extract marginal costs for the procurement of useful

energy c∈CD . In particular, in the deterministic model (3.1), this can be done by looking

at the dual variable associated to the demand satisfaction constraint (3.2). In the conser-

vative approximation of R-ETEM, this is not as straightforward. This section proposes a

general procedure for doing so.

Specifically, we start by observing that (3.8) can be equivalently formulated as:

min
xxx,{yyyi,YYY i,sssi,s̄ssi}

|I|
i=1

max
{ζ̄ζζ i∈Z̄ }

|I|
i=1

f⊤xxx+∑
i∈I

h⊤i (yyyi +YYY ζ̄ζζ i) (3.29a)

s.t. Aixxx+Eisssi +Bi(yyyi +YYY ζ̄ζζ i)≤ bi +CiPiζ̄ζζ i ∀ζ̄ζζ i ∈ Z̄i, ∀i ∈ I (3.29b)

Fis̄ssi ≤Ui, s̄ssi ≥ 0 ∀i ∈ I (3.29c)

Dxxx≤ e , (3.29d)

sssi = s̄ssi ∀i ∈ I (3.29e)

Recall that sssi was capturing all the relative demand responses VVV t,s,l,c with i= (t, j), s∈ S j,

and c∈CD . Hence, when the minimum of problem (3.29) is finite, the optimal assignment

{γγγ∗i }i∈I of dual variables associated to (3.29e) captures the marginal effect of increasing

the relative demand responses on the optimal cost. We are left with converting marginal

cost of relative demand response in units of marginal cost of absolute demand response.
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In particular, the marginal energy cost for final demand c, in region l, in time period t and

time-slice s according to the conservative R-ETEM model (3.8) is γ̄∗t,s,l,c := [γγγ∗i ]t,s,l,c/Θt,l,c

with i = (t, j) : s ∈ S j, and where [γγγ∗i ]t,s,l,c takes the element of the dual vector associated

to constraint VVV t,s,l,c = V̄VV t,s,l,c.

3.5.2 Calibrating the marginal price function in MFG

In order to calibrate the price function in the MFG behavioral model, we employ a similar

approach as in Babonneau et al. (2020). Namely, the marginal price pτ should reflect the

marginal cost of production when the average charging amount is equal to the planned

response. In time-season period i = (t, j), and for region l, this is done using:

λ
i,l(τ) := ∑

s∈S j

111{τ ∈Ts}
γ̄∗t,s,l,c̄

Θt,l,c̄VVV t,s,l,c̄/(NlDi)
(3.30)

where 111{·} is the indicator function, Nl is the number of vehicles in region l, c̄ is the

index of the final demand of electricity for charging EVs, Ts indicates the period of the

day associated to time slice s, and where Di is the total number of days in time-season

period i = (t, j), Indeed, one can check that with this definition if for any τ ∈Ts we have

that the average charging amount and the planned response are the same, i.e. ∆N(Uτ) =

Θt,l,c̄VVV t,s,l,c̄/(NDi), then it follows that the marginal price reduces to:

pτ = λ
i,l(τ)∆N(Uτ) = λ

i,l(τ)Θt,l,c̄VVV t,s,l,c̄/(NDi)

= ∑
s′∈S j

111{τ ∈Ts′}γ̄∗t,s′,l,c̄ = γ̄
∗
t,s,l,c̄ .

3.5.3 Optimizing behaviorally-consistent robust expansion plans

Once the marginal price functions used in each LQG are well calibrated, the question

remains of whether the behavioral uncertainty that is modeled in R-ETEM is consistent

with the simulations produced by the behavioral LQG models. A very natural condition

to impose on R-ETEM is that it should produce a plan, which once implemented leads to

consumers behaviors that fall within the range for which the plan is immunized against.
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Definition 1. The optimal robust expansion strategy xxx∗ and planned demand response

sss∗ are “behaviorally-consistent” if when the operator charges consumers according to

the price function (3.9), the actual relative demand response deviation measured by the

behavioral model of Section 3.4 falls within the uncertainty set Ξ(η) defined in (3.5).

Practically speaking, given any fixed uncertainty set Ξ(η), verifying whether xxx∗(η)

and sss∗(η), i.e. the optimal solutions of problem (3.8) under Ξ(η), are behaviorally-

consistent involves solving the MFGs for each i∈ I and l ∈L with the price function (3.9),

obtaining ∆i,l based on equation (3.27) and verifying whether the realized relative demand

vector ŝss defined as:

[ŝssi]t,s,l,c̄ :=

∫
τ∈Ts

∆
i,l
τ dτ

∑s∈S j

∫
τ∈Ts

∆
i,l
τ dτ

, ∀s ∈ S j, ∀l ∈ L,∀(t, j) = i, ∀i ∈ I , (3.31)

is such that δδδ = ŝss− sss∗(η) ∈ Ξ(η).

Conceptually, our calibration procedure for η aims at finding the minimal worst-case

cost expansion plan that is behaviorally-consistent with the LQG models. As such, given

that the optimal value of problem (3.8) is non-decreasing in η , Algorithm 2 will equiva-

lently aim at identifying the smallest level of robustness η that leads to a robust solution

that is behaviorally consistent.

Lemma 6. Algorithm 2 is guaranteed to terminate in log2(η̄/ε) iterations, where ε as the

required level of precision and η̄ the largest level of robustness considered (see equation

(3.6)).

Proof. This follows straightforwardly from the fact that Algorithm 2 is a bisection algo-

rithm on interval [0, ζ̄ ] that terminates when the interval has a length smaller than ε .

3.6 Case study and numerical results

The proposed approach to obtain robust behaviorally consistent expansion strategy is im-

plemented on a realistic case study based on the energy system of the Arc Lémanique
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Algorithme 2 : A bisection algorithm to find a minimal worst-case optimal
behaviorally-consistent expansion plan
1 Set a desired level of tolerance ε;
2 Set ηLB = 0, ηUB = η̄ ;
3 while ηUB−ηLB > ε do
4 Set η = (ηLB +ηUB)/2;
5 Solve problem (3.29) with Ξ(η) to obtain sss∗ and γ̄∗;
6 for (i, l) ∈ I×L do
7 Set λ i,l(τ) according to equation (3.30);
8 Solve the MFG in Section 3.4 for region l and time-season period i using

λ i,l(τ) to obtain ∆i,l;
9 end

10 Set ŝss as defined in (3.31);
11 if ŝss− sss ∈ Ξ(η) then
12 ηUB← η ;
13 else
14 ηLB← η ;
15 end
16 Solve problem (3.29) with Ξ(ηUB) and return xxx∗;
17 end

region (Cantons of Geneva and Vaud, in Switzerland). Studies show that by 2050 up to

70% of the total transportation demand in the region can potentially be satisfied by elec-

tric vehicles (Babonneau et al., 2017). ETEM covers three regional buses and 142 differ-

ent technologies including central electricity and heat production and distributed energy

resources. We model 21 types of final demands which are categorized into industrial,

residential and transportation. Based on the optimum annual share of EVs in satisfying

useful transportation demand reported in Babonneau et al. (2017), we have calculated the

annual final demand for electricity to charge EVs. Figure 3.3 shows the reference energy

system (RES) modeled by ETEM. All data regarding ETEM model is from Babonneau

and Haurie (2019) and for a more detailed description of the energy system in the Arc

Lémanique region, we refer interested readers to this paper.

The purpose of this numerical study is i) to estimate the level of contribution of EV

users in demand response programs by a LQG models, and ii) to obtain the robust capacity

expansion policies that are behaviorally consistent. To do so, first we calibrate the LQG
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model with our available data. Then using Algorithm 2 we calibrate Ξ(η) in order to

estimate the required level of uncertainty in the R-ETEM to have behaviorally consistent

expansion policies. In addition, we perform a sensitivity analysis on the cost parameter

q in the LQG model. Finally, we analyze the influence of demand response and demand

response uncertainty on expansion strategies and asses the price of robustness.

Figure 3.3: Arc Lémanique reference energy system, where Int-Res stands for intermit-
tent resources (solar and wind), N-Gas for natural gas, Oil-fuel for processed oil prod-
ucts, Other for hydrogen and additional sources of energy (such as solid waste and wood
and geothermal), ELC for electricity, RES for residential, PP for power plant, CHP for
combined heat and power plant, IMP for electricity import, Ind-Machinery for industrial
machinery. Other-PP includes geothermal, fuel-cell and municipal waste power plants.
ELC_EVs is the perturbed useful demand (i.e. c̄) for electricity to charge the battery of
EVs.
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3.6.1 Calibrating the LQG models

In order to calibrate the LQG models, we use the useful demand of transportation which is

satisfied by EVs, optimally calculated in Babonneau and Haurie (2019), as the aggregated

discharge. In other words, we fix the demand to the actual demand in the deterministic

ETEM model. Then ETEM calculates the marginal cost of electricity production given

the already available mix of technologies in the energy system. The marginal cost is

passed to LQG model and we calibrate the range of LQG parameters, i.e., q, q and κ so

that it replicates actual demand responses close to the aggregated discharge. Figure 3.4a

represents the average charging and discharging of a EV users in the fleet in a specific

season and region (i, l) = (1,1). The average state of charge (SOC) for this control is also

presented in Figure 3.4b. After aggregating the results of the LQG models, Figure 3.5

compares the nominal versus actual (i.e. simulated using LQG models) DR for the base

period in the model.

3.6.2 Algorithm convergence and q-sensitivity on a 15-years horizon

In this section, we illustrate the convergence of Algorithm 2 when R-ETEM considers a

15-years horizon from 2015 to 2030.

Algorithm convergence

Figure 3.6 displays the convergence of Algorithm 2 in terms of upper and lower bounds

for the optimal level of uncertainty η∗. We observe that the algorithm converges after

6 iterations to within a tolerance of ε = 0.01 and that the optimal level of uncertainty is

η∗ ≈ 0.26. It means that at optimum, the R-ETEM model needs to be immunized against

a 26% deviation of the actual demand response from the planned demand response. We

note that when η < η∗ the obtained policies are not behaviorally consistent, while for

η > η∗ the model is too conservative thus leading to larger worst-case total cost than

necessary. Therefore, when η > η∗, one can consider the optimal value of R-ETEM as

an upper bound on the the minimal behaviorally consistent worst-case cost of the system,
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(a)

(b)

Figure 3.4: (a) Average charge and discharge and (b) average state of the charge (SOC)
of batteries in the whole fleet for one day in a representative region and time period after
LQG calibration.

and similarly as a lower bound when η < η∗. These two bounds are presented in Figure

3.6.

Preliminary analysis of sensitivity to cost of deviation from DLC

In this section, we tested the sensitivity of the minimal behaviorally-consistent level of

uncertainty η∗, and its associated worst case total cost of the system, with respect to the

cost of deviation from the fleet desired level of charge (DLC) and present the results in

Figure 3.7. When the cost of deviation from the DLC is higher, the minimal level of

uncertainty is reduced. Indeed, when this cost is high, EV users are less responsive to

112



Figure 3.5: Actual versus nominal relative demand responses for all time slices in a
year. hw

1 - hw
4 refer to four time slices in a winter day, hs

1 - hs
4 refer to four time slices in a

summer day, and hi
1 - hi

4 refer to four time slices in a intermediate day (see table 3.1 for
a definition of each time slice).

the electricity price. In other words, they are willing to charge their battery at any price

in order to reach their desired level of charge. In this situation, the charging behaviour

becomes easier to predict based on mobility data. This in turns allows the model to employ

a lower level of uncertainty in the planning phase.

3.6.3 Robustness of optimal capacity expansion plans for a 40-years

horizon

In this section, we numerically show how robust behaviorally-consistent solutions affect

the electricity generation capacities in the long-term R-ETEM covering 40 years from

2015 to 2055. Moreover, we compare the actual, planned and nominal DRs. Finally, we

discuss the performance of robust behaviorally-consistent solutions. In summary, we

observed that the behaviorally-consistent expansion model builds more capacity to avoid

the high cost of the worst-case scenario.

Electricity generation capacity and planned DR

We now turn to studying the effect of accounting for demand response robustness on

the capacity expansion strategy. Specifically, we will compare the strategies obtained
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Figure 3.6: Convergence of the bisection algorithm (with ε = 0.01) in terms of the upper
and lower bounds for the behaviorally-consistent level of uncertainty η (left axis) and
the minimal worst-case total cost of the system (right axis).

for three different models: i) a model (referred to as No-DR) that assumes EV users do

not participate in DR programs; (ii) a model (BI-DR) that assumes that EV users par-

ticipate in DR programs and their contribution is fully predictable, hence is behaviorally

inconsistent; and (iii) a model (RBC-DR) that assumes that EV users participate in DR

programs and accounts for behavioral DR divergences. Numerically, the No-DR plan is

obtained from solving (3.1) with νt,s,l,c = 0 in constraint (3.3), the BI-DR plan is obtained

from solving (3.1), and finally, the RBC-DR plan is obtained from solving (3.8) with η∗

calibrated using Algorithm 2.

Remark 2. We note that, in the context of this work, one can theoretically demonstrate

that the approach proposed in Babonneau et al. (2020) for coupling a “robustified” ver-

sion of ETEM with an LQG model produces the same solutions as the BI-DR model. These

theoretical findings might explain the empirical observations made in Babonneau et al.

(2020) that their coupling scheme would terminate after a single iteration, thus returning
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Figure 3.7: Sensitivity analysis of the minimal behaviorally-consistent level of uncer-
tainty η∗ (left axis) and and worst-case total cost of the system on the cost of deviation
from the desired level of the charge (DLC).

the solution of the nominal ETEM model. We encourage interested readers to Appendix

3.8.4 for more details.

Figure 3.8 shows the total installed capacity proposed by these three models. We ob-

serve that BI-DR installs the least amount of capacity compared to the other two models.

This is because this model expects that peak loads will be significantly reduced using DR

programs. By contrast, the No-DR is installing more gas power plant (around 39% more

than BI-DR) to meet the peak load. Finally, RBC-DR builds extra capacity compared

to BI-DR to immunize against deviations from planned EV user behaviors. The extra

capacity is mostly provided by CHP technologies.

Figure 3.9 compares the actual, planned and nominal DRs. The LQG model suggests,

for all seasons, to charge more during time-slice h1 (between 11:00 p.m. and 6:00 a.m.)

as the marginal price of electricity is cheaper during these hours following lower network

loads. Note that as the differences between the actual DR and the planned DR in all time-

slices are always less that η∗ ≈ 0.26, the expansion planning of the R-ETEM is indeed
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Figure 3.8: Evolution of the electricity generation capacity plan for 3 types of mod-
els: an optimal plan with no demand response (No-DR), an optimal plan with DR but
behaviorally-inconsistent (BI-DR), and a robustly optimal behaviorally-consistent plan
with DR (RBC-DR).

remains behaviorally consistent.

Figure 3.9: Nominal, actual and planned demand responses over all time-slices in a
period. hw

1 to hw
4 refer to four time slices in a winter day, hs

1 to hs
4 refer to four time

slices in a summer day, and hi
1 to hi

4 refer to four time slices in an intermediate day (see
Table 3.1 for a definition of each time slice).

Robust performance

In this section, we evaluate the performance of the solutions of the three models intro-

duced in Section 3.6.3, i.e., No-DR, BI-DR and RBC-DR. In doing so, we define two

measures: i) the total cost of the system if we assume the scenario proposed by LQG
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Table 3.2: Comparison of actual and nominal costs of No-DR, BI-DR and RBC-DR solutions.

Actual cost Rel diff1 Nominal cost Rel diff1

MCHF % MCHF %
RBC-DR 177,182.5 - 174,245.5 -
BI-DR 188,238.6 6.2% 170,328.3 -2.2%
No-DR 184,059.7 3.9% 170,931.5 -1.9%

1 Relative difference with RBC-DR

happens (referred to as “actual cost"), and ii) the total cost of the system if we assume

the planned DR happens with zero deviation (referred to as “nominal cost"). In order to

obtain the actual and nominal costs, first we solve the three models and store the value of

variable xxx and sssi in (xxxNo−DR,sssNo−DR
i ),(xxxBI−DR,sssBI−DR

i ), and (xxxRBC−DR,sssRBC−DR
i ). Then,

we plug these values in problem (3.7) and re-optimize it fixing the value of ζζζ i to sssi− ŝssi

and 0 for actual and nominal costs respectively. ŝssi is the solution of LQG as is calculated

in (3.31). Table 3.2 shows that RBC-DR reduces the actual cost of the system by 3.9%

compared to No-DR model, and 6.2% compared to BI-DR model. Indeed, by installing

more generation capacities (see again Figure 3.8), RBC-DR solutions are better protected

against the realization of the actual DR calculated using the LQG models. But, in a case

that there would be zero deviation between the actual DR and the planned DR, the cost of

RBC-DR is 1.9% and 2.2% more than No-DR and BI-DR costs, respectively. This loss in

performance under the nominal model can be interpreted as the price of robustness.

3.7 Conclusion

In this paper, we develop a robust approach to evaluate the interaction between elec-

tric vehicle (EV) users and utilities on a long-term generation expansion planning (GEP)

problem for a smart grid. Namely, we employ a specific robust multi-period adjustable

GEP problem, called R-ETEM, where the EV user demand responses are uncertain. In

R-ETEM, one decides first on the optimal capacity expansion of the network and the

planned demand responses. Then, on a seasonal basis, after observing the actual demand

responses, the procurement decisions are taken. In our case study, we choose to immunize
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R-ETEM against perturbations of the demand response of a large fleet of EVs. To do so,

we employ a linear quadratic game (LQG) to simulate the average charging behavior of

the fleet. The utility broadcasts a real-time price which depends on the marginal cost of

electricity production (calculated by solving R-ETEM) and the aggregated charging de-

mand of the fleet. In response, EV users minimize a cost function consisting of the price

paid for electricity and the cost of deviation from a comfort zone. We propose a novel cou-

pling algorithm between R-ETEM and the LQG with the purpose of adjusting the level

of uncertainty in R-ETEM and obtaining behaviorally-consistent expansion plans. The

coupling algorithm necessarily converges in finite iterations. We test our algorithm on a

real-world case study based on the energy system of the “Arc Lémanique” region (Cantons

of Geneva and Vaud, in Switzerland). The results reinforce that a behaviorally-consistent

expansion plan can significantly reduce the total actual cost of the system (e.g., by 6.2%

in our case study). One interesting direction to extend the results of this paper is to model

EV users as being prosumers. In this scenario, EVs can provide the grid with power and

ancillary services, such as providing reserved capacity and frequency control. However, it

is also necessary to consider the mechanism of battery degradation and designing a com-

pensation plan. Another direction could be to consider additional operational details in

the GEP problem, such as supply uncertainty, to obtain more precise capacity expansion

policies.

3.8 Appendix

3.8.1 Formulation of the ETEM energy model

In this appendix, we present the formulation of the deterministic ETEM energy model.

We mostly use a similar notation as in Aliakbarisani et al. (2020). However, we slightly

depart from Aliakbarisani et al. (2020) where we use a regional demand response variable

VVV . Let us start with the definition of the sets. Set T indicates time periods, and S is

the set of time slices inside a period. Set C is for energy commodities, and P identifies
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Table 3.3: Nomenclature used in ETEM formulation

t ∈ T Index for time period βt,s,p Capacity factor
s ∈ S Index for time-slices ηc Network efficiency
p ∈ P Index for technologies η t

f , f ′
Technology efficiency

c ∈ C Index for energy commodities λ
′′
t,s,l,l′,c Transmission cost

cs ∈ CS Index for energy storage λ ′t,s,c Export cost
f ∈ F Index for energy flows λt,s,c Import cost
l ∈ L Index for buses (geographical zones) νt,s,c Maximum deviation from
j ∈ J Index for seasons nominal demand response
i ∈ I Index for period-seasons (t, j) νt,p Variable cost
PC

c ⊆ P Set of technologies consuming c Ωt,l,p Available capacity of technology p
PP

c ⊆ P Set of technologies producing c πt,p Fixed production cost
PR ⊆ P Set of intermittent technologies ρ Discount factor
CI ⊆ C Set of imported commodities θ c

p Proportion of output c from technology
CD ⊆ C Set of useful demands p that can be used in peak period
CEX ⊆ C Set of exported commodities lp Life duration of technology p
CT R ⊆ C Set of transmitted commodities Θt,l,d Annual final demand
C f ⊆ C Set of commodities linked to flow f υt,s,c Nominal demand response
CG ⊆ C Set of commodities with margin reserve ρt,s,c Required reserve for commodity c ∈ CG

S j ⊆ S Set of time-slices s in season j CCCt,l,p Variable for new capacity addition
Ss ⊆ S Set of successive time-slices of s CCCT

t,l,p Total installed capacity
SG ⊆ S Set of time-slices in peak period PPPt,s,l,p,c Variable for activity of technology p
FIp ⊆ F Set of inputs to technology p IIIt,s,l,c Variable for import
FOp ⊆ F Set of outputs from technology p EEEt,s,l,c Variable for export
αt,p Investment cost TTT t,s,l,l′,c Variable for regional transmission

VVV t,s,l,d Variable for demand response

technologies. Input-output energy flows are shown in set F. Finally, set L identifies buses

in different geographical zones. A full nomenclature is presented Table 3.3.

min∑
t,l

ρ
t ·

(
∑
p

αt,pCCCt,l,p +πt,p(
lp−1

∑
k=0

CCCt−k,l,p +Ωt,l,p)+∑
s,c

νt,pPPPt,s,l,p,c+

∑
s,c
(λt,s,cIIIt,s,l,c−λ

′
t,s,cEEEt,s,l,c)+ ∑

s,l′,c
λ
′′
t,s,l,l′,cTTT t,s,l,l′,c

)
, (3.32a)

s.t.

( ∑
p∈PP

c

PPPt,s,l,p,c + IIIt,s,l,c)ηc + ∑
l′ ̸=l

(ηcTTT t,s,l′,l,c−TTT t,s,l,l′,c)≥ ∑
p∈PC

c

PPPt,s,l,p,c +EEEt,s,l,c

∀ t,s, l,c ∈ C/CD (3.32b)(
∑

l,p∈Pc
θ

c
p ·βt,s,p(

lp−1

∑
k=0

CCCt−k,l,p +Ωt,l,p)+ ∑
l,p∈PP

c /Pc

θ
c
p ·PPPt,s,l,p,c + IIIt,s,l,c

)
·ρt,s,c
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≥ ∑
l,p∈PC

c

PPPt,s,l,p,c +EEEt,s,l,c ∀t,s ∈ SG ,c ∈ CG (3.32c)

ηc ∑
p∈PPc

PPPt,s,l,p,c = ∑
p∈PCc ,s′∈Ss

PPPt,s′,l,p,c ∀t,s, l,c ∈ CS (3.32d)

∑
p∈PP

c

PPPt,s,l,p,c ≥Θt,l,cVVV t,s,l,c ∀t,s, l,c ∈ CD (3.32e)

υt,s,l,c(1−νt,s,l,c)≤VVV t,s,l,c ≤ υt,s,l,c(1+νt,s,l,c) ∀t,s, l,c ∈ CD (3.32f)

∑
s∈S j

VVV t,s,l,c = ∑
s∈S j

υt,s,l,c ∀t, l,c ∈ CD , j ∈ J (3.32g)

∑
c:p∈PP

c

PPPt,s,l,p,c ≤ βt,s,p

(
lp−1

∑
k=0

CCCt−k,l,p +Ωt,l,p

)
∀t,s, l, p /∈ PR, (3.32h)

∑
c∈Cp

m

PPPt,s,l,p,c = βt,s,p

(
lp−1

∑
k=0

CCCt−k,l,p +Ωt,l,p

)
∀t,s, l, p ∈ PR (3.32i)

∑
c∈C

f ′

PPPt,s,l,p,c = η
t
f , f ′
· ∑

c∈C f

PPPt,s,l,p,c ∀ f ∈ FIp, f
′
∈ FOp, t,s, l, p (3.32j)

(PPP, III,EEE,TTT ) ∈ Y , CCC ∈X , PPP≥ 0, III ≥ 0,EEE ≥ 0,TTT ≥ 0,CCC ≥ 0,VVV ≥ 0 . (3.32k)

Equation (3.32a) is the objective function which minimizes a discounted sum of all

costs of the system over all regions (l ∈L) and time periods (t ∈T). The total cost include

investment, fixed and operational costs of technologies, import, export and transmission

costs of energy commodities. Variables CCC,PPP, III,EEE,TTT are capacity installation, energy pro-

duction, import, export and regional transmission of energy, respectively. Parameters αt,p,

νt,p, λt,s,c, λ ′t,s,c, λ
′′
t,s,l,l′,c, and πt,p are unit costs of the associated variables.

A commodity balance constraint is presented in (3.32b). It assures that during each

period t and time-slice s, the regional procurement of energy commodity c is more or

equal to the overall consumption. Total regional procurement, the left-hand side of the

constraint, includes i) total production of commodity c in region l by all technologies

producing it (PP
c ), ii) import of commodity c, and iii) net transmission of commodity c

into region l. It is worth mentioning that while import and export refers to the transfer

of energy from outside of the boundary of the energy system, energy transmission is the

amount of energy which is produced in one region and transmitted to another region inside
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the energy system. Input energy c is multiplied by parameter ηc, which is the efficiency

of the network with respect to commodity c, e.g., the efficiency of electricity transmission

lines. On the right-hand side, the overall consumption of commodity c is equal to internal

consumption by technologies PC
c , added to the amount of commodity that is exported.

In addition to the energy balance constraint (3.32b), for commodities in set CG con-

straint (3.32c) provides a safety margin, during peak time-slices s ∈ SG , to protect against

random events not explicitly represented in the model. Parameter ρt,s,c ∈ [0, 1] represents

the fraction of reserved capacity needed to ensure covering the peak load. The left-hand

side of this constraint models the maximum amount of commodity c ∈ CG that can be

procured in period t and time-slice s. This amount is equal to the sum of i) the maximum

production capacity of commodity c by technologies that produce it as their main output

(Pc), ii) the production of commodity c by technologies that produce c as their by-product

of their main activity, and iii) the import of commodity c. The left-hand side is the total

consumption similar to constraint (3.32b). Parameter θ c
p is the proportion of technol-

ogy production that can be used during the peak period. Constraint (3.32d) is a balance

constraint for storage commodities. Namely, depending on the efficiency of the storage

technology i.e., ηc, a fixed portion of the amount of storage at time-slice s can be restored

at subsequent time-slice s′. Constraints (3.32e) - (3.32g) together are modeling the notion

of demand response. Specifically, constraint (3.32e) ensures that for each commodity c

in the set of useful demand CD , the total production accounted for by variable PPP must

satisfy the demand in each time slice and region. Parameter Θt,l,c is the total demand and

variable VVV t,s,l,c attempts to optimally distribute the total demand of period t into all time-

slices s ∈ S inside period t and region l. Constraint (3.32f) limits the demand response to

vary within a certain margin νt,s,l,c from the nominal value, i.e., υt,s,l,c. In addition, since

the shift of the demand is only possible between time slices in a day, constraint (3.32g)

limits the sum of the demand response to be equal to the sum of the nominal values in

each season.

Constraint (3.32h), known as capacity factor constraint, limits the maximum activity

of each technology to the available capacity of that technology. Parameter βt,s,p is the
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capacity factor and simply represents the fraction of the total capacity which is available at

each time-slice. In addition, constraint (3.32i) enforces that the production by renewable

technologies take their maximum possible value considering the total available capacity

of these technologies. Constraint (3.32j) defines the efficiency of technology p. Parameter

η t
f , f ′ is the efficiency of technology p with output flow f

′ ∈ FOp and input flow f ∈ FIp.

Finally, space X and Y represent operational, technical, and economical constraints

that define the structure of the energy network and a desirable space for capacity and

procurement decisions. For example, constraints on CO2 emissions, technology market

penetration, technology ramping, total energy import and export are among the constraints

that form up the space X and Y . Since these constraints do not affect our analysis in

this paper, we omit to report them and refer the reader to Babonneau et al. (2017) for a

complete list of constraints.

3.8.2 Differences between R-ETEM and Babonneau et al. (2020)

In Babonneau et al. (2020), the authors propose to robustify the deterministic version of

ETEM presented in (3.1) by replacing constraint (3.3) with the robust constraint:

∆
min
l,c ≤ ∑

t∈T
∑
s∈S

Θt,l,cVVV t,s,l,c ≤ ∆
max
l,c , ∀ l ∈ L,c ∈ CD (3.33)

with

∆
min
l,c := sup

ξ∈Ξ̂

∑
(t,s)∈T×S

∆
l,c,−
t +(∆̄l,c

t −∆
l,c,−
t )ξt

and

∆
max
l,c := inf

ξ∈Ξ̂
∑

(t,s)∈T×S
∆

l,c,+
t +(∆̄l,c

t −∆
l,c,+
t )ξt

where Ξ̂ is a budgeted uncertainty set in the non-negative orthant, while [∆l,c,−
t , ∆

l,c,+
t ] is

a confidence region for the demand response at time t, and ∆̄
l,c
t is the average value. We

first note that (3.33) is a relaxation (therefore an optimistic approximation) of:

∆
l,c,−
t +(∆̄l,c

t −∆
l,c,−
t )ξt ≤Θt,l,cVVV t,s,l,c , ∀ξ ∈ Ξ̂, ∀(s, t, l,c) ∈ S×T×L×CD (3.34a)

Θt,l,cVVV t,s,l,c ≤ ∆
l,c,+
t +(∆̄l,c

t −∆
l,c,+
t )ξt , ∀ξ ∈ Ξ̂, ∀(s, t, l,c) ∈ S×T×L×CD , (3.34b)
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which imposes a robust set of upper and lower bonds on the demand response plan in

each time-slice. Thus, we can interpret any feasible solution of constraint (3.34) (and

approximately (3.33)) as identifying a demand response that has a robust potential of

being plausible with respect to the distribution that generated the statistics captured in

(∆l,c,−
t , ∆̄t ,∆

l,c,+
t ). In particular, the constraint offers no protection against the demand

response deviations captured by (∆l,c,−
t , ∆̄t ,∆

l,c,+
t ). This is especially noticeable when

considering that ∆min
l,c and ∆max

l,c are both non-increasing and non-decreasing with respect

to ∆
l,c,−
t and ∆

l,c,+
t respectively. This implies that has the observed demand response

becomes more uncertain, constraint (3.33) actually becomes less restrictive for Θt,l,c.

3.8.3 Numerical algorithm to obtain the average optimal state of

charge and demand

To compute the representative EV user’s average optimal state of charge and average

demand, one needs to numerically solve FBODEs (3.14−3.15) to obtain (ητ ,wτ). Then,

the solution, (Ψτ ,Πτ)τ∈[0,T ] is obtained by solving the FBODEs (3.21− 3.22). Finally,

we the average optimal state of charge and average demand is calculated with the feedback

formula (3.28) and (3.27). This procedure is done with a simple implementation of the

Euler Scheme. Algorithm 3 presents the detail of this implementation.

3.8.4 Babonneau et al. (2020) returns the solution of BI-DR model

(3.1)

In the following, we identify weak conditions under which the approach proposed in

Babonneau et al. (2020) converges in one iteration simply recommending the solution of

the behaviorally inconsistent demand response model (3.1).

Assumption 2. The aggregate mean demand profile E[u∗τ ] observed at equilibrium in the

mean field game integrates to the total discharge captured by the discharge profile, i.e.∫ T

0
∆τdτ =

∫ T

0
vτdτ. (3.35)
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Algorithme 3 : Euler Scheme for numerical computation of the MFG equilib-
rium
1 Discretize [0,T], into points τ ∈T , with uniform gap dτ ;
2 Set ηT = q̄ ;
3 for τ ∈T do
4 ητ−dτ ← ητ −

(
η2

τ

κ
−q
)
dτ

5 end

6 Set w0 =
s2η2

0
κ2

7 for τ ∈T do
8 wτ+dτ ← wτ +

(
ε2η2

τ

κ2 −wτ
2q
ητ

)
dτ

9 end
10 Set ΨT = 0
11 for τ ∈T do
12 Ψτ−dτ ←Ψτ −

(
F1(τ)Ψ

2
τ +F2(τ)Ψτ +B1(τ)Ψτ +B2(τ)

)
dτ

13 end
14 Set ΠT =−q̄aT
15 for τ ∈T do
16 Πτ−dτ ←Πτ −

(
F1(τ)ΨτΠτ −F3(τ)Ψτ +B1(τ)Πτ +B3(τ)

)
dτ

17 end
18 Set m0 = a0
19 for τ ∈T do
20 mτ+dτ ← mτ +

(
− ητ mτ+Πτ

κ+Ψτ+λ (τ) − vτ

)
dτ

21 end
22 for τ ∈T do
23 ∆τ ←− ητ mτ+Πτ

κ+Ψτ+λ (τ)

24 end

This assumption is for instance satisfied when the mean field game captures the sta-

tionary behavior of agents over a repeated period of length T . Indeed, in this context the

optimal average state of charge at the beginning and end of the horizon must be equal, i.e.

E[X∗0 ] = E[X∗T ]. Specifically,

0 = E[X∗T ]−E[X∗0 ] = E
[

x0 +
∫ T

0
(u∗τ − vτ)dτ + εWT

]
−E[X∗0 ]

=
∫ T

0
E[u∗τ ]dτ−

∫ T

0
vτdτ ⇒

∫ T

0
∆τdτ =

∫ T

0
vτdτ

Proposition 7. Let Assumption 2 be satisfied and the discharge profile of all linear

quadratic game models be consistent with the total demand of the season that it describes
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in ETEM, namely:

∑
s∈S

Θt,l,cυt,s,l,c =
∫ T

0
vl,c,t

τ dτ , ∀t (3.36)

Then, the solution V of the non-robust ETEM (3.1) satisfies constraint (3.33) formulated

using the equilibrium of the mean field games.

Proof. We will first show that the lower bounding part of constraint (3.33) is satisfied.

Namely,

∆
min
l,c = sup

ξ∈Ξ̂

∑
(t,s)∈T×S

∆
l,c,−
t,s +(∆̂l,c

t,s−∆
l,c,−
t,s )ξt,s (3.37a)

= sup
ξ∈Ξ̂

∑
(t,s)∈T×S

∆̂
l,c
t,s− (∆̂l,c

t,s−∆
l,c,−
t,s )(1−ξt,s) (3.37b)

= ∑
(t,s)∈T×S

∆̂
l,c
t,s− inf

ξ∈Ξ̂
∑

(t,s)∈T×S
(∆̂l,c

t,s−∆
l,c,−
t,s )(1−ξt,s) (3.37c)

≤ ∑
(t,s)∈T×S

∆̂
l,c
t,s (3.37d)

= ∑
t∈T

(∫ T

0
∆

l,c,t
τ dτ

)
(3.37e)

= ∑
t∈T

(∫ T

0
vl,c,t

τ dτ

)
(3.37f)

= ∑
t∈T

(
∑
s∈S

Θt,l,cυt,s,l,c

)
(3.37g)

= ∑
t∈T

(
∑
s∈S

Θt,l,cV t,s,l,c

)
(3.37h)

where Ξ̂ := {ξ ∈ [0, 1]T×S|∑(t,s)∈T×S ξt,s ≤ Γ}, and which would confirm that V satisfies

the lower bound. In details, the inequality in (3.37d) follows from the infimum being

greater or equal to zero due to Ξ̂ ⊆ [0, 1]T×S and ∆̂
l,c
t,s ≥ ∆

l,c,−
t,s . The equality in (3.37d)

follows from
∫ T

0 ∆
l,c,t
τ dτ = ∑s∈S ∆̂

l,c
t,s based on the definition of ∆̂

l,c
t,s . Equalities (3.37f) and

(3.37g) follows from Assumption 2 and (3.36) respectively. Finally, (3.37g) follows from

the fact that V satisfies constraint (3.4).

A similar analysis can be done to prove that V also satisfies the upper bound in con-

straint (3.33).
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The following corollary follows directly from Proposition 7 given the nature of the

procedure described in Babonneau et al. (2020), which consists in 1) solving model (3.1);

2) communicating the price information to the LQG model; 3) identifying the equilibrium

using the limiting MFG; 4) adding (or updating) constraint (3.33) to model (3.1) based on

MFG solution; 5) iterating until convergence.

Corollary 8. Given that Assumption 2 is satisfied and that the discharge profile of all

linear quadratic game models be consistent with the total demand of the season that it de-

scribes in ETEM, then the procedure described in Babonneau et al. (2020) will converge

in one iteration prescribing the expansion plan that minimizes model (3.1).

We note that Appendix A.2 of Aliakbarisani et al. (2020) also recently demonstrated

that the same behavior occurs for Babonneau et al. (2020)’s approach when the behavioral

model is such that its expected demand response matches the demand response prescribed

by model (3.1). Comparatively speaking, Assumption 2 is weaker as it only requires that

this match occurs for the total demand response over all the time slices of each period t.
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General Conclusion

The growing share of renewable energies (RE) in electricity production networks in-

creases the intermittency in the supply of electricity. Therefore, to maintain the relia-

bility and stability of electricity networks, it is necessary to add further flexibility in the

demand side by exploiting demand response (DR) programs. On the other hand, with

the emergence of electric vehicles (EVs) in the urban transportation sector, a large scale

implementation of DR programs becomes more easily achievable by electricity network

operators. However, integrating DR of EV charging loads into the electricity grid is chal-

lenging because the level of the contribution by EV users in the DR programs is uncertain.

The objective of this dissertation was to develop new cross-disciplinary decision making

models that can provide interesting managerial insights on how to optimally and robustly

integrate DR resources into the long-term capacity expansion of the smart grids. In doing

so, we provided optimization models, advanced solution algorithms, and practical expan-

sion policies for urban-scale energy systems in the presence of REs, in the supply side,

and DR in the demand side. Our contributions was presented as three scientific articles.

Specifically, in the first article, we adopted the formulation of the open-source capacity

expansion planning problem, called Energy-Technology-Environment-Model (ETEM), to

model the entire chain of energy system in the greater Montreal region. We analyzed the

impact of different decarbonization pathways on the residential, commercial and trans-

portation sectors, and provided insights on major technological shifts in each sector to

achieve the decarbonization target. In addition, we quantified the optimal share of each

sector in the total greenhouse gas (GHG) reduction target for the region. This article



highlighted the importance of electrification of the transportation sector through the re-

placement of fossil fuels cars with EVs.

In the first article, the assumption was the energy planner has accurately estimated

all the influential parameters of the planning problem. However, in a long-term plan-

ning problem there are many uncertainties. In the second and third articles, we addressed

the demand response uncertainty (DRU). Specifically, in the second article, we introduced

DRU as an implementation error of the DR variable in ETEM. We cast the resulting model

as an adjustable multi-period robust optimization problem. In this setting, the planner first

decides on the capacity expansion and the planned demand response. Then, periodically,

after observing the actual level of DR in each season, the optimal energy procurement is

determined. To solve the problem, we derive a Robust Multi-Period Conservative Approx-

imation (RMPCA) of the problem, and develop a new Benders decomposition algorithm

(inspired from Ardestani-Jaafari and Delage, 2018) to solve it. We numerically adjusted

the level of uncertainty in the developed robust ETEM (R-ETEM) by implementing an

out-of-sample simulation.

In the third article, we turn our focus on the uncertainty of DR exclusively provided

by EV users. In this article we adopted a linear-quadratic game (LQG) model, originally

developed by Tchuendom et al. (2019), to simulate the average battery charging behavior

of a large fleet of EVs. Then, we designed a new coupling algorithm between the charging

behavior model and the R-ETEM with the objective of adjusting the level of uncertainty

in R-ETEM. In other words, contrary to the second article, where the level of uncertainty

was determined by an out-of-sample simulation, in the third article, information on the

actual charging behavior was used to adjust the level of uncertainty in R-ETEM.

The results of this research is useful for policy-makers who want to plan for the

expansion of the energy network, while considering i) interconnection between energy

networks and advanced technological and socio-economic innovations in other sectors,

specifically the transportation sector, and ii) environmental issues associated to the ex-

pansion of energy networks. The developed robust generation expansion planning (GEP)

problem could be run on a rolling horizon basis, in order to generate more realistic expan-
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sion solutions that takes into account the future technological innovations. Although the

focus in this research was on the demand response provided by the EV users, the mod-

eling framework could be easily extended to other DR providers, such as prosumers in

residential and commercial sectors who uses smart technologies to satisfy space heating

demand.

Finally, we present a few interesting research avenues that might be worth exploring

to expand on the content of this dissertation. First, one can consider other sources of

uncertainty, such as supply uncertainty, fuel price, etc. in a capacity expansion planning

to identify more robust capacity expansion strategies. To handle the resulting large-scale

problem, a heuristic greedy algorithm could be utilized. A second interesting direction

could be to develop a joint energy-transportation optimization problem, where the mobil-

ity behavior could be endogenously modeled. In these types of problem, the estimation

of DR contribution by EVs would be more realistic because they consider more details of

the dynamic of mobility decisions. Developing similar models to the charging behavior

model of the third article, in order to estimate the DR contribution of the residential sector

could be another interesting direction to explore. In the third article, we have modeled

the interaction between the electricity network and individual EV users. In another inter-

esting setting, one could consider DR aggregators and large players. Specifically, with the

advent of car-sharing companies, and fleet of autonomous shared electric vehicles, these

large players may start playing an important role, and it will become important to evaluate

their impact on the electricity networks.
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