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Résumé 

Cette thèse consiste en quatre essais sur des jeux différentiels déterministes à deux joueurs, 

à horizon fini et à somme non nulle, où un joueur implémente un contrôle continu pour 

influencer l'état, tandis que l'autre intervient à certains instants choisis stratégiquement. 

Le choix ne porte pas uniquement sur les moments d'interventions, mais aussi sur leurs 

niveaux. Les jeux dynamiques avec contrôles impulsionnels constituent une approche na­

turelle pour analyser le comportement stratégique des agents dans de nombreux contextes 

tels que l'investissement dans la qualité des produits, la réglementation environnementale 

et la cybersécurité. Cependant, la résolution de problèmes pratiques se heurte à une série 

de défis théoriques et computationnels, qui sont essentiellement dus à l'endogénéité des 

dates du contrôle impulsionnel. Ce travail relève certains de ces défis. 

Dans cette thèse, nous caractérisons les équilibres de Nash sous les trois structures 

d'information qui ont été considérées dans la littérature sur la théorie des jeux différen­

tiels, à savoir les structures d'information en boucle ouverte, en rétroaction et en données 

échantillonnées. De plus, nous montrons que la détermination des contrôles impulsionnels 

dans des jeux différentiels linéaires-quadratiques peut être obtenue comme solution d'un 

problème d'optimisation non linéaire sous contraintes. Dans le cas des jeux différentiels 

linéaires dans l'état, nous obtenons une caractérisation complètement analytique du nom­

bre d'équilibres, le moment et l'amplitude des contrôles impulsionnels. Nous comparons 

aussi les résultats sous différentes structures d'information. Dans chaque essai, nous il­

lustrons également les résultats théoriques en utilisant un jeu à deux joueurs, dont l'un 

préfère une valeur plus élevée de la variable d'état, tandis que l'autre vise à l'abaisser, une 



situation fréquente dans de nombreuses applications, en particulier en réglementation et 

en cybersécurité. 

Mots-clés 

Jeux différentiels, contrôles impulsionnels, équilibre de Nash en boucle ouverte, équilibre 

de Nash en rétroaction, équilibre de Nash à données échantillonnées, inégalités quasi­

variationnel les, cybersécurité, réglementation 
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Abstract 

This thesis consists of four essays on deterministic finite-horizon two-player nonzera­

sum differential games where one player continuously contrais the state while the other 

player strategically intervenes at certain (discrete) time instants to shift the state from one 

level to another. In contrast to classical differential games where ail players take actions 

continuously, the impulse player also decides when to intervene during the game in addition 

to determining the level of the interventions. Impulse contrai models constitute a natural 

appraach for analyzing strategic behavior of agents in many contexts such as investment in 

praduct quality, enviranmental regulation and cybersecurity. However, to solve practical 

prablems, we need to address a series of theoretical and computational challenges that are 

due to the endogeneity of the timing of actions. This is the general topic of this work. 

In this thesis, we characterize the Nash equilibria under ail the three information 

structures that have been considered in the differential game theory literature, namely, 

open-loop, feedback and sampled-data information structures. Further, we show that the 

timing of impulses can be obtained as a solution of a constrained non-linear optimization 

prablem in the case of linear-quadratic differential games with impulse contrais. To 

analytically characterize the equilibrium number, timing, and magnitude of impulses, 

we intraduce canonical linear-state game models and compare the equilibrium behavior 

of players acrass different information structures. In each essay, we also illustrate the 

theoretical results using a game prablem between two players, one of whom prefers a 

higher state value while the other aims to lower the state, a situation that arises in many 

regulation and cybersecurity applications. 
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Introduction 

Game theory is a branch of mathematics that studies strategic interactions between intelli­

gent and rational decision makers, called players. Strategic interactions take place anytime 

a player's payoff not only depends on her own decision, but also on the decisions made by 

the other players. 

One-shot ( or static) games are a useful representation of strategic interactions when the 

past and the future are irrelevant to the analysis, i.e., today's decisions only affect today's 

outcomes for the players and are independent of past moves. When there are carry-over 

effects and the players can condition their actions on history (and in particular on their 

rivals' behavior), then a dynamic game is needed. In a repeated game, the agents play 

the same game in each round, that is, the set of actions and the payoff structures are the 

same in all stages. The number of stages can be finite or infinite, and this distinction has 

been shown to have a tremendous impact on the equilibrium results. In multistage games, 

the players share the control of a discrete-time dynamic system (state equations) observed 

over stages. Their choice of control levels, e.g., investments in production capacity, or 

advertising dollars, affects the evolution of the state variables (e.g., production capacity, 

reputation of the firm), as well as current payoffs. 

Differential games, which are the focus of this thesis, are continuous-time counterparts 

of multistage games. The literature on differential games typically assumes that all players 

take actions at each instant of time during the game, a setup that does not capture well 

many real-world applications where, for some reasons, one player only acts at some time 

instants. For instance, the production and marketing decisions are adjusted continuously 



by firms while changes to environmental (or other) tax policies are made at certain discrete 

time instants. Similarly, while a company builds continuously its infrastructure security 

system, a hacker attacks it only once in a while. 

In ail the aforementioned interactions, one player acts at each time instant during the 

game, while the other player intervenes only occasionally in the game. Since the number, 

timing, and level of the interventions (impulses) are decision variables of at least one 

of the players, these games are known as differential games with impulse controls, and 

provide a natural paradigm to mode! the interactions taking place in different contexts, 

namely: (i) law enforcement organizations deciding the impulse controls, that is, time of 

attack and resources to deploy, to disrupt the infrastructure of a terrorist organization that is 

continuously investing to build up its infrastructure; (ii) software firms investing in security 

to reduce the impact of a (potential) hacking attempt; (iii) regulators determining when and 

how much to change the emission taxes associated with pollutants; and (iv) governments 

deciding the timing and intensity (partial or complete) of lockdowns to control the spread 

of a virus. 

Theoretical and computational developments for impulse optimal control problems 

that involve one agent have been extensively studied in the literature using the Pontrya­

gin maximum principle (Blaquière, 1977a, 1979, 1985; Chahim et al., 2012, 2013) and 

Bensoussan-Lions quasi-variational inequalities (Bensoussan and Lions, 1982, 1984 ). Ap­

plications can be found in diverse fields, e.g., flood control (Chahim et al., 2013), forest 

management (Alvarez, 2004), cash management (Cadenillas and Zapatero, 1999; Bertola 

et al., 2016), epidemic models (Piunovskiy et al., 2020), cybersecurity (Taynitskiy et al., 

2019), and product quality improvements (Reddy et al., 2016). 

The literature on differential games with impulse controls is sparse and deals mostly 

with zero-sum games in options pricing (El Farouq et al., 2010) and pursuit evasion 

problems (Chikrii and Matichin, 2005; Chikrii et al., 2007). Recently, the authors in Aïd 

et al. (2020) and Ferrari and Koch (2019) introduced a class of two-player nonzero-sum 

stochastic impulse games where both players cause jumps to the state using their impulse 

controls only. In Basei et al. (2019), the authors extended these games to an N-player 
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setting with N > 2, and also studied their mean-field counterpart. However, the players in 

these games have no continuous controls, which precludes the possibility of using them 

for situations where the interventions (hacking, change of emission taxes, lockdowns) by 

a player occur only at discrete instants of time and the state of the system (e.g., software 

vulnerabilities, pollution, infection rate) continuously evolves according to the actions 

( e.g., continuous effort in system security, production, social distancing) of another player. 

To fill the gap in the literature, we introduce a general class of nonzero-sum differential 

games where one (representative) player uses piecewise-continuous controls to affect the 

continuously evolving state, while the other player intervenes using impulse controls to 

instantaneously change the state from one level to another. The discontinuities in state 

variable at endogenously determined impulse instants lead to computational difficulties in 

analyzing games with impulse controls. For tractability, Chang et al. (2013) and Chang 

and Wu (2015) studied them under the simplifying assumption that the impulse instants are 

given and the impulse player only selects the levels of impulses. Although this assumption 

holds for specific cases, e.g., a central bank changes interest rates at predetermined time 

instants during the year while the production and marketing decisions of the firms are made 

daily, there is no reason to believe that the timing of a government's attack on terrorist 

organizations or of a hacking attempt on a security firm is given a priori. 

A central issue in the study of differential games is to determine the best way in which 

players can respond to one another. Using Nash equilibrium as a solution concept, the 

action profiles of both players can be determined for the whole duration of the game, where 

an equilibrium pair of strategies is such that no player has an incentive to unilaterally change 

their strategies. 1 The strategies are functions of the state information that is available to 

the players, and therefore, a change in the information-structure can affect the Nash 

equilibrium as well as the payoff of the players obtained in a differential game (Ba~ar and 

Olsder, 1999). 

The· different information structures emerge due to the cost associated with state mea-

1Each player's action profiles are generated using strategies that are mappings of the information sets 
(consisting of state measurements) to action sets (the set of admissible actions). 
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surement, for instance, the economic data from the surveys can be obtained every quarter 

while firms make their production decisions daily. Therefore, the availability of state in­

formation can have policy implications for regulators interested in maximizing consumer 

welfare and government organizations protecting the citizens from terrorist attacks. Three 

kinds of information structure, namely, open-loop, feedback and sampled-data, have been 

predominantly studied in the literature. With open-loop information structure, players only 

know the initial state of the game, feedback information structure assumes that state can be 

measured at each time instant during the game, and state information is available at certain 

exogenously given sampling instants when the information structure is sampled-data. 

This thesis contributes both to the theory and applications of differential games with 

impulse controls by providing a characterization of the Nash equilibrium under ail the 

three information structures. 

The first essay titled "Nash equilibria in nonzero-sum differential games with impulse 

control" introduces the general class of deterministic finite-horizon two-player nonzero­

sum differential games where Player 1 uses piecewise-continuous controls whereas Player 

2 uses impulse controls. The use of specialized controls for each player is motivated by 

applications in cybersecurity and regulation, and the more general case with both players 

using both piecewise continuous and impulse controls can be easily studied using our 

mode!. The characterization of open-loop Nash equilibrium can be shown to reduce to 

solving two coupled problems: (a) a non-standard optimal control problem of Player 1 

with state jumps and additional costs at the impulse instants, (b) the impulse optimal 

control problem of Player 2. By extending the Pontryagin Maximum Principle to solve 

Player 1 's non-standard optimal control and using the necessary optimality conditions for 

impulse control problems, we formulate the necessary and sufficient conditions for the 

existence of OLNE in the general class of nonzero-sum differential games with impulse 

controls. 

The computation of equilibria is a hard problem as the impulse instants are fixed point 

solutions of a highly non-linear system of equations, known as the Hamiltonian continuity 

condition (Chahim et al., 2012), that are coupled with a system of differential equations. 
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In the literature, infinite-horizon impulse games have been studied under an assumption 

that both players use impulses of the threshold type, that is, impulses occur only when the 

state enters an intervention set that is characterized by the quasi-variational inequalities 

(QVIs). The infinite-horizon assumption leads to time-independent intervention set (Aïd 

et al., 2020) which allows the authors to obtain closed-form solution for impulse games 

with linear and symmetric payoff fonctions. 

We consider finite-horizon problems with open-loop information structure which do 

not impose structural assumptions on the impulse controls, and as a result, the impulses 

occur when both time and state values satisfy the Hamiltonian continuity condition. As 

a result, analytical solutions can be obtained for specific instances of differential games. 

Therefore, for the linear-quadratic differential games (LQDGs) that are widely studied 

in economics, management science and engineering, we obtain numerical solutions by 

providing, for a first time, a reformulation of the equilibrium conditions ( coupled system 

of ordinary differential equations and Hamiltonian continuity condition) as a constrained 

non-linear optimization problem that can be solved by commercial optimization solvers. 

Even though, a priori, LQDGs appear restrictive as the payoff of players is assumed to be 

quadratic in state and the state dynamics are assumed to be linear in both state and controls 

of the players, one of the reasons for their ubiquity in optimal control literature is that 

the linear dynamics provide good approximations for the non-linear dynamics. Another 

advantage of using LQDGs is that they are tractable and at the same time, make it possible 

to account for state and control interactions, non-constant returns to scale and interactions 

between the players' control variables (Haurie et al., 2012; Ba§ar and Olsder, 1999; Ba§ar 

et al., 2018). 

For analytical tractability, we consider linear-state differential games (LSDGs) which 

assume players' payoff fonctions to be linear in state (Dockner et al., 2000), and have been 

used in impulse games (see Aïd et al., 2020; Campi and De Santis, 2020). We show that 

there can be at most one interior equilibrium impulse in a LSDG and obtained equilibrium 

timing and level of impulse in closed-form. This is the first analytical characterization of a 

unique impulse in a nonzero-sum differential game. To illustrate the theory and algorithms 
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developed in the first essay, a game between a government and an international terrorist 

organization (ITO) is formulated where the ITO invests efforts to builds its infrastructure 

that could be used later for an attack on civilians while the government launches strikes to 

disrupt ITO's resources. Previously, these problems were studied using classical dynamic 

game theory where ail players take actions at ail periods of the game (see Crettez and 

Hayek, 2014; Novak et al., 2010). 

A classical result in deterministic linear-state differential games is that open-loop and 

feedback Nash equilibria coïncide when ail players make decisions at each time instant 

during the game (Dockner et al., 2000). This implies that players are not worse-off if 

they determine their actions using the state information at the initial time only. A natural 

question to answer is if this result holds in highly relevant problems in cybersecurity, 

terrorism and pollution regulation when one player uses impulse controls and the objective 

functions and state dynamics satisfy the LSDG formulation. 

The objective of the second essay titled, "Open-loop and feedback Nash equilibria 

in scalar linear-state differential games with impulse controls" is to compare open-loop 

and feedback Nash equilibria obtained by using the Pontryagin Maximum Principle and 

quasi-variational inequalities, respectively, in deterministic LSDGs with impulse controls. 

We construct a canonical deterministic two-player LSDG of minimal configuration which 

allows us to include ail the interactions between the players, and at the same time, keeps 

the analysis tractable. The objective functions of both players are linear in state and 

quadratic in controls, and without loss of generality, it is assumed that Player 1 uses 

piecewise-continuous controls and Player 2 uses impulse controls. 

To assess the impact of impulse controls on the solution of agame under open-loop 

and feedback information structures, the following two situations are analyzed: First, the 

timing of impulses is considered to be exogenously given, and Player 2 determines the 

impulse levels at the corresponding impulse instants. In this case, open-loop and feedback 

information structures lead to the same equilibrium behavior of both players. Then, for 

the general case where the number and timing of impulses is determined by Player 2, 

it is shown that the classical result does not hold, that is, open-loop and feedback Nash 
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equilibria are different. More specifically, OLNE bas at most three impulses while FNE 

admits at most two impulses. Closed-form solutions for equilibrium timing of impulses 

and equilibrium strategies of both the players are obtained under OLNE and FNE. The 

differences in OLNE and FNE can be attributed to our result that impulse timing in 

OLNE depends on the problem parameters of Player 1 whereas the impulse timing in 

FNE depends only on Player 2's problem parameters and state dynamics. The results 

remain qualitatively unaltered for other general cost structures and the multi-dimensional 

extension of the scalar LSDG model. A numerical example is also provided to show that 

Player 2's intervention instant can be different depending on the information structure. 

Open-loop and feedback information structures are the two extremes regarding the 

assumptions on the state information that is available to the players. It is well-known 

that open-loop strategies are only weakly time-consistent (B~ar, 1989), and do not satisfy 

strong time-consistency which implies that at any time instant during the game, the players 

may have an incentive to unilaterally deviate from their equilibrium strategies. Even 

though feedback strategies are strongly time-consistent, they require state measurements 

to be made at each time instant which may not be feasible (Ba~ar. 1989). A compromise 

is provided by the sampled-data information structure as state is measured at certain given 

sampling instants and sampled-data strategies are strongly time-consistent at the sampling 

instants. Sampled-data Nash equilibrium coïncides with the open-loop Nash equilibrium 

of the game when sampling is done at the initial and final time only. An interesting 

problem then is to determine sampled-data Nash equilibrium for any given number of 

sampling instants (Simaan and Cruz Jr., 1973; Ba~ar, 1991; Dragan et al., 2019). 

The third essay titled, "Sampled-data Nash equilibrium in differential games with im­

pulse controls" studies the two-player game introduced in the first essay with the sampled­

da!a information structure where the strategies of players depend on time and the last 

measured state value. We provide necessary and sufficient conditions for the existence 

of sampled-data Nash equilibria for the general class of differential games with impulse 

controls. An additional difficulty in computing sampled-data Nash equilibrium compared 

to OLNE is that the necessary conditions also include a Riccati system of equations for 
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both the players. A reformulation of equilibrium conditions as a constrained non-linear op­

timization problem is provided for a scalar linear quadratic differential game, the solution 

of which gives the impulse instants. 

For the class of LSDGs, the sampled-data Nash equilibrium is found to coïncide with 

the open-loop Nash equilibrium. An extension of LSDG is also provided where the 

problem parameters vary over time and are constant between the sampling instants . In this 

case, the number of interventions can be at most equal to the number of sampling instants. 

A complete analytical characterization of equilibrium level of impulses and equilibrium 

controls of the players is also given for LSDGs. To show the contrast between differential 

games with periodic impulses and endogenous impulses, we consider a game where one 

player values the state positively and aims to increase it whereas the other player who 

values the state negatively invests efforts to lower it. Compared to the case when impulses 

are a priori assumed to be periodic, the equilibrium intervention instants occur at irregular 

intervals and the equilibrium controls of the players differ from the periodic case, thereby 

illustrating the need to include timing as a decision variable when studying equilibrium 

behavior of players in cybersecurity and regulation domains. 

The control of exchange rate by the central bank of a country though direct interventions 

in the foreign exchange market and continuous control of interest rate is one of the most 

well-studied problems in impulse optimal control literature (Cadenillas and Zapatero, 

1999; Bertola et al., 2016). This has also motivated the study of nonzero impulse games 

with feedback information structure where both players use only impulse control to keep 

the state close to their respective target values (Aïd et al., 2020). This game mode! with 

both players using impulse controls does not capture the interactions taking place between 

a firm that makes production decisions daily and a pollution regulator that intervenes at 

certain time instants to keep the pollution Ievel close to their target value. 

The fourth essay titled, "Feedback Nash equilibria in differential games with impulse 

controls" studies a general class of deterministic two-player finite-horizon nonzero-sum 

differential games with impulse controls assuming a feedback information structure. We 

show that the number of impulses in the game is finite and the Hamilton-Jacobi-Bellman 

8 



equations coupled with a system of quasi-variational inequalities provide sufficient con­

ditions to characterize the feedback Nash equilibrium. Further, we extend a well-known 

linear-quadratic impulse control problem to a deterministic LQDG problem in which the 

players incur costs if the state deviates from their target values. In a numerical exam­

ple, it is shown that the equilibrium strategy of the impulse player is to intervene twice 

in the game. Our characterization of feedback Nash equilibrium in this essay is based 

on certain regularity assumptions on the value fonction that have been assumed in the 

literature (see, e.g., Campi and De Santis, 2020; Aïd et al., 2020). For the future work, 

we plan to relax these assumptions and develop policy iteration algorithms (Azimzadeh, 

2019; Zabaljauregui, 2020) that can solve the quasi-variational inequalities for the impulse 

player. 
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Chapter 1 

Nash equilibria in nonzero-sum 

diff erential games with impulse control 

Abstract 

In this paper, we introduce a class of deterministic finite-horizon two-player nonzero-sum 

differential games where one player uses ordinary 1 controls while the other player uses 

impulse controls. We formulate the necessary and sufficient conditions for the existence 

of an open-loop Nash equilibrium for this class of differential games. We specialize these 

results to linear-quadratic games, and show that the open-loop Nash equilibrium strategies 

can be computed by solving a constrained non-linear optimization problem. ln particular, 

for the impulse player, the equilibrium timing and level of impulses can be obtained. 

Furthermore, for the special case of linear-state differential games, we obtain analytical 

characterization of equilibrium number, timing and the level of impulse in terms of the 

problem data. We illustrate our results using numerical experiments. 

1 We use the word 'ordinary' to mean that Player 1 uses control strategies that are piecewise continuous 
fonctions of time. 



1.1 Introduction 

In this paper, we consider dynamic competitive strategic situations involving two players, 

one of whom takes actions only occasionally, while the other makes decisions continuously. 

One example of such a setting is a central bank that announces its interest rate policy at 

specific dates during the year, while firms make production and marketing decisions 

daily. Another example is in cybersecurity, where an attacker launches its viruses to 

inflict damage on a system at strategic instants of time, while the defender is continuously 

investing in reducing the system's vulnerability. Each of the interventions (or impulses) by 

the central bank or the hacker can cause ajump in the state variable and additional terms in 

the objectives of the players. The two examples, which can be modeled as fini te-horizon 

differential games with one impulse player, differ in terms of one crucial feature. In 

the first case, the impulse player (the central bank) states in advance when interest rate 

announcements will be made. 2 The pending decision is then the impulse size, that is, the 

interest rate itself ( or the change relative to its current value). In the second case, both 

the timing of the impulses and their values are endogenous, and quite naturally, no one 

expects the hacker to give the defender advance notice of when the attacks will take place. 

Intuitively, solving for the cybersecurity game equilibrium is harder than determining the 

equilibrium strategies in the central bank game. 

The contribution of the paper is four fold. First, we introduce a canonical two­

player nonzero-sum differential game where one player uses ordinary contrais and the 

other player uses impulse contrais. We emphasize that our model is canonical in nature, 

that is, ordinary and impulsive decision variables are attributed to Player l and Player 

2, respectively. The general case where both players are endowed with both types of 

control variables can be studied easily as an extension of the current framework. Second, 

we derive necessary and sufficient conditions for the existence of an open-loop Nash 

equilibrium for this class of games. Third, we specialize our results to linear-quadratic 

setting, and provide a reformulation of the equilibrium conditions as a constrained non-

2For instance, the Bank of Canada's interest rate announcements are available on 
https://www.bankofcanada.ca/press/upcoming-events/. 
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linear optimization problem for numerically computing the open-loop Nash equilibrium. 

Applications oflinear-quadratic differential games (LQDGs) have been popular for decades 

in economics, engineering, and management science. One reason for this is the availability 

of theorems characterizing the existence and uniqueness of Nash and Stackelberg equilibria 

(see, e.g., Ba~ar and Olsder 1999; Engwerda 2005; Haurie et al. 2012; Ba~ar et al. 2018). 

Another reason is that, notwithstanding the specific functional forms of the objectives, 

LQDGs make it possible to account for three features that are usually important in these 

applications, namely, interactions between the players' control variables, interactions 

between the control and state variables, and finally non-constant returns to scale. Fourth, 

for the class of linear-state games, we show that, for the player who uses impulse controls, 

the equilibrium strategy has at most one impulse, and analytically characterize the time 

and the level of impulse in terms of the problem data. 

By establishing existence results for the class of two-player differential games with 

one impulse player, and providing solution methods for their applications in LQDGs, our 

paper contributes to both the theory and applications of differential games. Surprisingly, 

the literature on differential games with impulse control is very sparse. In such a context, 

as has happened in the past, one takes stock on what has been achieved in the two sister 

areas, namely, optimal control and zero-sum differential games. 

The rest of the paper is organized as follows. ln Section 1.1.1, we briefly review the 

relevant literature on optimal control and differential games with impulse controls. In 

Section 1.2, we introduce our model. In Section 1.3, we extend the Pontryagin maximum 

principle to optimal control problems with additional discrete state cost terms and state 

jumps. Using this result, we provide necessary and sufficient conditions for the existence 

of open-loop Nash equilibrium. In Section 1.4, we specialize these results to linear­

quadratic differential games. More specifically, in Section 1.4.2, we present an algorithm 

to determine the equilibrium timing and level of the impulses for Player 2. ln Section 1.5, 

we provide the analytical solution of the linear-state differential game. In Section 1.6, we 

present numerical illustration of the results. Concluding remarks are given in Section 1.7. 
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1.1.1 Literature review 

In this section, we first review the literature on impulse optimal control problems and 

zero-sum differential games with impulse controls. Next, we present the advances in 

the study of nonzero-sum impulse games where ail players use impulse controls, which 

allows us to contrast our work on nonzero-sum differential games where one player uses 

piecewise continuous controls while the other player uses impulse controls. 

A number of variants of impulse optimal control problems have been studied in the 

literature. A series of papers have considered the case where the number of jump instants 

is fixed (Liu et al., 1998; Wu and Teo, 2006) or the impulse instants are known a priori 

(Taynitskiy et al., 2019; Reddy et al., 2016). Impulse control problems are typically 

solved using the maximum principle provided by Blaquière (l 977a,b, 1979, 1985). Papers 

where dynamic programming is used to compute the solutions of impulse control prob­

Iems include Neuman and Costanza (1990), Erdlenbruch et al. (2013), and Bertola et al. 

(2016). However, analytical solutions could not be derived from the maximum principle. 

Consequently, a number of algorithms, such as the gradient method and a continuation 

method based on formulating a multi-point boundary value problem, have been proposed 

in the literature to numerically compute the solutions (see, e.g., Grass and Chahim 2012; 

Chahim 2013; Grames et al. 2019; Kort 1989; Hou and Wong 2011). 

Reddy et al. (2016) extended some well-known advertising models by adding impulse 

investments in quality. In Chahim et al. (2017), a firm decides on the timing of the adoption 

of a new technology as well as the level of investments in new capital at the corresponding 

instants. ln these two papers, the optimal solutions are computed by formulating a multi­

point boundary value problem, which generalizes the two-point boundary value problem 

to account for the additional restrictions on the state dynamics and co-state variable at the 

interior impulse instants. In Chahim et al. (2013), the authors determined the optimal 

timing and corresponding dike heightenings to protect against floods. In Erdlenbruch et al. 

(2013), the authors studied a renewable resource-management problem with an impulse 

controlled harvesting policy, which is a sequence of harvest times and harvesting levels 
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of the resource. Recently, in the field of cybersecurity, Taynitskiy et al. (2019) introduced 

discrete time periodic patching processes in the continuous-time Susceptible-Infected­

Recovered (SIR) epidemic model to control the malware's spread in devices. Impulse 

control problems have been extensively studied in management because they allow for 

discrete time interventions in continuous time processes, see, e.g., Eastham and Hastings 

(1988), Chahim et al. (2012), Bensoussan et al. (2012), Bertola et al. (2016), Basei (2019), 

Perera et al. (2020). 

The literature on differential games with impulse controls is sparse, and a majority 

of the existing works consider a zero-sum setting. In Chikrii et al. (2007), the sufficient 

conditions for hitting a target set are provided for a pursuit-evasion game where either the 

pursuer or the evader or both can give a finite number of impulses to the system. The 

pursuer's objective is to make the state trajectory bit a target set in finite time while the 

evader aims to steer the system trajectory away from the target for as long as possible. 

Bernhard et al. (2006) and El Farouq et al. (2010) introduced impulse control in zero­

sum differential games to study an option pricing problem. 2.ero-sum impulse control 

differentiable games with one player using piecewise continuous controls and the other 

using impulse controls are studied in a deterministic setting in Yong (1994) and in a 

stochastic setting in Zhang (2011) and Azimzadeh (2019). Recent works that use dynamic 

programming to determine the equilibrium include Cosso (2013), El Asri and Mazid 

(2018), Ferrari and Koch (2019), Azimzadeh (2019), Aïd et al. (2020), and Campi and 

De Santis (2020). Stochastic differential games where both players use only impulse 

control are considered in Cosso (2013) and El Asri and Mazid (2018) for the zero-sum 

case, whereas Aïd et al. (2020) and Ferrari and Koch (2019) studied the nonzero-sum case 

for an infinite horizon problem. In the pollution regulation problem studied in Ferrari 

and Koch (2019), both the regulator and polluting firm use impulse controls. Campi and 

De Santis (2020) analyze a two-player nonzero-sum differential game where one player 

uses impulse controls while the other player can stop the game at any time. 

In order to study the differential game between two nations that have different targets 

for the currency exchange rate, Aïd et al. (2020) provide a system of quasi-variational 
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inequalities (Bensoussan and Lions, 1982, 1984) that need to be solved in order to compute 

the Nash equilibrium. To the best of our knowledge, Aïd et al. (2020) is the only other 

paper in the literature that has provided analytical solutions for Nash equilibria in linear­

state games with impulse controls. However, they have assumed a symmetric Iinear-state 

game to determine the analytical solution and obtained multiple equilibria. It is to be noted 

that they do not allow for piecewise continuous controls in their model. The N-player 

extension of the impulse game in Aïd et al. (2020) is studied in Basei et al. (2019) where 

the authors provide conditions for the existence of an E-Nash equilibrium, and analyze 

its mean-field counterpart. Chang et al. (2013) and Chang and Wu (2015) have used the 

maximum principle to deal with a nonzero-sum stochastic differential game with impulse 

controls in a finite-horizon setting. However, they assume that the timing of impulse is 

given, and players only choose the level of impulse. From the above discussion, we can 

clearly see that driven by different applications in options pricing, currency exchange rate 

or regulation, the differential game problems with impulse are specialized in the kind of 

controls that are available to the players. 

1.2 Model 

In this section, we introduce a class of fini te-horizon nonzero-sum two-player differential 

game models where one player uses ordinary controls whereas the other player uses 

impulse controls. Let T < oo be the duration of the game. The control action of Player 1 

at time t E [0, T] is denoted by u(t) E nu, where .Qu is the action set of Player 1 which is 

a subset of ]R_m 1• Here, u : [0, T] - .Qu is assumed to be a piecewise continuo us function 

of time and denotes the strategy of Player 1. The set of strategy profiles of Player 1 is 

denoted by 1I Player 2 intervenes or takes actions only at certain isolated time instants ( or 

impulse instants) during the time period [0, T]. We denote the set of intervention instants 

of Player 2 by { r 1, r2, · · · , rd, k E N, where N is the set of natural numbers. The impulse 
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instants satisfy the following monotone increasing sequence property, 

0 $ TJ < Tz < · · · < Tk $ T. (1.1) 

At each time instant Ti (i = 1, 2, • • • , k), Player 2 takes an action or uses the contrai 

vi e nv, where Üv is the action set of Player 2 which is a subset of 1Rm2 • A strategy of 

Player 2 is denoted by îi = ( { (r1, v1), (r2, v2), · · ·, (Tk, vk) }, k) e 'V, where 'Vis the 

strategy set of Player 2. We note that the number of impulses k, the level or size of the 

impulse v; (i = 1, 2, · · · , k), and the timing of impulses Ti (i = 1, 2, • • • , k) are decision 

variables of Player 2. 

Using their contrai variables, the players influence the evolution of the system or the 

interaction environment as follows: 

i(t) = f(x(t), u(t)), x(O-) = xo, fort::/:- {r1, r2, ... , rd, 

x(rt) -x(rn = g(x(rn, v;), for i = {l, 2, ..... , k}, 

(1.2a) 

(1.2b) 

where x(t) e ]Rn denotes the state of the system at time t e [O, T] and o- denotes the time 

instantjust before O. The state variable just before and after the impulse instant Ti is given 

by x(rn = lim,ÎT; x(t) and x(rt) = lim11r; x(t), respectively. The initial state Xo E ]Rn is 

assumed to be given. The objectives of the players are described as follows: Player 1 uses 

a strategy u(.) e 'U to maximize the objective 

(1.3a) 

and Player 2 uses a strategy îi e 'V to maximize the objective 

(T k 
]z(xo, u(.), ii) = lo F2(x(t), u(t))dt + l: G2(x(rn, Vj) + S2(x('.r")), 

0 ~! 

(1.3b) 

where Fj denotes the running payoff of Player j, G j is the additional cost incurred 

by Player j at the impulse instants, Sj represents the terminal payoff (salvage value) of 

Player j, and r+ denotes the time instant just after T. We have the following assumptions 

regarding the system in (1.2) and the objectives in (1.3). 
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Assumption 1.1 (a) The.fùnction f : ]Rn x Qu - lR is Lipschitz continuous in xfor ail 

u such that, for c > 0, we have 

l.f(x, u) - J(y, u)I ~ c/x - y/. 

(b) Thefanctions Fj: ]Rn x.Qu - R Gj : ]Rn xQv - lR, j = 1, 2, and g: ]Rn xQv - lR 

are joint/y continuous in their arguments, and have continuous partial derivatives 

with respect to their arguments. The terminal pay<df fanctions Sj : ]Rn - lR, 

j = 1, 2, are continuous and have continuous partial derivatives with re!>pect to 

their arguments. 

(c) The action sets <l the players Qu and Qv are compact and convex subsets of1Rm 1 

and 1Rm2, respective/y. 

( d) The number of impulse actions used by Player 2 is bounded, that is, there exists a 

natural number N < oo such that k < N. 

( e) For T; to be an admissible impulse instant, the corresponding impulse Level v; should 

be such that g(·, v;) t- O. 

Assumptions l.(a) and l.(c) ensure that there exists a unique state trajectory x(·) for 

any measurable u(·) and impulse sequence {(r;,v;)}, i = {1,2,··· ,k}. Assumptions 

l.(b)-1.(d) are common in applied differential games (see, e.g., Haurie et al. 2012; Ba~ar 

et al. 2018) and impulse optimal contrai theory (Geering, 1976; Chahim et al., 2013, 

2017). Assumption 1.(e) ensures that there are no degenerate impulse instants for which 

the corresponding jumps in state are of size equal to zero. 

We seek to find Nash equilibrium strategies for the differential game defined by (1.2a)­

( l.3b ). 

Definition 1.1 The strategy profile (u*(.), v*) is a Nash equilibrium of the dijferential 

game ( 1.2a)-( 1.3b) if the .following inequalities hold true: 

11 (xo, u*(.), v*) ~ 11 (x0 , u(.), v*), Vu(.) E 11, 
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]z(xo, u*( .), v*) ~ Jz(x0, u*(.), v), Vv E 'V. (1.4b) 

lt is well-known that, in a differential game, the Nash equilibrium varies with the adopted 

information structure, that is, the information that the players use when making their 

decisions; see Ba§ar and Olsder (1999). In an open-loop information structure, the 

players' strategies only depend on time t (and initial state xo, which is a given parameter). 

ln closed-loop and feedback information structures, the players' strategies depend on time 

and the state variable. As a first step in dealing with a non-zero-sum differential game 

with an impulse player, we adopt the simplest information structure, that is, open-loop. 

Remark 1.1 The two-player dynamic game described by (l.2a)-(1.3b) is canonicat in 

nature, that is, the minimal configuration to analyze the interaction of ordinary and 

impulsive controls. An extension to multiple players, with players using both ordinary and 

impulse controls, follows directly from the current framework. 

Remark 1.2 In Yong (1994) and El Farouq et al. (2010), the authors study zero-sum 

dijferential games with impulse controls. In these works, it is assumed that players restrict 

their strategies to non-anticipative strategies ( see Elliott et al., 1972 ), as the main objective 

is to obtain Markov perfect or feedback Nash equilibrium. In this paper, we assume an 

open-loop information structure, where players commit to using the entire strategy, which 

is a description of actions defined over the time horizon [O, T]. As a result, we do not 

further restrict the strategy spaces beyond the description provided in the mode/. 

1.3 Open-loop Nash equilibrium 

In this section, we derive the necessary and sufficient conditions for the existence of an 

open-loop Nash equilibrium for the differential game (l .2a)-(l .3b ). 
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1.3.1 Necessary conditions 

We show that the Nash equilibrium conditions (1.4) result in a system of weakly coupled 

optimal control problems. First, if the strategy profile (u*( .), v*) is a Nash equilibrium, 

then u*(.) is the best response to Player 2's strategy v• := ( {(r;, v~), (r;, v;), · · ·, 

( r;., v;.)}, k *), that is, ii* solves the following optimal control problem for Player 1: 

max 11 (xo, u(.), v*), 
u(.)E1/ 

subject to x(t) = f (x(t), u(t)), 

Vi = { 1, 2, · · · , k*}, 

T k• 

J1(xo,u(.),v*) = 1 Fi(x(t),u(t))dt+ IG1(x(rt-),v;)+S1(x(T+)). 
0 bl 

( 1.5a) 

( 1.5b) 

( 1.5c) 

Remark 1.3 Player 2 's strategy v* induces jumps in the state variable in ( 1.5c) and addi­

tional payojfs G 1 (x( rt-), v;) in ( 1.5a). This implies that the above problem dijfersfrom a 

classical optimal control problem due to the presence of additional payojfs G 1 (x( rt-), v;) 

as well as the jumps in the state variable at specific instants <l time { r;, r2, · · · , r;.} given 

by (1.5c). 

Optimal control problems where the objective fonction has additional terms added at 

specific instants of time have been studied in the literature; see Geering (1976) and Getz 

and Martin (1980). In Player 1 's optimal control problem ( 1.5), there exist jumps in 

the state variable besides the additional terms in the objective. Further, to analyze the 

influence of Player 2's equilibrium strategy, we provide an auxiliary result related to the 

necessary conditions for optimality associated with the optimal control problem in (1.5). 

Theo rem 1.1 (Extended Pontryagin Principle for state jumps) Let Assumption J. J hold 

true. Let (x*(.), u*(.)) be an optimal solution <l Player J 's problem (1.5). Then, there 
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exists a piecewise continuous and piecewise differentiable co-state trajectory À1 (.), with 

À 1 ( t) E JR.n, such that fort rt. { r;, r;, · · · , r;.}, the Hamiltonian function is given by 

H 1 (x(t), u(t), À1 (t)) := F1 (x(t), u(t)) + À1 (tf f(x(t), u(t)), (1.6a) 

the optimal control satis.fies 

u*(t) = arg max H1(x*(t),u(t),À1(t)), 
u(t)E!lu 

the maximized Hamiltonian is de.fined as 

the state and co-state variables satis/y 

x*(t) = H~A/x*(t),À1(t)), x*(O-) =xo, 

A1 (t) = -H;x(x*(t),À1 (t)), À1 (r") = S1x(x*(I')) . 

At the impulse instants { r;, r;, · · · , r;.}, the following jump conditions hold true: 

Proof. See Appendix 1.8.1 ■ 

(1.6b) 

(1.6c) 

(1.6d) 

(l.6e) 

(l.6f) 

(1.6g) 

The jumps in the state and co-state in ( 1.6f) and ( 1.6g), respectively, are induced by Player 

2's equilibrium impulse strategy. 

Remark 1.4 Several extensions of the classical maximum principle are available in the 

optimal control literature; see Seierstad and Sydsœter ( 1987). Sorne of these extensions 

are related to hybrid dynamics andjumps in the state variable; see Sussmann ( 1999) and 

Getz and Martin (1980). To analyze the ejfect of Player 2's impulsive actions on Player 

1 's optimal behavior, pertinent to our canonical mode/, we provide the auxiliary result in 

Theorem 1.1 using the needle variation approach. 
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Next, we consider Player 2's prablem (1.4b), given Player 1 's equilibrium strategy u*(.). 

Then, ii* is the best response of Player 2 if it salves the following impulse optimal contrai 

prablem: 

max Ji(x0 , u*(.), v), 
î"•E'V 

subject to i(t) = f(x(t), u*(t)), 

x( Tt) = x( Ti-) + g(x( Ti-), vi), Vi= {1,2,··· ,k}, 

T k 

h(xo, u*(.), v) = ( F2(x(t), u*(t))dt + _L G2(x(Ti-), vi) + S2(x(I')). 
h ~1 

(1.7a) 

(1.7b) 

( 1. 7c) 

The Hamiltonian 3 and impulse Hamiltonian associated with the above impulse optimal 

contrai prablem are defined, respectively, by 

H2(x(t), u*(t), À2(t)) := F2(x(t), u*(t)) + À2(r)7 f(x(t), u*(t)) (1.8) 

H~(x(t), vi, À2(t)) := G2(x(t), vi) + À2(t)7 g(x(t), vi). (1.9) 

Notice that in our canonical mode!, Player 2 uses only impulse contrais, and does not affect 

the vector field (1. 7b ). In the following theorem using the auxiliary result of Theorem 1.1, 

we formulate the necessary conditions for the existence of an open-loop Nash equilibrium. 

The praof of the theorem uses the necessary conditions associated with an impulse optimal 

contrai prablem (see Chahim et al., 2012, Theorem 1 ). 

Theorem 1.2 (Necessary conditions) Let Assumption 1.1 hold true. Let (u*(.), v*) be 

an open-loop Nash equilibrium of the differential game described by (1.2)-(1.3). Then, 

there exist piecewise continuous and piecewise d~fferentiable functions À 1 ( .) and À2 ( .) 

with ÀJ (t) E R.n and À2(t) E Rn such that thefollowing conditions holdfor t E [O, T] : 

fort(/. {T;, T;, ..... , T;.}, the equilibrium contrai of Player 1 satisfies 

u*(t) = argmax H1 (x*(t), u(t), À1 (t)), 
uEQu 

(1.10a) 

3Player l ' s equilibrium strategy u' (.) influences the vector field ( 1.7b). Hence, u* (1) appears in Player 
2's Hamiltonian. 
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the maximized Hamiltonian and impulse Hamiltonianfunctions are given by 

H~(x*(t), À1 (t)) = H1 (x*(t), u*(t), À1 (t)), 

Hf (x*(r;*-),À2(rt)) = Hi(x*(r;*-), v;,À2(rt)), 

the equilibrium state and co-state equations admit 

i*(t) = f(x*(t), u*(t)), x*(0-) = XQ, 

Â1 (t) = -H~x(x*(t), À1 (t)), À1 (P) = S1x(x*(P)), 

Â2(t) = -H;(x*(t), u*(t), Àz(t)), Àz(P) = S2x(x*(P)). 

(1.10b) 

(1.10c) 

(1.10d) 

(l.lOe) 

(l.lOf) 

At the impulse instant r;* (i = 1, 2, · · · , k), the equilibrium control of Player 2 satisfies 

the jumps in the state and co-state variables satis/y 

À1(r;*-) =(/ + (gx(x*(r;*-), v;))7)À1(rt) + G1x(x*(r;*-), v;), 

Àz(r;*-) =À2( rt) + Hix • (x*(r;*-),À2(rt)), 

and the following Hamiltonian consistency condition holds true: 

> 0 forr;* = 0 

- H2(x* ( r;*-), u• ( r;*-), À2 ( r;*-)) = 0 for r;* E (0, T) • 

< 0 forrt = T 

Proof. See Appendix 1.8.2. ■ 

(1.10g) 

(1.10h) 

(l.lOi) 

(l.lOj) 

(1.10k) 

Remark 1.5 When impulse instants are interior, that is rt E (0, T) (i = 1, 2, · · · , k* ), 

we have that Hamiltonian of Player 2 is continuous at the impulse instant rt, that is, the 

necessary condition ( 1.1 0k) holds with equality. 
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Remark 1.6 For our finite-horizon game, with open-loop information structure, the im­

pulse instants are characterized hy the Hamiltonian continuity condition. That is, the time 

and state values for which the condition ( 1. I 0k) holds true. This is analogous to the inter­

vention set which characterizes the impulse instants withfeedhack information structure. 

An intervention set is also defined in terms of time and state values; see Bertola et al. 

(2016). However,for thefeedhack information structure assumed in Aïd et al. (2020), an 

impulse occurs when the state leaves a time-independent continuation set. This is due to 

thefact that the authors have considered an infinite-horizon impulse game and the impulse 

controls are assumed, a priori, to be <l the threshold-type, that is, interventions occur only 

when the state leaves the continuation set that is characterized hy the QVls. We have not 

made any structural assumption <l this kind on the impulse controls. 

1.3.2 Sufficient conditions 

In this subsection, we provide conditions under which the necessary conditions ( I .10) are 

also sufficient. Suppose the strategy profile ( u* ( .), v*) is obtained by solving ( 1.10). To 

show that the necessary conditions (1.10) are also sufficient, we have to show that u* ( .) is 

a best response to v*, that is an optimal solution for the problem ( 1.4a), and v* is a best 

response to u*(.), that is an optimal solution for the problem (1.4b). In the next theorem, 

we provide the required sufficient conditions. The proof uses sufficient conditions for 

optimality associated with the impulse optimal control problem (1.4b ); see Chahim et al. 

(2012) and Seierstad (1981, Theorem 1). 

Assomption 1.2 The impulse instants given hy (1 .1) are interior, that is, T; E (0, T) for 

i = 1, 2, · · · , k. 

Theorem 1.3 (Sufficient conditions) Let Assumptions 1.1 and 1.2 hold. Suppose there 

exist.feasihle solutions (u*( .), v*), state trajectory x• (.) and co-state trajectories À 1 (.) and 

À2(.), such that the conditions given hy (1.10) are satis.fied. Then (u*(.), v*) is an open­

loop Nash equilihrium of the dif.ferential game descrihed hy (1.2)-(1.3) if the following 

conditions hold: 
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(i) the maximized Hamiltonian H;(x(t), À1 (t)) of Player 1 is concave in x(t) for ail 

À1(t), 

(ii) the Hamiltonian H2(x(t), u*(t), Àz(t)) of Player 2 is concave in x(t), 

(iii) the salvage values S1 (x(T)) and S2(x(T)) are concave in x(T), 

(iv) G1 (x(t), v) + Af g(x(t), v) is concave in x(t), 

(v) the impulse Hamiltonian H{(x(t), v, Àz(t)) of Player 2 is concave in (x(t), v). 

Proof. See Appendix 1.8.3. ■ 

1.4 Linear-quadratic differential game with impulse 

control 

In this section, we specialize the obtained results to linear-quadratic differential games, 

and provide an algorithm for computing the open-loop Nash equilibrium. We introduce 

the following two-player linear quadratic version of the differential game (1.2)-(1.3). This 

new game will be referred to as iLQDG (where the i stands for impulse): 

iLQDG: 

subject to 

max 11 (xo, u(.), v), max ]z(xo, u(.), v), 
u(.)e11 iie'V 

x(t) = Ax(t) + Bu(t), Vt '4= {T1, T2, · · · , Tk}, 

x(Tt) = x(T;-) + Qv;, Vi = {1, 2, · · ·, k}, 

(1.1 la) 

(1.1 lb) 

(1.1 lc) 

where x(O-) = x0 and the players' objectives are given by 

lj(Xo, u(.), v) = 1T t (x(t)7 Wjx(t) + 2W)X(t) + u(t)7 Rju(t) + 2d) u(t) )dt 

k 1 
+ _Li 2(x(TnTzjx(Tn + 2q}X(Tn + vf PjVi + 2p) v;) 

r=l 

1 . 
+ 2(x(r-)7 Sjx(r") + 2s)x(r-)), J = 1, 2, (1.1 ld) 
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Remark 1.7 To keep the presentation parsimonious, we omit cross terms between the 

state and control variables. If the objective functions indude such terms, then by using 

suitable tran~formations, they can be reduced (Engwerda, 2005, pp. 100) to the canonical 

form given in ( 1.11 d); see Section 1 .6 for an illustration. 

Assomption 1.3 We assume that 

1. The matrices Wj, Zj, Sj, j = 1, 2, R2 and P1 are symmetric, and the matrices R1 

and P2 are symmetric and negative definite. 

2. Player 1 's strategy space U is the set of locally square-integrablefunctions, that is, 

U := { u(t) E Rm 1
, t E [O, T] 1 lT uT (t)u(t)dt < oo}, ( 1.12) 

and the strategy of Player 2 is given by 

'V:= {{(r1, v1), (r2, v2), ... , (Tk, vk),k}, k ENI V; Env, T; E (O,T), 

i= 1,2,· · · ,k, 0 < TJ < T2 < ... < Tk < T}. (1.13) 

3. The number of impulse actions used by Player 2 is bounded, that is k < Nfor some 

N < oo and the impulse instants sati.~fy Assumption 1.2. 

1.4.1 Necessary conditions 

In this subsection, we provide necessary conditions for an open-loop Nash equilibrium 

associated with iLQDG. For later use and simplification, we introduce some additional 

notation. The equilibrium state and co-state variables are arranged as a column vector 

y(t) E R3
n such that y(t) := [x(tf À1(tf À2(tff for all t E [0,T]. To describe the 

evolution of equilibrium state and co-state variables, we introduce the following 3n x 3n 

matrices: 

A -BR-IBT 
1 0 1 0 0 0 0 0 

M:= -W1 -AT 0 ' '71 := 0 0 0 , '72 := -Si 1 0 ' 
(1.14a) 

-W2 0 -AT 0 0 0 -S2 0 1 
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/ + QP21Qrz2 0 -QP21QT 

N ·-.- -21 / 0 (1.14b) 

0 I 

The Hamiltonian function associated with Player 2 is calculated as 

1 1 
H2(x(t), À1 (t), À2(t)) = 2x(t)7W2x(t) + (w2 + AT À2(t))7 x(t) + 2(R2R11 Br À1 (t) 

- 2BT À2(t) + R2R11 d1 - 2d2)T R11 (Br À1 (t) + d1). (1.15) 

Remark 1.8 The elementary operation of premultiplying the third block row of the matrix 

N with QP2
1QT and addition with thefirst block row results in a Lower triangular matrix 

with diagonal elements equal to 1. This implies that the matrix N is invertible. 

In the next theorem, we state the necessary conditions for open-loop Nash equilibrium 

associated with the iLQDG. 

Theorem 1.4 (Necessary conditions) Let Assumption 1.3 hold true. Let (u•(.), îi*) be 

an open-loop Nash equilibrium of iLQDG. Then, there exist piecewise continuous and 

piecewisedifferentiablefunctionsÀ1(.) andÀ2(.) withÀ1(t) E !Rn andÀ2(t) E !Rn, such 

that thefollowing conditions holdfor t E [O, T]: 

fort* {T;, Ti,··· , T;.} 

u*(t) = -R11 (Br À1 (t) + d1), 

y(t) = My(t) + C, 

1J1y(0) + 1J2y(T) = Xo, 

(1.16a) 

(1.16b) 

(1.16c) 

and at the impulse instants Tt (i = 1, 2, · · · , k* ), Player 2 's control and jump in y( Tt) 

satisfy 

v; = -P21(QT À2(Tt) + pi), 

y(Tt) = Ny(Tt-) + K, 
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and thefollowing Hamiltonian continuity condition holds true 

( l. l 6f) 

where y(t) = [x(t)T À1 (t)T A2(tlf, C = -[(BR11d1)T wf wif, K = [(QT q2 -

p2)T P21QT - qf - qif, and Xo = [xI sf sIJT. 

Proof. See Appendix 1.8.4 ■ 

1.4.2 Solvability 

In this subsection, under a few additional assumptions on the problem data, we show 

that the solution of the necessary conditions ( I .16) can be reformulated as a solution of 

a constrained non-linear optimization problem. First, from the state equation (1.16b ), 

y( r;-) is calculated as 

where </)(r;-,o) = eMrt and cp(r;-,o) = eMr(- fort e-Mscds. Next, given operators 

</)( rt-, 0) and cp( rt-, 0) for i > 1, y( rt-) and y( ri:l) can be determined as follows: 

y( rt-) = </)( rt-, 0)y(0) + cp( r7-, 0), 

y( ri:I) = </)( r;:i, 0)y(0) + cp( r;:i, 0). 

Using (l.16b)-(l.16e), we have 
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Comparing the above equations with ( 1.17b ), we can compute <f,( Tr, 0) and '{)( Tr, 0) 

recursively for j e { 1, 2, · · · , k*} as follows: 

A.( •- 0) = M(Tj:1-Tt)NA.( ~- 0) 
'f/ Tj+l' e 'f/ T1 , , (1.18a) 

l{)(Tj;1,0) = eM(Tj:i-Tt\Nl{)(Tt,O) +K) +eMTj:i 1Tj;I e-Mscds, 
Tj+ 

(1.18b) 

with <f,(T;-,o) = eMTt, l{)(T;-,o) = eMTt fo Tj- e-Mscds, and T;.+l = T. (1.18c) 

Player 2's Hamiltonian function ( 1.15) can be written, after a few algebraic manipulations, 

in the following quadratic form: 

(1.19) 

0 0 W1 

whereA1 := 0 BRï1RIRï1BT 0 ,b := BRï 1(R2Rï1d 1 -d2) ,andc := ½(R2Rï1d1-

2A -2BR-1BT O -BR-1BTd1 
1 1 

2d2l Rï I BT d 1. We have the following theorem concerning the solvability of the necessary 

conditions (1.16). 

Theorem 1.5 (Solvability) Let Assumption 1.3 hold true. Let (u*(.), v*) be an open-loop 

Nashequilibriumofthe linear-quadratic gamedescribedby(l.11). Let {T;, T;, · · · , T;.} be 

the interior equilibrium impulse instants. Let the matrices <f,( Tt-, 0) and'{)( Tt-, 0) for i E 

{ 1, 2, · · · , k*} be calculated recursively using (1.18), and let the matrix (111 + 112</J(T, 0)) be 

invertible. Then, the state-co-state vectors y(t) = [x(t)7, À1 (t)7, ,h(t)7]7 fort E (Tt, Ti:1) 

and i e {l, 2, · · · , k*} are solved as 

y(t) =eM(t-T~) N<f,( Tt-, 0)y(0) + eM(t-T~\NI{)( Tt-, 0) + K) + eMt 1.~ e-Msc ds, 
1 

(1.20a) 

withy(0) = (111+112</J(T,o))- 1(Xo-1121{)(T,0))andT;.+ 1 =T. Further,thestate-co-state 

vector satis.fies the following quadratic equality constraint at the switching instant: Tt, 

i E {1,2,··· ,k*}: 

~y( Tt-l (NT A1N - A1)y( Tt-) + ( 1 KT (A1 T + Ai)N + bT N - bT)y( Tt-) 
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The open-loop equilibrium strategies <~f the players are given by 

u*(t) = -R"ï 1 (B7 [0 I 0]y(t) + di), fort E [0, T]\{r;, r;, · · · r{.}, 

v; = - P21(Q7 [00 I]{N<,f>(rt, 0)y(0) + (N'P( rt, 0) + K)) + P2 ), 

for i E { 1, 2, · · · , k *}. 

Proof. See Appendix 1.8.5. ■ 

(1.20b) 

(1.20c) 

( 1.20d) 

Remark 1.9 ln general, there may exist multiple equilibria for an iLQDG. When the 

number of impulses and the timing <if the impulse instants are exogenously given, that 

is, they are not decision variables, 4 ( 1.20a), a long with ( 1.20c) and ( 1.20d) provides the 

unique open-loop Nash equilibrium. ln Theorem 1.5, though the impulse instants are not 

known, the number <if impulse instants k* must be specified a priori. 5 

Non-linear programming formulation 

Following Assumption 1.1.(d) on the bound on the number of impulses, the equilibrium 

number of impulses is obtained by first determining the equilibrium payoff of Player 2 for 

a fixed number of impulses, and then selecting the number of impulses that maximize the 

payoff of Player 2. To illustrate this observation, we denote by <yk the strategy set where 

Player 2 gives exactly k non-degenerate impulses, that is, 

,yk :={{(r,, v1), (r2, v2), ... '(rk, vk)} 1 Vi E QI', T; E (0, T), i = 1, 2, ... 'k, 

0 < TI < T2 < · · · < Tk < T}. 
41n the central bank example mentioned in the introduction, the timing of change in the interest rate is 

exogenous. 
5This approach is usually followed in the area of impulse optimal contrai, see, Chahim et al. (2013) and 

the references therein. In Chahim (2013) and Grass and Chahim (2012), the authors compute the impulse 
optimal contrai by first fixing the number of impulse instants a priori. and then later choose the number that 
maximizes the objective. 
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We denote a strategy in the set ryk by vk := {(r1, v1), (r2, v2), · · ·, (Tk, vk)}. Due to 

Assumption 1.1.( d), there exists N < oo such that the strategy space rv of Player 2 

can be partitioned as rv := rv 1 u rv2 u • • • ryN where ryi n ryi = 0 for i -:t- j and 

i, j E {I, 2, · .. , N}. Using this, and from (1.4b), Player 2's optimization problem can be 

written as 

h(u*(.), v*) = max]i(u*(.), v) = max max h(u*(.), vk). 
iie'V ke{l,2,---,N} VkE'Vk 

(1.21) 

Let v; denote the optimal solution of the problem maxvkE'Vk Ji(u*(.), vk), then we have 

k* = argmax h(u*(.), vi) and v* = {v;., k*}. 
ke{ 1,2, .. ,N} 

(1.22) 

From (1.22), it is evident that the equilibrium number of impulse instants is obtained by 

first fixing the number of impulse instants and solving the inner optimization problem in 

(1.21), and then solving the outer optimization problem (1.22). Using this observation, we 

provide a non-linear programming based approach for solving the necessary conditions 

(1.20). 

For a given number of impulses k, the equilibrium impulse instants T := { r;, r;, · • • , 
r;} are characterized by the Hamiltonian continuity condition (1.2Ob) and y(rt) can 

be computed from the recursive relations (1.17a) and (1.18). (1.2Ob) is a non-linear 

fonction of impulse instants so it is difficult to determine r;* analytically. However, we 

can determine the impulse instants r;* numerically by solving a constrained non-linear 

optimization problem. We describe the procedure as follows. 

In Assumption 1.3, we have supposed separability of the the impulse instants, i.e., 

T1 < T2 < · · · < Tk, 

and this constraint can be represented as 

DT< 0, (1.23) 
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where 

-1 0 0 0 
TJ 

0 -1 0 0 
D := 

' T := 

Tk 
0 0 0 -1 

(k-l)xk 

The strict inequality ( 1.23) can be transformed as an inequality by introducing a negative 

slack variable6 so that Dr ::; slack. Next, again from Assumption 1.3, the impulses 

cannot occur at the initial and final time. This can be ensured by defining the lower 

and upper bounds on each impulse instant as lb $ r ::; ub, where lb = -slack and 

ub = T +slack. Player 2 can choose any negative value of the slack variable such 

that the interior impulse instants satisfy the separability condition in Assumption 1.3. The 

impulse instants associated with the strategy v~ are then computed by solving the following 

constrained minimization problem: 

where 

r* = argmin obj( r) 
lb:-,T:<,Ub 

subject to Dr $ slack, 

k 

obj( r) = L ( 1y( rtf (NT A1N - A 1)y( rt) 
i=l 

( 1.24) 

The non-linear optimization problems can be solved by using an interior-point algorithm 

(Waltz et al., 2006; Byrd et al., 1999) or sequential quadratic programming (SQP) methods 

(see Powell, 1978; Barclay et al., 1998; Büskens and Maurer, 2000). In this paper, we use 

the non-linear programming sol ver fmincon in MATLAB for solving ( 1.24) numerically. 

6Usually, slack variables are used to transform an inequality constraint into an equality constraint. We 
use a slack variable to transform a strict inequality constraint to an inequality constraint. 
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1.4.3 Sufficient conditions 

Theorem 1.5 provides a way of solving the necessary conditions (1.16), and as a result, 

the obtained solutions are candidates for the open-loop Nash equilibrium. In the next 

theorem, we provide conditions under which these candidates are indeed the open-loop 

Nash equilibrium solutions. The proof of the theorem directly follows from the sufficient 

conditions stated in Theorem 1.3. 

Theorem 1.6 (Sufficient conditions) Let Assumption 1.3 hold true. Let the matrices 

{Wi, Zi, Si, i = 1, 2} be symmetric and negative semi-dejinite, and the matrices {R1, P2} 

be symmetric and negative dejinite. Further, let the matrix (TJ1 + 1J2<f,(T, 0)) be invertible, 

Then, the solutions (u*(.), v*) given by (1.20c) and (1.20d) provide the open-loop Nash 

equilibrium strategies of iLQDG described by (1.11). 

1.5 Linear-state differential game with impulse control 

In this subsection, we specialize our results to one-dimensional linear-state differential 

games to obtain sharper results concerning the existence of open-loop Nash equilibrium 

strategies. The players maximize their objective functions given by 

1
T 1 k 

11 (xo, u(.), v) = - (2w1x(t) + R1u2(t)) dt+ l: q1x(Ti-) + s1x(I'), 
0 2 ~! 

(T k l 
h(xo, u(.), v) = Jo w2x(t)dt + ~ 2P2vf + s2x(T+), 

0 1=! 

with the evolution of the state given by 

x(t) = Ax(t) + Bu(t), x(O-) = xo, fort t: { T1, T2, .. . , Td, 

x( Tt) = x(Ti-) + Qvi, for i = {1, 2, ... .. , k }. 

(1.25a) 

(1.25b) 

(1.25c) 

(1.25d) 

In the next theorem, we will show that for the linear-state game, described by (1.25), it 

is possible to obtain, from the problem data, an analytical characterization of timing and 

level of impulse for Player 2's equilibrium strategy. 
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Theorem 1.7 Consider the linear-state d(tf'erential game described by (1.25). Let As­

sumption 1.3 hold true. ln equilibrium, the numben?f impulse instants for Player 2 is at 

most one, that is, k* :s; 1. ln particular, if the parameters sati.sfy thefollowing conditions: 

(1.26a) 

(1.26b) 

( 1.26c) 

then k* = 1. Further, the associated impulse Level and the impulse timing are given by 

r* = T + 2_ ln ((Q)2 
_R1 _A_s2_+_w_2) 

A B P2 q1 ' 
( 1.27) 

* Qw2 B2q1 
V=-----. 

P2A AQR, 
( l .28) 

Proof. See Appendix 1.8.6 ■ 

In the above theorem, we have used the fact that the co-state of Player 2 is strictly monotone 

in order to show that the impulse instant is unique, and there can be at most one interior 

impulse. To the best of our knowledge, this is the first analytical characterization of a 

unique equilibrium in a specialized differential game with impulse control. It can be 

clearly seen that both the equilibrium timing and level of impulse depend on the problem 

parameters that appear in the objective fonction of Player 1. If the ratio of Q and B is 

kept constant, then the size of impulse at equilibrium can be altered without affecting the 

equilibrium timing of impulse. 

1.6 Numerical illustration 

In this section, we provide a numerical illustration of our results for iLQDGs. 

Consider a dynamic game between a government and an international terrorist organi­

zation (ITO) where the ITO continuously builds its resources that can be financial assets 
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or infrastructure to plan attacks while the government carries out strikes to disrupt the 

ITO's resources. In the literature (see Novak et al., 2010; Crettez and Hayek, 2014) on 

security applications, open-loop Nash equilibrium solutions have been derived to study 

these strategic interactions under the assumption that both the government and ITO act at 

each instant of time in the game. However, in practice, the strikes are carried out by the 

government at certain discrete instants of time. We model the aforementioned interaction 

using a finite-horizon differential game with impulse controls where the government de­

cides the number and timing of its strikes besides the optimal effort level to be invested in 

the strike. The numerical values for the dynamic game between ITO and government have 

been chosen to illustrate that the theory and algorithms developed in this paper also apply 

to iLQDGs involving control-state interactions. For future work, it would be interesting 

to apply our dynamic game using real-world data. 

At any time t E [O, T], let x(t) denote the resources of ITO. Clearly, the government's 

running payoff decreases with increase in the ITO's resources while the running payoff 

of the ITO increases as they build more resources. However, there is a cost of building 

resources which is a quadratic fonction of the effort level, u(t), of the ITO, and the cost 

of strike for the government is quadratic in effort level Vi of the government. At the 

time of the strike, the ITO incurs a loss of !x( rn2, which clearly increases with ITO's 

resources at the time of the attack. At the end of the horizon which is assumed to be 25, 

the government incurs a loss if the terrorist resources are not destroyed completely while 

terminal reward of ITO is increasing in its resources for x < 2. 

The objectives of ITO and government are given by 
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and the state dynamics by 

i(t) = -0.2x(t) + 0.2u(t), x(0-) = 1, fort t { r1, r2, ... ,rd, 

x(rt) = x(rn - 0.3v;, for i = {1, 2, ..... , k}, 

where there is natural depreciation ofresources given by -0.2x(t). The state increases with 

increase in the continuous effort level u(t) of the ITO and decreases with effort v; invested 

in the strike by the government. Note that ITO's objective includes the control-state cross 

term 8x(t)u(t). We can write 

- 5x(t)2 
- 4u(t) 2 + 8x(t)u(t) + 4x(t) = -4(u(t) -x(t))2 

- x(t)2 + 4x(t), 

and obtain an equivalent iLQDG by making the substitution û(t) = u(t) - x(t). Upon 

rewriting the objective fonctions, we have 

1 f 25 k 
l1(xo,ü(.), v) =2( Jo [-x(t) 2 +4x(t)-4ü2(t)]dt- I (3x(r;-)2)-x(25+)2 

0 1=] 

and the state dynamics are given by 

i(t) = 0.2ü(t), x(o-) = 1, fort t {r1, r2, ... , rd, 

x(rt) = x(r;-) -0.3v;, fori = {1, 2, ..... , k}. 

We use the non-linear optimization based procedure given in Section 1.4.2 for calcu­

lating the equilibrium instants at which government strikes the ITO. Recall, from Remark 

1.9, that the number of impulse instants must be specified a priori in order to use the solver. 

The timing and level of strike by the government are shown in Table 1.1 for different num­

ber of strikes. Clearly, government's strategy for any number of strikes greater than one is 

to attack the ITO with effort levels that decrease monotonically over time. 

We can see from Figure 1.1 that compared with the game with no impulses, the 

government receives lower payoff by giving one impulse and the payoff of the government 
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Table 1.1 - Equilibrium timing and level of impulses for different exogenous numbers of impulses 

0 -
1 (6.86, 4.43) 
2 (6.1, 3.79), (12.07, 2.9) 
3 (5.48, 3.39), (11.53, 2.41 ), (12.24, 2.32) 
4 (4.95, 3.11 ) ( 11.30 ,2.10) (12.09, 2.00) (18.48, 1.37) 

41.89 
-28.89 
9.53 
1.73 
10.12 

le 

-38.27 
-39.74 
-36.5 
-34.90 
-31.34 

increases for k ~ 4. Our numerical experiments show that there are no impulses for k > 4. 

So, the equilibrium number of impulse instants can be taken as 4. However, there can be 

multiple equilibria for a given number of impulses. 

-32 

-34 

c.:, .... -36 

-38 -~ 

-40 

0 

• 

• 

2 

k 

• 

• 

3 4 

Figure 1.1 - Variation of the equilibrium profit of the government with the number of impulses 

For k* = 4, the open-loop Nash equilibrium strategies and the equilibrium state and 

co-state for the government and ITO are illustrated in Figure 1.2. It can be seen in Figure 

1.2b that the resources of ITO continuously increase in time except at the times of strikes 

when some of the resources are destroyed. As shown in Figure 1.2a, the ITO invests effort 

in building its resources as the running payoff of ITO is increasing in the state. The co-state 

of ITO in Figure 1.2c jumps due to resource-dependent costs incurred at the time of the 

strike whereas the government's co-state is continuous intime (see Figure 1.2d) because 

government does not incur any state-dependent costs. The increase in government's co­

state varies linearly with ITO's resources except at the time of the strike (see (l.lOf)). 

This leads to a monotonie increase in government's co-state over time and therefore, at 
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equilibrium, the government starts with a significant disruption of ITO's resources and the 

strikes that follow are Jess severe, and cause lower damage to the ITO's resources. 
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Figure 1.2 - Equilibrium controls, and state and co-state trajectories. 

1. 7 Concluding remarks 

In this paper, we studied a class of two-player nonzero-sum differential games where 

one player uses ordinary controls while the other uses impulse controls. We derived the 

necessary and sufficient conditions for the existence of an open-loop Nash equilibrium 

for this class of differential games. Then, specializing our results to a linear quadratic 

setting, we provide a non-linear optimization based approach for solving the open-loop 
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Nash equilibrium strategies. We showed that the open-loop Nash equilibrium of a linear­

state differential game with impulse control is unique and can have at most one impulse. 

Also, we derived expressions for the equilibrium timing and level of the impulse. 

In this paper, we considered an open-loop information structure only. For future 

research, it would be interesting to determine the equilibrium under the closed-loop or 

feedback information structures. Another extension would be to allow both players to use 

both piecewise continuous and impulse controls. 

1.8 Appendix 

1.8.1 Proof of Theorem 1.1 

Introduce the new state variable i(t) : [O, T] --+ IR with its dynamics given by 

x(t) = F1 (x(t), u(t)), fort E [0, T] \ { T~, r;, ... , r;. }, 
i(rt) - i(rt-) = G1 (x(rt-), v;), for i = {1, 2, ... , k*}, 

i(O-) = O. 

The objective function of Player 1 can now be expressed as 11 (x0, u, v*) = i(T+) + 

S1 (x(r)). We define an augmented system as follows: 

[
x(t)l 

y(t) = ' 
i(t) 

where y(t) : [O, T] --+ JRn+I. The dynamics of y at non-jump instants {r~, r2, .... , r;.} are 

governed by 

[ 

f(x(t), u(t)) l 
y(t) = =: h(y(t), u(t)) , 

F1 (x(t), u(t)) 
(1.29) 

with the initial condition y(o-) = [xô 0)7. An optimal trajectory x* of (1.5) can be 

obtained from the optimal trajectory y*(t) of the augmented system by projection onto !Rn 
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parallel to the i axis. The jump conditions on y can be represented as 

(1.30) 

Now, we define a perturbed contrai uw,1(t), which is obtained by a needle variation in the 

optimal contrai, that is, 

·-{u*(t) if t ~ I 
Uw,1(t) .- , 

W if t E / 

where w E nu and/ = (b - rn, b] E [O, T], E > 0 is small, and a > 0 is arbitrary. We 

assume that u*(t) is continuous at b because we want y*(t) to be differentiable at t = b. 

Here, we also assume that rt ~ /, Vi E { 1, 2, ... k*}. The linearized dynamics of the 

system in ( 1.29) araund y* (t) is governed by 

[ 

JAx(t), u(t)) 
cp(t) = 

F1Ax(t), u(t)f 

Suppose/ c (rt_ 1, rt). Let <l>. denote the state transition matrix for the dynamics of <p 

such that, for b ~ t ~ rt-, we have 

( 1.31) 

where v1, (b) = (h(y*(b), w) - h(y*(b), u*(b))) a and O~E) - 0 as E - O. 

We intraduce the matrix M; to account for the change in the perturbed trajectory y(t) due 

to the jump in y(t), 

Thus, we can write 

Now, we can represent the terminal state as 

( 1.32) 
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where 8(w, I) = E<l>.(T+, r;t>Mk•<I>.(r;-:, r;-:-_1) · · · Mi<I>.(rt-, b)vw(b) is the infinitesi­

mal change in the terminal state due to the needle variation in the control. The direction 

of ô ( w, I) is dependent on w and b. B y varying the parameters w and /, we can generate a 

cone P with vertex at y*(T+) and rays p(w, b) originating in the direction of ô(w, I). Here, 

Pis not convex, so we consider various needle variations in the trajectory and concatenate 

them to obtain a terminal convex cone TC(y*(T+)). Therefore, there exists a non-zero 

vector p E Rn+l such that 

(1.33) 

where y(T+) - y*(T+) E TC(y*(T+)). Let us define pas 

p ~ [-Si,~t'))l • 
which satisfies (1.33) because, otherwise, we can find a y(T+) such that J(u) < J(uw,1). 

From (1.32) and (1.33), we get 

(1.34) 

Introduce an adjoint vector q(t) : [O, tN] - Rn with dynamics governed by 

[

-Ux(x*(t), u*(t)f 
q(t) = 

0 

-F1x(x*(t), u*(t))l 

0 
q(t), fort E [O, T]\{r;, r;, ... , r;.}, 

(1.35) 

q(T+) =p, (1.36) 

( •-) -[([ + gx(x*(rt-), v;))7 

q Ti -
0 

G1x(x*(rt-), v;)l •+ . • 

1 
q(Ti ),fori={l,2, ... ,k}. 

(1.37) 

Therefore, Vw E nu, b E [O, T], we can write (1.34) as 

q(b)7 (h(y*(b), w) - h(y*(b), u*(b))) ~ O. (1.38) 

lt is clear from (1.35) that the last component of q is a constant. From (1.36) and using 

the continuity of the last component of q in (1.37), we can set the last component of q to 
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be equal to -1. So we can decompose q(t) as 

[

-À 1 (t)l 
q(t) = . 

-] 
( 1.39) 

Substitute (1.39) in (1.35), (1.36), and (1.37) to obtain 

A1 (t) = - F1x(x*(t), u*(t)) - (fx(x*(t), u*(t))T A1 (t), Vt <t {r~, r; , .. .. , r;. }, (1.40) 

À1(T+) =S1x(x(r+)), 

À1 ( rt-) =(/ + (gx(x*( rt-), v;))r)À1 ( rt) + G 1x(x*( rt-), v;). 

Defining the Hamiltonian as 

we can write the dynamics of A1 (t) in (1.40) as 

From (1.38) and (1.39), we obtain 

[ ] [ 

f(x*(t), w) - f(x*(t), u*(t)) l 
-À1(tl -] ~ O. 

F1 (x*(t), w) - F1 (x*(t), u*(t)) 

Using the definition of the Hamiltonian, we obtain 

1.8.2 Proof of Theorem 1.2 

From (1.4a), u*( .) is Player l's best response to Player 2's equilibrium strategy v* . Fol­

lowing Theorem 1.1, conditions (1.10a), (1.10b), (1.10d), (l.lOe), (1.10h), and (l.lOi) 

provide the necessary conditions for u*( .) to be the best response for v*. 

Next, following (1 .4b), Player 2's best reponse v* to Player 1 's equilibrium strategy 

u* ( .) is an impulse optimal control problem ( 1.7). The necessary conditions for optimality 
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associated with an impulse optimal control problem were studied in Blaquière (1977b, 

Theorem 1.2) and Chahim et al. (2012). We list these conditions for the impulse optimal 

control problem (1.7) below. 

The equilibrium level of impulse at each time instant rt (i = l, 2, • • • , k) is given by 

The maximized impulse Hamiltonian at the impulse instant Ti (i = l, 2, • • • , k) is given by 

During the non-impulse instants t E [ 0, T] \ { r~, r;, • • • , r;}, the state and co-state equa­

tions satisfy 

x*(t) = f(x*(t), u*(t)), x*(0-) = xo, 

,,b(t) = -H;(x*(t), u*(t), A2(t)), A2(T+) = S2x(x*(I')). 

At the impulse instants Ti (i = 1, 2, • • • , k), the state and co-state variables admit jumps 

according to 

and the Hamiltonian fonction satisfies 

> 0 for rt = 0 

<0 for r:" = T 
1 

The above listed conditions constitute the necessary conditions (1.10c), (1.10d), (1.lOf), 

(1.10g), (1.10h), (1.lOj), and (1.10k). 
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1.8.3 Proof of Theorem 1.3 

Suppose a pair of controls ( u* (. ), v*) satisfy the conditions in Theorem 1 .2 and x• (t) is the 

corresponding state trajectory. We have to show that u* (.) and v* are mu tuai best response 

strategies. Firstly, for Player 1, we define the difference for any u( .) E 1.1, 

T k• 

= 1 F1(x*(t),u*(t))dt+S1(x*(T))+ Ici(x*(rt- ),v;) 
0 i=l 

T k• -1 F1(x(t),u(t))dt-S1(x(T))-IG1(x(rt-),v;), (1.41) 
0 i=l 

We use the definition of the Hamiltonian of Player 1 in ( 1.6a) to obtain 

1111 = 1T H1(x*(1),u*(1),À1(t))dt+S1(x*(T))-1T H1(x(t),u(t),À1(t))dt 

T 

+ J Àt (t)7 (i(t) -i*(t))dt - S1 (x(T)) 

0 
k• 

+ Ic1(x*(rt-),v;)-G1(x(r;'-),v;). 
i=l 

Recall that for any x(t), we have 

H~(x(t),Ài(t)) = max H1(x(t),u(t),À1(t)). 
u(t)eQ11 

lt follows from the above equation that 

Using (l.lOa) and the above inequality, we obtain 

From the concavity of the maximized Hamiltonian H;(x(t), À 1 (t)) in x(t), 
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Using (1.lOe), we get for all t cf. {r;, • • • , r;}, 

H~(x(t),À1 (t)) - H~(x*(t),À1 (t)) =s;H;x(x*(t),À1 (t)l (x(t) -x*(t)) 

-Â1 (tl (x(t) - x*(t)). 

Similarly, from the concavity of S1 (x(T)) in x(T), and ÀJ (T) = S1x(x*(T)), we obtain 

S1 (x(T)) - S1 (x*(T)) =5 S1x(x*(T)l (x(T) - x*(T)) = À1 (Tl (x(T) - x*(T)). 

Using the above inequalities, we obtain 

k' 

+ I (G1(x*(r;*-),v;)-G1(x(rt-),v;)) +À1(Tl(x*(T)-x(T)), (1.42) 
i=l 

where we define rô := 0 and r;+, := T. Recall that we have made the assumption that 

there can only be interior impulse instants. rô and r;+I are used to simplify the notation, 

and are not the impulse instants. 

From 
''ï ''ï J 1 (ÀT (t)x(t))dt = J [À(tl x(t) + Â(tl x(t)]dt, (1.43) 

and (1.42), we obtain 

k" 

+ I G1 (x*(rt-), v;) - G1 (x(rt-), v;), 
i=l 

= À1 (rtl (x(rt) -x*(rt)) + À1 (r;-l (x(r;-) -x*(r;-)) 

-À1 (rtl (x(r;+) -x*(r;+)) + · · · + À1 (Tl (x(T) -x*(T)) 

-À1 (r;+l(x(r;+) -x*(r;+)) + À1 (Tl (x*(T) -x(T)) 
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k. 

+ I c, <x*<rt-). vn -c, <x<rt-). vn. 
i=l 

where we have used the fact that there is discontinuity in A1 (tf x(t) at the jump instants. 

Also, x*( r6- ) = x( r6-) = xo since we have assumed that there is no impulse at t = O. From 

( 1.10h), we can write x( rt)-x* ( rt) = x( r;'- ) + g(x( rt-), v;)-x*( rt-)-g(x* ( r;'-), v;). 

Rearranging the terms on the right-hand side of the above expression and using ( 1.1 Oi), 

we get 

k' 

1'1.11 ~ I (G 1 (x*(r7-), v;) + À1 (rt? g(x*(r,*-), v;) - G, (x(r;' -), v;) 
i=I 

k' 

- À 1 ( rt)T g(x( rt-), v;)) + I ( G 1.r(x*( r;'-), v;? (x( r7-) - x* ( r;'-)) 
i= l 

From the concavity of G, (x(t), v) + Af (t)g(x(t), v) in x(t), 

G, (x*(rt-), v;) + ÀJ (rt? g(x*(r;'-), v;) - G1 (x(r;'-), v;) -A, (rt? g(x(r;'-), v;)] 

~ [ G,x(x*( r7-), v;? + À1 ( rtl gx(x*( r7-), v;)](x*( rt-) - x( rt-n. 

lt follows from the above relation that 1'1.11 ~ 0, and this implies that u* ( .) is the best 

response to v*. For Player 2's impulse optimal control problem (1.7), we note that Player 

2 uses impulse controls (and not the piecewise continuous controls), and the Hamiltonian 

function H2(x(t), u*(t), A2(t)) is concave in x(t) for each t, and the impulse Hamiltonian 

H~(x(t), v,A2(t)) is concave in (x(t), v) for each A2(t). Then from Seierstad (1981, 

Theorem 1) and Seierstad and Sydsreter ( 1987, Theorem 8, pages 198-199), it follows that 

the necessary conditions ( 1.10d), (]. lüf)-(1.1 Ok) are also sufficient for Player 2's impulse 

optimal control problem (1.4b), that is, v* is a best response to u*( .). 

1.8.4 Proof of Theorem 1.4 

From ( 1.6a), we have 

1 
H, (x(t), u(t), À1 (t)) =2(x(tlW1x(t) + 2wf x(t) + u(tl R,u(t) + 2df u(t)) 
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+ À1 Ctl (Ax(t) + Bu(t)). 

From (1.10a), and from the negative definiteness of R1, we get 

H1u(x(t), u(t), ÀJ (t))lu•(t) = 0 ⇒ R1u(t) + d1 + BT À1 (t) = 0 

⇒ u•(t) = -R11(BT À1 (t) + d1). 

The maximized Hamiltonian of Player 1 is given by 

1 
H;(x(t), À1 (t)) =

2
(x(tl W1x(t) - (BT À1 (t) + d1l R1

1 (BT À1 (t) + d1)) 

+ (w1 +ATÀ1(t)lx(t). 

From (1.8), we get 

(1.44) 

(1.45) 

1 
H2(x(t), u• (t), À2(t)) =2 (x(tl W2x(t) + 2w{x(t) + u•(tf R2u• (t) + 2df u*(t)) 

+ À2(tl (Ax(t) + Bu• (t)). 

We substitute (1.44) in the above expression to obtain 

H2(x(t), À1 (t), À2(t)) 

1 = 
2
x(tl W2x(t) + ( w2 + AT À2(t)l x(t) 

1 
+ 2(R2R11 BT ÀJ (t) - 2BT À2(t) + R2R11d1 - 2d2l R11 (BT À1 (t) + d1). (1.46) 

From (1.9), 

1 
Hi (x( r;), Vi, À2( r()) =2 (x( rnT Z2x( Ti-) + 2qix( rn + vT P2Vi + 2p{ vi) 

+ À2(r+f Qvi. 

From (1.10g), (1.47), and from the negative definiteness of P2, we get 

HL/x(rn, Vi,À2(r())lv; = 0 ⇒ P2vi + P2 + QTÀ2(rt) = 0 

(1.47) 

⇒ v; = -P-:2_1(QT À2(rt) + pi). (1.48) 
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Substituting v; in (1.47), we get 

H~*(x(ri-),A2(rt)) =l (x(rnTz2x(Ti-)-(QTA2(Tn +2p2lP;-1(QTA2(T+)) 

(] .49) 

From ( 1.1 Oct)-( 1.1 Of) and (1.44 )-( 1.46), the optimal state and co-state trajectories for 

non-impulse instants ( 1.16b) are obtained as 

i*(t) =Ax*(t) - BR11 (BT A, (t) + d,), x(O) = xo, 

. T + -r+ A1(t)=-A A1(t)-W1x*(1)-w1,A1(T )=Six(, )+s1, 

From ( 1.1 Oh)-( 1.1 Oj) and ( 1 .48)-( 1.49), the jump conditions at the impulse instants ( l. l 6e) 

are obtained as 

x*(rt) =x*(r,*-) - QP21 (QT A2(rt) + p2), 

A1(rt-) =A1(rt) +Z1x*(rt-) +q1, 

A2(rt-) =A2(rt) + Z2x*(rt-) + q2. 

Finally, from ( 1.1 Ok) and (1.46) and rearranging terms, we get ( 1.16f). 

1.8.5 Proof of Theorem 1.5 

From (1.16b), y(t) fort E (rt, ri:,) is evaluated as 

y(t) = eM(r-Tt)y(rt) + eMr 1.~ e-Msc ds. 
1 

Next, using ( 1.17), ( 1.18), and ( 1.l 6e ), we obtain ( 1.20a). Since we assumed interior 

impulse instants, that is, rt E (0, T) for i E { 1, 2, • • • , k*}, the Hamiltonian continuity 

condition ( l. l 6f) ho Ids true with equality. Rewriting ( l. l 6f) using ( 1.19), we get 

H2(y(rt+)) - H2(y(rt-)) =ly(rt)T A1y(rt) + bTy(rt) +c 

- (ly(rt-l A1y(rt-) + bTy(rt-) + c). 
Using ( l. l 6e) in the above equation, we obtain ( 1.20b ). Finally, ( 1.20c) and ( 1.20d), which 

are expressed in open-loop form, are obtained from ( 1.16a) and (1.16d). 
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1.8.6 Proof of Theorem 1. 7 

The necessary conditions ( 1.16) from Theorem 1.4 are given by 

Fort 'I. {r;, r;, ..... r;.}, 

B2 
x*(t) = Ax*(t) - -A1(t), x(O-) = xo, 

R1 

A1 cr) = -AA1 (t) - w1, A1 cr) = s1, 

A2(t) = -AA2(t) - w2, A2(T+) = s2. 

À 1 ( rt-) = À 1 ( rt) + q 1, 

A2(r;*-) = ,h(rt). 

The Hamiltonian continuity condition (1.16f) is given by 

w2(x*(rt)-x*(r;*-)) +A(A2(rt)x(rt)-A2(rt)x(rt)) 

B2 
- Ri (A1(rt)A2(rt) -A1(r;*-)A2(r;*-)) = O. 

Substituting ( 1.50a), ( 1.50b ), and ( 1.50c) in the above equation, we obtain 

(1.50a) 

(1.50b) 

(1.50c) 

-"'2Q2 + B 2ql 

The above quadratic equation bas two solutions: A2(rt) = 0 and A2(rt) = P
2 ~ Ri 

A Po 

for A * O. From (1.16d), with ,,h(r;*-) = 0, we get v; = 0 for all i E {1, 2, · · · ,-k*}. 

Therefore, from Assumption l.(e), we have that r;* is not an impulse instant. This implies 

that 

(1.51) 
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is the valid solution for QP"w2 -:f. BR"qi for which v~ -:f. O. From (1.50c), we have that there 
::! 1 l 

are no jumps in the co-state of Player 2, and this implies that, for A -:f. 0, À2 (t) is computed 

as 

Clearly, A2 (t) is strictly monotone in t, and can take the value 

that is, k* ~ 1. Using (1.52) and (1.51), we obtain 

• 1 Q R1 As2 w2 
T = T + - ln - - -- + 1 - . 

(( ) 2 ( ) ) 
A B P2 w2 q1 

(1.52) 

at most once, 

For r* > 0, the parameters should satisfy T + ¼ ln ( ( Î) 2 ~~ ( ~~
2

2 + 1) ;~) > 0, while for 

r* < T, the inequality, 

- ln - - - + 1 - < 0 1 ((Q)2 
R 1 (As2 ) w2) 

A B P2 w2 q1 

should hold. The impulse level is calculated from (1.16d) and (1.51) to obtain (1.28). 
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Chapter 2 

Open-loop and feedback Nash equilibria 

in scalar linear-state diff erential games 

with impulse control 

Abstract 

We consider a deterministic two-player linear-state differential game, where Player 1 uses 

piecewise continuous controls, while Player 2 implements impulse controls. When the 

impulse instants are not the decision variables for Player 2, but provided exogenously, 

we recover the classical result that both open-loop and feedback Nash equilibria coïncide 

for this class of games. When the number and timing of impulse instants are decision 

variables of Player 2, we show that the classical result no longer holds, that is, open-loop 

and feedback Nash equilibria are different. We show that the impulse level is constant in 

both equilibria. More importantly, in the open-loop case, we show that the equilibrium 

number of impulses is at most three, while there can be at most two impulses in the 

feedback case. 



2.1 Introduction 

Differential games are used to study competitive strategic interactions between multiple 

agents (players) over time (see Ba~ar and Olsder, 1999; Haurie et al., 2012; Ba~ar et al., 

2018). In the differential games literature, it is widely assumed that the players make 

their decisions at each instant of time or choose strategies that are piecewise continuous 

functions of time (also referred to as ordinary contrais from here on). When one or more 

players choose actions only at certain specific time instants (also referred to as impulse 

contrais from here on), the game problem is known as differential games with impulse 

contrais. Zero-sum differential games where one player uses ordinary contrais and the 

other uses impulse contrais have been developed to study pursuit-evasion (Chikrii and 

Matichin, 2005; Chikrii et al., 2007), option pricing (El Farouq et al., 2010) and related 

problems. The strategic interactions taking place in pollution regulation, for instance, 

between a polluting firm and a regulator (Ferrari and Koch, 2019), and exchange rate 

management (Aïd et al., 2020) have been studied using two-player impulse differential 

games by considering that bath players use impulse contrais only. 

The equilibrium of a differential game depends on the information that is available 

to the players when they make their decisions (Ba~ar and Olsder, 1999). ln the open­

loop information structure, players' strategies depend on time and the initial state (a 

known parameter) while in the feedback information structure, players strategies' are 

functions of time and state values. A well-known result in the class of deterministic Iinear­

state differential games (LSDGs) with ordinary contrais is that open-loop Nash equilibria 

(OLNE) and feedback Nash equilibria (FNE) coïncide (Dockner et al., 2000). This implies 

that a precommitment by the players to an action profile over time does not make them 

worse off than when they adapt their strategies to the state of the system. To the best of 

our knowledge, the literature does not provide a comparative analysis of open-loop and 

feedback Nash equilibria for differential games with impulse contrais. 

LSDGs have been extensively studied in the Iiterature; see, e.g., Ba~ar and Olsder 

(1999), Dockner et al. (2000), Engwerda (2005), Haurie et al. (2012). Their popularity 
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stems from their tractability, that is, the equilibrium strategies and outcomes can be 

determined analytically. One drawback of this class of games is that, by definition, the 

model cannot include nonlinear terms in the state variables. 1 However, the fact that there 

is no restriction on the form of the control variables that enter the players' objective 

functionals or the dynamics renders LSDGs appealing in some applications of differential 

games (see J!llrgensen and Zaccour, 2003). In this article, we consider a LSDG model with 

linear dynamics and quadratic cost functions for the players. The more general case can be 

obtained as an extension of our model by devising a numerical procedure to characterize 

the OLNE and FNE. 

ln this paper, we aim at (i) characterizing OLNE and FNE in LSDGs with impulse 

controls when the impulse instants are given; (ii) characterizing FNE when the impulse 

instants are endogenous (the open-loop case was studied in Sadana et al. (2021)); and (iii) 

verifying if OLNE and FNE coincide in LSDGs with impulse controls. 

Our contributions are summarized as follows: 

1. When the timing of impulses is fixed (or given exogenously), we provide analytical 

characterization of OLNE and FNE in Theorem 2.1 and Theorem 2.2, respectively. 

Further, we show in Theorem 2.3 that bath equilibria coincide for this class of 

games. 

2. When the number and timing of the impulses are also decision variables ( or to be 

determined endogenously) of Player 2, besides the size of the impulse, we derive 

analytical expressions for OLNE in Theorem 2.4, and FNE in Theorem 2.5 and 

Theorem 2. 7. 

3. ln the endogenous case, we show in Theorem 2.4 that the equilibrium number of 

impulses in the OLNE is at most three, whereas in the FNE, in Theorem 2.7, we 

show that there can be at most two impulses. ln particular, when the instantaneous 

and terminal costs are bath increasing or decreasing in state, we show that there can 

1 It is possible to have a particular type of interaction between control and state variables and still retain 
the features of the class of LSDGs (see Dockner et al., 2000). 
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be at most one impulse in the feedback case, whereas there can be at most three 

impulses in the open-loop case. Moreover, we show that in the open-loop case, the 

equilibrium impulse timing of Player 2 depends on Player l 's problem parameters. 

In the feedback case, we show that such a dependency does not exist. 

4. We provide generalization of our results for other cost structures in Theorem 2.8, 

and show that our results remain qualitatively unaltered for the multi-dimensional 

extension of our scalar LSDG model. 

5. On the application side, we use our mode! to study the strategic decision making of 

two players, one of whom values the state positively and the other values the state 

negatively. To illustrate, we consider a firm (Player 1) that invests continuous effort 

to improve the security level of the system and the attacker (Player 2) exploits the 

system's vulnerabilities to lower its security. 

This paper is organized as follows: In Section 2.1.1, we review the literature on impulse 

controls and differential games with impulse controls. In Section 2.2, we introduce our 

mode!. In Section 2.3, we compare the open-loop and feedback equilibria assuming that 

the impulse instants are known a priori while, in Section 2.4, we characterize the two 

equilibria when the impulse instants are endogenous. Further, in Section 2.5, we provide 

a numerical example to illustrate that OLNE and FNE differ in LSDGs when impulse 

instants are determined endogenously in the game. Sorne general results obtained by 

considering other cost structures and the multi-dimensional extension of our mode! are 

given in Section 2.6. Section 2.7 concludes. 

2.1.1 Literature Review 

In problems involving one decision maker, impulse controls have been quite naturally 

used in instances involving a fixed (or transaction) cost, as in, e.g., cash management 

(Baccarin, 2009), exchange rate intervention (Bertola et al., 2016), inventory control 

problems (Berovic and Vinter, 2004), demand throttling to manage server congestion 
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(Perera et al., 2020), price management in retail energy markets (Basei, 2019), forest 

management (Alvarez, 2004 ), and investments in product innovation (Chahim et al., 2017). 

Sorne of the papers dealing with deterministic impulse controls include Berovic and Vinter 

(2004), Chahim et al. (2012, 2017), Leander et al. (2015), Reddy et al. (2016), and Grames 

et al. (2019). 

Deterministic zero-sum differential games with impulse controls have been studied in 

Chikrii and Matichin (2005); Chikrii et al. (2007), El Farouq et al. (2010), and El Asri 

(2013). For stochastic zero-sum impulse-control differentiable games with one player 

using an ordinary control, and the other using an impulse control, see Azimzadeh (2019). 

In differential games with impulse control, the player who acts at discrete time instants 

solves an impulse control problem. The Hamiltonian Maximum Principle (see Blaquière, 

1977a,b) and the Bensoussan-Lions quasi-variational inequalities (see Bensoussan and Li­

ons, 1982, 1984) provide a framework to determine the time and level of such interventions. 

Recent works that use quasi-variational inequalities (QVIs) to determine the equilibrium 

in stochastic games with impulse control include Aïd et al. (2020) and Azimzadeh (2019). 

In a deterministic setting, QVIs are used in El Farouq et al. (2010). 

The closest paper to our work is Aïd et al. (2020) where Nash equilibrium is obtained 

for stochastic nonzero-sum impulse games using the QVIs under the feedback information 

structure. However, they assumed that both players use threshold-type impulse controls 

only, that is, impulse controls are used when the state leaves the boundaries of a region. 

In contrast to their model, our game problem involves one player using ordinary controls 

and the other using impulse controls. Basei et al. (2019) study the N-person extension of 

the two-player game given in Aïd et al. (2020), and its corresponding mean field game. 

Aïd et al. (2020) also studied a LSDG model to derive analytical solutions. 

Given that problems in regulation and cybersecurity (Taynitskiy et al., 2019) involve 

impulse controls, nonzero-sum differential games with impulse controls are useful for 

many diverse applications. Recently, Sadana et al. (2021) considered a class of finite­

horizon two-player nonzero-sum linear-state differential games, where one player uses 

an ordinary control, while the other intervenes only at some instants of time in the 
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game, that is, implements an impulse contrai. To illustrate, a game in which a firm 

continuously makes marketing, production, and security decisions, and a hacker attacks 

the firm occasionally fits the mode! in Sadana et al. (2021 ). When there are no fixed 

costs for Player 2 at the impulse instants and ail the impulses are interior, i.e., impulse 

cannot occur at the initial and final time, Sadana et al. (2021) determined a unique OLNE 

using the Hamiltonian Maximum Principle. In this article, we determine bath the OLNE 

and FNE by allowing for interior impulse instants, and also consider fixed costs in our 

model.2 We also provide a comparative analysis of OLNE obtained using Hamiltonian 

Maximum Principle and FNE derived from the QVIs for scalar deterministic nonzero-sum 

linear-state differential games with impulse contrais. 

2.2 Model 

In this section, we introduce a scalar deterministic fini te-horizon two-player nonzero-sum 

linear-state differential game mode!, where Player 1 uses ordinary contrais while Player 2 

uses impulse contrais. 

Let T < oo be the duration of the game. For Player 1, contrai action at time t E [O, T] 

is denoted by u(t) E Qu c R, where Q 11 is a bounded and convex open subset of R We 

assume that u : [O, T] - Qu is a piecewise continuous function of time and denotes 

the strategy profile of Player 1. The set of strategy profiles of Player 1 is denoted by 

11. Player 2 intervenes or takes actions only at certain isolated time instants (or impulse 

instants) during the time period [O, T]. We denote by {r1, r2, ···,rd, k EN (the set of 

natural numbers), the set of intervention instants of Player 2, which satisfy the monotone 

increasing sequence property, that is, 

(2.1) 

2 A majority of applications of impulse controls consider fixed costs (see Cadenillas and Zapatero, 1999; 
Berovic and Y inter, 2004; Chahim et al., 2012, 2017; Bertola et al. , 2016; Ferrari and Koch, 2019; Aïd et al., 
2020). 
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The state of the system evolves according to a scalar linear differential equation during the 

non-impulse instants of time as follows: 

i(t) = Ax(t) + Bu(t), t 1=- {r1, r2, ···,rd, x(0-) = xo, (2.2) 

where x(t) denotes the state of the system at time t E [0, T], x0 E R denotes the initial state 

of the system, which is assumed to be given and o- denotes the time instant just before 0, 

and A ER and BE R\{0} are constants. At the impulse instant Ti (i = 1, 2, • • •, k), Player 

2 induces a jump in the state variable according to 

(2.3) 

where vi E Üv denotes the contrai action of Player 2 at impulse instant Ti, and Üv denotes 

the contrai set of Player 2, which is assumed to be a bounded and convex open subset of 

R. Here, Q E R\{0} is a constant. 

The time instants before and after the impulse instant Ti are denoted by ri- and rt, 

respectively. Further, x( rn = limlÎT; x(t) and x( rt) = lim1lr; x(t) are the state variables 

evaluated before and after the impulse instant Ti. The strategy of Player 2 is denoted by 

v := ({ ( r1, v1 ), ( r2, v2), · · · , ( Tk, vk) }, k) E 'V, where 'V denotes the strategy set. We note 

that the number of impulses k E N is also a decision variable of Player 2, where k < oo. 

Clearly, Player 1 influences the evolution of the system during non-impulse instants (2.2) 

whereas Player 2's contrai results in jump in the state variable (2.3) at impulse instants. 

Player 1 uses a strategy u( .) E 'li to maximize the objective 

(2.4) 

where the integrand denotes the instantaneous payoff, the second term is the payoff recei ved 

during the impulse instants, and the third term denotes the terminal payoff. T+ denotes the 

time instantjust after T. The parameters satisfy w 1 ER, R 1 < 0, q 1 E R\{0} and s 1 ER. 

Player 2 uses a strategy v E 'V to maximize the objective 
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where C < 0 denotes the fixed cost of each impulse and ½ P2vf the variable cost of the 

impulse at time instant Ti, with P2 < O. Here, w 2 E R. and s2 E R. are the instantaneous 

and terminal payoff parameters respectively. As the objectives of the players are inter­

dependent, (2.2-2.5) describes a differential game with impulse controls. Further, as the 

objectives of the players as wel\ as the dynamics are linear in the state variable, the game 

described by (2.2-2.5) is a linear-state differential game with impulse controls. 

Remark 2.1 Our main objective is to study the nature of the Nash equilibria when players' 

strategy spaces are différent (piecewise continuous and discrete). The dijferential game 

mode/ described by (2.2-2.5) is canonical, that is, minimal configuration required to 

capture the ejfect of dijferences in the strategy spaces. For this reason, we consider a 

two-player game with one player using piecewise continuous contrais and the other player 

using impulse controls. Extension to n > 2 player case can be easily formulated with the 

framework studied in this paper. 

The Nash equilibrium strategies of the players are defined as follows: 

Definition 2.1 The strategy profile (u* ( .), v*) is a Nash equilibrium of the d(ff'erential 

game (2.2-2.5) if the following inequalities are satisfied: 

11 (xo, (u*(.), v*)) ~ 11 (xo, (u(.), v*)), Vu(.) E 11, 

h(xo, (u*(.), v*)) ~ h(xo, (u*(.), v)), Vv E 'V. 

(2.6a) 

(2.6b) 

In a differential game, the outcome varies with the information that is available to the 

players, when they take their decisions, also referred to as information structure; see Ba~ar 

and Olsder ( 1999). Typically, two information structures are studied in the literature. In 

the open-loop information structure, players' strategies are fonctions of time and the initial 

state x0, which is a known parameter. In our setting, this implies that Player l 's controls 

at time t E [O, T] are given by u(t) := y(t;xo) E Qu, where y : [O, T] x R. - Qu is 

a measurable mapping. Similarly, the control action of Player 2 at an impulse instant 

Ti E [O, T] is given by vi := o(Ti;xo) E Qv, where c5 : [O, T] x R. - Qv is a measurable 
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mapping. In the feedback information structure, the strategies of players are fonctions 

of time and the state variable. More precisely, Player 1 's controls at time t E [0, T] are 

given by u(t) := yf (t, x(t)) E nu, where yf : [0, T] x lR---+ nu is a measurable mapping. 

Similarly, the control action of Player 2 at an impulse instant ri E [0, T] is given by 

v; := <5/ ( ri, x( ri)) E nv, where <5/ : [0, T] x lR ---+ nv is a measurable mapping. 

Assomption 2.1 The objective functions of Player 1 and Player 2 are strictly concave in 

their respective controls u(t) E nu c lR and v Env c R The interior of set nu contains 

the equilibrium control of Player 1 and interior of nv contains the equilibrium impulse 

level of Player 2. 

For bounded and convex open control sets, Assumption 2.1 is widely used to obtain 

the optimal controls using the first-order conditions, both in differential games (Ba~ar 

and Olsder, 1999; Dockner et al., 2000) and in impulse control problems (Sobiesiak and 

Damaren, 2014; Chahim et al., 2012). 

ln the rest of the paper, we analyze two situations, first by treating the timing of the 

impulses of Player 2 as a problem parameter (or provided exogenously), and next as a 

decision variable (or occurs endogenously). In these two situations, we compare the Nash 

equilibria obtained under the open-loop and feedback information structures. To simplify 

the notations, we let ro = 0 and rk+ 1 = T in the remainder of the paper. 

2.3 Exogenous impulse instants 

In this section, we consider the differential game (2.2-2.5), where the number of impulse 

instants k, and the timing of the impulse instants {r1, r2, · · · , rd are notdecision variables 

of Player 2 but provided exogenously. So, the strategy of Player 2 is the set of control 

actions îi := {v1, v2, · · · , vd to be taken at the given impulse instants {r1, r2, · · · , rd. 

We characterize Nash equilibrium strategies for both open-loop and feedback information 

structures. 
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2.3.1 Open-loop Nash equilibrium 

Computation ofopen-loop Nash equilibrium follows from (2.6a) and (2.6b). Let (u*( .), ii*) 

be the OLNE strategies of the players. From (2.6a), Player 1 solves an optimal control 

problem with additional costs, and jumps in the state variable at the impulse instants T;, 

i = l, 2, · · • , k, which make it a non-standard optimal control problem. The necessary 

conditions for optimality with jumps in the state variable and additional costs have been 

studied in the literature; see Geering ( 1976) and Sadana et al. (2021 ). 3 These conditions 

differ from those of classical optimal problem in that there is ajump in the co-state variable 

at the impulse instants. We define the Hamiltonian function of Player 1 as: 

1 
Hi (x(t), u(t), ÀJ (t)) := w1x(t) + 2Ri u(t)2 + À1 (t)(Ax(t) + Bu(t)), 

fort t- {r1, r2, ···,rd, where A1 (t) ER. is the co-state variable at time t. The necessary 

conditions are then given as follows: Fort t- {r1, r2, ···,rd, 

and the state and co-state variables satisfy 

i(t) = H1,1 1 (x(t), u* (t), À1 (t)), x(O-) = xo, 

A1(t) = -H1x(x(t),u*(t),À1(t)), À1(T+) = s1. 

(2.7a) 

(2.7b) 

(2.7c) 

At the impulse instant Ti (i = 1, 2, • • • , k), the jump in the state and co-state variables 

satisfy 

X(Tn = X(T;-) + Qv;, 

À 1 ( T;-) = À 1 ( Tn + OO ( q J X) 1 _ = À 1 ( Tn + q 1 · 
X x( T; ) 

(2.7d) 

(2.7e) 

3In Geering ( 1976), the authors assumed the state variable to be continuous and similar to Sadana et al. 
(2021 ), there are additional costs incurred at some exogenous time instants. In Sad ana et al. (2021 ), the 
state variable is discontinuous, that is. x(rt) - x(r;- ) = g(x(r,:-), v;), at the corresponding discrete time 
instants. Due to the state dependent jumps in the state variable and state dependent additional costs, the 

co-state variables satisfy Àt ( r :- ) = Àt ( r+) + % (q 1x)I + % (g (x, v~ ))1 . Here g(x, v~) = Qv~ so we 
' , x x(T;-) x , x(r;) , , 

have% (g(x, v~))I = O. 
x I x( r,) 
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The jump in the co-state equation (2.7e) is due to the state-dependent payoff accrued by 

Player 1 at the impulse instant T;. 

Again from (2.6b ), Player 2 solves an impulse optimal control problem with Player 

l 's strategies fixed at the Nash equilibrium strategy u*(.). The necessary conditions 

associated with an impulse optimal control problem were studied in the literature; see 

Blaquière (1977b) and Chahim et al. (2012). We introduce the Hamiltonian and impulse 

Hamiltonian fonctions as: 

H2(x(t), u(t), A2(t)) := w2x(t) + À2(t)(Ax(t) + Bu(t)), 

/ 1 2 
H2(x(t), v;, A2(t)) := C + 2P2vi + À2(t)Qv;, 

(2.8a) 

(2.8b) 

where A2(t) E lR. denotes the co-state variable. The necessary conditions for optimality 

for Player 2's impulse optimal control problem are stated in the following lemma. 

Lemma 2.1 (Chahim et al., 2012, Theorem 2.2) Given the equilibrium controls u*(t) of 

Player 1 and the impulse instants {r1,T2,··· ,rd, let (x(t),v~,v;,··· ,v;) denote the 

optimal solution (~{ the impulse control problem (~{ Player 2. Then there exist co-states 

A2(t) E lR. such that 

fort fi. {r1, r2, ..... , rd, 

x(t) = Ax(t) + Bu*(t), x(o-) = X(), 

A2(t) = -H2x(x(t), u*(t), A2(t)), À2(r+) = s2, 

fori= {1,2,··· ,k}, 

(2.9a) 

(2.9b) 

(2.9c) 

(2.9d) 

Using (2.7) and (2.9), the next theorem characterizes the OLNE of the differential game 

described by (2.2-2.5). 
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Theorem 2.1 (Exogenous OLNE) Let Assumption 2.1 hold. ff the impulse instants 

{ TJ, r2, · · · , Tk} are given, then the unique OLNE strategies for A i- 0 are given by 

• 8 (WJ ( Wt) A(r- -1)) u (t) = Ri A - À1 (r1-:-+ 1) + A e j+I , 

Vt E (Tj,Tj+I), j E {0, 1, ... ,k}, 

v~ = _g_ (w2 -(s2+ w2)eA(T-r;)) 
1 P2 A A , 

whe re i E { 1, 2, · · · , k}, À 1 ( r;+ 1) = s 1, 

W] ( W]) A(T- -1) 
À1 (t) =-A+ À1 (r1+1) + A e j+I , 

Vt E (Tj,Tj+I), j E {0, l,··· ,k}, 

ÀJ (T;-) = ÀJ (rt) + q1, 

so that, at the impulse instants, Ti (i = 1, 2, · · · , k), we have 

For A = 0, the unique OLNE Itrategies are given by 

u*(t) = :l ( wi (t - Tj+l) -À1 (rj+l)), 

Vt E (Tj, Tj+I), j E {0, 1, · · ·, k}, 

v; = _g_ (w2(r; - T) - s2), 
P2 

wherei E {1,2,··· ,k}, À1(r;+1) = s1, 

À1 (t) = Wt (rj+l - t) + À1 (r;-:-+1), Vt E (Tj, Tj+l), j E (0, 1, ... , k}, 

À I ( T;-) = À J ( rt) + q I . 

so that, at the impulse instants T;(i = 1, 2, · · • , k), we have 

(2.10a) 

(2.10b) 

(2.lla) 

(2.1 lb) 

(2.1 lc) 

Proof. Under Assumption 2.1 and from the optimality conditions for Player 1 and Player 

2 given in (2.7a)-(2.7e) and (2.9a)-(2.9e), respectively, we can write the necessary condi­

tions for OLNE as follows: 
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for i = { 1 , 2, · · · , k}, 

u*(t) = -~À1 (t), 
R1 

B2 
i(t) = Ax(t) - -À1 (t), x(o-) = Xo, 

R1 

À1(t) = -AA1(t) -w1, A1(T+) = s1, 

Â2(t) = -AA2(t) - w2, A2(T+) = s2, 

v* = _..@_A2(T:) 
l P2 l ' 

x( Tt) = x( Ti-) - ;: A2( Tt), 

À 1 ( Ti-) = À 1 ( Tt) + q 1 , 

A2(Ti-) = A2(Tt). 

(2.12a) 

(2.12b) 

(2.12c) 

(2.12d) 

(2.12e) 

(2.12f) 

(2.12g) 

(2.12h) 

From the above equations, we can obtain the expression for A 1 ( t) and À 2 ( t) as follows: 

when A* 0: 

( ) - W] ( ( - ) W]) A(T~ 1-1) fi ( ) . {O 1 k} 2 13 ) A1 t - -A+ A1 Tj+I + A e 1+ , or t E Tj, Tj+I , J E , , • • • , , ( . a 

A2(t) = - : 2 + (s2 + : 2) eA(T-t); 

when A= 0: 

À 1 ( t) = W 1 ( T j+ 1 - t) + À 1 ( T j+ 1), V t E ( Tj, Tj+ 1), j E { 0, 1, .. · , k}, 

A2(t) = w2(T - t) + s2. 

(2.13b) 

(2.14a) 

(2.14b) 

On substituting the expressions of A1 (t) and A2(t) for A * 0 and A = 0 in (2.12a) and 

(2.12e ), respectively, we obtain the equilibrium controls of Player 1 and Player 2 given in 

(2.10a) and (2.10b) for A * 0, and (2.11 a) and (2.11 b) for A = O. ■ 

2.3.2 Feedback Nash equilibrium 

Feedback Nash equilibrium in the differential game (2.2)-(2.5) follows from (2.6a) and 

(2.6b), and can be obtained using dynamic programming. Before proceeding with the 
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characterization of the FNE, we introduce the value function of Player 1, V1 : [O, T] x lR -

lR and Player 2, V2 : [O, T] x lR - R From (2.6a), the value fonction V1 is defined as 

follows: 

where the state variable evolves during the non-impulse instants s * {r,, TJ+I, ···,rd, 

t ~ r1, as 

i(s) = Ax(s) + Bu(s), x(t) = x, 

and during a switching instant r; (i = l, l + 1, • • • , k) undergoes jumps according to 

Similarly, following (2.6b), we define the value fonction associated with Player 2's impulse 

optimal control problem as follows: 

(2.16) 

where the state variable evolves during the non-impulse instants s * { r,, TJ+ 1, · · · , rd, 

t ~ r1, as 

i(s) = Ax(s) + Bu*(s), x(t) = x, 

and at a switching instant Ti (i = /, l + 1, • · · , k) undergoes jumps according to 

Given the linear-state structure of the differential game (2.2-2.5), we guess the form of the 

value fonctions of the players as follows: 

Assumption 2.2 The value functions of Player 1 and Player 2 are given hy 

Vi ( t, x) = m 1 ( t )x + n 1 ( t), 

V2(t,x) = m2(t)x + n2(t). 
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Next, using the dynamic programming principle, the FNE is characterized in the following 

theorem. 

Theorem 2.2 (Exogenous FNE) Let Assumption 2.1 and 2.2 hold. Jfthe impulse instants 

{ TJ, r2, · · · , Tk} are given, then the unique FNE for A -:/= 0 is given by 

WJ ( W]) A(T- -t) m1(t)=-A+ m1(TJ+l)+A e j+I , 

Vt E (Tj,Tj+i),j E {O, 1,··· ,k}, 

m1 (ri-)= m1 (rt) + q1. 

So, at the impulse instants, Ti (i E { 1, 2, · · · , k} ), we have 

For A = 0, the unique FNE strategies are given by 

(2.18a) 

(2.18b) 

(2.18c) 

u*(t) = :
1 

( w1 (t - r1+1) - m1 (r1+1)), V t E (r1, TJ+J), j E {O, 1, · · ·, k}, (2.19a) 

v; = ii ( w2 ( T; - T) - s2) , (2.19b) 

m 1 ( t) = W I ( T j+ 1 - t) + m 1 ( T j+ 1 ) , V t E ( Tj, T j + 1 ) , j E { Ü, 1 , · · · , k}, 

m1 (ri-)= m, (rt) + q1. 

So, at the impulse instants, Ti, i E { 1, 2, · · · , k }, we have 
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Proof. See Appendix 2.8 . 1. ■ 

ln the next theorem, we present the main result of this section that OLNE and FNE 

coïncide in the differential games with impulse contrais described by (2.2-2.5) when the 

impulse instants are given. 

Theorem 2.3 For the d(fferential game described by (2.2-2.5), when the impulse instants 

{r,, r2, · · · , rd are fixed (or provided exogenously), and Assumption 2.1 and 2.2 hold, 

both OLNE and FNE coïncide. 

Proof. Equation (2. 1 0a) is structurally similar to (2. 18a), and (2. 1 1 a) is structurally similar 

to (2. 19a) bec au se ,l 1 ( t) and m 1 (t) have the same dynamics, jump conditions and terminal 

conditions for A * 0 (see (2.lûc) and (2.18c)) and A= 0 (see (2.1 lc) and (2.19c)). ln 

particular, on replacing A1 with m 1 for A = 0 and for A * 0, we obtain that the OLNE and 

FNE strategies of Player I coïncide. The OLNE and FNE strategies of Player 2 coïncide 

because (2.1 Ob) and (2.18b) hold true for A = 0, and (2.11 b) and (2.19b) hold true for 

Ai= O. ■ 

Remark 2.2 Since the dynamic programming approach provides the sufficient conditions 

for Nash equilibria, and the FNE obtained by using the dynamic programming coïncides 

with the OLNE obtained by using the necessary conditions, we have that the candidate 

OLNE are indeed the Nash equilibria. 

In the next section, we verify if the above result holds when the impulse timing is a decision 

variable of Player 2. 

2.4 Endogenous impulse instants 

In this section, we characterize the OLNE and FNE when the number and timing of impulse 

instants are part of Player 2's strategies (or occur endogenously). More importantly, we 

seek to investigate if both these informationally different equilibria also coïncide in this 

case. 

78 



2.4.1 Open-loop Nash equilibrium 

Let (u* ( .), v*) denote the open-loop Nash equilibrium strategy profile of the players. In 

particular, Player 2's equilibrium strategy is given by v* := ( { ( r;, vi), ( r;, v;), · · · , 

(r;., v;.)}, k*), where k* and rt (1 ~ i ~ k) denote the number and timing of impulses. 

From (2.6a), Player 1 solves an optimal control problem with Player 2's strategies fixed 

at the open-loop Nash equilibrium strategy v*. This implies that the necessary conditions 

for optimality associated with Player 1 's problem are also given by (2.7). 

Concerning Player 2's impulse optimal control problem (2.6b), due to the presence of 

additional decision variables, that is, the number and timing of impulses, the necessary 

conditions for optimality differ from (2.9). In particular, additional consistency conditions 

are required to hold true at equilibrium impulse instants. These conditions follow from 

Chahim et al. (2012), and are summarized in the next lemma. 

Lemma 2.2 (Chahim et al., 2012, Theorem 2.2) Let the optimal solution of the impulse 

contrai problem of Player 2 be given by ( {(r;, vi), (r;, v;), · · ·, (r;., vz,)}, k*). Then 

there exist absolutely continuousfunctions À2 : [o-, T+] - lR, with the Hamiltonian and 

impulse Hamiltonian functions dejined in (2.8a) and (2.8b ), respectively, such that the 

following conditions hold true: 

i(t) = Ax(t) + Bu*(t), x(O-) = xo, 

À2(t) = -H2x(x(t), u*(t), À2(t)), À2(T+) = s2, 

and for i = { 1, 2, · · · , k*}, 

x(rt) = x(rt-) + Qv;, 

À2(rt-) = À2(rt) + aa (H~(x(t), Vi,À2(t)))I _ = À2(rt), 
X x(T;' ) 
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(2.20a) 

(2.20b) 

(2.20c) 

(2.20d) 

(2.20e) 



> 0 forrt = 0 

H2(x(rt+),u*(rt),À2(r1:-+))-H2(x(rt-),u*(rt-),À2(rt-)) =0 jorrt E (0,T). 

< 0 fior r* = T . 1 

(2.20f) 

Remark 2.3 We note that (2.20f) is the additional consistency condition that is required 

to hold true when the number and timing <~f impulses are to be determined endogenously. 

The dijference H2(x(rt),u(rt),À2(rt)) - H2(x(rt-),u(rt-),À2(rt-)) measures the 

gain made by Player 2 by delaying the impulse by one time instant (see Léonard and Long, 

1992, Chapter JO). 

Remark 2.4 ln the characterization of the OLNE, we assume that Player 2 gives a nonzero 

impulse, that is, v; * 0, atthe equilibrium instants, rt, i E { 1, 2, · · · , k*}. This assumption 

isjustified because in this section, ourobjective is to show that OLNE and FNE differ when 

Player 2 decides the number and timing of impulse. Also, we shall see in the feedback 

case that the equilibrium impulse strategies involve nonzero equilibrium impulse levels. 

Using (2.7) and (2.20), we provide acharacterization of the candidate OLNE in the next 

theorem. In the following discussion, to save on notation, we denote by 8 := ( ~~) ( ! ) 2, 

then, as P2 < 0 and R1 < 0, we have 8 > O. 

Theorem 2.4 (Endogenous OLNE) Let Assumption 2.1 hold, and let w 2 t- 8q 1 when 

A = O. Then, the number of impulse instants for Player 2 is at most three, that is, k* ~ 3, 

in the open-loop equilibrium. Further, when the parameters sati.~fy w2 t- 8q1, and either 

<l the following conditions, 

(2.21a) 

(2.21 b) 
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then an interior impulse occurs in the time period (0, T). For A = 0, there can be no 

interior impulse. 

An impulse occurs at r~1 = 0 ~f 

(2.21c) 

An impulse occurs at rJ1 = T if 

(2.21d) 

The equilihrium timing of interior impulse is given by 

r~1 = T - 2_ ln (8 q 
1 

) . 
A As2 + w2 

(2.22) 

With k* = I, the equilihrium control of Player I and equilibrium impulse levels of Player 

2 are as follows: 

For T~1 = 0 and t E (0, T], we have 

{ 

il... (~ - (s1 + ~ )eA(T-r)) for A -::/= 0, 
• ( ) R1 A A 

uol t = 
f/w1(t-T)-s1) forA=0, 

1 {~ (~2 
- (s2 + ~2 )eAT) for A-::/= 0, 

vol= 

- ~ ( w2T + s2) for A = O. 

For r 1
1 = T - -A1 ln (8-A q+i ), A-::/= 0, o S::! w2 

For r 2
1 = T and t E [O, T), we have 

() 
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forr{1 < t ~ T, 

for0 < t < r{l' 

A-::/= 0, 

A =0, 

(2.23a) 

(2.23b) 

(2.23c) 

(2.23d) 

(2.23e) 



(2.23f) 

Proof. From (2.7a) and Assumption 2.1, the first-order condition gives the equilibrium 

control of Player 1 

When Player 2 solves her optimal control problem (with Player l 's strategy fixed at her 

OLNE strategy), conditions (2.20a)-(2.20f) hold true. From (2.20c) and Assumption 2.1, 

we get the equilibrium impulse level as follows: 

From (2.20b) and (2.20e), the co-state A2 (t) is given by 

A :t 0 

A =0. 

Now, we determine the candidates for the equilibrium impulse instant. First, we analyze 

the situation where the equilibrium impulse instant satisfies rt E (O, T) . Following the 

Hamiltonian continuity condition (2.20f) at r;' E (0, T), we have 

Substituting u*(t) in the above equation, and using the conditions, (2.7e), (2.20d), (2 .20e), 

we obtain 

(2.24) 

Next, we provide a justification for the assumption w 2 :t ôqi when A = O. Assume that 

w2 = ôq 1, then the above condition results in AA~ ( r/) = O. If A = 0, then (2.24) ho Ids 

true at ail r* E (0, T). From the isolated property of the impulse instants (2.1 ), this is not 

possible. 
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When A= 0, and as (w2 - 8q1) * 0, (2.24) results in ,h(rt) = 0, and this contradicts 

the occurrence of impulse at rt E (0, T). So, there is no interior impulse when A = 0 

since we have assumed that for admissible equilibrium impulse instants, v; * O. 

When A * 0 and w2 = 8q1, we have that ,h(rt) = O. This implies that v; = 0, which 

contradicts the idea that impulse occurs at r;* E ( 0, T). So, an impulse does not occur in 

(0, T) when A* 0 and w2 = 8q1. 

When A * 0, (2.24) can be written as 

This implies that the impulse instant is characterized by ,h ( rt) = oqi;w2
• From (2.20b ), 

we have ,h(t) = -~2 + (s2+ ~2 )eA(T-t) for ail t E [0,T]. As, the co-state fonction 

,h : [O, T] ---+ R. is strictly monotone, we have at most one impulse instant rt E (0, T) that 

solves the equation 

The unique interior equilibrium impulse instant denoted by ri1 is given by 

(2.25) 

Since ri1 E (0, T), we must have (2.21a)-(2.2lb) which are expressed in terms of problem 

parameters. 

Next, ifthere is an impulse at the initial time, then from (2.20f), (2.7e), (2.20d), (2.20e), 

we have 

On substituting ,h(0) = As2eAT +~2<eAT -J), we get inequality (2.21c) that describes the 

problem parameters when impulse occurs at the initial time. 
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Next, if there is an impulse at the final time, then from (2.20f), (2. 7e ), (2.20d), (2.20e ), 

we have 

Àz(T) (AÀ2(T) - (r5q1 - w2)) < 0, 

On substituting Àz(T) = s2, we find that an impulse occurs at the final time when (2.21d) 

holds true. 

Using (2.7c) and (2.7e), we obtain the co-state variable ,l 1(t) satisfies (2.12c) and 

(2.12g) at the impulse instants. With k* = 1 and impulses at t = 0, t = T~I' t = T, the 

equilibrium contrais of Player 1 and the equilibrium impulse levels of Player 2 are given 

by (2.23). ■ 

Remark 2.5 In Theorem 2.4, we have only provided the equilibrium controls (if the players 

when k* = 1 for brevity. The equilibrium controls (if the players for k* = 2 and k* = 3 

can be ohtained by using the necessary conditions (2.7) and (2.20). 

Remark 2.6 Since the continuous Hamiltonian (if Player 2 is afunction of the equilibrium 

control of Player 1, the impulse timing also depends on the prohlem parameters of Player 

I. 

The parameter values which satisfy the inequalities (2.21 a)-(2.21 b ), (2.21 c), (2.21 d) 

are shown in Figure 2.1. 

2.4.2 Feedback Nash equilibrium 

Next, we characterize the FNE when bath the level and timing of the impulse instants 

are Player 2's decision variables. First, we consider Player l 's optimal contrai problem 

assuming that Player 2's equilibrium policy îi* = {(r;, v;), (r2, v2), · · · , (r;, v;.), k*} is 

given. Similar to the analysis done in Section 2.3.2, let Vi : [O, T] x IR. - IR. denote the 

value fonction of Player 1. Then, we have 

T k' 

Vi(t,x) = max {j -
2

1 
(2w1x(s)+R1u(s)2)ds+ ..Z:q1x(rt-)+s1x(T+)}, 

u(.1) , sE[t,T] 1 . 
l=I 

(2.26) 
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where the state variable evolves during the non-impulse instants s t- {rt, r1: 1• • · ·, r;.}. 

t~rtas 

i(s) = Ax(s) + Bu(s), x(t) = x, 

and during a switching instant rt (i = 1, 2, · • • , k*) undergoes jumps according to 

In the impulse-free region [ r,-+, r;:Ï], the following Hamilton-Jacobi-Bellman (HJB) 

equation holds true: 

8Vi (t,x) 1 2 (8Vi) =max(w1x+-R1u(t) + -
8 

(Ax+Bu(t))). 
8t ueQ., 2 X 

(2.27) 

At the jump instants, { r;, r;, • • • , r;.}, the value fonctions are related as follows: 

(2.28) 

Given the equilibrium strategy u*( .) of Player 1, following (2.6b), we define the value 

fonction associated with Player 2's impulse optimal control problem as follows: 

(2.29) 

where the state variable evolves during the non-impulse instants s t- { r 1, r2, • • · , rk}, as 

i(s) = Ax(s) + Bu*(s), x(t) = x, 

and during a switching instant T; (i = 1, 2, • · · , k) undergoes jumps according to 

We emphasize that Player 2's problem differs, structurally, in the endogenous case from 

the exogenous case as the number of impulses k and the timing of the impulses T; (i = 

1, 2, · · · , k) are also decision variables to be determined besides the size of the impulses v; 

(i = 1, 2, · · · , k). Impulse optimal control problems with endogenous decision variables 
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are closely related to optimal stopping problems, and use tools from QVIs; see Bensoussan 

and Lions (1982), Bensoussan and Tapiero (1982), and Bensoussan and Lions (1984) for 

early works in this area. In the following discussion, we briefly summarize the necessary 

concepts associated with QVIs before proceeding with the characterization of the FNE. 

Assumption 2.3 The value function V2 : [O, T] x R ---+ R is continuous and continuously 

differentiable in its arguments. 

Given the value fonction V2(t,x) of Player 2, we define the operator 'Ras follows: 

'RV2(t,x) := max (!P2v2 + C + Vi(t,x + Qv)). 
veQv 2 

We introduce the Hamiltonian fonction 'H2 : [O, T] x R x Ras follows: 4 

(2.30) 

(2.31) 

From Aubin (1982) and Bensoussan and Lions (1982, 1984), it can be shown that the value 

fonction (2.29) satisfies the following Bensoussan-Lions quasi-variational inequalities, that 

is, 

ôV2 ôV2 8t + 'H2(x, t, ôx) ~ 0, V(t,x) E (0, T) X R, 

V2(t, x) - 'RVi(t,x) ~ 0, V(t,x) E [0, T] x R, 

( 
0
;

2 + 'H2(x, t, ~:
2

)) (V2(t,x) - 'RV2(t,x)) = 0, V(t,x) E (0, T) X R, 

V2(T,x) = max{Ç(x), s2x}, 

(2.32a) 

(2.32b) 

(2.32c) 

(2.32d) 

(2.32e) 

In the following, we provide a heuristic interpretation of the QVIs (2.32). When the state 

is at a given level x at time t, Player 2 can either give an impulse or wait. Suppose that 

an impulse does not occur in the time interval [ t, t + h]. Since Player 2 waits, using the 

dynamic programming principle, we conclude that the value fonction is bounded from 

4The Hamiltonian associated with the value fonction of Player 2 is different from the Hamiltonian of 
Player 2 given in (2.8a) associated with the co-state of Player 2. The two Hamiltonians are equal when the 
gradient of the value fonction is equal to the co-state variable. 
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below by the sum of the running profit from t to t + h and the optimal profit from time 

t + h onwards, that is, 

From Assumption 2.3 and using a Taylor series expansion of the above expression, and 

letting h --t 0, we obtain (2.32a). If it is optimal for Player 2 to give an impulse at time t, 

then the state jumps from x(t) to x(t) + Qv, such that 

This verifies (2.32b). Clearly, at any (t,x), Player 2 can either wait, which implies that 

(2.32a) holds with equality, or she can give an impulse so that (2.32b) holds with equality. 

This implies that the complementarity condition (2.32c) ho Ids to ensure that either (2.32a) 

or (2.32b) holds with equality. If there is no impulse at the final time, the value fonction 

is equal to the salvage value; otherwise, the value fonction is equal to the maximum value 

that Player 2 can obtain by giving an impulse at T, and this justifies condition (2.32d). 

Using (2.30), we define the following two sets. The first is a stopping or intervention 

set S, which is defined as 

S := { (t,x) E [0, T] x IR. j V2(t, x) = nV2(t, x)} . (2.33) 

The stopping set characterizes ail the data points (t,x) E [0, T] x IR. where it is optimal for 

Player 2 to give an impulse. The second is a continuation set C, defined as 

C := { (t,x) E [O, T] x IR. j V2(t,x) > nV2(t,x)}. (2.34) 

Clearly, from the definition of C, it is optimal for Player 2 to not give an impulse at the 

data point (t,x) E C. In other words, the continuation set characterizes the impulse-free 

region. 

It is well known that finding a fonction that satisfies QVIs is a difficult problem, see 

Cadenillas and Zapatero (1999), Bertola et al. (2016 ). Therefore, analytical solutions 

have been obtained by making regularity assumptions on the value fonction and impulse 

88 



controls. Though the system of QVIs can be shown to be sufficient conditions for impulse 

control problems under less restrictive assumptions on the value fonctions (Berovic and 

Vinter, 2004) than those made in Assumption 2.3, our objective in this section is to verify 

if the classical result, that open-loop and feedback equilibria coïncide in deterministic 

LSDGs, holds when Player 2 decides the timing of impulses. 

Given the linear structure of the game in the state variable, our conjecture (see Dockner 

et al., 2000; Ba~ar et al., 2018) on the value fonctions of Player 1 and Player 2 that satisfy 

the HJB equation (2.27) and QVIs (2.32a-2.32d), respectively, is given in the form of the 

following assumption: 

Assomption 2.4 The value function of Player i (i = 1, 2) is given by 

½(t,x) = a;(t)x + {3;(t). (2.35) 

Using a linear value fonction for the case with exogenous impulse instants, we showed 

in Section 2.3 that open-loop and feedback Nash equilibrium coïncide. Next, we show 

that the value fonctions given in Assumption 2.4 indeed solve the system of QVIs. The 

next theorem characterizes the impulse instants in the FNE when the impulse timing is 

endogenously determined by Player 2. To save on notation, we introduce y = N· 
Theorem 2.5 Let Assumption 2.1 and 2.4 hold. Let As2 + w2 -:f:. 0 when s2 = y or s2 = -y. 

There can be at most two impulses in the FNE, and they occur at rk = 0 and rt = T. 

Proof. We substitute the value fonction of Player 1 given in Assumption 2.4 in the HJB 

equation (2.27) to obtain 

. 1 2 
-a1 (t)x - /31 (t) = max {w1x + -

2
R1u(t) + a1 (t)(Ax + Bu(t))}. 

u(t)E!lu 

Following Assumption 2.1 on the interior solutions, the first-order condition associated 

with the above maximization problem results in 

u*(t) = _.!!_ âV1 (t,x) = _ Ba1 (t). 
R1 âx R1 

(2.36) 
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Substituting for the above solution in the HJB equation (2.27), we obtain 

Applying the method of undetermined coefficients gives 

à1 (t) = -w1 - Aa1 (t), a1 (T+) = s1, 

/31 (t) = B2a1 (t)2, /31 (T+) = O. 
2R1 

From (2.28), at any impulse instant r;', we have the following relation: 

which implies 

a1(r;'-) = a1(rt) +q1, 

/31 ( r;'-) = /31 ( rt) + a1 ( rt)Qv;. 

(2.37a) 

(2.37b) 

(2.38a) 

(2.38b) 

Next, we determine the coefficients of the value fonction of Player 2 given in Assomption 

2.4. First, we determine the values of a2(T) and f32(T). Following Assomption 2.1, we 

take the partial derivative of the right-hand side of (2.32e) with respect to v and equate it 

to O to obtain Vr = - 5
/;. Substituting Vr in (2.32e ), we obtain 

(s2Q) 2 
{(x) = s2x+C---

2P2 

Clearly, {(x) ~ s2x if 2~2
2c ~ sr From (2.32d), we obtain that if 2~2

2c ~ s~, 

a2(T)x + /32(T) = s2x, 

⇒ a2(T) = s2, /32(T) = O. 
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In the impulse-free region, (2.32a) holds with equality. Using (2.36) in (2.32a), we obtain 

Applying the method of undetermined coefficients gives 

â2(t) = -w2 - Aa2(t), a2(T) = s2, 

P2(t) = B
2
a1 ~~a2(t), 

(2.42a) 

(2.42b) 

where /32 (T) is given by (2.40) if there is an impulse at T, and if it is not optimal to give 

an impulse then /32 (T) is given by (2.41 ). Solving for a2 ( t), we have 

a2(t) = w2(T - t) + s2, A = 0, 

a2(t) = - : 2 + eA(T-t) (s2 + : 2
), A* O. 

Under Assumption 2.4, we compute '.RV2 as 

(2.43a) 

(2.43b) 

Following Assumption 2.1 on the interior solutions, the first-order condition associated 

with the maximization problem (2.44) results in 

• Qa2(t) 
V----- P2 . 

Substituting the above solution in (2.44) yields 

Q2a2(t) 
'.RV2(t,x) = C + --- + V2(t,x) 

2P2 
Q2a2(t) 

⇒ V2(t,x) - '.RVi(t,x) = -C + 
2

p
2 

. 

Then, the stopping set (2.33) is given by 

s := { (t,x) E [O, T] X RI a~(t) = 
2~~c}, 

and the continuation set (2.34) is given by 

C := { (t,x) E [O, T] X RI a~(t) < 
2~~c}. 
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When As2 + w2 = 0, there is an impulse at each instant of time for s2 = y and 

for s2 = -y which means that the impulse instants do not satisfy monotone increasing 

sequence property given in (2.1). From (2.43a) and (2.43b ), we know that for As2 + w2 = 0, 

a2(t) = s2. So, for As2 + w2 = 0, there is no impulse when s2 i= y and s2 i= -y. Next, we 

analyze the cases where As2 + w2 i= O. 

Clearly, a 2(t) given in (2.43a) and (2.43b) is strictly monotone in t for As2+w2 i= 0, so 

it can take values -fifjf- and --fifjf- at most once. This naturally implies from equation 

(2.49), that there can be at most two impulses, and they occur at Tt~ = 0 and rtt = T. ■ 

Remark 2.7 In the linear-state d(fferential games with impulse control, the stopping set 

given in (2.48), and the continuation set given in (2.49) are independent of the state t~f the 

system. 

From (2.32b), the value function must satisfy V2(t, x) ~ 'RV2(t, x) ⇒ a~(t) ~ y 2 for ail 

(t,x) E [O, TJ xR.. As a result, this condition imposes certain restrictions on the parameter 

region where the linear value function is well-defined. Next theorem characterizes this 

reg1on. 

Theorem 2.6 Let Assumption 2.4 hold true. Let As2 + w2 i= 0 when s2 = y or s2 = -y. 

The linear valuefunction (2.35) is well-defined when the parameters satis/y thefollowing 

conditions. 
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Proof. We recall that the value fonction Vi(t,x) must satisfy the condition (2.32b). This 

implies a~(t) ~ y 2 for all t E [O, T]. 

With A= 0, we get a2(t) = w2(T-t)+s2, which is an increasing (decreasing) fonction 

of time t when w2 is negative (positive). Then, we must have ( w2(T - t) + sz)2 ~ y 2 for 

all t E [O, T], and this condition is satisfied when conditions (i)-(ii) hold true. 

When At:- 0, we get a2(t) = - ~2 + eA(T-t) (s2 + ~2 ) is decreasing in tif As2 + w2 > 0 

and is increasing in t if As2 + w2 < O. Using a similar analysis as before, for A > 0 

and A < 0, the value fonction is defined only in the region where the parameters satisfy 

(- ~ 2 + eA(T-t) (s2 + ~2 ) )2 ~ y2, which is characterized by the conditions (iii)-(iv) and 

(v)-(vi). ■ 

s2 s2 

Ror Ror Rr 

► w2 w2 

Ror Ror 
(0, -"'() Rr 

(a) A= 0 (b) A> 0 

s2 

R-or Rr 

(c) A< 0 

Figure 2.2 - Shaded regions correspond to parameter space in the ( w2, s2) plane for which the 
value function is well-defined. An impulse occurs at t = T for parameters corresponding to the 
upper and lower boundaries of the shaded regions, denoted by Rr. For the left and right boundaries 
denoted by Ro, there is an impulse at t = O. Ror denotes that impulse occur at t = 0 and t = T. 
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The parameter regions where the value function Vz : [0, T] x lR. - lR. is well-defined is 

illustrated in the Figure 2.2. In particular, the shaded regions in the Figures 2.2a, 2.2b and 

2.2c correspond to the regions defined by the conditions (i)-(ii), (iii)-(iv) and (v)-(vi), 

respectively. We can not comment on the value function for parameter values outside the 

shaded regions. 

The next result characterizes the number and the level of impulses in the FNE. 

Theorem 2. 7 Let Assumption 2.1 and 2.4 hold. Let As2 + w2 i:- 0 when s2 = y or s2 = -y. 

There can exist at most two impulses in the FNE, that is, k* ~ 2. 

( i) If the parameters sati.~fy either of the following conditions, then an impulse occurs 

at T),, = 0: 

(a) with A = 0: either Tw2 + s2 = y or Tw2 + s2 = -y, 

(b) with A i:- 0 : either As2eAT + w2(eAT - 1) - Ay = 0 or As2eAT + w2(eAT -

1) + Ay = O. 

( ii) ff either s2 = y, or s2 = -y, then an impulse occurs at T'j,, = T. 

(iü) If the parameters satisfy either of the following conditions, then there are exactly 

two impulses at T),, = 0 and T'j,, = T: 

A = 0, s2 = -y, Twz = 2y, 

A = 0, s2 = y, Tw2 = -2y, 

eAT + 1 
Ai:- 0, s2 = -y, wz = Ay eAT _ 

1
, 

eAT + 1 
Ai:- 0, s2 = y, w2 = -Ay eAT _ 

1
. 

(2.50a) 

(2.50b) 

(2.50c) 

(2.50d) 

The equilibrium control <~f Player 1 when k* = 1, impulse occurs at initial time and 

t E (0, T] is 

{

Jl.. (W] - (s + W])eA(T-t)) 
Ri A I A • 

u(t) = 
:

1 
(wi(t -T) - s1), 
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and when impulse occurs at the final time and t E [O, T), we have 

A =t= 0 

A =0 

(2.51b) 

If either A = 0 and w2 < 0, or A =t= 0 and As2 + w2 < 0, then, for k* = l, the 

equilibrium impulse levels <!f Player 2for impulses at Th= 0, T1 =Tare given by 

. /f;c . /f;c vfb1 = - s1gn(Q) -, vfb2 = s1gn(Q) -. 
· P2 · P2 

(2.52a) 

If either A = 0 and w2 > 0, or A =t= 0 and As2 + w2 > 0, then, for k* = l, the equilibrium 

impulse levels of Player 2for impulses at T11 = 0, T1 =Tare given by 

. /f;c . /f;c v~ = s1gn(Q) -, v~ = - s1gn(Q) -. 
P2 · P2 

(2.53a) 

Proof. In Theorem 2.5, it is shown that impulses can occur at T~ = 0 and T~ = T only. 

We know from (2.43a) and (2.43b) that 

A =0, 

A =t=0. 

(2.54a) 

From (2.48), an impulse occurs when a 2(t) 2 = y 2. For an impulse to occur at T~ = 0, 

we have either a 2(0) = y or a2(0) = -y. Similarly, an impulse occurs at T~ = T when 

a2(T) = y or a2(T) = -y. 

Also, a 2 (t) is strictly monotone in time. So, two impulses occur at initial and final 

time if either a2(0) = -y and a2(T) = y or a2(T) = y and a2(0) = y, that is, conditions 

(2.50a) -(2.50d) hold true. 

Next, we characterize the FNE of the differential game (2.2)-(2.5) when impulses occur 

at Tt~ = 0 and T~ = T. The equilibrium contrais of Player 1 given in (2.51) are obtained 

by first solving for a 1 (.) from (2.37a) and (2.38a), and then using u(t) = -t a 1 (t). To 

obtain the equilibrium impulse levels for Player 2, we insert a2(t) evaluated at t = 0 and 

t = T from (2.43a) and (2.43b) in (2.45). The impulse levels are given by v~ = - l a2(0) 
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and v~ = -fa2(T). When a 2(t) is increasing (decreasing) intime, we have a2(0) = -y 

(a2 (0) = y) and a(T) = y (a2(T) = -y). Therefore, the impulse Ievels are given by 

(2.52), (2.53) depending on the problem parameters. ■ 

Remark 2.8 We have thefollowing observations: (i) The Level of impulse isa constant and 

proportional to the ratio of fixed cost C and the coefficient of proportional transaction cost 

P2. Note that P2 can be interpreted as the marginal cost at zero impulse, i.e., a( tt,n t .;=O· 

( ii) The timing <?{ an impulse hy Player 2 is independent of Player I 's parameters. lndeed, 

it depends on Player 2 's parameter values and the coefficient enterinR the state dynamics. 

Final/y, (iii) when there are two impulses, the magnitude of the impulses is the same and 

they are opposite in sign. 

2.4.3 Comparison of open-loop and feedback Nash equilibria 

From Theorems 2.4 and 2.7, it is clear that OLNE and FNE do not coïncide when the 

number and timing of impulse instants are decision variables of Player 2. In the following, 

we highlight reasons as to why these equilibria differ in the endogenous case . 

Î 

ôq1 -w2 

A 

0 

.i.. 

T 
_ ... 

(a) Variation of ..¾2(t) 

0 

t 

- Î 

T 

(b) Variation of a2(t) 

► 
t 

Figure 2.3 - Variation of À2(t) and a 2(t) for three impulses in OLNE whereas there are two 
impulses in FNE 
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In the OLNE, the Hamiltonian continuity condition (2.20f) reduces to an affine function 

of À2(t) in (0, T) whereas at t = 0 and t = T, we obtain an inequality that is quadratic in 

À2 (t). Since the co-state is strictly monotone, at most three impulses can occur, see Figure 

2.3a. 

In the FNE, the continuation set is characterized by the time interval during which the 

gradient of the value function of Player 2 satis fies -y < œ2 ( t) < y. The stopping set is 

characterized by the time instants at which œ2(t) takes a value of either y or -y. There is 

no dependence of stopping set on the equilibrium contrai of Player 1 while in the OLNE, 

the Hamiltonian continuity condition, which determines the impulse timing, depends on 

the equilibrium contrai of Player 1. Fram (2.43), œ2(t) is strictly monotone function of 

time, and it can achieve a maximum and minimum value of y and -y at t = 0 or t = T for 

all x E R; see Figure 2.3b. 

Remark 2.9 When both the continuo us pay<~ff and salvage value <~/Player 2 either increase 

in x or decrease in x, i.e., (f w2 > 0, s2 > 0 or w2 < 0, s2 < 0, then it is clear from Figure 

2.2 that there can be at most one impulse in the FNE while from Figure 2.1, there can be 

at most three impulses in the OLNE. 

Now, we study the open-loop and feedback Nash equilibrium solutions for the parameter 

regions where the value function of Player 2 is well-defined. 

(i) Assume that Player 2 incurs a running cost, i.e., w2 < 0 and that the salvage value 

of Player 2 is decreasing in x, i.e., s2 < O. Also, assume that w2 -::/= q 18 when A = 0, 

and As2 + w2-::/= 0 when s2 = y or s2 = -y. 

With A = 0, an impulse can occur at the initial time in the OLNE and FNE when 

Tw 2 + s2 = -y. However, for other parameter values in the shaded region in Figure 

2.2a, there are no impulses in the FNE, while an impulse can occur at the initial 

time in the OLNE for all w2 < 0, s2 < O; see Figure 2.1 a, Figure 2.1 b. 

With A > 0, ri1 is the interior impulse in the OLNE if q1 < 0 and q18 < As2 + w2 < 

q 1 oe-AT (see Figure 2.ld). Further, there can be at most three impulses in the OLNE 
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when q 1 < O. FNE has no interior impulses and T~ = 0 is an impulse instant when 

As2eAT + w2(eAT - 1) + Ay = 0 and T~ = T is an impulse instant for s2 = -y. For 

the other parameter values in the shaded region in Figure 2.2b, there is no impulse 

in the FNE. 

With A < 0, T~1 is the interior impulse in the OLNE if q1 > 0 and q1 o < As2 + w2 < 

q 1oe-AT (see Figure 2.le), or q 1 < 0 and q 1oe-AT < As2 + w2 < q 1o (see Figure 

2.1 t). In the OLNE, there can be at most three impulses when q 1 > O. In the FNE, 

an impulse occurs at T~ = 0 when As2eAT + w2(eAT - 1) + Ay = 0, T~ = T is an 

impulse instant when s2 = -y, and for other parameter values, there is no impulse; 

see Figure 2.2c. 

(ii) Second, we assume that Player 2 values the state positively so that w2 > 0, and her 

salvage value is increasing in x, i.e., s2 > O. Also, assume that w2 -:f:. qio when 

A = 0, and As2 + w2 -:f:. 0 when s2 = y or s2 = -y. 

With A = 0, an impulse can occur at the initial time in the OLNE and FNE when 

Tw2 + s2 = y; see Figure 2. la, 2.1 b, 2.2a. There are no impulses in the FNE 

for any other parameter value while an impulse can occur in the OLNE for ail 

w2 > 0, s2 > O. 

With A > 0, Tc~J is the interior impulse in the OLNE if q 1 > 0 and q 1oe-AT < 

As2 + w2 < q I o (see Figure 2. lc ). There can be at most three impulses in the 

OLNE when q1 > O. In the FNE, Tt~ = 0 is an equilibrium impulse instant when 

As2eAT + w2(eAT - 1) -Ay = 0 and T~ = T is an equilibrium impulse instant when 

s2 = y. For other parameter values, there is no impulse in the FNE. (see Figure 

2.2b). 

With A < 0, T{i1 is the interior impulse in the OLNE if q 1 > 0 and q I o < As2 + w2 < 

q 1oe-AT (see Figure 2.le) or q 1 < 0 and q 1oe-AT < As2 + w2 < q10 (see Figure 

2.1 t). There can be at most three impulses in the OLNE if q 1 < O. In the FNE, 

T~ = 0 is an impulse instant when As2eAT + w2(eAT - 1) - Ay = 0, T~ = T is an 
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impulse instant when s2 = y, and for other parameter values, there is no impulse; 

see Figure 2.2c. 

2.5 Numerical example 

In this section, we illustrate our results with a numerical example. 

In the literature, a linear-state differential game problem (see Novak et al., 2010), 

Crettez and Hayek (2014) between a government and an international terrorist organization 

(ITO) has been studied where government's utility is linearly decreasing with ITO's 

resources while ITO's utility is increasing linearly with its own resources. As a result, the 

government launches strikes to disrupt the infrastructure (resources) of the ITO. Motivated 

by this example and recent research on attacker-defender dynamic game models (Etesami 

and Ba§ar, 2019), we consider a two-player differential game between Player 1 who values 

the state positively and Player 2 who values the state negatively. For instance, Player 1 can 

be a firm that aims to increase the security level of a system and invests effort in reducing 

the system vulnerabilities while Player 2 is an attacker that invests effort in reducing the 

security level of a system. Player 2 uses an impulse control that consists of determining the 

number k E N and timing of impulses r;, (i = 1, 2, • • • , k) in addition to the corresponding 

effort level v;. We consider that at the impulse times, Player 2 incurs a fixed cost, and a 

variable cost that is quadratic in the effort level v;. The fixed cost discourages Player 2 

to intervene frequently. The security level, which denotes the state of the system, evolves 

according to the following dynamics and the jump equation: 

i(t) = -0. lx(t) + 0.6u(t), x(0-) = 5, 

The objective fonctions of Player 1 and 2 are given by 
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T k 

li = -1 0.8x(t)dt - })o. l v; + l) - x(T+), 
O i=l 

where T = 5. 

Under the open-loop information structure and using the necessary conditions, the 

candidate solution for impulse in OLNE is r = 2.4. The OLNE is given by (u~i(.), 

(2.4, -2.6), k* = l) where equilibrium effort for Player l is given by 

• {24 - 14.33 e
0

·
11 

uol(t) = 
24 - l4.l9e0·

1
' 

t E [0, 2.4), 

t E (2.4, T]. 

The open-loop Nash equilibrium payoff of Player l is 167 .98 while Player 2 obtains a 

payoff of -66.42. The FNE is given by (u;b (t), k* = O}) where Player 2 does not give any 

impulse, and the equilibrium effort of Player 1 is given by 

u;(t) = 24 - 14.l9e0·11
, t E [0, T]. 

The equilibrium payoff of Player 1 is given by 177 .31, and Player 2 obtains a payoff of 

-66.83. 

Next, we consider the following objective for Player 2: 

T k 

li = -1 0.34x(t)dt - })o. l v; + 1) - 3x(T+), 
O i=I 

while keeping the other parameter values as before. In this case, the candidate open-loop 

Nash equilibrium strategy of Player 2 is to give an impulse at the final time T. The OLNE 

and FNE are given by (u~1, (T, -3), k* = 1) and (u;, (0, -3.16), k* = 1) where 

u~1(t) = 24- l4.30e0·11
, t E [0,T), 

u;b(t) = 24 - 14.19eü.lr, t E (0, T]. 

The equilibrium payoff of Player 1 and Player 2 in OLNEis 172.17 and-66.7 l, respectively 

while in the FNE, Player land 2 obtain 165.47 and -67.93, respectively. 

In both cases, we see that Player I uses controls that increases the state while Player 

2's equilibrium impulse decreases the state value. When compared with the OLNE, Player 
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2 obtains a lower payoff in the FNE. Due to the state-dependent costs incurred because 

of the intervention by Player 2 in (0, T], Player 1 's equilibrium strategy is to invest lower 

effort in OLNE when compared with the FNE. 

2.6 Sorne extensions 

In this section, we consider two extensions of the canonical differential game model 

described by (2.2-2.5). In particular, we show that the conclusions obtained in Sections 

2.3 and 2.4 remain unaltered, qualitatively, for the following extensions. 

2.6.1 General cost structures 

Suppose the piecewise continuous control of Player 1 involves a cost d ( u) and the variable 

cost of impulse for Player 2 is given by c(v;). We make the following assumption to obtain 

a unique expression for piecewise continuous control of Player 1 and for the impulse level 

of Player 2. 

Assomption 2.5 We assume that the functions d : nu ~ R. and c : nv ~ R. are 

continuous and twice continuously differentiable. Further, we assume that these functions 

admit interior maxima, and satisfy 
82

~~~u)J < 0 over nu and 
82

t\v)J < 0 over nv. 

Theorem 2.8 Let Assumption 2.1 and 2.5 hold, and assume that the value functions 

of both players are linear in state. Then the open-loop and feedback Nash equilibria 

of the differential game (2.2-2.5) coïncide when the number and timing of impulses is 

exogenously given. When the number and timing of impulse instants are decision variables 

of Player 2, then these two equilibria are different. 

Proof. See Appendix 2.8.2. ■ 

In the above theorem, we showed that our results hold qualitatively when we consider 

a general cost structure. Next, we analyze the multi-dimensional extension of our scalar 

LSDG model. 

101 



2.6.2 Multi-dimensional state 

We con si der a multi-dimensional extension of the linear-state game described by (2.2-2.5), 

and examine if the conclusions derived in Sections 2.3 and 2.4 still hold true. Towards this 

end, we assume that the state variable is an n-dimensional vector, and the controls satisfy 

u(t) E 1Rm 1 and v E 1Rm 2. The parameters in (2.2-2.5) are w1,w2,q1,s1,s2 E lRn, A E 

]Rnxn, BE JR.11 Xm1, Q E ]Rnxm:, Ri E ]Rm1 Xm1, p 2 E JR.m2Xm2_ 

With exogenously given impulse instants, we use the necessary conditions (2.7a)­

(2.7e), (2.9a)-(2.9e) to obtain the equilibrium control u*(t) of Player 1 and equilibrium 

impulse level v; of Player 2. Under the feedback information structure, we can use the 

dynamic programming principle to show that the gradients of the value fonctions of Player 

1 and Player 2 given in Assumption 2.2 are equal to the co-states of players in the OLNE, 

and the equilibrium controls are the same for both the players which implies that OLNE 

and FNE coincide. When the impulse instants are decision variables of Player 2, the 

equilibrium impulse instants satisfy (2.20f) where the difference of the Hamiltonian of 

Player 2 before and after the equilibrium impulse instant is given by 

(2.55) 

where ,,li(t) E lRn. In the FNE, value fonction of the players given in Assumption 2.4 

satisfy (2.32b) with equality. Therefore, the stopping set Sand the continuation set C are 

given by 

S = {(t,x)I a2(t)'QP21Q'a2(t) = 2C}, 

C = {(t,x)la2(t)'QP21Q'a2(t) > 2C}. 

where a2(t) E lRn. Similar to the scalar case, we have that both the stopping set and 

continuation set are independent of the state of the system. Also, the impulse timing is 

completely determined by the problem parameters of Player 2 only whereas it is clear from 

(2.55) that the impulse instants in OLNE depend on the problem parameters of Player 1. 
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2. 7 Conclusions 

In this paper, we determined open-loop and feedback Nash equilibria in the scalar deter­

ministic fini te-horizon two-player nonzero-sum linear-state differential game with impulse 

controls, in two cases, namely, when the impulse instants are given and when Player 2 

endogenously determines the equilibrium timing of the impulses. We showed that open­

loop and feedback equilibria coincide when the impulse instants are exogenously given, 

and that they differ when these instants are endogenously determined. 

For future research, it would be interesting to determine the feedback solutions for more 

general classes of differential games with impulse controls. A natural first candidate is the 

class of linear-quadratic differential games, which is often used in applications. Clearly, 

there would be computational challenges since the stopping set condition would involve 

the state variables that evolve forward in time, while the Ricatti system of Player 1 and 

Player 2 evolve backwards in time. Another extension of this work could be to consider 

the case where both players use piecewise continuous as well as impulse controls. 

2.8 Appendix 

2.8.1 Proof of Theorem 2.2 

Assuming that the equilibrium strategy of Player 2 is given by v*, Player 1 solves (2.15). 

The Hamilton-Jacobi-Bellman (HJB) equation for Player 1 fort E ( rt, Ti~), 

i E {O, 1, · · ·, k} is given by 

8Vi(t,x) 1 2 (8Vi) ----=max (w1x + -R1u(t) + - (Ax + Bu(t))). 
Of uEQu 2 OX 

Under Assumption 2.2, we can rewrite the HJB equation as 
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Since we have assumed that the equilibrium contrais lie in the interior of Qu (see Assump­

tion 2.1 ), the first-order condition gives: 

Using the equilibrium contrai in the HJB equation, we obtain 

B2m (t)2 

-m1 (t)x - 11 1 (t) = w1x - 1 + Am1 (t)x. 
2R1 

On comparing the coefficients, we have 

At the impulse instants, the value functions are related as follows: 

(2.56) 

(2.57a) 

(2.57b) 

(2.58) 

where v; denotes the equilibrium impulse level used by Player 2 at the impulse instant Ti. 

Using Vi (t,x) = m1 (t)x + n1 (t), we obtain 

which results in the following update equations for m 1 ( .) and n, ( .): 

m1(r;-) = m,(r/) +q 1, 

n1(r;-) = n1(r/) +m1(r/)Qv;. 

(2.59a) 

(2.59b) 

Given the equilibrium strategy u*(.) of Player 1, Player 2 solves (2.16). For the impulse­

free region, we have the following relation: 

which, on substituting the equilibrium control u• (t) of Player 1 and the value function of 

Player 2, V2(t,x) = m2(t)x + n2(t) (see Assumption 2.2) simplifies to 

B2m, (t) 
w2x + m2(t)x + 112(1) + m2(t)(Ax - ---)=O. 

Ri 
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On comparing the above coefficients, we get fort* {r1, r2, • · · , rd, 

(2.60a) 

(2.60b) 

At the impulse instants { T2, T2, · · · , Tk}, the equilibrium value function of Player 2 satis fies 

The above equation implies that, at the impulse instant, Player 2 selects the equilibrium 

control to maximize the value-to-go from that instant onwards. From Assumption 2.1 on 

interior solution, the equilibrium impulse level is obtained as follows: 

v; =arg max {v2(r(,x(rn + Qvi) + !P2vl + c} 
VjEQv 2 

1 
= arg max {m2(rt)(x(rn + Qvi) + n2(rt) + -P2vl + c} 

~E~ 2 

m2(rt)Q 
= 

Using v; in (2.61), we obtain 

The above relation holds for all x. Therefore, we have 

Using (2.57a), (2.59a), we obtain that for A * 0 

105 

(2.62a) 

(2.63a) 
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for i E {I, 2, • • •, k}. For A= 0, we obtain 

where i E { 1, 2, • • • , k}. From (2.60a), (2.63a), we obtain that for A * 0, 

and for A= 0, 

From (2.56) and (2.62a), the equilibrium contrais are given in (2.18a) and (2.18b) for 

A* 0 and in (2.19a) and (2.19b) for A= O. 

2.8.2 Proof of Theorem 2.8 

First, we consider the case when the impulse instants are exogenously given. The OLNE 

strategies u*(t) and v; of the players are obtained by solving (2.7a) and (2.9c) where 

the Hamiltonian of Player 1 and Player 2, and the impulse Hamiltonian of Player 2 are 

respectively given by 

H, (x(t), u(t), À1 (t)) = w,x(t) + d(u(t)) + À1 (t)(Ax(t) + Bu(t)), (2.64a) 

H2(x(t), u(t), À2(t)) = w2x(t) + À2(t)(Ax(t) + Bu(t)), (2.64b) 

H~(x(t), vi, A2(t)) = C + c(v;) + A2(t)Qv,-. (2.64c) 

From Assumption 2.1, the first-order conditions in (2.7a) and (2.9c) give 

Hiu(x(t), u*(t), À1 (t) = 0 ⇒ du(u*(t)) + BA1 (t) = 0, 

Ht/x(T;-), v;,À2(rt)) = 0 ⇒ cv;(v;) +À2(rt)Q = O. 
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Following Assumption 2.5, and from implicit fonction theorem, there exist continuously 

diff erentiable fonctions fi : R ---+ nu and h : R ---+ nv such that 

u*(t) = fi(BÀ1(t)), 

v; = h(QÀ2(rt)). 

(2.66a) 

(2.66b) 

From (2.7b)-(2.7e) and (2.9a)-(2.9e), it follows that ,l1 (t) and ,l2(t) satisfy (2.12c)­

(2.12d), (2.12g)-(2.12h), and the state equations for i E {l, 2, · · · , k} are given by 

x(t) = Ax(t) + Bfi (BÀ1 (t)), fort-::/:- Ti, x(O-) = xo, 

x(rt) = x(T;-) + Qh(QÀ2(rt)). 

(2.67a) 

(2.67b) 

Next, we consider the feedback information structure, and use the dynamic program­

ming principle to obtain the FNE strategies of the players. Since we have considered a 

linear-state differential game, we assume that the value fonctions of Player 1 and Player 

2 are given by (2.17a) and (2.17b ). Between the impulse instants, the value fonction of 

Player 1 satisfies the HJB equation 

-rh1 (t)x - li1 (t) = max {w1x + d(u(t)) + m1 (t)(Ax(t) + Bu(t))). 
ueQu 

Following Assumption 2.1, the first-order condition yields du(u*(t)) + Bm1 (t) = O. From 

Assumption 2.5 and from implicit fonction theorem, there exist continuously differentiable 

fonctions fi : R ---+ nu such that 

u*(t) = f1 (Bm1 (t)). 

For optimal control u*(t), the HJB equation is then given by 

-rh1 (t)x - li1 (t) = w1x + d(u*(t)) + m1 (t)(Ax(t) + Bu*(t)). 

On comparing the coefficients, we obtain 

rh1 (t) = -w1 - m1 (t)A, 

li1 (t) = -d(u*(t)) - m1 (t)Bu*(t). 
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The jump in the value fonction of Player 1 is given by (2.58) 

m1 ( Ti-)x( Ti-)+ n1 ( Ti-) =m1 ( Tt)x( Tt)+ n1 (Tt)+ q1x( Ti-) 

= m1 (Tt)(x(Ti-) + Qv;) + n1 (Tt)+ q1x(Tn. 

On comparing the coefficients, we obtain 

m1(Tn =m1(Tt)+q1, 

n1 (Ti-)= n1 (Tt)+ m1 (Tt)Qv;. 

(2.70) 

(2.71) 

Between the impulse instants, the value fonction of Player 2 (2.17b) satis fies the HJB 

equation given by 

On comparing the coefficients, we obtain 

m2(t) = -w2 - m2(t)A, 

n2(t) = -m2(t)Bu*(t). 

At the impulse instant T1, the value fonction of Player 2 satisfies 

From Assumption 2.1, the first-order condition yields 

(2.72a) 

(2.72b) 

Following Assumption 2.5, and from the implicit fonction theorem, there exist continu­

ously differentiable fonctions h : lR. - nv such that 

(2.74) 

On substituting v; in (2.73), we obtain 
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which on comparing coefficients gives 

m2(Ti-) = m2(rt), 

n2(ri-) = n2(rt) + m2(rt)Qv; + C + c(v;). 

(2.75) 

(2.76) 

The necessary conditions for OLNE require that co-state variables of Player 1 and Player 

2 satisfy (2.12c )-(2.12d), (2.12g)-(2.12h). For the FNE, the gradient of the value fonction 

of Player 1 and Player 2 are obtained by solving (2.69a), (2.70), (2.72a), and (2.75). For 

both players, A1 (t) = m1 (t), A2(t) = m2(t) for ail t since À1 (.) and m1 (.), and A2(.) and 

m2 (.) have the same dynamics, jump conditions, and terminal conditions. Therefore from 

(2.66), (2.68), (2.74), we have that OLNE and FNE coincide when the impulse timing is 

given. 

When the impulse instants are decision variables of Player 2, the necessary conditions 

for OLNE are given in (2.7) and (2.20). Using the necessary conditions, and from 

Assumption 2.1 on interior solutions, the equilibrium contrais are given in (2.66a)-(2.66b) 

where the dynamics and jump equations of co-state variables are given by (2.12c )-(2.12d), 

(2.12g)-(2.12h). For an impulse to occur in [O, T], (2.20f) must hold true which on 

substituting (2.64b ), (2.66a), (2.12h), (2.67b) simplifies to 
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> 0 for Tt= 0 

= 0 for T;° E (0, T) · 

<0 for T* = T 
1 

Fram the above condition, it is clear that the equilibrium impulse instant in OLNE 

depends on the prablem parameters of Player 1. 

Next, we consider the feedback information structure. Given Player 1 's equilibrium 

strategy u*(.), Player 2 salves (2.29). We assume Iinear value function for both players, 

that is, 

Since Player 2 salves an impulse optimal contrai prablem, the value function of Player 2 

satisfies the QVI (2.32). The stopping set is characterized by the time instant at which 

(2.32b) holds with equality, that is, 

Fram Assumption 2.1 on interior solutions, the first-order condition gives a 2(t)Q + 

cvJv;) = O. From Assumption 2.5, we can write 

(2.77) 

For the equilibrium contrai v;, we obtain the stopping set condition 

(2.78) 

Since (2.32b) must hold for ail (t, x) E [O, T] x R., the linear value function is well-defined 

when the following condition holds for ail t E [O, T]. 
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Following the proof of Theorem 2.5, we obtain the gradient of the value function of 

Player 2 as follows: 

a2(t) = w2(T - t) + s2, A = 0, 

a2(t) = - :
2 + eA(T-t) (s2 + : 2

), A* O. 

The stopping set condition (2.78) implies that the impulse timing only depends on the 

problem parameters of Player 2, and is independent of the state of the system. On 

the other hand, the impulse timing in OLNE involves problem parameters of Player 1. 

Therefore, OLNE and FNE do not coincide when Player 2 decides the number and timing 

of impulses. 
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Chapter 3 

Sampled-data Nash equilibria in 

diff erential games with impulse control 

Abstract 

We study a class of deterministic two-player nonzero-sum differential games where one 

player uses piecewise-continuous controls to affect the continuously evolving state white 

the other player uses impulse controls at certain discrete instants of time to shift the 

state from one level to another. The state measurements are made at some given instants 

of time, and players determine their strategies using the last measured state value. We 

provide necessary conditions for the existence of sampled-data Nash equilibrium for a 

general class of differential games with impulse controls. We specialize our results for a 

scalar linear-quadratic differential game, and show that the equilibrium impulse timing can 

be obtained by determining a fixed point of a Riccati like system of diff erential equations 

with jumps coupled with a system of non-linear equality constraints. By reformulating our 

problem as a constrained non-linear optimization problem, we compute the equilibrium 

timing and level of impulses. We find that the equilibrium piecewise-continuous control 

is a linear function of the last measured state value. For linear-state differential games, we 

obtain analytical characterizations of equilibrium number, timing and levels of impulses 



in terms of the prablem data, and pravide an extension of our results for the case with 

piecewise-constant time-varying prablem parameters. ln particular, there can be at most 

one impulse in the game when the prablem parameters are fixed white each sampling 

interval can contain at most one impulse when the prablem parameters differ between the 

sampling intervals. Using a numerical example, we illustrate our results . 

3.1 Introduction 

Recently, there has been renewed interest in the study of differential games with impulse 

contrais where the state is contralled by two players, at least one of whom can affect the 

continuously evolving state variable at certain discrete instants of time only (Aïd et al., 

2020; Ferrari and Koch, 2019; Sadanaetal., 2020). The number and timing of interventions 

besides their level are also decision variables in the game. This allows for studying dynamic 

interactions in option pricing (El Farauq et al., 2010), pollution regulation (Ferrari and 

Koch, 2019), exchange rate interventions (Aïd et al. , 2020), cybersecurity (Sadana et al., 

2021 ), and related prablems. A solution concept for these games involves determining 

the Nash equilibrium which depends on the information that is available to the players 

when they make their decisions (Ba~ar and Olsder, 1999). Nash equilibrium in differential 

games with impulse contrais have been obtained under two information structures, namely, 

open-loop and feedback information structures. In the open-loop information structure, 

the equilibrium contrais of the players are obtained assuming that players have access 

to only the initial state, whereas with the feedback information structure, players make 

their decisions using the state measurements at each instant of time in the game. One 

limitation of using open-loop strategies is that they are not strangly time-consistent (Ba~ar 

and Olsder, 1999; Ba~ar, 1989), whereas the feedback equilibrium strategies require state 

measurements to be made at each instant of time in the game. In many real-world prablems, 

for instance, economic data from the surveys, position of players in pursuit-evasion games, 

quality of goods, the state measurement is costly. As a result, state information is available 

to the players at the (discrete) sampling instants only, and the players determine their 
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sampled-data controls (Simaan and Cruz Jr., 1973; Ba~ar, 1991), using the previous state 

measurements. To the best of our knowledge, Nash equilibrium in differential games with 

impulse controls and sampling bas not been studied in the literature. 

In Simaan and Cruz Jr. (1973), the authors introduced a deterministic two-player 

nonzero-sum diff erential game where state measurement is made at discrete instants of 

time, and both players use piecewise-continuous strategies. The sampled-data controls 

of the players are assumed to be functions of the last measured state value, and players 

implement open-loop controls between the sampling instants. The authors showed that 

the equilibrium of linear-quadratic differential games can be obtained by solving a system 

of Riccati equations coupled with a system of differential equations that determine the 

terminal conditions on the Riccati equations. In Ba~ar (1980), the author studies a 

stochastic linear-quadratic differential game where players have access to the sampled-data 

state information as well as the sampling times. A zero-sum linear-quadratic differential 

game with linear time-varying parameters was studied in Ba~ar (1991) where it is shown 

that the optimal minimax sampled-data controller can be obtained by solving a generalized 

Riccati-diff erential equation. In Ba~ar ( 1995), the author provided a characterization of the 

minimax controller of a switching system with sampled state information. In contrast to 

the aforementioned research that deals with piecewise-continuous controls, Dragan et al. 

(2019) derived the Nash equilibrium of the stochastic linear-quadratic differential game 

assuming that the admissible strategies are constant between the state measurements. 

In this paper, we consider a general class of deterministic two-player nonzero-sum 

differential games where the two players are endowed with different kinds of controls 

(discrete and piecewise-continuous). In particular, Player 1 uses piecewise-continuous 

controls to affect the continuous evolution of state whereas Player 2 uses impulse controls 

to shift the state value instantaneously from one level to another at the impulse instants that 

are endogenously determined by Player 2 in addition to the number of impulse instants. 

The more general case with both players using continuous and impulse controls can be 

easily studied using our model. However, for the application of our work in problems 

involving regulation and cybersecurity, we can restrict our focus to our canonical game 
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mode! with one player using piecewise-continuous contrais and the other player using 

impulse contrais . 

The objectives of this research are three-fold: First, we aim to pravide necessary 

conditions for the existence of Nash equilibrium. Our second objective is to specialize our 

results for scalar linear-quadratic differential games (LQDGs) which are widely used in 

economics, engineering and management domains (see Ba§ar and Olsder, 1999; Haurie 

et al., 2012; Ba§ar et al., 2018) as they allow the possibility to mode) real-world prablems 

involving non-linear returns to scale. Also, linear dynamics can appraximate sufficiently 

well the non-Iinear dynamics, at Ieast in some applications. Third, we aim to determine 

analytical solutions for equilibrium number, timing and Ievels of impulses in scalar linear­

state differential games (see Ba§ar and Olsder, 1999; Dockner et al., 2000; Engwerda, 

2005; Haurie et al., 2012) where we restrict the payoff fonctions to be linear in state, and 

state dynamics to be linear in bath state and contrais of the players. 

Our contributions can be summarized as follows: 

(i) For the first time, our paper pravides necessary conditions for the existence of 

Nash equilibrium in a differential game with impulse contrais where the players' 

strategies are fonctions of the state values measured at certain discrete time instants; 

see Theorem 3.1. 

(ii) For the case of LQDGs with exogenously given impulse instants, Theorem 3.2 

pravides a system of Riccati like equations with jumps which characterize the 

sampled-data Nash equilibrium. 

(iii) For LQDGs with a given number of impulses in each sampling interval, Theorem 

3.3 shows that the equilibrium timing of impulses can be obtained as a solution of a 

system of Riccati equations (with jumps) pravided that the impulse instants satisfy 

a system of non-linear equality constraints. In particular, we show that an impulse 

occurs when the state trajectory hits a time-varying fonction of the gradient of the 

value fonction of Player 2. 
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(iv) In Theorem 3.4, we show that there can be at most one impulse in the sampled­

data Nash equilibrium of a scalar linear-state differential game. When the problem 

parameters are piecewise-constant fonctions of time, we show that in the scalar 

linear-state differential game, the number of impulses is at most equal to the number 

of sampling intervals; see Theorem 3.5. 

The rest of this paper is organized as follows: In Section 3.2, we introduce our canonical 

two-player differential game mode!. Section 3.3 provides necessary conditions for the 

existence of sampled-data Nash equilibrium for our canonical mode!. In Section 3.4, 

we specialize the necessary conditions to a scalar linear-quadratic differential game. We 

further specialize our results to a scalar linear-state differential game in Section 3.5, and 

also provide an extension of our game to problems with time-varying parameters. Further, 

we illustrate the theoretical results using a numerical example in Section 3.6. Finally, 

Section 3.7 provides concluding remarks, and the paper ends with an appendix, which 

details the proof of Theorem 3.2. 

3.2 Mode) 

In this paper, we consider a deterministic two-player differential game of finite duration 

T < oo where both players can affect a continuously evolving state variable x(t) E Rn to 

maximize their payoffs. However, the two players are endowed with different kinds of 

controls. Player 1 can continuously influence the dynamics of the state variable using her 

piecewise-continuous controls u(t) E nu while Player 2 can intervene and cause jumps in 

the state variable at certain discrete instants of time T; (i = 1, 2, · · · , k). We assume that 

nu is a bounded and convex open subset of Rm 1 • When Player 2 does not intervene in the 

game, the state variable is continuous and its dynamics are controlled entirely by Player 1 

so that the state variable evolves as follows: 

i(t) = f(x(t), u(t)), x(O-) = xo, fort-:/= {r1, r2, ... , rk}, (3.1) 
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where f : ]Rn x Qu ----+ ]Rn, the initial value of state variable is given by xo E ]Rn (a known 

parameter), x( rn = lim,ÎT; x(t), x( rt) = lim,!T; x(t), and o- denotes the time instant just 

before O. At the impulse instants Ti, Player 2 intervenes in the game to shift the state from 

x( rn to x( rt) by using an impulse of size vi E Qv, that is, 

(3.2) 

where g : ]Rn x Qv ----+ ]Rn. We assume that Qv is a bounded and convex open subset of ]Rn. 

The number of impulses k E N (the set of natural numbers), and timing of impulses Ti are 

decision variables of Player 2 in addition to the levels of impulses. The impulse contrais 

are denoted by v = { (Ti, v i), i = { 1 , 2, · · · , k}, k}. 

In this differential game, Player 1 maximizes the following objective: 

T k 

J1 (xo, u(-), v) = 1 F1 (x(t), u(t))dt + ~ G1 (x(ri-), vi) + S1 (x(r+)), (3.3) 

and Player 2 uses the impulse contrais (ri, vi) to maximize the objective 

T k 

h(xo,u(•),v) = 1 F2(x(t),u(t))dt+ ~G2(x(r;-),v;)+S2(x(r+)), (3.4) 

where F1, F2: lR" x Qu----+ lR, G1, G2: JR" x Qv----+ JR, and S1, S2: JR"----+ R For Player 

i, Fi denotes the running payoff, Gi denotes the intervention cost at the impulse instants, 

and Si is the terminal payoff. 

In a differential game, the Nash equilibrium depends on the state information that 

the players use to determine their strategies (see Ba~ar and Olsder, 1999; Haurie et al., 

2012). We assume that the state measurement is made at certain discrete instants of time 

ln, n E {l, 2, · · · , N}, with the corresponding state values denoted by x1,x2, · · · ,XN such 

that O = t 1 < t2 < · · · < lN-I < IN = T. The sampled-data contrais of Player l are given 

by 

u(t) = y(t; x(tn)) E Qu, for ln :s; t < ln+I, n E N' = { 1, 2, · · · , N - l}, y E Ï, (3.5) 

wherey: [tn,ln+d xlRn--+ Qu isasampled-datastatefeedbackcontrallerofP!ayer I and 

the strategy set of Player I is denoted by ï. Similarly, the impulse levels of Player 2 are 
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given by 

V;,n = ô(T;,n;x(tn)) E ilv, fortn :S T;,n < tn+I, n EN', ô E /'1, (3.6) 

where ô : [tn, tn+d x !Rn --+ nu is a sampled-data state feedback controller for Player 2 

and /'1 denotes the strategy set of Player 2. 

The objective fonctions of the players over the sub-interval [tn, T], initialized at the 

sampling instant tn with the corresponding state x(tn) = Xn are given by 

11 (xn, Y[tn,T], Ô[tn,T]) = ï ( itj+I F1 (x(t), y(t;x(tj )))dt 
j=n lj 

ki 

+ l: ]_ri.i~rnG1(x(r;~j),ô(T;,j;x(tj)))) +S1(x(T+)), (3.7a) 
i=l 

N-1 11j+I 
]z(xn, Y[tn,T], Ô[tn,T]) = ~ ( lj F2(x(t), y(t;x(tj)))dt 

ki 

+ I ]_Ti,j~tnG2(x(T;~j),ô(T;,j;x(tj)))) +S2(x(T+)), (3.7b) 
i=l 

where the strategies Y[tn,T] and ô[tn,T] are restrictions of y and ô to the interval [tn, T], and 

r [tn,Tl and l'l[rn,TJ denote the corresponding admissible strategy sets of Player 1 and Player 

2, respectively. The state dynamics are given by 

x(t) = f(x(t),y(t;xn)), x(t;;) =Xn, fortn :St< tn+I, n EN', (3.7c) 

x( rtn) - x( Ti~n) = g(x( Ti~n), ô( T;,n;Xn) ), for i E In = {1, 2, · · · , kn}, n E N', (3.7d) 

where kn denotes the equilibrium number of impulses in the sampling interval [tn, tn+d­

From (3.7a)-(3.7b ), it is clear that each player can influence the payoff of their opponent 

directly through their controls, and indirectly by changing the state variable. 

Remark 3.1 The above canonical differential game model (3.7a-3.7d) can be used to 

study problems in cybersecurity and pollution regulation where the running payoff of one 

player, say Player 1, decreases with state and Player 2 's running payoff is increasing with 

state. Player 1 continuously invests in reducing the state except at the impulse instants 
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wherein Player 2 intervenes in the game to instantaneously shift the state to a higher value. 

Consequently, Player 1 incurs a state-dependent cost at the impulse instant. 

Clearly, the admissible controls in the aforementioned real-world applications satisfy the 

following definition: 

Definition 3.1 ( T;,n, v;,n), i E In, n E N', is an admissible impulse control of Player 2 (f 

the impulse instants sati.~fy the following increasing monotone sequence property: 

ln < TJ,n < T2,n < · · · < Tk,,,n < tn+l, (3.8) 

where kn < oo, V;,n * 0, and it is assumed that the impulse instants are interior, that is, 

T;,n E (tn, tn+l)-

ln this paper, we seek to determine the sampled-data Nash equilibrium of the differential 

game (3.7a-3.7d), which is defined as follows: 

Definition 3.2 The strategy profile (y*, 6*) is a sampled-data Nash equilibrium <~f the 

differential game ( 3. 7a-3. 7d), ({the restrictions of y* and 6*, denoted by Y[,,,,T] and 6[,,, ,T]' 

to any subgame that starts at the sampling time ln with state measurement Xn sati.~fy the 

.f()/lowing inequalities: 

11 (xn, 'Y[t,, ,T]• 6[t,,,T]) ~ 11 (xn, Y[tn.TJ• 6[t,,,T])' VY[tn,T] E r[t,, ,T], 

h(xn, 'Y[r,,,T]• 6[1,,,T]) ~ h(xn, 'Y[tn,TJ' 6[1,,,T]), V6[1n ,T] E ~[tn,T] · 

(3.9a) 

(3.9b) 

Remark 3.2 The sampled-data Nash equilibrium strategies of the d(fferential game ( 3. 7a-

3. 7d) for t E [O, T] when restricted to [ tn, T] are also the Nash equilibrium strategies <f 

the suhgame that starts at ln. As a result, the sampled-data Nash equilihrium strategies 

are strongly lime-consistent ( Ba§ar, 1989) (f the perturbation <~f state can occur only at 

the sampling instants tn, n E N = { 1, 2, · · · , N} . At ail other time instants, that is, 

t * tn, n E N, the sampled-data Nash equilibrium strategies are weakly rime-consistent 
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Remark 3.3 When sampling is done at the initial and final time only, then the sampled­

data Nash equilibrium coïncides with the open-loop Nash equilibrium of a d{tferential 

game. It is shown in Simaan and Cruz Jr. (/973) that the sampled-data equilibrium 

controls approach the closed-loop controls as the number <~{ sampling intervals increases. 

3.3 Necessary conditions 

In this section, we derive the necessary conditions for the existence of sampled-data Nash 

equilibrium in differential games with impulse controls. 

The approach to determine the sampled-data Nash equilibrium can be summarized as 

follows. Suppose the sampling instants are given by t1, t2, · · · , tN. Fort E [tn, ln+I], play­

ers use open-loop strategies y*(t;xn) and o*(t;xn), which are fonctions of last measured 

state value Xn, that is, for any given initial state Xn, Player 1 determines the open-loop 

controls in the sampling interval and Player 2 determines the equilibrium number, timing 

and levels of impulses. The payoff of each player at (tn,x(tn)) is a salvage value for the 

open-loop game between tn-1 and tn. Therefore, starting from the last sampling inter­

val [tN-I, T] with salvage values S1 and S2, we can recursively obtain the equilibrium 

strategies for all the sampling intervals Un, tn+d, n EN'. 

First, we define the Hamiltonians of the two players that will be used in the nec­

essary conditions for the existence of sampled-data Nash equilibrium. The continuous 

Hamiltonians of Player 1 and Player 2 are given by 

H1(x(t),u(t),À1(t)) = F1(x(t),u(t),À1(t)) +À1(t? f(x(t),u(t)), 

H2(x(t), u(t),À2(t)) = F2(x(t), u(t), À2(t)) + À2(tl f(x(t), u(t)), 

(3.10) 

(3.11) 

where ÀJ (.) and ,i2(.) denote the co-states of Player 1 and Player 2, respectively. The 

impulse Hamiltonian of Player 2 is given by 

H~(x(t), v, À2(t)) = G2(x(t), v) + À2(tl g(x(t), v). 
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Given the strategies, y and 6, the value-ta-go functions of Player 1 and Player 2 at the 

sampling instants tn+I, n E N' are given by 

Vi Un+J,Xn+i) = I ( f 1j+I Fi (x(t), y(t;xj))dt 
j=n+I 11 

kj 

+ L ]_T;_/~ ln +J G1 (x(ri~j), ô(Ti,j;Xj))) + S1 (x(T)), (3 .13a) 
i=I 

V2Un+J,Xn+1) = I ( f Tj+I F2(x(t), y(t;xj))dt 
j=n+I Tj 

kj 

+ L ]_T;_/~ ln+l G2(x(T;~). ô(T;,j;xj))) + S2(x(T)), (3.13b) 
i=I 

with Vi(T,x(T)) = S 1(x(T)), and V2(T,x(T)) = S2(x(T)). We denote the equilibrium 

payoffs of Player 1 and Player 2 at tn+l by V~ (tn+I, Xn+1) and v;(tn+l, Xn+i), respectively. 

To derive a set of necessary conditions for the existence of Nash equilibrium, we make 

the following assumptions: 

Assomption 3.1 ( a) The function f : Rn x Qu ---+ Rn is Lipschitz continuous in x for 

al/ u. 

( b) Between the sampling instants, the functions F1, F2 , G 1, G2 are continuous, and 

have continuous partial derivatives with respect to their arguments. The value-to-go 

fun ctions V1 and V2 are continuous, and have continuous partial derivatives with 

respect to the state at the sampling instants. 

The following theorem gives the necessary conditions for the existence of sampled-data 

Nash equilibrium of the differential game (3.7a-3 .7d). 

Theorem 3.1 Suppose the sampling instants are given by t1, t2 , · · · , tN with O = t1 < 

t2 < · · · < t N = T, and Assumption 3.1 holds. Let (y*, 6*) be the sampled-data Nash 

equilibrium of the differential game described by ( 3. 7a-3. 7d). Then, there exist piecewise 

continuous and piecewise dffferentiable functions À1 ( .) and A2( .) with À 1 (t) E Rn and 
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À2 (t) E Rn such that the jollowing conditions holdfor t E [tn, ln+!), n E N' : 

The equilihrium contrai of Player 1 satisjies 

U • ( t) = arg max HI (X• ( t), U ( t), À I ( t)), V t ~ rn = { T1· , T1· , · · · , Tk\ } . 
uenu ,n ,n n,n (3.14a) 

At the impulse instant r: , i E In, the equilihrium contrai of Player 2 satisfies 1,n 

(3.14b) 

The equilihrium strategies (~{ Player 1 and Player 2 are given hy y*(t;xn) = u*(t), Vt E 

[tn, tn+d, t ~ rn and 8*(ri:n;xn) = v;,n' Vi E In. 

The maximized Hamiltonian and impulse Hamiltonian functions are given by 

H~(x*(t),À1(t)) = H1(x*(t),u*(t),À1(t)), Vt ~ rn, 

H~'(x*(rt;),À2(rt:)) = H~(x*(<;), v;,n,À2(ri::)), i E In, 

the equilihrium state and co-state equations satisfy fort ~ rn, 

i*(t) = f(x*(t), u*(t)), x*(tn) = Xn, 

. • • av; (tn+I, x(tn+I)) 
À1(t) = -H1x(x (t),À1(t)), À1(tn+1) = ôx 

v; (T, x(T)) = S 1 (x(T)), 

. • • • av;(tn+1,x(tn+1)) 
À2(t) = -H2x(x (t), u (t), À2(t)), À2(tn+1) = ôx 

v;(T,x(T)) = S2(x(T)), 

the jumps in the state and co-state variables satisfy for i E In 

ÀJ (rt;) =(J + (gx(x*(<;), v;,n))7)À1 (<;) + G1x(x*(<;), v;,n), 

À2(ri:;) =À2(ri:;) +H~;(x*(rt;),À2(<;)), 

and the following Hamiltonian continuity condition holds: 
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Proof. Fort E [tn, tn+d, Player 1 and Player 2 play their open-loop Nash equilibrium 

strategies, y*(t;xn) and o*(ri,n;xn), that depend on the last measured state value Xn. The 

salvage values of the two players at tn+I are given by (3.13a) and (3.13b). 

Given theequilibrium strategy o*(r* ,xn) of Player 2 in the sampling interval [tn, tn+I], 1,n 

Player 1 solves a non-standard optimal control problem given in (3.9a) due to jumps in the 

state and the additional cost at the impulse instant. Suppose Assumption 3.1 holds. Then, 

the optimality conditions for Player 1 are given in (3.14a), (3. l 4e ), (3. l 4f), (3.14h), 

(3. l 4i) (see Geering, 1976; Sadana et al., 2021 ), with co-state at tn+I given by the gradient 

of the equilibrium payoff of Player 1 at tn+I · Next, for Player l 's open-loop equilibrium 

strategy, y*(t; Xn) in [tn, tn+d, Player 2 solves the impulse optimal control problem (3.9b). 

The necessary conditions for the existence of the impulse controls follow from Blaquière 

(l 977a,b), Chahim et al. (2012), and are given by (3.14b), (3.14e), (3.14h), (3.14g), (3.14j), 

(3.14k), where the co-state at tn+I is given by the gradient of the equilibrium payoff of 

Player 2 at tn+I · ■ 

The necessary conditions yield the candidates for the sampled-data Nash equilibrium. 

In each sampling interval, the players use open-loop Nash equilibrium strategies, and 

the game is solved using backward translation starting from the last sampling interval. 

Consequently, if the sufficient conditions for the open-loop Nash equilibrium are satisfied 

in each sampling interval, then the candidate solutions identified by using the necessary 

conditions are indeed the sampled-data Nash equilibrium strategies. 

Sufficient conditions for the existence of sampled-data Nash equilibrium for the differ­

ential game described by (3.7a-3.7d) are given as follows: 

Proposition 3.1 (Sadana et al., 2021, Theorem 3) Let Assumption 3.1 hold. Suppose in 

each sampling interval [tn, tn+I], n E N', the initial state is given by Xn, and there exist 

feasihle solutions (y*(t;xn),o*(rtn;xn)) with corresponding state trajectory x*(.), and 

co-state trajectories Ài (.) and À2(.), such that the conditions given in Theorem 3.1 are 

satisfied. Also, (fin each sampling interval, the maximized Hamiltonian H~(x(t),À1(t)) 

cd Player 1 is concave in x(t) for ail À1 (t), the Hamiltonian H2(x(t), u*(t), À2(t)) of 
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Player 2 is concave in x(t), the value-to-go functionsfor Player 1 and Player 2 given by 

(3.13a) and (3.13b) are concave in x(tn+I), G 1 (x(t), v) + Àf g(x(t), v) is concave in x(t), 

and the impulse Hamiltonian Hi(x(t), v,À2(t)) of Player 2 is concave in (x(t), v), then 

(y*,c5*), obtained by concatenating the (open-loop) strategies (y*(t;xn),c5*(r:* ;xn))for 
1,n 

t E [tn, ln+d, are indeed the sampled-data Nash equilibrium strategies of the dif.ferential 

game described by (3.7a-3.7d). 

3.4 Scalar linear-quadratic diff erential game 

In this section, we specialize our results in Theorem 3.1 to a one-dimensional linear­

quadratic differential game with impulse controls, where state measurements are made at 

the sampling instants tn, n EN= {I, 2, · · · , N} such that 0 = t1 < t2 < · · · < lN = T. 

We study the following scalar linear-quadratic differential game with impulse contrais 

(referred to as iLQDG from here on): 

(iLQDG) 11 (xo, u( ·), V) =1 [ ~ ( ! '"'' ( h1x(t)2 + 2w1x(t) + c ,u (t) 2
) dt 

kn 

+ I ( z1x( Ti~n)2 + 2d1x( Ti~n))) 
i=l 

+ f1x(T) 2 + 2s1x(T)], 

Ji (xo, u( ·),V) = ~ ( f'"'' w2x( t)dt + t ( 1c, v!,,) ) + s,x(T), 

i(t) =ax(t) + bu(t), Vt ~ rn, n EN', x(0) = Xo, 

x( ri\) =x( Ti~n) + gvi,n, Vi E In = { 1, 2, · · · , kn}, n EN', 

(3.15) 

where b =t- 0, g =t- 0, Cu < 0, Cv < 0, and the state at the sampling instants t1, t2, · · · , lN is 

denoted by x1,x2, · · · ,xN. 

We make the following assumptions on the equilibrium controls of the players: 

Assumption 3.2 In each sampling interval, Player I 's strategy space r[,,,,,,,+iJ is the set 

(~{ locally square-integrablefunctions, that is, 

r[fn.ln+il := {u(t) ER, t E [ln, ln+il 1 !fn+I UT (t)u(t)dt < 00}' (3.16) 
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and Player 2 's controls satisfy Dejinition 3.1. 

Assomption 3.3 The equilibrium controls u*(t) (~{ Player 1 and equilibrium impulse 

levels v; of Player 2 lie in the interior of the control sets Qu and Qv, re!ipectively. 

3.4.1 Necessary conditions 

Before considering the case where the number, timing and levels of impulses are de­

termined by Player 2, we consider the differential game (3.15) with exogenously given 

impulse instants. 

Theorem 3.2 Let t1, t2, · · · , tN denote the sampling instants, and suppose that Assump­

tions 3.2 and 3.3 hold. Let the equilibrium impulse instants be given by rtn• Vi E In = 

{r1*,r2*,··· ,rk*, },n EN'= {1,2,··· ,N - ]}. Then y* and c5* are the equilibrium 
ri,n 

strategies of Player 1 and Player 2, respectively (fthefollowing Riccati systemfàr n EN' 

has a solution with nofinite escape time in all the sampling intervals [tn, tn + ]]: 

. ( ) ( b2 2 n Œ],n t = -2a1,n t)a + Cu Œ1,n(t) - h1, Vt ~ T, 

ŒJ (tn+J) = Pl,n+I (tn+I), ŒJ,N(T) = fi, 

/J1,n(t) = /31,n(t) ( :: Œ1,n(t) - a)- w1, Vt ~ Tn, 

/31 (tn+I) = q1,n+I (tn+l),/31,N(T) = SJ, 

ŒJ,n(rt;) = ŒJ,n(rt;) + ZI, Vi E In, 

2 

/31,n( rt;) = /31,n( rt;) - ŒJ,n ( T;:;) LÀ2( rt;) + d1, Vi E In, 
Cv 

b2 
P1,n(t) = -h1 - 2(a - -a1.n(t))P1,n(t) 

Cu 

- b
2 

Œ1,n(t)2, Vt ~ rn, Pl,N(T) = f,, 
Cu 

b2 b2 
41,n(t) = -w1 + -p1,n(t)f31,n(t) - q1,n(t)(a - -Œ1,n(t)) 

Cu Cu 

b2 
- -Œ1 n(t)/3, n(t), Vt ~ rn, q, N(T) = s,, 

Cu , ' ' 
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PI ,n(Ti:1,n) = P1,n(Ti:\n) + ZJ, Vi E In, 
2 

q l,n ( Ti:1 ,n) = -p1 ,n ( T1:\n) gc À2 ( <:) + q1 ,n ( Ti:\n) + d1, Vi E In, 
V 

P1.n(tn+1) = P1 ,n+1 (tn+1 ), q 1,nUn+I) = q1 ,n+I Un+I ), 

b2 
42,n(t) = -w2 - (a - ~a1 ,n(t))q2,n(t), Vt (/. Tn, q2,N(T) = s2, 

u 

A2(tn+d = q2,n(tn+d, 

À2(t) = _ w2 + (A2(tn+d + W
2)ea(Tn+i-r), Vt E [tn,ln+J), 

a a 

q2,n(Ti:l,n) = q2,n(Ti:\n), Vi E In, 

The equilihrium strategies of Player 1 and Player 2 are given by 

y*(t;xn ) = - ~ (a, ,n(t) (<t>(t, <:H<t>(<;, ln)Xn + gv;,nnT>Ttn 

(3.17g) 

(3.17h) 

(3. l 7i) 

(3. l 7j) 

(3.17k) 

(3 .171) 

(3.17m) 

(3.17n) 

+ <p( Ti:;, tn)) + <p(t, Ti::)) + /31 ,n(t) ), Vt E [ Ti:n' T1:, ,n) , i E In U {0}, 

(3.18a) 

(3.18b) 

where Tc;,n := ln, T;~+l ,n := tn+1, andVi E {O} U In , 

cÏJ(t, <n) = ( a - :: ŒJ ,n (t)) </>(t, <n) , Vt E ( Ti:n, Ti:l ,n), </>( Ttn • <n) = 1, (3.19a) 

1
1 b2 

<p(t, r;:;) = - _ </>(h, <;)-c /31 ,n(h)dh, Vt E (Ttn• Ti:1,n), 
T~ U ,.n 

(3.19b) 

(3.19c) 

(3 .19d) 

Proof. See Appendix. ■ 

Remark 3.4 Even when the timing of impulses is given, the Riccati like system(~{ equations 

(3 . l 7a}-(3. l 7n) differ from those ohtainedfor classical differential games without impulse 
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contrais hecause ofjumps in state and additional costs incurred hy the players at the 

impulse instants. 

The above theorem characterizes the equilibrium with exogenously given impulse 

instants. If the number and timing of impulses are determined by Player 2, the impulse 

instants must satisfy the Hamiltonian continuity condition (3.14k) in addition to (3.17a)­

(3.17n). 

Theorem 3.3 Suppose t1, t2, · · · , tN are the sampling instants, and Assumptions 3.2 and 

3.3 hold. Then rtn' i E In, n EN' are the equilihrium impulse instants ~f 

= 
(~(aq2,n+I Ctn+I) + w2)eaUn+i-rtn) )- d1 

ZI 
(3.20a) 

where q2,n+I Ctn+I) is the gradient of the valuefunction of Player 2 at the sampling instant 

tn+l, </J and({) satisfy (3.19a)-(3.19d), and the Riccati system (3.17a)-(3.17n) has nofinite 

escape time. 

Proof. From the continuity condition (3.14k) on the Hamiltonian, we have for i E In, n E 

N', 

Using the continuity of the co-state of Player 2 (3.53), we can write the above equation as 

On substituting x( r*+) - x( r.*-) = gv* , (3.43), and (3.47) in the above equation, we have 
l,n 1,n 1,n 

(3.21) 

which on substituting (3.46) and (3.52) simplifies to 

-w/
2 

À2(rtn) - a
82 

À2(rtn)2 + b
2 

À2(rtn) (z,x(rtn) + d1) = 0, 
Cv ' Cv , Cu ' ' 
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A2( r* ) = 0 implies that the equilibrium impulse level is zero. From Definition 3.1, v
1
~ n l,n , 

cannot be equal to zero if r~ is an admissible impulse instant. So, an impulse occurs if 1,n 

Cu!~ ( w2 + aÀ2 ( rtn)) - d, 
x(r* ) = _c_v ______ ' __ _ 

1,n z, 

We can rewrite (3.54) as 

and substitute in the above equation to obtain 

(3.22) 

On substituting (3.57) and (3.60a) in the above equation, we arrive at (3.20a). ■ 

Remark 3.5 An impulse occurs at equilihrium whenever the state trajectory intersects the 

time varying function of gradient(~{ the valuefunction of Player 2, g(t), given hy 

( ~:!~ (aq2,n+I Un+I) + w2)e 0 Un+i-t)) - d1 
t(t) = ----------

z, 

3.4.2 Non-linear optimization 

Let TJ,n, T2,n, · · · , Tkn,n denote the admissible impulse instants for a given number of 

impulses, kn, in each sampling interval [tn, ln+d, n EN'. From Definition 3.1, we have 

The above constraint can be represented as 

(3.23) 
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where 

-1 0 0 0 

0 
TJ,n 

-1 0 0 
D ·- T ·- ,Vn EN'. n .- ' n .-

0 0 0 -1 
Tk,,,n 

(k,,-l)xk,, 

At the equilibrium impulse instants, the Hamiltonian continuity condition (3.20a) holds 

for the iLQDG formulated by (3.15). The equilibrium impulse instants are obtained by 

finding the fixed-point solution of the Riccati like system of equations (3. l 7a)-(3. l 7n) and 

the system of non-linear equality constraints (3.20a). Alternatively, this problem can be 

viewed as the following constrained non-linear optimization problem: 

N-1 k,, 
argmin II (x(ri,n)-f(ri,n))

2 

{r,,}nEN' n=I i=l 

subject to 1.(tn + s) ::,; T n :s; 1.(tn+l - s) Vn EN' 

DnTn :s; -1.s Vn EN', 

where s > 0 is a slack variable, and 

U:!~ (aq2,n+I (tn+I) + w2)eaUn+i-r;_,,)) - d1 
f(ri,n) = --------------­

ZI 

(3.24a) 

(3.24b) 

(3.24c) 

(3.24d) 

The above problem can be solved using interior point algorithms (Byrd et al., 1999) 

or sequential quadratic programming methods (Büskens and Maurer, 2000). 

3.5 Impulse linear-state diff erential game 

In this section, we derive analytical expressions for the equilibrium number, timing and 

levels of impulses for the scalar linear-state differential game that can be obtained by 

setting h1 = z1 = !1 = 0 in (3.15). 

Theorem 3.4 Let Assumptions 3.2 and 3.3 hold. Suppose that t1, t2, ... , tN are the 

sampling instants. Then, there can be at most one impulse in the sampled-data Nash 
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equilibrium with the timing and level of impulse given by 

r*=T-_!_ln(b2cv d1) 
a g2cu as2 + w2 ' 

(3.25a) 

gw2 b2d, 
v=-----. (3.25b) 

Cva agcu 

Further, r* is the equilihrium impulse instant (f the following condition holds for some 

n EN': 

The equilibrium control of Player 1 is given by 

where 

Â1(t) = -aÀ1(t) -w,, A1(tn+1) = q1,n+1(tn+1), n EN', 

41,n(t) = -w, - aq1,n(t), q1,n(tn+I) = q1,n+I (tn+I), n EN', q1,N(T) = SJ, 

q1,n( r*-) = q1,n( r*+) + d1. 

Proof. The Hamiltonian of Player 1 is given by 

1 
H1 (x(t), u(t), À 1 (t)) := w,x(t) + 2cuu(t)2 + À1 (t) (ax(t) + bu(t) ). 

(3.25c) 

(3.25d) 

Using (3.14a) and Assumption 3.3 on interior solutions, the first-order condition yields 

(3.26) 

From (3. l 4e ), (3. l 4f), and (3. I 4i), the equilibrium state and co-state trajectories during 

the non-impulse instants evolves as follows: 

i*(t) = ax*(t) - b
2 

À1 (t), x*(tn) = Xn, n EN', 
Cu 

(3.27) 

. av;(tn+J,X(tn+J)) 
1 

A1(t) = -aA,(t) -w,, A1(tn+1) = ax , n EN, (3.28) 

135 



and at the impulse instants, the co-state jumps according to 

(3.29) 

Using the approach in Theorem 3.2, it can be shown that the equilibrium value-to-go of 

Player 1 is given by V~(tn,Xn) = q1 ,n(tn)Xn + r1,n(tn), Vn EN', such that 

From (3.28), we obtain 

(3 .30b) 

(3.30c) 

(3.30d) 

(3.31) 

Given the equilibrium control u*(.) of Player 1, the necessary optimality conditions for 

Player 2 are given by (3.14b ), (3 .14g), (3.14h), (3 . I 4j), (3 .14k). The co-state of Player 2 

evolves according to the following equation 

The jump in the state at the impulse instant is given 

2 
( •+) ( •-) g l ( *+) . In N' X Tin = X Tin - -/l2 Tin , l E , n E . 

' ' Cv ' 

(3.32) 

(3.33) 

(3.34) 

From the proof of Theorem 3.2, we can show that the value-to-go for Player 2 at any time 

t is given by V2(tn,Xn) = q2,n(tn)Xn + r2,n(tn) such that, fort(/. rn, n EN', we have 

C/2 ,n(t) = -w2 - aq2,n(t), q2,n(tn+d = q2,n+l (tn+l ), q2,N(T) = s2, 

b2 
f2,n(t) = q2,n(t) Cu À1(t), r2,n(tn+1) = r2,n+l(tn+J), r2,N(T) = 0, 
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and for i E In, n EN', we have 

q2,n ( rt;,) = q2,n (Ti::), 

r2,n(Ti:I n) = r2,n(Ti:~ n) + 
2
g2 

À2(ri:~ n)
2 

- q2,n(Ti:~ n) (g2 
À2(ri:~ n)), 

' ' Cv ' ' Cv ' 

(3.35c) 

(3.35d) 

From the above equations for the evolution of q2, and (3.32), (3.33), we can see that q2(.) 

and À 2(.) have the same dynamics and terminal conditions in each sampling interval, and 

are continuous fonctions of time, and thus we obtain 

(3.36) 

At the impulse instants rtn• the Hamiltonian continuity condition (3.14k) holds, which 

implies 

Using the conditions (3.29), (3.33), (3.34), we can rewrite the Hamiltonian continuity 

condition as 

This implies that if an impulse occurs at r.* , then À ( T
1
~n) can take the following two values: 1,n , 

À2(rtn) = 0 implies that the impulse level is zero. The admissible impulse instants in 

Definition 3.1 are such that if r.* is an equilibrium impulse instant, then the impulse level 
1,n 

is not equal to O. Since À2(t) is strictly monotone for t E [O, T], we obtain a unique 

solution: 

(3.37) 

From (3.36) and (3.37), we obtain a unique equilibrium impulse instant 
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For r* to be an interior impulse, we must have for some n E N', 

The equilibrium impulse level is given by 

* g • g (b
2
cv di W2) V = --À2 ( T ) = - - -

2
- - - - . 

Cv Cv g Cu a a 
(3.38) 

■ 

Clearly, there can be at most one impulse in the sampled-data Nash equilibrium of our 

specialized scalar linear-state differential game with impulse contrais. Next, we consider 

a variation of the game where the problem parameters of Player 1 and Player 2 vary with 

time, and are constant between the sampling instants: 

J,(xo, u(·), V) ~ ~ ( f'"'' w,."x(t)dt + t Gc,,v/.")) + s,x(T), 

x(t) =anx(t) + bnu(t), t t- rn, x(O) = xo, 

where the state at the sampling instants t 1, t2, · · · , tN is denoted by x1, x2, · · · , XN. 

(3.39) 

Theorem 3.5 Let Assumptions 3.2 and 3.3 hold. Suppose that t1, t2, ... , tN are the 

sampling instants. Then, there can he at most one impulse in each sampling interval, 

and at most N impulses in the sampled-data Nash equilihria with the timing and Level of 

impulses given hy 

* 1 (b~cv ,n d1,n ) Tn = tn+l - - ln _2 _________ , 

an gncu,n anÀ2(tn+1) + w2,n 
(3.40a) 

• gnW2,n b~dl,n 
vn=------, 

Cv,nan angncu,n 
(3.40b) 

where 

(3.40c) 
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Further, r; is an equilibrium impulse instant if thefollowing conditions hold: 

The equilibrium strategy of Player 1 is given by 

u*(t) = - bn À1 (t), (3.40d) 
Cu,n 

where, for n E N', 

Proof. Using the proof of Theorem 3.4, we obtain 

1 ( ) w2,ll ( 1 ( ) w2,ll) a (r +i -t) V [ l) N' 112 t = --- + 112 tll+I + -- e n n , t E ln, tll + , n E , (3.41) 
ail ail 

Between the sampling instants tll and tll+l, the Hamiltonian continuity condition holds at 

the impulse instants, which implies 

From the continuity and strict monotonicity of co-state in each sampling interval, we 

obtain a unique value of co-state in each sampling interval 

(3.42) 

Substituting (3.42) in (3.41), we obtain 

139 



The equilibrium impulse level is then given by 

• _ gn 1 ( *) _ gnw2,n b~d1,n 
Vn - --;12 Tn - -- -

Cv,n Cv,nan angncu,n 

From the proof of Theorem 3.2, we also obtain the equilibrium controls of Player 1 by re­

placing the problem parameters in each sampling interval by the time-varying parameters. 

■ 

3.6 A numerical example 

In this section, we illustrate the theory developed in the previous sections using a numerical 

example. 

Consider a dynamic game where Player l 's profit is decreasing quadratically with the 

state while Player 2's profit increases linearly with the state. The time horizon of the game 

is T = 20. Player 1 uses piecewise continuous sampled-data state feedback controls while 

Player 2 uses impulse controls. The state measurements are made at given instants of 

time t1 = 0, t2 = 10, t3 = 20. Player 1 and Player 2 maximize their respective objective 

fonctions 

2 ( lfn+I ( ) 11 (xo, u( ·), v) = I -x(t)2 - 4x(t) - 3u(t)2) dt - 4x( r;;) 2 

n=I ln 

- 2x(20)(x(20) + 1) 

2 ln+l 

Ji(xo, u( ·), v) = I ( j IOx(t)dt - 0.25v~) + 6x(20), 
n=I ln 

and the state dynamics are given by 

i(t) = -0. lx(t) + 0.4u(t), t ~ { TJ, ri}, x(0) = 1, 

First, we analyze the case where the impulses are periodic, that is, r 1 = 5 and r 2 = 15. 

The equilibrium control of Player 1, given in Figure 3.la, jumps at the impulse instants 

because of the jump in her co-state caused by the impulse control of Player 2. The state 
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trajectory, and the equilibrium impulse levels of Player 2 are shown in Figure 3.1 b. At 

equilibrium, Player 1 incurs a Joss of 238.37, while Player 2 incurs a Joss of 203.09. 

25 
10 

20 

0 15 

10 

-10 5 

0 

0 5 10 15 20 0 5 10 15 20 

t (time units) t (time units) 

(a)u*(t) (b) x*(t) and v* 

Figure 3.1 - Equilibrium controls, and state trajectory with periodic impulses. 

Next, we determine the equilibrium when the impulse instants in each sampling interval 

are determined by Player 2, and there is one impulse in each sampling interval. The impulse 

timing is characterized by the Hamiltonian continuity condition (3.21) which reduces to 

determining the time at which state trajectory intersects ,;(t) as shown in Figure 3.2b 

{

-3.52e-0.1(10-t) 
,;(t) = 

-2.57e-0. l (20-t) 

t E f 0, 10) 

t E (10, 20] 

The equilibrium impulses occur at T~ = 3 and r2 = 12.59, and at equilibrium, the lasses 

of Player 1 and Player 2 are given by 311.64 and 232.83, respectively. The piecewise­

continuous equilibrium contrai of Player 1 is shown in Figure 3.2a and equilibrium impulse 

levels of Player 2 are shown in Figure 3.2b. 

Clearly, both players incur higher loss if Player 2 determines the timing of impulses 

when compared with the case where impulse timings are periodic. This illustrates a well­

known result that enlarging the strategy space of a player does not necessarily benefit the 

player in a game problem. 
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(a)u*(t) 

25 

20 

15 

5 

0 

0 5 10 

t ( time units) 

-x*(t) 

v;. 
t(t) 

15 

(b) x*(t), v;. and t(t) 

Figure 3.2 - Equilibrium controls, and state and co-state trajectories. 

3. 7 Conclusions 

20 

In this paper, we have derived necessary conditions for the existence of sampled-data Nash 

equilibrium in a general class of two-player nonzero-sum differential games with impulse 

contrais, where only one of the players contrais the impulses (their number, timing and 

magnitudes). For a scalar linear-quadratic differential game, we have shown that the 

sampled-data Nash equilibrium can be obtained by determining the fixed point of a system 

of Riccati like equations with jumps coupled with non-linear equality constraints. We 

have also shown that the equilibrium piecewise-continuous control of Player 1 is linear in 

the most recently measured state value, and provide a numerical procedure to determine 

the equilibrium. Further, we have shown that there can be at most one impulse in the 

sampled-data Nash equilibrium of a scalar linear-state differential game with impulse 

contrais, and for the case with time-varying parameters, there can be at most one impulse 

in each sampling interval, and we have obtained analytical expressions for equilibrium 

timing and level of impulses. 

For the future, it would be interesting to apply our results to case studies in pollution 

regulation, exchange rate interventions, and cybersecurity. One extension of our work 

would be to differential games where both players use continuous as well as impulse 
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controls. Another extension would be to differential games with more than two players. 

3.8 Appendix 

3.8.1 Proof of Theorem 3.2 

Given the equilibrium control of Player 2, we obtain necessary conditions for iLQDG 

using (3.14a), (3.14e), (3.14f), (3.14i). The Hamiltonian of Player 1 is given by 

where ,l 1(t) is the co-state of Player 1. Using (3.14a) and Assumption 3.3 on interior 

solutions, the first-order condition yields 

H1u(x*(t), u*(t), À1 (t)) = 0 ⇒ u*(t) = -~ÀI (t). (3.43) 
Cu 

From (3.14e) and (3.14f), the equilibrium state and co-state trajectory at the non-impulse 

instants evolve as follows: 

i*(t) = ax*(t) - b
2 

À1 (t), x*Ctn+I) = Xn+I, (3.44) 
Cu 

. • av;Un+1,xUn+i)) 
À1 (t) = -aÀ1 (t) - h1x (t) - WJ, À1 (tn+I) = ax . (3.45) 

From (3. l 4i), the jump in the co-state at the impulse instants is given by 

(3.46) 

Given that the objective of Player 1 is quadratic in state, we can guess the form of co-state 

to be linear in state so that 

À1 (t) = a1,n(t)x*(t) + /31,n(t), Vt E [tn, tn+i), n EN'. (3.47) 

We substitute (3.47) in (3.46) to obtain the following relation at the impulse instants: 
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where v; n denotes the equilibrium impulse level of Player 2 at the impulse instant rtn• On 
' ' 

comparing the coefficients, we obtain 

a1,n(T;:;) = a1,n(T;:;) +z1, Vi E In, n EN', 

/31,n(T;:;) = /31,n(T;:;) + a1,n(T;:;)gv;,n + d1, Vi E In, n EN'. 

Taking the derivative of (3.47) with respect to time, we obtain 

Using the derivatives of state and co-state from (3.44) and (3.45) in the above equation, 

weget 

Substitute (3.47) in the above equation to obtain 

- a(a1,n(t)x*(t) + /31,nCt)) - h1x*(t) - w1 

= a1,n(t)x*(t) + a1,n(t) (ax*(t) - :: (a1,n(t)x*(t) + /31,n(t))) + /31,n(t). 

On comparing the coefficients, we obtain 

where a1,nCtn+1)xCtn+1) + /31,n(tn+i) = av;(l';~.Xn+i). The value-to-go for Player 1 is given 

by 

Vi (t,,x,) = t (½ ([t• ( h1x( t)2 + 2w1x(t) + c.u(t)2
) dt) 

+ 1z1x(r;:;)2 + d1x(r;:;)) + V1 Ctn+I,Xn+I), 
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where r;~+I := tn+l• Next, we know that for ail x, 

1T;°.;1,n ( 1 2 ) 
T<+ 2ft1,n(t)x(t) + P1,n(t)x(t)i(t) + 41,n(t)x(t) + q1,n(t)i(t) + h,n(t) dt 

1,n 

1 - - -- -p (t)x(t)21Ti+l,n - q (t)x(t)ITi+l,n - r (t)ITi+l,n = 0 . E In EN' 
2 l,n T~+ l,n TH l,n TH 'l ' n . 

1,n 1,n 1,n 

Substituting i(t) = ax(t) + bu(t) in the above equation and adding it to (3.48) gives 

Substituting the equilibrium control u*(t) = _ _Q__(a1 n(t)x*(t) + /31 n(t)), we obtain 
Cu , , 

1 $- ,.,_ •-

+ f1,n(t) )dt - 2P1,n(t)x*(t)21::~·n - q1,n(t)x*(t)q~,n - r1,n(t)l::;·n 

+ }z1x*(rD;")2 + d1x*(r{;;)) + Vi*(tn+1,Xn+1). 

Since the equilibrium control maximizes the value-to-go for Player 1, the following rela­

tions hold for ail n E N': 

b2 b2 
Pl n(t) = -h1 - 2(a - -a1 n(t))p1 n(t) - -a1 n(t)2, Vt ~ rn, 

, Cu , , Cu , 

. b2 b2 b2 
41 n(t) = -w1 + -p1 n(t)/31 n(t) - q1 n(t)(a - -a1 n(t)) - -a1 n(t)/31,n(t), Vt ~ Tn, 

, Cu , , ' Cu , Cu , 

f1,n(t) = :: (q1,n(t)f31,n(t) - /31,n(t)2), Vt ~ rn, 
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P1 ,n(r,:1 ,n) = PI ,n(Ti:\n) + Zl, Yi E In, 

q 1 ,n ( Ti:! ,n) = P 1 ,n ( T;:\n) gv ;,n + q 1 ,n ( Ti:\n) + d J , Yi E In, 

( •- ) ( •+ ) 1 ( •+ ) 2 .2 ( •+ ) • y· In r1,n Ti+l,n = r1,n Ti+l,n + 2Pi ,n Ti+l ,n g V;,n + qi,n Ti+l ,n gvi,n• 1 E • 

where the last set of equations hold for n E N' because there are no impulses at the 

sampling instants (see Definition 3.1 ). Therefore, the equilibrium value-to-go is given by 

v;(tn,Xn) = 1Pi ,n(tn)X~ + q1,n(tn)Xn + r1 ,n(tn), Yn EN'. 

The Hamiltonian, and the impulse Hamiltonian of Player 2 are given by 

H2(x(t), u(t), À2(t)) := w2x(t) + À2(t)(ax(t) + bu(t)), 

Hi(v;,À2(rt)) := 1CvVT +À2(r;\)gv;, 

(3.49) 

where À2(t) is the co-state of Player 2. From (3.14g), we obtain the dynamics of the 

co-state of Player 2 at the non-impulse instants as follows: 

. oVi(tn+J,Xn+J) 
À2(t) = -aÀ2(t) - w2, Yt E (tn, fn+J), n EN, À2(tn+1) = ox · (3 .50) 

The co-state is equal to the gradient of the value fonction of Player 2 at the sampling 

instants because of our assumption that there are no impulses at the sampling instants. 

Using the necessary condition (3 .14b) and Assomption 3.3 on interior impulse levels, the 

first-order condition yields 

(3 .51) 

Since v; n are the equilibrium impulse levels, it follows from (3.14h) that the jump in the 

state is given by 

(3.52) 

and from (3. l 4j), we have that the co-state of Player 2 is continuous, that is 

(3.53) 
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Also, from the continuity of co-state at the impulse instants and (3.50), we obtain 

The value-to-go for Player 2 is given by 

V2 (t,,, x,,) = t ( 1,'.:;;, ... w2x(t)dt + ~c,, v),.,) + V2 (t.,, 1, x,,, 1). (3 .55) 

For ail x, we have 

l +ri-;_1.n (q2 ,n(t)x(t) + q2_11 (t)i(t) + f2,n(t)) dt - q2,11(t)x(t)J~;::-n 
1.n 

( )l ri-;_l.n O y· Ill N' - r2 ,11 t 
7

+ = , t E , n E . 
'·" 

Substituting i(t) = ax(t) + bu*(t) in the above equation and adding it to (3.55) yields 

k -

V2(tn,Xn) = f ( l+Ti+l.n (w2x(t) + q2,11 (t)x(t) + q2,n(t)ax(t) + q2,n(t)bu*(t) + f2 ,n(t)} dt 
1=l 1.11 

On substituting the equilibrium controls (T* , v* ), i E I 11 , n EN', we obtain the equilib-,,n t,n 

rium value-to-go V{(tn,Xn), so that 

Taking u*(t) as given, the equilibrium control of Player 2 maximizes the value-to-go for 

Player 2 for all x, so that the following relations hold: 

<i2,n(t) = -w2 - (a - b
2 

a1,n(t))q2,n(t), Yt ,t T 11 , 
Cu 

b2 
f2n(t) = q2nU)-/3111(t), Yt ,t rn, 

, ' Cu ' 
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1 2 2 

( •- ) ( •+ ) g 1 ( •+)2 ( •+ ) 1 ( •+) g V· In r2.n Ti+l,n = r2,n Ti+l ,n + -2-c ,iz Ti,n - q2,n Ti+l,n ,iz Ti,n -c' l E ' 
V V 

and the profit-to-go is given by 

(3 .56) 

Since co-state is equal to the gradient of value fonction at the sampling instants, we have 

Using (3.47) in (3.44), we obtain 

( 
b2 ) b2 

x*(t) = a - -ai,nCt) x*(t) - -/31.n(t) 
Cu Cu 

where, for n E N', 

ef>(t, ln)= ( a - :: Œ1,n(t)) </>(t, tn), Vt E (tn, T~,n), <f>(tn, tn) = 1, 

l
r:.~, b2 

ip(T~.~. tn) = - </>(h, tn)-/31 ,n(h)dh, 
ln Cu 

(3.57) 

(3.58) 

(3.59) 

ef>(t, <n) = (a - :: Œ1 ,n(t)) </>(t, <n), Vt E (Ttn• Ti:l,n), </>(T;:n• T;:n) = 1, Vi E In, 

ip(t, <n) = -1.1 

<fJ(h, Ttn) ::/31,n(h)dh, Vt E (<n• T;:i,n), Vi E In, 
,.n 

and Tk;,+I ,n := tn+l . Define 

From (3.58), we obtain 
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On comparing with (3.60b ), we obtain 

The equilibrium state evolves according to the following equation: 

x(t) =</J(t, Ti:n)( </J( r{;;, tn)Xn + gv;,nn.t>T;,n + cp( r{;;, tn)) 

+ cp(t, Ti:n), Vt E ( rtn• ri:1), i E In U {O}, n E N', (3.61) 

where T0* := O. Theo, from (3.43), the equilibrium control of Player 1 is given by ,n 

u*(t) = - }!_al n(t)x(t) + /31 n(t) 
Cu ' ' 

= -! (a1,n(t)(<fJ(t, Ti:;)(<fJ(rt;;, tn)Xn + gv;,nn.t>T;,n + cp(ri:;;, tn)) 

+cp(t,ri:;)} +/31,n(t) ), Vt E (rtn,ri:l,n),i E In U {0},n EN'. (3.62) 
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Chapter 4 

Feedback Nash equilibria in diff erential 

games with impulse control 

Abstract 

We study a class of deterministic finite-horizon two-player nonzero-sum differential games 

where both players are endowed with a different kind of control. We assume that Player 

1 uses piecewise-continuous controls and Player 2 uses impulse controls. For this class 

of games we seek to derive conditions to characterize the feedback Nash equilibrium 

strategies of the players. In particular, we show that the number of interventions done by 

Player 2 have an upper bound. We provide a verification theorem for characterizing the 

feedback Nash equilibrium strategies using the Hamilton-Jacobi-Bellman (HJB) equations 

and the quasi-variational inequalities (QVIs). Furthermore, we specialize the obtained 

results to a linear-quadratic differential game and provide a semi-analytic method for 

computing the feedback Nash equilibrium. 



4.1 Introduction 

Many real-world applications such as regulation and cyber-security can be modeled as a 

two-player finite-horizon nonzero-sum differential game, where one player influences the 

evolution of the state variable continuously with time whereas the other player introduces 

jumps in the state variable at certain strategic instants of time. An example of such a 

setting is a game between an environmental regulation agency that occasionally changes 

the cap on pollution emissions and a (representative) firm continuously making production 

decisions with emissions being a by-product. 

Our work is closely related to Bertola et al. (2016), Runggaldier and Yasuda (2018) and 

Aïd et al. (2020). In Bertola et al. (2016) and Runggaldier and Yasuda (2018), the authors 

study a finite-horizon impulse optimal control problem of a central bank that intervenes 

in the foreign exchange market and continuously controls its domestic interest rate to keep 

the exchange rate close to a target value. An extension of this work to a two-player game 

is given in Aïd et al. (2020) where both players only use impulse controls to keep the state 

close to their own target values. 

Our contribution is four-fold: First, we show under a few regularity assumptions that 

the number of impulses is bounded by a value that is derived from the problem data. 

Second, we provide a verification theorem for a general class of differential games with 

impulse controls that can be used to characterize the feedback Nash equilibrium (FNE). 

In particular, we show that the (value) fonctions that satisfy the Hamilton-Jacobi-Bell man 

equations for Player 1 coupled with a system of quasi-variational inequalities (QVIs) for 

Player 2 coïncide with the respective payoffs of the players in the FNE. 

Our third contribution lies in providing conditions for characterizing the FNE in a 

linear-quadratic differential game (LQDG). LQDGs have been widely studied in engineer­

ing, economics and management because they provide a tractable framework to mode( 

real-world problems involving non-constant returns to scale, interactions between the 

players' contrai variables as well as interactions between the state and control variables. 

LQDGs assume linear state dynamics, which could be seen as a locally reasonable ap-
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proximation of non-linear state dynamics. A comprehensive coverage of LQDGs can be 

found in, e.g., Ba~ar and Olsder (1999), Dockner et al. (2000), Engwerda (2005), Haurie 

et al. (2012), and Ba~ar et al. (2018). However, these references provide existence and 

uniqueness results for classical differential games where players only use ordinary con­

trols, and there are no fixed costs in the game. To the best of our knowledge, the literature 

on differential games does not provide any theoretical or computational means to identify 

the FNE in nonzero-sum LQDGs with impulse controls. 

The specialized linear-quadratic game that we study in this paper involves Player 

1 using piecewise-continuous controls to minimize the cost associated with the state 

deviating from her target value while Player 2 uses impulse controls to instantaneously 

change the state from one level to another so as to keep the state close to her own target. 

This model is a multi-agent adaptation of the impulse optimal control problem (single 

player) studied in Bertola et al. (2016). In particular, in our setting, Player 2's impulse 

control problem is a modified version of the impulse control problem analyzed in Bertola 

et al. (2016). Our regularity assumptions on the value fonction and impulse controls of 

Player 2 also follow from Bertola et al. (2016) (see also Runggaldier and Yasuda, 2018). 

The remainder of the paper is organized as follows. In Section 4.1.1, we give a review 

of the literature on differential games where at least one player uses piecewise-continuous 

controls and on impulse games where all players use impulse controls only. We introduce 

our model in Section 4.2. Further, in Section 4.3, we provide a verification theorem for 

the existence of FNE. In Section 4.4, we specialize our results to a linear-quadratic game 

and solve this game in Section 4.5 for two cases. Finally, concluding remarks are given in 

Section 4.6. 

4.1.1 Literature Review 

The characterization of optimal impulse control in one decision-maker setting has been the 

topic of a long series of contributions in diverse domains, e.g, finance (Jeanblanc-Picqué, 

1993; Korn, 1998; Cadenillas and Zapatero, 1999; Bertola et al., 2016; Runggaldier 
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and Yasuda, 2018), management (Reddy et al., 2016; Chahim, 2013; Chahim et al., 

2017; Erdlenbruch et al., 2013; Sulem, 1986; Bensoussan et al., 2005), epidemiology 

(Taynitskiy et al., 2019), and medicine (Leander et al., 2015; Hou and Wang, 2011). In 

contrast, the literature in differential games with impulse contrais has been very limited, 

and predominantly dealt with zera-sum games (see Yang, 1994; Chikrii et al., 2007; 

Zhang, 2011; Azimzadeh, 2019) . With the exception of Sadana et al. (2021, 2020a,b), the 

equilibrium solutions in nonzera-sum differential games with impulse contrais have been 

obtained under the assumption that the impulse timing is known a priori (see Chang et al., 

2013; Zhang, 2011). 

The Nash equilibrium varies with the adopted information structure in the game, see 

Ba§ar and Olsder (1999). In the open-loop information structure, the players' strategies 

depend only on time and the initial state (which is a known parameter) . In Sadana et al. 

(2021 ), the authors characterized the open-loop Nash equilibrium (OLNE) for a fairly 

general class of nonzera-sum differential games with impulse contrais and pravided an 

algorithm for computing the equilibrium in LQDGs. Sadana et al. (2020a) characterized 

the Nash equilibrium in differential games with impulse contrais under the sampled­

data information structure. Further, Sadana et al. (2020b) determined the FNE for a 

specialized case of linear-state differential games (LSDGs) with impulse contrais, and 

showed, contrary to the case with ordinary contrais, that FNE and OLNE do not coïncide. 

By definition, LSDGs do not account for non-linearities in the state variables or interactions 

between the state and contrai variables in the players' objective functionals, which limits 

their applications in practice. In this paper, we relax this restriction and consider a 

general class of differential games, and by the same token push further the literature in 

nonzera-sum differential games. 

Finally, we note that there is a class of impulse stochastic games where bath players 

only use impulse contrais (see Cossa, 2013; El Asri and Mazid, 2018; Aïd et al., 2020; 

Ferrari and Koch, 2019). In Aïd et al. (2020), the authors studied infini te-horizon nonzera­

sum game prablem under the feedback information structure and showed that a system 

of QVIs gives sufficient conditions for FNE if the value fonctions of bath players satisfy 
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certain regularity conditions. There are no piecewise-continuous controls in their model, 

which limit their applicability to many problems of interest in regulation and security. 

Basei et al. (2019) extended their two-player model to a N-player setting and analyzed the 

corresponding mean-field game. In Campi and De Santis (2020), agame problem between 

an impulse player and a stopper is solved using the QVIs. The consideration of impulse 

controls makes it difficult to analytically characterize Nash equilibria for a general class 

of differential games, which explains why it is tempting to focus on tractable games. For 

instance, Aïd et al. (2020) determined closed-form solutions for symmetric linear-state 

impulse stochastic games. 

4.2 Model 

We consider a deterministic finite-horizon two-player nonzero-sum differential game 

where the evolution of the state vector is influenced by two different types of control 

actions of the players. More specifically, the state vector evolves according to the follow­

ing differential equation due to the actions of Player 1 during the non-impulse instants: 

x(t) = f(x(t), u(t)), x(0-) = xo, fort* {r1, r2, ... , rd, (4.1) 

where u(t) E Qu c Rm1 , f : Rn x Rm1 -+ Rn. The action profiles of Player 1 for all 

t e [0, T] are given by u(.). At the impulse instants {r1, r2, • • • , rd, Player 2 gives 

impulses v; e Qv c Rm2 to cause jumps in the state 

(4.2) 

where x( rn = limtÎTi x(t), x( rt) = limtlT; x(t) and g : Rn X Rm2 -+ Rn. The control 

actions of Player 2 during the game are denoted by v = ((r1, v1), (r2, v2), ... , (rk, vk}, k) 

where k e N (the set of natural numbers). The number of impulses k is also a decision 

variable of Player 2. The control sets Qu and Qv are assumed to be bounded and convex 

open sets. 

157 



Player 1 and Player 2 minimize their respective objective functions that are given by 

T k 

11 (xo, u(.) , v) = 1 h1 (x(t), u(t))dt + ~ n.o9 ;<T b1 (x(ri-), vi) + s1 (x(T)), (4.3) 

T k 

h(xo, u(.), v) = 1 h2(x(t), u(t))dt + ~ n.o:;r;<T b2(x( Ti-), v;) + s2(x(T)), (4.4) 

where hi : ]Rn x lRm 1 - lR is the running cost of Player i, b; : ]Rn x lRm: - lR is the cost 

accrued by Player i at the time of impulse, and s;: ]Rn - lR is the terminal cost of Player i. 

Here, n.y denotes an indicator function of y, that is, ]_Y is equal to 1 if y holds; otherwise, 

it is equal to O. 

We make the following assumptions regarding the sate dynamics ( 4.1 )-( 4.2) and the 

objectives in (4.3)-(4.4): 

Assomption 4.1 (i) f(x, u) is bounded and Lipschitz continuous such that,for cf > 0, 

we have 

lf(x, u)I ~ Cf, V(x, u) E ]Rn X nu, 

lf(x, u) - J(y, u)I ~ C rlx - YI, Vx, y E ]Rn, u E nu. 

(ii) g(x, v) is bounded and Lipschitz continuous such that,for cg > 0, we have 

lg(x, v)I ~ Cg, V(x, v) E ]Rn X n1,, 

lg(x, v) - g(y, v)I ~ cg lx - YI Vx, y E ]Rn, VE nv. 

(iii) For i = {1, 2}, h;(x, u) and bi(x, v) are hounded such that,for ch; > 0 and cb; > 0, 

we have 

lhi(x, u)I ~ CIJ;, V(x, u) E ]Rn X nu, 

lbJx, v)I ~ Cb,, V(x, v) E ]Rn X nv. 

(v) The sa/vaxe values si(x) are hounded, such that,for Cs; > 0, ls;(x)I ~ Cs;, Vx E lRn . 
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Assumption 1.(i) and 1.(ii) ensure that there exists a unique state trajectory x( ·) for any 

measurable u( ·) and impulse sequence { ( Ti, vi) }f=i · Assumption 1.(iv) ensures that Player 

2 intervenes only a fini te number of times in the game due to the fixed cost associated with 

each impulse (see Bertola et al., 2016). Assumptions (iii) and (v) are used later to show 

that the value fonctions of Player 1 and Player 2 are bounded. 

4.2.1 Feedback Nash equilibrium 

We focus our attention on the derivation of Nash equilibrium under memoryless perfect 

state information structure. The strategy spaces of the players un der the memoryless perfect 

state information structure are defined as follows: Let~:= { (t,x) 1 t E [0, T],x e lRn} and 

let r denote the set of admissible impulse instants. A feedback (or Markovian) strategy 

selects the control action according to a feedback rule, i.e., a mapping from the state space 

into the action set. In our setting, this implies that Player 1 's controls at time t E [ 0, T] \ r 
are given by u(t) := y(t,x(t)) E nu, where y : [0, T]\T x JR.n -+ nu is a measurable 

mapping, and the set of all such mappings is denoted by r. Similarly, a strategy of Player 

2 is given by 8 = ( C, v) where C is a fixed open subset of~ and vis a continuous fonction 

from ~ to nv. The strategies of the players have the following interpretation: Player 1 

continuously controls the state trajectory using state feedback y(t,x) during the time the 

state lies in C. Once the state leaves set C, Player 2 intervenes and gives an impulse of 

size v such that the next state x + v lies in set C. 

Definition4.1 The sequence v = {(r1,v1),(r2,v2), ... ,(rk,vk),k}, is an admissible 

impulse control sequence of Player 2 if the number of impulses is finite and the impulse 

instants lie in the set r given by 

r = { Tj, i = 1, 2, ...• k I o :$; r1 < r2 ... < rk < r, k < oc}. 

Tn = inf{t > Tn-I : (t,x) <I. C}, To := O. 
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Using the strategies of the players, we can rewrite the objective fonctions of Player 1 and 

Player 2 at any (t,x) EL as follows: 

T k 

11 (x, Y[r ,T], O[r,r]) = f hi (x(s), y(s,x(s)))ds + _L R,~rj <T b1 (x(r;), v1) 
1 j~ r 

+ SJ (x(T)), (4.5) 

T k 

h(x, Y[r ,T], O[r,T]) = f h2(x(s), y(s,x(s)))ds + _L R,~ri <T b2(x(r1-:), v1) 

1 j=i 

(4.6) 

where Y[r,T] E Ï[,,TJ and O[r,T] E ~[,,T] are restrictions of y and 8, respectively, to the 

interval [t, T], and Ï[r ,T] and ~[, ,T] denote the strategy sets for Player 1 and Player 2, 

respectively, in the interval [t, T]. The state dynamics are given by 

i(t) = /(x(t), y(t,x(t))), t t {Ti, T;+1, ... , rd,x(t) = x, 

x(rj)-x(r;) =g(x(r1),v1), j = {i,i+ l,··· ,k} . 

The feedback Nash equilibrium is defined as follows: 

(4.7) 

(4.8) 

Definition 4.2 For the d(fferential game described by (4.5-4.8) with memoryless perjèct 

state information pattern, the strategy profile (y*, <5*) E ï x ~ constitutes afeedback Nash 

equilibrium solution ~f there exists value functionals Vi(., .) defined on [O, T] x JR.11 and 

satL~fying thefollowing relations.fàr each player l E { 1, 2}: 

Vi (T,x) = s1 (x), 

V1 (t, x) 

!
T k 

= h1 (x*(s), y*(s,x*(s)))ds + _L R,9j <T b1 (x*( rr), vj) + SJ (x*(T)) 
1 J=i 

Vy E Ï[r,T], XE lR.11
, 
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T k 

= J h2(x*(s), y*(s,x*(s)))ds + L 11~rj<T b2(x*(rF), vj) + s2(x*(T)) 
1 j=i 

T k ::; J h2(x2(s), y*(s,x2(s)))ds + L 11~ri<T b2(x2(r1), Vj) + s2(x2(T)) (4.12) 
1 j=i 

Vô E ~[1,T), XE JR.n, 

where on the interval [t, T], 

i1(s) = f(x1(s),y(s,x1(s))), x1(t) =x,fors * {rt,r;:1,··· ,r;}, 

x1(rt) = x1 (rF) + g(x1 (rF), vj),for j = {i, i + 1, · · · , k}, 

i2(s) = f (x2(s), y*(s, x2(s))), x2(t) = x, fors * {T;, T;+J, · · · , rd, 

x2(rj) =x2(r1) +g(x2(r1),vj),for j = {i,i+ 1,··· ,k}, 

x*(s) = f(x*(s), y*(s,x*(s))), x(t) = x,Jor s * {r;*, T;:1, · · · , r;}, 

x*(rt) = x(rF) + g(x(rF), vj),for j = {i,i + 1, · • •, k}. 

Feedback Nash equilibria satisfy a useful property referred to as strong time-consistency, 

which is described as follows. Let D(E, [O, T]) denote the two-player differential game 

with impulse controls where E is the product strategy space and [O T] is the time horizon 

of the game such that 

( y, ô)[s,t ] E E[s,1], and 'Y[s,t] E r[s,1) and Ô[s,t] E ~[s,1) 

denote the truncations of y E r and 8 E ~ to the interval [ s, t] c [O, T], and ( y, 8)[s,t] 

is a shorthand notation for (Y[s,t], ô[s,r]). We denote the truncated game corresponding to 

D(E, [O, T]) as follows: 

D~::~a2) = D( { ( )', ô) E El()', ô)[O,s) = (a1
, a 2

)[0,s), ( y, ô)(r,T] = (a 1
, a 2

)(r,T], 

(y,ô)[s,t] E (r,~)[s,1J}; [O,T]), 

where the players' policies are fixed in the interval [O, s) and (t, T] as af o,s)' afr,T] for 

i={l,2}. 
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Definition 4.3 (Strongly time-consistent equilibrium) A pair of policies (y*, 8*) E (r, ~) 

that solve the dijferential game D('2, [O, T]) is strongly time consistent if its truncation 

to the interval [s, T], ( y[s,T]' 8[s,T])' solves the subgame D~:~~2 ) .fàr every (a 1
, a 2

)[o,s) E 

'2[0,s) andfor ails E [O, T] (see Ba~ar and Olsder, 1999). 

4.3 Verification theorem 

The differential game (4.5)-(4.8) comprises of a non-standard optimal contrai problem 

of Player 1 due to intervention costs and state jumps, and an impulse optimal contrai 

problem of Player 2. To characterize the feedback Nash equilibrium strategies, we make 

the following assumption: 

Assomption 4.2 There exists a unique, finite, measurable function v : [O, T] x IRn - nv 
(see Aid et al., 2020; Bertola et al., 2016) such that 

v(t, x) = arg min {V2 (x + g(x, 17)) + b2(x, 17)}. 
,,en,. 

(4.13) 

(4.13) gives the optimal impulse level at any (t,x) since it minimizes the sum of immediate 

cost (b2(x, 17)) incurred by giving an impulse of size 17 and the cost-to-go by playing 

optimally afterwards. 

Let Vi be the Nash equilibrium payoff of Player 1. Suppose the equilibrium strategy 

of Player 2 is 8* = (C, v) for which the equilibrium timing and Ievel of impulses are given 

by the sequence { ( T,*, v;), i = 1, 2, • • • , k}. For Player 1, the sufficient conditions for the 

existence of Nash equilibrium are given by 

( ( )
r ) oVi(t,x) . oVi 

-
0 

= mm h 1 (x(t), u(t)) + - f(x(t), u(t)) , (t,x) E C, 
t uen,, ox 

Vi (T,x(T)) = s 1 (x(T)), V(T,x) E :E, 
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A formal proof of sufficiency of the above conditions is given in Theorem 4.1 which 

can be interpreted as follows. An admissible impulse cannot occur at the terminal time 

hence condition ( 4.14b) holds. In the continuation region C, Player 2 does not give 

any impulse and therefore, the value function of Player 1 satisfies the Hamilton-Jacobi­

Bellman equation ( 4.14a). When an impulse occurs in the intervention region, that is, 

(rt-,x(r;*-) E :E\C, then Player l's equilibrium cost-to-go is the sum of the additional 

cost, b1 (x( rt-), v;), incurred due to the intervention by Player 2 and the equilibrium 

cost-to-go by playing optimally afterwards. 

The optimal cost-to-go by giving an optimal impulse of size v• in (4.13) at (t,x) can 

be written using the intervention operator 'R as follows: 

'RV2(t,x) = V2(x + g(x, v*)) + b2(x, v*). (4.15) 

For a given equilibrium strategy y* of Player 1, the value function V2(t,x) : :E --+ lR 

satisfies the (weak) QVIs if 

8V2(t,x) • 8V2(t,x) n 
at +<fl2(x,y (t,x), ax ) ~ 0, Vt E [0,T], a.a. XE lR' 

V(t,x) E :E, the following two relations hold, 

V2(t,x) $ 'RV2(t,x), 

(
8V2(t,x) • 8V2(t,x) ) 

(V2(t,x) - 'RV2(t,x)) Bt + <fl2(x, y (t,x), ax ) = 0, 

and V2(T,x) = s2(x(T)), V(T,x) E :E, 

where 

• 8V2(t,x) • 8V2(t,x) • 
( )

T 

<fl2(x, y (t,x), ax ) = h2(x, y (t,x)) + dx f(x, y (t,x)). 

(4.16a) 

(4.16b) 

(4.16c) 

(4.16d) 

(4.16e) 

Condition (4.16b) ensures that the value fonction is at most equal to the optimal 

cost-to-go by giving an impulse. Clearly, Player 2 does not give an impulse when the 

value fonction is strictly less than the cost-to-go by giving an impulse. Hence, when 

V2(t,x) = 'RV2(t,x), Player 2 gives an impulse. At any (t,x), condition (4.16c) ensures 

either player 2 waits so that the HJB like equation ( 4.16a) for Player 2 holds with equality 
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or Player 2 gives an impulse. This allows us to define the continuation and intervention 

sets for Player 2 as follows: 

Definition 4.4 The continuation and intervention sets are ,?iven hy 

{ 
8V2(t,x) * . 8V2(t,x) } 

C = (t,x) E LIV2(t,x) < '.RV2(t, x), --- + 1f2(x, y (t,x), 
0 

) = Ü , 
Ot X 

(4.17) 

{ 
. ôV2(t,x) • . 8V2(t,x) } 

I = (t,x) E LIV2(t,x) = '.RV2(t,x), ôt +1f2(x,y (t,x), fJx ) ~ 0 . 

( 4. I 8) 

Next, we show that there can only be a fini te number of impulses during the game. 

Proposition 4.1 ùt Assumption 4.1 hold. Then the value functiom of Ployer 1 and Player 

2 are hounded. The equilihrium numher of impulses K E N ü uniformly bounded by 

(4.19) 

where µ = infz.€0,. h2(x, z) > 0, \lx E !Rn, and f yl denntes the smallest integer that is 

greater than or equal to y. 

Proof. See Appendix 4.7 .1. ■ 

The sufficient conditions to characterize the FNE of the differential game described in 

(4.5)-(4.8) are given in the next theorem. 

Theorem 4.1 (Verification Theorem) ùt Vi : L - IR, i = 1, 2 he two Junctions. Let 

Assumptions 4.1 and 4.2 hold. Suppose V1 satisfies (4.14a)-(4.14c) and V2 satisfies the 

QV/s (4.16a-4.16d), and there exists afunction y*(t,x) = u(t) such that u(t) minimizes 

the expression on the right-hand side of (4.14a). Let there exist afunction o• = (C, v) 

sw:h that equilihrium impulses occur at { T~, r2, · · · , r;} and the correspondinf!, impulse 

levels { v;', v2, · · · , v:;;} minimize the expression on the rif!,ht-hand side of (4.13). Then, y* 

and o* are thefeedhack Nash equilihrium strate}?ies of Ployer J and Ployer 2, re.\pectively. 
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Proof. Let y* be the equilibrium strategy of Player 1. In the continuation region C, we 

use the Taylor series expansion of V2 ( t, x) to obtain 

V2(T,x(T)) - V2(t,x) 

-t (''" ( âV2(s~;2(s)) + ( âV2(~;2(s)) r f(x,(s}, y•(s,x,(s)))) ds 

k 

+ I ].,:s;rj<r(V2(Tj,x2(rj)) - V2(Tj,x2(r1))). 
j=i 

The value fonction satisfies (4.16a) for all (t,x) E :r, so we have 

av2 (av2 )r at(s,x2(s)) + ax (s,x2(s)) J(x2(s), y(s,x2(s))) 

~ -h2 (x2(s), y* (s, x2(s)). 

From ( 4.16b ), we obtain 

V2(Tj,X2(rj)) - V2(Tj,X2(Tj)) 

(4.20) 

(4.21) 

= ~V2(Tj ,X2(r1)) - V2(Tj,X2(r1)) - b2(x2(,1), Vj) ~ -b2(x2(,1), Vj). (4.22) 

Substitute (4.21) and (4.22) in (4.20) to obtain 

= h(x,y*,6). 

The above relation holds with equality for equilibrium strategy 6* of Player 2 when the 

value fonction V2 satisfies the QVIs (4.16a-4.16d). 

Next, we verify the sufficient conditions for Player 1 taking the equilibrium strategy of 

Player 2 as 6*. Using the Taylor series expansion of V1 between the impulse instants 

( ,t, ri: 1), i = { 1, 2, .. · , k}, 

Vi(T,x(T))-Vi(t,x) 
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= t L~';,, ( a;,1 
(s,x1 (s)) + ( :

1 
(s,x1(s)) r f(x1 (s),u(s))) ds 

k 

+ I ]_l~Tj<T(Vi (r7,x1 (r7)) - Vi (rr,x1 (rj-))) 
j =i 

k 

+ I R,~rj <T(V1(rj,x1(r7))-V1(rj,x1(rj-))). 
j=i 

where the last inequality follows from (4.14a). Fram the terminal condition on Vi and 

additional cost incurred due to the impulse contrai of Player 2, we obtain 

= 11 (x(t), y, c5*). 

The above inequality becomes an equality if the value fonction of Player 1 satisfies (4.14a)­

(4.14c) for the equilibrium strategy y*. ■ 

QVIs have been solved in the literature under some restrictive assumptions on the value 

fonctions even for games with linear objective fonctions (see Aïd et al., 2020; Campi and 

De Santis, 2020). An additional difficulty in our case is that the QVIs are coupled with 

the equilibrium conditions for Player 1 who has piecewise-continuous contrais. In the 

next section, we specialize our results to linear-quadratic differential games and pravide 

semi-analytical solutions. 

4.4 A linear-quadratic diff erential game with targets 

In this section, we consider a one-dimensional two-player linear-quadratic differential game 

where Player 1 uses piecewise-continuous contrais and Player 2 uses impulse contrais. 

Player 1 and Player 2 aim to minimize the costs resulting from the deviation of the state 

away from their target state values p 1 and p 2, respectively. In the following formulation 
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of the linear-quadratic differential game with impulse controls (iLQDG), the structure of 

Player 2's problem (objective fonctions and state dynamics) is an adpatation of the impulse 

optimal control problem analyzed in Bertola et al. (2016). 

where 

i(t) = ax(t) + bu(t), x(O-) = xo, Vt * {r1, r2, ... , rd, 

x(r/) = x(rn + Vj, Vi = {l, 2, ... .. , k}, 

C+CVj ifv; > 0 

h(vi) := min(C, D) ifvi = 0 

D-dv; 

and w1, w11, r1, z1, si, w2, s2, C, D, c, d are positive constants. 

(4.23a) 

(4.23c) 

(4.23d) 

(4.24) 

Feedback Nash equilibrium computation involves solving the control problem of each 

player for a given equilibrium strategy of the other player. 

Assomption 4.3 Player 2 gives an impulse if ( t, x) does not lie in the continuation set C 

given by 

C = {(t,x) E ~ l l1 (t) < x < l2(t)}. (4.25) 

Player 2 shifts the state to a(t) if x ~ l1 (t) and to f3(t) if x ~ l2(t) so that the following 

relation holds: 

l1 (t) < a(t) < /3(t) < l2(t). 
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The above assumption has also been made in the impulse optimal control literature when 

a decision-maker uses threshold-type impulse contrais due to the fixed costs associated 

with the impulse contrais (see Bertola et al., 2016; Runggaldier and Yasuda, 2018). 

4.4.1 Optimal control problem of Player 1 

Let the equilibrium strategy of Player 2 be given by <5* such that Player 2 gives an impulse 

if the state leaves the continuation set C. Tuen the equilibrium strategy of Player 1 can 

be determined by finding the value function that satisfies (4. 14a)-(4.14c) for the iLQDG 

given in (4.23). Since the game is linear-quadratic, we make the following informed guess 

on the form of the value function of Player l (see Bertola et al., 2016): 

(4.27) 

From ( 4.14a), we have 

--- = mm -w1x + -r1u(t) + - (ax + bu(t)) . 8V1(t,x) . (l 2 1 2 (8V1) ) 
Of uEQ.u 2 2 OX 

( 4.28) 

Differentiating the right-hand side of the above equation and equating the result to zero 

yields the equilibrium strategy of Player l 

Substituting (4.29) in the state dynamics (4.23c), we obtain 

b2 
i(t) = ax(t) + bu*(t) = ax(t) - - (p, (t)x(t) + q, (t)) 

r1 

= (a - b
2 

Pl (r)) x(t) - b
2 

q1 (t) 
r 1 r1 

(4.29) 

( 4.30) 

where ax(t) = a - b" p 1 (t) and bx = _b
2

• On substituting (4.29) and (4.27) in (4.28), we 
r1 r1 

obtain 
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+ (P1 (t)x + q1 (t)) (ax(t)x + hxql (t)) 

⇒ -p1 (t)x2 
- 241 (t)x - 21i1 (t) = w1x2 + WJPî + 2x(w11 - w1p1) - 2w11p1 

- hx (P1 (t)2x2 
- q1 (t)2) + 2ax(t) (p1 (t)x + q1 (t))x. 

Upon rearranging a few terms in the above equation, we get 

(P1 (t) + WJ + hxPI (t)2 + 2p1 (t)a) x2 + W1Pî + 21i1 (t) + hxql (t)2 
- 2w11P1 

+ (241 (t) + 2ax(t)q1 (t) - 2w1p1 + 2w11) x = O. 

Since the above equation must hold for ail x except at (t,x) ~ C, p 1(·), q1(·), and n1(·) 

evolve as follows: 

Pl (t) = -w1 - hxPI (t)2 + 2p1 (t)a, (t,x) ~ C, PI (T) = s1, 

41 (t) = -ax(t)q1 (t) + W1P1 - W11, (t,x) ~ C, q1 (T) = -s1p1, 
2 l 2 W1P1 l 2 li1 (t) = -2bxql (t) - -

2
- + w11p1, (t,x) ~ C, n1 (T) = 2s1p1. 

(4.31a) 

(4.31b) 

(4.31c) 

When an impulse occurs, that is, ( ,t, x( ,t)) E I:\C, the following relation holds for the 

value function of Player 1: 

1 
2P1 (,t-)x( ,t-)2 + q1 (,;*-)x(,;*-) + n1 (,;*-) 

= ~PI (,t)(x(,t-) + v;)2 + q1 (,t)(x(,;*-) + v;) + n1 (,t) 

+ z1(x(,t)-x(,t-n. 

The equilibrium strategy of Player 2 is to bring the state to a(t) if x(t) ::5: t 1 (t) and to f3(t) 

if x(t) ~ l2(t), that is, x(,;*-) + v; = a( ,t-) if x(t) ::5: l1 (t) and x( ,t-) + v; = /3(,t-) if 

x(t) ~ l2(t). Therefore, we have 

1 •- •- 2 •- •- •-2 P 1 ( T; )x(r;) +q1(•; )x(T; )+n1(,;) 

= ~Pl (,t)a(,;*-)2 + (z1 + q1 (,t))a(,;*-) + n1 (,t) - z1x(,t-), x :5: l1 (t), 

1 •- •- 2 •- •- •-2 P 1 ( T; )x(r; ) +q1(•; )x(r; ) +n1(•; ) 
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Since the above two equations hold for ail x ~ e, (t) and x ~ f2 (t), respectively, we have 

q,(rt-) = -z,, 

n1(r;- ) = n1(rt) + tp,(r;+Hnx:,;r1(ç)a(r;-)2 + nx2t1(rn fi(rt-)2] 

+ (z1 +q1(rt)Hlixst1(r;-Ja(r;- ) + lix;;,:t1(Ç)fi(r;-)]. 

The solution of (4.31 a) is given by the following equation: (see Appendix 4.7.2) 

where 

{ 

( 
20 1) e-OT 

C 
. _ 0- 2bxsi - 2a -,, -
' (--1L - 1) e- or; 

0- 2a 

Using the value of p 1 (t) given in (4.32), we obtain 

if i = k 

if i < k 

Substituting ax(t) and Pl (t) in ( 4.29) yields the equilibrium strategy of Player l 

4.4.2 Impulse control problem of Player 2 

(4.33) 

(4.34) 

(4.35) 

Player 2 solves her impulse control problem for a given equilibrium strategy y• of Player 

1. 

Similar to Bertola et al. (2016), the impulse controls are assumed to be threshold 

policies which together with the cost structure of Player 2 lead to the following conjecture 
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on the form of the value fonction of Player 2: 

<l>2(t, a(t)) + C + c(a(t) - x) x $ l1 (t) 

V2(t,x) = <l>z(t,x) x E (l1 (t), l2(t)) · (4.36) 

<l>2(t,/3(t)) + D + d(x - f3(t)) x ~ t2(t) 

The value fonction V2 coincides with continuous and continuously differentiable fonc­

tion <l>2 in the impulse free region C. In the intervention region, the value function is 

equal to the sum of the intervention cost incurred by the player to shift the state to the 

continuation region and the cost-to-go (that is equal to <l>2(t, a(t) or <l>2(t,/3(t) depending 

on the state value at the impulse time) by playing optimally afterwards. When the state 

lies in the continuation region, that is, x E (l1 (t), lz(t)), the value fonction of Player 2 

satisfies (4.16a) with equality: 

8<l>z ( t, X) ( 8<l>z ) • 1 2 
81 

+ ax (ax + by (t,x)) + 
2

w2(x - pz) = O. 

We conjecture that <1>2 is quadratic in state in the impulse free region because the cost 

fonctions are quadratic in state, and takes the following form: 

1 2 
<l>2(t,x) = 

2
pz(t)x + qz(t)x + n2(t). (4.37) 

Substituting the partial derivatives of <I>2(t, x) and the equilibrium control of Player 1 from 

( 4.29) in the above equation yields 

1 

2pz(t)x2 + 42(t)x + n2(t) + (pz(t)x + qz(t)) ax(t)x + hxq1 (t) (pz(t)x + qz(t)) 

1 2 1 2 
+ 2W2X + 2W2P2 - W2XP2 = O. 

On comparing the coefficients, we obtain, 

pz(t) = -w2 - 2pz(t)ax(t), pz(T) = si, 

42(t) = -ax(t)qz(t) - hxP2(t)q1 (t) + wzpz, qz(T) = -szpz , 

. 1 2 1 2 
nz(t) = -bxq1 (t)qz(t) -

2
wzp2, nz(T) = 

2
s2P2· 
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Remark 4.1 In the impulse control problem studied in Bertola et al. (20I6), p2(-) is 

assumed to be continuously differentiable in t. In our game problem, ax(·) depends on 

the discontinuous function p 1 ( ·) that has jumps due to the interventions by Player 2. 

Similarly, q2(·) and n2(-) are non-differentiablefunctions 

For the iLQDG, we consider the problem parameters for which the following assumption 

holds: 

Assomption 4.4 Fort E [O, T], p2(t) > 0. 

The above assumption is satisfied when w 1 = s1 = 0 in which case ax(t) = a and therefore, 

</J2 is convex in x for (t, x) E C. 

Intervention set and continuation set 

In the intervention region ((t,x) E l:\C), (4.16b) holds with equality, that is, 

(4.39) 

For the problem parameters assumed in this section, V2 is convex in x (see Assumption 

4.4) and continuously differentiable for x E C. Since a(t),f3(t) E C, we canuse the 

first-order conditions to obtain 

8V2(t, a(t)) 8g(17) = O < f () 
8x + 817 ' X - 1 t ' 

8V2(t,/3(t)) Bg(T]) = O > t () 
8x + 817 ' X - 2 t . 

Using the quadratic form of the value fonction in (4.37) for x E C, we obtain 

8V2 
Bx (t, a(t)) = P2(t)a(t) + q2(t) = -c, 

8V2 
Bx (t,f3(t)) = p2(t)/3(t) + q2(t) = d. 

(4.40) 

(4.41) 

(4.42) 

Therefore, the following fonctions a and f3 give the state values after an impulse occurs at 

equilibrium: 

q2(t) + C 
a(t) = - ( ) , Vt E [O, T], 

P2 t 
(4.43a) 
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d - q2(t) 
/J(t) = () , Vt E [0,T]. 

P2 t 
(4.43b) 

The fonctions a and /J are continuous in time with possible kinks at the impulse instants. 

Since (4.16b) holds with equality in the intervention region, we obtain 

{

V2(t, a(t)) + C + c(a(t) -x) x ~ f 1 (t) 
V2(t,x) = . 

V2(t,/3(t)) + D + d(x - /J(t)) x ~ f2(t) 
(4.44) 

Also, a(t) and/J(t) lie in the continuation region C which implies Vi(t, a(t)) = <I>2(t, a(t)) 

and V2(t,/J(t)) = <l>2(t,/3(t)). For x = f 1 (t) and x = f2(t), we substitute (4.37) in the 

above equations and simplify to obtain 

1 1 

2p2(t)f1 (t) 2 + q2(t)f1 (t) = 2p2(t)a(t)2 + q2(t)a(t) + C + c(a(t) - fi (t)), (4.45a) 

1 1 

2p2(t)f2(t)2 + q2(t)f2(t) = 2p2(t)/3(t)2 + q2(t)/3(t) + D + d(f2(t) - /J(t)). (4.45b) 

To characterize the left boundary of the continuation region, we substitute a(t) in (4.45a) 

to obtain 

Since C > 0, p2 (t) > 0, and f1 (t) < a(t), the left boundary of the continuation region is 

given by 

(4.46a) 

On substituting /J(t) in (4.45b), we obtain the right boundary of the continuation region 
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From D > 0, P2(t) > 0 and f2(t) > j3(t), we obtain 

(4.46b) 

Remark 4.2 ln Bertola et al. (2016), the authors analytically characterized a(t), j3(t), 

f1 (t), f2 (t).for their impulse optimal control problem. However, in iLQDG, thesefunctions 

are coupled with Player l's problem. As a result, we obtain a semi-analytic characteriza­

tion of the se variables in terms of the prohlem parameters. 

By construction, Vi (t, x) satisfies the sufficient conditions in ( 4.14a)-( 4.14c) and therefore, 

Vi is a value fonction of Player l. In the next theorem, we gi ve conditions for which V2 ( t, x) 

in (4.36) satis fies the QVIs (4. l 6a-4. l 6d) to conclude that V1 (t, x) and V2 (t, x) are indeed 

the value functions of the players. 

Theorem 4.2 V2 (t, x)in (4.36) is the value .function of Player 2 tf f1 (t) ~ xi 1 (t) and 

f2(t) ~ x22(t) for each t E [O, T] where t 1 (t) and f2(t) are given in (4.46a) and (4.46b), 

respective/y, 

(4.47a) 

(4.47b) 

(4.47c) 

(4.47d) 

andx11(t)andx22(t)arewel/-definedwith0a(t) ~ Oand013( t) ~ Oforallt E [O,T]. 

Proof. From (4.42), we have av~~,;(r)) = -c and av~~f(I)) = d. Using the convexity of 

V2 in x for x E C (Assumption 4.4), we obtain 

8V2(t,x) 
-c < 8x < d, x E (a(t),j3(t)). 
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Therefore, RV2(t,x) = min(C, D) for x E (a(t),/3(t)). 

When x E (t1(t),a(t)), we have av~~.x) < -c and for x E (/3(t),t2(t)), we obtain 

av1~.x) > d from the convexity of Vi(t,x) in x E (t1 (t), l2(t). Therefore, the operator R 

satisfies the following system 

<l>2(t, a(t)) + C + c(a(t) - x) x ~ a(t) 

RV2(t,x) = <l>2(t,x) + min(C, D) XE (a(t),/3(t)) · (4.48) 

<l>2(t,/3(t)) + D + d(x - /3(t)) x "?. /3(t) 

Clearly, V2-RVi < 0 in the continuation region and V2(t,x) = RV2(t,x) in the intervention 

region. 

Next, we derive the conditions under which the value fonction of Player 2 satis fies ( 4.16a). 

For x < l1 (t), we have 

Vi(t,x) = <l>2(t, a(t)) + C + c(a(t) -x). (4.49) 

When x < l1 (t), we obtain 

BV2(t,x) n-1 ( *( ) BVi(t,x)) 
Bt + n2 X, 'Y t,X , Bx 

BV2(t,x) 1 2 BV2(t,x) • 
= Bt + 2w2(x - pi) + Bt (ax + 1e1( t )<x<li(t) by (t,x)) 

B<l>2(t, a(t)) (B<l>2(t, a(t)) ) da(t) 1 2 1 2 = ---- + ---- + c -- - ca + -w2x + -w2p - w2xp2. 
Bt ax dt 2 2 2 

Substituting ( 4.42) in the above equation, we get the roots of the above equation as follows: 

(ca + w2p2) ± ✓0a(t) 
Xll,X12 = -------, 

w2 
(4.50) 

where Xll < x 12, and 0a(t) is given by equation (4.47c). Therefore, (4.16a) holds if 

l1 (t) ~ xn (t) and 0a(t) "?. 0 for ail t E [O, T]. 

For x > l2(t), we obtain 

. BV2(t,x) n-1 ( *( ) BV2(t,x)) 
Bt + n2 X, 'Y t, X , Bx 

BV2(t,x) 1 2 BV2(t,x) • 
= Bt + 2w2(x - pi) + Bt (ax + 1e1(t)<x<t2(r)b'Y (t,x)) 
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On substituting ( 4.42) in the above equation, we obtain the roots of the above equation as 

follows: 

(4.51) 

where x21 (t) < x22(t) and 0f3(t) is given by (4.47d). Therefore, (4.16a) holds if f2(t) ~ 

x22(t). ■ 

Since analytical solutions cannot be obtained for iLQDG, we need numerical methods 

to characterize the equilibrium. 

4.5 Numerical examples 

To illustrate our results, we consider two iLQDGs with the problem parameters given 

in Table 4.1. To determine the impulse instants, we formulate a constrained non-linear 

optimization problem (see Sadana et al., 2021) and numerically compute the solution 

using the fmincon solver in MATLAB. 

T a b WJ WJJ SJ r1 ZJ w2 s2 C C D d Pl P2 xo 

1 0.15 -0.18 1 0 1 0.6 0 5 1 8 1 10 1 8 4 6 
1 0.1 -0.5 0 2 0 2 3 0.2 3 8 0.1 10 8 10 6 14 

Table 4.1 - Parameters for numerical example 

Figure 4.1 corresponds to the iLQDG with problem parameters in the first row of 

Table 4.1. In this case, an equilibrium strategy of Player 2 is to give an impulse only at 

the initial time and shift the state from the initial value of 6, which is in the intervention 

region, to /3(0) in the continuation region. Clearly, the state lies within the boundaries of 

the continuation region from t = o+ to t = T and the QVIs hold. Hence, it is not optimal 

for Player 2 to give additional impulses during the game. The best response of Player 2 

to an equilibrium strategy of Player 1 is to give at least one impulse because the state x(t) 
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remains in the intervention region if Player 2 does not given any impulse as can be seen in 

Figure 4.1. 

JO 

5 L ---------î 

0 

··· ·· · a(t) -- --· ·· P(t) ······ li (t) 
- 5 ··· ·· l2(t)-x•(t)- -- -- x(t) 

0 0.2 0.4 0.6 0.8 

Figure 4.1 - Evolution of intervention region and state variable for parameters in the first row of 
Table 4.1. x*(t) denotes the equilibrium state trajectory and x(t) denotes the state evolution when 
no impulse occurs. 

Next, we consider the problem parameters in the second row of Table 4.1 where Player 

l 's payoff varies linearly with state. As shown in Figure 4.2, the equilibrium strategy 

of Player 2 is to intervene twice during the game by giving impulses at T~ = 0 and at 

Ti = 0.88. ln this case, we can show that the QVIs hold. The functions a,/3, l1 and l 2 have 

kinks at the impulse instant Ti = 0.88 due to jumps in the equilibrium control of Player 1. 

15 
------- a (t) ....... P(t) -- ··· li (t ) 
····- l2(t)-x•(t) 

JO L--... -... -.... -. _- ----
·······• ... 

5 

0 0.2 0.4 0.6 0.8 

Figure 4.2 - Evolution of intervention region and state variable for parameters in the second row 
of Table 4.1 
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4.6 Conclusions 

In this paper, we have considered a two-player finite-horizon nonzera-sum differential 

game where Player 1 uses piecewise-continuous contrais and Player 2 uses impulse con­

trais. We determined an upper bound on the number of impulses and pravided sufficient 

conditions to characterize the feedback Nash equilibrium for this general class of differen­

tial games with impulse contrais. The sufficient conditions are given as a cou pied system 

of Hamilton-Jacobi-Bellman equations with jumps and quasi-variational inequalities. To 

the best of our knowledge, this is the first characterization of feedback Nash equilibrium 

in differential games with impulse contrais where at least one player uses piecewise­

continuous contrais. This also contrasts our work with earlier papers on impulse games 

where equilibrium solutions were derived for prablems where both players use impulse 

contrais only. Furthermore, we extended a well-studied linear-quadratic impulse contrai 

prablem to a game setting with both players using their contrais to minimize the cost 

associated with the state deviating from their target values. 

4.7 Appendix 

4.7.1 Proof of Proposition 4.1 

A feasible strategy of Player 2 is not to give any impulse in [0, T] so that 

k 

l: li1:5rj:5T b2(x(rj), vi) = 0, 
j=i 

and it follows from the boundedness of h2 and s2 in Assumption 4.1 that 

Next, for any E > 0, take a strategy ô[,,T] E ~[, ,TJ so that 
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This proves that the value fonction is bounded such that 

(4.53) 

For any E > 0, consider a E optimal strategy vE with N ( vE) impulses. From the 

boundedness of h2, we obtain 

Using the above relation and (4.53), we obtain 

Since µ > 0, we can rewrite the above inequality as follows: 

E 2 ( C h2 ( T - t) + C so ) + E 
N(v ) < - . 

µ 

For a feasible strategy of Player 1 given by y(t,x) = 0 for all (t,x) E :rand the upper 

bound K on the number of impulses, we have 

T k 

Vi (t, x) :$1 h1 (x(s), 0)ds + L ].,:s:rj <T b1 (x( Ti), v j) + s1 (x(T)) 
t j=i 

k 

:$ Ch 1 (T - t) + L ].,:s:rj<T b1 (x(Ti), v j) + s1 (x(T)) 
j=i 

where the last inequality follows from the boundedness of b 1 and s1 in Assumption 4.1. 

For any E > 0, we take a strategy Y[r,rJ e r[,,rJ so that 

This proves that the value fonction of Player 1 is bounded. 

4.7.2 . Analytical solution of ODE 

To solve the differential equation Pl (t) + bx(p 1 (t))2 + 2ap1 (t) + w 1 = 0 fort E ( Ti, Ti+I), 

i E {0, 1, · · · , k }, we substitute p1 (t) = b~t(t) to obtain a second-orderordinary differential 
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equation ji(t) + 2aµ(t) + bxw 1µ(t) = O. When 0 = 2✓a2 - wibx, the solution of this 

equation is 

where Fi and F2 are constants. So, p 1 ( t) is gi ven by 

µ(t) 
Pl (t) = bxµ(t) 

-aµ(t) + ;e-a1(F1e½e1 - F2e-½R1) 
1 1(/ 

bxe-a1(F1e'i.R1 + F2e2 1) 

= ;x (-a+;- Cie!+ 1) 
Substitute p 1 (T) = s 1 in the above equation to obtain 

C1 k = ----- - 1 e- . ( 
20 ) er 

' 0 - 2bxSJ - 2a 

For p1 (r;) = 0, i < k, we obtain 

C1 · = -- - 1 e '. ( 
20 ) -RT· 

,, 0-2a 
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Conclusion 

Motivated by problems in regulation, counter-terrorism and cybersecurity, we study 

nonzero-sum differential games between two players, one of whom continuously con­

trois the state while the other player intervenes at certain discrete time instants to shift 

the state value from one level to another. In this class of games with each player using 

a different kind of control, we characterize open-loop, feedback and sampled-data Nash 

equilibrium. For linear-quadratic differential games, we show that equilibrium impulse 

timing can be obtained by solving a constrained non-linear optimization problem. Fur­

thermore, we provide closed-form solutions for equilibrium number, timing and levels 

of impulses for scalar linear-state differential games with impulse controls. We recover 

the classical result in linear-state differential games that open-loop and feedback Nash 

equilibrium coïncide when the impulse instants are exogenously given. However, when 

the impulse player also determines the timing of impulses, we show that open-loop and 

feedback Nash equilibria do not coïncide. 

Our work can be extended in several directions. A challenging problem is to study 

a differential game where both players have both continuous and impulse controls. To 

explore this research direction, one could consider the scalar linear-state game mode] that 

we have studied in the first essay and as a starting point, consider that the impulse player has 

both piecewise-continuous and impulse controls. Another interesting research direction 

is to formulate a Stackelberg game mode] with a leader that uses impulse controls while 

the multiple followers with their piecewise-continuous controls play a Nash game among 

themselves. This problem has applications in epidemic control by governments that aim to 



determine the timing and intensity of lockdowns while the population manage their social 

interactions keeping in view the loss in their utility due to the enforcement of a lockdown. 

It is not bard to see that the equilibrium conditions in this game can be obtained using 

our appraach in the first essay with the difference that there will be a co-state equation for 

each follower in the game. However, the increase in the co-state equations could result in 

computational difficulties in analyzing these games. 

The computation of feedback Nash equilibrium in differential games with impulse 

contrais entails solving the system of quasivariational inequalities, which is a difficult 

problem. Therefore, for linear-quadratic differential games, we have made regularity 

assumptions on the value function of the impulse player. For the future, our objective is 

to develop policy iteration algorithms that can numerically compute the feedback Nash 

equilibria for a general class of nonzera-sum differential games with impulse contrais. 
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