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Résumé

Cette thése consiste en quatre essais sur des jeux différentiels déterministes a deux joueurs,
a horizon fini et 3 somme non nulle, ol un joueur implémente un contréle continu pour
influencer I’état, tandis que 1’autre intervient a certains instants choisis stratégiquement.
Le choix ne porte pas uniquement sur les moments d’interventions, mais aussi sur leurs
niveaux. Les jeux dynamiques avec contrdles impulsionnels constituent une approche na-
turelle pour analyser le comportement stratégique des agents dans de nombreux contextes
tels que I’investissement dans la qualité des produits, la réglementation environnementale
et la cybersécurité. Cependant, la résolution de problémes pratiques se heurte a une série
de défis théoriques et computationnels, qui sont essentiellement dus a 1’endogénéité des

dates du contrdle impulsionnel. Ce travail reléve certains de ces défis.

Dans cette theése, nous caractérisons les équilibres de Nash sous les trois structures
d’information qui ont été considérées dans la littérature sur la théorie des jeux différen-
tiels, & savoir les structures d’information en boucle ouverte, en rétroaction et en données
échantillonnées. De plus, nous montrons que la détermination des controles impulsionnels
dans des jeux différentiels linéaires-quadratiques peut étre obtenue comme solution d’un
probleme d’optimisation non linéaire sous contraintes. Dans le cas des jeux différentiels
linéaires dans 1’état, nous obtenons une caractérisation complétement analytique du nom-
bre d’équilibres, le moment et I’amplitude des controles impulsionnels. Nous comparons
aussi les résultats sous différentes structures d’information. Dans chaque essai, nous il-
lustrons également les résultats théoriques en utilisant un jeu a deux joueurs, dont I’un

préfere une valeur plus élevée de la variable d’état, tandis que 1’autre vise a I’abaisser, une



situation fréquente dans de nombreuses applications, en particulier en réglementation et

en cybersécurité.

Mots-clés

Jeux différentiels, contrdles impulsionnels, équilibre de Nash en boucle ouverte, équilibre
de Nash en rétroaction, équilibre de Nash a données échantillonnées, inégalité€s quasi-

variationnelles, cybersécurité, réglementation
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Abstract

This thesis consists of four essays on deterministic finite-horizon two-player nonzero-
sum differential games where one player continuously controls the state while the other
player strategically intervenes at certain (discrete) time instants to shift the state from one
level to another. In contrast to classical differential games where all players take actions
continuously, the impulse player also decides when to intervene during the game in addition
to determining the level of the interventions. Impulse control models constitute a natural
approach for analyzing strategic behavior of agents in many contexts such as investment in
product quality, environmental regulation and cybersecurity. However, to solve practical
problems, we need to address a series of theoretical and computational challenges that are

due to the endogeneity of the timing of actions. This is the general topic of this work.

In this thesis, we characterize the Nash equilibria under all the three information
structures that have been considered in the differential game theory literature, namely,
open-loop, feedback and sampled-data information structures. Further, we show that the
timing of impulses can be obtained as a solution of a constrained non-linear optimization
problem in the case of linear-quadratic differential games with impulse controls. To
analytically characterize the equilibrium number, timing, and magnitude of impulses,
we introduce canonical linear-state game models and compare the equilibrium behavior
of players across different information structures. In each essay, we also illustrate the
theoretical results using a game problem between two players, one of whom prefers a
higher state value while the other aims to lower the state, a situation that arises in many

regulation and cybersecurity applications.



Keywords

Differential games, impulse control, open-loop Nash equilibrium, feedback Nash equilib-

rium, sampled-data Nash equilibrium, quasi-variational inequalities, cybersecurity, regu-
L4

lation

Research methods

Game theory; mathematical programming; numerical analysis

vi



Contents

Résumé

Abstract

List of Tables

List of Figures
Acknowledgements
Preface

Introduction

References . . . . . . . . . . . e

1 Nash equilibria in nonzero-sum differential games with impulse control

Abstract . . . . . ..
1.1 Introduction . . .. .. .. ... ... . ... ..
1.1.1  Literaturereview . . . . . . . . . .. .. oo
1.2 Model . . ... .. . e
1.3 Open-loop Nash equilibrium . . . ... ... ... ...........
1.3.1 Necessaryconditions . . . .. . ... ... ...........
1.3.2 Sufficientconditions . .. ... .. ... ... ... ..., ..

1.4 Linear-quadratic differential game with impulse control . . . . . . . ..

vii

iii

xiii

Xvii

xix



1.4.1 Necessaryconditions . . . .. .. ... ... ... ... 30

142 Solvability . . . .. ... ... 32
1.4.3 Sufficientconditions . . . . . ... . ... .. 37
1.5 Linear-state differential game with impulse control . . . . . . . ... ... 37
1.6 Numerical illustration . . . . . . ... ... ... ... .. ... ... 38
1.7 Concludingremarks . . . . ... ... ... ... ... . ... 42
1.8 Appendix . . . . . .. ... e 43
1.8.1 Proofof Theorem 1.1 . ... ... ... .. .. ... ...... 43
1.8.2 Proofof Theorem 1.2 . . . . . . .. ... ... ... ... .... 46
1.83 Proofof Theorem 1.3 . . . . . . .. ... ... ......... 48
1.84 Proofof Theorem 1.4 . . . . . .. . ... ... ... .. ... ... 50
1.85 Proofof Theorem 1.5 . . . . . . ... ... ... .. .. ..... 52
1.8.6 ProofofTheorem 1.7 . . . . . . ... .. ... ... ... .... 53
References . . . . . . . . . . .o 54

Open-loop and feedback Nash equilibria in scalar linear-state differential

games with impulse control 63
ADSITaCt . . . . . e e 63
2.1 Introduction . . . . .. . . ... 64
2.1.1 Literature Review . . . . . .. .. ... ... ... ... 66
22 Model . ... 68
2.3 Exogenousimpulseinstants . . . . . . . ... .. .00 71
2.3.1 Open-loop Nash equilibrium . . . . . ... ... ... ...... 72
2.3.2 Feedback Nash equilibrium . . . . .. .. ... ... ....... 75
2.4 Endogenousimpulseinstants . . . . . . . .. .. ... 78
2.4.1 Open-loop Nash equilibrium . . . .. ... .. ... ....... 79
2.4.2 Feedback Nash equilibrium . . . . . . ... .. .. ... ... .. 84
2.4.3 Comparison of open-loop and feedback Nash equilibria . . . . . . 96
2.5 Numerical example . . . . . . . .. ... ... 99



2.6 SOMEEXIENSIONS . . . « v v v v v e e e e e e e e e e e e e e e e 101

2.6.1 Generalcoststructures . . . ... ... ... 101
2.6.2 Multi-dimensional state . . . . ... ... L. 102
27 Conclusions . . . ... ... . 103
2.8 Appendix . . ... . L e e e e e 103
2.8.1 Proofof Theorem2.2 . . .. . ... ... ... ... ....... 103
282 Proofof Theorem28 . . . ... ... ... .. ... ....... 106
References . . . . . . . . . . . 111

Sampled-data Nash equilibria in differential games with impulse control 117

Abstract . . . . ... L e e 117
3.1 Imtroduction . . . . .. .. . . ... e 118
32 Model .. ... .. e 121
3.3 Necessaryconditions . . . . . . .. . ... .o e 125
34 Scalar linear-quadratic differential game . . . . ... . ... .. .. ... 129

34.1 Necessaryconditions . . . .. ... ... . ... .. .... 130

34.2 Non-linear optimization. . . . . .. .. ... .. ... ...... 133
3.5 Impulse linear-state differentialgame . . . . . .. ... ... ... .... 134
3.6 Anumericalexample . . ... .. ... ... ... ... 140
3.7 Conclusions . . . . . . . L 142
38 Appendix . ... ... L e 143

38.1 Proofof Theorem3.2 . .. ... ... ... .. ... ....... 143
References . . . . . . . . . . . . e 149
Feedback Nash equilibria in differential games with impulse control 153
Abstract . . . . . L e 153
4.1 Introduction . . . ... ... ... ... e 154

4.1.1 LiteratureReview . . . . . .. . ... ... ... . . ... . ... 155
42 Model . . .. .. e 157

4.2.1 Feedback Nash equilibrium . . . . .. ... ... ... ...... 159

ix



4.3 Verificationtheorem . . . . . . . . . . e 162

4.4 A linear-quadratic differential game with targets . . . . . . . .. ... .. 166
4.4.1 Optimal control problem of Player 1 . . . . . .. .. ... ... .. 168

4.4.2 Impulse control problem of Player2 . . . . ... ... . ... .. 170

4.5 Numericalexamples . . . . . . . ... ... .. .. . ... .. ... 176
46 Conclusions . . . ... ... L 178
47 Appendix . . . ... 178
4.7.1 Proof of Proposition4.1 . . . . . .. .. ... .. ........ 178

4.7.2  Analytical solutionof ODE . . . . .. .. ... .. ........ 179
References . . . . . . . .. . . 180
Conclusion 185



List of Tables

1.1

4.1

Equilibrium timing and level of impulses for different exogenous numbers of

impulses . . . . . . .. e

Parameters for numerical example . . . . ... ... ... ... ... ... .

Xi



List of Figures

1.1

1.2

2.1

2.2

2.3

3.1

32

4.1

4.2

Variation of the equilibrium profit of the government with the number of
impulses . . . . ... .

Equilibrium controls, and state and co-state trajectories. . ... .... ...

The regions are described as follows: Ry : Impulse at ¢t = 0, Ry : Impulse at
t=T,Ror : Impulseatt =0and ¢ =T, Ry, : Impulse atr = Oand t = 71,
Rer : Impulse at r = 7!, and ¢ = T, Rorr : Impulse at t=0, ¢ = T;I andt=T. . .
Shaded regions correspond to parameter space in the (w2, s2) plane for which
the value function is well-defined. An impulse occurs at ¢t = T for parame-
ters corresponding to the upper and lower boundaries of the shaded regions,
denoted by Ry. For the left and right boundaries denoted by Ry, there is an
impulse at = 0. Ror denotes that impulse occurat¢=0and¢=7.. .. . ..

Variation of A;(f) and a;(¢) for three impulses in OLNE whereas there are

twoimpulsesin FNE . . . .. .. ... ... .. oo

Equilibrium controls, and state trajectory with periodic impulses. . . . . ..

Equilibrium controls, and state and co-state trajectories. . . . ... .. ...

Evolution of intervention region and state variable for parameters in the first
row of Table 4.1. x*(z) denotes the equilibrium state trajectory and x()
denotes the state evolution when no impulse occurs. . . . . .. ... ... ..
Evolution of intervention region and state variable for parameters in the second

rowof Table 4.1 . . . . . . . . . . . e e

85



To my parents Aruna and Prem Kumar
Sadana for their love and support which has
made it possible

XV



Acknowledgements

I am very lucky that Prof. Georges Zaccour is my advisor. Prof. Zaccour is one of the most
kindest and supportive people that I have met in my life. His encouraging words and belief
in me have allowed me to do research without any self doubt. Prof. Zaccour’s insights
on promising research directions have provided me opportunities to work on interesting
and challenging problems. I will forever be grateful to Prof. Zaccour for his unwavering
support which can be compared to that of my parents. I am also fortunate that I got a
chance to be mentored by Prof. Puduru Viswanadha Reddy who guided me whenever
I found myself lost. His research perspectives, knowledge, humility, and patience have
contributed immensely to my growth as a researcher. I am very thankful to Vishwa and
Prof. Zaccour for collaborating with me on all the chapters in this thesis and for their
generosity and accessibility during my Ph.D. Both Prof. Zaccour and Vishwa have been

instrumental in developing my interest in dynamic games.

I wish to thank Prof. Herbert Dawid, Prof. Michele Breton, and Prof. Ngo van Long
for being on my thesis committee. Prof. Breton and Prof. Long’s encouragement, support,
and guidance have helped me immensely in formulating the research problems in this
thesis. I am grateful to Prof. Dawid for critically assessing my research as well for his
encouragement and invaluable feedback. Prof. Dawid’s comments have enabled me to
think deeply about each chapter of this thesis and have also provided me with directions

for future research.

I am grateful to Prof. Tamer Basar for hosting me at the Coordinated Science Lab

(CSL) of the University of Illinois at Urbana-Champaign for my internship. The research

Xvii



environment at CSL is very inspiring and I spent some of the most memorable moments
of my graduate studies at UTUC. I am also thankful to Prof. Bagar for collaborating with
me on the third chapter of his thesis and for sharing his knowledge on a range of topics in
game theory. I am grateful to Prof. Erick Delage for teaching me robust optimization and
for his encouragement and generosity throughout my stay in Montréal.

I would also like to thank the following organizations for their financial support:
Chair in Game Theory and Management, HEC Montréal, J.A. DeSéve Foundation, Fonds
qpébécois de la recherche sur la nature et les technologies (FRQNT), and Ministere de
I’Education et de I’Enseignement supérieur du Québec (MEES).

This research could not have been possible without the love and constant support of
my parents.

A huge thanks to Apala for her love and support. Special thanks to my friends for
making my stay memorable in Montreal and Urbana-Champaign. I am also thankful to

the staff at GERAD and HEC Montréal who always tried to accommodate all my requests.

xviii






Introduction

Game theory is a branch of mathematics that studies strategic interactions between intelli-
gent and rational decision makers, called players. Strategic interactions take place anytime
a player’s payoff not only depends on her own decision, but also on the decisions made by

the other players.

One-shot (or static) games are a useful representation of strategic interactions when the
past and the future are irrelevant to the analysis, i.e., today’s decisions only affect today’s
outcomes for the players and are independent of past moves. When there are carry-over
effects and the players can condition their actions on history (and in particular on their
rivals’ behavior), then a dynamic game is needed. In a repeated game, the agents play
the same game in each round, that is, the set of actions and the payoff structures are the
same in all stages. The number of stages can be finite or infinite, and this distinction has
been shown to have a tremendous impact on the equilibrium results. In multistage games,
the players share the control of a discrete-time dynamic system (state equations) observed
over stages. Their choice of control levels, e.g., investments in production capacity, or
advertising dollars, affects the evolution of the state variables (e.g., production capacity,

reputation of the firm), as well as current payoffs.

Differential games, which are the focus of this thesis, are continuous-time counterparts
of multistage games. The literature on differential games typically assumes that all players
take actions at each instant of time during the game, a setup that does not capture well
many real-world applications where, for some reasons, one player only acts at some time

instants. For instance, the production and marketing decisions are adjusted continuously



by firms while changes to environmental (or other) tax policies are made at certain discrete
time instants. Similarly, while a company builds continuously its infrastructure security
system, a hacker attacks it only once in a while.

In all the aforementioned interactions, one player acts at each time instant during the
game, while the other player intervenes only occasionally in the game. Since the number,
timing, and level of the interventions (impulses) are decision variables of at least one
of the players, these games are known as differential games with impulse controls, and
provide a natural paradigm to model the interactions taking place in different contexts,
namely: (i) law enforcement organizations deciding the impulse controls, that is, time of
attack and resources to deploy, to disrupt the infrastructure of a terrorist organization thatis
continuously investing to build up its infrastructure; (ii) software firms investing in security
to reduce the impact of a (potential) hacking attempt; (iii) regulators determining when and
how much to change the emission taxes associated with pollutants; and (iv) governments
deciding the timing and intensity (partial or complete) of lockdowns to control the spread
of a virus.

Theoretical and computational developments for impulse optimal control problems
that involve one agent have been extensively studied in the literature using the Pontrya-
gin maximum principle (Blaquiere, 1977a, 1979, 1985; Chahim et al., 2012, 2013) and
Bensoussan-Lions quasi-variational inequalities (Bensoussan and Lions, 1982, 1984). Ap-
plications can be found in diverse fields, e.g., flood control (Chahim et al., 2013), forest
management (Alvarez, 2004), cash management (Cadenillas and Zapatero, 1999; Bertola
et al., 2016), epidemic models (Piunovskiy et al., 2020), cybersecurity (Taynitskiy et al.,
2019), and product quality improvements (Reddy et al., 2016).

The literature on differential games with impulse controls is sparse and deals mostly
with zero-sum games in options pricing (El Farouq et al., 2010) and pursuit evasion
problems (Chikrii and Matichin, 2005; Chikrii et al., 2007). Recently, the authors in Aid
et al. (2020) and Ferrari and Koch (2019) introduced a class of two-player nonzero-sum
stochastic impulse games where both players cause jumps to the state using their impulse

controls only. In Basei et al. (2019), the authors extended these games to an N-player
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setting with N > 2, and also studied their mean-field counterpart. However, the players in
these games have no continuous controls, which precludes the possibility of using them
for situations where the interventions (hacking, change of emission taxes, lockdowns) by
a player occur only at discrete instants of time and the state of the system (e.g., software
vulnerabilities, pollution, infection rate) continuously evolves according to the actions
(e.g., continuous effort in system security, production, social distancing) of another player.

To fill the gap in the literature, we introduce a general class of nonzero-sum differential
games where one (representative) player uses piecewise-continuous controls to affect the
continuously evolving state, while the other player intervenes using impulse controls to
instantaneously change the state from one level to another. The discontinuities in state
variable at endogenously determined impulse instants lead to computational difficulties in
analyzing games with impulse controls. For tractability, Chang et al. (2013) and Chang
and Wu (2015) studied them under the simplifying assumption that the impulse instants are
given and the impulse player only selects the levels of impulses. Although this assumption
holds for specific cases, e.g., a central bank changes interest rates at predetermined time
instants during the year while the production and marketing decisions of the firms are made
daily, there is no reason to believe that the timing of a government’s attack on terrorist
organizations or of a hacking attempt on a security firm is given a priori.

A central issue in the study of differential games is to determine the best way in which
players can respond to one another. Using Nash equilibrium as a solution concept, the
action profiles of both players can be determined for the whole duration of the game, where
an equilibrium pair of strategies is such that no player has an incentive to unilaterally change
their strategies.! The strategies are functions of the state information that is available to
the players, and therefore, a change in the information-structure can affect the Nash
equilibrium as well as the payoff of the players obtained in a differential game (Basar and
Olsder, 1999).

The different information structures emerge due to the cost associated with state mea-

Each player’s action profiles are generated using strategies that are mappings of the information sets
(consisting of state measurements) to action sets (the set of admissible actions).



surement, for instance, the economic data from the surveys can be obtained every quarter
while firms make their production decisions daily. Therefore, the availability of state in-
formation can have policy implications for regulators interested in maximizing consumer
welfare and government organizations protecting the citizens from terrorist attacks. Three
kinds of information structure, namely, open-loop, feedback and sampled-data, have been
predominantly studied in the literature. With open-loop information structure, players only
know the initial state of the game, feedback information structure assumes that state can be
measured at each time instant during the game, and state information is available at certain
exogenously given sampling instants when the information structure is sampled-data.

This thesis contributes both to the theory and applications of differential games with
impulse controls by providing a characterization of the Nash equilibrium under all the
three information structures.

The first essay titled “Nash equilibria in nonzero-sum differential games with impulse
control” introduces the general class of deterministic finite-horizon two-player nonzero-
sum differential games where Player 1 uses piecewise-continuous controls whereas Player
2 uses impulse controls. The use of specialized controls for each player is motivated by
applications in cybersecurity and regulation, and the more general case with both players
using both piecewise continuous and impulse controls can be easily studied using our
model. The characterization of open-loop Nash equilibrium can be shown to reduce to
solving two coupled problems: (a) a non-standard optimal control problem of Player 1
with state jumps and additional costs at the impulse instants, (b) the impulse optimal
control problem of Player 2. By extending the Pontryagin Maximum Principle to solve
Player 1’s non-standard optimal control and using the necessary optimality conditions for
impulse control problems, we formulate the necessary and sufficient conditions for the
existence of OLNE in the general class of nonzero-sum differential games with impulse
controls.

The computation of equilibria is a hard problem as the impulse instants are fixed point
solutions of a highly non-linear system of equations, known as the Hamiltonian continuity

condition (Chahim et al., 2012), that are coupled with a system of differential equations.

4






developed in the first essay, a game between a government and an international terrorist
organization (ITO) is formulated where the ITO invests efforts to builds its infrastructure
that could be used later for an attack on civilians while the government launches strikes to
disrupt ITO’s resources. Previously, these problems were studied using classical dynamic
game theory where all players take actions at all periods of the game (see Crettez and
Hayek, 2014; Novak et al., 2010).

A classical result in deterministic linear-state differential games is that open-loop and
feedback Nash equilibria coincide when all players make decisions at each time instant
during the game (Dockner et al., 2000). This implies that players are not worse-off if
they determine their actions using the state information at the initial time only. A natural
question to answer is if this result holds in highly relevant problems in cybersecurity,
terrorism and pollution regulation when one player uses impulse controls and the objective
functions and state dynamics satisfy the LSDG formulation.

The objective of the second essay titled, “Open-loop and feedback Nash equilibria
in scalar linear-state differential games with impulse controls” is to compare open-loop
and feedback Nash equilibria obtained by using the Pontryagin Maximum Principle and
quasi-variational inequalities, respectively, in deterministic LSDGs with impulse controls.
We construct a canonical deterministic two-player LSDG of minimal configuration which
allows us to include all the interactions between the players, and at the same time, keeps
the analysis tractable. The objective functions of both players are linear in state and
quadratic in controls, and without loss of generality, it is assumed that Player 1 uses
piecewise-continuous controls and Player 2 uses impulse controls.

To assess the impact of impulse controls on the solution of a game under open-loop
and feedback information structures, the following two situations are analyzed: First, the
timing of impulses is considered to be exogenously given, and Player 2 determines the
impulse levels at the corresponding impulse instants. In this case, open-loop and feedback
information structures lead to the same equilibrium behavior of both players. Then, for
the general case where the number and timing of impulses is determined by Player 2,

it is shown that the classical result does not hold, that is, open-loop and feedback Nash
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equilibria are different. More specifically, OLNE has at most three impulses while FNE
admits at most two impulses. Closed-form solutions for equilibrium timing of impulses
and equilibrium strategies of both the players are obtained under OLNE and FNE. The
differences in OLNE and FNE can be attributed to our result that impulse timing in
OLNE depends on the problem parameters of Player 1 whereas the impulse timing in
FNE depends only on Player 2’s problem parameters and state dynamics. The results
remain qualitatively unaltered for other general cost structures and the multi-dimensional
extension of the scalar LSDG model. A numerical example is also provided to show that
Player 2’s intervention instant can be different depending on the information structure.

Open-loop and feedback information structures are the two extremes regarding the
assumptions on the state information that is available to the players. It is well-known
that open-loop strategies are only weakly time-consistent (Bagar, 1989), and do not satisfy
strong time-consistency which implies that at any time instant during the game, the players
may have an incentive to unilaterally deviate from their equilibrium strategies. Even
though feedback strategies are strongly time-consistent, they require state measurements
to be made at each time instant which may not be feasible (Bagar, 1989). A compromise
is provided by the sampled-data information structure as state is measured at certain given
sampling instants and sampled-data strategies are strongly time-consistent at the sampling
instants. Sampled-data Nash equilibrium coincides with the open-loop Nash equilibrium
of the game when sampling is done at the initial and final time only. An interesting
problem then is to determine sampled-data Nash equilibrium for any given number of
sampling instants (Simaan and Cruz Jr., 1973; Basar, 1991; Drigan et al., 2019).

The third essay titled, “Sampled-data Nash equilibrium in differential games with im-
pulse controls” studies the two-player game introduced in the first essay with the sampled-
data information structure where the strategies of players depend on time and the last
measured state value. We provide necessary and sufficient conditions for the existence
of sampled-data Nash equilibria for the general class of differential games with impulse
controls. An additional difficulty in computing sampled-data Nash equilibrium compared

to OLNE is that the necessary conditions also include a Riccati system of equations for
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both the players. A reformulation of equilibrium conditions as a constrained non-linear op-
timization problem is provided for a scalar linear quadratic differential game, the solution
of which gives the impulse instants.

For the class of LSDGs, the sampled-data Nash equilibrium is found to coincide with
the open-loop Nash equilibrium. An extension of LSDG is also provided where the
problem parameters vary over time and are constant between the sampling instants. In this
case, the number of interventions can be at most equal to the number of sampling instants.
A complete analytical characterization of equilibrium level of impulses and equilibrium
controls of the players is also given for LSDGs. To show the contrast between differential
games with periodic impulses and endogenous impulses, we consider a game where one
player values the state positively and aims to increase it whereas the other player who
values the state negatively invests efforts to lower it. Compared to the case when impulses
are a priori assumed to be periodic, the equilibrium intervention instants occur at irregular
intervals and the equilibrium controls of the players differ from the periodic case, thereby
illustrating the need to include timing as a decision variable when studying equilibrium
behavior of players in cybersecurity and regulation domains.

The control of exchange rate by the central bank of a country though direct interventions
in the foreign exchange market and continuous control of interest rate is one of the most
well-studied problems in impulse optimal control literature (Cadeniflas and Zapatero,
1999; Bertola et al., 2016). This has also motivated the study of nonzero impulse games
with feedback information structure where both players use only impulse control to keep
the state close to their respective target values (Aid et al., 2020). This game model with
both players using impulse controls does not capture the interactions taking place between
a firm that makes production decisions daily and a pollution regulator that intervenes at
certain time instants to keep the pollution level close to their target value.

The fourth essay titled, “Feedback Nash equilibria in differential games with impulse
controls” studies a general class of deterministic two-player finite-horizon nonzero-sum
differential games with impulse controls assuming a feedback information structure. We

show that the number of impulses in the game is finite and the Hamilton-Jacobi-Bellman
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equations coupled with a system of quasi-variational inequalities provide sufficient con-
ditions to characterize the feedback Nash equilibrium. Further, we extend a well-known
linear-quadratic impulse control problem to a deterministic LQDG problem in which the
players incur costs if the state deviates from their target values. In a numerical exam-
ple, it is shown that the equilibrium strategy of the impulse player is to intervene twice
in the game. Our characterization of feedback Nash equilibrium in this essay is based
on certain regularity assumptions on the value function that have been assumed in the
literature (see, e.g., Campi and De Santis, 2020; Aid et al., 2020). For the future work,
we plan to relax these assumptions and develop policy iteration algorithms (Azimzadeh,
2019; Zabaljauregui, 2020) that can solve the quasi-variational inequalities for the impulse

player.

References

Alvarez, L. H. R. (2004). Stochastic forest stand value and optimal timber harvesting.
SIAM Journal on Control and Optimization, 42(6):1972-1993.

Azimzadeh, P. (2019). A zero-sum stochastic differential game with impulses, precommit-
ment, and unrestricted cost functions. Applied Mathematics & Optimization, 79(2):483—
514.

Aid, R., Basei, M., Callegaro, G., Campi, L., and Vargiolu, T. (2020). Nonzero-sum
stochastic differential games with impulse controls: A verification theorem with appli-

cations. Mathematics of Operations Research, 45(1):205-232.

Bagar, T. (1991). Optimum Hoo designs under sampled state measurements. Systems &

Control Letters, 16(6):399 — 409.

Bagar, T. (1995). Minimax control of switching systems under sampling. Systems &

Control Letters, 25(5):315 — 325.



Basar, T. and Olsder, G. J. (1999). Dynamic Noncooperative Game Theory, 2nd edition.
Society for Industrial and Applied Mathematics, Philadelphia, PA.

Bagar, T. (1989). Time consistency and robustness of equilibria in noncooperative dynamic
games. In der Ploeg, F. V. and de Zeeuw, A., editors, Dynamic Policy Games in

Economics, pages 9 — 54. Springer International Publishing, North-Holland.

Bagar, T., Haurie, A., and Zaccour, G. (2018). Nonzero-Sum Differential Games. In
Bagar, T. and Zaccour, G., editors, Handbook of Dynamic Game Theory, pages 61-110.

Springer International Publishing, Cham.

Basei, M., Cao, H., and Guo, X. (2019). Nonzero-sum stochastic games and mean-field

games with impulse controls.

Bensoussan, A. and Lions, J.-L. (1982). Contrdle Impulsionnel et Inéquations Quasi-

Variationelles. Bordas, Paris, France.

Bensoussan, A. and Lions, J.-L. (1984). Impulse Control and Quasi-Variational Inequal-

ities. Gauthier-Villars, Paris, France.

Bertola, G., Runggaldier, W. J., and Yasuda, K. (2016). On classical and restricted
impulse stochastic control for the exchange rate. Applied Mathematics & Optimization,

74(2):423-454.

Blaquiere, A. (1977a). Differential games with piece-wise continuous trajectories. In
Hagedorn, P., Knobloch, H. W.,, and Olsder, G. J., editors, Differential Games and
Applications, pages 34—69. Springer, Berlin.

Blaquiere, A. (1979). Necessary and sufficient conditions for optimal strategies in impul-
sive control. In Lui, P. and Roxin, E., editors, Differential Games and Control Theory

I, Part A, pages 1 — 28. Marcel Dekker, New York.

Blaquiere, A. (1985). Impulsive optimal control with finite or infinite time horizon.

Journal of Optimization Theory and Applications, 46(4):431-439.

10



Cadenillas, A. and Zapatero, F. (1999). Optimal central bank intervention in the foreign

exchange market. Journal of Economic Theory, 87(1):218 — 242.

Campi, L. and De Santis, D. (2020). Nonzero-sum stochastic differential games between
an impulse controller and a stopper. Journal of Optimization Theory and Applications,

186(2):688-724.

Chahim, M. (2013). Impulse control maximum principle: Theory and applications. PhD

thesis, Tilburg University.

Chahim, M., Brekelmans, R., den Hertog, D., and Kort, P. (2013). An impulse control
approach to dike height optimization. Optimization Methods and Software, 28(3):458—
4717.

Chahim, M., Hartl, R. F., and Kort, P. M. (2012). A tutorial on the deterministic Impulse
Control Maximum Principle: Necessary and sufficient optimality conditions. European

Journal of Operational Research, 219(1):18-26.

Chang, D., Wang, H., and Wu, Z. (2013). Maximum principle for non-zero sum differential
games of BSDEs involving impulse controls. In Proceedings of the 32nd Chinese

Control Conference, pages 1564—1569.

Chang, D. and Wu, Z. (2015). Stochastic maximum principle for non-zero sum differential
games of FBSDEs with impulse controls and its application to finance. Journal of

Industrial & Management Optimization, 11(1):27-40.

Chikrii, A. A. and Matichin, I. (2005). Linear differential games with impulse control of
players. Proceedings of the Steklov Institute of Mathematics, Suppl. 1:S68-S81.

Chikrii, A. A., Matychyn, I. I., and Chikrii, K. A. (2007). Differential games with impulse
control. In Jgrgensen, S., Quincampoix, M., and Vincent, T. L., editors, Advances
in Dynamic Game Theory. Annals of the International Society of Dynamic Games,

volume 9, pages 37-55. Birkhduser, Boston.

11



Crettez, B. and Hayek, N. (2014). Terrorists’ eradication versus perpetual terror war.

Journal of Optimization Theory and Applications, 160:679-702.

Dockner, E. J., Jorgensen, S., Long, N. V., and Sorger, G. (2000). Differential Games in

Economics and Management Science. Cambridge University Press.

Drédgan, V., Ivanov, I. G., and Popa, I.-L. (2019). Stochastic linear quadratic differential
games in a state feedback setting with sampled measurements. Systems & Control

Letters, 134:104563.

El Farouq, N., Barles, G., and Bernhard, P. (2010). Deterministic minimax impulse

control. Applied Mathematics and Optimization, 61(3):353 - 378.

Ferrari, G. and Koch, T. (2019). On a strategic model of pollution control. Annals of
Operations Research, 275(2):297-319.

Haurie, A., Krawczyk, J. B., and Zaccour, G. (2012). Games and Dynamic Games. World

Scientific, Singapore.

Novak, A., Feichtinger, G., and Leitmann, G. (2010). A Differential Game Related to
Terrorism: Nash and Stackelberg Strategies. Journal of Optimization Theory and

Applications, 144:533-555.

Piunovskiy, A., Plakhov, A., and Tumanov, M. (2020). Optimal impulse control of a sir
epidemic. Optimal Control Applications and Methods, 41(2):448-468.

Reddy, P. V., Wrzaczek, S., and Zaccour, G. (2016). Quality effects in different advertising
models - An impulse control approach. European Journal of Operational Research,

255(3):984-995.

Simaan, M. and Cruz Jr,, J. (1973). Sampled-data Nash controls in non-zero-sum differ-

ential games. International Journal of Control, 17(6):1201 — 1209.

Taynitskiy, V., Gubar, E., and Zhu, Q. (2019). Optimal Impulse Control of SIR Epidemics
Over Scale-Free Networks. In Song, J. B, Li, H., and Coupechoux, M., editors, Game

12



Theory for Networking Applications, pages 119-129. Springer International Publishing,
Cham.

Yong, J. (1994). Zero-sum differential games involving impulse controls. Applied Math-
ematics and Optimization, 29(3):243-261.

Zabaljauregui, D. (2020). A fixed-point policy-iteration-type algorithm for symmetric

nonzero-sum stochastic impulse control games. Applied Mathematics & Optimization.

13



Chapter 1

Nash equilibria in nonzero-sum

differential games with impulse control

Abstract

In this paper, we introduce a class of deterministic finite-horizon two-player nonzero-sum
differential games where one player uses ordinary! controls while the other player uses
impulse controls. We formulate the necessary and sufficient conditions for the existence
of an open-loop Nash equilibrium for this class of differential games. We specialize these
results to linear-quadratic games, and show that the open-loop Nash equilibrium strategies
can be computed by solving a constrained non-linear optimization problem. In particular,
for the impulse player, the equilibrium timing and level of impulses can be obtained.
Furthermore, for the special case of linear-state differential games, we obtain analytical
characterization of equilibrium number, timing and the level of impulse in terms of the

problem data. We illustrate our results using numerical experiments.

1We use the word ‘ordinary’ to mean that Player 1 uses control strategies that are piecewise continuous
functions of time.



1.1 Introduction

In this paper, we consider dynamic competitive strategic situations involving two players,
one of whom takes actions only occasionally, while the other makes decisions continuously.
One example of such a setting is a central bank that announces its interest rate policy at
specific dates during the year, while firms make production and marketing decisions
daily. Another example is in cybersecurity, where an attacker launches its viruses to
inflict damage on a system at strategic instants of time, while the defender is continuously
investing in reducing the system’s vulnerability. Each of the interventions (or impulses) by
the central bank or the hacker can cause a jump in the state variable and additional terms in
the objectives of the players. The two examples, which can be modeled as finite-horizon
differential games with one impulse player, differ in terms of one crucial feature. In
the first case, the impulse player (the central bank) states in advance when interest rate
announcements will be made.? The pending decision is then the impulse size, that is, the
interest rate itself (or the change relative to its current value). In the second case, both
the timing of the impulses and their values are endogenous, and quite naturally, no one
expects the hacker to give the defender advance notice of when the attacks will take place.
Intuitively, solving for the cybersecurity game equilibrium is harder than determining the
equilibrium strategies in the central bank game.

The contribution of the paper is four fold. First, we introduce a canonical two-
player nonzero-sum differential game where one player uses ordinary controls and the
other player uses impulse controls. We emphasize that our model is canonical in nature,
that is, ordinary and impulsive decision variables are attributed to Player 1 and Player
2, respectively. The general case where both players are endowed with both types of
control variables can be studied easily as an extension of the current framework. Second,
we derive necessary and sufficient conditions for the existence of an open-loop Nash
equilibrium for this class of games. Third, we specialize our results to linear-quadratic

setting, and provide a reformulation of the equilibrium conditions as a constrained non-

‘For instance, the Bank of Canada’s interest rate announcements are available on
https://www.bankofcanada.ca/press/upcoming-events/.
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linear optimization problem for numerically computing the open-loop Nash equilibrium.
Applications of linear-quadratic differential games (LQDGs) have been popular for decades
in economics, engineering, and management science. One reason for this is the availability
of theorems characterizing the existence and uniqueness of Nash and Stackelberg equilibria
(see, e.g., Basar and Olsder 1999; Engwerda 2005; Haurie et al. 2012; Bagar et al. 2018).
Another reason is that, notwithstanding the specific functional forms of the objectives,
LQDGs make it possible to account for three features that are usually important in these
applications, namely, interactions between the players’ control variables, interactions
between the control and state variables, and finally non-constant returns to scale. Fourth,
for the class of linear-state games, we show that, for the player who uses impulse controls,
the equilibrium strategy has at most one impulse, and analytically characterize the time

and the level of impulse in terms of the problem data.

By establishing existence results for the class of two-player differential games with
one impulse player, and providing solution methods for their applications in LQDGs, our
paper contributes to both the theory and applications of differential games. Surprisingly,
the literature on differential games with impulse control is very sparse. In such a context,
as has happened in the past, one takes stock on what has been achieved in the two sister

areas, namely, optimal control and zero-sum differential games.

The rest of the paper is organized as follows. In Section 1.1.1, we briefly review the
relevant literature on optimal control and differential games with impulse controls. In
Section 1.2, we introduce our model. In Section 1.3, we extend the Pontryagin maximum
principle to optimal control problems with additional discrete state cost terms and state
jumps. Using this result, we provide necessary and sufficient conditions for the existence
of open-loop Nash equilibrium. In Section 1.4, we specialize these results to linear-
quadratic differential games. More specifically, in Section 1.4.2, we present an algorithm
to determine the equilibrium timing and level of the impulses for Player 2. In Section 1.5,
we provide the analytical solution of the linear-state differential game. In Section 1.6, we

present numerical illustration of the results. Concluding remarks are given in Section 1.7.
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1.1.1 Literature review

In this section, we first review the literature on impulse optimal control problems and
zero-sum differential games with impulse controls. Next, we present the advances in
the study of nonzero-sum impulse games where all players use impulse controls, which
allows us to contrast our work on nonzero-sum differential games where one player uses

piecewise continuous controls while the other player uses impulse controls.

A number of variants of impulse optimal control problems have been studied in the
literature. A series of papers have considered the case where the number of jump instants
is fixed (Liu et al., 1998; Wu and Teo, 2006) or the impulse instants are known a priori
(Taynitskiy et al., 2019; Reddy et al., 2016). Impulse control problems are typically
solved using the maximum principle provided by Blaquiére (1977a,b, 1979, 1985). Papers
where dynamic programming is used to compute the solutions of impulse control prob-
lems include Neuman and Costanza (1990), Erdlenbruch et al. (2013), and Bertola et al.
(2016). However, analytical solutions could not be derived from the maximum principle.
Consequently, a number of algorithms, such as the gradient method and a continuation
method based on formulating a multi-point boundary value problem, have been proposed
in the literature to numerically compute the solutions (see, e.g., Grass and Chahim 2012;

Chahim 2013; Grames et al. 2019; Kort 1989; Hou and Wong 2011).

Reddy et al. (2016) extended some well-known advertising models by adding impulse
investments in quality. In Chahim et al. (2017), a firm decides on the timing of the adoption
of a new technology as well as the level of investments in new capital at the corresponding
instants. In these two papers, the optimal solutions are computed by formulating a multi-
point boundary value problem, which generalizes the two-point boundary value problem
to account for the additional restrictions on the state dynamics and co-state variable at the
interior impulse instants. In Chahim et al. (2013), the authors determined the optimal
timing and corresponding dike heightenings to protect against floods. In Erdlenbruch etal.
(2013), the authors studied a renewable resource-management problem with an impulse

controlled harvesting policy, which is a sequence of harvest times and harvesting levels
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of the resource. Recently, in the field of cybersecurity, Taynitskiy et al. (2019) introduced
discrete time periodic patching processes in the continuous-time Susceptible-Infected-
Recovered (SIR) epidemic model to control the malware’s spread in devices. Impulse
control problems have been extensively studied in management because they allow for
discrete time interventions in continuous time processes, see, €.g., Eastham and Hastings
(1988), Chahim et al. (2012), Bensoussan et al. (2012), Bertola et al. (2016), Basei (2019),
Perera et al. (2020).

The literature on differential games with impulse controls is sparse, and a majority
of the existing works consider a zero-sum setting. In Chikrii et al. (2007), the sufficient
conditions for hitting a target set are provided for a pursuit-evasion game where either the
pursuer or the evader or both can give a finite number of impulses to the system. The
pursuer’s objective is to make the state trajectory hit a target set in finite time while the
evader aims to steer the system trajectory away from the target for as long as possible.
Bernhard et al. (2006) and El Farouq et al. (2010) introduced impulse control in zero-
sum differential games to study an option pricing problem. Zero-sum impulse control
differentiable games with one player using piecewise continuous controls and the other
using impulse controls are studied in a deterministic setting in Yong (1994) and in a
stochastic setting in Zhang (2011) and Azimzadeh (2019). Recent works that use dynamic
programming to determine the equilibrium include Cosso (2013), El Asri and Mazid
(2018), Ferrari and Koch (2019), Azimzadeh (2019), Aid et al. (2020), and Campi and
De Santis (2020). Stochastic differential games where both players use only impulse
control are considered in Cosso (2013) and El Asri and Mazid (2018) for the zero-sum
case, whereas Aid et al. (2020) and Ferrari and Koch (2019) studied the nonzero-sum case
for an infinite horizon problem. In the pollution regulation problem studied in Ferrari
and Koch (2019), both the regulator and polluting firm use impulse controls. Campi and
De Santis (2020) analyze a two-player nonzero-sum differential game where one player
uses impulse controls while the other player can stop the game at 