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Résumé

Des études empiriques soutiennent l’idée que plusieurs décideurs sont averses au re-

gret, i.e., qu’ils préfèrent éviter les actions qui pourraient potentiellement conduire à

d’immenses sentiments de regret une fois que l’incertitude se sera dissipée et que les

opportunités manquées seront connues. La minimisation du regret attire donc une at-

tention importante dans différents domaines, allant de la psychologie et de l’économie

à la recherche opérationnelle et à l’informatique. Cette thèse étudie la question de la

minimisation des regrets du point de vue computationnel pour des contextes de décision

à plusieurs étapes. La contribution de ce travail à la littérature existante réside dans le

développement de nouveaux paradigmes de modélisation, l’avancement des méthodes

de résolution et l’identification de phénomène intéressant dans les contextes de gestions

d’inventaires, de trajectoire, et de portefeuilles financiers.

En termes de modélisation, nous étudions comment les problèmes de minimisation

des regrets à deux étapes peuvent être représentés sous la forme de problèmes d’optimisation

robuste à deux étapes. De plus, nous proposons un modèle de minimisation des regrets

à plusieurs étages qui intègre deux concepts de manière innovante. Nous délaissons

d’abord l’approche de minimisation du pire regret pour considérer plutôt une mesure

qui intègre l’aversion au risque par l’entremise d’une mesure de risque cohérente et per-

mettons ensuite au décideur d’imposer une structure d’information plus générique à la

politique de référence, qui traditionnellement se veut clairvoyante. Enfin, nous étendons

notre étude de la minisation du regret pour couvrir un contexte axé sur les données, dans

lequel les décisions peuvent exploiter des informations secondaires. Nous introduisons

un modèle d’optimisation stochastique conditionnel et robuste au choix de distribution

qui optimise un “coefficient de prescriptivité”, qui a récemment été proposé dans la lit-



térature pour ce genre de problème.

L’optimisation numérique des problèmes de minisation du regret présente de manière

générale un véritable défi computationnel. Bien qu’il soit possible d’identifier des ap-

proches tractables pour certaines classes simples du problème, jusqu’à présent, la plupart

des implémentations de ce paradigme nécessitent la conception d’un schéma d’approximation

spécifiquement dessiné pour le problème étudié. Malgré les efforts déployés pour améliorer

la tractabilité des problèmes de minimisation des regrets, l’existence d’une approche

générale pour produire des solutions exactes et approximatives de haute qualité est tou-

jours une question ouverte dans la littérature. Cette thèse s’appuie sur des développe-

ments algorithmiques récents dans le domaine de l’optimisation robuste pour adresser

cette grande famille de problèmes. Nos résultats sont appliqués à plusieurs domaines

pratiques, incluant le problème du vendeur de journaux multi-éléments, le problème du

transport de production, le problème de gestion des stocks multi-périodes, le problème

de sélection du portefeuille et le problème de chemin le plus court. Grâce à ces appli-

cations, nous examinons le comportement des nouveaux modèles que nous proposons,

l’efficacité des méthodes de résolution et la qualité des solutions obtenues.
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Programmation stochastique, Optimisation contextuelle, Règles de décision affine, Mesures

de risque.
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Abstract

Empirical studies support the idea that the decision makers are “regret-averse” in the

sense that they avoid taking actions that might potentially lead to feeling regret once the

uncertainties are gone and the missed opportunities are revealed. Regret minimization

has drawn significant attention in different domains, ranging from psychology and eco-

nomics to operations research and computer science. Broadly speaking, this thesis inves-

tigates the concept of regret minimization from a computational perspective for multi-

stage decision contexts. The contribution of this work to the existing literature lies in

the development of novel modeling paradigms, advancement of solution methods, and

identification of interesting insights in the contexts of inventory, routing, and financial

portfolio management.

In terms of modeling, we study how two-stage regret minimization problems can be

represented as two-stage robust optimization problems. Furthermore, we propose a new

multistage regret minimization model that integrates two concepts in an innovative way.

We first abandon the worst-case regret minimization approach to consider a measure that

integrates risk aversion through a coherent risk measure and then to allow the decision

maker to impose an information structure that is more general compared to the reference

policy, which is traditionally considered clairvoyant. Finally, we extend our study of re-

gret minimization to cover a data-driven contextual decision making in which decisions

can leverage side information. We introduce a conditional stochastic optimization model

that is robust to the choice of distribution and optimizes a “coefficient of prescriptive-

ness”, which has recently been proposed in the literature for this kind of problem.

The numerical optimization of regret minimization problems is a real computational

challenge in general. While it is possible to identify tractable approaches for some simple

v



classes of problems, thus far, most implementations of this paradigm require designing

an approximation scheme that is specifically designed for the problem under study. De-

spite the efforts made to improve the tractability of regret minimization problems, the

existence of a general approach for producing exact and approximate solutions of high

quality is still an open question in the literature. This thesis builds on recent algorithmic

developments in the field of robust optimization to address this large family of problems.

Our findings are applied to several decision-making applications, including the multi-

item newsvendor problem, production transportation problem, multi-period inventory

management problem, portfolio selection problem, and shortest path problem. Thanks

to these applications, we examine the behavior of the new models that we propose, the

efficiency of the solution methods, and the quality of the solutions obtained.

Keywords

Multistage decision-making; Regret minimization; Robust optimization; Stochastic pro-

gramming; Conditional optimization; Affine decision rules; Risk measures; Data-driven.

Research methods

Quantitative research; Mathematical programming.
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General Introduction

Decision-making has always been an indispensable part of our personal and professional

lives, giving rise to challenges in contexts with either large financial stakes or with large

potential impact on the quality of life of individuals. This challenge is magnified when it

comes to decisions that have long-term repercussions, where the information is revealed

gradually, and actions can be deployed progressively as new observations are made. For-

tunately, the field of Operations Research (OR) has been quite successful in the last few

decades in assembling an essential toolbox of models and algorithms to support decision

makers when they face irreducible uncertainties. In particular, whilst the stochastic pro-

gramming paradigm exploits probability theory to optimize the trade-off between risk

and returns, robust optimization has gained significant popularity by improving compu-

tation requirements through the optimization of the worst-case scenarios.

An appealing alternative to robust optimization consists in optimizing decisions us-

ing the notion of regret. Regret comes into play when the actual outcome is such that

some actions achieve higher utility than the implemented one, leading individuals to ex-

perience a sense of disappointment or dissatisfaction with their choice. The introduction

of regret minimization to decision theory is historically attributed to Savage (1951). Em-

pirical evidence (Bleichrodt et al. 2010) supports that many decision-makers are “regret-

averse” and corroborates the idea that optimizing regret generally leads to less conser-

vative decisions than those produced by robust optimization (Perakis and Roels 2008,

Natarajan et al. 2014, Caldentey et al. 2017). This has given rise to numerous applica-

tions of regret minimization in decision-making problems, including but not limited to

portfolio selection (Lim et al. 2012), shortest path, subset selection (Natarajan et al. 2014),

spanning tree, ranking problems (Audibert et al. 2014), and pricing and mechanism de-



sign (Caldentey et al. 2017, Koçyiğit et al. 2022); nevertheless, the numerical optimization

of minimum regret problem is a real challenge in general. For instance, while expected

value model (EVM) and robust optimization (RO) formulations are polynomially solv-

able in the case of a linear program with objective coefficients known to reside in a box

uncertainty set, Averbakh and Lebedev (2005) proved that the alternative regret mini-

mization problem becomes strongly NP-hard to solve. With the exception of some sim-

ple classes of the regret minimization problem, most implementations require specifically

structured approximation solution methods, which in itself highlights the need for gen-

eral exact and approximate solution schemes.

This concern becomes more serious when it comes to two-stage regret minimization

problems, a case where the literature is quite scarce. Whereas most of the existing pieces

of research (see Assavapokee et al. 2008a, Assavapokee et al. 2008b, Jiang et al. 2013, Ng

2013, Chen et al. 2014, Ning and You 2018) study two-stage worst-case regret minimiza-

tion problem under specific uncertainty assumptions, their designed solution methods,

in general, are based on mixed integer programs together with a column-and-constraint

generation approach. On an exceptional basis, Bertsimas and Dunning (2020) exploit

linear decision rules to provide a linear program that conservatively approximates the

two-stage worst-case absolute regret minimization problem with right-hand side uncer-

tainty. The lack of a general solution method for two-stage regret minimization problems,

together with the availability of a rich pool of modern exact and approximate solution

methods for two-stage robust optimization problems bring up the natural question of

whether it is possible to reformulate the former class of problems as the latter or identify

a polynomially solvable subclass of two-stage regret minimization problems. The first

chapter of this thesis attempts to find an answer to these fundamental questions under

both absolute and relative regret paradigms.

Most of the literature on regret minimization focuses on minimizing the worst-case re-

gret, which is based solely on the support information of uncertain parameters. However,

there have also recently been a few works that started investigating how distributional in-

formation and alternative risk measures can be used to measure regret. As a result of this

extension, two distinct reformulations for regret minimization problems have implicitly

emerged, namely ex-ante and ex-post regret. Natarajan et al. (2014) study ex-post regret

2



using a worst-case Conditional Value-at-Risk (CVaR) measure. In this case, the decision-

maker benchmarks her decision against one that has access to the future realization of the

unknown parameter (the optimal hindsight decision) and measures the worst-case CVaR

of this difference. On the contrary, Yue et al. (2006), and Perakis and Roels (2008) use the

ex-ante formulation that employs a worst-case risk measure. They employ the worst-case

expected value to measure regret and rather interpret it as the expected value of distribu-

tion information (EVDI) or the maximum value of stochastic modeling (see Delage et al.

2014). In the ex-ante regret formulation, the decisions are compared against a benchmark

decision, which only knows the distribution of the uncertain parameter instead of its

realization.

The primary distinction between ex-ante and ex-post regret formulations is the infor-

mation structure imposed on the benchmark decision. This distinction raises several in-

teresting questions: How do these information structures influence the decisions and the

optimal values of regret minimization models? How do different risk measures behave

in the contexts of ex-ante and ex-post regret formulations? Can we identify additional

information structures that potentially interpolate between these two extreme cases in

a multistage decision making context? Chapter 2 of this thesis tackles these questions

by conducting theoretical and numerical analyses of a new risk-averse multistage regret

minimization model, called the ∆-regret model. More specifically, in a multistage setting,

the ∆-regret model explores the idea of evaluating regret under a popular risk measure,

where a benchmark policy can only benefit from foreseeing ∆ steps into the future. We

demonstrate how this model incorporates ex-ante and ex-post regret formulations as spe-

cial cases.

Recently, the community of stochastic programming has been interested in a new

family of models known as contextual optimization models, where a decision maker has

access to side information that can be exploited to better predict the unknown parame-

ters and lead, in turn, to higher quality decisions. This raises the question of how regret

models should be adapted to address this contextual setting and, perhaps more impor-

tantly in a data-driven context, how they can be designed in a way that makes them

robust to estimation error. Chapter 3 addresses these two questions by proposing a new

distributionally robust contextual relative regret minimization model. We call this the

3



distributionally robust prescriptiveness competitive ratio problem as it aims at optimiz-

ing a robust form of the so-called coefficient of prescriptiveness introduced in Bertsimas

and Kallus (2020). Intuitively, our prescriptiveness competitive ratio compares the differ-

ence between the performance of a proposed policy and the optimal hindsight decision,

which we may refer to as our policy’s ex-post regret, to the ex-post regret achieved by

a reference policy that does not exploit the side-information. This optimization problem

further has interesting connections to both the famous coefficient of determination used

in statistics, and the ∆-regret model proposed in Chapter 2.

The main contributions of this thesis can be summarized as follows. In the first chap-

ter, we study both two-stage worst-case absolute and relative regret minimization prob-

lems in which uncertainty impacts either the right-hand side or objective function and

reformulate them as two-stage worst-case robust optimization problems. We identify

conditions under which one can obtain exact and conservative approximate solutions

by exploiting popular adjustable robust optimization decomposition schemes and linear

decision rules. Our experiments for a multi-item newsvendor problem and a produc-

tion transportation problem provide evidence to support the high quality of solutions

obtained through employing linear decision rules; furthermore, we establish a subclass

of regret minimization problems for which these approximate decisions are proven exact.

In particular, this discovery leads to the identification of a class of two-stage worst-case

regret minimization problems for which we know a general solution method with poly-

nomial solution time.

The second chapter of this thesis contributes to the regret minimization literature in

multiple directions. In a multistage stochastic programming setting with a discrete prob-

ability distribution, we explore the idea of risk-averse regret minimization. We introduce

the ∆-regret model, which allows the decision-maker to impose the arbitrary information

structure on the benchmark policy. In particular, in a T -period problem, setting ∆ = 0

reduces to the so-called ex-ante regret minimization problem, where the benchmark pol-

icy has similar information as the decision-maker; on the contrary, adjusting ∆ = T − 1

leads to the ex-post regret minimization problem in which the benchmark policy knows

all the future realizations of the uncertain parameter; and for any other integer value that

falls in between, the ∆-regret model interpolates between the ex-ante and ex-post mod-
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els, allowing the benchmark policy get access to up to ∆ stages ahead information. We

provide theoretical and experimental insights on how the ∆-regret model behaves under

popular risk measures for different values of ∆.

In the third chapter, we consider a data-driven context where the side information

can potentially lead to more anticipative decisions. We propose a novel distributionally

robust conditional stochastic optimization model where a prescriptiveness competitive

ratio replaces the classical conditional stochastic programming objective. We reformu-

late this problem as a convex optimization problem and demonstrate how it reduces to

a linear program when nested CVaR represents the ambiguity set. A bisection algorithm

is proposed for solving this problem which can be further expedited through an accel-

eration scheme. We discuss how this novel conditional optimization model is connected

to the ∆-regret model studied in Chapter 2; more specifically, we show that this model

spans both ∆ = 1 (ex-post) and, in some sense, ∆ = −1 regret minimization models.

Since, in the latter case, the decision maker has access to the side information, indeed

she has more extensive information compared to the ex-ante regret minimization model

(∆ = 0). On the experimental side, we study a shortest path problem and evaluate the

robustness of the resulting decisions against alternative methods when the out-of-sample

dataset experiences a distribution shift compared to the in-sample dataset.
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Chapter 1

Adjustable Robust Optimization

Reformulations of Two-Stage

Worst-case Regret Minimization

Problems

Abstract

This chapter explores the idea that two-stage worst-case regret minimization problems

with either objective or right-hand side uncertainty can be reformulated as two-stage ro-

bust optimization problems and can therefore benefit from the solution schemes and the-

oretical knowledge that have been developed in the last decade for this class of problems.

In particular, we identify conditions under which a first-stage decision can be obtained

either exactly using popular adjustable robust optimization decomposition schemes, or

approximately by conservatively employing affine decision rules. Furthermore, we pro-

vide both numerical and theoretical evidence that in practice the first-stage decision ob-

tained using affine decision rules is of high quality. Initially, this is done by establishing

mild conditions under which these decisions can be proven exact, which effectively ex-

tends the space of regret minimization problems known to be solvable in polynomial

time. We further evaluate both the computational efficiency of this tractable approxima-



tion scheme and the sub-optimality of the resulting policies on a multi-item newsvendor

problem and a production transportation problem.

1.1 Introduction

When employing optimization in the context of uncertainty, a well-known alternative

to minimizing expected value or the worst-case scenario, a.k.a. expected value model

(EVM) and robust optimization (RO) respectively, consists in minimizing the regret ex-

perienced once the decision maker finds out that another action would have achieved

a better performance under the realized scenario. Historically, while the paradigm of

worst-case absolute regret minimization is usually attributed to Savage (1951), it became

a legitimate representation of preferences through its axiomatization in Milnor (1954)

and more comprehensively in Stoye (2011). Empirical studies (e.g. in Loomes and Sug-

den 1982 and in Bleichrodt et al. 2010) have also supported the idea that some decision

makers are “regret averse” in the sense that they are inclined to abandon alternatives

that might lead to large regret once they realize what would have been the best actions

in hindsight. In the operations research literature, there is recently a growing number of

studies that describe regret minimization models as leading to less “conservative” deci-

sions than those produced by robust optimization (Perakis and Roels, 2008; Aissi et al.,

2009; Natarajan et al., 2014; Caldentey et al., 2017). In particular, this reduced conser-

vatism, which is often considered as the Achilles’ heel of robust optimization, is achieved

without requiring the assumption of knowing an underlying distribution. In support of

this popular belief, we refer interested readers to Section 1.8.1 where it is shown that, in

a simple newsvendor problem, orders made by a regret averse agent are always of larger

magnitude than those proposed by robust optimization.

An important obstacle in the application of regret minimization models resides in

the fact that they can give rise to a serious computational challenge. In particular, while

both EVM and RO formulations are polynomially solvable in the case of a linear program

with objective coefficients known to reside in their respective interval (a.k.a. box uncer-

tainty), Averbakh and Lebedev (2005) demonstrated that the worst-case regret minimiza-

tion problem is strongly NP-hard. While there have been extensive efforts invested in
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the development of exact and approximate solution schemes, most of these focus on spe-

cific applications of single-stage mixed-integer programs (e.g., shortest path, knapsack,

single-period portfolio optimization). More recently, some attention was driven towards

general forms of two-stage continuous/mixed-integer linear programs but, with the ex-

ception of Bertsimas and Dunning (2020) who applied affine decision rules to a facility

location problem with right-hand side uncertainty, there has been no general tractable

conservative approximation scheme proposed for these models. In comparison, while

two-stage robust optimization problem is also known to be strongly NP-hard when un-

certainty appears in the constraints (see Guslitser 2002, Minoux 2009), there has been ac-

tive research in the last 10 years about deriving and analyzing tractable solution schemes

for some of the most general forms of the problem (see for instance Yanikoglu et al. 2018

for a recent survey). Moreover, these efforts have led to the development of software

packages (e.g., ROME in Goh and Sim 2011 and JuMPeR in Dunning et al. 2017) that

facilitate the implementation of these solution schemes and certainly promoted its use

in applications. Among these different schemes, there is no doubt that the most pop-

ular one, which was initially proposed in Ben-Tal et al. (2004) and will be referred to

as the linear decision rule approach (as popularized in Kuhn et al. 2011), approximates

the second-stage decision with a decision rule that is affine with respect to the uncertain

parameters.

Generally speaking, this chapter explores both theoretically and numerically the idea

that regret minimization problems can be reformulated as two-stage robust optimization

problems and can therefore benefit from the tractable solution schemes and theoretical

knowledge that has been developed in the last decade for this class of problems. In

particular, we make the following contributions:

• We establish for the first time how, in a general two-stage linear programming set-

ting with either objective or right-hand side uncertainty, both worst-case absolute

regret minimization and worst-case relative regret minimization problems can be

reformulated as a two-stage robust linear program. We also identify weak condi-

tions on the regret minimization problems under which a tractable conservative

approximation can be obtained by employing the concept of affine decision rules.
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Alternatively, we state conditions under which an exact solution can be obtained

using the column-and-constraint generation algorithm proposed in Zeng and Zhao

(2013) or in Ayoub and Poss (2016).

• We establish mild conditions on the regret minimization problem under which the

theory developed in Bertsimas and Goyal (2012) and Ardestani-Jaafari and Delage

(2016) can be exploited to demonstrate that the solution obtained using affine de-

cision rules is exact. These results effectively both extend the class of regret mini-

mization problems for which a polynomial-time solution method is known to exist

and support the claim that in practice affine decision rules identify solutions of high

quality.

• We present the results of numerical experiments that provide further evidence that

the solutions obtained using affine decision rules are of high quality. In particu-

lar, we investigate both the computational efficiency of the solution methods and

sub-optimality of such approximate first-stage decisions in multi-item newsvendor

problems and production-transportation problems. We also illustrate how much

improvement can be achieved in terms of worst-case regret by passing from a ro-

bust solution to a regret minimizing solution.

The rest of the chapter is composed as follows. Section 1.2 reviews the relevant litera-

ture and highlights the relevance of our proposed reformulations. Section 1.3 introduces

the notation of two-stage linear programming models and summarizes some relevant

results from the literature on two-stage robust optimization models. Section 1.4 pro-

poses a two-stage robust optimization reformulation for two-stage worst-case absolute

regret minimization with right-hand side uncertainty and for the one with objective un-

certainty. Section 1.5 presents analogous results for the case of relative regret. Section 1.6

identifies conditions under which the use of affine decision rules in the robust optimiza-

tion reformulations identifies exactly optimal first-stage decisions. Section 1.7 presents

our numerical experiments. Finally, all proofs and additional materials are deferred to

Section 1.8.
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1.2 Review of the Literature on Regret Minimization

The computational challenges related to solving combinatorial worst-case regret mini-

mization problems have been extensively tackled in the recent literature (see two com-

prehensive surveys Kouvelis and Yu (1996); Aissi et al. (2009) and references therein). In

the domain of continuous decision variables, most research has focused on the single-

stage version of the problem. In particular, a small number of single-stage linear re-

gret minimization problems are known to be polynomial-time solvable. As presented in

Gabrel and Murat (2010) and more recently in Bertsimas and Dunning (2020), this is the

case for general linear programs with right-hand side and polyhedral uncertainty since

these problems can be reformulated as equivalent linear programs. Averbakh (2004) also

identifies an O(n log(n)) algorithm for solving the minimum regret problem in resource

allocation problems with objective and interval uncertainty. This approach is improved

to linear time by Conde (2005) for the continuous knapsack problem. Nevertheless,

the case of a general single-stage linear program with interval objective function uncer-

tainty is known to be strongly NP-hard (see Averbakh and Lebedev 2005) and has moti-

vated many algorithmic developments. First, Inuiguchi and Kume (1994), Inuiguchi and

Sakawa (1995), and Inuiguchi and Sakawa (1997a) proposed to tackle the worst-case re-

gret minimization problem by replacing the box uncertainty set with the list of its extreme

points, and inserting these points progressively using a constraint generation procedure.

In order to speed up the identification of violated constraints, Inuiguchi and Sakawa

(1996) replace the exhaustive search with a branch-and-bound procedure that effectively

solves a mixed-integer linear programming (MILP) formulation of the regret maximiza-

tion subproblem. This MILP reformulation is further improved in Mausser and Laguna

(1998) by exploiting the piecewise linear structure of the problem and a fast heuristic for

identifying strong cuts is proposed in Mausser and Laguna (1999a), who also ported the

constraint generation scheme to relative regret problems in Mausser and Laguna (1999b).

The constraint generation procedure was extended for the first time to general polyhe-

dral uncertainty in Inuiguchi and Sakawa (1997b) yet its numerical efficiency was further

improved using an outer approximation scheme in Inuiguchi et al. (1999), and a cutting

hyperplanes scheme in Inuiguchi and Tanino (2001). A summary of this prior work on
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single-stage problems is presented in Table 1.7 in Section 1.8.2.

In comparison with single-stage, the work on two-stage linear programs is rather

scarce. First, in terms of application-specific methods, one might consider Vairaktarakis

(2000) which proposes a linear time algorithm to solve multi-item newsvendor absolute

and relative regret minimization problems with interval demand uncertainty and which

proposes a dynamic programming approach for the NP-hard case of scenario-based un-

certainty. Yue et al. (2006) and Perakis and Roels (2008) define closed-form solutions for

the stochastic version of this problem with only one item, absolute regret, and distribu-

tion ambiguity, while Zhu et al. (2013) extend some of these results to the relative regret

form. Zhang (2011) also studied a related two-stage uncapacitated lot-sizing problem

with binary first-stage decisions and interval uncertainty on demands and identified a

dynamic programming method that provides optimal solutions in polynomial time.

Table 1.8 (in Section 1.8.2) summarizes studies that propose general solution schemes.

Specifically, Assavapokee et al. (2008b) consider two-stage worst-case absolute and rela-

tive regret minimization problems with binary first-stage decisions, continuous recourse

variables, and scenario-based parametric uncertainty. The proposed approach is a pre-

cursor of the column-and-constraint generation (C&CG) algorithm in Zeng and Zhao

(2013) as it relies on progressively introducing worst-case scenarios (found using an ex-

haustive search) in a master problem that optimizes both the first-stage decisions and

recourse decisions for this subset of scenarios. This C&CG approach is extended to the

case of box uncertainty set in Assavapokee et al. (2008a) where uncertainty only affects

the right-hand side of constraints and the coefficients that are multiplied to first-stage

decisions. This allows the authors to solve the regret maximization subproblem using

two MILP reformulations that respectively generate feasibility and optimality cuts. This

C&CG is further extended to the case of polyhedral uncertainty in Jiang et al. (2013)

where the subproblem is solved approximately using coordinate ascent, and in Chen

et al. (2014), which successfully identifies an exact MILP reformulation when uncertainty

only affects the right-hand side of constraints.

Ng (2013) investigates problems that minimize the sum of linearly penalized per-

turbed constraint violations, which are special cases of two-stage linear worst-case ab-

solute regret minimization problem with polyhedral uncertainty. The author proposes a
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conservative approximation that takes the form of a two-stage robust optimization prob-

lem yet remains intractable. He employs a constraint generation scheme which involves

solving a MILP at each iteration. Note that while the reformulations that we propose in

Sections 1.4 and 1.5 will similarly lead to two-stage robust optimization models, our re-

formulations will be exact and available whether absolute or relative regret is considered.

Furthermore, by using affine decision rules, our proposed conservative approximation

models will be tractable in the sense that they can be reformulated as linear programs of

comparable size.

More recently, Bertsimas and Dunning (2020) used a facility location problem to il-

lustrate how affine decision rules can be used to conservatively approximate two-stage

absolute regret minimization problems with right-hand side uncertainty. In contrast, our

proposed conservative approximation will be in general tighter and applicable whether

uncertainty lies in the objective function or the constraints. We further identify for the

first time mild conditions under which our proposed conservative approximations and

the one used in Bertsimas and Dunning (2020) are exact.

Finally, Ning and You (2018) suggested reformulating two-stage problems with right-

hand side polyhedral uncertainty exactly as two-stage robust optimization models yet

did not extend this procedure to relative regret or to problems with objective uncertainty

as we will present. The authors also mistakenly assume that worst-case scenarios always

occur at extreme points of the polyhedral uncertainty set. This is in turn used to formulate

a MILP that generates violated constraints in a C&CG approach effectively providing

an optimistic approximation to the regret minimization problem (see Section 1.8.3 for an

example). Finally, a distinguishing feature of our work will be to describe for the first time

how linear decision rules can be tractably employed to obtain conservative solutions for

a large family of two-stage regret minimization problems, and conditions under which

such decision rules actually return exact solutions.
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1.3 Modern Solution Methods for Two-Stage Adjustable

Robust Optimization

In this section, we introduce our notation and present a number of modern solution meth-

ods that have appeared in recent literature concerning two-stage robust linear optimiza-

tion problem. While the version of this model with right-hand side uncertainty is known

to be intractable, we survey methods that either seek optimal solutions, conservative ap-

proximation, or optimistic bounds. We later present the case of objective uncertainty for

which there is a tractable reformulation.

1.3.1 The Case of Fixed Recourse and Right-Hand Side Uncertainty

In this section, the focus is on the following two-stage linear robust optimization model

with fixed recourse (TSLRO):

(TSLRO) maximize
x,y(·)

inf
ζ∈U

(Cζ + c)Tx+ dTy(ζ) + fT ζ (1.1a)

subject to Ax+By(ζ) ≤ Ψ(x)ζ +ψ , ∀ ζ ∈ U (1.1b)

x ∈ X , (1.1c)

where x ∈ Rnx is the first-stage decision vector implemented immediately while y :

Rnζ → Rny is a strategy for the second-stage decision vector that is implemented only

once the vector of uncertain parameters ζ ∈ Rnζ has been revealed. Furthermore, we

have that C ∈ Rnx×nζ , c ∈ Rnx , d ∈ Rny , f ∈ Rnζ , A ∈ Rm×nx and B ∈ Rm×ny , and

assume that ψ ∈ Rm and Ψ : Rnx → Rm×nζ is an affine mapping of x. Note that d and

B are not affected by uncertainty which is also referred to as satisfying the fixed recourse

property. Finally, we assume that both X and U are non-empty polyhedra such that when

the latter is bounded one retrieves the more common minζ∈U notation.

A special kind of TSLRO model emerges when the uncertain vector ζ only influences

the right-hand side of constraint (1.1b) and gives rise to the following definition.

Definition 1.3.1 A TSLRO problem is considered to have “right-hand side uncertainty” when

C = 0, f = 0, and Ψ(x) = Ψ.
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TSLRO problems with right-hand side uncertainty arise for instance in a number of in-

ventory management, and logistics problems (see Melamed et al. 2016; Kim and Chung

2017; Simchi-Levi et al. 2019).

The TSLRO problem can also be equivalently reformulated in a form where the two

stages of decisions are made explicit:

(TSLRO) maximize
x∈X

inf
ζ∈U

h(x, ζ), (1.2a)

where h(x, ζ) is defined as:

h(x, ζ) := sup
y

(Cζ + c)Tx+ dTy + fT ζ (1.3a)

s.t. Ax+By ≤ Ψ(x)ζ +ψ . (1.3b)

In Ben-Tal et al. (2004), the authors established that the TSLRO problem is NP-hard

in general due to the so-called “adversarial problem”, i.e. infζ∈U h(x, ζ), which reduces

to the minimization of a piecewise linear concave function over an arbitrary polyhedron.

Since this seminal work, a number of methods have been proposed to circumvent this

issue. We present a subset of these methods in the rest of this section where it will be

useful to refer to some of the following assumptions.

Assumption 1.3.1 The sets X and U are non-empty polyhedra of the respective form X :=

{x ∈ Rnx |Wx ≤ v}, with W ∈ Rr×nx and v ∈ Rr, and U := {ζ ∈ Rnζ |Pζ ≤ q}, with

P ∈ Rs×nζ and q ∈ Rs. Furthermore, there exists a triplet (x, ζ,y) such that x ∈ X , ζ ∈ U ,

and Ax+By ≤ Ψ(x)ζ +ψ.

Assumption 1.3.2 The feasible set X is such that it is always possible to identify a recourse

action y that will satisfy all the constraints under any realization ζ ∈ U , a property commonly

referred as “relatively complete recourse”. Specifically:

X ⊆ {x ∈ Rnx |∀ζ ∈ U ,∃y ∈ Rny , Ax+By ≤ Ψ(x)ζ +ψ} . (1.4)

Assumption 1.3.3 For all x ∈ X there exists a ζ ∈ U such that the recourse problem (1.3) is

bounded. In other words, this assumes that the TSLRO problem is bounded.
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1.3.1.1 The Column-and-Constraint Generation Method

A so-called column-and-constraint generation (C&CG) method was proposed in Zeng

and Zhao (2013) to identify an exact solution for the TSLRO problem. Specifically, in its

simplest form this method can be applied when Assumptions 1.3.1, 1.3.2, and 1.3.3 are

satisfied together with the following assumption.

Assumption 1.3.4 For all feasible first-stage decisions, there is a lower bound on the worst-case

profit achievable, i.e. for all x ∈ X , infζ∈U h(x, ζ) > −∞.

In particular, the latter assumption is straightforwardly met when the uncertainty set U

is bounded. The C&CG method then exploits the fact that h(x, ζ) is convex with respect

to ζ to reformulate Problem (1.2) equivalently as :

maximize
x∈X

min
ζ∈Uv

h(x, ζ) ,

where Uv = {ζ̄1, ζ̄2, ..., ζ̄K} is the set of vertices of U , i.e. U = ConvexHull(Uv) when U

is bounded. This allows one to approximate the TSLRO problem as a restricted master

problem:

maximize
x,{yk}k∈K′

min
k∈K′

c(ζ̄k)
Tx+ dTyk + f

T ζ̄k (1.5a)

subject to Ax+Byk ≤ Ψ(x)ζ̄k +ψ , ∀ k ∈ K′ (1.5b)

x ∈ X , (1.5c)

where K′ ⊆ {1, 2, . . . , K} such that U ′
v = {ζ̄k}k∈K′ ⊆ Uv, and where each yk ∈ Rny .

Problem (1.5) provides an upper bound for the optimal value of the TSLRO problem.

This bound can be further tightened by introducing additional vertices in K′. Given any

x ∈ X that is optimal with respect to Problem (1.5), one can identify an additional worst-

case vertex by solving the NP-hard adversarial problem minζ∈Uv h(x, ζ). The algorithm

will converge after a number of iterations that is necessarily less or equal to the number of

vertices,K. Recently, it has become common practice (see problem (15)−(20) in Zeng and

Zhao 2013) to reformulate the adversarial problem as a mixed-integer linear program. We

refer interested readers to Section 1.8.5 for a description of this MILP.
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1.3.1.2 Conservative Approximation Using Linear Decision Rules

A common approach (initially proposed in Ben-Tal et al. 2004) for formulating a tractable

approximation of the TSLRO problem consists in restricting y(·) to take the form of an

affine policy y(ζ) := Y ζ + y, where Y ∈ Rny×nζ and y ∈ Rny . This gives rise to what is

commonly referred as the affinely adjustable robust counterpart (AARC) model:

(AARC) maximize
x∈X ,y,Y

inf
ζ∈U

(Cζ + c)Tx+ dT (Y ζ + y) + fT ζ (1.6a)

subject to Ax+B(Y ζ + y) ≤ Ψ(x)ζ +ψ , ∀ ζ ∈ U . (1.6b)

It is said that the AARC problem conservatively approximates the TSLRO problem since

it identifies a solution pair (x̂, ŷ(·)) that is necessarily feasible according to the TSLRO

model and since its optimal value provides a lower bound on the optimal value of the

TSLRO problem.

A linear programming reformulation of Problem (1.6) can be obtained by exploiting

Assumption 1.3.1, which ensures that U is non-empty, together with the principles of

duality theory. Indeed, this gives rise to Problem (1.6)’s so called equivalent robust coun-

terpart:

maximize
x∈X ,y,Y,Λ,λ

cTx+ dTy − qTλ (1.7a)

subject to CTx+ Y Td+ f + P Tλ = 0 (1.7b)

Ax+By −ψ + Λq ≤ 0 (1.7c)

Ψ(x)−BY + ΛP = 0 (1.7d)

Λ ≥ 0,λ ≥ 0 , (1.7e)

where λ ∈ Rs and Λ ∈ Rm×s are the dual variables that arise when applying duality to

the objective function (1.6a) and each constraint of (1.6b), respectively.

In the last decade, a number of theoretical and empirical arguments have reinforced

a prevailing belief that linear decision rules provide high-quality solutions to TSLRO

problems. One might for instance refer to Bertsimas et al. (2010b) and Ardestani-Jaafari

and Delage (2016) for conditions under which this approach is exact.
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1.3.1.3 Other Solution Schemes

There exists a rich pool of additional methods that have been proposed to solve TSLRO

problems of the form presented in Problem (1.1). While we encourage the reader to refer

to Delage and Iancu (2015) and Yanikoglu et al. (2018) for a more exhaustive description,

we summarize below the main categories of approach.

In terms of exact methods, it is worth mentioning the work of Ayoub and Poss (2016),

which provides a second column-and-constraint generation algorithm for deriving the

exact solutions of TSLRO problems whereC = 0 and d = 0. This algorithm is particularly

useful for problems where Assumption 1.3.2 is violated.

In terms of approximation methods, Kuhn et al. (2011) show how linear decision rules

can also be applied on a dual maximization problem associated to the TSLRO to obtain

lower bounds on its optimal value. Alternatively, one can also obtain lower bounds by

replacing U with a finite subset of carefully selected scenarios (see Hadjiyiannis et al.

2011). Regarding conservative approximations, Chen et al. (2008) and Chen and Zhang

(2009) explain how to employ piecewise linear (a.k.a. segregated) decision rules, while

Ben-Tal et al. (2009) and Bertsimas et al. (2011) investigate the use of quadratic and poly-

nomial decision rules, respectively. To improve the quality of solutions obtained using

structured decision rules, Zhen et al. (2018) propose to eliminate some adjustable vari-

ables while Ardestani-Jaafari and Delage (2020) recommend reformulating an equivalent

“complete recourse” problems.

Interestingly, it was recently observed in Bertsimas and de Ruiter (2016) that any

TSLRO problem could be equivalently reformulated as a “dualized” TSLRO. The authors

show empirically that this can improve numerical efficiency when using affine decision

rules. This also allows them to obtain tighter lower bounds on TSLRO by exploiting the

idea of Hadjiyiannis et al. (2011) on both versions of the TSLRO. One might also suspect

that methods such as C&CG could perform differently whether they are applied on the

original TSLRO or its dualized form.

Finally, an important recent methodological development consists in deriving exact

copositive programming reformulations for the TSLRO problem (see Xu and Burer 2018

and Hanasusanto and Kuhn 2018). While copositive programming is known to be NP-
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hard in general, there are known hierarchies of tractable approximation models for these

mathematical programs that will eventually identify an exactly optimal solution.

1.3.2 The Case of Objective Function Uncertainty

An alternative class of two-stage robust linear optimization problems makes the assump-

tion that the uncertainty is limited to the objective function. This is summarized in the

following formulation:

maximize
x∈X ,y(·)

inf
ζ∈U

cTx+ dT (ζ)y(ζ) (1.8a)

subject to Ax+By(ζ) ≤ ψ , ∀ ζ ∈ U , (1.8b)

where d : Rnζ → Rny is assumed to be an affine mapping of ζ, i.e. that we can character-

ize it in the form d(ζ) := Dζ + d, for some D ∈ Rny×nζ and d ∈ Rny .

Remark 1.3.1 Note that Problem (1.8) can also accommodate situations where c is uncertain

simply by lifting the space of second-stage decisions. Namely,

maximize
x∈X ,y(·)

inf
ζ∈U

c(ζ)Tx+ dT (ζ)y(ζ) ≡ maximize
x∈X ,yy(·),yx(·)

inf
ζ∈U

cT (ζ)yx(ζ) + d
T (ζ)yy(ζ)

subject to Ax+By(ζ) ≤ ψ , ∀ ζ ∈ U , subject to x− yx(ζ) ≤ 0 , ∀ ζ ∈ U

− x+ yx(ζ) ≤ 0 , ∀ ζ ∈ U

Ax+Byy(ζ) ≤ ψ , ∀ ζ ∈ U ,

where yx : Rnζ → Rnx and yy : Rnζ → Rny . In this work, we adopt the more concise definition

to simplify the exposition.

As for the case of TSLRO, the model can be reformulated in a format that emphasizes

the dynamics:

maximize
x∈X

inf
ζ∈U

h(x, ζ) , (1.9)

where the recourse problem is defined as:

h(x, ζ) := sup
y

cTx+ dT (ζ)y (1.10a)

s.t. Ax+By ≤ ψ . (1.10b)
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From a computational perspective, it is interesting to consider the case where Assump-

tions 1.3.1, 1.3.2 and 1.3.3 are applicable. In particular, Assumption 1.3.2, which was re-

ferred as relatively complete recourse, simply reduces to the fact that X ⊆ {x ∈ Rnx |∃y ∈

Rny , Ax + By ≤ ψ}. Under these conditions, Problem (1.8) becomes more appealing

than the TSLRO problem in (1.1) as one can easily verify that it can be reformulated as an

equivalent linear program.

Lemma 1.3.1 Given that Assumptions 1.3.1, 1.3.2 and 1.3.3 are satisfied, Problem (1.8) can be

reformulated as the following equivalent linear program:

maximize
x∈X ,y,λ

cTx+ dTy − qTλ (1.11a)

subject to Ax+By ≤ ψ (1.11b)

P Tλ+DTy = 0 (1.11c)

λ ≥ 0 , (1.11d)

where λ ∈ Rs.

1.4 TSLRO Reformulations for Worst-case Absolute Regret

Minimization Problems

As defined in Savage (1951), the worst-case absolute regret criterion aims at evaluating

the performance of a decision x with respect to the so-called “worst-case regret” that

might be experienced in hindsight when comparing x to the best decision that could have

been made. Mathematically speaking, given a profit function h(x, ζ), which depends

on both the decision and the realization of some uncertain vector of parameters ζ, one

measures the regret experienced once ζ is revealed as the difference between the best

profit achievable supx′∈X h(x
′, ζ) and the profit h(x, ζ) achieved by the decision x that

was implemented. The worst-case absolute regret minimization (WCARM) problem thus

takes the form:

(WCARM) minimize
x∈X

sup
ζ∈U

{
sup
x′∈X

h(x′, ζ)− h(x, ζ)

}
, (1.12)

which is well-defined when one makes the assumption that the best profit achievable in

hindsight never reaches infinity under any scenario for ζ.
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Assumption 1.4.1 The best profit achievable is bounded, i.e., supζ∈U ,x∈X h(x, ζ) <∞.

Assumption 1.4.1 is a natural condition to impose on the WCARM problem and implies

Assumption 1.3.3. When Assumption 1.4.1 is not known to be satisfied, we will interpret

the WCARM model as:

minimize
x∈X

sup
ζ∈U

{
sup

x′∈X ,y′∈Y(x′,ζ)
inf

y∈Y(x,ζ)
cT (x′ − x) + dT (y′ − y)

}
,

where Y(x, ζ) is the set of feasible second-stage decisions given that x and ζ have re-

alized, and interpret the fact that WCARM is unbounded as indicating that the optimal

worst-case absolute regret is zero since there exists an x ∈ X such that for all ζ ∈ U there

is a way of reaching an arbitrarily large profit.1 There is therefore no absolute regret

under any circumstances when implementing such an x.

While we encourage interested readers to read an extensive review of the recent work

regarding this problem formulation in Aissi et al. (2009), in what follows we demonstrate

how the WCARM problem can be reformulated as a TSLRO problem when the profit

function h(x, ζ) captures the profit of a second-stage linear decision model with either

right-hand side or objective uncertainty.

1.4.1 The Case of Right-Hand Side Uncertainty

We consider the case where h(x, ζ) takes the form presented in Problem (1.3) and where

uncertainty is limited to the right-hand side as defined in Definition 1.3.1.

Proposition 1.4.1 Given that Assumption 1.3.1 is satisfied, the WCARM problem with right-

hand side uncertainty is equivalent to the following TSLRO problem:

maximize
x∈X ,y′(·)

inf
ζ′∈U ′

cTx+ dTy′(ζ′) + f ′T ζ′ (1.13a)

subject to Ax+By′(ζ′) ≤ Ψ′ζ′ +ψ, ∀ ζ′ ∈ U ′ , (1.13b)

where ζ′ ∈ Rnζ+nx+ny , y′ : Rnζ+nx+ny → Rny , f ′ = [0T −cT −dT ]T , and Ψ′ :=
[
Ψ 0 0

]
,

while U ′ is defined as the new uncertainty set:

U ′ := {ζ′ ∈ Rnζ+nx+ny |P ′ζ′ ≤ q′} (1.14)
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with

P ′ :=


P 0 0

0 W 0

−Ψ A B

 , and q′ :=


q

v

ψ

 .
Furthermore, this TSLRO reformulation naturally satisfies Assumption 1.3.1, but also satisfies

Assumptions 1.3.2 and 1.3.3 if the WCARM problem satisfies Assumption 1.3.2 and Assump-

tions 1.3.2 and 1.3.3 respectively, and satisfies Assumption 1.3.4 if the WCARM problem satisfies

Assumptions 1.3.4 and 1.4.1.

Proposition 1.4.1 states that the WCARM model with right-hand side uncertainty can

be reformulated as a TSLRO problem. This is interesting because it implies that it can

benefit from the exact solution methods and conservative approximations discussed in

Sections 1.3.1.1, 1.3.1.2, and 1.3.1.3. As an example, we provide below how affine decision

rules can be applied to this reformulation.

Corollary 1.4.1 Given that Assumption 1.3.1 is satisfied, the WCARM problem with right-hand

side uncertainty is conservatively approximated by

minimize
x∈X ,y,Y ′,Λ′,λ′

−cTx− dTy + q′Tλ′ (1.15a)

subject to Y ′Td+ f ′ + P ′Tλ′ = 0 (1.15b)

Ax+By −ψ + Λ′q′ ≤ 0 (1.15c)

Ψ′ −BY ′ + Λ′P ′ = 0 (1.15d)

Λ′ ≥ 0,λ′ ≥ 0 , (1.15e)

where Y ′ ∈ Rny×nζ+nx+ny , Λ′ ∈ Rm×s+r+m, and λ′ ∈ Rs+r+m.

It is worth noting that to obtain the reformulation presented in Corollary 1.4.1, one

needs to employ decision rules of the form y′(ζ′) := Y ′ζ′ + y = Yζζ + Yxx
′ + Yyy

′ + y,

for some Yζ ∈ Rny×nζ , Yx ∈ Rny×nx , and Yy ∈ Rny×ny , and where (x′,y′) captures the

best pair of actions one would have implemented if he had a-priori information about ζ.

Furthermore, one can easily show that the conservative approximation presented in (1.15)

is at least as tight as the conservative approximation proposed in Bertsimas and Dunning
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(2020) given that the latter employs affine decision rules of the form y′(ζ′) := Yζζ + y.

Section 1.8.4 further presents an example of two-item newsvendor problem where the

bound obtained with Problem (1.15) is strictly tighter.

If one is more interested in applying an exact method for solving WCARM, then as

long as the WCARM problem satisfies Assumptions 1.3.1, 1.3.2, 1.3.3, 1.3.4, and 1.4.1,

based on Proposition 1.4.1 one can straightforwardly apply the column-and-constraint

generation algorithm proposed in Section 1.3.1.1 to the TSLRO Problem (1.13).

1.4.2 The Case of Objective Uncertainty

We consider the case where h(x, ζ) takes the form presented in Problem (1.10).

Proposition 1.4.2 Given that Assumptions 1.3.1 and 1.3.2 are satisfied, the WCARM problem

with objective uncertainty is equivalent to the following TSLRO problem:

maximize
x,y′(·)

inf
ζ′∈U ′

(C ′ζ′ + c)Tx+ d′Ty′(ζ′) + f ′T ζ′ (1.16a)

subject to A′x+B′y′(ζ′) ≤ Ψ′ζ′ +ψ′ (1.16b)

x ∈ X , (1.16c)

where y′ : Rnζ+m → Rm+r, while U ′ is defined as the new uncertainty set:

U ′ := {ζ′ ∈ Rnζ+m|P ′ζ′ ≤ q′} (1.17)

with

P ′ :=


P 0

−D BT

D −BT

 , and q′ :=


q

d

−d

 ,
and where the matrices

C ′ :=
[
0 −AT

]
, d′ :=

−ψ
−v

 , f ′ :=

0
ψ

 ,
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A′ :=



0

0

0

0

0

0


, B′ :=



AT W T

−AT −W T

BT 0

−BT 0

−I 0

0 −I


, Ψ′ :=



0 0

0 0

D 0

−D 0

0 0

0 0


, and ψ′ :=



c

−c

d

−d

0

0


are considered. Furthermore, the TSLRO reformulation (1.16) satisfies Assumptions 1.3.1, 1.3.2,

and 1.3.3 when the WCARM also satisfies Assumptions 1.3.3 and 1.4.1, while the WCARM

needs to additionally satisfy Assumption 1.3.4 for the TSLRO reformulation to satisfy Assump-

tion 1.3.4.

Once again, Proposition 1.4.2 states that the WCARM model with objective uncer-

tainty can be reformulated as a TSLRO problem and can therefore benefit from solu-

tion methods developed for adjustable robust optimization problems. In particular, a

conservative approximation can be obtained using affine decision rules, which reduces

to the linear program (1.7) when Assumptions 1.3.1, 1.3.2, 1.3.3, and 1.4.1 are satisfied

by the WCARM. In order to implement the column-and-constraint generation algorithm

described in Section 1.3.1.1, one needs to additionally verify that the WCARM satisfies

Assumption 1.3.4.

1.5 TSLRO Reformulations for Worst-case Relative Regret

Minimization Problems

An alternative form of regret minimization problem considers regret in its relative, rather

than absolute, form. This approach is also equivalently measured according to a so-

called “competitive ratio”, which is a popular measure in the field of online optimization

(Borodin and El-Yaniv, 2005). As defined in Kouvelis and Yu (1996), the worst-case rel-

ative regret criterion aims at evaluating the performance of a decision x with respect to

the worst-case regret that might be experienced in hindsight relatively to the best deci-

sion that could have been made. Mathematically speaking, given a non-negative profit

function h(x, ζ), which depends on both the decision and the realization of some un-
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certain vector of parameters ζ, one measures the relative regret experienced once ζ is

revealed as the ratio of the difference between the best profit achievable supx′∈X h(x
′, ζ)

and the profit h(x, ζ) achieved by the decision x that was implemented, over the best

profit achievable. When Assumption 1.4.1 is satisfied, the worst-case relative regret min-

imization (WCRRM) problem thus takes the form:

(WCRRM) minimize
x∈X

sup
ζ∈U

{
supx′∈X h(x

′, ζ)− h(x, ζ)

supx′∈X h(x
′, ζ)

}
, (1.18)

where it is understood that the relative regret is null if supx′∈X h(x
′, ζ) = h(x, ζ) = 0.

Mathematically speaking, we might be more accurate by defining the WCRRM problem

as:

minimize
x∈X

sup
ζ∈U

lim
ϵ→0+

{
supx′∈X h(x

′, ζ)− h(x, ζ)

ϵ+ supx′∈X h(x
′, ζ)

}
.

Besides Assumption 1.4.1, the following two assumptions will be useful in deriving

TSLRO reformulations for WCRRM problems.

Assumption 1.5.1 The profit function h(x, ζ) ≥ 0 for all x ∈ X and all ζ ∈ U . This im-

plies that the WCRRM problem satisfies Assumption 1.3.2 and, with Assumption 1.4.1, that the

optimal value of Problem (1.18) lies in the closed interval [0, 1].

Assumption 1.5.2 It is possible to achieve a strictly positive worst-case profit, namely

∃x ∈ X , ∀ζ ∈ U , h(x, ζ) > 0 .

Together with Assumption 1.4.1, this implies that the optimal value of Problem (1.18) lies in the

open interval [0, 1[.

While Assumptions 1.4.1 and 1.5.1 simply formalize a hypothesis that needs to be made

for the WCRRM problem to be meaningful, we argue that Assumption 1.5.2 is made

without loss of generality since if it is not the case, then the WCRRM becomes trivial.

Indeed, one can then simply consider any x ∈ X as an optimal solution to the WCRRM

since it achieves the best possible worst-case relative regret, i.e. either 0% or 100%.

In what follows we demonstrate how the WCRRM problem can be reformulated as

a TSLRO problem when the profit function h(x, ζ) captures the profit of a second-stage

linear decision model with either right-hand side or objective uncertainty. Note that for
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completeness Section 1.8.14 presents similar TSLRO reformulation for the case where the

two-stage problem is a cost minimization problem, i.e. that h(x, ζ) is non-positive.

1.5.1 The Case of Right-Hand Side Uncertainty

We consider the case where h(x, ζ) takes the form presented in Problem (1.3) and where

uncertainty is limited to the right-hand side as defined in Definition 1.3.1.

Proposition 1.5.1 Given that Assumptions 1.3.1, 1.4.1, and 1.5.1 are satisfied, the WCRRM

problem with right-hand side uncertainty is equivalent to the following TSLRO problem:

maximize
x′∈X ′,y′(·)

inf
ζ′∈U ′

c′Tx′ (1.19a)

subject to A′x′ +B′y′(ζ′) ≤ Ψ′(x′)ζ′ +ψ′, ∀ ζ′ ∈ U ′ , (1.19b)

where x′ ∈ Rnx+1, ζ′ ∈ Rnζ+nx+ny , y′ : Rnζ+nx+ny → Rny , c′ = [−1 0T ]T , while X ′ :=

{[t xT ]T ∈ Rnx+1 |x ∈ X , t ∈ [0, 1]}, U ′ is defined as in equation (1.14) and

A′ :=

0 −cT

0 A

 , B′ :=

−dT
B

 ,
Ψ′(x′) :=

0T −cT −dT

Ψ 0 0

+

0T cT dT

0 0 0

x′1, ψ′ :=

0
ψ

 .
In particular, an optimal solution for the WCRRM takes the form of x∗ := x′∗

2:nx+1 and achieves

a worst-case relative regret of x′1
∗. Furthermore, this TSLRO reformulation necessarily satisfies

Assumption 1.3.1 while it only satisfies Assumption 1.3.2 if all x ∈ X achieve a worst-case regret

of zero.

Proposition 1.5.1 motivates the application of solution methods developed for ad-

justable robust optimization problems to WCRRM problems. It is clear for instance that

a conservative approximation that takes the form of the linear program (1.7) can readily

be obtained by using affine decision rules. Exact methods however must be designed in

a way that can handle TSLRO problems that do not satisfy relatively complete recourse.

In particular, in our numerical experiments, we will make use of the method proposed in

Ayoub and Poss (2016).
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1.5.2 The Case of Objective Uncertainty

We consider the case where h(x, ζ) takes the form presented in Problem (1.10).

Proposition 1.5.2 Given that Assumptions 1.3.1, 1.4.1, 1.5.1, and 1.5.2 are satisfied, the WCRRM

problem with objective uncertainty is equivalent to the following TSLRO problem:

maximize
x′,y′(·)

inf
ζ′∈U ′

c′Tx′ (1.20a)

subject to A′x+B′y′(ζ′) ≤ Ψ′(x′)ζ′ +ψ′ (1.20b)

x′ ∈ X ′, (1.20c)

where x′ ∈ Rnx+1, y′ : Rnζ+m → Rm+r, while X ′ := {[u zT ]T ∈ Rnx+1 |Wz ≤ vu, u ≥ 1},

U ′ is defined as in equation (1.17). Furthermore, we have that c′ := [−1 0T ]T , while

A′ :=



0 −cT

0 0

0 0

0 0

0 0

0 0

0 0


, B′ :=



ψT vT

AT W T

−AT −W T

BT 0

−BT 0

−I 0

0 −I


,

Ψ′(x′) :=



0T ψTx′1 − x′T
2:nx+1A

T

0 0

0 0

D 0

−D 0

0 0

0 0


, and ψ′ :=



0

c

−c

d

−d

0

0


.

In particular, an optimal solution for the WCRRM takes the form of x∗ := x′∗
2:nx+1/x

′∗
1 and

achieves a worst-case relative regret of 1 − 1/x′∗1 . Finally, this TSLRO reformulation necessarily

satisfies Assumption 1.3.1 while it only satisfies Assumption 1.3.2 if all x ∈ X achieve a worst-

case regret of zero.
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This final proposition reformulating WCRRM problems with objective uncertainty as

TSLRO problems motivates once more the application of solution methods developed

for adjustable robust optimization problems to this under-explored class of problems.

In particular, a tractable conservative approximation can directly be obtained by using

affine decision rules while to obtain an exact solution, a method such as proposed in

Ayoub and Poss (2016) needs to be employed.

1.6 Optimality of Affine Decision Rules

In this section, we derive conditions under which one can establish that affine decision

rules are optimal in the TSLRO reformulation of WCARM and WCRRM problems. These

results will draw their arguments from similar results that have been established for two-

stage robust optimization. In fact, perhaps the most famous of those results is attributed

to Bertsimas and Goyal (2012) for the case where the uncertainty set takes the form of a

simplex set.

Definition 1.6.1 An uncertainty set U is called a “simplex set” if it is the convex hull of nζ + 1

affinely independent points in Rnζ .

One can in fact extend the known optimality of affine decisions to special classes of

WCARM and WCRRM problems.

Proposition 1.6.1 If h(x, ζ) satisfies maxx∈X h(x, ζ) = γ
T ζ+ γ̄ for some γ ∈ Rnζ and γ̄ ∈ R

and U is a simplex set, then affine decision rules are optimal in the TSLRO reformulation of the

WCARM (under Assumption 1.3.1) and WCRRM (under Assumptions 1.3.1, 1.4.1, and 1.5.1)

problems with right-hand side uncertainty, i.e. Problem (1.13) and (1.19) respectively.

Note that the condition that maxx∈X h(x, ζ) = γ
T ζ+ γ̄ is satisfied in a number of clas-

sical inventory models. For instance, this condition is satisfied for the following multi-

item newsvendor problem (see Ardestani-Jaafari and Delage 2016):

maximize
x≥0

inf
ζ∈U

ny∑
i=1

(pi − ci)xi +min(−bi(ζi − xi), (si − pi)(xi − ζi)) ,
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and where xi is the number of units of item i ordered, ζi is the unknown demand for

item i, pi is the sales price for item i, ci is the ordering cost, bi is the shortage cost, and

si is the salvage value. Exploiting a well-known epigraph formulation, the single-stage

model can be reformulated using maxx≥0minζ∈U h(x, ζ) with

h(x, ζ) := max
y

ny∑
i

yi

subject to yi ≤ (pi − ci)xi + (si − pi)(xi − ζi), ∀i = 1, . . . , ny

yi ≤ (pi − ci)xi − bi(ζi − xi), ∀i = 1, . . . , ny .

It is usually assumed that si ≤ ci ≤ pi, namely that the salvage value is smaller than the

ordering cost, which is itself smaller than the retail price, so that if the demand vector ζ

was known then the optimal order would simply be x∗i = ζi1{pi − ci + bi ≥ 0}, where

1{pi−ci+bi ≥ 0} is the indicator function that returns 1 if pi−ci+bi ≥ 0 and 0 otherwise.

Hence, we have that:

max
x≥0

h(x, ζ) =

ny∑
i=1

(−bi + (pi − ci + bi)1{pi − ci + bi ≥ 0}) ζi .

Similarly, in a classical lot-sizing problem with backlog described as:

maximize
x≥0

inf
ζ∈U

T∑
t=1

(
−ctxt −min

(
ht

( t∑
t′=1

xt′ − ζt′
)
, bt

( t∑
t′=1

ζt′ − xt′
)))

,

where xt is the number of units ordered for time t, ζt is the demand for time t, while ct

is the ordering cost, ht the holding cost, and bt the shortage cost. One can exploit the

well-known facility location reformulation (see for instance Pochet and Wolsey 1988) to

simplify the full information problem:

max
x∈X

h(x, ζ)

= max
X:X≥0,

∑T+1
t=1 Xt,t′=ζ′t , ∀t′

−

 T∑
t=1

ct

T∑
t′=1

Xt,t′ +
t∑

i=1

T∑
j=t+1

htXi,j +
t∑

i=1

T+1∑
j=t+1

btXj,i


= −

(
T∑
t=1

min
x:x≥0,

∑T+1
t′=1

xt′=ζt

T∑
t′=1

ct′xt′ +
t−1∑
t′=1

t−1∑
t′′=t′

ht′′xt′ +
T+1∑

t′=t+1

t′−1∑
t′′=t

bt′′xt′

)

= −
T∑
t=1

ζt

(
min

x:x≥0,
∑T+1

t′=1
xt′=1

T∑
t′=1

ct′xt′ +

t−1∑
t′=1

t−1∑
t′′=t′

ht′′xt′ +

T+1∑
t′=t+1

t′−1∑
t′′=t

bt′′xt′

)
,
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whereXt,t′ captures the number of units produced at time t to satisfy the demand at time

t′. We see once again that the optimal value is linear with respect to ζ.

Proposition 1.6.1 also has an analog in the context of a two-stage model with objective

uncertainty.

Proposition 1.6.2 If Z := {(x,y) ∈ Rnx ×Rny |x ∈ X , Ax+By ≤ ψ} is a simplex set, then

affine decision rules are optimal in the TSLRO reformulation of the WCARM, when Assumptions

1.3.1, 1.3.2, 1.3.3, and 1.4.1 hold, and WCRRM problems, when Assumptions 1.3.1, 1.4.1, 1.5.1,

and 1.5.2 hold, with objective uncertainty, i.e. Problem (1.16) and (1.20) respectively.

Interestingly, Proposition 1.6.2 provides a polynomial-time solvable reformulation for

the WCARM and WCRRM versions of resource allocation problems.

Corollary 1.6.1 The linear program obtained by employing affine decision rules on the TSLRO

reformulation of the WCARM problem

minimize
x∈X

sup
ζ∈U

(max
x′∈X

d(ζ)Tx− d(ζ)Tx) ,

where X := {x ∈ Rnx
+ |wTx ≤ v} with w ∈ Rnx

+ and v ∈ R+, is exact for all polyhedral uncer-

tainty set U , and similarly for the WCRRM version of this problem given that the assumptions

described in Proposition 1.6.2 hold.

This corollary extends the result in Averbakh (2004), which identified a O(nx log(nx))

time algorithm for the WCARM version of the continuous knapsack problem under in-

terval uncertainty.

Following the work of Ardestani-Jaafari and Delage (2016), the result presented in

Proposition 1.6.1 can be extended to other forms of uncertainty sets in the case that h(x, ζ)

captures the sum of piecewise linear concave functions.

Proposition 1.6.3 If h(x, ζ) is a sum of piecewise linear concave functions of the form:

h(x, ζ) :=

N∑
i=1

min
k=1,...,K

αik(x)
T ζ + βik(x) = max

y

ny∑
i=1

yi (1.21)

s.t. yi ≤ αik(x)
T ζ + βik(x), ∀ i, ∀ k ,
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for some affine mappings αik : Rnx → Rnζ and βik : Rnx → R, the uncertainty set U is the

budgeted uncertainty set2

U := {ζ ∈ Rnζ | ∃ ζ+ ∈ Rnζ

+ , ∃ ζ− ∈ Rnζ

+ , ζ = ζ+−ζ−, ζ++ζ− ≤ 1 ,
∑
i

ζ+i +ζ−i = Γ} ,

(1.22)

with Γ ∈ [0, nζ ], and the following conditions are satisfied:

1. Either of the following applies:

i. Γ = 1

ii. Γ = nζ and uncertainty is “additive”: i.e. αik(x) = ᾱik(x)(
∑

ℓ<i α̂ℓ(x)eℓ) for some

ᾱik : Rnx → R for all i and k and some α̂ : Rnx → Rnζ

iii. Γ is integer and the objective function is “decomposable”: i.e. αik(x) = ᾱik(x)ei for

some ᾱik : Rnx → R for all i and k

2. maxx∈X h(x, ζ) = γ
T ζ + γ̄ for some γ ∈ Rnζ and γ̄ ∈ R

Then, affine decision rules with respect to (ζ+, ζ−,x′,y′) are optimal in the TSLRO reformula-

tion of the WCARM and WCRRM problems, i.e. Problem (1.13) and (1.19) respectively.

Propositions 1.6.1 and 1.6.3 effectively extend the set of problem classes for which a

polynomial-time solution scheme is known. In particular, it extends the results of Vairak-

tarakis (2000) for multi-item newsvendor problems to include simplex sets and budgeted

uncertainty sets with integer budget. They similarly provide a polynomial-time solu-

tion scheme for a large class of lot-sizing problems under the budgeted uncertainty set

as long as Γ = 1 or nζ . Unlike in the work of Vairaktarakis (2000) and Zhang (2011),

tractability does not come from exploiting specifically designed algorithms for each of

these applications but is rather simply achieved by employing the general linear decision

rules approach on the TSLRO reformulation. It further naturally serves as theoretical ev-

idence of the effectiveness of such an approach for general regret minimization. Finally,

it is worth noting that neither the proof of Proposition 1.6.1 nor 1.6.3 exploit the fact that

the affine decision rules employed in the TSLRO reformulation were flexible with respect

to (x′,y′). This implies that the two propositions also hold when the simpler decision
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rules of the form y(ζ) := y + Yζζ are used, as was proposed in Bertsimas and Dunning

(2020).

1.7 Numerical Results

In this section, we evaluate the numerical performance of exact and approximate solu-

tion schemes that are commonly used to solve two-stage linear robust optimization prob-

lems when employed to solve the TSLRO reformulations of worst-case regret minimiza-

tion problems. This is done in the context of two representative applications of TSLRO,

namely a multi-item newsvendor problem and a production-transportation problem,

which are respectively special cases of TSLRO with right-hand side uncertainty and ob-

jective uncertainty. Our objective consists in comparing both the solution time and qual-

ity of first-stage decisions that are obtained using exact and approximate methods and

provide empirical evidence regarding whether two-stage regret minimization problems

are more difficult to solve than their robust optimization version.

While a number of approximation schemes from the adjustable robust optimization

literature could be put to the test, we focus our analysis on the AARC approximation

method described in Section 1.3.1.2. Similarly, we rely on the C&CG method presented

in Section 1.3.1.1 to solve the TSLRO reformulations of WCARM problems exactly, and

on the column-and-constraint generation algorithm of Ayoub and Poss (2016), called

C&CG*, for WCRRM problems. A time limit of 4 hours (14, 400 seconds) and optimal-

ity tolerance of 10−6 are imposed on all solution schemes. The quality of the AARC

approximation scheme is reported in terms of relative optimality gap (in %) in the case

of a WCARM model, and absolute optimality gap for WCRRM models since the objec-

tive function is already expressed in percentage. All algorithms were implemented in

MATLAB R2017b using the YALMIP toolbox and CPLEX 12.8.0 as the solver for all linear

programming models.

1.7.1 Multi-Item Newsvendor Problem

The first application that we consider is the multi-item newsvendor problem, which

was studied in its robust optimization form in Ardestani-Jaafari and Delage (2016) and
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Ardestani-Jaafari and Delage (2020). The single-stage robust formulation of this problem

is as follows:

maximize
x≥0

min
ζ∈U

ny∑
i=1

pimin(xi, ζi)− cixi + simax(xi − ζi, 0)− bimax(ζi − xi, 0) , (1.23)

where pi ≥ 0, ci ∈ [0, pi], si ∈ [0, ci], and bi ≥ 0 represent sales price, ordering cost, sal-

vage value, and shortage cost of a unit of item i, with i = 1, . . . , ny, respectively. Decision

variable xi is the initial ordering amount of item i. We refer the reader to Section 1.6 for a

reformulation of the robust multi-item newsvendor problem as a TSLRO problem using

y as epigraph variables.

We consider two forms of uncertainty sets, which respectively model the fact that the

demand for each item is assumed to be correlated or not. The “uncorrelated demand”

uncertainty set is defined straightforwardly in terms of the well-known budgeted set

(see Bertsimas and Sim 2004):

U(Γ) =


ζ

∣∣∣∣∣∣∣∣∣∣∣∣
∃δ+, δ− ∈ Rny ,

δ+ ≥ 0, δ− ≥ 0

δ+i + δ−i ≤ 1, ∀i = 1, . . . , ny∑ny

i=1 δ
+
i + δ−i = Γ

ζi = ζ̄i + ζ̂i(δ
+
i − δ−i ), ∀i = 1, . . . , ny


,

where ζ̄i and ζ̂i denote the nominal demand and the maximum demand deviation of the

item i and where Γ ∈ [0, ny] captures a budget of maximum number of deviations from

the nominal demand. We also consider a “correlated demand” uncertainty set defined as

follows:

Ũ(Γ) =


ζ

∣∣∣∣∣∣∣∣∣∣∣∣
∃δ+, δ− ∈ Rny ,

δ+ ≥ 0, δ− ≥ 0

δ+i + δ−i ≤ 1, ∀i = 1, . . . , ny∑ny

i=1 δ
+
i + δ−i = Γ

ζi = ζ̄i + ζ̂i(δ
+
j1(i)

+ δ+j2(i) − δ−j1(i) − δ−j2(i))/2, ∀i = 1, . . . , ny


,

where j : {1, . . . , ny} → {1, . . . , ny}2 identifies two sources of perturbation of item i such

that items i1 and i2 are correlated if jℓ1(i1) = jℓ2(i2) for some (ℓ1, ℓ2) ∈ {1, 2}2. We note

that for both sets, we employ a less common (but equivalent) equality representation of

the budget constraint in order to be consistent with the representation used in Proposition
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Table 1.1: Multi-Item Newsvendor Problem - Uncorrelated Uncertainty Set

Problem Size Decision
Criterion

Type of
performance

Level of Uncertainty
(in % of ny)

30% 50% 70% 100%

5 items

Worst-case Profit
(RO)

Avg Rel. Gap - AARC 0.72% 0.62% 0.92% 0.00%
Avg CPU time (s) - AARC 1.3 1.3 1.3 1.3
Avg CPU time (s) - C&CG 71.8 119.9 148.7 85.8

Worst-case
Absolute Regret

(WCARM)

Avg Rel. Gap - AARC 2.03% 0.49% 0.14% 0.00%
Avg CPU time (s) - AARC 1.3 1.3 1.3 1.3
Avg CPU time (s) - C&CG 116.7 143.1 105.8 82.5

Worst-case
Relative Regret

(WCRRM)

Avg Abs. Gap - AARC 0.24% 0.15% 0.08% 0.00%
Avg CPU time (s) - AARC 0.2 0.2 0.3 0.3
Avg CPU time (s) - C&CG* 142.7 154.1 166.8 118.4

10 items

Worst-case Profit
(RO)

Avg Rel. Gap - AARC 0.00% 0.00% 0.00% 0.00%
Avg CPU time (s) - AARC 1.4 1.4 1.5 1.5
Avg CPU time (s) - C&CG 96.9 138.5 282.6 174.8

Worst-case
Absolute Regret

(WCARM)

Avg Rel. Gap - AARC 0.00% 0.00% 0.00% 0.00%
Avg CPU time (s) - AARC 1.5 1.5 1.5 1.5
Avg CPU time (s) - C&CG 184.0 239.4 201.8 153.1

Worst-case
Relative Regret

(WCRRM)

Avg Abs. Gap 0.00% 0.00% 0.00% 0.00%
Avg CPU time (s) - AARC 0.4 0.4 0.4 0.4
Avg CPU time (s) - C&CG* 238.5 315.0 312.6 206.2

20 items

Worst-case Profit
(RO)

Avg Rel. Gap - AARC 0.00% 0.00% 0.00% 0.00%
Avg CPU time (s) - AARC 1.9 1.9 2.0 2.1
Avg CPU time (s) - C&CG 227.3 381.9 649.8 460.3

Worst-case
Absolute Regret

(WCARM)

Avg Rel. Gap - AARC 0.00% 0.00% 0.00% 0.00%
Avg CPU time (s) - AARC 2.0 2.1 2.2 2.2
Avg CPU time (s) - C&CG 494.7 760.6 781.3 367.7

Worst-case
Relative Regret

(WCRRM)

Avg Abs. Gap - AARC 0.00% 0.00% 0.00% 0.00%
Avg CPU time (s) - AARC 1.0 1.0 1.1 1.3
Avg CPU time (s) - C&CG* 891.1 7,528.4 [6] — [0] 5,115.3

[ ] indicates the number of instances solved by C&CG* algorithm within the 4 hours time limit.
In this case, the average is computed on the instances that were solved to optimality within the
time limit.

1.6.3. This proposition also suggests that affine decision rules should be employed on the

lifted space (ζ+, ζ−,x′,y′).

We consider three different sizes of the problem, namely ny ∈ {5, 10, 20}. For each

size, we generate 10 problem instances randomly according to the following procedure.

Each sales price pi is uniformly and independently generated on the interval [0.5, 1],

each ordering cost ci uniformly generated on [0.3pi, 0.9pi], and the salvage value si and

shortage cost bi are drawn uniformly at random from [0.1ci, ci]. The nominal demand for

each item i is d̄i = 10 while the maximum demand perturbation is generated uniformly

on [0.3d̄i, 0.6d̄i]. In the case of the correlated uncertainty set Ũ , for each item i the pair

(j1(i), j2(i)) is drawn randomly among all possible pairs such that j1(i) ̸= j2(i). The

budget Γ is fixed among the levels Γ ∈ {0.3ny, 0.5ny, 0.7ny, ny}.
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In what follows, we first study the numerical efficiency and quality of solutions ob-

tained from AARC and C&CG in the worst-case profit (RO), worst-case absolute regret

(WCARM), and worst-case relative regret (WCRRM) problems. We then present a short

study that focuses on the need for flexibility with respect to hindsight decisions. Finally,

we investigate, from a decision analysis point of view, whether there is a real need for

formulating WCARM and WCRRM problems given that RO solutions are supposed to

be robust and might already be solutions that achieve low absolute and relative regret.

1.7.1.1 Numerical Efficiency of AARC Compared with C&CG

Tables 1.1 and 1.2 present the average performance of C&CG and AARC in solving the

classical robust optimization, the worst-case absolute regret minimization, and the worst-

case relative regret minimization formulation when accounting for the uncorrelated and

correlated uncertainty sets respectively.

Looking at Table 1.1, one can remark that for the instances with ny = 5 items, the

average optimality gaps achieved by the AARC approach are of similar small sizes in

the case of classical robust optimization as for worst-case regret minimization. The op-

timality gap is also surprisingly small (below 0.3%) for the WCRRM problems. Since

the instances studied in this table employ an uncorrelated uncertainty set, the empiri-

cal evidence confirms the findings of Proposition 1.6.3, which states that, similarly as

for the robust optimization formulation (see Ardestani-Jaafari and Delage 2016), AARC

provides exact solutions for WCARM and WCRRM when Γ is an integer.

When it comes to comparing computation times, one may make three interesting ob-

servations. First, all AARC approximation models are solved in less than 3 seconds (on

average), which is more than one order of magnitude faster than the time needed to solve

any of these problems using C&CG. This can be explained by the well-known fact that

each step of C&CG involves solving an NP-hard mixed integer linear program. Secondly,

it appears to be generally true that both of the AARC and C&CG solution schemes have

a similar runtime whether they are used to solve the RO model or the WCARM. This

seems to support the claim that regret minimization has the same complexity as robust

optimization for a two-stage linear program with right-hand side uncertainty. On the
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Table 1.2: Multi-Item Newsvendor Problem - Correlated Uncertainty Set

Problem Size Decision
Criterion

Type of
performance

Level of Uncertainty
(in % of ny)

30% 50% 70% 100%

5 items

Worst-case Profit
(RO)

Avg Rel. Gap - AARC 1.46% 3.11% 2.39% 0.00%
Avg CPU time (s) - AARC 1.3 1.3 1.3 1.3
Avg CPU time (s) - C&CG 81.6 86.6 93.2 73.7

Worst-case
Absolute Regret

(WCARM)

Avg Rel. Gap - AARC 3.58% 3.68% 1.61% 0.00%
Avg CPU time (s) - AARC 1.3 1.3 1.3 1.3
Avg CPU time (s) - C&CG 78.9 83.0 96.8 75.1

Worst-case
Relative Regret

(WCRRM)

Avg Abs. Gap - AARC 0.68% 0.84% 0.69% 0.00%
Avg CPU time (s) - AARC 0.2 0.2 0.2 0.2
Avg CPU time (s) - C&CG* 103.3 118.9 132.1 93.3

10 items

Worst-case Profit
(RO)

Avg Rel. Gap - AARC 1.30% 1.62% 0.62% 0.00%
Avg CPU time (s) - AARC 1.4 1.4 1.4 1.4
Avg CPU time (s) - C&CG 115.9 145.9 178.4 126.4

Worst-case
Absolute Regret

(WCARM)

Avg Rel. Gap - AARC 3.16% 0.87% 0.16% 0.00%
Avg CPU time (s) - AARC 1.4 1.4 1.4 1.4
Avg CPU time (s) - C&CG 135.9 177.5 164.6 120.7

Worst-case
Relative Regret

(WCRRM)

Avg Abs. Gap - AARC 0.30% 0.13% 0.09% 0.00%
Avg CPU time (s) - AARC 0.3 0.3 0.3 0.4
Avg CPU time (s) - C&CG* 208.3 262.0 258.9 157.8

20 items

Worst-case Profit
(RO)

Avg Rel. Gap - AARC 0.62% 0.52% 0.10% 0.00%
Avg CPU time (s) - AARC 1.7 1.7 1.8 1.9
Avg CPU time (s) - C&CG 286.3 451.7 582.1 314.3

Worst-case
Absolute Regret

(WCARM)

Avg Rel. Gap - AARC 0.66% 0.05% 0.01% 0.00%
Avg CPU time (s) - AARC 1.9 2.0 2.0 2.1
Avg CPU time (s) - C&CG 428.3 576.6 500.8 248.5

Worst-case
Relative Regret

(WCRRM)

Avg Abs. Gap - AARC 0.07% 0.05% 0.02% 0.00%
Avg CPU time (s) - AARC 0.8 0.9 0.9 1.0
Avg CPU time (s) - C&CG* 717.1 2,681.5 6,287.9 567.8

other hand, it also appears that the C&CG* approach used for WCRRM leads to longer

run times than what is needed for RO models. Finally, we see that in the case of ny = 20

the C&CG* scheme is unable to solve a number of problem instances within the allo-

cated time for Γ = 10 and 14. This is in sharp contrast with the AARC approach, which

identifies optimal solutions in less than a couple of seconds. This evidence reinforces

the idea that modern approximation methods that exist for RO models can provide high-

performance algorithms for regret minimization problems.

Looking at Table 1.2 where problem instances have correlated demand, we draw sim-

ilar conclusions as with Table 1.1. Namely, we observe that AARC provides an optimal

solution when Γ = ny, which might indicate that there are other conditions than those

identified in Section 1.6 where affine decision rules are optimal. For other cases, the

quality of the approximation is very high for all versions of the problems, presenting
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a maximum average gap of 3.68% and 0.84% for the WCARM and WCRRM problems

respectively. In terms of the run times, the observations are also similar except for the in-

stances where ny = 20, which appear to be less challenging for the C&CG* scheme than

when demand was uncorrelated. Indeed, C&CG* is able here to converge to an optimal

solution within the time limit for all instances although this could simply be due to the

specific structure of the 10 instances that were drawn for this part of the study. Overall,

this study seems to indicate that AARC is a much more favorable approach for tackling

larger scale regret minimization problems.

Remark 1.7.1 The average relative and absolute gaps presented in Tables 1.1 and 1.2 reflect the

worst-case performance of a Pareto robustly optimal solutions of the AARC models, as prescribed

in Iancu and Trichakis (2014). Specifically, once each AARC model is solved, we search among

the robustly optimal affine decision rules for one that achieves the best objective value under a

representation of the nominal scenario that lies in the relative interior of the uncertainty set.

1.7.1.2 Value of Flexibility to Hindsight Decisions

As discussed in Section 1.4.1, Bertsimas and Dunning (2020) provide a conservative ap-

proximation for the multi-stage regret minimization problems with right-hand side un-

certainty, where decision rules only adapt to the realization of uncertain parameters. In

contrast, our approach seeks decision rules that adapt both to the parameters and the

optimal hindsight decisions, so-called x′ and y′. Our initial experiments in fact indicated

empirically that there was actually no value in employing the more flexible decision rules

in the instances that were studied in Table 1.1 and 1.2. We suspect that this property is

a consequence of the optimal hindsight profit being a linear function with respect to de-

mand.

The difference between the two approaches already starts becoming observable when

additional constraints are imposed on the size of the orders. In particular, consider the

following version of multi-item newsvendor problem with order limits:

maximize
x≥0, {xi≤ui}

ny
i=1

min
ζ∈U

ny∑
i=1

pimin(xi, ζi)− cixi + simax(xi − ζi, 0)− bimax(ζi − xi, 0) , (1.24)
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where ui represents the maximum amount of order that can be placed for item i. Specif-

ically, in this new experiment we simply modify the instances that led to Table 1.2, i.e.

with correlated uncertainty, by imposing for each item i an order limit ui equal to the

nominal demand plus 50% of its maximum perturbation. The results of this experiment

are presented in Table 1.3, where we compare our conservative approximation approach

with the one proposed by Bertsimas and Dunning (2020), denoted as “P&D” and “B&D”,

respectively.

Table 1.3: Compare P&D and B&D Approaches - Multi-Item Newsvendor Problem with
Order Limits

Problem
Size

Decision
Criterion

Type of
Performance

Level of Uncertainty
(in % of ny)

30% 50% 70% 100%

5 items

Worst-case
Absolute Regret

(WCARM)

Avg Gap (%) - AARC P&D 3.34% 4.67% 4.35% 2.32%
Avg Gap (%) - AARC B&D 19.90% 40.46% 49.73% 61.42%

Avg Bound Improvement (%) (B&D - P&D) 16.56% 35.79% 45.38% 59.10%

Worst-case
Relative Regret

(WCRRM)

Avg Absolute Gap (%) - AARC P&D 0.72% 1.56% 1.46% 0.74%
Avg Absolute Gap (%) - AARC B&D 2.80% 5.96% 6.86% 8.07%

Avg Bound Improvement (%) (B&D - P&D) 2.07% 4.40% 5.40% 7.32%

10 items

Worst-case
Absolute Regret

(WCARM)

Avg Gap (%) - AARC P&D 0.68% 1.81% 2.63% 2.69%
Avg Gap (%) - AARC B&D 33.66% 42.54% 52.00% 62.36%

Avg Bound Improvement (%) (B&D - P&D) 32.98% 40.73% 49.37% 59.67%

Worst-case
Relative Regret

(WCRRM)

Avg Absolute Gap (%) - AARC P&D 0.29% 0.71% 0.79% 1.06%
Avg Absolute Gap (%) - AARC B&D 3.00% 4.27% 6.28% 8.15%

Avg Bound Improvement (%) (B&D - P&D) 2.71% 3.55% 5.49% 7.08%

20 items

Worst-case
Absolute Regret

(WCARM)

Avg Gap (%) - AARC P&D 0.27% 1.01% 2.20% 3.19%
Avg Gap (%) - AARC B&D 25.34% 35.23% 46.37% 55.49%

Avg Bound Improvement (%) (B&D - P&D) 25.07% 34.22% 44.17% 52.30%

Worst-case
Relative Regret

(WCRRM)

Avg Absolute Gap (%) - AARC P&D — — — 1.30%
Avg Absolute Gap (%) - AARC B&D — — — 7.96%

Avg Bound Improvement (%) (B&D - P&D) 2.48% 3.76% 5.37% 6.67%

— indicates that none of the instances were solved by C&CG* algorithm within the 4 hours time limit.

According to results presented in Table 1.3, the average optimality gap of P&D ap-

proach for the WCARM problem is less than 5% for all values of Γ and all problem sizes.

Comparatively, the average gap of B&D reaches up to nearly 62%. On a case-by-case

basis, we see that the average gap increases by a factor going from 6 to 90 times larger

for B&D depending on the level of uncertainty and problem size. The value of hindsight

flexibility also appears to increase as uncertainty is increased for the WCARM problem.

In terms of the WCRRM problem, relatively similar observations can be made. Specif-

ically, the flexibility in P&D allows to improve the bound obtained from B&D by a factor

ranging from 3 to 10 depending on the problem class that could be solved in less than 4
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hours.

Overall, these results confirm a strong potential for improving the quality of the so-

lution proposed in B&D by making the decision rules flexible with respect to optimal

hindsight decisions.

1.7.1.3 Decision Analysis

We now turn to study whether the three criteria for decision making, namely worst-

case profit, worst-case absolute regret, and worst-case relative regret, produce solutions

that are quite different from each other. In particular, given that RO and WCARM are

slightly more appealing from a computational point of view, one could ask whether

there is value in solving the harder WCRRM problem. To provide some insight on this

question, we evaluated the performance of each proposed solution scheme with respect

to the two other criteria on the set of problem instances used for Table 1.2, with cor-

related demand. In details, given a two-stage problem instance, for each model M ∈

M := {RO, WCARM, WCRRM}, we compute the sub-optimality with respect to M ′ ∈

M\{M} of the best candidate of optimal solution set X ∗
M . This provides us for each

model type an optimistic estimate of the sub-optimality we should expect when mea-

suring performance with either of the two other criteria. Table 1.4 presents the average

performances based on 120 problem instances, i.e. 10 instances of two-stage problems for

each of 3 problem sizes and 4 uncertainty levels.3

Table 1.4: Average Suboptimality of Solutions from RO, WCARM, and WCRRM with
Respect to RO, WCARM, and WCRRM Models Based on 120 Randomly Generated In-
stances of Three Different Sizes.

Rel. Gap in RO Rel. Gap in WCARM Abs. Gap in WCRRM
X ∗

RO 0 % 169.9% 25.2%
X ∗

WCARM 36.3% 0 % 13.3%†
X ∗

WCRRM 19.5% 59.2% 0 %
† Average is reported based on 118 instances given that two led to an infinite worst-case relative regret.

Looking at Table 1.4, we do find strong evidence of dissimilarities between the solu-

tion concepts. First, one notices that relying on the RO decisions leads to a significant

average increase of 169.9% of the worst-case absolute regret performance and a 25.2%

average increase in worst-case relative regret comparing to the optimal solution of these
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respective models. On the other hand, WCARM decisions will typically decrease the

worst-case profit by 36.3%, while WCRRM decisions diminish it by a lesser 19.5%. This

corroborates the conclusion from the example in Section 1.8.1 that WCRRM might be

closer in spirit to RO than WCARM, especially given that WCARM actually led on two

occasions to solutions that achieved infinite worst-case relative regret.

Overall, it is clear that RO models propose decisions that may be in contradiction with

what leads to low absolute regret, whether it be absolute or relative. It is well known that

RO decisions tend to improve worst-case profits while disregarding completely all plau-

sible opportunities to make higher profits, which can lead to large regret in hindsight.

On the other hand, WCARM and WCRRM decisions will follow a “less conservative”

approach in the sense that they attempt to be well positioned to seize opportunities sac-

rificing to some extent the assurance of the higher possible worst-case profit.

1.7.2 Production-Transportation Problem

Our second application consists of the production-transportation problem with uncer-

tainty in transportation cost, which was considered in Bertsimas et al. (2010a). Specifi-

cally, in this problem, one considers m facilities and n customer locations. Each facility

has a production capacity of x̄i goods. The units produced at these facilities should be

shipped to the customer locations in order to cover a predefined set of orders. The dif-

ficulty for the manager resides in the fact that transportation costs are unknown when

production decisions are made. The corresponding TSLRO problem can be defined as

follows:

minimize
0≤x≤x̄, y(ζ)

max
ζ∈U

m∑
i=1

cixi +

m∑
i=1

n∑
j=1

ζijyij(ζ) (1.25a)

subject to

m∑
i=1

yij(ζ) = dj , ∀j ∈ J , ∀ζ ∈ U (1.25b)

n∑
j=1

yij(ζ) = xi, ∀i ∈ I, ∀ζ ∈ U (1.25c)

y(ζ) ≥ 0, ∀ζ ∈ U , (1.25d)

where for each facility location i, ci is the production cost, while for each customer loca-

tion j, dj refers to the demand that needs to be covered, and ζij is the initially unknown
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transportation cost per unit from production facility i to customer location j. This prob-

lem has two-stages of decisions, namely the here-and-now production decisions x, and

the wait-and-see transportation decisions y, which are made once transportation costs

are observed. Finally, we define the uncertainty set as

U(Γ) =

ζ
∣∣∣∣∣∣∣∣∣∣
∃δ+, δ− ∈ Rm,

δ+ ≥ 0, δ− ≥ 0

δ+i + δ−i ≤ 1, ∀i ∈ I∑
i δ

+
i + δ−i = Γ

, ζij = ζ̄ij + ζ̂ij(δ
+
i − δ−i ), ∀i ∈ I, ∀j ∈ J

 ,

where ζ̄ij and ζ̂ij are respectively the nominal cost and maximum cost deviations for

transporting each unit of good transported from i to j. Note that in defining U(Γ), we

make the uncertainty about the costs for transportation from the same facility perfectly

correlated, which allows us to consider Γ ∈ [0 ,m]. Alternatively, one could easily con-

sider each transportation cost to be independent from each other.

In our numerical experiments, we consider three different sizes of the problem, namely

(m,n) ∈ {(3, 6), (5, 10), (7, 14)}. In each case, we generate 10 instances randomly. To do

so, we start by randomly generating m+n locations within the unit square. The nominal

transportation cost per unit from facility i to customer j is set to the Euclidean distance

between their locations and the maximum perturbation of this cost is supposed to be

50% of the nominal value. The production costs are uniformly and independently gen-

erated on the interval
[
0.5

∑
ij ζ̄ij
mn , 1.5

∑
ij ζ̄ij
mn

]
. We fix the production capacities x̄i to one.

Given that this leads to a maximum total production of m units, the size of each order di

is uniformly generated on the interval [0.5m/n, m/n]. The empirical performance of all

solution schemes on all three forms of problems with Γ ∈ {0.3m, 0.5m, 0.7m,m} are pre-

sented in Table 1.5. Note that in the case of the RO model, as described in Section 1.3.2,

one can easily identify an optimal solution by solving the so-called robust counterpart

(RC) model, which takes the form of a linear program.

Looking at Table 1.5, one remarks that the average of the optimality gaps achieved

by the AARC approach for the WCARM model is always below 8% for all values of Γ

and all problem sizes. This is a poorer performance than in the case of the multi-item

newsvendor problem yet still makes the AARC approach attractive when comparing to

the convergence time of C&CG for problems of size m = 7 and n = 14 where all AARC
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Table 1.5: Production-Transportation Problem

Problem Size Decision
Criterion

Type of
performance

Level of Uncertainty
(in % of m)

30% 50% 70% 100%

3 facilities
6 customers

Worst-case Cost
(RO) Avg CPU time (s) - RC 0.7 0.8 0.9 0.9

Worst-case
Absolute Regret

(WCARM)

Avg Rel. Gap - AARC 0.55% 2.28% 2.51% 4.07%
Avg CPU time (s) - AARC 1.9 1.9 2.0 2.0
Avg CPU time (s) - C&CG 8.5 10.4 10.6 11.0

Worst-case
Relative Regret

(WCRRM)

Avg Abs. Gap - AARC 0.02% 0.19% 0.23% 0.55%
Avg CPU time (s) - AARC 5.9 6.0 6.0 6.0
Avg CPU time (s) - C&CG* 89.4 102.0 98.9 112.9

5 facilities
10 customers

Worst-case Cost
(RO) Avg CPU time (s) - RC 1.0 1.2 1.5 1.8

Worst-case
Absolute Regret

(WCARM)

Avg Rel. Gap - AARC 6.71% 7.21% 5.68% 4.97%
Avg CPU time (s) - AARC 19.7 19.6 19.4 20.2
Avg CPU time (s) - C&CG 42.9 65.4 93.2 95.8

Worst-case
Relative Regret

(WCRRM)

Avg Abs. Gap - AARC 0.39% 0.66% 0.78% 0.79%
Avg CPU time (s) - AARC 23.3 24.6 23.9 23.9
Avg CPU time (s) - C&CG* 299.7 555.4 1,000.3 1,564.0

7 facilities
14 customers

Worst-case Cost
(RO) Avg CPU time (s) - RC 3.0 3.9 5.0 6.0

Worst-case
Absolute Regret

(WCARM)

Avg Rel. Gap - AARC 4.14% 4.54% 4.59% 4.21%
Avg CPU time (s) - AARC 442.9 373.2 318.7 296.4
Avg CPU time (s) - C&CG 3,425.4 8,365.1 6,967.8 7,468.7

Worst-case
Relative Regret

(WCRRM)

Avg Abs. Gap - AARC — — — —
Avg CPU time (s) - AARC 352.5 319.7 346.9 451.3
Avg CPU time (s) - C&CG* >14,400 >14,400 >14,400 >14,400

models were solved in less than 8 minutes while C&CG takes around 2 hours. It is also

obvious that the RO model is more tractable than WCARM and WCRRM due to the

fact that uncertainty is limited to the objective function. Moreover, it appears that the

WCRRM model is especially difficult to solve exactly in this setting while the AARC

approach once again performs surprisingly well both in terms of computation time and

quality of solutions. Indeed, the average absolute gap remained under < 1% for all

categories of instances where exact solutions could be identified.

In order to shed more light on the difficulties of solving WCRRM for larger size prob-

lems, we present in Table 1.6 a description of the performance of both AARC and C&CG*

for each of the 10 large problem instances for which C&CG* was unable to converge in

less than 4 hours. In particular, the table shows that when Γ = 0.3m, for 3 out of 10 in-

stances, the C&CG* algorithm is unable to provide the cuts needed to bound the minimal

worst-case relative regret away from 0%. Furthermore, in instance #5, it is even unable

to identify the most violated constraint in its first iteration within the allotted time. This
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Table 1.6: WCRRM - Production-Transportation Problem with 7 Facilities and
14 Customers

Ins.

Uncertainty Level (in % of m)

30% 70% 100%

AARC
UB

C&CG*
LB

AARC
Abs. gap

AARC
UB

C&CG*
LB

AARC
Abs. gap

AARC
UB

C&CG*
LB

AARC
Abs. gap

1 4.72% 0.00% ≤ 4.72% 7.05% 0.00% ≤ 7.05% 7.62% 0.00% ≤ 7.62%
2 4.14% 3.68% ≤ 0.45% 5.88% 0.00%* ≤ 5.88% 6.04% 0.00% ≤ 6.04%
3 2.78% 0.00% ≤ 2.78% 4.47% 0.00% ≤ 4.47% 4.77% 0.00%* ≤ 4.77%
4 4.30% 2.20% ≤ 2.10% 7.09% 0.00%* ≤ 7.09% 7.35% 0.00% ≤ 7.35%
5 3.05% 0.00%* ≤ 3.05% 4.54% 0.00%* ≤ 4.54% 4.64% 0.00%* ≤4.64%
6 3.79% 2.28% ≤ 1.51% 6.15% 0.00% ≤ 6.15% 6.45% 0.00%* ≤ 6.45%
7 3.64% 2.61% ≤ 1.03% 5.70% 0.00%* ≤5.70% 5.93% 0.00%* ≤ 5.93%
8 6.28% 1.40% ≤ 4.88% 9.67% 0.00% ≤ 9.67% 9.98% 0.00% ≤ 9.98%
9 4.94% 1.40% ≤ 3.54% 7.32% 0.00% ≤ 7.32% 7.67% 0.00%* ≤ 7.67%
10 2.57% 0.56% ≤ 2.01% 3.91% 0.00% ≤ 3.91% 4.13% 0.00%* ≤ 4.13%

* indicates that C&CG* was unable to identify the most violated constraint within 4 hours in its first
iteration.

phenomenon becomes more frequent as Γ is increased. In the limit when Γ = m, 6 out

of the 10 instances did not complete their first round of constraint generation because of

the difficulty of the subproblem. For sake of completeness, we provide the bounds that

can be computed on the optimality gap of AARC given the state of the C&CG* algorithm

after four hours. Overall, these seem to support the idea that, for this class of problems,

AARC is a valuable approximation scheme and that the design of efficient exact algo-

rithms constitutes a promising direction for future research.

1.8 Appendix

1.8.1 Illustrative Example with Newsvendor Problem

Consider a simple newsvendor problem:

max
x≥0

pmin(x, ζ)− cx ,

where x ∈ R is the number of newspapers ordered, p > 0 is the sales price, c < p is

the ordering cost, and ζ > 0 is the demand for the newspaper only known to lie in an

interval U := [ζ̄− ζ̂, ζ̄+ ζ̂], with ζ̄ > 0 as the nominal demand and ζ̂ < ζ̄ as the maximum

deviation. In this context, one can consider four different models. First, the so-called

nominal model simply solves the newsvendor problem under the nominal demand ζ̄ and

leads to the unique optimal solution x∗nom = ζ̄. Second, the classical robust optimization
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model takes the form:

max
x≥0

min
ζ∈U

pmin(x, ζ)− cx ,

with its optimal solution uniquely achieved by x∗rob = ζ̄ − ζ̂, i.e. the lowest demand

possible. Third, one might consider the worst-case absolute regret minimization problem:

min
x≥0

max
ζ∈U

max
x′≥0

(pmin(x′, ζ)− cx′)− (pmin(x, ζ)− cx) .

This problem has as unique optimal solution x∗abs = ξ̄+(1−(2c/p))ζ̂ when p ≤ 2c. Fourth,

one could formulate the worst-case relative regret minimization problem:

min
x≥0

min
ζ∈U

maxx′≥0(pmin(x′, ζ)− cx′)− (pmin(x, ζ)− cx)

maxx′≥0(pmin(x′, ζ)− cx′)
.

The unique optimal solution to this problem is x∗rel = (ζ̄2 − ζ̂2)/(ζ̄ + (2c/p− 1)ζ̂).

In this context, two key properties are worth discussing. First, one can show that

the four different optimal solutions follow a certain order x∗rob ≤ x∗rel ≤ x∗abs ≤ x∗nom,

as long as p ≤ 2c. This property provides some arguments that support the popular

conclusion that regret minimizing solutions are “less conservative” than the solutions of

robust optimization problem. Indeed, both x∗rel and x∗abs recommend submitting larger

orders than x∗rob.

Another interesting property is that x∗abs turns out to be the optimal solution of the

stochastic program

max
x≥0

E[min(x, ζ)− cx] ,

when ζ is considered uniformly distributed on U . This again points to the fact that worst-

case absolute regret minimizers might offer a better balance between risks and returns

compared to robust optimization.

1.8.2 Summary Tables for the Literature on Regret Minimization

Tables 1.7 and 1.8 respectively present a summary of the algorithmic developments of

the last 25 years regarding the resolution of worst-case regret minimization problems

involving single-stage and two-stage models respectively.
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Table 1.7: General Approaches - Linear Single-Stage Problems

Reference Algorithm Solution
Type

Scope

Regret
Type

Uncertain
Parameters

Uncertainty
Set

Inuiguchi and Kume (1994) Constraint Generation
+ Vertex Enumeration Exact Absolute Obj Box

Inuiguchi and Sakawa (1995) Constraint Generation
+ Vertex Enumeration Exact Absolute Obj Box

Inuiguchi and Sakawa (1996) Constraint Generation
+ MILP Reformulation Exact Absolute Obj Box

Mausser and Laguna (1998) Constraint Generation
+ MILP Reformulation Exact Absolute Obj Box

Mausser and Laguna (1999a)
Constraint Generation
+ MILP Reformulation

+ Greedy Search
Exact Absolute Obj Box

Inuiguchi and Sakawa (1997a) Constraint Generation
+ Vertex Enumeration Exact Relative Obj Box

Mausser and Laguna (1999b) Constraint Generation
+ MILP Reformulation Exact Relative Obj Box

Bertsimas and Dunning (2020) Constraint Generation
+ MILP Reformulation Exact Absolute

Relative Obj Budgeted

Inuiguchi and Sakawa (1997b) Constraint Generation
+ MILP Reformulation Exact Absolute Obj Polyhedral

Inuiguchi et al. (1999) Constraint Generation
+ Outer Approx. Scheme Exact Absolute Obj Polyhedral

Inuiguchi and Tanino (2001)
Constraint Generation

+ Outer Approx. Scheme
+ Cutting-hyperplanes scheme

Exact Absolute Obj Polyhedral

Gabrel and Murat (2010) LP Reformulation Exact Absolute RHS Box

Bertsimas and Dunning (2020) LP Reformulation Exact Absolute
Relative RHS Polyhedral

* RHS and Obj refer to the right-hand side and objective uncertainty, respectively.
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1.8.3 Ning and You (2018)’s C&CG Approach Is an Optimistic

Approximation

Consider the multi-item newsvendor problem presented in Section 1.7.1 where we let

nx = ny = nζ = 2 items, the sales price be pi = 1, ordering cost ci = 1, salvage value

si = 0, and shortage cost bi = 1. We also consider that the two items have a nominal

demand of 50 and 25 with maximum deviations of 50 and 25 respectively and that the

sum of absolute relative deviations must be smaller or equal to one, i.e. Γ = 1. Moreover,

we consider that the maximum total number of items ordered must be smaller or equal

to 100, namely that X := {x ∈ R2
+ |x1 + x2 ≤ 100}. In this context, one can show nu-

merically that the minimal worst-case absolute regret is equal to 45.833 and achieved by

ordering 44.657 units of item #1 and 23.824 units of item #2. On the other hand, the C&CG

approach proposed in Ning and You (2018) recommends ordering 37.5 units of item #1

and 25 units of item #2, estimating the minimal worst-case absolute regret achieved by

this solution to be 37.5 when it is actually 54.167. In particular, when the solution (37.5,

25) is used, one can easily confirm that if only integer values for δ+ and δ− are considered

in the uncertainty set, then for all possible cases the regret achieved is 37.5. However, this

is an underestimation of the regret that is achieved over U(Γ) since at ζ = (250/3, 50/3)

is equal to 325/6 ≈ 54.167. This confirms that the C&CG approach proposed in Ning and

You (2018) solves an optimistic approximation of the WCARM problem.

1.8.4 Bertsimas and Dunning (2020)’s Conservative Approximation Is

Weaker than the Approximation Obtained with Problem (1.15)

Consider again the multi-item newsvendor problem presented in Section 1.7.1 and Sec-

tion 1.8.3 where we let nx = ny = nζ = 2 items, the sales price be pi = 1, ordering cost

ci = 1, salvage value si = 0, and shortage cost bi = 1. We also consider that the two items

have a nominal demand of 50 and 25 with maximum deviations of 50 and 25 respec-

tively and that the sum of absolute relative deviations must be smaller or equal to one,

i.e. Γ = 1. Moreover, we consider that the maximum total number of items ordered must

be smaller or equal to 100, namely that X := {x ∈ R2
+ |x1 + x2 ≤ 100}. In this context,

one can show numerically that the minimal worst-case absolute regret is equal to 45.833
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and achieved by ordering 44.657 units of item #1 and 23.824 units of item #2. The conser-

vative approximation proposed in Bertsimas and Dunning (2020) recommends ordering

50 units of item #1 and 25 units of item #2, estimating the minimal worst-case absolute

regret achieved by this solution to be below 50, which is actually implying that while

the solution is not optimal itself, its worst-case regret bound is exact. Alternatively, the

conservative approximation in Problem (1.15) recommends ordering 45.833 units of item

#1 and 25 units of item #2, estimating the minimal worst-case absolute regret achieved by

this solution to be below 45.833, which is actually exact and optimal.

1.8.5 Zeng and Zhao (2013)’s Mixed-integer Linear Programming

Reformulation of C&CG’s Sub-Problem

In Zeng and Zhao (2013), the authors propose a column-and-constraint generation method

for solving the TSLRO problem. A key step consists in solving the NP-hard adversarial

problem minζ∈Uv h(x, ζ) in order to identify new columns and constraints to add to Prob-

lem (1.5). They show that this can be done by reformulating this adversarial problem as

the following mixed-integer linear program:

minimize
ζ∈U ,y,λ,u

xTCζ + cTx+ dTy + fT ζ (1.26a)

subject to Ax+By ≤ Ψ(x)ζ +ψ (1.26b)

λ ≥ 0 (1.26c)

λ ≤Mu (1.26d)

Ψ(x)ζ +ψ −Ax−By ≤M(1− u) (1.26e)

d = BTλ (1.26f)

u ∈ {0, 1}m , (1.26g)

where y ∈ Rny , λ ∈ Rm, and M is some large enough constant.

1.8.6 Proof of Lemma 1.3.1

Based on Assumption 1.3.2, for all x ∈ X and all ζ ∈ U , there exists a y for which Problem

(1.10) is feasible. Therefore, strong duality property holds for Problem (1.10) and duality
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can be used to reformulate it as a minimization problem:

h(x, ζ) := inf
ρ

cTx+ (ψ −Ax)Tρ (1.27a)

s.t. BTρ = d(ζ) (1.27b)

ρ ≥ 0 , (1.27c)

where ρ ∈ Rm is the dual variable associated to constraint (1.10b). Therefore, the Prob-

lem (1.9) can be rewritten as Problem (1.28):

maximize
x∈X

inf
ζ∈U

h(x, ζ) ≡ maximize
x∈X

inf
ζ,ρ

cTx+ (ψ −Ax)Tρ (1.28a)

s.t. BTρ = Dζ + d (1.28b)

ρ ≥ 0 (1.28c)

Pζ ≤ q , (1.28d)

where we exploited the definition of d(ζ).

According to Assumption 1.3.3, for all x ∈ X there is a ζ̂ ∈ U for which Problem (1.10)

is bounded, and it has a finite optimal value based on Assumption 1.3.2. By the strong

duality property, Problem (1.27) must also have a finite optimal value for the same ζ̂,

hence it must have a feasible solution ρ̂. We conclude that (ζ̂, ρ̂) is a feasible solution for

Problem (1.27). Therefore, strong duality applies for the minimization problem in (1.28)

and ensures that

inf
ζ∈U

h(x, ζ) = sup
y′,λ,γ

cTx+ dTy′ − qTλ

s.t. Ax+By′ + γ = ψ

P Tλ+DTy′ = 0

γ ≥ 0,λ ≥ 0 ,

where y ∈ Rny , γ ∈ Rm and λ ∈ Rs are the dual variables associated with the constraints

(1.28b), (1.28c), and (1.28d) respectively. This maximization problem can be reintegrated

with the maximization over x ∈ X to obtain Problem (1.11).
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1.8.7 Proof of Proposition 1.4.1

By substituting Problem (1.3) in Problem (1.12) after replacing C = 0, f = 0, and Ψ(x) =

Ψ as prescribed by Definition 1.3.1, we can proceed with the following simple steps:

WCARM ≡ minimize
x∈X

sup
ζ∈U

{
sup

x′∈X ,y′∈Y(x′,ζ)
cTx′ + dTy′ − sup

y∈Y(x,ζ)
cTx+ dTy

}
(1.29a)

≡ minimize
x∈X

sup
ζ∈U ,x′∈X ,y′∈Y(x′,ζ)

inf
y∈Y(x,ζ)

cTx′ + dTy′ − cTx− dTy (1.29b)

≡ maximize
x∈X

inf
ζ∈U ,x′∈X ,y′∈Y(x′,ζ)

sup
y∈Y(x,ζ)

−cTx′ − dTy′ + cTx+ dTy ,

(1.29c)

where Y(x, ζ) := {y ∈ Rny |Ax + By ≤ Ψζ + ψ}, and where we simply regrouped the

minimization and maximization operations together, and later rewrote the minimization

problem as a maximization problem with the understanding that an optimal value for

WCARM can be obtained by changing the sign of the optimal value returned from Prob-

lem (1.29c).

In order to formulate a TSLRO model, we simply consider a lifted uncertain vector

composed as ζ′ := [ζT x′T y′T ]T , which needs to realize inside the polyhedron defined

as

U ′ := {[ζT xT yT ]T ∈ Rnζ+nx+ny |Pζ ≤ q, x ∈ X , Ax+By ≤ Ψζ +ψ} .

One also needs to consider that since ζ has been lifted to ζ′, the recourse decision y can

depend on all the information revealed by ζ′. This completes the proof of how the TSLRO

model presented in (1.13) is equivalent to the WCARM.

We now verify the conditions under which all four assumptions are satisfied by this

new TSLRO. Firstly, given that Assumption 1.3.1 is satisfied for the WCARM problem,

there must exist a triplet (x̄, ζ̄, ȳ) that is such that x̄ ∈ X , ζ̄ ∈ U , and ȳ ∈ Y(x̄, ζ̄). It

is then straightforward to confirm that ζ′ := [ζ̄T x̄T ȳT ]T must be a member of U ′ so

that the triplet (x̄, ζ′, ȳ) satisfies the same condition for the new TSLRO problem (1.13).

We conclude from this that Assumption 1.3.1 applies. Secondly, given that the feasible

set for the recourse problem is the same in WCARM and its new TSLRO reformulation,

Assumption 1.3.2 carries over to the new TSLRO problem. Thirdly, one can show that
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Assumption 1.3.3 also carries through if Assumption 1.3.2 holds. Specifically, we start

by letting ζ̄ : Rnx → Rnζ be a policy that verifies that Assumption 1.3.3 holds for the

WCARM problem and letting (x′,y′) be a feasible first-stage and recourse policy, which

exists based on Assumption 1.3.2. One can construct a policy ζ′(x) := [ζ̄(x)Tx′Ty′T ]T

that will make Assumption 1.3.3 hold for the TSLRO problem. Finally, Assumption 1.3.4

carries through to the new TSLRO as long as the WCARM also satisfies Assumption 1.4.1.

Indeed, when both assumptions are satisfied by the WCARM problem, we know that:

inf
ζ′∈U ′

h′(x, ζ′) = inf
ζ∈U ,x′∈X ,y′∈Y(x′,ζ)

sup
y∈Y(x,ζ)

−cTx′ − dTy′ + cTx+ dTy

≥ inf
ζ∈U

h(x, ζ)− sup
ζ∈U ,x′∈X ,y′∈Y(x′,ζ)

cTx′ + dTy′

≥ inf
ζ∈U

h(x, ζ)− sup
ζ∈U ,x′∈X

h(x′, ζ) > −∞ ,

where we denoted the recourse problem that appears in the TSLRO reformulation as

h′(x, ζ′).

1.8.8 Proof of Proposition 1.4.2

Let us consider the following maximization problem, which is part of the WCARM prob-

lem with objective uncertainty:

sup
x′∈X

h(x′, ζ) = sup
x′,y′

cTx′ + dT (ζ)y′ (1.30a)

s.t. Ax′ +By′ ≤ ψ (1.30b)

Wx′ ≤ v . (1.30c)

Based on Assumption 1.3.2, there necessarily exists a pair (x′,y′) that makes problem

(1.30) feasible. Therefore, strong duality holds and the dual form of Problem (1.30) can be

derived by introducing the dual variables λ ∈ Rm and γ ∈ Rr associated with constraints

(1.30b) and (1.30c), respectively. Thus, we obtain:

sup
x′∈X

h(x′, ζ) = inf
λ≥0,γ≥0

ψTλ+ vTγ (1.31a)

s.t. ATλ+W Tγ = c (1.31b)

BTλ = d(ζ) . (1.31c)
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Since the strong duality property holds for both Problems (1.10) and (1.30), it is pos-

sible to rewrite the WCARM problem by substituting both h(x, ζ) and supx′∈X h(x
′, ζ)

using their respective dual form, which results in the following reformulation:

WCARM ≡ minimize
x∈X

sup
ζ∈U

{
sup
x′∈X

h(x′, ζ)− h(x, ζ)

}
≡ minimize

x∈X
sup
ζ∈U

{
sup
x′∈X

h(x′, ζ)− inf
ρ∈Υ2(ζ)

cTx+ (ψ −Ax)Tρ

}
≡ minimize

x∈X
sup

ζ∈U ,ρ∈Υ2(ζ)

{
sup
x′∈X

h(x′, ζ)− cTx+ (ψ −Ax)Tρ

}
≡ minimize

x∈X
sup

ζ∈U ,ρ∈Υ2(ζ)
inf

(λ,γ)∈Υ1(ζ)
ψTλ+ vTγ − cTx− (ψ −Ax)Tρ

≡ maximize
x∈X

inf
ζ∈U ,ρ∈Υ2(ζ)

sup
(λ,γ)∈Υ1(ζ)

−ψTλ− vTγ + cTx+ (ψ −Ax)Tρ ,

(1.32)

where Υ1(ζ) := {(λ,γ) ∈ Rm × Rr |λ ≥ 0,γ ≥ 0, (1.31b), (1.31c)} and Υ2(ζ) := {ρ ∈

Rm |BTρ = d(ζ), ρ ≥ 0}. By using the two liftings ζ′ =

ζ
ρ

 and y′(ζ) :=

λ(ζ)
γ(ζ)

,

Problem (1.32) can be rewritten in the form presented in equation (1.16).

Regarding the conditions on WCARM for the TSLRO reformulation to satisfy some

of the stated assumptions, we start by considering that WCARM satisfies Assumptions

1.3.1, 1.3.2, 1.3.3, and 1.4.1. Based on Assumption 1.3.3, it is possible to identify an x̄ ∈ X

and ζ̄ ∈ U such that h(x̄, ζ̄) is bounded. This implies by LP duality that there must be a

feasible ρ̄ ∈ Υ2(ζ̄). Moreover, Assumption 1.4.1 implies that supx′∈X h(x
′, ζ̄) is bounded

hence once again LP duality ensures that there exists a pair (λ̄, γ̄) ∈ Υ1(ζ̄). The TSLRO re-

formulation therefore satisfies Assumption 1.3.1 using the quintuplet (x̄, ζ̄, ρ̄, λ̄, γ̄). Next,

the fact that the TSLRO reformulation satisfies Assumption 1.3.2 follows similarly from

imposing Assumption 1.4.1 on WCARM since the existence of a pair (λ̄, γ̄) ∈ Υ1(ζ) holds

for all ζ ∈ U . Finally, Assumption 1.3.3 implies that there exists a ζ̄(x) ∈ U such that, for

all x ∈ X , h(x, ζ̄(x)) <∞. From this, we can conclude that:

inf
x∈X

sup
ζ∈U

{
sup
x′∈X

h(x′, ζ)− h(x, ζ)

}
≥ inf

x∈X
sup
x′∈X

h(x′, ζ̄(x))− h(x, ζ̄(x)) ≥ 0 > −∞ .

The WCARM problem is therefore bounded below by zero hence the TSLRO reformula-

tion is bounded above by zero, which demonstrates that the latter satisfies Assumption

1.3.3.
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Now, given that the WCARM additionally satisfies Assumption 1.3.4, we therefore

have that for all x ∈ X :

sup
ζ∈U

{
sup
x′∈X

h(x′, ζ)− h(x, ζ)

}
≤

(
sup
ζ∈U

sup
x′∈X

h(x′, ζ)

)
−
(
inf
ζ∈U

h(x, ζ)

)
<∞ ,

where the first term is bounded above according to Assumption 1.4.1 and the second

term bounded below according to Assumption 1.3.4. We can thus conclude that for all

x ∈ X , the worst-case regret is bounded above, thus that for all x ∈ X the “worst-case

profit” achievable in the TSLRO reformulation is bounded below, i.e. Assumption 1.3.4

is satisfied by the TSLRO reformulation.

1.8.9 Proof of Proposition 1.5.1

We first employ an epigraph form for Problem (1.18) as follows:

minimize
x∈X ,t

t (1.33a)

subject to sup
ζ∈U

{
supx′∈X h(x

′, ζ)− h(x, ζ)

supx′∈X h(x
′, ζ)

}
≤ t (1.33b)

0 ≤ t ≤ 1 , (1.33c)

where we impose that t ∈ [0, 1] since Assumptions 1.4.1 and 1.5.1 ensure that the optimal

value of the WCRRM problem is in [0, 1]. One can then manipulate constraint (1.33b) to

show that it is equivalent to

supx′∈X h(x
′, ζ)− h(x, ζ)

supx′∈X h(x
′, ζ)

≤ t , ∀ζ ∈ U ,

and moreover to

sup
x′∈X

h(x′, ζ)− h(x, ζ) ≤ t( sup
x′∈X

h(x′, ζ)) , ∀ζ ∈ U ,

since it is clearly the case if ζ is such that supx′∈X h(x
′, ζ) > 0 and otherwise would lead

to the constraint that −h(x, ζ) ≤ 0, which is necessarily satisfied and is coherent with the

fact that we consider regret to be equal to 0 for such a ζ. Finally, we obtain the constraint:

(1− t) sup
x′∈X

h(x′, ζ)− h(x, ζ) ≤ 0 , ∀ζ ∈ U . (1.34)
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By substituting Problem (1.3) in this constraint we obtain the following reformulations

(1.33b) ≡ (1− t) sup
x′∈X ,y′∈Y(x′,ζ)

cTx′ + dTy′ − sup
y∈Y(x,ζ)

cTx+ dTy ≤ 0 , ∀ζ ∈ U

≡ inf
y∈Y(x,ζ)

(1− t)cTx′ + (1− t)dTy′ − cTx− dTy ≤ 0 , ∀ζ ∈ U ,x′ ∈ X ,y′ ∈ Y(x′, ζ) .

Hence the WCRRM problem reduces to:

minimize
x∈X ,t∈[0, 1]

sup
ζ∈U ,x′∈X ,y′∈Y(x′,ζ)

h′(x, t, ζ,x′,y′) ,

where

h′(x, t, ζ,x′,y′) := inf
y

t

s.t. −cTx− dTy ≤ −(1− t)cTx′ − (1− t)dTy′

Ax+By ≤ Ψζ +ψ .

Rewriting the minimization problem as a maximization problem, we obtain the TSLRO

problem presented in equation (1.19).

Regarding the assumptions that are satisfied by this TSLRO reformulation, we can

straightforwardly verify that based on Assumption 1.3.1, there must be a triplet (x̄, ζ̄, ȳ)

such that x̄ ∈ X , ζ̄ ∈ U , and ȳ ∈ Y(x̄, ζ̄) and construct an assignment for x̄′ := x̄ and

ȳ′ := ȳ and t̄ := 0, which satisfies all the constraints of the new TSLRO reformulation.

Unfortunately, if there exists an x ∈ X such that the worst-case relative regret is strictly

greater than 0, then there clearly exists a τ̄ > 0 and a feasible triplet (ζ̄, x̄′, ȳ′) for which

the recourse problem h′(x, τ̄ , ζ̄, x̄′, ȳ′) becomes infeasible, hence the new TSLRO refor-

mulation does not satisfy Assumption 1.3.2.

1.8.10 Proof of Proposition 1.5.2

The first steps of this proof are exactly as in the proof of Proposition 1.5.1 up to equation

(1.34), except for the small difference that we will consider t ∈ [0, 1[, which follows from

Assumption 1.5.2. Since we are now dealing with objective uncertainty, we substitute

h(x, ζ) and supx′∈X h(x
′, ζ) using their respective dual form (see equations (1.27) and

(1.31) respectively), where strong duality follows again from Assumption 1.3.2 implied
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by Assumption 1.5.1. This leads to the following reformulation:

(1.33b) ≡ (1− t) sup
x′∈X

h(x′, ζ)− h(x, ζ) ≤ 0 , ∀ζ ∈ U (1.35)

≡ (1− t)

(
inf

(λ,γ)∈Υ1(ζ)
ψTλ+ vTγ

)
− inf

ρ∈Υ2(ζ)
{cTx+ (ψ −Ax)Tρ} ≤ 0,∀ζ ∈ U

(1.36)

≡ inf
(λ,γ)∈Υ1(ζ)

(1− t)(ψTλ+ vTγ)− cTx− (ψ −Ax)Tρ ≤ 0 , ∀ζ ∈ U , ∀ρ ∈ Υ2(ζ)

(1.37)

≡ inf
(λ,γ)∈Υ1(ζ)

ψTλ+ vTγ − 1

1− t
cTx− 1

1− t
(ψ −Ax)Tρ ≤ 0, ∀ζ ∈ U , ∀ρ ∈ Υ2(ζ) ,

(1.38)

where Υ1(ζ) and Υ2(ζ) are as defined in the proof of Proposition 1.4.2. Hence the WCRRM

problem reduces to:

minimize
x∈X ,t∈[0, 1[

sup
ζ∈U ,ρ∈Υ2(ζ)

h′(x, t, ζ,ρ) ,

where

h′(x, t, ζ,ρ) := inf
λ,γ

t

s.t. ψTλ+ vTγ − 1

1− t
cTx− 1

1− t
(ψ −Ax)Tρ ≤ 0

ATλ+W Tγ = c

BTλ = d(ζ)

λ ≥ 0, γ ≥ 0 .

Using a simple replacement of variables u := 1/(1−t) and z := (1/(1−t))x and applying

a monotone transformation of the objective function t → 1/(1 − t), we obtain that the

WCRRM is equivalently represented as

minimize
u≥1,z:Wz≤vu

sup
ζ∈U ,ρ∈Υ2(ζ)

h′′(z, u, ζ,ρ) ,

where

h′′(z, u, ζ,ρ) := inf
λ,γ

u (1.39a)

s.t. ψTλ+ vTγ − cTz − (ψu−Az)Tρ ≤ 0 (1.39b)
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ATλ+W Tγ = c (1.39c)

BTλ = d(ζ) (1.39d)

λ ≥ 0, γ ≥ 0 . (1.39e)

By converting the minimization problem into a maximization problem, this problem can

be rewritten in the form presented in equation (1.20).

Regarding the assumptions that are satisfied by this TSLRO reformulation, we can

straightforwardly verify that based on Assumption 1.3.1, there must be a triplet (x̄, ζ̄, ȳ)

such that x̄ ∈ X , ζ̄ ∈ U , and ȳ ∈ Y(x̄, ζ̄) and construct an assignment for x̄′ := x̄, ȳ′ := ȳ,

z̄ := x̄, and ū := 1, which satisfy all the constraints of the TSLRO reformulation. Finally,

the difficulties of satisfying Assumption 1.3.2 can be demonstrated exactly as in the proof

of Proposition 1.5.1.

1.8.11 Proof of Proposition 1.6.1

Starting with the case of the WCARM problem, we let h1(x) be defined as the worst-case

absolute regret achieved by x, which can be captured in the following form based on

Proposition 1.4.1:

h1(x) := inf
ζ′∈U ′

sup
y∈Y ′(x,ζ′)

cTx+ dTy + f ′T ζ′ ,

where

Y ′(x, ζ′) := {y |Ax+By ≤ Ψ′ζ′ +ψ} .

Alternatively, let h2(x) denote the conservative approximation of h1(x) obtained using

affine decision rules:

h2(x) := sup
(y,Yζ′ )∈Y ′

aff(x)
inf

ζ′∈U ′
cTx+ dT (y + Yζ′ζ

′) + f ′T ζ′ ,

with

Y ′
aff(x) := {(y, Yζ′) |Ax+B(y + Yζ′ζ

′) ≤ Ψ′ζ′ +ψ, ∀ ζ′ ∈ U ′} .

Necessarily, we have that h1(x) ≥ h2(x) since affine decision rules provide a conservative

approximation. In order to demonstrate that h1(x) = h2(x), we are left with showing that

h2(x) ≥ h1(x) and proceed as follows:

h2(x) ≥ sup
(y,[Yζ 0 0])∈Y ′

aff(x)
min
ζ′∈U ′

cTx+ dT (y + [Yζ 0 0]ζ′) + f ′T ζ′
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= sup
(y,[Yζ 0 0])∈Y ′

aff(x)
min

ζ∈U ,x′∈X ,y′∈Y(x′,ζ)
cTx+ dT (y + Yζζ)− cTx′ − dTy′

= sup
(y,[Yζ 0 0])∈Y ′

aff(x)
min
ζ∈U

cTx+ dT (y + Yζζ)− max
x′∈X ,y′∈Y(x′,ζ)

cTx′ + dTy′

= sup
(y,Yζ)∈Yaff(x)

min
ζ∈U

cTx+ dT (y + Yζζ)− γT ζ − γ̄ (1.40)

= sup
t,(y,Yζ)∈Yaff(x)

t (1.41)

s.t. t ≤ cTx+ dT (y + Yζζ)− γT ζ − γ̄ , ∀ζ ∈ U

= max
t,y(·)

t (1.42)

s.t. t ≤ cTx+ dTy(ζ)− γT ζ − γ̄ , ∀ζ ∈ U

y(ζ) ∈ Y(x, ζ) , ∀ ζ ∈ U

= min
ζ∈U

max
y∈Y(x,ζ)

cTx+ dTy − γT ζ − γ̄ (1.43)

= min
ζ∈U

max
y∈Y(x,ζ)

cTx+ dTy −max
x∈X

h(x, ζ)

= h1(x) ,

where

Yaff := {(y, Yζ) |Ax+B(y + Yζ) ≤ Ψζ +ψ, ∀ ζ ∈ U} .

Detailing each step, we first obtained a lower bound by maximizing over a subset of the

available affine decision rules. We then in the next three steps exploited the property that

maxx∈X h(x, ζ) = γT ζ + γ̄. The fourth step consists in using an epigraph representation

to cast the model in a form where all the uncertainty appears on the right-hand side. The

equivalence between (1.41) and (1.42) follows from the fact that affine decision rules are

optimal in two-stage robust linear programs with right-hand side uncertainty when the

uncertainty set is a simplex set (see Theorem 1 in Bertsimas and Goyal 2012). Finally, the

steps are completed by replacing back γT ζ+ γ̄ = maxx∈X h(x, ζ) to obtain the expression

of worst-case absolute regret, which was defined as h1(x).

In the case of WCRRM, we can follow a similar reasoning. For any fixed x and t, we

can let

h1(x, t) := sup
ζ∈U ,x′∈X ,y′∈Y(x′,ζ)

inf
y

t
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s.t. −cTx− dTy ≤ −(1− t)cTx′ − (1− t)dTy′

Ax+By ≤ Ψζ +ψ ,

and h2(x, t) as the upper bound obtained when applying affine decision rules of the form

y(ζ,x′,y′) := y + Yζζ + Yx′x′ + Yy′y
′. In this context, we can show that

h2(x, t) ≤ inf
y,Yζ

t

s.t. − cTx− dT (y + Yζζ) ≤ −(1− t)cTx′ − (1− t)dTy′ , (1.44)

∀ ζ ∈ U ,x′ ∈ X ,y′ ∈ Y(x′, ζ)

Ax+B(y + Yζζ) ≤ Ψζ +ψ , ∀ ζ ∈ U ,x′ ∈ X ,y′ ∈ Y(x′, ζ)

= inf
y,Yζ

t

s.t. − cTx− dT (y + Yζζ) ≤ −(1− t)(cTx′ + dTy′) , ∀ ζ ∈ U ,x′ ∈ X ,y′ ∈ Y(x′, ζ)

Ax+B(y + Yζζ) ≤ Ψζ +ψ , ∀ ζ ∈ U

= inf
y,Yζ

t

s.t. − cTx− dT (y + Yζζ) ≤ −(1− t)(γ̄ + γT ζ) , ∀ ζ ∈ U

Ax+B(y + Yζζ) ≤ Ψζ +ψ , ∀ ζ ∈ U

=

 t if sup(y,Yζ)∈Yaff(x)
minζ∈U c

Tx+ dT (y + Yζζ)− (1− t)(γT ζ − γ̄) ≥ 0

∞ otherwise

=

 t if minζ∈U maxy∈Y(x,ζ) c
Tx+ dTy − (1− t)(γT ζ − γ̄) ≥ 0

∞ otherwise

(1.45)

=


t if minζ∈U ,x′∈X ,y′∈Y(x′,ζ)maxy∈Y(x,ζ)

cTx+ dT (y + Yζζ)−

(1− t)(cTx′ + dTy′) ≥ 0

∞ otherwise

(1.46)

= sup
ζ∈U ,x′∈X ,y′∈Y(x′,ζ)

inf
y

t

s.t. − cTx− dTy ≤ −(1− t)(cTx′ + dTy′)

Ax+By ≤ Ψζ +ψ
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= h1(x, t) ,

where the equivalence between (1.45) and (1.46) was already demonstrated in going

through equations (1.40) to (1.43).

1.8.12 Proof of Proposition 1.6.2

Considering the case of the WCARM problem, we start by establishing a second equiv-

alent TSLRO reformulation for Problem (1.4.2). In particular, for any fixed x, we can

let

h1(x) := inf
ζ∈U ,ρ∈Υ2(ζ)

sup
(λ,γ)∈Υ1(ζ)

−ψTλ− vTγ + cTx+ (ψ −Ax)Tρ

= inf
ζ∈U ,ρ∈Υ2(ζ)

inf
x′∈X ,y′∈Y ′(x′)

−cTx′ − d(ζ)Ty′ + cTx+ (ψ −Ax)Tρ

= inf
x′∈X ,y′∈Y ′(x′)

sup
y∈Y(x),λ∈L(y,y′)

cT (x− x′) + dT (y − y′)− qTλ ,

where L(y,y′) := {λ ∈ Rs
+ |P Tλ = DT (y′ − y)} and where we exploited strong duality

of

inf
ζ∈U ,ρ∈Υ2(ζ)

(ψ −Ax)Tρ− d(ζ)Ty′ = sup
y∈Y(x),λ∈L(y,y′)

dT (y − y′)− qTλ .

Note that strong duality follows from Assumption 1.3.3 for the same reasons as in the

case of Problem (1.28) (see proof of Proposition 1.3.1). Hence, our analysis gives rise to a

dual reformulation for TSLRO (1.16).

In Bertsimas and de Ruiter (2016), it was established (see Theorem 2) that the conser-

vative approximation obtained by employing affine decision rules on a TSLRO problem

is exactly equivalent to the approximation obtained by employing affine decision rules

on its dual reformulation. This implies that:

h2(x) := sup
(λ(·),γ(·))∈Υaff

1

inf
ζ∈U ,ρ∈Υ2(ζ)

−ψTλ(ζ,ρ)− vTγ(ζ,ρ) + cTx+ (ψ −Ax)Tρ

(1.47)

= sup
y(·)∈Yaff(x),λ(·)∈Laff(y(·))

min
x′∈X ,y′∈Y ′(x′)

cT (x− x′) + dT (y(x′,y′)− y′)− qTλ(x′,y′)

(1.48)
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= inf
x′∈X ,y′∈Y ′(x)

sup
y∈Y(x),λ∈L(y,y′)

cT (x− x′) + dT (y − y′)− qTλ (1.49)

= h1(x) ,

where Υaff
1 captures the set of all affine mappings for λ : Rnζ × Rs → Rm and γ :

Rnζ × Rs → Rr such that (λ(ζ,ρ),γ(ζ,ρ)) ∈ Υ1(ζ) for all ζ ∈ U and ρ ∈ Υ2(ζ), Yaff(x)

captures the affine mappings y : Rnx × Rny → Rny such that y(x′,y′) ∈ Y(x) for all

x′ ∈ X and y′ ∈ Y(x′), and Laff(y(·)) captures the affine mappings λ : Rnx × Rny → Rs

such that λ(x′,y′) ∈ L(y(x′,y′),y′) for all x′ ∈ X and y′ ∈ Y(x′). Specifically, while

the equivalence between expression (1.47) and (1.48) follows from Theorem 2 of Bertsi-

mas and de Ruiter (2016), the equivalence between (1.48) and (1.49) rather follows from

Bertsimas and Goyal (2012) as exploited in the proof of Proposition 1.6.1.

In the case of WCRRM, the steps are very similar to the ones used in proving Propo-

sition 1.6.1. We first let, for any fixed feasible u and z and their associated x := uz ∈ X

and t := 1− 1/u, the operator h1(u, z) stand for

h1(u, z) := sup
ζ∈U ,ρ∈Υ2(ζ)

h′′(z, u, ζ,ρ) ,

where h′′(z, u, ζ,ρ) is as defined in equation (1.39). Furthermore, we let h2(u, z) be the

upper bound achieved when using affine decision rules for λ and γ. We must then have

that:

h2(u, z) = inf
(λ(·),γ(·))∈Υaff

1

u

s.t. ψTλ(ζ,ρ) + vTγ(ζ,ρ)− cTz − (ψu−Az)Tρ ≤ 0 ,

∀ ζ ∈ U , ρ ∈ Υ2(ζ)

= inf
(λ(·),γ(·))∈Υaff

1

u

s.t.
1

u
ψTλ(ζ,ρ) +

1

u
vTγ(ζ,ρ)− 1

u
cTz − (ψ − 1

u
Az)Tρ ≤ 0 ,

∀ ζ ∈ U , ρ ∈ Υ2(ζ)

=


u if inf

(λ(·),γ(·))∈Υaff
1

supζ∈U ,ρ∈Υ2(ζ)

1
uψ

Tλ(ζ,ρ) + 1
uv

Tγ(ζ,ρ)−

cTx− (ψ −Ax)Tρ ≤ 0

∞ otherwise
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=


u if supζ∈U ,ρ∈Υ2(ζ) inf(λ,γ)∈Υ1(ζ)

1
uψ

Tλ+ 1
uv

Tγ−

cTx− (ψ −Ax)Tρ ≤ 0

∞ otherwise

= sup
ζ∈U ,ρ∈Υ2(ζ)

inf
(λ,γ)∈Υ1(ζ)

u

s.t. ψTλ(ζ,ρ) + vTγ(ζ,ρ)− cTz − (ψu−Az)Tρ ≤ 0

= h1(u, z) .

Note that again here we exploit the fact that affine decision rules on

sup
ζ∈U ,ρ∈Υ2(ζ)

inf
(λ,γ)∈Υ1(ζ)

1

u
ψTλ+

1

u
vTγ − cTx− (ψ −Ax)Tρ

gives the same optimal value as using it on

inf
x′,y′:ux′∈X ,uy′∈Y(ux′)

sup
y∈Y(x),λ∈L(y,y′)

cT (x− x′) + dT (y − y′)− qTλ ,

which is its dual reformulation and for which we can verify that the set {(x′,y′) |ux′ ∈

X , uy′ ∈ Y(ux′)} is a simplex set when {(x,y) |x ∈ X ,y ∈ Y(x)} is one. Hence, ac-

cording to Theorem 2 in Bertsimas and de Ruiter (2016) and Theorem 1 in Bertsimas and

Goyal (2012), affine decision rules must be optimal in both cases.

1.8.13 Proof of Proposition 1.6.3

The proof proceeds in two steps. The first step consists in extending Corollary 1 in

Ardestani-Jaafari and Delage (2016) to the following formulation:

maximize
x∈X

min
(ζ+,ζ−)∈U±(Γ)

h(x, ζ+ − ζ−)− γ̄ − γT (ζ+ − ζ−) , (1.50)

where

U±(Γ) := {(ζ+, ζ−) ∈ Rm
+ × Rm

+ | ζ+ + ζ− ≤ 1,
∑
i

ζ+i + ζ−i = Γ} ,

and where h(x, ζ) is a sum of piecewise linear concave functions as defined in (1.21).

Namely, that affine decision rules are optimal for Problem (1.50) when h(x, ζ) and Γ

satisfy one of the three conditions described in our proposition. This can then be used

to demonstrate that they are optimal for Problem (1.13) and (1.19) following the same
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arguments as those used in the proof of Proposition 1.6.1 where the equivalence between

(1.40) and (1.43), and between (1.45) and (1.46) is now supported by what was established

in the first step. For the sake of conciseness, we focus on the first step.

Lemma 1.8.1 If h(x, ζ) is a sum of piecewise linear concave functions of the form presented in

(1.21), the uncertainty set U is the budgeted uncertainty set defined as in (1.22), and either of the

following conditions are satisfied:

i. Γ = 1

ii. Γ = nζ and uncertainty is “additive”: i.e. αik(x) = ᾱik(x)(
∑

ℓ<i α̂ℓ(x)eℓ) for some

ᾱik : Rnx → R for all i and k and some α̂ : Rnx → Rnζ

iii. Γ is integer and objective is “decomposable”: i.e. αik(x) = ᾱik(x)ei for some ᾱik : Rnx →

R for all i and k

then, affine decision rules with respect to (δ+, δ−) are optimal in the following two-stage linear

programming formulation of maximizex∈X minζ∈U h(x, ζ)− γ̄ − γT ζ:

maximize
x∈X ,y(·,·)

min
(ζ+,ζ−)∈U±(Γ)

ny∑
i=1

yi(ζ
+, ζ−)− γ̄ − γT (ζ+ − ζ−)

subject to yi(ζ
+, ζ−) ≤ αik(x)

T (ζ+ − ζ−) + βik(x) , ∀ (ζ+, ζ−) ∈ U±(Γ), ∀ i, ∀ k ,

where y : Rnζ × Rnζ → Rny .

For each of the three cases, we will demonstrate that there exists a linear transforma-

tion of y(·) that can be used to distribute the term γ̄ + γT (ζ+ − ζ−) in the constraints

while preserving their respective structure. This then allows us to exploit Corollary 1 in

Ardestani-Jaafari and Delage (2016) to reach our conclusion.

Condition i: Let us start by characterizing for any fixed x ∈ X , the optimal value of the

adversarial problem as h1(x), namely:

h1(x) := min
(ζ+,ζ−)∈U±(Γ)

h(x, ζ+ − ζ−)− γ̄ − γT (ζ+ − ζ−)
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and by h2(x) the lower bound on this value obtained using affine decision rules:

h2(x) := max
ȳ,{y+

i ,y−
i }ny

i=1

min
(ζ+,ζ−)∈U±(Γ)

ny∑
i=1

(ȳi + y
+
i
T
ζ+ + y−i

T
ζ−)− γ̄ − γT (ζ+ − ζ−)

(1.51a)

s.t. ȳi + y
+
i
T
ζ+ + y−i

T
ζ− ≤ αik(x)

T (ζ+ − ζ−) + βik(x) ,
∀ (ζ+, ζ−) ∈ U±(Γ)

∀ i, ∀ k .

(1.51b)

We will show that h2(x) is actually equal to h1(x). In particular, by replacing z̄1 := ȳ1− γ̄,

z+1 := y+1 −γ, z−1 := y−1 +γ, while z̄i := ȳi, z+i := y+i , and z−i := y−i for all i ≥ 2, we then

get that:

h2(x) := max
z̄,{z+

i ,z−
i }ny

i=1

min
(ζ+,ζ−)∈U±(Γ)

ny∑
i=1

(z̄i + z
+
i
T
ζ+ + z−i

T
ζ−)

s.t.

z̄1 + z
+
1
T
ζ+ + z−1

T
ζ− ≤ (α1k(x)− γ)T (ζ+ − ζ−) + (β1k(x)− γ̄) , ∀ (ζ+, ζ−) ∈ U±(Γ), ∀ k

z̄i + z
+
i
T
ζ+ + z−i

T
ζ− ≤ αik(x)

T (ζ+ − ζ−) + βik(x) , ∀ (ζ+, ζ−) ∈ U±(Γ), ∀ i ≥ 2, ∀ k .

One can easily recognize that this form is equivalent to the lower bound obtained when

applying affine decision rules to approximate the worst-case value of a sum of piecewise

linear concave functions. Following Corollary 1 in Ardestani-Jaafari and Delage (2016),

since Γ = 1, we can conclude that

h2(x) := max
z(·)

min
(ζ+,ζ−)∈U±(Γ)

ny∑
i=1

zi(ζ
+, ζ−)

s.t. z1(ζ
+, ζ−) ≤ (α1k(x)− γ)T (ζ+ − ζ−) + (β1k(x)− γ̄) , ∀ (ζ+, ζ−) ∈ U±(Γ), ∀ k

zi(ζ
+, ζ−) ≤ αik(x)

T (ζ+ − ζ−) + βik(x) , ∀ (ζ+, ζ−) ∈ U±(Γ), ∀ i ≥ 2, ∀ k ,

which once more with a replacement of variables gives us:

h2(x) = max
y(·)

min
(ζ+,ζ−)∈U±(Γ)

ny∑
i=1

yi(ζ
+, ζ−)− γ̄ − γT (ζ+ − ζ−)

s.t. zi(ζ
+, ζ−) ≤ αik(x)

T (ζ+ − ζ−) + βik(x) ∀ (ζ+, ζ−) ∈ U±(Γ), ∀ i, ∀ k .

Hence, we have that h2(x) = h1(x).
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Condition iii: The proof for Condition iii is fairly similar except that we exploit a dif-

ferent affine transformation for passing from y to z. In particular, now we can exploit the

fact that the objective function in (1.51) can be equivalently written as:

max
ȳ,{y+

i ,y−
i }ny

i=1

min
(ζ+,ζ−)∈U±(Γ)

ny∑
i=1

(ȳi − γ̄/ny) + (y+i − γiei)
T ζ+ + (y−i + γiei)

T ζ− .

We can now replace z̄ := ȳ − γ̄/ny and each z+i := y+i − γiei and z−i := y−i + γiei to get:

h2(x) = max
z̄,{z+

i ,z−
i }ny

i=1

min
(ζ+,ζ−)∈U±(Γ)

ny∑
i=1

(z̄i + z
+
i
T
ζ+ + z−i

T
ζ−)

s.t.

z̄i + z
+
i
T
ζ+ + z−i

T
ζ− ≤ (αik(x)− γiei)

T (ζ+ − ζ−) + βik(x)− γ̄/ny ,
∀ (ζ+, ζ−) ∈ U±(Γ)

∀ i, ∀ k .

One can again recognize that this form is equivalent to the lower bound obtained when

applying affine decision rules to approximate the worst-case value of h′(x, ζ+ − ζ−),

which is defined as the sum of piecewise linear concave functions usingα′
ik(x) := αik(x)−

γiei and β′ik(x) := βik(x)− γ̄/ny. Following Corollary 1 in Ardestani-Jaafari and Delage

(2016), we can conclude that

h2(x) = min
(ζ+,ζ−)∈U±(Γ)

h′(x, ζ+ − ζ−)

since by Condition iii we have that:

α′
ik(x) = αik(x)− γiei = ᾱik(x)ei − γiei = (ᾱik(x)− γi)ei ,

hence Condition 3 in Ardestani-Jaafari and Delage (2016) is satisfied. We can therefore

conclude that

h2(x) = max
z(·)

min
(ζ+,ζ−)∈U±(Γ)

ny∑
i=1

zi(ζ
+, ζ−)

s.t. zi(ζ
+, ζ−) ≤ (αik(x)− γiei)

T (ζ+ − ζ−) + βik(x)− γ̄/ny , ,
∀ (ζ+, ζ−) ∈ U±(Γ)

∀ i, ∀ k ,

which once more with a replacement of variable gives us:

h2(x) = max
y(·)

min
(ζ+,ζ−)∈U±(Γ)

ny∑
i=1

yi(ζ
+, ζ−)− γ̄ − γT (ζ+ − ζ−)

s.t. zi(ζ
+, ζ−) ≤ αik(x)

T (ζ+ − ζ−) + βik(x) ∀ (ζ+, ζ−) ∈ U±(Γ), ∀ i, ∀ k .

Hence, we have that h2(x) = h1(x).
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Condition ii: The proof for Condition ii is again entirely analogous with a new affine

transformation for passing from y to z. In particular, we first assume for simplicity of

exposition that α̂ℓ ̸= 0 for all ℓ = 1, . . . , nζ and that ny = nζ + 1. We then exploit the fact

that:

γ =

nζ∑
ℓ=1

γℓeℓ =

nζ∑
ℓ=1

α̂ℓeℓ

( nζ∑
i=ℓ

γi
α̂i

−
nζ∑

i=ℓ+1

γi
α̂i

)
=

nζ−1∑
i=1

(
γi
α̂i

− γi+1

α̂i+1

)∑
ℓ≤i

α̂ℓeℓ +
γnζ

α̂ζ

nζ∑
ℓ=1

α̂ℓeℓ

=

nζ+1∑
i=1

ᾱ′
i

(∑
ℓ<i

α̂ℓeℓ

)
,

where

ᾱ′
i :=


0 if i = 1

γi−1

α̂i−1
− γi

α̂i
if i ∈ {2, . . . , nζ}

γnζ

α̂ζ
if i = nζ + 1

.

We, therefore, have that the objective function in (1.51) can be reformulated as

max
ȳ,{y+

i ,y−
i }ny

i=1

min
(ζ+,ζ−)∈U±(Γ)

ny∑
i=1

(ȳi−γ̄/ny)+

(
y+i − ᾱ′

i

(∑
ℓ<i

α̂ℓeℓ

))T

ζ++

(
y−i + ᾱ′

i

(∑
ℓ<i

α̂ℓeℓ

))T

ζ− .

By replacing z̄i := ȳi − γ̄/ny as before, while replacing z+i := y+i − ᾱ′
i(
∑

ℓ<i α̂ℓeℓ) and

z−i := y−i + ᾱ′
i(
∑

ℓ<i α̂ℓeℓ))
T ζ−, we obtain:

h2(x) = max
z̄,{z+

i ,z−
i }ny

i=1

min
(ζ+,ζ−)∈U±(Γ)

ny∑
i=1

(
z̄i + z

+
i
T
ζ+ + z−i

T
ζ−
)

s.t.

z̄i + z
+
i
T
ζ+ + z−i

T
ζ− ≤ (ᾱik(x)− ᾱ′

i)

(∑
ℓ<i

α̂ℓeℓ

)T

(ζ+ − ζ−) + βik(x)− γ̄/ny ,
∀ (ζ+, ζ−) ∈ U±(Γ)

∀ i, ∀ k .

Hence, once again Corollary 1 of Ardestani-Jaafari and Delage (2016) applies and allows

us to complete the proof using exactly the same steps as for conditions i and iii.

1.8.14 TSLRO Reformulations for WCRRM in Cost Minimization Problems

Given a non-negative optimal second-stage cost function f(x, ζ), which depends on both

the decision and the realization of some uncertain vector of parameters ζ, following the

formulation presented in Mausser and Laguna (1999b), one measures the relative regret
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experienced once ζ is revealed as the ratio of the difference between the lowest cost

achievable minx′∈X f(x
′, ζ) and the cost f(x, ζ) achieved by the decision x that was im-

plemented, over the lowest cost achievable. The worst-case relative regret minimization

(WCRRM) problem thus takes the form:

minimize
x∈X

sup
ζ∈U

{
f(x, ζ)− infx′∈X f(x

′, ζ)

infx′∈X f(x′, ζ)

}
, (1.52)

where, when infx′∈X f(x
′, ζ) = 0, we should interpret the relative regret as being either 0

if f(x, ζ) = 0 or infinite otherwise. Equivalently, in terms of h(x, ζ) := −f(x, ζ), we will

define the WCRRM problem has:

(WCRRM) minimize
x∈X

sup
ζ∈U

{
h(x, ζ)− supx′∈X h(x

′, ζ)

supx′∈X h(x
′, ζ)

}
. (1.53)

As mentioned above, we make the following assumption about the profit function in this

two-stage problem.

Assumption 1.8.1 The cost function h(x, ζ) ≤ 0 for all x ∈ X and all ζ ∈ U . This implies that

Assumptions 1.3.3 and 1.4.1 are satisfied and that the optimal value of Problem (1.53) is greater

or equal to zero.

In what follows we demonstrate how the WCRRM problem can be reformulated as a

TSLRO when the cost function f(x, ζ) (a.k.a. −h(X , ζ)) captures the cost of a second-

stage linear decision model with either right-hand side or objective uncertainty.

1.8.14.1 The Case of Right-Hand Side Uncertainty

We consider the case where h(x, ζ) takes the form presented in Problem (1.3) and where

uncertainty is limited to the right-hand side as defined in Definition 1.3.1.

Proposition 1.8.1 Given that Assumptions 1.3.1 and 1.8.1 are satisfied, the cost-based WCRRM

problem with right-hand side uncertainty is equivalent to the following TSLRO problem:

maximize
x′∈X ′,y′(·)

inf
ζ′∈U ′

c′Tx′ (1.54a)

subject to A′x′ +B′y′(ζ′) ≤ Ψ′(x′)ζ′ +ψ′, ∀ ζ′ ∈ U ′ , (1.54b)
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where x′ ∈ Rnx+1, ζ′ ∈ Rnζ+nx+ny , y′ : Rnζ+nx+ny → Rny , c′ = [−1 0T ]T , while X ′ :=

{[t xT ]T ∈ Rnx+1 |x ∈ X , t ≥ 0}, U ′ is defined as in equation (1.14), and

A′ :=

0 −cT

0 A

 , B′ :=

−dT
B

 ,
Ψ′(x′) :=

0T −cT −dT

Ψ 0 0

+

0T −cT −dT

0 0 0

x′1, ψ′ :=

0
ψ

 .
In particular, a solution for the WCRRM takes the form of x∗ := x′∗

2:nx+1 and achieves a worst-

case relative regret of x′1. Furthermore, this TSLRO reformulation necessarily satisfies Assump-

tion 1.3.1 while it only satisfies Assumption 1.3.2 if all x ∈ X achieve a worst-case regret of

zero.

We first employ an epigraph form for Problem (1.53) as follows:

minimize
x∈X ,t

t (1.55a)

subject to sup
ζ∈U

{
h(x, ζ)− supx′∈X h(x

′, ζ)

supx′∈X h(x
′, ζ)

}
≤ t (1.55b)

0 ≤ t , (1.55c)

where we impose that 0 ≤ t since Assumption 1.8.1 ensures that the optimal value of the

WCRRM problem is greater or equal to zero. One can then manipulate constraint (1.55b)

to show that it is equivalent to

h(x, ζ)− supx′∈X h(x
′, ζ)

supx′∈X h(x
′, ζ)

≤ t , ∀ζ ∈ U ,

hence to

h(x, ζ)− sup
x′∈X

h(x′, ζ) ≥ t( sup
x′∈X

h(x′, ζ)) , ∀ζ ∈ U ,

since, for a fixed ζ, either supx′∈X h(x, ζ) < 0 or otherwise the new constraint becomes

equivalent to h(x, ζ) = 0, which captures exactly the fact that the regret is zero under this

ζ scenario if h(x, ζ) = 0 and otherwise infinite. Finally, we obtain the constraint:

(t+ 1) sup
x′∈X

h(x′, ζ)− h(x, ζ) ≤ 0 , ∀ζ ∈ U . (1.56)

By substituting Problem (1.3) in this constraint, we obtain the following reformulations

(1.55b) ≡ (t+ 1) sup
x′∈X ,y′∈Y(x′,ζ)

cTx′ + dTy′ − sup
y∈Y(x,ζ)

cTx+ dTy ≤ 0 ,∀ζ ∈ U
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≡ min
y∈Y(x,ζ)

−cTx− dTy + (1 + t)cTx′ + (1 + t)dTy′ ≤ 0 ,∀ζ ∈ U , x′ ∈ X ,y′ ∈ Y(x′, ζ) .

Hence, the WCRRM problem reduces to:

minimize
x∈X ,t≥0

sup
ζ∈U ,x′∈X ,y′∈Y(x′,ζ)

h′(x, t, ζ,x′,y′)

where

h′(x, t, ζ,x′,y′) := inf
y

t

s.t. −cTx− dTy ≤ −(t+ 1)cTx′ − (t+ 1)dTy′

Ax+By ≤ Ψζ +ψ .

This problem can be rewritten in the form presented in equation (1.54).

Note that the arguments to support the conditions under which Assumptions 1.3.1

and 1.3.2 are satisfied are exactly the same as in the proof of Proposition 1.5.1.

1.8.14.2 The Case of Objective Uncertainty

We consider the case where h(x, ζ) takes the form presented in Problem (1.3).

Proposition 1.8.2 Given that Assumptions 1.3.1 and 1.8.1 are satisfied, the WCRRM problem

with objective uncertainty is equivalent to the following TSLRO problem:

maximize
x′,y′(.)

inf
ζ′∈U ′

c′Tx′ (1.57a)

subject to A′x′ +B′y′(ζ′) ≤ Ψ′(x′)ζ′ +ψ′ (1.57b)

x′ ∈ X ′ , (1.57c)

where x′ ∈ Rnx+1, y′ : Rnζ+m → Rm+r, while X ′ := {[u zT ]T ∈ Rnx+1 |Wz ≥ vu, −1 ≤

u ≤ 0}, and U ′ is defined as in equation (1.17). Moreover, we have that c′ := [−1 0T ]T , while

A′ :=



0 cT

0 0

0 0

0 0

0 0

0 0

0 0


, B′ :=



ψT vT

AT W T

−AT −W T

BT 0

−BT 0

−I 0

0 −I


,
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Ψ′(x′) :=



0T −ψTx′
1 + x

′T
2:nx+1A

T

0 0

0 0

D 0

−D 0

0 0

0 0


, ψ′ :=



0

c

−c

d

−d

0

0


.

In particular, a solution for the WCRRM takes the form of x∗ := x′∗
2:nx+1/x

′∗
1 and achieves a

worst-case relative regret of −1− 1/x′∗1 if x′∗1 < 0 while the best worst-case relative regret should

be considered infinite if x′∗1 = 0. Furthermore, this TSLRO reformulation necessarily satisfies

Assumption 1.3.1 while it only satisfies Assumption 1.3.2 if all x ∈ X achieve a worst-case regret

of zero.

The first steps of this proof are exactly as in the proof of Proposition 1.8.1 up to equa-

tion (1.56). The next steps are then exactly analogous to the steps followed in the proof

of Proposition 1.5.2, which we repeat for completeness. Since we are now dealing with

objective uncertainty, we substitute h(x, ζ) and supx′∈X h(x
′, ζ) using their respective

dual form (see equations (1.27) and (1.31) respectively). Strong duality applies since As-

sumption 1.8.1 implies that Assumptions 1.3.3 and 1.4.1 are satisfied, which results to the

following reformulation:

(1.55b) ≡ (t+ 1) sup
x′∈X

h(x′, ζ)− h(x, ζ) ≤ 0 , ∀ζ ∈ U (1.58)

≡ (t+ 1) inf
(λ,γ)∈Υ1(ζ)

ψTλ+ vTγ − inf
ρ∈Υ2(ζ)

{cTx+ (ψ −Ax)Tρ} ≤ 0,∀ζ ∈ U

(1.59)

≡ inf
(λ,γ)∈Υ1(ζ)

(1 + t)ψTλ+ (1 + t)vTγ − cTx− (ψ −Ax)Tρ ≤ 0, ∀ζ ∈ U ,ρ ∈ Υ2(ζ)

(1.60)

≡ inf
(λ,γ)∈Υ1(ζ)

ψTλ+ vTγ − 1

1 + t
cTx− 1

1 + t
(ψ −Ax)Tρ ≤ 0,∀ζ ∈ U ,ρ ∈ Υ2(ζ) ,

(1.61)

where Υ1(ζ) and Υ2(ζ) are as defined in the proof of Proposition 1.4.2. Hence the WCRRM
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problem reduces to:

minimize
x∈X ,t≥0

sup
ζ∈U ,ρ∈Υ2(ζ)

h′′(x, t, ζ,ρ) ,

where

h′′(x, t, ζ,ρ) := inf
λ,γ

t

s.t. ψTλ+ vTγ − 1

1 + t
cTx− 1

1 + t
(ψ −Ax)Tρ ≤ 0

ATλ+W Tγ = c

BTλ = d(ζ)

λ ≥ 0, γ ≥ 0 .

Using a simple replacement of variables u := − 1
1+t and z := − 1

1+tx and applying a

monotone transformation of the objective function t→ − 1
1+t , we obtain that the WCRRM

is equivalently represented as

minimize
−1≤u<0,z:Wz≥vu

sup
ζ∈U ,ρ∈Υ2(ζ)

h′′(z, u, ζ,ρ) ,

where

h′′(z, u, ζ,ρ) := inf
λ,γ

u

s.t. ψTλ+ vTγ + cTz + (uψ −Az)Tρ ≤ 0

ATλ+W Tγ = c

BTλ = d(ζ)

λ ≥ 0, γ ≥ 0 .

This problem can be rewritten in the form presented in equation (1.57) as long as when

the optimal value of the TSLRO is 0 one concludes that best worst-case relative regret is

infinite.

Note that the arguments to support the conditions under which Assumptions 1.3.1

and 1.3.2 are satisfied are similar as in the proof of Proposition 1.5.2.

72



Endnotes

1. Note that if WCARM is unbounded it is necessarily because such an x ∈ X exists

since for any fixed x if the profit reachable under all ζ ∈ U is finite then the regret is

necessarily non-negative.

2. Note that the budgeted uncertainty set in this work follows the representation pro-

posed in Ardestani-Jaafari and Delage (2016), i.e. with
∑

i ζ
+
i + ζ−i = Γ instead of∑

i ζ
+
i + ζ−i ≤ Γ, in order for their Proposition 6 to be applicable.

3. In order to assess the average performance in terms of worst-case profit (WC), worst-

case absolute regret (WCARM), and worst-case relative regret (WCRRM) of the differ-

ent decision sets, we computed the average of WC∗−WC
WC∗ × 100, WCARM−WCARM∗

WCARM∗ × 100,

and WCRRM − WCRRM∗ measures on the 120 instances, where WC∗, WCARM∗,

and WCRRM∗ represent the optimal values of WC, WCARM, and WCRRM problems,

respectively.
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Chapter 2

Risk-Averse Regret Minimization in

Multistage Stochastic Programs

Abstract

Within the context of optimization under uncertainty, a well-known alternative to min-

imizing expected value or the worst-case scenario consists in minimizing regret. In a

multistage stochastic programming setting with a discrete probability distribution, we

explore the idea of risk-averse regret minimization, where the benchmark policy can only

benefit from foreseeing ∆ steps into the future. The ∆-regret model naturally interpolates

between the popular ex-ante and ex-post regret models. We provide theoretical and nu-

merical insights about this family of models under popular coherent risk measures and

shed new light on the conservatism of the ∆-regret minimizing solutions.

2.1 Introduction

The regret minimization paradigm, introduced by Savage (1951), is claimed to provide

less conservative solutions compared to the ones returned by optimizing with respect to

the worst-case scenario (Perakis and Roels 2008, Aissi et al. 2009, Natarajan et al. 2014,

Caldentey et al. 2017). Given a profit function h(x, ζ), which depends on the decision

x and an uncertain vector of parameters ζ, the regret minimization approach aims at



minimizing the difference between the achieved profit and the best profit that would

have been made if the realization of ζ was known before making the decision. Namely,

the so-called ex-post worst-case regret minimization problem takes the form of:

(EP-WCR) minimize
x∈X

max
ω∈Ω

{
max
x′∈X

h(x′, ζ(ω))− h(x, ζ(ω))

}
,

where X is the set of admissible actions, Ω denotes the outcome space, and x′ captures

the decision made with full information about ω, which we will refer to as the benchmark

policy.

While most of the regret minimization literature focuses on worst-case scenario anal-

ysis, there has recently been a scarce but growing interest in formulations that account for

more information about the underlying potential of realization of the different outcomes.

A first common approach can be referred to as the ex-post risk-averse regret minimiza-

tion problem:

(EP-RAR) minimize
x∈X

ρ

(
max
x′∈X

h(x′, ζ(ω))− h(x, ζ(ω))

)
,

where ρ can either be a law-invariant risk measure (see Kusuoka 2001), e.g. expected

value or Conditional Value-at-Risk (CVaR), or a worst-case risk measure (see Postek et al.

2018), e.g. a worst-case expected value that accounts for incomplete distribution informa-

tion. For example, Natarajan et al. (2014) proposed an ex-post regret minimization model

equipped with a worst-case CVaR risk measure that accounted for information about the

marginal distribution of the different terms of ζ. Indeed, having access to distributional

information enables one to employ a variety of popular risk measures, which can help

further control conservatism by trading off between the expected value and tail risks of

the regret with respect to a fully informed decision.

A second approach departs from the traditional ex-post regret form as it instead mea-

sures regret with respect to an action x′ that does not have knowledge of the realized

scenario. This rather gives rise to what can be referred as the ex-ante risk-averse regret

minimization problem:

(EA-RAR) minimize
x∈X

max
x′∈X

ρ
(
h(x′, ζ(ω))− h(x, ζ(ω))

)
.

Such an approach was for example used in Perakis and Roels (2008), where the risk mea-

sure takes the form of a worst-case expectation. To clarify further, we illustrate the dis-
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tinction between the two approaches using a simple project selection problem with par-

tial distribution information as an example.

Example 2.1.1 A manager must choose one of the three available projects for investment (i.e.

X := {xA,xB,xC}) and considers two possible scenarios (i.e. Ω := {ω1, ω2}) for the projects’

payoff. Although the true probability of each scenario is not known to the manager, she con-

siders two different possibilities (i.e. P := {PI , PII}) and employs worst-case expected value

as the risk measure.1 Table 2.1 provides the numerical details while Table 2.2 presents the op-

timal project selected under four different regret minimization formulations: {Ex-ante/Ex-post}

{Worst-case/Risk-averse} regret minimization. The reader is referred to Section 2.6.1 for further

numerical details.

Table 2.1: Numerical Details of Example 2.1.1

Project payoffs Probabilities
xA xB xC PI PII

ω1 1$ 5$ 4$ 80% 0%
ω2 6$ 2$ 3$ 20% 100%

Table 2.2: Optimal Project Selected
under Four Variants of Regret Mini-
mization in Example 2.1.1

Ex-ante Ex-post
Worst-case xC xC

Risk-averse xA xC

Specifically, both ex-post models measure the regret under each outcome by comparing to the

best action in hindsight: i.e., xB and xA under scenarios ω1 and ω2 respectively. However, ex-

ante model needs to consider the same action x′ to compare to under all the scenarios. Namely, in

the case of the risk-averse model, we have x′∗ = xB . Looking at Table 2 one can remark that while

under a worst-case regret formulation, the optimal decision is unaffected by the use of ex-post or

ex-ante regret, this is not the case anymore when using a risk-averse setting.

Example 2.1.1 raises questions such as, under what conditions are EP-RAR and EA-

RAR equivalent? Do other formulations exist between ex-ante and ex-post that could fill

in the gap between the two solutions (especially in a multistage setting)? And, finally,

what are the implications of these formulations in terms of level of conservatism? To the

best of our knowledge, this chapter investigates these questions for the first time and by

presenting a new multistage regret minimization formulation that measures regret with

respect to decisions that can exploit information revealed up to ∆ stages into the future.
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This model effectively interpolates very naturally between the ex-ante (with ∆ = 0) and

ex-post (with ∆ = ∞) models and effectively allows to study them under the same lens.

Overall, the contributions of this chapter can be summarized as follows:

• Theoretically, we show that EP-RAR and EA-RAR are equivalent in terms of their

optimal solution in a risk neutral setting, and equivalent both in optimal solution

and value when a worst-case risk measure is used if a “relatively complete recourse

property” is satisfied.

• Methodologically, we introduce the ∆-regret model for multistage stochastic pro-

gramming under a discrete probability space. We show how this model can be

evaluated over a continuum of ∆ values and can be reformulated as a special class

of two-stage robust linear program that is amenable to a rich range of solution

schemes when the stochastic program is linear.

• Numerically, we investigate the effect of ∆ and risk aversion on the conservatism of

solutions proposed by the ∆-regret model in a multistage inventory management

problem. We further illustrate the effect of enforcing different information look-

ahead levels ∆ on the experienced regret.

The rest of the chapter is composed as follows. Section 2.2 reviews the relevant litera-

ture. Section 2.3 presents the ∆-regret model, and an illustrative example involving an

inventory management problem. Section 2.4 presents our theoretical contributions and

proposes a solution scheme while Section 2.5 presents our numerical experiments. All

proofs are deferred to Section 2.6. We finally refer interested readers to Poursoltani et al.

(2021) for a discussion on how to extend our ∆-regret model to the fractional ∆ setting.

2.2 Literature Review

Since the first introduction by Savage (1951), regret minimization has been used in a

wide range of applications including single-period portfolio selection (Lim et al. 2012),

shortest path, subset selection (Natarajan et al. 2014), spanning tree, ranking problems

(Audibert et al. 2014), and in pricing and mechanism design (Caldentey et al. 2017, Koçy-

iğit et al. 2022) to name a few. Broadly speaking, the regret minimization models that
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are found in the literature can be classified based on three elements, e.g., the type of risk

measure employed for regret evaluation, the length of the planning horizon, and the type

of nonanticipativity constraint imposed on the benchmark policy.

In a single-stage setting, the majority of studies focus on the ex-post worst-case regret

minimization problem (see for e.g. Feizollahi and Averbakh 2014, Furini et al. 2015, Park

et al. 2021), perhaps because of the ease of requiring only support information about the

unknown parameters. Under the assumption of partial distribution information, Natara-

jan et al. (2014) study ex-post regret using a worst-case Conditional Value-at-Risk mea-

sure. Chen et al. (2006) exploit a similar regret model but in the context of a p-median

problem. In these formulations, the benchmark policy can be seen as exploiting both

the information about the distribution and about the realization itself. This is in sharp

contrast with the ex-ante formulation that employs a worst-case risk measure (for an ap-

plication to the newsvendor problem, see Yue et al. 2006 and Perakis and Roels 2008).

Indeed, these works employ a worst-case expected value to measure regret and rather

interpret it as the expected value of distribution information (EVDI) or the maximum

value of stochastic modeling (see Delage et al. 2014), due to the following equivalence:

max
x′∈X

sup
P∈P

EP
[
h(x′, ζ(ω))− h(x, ζ(ω))

]
= sup

P∈P

((
max
x′∈X

EP
[
h(x′, ζ(ω))

])
− EP[h(x, ζ(ω)]

)
.

In the literature studying EVDI of the newsvendor problem, one can mention that Chen

and Xie (2021) assume concurrent demand and supply randomness and Zhu et al. (2013)

provide closed-form solutions for the relative EVDI. Other applications of EVDI can be

found in portfolio optimization (see Lim et al. 2012, Benati and Conde 2022), fleet mix

optimization (see Delage et al. 2014), and blood classification (see El-Amine et al. 2018).

In the multistage setting, most studies focus on a two-stage setting under an ex-post

worst-case regret minimization (see Bertsimas and Dunning 2020, Poursoltani and De-

lage 2022 and references therein). Additionally, Xu et al. (2015) study a two-stage bidding

problem in an electricity market, where perfect distribution information is assumed and

different risk measures are applied on the realized ex-post regret. Similar approaches

were used in Zhang et al. (2020). Lim et al. (2006) investigate ex-ante and ex-post worst-

case expected regret models in a fully multistage framework involving either an inven-

tory management or a portfolio optimization problem. The authors draw connections
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between regret minimization and Bayesian learning.

There has also been an interest in the economics literature to study the role that regret

can play in a dynamic environment. For instance, Hayashi (2011) and Halpern and Le-

ung (2016) study different forms of ex-post regret models and identify conditions under

which regret minimizing policies are dynamically consistent. Alternatively, one can re-

fer to the work of Krähmer and Stone (2008), which considers a two-stage setting where

the decision maker optimizes a trade-off between the expected payoff and a weighted

sum of the regret experienced at different point of time. Finally, Hayashi (2009) explores

dynamic consistency and the role of ex-post regret in optimal stopping problems, while

Strack and Viefers (2021) explores in the same application the effect of using stopping

time to control the horizon over which the ex-post regret is measured.

This chapter can be viewed to contribute to multistage regret theory from an opti-

mization point of view. Indeed, we propose for the first time an intuitive risk-averse

multistage regret minimization problem where the pessimism of the benchmark policy

set is controlled using a bound on the maximum amount of look-ahead. This ∆-regret

model naturally interpolates between the ex-ante and ex-post regret models. Further-

more, we explore the properties of ∆-regret models under popular risk measures and

provide a promising direction for numerical resolution of these models, which is based

on the recent advances in two-stage robust optimization. These later results can be seen

as an interesting extension of Poursoltani and Delage (2022) to the multistage setting.

2.3 ∆-Regret Minimization in Multistage Stochastic Programs

We consider a multistage decision making setting in which at each stage t ∈ {1, . . . , T} a

decision maker needs to make a decision xt ∈ Rn based on the available historical infor-

mation captured by [ζ1 ζ2 · · · ζt−1]. Focusing on a discrete probability space (Ω,Σ,Q),

where Q is assumed strictly positive without loss of generality, one classical decision-

making approach formulates the following multistage stochastic program:

(MSP) min
x∈X∩Xna

ρ
(
− h(x, ζ)

)
(2.1)
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where x : Ω → Rn×T is the multistage policy, ζ : Ω → Rm×T−1 is the concatenated

matrix of the random vectors observed over the whole horizon, h(x, ζ) is the cumulative

profit of implementing policy x when ζ is realized, ρ is a convex risk measure that maps

a random cost to a risk level, X := {x : Ω → Rn×T |x(ω) ∈ Xω , ω ∈ Ω}, with bounded

Xω ⊆ Rn×T , imposes “physical” constraints that must be satisfied by the policy under

each outcome in Ω, while Xna ensures that the policy is nonanticipative with respect to

the information revealed by ζ. We formalize below some of these elements.

Definition 2.3.1 The set of nonanticipative policies takes the form:

Xna :=
{
x : Ω → Rn×T

∣∣xt(ω) = xt(ω
′), ∀ω, ω′ ∈ Ω : ζ[t−1](ω) = ζ[t−1](ω′), ∀t ∈ {1, 2, ..., T}

}
,

where [t] := {1, . . . , t}, ζ[t−1](ω) denotes the concatenated matrix of the random vectors observed

till time step t under scenario ω, and ζ[0](ω) = ζ[0](ω′) is interpreted as always true.

Definition 2.3.2 According to Föllmer and Schied (2002), letting L := {ξ : Ω → R} be the

space of all possible finite random financial loss2, ρ is a convex risk measure if and only if it

satisfies:

• Monotonicity: ∀ξ1, ξ2 ∈ L, ξ1 ≥ ξ2 a.s. ⇒ ρ(ξ1) ≥ ρ(ξ2);

• Translation invariance: ∀ξ ∈ L, t ∈ R, ρ(ξ + t) = ρ(ξ) + t;

• Convexity: ∀ξ1, ξ2 ∈ L, and θ ∈ [0, 1], ρ(θξ1 + (1− θ)ξ2) ≤ θρ(ξ1) + (1− θ)ρ(ξ2).

Moreover, ρ is considered a coherent risk measure if it further satisfies:

• Scale invariance: ∀ξ ∈ L, α ≥ 0, ρ(αξ) = αρ(ξ).

In particular, it is well known that ρ(−h(x, ζ)) = EQ[−h(x, ζ)] and Conditional Value-at-

Risk (see Example 3.11 for a definition) fall in the class of coherent risk measure. Unless

specified otherwise, in what follows we will assume that ρ is a convex risk measure.

To improve computational tractability, we will later (when indicated) focus on the

class of problems where the constraints and the objective function are affine with respect

to x.
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Assumption 2.3.1 [Stochastic Linear Programming] The profit function is an affine function of

x defined as

h(x, ζ) :=
T∑
t=1

c⊤t (ζ)xt + d(ζ), (2.2)

for some arbitrary ct : Rm×(T−1) → Rn and d : Rm×(T−1) → R. Furthermore, for each ω ∈ Ω,

Xω is a bounded polyhedron formulated as:

Xω :=

{
x ∈ Rn×T

∣∣∣∣∣
T∑
t=1

ajt(ζ(ω))
⊤xt(ω) ≤ bj(ζ(ω)) , j = 1, 2, ...,J

}
,

with arbitrary ajt : Rm×(T−1) → Rn and bj : Rm×(T−1) → R, for all j and t.

Recall that the regret models discussed in the introduction addressed a static deci-

sion model (namely with T = 2). Hence, the main difference between the ex-post and

ex-ante models hinged on whether the benchmark action x′ could fully anticipate or not

realization ζ. A natural question to pose is therefore how the concept of regret extends

in the multistage problems where we have T > 2 and where the values of ζ are progres-

sively revealed in time. In what follows, we propose a multistage regret minimization

formulation that measures regret with respect to a benchmark policy that can exploit in-

formation revealed up to ∆ stages into the future, which we term ∆-regret. This model

effectively interpolates very naturally between the ex-ante (with ∆ = 0) and ex-post (with

∆ = ∞) models and effectively allows to study them under the same lens. Section 2.3.1

will present the ∆-regret model, and Section 2.3.2 will present an illustrative example

involving a multistage inventory management problem.

2.3.1 The ∆-Regret

In a multistage decision making problem, a regret-averse policy maker might be inter-

ested to compare his decisions to benchmark policies that exploit shorter foresight than

the total planning horizon. This gives rise to the idea of the ∆-regret model, where the

benchmark policies are capable of predicting the future realizations up to ∆ steps ahead

in the future. As an immediate result of such setting, the benchmark policies can adapt

to the information released till time step t+∆. Assuming ρ is a convex risk measure, the
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∆-regret model in the multistage setting is formulated as

(∆-regret) minimize
x∈X∩Xna

R∆(x), (2.3a)

where

R∆(x) := max
x′∈X∩X∆

ρ(h(x′, ζ)− h(x, ζ)), (2.3b)

and where X∆ is the space of policies that violate the nonanticipativity constraints by up

to a margin of ∆ steps. More specifically,

X∆ :=

x : Ω → Rn×T

∣∣∣∣∣∣ xt(ω) = xt(ω
′)

∀ω, ω′ ∈ Ω : ζ[t+∆−1](ω) = ζ[t+∆−1](ω′), ∀t ∈ {1, 2, ..., T}

 ,

where we interpret ζ[t] := ζ when t ≥ T − 1. For any ∆ ∈ {0, 1, 2, 3, .., T − 1}, the ∆-

regret model will evaluate the regret of the prescribed decisions as contrasted with the

ones that could have been made if the uncertain parameters were revealed up to ∆ steps

ahead of time. Clearly, when ∆ = 0, X∆ reduces to Xna, implying that the benchmark

policy has no access to any realization beforehand. On the contrary, ∆ = T − 1 gives the

benchmark policy full access to all the realizations of ζ at any point of time. The ∆-regret

model therefore naturally interpolates between the ex-ante and ex-post regret models. In

addition, regret is a non-decreasing function of ∆. These concepts are formalized in the

following lemma.

Lemma 2.3.1 The ∆-regret model, i.e. Problem (2.3), reduces to ex-ante and ex-post regret mini-

mization when ∆ = 0 and ∆ ≥ T−1 respectively. Moreover, its optimal value is a non-decreasing

function of ∆.

2.3.2 Illustrative Example of ∆-Regret Model

We consider the multistage inventory management problem previously studied in Ben-

Tal et al. (2004) and Kuhn et al. (2011). We assume that each period t consists of a day.

The inventory system consists of I production facilities, which produce a single item and

store it at a shared warehouse. The production cost of a single unit of the item on day

t at facility i is cit and the objective is to determine the optimal production level of each
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production facility (xit) to satisfy the uncertain demand and minimize the total produc-

tion cost over a planning horizon of T days. While x̄it indicates the production capacity

of production facility i on day t, the maximum production potential over the whole plan-

ning horizon is determined by x̄i,tot. The minimum and the maximum inventory levels

that should be maintained at the end of each day are denoted by xwh and x̄wh, respec-

tively, and x0wh represents the initial inventory level. If dt(ω) ∈ R denotes the demand

of day t under scenario ω, then we let ζt−1(ω) := dt(ω) ∈ R to model the fact that the

demand for day t is known when deciding of the production levels at the beginning of

the day: this occurs for instance when orders for pick up need to be made at the latest

one day before pickup. The MSP for this inventory problem takes the form where:

h(x, ζ) := −
T∑
t=1

I∑
i=1

c⊤itxit(ω),

and

Xω :=

x ∈ Rn×T

∣∣∣∣∣∣∣∣∣
0 ≤ xit ≤ x̄it, ∀i ∈ I, ∀t ∈ T∑T

t=1 xit ≤ x̄i,tot, ∀i ∈ I

xwh ≤ x0wh +
∑t

s=1

∑I
i=1 xis −

∑t−1
s=1 ζs(ω)− d1 ≤ x̄wh, ∀t ∈ T

 .

We consider a simple instance of this problem with 2 production facilities (I = 2), 3 days

planning horizon (T = 3) and 5 demand pattern scenarios (Ω = {ω1, ω2, ω3, ω4, ω5}). In

this setting, considering the scenario tree structure depicted in Figure 2.1, the nonantici-

pativity constraints are expressed as:

Xna :=

x : Ω → R2×3

∣∣∣∣∣∣ x1(ω1) = x1(ω2) = x1(ω3) = x1(ω4) = x1(ω5)

x2(ω1) = x2(ω2), x2(ω4) = x2(ω5)

 .

When measuring regret, the policy maker might be interested in comparing her policy to

one that benefits from the same information. This is an immediate implication of ∆ = 0

in the ∆-regret model. Setting ∆ to 1 allows her to measure her regret with respect to

the policy made under one stage look-ahead information. Eventually, ∆ = 2 compares to

policies that exploit the full information. Specifically, we have the following reductions:

X0 = Xna, X1 =
{
x : Ω → R2×3

∣∣∣ x1(ω1) = x1(ω2), x1(ω4) = x1(ω5)
}
, X2 =

{
x : Ω → R2×3

}
.
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Figure 2.1 illustrates each policy sets in a scenario tree. This example shows how increas-

ing ∆ lifts the constraints imposed on x′ gradually and the full access of the realized

scenario is bestowed upon x′ when ∆ is at its maximum value.
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Figure 2.1: Comparison of Adaptation Power Between x (Beside the Timeline) and x′ (on
the Right of Each Tree) as a Function of ∆.
The nodes of the tree present what information is available at each point of time.

2.4 Properties of ∆-Regret Model Under Risk Measures

In this section, we explore interesting properties that arise under different choice of risk

measures for the ∆-regret model. In particular, the first two subsections initially study

the properties that emerge under specific coherent risk measures, namely the worst-

case ρ(ξ) = ess sup(ξ) and expected value ρ(ξ) = EQ[ξ]. We then consider the general

class of coherent risk measures using their worst-case expectation representation, i.e.

ρ(ξ) := supP∈P EP[ξ] (see Artzner et al. 1999). We will show that under a worst-case

risk measure, all ∆-regret models are equivalent if (and only if) a relatively complete re-

course property is satisfied (see Theorem 2.4.1). This will also occur, yet only in terms

of the optimal solution set, for models that employ an expected value. Finally, we will

derive a reformulation for all coherent risk measures that take the form of a two-stage ro-

bust linear program when the stochastic program is linear and the risk measure is linear

programming representable.
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2.4.1 The Case of ρ(ξ) = ess sup(ξ)

In this section, we consider measuring the ∆-regret using the essential supremum as the

risk measure:

ρ(ξ) := ess sup(ξ) = inf {a |P(ξ > a) = 0} .

In particular, we will confirm conditions under which, the invariability of ∆-regret to ∆,

observed in Example 2.1.1, holds. In order to present our main result, we first introduce

an assumption about the MSP .

Assumption 2.4.1 The multistage stochastic program satisfies the relatively complete recourse

property, i.e.,

X [t]
ω = X [t]

ω′ , ∀(ω, ω′) : ζ [t−1](ω) = ζ [t−1](ω′), ∀t,

where

X [t]
ω := {x ∈ Rn×t|∃x̄ ∈ Rn×T−t, [x x̄] ∈ Xω}

is a projection of Xω on the space spanned by the decision vectors x1, x2,. . .xt.

In simpler words, this assumption imposes that when looking at the set of feasible

decisions x in hindsight, this set only includes candidates that had 100% chances of be-

ing feasible at the time that they were implemented. While the decision to satisfy this

assumption is an important modeling choice in designing the ∆-regret model and might

affect the measured regret (see Example 2.4.1 below), it is in fact always possible to mod-

ify a multistage stochastic program so that the property is satisfied.

Lemma 2.4.1 Given a MSP , one can construct MSP that produces the same optimal value

and optimal solution set as MSP while satisfying the relatively complete recourse assumption,

i.e. Assumption 2.4.1.

We can now turn to the main result of this section, which indicates that relatively

complete recourse is a necessary and sufficient condition for the ∆-regret model to be

insensitive to ∆ under the essential supremum risk measure.
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Theorem 2.4.1 Given that Assumption 2.4.1 holds and ρ(ξ) = ess sup(ξ), for any arbitrary

∆ ≥ 0, the objective function of Problem (2.3) reduces to

R∆(x) = RT−1(x) = max
ω∈Ω

max
x′∈Xω

h(x′, ζ(ω))− h(x(ω), ζ(ω)). (2.4)

Hence, Problem (2.3) produces the same optimal value and solution set for all values of ∆ ≥ 0.

At first glance, the result of Theorem 2.4.1 looks intuitive since essential supremum

hedges against a single worst-case scenario. This arises from the interchangeability of

the order of two maximization problems. Thus imposing a nonanticipative structure on

x′ ∈ X∆ will have no effect for any value of ∆. What is less intuitive is the role of As-

sumption 2.4.1. In this regard, the following example supports and illustrates our claims

that the relatively complete recourse property is necessary to obtain this invariance, and

that the MSP can always be reformulated to satisfy this assumption.

Example 2.4.1 Consider a simple two-stage (i.e. T = 2) problem, where the set of first and second

stage actions are defined as A = {a1, a2, a3} and B = {b1, b2}, respectively. After implementing

the first stage decision, the decision maker is faced with two scenarios, ω1 and ω2 with 10% and

90% chances, respectively. We consider the following definition for X :

X := {x : {ω1, ω2} → A×B|x(ω1) ∈ Xω1 , x(ω2) ∈ Xω2} ,

with:

Xω1 := {(a1, b1), (a3, b1)}

Xω2 := {(a2, b2), (a3, b2)}

In words, if the decision maker chooses a1, he can react to ω1 with b1 but has no feasible

recourse against ω2. The reverse is true for a2, while a3 enables both the b1 and b2 actions under ω1

and ω2 respectively. The profit function, defined only over feasible pairs, takes the form described

in Table 2.3.

In this example, X [1]
ω1 = {a1, a3} ̸= X [1]

ω2 = {a2, a3}, which indicates that Assumption 2.4.1

is violated. Furthermore, there is only one feasible policy for the decision maker, i.e. {x̄} =

{(a3, b11{ω = ω1} + b21{ω = ω2})} = X ∩ Xna. Focusing on this policy, one can compute
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Actions h(x, ζ(ω1)) h(x, ζ(ω2))

(a1, b1) 4 -
(a2, b2) - 1
(a3, b1) 3 -
(a3, b2) - 0

Table 2.3: Profit Function in Example 2.4.1

the ∆-regret under the essential supremum measure as follows. In the case of ∆ = 1, the feasible

space for the benchmark policy x′ becomes X ∩ X1 = X = {x̄, x̄′, x̄′′, x̄′′′} with

x̄′ := (a11{ω = ω1}+ a21{ω = ω2}, b11{ω = ω1}+ b21{ω = ω2}) .

x̄′′ := (a11{ω = ω1}+ a31{ω = ω2}, b11{ω = ω1}+ b21{ω = ω2}) .

x̄′′′ := (a31{ω = ω1}+ a21{ω = ω2}, b11{ω = ω1}+ b21{ω = ω2}) .

We can thus conclude that:

R1(x̄) = max
x′∈{x̄,x̄′,x̄′′,x̄′′′}

ess sup(h(x′, ζ)− h(x̄, ζ))

= max(ess sup(0), ess sup(1), ess sup(1{ω = ω1}), ess sup(1{ω = ω2})) = 1 .

On the other hand, if ∆ = 0, we have that x′ ∈ X ∩ X0 = X ∩ Xna = {x̄}, i.e. the benchmark

decision must be chosen from among the same sets of decision as for the decision maker. This

naturally leads to R0(x̄) = 0. We, therefore, showed that when Assumption 2.4.1 is violated, it

is possible that 0 = R0(x) ̸= R1(x) = 1.

We close this example with the observation that if the MSP was modified as proposed in

Lemma 2.4.1, then we would have:

X̄ω1 := {x ∈ A×B|x1 ∈ X [1]
ω1

} ∩ {x ∈ A×B|x1 ∈ X [1]
ω2

} ∩ Xω1

= {x ∈ A×B|x1 ∈ X [1]
ω1

∩ X [1]
ω2

} ∩ Xω1 = {x ∈ A×B|x1 ∈ {a3}} ∩ Xω1 = {(a3, b1)}

while

X̄ω2 := {x ∈ A×B|x1 ∈ X [1]
ω1

} ∩ {x ∈ A×B|x1 ∈ X [1]
ω2

} ∩ Xω2 = {(a3, b2)} .

Using X̄ := {x : Ω → A × B |x(ω) ∈ X̄ω , ω ∈ Ω} instead of X does not affect the solution of

the MSP since in any case X ∩Xna = {x̄} = X̄ = X̄ ∩Xna. Yet, using X̄ instead of X does affect
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the ∆-regret model given that under X̄ now we have that R1(x̄) = R0(x̄) = 0. Intuitively, from

the regret perspective, the difference between the two models reduces to whether the benchmark

policy is allowed to implement decisions that don’t have a probability one guarantee to lead to

long-term feasibility.

2.4.2 The Case of ρ(ξ) = EQ[ξ]

For a given probability measure Q, the expected value can be considered as another

option among the popular risk measures. However, for any value of ∆, Problem (2.3)

produces the same optimal solution as the MSP . This is formalized in the following

proposition.

Proposition 2.4.1 Given that ρ(ξ) := EQ[ξ], for any arbitrary ∆, Problems (2.1) and (2.3) have

the same set of optimal solutions as the MSP . Namely,

arg min
x∈X∩Xna

ρ
(
− h(x, ζ)

)
= arg min

x∈X∩Xna
R∆(x) .

While Proposition 2.4.1 establishes that all ∆-regret models produce the same opti-

mal solution under a risk neutral setting, we will see in our numerical experiments that

optimal values do change for different values of ∆. Interestingly, in the case of ∆ = 0,

one can confirm that a risk neutral decision maker never experiences regret if she acts

optimally.

Corollary 2.4.1 The optimal value of Problem (2.3) with ∆ = 0 and ρ(ξ) := EQ[ξ] is equal to

zero and achieved by the MSP solution.

In particular, Proposition 2.4.1 and Corollary 2.4.1 suggest that the regret experienced

by a decision maker can be decomposed into three positive components

R∆(x) = max
x′∈X∩X∆

ρ
(
h(x′, ζ)− h(x, ζ)

)
=

(
max

x′∈X∩X∆

ρ
(
h(x′, ζ)− h(x, ζ)

)
− max

x′∈X∩X0

ρ
(
h(x′, ζ)− h(x, ζ)

))
+

(
max

x′∈X∩X0

ρ
(
h(x′, ζ)− h(x, ζ)

)
− max

x′∈X∩X0

EQ
[
h(x′, ζ)− h(x, ζ)

])
+ max

x′∈X∩X0

EQ
[
h(x′, ζ)− h(x, ζ)

]
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=

(
max

x′∈X∩X∆

ρ
(
h(x′, ζ)− h(x, ζ)

)
− max

x′∈X∩X0

ρ
(
h(x′, ζ)− h(x, ζ)

))
(2.5a)

+

(
max

x′∈X∩X0

ρ
(
h(x′, ζ)− h(x, ζ)

)
− max

x′∈X∩X0

EQ
[
h(x′, ζ)− h(x, ζ)

])
(2.5b)

+ EQ[h(x
∗, ζ)]− EQ [h(x, ζ)] . (2.5c)

The first component (2.5a) captures the part of the regret that comes from the information

that is out of the decision maker’s reach. The second component (2.5b) captures a part of

the regret that comes from risk aversion of the decision maker. Finally, the last component

(2.5c) comes from not being optimal with respect to the risk neutral version of the MSP .

2.4.3 The Case of Coherent Risk Measures

In a more general context, it is well-known (see Artzner et al. 1999) that any coherent risk

measure can be represented using a worst-case expectation formulation :

ρ(ξ) := sup
P∈P

EP[ξ],

where P is a non-empty convex set of probability measures that, in the distributionally

robust optimization literature, is also referred to as an ambiguity set known to contain

the true underlying measure Q.

Definition 2.4.1 The ambiguity set P is a bounded convex set which implies that

sup
P∈P

EP[ξ] = max
p∈D∩M

∑
ω∈Ω

pωξ(ω)

where ξ : Ω → R, M ⊂ R|Ω| is the simplex set, and D ⊂ R|Ω| denotes a general convex and

compact set.

Taking advantage of Definition 2.4.1, Problem (2.3) can be cast as a two-stage robust

optimization problem. This is formalized in the following proposition.

Proposition 2.4.2 Given ρ(ξ) := supP∈P EP[ξ], Problem (2.3) reduces to

minimize
x∈X∩Xna

max
x′∈X∩X∆

min
r,v

r (2.6a)

s.t. δ∗(v|D)− vω + h(x′(ω), ζ(ω))− h(x(ω), ζ(ω)) ≤ r, ∀ω ∈ Ω,

(2.6b)
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where r ∈ R, v ∈ R|Ω| and δ∗(v|D) := supp∈D p
⊤v represents the support function of D.

In general, Problem (2.6) is a non-linear two-stage robust optimization problem. How-

ever, under a number of popular ambiguity sets, D is polyhedral thus the support func-

tion of δ∗(v|D) renders a linear programming representation, which in turn makes (2.6) a

robust linear two-stage program. Such choices include the sets associated to Conditional

Value-at-Risk or expectiles (see Bellini and Bernardino 2017), and, in the Distributionally

Robust Optimization (DRO) literature, some type-1 Wasserstein ambiguity sets (see Mo-

hajerin Esfahani and Kuhn 2018) or some sets based on hypothesis testing (see Bertsimas

et al. 2018).

Corollary 2.4.2 Given that Assumption 2.3.1 is satisfied and that D := {p ∈ R|Ω| | ∃ q ∈

Rnq , Bpp + Bqq ≤ b}, where Bp ∈ Rm×|Ω|, Bq ∈ Rm×nq , b ∈ Rm, then Problem (2.6) reduces

to the following robust two-stage linear optimization problem:

min
x∈X∩Xna

R∆(x) := max
x′∈X∩X∆

min
r,v,λ

r

s.t. λ⊤b− vω +

T∑
t=1

c⊤t (ζ(ω))(x
′
t(ω)− xt(ω)) ≤ r, ∀ω ∈ Ω

B⊤
p λ = v

B⊤
q λ = 0

r ∈ R, v ∈ R|Ω|, λ ∈ Rm
+ .

(2.7)

Example 2.4.2 Conditional Value-at-Risk (CVaR) evaluates the conditional expectation of the

random variable ξ under α% worst scenarios and mathematically takes the form of

CVaRα(ξ) := inf
t
t+

1

1− α
Ep̄[max(0,−ξ − t)], (2.8)

where p̄ denotes the reference probability distribution. It has the following worst-case expectation

representation (see Rockafellar et al. 2006):

CVaRα(ξ) := sup
p∈D∩M

∑
ω∈Ω

pωξ(ω), (2.9)

where D := {p ∈ R|Ω| |p ≤ p̄/(1 − α)}, where p̄ω := Q(ω). Based on Corollary 2.4.2, we get

the following two-stage linear program:

min
x∈X∩Xna

max
x′∈X∩X∆

min
r,v

r (2.10a)
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s.t.
p̄⊤v

1− α
− vω +

T∑
t=1

c⊤t (ζ(ω))(x
′
t(ω)− xt(ω)) ≤ r, ∀ω ∈ Ω (2.10b)

r ∈ R, v ∈ R|Ω|
+ . (2.10c)

Unfortunately, Problem (2.7) does inherit some of the NP-hardness properties from

the more general class of two-stage robust linear optimization problems (see Ben-Tal et al.

2004) as demonstrated in the following proposition.

Proposition 2.4.3 Evaluating R∆(x) under a coherent risk measure is NP-hard even when P

uses a polyhedral D.

However, there is a variety of exact and approximate solution schemes that can prac-

tically solve Problem (2.7) (see Poursoltani and Delage 2022, Section 3.1). One such exact

approach is the column-and-constraint generation algorithm proposed in Zeng and Zhao

(2013). Such a procedure can be directly applied to Problem (2.7), which we briefly dis-

cuss in Section 2.6.10.

We finish this section by remarking that alternative two-stage robust formulations

exist for Problems (2.6) and (2.7) as suggested by Bertsimas and de Ruiter (2016) for the

two-stage linear programming case and de Ruiter et al. (2022) for the two-stage non-linear

case. In particular, under Assumption 2.3.1, the methods in de Ruiter et al. (2022) can

be used to produce a two-stage problem with linear first and second stage constraints,

while non-linear constraints, caused by δ∗(v|D) will now appear in the maximization

problem. Such reformulation could open up new avenues for exact and approximate

solution approaches for regret minimization problems.

2.5 Numerical Experiments

In this section, we describe a numerical study that provides insights on the relationship

between the amount of look-ahead (∆) allowed for the benchmark policy, the level of

risk aversion on the solution quality, and the level of regret. We consider the multistage

inventory management problem discussed in Section 2.3.2 and examine the structure of

regret minimizing policies and the breakdown of regret as expressed in (2.5). We measure
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risk using Conditional Value-at-Risk as it allows to easily control the level of risk aversion

with a single parameter, namely α. Solutions to all regret models are obtained using the

column-and-constraint generation algorithm presented in Section 2.6.10.

We consider two instances (indicated by I and II) with three production facilities and

a five-day horizon. We assume that the production cost for all facilities is the lowest in

the first period and gets progressively more expensive until the end of the horizon. Fur-

thermore, we assume that the demand information for the next day can be progressively

collected on the next morning, and the production can only be planned at the begin-

ning of each day. Overall, the outcome space includes 16 scenarios (|Ω| = 16). The two

instances differ in that the total demand over the planning horizon is right-skewed in

instance I and left-skewed in instance II. The scenario tree that describes the evolution of

the random demand, demand realizations, and other parameters of the inventory model

are presented in Section 2.6.12.

Figure 2.2: Optimal Regret and Total First-Stage Production Achieved Given Different
Levels of Conservatism (α).
(a) Optimal regret for instance I; (b) Total first-stage production for instance I; (c) Total first-stage production for instance
II.

The first experiment compares the optimal ∆-regret values and the optimal first-stage

production plans for ∆ ∈ {0, 1, 2, 3, 4} at different levels of risk aversion α. The results

are presented in Figure 2.2. Looking at Figure 2.2 (a), concerning instance I, one can

remark that for any fixed look-ahead level, increasing the risk aversion level leads to an

increased minimal ∆-regret. This originates from the fact that the Conditional Value-at-

Risk only considers the worst-case (1 − α) · 100% of scenarios, e.g., while at α = 0%

it incorporates all the scenarios, at α = 100% it measures the regret with respect to the
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worst-case scenario. On the other hand, when fixing the risk aversion level, the results

demonstrate an increase in the minimal regret as the look-ahead level ∆ increases from

0 to 4. This is in line with the fact that as ∆ increases, we are gradually relaxing the

nonanticipativity constraints imposed on the set of benchmark policies, as suggested in

Lemma 2.3.1. Moreover, we can observe that as the risk aversion level reaches 100%, i.e.,

ρ(ξ) = CVaR1(ξ) = ess sup(ξ), all regret models achieve the same regret, thus confirming

Theorem 2.4.1, which stated that all models are equivalent under the essential supremum

risk measure. On the opposite side of the graph, one sees that the minimal risk for the

regret model with ∆ = 0 converges to zero as predicted by Corollary 2.4.1. The optimal

regret analysis of instance II is quite similar, and thus omitted for brevity.

Figures 2.2 (b) and 2.2 (c), associated with instances I and II, respectively, present the

optimal first-stage total production from the 3 production facilities resulting from the ∆-

regret problem for ∆ ∈ {0, 1, 2, 3, 4}, together with the one offered by the corresponding

CVaR minimization problem (2.1). We observe the following: (i) The production plan

returned by the CVaR minimization problem stands higher than those achieved by ∆-

regret problem for all ∆. One should note that in this multistage inventory management

problem, the production facilities must satisfy all the observed demands with the mini-

mum production cost. Any excess inventory at the end of the planning horizon can lead

to a higher level of regret, seen as a “lost opportunity”. In this sense, starting the produc-

tion plan with a lower number of units can be interpreted as a “more opportunistic” or

“less conservative” approach. The observations in Figures 2.2 (b) and 2.2 (c) reveal that

for both instances, CVaR solutions are more conservative than the ones returned by all

∆-regret models for any risk aversion level (α), i.e., CVaR solutions produce more in the

first period to take advantage of the lower production costs even if later excess produc-

tion is lost, while production from ∆-regret models is smaller in the first period as it takes

advantage of the recourse decisions to not overproduce, a policy that results in smaller

regret even if production cost is higher overall. The result validates the claims made in

the literature about the regret minimization criterion producing less conservative solu-

tions; (ii) The production levels from the ∆-regret models are roughly ordered based on

the value of ∆, however, the order is reverse in the two instances. In instance I, we ob-

serve that ∆ = 0 produces, in general, the lowest, “least conservative" production and
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∆ = 4 the highest “most conservative" production, while for instance II, ∆ = 4 induces,

in general, the “least conservative" and ∆ = 0 the most “most conservative" production.

This behavior is attributed to the difference between the total demand distributions of

the two instances and can be interpreted as follows. Since demand needs to be robustly

satisfied and production cost is lowest in the first period, if there is not a high production

in the first period, cost savings can be made in low demand scenarios if one waits-and-

sees. In the left-skewed instance II most scenarios result in a high total demand, while

some scenarios result in relatively low total demand. To take advantage of the low first-

stage production costs, a minimum production cost solution might choose to produce as

much as possible in the first period, however, such a high production will cause ∆ = 4 to

experience a very large regret in the low total demand scenarios as the fully anticipative

benchmark policy will produce much less in those scenarios. Thus, the 4-regret model

chooses to produce less in the first period and take advantage of the recourse decisions.

In contrast, in instance I, where most of the total demand scenarios are low, there is a

smaller margin of gains to be made by the benchmark policy thus, the ∆ = 4 policy is

close to the minimum production cost policy produced by CVaR minimization. The re-

verse is true for ∆ = 0. In general, we observe that if there is a potential of a large margin

of profit, a large ∆ will produce less conservative solutions compared to ∆ = 0, and vice

versa if the margin of profit is small. This is also observed in the portfolio management

example in Section 2.6.11.1.

The runtimes of both instances are provided in Section 2.6.12. For any ∆ ∈ {0, 1, 2, 3},

for lower risk aversion levels (α), one can expect a runtime of around 10 seconds; how-

ever, as α gradually increases, we observe runtimes of more than 1000 seconds. Once

approaching the high risk aversion levels, interestingly, the difficulty of the problem de-

creases and once again gets somewhat close to the ones it experienced at lower α levels.

For ∆ = 4, one can show that the ∆-regret problem can simply reduce to a linear program

hence resulting in runtimes of under 1 second. This is also true for the CVaR minimiza-

tion problem (2.1).

The second set of results presents a breakdown of regret as this is expressed in equa-

tion (2.5). To this end, using the optimal solutions of ∆ ∈ {0, 2, 4} we evaluate the three

expressions in (2.5), which can be interpreted as the “look ahead regret" (2.5a), “risk aver-
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Figure 2.3: Regret Breakdown for Different ∆-Regret Optimal Solutions.

sion regret" (2.5b) and “regret of being suboptimal with respect to the MSP" (2.5c). Fig-

ure 2.3 presents the cumulative breakdown of the regret for instance I. As expected, for

α = 0%, the “risk aversion regret" is zero for all ∆ by definition, while for α = 100%

the “look ahead regret" is zero for all ∆ as suggested by Theorem 2.4.1. In fact, the “look

ahead regret" decreases as α increases. For ∆ = 0, by definition, the “look ahead regret"

is zero indicating that regret is a combination of the “risk aversion regret" and “regret of

being suboptimal with respect to the MSP". It is interesting to observe that the “regret

of being suboptimal with respect to the MSP" is relatively low in the range of α ∈ [0, 0.6]

but constitutes roughly one-third of the total regret when α = 1.

Section 2.6.11 includes further numerical studies on a two-stage (Section 2.6.11.1) and

multistage (Section 2.6.11.2) portfolio management application. From these experiments,

we draw insights similar to those from the inventory management application. In par-

ticular, we again observe the less conservative nature of ∆-regret solutions compared to

CVaR minimization, as well as, that the value of ∆ heavily affects the nature of the so-

lutions produced. In multistage stochastic programming, time consistency refers to the

property that a decision policy remains optimal as new information becomes available

over time. In Section 2.6.11.2 we demonstrate numerically that the policy produced by

∆-regret is not time consistent with the effect becoming more prominent as the level of

risk aversion increases.
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2.6 Appendix

2.6.1 Illustrative Example

Table 2.4 provides detailed calculations of obtaining the optimal decision for the project

selection problem, described in Example 2.1.1, when the ex-post worst-case regret mea-

sure is exploited. Once the decision maker chooses project A (x = xA), she will face

either scenario ω1 or ω2, resulting in a payoff of 1$ or 6$, respectively. Having full access

to the realized scenario, the optimal benchmark decision consists of choosing project B

(x′ = xB) under ω1 with 5$ payoff and picking project A (x′ = xA) under ω2 with 6$

payoff, leading to a 4$ regret for the decision maker in the first case and zero regret in

the second one; consequently, the worst-case regret of choosing project A will be 4$. Per-

forming the same analysis for x = xB and x = xC brings about the worst-case regrets of

4$ and 3$, respectively. As a conclusion, aiming at minimizing the worst-case regret, the

decision maker finds project C with 3$ worst-case regret as her best option.

Table 2.4: EP-WCR

x ω x′ {·}† sup
ω∈Ω

{·}

Project A ω1 Project B 4
4

ω2 Project A 0

Project B ω1 Project B 0
4

ω2 Project A 4

x∗x∗x∗ = Project C ω1 Project B 1
333

ω2 Project A 3

min
x∈X

sup
ω∈Ω

{·} 333

† {·}:=
{
max
x′∈X

h(x′, ζ(ω))− h(x, ζ(ω))

}

Putting emphasis on risk-aversion, Table 2.5 clarifies the details of getting the opti-

mal decisions for the ex-post worst-case expected regret minimization problem. In this

setting, similar to the EP-WCR case, the benchmark policy has full access to the future

scenario realizations, and as an immediate result, always selects project B under ω1 and

project A under ω2. If the manager picks project A for investment, withdrawing the dis-

tributional information, the felt regret consists of 4$ and 0$ for ω1 and ω2 realizations,

respectively. However, in contrast to EP-WCR, in EP-RAR with ρ(ξ) := supP∈P EP[ξ] the
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expected regret is measured with respect to the worst P from P . Since the PI and PII lead

to expected regrets of 3.2$ and 0$, the worst-case expected regret of choosing project A

equals 3.2$. Replicating the same analysis for x = xB and x = xC gives rise to worst-

case expected regrets of 4$ and 3$. As a consequence, investment in project C with 3$

worst-case expected regret will be the optimal choice.

Table 2.5: EP-RAR

x P x′∗
EP [·]† sup

P∈P
EP [·]

ω1 ω2

Project A PI Project B Project A 3.2
3.2PII Project B Project A 0

Project B PI Project B Project A 0.8
4PII Project B Project A 4

x∗x∗x∗ =Project C PI Project B Project A 1.4
333PII Project B Project A 3

min
x∈X

sup
P∈P

EP [·] 333

† EP [·] := EP [maxx′∈X h(x′, ζ(ω))− h(x, ζ(ω))]

An alternative to EP-RAR consists in EA-RAR, where the benchmark no longer has ac-

cess to the realized scenario and only knows the true distribution. Table 2.6 summarizes

the analysis for this problem. To be consistent with the previous analysis, once again, we

elaborate on the details of getting the worst-case expected regret of choosing project A.

In this case, the immediate payoff under ω1 and ω2 will be 1$ and 6$, respectively. Sub-

sequently, the benchmark decision can be made after evaluating the expected regret of

each of the three possible options (x′ = xA, xB or xC) under PI and PII and picking the

one which maximizes the expected regret of decision maker’s choice (x = xA). Looking

at Table 2.6, one remarks six expected values for x = xA, representing these six settings.

For instance, if x′ = xC and P = PI , the corresponding expected regret of x = xA can be

derived as EP [h(x
′, ζ)− h(x, ζ)] = 0.8(4−1)+0.2(3−6) = 1.8$. The maximum expected

regret among these six values is 2.4$, which is associated with x′ = xB under P = PI .

Performing the same analysis for x = xB and x = xC guides the manager towards

investing in the project with minimum worst-case expected regret; more specifically, the

minimum value in the last column of this table is 2.4$, indicating that the best choice for

the manager is to choose project A for investment with worst-case expected regret of 2.4$.
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Table 2.6: EA-RAR

x x′ P EP [·]† sup
P∈P

EP [·] max
x′∈X

sup
P∈P

EP [·]

x∗x∗x∗ =Project A

Project A PI 0
0

2.42.42.4

PII 0

Project B PI 2.4
2.4PII −4

Project C PI 1.8
1.8PII −3

Project B

Project A PI −2.4
4

4

PII 4

Project B PI 0
0PII 0

Project C PI −0.6
1PII 1

Project C

Project A PI −1.8
3

3

PII 3

Project B PI 0.6
0.6PII −1

Project C PI 0
0PII 0

min
x∈X

max
x′∈X

sup
P∈P

EP [·] 2.42.42.4

† EP [·] := EP [h(x
′, ζ)− h(x, ζ)]

This is in contrast with the recommended option of project C coming from EP-WCR and

EP-RAR problems.

2.6.2 Proof of Lemma 2.3.1

Clearly when ∆ = 0, we have that X∆ = X0 = Xna. So that the 0-regret model reduces to

the ex-ante form:

minimize
x∈X∩Xna

max
x′∈X∩Xna

ρ(h(x′, ζ)− h(x, ζ)) ,

and in particular to

minimize
x∈X

max
x′∈X

ρ(h(x′, ζ)− h(x, ζ)) ,

when dealing with a static linear problem, i.e. T = 2 and c2 = aj2 = 0 for all j.

Alternatively, when ∆ ≥ T − 1, by definition we have that X∆ =
{
x : Ω → Rn×T

}
,

implying that:

R∆(x) = max
x′∈X

ρ
(
h(x′, ζ)− h(x, ζ)

)
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= ρ
(
max
x′∈Xω

h(x′, ζ(ω))− h(x(ω), ζ(ω))
)
,

which follows from monotonicity of ρ. Specifically, we first have that for all x′ ∈ X ∩XT :

h(x′(ω), ζ(ω))− h(x(ω), ζ(ω)) ≤ max
x′′∈Xω

h(x′′, ζ(ω))− h(x(ω), ζ(ω)) ∀ω ∈ Ω.

Hence,

ρ(h(x′, ζ)− h(x, ζ)) ≤ ρ( max
x′′∈Xω

h(x′′, ζ(ω))− h(x(ω), ζ(ω))) .

On the other hand, we can define x̄′(ω) ∈ argmaxx′∈Xω h(x
′, ζ(ω))− h(x(ω), ζ(ω)), with

x̄′ ∈ X ∩ XT to conclude that:

ρ
(
max
x′∈Xω

h(x′, ζ(ω))− h(x(ω), ζ(ω))
)
= ρ
(
h(x̄′, ζ)− h(x, ζ)

)
≤ max

x′∈X∩XT

ρ
(
h(x′, ζ)− h(x, ζ)

)
≤ max

x′∈X∩XT

ρ
(
max
x′′∈Xω

h(x′′, ζ(ω))− h(x(ω), ζ(ω))
)

= ρ
(
max
x′′∈Xω

h(x′′, ζ(ω))− h(x(ω), ζ(ω))
)
,

where the first inequality follows since x̄′ ∈ XT . We can therefore conclude that the

T -regret model reduces to the ex-post model:

minimize
x∈X∩Xna

ρ( max
x′∈Xω

h(x′, ζ)− h(x, ζ)) ,

which takes the following form when the problem is static:

minimize
x∈X

ρ( max
x′∈Xω

h(x′, ζ)− h(x, ζ)) .

Finally, we turn to establishing the monotonicity of the optimal value of Problem (2.3).

Let ∆ ≤ ∆′, then X∆ ⊆ X∆′ . This implies that:

R∆(x) = max
x′∈X∩X∆

ρ(h(x′, ζ)− h(x, ζ)) ≤ max
x′∈X∩X∆′

ρ(h(x′, ζ)− h(x, ζ)) = R∆′(x) .

2.6.3 Proof of Lemma 2.4.1

Let MSP be exactly the same as MSP except for the set of physical constraints that must

be satisfied by the policy under each outcome ω, denoted by Xω, which is replaced with:

X̄ω := ∩T
t=1 ∩ω′:ζ[t−1](ω)=ζ[t−1](ω′) {x ∈ Rn×T |x1:t ∈ X [t]

ω′ } .
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First, we can start by demonstrating that MSP satisfies the relatively complete recourse

property. Namely, for all t, if (ω, ω′) is such that ζ [t−1](ω) = ζ [t−1](ω′), then:

X̄ [t]
ω = {x ∈ Rn×t|∃x̄ ∈ Rn×T−t, [x x̄] ∈ X̄ω}

= {x ∈ Rn×t|∃x̄ ∈ Rn×T−t, [x x̄] ∈ ∩T
t=1 ∩ω′′:ζ[t−1](ω)=ζ[t−1](ω′′) {x ∈ Rn×T |x1:t ∈ X [t]

ω′′}}

= {x ∈ Rn×t|∃x̄ ∈ Rn×T−t, [x x̄] ∈ ∩T
t=1 ∩ω′′:ζ[t−1](ω′)=ζ[t−1](ω′′) {x ∈ Rn×T |x1:t ∈ X [t]

ω′′}}

= {x ∈ Rn×t|∃x̄ ∈ Rn×T−t, [x x̄] ∈ X̄ω′} = X̄ [t]
ω′ .

Next, we show that MSP produces the same set of optimal solutions and optimal

value as MSP . In particular, one can show that X ∩Xna = X̄ ∩ Xna where X̄ := {x : Ω →

Rn×T |x(ω) ∈ X̄ω , ω ∈ Ω}. First, since we have that:

X̄ω ⊆ ∩ω′:ζ[T−1](ω)=ζ[T−1](ω′){x ∈ Rn×T |x1:T ∈ X [T ]
ω′ } ⊆ Xω ,

we can conclude that X ∩ Xna ⊇ X̄ ∩ Xna. Alternatively, we have that for all x ∈ X ∩ Xna,

one can confirm that x ∈ X̄ , i.e. x(ω) ∈ X̄ω for all ω. Specifically, fixing any ω, any t, and

any ω′ that satisfies ζ [T−1](ω) = ζ [T−1](ω′), we can check that x1:t(ω) ∈ X [t]
ω′ since

[x1:t(ω) xt+1:T (ω
′)] = [x1:t(ω

′) xt+1:T (ω
′)] ∈ Xω′ ,

where we used the fact that x ∈ Xna which implies that x1:t(ω) = x1:t(ω
′).

2.6.4 Proof of Theorem 2.4.1

The argument goes as follows:

R∆(x) = sup
x′∈X∩X∆

ess sup(h(x′, ζ)− h(x, ζ)) (2.11a)

≤ sup
x′∈X∩XT−1

ess sup(h(x′, ζ)− h(x, ζ)) (2.11b)

≤ sup
x′∈X

ess sup(h(x′, ζ)− h(x, ζ)) (2.11c)

≤ ess sup( sup
x′∈Xω

h(x′, ζ(ω))− h(x(ω), ζ(ω))) (2.11d)

= max
ω∈Ω

sup
x′∈Xω

h(x′, ζ(ω))− h(x(ω), ζ(ω)) (2.11e)

= sup
x′∈Xω∗

h(x′, ζ(ω∗))− h(x(ω∗), ζ(ω∗)) (2.11f)
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≤ sup
x′∈Xω∗

ess sup(h(π(ω;x′, ω∗), ζ(ω))− h(x(ω), ζ(ω))) (2.11g)

≤ sup
x′∈X∩Xna

ess sup(h(x′, ζ)− h(x, ζ)) (2.11h)

≤ sup
x′∈X∩X∆

ess sup(h(x′, ζ)− h(x, ζ)) (2.11i)

= R∆(x) , (2.11j)

where (2.11b) follows from Lemma 2.3.1 and (2.11c) results from relaxing the constraint

that x′ ∈ XT−1. (2.11d) follows from the monotonicity of ess sup and the fact that

h(x′(ω), ζ(ω)) − h(x(ω), ζ(ω)) ≤ supx′∈Xω
h(x′, ζ(ω)) − h(x(ω), ζ(ω)), almost surely.

(2.11e) follows from the fact that Q(ω) ≥ 0 for all ω ∈ Ω and Ω is finite. In (2.11f) we

define ω∗ as any maximizer of (2.11e). In (2.11g), we let π(·;x′, ω∗) be a nonanticipative

policy which implements x′ under outcome ω∗ while implementing an arbitrarily chosen

feasible action at each time point for all other outcomes, e.g.:

πt(ω;x
′, ω∗) :=


x′
t if ζ(ω)[t−1] = ζ(ω∗)[t−1]

arg min
x̄t:[π[t−1](ω;x

′,ω∗)⊤ x̄t]⊤∈X [t]
ω

∥x̄t∥2 otherwise
∀t.

(2.12)

The fact that this policy exists and is in X ∩ Xna is due to Assumption 2.4.1 (proof below)

and motivates (2.11h). Finally, (2.11i) follows from the fact that Xna ⊆ X∆.

We finalize this proof by providing more details about the three facts regarding

πt(ω;x
′, ω∗). First, this policy exists since we can construct it from t = 1, . . . , T with

the guarantee that the argmin in (2.12) is non-empty given that for all t and all ω ∈ Ω:

ζ[t−1](ω) = ζ[t−1](ω∗) ⇒ ζ[t
′−1](ω) = ζ[t

′−1](ω∗), ∀1 ≤ t′ ≤ t⇒ π[t](ω;x
′, ω∗) ∈ X [t]

ω ,

while iteratively, from t = 2 to t = T , and for all ω ∈ Ω:

π[t−1](ω;x
′, ω∗) ∈ X [t−1]

ω ∩ ζ[t−1](ω) ̸= ζ[t−1](ω∗)

⇒ ∃x̄ ∈ Rn×T−t+1, [π[t−1](ω;x
′, ω∗) x̄] ∈ Xω

⇒ ∃x̄t ∈ Rn×1, [π[t−1](ω;x
′, ω∗) x̄t] ∈ X [t]

ω

⇒ arg min
x̄t:[π[t−1](ω;x

′,ω∗)⊤ x̄t]⊤∈X [t]
ω

∥x̄t∥2 ∈ X [t]
ω

⇒ π[t](ω;x
′, ω∗) ∈ X [t]

ω ,
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where we first employ the definition of π[t−1](ω;x
′, ω∗) ∈ X [t−1]

ω , and then confirmed that

the first vector of the x̄ matrix could be used to create a member of X [t]
ω .

Now regarding π(·;x′, ω∗) ∈ X , this is necessarily the case as we just showed

that π(·;x′, ω∗) ∈ X [t]
ω for all t and ω ∈ Ω. Hence, π(·;x′, ω∗) ∈ X [T ]

ω = Xω for all

ω. Furthermore, π(·;x′, ω∗) ∈ Xna by construction. Namely, for any t, if ζ(ω)[t−1] =

ζ(ω′)[t−1] = ζ(ω∗)[t−1], then πt(·;x′, ω∗) = x′
t. Alternatively, for any (ω, ω′) such that

ζ(ω)[t−1] = ζ(ω′)[t−1] ̸= ζ(ω∗)[t−1], we can exploit the fact that:

ζ[t−1](ω) = ζ[t−1](ω′) ⇒ ζ[t
′−1](ω) = ζ[t

′−1](ω′), ∀1 ≤ t′ ≤ t ,

so that iteratively from t′ = 2 to t′ = t, given that:

πt′−1(ω;x
′, ω∗) = πt′−1(ω

′;x′, ω∗)

and that Assumption 2.4.1 implies that X [t′]
ω = X [t]

ω , then necessarily

πt′(ω;x
′, ω∗) = arg min

x̄t′ :[π[t′−1](ω;x
′,ω∗)⊤ x̄t]⊤∈X [t′]

ω

∥x̄t′∥2

= arg min
x̄t′ :[π[t′−1](ω

′;x′,ω∗)⊤ x̄t]⊤∈X [t′]
ω′

∥x̄t′∥2 = πt′(ω
′;x′, ω∗) .

2.6.5 Proof of Proposition 2.4.1

The argument goes as follows:

R∆(x) = max
x′∈X∩X∆

EQ[h(x
′, ζ)− h(x, ζ)] (2.13a)

= max
x′∈X∩X∆

EQ[h(x
′, ζ)]− EQ[h(x, ζ)] (2.13b)

= g(∆)− EQ[h(x, ζ)] (2.13c)

with g(∆) := maxx′∈X∩X∆
EQ[h(x

′, ζ)], and where (2.13b) follows from the linearity of

the risk measure. The fact that ∆ only affects the constant g(∆) in (2.13c) allows us to

conclude that the optimal solution sets of Problem (2.3) is unaffected by ∆. We also

observe that:

minimize
x∈X∩Xna

R∆(x) ≡ maximize
x∈X∩Xna

EQ[h(x, ζ)]− g(∆) (2.14)

hence the ∆-regret model has the same optimal solution set as MSP when ρ(ξ) = EQ[ξ].
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2.6.6 Proof of Corollary 2.4.1

This follows from the fact that X0 = Xna, hence replacing g(∆) :=

maxx′∈X∩Xna EQ[h(x
′, ζ)] in equation (2.14) leads to:

minimize
x∈X∩Xna

R∆(x) = max
x∈X∩Xna

EQ[h(x, ζ)]− g(∆)

= max
x∈X∩Xna

EQ[h(x, ζ)]− max
x′∈X∩Xna

EQ[h(x
′, ζ)] = 0

2.6.7 Proof of Proposition 2.4.2

Taking advantage of worst-case expectation risk measure, Problem (2.3) leads to

R∆(x) = max
x′∈X∩X∆

ρ
(
h(x′, ζ)− h(x, ζ)

)
= max

x′∈X∩X∆

max
p∈D∩M

∑
ω∈Ω

pωh(x
′(ω), ζ(ω))− h(x(ω), ζ(ω)) .

Using epigraph variable r, this can be alternatively rewritten as

R∆(x) = max
x′∈X∩X∆

min
r

r

s.t.
∑
ω∈Ω

pωh(x
′(ω), ζ(ω))− h(x(ω), ζ(ω)) ≤ r, ∀p ∈ D ∩M

r ∈ R.
(2.15)

Letting g(x,x′,p) :=
∑

ω∈Ω pωh(x
′(ω), ζ(ω))− h(x(ω), ζ(ω)) and applying Theorem 2 in

Ben-Tal et al. (2015), we get:

max
p∈D∩M

g(x,x′,p) = inf
v
δ∗(v|D)− inf

p∈M
p⊤v − g(x,x′,p) (2.16a)

= inf
v
δ∗(v|D)− inf

p:p≥0,
∑

ω∈Ω pω=1

∑
ω∈Ω

pω

(
vω − h(x′(ω), ζ(ω)) (2.16b)

+ h(x(ω), ζ(ω))
)

= inf
v
δ∗(v|D)−min

ω∈Ω
vω − h(x′(ω), ζ(ω)) + h(x(ω), ζ(ω)) (2.16c)

= inf
v

max
ω∈Ω

δ∗(v|D)− vω + h(x′(ω), ζ(ω))− h(x(ω), ζ(ω)), (2.16d)
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where v ∈ R|Ω| and (2.16c) follows from the fact that searching over worst-case distri-

bution is indeed searching over the worst-case outcome. Plugging this result back into

equation (2.15) leads to the two-stage optimization model presented in (2.6).

2.6.8 Proof of Corollary 2.4.2

We define

D′ := {p′ ∈ R|Ω|+nq | ∃p ∈ R|Ω|, q ∈ Rnq ,p′ = [p⊤ q⊤]⊤, Bp′ ≤ b}

where B := [Bp Bq] so that D := {p ∈ Rnp | ∃p′ ∈ D′,p = Ap′}, where A := [I 0]. Since

D is an affine projection D′, we have that

δ∗(v|D) = sup
p′:Bp′≤b

v⊤Ap′ = inf
λ≥0:A⊤v=B⊤λ

b⊤λ ,

where we exploited strong LP duality theory, given that D, and implicitly D′, is non-

empty. After replacing B by using its definition and reintegrating the infimum operation

in constraint (2.6b) we get Problem (2.7).

2.6.9 Proof of Proposition 2.4.3

We start with a definition of the NP-complete 3-SAT problem.

3-SAT problem: Let W be a collection of disjunctive clauses W = {w1, w2, ..., wN} on a

finite set of variables V = {v1, v2, ..., vm} such that |wi| = 3 ∀i ∈ {1, ..., N}. Let each clause

be of the form w = vi ∨ vj ∨ v̄k, where v̄ is the negation of v. Is there a truth assignment

for V that satisfies all the clauses in W ?

Consider a 3-SAT problem with N clauses of the type vi ∨ vj ∨ v̄k on m variables. One

can construct a multistage stochastic linear program with T = 3 with N branches on the

starting node and 3 branches for each node at t = 2. Let the outcome space defined as

Ω := {ωij}i∈[N ],j∈[3]. We define two sets of decision variables x1 ∈ [0, 1]m and x3 ∈ R,

which capture respectively here-and-now and wait-and-see decisions. In the spirit of
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clause 1 is given by vi ∨ vj ∨ v̄k we define the sets

Xω11 := {(x1, x3) ∈ [0, 1]m × R|x3 ≤ x1i}

Xω12 := {(x1, x3) ∈ [0, 1]m × R|x3 ≤ x1j}

Xω13 := {(x1, x3) ∈ [0, 1]m × R|x3 ≤ 1− x1k},

with the rest of the clauses expressed though Xωij accordingly where i ∈ {2, . . . , N},

j = {1, 2, 3}. For short, we will summarize the definition of Xω as

Xωij := {(x1, x3) ∈ [0, 1]N × R|x3 ≤ a(ωij)
⊤x1 + b(ωij)}.

Let h(x, ζ) := x3, and define the ambiguity set as

P = {P|P(ωi1 ∪ ωi2 ∪ ωi3) = 1/N, ∀i ∈ {1, . . . , N}}.

For (x1, x3) := (0, 0) ∈ X ∩ Xna and ∆ = 0, we have that

R∆(x) = max
x′∈X∩Xna

sup
P∈P

EP[x
′
3 − x3]

= max
x′
1∈[0,1]m

1

N

N∑
i=1

sup
p∈R3

+:
∑

j pj=1

3∑
j=1

pj max
x′
3:x

′
3≤a(ωij)⊤x′

1+b(ωij)
x′3

= max
x′
1∈[0,1]m

1

N

N∑
i=1

sup
p∈R3

+:
∑

j pj=1

3∑
j=1

pj(a(ωij)
⊤x′

1 + b(ωij))

= max
x′
1∈[0,1]m

1

N

N∑
i=1

max
j∈{1,2,3}

a(ωij)
⊤x′

1 + b(ωij)

= max
x′
1∈[0,1]m

1

N

(
max(x′1i, x

′
1j , 1− x′1k) +

N∑
i=2

max
j∈{1,2,3}

a(ωij)
⊤x′

1 + b(ωij)

)
.

The second equality follows from the definition of the ambiguity set and the fact that

x3 = 0, while the fourth equality follows since for each scenario i the supremum reduces

to finding the maximum amongst the 3 terms. The last equality demonstrates how the

first clause vi ∨ vj ∨ v̄k will appear in the problem. Notice that each term of the last

equation is between 0 and 1, and reaches 1 if and only if the assignment in x1 satisfies

the associated clause. Given that R0(0) ∈ [0, 1] and reaches 1 only if there exists an

assignment of x1 that satisfies all the N clauses, we can conclude that verifying whether

R0(0) ≥ 1 is equivalent to answering to the 3-SAT problem. This makes the evaluation of

R0(x) NP-hard, thus the evaluation of R∆(x) generally NP-hard.
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2.6.10 Column-and-Constraint Generation Algorithm

The column-and-constraint generation algorithm, proposed by Zeng and Zhao (2013), is

an iterative scheme that optimally solves two-stage linear robust optimization problems

with right-hand-side uncertainty. Hence, we can employ it for solving Problem (2.7).

Assume that X ∩ Xna is non-empty, and let {x′
1, . . . ,x

′
K} denote the set of policies that

comprise the vertices of X ∩ X∆, i.e., x′
k : Ω → Rn×T for all k ∈ {1, . . . ,K}. Let

K′ ⊆ {1, . . . ,K}. The column-and-constraint generation algorithm can be viewed as a

reduction to the vertex enumeration method, where at each iteration, a vertex is added

to the following master problem

M(K′) = minimize
x,s,{vk,λk}∀k∈K′

s

s.t. λ⊤
k b− vω,k +

T∑
t=1

c⊤t (ζ(ω))(x
′
t,k(ω)− xt(ω))) ≤ s,

∀ω ∈ Ω , ∀k ∈ K′

B⊤
p λk = vk, ∀k ∈ K′

B⊤
q λk = 0, ∀k ∈ K′

s ∈ R, λk ∈ Rm
+ , vk ∈ R|Ω|, ∀k ∈ K′

x ∈ X ∩ Xna.

(2.17)

For any K′ ⊆ {1, . . . ,K}, M(K′) constitutes a lower bound on the optimal value of Prob-

lem (2.7). For a given x ∈ X∩Xna, we can evaluate R∆(x) through solving the inner maxi-

mization of Problem (2.7). Expressing the inner minimization of Problem (2.7) through its

KKT conditions and merging it into the outer maximization problem yields the following

bilinear optimization program

R∆(x) = max
x′, r,v,λ,p, q

r + λ⊤b (2.18a)

s.t. r + vω ≥
T∑
t=1

c⊤t (ζ(ω))(x
′
t(ω)− xt(ω)), ∀ω ∈ Ω (2.18b)

B⊤
p λ = v (2.18c)

B⊤
q λ = 0 (2.18d)∑

ω∈Ω
pω = 1 (2.18e)

Bpp+Bqq ≤ b (2.18f)
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pω(r + vω −
T∑
t=1

c⊤t (ζ(ω))(x
′
t(ω)− xt(ω))) = 0, ∀ω ∈ Ω (2.18g)

λie
⊤
i (b−Bpp−Bqq) = 0, ∀i = 1, 2, ...,m (2.18h)

r ∈ R, v ∈ R|Ω|, λ ∈ Rm
+ , p ∈ R|Ω|

+ , q ∈ Rnq (2.18i)

x′ ∈ X ∩ X∆, (2.18j)

where ei ∈ Rm is the ith column of the identity matrix. Constraints (2.18b)-(2.18d) en-

sure primal feasibility, (2.18e)-(2.18f) ensure dual feasibility, while the bilinear constraints

(2.18g) and (2.18h) ensure complementary slackness. To make the problem amenable to

efficient optimization solvers, the bilinear constraints can be linearized using McCormick

inequalities, see McCormick (1983). To this end, letM denote a sufficiently large constant,

typically referred to as the big-M constant in the integer programming literature. By in-

troducing binary variables Binp ∈ {0, 1}|Ω| and Binλ ∈ {0, 1}m, constraints (2.18g) and

(2.18h) can be reformulated as

r + vω −
T∑
t=1

c⊤t (ζ(ω))(x
′
t(ω)− xt(ω)) ≤MBinp

ω, ∀ω ∈ Ω (2.19a)

p ≤ 1− Binp (2.19b)

b−Bpp−Bqq ≤MBinλ (2.19c)

λ ≤M(1− Binλ). (2.19d)

Solving the resulting mixed integer linear program provides an upper bound on the

optimal value of Problem (2.7). The optimal worst-case benchmark policy x′ of Prob-

lem (2.18), can be added to the master problem to further strengthen the lower bound.

Algorithm 1 describes the iterative process. The computational efficiency of Algorithm 1

heavily relies on the ability to evaluate efficiently R∆(x) in Step 3. The choice of the

big-M constant heavily influences the solution speed, i.e., choosing it too big will result

to weak linear relaxation leading in longer computational times. For the special case

where the risk measure is the Conditional Value-at-Risk, the matrices in D reduce to

Bp = I ∈ R|Ω|×|Ω|, Bq = 0 and b = p̄/(1 − α). Since by construction p ∈ [0, 1]|Ω|, then

constraint (2.19c) reduces to

p̄

(1− α)
− p ≤ 1

(1− α)
diag(p̄)Binλ,
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Algorithm 1 Column-and-constraint generation algorithm, Zeng and Zhao (2013)

1: Initialize: lb = −∞, ub = ∞, K′ = ∅.
2: Solve Problem (2.17) and let x∗ be the optimal solution. Set lb = M(K′);
3: Evaluate R∆(x

∗) by solving Problem (2.18) and let x′∗ be the optimal solution. Set
ub = R∆(x

∗);
4: if ub− lb > 0 then
5: K ′ = K ′ ∪ {i} where i is the index of x′∗ in the set of vertices {x′

1, . . . ,x
′
K}, and

go to Step 2
6: else
7: Return: x∗ and R∆(x

∗).
8: end if

where diag(p̄) is a diagonal matrix with p̄ appearing in the diagonal entries. In other

words, the big-M constant can be set to p̄ω/(1− α) for the ωth constraint.

2.6.11 Portfolio Management

In this section, we provide additional insights on the behavior of ∆-regret using a stylized

portfolio management example. We consider an investment horizon of T periods, with

T := {1 . . . , T}. At each period, the asset manager can either invest in a risk free asset

(with the rate rf ) or in a risky asset. The constraints of the problem are as follows:

Xω :=


(x+,x−,y)

∈ RT
+ × RT

+ × RT

∣∣∣∣∣∣∣∣∣
∑t

t′=1 x
+
t′ − x−t′ ≥ 0, ∀t ∈ T∑t

t′=1(1 + rf )
t−t′yt′ ≥ 0, ∀t ∈ T

w0 −
∑t

t′=1 yt′ − (x+t′ − x−t′ )ζt′−1 + cζt′−1(x
+
t′ + x−t′ ) ≥ 0, ∀t ∈ T \T

 ,

(2.20)

wherew0 is the initial wealth, x+t and x−t capture the number of assets purchased and sold

at period t (incurring a proportional transaction cost of c), respectively, while yt captures

the amount invested or liquidated from the risk free account. The first constraint ensures

that there is no short-selling, the second prevents the possibility of borrowing, and the

last constraint ensures that there is enough liquidity to manage the portfolio. Finally, the

objective function measures how much wealth can be generated at the end of the horizon:

h(x+,x−,y, ζ) := w0 −
T∑
t=1

yt −

(
T∑
t=1

(x+t − x−t )ζt−1 + cζt−1(x
+
t + x−t )

)
(2.21)

In the following, we consider a two-stage and a multistage instance of the problem.
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2.6.11.1 Two-Stage Portfolio Management

The two-stage problem can be simplified by noting that at the end of the horizon, all

stocks will be sold, and the risk free investment will be liquidated, thus we can also set

x−2 = x+1 and y2 = −(1 + rf )y1. Moreover, without loss of generality, we assume that

ζ0 = 1, thus the feasible set (2.20) and profit function (2.21) respectively simplify to

Xω :=

(x+1 , y1) ∈ R+ × R|

x+1 ≥ 0

y1 ≥ 0

w0 − y1 − (1 + c)x+1 ≥ 0


with

h(y1, x
+
1 , ζ) = w0 + y1rf + ((1− c)ζ1 − (1 + c))x+1 .

Given that rf > 0, the initial wealth is necessarily distributed among the risk free asset

and the risky asset, thus, we have that x+1 = (w0 − y1)/(1 + c). This allows to eliminate

x+1 and express the investment decisions solely through the risk free investment y1.

In the following experiments, the random price of the risky asset is represented via

10000 scenarios taken from a normal distribution with mean µ = 1.02 and standard devi-

ation σ = 0.05. We set c = 0 and the initial wealth w0 = 100. Using ρ(ξ) = CVaRα(ξ), we

solve Problem (2.3) for ∆ = 0 and ∆ = 1, as well as the corresponding CVaR minimiza-

tion Problem (2.1).
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Figure 2.4: Optimal Regret for Different Values of ∆, α and rf .

To compare the investment decisions from the three performance measures, we con-

sider instances where rf ∈ {0.01, 0.02, 0.03}. Figure 2.4 plots the optimal regret, and

Figure 2.5 plots the optimal investment in the risk free asset as a function of α, with the
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Figure 2.5: Optimal Investment Decisions in the Risk Free Asset for ∆-Regret and CVaR
Minimization.

investment in the risky asset given by x+1 = (w0 − y1)/(1 + c). We observe the following:

(i) For α = 0, all models reduce to minimizing expected loss, thus all models produce

the same optimal solution, as suggested by Proposition 2.4.1, despite that the optimal

regret is different. When rf < (1 − c)E(ζ1) − (1 + c) all models invest the initial wealth

to the risky asset while if rf > (1− c)E(ζ1)− (1 + c) to the risk free asset. (ii) For α = 1,

both ∆ = 0 and ∆ = 1 produce the same optimal investments. This is not surprising as

the risk measure reduces to ρ(ξ) = CVaR1(ξ) = ess sup(ξ) and from Theorem 2.4.1 we

know that both regret models will achieve the same optimal regret, see Figure 2.4. Note

that in general, the optimal solution might not be unique, hence it is possible that the

two regret models produce different optimal solutions, however, this is not the case in

this one-dimensional example. (iii) Although all models result in the same investment

decisions for α = 0, as the value of α increases, the CVaR minimization invests all of the

wealth in the risk free asset. In contrast, ∆-regret models prefer to invest only a fraction

of the wealth in the risk free asset.

If we interpret the behavior of the decision maker to be “less conservative" if the

decision maker invests in the risky asset, then the results provide further evidence that

regret minimization models provide less conservative solutions than CVaR minimization.

Similar behavior was observed when other distributions were considered for the risky

asset, such as the uniform distribution, and the symmetric and skewed Beta distributions

(not presented in this chapter). (iv) The investment decision for both ∆ models is the

same for rf = 0.02 since rf = ((1 − c)E(ζ1) − (1 + c)). For rf = 0.01, ∆ = 1 invests
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more in the risky asset while the reverse is true for the rf = 0.03 case. This can be

intuitively interpreted as follows. When P(((1 − c)ζ1 − (1 + c)) ≥ rf ) > 0.5, i.e., there

is significant chance to increase profits by investing in the risky asset, to avoid large

regret as α increases, the ∆ = 1 policy will invest more on the risky asset, while when

P(((1 − c)ζ1 − (1 + c)) ≥ rf ) < 0.5 the reverse happens leading to more conservative

decisions with more investment in the risk free asset. ∆ = 0 on the other hand, produces

slightly more conservative investments than ∆ = 1 when P(((1−c)ζ1−(1+c)) ≥ rf ) > 0.5

and less conservative when P(((1−c)ζ1−(1+c)) ≥ rf ) < 0.5. This can be partly explained

as the benchmark investment is chosen before the price of the risky asset realizes. (v) It

is interesting to observe that for rf = 0.01 and rf = 0.03 both ∆-regret models have

respectively the same optimal regret. This is due to the fact that the risky asset follows a

symmetric distribution with |rf − E(ζ1)| = 0.01 for both rf = 0.01 and rf = 0.03.

We conclude this experiment by noting that the behavior of the ∆-regret solutions

are different based on the situation, with the solution of ∆ = 1 being opportunistic in

situations where there is potential for large gains, while ∆ = 0 is less conservative in

situations where there is potential for gains but the margins are smaller. The solutions

are also significantly different from CVaR minimization, which typically provides more

conservative solutions.

2.6.11.2 Multistage Portfolio Management

We now turn our attention to the multistage variant of the problem, where we consider

five trading periods. Similar to the multistage inventory management problem, we as-

sume that the outcome space includes 16 scenarios (|Ω| = 16). The scenario tree that

describes the price evolution of the risky asset is a binomial tree. At each node of the tree,

the risky asset’s price may increase to u times the current price with the probability of p

or decrease to d times the current price with the chances of (1 − p), where u = 1/d. We

assume p = 0.8 and u = 1.02, which leads to price realizations ζt. We set the risk free

account rate rf = 0.0001, the initial wealth w0 = 100, the initial price of the risky asset

ζ0 = 1 and assume two different settings for the transaction cost c ∈ {0.02, 0.025}. We

consider ρ(ξ) = CVaRα(ξ) and solve Problem (2.3) for ∆ ∈ {0, 1, 2, 3, 4} as well as the
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corresponding CVaR minimization Problem (2.1). The experiments are conducted over

the risk aversion levels of α = n/16, where n ∈ {0, 1, ..., 16}. A sketch of the scenario tree,

as well as the price realizations under each scenario, are depicted in Section 2.6.12.

Figure 2.6: Regret and First-stage Investment in the Risk Free Account Given Different
Levels of Conservatism (α).
Figure (a) depicts the optimal ∆-regret and the regret of a shrinking-horizon (SH) policy for c = 0.025, (b)
depicts the first-stage investment in the risk free account for c = 0.025 and (c) the first-stage investment in
the risk free Account for c = 0.02.

The first experiment compares the optimal ∆-regret values and optimal investment

in the first period for different values of ∆ ∈ {0, 1, 2, 3, 4} and levels of risk aversion α.

The optimal ∆-regret for c = 0.025 are depicted in Figures 2.6 (a) (solid lines), and the

conclusions are qualitatively similar as in the inventory management experiment, see Fig-

ures 2.2 (a), with the only difference being that ∆ = 3 and ∆ = 4 achieve the same level of

regret for all values of α. Figures 2.6 (b) and (c) depict the optimal first-stage investment

in the risk free asset when the transaction cost is c = 0.025 and c = 0.02, respectively. As

before, the figures depict the solutions for the ∆-regret problem for ∆ ∈ {0, 1, 2, 3, 4}, to-

gether with the investment corresponding to the CVaR minimization Problem (2.1). We

make the following observations: (i) The investment produced by CVaR minimization

favors the risk free investment in both high and low transaction cost regimes, especially

as α increases. In contrast, ∆-regret solutions, in general, invest much more in risky asset.

If we interpret a higher investment in the risk free asset as being “conservative", we again

reach the conclusion that CVaR minimization is significantly more conservative than ∆-

regret, which is more risk-seeking, especially for α > 0.2. This observation is in line with

the numerical evidence from the inventory management example in Section 2.5 as well

as the two-stage portfolio management example in Section 2.6.11.1. (ii) In the low trans-
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action cost regime, and for small values of α, all models favor the risky asset as trading

is less costly. As α increases, all ∆-regret models invest more in the risk free asset; how-

ever, they do that at a much lower rate than the solution returned by CVaR minimization.

(iii) In the high transaction cost regime, the CVaR minimization invests all the wealth in

the risk free asset for all risk aversion levels α, while ∆-regret chooses to also invest in

the risky asset, especially for α > 0.2. (iv) Unlike the inventory management and the

two-stage portfolio examples where we can see an ordering in the levels of the solutions

as ∆ increases, in this example, we cannot observe a clear, interpretable pattern in the

behavior of the first stage investments. Nevertheless, we observe that different values of

∆ return quite different first-stage portfolio investments.

In our second experiment, we examine the time consistency properties of ∆-regret us-

ing c = 0.025. To this end, for each ∆, we solve the problem in a shrinking-horizon man-

ner, i.e., for each node of the scenario tree, we fix the policy for all preceding nodes and

re-optimize for the remaining horizon. Figure 2.6 (a) reports the optimal regrets obtained

from the ∆-regret model (solid lines) and the optimal regrets resulting from solving the

problem using shrinking-horizon (dotted lines). We make the following observations: (i)

For α > 0, ∆-regret is in general not time consistent, as we observe empirically that the

value of regret differs in the static versus shrinking-horizon evaluation. This is to be ex-

pected as risk-averse multistage stochastic programs are not considered time-consistent,

except in certain cases, e.g., exploiting expected value or so-called nested dynamic risk

measures, see Shapiro 2009, Ruszczyński 2010, and Pichler et al. 2022. (ii) For α = 0, ∆-

regret is time consistent since the CVaR reduces to the expected value risk measure, and

by Proposition 2.4.1 the set of the optimal solution of ∆-regret coincides with the set of

optimal solutions of MSP . (iii) As α increases, we observe an increase in the difference

of the regret achieved by the static versus the shrinking-horizon implementation, with

the largest difference occurring when α = 1.

We summarize this section by noting that ∆-regret models produce less conservative

solutions than CVaR minimization, which mirrors the results from previous sections. In

addition, we verify numerically that ∆-regret is, in general, not time-consistent except

when ρ(ξ) = EQ(ξ) in which case all ∆-regret models reduce to MSP which is known to

be time-consistent.
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2.6.12 Parameters of Solved Instances

Table 2.7: Demand Realizations of Multistage Inventory Management Problem - ζt−1(ω)

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 ω11 ω12 ω13 ω14 ω15 ω16

t

1 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
2 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4
3 6 6 6 6 3 3 3 3 11 11 11 11 12 12 12 12
4 10 10 6 6 13 13 4 4 0 0 15 15 9 9 14 14
5 4 1 7 14 2 4 9 12 15 2 12 8 13 4 11 3

Total 35 32 34 41 33 35 31 34 45 32 57 53 53 44 56 48

Instance I

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 ω11 ω12 ω13 ω14 ω15 ω16

t

1 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
2 15 15 15 15 15 15 15 15 11 11 11 11 11 11 11 11
3 9 9 9 9 12 12 12 12 4 4 4 4 3 3 3 3
4 5 5 9 9 2 2 11 11 15 15 0 0 6 6 1 1
5 11 14 8 1 13 11 6 3 0 13 3 7 2 11 4 12

Total 55 58 56 49 57 55 59 56 45 58 33 37 37 46 34 42

Instance II

Table 2.8: Parameters of Multistage Inventory Management Problem

cit i = 1 i = 2 i = 3

t = 1 14 12 20
t = 2 18 16 22
t = 3 24 18 28
t = 4 26 20 30
t = 5 28 24 32

x̄1t = 10, ∀t ∈ T
x̄2t = 10, ∀t ∈ T
x̄3t = 20, ∀t ∈ T

x̄1,tot = 20
x̄2,tot = 20
x̄3,tot = 40

x0
wh = 0, xwh = 0, x̄wh = 30
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Table 2.9: Solution Time for Multistage Inventory Management Problem

α
Instance I Instance II

∆ =
0

∆ =
1

∆=2 ∆ =
3

∆ =
4

CVaR ∆ =
0

∆ =
1

∆ =
2

∆ =
3

∆ =
4

CVaR

0% 10.0 9.4 9.3 9.4 1.4 1.3 10.2 9.9 10.0 10.2 1.2 1.2
6.25% 30.6 15.1 15.5 22.4 1.2 1.3 16.4 15.9 16.1 16.5 1.2 1.2
12.5% 73.3 38.0 30.0 39.3 1.3 1.2 31.2 75.8 40.5 32.1 1.2 1.2

18.75% 32.4 79.1 69.1 56.5 1.2 1.3 43.9 55.8 120.2 56.1 1.2 1.2
25% 42.6 140.3 174.0 78.3 1.3 1.2 33.9 213.3 224.5 183.4 1.2 1.2

31.25% 79.4 219.0 224.9 285.9 1.2 1.2 81.5 198.2 254.5 316.9 1.2 1.2
37.5% 188.7 627.4 360.5 276.1 1.2 1.3 178.6 363.7 603.4 207.8 1.2 1.2

43.75% 245.6 795.9 550.3 234.7 1.2 1.3 177.9 558.7 1031.2 379.5 1.2 1.2
50% 209.6 623.9 440.9 119.4 1.2 1.3 93.0 306.8 622.0 154.0 1.2 1.2

56.25% 205.7 262.6 379.8 87.6 1.3 1.3 81.4 332.5 880.1 181.4 1.4 1.2
62.5% 228.7 291.0 271.8 194.5 1.2 1.3 138.0 109.5 668.4 275.9 1.2 1.2

68.75% 92.7 340.4 120.0 33.7 1.3 1.2 95.7 385.9 334.7 131.6 1.2 1.3
75% 130.7 339.4 158.7 60.9 1.2 1.2 70.9 315.5 330.7 94.6 1.2 1.2

81.25% 203.1 232.8 208.3 23.4 1.3 1.3 108.4 387.0 241.9 81.6 1.2 1.2
87.5% 157.8 74.1 121.8 22.7 1.3 1.2 106.2 206.2 77.7 42.9 1.2 1.2

93.75% 48.4 49.0 49.7 40.0 1.2 1.3 50.7 40.7 32.3 24.4 1.2 1.2
100% 48.7 88.3 39.0 30.5 1.4 1.4 51.0 40.3 52.5 42.0 1.2 1.2

Runtime in seconds.

Table 2.10: Price Realizations of Multistage Portfolio Management Problem - ζt−1(ω)

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 ω11 ω12 ω13 ω14 ω15 ω16

t

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
3 1.04 1.04 1.04 1.04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.96 0.96 0.96
4 1.06 1.06 1.02 1.02 1.02 1.02 0.98 0.98 1.02 1.02 0.98 0.98 0.98 0.98 0.94 0.94
5 1.08 1.04 1.04 1.00 1.04 1.00 1.00 0.96 1.04 1.00 1.00 0.96 1.00 0.96 0.96 0.92
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Figure 2.7: Scenario Tree with T = 5, |Ω| = 16 and ∆ ∈ {0, 1, 2, 3, 4}.
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Endnotes

1. Note that the selected values of PI and PII are such that maxP∈P EP[X] can be rein-

terpreted as the 75%-conditional value-at-risk of X when using the probability measure

P(ω1) = 1− P(ω2) = 20%.

2. We note that in the original definition of convex risk measures, X is considered a

random financial gain.
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Chapter 3

Robust Data-Driven Prescriptiveness

Optimization

Abstract

The abundance of data has led to the emergence of a variety of optimization techniques,

attempting to leverage the available side information to provide more anticipative deci-

sions. Recent developments span a wide range of methods in the context of conditional

optimization; on the other hand, the necessity of the existence of a universal unitless

measure for the evaluation of different optimization schemes has given rise to the intro-

duction of the coefficient of prescriptiveness, a two-folded metric for quantification of

the quality of a data-driven decision compared to a reference decision as well as the pre-

scriptiveness content of the side information. This chapter introduces a distributionally

robust conditional stochastic optimization model where the coefficient of prescriptive-

ness substitutes for the classical empirical risk minimization objective. We provide a

convex optimization reformulation for this problem, demonstrate how it reduces to a lin-

ear program when a nested Conditional Value at Risk represents the ambiguity set, and

provide a bisection method together with an acceleration scheme for tackling it. Study-

ing a shortest path problem, we evaluate the robustness of the resulting policies against

alternative methods when the out-of-sample dataset experiences a distribution shift.



3.1 Introduction

Stochastic programming is perceived as one of the fundamental methods devised for

decision-making under uncertainty (see Shapiro et al. 2021, Birge and Louveaux 2011).

Given a cost function h(x, ξ) that depends on a decision x ∈ Rnx and a random vector

ξ ∈ Rnξ , the stochastic programming (SP) problem is defined as

(SP ) x∗ ∈ argmin
x∈X

EF [h(x, ξ)], (3.1)

where X is a convex feasible set, h(x, ξ) is a cost function that is assumed convex in x for

all ξ, and ξ is assumed to be drawn from the distribution F . The solution methods for

this problem mainly rely on either assuming a priori distribution for F or exploiting a set

of independent and identically distributed observations. In the latter case, a set of i.i.d.

observations of the random vector ξ denoted by S := {ξi}Ni=1 can be used to formulate

the following sample average approximation problem:

(SAA) x∗ ∈ argmin
x∈X

1

N

N∑
i=1

h(x, ξi), (3.2)

where we assume a uniform distribution over the observed data. Recently, the availabil-

ity of large datasets has played a critical role in redirecting the optimization methods

devised for decision-making under uncertainty towards taking advantage of so-called

“side information” or “covariates”. This paradigm encourages decision-makers to benefit

from the available data beyond the desired random variables to make more anticipative

decisions. For instance, a portfolio manager who optimizes her investments in the stock

market may consider a variety of available micro and macroeconomic indicators as side

information to make more anticipative decisions (see Brandt et al. 2009, Bazier-Matte and

Delage 2020). This gives rise to the following conditional stochastic optimization (CSO)

problem:

(CSO) x∗(ζ) ∈ argmin
x∈X

EF [h(x, ξ)|ζ], (3.3)

where ζ ∈ Rnζ denotes the given vector of “covariates”, or so-called “features”. In this

case, any observed random vector ξi is accompanied by a vector of covariates ζi ∈ Rnζ .

The difficulty of this problem shows up when the conditional probability distribution
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function Fξ|ζ is unknown, and only a set of i.i.d. observations T := {(ζi, ξi)}Ni=1 is avail-

able. In this case, a data-driven variant of the CSO problem can be written as:

x∗(ζ) ∈ argmin
x∈X

EF̂ξ|ζ
[h(x, ξ)], (3.4)

where F̂ξ|ζ is a conditional probability model for ξ given ζ inferred from the available

data, e.g. by training a random forest (Breiman 2001), or estimated via kernel density

estimation (Ban and Rudin 2019).

In order to compare the performance of different CSO approaches, Bertsimas and

Kallus (2020) introduce the “coefficient of prescriptiveness” as:

PF (x(·)) := 1− EF [h(x(ζ), ξ)]− EF [minx′∈X h(x
′, ξ)]

EF [h(x̂, ξ)]− EF [minx′∈X h(x′, ξ)]
, (3.5)

where x̂∈ argminx EF̂ [h(x, ξ)] with F̂ as the empirical distribution that puts equal

weights on each observed data point {ξi}Ni=1 (i.e. the solution of SAA). The idea be-

hind the coefficient of prescriptiveness is that it measures the performance of a given

policy x(ζ) relative to the constant decision x̂ which is agnostic to the side information

ζ, and to the fully anticipative policy which achieves the progressive optimal value of

EF [minx′∈X h(x
′, ξ)]. It is easy to see that a high value of PF indicates that the policy

can leverage the contextual information of ζ with PF = 1 indicating that the policy is

achieving the fully anticipative performance in terms of ξ. In contrast, a low value of

PF indicates that the policy is not able to exploit (or even be misled by) the available

information.

Following the introduction of the coefficient of prescriptiveness, this metric has been

employed in several pieces of research to demonstrate the potential of proposed data-

driven policies for leveraging the available side information. One can refer to Bertsimas

et al. (2016) for such a comparison in the context of inventory management, Stratigakos

et al. (2022) for energy trading, Notz and Pibernik (2022) for flexible capacity planning,

and Kallus and Mao (2023) for shortest path and portfolio optimization problems. We

note that, in the current literature, PF is only used as a benchmark metric for assessing

the performance of policies computed using different approaches, e.g., in Bertsimas and

Kallus (2020), the metric compares policies computed (amongst others) using CSO where

the conditional probability is estimated by random forests and kernel density estimation.
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Given its prevalence as a performance measure, it is natural to question whether it is

possible and useful to directly optimize the coefficient of prescriptiveness.

While one can show that maximizing PF reduces to solving CSO problem, one may

wonder how the PF measure should be robustified in order to improve out-of-sample

performance. In this work, we introduce for the first time a distributionally robust ver-

sion of PF . We establish connections to other models in the literature and present an effi-

cient algorithm to maximize it when the conditional probability model is discrete (such as

with a random forest or with a Kernel density estimator). The rest of the chapter is orga-

nized as follows. Section 3.2 reviews the literature. Section 3.3 motivates the optimization

of the coefficient of prescriptiveness by its relationship to the coefficient of determination

in the field of statistics. Section 3.4 introduces a robust data-driven prescriptiveness op-

timization model that can be used to maximize a distributionally robust version of the

coefficient of prescriptiveness. We reformulate this problem as a convex optimization

problem that can reduce to a linear program when the ambiguity set takes the form of a

so-called “nested Conditional Value-at-Risk (CVaR) set”. A bisection method is proposed

to solve the latter, as well as an acceleration scheme; finally, Section 3.5 presents the nu-

merical experiments, where we evaluate the robustness of the resulting policies against

benchmark ones in a shortest path problem when the out-of-sample dataset confronts a

distribution shift.

3.2 Literature Review

Conditional Stochastic Optimization (CSO) In an attempt to use the side-information

in a single-item newsvendor problem, Ban and Rudin (2019) apply decision rules to rep-

resent the decision x as an affine function of covariates ζ; alternatively, they exploit

Nadaraya-Watson Kernel regression (Nadaraya 1964, Watson 1964) to estimate the con-

ditional probabilities P (ξ|ζ) in (3.4). A prominent stream of research tackling Problem

(3.4) falls under the category of the second case, i.e. “predict-then-optimize” methods.

These practices seek an efficient predictive method to estimate the conditional probabili-

ties P (ξ|ζ) from the training data and then optimize the decisions accordingly. Hannah

et al. (2010) use two nonparametric density estimators for conditional probabilities, in-
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cluding Nadaraya-Watson Kernel regression and Dirichlet process mixture models. In

addition to Kernel methods, Bertsimas and Kallus (2020) employ k-nearest-neighbors

regression, local linear regression, regression trees, and random forests for the same pur-

pose.

Distributionally Robust Conditional Stochastic Optimization (DRCSO) All afore-

mentioned methods deal with the estimation of conditional probability distributions

given some empirical observations; consequently, the concerns provoking the emergence

of Distributionally Robust Optimization (DRO) formulation proposed by Scarf (1958) po-

tentially apply to the conditional stochastic optimization problem as well. One can refer

to Delage and Ye (2010) and Wiesemann et al. (2014) for moment-based DRO, and see

Mohajerin Esfahani and Kuhn (2018) and Gao and Kleywegt (2022) for distance-based

DRO. A recent stream of research studies applying the DRO framework to conditional

stochastic programs. Leveraging statistical bootstrap, Bertsimas and Van Parys (2022) ex-

tends the conditional stochastic optimization to the distributionally robust optimization

setting to avoid overfitting in the presence of limited data and improve the out-of-sample

performance. Ho and Hanasusanto (2019) propose out-of-sample performance bounds

when using the Nadaraya-Watson Kernel regression estimator in the conditional stochas-

tic optimization problem. Analyzing the derived bound, they suggest a regularization

term to improve the out-of-sample performance and finally reformulate the problem as

a distributionally robust optimization problem. Wang et al. (2021) use the Wasserstein

ambiguity set to formalize a distributionally robust conditional optimization problem,

where the conditional probabilities are predicted by Nadaraya-Watson Kernel regression

estimator. DRCSO, in general, takes the following form

(DRCSO) x∗(ζ) ∈ argmin
x∈X

sup
F∈D

EF [h(x, ξ)|ζ] (3.6)

where D is the ambiguity set containing the set of admissible distributions.

Coefficient of Predictive Prescriptiveness Concurrent with the advancement of con-

ditional optimization methods, Bertsimas and Kallus (2020) developed the notion of the

coefficient of prescriptiveness as a unitless measure to evaluate the quality of data-driven

policies as well as the value of the prescriptive content of the data. One can refer to Bertsi-

mas and Kallus (2020) for a comparison of coefficients of prescriptiveness resulting from
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different estimation methods for a two-stage shipping planning problem with synthetic

data and a real-world problem faced by the distribution arm of an international media

company. Notz and Pibernik (2022) compare their distribution-free Kerneralized empir-

ical risk minimization approach against the alternatives using the coefficient of prescrip-

tiveness. Kallus and Mao (2023) propose end-to-end solution methods for solving Prob-

lem (3.4) and consider the coefficient of prescriptiveness to compare their methods with

their benchmarks within a shortest path problem. The exploitation of the coefficient of

predictive prescriptiveness as a metric to measure the efficiency of different data-driven

prescription methods proposed for an OR/MS problem with a specific dataset brings up

the question of whether optimization of this metric itself in the DRCSO context has any

potential for improvement.

Distribution Shifts Since we are in a data-driven setting and we are combining Ma-

chining Learning (ML) methods and optimization tools for predictive prescription, one

might ask about the strength of these methods in capturing the effect of distribution

shifts. Distribution shifts can be specific to the covariates vector (ζ), the random vec-

tor (ξ), or both. Assume that the algorithm learns the conditional probabilities with the

weekday dataset for a shortest path problem, and it is supposed to determine the optimal

route for the weekend. This is a critical and common question in machine learning tasks,

as it appears in many applications. One can refer to Schrouff et al. (2022) for a discus-

sion about the relationship of robustness to distribution shift and fairness in healthcare

applications. In some cases, the algorithms are designed to detect out-of-distribution sce-

narios, so they get rejected or the user receives an alert. Hsu et al. (2020), and Lee et al.

(2018) build on the previous work to propose an efficient detection of out-of-distribution

images; however, rejection of out-of-distribution samples cannot always be an applicable

strategy. One can assume an autonomous driver which needs to make online decisions

with minimum probabilities of catastrophic consequences according to the scenes. Filos

et al. (2020) propose a robust method so that the autonomous driver can adapt to the

distribution shifts. Although different methods are devised to mitigate the distribution

shift effects in supervised learning, one might be curious about what could be done on

the prescription side of the existing predict-then-optimize methods to achieve a higher

coefficient of prescriptiveness.
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3.3 Motivation for Optimizing P and its Robustification

As argued in Bertsimas and Kallus (2020), in the context of predictive models, where one

wishes to predict the value of ξ ∈ R based on a list of covariates ζ using a statistical

model f : Rnζ → R, one popular metric that is employed takes the form of the so-called

“coefficient of determination”:

R2(f(·)) := 1−
EF̂ [(f(ζ)− ξ)2]

EF̂ [(ξ̂ − ξ)2]
,

where ξ̂ := EF̂ [ξ] is the empirical mean of ξ in the data set. The popularity of R2 com-

pared to mean squared error as a measure of performance can be partially attributed to

being unitless. It is upper bounded by 1, with a value closer to 1, indicating that most

of the variation of ξ can be modeled using f(·). On the flip side, when strictly smaller

than 0, its absolute value measures the percentage of additional variations that are intro-

duced by the predictive model, thus indicating a degradation of predictive power when

compared to the simple sample average ξ̂.

The coefficient of prescriptiveness can be viewed as an attempt to introduce an anal-

ogous measure in the conditional optimization setting. More specifically, it reduces to R2

when nx = 1 and h(x, ξ) := (x− ξ)2, namely:

PF̂ (x(·)) = 1−
EF̂ [(x(ζ)− ξ)2)]− EF̂ [minx′(x′ − ξ)2]

EF̂ [(x̂− ξ)2]− EF̂ [minx′(x′ − ξ)2]
= R2(x(·)),

since EF̂ [minx′(x′ − ξ)2] = 0 and x̂∈ argminx EF̂ [(x − ξ)2] = ξ̂. Hence, the coefficient of

prescriptiveness has a similar interpretation as R2. Namely, PF is upper bounded by 1,

and as it gets closer to 1, it indicates how successful the data-driven policy has been in

closing the gap between the SAA solution that makes no use of covariate information

and a hypothetical policy that would have access to full information about ξ.

One can also find traces in the literature of attempts to measure R2(x(·)) out-of-

sample. Namely, Campbell and Thompson (2008) studies whether excess stock return

predictors can outperform historical averages in terms of out-of-sample explanatory

power of such predictors. This measure can be captured using

R2
F (f(·), F̂ ) := 1− EF [(f(ζ)− ξ)2]

EF [(ξ̂ − ξ)2]
= PF (f(·)) ,
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which naturally leads to the question of whether R2(f(·)) is a good approximation for

R2
F (f(·), F̂ ) in a data-driven environment (potentially susceptible to distribution shifts).

If not, then one must turn to employ more robust estimation methods.

3.4 Robust Data-Driven Prescriptiveness Optimization

In order to tackle the robustification and optimization of P , we consider a more general

version of this measure, which relaxes the assumption that the benchmark is the solution

to (3.2) and widens the scope of our analysis. To this end, we define the prescriptiveness

competitive ratio (PCR) of a policy x(·) with respect to a reference policy x̄ as:

VF (x(·), x̄) :=


1− EF [h(x(ζ),ξ)]−EF [minx′∈X h(x′,ξ)]

EF [h(x̄,ξ)]−EF [minx′∈X h(x′,ξ)] if EF [h(x̄, ξ)]− EF [minx′∈X h(x
′, ξ)] > 0

1 if EF [h(x̄, ξ)] = EF [minx′∈X h(x
′, ξ)] = EF [h(x(ζ), ξ)]

−∞ otherwise

.

(3.7)

Indeed, the coefficient of prescriptiveness can be considered a special case when x̄ := x̂:

VF (x(·), x̂) = 1− EF [h(x(ζ), ξ)]− EF [minx′∈X h(x
′, ξ)]

EF [h(x̂, ξ)]− EF [minx′∈X h(x′, ξ)]
= PF (x(·)).

when EF [h(x̂, ξ)] − EF [minx′∈X h(x
′, ξ)] > 0, while the two other cases follow from the

natural extension of the definition of PF (x(·)). In contrast to PF (x(·)), which bench-

marks policy x(·) only to the SAA solution, the definition of VF allows to benchmark

against any other static policy. This allows our model to accommodate situations where

more sophisticated statistical tools might be used to obtain the reference decision (e.g.

regularized or distributionally robust SAA).1

In a finite sample regime, where F̂ might fail to capture the true underlying distri-

bution, or in a situation where we expect distribution shifts, one should be interested

in a distributionally robust estimation of the PCR (or equivalently of the coefficient of

prescriptiveness), which takes the form of:

VD(x(·), x̄) := inf
F∈D

VF (x(·), x̄) = inf
F∈D

PF (x(·)) when x̄ := x̂.

where D is a set of distribution over the joint space (ζ, ξ), and the notation VD is over-

loaded to denote the distributional robust PCR measure. Furthermore, one might be
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interested in identifying the policy that maximizes the PCR in the form of the following

distributionally robust optimization problem:

(DRPCR) max
x(·)∈H

VD(x(·), x̄)

where H ⊆ {x : Rnζ → X}. The following lemma provides interpretable bounds for the

value of VD.

Lemma 3.4.1 If x̄ ∈ H, then the optimal value of DRPCR is necessarily in the interval [0, 1].

Proof. This follows simply from VF (x(·), x̄) being bounded above by 1 for any policy x(·)

and any distribution F due to:

VF (x(·), x̄) = 1− EF [h(x(ζ), ξ)]− EF [minx′∈X h(x
′, ξ)]

EF [h(x̄, ξ)]− EF [minx′∈X h(x′, ξ)]

≤ 1− EF [minx′∈X h(x
′, ξ)]− EF [minx′∈X h(x

′, ξ)]

EF [h(x̄, ξ)]− EF [minx′∈X h(x′, ξ)]
= 1

when EF [h(x̂, ξ)] − EF [minx′∈X h(x
′, ξ)] > 0, and otherwise equal to 1 or −∞ both

bounded above by 1. Hence,

max
x(·)∈H

inf
F∈D

VF (x(·), x̄) ≤ 1.

Moreover, if x̄ ∈ H, then we have that

max
x(·)∈H

VD(x(·), x̄) ≥ VD(x̄, x̄) =

 0 if EF [h(x̄, ξ)]− EF [minx′∈X h(x
′, ξ)] > 0

1 otherwise.

Lemma 3.4.1 can be interpreted as follows. First, if x(ζ) achieves a VD(x(·), x̄) = 1,

then the policy is guaranteed to exploit ζ just as efficiently as if it had full information

about ξ (namely achieves the fully anticipative performance). On the other end of the

spectrum, VD(x(·), x̄) = 0 indicates that the policy can potentially fail to exploit any of

the information present in ξ. When x̄ ∈ H, one can always prevent negative PCR by

falling back to the benchmark policy x̄.

Next, we show that in an environment where the distribution is known, the optimal

policy obtained from CSO is an optimal solution to DRPCR. Before proceeding, we first

make the following assumption.
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Assumption 3.4.1 The policy set H contains all possible mappings, i.e. H := {x : Rnζ → X}.

Lemma 3.4.2 Given that Assumption 3.4.1 is satisfied, if the distribution set is a singleton, i.e.

D = {F̄}, then the optimal policy obtained from the CSO problem that employs F̄ maximizes

DRPCR.

Proof. Let x̃(·) be a CSO optimal policy, then necessarily x̃(·) ∈ H since x̃(ζ) ∈ X for

all ζ. This confirms that x̃(·) is feasible in DRPCR. Next, we can demonstrate optimality

through:

VD(x̃(·), x̄) = VF̄ (x̃(·), x̄) ≥ max
x(·)∈H

VF̄ (x(·), x̄) = max
x(·)∈H

VD(x(·), x̄),

since for all x(·) ∈ H, we have that EF [h(x(ζ), ξ)|ζ] ≥ minx(·)∈H EF [h(x(ζ), ξ)|ζ] =

EF [h(x̃(ζ), ξ)|ζ] for all ζ, which we can show implies that VF (x̃(·), x̄) ≥ VF (x(·), x̄).

More specifically, if EF [h(x̂, ξ)] = EF [minx′∈X h(x
′, ξ)], then either EF [h(x(ζ), ξ)] =

EF [minx′∈X h(x
′, ξ)] thus

EF [min
x′∈X

h(x′, ξ)] = EF [h(x̃(ζ), ξ)] ≤ EF [h(x(ζ), ξ)] = EF [min
x′∈X

h(x′, ξ)]

meaning that VF (x̃(·), x̄) = VF (x(·), x̄) = 1, or EF [h(x(ζ), ξ)] > EF [minx′∈X h(x
′, ξ)]

thus VF (x̃(·), x̄) ≥ −∞ = VF (x(·), x̄). Alternatively, the case where EF [h(x̂, ξ)] >

EF [minx′∈X h(x
′, ξ)] is straightforward as the function

f(y) := 1− y − EF [minx′∈X h(x
′, ξ)]

EF [h(x̄, ξ)]− EF [minx′∈X h(x′, ξ)]

is strictly decreasing.

While Lemma 3.4.2 implies that DRPCR reduces to CSO when the distribution is

known, thus making the question of PCR optimization and performance irrelevant, this

is not the case anymore for larger ambiguity sets D.

In this section, we first present a convex reformulation of DRPCR and then provide a

reformulation of the problem for the nested CVaR ambiguity set. Finally, we propose a

decomposition algorithm for solving the problem based on a bisection algorithm.
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3.4.1 Convex Formulation for DRPCR

The following proposition provides a convex reformulation of DRPCR.

Proposition 3.4.1 Given that x̄ ∈ H, DRPCR is equivalent to

max
x(·)∈H,γ

γ (3.8a)

subject to Q(x(·), γ) ≤ 0 (3.8b)

0 ≤ γ ≤ 1. (3.8c)

where

Q(x(·), γ) := sup
F∈D

EF

[
h(x(ζ), ξ)−

(
(1− γ)h(x̄, ξ) + γ min

x′∈X
h(x′, ξ)

)]
is a convex increasing function of γ. Moreover, Problem (3.8) is a convex optimization problem

when H is convex.

Proof. We first present the DRPCR in epigraph form:

max
γ,x(·)∈H

γ (3.9a)

subject to VF (x(·), x̄) ≥ γ, ∀F ∈ D (3.9b)

0 ≤ γ ≤ 1 (3.9c)

where we added the redundant constraint γ ∈ [0, 1] since Lemma 3.4.1 ensures that the

optimal value of DRPCR is in this interval.

Focusing on constraint (3.9b), we can then consider two cases for the definition of

VF (x(·), x̄). In the case that EF [h(x̄, ξ)]−EF [minx′∈X h(x
′, ξ)] > 0, one can multiply both

sides of the inequality to equivalently obtain:

EF [h(x(ζ), ξ)]− EF [min
x′∈X

h(x′, ξ)] ≤ (1− γ)

(
EF [h(x̄, ξ)]− EF [min

x′∈X
h(x′, ξ)]

)
which is equivalent, when rearranging the terms, to:

EF [h(x(ζ), ξ)− (1− γ)h(x̄, ξ)− γ min
x′∈X

h(x′, ξ)] ≤ 0. (3.10)

In the second case where EF [h(x̄, ξ)] = EF [minx′∈X h(x
′, ξ)], then constraint (3.9b) is

equivalent to:

EF [h(x(ζ), ξ)] = EF [min
x′∈X

h(x′, ξ)] & γ ≤ 1,
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yet γ ≤ 1 is redundant while the former condition can equivalently be posed as (3.10).

We are left with

EF [h(x(ζ), ξ)− (1− γ)h(x̄, ξ)− γ min
x′∈X

h(x′, ξ)] ≤ 0 , ∀F ∈ D,

which can equivalently be described by Q(x(·), γ) ≤ 0. One can further conclude that

Q(x(·), γ) ≤ 0 is convex and increasing in γ given that it is the supremum of a set of

affine increasing functions:

Q(x(·), γ) = sup
F∈D

EF [h(x(ζ), ξ)− h(x̄, ξ)] + γ(EF [h(x̄, ξ)− min
x′∈X

h(x′, ξ)]),

with h(x̄, ξ) ≥ minx′∈X h(x
′, ξ) for all ξ since x̄ ∈ X .

From the reformulation (3.8) one can draw interesting insides between the connection

of DRPCR and risk-averse regret minimization, see Poursoltani et al. (2023). For γ = 1,

the problem reduces to the ex-post risk-averse regret minimization problem. In contrast,

for γ = 0, one can interpret the problem as regretting the performance of the policy

compared to a policy with less information. In the notation of Poursoltani et al. (2023),

this will lead to a risk-averse regret problem with ∆ = −1.

3.4.2 The Nested CVaR Ambiguity Set D

In the following, we consider a discrete empirical distribution F̄ and restrict D to be a

nested CVaR ambiguity set. This ambiguity set is motivated by the works on nested

dynamic risk measures (see Riedel 2004, Detlefsen and Scandolo 2005, Ruszczyński and

Shapiro 2006) as will be explained shortly. We formalize our approach through the fol-

lowing assumption.

Assumption 3.4.2 There is a discrete distribution F̄ , with {ζω}ω∈Ωζ
and {ξω}ω∈Ωξ

as the set

of distinct scenarios for ζ and ξ respectively, such that the distribution set D takes the form of the

“nested CVaR ambiguity set” with respect to PF̄ and defined as

D̄(F̄ , α) :=

F ∈ M(Ωζ × Ωξ)

∣∣∣∣∣∣∣∣∣
PF (ζ = ζω) = PF̄ (ζ = ζω) ∀ω ∈ Ωζ ,

PF (ξ = ξω′ |ζω) ≤ (1/(1− α))PF̄ (ξ = ξω′ |ζω)

∀ω ∈ Ωζ , ω
′ ∈ Ωξ

 .

(3.11)
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where M(Ωζ × Ωξ) is the set of all distributions supported on over the joint space {ζω}ω∈Ωζ
×

{ξω}ω∈Ωξ
.

The structure of D̄(F̄ , α) implies that there is no ambiguity in the marginal distribu-

tion of the observed random variable ζ. Rather, the ambiguity is solely on the unobserved

random variable ξ and is sized using the parameter α. The nested CVaR ambiguity set

owes its name from Ruszczyński and Shapiro (2006) and the fact that for any function

g(x, ξ):

sup
F∈D̄(F̄ ,α)

EF [g(x(ζ), ξ)] = sup
F∈D̄(F̄ ,α)

∑
ω∈Ωζ

∑
ω′∈Ωξ

PF (ζ = ζω)PF (ξ = ξω′ |ζ = ζω)g(x(ζω), ξω′)

=
∑
ω∈Ωζ

PF̄ (ζ = ζω) sup
Fξ|ζ∈D̄(F̄ξ|ζω ,α)

∑
ω′∈Ωξ

PFξ|ζ (ξ = ξω′)g(x(ζω), ξω′)

= EF̄

[
CVaRα

F̄ (g(x(ζ), ξ)|ζ)
]
,

where F̄ξ|ζω is the conditional distribution of F̄ given ζω and where we overload the

notation of D̄ letting:

D̄(F̄ξ|ζ , α) := {Fξ|ζ ∈ M(Ωξ) : PFξ|ζ (ξ = ξω′) ≤ (1/(1− α))PF̄ξ|ζ
(ξ = ξω′)∀ω′ ∈ Ωξ}.

For α = 0, the problem reduces to

min
x(·)∈H

EF̄ [h(x(ζ), ξ)],

effectively recovering the CSO policy. On the other spectrum, for α = 1 the problem

reduces to

min
x(·)∈H

EF̄ [ max
ω:PF̄ (ξ=ξω |ζ)>0

h(x(ζ), ξω)],

which implies that for each realization of ζω the decision x(ζω) is robust against all ad-

missible realizations of ξ given ζω.

The nested CVaR representation and full policy space Assumption 3.4.1 can be ex-

ploited to optimize Q(x(·), γ). Namely, letting

g(x, ξ, γ) := h(x, ξ)−
(
(1− γ)h(x̄, ξ) + γ min

x′∈X
h(x′, ξ)

)
,

we have that

ψ(γ) := min
x(·)∈H

Q(x(·), γ)
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= min
x(·)∈H

sup
F∈D̄(F̄ ,α)

EF

[
g(x(ζ), ξ, γ)

]
= min

x(·)∈H
EF̄

[
CVaRα

F̄

(
g(x(ζ), ξ, γ)|ζ

)]

= min
x(·)∈H

EF̄

[
inf
t
t+

1

1− α
EF̄

[
max

(
0, g(x(ζ), ξ, γ)− t

)
|ζ
]]

= EF̄

[
inf

x∈X ,t
t+

1

1− α
EF̄

[
max

(
0, g(x, ξ, γ)− t

)
|ζ
]]
,

where we exploit the infimum representation of CVaR and the interchangeability prop-

erty of expected value operators (see Shapiro 2017 and reference therein).

Given that F̄ is a discrete distribution as described in Assumption 3.4.2, one can com-

pute ψ(γ) by solving for each scenario ζω with ω ∈ Ωζ the following optimization prob-

lem:

ϕω(γ) := min
x∈X ,t,s

t+
1

1− α

∑
ω′∈Ωξ

PF̄ (ξ = ξω′ |ζ = ζω)sω′ (3.12a)

subject to sω′ ≥ h(x, ξω′)−
(
(1− γ)h(x̄, ξω′) + γ min

x′∈X
h(x′, ξω′)

)
−t , ∀ω′ ∈ Ωξ (3.12b)

sω′ ≥ 0 , ∀ω′ ∈ Ωξ. (3.12c)

Based on the solution of Problem (3.12) for each ω ∈ Ωζ , one can obtain ψ(γ) :=∑
ω∈Ωζ

PF̄ (ζ = ζω)ϕω(γ) together with a potentially feasible policy x(ζ) := x∗
ω(ζ), where

ω(ζ)∈ argminω∈Ωζ
∥ζ − ζω∥ and x∗

ω refers to the minimizer of Problem (3.12). We further

note that Problem (3.12) can be reduced to a linear program when X is polyhedral and

h(x, ξω′) is linear programming representable for all ω′ ∈ Ωξ.

Problem (3.8) can thus be reformulated as

max
γ

γ (3.13a)

subject to
∑
ω∈Ωζ

PF̄ (ζ = ζω)ϕω(γ) ≤ 0 (3.13b)

0 ≤ γ ≤ 1 , (3.13c)

which can be reduced to a linear program when X is polyhedral and h(x, ξω′) is linear

programming representable. Whether the problem is reduceable to a linear program or
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more generally a convex optimization model, its size scales with |Ωζ | · |Ωξ|, which can

be computationally challenging. In the following, we present a decomposition algorithm

that allows solving the problem efficiently.

3.4.3 A Bisection Algorithm for DRPCR

From the definition of ψ(γ) and ϕω(γ), we observe that for fixed γ one can evaluate ψ(γ)

by solving |Ωζ | distinct Problem (3.12) for each ω ∈ Ωζ . Moreover, Proposition 3.4.1

states that ψ(γ) is an increasing convex function of γ. Hence, one can design a bisec-

tion algorithm on γ to solve the DRPCR Problem (3.8). Namely, each step consists in

identifying the mid-point γ̃ of an interval known to contain the optimal value of γ, and

verifying whether γ̃ is feasible by solving minx(·)∈HQ(x(·), γ̃) to decide which of the two

sub-interval below or above γ̃ contains γ∗, see Figure 3.1 (left). The details of this algo-

rithm are presented in Algorithm 2. Its efficiency relies on the difficulty of executing step

5, i.e. solving minx(·)∈HQ(x(·), γ).

Algorithm 2 Bisection algorithm for DRPCR

1: Input: Tolerance ϵ > 0
2: Set γ− := 0, γ+ := 1, x∗(ζ) := x̄ for all ζ
3: while γ+ − γ− > ϵ do
4: Set γ̃ := (γ++γ−)/2
5: Solve minx(·)∈HQ(x(·), γ) to get optimal policy x̃(·) and optimal value ψ̃
6: if ψ̃ ≤ 0 then
7: Set γ− := γ̃ and x∗(·) := x̃(·)
8: else
9: Set γ+ := γ̃

10: end if
11: end while
12: Return γ∗ := γ− and x∗(·)

One can possibly accelerate the convergence rate on the bisection algorithm by ex-

ploiting the fact that ψ(·) is an increasing convex function when X is convex. Indeed,

for the current interval [γ−, γ+], ψ(γ) can be under- and over-estimated, see Figure 3.1

(right). The procedure can be described as follows. First, we construct a line that will

underestimate ψ by identifying a subgradient of the function at γ̃. This can be computed
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analytically since

ψ(γ) := EF̄

[
min
x∈X

CVaRα

(
h(x, ξ)−

(
(1− γ)h(x̄, ξ) + γ min

x′∈X
h(x′, ξ)

)∣∣∣∣ζ)]
= EF̄

[
min
x∈X

sup
F∈D̄(F̄ ,α)

EF

[
h(x, ξ)−

(
(1− γ)h(x̄, ξ) + γ min

x′∈X
h(x′, ξ)

)∣∣∣∣ζ]
]

≥ EF̄

[
sup

F∈D̄(F̄ ,α)

min
x∈X

EF

[
h(x, ξ)−

(
(1− γ)h(x̄, ξ) + γ min

x′∈X
h(x′, ξ)

)∣∣∣∣ζ]
]

≥ EF̄

[
min
x∈X

EF ∗
ξ|ζ

[
h(x, ξ)−

(
(1− γ)h(x̄, ξ) + γ min

x′∈X
h(x′, ξ)

)∣∣∣∣ζ]]
= EF̄

[
min
x∈X

EF ∗
ξ|ζ

[h(x, ξ)− h(x̄, ξ)]

]
︸ ︷︷ ︸

offset “a”

+γ EF̄

[
EF ∗

ξ|ζ

[
h(x̄, ξ)− min

x′∈X
h(x′, ξ)

]]
︸ ︷︷ ︸

slope “b”

,

where F ∗
ξ|ζ is the conditional probability given ζ of any member (hopefully a maximizer)

of D̄(F̄ , α). Note that the first inequality is tight based on Sion’s minimax theorem (see

Sion 1958) given that D̄(F̄ , α) is compact, while the second is tight as long as F ∗
ξ|ζ achieves

the supremum. Such a maximizer can be identified using:

F ∗
ξ|ζ ∈ argmax

Fξ|ζ ∈ M(Ωζ) :

PFξ|ζ (ξ) ≤ (1 − α)−1PF̄ (ξ|ζ), ∀ξ

EFξ|ζ

[
h(x∗

γ(ζ), ξ)−
(
(1− γ)h(x̄, ξ) + γ min

x′∈X
h(x′, ξ)

)]

where x∗
γ(ζ) is the minimizer of (3.12) with ζω = ζ since (x∗

γ(·), F ∗), with F ∗ as the

composition of F̄ marginalized on ζ and F ∗
ξ|ζ ,2 is a saddle point of:

g(x(·), F ) := EF

[
h(x(ζ), ξ)−

(
(1− γ)h(x̄, ξ) + γ min

x′∈X
h(x′, ξ)

)]
.

Such a F ∗
ξ|ζ can be obtained as a side product of solving Problem (3.12) using the optimal

dual variables associated with constraint (3.12b). If we denote by γu := a/b, then the right

bound of the interval can be updated to γ+
′
:= min(γ+, γu).

The second step is to construct an overestimator. If ψ(γ̃) > 0, then we evaluate ψ(γ−)

and construct the line that passes through (γ−, ψ(γ−)) and (γ̃, ψ(γ̃)). If ψ(γ̃) < 0 then

we evaluate ψ(γ+) and construct the line that passes through (γ+, ψ(γ+)) and (γ̃, ψ(γ̃)).

We denote the point for which the line evaluates to zero as γo, and update the left bound

of the interval to γ−
′
:= max(γ−, γo). Hence, the new interval is given by [γ−

′
, γ+

′
] ⊆

[γ−, γ+], which would potentially significantly reduce the search space.
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Figure 3.1: Visualization of the Basic (Left) and Accelerated (Right) Bisection Algorithm.
The blue squared brackets indicate the current estimated interval containing the optimal γ∗, and the red
squared brackets indicate the interval in the next iterations. The right graph also visualizes the over and
under estimators of ψ(γ).

We conclude this section by commenting that the accelerated bisection algorithm

could require up to two evaluations of the ψ function at each iteration instead of a single

one as described in the original algorithm.

3.5 Experiments

In this section, we describe a numerical study that compares the performance of DRPCR

against three other data-driven benchmark methods to evaluate its robustness to pertur-

bations of data generating process; more specifically, we compare the performance of the

corresponding data-driven policies in terms of the coefficient of prescriptiveness over an

out-of-sample dataset. Indeed, we demonstrate how these models react to the situation

where we face a distribution shift for ξ. In a vehicle routing problem with travel time

uncertainties, this can be interpreted as a shift in the distribution of the travel times, for

instance, when a special event is happening in the town. Alternatively, one can think of

an inventory management problem where the manager faces a shift in the demand dis-

tribution, e.g., an unforeseen increase in demand for disinfectants during the first days

of the COVID-19 pandemic. In general, this may contain many cases where one may

confront so-called “disruptions” or “extreme cases” in supply chain management as an

immediate result of unexpected changes in distributions of the uncertain parameters.
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The application that we consider for our numerical experiments is a shortest path

problem described in Kallus and Mao (2023). A directed graph is defined as G = (V, A),

where V denotes the set of nodes and A⊆V × V is the set of arcs, i.e., ordered pairs

(i, j) of nodes describing the existence of a directed path from node i to node j. The

corresponding travel time of such an arc is assumed to be ξ(i,j). The objective of this

problem is to identify the shortest path from an origin (node o) to a destination (node d).

Moving away from an ideal world of known parameters gives rise to a stochastic version

of this problem. In this setting, the traveling times along the arcs ξ ∈ R|A| are uncertain;

however, one might still have access to side information or observed covariates. In this

case, aiming at minimizing the expected travel time leads to the following CSO problem:

x∗(ζ) ∈ argmin
x∈X

EF̂ξ|ζ
[x⊤ξ], (3.14)

where

X =


x ∈ R|A|

∣∣∣∣∣∣∣∣∣∣∣∣

x ≥ 0∑
j:(i,j)∈A x(i,j) −

∑
j:(j,i)∈A x(j,i) = 1∑

j:(i,j)∈A x(i,j) −
∑

j:(j,i)∈A x(j,i) = −1∑
j:(i,j)∈A x(i,j) −

∑
j:(j,i)∈A x(j,i) = 0

∀(i, j) ∈ A

if i = o

if i = d

∀i ∈ V \ {o, d}


,

and x(i,j) = 1 if we decide to travel from node i to node j and x(i,j) = 0 otherwise.

Similar to Kallus and Mao (2023), we do not force integrality constraints. Furthermore,

F̂ξ|ζ denotes the conditional distribution inferred from the training dataset.

As discussed in Section 3.2, DRCSO is a method proposed for robustifying the policies

against distributional uncertainties in the data-driven context. Consequently, one can

consider DRCSO, as an alternative to CSO, for solving this shortest-path problem. Using

the nested CVaR ambiguity set introduced in Assumption 3.4.2 as the ambiguity set of

DRCSO, one gets the model below:

(DRCSO) x∗(ζ) ∈ argmin
x∈X

sup
Fξ|ζ∈D̄(F̂ξ|ζ ,α)

EFξ|ζ [x
⊤ξ], (3.15)

where

D̄(F̂ξ|ζ , α) := {Fξ|ζ ∈ M(Ωξ) : PFξ|ζ (ξ = ξω′) ≤ (1/(1− α))PF̂ξ|ζ
(ξ = ξω′)∀ω′ ∈ Ωξ},
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and α is the control parameter for the size of the ambiguity set. Staying in the DRCSO

context, one can exploit a worst-case regret minimization approach instead of worst-case

expected travel time. In our experiments, we look into the optimal solutions arising from

an ex-post regret minimization setting, introduced as a ∆ = 1 regret minimization model

in Poursoltani et al. (2023). This leads to the following distributionally robust conditional

regret optimization (DRCRO) problem:

(DRCRO) x∗(ζ) ∈ argmin
x∈X

sup
Fξ|ζ∈D̄(F̂ξ|ζ ,α)

EFξ|ζ [x
⊤ξ − min

x′∈X
x′⊤ξ]. (3.16)

In this case, the decision maker compares her travel time to the one resulting from

a benchmark decision that knows the future realization of ξ. The ultimate goal is to

minimize the worst-case expectation of this gap, so-called “worst-case expected regret”,

where the ambiguity set is nested CVaR. Finally, we solve our introduced DRPCR prob-

lem under nested CVaR ambiguity set, where the Q(x(·), γ) function takes the form of:

Q(x(·), γ) := sup
F∈D̄(F̃ ,α)

EF

[
x(ζ)⊤ξ −

(
(1− γ)x̂⊤ξ + γ min

x′∈X
x′⊤ξ

)]
, (3.17)

where F̃ denotes the distribution derived from the training dataset, composed of the

empirical distribution F̂ζ of ζ and the inferred conditional distribution F̂ξ|ζ , while

x̂∈ argminx EF̂ [h(x, ξ)] with F̂ that puts equal weights on each observed data point

{ξi}Ni=1 (i.e. the SAA solution). Based on an optimal solution γ∗ for the DRPCR prob-

lem, one can retrieve an optimal policy using:

x∗(ζ) ∈ argmin
x∈X

sup
Fξ|ζ∈D̄(F̂ξ|ζ ,α)

EFξ|ζ

[
x⊤ξ −

(
(1− γ∗)x̂⊤ξ + γ∗ min

x′∈X
x′⊤ξ

)]
, (3.18)

which can be obtained by solving (3.12) with γ∗ and replacing PF̄ (ξ = ξω′ |ζ = ζω) with

PF̂ξ|ζ
(ξω′).

We adapt our numerical experiments to the graph (G) structure employed in Kallus

and Mao (2023) with the same origin (o) and destination (d); therefore, we study a graph

with the size of 45 nodes (|V| = 45) and 97 arcs (|A| = 97). We assume there exist 200

covariates (nζ = 200) and the vector composed of travel times ξ and covariates ζ follows

a multivariate normal distribution. Specifically, each covariate ζi follows a normal distri-

bution with a mean of zero and standard deviation of one (i.e. ζi ∼ N (0, 1)). Similarly,
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each travel time ξ(i,j) is normal with a standard deviation that matches the deviation

present in Kallus and Mao (2023)’s dataset, yet both the correlation and mean vector are

treated differently. Starting with correlation, we introduce a new correlation structure for

(ζ, ξ)3 by instantiating a random correlation matrix (see Appendix 3.6 for details).

Our treatment of the mean of ξ embodies our objective to study robustness to dis-

tribution shifts. Namely, while the data generating process for the training set employs

the same mean vector as in Kallus and Mao (2023), our validation data set and out-of-

sample test set will measure the performance of proposed policies on generating pro-

cesses where the mean of ξ as been perturbed, i.e. E[ξ(i,j)] := (1 + δ(i,j))µ(i,j). Six

tests were conducted for different levels of mean perturbations: no distribution shift

δ(i,j) = 0, which does not allow for any perturbation, along with tests that take into

account shifts with δ(i,j) generated i.i.d. according to a uniform distribution on [0%, m],

where m ∈ M := {20%, 30%, 40%, 50%, 60%} represents the maximum possible pertur-

bation. Furthermore, the perturbation experienced in the validation set is independent

of the test set. This is to simulate situations where the level of robustness would be cal-

ibrated on a data set where a distribution shift of similar size is observed as the shift

experienced out-of-sample.

Experiments for each perturbation range contain 50 instances generated by resam-

pling the training, validation, and test data sets. Both the training and validation datasets

consist of 400 data points, while the test set contains 1000 data points and is used to

measure the “out-of-sample” performance. The training dataset is used for learning pur-

poses, which allows us to infer the conditional probabilities of F̂ξ|ζ once a new covariate

vector ζ is observed. From a wide range of existing predictive tools for inference of F̂ξ|ζ ,

Bertsimas and Kallus (2020) compare methods such as k-nearest-neighbors regression

(Hastie et al. 2001), local linear regressions (Cleveland and Devlin 1988), classification

and regression trees (CART; Breiman et al. 1984), and random forests (RF; Breiman 2001).

In their experiments, the best coefficient of prescriptiveness belongs to random forests.

We exploit the code provided in Kallus and Mao (2023) to train random forests over our

training datasets and then use it as the conditional distribution estimator F̂ξ|ζ for our val-

idation and out-of-sample data points. The validation dataset is used to calibrate the size

of the ambiguity set (α) for the DRCSO, DRCRO, and DRPCR models. The procedure
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of calibrating α and the associated optimal γ for the DRPCR model is described in Al-

gorithm 3. A similar process in Algorithm 4 clarifies how we calibrate α for the DRCSO

and DRCRO models. We define the set of discretized α values as A := A1 ∩ A2, where

A1 includes 20 logarithmically spaced values in [0.01, 0.99] and A2 includes 20 evenly

spaced values in [0, 1). For CSO, Algorithm 4 can also be used with A = {0}.

Algorithm 3 Algorithm for calibrating the size of the ambiguity set (α) for DRPCR

1: Input: Training dataset {ζj , ξj}Ntrain
j=1 and validation dataset {ζj , ξj}Nvalidation

j=1 and
A := {αi}ni=1 ⊂ [0, 1]

2: Train a random forest model F̂ξ|ζ on {ζj , ξj}Ntrain
j=1

3: Let F̃ be the composition of F̂ξ|ζ with empirical distribution F̂ζ of ζ in the training set
{ζj}Ntrain

j=1

4: for i = 1, . . . , n do
5: //Construct x̂∗

i (·) with αi and F̃
6: Solve DRPCR with αi and F̃ to get γ∗i
7: //Evaluate x̂∗

i (·) on empirical distribution of realizations in {ζj , ξj}Nvalidation
j=1

8: for j = 1, . . . , Nvalidation do
9: Solve (3.12) with γ∗i , αi, and replacing PF̄ (ξ = ξω′ |ζ = ζω) with PF̂ξ|ζj

(ξω′) to

get optimal x∗
j

10: Let x̂∗
i (ζj) := x

∗
j

11: end for
12: Set si := Pα

F̂

(
x̂∗
i (·)
)

for empirical distribution F̂ on {ζj , ξj}Nvalidation
i=1

13: end for
14: Let i∗∈ argmaxi s

i and set α∗ := αi∗ , γ∗ := γi∗ , and x∗(·) := x̂∗
i∗(·)

15: Return (α∗, γ∗,x∗(·))

Figure 3.2 reports the coefficients of prescriptiveness VF (x
∗(·), x̂), where F is the test

dataset, for the four policies and perturbation levels. We observe the following: (i) When

considering a particular optimization model, the coefficient of prescriptiveness decreases

as the magnitude of the distribution shift increases. Indeed, these policies face a more

serious robustness challenge as they approach more extreme scenarios beyond what was

seen in the train dataset. (ii) When the test set follows the same distribution as the train

set, all four policies roughly demonstrate similar performance; however, when this set ex-

periences a distribution shift, DRPCR policies differentiate their performance compared

to the alternative ones. (iii) Imposing a more severe distribution shift accentuates this

differentiation. For instance, when the mean travel times across the edges are perturbed

up to 50% in the test set, DRPCR policies provide a positive coefficient of prescriptive-
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Algorithm 4 Algorithm of calibrating the size of the ambiguity set (α) for CVaR-
loss/CVaR-regret

1: Input: Training dataset {ζj , ξj}Ntrain
j=1 and validation dataset {ζj , ξj}Nvalidation

j=1 and
A := {αi}ni=1 ⊂ [0, 1]

2: Train a random forest model F̂ξ|ζ on {ζj , ξj}Ntrain
j=1

3: for i = 1, . . . , n do
4: //Evaluate x̂∗

i (·) on empirical distribution of realizations in {ζj , ξj}Nvalidation
j=1

5: for j = 1, . . . , Nvalidation do
6: Solve (3.15)/(3.16) with αi for ζ := ζj in validation set to get optimal x∗

j

7: Let x̂∗
i (ζj) := x

∗
j

8: end for
9: Set si := Pα

F̂

(
x̂∗
i (·)
)

for empirical distribution F̂ on {ζj , ξj}Nvalidation
i=1

10: end for
11: Let i∗∈ argmaxi s

i and set α∗ := αi∗ and x∗(·) := x̂∗
i∗(·)

12: Return (α∗,x∗(·))

Figure 3.2: Out-of-Sample Performance of Relaxed x(·)
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Figure 3.3: Out-of-Sample Performance of Binary x(·)

ness, at least over 75% of instances. On the contrary, the alternative policies fail to reach a

positive ratio over almost a similar number of instances. This observation is further am-

plified in the case of 60% perturbation. In this scenario, while CSO, DRCSO, and DRCRO

policies fail to return a positive out-of-sample coefficient of prescriptiveness, DRPCR still

can reach a positive median of 2% which can go up to 11% at its best.

While our first set of experiments considered a relaxed version of the shortest path

problem to be closer to the real-world application, we also conduct a second set of exper-

iments where x(·) represents binary variables and leads to implementable trajectories.

Figure 3.3 illustrates the coefficients of prescriptiveness obtained from optimal binary

policies. These results, in general, are aligned with the ones spotted in Figure 3.2; how-

ever, one remarks the following. Firstly, the results derived from CSO remain exactly the

same as the relaxed case. This stems from the fact that optimal relaxed CSO decisions are
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Table 3.1: Mean Out-of-Sample Coefficient of Prescriptiveness

Problem Type Method
Level of Perturbation

0% 20% 30% 40% 50% 60%

Relaxed x(·)

CSO 0.45 0.30 0.19 0.04 -0.13 -0.31
DRCSO 0.45 0.30 0.18 0.04 -0.13 -0.31
DRCRO 0.45 0.30 0.18 0.04 -0.13 -0.32
DRPCR 0.45 0.31 0.23 0.13 0.05 0.01

Binary x(·)

CSO 0.45 0.30 0.19 0.04 -0.13 -0.31
DRCSO 0.44 0.30 0.19 0.06 -0.09 -0.25
DRCRO 0.44 0.30 0.19 0.05 -0.11 -0.28
DRPCR 0.44 0.32 0.24 0.15 0.07 0.02

known to be integral for the stochastic shortest path problems; conversely, this is not the

case for DRCSO, DRCRO, and DRPCR, where robustness breaks the linearity of the ob-

jective. Secondly, forcing DRCSO and DRCRO to propose binary policies enhances their

out-of-sample performance, surpassing those of CSO. Indeed, this setting seems to pro-

vide these two approaches the chance to better exploit the information about potential

distribution shifts; however, despite their enhanced performance, the highest degree of

robustness to distribution shift remains associated with DRPCR policies. Thirdly, Figure

3.3 presents counter-intuitive empirical evidence that out-of-sample performance might

be slightly improved when imposing integrality constraints on the three robust models.

We hypothesize that this might be caused by the additional flexibility of the relaxed mod-

els, which makes them more susceptible to overfitting their assumed stochastic models.

Finally, one should note that the additional price of obtaining DRPCR policies, compared

to the alternative ones, mainly consists in the computations embedded in Step 6 of Algo-

rithm 3. The average runtime of this step across all instances and perturbation levels is

27 minutes for the relaxed version of the experiments and 33 minutes for the non-relaxed

problem.

3.6 Appendix

A random covariance matrix for the random vector of (ζ, ξ) with arbitrary variances is

generated based on a two-step procedure that follows. The first step consists in gener-

ating a random symmetric positive-definite matrix described in Algorithm 5, a method
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implemented in the sklearn.datasets.make_spd_matrix function of scikit-learn machine

learning library in Python.

Algorithm 5 Algorithm for generating random symmetric positive-definite matrix

1: Input: Dimension of the square matrix nζ + nξ
2: Generate random square matrixAnζ+nξ

sampling from the uniform distribution U[0,1]

3: Construct the symmetric matrix M = A⊤A
4: Decompose M with Singular Value Decomposition (SVD) method as M = UΣV ⊤

5: Generate random diagonal matrix S sampling from the uniform distribution U[0,1]

6: Construct Σ
′
= S + J where J is the square matrix of ones with the size of nζ + nξ

7: Get the symmetric positive-definite matrix as M ′ = UΣ
′
V ⊤

8: Return M ′

Given the vector of standard deviations for (ζ, ξ) denoted by [σ⊤
ζ σ

⊤
ξ ]

⊤ and also a

random symmetric positive-definite matrix generated by Algorithm 5, one can imple-

ment the second stage described in Algorithm 6 to get a random covariance matrix with

arbitrary standard deviations of [σ⊤
ζ σ

⊤
ξ ]

⊤.

Algorithm 6 Algorithm for generating random covariance matrix with arbitrary standard
deviations

1: Input: Random symmetric positive-definite matrix (M ) and vector of standard devi-
ations [σ⊤

ζ σ
⊤
ξ ]

⊤

2: Convert matrix M into its associated correlation matrix Corr =(
diag(M)

)− 1
2
M
(

diag(M)
)− 1

2

3: Get the arbitrary covariance matrix of Cov = diag
([ σζ

σξ

]) (
Corr

)
diag

([ σζ

σξ

])
4: Return Cov
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Endnotes

1. In fact, one can go a step further and define VF (x(·), x̄(·)) were x̄(·) is not a static

policy. For example, x̄(·) could be a simple rule-based policy such as the order-up-to

policy in inventory control. For ease of exposition, we treat the benchmark policy x̄ as a

static policy for the remainder of the chapter.

2. Namely, PF ∗(ξ) = PF̄ (ξ) and PF ∗(ξ|ζ) = PF ∗
ξ|ζ
(ξ) for all ζ.

3. This was done after observing that with Kallus and Mao (2023)’s dataset, the optimal

uninformed decisions produced nearly the same performance as the optimal hindsight

decisions that exploited full information about realized travel cost.
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General Conclusion

Regret minimization is a key concept in decision theory, game theory, economics, artifi-

cial intelligence, and machine learning that provides a powerful framework for making

better decisions in the face of uncertainty and ambiguity. The main contributions of this

thesis are mainly attributed to the development of mathematical models and optimiza-

tion techniques to obtain optimal “regret-averse” decisions, as well as the subsequent

analysis of these decisions to examine their behaviors and outcomes.

In the first chapter, we cast the two-stage worst-case regret minimization problems as

two-stage robust optimization problems. This discovery allows us to identify a vast array

of advanced solution methods that already exist within the adjustable robust optimiza-

tion literature for this challenging and complex class of problems; besides, we identi-

fied subclasses of two-stage worst-case regret minimization problems that are polynomi-

ally solvable. The second chapter explored risk-averse regret minimization in multistage

stochastic programs. We introduced the ∆-regret model, which provides the policymaker

with an extra tool to deal with the uncertainty, i.e., imposing desired information struc-

ture on the benchmark policy. We studied this model under popular risk measures and

demonstrated how it reduces to special cases or programs which can be solved via ex-

isting solution schemes from robust optimization. This model interpolates between the

ex-ante and ex-post regret minimization models, the concepts introduced implicitly in

single-stage regret minimization problems. The third chapter introduced a novel distri-

butionally robust conditional stochastic optimization problem that optimizes the coef-

ficient of prescriptiveness. Given a data-driven decision, this coefficient compares the

difference between the outcomes of this decision and the hindsight decision against the

gap arising from the outcomes of a reference decision made without any access to the



side information and the hindsight policy. We formulated this problem as a linear pro-

gram when nested CVaR represented the ambiguity set and tested the robustness of its

optimal decisions under distribution shift.

This thesis opens new opportunities for future research in regret minimization. Two-

stage regret minimization problems investigated in Chapter 1 can be explored under dif-

ferent assumptions. For instance, one may consider both objective and right-hand side

uncertainties simultaneously or study the case where the technology matrix is uncertain.

In Chapter 2, we assumed a discrete outcome space which allowed us to reformulate the

risk-averse multi-stage regret minimization problem as a two-stage robust optimization

problem. To capture more general cases, this study can be further extended by investi-

gating the setting where the outcome space is continuous; besides, one could explore the

idea of how other alternative risk measures can affect regret-averse policies. Regarding

the model proposed in Chapter 3, one could study whether optimizing the coefficient

of prescriptiveness under ambiguities sets other than nested CVaR could identify solu-

tions with a better edge over alternative methods in the presence of distribution shift.

Throughout the thesis, we exploited miscellaneous applications to provide experimen-

tal evidence, e.g., multi-item newsvendor problem, multi-period inventory management

problem, production transportation problem, shortest path problem, and portfolio selec-

tion problem; however, we still believe that the potentials of the proposed models and

solution schemes for enhancement of the best practices in real-world applications remain

largely unexplored.
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