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Résumé

Cette thèse explore les méthodes de valuation des données comme un moyen de

quantifier la valeur des points de données individuels tout en mesurant les compromis

entre l’utilité des données et les risques pour la vie privée dans les contextes de l’analyse

de données et de l’apprentissage automatique. Nous nous appuyons sur des perspectives

de l’informatique, de la gestion des données et de la théorie des jeux pour explorer

comment différentes hypothèses sur la vie privée façonnent la valeur des données. La

thèse est structurée en trois essais indépendants, chacun abordant des facettes du compromis

entre utilité et vie privée.

Le premier essai introduit un cadre basé sur la simulation pour évaluer les stratégies

de publication de données préservant le format des données, en se concentrant sur un

contexte d’organisation spécifique et en s’inspirant des notions juridiques du risque de

ré-identification. Il utilise la théorie des jeux coopératifs comme un outil explicatif pour

mettre en évidence les attributs qui contribuent le plus au risque pour la vie privée. Il

permet également des comparaisons entre des stratégies de base telles que la suppression

de données et des techniques d’anonymisation comme un algorithme de k-anonymat. Le

deuxième présente WaKA, une méthode pour analyser les contributions individuelles des

données dans les modèles k-plus proches voisins en calculant les distances de Wasserstein

entre les distributions de perte du modèle, distinguant l’utilité des données du risque

d’inférence d’appartenance. Le troisième essai modélise la valorisation des données

comme un jeu de divulgation d’informations entre deux agents : un propriétaire de données

qui contrôle stratégiquement les fuites d’informations par le biais de la confidentialité



différentielle, et un consommateur de données qui sélectionne les données sous des contraintes

d’utilité et de budget.

À travers ces contributions, la thèse montre que la valuation des données reflète des

choix implicites sur les intérêts qui sont priorisés. Plutôt que de traiter la valuation

des données comme une simple technique d’apprentissage automatique, la thèse montre

comment elle peut servir de prisme technique pour explorer une perspective utilitariste de

la vie privée.
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Abstract

This thesis explores data valuation methods as a means to quantify the value of individual

data points while measuring the tradeoffs between data utility and privacy risks in data

analytics and machine learning settings. We draw on perspectives from computer science,

data management, and game theory to explore how different assumptions about privacy

shape what data is worth. The thesis is structured as three independent essays, each

tackling facets of the privacy-utility tradeoff.

The first essay introduces a simulation-based framework for evaluating format-preserving

data release strategies, focusing on a specific organisation problem and inspired by legal

notions of the re-identification risk. It uses cooperative game theory as an explanatory tool

to highlight which attributes contribute most to privacy risk. It also enables comparisons

between basic strategies such as data removal and anonymization techniques like a k-anonymity

algorithm. The second presents WaKA, a method for analyzing individual data contributions

in k-nearest neighbor models by computing Wasserstein distances between prediction loss

distributions—distinguishing data utility from membership inference risk. The third essay

models data valuation as a an information disclosure game between two agents: a data

owner who strategically controls information leakage through differential privacy, and a

data consumer who selects data under utility and budget constraints.

Across these contributions, the thesis shows that data valuation reflects implicit choices

about whose interests are prioritized — Rather than treating data valuation as merely a

machine learning technique, the thesis shows how it can serve as a technical lens for

exploring the incentive-driven view of privacy.
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General Introduction

Over the past decade, data has become a foundational asset for organizations—driving

innovation, shaping business models, and powering machine learning systems. This shift

has sparked growing interest in how data creates value, and under what conditions. But

as data becomes more tightly regulated and individuals assert greater control over their

information, questions arise not just about privacy, but about its implications for the utility

and value of data itself. To understand how privacy constrains or enables the value derived

from data, it is essential to first examine what data privacy means.

Perspectives on Privacy

Privacy is a multifaceted concept with various definitions, depending on the lens

through which it is analyzed. More precisely, four interrelated perspectives frequently

appear in both academic and practical discussions of privacy.

First, the legal perspective, often embodied by the persona of a lawyer or legal expert,

defines privacy primarily through compliance with regulations and laws. Historically,

privacy-related legal frameworks have evolved significantly in response to technological

and societal changes. One of the foundational legal conceptions of privacy—famously

articulated by Warren and Brandeis in 1890—is the right to be let alone, a notion that

continues to influence legislation even today. Early international standards—such as the

Organisation for Economic Co-operation and Development (OECD) privacy guidelines

(OECD, 2013) provided foundational principles like transparency, accountability, and

purpose limitation. Modern privacy frameworks—including the European Union’s General



Data Protection Regulation (Parliament and of the European Union, 2016), the California

Privacy Rights Act (California State Legislature, 2020), and Law 25 in Quebec (National

Assembly of Québec, 2021)—build on these earlier principles while introducing additional

requirements. While these modern legal instruments share common objectives, they also

reflect local legal, cultural, and institutional specificities.

Second, the contextual perspective is often seen through the eyes of a citizen

or employee, who defines privacy in a normative way based on their personal and

professional context. This perspective sees privacy as dynamic and situational, shaped

by norms and practices around information flow—this is formalized in theories such as

contextual integrity (Nissenbaum, 2004). Rather than framing privacy purely as control

over information or secrecy, contextual integrity holds that privacy is maintained when

information flows align with the norms of a specific context—including who is sharing,

who is receiving, what is being shared and under what conditions. Thus, privacy is not

violated simply when data is shared, but when it is shared outside of these contextual

expectations. For example, one may expect a bank employee at a local branch to access

his financial records when he is helping with respect to a transaction, but not a data analyst

at headquarters to identify individual customers while data mining aggregate trends. This

principle also surfaces in organizational data governance, in which privacy decisions are

embedded in workflows, access controls and business processes. Regulations such as

the GDPR reinforce this perspective by requiring that privacy constraints be integrated

directly into how data is collected, stored and analyzed (Cavoukian, 2009; Hoofnagle

et al., 2019; Mahanti and Mahanti, 2021).

Third, the risk-based perspective is typically associated with the security researcher

or expert, who uses frameworks like the NIST Privacy Framework to assess and manage

privacy risks in information systems (National Institute of Standards and Technology,

2020). It reflects a technical and scientific approach that formally evaluates risks such

as re-identification, information leakage or unauthorized access. This approach often

focuses on the likelihood and severity of harm, including those associated with data

breaches caused by security vulnerabilities, misconfigurations or malicious attacks. In

2



particular, these incidents can result in financial, reputational or psychological harm to

individuals, as well as legal or regulatory consequences for organizations. However,

not all privacy risks stem from large-scale events, as even small, routine or cumulative

disclosures—so-called micro privacy breaches—can affect individuals in subtle but

meaningful ways. A notable example includes a Quebec case where a nurse repeatedly

accessed patient records without authorization, leading to disciplinary action despite the

absence of a large-scale breach (Danakas, 2024).

Finally, the utilitarian perspective is often embraced by economists and many people

in general, treating privacy as an economic decision. Individuals weigh the costs and

benefits of disclosing their data and can be influenced by incentives or disincentives. A

common interpretation under this view is the notion of a privacy calculus (Dinev and Hart,

2006), in which individuals subjectively assess potential benefits against perceived risks

when deciding whether to share personal information. However, this calculus is often

shaped by bounded rationality, as individuals frequently make these decisions without full

understanding of how their data will be used, underestimate long-term risks, etc. (Acquisti

and Grossklags, 2005; Acquisti et al., 2016). Moreover, on the organizational side, efforts

to reduce privacy risks—through data minimization, obfuscation or anonymization—can

diminish data utility and constrain the economic value that can be extracted from it

(Acquisti, 2010). In this perspective, as individuals increasingly gain the ability to

control, withhold or monetize their data, the interdependence between personal choices

and institutional practices brings a central question to the foreground for both individuals

and organizations: “How to define the value of personal data?”.

Data Valuation

The interplay between data privacy and utility is a critical consideration for

organizations today. As they navigate the complexities of privacy regulations, contextual

norms, security risks, and economic incentives, quantifying the value of data becomes

essential. In its broadest sense, data valuation refers to the use of quantitative methods
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to assess the value of data—not limited to personal information (Bendechache et al.,

2023; Fleckenstein et al., 2023; Ghorbani and Zou, 2019). Understanding how to

systematically attribute value to individual data contributions is poised to become an

essential tool for addressing the challenges of data management in the future. This

thesis explores these techniques, focusing on their implications for balancing data utility

with privacy considerations in analytics and machine learning. More precisely, we

assume the presence of an organization, or data curator, that uses collected data within

legal and regulatory boundaries. For instance, a financial institution may gather both

descriptive (e.g., age, sex or occupation) and behavioral (e.g., credit history or spending

habits) data to predict outcomes like loan repayment. Such predictions rely on machine

learning models, in which utility is typically assessed using global performance metrics

like classification accuracy or average loss under empirical risk minimization (Vapnik,

1991). This evaluation should ideally be performed on a separate test set to ensure an

unbiased estimate of model performance on unseen data. While these metrics reflect

the overall model utility, they reveal little about the marginal utility of specific data

points. Organizations have long been interested in estimating the relative importance

of individual data points—typically to refine models, detect noise or prioritize data

sources—rather than to assess the value of user contributions. This concern relates to

the broader concept of data quality (Strong et al., 1997), often addressed using heuristic

or rule-based approaches. More recently, efforts have shifted towards formally estimating

how individual points influence model learning, which is particularly challenging in large

datasets, in which incremental contributions are small and interactions between data

points create non-trivial synergies. In particular, numerous data attribution methods have

been developed, such as influence functions (Koh and Liang, 2017b), which, despite

their practical applications, possess certain limitations (Basu et al., 2021; Ghorbani

et al., 2019b). For example, their estimates can become unstable near the decision

boundary, where small perturbations to the input can cause large, erratic shifts in

attribution—undermining their reliability for interpretation.

Coincidentally, methods based on the Shapley value—a solution concept from
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cooperative game theory—can serve both organizational and individual needs. Originally

designed to allocate gains fairly among players in a coalition, the Shapley value satisfies

a set of axioms: symmetry (equal contributors receive equal value), linearity (values can

be added across games), efficiency (the total value is fully distributed), and null-player

(non-contributors receive zero). This has motivated the development of methods such as

Data Shapley (Ghorbani and Zou, 2019; Jia, Dao, Wang, Hubis, Hynes, et al., 2019b) as

well as alternative solution concepts like the Banzhaf value, Beta-Shapley, and the Core,

each offering different tradeoffs in fairness, robustness, or computational cost (Kwon and

Zou, 2022; J. T. Wang and Jia, 2023; Yan and Procaccia, 2021). Though computationally

demanding and model-dependent (e.g., k-NN Shapley by Jia, Dao, Wang, Hubis, Gurel,

et al., 2019), these methods can accurately identify influential or problematic data points,

whose removal significantly improves model performance. This effect is notably observed

in fields such as medical imaging, where algorithmic valuation challenges conventional

approaches based on manual inspection (Tang et al., 2021b). Therefore, compared to

previously used leave-one-out methods, which assess influence via single-point removal,

Shapley-based valuation better captures interactions between data points by modeling

coalitions and synergies among players (data points) in a cooperative game and offers a

more principled approach (grounded in Shapley fairness axioms) to quantifying individual

data value.

Data valuation, beyond attributing predictive utility to data points, offers a technical

lens through which to examine the privacy-utility tradeoff. If the marginal contribution

of each data point to a machine learning model can be quantified, for example through

Shapley-based methods, then the cost of privacy can in theory be defined by the utility

loss incurred when that data is removed. This framing has motivated interest in using

data valuation for pricing mechanisms in emerging data marketplaces. For instance,

Pei’s survey on data pricing (Pei, 2022) shows how this area bridges economic principles

(e.g., fairness, arbitrage-freeness and revenue maximization) with data-centric concerns

such as aggregability, reusability and privacy. However, building markets around this

framework is nontrivial. As noted by Tian et al., 2022; Xia et al., 2023, valuing data in
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a way that both protects privacy and ensures fair compensation introduces substantial

challenges. This perspective also assumes rational and informed decision-making on

the part of individuals, which is often not the case. In particular, behavioral evidence

contradicts this assumption: users frequently make inconsistent privacy choices, exhibit

limited understanding of data use and accept long-term risks for short-term gains—what is

often termed as the privacy paradox (Kokolakis, 2017). This utilitarian framing connects

closely to the emerging economy of privacy, in which questions of who benefits from

personal data, how value is distributed and whether individuals recognize their data’s

worth remain largely unresolved (Acquisti, 2023). Regulatory efforts like the GDPR are

partly a response to these imbalances- by helping to restore individual agency over data.

At the same time, regulation reshapes the privacy economy by introducing constraints

and incentives that influence how data is collected, valued and exchanged. While these

developments do not resolve the underlying issue of fair valuation, they foreground the

need for technical frameworks that can formalize privacy as a quantifiable and enforceable

property—a goal that has been pursued most directly by the risk-based perspective in

computer science and security research.

Defining Privacy Risks through Indistinguishability

We next review technical privacy definitions that aim to formalize the inherent tension

between privacy and utility. A fundamental conjecture in the privacy science literature

asserts that data cannot be fully anonymized while maintaining usefulness (Dwork and

Roth, 2014a), prompting researchers to develop definitions where such tradeoffs are

explicit. Many of these definitions rely on the concept of indistinguishability. For

instance, definitions such as k-anonymity (Sweeney, 2002) ensure that datasets contain

groups of at least k indistinguishable records, alongside its refinements like l-diversity

(Machanavajjhala et al., 2007a) and t-closeness (N. Li et al., 2007). Differential

Privacy (DP), another widely recognized definition, characterizes privacy as a property

of the algorithm used, for example, by introducing controlled noise into aggregate
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calculations like averages (Dwork, 2006). DP ensures that the outputs of an algorithm

do not reveal whether any specific individual’s data was included or excluded, by

bounding the likelihood ratio of observing any output given two neighboring datasets.

The research literature reflects an ongoing adversarial dynamic, akin to a “blue team”

building privacy mechanisms and a “red team” continuously attempting to challenge

them. For instance, re-identification attacks have been demonstrated on released datasets,

highlighting real-world vulnerabilities (e.g., De Montjoye et al., 2015; Heffetz and

Ligett, 2014; Machanavajjhala et al., 2007b). Other privacy attacks include membership

inference—identifying if an individual’s data is present in a dataset, the minimal leakage

corresponding exactly to one bit of information—and attribute inference, which involves

uncovering specific personal attributes. For example, inferring that someone appears in

a dataset from an abortion clinic could reveal that they underwent the procedure. In

jurisdictions where abortion is restricted or stigmatized, this could expose them to legal,

social, or economic harm—even without revealing other personal details. Estimating

membership inference risk through practical attacks such as (Carlini, Chien, et al., 2022b;

Shokri et al., 2017b; Ye et al., 2022b) serves as a lower bound for assessing privacy

risks, as shown in recent auditing frameworks (Steinke et al., 2023). DP offers a formal

upper bound on the membership inference risk, but its practical effectiveness depends on

implementation details such as the choice of mechanism and privacy budget (ε). Despite

these challenges, it remains the gold standard in terms of privacy model within the privacy

research community (Dwork et al., 2017).

Although DP has primarily been developed and utilized in the literature as a defensive

privacy mechanism, it has also been introduced as a solution concept within social

choice theory, modeling privacy as a cost associated with truthfully revealing personal

information (McSherry and Talwar, 2007). Within this game-theoretic context, DP helps

mitigate individuals’ incentives to withhold participation or to misrepresent their data,

suggesting its broader applicability to mechanisms aimed at achieving more balanced

privacy-utility tradeoffs (Pai and Roth, 2013). To the best of my knowledge, this

makes DP the only technical framework that directly and simultaneously models the
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privacy-utility tradeoff from both the risk-based and utilitarian perspectives. Indeed

from the risk-based side, DP provides formal, worst-case guarantees against a broad

class of inference attacks while from the utilitarian side, DP can be interpreted

through a game-theoretic lens as introducing a measurable cost for truthful data

contribution—thereby aligning individual incentives with collective outcomes. This dual

role is grounded in the core principle of indistinguishability, which not only supports

formal anonymization, but also reduces the incentive to withhold participation by ensuring

that any one individual’s data has a limited but quantifiable influence on the output. As

explained in book on The Algorithmic Foundations of Differential Privacy Dwork and

Roth, 2014a, this property enables DP to serve as both a protective mechanism and a tool

for aligning privacy and utility within mechanism design.

Research Questions

Several fundamental research questions remain under-explored in the literature.

As previously mentioned, data valuation can be used by organizations to guide data

removal. Intuitively, removing specific data points—particularly those with low marginal

utility—may seem like a straightforward way to reduce privacy risks. This strategy

is appealing because it offers clear visibility into which data is retained and which is

discarded. However, it is not clear if this intuition holds when examined through the lens

of risk-based privacy frameworks. In addition, it should be compared to other commonly

used risk mitigation techniques such as data anonymization (e.g., k-anonymity Sweeney,

2002). These issues are especially relevant in organizational settings, in which privacy

risks must be evaluated in relation to how data is accessed, shared and used—and in

which the objective is not only to reduce exposure but also to preserve user trust and

minimize the likelihood that individuals will withdraw consent.

This thesis also examines how the two technical perspectives—utilitarian and

risk-based—interact, and whether they can be meaningfully aligned. A central question

here is whether data valuation, which measures the contribution of individual data
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points to model performance, also reflects a form of dependency that could be exploited

in privacy attacks—particularly membership inference. In other words, we aim at

quantifying if higher utility at the level of individual data points implies greater privacy

risk. This touches on the broader relationship between a model’s generalization capacity

and its potential for privacy leakage. Theoretical results (Kasiviswanathan et al., 2010)

suggest that models can generalize well without depending heavily on any single data

point but in practice, privacy-preserving training methods like differential privacy are still

rarely adopted by organizations (Munilla Garrido et al., 2023). Moreover, the current

literature does not offer a definitive answer as to whether data points deemed highly

valuable from a utility perspective are also those most at risk of privacy exposure. This

relationship may further depend on the nature of the data point—whether it is an inlier

that reinforces dominant patterns in the data, or an outlier that stands out due to unique

characteristics, potentially making it more vulnerable to privacy attacks despite limited

utility.

Finally, the extent to which privacy considerations influence data valuation remains an

open question. This issue connects to the stability of data value estimates—how consistent

these attributions are across different training samples or modeling assumptions.

Ghorbani, Kim, and Zou (Ghorbani et al., 2020) have proposed a distributional framework

that stabilizes Shapley-based valuations by averaging over multiple resampled training

sets. However, they also point out a critical limitation: Shapley values are inherently

non-private, as the value assigned to any individual data point depends on its marginal

contribution across all possible coalitions, effectively entangling it with the rest of the

dataset. Similarly, Wang and collaborators (J. T. Wang and Jia, 2023) have designed

semi-value alternatives—such as the Data Banzhaf method—that trade off some fairness

properties for improved robustness and lower sensitivity to sampling variability. While

DP has been shown to reduce sensitivity in model outputs and can, in principle, stabilize

data valuation, most current approaches assume a global setting— which corresponds

to full access to the entire dataset. However in contexts in which individuals and

organizations make decisions based on data value, this assumption becomes problematic.
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Roth and collaborators (Ghosh and Roth, 2011) have shown that in data pricing

mechanisms, revealing too much about how prices are computed can itself leak sensitive

information, since pricing functions often reflect statistical dependencies within the data.

Although their focus is on pricing rather than valuation per se, the insight generalizes:

information about how much a data point is “worth” can become a proxy for what it

reveals. This introduces a paradox in which the ability to estimate individual data value

depends on prior large-scale data collection under conditions of broad access and consent.

Yet once such valuations are available, they may shift user behavior, undermine consent

or create new privacy risks. Therefore, organizations must consider that the capacity to

quantify data value is not just a technical achievement—it reflects a structural asymmetry

in who holds the analytical power and whose data is being evaluated, potentially revealing

sensitive information in the process.

Contributions

In the following, we briefly outline how each chapter addresses the research questions

presented above.

First, in Chapter 1, we examine three prevalent format-preserving data release

strategies: data removal, data anonymization and data synthesis, analyzing their effects

on both data utility and the risk of re-identification. However, maintaining format

consistency imposes inherent limitations on privacy, potentially leaving residual risks

that are still considered personal information under privacy regulations. Organizations

frequently require data to be shared internally without altering its structure—not only to

support analytics but also to meet operational needs, such as using realistic test data.

At the same time, obligations tied to traceability, auditability and explainability can

come into tension with privacy-preserving strategies like data synthesis, which are often

irreversible. For example, in Canada’s financial sector, institutions regulated by the Office

of the Superintendent of Financial Institutions (OSFI) must retain linkable records for

fraud investigations and internal audits. Similar expectations under standards like the
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Payment Card Industry Data Security Standard (PCI DSS) require data persistence for

ongoing compliance and monitoring. These operational and regulatory demands constrain

how much privacy can realistically be achieved within format-preserving data release

strategies.

In this context, reducing re-identification risk remains a meaningful and actionable

goal—even when formal guarantees such as differential privacy cannot be enforced. In

principle, any strategy that reduces the identifiability or influence of individual data points

is aligned with the foundational idea behind differential privacy: limiting the extent to

which any one individual affects the output. From a utilitarian perspective, reducing risk

also lowers the disincentive for individuals to contribute their data, especially in settings

in which participation is voluntary or revocable. Concretely, mitigating re-identification

risk helps prevent micro privacy breaches. In this spirit, we develop a new evaluation

framework that quantifies the privacy and utility trade-off of format-preserving data

release strategies.

To realize this, we have adopted key concepts from modern privacy

regulations—namely, singling out, linkability and inference—to quantify the risk

of re-identification through a composite re-identification score. This metric reflects

the difficulty of finding a specific individual and inferring sensitive information about

that individual. To assess the privacy-utility tradeoff, we aggregate re-identification

scores and utility metrics at the dataset level. Moreover, we leverage cooperative game

theory for two separate purposes: first, to compare strategic data removal guided by

Data Shapley values (Ghorbani and Zou, 2019) against random removal strategies and

second, to identify specific attributes (e.g., age and income) that significantly enhance

the strategic capability of an attacker attempting to re-identify an individual. Although

primarily theoretical, we have validated our framework on three publicly available

datasets.

This chapter also includes an addendum to the original paper that focuses on the

individual-level tradeoff between privacy and utility. Specifically, we investigate whether

reducing a data point’s re-identification risk—thereby lowering disincentive—comes at
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the cost of removing points that are also highly valuable from a model performance

standpoint, as measured by their Shapley value. This comparison helps clarify how

valuation and anonymization strategies can be jointly analyzed to inform privacy-aware

data governance.

In Chapter 2, we shift our focus from format-preserving data release to a simpler

scenario, which is the k-nearest neighbor (k-NN) classifier. Our goal is to better

understand data attribution in such context — how individual data points influence model

outputs. Consider an organization aiming to publish an API for classification tasks, such

as sentiment analysis on movie reviews. In this scenario, an organization may pursue a

dual objective: data valuation, to assess each data point’s individual contribution to utility,

and privacy auditing, to evaluate membership inference risks — specifically, whether

querying the classifier reveals an individual’s participation in the dataset. We initially

hypothesized that high-value data points are not necessarily those most at risk for privacy

breaches, as this would imply a uniform risk-utility ratio across points, which seemed

unlikely for k-NNs. For instance, a unique outlier point with distinctive characteristics

might be misclassified yet still pose significant membership inference risk. To address

this, we introduce WaKA (for Wasserstein k-NN Attribution), a method grounded in

the same principles as the Likelihood Ratio Membership Inference Attack (LiRA) by

Carlini, Chien, et al., quantifying the change in the loss distribution attributed to individual

points. We validated our methodology across six datasets, covering tasks involving data

addition, data removal, and adversarial security games. We also replicated experiments

originally presented in the Onion paper (Carlini, Jagielski, et al., 2022), highlighting that

data removal can reduce the membership inference risk but does not completely eliminate

it.

In Chapter 3, we continue our exploration of the privacy-utility tradeoff from a

utilitarian perspective, aiming to integrate privacy considerations directly into data

valuation. We start by framing the problem as a Stackelberg game between a data

owner agent and a data consumer agent: in which the former strategically controls

information disclosure using DP, while the latter seeks to extract enough utility for
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a predictive task under budget constraints. Traditional methods like Data Shapley

(Ghorbani and Zou, 2019) assume that individuals who contribute data are cooperative

and accept fairness axioms inherent to the Shapley value. Such assumptions, however,

can lead organizations to undervalue substantial portions of the dataset, implicitly

suggesting these data points could have been not collected without significant utility

loss—an insight ironically obtainable only through extensive data collection. While

alternative game-theoretic approaches, such as the Core (Yan and Procaccia, 2021),

have studied coalition robustness, we explicitly model individual privacy costs and their

impact on valuation. We first analyze the limitations of full information disclosure—in

which pricing and access are fixed upfront—and then propose a partial disclosure

mechanism based on iterative, noisy releases. By leveraging DP, the data owner can

modulate individual leakage and influence the consumer’s data selection. Empirical

validation is conducted on a review helpfulness prediction task using the Yelp dataset,

demonstrating how valuation under privacy constraints induces an acquisition cost and

reshapes incentives toward greater inclusiveness.

While the central theme of this thesis is the quantification of the privacy-utility

tradeoff through data valuation, the work deliberately integrates perspectives from

Computer and Data Science (e.g., privacy auditing and mechanisms, machine learning),

Information Systems (e.g., data governance, compliance) as well as Decision Science

(e.g., game-theoretic modeling of incentives).

To summarize the thesis makes three main contributions, each corresponding to a

different angle of the privacy-utility problem.

1. It introduces a methodological framework for evaluating format-preserving data

release strategies, combining a composite re-identification risk metric with

cooperative game theory to assess both global and individual-level impacts. This

includes a comparative analysis of strategic data removal via Shapley-based

attribution versus traditional anonymization approaches such as k-anonymity,

highlighting their respective implications for minimizing identifiable information
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while preserving utility.

2. It proposes WaKA (Wasserstein k-NN Attribution), a novel and computationally

efficient method for quantifying the influence of individual data points in k-nearest

neighbor models. WaKA explicitly captures the duality between data valuation

and membership privacy risk, enabling the same attribution method to identify both

high-utility and high-risk data points. This bridges two technical lenses—utilitarian

(value-driven) and risk-based (vulnerability-driven)—within a unified empirical

framework.

3. It presents a game-theoretic model of data valuation under privacy constraints, in

which information is partially disclosed using a differential privacy mechanism.

By framing data sharing as a Stackelberg game between a data owner and a data

consumer, the model captures how noisy release affects data Shapley values. This

work offers one of the first empirical attempts to measure the implicit privacy cost

of data valuation.
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Chapter 1

Measuring Privacy/Utility Tradeoffs of

Format-Preserving Strategies for Data

Release

Abstract 1

In this paper, we introduce a novel approach to evaluate the risk of re-identification

of individuals associated with format-preserving data release strategies, focusing on three

strategies: data minimization (i.e., through data removal using random sampling and data

Shapley values), data anonymization (i.e., through k-anonymity), and data synthesis (i.e.,

through CTGAN and TVAE generative models). More precisely, our approach consists

in simulating a security game in which (1) an attacker performs singling-out attacks as

outlined in data protection regulations and (2) an evaluator scores attacks based on the

linkability of records and the information gain obtained by the attacker. In addition,

we further enhance our approach by simulating attacks as a cooperative game, in which

the value of the attackers’ information resources is determined using the Shapley value

1This essay was published in the Journal of Business Analytics (Taylor & Francis, Volume 8, Issue 3,
2025). First author: Patrick Mesana (HEC Montréal); co-authors: Gregory Vial (HEC Montréal), Pascal
Jutras (Purdue University), Gilles Caporossi (HEC Montréal), Julien Crowe (National Bank of Canada),
and Sebastien Gambs (UQAM). An addendum by Patrick Mesana has been included in this thesis.



borrowed from game theory. Re-identification Shapley value is proposed as a method

to measure the level of re-identification potential of each feature in a dataset when

combined with other features. We demonstrate the effectiveness of our approach using

three datasets commonly used in the privacy literature. Overall, our work contributes to

a better understanding of the inherent trade-offs that exist between data privacy and data

utility in organizations.

1.1 Introduction

According to the General Data Protection Regulation (GDPR) and other modern data

protection laws, personal information has a broad definition that includes any data that

can identify an individual, either directly or indirectly, through the linking of multiple

pieces of information. More precisely, the term ’personal data’ is defined in Art. 4(1)

of the GDPR as “any information which are related to an identified or identifiable natural

person” (Parliament and of the European Union, 2016). Entities serving as data custodians

carry the obligation to protect their customers’ privacy in the eventuality that personal

data is released (e.g., when it is shared with partners or with the public via an open data

initiative, or through unlawful access to personal data - internal or external).

In the context of privacy-preserving data release, Privacy-Preserving Data Publishing

(PPDP) is a term used in the literature (Clifton and Tassa, 2013; Fung et al., 2010; Rashid

and Yasin, 2015) to refer to methods that enable the release of data while protecting the

privacy of individuals. It is important to clarify that PPDP does not necessarily preserve

the exact format of the original data. For instance, generalizing an attribute into an interval

rather than a particular value, using dimensionality reduction, or building a different data

structure from the original data are all techniques within PPDP that may alter the format

to some extent. Within the broader scope of PPDP, format-preserving strategies represent

a subset of strategies specifically focused on maintaining the original structure of the

dataset. This means that while removing attributes with direct identifiers is acceptable,

other kinds of attributes that are not considered direct identifiers are released. This ensures

16



that, from an external observer’s perspective, a sample of a released dataset appears

similar to the original dataset, aside from potential changes in the data distribution.

Such format-preserving strategies can be beneficial in scenarios in which maintaining the

original format of a dataset is essential for usability purposes or to guarantee compatibility

and compliance with existing systems and data workflows (Garfinkel, 2015). However,

these strategies may also present challenges, including privacy vulnerabilities if the

information contained is not adequately protected, and reduced value if the modifications

applied to a dataset negatively affect data utility.

In this work, we focus on three distinct format-preserving strategies to ensure data

privacy that we define hereafter: data minimization via data removal, data anonymization

by generalization of attributes, and data synthesis using generative machine learning

models. These strategies may also include the removal of direct identifiers, such

as names or social security numbers, that do not bring any analytical value. Data

anonymization transforms personal data to alter sensitive information while trying to

preserve its utility. Techniques such as generalization-based transformations reduce the

uniqueness of individual records. Uniqueness refers to the distinct characteristics or

attributes of individual records that can uniquely identify an individual, making them

stand out within a dataset. Among the most well-known models in this area of research is

k-anonymity (Sweeney, 2002). Lastly, data synthesis involves creating artificial records

using generative models trained on real data. This approach aims to generate data

that share statistical similarities with the original dataset without revealing any personal

information (Gootjes-Dreesbach et al., 2020; N. Park et al., 2018; Wan et al., 2017; Xu

et al., 2019b).

Organizations are generally interested in anonymous data because most regulations

no longer consider them as personal or sensitive information. However, in practice, it is

widely acknowledged that all three strategies inevitably carry a risk of re-identification

embodying the idea that there is an inherent trade-off between data privacy and data

utility for organizations (Vial et al., 2024). Consistent with this idea, current regulations

acknowledge the ability for organizations to use approaches that significantly reduce the
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risk of re-identification. In addition to legal requirements, an organization may have

other motives for mitigating this risk. These include ethical standards, a commitment

to preserving customer trust or a desire to uphold strong data governance practices while

still being able to gain significant business value from personal data. These considerations

are in line with the proactive principle of “privacy by design” (Cavoukian, 2009).

Released
Dataset

Individual

Attacker

Isolated
Records

has access to has information on

Singles out

(a) Singling-out Attack

Isolated
Records

Evaluator
Original
Dataset

Re-identification Risk Score
(Linkability + Information Gain)

assesses

uses

calculates

(b) Risk Assessment

Figure 1.1: Overview of the security game between the attacker and the evaluator. (a)
Singling-out Attack: The attacker has access to the released dataset and possesses some
information about an individual. Using these resources, the attacker singles out specific records
from the released dataset that they believe correspond to the individual, resulting in isolated
records. (b) Risk Assessment: The evaluator receives the isolated records from the attacker and
utilizes the original dataset to assess the risk of re-identification. By analyzing the linkability of
the isolated records to the original data and calculating the potential information gain for the
attacker, the evaluator computes a re-identification risk score.

To address these issues, we propose a risk assessment approach aimed at evaluating

the potential threat of an attacker attempting to single out an individual’s records

within a released dataset. For example, an attacker could be an external entity gaining

unauthorized access to a compromised dataset, or an internal employee who might

unknowingly or intentionally search someone, perhaps unaware of the associated privacy

implications. The notion of singling-out (Opinion 05/2014 on Anonymisation Techniques,

2014) refers to the potential to isolate certain or all records that correspond to a single

individual within a given dataset. It is presumed to form the foundation of the risk

associated with re-identification and it has been discussed in the context of the GDPR,
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with its mathematical implications having been studied in prior work (A. Cohen and

Nissim, 2020a). Our risk assessment approach consists of framing the singling-out

problem as a security game between an attacker and an evaluator. This framing allows

organizations to simulate adversarial scenarios and understand the risk of re-identification

in various contexts. By using this approach, organizations can assess the likelihood and

impact of singling-out attacks. For instance, employees may have access to a secured

internal dataset, and the organization can monitor and record their queries on that dataset

to evaluate the risk of singling-out attacks. By viewing these queries as potential attacks

in a security game, the evaluator can analyze and score the queries to determine the

risk of re-identification. (A. Cohen and Nissim, 2020b; Francis et al., 2019). In our

approach, the attacker leverages information resources at their disposal along with the

released dataset to isolate a specific group of records (Figure 1.1a). Subsequently, an

evaluator scores the isolated records, using the original dataset, based on two factors: (1)

the degree to which singled-out records can be linked, which we define as linkability, and

(2) information gain, which refers to the amount of information an attacker could gain

through the attack (Figure 1.1b). Unlike existing methodologies, we believe that these

factors can be perceived as components within an attacker’s valuation function, which

concurrently serves as a re-identification risk score for an individual.

We estimate each score by simulating multiple attack scenarios, which can be

modelled as independent attacks or as a collaborative game with multiple attackers. The

latter configuration enables us to employ the Shapley value to assess the value of an

information resource to an attacker. More precisely, the Shapley value is a concept

from cooperative game theory developed by Shapley (1953) that has found applications

in numerous fields, including economics, political science and computer science (Roth,

1988), among others. In a cooperative game setup, players form a coalition or group and

work together to achieve a common goal. Here, the objective of the adversarial player(s)

— referred to as attackers — is to re-identify and retrieve as much information as possible

on individuals. For example, different attackers might have access to different pieces of

information about the same individual, such as their job or their hobby. By evaluating
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the contribution of each piece of information to the overall success of an attack, Shapley

values help in understanding the relative importance and impact of various factors in

the risk of re-identification. This addresses the challenge that organizations often face

in evaluating the re-identification potential of individual attributes that are not direct

identifiers, making it difficult to assign appropriate security levels to them.

In our experiments, we primarily explore tabular data given its widespread use as

a format for confidential information that underpins many of an organization’s key

decisions. We conduct our experiments on three well-known datasets: the Adult Income

Census (AIC) dataset, the Bank Marketing (BM) dataset and the Credit Card Default

(CCD) dataset (see Table 1.1 for more details). We assess three main strategies for

data releases: the first is data minimization, which involves removing data through

methods such as data valuation using Shapley values (Ghorbani and Zou, 2019; Jia, Dao,

Wang, Hubis, Gurel, et al., 2019) and random sampling; the second involves achieving

k-anonymity through the Mondrian algorithm (LeFevre, DeWitt, and Ramakrishnan,

2006), which generalizes all attributes in the dataset; and the third is synthesizing data

using deep learning models, Tabular Variational Autoencoder (TVAE) and Conditional

Tabular Generative Adversarial Network (CTGAN) introduced by Xu et al., 2019a.

Our findings show that while data anonymization and data synthesis are not directly

comparable, data synthesis can correspond to certain levels of k-anonymity in terms of

the privacy-utility trade-off. However, when considering data utility, data synthesis tends

to be more variable. For example, in the BM dataset, the predictive performance of

synthetic data differs noticeably between CTGAN and TVAE. On the other hand, data

minimization strategies are generally less effective at reducing the risk of re-identification

compared to data anonymization or data synthesis. Nonetheless, data minimization offers

stronger guarantees for removed data—specifically, individuals whose records are no

longer present in the dataset are assigned zero risk, meaning there is absolutely no chance

of re-identification for those individuals. In addition, our study provides insights into

those features of our sampled datasets that are particularly valuable for attackers.

To summarize, our primary contribution is made to the literature on data privacy.
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Specifically, our proposed measure for re-identification risk scores defines a privacy

strength metric associated with data release strategies, producing results that are

inherently dataset-specific. We tested this novel metric alongside data utility metrics

(defined in the utility evaluation experiments section 1.5.1) to better understand the

privacy-utility trade-offs. Our risk-based approach also has implications for practitioners

as it does not focus solely on worst-case scenarios, such as differential privacy Dwork

et al., 2016 or membership inference privacy attacks Dwork et al., 2017; Nasr et al., 2023.

Instead, it provides insights on all individuals associated with a data release strategy.

Moreover, we introduce the Re-identification Shapley Value as a robust mathematical

framework that also offers an intuitive perspective on the re-identification risk synergies

between dataset features, highlighting how they collectively contribute to the risk. Finally,

our approach is compatible with economic analyses that can guide organizations in

selecting the right data release strategy.

The outline of the paper is as follows. We begin with an overview of the literature

on privacy threats and associated risks in Section 1.2 before in Section 1.3, outlining

the elements of our risk-based approach for handling tabular data, discussing its key

assumptions and measures. Following this, in Section 1.4, we explain how game theory

and the concept of Shapley value can be harnessed to investigate re-identification. We

then move to Section 1.5, in which we showcase the practical application of our approach

using three illustrative datasets. Subsequently, in the discussion section (Section 1.6),

we address limitations and explore potential applications of our findings. Finally, we

summarize our key contributions and provide concluding remarks in Section 3.6.

1.2 Background and Related Work

In 2006, when a major streaming company published a so-called “anonymized

dataset” for a public online contest with the goal of improving their recommendation

engine, they believed they had sufficiently reduced the risk of re-identification, given the

nature of the data being made public. Narayanan and Shmatikov (2008) managed to
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re-identify a small subset of the individuals from that dataset who were also included

in the IMDB open database. It has been reported that the subsequent class action

lawsuit caused the company to settle for 9 million dollars in 2011 (CNET, 2012). Other

cases of re-identification attacks on published datasets have been documented since

(Henriksen-Bulmer and Jeary, 2016), although details on their economic impacts for

organizations often remain scarce. Nevertheless, there is a general consensus within the

privacy community that the residual risk of re-identification associated with the use of

data anonymization techniques, regardless of the type of technique being used, depends

on the probability of success of re-identification attacks.

Measuring uniqueness served as a method to evaluate the risk of re-identification

(Skinner and Holmes, 1998). For instance, de Montjoye et al. (2015) demonstrate

that four spatiotemporal points are sufficient to uniquely re-identify 90% of individuals

in a dataset containing three months of credit card records for 1.1 million people.

Dankar et al. (2012) build on the work of Skinner and Elliot (2002) to evaluate the

risk of re-identification in six datasets by estimating the uniqueness of individuals.

Their method for estimating uniqueness is based on the assumption that the population

originates from a larger, super-population, thus turning it into a question of parameter

estimation. To minimize this risk, several approaches have been proposed, including

generalization-based transformations such as k-anonymity, as well as synthetic data.

Data Anonymization. k-anonymity (Sweeney, 2002) is a property of a dataset that

ensures each record is indistinguishable from at least k− 1 other records with respect

to certain attributes, known as quasi-identifiers. Quasi-identifiers are attributes such as

age, gender, and ZIP code, which, when combined, can uniquely identify individuals.

To achieve k-anonymity, methods such as the Mondrian algorithm (LeFevre, DeWitt,

and Ramakrishnan, 2006) are often employed. This algorithm recursively partitions the

dataset based on attribute values to form groups of at least k records. By generalizing the

quasi-identifiers within each partition, the algorithm guarantees that no individual can be

distinguished from a group of at least k others, though the group size may exceed k. This
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property reduces the probability of an attacker successfully associating a record with the

correct individual to at most 1/k.

Despite its advantages, it has been demonstrated that this method fails to encompass

the entirety of privacy risks, in particular in the situation in which the risk associated with

attribute disclosure is significant. More precisely, attribute disclosure can be viewed as a

form of reconstruction attack in which the attacker’s objective is to reconstruct sensitive

information about individuals without necessarily re-identifying them. In addition, it is

important to distinguish between the information that we aim at protecting versus the

generic knowledge that can be drawn from the dataset (T. Li and Li, 2009). While our

objective is to establish a definition of privacy safeguarding individuals, it is equally

important to ensure that this definition allows for insightful data analysis (Dwork and

Roth, 2014b). For example, consider a medical dataset in which each patient’s health

record is anonymized to protect their identity. The risk of re-identification in such cases

primarily involves the potential harm to specific individuals when an attacker gains access

to personal information about them. This distinction underscores that privacy risks extend

beyond the mere identification of individual records and encompass broader implications

for data utility and societal impact.

Data Synthesis. As a technique that is gaining attention in the industry, the use

of synthetic data involves the generation of new data by a model that is trained

on existing data. While it might seem counter-intuitive to attempt re-identification

attacks on synthetic data, given the perception that its “fake” nature implies a reduced

re-identification risk, the reality is more complex. It is unclear whether anonymization

is worse than synthetization in this context of re-identification. However, like any other

semantic privacy-preserving technique, it is crucial to acknowledge that there remains

a possibility for leakage of personal information, for instance through reconstruction

and membership inference attacks (Dwork et al., 2017). A membership inference attack

can be understood as a process by which an adversary guesses that an individual was

a member of a training dataset based on an observed output. There exists membership
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attacks specifically designed for data synthesis, such as distance-based attacks presented

by Hilprecht et al. (2019). While synthetic data, therefore, holds promises in theory to

preserve data privacy, recent findings suggest that it may not be a panacea.

Data protection laws that have been adopted over the past few years seek to regulate

the use of personal data by organizations. Among those, the GDPR is considered the

most comprehensive regulatory framework, and it has effectively influenced many aspects

related to the governance, management and use of personal data by organizations, as

well as data protection laws in other jurisdictions (e.g., Canada). Within this context,

the GDPR mentions anonymization as a valid technique for irreversibly transforming

data, albeit without explicitly incorporating data synthesis as one of the possible ways

to achieve this objective. One potential reason for this shortcoming is that data synthesis

remained largely within the realm of academic research when the GDPR was adopted in

2016. Nevertheless, the GDPR highlights three main types of risk factors associated with

data releases that should be mitigated, regardless of the nature of the data release strategy

itself: “singling-out”, as formally defined by A. Cohen and Nissim (2020b), involves

isolating an individual or a specific record within a dataset; “linkability” refers to the

ability to link records from the same individual across different datasets; and “inference”

refers to the attribute disclosure risk discussed above. Giomi et al. (2022) have developed

a unified framework for measuring these three factors separately to quantify the degree

of risk associated with synthetic data. They argue that in synthetic data, linkability arises

from the statistical similarities between the synthetic data and the original data. Stadler

and colleagues also have portrayed membership attacks as a linkability risk factor to

compare data synthesis against data anonymization (Stadler et al., 2022). Uniqueness

could be seen as a way to measure the concept of singling-out. However, uniqueness

measures alone often showcase bias, as the risk evaluator is limited by the available data

distribution and the calibration of these measures. For instance, El Emam et al., 2013

highlights how variations in estimators for population uniqueness can impact the accuracy

of re-identification risk assessments in the context of clinical data. Additionally, attackers

generally have only partial access to background knowledge, indicating that uniqueness
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is not the sole determining factor in singling-out individuals in datasets.

Utility-Driven Data Minimization . Data removal is often an overlooked strategy to

reduce re-identification risk, potentially because data scientists hypothesize that more data

generally leads to better outcomes. However, this principle is critical in data protection

laws. According to the GDPR’s Article 5(1)(c), data minimization mandates that data

controllers limit the processing of personal data to what is directly relevant and necessary

for a specified purpose (i.e., the finality of data). This ensures that only essential personal

data is processed. In practice, data minimization can be achieved through techniques like

data pruning and feature selection.

Effectively implementing data minimization requires identifying which pieces of

information in a dataset are valuable enough to retain, while removing less valuable

information to meet privacy goals without sacrificing utility. Cooperative game theory

provides a powerful framework for such decisions, using the Shapley value to evaluate

the contribution of players within a coalition. In this context, players correspond to

distinct pieces of information, which could either represent individual data points or

specific features. The Shapley value is grounded in four axioms that ensure fairness and

consistency in the valuation of players:

1. Efficiency: The total value generated by a coalition is distributed among all players.

2. Symmetry: Players who contribute equally to all coalitions receive the same value.

3. Null Element: A player that does not contribute to any coalition receives no value.

4. Additivity: The value assigned to players remains consistent when coalitions from

separate games are combined.

These axioms make the Shapley value a robust tool for measuring the contribution

of information to a predictive model. When considering features as players, their

contributions can be analyzed at different levels: globally, by evaluating the overall

importance of the feature across the dataset, or locally, by examining how specific
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feature values influence individual predictions. For example, interpretability frameworks

such as SHAP (SHapley Additive exPlanations) Lundberg and Lee, 2017 leverage

Shapley values to explain a machine learning model’s predictions by attributing the

contribution of each feature. Similarly, Shapley values can be applied to data points

in a dataset, a process known as data valuation. Data Shapley values, as introduced

by Ghorbani and Zou (2019), provide a systematic method to quantify the utility of

individual data points. By identifying and removing data points that do not significantly

enhance task performance, this approach aligns with the principle of data minimization

while preserving data utility. Organizations can use Shapley values to implement

scientifically grounded strategies for achieving a balanced trade-off between privacy and

performance, ensuring that only the most relevant information is used. Other techniques

also exist for utility-driven data minimization. For example, influence functions (Koh

and Liang, 2017a) estimate the importance of training points. However, these methods

can be more fragile (Ghorbani et al., 2019a), often relying on simplifying assumptions

or approximations that may not generalize well across diverse datasets or models.

Notwithstanding the robustness of Shapley value-based methods, their computational

complexity can be a drawback to their usefulness. Exact computation scales exponentially

with the number of features or data points, making them challenging to apply to large

datasets. Sampling-based approximations can alleviate this burden but may sacrifice

precision, requiring organizations to carefully balance computational costs and accuracy.

Overall, research on data privacy has greatly contributed to our understanding of

the nature and the negative impacts of the risks associated with the re-identification

of individuals as well as various techniques available to try and mitigate these risks.

Notwithstanding, we observe that there is still a need to further develop approaches

that can reconcile the demands of data protection regulations, the need for organizations

to generate business value using data, and the rapid technological advances that allow

attackers to perform re-identification attacks at low cost. In particular, we argue that

decision-makers would benefit from an increased ability to assess the trade-offs between
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data privacy and data utility in the context of data releases. To help fill this important gap,

the next sections detail the constituting elements of our approach in the context of tabular

data. Our approach is based on the idea that as managers, decision-makers need to make

decisions regarding data releases on a frequent basis. To help them make these decisions

in an informed manner without remaining stuck in a state of “paralysis by analysis” that

can hinder value creation, we draw from the scientific literature on data privacy and game

theory to formally quantify the degree of risk associated with a data release strategy for a

particular dataset.

1.3 Re-Identification Risk Evaluation for Tabular Data

The security game begins with attackers attempting to identify individuals within

a dataset T that was released using a specific strategy, aiming to achieve the highest

possible re-identification risk score (RRS) for each individual. We assume there is an

original dataset D and that the type of attack is the same whether T was produced through

data anonymization or data synthesis but that the background information an attacker

has access to will change. In the literature, “background information” typically refers

to the auxiliary data or knowledge that an attacker may have. In this paper, we extend

this concept and call it “information resources” or “resources” in short, because when

combined these can provide attackers with more re-identification power. For instance, an

attacker who knows both the “age” and the “zip code” of an individual has more resources

compared to an attacker with only the “age" information.

We now describe the type of singling-out attack implemented in our approach. The

singling-out process involves isolating one record or a small group of records. The symbol

α will be used interchangeably with the singling-out function that takes T and a resource r

as inputs and returns a subset C of records in T , such that C = α(r,T ). Obtaining a subset

C instead of just a single record is consistent with scenarios in which T is a k-anonymized

dataset in which each anonymized record has at least one duplicate. Due to the fact that

the attacker looks at records in T that are similar to his resources r to re-identify one
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individual, we select the records minimizing the distance between r and any t contained

within T .

α(r,T ) = min
t∈T

d(r, t) (1.1)

More precisely, we use the unnormalized Gower distance (Gower, 1971) as our base

method as this distance measure can handle a combination of continuous and categorical

features that are characteristic of tabular data. We vectorize all resources to compute

distances. A key advantage of the vectorization of resources is that it enables the use

of efficient techniques, such as kd-trees or similar structures, to perform neighborhood

searches. This allows us to significantly speed up the simulation of attack scenarios

by quickly narrowing a set of records. In particular, instead of computing a complete

similarity matrix between vectors r and t, we can use a subset of the matrix. We used

a BallTree (Omohundro, 1989), mainly for its computational efficiency, to estimate the

neighborhood of r in T .

Having introduced the singling-out function employed by the attacker, we now turn

to the process of the evaluator. To simplify notations, we refer to an attack scenario

s as an attacker α utilizing their resources r to single out a specific individual within

T . The evaluator has the responsibility to score attacks, which serves also as a risk

evaluation of any plausible attack scenario s. We assume that the evaluator is aware of the

data transformation strategy employed to avoid any form of “privacy through obscurity”.

Records that have been singled out by the attacker constitute a risk only if they can be

linked to a real individual. In our framework, the evaluator estimates the linkability score

of an attack scenario, denoted Ls, of an attack scenario. Similar to other membership risk

studies (Giomi et al., 2022; Hilprecht et al., 2019; Houssiau et al., 2022; Lu et al., 2019),

our linkability measure uses the distance between a matched record and the original record

of the individual. Our goal is to assess whether a given distance is likely to be observed

in the original dataset. For example, a target point that is very close to the original point

may appear suspicious, but this also depends on the region density, sometimes referred to

as the uniqueness of the point.
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Figure 1.2: The attacker singles out four specific data points, indicated by the squares t1, t2, t3,
and t4. Nearby points from the original dataset, shown in grey, are used to establish the

neighborhood of the targeted individual o and to calculate an average distance µ and a standard
deviation σ . The color gradient illustrates the likelihood, based on a Gaussian distribution, that

each point ti can be “linked” to the original point o.

We take inspiration from the offline version of the Likelihood Ratio Attack (LiRA)

described by Carlini, Chien, et al., 2022a, in which the likelihood of the model is

evaluated based on the assumption that the distribution of the loss function without the

point of interest follows a Gaussian distribution. Similarly, in our context, we assume

that an underlying model of the data exists, which generates points in the neighborhood

of the original point. The loss function quantifies the error between the original point

and a generated point, reflecting the deviation introduced by the generative process.

The loss function can take the form of the distance between the two points. For

instance, a conditional generative model for data synthesis creates points that resemble

the original data, but with a likelihood influenced by the model’s capacity and subject to

a reconstruction error. The likelihood of the distance can serve as a proxy for estimating

the likelihood of the model’s error. Formally, let d(o,n) denote the distance between

the original record o and any neighboring record n in the original dataset D. Given a

singled-out record t in the released dataset T , we aim to estimate the likelihood of d(o, t).

To do this, we model the distance distribution as a Gaussian distribution, parameterized

by the average distance and the standard deviation of the distances within a neighborhood
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of the original record in the original dataset D. The neighborhood of o is defined by a

parameter k, representing the number of nearest neighbors. For each original record o, we

compute the mean

µ =
1
k

k

∑
i=1

d(o,ni)

and the standard deviation

σ =

√√√√1
k

k

∑
i=1

(d(o,ni)−µ)2

of the distances to its k nearest neighbors, which parameterize our Gaussian distribution

N (µ,σ2), where ni represents the i-th nearest neighbor of o. To compute the linkability

score Ls for a given attack scenario, we calculate the likelihood of the distance d(o, t)

between the original record o and the singled-out record t. This likelihood is captured

by the term L(t), which measures how linkable t is to o. Specifically, L(t) quantifies the

extent to which the observed distance d(o, t) lies within a "linkable" region, as determined

by the Gaussian distribution N (µ,σ2). Since we only consider distances smaller than

or equal to µ as indicative of linkability, L(t) is set to 0 when d(o, t) > µ . For distances

within the linkable region d(o, t)≤ µ , the likelihood is normalized by dividing by (1−µ)

to account for the one-sided nature of the distribution. L(t) is then computed as 1 minus

this normalized likelihood.

The overall linkability score Ls is calculated as the average of L(t) across all records

t ∈C:

L(t) =

1− Pr[Z>d(o,t)]
1−µ

, if d(o, t)≤ µ

0, if d(o, t)> µ

Ls =
1
|C|∑t∈C

L(t)

where Z ∼N (µ,σ2).

This formulation ensures that the linkability score reflects the probability of a specific

record being a member of the original dataset based on its distance from the original
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record, while accounting for the expected distribution of distances. While we assume

a Gaussian distribution to model the distances, we believe this assumption provides a

reasonable approximation for the purposes of our analysis, as it effectively captures the

spread of distances in most cases. Figure 1.2 illustrates the computation of the linkability

score using the assumed Gaussian distribution model for the distances.

The evaluator also has to determine if an attack scenario leads to an information gain,

denoted Is. We claim that Is depends on the reconstruction loss of each possible match t

in C. Let o be the original record of an individual in D, A′ ⊆ A be the set of attributes to be

reconstructed, and A the set of all attributes. We express the reconstruction loss, denoted

E(t), of a matched record t, as an unnormalized Gower distance between o[A′] and t[A′].

E(t) = ∑
i∈A′

ζi · |oi− ti|. (1.2)

We denote ζi as the information gain per distance unit on the i-th feature. By default,

we consider all ζi to be equal. We can now express the average information gain Is of

scenario s as the following formula:

Is =
1
|C|∑t∈C

γs · (1−
E(t)

∑i∈A′ ζi
),

in which γs = f
(

∑i∈A′ ζi

∑i∈A ζi
;ε1

)
.

(1.3)

The function f (x;ε1) is defined as:

f (x;ε1) =
log(1+ ε1 · x)

log(1+ ε1)
.

When the reconstruction loss is 0, the information gain depends on the function

f , which penalizes the ratio of the attributes to reconstruct based on the parameter

ε1. This allows for flexibility in adjusting the information gain: with a higher ε1, the

penalty is reduced, enabling more information gain even when fewer attributes need to be

reconstructed. This ensures that the information gain can still be significant with a smaller

set of attributes while maintaining proportionality to the sum of the normalized weights

of the attributes. Following this rationale, when there are no attributes to reconstruct, the
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information gain has a value of 0. The logarithmic scaling function was chosen for ε1 to

transition from a linear relationship to a non-linear one, enabling more nuanced control

over the impact of extreme scenarios (attackers reconstructing no features or all features)

on the re-identification risk.

Finally, we can define the re-identification risk score RRS of an individual as follows.

Definition 1.3.1 (Re-identification risk score). Let S be the set of plausible attack

scenarios on an individual. Each scenario s ∈ S has a linkability score, denoted by Ls,

and an information gain, denoted by Is, such that 0≤ Ls ≤ 1 and 0≤ Is ≤ 1. The constant

ε2 allows the evaluator to give a minimum weight to linkability even when Is is 0.

RRS =
1
|S|∑s∈S

Ls ·max{Is,ε2} (1.4)

The RRS of an individual measures how much we estimate the singled out records in

T to be linked to the individual, moderated by how much information can be gained by

the attacker. Equation 1.4 suggests that the information gain is taken into account only

when a record is linkable. Furthermore, if the information gain for a particular scenario

s is equal to 0 but the records are linkable, the associated risk is equal to ε2. To score

a release strategy, we can simply compute the expected re-identification risk score of all

individuals present in dataset D.

1.4 Re-identification Shapley Value

Attack scenarios can be performed individually and independently to evaluate the RRS

of each person. Nevertheless, we purport that modelling our problem as a re-identification

cooperative game can provide additional insights. The entire simulation can be perceived

as consisting of multiple attackers, each of them possessing their own resources and

focusing on a specific group of individuals. Consider for instance a scenario in which

multiple adversarial agents conduct attacks simultaneously, with the evaluator providing

risk scores for each individual. The re-identification risk scores can be combined to
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calculate the score of a sample of individuals. More precisely, we repeat this process

until the score converges. We create resources by using D to sample possible subsets of

resources. As attackers’ resources often overlap, this process is akin to a simulation that

employs sampling with replacement.

We will now model the simulation as a cooperative game, in which attackers with

varying resources collaborate to maximize their ability to re-identify individuals and

gather as much information as possible. More precisely, α1 and α2 represent two attackers

with resources ri and r j respectively, targeting the same individual. The combined attacker

set α1,2, acts as a “super” attacker with combined resources (ri,r j). There are now three

possible attack scenarios: s1, s2, and s1,2. The scenarios s1 and s2 correspond to attacks

using resources ri and r j, respectively, while s1,2 involves attacking with the combined

resources (ri,r j). We assume that the combined attacker set α1,2 is stronger than any

individual attacker, such that RRSs1,2 ≥ RRSs1 and RRSs1,2 ≥ RRSs2 . This assumption

is consistent with the additive property of the value of information, suggesting that

increased resources lead to higher re-identifying capabilities. However, this assumption

may not universally hold true, as additional resources can sometimes negatively impact

re-identification, especially when attackers encounter noisy or non-informative attributes.

Nonetheless, in practice, this simplistic assumption appears to work well, primarily

because released datasets tend to possess non-redundant features and preserve good

utility.

To better understand the motives underpinning potential cooperation in the context of

re-identification attacks, we now turn to the evaluation of the rewards associated with the

success of an attack, as well as the question of how attackers should split the gains in

such an instance. To answer this question, we borrow from the concept of Shapley value,

which provides a way to allocate total gains or costs among players in cooperative games.

In our context, we adapt this concept and refer to it as Re-identification Shapley Value

(RSV):

Definition 1.4.1 (Re-identification Shapley Value). Consider a re-identification game
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with a player set αN of size n, let φ the valuation function of the re-identification of

an individual and S ⊆ αN\{i} a subset of players that does not include player i. The

re-identification Shapley value ψi(phi) of player i is defined as follows:

ψi(φ) =
1
n ∑

S

 n−1

|S|

−1

φ(S∪{i})−φ(S). (1.5)

If the valuation function is the RRS and if we assign specific resources to an attacker,

the RSVs serve as an equitable measurement of how these resources are valuable for

re-identification, from the point of view of the evaluator. One of the interesting properties

of Shapley values is linearity. More precisely, the linearity axiom states that for any payoff

function v that is a linear combination of two other payoff functions u and w, the Shapley

values of v equal the corresponding linear combination of the Shapley values of u and w.

Applying this axiom to RSVs, we can combine the Shapley values of attackers when they

collaborate to re-identify more than one individual. If each attacker is responsible for one

type of resource corresponding to a feature in the dataset T , the RSVs for all individuals in

D can be interpreted as the most valuable resources or features to re-identify individuals

in T .

RSVs represent an additional application of Shapley values, focusing on measuring

the contribution of information in a dataset from an attacker’s perspective. While data

valuation assesses the importance of data points to model performance and explains

attributes feature contributions to predictions, RSVs quantify how individual pieces

of information contribute to the success of re-identification attacks. Similar to its

use in explainability, the cooperative game framework ensures equitable attribution of

contributions, emphasizing the synergies of attackers’ resources. Without assuming

collaboration, we cannot ensure a unique and fair method (following the Shapley axioms)

of value distribution. This would require accounting for competing attacker dynamics,

which is beyond the scope of this study. We primarily rely on RSVs to explain the RRS

by quantifying the contribution of resources involved in re-identification attacks.

To approximate Shapley values using Monte Carlo methods (Maleki et al., 2013),
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we express the Shapley formula as an expectation. This approximation is necessary due

to the exponential complexity associated with exact calculation of Shapley values when

considering all subsets of features. The Shapley value for a feature i can thus be rewritten

as:

ψi(φ) = Eπ∼Π [φ(Sπ
i ∪{i})−φ(Sπ

i )] , (1.6)

in which Π represents the uniform distribution over all possible permutations of the

features, and Sπ
i denotes the set of features that precede feature i in the permutation

π . If i is the first feature in the permutation, then Sπ
i = /0. To approximate this

expectation, we randomly sample a set of M permutations π1,π2, . . . ,πM from Π. For

each sampled permutation π j, we compute the marginal contribution of feature i as

φ(Sπ j
i ∪{i})−φ(Sπ j

i ). The Monte Carlo estimate of the Shapley value is then obtained by

averaging these marginal contributions:

ψ̂i(φ) =
1
M

M

∑
j=1

[
φ(Sπ j

i ∪{i})−φ(Sπ j
i )

]
.

By using a sufficiently large number of permutations M, the Monte Carlo estimate

ψ̂i(φ) converges to the true Shapley value ψi(φ).

1.5 Experiments

In this section, we introduce a series of experiments designed to evaluate the

performance of our proposed re-identification risk assessment methodology. We applied

our framework to three commonly used datasets in the privacy research community: the

Adult Income Census (AIC) dataset, the Bank Marketing (BM) dataset and the Credit

Card Default (CCD) dataset. All three datasets were split into train, validation and test

sets with a 70%-15%-15% distribution. This split was performed for predictive utility

evaluation and data Shapley valuation removal strategy, as detailed in the Appendix 1.10.

Each dataset is summarized in Table 1.1. They all include a variety of features, all

of which contain sensitive information that could potentially be used for re-identification.

We conducted experiments on these datasets to simulate different attack scenarios and
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evaluate the re-identification risk scores. These datasets, with their mix of categorical and

continuous features, provide a robust foundation to test our methodology across various

data types.

Table 1.1: Description of the datasets used in the experiments

Dataset Type Categorical
Attributes

Numerical
Attributes

Training
Size
(70%)

Validation
Size
(15%)

Test Size
(15%)

Reference

AIC Tabular 9 attributes 4
attributes

10,977 2,353 2,352 Kohavi, 1996

BM Tabular 8 attributes 4
attributes

7,404 1,587 1,587 Moro et al.,
2014

CCD Tabular 14
attributes

7
attributes

700 150 150 Yeh and Lien,
2009

More precisely, the Adult Income Census dataset includes sensitive attributes such

as age, race, sex, marital status, and native country, making it an ideal candidate for

assessing re-identification risks. The target variable in this dataset is the income level,

which is categorized as either greater than or less than 50K per year. The Bank Marketing

dataset contains information from a Portuguese banking institution’s marketing campaign,

featuring attributes such as age, job, marital status and education. The target variable in

this dataset is whether the client subscribed to a term deposit. Finally, the Credit Card

Default dataset consists of records from a Taiwanese credit card company, including

features such as age, gender, education and credit history. The target variable in this

dataset is whether a client will default on their credit card payment.

The following three sections are structured as follows: in the Utility Evaluation

of Data Release Strategies section, we introduce the data release strategies we used

and discuss how we evaluated their data utility. Specifically, we assessed the effect of

increasing k in k-anonymity, tested the impact of removing 25%, 50%, and 75% of the

training data instances, and used the Synthetic Data Vault (Patki et al., 2016) synthetic

data models, which includes CTGAN and TVAE generative models. Afterwards, we
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delve into the Privacy Risk Scores section, in which we focus on the individual

privacy risk scores, analyzing how these scores vary across different datasets and data

release strategies. We also examine the trade-offs between privacy and utility, providing

insights into how some strategies can be removed using the Pareto frontier. Finally,

the Re-identification Shapley Value Analysis section focuses on the features with the

highest re-identification potential, using the concept of Re-identification Shapley Value to

identify features contributing most significantly to re-identification risks.

1.5.1 Utility Evaluation of Data Release Strategies

In this section, we explain how we evaluated the utility of different data release

strategies, focusing on data minimization, data anonymization, and data synthesis. Data

utility has been explored in the literature through two complementary lenses: one

focusing on the characteristics of the data itself and the other emphasizing its role in

supporting decision-making, as explained by Even and Shankaranarayanan, 2007. In

our experiments, we employed two metrics to capture these complementary views. The

first metric is the Wasserstein distance, which measures the similarity between data

distributions and is particularly effective at capturing distribution shifts due to its ability

to account for the underlying geometry of the data (compared with distance metrics such

as the KL divergence). To provide a more interpretable measure, we normalized this

distance using a random baseline. Specifically, we computed the normalized Wasserstein

distance as:

W̃ =
Wrand−W

Wrand
.

Here, Wrand is the Wasserstein distance between the original data and a randomly

generated version, serving as a reference point, and W is the Wasserstein distance

for the specific released dataset being evaluated. This normalization ensures that the

metric reflects the improvement over random values. The second metric evaluates the

performance of a k-Nearest Neighbors (kNN) classifier using the Matthews Correlation

37



Coefficient (MCC), focusing on the data’s ability to support predictive analytical tasks. In

the context of our results, we refer to these metrics as data fidelity and predictive utility,

respectively.

The Rationale for Using kNNs in Predictive Utility Although XGBoost overall

achieved better performance across all datasets (see Appendix 1.10), we selected kNN

for the predictive utility measurement for two main reasons:

1. Direct relationship with data: kNN is recognized as an instance-based explainable

method (Molnar, 2020), meaning its predictions are directly influenced by the

training data without an explicit model abstraction. This property makes it sensitive

to data transformations, and thus it is suitable for evaluating the impact of data

release strategies on utility.

2. Computational efficiency for data Shapley value: The Data Shapley Value

(DSV) for kNN (kNN-Shapley) can be computed exactly in O(n) time (Jia, Dao,

Wang, Hubis, Gurel, et al., 2019), in which n is the number of data points. In

contrast, calculating DSV for models like XGBoost or Neural Networks requires

approximation methods using Monte Carlo simulations, involving evaluating the

utility on all possible subsets of the training set, which is computationally intensive

(Ghorbani and Zou, 2019)

We explored the use of Data Shapley Value (DSV), particularly with kNN-Shapley,

as a method to quantify each data point’s contribution to model performance, given its

relevance as a data release strategy. We specifically used data Shapley removal to identify

and delete less valuable data points, aiming to reduce the dataset size while preserving

predictive utility (see Appendix 1.10). However, we encountered challenges related to

class imbalance in our datasets (AIC, BM and CCD), which affected the effectiveness

of DSV. To mitigate this, we applied a weighting scheme during validation, adjusting

the influence of the majority class in data valuation. Our experiments, summarized in

Appendix 1.10, showed that an optimal balance ratio could enhance predictive metrics
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like F1 score and MCC, though there remained a tradeoff with data fidelity as represented

by the Wasserstein distance. Additionally, we also explored an alternative approach using

Monte Carlo Shapley Value approximations with XGBoost, but due to inconsistent results

across datasets and computational intensity, we opted for kNN-based DSV as the primary

method for our study. Ultimately, we decided on the strategies of removing 25% and

75% of the data using Data Shapley Value. Similarly, we implemented a random removal

strategy, in which 25% and 75% of the data were removed using a uniform distribution.

We conducted random removal experiments by repeating the train/validation/test split

across multiple iterations. Shapley valuation is computed on the validation set, and utility

results are reported on the test set.

As shown in Table 1.2, the Shapley-based removal strategy shows clear advantages in

terms of predictive utility, measured by MCC, particularly at the 25% removal threshold.

For instance, on the AIC dataset, the MCC for Shapley removal at 25% is 0.5039,

compared to 0.4766 for random removal at the same level. This aligns with findings

in the data valuation literature (Jia, Dao, Wang, Hubis, Gurel, et al., 2019), in which

removing data points with low or negative Shapley values enhances predictive utility by

eliminating noisy or detrimental data. However, when considering data fidelity, measured

by the normalized Wasserstein distance, Shapley removal underperforms compared to

random removal. For example, the Wasserstein distance on the AIC dataset at 25%

removal is 0.8071 for Shapley removal, compared to 0.9901 for random removal. This

reflects the trade-off between preserving predictive utility and maintaining data fidelity,

highlighting the nuanced effects of Shapley removal strategies on different aspects of data

utility. Moreover, the observed distributional shift resulting from Shapley-based removal

may introduce a trade-off in terms of re-identification risk, potentially increasing privacy

vulnerabilities. Our work therefore highlights this unexplored intersection between data

valuation and privacy, which we further address in the next section.

For the choice of k parameters in k-anonymity, we selected k values as exponents of

2 (i.e., k = 2,4,8,16,32,64 and 128). This selection reduces the number of partitions by

roughly half with each increase in k, ensuring a consistent trade-off between privacy and
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utility. We observed that for k values significantly higher than 128, data fidelity dropped

significantly. However, the relationship between predictive utility and k-anonymity is not

as straightforward. For the BM dataset, there is even a slight improvement when a small

generalization (e.g., k = 2) is applied to the data.

For the k-anonymity strategy, data fidelity consistently decreased as the value of k

increased, a trend observed across all datasets. This behavior aligns with expectations,

as higher k values introduce greater generalization. Predictive utility, measured by

MCC, showed a similar pattern for the BM and CCD datasets, in which low k values

(k = 2 and k = 4) even improved MCC compared to the original dataset, suggesting that

slight generalization may help reduce noise in the data. However, for the AIC dataset,

k-anonymity performed noticeably worse than other strategies in terms of predictive

utility, even at lower k values. This discrepancy highlights potential differences in how

k-anonymity’s effect is data dependent.

For data synthesis, we used CTGAN and TVAE, two deep learning models that

are widely adopted in the industry, especially for tabular data. CTGAN, based on

Generative Adversarial Networks (GANs), addresses the challenges of tabular data, such

as imbalanced categorical features and multimodal distributions, by conditioning the

generator on specific feature values to produce realistic synthetic data. GANs optimize a

loss function in which the generator creates data to fool the discriminator, which learns to

distinguish real from synthetic samples. TVAE, built on the Variational Autoencoder

(VAE) architecture, encodes input features into a latent space and decodes them to

generate synthetic samples, with the synthetic data being directly sampled from the

learned latent space. VAEs optimize an objective that balances accurate reconstruction

of input data with learning a well-organized latent space. Both models are implemented

in the Synthetic Data Vault (SDV) library, a widely adopted tool in the industry, which

motivated the use of these models in our study. Referring to Table 1.2, the utility of the

synthetic data varies significantly depending on the dataset.

For the AIC dataset, TVAE achieved an MCC score of 0.5014, outperforming

CTGAN’s MCC of 0.4789, while CTGAN demonstrated superior data fidelity with a
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Wasserstein score of 0.9512 compared to TVAE’s 0.9349. In contrast, for the BM

dataset, CTGAN delivered better data fidelity with a Wasserstein score of 0.8227,

outperforming TVAE’s 0.7543, but TVAE excelled in predictive utility with an MCC

of 0.5486, significantly higher than CTGAN’s 0.4621. Similarly, for the CCD dataset,

CTGAN achieved a lower Wasserstein distance of 0.8971 compared to TVAE’s 0.8834,

while TVAE recorded a higher MCC of 0.4893 versus CTGAN’s 0.4502. Otherwise,

both models performed similarly across the datasets, suggesting that either method can

provide comparable utility in many scenarios. Notably, TVAE’s MCC for the BM dataset

approached the best predictive utility across all strategies. This suggests that while the

models can generate synthetic data that approximate the original data, their utility scores

indicate more variability in performance, demonstrating that the effectiveness of these

generative models can depend heavily on the specific characteristics of the dataset being

used.

Table 1.2: Summary of Utility Metrics for AIC, BM, and CCD Datasets

Dataset Strategy
AIC

W̃ | MCC
BM

W̃ | MCC
CCD

W̃ | MCC

k_1 Original 1.0000 | 0.5070 1.0000 | 0.2992 1.0000 | 0.2234
k_2 Data Anonymization 0.9657 | 0.4476 0.9624 | 0.4164 0.7631 | 0.3211
k_4 Data Anonymization 0.9420 | 0.4097 0.9473 | 0.4100 0.6454 | 0.2812
k_8 Data Anonymization 0.8876 | 0.3960 0.9105 | 0.3906 0.4476 | 0.2302
k_16 Data Anonymization 0.8541 | 0.4381 0.8750 | 0.3150 0.3492 | 0.1400
k_32 Data Anonymization 0.7923 | 0.3981 0.8221 | 0.2540 -
k_64 Data Anonymization 0.7643 | 0.4340 0.7580 | 0.1794 -
k_128 Data Anonymization 0.6807 | 0.4396 0.6866 | 0.1368 -
tvae Data Synthesis 0.9239 | 0.4461 0.8214 | 0.3859 0.6143 | 0.1717
ctgan Data Synthesis 0.8433 | 0.4614 0.8305 | 0.1864 0.6420 | 0.1310
shapley_75 Data Minimization 0.9020 | 0.5057 0.9318 | 0.3238 0.9330 | 0.2463
shapley_50 Data Minimization 0.8909 | 0.5071 0.8956 | 0.3249 0.8644 | 0.2147
shapley_25 Data Minimization 0.8071 | 0.5039 0.8779 | 0.3053 0.8057 | 0.1645
random_75 Data Minimization 0.9968 | 0.4932 0.9940 | 0.2901 0.9699 | 0.2099
random_50 Data Minimization 0.9935 | 0.4895 0.9883 | 0.2925 0.9404 | 0.1997
random_25 Data Minimization 0.9901 | 0.4766 0.9737 | 0.2708 0.8908 | 0.1777
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1.5.2 Privacy Risk Scores and Tradeoffs

For each dataset, we conducted 200 re-identification attack simulation iterations. In

each iteration, a batch of 100 individuals was randomly sampled without replacement

and targeted for the attack. The reported results represent the average performance

across these 200 iterations for each batch of 100 individuals. One way to differentiate

between simulations on a single dataset is by attack scenario type. For example, we ran

a simulation to estimate the risk of re-identification in a scenario in which an attacker

has access to all features as resources, with all features also considered quasi-identifiers

(Figure 1.3). Although this may not be entirely realistic, as it is uncommon to treat all

attributes as quasi-identifiers, this approach establishes a boundary for assessing how

easily records in the dataset can be re-identified. Unsurprisingly, when an attacker has

access to all resources and attacks the original AIC dataset, the average linkability score

is 91.2% (Figure 1.3). This score is not 100% because a tabular dataset like AIC can

have records that are nearly identical and possibly duplicates when examined through

quasi-identifiers. However, it is important to note that the attacker has no attributes to

infer in that case. The situation becomes more interesting when the attacker has fewer

resources. For instance, we find that the average linkability score is 11.5% when the

attacker has access to 3 features.

While it would ultimately be up to decision-makers within an organization to

determine the plausibility of the different scenarios to consider, our approach remains

versatile and adaptable to different conditions and contexts. One may compute the score

of a given strategy by averaging all scenarios. Alternatively, there are other ways to

compare “leave k out” atrributes scenarios. For instance, instead of weighting them

equally, we can use a binomial weighting scheme. The rationale is to put less weight

on scenarios that are unlikely to be run by attackers. For example, the scenario in which

an attacker has all the information but still tries to re-identify someone is not very likely.

Likewise, the scenario where an attacker can identify someone based on knowledge of just

one feature is improbable, except when that feature functions as a direct identifier in the
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dataset for certain individuals (e.g., a precise numerical value such as a salary or a specific

monetary transaction amount). We believe it is reasonable to think these scenarios are less

frequent, and thus, a binomial weighting scheme can better reflect the practical likelihood

of various attack scenarios. This method allows us to assign more realistic weights to each

scenario, enhancing the robustness and applicability of our risk assessment framework.

We used this approach to aggregate the scenario scores and build a comprehensive score

for each individual and each strategy (Table 1.3, Table 1.4). In a real-world setting,

it would also be important to assign a minimum weight to the linkability scores. In

our experiments, we chose ε2 = 0.5 and ε1 = 100. Smaller values of ε1 (e.g., ε1 = 1)

treat all reconstructed features equally, while excessively high values (ε1 ≫ 100) make

extreme scenarios negligible, such as reconstructing all or no features. Our choice of

ε1 = 100 strikes a balance, ensuring stability. For similar reasons, we picked ε2 = 0.5

to provide a moderate weight to linkability even when information gain is zero, avoiding

extreme parameters like ε2 = 0 (which would put weight on the membership risk only

when an attacker can reconstruct a feature) or ε2 = 1 (which equates membership risk

and re-identification risk). These values can be adjusted based on the specific context of

the organization or the dataset being analyzed, and exploring a broader range of values in

future work could provide further insights.

Figure 1.3: Risk of re-identification by scenario on the AIC dataset
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(a) AIC Data Fidelity and RRS Trade-off (b) AIC Predictive Utility and RRS Trade-off

(c) BM Data Fidelity and RRS Trade-off (d) BM Predictive Utility and RRS Trade-off

(e) CCD Data Fidelity and RRS Trade-off (f) CCD Predictive Utility and RRS Trade-off

Figure 1.4: This figure illustrates the trade-offs between privacy and utility, evaluated using two
key metrics: Data Fidelity and Predictive Utility. Data Fidelity, measured using the Wasserstein
distance, quantifies how well the statistical properties of the original dataset are preserved after
privacy-preserving transformations. Predictive Utility, assessed using the Matthews Correlation

Coefficient (MCC), evaluates the impact of these transformations on the performance of
predictive models.
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(a) AIC (b) BM

(c) CCD

Figure 1.5: Box Plot Distributions of RRS for AIC, BM and CCD Datasets.

Table 1.3: AIC Re-Identification Simulations Results

Dataset Strategy Linkability (Avg ± Std) Information Gain (Avg ± Std) Re-identification Score (Avg ± Std)
k_1 Original 0.526±6.83e−03 0.700±2.77e−03 0.399±5.91e−03
k_2 Data Anonymization 0.398±6.77e−03 0.627±2.81e−03 0.280±5.18e−03
k_4 Data Anonymization 0.375±7.31e−03 0.610±2.91e−03 0.259±5.39e−03
k_8 Data Anonymization 0.348±7.09e−03 0.600±2.84e−03 0.239±5.11e−03
k_16 Data Anonymization 0.317±6.68e−03 0.590±2.87e−03 0.217±4.72e−03
k_32 Data Anonymization 0.284±6.18e−03 0.574±2.97e−03 0.191±4.25e−03
k_64 Data Anonymization 0.237±5.02e−03 0.548±3.13e−03 0.156±3.33e−03
k_128 Data Anonymization 0.189±3.57e−03 0.517±3.50e−03 0.122±2.30e−03
tvae Data Synthesis 0.339±7.37e−03 0.619±3.16e−03 0.235±5.56e−03
ctgan Data Synthesis 0.271±6.22e−03 0.580±3.11e−03 0.183±4.49e−03
shapley_75 Data Minimization 0.471±6.55e−03 0.678±2.62e−03 0.352±5.46e−03
shapley_50 Data Minimization 0.408±7.01e−03 0.654±2.83e−03 0.297±5.61e−03
shapley_25 Data Minimization 0.317±6.54e−03 0.636±3.01e−03 0.230±5.09e−03
random_75 Data Minimization 0.489±6.51e−03 0.681±2.69e−03 0.365±5.49e−03
random_50 Data Minimization 0.453±6.32e−03 0.663±2.66e−03 0.333±5.17e−03
random_25 Data Minimization 0.401±6.30e−03 0.641±2.74e−03 0.289±4.93e−03

To provide an intuitive understanding of our metrics, we examine the AIC dataset

using the original data (k1) and after applying k-anonymity with k = 2. In the original

dataset, the Linkability score is 0.526, indicating a relatively high likelihood that a
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Table 1.4: BM Re-Identification Simulations Results

Dataset Strategy Linkability (Avg ± Std) Information Gain (Avg ± Std) Re-identification Score (Avg ± Std)
k_1 Original 0.803±8.35e−03 0.770±3.64e−03 0.647±8.22e−03
k_2 Data Anonymization 0.378±7.10e−03 0.572±3.39e−03 0.260±5.13e−03
k_4 Data Anonymization 0.359±7.14e−03 0.558±3.30e−03 0.243±5.00e−03
k_8 Data Anonymization 0.352±6.88e−03 0.540±3.11e−03 0.232±4.62e−03
k_16 Data Anonymization 0.325±6.46e−03 0.512±3.16e−03 0.208±4.11e−03
k_32 Data Anonymization 0.285±5.61e−03 0.483±3.34e−03 0.178±3.43e−03
k_64 Data Anonymization 0.244±4.36e−03 0.459±3.54e−03 0.149±2.55e−03
k_128 Data Anonymization 0.200±3.37e−03 0.433±3.67e−03 0.120±1.91e−03
tvae Data Synthesis 0.324±7.43e−03 0.562±3.45e−03 0.217±5.26e−03
ctgan Data Synthesis 0.284±7.29e−03 0.532±3.45e−03 0.183±5.01e−03
shapley_75 Data Minimization 0.695±6.60e−03 0.714±2.96e−03 0.547±6.32e−03
shapley_50 Data Minimization 0.582±5.80e−03 0.656±2.69e−03 0.442±5.03e−03
shapley_25 Data Minimization 0.454±5.46e−03 0.599±2.66e−03 0.330±4.08e−03
random_75 Data Minimization 0.704±6.81e−03 0.722±3.05e−03 0.556±6.54e−03
random_50 Data Minimization 0.594±5.81e−03 0.667±2.67e−03 0.456±5.08e−03
random_25 Data Minimization 0.469±6.09e−03 0.601±2.84e−03 0.341±4.56e−03

Table 1.5: CCD Re-Identification Simulations Results

Dataset Strategy Linkability (Avg ± Std) Information Gain (Avg ± Std) Re-identification Score (Avg ± Std)
k_1 Original 0.975±2.18e−03 0.834±1.14e−03 0.819±2.37e−03
k_2 Data Anonymization 0.495±4.06e−03 0.560±2.45e−03 0.330±2.86e−03
k_4 Data Anonymization 0.363±3.90e−03 0.525±2.59e−03 0.231±2.61e−03
k_8 Data Anonymization 0.254±3.16e−03 0.507±2.57e−03 0.159±2.08e−03
k_16 Data Anonymization 0.183±2.61e−03 0.500±2.68e−03 0.115±1.72e−03
tvae Data Synthesis 0.188±2.63e−03 0.531±2.24e−03 0.121±1.74e−03
ctgan Data Synthesis 0.179±3.07e−03 0.457±2.58e−03 0.104±1.87e−03
shapley_75 Data Minimization 0.804±2.72e−03 0.745±1.51e−03 0.658±2.55e−03
shapley_50 Data Minimization 0.617±2.84e−03 0.655±1.73e−03 0.487±2.31e−03
shapley_25 Data Minimization 0.411±2.90e−03 0.571±2.10e−03 0.306±2.14e−03
random_75 Data Minimization 0.818±2.78e−03 0.752±1.48e−03 0.668±2.57e−03
random_50 Data Minimization 0.643±2.93e−03 0.666±1.69e−03 0.506±2.34e−03
random_25 Data Minimization 0.429±3.03e−03 0.576±2.15e−03 0.320±2.28e−03

singled-out record belongs to the original dataset. The Information Gain is 0.700,

meaning the attacker achieves a low reconstruction error when attempting to infer

the features of a singled-out record. The Re-identification Score, which combines

both Linkability and Information Gain, is 0.399, reflecting a significant overall risk

of re-identification. After applying k-anonymity with k = 2, the average linkability

score decreases to 0.398, reducing the likelihood that a record belongs to the original

dataset. The Information Gain is also reduced to 0.627, indicating a modest decrease

in Information Gain. Notably, the reduction in the Linkability score is more substantial

than the reduction in the Information Gain, suggesting that data anonymization primarily

mitigates the likelihood of records being linked to individuals rather than significantly

increasing reconstruction error. Consequently, the Re-identification Score drops to 0.280,
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demonstrating that k-anonymity effectively reduces the overall risk of re-identification,

with a stronger impact on Linkability.

Figure 1.4 shows the aggregated risk of re-identification for each dataset alongside two

utility metrics: data fidelity (Figures 1.4a, c, and e) and predictive utility (Figures 1.4b,

d, and f). For data anonymization strategies, adjusting the k parameter in k-anonymity

reveals clear trade-offs between risk and utility. As k increases, the size of generalized

partitions grows, reducing the risk of re-identification but also leading to a loss of data

fidelity due to diminished variance within each partition. For predictive utility, the

trade-offs are also evident: smaller k values (k = 2 and k = 4) improve predictive utility

for the BM and CCD datasets, as seen in higher MCC scores, while larger k values reduce

utility. However, in the AIC dataset, k-anonymity performs worse for predictive utility

than other strategies.

For data minimization strategies, both data Shapley removal and random removal

significantly reduced re-identification risk. However, Shapley removal consistently

achieved slightly better reductions, with the AIC dataset showing a notable improvement

from a risk score of 0.289 (random removal) to 0.230 (Shapley removal) at the 75%

removal level. This suggests that removing data points with lower Shapley values

positively impacts re-identification risk in k-nearest neighbor evaluations. In terms of

utility, Shapley removal sometimes improved predictive utility compared to using the full

dataset, making the strategy better on both fronts.

Finally, for data synthesis methods (CTGAN and TVAE), both performed similarly

in reducing re-identification risk, achieving results comparable to k-anonymity with k

below 64. These results indicate that data synthesis methods can achieve similar levels of

privacy protection as k-anonymity while maintaining comparable utility metrics. These

results also demonstrate that our re-identification risk framework is robust to these specific

data synthesis methods, ensuring they do not serve as a loophole within the framework.

Figures 1.5 display the distribution of RRS for each strategy across all datasets.

We observe a positive effect from either increasing the k parameter in k-anonymity or

increasing the percentage of data removed using Shapley values, although removing data
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points is not as effective. In all our benchmarks, synthetic data performed very similarly

to k-anonymity strategies with a small degree of generalization (e.g., k = 4 and k = 5).

1.5.3 Re-identification Shapley Value Analysis

For each individual, we performed 50 permutations, in which each permutation

represents a different order of features to compute the RSVs, providing a robust estimate

of the contribution of each feature to the re-identification risk. We observed that

this number was more than enough to achieve robust estimates when aggregating over

all individuals. This observation is further supported by theoretical findings from

Maleki et al., 2013, which demonstrate that sampling-based methods for Shapley value

approximations can achieve accurate results with a limited number of samples.

In the AIC dataset, the two most important features for re-identification are “age”

and “occupation,” while “balance” and “duration” dominate in the BM dataset, with age

also being a significant feature. For the CCD dataset, the “credit_amount” attribute, which

corresponds to the credit amount requested, exhibits the highest re-identification potential.

This is notable because, in organizational contexts, “credit_amount” may not be perceived

as sensitive as personally identifiable information (PII) like names or addresses, or even

features such as account balance. These findings underscore the context-dependent nature

of re-identification risks across datasets.

Figure 1.6 shows an analysis of the effect of data Shapley removal on the RSVs, while

Figure 1.7 displays the RSVs for the effect of k-anonymity on the RSVs. For both types

of strategies, we see a general positive effect in reducing the RSVs. We also observe

that k-anonymity has a more significant impact on the RSVs than data Shapley value

removal. This is consistent with the results of the privacy-utility trade-off analysis, in

which k-anonymity strategies were more effective in reducing the risk of re-identification

than data Shapley value removal strategies. We also observe that the top feature in AIC

(namely “occupation”) requires k = 128 to have a significant impact on the RSVs, while

other features require k = 64 or less to reduce the RSVs. Figure 1.8 illustrates the RSVs
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for data synthesis, revealing that “occupation” is once again a feature more accurately

reproduced by both CTGAN and TVAE.

Interestingly, we note that some features, such as the capital-gain, capital-loss, and

native-country in the AIC dataset, have little value in re-identification attacks. We decided

to investigate the relationship between the Re-identification Shapley Values (RSVs) and

the entropy of the AIC features, both calculated on the original dataset, suspecting that

entropy could serve as a singling-out factor. Upon conducting a correlation analysis using

Pearson’s correlation coefficient, we found a substantial positive correlation between the

two. This suggests that higher entropy attributes are often associated with higher RSVs.

For instance, the “age” attribute, which is present in all three datasets, exhibited high

entropy and a high re-identification potential, highlighting the need for a higher security

level for such features. For example, organizations could implement policies to monitor

queries involving high-risk attributes like ’age’ and set stricter rules for data access or

feature removal to mitigate re-identification risks.
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(a) AIC Dataset

(b) BM Dataset

(c) CCD Dataset

Figure 1.6: RSVs on data minimization strategies using data Shapley values
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(a) AIC Dataset

(b) BM Dataset

(c) CCD Dataset

Figure 1.7: RSVs on data anonymization strategies.
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(a) AIC Dataset

(b) BM Dataset

(c) CCD Dataset

Figure 1.8: RSVs on data synthesis strategies.
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1.6 Discussion

Our experiments demonstrated the practicality of our approach in evaluating the risk

of re-identification with respect to different data release strategies. More precisely,

we focused on three main strategies: data minimization, data anonymization, and

data synthesis. Data minimization and data anonymization still have a direct link to

the original data, while data synthesis relies on a generative model and not the data

itself. Altering the data changes its structure, while modeling (such as with synthetic

data) has no direct link to the original data, only an indirect link via training. Each

approach has unique advantages. In particular, synthetic data allows for the creation

of additional data points and does not seem to require particular privacy mechanisms

to offer some privacy-preserving properties. k-anonymity can perform well and provides

an easier rationale for linkability, which is whyorganizations use k-anonymity variants

(like l-diversity Machanavajjhala et al., 2007a). We contribute to the literature on data

minimization, data anonymization and data synthesis by investigating the implications of

each strategy individually. Future research could explore the effects of combining these

strategies. Our framework is useful for data custodians such as data governance and

cybersecurity teams. They could use our approach every time they are about to release

data, either internally or to share outside of the organization. However, we caution against

sharing outside the organization solely based on a post-hoc risk analysis tradeoff; our

risk framework does not offer protections akin to techniques such as differential privacy

(Dwork and Roth, 2014b). In particular, we did not use differential privacy with data

synthesis because differential privacy is a property of the mechanism and not the data,

making it difficult to compare directly to other parameters like k-anonymity, which is

a property of the data. Nonetheless, our approach also remains versatile in that we do

not explicitly define criteria to decide the right protection and utility thresholds, as these

depend on the nature of the data, its classification (e.g., PII), and the difficulty for an

attacker to obtain access to information resources.

To gain further monetary insights into the costs an organization may incur from a
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partially anonymized or even synthetic dataset breach, a sensitivity analysis can be added

to extend our privacy scores. For example, we could adapt our method to use different

utility metrics depending on the chosen focus. A 1% decrease in utility may have varying

costs across different departments within an organization. If both privacy strength and

data utility are converted into monetary values, they can provide more pragmatic insights

for decision-makers. Even if the complete estimation of the monetary costs associated

with data breaches may be challenging, recent events attest to the importance of this

issue. According to a recent IBM report, the average cost of a data breach in the U.S. is

approximately $5 million (IBM, 2022).

Despite its usefulness, we acknowledge important assumptions that can limit the

effectiveness of our framework. These limitations could lead to an underestimation or

an overestimation of the risk we want to evaluate.

First, in our setup, we framed the risk evaluation as a type of security game in

which attackers submit records and retrieve a score. Other setups could be explored to

evaluate this risk. For instance, one could envision a security game in which an attacker

attempts to infer an attribute about an individual. Second, our approach uses a specific

implementation of singling-out attacks. In particular, our use of the unnormalized Gower

distance relies on fixed weights associated with resources. A potential improvement to

overcome this limitation would be to use a different type of predictor that is not subject

to the same constraints, while remaining suitable for use with tabular data. Third, our

linkability evaluation method depends heavily on fine-tuning of parameters, which may

vary across datasets. As an alternative, an attack such as Shokri’s membership attack

(Shokri et al., 2017b) on synthetic data appears relevant. Similarly, in the evaluation

of the information gain, a machine learning model could be employed to predict the

information to gain, instead of relying solely on distance metrics without considering

external knowledge. Our current implementation of information gain does not consider

the potential inferences that could be drawn from the reconstructed information.

Additionally, we assume attackers have access to resources in the same format as the

original dataset, which may lead to an overestimation of the risk. In real-life scenarios,
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attackers often have aggregated or noisy information, making their resources less precise

than the clean datasets we simulate. While this means that our approach errs on the

side of caution by being more conservative than may be necessary, future work could

simulate different conditions for a more realistic assessment of the risk of re-identification.

Additionally, not all attributes in a dataset are equally accessible to attackers. For

example, quasi-identifiers such as age, gender, and ZIP code are often easier to obtain

from external sources, whereas other attributes may be much harder to acquire. This

distinction is not currently accounted for in our approach, as Shapley values treat all

features as equally accessible resources. An interesting extension of our work would be

to weight Shapley values with estimates of the difficulty of acquiring different attributes.

Such an adjustment would provide a more nuanced understanding of the re-identification

risks based on both the value and accessibility of resources. Because of these limitations,

the risk results should not be considered as absolute levels of risk but rather as insights to

understand the dynamics of a strategy (e.g., k-anonymity) or how one strategy performs

relative to another. Another limitation of our study is the lack of analysis of privacy risks

for subgroups, such as majority and minority populations. Data Shapley removal has the

potential to alter the group balance within datasets, as it favors data points based on their

utility contribution. This could potentially expose these groups to higher re-identification

risks. While our trade-off analysis showed that Shapley removal and random removal

yield comparable re-identification risk scores, with Shapley removal showing slight

improvements in some cases, the potential differential impact on subgroups was not

explicitly explored. The observed reduction in re-identification risk primarily stems

from assigning a risk of zero to removed individuals, but the implications for privacy

equity between subgroups remain unclear. Analyzing subgroup-specific impacts across

all strategies—data minimization, data anonymization, and data synthesis—could provide

additional insights. Future work could extend this analysis to better understand how

privacy risks vary across populations, ensuring more fair privacy management.
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1.7 Conclusion

In this work, we have proposed an approach for evaluating the risk of re-identification

in tabular data by considering the risk from the perspective of what would be valuable

to an attacker in singling out individuals. Our approach allows us to account for the

information resources at the disposal of attackers and their use to single out individuals.

In the security game we introduced, an evaluator scores attacks to assess the risk of

re-identification of individuals based on two factors: the linkability of singled out records

and the information gain of an attacker. This evaluation yields a re-identification risk

score for each individual, enabling comparisons across different data release strategies.

We also introduced the concept of Re-identification Shapley values (RSVs) to estimate

the value of information in a privacy attack as a form of cooperative game involving

multiple attackers based on our approach. We tested our approach on anonymized and

synthetic versions of the Adult Income Census (AIC), Bank Marketing (BM) and Credit

Card Default (CCD) datasets, demonstrating its usefulness in realistic scenarios. Our

experiments showed that across data release strategies, some features like “age” (found

in all three datasets) have a high synergy with other features for re-identification and

should be assigned a higher security level. While data requirements and their associated

impacts remain contextual to the organization in which they are considered, our approach

provides valuable insights for data custodians, helping them balance the trade-off between

data privacy and data utility.
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1.8 Addendum: Individual Risk and Utility Analysis on the

Folktables Dataset

In this addendum, we extend our published analysis by focusing on individual-level

privacy and utility scores. While our main study evaluated re-identification risk at

an aggregate level across data release strategies, we had not yet examined how this

risk compares with individual utility as measured by data Shapley values. Here,

we address this gap by jointly analyzing the re-identification risk scores and utility

contributions of individual data points, focusing on two deterministic and traceable

strategies: k-anonymity and data minimization through Shapley-based removal. The

goal of this analysis is to better understand the tradeoffs at the individual level—how

much value a data point contributes to predictive performance versus how much risk it

incurs under a given release strategy. This is particularly relevant as our methodology

emphasized individual risk exposure, but did not address in the experiments whether

individuals whose data is more vulnerable are also contributing significantly to the utility

of a model.

As previously discussed, we assume that individuals have already consent to the use of

their data, with the release taking place internally within the organization—for instance,

when data is shared between teams for modeling or evaluation. While individuals

may not control how their data is processed post-consent, organizations should still

be attentive to how release strategies affect individual-level tradeoffs. If a method

decreases an individual’s re-identification risk while preserving or increasing their utility

(as reflected by Shapley value), it reduces the implicit disincentive to data contribution.

This perspective aligns with the incentive-theoretic view of differential privacy introduced

by McSherry and Talwar, which frames privacy defenses as a mechanism for encouraging

truthful participation. Although our methods do not rely on differential privacy, we adopt

a similar lens: evaluating strategies not just by their privacy guarantees, but by how they

shape the distribution of incentives within the dataset.
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To support this analysis, we rely on the Folktables dataset—a well-structured

alternative to the widely used Adult dataset. As highlighted by Ding et al., the Adult

dataset suffers from outdated features and social biases that can complicate fairness and

generalizability assessments. In our case, we encountered specific technical limitations

with the Adult dataset, particularly class imbalance, which distorted Shapley value

estimation and introduced instability in utility assessments. By contrast, the Folktables

dataset allows us to construct balanced prediction tasks—such as the ACSIncome task,

in which income is derived from the PINCP attribute using a $25,000 threshold—which

enabled more stable data Shapley values by mitigating the class imbalance issues we

encountered with the Adult dataset. The rest of the features in the task are comparable to

those in the Adult dataset.

This addendum focuses on predictive utility and Shapley value as a measure of

individual value, maintaining the thesis’s broader emphasis on model-based contribution.

Our objective here is to understand how individual risk and utility across data release

strategies, and how the distributions may inform organizational decisions that are both

privacy-aware and incentive-aligned.

We reproduced the Shapley-based data minimization strategy on the Folktables

dataset, using a k-NN classifier to evaluate the impact of removing low-value points.

Figure 1.9 shows how accuracy and MCC evolve as the dataset is progressively reduced.

In both cases, we observe that removing data points in descending order of their Shapley

value yields better performance than random removal. Unlike the datasets used in the

published paper, we did not observe strong effects of class imbalance, which previously

distorted Shapley value estimates and degraded stability. This result confirms that

Shapley-based data minimization is more effective at preserving utility by identifying

and discarding low-contribution points, outperforming random baselines across a wide

range of dataset sizes.

We similarly computed re-identification risk scores (RRS) for 4,400 individuals under

the same data release strategies evaluated in the core paper, including data anonymization,

synthetic data generation and both random and Shapley-based data minimization. These
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(a) Accuracy as a function of the percentage of the
dataset preserved.

(b) Matthews Correlation Coefficient (MCC) as a
function of the percentage of the dataset preserved.

Figure 1.9: Reproduced results from a data minimization strategy applied to the Folktables
dataset using a k-NN classifier. The plots compare Shapley-value-guided removal (descending

DSV) with random removal. In both accuracy and MCC, the Shapley-based minimization
strategy consistently outperforms the random baseline, especially in early stages, by preserving

predictive utility while reducing dataset size.

scores quantify how easy it is to isolate and infer information of each individual under

different release strategies. Figure 1.10 summarizes the results by presenting predictive

utility tradeoffs in relation to privacy strength, as well as box plots of individual RRS

distributions across all strategies. This visualization allows us to compare the relative

performance of each approach along both privacy and utility dimensions. As expected, we

observe that both increasing the value of k in the k-anonymity strategy and removing data

points (either randomly or based on Shapley value) have a noticeable effect on reducing

re-identification scores.

To further understand how re-identification risk varies across individuals, we analyzed

the full distribution of RRS values under different levels of k in the k-anonymity strategy.

Figure 1.11 compares the distribution of risk scores for k = 1, k = 2, k = 16 and k =

128. The original dataset (i.e., k = 1) not only exhibits a high average RRS but is also

clearly bimodal, with one of the modes concentrated at high risk levels. This indicates
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(a) Privacy-utility tradeoffs for different data
release strategies. Each point represents a

strategy, with predictive utility on the x-axis and
privacy strength (1 - average RRS) on the y-axis.

(b) Distribution of individual re-identification risk
scores (RRS) across data release strategies. Each

box plot summarizes the RRS spread for 4,400
individuals.

Figure 1.10: Evaluation of privacy and utility tradeoffs across data release strategies. Synthetic
data, anonymization and minimization approaches are compared using both predictive utility and

individual re-identification risk scores.

that a substantial subset of individuals is highly exposed to re-identification attacks. As

k increases, the bimodal structure gradually disappears and is replaced by a unimodal

distribution that shifts toward lower risk values. When k = 128, the maximum setting

used in our experiments, we observe a pronounced spike in the lowest bin (average RRS

≈ 0.01), with 908 individuals having risk scores close to zero. This demonstrates the

strong protective effect of high k values, though it also reflects reduced informational

specificity in the released data.

We also investigated how the distribution of re-identification risk scores (RRS)

changes when applying data minimization based on Shapley values. Figure 1.12 shows

the RRS distributions for the original dataset and after removing 25%, 50% and 75%

of the least valuable data points. Unlike the k-anonymity strategy, the bimodal pattern

present in the original data is largely preserved across at different Shapley-based removal

percentages. While removing 75% of the data does reduce the concentration of high-risk

individuals, earlier removal levels (25% and 50%) have a limited effect on altering
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Figure 1.11: Distribution of re-identification risk scores (RRS) for selected values of k in the
k-anonymity strategy. The original dataset (k = 1) shows a bimodal distribution with many
high-risk individuals. As k increases, the distribution becomes unimodal and shifts left. At

k = 128, nearly 900 individuals fall into the first risk bin (average RRS ≈ 0.01), illustrating the
strong protective effect of generalization.

the overall distribution of RRS. This indicates that Shapley-based data removal, while

beneficial for enhancing or preserving predictive utility, is less effective at eliminating

high-risk individual data points unless a substantial portion of the dataset is removed.

In fact, removing 25% of the data at random results in a slightly greater reduction in

the average RRS compared to Shapley-based removal at the same level, as shown in

Figure 1.10b.

We now explore whether some individuals experience better privacy-utility tradeoffs

than others under anonymization. Specifically, we examine whether an individual’s

original Shapley value is predictive of how much their re-identification risk or utility

changes when k-anonymity is applied. Figure 1.13 shows the average RRS in the original

dataset (k = 1) grouped by Shapley value bins. We observe that individuals with negative

and very low Shapley values tend to have higher risk scores. This suggests that some data

points may be both uninformative for modeling and highly exposed to re-identification,

making their inclusion particularly questionable.
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Figure 1.12: Distribution of re-identification risk scores (RRS) under data Shapley value-based
removal. Compared to the original dataset, the bimodal structure remains visible for 25% and

50% removal. Only the 75% removal setting shows a notable shift away from higher risk scores,
suggesting limited privacy benefit unless a large portion of the dataset is pruned.

To further analyze this, we assess how risk changes across Shapley value bins when

increasing k in k-anonymity (Figure 1.14). From k = 4 and above, individuals with very

low Shapley values experience larger reductions in RRS than higher-value individuals.

This implies that, in terms of risk alone, individuals whose data is least useful stand to

gain the most from anonymization.

Next, we evaluate how data Shapley value rankings change across the same k levels

(Figure 1.15). We find that at higher k levels (especially k = 64 and k = 128), low-value

individuals tend to gain value, likely because generalization merges them with more

informative records. In contrast, high-value individuals tend to lose Shapley value without

any notable reduction in their risk. These observations highlight a potential asymmetry

in the privacy-utility tradeoff: while low-value individuals gain in both dimensions,

high-value individuals primarily experience utility loss. This offers a more nuanced view

of how anonymization affects individual incentives in a non-uniform way.

Finally, we investigate how k-anonymity affects the distribution of Shapley values
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Figure 1.13: Average re-identification risk score (RRS) in the original dataset (k = 1), grouped
by Shapley value bins. Higher risk is concentrated among individuals with extremely low utility.

Figure 1.14: Change in average RRS from k = 1 to higher k values across Shapley value bins.
Risk decreases more substantially for low-value individuals, particularly at k ≥ 4.

across individuals. Specifically, we ask whether increasing k reduces the organization’s

ability to distinguish between data points in terms of their utility. To answer this, we

analyze two metrics: the Spearman correlation between the original (k = 1) Shapley

values and the ones calculated using the k-anonymity strategy and the range of Shapley
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Figure 1.15: Average change in Shapley rank from k = 1 to higher k values, grouped by Shapley
value bins. Low-value individuals often gain utility, while high-value individuals typically lose it.

values (i.e., max minus min) under each k level.

As shown in Figure 1.16, both metrics decline as k increases. More precisely, the

Spearman correlation drops steadily from 1.0 at k = 1 to just above 0.6 at k = 128,

indicating a progressive loss of rank ordering in individual utility. Simultaneously, the

Shapley value range contracts, suggesting that anonymization compresses the spread of

contributions across individuals. From an organizational perspective, this homogenization

reduces the granularity with which value can be attributed to individuals. Consequently,

as k increases, the incentive to differentiate or reward specific individuals may weaken.
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Figure 1.16: Spearman correlation of Shapley values between the original data (k = 1) and
anonymized versions (left axis, blue), and range of Shapley values (right axis, red), plotted across

increasing k-anonymity levels. As k increases, both correlation and value range decline,
indicating reduced differentiation of individual contributions.
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1.9 Appendix : Datasets Description

The following tables summarize the features in each dataset used in this study.

Categorical attributes on a nominal scale were encoded using one-hot encoding to

represent each category as a binary column, while continuous and ordinal attributes were

normalized to a [0,1] range using a min-max scaler.

Table 1.6: Summary of Attributes in the Adult Income Census (AIC) Dataset

Attribute Description Type
Age Age of the individual Numeric
Workclass Type of employment Categorical
Education-num Education level as numeric Numeric
Marital-status Marital status Categorical
Occupation Type of occupation Categorical
Relationship Relationship status Categorical
Race Race of the individual Categorical
Sex Gender of the individual Categorical
Capital-gain Capital gains Numeric
Capital-loss Capital losses Numeric
Hours-per-week Hours worked per week Numeric
Native-country Country of origin Categorical
Income (Target) Income category (≤ 50K, ≥ 50K) Categorical

Table 1.7: Summary of Attributes in the Bank Marketing (BM) Dataset

Attribute Description Type
Age Age of the client Numeric
Job Job title Categorical
Marital Marital status Categorical
Education Education level Categorical
Default Has credit in default? Categorical
Balance Average yearly bank balance Numeric
Housing Has housing loan? Categorical
Loan Has personal loan? Categorical
Contact Contact communication type Categorical
Day Last contact day Numeric
Month Last contact month Categorical
Duration Last contact duration (seconds) Numeric
Subscription (Target) Subscribed to term deposit (yes/no) Categorical
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Table 1.8: Summary of Attributes in the Credit Card Default (CCD) Dataset

Attributes Description Type
Checking Status Status of the checking account Categorical
Duration Duration of the credit in months Continuous
Credit History History of the client’s credit Categorical
Purpose Purpose for which the credit is requested Categorical
Credit Amount Amount of credit requested Continuous
Savings Status Status of the savings account Categorical
Employment Employment status of the client Categorical
Installment Commitment Monthly installment commitment Continuous
Personal Status Personal status and gender Categorical
Other Parties Presence of other parties responsible for credit Categorical
Residence Since Number of years in current residence Continuous
Property Magnitude Value of property owned Categorical
Age Age of the client Continuous
Other Payment Plans Other payment plans held by the client Categorical
Housing Housing status of the client Categorical
Existing Credits Number of existing credits at this bank Continuous
Job Type of job held by the client Categorical
Num Dependents Number of dependents Continuous
Own Telephone Availability of a telephone Categorical
Foreign Worker Whether the client is a foreign worker Categorical
Class (Target) Classification of credit risk Categorical

1.10 Appendix : Predictive Utility Evaluation Details

Classification Task Benchmark

We decomposed data utility into two metrics: data fidelity and predictive utility. For

predictive utility, we used the performance on a classification task. Tables 1.9, 1.10 and

1.11 present the classification task benchmarks for respectively the AIC, BM and CCD

datasets.

We began by setting a benchmark and evaluating a diverse set of models to assess

their classification performance on these datasets. We evaluated the performance on the

training, validation and test sets using several metrics: the F1 score on the minority class,

the Matthews Correlation Coefficient (MCC) and the loss (calculated using the confidence
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score). The confidence score of the predictions is also reported.

For the k-Nearest Neighbors (kNN) classifier, we experimented with various values

of k. We selected k = 10 for the AIC dataset and k = 5 for both the BM and CCD

datasets for the rest of the experiments in the paper, as these values yielded the best

validation performance (using MCC). Additionally, we fine-tuned parametric models

such as XGBoost and neural networks to achieve optimal performance to find the best

hyperparameters.

Evaluation Metrics We include the formulas for the F1 score and MCC here to ensure

clarity, as some readers may be unfamiliar with these metrics.

The F1 score, specifically calculated on the minority class, is defined as:

F1 = 2× Precision×Recall
Precision+Recall

, (1.7)

in which Precision and Recall are given by:

Precision =
TP

TP+FP
, Recall =

TP
TP+FN

. (1.8)

Here, TP, FP, and FN represent respectively the true positives (TP), false positives

(FP), and false negatives (FN) for the minority class.

The Matthews Correlation Coefficient (MCC) is defined as:

MCC =
TP×TN−FP×FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
, (1.9)

in which TN represents the number of true negatives. The MCC ranges from −1 to 1,

in which 1 represents a perfect prediction, 0 indicates performance no better than random

chance, and −1 corresponds to total disagreement between prediction and observation.

MCC is preferred in our evaluation because it considers all four quadrants of the confusion

matrix and provides a balanced measure, ensuring no preference toward either class, even

when the classes differ significantly in size.
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Mitigating Class Imbalance Effects on Data Shapley Values

A challenge in using DSV arises when dealing with imbalanced datasets, as is the case

with our three datasets. This issue is a recognized challenge in data valuation, as noted

by Tang et al., 2021a, and is especially pronounced for kNN, in which it arises from the

reliance on a specific utility function for the efficiency property of DSV. Following Jia,

Dao, Wang, Hubis, Gurel, et al., 2019, we define the utility function as:

v(S) =
1
K

min{K,|S|}

∑
k=1

1
[
yαk(S) = ytest

]
, (1.10)

in which K represents the number of nearest neighbors, S is a subset of the data, yαk(S)

is the predicted label of the k-th nearest neighbor in S, and ytest is the true label. This

utility function ensures that the contribution of each subset S is based on the proportion

of correct predictions within its K-nearest neighbors, providing a more direct alignment

with the kNN classification accuracy.

A common approach to handle imbalanced datasets is to rebalance them, but this is

less effective with kNN because the model relies on local neighborhoods for predictions.

Downsampling the training set also impacts the data fidelity metric monitored using the

Wasserstein distance. Instead, we employed a weighting scheme in the valuation of the

validation set. Since Shapley Values are calculated using each point in the validation set

and typically averaged to obtain the value of each training point, an imbalanced validation

set causes the minority class to have less influence on the valuation. To mitigate this, we

tested various weights on the majority class points in the validation set.

Figures 1.17, 1.18 and 1.19 display the results of our experiments for respectively

the AIC, BM, and CCD datasets. In our weighting scheme, kNN-DSV (1.0) indicates a

balance ratio of 1.0, meaning the minority and majority classes have the same frequency

in the validation set. kNN-DSV (2.0) means the majority class has twice the frequency of

the minority class, corresponding to a balance ratio of 2.0, and so on.

Let c1 be the minority class and c2 the majority class, with Nc1 and Nc2 as their

respective counts. The weights are set to 1.0 for the minority class and
Nc1×balance_ratio

Nc2
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for the majority class. This weighting scheme is equivalent to averaging over all

downsampled validation sets with c2 downsampled to Nc1×balance_ratio.

Our experiments indicate that without any weighting scheme (i.e., maximum balance

ratio corresponding to average weighting), the loss decreases as we remove points, which

aligns with existing literature. However, imbalance-robust metrics such as the F1 score

and MCC decrease rapidly. Notably, we identified optimal balance ratios for each dataset

that yielded better results: a balance ratio of 2.0 for the AIC and BM datasets, and 1.5 for

the CCD dataset. We did not extensively optimize these ratios, as it was beyond the scope

of our study.

More importantly, the Wasserstein distance, representing data fidelity, deteriorates

across all balance ratios, indicating a cost in data fidelity when removing data using the

data shapley value strategy.

Alternative Approach Using DSV Monte Carlo Approximation

To offer an alternative approach for organizations that may prefer high-performance

models like XGBoost over kNN, we experimented with computing the DSV using the

MCC directly as the utility function. As mentioned earlier, this approach requires the use

of Monte Carlo Shapley Value approximation.

The results, presented in Figure 1.20, show that although the MCC values are initially

higher than those obtained using kNN, the data removal results were less consistent across

datasets. Only the AIC dataset demonstrated a positive effect of data Shapley value

removal compared to random removal. Since we aimed for a consistent method across all

datasets, this was another reason why we finally chose kNN for calculating data Shapley

values.

We also wish to reiterate that computing DSV using Monte Carlo approximation is

computationally intensive. For the AIC dataset, it required approximately 30 hours on the

Alliance Canada High-Performance Computing (HPC) cluster, utilizing 40-core machines

(processing time for the BM dataset was similar). This makes the approach less practical

for large-scale applications that would require DSV in near real-time.
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Table 1.9: AIC Classification Task Benchmark

Model Val
Loss

Val
Conf

Val
F1

Val
MCC

Test
Loss

Test
Conf

Test
F1

Test
MCC

Train
Time
(s)

kNN (k=1) 0.21 1.00 0.58 0.44 0.21 1.00 0.56 0.43 0.0019
kNN (k=5) 0.21 0.87 0.61 0.51 0.21 0.88 0.61 0.50 0.0015
kNN (k=10) 0.22 0.85 0.65 0.54 0.22 0.86 0.63 0.52 0.0014
kNN (k=15) 0.22 0.85 0.62 0.52 0.22 0.85 0.62 0.52 0.0017
kNN (k=20) 0.22 0.85 0.63 0.53 0.22 0.85 0.63 0.52 0.0012
kNN (k=25) 0.22 0.84 0.62 0.52 0.22 0.84 0.61 0.51 0.0014
Random Forest 0.20 0.89 0.65 0.54 0.19 0.89 0.65 0.54 1.3400
Gradient
Boosting

0.20 0.86 0.67 0.59 0.20 0.86 0.69 0.61 2.3899

XGBoost 0.18 0.87 0.69 0.61 0.18 0.88 0.71 0.63 0.2245
Logistic
Regression

0.22 0.85 0.64 0.55 0.21 0.85 0.65 0.55 0.1972

Neural Network 0.20 0.87 0.67 0.57 0.20 0.87 0.66 0.57 16.0851

Table 1.10: BM Classification Task Benchmark

Model Val
Loss

Val
Conf

Val
F1

Val
MCC

Test
Loss

Test
Conf

Test
F1

Test
MCC

Train
Time
(s)

kNN (k=1) 0.13 1.00 0.41 0.34 0.13 1.00 0.39 0.32 0.0014
kNN (k=5) 0.14 0.93 0.36 0.34 0.14 0.93 0.34 0.32 0.0012
kNN (k=10) 0.14 0.92 0.29 0.31 0.14 0.93 0.28 0.31 0.0013
kNN (k=15) 0.14 0.92 0.28 0.30 0.14 0.92 0.27 0.31 0.0013
kNN (k=20) 0.14 0.92 0.26 0.30 0.14 0.92 0.24 0.29 0.0014
kNN (k=25) 0.14 0.92 0.26 0.29 0.14 0.92 0.23 0.27 0.0012
Random Forest 0.13 0.90 0.52 0.48 0.13 0.90 0.50 0.47 2.1951
Gradient
Boosting

0.13 0.91 0.52 0.49 0.13 0.91 0.51 0.47 3.6068

XGBoost 0.12 0.92 0.57 0.52 0.12 0.92 0.55 0.51 0.3932
Logistic
Regression

0.14 0.91 0.45 0.42 0.14 0.91 0.43 0.41 0.1512

Neural Network 0.13 0.91 0.59 0.53 0.13 0.91 0.56 0.50 112.1338
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Table 1.11: CCD Classification Task Benchmark

Model Val
Loss

Val
Conf

Val
F1

Val
MCC

Test
Loss

Test
Conf

Test
F1

Test
MCC

Train
Time
(s)

kNN (k=1) 0.31 1.00 0.43 0.25 0.28 1.00 0.54 0.34 0.0004
kNN (k=5) 0.34 0.81 0.42 0.33 0.32 0.80 0.39 0.22 0.0003
kNN (k=10) 0.36 0.77 0.38 0.22 0.35 0.75 0.43 0.24 0.0002
kNN (k=15) 0.36 0.76 0.23 0.20 0.36 0.75 0.33 0.18 0.0002
kNN (k=20) 0.36 0.75 0.25 0.22 0.37 0.73 0.32 0.15 0.0002
kNN (k=25) 0.36 0.75 0.14 0.18 0.37 0.73 0.23 0.12 0.0002
Random Forest 0.35 0.74 0.41 0.31 0.36 0.70 0.45 0.29 0.0797
Gradient
Boosting

0.32 0.79 0.47 0.37 0.33 0.75 0.54 0.37 0.1072

XGBoost 0.31 0.80 0.51 0.37 0.31 0.77 0.59 0.40 0.0471
Logistic
Regression

0.32 0.77 0.49 0.31 0.33 0.76 0.56 0.38 0.0192

Neural Network 0.32 0.78 0.54 0.35 0.34 0.78 0.53 0.32 1.0750

72



Figure 1.17: Data downsampling effect on data sahpley removal for AIC (results are reported on
test set but balance ratio was chosen on validation set).
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Figure 1.18: Data downsampling effect on data sahpley removal for BM (results are reported on
test set but balance ratio was chosen on validation set).
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Figure 1.19: Data downsampling effect on data sahpley removal for CCD (results are reported
on test set but balance ratio was chosen on validation set).
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(a) AIC Dataset (b) BM Dataset

(c) CCD Dataset

Figure 1.20: Monte Carlo Data Shapley Value with XGBoost and MCC utility function.
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(a) AIC Dataset (b) BM Dataset

(c) CCD Dataset

Figure 1.21: kNN classifier average loss and Wasserstein distance after using k-anonymity
strategies with multiple values of k.
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Chapter 2

WaKA: Data Attribution using

K-Nearest Neighbors and Membership

Privacy Principles

Abstract 1

In this paper, we introduce WaKA (Wasserstein K-nearest neighbors Attribution),

a novel attribution method that leverages principles from the LiRA (Likelihood Ratio

Attack) framework and k-nearest neighbors classifiers (k-NN). WaKA efficiently measures

the contribution of individual data points to the model’s loss distribution, analyzing

every possible k-NN that can be constructed using the training set, without requiring

to sample subsets of the training set. WaKA is versatile and can be used a posteriori

as a membership inference attack (MIA) to assess privacy risks or a priori for privacy

influence measurement and data valuation. Thus, WaKA can be seen as bridging the

gap between data attribution and membership inference attack (MIA) by providing a

unified framework to distinguish between a data point’s value and its privacy risk. For

1This essay was accepted to the 2025 Privacy Enhancing Technologies Symposium (PETS) and will
appear in the Proceedings on Privacy Enhancing Technologies (PoPETs). First author: Patrick Mesana
(HEC Montréal); co-authors: Clément Bénesse (UQAM), Hadrien Lautraite (UQAM), Gilles Caporossi
(HEC Montréal), and Sébastien Gambs (UQAM).



instance, we have shown that self-attribution values are more strongly correlated with the

attack success rate than the contribution of a point to the model generalization. WaKA’s

different usages were also evaluated across diverse real-world datasets, demonstrating

performance very close to LiRA when used as an MIA on k-NN classifiers, but with

greater computational efficiency. Additionally, WaKA shows greater robustness than

Shapley Values for data minimization tasks (removal or addition) on imbalanced datasets.

2.1 Introduction

Data attribution methods have been developed originally to measure the contribution

of individual data points in a training set to a model’s output. These methods can serve

different purposes depending on the context. One key application is data valuation, in

which the objective is to quantify the “value” of each data point with respect to its impact

on the model’s ability to generalize. For example, Data Shapley Value (DSV), introduced

in Ghorbani and Zou, 2019 and Jia, Dao, Wang, Hubis, Gurel, et al., 2019, is grounded

in the game-theoretic Shapley Value framework and is often used for tasks such as data

minimization via summarization, in which the objective is to remove a large fraction of

data points while ensuring a high generalization performance of the model This approach

aligns well with Article 5 of the General Data Protection Regulation (GDPR, European

Parliament and Council, 2016), which emphasizes that personal data should be “adequate,

relevant, and limited to what is necessary” in relation to the purposes for which they are

processed.

As a motivating scenario, consider for instance an organization that collects a dataset

and then trains a machine learning model over it, exposing its functionality via an API to

monetize the access to the predictions of the model (e.g., for classifying movie reviews

or categorizing images). Data attribution can be used by this organization from two

perspectives: data valuation and privacy with Figure 2.1 illustrating both viewpoints.

On one hand, data valuation can help estimate the contribution of each data point to the

model, guiding decisions on redistributing a share of the model’s value to individuals
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who provided data points. This valuation, which aligns with Shapley value, also helps

the organization determine which data points bring no value or even negative value,

potentially avoiding unnecessary costs by not acquiring these data points.

Figure 2.1: Illustration of data attribution in a movie review classification scenario, highlighting
the dual perspectives of data valuation (estimating data point value) and data privacy

(measuring potential information leakage).

On the other hand, from the privacy perspective, the organization might be concerned

with how much information about data points could potentially be leaked through the

API, which is akin to measuring the privacy risk of data leakage. This is closely related

to membership inference attacks (MIAs), in which an attacker aims to determine whether

a particular data point was part of the model’s training set. While data valuation and

privacy concerns are often related, they are usually addressed through very different

methods. To solve this issue, we introduce WaKA (for 1-Wasserstein k-NN Attribution),

which provides a unified framework for addressing both aspects using k-nearest neighbors

(k-NN) models.

While being simple in their design, k-NN models offer a clear and intuitive way

to perform data attribution. In particular, they are recognized as an instance-based

explainable method (Molnar, 2020), meaning its predictions are directly influenced by
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the training data without an explicit model abstraction. However, a well-known limitation

is that they do not perform well on high-dimensional data such as textual documents or

images due to the curse of dimensionality. In such cases, the distance between points

becomes nearly identical, making the identification of neighbors ineffective (Friedman,

1997). To overcome this challenge and apply them to datasets like images and textual data,

we first employ a neural network to learn embeddings suitable for k-NN classification.

These learned embeddings capture meaningful representations of the data, making k-NN

effective even in high-dimensional settings. This approach is also commonly used

in the data valuation literature in which case it is usually referred to as “surrogate

models”(Jia et al., 2021). Additionally, while the majority of research on data attribution

and membership inference attacks has been centered on neural networks, k-NN-based

studies are highly relevant in practice. In particular, in industrial applications, such

as retrieval-augmented generation (RAG) pipelines, k-NN with embeddings is widely

adopted as the use of learned representations mitigates the high-dimensionality challenges

typically associated with nearest neighbor search. Moreover, Yadav and Chaudhuri

demonstrated that interpretations of k-NN models using embeddings are comparable to a

softmax layer in neural networks, reinforcing their relevance to modern machine learning

workflows.

The term “value” in data valuation is semantically charged, as it suggests an intrinsic

worth of data points. In this context, the term is grounded in the Shapley Value axioms,

which provide a unique way of attributing the contribution of each data point to the

model’s generalization performance. Data valuation methods such as DSV seek to

uncover the intrinsic properties of data in relation to the category of model being used,

whether it be a type of neural network, a k-NN classifier or another machine learning

model.

In contrast, membership inference (Shokri et al., 2017a; Yeom et al., 2018) aims at

determining whether a given data point was part of a specific model’s training dataset. For

instance, LiRA (Carlini, Chien, et al., 2022a) is a state-of-the-art approach for performing

membership inference attacks (MIAs), which is based on the Likelihood Ratio Test
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(LRT), a statistical test that compares the likelihood of a model’s prediction for a given

data point when trained with and without this point. To realize this, LiRA requires the

training of shadow models via sampling and provides a membership score for each point

in the training set, facilitating a more detailed attribution analysis. Similarly to LiRA,

WaKA assumes that the adversary has access to the underlying data distribution, enabling

probability mass function (PMF) computation. This assumption is fundamental to our

framework but also to LiRA.

Related work. More recently, the intersection between data attribution and

membership privacy has garnered significant attention as evidenced by a growing body

of related literature (G. Cohen and Giryes, 2024; Duddu et al., 2021; Ye et al., 2023). One

key concept is “self-influence”, which has been investigated in differentiable models to

measure the extent to which a data point influences its own prediction. This concept is

particularly relevant in MIAs, as high self-influence scores often correlate with increased

privacy risks (G. Cohen and Giryes, 2024). Self-influence is computed using influence

functions and measures how much the loss changes for a data point when it is upweighted.

In particular, this method has been used for capturing how a point’s inclusion can lead

to memorization (F. Liu et al., 2021), which is in turn relates to privacy vulnerability.

Throughout the paper, we adopt a similar notion, which we refer to as “self-attribution”,

whose objective is to address the question “To what extent my data contribute to my own

outcome?”. More precisely, it can be quantified by the marginal contribution of a point to

the model’s prediction on that same point.

Beyond self-influence, several studies have analyzed how the model’s performance

relates to privacy risk. Prior work has shown that overfitting exacerbates MIAs (Shokri

et al., 2017a; Yeom et al., 2018), but recent findings indicate that privacy leakage can

occur even in well-generalized models (Carlini, Chien, et al., 2022a; Nasr et al., 2019).

Additionally, per-record memorization suggests that not all training samples contribute

equally to privacy risks—some points are more prone to memorization and thus more

vulnerable to MIAs (Carlini et al., 2019; Feldman and Zhang, 2020). This suggests

a complex relationship between the value of a data point and its privacy risk. Recent
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work on Leave-One-Out Distinguishability (LOOD, Ye et al., 2023) provides a unified

perspective on data attribution and privacy auditing by quantifying the statistical distance

between a model’s outputs with and without a specific training point. This approach

highlights the strong connection between influence, memorization and privacy leakage.

While LOOD has been shown to predict MIA success and can serve as a privacy auditing

tool, existing methods primarily focus on neural network-based models.

Summary of contributions. Our main contributions can be summarized as follows.

• We introduce the 1-Wasserstein k-NN Attribution (WaKA), a novel approach that

leverages the Wasserstein distance from Optimal Transport, which has not been

previously used in either membership inference attacks (MIAs) or data valuation.

Unlike LiRA, which relies on hypothesis testing, WaKA accounts for the mass that

a point moves positively or negatively. WaKA serves a dual purpose by providing

a principled framework for both privacy risk assessment and data valuation,

functioning as a general attribution method for data valuation while also offering

privacy insights through self-attribution. More precisely, it can be adapted into

t-WaKA to effectively perform membership inference attacks.

• In our experiments, we compare the performance of DSV and WaKA. These

experiments have been conducted on six diverse datasets—two tabular datasets

(Adult and Bank), two textual datasets (IMDB and Yelp) and two image datasets

(CIFAR-10 and CelebA) —to demonstrate the versatility and robustness of our

method. The evaluation of these scenarios focuses on two key aspects: utility,

through two data minimization tasks as well as privacy, by measuring the attack

success rate (ASR) on all training points.

• We explore the “onion effect” (Carlini, Jagielski, et al., 2022), a phenomenon

observed previously in neural networks in which removing data points

incrementally reveals deeper layers of vulnerable privacy points in the sense that

these points suffer from a higher ASR after the removal. To investigate this

effect, we have replicated some of experiments of the original paper by eliminating
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10% of the training set using attribution methods, followed by a reassessment of

privacy scores. More precisely, we have analyzed the relationship between privacy

influences and WaKA influences, showing that they are correlated and can be used

to predict, a priori, whether removing a data point will impact the ASR on other

points.

• Finally, we have also conducted experiments using t-WaKA as an MIA on specific

training points for k-NN models. t-WaKA displays a similar performance as LiRA

but uses significantly less resources as it relies on a single reusable k-NN model

trained on the entire dataset, thus avoiding the need for shadow models. More

precisely, once this k-NN model is trained, t-WaKA has a computational complexity

of O(logN) for attacking a specific point, which is much faster than LiRA for k-NN.

Outline. First in Section 2.2, we provide a brief overview of attribution methods

(Leave one Out and Data Shapeley Value) for k-NN models as well as LiRA,

before introducing the details of the Wasserstein k-NN Attribution (WaKA) method in

Section 2.3. Afterwards, in Section 2.4, we conduct an extensive evaluation of WaKA as

a new attribution method and t-WaKA for assessing the success of MIAs before finally

concluding with a discussion in Section 3.5.

2.2 Background

In this section, we review the background notions necessary to the understanding of

our work, namely the main existing attribution methods for k-NNs as well as the LiRA

framework for conducting membership inference attacks.

2.2.1 Attribution Methods for k-NNs

Leave-One-Out (LOO) attribution methods are commonly used to assess the

contribution of individual data points to a model’s performance by examining the effect

of removing a point from the training set. Although they can theoretically be applied with
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respect to any predictive target, they are typically computed on a test set Dtest with the

objective of measuring the contribution to the generalization performance. In this context,

a positive contribution means reducing the generalization loss or increasing utility (Jia

et al., 2021).

Consider a training set D = {zi}N
i=1, in which each zi represents a feature-label pair

(xi,yi). For k-NN models, the loss function ℓ for any data point z is generally defined as

the fraction of neighbors that do not share the same label:

ℓ(z;D,k) = 1− 1
k

k

∑
j=1

1(yα j = y), (2.1)

in which α j is the index of the j-th closest neighbor to z in the training set D, and y is the

true label of point z. This is referred to as a “loss” because it measures the error introduced

by the model’s prediction, which also quantifies the model’s disagreement with the ground

truth. The utility function U(zt ;D) can be expressed as:

U(zt ;D) = 1− ℓ(zt ;D) =
1
k

k

∑
j=1

1(yα j = yt).

Here, we evaluate utility using zt , which we refer to as a test point, because utility typically

reflects the performance of the k-NN model on data points outside the training set. This

approach aligns with the goal of assessing the model’s ability to generalize to unseen data,

ensuring that its utility is not biased by the training data.

The LOO attribution method computes the difference in utility with respect to a test

point, with and without the point zi. Formally, the LOO attribution score for a point zi in

k-NN is given by:

vloo(zi) =U(zt ;D,k)−U(zt ;D−zi,k),

in which, D−zi represents the training set excluding zi. If we want to compute the

LOO value for each zi in D, this approach requires evaluating N distinct neighborhood

configurations.

Data Shapley Value. The Shapley Value, a concept from cooperative game theory,

extends LOO by averaging the marginal contribution of each point across all possible
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subsets of the training set (Ghorbani and Zou, 2019; Jia, Dao, Wang, Hubis, Gurel, et al.,

2019). The DSV is computed as the average contribution of each point zi to the model’s

utility across subsets S⊆ D:

vshap(zi) =
1

N! ∑
S⊆D\{zi}

1(N−1
|S|

)U(zt ;S∪{zi})−U(zt ;S).

The Shapley value satisfies four key axioms: Efficiency (i.e., the total value is distributed

among all players), Symmetry (i.e., identical contributions are rewarded equally), Dummy

(i.e., players that contribute nothing receive zero value), and Linearity (i.e., the Shapley

values from two games can be combined linearly).

While this formulation provides an axiomatic and robust way of quantifying the

importance of each data point, the computational complexity of directly computing

Shapley values can be as high as O(2N), making it infeasible for large datasets.

Nonetheless, for k-NN classifiers, an exact formulation of the Shapley value exists, as

shown by Jia, Dao, Wang, Hubis, Gurel, et al., which drastically reduces the complexity

to O(N logN). More precisely, the exact Shapley value for k-NN can be computed as

follows. For the farthest neighbor zαN , the Shapley value is:

vshap(zαN ) =
1[yαN = yt ]

N
.

Afterwards, for the remaining neighbors zαi with i < N, the Shapley value can be

recursively computed as:

vshap(zαi) = vshap(zαi+1)+
1[yαi = yt ]−1[yαi+1 = yt ]

k
· min(k, i)

i
.

By exploiting the structure of k-NN classifiers, this exact formulation avoids the need

to evaluate individually all subsets, significantly reducing the computational cost.

Note that these attribution methods are agnostic to any specific model, unlike LiRA,

which evaluates the impact of a point on a particular trained model. In contrast, DSV

implicitly considers all possible k-NN models trained on subsets of the dataset, offering a

more comprehensive measure of point importance across model variations.
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2.2.2 Likelihood Ratio Attack (LiRA)

LiRA is a method for performing MIAs, which leverages a Likelihood Ratio Test

(LRT) to compare the likelihood of a model when trained with and without a specific data

point zi (Carlini, Chien, et al., 2022a). More precisely for a given model f , the LiRA

score for zi is defined as:

Λ( f ;zi) =
P( f |Q)

P( f |Q−zi)
, (2.2)

in which Q and Q−zi represent the distributions of models trained on datasets that

respectively include or exclude a training point zi. By “distributions of models” we

mean the set of possible models that can be obtained through training on different

subsets of data. For instance for a neural network, this distribution refers to the space

of model weights while for k-NN classifiers, the distribution of models corresponds to the

distribution of subsets of k data points from the training set D. While theoretically, the

number of unique possible combinations is
(N

k

)
, in practice, combinations including the

closest neighbors to a test point are more likely. We assume that the attacker does not

have access to the training set and can only observe the final prediction or the loss of the

model, similar to the adversary model used by Carlini, Chien, et al.

To compute the LiRA score with respect to the loss, the LRT becomes a

one-dimensional statistic:

Λ(ℓ;zi) =
P(ℓ(zi) |Q)

P(ℓ(zi) |Qz−i)
. (2.3)

Estimating this ratio requires sampling various subsets of the training data, which

can be computationally expensive. This motivated the development of our attribution

method specifically designed for k-NNs, named WaKA. More precisely, WaKA relies on

the same principle as LiRA, focusing on comparing the loss distributions for members

and non-members of the training dataset. However, instead of relying on a statistical test

to distinguish these distributions, WaKA measures the 1-Wasserstein distance between

them, providing a more flexible and computationally efficient approach for k-NNs.
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2.3 Wasserstein k-NN Attribution (WaKA)

2.3.1 Attribution using 1-Wasserstein Distance

In our approach, we quantify the importance of each data point in a k-NN model by

measuring how the inclusion or exclusion of a data point affects the distribution of the

model’s loss relative to a specific point zt . Here, zt represents the point at which we

evaluate the model’s loss. In the context of data valuation, zt is typically a test point for

which we aim to assess the influence of training data points on the model’s performance.

In the context of privacy, zt could be the data point zi itself, allowing us to analyze how

the inclusion or exclusion of zi affects the loss distribution relative to zi. To achieve

this, we leverage the 1-Wasserstein distance (Peyré and Cuturi, 2018) between the loss

distributions with and without the data point. More formally, the 1-Wasserstein distance

(also known as the Earth Mover’s Distance) between two probability distributions µ and

ν can be defined as:

W1(µ,ν) =
∫

∞

−∞

∣∣Fµ(x)−Fν(x)
∣∣ dx

in which Fµ and Fν are respectively the cumulative distribution functions (CDFs) of µ

and ν .

Let L denote the distribution of loss values relative to zt using k-NN models trained

on all possible subsets of D, and L−zi refer to the corresponding distribution when zi is

excluded from D. Our goal is to compute the 1-Wasserstein distance between these two

distributions to assess the impact of data point zi. Since the loss values in a k-NN classifier

are discrete and belong to the finite set L =
{

0, 1
k ,

2
k , . . . ,1

}
, the 1-Wasserstein distance

can be computed directly by summing the absolute difference of cumulative distribution

functions (CDFs) of the loss distributions.

We define F := {k-NN trained on subsets of D} and F−zi :=

{k-NN trained on subsets of D \ {zi}}, the two spaces of models that correspond to

all k-NN models trained with or without the point zi. In this setting, let Q denote

the uniform distribution over models in F , and Q−zi be the uniform distribution over
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models in F−zi . Let ℓ : F → R denote the loss function mapping a model f ∈F to a

real-valued loss ℓ( f ) evaluated at the point zt , i.e., ℓ( f ) = ℓ(zt ; f ). The distributions L

and L−zi represent the pushforward distributions of Q and Q−zi through the loss function

ℓ, denoted with the # symbol:

L= ℓ#Q, L−zi = ℓ#Q−zi.

More precisely, L is the distribution of losses evaluated at zt induced by models drawn

from Q, and L−zi is the distribution of losses evaluated at zt induced by models drawn

from Q−zi .

Definition 2.3.1 (WaKA). We define the 1-Wasserstein k-NN attribution for data point zi

relative to any point zt as follows:

W1(L,L−zi) =
1
k ∑

lmin≤l≤lmax

∣∣∣Fℓ#Q(l)−Fℓ#Q−zi
(l)

∣∣∣ , (2.4)

in which L and L−zi are the loss distributions relative to zt , restricted to the range

[lmin, lmax]. The cumulative distribution functions (CDFs) Fℓ#Q(l) and Fℓ#Q−zi
(l)

are evaluated for these restricted distributions at the discrete loss values l ∈ L ={
0, 1

k ,
2
k , . . . ,1

}
. Here, lmin ≥ 0 and lmax ≤ 1 specify the bounds of the restricted range.

While DSV provides a unique set of values, WaKA introduces flexibility by focusing

on how probability masses are moved positively or negatively, relative to particular loss

values. For instance, when zt and zi share the same label (yt = yi), WaKA can measure how

much loss mass is moved to improve the loss distribution. Conversely, when zt and zi have

different labels (yt ̸= yi), WaKA can measure how much zi worsens the loss distribution.

Additionally, we can refine this analysis by incorporating the decision threshold of the

k-NN classifier. Typically, the decision threshold is set to 1/2, but in imbalanced datasets,

it can be adjusted to favor the minority class. WaKA can identify points skewed positively

or negatively relative to the decision threshold, making it especially useful for tasks like

data removal or data addition. Figure 2.2 illustrates four types of points that WaKA can

identify well.

90



Figure 2.2: Illustrating the importance of data points in data valuation tasks. The plots
highlight: (1) Bad Outlier (Top-Left): Outlier point that negatively impact (low Shapley value)

one class while offering little benefit on its own (Class 1). Important to identify for data removal;
(2) Good Outliers (Top-Right): Outlier points that, despite being in less dense region, improve

their class performance (high Shapley value). (3) Good Inliers (Bottom-Left): Inlier points
contributing to loss distributions skewed toward zero, crucial for data addition; (4) Bad Inlier

(Bottom-Right): Not outlier but harm Class 2 if added to dataset.

Training Set

(1) Bad Outlier (2) Good Outliers

(3) Good Inliers (4) Bad Inlier

WaKA for data removal and addition. To address these data valuation tasks, we

propose two formulations of WaKA: one for data removal (WaKArem) and one for data

addition (WaKAadd). Both formulations rely on a fixed decision threshold τ ∈ [0,1], which

divides the domain of loss values into two regions.

For data removal, WaKArem identifies outliers that negatively affect one class while

contributing little to other classes. It also accounts positively for points that, despite being

outliers, improve their class. The formulation is:
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WaKArem(zi) = 1
(
yαi = yt

)
∑

l>1−τ

∣∣∣F(1−ℓ)#Q
(
l
)
−F(1−ℓ)#Q−zi

(
l
)∣∣∣

− 1
(
yαi ̸= yt

)
∑

l

∣∣∣Fℓ#Q(l)−Fℓ#Q−zi
(l)

∣∣∣ .
For data addition, WaKAadd prioritizes inliers but it also penalizes points that are not

outliers but negatively affect other classes. The formulation is:

WaKAadd(zi) = 1
(
yαi = yt

)
∑

l

∣∣∣F(1−ℓ)#Q
(
l
)
−F(1−ℓ)#Q−zi

(
l
)∣∣∣

− 1
(
yαi ̸= yt

)
∑
l≤τ

∣∣∣Fℓ#Q(l)−Fℓ#Q−zi
(l)

∣∣∣ .
These formulations are straightforward applications of WaKA tailored for data

removal and data addition tasks. While other formulations are possible, these provide

a simple yet effective approach to prioritizing specific points based on their contributions

to the loss distribution. In the context of data valuation, zt typically refers to a test point;

however, when zt = zi, we enter what we call self-attribution, in which the focus shifts to

understanding the contribution of zi to its own loss distribution. In the following section,

we adapt WaKA for membership inference, not only by looking at the loss distribution of

zi but also by incorporating the loss of a specific model.

2.3.2 Adapting WaKA for Membership Inference

In line with the “security game” framework employed in LiRA for evaluating MIAs,

the adversary’s objective is to ascertain whether a specific point i is part of the training

dataset. This framework involves an interaction between a challenger and an adversary.

First, the challenger samples a training dataset and trains a model over it. Then, depending

on the outcome of a private random bit, the challenger sends either a fresh challenge

point to the adversary or a point from the training set. The adversary, having query

access to both the distribution (i.e., in the sense that it can have access to samples for

this distribution) and the trained model, must then decide if the given point was part
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of the training set. This structured game can be used to assess the adversary’s ability

to correctly infer membership in terms of his advantage compared to a random guess,

thereby evaluating the robustness of the model against such attacks.

Since we are dealing with k-NN models, adding the point zi to the training set can

only improve the model’s performance, meaning that the loss will decrease. As such, the

distribution L−zi is shifted towards lower values when transitioning to L. However, in the

context of the security game, we are given a specific loss value ℓ(zi)
∗ for the true model.

As a result, models with loss greater than ℓ(zi)
∗ are incentivized to indicate that zi is part

of the training set, as the distribution is shifting towards ℓ(zi)
∗, while models with loss less

than ℓ(zi)
∗ suggest the opposite, since adding zi to the training set would further decrease

the loss. Therefore, we can refine the model spaces F and F−zi into two partitions:

F+ = { f ∈F : ℓ(zi; f )≥ ℓ(zi)
∗},

F− = { f ∈F : ℓ(zi; f )< ℓ(zi)
∗},

F+
−zi

= { f ∈F−zi : ℓ(zi; f )≥ ℓ(zi)
∗},

F−
−zi

= { f ∈F−zi : ℓ(zi; f )< ℓ(zi)
∗}.

(2.5)

Definition 2.3.2 (t-WaKA). The target-WaKA attribution score for point zi, denoted as

t-WaKA(zi), is defined as:

t-WaKA(zi) =W1
(
L |F+,L−zi |F

+
−zi

)
−W1

(
L |F−,L−zi |F

−
−zi

)
.

(2.6)

We can use the previous formula to obtain the following simplification:

t-WaKA(zi) =
1
k ∑

l≥ℓ(zi)∗

∣∣∣Fℓ#Q(l)−Fℓ#Q−zi
(l)

∣∣∣
− 1

k ∑
l<ℓ(zi)∗

∣∣∣Fℓ#Q(l)−Fℓ#Q−zi
(l)

∣∣∣ . (2.7)
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Algorithm 1 Counting the marginal contributions of a point of interest zi with respect to
a test point zt

1: Input: Sorted training set D, point of interest i, test point t, number of neighbors k.
2: Output: Contributions for all losses of point i
3: Initialize CPV[ j] = ∑

j
m ̸=i 1(yαm(D) = yt) for j = 1, . . . ,N ▷ Cumulative positive votes

up to z j excluding zi

4: Initialize CNV[ j] = ∑
j
m ̸=i 1(yαm(D) ̸= yt) for j = 1, . . . ,N ▷ Cumulative negative

votes up to z j excluding zi
5: Contributions← 0
6: for j = i+1 to N do
7: if yα j(D) ̸= yαi(D) and j > k then
8: for all l in {0,1/k, . . . ,1} do
9: NV← round(l · k) ▷ Number of negative votes for loss l

10: PV← k−NV ▷ Number of positive votes for loss l
11: δPV,i← 1(yαi(D) = yt)
12: δNV,i← 1(yαi(D) ̸= yt)
13: δPV, j← 1(yα j(D) = yt)

14: δNV, j← 1(yα j(D) ̸= yt)

15: if CPV[ j] ≥ PV− δPV, j and CNV[ j] ≥ NV− δNV, j and CPV[ j] ≥ PV−
δPV,i and CNV[ j]≥ NV−δNV,i then ▷ k-nearest neighbors combinations should be
valid

16: Count−zi ←
( CPV[ j]

PV−δPV, j

)
·
( CNV[ j]

NV−δNV, j

)
17: Count←

( CPV[ j]
PV−δPV,i

)
·
( CNV[ j]

NV−δNV,i

)
18: Contributions[l]← Contributions[l]+

Count−Count−zi
2 j

19: end if
20: end for
21: end if
22: end for
23: return Contributions

2.3.3 Attribution Algorithm

To compute the 1-Wasserstein distance, we assume access to approximations of

Probability Mass Functions (PMFs) of L and L−i, which take the form of histograms.

More precisely, for each possible loss value l in the set {0,1/k, . . . ,1}, we want to

count the associated number of existing k-NN models, including and excluding zi. In the

context of k-NNs, there is no need to sample many subsets of the training set to compute

these values as we can count exactly the contribution of a point zi. A key insight is the
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observation that computing the difference in PMFs due to zi is proportional to calculating

the marginal contribution of zi when zi is added to the training set D. A contribution

occurs for any yi if yi ̸= y j for all j > i, with the points sorted relative to the test point

zt . To realize this, we have designed Algorithm 1 to provide an efficient method for

computing the marginal contributions.

In a nutshell, the algorithm starts by ordering the training set with respect to the test

point zt before iterating through the sorted labels to store the cumulative positive and

negative votes, CPV[j] and CNV[j], at each index j. Note that if zt = zi, we are in the

context of self-attribution, or in the context of an MIA with t-WaKA. Afterwards, the

algorithm loops over the training set to find labels that differ from yi (this step could be

parallelized), the label of the point of interest, which could be precomputed in the previous

step. For each differing label with an index greater than k, a pass is done over the possible

loss values to compute the marginal contribution of the point of interest zi. This process

consists of two steps: first, we count the combinations of k nearest neighbors (of zt) a

particular loss, in which zi is included are counted. Similarly, we count the combinations

in which z j is excluded for the same loss. Then, this count is normalized using the term

2 j, which corresponds to all supersets of the k nearest neighbors. Finally, the marginal

contribution is either stored or aggregated. Once the marginal contributions are calculated,

the computation of the 1-Wasserstein distance is straightforward using histograms of the

losses (a proof and more details are provided in Appendix 2.8.

2.3.4 Computational analysis

The worst-case time complexity of the algorithm is O(N logN +kN). More precisely,

the O(N logN) term comes from sorting the N training points with respect to their distance

to the test point zt . Initializing the cumulative vote functions for any j, CPV[j] and

CNV[j], requires O(N). The main loop, which iterates over the training set and processes

each point’s contributions to each loss, runs in O(k ·N). This complexity is reduced

by using an approximation leveraging the fact that contributions decrease exponentially

due to the 2 j factor and that k becomes much smaller than j. This enables to focus on a
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fixed-size neighborhood around the target point rather than considering all training points.

In practice in our experiments, we used a neighborhood of 100 points to compute

these values. By restricting the computation to this fixed neighborhood, CPV[j] and

CNV[j] can also be measured with a constant complexity. To efficiently identify the

neighborhood, we can use an optimized data structure such as a kd-tree, which allows

for identifying the nearest neighbors in O(logN) time. With this approximation, only a

single reusable k-NN model needs to be trained, which reduces significantly the memory

usage compared to using multiple k-NN shadow models as done in LiRA. More precisely,

the complexity of computing marginal contributions for any point of interest in this

approximation becomes O(logN +K), in which K is the fixed size of the neighborhood.

This approach is particularly efficient for large datasets. In the following experiments,

we have employed this approximation and observed a minimal impact on the estimated

value.

2.4 Experimental Evaluation

In this section, we present our experimental evaluation of WaKA as a general

attribution method and t-WaKA as a membership inference attack (MIA) on six

widely-used public datasets (see Table 1.1 in Appendix 2.6). Our main objective with

the following experiments is to explore the dual use of WaKA: first, as a tool for

understanding the contribution of individual data points to the utility and privacy of k-NN

models and second, as an efficient approach for conducting MIAs on specific data points.

2.4.1 Experimental Setting

To apply WaKA to standard image and text datasets in machine learning, we

prioritized using pre-trained neural network embeddings to minimize dependencies to

specific datasets. For CIFAR-10, we used a custom pre-trained embedding based on

ImageNet, extracting feature representations from its last layer to obtain a transferable

encoding. We evaluated both ImageNet embeddings and custom embeddings trained
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on a reserved portion of CIFAR-10. While the latter showed a slight performance

gain, the overall improvement was negligible. Therefore, we chose to use ImageNet

embeddings, as this avoids partitioning the training set and reduces the risk of data

leakage. For the CelebA dataset, we employed a pre-trained Vision Transformer (ViT)

embedding Dosovitskiy, 2020. For the IMDB and Yelp reviews textual datasets, we used a

pre-trained version of the Sentence-BERT (SBERT) model Reimers, 2019, ensuring that it

did not include the two datasets during training, thereby aligning with our goal of reduced

data dependencies. In a nutshell, SBERT is a modification of the BERT architecture that

produces sentence embeddings optimized for semantic similarity tasks and downstream

classification. Finally, for tabular datasets, we employed a straightforward encoding

approach, which includes one-hot encoding for categorical features and normalization

for numerical features. Note that the CelebA and Yelp datasets were added and only used

for data valuation experiments.

Our experiments have been designed around two key scenarios for evaluating

attribution methods. The first scenario, which we call “test-attribution”, represents the

classical data valuation setting, in which the validation set is used to compute aggregated

attribution scores and measure their impact on utility through performance on a separate

test set. The second scenario, which we name “self-attribution”, focuses on computing

the attribution value of a point zi based on how well the model predicts the corresponding

label yi. This situation quantifies the direct contribution of each point to its own label

prediction and we conjecture that this self-attribution is more correlated to privacy scores

than utility. In a nutshell, to compute self-attribution, we only need to use the values

attributed to each point to predict itself while for test-attribution, we must decide on

how to aggregate the values calculated for each test point. More precisely, for test-based

attribution, the Shapley value, denoted as DSVtest(zi), computes the average contribution

of each training point across the test set, formulated as:

DSVtest(zi) =
1
|Dtest| ∑

zt∈Dtest

vshap(zi;zt),

in which vshap(zi;zt) is the Shapley value of training point zi with respect to test point
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zt . This method benefits from Shapley’s linearity axiom, which ensures that contributions

from individual data points can sum to the total utility. Note that a test point can assign

both positive and negative valuations to a training point, depending on its effect on the

model’s performance. Similarly, for WaKArem and WaKAadd, we compute the average

across the test set by evaluating each test point zt ∈ Dtest.

In our experiments, we selected k = 1 as the least privacy-preserving parameter value,

since the k-NN model’s predictions are directly influenced by individual points. We also

chose k = 5 because it is a commonly used parameter in the literature, offering more

label anonymization through generalization, as predictions are influenced by a larger set

of neighboring points.

2.4.2 WaKA for Utility-driven Data Minimization

The state-of-the-art approach for utility-driven data minimization is Data Shapley

Value (DSV, Jia, Dao, Wang, Hubis, Gurel, et al., 2019). In addition to WaKA and DSV,

the basic Leave-One-Out (LOO) method was also included, serving as a benchmark due

to its simplicity in utility-driven data removal and addition tasks. In data addition, models

are trained incrementally by adding a certain percent of the dataset in descending order

of importance based on an attribution method. Conversely, in data removal, models start

with the full dataset and are retrained after progressively removing the least valuable

points. This setup allows us to assess the impact of each method on model performance

as data is added or removed. Looking at the results (Figure 2.6), it is clear that the

LOO method generally underperforms as a data valuation technique, consistent with

the findings of Ghorbani and Zou, 2019. This reinforces the limitations of LOO in

effectively identifying the most influential points for utility-driven data minimization. In

contrast, WaKArem and WaKAadd consistently match or outperform DSV, particularly

in imbalanced datasets. For instance, Yelp, with a minority class of 0.4, and Adult,

with a minority class of 0.24, are noticeably more imbalanced compared to CIFAR and

IMDB, which are perfectly balanced through preprocessing. As shown in Figure 2.6,

WaKA demonstrates greater robustness in these cases. On the Yelp dataset, we observe
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that while DSV’s macro F1 score is comparable to LOO for data removal, WaKArem

maintains significantly better performance (Figure 2.3). Similarly, on the Adult dataset,

Figure 2.4 illustrates that during data addition, DSV predominantly favors adding majority

class samples, leading to performance worse than random addition, whereas WaKAadd

effectively balances the dataset, yielding superior results.

Figure 2.3: F1 score on the Yelp dataset for data removal. WaKArem maintains significantly
better performance compared to DSV and LOO, highlighting its robustness on imbalanced

datasets.

99



Figure 2.4: F1 score on the Adult dataset for data addition. DSV predominantly favors adding
majority class samples, leading to performance worse than random addition. WaKAadd, by

contrast, effectively balances the dataset and achieves better results.

An important aspect of WaKA’s formulation is its sensitivity to the parameter τ , which

controls the weighting of outliers and inliers during data removal and data addition.

The role of τ is to introduce flexibility in how probability mass is moved within the

loss distribution, influencing whether points are prioritized based on their effect on

model utility. Specifically, when τ = 1.0 for addition and τ = 0.0 for removal, the

formulations become identical. In data addition, the goal is to emphasize inliers—points

that contribute significantly to reducing loss—while penalizing those that negatively

impact other points depending on their loss distribution. In data removal, we focus

on outliers, particularly those that increase loss, while still accounting for outliers that

provide positive contributions. Empirical evaluations (see Appendix 2.9) indicate that

τ = 0.5 leads to stable results across datasets, though higher variance is observed in

imbalanced datasets such as Bank and CelebA. This suggests that further exploration

of τ could be valuable in contexts where dataset imbalance affects data attribution.
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Finally, to further explore the impact of data valuation methods, we examined

their influence on class balance during data removal. Figure 2.5 highlights that DSV

tends to disproportionately remove points from the minority class, exacerbating class

imbalance. In contrast, WaKArem demonstrates a more balanced removal strategy,

effectively preserving class proportions. We include all results, such as CelebA and Bank

datasets, in Appendix 2.9. These additional experiments confirm the bias of Shapley

values towards the majority class and further underscore the robustness of WaKA in

handling imbalanced data scenarios.

Figure 2.5: Effect of data removal on class balance for the Yelp dataset. WaKArem preserves
class proportions, while DSV disproportionately removes points from the minority class,

exacerbating imbalance.
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Figure 2.6: Attribution using WaKArem for data removal and WaKAadd for data addition,
compared with two test-attribution methods: Data Shapley and Leave-One-Out (LOO). Data

addition starts with an empty dataset (0%) and progressively adds points, either randomly (black
line) or in descending order of importance as ranked by an attribution method (e.g., Shapley,

WaKAadd, LOO). Data removal begins with the full dataset (100%) and iteratively removes the
least valuable points according to each method. The x-axis represents the percentage of data

added or removed, while the y-axis tracks the model’s accuracy on the test set

CIFAR10 Adult Yelp IMDB

D
at

a
R

em
ov

al
D

at
a

A
dd

iti
on

2.4.3 WaKA for Privacy Evaluation and Auditing

Privacy scores. In our privacy evaluation, we followed a similar approach to Carlini,

Jagielski, et al., 2022 by computing the average ASR on all training points. In practice,

this was done by simulating security games as described previously, in which multiple

random partitions of the training set were created, and the LiRA method was applied

to evaluate the ASR. Once the ASR values were obtained, the attribution scores were

computed from each method and sorted to analyze their correlation with the ASR. This

allows to identify how well each attribution method aligns with the likelihood of a

successful MIA.

Both self-Shapley and self-WaKA have shown a monotonic increase in self-attribution

values as the ASR increases (see Figure 2.7), for both values of the k-NN parameter (i.e.,

k = 1 and k = 5). However, it is important to note that the correlation between ASR

and self-attribution values does not behave uniformly across all datasets. For instance,
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in the Bank dataset, the attack accuracy remains close to 0.5 (i.e., random guessing)

until about the 70-th percentile of self-WaKA values, whereas other datasets, such as

IMDB, exhibit a more gradual increase in ASR across percentiles. This indicates that

different datasets exhibit varying levels of correlation between ASR and self-attribution.

Furthermore, test-attribution methods showed different correlations, with notably a higher

average ASR towards extremes. This means that very low or very high attribution scores

tend to correlate more strongly with higher ASR values. More precisely, data points that

are highly detrimental to utility were found to have consistently high ASR values across

all datasets. This observation challenges the common belief that only high-value points

pose significant privacy risks as lower-value points can also be privacy vulnerable.

Additionally, increasing the parameter value k reduces the average ASR (Table 2.8

in Appendix 2.10) while shifting higher ASR values towards the upper percentiles of the

attribution scores. We further tested the Spearman rank correlation between ASR and

attribution scores, finding that they are highly correlated across datasets (see Table 2.1).

Table 2.1: Spearman Correlation between self-WaKA and self-Shapley for K=1 and K=5

Dataset K=1 K=5
Spearman P-Value Spearman P-Value

IMDB 0.99 0.00 0.93 0.00
CIFAR10 1.00 0.00 0.99 0.00

adult 0.99 0.00 0.98 0.00
bank 0.98 0.00 0.98 0.00

This suggests that self-attribution methods, such as in particular self-WaKA, can more

reliably indicate privacy risks in k-NN models than test attribution. This can be explained

by the fact that self-Shapley can be understood through a game-theoretic lens, in which

each data point zi is a “player” contributing to the prediction. In this setting, a high

self-Shapley value means that zi plays a dominant role in predicting itself, indicating

that whatever the coalition, its neighbors contribute little. Similarly, a high self-WaKA

value means that removing zi significantly changes the loss distribution of predicting itself

across all possible subsets of the training set, which aligns more closely with LiRA.
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Finally, we have conducted additional experiments to determine whether self-WaKA

values could provide privacy insights for models beyond k-NN classifiers. To investigate,

LiRA and trained logistic regression shadow models we first looked at the logits of the

models confidence, following the approach outlined by Carlini and co-authors. More

precisely, the LiRA scores were compared with the self-WaKA values for k = 1 to see if

there was a correlation with the ASR. Our observations revealed that, across all datasets,

the average ASR for the logistic regression model was lower than that of k-NN with k = 5

(see Table 2.8). Although the correlation between value percentiles and ASR was less

pronounced than in the k-NN case, a significant relationship can still be observed (see

Figure 2.22 in Appendix 2.10). This suggests that self-attribution on k-NN models may

offer insights into the data that can be extrapolated to other types of models, although we

leave as future works the detailed investigation of such research avenes.

Privacy influences. The “onion effect” as explored in Carlini, Jagielski, et al.,

2022 throught the introduction the concept of privacy influence (PrivInf) as a method

to quantify the influence that removing a specific training example z has on the privacy

risk of a target example z′. Specifically, it is defined as the change in the membership

inference accuracy on z′ after removing z, averaged over models trained without z:

PrivInf(Remove(z)⇒ z′) := E f∈F ,S⊆D
[
1(z′ ∈ S) | z /∈ S

]
This definition can be used to analyze how the removal of certain training samples (e.g.,

inliers or outliers) affects the ASR of other data points.

Following the same experimental setting as in Carlini, Jagielski, et al., 2022, we

started by removing 10% of the training set with the highest self-WaKA values before

re-evaluating the ASR on the remaining points. The success of MIAs across all data

points is compared by plotting the AUC curve on a log scale, following the authors’

recommendation (see Figure 2.23 in Appendix 2.10). As observed by Carlini and

collaborators, while the overall risk is reduced after removing certain training points,

it remains higher than the expected decrease. Similar patterns were observed when

removing points with the highest ASR or self-Shapley values, whereas random removal
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or other attribution methods resulted in no significant change in ASR reduction (see

Tables 2.6 and 2.7 in Appendix 2.10). This confirms that k-NN models exhibit similar

privacy layers, for which removing vulnerable data does not proportionally reduce the

vulnerability to privacy attacks, thus confirming the “onion effect”. The distribution of

ASR was also analyzed across all points. For CIFAR10, many points still exhibit high

ASR values close to 1.0 after removal. For the Bank, Adult and IMDB datasets, a general

shift occurs towards lower ASR values after data removal, though some points with high

ASR remain, particularly near the upper percentiles. This highlights the varying impact

of data removal on privacy risks across datasets.

Computing privacy influence (PrivInf) is computationally expensive, as it requires

removing a point z or a subset of points Z and re-evaluating privacy scores for all other

points z′ in the training set to determine which points have the most influence on their

privacy score. Instead of directly computing PrivInf, we investigated whether changes

in the ASR of the remaining points after removing 10% of the training set could be

explained by their self-attribution values. To achieve this, an approach to compute

point-wise influence on self-attribution values is needed. In particular for Shapley,

this task is non-trivial, as exact Shapley values are computed recursively, starting from

the last sorted data point (i.e., complexity of O(n). Efficiently re-computing Shapley

values after removing a point would require adapting the Shapley k-NN algorithm to

support faster recalculations. For WaKA, the situation is different as the contributions

of each point to the WaKA value for a point zi are independent and can be stored,

allowing for re-computation of the self-WaKA value in O(1) time. This provides a strong

advantage for self-WaKA over self-Shapley in terms of computational efficiency. To

compute the influence of removing a subset Z ⊆ D on the self-WaKA values—denoted

as WaKAInf(Remove(Z)⇒ z) —the contributions of each removed point z j ∈ Z on the

self-WaKA values are summed on the remaining points. The total WaKA influence is

defined as:
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WaKAInf(Remove(Z)⇒ z) =

∑
z j∈N (z)∩Z

WaKAsel f (z;D−z j)−WaKAsel f (z;D),
(2.8)

in which N (z) represents the fixed neighborhood around z, and z j corresponds to a

point that was part of the subset Z removed. If no influencing points are included, the total

influence is zero. Figure 2.9 shows the correlation between ASR change and WaKAInf,

using k=1, the value of the k parameter with the highest privacy risks. Three distinct

regimes across all datasets can be observed. In the leftmost region, points with negative

WaKAInf values correspond to negative ASR changes, indicating reduced vulnerability

after removal. In the middle, in which WaKAInf values are near zero, the ASR changes

are close to 0, suggesting little impact on privacy. Finally, in the rightmost region, higher

WaKAInf values align with positive ASR changes, indicating increased vulnerability.

Figure 2.7: Correlation between ASR and self-attribution values across different datasets for
k-NN values of k = 1 and k = 5. Self-attribution measures the extent to which a data point

contributes to its own prediction, while ASR (Attack Success Rate) represents the likelihood of a
successful membership inference attack, serving as a measure of privacy risk per point. The ASR

increases monotonically with self-attribution values in most datasets, but the behavior varies
across datasets. For example, the Bank dataset exhibits a steep increase in ASR around the 70th

percentile of self-WaKA values, while other datasets, such as IMDB, show a more gradual
augmentation. Additionally, test-attribution is less correlated with ASR compared to

self-attribution, indicating that self-attribution is a stronger predictor of privacy risk. The darker
curves represent self-attribution methods, including self-Shapley (red) and self-WaKA (blue).

CIFAR10 Bank Adult IMDB
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Figure 2.8: Comparison of data points ASR histograms at k = 1. The blue bars represent the
100% dataset scenario, while the red bars show the 90% dataset scenario after removing the
10% of points with the highest self-WaKA values. While the overall ASR distributions appear

similar, the removal of these high-risk points significantly reduces the probability of having data
points with ASR close to 100%, indicating a mitigation of extreme privacy vulnerabilities.

CIFAR10 Bank Adult IMDB
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Figure 2.9: The relationship between ASR change and total self-WaKA influence (WaKAInf) for
k = 1. Three regimes can be seen: negative WaKAInf values lead to negative ASR changes

(reduced vulnerability), medium WaKAInf values show minimal ASR change while and higher
WaKAInf values correlate with positive ASR changes (increased privacy risks). ASR histograms

before and after removal for k = 1.

CIFAR10 Bank Adult IMDB

W
aK

A
In

f

Membership inference attack through target-WaKA (t-WaKA). We have

conducted extensive experiments using target-WaKA with multiple parameters (k = 1

to 5) across all six datasets. The results of the attacks, specifically TPR at a low FPR,

are shown in Table 2.2. Additional results, including AUC curves (in log scale) and their

corresponding values, are provided in Appendix 2.10. Inspired by the confidence-based

attacks described in Ye et al., 2022a, we introduce two new attacks on k-NN: a

"confidence" attack (Conf) and calibrated confidence attack (Conf-calib). Both leverage

the target model’s confidence on each target point and compare it to that of a k-NN model

built on a small neighborhood (i.e. 100 points). For Conf, this is done with a single

k-NN, whereas Conf-calib samples multiple k-NNs (akin to using shadow models) to

calibrate the confidence score against variations in the local neighborhood. Since t-WaKA
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and LiRA share the same principles of leveraging a model’s response for membership

inference, LiRA will serve as our main point of comparison. To compute the mean AUC

and TPRs (True Positive Rates) for all FPRs (False Positive Rates) used in ROC curves,

a bootstrap approach was employed in which 48 security games are ran in parallel, using

a predefined list of seeds. In each game, the training set was split in half, with a k-NN

model trained on one half. From these two halves, 100 points were drawn at random for

evaluation. The LiRA method was implemented with 16 shadow models and although we

have tested with an increase in the number of shadow models, an early convergence was

observed across all datasets. Training a k-NN model essentially involves storing the entire

training set and optionally building an optimized structure, such as a kd-tree, to facilitate

quick neighborhood searches during inference. In our experiment, we did not use any

such structures but rather, we ordered all points with respect to the target or test point.

These experiments differ from the previous privacy evaluations, as 100 randomly

sampled points from the dataset are targeted for a specific model, repeating the process 48

times. While one might expect that using attribution values would lead to effective attacks

on that repeated security game, we found the opposite. More precisely, all attribution

methods produced an average AUC close to 0.5, indicating random performance. We

believe that this can be explained by the fact that attribution methods evaluate data points

with respect to all possible models, rather than focusing on a specific model’s loss. In

contrast, both LiRA and t-WaKA can incorporate the loss of a particular model, making

them more effective for this type of targeted attack.

Table 2.2: Comparison of TPR at FPR=0.05 among LiRA, t-WaKA, Conf, and Conf-calib for
K = 5

Dataset LiRA t-WaKA Conf Conf-calib

Adult 0.13 ± 0.17 0.13 ± 0.15 0.06 ± 0.11 0.14 ± 0.19
Bank 0.10 ± 0.16 0.10 ± 0.19 0.05 ± 0.07 0.12 ± 0.17
CelebA 0.07 ± 0.09 0.08 ± 0.12 0.06 ± 0.07 0.08 ± 0.11
CIFAR10 0.16 ± 0.24 0.15 ± 0.16 0.05 ± 0.10 0.14 ± 0.17
IMDB 0.10 ± 0.16 0.14 ± 0.18 0.06 ± 0.11 0.12 ± 0.19
Yelp 0.11 ± 0.17 0.13 ± 0.17 0.07 ± 0.09 0.10 ± 0.16
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For almost all values of k, the AUCs of LiRA, t-WaKA, and Conf-calib are remarkably

comparable. Following the recommendation of Carlini, Chien, et al. to assess the success

of membership inference attacks, we focus on TPR at a low FPR (5As the value of the

parameter k increases, the success rate of the attacks decreases similarly for all three

methods. We observed that t-WaKA performs slightly worse and sometimes a little better

than LiRA, but overall, the results are very close (see Table 2.2). The Conf attack performs

worse than the other methods, but Conf-calib performs just as well as LiRA and t-WaKA,

sometimes even surpassing them. Interestingly, t-WaKA remains the strongest attack on

textual datasets (IMDB and Yelp). In some scenarios Additionally, the results confirmed

that t-WaKA shows significant correlation in rankings using the Spearman test, indicating

consistent performance across different settings (Table ??).

Note that as k increase there is less and less rank correlation with LiRA. This outcome

is likely due to the same number of shadow models being used for all k, but further

investigation is needed to confirm this.

In terms of execution time, t-WaKA demonstrates significant efficiency compared to

LiRA. We report the execution times for attacking the IMDB dataset across all values

of k from 1 to 5. IMDB is the largest dataset we experimented with, featuring s-BERT

embeddings of size 383, in contrast to the custom CIFAR10 embeddings, which are of

size 191. For this dataset, t-WaKA completed the experiment in approximately 140.07

seconds, significantly faster than LiRA, which took 1708.83 seconds. Both methods were

run on an Apple M1 Pro (16 GB, 8 cores), utilizing all available cores through a single

Python process managed by scikit-learn. LiRA employed 16 shadow k-NN models using

kd-trees, while t-WaKA reused the same k-NN model across all security games. For

fairness that, re LiRA’s implementation is model-agnostic and not optimized specifically

for k-NN classifiers.

To better understand the distinction between high self-attribution points and high

test-attribution points, we conducted an experiment involving data minimization on

synthetic data (see Figure 2.24 in Appendix 2.10) using a dataset generated with the

scikit-learn library. Both test-Shapley and self-Shapley values were computed for
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a k-NN model with k = 5. Each iteration consists in removing the top 20% of highest

value points, ranked by their Shapley values. The results highlights a clear distinction

between the two types of Shapley values. More precisely, test-Shapley values tend to

concentrate between the decision boundary and the outer edges of the data distribution

while self-Shapley values consistently highlight points that lie directly on the decision

boundary. This underscores the effectiveness of self-Shapley values in identifying critical

points near the decision boundary, which seem to be more vulnerable to membership

inference attacks in k-NNs.

2.5 Discussion and Conclusion

In this work, we have introduced WaKA, a novel attribution method specifically

designed for k-NN classifiers that also functions as a MIA. WaKA leverages the

1-Wasserstein distance to efficiently assess the contribution of individual data points to the

model’s loss distribution. Our motivation for this paper stemmed from the realization that

while membership inference and data attribution both focus on point-wise contributions,

they are related to very different concepts, namely privacy and value. Indeed, membership

inference aims to measure information leakage, whereas data valuation seeks to extract

intrinsic insights about data utility. Recognizing this distinction, we have design an

attribution method inspired by membership inference principles, one that could serve

multiple purpose. The insights from this study emphasize the need for further exploration

of the relationship between model parameters, data attribution and privacy.

Data Valuation. WaKA proves to be highly effective for utility-driven data

minimization by identifying both low- and high-value points. This targeted approach

allows for optimized dataset refinement. Our experiments further demonstrate WaKA’s

robustness over Data Shapley Value (DSV) in the context of imbalanced datasets. This

makes WaKA a versatile and reliable tool for data valuation.

Self-attribution methods. Due of its relationship with MIAs, WaKA is particularly

interesting as a self-attribution method. We also introduced the self-Shapley term as the

110



DSV of a point with respect to itself, a concept that has not been discussed in the literature

to date. From an utilitarian point of view, self-Shapley value could be particularly

appealing to individuals who prioritize their own utility over the collective utility captured

by average DSV calculated using a test set, especially when their main interest is whether

contributing their data directly improves their own prediction rather than the model’s

overall performance. For example, in the context of a financial institution, an individual

may only be willing to provide their data if it directly improves the accuracy of predictions

that affect them personally, such as determining their creditworthiness. Self-Shapley

offers individuals a way to know if their data would be beneficial for them only, making

it a valuable tool in cases where personal utility is prioritized over collective fairness

(i.e., favoring a greedy strategy). Self-WaKA correlates with self-Shapley, and thus

it can be used for similar purposes. However, additionally Self-WaKA also brings a

more direct rationale concerning membership privacy, due to its relation with LiRA.

This demonstrates that privacy is not always directly correlated with value, as it largely

depends on how value is defined. In the case of k-NN, we showed it is more closely tied to

“self-utility” rather than overall contribution to the model’s generalization performance.

Privacy insights and the onion effect. In our evaluation, we confirmed the “onion

effect” previously described by Carlini and co-authors, in which removing certain

data points only partially mitigates the risk of MIAs, leaving the remaining data still

vulnerable. WaKA, not only corroborates this phenomenon but also provides an efficient

approach to measuring privacy risk in k-NN models. This aligns with recent work by Ye

et al., 2022a, which underscores that membership inference risk is influenced not only

by individual data points but also by their neighborhood. If k-NN is used as part of a

Machine Learning pipeline—such as combining embeddings with k-NN for downstream

tasks—WaKA can offer a way to understand membership privacy risks. We leave as future

work the exploration to whether self-WaKA values and WaKA influences can generalize

to other types of models, such as interpreting privacy risks in the last layer of a large

language model (LLM) or other deep learning architectures.

Ethical Considerations. The development of WaKA raises ethical concerns.
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Adversaries could potentially exploit WaKA to selectively identify and target particularly

vulnerable data points, either to enhance inference attacks or to manipulate datasets

to maximize privacy leakage. However, WaKA also provides defensive capabilities,

enabling practitioners to identify and remove high-risk data points or design

privacy-aware data-selection strategies. It is essential that attribution insights derived

from methods like WaKA be leveraged responsibly, aiming to strengthen privacy and

avoid introducing new vulnerabilities.

Protection against membership inference attack. Our experiments reveal that

increasing the parameter k in k-NN models has a significant effect on reducing the success

rate of MIAs. We believe that this issue is under-explored in the current literature and

warrants further investigation. In particular, the hybrid models employed in our study,

such as the combination of s-BERT and k-NN used on the IMDB and Yelp datasets,

suggest that the parameter k could be strategically use as a defense mechanism against

membership inference. In addition, we believe that WaKA values could provide valuable

insights for data removal task for other types of models, such as neural networks. While

our current research focuses on k-NN classifiers, we will also investigate the extension

of this approach to neural networks as future work. In particular, testing WaKA’s

applicability to these contexts could significantly enhance the understanding of data

attribution and its impact on model robustness and privacy.
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2.6 Appendix: Datasets

2.7 Appendix: Notations

Symbol Description
W1(µ,ν) 1-Wasserstein distance between two probability distributions µ and ν .

L Distribution of loss values for k-NN models trained on all possible
subsets of the dataset D.

L−zi Distribution of loss values for k-NN models trained on subsets of D
excluding point zi.

L Finite set of possible discrete loss values for a k-NN classifier.
F Space of all k-NN models trained on subsets of D.

F−zi Space of all k-NN models trained on subsets of D excluding point zi.
Q Uniform distribution over models in F trained on subsets S with zi ∈

S.
Q−zi Uniform distribution over models in F trained on subsets S with zi /∈

S.
ℓ( f ) Loss function mapping a k-NN model f to a real-valued loss.
ℓ#Q Push-forward distribution of Q through the loss function ℓ.
ℓ#Q−zi

Push-forward distribution of Q−zi through ℓ.
Fℓ#Q(l) CDF of L evaluated at loss value l.

Fℓ#Q−zi
(l) CDF of L−zi evaluated at loss value l.

F+,F− Partition of F into subsets with losses ≥ or < the target loss ℓ(zi)
∗.

F+
−zi

,F−
−zi

Same partition defined on F−zi .
WaKA(zi) Wasserstein k-NN Attribution (WaKA) score for point zi, i.e.

W1(L,L−zi).
t-WaKA(zi) Target-WaKA score for zi, the difference in W1 distances across the

partitions F+ and F− .

Table 2.5: Summary of notation used throughout the chapter.

2.8 Appendix: Algorithm 1 Details and Proof

To compute the differences between the loss distributions L and L−zi , we first need to

calculate the number of possible subsets S of the training set D that lead to a particular

loss value l. The loss is computed using the k-nearest neighbors of a test point zt .
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For each subset S, we are interested in how the inclusion of the point zi affects the

loss, which happens when zi pushes out a point z j from the k-th position to the (k+1)-th

position, i.e. α j(D)> αi(D).

To formalize this, we define the count C−zi(l,z j) for subsets that exclude zi and yield

a loss l as:

C−zi(l,z j) = #
{

S⊆ D | zi /∈ S,αk(S) = α j(D), ℓ(zt ;S,k) = l
}
·2N−1− j.

where:

• αk(S) = α j(D) means that the point z j is both the j-th sorted point w.r.t zt and the

k-th nearest neighbor in the subset S,

• ℓ(zt ;S,k) is the loss function parameterized by the subset S and the number of

neighbors k,

• The factor 2N−1− j accounts for the number of possible supersets of S, considering

the positions of other points in the training set.

Similarly, C(l,z j) counts the subsets where zi is included, with z j now at (k+ 1)-th

position, and the loss is l.

C(l,z j) = #
{

S⊆ D | zi ∈ S,αk+1(S) = α j(D), ℓ(zt ;S,k) = l
}
·2N− j,

Note that we are considering the same subsets as before but with the inclusion of zi.

The normalized contribution to the frequency of the loss value l, denoted as δ (l,z j) and

δ−zi(l,z j), is obtained by dividing C(l,z j) and C−zi(l,z j) by the total number of possible

subsets. Specifically:

δ (l,z j) =
C(l,z j)

2N , δ−zi(l,z j) =
C−zi(l,z j)

2N−1 .

To compare the differences between the loss distributions L and L−zi , we sum the

differences in the normalized contributions of the loss values in both cases:
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∑
l∈L

∑
z j

δ (l,z j)−δ−zi(l,z j)

Here, L is the set of possible loss values
{

0, 1
k ,

2
k , . . . ,1

}
, and the summation over z j

accounts for all points that can occupy the k-th nearest neighbor position in the subsets.

We simplify the term inside the summation as follows:

C ·2N− j

2N −C−zi ·2N−1− j

2N−1 =
1

2N−1 ·
(

C
2
·2N− j−C−zi ·2

N−1− j
)

(2.9)

=
1

2N−1

(
C ·2N−1− j−C−zi ·2

N−1− j) (2.10)

=
2N−1− j

2N−1 (C−C−zi) (2.11)

=
C−C−zi

2 j . (2.12)

Thus, the difference between the normalized contributions simplifies to
C−C−zi

2 j , where

C and C−zi are shorthand notations for the counts of subsets for a given loss value l with

and without zi, and a given point z j. Notice that when z j and zi have the same label, i.e.

y j = yi, the k-nearest neighbors are identical, thus C−C−zi = 0.

By applying this simplification to the previous expression, we have:

∑
l∈L

∑
z j

δ (l,z j)−δ−zi(l,z j) = ∑
l∈L

∑
z j

yi ̸=y j

C(l,z j)−C−zi(l,z j)

2 j .

The 1-Wasserstein distance between the loss distributions L and L−zi is defined as:

W1(L,L−zi) = ∑
l∈L

∣∣∣FL(l)−FL−zi
(l)

∣∣∣ ·∆l,

where FL(l) and FL−zi
(l) represent the cumulative distribution functions for L and

L−zi evaluated at the loss value l, and ∆l = 1
k is the difference between successive loss

values.

We know that the cumulative distribution functions FL(l) and FL−zi
(l) can be described

as the sum of their respective normalized contributions up to the loss value l. However,
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since we are ultimately interested in the differences between the normalized contributions

δ (l,z j) and δ−zi(l,z j) (rather than computing the cumulative distributions explicitly), we

can substitute the expression for the difference of these terms directly into the Wasserstein

distance formula.

Therefore, instead of expressing the 1-Wasserstein distance in terms of cumulative

distributions, we can express it directly as the sum of the absolute differences in the

normalized contributions:

W1(L,L−zi) =
1
k ∑

l∈L

∣∣∣∣∣∑z j

(
δ (l,z j)−δ−zi(l,z j)

)∣∣∣∣∣ .

Substituting the earlier expression for δ (l,z j)−δ−zi(l,z j), we get:

W1(L,L−zi) =
1
k ∑

l∈L

∣∣∣∣∣∣∣∣ ∑
z j

yi ̸=y j

C(l,z j)−C−zi(l,z j)

2 j

∣∣∣∣∣∣∣∣ .
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2.9 Appendix: Utility-driven Data Minimization Results and

Analysis

Figure 2.10: Results for the CIFAR10 dataset across various metrics and tasks. Rows show data
addition and removal tasks, while columns display Accuracy, Macro-F1, and Label Ratio

Evolution (for data removal only).
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Figure 2.11: Analysis of τ values for the CIFAR10 dataset computed using the WaKAadd and
WaKArem formulas. τ is varied from 0.0 to 1.0 in increments of 0.2.

Data Addition Data Removal

Figure 2.12: Results for the Adult dataset across various metrics and tasks. Rows show data
addition and removal tasks, while columns display Accuracy, Macro-F1, and Label Ratio

Evolution (for data removal only).
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Figure 2.13: Analysis of τ values for the Adult dataset computed using the WaKAadd and
WaKArem formulas. τ is varied from 0.0 to 1.0 in increments of 0.2.

Data Addition Data Removal

Figure 2.14: Results for the Yelp dataset across various metrics and tasks. Rows show data
addition and removal tasks, while columns display Accuracy, Macro-F1, and Label Ratio

Evolution (for data removal only).
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Figure 2.15: Analysis of τ values for the Yelp dataset computed using the WaKAadd and
WaKArem formulas. τ is varied from 0.0 to 1.0 in increments of 0.2.

Data Addition Data Removal

Figure 2.16: Results for the IMDB dataset across various metrics and tasks. Rows show data
addition and removal tasks, while columns display Accuracy, Macro-F1, and Label Ratio

Evolution (for data removal only).

Accuracy Macro-F1 Label Ratio Evolution

D
at

a
A

dd
iti

on
D

at
a

R
em

ov
al

120



Figure 2.17: Analysis of τ values for the IMDB dataset computed using the WaKAadd and
WaKArem formulas. τ is varied from 0.0 to 1.0 in increments of 0.2.

Data Addition Data Removal

Figure 2.18: Results for the CelebA dataset across various metrics and tasks. Rows show data
addition and removal tasks, while columns display Accuracy, Macro-F1, and Label Ratio

Evolution (for data removal only).
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Figure 2.19: Analysis of τ values for the CelebA dataset computed using the WaKAadd and
WaKArem formulas. τ is varied from 0.0 to 1.0 in increments of 0.2.

Data Addition Data Removal

Figure 2.20: Results for the Bank dataset across various metrics and tasks. Rows show data
addition and removal tasks, while columns display Accuracy, Macro-F1, and Label Ratio

Evolution (for data removal only).
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Figure 2.21: Analysis of τ values for the Bank dataset computed using the WaKAadd and
WaKArem formulas. τ is varied from 0.0 to 1.0 in increments of 0.2.

Data Addition Data Removal
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2.10 Appendix: Privacy Evaluation and Auditing Results
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Figure 2.22: Correlation between self-WaKA values (k = 1) and ASR for logistic regression
models. The results show a weaker correlation compared to k-NN models but a significant

relationship still exists.

CIFAR10 Bank Adult IMDB

Figure 2.23: Comparison of AUC curves in log-log scale for privacy scores at k = 1. The blue
line represents the 100% dataset scenario while the red line shows the 90% dataset scenario.

CIFAR10 Bank Adult IMDB

Table 2.6: AUC of LiRA before and after removing 10% of the dataset, using various attribution
methods.

Dataset K AUC 100% AUC accuracy (90%) AUC self-waka (90%) AUC self-shapley (90%) AUC test-waka (90%) AUC test-shapley (90%)
adult 1 0.731 0.610 0.605 0.604 0.696 0.704
adult 5 0.604 0.566 0.555 0.555 0.594 0.598
bank 1 0.810 0.527 0.525 0.525 0.597 0.608
bank 5 0.691 0.524 0.512 0.510 0.552 0.558

CIFAR10 1 0.708 0.752 0.749 0.747 0.819 0.826
CIFAR10 5 0.596 0.626 0.631 0.628 0.696 0.699

IMDB 1 0.610 0.671 0.666 0.666 0.740 0.754
IMDB 5 0.555 0.592 0.580 0.582 0.611 0.617

Table 2.7: TPR at 5% FPR of LiRA before and after removing 10% of the dataset, using various
attribution methods.

Dataset K TPR 100% TPR accuracy (90%) TPR self-waka (90%) TPR self-shapley (90%) TPR test-waka (90%) TPR test-shapley (90%)
adult 1 0.217 0.137 0.133 0.134 0.213 0.216
adult 5 0.080 0.076 0.069 0.072 0.074 0.082
bank 1 0.373 0.077 0.075 0.075 0.144 0.152
bank 5 0.189 0.070 0.062 0.060 0.079 0.078

CIFAR10 1 0.221 0.284 0.279 0.276 0.383 0.390
CIFAR10 5 0.081 0.123 0.125 0.123 0.197 0.199

IMDB 1 0.154 0.150 0.144 0.142 0.219 0.228
IMDB 5 0.080 0.066 0.060 0.059 0.090 0.096
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Figure 2.24: Experiment of data minimization on the synthetic data Moons generated using the
scikit-learn library for a k-NN model with k = 5. The darker the points, the higher the
corresponding Shapley values. The results show that higher test-Shapley values tend to

concentrate between the decision boundary and the external boundaries of the data, while higher
self-Shapley values consistently identify points lying directly on the decision boundary.
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Table 2.8: Average ASR with Standard Error for k = 1, k = 5 and Logistic Regression (LogReg)

Dataset K=1 K=5 LogReg
Adult 0.625 ± 0.002 0.561 ± 0.001 0.512 ± 0.001
Bank 0.56 ± 0.001 0.531 ± 0.001 0.503 ± 0.0004

CIFAR 0.702 ± 0.001 0.621 ± 0.001 0.541 ± 0.001
IMDB 0.65 ± 0.002 0.573 ± 0.001 0.529 ± 0.001
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LiRA t-WaKA

Conf Conf-calib

Figure 2.25: CIFAR10: Membership Inference Attacks (MIA) AUC and ROC curves (in
log-scale) using LiRA, t-WaKA, confidence, and calibrated confidence attacks for k values

between 1 and 5.
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LiRA t-WaKA

Conf Conf-calib

Figure 2.26: Bank: Membership Inference Attacks (MIA) AUC and ROC curves (in log-scale)
using LiRA, t-WaKA, confidence, and calibrated confidence attacks for k values between 1 and 5.
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LiRA t-WaKA

Conf Conf-calib

Figure 2.27: Adult: Membership Inference Attacks (MIA) AUC and ROC curves (in log-scale)
using LiRA, t-WaKA, confidence, and calibrated confidence attacks for k values between 1 and 5.
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LiRA t-WaKA

Conf Conf-calib

Figure 2.28: IMDB: Membership Inference Attacks (MIA) AUC and ROC curves (in log-scale)
using LiRA, t-WaKA, confidence, and calibrated confidence attacks for k values between 1 and 5.
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LiRA t-WaKA

Conf Conf-calib

Figure 2.29: Yelp: Membership Inference Attacks (MIA) AUC and ROC curves (in log-scale)
using LiRA, t-WaKA, confidence, and calibrated confidence attacks for k values between 1 and 5.

131



LiRA t-WaKA

Conf Conf-calib

Figure 2.30: Celeba: Membership Inference Attacks (MIA) AUC and ROC curves (in log-scale)
using LiRA, t-WaKA, confidence, and calibrated confidence attacks for k values between 1 and 5.
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Chapter 3

Data Valuation via an Information

Disclosure Game

Abstract 1

Data valuation frameworks, such as data Shapley values, quantify the contribution

of individual data points within a dataset to a particular predictive performance metric.

As such, they can be used by organizations to redistribute value in a fair manner to

individuals. However, computing value directly from contributions often results in

some individuals receiving nothing, creating a catch-22 in which people may withdraw

consent if their data is deemed worthless. To address this, we propose a game-theoretic

framework— the Information Disclosure Game—between a Data Owner (DO) and a

Data Consumer (DC). Instead of directly releasing the full raw data, the DO discloses

information progressively using Laplacian noise under a differential privacy model. In

this work, we focus on k-nearest neighbors (k-NN) due to its direct relation between

individual points and predictive performance, although our framework is more generic.

For this setting, we simulate plausible DC behaviors, including strategies guided by

data Shapley values or multi-armed bandit exploration. In particular, we empirically
1This essay has been submitted to the Conference on Information and Knowledge Management (CIKM

2025). First author: Patrick Mesana (HEC Montréal); co-authors: Sébastien Gambs (UQAM) and Gilles
Caporossi (HEC Montréal).



validate our approach on a Yelp review helpfulness prediction task using text embeddings,

demonstrating that data valuation inherently incurs a cost, which is made explicit in the

DC’s budget consumption strategy.

3.1 Introduction

Data valuation is an emerging field in machine learning that seeks to address the

fundamental question about the worth of data. It has recently gained significant attention

with the development of Data Shapley Value (DSV, Jia, Dao, Wang, Hubis, Hynes, et al.,

2019a) as well as due to its fundamental applications, such as data summarization and

efficient data acquisition, as demonstrated by Ghorbani and Zou. More precisely, these

applications suggest that a significant proportion of the data points in a training set are

not needed to achieve good performance in terms of predictive utility. This insight also

opens the door to considerations around privacy – since minimizing the amount of data

used might imply a potential privacy gain — although this perspective does not account

for all privacy risks, such as the “onion effect” described by Carlini, Jagielski, et al.

Nevertheless, data valuation aligns naturally with a utilitarian perspective on privacy.

In data valuation frameworks, each data point is treated analogously to a rational agent

seeking to maximize its own utility. This resonates closely with the approach taken by

Differential Privacy (DP, Dwork, 2006), in which privacy mechanisms are designed to

limit the privacy risks incurred by individual participants, thereby reducing their incentive

to withhold information (McSherry and Talwar, 2007). While DP is often associated with

protecting personal information, its applications extend beyond privacy. For instance, DP

learning algorithms hide the influence of one training point on the model performance and

bound data value estimation (Jia et al., 2021).

However, using DSV directly as the foundation for a pricing mechanism raises the

following concern: if only a small subset of data points is necessary to achieve high

utility, certain data points (e.g., specific individuals for scenarios involving personal

information), will receive no fraction of the generated value. This leads to a data
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Figure 3.1: Illustration of the Information Disclosure Game. A Data Owner (DO) holds a
private dataset and releases information to a Data Consumer (DC) by adding Laplacian noise to

data points under ε-differential privacy. The DC incrementally acquires these noisy version of
the data points, denoise them using an average, and train a model to reach a utility target. In this

work, we focus on non-parametric k-Nearest Neighbors (k-NN).

inclusiveness concern, as individuals that consent to share their data with an organization

usually expect a benefit in return. However, if their data is not deemed valuable enough

to be used, they might receive no benefits. We call this the hidden cost of data valuation.

Specifically, identifying which data points have little or no value usually requires first

collecting a sufficiently large set of data points to compute the data value estimation.

To address this paradox, we introduce a game theoretical framework with two agents:

a Data Owner (DO) – responsible for managing data from individuals – and a Data

Consumer (DC) – who seeks to use data to generate value, such as training machine

learning models. Our inspiration comes from the tensions that can arise in organizations

between data governance teams (i.e., the DOs) and teams focused on creating value from

data (i.e., the DCs). While the DO’s implicit goal is to value data in a responsible and

fair manner, the DC is primarily concerned with maximizing utility, which might involve

using only a subset of the data.

More explicitly, we characterize it as a Stackelberg game (Fudenberg and Tirole, 1991;

Simaan and Cruz Jr, 1973), wherein the DO acts as a leader deciding what information to
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disclose by leveraging DP as a release mechanism, and the DC acts as a follower making

optimal decisions based on the disclosed information. Figure 3.1 provides a high-level

overview of the Information Disclosure Game (IDG).

Outline. The remainder of this paper is structured as follows. First in Section 3.2, we

review the literature on cooperative game theory applied to data valuation and we review

the utilitarian view of DP. Afterwards in Section 3.3, we provide an overview of our IDG

framework by defining the interactions between the DO and DC as well as their respective

objectives and constraints.

More precisely, the partial information disclosure process is modeled as an iterative

decision-making problem from the DC point of view, in which he must balance

exploration (i.e., identifying high-value data points) and exploitation (i.e., minimizing

cost while achieving target utility). Although the DC’s problem is iterative, the overall

structure of the game remains a two-phase Stackelberg game. In Section 3.4, we present

a concrete case study focused on review helpfulness using the Yelp dataset. To ensure

computational feasibility, we use pretrained embeddings combined with a k-Nearest

Neighbors (k-NN) classifier.

Under four different data acquisition strategies, our analysis aims to quantify the

hidden cost of valuation, assess whether incentives could lead the DC to acquire data

points different from those favored by Shapley-based approaches, and examine how the

addition of noise affects privacy leakage from the resulting models. In Section 3.5, we

discuss extensions to differentiable models and private learning mechanisms. Finally, in

Section 3.6, we summarize our contributions and suggest directions for future research.

3.2 Background

3.2.1 Data Valuation

In cooperative game theory, an imputation is a way to distribute the total value of a

game among its players (Osborne and Rubinstein, 1994).

136



In the context of data valuation, each data point in a dataset D is treated as a player,

and a value function v : 2D→ R measures the utility (e.g., accuracy or loss reduction) of

any subset D′ ⊆ D. The objective is to find an imputation that fairly allocates the total

value v(D) among individual data points based on their contributions. Several approaches

have been explored for data valuation—each with different fairness, computational and

interpretability trade-offs—including Data Shapley (Ghorbani and Zou, 2019; Jia, Dao,

Wang, Hubis, Hynes, et al., 2019a), Data Banzhaf (J. T. Wang and Jia, 2023), Beta

Shapley (Kwon and Zou, 2022) and the Core (Yan and Procaccia, 2021).

Data Shapley Value. Formally, the Shapley value of a data point zi ∈ D is given by:

φzi(v) = ED′∼P(D\{zi})
[
v(D′∪{zi})− v(D′)

]
,

in which D′ is a subset of D \ {zi} sampled uniformly at random and v(D′) is the value

function evaluated on D′. The Shapley value thus quantifies the expected incremental

contribution of each data point across all possible subsets. The uniqueness of the Shapley

value can be derived from satisfying four foundational axioms: Efficiency (i.e., the

total value is distributed among all players), Symmetry (i.e., identical contributions are

rewarded equally), Dummy (i.e., players that contribute nothing receive zero value) and

Linearity (i.e., the Shapley values from two games can be combined linearly).

Data valuation methods are primarily evaluated through tasks such as data removal

and data acquisition, in which data points are ranked based on their values to guide

the removal of less valuable ones or the acquisition of the most valuable ones. A key

assumption in these settings is the presence of a central entity, such as a curator or

custodian, responsible for data collection and aggregation. This assumption is similar

to the global setting of DP. One of the significant applications of data valuation is pricing

in data marketplaces (Jia, Dao, Wang, Hubis, Hynes, et al., 2019b; Pei, 2022; Tian et al.,

2022; Xia et al., 2023), in which the Shapley value framework provides a theoretically

grounded approach to determine data prices, with the underlying hypothesis being that
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data points contributing to multiple subsets should lead to a higher value, reflecting the

demand of the task at hand.

Data selection. Methods like data Shapley can serve as a foundation for data selection

strategies. Indeed, by efficiently estimating which examples are most beneficial,

practitioners can curate a smaller high-quality training set. However, its effectiveness

relies on the structure of the utility function and is particularly well-suited when

utility follows a monotonically transformed modular form (J. T. Wang, Yang, et al.,

2024). A notable challenge in making data valuation practical for selection is

also the high computational cost of estimating data values, especially for models

with high capacity. Methods like G-Shapley (Ghorbani and Zou, 2019) tackle this

by leveraging gradient-based approximations instead of costly combinatorial subset

evaluations. Similarly, reinforcement learning approaches (Yoon et al., 2020) offer

another way to optimize data valuation dynamically during training. For k-NN classifiers,

an exact formulation of the Shapley value exists, as proposed in Jia, Dao, Wang, Hubis,

Gurel, et al., 2019, which drastically reduces the complexity to O(N logN), for N the

number of data points. This exact formulation avoids the need to evaluate individually all

subsets by exploiting the k-NN structure.

3.2.2 Differential Privacy

Differential Privacy (DP, Dwork, 2006) provides a mathematically rigorous privacy

framework by ensuring that the inclusion or exclusion of any individual in a dataset does

not significantly alter the probability distribution of outputs. For instance, the trade-off

between privacy and utility can be controlled through noise addition, thus reducing the

re-identification risk and providing provable privacy guarantees.

Let D = {z1,z2, . . . ,zn} be a dataset consisting of n individual data points. Formally, a

randomized mechanism M satisfies (ε,δ )-differential privacy if, for any dataset D, any
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data point zi ∈ D, and any subset of possible outputs O, the following holds:

Pr[M(D) ∈ O]≤ eε Pr[M(D\{zi}) ∈ O]+δ ,

in which ε represents the privacy loss and δ allows for a small probability that strict

ε-differential privacy does not hold. A key feature of DP is its composability property,

which states that if all individual mechanisms in a system satisfy differential privacy, then

their combination also satisfies differential privacy (Dwork and Roth, 2014a).

This modular property enables the design of complex privacy-preserving mechanisms

and allows to set up trade-offs between privacy and accuracy, helping organizations

choose mechanisms optimizing utility while maintaining strong privacy guarantees

(McSherry and Talwar, 2007).

Utilitarian View. Privacy concerns are not solely about protection; they also involve

the incentives individuals face when deciding whether to share their data. A fundamental

concept in mechanism design is the Revelation Principle (Myerson, 1983), which asserts

that if an outcome can be achieved through any mechanism (truthful or not), there exists

a direct revelation mechanism in which agents truthfully reveal their private information

to achieve the same outcome. The principles of truthfulness in mechanism design also

have direct applications in privacy-preserving mechanisms. For instance, as put forward

by McSherry and Talwar, privacy-preserving mechanisms can be viewed as social choice

games in which privacy is modeled as an explicit cost, similar to the cost of lying. DP

(Dwork, 2006) plays a key role in these settings, offering guarantees of approximate

truthfulness. In this perspective, agents are incentivized to participate truthfully because

their data is protected with formal guarantees that limit how much information can be

inferred about them from the output.

Although cooperative game-theoretic approaches to data valuation offer valuable

insights and practical tools, they do not take into account the cost of valuation nor the

incentives from individuals. To address this concern, we introduce a framework that
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explicitly models these antagonistic objectives, offering a different perspective on data

valuation.

3.3 Information Disclosure Game

System Model. We focus on modeling the interactions between two agents: a Data

Owner (DO) and a Data Consumer (DC). The DO has the broad mission to valorize data

(e.g., via analytics or monetization), ensuring that data receives appropriate valuation

while accounting for concerns such as individual privacy. Meanwhile, the DC seeks

to optimize utility—often by acquiring data points at minimal cost. In our framework,

pricing mechanisms are designed to influence the DC’s strategy, enabling the DO to shape

acquisition behaviors in a way that balances utility and inclusiveness considerations.

These interactions are formalized as a two-phase Stackelberg game, in which the DO

acts as a leader by setting how to disclose information and at what price, and the DC, as a

follower, responds through strategic data acquisition.

To begin, consider the scenario of complete information disclosure, which leads

to implementation challenges if the objective is to achieve higher data inclusiveness

compared to the Shapley valuation method. In this setting, the DO provides raw data

points (i.e., without the addition of noise), offering full utility per data point to the

DC. All acquired data points are released simultaneously in a single batch, limiting the

DO’s ability to influence acquisition dynamics. The interactions between the DO and

the DC can be modeled using microeconomic principles, focusing on a pricing strategy

that influences the DC’s purchasing decisions. The DO aims to maximize the DC’s

minimized total cost by setting prices, considering the DC’s optimization behavior. To

remain relatively close to the Shapley valuation, we assume a simple pricing structure that

uses the Shapley value as a base price while incorporating a privacy cost as a function of

this base price. We further assume that the DO communicates the Shapley values of all

data points to the DC at no cost, providing guidance for the DC’s acquisition decisions.
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The DO sets a price pi for each data point zi, which is composed of two components:

pi = bi + ci,

in which bi is the base price of data point i, representing its intrinsic value while ci is

the privacy cost associated with data point i, reflecting the individual’s additional demand

for compensation when aware of the data’s value to the DC. The base price bi is set to be

equal to the φzi:

bi = φzi.

Recall that DSV quantifies the contribution of each data point to the overall utility of the

model, serving as a fair baseline price. In its general form, we can model the privacy cost

ci as a function of the base price and a parameter vector θ that controls how the privacy

cost scales with respect to the base price:

ci = f (φzi,θ),

DC’s Objective. Given the prices pi, the DC aims to minimize the total cost of

purchasing data points while achieving at least the target utility Utarget:

min
{xi}

CDC = ∑
i

pixi

s.t. ∑
i

φzixi ≥Utarget,

xi ∈ {0,1}, ∀i.

DO’s Objetive. The DO seeks to maximize the DC’s minimized total cost by choosing

the optimal γ and θ , anticipating the DC’s response:

max
θ

{
C∗DC = min

{xi}
∑

i
pixi

}
,

The DO adjusts θ to influence the DC’s data selection, ensuring feasibility. Assume

for instance that the cost function has a simple form such as f (φzi) = γφ θ
zi

, the acquisition
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price of data point i becomes φzi + γφ θ
zi

. When the privacy cost is zero or constant, the

cost-effectiveness ratio per point does not change because the price for a point is either

equal or proportional to φzi . The optimal selection process involves ranking data points in

descending order of their value and selecting the smallest subset such that:

k

∑
j=1

v j ≥Utarget.

Only when θ > 1, that DO can influence DC by introducing a non-uniform

cost-effectiveness across data points, in which higher-value points incur

disproportionately larger costs. Although this approach provides a straightforward

pricing mechanism for releasing data, it has several significant limitations. First,

releasing the complete data set compromises privacy, as individuals have their exposure

to privacy risks increased as well as a diminishing control over their personal information.

Second, employing a static valuation method locks in the data’s value at a single point

in time, failing to account for future shifts in utility or opportunities for renegotiation.

Lastly, despite the ability of pricing parameters to guide the acquisition of certain data

points, the binary nature of these acquisition decisions inevitably results in some data

points being excluded, raising concerns about data inclusiveness. To address these

challenges, we propose to depart from classical pricing models by incorporating the

privacy costs into the points themselves through the use of DP in an iterative release

process.

Partial Information Disclosure Game. In this setting, the DO aims to incentivize

the DC by adding noise to the data or learning process at each iteration, using a fixed

differential privacy budget per data point per iteration, denoted as ε . Crucially, the DC

does not know the Shapley values of the data points a priori and must infer their value

over time through the noisy feedback received during the iterative acquisition process.

The DO faces two strategic decisions: (1) determining the privacy budget ε allocated for

querying a single data point and (2) establishing the total number of queries T that can be
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made on each data point. The DC attempts to minimize the total budget spent to achieve

the target utility while the DO aims to maximize this budget.

At each iteration t, the DC selects a subset of data points St to query or use in the

learning process. For each selected data point zi ∈ St , the DC incurs a cost associated

with the differential privacy budget ε used to obtain the noisy version of the data point

or to perform a differentially private update. If noise is added directly to the data, the

mechanism is similar to Local Differential Privacy (LDP) Cormode et al., 2018; N. Wang

et al., 2019, with the exception that it is applied in a centralized setting since the DO

has already collected the data. In this scenario, noise is added directly to individual data

points before they are used in the learning process. A benefit of this setting is that it does

not require any specific model type, making it particularly suitable for non-parametric

models such as k-NN, which rely on access to raw data points for making predictions.

Additionally, since the data is centralized, noise can be calibrated based on the local

sensitivity of the dataset, which measures the maximum impact that a single data point can

have on a given function, allowing for more precise noise addition compared to traditional

LDP.

By configuring the maximum budget BMAX, the DO directly shapes the trade-offs

between privacy and utility within the learning process. A higher value of ε allows

for more accurate results by reducing noise but comes at the cost of increased privacy

in the form of information leakage. Conversely, a lower ε enhances privacy but might

degrade model performance. Similarly, the total number of iterations T directly affects

how frequently data points are accessed. The budget spent by the DC over all iterations

is:

B = ε×
T

∑
t=1
|St |,

in which ε is the fixed differential privacy budget per data point per iteration, |St | is the

number of data points selected by the DC at iteration t and finally T is the total number of

iterations until the DC achieves the target utility Utarget or reaches TMAX. By setting ε and
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TMAX, the DO establishes the maximum budget BMAX per point, which is determined as:

BMAX = TMAX× ε

The DC is confronted with a data selection optimization problem, his objective being

to select the most valuable data points to achieve a predefined utility target while spending

the least budget possible.

DC’s Objective. Formally, the DC aims to minimize the budget spent while achieving

the target utility, which can be formalized by the following optimization problem:

min
{St}

ε×
T

∑
t=1
|St |,

subject to:

U (T ) ≥Utarget and T ≤ TMAX,

in which ε is the privacy budget per data point per iteration, |St | is the number of data

points selected at iteration t and T is the number of iterations required to meet the target

utility Utarget.

DO’s Objective. The DO’s objective can be framed as a max-min problem again, in

which he seeks to maximize the minimum budget spent by the DC under the constraints

of the DC’s behavior while also ensuring a balanced spread of spending across data points.

We assume that Tmax plays a key role in this distribution as increasing Tmax allows for more

iterations, potentially leading to a more even allocation of the budget across data points

and increasing overall spending. By controlling ε , the DO can further adjust the trade-off

between privacy and utility as a higher ε allows for more accurate data contributions (less

noise) but increases information leakage, whereas lowering ε raises the DC’s costs. The

joint optimization of ε and Tmax enables the DO to shape the DC’s acquisition strategy

and effectively balance privacy and utility.
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3.4 Review Helpfulness Prediction Case Study

As review platforms, such as Yelp or Amazon, increasingly prioritize high-quality

content and services, the ability to assess and reward helpful reviews becomes

strategically important. We rely on the dataset released by Yelp Asghar, 2016 for this case

study, which includes text reviews along with helpfulness votes. This task is well-suited

for our data valuation framework, as it involves clear individual contributions to predictive

performance. More precisely, we will use as reference the work of Bilal and Almazroi,

who used this dataset and reported a k-NN classifier accuracy of 59.6%. We use this result

as a benchmark for evaluating the effectiveness of our information disclosure game using

a similar k-NN model. Additionally, to improve upon this baseline, we evaluated two

recent sentence embedding models: sentence-transformers/all-mpnet-base-v2

and intfloat/multilingual-e5-large-instruct. Both models were selected for

their strong performance on semantic similarity tasks while also ensuring that they have

not been trained on the Yelp dataset to avoid indirect data leakage. Reviews were encoded

using each model, and we trained a k-Nearest Neighbors (k-NN) classifier, tuning the

number of neighbors k based on validation performance. The best results were obtained

with the E5 model for which at k = 67, we achieved a validation accuracy of 69.60%,

a test accuracy of 66.00% and a test F1-score of 65.21%. This configuration brings

k-NN performance closer to that of fine-tuned transformer models while preserving the

point-level interpretability necessary for data valuation analysis. We also used the same

dataset split—8000 training, 1000 validation and 1000 test examples.

We replicated the experiment from Jia, Dao, Wang, Hubis, Hynes, et al. to verify

that Shapley-based data acquisition outperforms random sampling on test accuracy.

Figure 3.2 compares the test performance as data points are incrementally acquired using

k-NN Shapley values versus a random strategy. In this experiment, accuracy improves

more quickly under Shapley selection, confirming its effectiveness. In addition, the

performance plateaus between 40% and 60% of the dataset, indicating diminishing returns

beyond that point.
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Figure 3.2: Test accuracy as a function of data points acquired, comparing k-NN Shapley-based
selection (blue) with random selection (black).

To implement a differentially private iterative release mechanism, we have added

Laplacian noise independently to each feature of every data point, each point being

represented as a 1024-dimensional feature vector. We have allocated a privacy budget of

ε = 1 per feature, resulting in a total budget of 1024 per point. The Laplace mechanism

applied to a feature x j follows:

x̃ j = x j +Laplace
(

∆ j

ε j

)
,

in which ∆ j is feature j’s sensitivity computed as the empirical range max(x j)−min(x j)

and ε j is the allocated budget for that feature. Noise scales were determined by the ratio

∆ j/ε j.

On the DC side, each noisy version of a point is averaged to form a denoised estimate.

After observing t noisy versions of point i, its center is computed incrementally as:

x̂(t)i =
1
t

t

∑
k=1

x̃(k)i .
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This simple averaging strategy improves fidelity over time as more noisy samples are

gathered. Figure 3.3 shows the average Euclidean distance between the true point and

its denoised center. As expected, the error decreases non-linearly with more iterations.

Figure 3.4 shows the Spearman correlation between original k-NN Shapley values and

those computed on the noisy centers. Correlation improves steadily but also follows a

non-linear trajectory with respect to the number of complete iterations (i.e., one pass over

all points).

Figure 3.3: Average ℓ2 distance between original points and their denoised centers as a function
of iterations. Error drops sharply early on with diminishing returns over time.

Figure 3.4: Spearman correlation between original Shapley values and those computed on
denoised centers over iterations.

In the remainder of our analysis, we do not attempt to solve the full game between the
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DO and DC. Instead, we simulate the DC’s behavior by implementing and comparing

different data selection strategies under the noisy iterative release mechanism. The

next two subsections explore these strategies: one based on rankings (random and

Shapley-based) and another using adaptive n-armed bandit algorithm. In our experiments,

we define the utility target as the validation accuracy (0.696) achieved when training the

k-NN model on the full dataset. For all data selection strategies, we use a fixed privacy

budget ε per point per query and assume a constant maximum budget per data point.

3.4.1 Data Selection Using Random and Shapley-based Strategies

Random Data Selection. In this baseline, the DC commits to a random subset of data

points for all iterations with Figure 3.5 showing the results averaged over 10 random

permutations. As shown in Figure 3.5, this approach fails to reach the target utility target

within 100 iterations unless nearly 100% of the dataset is acquired, which confirms that a

purely random acquisition strategy from the DO is not viable under budget constraints.

Figure 3.5: Validation accuracy for random data selection across varying percentages and
iterations. Unlike Shapley-based methods, random selection fails to consistently reach the utility

target (0.696) within the budgeted iteration range.
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Figure 3.6: Validation accuracy over iterations for 60% data selection using random, esimated
(noisy) data Shapley strategies compared to exact Shapley values given by an oracle. Estimated

data Shapley selection reaches the utility target in 25 iterations, significantly outperforming
random selection.

Data Shapley Selection. Afterwards, we assess whether Shapley valuation works over

noisy data. More precisely, the experiment consists of the DC selecting all data points

for a number of iterations (i.e., bootstrap iterations) and estimating DSVs based on the

averaged center points. As illustrated in Figure 3.7, selecting the top-valued centers based

on noisy Shapley estimates allows the DC to reach the target utility. Successful acquisition

starts at just 10% of the dataset but performance varies depending on both the percentage

of selected data and the number of iterations. For example, in the 60% selection case

(Figure 3.6), data Shapley selection achieves the utility target after roughly 25 bootstrap

iterations. This figure also compares estimated data Shapley to the exact values given by

an oracle, indicating that estimating Shapley values has a cost but it diminishes as more

budget is consumed. Finally, we tested whether the DC can first estimate Shapley values

for a number of bootstrap iterations, then commit to the top-selected points for continued

acquisition potentially saving budget and increasing performance. Figure 3.8 explores

this strategy across commitment ratios and bootstrap iterations. We find no consistent

advantage in committing early, as committing after a fixed iteration does not reduce the

number of total iterations needed to reach target utility as shown in Figure 3.9. Although

committing may stabilize performance for a fixed estimation, our findings suggest that
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for Shapley-based strategies, the DC is better off continuing complete iterations to refine

noisy point estimates.

Figure 3.7: Validation accuracy using estimated data Shapley selection across dataset
percentages and iterations. The target accuracy is achieved with as little as 10% of data.

Figure 3.8: Performance of data Shapley+commitment selection strategy for different
combinations of bootstrap and commit parameters. No clear benefit is observed compared to no

commitment.
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Figure 3.9: Shapley+commitment strategy on 60% of the data. While utility is eventually
reached, performance does not improve over dynamic Shapley.

3.4.2 Data Selection Using n-Armed Bandits

As a final strategy, we evaluate a multi-armed bandit (MAB) approach for data

selection, in which each data point zi can be seen as an individual arm to pull. While

many other selection mechanisms could be explored, we chose to test MABs to assess

whether they naturally align with our prior findings on the budget required to reach the

utility targets. Unlike the Shapley-based strategies, the MAB formulation does not rely

on bootstrap iterations as the DC can choose to exploit a single data point repeatedly up

to the constraint of a fixed privacy budget BMAX per point.

For each iteration t (here we talk about point iterations, not bootstrap iterations),

the DC selects a data point (i.e., an arm) to query, thereby incurring a privacy cost

and obtaining a reward in the form of an incremental improvement in model utility.

This formulation captures the inherent exploration-exploitation trade-off as the DC must

balance acquiring new data to enhance model performance with the limitations imposed

by privacy constraints. As more queries are made, the accumulated privacy budget allows

for distinctions between points, gradually increasing the estimated rewards for certain

data points.

Upper Confidence Bound (UCB) with a Budget Constraint. We model the DC’s

behavior as an n-armed bandit problem, in which each action a ∈ {1, . . . ,n} corresponds
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to selecting a data point za. The objective is to identify and refine the most valuable data

points for a k-NN classifier, using the fraction of positive votes as a utility metric under a

fixed per-point differential privacy budget.

At each iteration t, the DC selects one data point to query, receives a new noisy sample

and updates its averaged center. Rewards are defined based on changes on overall utility of

the current k-NN model using the available centers. More precisely, each point maintains

Qt(a), the estimated value of point a, Nt(a) the number of times point a was queried,

centera the current average of noisy observations as well as Bre
a , the remaining privacy

budget. UCB scores are computed as:

UCBt(a) =


Qt(a)+ c ·

√
1

Nt(a)+ ε
· Bre

a
BMAX

a
, if Bre

a > 0

−∞, otherwise

Finally, the data utility is computed as the average vote agreement among the k neighbors

(i.e., the proportion of neighbors with the same label as the query point). See Algorithm 2

for more details.

Hyperparameter Search. Identifying an equilibrium in this setting can be viewed as a

hyperparameter search problem as the dynamics between the DO’s release policy and the

DC’s acquisition strategy create a complex stochastic interaction that does not admit an

analytic equilibrium. Therefore, we conduct a grid search over two key hyperparameters:

the maximum budget per point (set by the DO) and the exploration coefficient c (set by

the DC in the UCB algorithm). These parameters influence both the total budget usage

and the diversity of points selected over time.

Figure 3.10 shows a 3D sweep of these hyperparameters, in which each point

represents a run color-coded by whether the utility threshold was achieved. We find

that the bandit consistently achieves the threshold across a wide range of configurations,

except when the maximum budget per point is too low or exploration is entirely disabled.

Notably, reaching the target is highly unlikely below a budget-per-arm of 20. Some

solutions were found under that budget but closer inspection shows they result from
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Algorithm 2 Budget-Aware UCB for Data Selection
Require:

D = {x1, . . . ,xn}: dataset of n data points (arms)
ε: Differential privacy budget per query
Tmax: Maximum number of iterations
Utarget: Target utility (average positive vote ratio)
c: Exploration coefficient
α: Learning rate
ε: Small constant for numerical stability
BMAX(a): Maximum privacy budget per point
NOISYRELEASE(xa, ε): Returns a noisy version of xa
KNNUTILITY(Z ; {centera},k): Average positive votes ratio over validation set Z
with current centers

1: Initialize:
2: for a = 1 to n do
3: Q(a)← 0, N(a)← 0, Bre(a)← BMAX(a)
4: centera← 0
5: end for
6: U ← KNNUTILITY(Z ;{centera},k)
7: t← 1
8: while t ≤ Tmax and U <Utarget do
9: for a = 1 to n do

10: if Bre(a)> 0 then
11: UCB(a)← Q(a)+ c ·

√
1

N(a)+ε
· Bre(a)

BMAX(a)
12: else
13: UCB(a)←−∞

14: end if
15: end for
16: At ← argmaxa UCB(a)
17: x̃At ← NOISYRELEASE(xAt ,ε)

18: centerAt ←
centerAt ·N(At)+x̃At

N(At)+1
19: Unew← KNNUTILITY(Z ;{centera},k)
20: Rt ←Unew−U
21: U ←Unew
22: Q(At)← Q(At)+α · (Rt−Q(At))
23: N(At)← N(At)+1
24: Bre(At)← Bre(At)− ε

25: t← t +1
26: end while
27: return {centera},U
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what we term lucky point selection in which the bandit happened to identify valuable

arms early and focused its budget there. This finding is supported by Figure 3.11, which

visualizes the Gini coefficient of budget consumption. High Gini values indicate heavy

concentration of queries on a few points, which is characteristic of narrow exploitation.

Finally, we examine the relationship between learned Q-values and Shapley values.

Figure 3.12 shows that the Spearman correlation between these metrics increases with

budget but remains moderate overall. This is expected and desired as the objective is for

Q-values to be influenced by data utility but not perfectly mimic Shapley values, thereby

offering a different valuation with more inclusiveness.

Figure 3.10: 3D visualization of hyperparameter combinations. Green dots represent successful
runs in which the DC reached the utility threshold while red crosses represent failures. Success

becomes unlikely with budget-per-arm below 20 or when exploration is zero.

Across all strategies, we find that a similar minimum budget is needed for the

DC to reach the utility target. The Gini analysis further confirms that exploration

increases the likelihood of success by promoting a more balanced budget allocation
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Figure 3.11: Gini coefficient of budget usage by hyperparameter setting. High values indicate
budget concentrated on few data points, typical in “lucky” early selections.

across points. It is also worth noting that we observed that models trained on the final

denoised centers—despite being derived from noisy data—achieved test performance

comparable to or exceeding that of models trained on the original dataset. For instance,

one configuration with a maximum per-point budget of 50 reached a test accuracy of

0.699, surpassing the original benchmark of 0.660.

3.4.3 Privacy Leakage Analysis

As a final experiment, we conducted a privacy leakage analysis to assess the risks

of exposing a k-NN model trained on data released through our iterative ε-differentially

private mechanism. This is relevant for instance for scenarios in which the organization

makes the model accessible externally such as via an API. Among k-NN configurations,

k = 1 is particularly vulnerable to membership inference attacks due to its reliance on

individual training points (Mesana et al., 2024), making it a conservative setting for
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Figure 3.12: Mean and standard deviation of Spearman correlation between learned Q-values
and Shapley values, grouped by maximum budget. Correlation rises with budget but remains

modest indicating partially aligned but distinct prioritization.

privacy evaluation.

We used LiRA (Carlini, Chien, et al., 2022a), a standard membership inference attack

to compare the leakage between a model trained on the original dataset and one trained

on noisy centers after 25 iterations of Laplacian releases. As shown in Figure 3.13, the

privacy leakage is notably reduced in the noisy case. More precisely, the AUC drops

from 0.81 (original) to 0.74 (with noise), and the true positive rate at 5% false positive

rate decreases from 0.282 to 0.089. These results suggest that even without end-to-end

formal DP guarantees, progressively injecting noise offers meaningful privacy benefits by

limiting the success of membership inference attacks.

3.5 Discussion

While our experiments focused on the k-NN classifier, the core ideas of our framework

extend naturally to other types of models, which opens several avenues for further work.

In the case of differentiable models (e.g., neural networks), our UCB-based data

selection shares a fundamental assumption with G-Shapley (Ghorbani and Zou, 2019),

which is that a data point’s contribution can be estimated by measuring contribution in

model performance after incorporating that point into training. G-Shapley approximates

156



Figure 3.13: Membership inference risk evaluated using LiRA. The model trained on noisy
centers after 25 iterations (orange) shows reduced leakage: AUC drops from 0.81 to 0.74, and

TPR@FPR = 0.05 drops from 0.282 to 0.089. Shaded areas show standard deviation.

the Shapley value of a data point zi by considering multiple random permutations π of

the dataset. Given a performance function V (θ), which evaluates model utility (e.g.,

accuracy or loss on a validation set), G-Shapley sequentially updates model parameters

via stochastic gradient descent (SGD) following the order in π:

θ j = θ j−1−α∇θ L(zπ[ j];θ j−1),

in which L(z;θ) is the loss function for an individual data point z. The Shapley value

estimate for zπ[ j] is then updated based on the marginal change in performance:

φzπ[ j] ←
t−1

t
φzπ[ j] +

1
t

(
V (θ j)−V (θ j−1)

)
.

While G-Shapley retrospectively estimates contributions based on random partitions,

our approach actively selects data points based on an exploration-exploitation trade-off,

using an Upper Confidence Bound (UCB) strategy.

Another related approach is DP-SGD (Abadi et al., 2016), which ensures DP during

model training by modifying standard stochastic gradient descent (SGD). DP-SGD

applies noise at every step of training and privacy loss accumulates over multiple gradient

updates. A privacy accountant method can be used to track cumulative privacy loss. In

contrast, our framework follows the standard composition rule. Unlike DP-SGD, we do

not perform batch updates—each data point is queried individually and each query incurs
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a fixed privacy cost ε . Thus, privacy costs accumulate additively without interactions

between data points. However, this approach comes with a trade-off: without larger batch

updates and a privacy accountant, convergence could be slower as fewer data points are

used per iteration. Additionally, the lack of tighter composition bounds means that the

total privacy budget may be consumed more rapidly compared to DP-SGD, potentially

leading to a less favorable privacy-utility trade-off.

3.6 Conclusion

We proposed a game-theoretic framework for data valuation that integrates privacy

and inclusiveness concerns through an information disclosure game between a data owner

(DO) and a data consumer (DC). Rather than assuming direct access to data, our approach

models acquisition as a iterative process using a differential-private mechanism to enforce

a privacy cost on data valuation. More precisely, in our case study using the Yelp dataset

and the reviews helpfulness classification task, we showed that Shapley-based strategies

remain effective under noise but require a minimal budget consumption—typically at

least 10 full bootstrap iterations—to identify high-value points. This means that the data

Shapley value comes with an explicit acquisition cost in the information disclosure game.

Additionally, a multi-armed bandit approach achieved similar utility with comparable

budget consumption, also suggesting an inherent acquisition cost imposed by noisy

data. Combined with the Gini analysis of budget consumption, we observe that the

DC’s strategy shifts toward more inclusiveness as a reaction, spreading its acquisition

effort across more data points. Despite this cost, DCs consistently reached target utility,

and in some cases, test performance exceeded that of models trained on original data.

Furthermore, privacy leakage was significantly reduced. While our experiments focused

on kNN classifiers, the framework is general and can be extended to other models.

For instance, adapting our information disclosure game to differentiable models would

enable more expressive utility functions and allow for privacy-aware data valuation using

DP-SGD-like mechanisms.
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General Discussion

This thesis has explored privacy from multiple perspectives—legal, contextual,

risk-based, and utilitarian—but consistently focused on the latter two through a technical

lens. A key idea explored is that, although privacy auditing and data valuation

rely on fundamentally different tools, they are often applied in ways that reveal

deep connections—particularly when evaluating individual-level tradeoffs. Privacy is

typically audited through techniques like membership inference attacks (MIAs) while data

valuation uses methods such as Shapley value estimation. Despite their methodological

differences, these approaches can be jointly analyzed to study the privacy-utility tradeoff.

For instance, at the aggregate level of course, it is possible to aim for Pareto optimality, but

our main interest lies in understanding how risk and value interact at the level of individual

data points. In particular, our motivation was to examine how this interaction shapes

incentives. While framing tradeoffs in terms of incentives is not new—differential privacy

(DP) for example, treats privacy loss as a disincentive to participate—the integration of

these views outside the DP framework, particularly in a posteriori analyses, remains

underexplored.

In the first chapter, the individual’s disincentive does not come from any privacy

attack or from an assumed membership inference attack, which DP is designed to protect

against. Instead, we consider adversaries attempting to single out a specific individual

in a database by leveraging background knowledge they already possess. We argue that

this threat model plays a significant role in diminishing individual trust in organizations,

thereby creating a disincentive to share personal data. This assumption aligns with the



view of privacy as contextual integrity (Nissenbaum, 2004), which holds that privacy

violations occur when established norms of information flow are disrupted, even if formal

access rights remain unchanged. A well-known example is the introduction of Facebook’s

News Feed, in which users experienced a loss of privacy—not because new information

was revealed, but because scattered data became easily discoverable. The discomfort

arose from a reduction in the cost of search, which violated contextual expectations

despite unchanged consent and access control policies (Grimmelmann, 2008). In our

case, the key distinction is that we focus on reduced search costs within the confines of an

organization’s internal systems. This also resonates with the legal perspective, as GDPR

Recital 26 (European Union, 2016) states that data enabling singling out is not considered

anonymous.

Most organizations focus on reducing large-scale breaches through improved

governance, stronger cybersecurity, stricter data-sharing policies or a combination of

these strategies. However, they often fail to address the types of risks emphasized in the

computer science literature. In particular, DP appears to see limited practical adoption in

real-world settings (Amin et al., 2024; Garrido et al., 2022). Indeed, many organizations

consider privacy risks to be minimal as long as they have obtained user consent and

secured their data assets. For example, in a recent survey conducted by the International

Association of Privacy Professionals (IAPP)—a leading industry organization focused on

privacy and data protection—nine out of ten respondents reported being at least somewhat

confident in their organizations’ privacy governance programs (International Association

of Privacy Professionals, 2024). Moreover, employees themselves often struggle to see

how Privacy Enhancing Technologies (PETs) contribute to meeting compliance goals

(Klymenko et al., 2023). One of our objectives in the first chapter was therefore to raise

organizational awareness of micro-level privacy breaches—particularly by analyzing data

flows that are already familiar to them, such as how internal analysts query databases.

While risk management priorities may be subject to debate, it is clear that individual

disincentives to share data can stem from specific, measurable risks—and these need to be

assessed. To make our approach more interpretable to organizations, we drew inspiration
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from the widely used triplet representation of risk: scenario, probability and consequence

(Kaplan and Garrick, 1981). In this view, a scenario represents a particular chain of events

or system behavior; probability quantifies the likelihood of that scenario occurring and

consequence refers to the impact if it does. In our framework, we argue that risk should

not be reduced to the probability of identifying an individual record alone. While that is a

critical factor, it must also account for information gain, as a rational individual may not

be concerned if the only inference is something trivial—such as mere membership—or

information that is already publicly available. In fact, in some situations membership

inference does not lead directly to a privacy breach. For instance, in Québec, the two

largest financial institutions—Desjardins and the National Bank—serve an estimated 70%

to 80% of the population (based on official 2024 reports). As a result, inferring that

someone is a client of at least one of them is often trivial from an attacker’s perspective.

The framework we propose in the first chapter, allows organizations to adjust the

scenarios they consider relevant. For example, most organizations already log database

queries—whether in a data warehouse or data lake—and these logs are often monitored

for signs of malicious activity. This kind of analysis parallels recent work showing

that software logs can reveal sensitive composite identifiers, underscoring the value of

systematically examining operational traces for privacy risk (Aghili et al., 2024). A use

case we have not yet tested, but which should be straightforward to implement, involves

re-executing logged queries, analyzing and scoring the resulting subset of records as if

it were the output of a re-identification attempt. Organizations could then compare real

queries to the uniformly distributed attack simulations we conducted in Chapter 1—in

which no prior assumptions are made about which queries are more likely—in order to

estimate the likelihood that a given query behaves like a re-identification attempts. This

could offer a valuable tool for cybersecurity teams to detect and investigate queries that

disproportionately narrow down to specific individuals. Another of our contributions,

Re-identification Shapley Values (RSV), is particularly actionable and can support

organizations in managing attribute-level security. For instance, consider the scenario

in which analysts from an organization can access attributes such as the primary bank
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branch ZIP code, job title and type of recurring monthly expense (e.g., private school

tuition). While none of these attributes may seem highly sensitive in isolation, they

function as quasi-identifiers—attributes, which when combined, can uniquely identify

individuals. Their re-identification power arises not from their individual informativeness,

but from their synergy. RSV is designed to capture these joint effects more accurately than

traditional sensitivity assessments and can help quantify the incentive for an attacker to

acquire specific pieces of background knowledge.

In the second chapter, WaKA further explores how mathematical tools from both

the risk-based and utilitarian lenses of privacy can be unified. Specifically, it uses

the same method—Wasserstein distance computed on the k-NN loss distribution—to

assess both membership privacy risk and data valuation. This dual use allowed us to

address a central question in the thesis: how does a data point’s contribution to model

performance, or what we call data value, relate to its vulnerability to privacy attacks?

A common assumption is that data value and privacy risk are positively correlated.

Using LiRA, a state-of-the-art MIA, we observed that on k-NN models across multiple

datasets, the correlation between data Shapley values and privacy risk scores is nonlinear.

In some cases, data points with negative Shapley values—those that degrade model

performance—are actually more susceptible to privacy attacks than high-value points.

We further confirmed this insight in the Chapter 1 addendum using our contextually

defined re-identification risk scores. This has important implications for understanding

individual-level tradeoffs and consent dynamics. In particular, an organization might

naively assume that low-value data implies low individual concern—“if the data is not

useful, why would anyone care if it is used?”. But our findings suggest the opposite:

low-value data can carry higher-than-average privacy risk and thus deserves careful

consideration. Conversely, decisions by organizations and individuals could be better

aligned when a data point is both low in value and high in risk—making its removal

beneficial to both parties. However, we also replicate the onion effect described by

Carlini, Jagielski, et al., who show that removing such points can inadvertently increase

the risk for remaining individuals. This highlights the complexity of incentive dynamics
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when processing personal information.

It is important to note that data removal is not, a priori, a differentially private

operation. While it may reduce empirically observed re-identification risk and thus be

perceived as a privacy enhancer from some perspectives, it does not constitute a formal

privacy guarantee in absolute terms or under any definition unless combined with a

mechanism that enforces such guarantees. Moreover, when removal is guided by data

Shapley values, the selection process itself can be exploited: observing which records are

removed or retained can reveal partial orderings of Shapley values and, by implication,

properties of the underlying data points. This leakage risk is closely related to the “privacy

cost of valuation” we discuss in Chapter 3.

In the second chapter, we also show that attribution with respect to the

individual—what we refer to as self-attribution—is more strongly correlated with the

success of membership inference attacks. This implies that data valuation methods,

which typically estimate a point’s value with respect to the test set, may not serve as

reliable indicators of privacy risk. In contrast, the self-Shapley value—a notion we

did not find explicitly formulated in the existing literature—shows strong correlation

with both self-WaKA scores in k-NN classifiers and membership attack success rates.

From a utilitarian perspective, the self-Shapley value can be interpreted as a measure

of how much including your data improves predictions about yourself. For example,

if a financial institution is building a credit scoring model, a high self-Shapley value

would suggest that the model performs significantly worse on your profile without your

data. If individuals were aware of this, it could influence their willingness to share

data, depending on the potential benefits. Conversely, a low self-Shapley value suggests

that many substitute data points exist, meaning the model performs similarly whether

or not your data is included. This aligns with the ideas behind privacy-preserving

techniques, where the goal is indistinguishability: for instance, k-anonymity enforces

indistinguishability at the data level, while DP enforces indistinguishability at the

process (mechanism) level. This connection illustrates how Shapley value and DP can

reflect similar reasoning about individual participation and data substitutability, despite
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differing methodologies. However, DP goes further by incorporating truthfulness as a

core principle, which means that participants have no incentive to misrepresent their

preferences or valuations—truth-telling becomes their dominant strategy. As McSherry

and Talwar explain, privacy-preserving mechanisms can be modeled as social choice

games, in which privacy loss is treated as an explicit cost analogous to the cost of lying.

Under DP, the expected outcome of the mechanism remains nearly unchanged whether or

not any single individual’s data is included, giving agents strong incentives to participate

truthfully without fearing privacy loss.

In the third chapter, we extend this connection further by using a DP mechanism to

control and partially release information, which we then evaluate using k-NN Shapley

valuation. This experimental setup allows us to demonstrate that obtaining stable and

meaningful estimates of data value requires a large number of queries. We coin this

phenomenon the privacy cost of data valuation. A limitation of our approach is that it

operates in a global setting, meaning the information disclosure game we model is largely

conceptual. A promising extension would be to explore a decentralized setting using local

differential privacy (LDP, Cormode et al., 2018; N. Wang et al., 2019). However, it would

introduce additional challenges, notably the possibility of collusion among individuals.

Collusion could bias data valuation outcomes and complicate the design of fair reward

mechanisms or data selection strategies. In other words, this would require simulating

a much more complex game, where both privacy guarantees and incentive compatibility

must be carefully balanced.

Finally, in the last part of this discussion, we want to position the work and

contributions of this thesis within current trends in machine learning and artificial

intelligence. In particular, three rapidly evolving areas intersect with our work: data

attribution at scale, privacy auditing for large language models (LLMs) and LLM

alignment. Each of these fields engages with questions central to this thesis—how data

contributes to outcomes, how privacy risks can be measured and mitigated, and how

systems can be designed to reflect the values and expectations of individuals.

Data attribution has recently gained significant attention and is now understood
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as a broad framework encompassing a variety of approaches—not just game-theoretic

ones—that aim to trace the influence of training data on a machine learning model’s

behavior and outputs (Ilyas et al., 2022; S. M. Park et al., 2023; Worledge et al., 2024).

In particular, its applications now extend beyond data valuation. For instance, data

attribution in the context of LLMs can be used for citation generation (Gao et al., 2023).

More precisely, this is an instance of what Worledge et al. refers to as corroborative

attribution, in which the goal is to identify specific training data points that directly

support a generated output—enabling the model to “cite” its sources. Datamodels (Ilyas

et al., 2022) are also a representative example of this kind of corroborative attribution,

as they aim to approximate the training process in order to predict a model’s output

had it been trained on a particular subset of data. In contrast, contributive attribution

focuses on identifying more causal relationships between individual data points and model

behavior. Data valuation also falls under this latter category of contributive attribution.

Rather than simply identifying which data points are linked to specific outputs, it seeks

to characterize the functional role of each point—particularly the effect of its inclusion

or removal on overall model behavior. While this can support applications like pricing

mechanisms, the foundational goal is to understand how individual data points shape

model performance in a stable and interpretable way. Crucially, this also accounts for

the supply or substitutability of a point within the dataset. For instance, a point that can

be easily replaced by others may be assigned lower value. Although some empirical

applications of data valuation have proven robust, prior work has shown that the results of

several influential economics papers can be overturned by removing less than 1% of the

data (Broderick et al., 2020).

The primary obstacle to applying data valuation to LLMs—particularly at scale—is

computational in nature. Several papers have emerged that address this issue in different

ways, each with its own strengths and limitations (Just et al., 2023; S. M. Park et al.,

2023; J. T. Wang, Mittal, et al., 2024). One promising alternative is to use a proxy or

surrogate model that approximates the behavior of the generative neural network and

then compute data attributions on that proxy. For instance, as we did with WaKA, one
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can apply a k-NN directly to the final-layer embeddings (Jia et al., 2021). This idea is

supported by growing evidence that pretrained LLMs behave similarly to non-parametric

models due to their few-shot learning capabilities—a phenomenon often referred to as

in-context learning (Kim et al., 2024; Y. Zhang et al., 2023). Furthermore, Nguyen,

2024 shows that n-gram statistics can explain a large portion of LLM behavior: many

next-token predictions follow patterns that could be captured by simple n-gram rules

derived from training data. In other words, always selecting the top-matching rule

from a fixed datastore can be surprisingly effective. A related idea is presented in

k-NN-LLMs (Khandelwal et al., 2019), which separates the generative task into two

steps: embedding the sentence prefix and using those representations to query a k-NN

datastore for next-token prediction. They show that this approach can even outperform

end-to-end LLMs by explicitly retrieving relevant data points, especially for rare patterns

that may be memorized in model parameters. Taken together, this growing body of

evidence suggests that k-NN Shapley—or more specifically, WaKA—could be applied

to generative LLMs as an efficient method for data valuation and privacy auditing. In

addition, WaKA could also be extended to compute privacy influence scores (PrivInf),

helping identify data points that would be most vulnerable after data removal. We believe

this opens a promising direction for designing interpretable AI systems—ones in which

understanding data influence and privacy risk is prioritized, even if k-NN imposes some

performance cost.

LLMs raise significant privacy concerns due to their tendency to memorize and

reproduce training data, which may include sensitive personal information (Staab et al.,

2023). MIAs remain a useful tool—for instance, they are often used as a first step toward

extracting specific training data, such as inserted canaries, from LLMs (Carlini et al.,

2021). However, recent work has questioned the reliability of MIAs in proving that a

model was trained on specific data (J. Zhang et al., 2024). That study argues that MIAs

alone cannot provide statistically robust evidence of training data inclusion—a claim

often central to lawsuits involving large-scale AI models. The main challenge is that

estimating the false positive rate, which is crucial for statistical confidence, is practically
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impossible without access to the full training set or the ability to retrain the model. The

researchers illustrate this with the example of Harry Potter: even if the books were not

part of the training data, a model might still respond accurately to related prompts, simply

because the concept is so prevalent in public web content. This undermines claims

that a model’s outputs necessarily reflect direct exposure to specific data. Instead, the

authors recommend alternatives such as inserting trackable canaries, watermarking data

or demonstrating data extraction—methods that provide stronger, statistically grounded

evidence of training data usage. Hayes et al. further distinguishes between weak and

strong MIAs. While strong MIAs—such as LiRA—can still be effective, they require

substantial computational resources, particularly when applied to large models. More

research is needed to clarify how MIAs relate to other privacy metrics, such as data

extraction and to assess whether they can serve as reliable indicators of risk in ways that

are actionable for decision makers. This resonates with points raised in Chapter 1 of this

thesis: Privacy attacks must be contextualized to be meaningful to organizations.

So far, our discussion on LLMs has focused on their pre-training phase, which mirrors

traditional machine learning in that it trains models to perform next-token prediction.

However, this is only the initial step. Modern LLMs also undergo post-training processes

such as supervised fine-tuning and alignment, which are intended to shape their behavior

according to specific stakeholder preferences. These models are increasingly deployed

with capabilities and autonomy that resemble agent-like systems. This raises a natural

question: does this agentic paradigm shift change how we should think about privacy

risk? Alignment refers to training a model so that its behavior reflects the preferences,

values or goals of specific stakeholders (Ngo et al., 2022). Current alignment techniques

carry inherent risks—especially when applied to agentic models. For instance, recent

work shows that deceptive behaviors can persist through safety training (Hubinger et al.,

2024), and that large reasoning models can unintentionally leak private user data through

intermediate reasoning steps (Green et al., 2025). As noted in Chapter 1, our threat

models originally assumed human adversaries, but the same concerns clearly extend to

LLM-based agents, which could automate privacy attacks and scale fraudulent behavior
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(Abdullaev et al., 2025). Recent ML literature has also revived privacy definitions beyond

DP, including contextual integrity and the notion of “revealing secrets” (Mireshghallah

et al., 2023). These perspectives raise a broader question: can we align models to avoid

unintended information disclosure?

This is closely tied to the privacy-utility tradeoff and the incentives individuals face.

How much people value their data is intimately linked to their perception of privacy. For

instance, only 43% of women with wearables report sharing fitness data with doctors,

compared to 57% of men; overall, 58% of users fear data breaches (Hupfer et al., 2023).

Perceptions are also dynamic: Hsu et al. notes that even after events like the Cambridge

Analytica scandal, many users returned to platforms due to lack of alternatives. This

illustrates that the privacy tradeoff is not only technical—it is social, psychological and

contextual. Still, formal tools can promote clearer thinking by helping actors reason

from first principles. As shown in Chapter 2, the choice of valuation function (e.g.,

self-Shapley vs. test-based Shapley) leads to different interpretations. Even with shared

axioms, stakeholders may diverge on objectives. Optimizing for both utility and privacy is

often infeasible; Pareto optimality may be the best alternative, in which no stakeholder’s

gain comes without someone else’s loss. Keeping this in mind, alignment—specifically

privacy alignment—cannot be captured by a single objective, but rather emerges from

external mechanisms, such as DP noise or constraints tied to user risk profiles.

In Chapter 3, we proposed a setting with two agents: protecting each individual’s

interests, the other pursuing a utility goal. This framing shows that data valuation

with privacy is not necessarily a zero-sum game. Utility goals can be achieved while

minimizing queries and mechanisms like DP can help balance this tradeoff. Recent work

frames alignment as a two-player game between models and human oversight (Cheng

et al., 2023) or uses mechanism design to incentivize truthful reporting of preferences

during fine-tuning (Sun et al., 2024). We believe game-theoretic approaches are promising

for privacy-aware alignment. In such a setting, one agent might aim to enhance the

value of private data, another may simulate an attacker, and a third could act as an

analyst creating value. Alignment, then, becomes an equilibrium across competing
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incentives—not reducible to a single goal.
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General Conclusion

This thesis positions data valuation as a lens through which to study the privacy-utility

tradeoff—an angle that has received little attention in prior work. While much of the

privacy and security literature focuses on guarantees and the search for provable or formal

defense mechanisms—a pursuit we view as both important and necessary—we argue that

disincentive-based reasoning deserves more emphasis. This perspective opens the door to

alternative formulations of privacy that, while distinct from DP, remain consistent with its

core principle: “we want to minimize any reason individuals have to opt out”. Crucially,

it also invites another key question that any individual might ask: What is my data worth?

This thesis makes three contributions at the intersection of data valuation and

privacy in machine learning. First, it develops a simulation-based framework for

evaluating format-preserving data release strategies and assigns both attribute-level and

individual-level re-identification risk scores. Second, it introduces WaKA, a method for

k-nearest neighbor models that supports both data valuation and membership privacy

auditing by measuring the impact of specific records on the loss function of the model.

Third, it models data sharing as a strategic interaction in which a data owner controls

information leakage through a differential privacy mechanism, showing how noisy data

release affects data Shapley values and the incentives of a data consumer.

Beyond academic contributions, we believe the methods and insights developed here

can support practical decision-making across sectors. Information security teams, data

governance professionals, and regulatory bodies can apply these tools to better assess

individualized privacy risk and balance it against utility. One especially promising



application lies in cyber-insurance, in which contextual and fine-grained risk assessments

could help inform premium pricing and claims evaluation. Ultimately, integrating data

valuation into privacy risk frameworks provides not only deeper technical understanding,

but also a foundation for aligning economic incentives with more ethical uses of data.

Future research related to this thesis could explore the privacy-utility tradeoff in

large language models (LLMs) using a similar data attribution lens. Instance-based

interpretability shares methodological similarities with privacy auditing, as both involve

tracing model outputs back to influential training data. A concrete example where the

goals diverge is citation generation: whereas privacy auditing aims to prevent the model

from revealing sensitive training data, citation generation encourages the model to surface

specific sources that support its outputs. Nonetheless, both directions ultimately aim to

make models more transparent and accountable — even if pursuing both at once may yet

again surface fundamental tensions between privacy and utility.
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