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Résumé

Cette thèse doctorale présente des travaux sur l’application de techniques d’optimisation

avancées et des algorithmes d’apprentissage par renforcement (RL) pour améliorer les straté-

gies de réponse à la demande (DR) dans trois domaines clés : la technologie Véhicule-réseau

("vehicle-to-grid" ou V2G), la tarification de pointe critique ("critical peak pricing" ou

CPP) et la gestion de l’énergie dans les bâtiments commerciaux. L’objectif principal est de

développer des solutions innovantes qui optimisent la consommation d’énergie, réduisent les

coûts et atténuent les impacts environnementaux tout en considérant la dynamique complexe

des systèmes électriques modernes et les objectifs diversifiés des différents intervenants.

Le premier article explore les stratégies optimales d’investissement et de contrôle pour les

ressources énergétiques distribuées ("distributed energy resources" ou DER) et les systèmes

de gestion de l’énergie ("energy mangement system" ou EMS) du point de vue du distribu-

teur et du prosommateur. Un modèle d’analyse de scénario mathématique est développé

pour simuler le fonctionnement des DER et des EMS, en utilisant des données de consom-

mation et de production réelles, ainsi que des structures de coûts du réseau électrique du

Vermont. L’étude évalue différents scénarios d’investissement et structures tarifaires, en

soulignant le rôle crucial de la technologie V2G dans l’amélioration de la rentabilité des

investissements DER. Les résultats fournissent des aperçus précieux sur la dynamique com-

plexe du déploiement des maisons intelligentes et soulignent l’importance de considérer les

objectifs des différents intervenants lors de la conception des stratégies d’investissement et

de contrôle.

Le deuxième article se concentre sur l’application des algorithmes RL pour identifier les

stratégies CPP optimales en présence de profils de prosommateurs diversifiés. L’étude intro-



duit le concept de tarification dynamique ciblée comme solution pour optimiser la réponse

à la demande tout en assurant l’équité entre les participants. En intégrant différents pro-

fils de prosommateurs, reflétant la pénétration croissante des DER tels que les panneaux

photovoltaïques, les batteries et les véhicules électriques, l’analyse identifie la participation

optimale des clients au CPP. Des simulations complètes et l’application des algorithmes RL

démontrent que les stratégies CPP ciblées améliorent considérablement les performances et

prolongent la viabilité des programmes CPP par rapport aux scénarios d’offre de masse.

Les résultats soulignent également le rôle influent des batteries et des véhicules électriques

dans la réduction de la charge de pointe, suggérant la nécessité de politiques ciblées et de

structures incitatives pour encourager l’adoption de ces technologies.

Le troisième article présente un nouveau cadre DR pour optimiser la consommation

d’électricité dans les bâtiments commerciaux de petite et moyenne taille. L’étude développe

un modèle mathématique qui catégorise les charges des bâtiments en non-contrôlables, con-

trôlables, et consommation HVAC, visant à minimiser les coûts, les émissions de CO2, et

l’insatisfaction des occupants tout en maximisant la réduction de la charge de pointe. Trois

algorithmes RL sont mis en œuvre et comparés à des approches heuristiques traditionnelles

en utilisant huit semaines de données de consommation hivernale d’un bâtiment commer-

cial. Les résultats montrent que les algorithmes RL, en particulier les combinaisons PPOD

& TD3, atteignent des taux de réduction de charge de pointe dépassant 25 %, accompagnés

de réductions significatives de coûts et d’avantages environnementaux. L’analyse intègre

également l’impact des variations de température extérieure et des évaluations des risques

utilisant les métriques Value at Risk (VaR) et Conditional Value at Risk (CVaR), fournissant

une évaluation complète des stratégies proposées.

La thèse contribue au développement de stratégies de gestion de l’énergie efficaces et re-

spectueuses de l’environnement, avec des implications pour la politique et les pratiques

industrielles dans les transitions énergétiques durables. En tirant parti des techniques

d’optimisation avancées et des algorithmes RL, les études fournissent des aperçus précieux

sur la dynamique complexe du déploiement des maisons intelligentes, le comportement des

prosommateurs et la gestion de l’énergie des bâtiments commerciaux. Les résultats soulig-

nent l’importance de considérer les objectifs diversifiés des différents intervenants, le rôle
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croissant des DER et le potentiel de la tarification dynamique ciblée dans l’optimisation des

stratégies de réponse à la demande.

De plus, la thèse met en lumière la nécessité de politiques ciblées et de structures in-

citatives pour encourager l’adoption de la technologie V2G, des batteries et des véhicules

électriques, car ces technologies jouent un rôle crucial dans la réduction de la charge de

pointe et l’amélioration de la rentabilité des investissements DER. Les cadres et méthodolo-

gies présentés peuvent servir de fondement pour la recherche future et le développement

d’outils pratiques pour soutenir la prise de décision dans le secteur de l’énergie, contribuant

finalement à la transition vers un système électrique plus durable et efficace.

En outre, la thèse sert de preuve de concept du rôle important que les techniques

d’optimisation avancées et les algorithmes d’apprentissage automatique, en particulier l’apprentissage

par renforcement, peuvent jouer dans les applications énergétiques futures. En explorant

l’application de ces méthodes de pointe dans trois domaines critiques - la technologie V2G,

la tarification dynamique et la gestion de l’énergie dans les bâtiments commerciaux - la

recherche démontre le potentiel de ces techniques pour optimiser la consommation d’énergie,

réduire les coûts et atténuer les impacts environnementaux. La mise en œuvre réussie des

algorithmes RL pour identifier les stratégies CPP optimales et obtenir un écrêtement sub-

stantiel des charges de pointe, des réductions de coûts et des avantages environnementaux

dans les bâtiments commerciaux met en évidence le potentiel de transformation de ces méth-

odes dans le secteur de l’énergie. En tant que telle, cette thèse pose les bases de recherches et

de développements ultérieurs sur les techniques avancées d’optimisation et d’apprentissage

par renforcement, mettant en valeur leur promesse de façonner l’avenir de la gestion de

l’énergie et de contribuer à la transition vers un système électrique plus durable et plus

efficace.

Mots-clés

Ressources énergétiques distribuées; Véhicule-à-réseau; Réponse à la demande; Apprentis-

sage par renforcement; Tarification de l’électricité; Contrôle des bâtiments; Optimisation.
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Méthodes de recherche
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Abstract

This doctoral thesis presents an investigation into the application of advanced optimization

techniques and reinforcement learning (RL) algorithms to improve demand response (DR)

strategies in three key areas: vehicle-to-grid (V2G) technology, critical peak pricing (CPP),

and energy management in commercial buildings. The overarching goal is to develop innova-

tive solutions that optimize energy consumption—meaning to adjust and balance energy use

to align with grid demand, reduce peak loads, and improve efficiency—while also reducing

costs and mitigating environmental impacts, all within the complex dynamics of modern

power systems and the diverse objectives of various stakeholders.

The first chapter delves into the optimal investment and control strategies for distributed

energy resources (DER) and energy management systems (EMS) from the perspectives of

both the distributor and the prosumer. A simulation model is developed for scenario analysis

of the operation of DER and EMS, utilizing real-world consumption, generation data, and

cost structures from the Vermont electricity grid. The study evaluates different investment

scenarios and tariff structures, emphasizing the crucial role of V2G technology in enhancing

the profitability of DER investments. The results provide valuable insights into the com-

plex dynamics of smart-home deployment and highlight the importance of considering the

objectives of different stakeholders when designing investment and control strategies.

The second chapter focuses on the application of RL algorithms to identify optimal CPP

strategies in the presence of diverse prosumer profiles. The study introduces the concept of

targeted dynamic pricing as a solution to optimize demand response while ensuring fairness

among participants. By integrating different prosumer profiles, reflecting the increasing pen-

etration of DERs such as photovoltaic panels, batteries, and electric vehicles, the analysis
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identifies the optimal level of customer participation in CPP—referring to how customers

adjust their energy usage in response to price signals. Comprehensive simulations of various

prosumer behaviors and system conditions demonstrate that targeted CPP strategies signif-

icantly improve performance and extend the viability of CPP programs compared to mass

offering scenarios. The results also highlight the influential role of batteries and electric ve-

hicles in peak load reduction, suggesting that focused policy and incentive structures could

be essential to offset any potential changes in system costs and to encourage the broader

adoption of these technologies.

The third chapter presents a novel DR framework for optimizing electricity consumption

in small and medium-sized commercial buildings. The study develops a mathematical model

that categorizes building loads into non-controllable, controllable, and HVAC consumption,

aiming to minimize costs, CO2 emissions, and occupant dissatisfaction while maximizing

peak load shaving. Three RL algorithms are implemented and compared against traditional

heuristic approaches using eight weeks of winter consumption data from a commercial build-

ing. The results show that RL algorithms, particularly PPOD & TD3 combinations, achieve

peak load shaving ratios exceeding 25%, along with significant cost reductions and environ-

mental benefits. The analysis also incorporates the impact of outdoor temperature variations

and risk assessments using value at risk (VaR) and conditional value at risk (CVaR) metrics,

providing a comprehensive evaluation of the proposed strategies.

The thesis contributes to the development of efficient and environmentally conscious en-

ergy management strategies, with implications for both macro-level policy and micro-level

industry practices in sustainable energy transitions. By leveraging advanced optimization

techniques and RL algorithms, the studies provide valuable insights into the complex dy-

namics of smart-home deployment, prosumer behavior, and commercial building energy

management. The findings highlight the importance of aligning the diverse objectives of

various stakeholders—acknowledging that these objectives may not always be considered in

parallel but may require sequential or coordinated decision-making. Additionally, the re-

search emphasizes the increasing role of DERs and the potential of targeted dynamic pricing

in optimizing demand response strategies.

Moreover, the thesis highlights the need for focused policy and incentive structures to
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encourage the adoption of V2G technology, batteries, and electric vehicles, as these tech-

nologies play a crucial role in peak load reduction and enhancing the profitability of DER

investments. The presented frameworks and methodologies can serve as a foundation for

future research and the development of practical tools to support decision-making in the

energy sector, ultimately contributing to the transition towards a more sustainable and

efficient power system.

Additionally, the thesis serves as a proof of concept for the significant role that advanced

optimization techniques and Machine Learning algorithms, particularly RL, can play in fu-

ture energy applications. By exploring the application of these cutting-edge methods in

three critical areas—V2G technology, dynamic pricing, and energy management in com-

mercial buildings—the research demonstrates the potential for these techniques to optimize

energy consumption, reduce costs, and mitigate environmental impacts. The successful im-

plementation of RL algorithms in identifying optimal CPP strategies and achieving substan-

tial peak load shaving, cost reductions, and environmental benefits in commercial buildings

underscores the transformative potential of these methods in the energy sector. While the

developed models are tailored to specific case studies, they offer valuable insights and can be

adapted to a broader range of applications in future research. As such, this thesis lays the

groundwork for further research and development of advanced optimization and ML tech-

niques, showcasing their promise in contributing to the transition towards a more sustainable

and efficient power system.

Keywords

Distributed energy resources; Vehicle-to-grid; Demand response; Reinforcement learning;

Electricity pricing; Building control; Optimization.

Research methods

Quantitative research; Mathematical modeling; Simulation.
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General Introduction

The global energy sector is undergoing a transformative shift, driven by the urgent need to

combat climate change, ensure energy security, and transition towards a more sustainable fu-

ture (Adelekan et al., 2024; Gielen et al., 2019). This transition is characterized by the rapid

adoption of renewable energy sources, the decentralization of energy production through the

proliferation of Distributed Energy Resources (DER), and the development of smart grid

technologies that enable more efficient and flexible management of electricity supply and

demand (Kabeyi and Olanrewaju, 2022). These changes are fundamentally reshaping the

traditional power system paradigm, presenting both challenges and opportunities for stake-

holders across the energy value chain.

One of the key challenges in this context is the effective integration of DER, such as

PhotoVoltaic (PV) panels, battery storage systems, and Electric Vehicles (EVs), into the

power grid (Khalid, 2024). DER have the potential to provide numerous benefits, includ-

ing reduced greenhouse gas emissions, improved grid resilience, and increased energy effi-

ciency (Zitelman, 2024). However, their intermittent and distributed nature also introduces

new complexities in terms of grid operation, stability, and economic viability (Lopes et al.,

2007). As a result, there is a growing need for innovative strategies and technologies that

can optimize the deployment and management of DER, while ensuring the reliability and

affordability of electricity supply.

Another critical aspect of the energy transition is the emergence of prosumers – con-

sumers who actively participate in the energy market by producing, storing, and trading

electricity (Oprea and Bâra, 2024). The rise of prosumers is enabled by the declining costs

of DER technologies, as well as the development of smart metering and communication



infrastructures that allow for real-time monitoring and control of energy flows. Prosumers

have the potential to play a significant role in the transition towards a more sustainable and

decentralized energy system, by contributing to peak load reduction, providing flexibility

services, and fostering the adoption of clean energy technologies (Kotilainen, 2019). How-

ever, the integration of prosumers into the power grid also presents new challenges, such as

the need for appropriate market designs, tariff structures, and incentive mechanisms that

can align the interests of prosumers with those of other stakeholders (Botelho et al., 2021).

In this context, demand Response (DR) has emerged as a key strategy for managing

the increasing complexity and variability of the power system. DR refers to the ability

of consumers to adjust their electricity consumption in response to market signals or grid

conditions, such as changes in electricity prices or the availability of renewable energy. By

providing flexibility on the demand side, DR can help to balance supply and demand, reduce

peak loads, and improve the overall efficiency and reliability of the power system (Silva et al.,

2020). However, the effective implementation of DR requires the development of advanced

control and optimization algorithms that can accurately predict and influence consumer

behavior, while taking into account the diverse characteristics and preferences of different

consumer segments.

This thesis aims to contribute to the development of such algorithms and strategies,

by exploring three key aspects of the energy transition: the investment in Vehicle-to-Grid

(V2G) and DER technologies, the application of reinforcement learning (RL) for critical

peak pricing (CPP) in the presence of prosumers, and the use of RL for DR in commercial

buildings. Through a combination of mathematical modeling, simulation, and real-world

data analysis, the thesis seeks to provide new insights and tools for optimizing the deploy-

ment and operation of DER, designing effective DR programs, and fostering the transition

towards a more sustainable and efficient energy system.

The thesis also highlights the critical role that advanced optimization techniques and

machine learning, particularly RL, can play in enabling the energy transition. By leveraging

the power of these computational methods, the studies presented in this work demonstrate

how complex challenges, such as the optimal deployment and management of DER, the

design of effective demand response programs, and the improvement of energy efficiency in
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commercial buildings, can be addressed in innovative and effective ways. The successful

application of RL algorithms across different domains serves as a proof of concept for their

potential to revolutionize energy applications in the future, by providing adaptive, robust,

and data-driven solutions to the multifaceted problems posed by the evolving energy land-

scape. As such, this thesis contributes to the growing recognition of the transformative

potential of advanced optimization and machine learning techniques in the energy sector,

and underscores the importance of continued research and development in this area to sup-

port the transition towards a more sustainable and resilient energy future.

The first chapter, titled "Investment in Vehicle-to-Grid and Distributed Energy Re-

sources: Distributor versus Prosumer Perspectives and the Impact of Rate structures,"

addresses the question of who should invest in and manage DER, and what tariff structures

should be used to incentivize their adoption. The increasing penetration of PV panels, EVs,

and V2G technologies presents significant opportunities for improving grid performance and

supporting the energy transition. However, the optimal allocation of investment responsi-

bilities between distribution companies and prosumers, as well as the design of appropriate

rate structures, remains a complex and largely unresolved issue.

To shed light on this issue, the chapter develops a mathematical scenario analysis model

that simulates the operation of DER and energy management systems, using real-world

consumption and generation data from the Vermont electricity grid. The model considers

different investment scenarios, in which either the distribution company or the prosumer

invests in and controls the DER, and evaluates their impact on the profitability and system-

wide costs of DER deployment. The results highlight the importance of incorporating V2G

technology to enhance the economic viability of DER investments, and provide insights into

the trade-offs between different investor objectives and rate structures. The economic via-

bility of DER investments is enhanced by incorporating V2G technology because it enables

prosumers to capitalize on price differentials in the electricity market, storing energy when

prices are low and either using or selling it when prices are high. This ability to leverage

price fluctuations makes DER investments more financially attractive, particularly under

rate structures that incentivize such behavior.

The second chapter, "Smart Grids, Smart Pricing: Employing Reinforcement Learning
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for Prosumer-Responsive Critical Peak Pricing," focuses on the design of CPP programs

in the presence of prosumers. CPP is a dynamic pricing scheme that aims to incentivize

consumers to reduce their electricity consumption during critical peak events, by offering

higher prices or rebates for load reduction. While CPP has been shown to be effective

in reducing peak loads and improving grid efficiency, its implementation becomes more

challenging in the context of prosumers, whose consumption and generation patterns can be

more variable and unpredictable.

To address this challenge, the chapter proposes the use of RL algorithms for optimiz-

ing CPP strategies in the presence of prosumers. RL is a subfield of machine learning

that enables agents to learn optimal policies through trial-and-error interactions with an

environment, without requiring explicit modeling of the underlying system dynamics. By

applying RL to the problem of CPP design, the chapter aims to develop more adaptive and

robust pricing strategies that can effectively incentivize prosumers to contribute to peak load

reduction, while avoiding unintended consequences such as the emergence of new peaks.

The study employs simulations and comparative analysis of different RL algorithms,

considering both mass and targeted CPP offering scenarios. The results demonstrate the

potential of RL-based CPP strategies to significantly improve the performance and extend

the viability of CPP programs, particularly in the presence of high prosumer penetration.

The chapter also highlights the influential role of batteries and EVs in enabling more effective

peak load management, and suggests the need for targeted policy and incentive structures

to encourage their adoption.

The third chapter, "Towards Sustainable Energy Use: Reinforcement Learning for De-

mand Response in Commercial Buildings," shifts the focus to the application of RL for DR

in the commercial building sector. Commercial buildings account for a significant share of

global electricity consumption, and their energy use patterns are often characterized by high

variability and inefficiency. As a result, there is a growing interest in developing advanced

control and optimization strategies that can enable more sustainable and cost-effective en-

ergy management in commercial buildings.

The chapter presents a novel DR framework that integrates RL algorithms with a mathe-

matical model of building energy dynamics, considering non-controllable loads, controllable
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loads, and Heating, Ventilation, and Air Conditioning (HVAC) systems. The objective

of the framework is to minimize energy costs, CO2 emissions, and occupant dissatisfac-

tion, while maximizing peak load shaving potential. The study implements and compares

three state-of-the-art RL algorithms for the HVAC load, namely PPOD, D3QN, and SACD,

against traditional heuristic approaches, using real-world consumption data from a commer-

cial building over an eight-week winter period.

The results demonstrate the superiority of RL-based DR strategies, particularly the

combination of PPOD and TD3 algorithms, in achieving significant peak load shaving (ex-

ceeding 25%), cost reductions, and environmental benefits. The chapter also incorporates

the impact of outdoor temperature variations and risk assessment using Value-at-Risk (VaR)

and Conditional Value-at-Risk (CVaR) metrics, providing a more comprehensive and robust

evaluation of the proposed DR framework. The findings contribute to the growing body of

knowledge on the application of RL for building energy management, and have important

implications for the development of more sustainable and efficient energy practices in the

commercial sector.

In summary, this thesis addresses critical challenges and opportunities in the ongoing

energy transition, by exploring the application of reinforcement learning algorithms, math-

ematical optimization techniques, and scenario analysis models, along with emerging tech-

nologies for the optimal deployment and management of DER, the design of effective DR

programs, and the improvement of energy efficiency in commercial buildings. The three

chapters that comprise the thesis make novel contributions to the fields of energy systems

modeling, machine learning, and sustainability, and provide valuable insights and tools for

policy makers, industry practitioners, and researchers working towards a more sustainable

and resilient energy future.
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Chapter 1

Investment in Vehicle-to-Grid and

Distributed Energy Resources:

Distributor versus Prosumer

Perspectives and the Impact of Rate

structures

Abstract

Photovoltaic panels, electric vehicles, and vehicle-to-grid technologies are becoming more

common and hold significant promises to improve the grid and foster the energy transition.

However, significant questions remain unanswered with respect to who should invest in this

equipment and what tariff should be used. This paper examines whether the distribution

company or prosumer should invest in and manage Distributed Energy Resources (DER),

the ideal combination of DER to utilize, and the appropriate tariff to implement. Central

to this analysis is the assessment of different stakeholder objectives, particularly from the

investor’s perspective, where net present value is used as the primary criterion for evaluating

the different investment scenarios. Additionally, the impact of these scenarios on the annual



system cost is calculated. A mathematical scenario analysis model is developed to simulate

the operation of DER and energy management systems. This model utilizes the Vermont

electricity grid’s real-world consumption, generation data, and cost structures. The results

underscore the significance of incorporating vehicle-to-grid technology to enhance the prof-

itability of DER investments. This inclusion of specific data sources and stakeholder criteria

aims to provide insight into the complex dynamics of smart-home deployment.

1.1 Introduction

The residential subsector of electricity consumers is the second largest worldwide after the

industrial subsector (U.S. Energy Information Administration (EIA), 2021c) and the largest

in many countries, such as the US (with a share of 39% (U.S. Energy Information Admin-

istration (EIA), 2021a)). Equipping homes with Distributed Energy Resources (DER) and

Energy Management Systems (EMS) can help the grid owner address many challenging

problems the electricity grid faces. First, since the residential peak demand and Photo-

Voltaic (PV) solar panel generation usually do not coincide (see for instance Figure 1.1)),

self-generation alone (without storage) cannot cover peak loads. Peak load pressures the

grid operator to meet high demand through expensive peaking power plants and network

capacity. These resources are more expensive than usual generation resources and impose

massive ramp-up and ramp-down operational costs upon the grid operator (Imcharoenkul

and Chaitusaney, 2020). Moreover, during off-peak hours, the network capacity is under-

utilized, while capacity limits during peak hours endanger grid reliability (Salisbury and

Toor, 2016).

Second, to increase the generation capacity during peak hours, the grid operator tends to

use dispatchable resources that often run on fossil fuels, increasing the grid’s carbon footprint

(Singh, 2021). Reducing environmental damage is another advantage of shaving the peak

loads in the grid. Finally, due to the sharp decrease in battery cost in recent years as well

as incentives and regulations, a substantial increase in Electric Vehicle (EV) penetration in

the market is expected in the coming years (International Energy Agency (IEA), 2020; Wu

et al., 2015). Introducing EVs to the prosumer’s home increases power consumption and
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Figure 1.1: Generation and load (with 15-minute time steps) in a sample week in July

changes the load profile, especially if the vehicle is connected to the grid (“vehicle-to-grid”

or V2G) so that it can feed electricity into it. V2G has the potential to shave peak loads

since the batteries are often available; about 90% of the cars are parked during peak hours

in California (Thomas et al., 2018). Deploying V2G can thus reduce generation costs during

peak hours (Mozafar et al., 2018). On the contrary, unmanaged EV penetration may create

new peaks during the formerly off-peak hours (Sioshansi, 2012).

There is a body of research studying the advantages and disadvantages of V2G. Drivers

and barriers influencing the deployment of V2G are identified in (Aasbøe, 2021); among

other factors, the authors conclude that increasing the battery size can boost the profitabil-

ity of V2G. Also, the environmental and economic benefits of embedding V2G into EMS

are quantified in (Wei et al., 2022) by formulating a multi-objective optimization problem

and using a Non-dominated Sorting Genetic Algorithm; the results highlight the importance

of electricity and gas prices on the system design and profitability of V2G. Bentley et al.

consider the physical characteristics of EV batteries and the impact of battery degradation

on the profitability of V2G (Bentley et al., 2021), and Ali et al. show that even in devel-

oping regions, using V2G returns economic benefits and reduces CO2 emissions (Ali et al.,

2020). Considering reliability, cost, and emissions as the measures of profitability, Bibak and

Tekiner-Mogulkoc investigate the impact of V2G on the grid (Bibak and Tekiner-Mogulkoc,

2021) and show that V2G can increase grid efficiency. How V2G benefits EV owners trading

electricity in the Netherlands is studied in (Raj, 2019). The findings of this study highlight

the monetary value of V2G and show that a greater penetration of PV can increase the
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profitability of V2G. Li et al. assess the profitability of V2G for EV owners, power plants,

and power grid companies (Li et al., 2020). They conclude that V2G yields positive income

for all parties under suitable parameters. For instance, the EV owner would gain a positive

income if the peak load price is more than three times the off-peak price. Also, electric

trucks have more battery capacity and can earn even more revenue by participating in V2G

(Zhao et al., 2016).

However, some researchers believe that investment in V2G would not pay off due to

battery degradation costs (Gough et al., 2017) and high investment costs (Peterson et al.,

2010). Mullan et al. suggest that too much additional infrastructure expansion investment

is needed, which V2G is not able to compensate (Mullan et al., 2012), and Curtin et al.

state that the lack of savings is the critical barrier against V2G for the consumers (Curtin

et al., 2019). Accordingly, the profitability of V2G is contingent on various factors, and its

overall profitability remains dependent on the context.

Furthermore, investment in the consumer’s side by equipping its homes with DER and

EMS and enabling them to feed back electricity to the grid are well-studied solutions to

address the previously mentioned problems (Krozer, 2013) which have attracted significant

attention in the literature (Segreto et al., 2020). However, turning former passive consumers’

homes into smart ones requires wise investment planning, the right governmental incentives,

well-designed tariff structures, and making the prosumer capable of making online decisions

(Avau et al., 2021). These topics have not yet been well addressed in the literature.

Several studies have investigated the impact of implementing different electricity tariff

designs and pricing schemes in combination with vehicle-to-grid (V2G) charging. Richardson

calculated premium tariff rates for V2G peak power in Ontario, Canada similar to exist-

ing feed-in-tariff programs for renewables that could encourage more participation in V2G

(Richardson, 2013). Huang and Wu proposed a dynamic tariff-subsidy method for conges-

tion management in distribution networks with high penetration of solar PV, heat pumps,

and V2G-enabled electric vehicles (Huang and Wu, 2019). They showed the efficacy of using

both positive (tariff) and negative (subsidy) regulation prices to solve congestion issues.

Other work has looked specifically at time-of-use (TOU) tariffs for V2G. Ma et al. devel-

oped an optimal dispatch strategy for a wind-PV-battery microgrid with V2G under TOU
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tariffs to minimize operation costs (Ma et al., 2019). Aguilar-Dominguez et al. analyzed the

potential impact of V2G operating under different TOU tariffs on a household’s electricity

demand and bill savings (Aguilar-Dominguez et al., 2020). They found savings of 30-85%

could be achieved with V2G and rooftop PV compared to no storage. Jeon et al. compared

smart/managed EV charging strategies under varying renewable energy penetration levels,

including a TOU tariff approach (Jeon et al., 2020). Their results highlighted the larger

benefits of smart V2G control, especially at higher renewable shares.

In terms of assessing end-user preferences, Baumgartner et al. used a survey to explore

EV owners’ motivations and willingness-to-pay for a V2G charging tariff design (BAUM-

GARTNER et al., 2022). They found more experienced EV users had a higher acceptance

of lower minimum range requirements and lower expected monetary savings from V2G par-

ticipation. This suggests the importance of designing business models for V2G that align

with specific user requirements.

In summary, recent work has evaluated different electricity pricing schemes and tariff

structures in combination with V2G to demonstrate their ability to encourage participation,

reduce grid congestion, minimize costs and emissions, and deliver bill savings for prosumers.

However, further analysis is still needed to optimize these tariff designs and quantify trade-

offs between various stakeholders. Therefore, this study concentrates on two of these less

investigated aspects:

1. Who should invest? DER and EMS are often discussed as tools for consumers, but

there is a limited discussion on who should actually invest and control their usage.

Given the decreasing cost of DER and EV, more and more prosumers are adopt-

ing them, and the share of emerging investors in DER has increased in recent years

(Bergek et al., 2013). As studied in (Bergek and Mignon, 2017), different motivations,

including cost minimization, grid stability maximization, and environmental concerns,

encourage different types of investors to come to this market. Among the main types

of investors, this study considers the distributor and the prosumer as two candidates

to invest in DER and EMS and control them. Since each has different objectives, they

tend to control DER and EMS in different ways, which has different consequences on

the grid and returns different profitability for each party. In particular, the prosumer
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seeks annual bill minimization. On the other side, as shown in (Asensio et al., 2016),

by utilizing demand response and Energy Storage Systems (ESS), the distributor can

avoid network and supply expansion costs in the long run. Then, with different ob-

jectives, the distributor tries to shave the peak load and manage the local grid. The

different objectives of the two parties do not necessarily converge and lead to different

operating strategies. Therefore, this study formulates a model for controlling DER

and EMS, defines different objective functions for each party, and carries out a cost-

and-benefit analysis of each investment scenario for each party under different tariff

structures are subject to.

2. What rate should be used? Carbon tax and market-based regulations are hard to

implement due to political concerns, while tariff-based strategies are easier to apply

(Smith and Urpelainen, 2014). However, a wise tariff design is needed. Under an

energy-based pricing structure, the higher penetration of DER could increase the dis-

tributor’s cost and reduce its income (Haapaniemi et al., 2017). Moreover, imposing

different tariff structures affects the profitability of investment scenarios on DER (Kök

et al., 2018). Accordingly, this study investigates the effect of different rate structures

(as shown in Table 1.3) on the profitability of each investment scenario. Tariffs can be

an option (decision) for both agents; the distributor can make a list of rate schemes

available to the prosumer, and the prosumer chooses the best one proposed.

The remainder of this chapter is structured as follows: Section 2 introduces the model’s

elements, data, and two performance evaluation measures for the problem and formulates

two models for the distributor and the prosumer, respectively. Section 3 discusses the

results, and section 4 presents the main conclusions, indicates the limitations of this study,

and suggests some future research lines.

1.2 Model Description and Methodology

This section offers a comprehensive overview of the research methodology and explicitly

presents certain assumptions to guide interpretation. We assume all parameters are deter-

ministic and are specified at the outset. The study focuses on investment decisions made by
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a single household without considering shared or coalition investments. Additionally, this

analysis does not account for the mass adoption effect, where many prosumers might shift

their peak load and create new peak loads. Moreover, our approach centers on the load

pattern of one household, which may differ from aggregated load patterns. This framework

outlines the data sources, parameters, and essential components to assess investments’ prof-

itability in DER, V2G, and EMS under realistic conditions. The subsections detail specific

aspects of the model, including data and parameters, cost components, and the mathemat-

ical model. See the appendix for a more detailed version of the mathematical model with

the numeric values of parameters.

1.2.1 Data and Parameters

Investment in DER, V2G technology and EMS is gaining popularity due to environmen-

tal and managerial incentives. However, the profitability of such investments has not been

extensively examined, particularly in realistic conditions and when subsidies are no longer

provided (Bertsch and Di Cosmo, 2020). This study evaluates the profitability of these in-

vestments and determines the most suitable conditions by utilizing real-world data obtained

from four single detached houses in Vermont, USA, during the year 2019. Table 1.1 presents

the consumption patterns of these houses, highlighting their variations and means. The

following section selects two houses to calculate and present results when each agent invests

in and controls DER and EMS. The models are also applied to data from the other houses

to ensure the consistency of the results. Figure 1.2 illustrates the electricity demand of these

houses during the first week of 2019, including consumption and solar PV generation data

recorded at 15-minute intervals. Vermont is a leading state in DER utilization, attributed

to policies implemented approximately 20 years ago that encouraged solar PV investments

and established a robust net-metering program (Allen, 2019). Vermont’s solar PV gener-

ation has consistently increased over the years (see Figure 1.3). The DER market has a

wide range of available technologies with varying capacities and costs. This variety presents

prosumers (consumers who also produce energy) and distributors with numerous investment

options (Kosmadakis et al., 2013). For this study, five DER home investment scenarios are

examined, along with their corresponding purchasing and installation costs. These scenar-
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Table 1.1: Consumption characteristics for an entire year by 15-min intervals (values in
kWh)

House number mean std min 25% 50% 75% max sum
1 0.99 0.89 0.00 0.44 0.64 1.20 9.16 8,709
2 0.78 1.06 0.00 0.24 0.40 0.72 8.08 6,862
3 1.61 1.60 0.00 0.60 1.04 2.04 13.12 14,148
4 1.06 1.21 0.00 0.32 0.60 1.20 9.72 9,345

ios, described in detail in Table 1.2, are compared against a Status Quo scenario, which

serves as a reference point for analysis.

The total costs of the scenarios are estimated by the company dcbel (selling bidirectional

EV chargers and inverters). Consumers are assumed to purchase the EV independently

of their smart-home operations, as in the market (see Figure 1.3). The only additional

cost is the V2G equipment. This assumption explains why the cost of the EV option is

relatively lower. We note that the EV battery capacity is 60 kWh, but only 60% of this

capacity is assumed to be available for the V2G system. The growing trend in EV purchases

further justifies this assumption. Consumers are increasingly inclined to buy EVs due to

various incentives such as decreasing battery costs, environmental benefits, and efforts to

address climate change. However, it is crucial to understand that the primary motivation

for purchasing an EV is not as a tool for home electricity management. While the potential

to use an EV to reduce electricity bills might add an extra layer of motivation, it is far from

being the primary reason for their purchase. Therefore, our assumption rests on the premise

that the EV is purchased independently of its potential utility in home energy management,

and any additional cost savings or benefits derived from its integration into home energy

systems are incidental to this primary purpose. During working days from 7:45 am to 5:15

pm, we assume that EVs are not accessible, as they are at work and consume 10 kWh of

stored energy from their batteries.

Additionally, the distributor procures electricity from the market based on the Real-Time

Locational Marginal Price (RTLMP), which changes every five minutes. The distributor

offers different electricity rates to consumers for their electricity purchases. Prosumers choose

a specific rate based on their demand patterns and available DER. Table 1.3 outlines the

five rates available to prosumers, each with a fixed daily fee and a variable charge per kWh.
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Figure 1.2: Consumption pattern in different houses in the first week of 2019

Table 1.2: Investment scenarios

Scenario
Capacity of the

standalone battery
(kWh)

Charge/discharge
capacity (kWh)
(per 15 min.)

Available capacity
of the EV’s battery

(kWh)

Solar PV
capacity (kWh)

Total cost (purchase
and installation, USD)

0 – Status Quo 0 0 0 0 0
1 – Battery 40.5 3.75 0 0 27,300
2 – Battery + PV 27 2.5 0 10 35,125
3 – EV 0 1.9 36 0 4,000
4 – EV + PV 0 1.9 36 10 17,145
5 – Battery +

EV + PV 10 1.9 36 10 23,724

The simplest rate, called the uniform rate, is volumetric, with a fixed daily fee of $0.492 and

a per kWh charge of $0.169.

To incentivize prosumers to shift their consumption from peak to off-peak hours, the

distributor offers a ’Time-of-Use’ (TOU) rate, with higher prices during peak hours and lower

prices during off-peak hours. Also, under the ’TOU EV & Uniform’ rate, all consumption

is charged at the ’Uniform’ rate except for the EV, which follows the ’TOU’ rate. These

three tariffs presented in Table 1.3 are the main tariffs offered in Vermont and are typical

options considered by utilities. The authors introduce the subsequent two tariffs to explore

the implications of consumers engaging in the wholesale market. Under the ‘RTLMP’ rate,

the consumer buys and sells back electricity at the wholesale market price, and under the

‘TOU & RTLMP’ rate, prosumers purchase electricity at the ’TOU’ rate and sell excess

electricity back to the grid at the ’RTLMP’ rate. The electricity rates for a sample week in

March are depicted in Figure 1.4.
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Figure 1.3: Growth of Passenger EVs and solar panel generation in Vermont (Vermont
Department of Environmental Conservation, 2023; U.S. Energy Information Administration
(EIA), 2021b)

Figure 1.4: Electricity rates over a week in March 2019
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Table 1.3: Five rates proposed to prosumer

Rate Name Fixed charge buys at sells at (if allowed)
($/day) ($/kWh) ($/kWh)

Uniform 0.492 0.16859 0.16859
TOU 0.651 Peak Hours (1pm-9pm): 0.26771 Peak Hours: 0.26771

Off-Peak Hours: 0.11411 Off-Peak Hours: 0.11411
TOU EV & Uniform 0.651 General Usage (any time): 0.16859

Peak Hours EV Charge: 0.16859 0.16859
Off-Peak Hours EV Charge: 0.12831

RTLMP 0 Market Price Market Price
TOU & RTLMP 0.651 Peak Hours (1pm-9pm): 0.26771 Market Price

Off-Peak Hours: 0.11411

1.2.2 Cost Components

As previously discussed, each party involved in the context has distinct objectives, as their

respective objective functions encompass various cost elements. The prosumer’s tariffs and

costs are explicitly defined. In accordance with the applicable tariff structure, which may

incorporate volumetric and time-dependent factors, the prosumer aims to minimize the

overall expenditure associated with energy consumption from the power grid. Conversely,

the distributor’s costs encompass two significant categories1:

• Wholesale Load Costs: These costs represent the substantial portion of expenses

related to the procurement of wholesale electricity and consist of three primary cost

classes:

1. Energy: This pertains to the provision of demand and is determined by the

volume of consumed energy.

2. Capacity: This refers to the payment made to ensure the secure electricity

supply during peak hours and is determined based on the monthly peak capacity.

3. Additional costs: This category incorporates supplementary charges such as

ancillary market charges, administrative fees, and other expenses that typically

do not rely on volume and peak consumption. However, these costs are not

considered in the present model.

• Regional Network Service (RNS): These costs cover the transmission expenses

incurred by the distributor accessing the New England grid and delivering electricity

1https://www.iso-ne.com/markets-operations/market-performance/load-costs/
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to the end-user. These costs are calculated based on the monthly peak capacity, as

defined by the New England Independent System Operator.

The distributor’s supply cost is formulated using the two primary cost categories. It includes

the first category’s energy component and monthly peak capacity component. A peak ca-

pacity component from the second category is added to the initial peak capacity cost. For

more detailed information regarding the distributor’s costs in New England, please refer to

(Independent System Operator – New England” (ISO-NE), 2021b,a)

1.2.3 Modeling

In contrast to traditional homes where electricity consumption is passive, electricity flow

in a smart home requires continuous management at each time step. By following price

signals, the electricity flow within the home is optimized to ensure demand fulfillment while

minimizing the overall cost. However, as the number of decisions to be made increases, the

complexity of the problem escalates. Halman et al. demonstrated that even a simplified

version of this problem, where a home is equipped with an ESS and a PV and engages in

electricity trading with the grid, is NP-Hard (Halman et al., 2018). Therefore, the com-

plexity of this problem necessitates the development of a mathematical model to control the

electricity flow and the inevitable utilization of an EMS.

This study presents a mathematical scenario analysis model that simulates the operation

of DER and EMS within a smart home. The model’s objective must be adjusted based on

the party responsible for investing in and controlling DER and EMS. The prosumer aims

to optimize the system to minimize the total electricity consumption costs (or, equivalently,

maximize total revenue) according to their applicable tariff. On the other hand, the distrib-

utor strives to minimize the overall supply costs while also considering network costs, which

are directly proportional to the monthly peak load. Peak loads necessitate an increase in

service capacity, and the network cost is determined by multiplying the coefficients of RNS

and forward Capacity (Cap) costs by the monthly peak load. Figure 1.5 illustrates the DER

components in a smart home, consisting of a solar PV system, a stationary ESS, and an EV

alongside the grid and the load. The load is deterministic, and demand response measures

to shift demand are not employed by the prosumer in this model. The distributor is allowed
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Figure 1.5: Electricity flows in the smart home

to inject electricity generated by residential DER into the grid. An identifier parameter

(Itrade) is introduced to account for the impact of decentralized trade allowances on the

profitability of investment scenarios. The ESS and EV batteries possess identical charg-

ing/discharging capacities and loss rates. Additionally, a minimum charging level is defined

for the EV to ensure optimal functionality throughout its lifespan.

All parameters in the model are considered deterministic and provided at the outset. Figure

1.5 depicts the continuous variables representing the flows between the nodes in the system

graph. Furthermore, a dummy variable (xpeak
k ) represents the monthly peak load used in

the computation of capacity and network costs, while two state variables track the ESS

and EV charging levels. The final model is a linear model comprising 15 constraints that

govern the electricity flow within the home, satisfy minimum requirements, and compute

the state variables for the subsequent time step. An additional constraint is included in the

prosumer’s model to adhere to the trade allowance condition. The model, under various

parameter configurations and with two different objective functions, is solved using Gurobi

in Python. It is important to note that the complete model is described in the appendix,

and the accompanying codes are provided in the attachment.
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1.2.4 Net Benefits

The internal rate of return (IRR) and net present value (NPV) are financial metrics com-

monly used in investment analysis. IRR measures the anticipated rate of return that an

investment is expected to generate throughout its duration, whereas NPV assesses the dif-

ference between the present value of cash inflows and outflows using a discount rate. NPV is

preferable due to its consideration of a specific discount rate, which facilitates more effective

comparisons between various projects and provides a more precise gauge of an investment’s

value and profitability by reflecting the genuine opportunity cost of capital, unlike IRR which

presupposes reinvestment at the same rate. Furthermore, NPV fosters superior compara-

bility between different projects by considering their absolute value, thereby enabling more

well-informed decision-making. When comparing five investment scenarios with identical

durations, NPV is particularly suitable. In scenarios where durations are equal, the timing

becomes irrelevant, and NPV becomes focused on the magnitude of cash flows. This ap-

proach accurately captures the opportunity cost of capital and allows for direct comparison.

By evaluating NPV values, one can effectively identify the most financially advantageous

option, thus establishing NPV as the preferred metric for informed decision-making. The

formulas to calculate these indices are as follows:

NPV =
N∑

n=1

{Yearly Saving
(1 + i)N

} − (Product price+ Installation and Labor cost)

0 =
N∑

n=1

{Yearly Saving
(1 + IRR)N

} − (Product price+ Installation and Labor cost)

Yearly Saving =Total Cost - Base Cost + EV Usage Cost

i
.
= Discount rate = 0.0619

N
.
= Life time of the product(s) = 15 years

1.3 Results

This section presents the outcomes of the distributor and the prosumer investing in and

controlling DER and EMS. Additionally, a sensitivity analysis is conducted in the third
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Figure 1.6: Electricity flow from the grid under s3 (EV) and RTLMP where distributor
controls

subsection, focusing on variations in the load pattern, battery capacity, and solar panel

system size.

1.3.1 Distributor in Control

This section examines the profitability and consequences of the proposed investment scenar-

ios in which the distributor controls the system. The distributor leverages the available DER

within the home and engages in decentralized trading activities with the grid to minimize

costs related to load covering and network utilization. As an example, Figure 1.6 illustrates

the electricity obtained from the grid (positive) and injected into the grid (negative) under-

investment scenario 3 (EV) with Real-Time Locational Marginal Price (RTLMP) rates in a

selected week of March. The figure demonstrates how the distributor strategically acquires

electricity from the grid and engages in decentralized trading based on the prevailing price

signals. When the price is low and the electric vehicle (EV) is available, the distributor

charges the EV battery. Conversely, when the price increases, the stored energy is utilized

to cover the load or can be sold back to the grid to generate a profit.

The Sankey diagrams presented in Figure 1.7 visually represent the overall energy flows

between various nodes depicted in Figure 1.5. In scenario 0 (Status Quo), the grid fulfills

21



Figure 1.7: Yearly electricity flows under different investment scenarios where distributor
controls

the entire demand. In alternative scenarios where a battery or an electric vehicle (EV) is

introduced to the home, their capacities are primarily utilized to leverage electricity price

differentials, while the remaining capacity is employed to meet the demand when prices are

high. Furthermore, in scenario 4, the unavailability of the EV prevents the distributor from

storing the electricity generated by the photovoltaic (PV) system. Conversely, scenario 2

exhibits a substantial energy flow from the PV system to the battery.

The distributor’s objective function is used to solve the model and evaluate the prof-

itability of various investment scenarios. The results in Table 1.4 demonstrate the potential

annual savings for the distributor investing in and controlling the electricity load. These

savings range from $813 in scenario 3 (EV) to $2,163 in scenario 5 (EV+PV+Battery).

However, when taking into account investment costs, discount rate, and product lifespan,

scenario 3 (EV) emerges as the only profitable option, with a net present value (NPV) of

$3,803. Consequently, connecting an electric vehicle (EV) to the home is the most favorable

investment scenario among the proposed options.

Table 1.4 also provides an overview of the key annual outcomes derived from the distrib-

utor’s model. The “Net trade” column indicates the net funds exchanged with the grid for

optimal electricity supply, denoted by positive (+) or negative (-) values. The “System cost”

column reflects the total costs associated with RNS and Cap costs resulting from the chosen
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Table 1.4: Key results of the distributor’s model for the representative House #3
Scenario Net trade System cost Total cost Saving compared NPV IRR Maximum peak Total from Total to

(A) ($) (B) ($) (A+B) ($) to S0 ($) ($) (%) load (kWh) grid (kWh) grid (kWh)
S0: Status Quo 505 2,050 2,555 0 0 NaN 13.12 14,148 0
S1: Battery 422 486 908 1,647 -11,498 -1.22 3.76 19,745 4,769
S2: Battery+PV 61 647 708 1,847 -17,403 -2.83 5.08 17,637 13,860
S3: EV -79 1,821 1,742 813 3,801 18.80 11.64 26,057 7,352
S4: EV+PV -399 1,605 1,206 1,350 -4,196 2.15 11.60 22,596 15,459
S5: EV+PV+Battery -380 772 392 2,163 -2,970 4.20 6.32 20,069 12,954

Figure 1.8: NPV and IRR of scenarios where distributor controls

investment scenario. The “Total cost” represents the sum of net trade and system costs

the distributor aims to minimize. The “Saving” column indicates the yearly cost savings,

irrespective of initial costs. The NPV and IRR columns incorporate these costs and measure

the profitability of each investment scenario using different evaluation methods.

Additionally, Table 1.4 includes information on the maximum monthly peak load (“Max-

imum peak load”) observed during the year, as well as the total energy flow taken from and

sent to the grid (“Total flow taken from the grid” and “Total flow sent to grid” columns). Fur-

thermore, Figure 1.8 illustrates that scenario 3 (EV) remains the most viable and profitable

option across four homes with various load patterns.

1.3.2 Prosumer in Control

The prosumer is responsible for paying only the energy costs, as computed from the selected

tariff. Therefore, this section aims to evaluate the profitability of various investment scenar-

ios for the prosumer while also analyzing the costs imposed on the grid. Additionally, the

prosumer will examine the impacts of the distributor’s imposed rates and the restriction on

injecting electricity back into the grid. An illustration depicting the prosumer’s control is

presented in Figure 1.9. This figure showcases the electricity the selected house takes from

the grid at the ’TOU’ rate, considering both the Status Quo (S0) and Battery+PV+EV (S5)
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Figure 1.9: Flow from the grid at ’TOU’ and under scenarios 0 and 5 where prosumer
controls

scenarios during a sample week in March. The black boxes represent peak hours throughout

the week when electricity prices are high during business days. The prosumer adjusts its

energy consumption based on price signals to minimize its overall energy costs.

The key findings resulting from the analysis of the prosumer’s model applied on House 4

and under various conditions are presented in Table 1.5. The table includes several columns:

’Total cost’ and ’System cost’ represent the annual expenses incurred by the prosumer and

the costs imposed on the grid, respectively. The ’Saving’ column quantifies the yearly savings

achievable by the prosumer through each investment scenario compared to the Status Quo.

For each scenario, the ’NPV’ and ’IRR’ columns provide the Net Present Value and Internal

Rate of Return measurements, respectively. Moreover, the ’Maximum flow taken from the

grid’ indicates the highest monthly peak load observed throughout the year. The ’Total flow

taken from the grid’ and ’Total flow sent to grid’ columns display the overall energy obtained

from and sold back to the grid by the prosumer over the year. The last two columns, ’NPV’

and ’System Cost,’ allow us to explore the potential outcomes if the prosumer could not

sell electricity to the grid. These columns demonstrate the NPV and system cost associated

with the respective scenario where such trade is not permitted.

The results presented in Table 1.5 and Figure 1.10 illustrate that in situations where the

prosumer is unable to sell surplus electricity to the grid, except for scenario 3 (EV), where

the investment yields a net present value of $888 at the ’RTLMP’ rate, all other investment
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Table 1.5: Key results of the prosumer’s model
Selling back to grid is → Allowed NOT Allowed

System Total Saving NPV IRR Highest Total Total NPV System
cost cost compared monthly peak from grid to grid cost

Rate Scenario ($) ($) to S0 ($) ($) (%) (kWh) (kWh) (kWh) ($) ($)
Uniform S0: Status Quo 1,631 1,756 0 0 NAN 10 9,345 0 0 1,631

S1: Battery 1,631 1,756 0 -27,300 NAN 10 9,345 0 -27,300 1,631
S2: Battery+PV 1,555 -189 1,945 -16,468 -2 10 6,735 8,935 -25,144 1,130
S3: EV 2,662 1,813 -57 -4,549 NAN 17 12,843 0 -4,552 2,672
S4: EV+PV 2,457 -132 1,888 965 7 17 9,063 7,765 -11,528 2,445
S5: EV+PV+Battery 2,543 -132 1,888 -5,614 2 17 9,063 7,765 -14,573 2,464

TOU S0: Status Quo 1,631 1,819 0 0 NAN 10 9,345 0 0 1,631
S1: Battery 4,102 309 1,510 -12,818 -2 23 17,753 7,327 -23,420 3,972
S2: Battery+PV 2,727 -1,189 3,007 -6,277 3 17 8,440 9,920 -23,742 1,658
S3: EV 2,845 706 1,112 6,672 27 17 18,697 5,133 -754 2,720
S4: EV+PV 2,770 -1,294 2,957 11,222 15 17 15,634 13,615 -8,445 2,529
S5: EV+PV+Battery 2,726 -1,667 3,486 9,714 12 16 16,130 13,845 -11,594 2,478

TOU EV & Uniform S0: Status Quo 1,631 1,756 0 0 NAN 10 9,345 0 0 1,631
S1: Battery 1,631 1,756 0 -27,300 NAN 10 9,345 0 -27,300 1,631
S2: Battery+PV 1,555 -191 1,946 -16,455 -2 10 6,735 8,935 -25,144 1,130
S3: EV 1,620 670 1,086 6,413 26 10 39,438 23,418 -1,073 1,592
S4: EV+PV 1,571 -1,276 3,032 11,938 16 10 37,504 33,028 -8,798 1,520
S5: EV+PV+Battery 1,571 -1,276 3,032 5,359 10 10 37,504 33,028 -12,329 1,490

RTLMP S0: Status Quo 1,631 320 0 0 NAN 10 9,345 0 0 1,631
S1: Battery 4,009 28 293 -24,492 -17 22 31,756 19,975 -26,446 3,807
S2: Battery+PV 2,957 -200 520 -30,137 -15 17 20,104 20,678 -33,030 2,079
S3: EV 2,631 -266 586 1,623 12 16 21,672 7,754 888 2,509
S4: EV+PV 2,604 -591 911 -8,406 -3 16 19,265 16,892 -11,269 2,373
S5: EV+PV+Battery 2,584 -640 960 -14,516 -6 16 22,938 20,066 -17,283 2,426

TOU&RTLMP S0: Status Quo 1,631 1,819 0 0 NAN 10 9,345 0 - -
S1: Battery 3,988 1,412 406 -23,404 -15 23 9,784 135 - -
S2: Battery+PV 1,619 478 1,341 -22,266 -6 17 3,348 4,938 - -
S3: EV 2,775 1,480 339 -748 3 17 13,079 63 - -
S4: EV+PV 2,656 710 1,109 -6,507 -0 17 9,270 7,823 - -
S5: EV+PV+Battery 2,511 410 1,409 -10,210 -1 17 7,042 5,398 - -

Figure 1.10: NPV & IRR of scenarios where prosumer controls and selling back is NOT
allowed

scenarios across different rate structures are unprofitable. In general, if the prosumer cannot

sell electricity to the grid, they cannot take advantage of price differentials, resulting in an

investment that does not generate returns.

Figure 1.11 displays the NPV and IRR of the five investment scenarios, considering

various rates when the prosumer has control over DER and EMS, with the ability to sell
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Figure 1.11: NPV & IRR of scenarios where prosumer controls and selling back is allowed

electricity back to the grid. When the prosumer buys energy at ’TOU’ rates and sells at

’RTLMP’ rates, all investments yield negative NPVs. This finding is attributed to the pro-

sumer purchasing energy at a higher rate and selling it to the wholesale market at a lower

rate. However, if the prosumer buys and sells energy at ’RTLMP’ rates, scenario 3 (EV) gen-

erates a positive NPV of +$1,623. Consequently, a standalone prosumer who has connected

their EV to the grid can generate benefits under the wholesale market rate. Regarding the

remaining rates, the NPVs of the first and second scenarios are negative. Hence, connecting

an EV through a V2G device becomes crucial to making investments beneficial. Among

the remaining rates, scenario 4 (EV+PV) yields the highest NPV, reaching +$11,938. The

suitable rates for the prosumer are ’TOU EV & Uniform’,’TOU’, and ’Uniform,’ respec-

tively. Another notable finding is that a significant price gap during peak and off-peak

hours substantially impacts the profitability of the investment scenarios. This gap allows

the prosumer to store electricity when the price is low and sell or use it when the price is

high.

Figure 1.12 illustrates the costs incurred by the distributor when the prosumer controls

DER and EMS and is allowed to sell electricity back to the grid. The results indicate that

the ’TOU EV & Uniform’ rate corresponds to the lowest annual cost for the distributor.

This finding is further supported by Figure 1.13, which can explain the superiority of the

’TOU EV & Uniform’ rate for the distributor. Since the objective function of the prosumer

does not include network costs, implementing smart technologies and making homes smarter

can lead to increased peak loads. As peak loads constitute a significant portion of network
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Figure 1.12: System cost where prosumer controls and selling back is allowed

Figure 1.13: Peak loads at ’TOU’ and ’TOU EV & Uniform’ where prosumer controls

costs, the ’TOU EV & Uniform’ rate has minimal impact on monthly peak loads, making

it the most favorable option for the distributor to recommend to prosumers. On the other

hand, the ’TOU’ rate increases peak loads across all tariff structures.

Table 1.5 demonstrates that when the prosumer cannot engage in decentralized trade, it

results in a decrease in the NPV or, at best, no change in NPV across all investment scenarios

and rate structures. Moreover, except for scenario 3 (EV) at the ’Uniform’ rate, prevent-

ing the prosumer from selling back electricity reduces system costs for all other rates and

27



scenarios. However, if the distributor modifies the trade allowance condition, the prosumer

can adjust its chosen rate and investment scenario accordingly. This strategic interaction

between the prosumer and the distributor is analyzed to determine the equilibrium in this

one-shot game, where the decisions of one agent affect the outcome of the other. Table

1.6 identifies the optimal decisions for the prosumer, who controls DER and EMS, and the

distributor. The game unfolds with the distributor making the initial move as the leader,

deciding whether to permit the prosumer to sell back electricity to the grid and which tariff

is offered. Subsequently, the prosumer, acting as the follower and considering the leader’s

decision, selects an investment scenario.

Hence, Table 1.6 provides insights into the best response of the prosumer for each com-

bination of rate scheme and trade allowance. It also presents the corresponding costs for the

prosumer and the system under the selected investment scenario. The table indicates that

when selling back electricity to the grid is prohibited, prosumers would not change from the

status quo unless they can select the ’RTLMP’ rate and invest in connecting their EV to the

grid. This combination yields an NPV of $888 for the prosumer while increasing the annual

system cost by $878. It is important to note that when selling back is not allowed, the ’TOU

& RTLMP’ rate is essentially the same as being a passive consumer under the ’TOU’ rate.

A significant takeaway from this scenario is that restricting the prosumer from selling back

to the distributor would push them to expose themselves to the wholesale market price if

they can. Conversely, when the prosumer is allowed to inject electricity into the grid, the

optimal choice for the prosumer is to select the ’TOU EV & Uniform’ rate and invest in the

combination of electric vehicle (EV) and photovoltaic (PV) systems (S4). This particular

choice results in an NPV of $11,938 and reduces the annual system cost by $60. Comparing

the two distributors’ decisions reveals that allowing the prosumer to sell back electricity

benefits both parties. The prosumer’s NPV increases by $11,050, and the annual system

cost decreases by $938. Consequently, the optimal decision for the distributor is to permit

the prosumer to sell back electricity. Consequently, the prosumer chooses the ’TOU EV &

Uniform’ rate and invests in EV and PV systems.
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Table 1.6: Prosumer’s best response to distributors decisions

selling rate → Uniform TOU TOU EV RTLMP TOU &
back ↓ & Uniform RTLMP
allowed prosumer’s choice S4 S4 S4 S3 S0

prosumer’s NPV ($) 965 11,222 11,938 1,623 0
system annual cost ($) 2,457 2,770 1,571 2,631 1,631

not prosumer’s choice S0 S0 S0 S3 -
allowed prosumer’s NPV ($) 0 0 0 888 -

system annual cost ($) 1,631 1,631 1,631 2,509 -

1.3.3 Sensitivity Analysis

A series of sensitivity analyses are conducted on the load patterns and the size and capacity

of the PV system and stationary battery in this subsection to ensure the consistency of the

results obtained. It can be concluded that if the results are robust, the findings can be

generalized to gain valuable insights. The distributor and prosumer models are run using

the consumption records of all four households (Table 1.7 in the Appendix presents the

sensitivity analysis results). Despite fluctuations in NPVs across different scenarios and

houses, the relative profitability order remains consistent. In the case of the distributor

model, scenario S3 (EV) emerges again as the only profitable option for all households, and

the findings for the prosumer model remain unchanged.

Subsequently, in scenarios 1 (Bat), 2 (Bat+PV), and 5 (Bat+PV+EV) that include a

stationary battery, the new NPV, and IRR are computed for the cases where battery sizes

range from 0.33 to 2 times the original battery capacity. The resulting NPVs and IRRs are

graphically presented in Figure 1.14. The findings reveal two key observations. First, the

NPV of the scenarios decreases as the battery capacity increases. Second, changing battery

capacity does not change the optimal investment option. The optimal investment scenario

would change if the new NPV obtained using new battery capacity and, under a specific

rate, is higher than all other investment scenarios and rates. The results show that for

scenario 1 (Bat), all combinations return negative NPVs. In scenario 2 (Bat+PV), the 1/3

capacity demonstrates the highest NPVs, yet they remain lower than the maximum NPV

achieved by other scenarios for each rate. This trend persists across all rates in scenario 5

(Bat+PV+EV), except for the ’Uniform’ rate. Table 1.5 shows that scenario 4 (EV+PV)
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Figure 1.14: NPV & IRR for scenarios 1, 2, and 5 under different battery capacities

yields a positive NPV of +$965, while the 1/3 battery capacity in scenario 5 (Bat+PV+EV)

under the ’Uniform’ rate attains an NPV of +$7,607. Nevertheless, this value still falls short

of the highest NPV obtained under the ’TOU EV & Uniform’ rate in scenario 4 (PV+EV),

which amounts to +$11,938.

The investment scenarios were analyzed in the preceding subsection using generation

data from a 10 kW photovoltaic (PV) system. However, the significant capacity of this

PV system led to higher investment costs for the scenarios, with an increase of +$13,145.

The distributor and prosumer models are solved to assess the impact of PV size on the

profitability of the scenarios and validate the previous subsection’s findings, considering PV

sizes of 2 kW, 4 kW, 6 kW, and 8 kW in addition to the default 10 kW. Figure 1.15 illustrates
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Figure 1.15: NPV & IRR for scenarios 2, 4, and 5 under PV capacities

that as the PV size decreases, the NPVs of the scenarios also decline. Consequently, the

recommended PV size utilized in the previous subsection remains the most favorable among

the different sizes depicted in Figure 1.15, and the results are still valid for the rates that

return positive NPV for the prosumer’s investment. However, it should be noted that this

trend holds for the rates ’Uniform,’ ’TOU,’ and ’TOU EV & Uniform.’ In contrast, when

considering ’RTLMP’ and ’TOU & RTLMP,’ larger PV installations lead to lower NPVs,

particularly when selling rates are based on the market rates. This finding suggests that

larger PV installations are advantageous only if prosumers can sell their excess energy at

their buying rate.
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1.4 Conclusion & Outlook

This analysis considers the profitability and consequences of investment scenarios wherein

a distributor or prosumer controls a residential energy system. The potential benefits and

tradeoffs associated with various investment options were explored through modeling and

analysis, considering factors such as DER, electricity trading, and load management strate-

gies. The objective was to determine the most favorable investment scenario and evaluate

its benefits in the residential electricity market context.

Who should invest? The results demonstrate that the investment can benefit both agents,

and under suitable conditions, the prosumer’s investment can also benefit the distributor

and shave the peak loads.

What combination of DER and tariff should be used? The analysis provides valuable

insights into the optimal investment choices for distributors and prosumers. For distribu-

tors, significant cost savings and profitability can be achieved by connecting an EV to the

residential energy system and engaging in electricity trading with the grid based on price

signals. Among the proposed investment scenarios, scenario 3 (EV) emerged as the most

profitable option, with a positive NPV of $3,803. By strategically leveraging the available

DER and participating in decentralized trading activities, distributors can minimize costs

related to load covering and network utilization, leading to improved profitability.

For prosumers, the profitability of investment scenarios depends on the ability to sell sur-

plus electricity back to the grid. The analysis revealed that, except for scenario 3 (EV)

under some rate structures, positive NPVs could not be generated by prosumers when the

sale of electricity back to the grid is forbidden. Therefore, allowing prosumers to engage

in electricity decentralized trading and take advantage of price differentials is crucial for

making investment scenarios profitable. Additionally, connecting an EV to the residential

energy system was identified as a crucial element in ensuring the profitability of investment

scenarios for prosumers. Moreover, bundling EV and PV (scenario 4) and choosing the

’TOU & EV’ rate was identified as the best option for the prosumers, with a positive NPV

of $11,938.

A sensitivity analysis was also conducted to examine the robustness of the findings. The

results demonstrated that the relative profitability order remained consistent despite varia-
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tions in load patterns and the size/capacity of the PV system and stationary battery. The

conclusions drawn from the analysis can thus be generalized and provide valuable insights

for stakeholders in the residential energy market.

In conclusion, this study highlights the potential cost savings and profitability that can

be achieved through investments in residential energy systems, with strategic control over

DER, electricity trading, and load management. Connecting EVs to the system and engag-

ing in decentralized trading activities benefited distributors, while prosumers benefited from

selling surplus electricity back to the grid and capitalizing on price differentials. However,

policymakers and stakeholders should consider the specific rate structures and regulatory

conditions to ensure the viability and profitability of investment scenarios. Based on the

findings, it is recommended that policymakers facilitate the decentralized electricity trading

mechanisms, promote the adoption of EVs in residential energy systems, and create support-

ive regulatory frameworks that enable prosumers to sell back electricity to the grid. These

measures would enhance the profitability of the investment scenario and thus contribute to

the sustainable development of the residential energy consumption subsector.

However, this study is limited in several aspects. First, this study takes all parameters

as given at the beginning and is deterministic. Nevertheless, in the actual market, some

parameters are revealed a few minutes before the agent decides. For instance, although one

can use the forecasts of real-time electricity price, consumption, and renewable generation,

the deterministic model presented in this chapter cannot handle the variance and risk in-

volved in their predictions. Therefore, developing a stochastic dynamic model would make

the model more realistic, and the risks involved could be assessed and managed. Second,

making a shared investment in DER by a group of neighbors or sharing the existing DER

devices can benefit a coalition of prosumers. Also, the coalition members may have local

electricity trade through an aggregator and be more independent in the grid; investigating

such coalitions can introduce a new agent with more power and capabilities to this context

and will identify new opportunities and challenges of investing in smart homes. Furthermore,

since this study considers only one prosumer, it ignores the effect of mass adoption by the

prosumers on the total load and grid prices. Indeed, if a large enough group of prosumers

change their consumption pattern and follow the same price incentive, they may create new
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peak loads, imposing tremendous costs on the grid. Studying the consequences of the mass

adoption of smart-home technologies and demand response is another direction that can be

considered for exploration.

Moreover, in this study, the distributor tries to shave the monthly peak loads of a sin-

gle house, which is based on that house’s personal load. However, different houses may

have different peaks, and the profitability of an investment scenario depends on how the

price signals and demand patterns match. Hence, more reliable results would be obtained

when aggregated consumer loads are considered. Another future research direction could

be investigating the coordination and settlement challenges that arise when simultaneously

controlling EV charging and their interaction with the power distribution network. Specif-

ically, the study could explore methods to effectively coordinate control between the EV

owner and the distributor while also addressing the complexities introduced by the mobility

of EVs and the need for additional settlement systems. The research aims to maximize the

overall welfare of both parties involved in the EV charging process.

1.5 Appendices

1.5.1 Mathematical Model

In order to optimally manage the electricity flow in the smart home under different tariff

schemes and investment scenarios, two linear mathematical models are developed in this sec-

tion. As explained before, the investment and management of the smart home can be made

by the distributor or the prosumer; hence, the elements of the problem will be explained,

and then two models will be formulated.

1.5.1.1 Indexes and Parameters

This study uses the generation and consumption records of four single detached houses in

2019, and the smart-home management problem will be solved for the whole year of 2019

(8,760 hours) with 15-minute time steps (t). When 1 kWh is used during this time interval,

4 kW of power/capacity is used. Moreover, the network capacity/transmission costs are
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calculated based on the monthly peak loads. Therefore, two indexes are used in this study

as below:

t ∈{T } episode t in horizon [1, 2, 3, ..., T ]

k ∈{K} month k in horizon [1, 2, 3, ...,K]

Below is the list of parameters:

Bmax .
= capacity (kWh) of battery = {0, 10, 27, 40.5}

Bmin .
= minimum allowed electricity (kWh) in battery = 0

Emax .
= capacity (kWh) of EV = 60

Emin .
= minimum allowed electricity (kWh) in EV = 24

U c .
= charging capacity (kWh) of battery/EV during the interval = {0, 1.9, 2.5, 3.75}

Ud .
= discharging capacity (kWh) of battery/EV during the interval = {0, 1.9, 2.5, 3.75}

1− ηc .
= charging loss rate = 0.05

1− ηd .
= discharging loss rate = 0.05

P rns .
= cost coefficient ($/kW) of RNS = 9

P cap .
= cost coefficient ($/kW) of capacity = 5

P buy
t

.
= electricity price ($/kWh) to buy from grid at time t

P sell
t

.
= electricity price ($/kWh) to sell to grid at time t

Lt
.
= load (kWh) at time t

At
.
= availability of EV at time t under the chosen scenario

Vt
.
= EV usage (kWh) (for vehicle riding) at time t under the chosen scenario

Rt
.
= electricity generation (kWh) from solar panel at time t

Itrade .
= indicates if it is allowed to sell electricity to grid
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1.5.1.2 Decision and State Variables

As depicted in Figure 1.5, the decision variable set indicates the electricity flows and the

monthly peak loads in the problem; the list of the decision variables is as below:

xGL
t

.
= electricity (kWh) from grid to load at time t

xGB
t

.
= electricity (kWh) from grid to battery at time t

xGE
t

.
= electricity (kWh) from grid to EV at time t

xRL
t

.
= electricity (kWh) from solar panel to load at time t

xRB
t

.
= electricity (kWh) from solar panel to the battery at time t

xRE
t

.
= electricity (kWh) from solar panel to EV at time t

xRG
t

.
= electricity (kWh) from solar panel to the grid at time t

xBL
t

.
= electricity (kWh) from battery to load at time t

xEL
t

.
= electricity (kWh) from EV to load at time t

xBG
t

.
= electricity (kWh) from battery to grid at time t

xEG
t

.
= electricity (kWh) from EV to grid at time t

xpeak
k

.
= maximum electricity (kWh) taken from the grid in an episode in month k

Moreover, the energy stored in the storage devices is defined as the state variables of the

problem:

bBt
.
= state of the battery (available electricity (kWh) in battery) at time t

bEt
.
= state of the EV (available electricity (kWh) in battery) at time t

1.5.1.3 Distributor’s Model

The model below tries to minimize the annual casts of the distributor that invests and

controls the system:
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min
T∑
t=1

(
P buy
t (xGL

t + xGB
t + xGE

t )− P sell
t (xRG

t + ηdxBG
t + ηdxEG

t )
)

+ 4
12∑
k=1

(P rns + 1.35P cap)xpeakk (1)

subject to:

xGL
t + ηd(xBL

t + xEL
t ) + xRL

t ≥Lt ∀t (2)

xBL
t + xBG

t ≤bBt ∀t (3)

xEL
t + xEG

t ≤bEt At ∀t (4)

xGE
t + xRE

t ≤EmaxAt ∀t (5)

xBL
t + xEL

t + xBG
t + xEG

t ≤Ud ∀t (6)

xGB
t + xGE

t + xRB
t + xRE

t ≤U c ∀t (7)

Bmin ≤ bBt ≤Bmax ∀t (8)

Emin ≤ bEt ≤Emax ∀t (9)

xRL
t + xRB

t + xRE
t + xRG

t ≤Rt ∀t (10)

bBt + ηc(xGB
t + xRB

t )− (xBL
t + xBG

t ) =bBt+1 ∀t (11)

bEt + ηc(xGE
t + xRE

t )− (xEL
t + xEG

t )− Vt

ηd =bEt+1 ∀t (12)

xGL
t + xGB

t + xGE
t ≤xpeak

k ∀t ∈ k, k (13)

bB0 = Bmin, bE0 =Emin (14)

xRL
t , xRB

t , xRE
t , xRG

t , xBG
t , xEG

t , xBL
t , xEL

t ,

xGL
t , xGB

t , xGE
t , xpeakk , bBt , b

E
t ≥0 ∀t (15)

Where objective function 1 consists of three terms (load covering cost + revenue of sell-

ing back electricity to the grid + network charges (transmission+capacity)) and minimizes

electricity consumption cost. Constraint 2 makes sure the load is covered. Constraints 3 to

5 state that electricity taken out of the battery or EV must be firstly less than the available

energy stored in them and secondly, electricity can be taken from or sent to EV, when it is

available. Constraints 6 and 7 indicate the charging and discharging limits. Constraints 8

and 9 make sure the state of the battery and EV are in the allowed range of stored energy
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in them. Constraint 10 checks electricity sent from the solar panel would be less than or

equal to the generated electricity and constraints 11 and 12 calculate the state of battery

and EV in the next episode. Constraint 13 calculates the maximum electricity taken from

the grid in month k. Finally, constraint 14 shows that the initial value of the states of the

battery and EV are equal to their minimum values, and, constraint 15 specifies the domain

of the decision variables.

1.5.1.4 Prosumer’s Model

When the prosumer invests and controls the system, s/he does not consider the network

charges; then, the new objective function would be different.

min
T∑
t=1

(
P buy
t (xGL

t + xGB
t + xGE

t )− P sell
t (xRG

t + ηdxBG
t + ηdxEG

t )
)

(16)

Moreover, along with the constraints 2 to 15, to evaluate the effects of allowance of selling

back the energy to the grid, a new parameter Itrade with a constraint as below is added to

the model:

xRG
t + xBG

t + xEG
t ≤(Ud +Rt)I

trade ∀t (17)

where objective function 16 minimizes electricity consumption cost and constraint 17

makes sure the prosumer can sell electricity to the grid if the decentralized trade is allowed.

The HTML report and coding files are shared in the online appendix.

1.5.2 Detailed NPVs in Sensitivity Analysis
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Table 1.7: Scenarios NPVs for all houses when prosumer controls and selling back is allowed

rate S0 S1 S2 S3 S4 S5 House

RTLMP 0 -24,493 -30,137 1,623 -8,406 -14,516
TOU&RTLMP 0 -24,109 -23,946 -1,258 -7,490 -11,331
TOU 0 -12,819 -6,279 6,671 11,221 9,712 House 1
TOU EV & Uniform 0 -27,300 -16,455 6,413 11,938 5,359
Uniform 0 -27,300 -16,468 -4,549 964 -5,615
Distributor controls 0 -15,953 -19,769 1,745 -6,458 -5,134

RTLMP 0 -24,493 -30,137 1,623 -8,407 -14,517
TOU&RTLMP 0 -24,305 -24,016 -764 -7,645 -11,808
TOU 0 -12,820 -6,279 6,672 11,221 9,711 House 2
TOU EV & Uniform 0 -27,300 -16,455 6,413 11,938 5,359
Uniform 0 -27,300 -16,469 -4,549 963 -5,616
Distributor controls 0 -14,903 -18,702 2,528 -5,484 -4,189

RTLMP 0 -24,492 -30,136 1,623 -8,406 -14,516
TOU&RTLMP 0 -22,528 -20,952 -437 -5,420 -8,964
TOU 0 -12,816 -6,275 6,673 11,224 9,716 House 3
TOU EV & Uniform 0 -27,300 -16,455 6,414 11,939 5,360
Uniform 0 -27,300 -16,467 -4,549 966 -5,613
Distributor controls 0 -11,498 -17,403 3,803 -4,196 -2,970

RTLMP 0 -24,492 -30,137 1,623 -8,406 -14,516
TOU&RTLMP 0 -23,404 -22,266 -748 -6,507 -10,210
TOU 0 -12,818 -6,277 6,672 11,222 9,714 House 4
TOU EV & Uniform 0 -27,300 -16,455 6,413 11,938 5,359
Uniform 0 -27,300 -16,468 -4,549 965 -5,614
Distributor controls 0 -13,750 -17,467 3,242 -5,332 -2,908
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Chapter 2

Smart Grids, Smart Pricing:

Employing Reinforcement Learning

for Prosumer-Responsive Critical

Peak Pricing

Abstract

This chapter focuses on Critical Peak Pricing (CPP), a rising smart pricing option, as a

demand response strategy for peak load shaving in electricity grids. By integrating different

prosumer profiles into the analysis, reflecting the increasing penetration of distributed energy

resources such as photovoltaic panels, batteries, and electric vehicles, we can identify the

optimal customer participation in CPP. Through comprehensive simulations and the appli-

cation of reinforcement learning algorithms, we analyze the effectiveness of CPP programs,

both in mass and targeted offering scenarios. The results reveal that while CPP is effective

in incentivizing load shifting, its efficacy diminishes with increasing prosumer participation,

leading to new peaks. To counteract this, we propose targeted dynamic pricing strate-

gies demonstrating significantly improved performance and extended viability. The study

also highlights the influential role of batteries and electric vehicles in peak load reduction,



suggesting a need for focused policy and incentive structures.

2.1 Introduction

As the world grapples with the escalating demand for clean electricity, the pursuit of sus-

tainable energy consumption patterns has brought peak load shaving to the forefront of

energy management strategies (International Energy Agency (IEA), 2024). Peak load shav-

ing, a crucial aspect of Demand Response (DR) efforts, mitigates the disparity between high

and low loads, reducing stress on energy infrastructure and lowering electricity costs and

carbon emissions from reliance on inefficient, fossil-fuel-based peak power plants. Amidst

this global challenge, dynamic pricing emerges as a pivotal tool for addressing peak load

challenges, with Critical Peak Pricing (CPP) holding particular promise.

This chapter explores the application of CPP to incentivize consumers to reduce en-

ergy consumption during critical peak events through financial incentives or penalties. The

rationale behind focusing on CPP, rather than other dynamic pricing strategies such as

Time-of-Use (TOU) or Real-Time Pricing (RTP), stems from its comparative growth and

potential for impact. While the United States has observed a significant increase in the

adoption of TOU and RTP programs for residential customers (48% and 154%, respectively,

from 2013 to 2022), CPP has only seen modest growth of 17% in the same sector. How-

ever, the adoption of CPP programs for commercial and industrial customers has surged by

80% and 90%, respectively (U.S. Energy Information Administration, 2023). This divergent

trend highlights the untapped potential of CPP in the residential sector, motivating this

study to investigate CPP’s viability and efficacy for residential customers.

Implementing CPP, however, presents challenges, the foremost being accurately fore-

casting peak load periods. Fluctuating weather conditions, dynamic market situations, and

diverse consumer behaviors contribute to the complexity of predicting these events (Chan

et al., 2012). In addition, determining the optimal number of Critical Peak Events (CPEs)

is crucial for balancing financial incentives and avoiding undue strain on utility companies.

CPEs are typically 3 or 4 hour time windows of anticipated high demand during which

distributors offer rate incentives to lower consumption.
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The emergence of Distributed Energy Resources (DERs) such as PhotoVoltaic (PV) so-

lar panels, standalone Batteries (BATs), and Electric Vehicles (EVs) has introduced a new

dynamic to energy consumption patterns, giving rise to prosumers — consumers who not

only consume but also produce and store energy (Parag and Sovacool, 2016). Prosumers

introduce additional variability and unpredictability in load profiles, further complicating

forecasting peak load events and determining appropriate CPE announcements. Their abil-

ity to adjust energy consumption and generation in response to price signals, with objectives

that may diverge from peak load reduction goals, poses additional challenges for CPP im-

plementation.

To address these challenges, this study introduces Reinforcement Learning (RL) opti-

mization algorithms to identify CPEs in scenarios where multiple prosumer profiles coexist.

The complexity of this problem arises from diverse prosumer behaviors and objectives, as

well as the dynamic environment where parameters are realized in real-time. Deep RL

techniques are well-suited to handle such complexities by learning optimal policies from in-

teractions with the environment without explicitly modelling system dynamics (Sutton and

Barto, 2018). Moreover, considering the dynamic environment where parameters are real-

ized in real-time makes the results more robust and closer to real-world scenarios, ensuring

that identified CPEs are better aligned with the evolving energy landscape, leading to more

effective peak load reduction strategies.

CPP programs can be categorized into two types: penalty-based, which imposes higher

electricity rates during peak events, and rebate-based, which offers rebates for reduced con-

sumption during these periods. Both mechanisms are in use in Quebec (Canada), the

location chosen as a context for this analysis. This chapter investigates their effectiveness

in financial savings and peak load reduction. By identifying the optimal pricing strategy for

the distributor, the study calculates the contribution of each prosumer profile to peak load

shaving and the financial benefits they can achieve by responding optimally to the CPEs.

As the prevalence of prosumers increases, understanding their impact on the electricity

grid and the effectiveness of demand response programs becomes vital (Angelus, 2021).

This research delves into how the growing prosumer population, equipped with energy-

generating and storage technologies, can benefit distributors. Specifically, it examines the
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effectiveness of mass CPEs, where all consumers receive the same incentive to reduce usage

simultaneously. The study introduces a novel concept of targeted dynamic pricing designed

to efficiently manage prosumers’ load adjustments in response to CPEs, ensuring a more

balanced distribution of demand response efforts across the grid. Furthermore, it investigates

the critical point at which offering the same incentive to all becomes ineffective due to varying

capabilities of prosumer profiles. This analysis is crucial for policymakers to determine the

most beneficial strategies for encouraging consumers to adopt prosumer technologies and

behaviors that support grid stability and efficiency.

As some prosumers, given their profile, are inherently more capable of adjusting their

energy consumption and production in response to pricing signals, they naturally stand

to receive more offers and achieve greater financial savings. This discrepancy can foster a

perception of unfairness among consumers with less adaptive capacity or fewer resources to

become prosumers. To address this concern, the study explores targeted CPP as a solution

to optimize demand response while incorporating a fairness constraint into its proposed

algorithms. By balancing the benefits distributed among all network participants, the study

ensures that transitioning towards a more prosumer-driven model does not inadvertently

create disparities. This balanced approach can help policymakers and distributors identify

when and how to encourage consumer transition towards prosumer status, considering the

broader implications for grid stability and equitable access to energy savings.

The remainder of the study comprises a literature review, the formulation and descrip-

tion of mathematical models, a discussion of the implemented solution approaches, and an

analysis of real-world data to evaluate the efficacy of the proposed strategies. Through these

components, the study contributes to the existing body of knowledge on DR, prosumer be-

havior, and CPP, providing insights and tools for utility companies to manage electricity

demand better and maintain grid stability in an increasingly complex and dynamic energy

landscape.
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2.2 Literature Review

Peak load shaving is crucial for sustainable energy systems, supporting SDG 7’s goal of

universal access to modern energy.1 It reduces electricity grid costs and enhances reliability

by minimizing peak demand, thus making energy more affordable and preventing supply

disruptions (Parker et al., 2019). Additionally, it facilitates the integration of renewable

energy, contributing to a sustainable and environmentally friendly energy mix (Silva et al.,

2020).

Dynamic pricing emerges as a promising strategy for peak load shaving, adjusting elec-

tricity prices based on real-time supply and demand (Liang et al., 2013). It encourages

consumers to shift usage to off-peak times, reducing the load and pressure on the grid dur-

ing peak events. Key dynamic pricing approaches include TOU, CPP, and RTP, each with

unique mechanisms for managing consumption during high-demand periods. CPP has the

advantage to be more flexible than TOU while more stable for consumers than Real-Time

Pricing. It charges consumers higher prices or offers rebates for consumption reduction

during pre-identified events, when the grid is under stress. For example, CPP encourages

consumers to reduce their electricity consumption during heat waves or cold snaps.

This section delves into the application of dynamic pricing for managing peak electricity

loads, focusing on four critical aspects: the deployment of CPP; how consumer behavior and

willingness to participate in demand response programs are affected; the use of RL techniques

to fine-tune pricing and scheduling for residential loads; and identifying the challenges and

open questions in implementing effective dynamic pricing strategies. By examining these

areas, we aim to illuminate the current research landscape on CPP’s role in promoting

demand flexibility for peak reduction.

2.2.1 Critical Peak Pricing

CPP has become a popular demand response strategy for managing peak loads in electricity

grids. Early studies by Herter (2007) and Wolak (2007) provided initial evidence that

CPP can motivate significant reductions in peak demand in the residential sector. Herter

1Sustainable Development Goals (SDGs) are goals adopted by the United Nations, see
https://sdgs.un.org/goals/goal7
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and Wayland (2010) later quantified CPP impacts for households across different usage

levels, climate zones, and building types, finding that high-use customers reduce the most in

absolute terms while low-use customers achieve greater percentage savings. More advanced

strategies have been developed to optimize residential CPP response. Javaid et al. (2018)

designed algorithms to efficiently schedule appliances and minimize costs for households

facing CPP rates.

Beyond residential applications, CPP has also been studied extensively for commercial

and industrial users. Jang et al. (2015) empirically demonstrated substantial heterogeneity

in CPP response across different types of commercial/industrial customers. They found a

strong correlation between electricity expenditure shares and price responsiveness. Building

on this, Park et al. (2015) formulated a mathematical model to design optimal CPP rates

that maximize retailer profits based on the heterogeneous price sensitivity across customer

segments. Additionally, Piette et al. (2006) showed that automated CPP strategies for

commercial buildings can yield significant peak demand reductions .

Several studies have focused specifically on implementation strategies and incentives in

CPP program design. Zhang (2014) developed an optimization model that accounts for

wind generation commitments when scheduling CPP events. Their goal was to minimize

total system costs spanning energy, CPP rebates, and wind imbalance penalties. Zhang

et al. (2009) similarly co-optimized CPP parameters to balance bill savings for consumers

against cost reductions for utilities . And more recently, Aurangzeb et al. (2021) proposed

differentiated CPP prices for low versus high energy users to reduce cross-subsidization.

Multiple papers have cited enabling technologies, dynamic pricing, and better customer

segmentation as key facilitators for CPP. For example, Fitzpatrick et al. (2020) demon-

strated that optimized control logic for heat pump-storage systems can significantly increase

responsiveness to CPP rates. Silva et al. (2020) described various peak load management

strategies in their broad review and highlighted opportunities for automation and customer

targeting . Moreover, Lavin and Apt (2021) specifically argue that realizing system-level

benefits from distributed storage requires peak pricing incentives during the highest load

hours of the year. Finally, Faruqui and Sergici (2010) extensively surveyed multiple pilots.

They found a consistent trend that more dynamic CPP designs, along with technologies like
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programmable thermostats, deliver the greatest peak reductions, in the range of 27-44%.

Jessoe et al. (2014) also provide evidence that non-price factors influence household choices,

indicating additional complexities behind consumer behavior.

2.2.2 Consumer Behavior and Willingness to Adopt DR

Understanding and predicting consumer behavior is critical for designing effective demand

response programs. As an introduction to this issue, Vassileva et al. (2012) highlighted

the need to tailor demand response information and incentives to consumers’ heterogeneous

characteristics and preferences. Gao et al. (2020) further proposed incorporating risk at-

titudes and learning processes into consumer response models. These insights provide a

foundation for evaluating demand response proposals.

The first key question is the level of price signals needed to trigger consumer responsive-

ness. Using Monte Carlo simulation on survey data, He et al. (2012) found consumers only

respond to substantial peak-price increases of 20-40% through TOU rates. Complementarily,

Sundt et al. (2020) estimated via a choice experiment that offering bill discounts can elicit

demand shifting from most consumers on TOU tariffs. However, Annala (2015) suggested,

based on focus groups, that the discounts would need to be relatively high to significantly

impact behavior beyond simple load control that doesn’t require habit changes.

In exploring the challenges associated with adopting voluntary TOU tariffs, Choi et al.

(2020) highlight the significant impact of consumer heterogeneity in preferences and the

resulting trade-offs for utility firms. This complements the findings on consumer responsive-

ness to price signals and incentives, further explaining why TOU tariffs have not achieved

widespread adoption despite their potential benefits.

Predicting the extent of consumer responsiveness is also crucial. Liu et al. (2019) put

forward long short-term memory neural networks to predict consumer demand response pat-

terns based on analyzing historical data. Alternatively, Kwag and Kim (2014) developed

reliability models capturing uncertainty in consumer behavior for demand response plan-

ning. Zeng et al. (2017) specifically incorporated the correlation between consumers’ past

experiences with profitability and future willingness to participate.

There are also important program design considerations around consumer incentives and
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types of loads targeted. Ming et al. (2023) found social inefficiencies in current decentralized

incentive designs and proposed modifications to improve welfare. Wang et al. (2020) Used

regression analysis on surveys to reveal income level and energy saving attitudes as key

participation drivers, with customers focused more on direct incentives over dynamic prices.

Sridhar et al. (2023) similarly estimated via a comparitive analysis that consumers require

higher compensation for heating versus appliance control.

Furthermore, Mirzaei et al. (2023) developed a model for large industrial consumers

showing integrated demand response can provide additional electricity bill savings by strate-

gically shifting loads to influence market prices. Relatedly, Naeem et al. (2015) suggested

differentiated multi-tier programs based on both financial and environmental motives among

heterogeneous customers.

2.2.3 Applications of RL in Peak Load Management

Optimization techniques are essential in smart grid management to enhance efficiency, re-

duce operational costs, and balance supply and demand. These techniques analyze various

variables, such as energy consumption and resource availability, to devise strategies for peak

load management (Akkara and Selvakumar, 2023). However, traditional optimization ap-

proaches often struggle with the dynamic and uncertain nature of power systems, such as

unpredictable renewable energy sources and changing consumer behaviors. These limita-

tions underscore the need for more adaptive and powerful solutions, paving the way for the

application of RL in peak load management (Vázquez-Canteli and Nagy, 2019).

RL has emerged as a promising data-driven technique for tackling challenges in smart

grid management and peak load reduction. Sheikhi et al. (2016) developed an RL-based

approach that enhanced system adaptability and responsiveness to fluctuations in energy

supply and demand, beyond just improving efficiency and reducing peak loads. Building on

this, several other studies have formulated the residential load scheduling problem as RL

tasks and developed algorithms that effectively reduce electricity bills and peak demands

(Remani et al., 2019; Mathew et al., 2020).

Another major application area has been using RL for dynamic pricing in smart grids.

Facing uncertainties about customer demand patterns and volatility in wholesale electricity
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prices, Kim et al. (2014, 2016) proposed RL algorithms that can learn pricing and consump-

tion scheduling policies without needing upfront system knowledge. Following this work, RL

techniques have been widely adopted for optimizing dynamic pricing strategies to balance

grid supply and demand. For example, Zhong et al. (2021) applied a deep RL method to

determine dynamic subsidies for aggregators managing clusters of residential electric heating

systems. And Zhang et al. (2022) developed a distributed RL pricing approach that aligns

the interests of individual users and the power supplier.

More recent work has focused on applying RL specifically for electric vehicle charging

infrastructure and integrating pricing incentives to shift charging loads. Moghaddam et al.

(2020) proposed an online RL charging station pricing model to flatten the duck curve effect

from renewables while increasing station revenue. Wang et al. (2021) developed an online

RL algorithm for a public EV charging station to jointly optimize pricing and charging

schedules to maximize total station profit.

On the demand side, accurately modelling and influencing flexible user consumption via

pricing signals poses challenges. To address this, Ghasemkhani and Yang (2018) applied

RL to learn models of users’ responses to prices for demand response management without

assuming known and fixed response functions. Vázquez-Canteli and Nagy (2019) surveyed

the use of RL for various demand-side management applications while discussing the im-

portance of integrating human comfort preferences. Expanding on this, Ismail and Baysal

(2023) recently employed actor-critic RL to determine optimal dynamic pricing and control

user demand response simultaneously.

2.2.4 Summary and Research Gap

The review highlights the critical role of dynamic pricing, specifically CPP, in peak load

management and the nuances of consumer behavior, alongside the use of RL for optimizing

energy consumption. It reveals a need for deeper research into CPP’s impact in the res-

idential sector, the integration of DERs, and the transition to prosumer models affecting

pricing strategies. Notably, there’s a gap in developing dynamic pricing models that consider

prosumer diversity and ensure equitable demand response. Moreover, empirical validation

of theoretical models in real-world settings is essential for bridging academic research with
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Figure 2.1: Prosumers’ profiles

practical implementation, underscoring the importance of tailored and equitable dynamic

pricing schemes for grid stability and efficiency.

2.3 Mathematical Modeling

In this study, two entities are considered: a group of prosumers and a distributor. Pro-

sumers might be equipped with PV, EV, BAT, or be able to modify their demand contin-

gent on the pricing signals they encounter (DR). DR can be either a technical device (like

a programmable thermostat) or a behavioral commitment (like the willingness to reduce

consumption). As Figure 2.1 represents, by amalgamation of the four flexibility options,

15 distinct profiles are delineated, in addition to a baseline profile. This chapter assumes

a uniform distribution of these profiles among the prosumer group since we do not have

information on the actual distribution of profiles within the consumer population.

Prosumers manage their electrical energy flow within their domiciles to optimize cost

efficiency and minimize the inconvenience of demand adjustments. Conversely, the distrib-

utor aims at increasing the net revenue from electricity sales to consumers while minimizing

the monthly peak demand, which incurs capacity-related expenditures. For this objective,

as illustrated in Figure 2.2, after the distributor obtains the required information (including

consumers’ load, prosumers’ best response function, market and weather forecast, among

others), the distributor determines if a CPE will be announced for the next day or not.

This cycle repeats throughout the month, and at the end of the month, the monthly peak

demand is realized. For the Quebec case, two strategies (Winter Credit Option - WCO, and

Flex D - FXD) are in place to incentivize consumers to reduce or shift their consumption

during peak periods (Hydro-Quebec, 2024a).
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Winter Credit Option (WCO)

WCO is a dynamic pricing strategy that works with the standard Rate D, the standard

residential rate in Quebec. Under Rate D, consumers are charged based on a two-tiered

pricing structure:

• 6.319¢/kWh for energy consumption up to a threshold of 40 kWh per day multiplied

by the number of days in the consumption period (first tier)

• 9.749¢/kWh for any subsequent energy consumption (second tier).

Upon enrollment in the WCO, consumers continue to be billed at the foundational Rate

D. However, this mechanism incentivizes reductions in electricity consumption during times

of peak demand. Consumers are notified the day before a forecasted peak demand event

(CPE). For every kWh they curtail (i.e., do not consume compared to their typical energy

use, or reference consumption — which will be later named LSQ
t ) during these CPEs, they

receive a credit of 51.967¢. This strategy poses no financial risk to the consumers as their

bills can only decrease, with no penalties for non-reduction in consumption during peak

periods. CPEs occur between December 1 and March 31, from 6 to 9 a.m. and 4 to 8

p.m., with an estimated 25 to 33 events each winter, not exceeding a total of 100 hours (as

indicated in Hydro-quebec rates).

Flex D rate (FXD)

FXD introduces another dynamic pricing structure, distinct from the base Rate D. From

December to March, FXD provides reduced rates outside of peak demand events, charging:

• 4.449¢/kWh for energy consumption up to 40 kWh/day (a 30% saving)

• 7.650¢/kWh for consumption exceeding 40 kWh/day (a 22% saving).

This structure offers potential savings to consumers compared to the base rate. However,

during peak demand events, the electricity rate substantially escalates to 51.967¢/kWh.

Consumers are also warned a day prior to these events, encouraging them to postpone

non-essential electricity consumption or to minimize overall usage. Outside of the winter
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Figure 2.2: Interaction between distributor and prosumers

months, the standard Rate D charges are applicable. While FXD can yield substantial

savings, it also carries a risk. If consumers fail to adjust their consumption habits during

peak demand events, their bills under FXD might surpass those under the base Rate D due

to the significantly higher charges during CPEs.

For this study, considering the monthly planning horizon, we impose a cap of 25 hours

per month for both WCO and FXD to account for peak demand events.

Indexes and Parameters

Below are the indexes used throughout the models:

i ∈ {N} consumer i

d ∈ {D} day d in the planning month

t ∈ {T } episode t in peak hours {TP}

and in off-peak hours {TO} during the day {TP ∪ TO = T }

And the list below introduces the parameters of the models:

56



Bmax .
= capacity (kWh) of battery

Bmin .
= minimum level of the stored electricity (kWh) in battery

Emax .
= capacity (kWh) of EV battery

Emin .
= minimum level of stored electricity (kWh) in EV

Dmax
t

.
= maximum rate (%) of load curtailment at time t

U c .
= charging capacity (kW) of battery/EV

Ud .
= discharging capacity (kW) of battery/EV

1− ηc
.
= charging loss rate

1− ηd
.
= discharging loss rate

At
.
= availability of EV at time t

Vt
.
= EV usage (kWh) (for vehicle riding) at time t

Rt
.
= electricity generation (kWh) from solar panel at time t

LC
t

.
= consumer’s load (kWh) at time t

LSQ
t

.
= consumer’s reference consumption record (kWh) at time t

LL .
= daily load limit (kWh) to purchase at lower rate t

PR .
= electricity retail price ($/kWh) to buy/sell from/to grid (≤ LL)

PH .
= higher electricity retail price ($/kWh) to buy/sell from/to grid (≥ LL)

PP .
= WCO’s rebate/FXD’s higher price ($/kWh)

PD .
= cost coefficient ($/kWh2) of curtailed load

PC .
= cost coefficient ($/kW) of (peak load) capacity

PM
t

.
= real-time electricity price ($/kWh) in wholesale market at time t

α
.
= regularization coefficient of prosumers’ remaining CPE hours

To obtain LSQ
t , the prosumer’s model is solved for each prosumer profile and each day

by offering the basic D rate and setting Dmax
t = 0,∀t
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Decision and State Variables

The decision variables below represent the electricity flows and curtailed load within the

consumer’s problem.

xGL
t

.
= flow (kWh) from grid to load at time t

xGB
t

.
= flow (kWh) from grid to BAT at time t

xGE
t

.
= flow (kWh) from grid to EV at time t

xRL
t

.
= flow (kWh) from PV to load at time t

xRB
t

.
= flow (kWh) from PV to BAT at time t

xRE
t

.
= flow (kWh) from PV to EV at time t

xRG
t

.
= flow (kWh) from PV to grid at time t

xBL
t

.
= flow (kWh) from BAT to load at time t

xEL
t

.
= flow (kWh) from EV to load at time t

xBG
t

.
= flow (kWh) from BAT to grid at time t

xEG
t

.
= flow (kWh) from EV to grid at time t

xDt
.
= deducted consumption (kWh) at time due to DR t

xGt
.
= total electricity (kWh) taken from grid at time t

On the other side, the only decision variable of the distributor is choosing some time

windows as CPEs. Note that the distributor does not set the load deduction price, but it

just indicates which time windows are chosen as CPE, and, the prosumers take this as a

parameter in their model. Moreover, the energy stored in the storage devices are defined as

the state variables of the prosumers’ problems and the remaining CPE hours is included in

the state variables of the distributor’s model:
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bBt
.
= State Of Charge (SOC = available electricity (kWh)) in BAT at time t

bEt
.
= SOC in EV at time t

hit
.
= Remaining CPE hours for prosumer i at the end of the month

Prosumer’s Model

The models below assume that CPE announcement is realized and reflected in PP and then

minimize the daily cost of the prosumers; each dynamic pricing offer comes with a different

objective function, while the constraints are the same. A fixed daily charge (43.505¢/day)

is equal for both rates, so it’s been removed from the optimization problem.

WCO’s objective function:

min

[∑
t∈T

PRxGt + (PH − PR)

(∑
t∈T

xGt − LL

)+

−
∑
t∈TP

PP
(
LSQ
t − xGt

)+
+ PD

∑
t∈T

(xDt )
2 − PR(bET + bBT )

]
(2.1)

FXD’s objective function:

min

[ ∑
t∈TO

PRxGt + (PH − PR)

∑
t∈TO

xGt − LL

+

+
∑
t∈TP

PPxGt + PD
∑
t∈T

(xDt )
2 − PR(bET + bBT )

]
(2.2)
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subject to:

xGL
t + xGB

t + xGE
t − xRG

t − ηd(xBG
t + xEG

t ) =xGt ∀t (2.3)

xGL
t + ηd(xBL

t + xEL
t ) + xRL

t + xDt =LC
t ∀t (2.4)

xDt ≤Dmax
t LC

t ∀t (2.5)

xBL
t + xBG

t ≤bBt ∀t (2.6)

xEL
t + xEG

t ≤bEt At ∀t (2.7)

xGE
t + xRE

t ≤EmaxAt ∀t (2.8)

xBL
t + xEL

t + xBG
t + xEG

t ≤Ud ∀t (2.9)

xGB
t + xGE

t + xRB
t + xRE

t ≤U c ∀t (2.10)

Bmin ≤ bBt ≤Bmax ∀t (2.11)

Emin ≤ bEt ≤Emax ∀t (2.12)

xRL
t + xRB

t + xRE
t + xRG

t ≤Rt ∀t (2.13)

bBt + ηc(xGB
t + xRB

t )− (xBL
t + xBG

t ) =bBt+1 ∀t (2.14)

bEt + ηc(xGE
t + xRE

t )− (xEL
t + xEG

t )− Vt

ηd
=bEt+1 ∀t (2.15)

xRL
t , xRB

t , xRE
t , xRG

t , xBG
t , xEG

t , xBL
t , xEL

t ,

xGL
t , xGB

t , xGE
t , xGt , x

D
t , b

B
t , b

E
t ≥0 ∀t (2.16)

Objective Function 2.1 consists of five terms; load covering costs (below and beyond LL)

- rebate taken from the distributor for load curtailment + dissatisfaction cost - terminal

values of stored energy in batteries. Similarly, Objective Function 2.2 has five elements

representing the load covering costs below and beyond LL during off-peak and peak hours

and adds dissatisfaction cost and subtracts terminal values of the stored energy in the

batteries.

Incorporating a quadratic form into the objective functions means dissatisfaction costs

escalate faster with larger load reductions; minor reductions trigger low dissatisfaction,

but as reductions grow, dissatisfaction increases more rapidly. The coefficient PD adjusts

the dissatisfaction cost’s importance in the objective function, with a higher PD making

dissatisfaction more significant and likely resulting in smaller load reductions to reduce

overall dissatisfaction.
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Constraint 2.3 calculates the net electricity taken from grid at each time step. Constraint

2.4 makes sure the load is covered and constraint 2.5 indicates the maximum amount of load

that can be reduced. Constraints 2.6 to 2.8 state that electricity taken out of BAT and EV

must be firstly less than SOC in them and secondly, electricity can be taken from or sent

to EV, when it is available. Constraints 2.9 and 2.10 indicate the charging and discharging

limits. Constraints 2.11 and 2.12 make sure the SOC in BAT and EV are in the allowed

range of stored energy in them. Constraint 2.13 checks electricity sent from PV would be

less than or equal to the generated electricity and constraints 2.14 and 2.15 calculate the

SOC in BAT and EV in the next episode. Finally, constraint 2.16 specifies the domain of

the decision variables. This study also considers bB0 = bE0 = 0. While some studies remove

this condition and the last terms in Equations 2.1 and 2.2 and set bB0 = bBT , b
E
0 = bET .

in case where a prosumer does not posses one or some tools, the following adjustment is

applied:

• EV → Emin = Emax = 0

• BAT → Bmin = Bmax = 0

• PV → Rt = 0, ∀t

• DR → Dmax
t = 0,∀t

Distributor’s Model

Given the stochastic nature of PM
dt and xGidt parameters in the distributor’s model, the ob-

jective functions under both WCO and FXD scenarios aim to maximize the expected value.

For WCO, the objective 2.17 encapsulates revenue from selling electricity, compensation for

consumption beyond LL, reimbursement to prosumers, and capacity costs due to peak load.

Under FXD, Equation 2.18 accounts for revenue from consumption below and above LL

during off-peak, revenue during peak hours, and monthly capacity costs.

WCO’s objective function:
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maxE

[∑
i∈N

∑
d∈D

{∑
t∈T

(PR − PM
dt )x

G
idt + (PH − PR)

(∑
t∈T

xGidt − LL

)+

−
∑
t∈TP

PP
(
LSQ
idt − xGidt

)+}
− PCxpeak

] (2.17)

FXD’s objective function:

maxE
[∑
i∈N

∑
d∈D
{
∑
t∈TO

(PR − PM
dt )x

G
idt + (PH − PR)(

∑
t∈TO

xGt − LL)+

+
∑
t∈TP

(PP − PM
dt )x

G
idt} − PCxpeak

] (2.18)

Moreover, constraint 2.19 calculates the peak load in the planning horizon
N∑
i

xGidt ≤xpeak ∀{d, t}. (2.19)

In the context of targeted offers within a peak load shaving program, a disparity where

certain prosumers receive more CPE offers than others can lead to an imbalance in revenue

generation opportunities. This issue can be exacerbated when the utility company is state-

owned, potentially fostering perceptions of unfairness. To address this concern and enhance

the fairness of the program, this study integrates the variance of the remaining CPE hours

into the distributor’s objective functions, 2.17 and 2.18. This integration is represented by

the following Equation:

−α
∑
i∈N

(hi − h̄)2

N
. (2.20)

In this Equation, h̄ denotes the average remaining CPE hours across all prosumers at the

end of the month, and N signifies the total number of prosumers. This addition aims to

quantify and minimize the disparity in CPE hour distribution, thereby fostering a more

equitable environment within the peak load shaving initiative.

2.4 Methodology

This section outlines the study’s methodology, highlighting the use of a primary dataset

from Hydro-Quebec featuring hourly electricity consumption records for Quebec from 2013

to 2019. The study models consumer consumption to align peak and valley loads with

the actual distribution, aiding in managing aggregated demand crucial for power system

efficiency and stability under CPP strategies. Consumption per consumer is derived by
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dividing total consumption by the consumer count. To ensure broad applicability, we ad-

just the Prosumer Presence Percentage (PPP) from 0.01% to 100%, affecting the mix of

prosumers and conventional consumers in our analysis—for instance, a 0.01% PPP results

in 16 prosumers among 160,000 individuals. Additional datasets, including PV generation,

temperature, and EV usage data, with data preparation and normalization methods, are

discussed in the Appendix.

The problem investigated in this study is inherently dynamic, as the decisions made in

one day can influence the future state of the system. Key parameters such as temperature

and energy consumption, which are part of the state space, are challenging to forecast ac-

curately over extended periods. Conventional operations research methods often struggle to

effectively handle such dynamic and uncertain environments (Vázquez-Canteli and Nagy,

2019). Moreover, due to the continuous nature of the state space approximate dynamic pro-

gramming techniques may lose their applicability due to the curse of dimensionality, which

exponentially increases computational and storage demands. Additionally, the reliance on

function approximation introduces errors that can accumulate, affecting the quality of the

derived policies. Lastly, effective exploration and generalization in these vast spaces are

challenging, impacting the stability and convergence of the algorithms. On the other hand,

RL is well-suited for sequential decision-making problems with dynamic and stochastic char-

acteristics, so it is an attractive approach for this study.

Markov Decision Processes (MDPs) are the standard framework in RL, representing

sequential decision-making problems as a set of states, actions, state transition probabilities,

and rewards (Sutton and Barto, 2018). At each time step, the agent observes the current

state and selects an action, which leads to a new state and a corresponding reward. The

goal is to learn an optimal policy that maximizes the cumulative rewards over time. MDPs

assume the Markov property, which states that the future state depends only on the current

state and action, and not on the complete history.

We explore the application of three standard and state-of-the-art RL algorithms, each

tailored for discrete action spaces. These include the Double Dueling Deep Q Network with

Prioritized Experience Replay (D3QN), Soft Actor Critic with Discrete actions (SACD), and

Proximal Policy Optimization with Discrete actions (PPOD), offering a diverse range of ap-
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Figure 2.3: Average winter load heat map and peak loads (2013-2019)

proaches to our analytical framework. The Python code for data preprocessing and format-

ting, algorithm implementation, execution, and results visualization is provided alongside

this chapter and can also be accessed on GitHub (To preserve the anonymity of the authors,

the link to the repository has been omitted and will be made available upon request).

In this study, the distributor serves as the (RL) agent interacting with the environment

(consumers, prosumers, and market). It decides on actions (CPEs) based on the current state

to maximize its cumulative expected reward over time. This section defines the state and

action spaces, alongside the reward function, which are central to defining this interaction.

Action Space

Figure 2.3 represents the hourly average electricity consumption for each day of the week

during winter in Quebec (for 160,000 households). Two peak loads emerge, one during the

early morning “work” days and the other one during the evening when people return home.

Therefore, CPEs can target only these two daily time periods. The action space is a scalar

that indicates whether a CPE is announced for the next day or not and if announced, what

type of CPE is chosen. An action is an integer number ranging from zero to three, where a

value of zero means no CPE is announced, one indicates a CPE for 6–9 am, two denotes a

CPE for 4–8 pm, and three signifies two CPEs announced for both 6–9 am and 4–8 pm.
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State Space

Under the mass offer scenario, the state space is a vector that consists of the next day’s

highest load during 6–9 am, the next day’s highest load during 4–8 pm, the next day’s highest

load during other hours, the monthly forecasted lowest 6–9 am and 4–8 pm temperatures,

the remaining CPE hours, the peak load so far, and the current day of the month.

Under the targeted scenario, the state space is a vector that includes the respective

prosumer’s highest consumption during 6–9 am, 4–8 pm, and other hours (obtained after

prosumers’ MIQP problems are solved), the lowest temperature forecast during 6–9 am,

the lowest temperature forecast during 4–8 pm, remaining CPE hours for the respective

prosumer and average remaining CPE hours for all prosumers, current aggregated monthly

peak load so far, the current day in the month, and four binary values indicating if the

respective prosumer possesses PV, EV, BAT, and DR.

To normalize the state space, consumption records are divided by 1,000, temperature

forecasts are normalized using the minimum and maximum temperature forecasts in the

month, the remaining CPE hours are divided by 25, and the day in the month is divided by

the number of days in that month.

Reward Function

The reward function of the distributor is calculated according to Equations 2.17 and 2.18

for WCO and FXD options. Under the targeted offer with fairness Equation 2.20 is used.

Also, since the distributor’s monthly revenue differs for each month, rewards for each month

are normalized using the distributor’s revenue in status quo mode in that month.

Algorithm Operation

In the mass offer scenario, the distributor indicates the CPE type (0, 1, 2, or 3) for the next

day, and this offer is the same for all prosumers. Based on this offer, 16 different Mixed-

Integer Quadratic Programming (MIQP) prosumer models are solved, and the aggregated

and adjusted load for the whole population is calculated for the next day. The daily net

revenues/cost of the distributor and prosumers are calculated, continuing until the end of
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the month, when the monthly peak load is realized, and its respective cost is subtracted

from the distributor’s monthly net revenues to obtain the distributor’s total reward.

In the targeted offer scenario, the distributor indicates the CPE type for prosumer profile

1 for the next day. Based on this offer, prosumer 1’a MIQP model is solved, and his/her

load for the next day is calculated. The distributor repeats this process for all consumers.

After calculating prosumer 16’s load for the next day, the distributor’s net revenues for day

1 can be calculated. This process is repeated for all days in the month, and at the end of

the month, when the monthly peak load is realized, its respective capacity cost is subtracted

from the distributor’s monthly revenue.

The action space remains the same under both mass and targeted scenarios, but the

targeted scenario has 16 times more episodes than the mass offer scenario.

Next, the algorithms developed for this study are discussed. Their pseudocodes are in

the Appendix.

2.4.1 D3QN: Double Dueling Deep Q Network with Prioritized

Experience Replay

The D3QN algorithm integrates the Deep Q Network (DQN) with enhancements for im-

proved efficiency in learning. DQN, introduced by Mnih et al. (2015), uses a neural network

to approximate the Q-function, essential for evaluating actions in a state s based on the

expected cumulative reward. The Q-function Q(s, a) updates as:

Q(st, at)← Q(st, at) + α

[
rt+1 + γmax

a′
Q(st+1, a

′)−Q(st, at)

]
. (2.21)

Double DQN, Dueling Network architecture, and Prioritized Experience Replay consti-

tute the core of D3QN. Double DQN, by Van Hasselt et al. Van Hasselt et al. (2016),

minimizes overestimation by using two networks for action selection and evaluation, updat-

ing Q-values as:

Q(St, At)← Q(St, At)+α
[
Rt+1 + γQ(St+1, argmax

a
Q(St+1, a; θ); θ

′)−Q(St, At)
]
. (2.22)

The Dueling Network, proposed by Wang et al. Wang et al. (2016), splits the network

into state value and advantage streams, enabling precise Q-value estimation:

Q(s, a; θ, β, α) = V (s; θ, β) +

(
A(s, a; θ, α)− 1

|A|
∑
a′

A(s, a′; θ, α)

)
. (2.23)
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Prioritized Experience Replay, by Schaul et al. Schaul et al. (2015), focuses on significant

experiences, measured by TD error, for efficient learning, with prioritization as:

P (i) =
pαi∑
k p

α
k

. (2.24)

D3QN’s efficacy comes from the synergy of these components, addressing overestimation,

enabling precise value estimation, and optimizing learning from experiences.

2.4.2 SACD: Soft Actor Critic with Discrete Action Space

Soft Actor Critic (SAC), initially proposed by Haarnoja et al. (2018) for continuous action

spaces, is adapted to discrete action spaces as SACD. SAC’s effectiveness stems from balanc-

ing exploration and exploitation by maximizing expected return alongside policy entropy,

promoting robust policy learning.

Actor-critic methods are a class of RL algorithms that utilize two components: an actor,

which learns to select actions based on the current policy, and a critic, which evaluates the

actions taken by the actor by learning the value function. This structure allows simultaneous

refinement of both the policy and value estimates through continuous feedback from the

critic. Compared to Q-learning approaches, Actor-critic methods integrate learning and

exploration more seamlessly, allowing for nuanced policy updates and potentially faster,

more reliable convergence in complex scenarios.

SACD translates continuous outputs to discrete actions through a probability distribu-

tion over possible actions, calculated via a neural network that outputs probabilities for each

action, normalized with a softmax function.

Action selection methods include:

• Deterministic Action Selection: Choosing the action with the highest probability,

suitable for evaluation phases.

• Stochastic Action Selection: Sampling actions based on the categorical distribution

of probabilities, encouraging exploration during training.

SACD employs an actor-critic architecture and a soft policy update mechanism, enhanc-

ing efficiency in discrete action spaces:
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Actor-Critic Architecture: Comprises an actor proposing actions, and a critic eval-

uating them, enabling effective policy updates through direct feedback.

Soft Policy Update: Incorporates entropy into the objective, preventing premature

convergence by maintaining policy stochasticity. The update rule is:

π∗ = argmax
π

∑
t

E(st,at)∼π [r(st, at) + αH(π(·|st))] (2.25)

where α adjusts policy stochasticity and H represents entropy, ensuring a balance between

exploration and exploitation in discrete action environments.

2.4.3 PPOD: Proximal Policy Optimization with Discrete Action Space

Proximal Policy Optimization (PPO) represents a significant advancement in the field of RL,

particularly in policy-gradient methods. Originally developed by (Schulman et al., 2017),

PPO is favored for its simplicity and stability compared to SAC, which also aims to maximize

entropy. While SAC is more sample-efficient due to its off-policy nature, PPO outperforms

traditional on-policy methods like Q-learning in terms of sample efficiency by reusing data

across multiple updates. PPO’s robust performance across diverse environments, especially

in both discrete and continuous control tasks, and its straightforward implementation make

it a popular choice in RL, offering a good balance between simplicity, efficiency, and efficacy.

PPOD is an adaptation of PPO for discrete action spaces. This adaptation broadens

the applicability of PPO to environments and problems where actions are distinct and non-

continuous. Such environments are common in various domains, including gaming and

decision-making processes in discrete systems.

PPOD inherits the fundamental principles of PPO and adapts them for discrete action

scenarios. The two primary components of PPOD are the policy gradient approach and the

clipping technique.

Policy Gradient Approach: PPOD, like its predecessor PPO, utilizes a policy gradi-

ent method for optimizing the policy. This approach directly maximizes the expected return

by adjusting the policy parameters in the direction of the gradient. The objective function

is given by:

J(θ) = Et [min(gt(θ)At, clip(gt(θ), 1− ϵ, 1 + ϵ)At)] (2.26)
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where gt(θ) =
πθ(at|st)

πθold
(at|st) is the probability ratio and At is the advantage at time t.

Clipping Technique: The clipping mechanism in PPOD helps maintain the updates

within a reasonable range, thus preventing destructive large policy updates. The clipping

function is applied to the ratio gt(θ), ensuring that it stays within the interval [1− ϵ, 1 + ϵ].

This technique stabilizes the training process by avoiding large deviations from the old

policy.

2.5 Results and Discussion

This section presents the implementation results of the suggested algorithms and first intro-

duces Figure 2.4, which illustrates the convergence patterns of various algorithms towards

their best policies. These algorithms have undergone separate training processes for WCO

and FXD programs and varying PPPs. Figure 2.4 reports the training process of algorithms

implemented for FXD with PPP of 0.8% and the rewards are the average normalized rewards

for the months in the validation set. While D3QN demonstrates the greatest variation, all

algorithms eventually attain their maximal rewards which are greater than 1. The dis-

tributor’s net revenues vary, occasionally yielding negative returns across different months;

considering that the training dataset spans 21 months, the rewards have been normalized.

A reward of 1 signifies the baseline Status Quo net revenues and any value exceeding 1

indicates an increase in the distributor’s net revenues. The dataset used in this study in-

cludes 27 months; 21 months are selected for training, three months for validation, and three

months for test. All results presented in this section, report the test performance (i.e., the

agent’s performance on the held-out test set). We will start by presenting the results of mass

CPP implementation where all prosumers receive the same offer and then will move to the

targeted CPP cases where profiles come into play and extend CPP effectiveness boundary.

2.5.1 Mass offer

To streamline the comparison of outputs and figures despite monthly variations in param-

eters and variables, all figures in this section are the PPOD implementation results on

February 2017, a month from the test set.As an example of the CPP implementation effect
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Figure 2.4: RL algorithms’ training process – stability and convergence comparison

on the load cures, Figure 2.5 shows the aggregated monthly load for 160,000 households

with a PPP of 1%. The blue line indicates the reference load without CPE announcements,

with the dashed blue line marking the monthly peak load in this case. In February 2017,

the peak load reached 335 MW, on Feb 10th between 6–9 am, as shown in Figure 2.5. After

implementing PPOD, four CPEs are announced for the top four peak loads in the month.

Pink vertical stripes mark the two morning peak CPEs on February 1st and 10th, and green

stripes show two evening peak CPEs on February 7th and 10th, reducing the new peak

load (dashed red line) to 321 MW, a 4% decrease. This reduction in peak load leads to a

4.4% rise in the distributor’s monthly net revenues. Also, the red line represents the actual

realized load at the end of the month.

While peak loads are reduced during designated periods (where the blue line falls below

the red), there are intervals where increased activity, such as EV and BAT charging by

prosumers preparing for peak times, pushes the blue line above the red. Savings also stem

from PV generation and demand response load reduction, yet this off-peak increase does

not lead to new peak loads, as reported in Figure 2.6. Despite the “do nothing” strategy

being better (compared to RL) for PPPs over 2%, an experiment with one CPE during the

highest peak shows a 19% reduction in load during previously peak period but also a 5%
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Figure 2.5: Change in monthly aggregated and peak loads by Mass offer (Option: FXD,
PPP: 1%)

Figure 2.6: Change in monthly aggregated and peak loads by Mass offer (Option: FXD,
PPP: 4%)

increase in new peaks, culminating in a 16% net revenue decrease for the distributor due to

higher costs from new peaks. This isn’t a limitation of the RL approach or modeling, but

rather of the Mass Offer option, because under Mass Offer, the volume of the shifted load

is not controllable and new peaks emerge inevitably.
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Figure 2.7: Change in distributor’s net revenues with increase in PPP under FXD option

Similar outcomes are observed with the WCO option; beyond a 2% PPP, shifted loads

create new peaks, diminishing mass offer effectiveness. Table 2.1 compares average test

set results over three months, affirming the robustness of these findings. Figures 2.7 and

2.8 illustrate net revenue changes with rising PPP. Both WCO and FXD show net revenue

growth with PPP increase up to a point, detailed further for low PPP values in embedded

figures, indicating maximal distributor motivation around 1% PPP. Beyond this, revenue

increases wane as more prosumers participate, though CPEs can boost net revenues up to

2% PPP. These analyses use the distributor’s standard monthly billing as a baseline, showing

that while WCO maintains status quo revenues, FXD rate discounts for off-peak prosumers

progressively diminish net revenues as PPP increases.

Figures 2.7 and 2.8 analyze distributor net revenue changes with PPP increases under

FXD and WCO schemes, whereas Figure 2.9 presents total net revenues in Canadian dollars

for 160,000 households at various PPP levels (Points are connected with dashed lines for

easier visualization and do not imply generalization). Net revenues initially rise with PPP,

peaking at around 1%, then decline. With WCO, net revenue decreases but stays positive,

whereas FXD results in negative revenues beyond a 20% PPP. Despite this, the comparison

between WCO and FXD in Figure 2.9 shows WCO’s superiority for most PPP levels, with
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Figure 2.8: Change in distributor’s net revenues with increase in PPP under WCO option

Table 2.1: Mass offer results

WCO FXD

mean net revenue reduced peak mean net revenue reduced peak
PPP(%) increase(%) load(MW) increase(%) load(MW)

0.01 0.06 0.164 0.06 0.162
0.10 0.66 1.641 0.63 1.618
0.20 1.26 3.212 1.17 2.813
0.30 1.72 4.923 1.72 4.853
0.50 2.80 8.204 2.84 8.089
0.80 2.65 8.415 3.12 10.597
0.90 2.42 9.044 2.79 9.597
1.00 2.32 9.972 2.47 9.360
1.50 1.08 7.029 1.45 7.341
2.00 0.66 3.926 0.61 5.867
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Figure 2.9: Distributor’s net revenue comparison under two options

FXD only outperforming at 0.8% and 1.5% PPPs, as depicted in the embedded figure.

Figure 2.10 depicts the monthly billing totalities for each of the sixteen profiles. The

subsequent analyses employ data from an instance of the problem with 1% PPP and WCO

mass offering. The figure also reports the comparison between the two options regarding

their respective impacts on prosumer expenditures. The results exemplify that WCO not

only constitutes a risk-free selection for prosumers (since in the absence of peak load shifting

responses, their monthly invoice would not become inflated, whereas FXD program can

lead to spikes in costs for peak hours without proper reactions), but additionally, suitably

responsive prosumers can attain superior financial outcomes under WCO compared to FXD

alternative.

Figure 2.11 shows peak hour consumption reductions for technology combinations (PV,

EV, BAT, DR), based on their operational status (True or False). For the True scenario,

savings are computed when technologies are present and active. For the False scenario,
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Figure 2.10: Monthly bills of profiles under mass offer (Option: WCO, PPP: 1%)

Figure 2.11: Peak load shaving power of each profile under mass offer (Option: WCO, PPP:
1%)

savings are determined when technologies are absent or inactive:

STrue/False =
1

NTrue/False

NTrue/False∑
i=1

si,True/False

where STrue and SFalse represent average savings with technologies present or absent. NTrue

and NFalse denote the number of instances, and si,True and si,False are savings for the ith

instance. The data supports that EV and BAT have the most substantial impact, with BAT

being more influential due to higher capacity. DR and PV offer only slight improvements.

2.5.2 Targeted offer

As shown in Figure 2.6, upon exceeding a PPP threshold under mass offer program, even

one CPE announcement can constitute new peak loads during previously off-peak intervals.
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Table 2.2: Targeted offer results (without fairness consideration)

WCO FXD

mean net revenue mean reduced mean disparity mean net revenue mean reduced mean disparity
PPP(%) increase(%) peak load(MW) score increase(%) peak load(MW) score

1 3.27 12.391 1.91 4.87 10.194 1.16
2 3.06 16.602 3.37 5.26 18.591 1.46
3 2.68 17.199 2.72 6.21 15.088 1.35
5 1.04 9.479 3.00 1.35 3.357 0.13

10 1.73 4.806 0.89 - - -
20 1.66 7.615 0.84 - - -
50 0.75 3.178 0.17 - - -

100 - - - - - -

Therefore, managing the magnitude of shifted loads by targeting specific prosumer respon-

dents becomes imperative. Figures 2.12 and 2.13 represent targeted CPE events for FXD

and WCO options at 3% and 5% PPPs, respectively. Darker vertical bands indicate more

CPE recipients in that timeframe. In Figure 2.12, most events take place during February

7th evenings and February 10th mornings. Similarly, Figure 2.13 concentrates CPEs on

February 10th morning and evening intervals. Specifically, for FXD case, the algorithm

utilizes CPE strategy of {1:{5:1, 2:1, 16:1}, 7:{2:2, 4:2, 8:2}, 9:{4:2, 10:2}, 10:{14:3, 1:1,

3:3, 6:3, 7:2, 10:3, 11:1, 12:2, 9:3, 13:1, 16:3}} while Figure 2.13 employs {1:{6:1}, 7:{15:3},

10:{12:1, 7:1, 8:1, 2:3, 16:3}}. In the given coding, "1:{5:1, 2:1, 16:1}" represents that on

day 1, profiles 5, 2, and 16 each received a morning CPE announcement. By restricting audi-

ences, newly forming peaks become governable, instituting consistently beneficial programs

for both prosumers and distributor via targeting all profiles, yet on different days.

Table 2.2 presents the outcomes of using PPOD (the highest-performing algorithm on

our validation data), covering WCO and FXD results. The table details how the mean net

revenue of the distributor increases with the implementation of a targeted offering approach,

displayed in the first column. In this table, the distributor’s objective function does not fac-

tor in the disparity score (Equation 2.20). A lower disparity score indicates a more equitable

distribution of CPE offers among prosumers, presented in the third column. Additionally,

the table shows the average reduction in peak load over three months in the test dataset,

listed in the second column.

To tackle the issue of disparity, Equation 2.20 is incorporated into the distributor’s

objective function in RL algorithms, with updated findings shown in Table 2.3. Comparing

76



Table 2.3: Targeted offer results (with fairness consideration)

WCO FXD

mean net revenue mean reduced mean disparity mean net revenue mean reduced mean disparity
PPP(%) increase(%) peak load(MW) score increase(%) peak load(MW) score

1 3.07 13.275 1.15 4.77 10.139 0.71
2 2.96 16.624 2.12 4.81 18.006 1.26
3 2.60 16.740 1.50 5.96 15.643 0.90
5 1.02 10.102 1.79 1.23 3.295 0.13

10 1.61 4.815 0.81 - - -
20 1.57 7.309 0.73 - - -
50 0.69 3.100 0.15 - - -

100 - - - - - -

the data from two tables shows a lower disparity score, indicating a more uniform distribution

of CPE offers, leads to a decrease in both the average net revenue increase for the distributor

and the reduction in peak load. This outcome highlights a trade-off between minimizing

disparity and maximizing net revenue. This balance can be adjusted through the coefficient

α. this result indicates that including the disparity term in the calculation lowers the

disparity score by approximately 46%, while the mean net revenue increase sees a reduction

of about 5%.

Additionally, Table 2.3 provides two insights — targeted CPEs further profitability be-

yond mass offerings’ limits, with FXD reaching 5% PPP and WCO remaining productive

until 50% PPP. Mass offerings increased the distributor’s net revenue by 5.04% and 1.79%

for a 1% PPP, and by 4.40% and 1.49% for a 2% PPP under the WCO and FXD programs,

respectively. However, targeted CPEs further enhanced these gains, boosting revenue by

7.05% and 8.00% for a 1% PPP, and by 7.26% and 5.92% for a 2% PPP for WCO and FXD

programs, respectively. Secondly, except 1% PPP, WCO dominates FXD for all other values

of PPP.

Figure 2.14 illustrates the scenario when PPP reaches a magnitude where existing op-

tions and programs are ineffective. In such instances, introducing new devices alters the

historically stable load patterns, leading to new peak loads. These peak loads manifest dur-

ing periods that are not only outside of traditionally recognized peak times but are also in

varying time and more challenging to predict. Additionally, the increased demand on the

grid to accommodate EV and BAT charging has significantly altered load patterns. Notably,

new peak loads are observed between 2 AM and 6 AM, when current programs fail to ad-
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Figure 2.12: Change in monthly aggregated and peak loads by Targeted FXD offer (PPP:
3%)

Figure 2.13: Change in monthly aggregated and peak loads by Targeted WCO offer (PPP:
5%)

78



Figure 2.14: Change in monthly aggregated and peak loads by Targeted WCO offer (PPP:
100%)

dress them effectively. This observation underscores the need for a transition towards more

dynamic peak load management strategies, such as dynamic CPPs where announcement

periods are flexible. The proposed methodology in this chapter with minor adjustments

would be able to address dynamic CPPs.

2.6 Conclusion and Future Directions

This chapter presented strategies to advance grid efficiency and peak load reduction through

optimized dynamic pricing programs informed by prosumer analytics. The analysis focused

on CPP, evaluating impacts under a reward-based (WCO) and a penalty-based (FXD)

variations of CPP programs.

The key findings demonstrate that CPP events, when appropriately targeted, can incen-

tivize significant peak load reductions from prosumer populations equipped with DERs and

DR. However, mass program offerings become ineffective beyond low PPPs around 1-2%,

as load shifting creates problematic new peaks. This motivates a transition towards more

selective, differentiated incentives.

Accordingly, targeted dynamic pricing was introduced, restricting CPEs to subsets of
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prosumers and guiding controlled, predictable DR. RL-based algorithms determined near-

optimal policies for event scheduling, significantly extending profitable program viability to

3–5 times higher prosumer adoption. Moreover, the assessment of technology configurations

found batteries and EVs as principal contributors, while PV provided minimal direct peak

reduction. Furthermore, to address the fairness issues that arise when some profiles receive

relatively more offers, the algorithms are adjusted to consider disparity and distribute the

offers more uniformly among the prosumers with a reduction in disparity score by 33.82%.

In conclusion, advanced prosumer analytics and intelligent incentives coordination un-

lock the flexibility promised by distributed resources to shave peaks and enhance system

efficiency. However, this study has some shortcomings and simplifying assumptions that

provide avenues for future investigation to enhance realism: Firstly, the analysis assumed

all prosumers opt-in to either the WCO or FXD program, but in practice, heterogeneous

adoption across rate structures would affect aggregated load profiles, and analyzing mixed

program enrollment could offer further insights. Moreover, complete prosumer responsive-

ness to CPP signals was assumed, but considering partial passive response would better

match real-world behavior, which could significantly impact peak reduction viability. Ad-

ditionally, despite political difficulties, exploring real-time pricing in Quebec would provide

valuable understanding, given comparable situations elsewhere. Multi-agent RL has the

potential to make prosumer decisions more dynamic beyond fixed best response functions.

Furthermore, a single cost-focused objective was defined for prosumers here. However, ex-

panding for diverse preferences like simplicity over profit or risk aversion would offer realistic

heterogeneity, as consumer aspirations likely affect technology adoption and price signal re-

actions.

The study shows that WCO generally outperforms FXD in reducing peak usage in the

short term (though in a few cases, FXD performs better), but problems can arise over time

due to the way WCO adjusts the baseline for calculating rebates: if people use less power

during peak times in their first year with WCO, their baseline for getting rebates will be

lower the next year, which might discourage them from continuing in the program unless

they sometimes use more power during peak times. Users might also purposely use more

power during peak times when they are not in WCO, so they have a higher baseline and get
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bigger rebates later. Studying these long-term effects and the potential for cheating in the

system can help create stronger policies, and adding features to WCO to fix these issues is

worth looking into, as the best solution likely finds a middle ground between WCO’s careful

management of peak demand and FXD’s long-term rewards.

Moreover, this research uses the specific consumption patterns in Quebec, where peak

loads occur during the winter and within particular time frames, so it would be beneficial to

extend the model to accommodate various load patterns, such as those experienced during

the summer months in the United States, thereby enhancing its applicability across different

geographical and climatic conditions. Furthermore, the current model assumes a uniform

distribution of prosumer profiles, which may not accurately reflect the reality where certain

profiles are more prevalent, so investigating the actual distribution of these profiles or exam-

ining the impact of varying distributions on the study’s outcomes could open new avenues

for research. Moreover, in the realm of prosumer behaviour modeling, transitioning from an

optimization-based approach to developing a predictive model grounded in historical data

on prosumer responses to price signals could offer more dynamic and realistic insights into

prosumer behavior, which could further refine the strategies for peak load management and

the effectiveness of dynamic pricing programs.

Finally, assessing environmental sustainability impacts of peak load shaving would pro-

vide crucial perspective as attention increases on strategic decisions’ planetary consequences,

as quantifying emissions reduction potential could motivate additional programs on climate

grounds. Overall, relaxing simplifying assumptions through multi-disciplinary expansions

offers significant potential to enhance model realism and policy insights on coordinating

distributed flexibility for efficient, renewable electricity systems.

2.7 Appendix

2.7.1 Data Preparation

The electricity consumption data obtained from Hydro-Quebec spans over seven years from

January 2013 to March 2019, encapsulating the winter months of January, February, March,

and December Hydro-Quebec (2024b). These months are of particular interest as they
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coincide with the application of the dynamic pricing program and are also the periods

during which yearly peak loads are observed. Given the nature of the region’s climate, with

extreme cold temperatures necessitating continuous operation of electric heating systems

and an increased use of lighting and electrical appliances, there is a substantial increase in

electricity demand. The initial consumption dataset was recorded on 15 minutes time steps

and then the dataset is transformed to an hourly resolution to facilitate a more granular

analysis of consumption patterns.

For the calculation of Hydro-Quebec’s net revenues, the wholesale electricity price in the

New York Independent System Operator (NYISO) energy market is used as a proxy for the

generation cost. This approximation also serves as an alternative price, representing the

potential revenue that could be generated from selling the electricity elsewhere. The price

data is retrieved from the NYISO energy market & operational data system.2

The generation data for the PV solar panels, alongside temperature records, are acquired

from the Photovoltaic Geographical Information System (PVGIS) provided by the European

Commission’s Joint Research Centre website.3. The specific details for the PV setup include

the use of Copper Indium Selenide technology, an installed peak PV power of 2 kWp, and

a system loss of 14%. The solar radiation data is sourced from the PVGIS-ERA5 database.

The geographic coordinates for the installation are at Latitude 45.551, Longitude -73.602,

and it employs a two-axis mounting type. The data retrieved from PVGIS is subsequently

formatted to match the temporal resolution of the electricity consumption dataset.

The study incorporates the usage of Electric Vehicles (EVs) during working days, between

8:45 AM and 5:15 PM. On days when the EV is utilized, it consumes a total of 10 kWh/day,

and it requires charging for the subsequent working day. The battery parameters for the

EV include a maximum energy storage capacity of Emax = 60 kWh, a minimum energy

threshold of Emin = 15 kWh, and maximum charging/discharging rates of Ud = U c = 10

kW. The charging/discharging efficiency rates are both ηc = ηd = 0.95.

Additional parameters and consumer profiles are defined to aid in the modeling and

analysis of the electricity market and consumption behaviors. These include a Dissatisfaction

Coefficient for the Curtailed Load set at PD = 1, a total of T = 24 hours in a day, and a
2https://www.nyiso.com/custom-reports
3https://re.jrc.ec.europa.eu/pvg_tools/en/toolshtml
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Daily Load Limit for Purchasing at a Lower Rate of LL = 40 kWh. The Cost Coefficient of

Peak Load Capacity is PC = $15.75/kW. The BAT capacity is specified as Bmax = 60 kWh,

with a Minimum Level of Stored Electricity in the BAT at Bmin = 0 kWh, and a Maximum

Rate of Load Curtailment at Dmax = 25%. The consumer’s reference consumption record

(LSQ) is derived by solving the prosumer’s model for each profile, assuming participation in

the basic D rate tariff, thereby enabling the calculation of status quo consumption values.

2.7.2 Pseudocodes of the RL algorithms

The pseudocode representations of the RL algorithms discussed in this manuscript are pro-

vided herein.

Algorithm 1 SACD: Soft Actor-Critic with Discrete Action Space
1: Initialize replay buffer D
2: Initialize policy network πϕ with weights ϕ
3: Initialize two Q-value networks Q1

θ and Q2
θ with weights θ1 and θ2

4: Initialize target Q-value networks Q̄1
θ̄

and Q̄2
θ̄

with weights θ̄1 ← θ1, θ̄2 ← θ2

5: for episode = 1, . . . ,M do
6: Initialize sequence s1 = {s1}
7: for t = 1, . . . , T do
8: Sample an action at ∼ πϕ(·|st) from the current policy
9: Execute action at and observe reward rt and next state st+1

10: Store transition (st, at, rt, st+1) in D
11: Sample a minibatch of transitions (sj , aj , rj , sj+1) from D
12: Compute target values yj = rj + γQ̄θ̄(sj+1, πϕ(sj+1))
13: Update Q-value networks by minimizing the loss:
14: LQ(θ1, θ2) = E(sj ,aj)∼D

[
1
2 (Qθ1(sj , aj)− yj)

2 + 1
2 (Qθ2(sj , aj)− yj)

2
]

15: Update policy network by maximizing the expected return and entropy:
16: Lπ(ϕ) = Esj∼D [log πϕ(aj |sj)− α log πϕ(aj |sj)Qθ1(sj , aj)]
17: Update target Q-value networks:
18: θ̄1 ← ρθ̄1 + (1− ρ)θ1

19: θ̄2 ← ρθ̄2 + (1− ρ)θ2

20: end for
21: end for
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Algorithm 2 D3QN: Double Dueling Deep Q Network with Prioritized Experience Replay
1: Initialize replay buffer D
2: Initialize action-value function Q with random weights θ
3: Initialize target action-value function Q′ with weights θ′ ← θ
4: for episode = 1, . . . ,M do
5: Initialize sequence s1 = {s1} and preprocessed sequence ϕ1 = ϕ(s1)
6: for t = 1, . . . , T do
7: With probability ϵ select a random action at
8: Otherwise, select at = argmaxaQ(ϕ(st), a; θ)
9: Execute action at and observe reward rt and next state st+1

10: Set ϕt+1 = ϕ(st+1) and add transition (ϕt, at, rt, ϕt+1) to D
11: Sample random minibatch of transitions (ϕj , aj , rj , ϕj+1) from D
12: Compute importance sampling weights wj for each transition
13: Set yj = rj + γQ′(ϕj+1, argmaxaQ(ϕj+1, a; θ); θ

′)
14: Perform a gradient descent step on (yj −Q(ϕj , aj ; θ))

2 with weights wj

15: Every C steps, reset Q′ = Q
16: end for
17: end for

Algorithm 3 PPOD: Proximal Policy Optimization with Discrete Action Space
1: Initialize policy network πθ with weights θ
2: Initialize value function network Vϕ with weights ϕ
3: for iteration = 1, . . . , N do
4: Collect a batch of transitions D = {(st, at, rt, st+1)} by running the current policy

πθ
5: for epoch = 1, . . . ,K do
6: Compute advantage estimates Ât using D and Vϕ

7: Compute the policy ratio gt(θ) =
πθ(at|st)

πθold (at|st)
8: Update the policy network by maximizing the clipped surrogate objective:
9: θ ← argmaxθ

1
|D|
∑

tmin
(
gt(θ)Ât, clip(gt(θ), 1− ϵ, 1 + ϵ)Ât

)
10: Update the value function network by minimizing the mean squared error:
11: ϕ← argminϕ

1
|D|
∑

t (Vϕ(st)− Vtarget(st))
2

12: end for
13: end for

2.7.3 Detailed results of CPE announcements in February 2017

Table 2.4 exhibits the results of implementing mass offer announcement for different levels

of PPP in February 2017. ’SQ ($)’ column shows the reference net revenue of the distrib-

utor where no offer is announced and consumers receive basic D rate. ’net revenue ($)’

column represent the new net revenue gained under respected program and ’inc(%)’ column
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Table 2.4: Detailed results of mass offer announcement in February 2017

WCO FXD

PPP(%) SQ ($) net revenues($) acts inc(%) rpl(MW) net revenues($) acts inc(%) inc’(%) rpl(MW)
0.01 2,239,743 2,242,074 {10:1} 0.10 0.164 2,241,831 {10:1} 0.09 0.11 0.162
0.10 2,239,923 2,263,236 {10:1} 1.04 1.642 2,260,809 {10:1} 0.93 1.06 1.618
0.20 2,240,123 2,286,749 {10:1} 2.08 3.283 2,281,895 {10:1} 1.86 2.11 3.235
0.30 2,240,323 2,310,262 {10:1} 3.12 4.925 2,302,980 {10:1} 2.80 3.18 4.853
0.50 2,240,723 2,357,288 {10:1} 5.20 8.208 2,345,152 {10:1} 4.66 5.30 8.089
0.80 2,241,323 2,354,466 {10:1} 5.05 8.474 2,357,120 {10:1,7:2,1:1} 5.17 6.20 11.688
0.90 2,241,523 2,349,957 {10:1} 4.84 8.337 2,348,784 {10:1,7:2,1:1} 4.79 5.95 11.688
1.00 2,241,723 2,354,710 {10:3,7:2,1:1} 5.04 13.691 2,340,448 {10:3,7:2,1:1} 4.40 5.69 12.177
1.50 2,242,724 2,312,614 {10:3,7:2,1:1} 3.12 14.213 2,324,904 {10:3,7:2,1:1} 3.66 5.60 14.496
2.00 2,243,724 2,283,923 {10:3} 1.79 8.478 2,277,197 {10:3,7:2,1:1} 1.49 4.03 14.496
3.00 2,245,722 2,245,722 {} - - 2,163,581 {} -3.66 - -
5.00 2,249,726 2,249,726 {} - - 2,112,824 {} -6.09 - -

10.00 2,259,729 2,259,729 {} - - 1,572,868 {} -30.40 - -
20.00 2,239,928 2,239,928 {} - - 3,282 {} -99.85 - -
50.00 1,827,270 1,827,270 {} - - -4,538,111 {} -348.35 - -

100.00 476,396 476,396 {} - - -12,107,100 {} -2641.40 - -

Table 2.5: Detailed results of targeted offer for February 2017

WCO FXD WCO - FXD

PPP(%) SQ ($) net revenue($) inc(%) rpk(MW) net revenue($) inc(%) inc’(%) rpl(MW) net revenue
1.00 2,241,723 2,399,831 7.05 13.277 2,404,376 7.26 8.58 10.133 -4,546
2.00 2,243,724 2,423,312 8.00 16.625 2,413,862 7.58 10.27 18.057 9,450
3.00 2,245,722 2,403,606 7.03 16.939 2,378,699 5.92 9.94 17.711 24,908
5.00 2,249,726 2,316,359 2.96 10.802 2,191,094 -2.61 3.70 5.776 125,265

10.00 2,259,729 2,365,342 4.67 7.736 1,572,868 -30.40 - - 792,474
20.00 2,239,928 2,338,222 4.39 10.242 3,282 -99.85 - - 2,334,941
50.00 1,827,270 1,864,017 2.01 7.853 -4,538,111 -348.35 - - 6,402,129

100.00 476,396 476,396 - - -12,107,100 -2641.40 - - 12,583,495

calculates the increase in net revenue. The "acts" columns denote the optimal CPE an-

nouncements at various PPP levels, where for example, 10:3, 7:2, 1:1 signifies two morning

CPEs on February 1st and 10th plus two evening CPEs on 7th and 10th for that PPP.

Furthermore, the "inc’ %" column under the FXD rate structure represents net revenue

differences between the listed strategy and taking ’no action’ under FXD rates. Finally,

’rpl(kW)’ portrays the reduced peak load in kW. Also, Table 2.5 represents the detailed re-

sults implementing the targeted options in Febraury 2017 without considering fairness term

in the objective function.

2.7.4 Grid Profitability and Prosumer Savings

The rationale behind the differences in net revenue changes between the WCO and FXD

options, particularly regarding Quebec’s grid profitability concerns, is further examined in

Figure 2.15. This figure contrasts Hydro-Quebec’s wholesale electricity prices (blue dots)
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Figure 2.15: Rates comparison

with Vermont’s residential uniform rate (grey dashed line) and the base rate for WCO

and FXD. It underscores Quebec’s considerably lower rates, which are among the lowest in

North America.4 This comparison suggests potential profitability challenges for Quebec’s

grid, attributed to the minimal gap between retail prices and generation costs.

Moreover, Figure 2.16 exhibits the monthly financial savings attained by each profile.

The results demonstrate that profiles consisting of both EV and BAT, comprising 25% of

the prosumer demographic, accrued approximately 50% of the aggregate financial savings

realized by the prosumers. Additionally, profiles containing either EV or BAT (but not

both) obtained 7% of the total savings. Furthermore, winter declines in PV generation

quantities, aligned with peak PV production timeframes existing external to the morning and

evening consumption peak periods, explains negligible savings gained through PV ownership.

Moreover, in numerous cases, augmenting DR contributes only marginally to improving a

profile’s monthly financial savings.

2.7.5 Heuristic Algorithms

RL algorithms consistently outperformed the ’do nothing’ approach in numerous instances

of this problem. To thoroughly assess the effectiveness of our developed RL algorithms, we

incorporated heuristic algorithms as an additional point of comparison beyond the simple ’do

nothing’ strategy. Our implementation encompassed several concepts, outlined as follows:
4https://www.hydroquebec.com/data/documents-donnees/pdf/comparison-electricity-prices.pdf
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Figure 2.16: Monthly saving gained by each profile under mass offer (Option: WCO, PPP:
1%)

1. We aggregated all consumption data within the training and validation datasets to

compute their mean µ and standard deviation σ. The heuristic algorithm then applies

a threshold, determined by the formula x = µ + θσ, to announce a CPE if the con-

sumption value during peak hours surpasses this threshold. By adjusting θ between

2.7 and 4.3 in increments of 30 steps, we achieved a 0.36% performance enhancement

in the training dataset as the highest score among all θ values.

2. A second heuristic was developed based on temperature forecasts, announcing a CPE

when the normalized minimum temperature during the upcoming day’s peak hours

falls below a certain threshold, ranging from 0 to 0.15 in 30 steps. This method

resulted in a 3.47% improvement as the highest enhancement among all threshold

values.

Enhancements were made to these heuristics by incorporating additional criteria for CPE

declaration:

3. An advanced version of the first heuristic introduced two supplementary conditions: (a)

the maximum consumption during peak hours must exceed the highest consumption

in off-peak periods within the same day, and (b) the peak consumption during peak
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Figure 2.17: Heuristic algorithms performance in training sets (Option: WCO, PPP: 1%)

hours must surpass the current peak. Although this refined heuristic exhibited a 0.56%

uplift in the training set, it underperformed compared to the ’do nothing’ strategy in

the test set.

4. The refined variant of the second heuristic imposed an extra criterion, declaring a CPE

if the maximum consumption in a given period exceeds the current peak load. This

adjustment led to an average enhancement of 4.3% in training datasets and successfully

boosted the distributor’s net revenue by 4.46% in February 2017. Despite these gains,

the algorithm did not match the performance and consistency of the PPOD algorithm

in test set evaluations or overall average improvement.

Figure 2.17 visualizes the outcomes for the enhanced algorithms in the training set.

After determining the optimal threshold for each heuristic, they were executed at these

ideal settings for performance benchmarking.
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Chapter 3

Towards Sustainable Energy Use:

Reinforcement Learning for Demand

Response in Commercial Buildings

Abstract

This study presents a new demand response framework for optimizing electricity consump-

tion in small and medium-sized commercial buildings. We develop a mathematical model

categorizing building loads into non-controllable, controllable, and HVAC consumption, aim-

ing to minimize costs, CO2 emissions and dissatisfaction and maximize peak load shaving.

We implement and compare three reinforcement learning (RL) algorithms for controllable

loads and HVAC systems against traditional heuristic approaches, using eight weeks of winter

consumption data from a commercial building. Results show that RL algorithms, partic-

ularly PPOD & TD3 combinations, achieve peak load shaving ratios exceeding 25%, with

significant cost reductions and environmental benefits. Our analysis incorporates the impact

of outdoor temperature variations and risk assessments using VaR and CVaR metrics. This

study contributes to developing efficient and environmentally conscious energy management

strategies for commercial buildings, with implications for policy and industry practices in

sustainable energy transitions.



3.1 Introduction

In the face of growing energy demands and increasing environmental concerns, demand

response (DR) has emerged as a critical strategy in modern power systems. DR offers sig-

nificant benefits in terms of cost savings, infrastructure investment deferral, and GreenHouse

Gas (GHG) emission reduction. The importance of DR is underscored by its potential to

reduce costs across power systems. For instance, the U.S. Department of Energy estimates

that Grid-interactive Efficient Buildings (GEBs) could unlock untapped opportunities val-

ued between $8 billion and $18 billion annually by 2030, representing 2–6% of total U.S.

electricity generation and transmission costs (Satchwell et al., 2021).

The impact of DR extends beyond cost savings. By flattening peak demand curves

and improving overall system efficiency, DR can significantly reduce the need for additional

capacity, leading to substantial long-term savings in infrastructure investments. Moreover,

DR plays a crucial role in reducing GHG emissions. Through demand flexibility and energy

efficiency, GEBs could decrease U.S. CO2 emissions by 80 million tons per year by 2030,

equivalent to 6% of total U.S. power sector CO2 emissions (Langevin et al., 2019).

Within the broader context of DR, commercial buildings represent a significant untapped

resource. In the United States, small and medium-sized commercial buildings account for

50% of the commercial building floor area (Energy Information Administration, 2021), indi-

cating vast potential for DR implementation. The commercial sector as a whole represented

35% of U.S. electricity sales in 2020 (EIA, 2021), further emphasizing the importance of

targeting this sector for DR initiatives.

Electricity consumption in commercial buildings can be broadly categorized into three

groups: non-controllable loads, controllable loads, and HVAC (Heating, Ventilation, and Air

Conditioning) consumption. While non-controllable loads, such as security devices, cannot

be adjusted for DR purposes, controllable loads like lighting systems offer opportunities

for reduction and optimization. However, it is the HVAC systems that present the most

significant potential for DR in commercial buildings.

HVAC systems are particularly suitable for DR applications due to their substantial

energy consumption and inherent thermal inertia. In commercial buildings, HVAC systems

account for more than 50% of energy consumption (Tang et al., 2018; Yuan et al., 2021).
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This high proportion of total building energy use makes HVAC an ideal target for DR

strategies. Furthermore, the thermal mass of buildings allows for temperature adjustments

without immediate impact on occupant comfort, providing flexibility in energy consumption

patterns. This is particularly effective not only over day-night cycles but also within shorter

time frames when there is a significant difference between indoor and outdoor temperatures.

In commercial buildings, this allows for hourly adjustments during peak and off-peak periods

while maintaining comfort levels through the buffering capacity of the building’s thermal

mass.

The capacity for the top 100 hours of peak demand in a year accounts for nearly 20% of

electricity costs for power grids (Arnold, 2011). This highlights the importance of optimizing

electricity consumption, particularly during peak hours, to reduce costs and improve grid

efficiency. By leveraging the thermal characteristics of buildings and implementing intelligent

control strategies, a well-designed DR program can achieve significant energy reductions

while maintaining acceptable levels of occupant comfort.

This study introduces a mathematical model aimed at optimizing electricity consump-

tion in a group of commercial buildings. The model categorizes building consumption into

three distinct groups: HVAC consumption, adjustable loads, and non-controllable loads. In

addition to minimizing electricity costs, the model considers three other objectives: min-

imizing consumer dissatisfaction due to reductions in consumption or deviations from the

desired temperature, minimizing CO2 emissions, and maximizing peak load shaving and

load reduction during peak hours.

To solve this optimization problem, we employ heuristic and Reinforcement Learning

(RL) algorithms. The heuristic algorithms include setting the HVAC set point at different

levels below the desired temperature, with and without considering peak hours. For the

RL approach, we implement three algorithms for HVAC systems: Soft Actor-Critic for

Discrete action spaces (SACD), Proximal Policy Optimization for Discrete action spaces

(PPOD), and Double Dueling Deep Q-Network with Prioritized Experience Replay (D3QN).

For controllable loads, we use Deep Deterministic Policy Gradient (DDPG), Twin Delayed

Deep Deterministic Policy Gradient (TD3), and Proximal Policy Optimization (PPO).

Our results demonstrate that RL algorithms, particularly PPOD & TD3 and SACD
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& TD3, achieve the highest peak load shaving ratios, exceeding 25%, with notable cost

reductions and environmental benefits. The implementation of TD3 alters the realized

controllable load consumption, with the majority of load reduction occurring during evening

peak hours. The application of PPOD on HVAC load management showcases a strategic

pre-heating of buildings prior to peak hours, maintaining temperatures just above the lower

admissible bound during these critical periods.

Furthermore, this study considers the impact of outdoor temperature variations on the

potential peak load shaving volume that an aggregator can provide. We conduct risk analyses

to assess the robustness of our proposed strategies and incorporate CO2 emission reduction

as a key objective in our DR framework.

By addressing these critical aspects of DR in commercial buildings, this paper aims to

contribute to the development of more effective, efficient, and environmentally conscious

energy management strategies. The findings and methodologies presented here have the

potential to inform policy decisions, guide industry practices, and ultimately accelerate the

transition towards a more sustainable and resilient energy future.

The remainder of this paper is structured as follows: Section 3.2 explores the current

literature on DR in commercial buildings and identifies the research gap addressed by this

study. Section 3.3 introduces the problem indexes, parameters, and decision variables, and

formulates both the reference and main optimization models. Section 3.4 presents the solu-

tion approaches, justifying the use of RL, and introduces the RL elements and data collection

methodology. Finally, Section 3.5 discusses the results, summarizes the key findings, and

suggests future research avenues in this field.

3.2 Literature Review

The landscape of energy management has undergone a significant transformation in recent

years, with DR emerging as a critical tool for balancing the power grid and reducing costs.

This review traces the evolution of DR implementation in commercial buildings, highlighting

key developments in strategies, technologies, and methodologies.

The journey of DR in commercial buildings began in the early 2000s when Watson
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et al. (2006) laid the groundwork by describing strategies to temporarily reduce electric load

during grid emergencies or high-price periods. These initial efforts primarily focused on

adjusting HVAC and lighting systems, aiming to achieve energy savings while minimizing

negative impacts on occupants.

As the potential of DR became increasingly apparent, researchers like Hao et al. (2012)

made strong claims about its capabilities. They suggested that the HVAC systems in just

90,000 medium-sized commercial buildings could provide the entire regulation service needed

by PJM, a major power grid operator. This revelation highlighted the untapped potential

of commercial buildings in grid stabilization.

The implementation of DR strategies took a significant leap forward with automation.

Kiliccote (2010) reported on seven years of field performance data for automated DR in Cal-

ifornia, demonstrating that commercial buildings could reduce peak demand by an average

of 13%. This success story paved the way for wider adoption of automated DR systems.

As the Internet of Things (IoT) began to permeate our lives, it also found its way

into building energy management. Zhao et al. (2016) explored how IoT could improve

energy efficiency and DR in commercial buildings. By integrating wireless networks with

existing building automation systems, researchers gained unprecedented insights into energy

consumption patterns at the zone level.

The quest for optimal DR strategies continued, with researchers exploring various ap-

proaches. Huang et al. (2018) proposed integrating residential and commercial users into a

single DR system, utilizing particle swarm optimization to improve energy efficiency. Mean-

while, Li et al. (2020) developed a comprehensive energy management system for commercial

building clusters, incorporating distributed generation and energy storage equipment.

As DR strategies became more sophisticated, researchers began to pay closer attention

to occupant comfort. Liang et al. (2019) proposed a DR framework that considered both

operating costs and comprehensive comfort levels, using stochastic programming to handle

uncertainties in renewable energy output, electricity prices, and flexible energy demand.

The importance of building-specific strategies became evident as the field progressed.

Christantoni et al. (2016) used whole-building energy simulation to develop and evaluate

DR strategies for different zones within a multi-purpose commercial building. Their findings
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emphasized the need to tailor strategies based on thermal and usage profiles of individual

spaces.

Recognizing the significant role of small commercial buildings, Cai and Braun (2019)

conducted a comprehensive assessment of DR potential across various building types, vin-

tages, and locations. Their results showed promising cost savings and demand reductions,

particularly for buildings with time-of-use energy rates and demand charges. As the field ma-

tured, the focus shifted towards integrating multiple aspects of DR. Darwazeh et al. (2022)

provided a holistic review of peak load management strategies, combining DR programs,

strategies, load forecasting models, and occupant comfort considerations.

In parallel with these developments, the evolution of control and optimization methods

for DR has been equally remarkable. Hao et al. (2017) proposed a novel approach called

transactive control for commercial building HVAC systems, while ho Lee and Braun (2016)

developed an inverse building model to study the performance of a demand-limiting control

strategy. The complexity of DR strategies grew, as did the mathematical models used to

optimize them. Aussel et al. (2020) introduced a trilevel energy market model for load

shifting induced by time-of-use pricing, showcasing the challenges of solving multi-leader-

multi-follower games.

Artificial intelligence has also made its mark on DR research. Chen et al. (2021) ex-

plored the use of RL for optimal DR strategy in a commercial building-based virtual power

plant. Building on this theme, Liang et al. (2021) proposed a safe RL for resilient proactive

scheduling in commercial buildings.

Traditional control methods continued to evolve alongside AI approaches. Tang et al.

(2019) developed a model predictive control (MPC) strategy for optimizing the operation of

central air-conditioning systems with active cold storage during fast DR events. More re-

cently, Hosseini et al. (2022) proposed a robust MPC approach for online energy scheduling

of multiple commercial buildings. The integration of Energy Management Systems (EMS)

and Building Automation Systems (BAS) has played a crucial role in enabling effective DR

strategies. Piette et al. (2009) laid the groundwork for automated DR infrastructure in

commercial buildings, introducing the concept of an open, interoperable communications

infrastructure. Cybersecurity concerns in building automation systems were addressed by
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Jones and Carter (2017), who developed and tested a building automation intrusion detec-

tion system. This innovative system provided a cyber-secure connection between public and

private BAS networks. The scope of DR management in commercial buildings expanded

with the work of Wang et al. (2018), who presented an optimal operation model that consid-

ered not only traditional flexible loads but also emerging technologies such as concentrating

solar power plants.

Understanding and predicting load profiles for commercial buildings has become increas-

ingly crucial. He and Liu (2017) delved into load profile analysis for commercial buildings

microgrids under DR conditions, while Pallonetto et al. (2022) incorporated machine learn-

ing models for electricity demand forecasting. The economic and market aspects of DR in

commercial buildings have also been a focus of research. Yoon et al. (2020) developed an op-

timal pricing strategy for price-based DR in HVAC systems, while Kim and Norford (2016)

explored the price-based DR of energy storage resources in commercial buildings within the

context of wholesale electricity markets.

The integration of renewable energy sources and energy storage systems has opened up

new frontiers in DR strategies. Hu et al. (2012) envisioned a future where buildings op-

erate as part of an interconnected cluster, while Hossain et al. (2024) focused on optimal

peak-shaving for dynamic DR in smart Malaysian commercial buildings. Wang et al. (2021)

proposed an optimization framework for low-carbon oriented integrated energy system man-

agement in commercial buildings, with a focus on electric vehicle (EV) DR.

Advancements in modeling and simulation techniques have significantly influenced DR

strategies. Gao et al. (2015) developed a robust DR control strategy that could maintain

effectiveness under uncertain load conditions. Christantoni et al. (2015) created a compre-

hensive simulation model for a multi-purpose commercial building specifically designed for

DR analysis. Yin et al. (2016) developed a novel DR estimation framework applicable to

both residential and commercial buildings.

HVAC systems have played a crucial role in DR strategies. Beil et al. (2016) explored

the potential of commercial HVAC systems in frequency regulation, while MacDonald et al.

(2020) critically examined the efficiency impacts of such DR strategies. Aghniaey and

Lawrence (2018) brought attention to the impact of increased cooling setpoint tempera-
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tures during DR events on thermal comfort.

Recent research has also focused on quantifying energy flexibility and DR potential in

commercial buildings. Afroz et al. (2023) presented a comprehensive analysis of the energy

flexibility and DR potential of schools, offices, and data centers in Australia.

Finally, case studies and pilot programs have provided valuable insights into the practical

implementation of DR strategies. Li et al. (2006) presented a case study of a DR pilot

program in a large commercial office building in Shanghai, while Son et al. (2014) explored

the potential of combining chiller systems and energy storage systems for DR participation.

Mutule et al. (2017) conducted a feasibility study for DR in a commercial building in Latvia,

demonstrating the initial steps in implementing a commercial building automation system

with automated energy consumption scheduling units.

While significant progress has been made in developing DR strategies for commercial

buildings, several key areas remain underexplored. First, most existing studies focus on ei-

ther HVAC systems or controllable loads independently, without considering their combined

optimization potential. Second, the application of advanced RL algorithms to simultane-

ously manage both HVAC and controllable loads in commercial buildings is still limited.

Third, there is a lack of comprehensive frameworks that integrate multiple objectives such

as cost minimization, CO2 emission reduction, peak load shaving, and occupant comfort in

a single model.

This study aims to address these gaps by introducing a novel DR framework that op-

timizes both HVAC systems and controllable loads in small and medium-sized commer-

cial buildings. By implementing and comparing multiple RL algorithms against traditional

heuristic approaches, we provide insights into the most effective strategies for DR in this

context. Furthermore, our model uniquely incorporates multiple objectives, including cost

reduction, environmental impact, peak load shaving, and occupant satisfaction. This com-

prehensive approach, combined with our analysis of outdoor temperature variations and risk

assessments using VaR and CVaR metrics, contributes to the development of more robust

and practical DR strategies for commercial buildings.
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3.3 Modeling

This study introduces a mathematical model aimed at optimizing electricity consumption in

a group of commercial buildings. The buildings’ consumption is categorized into three dis-

tinct groups: HVAC consumption, which accounts for the energy used for heating or cooling

the buildings; adjustable loads, such as lighting, that are reducible; and non-controllable

loads, like refrigerators, security and alarm services. In addition to minimizing electricity

costs, the model considers three other objectives: minimizing consumer dissatisfaction due

to reductions in consumption or deviations from the desired temperature, minimizing CO2

emission and maximizing peak load shaving and load reduction during peak hours.

The planning horizon for this model is weekly with five-minutes time steps, and it em-

ploys a simplified version of HVAC systems that operate in on and off states. Temperature

dynamics within the buildings are modeled using thermal capacitance (Ci), thermal resis-

tance (Ri), and HVAC power rating (hi). Specifically, thermal capacitance represents the

ability of the building to store heat, thermal resistance indicates the building’s insulation ef-

fectiveness, and HVAC power rating defines the rate at which the HVAC system can change

the indoor temperature.

3.3.1 Indexes and Parameters

The models in this study use two indexes for time steps (peak and off-peak periods) and

buildings:

i ∈{N} building i in the targeted group of buildings

t ∈{T } episode t in horizon [1, 2, 3, ..., T ]

t ∈{H} episode t in peak period, (H ⊂ T )

Below is the list of parameters:
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Ci
.
= Thermal capacitance of building i (W/◦C)

Ri
.
= Thermal resistance of building i (◦C/W)

hi
.
= HVAC power rating at building i (kW)

T des
i,t

.
= Desired indoor temperature in building i at time t(◦C)

T out
t

.
= Outdoor temperature forecast at time t(◦C)

T dev .
= Maximum allowable deviation from the desired temperature (◦C)

eNi,t
.
= Non-controllable load of building i at time t

eCi,t
.
= Controllable load of building i at time t

Pt
.
= Electricity price ($/kWh) to buy from wholesale market at time t

αi
.
= Building i’s discomfort weight factor for the temperature difference ($/◦C2))

βi
.
= Building i’s discomfort weight factor for the reduced power ($/◦C2)

γ
.
= Weight factor (rebate rate) for the reduced load ($/kWh)

δ
.
= Weight factor (Carbon tax) for the CO2 emission ($/gCO2eq)

ϵ
.
= Total carbon intensity of electricity consumed in Quebec (gCO2eq/kWh)

In this list, parameters T out
t , Pt, eNi,t and eCi,t are realized in real-time.

3.3.2 Decision and State Variables

The decision variables below indicate HVAC status, electricity flows and curtailed loads in

the buildings:

Bi,t
.
= HVAC status (on/off) in building i’s at time t

T in
i

.
= Indoor temperature (◦C) in building i’s at time t

EN
i,t

.
= Realized non-controllable load (kWh) of building i at time t

EC
i,t

.
= Realized controllable load (kWh) of building i at time t

EB
t

.
= Total energy consumption (kWh) in the reference model at time t
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3.3.3 Reference Model

The reference model is introduced below to calculate the reference consumption record of

the buildings when they, regardless of DR objectives, only minimize their dissatisfaction.

min
∑
i,t

(T des
i,t − T in

i,t )
2 (3.1)

subject to:

T in
i,t = T in

i,t−1 +

(
T out
t − T in

i,t−1

Ri
+Bi,t.hi

)
∆t

Ci
∀i, t (3.2)

|T des
i,t − T in

i,t | ≤ T dev ∀i, t (3.3)

EN
i,t = eNi,t ∀i, t (3.4)

EC
i,t = eCi,t ∀i, t (3.5)

EB
t =

∑
i

EN
i,t + EC

i,t +Bi,t.hi ∀t (3.6)

0 ≤ T in
i,t , Bi,t, E

N
i,t, E

C
i,t, E

B
t ∀i, t (3.7)

In the reference model, objective function 3.1 keeps the indoor temperature as close as

possible to the desired temperature, with no cost term included. Equation 3.2 calculates

the indoor temperature in the next time step where ∆t represents time step. Equation 3.3

makes sure the inside temperature remains in the allowed temperature bound. Constraints

3.4 and 3.5 ensure all load types are covered at their preferred power. Finally, Equation

3.6 calculates the total energy consumed at time t and Equation 3.7 indicates the decision

variables’ domain.

3.3.4 Main Model

Once the reference model is solved and EB
t is calculated, the main model uses EB

t as a

reference point to calculate the reduced consumption during peak hours. The main model

is presented below:
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min
∑

i,j,t∈T
Pt(Bi,t · hi + EN

i,t + EC
i,t)

+
∑

i,j,t∈T
αi(T

in
i,t − T des

i,t )2 + βi(E
C
i,t − eCi,t)

2

−γ
∑
t∈H

EB
t −

∑
i,j

Bi,t · hi + EN
i,t + EC

i,t


+δϵ

∑
t∈T

∑
i,j

Bi,t · hi + EN
i,t + EC

i,t



(3.8)

Subject to:

T in
i,t = T in

i,t−1 +

(
T out
t − T in

i,t−1

Ri
+Bi,t.hi

)
∆t

Ci
∀i, t (3.9)

|T des
i,t − T in

i,t | ≤ T dev ∀i, t (3.10)

EN
i,t = eNi,t ∀i, t (3.11)

EC
i,t ≤ eCi,t ∀i, t (3.12)

0 ≤ T in
i,t , Bi,t, E

N
i,t, E

C
i,t ∀i, t (3.13)

Objective function 3.8 consists of four terms. The first term minimizes the electricity

cost, the second term minimizes the dissatisfaction arising from adopting DR and the dif-

ference between the desired and actual indoor temperature. The third term maximizes the

energy consumption reduction during the peak period and the forth term minimizes CO2

emission. Constraint 3.9 calculates the indoor temperature in the next time step, and Con-

straint 3.10 ensures the indoor temperature does not deviate from the desired temperature

more than allowed extent. Constraints 3.11 and 3.12 ensure that the non-controllable load

is covered and the deducted load is less than or equal to the allowed bound. Constraint

3.13 indicates the admissible values for the decision variables. For the dissatisfaction terms,

a quadratic form is chosen, indicating that the dissatisfaction arising from DR increases

quadratically as the deviation increases. Also, this study considers heating commercial

buildings during winter (when peak loads occur in Quebec); however, this model could also

be used for summer scenarios where HVAC cools the building. In that case, a negative sign

must be used before Bi,t · hi in Equations 3.2 and 3.9.
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3.4 Methodology

The DR problem in commercial buildings presents a complex and dynamic challenge that

requires an adaptive and intelligent approach. Traditional optimization methods, such as

linear programming or dynamic programming, are often inadequate for addressing this prob-

lem due to the real-time availability and constant updates of critical parameters, such as

energy consumption, outdoor temperature, and electricity market prices, which are realized

dynamically as the system operates. Long-term forecasting of these parameters is challeng-

ing, and relying on forecasts can lead to sub-optimal solutions and reduced effectiveness.

Figures 3.1 and 3.2 demonstrate the high fluctuations in both electricity price and carbon

emissions intensity (part of the information needed for decision making), highlighting the

need for a more flexible and responsive approach.

To overcome these challenges, we formulate the DR problem as a Markov Decision Process

(MDP). An MDP is a mathematical framework for modeling sequential decision-making

problems, where an agent interacts with an environment by taking actions and observing

the resulting states and rewards. The DR problem can be naturally represented as an MDP,

with the states capturing the current conditions of the buildings and surroundings (e.g.,

indoor temperatures, energy consumption levels), the actions representing the adjustments

to controllable loads and HVAC systems, and the rewards reflecting the objectives of min-

imizing energy costs, maintaining occupant comfort, and achieving consumption reduction

during peak hours and emission reduction.

The MDP formulation allows us to leverage the power of RL algorithms, which are particu-

larly well-suited for solving complex, dynamic problems like the DR scenario. RL algorithms

enable an agent to learn optimal policies through trial-and-error interactions with the envi-

ronment, without requiring a complete model of the system dynamics (indoor temperature

dynamics in this study). This adaptability is crucial in the DR context, where the real-time

realization of parameters creates a constantly evolving environment.

RL algorithms balance the exploration-exploitation trade-off, allowing the agent to explore

different actions and learn from their consequences, while also exploiting the knowledge

gained to make more informed decisions. Through this iterative process, the RL agent can

discover near-optimal policies that effectively manage the trade-offs between energy cost
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Figure 3.1: Distribution of Hydro-Quebec Wholesale Electricity Price Proxy (Bottom Panel:
Zoomed View of Top Panel)

minimization, occupant comfort, and peak load and emission reduction.

In this study, we employ a range of RL algorithms to address the DR problem, considering

both discrete and continuous action spaces. For the discrete action space, where the HVAC

systems operate in an on/off state, we utilize SACD, PPOD, and D3QN. These algorithms

are adapted from their originally designed continuous action space counterparts to handle

the discrete nature of the HVAC control problem. For the continuous action space, where

the controllable ligthing loads can be adjusted within a range, we employ the DDPG, TD3

and PPO algorithms. These algorithms are well-suited for handling the continuous nature of

the controllable load adjustments. data collection, pre-processing and visualization and al-

gorithms implementation are available on GitHub 1 and a brief introduction of the developed

algorithms is presented in the Appendix.

3.4.1 RL Elements

Figure 3.3 depicts the process and elements of RL algorithms. The RL elements, including

the state space, action space, reward function, and state transition, are defined separately

for the HVAC control problem and the controllable load adjustment problem.

HVAC Control Problem

1https://github.com/srmadani/Demand-Response-in-Commercial-Buildings
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Figure 3.2: Distribution of Hydro-Quebec electricity total CO2 emission (Bottom Panel:
Zoomed View of Top Panel)

• State Space: Features include the next time step’s wholesale price proxy, sine and

cosine transformations of the hour (to capture time dependencies more smoothly in-

stead of providing the hour directly), the next time step’s reducible load, emission

rate, and indicator variables for peak hours and working days.

• Action Space: Discrete, with a binary variable representing the HVAC system’s

state: 0 for off and 1 for on.

• Reward Function: Derived from the objective function in Equation 3.8, aiming to

minimize electricity costs, dissatisfaction from deviations from desired indoor temper-

atures and emission, and maximize consumption reduction during peak hours.

• State Transition: Realized by obtaining data for the problem parameters (e.g., out-

door temperature, market prices), calculating the next time step’s indoor temperature

using Equation 3.9, and updating the indicator variables and placeholders accordingly.

Controllable Load Adjustment Problem

• State Space: Features include the next time step’s wholesale price proxy, sine and

cosine of the hour, the next time step’s reducible load, emission rate, and indicator

variables for peak hours and working days.
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Figure 3.3: Methodology

• Action Space: Continuous, represented by a value between 0 and 1, indicating the

ratio by which the controllable load is reduced.

• Reward Function: Similar to the HVAC control problem, calculated using Equation

3.8, aiming to minimize electricity costs, dissatisfaction from reduced power consump-

tion and emission, and consumption during peak hours.

• State Transition: Determined by obtaining the realized parameters, updating the

indicator variables and placeholders, and calculating the next time step’s reducible

load based on the chosen action.

3.4.2 Data Collection

This study uses real consumption data from the Varennes Library at Concordia University

in Varennes, Quebec, Canada (Sartori et al., 2023), and the outdoor temperature records are

sourced from Canada’s Environment and Natural Resources2, while the wholesale market

price for electricity in Quebec is approximated using Hydro-Quebec’s electricity rate at
2https://climate.weather.gc.ca/historical_data/search_historic_data_e.html
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NYISO3. Additionally, the emission rate of electricity generated in Quebec is derived from

data obtained from Electricity Maps4, and the HVAC configuration details are acquired from

Brainbox AI.5

Considering the climatic conditions of Quebec, where peak electricity demands occur

during winter, this study focuses on the months of January and February. During these

months, there are distinct morning (6-9 AM) and evening (4-8 PM) peak periods when

people are commuting to and from work, prompting grid operators to aim at minimizing

electricity consumption and peak loads during these critical times6.

Our dataset spans eight weeks, with six weeks designated for training, one week for

validation, and one week for testing. The desirable indoor temperature is set to 22°C dur-

ing working hours and 18°C during non-working hours, with a linear transition between

these temperatures. Data is collected at 5-minute intervals, ensuring a detailed and precise

representation of consumption patterns.

3.5 Results and discussion

We start this section by comparing the results of applying heuristic and RL algorithms on

HVAC load management. The non-controllable load is added to the total load unchanged,

while for the controllable load, the TD3 algorithm demonstrated the best overall perfor-

mance.

• Heuristic 0: The set point for turning on the HVAC is equal to the desired temper-

ature. The HVAC starts working as soon as the indoor temperature falls below the

desired level.

• Heuristic 1: The set point is one degree below the desired temperature.

• Heuristic 2: The set point is two degrees below the desired temperature.

3https://www.nyiso.com/custom-reports
4https://app.electricitymaps.com/map
5https://brainboxai.com/en/
6https://www.hydroquebec.com/residential/customer-space/rates/winter-credit-option.html
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Figure 3.4: Algorithms’ performance

• TD3: This result reflects the use of the reference optimization model for HVAC and

TD3 algorithm for controllable load.

• Heuristic 2 peak: The set point is equal to the desired temperature during off-peak

hours and two degrees below the desired temperature during peak hours.

• Heuristic 2 peak & TD3: Similar to Heuristic 2 peak, additionally TD3 is used for

the controllable load.

• D3QN & TD3: The D3QN algorithm is applied to HVAC, and TD3 is applied to

the controllable load.

• PPOD & TD3: The PPOD algorithm is applied to HVAC, and TD3 is applied to

the controllable load.

• SACD & TD3: The SACD algorithm is applied to HVAC, and TD3 is applied to

the controllable load.
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Figure 3.4 presents a comparison of the heuristic and RL algorithms across four metrics:

total cost decrease, peak load shaved, dissatisfaction increase, and CO2 emission decrease.

Heuristic 2 demonstrates the highest cost reduction, 5.82%, and the greatest decrease in

CO2 emissions, 4.89%. However, it also causes the most significant dissatisfaction increase,

266.07%, highlighting a trade-off between cost savings and user comfort. Among the RL

algorithms, PPOD & TD3 achieves the highest peak load shaving ratios, exceeding 27%,

with notable cost reductions and moderate environmental benefits. SACD & TD3 also

shows strong performance across all metrics, making it a balanced choice for effective HVAC

load management. Overall, RL algorithms excel in optimizing peak load shaving and cost

reduction while maintaining environmental benefits, albeit with varying impacts on user

satisfaction. While it is true that optimizing for cost reduction and peak load shaving can

sometimes negatively impact user satisfaction, this outcome is not a given. The model aims

to strike a balance between these objectives, as exemplified by the inclusion of dissatisfac-

tion costs in its calculations, ultimately offering financial incentives in exchange for slight

deviations from desired comfort levels.

TD3 Implementation alters the realized controllable load consumption, as illustrated in

Figure 3.5. The blue area represents the demand, while the red line indicates the actual

consumption. Analysis of the results reveals that the majority of load reduction occurs

during evening peak hours.

Figure 3.6 demonstrates the impact of applying PPOD on HVAC load management,

showcasing the variation in average indoor temperature. The green line represents outdoor

temperature, the blue line indicates desired temperature, and the red line depicts actual

indoor temperature. The trend observed in the red line suggests a strategic pre-heating

of buildings prior to peak hours, maintaining temperatures just above the lower admissi-

ble bound during these critical periods. To minimize CO2 emissions and circumvent high

energy prices, the actual indoor temperature occasionally drops below the desired level dur-

ing off-peak hours. Figure 3.7 presents the aggregated load across the studied buildings.

The combined utilization of TD3 and PPOD yields compelling results: across the 32 build-

ings analyzed, the average indoor temperature is maintained at 1.66 °C below the desired

temperature. Moreover, the total energy savings during peak hours amount to 65,068.68
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Figure 3.5: Change in controllable load

Figure 3.6: Inside temperature vs. desired and outdoor temperatures

kWh, representing a 13.22% reduction in consumption. Furthermore, the peak load shaving

achieves 614.89 kW reduction, equivalent to a 27.07% decrease in maximum demand.

Figure 3.8 illustrates the variation in key performance metrics for DR potential in com-

mercial buildings as the outdoor temperature is decreased/increased from -15 °C to +15 °C.

The total consumption during peak hours shows a median reduction of approximately 14%,

with a range from about 8% to 22%, indicating a significant potential for energy savings

during peak demand periods, though the exact reduction can vary considerably depending

on the outdoor temperature. Similarly, the reduction in peak load presents a median value

around 15%, with a spread from roughly -20% to 30%. This variability suggests that while

there can be substantial peak load reduction, in some scenarios, the load may not reduce as

expected or might even increase slightly, possibly due to the increased HVAC demands at

extreme temperatures.
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Figure 3.7: Aggregated optimized load

Figure 3.8: Impact of change in outdoor temperature

Furthermore, the cost reduction for HVAC and controlled loads shows a median of around

5%, with values ranging from about 4% to 7%, highlighting the economic benefits of im-

plementing DR strategies, even as outdoor temperatures fluctuate. Additionally, the CO2

emission reduction varies from 3% to about 4.25%, with a median around 3.25%, demonstrat-

ing the environmental benefits of DR initiatives, as reducing energy consumption directly

correlates with lower CO2 emissions.

To complement the average metrics, risk assessment in energy markets requires consid-

eration of worst-case scenarios, which are particularly valuable for policymakers. To address

this, we calculated the Value at Risk (VaR) and Conditional Value at Risk (CVaR) for Total
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Consumption During Peak Hours, Peak Load, HVAC+CTRL Cost, and CO2 Emission.

VaR represents the maximum expected loss (or equivalently minimum expected return)

at a given confidence level (95%), over a specific time horizon. In our context, it indicates

the worst-case scenario for each metric that we can expect with 95% confidence. CVaR, also

known as Expected Shortfall, provides the expected value of the loss (or return) given that

it exceeds the VaR threshold, offering insight into the severity of extreme events beyond

VaR.

The results in Figure 3.9 reveal interesting patterns across the analyzed metrics. For

Total Consumption During Peak Hours, both VaR and CVaR show substantial positive

values around 9.5%, indicating potential decreases in consumption during extreme scenarios.

This suggests that DR strategies may face challenges in consistently reducing peak hour

consumption under all conditions. While the median for this metric is around 14%, with

95% confidence we can expect to have 9.45% reduction and in the 5% worst case scenarios,

we expect to have 9.12% reduction in total consumption during peak hours.

Peak Load exhibits a notable discrepancy between VaR and CVaR. While VaR shows

a slight reduction (0.45%), CVaR indicates a negative value of -3.50%. This implies that

although there is a 95% chance of peak load shaving with a minimum reduction of 0.45%,

there is a limited 5% chance that peak load could actually increase under certain conditions,

which must be considered for grid stability.

HVAC+CTRL Cost and CO2 Emission both demonstrate positive VaR and CVaR values,

albeit lower than those for Total Consumption. For HVAC+CTRL Cost, VaR and CVaR are

around 3.5%, suggesting that even in worst-case scenarios, cost saving is expected. Similarly,

CO2 Emission shows VaR and CVaR values of about 2.9%, indicating potential decreases in

emissions even under extreme conditions.

These risk metrics provide a more comprehensive understanding of the variability and

potential extremes in DR outcomes, offering valuable insights for robust policy formulation

and risk management in energy systems.
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Figure 3.9: VAR and CVAR for sensitivity analysis on outdoor temperature

3.5.1 Conclusion and Future Research Directions

This study has demonstrated the efficacy of RL algorithms in optimizing DR strategies for

small and medium-sized commercial buildings. Our novel approach, combining PPOD &

TD3 and SACD & TD3 algorithms, outperformed traditional heuristic methods in managing

HVAC systems and controllable loads.

The proposed framework achieved substantial improvements in peak load shaving, en-

ergy savings, and cost reduction, while maintaining acceptable indoor temperature levels.

Moreover, our risk assessment using VaR and CVaR metrics provided insights into the

framework’s robustness under varying environmental conditions.

These findings underscore the potential of intelligent DR strategies to contribute signif-

icantly to grid stability and energy efficiency in the commercial building sector. However,

several areas warrant further investigation to enhance the applicability and effectiveness of

RL-based DR strategies:

• Multi-zone building modeling: Extend the current framework to account for the

complexities of multi-zone buildings, including thermal interactions between zones

and varying occupancy patterns. This can be achieved within a high-level model by

representing each zone with simplified thermal and occupancy parameters, allowing

for efficient handling of inter-zone heat transfer and aggregated occupancy effects.

While micro-scale modeling offers granular insights, a high-level approach provides a

scalable and practical alternative, capturing key interactions and enabling effective
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energy management across multiple zones.

• Advanced HVAC systems: Investigate the application of RL algorithms to more

sophisticated HVAC systems, such as variable air volume systems or chilled beam

systems, which offer greater flexibility in temperature control.

• Integration of EV batteries: Explore the potential of using parked EVs’ batteries

as additional energy storage and grid balancing resources within the DR framework.

• Safe RL: Implement safe RL algorithms that prioritize constraint satisfaction (e.g.,

maintaining indoor temperature within strict comfort bounds) over maximizing ex-

pected rewards, ensuring occupant comfort and system safety.

• Multi-building coordination: Investigate strategies for coordinating DR across

multiple buildings to maximize aggregate benefits at the grid level.

• Long-term adaptation: Develop techniques for continuous learning and adaptation

of RL algorithms to account for seasonal variations and long-term changes in building

characteristics or occupancy patterns.

By addressing these research directions, we can further enhance the effectiveness and

real-world applicability of RL-based DR strategies, facilitating their widespread adoption in

the commercial building sector and contributing to a more sustainable and resilient energy

future.

3.6 Appendix

This section provides a brief overview of the RL algorithms implemented in this study for

HVAC management and controllable load optimization.

3.6.1 Soft Actor-Critic (SAC)

SAC is an off-policy algorithm that aims to maximize both the expected return and the

entropy of the policy. It consists of two main components:
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1. Actor (Policy): Learns a stochastic policy that maximizes the expected return while

also maximizing entropy.

2. Critic: Learns the Q-function to evaluate the actor’s actions.

SAC introduces a temperature parameter α that balances the trade-off between explo-

ration (high entropy) and exploitation (maximizing returns). The algorithm updates the

policy to maximize the expected value of the action while also maximizing its entropy:

π∗ = argmax
π

Est∼ρπ ,at∼π[Q(st, at) + αH(π(·|st))] (3.14)

Where H(π(·|st)) is the entropy of the policy.

For our HVAC management problem, we adapted SAC to work with discrete actions

(SACD) by using a categorical distribution for the policy instead of a continuous distribution.

3.6.2 Proximal Policy Optimization (PPO)

PPO is an on-policy algorithm that aims to improve the stability of policy gradient methods.

PPO updates the policy in a way that ensures the new policy doesn’t deviate too much from

the old policy, which helps in avoiding catastrophic performance drops.

The key idea in PPO is to use a clipped surrogate objective:

LCLIP (θ) = Et[min(rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)] (3.15)

Where rt(θ) is the ratio of the probability of the action under the new policy to the

probability under the old policy, At is the advantage function, and ϵ is a hyperparameter

that controls the clipping.

For our HVAC problem, we adapted PPO to work with discrete actions (PPOD) by

using a categorical distribution for the policy.

3.6.3 Double Dueling Deep Q-Network with Prioritized Experience

Replay (D3QN)

This algorithm combines several improvements to the basic Deep Q-Network:
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1. Double Q-learning: Uses two networks to reduce overestimation bias in Q-value esti-

mates.

2. Dueling architecture: Separates the value and advantage functions to better estimate

state-action values.

3. Prioritized Experience Replay: Samples more important transitions more frequently

during training.

The Q-value is estimated as:

Q(s, a) = V (s) + (A(s, a)−mean(A(s, a′))) (3.16)

Where V (s) is the state value function and A(s, a) is the advantage function.

Prioritized Experience Replay assigns priorities to transitions based on their TD error:

pi = |δi|+ ϵ (3.17)

Where δi is the TD error for transition i and ϵ is a small constant to ensure non-zero

probability.

3.6.4 Deep Deterministic Policy Gradient (DDPG)

DDPG is an off-policy algorithm that combines ideas from DQN and deterministic policy

gradients. It consists of four neural networks:

1. Actor: Learns a deterministic policy µ(s).

2. Critic: Learns the Q-function Q(s, a).

3. Target Actor: Slowly updated version of the actor for stability.

4. Target Critic: Slowly updated version of the critic for stability.

The actor is updated using the deterministic policy gradient:

∇θJ(θ) ≈ Es[∇aQ(s, a)|a=µ(s)∇θµ(s)] (3.18)
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DDPG uses a replay buffer and soft target updates to improve stability and sample

efficiency.

3.6.5 Twin Delayed Deep Deterministic Policy Gradient (TD3)

TD3 is an extension of DDPG that addresses some of its shortcomings. It introduces three

key modifications:

1. Clipped Double Q-learning: Uses two critics to reduce overestimation bias.

2. Delayed Policy Updates: Updates the policy (and target networks) less frequently than

the Q-function.

3. Target Policy Smoothing: Adds noise to the target action to make it harder for the

policy to exploit Q-function errors.

The target Q-value is calculated as:

y = r + γ min
i=1,2

Qθ′i
(s′, µϕ′(s′) + ϵ) (3.19)

Where ϵ is clipped noise added to the target action.

These algorithms were implemented and adapted for our specific HVAC management

and controllable load optimization problems, allowing us to compare their performance in

the context of DR in commercial buildings.
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General Conclusion

This thesis has explored the application of advanced optimization techniques and RL algo-

rithms to address critical challenges in the transition towards a more sustainable and efficient

energy future. The three chapters presented focus on distinct yet interconnected aspects of

this transition, introducing insights and methodologies for policymakers, industry practition-

ers, and researchers alike. Each chapter tackles a specific aspect of these challenges, from

optimizing investment strategies in DER and V2G technologies to implementing effective

DR programs for residential and commercial consumers.

By exploring these interconnected themes, the thesis provides a holistic perspective on

the potential solutions and strategies for managing the complex dynamics of the evolving

energy landscape. The insights gained from these studies can collectively inform the de-

velopment of comprehensive energy policies and practices that promote the adoption of

clean technologies, encourage prosumer participation, and foster more sustainable energy

consumption patterns across various sectors.

The first chapter investigates the optimal investment strategies for DER and V2G tech-

nologies from the perspectives of both distributors and prosumers. By considering different

tariff structures and stakeholder objectives, the study provides a comprehensive cost-and-

benefit analysis of various investment scenarios. The findings underscore the significance of

incorporating V2G technology to enhance the profitability of DER investments and highlight

the importance of designing appropriate tariff structures to align the interests of different

stakeholders.

The second chapter delves into the application of CPP as a DR strategy for peak load

shaving in electricity grids. By integrating diverse prosumer profiles and employing RL



algorithms, the study analyzes the effectiveness of both mass and targeted CPP offerings.

The results reveal the limitations of mass CPP as prosumer participation increases and

propose targeted dynamic pricing strategies to counteract these challenges. The chapter

also emphasizes the influential role of BATs and EVs in peak load reduction, suggesting the

need for focused policy and incentive structures to encourage their adoption.

The third chapter presents a novel DR framework for optimizing electricity consump-

tion in small and medium-sized commercial buildings. By categorizing building loads and

implementing RL algorithms, the study demonstrates the potential for significant peak load

shaving, cost reductions, and environmental benefits. The analysis incorporates the impact

of outdoor temperature variations and risk assessments, contributing to the development of

robust and efficient energy management strategies for commercial buildings.

The thesis also highlights the crucial role of batteries and electric vehicles in enabling

more effective peak load management, suggesting that policymakers should prioritize these

technologies in their efforts to decarbonize the electricity grid. Notably, the research finds

that while photovoltaic systems are beneficial for overall energy generation, their direct

contribution to peak reduction could be limited due to their dependence on solar availability,

which may not always align with peak demand periods.

This thesis finds that the increasing complexity of the future grid, characterized by high

penetration of DERs and decentralization, necessitates advanced management techniques.

The traditional grid’s predictability contrasts sharply with the variability and intermittency

of renewable sources like solar and wind power in the future grid. Furthermore, the integra-

tion of prosumers, equipped with technologies like batteries and EVs, introduces diverse and

dynamic energy consumption and generation patterns, adding another layer of complexity.

The thesis demonstrates that effectively managing this complex and dynamic future grid en-

vironment requires moving beyond traditional optimization methods to leverage advanced

optimization techniques and RL algorithms. Unlike their traditional counterparts, RL algo-

rithms excel in handling large numbers of variables and uncertainties. The thesis shows that

this adaptability is essential for real-time decision-making in the future grid, allowing for

efficient peak load management even with the unpredictability of renewable energy sources

and prosumer behavior. By learning from real-world data, including energy consumption
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patterns and pricing signals, these algorithms can predict peak demand periods, optimize

DER scheduling, and design targeted dynamic pricing strategies. This approach, proven

effective in the thesis, not only ensures grid stability but also allows prosumers to maximize

their benefits, marking a significant step towards a sustainable and efficient energy future.

Collectively, these chapters contribute to the growing body of knowledge on DR, pro-

sumer behavior, and the application of advanced optimization techniques in the energy

sector. The findings and methodologies presented here have the potential to inform policy

decisions, guide industry practices, and ultimately accelerate the transition towards a more

sustainable and resilient energy future.

However, it is important to acknowledge the limitations of these studies and the need

for further research. Future work could explore the scalability and generalizability of the

proposed frameworks across different geographical contexts and energy market structures.

Additionally, the integration of other emerging technologies, such as hydrogen storage and

smart grid infrastructure, could provide new avenues for optimizing energy consumption and

production.

Moreover, the social and behavioral aspects of energy transitions warrant further inves-

tigation. Understanding the factors that influence consumer adoption of DER and V2G

technologies, as well as their responsiveness to dynamic pricing signals, could help design

more effective incentive structures and educational campaigns.

In conclusion, this thesis demonstrates the immense potential of advanced optimization

techniques and RL algorithms in addressing the complex challenges of the energy transition.

By providing a comprehensive analysis of DER and V2G investment strategies, exploring

the effectiveness of CPP programs, and proposing a novel demand response framework for

commercial buildings, these chapters contribute to the development of more sustainable,

efficient, and equitable energy systems. As the world continues to grapple with the urgent

need to mitigate climate change and ensure energy security, The insights and methodologies

presented here have the potential to contribute to shaping the future of the energy sector.
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