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Résumé

Le Probleme de Tournées de Production (PRP) integre des décisions essentielles de plani-
fication de la chaine d’approvisionnement, notamment la production, la gestion des stocks
et la livraison des marchandises aux clients a I’aide d’une flotte de véhicules. Son objec-
tif principal est d’améliorer I’efficacité globale de la chaine d’approvisionnement et de
réduire les colits en renfor¢ant la coordination et en optimisant les décisions dans ces do-
maines interdépendants. L’ignorance de I’incertitude de la demande peut entrainer une
augmentation significative des colts de production et de distribution. Traditionnellement,
la majorité des études sur le PRP reposent sur des modeles déterministes ou des approches
stochastiques dans lesquelles les décisions de tournées sont fixées avant la réalisation de
la demande. Cette limitation conduit souvent a des visites client inutiles et a des cofits de
transport €levés. Cette recherche contribue a la littérature en introduisant une stratégie de
tournées adaptatives, dans laquelle les itinéraires de livraison sont ajustés en fonction de
la demande réalisée. Cette flexibilité est particulierement bénéfique lorsque les cofits de

livraison sont élevés ou que les décisions doivent étre adaptées a la demande.

Le premier chapitre propose une formulation de programmation stochastique a deux
étapes pour le PRP avec un seul produit et une demande incertaine. La contribution
principale réside dans la possibilité de prendre les décisions de tournées en deuxieme
étape, apres la réalisation de la demande. Cette formulation, appelée SPRP-AR, se dis-
tingue des modeles antérieurs ou les tournées sont fixées des la premiere étape. Pour
résoudre ce probleme complexe, un algorithme de Progressive Hedging (PH) est com-

biné a une matheuristique en trois phases. L’algorithme PH décompose le probleme en



sous-problemes spécifiques a chaque scénario et guide de maniere itérative les décisions
de premicre étape en ajustant des multiplicateurs lagrangiens. Les résultats montrent que
le modele proposé permet de réaliser des économies de colts significatives par rapport a

I’approche traditionnelle a tournées fixes.

Le deuxieme chapitre étend le SPRP-AR en intégrant des contraintes de niveau de ser-
vice. L’étude évalue quatre mesures de niveau de service, chacune imposant des restric-
tions différentes sur les ruptures de stock et les retards, et examine leur application selon
une granularité spécifique au client ou au niveau de I’usine, et ce, soit sur une période
unique, soit sur I’ensemble de 1’horizon de planification. Un algorithme matheuristique
itératif est développé, composé de trois phases alternant diversification et intensification.
L’algorithme génere successivement les décisions de lancement, détermine les quantités
de production et de livraison sous contraintes de niveau de service, puis améliore les
tournées. Les résultats mettent en évidence I’importance managériale du choix des types

de niveaux de service et de la granularité adoptée, qui influencent fortement les cofits.

Le troisieme chapitre élargit le cadre de modélisation a un PRP stochastique a deux
échelons, incluant une usine, des entrepOts et des clients. Les produits sont transportés de
I’usine vers les entrepdts, puis des entrepOts vers les clients a 1’aide de véhicules distincts.
L affectation des clients aux entrepdts est flexible selon les périodes et les scénarios. Alors
que les tournées du premier échelon sont fixes, celles du second varient selon les scénar-
10s, conformément a 1I’approche des tournées adaptatives. Une formulation stochastique
en deux étapes est proposée et résolue a 1’aide d’un Algorithme Heuristique Hybride
combinant un programme en nombres entiers pour les décisions de premicre étape et une
métaheuristique de Recherche Locale Itérée pour les décisions de deuxieme étape spéci-
fiques a chaque scénario. Les résultats confirment la capacité de I’algorithme a résoudre
efficacement des instances déterministes de grande taille et des cas stochastiques de taille
moyenne, et soulignent les avantages de la prise en compte de 1’incertitude dans des con-

textes a plusieurs échelons.
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Abstract

The Production Routing Problem (PRP) integrates critical supply chain planning deci-
sions, including production, inventory management, and the delivery of goods to cus-
tomers via a fleet of vehicles. Its primary objective is to enhance overall supply chain
efficiency and reduce costs by improving coordination and optimizing decisions across
these interconnected areas. When demand uncertainty is ignored, it can lead to signifi-
cant increases in production and distribution costs. Traditionally, most PRP studies have
relied on deterministic models or stochastic approaches in which routing decisions are
fixed prior to demand realization. This limitation often results in unnecessary customer
visits and higher transportation costs. This research advances the literature by introducing
the adaptive routing strategy, in which delivery routes are adjusted in response to realized
demand. This flexibility is particularly beneficial when delivery costs are high or when

demand-driven decisions are required.

The first chapter presents a two-stage stochastic programming formulation for the PRP
with a single product and uncertain demand. The main contribution lies in enabling rout-
ing decisions to be made in the second stage, after demand realization. This formulation,
referred to as SPRP-AR, contrasts with prior models that fix routing in the first stage. To
solve this challenging problem, a Progressive Hedging (PH) algorithm is combined with
a three-phase matheuristic. The PH algorithm decomposes the problem into scenario-
specific subproblems and iteratively guides first-stage decisions by adjusting Lagrangean
multipliers. Results show that the proposed model achieves significant cost savings com-

pared to the traditional fixed-route approach.
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The second chapter extends the SPRP-AR by incorporating service level constraints.
The study evaluates four service level measures, each imposing different restrictions on
stockouts and backlogs, and examines their implementation under customer-specific ver-
sus plant-level granularity and over single periods or the entire planning horizon. An
Iterative Matheuristic algorithm is developed, consisting of three phases that alternate
between diversification and intensification. The algorithm successively generates setup
decisions, determines production and delivery quantities under service level constraints,
and refines routing. Results highlight the managerial value of choosing appropriate ser-
vice level types and levels of granularity, both of which significantly affect cost.

The third chapter extends the modeling framework to a stochastic two-echelon PRP,
which includes a plant, warehouses, and customers. Products are transported from the
plant to warehouses, and then from warehouses to customers using separate vehicles.
Customer-to-warehouse assignments are flexible across periods and scenarios. While
first-echelon routes are fixed, second-echelon routes vary by scenario, following the adap-
tive routing approach. A two-stage stochastic formulation is proposed and solved using
a Hybrid Heuristic Algorithm that combines a Mixed-Integer Program for first-stage de-
cisions with an Iterated Local Search metaheuristic for scenario-based second-stage de-
cisions. The results confirm the algorithm’s ability to handle large-scale deterministic
instances and medium-scale stochastic cases, and underscore the benefits of modeling

uncertainty in multi-echelon settings.

Keywords

Production Routing Problem, Logistics, Two-Echelon Production Routing Problem, Stochas-
tic Programming, Progressive Hedging, Service Level Constraints, Matheuristics, Meta-

heuristics, Heuristics, Mixed-Integer Programming, Decomposition Algorithms

Research Methods

Operations Research, Mathematical Programming, Stochastic Programming
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General Introduction

Supply chains represent complex networks that typically involve a focal firm responsible
for assembling or manufacturing one or more products, a group of suppliers providing
necessary raw materials or components, intermediate warehouses for storage and distri-
bution, and a network of retailers delivering the final products to end customers. These
networks are connected by transportation fleets that enable the flow of materials between
facilities. Transportation is a critical component, not only because it accounts for a sig-
nificant portion of the overall costs, but also due to its substantial impact on environmen-
tal sustainability. This multi-tiered structure highlights the complexity of modern supply
chains, where each level plays a crucial role in ensuring the efficient and effective delivery

of products from origin to destination.

Traditionally, supply chain management (SCM) systems have been characterized by
a segmented approach, where each entity within the supply chain operates independently,
focusing solely on its own objectives. This often involves solving separate optimization
problems such as the lot sizing problem (LSP) to plan production and inventory manage-
ment at the production plant, the economic order quantity model and various inventory
policies at the retailer level to minimize inventory costs, and the vehicle routing problem
(VRP) to determine the most efficient distribution routes. While these efforts can lead to
improvements in local efficiency, they often fail to account for the interdependencies be-
tween different supply chain components, potentially leading to suboptimal performance

across the entire network.

The lack of coordination in traditional SCM can result in inefficiencies, as decisions



made by one party may inadvertently increase costs or create challenges for others. For
instance, a production plant might optimize its operations to minimize inventory costs, but
this could lead to delays in deliveries to retailers, causing stockouts and lost sales. Simi-
larly, optimizing inventory levels without considering transportation capacity constraints
can lead to higher transportation costs or disruptions within the supply chain.

Recognizing these challenges, organizations have increasingly sought to adopt more
integrated and collaborative approaches to SCM. A common approach is the Vendor-
Managed Inventory (VMI) system, which addresses the lack of coordination by shifting
the inventory management responsibility from retailers to the manufacturer. Under a VMI
system, the focal firm not only manages its own production and inventory but also over-
sees inventory levels at the retailer level. This holistic view of the supply chain enables
better synchronization between production, inventory management, and distribution ac-
tivities.

Adopting VMI can lead to several benefits, including reduced inventory levels, im-
proved service levels, and lower overall supply chain costs. The focal firm can optimize
production schedules based on real-time demand information from retailers, reducing the
risk of overproduction or stockouts. Additionally, by coordinating transportation and dis-
tribution activities more effectively, companies can reduce transportation costs and min-
imize their environmental impact, contributing to a more sustainable supply chain. As
supply chains continue to evolve, the importance of coordination and integration will
only grow, making approaches like VMI essential for achieving long-term success in a
competitive global market.

Supply chain integration (SCI) seeks to unify various components of the supply chain,
balancing costs and service levels by improving the flow of materials and information
across the network. According to Stevens (1989), SCI focuses on minimizing inventories,
enhancing customer service, and facilitating communication between different parts of an
organization or between different entities in the supply chain. SCI encourages companies
to operate as a unified entity, allowing for better demand forecasting and improved align-

ment between supply chain partners (Flynn et al., 2010). SCI can be broadly categorized
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into internal integration (II) and external integration (EI). Internal integration enables in-
formation exchange within an organization, fostering collaboration between different de-
partments, while external integration extends this collaboration to external partners such
as suppliers and customers. Lu et al. (2018) argue that successful internal integration is
a prerequisite for effective external integration, as it ensures that a company can respond
quickly and accurately to market demands by aligning supply and demand. The bene-
fits of SCI include improved operational efficiency, enhanced customer satisfaction, and
reduced overall costs.

While empirical studies have demonstrated the strategic benefits of SCI, there is also
a need for mathematical modeling and analytical approaches to better understand how to
achieve optimal results given existing resources. These studies often introduce mathemat-
ical formulations that treat the supply chain as a single entity, analyzing the cost savings
and efficiency gains from intra- and inter-organizational integration. For instance, Bell
et al. (1983) and Chandra (1993) laid the groundwork for integrated supply chain mod-
els, emphasizing the importance of managing material flow and planning across the entire
supply chain network. As supply chain networks have grown more complex, these in-
tegrated models have evolved to include various aspects of supply chain planning, such
as the three-level lot sizing problem (3LSP), two-echelon vehicle routing problem (2E-
VRP), inventory routing problem (IRP), and production routing problem (PRP) (Absi et
al., 2015; Adulyasak et al., 2015b; Coelho and Laporte, 2014; Gruson et al., 2019; Gru-
son et al., 2023; Gu et al., 2022; Hrabec et al., 2022; Perboli et al., 2011; Sluijk et al.,
2023). However, handling these integrated problems presents significant challenges, re-
quiring sophisticated techniques that go beyond the traditional approach of addressing
subproblems in isolation (Absi et al., 2018).

Production routing, in particular, represents a significant advance in supply chain plan-
ning by integrating production, inventory, and transportation decisions into a single op-
timization problem. This approach enhances coordination among different supply chain
components, leading to increased efficiency and cost savings. Since its introduction by

Chandra (1993) and Chandra and Fisher (1994), the PRP has been the subject of extensive
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research, with various formulations and solution algorithms being proposed to tackle its
inherent complexity. Adulyasak et al. (2015b) provide an overview of the PRP, including
both formulations and solution approaches. Moreover, a systematic review by Hrabec et
al. (2022) provides valuable insights into how employing the PRP could help companies
increase their efficiencies. Researchers have explored both deterministic and stochastic
versions of the PRP, with the latter accounting for demand uncertainty, which is a critical
factor in real-world supply chains. The shift from deterministic to stochastic models in
PRP research reflects a broader trend in supply chain optimization, where the focus has
expanded to include the uncertainties and variabilities that characterize modern supply
chains.

Addressing demand uncertainty represents a significant advancement in the study of
the PRP. In this context, Adulyasak et al. (2015a) develop formulations for the PRP that
account for demand uncertainty by incorporating a penalty cost for unmet demand. Their
approach relies on fixed routing across all possible scenarios and employs a Benders de-
composition technique to solve the problem effectively. Agra et al. (2018) study the PRP
in the context of demand uncertainty, including backlogs. Zhang et al. (2018) introduce
a two-stage stochastic model for the PRP that considers demand uncertainty as well as
integrates remanufacturing processes and simultaneous pickup and delivery operations.
Additionally, their model incorporates a carbon cap-and-trade policy, demonstrating the
growing emphasis on environmental considerations within the PRP framework. Wang et
al. (2021) explore the PRP within a setting where both demand and cost uncertainties are
present. More recently, Mousavi et al. (2022) proposed a formulation that addresses both
demand uncertainty and product perishability. Despite these advances, there remains a
gap in the literature concerning the integration of adaptive routing within the PRP, which
would allow supply chains to dynamically respond to demand fluctuations by determining
the routing decisions after the demand becomes known, and enhance overall operational
performance.

In this thesis, we explore three key and interconnected topics within supply chain man-

agement: the PRP, the challenges posed by demand uncertainty, and the complexities of
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multi-echelon supply chain networks. Our research contributes to the field by introducing
novel models and solution algorithms designed to improve the efficiency and adaptability
of supply chain operations in the face of various practical constraints and uncertainties.
First, we address the PRP under demand uncertainty with adaptive routing, developing
a two-stage stochastic programming formulation that enhances flexibility and responsive-
ness by allowing routing decisions to be made in the second stage based on realized de-
mand. Next, we expand this framework by integrating service level constraints, offering
an approach to balance cost control and service reliability under uncertainty. Finally, we
extend the scope of the PRP to a two-echelon PRP, introducing adaptive routing and dy-
namic customer-to-warehouse assignments to improve overall network efficiency. Below,

we provide detailed summaries of the contributions made in each of these three papers.

Chapter 1

Kermani, A., Cordeau, J.-F.,, Jans, R., 2024. A progressive hedging-based matheuristic for the
stochastic production routing problem with adaptive routing. Computers & Operations Research,
169, 106745.

In the first paper, we address the PRP under demand uncertainty with adaptive routing
(SPRP-AR) by introducing a two-stage stochastic programming formulation. This ap-
proach deviates from traditional models where routing decisions are predetermined in the
first stage, thus remaining fixed regardless of actual demand (Adulyasak et al., 2015a).
Instead, our model allows these routing decisions to be made in the second stage, offering
increased flexibility and responsiveness to real-time demand fluctuations. This adaptabil-
ity is crucial in reducing unnecessary customer visits and decreasing costs associated with
demand uncertainty.

Our research makes several key contributions. First, we develop a progressive hedging
(PH) algorithm that decomposes the complex SPRP-AR into more manageable subprob-
lems. The PH algorithm iteratively adjusts the first-stage decisions by modifying the

cost parameters in the objective function to drive convergence. We further enhance this
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approach by integrating a three-phase matheuristic algorithm. The first phase involves
solving a Traveling Salesman Problem (TSP) to determine an a priori tour, which serves
as the foundation for the subsequent stages. In the second phase, we refine the production
setup, quantity, and visit decisions by solving subproblems restricted to the initial tour
until consensus or a stopping criterion is achieved. The final phase involves solving a
capacitated vehicle routing problem (CVRP) for each period and scenario, optimizing the
routing decisions based on the refined first-stage variables.

Additionally, we explore a static-static case inspired by the lot-sizing literature, where
production quantities are also considered in the first stage. Our computational experi-
ments validate the effectiveness of the proposed algorithm, demonstrating substantial im-
provements in cost efficiency and operational flexibility when routing decisions are made
adaptively in the second stage. This research not only advances the methodology for
solving the PRP under uncertainty but also sets a precedent for future studies on adaptive

decision-making in supply chains.

Chapter 2

Kermani, A., Cordeau, J.-F., Jans, R., 2025. The stochastic production routing problem with
adaptive routing and service level constraints. Omega, under review.

The second article expands on the SPRP-AR framework by incorporating service level
constraints, an essential consideration in ensuring that supply chain operations meet pre-
determined performance standards. We recognize that managing uncertainty in supply
chains is not just about minimizing costs but also about maintaining service reliability.
To address this, we incorporate four distinct service level metrics, namely «, 8, 7, and 6,
each representing a different aspect of service level assurance.

The o service level is event-based, focusing on the probability that demand can be
fully met from available inventory. The f service level, commonly referred to as the
fill rate, measures the proportion of demand satisfied directly from inventory, emphasiz-

ing the importance of minimizing backorders. The 7y service level targets the ratio of
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expected backlogs to average demand, providing a balanced view of inventory manage-
ment. Finally, the & service level imposes a constraint on the expected backlog relative
to the maximum expected backlog. Our study is novel in that it applies these service
level constraints within the context of the SPRP-AR, offering a more nuanced approach
to managing uncertainty. We propose an iterative matheuristic (IMH) algorithm that sys-
tematically addresses the complex interplay between production, inventory, and routing
decisions while respecting the service level constraints. The IMH algorithm is designed
to solve the problem in stages: first, by generating setup decisions through a two-level lot
sizing problem with direct shipments; second, by addressing the PRP with fixed setups
and an aggregated vehicle; and finally, by refining routing decisions while ensuring that
service level requirements are met.

In addition, we explore various levels of service level granularity, from individual
customer constraints to aggregate service levels across all customers and periods. Our
computational results reveal the trade-offs between different service level strategies and
their impact on cost and efficiency, providing valuable insights for supply chain managers

aiming to balance cost control with service reliability.

Chapter 3

Kermani, A., Cordeau, J.-F,, Jans, R., 2025. The Stochastic Two-Echelon Production Routing
Problem with Adaptive Routing. Networks, under review.

The third paper extends the scope of the PRP by addressing a more complex stochastic
two-echelon production routing problem (S2EPRP-AR) that considers both production
and distribution decisions across multiple levels of the supply chain. In this model, we
introduce two key innovations: the incorporation of adaptive routing in the second stage of
the problem under demand uncertainty, and the flexibility to dynamically adjust customer-
to-warehouse assignments.

The S2EPRP-AR model is particularly relevant in today’s intricate supply chains,

which often involve multiple intermediary stages, such as warehouses, between pro-
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duction plants and end customers. Traditional approaches, which rely on fixed routing
and customer assignments, can lead to inefficiencies, especially in the face of fluctuat-
ing demand. Our model allows for adaptive routing, where transportation routes from
warehouses to customers are determined based on realized demand, thereby improving
responsiveness and reducing unnecessary visits and transportation costs.

Furthermore, our model introduces dynamic customer-to-warehouse assignments, al-
lowing for adjustments in the assignment of customers to warehouses depending on the
scenario and period. This added flexibility enhances the supply chain ability to cope with
demand variability and improves overall network efficiency.

To solve the S2ZEPRP-AR, we decompose the problem into two subproblems and de-
velop a hybrid heuristic algorithm (HHA). The first subproblem addresses the first stage of
the problem, where the setup plan, production quantities, and initial transportation routes
from the production plant to warehouses are decided. As the number of warehouses is
assumed to be limited in the presented problem, all possible combinations of warehouses
are considered. The optimal route for visiting the warehouses is explicitly defined in the
model and solved as an MIP using a general solver. When solving this problem, the inte-
ger variables of the second stage are fixed while the continuous variables are allowed to
be optimized.

The second stage of the problem includes the inventory management of warehouses
and customer demands, as well as routing from warehouses to customers for each period
and scenario. This part is solved using an Iterated Local Search (ILS) algorithm, while
the values of the first-stage decision variables remain fixed. This makes the second sub-
problem scenario-decomposable, which helps improve the algorithm’s performance. The
HHA iterates over the two subproblems and, in each iteration, attempts to reassign cus-
tomers to other warehouses either to improve the solution or to diversify the search. The
first objective is achieved by reassigning customers facing shortages to other warehouses
if it reduces the total cost. To achieve the second objective, the algorithm considers a
perturbation by randomly removing a warehouse from a period and scenario and allowing

its customers to be reassigned to other warehouses.
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The developed algorithm is also adapted to solve larger instances of the deterministic
problem than those considered in previous studies. Both the 2EPRP and the 2EPRP with

cross-docking satellites are addressed using the proposed algorithm.
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Chapter 1

A Progressive Hedging-based
Matheuristic for the Stochastic
Production Routing Problem with

Adaptive Routing

Abstract

The production routing problem (PRP) arises in the context where a manufacturing facil-
ity manages its production schedule, the delivery of goods to customers by a fleet of vehi-
cles, and the inventory levels both at the plant and at the customers. The presence of uncer-
tainty often complicates the planning process. In particular, production and distribution
costs may significantly increase if demand uncertainty is ignored in the planning phase.
Nevertheless, only a few studies have considered demand uncertainty in the PRP. In this
article, we propose a two-stage stochastic programming approach for a one-to-many PRP
with a single product and demand uncertainty. Unlike previous studies in the literature,
we consider the case where routing decisions are made in the second stage after customer

demands become known. This offers more flexibility, which can decrease transportation



costs by preventing unnecessary customer visits. In addition to the static-dynamic case,
in which setup decisions are made first and production quantities are decided in the sec-
ond stage, we also consider the static-static setting where both sets of decisions must be
made prior to the demand realization. A progressive hedging algorithm combined with
a matheuristic is developed to solve the problem. The role of the progressive hedging
algorithm is to decompose the stochastic problem into more tractable scenario-specific
subproblems and lead the first-stage variables toward convergence by modifying their La-
grangean multipliers. However, solving the subproblems remains challenging since they
include routing decisions, and we thus propose a matheuristic to exploit the structural
characteristics of the subproblems. First, a Traveling Salesman Problem (TSP) is solved
to find the optimal tour for all customers regardless of demand and capacity. Utilizing the
sequence obtained from the TSP, we then solve a restricted PRP while taking into account
the other constraints of the original problem. Finally, for each period and scenario, a ve-
hicle routing problem is solved to improve the quality of the solutions. Computational
experiments are conducted to analyze the algorithm’s efficiency and to assess the benefits

that can be achieved by handling routing in the second stage.

1.1 Introduction

The production routing problem (PRP) aims to make production, inventory, and rout-
ing decisions simultaneously by integrating the lot-sizing and vehicle routing problems.
Adulyasak et al. (2015b) provide an overview of the PRP literature, including both formu-
lations and solution methods. The majority of the formulations discussed in this survey
focus on the deterministic PRP, but in recent years, the stochastic version of the problem
has attracted more attention. In particular, demand uncertainty is known to have a great
impact on both production planning and vehicle routing. However, one should keep in
mind that the PRP is an NP-hard problem and that considering stochasticity further in-
creases the difficulty of the problem. Adulyasak et al. (2015a) introduced a two-stage and

a multi-stage model for the stochastic production routing problem (SPRP) with demand
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uncertainty. In both problems, setup and routing decisions are made in the first stage,
while the remaining decisions, including production quantities, delivery quantities and
inventory levels, belong to the second stage. When solving the two-stage formulation,
the demand for the entire planning horizon is assumed to become known at the beginning
of the second stage, whereas in the multi-stage problem, the demand of each period is
realized at the beginning of that period. Although the multi-stage setting offers more flex-
ibility, the two-stage model can be solved more efficiently. It can also be used in a rollout

algorithm to provide a heuristic solution to the multi-stage problem.

Considering the routing decisions among the first-stage decisions may lead to unnec-
essary customer visits and higher costs. In this paper, we introduce a two-stage stochastic
programming formulation for the PRP with adaptive routing, i.e., the routing becomes
a second-stage decision, which provides more flexibility in response to the observed de-
mand. We assume a plant that produces and distributes a single product to multiple cus-
tomers in a finite horizon using a fleet of homogeneous vehicles. If the demand of a
customer cannot be fully satisfied from the available inventory, a cost per unit of unmet

demand is imposed to represent the outsourcing costs.

1.1.1 An illustrative example

We provide below a simple example with two periods, three customers, and two scenarios
to illustrate the possible benefits of considering routing decisions in the second stage. In
this example, we assume that there are no holding or production costs, that the production
and inventory capacities are large, and that there are two vehicles with a capacity of 50.
The two scenarios have the same probability ps, = ps, = 0.5. The rest of the parameters
is provided in Table 1.1, where the first two rows are the x and y coordinates of each node
and the next four rows are the demands of the customers. The transportation costs are
calculated using Euclidean distances. Note that the scenario and period pairs are denoted
by (s,#). The production plant is denoted by 0 and customers are indexed from 1 to 4.

Figure 1.1 displays the optimal solution to this example under both routing strategies. The
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Table 1.1: Parameters of the example

Node No. 0 1 2 3 4
X coordinate 143 89 76 285 401
y coordinate 99 159 314 63 325

(1,1) - 4 14 21 0
2 - 9 17 31 6
demand —» ) o4 12 3 13
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Figure 1.1: An example of considering routing in the first stage vs. the second stage

numbers written next to the nodes are the delivered quantities. If we solve this problem
with first-stage routing, the optimal expected cost is 1854.2. However, by considering
adaptive routing, the optimal expected cost is 1594.7, demonstrating how this flexibility

can lower the cost.

1.1.2 Contributions

To the best of our knowledge, this is the first study to consider adaptive routing in the
SPRP, which is the first contribution of our study. Our second contribution is to develop a
progressive hedging (PH) approach combined with a three-phase matheuristic algorithm.

Through the PH algorithm, the problem is decomposed into subproblems, and the first-
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stage variables are guided toward convergence by changing their corresponding costs in
the objective function. The first phase of the process involves solving a TSP to find an a
priori tour. Production setup, quantities, and visit decisions are determined by restricting
subproblems to the route defined in the first phase of the algorithm and by solving them
until a consensus is reached in the first-stage variables or a stopping criterion is met. An
aggregation procedure is applied at this point to construct the solution, and in the final
stage of the solution process, a capacitated vehicle routing problem (CVRP) is solved
for each period and every scenario to further improve the routing decisions. The third
contribution of this study is the consideration of the static-static case that has been adopted
from the lot sizing literature, where the production quantities are also considered in the
first stage of the problem. Finally, computational experiments are conducted in order to
demonstrate the effectiveness of the proposed algorithm and the improvements that can

be obtained by determining the routing decisions in the second stage.

The remainder of the paper is organized as follows. A literature review of the PRP,
SPRP, and PH heuristic is provided in Section 1.2 to show how the current work relates
to previous studies. The mathematical formulation and notations are provided in Section
1.3 while Section 1.4 describes the PH-based three-phase matheuristic algorithm. Com-
putational experiments are presented in Section 1.5. Finally, we discuss our findings and

draw conclusions in Section 1.6.

1.2 Literature Review

In this section, we summarize the relevant literature related to our study. Section 1.2.1
explores the deterministic PRP literature and the various algorithms employed to tackle
this problem. Additionally, we offer a concise review of the different variations of the
problem. Then, Section 1.2.2 focuses on studies addressing the stochastic PRP. Finally,

we provide a brief overview of the literature concerning the PH algorithm in Section 1.2.3.
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1.2.1 The deterministic PRP

First introduced by Chandra (1993), the PRP aims to improve supply chain efficiency and
reduce costs by increasing collaboration between partners and incorporating production
and distribution decisions into a single problem. The classic PRP considers a production
plant, multiple customers, and a fleet of vehicles to transport the goods to customers.
However, several variants of the problem have also been investigated to address specific
real-world situations. In order to find high-quality solutions for the PRP in a reasonable
amount of time, many heuristic and metaheuristic algorithms have been developed over
the years. One heuristic approach that is commonly employed is to take advantage of the

problem’s structure and decompose it into less complex subproblems.

Boudia et al. (2008) introduce the “uncoupled” and the “coupled” heuristics to solve
the problem in two phases. Bard and Nananukul (2009) provide a two-phase reactive
tabu search (TS) algorithm with path-relinking. Archetti et al. (2011) compare the order-
up-to-level (OU) and maximum level (ML) replenishment policies and propose a hybrid
heuristic to solve the production and routing subproblems sequentially. Armentano et al.
(2011) deal with a multi-product, multi-vehicle PRP and present two variants of TS as
the solution algorithm. Adulyasak et al. (2014b) decompose the main problem into less
complex subproblems and employ an ALNS-based heuristic. Absi et al. (2015) propose
a two-phase heuristic that solves a two-level lot sizing problem with approximate routing
costs and uses a back-and-forth iteration between the two phases to improve the solu-
tions. Solyali and Siiral (2017) propose a multi-phase matheuristic algorithm that first
solves a restricted PRP using a determined set of routes and improves the production and
routing decisions in the following phases. Russell (2017) develops two matheuristic al-
gorithms. The first one utilizes the set partitioning reformulation of the problem followed
by a TS algorithm to improve the solutions. In the second algorithm, by assigning ar-
tificial demands to customers, they are divided into relatively similar-sized clusters, and
approximate routes are constructed using the idea of seed routes. Vadseth et al. (2023)

propose a path-flow formulation for the PRP and develop a new multi-start matheuristic
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to solve the problem. In each start of the algorithm, they generate an initial solution by
employing a decomposition matheuristic. Then, they iterate over an improvement prob-
lem, which operates on a small set of routes to enhance the quality of the solutions. Ben
Ahmed et al. (2023) introduce a multi-phase matheuristic and conduct an investigation
into the performance of various mathematical formulations of the PRP solved using this
algorithm.

Miranda et al. (2018) extend the decomposition heuristic presented by Absi et al.
(2015) to solve a rich PRP derived from a real-world problem at a Brazilian furniture
manufacturer. A heterogeneous fleet, multiple products, and routes that can extend over
multiple days are all taken into account in their formulation. Considering the multi-
product PRP with the possibility of outsourcing, Li et al. (2019) solve the problem using
a three-level heuristic algorithm. Avci and Topaloglu Yildiz (2020) investigate the PRP
with transshipment between retailers or between a retailer and the production plant. They
propose a multi-phase matheuristic algorithm to solve the problem for small and medium
size instances. A two-echelon PRP for the petrochemical industry is introduced by Sch-
enekemberg et al. (2021) such that both pickups and deliveries may occur at suppliers,
plants, and customers. A local search is combined with a branch-and-cut algorithm to
solve the problem. Gruson et al. (2023) also discuss a two-echelon extension of the PRP,
in which there are direct shipments from the plant to several warehouses, and routes have
to be established for the distribution from the warehouses to the customers. They consider
the case of split deliveries and split demand.

Manousakis et al. (2022) propose a two-commodity flow formulation for the PRP un-
der the ML policy. A matheuristic algorithm is proposed that first solves the relaxed PRP
considering approximate routing costs, and the routing problem is then enhanced using a
Greedy Randomized Adaptive Search Procedure (GRASP). Finally, a local search algo-
rithm that explores both feasible and infeasible search spaces is utilized to improve the
quality of the solutions. In their study, Neves-Moreira et al. (2019) present a three-phase
matheuristic algorithm to solve a multi-product PRP taking into account the perishability

of the products and time windows. Rodrigues et al. (2023) introduce a memetic algorithm
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along with novel operators specifically tailored for tackling the multi-product PRP with
a homogeneous fleet. A study by Alvarez2022 addresses PRPs with perishable products
and transshipment in which the profit decreases gradually over time as the products reach
their shelf life. In order to solve the problem, they propose a hybrid heuristic algorithm
based on iterative local search (ILS). Chitsaz et al. (2019) study the assembly routing
problem (ARP), where there is an assembly unit that requires components from different
suppliers to produce a final product. A unified decomposition matheuristic is developed
that produces solutions to the ARP and related problems in three phases.

A few studies have introduced exact algorithms to solve small to medium size PRPs
to optimality. Bard and Nananukul (2010) propose a branch-and-price algorithm to solve
the PRP with a homogeneous fleet. Adulyasak et al. (2014a) propose four formulations
for the PRP which differ with respect to the replenishment policy considered and whether
or not they include a vehicle index. They develop a branch-and-cut algorithm to solve the
problems utilizing several valid inequalities to strengthen the problem formulation. Qiu et
al. (2019) study the PRP with perishable products and propose a mixed integer program-
ming (MIP) formulation based on the Miller—Tucker—Zemlin (MTZ) subtour elimination
constraints. A branch-and-cut algorithm using valid inequalities is applied to solve this
problem. Chitsaz et al. (2020) extend the ARP to consider products that can be made
by multiple suppliers, and they solve the problem using a branch-and-cut algorithm. In a
study conducted by Schenekemberg et al. (2023), they introduce a novel three-front paral-
lel algorithm designed to exploit the two-index and the three-index formulations using the
Branch-and-Cut (BC) algorithm and a local search matheuristic approach, independently.
The core concept of this algorithm involves the simultaneous solution of these three dis-
tinct fronts, all within an integrated framework that facilitates information sharing among
these fronts. The experimental results demonstrate the remarkable performance of their
algorithm. Specifically, it has exhibited the ability to identify previously undiscovered
optimal solutions, as well as achieving the best-known solutions for a significant subset

of benchmark instances.

Kumar et al. (2016) present a bi-objective formulation for the PRP where the second
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objective function evaluates the carbon emissions by considering the fuel consumption
based on the vehicles’ total travel time. Qiu et al. (2017) propose a PRP formulation for
considering Greenhouse Gases (GHG) and specifically carbon emission costs under the
carbon cap-and-trade policy and solve the problem using a branch-and-price algorithm.
Qiu et al. (2018) propose a model with simultaneous pickup and delivery to incorpo-
rate remanufacturing into the PRP and solve it using a branch-and-price algorithm. This
problem involves products being returned to remanufacturing facilities different from the

production plant.

1.2.2 The stochastic PRP

As mentioned earlier, despite the significance of the SPRP, only a few studies have ad-
dressed this problem due to its complexity. Adulyasak et al. (2015a) introduce the stochas-
tic PRP that considers the routing and production setup decision as the first-stage and the
production and delivery quantities as the second-stage decisions. In their study, a Benders
decomposition is combined with a branch-and-cut algorithm to solve the problem. In the
two-stage case, the Benders algorithm is strengthened by lower bound lifting inequalities,
scenario group cuts, and Pareto-optimal cuts. Mousavi et al. (2022) propose a two-stage
stochastic programming formulation for the PRP with a single perishable product and
demand uncertainty. In this study, a five-stage matheuristic solution approach based on
the algorithm proposed by Solyali and Siiral (2017) is developed to solve the problem.
Agra et al. (2018) propose a two-stage stochastic production-inventory routing problem
in which production periods, quantities and routing decisions are the first-stage variables.
The second-stage variables are the delivery quantities, inventory levels, and backlogging
quantities. Several sets of valid inequalities are introduced and customized to the problem,
and two solution algorithms based on the sample average approximation (SAA) approach

are presented.

Zhang et al. (2018) study the PRP problem with recycling and remanufacturing in

which both pickup and delivery can occur at a retailer. This research proposes a determin-
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istic and a two-stage stochastic optimization problem considering demand uncertainty. In
the stochastic problem, production quantities in both manufacturing and remanufacturing
firms, as well as the routing decisions, are considered in the first stage, while the inventory
and the number of worn-out items that are carried back to the remanufacturing firms are
the second-stage variables. Shuang et al. (2019) study the PRP problem with recycling
and remanufacturing with carbon taxes as well as the carbon cap-and-trade policy in a

similar context.

In all prior SPRP studies, routing decisions are made in the first stage (SPRP-FSR)
and unnecessary visits may occur in the second stage. In order to address this issue,
we propose an adaptive routing strategy to reduce routing costs. Adaptive routing is
especially relevant when delivery costs are high and more flexible decisions are required
based on the actual demand. In each realized scenario, routing decisions are part of the
solution that is influenced by both inventory and demand. Moreover, the static-static
strategy has been neglected in the SPRP studies while it constitutes a significant part of

the lot sizing problem (LSP) literature.

1.2.3 The progressive hedging algorithm

Routing decisions and customer visits that are scenario-specific increase the complexity
of the problem. Thus, we develop an algorithm to obtain high-quality solutions to the
problem. More specifically, we introduce a progressive hedging algorithm that is com-
bined with a matheuristic to solve the proposed stochastic problem. The PH algorithm was
first proposed by Rockafellar and Wets (1991) as a scenario decomposition approach. A
number of studies have investigated the use of the PH approach in combination with other
heuristics in order to obtain high-quality solutions to integer stochastic problems. Lgkke-
tangen and Woodruft (1996) present a PH-based TS for stochastic binary MIP problems.
A study by Haugen et al. (2001) implements a PH algorithm for solving the stochastic
LSP.

Crainic et al. (2011) propose a heuristic adjustment strategy and compare the heuris-
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tic and the Lagrangean strategies combined with the TS algorithm for a time-dependent
stochastic network design problem. Alvarez et al. (2021) solve the two-stage stochas-
tic IRP with stochastic demand and supply using a heuristic PH algorithm and an ILS
heuristic. They consider visit and routing decisions as the first-stage variables and pro-
pose an aggregation strategy for each of the three possible cases, i.e., consensus on both
sets of variables, consensus on visit variables but not on routing variables or consensus
on neither. In this study, we utilize the problem’s structure and employ a PH algorithm

combined with an efficient decomposition heuristic to solve the problem.

1.3 Problem Formulation

This section presents a formulation for the two-stage stochastic PRP with demand uncer-
tainty and adaptive routing for a single product that must be produced and delivered to
N customers, where ./ = {0, ...,N} is the set of all nodes including {0}, which denotes
the production plant, and .4, which represents the set of customers. Let G = (A, &)
be a complete and undirected graph where & = {(i, ) : i,j € A ,i < j} represents the
set of edges that connect each pair of nodes in .#". Homogeneous vehicles with capacity
2 deliver the product to the customers, and they must start and end their routes at the
production plant in each period. The set of all vehicles is defined by .# = {1,...,K}.
We consider a discrete and finite planning horizon of T periods, and the set of periods is
denoted by .7 = {1,...,T}. In order to model demand uncertainty, we define a finite set
of scenarios ¢ = {1,...,S}, each of which may occur with probability 7, >0, V¢ € ¢ and
Ypco Tp = 1. The demand of each customer is assumed to be a random variable with a
known distribution, and the realized demand of customer i € .4; in period T € .7 under
scenario @ € ¢ is denoted by d;‘;.

In this study, we adopt two of the strategies proposed by Bookbinder and Tan (1988)
for the stochastic LSP: The static-static strategy in which both setup and production
quantity decisions are made prior to the demand realization and the more flexible static-

dynamic strategy where production quantities are determined in the second stage while
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setup decisions are made in the first stage. The visiting, delivery quantity, outsourcing,

and routing decisions are made in the second stage in both variants of the PRP.

1.3.1 The static-dynamic strategy

In this section, we present the formulation of the problem under the static-dynamic strat-
egy. The binary variable y; takes value 1 if production takes place in period T € .7, with
a fixed setup cost of F, and 0 otherwise. In addition, a per unit production cost u applies
to the production quantity, which is represented by variable p? . This production quantity
is bounded by the production capacity C. The integer variable x;’}m is a recourse vari-
able that denotes how many times edge (i, j) € & is visited by vehicle k € % in period
T € 7 under scenario @ € ¢. Traversing edge (i, j) by a vehicle induces a transportation
cost of ¢;j. A unit holding cost of 4; applies to the inventory at the end of each period
for all nodes i € .#". Accordingly, we define variable Il.(g as the inventory of node i € .4
at the end of each period 7 and for each scenario ¢. An initial inventory of [;y exists at
each node i € .4 at the beginning of the planning horizon. If customer i € .4, faces a
stockout, outsourcing to a third-party supplier can take place with cost f8;. The recourse
variable 0;’; represents the amount of demand at this customer which is satisfied using the
outsourcing option under scenario ¢. We define binary variable zlfpm to take value 1 if
node i € .4 is visited by vehicle k € J# in period T € .7 under scenario ¢ € ¢, and 0
otherwise. In addition, variable q;’:ﬂ denotes the amount delivered to customer i € .4 by
vehicle ¥ € % in period 7 under scenario ¢. Table 1.2 provides a summary of all sets,
parameters, and decision variables used in the mathematical formulation. The SPRP with
adaptive routing (SPRP-AR) and assuming the static-dynamic strategy (SPRP — ARsp)
can now be formulated as the following MIP:

(SPRP—ARsp) min ) <Fyr—|— Y 7 (up$+
€T 0IS)]

Y Y anlet Ymil+ Y Bioiﬁ)) (1.1)

(i,j))e& ke eV i€
S.t.
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t<aly, Vie T, 0co (1.2)

g=1._+pf-Y Y da%. Vie Z,0pc¢ (1.3)
iEN. KEHX
=10+ Y qh.+oh—d] Vie s, Te T, 0c¢ (14)
KeX
9. < Lo Ve 7,9 ¢ (1.5)
p+adl <L Vie N, 1€ T, pc¢ (1.6)
Y qf.. <2, vke X 1€ T,0c¢ (1.7)
€N
Y <1 Vie s, te T, pc¢ (1.8)
KeX
qh <2 Vie S, ke X ,T€T, 09 (19)
X e = 2he Vie N, ke X, 1€ T, 0c¢ (1.10)
(.1 ee{i})
Z z]m— Zzzm ZeKT
(i.j)e€(n) i€n
Vn C AnInl>2,een ket T,pc¢ (1.11)
yr €{0,1} Vie.Z (1.12)
pr>0 Vte T,pc¢ (1.13)
‘1m>0 VietNS ke 1€ T,0c¢ (1.14)
£>0 Vie NV, 1€ T,pe¢ (115)
ol >0 VieN, 1€ T, pco (1.16)
zh.€{0,1} Vie NV, ke X, 1€ T, pc¢ (1.17)
Ume{o 1} V(i,j)e&,i#0, ke X, 1€ T,pc¢ (1.18)
xO]KTE{O,1,2} Viesg, ke 1€ T, pc¢. (1.19)

The objective function (1.1) minimizes the setup costs and the expected cost of the
second-stage variables including the production, routing, holding, and outsourcing costs.
Constraints (1.2) impose that the setup must take place if production is required in a pe-

riod. The production quantity in each period is bounded by the minimum of either the
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Table 1.2: Sets, parameters, and decision variables.

Sets:

N Set of nodes, i € {0,...,N}, {0} is the plant.

N Set of customers, i € {1,...,N}.

& Set of edges, & = {(i,)) :i,j € N ,i < j}.

T Set of time periods, 7 € {0,...,T}.

H Set of vehicles, k € {1,...,K}.

() Set of scenarios, ¢ € {1,...,S}.

&) Subset of edges (i, j) € & such thati, j € 1 and n C .4 is a given set of nodes.

e({i})  Subset of edges incident to node i € 4.

Parameters:

F Setup cost.

u Unit production cost.

C Production capacity.

Cij Cost of visiting edge (i, j) € &.

h; Per unit holding cost at node i € /.

2 Vehicle capacity.

Bi Unit outsourcing cost at node i € 4.

Ty Probability of scenario ¢ € ¢.

dp Demand of node i € .4, in period T € .7, under scenario ¢ € ¢.

I Initial inventory at node i € /.

L; Storage capacity at node i € 4.

Decision variables:

Yz Setup decision, equal to 1 if setup takes place at period T € .7, and 0 otherwise.

P Production quantity at period T € .7 (for SPRP — ARgy).

p? Production quantity at period 7 € .7 under scenario ¢ € ¢ (for SPRP — ARsp).

x;’}-m Number of times edge (i, j) € & is traversed by vehicle Kk € % in period T € 7
under scenario @ € ¢.

Il.(ﬁ Inventory of node i € 4 at the end of each period T € .7 under scenario @ € ¢.

z?,)“ Visiting decision, equal to 1 if node i € .4 is visited by vehicle k € . in period
T € .7 under scenario ¢ € ¢, and 0 otherwise.

OEDT Quantity of outsourced products at node i € .4, in period T € .7 under scenario
Q<.

q??“ Amount of product delivered to customer i € .4, by vehicle k € % in period T € .7

under scenario ¢ € ¢.

production capacity or the sum of all customer demands for the rest of the periods, de-

noted by ///T(P = min {‘5, ZIT:T Yie s dl.(f } Constraints (1.3) and (1.4) are the inventory

balance constraints for the plant and customers, respectively. Each node has a maximum
storage capacity of L;. Constraints (1.5) control the inventory capacity at the plant and

constraints (1.6) impose that the inventory of each customer at the end of the period plus
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the demand of that period cannot exceed the capacity of that customer. Constraints (1.7)
force the vehicle to leave the plant if it is assigned to deliver products to customers and
impose the vehicle capacity. Constraints (1.8) and (1.9) indicate that each customer can
only be visited by one vehicle in a period (split deliveries are not allowed) and the max-
imum delivery to a customer must not exceed the smallest value of the vehicle capacity,
customer’s storage, or the customer’s demand for the remaining periods of the planning

horizon, which is indicated by Vﬂlf = min {Q , Li, ZIT:Td;f }

We define &'(1) as a set of edges (i, j) € & such thati, j € n and n C .4 is a given
set of nodes. Moreover, £({i}) is the set of edges incident to node i € .4#". Constraints
(1.10) indicate that two edges must be incident to a visited node and constraints (1.11)
are the subtour elimination constraints (SEC). As mentioned earlier, the routing problem
depends on the realized scenario, which means that the routing is decided after the demand
realization. Therefore, these constraints must be considered for every possible demand
realization and all periods. Finally, constraints (1.12)—(1.19) define the domain of the

decision variables.

1.3.2 The static-static strategy

The only distinction between the static-static and static-dynamic strategies lies in the tim-
ing of production decisions within the problem framework. Specifically, the static-static
strategy entails making production decisions in the first stage, while the static-dynamic
strategy involves making such decisions in the second stage. Consequently, p; is defined
as the first-stage variable for the production quantity in the static-static case, while the
remaining decision variables remain consistent between the two models. We introduce a

formulation, called SPRP — ARgs for the static-static strategy, assuming that production
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quantities are also determined in the first stage:

(SPRP—ARgs) min ) (Fyf+upf+
€T

Yo ¥ X bt X mili+ Y pof)

) (1.20)
PP (i,j)e& xex N €N

s.t. (1.4)-(1.12) and (1.14) - (1.19),

pe < A"y Ve T (1.21)

=1 +r:— Y Y dh Vie 7,0co (1.22)
ieN. xkeH

pr =20 VTe 7. (1.23)

In the above formulation, the objective function (1.20) minimizes the production costs
instead of their expected value since production is no longer a scenario-dependent vari-
able.

In addition, in constraints (1.21) the production quantity must be decided regardless of
the scenario and is bounded by .Z;"* = min {Cg, maxepeg {ZIT:T Yiew d;? } } Constraints
(1.22) are the adapted inventory balance constraints at the plant to take into account the

scenario-independent production quantity.

1.4 Progressive Hedging-Based Matheuristic Algorithm

The goal of this section is to introduce a PH algorithm that is combined with a three-
phase matheuristic in order to solve the SPRP-AR. This method works by replacing the
first-stage variables with scenario-specific variables, leading to a set of independent sub-
problems representing each scenario, thereby reducing the complexity of the problem. It
should be noted that the solution to each subproblem is only optimal in the context of
that specific scenario. Accordingly, in order to reach a consensus over all the variables
involved in the first stage of the stochastic process and achieve a feasible solution, an

augmented Lagrangean strategy is adopted.
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The primary motivation for choosing the PH algorithm lies in its efficiency in ad-
dressing stochastic problems featuring binary variables, particularly in the first phase. By
having the routing decisions in the second stage, only a small subset of binary variables
serve as the first-stage variables, making the PH a good choice for solving the SPRP-AR.
Additionally, the structure of the SPRP-AR allows for decomposition, leading to deter-
ministic PRP subproblems. Although the deterministic PRP is challenging to solve, recent
studies have developed efficient heuristics for it. This led us to employ the PH algorithm,
integrated with a modified version of one of the most efficient matheuristic algorithms for
solving deterministic PRPs (Solyali and Siiral, 2017).

In order to implement the PH algorithm, we must duplicate the first-stage variables
and divide the problem into scenario-specific subproblems, which we call SSPRP(?) for
the static-static strategy and SDPRP(?) for the static-dynamic strategy. The decompo-
sition procedure and the formulations are described in Section 1.4.1 for both strategies.
After decomposing the original problem into scenario-specific subproblems, we essen-
tially encounter S deterministic PRPs. While solving these problems is comparatively
easier than tackling the stochastic problem, they are still challenging to solve. Therefore,
an effective heuristic algorithm is necessary to solve this problem efficiently. The heuris-
tic solution algorithm for the scenario-specific subproblem consists of three phases: the
first phase involves finding an a priori tour over all nodes, the second phase focuses on
solving restricted PRPs (RPRPs), and the third phase is dedicated to solving CVRPs for
each period. When integrating this heuristic with the PH algorithm, we only need to solve
the TSP once at the beginning. Furthermore, the third phase (solving CVRPs) is only
executed for the best solution found by the PH algorithm. The three-phase algorithm and
its integration with the PH approach are explained in Section 1.4.3.

In this study, the heuristic adjustment approach proposed by Crainic et al. (2011) is
used to accomplish the goal of getting consensus on the first-stage variables. Throughout
the algorithm, costs associated with each of these variables can be adjusted at every iter-
ation to achieve consensus. After the subproblems have been solved sequentially in each

iteration, the stopping criteria are checked to determine whether to stop the algorithm or
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proceed to the next iteration with the updated parameters. At the end of each iteration, the

following four criteria must be evaluated:

¢ If a consensus over all variables has been achieved;

If the maximum number of iterations has been reached;

If the maximum run-time has been exceeded;

If the number of non-improving iterations has reached a specified number.

If the first criterion is met (consensus on all first-stage variables), the solution is fea-
sible for the stochastic problem. If, after several iterations, the inconsistency persists, an
aggregation strategy is applied to obtain a feasible solution. The adjustment and the ag-
gregation strategy are discussed in detail in Section 1.4.2. The pseudo-code of the overall

algorithm is given in Algorithm 1.

In the context of the PH algorithm, exploration and exploitation play crucial roles in
guiding the search process towards high-quality solutions. The algorithm starts with the
exploration phase, where it systematically decomposes the original problem into inde-
pendent subproblems. During this phase, the algorithm searches through a wide range
of possible solutions to gain insights into the problem structure and identify potential
regions of interest in the solution space. As the algorithm progresses, it transitions to-
wards the exploitation phase, focusing on refining solutions and improving convergence.
In this phase, the algorithm modifies the costs of the first-stage variables in the objective
function to encourage convergence towards optimal values. By adjusting these costs, the
algorithm directs its search towards regions of the solution space likely to yield high-
quality solutions. Through a balanced combination of exploration and exploitation, the
PH algorithm effectively navigates complex optimization problems, iteratively refining

solutions to converge towards optimal or near-optimal outcomes.
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Algorithm 1 PH-based matheuristic algorithm

1: Solve TSP:
2: return o; and o; foralli € A
3: Initialize PH:

4. v+0

5 for ¢ € ¢ do

6: EPY F

7: Solve RPRP'?)

8 Set Re ferenceSolution (Eq. (1.38))
9 Set BestSolution (Eq. (1.42))
10: end for
11: End Initialization
12: repeat

13: ve—v+1
14: Perform global adjustment (Eq. (1.39))
15: for ¢ € ¢ do

16: Perform local adjustment (Eq. (1.40))
17: Fix eligible variables (Eq. (1.41))

18: Solve RPRP'?)

19: Update Re ferenceSolution (Eq. (1.38))
20: Update BestSolution (Eq. (1.42))

21: end for

22: until Stopping criterion is met

23: return Setup, production, and inventory decisions
24: for ¢ € ¢ do

25: for r € 7 do

26: Solve CVRP
27: end for
28: end for

29: return Routing and delivery decisions

1.4.1 Scenario decomposition

One can observe that the SPRP-AR formulations presented in Section 1.3 have a block-
diagonal structure, where each block represents a deterministic PRP for a given scenario
¢ € ¢. Constraints (1.2) and constraints (1.21) and (1.22) are the linking constraints that
connect the first-stage and the second-stage variables. Thus, by duplicating the setup

variables (y;), we introduce a specific setup decision variable yf for each scenario @ € ¢
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and the static-dynamic problem can be reformulated as follows:

Y (Fy? +up?+
€T

(PRPsp) min ) 7r(,,(

(S0

Y Y aple+ Y mii+ Y ﬁioi";)> (1.24)

(i,j)eé& ket eV €N

s.t. (1.3)-(1.11) and (1.13) - (1.19),

pY <. Mfy? Ve T,0c¢ (1.25)
¥¢ =5t Ve T, 0 (1.26)
¥ e{0,1} Ve T,pc¢ (1.27)
yr €{0,1} Vte 7. (1.28)

Scenario-decomposable constraints (1.25) replace the original linking constraints in
the above formulation, while the non-anticipativity constraints (1.26) ensure that the setup
decisions do not depend on the scenario and that the final solution of the first-stage vari-
ables is consistent across all scenarios. In this regard y; € {0,1}, V7 € .7 is defined and

is known as the “overall design vector”.

In a similar manner, by duplicating the setup and production variables (y; and p;), and
defining y? and p? for each scenario ¢ € ¢ for the static-static case, we can reformulate

the second problem as follows:

y (Fy? Fup?+
€T

(PRPss) min )_ n(,,(

(Sl

Z Z cisz?;'m:_'— Z hili(z‘F Z ﬁzOIq;)) (1.29)

(i,j)e& xex et i€

s.t. (1.4)-(1.11) and (1.14) - (1.19),
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p? <.aPy? Vie T, (1.30)

Ioe=Igr 1 +P7 = ), Y, i VTET, 99 (131)
ieN. keHXK
¥ =51 Ve T,pc¢ (1.32)
pY = s Ve T,0c¢ (1.33)
vt €{0,1} Ve T,0c¢ (1.34)
yr €{0,1} Vte T (1.35)
p? >0 Ve T, ¢ (1.36)
pe>0 Vie J. (1.37)

Again, the original linking constraints are replaced by constraints (1.30) and (1.31),
the non-anticipativity constraints (1.32) and (1.33) are added, and y; € {0,1}, VT €
and p; > 0, VT € 7 are defined as the overall design vector.

Rockafellar and Wets (1991) propose an augmented Lagrangean approach to relax
non-anticipativity constraints (1.26), (1.32), and (1.33) and make the problem scenario-
decomposable. Using Lagrangean multipliers, the relaxed constraints are incorporated
into the objective function. These multipliers are updated at each iteration in order to
maintain convergence. It is shown that this strategy leads to a global optimum in contin-
uous problems, whereas this is not necessarily the case for integer problems (Rockafellar
and Wets, 1991). In this study, we employ the heuristic adjustment strategy proposed by
Crainic et al. (2011) to lead the first-stage variables to a consensus as it is shown to be

more efficient, especially for binary first-stage variables.

1.4.2 Adjustment Strategy

The heuristic adjustment strategy relies on adjusting the cost of the first-stage variables
based on their frequency in the solutions of the scenario subproblems instead of updating

the Lagrangean multipliers. We use a similar approach to that introduced in Crainic et al.
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(2011) to modify the setup costs during each iteration. As noted earlier, the solution to
the SDPRP(?)(SSPRP(?)) is only optimal for a given scenario, while through an aggre-
gation operator, we can benefit from these local solutions to lead our search toward the

(v)

consensus of the first-stage variables. Thus, we define the reference solution y; ’ for each
iteration v, which is the weighted sum of scenario-determined setup decisions, i.e., ﬁ?(v),
where the probability of the occurrence of a scenario is considered as the weight of that
scenario. The reference solution for the setup variables that can be used in both strategies
is calculated for a given iteration v as follows:

7 =Y mp?t vTe 7. (1.38)
pco

For a given period 7 € .7, y(fv) € {0,1} implies that the consensus is achieved for this
period over all scenarios in this iteration. If this situation applies to all first-stage variables,
it means that the algorithm reached a consensus and the solution is feasible. However, the
value of setup decisions in the reference solution is usually such that 0 < yﬁ” < 1, which
results in an infeasible solution due to the integrality conditions on the setup variables.
Nevertheless, this solution contains valuable information about the likelihood of produc-
tion occurring in a given period. Global adjustment strategies can use this information to
guide the algorithm toward consensus. Lower values of y(fv) indicate that it is less probable
that production takes place at that period in the final solution, while higher values state

(v)

the opposite. In this regard, we define two thresholds 6 and 6y on y; ’ values of a given

period. If y(fv) is greater than Oy the corresponding cost is decreased while for values less

than 6, the setup cost is increased. Thus, the global adjustment strategy (1.39) aims to

modify the setup costs according to the average value of variables through all scenarios:
AEY Y el < g,
B =S LR pgll s gy (139)

T otherwise,

where A > 1 is the modification rate and FT(V) is the modified global setup cost for period

T in iteration v in all scenarios to replace F in (1.43). Note that 0 < 6, < 0.5 and 0.5 <
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0n < 1 in equation (1.39). Moreover, another adjustment can be applied based on the
solution of a specific scenario. In this regard, when the absolute difference of a scenario’s
solution from its reference point is larger than Y, the corresponding cost must be adjusted
as a factor of A. Thus, we define the local adjustment strategy (1.40) to be only applied
locally for a specific scenario ¢ to the corresponding costs of variables that are far from

their reference point:

(

AFY it [0 5 > g and y20 Y =1
FPY = SLED g [0 50D > g and 207D — 0 (1.40)

()
T

otherwise,

\

where the distance threshold is 0.5 < yr < 1 and Fr(p(v) is the modified local setup cost for
scenario @ € ¢. Finally, we define another threshold 0 < v < 0.5 to fix the solutions that

are close to the reference point for the next iteration, using the following equation:

S L (1.41)

The above equation can improve the speed of the algorithm by reducing the size of
the problem at each iteration. At the end of each iteration, we need to define the best
solution that aggregates all variables to provide a feasible solution to the master problem.
This function fixes the setup decisions to one, even if production is required for a single
scenario in that period. Thus, the best solution is calculated using the following equation:
2 — max (2 Ve T. (142)

pco

If the PH algorithm stops due to the convergence of the first-stage variables, the so-
lution is feasible for the original problem, allowing the algorithm to proceed to the next
phase. However, if the algorithm stops because of a stopping criterion other than conver-
gence, it implies that a consensus among all scenarios concerning the first-stage variables

has not been reached. In such cases, we designate the values of yl;m(v)

and the corre-
sponding second-stage solutions as the best feasible solution for the problem. If the setup

decision of a period has the value 1 in at least one of the subproblems, its value is fixed
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to 1 in the final solution. As a result, all subproblems become feasible, guaranteeing the

feasibility of the solution for the original problem.

1.4.3 Solving Subproblems

The purpose of this section is to present a three-phase matheuristic algorithm for solving
the scenario-specific subproblems sequentially. We must solve S deterministic PRPs per
iteration in order to solve the SPRP-AR. The performance of the algorithm is improved
by applying some modifications, since this is a demanding task even for a heuristic algo-
rithm. The first step in the process consists of solving a TSP disregarding the capacity
and demands of each node to determine an a priori tour over all nodes. This problem
only needs to be solved once at the beginning, as the optimal TSP tour is the same for all
subproblems. A restricted problem can then be solved using the sequence obtained in the
first phase. The restricted PRPs (RPRP) must be solved for each scenario at each itera-
tion until one of the stopping criteria of the PH algorithm is met. During the third phase
of the algorithm, once the production and delivery variables have been fixed, a CVRP is
solved for each pair of period and scenario, in order to enhance the quality of the routing
decisions. Note that this third phase is not executed for every subproblem in the PH, but
only at the end of the PH for the best solution.

Our algorithm draws inspiration from the five-phase heuristic developed by Solyali
and Siiral (2017), a methodology that has demonstrated promising outcomes for both the
PRP and IRP (Solyal1 and Siiral, 2022). Nonetheless, our proposed algorithm exhibits
two key distinctions from the referenced approach. Firstly, in the second stage of our
algorithm, we address the routing for each vehicle individually, contrasting with the ag-
gregate constraint considered in the prior algorithm. Consequently, our algorithm yields
a feasible solution to the original problem by the end of the second stage, whereas the
referenced algorithm necessitates an additional step to modify the solution for feasibility.
This adaptation proved advantageous in tackling our stochastic problem, which is notably

more complex than the deterministic one. Our results showcase that we achieved high-
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quality solutions by employing a more streamlined process. Secondly, we strategically
integrated the algorithmic structure with the progressive hedging algorithm, enabling us
to attain high-quality solutions within a reasonable timeframe for the stochastic problem.
It is worth noting that utilizing the original algorithm would have introduced an extra

feasibility step, making the problem complex and nearly intractable for larger instances.

The First Phase: A priori tour

In this phase, the Concorde solver is used to solve a TSP by considering all nodes while
ignoring their demands (Applegate et al., 2020). This yields an a priori tour that starts
from the plant, visits all customers and eventually returns to the starting point. Using the
solution of this problem we define two sets ¢; and o; for each node i € .4” which will be
used to impose the sequence of the a priori tour in the second-phase problem. The set ¢;
denotes the nodes that can be visited after node i, which includes the plant for all i € .4;
since the vehicle can return to the plant after making a delivery to a customer. The set
o; defines the nodes that can be reached prior to node i, which also always includes {0}
since the vehicle can go to any customer after it departs from the plant. Finally, o and oy
contain all the customers, meaning that they can be visited both before and after the plant

since routes start and end at the plant.

The Second Phase: The restricted PRP

In the second stage of the algorithm, we present an MIP formulation that uses the visiting
sequence obtained from phase one to provide feasible solutions to the main problem. The
sequence of the a priori tour is imposed, but it is possible to skip nodes. Solving this re-
stricted stochastic problem is easier since SECs are no longer required. In order to solve
this problem, we temporarily change the structure of the problem into a directed graph,

and we assume the same transportation costs for both directions between any two vertices.

In the current formulation, imposing an integrality condition on xlf’}m
o

sary since integer z;,, variables in combination with sequence sets (o; and 0;) instead of

is no longer neces-
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9

SECs result in the integrality property on continuous x; ikt Thus, we replace the routing

variables with the continuous variables 0 < Sl(fm < 1. The formulation for the RPRP(®)

of a given scenario ¢ € ¢ is presented below.

(RPRP'?))  min Z ( yT+upT+
€T
Z Z Z CijsinT—F Z hil;, + Z ﬁiOiq,-) (1.43)
ieN jeokeX ieN €N
S.t.
P < My, VteJ (1.44)
Ioe =1Ipr 1 +Pc— Z Z ikt VTe T (1.45)
ieN. keEX
Iir:Ii,rfl"i_ Z %Kr"”oir_diq; Vie S,1€ T (1.46)
KeHX
Iy < Ly Vte T (1.47)
Il'”L'+diT§Li VZE%,TG g (148)
Y Gixe < D20 Vke X ,1e.7 (1.49)
€N
Y e <1 Vie M., 1€ T (1.50)
Kkex

¢
Gixr < %T Zikt

Z ijKT =<kt

Vie M,k X 1€ T (151)
Vie VNV, ke X, 1€ T (152)

JEQ;

Y Sjixe = Zixe Vie N, ke X, 1€ T (153)
JEO;

yr €{0,1} Ve T (1.54)
P20 Ve T (1.55)
Gixr =0 Vie NV, keX ,T1€T (1.56)
;>0 Vie V,te.T (1.57)
0;; >0 Vie NV, t€.T (1.58)
Zier €1{0,1} VietV, ke ,1e T (1.59)
0< 8jr < VieN,jea,ke€ X, 1€ T. (1.60)
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The objective function (1.43) is similar to the deterministic PRP except that if a vehicle
is in node i the next visited node must be chosen from the set ¢;. In addition, we remove
the SECs (1.11) since they are no longer required. To impose the sequence sets on routing
decisions, we replace constraints (1.10) with sets of constraints (1.52) and (1.53).

The same RPRP(?) can be used for the static-static case where the only difference is

that constraints (1.44) are replaced with the following constraints:
pe < A"y, vie.7. (1.61)

Within the PH-based matheuristic, after solving the subproblems for all scenarios, the
algorithm moves to the next iteration and the corresponding costs of first-stage variables
are updated in order to lead the PH algorithm to a consensus over all the first-stage vari-
ables. If a stopping criterion is met, we go to the third phase of the algorithm. The goal
of this phase is to improve routing decisions for a specific period within a scenario.

In the static-static strategy, the production quantities are also scenario-independent
while the result of the RPRPs provides scenario-specific values for these variables. Thus,
another step is required to obtain a consensus for the production quantities as well. Since
the p; variables are aligned with the setup decisions, the setup decisions obtained from
the PH algorithm are used to find the production quantities. In addition, we fix the routing
and visit decisions as they will be improved further in the next phase. Thus, the resulting
model is a linear programming (LP) problem that can be solved to find the production

quantities.
The Third Phase: Route improvement

The second-phase problem yields feasible solutions to the subproblems, ensuring that the
final iteration of the PH algorithm provides a feasible solution to the SPRP-AR. However,
relying on predefined sets in the RPRPs may lead to non-optimal routes during certain
periods. In order to enhance routing decisions, we address the CVRP for all periods within
each scenario, aiming to minimize routing costs. In the CVRP formulation, we consider

q;’;“ from the preceding phase as the demand of node i € .4;, during period 7 € .7, and
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under scenario ¢ € ¢@. It is important to note that the CVRP is solved for a specific (7, @)

pair only if there exists at least one z;’,)a equal to one. We mathematically model this
problem as an MIP and employ a BC algorithm strengthened by valid inequalities for its

solution. Further details on this algorithm can be found in Section 1.4.4.

1.4.4 Branch-and-Cut algorithm

To solve the SPRP-AR, we also propose a BC algorithm to compare its results with the
ones from the PH-based matheuristic. Several sets of valid inequalities are employed to

strengthen the problem’s formulation and enhance the LP bounds.

Symmetry breaking inequalities

When there is a homogeneous fleet of vehicles, considering the vehicle index leads to
redundant enumerations. Assuming a fleet of K vehicles, only a subset of nf (nf < K)
may be dispatched in period 7 € .7 under scenario ¢ € ¢ out of the (rg)) options with the
same cost for selecting the required vehicles (Adulyasak et al., 2014b). Thus, by adding

constraints (1.62), this symmetry issue can be prevented:

ZgK‘L'SZ(()P,K‘fI,T 2<k<KVNteT,0c¢. (1.62)

Other symmetry-breaking inequalities are the lexicographic constraints (1.63) that im-
pose an order to assign customers to vehicles in each period (Adulyasak et al., 2014b;
Jans, 2009):

J J
20U < Y2t VieN2<Kk<K,<TET,pco. (163)
= i=1

i=1

Logical inequalities

Logical inequalities can also be applied to reduce the solution space of the problem
(Archetti et al., 2007; Coelho and Laporte, 2014). We add constraints (1.64) to the for-

mulation to ensure that if edge (i, j) € & is travelled by vehicle k € %, then node j € A4,
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is visited by the same vehicle:

<2 Vie N, jeNkEH,TET, 0. (1.64)

ijkt = <jyr

Note that variable x;’}m can take 0, 1, or 2 when one of the incident nodes is the depot
while it can only take values O and 1 otherwise. The last set of valid inequalities imposes
that the vehicle ¥ € % is able to visit customer i € .4, only if it is dispatched from the

depot:

P <0 Vie s, ke 1€ T,0ec@. (1.65)

Zixt = Z0xcr

The proposed valid inequalities are also used in solving the SPRP-FSR with the BC al-
gorithm by dropping the scenario index from the variables. In addition, we utilize all valid
inequalities except for constraints (1.64) in the RPRP problems to increase the efficiency
of the matheuristic algorithm.

Upon the integration of valid inequalities into the formulation, we relax the SECs
(1.11). Subsequently, we employ a minimum s-t cut problem as the exact separation algo-
rithm to identify and incorporate any violated constraints. Particularly, for the execution
of this separation algorithm, we use the Concorde library (Applegate et al., 2020). We
should highlight that this identical separation algorithm is applied in both phases 1 and 3
of our algorithm, effectively addressing the SECs associated with the TSP and the CVRP.

1.5 Computational Experiments

We performed experiments on two different datasets derived from the deterministic in-
stances presented in Archetti et al. (2011). Monte Carlo simulation is employed as a
sampling approach in order to generate scenarios. The demand of a customer in each
period is an independent random variable that follows a discrete uniform distribution with
a range of [d;;(1 — €),d;; (1 + €)], where d;; represents the nominal demand from the de-

terministic instances and € is the uncertainty level, where € € [0, 1]. Each scenario may
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occur with a probability of 7, = 1/S, V¢ € ¢, so that all scenarios have the same proba-
bility. The outsourcing cost is calculated as ; = [&(u+ f/C + 2cp;/Q)] as in Adulyasak
et al. (2015a), where & is a predefined penalty coefficient.

On the first dataset, the experiments were only carried out with the static-dynamic
strategy in order to compare the results of the SPRP-AR proposed in this paper and the
SPRP-FSR presented in Adulyasak et al. (2015a). Specifically, this dataset contains two
test sets: a small set called %2 and a large set called 42. Set %2 consists of 5, 10, 15,
and 20 customers with 7 = 3 and K = 1 and four instance types with distinct character-
istics namely the standard setting, high unit production costs, high transportation costs,
and no customer inventory costs. The larger set 42 comprises only the standard setting
and instances with up to 3 vehicles, T = 3 and 5 to 30 customers or 7 = 6 and up to
20 customers. Our analyses only contained cases with 100 scenarios since increasing the
number of scenarios to 500 or 1000 did not provide significant improvements in the re-
sults, which is consistent with the findings of Adulyasak et al. (2015a), while they can
drastically increase the computation time. All experiments in the first set have a penalty
coefficient of & = 5 and an uncertainty level of € = 0.2.

To evaluate the stochastic solutions, we report the expected value of perfect informa-
tion (EVPI) and the value of the stochastic solution (VSS) relative to the objective function
value of the stochastic problem. The EVPI (1.66) is the difference between the weighted
sum of the optimal objective values of the wait-and-see (WS™) problems and the optimal
objective value of the recourse problem (RP*). The VSS, on the other hand, is calculated
by first solving the expected value (EV) problem based on the average demand. Once the
first-stage variables are found, the corresponding second-stage problems must be solved
for all scenarios considering the fixed first stage decisions obtained from the EV problem.
The expected value of the EV solution (EEV*) can be calculated as the weighted sum of
the optimal objective function value of the EEV* subproblems. The VSS is the difference
between the EEV* and the RP*. One of the challenges of this study is that the second
stage of the SPRP-AR is not a linear problem that can be solved quickly. Specifically, it

is an MIP formulation that includes SECs in each scenario, thus significantly increasing
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the complexity of the problem. Therefore, we require new measurements to assess the
quality of solutions.

Since we cannot solve the SPRP-AR to optimality, we obtain an upper bound (UB) to
the stochastic problem (RPYZ). As a consequence, when using RPY2 instead of RP*, we
obtain UBs to the actual EVPIs and lower bounds (LLBs) to the actual VSSs. We applied a
BC algorithm to solve the WS and EV subproblems with a computation time limit of four
hours. However, in instances where these problems cannot be optimally solved within the
allocated time, we utilize the average LB of WS subproblems (WS%?) solved with the BC
to establish a UB for the actual EVPI, denoted as EVPIV5,

EVPI =RP*—WS* <RPYB _ws* < RPVE —wslB = EvpIYB, (1.66)

In addition, we use the LB and the UB on the EEV* (EEVZ# and EEVY?) to establish
both an LB and a UB to VSS, which are denoted as VSS™® (1.67) and VSSUZ (1.68),
respectively. Given that our proposed algorithm does not directly yield an LB for the RP,
we can use the LB obtained by solving the RP with the BC algorithm as the LB to the
problem. Furthermore, the weighted sum of the LB of the WS subproblems also provides
a valid LB to the RP. Thus, we determine RP"? by selecting the maximum value between

these two alternatives.

VSSB — EEVIB _RPVB < EEV* —RPYB < EEV* —RP* =VSS (1.67)

VSS < EEVYB —RP* < EEVUYB — RPLB =y sSUB. (1.68)

We introduce a new dataset called ./ in order to conduct experiments on both static-
dynamic and static-static strategies. The motivation behind introducing this second dataset
lies in the observation that setup decisions in the 2?2 and %42 sets often exhibit a degree
of triviality. In such cases, optimal setup decisions can be readily obtained without fac-
toring in stochastic elements. This is evident in the setup where solving the EV problem
yields optimal values for first-stage variables, exhibiting that solving the more complex

stochastic problem is redundant, as illustrated in Table 1.3.
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The new dataset is created based on the same Archetti et al. (2011) benchmark set
while it differs in some parameters to yield non-trivial setup decisions. The penalty coef-
ficient ¢& is set to 50 in ./ as the penalty costs appear to be insufficient in the first dataset,
resulting in a high level of unmet demand. The number of periods dramatically increases
the complexity of the problem, but we do not generate instances with 7 = 3 because in
practice setup decisions are often required to be made over a longer period of time. The
demands in the deterministic dataset are constant over periods, which allows us to gener-
ate sets with longer planning horizons. In this regard, we constructed new sets considering
the standard setting and with 7 =6, K <2, N <30; 7T =6, K=3,N<20; T=9; K =1,
N <30;and T =9, K =2, N < 20. The production capacity is set to C =3} ;c 4 di. In
order to calculate the transportation costs, Euclidean distances are used for all instances,
while in set ./ we multiply them by a transportation coefficient (¢c), where t¢ = 4 in all

experiments.

Computational experiments were performed on an Intel Xeon Gold 6148 2.4 GHz
processor and 32 GB of RAM. The algorithms were coded in C and Python programming
languages while CPLEX 22.1.0 was used to solve the mathematical formulations. In
CPLEX, eight threads were assigned for the parallel processing and the optimality gap

was set to 107° in all experiments.

1.5.1 Static-Dynamic Strategy

In this section, we report the experiments on the Static-Dynamic strategy. In Table 1.3
the average performance of the heuristic and the BC algorithms on the 9?2 and 942 sets
is provided. The solution of the heuristic algorithm was given to the BC algorithm as a
warm start, and the computation time was set to 4 hours. The reported CPU time for BC
represents the combined computation time of the BC algorithm and the heuristic. Besides
the limit on the computation time, in several cases the limit on the memory caused the
BC to stop while the algorithm still had not reached its time limit. Hence, there are cases

where the optimality gap is positive while the reported CPU time is less than four hours.
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Table 1.3: The results of SPRP-AR on %22 and %2 sets under the Static-Dynamic Strategy

PH-M BC
T K S #ns #Best CPU VSSIF VSSUP EVPIVB CPU Gap
(secs) (%) (%) (%) (secs) (%)
3 1 100 16 16 7.7 1.3 1.5 0.5 4,084.0 0.3
3 1 100 6 6 11.0 1.3 1.5 0.4 4,639.7 0.2
3 2 100 6 6 67.0 1.4 1.8 0.4 7,962.1 0.4
3 3 100 6 6 492 .4 1.7 2.0 0.5 10,096.2 0.5
6 1 100 4 4 425 0.0 0.0 0.0 9,264.6 0.0
6 2 100 4 4 291.9 0.0 0.2 0.2 13,675.8 0.2
6 3 100 4 4 13622 0.0 1.0 0.7 15,490.3 0.7
Total 46 46 224.6 1.0 1.3 0.4 9,316.1 0.3

Each row of the table reports the average results of a specific setting. The first three
columns display the number of periods, the number of vehicles, and the number of scenar-
ios, respectively. Column #Ins is the number of instances in each set. Under the PH-based
matheuristic (PH-M), column #Best denotes the number of instances for which the BC
algorithm could not find a better solution than the one obtained by the heuristic algorithm.
The time limit for the PH-M was set to 2 hours and the actual running time is stated in
seconds in column CPU under the PH-M. The details of the computation time for each
phase are provided in Appendix A.1. As stated in the previous section, we provide both
an LB and a UB to VSS and a UB to EVPI which are in the VSSZ, VSSUZ and EVPIVE
columns, respectively. Column Gap(%) reports the relative optimality gap. The maxi-
mum number of iterations for the PH algorithm was set to 50 and the maximum number
of non-improving iterations was set to 10. Moreover, 0y, 6y, Yy, and yr were set to 0.4,
0.6, 0.2, and 0.8, respectively.

To showcase the advantages of adaptive routing over fixed routes and demonstrate
the effectiveness of our proposed heuristic algorithm, we employed the BC algorithm to
solve the SPRP-FSR. The optimality gap and solution time for this algorithm are detailed
in Table 1.4, with a time limit set to 4 hours. Additionally, the inequalities presented
in Section 1.4.4 were incorporated to enhance the LP bounds. To further optimize the
solutions obtained for the SPRP-FSR, a post-optimization approach was implemented.

This approach involved skipping customers that were visited in scenarios with no delivery
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quantity, thereby reducing transportation costs. Specifically, after solving the SPRP-FSR
using the BC algorithm, any customer i with z;,; = 1 and q;’:m = 0 was removed from the
corresponding route in that scenario. Subsequently, the visited nodes for each scenario
were updated, and a TSP was solved for the revised route. The routing costs of the SPRP-
FSR were then replaced with the updated results. In the PostOpt column, we show the
improvement obtained from this procedure as a percentage compared to the value of the
objective function of the SPRP-FSR.

Column ImpLB(%) demonstrates the LB of the cost improvement in percentage by
using adaptive routing instead of first-stage routing. This is obtained by comparing the
LB of the FSR problem and the result of the PH-M. We also report the UB of the possible
cost improvement in column ImpUB(%) using the LB of the SPRP-AR and the UB of
the FSR problem. In other words, ImpLB(%) and ImpUB(%) indicate the LB and the
UB of the possible cost improvement by employing adaptive routing rather than fixed
routes. It should be noted that value of zero was assigned to VSS'® and ImpLB in all
cases where these values were negative due to the fact that zero is always a valid LB
for both. We should highlight that the average values for the VSS that are shown in
Table 1.3 usually result from a few high VSS values while most of the instances have
a VSS equal to 0. Thus, if the optimal setup decisions can be achieved by solving the
EV problem, the result of the EEV problems can lead us to the optimal solution for the
stochastic problem. It should be noted that, despite the fact that having VSS = 0 when
solving a stochastic problem is not desirable, we can still achieve valuable improvements
with adaptive routing over FSR even after applying the post-optimization technique (Table
1.4). We observe that for these data sets, the LB on the improvement is 0.7%. In addition,
in this dataset, we still have cases where the VSS is large enough so that it is reasonable
to consider the stochastic problem rather than the mean value problem.

As mentioned earlier, we created the set ./ to compare the results where solving the
stochastic problem has a more tangible impact on the outcome. Table 1.5 shows the result
of SPRP-AR under the static-dynamic strategy. As expected the CPU time of both the

PH-M and the BC algorithm significantly increases when more scenarios are considered.
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Table 1.4: Comparing the results of the SPRP-AR and the SPRP-FSR on %2 and %42 sets
under the Static-Dynamic Strategy

SPRP-AR (PH-M) SPRP-FSR (BC)
T K S #ns Gap CPU Gap CPU PostOpt ImpLB ImpUB

(%) (secs) (%) (secs) (%) (%) (%)
3 1 100 16 0.3 7.7 0.0 7.1 0.1 0.6 0.8
3 1 100 6 0.2 11.0 0.0 49.6 0.1 0.7 0.9
3 2 100 6 0.4 67.0 0.0 623.1 0.2 0.8 1.2
3 3 100 6 0.5 492.2 0.0 2,095.8 0.4 1.4 1.9
6 1 100 4 0.0 42.5 0.0 322.8 0.0 0.7 0.7
6 2 100 4 0.2 291.9 0.0 2,353.2 0.1 0.8 1.0
6 3 100 4 0.7 1,362.2 39 11,246.5 0.8 0.5 43
Total 46 0.3 224.6 0.3 1,5743 0.2 0.7 1.3

In addition, for 200 scenarios, the BC algorithm was able to find a better solution for
one of the instances. This results from the second stage of the RPRPs being unable to
reach their optimality within the algorithm’s time limit. In these experiments, VSS2,
VSSYB, and EVPIVZ remained almost the same regardless of the number of scenarios.
When S = 50, the BC algorithm was able to find better LBs than the WS subproblem:s,
which resulted in a lower optimality gap compared to cases with more scenarios. Table
1.6 provides the comparison of the results with the SPRP-FSR. ImpLB decreases with
an increase in scenarios, as uncertainty has a greater impact on the FSR problem since
routing decisions must be made in the first stage and reducing the number of scenarios
may have a significant impact on the FSR. However, the AR problem does not seem to be
affected as much by the number of scenarios. The uncertainty level € was set to 0.2 and
the problem was solved with 50, 100, and 200 scenarios. It is worth mentioning that in
the heuristic algorithm, the 2-hour time limit was split into one hour for solving the phase
two subproblems and one hour for the phase three subproblems, as phase 1 only takes a

few seconds to solve.

Figure 1.2a presents the average value of the objective function of the SPRP-AR
model under different numbers of scenarios. One can observe that the objective func-
tion values for the AR problem remain relatively consistent across all scenarios. How-

ever, the objective function values for the FSR problem and FSR(PO) (FSR after post-
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Table 1.5: The results of the SPRP-AR for different number of scenarios
on set ./ under the Static-Dynamic Strategy

PH-M BC

T K S #ns #Best CPU VSSIF VSSUE EVPIVB CPU Gap
(secs) (%) (%) (%) (secs) (%)

6 1 50 6 6 59.2 3.4 42 0.8 7,581.2 0.8
6 2 50 6 6 8915 3.9 6.0 1.6 13,088.6 1.6
6 3 50 4 4 904.8 4.0 9.3 3.2 13,530.1 3.2
9 1 50 6 6 283.6 22 3.1 0.9 10,618.7 0.9
9 2 50 4 4 12695 2.0 7.7 3.6 13,606.3 3.6
Total 26 26 6194 3.1 5.7 1.8 11,395.3 1.8
6 1 100 6 6 1147 33 4.1 0.8 12,405.5 0.8
6 2 100 6 6 9735 3.2 5.9 25 13,234.9 25
6 3 100 4 4 12127 35 9.0 3.5 12,997.5 3.5
9 1 100 6 6 6440 2.0 3.1 1.1 11,665.6 1.1
9 2 100 4 41,6942 2.1 7.8 4.0 15211.7 4.0
Total 26 26 8470 28 5.6 22 12,948.9 22
6 1 200 6 6 289.1 33 4.1 0.8 12,701.7 0.8
6 2 200 6 6 25058 3.2 5.8 2.2 16,145.1 2.2
6 3 200 4 41,5769 3.7 9.1 42 13,416.7 4.2
9 1 200 6 500 20366 1.8 2.9 1.3 16,439.3 1.3
9 2 200 4 4 19039 15 75 53 16,307.6 53
Total 26 25  1,6505 2.7 55 2.4 15,023.6 2.4

[1] The Branch-and-Cut UB has improved the optimality gap by 0.1%

optimization) are consistently higher than those of the AR. Notably, for larger problem
instances, the BC algorithm often failed to find high-quality feasible solutions for SPRP-
FSR, resulting in instances where the only viable solution was to outsource all demands.
Consequently, such cases exhibited significantly larger objective function values and op-
timality gaps. To ensure a more realistic comparison, instances where the optimality gap
for the FSR exceeded 20% in all cases were disregarded in cost comparisons. Otherwise,
the cost of FSR would be considerably higher than that of AR. In Figure 1.2b, the routing
costs of AR, FSR, and FSR(PO) are depicted.
The results of the SPRP-AR with different uncertainty levels including € = 0.4, 0.6, 0.8

with 100 scenarios are shown in Table 1.7. The BC algorithm was not able to find a better
solution than the one obtained by PH-M in 151 of the 156 cases, keeping in mind that the

BC algorithm was started with the PH-M solution as a starting point. This denotes the de-
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Table 1.6: Comparing the results of the SPRP-AR and the SPRP-FSR
for different number of scenarios on set ./ under the Static-Dynamic

Strategy
SPRP-AR (PH-M) SPRP-FSR (BC)
T K S #Ins Gap CPU Gap CPU PostOpt ImpLB ImpUB
(%) (secs) (%) (secs) (%) (%) (%)
6 1 50 6 0.8 59.2 0.0 303.5 0.6 3.9 4.7
6 2 50 6 1.6 891.5 4.3 10,049.5 2.0 2.5 8.3
6 3 50 4 32 904.8 8.0 12,132.2 4.1 2.0 11.6
9 1 50 6 0.9 283.6 1.4 9,556.4 0.9 2.5 4.8
9 2 50 4 3.6 1,269.5 13.7 14,403.5 2.8 0.7 15.1
Total 26 1.8 619.4 47  8,676.9 1.9 2.7 8.2
6 1 100 6 0.8 114.7 0.0 1,413.7 0.7 4.0 4.8
6 2 100 6 2.5 973.5 9.5 11,6995 2.2 22 12.7
6 3 100 4 35 1,212.7 12.0 14,416.2 2.6 1.8 14.4
9 1 100 6 1.1 644.0 3.9 10,349.7 1.0 2.0 7.0
9 2 100 4 4.0 1,694.2 20.2 14,4023 1.3 0.5 20.4
Total 26 2.2 847.0 8.1 9,848.1 1.5 24 11.0
6 1 200 6 0.8 289.1 0.2 6,153.1 0.9 4.0 5.0
6 2 200 6 2.2 2,505.8 393 12,893.1 2.4 1.7 40.5
6 3 200 4 4.2 1,576.9 51.7 14,401.8 4.9 1.8 53.4
9 1 200 6 1.3 2,036.6 18.5 12,389.3 0.9 1.8 20.8
9 2 200 4 53 1,903.9 55.3 14,401.0 0.8 0.2 55.0
Total 26 2.4 1,650.5 29.8 11,685.6 1.4 2.1 32.0
70,000.0 23,000.0 |
g 68,0000 . Z ~22000 | g mme——=== T
gss,oou.u ? % % g‘zw,oooo "’———"—"—_ |
»g% 64,000.0 g’a 20,000.0
g 62,000.0 2 19,000.0
60,0000 N h\ 18,000.0
50 100 200 50 100 200
No. of Scenarios No. of scenarios
AAR(PH-M) ®FSR(BC) mFSR(PO) —X=AR(PH-M) = m =FSR(BC) FSR(PO)
(a) Objective function value (b) Average routing costs

Figure 1.2: Comparison of costs for different number of scenarios on set ./

ficiency of the exact algorithms in solving such a complicated problem. For the instances
in which the BC was able to obtain a better solution, the average gap improved by 0.3%,
which is indicative of the efficiency of the PH-M algorithm. The average optimality gap
of PH-M for all instances of set ./l under the static-dynamic strategy with different lev-

els of uncertainty was 3%. Additionally, we conducted experiments on larger instances
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Table 1.7: Summary of the SPRP-AR results for different uncertainty
levels on set /# under the Static-Dynamic Strategy

PH-M BC

T K & #ns #Best CPU VSS!® VSSVE EVPIVP CPU Gap
(secs) (%) (%) (%) (secs) (%)

6 1 04 6 6 1192 103 11.0 0.8 12,000.3 0.8
6 2 04 6 6 1,139.7 113 13.2 1.7 12,426.7 1.7
6 3 04 4 4 12418 120 167 3.0 13,015.7 3.0
9 1 04 6 6 7965 6.7 7.7 1.0 14,703.7 1.0
9 2 04 4 4 19716 55 12.5 4.0 16,041.0 4.0
Total 26 26 9687 9.2 11.9 1.9 13,500.4 1.9
6 1 06 6 s 1213 16.8 18.4 2.0 13,084.8 1.9
6 2 06 6 6 10137 184 213 3.1 12,476.5 3.1
6 3 06 4 4 12575 193 251 5.2 10,725.5 5.2
9 1 06 6 51 7539 116 13.2 2.2 14,600.0 1.6
9 2 06 4 4 19855 10.1 17.6 5.4 16,388.7 5.4
Total 26 24 9348 153 18.8 33 13,439.4 3.3
6 1 08 6 581 1629 216 240 3.5 11,813.1 3.4
6 2 08 6 6 1,021 235 275 4.6 12,084.9 4.6
6 3 08 4 4 14034 248 315 7.1 13,345.0 7.1
9 1 08 6 50 8412 153 17.7 2.9 12,105.3 2.9
9 2 08 4 4 23590 140 218 6.4 16,762.1 6.4
Total 26 24 1,0649 199 242 4.6 12,940.3 4.6

[1] The Branch-and-Cut UB has improved the optimality gap by
0.05%; [2] The Branch-and-Cut UB has improved the optimality gap
by 0.6%; [3] The Branch-and-Cut UB has improved the optimality
gap by 0.5%; [4] The Branch-and-Cut UB has improved the optimal-
ity gap by 0.3%.

involving up to 50 customers for six periods with one or two vehicles, as well as nine

periods with one vehicle. The purpose of these experiments was to illustrate the perfor-

mance of the algorithms. However, due to computational limitations, we only solved the

problem using the PH-M and BC algorithms. The results are provided in Appendix A.2.

We summarize the results of the AR and the FSR problems with different uncertainty

levels, solved with the PH-M and BC algorithms, in Table 1.8. As can be seen from the

table, the optimality gap for the BC algorithm remained relatively constant for various

levels of uncertainty. In contrast, the PH-M gap increased for higher uncertainty levels.

There are two reasons for this. First, since LBs are derived from WS subproblems, in-
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creasing uncertainty naturally increases the EVPI, resulting in worse LBs; second, using
the PH algorithm we decompose the stochastic problem into subproblems each represent-
ing a specific scenario. The presence of greater stochasticity makes it more challenging
to find consensus and aggregate the first-stage variables. However, it is important to
keep in mind that PH-M still has a lower optimality gap while taking less computational
resources. When observing the improvement of the objective function value from the
ImpLB column, it is important to remember that this is the minimum possible saving of
using the AR, whereas the actual savings could be greater, as in some cases the optimal-
ity gap for the BC algorithm was so high that for those cases we had to consider a 0%
improvement on the LB. Even so, with 100 scenarios the LB of the average improvement
is as low as 2.4% with € = 0.2 and goes up to 6.4% when the € = 0.8. There is a sub-
stantial improvement in the objective function which is primarily attributable to routing
costs. Based on a comparison between the objective function of the AR and FSR(PO),
we find that considering flexible routes results in better solutions, while at the same time
providing a more reasonable solution time for the PH-M. The AR becomes even more
relevant when routing costs are high or when the environmental impact of transportation
is taken into consideration.

One may observe that in several instances, the improvement obtained by applying
post-optimization on the FSR problem is more than ImpLB. We should note that these
two values are not directly comparable unless the optimality gap of the FSR is zero. It
is due to the fact that the former is obtained by improving the UB of the FSR while the
latter represents the relative difference between the AR UB and the FSR LB. Thus, a
weak LB for the FSR can result in a low value of ImpLB which is the LB of the potential
improvements. However, by looking at ImpUB we can see in all such cases the UB of
the potential improvement is also so high which means that we can expect to have higher
improvements by employing adaptive routing in these cases, as well.

We provide Figure 1.3 to better illustrate the behavior of the solutions while having
different values of uncertainty level. Figure 1.3a indicates the average values of VSSZ5,

VSSYB and EVPIVZ for different uncertainty levels. We can observe the rapid increase
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Figure 1.3: An analysis of the behavior of solutions under the static-dynamic strategy
with different uncertainty levels

of VSS for higher levels of uncertainty. The VSS®® goes from 3.5% when £ = 0.2 to
20.2% when € = 0.8. It is evident, therefore, that when the level of uncertainty is high, it
is crucial to consider the stochastic problem instead of the mean value problem. As shown
by the low values of EVPIY3, more accurate information would not be of significant value,
demonstrating the robustness of the solutions.

Figure 1.3b presents the routing cost of both the AR and the FSR problems. Since
the heuristic PH-M algorithm includes two stages of routing decisions, we present the
average routing cost after phases two and three. To assess the cost improvement that is
achieved by utilizing flexible routes, we report the routing costs of the FSR before and
after the post-optimization process. The third phase of the PH-M usually leads to a slight
improvement in all cases, which is beneficial as this phase takes only a small portion of
the solution time and often enhances the result. Here, one of the most significant obser-
vations is the difference between the AR and the FSR routing costs, which emphasizes

the importance of considering adaptive routing. As can be seen from Table 1.7, this im-
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Table 1.8: Comparing the results of the SPRP-AR and the SPRP-FSR
for different uncertainty levels on set .# under the Static-Dynamic

Strategy
SPRP-AR (PH-M) SPRP-FSR (BC)
T K € #ns Gap CPU Gap CPU PostOpt ImpLB ImpUB
(%) (secs) (%) (secs) (%) (%) (%)
6 1 04 6 0.8 119.2 0.2 3,826.7 1.0 4.3 52
6 2 04 6 1.7 1,139.7 6.0 10,555.7 1.7 2.5 9.4
6 3 04 4 3.0 1,241.8 12.5 14,4044 3.6 2.2 15.9
9 1 04 6 1.0 796.5 2.8 99575 1.3 2.7 6.4
9 2 04 4 4.0 1,971.6 13.3 14,402.3 1.7 1.0 14.4
Total 26 1.9 968.7 6.1 10,048.7 1.8 2.9 9.5
6 1 06 ©6 1.9 121.3 0.0 2,107.2 2.2 4.5 59
6 2 06 6 3.1 1,013.7 6.6 10,801.6 4.2 3.0 12.3
6 3 06 4 52 1,257.5 11.0 14,403.6 2.6 2.5 16.9
9 1 06 ©6 2.2 753.9 1.9 9,794.6 1.7 3.6 7.1
9 2 06 4 54 1,985.5 13.5 14,402.1 2.1 1.6 16.7
Total 26 32 934.8 57  9,670.9 2.5 35 11.0
6 1 08 ©6 34 162.9 0.1  3,205.9 2.5 7.6 9.9
6 2 08 6 4.6 1,102.1 7.5 11,446.0 4.7 7.1 17.8
6 3 08 4 7.1 1,403.4 11.6 14,402.1 39 4.1 22.3
9 1 08 6 29 841.2 1.9  9,766.1 2.6 6.6 10.9
9 2 08 4 6.4 2,359.0 13.0 14,403.9 53 2.2 20.2
Total 26 4.4 1,064.9 6.0 10,066.6 3.6 6.4 15.5

provement is associated with a lower CPU time, as the average CPU time for SPRP-AR is
approximately 15 minutes, whereas the average CPU time for SPRP-FSR is slightly less

than three hours, with the heuristic algorithm yielding a reasonable gap.

In both AR and the FSR, the trend line for outsourced products indicate that the av-
erage number of outsourced products increases as the uncertainty level rises with one
exception for FSR when € = 0.2, as depicted in Figure 1.3c. This discrepancy is likely
attributed to the higher optimality gap observed in FSR under this specific setting. Ad-
ditionally, the analysis presented in Figure 1.3d indicates that the number of delivered
products remains approximately equal for both problems, while the number of visits re-
quired by the AR problem is significantly lower. Consequently, an equivalent quantity of
products can be delivered to customers with a reduced number of visits, showcasing the

advantages of employing the AR problem. These observations were consistent across all
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Figure 1.4: Objective function values for the AR (PH-M), FSR (BC), and FSR after post-
optimization

cases considered, with a focus on instances where S = 100.

Figure 1.4 presents a comparison of the average value of the objective function for
these two problems. The objective function values for AR solved with the PH-M, the UB
of the FSR solved with BC, and the value of FSR after applying the post-optimization
on the UB. This figure provides a comprehensive understanding of why ImpLB is not
directly comparable to FSR(PO), as the objective function values of AR are consistently

lower than those of FSR(PO) in all cases.

1.5.2 Static-static Strategy

The following section presents the findings of the SPRP-AR considering the “static-static”
setting. This method limits the flexibility of the problem by requiring the determination of
lot sizes at the beginning of the planning horizon. However, it can reduce the nervousness
of the system due to the fact that both setups and production quantities are planned in
advance (Tunc et al., 2013). It is particularly useful when respecting production capacity
is crucial since deterministic variables for production quantities can ensure that these
limitations are addressed throughout the planning horizon (Tempelmeier and Herpers,
2010).

In Table 1.9, we present the results of the SPRP-AR with the static-static case for dif-
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Table 1.9: The results of the SPRP-AR for different number of scenarios on set . under
the Static-Static Strategy

PH-M BC

T K S #Ins Gap CPU VSSY¥ VSSUZ EvVpIVE CPU  Gap

(%) (secs) (%) (%) (%) (secs) (%)
6 1 50 6 32 684 5.1 8.1 4.7 12,083.6 3.2
6 2 50 6 55 980.8 54 11.0 55 13,0044 5.5
6 3 50 4 6.8 10262 44 15.4 6.8 15429.2 6.8
9 1 50 6 37 3102 3.1 6.8 3.9 14,7144 3.7
9 2 50 4 7.0 11,5889 2.1 12.0 7.0 14,956.5 6.9
Total 26 50 716.0 46 10.2 5.4 13,8599 5.0
6 1 100 6 39 1400 44 8.2 5.0 14,543.7 3.9
6 2 100 6 6.4 12344 44 10.5 6.5 15,638.1 6.4
6 3 100 4 74 15543 3.7 14.6 7.4 15,960.6 7.4
9 1 100 6 47  873.1 2.5 7.0 4.9 15276.1 4.6
9 2 100 4 79 1,717.0 2.1 12.3 7.9 14,2285 7.9
Total 26 58 10219 40 10.1 6.1 15,1348 58
6 1 200 6 46 2685 @ 4.1 8.5 4.9 14,5483 4.5
6 2 200 6 6.5 19792 3.7 10.3 6.5 16,384.0 6.5
6 3 200 4 85 19193 36 14.4 8.5 16,323.3 8.5
9 1 200 6 48 11,1893 1.9 6.7 4.8 15,591.8 4.7
9 2 200 4 11.0 2,858.7 1.5 11.9 11.0 17,2620 11.0
Total 26 6.7 15282 3.4 9.9 6.8 15903.3 6.6

ferent scenarios using similar settings as in the previous section. Note that the instances
from the previous section have been used for comparative purposes. As expected, opti-
mality gaps are higher for this strategy. However, this does not necessarily imply that
algorithm’s performance is inferior since finding a better LB becomes more difficult in
this case. The reason is that considering production quantities in the first stage also in-
creases the EVPL. In order to demonstrate the efficacy of the presented algorithm for the
static-static strategy, we provide the optimality gaps for both PH-M and BC algorithms.
It can be observed that, in some cases, the BC algorithm provided better solutions than
the PH-M algorithm. Even so, these improvements are usually so small that the average
total improvement is 0.1%. It should be emphasized once again that the BC algorithm
was given the PH-M solution as a warm start and was still unable to improve it within the

limits of the computation in most instances.
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S8 values, which is

A significant observation in the static-static case is the higher VS
again due to the presence of more first-stage variables. As a result, stochastic program-
ming becomes even more important when the company is required to employ this strategy.
Table 1.10 presents a comparison between the results of the first-stage and second-stage
routing problems under the static-static strategy. Based on the results, the LB of the cost
improvement is slightly worse than in the previous case. The BC algorithm for the FSR
also has a larger optimality gap, which may be one of the factors contributing to the dif-
ference. The ImpUB is also significantly higher, which makes it difficult to draw any
conclusive comparison between the two cases in terms of possible improvements. Even
so, we can observe that adaptive routing reduces routing costs and the improvements are
better than those obtained by post-optimization. A comparison of the results of the static-

static strategy with different uncertainty levels can be found in Tables 1.11 and 1.12. As

can be seen, the VSS values are significantly higher than the static-dynamic strategy.

Figure 1.5 displays the comparison of the static-static and the static-dynamic strate-
gies. We can observe the value of the objective function for different numbers of scenarios
in Figure 1.5a and for different uncertainty levels in Figure 1.5b. In both figures, the trend
line of the static-static strategy is above the static-dynamic strategy, indicating higher ob-
jective function values for the former. A significant portion of the higer values can be
attributed to higher holding costs since the model under the static-static strategy tends to
produce more products in earlier periods to avoid outsourcing in later periods. This can
be seen in Figure 1.5c. However, the number of outsourced products is also higher in the

static-static strategy (Figure 1.5d), particularly at higher levels of uncertainty.

1.5.3 Other Probability Distributions

To further demonstrate the applicability of the proposed algorithm, we extended the ex-
periments conducted in the previous section to include stochastic demand generated from
the Normal and Gamma distribution functions. The same algorithm was applied, and a

similar Monte Carlo Sampling technique was employed to generate scenarios. It is worth
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Table 1.10: Comparing the results of the SPRP-AR and the SPRP-FSR
for different number of scenarios on set 4 under the Static-Static Strat-

cgy

SPRP-AR (PH-M) SPRP-FSR (BC)
T K S #Ins Gap CPU Gap CPU PostOpt ImpLB ImpUB

(%) (secs) (%) (secs) (%) (%) (%)
6 1 50 6 3.2 68.4 0.0 331.6 0.6 3.2 6.6
6 2 50 6 5.5 980.8 6.0 9,990.3 2.9 2.0 12.7
6 3 50 4 6.8 1,026.2 8.5 12,4564 3.0 1.9 15.1
9 1 50 6 3.7 310.2 1.4 9,708.0 1.1 2.1 7.1
9 2 50 4 7.0 1,588.9 12.5 14,403.5 33 0.7 16.4
Total 26 5.0 716.0 49 8,754.6 2.0 23 11.0
6 1 100 6 39 140.0 0.0 2,059.7 0.8 33 7.3
6 2 100 6 6.4 1,234.4 8.1 10,784.2 2.6 1.9 14.0
6 3 100 4 7.4 1,554.3 10.6 14,402.2 2.2 1.4 15.8
9 1 100 6 4.7 873.1 2.3 10,139.7 1.2 1.1 8.1
9 2 100 4 7.9 1,717.0 35.1 14,4034 2.5 0.3 37.5
Total 26 5.8 1,021.9 94 97355 0.9 1.8 15.0
6 1 200 6 4.6 268.5 0.2 69163 0.8 34 8.0
6 2 200 6 6.5 1,979.2 37.5 12,699.3 1.2 1.8 41.4
6 3 200 4 8.5 1,919.3 33.1 14,401.2 1.9 0.9 36.2
9 1 200 6 4.8 1,189.3 3.7 12,1705 0.9 1.4 9.0
9 2 200 4 11.0 2,858.7 393 14,4014 1.1 0.1 41.5
Total 26 6.7 1,528.2 199 11,766.4 1.8 1.8 24.8

noting that for consistency in the results, we utilized the same mean and standard devi-
ation for all probability distribution functions (PDF). Specifically, we used the nominal
demand as the mean value, and the standard deviation obtained from the Uniform distri-

bution as the given standard deviation for both the Normal and Gamma distributions.

Furthermore, to handle the potential occurrence of negative values in the Normal dis-
tribution, we set the demand to zero in such cases. Moreover, to maintain integer demand
values, we truncate the obtained numbers from the probability function. This approach

ensures that the demand values remained integer throughout the analysis.

For these experiments, we employed identical instances featuring 100 scenarios and
four distinct levels of demand uncertainty. The time limit for the PH-M algorithm re-
mained consistent at two hours, and for all the BC algorithms, we set a four-hour time

limit. The parameters of the heuristic algorithm remain unchanged, as previously detailed
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Table 1.11: Summary of the SPRP-AR results for different uncertainty
levels on set ./ under the Static-Static Strategy

PH-M BC

T K & #ns Gap CPU VSSI¥ VSSUB EvpIVB CPU  Gap

(%) (secs) (%) (%) (%) (secs) (%)
6 1 04 6 40 1776 156  19.1 75 12,606.4 4.0
6 2 04 6 85 1,201.5 153  23.0 9.0 14,579.8 8.5
6 3 04 4 11.1 1,3944 11.7 289 11.1 12,7174 11.1
9 1 04 6 58 7735 9.0 14.3 6.7 13,9887 5.6
9 2 04 4 102 19404 59 21.5 10.2 16,342.3 10.1
Total 26 7.5 1009.8 133  20.8 8.6 139726 7.4
6 1 06 6 51 1781 265 302 10.9 12,4050 5.1
6 2 06 6 9.1 12846 267 337 12.0 14,1182 9.1
6 3 06 4 122 1,2639 203 402 13.6 12,571.6 12.2
9 1 06 6 6.4 8905 165  22.1 9.6 152934 6.3
9 2 06 4 120 26225 11.6 302 13.3 17,025.6 12.0
Total 26 85 11,1409 235 307 11.6 14203.4 8.4
6 1 08 6 63 1915 31.6 360 14.6 11,763.9 6.3
6 2 08 6 109 12465 310 389 16.6 13,456.8 10.9
6 3 08 4 126 1,3285 235 443 17.4 12,520.0 12.6
9 1 08 6 6.6 8540 203  25.8 12.3 15257.1 6.5
9 2 08 4 11.0 25656 142 323 15.3 16,327.3 10.9
Total 26 9.1 1,128.0 278 350 15.1 13,779.1 9.1

in Section 1.5.1. In Table 1.13, we present a summary of the results for the Normal and
Gamma distributions. Notably, the average optimality gap for different uncertainty levels
remains below 4% across all studied PDFs. However, this gap is higher for the Normal
and Gamma distributions, primarily due to their higher EVPIYB. The increased variabil-
ity in demand values within the Normal and Gamma distributions explains this higher
EVPIVS,

Moreover, the average values of the VSS8

underscore the importance of considering
stochastic programming over mean-value problem formulations, particularly when de-
mand uncertainty is high. Additionally, the total average value of ImpLB falls between
3% and 4% across all PDFs. It is worth noting that the proposed heuristic has an average
CPU time ranging from 16 to 20 minutes, whereas solving the SPRP-FSR using the BC

algorithm requires over 2.5 hours on average.
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Table 1.12: Comparing the results of the SPRP-AR and the SPRP-FSR
for different uncertainty levels on set .4 under the Static-Static Strategy

SPRP-AR (PH-M) SPRP-FSR (BC)

T K € #ns Gap CpPU Gap CpPU PostOpt ImpLB ImpUB
(%) (secs) (%) (secs) (%) (%) (%)
6 1 04 6 4.0 177.6 04 51259 1.0 3.8 8.0
6 2 04 6 8.5 1,201.5 6.2 11,030.9 1.6 2.3 14.5
6 3 04 4 11.1 1,394.4 13.3 14,401.9 33 1.9 21.6
9 1 04 6 5.8 773.5 26  9,946.0 0.6 1.7 10.1
9 2 04 4 10.2 1,940.4 13.1 14,402.6 2.2 0.8 18.9
Total 26 7.5 1,009.8 6.2 10,455.2 1.8 2.5 13.8
6 1 06 ©6 5.1 178.1 0.0 19313 1.9 3.6 8.5
6 2 06 ©6 9.1 1,284.6 9.1 10,8169 33 2.3 19.0
6 3 06 4 12.2 1,263.9 10.8 14,402.5 3.6 2.2 22.4
9 1 06 ©6 6.4 890.5 1.4  9,714.7 0.9 1.5 10.1
9 2 06 4 12.0 2,622.5 33.3 14,403.8 2.7 1.3 40.0
Total 26 8.5 1,140.9 9.2  9,615.5 2.5 2.8 18.3
6 1 08 6 6.3 191.5 0.0 44849 2.5 6.3 11.8
6 2 08 6 10.9 1,246.5 7.2 11,526.7 4.6 4.5 20.8
6 3 08 4 12.6 1,328.5 12.0 14,403.2 6.6 3.2 26.4
9 1 08 6 6.6 854.0 23 93242 2.4 5.7 13.9
9 2 08 4 11.0 2,565.6 13.7 14,402.7 3.5 2.0 24.8
Total 26 9.1 1,128.0 6.1 10,2784 3.8 5.0 18.6

We present a comparative analysis of the average routing costs associated with three
different routing algorithms: AR, FSR, and FSR(PO). The results are depicted in Figure
1.6, where instances exhibiting a gap of more than 20% for FSR across all cases have
been excluded. Across all probability functions examined, we observe a clear trend of
increased routing costs as the level of uncertainty rises. Notably, the costs are compara-
tively lower for scenarios following the Normal and Gamma distributions, particularly at
lower uncertainty levels. This phenomenon can be attributed to the fact that the probabil-
ity distribution in the Normal and Gamma cases is more concentrated around the mean
value. Consequently, a larger proportion of scenarios fall within a narrow range around
the mean, whereas in the Uniform distribution, the probability remains constant across
the entire range. However, it is worth noting that the effect of this characteristic dimin-
ishes as € increases, as evidenced in Figure 1.6a. Despite this observation, the routing

cost of FSR(PO) consistently exceeds that of AR, providing evidence of the algorithm’s

59



TSI 0¥ LT 75996 68 6'¢ LTl 06 69SI'T 6¢ Y01 [ejoL,
€81 ¢'g (4% 8'86€6  6S LY v'TC 6LT  SELOT Lt 9z 80

191 9y 43 870T°6 €6 v'¢ 961 811 I'€ETT  v'¢ 9z 90 euwEn
L€l ST 1'C 0'S90°01 66 9y €6 6'S  CYLI'T 9V 9z ¥0

81 €1 A SY66'6 S0l I'¢ 9'¢ S0  TOPI'T  I'¢ 9z T0

¥'91 43 (e €TI96 €11 L€ v'Cl 88  I'l60T L€ Y01 [ejo,
091 LS 43 8€C6L'S L9 ¢S L'1T 991  €800°T €6 9z 80

1'0C L€ ST YOLL'G6 61 0°¢ 0°ST 91T Vve6rI'lt 0¢ 9¢ 90 [BuLION
¢LT 0¢ 91 9'8L0°01 L€l €€ €6 €9  ¥'€90°T €€ 9z 0

v'Cl €1 Sl 70086 66 43 L€ 0  TEYI'T TE 9z TO0

(%) (%) (%) (s99s) (%) (%) (%) (%) (809s) (%)

gnduwy gdug idoisod  ndd dep gnldAd  goSSA  44SSA  NdD  dep sup# 3

(O9) ISA-4ddS

(IN-Hd) dvV-dddS

A391en§ SrweuA(q-onels

oy} JOpuUN P)~ 1S UO S[OAJ] AJUTBIIOOUN JUAIQIIP JOJ UONNQLISIP BUIWIED) PUB [BULION Y} JO S)[NSAI 9y} Jo ArewrwinS :¢['[ 9[qeL

60



77,0000 86,000.0
3> 84,000.0

76,0000 | = = =TT

o]
N
o
Q
S
o

75,000.0 4 80,0000

78,0000
76,0000
74,0000 '___‘//
720000

70,0000

74,0000
73,000.0

720000

Objective function value
Objective function value

71,000.0

70,000.0 68,000.0
50 100 200 0.2 04 06 0.8
No. of scenarios Uncertainty Level
==y Static-Dynamic ~ — #& - Static-Static Dynamic
(a) OF value for different number of scenar- (b) OF value for different Uncertainty Lev-
ios els
22,000.0 120.0
20,000.0 e=- %wooo
g -7 £ 800
S 180000 gu = = = = g
] 3 60.0
£ 160000 3
o 5 400
= s
14,000.0 =] 20.0
<<
12,000.0 0.0
0.2 04 06 08 0.2 04 06 08
Uncertainty Level Uncertainty Level
Static-Dynamic ~ ==@= Static-Static == Xe= Static-Dynamic === Static-Static
(c) Average inventory costs (d) Average outsourced products

Figure 1.5: The comparison of Static-Static and Static-Dynamic strategies

effectiveness across all instances.

Figure 1.7 presents a comparison of three performance metrics: VSS3, VSSUB and
EVPIY3 for different probability functions. As anticipated, when € = 0.2, scenarios gen-
erated by the Normal and Gamma distributions tend to cluster closely around the mean

value. Consequently, the EV problem yields a high-quality first-stage solution, lead-

SLB SLB

ing to lower VS values. However, as € increases, the VS also increases. Fig-
ure 1.8 illustrates the objective function values for various probability distribution func-
tions across different uncertainty levels. Regardless of the distribution, we consistently
observe that the average objective function value is lower for AR, even after applying
post-optimization to FSR. On average, the improvement achieved by utilizing AR instead
of FSR amounts to 6.5%, 6.2%, and 7.8% for the Uniform, Normal, and Gamma dis-
tributions, respectively. If we consider the post-optimization on FSR, the improvement
percentages become 4.3%, 4.3%, and 5.6% for the respective distributions.

These results highlight the superior performance of AR over FSR in terms of achieving
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Figure 1.6: The average value of routing costs under the SD strategy with different € for
different PDFs

lower objective function values across all instances and also indicate the effectiveness and

efficiency of the PH-M algorithm.

We also investigated three distinct factors to discern their contributions to the vari-
ations in routing costs across different levels of uncertainty and distribution functions
for demand. These factors encompass the average number of routes (ANR), the average
route length (ARL), and the average per-route number of visited customers (ANVC). A
detailed table of the values of these factors is provided in Appendix A.3. Notably, our
analysis revealed that while the ARL and ANVC show a lower level of fluctuation for dif-
ferent uncertainty levels, the ANR increases as the uncertainty levels go up. However, its
value is roughly similar for different probability functions. This suggests that increasing
the uncertainty level mostly results in a higher average number of routes while not having

a significant impact on the average route length or average number of visited customers.
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1.6 Conclusion

This study addresses a significant research gap in the field of the SPRP by focusing
on adaptive second-stage routing decisions. By introducing this novel concept in the
stochastic PRP, the study enhances the flexibility of the problem, resulting in reduced
routing costs and improved overall cost efficiency for the system. This increased flexibil-
ity provides valuable managerial advantages by enabling quick responses to unexpected
demands. To tackle this complex problem, the study proposes a progressive hedging-
based matheuristic algorithm. This algorithm is designed to generate high-quality solu-
tions within a reasonable timeframe. The effectiveness of this approach is demonstrated
through extensive computational experiments on 566 instances. Additionally, the algo-
rithm is extended to incorporate the static-static strategy, which further stabilizes the pro-

duction schedule but reduces system flexibility.

Our study highlights the significant advantages practitioners can gain from adopting
the stochastic problem over the deterministic one, resulting in average cost reductions
ranging from 12.4% to 14.3%. Notably, the deterministic approach not only escalates
costs but also introduces potential infeasibilities, jeopardizing customer satisfaction by
failing to meet demand. Additionally, our research underscores the effectiveness of adap-
tive routing, with average savings of 6.5% compared to fixed routes. In environments
characterized by high uncertainty, these savings can increase to 12.6%, offering substan-
tial cost reductions for companies. Moreover, adaptive routing leads to a reduction in both
the number of visited customers and routing costs, enhancing distribution efficiency and
transportation logistics effectiveness. It is important to note that our study focused solely
on single-product systems; however, adopting adaptive routing in multi-product scenarios

could yield even greater benefits.

Our comparison of the SPRP with adaptive routing against fixed routes or fixed routes
with post-optimization reveals a minimum improvement of 6.5%. This indicates that flex-
ible routing not only reduces routing costs but also minimizes inventory and outsourcing

expenses within the system. Furthermore, our proposed algorithm achieves these results
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efficiently, with an average CPU time of less than 20 minutes, contrasting with the lengthy
processing time required by the BC algorithm. We also analyze the UB on the average ex-
pected value of perfect information (EVPIY2) and the LB on the average minimum value
of the stochastic solution (VSS’?). The EVPIY2 remains relatively low, barely exceeding
5%, suggesting limited additional value from more information. Conversely, the VSS*8

can reach up to 12.4%, highlighting the critical importance of factoring uncertainty into

the decision-making process.
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Chapter 2

The Stochastic Production Routing
Problem with Adaptive Routing and

Service Level Constraints

Abstract

Demand uncertainty poses a challenge to most companies in manufacturing and services
as it can lead to significant profit losses if not addressed properly. To deal with this risk,
companies may adopt specific service level targets to satisfy at least a certain propor-
tion of their demand while considering operational constraints and minimizing the total
cost. In this study we address the stochastic production routing problem (PRP) with adap-
tive routing and service level constraints. The PRP unifies the production, inventory and
routing decisions into an integrated problem aimed at improving coordination across dif-
ferent parts of the system. We consider four different types of service levels, where each
type uses a specific metric based on assumptions aligning with the needs of the com-
pany. These metrics encompass aspects such as the occurrence of stockouts or allowed
ratios of backlogs or backorders to average demand. A two-stage stochastic formulation

is proposed for each type of service level. Setup decisions are made in the first stage, and



production, inventory, and routing decisions are adapted after demand realization. Con-
sidering routing decisions in the second stage increases flexibility while lowering overall
costs. However, the resulting optimization problem is more challenging to solve than the
case where routing decisions are made in the first stage. To address this issue, we intro-
duce an iterative matheuristic algorithm designed to yield high-quality solutions within
a reasonable computation time. The effectiveness of the proposed heuristic algorithm is
demonstrated through extensive experiments, highlighting its potential to assist compa-

nies in managing demand uncertainty and enhancing operational efficiency.

2.1 Introduction

The production routing problem (PRP) combines the optimization of production, inven-
tory, and routing decisions into an integrated problem. In the classical setting of this prob-
lem, a single production facility is responsible for both manufacturing and distributing a
product to a set of dispersed customers in a discrete and finite time horizon. Integrating
the different types of decisions enhances the overall efficiency of the supply chain, re-
sulting in more cost-effective decision-making. The PRP was originally introduced by
Chandra (1993) and Chandra and Fisher (1994), with the primary goal of reducing the
waste resulting from treating the problems individually.

A comprehensive review of various formulations and solution algorithms for the PRP
can be found in the work of Adulyasak et al. (2015b). A systematic review of this subject
is also presented by Hrabec et al. (2022), who address two pivotal questions: what is the
added value of integration and what are the circumstances under which it proves most
advantageous to consider this integrated problem. Their findings indicate cost savings
ranging from 6.58% to 15.58%, with a 95% confidence level, based on previous studies.
Furthermore, they suggest that the benefits of integration tend to diminish in supply chains
with higher production costs.

In the deterministic PRP (DPRP), a fundamental assumption is that all customer de-

mands are known in advance, and the primary objective is to minimize production, inven-

72



tory holding, and delivery costs. However, this simplified perspective does not adequately
capture the complexities of the real world, where demand is often subject to uncertainty.
Considering demand uncertainty allows companies to better prepare for demand vari-
ations, reducing costs associated with last-minute adjustments and avoiding unplanned
stockouts.

There are various approaches to address uncertainty in the PRP. One method involves
introducing a penalty cost per unit of unmet demand, which could represent the cost
of fulfilling demand through third-party suppliers or the cost incurred due to lost sales.
Adulyasak et al. (2015a) introduce two-stage and multi-stage stochastic programming
models to tackle the stochastic PRP (SPRP). Their study demonstrates the benefits of in-
corporating demand uncertainty and provides valuable insights for problems where rout-
ing decisions must be fixed in advance. While this approach is well-suited for problems
with operational constraints that require fixed routes, it may be less effective in situations
where routing flexibility is available to adapt to fluctuating demand.

To address this limitation, Kermani et al. (2024) propose a two-stage stochastic pro-
gramming model addressing the stochastic PRP with adaptive routing (SPRP-AR). Adap-
tive routing refers to the ability to determine delivery routes in the second stage after
the realization of demand scenarios. Unlike traditional approaches where routes are pre-
determined and must be adhered to regardless of actual demand, adaptive routing enables
the optimization of routes based on scenario-specific information. This flexibility allows
the model to better respond to varying demand patterns and to reduce transportation costs
by adapting routes to the specific needs of each scenario. While incorporating adaptive
routing increases the complexity of the problem, the findings of Kermani et al. (2024)
underscore its significance. The results indicate an average improvement of 6.5% in cost
efficiency compared to traditional approaches that fix routing decisions in the first stage.
This improvement is attributed to the ability to dynamically adjust routes based on real-
ized demand, enabling better alignment between operational decisions and actual demand
conditions.

Another strategy to handle uncertainty is adopting a specific service level strategy,
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which aims to balance cost reduction and demand satisfaction. This approach is particu-
larly important in situations where outsourcing is not a viable option, as it ensures demand
fulfillment while managing risks. Various service level measures have been proposed and
studied in the literature, especially in the context of the lot-sizing problem (LSP) (Helber
et al., 2013; Tempelmeier, 2013). These studies typically focus on production and inven-
tory decisions, proposing different service level metrics to manage uncertainty. However,
the PRP, as an extension of the LSP, introduces the additional challenge of routing de-
cisions alongside production and inventory planning. Despite its practical importance,
the integration of service level constraints into the PRP framework remains largely unex-
plored.

While service level constraints have been extensively studied in the LSP literature,
these studies do not address the complexities introduced by routing decisions in the PRP,
where demand uncertainty significantly impacts both production and transportation plan-
ning. To the best of our knowledge, our research is the first to incorporate service level
constraints into the SPRP-AR. By addressing this gap, our work offers a novel framework
for integrating service level constraints, enabling more practical solutions to real-world
problems. This contribution bridges the gap between the well-established LSP literature
and the PRP, providing valuable insights for managing uncertainty in scenarios where
both production and routing decisions must be optimized simultaneously.

The first service level measure considered in our study is the so-called & service level,
which can be characterized as an event-based service level. Specifically, & constrains the
probability that available inventory will fail to meet the entire demand. By enforcing a
predefined probability threshold for fully satisfying demand, this measure is particularly
relevant in scenarios where a fixed cost is incurred for any stockout, irrespective of the
shortage duration or quantity (Silver et al., 1998). The second service level, denoted by
B, is more commonly known as the fill rate. This service level limits the ratio of average
backorders to average demand, or equivalently, the proportion of demand met directly
from on-hand inventory. It is widely used in practice and is especially relevant when each

unit of unsatisfied demand incurs a specific cost, such as overtime production needed to
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fulfill backorders (Silver et al., 1998). However, it has the disadvantage that if demand is
backlogged, then the waiting time for the customer is not considered (Helber et al., 2013).
To remedy this, the next two service levels are specifically developed for the case where
backlogging is allowed.

The third service level, 7y, specifies that the ratio of expected backlogs to average
demand must not exceed a predefined threshold. This measure is particularly relevant
when not only the amount of shortage but also the time-related cost of those shortages is
important (Silver et al., 1998). However, the gamma service level does not have a clear
managerial interpretation since it can become negative or undefined (Helber et al., 2013).
Finally, the & service level limits the expected backlog to the maximum expected backlog.
It has been shown by Helber et al. (2013) that this service level is a linear function of the
average expected waiting time. By incorporating these service levels into the SPRP-AR
framework, our study enables decision-makers to tailor their strategies to a wide range of
operational contexts and industry-specific requirements.

In addition to these four types of service levels, we also explore various levels of
granularity for each type of service levels. Unlike the LSP, where service levels are typ-
ically applied globally from the plant’s standpoint, the PRP allows for the consideration
of inventory levels and demand for each specific customer. As a result, we investigate
service levels from both the customer’s perspective, with distinct constraints for each cus-
tomer, and from the plant’s perspective, where the service level is aggregated across all
customers. Furthermore, following the approach presented in Tempelmeier (2013), we
investigate service levels for a single period or over the entire planning horizon. Con-
sidering the different combinations of both types of aggregation level (per customer or
aggregated, and per period or over the whole horizon) results in a total of four distinct
granularity levels for each of the four available service levels.

The first contribution of our study is the development of a novel two-stage stochastic
formulation for the PRP with demand uncertainty and adaptive routing under four distinct
service level metrics. While Kermani et al. (2024) introduced the SPRP-AR to address

the limitations of fixed routing decisions in traditional stochastic PRP models, it does not
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incorporate service level constraints. This study extends the existing framework by for-
mulating service levels as chance constraints, providing a practical approach for balancing
cost efficiency with customer satisfaction.

In our formulation, setup decisions are made in the first stage, while production quan-
tities, customer visits, routing decisions, and delivery quantities are determined in the
second stage based on realized demand. This structure follows the static-dynamic strat-
egy proposed by Bookbinder and Tan (1988), which has been widely applied in practice
for its ability to balance cost efficiency and system stability. A key challenge in produc-
tion planning is “nervousness”, which arises from the frequent need to revise production
decisions, leading to instability and costly disruptions (Kilic and Tarim, 2011; Koca et
al., 2018). Tunc et al. (2013) argue that setup-oriented nervousness can be avoided with
a minor cost, whereas quantity-oriented nervousness is significantly more expensive to
address. Fixing setup decisions in advance prevents nervousness related to production pe-
riods while preserving the flexibility to adjust operational decisions as demand is realized.
Thus, adopting the static-dynamic strategy can improve system performance compared to
the static-static strategy.

The second contribution is the introduction of individual service level constraints for
each customer, which extends prior work by providing a more granular approach to pro-
duction, inventory, and routing planning. In contrast to global service level formula-
tions often used in the LSP literature, our customer-specific constraints enable decision-
makers to manage service levels at a more detailed level, ensuring that diverse customer
requirements are met effectively. Our third contribution is the development of an itera-
tive matheuristic (IMH) algorithm designed to address the complexity of the SPRP-AR,
particularly with respect to its adaptive routing component in the second stage. The IMH
algorithm integrates service level constraints and dynamically refines solutions across
three distinct phases. In the first phase, we solve a relaxation of a two-level LSP with a
single aggregated customer and direct shipments to generate production setup decisions.
In the second phase, we solve a restricted PRP with fixed setup plans from the first phase

and a single aggregated vehicle, incorporating service level constraints to ensure feasibil-
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ity. Finally, in the third phase, we refine routing decisions while maintaining flexibility in
production and inventory decisions.

In addition, we apply the proposed formulation and algorithm to a range of benchmark
instances, featuring various service levels, uncertainty thresholds, and levels of granular-
ity. Our results highlight the distinct benefits and trade-offs among different types of
service level measures, emphasize the value of adaptive routing for added flexibility, and
demonstrate how different levels of granularity influence overall performance. Further-
more, we provide managerial insights based on these findings, offering practical guidance
for decision-makers confronting similar challenges.

The remainder of the paper is structured as follows. A comprehensive review of the
related literature is presented in Section 2.2. The proposed formulations for different
service levels are detailed in Section 2.3. The solution algorithm is thoroughly discussed
in Section 2.4. In Section 2.5, we apply the algorithm to benchmark instances, reporting
results and findings from these experiments. Finally, in Section 2.6, we draw conclusions

based on our research.

2.2 Literature Review

Although the PRP yields enhanced efficiency compared to the isolated planning of pro-
duction, inventory, and routing, obtaining a high-quality solution remains challenging
due to the inherent difficulty of the problem. Several studies focus on refining exact
algorithms to address the DPRP, yet their applicability is confined to small or medium-
scale instances. An early endeavor to devise an exact solution algorithm for the PRP
is the branch-and-price algorithm proposed by Bard and Nananukul (2010). Archetti et
al. (2011) introduce a branch-and-cut (BC) algorithm, developed for addressing a PRP
featuring a single vehicle. This study investigates two replenishment policies: Order-
Up-To-Level (OU) and Maximum Level (ML) policies. In the OU policy, deliveries are
forced to fill the inventory to its maximum level, whereas the more flexible ML policy

allows for any delivery quantity within the inventory capacity limit.
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Adulyasak et al. (2014a) present a BC algorithm for the PRP, considering two for-
mulations based on whether routing variables incorporate a vehicle index or not. They
also explore the implications of the ML and OU replenishment policies in their analysis.
Schenekemberg et al. (2021) combine a Local Search (LS) heuristic with a BC algorithm
within a parallel framework to address a two-echelon PRP. This algorithm proves effec-
tive for the classical PRP by yielding several new best-known solutions for benchmark
instances. Building upon this algorithm, Schenekemberg et al. (2023) introduce an im-
proved algorithm by incorporating both the two-index and three-index PRP formulations
as well as an LS heuristic within a framework that addresses each problem independently,
while information is shared across these problems to enhance overall algorithmic effi-
ciency.

Due to the limitations of exact algorithms, a predominant trend in research involves
the development of heuristic and matheuristic algorithms aimed at obtaining high-quality
solutions for larger instances that are closer to the real-world problems. Archetti et al.
(2011) present a hybrid heuristic for the PRP that decomposes the problem into two se-
quential subproblems, employing an iterative remove-insert procedure to refine the solu-
tion. Adulyasak et al. (2014b) propose an Optimization-based Adaptive Large Neighbor-
hood Search (Op-ALNS) algorithm, specifically designed to solve large PRP instances.
Absi et al. (2015) introduce a two-phase matheuristic algorithm, decomposing the PRP
into lot-sizing and routing phases that are iteratively solved. An approximate visit cost is
employed in the first phase that is updated in each iteration to enhance solution quality.

Solyali and Siiral (2017) put forth a matheuristic approach based on the sequential
solution of five mixed-integer programming (MIP) problems, achieving new best known
solutions for several benchmark instances. The algorithm includes solving a giant Trav-
eling Salesman Problem (TSP), a restricted PRP using the initial TSP tour, a Capacitated
Vehicle Routing Problems (CVRP) for each period, an MIP permitting customer removal
and insertion in each period for further improvement, and a final TSP for each period
and vehicle. Russell (2017) propose two heuristic algorithms for the PRP. The first em-

ploys a set partitioning approach with predefined routes, while the second utilizes seed
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routes, proving more effective for larger instances. Manousakis et al. (2022) propose a
novel approach, formulating the PRP as a two-commodity flow problem and develop-
ing a matheuristic algorithm that explores both the feasible and infeasible spaces of the
problem.

Studies have investigated variants of the PRP other than its basic formulation to ad-
dress specific real-world challenges. Qiu et al. (2017) propose a model that incorporates
carbon emissions in the PRP under a carbon cap-and-trade system. Miranda et al. (2018)
tackle the complexities of a multi-product PRP with a heterogeneous fleet of vehicles,
incorporating the possibility of routes spanning over multiple periods. Li et al. (2019)
present a three-level heuristic algorithm designed for solving a multi-product PRP with
outsourcing. Avci and Topaloglu Yildiz (2020) introduce a matheuristic algorithm for
solving the PRP with transshipment. Neves-Moreira et al. (2019) investigate a PRP vari-
ant within the real-world context of the meat industry, accounting for perishability and
time windows. Their three-phase matheuristic algorithm addresses the complications of
a PRP with multiple product families. Alvarez2022 consider perishability in a PRP with
transshipment, incorporating the assumption that the product value decreases over time.
Their hybrid heuristic combines iterative local search (ILS) and MIP methods to enhance
solutions.

Drawing inspiration from the petrochemical industry, Schenekemberg et al. (2021) in-
troduce a two-echelon PRP, encompassing both material pickup from suppliers and final
product delivery to customers. Gruson et al. (2023) propose a PRP formulation involv-
ing direct shipments from the plant to warehouses, with subsequent customer deliveries
originating from the warehouse. Chitsaz et al. (2019) contribute to the literature by intro-
ducing the Assembly Routing Problem (ARP), essentially the inbound version of the PRP.
This problem focuses on the delivery of components from suppliers to the plant and they
propose a decomposition matheuristic to solve the problem. In another paper, Chitsaz
et al. (2020) introduce valid inequalities to strengthen the ARP formulation and propose
an exact BC algorithm.

Addressing demand uncertainty represents a valuable extension of the PRP. Adulyasak
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et al. (2015a) propose formulations for the PRP with demand uncertainty, incorporating
a penalty cost for unmet demand within a given period. Their approach assumes fixed
routing among all possible scenarios and employs a Benders decomposition technique
for solving the problem. Zhang et al. (2018) present a two-stage stochastic formulation
for the PRP, accounting for demand uncertainty along with remanufacturing and simul-
taneous pickups and deliveries. Their model also incorporates considerations related to
a carbon cap-and-trade emissions policy, highlighting the integration of environmental
concerns into the PRP framework. Mousavi et al. (2022) introduce a formulation for the
PRP considering both demand uncertainty and perishability. This extension adds another
layer of complexity, incorporating time-sensitive considerations to the decision-making
process. Kermani et al. (2024) investigate the advantages of considering adaptive routing
in the SPRP with demand uncertainty. Their approach involves a matheuristic algorithm
embedded within a progressive hedging framework to obtain routing decisions that are

optimized for the realized scenario.

Service level constraints are widely used to address demand uncertainty, providing a
structured way to maintain a desired level of demand satisfaction throughout the plan-
ning horizon. Such service levels are widely used in inventory management (Silver et al.,
1998). The literature on LSP has also explored various service level measures, each with
unique definitions and applications across different problem variants (Helber et al., 2013;
Tempelmeier, 2007, 2013; Tempelmeier and Herpers, 2010). These constraints enable
decision-makers to balance inventory costs with service performance, aligning with di-
verse operational objectives. Several studies underscore the advantages of incorporating
service level constraints into LSP models. For example, Bookbinder and Tan (1988) clas-
sify strategies for managing uncertainty in LSP into three categories: static, dynamic, and
static-dynamic, demonstrating their relevance in addressing service level requirements.
Their study focuses on the o service level, which minimizes the probability of stockouts.
The o service level is particularly valued in risk-averse settings, such as industries where
high reliability is critical, and stockouts impose significant costs on the company. The o

service level effectively minimizes supply disruptions by ensuring a minimum probabil-
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ity of meeting the entire demand. Tarim and Kingsman (2004) investigate the stochastic
dynamic production/inventory LSP with o service constraints, showcasing its utility in
ensuring a predefined stockout probability threshold in probabilistic scenarios. Tunc et al.
(2014) address a stochastic LSP with o service level constraints, proposing a reformula-
tion of the problem that strengthens its linear relaxation.

Among the various service levels, the B service level, defined as the fill rate or the
proportion of demand met directly from available inventory, has been extensively studied
due to its operational relevance. The 3 service level is well-suited for industries where, in
addition to the possibility of stockouts, the amount of backorders is also a critical factor,
making it essential to maintain a high level of customer satisfaction (Schneider, 1981).
Tempelmeier (2007) analyzes the B service level in the stochastic uncapacitated LSP, em-
phasizing its significance in maintaining high customer satisfaction. This emphasis con-
tinues in later works such as Tempelmeier and Herpers (2010), where a heuristic approach
for dynamic capacitated LSP incorporates the 3 service level, and Tempelmeier and Her-
pers (2011), which explores column generation heuristics under fill rate constraints. In
addition, Tunc et al. (2018) introduce a MIP formulation for stochastic LSP under the
static-dynamic strategy, accommodating both o and 8 service levels.

The 7 service level is relevant in cases where backlogging is allowed. This service
level limits the expected backlog relative to average demand, and accounts for the du-
ration of stockouts in addition to the amount of stockouts (Schneider, 1981). Gade and
Kiiciikyavuz (2013) examine a single-item LSP under Y service level constraints, while
Stadtler and Meistering (2019) analyze the roles of «, 3, and ¥ service levels in determin-
istic capacitated LSPs.

Another measure is the 6 service level, which limits the ratio of expected backlog to
the maximum possible backlog. This service level takes the waiting time of customers
into account and is a linear function of the average expected waiting time (Helber et al.,
2013). Gruson et al. (2018) study the effects of a, 3, and & service levels in capacitated
LSPs with deterministic demands. Further, Sereshti et al. (2024) apply the d service level

in a two-stage stochastic programming framework for multi-level LSP, demonstrating its
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suitability for volatile supply chain environments. Sereshti et al. (2021) analyze the a, f3,
¥, and 6 service levels within a multi-product lot-sizing framework. Similarly, Tomazella
et al. (2023) investigate both aggregate and per-customer f3 service levels in an integrated
procurement and lot-sizing model, illustrating the practicality of B service levels in oper-
ational decision-making.

While service levels such as o, B, ¥, and & have been extensively studied in the
LSP literature, they have not been considered for the PRP. This gap is notable given the
potential of service level constraints to enhance decision-making by balancing cost ef-
ficiency and demand satisfaction. Additionally, the importance of adaptive routing in
dynamic environments cannot be overstated, as it allows for flexible and scenario-specific
route adjustments based on realized demand. This flexibility is crucial in addressing the
complexities of modern supply chains, where demand fluctuations and uncertainty signifi-
cantly impact operational efficiency. By integrating service level constraints with adaptive
routing, our study provides a novel framework to improve operational flexibility in supply

chains.

2.3 Problem Formulation

We address the SPRP-AR in the presence of uncertain demand. Our study encompasses
four distinct service levels, namely o, f, ¥, and 6. The central focus is on a single
product that is manufactured at a production plant and subsequently distributed to a total
of N customers over a finite planning horizon where the set of periods is denoted by
J ={1,...,T}. To formally define the problem, we introduce a complete and undirected
graph 4 = (AN, E), where A4 = {0,...,N} denotes the set of nodes, and E = {(i,j) (L, j €
N Q< ] } represents the set of edges connecting each node pair in .#". The production
plant is denoted by {0}, while the set .4 = {1, ..., N} represents the customer nodes. The
notation £({i}) represents the set of nodes that are incident to node i € .4#” (i.e., all nodes
J € A for which an edge (i, j) € E exists). Moreover, for any subset of nodes n C .4/,
E(n) is defined as the set of edges (i, j) € E where both nodes i and j belong to 1. The
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product is delivered to customers by a fleet of homogeneous vehicles, which are identified
by the set % = {1,...,K} with a specified capacity Q.

The demand of each customer in a given period is modeled as a continuous random
variable following a probability distribution. By analyzing historical data, it is possible
to derive the probability distribution function for the demand of each customer. To ap-
proximate demand based on the learned distribution, we consider a finite set of scenarios

denoted by ¢ = {1,...,S}. Each scenario occurs with a probability & > 0, Vs € ¢, and

N
i’

Ysco &, = 1. The stochastic variable representing customer demands is denoted by d
where i corresponds to a specific customer, ¢ denotes the time period, and s refers to a
particular scenario.

In this study, we adopt the static-dynamic strategy in a two-stage setting, wherein the
setup decisions are made in the first stage, and the production quantities are determined
after the demand realization (Bookbinder and Tan, 1988). The setup decisions are rep-
resented by binary decision variables y;, with a value of 1 implying a setup with a fixed
production cost of F when production occurs in period ¢, and 0 otherwise. The production
quantities in each period ¢ and scenario s are denoted by the recourse variables p7, incur-
ring a cost of u per produced unit. We consider a production capacity, represented by C.
We define .#;° = min {‘5, ZIT:; Yie d;‘l} as an upper bound on the amount produced in
each period ¢ and scenario s. Moreover, products can be stored either at the production
plant or sent to customers for future consumption. The inventory level at each node i at
the end of period ¢ under scenario s is denoted by I3, and an associated unit holding cost A;
is charged, with an inventory limit of L;, Vi € .4". At the beginning of the planning hori-
zon, an initial inventory of ;o may exist at node i. In the presence of uncertain demand,
stockouts may occur in each period, and backlogs are used to satisfy unmet demands in
a future period in a First-In-First-Out (FIFO) order. The cumulative unmet demand of
customer i in period ¢ and scenario s is represented as the backlog variable b7,.

The transportation plan is a crucial component of the overall strategy, entailing adap-
tive routing decisions. To this end, we introduce the binary variable x; ikt which indicates

whether edge (i, j) € E is traversed by vehicle k in period ¢ under scenario s. The variable
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takes the value 1 if the edge is traversed, and O otherwise. Additionally, it may take the
value 2 if only one node is visited by vehicle k in period ¢ under scenario s, resulting in
back-and-forth travel by the vehicle. The transportation cost ¢;; is incurred whenever an
edge (i, j) € E is traveled. The transportation plan is represented using the binary vari-
able zj,,, indicating whether node i is visited by vehicle k in period ¢ under scenario s (1
if visited, 0 otherwise). Lastly, the continuous variable g;, defines the number of prod-
ucts delivered to node i by vehicle k in period ¢t under scenario s, where split deliveries

are not allowed. The maximum number of items that can be delivered to customer i is

W = min {Q7LinlT:t zsl}

2.3.1 Formulation for the SPRP-AR with o Sevice Level

In this section, we present mathematical formulations for the SPRP-AR with o service
level constraints, denoted as SPRP-AR. The o service level aims to ensure a minimum
level of service by controlling the probability of stockouts occurring in each period (¢.) or
the average of this probability over the entire planning horizon (c,). The former implies
the minimal service level in each period, while the latter can be considered as the mean

service level Tempelmeier (2013). To formulate this service level, we introduce the binary

s
i’

variable o},, which takes a value of 1 when a stockout occurs at customer i in period ¢ under
scenario s. We also define D}, =Y)_, dJj, representing the cumulative demand of customer
i up to period ¢ under scenario s.

As mentioned earlier, we consider the service levels from both the plant and customer
perspectives. We define the parameter oS*'“¢" as the service level that must be met for
each customer i in period ¢. It ensures that the proportion of scenarios with a stockout

does not exceed 1 — """, The formulation for the SPRP-AR geusiomer is as follows:

(SPRP“AR(Xé’MS[OlTIKV )

min Z (Fyt—FZés(upf—k Z Z CijX;jir Z hd;;)) (2.1)

s€P (i,j)€E kext ieN
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The objective function (2.1) of the proposed model aims to minimize the overall cost,
which includes setup costs and the expected cost of the second-stage variables encompass-
ing production, routing, and inventory holding. To ensure proper production planning, we
impose constraints (2.2), which dictate that setups must occur when any production is
done in a specific period. We set inventory balance constraints for both the production
plant (2.3) and customers (2.4). Constraints (2.5) control the inventory capacity at the
plant, ensuring that it does not exceed the defined limit. Constraints (2.6) impose an up-
per bound on customer inventory that restricts the sum of the inventory at the end of the
period and the demand during that period to be smaller than or equal to the customer’s
storage capacity.

To manage the vehicle fleet, constraints (2.7) dictate that a vehicle must depart from
the plant if it is assigned to deliver products to customers while adhering to the vehicle’s
capacity constraint. For the delivery process, constraint set (2.8) ensures that each cus-
tomer can only be visited by one vehicle within a given period, preventing split deliveries.
Additionally, the constraint set (2.9) imposes a maximum limit on the delivery quantity
to each customer. To guarantee a certain service level denoted by of*"¢", two sets of
constraints are introduced. Constraint set (2.10) activates binary variable oj, in case of
stockouts occurring for a specific customer in a particular period and scenario. Constraint
set (2.11) limits the probability of a stockout for each customer i in period f. We assume
the service level agreement for each customer is set individually, hence the service level
is modeled for each client separately.

To ensure proper connections, constraint set (2.12) mandates that each visited node
should be connected by two traveled edges. To accommodate an adaptive routing strat-
egy, subtour elimination constraints (SECs) are applied to each period and scenario, as
specified by constraint set (2.13). This form of SECs is shown to be efficient when used
in the BC algorithm (Adulyasak et al., 2014a, 2015b). Finally, the decision variables are
appropriately constrained in (2.14) to (2.22), defining their scope and feasible ranges in
the problem.

For a;”“om” , which enforces the mean service level for each customer i, the cor-
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responding constraints (2.11) should be replaced with constraints (2.24). The updated

formulation is as follows:

(SPRP-ARa}c;ustomer )

min ) <Fyt+25s(upf+ Y Y it ) hdé)) (2.23)

teT s€o (i,j)EE ket eV
s.t. (2.2)-(2.10) and (2.12) - (2.22),

s
Ztef ZSG(P éSOit < 1 — gcustomer
T — 14

Vie . (2.24)

s - : . lant lant . .
From the plant’s perspective, considering of"“" and )" service levels involves

accounting for stockouts across all customers collectively. Therefore, the binary variable
o} is defined, taking a value of 1 when a stockout occurs for any customer in period ¢
plant

under scenario s. To formulate ¢; ", constraints (2.10) and (2.11) must be replaced by

(2.26) and (2.27), respectively:

(SPRP-ARag)lant )

min ) (Fy,+ Ye(ui+ ¥ ¥ i+ ¥ hi1;§)> (2.25)
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SEP
o; € {0,1} Vie T,s€¢. (2.28)

Finally, for the a{,’lam service level, constraints (2.30) are used instead of constraints

(2.27):

<SPRP_AR(ZI€IWU )

min ) (Fyz+25s<upf+ Y Y i+ )X hi@)) (2.29)

e s€P (i,j)EE ket ieN
s.t. (22)-(2.9), (2.12) - (2.21), (2.26), and (2.28),

S
Yicr Z;eq) &s07 <1- applant. (2.30)
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2.3.2 Formulation for the SPRP-AR with 3 Sevice Level

The B service level operates based on the backorders, which represents the amount of
demand that has not been fulfilled in the period when it occurred (Tempelmeier, 2013).
To calculate backorders, we introduce a non-negative continuous variable bo3, that can be

computed using the following non-linear constraint:
bOft=min{bfmdz§} VieM,te T, s€. 231)

It is important to note that this constraint holds true only when the First-In-First-Out
(FIFO) strategy is employed. To linearize the above constraints, we adopt the lineariza-
tion approach proposed by Tomazella et al., 2023 for the deterministic case. This involves
introducing auxiliary binary variables v}, which take the value 1 if b, < d3,, and 0 other-
wise. Similar to the a service level, we first define B*?"" which enforces the service

level at the customer level and for any period ¢. The formulation for the SPRP-AR geusromer

is as follows:

(SPRP-ARﬁgmmmer )

min Y’ (Fy,+ Y & (upf+ Y Y i+ ) h,-I,-i)) (2.32)

teg s€Q (i,j)€E ket eV
s.t. (2.2)-(2.9)and (2.12) - (2.21),

bo}, < b5, Vie N te T, s€d (2.33)
bojy, < dj, Vie A,te T, se¢ (2.34)
di — b < di v, Vie N,teT,s€d (2.35)
b}, —bo}, < D, (1—v}) Vies,te T, s€¢ (2.36)
bi, —d;, < Dj, (1 —v3) Vie t,te T, se¢ (2.37)
di; (1 —vy,) < boj, Vie Nt € T s€P (2.38)
Zse‘%—é‘boff < 1 — peustomer Vie M,teT (2.39)
it
boj, >0 Vie N te T, se¢ (2.40)
vi, € {0,1} VieNte T, sco. (241)

88



The objective function (2.32) is similar to (2.1). Constraints (2.31) have been sub-
stituted with their linear counterparts, specifically constraints (2.33)-(2.38). Parameter
Beustomer in the above formulation specifies the minimum expected service level. Con-
sequently, the ratio of the expected backorder to the expected demand of customer i in

period ¢ (dj;) should not exceed 1

— Beustomer "as imposed by constraints (2.39).

The global B service level across customers, denoted as B“'°™¢"  is based on the
cumulative expected backorder divided by the cumulative expected demand of the entire
planning horizon. Thus, to formulate the SPRP-ARgeustomer, we need to impose constraints

(2.43) instead of constraints (2.39):

(SPRP-ARﬁ customer )

min ) (FwZés (wi+ ¥ X e+ ¥ hil;§)> (2.42)

teg s€P (i,))EE ket eV
s.t. (22)-(2.9), (2.12) - (2.21), (2.33) - (2.38), and (2.40) - (2.41)

Zteﬂ ZsE(])_&S boft <1— ﬁcustomer

Zteﬂ dir B
To formulate SPRP-AR ., we replace constraints (2.39) with constraints (2.45):

Vie . (2.43)

(SPRP-AR planl)
min Y (Fy, Y&+ Y Y et ¥ h,~1;)> (2.44)
teg s€o (i,j)EE ket eV
s.t. (22)-(2.9),(2.12) - (2.21), (2.33) - (2.38), and (2.40) - (2.41)

Zs€¢! éYEEJVc bots't <1— ﬁplant
DP, -

where DP; is the total average demand of all customers in period ¢ (DP; = Yc_y di).

Vte 7, (2.45)

Lastly, to formulate SPRP-AR Bplant constraints (2.45) must be substituted with constraints
(2.47):

(SPRP-ARﬁpZam )

min ) (FmZés (wi+ ¥ ¥ amu+ ¥ hﬂzi)) (2.46)

sEP (i,j)EE ket ieN
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s.t. (2.2)-(2.9), (2.12) - (2.21), (2.33) - (2.38), and (2.40) - (2.41)

YicT Lsco Ss Yic.x, boy,

i < 1 — pplant 2.47
Y.ceq DPy <1-p (247

2.3.3 Formulation for the SPRP-AR with y Service Level

The next service level that we investigate is the 7y service level (Helber et al., 2013). To
ensure a minimum service level of y5“°"¢" we enforce that the proportion of the expected
backlog to the expected demand of customer i in period 7 cannot exceed 1 — y<*/9™"¢" The

formulation for the SPRP-AR%ustomer is as follows:

(SPRP'AR%‘LLY[Umer)
min ) (Fyt+Zé§s (wi+ ¥ X et ¥ hd;-i)) (2.48)
e s€P (i,j)€E ket ieN

s.t. (2.2)-(2.9) and (2.12) - (2.21),

Zsegés it <1- ,ygustomer Vie Nt e T . (2.49)
it

The formulation for the SPRP-AR jcusiomer constraints (2.49) are replaced by constraints

(2.51). The modified formulation is as follows:

(SPRP-ARY(‘M‘WOMEV )

min ) (Fyﬁ— Y& (up§+ Y Y et Y h,-l,.i)> (2.50)

teT s€Q (i,J)EE ket eV

s.t. (2.2)-(2.9)and (2.12) - (2.21),

Zteg Zseg ésbfz < — qpustomer Vie .. (2.51)
re T Git

For the SPRP-AR s constraints (2.49) need to be substituted with (2.53):

(SPRP-ARyflant )

min ¥ <Fy,+ Ye(u+ ¥ ¥ i+ ¥ hJ,c‘,)) (2.52)

teg s€P (i,J)€E ket eV
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s.t. (2.2)-(2.9) and (2.12) - (2.21),

Zseq) ggiee/% bft <1— plant

Vte T, (2.53
DP, - ¢ ( )

Finally, in SPRP—ARypzam, constraints (2.53) are replaced with (2.55):

(SPRP-AR ian )

min ) <Fyt+ Y & (upf+ Y Y i+ ) hdf,)) (2.54)

teT SE (i,j)EE ket eV

st (2.2)-(2.9) and (2.12) - 2.21),

Yies Zseq) és Zie% b:s't

< 1 — yplant 2.55
ZteﬂDPt N 4 ( :

2.3.4 Formulation for the SPRP-AR with 6 Sevice Level

The last service level that we are going to discuss is the § service level (Helber et al.,
2013). The proportion of expected backlog to the maximum expected backlog is restricted
by 1 — 0, where 0 denotes the minimum required service level. The formulation for the

SPRP-AR6gustomer is as follows:

(SPRP-AR(SLL.'usmmer )

min ) (Fyt+25s(upf+ Y, ) it X hdé)) (2.56)

teT sEQ (i,j)EE ket ieN

s.t. (2.2)-(2.9) and (2.12) - (2.21),

Zseq) gsbzs't < Scustomer € N,
v oY e dere 7 230
=11

For the SPRP-AR scustomer We need to replace constraints (2.57) with constraints (2.59):

(SPRP-ARgcustamer )

min ) (Fyﬂrz&s(upf + Y X it Y h,-z,:;)) (2.58)

s€o (i,j)€E ket eV
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s.t. (2.2)-(2.9) and (2.12) - (2.21),

Zteﬂ Zseq) ésbls't < 1 — §customer

Zteﬂ(T —I+ l)dit B

The formulation for the SPRP-AR splant is as follows:

Vie . (2.59)

(SPRP-AR(SCplant )
min Y (Fyt+ Y & (upf+ Y Y it Y h,-l,.i)> (2.60)
tes s€¢ (i,j)€E ket icN

st (2.2)-(2.9) and (2.12) - (2.21),

Zseq) gs Zie/i{. b

N
T < gplant Vi€ 7. (2.61)
Y, DP;

Finally, to formulate SPRP-AR s,ia, constraints (2.61) are replaced by (2.63):

(SPRP-AR §piant )
min )’ (Fy,+ Y & (upf+ Y )Y CijXijis + Y h,-l,-“;)) (2.62)
tes s€¢ (i,j)EE ket et

st (2.2)-(2.9)and (2.12) - (2.21),

Yico Zse¢ Es Yies: by < 1 — §plant

Zteﬂ(T —1+ 1)ﬁz N (2.63)

It is worth highlighting that the objective function remains consistent across all problems,

with service levels enforced through constraints based on their respective definitions.

2.4 Solution Algorithm

To address the problems presented in Section 2.3, we develop an iterative matheuristic
algorithm (IMH). This approach involves breaking down the original problem into three
distinct subproblems. The first subproblem is a stochastic two-level LSP with a single
customer, which we refer to as the SLSP-SC. In this problem we introduce a dummy
node to represent all customers in the problem. The primary objective of this subproblem

is to rapidly generate setup plans for subsequent phases (Section 2.4.1).
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Once a setup plan is established, we proceed to the second subproblem, which is a
restricted stochastic PRP with a single vehicle and aggregate capacity (RSPRP-SV). This
problem closely resembles the original problem with the exception of the routing aspect
and having a fixed setup plan from the first phase. In this stage, our primary goal is to
derive a high-quality solution for production planning and delivery quantities given the
setup decisions made earlier. The routing decisions are not yet taken into account at this
stage, as we reserve the optimization of routing for the subsequent phase of our algorithm.
Instead, we assume a single vehicle with a modified aggregate capacity for delivering the
products to customers (Section 2.4.2).

In the final phase, we use the fixed setup plan and also impose an upper limit on
backlogs, where we tackle a restricted multi-vehicle deterministic PRP (RDPRP-MV) for
each scenario to refine our routing decisions (Section 2.4.3). The purpose of setting a
backlog upper bound is to ensure that the service levels achieved in the second phase are
satisfied while giving the production and distribution decisions some level of flexibility.

Our algorithm involves both an outer iteration, which focuses on generating new setup
plans that are fixed in the second and third phases (Diversification), and an inner iteration,
where we update the estimated visit costs after the third phase and iterate over the sec-
ond and third phases (Intensification). The algorithm iterates over either phases until a
stopping criterion is met (Section 2.4.4). The intensification phase aims to enhance pro-
duction and delivery solutions by considering the approximate visit cost updates after the
third phase while taking service level constraints into account. It is important to note that,
in the first iteration of the intensification phase, we employ RSPRP-SV to quickly ver-
ify the feasibility of the current setup plan. However, after obtaining a feasible solution
from the second and third phases, we solve a modified version of RSPRP-SV in the sec-
ond phase, which includes the approximate cost of visiting customers (RSPRP-AC). This
modification contributes to obtaining improved solutions by incorporating an approximate
delivery cost (Section 2.4.2).

To simplify the notations, we only provide the mathematical formulations of the algo-

rithm for the per customer « service level. The same algorithm is applicable for all other
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cases by modifying the related service level constraints in the second phase. The overall

structure of the algorithm is outlined in Algorithm 2.

Algorithm 2 Iterative Matheuristic Algorithm

1: initialize:

2 Solve TSP.

3: Set 6

4: outerlter < 0

5: setupPool < { }

6: bestObjVal < +oo

7: repeat

8: outerlter <— outerlter 4+ 1

9: Cut setupPool from solution space of SLSP-SC. > Phase One
10: Solve SLSP-SC > Phase One
11: Fix y > Phase One
12: Add y to setupPool > Phase One
13: innerlter < 0
14: repeat
15: innerlter < innerlter + 1
16: if innerlter = 1 or RDPRP-MV(s) is infeasible for at least one s € ¢ , then:
17: Solve the RSPRP-SV > Phase Two
18: else:
19: Solve RSPRP-AC > Phase Two
20: Set backlog upper bounds > Phase Three
21: Solve RDPRP-MV(s) for all s € ¢ > Phase Three
22: if Solution of RDPRP-MV(s) is feasible for all s € ¢
23: Update oj; > Phase Three
24: else:
25: Update A > Phase Three
26: until Stopping criterion is met (for inner iteration)

27: Update objVal

28: if (objVal < bestObjVal), then:

29: Update bestOb jVal

30: until Stopping criterion is met (for outer iteration)
31: return Incumbent Solution

2.4.1 Phase One: SLSP-SC

To formulate the SLSP-SC, we introduce a dummy node which forces us to modify cer-
tain parameters and variables. The demand of this dummy node is assumed to be the

aggregated demand of all customers for a specific scenario, denoted by d;s . The cost of
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visiting this single customer is set to the cost of an optimal Traveling Salesman Problem
(TSP) tour over all nodes (6). It is important to note that the delivery to this node is also
constrained by the aggregated capacity of all available vehicles. The binary variable ¢} in-
dicates the visit of the dummy node in period r € .7 and scenario s € ¢, and g’ represents
the delivery quantity to this node.

Additionally, an initial inventory is considered equal to the sum of the initial inventory
of all customers. The unit holding cost of this node is set as the average of the unit holding
cost of all customers (7). We define IP} as the inventory level of the plant, /D] as the
inventory level of the customer, and bD; as the backlog of the customer. We relax the
integrality constraints on all binary variables, except for the y; variables, to better focus

on the purpose of the first phase. The formulation for the SLSP-SC is as follows:

(SLSP-SCq) min ) (Fy, +Y & <up;‘ +6€+hoIP> 4+ h mf)) (2.64)
teT sEQ

s.t. (2.2),(2.14), and (2.15)

IP) =1IP | +p,—g Vte T,s€¢ (2.65)

ID} = bD{ +ID_| + g —bD}_, —d° Vi€ T,s€ (2.66)

IP} <Ly Vie T,s€ ¢ (2.67)

ID}+d; < Y L; Vi€ T, s (2.68)

€N

g <He Vi€ T ,s€¢ (2.69)
t

D} —Y ¢/ —IDy<D;é; Vie S, te T,s€¢ (2.70)
=1

Y &6 <1—-a Ve T (271)

SEP

g >0 Vie T,s€¢ (272)

IP} >0 Vie T,s€ ¢ (2.73)

ID{ >0 Vie T,s€¢ (2.74)

bD: >0 Vi€ T,s€¢ (2.75)
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0<ei<1 Vie T,s€ ¢ (2.76)

0<4, <1 Vie T,se . 2.77)

The objective function (2.64) minimizes the setup cost and the expected production
and holding cost of the plant, along with the expected approximate delivery and hold-
ing cost in the dummy node. Constraints (2.65) ensure the plant’s inventory balance,
while constraints (2.66) represent the customer’s inventory balance. Constraints (2.67)
and (2.68) set the inventory limits for the plant and the dummy customer, respectively.
In constraints (2.69), we enforce the delivery limit for each period ¢ and scenario s.
To achieve this, we modify the delivery limit to the dummy customer by introducing
V/A,S = min {K O, Yic.x, L,-,ZIT:,dAf}. Constraints (2.70) and (2.71) are the modified con-
straints for the o service level. The variable 6; is assigned the value 1 if a stockout occurs
in the dummy customer, and O otherwise. Additionally, we define ﬁf = 321 cf; as the
cumulative demand for the dummy node until period 7.

Similarly, we can formulate the subproblem for the other three service levels. At each
iteration of the algorithm we cut the previously explored setup plans from the solution
space (line 9 of Algorithm 2) using the local branching constraints introduced in Fischetti
and Lodi, 2003:

Y v+ ) —y)>1, (2.78)
t$=0 tH=1
where J; is the value of the setup decisions in the previous iterations for period t. By
adding these constraints for all the solutions that exist in the sefupPool, we can make sure

that the problem searches through new setup plans.

2.4.2 Second Phase
RSPRP-SV

In the second phase of the algorithm, the objective is to verify if the generated setup
decisions from the first phase (J) can result in a feasible solution when considering cus-

tomers separately and enforcing the integrality of variables. However, to keep the problem
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tractable, we still maintain a single aggregate vehicle per period and scenario. To facili-
tate this, we introduce the variable §},, representing the delivery quantity to customer i in
period ¢ under scenario s. The formulation for the RSPRP-SV with the « service level is

presented below:

(RSPRP-SV,) min ¥ <Z§s (wri+ ¥ h,-If,)) (2.79)

teT \ sco ieN

s.t. (2.5), (2.6), (2.11), (2.15), (2.17), (2.18), and (2.22)

p; < APy Vie T,se¢ (2.80)
=00 =Y, @ Vie T,s€d (2.81)
€N

L =by+1L, + G —bi,_—d; Vie MteT,s€d (2.82)
Y ¢ <AKQ Vie T,s€¢ (2.83)
IS/

G < Wiy Vie s te T sco (2.84)

D, qul Iy < D} 0}, Vie Nt€ T, s€¢ (2.85)

¢ >0 Vie N,t€ T,s€ . (2.86)

In the above formulation, the objective function (2.79) focuses solely on the expected
production and holding costs. While incorporating visit variables and their associated
costs can enhance solutions, it introduces extra binary variables, potentially increasing
problem complexity. Therefore, in the first iteration, we solve the above problem to as-
sess feasibility (line 16 of Algorithm 2). In the subsequent iterations of the intensification
phase, where we solve the RSPRP-AC, we incorporate visit variables (line 18 of Algo-
rithm 2).

It is important to note that when multiple vehicles are present in the problem, we
introduce the modification coefficient A € (0, 1] to account for the consideration of a
single vehicle with aggregate capacity. The initial value for A is set at the beginning of

each inner iteration, and we have the flexibility to update its value if the algorithm fails to
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obtain feasible routing decisions in the third phase (line 25 of Algorithm 2). It is possible
to modify this coefficient a few times until it either leads to a feasible solution, where we
can update the approximate visit costs (line 23 of Algorithm 2) and start the intensification
phase, or we can decide to go back to the diversification phase to generate a new setup

plan if the current setup plan is not promising.

RSPRP-AC

As mentioned earlier, if the third phase results in a feasible solution, we update the approx-
imate visit costs and initiate the intensification phase, where we iterate over RSPRP-AC
and RDPRP-MV to refine the recourse decisions for the current setup plan. The RSPRP-
AC mirrors the RSPRP-SV, with the addition of the visit variable Zj, for visiting customer
i in period ¢ under scenario s, along with an associated approximate visit cost denoted as
c;.

(RSPRP-AC,) min Y ( Y& <up§ + Y on+ Y h,-lf,)) (2.87)

te7 \ s€o €N ieN

s.t. (2.5), (2.6), (2.11), (2.15), (2.17), (2.18), (2.22), (2.80) - (2.83), (2.85), and (2.86)

G < Wi % Vie N,t€ T, s€d (2.88)
2, €{0,1} Vie,teT,s€¢. (2.89)

2.4.3 Phase Three: RDPRP-MV

In the third phase of the algorithm, we impose an upper bound on backlogs. This strategy
ensures the satisfaction of service level constraints while permitting minor adjustments
in delivery schedules. However, for the 8 service level, we also need to fix the v3, vari-
ables to specify backorders explicitly and ensure service level satisfaction. By ensuring
service level satisfaction, we can eliminate the linking constraints (2.11), (2.39), (2.49),
and (2.57) for the a, B, ¥, and & service levels, respectively. Removing these linking

constraints allows us to decompose the original problem into a deterministic PRP for
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each scenario s. Consequently, we must solve this problem for all scenarios (line 21 of

Algorithm 2). For a given scenario s, the RDPRP-MV is formulated as follows:

(RDPRP-MV,(s)) min Y (upt+ Y, ) cimiut ), hilit> (2.90)
te7 (i,j)€E ket icN
S.t.
pi < M5, Vie 7 (291)
Iy =los1+pi— Y, Y qi Vie T (292
ieN ket
L =bu+Ty 1+ Y qie—big1—d Vie M, te T (2.93)
ket

Io < Lo Vie T (2.94)
Li+dY <L Vie N, te T (295)
Y ik < Ozom Vke X t€T (2.96)
€N

Y <1 VieMteT (297)
ket
qie <V zin Vie ke 1€ T (298
by < b Vie Mte T (2.99)

Y X =2z Vie N ke, 1€T (2.100)
(.7)ee({ih)
Y i < Y e — Zenr VN C AL >2.e€n,ke X €T (2.101)

(i.))€E(M) i€n
y: €{0,1} Ve (2.102)
p: >0 Vte 7 (2.103)
Gike > 0 Vie M ke X €T (2.104)
I; >0 Vie N, 1€ T (2.105)
by >0 Vie N,t€ T (2.106)
Zie € {0,1} Vie V. ke #,te T (2.107)
Xijke € {0,1} V(i,j) EE,i£0,ke Xt €T (2.108)
xoj € {0,1,2} VjieN ke teT. (2.109)
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The above formulation represents a deterministic PRP where the setup decisions ()

(5)

are fixed from the first phase, and f)il denotes the obtained backlog from the second phase
for customer i in period ¢ under scenario s. It is crucial to emphasize that in addressing
the RDPRP-MV, we initially relax the SECs. To effectively manage these constraints,
we utilize a BC algorithm that strategically adds necessary constraints through a separa-
tion process. This critical step involves employing the minimum s-t cut algorithm from
the Concorde solver as our separation algorithm (Applegate et al., 2020). The primary
function of this algorithm is to identify and incorporate the violated constraints into the
model.

Constraints (2.99) ensure the satisfaction of service levels. However, for the 3 service

level, the following constraints are crucial to ensure the feasibility of the problem:

boi < by Vie Nte T (2.110)
boi < dj Vie s, te T (2.111)
dig — bir < d 9\ Vie Moie T (2.112)
bis — bois < Dir (1—9\")) Vie Mte T (2.113)
bis — diy < Dy (1—9)) Vie M,re T (2.114)
dir (1—9%) < boy Vie M1 €T (2.115)
boy =0 Vie N teT, (2.116)

where the \?l(ts ) are obtained from the second phase of the IMH algorithm. Additionally,
we incorporate the following valid inequalities to the third phase problem to enhance the
algorithm’s performance by eliminating symmetries from the solution space (Adulyasak

et al., 2014b; Jans, 2009):

Zie < Z0ue Vie N ke X te T,sco (2.117)
20kt < 2011 2<k<KNt€T,sc¢ (2.118)
Jooo i

Y 22Uz, < Y oliig Vie N 2<k<K,¢t€T,s€¢. (2.119)
i=1 i=1
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Upon completion of this phase, if the RDPRP-MV is feasible for all scenarios, the
routing decisions obtained are guaranteed to be feasible for the main problem. Subse-
quently, we update the routing costs and return to solve RSPRP-AC. To modify the ap-
proximate visit costs 03, we adopt an approach similar to the one used by Absi et al., 2015
and Chitsaz et al., 2019. If customer i is visited in period ¢ and scenario s, the visit cost
is given by o}, = ¢jy; +¢;j» —cjrj», where j' and j” are the nodes visited right before and
after node i. If a node is not visited in period ¢ and scenario s, we set ©;, to the minimum

insertion cost of adding this node to the existing route.

2.4.4 Stopping Criteria

In the inner iteration, we set a maximum number of iterations or a time limit as the stop-
ping criteria (line 26 of Algorithm 2). Following each inner iteration, if a feasible solution
is obtained, it is compared to the previous best solution for the current setup plan, and the
current objVal is updated accordingly (line 27 of Algorithm 2). Conversely, if no im-
provement is achieved during the intensification phase, the process is stopped, and a new
iteration is initiated to find a new setup plan. After the completion of each iteration, a
comparison is made with the previous best solution, and if a better objective value is ob-
tained, a new incumbent solution is found and the bestOb jVal is updated (lines 28-29
of Algorithm 2). Additionally, the process is terminated if a feasible solution cannot be
found after updating A for a specific number of iterations. The algorithm continues to
iterate until either a maximum number of iterations or a maximum time limit is reached

(line 30 of Algorithm 2).

2.5 Computational Experiments

In this section, we present the results of our experiments on the SPRP-AR with different
service level constraints. Algorithms are programmed in C++ and run on a machine with

Intel Xeon Gold 6148 2.4 GHz processors and 32GB of memory. We use IBM ILOG
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CPLEX 22.1.0 as the solver to solve mathematical formulations.

2.5.1 Test Instances

To carry out our experiments, we generate instances using the benchmark examples out-
lined in Archetti et al., 2011 for the deterministic PRP. We adopt a methodology similar to
that of Adulyasak et al., 2015a and Kermani et al., 2024 for generating scenarios through
Monte Carlo Simulation. We have two sets in total. The first set, denoted as &, comprises
three periods (7' = 3) and up to three vehicles (K < 3). Within this dataset, we consider
N =5 to 30 customers at intervals of 5 and we utilize the instance with high transportation
costs from the original dataset as it better demonstrates the advantage of using adaptive
routing. We solve each instance for all four service levels, setting the service level be-
tween 70% and 95% with 5% intervals, resulting in six different service level values for
each type of service level. In total, we solve 4 x 108 instances for the first dataset.

The second dataset, labeled &, contains larger instances with six periods and up to
three vehicles, and nine periods with up to two vehicles. We consider N < 30 for T =6
witheither K=1orK=2,and T =9 with K =1. ForT =6 with K =3 and T = 9 with
K =2, we assume instances with N < 20. In this set, we again focus on the high trans-
portation cost instance group, resulting in 156 instances for each type of service level.
Overall, we solve 264 instances for each of the 4 combinations for the granularity level
(per customer or aggregated, and per period or over the whole horizon) and service level
type (o, B, v and 0), amounting to a total of 4,224 experiments. We solve the prob-
lems with § = 100 unless stated otherwise. Table 2.1 summarizes the different instance

configurations in our datasets.

Table 2.1: Datasets configuration

Dataset  No. of Instances  No. of Customers  No. of Periods  No. of Vehicles SL values

S 108 N <30 3 1,2,3 [70%,95%]
17 108 N <30 6/9 1,271 [70%,95%)]
48 N <20 6/9 372 [70%,95%]

It is worth noting that we consider the demand of the deterministic dataset as the ex-
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pected demand (d;;) and utilize a discrete uniform distribution for generating stochastic
demands in the range [d; (1 — €),d; (1 +¢€)], where 0 < £ < 1 represents the uncertainty
level. The value of € is set to 0.2 throughout all experiments unless specified other-
wise. This baseline uncertainty level is chosen to analyze the model’s response in a low-
uncertainty environment and examine how even a small amount of uncertainty affects the

solution. Additionally, higher uncertainty levels are explored in Section 2.5.7 to assess

the model’s performance under more uncertain conditions.

2.5.2 Algorithm Implementation

In our algorithm, we encounter various optimization problems at different stages, and the
specifics of each problem’s settings are discussed in this section. The maximum CPU time
for the entire algorithm is set to 7200 seconds, with a maximum iteration limit of 50. For
inner iterations, there is a time limit of 1800 seconds and a maximum iteration count of
10. As discussed in Section 2.4.2 the value of A can be updated. Initially, A is set to 1 for
all configurations. However, if a feasible solution is found in the second phase but proves
infeasible in the third phase (routing), A is reduced by 0.1. The algorithm repeats this
process three times until A reaches 0.7 before concluding the inner iteration and returning
to the diversification phase. It is important to note that the intensification phase only
begins when feasible solutions for both the second and third phases are obtained using the
latest A.

In the first phase, 10 threads are allocated to CPLEX, with the optimality gap set to
10~° and a time limit of 300 seconds. In the second phase, for RSPRP-SV, 10 threads are
allocated and a time limit of 600 seconds is set. As the primary goal is to find a feasible
solution, the MIP emphasis parameter of CPLEX is set to feasibility, and an optimality
gap of 5% is employed. However, for solving RSPRP-AC, the CPLEX MIP emphasis
parameter is set to optimality, and the gap is set to 1%. It is worth mentioning that, for
enhanced efficiency, the solution from the previous iteration serves as a warm start for the

next iteration within the intensification phase. In the third phase, where we need to solve
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S deterministic subproblems, we use parallel computing by assigning one thread to each
problem, using a total of 40 threads. For each subproblem a time limit of 600 seconds
and a 1% gap is considered. We also add the SECs of a particular scenario from previous

iterations to the root node of the branch-and-bound tree of future iterations.

We also solve the problem using a BC algorithm implemented in CPLEX to compare
its results with those of the IMH. For details on the BC algorithm, readers can refer to
Appendix B.1. However, the BC is unable to find feasible solutions even for the small-
est instances. Consequently, the IMH solution serves as a warm start for the BC, and
we report the improvements achieved through the BC algorithm. The BC is configured
with 10 threads, 7,200 CPU seconds, and a 10~° gap. For dataset &, we also perform a
comparative analysis between SPRP-AR and SPRP-FR (SPRP with first-stage routing) to
illustrate how adaptive routing enhances flexibility and reduces overall costs. We solve
SPRP-FR with the BC algorithm using the same configuration as for SPRP-AR. After ob-
taining the results of SPRP-FR, we apply a post-optimization approach to the best feasible
solution from SPRP-FR to adjust routes to scenarios. This allows us to make a compar-
ison between adaptive and fixed routing, as well as to determine whether it is better to
solve SPRP-AR directly or to solve the SPRP-FR and adjust the routes.

In the post-optimization approach, we search each scenario for nodes with no deliv-
eries that exist in a route and remove these nodes from that particular scenario. We then

update the solutions by solving a TSP for each of these routes.

2.5.3 Customer Level-Single Period

In this section, we present the results for the service levels at the customer level over
a single period. Our analysis utilizes separate tables for each of the four service levels
and there are also two separate tables corresponding to datasets & and £ for each ser-
vice level. The columns labeled 7', K, S, and SL detail the configuration for each row,
indicating the number of periods, vehicles, scenarios, and target service level (TSL), re-

spectively. Column #INS shows the number of instances in each configuration where the
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IMH successfully identified a feasible solution.

For both the & and &£ datasets, we compare the performance of the IMH and BC al-
gorithms. In the IMH section, the column CPU indicates the computational time required
by the IMH algorithm. In the BC section, the columns CPU, Gap, and IMHV represent,
respectively, the total computational time of the BC algorithm (which includes the IMH
computational time, as the IMH solution is provided as a warm start), the optimality gap,

and the percentage improvement of the BC UB relative to the IMH solution. The IMHV

UBgprp.AR —bestOb jValpg
bestObjValpu

value is calculated using the formula , Wwhere UBgprp.ar 1s the UB
obtained from the BC algorithm, and bestObjValyyy is the UB obtained from the IMH
algorithm. This comparison highlights the extent to which the BC algorithm improves the
solution when initialized with the IMH solution as a warm start.

Moreover, for dataset &, we also address the SPRP-FR problem as previously men-
tioned. This introduces the FR-BC section, under which we report the computational
time and optimality gap when solving this problem using the BC algorithm. Column
PostOptV for this dataset displays the relative difference between the UB of SPRP-AR
and the UB of the SPRP-FR improved by the post-optimization, which is calculated by
formula JESPRP-AR—UBSPRPFR®PosOM (3 1ymns LB(FR-BC)V and UB(FR-BC)V represent

UBSpRP-FR(PostOpt)
the LB and UB of the average relative differences in the objective function of SPRP-AR

and SPRP-FR, expressed as a percentage. The value of LB(FR-BC)V is computed us-

ing UBsprp-AR —LBspre-FR , and UB(FR-BC)V employs LBspre-ar —UBspreFR  Thege two values
LBsprp-FrR UBsprp-Fr

represent a lower bound and upper bound on the potential improvement obtained by doing
adaptive routing instead of fixed routing. It is important to note that if the value of LB(FR-
BC)V is positive, we set it to zero, as it can occur due to a weak LB of the SPRP-FR or a
weak UB for the SPRP-AR.

Table 2.2 presents the summarized results for dataset & considering """, where
the service level is applied individually to each customer, and the TSL is consistently
enforced on every period. The IMH successfully identified feasible solutions for all cases
within this dataset. The average optimality gap of the BC solution was 8.9%, and the

BC algorithm improved the UB by 0.4%. This gap is typically larger for the o and 8
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Table 2.2: Summary of the results for the oS**"" service level (on dataset &)

IMH BC FR-BC
T K S SL #NS CPU CPU Gap IMHV CPU  Gap PostOptV LB(FR-BC)V UB(FR-BC)V
(secs) (secs) (%) (%) (secs) (%) (%) (%) (%)
70% 6 798.4 77533 47 02 41793 08 4.6 145 193
75% 6 748.4 79531 49 02 1,8327 0.0 4.1 124 -16.8
3 1 q00 0% 6 928.1 8,130.1 51 -04 49075 1.9 -10.7 -16.1 219
8% 6 1,557.3 87599 56 -0.2 72045 713 122 -10.3 217
0% 6 1,120.2 83219 81 -0.1 3,729.9 0.0 93 -12.9 -19.9
95% 6 476.5 7.681.1 50 -0.1 2,587.3 0.0 9.0 -11.0 -15.4
0% 6 24771 9,6793 72 03 52023 59 6.1 104 2138
75% 6 23722 95745 7.0 -0.5 49946 48 5.7 92 -19.6
3 2 100 0% 6 2,803.4 10,0059 79 -05 53362 110 123 9.9 265
8% 6 3,6483  10,851.1 84  -09 68754 187 -19.7 6.4 -30.5
20% 6 2,8257 10,0280 10.0 -0.2 56428 65 -10.2 -8.1 2238
95% 6 2,775.7 99784 76 0.0 6,050.0 5.1 95 6.9 -18.5
70% 6 3,386.8 10,5894 123 -08 72014 11.37 94 13 -26.8
5% 6 34044 10,6070 123 -0.8 7,202.2 15.01 -10.2 -4.0 278
3 3 100 80% 6 3,657.0 10,8594 126 -1.1 7,202.1 1781 -13.1 3.3 -30.2
8% 6 3,887.6 11,0900 143 -0.1 7,202.3 2412 -17.9 2.1 344
920% 6 3,8002 11,0025 146 -0.3 7,200.8 1410 -12.6 25 280
95% 6 39079 11,1105 122 -0.1 7,202.8 133 -13.0 2.8 25.0
Total 108 2,476.4 96653 89 -04 55457 82 104 8.6 233

The number inside [-] indicates the number of instances where the BC could not find a feasible solution for the SPRP-
FR

service levels due to the higher number of binary variables, making it more challenging
for the BC to close the gap. In contrast, for the other two service levels, the BC achieved
a narrower gap.

The BC algorithm for the SPRP-FR yielded an average optimality gap of 8.2%. The
total average of LB(FR-BC)V and UB(FR-BC)V indicate a potential improvement range
of 8.6% to 23.3% upon implementation of adaptive routing, which highlights the benefits
of tackling this more flexible problem. After applying the post-optimization we can still
observe a significant difference, averaging 10.4% between the two problems, i.e., the
solution found by BC for the AR problem is 10.4% better than the solution obtained by
solving the FR problem and then applying post-optimization. Table 2.3 shows the results
for dataset £, where the capability of the IMH becomes particularly apparent as the BC
often fails to enhance the UB established by the IMH or improvements are only marginal.

Tables 2.4 and 2.5 detail the outcomes for B£*77¢" which poses the greatest challenge
due to its complex constraints on binary variables. Consequently, the average CPU time
for the IMH is the longest among all service level instances. Despite this, the IMH suc-

cessfully identified feasible solutions for every instance in both the # and & datasets. Ad-
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Table 2.3: Summary of the results for the atS™'?"" service level (on dataset £)

IMH BC

T K S SL #INS CPU CpPU Gap IMHV
(secs) (secs) (%) (%)

70% 6 5,939.0 13,140.5 16.3 -0.1

75% 6 5,969.1 13,170.7  13.5 -0.1

6 1 100 80% 6 5,667.6 12,869.1 13.5 -0.1
85% 6 6,185.7 13,387.2 144 0.0

90% 6 5,880.7 13,082.6 11.9 0.0

95% 6 5,140.3 12,341.8 104 0.0

70% 6 6,361.9 13,564.5 243 -0.2

75% 6 6,193.7 13,396.5 23.0 -0.1

6 ’ 100 80% 6 6,276.5 13,540.8 21.8 -0.2
85% 6 5,852.9 13,055.6  23.6 -0.1

90% 6 6,198.9 13,401.5 21.0 0.0

95% 6 6,129.1 13,332.0 199 0.0

70% 4 6,003.6 13,2059 269 -0.2

75% 4 6,135.2 13,337.5 23.0 -0.1

6 3 100 80% 4 6,750.4 13,952.8 23.0 -0.2
85% 4 5,749.0 12,951.3 242 -0.2

90% 4 6,086.9 13,289.1 22.2 -0.1

95% 4 5,950.0 13,242.6  18.5 0.0

70% 6 6,298.8 13,503.1  27.8 -0.1

75% 6 6,798.1 14,026.1  26.7 -0.1

9 1 100 80% 6 6,700.7 13,903.0 27.0 -0.1
85% 6 6,340.7 13,5437 294 -0.1

90% 6 6,185.4 13,387.6  21.8 -0.1

95% 6 5,871.9 13,093.7 19.0 -0.1

70% 4 6,651.2 13,853.5 304 -0.1

75% 4 6,685.0 13,887.4  30.2 -0.2

9 ) 100 80% 4 6,759.3 13,961.7 31.0 -0.2
85% 3 6,697.7 13,899.4  26.0 -0.1

90% 4 6,104.5 13,306.8 27.8 -0.2

95% 3 6,248.3 13,450.0 23.5 -0.1

Total 154 6,170.7 13,380.4 21.9 -0.1
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Table 2.4: Summary of the results for the B£*°¢" service level (on dataset &)

IMH BC FR-BC
T K S SL #NS CPU CPU Gap IMHV CPU  Gap PostOptY LB(FR-BC)V UB(FR-BC)V
(secs) (secs) (%) (%) (secs) (%) (%) (%) (%)
70% 6 6,011.4 132128 165 0.0 6,1822 121 5.1 27 274
75% 6 58512  13,053.8 143 0.0 5,587.7  10.0 4.4 -1.7 236
31 100 0% 6 53779 12,5810 143 0.0 66289 6.4 -1.6 14 -18.6
8% 6 56746 123865 108 -0.1 6,350.6 7.3 3.0 -0.6 -15.1
920% 6 58393 13,0425 73 00 72026 112 8.4 0.2 -16.7
95% 6 5388.0  12589.0 74 0.0 7201.1 43 -4.0 -13 -12.0
70% 6 6,202.6 13,4047 206 -0.2 7,202.8 2298 -12.1 -1.8 -36.9
75% 6 6,336.0  13,543.1 18.1 -0.2 7,205.7 24.6l1 -14.6 -1.5 -36.0
3 2 100 80% 6 6,198.2 134030 162 -02 7,207.3 15.01 5.9 -1.1 25.6
8% 6 6,466.6  13,672.8 141 -02 7,206.9 18.0 -10.7 0.6 264
0% 6 5,909.1 13,1163 109 -0.1 7,203.9 21801 -15.6 0.0 270
9% 6 54458 12,6514 106 -0.1 7,200.8 10301 6.3 0.4 -17.4
70% 6 6,523.6 13,7266 284 -04 72023 32.6¥ 134 0.0 414
5% 6 63720 13,7294 256 0.0 7,204.1 28.101 -13.8 0.1 -39.6
3 3 100 80% 6 6,459.0 13,6624 22.1 -0.2 7,201.7 33.814 270 0.0 -44.0
85% 6 6,256.4 134586 197 -0.1 72032 2230 -11.6 0.0 293
20% 6 59044 13,1065 17.8 0.0 72013 29.44 -23.1 0.0 -36.2
95% 6 49405 12,1438 17.0 -0.1 7,208.1 19.78 -11.0 0.3 -25.8
Total 108 59532 13,1380 162 -0.1 6,8989 15.6 8.8 0.9 252

The number inside [-] indicates the number of instances where the BC could not find a feasible solution for the SPRP-
FR

ditionally, a larger gap is noticeable in the SPRP-FR, accompanied by a higher incidence
of instances where the BC algorithm failed to find feasible solutions. The expected im-
provement from implementing the SPRP-AR (compared to SPRP-FR) ranges from 0.9%
to 25.2%. Even after post-optimization, there remains an 8.8% difference, underscoring
the value of dealing with the complexity and challenge of the adaptive routing

The observed patterns for the y*/o"¢" and §¢*'9™¢" service levels, as shown in Ta-
bles 2.6, 2.7, 2.8, and 2.9, align with previous trends. These service levels, characterized
by a smaller number of binary variables, exhibit modest improvements obtained by BC
(compared to IMH) with 0.3% for y<"*"¢" and 0.5% for 5¢**"¢" in the smaller dataset.
This difference further narrows when using the & dataset. The range of potential en-
hancement through adaptive routing (compared to fixed routing) stands at 2.2% to 12.8%
for yustomer and 6.3% to 15.9% for 8¢*'°™e". There still exists a difference of 4.0% and
6.9% between the SPRP-AR and the SPRP-FR after post-optimization, for y<**"¢" and
ogustomer “respectively.
In Figure 2.1a, we depict the objective function (OF) values for each of the four service

levels at different TSLs. As expected, setting more stringent TSL increases the objective
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Table 2.5: Summary of the results for the B*/9"¢" service level (on dataset £)

IMH BC

T K S SL #INS CPU CpPU Gap IMHV
(secs) (secs) (%) (%)

70% 6 6,434.5 13,636.3  32.7 -0.1

75% 6 6,340.5 13,5422  29.1 -0.1

6 | 100 80% 6 6,561.4 13,763.2  27.8 -0.2
85% 6 6,795.8 13,997.7 244 -0.1

90% 6 6,624.8 13,826.6  20.3 0.0

95% 6 6,272.2 13,4742 159 0.0

70% 6 6,859.7 14,062.7 38.6 -0.1

75% 6 6,872.7 14,075.5 35.5 -0.1

6 ’ 100 80% 6 6,758.8 13,961.6  34.5 -0.1
85% 6 7,137.3 14,340.7 309 -0.1

90% 6 6,905.5 14,108.5 28.2 0.0

95% 6 7,116.9 14,319.8  23.7 0.0

70% 4 6,578.3 13,780.8 39.9 -0.1

75% 4 6,703.7 13,906.1 374 -0.1

6 3 100 80% 4 6,475.8 13,678.2  34.8 0.0
85% 4 6,594.3 13,796.7  31.6 -0.1

90% 4 6,865.4 14,067.7  30.1 0.0

95% 4 6,690.8 13,893.3  26.6 -0.1

70% 6 6,921.3 14,124.1 423 -04

75% 6 6,835.1 14,0379 394 -0.2

9 1 100 80% 6 7,128.9 14,331.6  36.1 -04
85% 6 6,973.4 14,176.0 304 -0.3

90% 6 7,040.9 14,2435 25.1 -0.1

95% 6 6,870.4 14,087.9  20.3 -0.1

70% 4 7,006.1 14,208.8 45.6 -0.3

75% 4 7,162.5 14,3654 419 -0.2

9 ) 100 80% 4 7,154.8 14,357.6  40.0 -0.2
85% 4 7,255.1 14,458.3 359 -0.1

90% 4 7,156.5 14,361.8 31.3 -0.1

95% 4 6,870.0 14,0727  27.9 0.0

Total 156 6,825.3 14,028.5 314 -0.1
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function values. Interestingly, the difference between various service levels decreases as
the TSL increases. It is important to note that y<*?"¢" represents the most strict service
level, followed by BSsio™mer and §Eustomer, gfustomer heing event-based, differs fundamen-
tally from these categories. The objective function values for @S"'*"¢" and B*'°™¢" are
remarkably similar. Figure 2.1b displays the total average production costs, where we can
observe that it is highest for y“"¢" showing the highest demand satisfaction for this

service level, and lowest for 85",

Figures 2.1c and 2.1d display the total inventory and transportation costs, respec-
tively. The o service level incurs higher average inventory holding costs for most TSLs
compared to the other types. These higher inventory costs are attributed to the fact that
ogstomer operates on the occurrence of stockouts, which necessitates maintaining the en-
tire demand in stock in most of the scenarios, whereas for the other service levels, de-

mands can be met partially, allowing for inventory reduction.

In Figure 2.2, we examine further the routing costs for dataset &, considering both
the fixed routing problem and the post-optimization, along with the adaptive routing case.
Each figure illustrates the OF value and average transportation costs (ATC) for a dis-
tinct TSL, encompassing the results of all three problems for various service level types.
This figure highlights the substantial cost savings achieved through the implementation

of adaptive routing.

Evaluating the Value of the Stochastic Solution (VSS) is a standard approach to as-
sessing how considering uncertainty affects the objective function value. However, com-
puting the VSS is impractical in our problem setting since using the average demand to
determine first-stage variables (i.e., setup decisions) in a deterministic problem may lead
to an inability to meet the required service levels in the second stage. To address this,
we solve a deterministic problem using the maximum demand for each customer, then
fix the first-stage variables to solve the SPRP-AR with service level constraints. Further
details and analyses are provided in Appendix B.2, where we discuss the results and our

proposed framework in more depth.
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Table 2.6: Summary of the results for the y<*°"¢" service level (on dataset &)

IMH BC FR-BC
T K S SL #NS CPU CPU Gap IMHV CPU Gap  PostOptVY LB(FR-BC)V UB(FR-BC)V
(secs) (secs) (%) (%) (secs) (%) (%) (%) (%)
70% 6 1,211.1 84150 54 -02 908 0.0 35 5.4 -10.5
75% 6 1,120.2 8,324.1 54 -0.1 748 0.0 25 4.1 93
3 1 100 80% 6 1,002.2 82157 50 -0.1 795 0.0 2.1 32 -8.0
85% 6 1,110.7 83188 47  -0.1 651 0.0 -1.1 2.0 -6.6
90% 6 1,477.0 8,6844 40 -0.1 644 0.0 -0.6 -1.1 5.1
95% 6 1,766.2 89719 34 -0.1 179.5 0.0 3.0 3.1 -6.4
70% 6 2,893.0 10,0967 83 -05 27577 14 35 37 -13.0
75% 6 2,992.6 10,1958 83  -0.6 32678 22 -39 29 -12.9
3 2 100 80% 6 3,019.7 10,2224 80 -04 34245 22 2.6 -1.6 -11.5
85% 6 3,298.8 10,502.7 8.0 -0.3 4,0340 1.1 2.1 -1.4 -10.3
90% 6 3,372.7 10,5758 7.0  -0.3 4,033.1 1.6 -1.9 -0.8 9.0
95% 6 3,338.0 10,540.7 6.6  -0.2 3,6423 0.7 2.6 22 93
0% 6 3,857.0 11,0594 117 -0.6 48937 124 8.7 20 219
75% 6 3,771.3 10,9820 119 -0.5 4,883.5 127 95 2.0 2221
3 3 100 0% 6 3,681.7 10,888.8 125 -0.4 4,888.6 127 7.9 -13 -20.7
85% 6 3,711.5 10,341.1 127 -0.2 4,867.9 11.4 5.8 -0.9 -19.0
90% 6 3,685.1 10,889.3 120 -0.3 4907.8 11.4 -6.1 -1.7 -18.8
95% 6 3,680.5 10,886.1 11.9 -0.2 4,856.4 9.1 44 -1.0 -16.3
Total 108 2,722.0 9,8950 82 -03 2,8340 4.4 4.0 22 -12.8

The number inside [-] indicates the number of instances where the BC could not find a feasible solution for the SPRP-
FR
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Figure 2.1: Cost comparison for different service level measures - customer level-single
period
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Table 2.7: Summary of the results for the Y59 service level (on dataset £)

IMH BC

T K S SL #INS CPU CpPU Gap IMHV
(secs) (secs) (%) (%)

70% 6 5,653.5 12,8552 11.0 -0.1

75% 6 5,443.2 12,645.1 10.4 0.0

6 | 100 80% 6 5,273.1 12,476.2 109 0.0
85% 6 5,443.3 12,6452 10.2 0.0

90% 6 5,316.4 12,517.8 9.3 0.0

95% 6 5,267.9 12,469.4 8.0 0.0

70% 6 5,584.5 12,787.3  18.3 -0.1

75% 6 5,719.7 12,9224  17.6 -0.1

6 ’ 100 80% 6 5,800.5 13,003.2  18.1 -0.1
85% 6 5,593.7 12,796.3 174 -0.1

90% 6 5,555.2 12,758.6  18.0 -0.1

95% 6 5,604.1 12,8094 164 -0.1

70% 4 5,881.5 13,089.7 19.1 -0.2

75% 4 5,602.5 12,804.6  19.0 -0.1

6 3 100 80% 4 6,064.9 13,2684  21.3 -0.1
85% 4 5,721.3 12,923.5 20.9 0.0

90% 4 6,028.2 13,230.3 204 -0.1

95% 4 5,797.4 13,006.4 199 -0.1

70% 6 5,830.2 13,032.2 144 -0.1

75% 6 5,702.1 12,904.2 144 -0.1

9 1 100 80% 6 5,568.7 12,784.0 14.2 -0.1
85% 6 5,689.3 12,8914 134 -0.1

90% 6 5,739.6 12,941.7 128 -0.1

95% 6 5,491.3 12,6934 11.6 -0.1

70% 4 6,290.6 13,4929 23.1 -0.2

75% 4 5,865.7 13,068.0 22.6 -0.2

9 ) 100 80% 4 5,976.5 13,1789  22.6 -0.2
85% 4 5,614.6 12,8169  22.7 -0.1

90% 4 5,689.2 12,8914  21.6 -0.2

95% 3 5,996.7 13,198.2 18.1 -0.2

Total 155 5,663.1 12,866.3 159 -0.1

112



Table 2.8: Summary of the results for the 55" service level (on dataset &)

IMH BC FR-BC
T K S SL #INS CPU CPU  Gap IMHV CPU Gap  PostOptV LB(FR-BC)V UB(FR-BC)V
(secs) (secs) (%) (%) (secs) (%) (%) (%) (%)
70% 6 5773 74718 60 -09 193 00 133 -13.6 -18.8
75% 6 761.6 76768 62  -0.9 309 0.0 -10.0 -115 -17.0
3 1 100 0% 6 641.8 77013 61  -03 351 0.0 1.6 93 -14.8
85% 6 986.9 8,132.8 50 -03 346 0.0 5.8 -6.9 -11.5
920% 6 1,119.8 83297 49  -02 87.1 0.0 3.5 5.4 -10.0
95% 6 1,259.7 81944 43 02 69.3 0.0 -1.0 -1.8 6.1
70% 6 1,634.7 88416 77 -09 989 00 118 121 189
5% 6 2,178.1 93844 87 -09 2443 0.0 15 -89 -16.9
3 2 100 0% 6 2,458.1 9,663.4 85 -0.6 3083 0.0 5.8 72 -15.1
85% 6 2,614.1 9,823.0 81 -05 7517 0.0 43 5.4 -13.1
920% 6 2,849.7 10,0535 80 -0.5 3,053.8 1.4 34 34 -12.4
95% 6 3,165.1 10,3682 7.6  -0.2 44774 14 2.0 14 -10.1
70% 6 3,501.5  10,706.8 11.6 -0.8 4867 0.0 8.8 93 -19.9
75% 6 3,371.7 10,5759 116 -0.5 2,631.4 24 1.7 7.1 -19.9
3 3 100 9% 6 3,784.5  10,989.1 114 -04 4,056.5 43 1.4 -4.6 -19.2
8% 6 3,675.5 10,8821 113 -04 42974 6.0 6.6 35 -19.2
920% 6 3,766.9 10,9739 116 -0.5 48720 144 -11.4 -19 238
95% 6 3,686.6 10,8919 122 -0.2 48558 124 6.8 -0.9 -19.6
Total 108 2,335.2 9481.1 84 -05 1,689.5 24 6.9 -6.3 -15.9

The number inside [-] indicates the number of instances where the BC could not find a feasible solution for the SPRP-
FR
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Figure 2.2: Routing costs comparison for different service level measures and algorithms
(on dataset #) - customer level-single period
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Table 2.9: Summary of the results for the 55" service level (on dataset £)

IMH BC

T K S SL #INS CPU CpPU Gap IMHV
(secs) (secs) (%) (%)

70% 6 4,207.9 11,410.2 10.9 -0.1

75% 6 4,527.1 11,7289 129 0.0

6 1 100 80% 6 4,698.8 11,900.5 11.2 -0.1
85% 6 5,283.2 12,4849 114 -0.1

90% 6 5,090.6 12,2919 114 0.0

95% 6 5,303.8 12,505.2 9.8 0.0

70% 6 4,875.2 12,078.0 16.0 -0.7

75% 6 5,301.0 12,503.8 17.3 -0.5

6 ) 100 80% 6 5,251.2 12,4537 16.8 -04
85% 6 5,354.6 12,561.3 17.5 -0.4

90% 6 5,594.8 12,797.6  18.1 -0.1

95% 6 5,518.1 12,720.5 16.6 -0.1

70% 4 5,452.2 12,656.7 16.7 -04

75% 4 5,713.9 12,916.1 19.4 -0.2

6 3 100 80% 4 5,649.4 12,861.6  28.1 0.0
85% 4 5,659.6 12,867.4  18.9 -0.2

90% 4 5,790.1 12,9923 21.0 -0.2

95% 4 5,573.3 12,775.5 19.3 -0.1

70% 6 5,212.8 12,4149 154 0.0

75% 6 5,136.0 12,338.1 15.2 -0.1

9 1 100 80% 6 5,470.2 12,672.3 144 -0.1
85% 6 5,526.1 13,059.5 15.3 -0.1

90% 6 5,395.1 12,5972 152 -0.1

95% 6 5,593.2 12,7952 14.2 -0.1

70% 4 5,899.7 13,101.9 19.9 -0.1

75% 4 5,947.0 13,149.1  20.8 -0.2

9 ) 100 80% 4 6,055.1 13,257.6  21.2 -0.2
85% 4 5,727.8 12,930.0 21.6 -0.3

90% 4 6,455.9 13,658.2 22.1 -0.3

95% 4 5,886.9 13,089.1 23.0 -0.3

Total 156 5,380.0 12,592.5 16.5 -0.2
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2.5.4 Customer Level-Global

In this section, we summarize the results for the case where service levels are considered
at the customer level over the entire planning horizon rather than for every period. Table
2.10 presents the summary for dataset &, while Table 2.11 displays a summary of the
results for dataset £. Detailed tables are provided in the online Appendix, Section 1.

For dataset &, the average CPU time for the IMH ranges between 40 to 110 minutes,
with most instances completing in less than 60 minutes except for f°™¢” While the
IMH found a feasible solution for all instances, the BC algorithm failed to find a feasible
solution for the SPRP-FR in 8 instances for (xf,“s’ome’, 15 instances for B¢’ and 1 in-
stance for y*“'™"e" The BC algorithm improved the objective function of the & instances
obtained by IMH by 0.8% for a,"*"", 0.4% for B"¢", 0.6% for y*"¢’, and 1.1%
for ocustomer respectively. The lowest minimum expected improvement obtained from
solving the SPRP-AR instead of SPRP-FR is for f<'°"¢" with an average of 1.4%, while
the highest minimum expected improvement is for §“'°"¢" with an average of 13.7%.
For dataset &£, the IMH was also able to solve the problem for all instances, with the
average improvement obtained by the BC algorithm not exceeding 0.8%.

Figure 2.3 displays the OF value for different TSLs. It can be observed that, in com-

ycustomer Bcustomer

parison to Figure 2.1a, the OF values for and exhibit less difference.
However, for §<%9™¢" the values do not converge to those of other service levels even at
higher TSLs. Additional details on the CPU time for different phases of the IMH algo-

rithm are provided in Appendix B.3.
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Table 2.10: Summary of the results for different service levels for customer level-global
on the # dataset

IMH BC FR-BC
SLType T K S #INS CPU CPU Gap IMHV CPU  Gap PostOptY LB(FR-BC)V UB(FR-BC)V
(secs) (secs) () (%) (secs) (%) (%) (%) (%)
1 100 36 1,167.9 83274 58 04 65875 14 54 6.8 135
ogustomer 32100 36 2,465.3 96694 7.7  -1.1 71957 9.7 95 3.5 -19.5
3100 36 3,647.6 10,8519 109 -1.0 6,854.1 15.208 112 -1.9 244
Total 108 2,4269 96163 81 -08 6,881.1 83 85 42 187
1 100 36 59554 13,0529 106 -0.1 6,359.1 69 6.9 2.0 -17.8
Beustomer 32100 36 6,187.1 13,3538 140 -0.6 6,959.3 16.32 -10.9 13 25.8
3100 36 64656 13,6729 189 -0.6 7,135.0 22,5113 -15.2 0.6 -33.1
Total 108 62027 133599 145 -04 6,7704 142 -10.4 14 245
1 100 36 2,330.7 93308 3.6 0.1 138.9 0.0 15 3.0 6.5
yeustomer 32100 36 29945 10,1366 72  -0.9 1,706.6 0.9 2.1 2.7 -10.4
3 100 36 3,7602  10,962.0 103 -0.8 40383 6.3 52 23 -16.7
Total 108 3,0285 10,1431 7.0 -0.6 19589 24 29 27 112
I 100 36 2.796.1 98642 6.7 -09 156.0 0.0 115 151 206
§eustomer 32100 36 3,078.1 102126 120 -12 13754 0.1 -10.6 -13.9 238
3100 36 33020 104732 149 -1.1 3466.1 5.7 -12.1 -12.0 -28.4
Total 108 3,0587 10,1833 112 -1.1 1,6658 20 114 137 243

The number inside [-] indicates the number of instances where the BC could not find a feasible solution for the SPRP-
FR
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Figure 2.3: Objective function values for different service level measures - customer level-
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Table 2.11: Summary of the results for different service levels for customer level-global
on the £ dataset

IMH BC
SLType T K S #INS CPU CPU Gap IMHV
(secs) (secs) (%) (%)
1 100 36 6,241.2 13,4455 19.2 -0.1
6 2 100 36 6,295.3 13,498.1 325 -0.1
ch,”s"’mer 3 100 24 6,208.6 13,4109 347 -0.2
9 1 100 36 6,009.6 13,260.9  38.8 -0.5
2 100 23 6,280.0 13,5222 472 -0.2
Total 155 6,200.7 13,4213 333 -0.2
1 100 36 6,117.3 13,312.3  25.0 -0.1
6 2 100 36 6,316.0 13,519.0 339 -0.3
peustomer 3 100 24 6,683.7 13,886.5 37.8 -0.5
9 1 100 36 6,337.2 13,5399 41.0 -0.5
2 100 24 6,849.4 14,052.3  49.1 -0.4
Total 156 6,413.7 13,6147 364 -0.3
1 100 36 6,038.5 13,240.9 8.1 0.0
6 2 100 36 6,369.1 13,572.0 14.5 -0.4
ycustomer 3 100 24 6,509.0 13,711.8  18.7 -0.5
9 1 100 36 5,990.8 13,193.8 9.9 -0.1
2 100 24 6,176.2 13,3784  19.3 -0.3
Total 156 6,197.4 13,4000 134 -0.3
1 100 36 5,957.8 13,159.7 6.3 -0.3
6 2 100 36 6,207.6 13,409.6 12.8 -0.8
geustomer 3 100 24 6,035.3 13,2382 16.2 -0.7
9 1 100 36 5,708.7 12,910.6 129 -0.1
2 100 24 5,703.4 12,906.5 19.2 -0.4
Total 156 5,930.7 13,133.0 13.1 -0.4

2.5.5 Plant Level-Single Period

We now shift our focus to studying service levels at the plant level, where relevant con-
straints are applied to all customers in an aggregate way. Specifically, in terms of demand
satisfaction, each customer is no longer considered separately; thus, all customers are
treated as a single entity. This section presents the results for the plant level, where ser-
vice levels are imposed for each period separately. Table 2.12 summarizes the results for
all service levels for this problem using dataset &, while Table 2.13 illustrates the results

for dataset &. Detailed results are provided in the online Appendix, Section 2.
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From Tables 2.12 and 2.13, we can observe that the IMH was able to solve the problem
for all instances, with the highest average improvement obtained from the BC algorithm
being 1.0%, while for most cases, it was below 0.5%. However, the BC algorithm was
not able to find a feasible solution for the SPRP-AR for 42 instances out of 432 instances
of dataset .

In Figure 2.4, it is evident that, similar to the results from Section 2.5.3, the discrep-
ancy among different service levels decreases as the TSLs rise. However, in this case,
the objective function value for o is notably higher than that for B2’ This can be
attributed mainly to the fact that experiencing a stockout in even one of the customers af-
fects the satisfaction of the a?'“™ service level at the plant level, whereas for other types

of service levels, it is still possible to partially meet the demand without compromising

the service levels.

Table 2.12: Summary of the results for different service levels for plant level-single period
on the & dataset

IMH BC FR-BC
SLType T K S #INS CPU CPU  Gap IMHV CPU  Gap PostOptY LB(FR-BC)Y UB(FR-BC)V
(secs) (secs) (%) (%) (secs) (%) (%) (%) (%)
1 100 36 1774 66432 27 -01 16009 02 78 151 176
a3 2 100 36 23209 93223 60 0.1 51247 5.8 9.6 -11.8 221
3 100 36 3,6946 109004 93  -0.1 5305.1 13.14 -13.5 8.4 282
Total 108 20643 89553 60 -0.1 39604 6.1 -102 119 224
1 100 36 49160 11,8682 107 0.0 72025 13.8P 8.8 05 220.0
prlem 3 2 100 36 47379 11,9400 154 -04 7,039.4 15205 9.7 0.7 240
3 100 36 50005 12,1369 220 -0.6 7,068.5 244019 -14.8 0.2 3238
Total 108 48848 119817 160 -03 71222 168 -105 04 242
1 100 36 13263 84192 36 -03 1854 00 14 14 45
gl 32100 36 3,088 10,1668 93  -0.3 3,8008 2.9 2.9 -15 -11.9
3 100 36 37972 108259 146 -05 48623 11111 5.8 -1.1 -19.6
Total 108 27441 98039 92 -04 29316 46 34 13 119
1 100 36 7237 74453 19 08 6274 00 18 18 89
sPlant 32100 36 24031 94967 126 -15 32775 16 22 -1.6 -13.9
3 100 36 39346 109017 168 -0.6 43098 58 24 -1.0 175
Total 108 23538 92984 125 -10 27383 25 21 15 134

The number inside [-] indicates the number of instances where the BC could not find a feasible solution for the SPRP-
FR
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Table 2.13: Summary of the results for different service levels for plant level-single period
on the & dataset

IMH BC
SLType T K S #INS CPU CPU Gap IMHV
(secs) (secs) (%) (%)
1 100 36 5,181.7 12,386.5 104 0.0
6 2 100 36 5,471.1 12,6745 21.1 -0.2
chlam 3 100 24 5,860.4 13,064.0 23.6 -0.2
9 1 100 36 5,747.8 13,1109 21.5 -0.1
2 100 24 5,703.4 13,154.1 284 -0.2
Total 156 5,563.8 12,836.6  20.1 -0.1
1 100 36 6,502.2 13,7043 243 -0.2
6 2 100 36 6,399.8 13,602.7  30.6 -0.1
pgustomer 3 100 24 6,633.0 13,8354  31.8 -0.1
9 1 100 36 6,609.1 13,872.0 27.8 -04
2 100 24 6,660.0 13,885.2 327 -0.1
Total 156 6,561.5 13,766.0  29.0 -0.2
1 100 36 5,351.3 12,511.8 9.5 0.0
6 2 100 36 5,578.7 12,781.5 15.7 -0.1
yLustomer 3 100 24 5,887.8 13,062.6  19.2 -0.3
9 1 100 36 6,027.6 13,230.8 11.0 -0.1
2 100 24 5,926.1 13,146.7 19.8 -0.2
Total 156 5,730.8 12,9209 14.3 -0.1
1 100 36 4,579.2 11,613.2 9.1 -0.6
6 2 100 36 5,497.6 12,700.8  13.5 -0.8
ogustomer 3 100 24 5,750.5 12,860.6  14.8 -0.9
9 1 100 36 5,270.1 12,473.1  11.6 -0.3
2 100 24 5,870.2 13,072.7  18.1 -0.4
Total 156 5,329.4 12,479.1  13.0 -0.6

2.5.6 Plant Level-Global

Following the previous sections, our last analysis focuses on the plant granularity level
while considering the service levels across the entire planning horizon. We once again
present two summary tables, Table 2.14 and Table 2.15, to display our results on the
S and & datasets, respectively. For detailed results, we refer the reader to the online

Appendix, Section 3.

The average computation time mostly ranges between 30 to 50 minutes for o2,

yPlant “and §P' | while it is notably higher for B7/" | averaging around 90 minutes, as
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Figure 2.4: Objective function values for different service levels - plant level-single period
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Figure 2.5: Objective function values for different service level measures - plant level-

global

it represents the most challenging service level type in our comparison. Additionally, it

is observed that the BC algorithm was unable to solve the SPRP-FR for 22 instances of

BPlant In dataset &, the average improvement obtained by BC ranges from 0.3% to 1.6%,

while the average optimality gap ranges between 5.4% to 17.2%.

The upper bound obtained by AR is still 1.4% to 7.9% better than the upper bound ob-

tained by FR and post-optimization. Additionally, it is noted that the minimum expected

improvements by solving the adaptive routing problem could range from 0.5% to 4.7%

for different service levels. We also provide the OF value of different service levels for

various TSLs in Figure 2.5.
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Table 2.14: Summary of the results for different service levels for plant level-global on
the & dataset

IMH BC FR-BC

SLType T K S #INS CPU CPU  Gap IMHV CPU Gap PostOptV  LB(FR-BC)V  UB(FR-BC)V
(secs) (secs) (%) (%) (secs) (%) (%) (%) (%)
1 100 36 411.6 7.466.1 24 0.7 404.7 0.0 3.0 5.9 8.2
a3 2 100 36 2,016.3 8,766.7 52 02 4,888.1 4.7 6.8 5.0 -12.8
3 100 36 3,6839  10,890.1 85  -0.1 56342 147 -13.8 3.1 -24.1
Total 108 2,037.3 9,051.5 54 -03 36423 65 19 4.7 -15.0
1 100 36 52873 12,1299 128 -0.3 7.0640 6.6 31 0.9 -15.5
prlent 3 2 100 36 53486 12,1027 168 -0.9 6.962.7 14.200 6.9 0.3 232
3 100 36 55847  12,727.0 22.0 -0.7 6,984.3 15.719) -8.0 0.2 27.1
Total 108 54069 12,3199 172 0.7 70102 114 5.6 0.5 209
1 100 36 1,740.0 86720 39 -08 172.9 0.0 0.8 0.9 4.6
yPlant 32100 36 2,499.1 94548 9.0 -1.2 1,867.8 0.3 0.9 0.7 9.5
3 100 36 35175 104385 11.8 -0.9 40782 3.7 2.5 -0.9 -13.9
Total 108 2,585.5 9,529.7 83 -1.0 2,039.7 13 1.4 0.8 9.3
1 100 36 2,405.6 93484 54 -13 208.3 0.0 22 22 15
grlant 32100 36 28152 10,0213 125 -2.3 1,560.4 0.2 2.1 2.0 -14.3
3 100 36 34169 103964 162 -1.3 33179 1.6 2.6 2.0 -18.3
Total 108 2,879.2 99220 114 -1.6 1,6955 06 23 2.1 -13.4

The number inside [-] indicates the number of instances where the BC could not find a feasible solution for the SPRP-
FR

2.5.7 Insights

In this section, we provide additional insights into our experiments by offering a further
comparison of the results among different service levels. Moreover, we conduct two more
sensitivity analyses in this section, where we present the results for different numbers of

scenarios and provide an analysis of how uncertainty levels affect the solutions.

Different Granularity Level

In this section, we compare the results in terms of different granularity levels. Figure
2.6 illustrates the comparison of the average OF value for each service level across var-
ious granularity levels. It is evident that, across all cases, the plant level-global scenario
exhibits significantly lower costs compared to all other cases. This difference can be
attributed to the increased flexibility at this granularity level, where the service level is
imposed from the plant perspective over the entire planning horizon. This aggregation
allows for less strict demand satisfaction at each customer, resulting in lower OF values.
The customer level-global case follows as the second lowest in cost, offering less flex-

ibility compared to the plant level-global. In this case, each customer must meet a specific
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Table 2.15: Summary of the results for different service levels for plant level-global period
on the & dataset

IMH BC
SLType T K S #INS CPU CPU Gap IMHV
(secs) (secs) (%) (%)
1 100 36 6,057.8 13,260.8  13.5 -0.1
6 2 100 36 6,318.0 13,5209 26.6 0.0
Oc,’;lam 3 100 24 6,510.7 13,713.8 304 -0.1
9 1 100 36 6,125.3 13,4842 33.1 -0.1
2 100 24 6,308.7 13,511.0 423 -0.2
Total 156 6,241.7 13,480.6  28.1 -0.1
1 100 36 6,194.0 13,398.1  27.0 -1.1
6 2 100 36 6,467.3 13,670.1 354 -0.6
peustomer 3 100 24 6,606.1 13,808.3  38.7 -0.3
9 1 100 36 6,498.4 13,701.1  40.0 -0.4
2 100 24 6,875.3 14,077.9 49.3 -0.5
Total 156 6,495.5 13,698.5 37.2 -0.6
1 100 36 5,875.3 12,970.8 5.5 0.0
6 2 100 36 6,438.4 13,641.7 11.8 -0.5
ycustomer 3 100 24 6,177.1 13,379.5 16.1 -0.9
9 1 100 36 6,076.0 13,279.0 8.9 -0.1
2 100 24 6,141.7 13,3439 18.5 -0.4
Total 156 6,139.0 13,3170 114 -0.4
1 100 36 5,319.9 11,874.1 6.6 -0.6
6 2 100 36 5,488.2 12,093.3 11.3 -0.9
geustomer 3 100 24 5,455.2 12,059.3 14.1 -0.7
9 1 100 36 6,073.6 13,276.0 7.5 -0.3
2 100 24 6,317.8 13,528.7 14.3 -0.7
Total 156 5,707.0 12,524.8 10.2 -0.6

service level throughout its entire horizon, resulting in higher OF values. However, it is
noteworthy that the OF value of the customer level-global scenario remains lower than
the plant level-single period case, where aggregation is solely on the customers while

imposing the SL in each time period.

Furthermore, setting service levels for each period instead of on the whole horizon im-
poses a higher satisfaction rate and reduces flexibility. Consequently, the per-period cases
exhibit higher costs compared to the global scenarios. When considering the granularity

level per period between customer and plant levels, it is important to note that impos-
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ing service levels for every customer results in higher costs. However, the difference in
average OF values between the per-period plant and customer granularity levels tends to

decrease for higher TSLs.
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Figure 2.6: Objective function values for different service levels and granularity levels

Different Numbers of Scenarios

We analyze how considering different numbers of scenarios can affect the problem com-
plexity and the computation time. In Table 2.16, we present the results for the customer
level-single period case under different numbers of scenarios, including 20, 40, 60, 80,
100, 200, and 500 scenarios. We solve instances from both the & and &£ datasets. This
allows us to observe how increasing the number of scenarios affects the solutions. We
performed experiments on 264 instances for each number of scenarios, totalling 1848

instances per each type of service level.
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As expected the BC gap increased when we solved the problem with a higher number
of scenarios. The IMH ability to solve instances also decreases for higher number of
scenarios, however, all instances have been solved for instances with up to 200 scenarios
and also more than 80% of instances were solved when § = 500. It is also evident that the
improvement obtained by the BC remains relatively low throughout the entire experiment,
where the highest is for 55" with an average of 0.4%. These results shows the ability
of the IMH algorithm even for large instances with 500 scenarios and even for the complex

B service level.

Different Uncertainty Level

In this section, we explore how increased uncertainty impacts the solutions to our prob-
lem. To do this, we adjust the value of &, which influences the range of stochastic de-
mands. We set € at 0.2, 0.4, 0.6, and 0.8 and solved the problem for the customer level-
single period case. The experiments were conducted using both the # and £ datasets.

Figure 2.7 displays the average values of the OF for these settings.

Interestingly, the average OF values for a service level decrease for higher uncer-
tainty levels, as shown in Figure 2.7a. Although this may seem counter-intuitive at first
glance, a closer examination of this metric’s nature reveals the reason. As « service level
is an event-based service level, and the problem goal is to minimize total costs, the model
primarily satisfies scenarios with lower demand. Consequently, the average demand satis-
faction decreases as uncertainty increases. Specifically, with a broader range of demand,
the model tends to prioritize scenarios with lower demand, often neglecting scenarios
with higher demands. Therefore, it satisfies a smaller portion of the demand, leading to
a decrease in the OF value. This could be viewed as a drawback of the o service level
in practical applications, as it overlooks higher demand instances. In contrast, for the
other three service levels, the OF value behaves as anticipated, where a more uncertain

environment results in increased costs.
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Table 2.16: Summary of the results for different service levels for customer level-single
period under different number of scenarios

IMH BC
SL Type S #INS CPU CPU Gap IMHV
(secs) (secs) (%) (%)
20 264 3737.1 7039.6 10.2 -04
40 264 4088.7 7178.8 12.5 -0.3
60 264 4426.1 7197.6 145 -0.3
qustomer 80 264 4521.2 7189.7 16.2 -0.3
100 264 4656.8 7199.2  16.5 -0.2
200 264 5024.3 7205.1  20.8 -0.1
500 224 5798.9 72294  28.0 -0.1
Total 1808 4581.2 7174.1 16.4 -0.3
20 264 5215.7 7097.4  16.1 -0.2
40 264 5712.9 7127.5 194 -0.2
60 264 5995.6 71979 214 -0.2
customer 80 264 6312.9 7170.1  23.7 -0.2
100 264 6468.5 7195.7 25.2 -0.1
200 264 6607.0 7206.4  29.7 -0.1
500 221 6493.7 7207.3  37.2 -0.1
Total 1804 6106.1 71694 239 -0.1
20 264 3903.6 7161.5 8.4 -0.4
40 264 4134.9 71952  10.0 -0.3
60 264 4326.5 7203.2  11.1 -0.3
yeustomer 80 264 4387.9 7188.8 11.9 -0.2
100 264 4459.2 7190.8  12.7 -0.2
200 264 4720.8 7186.9 139 -0.1
500 218 5118.3 7206.1 164 0.0
Total 1802 4418.5 7189.6 11.8 -0.2
20 264 3338.8 7168.2 8.8 -0.8
40 264 3701.4 71959 104 -0.5
60 264 3949.8 717477 11.5 -0.5
ogustomer 80 264 4085.3 7146.3 123 -0.4
100 264 4134.4 7179.4  13.1 -0.3
200 264 4559.4 7195.8 149 -0.2
500 238 5002.1 7226.3  18.7 0.0
Total 1822 4097 .4 7182.8 12.7 -04

125



(@) o (b) B

54,000

52,000

50,000 52,000

48,000 50,000

46,000 48,000

OF Value
OF Value

44,000 46,000

42,000 02 44,000 02
0.4 0.4
40,000 0.6 42,000 0.6
0.8 08
40,000
70% 75% 80% 85% 90% 95% 70% 75% 80% 85% 90% 95%
TsL TsL
©y (d) 6
50,000
54,000
45,000
52,000
[ [
E] E]
o © 40,000
> > .
> 50,000 z
& &
Gncararty Lol 35,000 re—y——
48,000 02 02
0.4 0.4
0.6 30,000 0.6
46,000 0.8 ' 0.8
70% 75% 80% 85% 90% 95% 70% 75% 80% 85% 90% 95%
TSL TSL

Figure 2.7: Objective function values for different service level measures and uncertainty
levels

2.6 Conclusion

In this study, we address the stochastic production routing problem with adaptive routing
under demand uncertainty. To tackle this uncertainty, we propose a two-stage stochastic
formulation and introduce various service levels from the literature. These service levels
offer different approaches to handling uncertainty, particularly in cases where assigning a
penalty cost to lost sales is not straightforward, and the primary objective is to maintain a
predefined level of demand satisfaction. The adaptive routing component enables flexible
routing in the second stage of the problem, resulting in cost reduction.

We also consider four granularity levels, formulating the service levels from either the
perspective of customers or the plant, and either per period or over the entire planning
horizon. To solve this complex problem, we develop an iterative heuristic approach. In

the first phase, we generate setup plans, followed by building feasible solutions through
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solving production and delivery decisions in the second and third stages, respectively.
By iterating over these stages, we aim to improve solutions towards optimality, while
also exploring a wider solution space and diversifying solutions by iterating over the first

stage.

Finally, we conduct experiments on all the mentioned service levels and different gran-
ularity levels, providing insightful discussions. We find that considering service levels for
each customer tends to increase costs due to higher demand satisfaction requirements,
whereas enforcing service levels from the plant perspective allows for greater flexibility
and lower costs. Additionally, we observe that global service levels offer more flexibility
compared to individual period service levels. Moreover, we perform experiments under
various analyses, including different numbers of scenarios and uncertainty levels, to gain

further insight into how the model responds to different situations.

For future studies, extending the problem to a multi-product setting offers practical ap-
plicability. Considering multiple products introduces significant complexity due to shared
resources, product-specific demands, and constraints. Addressing this extension would
likely require the development and refinement of the proposed solution algorithm to ef-
fectively handle the increased problem size and complexity. In the presence of multiple
products, another promising direction is the consideration of aggregate service levels, as
addressed in the LSP literature. Incorporating this concept into the SPRP framework

would present new modeling challenges.

Finally, the problem could be examined in a bi-objective setting, where service lev-
els are balanced against another critical objective, such as minimizing carbon emissions.
This approach would provide valuable insights into the trade-offs between service level
satisfaction and other operational goals, enabling decision-makers to adopt strategies that

best align with their priorities.
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Supplementary files, which include more detailed tables corresponding to Sections 2.5.4,
2.5.5, and 2.5.6, can be found at the following link: https://github.com/A1iK094/
online_supplements_sprpar_sl. Additional files have also been provided to offer

detailed results of all experiments conducted in this study.
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Chapter 3

The Stochastic Two-Echelon Production
Routing Problem with Adaptive
Routing

Abstract

We address a stochastic two-echelon production routing problem with adaptive routing
under demand uncertainty. This problem involves a production plant with production and
inventory capacities where goods are produced and transported to a set of warehouses
using a homogeneous fleet of vehicles. These products are then stored and subsequently
delivered to customers. The products distributed from warehouses to customers can sat-
isfy current demand or be stored for future use. We also consider the flexibility to modify
customer-to-warehouse assignments for each period and scenario. We introduce a two-
stage stochastic formulation to address this problem. In the first stage, the setup plan,
production quantities, and routing plan to deliver goods from the production plant to the
warehouses are decided. The second stage incorporates the routing decisions to deliver
goods from warehouses to customers based on realized demand, with penalty costs ap-

plied for each unit of unmet demand. The objective is to minimize the total costs of pro-



duction, inventory holding, and transportation in the first echelon, as well as the expected
inventory holding, transportation, and penalty costs for unsatisfied demand in the second
echelon. To reduce the complexity of the problem, we decompose it into two subprob-
lems. The first subproblem addresses the first-stage decisions using an approximation of
the demand from the second stage, while the second subproblem focuses on solving the
second-stage problem. We propose a hybrid heuristic approach to tackle these subprob-
lems: a mixed-integer programming model is employed for the first stage, and the second
stage is handled by an Iterated Local Search metaheuristic. Computational experiments
and sensitivity analyses are conducted to demonstrate the benefits of solving this prob-
lem and to assess the performance of the algorithm. The proposed algorithm successfully
generated feasible solutions for instances with up to five warehouses and two vehicles in
the first stage, and three vehicles per warehouse in the second stage. These solutions can
typically not be improved, or only to a small extent, by a branch-and-cut algorithm which
is run for 2 hours. The results also indicate that solving the stochastic problem yields, on
average, a substantial improvement compared to solving a deterministic problem where

the random variables are replaced by their expectation.

3.1 Introduction

Integrating different problems of supply chain planning can significantly enhance the ef-
ficiency of the entire network. However, the complexity of such integrated problems has
traditionally led researchers and practitioners to address these components sequentially to
maintain tractability (Hrabec et al., 2022). Recent advances in optimization techniques
and computational capabilities have enabled the study of more challenging integrated
problems (Absi et al., 2018). One example is the Production Routing Problem (PRP),
which integrates production planning, inventory management, and transportation deci-
sions into a single optimization framework. This integration promotes better coordination
among supply chain components, offering substantial opportunities for cost reduction and

efficiency gains (Adulyasak et al., 2015b).
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Following its introduction by Chandra (1993) and Chandra and Fisher (1994), the
PRP has been widely studied. In its classical form, the PRP assumes a production facility
that manufactures a single product, which must be distributed to customers to meet their
demands over a finite planning horizon. The main decisions in this setting involve deter-
mining the setup plans of the production facility, production quantities, vehicle routing
plans, delivery quantities to customers in each period, and inventory levels at both the
plant and customer locations. These decisions are made in an integrated manner to mini-
mize the total production, inventory, and transportation costs while ensuring that customer
demands are satisfied throughout the planning horizon.

Despite the complexity of the problem, several studies have attempted to develop and
improve exact algorithms to solve small and medium-sized PRP instances. Bard and
Nananukul (2010) propose a Branch-and-Price algorithm to solve the problem. Archetti
et al. (2011) propose a Branch-and-Cut (BC) algorithm to solve the PRP with a single
vehicle. Several studies have improved the BC algorithm and introduced valid inequal-
ities to enhance the efficiency of this algorithm for the PRP (Adulyasak et al., 2014a;
Schenekemberg et al., 2021; Schenekemberg et al., 2023).

Most studies, however, focus on developing heuristic and matheuristic methods to
leverage the problem structure and obtain good solutions for larger practical instances.
Among these, several studies decompose the problem into more tractable subproblems
and use iterative algorithms to obtain high-quality solutions for the original problem (Absi
et al., 2015; Archetti et al., 2011; Ben Ahmed et al., 2023; Manousakis et al., 2022; Rus-
sell, 2017; Solyal1 and Siiral, 2017; Vadseth et al., 2023). Other studies consider meta-
heuristic algorithms or hybrid versions of these algorithms within an iterative approach to
solve the problem (Adulyasak et al., 2014b; Armentano et al., 2011; Bard and Nananukul,
2009; Rodrigues et al., 2023).

Different variants of the PRP, such as the PRP with perishable products (Alvarez et
al., 2022a; Neves-Moreira et al., 2019), multi-product PRP (Li et al., 2019; Qiu et al.,
2019; Rodrigues et al., 2023), and PRP with transshipment (Alvarez et al., 2022a; Avci
and Topaloglu Yildiz, 2020), have been explored in the literature. Chitsaz et al. (2019,
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2020) propose a different variant called the assembly routing problem, where instead of
considering multiple customers, they address a setting with multiple suppliers and a man-
ufacturing facility. Alvarez et al. (2022b) study a variant of the PRP with multiple plants
and products and incorporate four forms of consistency, namely driver, source, product,
and plant consistency. Other factors, such as environmental effects and greenhouse gas
emissions, are also addressed in various studies (Kumar et al., 2016; Qiu et al., 2018,
2017).

In real-world supply chains, demand uncertainty often leads to disruptions and unex-
pected costs. To mitigate these risks, several studies have introduced demand uncertainty
into the PRP, enhancing the resiliency of supply chains. Adulyasak et al. (2015a) propose
a two-stage and a multi-stage stochastic formulation for the PRP with demand uncertainty,
where setup and routing decisions are made in the first stage and production and delivery
quantities are decided in the second stage. Agra et al. (2018) investigate the PRP under
demand uncertainty while considering backlogs. Zhang et al. (2018) consider the PRP
with simultaneous pickup and delivery with remanufacturing possibilities. Mousavi et al.
(2022) study the PRP with perishable products under demand uncertainty. Wang et al.
(2021) examine the PRP in an uncertain environment with potential uncertainties in de-
mand and costs. Kermani et al. (2024) present a two-stage stochastic problem for the PRP
with demand uncertainty and adaptive routing. They highlight that this adaptive structure
improves cost efficiency by increasing flexibility in responding to demand uncertainty.
Kermani et al. (2025) investigate different types of service levels in the stochastic PRP
with adaptive routing where, instead of penalty costs for unmet demands, a minimum
demand satisfaction based on different service levels is imposed.

While the PRP represents a critical step toward integrating supply chain components,
its traditional form is limited to single-layer distribution networks. However, today’s sup-
ply chains have evolved into increasingly complex networks, often involving multiple
layers that require coordinated decision-making across different echelons. For instance,
the inclusion of intermediate layers, specifically, warehouses located between produc-

tion plants and customers, is increasingly common. This configuration, particularly com-
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mon in large urban areas, helps reduce congestion and environmental impacts by limiting
the use of large trucks within cities (Perboli et al., 2011). In such systems, large ve-
hicles transport goods from manufacturing plants to warehouses, from which smaller,
low-emission vehicles handle last-mile deliveries to customers (Qiu et al., 2021).

While both the lot-sizing problem (LSP) and vehicle routing problem (VRP) literature
have tackled aspects of multi-echelon supply chains individually, integrated models that
consider both production and transportation across multiple layers remain scarce. For
example, Gruson et al. (2019) propose a three-level lot-sizing and replenishment prob-
lem (3LSPD) involving a manufacturing facility, warehouses, and retailers. However,
their model focuses solely on production and replenishment decisions, omitting routing
considerations between the different levels. In contrast, the two-echelon VRP (2E-VRP)
introduced by Perboli et al. (2011) considers two transportation layers, one from a central
depot to distribution centers, and another from these centers to customers. Yet, this model
does not account for production decisions.

Only a few studies attempt to bridge this gap by integrating production, inventory, and
routing decisions across multiple echelons. Schenekemberg et al. (2021) present a two-
echelon PRP inspired by the petrochemical industry, encompassing suppliers, production
plants, and customers. Gruson et al. (2023) extend the 3LSPD to include distribution,
using direct shipments from production plants to warehouses while considering routing
decisions for the warehouse-to-customer level. Qiu et al. (2021) propose a two-echelon
PRP with cross-docking satellites (2E-PRPCS), where routing decisions apply to both
echelons. Despite these contributions, a significant gap remains in integrating supply
chain planning under demand uncertainty within realistic, multi-layered networks. Fur-
thermore, the scale of problems addressed in deterministic models tends to be small com-
pared to real-world applications, underscoring the need for efficient algorithms capable
of solving larger instances.

To address these challenges, we propose a two-stage stochastic formulation for a two-
echelon production routing problem. In this problem, a single manufacturing facility

produces a product and transports it to a set of distribution facilities. The first-stage de-
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cisions include the production setup, production quantities, and transportation of goods
from the plant to the warehouses. These decisions are made before demand realization
while considering expected recourse costs. The second stage, performed after demand
scenarios are realized, manages inventory at both the warehouse and customer levels and
determines the distribution of goods from warehouses to customers. This flexible routing
approach, where routes are selected post-demand realization, aligns with the concept of
adaptive routing in stochastic PRP frameworks (Kermani et al., 2024).

To the best of our knowledge, this is the first study to incorporate demand uncertainty
in a two-echelon production routing problem with adaptive routing in the second eche-
lon. We refer to this model as the Stochastic Two-Echelon Production Routing Problem
with Adaptive Routing (S2EPRP-AR). In the proposed S2EPRP-AR, shortages are al-
lowed, with penalty costs incurred for unmet demand, providing additional flexibility for
managing disruptions. Moreover, our model introduces flexible customer-to-warehouse
assignments, allowing allocations to vary across periods and scenarios. Nonetheless, each
customer remains assigned to one warehouse per period and scenario to maintain opera-
tional feasibility.

To solve this complex problem, we adopt a decomposition approach, breaking the
model into two subproblems to enhance computational tractability. The first subprob-
lem focuses on the first-stage decisions including production setups, production quanti-
ties, and deliveries from the plant to the warehouses, using approximate aggregate de-
mand based on customer-to-warehouse assignments across periods and scenarios. Once
these plans are established, the second subproblem handles the distribution of products
from warehouses to customers, leveraging the warehouse inventory determined in the
first stage. Notably, this second subproblem is scenario-decomposable, allowing for the
independent solution of each scenario, thereby improving computational efficiency.

We develop a hybrid heuristic algorithm to solve these subproblems. The first-stage
subproblem is formulated as a Mixed-Integer Programming (MIP) model and solved using
a general-purpose solver. For the second stage, we employ an Iterated Local Search (ILS)

metaheuristic to address the scenario-dependent subproblems. Specifically, we solve a
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multi-depot Inventory Routing Problem (IRP) for each scenario using ILS, where lo-
cal search refines the solution while perturbation mechanisms help escape local optima.
These subproblems are solved iteratively, with customer-to-warehouse assignments up-
dated in every iteration, progressively improving the overall solution. It is worth noting
that we also adapt this algorithm to solve the deterministic two-echelon PRP, enabling it
to handle larger instances more effectively.

The remainder of the paper is organized as follows: Section 3.2 presents the definition
and mathematical formulation of the S2EPRP-AR, detailing the assumptions and con-
straints. Section 3.3 describes the solution algorithm developed to address the problem.
Computational experiments and results are presented in Section 3.4. Finally, Section 3.5

concludes the paper with a summary of findings and future research directions.

3.2 Problem Formulation

We define the S2EPRP-AR on an undirected graph 4 = (A, &), where A" = AU M, U
N, with A4, = {0} representing the plant node; .4;, = {1,...,N,,} denoting the set of
warehouse nodes, where N,, is the number of warehouses; and 4, = {N,, + 1,...,N,, +
N,} the set of customer nodes, where N, is the number of customers. The set of edges
is defined as & = &), U &y, Where &y, = {(i,)) 11,j € A, UM, i < j} represents the
edges between the plant and warehouses (first echelon), and &, = {(i,j) :i € Ay, j €
NNV, j € N.i < j} represents the edges related to the second echelon (warehouses to
customers and customers to customers). We also define the subset c?wc(n) to represent
edges (i,j) € &y, where i, j belong to n and 1 C .45, U ;. For all edges incident to
node i € M, U4, we define the set &,.{i}.

The problem is defined over a finite and discrete planning horizon of T periods, de-
noted by = {1,...,T}. The set %, = {1,...,K,} represents the vehicles available at
the plant, where K, homogeneous vehicles with capacity QF are responsible for transport-
ing products from the plant to the warehouses. These vehicles must start and end their

routes at the plant in each period. Additionally, each warehouse w € .4, is assigned a set
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of homogeneous vehicles with capacity Q", defined as 7, = {Z;”:_ll K+1,....Y" K },
where K; is the number of vehicles at warehouse /.

Figure 3.1 illustrates an example of the S2EPRP-AR structure with three warehouses
and ten customers. It demonstrates the flexibility of customer-to-warehouse assignments
and highlights that first-echelon routes remain fixed for a given period across all scenarios.

In contrast, second-echelon routes can vary from period to period and across different

scenarios.
t=1 t=T
s=1
Nodes
B Plant
A Warehouse
® Customer
Routes
P ° —— First Echelon
P Second Echelon
s=S

Figure 3.1: Stochastic two-echelon production routing problem with adaptive routing in
the second echelon

The production plant has a production capacity of C in each period. A fixed setup cost
F is incurred in any period where production takes place, along with an additional cost u
per unit produced. Each node i € .4 has an inventory capacity L; and an initial inventory
level I;p. A unit holding cost 4; is applied to every item stored at node i € .4". We assume

that shortages are allowed in the model, and each unit of unmet demand for customer i
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incurs a penalty cost ;.

Customer demand is modeled as a random variable with a known probability distri-
bution, estimated from historical data. To account for demand uncertainty, we consider
a finite set of scenarios . = {1,...,S}, where S is the number of scenarios. Each sce-
nario s € . has an associated probability & > 0, with ¥ (c & = 1. The parameter d;,
represents the demand of customer i € .4; in period ¢ € .7 under scenario s.

We define the set #Z = {1,...,R} to represent all possible routes in the first echelon.
To construct this set, we assume to have the optimal route with associated cost ¢, for every
non-empty subset of warehouse nodes, leading to R = 2¥» — 1. This definition allows us to
model first-echelon transportation constraints based on route selection. We also define a,,,
as a binary parameter equal to 1 if warehouse w is present in route r, and O otherwise. The
upper bound on delivery quantities to warehouse w is given by .#,, = min{ 27, L,, }. In the
second echelon, we define a cost ¢;; for visiting edge (i, j) € &,.. The delivery quantities
to customer i in period ¢ and scenario s are bounded by .#"}, = min{ 2" L;, ZIT:t d;}.

The first-stage decisions of the model are the production setup decisions, represented
by the binary variables y;, which takes value 1 if production occurs in period ¢, and 0
otherwise. The production quantity in period ¢ is denoted by p;, and the inventory level
at the plant by /y;. The variable g,,,; indicates the quantity delivered to warehouse w via
route r in period ¢, and the binary variable o,; is 0 if route r is selected in period ¢ and 0
otherwise.

Second-stage decisions include the inventory levels at warehouses and customer lo-
cations, denoted by I;;. The amount of unmet demand for customer i in period ¢ under
scenario s is captured by . The delivery quantity to customer i in period ¢ and scenario
s via vehicle k € U,,e s, # is denoted by w3, The binary variable z, indicates whether
or not node i is visited by vehicle k in period ¢ under scenario s, and the integer variable
x ke TEpresents the number of times edge (i, j) € &, is traversed by vehicle & in period ¢
under scenario s.

A summary of all sets, parameters, and decision variables used in the model is pro-

vided in Appendix C.1. Given these notations, the mathematical formulation of the
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S2EPRP-AR is presented below.
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The objective function (3.1) minimizes the total setup costs, inventory holding costs
at the plant, and transportation costs of delivering products from the plant to warehouses,
as well as the expected inventory holding costs at the warehouses and customers, trans-
portation costs of goods from warehouses to customers, and penalty costs incurred on
every unit of unmet demand. Constraints (3.2) ensure that production is only possible if a
setup takes place in period ¢. Constraints (3.3), (3.5), and (3.11) are the inventory balance
constraints for the plant, warehouses, and customers, respectively. The inventory limit of
each of these facilities is enforced by constraints (3.4), (3.6), and (3.12). Note that for
constraints (3.12), the original form I} +d;, — I3, < L; accounts for lost sales. While this

makes the constraints less restrictive, in the proposed setting a shortage in one period will
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never be created to satisfy demand in a later period. This is because inventory holding
costs are positive and lost sales incur a cost that is independent of the period. Therefore,
we will not have both a strictly positive inventory level and lost sales in the same period,
and the term [, can be omitted without affecting the model’s behavior.

For the first echelon of the problem, we assume that all routes are explicitly defined.
Constraints (3.7) guarantee that warehouse w is visited by at most one route in each pe-
riod. Constraints (3.8) limit the number of selected routes to the available vehicles in each
period. Constraints (3.9) ensure that delivery to warehouse w is only possible if it is in-
cluded in route r, while the sum of deliveries on route r is limited to the vehicle capacity
by constraints (3.10). Constraints (3.13) enforce that delivery to customer i is only possi-
ble if the customer is visited by vehicle k from warehouse w. The capacity on the vehicles
at the warehouses is imposed by constraints (3.14). Constraints (3.15) prevent split de-
liveries to customers. Constraints (3.16) are the degree constraints, and constraints (3.17)
are the subtour elimination constraints (SECs). Finally, constraints (3.18 - 3.29) define

the domains of the decision variables.

3.3 Hybrid Heuristic Algorithm

Solving the S2EPRP-AR presents significant challenges due to its NP-hard nature, es-
pecially when incorporating uncertainty and adaptive routing. Even for medium-size
instances of the deterministic version, exact algorithms often struggle to find feasible
solutions. In such cases, Qiu et al. (2021) propose a matheuristic algorithm that first gen-
erates an incumbent solution, then applies BC to reduce the optimality gap and improve
the upper bound (UB).

In response to these challenges, we propose a Hybrid Heuristic Algorithm (HHA) that
leverages the problem’s structure by decomposing it into smaller subproblems, which
are solved iteratively to enhance the overall solution. The HHA consists of two main
components: a MIP model for the first echelon, and an ILS metaheuristic to manage the

second echelon.
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The algorithm begins by constructing an initial solution, which is iteratively refined
by solving a restricted S2EPRP-AR with fixed second-echelon routes to improve the first-
echelon solutions. Next, ILS is applied to the second-echelon routes, followed by solving
an LP to optimize the continuous variables based on the updated routes. The structure of
the HHA is outlined in Algorithm 3. The quality of the initial solution is critical to the
algorithm’s performance, and the construction heuristic used for this purpose is detailed
in Section 3.3.1. After obtaining the initial solution, a local search heuristic, specifically
a multi-start Randomized Variable Neighborhood Descent (RVND), is applied to each
scenario s to improve the solution (Line 5). This local search algorithm is similar to the

one used as the local search component of the ILS, as explained in Section 3.3.2.

Algorithm 3 Hybrid Heuristic Algorithm

1: Input: Problem Parameters
2: Qutput: Incumbent solution for the S2ZEPRP-AR
3: Initialize incumbent solution: sol < 0;
4: soly < ConstructlnitialSolution;  (Algorithm 4)
5: sol <~ RVND(soly); (Algorithm 6)
6: sol’ < sol
7: while stopping criteria not met do
8: if no improvement in the global best OF for NIG iterations then
o: sol’ + sol;
10: end if
11: for each period ¢ € .7 and scenario s € . do
12: Reassign customers experiencing stockouts to alternative warehouses;
13: end for
14: if no stockouts are present & no local improvements on the OF for NIL iterations then
15: for each scenario s € . do
16: Select a random warehouse w € .4;, in a random period € .7 to remove;
17: Reassign all customers of the removed warehouse to other feasible warehouses;
18: end for
19: end if
20: Solve the restricted S2ZEPRP-AR using the updated customer assignments;
21: Update sol’ with the new solution;
22: sol' < ILS(sol");  (Algorithm 5)
23: if objVal(sol") < objVal(sol) then
24: Update incumbent solution: sol < sol’

25: end if
26: end while
27: return sol
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In subsequent iterations, the algorithm adjusts customer-to-warehouse assignments
whenever stockouts occur. When a shortage is detected for a customer, it is removed from
its current warehouse and delivery route and reassigned to a different warehouse’s route
to reduce the cost of unmet demand. The algorithm evaluates potential routes based on
minimum insertion cost. If the insertion cost is lower than the current stockout penalty,
and both warehouse and vehicle capacities allow the reassignment, the customer is in-
tegrated into the new route. This process is repeated for all customers facing shortages
across every period and scenario (lines 11-13).

When no shortages are present in an iteration, the algorithm diversifies the search
by randomly removing a warehouse within a selected period. This removal forces the
reassignment of its customers to other warehouses across all scenarios in that period.
This strategy helps explore new solution spaces and prevents the search from getting
trapped in local optima. The removal of a warehouse only occurs if the local best objective
function value (OF) has not improved for NIL consecutive iterations. If the absence of
improvement continues, a new warehouse is removed after every additional N/L iterations
(lines 14-19). If no improvement in the global best OF is observed after NIG iterations,
the algorithm resets the current solution to the incumbent solution. This reset allows for
the exploration of new neighborhoods and helps avoid prolonged stagnation (lines 8—10).

At the end of each iteration, a restricted version of the S2EPRP-AR is solved in which
the second-echelon routes are fixed, allowing the algorithm to update the first-echelon
decisions. This is followed by applying Iterated Local Search (ILS) to refine the second-
echelon routes. The ILS procedure improves the routes using local search operators and
applies perturbations to escape local optima. If an improved solution is found, the current
solution is updated; otherwise, the algorithm proceeds to the next iteration (lines 20-22).
Additionally, if the current OF is better than the global best, the incumbent solution and
the global best value are also updated. This process is repeated until one of the stopping
criteria is met.

The algorithm terminates when no improvement is observed in the best solution for

Max_NIG consecutive iterations, or the algorithm’s runtime exceeds the predefined time
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limit HHA_TimeLimit.

3.3.1 Initial Solution

To generate an initial solution that is both feasible and provides a strong starting point
for the algorithm, we decompose the problem into two subproblems. The pseudocode
for the construction heuristic algorithm is provided in Algorithm 4. The first subproblem
is a stochastic multi-warehouse PRP (MW-PRP), which focuses exclusively on the plant
and warehouse nodes. Since customer demand drives the problem, we introduce a virtual
demand for each warehouse. This is achieved by assigning customers to their nearest
warehouse and by setting the demand of each warehouse equal to the sum of the demands
of its assigned customers. Thus, set € = {i € M |w=arg rrvlvi/n {Cw/,i}} denotes the set
of customers that are assigned to w € .45,.

To prevent over-delivery, the initial inventory of each customer is subtracted from
its demand during the calculation. Additionally, no inventory or delivery costs are con-
sidered for customers at this stage; however, an approximate penalty cost on each unit
of unmet demand is considered based on the average cost of unmet (aggregate) demand
for customers assigned to each warehouse. Consequently, the objective function of this
subproblem includes fixed and variable production costs, transportation costs between
the plant and warehouses, inventory holding costs at both the plant and warehouses, and

approximate costs for unmet demand.

It is worth noting that we explicitly define the routes between the plant and warehouses
in this subproblem. Although the number of potential routes increases exponentially with
the number of warehouses, we assume that the number of warehouses remains limited,
as is typical in real-world scenarios. This assumption enables us to explicitly define all
possible routes, thereby simplifying the problem. To generate these routes, we solve
a TSP for each non-empty subset of nodes, denoted as nrg C .A4;,\{0}, based on the
transportation costs of the edges in &),,,. Hence, the total number of binary variables

required for the first-echelon routes is 2V — 1.
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Algorithm 4 Construction Heuristic

e e
wn A W N = O

16:
17:
18:
19:
20:
21:

22:
23:
24
25:

26:

27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

e A S ol S e

Input: Problem Parameters, Set of customers initially assigned to each warehouse €™
Output: Feasible solution for the S2EPRP-AR

Initialize sol < 0

Initialize solgg <+ 0

Initialize d°, and &,

Solve MW-PRP to obtain production plan and first-echelon routes

Update solrg

Initialize solsg < 0

Determine g,

Construct sorted_customers as in (3.34)

: for each scenario s do

for each warehouse w do
look_ahead < 1
while look_ahead < [%] do
Compute projected inventory I3 for each customer i € 6™, period t € .7, and sce-
nario s € .% as in (3.35)
for each period 7 do
Initialize empty sets ¥ < 0, ¥, < 0
for each customer i € sorted_customers do
if customer i is projected to stockout in the current period then
Add customer i to set ¥
else if customer i is projected to stockout in the next look_ahead periods
then
Add customer i to set
end if
end for
Assign customers in ¥ to routes, respecting delivery quantities to warehouse
(g;,;) and vehicle capacities, using the nearest neighbor insertion heuristic
Assign customers in ¥, to routes, respecting §;,, and vehicle capacities, using
the minimum insertion cost method
Update I¥ with the computed delivery quantities for each customer
end for
Update solsg with the second-echelon solution for this look_ahead value
Increase look_ahead value by 1
end while
end for
end for
Combine solpg and solsg to update the overall solution sol
Fix all integer variables in sol
Solve the LP to improve production and delivery plan
Update sol with the improved solution
Return the best feasible solution sol
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The mathematical formulation for the MW-PRP is presented below:

Min ). (Fy[+up,+holof+ Yot Y &( X (ﬁw%i‘:ﬁ))) (3.30)

teT re# se€.S we Ny,

s.t. (3.2)-(3.4), (3.6) - (3.10), (3.18) - (3.20), and (3.23)

By=L, 1+ Y qui—dy+1, VYwe Mt € T,s€.s (3.31)
reZ%
;>0 Vie UMyt € T s (3.32)
B,>0 Yw € Mt € T,s €S, (3.33)
5 -1
where d;, = Y (df[ —(lp— X dft)+) for warehouse w, period ¢ and scenario s and
€6 I=1

o, = Zifgf ‘a" for each warehouse. The variable /%, is used to indicate the unmet demand
of each warehouse in a period and scenario. The variable G}, = Y, g represents the
delivery amount to warehouse w in period ¢ and scenario s. It is used as a parameter in
the second phase of the algorithm to compute the warehouse inventory for each scenario.

After determining the production plan and the routes for the first echelon, we pro-
ceed to construct a feasible solution for the second echelon. It is important to emphasize
that the second-echelon problem is always feasible, as shortages in customer demand are
allowed. To generate a feasible solution for the second echelon, we utilize the avail-
able inventory at each warehouse obtained in the previous phase while accounting for
the capacity of the vehicles located at these warehouses. The solution is derived in three
phases. In the first phase, we identify the customers to be visited and estimate the deliv-
ery quantities. The second phase involves determining the delivery routes for the selected
customers. These two phases are modeled similarly to the approach in Alvarez et al.
(2018) with some changes. We also introduce a third phase in our approach, where the
continuous variables are optimized by solving an LP, rather than being determined during
the construction heuristic.

We begin by ranking customers according to a ratio that compares the cost of unmet
demand with the approximate delivery cost per unit. The latter includes the unit produc-

tion cost, the approximate fixed production cost per unit based on production capacity,
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the estimated delivery cost of a single unit from the plant to the nearest warehouse based
on QF, and the estimated delivery cost from the warehouse to the customer based on Q".
For a given customer i, assuming that warehouse w’ is the closest, this relative shortage

penalty ratio is computed as follows:

% (3.34)

2c’0’w/ 2¢,0

u+ ¢+ g+ g
Based on this ratio, we sort the customers in descending order of priority and define
the set sorted_customers. For each customer i, we then calculate the partial inventory
levels for each time period and scenario by using the customer’s demand, initial inventory,
and the deliveries made to the customer. The partial inventory for each time period can
be calculated as follows:
t t
L=r5y-Y dy+ Y w Vie Mte T,se.?, (3.35)
I=1 I=1
where W3, is the delivery quantity to customer i, in period ¢ and scenario s. In the first

iteration of the algorithm, since no delivery is assigned to customers, we have:
wy =0 Vie M. te T,se.S. (3.36)

Assuming a warehouse w and scenario s, the heuristic is executed for each period
t € 7 to determine which customers are assigned to warehouse w. Two sets, ¥ and
1, are defined. The first set contains customers with ffl < 0, who will face stockouts
immediately in period ¢ if not visited. Thus, these customers have a higher priority of
being visited. The approximate delivery quantity to each customer in set ¥ is calculated
using:

wh =min{|(l})",Q",Li— (I}, )"}, Viev, 1€ T\{T},s€.7, a1

wir = min{|(I};)~|,0"}, Vic o, s€.S

After assigning customers to ¥, we proceed to assign customers to the second set, ¥,

which consists of those projected to experience stockouts in the upcoming look_ahead
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periods (I:.s t+look_ahead < 0)- The approximate delivery quantity to each customer in set ¥,

is given by:

wls't = min{|(I:'S,Hl()()k_ahead)i’7QW7Li_ (:ﬁt—l)jL}? Vie 1927 S 9\{T}, s€ S
(3.38)

When adding customers to ¥ and ¥, we also take sorted_customers into account,
since shortages are allowed and we aim to prioritize those with a higher penalty ratio for
unmet demand. Customers are inserted into each set in rank order, starting with those
having the highest relative penalty ratio, thereby increasing their likelihood of being vis-
ited. Customers from 1) may also appear in ¥, in which case they are removed from ¥,
and their approximate delivery is updated according to (3.38).

Following the definition of ¥ and ¥, we apply the standard nearest neighbor inser-
tion heuristic (Bridysy and Gendreau, 2005) to add customers from ;. For customers in
1, we use the minimum insertion cost criterion to integrate them into the routes. During
the assignment of customers to routes, we also consider the remaining available inventory
and vehicle capacities to ensure feasibility. Accordingly, the values of W, are updated if
the available inventory at the warehouse or vehicle capacities do not allow full delivery of
the initially estimated quantities. We start by assigning customers from ¥, and then move
to 1, stopping when capacity or available inventory prevents further deliveries.

At the end of each iteration, after assigning deliveries to customers, customer inven-
tories are updated using (3.35). Once routes are established for all periods within the
current scenario and warehouse, the look_ahead value is increased by 1 and all deliveries
are reset to zero to assess whether accounting for additional periods improves the objec-
tive function. This process continues until look_ahead = {%W , and the solution with the
lowest objective value is selected. The same procedure is applied to all warehouses and
scenarios, ultimately yielding a feasible solution for the entire problem.

In the third phase of this heuristic, we solve an LP for the entire S2ZEPRP-AR, where

all integer variables are fixed, allowing for further improvements in continuous variables

1.e., production and delivery quantities.
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3.3.2 Iterated Local Search

The ILS metaheuristic iteratively improves an initial feasible solution by alternating be-
tween local search (intensification) to move toward local optima, and a perturbation al-
gorithm to escape those local optima (diversification). At the end of each iteration, if a
better solution is found, the incumbent solution is updated. After generating the initial
solution and reassigning customers to warehouses, the solution is passed to the ILS for

iterative improvement.

Algorithm 5 Iterated Local Search (ILS)

Input: soly
Output: Incumbent solution for the S2ZEPRP-AR
sol < RVND(sol)
for each scenario s do
sol + solég
while Stopping criteria for ILS is not met do
sol” < perturb(sol”)
sol"” < RVND(sol")
if objVal(sol") < objVal(sol") then
sol' + sol”
11: end if
12: end while
13: Update solég with sol’
14: end for
15: return sol

AR A A A e

_
e

Since the ILS focuses only on the second-echelon routes and the first-stage binary
variables are fixed, the problem can be decomposed into an independent subproblem for
each scenario. Thus, the ILS is applied separately to each scenario (lines 4-5). In each
iteration, the solution for a given scenario s undergoes a perturbation, which helps escape
the current local optimum (line 7). After the perturbation, the solution is improved using
a multi-start RVND local search algorithm (line 8). If a better solution is found, the
solution for that scenario is updated, and the next iteration begins (line 9-11). This process
continues until a stopping criterion is met. The pseudocode of the ILS is presented in
algorithm 5.

Although the ILS in this study shares components with those used for the IRP in Al-
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varez et al. (2018), it differs in key aspects. Previous algorithms relied solely on ILS
to optimize both integer and continuous variables. In contrast, our approach solves an
LP after each local search operator is executed, which leads to better overall results, es-
pecially when accounting for the uncertainty in the problem. The ILS algorithm termi-
nates if the number of iteration reaches ILS_TimeLimit or the computation time reaches

ILS ItertionLimit.

Local Search

As mentioned earlier, the local search algorithm used in this study (line 3 of Algorithm 5)
is a multi-start RVND heuristic (Mladenovi¢ and Hansen, 1997), where local search oper-
ators are selected randomly and applied to the current solution. The multi-start framework
allows the algorithm to explore multiple neighborhoods, as the local optima may differ
depending on the sequence and selection of local search operators. This diversification
enhances the ability of the algorithm to escape poor-quality local optima. If the applica-
tion of an operator improves the objective function value, the set of operators is reset to its
initial state. Otherwise, the operator is removed from the set. This process continues until
all operators have been exhausted. The pseudocode for the RVND procedure is provided
in Algorithm 6.

The local search operators used within RVND primarily focus on modifying the routes
from a selected warehouse to its assigned customers. Some operators also allow changes
in customer-to-warehouse assignments, depending on the current values of the first-stage
variables.

The operators used in the RVND are as follows:

* Or-Opt(v), v € 1,2,3: Moves v adjacent customers from their current position to

another position within the same route.

* Route-Shift(v), v € 1,2,3: Selects v adjacent customers from a route and moves
them to another route, either of the same warehouse or a different warehouse in the

same period.
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Algorithm 6 Randomized Variable Neighborhood Descent (RVND)

e e e e
A e

Input: Solution for scenario s

Output: Improved solution for scenario s
sol* sol(()s)

O <+ initialize the set of local search operators
sol’ + sol*

while || > 0 do

A e AR

Select a random local search operator o from &
Perform o on sol’
if 0 improves sol’ then
sol* < sol’
Reset O to the initial set of operators
else
Remove o from &
end if

: end while
: return sol*

Period-Shift: A customer is removed from its current visited route in one period

and randomly inserted into another route in a different period.

Swap(vi,v2), vi,v2 € 1,2, vi > vy: Exchanges v| customers from one route with
v, customers from another route, either from the same warehouse or from different

warehouses in the same period.

Remove: A randomly selected customer is removed from a route.

Insert: A customer that is not visited in period ¢ is inserted into a randomly selected

route from warehouse w at the minimum insertion cost position.

Merge: For a customer visited in more than one period, two of the visited periods

are merged into one, selected randomly.

Transfer: A customer visited in multiple periods is removed from its visited periods
and inserted into unvisited periods for a randomly selected warehouse, based on

minimum insertion cost.
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After applying an operator, we solve an LP with a fixed production plan and fixed
routes for both echelons across all scenarios. If the resulting objective function value

improves, the incumbent solution for that scenario is updated.

Perturbation

The perturbation step in ILS is crucial as it significantly enhances the diversification of
the search. After applying a perturbation, the algorithm initiates the local search in the
hope of exploring solutions beyond those identified in previous iterations. To achieve this,

we define three types of perturbations for the proposed ILS, as follows:

 Random Shift: A customer is selected from a route and moved to another route,

either from the same warehouse or from a different warehouse in the same period.

* Random Insertion: A customer that is not visited in period ¢ is inserted into a

randomly selected warehouse w at the minimum insertion cost position.
* Random Removal: A randomly selected customer is removed from a route.

* Random Swap: A randomly selected customer from one route is exchanged with
another randomly selected customer from a route from the same or a different ware-

house.

A maximum of ILS_MaxPerturb perturbations are allowed for each scenario, and the
perturbation operators are selected randomly. After applying the perturbation, we solve
the LP to evaluate the current value of the objective function before proceeding with the
local search. The new solution is only accepted if it improves upon the previous solution

after applying the local search.

3.4 Computational Experiments

The algorithms developed in this study were implemented in C++, and IBM ILOG CPLEX

version 22.1.1 was used as solver to handle LP and MIP subproblems. All computational
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experiments were carried out on machines equipped with Intel Xeon Gold 6148 2.4 GHz
processors and 32 GB of memory.

Due to the novelty of the problem addressed in this study, benchmark instances avail-
able in the literature are very limited. To the best of our knowledge, this is the first study
to tackle this specific variant of the two-echelon production routing problem with demand
uncertainty.

As a result, we generated a new set of test instances specifically designed for the
S2EPRP-AR. These instances are made publicly available at Instances Repository. To
generate the new dataset we used the benchmark instances introduced by Archetti et al.
(2011), which are widely used in the classical PRP literature. However, the original in-
stances do not include several key elements required in our setting, such as multiple ech-
elons and stochastic demand. We therefore adapted and extended them to fit the structure
and requirements of our problem.

We first generated instances for the deterministic version of the problem. These in-
stances vary in the number of warehouses (2 to 5), number of customers (ranging from 20
to 50, in increments of 10), and vehicle configurations: 1 vehicle at both the plant and each
warehouse, 2 vehicles at the plant and 2 vehicles at each warehouse, and 2 vehicles at the
plant and 3 vehicles at each warehouse. Additionally, we considered the four classes of
instances defined in Archetti et al. (2011), namely: standard cost structure, high produc-
tion cost, high transportation cost, and no inventory cost at the customer level. Warehouse
locations were randomly selected from within the customer set using a clustering-based
approach. In total, 192 deterministic instances were generated.

A similar approach was used to generate instances for the stochastic problem. For
these instances, we considered 2 to 5 warehouses when the number of customers was in
{20,25,30}, and 2 and 3 warehouses when having {10,15,35,40,50} customers. The
same vehicle configurations as in the deterministic case were used. In total, 66 stochastic
instances were generated. A detailed explanation of the instance generation process is
provided in Online Supplements.

To incorporate demand uncertainty, we used Monte Carlo simulation to generate de-
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mand scenarios based on the average customer demands from the instances. In the stan-
dard setting, each instance includes 100 scenarios unless stated otherwise. For each cus-
tomer i and period ¢, the demand in scenario s is sampled from a uniform distribution in
the range [d;; (1 —8),d;;(1+ 8)], where dj is the average demand and § is the uncertainty
level, ranging between 0 and 1. Each scenario s € .7 is assigned an equal probability of
E&=1/S.

Finally, the stochastic model includes a penalty cost ¢; for each unit of unmet demand
for customer i. This cost is calculated as the sum of the unit production cost, an estimate
of the fixed cost per unit of production, and the approximate transportation cost of de-
livering a unit from the plant to the nearest warehouse to customer i, and then from the
warehouse to the customer. The total is then multiplied by a penalty factor o. The penalty
is computed as:

Finally, the stochastic model includes a penalty cost ¢; for each unit of unmet demand
for customer i. This cost is calculated as the sum of the unit production cost, an estimate of
the fixed cost per unit of production, and the approximate transportation cost of delivering
a unit from the plant to the nearest warehouse to customer Z, and then from the warehouse
to the customer, each multiplied by two to reflect round trips. The total is then multiplied
by a penalty factor o. The penalty is computed as:

F Cwri Co,w¥
o; = O-(M+E+2W+2 QP) )

where w; is the closest warehouse to customer i and o is set to 50 as in Kermani et al.

(3.39)

(2024), unless stated otherwise.

3.4.1 Deterministic Problem

As mentioned earlier, we employ the HHA algorithm to solve large instances of the de-
terministic 2EPRP. In the largest configuration, the model considers 5 warehouses, 50
customers, 2 vehicles at the plant and 3 vehicles at each warehouse, resulting in a total
of 15 vehicles in the second echelon. Compared to the stochastic variant, the determin-

istic problem differs in two important aspects: there is no need to account for multiple
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scenarios, and shortages are no longer allowed. Therefore, the original formulation of the
S2EPRP can be simplified. Specifically, the scenario index is removed from all variables
and constraints, and the shortage variable [}, is eliminated. In addition, constraints 3.11
are replaced by the following deterministic version:

=T+ Y, wix—di Vie M.t e T. (3.40)

ke U FAw
weNw

The complete formulation of the deterministic problem is provided in Appendix C.2.
To solve this problem, modifications are also made to the HHA algorithm to remove all
iterations over scenarios.

The time limit for the HHA is fixed at 3600 seconds. The MW-PRP, which is solved
only once to construct the initial solution, is assigned a time limit of 300 seconds with
an optimality gap of 0.01%. The restricted 2EPRP, which is solved in every iteration of
HHA, is given 60 seconds of computation time with a 1% optimality gap. This setting
is adopted because reducing the optimality gap significantly increases the computational
time, while it typically does not yield a proportional improvement in solution quality. All
of these computations are performed using 10 threads.

The number of multi-starts for the ILS is set to 10. It is worth noting that paral-
lel computing is incorporated into the deterministic version of the algorithm to enhance
computational efficiency. Specifically, parallelism is applied within the multi-start RVND
procedure, where 10 threads are used to execute multiple runs concurrently. The algo-
rithm retains the best solution based on the objective function value. Although parallel
computing is also employed in the stochastic version, its implementation is adapted to the
scenario-based decomposition structure of that problem.

The ILS-specific parameters are set to ILS_MaxPerturb =10 and ILS_IterationLimit =
30. A grid search was used to tune the parameters Max_NIG and Max_NIL, which were
ultimately set to 25 and 5, respectively. The value of Max_NIG was selected from the
candidate set {10,15,25,50}, while Max_NIL was chosen from 3,5, 10, 15.

To assess the quality of the HHA solutions, we use a BC algorithm implemented in

CPLEX to solve the 2EPRP, using the HHA solution as a warm start. Details of the BC

160



algorithm are provided in Appendix C.4. The BC is run with a 7200 second time limit
using 10 threads, and the optimality gap is set to 107°.

All 192 deterministic instances are defined over a planning horizon of 6 periods. To
present the results, we include three tables, each corresponding to one of the aforemen-
tioned vehicle configurations. In each table, the number of warehouses (V,,) and the
number of customers (N,) are reported. Each row shows the average solution to four in-
stances corresponding to the four problem classes of instance. Each table summarizes 64
instances in total.

Under the HHA section of the table, the column labeled OF shows the best objective
function value found by the algorithm, Gap (%) presents the relative optimality gap with
respect to the lower bound (LB) obtained from BC, and CPU (secs) indicates the compu-
tation time in seconds. Under the BC section, the UB, LB, and CPU time are reported.
The Gap column shows the final optimality gap from BC. It is important to note that the
UB from BC is always at least as good as that of HHA, since the HHA solution is pro-
vided as a warm start. The final column, labeled Diff-UBV, shows the improvement in
the UB after two hours of solving the problem with the BC algorithm.

The results of the first configuration, specifically one vehicle at the plant and one for
each warehouse, are provided in Table 3.1. The average optimality gap is 4.38% with an
average computation time of 496 seconds. The BC algorithm was able to improve the
given UB by only 0.15% on average. This result highlights the performance of the HHA
in finding high-quality solutions within a reasonable time. However, the optimality gap is
also affected by the weak LB, showing the inability of the BC to close the gap even for
the smallest instances.

Table 3.2 displays the results for the second configuration of instances. As expected,
both the gap and computation time are higher, at 6.39% and 757 seconds, respectively.
The improvement in the UB by BC is even lower at 0.04%, which shows how increasing
the size of the problem has a drastic effect on the BC performance, while the HHA is still
able to provide solutions in less than 15 minutes.

Finally, Table 3.3 illustrates the results of the largest instance configuration, showing
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Table 3.1: Computational results for the deterministic problem with one vehicle at the
plant and one vehicle per warehouse.

HHA BC

Ny N, #Ins OF Gap CPU UB LB CPU Gap Diff-UBV
(%) (secs) (secs) (%) (%)

20 4 143,098 1.88 279.94 142,372 141,387 7,205.92 1.09 0.80

’ 30 4 190,141 2.07 293.35 189,758 187,911 6,440.05 1.72 0.35
40 4 239,975 2.77 507.42 239,674 235,954 5,316.52 2.58 0.21
50 4 282,133 3.29 564.94 281,961 276,997 6,919.66 3.25 0.04
20 4 145,713 5.87 291.38 145,526 140,343 5,374.16 5.70 0.20

3 30 4 190,852 4.20 345.36 190,816 186,101 3,491.56 4.17 0.04
40 4 241,380 5.49 364.53 241,271 233,795 5,033.68 5.41 0.09
50 4 285,557 4.58 776.82 285,225 277,960 4,263.03 4.43 0.17
20 4 144,865 5.39 331.61 144,703 140,000 4,930.37 5.16 0.25

4 30 4 192,886 5.05 373.03 192,869 186,922 5,234.71 5.04 0.01
40 4 241,946 4.32  659.30 241,894 235,925 6,714.82 4.28 0.04
50 4 286,906 5.14 1,086.24 286,895 278,272 7,209.52 5.14 0.01
20 4 143,044 4.32 297.82 142,966 139,186 4,431.63 4.28 0.05

5 30 4 191,214 493 516.39 191,090 185,390 6,010.52 4.86 0.08
40 4 243,590 5.32  707.10 243,492 235,723 6,821.45 5.23 0.09
50 4 287,339 548 54248 287,206 278,270 7,026.67 5.43 0.06
Average 64 215,665 4.38 496.11 215,482 210,008 5,776.52 4.23 0.15

an average gap of 7.48% and an average computation time of 1005 seconds. The Diff-
UBV remains very low at 0.03%, confirming that while BC struggles to improve the

solutions, the HHA continues to deliver good solutions within a reasonable time frame.

Table 3.4 presents the average costs associated with each component of the determin-
istic problem, broken down by instance class and by the number of vehicles per plant and
warehouse. Under First Echelon, the average total cost of the first echelon, as well as
the average production, plant inventory, and transportation costs, are presented, respec-
tively. Under Second Echelon, the total cost of the second echelon is shown, followed by
warehouse inventory, customer inventory, and second-echelon transportation costs. The
second class of instances, characterized by high production costs, incurs the highest total
costs across all configurations. This is largely driven by the high setup costs, which sig-
nificantly influence the objective function. Note that the production cost (Prod) includes
both fixed setup costs and variable production costs, and in this class, both components

are substantially larger than in other classes.
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Table 3.2: Computational results for the deterministic problem with two vehicles at the
plant and two vehicles per warehouse.

HHA BC
N, N, #Ins OF Gap CPU UB LB CPU Gap Diff-UBV
(%) (secs) (secs) (%) (%)
20 4 144930 3.90 395.15 144,928 141,544 5,491.38 3.89 0.00
’ 30 4 194,312 5.18 384.13 194,289 188,270 4,087.31 5.15 0.03
40 4 242,878 4.76  503.53 242,861 236,281 4,488.20 4.76 0.01
50 4 286,078 5.78 667.73 286,067 276,840 3,346.37 5.77 0.01
20 4 145911 7.18 449.93 145,735 139,032 3,988.31 7.00 0.20
3 30 4 192,038 6.21 461.72 191,983 184,729 4,631.70 6.16 0.05
40 4 242,137 6.51 816.61 242,101 233,115 7,069.14 6.47 0.04
50 4 289,535 8.21 803.95 289,473 276,326 5,132.83 8.17 0.04
20 4 144,891 6.09 45291 144,864 139,534 426545 6.08 0.01
4 30 4 193,437 6.59 790.12 193,423 185,842 5,112.01 6.58 0.02
40 4 243,457 6.02 978.18 243,420 235,040 7,209.37 5.99 0.03
50 4 290,204 9.12 1,021.84 290,174 275,819 5,829.16 9.09 0.03
20 4 144,097 476 644.42 144,019 139,808 4,648.82 4.72 0.05
5 30 4 192,235 6.54 793.02 192,235 184,796 17,105.51 6.54 0.00
40 4 242,657 7.42 1,045.21 242,591 232,629 7,111.09 7.36 0.06
50 4 288,275 793 1,910.22 288,275 275,856 7,210.29 7.93 0.00
Average 64 217,317 639 757.42 217,277 209,091 5,420.43 6.35 0.04

Table 3.3: Computational results for the deterministic problem with two vehicles at the
plant and three vehicles per warehouse.

HHA BC
N, N, #Ins OF Gap CPU UB LB CPU Gap Diff-UBV
(%) (secs) (secs) (%) (%)
20 4 146,586 5.71 252.5 146,586 141,324 42917 5.71 0.00
’ 30 4 194,790 5.78  389.9 194,582 187,979 4,6749 5.62 0.17
40 4 242,902 4.68 801.6 242,897 236,257 7,074.1 4.68 0.00
50 4 290,089 9.12 1,115.8 290,058 275,234 5,395.5 9.11 0.01
20 4 146,865 8.40  490.5 146,839 138,923 4,925.1 8.39 0.01
3 30 4 192,004 6.51 693.6 191,873 184,499 5,891.8 6.43 0.09
40 4 243,081 7.88  835.5 243,054 231,981 6,7183 7.86 0.02
50 4 289,287 9.41 1,350.3 289,199 274,362 6,653.0 9.37 0.04
20 4 145,026 637 584.2 144,993 139,465 5,134.0 6.36 0.01
4 30 4 193,764 6.88  889.8 193,747 185,627 6,080.4 6.86 0.02
40 4 244220 835 1,043.0 244,184 232,741 7,209.4 8.33 0.02
50 4 290,915 10.70 1,922.0 290,915 270,424 7,202.3 10.70 0.00
20 4 143,953 4.77 871.6 143,950 139,735 5,8294 4.77 0.00
5 30 4 192,332 7.71 1,262.5 192,327 183,874 7,208.0 7.71 0.01
40 4 241,414 747 1,674.8 241,403 231,678 77,2059 7.47 0.00
50 4 288,971 9.95 1,902.8 288,971 269,432 72124 9.95 0.00
Average 64 217,887 7.48 1,005.0 217,849 207,721 6,169.1 7.46 0.03
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Table 3.4: Breakdown of costs across different components of the problem

First Echelon Second Echelon
K, N, Class Total  FE Total Prod Inv PIt Trn FE SE Total Inv Whs Inv Cus Trn SE
Class 1 89,669 58,748 52,425 2,882 3,442 30,921 1,076 19,651 10,194

Class2 559,995 529,292 522,375 3,172 3,745 30,703 902 19,610 10,191

1 1 Class3 143,869 70,821 52,988 1,694 16,140 73,048 2,290 20,518 50,240
Class4 68,395 57,533 52,425 1,805 3,303 10,862 864 0 9,998

Average 215,482 179,099 170,053 2,388 6,657 36,384 1,283 14,945 20,156
Class 1 90,744 59,640 52,425 2950 4,265 31,104 1,056 19,455 10,592

Class2 560,930 529,488 522,375 3,051 4,062 31,443 1,117 19,533 10,792

2 2 Class3 147,654 71987 52,800 1,645 17,542 75,668 2,993 20,579 52,095
Class4 69,781 58,544 52,425 2,119 4,000 11,237 869 0 10,368

Average 217,277 179915 170,006 2,441 7,467 37,363 1,509 14,892 20,962
Class1 90,899 59,437 52,238 3,048 4,152 31,462 1,131 19,541 10,790

Class2 561,230 529,584 522,375 2,993 4,216 31,646 1,328 19,454 10,864

2 3 Class3 149,386 72,096 52,800 1,685 17,611 77,290 3,373 20,685 53,233
Class4 69,879 58,310 52,425 1910 3,975 11,568 1,071 0 10,497

Average 217,849 179,857 169,959 2,409 7,488 37,992 1,726 14,920 21,346

3.4.2 Deterministic Problem with Cross-docking Satellites

In this section, we solve the deterministic 2EPRP with cross-docking satellites (2EPRP-
CS), similar to the problem introduced in the study by Qiu et al. (2021). We attempted to
obtain the instances used by Qiu et al., 2021, however, despite our efforts, we were unable
to access those instances. The main difference between the two variants is that, instead
of warehouses that can store products for future distribution, the cross-docking satellites
act as distribution hubs where storage is not possible. For simplicity, we use the same
notation for satellites as for warehouses. Instead of a unit holding cost, a unit handling
cost h,, is defined for each satellite w € .4;,. We compute the handling cost as in Qiu et al.
(2021), where h,, = 0hg, with 6 = 0.1 and hy representing the unit holding cost at the
plant. The mathematical formulation of the 2EPRP-CS is given in Appendix C.3.

To solve the problem, we adapt the algorithm used for the 2EPRP. The structure of
the algorithm, as well as the parameter settings and instance configurations, remain the
same, while the mathematical formulations are updated to address the 2EPRP-CS wher-
ever needed. Tables 3.5, 3.6, and 3.7 present the results for the three possible vehicle
configurations at the plant and warehouses, consistent with those reported in the previous
section.

The HHA was able to solve all instances of the first vehicle configuration for the
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Table 3.5: Computational results for the 2EPRP-CS with one vehicle at the plant and one
vehicle per warehouse.

HHA BC

Ny, N, #Ins OF Gap CPU UB LB CPU Gap Diff-UBV
(%)  (secs) (secs) (%) (%)

20 4 151,118 4.10 269.03 142,806 142,008 7,203.08 0.95 3.18

’ 30 4 191,005 2.07 315.36 190,749 188,684 5,601.15 1.81 0.27
40 4 240,107 2.02 515.70 239,850 237,120 5,040.86 1.85 0.17

50 4 285,942 4.68 553.23 281,181 277,549 5,996.36 2.48 2.30
20 4 146,330 6.12 501.42 145,901 140,938 5,589.63 5.49 0.65

3 30 4 193,534 524 456.44 192,995 187,224 4,712.68 5.04 0.21
40 4 242705 5.75 500.37 242,671 234,868 5,441.87 5.74 0.01
50 4 287,625 4.89 921.99 287,338 279,572 6,076.69 4.71 0.20
20 4 156,182 10.87 216.87 147,846 140,624 4,599.00 7.97 2.99

4 30 4 195,382  6.07 762.54 195,376 187,905 5,457.74 6.07 0.00
40 4 243,884 542 621.63 243,821 236,284 6,628.21 5.37 0.06
50 4 290,609 6.60 969.71 290,498 279,484 6,060.21 6.51 0.09
20 4 154,501 10.90 159.12 147,324 139,510 5,256.21 8.26 2.70

5 30 4 194,297 690 428.98 194,287 186,188 6,780.14 6.90 0.01
40 4 244,455 5.58 530.24 244387 236,340 7,148.48 5.54 0.05
50 4 289,341 6.65 802.64 289,268 278,576 7,204.13 6.64 0.02
Average 64 219,189 5.86 532.83 217,269 210,805 5,924.78 5.08 0.81

2EPRP-CS. By comparing the results of the 2EPRP and 2EPRP-CS, one can observe that
the OF is higher for the latter. This is mainly due to the inability to store products at the
warehouse for future deliveries. With storage not permitted at cross-docking satellites, all
deliveries to satellites must be forwarded to customers within the same period. Inventory
costs are typically lower at warehouses than customers. Additionally, the limited capac-
ity of second-echelon vehicles may prevent full utilization of the first-echelon vehicles’
capacity. As a result, more frequent deliveries are required in both echelons, leading to
higher delivery costs and, consequently, a higher OF value.

Moreover, the optimality gap in this setting is slightly higher than in the standard
2EPRP, at 5.86%, indicating the increased complexity of the problem. Nonetheless, the
Diff UBV remains at 0.81%, which again demonstrates the strong performance of the
HHA.

For the other two vehicle configurations of the 2EPRP-CS, a significant observation
is that some instances could not be solved. Specifically, the cases with 3 satellites and

40 or 50 customers, as well as those with 5 satellites and 50 customers, could not be
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Table 3.6: Computational results for the 2EPRP-CS with two vehicles at the plant and
two vehicles per warehouse.

HHA BC
N, N, #Ins OF Gap CPU UB LB CPU Gap Diff-UBV
(%) (secs) (secs) (%) (%)
20 4 148,303 7.42  368.19 147,612 141916 3,046.19 6.32 1.16
’ 30 4 195,811 5.67  480.88 195,613 188,876 4,099.09 5.48 0.21
40 4 244395 5.05 574.68 244,328 237,132 6,580.58 5.01 0.05
50 4 288,480 6.72  729.94 288,455 277,487 5,65891 6.69 0.03
20 4 155,115 10.34 877.13 144,836 138,623 4,141.77 6.49 4.24
3 30 4 193,445 7.19  683.50 193,351 184,994 5,529.70 7.12 0.09
40 4 - - - - - - - -
50 4 - - - - - - - -
20 4 157,011 13.40 459.85 148,340 138,547 4,029.71 9.99 3.59
4 30 4 195,212 8.60 1,113.31 195,212 184,877 6,426.97 8.60 0.00
40 4 245815 7.98 1,239.66 245,662 233,994 7,210.12 791 0.08
50 4 293,211 10.62 2,009.55 293,205 275,505 7,211.43 10.62 0.00
20 4 155,453 1331 314.79 148,345 137,978 4,322.77 11.54 1.79
5 30 4 194,865 890  943.21 194,863 184,181 6,672.78 8.90 0.00
40 4 244,405 9.15 1,554.20 244393 231,765 7,20496 9.15 0.00
50 4 - - - - - - - -
Average 52 208,579 8.79  872.99 206,478 196,606 5,548.85 7.98 0.86

Table 3.7: Computational results for the 2EPRP-CS with two vehicles at the plant and
three vehicles per warehouse.

HILS BKS
N, N, #Ins OF Gap CPU UB LB CPU Gap Diff-UBV
(%) (secs) (secs) (%) (%)
20 4 147,486 6.25 644.04 147,016 141,784 4,391.86 5.53 0.76
’ 30 4 195,705 596  547.66 195,693 188,429 5,357.98 5.94 0.02
40 4 246,684 6.34  953.32 246,583 237,145 6,353.92 6.28 0.07
50 4 291,802 835 1,503.41 291,801 277,196 6,149.98 8.35 0.00
20 4 144917 7.11 1,700.52 144,872 138,428 5,829.22 7.05 0.07
3 30 4 194,120 7.87 1,065.78 194,120 184,725 6,673.11 7.87 0.00
40 4 - - - - - - - -
50 4 - - - - - - - -
20 4 156,589 13.39  700.39 150,192 138,364 4,854.37 11.67 1.84
4 30 4 195,930 9.66 1,115.02 195,930 184,422 6,390.98 9.66 0.00
40 4 245,596 10.06 1,734.18 245,596 231,498 7,209.96 10.06 0.00
50 4 293,978 13.12 2,073.00 293,953 268,143 7,154.80 13.11 0.00
20 4 154917 12.51 836.33 148,751 137,814 6,354.49 10.81 1.80
5 30 4 195,267 9.88 1,487.29 195,267 183,634 7,205.81 9.88 0.00
40 4 244,940 10.39 2,186.08 244940 230,318 7,204.38 10.39 0.00
50 4 - - - - - - - -
Average 52 208,302 9.30 1,272.85 207,286 195,531 6,240.83 8.97 0.35
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handled by the HHA. This failure is attributed to insufficient vehicle capacity to meet
customer demand, primarily due to the absence of storage capability at the satellites,
which otherwise could have been used to buffer deliveries for future periods.

Interestingly, the BC algorithm also failed to find any feasible solution for these in-
stances and did not terminate with an infeasibility status. For the remaining instances,
we again observe a slightly higher OF value and optimality gap compared to the standard
2EPRP. Nevertheless, the Diff UBV remains low at 0.86% and 0.35% for the second and
third vehicle configurations, respectively.

It is also worth highlighting that the largest instance solved by Qiu et al. (2021) con-
sisted of 2 satellites and 35 customers over 3 periods, with 2 vehicles in the first and 4 in
the second echelon. In contrast, we solved instances as large as 5 warehouses and 40 cus-
tomers over 6 periods, with 2 vehicles in the first echelon and 15 in the second echelon.
The average optimality gap for this configuration was 10.39%, while the BC algorithm

was unable to improve the UB provided by the HHA.

3.4.3 Stochastic Problem

In this section, we present the results of the experiments for the stochastic version of the
problem. All parameters are set similarly to those in the deterministic case. The key
difference is that, since the second echelon of the problem is scenario-decomposable, we
leverage this structure by solving scenarios in parallel using 40 CPU threads, enabling up
to 40 scenarios to be processed simultaneously. For the experiments in this section, the
number of scenarios S is set to 100, and the uncertainty level J is set to 0.2, unless stated
otherwise.

After solving the problem with the HHA, the resulting solution is used as a warm start
for the BC algorithm. However, the LBs provided by the BC are generally weak; thus, we
use the LB of the Wait-and-See (WS) problem as a valid LB to the recourse problem (RP).
While this LB is theoretically weak as well, it consistently outperforms the one obtained

from the BC. This highlights one of the main challenges in solving this problem, which
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is to find a strong LB.

Table 3.8 summarizes the main findings. The first five columns show the number of
warehouses, the number of vehicles at the plant, the number of vehicles at each ware-
house, the number of scenarios, and the number of instances for each configuration. Col-
umn CPU-HHA reports the average CPU time for the HHA, and column CPU-BC dis-
plays the computation time for the BC algorithm. We should highlight that building the
initial solution from the given warm start may take anywhere from several minutes to sev-
eral hours in CPLEX, due to the large scale of the problem. The two-hour computation
limit is applied only after the initial solution is built. Therefore, the reported CPU time
often exceeds two hours, reflecting the total time required for both building the initial
solution and solving the problem with BC. Column Gap provides the average relative
optimality gap in %, based on the best UB and LB obtained for the problem. Column
Diff-UBV shows the average improvement in the UB of the HHA after solving the prob-
lem with BC.

To evaluate the value of the stochastic solution, we report the Value of the Stochastic
Solution (VSS) and the Expected Value of Perfect Information (EVPI), both expressed
as percentages. However, optimality is not guaranteed for the RP nor for the evaluation
problems, i.e., the expected value of the expected value (EEV) problems and the WS
problems. Thus, the VSS™B, VSSUB_ and EVPIVB are reported as ranges around their true

values, which we cannot compute exactly. These values are calculated as follows:

EEVLB — RpUB
VSSHB — 3.41
EEVLB 341

EEVYB — RpLB
VSSUB — 3.42
EEVUB (5.42)

RPUB _ WSLB

UB __

where EEV-B and EEVYB are the LB and UB to the EEV problem, and WSEB is the
LB to the WS problem. Note that the value of WS'B is similar to the problem’s gap, as
WS provides the LB to the problem in all cases. The EVPI'B is also not reported, as

calculating it using a similar approach would result in negative values, which are lower
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Table 3.8: Computational results for the stochastic problem

N, K, K, S #Ins CPU-HHA CPU-BC Gap Diff-UBV VSS'® vSsUB EvpIUB
(secs) (secs) (%) (%) (%) (%) (%)

1 1 100 8 3,587.8 7,868.5 14.8% 0.0% 179% 31.1% 14.8%
2 2 2 100 8 3,638.0 8,993.8 14.7% 0.0% 188% 33.1% 14.7%
2 3 100 8 3,640.1 7,643.7  15.7% 0.0% 16.7% 332% 15.7%
1 1 100 8 3,430.5 8,065.5 19.1% 0.0% 13.6% 32.6% 19.1%
32 2 100 8 3,587.3 7,996.4  19.3% 0.0% 11.8% 323% 19.3%
2 3 100 8 3,688.4 7,871.7  21.9% 0.0% 11.5% 343% 21.9%
1 1 100 3 3,656.0 7,963.5 23.0% 0.0% 99% 362%  23.0%
4 2 2 100 3 3,682.3 9,160.0 26.6% 0.0% 40% 34.6%  26.6%
2 3 100 3 3,678.6 8,471.8 28.6% 0.0% 51% 345%  28.6%
1 1 100 3 3,668.2 10,670.4 23.6% 0.0% 103% 393%  23.6%
5 2 2 100 3 3,688.6 10,670.4 22.8% 0.0% 44% 344% 22.8%
2 3 100 3 3,680.0 16,631.7 24.6% 0.0% 42% 37.1%  24.6%
Average 100 66 3,617.2 8,563.6 19.4% 0.0% 127% 33.6%  19.4%

than its natural LB of zero.

As seen in Table 3.8, the average HHA computation time remains around 1 hour,
indicating that the time limit was the primary stopping criterion. The BC algorithm,
on the other hand, requires approximately 2.5 hours on average. Despite receiving the
HHA solution as a warm start, the BC fails to improve the given solution in any of the
instances, resulting in an average improvement of 0.0%. The average optimality gap is

around 19.4%, mainly due to the lack of a strong LB.

The reported average VSS ranges from 12.7% to 33.6%, demonstrating the added
value of solving the stochastic model instead of relying on expected-value decisions.
While the LB of VSS tends to decrease for larger instances due to weaker LBs in the
EEV problems, the UB remains above 30% in most cases. The EVPI is also reported at
19.1%, which corresponds to the LB of the problem since we used the WS solution to
estimate it. While this number is relatively large, we expect the true EVPI to be smaller,

as the optimality gap in the evaluation problems introduces overestimation.

Figure 3.2 displays the average of the best obtained UBs for the stochastic problems,
compared to the UBs for the WS and EEV problems, across different numbers of ware-
houses. Only instances with a similar number of customers are used in this figure; that is,

only instances with 20, 25, or 30 customers are shown. Based on the figure, we observe
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Figure 3.2: Objective function values for different numbers of warehouses

that the objective function value slightly increases as the number of warehouses increases.
This is mainly due to higher transportation costs resulting from having more vehicles with

lower capacity in the second echelon of the problem.

To provide further insight into the role of customer-to-warehouse assignments, Ta-
ble 3.9 reports related results. Column NW shows the average number of distinct ware-
houses that serve each customer across all periods and scenarios. A value close to 1 in-
dicates that allowing flexibility in customer-to-warehouse assignments would have little
impact on the solution. In contrast, values closer to .4;, suggest that ignoring this flex-
ibility would increase the OF value. The results show that NW is 2 when there are two
warehouses, and it increases as the number of warehouses grows. This indicates that, for
each customer, there usually is at least one period and scenario in which they are served

by a warehouse other than their most frequently assigned warehouse.

We introduce an additional metric to capture the relative importance of warehouses
to each customer. The importance metric is computed as the proportion of periods and
scenarios (7 x §) in which a customer is served by each warehouse. For each customer,

we first calculate the importance of all warehouses and rank them in descending order.
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Table 3.9: Customer-to-warehouse assignment across periods and scenarios

Most Frequent Second Most ~ Third Most ~ Fourth Most  Fifth Most

Ny #Ins NW Not Visited (%)

(%) Frequent (%) Frequent (%) Frequent (%) Frequent (%)
2 9 200 55.1% 5.0% - - - 39.9%
3 9 293 53.9% 6.0% 1.9% - - 38.2%
4 9 3.65 54.1% 4.9% 1.9% 0.6% - 38.5%
5 9 4.19 55.9% 4.2% 1.2% 0.6% 0.3% 37.8%
Average 36 3.19 54.8% 5.1% 1.7% 0.6% 0.3% 38.6%

Then the average of these values across all customers provide a measure of warehouse
importance that is relative to each customer rather than tied to a specific warehouse ID.
The results indicate that, on average, when there are two warehouses, customers are
served by their most frequent warehouse 55.1% of the time and by their second most
frequent warehouse 5.0% of the time. Note that in some periods, certain customers are not
visited by any warehouse. This needs to be accounted for to ensure that the percentages
sum to 100%. Interestingly, the importance of the most frequent warehouse, as well as
the percentage of periods in which customers are not visited, remains relatively stable
as the number of warehouses increases. In contrast, the importance of the second most
frequent warehouse declines, with its share redistributed among the other warehouses.
This trend occurs because having more warehouses increases the likelihood that some of
them are geographically closer to a specific customer, allowing the customer to be served
by different warehouses in different periods or scenarios. Even if a warehouse is farther
than the most frequent one, serving the customer from that warehouse in certain cases
can help reduce overall costs by balancing capacity utilization and improving routing

efficiency.

3.4.4 Sensitivity Analysis

In this section, we provide a more detailed analysis of the stochastic problem by dis-
cussing how changing parameters such as the uncertainty level and the number of scenar-
ios can affect the solution. To this end, we consider different ranges of uncertainty levels
to observe how increasing stochasticity influences the problem. We also solve the prob-

lem under various numbers of scenarios to examine how different sample sizes impact the
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Table 3.10: Sensitivity analysis for different uncertainty ranges

8§ N, S #Ins CPU-HHA CPU-BC Gap Diff-UBV VSSI® VSSUB EvVPIUB
(secs) (secs) (%) (%) (%) (%) (%)

02 3 100 3 3,704.5 85229  20.7% 0.0% 109% 329%  20.7%
4 100 3 3,682.3 12,588.9.0 26.6% 0.0% 4.0% 34.6% 26.6%
04 3 100 3 3,671.1 8,623.1 22.1% 0.0% 31.1% 483%  22.1%
4 100 3 3,678.0 8,785.1  26.7% 0.0% 25.6% 49.6% 267 %
06 3 100 3 3,661.0 8,688.8  259% 0.0% 429% 58.7%  25.9%
4 100 3 3,697.7 8,750.9  32.7% 0.0% 350% 58.6%  32.77%
08 3 100 3 3,726.9 8,630.9 32.1% 0.0% 488% 68.3%  32.1%
4 100 3 3,732.4 9,0345 41.9% 0.0% 448% 66.5% 41.9%
Average 100 24 3,694.2 925277  28.6% 0.0% 298% 51.6%  28.6%

obtained solution.

For the sensitivity analysis, we use a subset of the introduced instances: those with 3
or 4 warehouses, 20, 25, and 30 customers, 2 vehicles at the plant, and 2 vehicles at each
warehouse. The main reason for conducting experiments on a subset of the instances is
that solving the problems, especially the evaluation problems, is computationally expen-
sive, which prevents us from running experiments on the entire dataset. Therefore, we
selected instances that are representative of the broader set while still allowing us to ex-
tract insights regarding various parameter settings. The number of instances used in this

part is 6, and the following sections provide further details on the sensitivity analysis.

Uncertainty Level

In this section, we present the results of the problem under various uncertainty levels & to
demonstrate how different levels of uncertainty could affect the results. The uncertainty
levels are set to 0.2, 0.4, 0.6, and 0.8, and as mentioned before, instances with 3 and 4
warehouses and 20, 25, and 30 customers were used, which led to a total of 6 instances
per each uncertainty level and 24 instances in total. Table 3.10 presents the results for
this analysis. The optimality gap is larger for higher levels of uncertainty; however, this
is mainly because WS is used as the LB of the problem, and it decreases as uncertainty
increases, which results in a larger calculated gap.

The results demonstrate higher VSS in environments with higher uncertainty, showing
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an average of 46.8% for the VSS'B when & = 0.8. This shows the significance of consid-
ering uncertainty when demand volatility is high. Even in environments with moderate
uncertainty, it is essential to take stochasticity into account, as the average VSS ranges
between 28.4% and 49.0% with § set to 0.4. This section shows the importance of in-
corporating stochasticity despite the difficulties of solving such a complex problem and
the existing limitations in guaranteeing a near-optimal solution. The results show that
even with the existing limitations, using HHA for solving the S2EPRP could result in
significant cost reductions and improved performance.

Figure 3.3 provides more details on the OF value under different uncertainty levels for
the RP as well as the WS and EEV. As shown in Figure 3.3a, the WS stays relatively stable
even for higher uncertainty levels, which shows the total cost if perfect information were
available and no uncertainty was present. On the other hand, the RP increases in more
uncertain environments, while the highest impact is on the EEV, where the first-stage
decisions are based on the mean value of demands. This highlights the significance of
considering stochasticity in the problem, especially in environments with high volatility.

Figure 3.3b illustrates the number of units of unmet demand under different uncer-
tainty levels, following a pattern similar to that of the OF values. One notable observation
is that the number of units of unmet demand remains zero in all cases for the WS problem,
as expected, since the demand is known in advance. For the RP, the average amount of
unmet units stays close to zero in low-uncertainty environments and does not exceed 11.3
units even at the highest uncertainty level. In contrast, solving the deterministic problem
using average demand can lead to significantly more unmet demand, ranging from 17.1

to 78.5 units on average, which can dramatically affect the overall costs.

Number of Scenarios

In this section, we provide the sensitivity analysis of the stochastic problem under dif-
ferent numbers of scenarios. The aim is to assess how the solution is affected when the
sample size changes. In addition to the standard 100-scenario case used throughout the

paper, we also solve the problem with 20, 50, and 200 scenarios. While increasing the
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Figure 3.3: Average UB and amount of unmet demands for different uncertainty levels

Table 3.11: Sensitivity analysis for different numbers of scenarios

S N, & #Ins CPU-HHA CPU-BC Gap Diff-UBV VSS'® vsSUB EvpIUB
(secs) (secs) (%) (%) (%) (%) (%)

p 3 02 3 23048 72053 17.9%  0.1% 9.6% 278% 17.9%
4 02 3 29003 72067 197%  0.1% 48%  349% 19.7%

s 3 02 3 33332 72124 188%  0.0% 10.0% 30.7% 18.8%
4 02 3 34152 72171 231%  0.0% 46% 377% 23.1%

0o 3 02 3 37045 85229 207%  0.0% 109% 329% 20.7%
4 02 3 3,682.3 12,5889 26.6%  0.0% 40% 346% 26.6%

0 3 02 3 37714 11,7033 215%  0.0% 128% 275% 21.5%
4 02 3 3,699.9 - 23.8% - 77%  462%  23.8%
Average 02 24 33514 85033 215%  0.0% 166% 373% 21.5%

number of scenarios is generally expected to improve solution quality, it also drastically
increases the problem’s complexity, creating a computational limitation that may prevent
the problem from being solved. Thus, the goal of this analysis is to investigate how the
solution behaves under varying sample sizes.

For this part, we use the same data configurations as in the previous section, with a
total of 24 instances. A summary of the results is provided in Table 3.11. While the
BC algorithm is provided with the HHA solution as a warm start, for instances with 200
scenarios and 4 warehouses, CPLEX was unable to build the initial solution within the
time limit. As a result, the BC algorithm was not even started for any instance in this
configuration.

For the case with 20 scenarios, we observe a slight improvement in the OF after solv-

ing the problem with the BC algorithm. However, this improvement is small and high-
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Figure 3.4: Objective function values for different numbers of scenarios

lights the ability of the HHA to obtain high-quality solutions for the problem. In terms of
VSSLB| there is an increasing trend in the values, which we believe results from a combi-
nation of two factors. First, using a higher number of scenarios yields a better sample set

that more closely resembles real-world uncertainty. Second, the increase in VSSLB

may
also be a consequence of the growing complexity of the problem as more scenarios are
considered, which can lead to weaker UBs. Nonetheless, it is important to note that using
100 scenarios, which is the main setting throughout this study, represents a reasonable
compromise between problem complexity and capturing existing uncertainty.

Figure 3.4 provides more details on the OF values for different numbers of scenarios.

This figure illustrates how increasing the number of scenarios results in higher UBs for

the RP, while also showing that the OF appears to converge after 100 scenarios.

3.5 Conclusion

This study addresses the stochastic two-echelon production routing problem. We present

a two-stage stochastic formulation in which the first stage models the production deci-
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sions at the plant, as well as the deliveries to warehouses. The second stage captures the
decisions related to customer inventories and deliveries from warehouses to customers.
A fleet of homogeneous vehicles is considered at the plant, along with a separate set of
homogeneous vehicles at each warehouse. These warehouse vehicles are assumed to have
smaller capacities suitable for intra-city deliveries.

One important assumption of our study is the possibility of assigning customers to
different warehouses in different periods or scenarios, which enhances overall efficiency.
Additionally, we incorporate adaptive routing into the stochastic model, allowing the de-
livery routes to vary across scenarios. This flexibility contributes to cost savings but also
significantly increases the problem’s complexity.

To address this complexity, we developed a hybrid heuristic algorithm that decom-
poses the problem into two subproblems. The first subproblem handles first-stage deci-
sions, including production planning and deliveries to warehouses, based on estimated
demands of customers assigned to each warehouse. A MIP is solved for this subproblem
in each iteration. The second subproblem concerns second-echelon routing and deliver-
ies, which are solved using an ILS algorithm followed by an LP to determine the values
of continuous variables. These two steps are solved iteratively, and in each iteration,
customer-to-warehouse reassignments may occur if potential cost savings are identified.
A perturbation phase is also incoporated to explore a wider region of the solution space.

While the main objective of this algorithm is to solve the S2ZEPRP-AR, it also performs
well on large-scale deterministic instances. We first present computational experiments
on the deterministic version to evaluate the algorithm’s performance. The test instances
include cases with up to 5 warehouses and 50 customers, with 2 vehicles in the first eche-
lon and 15 vehicles in the second. The algorithm solved these instances in approximately
30 minutes on average, with an average optimality gap of 7.46%. A total of 192 instances
were solved in the deterministic case.

For the stochastic version, we solved 66 instances. The BC algorithm, even with the
HHA solution provided as a warm start, was unable to improve the objective function

within a 2-hour time limit, demonstrating the difficulty of the problem. Despite this, the
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developed algorithm was able to solve all instances. An average optimality gap of 19.4%
was observed. This relatively large gap is mainly due to the weak LBs obtained from the
WS problems. Finding stronger LB remains a key challenge in this study.

For future research, incorporating the supplier level could improve supply chain in-
tegration and enable more coordinated decision-making. Additionally, modeling uncer-

tainty on both the supply and demand sides could result in a more reliable system.
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General Conclusion

Most existing models for the PRP either ignore uncertainty or assume that routing de-
cisions must be decided before demand is realized. While these simplifications make
models easier to solve, they fail to capture key features of real-world operations. In par-
ticular, when delivery routes cannot be adjusted based on actual demand, this can result
in unnecessary customer visits, higher transportation costs and increased stockouts. As a
result, there is a clear need for more flexible and responsive planning models that better

reflect operational challenges.

This thesis addresses these limitations by studying SPRP variants that include adap-
tive routing. Adaptive routing allows delivery routes to be determined after demand is
realized. This makes it possible to construct delivery plans that are aligned with actual
needs and helps avoid the inefficiencies associated with fixed routing. The study follows
a twofold objective. On the one hand, it focuses on modeling extensions of the SPRP,
including adaptive routing, service levels, and a two-echelon production-distribution net-
work. On the other hand, it develops heuristic algorithms to solve these complex models,
combining heuristics and matheuristics. The three chapters of this thesis are structured to

reflect this dual focus.

The first chapter introduces the concept of adaptive routing within a two-stage stochas-
tic programming framework. In this model, routing decisions are deferred to the second
stage, allowing them to be adapted based on realized customer demand. This approach
provides more flexibility and improves cost-efficiency by avoiding unnecessary visits.

Two strategies are explored, following ideas from the lot sizing literature. In the static-



static strategy, both setup decisions and production quantities are decided in the first stage.
In the static-dynamic strategy, only setup decisions are fixed in the first stage, while pro-
duction quantities are decided in the second stage.

To solve the problem, a PH-based matheuristic is developed. The algorithm begins by
solving a TSP to generate an a priori customer tour. Then, the problem is decomposed
by scenario, and each subproblem is solved independently using the PH algorithm with a
heuristic adjustment strategy. This process guides the first-stage variables toward conver-
gence. Once the production plans are identified, the second-stage routing decisions are
further refined by solving a CVRP for each scenario and period. This approach provides
a structured way to manage scenario-specific routing decisions, and experimental results
show that adaptive routing leads to lower costs compared to models with fixed routing.

In the second chapter, the SPRP-AR is extended by incorporating service level con-
straints. In practice, it is sometimes impossible to assign costs for unmet demand. Instead,
businesses operate under minimum service level requirements. The model considers four
types of service level constraints. The o service level ensures that the probability of
fully meeting demand exceeds a specified threshold. The 3 service level, also known as
the fill rate, measures the proportion of demand that is satisfied directly from inventory.
The ¥ service level limits the ratio of expected backlog to average demand, offering a
broader view of service performance over time. The 7 service level controls the expected
backlog relative to the maximum expected backlog. These service levels are applied at
varying levels of granularity. They may be enforced for each period individually or over
the entire planning horizon, and they can be defined either per customer or as aggregate
requirements across all customers.

To solve the problem, an iterative matheuristic is proposed. The algorithm begins by
constructing setup plans based on approximate demands, obtained by aggregating demand
across all customers. It then determines production quantities, customer visit decisions,
and delivery quantities using approximate cost assumptions in order to generate a feasi-
ble solution that satisfies the service level constraints. Once a solution is found, routing

decisions are refined to improve delivery efficiency. To diversify the search, the algorithm
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returns to the initial setup phase and explores new possibilities. This iterative process
balances exploration and exploitation and yields high-quality solutions under different
service level structures.

The third chapter addresses a more complex problem by extending the SPRP to a two-
echelon network. In the S2EPRP-AR, goods are shipped from a production plant to a
set of warehouses, and from the warehouses to customers. The second echelon, which
includes deliveries from warehouses to customers, features adaptive routing, while first-
echelon routes are fixed. In addition, customer-to-warehouse assignments are allowed to
vary across scenarios and periods. This problem setting reflects many real-world logistics
networks, where central facilities deliver goods to regional warehouses, and local vehicles
with limited capacity handle customer deliveries. Although the two-echelon PRP has clear

practical importance, only a few studies have considered this model.

The problem is solved using a hybrid heuristic algorithm. In the first stage, setup de-
cisions, production quantities, and plant-to-warehouse deliveries are determined. These
decisions are modeled as a mixed integer program. The second-stage decisions, which in-
clude warehouse and customer inventories as well as warehouse-to-customer routing, are
solved using an ILS algorithm. Because the second stage is decomposable by scenario, the
solution process is scalable. The algorithm alternates between cost improvement steps and
diversification moves, including the reassignment of customers to different warehouses.
The proposed method is also adapted to solve large-scale deterministic instances of the

two-echelon PRP, including the 2EPRP with cross-docking satellites variant.

Contributions

This thesis makes several contributions to the literature on stochastic production rout-
ing and multi-echelon supply chain optimization. It introduces three novel modeling
frameworks that enhance the flexibility of production and distribution planning under
demand uncertainty: the Stochastic Production Routing Problem with Adaptive Rout-

ing (SPRP-AR), the SPRP-AR extended with four distinct service level constraints im-
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plemented at multiple levels of granularity, and the Stochastic Two-Echelon Production
Routing Problem with Adaptive Routing (S2EPRP-AR). The thesis also develops ad-
vanced heuristic and matheuristic solution methods capable of tackling large and com-
putationally challenging stochastic problems, including progressive hedging-based ap-
proaches (PH-M), iterative matheuristics (IMH), and a hybrid heuristic algorithm (HHA).
These methods are validated through extensive computational experiments on a wide
range of stochastic instances, demonstrating their efficiency, scalability, and ability to

deliver high-quality solutions.

I. Stochastic Production Routing Problem with Adaptive Routing (SPRP-AR)

The first contribution is the development of the SPRP-AR, which allows routing decisions
to be made after demand is realized. In Chapter 1, we show that shifting routing to the
second stage captures the operational benefits of adaptive planning and reduces unneces-
sary customer visits. This increased flexibility lowers expected transportation costs and
better reflects real-world supply chains where routing decisions can respond to demand

variability.

II. Progressive Hedging-Based Matheuristic

In Chapter 1, we also present the first algorithmic contribution: a Progressive Hedg-
ing (PH)-based matheuristic for the SPRP-AR. The algorithm decomposes the stochastic
problem into scenario-specific subproblems and iteratively drives first-stage decisions to-
ward consensus using Lagrangean adjustments. A three-phase matheuristic is embedded
to refine production, inventory, and routing decisions, providing high-quality solutions

within reasonable computation times.

II1. SPRP-AR with Service Level Constraints

In Chapter 2, the SPRP-AR is extended by incorporating four types of service level con-

straints, each reflecting a different operational priority in managing stockouts and back-
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logs. These constraints are applied at both customer and plant levels, and for each single
period or for the entire planning horizon. This extension provides insights into how ser-

vice level definitions and granularities affect operational performance and overall cost.

IV. Iterative Matheuristic for Service Level-Constrained SPRP-AR

The second algorithmic contribution is an Iterative Matheuristic (IMH) for the service
level-constrained SPRP-AR. This approach alternates between diversification and inten-
sification phases to generate cost-efficient solutions that satisfy service level requirements.
Through the IMH, we are able to handle complex service-reliability constraints effectively

and obtain high-quality solutions that balance cost and service.

V. Stochastic Two-Echelon Production Routing Problem with Adaptive Routing
(S2EPRP-AR)

In Chapter 3, the study extends the adaptive routing concept to a two-echelon supply
chain consisting of a plant, warehouses, and customers. The S2ZEPRP-AR integrates flex-
ible customer-to-warehouse assignment with scenario-dependent second-stage routing,
reflecting the complexity of real multi-echelon logistics networks. This model highlights
the benefits of combining network flexibility with stochastic optimization in multi-tier

supply chains.

VI. Hybrid Heuristic Algorithm for S2EPRP-AR

The third algorithmic contribution is a Hybrid Heuristic Algorithm (HHA) for the two-
echelon PRP. It combines a mixed-integer programming (MIP) solver for first-stage de-
cisions with an Iterated Local Search (ILS) for scenario-dependent second-stage routing.
This hybrid approach exploits problem decomposition, scales to large deterministic and

medium-size stochastic instances, and consistently produces high-quality solutions.
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VII. Datasets and Extensive Computational Experiments

To validate the proposed models and algorithms, we generated new instances for the
SPRP-AR with service level constraints and for the S2EPRP-AR, building on and extend-
ing existing benchmark instances. Extensive computational experiments were conducted
across deterministic and stochastic instances, demonstrating the efficiency and scalability
of the proposed methods. These experiments also highlight the cost benefits of adaptive
routing, the impact of service level definitions, and the applicability of the approaches
to real-world logistics systems. Moreover, extensive sensitivity analyses were performed
to examine the effects of uncertainty levels, service level choices, and problem size on

solution quality and computational effort.

Future Research Directions

The contributions presented in this thesis lead to several potential directions for future
work, both in terms of modeling enhancements and algorithmic development. One pos-
sible extension involves incorporating multiple products and heterogeneous vehicles. In
real-world operations, fleets often consist of vehicles with different capacities, costs, and
product compatibilities. Extending the current models to account for this heterogeneity
would improve their applicability and reflect a broader range of operational contexts.

Another promising direction is the dynamic and real-time adaptation of routing and
inventory decisions. While this thesis uses a two-stage modeling framework, where de-
cisions are adapted once after uncertainty is resolved, many supply chains operate under
rolling horizons. Future research could explore multi-stage models or develop rolling
horizon algorithms that periodically re-optimize decisions as new demand information
becomes available.

The scenario-based stochastic approach adopted in this thesis could also be comple-
mented by alternative uncertainty-handling techniques. In particular, robust optimization
provides more conservative solutions that do not rely precise probability distributions.

By focusing on worst-case scenarios, these approaches can produce solutions that remain
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feasible under a wide range of demand realizations. Such methods are especially valuable
in environments with limited historical data, highly variable demand patterns, or rapidly
changing market conditions, where estimating accurate probability distributions is chal-
lenging.

Another important area for future research involves sustainability. While the models
developed in this work primarily focus on cost minimization, real-world supply chains
increasingly require environmentally conscious planning. Future extensions could incor-
porate explicit carbon emission constraints, fuel consumption objectives, or broader green
logistics policies. Considering the deployment of electric or hybrid vehicles, compliance
with low-emission zones, and the impact of carbon taxation in both routing and inventory
decisions would make the models more aligned with sustainable operations.

Lastly, the rapid progress in predictive analytics opens further opportunities for en-
hancing stochastic production routing and multi-echelon decision making. Future re-
search could exploit machine learning techniques to anticipate demand patterns and iden-
tify high-probability customer visit combinations before optimization begins. By gener-
ating candidate routes or promising partial solutions based on historical data and scenario
characteristics, these models could provide the algorithm with a better starting point, im-

proving convergence and overall computational efficiency.
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Appendix A: A Progressive
Hedging-based Matheuristic for the
Stochastic Production Routing Problem

with Adaptive Routing

A.1 Detailed CPU time of the PH-M algorithm

In this section, we present the computation time of each phase of the PH-M algorithm.
Tables A.1 and A.2 provide the details of the CPU time for each phase of the algorithm for

different € values under the static-dynamic strategy and static-static strategy, respectively.

A.2 Computational experiments on larger instances

In this section, we present the results of experiments conducted on larger instances with
up to 50 customers. Due to the high computational cost associated with determining the
Value of Stochastic Solution (VSS) and Expected Value of Perfect Information (EVPI),
as well as resource constraints, our focus was solely on solving the SPRP-AR using the
PH-M and BC algorithms. We provide a summary of the results for the static-dynamic
and static-static strategies in Tables A.3 and A.4, respectively. For the BC algorithm, we

utilized the solution from the PH-M algorithm as a warm start.



Table A.1: Average computation time of the PH-M under the Static-
Dynamic Strategy

SPRP-AR (PH-M)

T K € #Ins Phase One  Phase Two  Phase Three Total
(secs) (secs) (secs) (secs)
6 1 0.2 6 0.2 113.1 1.4 114.7
6 2 02 6 0.1 708.8 264.5 973.5
6 3 0.2 4 0.1 1,182.0 30.6 1,212.7
9 1 0.2 6 0.1 641.7 2.3 644.0
9 2 02 4 0.1 1,672.7 21.4 1,694.2
Total 26 0.1 776.9 69.9 847.0
6 1 0.4 6 0.3 117.1 1.7 119.2
6 2 04 6 0.2 893.4 246.1 1,139.7
6 3 0.4 4 0.1 1,217.0 24.7 1,241.8
9 1 0.4 6 0.2 794.2 2.1 796.5
9 2 04 4 0.2 1,941.7 29.7 1,971.6
Total 26 0.2 902.4 66.0 968.7
6 1 0.6 6 0.1 119.8 1.5 121.3
6 2 06 6 0.1 846.1 167.6 1,013.7
6 3 0.6 4 0.0 1,220.0 37.4 1,257.5
9 1 0.6 6 0.1 752.1 1.7 753.9
9 2 06 4 0.0 1,946.3 39.2 1,985.5
Total 26 0.1 883.6 51.2 934.8
6 1 0.8 6 1.0 159.1 2.7 162.9
6 2 08 6 1.2 1,063.6 37.3 1,102.1
6 3 0.8 4 0.1 1,385.4 17.9 1,403.4
9 1 0.8 6 0.1 838.0 3.1 841.2
9 2 08 4 0.1 2,332.2 26.8 2,359.0
Total 26 0.6 1,047.3 16.8 1,064.9

Each setting ranged from 35 to 50 customers, with a step of 5, resulting in four in-
stances per row of the table. The columns T and K represent the number of periods and
vehicles in the configuration, while € denotes the uncertainty level, and #Ins indicates the
number of instances. Under the PH-M section, the #Best column illustrates the number
of instances where the Upper Bound (UB) of the BC algorithm was equal to that obtained
by the PH-M algorithm. The CPU column displays computation time in seconds. For
the BC section, the CPU column shows the computation time of the BC algorithm plus
the CPU time of the PH-M algorithm. Finally, the Gap column is the relative gap of the

solution using the Lower Bound (LLB) obtained from the BC algorithm. It is important

il



Table A.2: Average computation time of the PH-M under the Static-
Static Strategy

SPRP-AR (PH-M)

T K € #Ins Phase One  Phase Two  Phase Three Total
(secs) (secs) (secs) (secs)
6 1 0.2 6 0.1 138.4 1.4 140.0
6 2 02 6 0.1 879.2 355.1 1,234.4
6 3 0.2 4 0.0 1,523.7 30.5 1,554.3
9 1 0.2 6 0.1 871.1 1.8 873.1
9 2 02 4 0.1 1,690.4 26.5 1,717.0
Total 26 0.1 930.3 91.5 1,021.9
6 1 0.4 6 1.0 174.2 2.4 177.6
6 2 04 6 0.2 936.1 265.1 1,201.5
6 3 0.4 4 0.1 1,332.2 62.1 1,394.4
9 1 0.4 6 0.1 771.4 2.0 773.5
9 2 04 4 0.1 1,913.2 27.2 1,940.4
Total 26 0.3 933.5 759 1,009.8
6 1 0.6 6 0.1 176.1 1.8 178.1
6 2 06 6 0.1 1,059.9 224.6 1,284.6
6 3 0.6 4 0.1 1,233.3 30.5 1,263.9
9 1 0.6 6 0.2 887.3 3.0 890.5
9 2 06 4 0.1 2,590.5 31.8 2,622.5
Total 26 0.1 1,078.3 62.5 1,140.9
6 1 0.8 6 0.1 189.5 1.9 191.5
6 2 08 6 0.1 1,213.9 32.4 1,246.5
6 3 0.8 4 0.1 1,312.9 15.5 1,328.5
9 1 0.8 6 0.1 851.3 2.6 854.0
9 2 08 4 0.2 2,517.4 48.0 2,565.6
Total 26 0.1 1,109.6 18.3 1,128.0

to note that in Section 1.5, we explored the possibility of utilizing the wait-and-see (WS)
problem to obtain LBs. However, in these experiments we only relied on the LB provided

by the BC algorithm.

As observed in Table A.3, for the static-dynamic strategy, the PH-M algorithm suc-
cessfully solved all instances with an average gap of 8.4%. However, the BC algorithm
failed to improve the initial solution within the time limit of four hours for any of the
instances. Similarly, for the static-static strategy, as shown in Table A.4, the PH-M al-
gorithm found a feasible solution for all instances with an average gap of 8.2%. The BC

algorithm was unable to enhance the warm-start solution for any of the instances in this

il



Table A.3: Summary of the SPRP-AR results for
different uncertainty levels large instances under the

Static-Dynamic Strategy

PH-M BC

T K ¢ #Best CPU CPU Gap

(secs) (secs) (%)
6 1 02 4 4 579.7 14,983.0 4.0
6 2 02 4 4 4,716.7 19,124.3 12.2
9 1 02 4 4 4,373.3 18,778.3 8.3
Total 12 12 3,2232 17,628.5 8.2
6 1 04 4 4 450.0 14,853.1 4.2
6 2 04 4 4 4,594.9 19,003.3 16.8
9 1 04 4 4 2,847.0 17,251.5 7.5
Total 12 12 2,630.6 17,035.9 9.5
6 1 06 4 4 480.5 14,883.5 4.0
6 2 06 4 4 4,371.7 18,780.9 12.0
9 1 06 4 4 3,418.4 17,822.6 7.5
Total 12 12 2,756.9 17,1624 7.8
6 1 08 4 4 581.8 14,985.3 4.6
6 2 08 4 4 5,186.7 19,595.1 11.3
9 1 08 4 4 3,245.1 17,650.2 8.0
Total 12 12 3,004.5 17,410.2 8.0

case.

A.3 Factors contributing to the routing costs difference

The disparity in routing costs across various distribution functions and uncertainty levels
raises the question of which factors contribute to this difference. After investigating three
factors, including: Average Number of Routes (ANR), Average Route Length (ARL),
and Average per-route Number of Visited Customers (ANVC), it became evident that the
ANR serves as the primary contributor to these differences in routing costs. Table A.5

presents the average values of each factor under different distribution functions and €

values.
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Table A.4: Summary of the SPRP-AR results for
different uncertainty levels large instances under the

Static-Static Strategy

PH-M BC

T K & #ns #Best CPU CPU Gap

(secs) (secs) (%)
6 1 02 4 4 643.6 15,047.0 5.2
6 2 02 4 4 5,505.7 19,914.8 11.8
9 1 02 4 4 2,005.1 16,410.5 8.1
Total 12 12 2,718.1 17,124.1 8.4
6 1 04 4 4 457.6 14,860.8 4.7
6 2 04 4 4 4,865.1 19,273.6 11.3
9 1 04 4 4 3,028.2 17,432.2 7.5
Total 12 12 2,783.6 17,188.9 7.8
6 1 06 4 4 564.3 14,968.3 4.8
6 2 06 4 4 4,789.4 19,198.9 12.3
9 1 06 4 4 4,358.8 18,764.1 7.2
Total 12 12 3,237.5 17,643.8 8.1
6 1 08 4 4 613.6 15,018.1 6.2
6 2 08 4 4 4,025.5 18,435.3 10.7
9 1 08 4 4 3,288.8 17,693.5 7.8
Total 12 12 2,642.6 17,048.9 8.2

Table A.5: Average ANR, ARL, and ANVC

for different probability functions and under

different uncertainty levels

DF € ANR ARL ANVC
0.2 0461 4.489 3.827
Uniform 04 0506 4382 3.876
0.6 0517 4356 3.840
0.8 0.538 4.358 3.782
0.2 0461 4.089 3.627
Normal 0.4 0498 4.322 3.823
0.6 0.508 4.333 3.825
0.8 0.535 4.346 3.811
0.2 0463 4.083 3.619
Gamma 0.4 0.494 4300 3.809
0.6 0515 4311 3.795
0.8 0542 4361 3.819







Appendix B: The Stochastic Production
Routing Problem with Adaptive

Routing and Service Level Constraints

B.1 Details of the Branch-and-Cut algorithm

In this section, we provide the formulation for the SPRP-FR and details on the implemen-
tation of the BC algorithm. For this discussion, we use """ as the base formulation.
To present the SPRP-FR, we first highlight the main difference compared to SPRP-AR,
which is the way routing is handled. While in SPRP-AR the routes are determined based
on the realized scenario, in SPRP-FR the routes are fixed and remain unchanged regard-
less of scenario realization. As a result, the node visit (z;,) and edge visit (x; ;) variables
have one less dimension since the index s is no longer required. The formulation for

SPRP—FRaccusmmer is as follows:

(SPRP-FRagustomer )

min Z (Fyt+ Z Z Cijxijkt+25s<upf+ Z hilft))
(

teg i,j)EE ket s€P ieN
(B.1)

pi < Ay Vie 7,s€¢ (B.2)
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s __ 718 5 s
or =1os—1+pi — Z Z ikt
ieN ket

s 1.8 s s 5 s
L =by+1, + Y, gy —b}—d}
ket

Igt <Lo
Il-st —|—dlst <L

Y 4 < Ozon

€N

Z Zike <1

ket

S S
Gire < i Zik

t
S S ") S
Dy, — Z Z Girg — lio < Dy, 03
I=1kext

Z gs OzS't <1-— accustomer
s€Q

Y X =2z
(Jj.J")ee{i})

Z Xijkt < Z Zikt — Zekt

(i./)€E(M) i€n
yr €{0,1}

p; =0

Tt = 0

L; >0

b, >0

Zie € {0,1}

Xijee € {0,1}

xojke € {0,1,2}

o0y € {07 1}

Vie T,s€¢ (B.3)

Vie fte T,s€¢ (BA)

Vie T,s€¢ (B.S)

Vie N,te T, se¢ (B.6)

Vke X te T,se¢ (B.)

Vie M.,teT (B.B)

Vie N ke X te T, secdp (BI)

Vie St e T,s€¢ (B.10)

Vie A.,te T (B.11)

Vie NV ke . teT (B.12)

Yn C A, >2,een ke Xt €T (B.13)

Vi e 7 (B.14)

Vie T,s€ ¢ (B.15)

Vie N ke X te T, sed (B.16)
Vie NV te T,se¢ (B.17)

Vie S,te T, s€¢ (B.18)

Vie NV ke #.te T (B.19)

V(i,j) €E,i#0,ke 1t €T (B.20)
Vie N ke teT (B21)

Vie St € T,s€¢. (B.22)

The number of SECs in the above problem increases exponentially with the number of

customers. To address this, we first relax the SECs and employ a BC algorithm to add
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them incrementally during the solution process whenever violations are detected. This
approach ensures that SECs are added only when necessary, improving computational
efficiency. To identify violated subtours for each vehicle, we solve a separation algorithm.
To do this, we use the minimum s-t cut problem from the Concorde library, which is
known for its computational efficiency (Applegate et al., 2020). At the root node, SECs
are added for both fractional and integer solutions. However, after the root node, we check
SEC violations only for integer solutions to maintain algorithmic efficiency.

The key distinction between first-stage routing and adaptive routing lies in how SECs
are applied. For the SPRP-AR, SEC constraints (2.13) must be added for every scenario.
Consequently, the separation problem is solved independently for each scenario, and vi-
olated constraints are added to the specific scenario where they are detected. While it is
theoretically possible to add violated constraints from one scenario to all other scenarios,
this approach is highly memory-intensive and proved impractical during our algorithm
implementation. Instead, we restrict the SECs of each scenario to that scenario alone. In
contrast, for the SPRP-FR, since the routing decisions are made in the first stage, SEC
constraints (B.13) are applied in the first stage and do not have to be generated for each

scenario separately.

B.2 Evaluating The Value of SPRP-AR with Service

Level Constraints

A common approach for assessing the benefit of solving a stochastic problem instead of
a deterministic problem with mean demand is to compute the Value of the Stochastic So-
lution (VSS). This process begins by solving a deterministic version of the problem using
the expected demand, known as the Expected Value (EV) problem. The first-stage deci-
sions from the EV solution are then fixed, and the stochastic problem with fixed first stage
decisions is solved. By comparing the expected outcome (e.g., total cost) of this solution

against the optimal solution of the original stochastic problem, VSS quantifies the poten-
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tial improvement gained by explicitly considering uncertainty. In settings where a penalty
cost for unmet demand can be assigned, VSS provides a clear metric for how stochastic
recourse improves the objective function. However, in our case, the VSS approach is not
applicable due to the presence of service-level constraints modeled as chance constraints.
Determining first-stage decisions solely based on expected demand may lead to violations
of the required service levels. Therefore, a conventional VSS analysis does not directly
apply to our service-level-driven problem.

To support the previous argument, we solve the EV and then the stochastic problem by
fixing the values of the first-stage variables to those obtained from the EV. We performed
experiments under all service levels using the customer level-single period strategy. The
stochastic problem with fixed first-stage variables was infeasible for all instances with six
and nine periods. However, for some instances with three periods, we observed feasible
solutions. The average VSS values for these instance were 21%, 27%, 18%, and 50% for
the gcustomer  peustomer “acustomer “apd §EUstomer service levels, respectively.

To address this issue and ensure feasibility, we propose an alternative approach to eval-
uate the benefit of the stochastic solution. First, we solve a Full Demand Problem (FDP),
where each customer’s demand is set to the maximum observed across all scenarios. This
effectively enforces a 100% service level, ensuring that no shortages occur. Next, we fix
the first-stage setup decisions from the FDP solution and reinstate our original stochas-
tic framework with service-level requirements under the actual demand distribution. We
refer to this second problem as the Expected of the Full Demand (EFD) problem.

By comparing the EFD solution with the original stochastic problem incorporating
service level constraints, we define the Value of Service Level over Full Demand (VSLFD)
as a measure of how service-level-based stochastic optimization performs relative to a
full-demand deterministic baseline. Given that we have an upper bound on the fully
stochastic solution (since it is not necessarily solved to optimality due to the time limit),
we can only provide a lower bound for this metric as a percentage relative to the lower

bound of the EFD problem, denoted as LBgpp. Mathematically, the lower bound of

VSLED, LBysirp, is computed as: LBEFD]:];JE IE;P RP-AR * where UBgprp.ar represents the



Table B.1: Average VSLFD for different service levels for customer level-single period

SLType T S #INS  LBvsLrp

(%)
3 100 108 14.9

ognstomer 6 100 96 8.2
9 100 60 7.4
Total 264 11.0
3 100 108 18.7
customer 6 100 96 10.6
9 100 60 9.1
Total 264 13.0
3 100 108 13.0

yLustomer 6 100 96 4.2
9 100 60 3.3

Total 264 7.8
3 100 108 29.1
ggustomer 6 100 96 26.6
9 100 60 24 .4

Total 264 27.1

upper bound of the SPRP-AR obtained via BC. Table B.1 reports the LByspp values
under different service level metrics and for customer level-single period granularity.

The average cost savings achieved by solving the SPRP-AR with service level con-
straints, rather than using the VSLFD, range from 7.8% to 27.1% across different metrics.
Notably, the 0 service level exhibits the largest difference, whereas the 7y service level
shows the smallest. As noted in Section 2.5.3, the ¥ service level is the strictest, requiring
a higher proportion of demand to be met, followed by the - and & service levels, while
the o service level differs in nature. The high demand fulfillment required under the y
service level results in higher total costs. Thus, UBgprp.ar 1s closer to LBggp and that
leads to a lower VSLFD, though an average difference of 7.8% is still observed. In con-
trast, the & service level, which permits greater unmet demand, leads to a larger cost gap,
reaching up to 27.1%.

Additionally, instances with fewer planning periods (e.g., three periods) tend to exhibit
larger percentage differences. In shorter horizons, setup costs typically constitute a more
significant share of the objective function, amplifying the impact of even minor solution

changes. As a result, deciding to produce in just one additional period can substantially
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affect the overall objective value.

B.3 Details of the CPU time for the IMH algorithm

In this section, we present the CPU time associated with each phase of the IMH algorithm.
Table B.2 details the CPU time for each phase of the IMH algorithm applied to the per
customer-per period variant of the problem. This breakdown highlights the time attributed
to each phase of the algorithm, offering insights into its computational efficiency.

The second phase of the algorithm, which primarily focuses on satisfying the service
level constraints, exhibits significantly higher CPU times for the o and especially the 3
service levels. This is because these service levels involve more complex constraints and
require additional binary variables. In contrast, the second phase requires the least time
for the y and & service levels.

The type of service level also influences the first phase of the algorithm, as a simplified
version of the service level constraints is incorporated during this phase. While the third
phase is generally expected to have balanced CPU times across all service levels, this is
particularly true for the ¥ and 9 service levels. For these service levels, the algorithm
shows a very slow convergence as it approaches a 1% optimality gap, and the stopping
criterion is often triggered by the specified CPU time limit. This ensures computational
efficiency without compromising solution quality.

For the o and 3 service levels, however, the third phase has lower CPU times com-
pared to the ¥ and & service levels. This is because a time limit is imposed on each
intensification phase, and the more complex constraints of the o and 8 service levels re-
sult in longer CPU times during the second phase. Consequently, less time remains for the
third phase, and it reaches the intensification time limit earlier. It is important to empha-
size that in these cases, meeting the service level requirements in the second phase takes
precedence over further route optimization in the third phase. This prioritization ensures
that the algorithm provides feasible and high-quality routing solutions, as reducing the

time limit for the second phase could lead to infeasibility.
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Table B.2: Average CPU Time for Different Phases of the IMH Algorithm

CPU-IMH
SLType T S #INS Phase One  Phase Two  Phase Three
(secs) (secs) (secs)
3 100 108 574.4 229.7 1,834.7
ogustomer—— 6100 96 1,680.3 2,159.2 2,048.9
9 100 60 2,023.6 2,688.9 1,734.3
Total 264 1,305.9 1,490.3 1,889.8
3 100 108 1739.3 3185.4 1228.1
pgustomer—— 6 100 96 2167.3 3098.4 1459.3
9 100 60 2148.3 2875.7 1692.4
Total 264 1915.7 3113.0 1362.7
3 100 108 653.2 47.8 1846.9
yeustomer 6100 96 1203.7 616.3 3481.0
9 100 60 1582.7 1265.8 29504
Total 264 1064.6 5314 2691.9
3 100 108 801.9 34.5 2012.4
ggustomer 6 100 96 1528.1 841.7 3221.8
9 100 60 1790.8 1073.5 3073.7
Total 264 1290.7 564.2 2693.4
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Appendix C: The Stochastic
Two-Echelon Production Routing

Problem with Adaptive Routing

C.1 Summary of Sets, Parameters, and Decision

Variables

Table C.1 presents the descriptions of all sets and parameters, and Table C.2 provides the

descriptions of the decision variables used in the problem introduced in Section 3.2.

C.2 Mathematical formulation for the deterministic

2EPRP

In this section, we present the mathematical formulation for the deterministic two-echelon
PRP, where the demand is assumed to be known in advance. As a result, we no longer
consider scenarios to represent possible customer demands, and the scenario index s is
no longer needed in the model. All parameters and decision variables are similar to
those introduced in Table C.1 and Table C.2, except that the scenario index is removed.
In addition, for the deterministic case, shortages are no longer allowed, and the vari-

able [}, is therefore excluded from the formulation. The objective function minimizes
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Table C.1: Sets and parameters.

SRRNE

Plant node, .4, = {0}.

Set of warehouses, A, = {1,...,Ny, }.

Set of customers, A = {N,, +1,...,N,, + N, }.
Set of nodes, A = A, U, U ..

Epw Set of edges of the first echelon, &, = {(i,)) : i,j € MU M,,i < j}.
Epe Set of edges of the second echelon, &, = {(i,j) : i € Ay, j € AV, j € NI < j}.
& Set of edges, & = &,y U Sye.
z Set of all possible routes in the first echelon, where % = {1,...,R} and R = 2 — 1.
g Set of time periods, 7 = {1,...,T}.
H Set of vehicles in the plant, %), = {1,...,K, }.
iy Set of vehicles in warehouse 7, = {Z;V;ll Ki+1,..%) Ky}
S Set of scenarios, . = {1,...,S}.
Ewe(M) Subset of edges (i, j) € &, such thati, j € n and  C A, U4, is a given set of nodes.
g.c.({i}) Subset of edges incident to node i € A, U ..
Parameters:
F Setup cost.
u Unit production cost.
Gy Optimal cost of route r € Z.
cij Cost of visiting edge (i, j) € &ye.
hi Per unit holding cost at node i € .4,
Q; Unit penalty cost of unmet demand for customer i € 4.
C Production capacity.
Q°r Capacity of vehicles located at the plant.
v Capacity of vehicles located at warehouses.
Qyr Binary parameter, equal to 1 if warehouse w is visited in route r, 0 otherwise.
& Probability of scenario s € ..
d, Demand of customer i, in period ¢, under scenario s.
I Initial inventory at node i € 4.
L; Storage capacity at node i € 4.
My Upper bound on delivery quantity to warehouse w.
My =min{ 2P L}, Yw € N,
M Upper bound on delivery quantity to customer i in period ¢ under scenario s.

M, =min{ 2", L, Y] d5},Vie N,t€ T s€S.

the total cost of production, storage, and transportation across all nodes and both ech-

elons. The UB on deliveries to customers is also revised and should be replaced by

A"y = min {QW,L,-,ZZT:Z d,-l} Vi € At €.7. The full mathematical formulation for

the deterministic 2EPRP is given below.
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Table C.2: Decision variables

Decision variables:
First-stage Decisions:

Y Setup decision, equal to 1 if a setup takes place in period ¢ € .7, and 0 otherwise.
D Production quantity in period r € 7.
o Inventory of plant at the end of each period ¢.
Gyt Quantity of products delivered to warehouse w € _4;, using route r € Z in period t.
O Binary variable, equal to 1 if route r is selected in period ¢ in the first echelon, O otherwise.
Second-stage Decisions:
I Inventory of node i € .4;, U4, at the end of each period ¢ in scenario s.
I Unsatisfied demand of customer i in period ¢ and scenario s.
W, Quantity of products delivered to customer i € .4 by vehicle k € UA/ H in period ¢ in
we My
scenario s.
okt Warehouse visiting decision, equal to 1 if node w € .4, is visited by vehicle k € .7, in
period ¢ in scenario s, O otherwise.
Tt Customer visiting decision, equal to 1 if node i € .4 is visited by vehicle k€ |J %, in
we Ny,
period ¢ in scenario s, O otherwise.
Xkt Number of times edge (i, j) € &,. is traveled by vehicle k € U/V y, in period ¢ and in
weE Ny
scenario s.

Min Z <Fyt+upt+h010t+ Z Crop + Z L+

teT re# weNy,
Y Y Y cpmut X Ak) (€D
weN, ke, (i,j)EEwe ic AN
s.t.
P <Cy; Ve .7 (C.2)
Io=log—1+pi— Y, Y Gur Vi€ 7 (C3)
weN, rER
Iy < Lo vVt e .7 (C4)
Ly = wit—1 + Z qwrt — Z Z Wikt Vw e t/%wt S (CS)
re# ie N ke,

Ly <L, Ywe Mt €T (C.6)
Y awron <1 Yw e Myt € T (C.)
re#
Y on <K, Ve T (CS8)
re#
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Gwrt < My Ay

Z Gwrt < Qp Oyt

WEN,
Ly =11+ Z Wike — dit
ke U 4,
we My
li +dis < L;

1/
Wikt < A" it Zita

Y, wike < 0"zt

€N

Y <l
ke U Ay
we My

Y o X =2z
(i) €Bwe({i})

Z Xijkt < Z Zikt — Zekt

(i,j)€6we(n) ien
y: €40,1}

pe >0

Gwrt 2 0

Io, >0

or €{0,1}

Ii; >0

Wike > 0

Zwkt € {O, 1}

Zikt € {03 1}
Xijke € {0,1}

Xijkt € {0, 1,2}

Ywe My, reZ,te. T (C9)
VreZ,t € 7 (C.10)

Vie M.,te T (C.11)

Vie 4.,te. T (C.12)

vie ke | 1€ T (C13)
weN,
Yw e My, k € Hyt € T (C.14)

Vie M.,te T (C.15)

Vie MUbeke | Hy,te T (C.16)

WE Ny,

vn C Al =2,eenke | A,re T (C17)
WE Ny,

Ve 7 (C.18)

Vie .7 (C.19)

Ywe My, reZ,t €. 7 (C.20)
Ve T (C21)

VreZ,t € 7 (C.22)

Vie M, UNte T (C.23)

Vie # ke | e T (C24)
WE Ny

Yw e My, k€ Kt € T (C25)

Vie M ke | 1€ T (C26)
weNy,

V(i,)) € Ewesi & Mok e | Hyre T (C2T)
WE Ny

V(i,]) € Eweyi € My k € oyt € T . (C.28)
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C.3 Mathematical formulation for the deterministic

2EPRP with cross-docking satellites

In this section, we present the mathematical formulation for the deterministic two-echelon
PRP with cross-docking satellites. Similar to the standard deterministic variant, the de-
mand is assumed to be known in advance. All parameters and decision variables are
consistent with those in the 2EPRP. However, inventory holding is no longer allowed at
the satellites, which are used solely for transferring goods from the first-echelon vehicles
to the second-echelon vehicles for delivery to customers. As mentioned earlier, we use
the same notation for satellites to maintain consistency; thus, satellites are denoted by
w € A,,. We assume a unit handling cost h,, Yw € A;,, which is calculated as &,, = 6ho.
The full mathematical formulation for the deterministic 2EPRP with cross-docking satel-

lites is as follows.

Min Z <Fyz+upz+h010t+ Z Crop + Z By Z Z Wiki

teT rez weNy,  ieN ke,
+ Y Y ¥ gt X hl) (C29)
weNy, ke, (i,))ESwe icA;
S.t.
pr <Cy vVt € 7 (C.30)
Iy =Ios1+pi— Y, Y qun Vi e 7 (C31)
weNMy, rEXR

Ios < Ly Vie T (C.32)
Y =Y, Y wi Yw e At € T (C.33)
re# IEN kEK,
Y awron <1 Ywe Mt e T (C34)
reZ#
Y on <K, Vie T (C35)
reZ

qwrt < Qpawr
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Z Gwrt < Qp Oyt

weNy,

Ly =11+ Z
ke U Ay

wE My

Wikt — di

Iy +diy <L;
Wit < M i Zits

Z Wikt < O Zyie

IS A

Z Zike < 1
ke U Ay
we My

Y =2z
(4,7 ) €&wc({i})

Z Xijkt < Z Zikt — Zekt

(i) Eéwe(M) i€n
yr €{0,1}

pe >0

Gwrt =0

Ios >0

or €{0,1}

Ii; >0

Wike > 0

Zwkt G {O, 1}

Zikt € {0, 1}
Xijke € {0,1}

Xijke €10,1,2}

VreZ,t € 7 (C.37)
Vie S.,te. T (C38)

Vie 4., te T (C39)

Vie Mke | J,te T (C40)
WE Ny,
Yw € My, k € Hyt € T (CA4l)

Vie 4.t e T (C42)

Vie MU ke | H,te T (CA43)

WENy,

vnC AN =2.eenke | Hre T (CAd)
WE My

Vte T (C.45)

vVt e 7 (C.46)

Ywe My, re Z,te T (C4T)
Ve T (C.48)

VreZ,t € 7 (C.49)

Vie M., te T (C50)

Vie #ke | 1€ T (C51)
weMy

Yw e My ke, teT (C52)

Vie Mke | 1€ T (C53)
weEN,

(i, j) € Eye,i € Nk € | it € T (C54)
WwE N

V(i,]) € Eweyi € My, k € Hy,t € T. (C.55)
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C.4 The Branch-and-Cut algorithm

In this section, we provide the details of the branch-and-cut (BC) algorithm used to solve
both the stochastic and deterministic versions of the problem. Since the BC structure
is similar for both cases, we present the algorithm for the stochastic version. With mi-
nor modifications, the same approach can be applied to the deterministic version. The
problem is solved with CPLEX, and a callback function is employed to generate subtour

elimination constraints (SECs).

It is important to emphasize that, as mentioned earlier, the BC algorithm is primarily
used to evaluate the quality of solutions obtained by the hybrid heuristic algorithm (HHA),
rather than serving as the main solution method. In all cases, the solution produced by the

HHA is provided to CPLEX as an initial feasible solution.

As the first-echelon routes are explicitly defined in the model, there is no need to
generate SECs for that part of the problem. For each subset of warehouses, a traveling
salesman problem (TSP) is solved to determine the optimal visiting sequence and corre-
sponding cost. All possible combinations of warehouse visits are enumerated and added
to the model. Since the number of warehouses is assumed to be small, the total number of
possible combinations does not exceed 2" — 1 (for instances with W warehouses), which
can be processed in a few seconds, since W < 5. The Concorde algorithm is used to solve

these TSP problems efficiently.

In contrast, the number of SECs required in the second echelon grows exponentially
with the number of customers. For the stochastic case, these constraints must be gener-
ated for each scenario, which adds significant complexity. Therefore, constraints 3.17 are
relaxed at the beginning and added to the model only when violated. To identify violated
SECs, we solve a separation problem formulated as a minimum s—¢ cut for each scenario.
We use the algorithm provided by the Concorde library, which is known for its efficiency.
Once violations are detected, the corresponding constraints are added to exclude the in-
feasible solution, and the BC algorithm continues from there. SECs are checked only at

the root node and for integer solutions, as this has proven to be more efficient in practice
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than checking at every node in the branch-and-bound tree.

For solving the problem, we set the CPLEX MIP emphasis parameter to prioritize
optimality, and allocate 32 GB of memory and 10 threads.

In addition to SECs, we add several classes of valid inequalities to improve the ef-
ficiency of the BC algorithm. The first set consists of logical inequalities that ensure a

vehicle k € %, can only visit customer i € .4 if it is dispatched from warehouse w:
Ty < Doy Vie Nowe Ny ke Hyte T se.s. (C56)

The second set of logical inequalities imposes that an edge (i, j) € &, can only be

used if both nodes i and j are visited:

Xy < e Vi,j € MUM ke | Hyte T ses. (C57)
we Ny,

Xy < iy Vi,je MU Mke | Hte T ses. (C58)
weN,

The third set includes symmetry-breaking constraints that prevent a vehicle with index
k from being dispatched unless the vehicle with index k£ — 1 is already dispatched from

the same warehouse:
Zookt < D14 Yw e My ke te T, seS. (C59)

The last set of valid inequalities are the lexicographic constraints, which further help
break symmetry by imposing an ordering on customer visits across vehicles. These con-
straints ensure that the sequence of customers visited by vehicle k is lexicographically

smaller than or equal to that of vehicle k — 1:

i i

Y 27, <Y V7, VjeMowe N ke Ky te T, se.s. (C60)
i=1 i=1

Lexicographic constraints are especially helpful when multiple vehicles are assigned
to the same warehouse, as they eliminate redundant solutions that differ only in the in-
dexing of vehicles. All of these valid inequalities are also adjusted and added to the

deterministic problem.

xxii






	Résumé
	Abstract
	List of Tables
	List of Figures
	List of Acronyms 
	Acknowledgements 
	General Introduction
	References

	A Progressive Hedging-based Matheuristic for the Stochastic Production Routing Problem with Adaptive Routing
	Abstract 
	Introduction
	An illustrative example
	Contributions

	Literature Review
	The deterministic PRP
	The stochastic PRP
	The progressive hedging algorithm

	Problem Formulation
	The static-dynamic strategy
	The static-static strategy

	Progressive Hedging-Based Matheuristic Algorithm
	Scenario decomposition
	Adjustment Strategy
	Solving Subproblems
	Branch-and-Cut algorithm

	Computational Experiments
	Static-Dynamic Strategy
	Static-static Strategy
	Other Probability Distributions

	Conclusion
	References

	The Stochastic Production Routing Problem with Adaptive Routing and Service Level Constraints
	Abstract 
	Introduction
	Literature Review
	Problem Formulation
	Formulation for the SPRP-AR with  Sevice Level
	Formulation for the SPRP-AR with  Sevice Level
	Formulation for the SPRP-AR with  Service Level
	Formulation for the SPRP-AR with  Sevice Level

	Solution Algorithm
	Phase One: SLSP-SC
	Second Phase
	Phase Three: RDPRP-MV
	Stopping Criteria

	Computational Experiments
	Test Instances
	Algorithm Implementation
	Customer Level-Single Period
	Customer Level-Global
	Plant Level-Single Period
	Plant Level-Global
	Insights

	Conclusion
	References

	The Stochastic Two-Echelon Production Routing Problem with Adaptive Routing
	Abstract 
	Introduction
	Problem Formulation
	Hybrid Heuristic Algorithm
	Initial Solution
	Iterated Local Search

	Computational Experiments
	Deterministic Problem
	Deterministic Problem with Cross-docking Satellites
	Stochastic Problem
	Sensitivity Analysis

	Conclusion
	References

	General Conclusion
	Bibliography
	Appendix A. A Progressive Hedging-based Matheuristic for the Stochastic Production Routing Problem with Adaptive Routing
	Detailed CPU time of the PH-M algorithm
	Computational experiments on larger instances
	Factors contributing to the routing costs difference

	Appendix B. The Stochastic Production Routing Problem with Adaptive Routing and Service Level Constraints
	Details of the Branch-and-Cut algorithm
	Evaluating The Value of SPRP-AR with Service Level Constraints
	Details of the CPU time for the IMH algorithm

	Appendix C. The Stochastic Two-Echelon Production Routing Problem with Adaptive Routing
	Summary of Sets, Parameters, and Decision Variables
	Mathematical formulation for the deterministic 2EPRP
	Mathematical formulation for the deterministic 2EPRP with cross-docking satellites
	The Branch-and-Cut algorithm


