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Résumé

Cette thèse est constituée de trois articles. Dans le premier article, un problème de vendeur

de journaux est examiné où les coûts de stockage dans quatre phases de la chaîne d’approv-

isionnement (y compris les phases de production, transport, le saison de vente régulière et

le saison de vente à rabais) sont pris en compte dans le modèle, tandis que nous supposons

que la production et la demande totales sont accumulées linéairement dans le temps. Nous

considérons une demande probabiliste pour la période de vente régulière, tout en consid-

érant une distribution linéaire générale par morceaux (GPLD), ainsi qu’une distribution

discrète de demande. Le but de ce problème est d’obtenir la quantité de production op-

timale qui maximise le profit total attendu dans la chaîne d’approvisionnement. Dans le

deuxième article, le même problème est considéré tout en incorporant une fonction non-

linéaire générale pour les fonctions de production cumulée et de demande cumulée au

cours du temps, et une distribution discrète pour la demande incertaine. L’applicabilité

du cas non-linéaire général est illustrée davantage en considérant les modèles bien con-

nus de Bass (1969) et Wright (1936) pour les fonctions de demande et de production,

respectivement, ce qui nous a aussi permis de réaliser des expériences numériques. Dans

le troisième article, les mêmes modèles des premier et deuxième articles sont considérés,

tout en supposant des scénarios de demande discrète et en prenant en compte le problème

de la maximisation du profit dans le pire des cas. Malgré le fait que les fonctions de coût



de stockage soient non-linéaires, dans les trois articles, nous développons des processus

de résolution optimaux et efficaces pour le problème. De plus, nous utilisons des données

de demande réelles pour effectuer des études numériques, ce qui nous amène à utiliser

des méthodes basées sur les données dans le problème. Plus précisément, dans le premier

article, l’utilisation de la distribution GPLD nous permet de considérer l’histogramme de

densité des données de demande comme la distribution de probabilité de la demande pour

le problème du premier article. De plus, dans le deuxième article, nous ajustons un modèle

de demande de Bass (Bass 1969) sur des données réelles, pour modéliser la fonction de la

demande cumulative dans le temps.

Nous effectuons des expériences numériques approfondies, en utilisant des ensembles

de données de demande synthétiques et réelles. Dans le premier article, les résultats in-

diquent que le nouveau modèle est généralement plus rentable que les approximations

développées à l’aide du modèle standard de vendeur de journaux. Dans le deuxième ar-

ticle, nos résultats indiquent que la prise en compte de fonctions non-linéaires pour la

production et la demande cumulées dans le problème, généralement conduit à des so-

lutions plus profitables que le cas de la production et de la demande linéaires et que le

problème standard du vendeur de journaux. Dans le troisième article, les résultats des

études numériques montrent que la solution du problème dans le premier et le deuxième

article n’est pas robuste, alors que la solution robuste est conservatrice.

Les modèles et solutions développés dans cette these, peuvent être utilisés pour aider

les responsables de la fabrication et des achats à prendre des décisions sur la quantité à

produire ou à commander, tout en maximisant le profit de la chaîne d’approvisionnement,

et en profitant de leurs données de demande au fil du temps, en particulier lorsque la durée

de la chaîne d’approvisionnement est longue et que les coûts de stockage sont élevés.
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Abstract

This dissertation consists of three articles. In the first article, a newsvendor problem is

studied where holding costs of four stages in the supply chain (including production, trans-

portation, regular selling and discount seasons) are incorporated in the model, while as-

suming that the total production and demand are accumulated linearly over time. We con-

sider an uncertain demand under a general piecewise linear distribution (GPLD), as well

as discrete demand distribution, for the regular selling period. The goal of the problem is

to obtain the optimal production amount which maximizes the total expected profit of the

supply chain. In the second paper, we consider the same problem while considering a gen-

eral nonlinear function for both cumulative production and cumulative demand functions

over the course of time, and discrete distribution for the uncertain demand. The applicabil-

ity of the general nonlinear case, is further illustrated by considering well-known models

of Bass (1969) and Wright (1936) for demand and production functions of the problem,

respectively, which also enabled us to conduct numerical experiments. In the third paper,

we consider the same models of the first and second papers, under the assumption of dis-

crete demand scenarios, while taking into account the problem of maximizing the profit

under the worst case scenario. Despite the nonlinearity of the holding cost functions, in all

the three papers, we develop optimal and efficient solution approaches for the problem. In

addition, we take advantage of real demand data to conduct numerical studies which leads
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us to utilize data-driven methods in the problem. More specifically, in the first paper, the

use of GPLD distribution enables us to consider the density histogram of the demand data

as the probability distribution of the demand for the problem in the first paper. Moreover,

in the second paper, we fit a Bass demand model (Bass 1969) over real data, to model the

cumulative demand function over time.

We conduct extensive numerical experiments, using both synthetic and real demand

data. In the first paper, the results indicate that the new model is overall more profitable

than the approximations developed using the standard newsvendor model. In the second

paper, our results illustrate that considering nonlinear functions for cumulative production

and demand in the problem, generally leads to more profitable solutions than the linear

production and demand case, and the standard newsvendor problem. In the third paper,

the results of numerical experiments demonstrate that the solution of the problem in the

first and second papers, is not a robust one, while the robust solution is conservative.

The models and solutions developed in this dissertation, can be used to help manufac-

turing and purchasing managers decide on how much to produce or order, while maximiz-

ing the profit of the supply chain, and taking advantage of their demand data over time,

especially when the supply chain has a long duration and high holding costs.

Keywords

Supply chain, Newsvendor problem, Inventory holding costs, Uncertain demand, Discrete

distribution, Piecewise linear distribution.

viii



Research Methods

Operations research, Data analytics, Stochastic optimization, Robust optimization, Ana-

lytical solutions.

ix



Contents

Résumé iii

Abstract vii

List of Tables xiii

List of Figures xvii

Acknowledgements xix

General Introduction 1

1 A Newsvendor Problem with Holding Costs in a Multi-Stage Supply Chain 5

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Solution procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.1 Stochastic optimization under a continuous distribution . . . . . . 20

1.4.2 Stochastic optimization under a discrete distribution . . . . . . . . 24

1.5 Approximation methods based on the standard newsvendor model . . . . 25

x



1.6 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.6.1 Experiments with synthetic data . . . . . . . . . . . . . . . . . . 29

1.6.2 Experiments with real data . . . . . . . . . . . . . . . . . . . . . 36

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.9 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1.9.1 Explanation on the holding cost of the regular selling season, pro-

posed by Tang et al. (2018) . . . . . . . . . . . . . . . . . . . . . 48

1.9.2 Proof of Proposition 1 and concavity results for the general distri-

bution case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

1.9.3 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . 51

1.9.4 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . 66

2 Newsvendor Problem under Nonlinear Production and Demand with Hold-

ing Cost 71

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.3 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.4 The stochastic problem under discrete distributions . . . . . . . . . . . . 85

2.5 The problem under Wright’s model for production and Bass model for

demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.6 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

2.6.1 Synthetic dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 102

2.6.2 Real-world datasets . . . . . . . . . . . . . . . . . . . . . . . . . 105

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

xi



2.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3 Robust Newsvendor Problem with Inventory Costs 115

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.3 Robust optimization under discrete uncertainty set . . . . . . . . . . . . . 120

3.4 Numerical studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

General Conclusion 131

Bibliography 137

xii



List of Tables

1.1 An overview of the developed approximations and their exact counterparts for

phases 1, 3 and 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.2 Comparison of the new model with the standard newsvendor model, under the

GPLD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.3 Comparison of the new model with its approximations for phase 1, under the

GPLD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.4 Comparison of the new model with its approximations for phase 3, under the

GPLD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.5 Comparison of the new model with its approximations for phase 4, under the

GPLD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.6 Comparison of the new model with its approximation (ANV H), under the GPLD. 33

1.7 Comparison of the new model with its approximation and the standard newsven-

dor model, under the GPLD, for different values of t3. . . . . . . . . . . . . . 34

1.8 Comparison of the new model with its approximation and the standard newsven-

dor model, under the GPLD, for different values of r. . . . . . . . . . . . . . 34

1.9 Comparison of the new model with its approximation and the standard newsven-

dor model, under the GPLD, for different values of u. . . . . . . . . . . . . . 35

xiii



1.10 Comparison of the new model with its approximation and the standard newsven-

dor model, under the discrete distribution. . . . . . . . . . . . . . . . . . . . 36

1.11 Comparison of the new model with its approximation (ANV H), under the

GPLD (density histogram) derived from real data (SKU bb5419c49b - t3 = 1

day). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.12 Comparison of the new model with its approximation (ANV H), under the

GPLD (density histogram) derived from real data (SKU bb5419c49b - t3 = 42

days). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.13 Comparison of the new model with its approximation and the standard newsven-

dor model, under the discrete distribution derived from real data (SKU bb5419c49b

- t3 = 1 day). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.14 Comparison of the new model with its approximation and the standard newsven-

dor model, under the discrete distribution derived from real data (SKU bb5419c49b

- t3 = 42 days). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.15 Comparison of the new model with its approximation (ANV H), under the

GPLD (density histogram) derived from real data (SKU d17d9135b0). . . . . 42

1.16 Comparison of the new model with its approximation and the standard newsven-

dor model, under the discrete distribution derived from real data (SKU d17d9135b0). 43

2.1 Comparison of the model under Wright’s production and Bass demand with

simpler models, for synthetic data. . . . . . . . . . . . . . . . . . . . . . . . 105

2.2 Comparison of the model under Wright’s production and Bass demand with

simpler models, for SKU bb5419c49b (t3 = 1 day). . . . . . . . . . . . . . . 107

2.3 Comparison of the model under Wright’s production and Bass demand with

simpler models, for SKU bb5419c49b (t3 = 42 days). . . . . . . . . . . . . . 108

xiv



2.4 Comparison of the model under Wright’s production and Bass demand with

simpler models, for SKU d17d9135b0. . . . . . . . . . . . . . . . . . . . . . 110

3.1 The numerical results for robust optimization problem under discrete uncer-

tainty set for synthetic data and linear case (N = 100). . . . . . . . . . . . . . 126

3.2 The numerical results for robust optimization problem under discrete uncer-

tainty set for real data (SKU bb5419c49b) and linear case ( t3 = 24 hours,

N = 5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.3 The numerical results for robust optimization problem under discrete uncer-

tainty set for real data (SKU bb5419c49b) and linear case (t3 = 42 days, N = 5).126

3.4 The numerical results for robust optimization problem under discrete uncer-

tainty set for real data (SKU d17d9135b0), and linear demand case (N = 5). . 127

3.5 The numerical results for robust optimization problem under discrete uncer-

tainty set for synthetic data and nonlinear case (N = 100). . . . . . . . . . . . 127

3.6 The numerical results for robust optimization problem under discrete uncer-

tainty set for real data (SKU bb5419c49b) and nonlinear case ( t3 = 24 hrs,

N = 5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

3.7 The numerical results for robust optimization problem under discrete uncer-

tainty set for real data (SKU bb5419c49b) and nonlinear case (t3 = 42 days,

N = 5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.8 The numerical results for robust optimization problem under discrete uncer-

tainty set for real data (SKU d17d9135b0) and nonlinear case (N = 5). . . . . 128

xv





List of Figures

1.1 An illustration of the stock level over time for Case 1: Q ≤ x, and Case 2: Q > x. 19

1.2 An illustration of the probability density function f (x) of the general piece-

wise linear distribution (GPLD). The sum of the areas below the bold lines

must be equal to 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 Depiction of the gradual stock amount over the supply chain periods under

nonlinear production and demand functions for Case 1: x ≥ Q. . . . . . . . . 84

2.2 Representing the gradual stock level over four phases of supply chain with

nonlinear production and demand functions for Case 2: x ≤ Q. . . . . . . . . 84

2.3 Examples of cumulative production functions according to the model of Wright

(1936). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2.4 Examples of cumulative demand functions according to the model of Bass

(1969). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

xvii





Acknowledgements

First and foremost, I would like to thank my advisors, Professors Raf Jans and Yossiri

Adulyasak, for their support and expertise, which enabled the development of this disser-

tation, during my PhD studies at HEC Montréal. I also thank Prof. Moritz Fleischmann

(affiliated with University of Mannheim Business School, Mannheim, Germany) who pro-

vided insightful reviews on the first paper, which helped improve the article. Prof. Sanjay

Dominik Jena has been an examiner for different phases of my PhD, providing construc-

tive comments to enhance my PhD dissertation, for which I am thankful. I am also grateful

of all the instructors of my PhD courses, which I learned a lot from, especially, Professors

Gilbert Laporte, Masoumeh Kazemi Zanjani, Erick Delage, and Laurent Charlin. Last but

not least, I am thankful of my family and friends for their support and encouragements

throughout the years.

xix





General Introduction

The newsvendor problem is one of the most widely studied topics in the inventory control

literature and it has applications in a variety of industries including fashion and aviation

(Qin et al. 2011). It involves a purchaser (or a producer) with one ordering (or production)

opportunity for an item to be sold by the purchaser/producer, the amount of which is the

single decision to be made. The objective is to determine the optimal order or production

quantity so as to maximize the expected profit, based on a probability distribution of the

(uncertain) demand for the product. After the order (or production) of the amount Q, the

customer demand with an amount x becomes known. In case the order amount of Q is not

sufficient to meet the demand x, an underage cost p− v (where p is the selling price and

v is the cost of the product) is incurred which is the profit loss. On the other hand, if the

order is more than the demand, it is assumed that these leftovers can be sold according

to their salvage value g (which is typically less than the unit cost v), which leads to an

overage cost of v−g. Given F (Q), which is the demand cumulative distribution function

for a continuous demand distribution, indicating the probability that demand is less than

or equal to Q, the optimal order (or production) amount Q∗, can be derived very efficiently

and in closed-form using the equation Q∗ = F−1
(

p−v
p−g

)
. The notations and formulations

for the standard newsvendor problem, which we use throughout this dissertation, are also

utilized by Silver et al. (1998), and Qin et al. (2011).



The newsvendor model is typically applied to products which have short life cycle,

such as fashion items, seasonal products (such as Christmas items), or perishable prod-

ucts. A weakness in the standard newsvendor problem is the assumption that the product

demand occurs at a single point in time, although in practice, it is spread over a season

during which the item is sold at a regular price. Besides, the sale of the leftovers can also

happen over time, during another season, at a discount price (i.e., the salvage value). Since

during these seasons, the produced (or purchased) products are in stock, inventory holding

costs are also incurred. In addition, before starting the selling season, the products must be

produced and then transported, both of which happen during an extended period of time

which results in added inventory holding costs. The standard newsvendor model, does not

consider these holding costs. Therefore, in this dissertation we study an extension of the

standard newsvedor model, where we take into account the holding cost of the inventory

over four stages of a supply chain consisting of production, transportation, and regular and

discount selling periods. Qin et al. (2011) provide a review of the newsvendor literature.

In the first paper of this dissertation, we present an overview of newsvendor literature

with holding cost, with a focus on papers which have holding costs and are relevant to

the case considered in this thesis. More specifically, we review the papers Matsuo (1990),

Chen and Chuang (2000), Tang et al. (2018), and Schlapp et al. (2022), which also take

into account the holding cost of phases where inventory is stored over an extended period

of time, and under some conditions, they are equivalent to the holding cost functions in the

transportation or regular selling periods studied in this dissertation. Nevertheless, none of

those papers consider the holding cost of all four periods of our supply chain, altogether

in the same problem.

This dissertation consists of three papers. In the first paper, we study a newsvendor

problem in the context of a supply chain with four periods including production, shipping,

a regular selling phase, and a discount selling phase. More specifically, we consider the

2



holding cost of the stock, which may vary over time during the production and demand

periods and can be described as a linear function of time (i.e., cumulative production and

demand are both linear functions of time). We then propose optimal solution procedures

for the problem under a continuous general piecewise linear distribution and also discrete

distribution. Furthermore, we propose approximations based on the standard newsvendor

model. We perform numerical experiments using synthetic and real datasets. For each

of the real data cases, a piecewise linear distribution is formed using the histogram of real

demand data. The results demonstrate that the proposed model in all instances can generate

a higher or equal expected profit compared with the approximation methods based on the

standard newsvendor model, while the proposed approximations can still provide solutions

that are on average close to optimal.

Given that, in practice, the production and demand can be nonlinear functions of time,

in the second paper, we extend the study of the first paper to the case of nonlinear pro-

duction and demand functions over time. We first derive the holding cost functions under

general nonlinear demand and production functions, and then obtain the holding cost func-

tions under a specific production and demand based on the well-known Wright (1936) and

Bass (1969) models, respectively. These models are flexible and can represent a variety

of functions via parameter adjustment of the model. In our experiments, the Bass demand

functions in the regular selling season, are estimated using real data. The numerical results

demonstrate that the new model always provides more profitable or equal solutions when

compared to the approximations based on the linear demand and production case, and also

the standard newsvendor model.

In the third paper, the robust version of the problems in the second and first papers

under the discrete scenarios, is studied and an efficient solution process is proposed. Then,

several numerical experiments are performed to analyze the robust solution compared with

the solution of the stochastic problem studied in the first and second papers.

3





Chapter 1

A Newsvendor Problem with Holding

Costs in a Multi-Stage Supply Chain

Mehdi Ghaniabadi*, Yossiri Adulyasak*, Raf Jans*

* HEC Montréal, Montréal, QC, Canada.

Abstract

We study a generalized modeling framework for the newsvendor problem which involves

multiple stages comprising production, shipping, selling and discount periods. In this con-

text, the aspect of time is explicitly captured in the newsvendor model. Production and de-

mand are gradually and linearly accumulated over time as opposed to occurring at a single

point as in the classical newsvendor problem. Consequently, quantity-and-time-dependent

holding costs must be explicitly taken into account, which is also motivated by the impor-

tance of holding costs in supply chains. We present efficient solution procedures to solve

the problem under a general piecewise linear distribution (GPLD), and a discrete distri-



bution. Approximation methods based on adaptations of the standard newsvendor model

are also proposed. We conduct numerical studies under both synthetic and real data, the

results of which overall demonstrate the higher profitability of our modeling framework

compared to the standard newsvendor model, in the presence of holding cost. The approx-

imation methods also provide profits which are close to the optimal one. The managerial

implications are as follows. The mathematical formulation and the solution approaches

used in this paper can be utilized by decision makers to decide on the production or or-

der quantity of an item which minimizes the total cost of the corresponding supply chain

where the quantity-and-time-dependent holding costs are present, and this is especially

relevant for cases with high holding cost, long production times and a long selling season.

1.1 Introduction

Inventory management is an essential part of manufacturing and retail operations. The

main objective of this process is to determine the optimal amount of a product to be pro-

duced or ordered to maximize the corresponding profit of selling that item. The newsven-

dor problem is one of the most widely adopted and fundamental models in inventory

management (Porteus 2002), especially in retail businesses. Nevertheless, the traditional

newsvendor model relies on strict assumptions and many researchers have examined var-

ious extensions in order to enhance the model to deal with more realistic assumptions.

Khouja (1999) and Qin et al. (2011) provide a literature review of such efforts. In this pa-

per, we focus on an important shortcoming of the newsvendor model which has not been

addressed in the literature before. In the classical newsvendor problem, the element of time

is not taken into account, since the production and demand are assumed to occur at one

single point in time. However, in reality, production, distribution and sales happen over an

extended period of time. As a result, the inventory level varies over time and this has to be

6



properly captured in order to correctly account for the inventory holding costs. Moreover,

our model, may achieve solutions which are not obtainable by the standard newsvendor

problem. For instance, the optimal production quantity in our case can be a value below

the minimum demand. In addition, the holding costs of the production and selling phases

in our problem have nonlinear functions which cannot be incorporated into the standard

newsvendor model. Holding costs represent the product ownership cost, such as the costs

of insurance, storage space and human resources needed for storing products which may

depend on the amount of product and the duration of time for storing goods. The holding

cost also includes the opportunity cost of the money invested in inventory (Porteus 1990).

In the traditional newsvendor models, such a holding cost is typically only partially taken

into account as part of the overage cost which is charged for the excess inventory at the

end of the regular selling season (Eppen 1979, Kouvelis and Gutierrez 1997, Maggioni et

al. 2019). However, in supply chain management, we generally encounter a holding cost

which is incurred based not only on the quantity on-hand, but also on the duration of time

each unit of item is stored.

Besides, as time progresses, the (perceived) quality of a product may decline (Ferguson

and Koenigsberg 2007) which can cause the value and price of the product to decrease

continuously over time, especially for short-life-cycle products and high technology items

such as components of personal computers (Khouja and Park 2003, Sriram et al. 2010).

Callioni et al. (2005) take into account the continuous devaluation of products as a hidden

cost of inventory, especially for electronic hardware such as components of PCs, due to

constant advances in technology. The price decline over time also occurs due to quality

degradation; for example, for perishable and fresh products such as fruits (Blackburn and

Scudder 2009) or meat (Rajan et al. 1992). The term “marginal value of time” is defined by

Blackburn and Scudder (2009) to represent the value change of a unit item per unit time in

a supply chain. This decrease in value cannot be taken into account by adjusting the selling
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price of the standard newsvendor model, since the selling price is constant for the entire

regular or discount selling seasons. However, such kind of value loss or continuous selling

price decline can be considered as a part of the time-and-quantity-dependent holding cost

in our case.

It is clear that production, distribution and sales take place over a period time. For

example, the Sport Obermeyer case (Hammond and Raman 2006) illustrates that produc-

tion takes time due to limited capacity, and also that it requires some time to transport the

products. Furthermore, retailers are very familiar with selling seasons (e.g., Halloween,

Christmas, Valentine) which consist of a main selling period and a discount selling period.

To this end, we extend the traditional newsvendor model to take into account four different

phases: a production and a shipping phase prior to the two selling seasons. Contrary to

standard newsvendor models which assume that the production and demand of an item

occur at a single point in time, our model takes into account a more realistic perspective in

which production and demand happen gradually over time and hence the holding cost in

these phases is considered to be dependent on both the amount of the item and the duration

of time each unit item is in stock. The total demand is the only uncertain parameter, and

we assume that this total demand is spread uniformly over the first selling season. The

objective is to find the optimal production quantity in order to maximize the total expected

profit which is the difference between the total revenues from selling the product in the

regular and discount seasons, and the total cost which includes production and holding

costs.

The mathematical functions involved in the standard newsvendor model are all linear

in terms of the decision variable which is the ordering or production quantity (Eppen 1979,

Matsuo 1990, Mieghem and Rudi 2002, Levi et al. 2007, Maggioni et al. 2019). However,

considering the quantity-and-time-dependent holding cost during each of the production

and demand phases on its own, makes the model a nonlinear quadratic problem. Such a
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problem is in general more complex to solve than a linear model, especially when dealing

with its stochastic version. In this paper, we first introduce and mathematically model the

problem where we assume that the demand is known and that the production and demand

functions over time are linear during the production and the selling seasons, respectively.

The constant production and demand rates are frequently assumed in the literature of the

economic production quantity (Cárdenas-Barrón 2001) and the economic order quantity

(Moily 2015, Perera et al. 2017, Muriel et al. 2021), respectively. Moreover, we con-

sider the case of demand uncertainty where the uncertainty set can be characterized by

discrete scenarios or by a general piecewise linear distribution (GPLD). For these two

cases, we provide efficient solution procedures to solve the problem. Furthermore, we

present heuristics that rely on adapting certain parameters in the standard newsvendor

problem. The advantage is that these adaptations allow to use the closed-form solution of

the standard newsvendor problem. The disadvantage is that in some cases these approxi-

mate solutions do not provide good quality solutions. In some cases, the optimal solution

(considering holding costs) can even not be obtained using the standard newsvendor model

with adapted parameters. This is for example the case with a uniform demand distribution

and high holding cost. In such a case, it may be that the optimal order quantity, when con-

sidering holding costs, is lower than the minimum demand level. Such a solution where

the optimal production quantity is lower than the demand, can never be obtained by the

standard newsvendor problem. In a relevant paper, Cachon and Kök (2007) examine a

newsvendor problem with a nonlinear function for salvage value, which cannot be incor-

porated in the traditional newsvendor problem, and they propose estimations of the salvage

value which result in using the traditional newsvendor problem as an approximation of the

nonlinear problem.

Overall, the contributions of this paper are summarized as follows. We mathemati-

cally model the newsvendor problem with inventory build-up and depletion, and quantity-
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and-time-dependent holding costs, consisting of four phases in the supply chain including

production, transportation, regular selling season and discount season. The proper con-

sideration of the holding costs in the production and discount season is, to the best of our

knowledge, novel, while Tang et al. (2018) and Schlapp et al. (2022) do consider such

costs in the regular selling season. The holding cost related to the shipping phase, can di-

rectly be incorporated in the standard newsvendor model (Matsuo 1990, Chen and Chuang

2000, and Schlapp et al. 2022). We provide efficient solution procedures under GPLD

and discrete distributions. We propose approximation methods which can be incorporated

in the standard newsvendor problem (another such approximation based on the standard

newsvendor model, is proposed by Tang et al. 2018 for the regular selling season, which

we also examine in our paper). We conduct numerical experiments on both synthetic and

real data, which demonstrate the higher average profitability (which can be more signifi-

cant for higher holding costs) of our method over the standard newsvendor model and the

proposed approximations, while the approximations provide relatively close results to the

optimal profit.

The rest of this paper is organized as follows. In the next section a review of the rel-

evant literature is presented. In Section 3, the problem is modeled and described in more

detail. Section 4 first studies the problem under continuous distributions and provides

an efficient solution method for the stochastic problem under piecewise linear distribu-

tions, and then an efficient solution procedure is presented for the stochastic optimization

problem under discrete probability distributions. The heuristic methods based on adapt-

ing parameters in the standard newsvendor problem are presented in Section 5. Section 6

presents the numerical results. We provide the concluding remarks in Section 7.
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1.2 Literature review

A number of newsvendor studies take the holding cost into account only in a limited way

as part of an overage cost which depends only on the overstocked quantity at the end

of the regular selling season. The discount given for the excess inventory, can also be

incorporated in that framework as a part of the overage cost. In this context, Eppen (1979)

studies a multilocation newsvendor problem where the holding cost is charged for the

excess inventory and a penalty cost is occurred if there is a shortage, at each location.

Kouvelis and Gutierrez (1997) also consider shortage costs if the demand exceeds the

available inventory and overage cost if the demand is less than the inventory. In general,

the overage cost in the newsvendor model is calculated as the acquisition cost minus the

salvage value (Silver et al. 1998). Mieghem and Rudi (2002) study newsvendor networks

where an effective unit holding cost is charged which is equal to the actual unit holding

cost minus the unit salvage value. They also study the problem in a dynamic setting

with multiple periods where the holding cost is charged for the stock carried over to the

next period. The assumption of a linear demand over time is also incorporated by Urban

(2002) which consider such a demand until the shelf is being replenished, and once the

replenishment stops due to a lack of inventory, demand decreases at an accelerating rate.

They consider holding cost for the amount of stock that is left when the selling phase is

over. Levi et al. (2007) study the newsvendor problem under both single and multiple

period settings, where the true demand distribution is not known and only independent

samples of the true distribution are known. They consider a holding cost for each unit of

item remaining at the end of a period and a penalty cost for each unit of unsatisfied demand.

Chen et al. (2014) examine the newsvendor model with discrete demand and with single

and multiple periods, where for each period a unit holding cost is considered for each

excess item unit at the end of the period and also a unit backlog cost if a shortage occurs.

11



Maggioni et al. (2019) study a cost-based newsvendor model under common continuous

probability distributions and consider a unit holding cost for each overstocked unit item

after the regular demand is realized. Wu and Honhon (2023) study a newsvendor problem

with two selling periods where they consider a holding cost for the unsold inventory at the

end of the first period, which is carried to the second period. They also assume a salvage

value for the leftover inventory at the end of the second period. We will next review papers

in chronological order that take into account holding cost in the newsvendor model in a

different (and usually more complex) way compared with the aforementioned stream of

literature.

Bitran et al. (1986) study the production and selling of families of products in a

newsvendor context. The production and selling of each product family are assumed to

be single points in time and a holding cost is charged per unit product per period from

the point of production to the point of selling. Therefore, a fixed number of discrete time

periods is assumed between production and selling points, where holding cost is incurred

for each of those periods and for each produced item. No holding cost is considered af-

ter the first selling point for selling the overstocked items with discount. Later, Matsuo

(1990) studies a more realistic version of the problem in Bitran et al. (1986), where time

is considered as continuous (as in our case) and a holding cost for each item in the product

family is charged per unit product per unit time from the start of production of the next

family of products in the sequence (this start time is a decision variable in their problem),

to the point of selling, while in our case the holding cost from the start time (which is vari-

able) of production of the same item to its selling is included in the problem. The holding

cost function of the shipping phase in our case has a linear structure and can be considered

equivalent to the holding cost function in Matsuo (1990) for a single item.

Chen and Chuang (2000) study a newsvendor problem where the seller provides a

discount for a purchase made early. The holding cost is per unit item per unit time and the
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total inventory holding cost is calculated from the point of purchase (equivalent to a single

production point) to the single point of demand realization (in their problem, the duration

between these two points, is variable), which is equivalent to the total holding cost of our

shipping phase.

Pal et al. (2015) add holding cost to a distribution free newsvendor model with cus-

tomer balking which is studied in earlier works of Gallego and Moon (1993), Moon and

Choi (1995), and Liao et al. (2011). They take into account a unit holding cost in the

model which is a specific nonlinear function of the order quantity. They do not consider

the production or selling phases as gradual periods and hence the corresponding holding

cost occurred during the production or selling phases are not taken into account. Although

in their notations the unit holding cost is defined as per unit item per unit time, since in the

profit function they do not consider the duration of time for which the unit holding cost

applies, their unit holding cost is equivalent to the quantity-dependent holding cost.

Similar to our approach, Tang et al. (2018) study the newsvendor problem with holding

cost and a gradual linear demand in the regular selling season. However, they do not

propose a solution approach for the problem under discrete distribution or GPLD, and

do not take into account the gradual evolution of inventory in the production phase and

discount selling season. They also suggest an approximation for the holding cost of the

regular selling season, in a way to be able to use the closed-form solution of the standard

newsvendor model. They specifically motivate the problem based on items with high unit

holding costs, and show that an increase in unit holding cost results in a decrease in the

optimal order quantity, and the gap increases between the optimal order quantity of (and

the expected objective value of) the exact model and of the approximation based on the

standard newsvendor model. These results are also in line with our numerical experiments.

Wang et al. (2019) study the newsvendor problem with a price dependent demand

where the selling price is a decision variable along with the order quantity. They also take

13



into account a unit holding cost charged for each unit of the order quantity which makes

the total holding cost a linear function of the order quantity. Their holding cost is not

defined as a function of time and is not representative of the holding cost in our production

and selling seasons.

Schlapp et al. (2022) introduce a newsvendor problem where the timing of inventory

arrival is a decision variable (which may be before or after the start of the selling sea-

son, unlike our case where production occurs before the distribution and selling seasons).

In this work, the starting point of the selling season is unknown (as opposed to a known

starting point in our case), and the demand may follow a nonlinear pattern. The same as

our paper, they also consider a regular selling season in which demand occurs gradually,

and where quantity-and-time-dependent holding costs occur since the time the inventory

becomes available. They also do not take into account the holding cost of gradual produc-

tion and discount selling periods. Their holding cost can be equivalent to the holding cost

in our paper for the shipping phase and the regular selling season (assuming a constant

demand rate and a fixed period of time for the selling season). Nevertheless, unlike our

paper, their solution process is a heuristic one. They also study the case in which a regular

selling season is deterministic (which is the assumption of our model as well), and the

same aforementioned equivalencies also hold for this case.

To our knowledge, the holding cost of linear gradual production, and linear gradual

demand in the discount selling season, are not incorporated in the newsvendor models in

the literature. We also take into account the holding cost of a linear gradual demand for

the regular selling season which is first studied by Tang et al. (2018) (and also considered

later by Schlapp et al. 2022) in the newsvendor model. The holding cost of each of

these three periods, is a nonlinear function in terms of the decision variable which is the

production quantity (each of the holding cost functions of the two selling seasons is also

nonlinear in terms of the uncertain demand) which cannot be incorporated in the well
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known closed-form solution of the standard newsvendor model, unlike the holding cost of

the transportation phase which is a linear function of the production quantity and, under

conditions mentioned previously, is equivalent to the holding cost function used in Matsuo

(1990) and Chen and Chuang (2000). We incorporate the holding cost of all these four

phases of supply chain in the model, in order to enhance the applicability of the model in

practice.

1.3 Problem description

The assumptions of our model for the four phases of the supply chain in this paper, are

described as follows.

1. Production phase: In the first phase, the production of a single product is done ac-

cording to the quantity decision. Due to a limited production capacity available at

any point in time, the length of the production phase essentially varies depending on

the total production quantity decision. The initial inventory is zero and it accumu-

lates over time according to the production rate. The starting time of production is

flexible.

2. Shipping phase: The second phase involves the shipment of the produced quantity

from the production facility to the seller based on a fixed lead time. The regular

selling season may start immediately after the shipment arrives, or alternatively, one

can set the duration of the shipping phase equal to the time for the shipping plus any

additional time until the regular selling season begins. In this period, the inventory

level does not change.

3. Regular selling season, i.e., the first selling season: This corresponds to the main

selling season of the product. The starting time and duration of this season is
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fixed, and the inventory level declines gradually, since we assume that the demand

is spread over this whole first season.

4. Discount season, i.e., the second selling season: If the demand in the first selling

season is less than the stocked amount, i.e., the production quantity, then the unsold

items will be sold at a lower price in the second selling season. The start of the

discount season coincides with the end of the regular season. The duration of this

discount season is variable, and it lasts until the whole stock is sold.

We assume that there is no overlap between these phases. Moreover, for each of these

phases, we take into account the corresponding holding costs, in addition to the revenue

and production cost functions of the standard newsvendor model. The objective of the

problem is to find the optimal production quantity which maximizes the total profit of the

supply chain. Except for the holding cost of the shipping phase, the holding cost of the

other phases cannot be incorporated in the standard newsvendor model.

The following notation is considered to model the problem, some of which are the

same as the ones considered by Silver et al. (1998) for the standard newsvendor model.

First, we let Q be the production (order) quantity, which is our main decision variable,

and define the deterministic parameters as follows. We define p as selling price during

the regular selling season, g as selling price during the discount season, where g < p. We

also let v be the unit production cost, r the production rate (amount of item produced per

unit time), u the demand rate during the discount season (amount of item sold per unit

time), h1,h2,h3,h4 the holding cost per unit item per unit time during its corresponding

periods 1 to 4, t2 the duration of the shipment period, which is independent of Q, and t3

the duration of the regular selling season, which is also independent of Q. We have one

uncertain parameter which is x, the uncertain total demand in the regular selling season.

We define t1 as the duration of the production period, which depends on Q and r, and t4 as
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the duration of the discount selling season, which depends on (Q− x) and u. Note that in

our definitions, t2 and t3 are constants, and t1 and t4 are dependent variables. The demand

accumulates gradually and linearly over time and the demand rate during the first selling

season is τ = x
t3

. We hence assume that the uncertain demand will be equally spread over

the fixed regular selling season.

We must decide on the production quantity before knowing the realization of the un-

certain demand. If the production quantity Q is less than the total regular demand, i.e.,

if Q ≤ x, then we will have sold all the inventory before or by the end of the first selling

season at the regular price. As a consequence, since we do not satisfy the complete de-

mand, we have lost revenues in the regular selling season, and there will be no products

to be sold at the reduced price, and no holding cost will occur during the discount season.

On the other hand, if we produce more than the regular demand, i.e., Q > x, then there

will be no lost revenue and we will have excess inventory left at the end of the regular

selling season, which will be sold during the discount season and will result in additional

holding costs. In the model, we assume that the demand rate for the discount season is

fixed and known, and hence the duration of the discount season becomes dependent on the

quantity ordered. Therefore, depending on the realized demand relative to the production

quantity, we will have a different total revenue and total cost, and consequently a different

total profit function for the two selling seasons. As a result, we build the profit function of

the model for two cases of Q ≤ x and Q > x as follows.

Case 1: Q ≤ x

In production phase, the inventory is gradually built up at the production rate. The

length of this production period is t1 =
Q
r , and the average inventory on-hand is Q

2 . Hence,

since the unit holding cost h1 is charged per unit item per unit time, the total holding cost in

period 1 is equal to h1
Q
r

Q
2 = h1

2r Q2. We also have a production cost of vQ (a transportation

cost can be considered in the model as a part of the production cost). In the second phase,
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the produced Q item units are transported which takes t2 time units. Hence, in period 2, a

total holding cost of h2t2Q is incurred. In the third phase, the inventory is sold at the regular

price p and since Q ≤ x, all the stock amount will have been sold by the end of the first

selling season and the revenue will be pQ. Since the demand rate τ during the first selling

season is x/t3 and Q ≤ x, the inventory will become zero after Q
τ
= t3

Q
x time units after the

start of the selling season and during this time the average inventory level is Q
2 . Hence, the

corresponding total inventory holding cost during this season is h3
Q
2 t3

Q
x = h3t3Q2

2x . Figure

1.1 illustrates the evolution of the inventory level over time during these four phases of

the supply chain for the Case 1: Q ≤ x. Overall, we will have the following total profit

function P(Q,x) for this case:

pQ− vQ− h1

2r
Q2 −h2t2Q− h3t3Q2

2x

Case 2: Q > x

For this case the production and holding cost functions related to the first and second

phases are the same as in the first case, since those functions are independent of the demand

realization. For the third phase which is the regular selling season, since Q > x, only x unit

items are sold at the regular price and the excess inventory of Q− x units is sold at the

discount price during the fourth period. Hence, in this case the revenue is px+ g [Q− x].

The average inventory during the regular selling season is Q+Q−x
2 = Q− x

2 . Therefore, the

corresponding total holding cost during period 3 is h3t3
[
Q− x

2

]
. Moreover, the average

inventory during the discount season is
[

Q−x
2

]
, and the length of the discount season is

t4 =
[

Q−x
u

]
. This results in a holding cost of h4

[
Q−x

u

][
Q−x

2

]
= h4

2u [Q− x]2. Figure 1.1

illustrates the evolution of the inventory level over time during these four phases of the

supply chain for the Case 2: Q > x. Overall, we will have the following profit function

P(Q,x) for this case:
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Figure 1.1: An illustration of the stock level over time for Case 1: Q ≤ x, and Case 2:
Q > x.

px+g [Q− x]− vQ− h1

2r
Q2 −h2t2Q−h3t3

[
Q− x

2

]
− h4

2u
[Q− x]2

The holding cost of the regular selling season, is equivalent to that of Tang et al. (2018)

if h = h3t3 where Tang et al. (2018) define h as the unit holding cost. More details are

given in the Appendix 1.9.1.

Since we borrowed some of the notations from Silver et al. (1998), the formulations

for the total cost of production, and the revenues for the first and second selling seasons

in the above two cases (which are also in the standard newsvendor model) are the same as

the ones formulated by Silver et al. (1998).

In practice, it is rarely the case to know the demand beforehand and instead we have

a probability distribution of the demand which may be continuous or discrete, which are
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examined in the next sections.

In this part, we also demonstrate how our model can take into account the case of a

price which decreases over time (as motivated in the introduction), where p and g indicate

the price at the start of the first and second selling seasons, respectively. Let µa and µb

be the price decrease per unit item per unit time during the regular and discount seasons,

respectively. This leads to a lower total revenue. In order to be able to incorporate the price

decrease in the model, we only need to update some parameters of the model as follows:

h′3 = h3 +µa, h′4 = h4 +µb, g′ = g+(t3µa). It is worth noting that the parameter g needs

to be updated in this way, since the additional µa in the h′3 must only be applied to the

amount
[
Q− x

2

]
− [Q− x] = x

2 when Q > x. This is due to the fact that when we use h′3,

the corresponding holding cost when Q > x, will be h′3t3
[
Q− x

2

]
, and t3µa is excessively

applied to the leftover amount of Q− x. Hence, in order to compensate for this redundant

additional cost, we add t3µa to the original g, which will add an additional revenue of

t3µa (Q− x), and hence balancing the excessive cost of t3µa (Q− x). Such adjustment of

revenue is not needed when Q ≤ x, since there is no leftover in that case.

1.4 Solution procedures

1.4.1 Stochastic optimization under a continuous distribution

In this part, we study the problem under a continuous demand distribution. First, we

present the model under a general continuous distribution. However, since this model

does not yield a closed form solution, we propose a model under a general piecewise

linear distribution which can be solved by an efficient solution procedure. The uniform,

triangular and trapezoidal distributions and also the density histogram are special cases of

the GPLD.

20



Newsvendor with time-dependent holding cost under general distribution

Proposition 1. Let f (x) be the probability density function of the uncertain parameter

x, F (x) be the corresponding cumulative distribution function, and E [P(Q,x)] be the ex-

pected profit. Then, we have:

E [P(Q,x)] =− vQ− h1Q2

2r
−h2Qt2 +

[
p−g+

h3t3
2

][
QF (Q)−

∫ Q

0
F (x)dx

]
+[g−h3t3]QF (Q)

− h4

u

∫ Q

0

[∫ x

0
F (x)dx

]
dx+ pQ [1−F (Q)]− h3t3

2
Q2
∫

∞

Q

1
x

f (x)dx

while,

dE [P(Q,x)]
dQ

= p− v−h2t2 −
h1Q

r
+[g−h3t3 − p]F (Q)− h4

u

∫ Q

0
F (x)dx−h3t3Q

∫
∞

Q

1
x

f (x)dx.

Proof. See the Appendix 1.9.2.

The holding cost function and its derivative for the regular selling season given in

Proposition 1, are equivalent to those proposed by Tang et al. (2018), if h = h3t3 where

Tang et al. (2018) define h as the unit holding cost. More details are presented in the the

Appendix 1.9.1.

Since the given profit function has a single decision variable Q, we can find its optimal

solution using the first order condition as long as we can obtain the explicit values of the

terms
∫ Q

0 F (x)dx and
∫

∞

Q
1
x f (x)dx in terms of only one variable which is Q, for a given

distribution function. This is not possible for a general distribution. However, in the next

sections, we present some probability density functions under which we can analytically

solve the problem using the above formulation for each interval of the given distribution.

The concavity results of the problem under the general distribution case are also pre-

sented in the Appendix 1.9.2.
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Newsvendor with time-dependent holding cost under GPLD

In order to introduce an approach to solve the newsvendor model under a general piecewise

linear distribution (GPLD), we first define the GPLD. This type of distributions can be used

to represent any distribution comprising linear components such as uniform, triangular,

and trapezoidal distributions. We formulate the density function f (x) of the GPLD as

follows.

f (x) =


[

f−(Ln)− f+(Ln−1)
Ln−Ln−1

]
[x−Ln−1]+ f+ (Ln−1)

0

f or x ∈ [Ln−1,Ln] , f or n = 1, ...,N

f or x > LN or x < L0

where for all n = 1, ...,N, f− (Ln) = lim
x→L−

n

f (x) is the left-hand limit of function f (x)

at point Ln, and for all n = 0, ...,N, f+ (Ln) = lim
x→L+

n

f (x) is the right-hand limit of function

f (x) at point Ln, which are all known constants, and

F (x) =



0[
f−(x)+ f+(L0)

2

]
x[

n−1
∑

k=1

[
f−(Lk)+ f+(Lk−1)

2

]
[Lk −Lk−1]

]
+
[

f−(x)+ f+(Ln−1)
2

]
[x−Ln−1]

1

x ≤ L0

f or x ∈ (L0,L1]

f or x ∈ [Ln−1,Ln] , f or n = 2, ...,N

f or x ≥ LN

In our newsvendor problem, we let L0 = 0, since in our case, the demand cannot be

negative.

Note that the equation F (LN) =
N
∑

k=1

[
f−(Lk)+ f+(Lk−1)

2

]
[Lk −Lk−1] = 1 always holds

true, since F (x) is a cumulative distribution function. Figure 1.2 illustrates the probabil-

ity density function f (x) of the GPLD. The GPLD is reduced to the uniform distribution

when we have N = 2, f+ (L0) = f− (L1) = 0, and f+ (L1) = f− (L2) =
1

L2−L1
. The tri-

angular distribution is derived when N = 3, f+ (L0) = f− (L1) = f+ (L1) = f− (L3) = 0,

and f− (L2) = f+ (L2) =
2

L3−L1
. We can have the trapezoidal distribution when N = 4,

f+ (L0) = f− (L1) = f+ (L1) = f− (L4) = 0, f− (L2) = f+ (L2) = f− (L3) = f+ (L3) =
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Figure 1.2: An illustration of the probability density function f (x) of the general piecewise
linear distribution (GPLD). The sum of the areas below the bold lines must be equal to 1.

2
L4+L3−L1−L2

. The density histogram can be derived when N is the number of intervals of

the histogram and f+ (L0) = f− (L1), f+ (LN−1) = f− (LN), and f+ (Li−1) = f− (Li) for

all i = 2, ...,N −1.

Proposition 2. Let x be a random variable with the general piecewise linear distribution

(GPLD). Then, for the optimal order quantity Q∗
GPLD the following equation holds,

Q∗
GPLD = argmax

Q∈{0,L1,L2,...,LN ,Q1,Q2,...,QN−1,QN ,QN+1,Q}
E [P(Q,x)]

where, {L1,L2, ...,LN} are the parameters of the GPLD, which represent the endpoints

of the intervals of the distribution (L0 = 0), Q is the maximum production or purchase

quantity, E
[
Pj (Q,x)

]
is the expected profit function of the jth interval,

Q1 =
{

Q | 0 ≤ Q ≤ Q,Q ≤ L1,
dE[P1(Q,x)]

dQ = 0
}

,

for all k = 2, ...,N −1, Qk =
{

Q | 0 ≤ Q ≤ Q,Lk−1 ≤ Q ≤ Lk,
dE[Pk(Q,x)]

dQ = 0
}

,
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QN =
{

Q | 0 ≤ Q ≤ Q,LN−1 ≤ Q ≤ LN ,
dE[PN(Q,x)]

dQ = 0
}

, and

QN+1 =

{
Q | 0 ≤ Q ≤ Q,LN ≤ Q,Q =

1
h1
r + h4

u

[
−v−h2t2 +g−h3t3 −

h4

u

[
f− (L1)− f+ (0)

6
L2

1 +
f+ (0)

2
L2

1

]

−h4

u

[
N−1

∑
j=1

[[[
L j+1 −L j

] j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
L j+1 −L j

]3
+

f+
(
L j
)

2
[
L j+1 −L j

]2]]
+

h4

u
LN

]}
.

Proof. See the Appendix 1.9.3.

The proposition given above, does not only allow to calculate the optimal order quan-

tity but also the corresponding optimal expected profit. We will show in the numerical

results for the GPLD case that our model which incorporates nonlinear holding costs

provides higher average profit gains compared with linear approximations based on the

standard newsvendor problem. The explicit formulations of E
[
Pj (Q,x)

]
, for all j =

1,2, . . . ,N,N +1, and
dE[Pj(Q,x)]

dQ , for all j = 1,2, . . . ,N, are derived in the Appendix 1.9.3.

1.4.2 Stochastic optimization under a discrete distribution

In this part, we propose an efficient solution procedure for the stochastic model of the

problem under a discrete distribution. In order to represent the uncertain parameter with

multiple demand scenarios, we first define x j, the demand under the jth scenario, k j as the

probability of the the jth scenario, and N as the total number of scenarios. When N = 1,

the problem reduces to the deterministic case.

An efficient solution procedure

We present an efficient solution which requires a maximization over only 2N +3 number

of values. This solution is presented and proved in the form of the following proposition.

Proposition 3. The optimal solution, under the demand with discrete distribution, is the

one that maximizes the following problem.
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max

z1 (0) ,z1

 p− v−h2t2
h1
r +h3t3 ∑

N
j=1

[
k j
x j

]
 ,

zn (xn−1) : ∀n = 2..N,zn

−v−h2t2 +[g−h3t3]∑n−1
j=1 k j +

h4
u ∑

n−1
j=1 k jx j + p∑

N
j=n k j

h1
r + h4

u ∑
n−1
j=1 k j +h3t3 ∑

N
j=n

k j
x j

 : ∀n = 2..N,

zN+1 (xN) ,zN+1
(
Q
)
,zN+1

(
−v−h2t2 +[g−h3t3]∑N

j=1 k j +
h4
u ∑

N
j=1 k jx j

h1
r + h4

u ∑
N
j=1 k j

)
where all demand scenarios are sorted in increasing order so that 0 ≤ x1 ≤ x2 ≤ . . .≤

xN ≤ Q. Moreover, for all n = 2, . . . ,N, zn (Q) is the total expected profit of producing Q

items when xn−1 ≤ Q < xn. z1 (Q) and zN+1 (Q) are the total expected profit of producing

Q items when 0 ≤ Q < x1 and xN ≤ Q ≤ Q, respectively.1

Proof. See the Appendix 1.9.4.

As in the case of GPLD, our numerical results under discrete distribution, will demon-

strate that our problem leads to solutions with a higher average expected profit in contrast

with the approximations developed based on the basic newsvendor model.

1.5 Approximation methods based on the standard

newsvendor model

In this part, we introduce new approximations to the first, third and fourth phases of the

problem, where we have nonlinear holding cost functions. We do this by linearizing the

corresponding holding cost functions in different ways. The motivation behind this part is

that when we have such linear costs, they can be incorporated into the standard newsven-

dor model to approximately solve our problem. Hence, companies may use their exist-

ing standard newsvendor solution (with simple adjustment of parameters) in order to ap-
1The explicit formulations of zi (Q), for all i = 1,2, . . . ,N,N +1, are derived in the Appendix 1.9.4.
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proximately solve the newsvendor problem with gradual inventory, and quantity-and-time-

dependent holding cost. Moreover, this enables us to further examine the performance of

the closed-form solution of the standard newsvendor model compared to the optimal so-

lution of our model, when holding cost is present. Tang et al. (2018) has also previously

proposed approximating the holding cost function of the regular selling season, so that the

closed form solution of the newsvendor model can be used to solve the problem.

Table 1.1 demonstrates an overview of the cost functions used to approximate the prob-

lem, according to the approximate holding cost functions for phases 1, 3, and 4.

In phase 1, our holding cost function is h1
2r Q2. We use h1x̄

2r Q as an approximation, where

x̄ is the average demand. This can be interpreted as approximating either the average

inventory level as x̄
2 , or the duration of the phase 1 as t1 = x̄

r . Adding the holding cost h1x̄
2r Q

to the standard newsvendor model, will be equivalent to increasing the unit cost v by h1x̄
2r .

We combine this approximation of phase 1 with the exact holding cost functions of the

other periods, and denote the resulting problem as ANV H1
1 .

As a second approximation for phase 1, we use h1Q∗
NV

2r Q to approximate the total hold-

ing cost of phase 1, where Q∗
NV is the optimal solution of the standard newsvendor model

which does not take into account any holding cost for any of the phases 1 to 4. This can

be interpreted as approximating either the average inventory level as Q∗
NV
2 , or the duration

of the phase 1 as t1 =
Q∗

NV
r . Adding the holding cost h1Q∗

NV
2r Q to the standard newsvendor

model, will be equivalent to increasing the unit production cost v by h1Q∗
NV

2r . When this

approximation for phase 1 is combined with the exact holding cost functions of the other

periods, the resulting problem is denoted by ANV H2
1 .

In phase 3, we approximate the corresponding total holding cost function as h3t3Q,

which is linear function of Q and would be equivalent for the total holding cost of keeping

the produced quantity Q (which is the stock amount at the beginning of phase 3) for a total

time of t3. Adding this holding cost to the standard newsvendor model, will be equivalent
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to increasing the purchasing cost v by h3t3. We combine this approximation of phase 3 with

the exact holding cost functions of the other periods, and denote the resulting problem as

ANV H1
3 .

We follow the following analytical logic for obtaining the second approximation of the

total holding cost of phase 3. First, we remind that when Q ≤ x, the total holding cost

of phase 3 is h3t3Q2

2x . Then, we note that in this case the inequality Q ≤ x results in the

inequalities Q
x ≤ 1 and Q2

x ≤ Q. Consequently, the inequality h3t3Q2

2x ≤ h3t3
2 Q always holds

as well, when Q ≤ x.

Moreover, when Q > x, the total holding cost of phase 3 becomes h3t3
[
Q− x

2

]
. In this

case, the inequality Q > x results in the inequalities Q
2 − x

2 > 0 and Q− x
2 > Q

2 . Conse-

quently, the inequality h3t3
[
Q− x

2

]
> h3t3

2 Q always hold when Q > x.

Therefore, we note that the function h3t3
2 Q overestimates the total holding cost of phase

3 when Q ≤ x, and underestimate it when Q > x. Hence, we suggest using the function
h3t3

2 Q to approximate the total holding cost of phase 3, since those overestimation and

underestimation taken together, may neutralize their deviation from the exact function

of the total holding in phase 3. We combine this approximation for phase 3 with the

exact holding cost functions of the other phases and denote the corresponding problem as

ANV H2
3 .

As a third approximation for phase 3, we use the approximation proposed by Tang et

al. (2018) which is half of the multiplication of the unit holding cost (denoted by h in

Tang et al. 2018) and the expected demand (i.e., the average demand, x̄), which is h
2 x̄. In

a problem with an objective of loss minimization, this corresponds to adding the constant

cost of h
2 x̄ to the objective function. As explained in the problem description section, the

holding cost of phase 3 will be equivalent to that of the regular selling season in Tang et al.

(2018) if h = h3t3. Hence, for the third approximation of phase 3, we use h3t3
2 x̄. We then

combine this approximation of phase 3 with the exact holding cost functions of the other
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periods and denote the resulting problem as ANV H3
3 . It is worth noting that replacing x̄

with Q in this approximation of phase 3, will result in our second approximation of this

phase (i.e., h3t3
2 Q).

In order to approximate the holding cost function of the phase 4, we propose three

different approximations as follows, which are proposed in a way that it is possible to

incorporate them in the standard newsvendor model by updating the parameter g. The

models of the problem created by using these approximations are denoted as ANV H1
4 ,

ANV H2
4 and ANV H3

4 , respectively.

1. We first approximate h4
2u [Q− x]2 = h4

2u

[
Q2 + x2 −2xQ

]
as h4

2u [x̄Q+ x̄x−2x̄Q] = h4
2u [x̄x− x̄Q] =

− h4
2u x̄ [Q− x], where x̄ is the average demand. Here, for Q2, we approximated one

Q term as x̄; for x2, we approximated one x term as x̄; and the term −2xQ is ap-

proximated as −2x̄Q. The resulting approximation is − h4
2u x̄ [Q− x] which would be

equivalent to updating g as g+ h4
2u x̄ in the standard newsvendor model.

2. As a second approximation, we approximate h4
2u [Q− x]2 = h4

2u

[
Q2 + x2 −2xQ

]
as

h4
2u [x̄Q+ x̄x−2x̄x] = h4

2u [x̄Q− x̄x] = h4
2u x̄ [Q− x], where x̄ is the average demand. The

terms Q2 and x2 are approximated similar to the first approximation above. However,

the term −2xQ is approximated as −2x̄x. This results in the approximation function
h4
2u x̄ [Q− x], which would be equivalent to updating g as g − h4

2u x̄ in the standard

newsvendor model.

3. As a third approximation, we approximate h4
2u [Q− x]2 as h4

2u [Q− x]. So, in the stan-

dard newsvendor model, the parameter g can be updated as g− h4
2u .
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Table 1.1: An overview of the developed approximations and their exact counterparts for
phases 1, 3 and 4.

Phase 1 Phase 3 Phase 4

Approx.
ANV H1

1 ANV H2
1 ANV H1

3 ANV H2
3 ANV H3

3 ANV H1
4 ANV H2

4 ANV H3
4

h1 x̄
2r Q h1Q∗

NV
2r Q h3t3Q h3t3

2 Q h3t3
2 x̄ − h4

2u x̄ [Q− x] h4
2u x̄ [Q− x] h4

2u [Q− x]

Exact h1
2r Q2 h3t3Q2

2x if Q ≤ x, h3t3
[
Q− x

2

]
if Q > x h4

2u [Q− x]2

1.6 Numerical results

In this section, the numerical results of the proposed approaches are presented under both

synthetic and real demand data, using GPLD and discrete distributions, and compared with

the standard newsvendor model and the approximation methods.

1.6.1 Experiments with synthetic data

GPLD

We first compare the solution of the standard newsvendor model with that of our new

model under the GPLD. Irrespective of the values of the unit holding costs, the other

parameters are kept the same and are set as follows: p = 20, g = 9, v = 10, r = 0.03

units per day (e.g., if Q = 2.5, then t1 = Q
r = 2.5

0.03 ≈ 83.3 days), u = 0.02 units per day

(e.g., if Q− x = 0.5, then t4 = Q−x
u = 0.5

0.02 = 25 days), t2 = 56 days (i.e., the duration

of the shipping is assumed to be 8 weeks), t3 = 42 days (i.e., the length of the regular

selling season is 6 weeks), and Q = 4 where Q ≤ Q (i.e., Q is the maximum production

quantity). Furthermore, the unit holding cost rates (per unit per day) for the four phases

are all assumed to be equal. Different values for this unit holding cost are considered:

0.00275, 0.004125, 0.0055, 0.006875, and 0.00825. These values correspond respectively

to an annual holding cost of approximately 10%, 15%, 20%, 25% and 30% of the unit

cost v = 10 (Schlapp et al. 2022 also use a similar method for the values of unit holding
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cost in their numerical experiments, with percentage levels of 12% to 36%). Moreover, for

n = 0, ...,N, Ln is derived by dividing the interval [0,3] into N = 11 sub-intervals, using

N + 1 = 12 points, where L0 = 0, L1 = 1, L11 = 3, and for i = 2, ...,10, Li is derived

by dividing the interval [1,3] into 10 equidistant sub-intervals. The values of f (Ln) are

as follows (rounded to 3 decimal points). f+ (L0) = f− (L1) = 0, f+ (L1) = f− (L11) =

0.137, f− (L2) = f+ (L2) = f− (L10) = f+ (L10) = 0.548, f− (L3) = f+ (L3) = f− (L9) =

f+ (L9) = 0.411, f− (L4) = f+ (L4) = f− (L8) = f+ (L8) = 0.479, f− (L5) = f+ (L5) =

f− (L7) = f+ (L7) = 0.685, and f− (L6) = f+ (L6) = 0.616. We use the efficient solution

for the GPLD case (Proposition 2) to solve the generated instances (in order to be able to

examine our models further, we will also consider different sets of parameters using real

data in subsequent parts of the numerical studies).

The results are shown in the Table 1.2, where Q∗
NV and Q∗

NV H are the solutions of the

standard newsvendor model and our model, respectively, and NV H (Q∗
NV ) and NV H (Q∗

NV H)

are their corresponding profit when they are used in our model as the production (order)

quantity. In all of our numerical results (in this and next parts), the standard newsvendor

solution is derived by letting h1 = h2 = h3 = h4 = 10−100 ≈ 0 (for the unit holding cost,

the value 10−100 is used instead of 0, since in some of our formulations the unit holding

cost is the denominator) in our model. The profit gain of our model compared with the

standard newsvendor model is calculated as
NV H(Q∗

NV H)−NV H(Q∗
NV)

NV H(Q∗
NV)

and is given as a per-

centage. The results indicate that when holding cost is present, the average profit gain is

0.94%, and the profit corresponding to the standard newsvendor solution (NV H (Q∗
NV )) is

always less than that of our new model (NV H (Q∗
NV H)). Moreover, Q∗

NV H is always less

than Q∗
NV , in the presence of holding cost, and as the unit holding cost increases, the gap

between the NV H (Q∗
NV H) and NV H (Q∗

NV ) grows as well.
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Table 1.2: Comparison of the new model with the standard newsvendor model, under the
GPLD.

h1,h2,h3,h4 Q∗
NV H NV H (Q∗

NV H) Q∗
NV NV H (Q∗

NV ) Profit gain
10−100 ≈ 0 2.758 19.145 2.758 19.145 0%

0.00275 2.644 18.145 2.758 18.110 0.19%
0.004125 2.583 17.672 2.758 17.593 0.45%
0.0055 2.526 17.216 2.758 17.076 0.82%

0.006875 2.472 16.777 2.758 16.559 1.32%
0.00825 2.423 16.352 2.758 16.041 1.94%

We now compare the solution of the approximations with the one of our new model

under the GPLD with the same parameters used for comparison of our model and the

standard newsvendor. The results are shown in the tables 1.3, 1.4 and 1.5 for phases 1, 3

and 4, respectively (Note that in each row, the values which are very close to each other,

are represented with more fractional digits to better indicate the difference. Moreover,

the results in these tables are aimed at finding the best approximation for each phase, and

hence the profit gains are not reported for these specific tables). Note again that when

we approximate a specific phase separately in Tables 1.3, 1.4, and 1.5, we use the exact

holding cost function for the other phases. We can observe that for phase 1, ANV H2
1

provides closer results to the optimal profit compared to ANV H1
1 . For phase 3, ANV H1

3

outperforms ANV H2
3 and ANV H3

3 (Tang et al. 2018). For phase 4, ANV H3
4 provides higher

profits compared with ANV H1
4 . ANV H2

4 outperforms ANV H3
4 only when unit holding cost

is 0.00275, while in other instances and also on average, ANV H3
4 results in higher profits

than ANV H2
4 . Hence, we can conclude that ANV H3

4 provides the best results for phase 4.

Based on the above results, ANV H2
1 , ANV H1

3 and ANV H3
4 are selected to form ANV H,

which is the approximate model with all phases having a holding cost function which

can be incorporated into the standard newsvendor problem. The corresponding numeri-

cal results of the ANV H are demonstrated in the Table 1.6, where the profit gain of our
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model compared with ANV H is calculated as
NV H(Q∗

NV H)−NV H(Q∗
ANV H)

NV H(Q∗
ANV H)

and is presented

as a percentage. The results indicate that as the unit holding cost increases, the profits

NV H (Q∗
NV H) and NV H

(
Q∗

ANV H
)

decrease, while the profit gain of our model increase.

Furthermore, ANV H results in solutions close to the optimal one, and the corresponding

average profit gain of our model is 0.04%. We conclude that this approximation performs

extremely well for this case.

Table 1.3: Comparison of the new model with its approximations for phase 1, under the
GPLD.

h1,h2,
h3,h4

Q∗
NV H NV H

(Q∗
NV H)

Q∗
ANV H1

1
NV H(

Q∗
ANV H1

1

) Q∗
ANV H2

1
NV H(

Q∗
ANV H2

1

)
0.00275 2.644 18.1452 2.674 18.1429 2.667 18.1439

0.004125 2.583 17.6721 2.629 17.6670 2.618 17.6691
0.0055 2.526 17.2165 2.582 17.2082 2.568 17.2119

0.006875 2.472 16.7769 2.538 16.7654 2.521 16.7706
0.00825 2.423 16.3519 2.495 16.3369 2.476 16.3439

Table 1.4: Comparison of the new model with its approximations for phase 3, under the
GPLD.

h1,h2,

h3,h4

Q∗
NV H NV H

(Q∗
NV H)

Q∗
ANV H1

3
NV H(

Q∗
ANV H1

3

) Q∗
ANV H2

3
NV H(

Q∗
ANV H2

3

) Q∗
ANV H3

3
NV H(

Q∗
ANV H3

3

)
0.00275 2.64389 18.14519947 2.64371 18.14519939 2.655 18.1449 2.666 18.1439
0.004125 2.58327 17.67205442 2.5829 17.67205403 2.601 17.6713 2.618 17.6691
0.0055 2.52564 17.21649977 2.52496 17.21649866 2.547 17.2153 2.570 17.2114

0.006875 2.47242 16.77693330 2.4714 16.77693049 2.498 16.7752 2.525 16.7694
0.00825 2.42289 16.35190312 2.4215 16.35189736 2.452 16.3495 2.483 16.3417
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Table 1.5: Comparison of the new model with its approximations for phase 4, under the
GPLD.

h1,h2,

h3,h4

Q∗
NV H NV H

(Q∗
NV H)

Q∗
ANV H1

4
NV H(

Q∗
ANV H1

4

) Q∗
ANV H2

4
NV H(

Q∗
ANV H2

4

) Q∗
ANV H3

4
NV H(

Q∗
ANV H3

4

)
0.00275 2.644 18.145199 2.685 18.1408 2.639 18.145132 2.650 18.145090

0.004125 2.583 17.672054 2.646 17.6623 2.574 17.671851 2.592 17.671869

0.0055 2.526 17.216500 2.605 17.2002 2.513 17.216084 2.535 17.216286

0.006875 2.472 16.776933 2.564 16.7545 2.456 16.776218 2.481 16.776720

0.00825 2.423 16.351903 2.523 16.3232 2.403 16.350805 2.431 16.351714

Table 1.6: Comparison of the new model with its approximation (ANV H), under the
GPLD.

h1,h2,h3,h4 Q∗
NV H NV H (Q∗

NV H) Q∗
ANV H NV H

(
Q∗

ANV H
) Profit gain

0.00275 2.644 18.1452 2.674 18.1429 0.01%
0.004125 2.583 17.672 2.627 17.667 0.03%
0.0055 2.526 17.216 2.579 17.209 0.04%

0.006875 2.472 16.777 2.531 16.768 0.06%
0.00825 2.423 16.352 2.486 16.341 0.07%

We next provide a sensitivity analysis on the following three parameters: the duration

of the first selling season (t3), the production rate (r), and the demand rate in the discount

season (u). We analyze these parameters since they affect the duration of their respective

phase and they cannot be incorporated in the basic newsvendor model. The base case for

the sensitivity analysis is the instance used in this subsection, with the holding cost for all

phases fixed at 0.0055. The results are presented in the Tables 1.7, 1.8, and 1.9 for different

values of t3, r, and u, respectively. It is worth noting that a zero value for the parameters

r and u cannot be implemented in our solution procedure, since those parameters exist

in some denominators of the formulations. Therefore, instead of zero, we consider the

number 10−100 for such cases. As shown in the Table 1.7, as the duration of the third

period (i.e., t3) increases, the profit of Q∗
NV H , Q∗

NV and Q∗
ANV H decreases, while the average
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profit gain in the presence of a nonzero t3, is 0.83% and 0.042%, over Q∗
NV and Q∗

ANV H ,

respectively. On the other hand, as demonstrated in the Tables 1.8, and 1.9, an increase

in the production rate and the demand rate in the discount period, results in an increase

in profit of Q∗
NV H , Q∗

NV and Q∗
ANV H . The average profit gain (excluding the case of r =

10−100 ≈ 0 ) in the Table 1.8 is 0.97% and 0.056% over Q∗
NV and Q∗

ANV H , respectively,

while in the Table 1.9, it is 0.87% and 0.044% (excluding the instance of u= 10−100 ≈ 0 )

over Q∗
NV and Q∗

ANV H , respectively.

Table 1.7: Comparison of the new model with its approximation and the standard newsven-
dor model, under the GPLD, for different values of t3.

t3 Q∗
NV H NV H

(Q∗
NV H)

Q∗
NV NV H

(Q∗
NV )

Profit
gain

Q∗
ANV H NV H(

Q∗
ANV H

) Profit
gain

0 2.570 17.574 2.758 17.482 0.53% 2.628 17.566 0.048%
21 2.548 17.394 2.758 17.279 0.67% 2.604 17.386 0.046%

31.5 2.537 17.305 2.758 17.177 0.74% 2.591 17.297 0.044%
42 2.526 17.216 2.758 17.076 0.82% 2.579 17.209 0.042%

52.5 2.515 17.129 2.758 16.974 0.91% 2.566 17.122 0.040%
63 2.504 17.041 2.758 16.873 1.00% 2.554 17.035 0.039%

Table 1.8: Comparison of the new model with its approximation and the standard newsven-
dor model, under the GPLD, for different values of r.

r Q∗
NV H NV H

(Q∗
NV H)

Q∗
NV NV H

(Q∗
NV )

Profit
gain

Q∗
ANV H NV H(

Q∗
ANV H

) Profit
gain

10−100 ≈ 0 0 0 2.758 −2.092∗1098 100.00% 0 0 0%
0.015 2.442 16.651 2.758 16.379 1.66% 2.526 16.632 0.117%

0.0225 2.497 17.024 2.758 16.843 1.07% 2.561 17.013 0.064%
0.03 2.526 17.216 2.758 17.076 0.82% 2.579 17.209 0.042%

0.0375 2.544 17.334 2.758 17.215 0.69% 2.590 17.329 0.031%
0.045 2.556 17.414 2.758 17.308 0.61% 2.597 17.410 0.024%
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Table 1.9: Comparison of the new model with its approximation and the standard newsven-
dor model, under the GPLD, for different values of u.

u Q∗
NV H NV H

(Q∗
NV H)

Q∗
NV NV H

(Q∗
NV )

Profit
gain

Q∗
ANV H NV H(

Q∗
ANV H

) Profit
gain

10−100 ≈ 0 1 9.538 2.758 −2.32∗1097 100.00% 1 9.538 0%
0.01 2.497 17.145 2.758 16.960 1.09% 2.555 17.136 0.053%

0.015 2.516 17.192 2.758 17.037 0.91% 2.571 17.184 0.046%
0.02 2.526 17.216 2.758 17.076 0.82% 2.579 17.209 0.042%

0.025 2.532 17.231 2.758 17.099 0.77% 2.584 17.224 0.040%
0.03 2.536 17.241 2.758 17.115 0.87% 2.587 17.235 0.038%

Discrete distribution

In this part, we present the numerical results under the discrete distribution with N = 100

scenarios where the x j values for j = 1, ...,N are drawn randomly and uniformly from

the interval (1,3). For k j values for j = 1, ...,N, the weight of each scenario j is drawn

randomly and uniformly from the interval (0,10) and then the weights are normalized

(via dividing each weight by the sum of all weights) to derive the scenario probabilities

k j for j = 1, ...,N. The other parameters of the problem are the same as the ones used

in section 1.6.1. The results are shown in Table 1.10. We observe that, as in the GPLD

case, as the unit holding cost increases, the values of Q∗
NV H and Q∗

ANV H , and also the

profits NV H (Q∗
NV ), NV H

(
Q∗

ANV H
)

and NV H (Q∗
NV H), decrease. When holding cost is

present, the average profit gain of our model compared with the standard newsvendor

model, is 0.64%, while the average profit gain of our model compared with ANV H, is

0.04%. ANV H provides profit close to the optimal one in all instances, with the exception

of the case where the unit holding cost is the highest, where the profit gain of our model

compared with ANV H is 0.172%.
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Table 1.10: Comparison of the new model with its approximation and the standard
newsvendor model, under the discrete distribution.

h1,h2,h3,h4 Q∗
NV H NV H

(Q∗
NV H)

Q∗
NV NV H

(Q∗
NV )

Profit
gain

Q∗
ANV H NV H(

Q∗
ANV H

) Profit
gain

10−100 ≈ 0 2.757 18.850 2.757 18.850 0% 2.757 18.850 0%
0.00275 2.683 17.8229 2.757 17.807 0.09% 2.722 17.8208 0.012%

0.004125 2.6341 17.3361 2.757 17.286 0.29% 2.6388 17.3356 0.003%
0.0055 2.596 16.8565 2.757 16.765 0.55% 2.634 16.8530 0.021%

0.006875 2.538 16.3859 2.757 16.243 0.88% 2.597 16.3845 0.009%
0.00825 2.488 15.941 2.757 15.722 1.39% 2.594 15.914 0.172%

1.6.2 Experiments with real data

SKU bb5419c49b

GPLD In this part, we perform experiments on real demand data provided by Shen

et al. (2020). We consider the daily order quantities made by customers for the SKU

bb5419c49b over a period of one month (March 2018), in order to form a density his-

togram, which represents the demand distribution of the regular selling season, and is a

special case of the GPLD. For this density histogram, we use 5 bins (since we have only 31

days of daily demand data, the number of bins should be small) which result in the follow-

ing values for parameters of the GPLD: L0 = 0, L1 = 0.8, L2 = 1.6, L3 = 2.4, L4 = 3.2, and

L5 = 4, while f (Ln) values are (rounded to 3 decimal points) f+ (L0) = f− (L1) = 0.202,

f+ (L1) = f− (L2) = 0.323, f+ (L2) = f− (L3) = 0.444, f+ (L3) = f− (L4) = 0.242, and

f+ (L4) = f− (L5) = 0.040. We also consider the average selling price of this SKU during

the month as the selling price of the daily regular selling period (p = 83.935). The other

parameters are assumed as follows: selling price during the discount period g = 50, pro-

duction rate r = 0.04 units per hour, the demand rate during the discount period u = 0.02

units per hour, t2 = 8 hours, t3 = 24 hours, the unit cost v = 60, and Q = 10. The unit
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holding cost (per unit per hour) for the four phases are all assumed to be equal. Dif-

ferent values for this unit holding cost are considered: 0.000685, 0.0010275, 0.00137,

0.0017125, and 0.002055. These values correspond respectively to an annual holding cost

of approximately 10%, 15%, 20%, 25% and 30% of the unit cost v = 60.

The results are presented in the Table 1.11 which demonstrate that as the unit holding

cost increases, both Q∗
NV H and Q∗

ANV H , and also the profits NV H (Q∗
NV ), NV H

(
Q∗

ANV H
)

and NV H (Q∗
NV H) decrease, while the profit gains of the new model increases. In the pres-

ence of holding cost, the average profit gain of the optimal solution compared to the stan-

dard newsvendor model and ANV H, are 0.0032% and 0.0004%, respectively. Although

in this case both the standard newsvendor and ANV H models give profits which are very

close to the optimal profit NV H (Q∗
NV H), ANV H still provides closer results to the optimal

one, than the standard newsvendor model.

Table 1.11: Comparison of the new model with its approximation (ANV H), under the
GPLD (density histogram) derived from real data (SKU bb5419c49b - t3 = 1 day).

h1,h2,h3,h4 Q∗
NV H NV H

(Q∗
NV H)

Q∗
NV NV H

(Q∗
NV )

Profit
gain

Q∗
ANV H NV H(

Q∗
ANV H

) Profit
gain

10−100 ≈ 0 2.2447 31.353208 2.2447 31.353208 0% 2.2447 31.353208 0%
0.000685 2.2393 31.259783 2.2447 31.259560 0.0007% 2.2412 31.259755 0.0001%

0.0010275 2.2366 31.213237 2.2447 31.212736 0.0016% 2.2394 31.213176 0.0002%
0.00137 2.2339 31.166802 2.2447 31.165912 0.0029% 2.2377 31.166694 0.0003%

0.0017125 2.2312 31.120477 2.2447 31.119088 0.0045% 2.2359 31.120309 0.0005%
0.002055 2.2285 31.074261 2.2447 31.072264 0.0064% 2.2341 31.074021 0.0008%

We next examine the same data over a longer regular selling season and distribution

phase. Similar to synthetic data, we assume a regular selling season of 42 days and a distri-

bution phase of 56 days. Hence, t2 = 24∗56 = 1344 hours, and t3 = 24∗42 = 1008 hours.

We also multiply the daily demand data by 42, in order to simulate the demand of this

longer regular selling season (due to having higher demand values as a result of a longer
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regular selling season, the production and discount selling seasons are likely to become

longer as well). By doing so, we have 31 observations of demand data for a regular selling

season with a duration of 42 days. We also let Q = 300. Creating a density histogram with

5 bins result in the values for parameters of the GPLD as follows: L0 = 0, L1 = 33.6,

L2 = 67.2, L3 = 100.8, L4 = 134.4, L5 = 168, and f (Ln) values (rounded to 5 deci-

mal points) are f+ (L0) = f− (L1) = 0.00480, f+ (L1) = f− (L2) = 0.00768, f+ (L2) =

f− (L3) = 0.01056, f+ (L3) = f− (L4) = 0.00576, and f+ (L4) = f− (L5) = 0.00096.

The results are demonstrated in Table 1.12, which indicate a smaller profit and a larger

profit gain of our model, as the holding cost increases. The average profit gain of our

model in the presence of holding cost (i.e., excluding the case of a unit holding cost of

10−100 ≈ 0 ), is 11.41% and 0.63% , over the standard newsvendor model and ANV H,

respectively. The higher profit gains in this case (t3 = 42 days) compared with the case of

t3 = 1 day, can be due to having a higher duration for periods in the supply chain which

results in higher holding costs.

Table 1.12: Comparison of the new model with its approximation (ANV H), under the
GPLD (density histogram) derived from real data (SKU bb5419c49b - t3 = 42 days).

h1,h2,h3,h4 Q∗
NV H NV H

(Q∗
NV H)

Q∗
NV NV H

(Q∗
NV )

Profit
gain

Q∗
ANV H NV H(

Q∗
ANV H

) Profit
gain

10−100 ≈ 0 94.278 1316.835 94.278 1316.835 0% 94.278 1316.835 0%
0.000685 83.932 1107.926 94.278 1086.542 1.97% 87.500 1105.387 0.23%

0.0010275 79.493 1017.173 94.278 971.396 4.71% 84.113 1012.719 0.44%
0.00137 75.435 933.923 94.278 856.250 9.07% 80.728 927.829 0.66%

0.0017125 71.699 857.252 94.278 741.104 15.67% 77.345 850.050 0.85%
0.002055 68.238 786.404 94.278 625.958 25.63% 73.963 778.737 0.98%

Discrete distribution We use the created density histogram of data to form the discrete

distribution where the demand scenarios are considered as the middle point of the bins,

and the weight of each scenario is the value of the probability density function of that
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scenario in the density histogram. The scenario weights are then normalized (by dividing

each weight by the sum of the weights) to obtain the scenario probabilities. This results

in the following parameters for the discrete distribution: x1 = 0.4, x2 = 1.2, x3 = 2.0,

x4 = 2.8, and x5 = 3.6, while the scenario probabilities are (rounded to 3 decimal points)

0.161, 0.258, 0.355, 0.194, 0.032. The other problem parameters are considered the same

as the ones used in section 1.6.2.

The results are given in Table 1.13, which show that the three examined models give

the same solution (Q∗
NV H = Q∗

NV = Q∗
ANV H = 2) for the examined values of the unit hold-

ing cost, under the given discrete distribution. It is worth noting that according to our

experiments, increasing the unit holding cost to 0.09, would still give the same result of

Q∗
NV H = Q∗

NV = Q∗
ANV H = 2; however, for a unit holding cost of 0.1, Q∗

NV H = 1.875 and

NV H (Q∗
NV H) = 21.312, while Q∗

NV = Q∗
ANV H = 2 and NV H (Q∗

NV ) = NV H
(
Q∗

ANV H
)
=

21.271 (rounded to 3 decimal points), which result in a profit gain of 0.19% for the new

model. Moreover, using a unit holding cost of 0.15, results in NV H (Q∗
NV ) = 15.853

(for Q∗
NV = 2), Q∗

ANV H = 1.2 and NV H
(
Q∗

ANV H
)
= 18.016, while Q∗

NV H = 1.254 and

NV H (Q∗
NV H)= 18.027 with a profit gain of 13.71% and 0.06% over the standard newsven-

dor and ANV H, respectively. Therefore, on average, our new model is more profitable

than the standard newsvendor, although in this case, it provides the same solution for the

instances where the unit holding cost is up to around 0.09.
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Table 1.13: Comparison of the new model with its approximation and the stan-
dard newsvendor model, under the discrete distribution derived from real data (SKU
bb5419c49b - t3 = 1 day).

h1,h2,h3,h4 Q∗
NV H ,

Q∗
NV ,

Q∗
ANV H

Profit Profit gain

10−100 ≈ 0 2.0 32.107 0%
0.000685 2.0 32.032 0%

0.0010275 2.0 31.995 0%
0.00137 2.0 31.958 0%

0.0017125 2.0 31.921 0%
0.002055 2.0 31.884 0%

We also examine the data over the longer regular selling season (which would likely

result in a longer production and discount season as well) and distribution phase, for the

discrete distribution case. Using a process similar to the one described for the case of t3 = 1

day, we generate the discrete distribution which result in 5 demand scenarios as x1 = 16.8,

x2 = 50.4, x3 = 84, x4 = 117.6, and x5 = 151.2, and the scenario probabilities (rounded

to 3 decimal points) of 0.161, 0.258, 0.355, 0.194, 0.032, respectively. The results are in

Table 1.14. The profit gain of our model is zero compared to the two other models, except

for when the unit holding cost is 0.002055 (the highest value in the table) where the profit

gain is 1.02% over the other two models. In this case, the optimal solution Q∗
NV H = 71.811

is between the two demand scenarios x2 = 50.4 and x3 = 84, and cannot be obtained by

the standard newsvendor model. We also examined the case of a unit holding cost of 0.003

which results in Q∗
NV H = Q∗

ANV H = 50.4 and NV H (Q∗
NV H) = NV H

(
Q∗

ANV H
)
= 646.777,

and a profit gain of 24.13% over the standard newsvendor model (NV H (Q∗
NV ) = 521.051).
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Table 1.14: Comparison of the new model with its approximation and the stan-
dard newsvendor model, under the discrete distribution derived from real data (SKU
bb5419c49b - t3 = 42 days).

h1,h2,h3,h4 Q∗
NV H NV H

(Q∗
NV H)

Q∗
NV NV H

(Q∗
NV )

Profit
gain

Q∗
ANV H NV H(

Q∗
ANV H

) Profit
gain

10−100 ≈ 0 84 1348.479 84 1348.479 0% 84 1348.479 0%
0.000685 84 1159.550 84 1159.550 0% 84 1159.550 0%

0.0010275 84 1065.085 84 1065.085 0% 84 1065.085 0%
0.00137 84 970.620 84 970.620 0% 84 970.620 0%

0.0017125 84 876.156 84 876.156 0% 84 876.156 0%
0.002055 71.811 789.644 84 781.691 1.02% 84 781.691 1.02%

SKU d17d9135b0

We next perform experiments on SKU d17d9135b0 which shows that for even under a

regular selling season of 1 day, the new model can provide considerable profit gains over

the standard newsvendor model and ANV H.

GPLD For the SKU d17d9135b0, the parameters of the problem are assumed as follows:

p = 15.886 (the average selling price during the month), g = 8.886, r = 0.2 units per hour,

u = 0.04 units per hour, t2 = 8 hours, t3 = 24 hours, the unit cost v = 9.5, and Q = 250.

The unit holding cost (per unit per hour) for all four phases are considered to have the

same value. Different values for the unit holding cost are taken into account: 0.0001085,

0.00016275, 0.000217, 0.00027125, and 0.0003255, which respectively represent an an-

nual unit holding cost of roughly 10%, 15%, 20%, 25%, and 30% of the unit cost v = 9.5.

We generate a density histogram of the daily demand data, with 5 bins, which result in the

following parameters for the GPLD: L0 = 0, L1 = 11.4, L2 = 22.8, L3 = 34.2, L4 = 45.6,

L5 = 57, and f (Ln) values (rounded to 4 decimal points) as f+ (L0) = f− (L1) = 0.0679,

f+ (L1) = f− (L2) = 0.0113, f+ (L2) = f− (L3) = 0.0028, f+ (L3) = f− (L4) = 0.0028,
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and f+ (L4) = f− (L5) = 0.0028. The numerical results are presented in Table 1.15. We

observe an average profit gain of 0.63% and 0.31% over the standard newsvendor model

and ANV H, respectively, in the presence of holding cost (i.e., excluding the case of a unit

holding cost of 10−100 ≈ 0 ). Moreover, the profit gain increases as the unit holding cost

becomes larger.

Table 1.15: Comparison of the new model with its approximation (ANV H), under the
GPLD (density histogram) derived from real data (SKU d17d9135b0).

h1,h2,h3,h4 Q∗
NV H NV H

(Q∗
NV H)

Q∗
NV NV H

(Q∗
NV )

Profit
gain

Q∗
ANV H NV H(

Q∗
ANV H

) Profit
gain

10−100 ≈ 0 26.002 47.883 26.002 47.883 0% 26.002 47.883 0%
0.0001085 23.228 47.250 26.002 47.162 0.19% 25.408 47.196 0.11%
0.00016275 22.596 46.983 26.002 46.802 0.39% 25.111 46.877 0.23%
0.000217 22.285 46.726 26.002 46.442 0.61% 24.815 46.574 0.33%

0.00027125 21.985 46.476 26.002 46.081 0.86% 24.518 46.286 0.41%
0.0003255 21.694 46.235 26.002 45.721 1.12% 24.221 46.013 0.48%

Discrete distribution The discrete distribution is generated from the density histogram

using a process similar to the one described for the SKU bb5419c49b, which results in

demand scenarios of x1 = 5.7, x2 = 17.1, x3 = 28.5, x4 = 39.9, and x5 = 51.3, with sce-

nario probabilities (rounded to 3 decimal points) of 0.774, 0.129, 0.032, 0.032, and 0.032,

respectively. The results are given in Table 1.16 which indicate an average profit gain of

1.15% for our model over the other two models, when holding cost is present (i.e., exclud-

ing the case where unit holding cost is 10−100 ≈ 0 ). As the unit holding cost increases, the

profit gain becomes larger as well.
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Table 1.16: Comparison of the new model with its approximation and the stan-
dard newsvendor model, under the discrete distribution derived from real data (SKU
d17d9135b0).

h1,h2,h3,h4 Q∗
NV H NV H

(Q∗
NV H)

Q∗
NV NV H

(Q∗
NV )

Profit
gain

Q∗
ANV H NV H(

Q∗
ANV H

) Profit
gain

10−100 ≈ 0 28.5 48.143 28.5 48.143 0% 28.5 48.143 0%
0.0001085 26.058 47.277 28.5 47.268 0.02% 28.5 47.268 0.02%
0.00016275 19.010 47.033 28.5 46.831 0.43% 28.5 46.831 0.43%
0.000217 17.1 46.894 28.5 46.393 1.08% 28.5 46.393 1.08%

0.00027125 17.1 46.762 28.5 45.956 1.75% 28.5 45.956 1.75%
0.0003255 17.1 46.630 28.5 45.519 2.44% 28.5 45.519 2.44%

1.7 Conclusion

In this paper, we introduced a new variant of the well-known newsvendor problem, where

we take into account the element of time over four phases of the supply chain and the

corresponding quantity-and-time-dependent holding cost which is neglected in the stan-

dard newsvendor model. We then mathematically modeled the problem, which resulted in

a nonlinear formulation, and then developed exact solution approaches for the stochastic

version of the model under general piecewise linear distribution and discrete distribution

cases. We also provided numerical studies using both synthetic and real data, and showed

that in the presence of holding cost, our new model outperforms the standard newsvendor

model, by resulting in more profitable solutions on average. We also proposed and exam-

ined new linear approximations of the model, which can be solved using the well-known

closed-form solution of the standard newsvendor model, and provide profits close to the

optimal ones.
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1.9 Appendices

1.9.1 Explanation on the holding cost of the regular selling season,

proposed by Tang et al. (2018)

Tang et al. (2018) formulated the holding cost of a linear gradual demand for the regular

selling season, in the case of Q ≤ x, as hQ2

2x (given the notation of Q and x as defined in our

paper) where they define h as the unit holding cost. Hence, in this case, the holding cost of
h3t3Q2

2x would be equivalent to hQ2

2x proposed by Tang et al. (2018), if h = h3t3. Moreover,

for the case of Q> x, Tang et al. (2018) formulated the holding cost function of the regular

selling season with linear gradual demand as h
[
Q− x

2

]
(given the notation of Q and x as

defined in our paper). Therefore, the holding cost of h
[
Q− x

2

]
proposed by Tang et al.

(2018), would be equivalent to the holding cost of h3t3
[
Q− x

2

]
in our paper in this case, if

h = h3t3.

Furthermore, Tang et al. (2018) derived the holding cost function of the regular

selling season as −h
∫ Q

0 (Q− x) f (x)dx− h
2
∫ Q

0 x f (x)dx− h
2Q2 ∫ ∞

Q
1
x f (x)dx (given x, Q,

f (x), and an objective of maximization of profit, as defined in our paper) which can

be simplified as h
2
∫ Q

0 x f (x)dx− hQ
∫ Q

0 f (x)dx− h
2Q2 ∫ ∞

Q
1
x f (x)dx. As shown in the Ap-

pendix 1.9.2, we also first derive the holding cost function of the regular selling season

as h3t3
2
∫ Q

0 x f (x)dx−h3t3Q
∫ Q

0 f (x)dx− h3t3
2 Q2 ∫ ∞

Q
1
x f (x)dx, which would be equivalent to

that of Tang et al. (2018), if h = h3t3. This holding cost function is simplified further in

our paper in Proposition 1 and its proof, as h3t3
2

[
QF (Q)−

∫ Q
0 F (x)dx

]
− h3t3QF (Q)−
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h3t3
2 Q2 ∫ ∞

Q
1
x f (x)dx. Tang et al. (2018), also obtained the derivative of the holding cost

function of the regular selling season as −h
∫ Q

0 f (x)− hQ
∫

∞

Q
1
x f (x)dx (assuming x, Q,

f (x), and a profit maximization objective, as defined in our paper), which would be equiv-

alent to −h3t3F (Q)−h3t3Q
∫

∞

Q
1
x f (x)dx , as given in the formula of dE[P(Q,x)]

dQ in our paper

in Proposition 1 and its proof, if h = h3t3.

1.9.2 Proof of Proposition 1 and concavity results for the general

distribution case

Proof.

E [P(Q,x)] =−vQ− h1Q2

2r︸ ︷︷ ︸
Phase1

−h2Qt2︸ ︷︷ ︸
Phase2

+
∫ Q

0

 px︸︷︷︸
(Phase3)

+g [Q− x]︸ ︷︷ ︸
(Phase4)

−h3

[
2Q− x

2

]
t3︸ ︷︷ ︸

(Phase3)

− h4

2u
[Q− x]2︸ ︷︷ ︸

(Phase4)

 f (x)dx

︸ ︷︷ ︸
Phase3and 4,Q>x

+
∫

∞

Q

[
pQ− h3Q2

2x
t3

]
f (x)dx︸ ︷︷ ︸

Phase3,Q<x

=− vQ− h1Q2

2r
−h2Qt2 +

[
p−g+

h3t3
2

+
h4

u
Q
]∫ Q

0
x f (x)dx+

[
g−h3t3 −

h4

2u
Q
]

Q
∫ Q

0
f (x)dx

− h4

2u

[∫ Q

0
x2 f (x)dx

]
+ pQ

∫
∞

Q
f (x)dx− h3t3

2
Q2
∫

∞

Q

1
x

f (x)dx

=− vQ− h1Q2

2r
−h2Qt2 +

[
p−g+

h3t3
2

+
h4

u
Q
][

QF (Q)−
∫ Q

0
F (x)dx

]
+

[
g−h3t3 −

h4

2u
Q
]

QF (Q)

− h4

2u

[
Q2F (Q)−2

[∫ Q

0
xF (x)dx

]]
+ pQ [1−F (Q)]− h3t3

2
Q2
∫

∞

Q

1
x

f (x)dx

=− vQ− h1Q2

2r
−h2Qt2 +

[
p−g+

h3t3
2

+
h4

u
Q
][

QF (Q)−
∫ Q

0
F (x)dx

]
+

[
g−h3t3 −

h4

2u
Q
]

QF (Q)

− h4

2u

[
Q2F (Q)−2

[
Q
∫ Q

0
F (x)dx−

∫ Q

0

[∫ x

0
F (x)dx

]
dx
]]

+ pQ [1−F (Q)]− h3t3
2

Q2
∫

∞

Q

1
x

f (x)dx
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=− vQ− h1Q2

2r
−h2Qt2 +

[
p−g+

h3t3
2

+
h4

u
Q
][

QF (Q)−
∫ Q

0
F (x)dx

]
+

[
g−h3t3 −

h4

2u
Q
]

QF (Q)

− h4

2u

[
2Q2F (Q)−2Q

∫ Q

0
F (x)dx−Q2F (Q)+2

∫ Q

0

[∫ x

0
F (x)dx

]
dx
]
+ pQ [1−F (Q)]− h3t3

2
Q2
∫

∞

Q

1
x

f (x)dx

=− vQ− h1Q2

2r
−h2Qt2 +

[
p−g+

h3t3
2

+
h4

u
Q− h4

u
Q
][

QF (Q)−
∫ Q

0
F (x)dx

]
+

[
g−h3t3 −

h4

2u
Q+

h4

2u
Q
]

QF (Q)− h4

u

∫ Q

0

[∫ x

0
F (x)dx

]
dx+ pQ [1−F (Q)]− h3t3

2
Q2
∫

∞

Q

1
x

f (x)dx

=− vQ− h1Q2

2r
−h2Qt2 +

[
p−g+

h3t3
2

][
QF (Q)−

∫ Q

0
F (x)dx

]
+[g−h3t3]QF (Q)

− h4

u

∫ Q

0

[∫ x

0
F (x)dx

]
dx+ pQ [1−F (Q)]− h3t3

2
Q2
∫

∞

Q

1
x

f (x)dx.

The derivative of the above expected profit function in terms of Q is,

dE [P(Q,x)]
dQ

=− v− h1Q
r

−h2t2 +
[

p−g+
h3t3

2

]
[Q f (Q)]+ [g−h3t3] [Q f (Q)+F (Q)]

− h4

u

[∫ Q

0
F (x)dx

]
+ p [1−F (Q)−Q f (Q)]− h3t3

2

[
Q2
∫

∞

Q

1
x

f (x)dx
]′

= p− v−h2t2 −
h1Q

r
− h3t3

2
Q f (Q)+ [g−h3t3 − p]F (Q)− h4

u

[∫ Q

0
F (x)dx

]
− h3t3

2

[
Q2
∫

∞

Q

1
x

f (x)dx
]′

where,

[
Q2
∫

∞

Q

1
x

f (x)dx
]′

= 2Q
∫

∞

Q

1
x

f (x)dx+Q2
[

1
∞

f (∞)− 1
Q

f (Q)

]
= 2Q

∫
∞

Q

1
x

f (x)dx−Q f (Q)

hence,

dE [P(Q,x)]
dQ

= p− v−h2t2 −
h1Q

r
− h3t3

2
Q f (Q)+ [g−h3t3 − p]F (Q)− h4

u

[∫ Q

0
F (x)dx

]
− h3t3

2

[
2Q
∫

∞

Q

1
x

f (x)dx−Q f (Q)

]
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= p− v−h2t2 −
h1Q

r
+[g−h3t3 − p]F (Q)− h4

u

∫ Q

0
F (x)dx−h3t3Q

∫
∞

Q

1
x

f (x)dx.■

To obtain the concavity results of the problem under the general distribution case, we

now derive the second derivative of E [P(Q,x)] for the general distribution case, as below.

d2E [P(Q,x)]
dQ2 =− h1

r
+[g−h3t3 − p] f (Q)− h4

u
F (Q)−h3t3

[∫
∞

Q

1
x

f (x)dx+Q
[

1
∞

f (∞)− 1
Q

f (Q)

]]
=− h1

r
+[g−h3t3 − p] f (Q)− h4

u
F (Q)−h3t3

[∫
∞

Q

1
x

f (x)dx− f (Q)

]
=− h1

r
+[g− p] f (Q)− h4

u
F (Q)−h3t3

∫
∞

Q

1
x

f (x)dx

The term −h1
r has a negative value. Moreover, since p > g and for all Q ≥ 0 we

have f (Q) ≥ 0, the inequality [g− p] f (Q) ≤ 0 holds for all Q ≥ 0. Additionally, for all

Q ≥ 0 we have F (Q)≥ 0, while −h4
u has a negative value. This implies that the inequality

−h4
u F (Q) ≤ 0 holds for any Q ≥ 0. Also, the inequality

∫
∞

Q
1
x f (x)dx ≥ 0 holds for any

Q > 0, since the term
∫

∞

Q
1
x f (x)dx is an integration of a non-negative function when we

have Q > 0. Given these implications, we can conclude that for any Q > 0, the inequality
d2E[P(Q,x)]

dQ2 ≤ 0 holds, which implies the concavity of the profit function E [P(Q,x)] for any

Q > 0. When h1 > 0, d2E[P(Q,x)]
dQ2 < 0 holds for any Q > 0, which implies that given h1 > 0

and Q > 0, the profit function E [P(Q,x)] is concave downward.

1.9.3 Proof of Proposition 2

Proof. Since the expected profit function E [P(Q,x)] and its derivative depend on F (Q),

and the value of F (Q) differs based on the interval of Q, we decompose the problem

into the (N + 1) intervals in the formulation of F (Q), and reach a closed form optimal

solution for each interval (i.e., Q1,Q2, ...,QN ,QN+1) using the first order condition. Then,

the optimal order quantity is the one with the highest expected profit among the (N + 1)
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solutions. Moreover, the points {0,L1,L2, ...,LN}, as the end-points of these intervals,

must also be considered as the potential optimal solutions.

First, let 0 ≤ Q < L1. In this case,

∫
∞

Q

1
x

f (x)dx =
∫ L1

Q

1
x

f (x)dx+
N

∑
n=2

∫ Ln

Ln−1

1
x

f (x)dx =

=
∫ L1

Q

1
x

[[
f− (L1)− f+ (0)

L1

]
[x]+ f+ (0)

]
dx+

N

∑
n=2

∫ Ln

Ln−1

1
x

[[
f− (Ln)− f+ (Ln−1)

Ln −Ln−1

]
[x−Ln−1]+ f+ (Ln−1)

]
dx

= f− (L1)− f+ (0)+ f+ (0) lnL1 −
[

f− (L1)− f+ (0)
L1

]
Q+ f+ (0) lnQ

+
N

∑
n=2

[[[
f− (Ln)− f+ (Ln−1)

Ln −Ln−1

]
[Ln −Ln−1 lnLn]+ f+ (Ln−1) lnLn

]
−
[[

f− (Ln)− f+ (Ln−1)

Ln −Ln−1

]
[Ln−1 −Ln−1 lnLn−1]+ f+ (Ln−1) lnLn−1

]]

= f− (L1)

[
1− Q

L1

]
+ f+ (0)

[
Q
L1

−1+ lnL1 + lnQ
]

+
N

∑
n=2

[[
f− (Ln)− f+ (Ln−1)

Ln −Ln−1

][
Ln −Ln−1 +Ln−1

[
ln

Ln−1

Ln

]]
+ f+ (Ln−1)

[
ln

Ln

Ln−1

]]
In this interval, F (0) = 0 and for Q ∈ (0,L1) we have

F (Q) =

[
f− (x)+ f+ (0)

2

]
Q =


[[

f−(L1)− f+(0)
L1

]
Q+ f+ (0)

]
+ f+ (0)

2

Q =

[
f− (L1)− f+ (0)

2L1

]
Q2 +Q f+ (0)

and

∫ Q

0
F (x)dx =

∫ Q

0

[[
f− (L1)− f+ (0)

2L1

]
x2 + x f+ (0)

]
dx =

[
f− (L1)− f+ (0)

6L1

]
Q3 +

f+ (0)
2

Q2

and for dE[P1(Q,x)]
dQ we have:
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dE [P1 (Q,x)]
dQ

=p− v−h2t2 −
h1Q

r
+[g−h3t3 − p]F (Q)− h4

u

∫ Q

0
F (x)dx−h3t3Q

∫
∞

Q

1
x

f (x)dx

=p− v−h2t2 −
h1Q

r
+[g−h3t3 − p]

[[
f− (L1)− f+ (0)

2L1

]
Q2 +Q f+ (0)

]
− h4

u

[[
f− (L1)− f+ (0)

6L1

]
Q3 +

f+ (0)
2

Q2
]

−h3t3Q

[
f− (L1)

[
1− Q

L1

]
+ f+ (0)

[
Q
L1

−1+ lnL1 + lnQ
]

+
N

∑
n=2

[[
f− (Ln)− f+ (Ln−1)

Ln −Ln−1

][
Ln −Ln−1 +Ln−1

[
ln

Ln−1

Ln

]]
+ f+ (Ln−1)

[
ln

Ln

Ln−1

]]]

By using FOC we have,

Q1 =

{
Q | dE [P1 (Q,x)]

dQ
= 0
}

Moreover, in this interval

∫ Q

0

[∫ x

0
F (x)dx

]
dx =

∫ Q

0

[[
f− (L1)− f+ (0)

6L1

]
x3 +

f+ (0)
2

x2
]

dx

=

[
f− (L1)− f+ (0)

24L1

]
Q4 +

f+ (0)
6

Q3

and for E [P1 (Q,x)] we have:
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E [P1 (Q,x)] =− vQ− h1Q2

2r
−h2Qt2 +

[
p−g+

h3t3
2

][
QF (Q)−

∫ Q

0
F (x)dx

]
+[g−h3t3]QF (Q)

− h4

u

∫ Q

0

[∫ x

0
F (x)dx

]
dx+ pQ [1−F (Q)]− h3t3

2
Q2
∫

∞

Q

1
x

f (x)dx

=− vQ− h1Q2

2r
−h2Qt2 +

[
p−g+

h3t3
2

][[
f− (L1)− f+ (0)

3L1

]
Q3 +

f+ (0)
2

Q2
]

+[g−h3t3]
[[

f− (L1)− f+ (0)
2L1

]
Q3 +Q2 f+ (0)

]
− h4

u

[[
f− (L1)− f+ (0)

24L1

]
Q4 +

f+ (0)
6

Q3
]

+ pQ
[

1−
[

f− (L1)− f+ (0)
2L1

]
Q2 −Q f+ (0)

]
− h3t3

2
Q2
[

f− (L1)

[
1− Q

L1

]
+ f+ (0)

[
Q
L1

−1+ lnL1 + lnQ
]

+
N

∑
n=2

[[
f− (Ln)− f+ (Ln−1)

Ln −Ln−1

][
Ln −Ln−1 +Ln−1

[
ln

Ln−1

Ln

]]
+ f+ (Ln−1)

[
ln

Ln

Ln−1

]]]

Now, for all k = 2, ...,N −1, let Lk−1 ≤ Q ≤ Lk. In this case,

∫
∞

Q

1
x

f (x)dx =
∫ Lk

Q

1
x

f (x)dx+
N

∑
n=k+1

∫ Ln

Ln−1

1
x

f (x)dx

=
∫ Lk

Q

1
x

[[
f− (Lk)− f+ (Lk−1)

Lk −Lk−1

]
[x−Lk−1]+ f+ (Lk−1)

]
dx

+
N

∑
n=k+1

∫ Ln

Ln−1

1
x

[[
f− (Ln)− f+ (Ln−1)

Ln −Ln−1

]
[x−Ln−1]+ f+ (Ln−1)

]
dx

=

[
f− (Lk)− f+ (Lk−1)

Lk −Lk−1

]
[Lk −Lk−1 lnLk]+ f+ (Lk−1) lnLk −

[
f− (Lk)− f+ (Lk−1)

Lk −Lk−1

]
[Q−Lk−1 lnQ]− f+ (Lk−1) lnQ

+
N

∑
n=k+1

[[[
f− (Ln)− f+ (Ln−1)

Ln −Ln−1

]
[Ln −Ln−1 lnLn]+ f+ (Ln−1) lnLn

]
−
[[

f− (Ln)− f+ (Ln−1)

Ln −Ln−1

]
[Ln−1 −Ln−1 lnLn−1]+ f+ (Ln−1) lnLn−1

]]
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=

[
f− (Lk)− f+ (Lk−1)

Lk −Lk−1

][
Lk −Q+Lk−1 ln

Q
Lk

]
+ f+ (Lk−1)

[
ln

Lk

Q

]

+
N

∑
n=k+1

[[
f− (Ln)− f+ (Ln−1)

Ln −Ln−1

][
Ln −Ln−1 +Ln−1

[
ln

Ln−1

Ln

]]
+ f+ (Ln−1)

[
ln

Ln

Ln−1

]]

In this interval, where for all k = 2, ...,N −1, Lk−1 ≤ Q ≤ Lk, we have

F (Q) =

[
k−1

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
2

][
L j −L j−1

]]
+

[
f− (Q)+ f+ (Lk−1)

2

]
[Q−Lk−1]

=

[
k−1

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
2

][
L j −L j−1

]]
+


[[

f−(Lk)− f+(Lk−1)
Lk−Lk−1

]
[Q−Lk−1]+ f+ (Lk−1)

]
+ f+ (Lk−1)

2

 [Q−Lk−1]

=

[
k−1

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
2

][
L j −L j−1

]]
+

[
f− (Lk)− f+ (Lk−1)

2 [Lk −Lk−1]

]
[Q−Lk−1]

2 + f+ (Lk−1) [Q−Lk−1]

and
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∫ Q

0
F (x)dx =

∫ L1

0
[F (x)]dx+

[
k−2

∑
j=1

[∫ L j+1

L j

[F (x)]dx
]]

+
∫ Q

Lk−1

F (x)dx

=
∫ L1

0

[[
f− (x)+ f+ (0)

2

]
x
]

dx+

[
k−2

∑
j=1

[∫ L j+1

L j

[[
j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f− (x)+ f+

(
L j
)

2

][
x−L j

]]
dx

]]

+
∫ Q

Lk−1

[[
k−1

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
2

][
L j −L j−1

]]
+

[
f− (Lk)− f+ (Lk−1)

2 [Lk −Lk−1]

]
[x−Lk−1]

2 + f+ (Lk−1) [x−Lk−1]

]
dx

=
∫ L1

0


[[

f−(L1)− f+(0)
L1

]
x+ f+ (0)

]
+ f+ (0)

2

x

dx

+

k−2

∑
j=1

∫ L j+1

L j


[

j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+


[[

f−(L j+1)− f+(L j)
L j+1−L j

][
x−L j

]
+ f+

(
L j
)]

+ f+
(
L j
)

2

[x−L j
]dx




+

[
k−1

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
2

][
L j −L j−1

]]
[Q−Lk−1]+

[
f− (Lk)− f+ (Lk−1)

6 [Lk −Lk−1]

]
[Q−Lk−1]

3 +
f+ (Lk−1)

2
[Q−Lk−1]

2

=
∫ L1

0

[
f− (L1)− f+ (0)

2L1
x2 + f+ (0)x

]
dx

+

[
k−2

∑
j=1

[∫ L j+1

L j

[[
j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

2
[
L j+1 −L j

] ][
x−L j

]2
+ f+

(
L j
)[

x−L j
]]

dx

]]

+

[
k−1

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
2

][
L j −L j−1

]]
[Q−Lk−1]+

[
f− (Lk)− f+ (Lk−1)

6 [Lk −Lk−1]

]
[Q−Lk−1]

3 +
f+ (Lk−1)

2
[Q−Lk−1]

2

=
f− (L1)− f+ (0)

6
L2

1 +
f+ (0)

2
L2

1

+

k−2

∑
j=1

[[
x

j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
x−L j

]3
+

f+
(
L j
)

2
[
x−L j

]2]L j+1

L j


+

[
k−1

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
2

][
L j −L j−1

]]
[Q−Lk−1]+

[
f− (Lk)− f+ (Lk−1)

6 [Lk −Lk−1]

]
[Q−Lk−1]

3 +
f+ (Lk−1)

2
[Q−Lk−1]

2

=
f− (L1)− f+ (0)

6
L2

1 +
f+ (0)

2
L2

1

+

[
k−2

∑
j=1

[[[
L j+1 −L j

] j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
L j+1 −L j

]3
+

f+
(
L j
)

2
[
L j+1 −L j

]2]]

+

[
k−1

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
2

][
L j −L j−1

]]
[Q−Lk−1]+

[
f− (Lk)− f+ (Lk−1)

6 [Lk −Lk−1]

]
[Q−Lk−1]

3 +
f+ (Lk−1)

2
[Q−Lk−1]

2

and for dE[Pk(Q,x)]
dQ we have:
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dE [Pk (Q,x)]
dQ

=p− v−h2t2 −
h1Q

r
+[g−h3t3 − p]F (Q)− h4

u

∫ Q

0
F (x)dx−h3t3Q

∫
∞

Q

1
x

f (x)dx

=p− v−h2t2 −
h1Q

r

+[g−h3t3 − p]

[[
k−1

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
2

][
L j −L j−1

]]
+

[
f− (Lk)− f+ (Lk−1)

2 [Lk −Lk−1]

]
[Q−Lk−1]

2 + f+ (Lk−1) [Q−Lk−1]

]

− h4

u

[
f− (L1)− f+ (0)

6
L2

1 +
f+ (0)

2
L2

1

+

[
k−2

∑
j=1

[[[
L j+1 −L j

] j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
L j+1 −L j

]3
+

f+
(
L j
)

2
[
L j+1 −L j

]2]]

+

[
k−1

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
2

][
L j −L j−1

]]
[Q−Lk−1]+

[
f− (Lk)− f+ (Lk−1)

6 [Lk −Lk−1]

]
[Q−Lk−1]

3 +
f+ (Lk−1)

2
[Q−Lk−1]

2

]

−h3t3Q
[[

f− (Lk)− f+ (Lk−1)

Lk −Lk−1

][
Lk −Q+Lk−1 ln

Q
Lk

]
+ f+ (Lk−1)

[
ln

Lk

Q

]
+

N

∑
n=k+1

[[
f− (Ln)− f+ (Ln−1)

Ln −Ln−1

][
Ln −Ln−1 +Ln−1

[
ln

Ln−1

Ln

]]
+ f+ (Ln−1)

[
ln

Ln

Ln−1

]]]

By using FOC, for all k = 2, ...,N −1, we have,

Qk =

{
Q | dE [Pk (Q,x)]

dQ
= 0
}

Moreover, in this interval
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∫ Q

0

[∫ x

0
F (x)dx

]
dx =

∫ L1

0

[∫ x

0
F (x)dx

]
dx+

k−2

∑
i=1

[∫ Li+1

Li

[∫ x

0
F (x)dx

]
dx
]
+
∫ Q

Lk−1

[∫ x

0
F (x)dx

]
dx

=

[
f− (L1)− f+ (0)

24L1

]
L4

1 +
f+ (0)

6
L3

1

+
k−2

∑
i=1

[∫ Li+1

Li

[
f− (L1)− f+ (0)

6
L2

1 +
f+ (0)

2
L2

1

+

[
(i+1)−2

∑
j=1

[[[
L j+1 −L j

] j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
L j+1 −L j

]3
+

f+
(
L j
)

2
[
L j+1 −L j

]2]]

+

[
(i+1)−1

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
2

][
L j −L j−1

]][
x−L(i+1)−1

]
+

[
f−
(
L(i+1)

)
− f+

(
L(i+1)−1

)
6
[
L(i+1)−L(i+1)−1

] ][
x−L(i+1)−1

]3
+

f+
(
L(i+1)−1

)
2

[
x−L(i+1)−1

]2]dx

]

+
∫ Q

Lk−1

[
f− (L1)− f+ (0)

6
L2

1 +
f+ (0)

2
L2

1

+

[
k−2

∑
j=1

[[[
L j+1 −L j

] j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
L j+1 −L j

]3
+

f+
(
L j
)

2
[
L j+1 −L j

]2]]

+

[
k−1

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
2

][
L j −L j−1

]]
[x−Lk−1]+

[
f− (Lk)− f+ (Lk−1)

6 [Lk −Lk−1]

]
[x−Lk−1]

3 +
f+ (Lk−1)

2
[x−Lk−1]

2

]
dx

=

[
f− (L1)− f+ (0)

24

]
L3

1 +
f+ (0)

6
L3

1

+
k−2

∑
i=1

[[[
f− (L1)− f+ (0)

6
L2

1 +
f+ (0)

2
L2

1

]
x

+

[
i−1

∑
j=1

[[[
L j+1 −L j

] j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
L j+1 −L j

]3
+

f+
(
L j
)

2
[
L j+1 −L j

]2]]x

+

[
i

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
4

][
L j −L j−1

]]
[x−Li]

2 +

[
f− (Li+1)− f+ (Li)

24 [Li+1 −Li]

]
[x−Li]

4 +
f+ (Li)

6
[x−Li]

3

]Li+1

Li


+

[[
f− (L1)− f+ (0)

6
L2

1 +
f+ (0)

2
L2

1

]
x

+

[
k−2

∑
j=1

[[[
L j+1 −L j

] j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
L j+1 −L j

]3
+

f+
(
L j
)

2
[
L j+1 −L j

]2]]x

+

[
k−1

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
4

][
L j −L j−1

]]
[x−Lk−1]

2 +

[
f− (Lk)− f+ (Lk−1)

24 [Lk −Lk−1]

]
[x−Lk−1]

4 +
f+ (Lk−1)

6
[x−Lk−1]

3

]Q

Lk−1

=

[
f− (L1)− f+ (0)

24

]
L3

1 +
f+ (0)

6
L3

1

+
k−2

∑
i=1

[[
f− (L1)− f+ (0)

6
L2

1 +
f+ (0)

2
L2

1

]
[Li+1 −Li]

+

[
i−1

∑
j=1

[[[
L j+1 −L j

] j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
L j+1 −L j

]3
+

f+
(
L j
)

2
[
L j+1 −L j

]2]]
[Li+1 −Li]

+

[
i

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
4

][
L j −L j−1

]]
[Li+1 −Li]

2 +

[
f− (Li+1)− f+ (Li)

24 [Li+1 −Li]

]
[Li+1 −Li]

4 +
f+ (Li)

6
[Li+1 −Li]

3

]

+

[
f− (L1)− f+ (0)

6
L2

1 +
f+ (0)

2
L2

1

]
[Q−Lk−1]

+

[
k−2

∑
j=1

[[[
L j+1 −L j

] j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
L j+1 −L j

]3
+

f+
(
L j
)

2
[
L j+1 −L j

]2]]
[Q−Lk−1]

+

[
k−1

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
4

][
L j −L j−1

]]
[Q−Lk−1]

2 +

[
f− (Lk)− f+ (Lk−1)

24 [Lk −Lk−1]

]
[Q−Lk−1]

4 +
f+ (Lk−1)

6
[Q−Lk−1]

3
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and for E [Pk (Q,x)] we have:

E [Pk (Q,x)] =− vQ− h1Q2

2r
−h2Qt2 +

[
p−g+

h3t3
2

][
QF (Q)−

∫ Q

0
F (x)dx

]
+[g−h3t3]QF (Q)

− h4

u

∫ Q

0

[∫ x

0
F (x)dx

]
dx+ pQ [1−F (Q)]− h3t3

2
Q2
∫

∞

Q

1
x

f (x)dx

=− vQ− h1Q2

2r
−h2Qt2

+

[
p−g+

h3t3
2

][
Q

[[
k−1

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
2

][
L j −L j−1

]]
+

[
f− (Lk)− f+ (Lk−1)

2 [Lk −Lk−1]

]
[Q−Lk−1]

2 + f+ (Lk−1) [Q−Lk−1]

]

− f− (L1)− f+ (0)
6

L2
1 −

f+ (0)
2

L2
1

−

[
Lk−2

∑
j=1

[[[
L j+1 −L j

] j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
L j+1 −L j

]3
+

f+
(
L j
)

2
[
L j+1 −L j

]2]]

−

[
k−1

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
2

][
L j −L j−1

]]
[Q−Lk−1]−

[
f− (Lk)− f+ (Lk−1)

6 [Lk −Lk−1]

]
[Q−Lk−1]

3 − f+ (Lk−1)

2
[Q−Lk−1]

2

]

+[g−h3t3]Q

[[
k−1

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
2

][
L j −L j−1

]]
+

[
f− (Lk)− f+ (Lk−1)

2 [Lk −Lk−1]

]
[Q−Lk−1]

2 + f+ (Lk−1) [Q−Lk−1]

]

+ pQ

[
1−

[[
k−1

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
2

][
L j −L j−1

]]
+

[
f− (Lk)− f+ (Lk−1)

2 [Lk −Lk−1]

]
[Q−Lk−1]

2 + f+ (Lk−1) [Q−Lk−1]

]]

− h4

u

[[
f− (L1)− f+ (0)

24

]
L3

1 +
f+ (0)

6
L3

1

+
k−2

∑
i=1

[[
f− (L1)− f+ (0)

6
L2

1 +
f+ (0)

2
L2

1

]
[Li+1 −Li]

+

[
i−1

∑
j=1

[[[
L j+1 −L j

] j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
L j+1 −L j

]3
+

f+
(
L j
)

2
[
L j+1 −L j

]2]]
[Li+1 −Li]

+

[
i

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
4

][
L j −L j−1

]]
[Li+1 −Li]

2 +

[
f− (Li+1)− f+ (Li)

24 [Li+1 −Li]

]
[Li+1 −Li]

4 +
f+ (Li)

6
[Li+1 −Li]

3

]

+

[
f− (L1)− f+ (0)

6
L2

1 +
f+ (0)

2
L2

1

]
[Q−Lk−1]

+

[
k−2

∑
j=1

[[[
L j+1 −L j

] j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
L j+1 −L j

]3
+

f+
(
L j
)

2
[
L j+1 −L j

]2]]
[Q−Lk−1]

+

[
k−1

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
4

][
L j −L j−1

]]
[Q−Lk−1]

2 +

[
f− (Lk)− f+ (Lk−1)

24 [Lk −Lk−1]

]
[Q−Lk−1]

4 +
f+ (Lk−1)

6
[Q−Lk−1]

3

]

− h3t3
2

Q2
[[

f− (Lk)− f+ (Lk−1)

Lk −Lk−1

][
Lk −Q+Lk−1 ln

Q
Lk

]
+ f+ (Lk−1)

[
ln

Lk

Q

]
+

N

∑
n=k+1

[[
f− (Ln)− f+ (Ln−1)

Ln −Ln−1

][
Ln −Ln−1 +Ln−1

[
ln

Ln−1

Ln

]]
+ f+ (Ln−1)

[
ln

Ln

Ln−1

]]]

Now, let LN−1 ≤ Q ≤ LN . In this case,
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∫
∞

Q

1
x

f (x)dx =
∫ LN

Q

1
x

f (x)dx

=
∫ LN

Q

1
x

[[
f− (LN)− f+ (LN−1)

LN −LN−1

]
[x−LN−1]+ f+ (LN−1)

]
dx

=

[
f− (LN)− f+ (LN−1)

LN −LN−1

]
[LN −LN−1 lnLN ]+ f+ (LN−1) lnLN −

[
f− (LN)− f+ (LN−1)

LN −LN−1

]
[Q−LN−1 lnQ]− f+ (LN−1) lnQ

=

[
f− (LN)− f+ (LN−1)

LN −LN−1

][
LN −Q+LN−1 ln

Q
LN

]
+ f+ (LN−1)

[
ln

LN

Q

]
In this interval (LN−1 ≤ Q ≤ LN), we can also follow the same procedure we used for

the kth interval, to derive F (Q) and
∫ Q

0 F (x)dx as follows.

F (Q) =

[
N−1

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
2

][
L j −L j−1

]]
+

[
f− (Q)+ f+ (LN−1)

2

]
[Q−LN−1]

=

[
N−1

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
2

][
L j −L j−1

]]
+

[
f− (LN)− f+ (LN−1)

2 [LN −LN−1]

]
[Q−LN−1]

2 + f+ (LN−1) [Q−LN−1]

and

∫ Q

0
F (x)dx =

∫ L1

0
[F (x)]dx+

[
N−2

∑
j=1

[∫ L j+1

L j

[F (x)]dx
]]

+
∫ Q

LN−1

F (x)dx

=
f− (L1)− f+ (0)

6
L2

1 +
f+ (0)

2
L2

1

+

[
N−2

∑
j=1

[[[
L j+1 −L j

] j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
L j+1 −L j

]3
+

f+
(
L j
)

2
[
L j+1 −L j

]2]]

+

[
N−1

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
2

][
L j −L j−1

]]
[Q−LN−1]+

[
f− (LN)− f+ (LN−1)

6 [LN −LN−1]

]
[Q−LN−1]

3 +
f+ (LN−1)

2
[Q−LN−1]

2

and for dE[PN(Q,x)]
dQ we have:
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dE [PN (Q,x)]
dQ

=p− v−h2t2 −
h1Q

r
+[g−h3t3 − p]F (Q)− h4

u

∫ Q

0
F (x)dx−h3t3Q

∫
∞

Q

1
x

f (x)dx

=p− v−h2t2 −
h1Q

r

+[g−h3t3 − p]

[[
N−1

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
2

][
L j −L j−1

]]
+

[
f− (LN)− f+ (LN−1)

2 [LN −LN−1]

]
[Q−LN−1]

2 + f+ (LN−1) [Q−LN−1]

]

− h4

u

[
f− (L1)− f+ (0)

6
L2

1 +
f+ (0)

2
L2

1

+

[
N−2

∑
j=1

[[[
L j+1 −L j

] j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
L j+1 −L j

]3
+

f+
(
L j
)

2
[
L j+1 −L j

]2]]

+

[
N−1

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
2

][
L j −L j−1

]]
[Q−LN−1]+

[
f− (LN)− f+ (LN−1)

6 [LN −LN−1]

]
[Q−LN−1]

3 +
f+ (LN−1)

2
[Q−LN−1]

2

]

−h3t3Q
[[

f− (LN)− f+ (LN−1)

LN −LN−1

][
LN −Q+LN−1 ln

Q
LN

]
+ f+ (LN−1)

[
ln

LN

Q

]]

By using FOC, we have,

QN =

{
Q | dE [PN (Q,x)]

dQ
= 0
}

Moreover, in this interval (LN−1 ≤ Q ≤ LN), we can again follow the same procedure

we used for the kth interval, to derive
∫ Q

0 [
∫ x

0 F (x)dx]dx as below.

∫ Q

0

[∫ x

0
F (x)dx

]
dx =

∫ L1

0

[∫ x

0
F (x)dx

]
dx+

N−2

∑
i=1

[∫ Li+1

Li

[∫ x

0
F (x)dx

]
dx
]
+
∫ Q

LN−1

[∫ x

0
F (x)dx

]
dx

=

[
f− (L1)− f+ (0)

24

]
L3

1 +
f+ (0)

6
L3

1

+
N−2

∑
i=1

[[
f− (L1)− f+ (0)

6
L2

1 +
f+ (0)

2
L2

1

]
[Li+1 −Li]

+

[
i−1

∑
j=1

[[[
L j+1 −L j

] j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
L j+1 −L j

]3
+

f+
(
L j
)

2
[
L j+1 −L j

]2]]
[Li+1 −Li]

+

[
i

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
4

][
L j −L j−1

]]
[Li+1 −Li]

2 +

[
f− (Li+1)− f+ (Li)

24 [Li+1 −Li]

]
[Li+1 −Li]

4 +
f+ (Li)

6
[Li+1 −Li]

3

]

+

[
f− (L1)− f+ (0)

6
L2

1 +
f+ (0)

2
L2

1

]
[Q−LN−1]

+

[
N−2

∑
j=1

[[[
L j+1 −L j

] j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
L j+1 −L j

]3
+

f+
(
L j
)

2
[
L j+1 −L j

]2]]
[Q−LN−1]

+

[
N−1

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
4

][
L j −L j−1

]]
[Q−LN−1]

2 +

[
f− (LN)− f+ (LN−1)

24 [LN −LN−1]

]
[Q−LN−1]

4 +
f+ (LN−1)

6
[Q−LN−1]

3
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and for E [PN (Q,x)] we have:

E [PN (Q,x)] =− vQ− h1Q2

2r
−h2Qt2 +

[
p−g+

h3t3
2

][
QF (Q)−

∫ Q

0
F (x)dx

]
+[g−h3t3]QF (Q)

− h4

u

∫ Q

0

[∫ x

0
F (x)dx

]
dx+ pQ [1−F (Q)]− h3t3

2
Q2
∫

∞

Q

1
x

f (x)dx

=− vQ− h1Q2

2r
−h2Qt2

+

[
p−g+

h3t3
2

][
Q

[[
N−1

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
2

][
L j −L j−1

]]
+

[
f− (LN)− f+ (LN−1)

2 [LN −LN−1]

]
[Q−LN−1]

2 + f+ (LN−1) [Q−LN−1]

]

− f− (L1)− f+ (0)
6

L2
1 −

f+ (0)
2

L2
1

−

[
N−2

∑
j=1

[[[
L j+1 −L j

] j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
L j+1 −L j

]3
+

f+
(
L j
)

2
[
L j+1 −L j

]2]]

−

[
N−1

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
2

][
L j −L j−1

]]
[Q−LN−1]−

[
f− (LN)− f+ (LN−1)

6 [LN −LN−1]

]
[Q−LN−1]

3 − f+ (LN−1)

2
[Q−LN−1]

2

]

+[g−h3t3]Q

[[
N−1

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
2

][
L j −L j−1

]]
+

[
f− (LN)− f+ (LN−1)

2 [LN −LN−1]

]
[Q−LN−1]

2 + f+ (LN−1) [Q−LN−1]

]

− h4

u

[[
f− (L1)− f+ (0)

24

]
L3

1 +
f+ (0)

6
L3

1

+
N−2

∑
i=1

[[
f− (L1)− f+ (0)

6
L2

1 +
f+ (0)

2
L2

1

]
[Li+1 −Li]

+

[
i−1

∑
j=1

[[[
L j+1 −L j

] j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
L j+1 −L j

]3
+

f+
(
L j
)

2
[
L j+1 −L j

]2]]
[Li+1 −Li]

+

[
i

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
4

][
L j −L j−1

]]
[Li+1 −Li]

2 +

[
f− (Li+1)− f+ (Li)

24 [Li+1 −Li]

]
[Li+1 −Li]

4 +
f+ (Li)

6
[Li+1 −Li]

3

]

+

[
f− (L1)− f+ (0)

6
L2

1 +
f+ (0)

2
L2

1

]
[Q−LN−1]

+

[
N−2

∑
j=1

[[[
L j+1 −L j

] j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
L j+1 −L j

]3
+

f+
(
L j
)

2
[
L j+1 −L j

]2]]
[Q−LN−1]

+

[
N−1

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
4

][
L j −L j−1

]]
[Q−LN−1]

2 +

[
f− (LN)− f+ (LN−1)

24 [LN −LN−1]

]
[Q−LN−1]

4 +
f+ (LN−1)

6
[Q−LN−1]

3

]

+ pQ

[
1−

[[
N−1

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
2

][
L j −L j−1

]]
+

[
f− (LN)− f+ (LN−1)

2 [LN −LN−1]

]
[Q−LN−1]

2 + f+ (LN−1) [Q−LN−1]

]]

− h3t3
2

Q2
[[

f− (LN)− f+ (LN−1)

LN −LN−1

][
LN −Q+LN−1 ln

Q
LN

]
+ f+ (LN−1)

[
ln

LN

Q

]]

Also, let LN ≤ Q. In this case,

∫
∞

Q

1
x

f (x)dx = 0
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In this interval F (Q) = 1, and

∫ Q

0
F (x)dx =

∫ L1

0
[F (x)]dx+

[
N−1

∑
j=1

[∫ L j+1

L j

[F (x)]dx
]]

+
∫ Q

LN

F (x)dx

=
∫ L1

0

[[
f− (x)+ f+ (0)

2

]
x
]

dx+

[
N−1

∑
j=1

[∫ L j+1

L j

[[
j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f− (x)+ f+

(
L j
)

2

][
x−L j

]]
dx

]]
+Q−LN

=
∫ L1

0


[[

f−(L1)− f+(0)
L1

]
x+ f+ (0)

]
+ f+ (0)

2

x

dx

+

N−1

∑
j=1

∫ L j+1

L j


[

j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+


[[

f−(L j+1)− f+(L j)
L j+1−L j

][
x−L j

]
+ f+

(
L j
)]

+ f+
(
L j
)

2

[x−L j
]dx


+Q−LN

=
∫ L1

0

[
f− (L1)− f+ (0)

2L1
x2 + f+ (0)x

]
dx

+

[
N−1

∑
j=1

[∫ L j+1

L j

[[
j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

2
[
L j+1 −L j

] ][
x−L j

]2
+ f+

(
L j
)[

x−L j
]]

dx

]]
+Q−LN

=
f− (L1)− f+ (0)

6
L2

1 +
f+ (0)

2
L2

1

+

N−1

∑
j=1

[[
x

j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
x−L j

]3
+

f+
(
L j
)

2
[
x−L j

]2]L j+1

L j

+Q−LN

=
f− (L1)− f+ (0)

6
L2

1 +
f+ (0)

2
L2

1

+

[
N−1

∑
j=1

[[[
L j+1 −L j

] j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
L j+1 −L j

]3
+

f+
(
L j
)

2
[
L j+1 −L j

]2]]
+Q−LN

and for dE[PN+1(Q,x)]
dQ we have:

dE [PN+1 (Q,x)]
dQ

=p− v−h2t2 −
h1Q

r
+[g−h3t3 − p]F (Q)− h4

u

∫ Q

0
F (x)dx−h3t3Q

∫
∞

Q

1
x

f (x)dx

=p− v−h2t2 −
h1Q

r
+[g−h3t3 − p]− h4

u

[
f− (L1)− f+ (0)

6
L2

1 +
f+ (0)

2
L2

1

]
− h4

u

[
N−1

∑
j=1

[[[
L j+1 −L j

] j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
L j+1 −L j

]3
+

f+
(
L j
)

2
[
L j+1 −L j

]2]]

− h4

u
Q+

h4

u
LN

=− v−h2t2 −
[

h1

r
+

h4

u

]
Q+g−h3t3 −

h4

u

[
f− (L1)− f+ (0)

6
L2

1 +
f+ (0)

2
L2

1

]
− h4

u

[
N−1

∑
j=1

[[[
L j+1 −L j

] j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
L j+1 −L j

]3
+

f+
(
L j
)

2
[
L j+1 −L j

]2]]
+

h4

u
LN

By using FOC we have,
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QN+1 =
1

h1
r + h4

u

[
−v−h2t2 +g−h3t3 −

h4

u

[
f− (L1)− f+ (0)

6
L2

1 +
f+ (0)

2
L2

1

]

−h4

u

[
N−1

∑
j=1

[[[
L j+1 −L j

] j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
L j+1 −L j

]3
+

f+
(
L j
)

2
[
L j+1 −L j

]2]]
+

h4

u
LN

]

Moreover, in this interval
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∫ Q

0

[∫ x

0
F (x)dx

]
dx =

∫ L1

0

[∫ x

0
F (x)dx

]
dx+

[
N−1

∑
i=1

[∫ Li+1

Li

[∫ x

0
F (x)dx

]
dx
]]

+
∫ Q

LN

[∫ x

0
F (x)dx

]
dx

=

[
f− (L1)− f+ (0)

24

]
L3

1 +
f+ (0)

6
L3

1

+
N−2

∑
i=1

[[
f− (L1)− f+ (0)

6
L2

1 +
f+ (0)

2
L2

1

]
[Li+1 −Li]

+

[
i−1

∑
j=1

[[[
L j+1 −L j

] j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
L j+1 −L j

]3
+

f+
(
L j
)

2
[
L j+1 −L j

]2]]
[Li+1 −Li]

+

[
i

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
4

][
L j −L j−1

]]
[Li+1 −Li]

2 +

[
f− (Li+1)− f+ (Li)

24 [Li+1 −Li]

]
[Li+1 −Li]

4 +
f+ (Li)

6
[Li+1 −Li]

3

]

+

[
f− (L1)− f+ (0)

6
L2

1 +
f+ (0)

2
L2

1

]
[LN −LN−1]

+

[
N−2

∑
j=1

[[[
L j+1 −L j

] j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
L j+1 −L j

]3
+

f+
(
L j
)

2
[
L j+1 −L j

]2]]
[LN −LN−1]

+

[
N−1

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
4

][
L j −L j−1

]]
[LN −LN−1]

2 +

[
f− (LN)− f+ (LN−1)

24 [LN −LN−1]

]
[LN −LN−1]

4 +
f+ (LN−1)

6
[LN −LN−1]

3

+
∫ Q

LN

[
f− (L1)− f+ (0)

6
L2

1 +
f+ (0)

2
L2

1

+

[
N−1

∑
j=1

[[[
L j+1 −L j

] j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
L j+1 −L j

]3
+

f+
(
L j
)

2
[
L j+1 −L j

]2]]
+ x−LN

]
dx

=

[
f− (L1)− f+ (0)

24

]
L3

1 +
f+ (0)

6
L3

1

+
N−1

∑
i=1

[[
f− (L1)− f+ (0)

6
L2

1 +
f+ (0)

2
L2

1

]
[Li+1 −Li]

+

[
i−1

∑
j=1

[[[
L j+1 −L j

] j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
L j+1 −L j

]3
+

f+
(
L j
)

2
[
L j+1 −L j

]2]]
[Li+1 −Li]

+

[
i

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
4

][
L j −L j−1

]]
[Li+1 −Li]

2 +

[
f− (Li+1)− f+ (Li)

24 [Li+1 −Li]

]
[Li+1 −Li]

4 +
f+ (Li)

6
[Li+1 −Li]

3

]

+

[[
f− (L1)− f+ (0)

6
L2

1 +
f+ (0)

2
L2

1

]
x

+

[
N−1

∑
j=1

[[[
L j+1 −L j

] j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
L j+1 −L j

]3
+

f+
(
L j
)

2
[
L j+1 −L j

]2]]x

+
[x−LN ]

2

2

]Q

LN

=

[
f− (L1)− f+ (0)

24

]
L3

1 +
f+ (0)

6
L3

1

+
N−1

∑
i=1

[[
f− (L1)− f+ (0)

6
L2

1 +
f+ (0)

2
L2

1

]
[Li+1 −Li]

+

[
i−1

∑
j=1

[[[
L j+1 −L j

] j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
L j+1 −L j

]3
+

f+
(
L j
)

2
[
L j+1 −L j

]2]]
[Li+1 −Li]

+

[
i

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
4

][
L j −L j−1

]]
[Li+1 −Li]

2 +

[
f− (Li+1)− f+ (Li)

24 [Li+1 −Li]

]
[Li+1 −Li]

4 +
f+ (Li)

6
[Li+1 −Li]

3

]

+

[
f− (L1)− f+ (0)

6
L2

1 +
f+ (0)

2
L2

1

]
[Q−LN ]

+

[
N−1

∑
j=1

[[[
L j+1 −L j

] j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
L j+1 −L j

]3
+

f+
(
L j
)

2
[
L j+1 −L j

]2]]
[Q−LN ]

+
[Q−LN ]

2

2
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and for E [PN+1 (Q,x)] we have:

E [PN+1 (Q,x)] =− vQ− h1Q2

2r
−h2Qt2 +

[
p−g+

h3t3
2

][
QF (Q)−

∫ Q

0
F (x)dx

]
+[g−h3t3]QF (Q)

− h4

u

∫ Q

0

[∫ x

0
F (x)dx

]
dx+ pQ [1−F (Q)]− h3t3

2
Q2
∫

∞

Q

1
x

f (x)dx

=− vQ− h1Q2

2r
−h2Qt2 +

[
p−g+

h3t3
2

][
Q− f− (L1)− f+ (0)

6
L2

1 −
f+ (0)

2
L2

1

−

[
N−1

∑
j=1

[[[
L j+1 −L j

] j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
L j+1 −L j

]3
+

f+
(
L j
)

2
[
L j+1 −L j

]2]]−Q+LN

]

+[g−h3t3]Q− h4

u

[[
f− (L1)− f+ (0)

24

]
L3

1 +
f+ (0)

6
L3

1+
N−1

∑
i=1

[[
f− (L1)− f+ (0)

6
L2

1 +
f+ (0)

2
L2

1

]
[Li+1 −Li]

+

[
i−1

∑
j=1

[[[
L j+1 −L j

] j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
L j+1 −L j

]3
+

f+
(
L j
)

2
[
L j+1 −L j

]2]]
[Li+1 −Li]

+

[
i

∑
j=1

[
f−
(
L j
)
+ f+

(
L j−1

)
4

][
L j −L j−1

]]
[Li+1 −Li]

2 +

[
f− (Li+1)− f+ (Li)

24 [Li+1 −Li]

]
[Li+1 −Li]

4 +
f+ (Li)

6
[Li+1 −Li]

3

]

+

[
f− (L1)− f+ (0)

6
L2

1 +
f+ (0)

2
L2

1

]
[Q−LN ]

+

[
N−1

∑
j=1

[[[
L j+1 −L j

] j

∑
m=1

[
f− (Lm)+ f+ (Lm−1)

2

]
[Lm −Lm−1]

]
+

[
f−
(
L j+1

)
− f+

(
L j
)

6
[
L j+1 −L j

] ][
L j+1 −L j

]3
+

f+
(
L j
)

2
[
L j+1 −L j

]2]]
[Q−LN ]

+
[Q−LN ]

2

2

]

Finally, since {0,L1, ...,LN} are the endpoints of the given intervals, they may also be

the optimal solution. We also assume that Q is a big number such that Q > QN+1. Q is

introduced here since Q = ∞ is not possible to be achieved, although it can theoretically

be a potential optimal solution of the problem.■

1.9.4 Proof of Proposition 3

First let us remind you that given a realization of scenario j, one of the following cases will

determine the total profit related to scenario j depending on whether or not x j is greater

than Q.

Case 1: Q ≤ x j
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pQ− vQ− h1

2r
Q2 −h2t2Q− h3t3Q2

2x j

Case 2: Q > x j

px j +g
[
Q− x j

]
− vQ− h1

2r
Q2 −h2t2Q−h3t3

[
Q−

x j

2

]
− h4

2u

[
Q− x j

]2
If 0 ≤ Q < x1, then all demand scenarios will be greater than the production quantity

Q, hence, the second stage profit of scenario j is equal to pQ− h3t3Q2

2x for all j = 1, ..,N.

Therefore, z1 (Q) = −vQ− h1
2r Q2 − h2t2Q+∑

N
j=1 k j

[
pQ− h3t3Q2

2x j

]
; and the optimal pro-

duction quantity is either 0 or the solution of dz1
dQ = 0. So, we have:

dz1

dQ
=−v− h1

r
Q−h2t2 + p−h3t3Q

N

∑
j=1

[
k j

x j

]
=−v−h2t2 + p−Q

[
h1

r
+h3t3

N

∑
j=1

[
k j

x j

]]
= 0

which results in:

Q =
p− v−h2t2

h1
r +h3t3 ∑

N
j=1

[
k j
x j

]
Therefore, if 0 ≤ Q < x1, then the optimal total profit in this interval is either z1 (0)

or z1

(
p−v−h2t2

h1
r +h3t3 ∑

N
j=1

[ k j
x j

]
)

. Please note that since z1 (x1) = z2 (x1), we only consider x1 in

calculating z2 (Q) which will come next.

∀n = 2, . . . ,N: if xn−1 ≤ Q < xn, then for all j = 1, ..,n−1 all demand scenarios will be

less than or equal to the production quantity Q, hence, the second stage profit of scenario

j is equal to px j + g
[
Q− x j

]
− h3t3

[
Q− x j

2

]
− h4

2u

[
Q− x j

]2. Also, for all j = n, ..,N, the

demand scenarios will be greater than the production quantity Q, hence, the second stage

profit of scenario j is equal to pQ− h3t3Q2

2x j
. Therefore,

zn (Q) =−vQ− h1

2r
Q2 −h2t2Q+

n−1

∑
j=1

k j

[
px j +g

[
Q− x j

]
−h3t3

[
Q−

x j

2

]
− h4

2u

[
Q− x j

]2]
+

N

∑
j=n

k j

[
pQ− h3t3Q2

2x j

]
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and the optimal production quantity is either xn−1 or the solution of dzn
dQ = 0. So, we

have:

dzn

dQ
=− v− h1

r
Q−h2t2 +

n−1

∑
j=1

k j

[
g−h3t3 −

h4

u
[Q− x j]

]
+

N

∑
j=n

k j

[
p− h3t3

x j
Q
]

=− v−h2t2 +
n−1

∑
j=1

k j

[
g−h3t3 +

h4

u
x j

]
+

N

∑
j=n

k j p−

[
h1

r
+

h4

u

n−1

∑
j=1

k j +
N

∑
j=n

k j

[
h3t3
x j

]]
Q

=0

which results in:

Q =
−v−h2t2 +[g−h3t3]∑n−1

j=1 k j +
h4
u ∑

n−1
j=1 k jx j + p∑

N
j=n k j

h1
r + h4

u ∑
n−1
j=1 k j +h3t3 ∑

N
j=n

k j
x j

Therefore, for all n = 2, . . . ,N, if xn−1 ≤ Q < xn, then the optimal total profit in this

interval is either zn (xn−1) or zn

(
−v−h2t2+[g−h3t3]∑n−1

j=1 k j+
h4
u ∑

n−1
j=1 k jx j+p∑

N
j=n k j

h1
r +

h4
u ∑

n−1
j=1 k j+h3t3 ∑

N
j=n

k j
x j

)
. It is worth

noting that zn (xn) = zn+1 (xn), hence, we only consider xn when examining zn+1 (Q).

If xN ≤ Q ≤ Q, then for all j = 1, . . . ,N, the demand scenarios will be less than or

equal to the production quantity Q, hence, the second stage profit of scenario j is equal to

px j +g
[
Q− x j

]
−h3t3

[
Q− x j

2

]
− h4

2u

[
Q− x j

]2. Therefore,

zN+1 (Q) =−vQ− h1

2r
Q2 −h2t2Q+

N

∑
j=1

k j

[
px j +g [Q− x j]−h3t3

[
Q−

x j

2

]
− h4

2u
[Q− x j]

2
]

and in this interval the optimal production quantity can be xN , Q or the solution of
dzN+1

dQ = 0. So, we have:
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dzN+1

dQ
=− v− h1

r
Q−h2t2 +

N

∑
j=1

k j

[
g−h3t3 −

h4

u

[
Q− x j

]]

=− v−

[
h1

r
+

h4

u

N

∑
j=1

k j

]
Q−h2t2 +[g−h3t3]

N

∑
j=1

k j +
h4

u

N

∑
j=1

k jx j

=0

which results in:

Q =
−v−h2t2 +[g−h3t3]∑N

j=1 k j +
h4
u ∑

N
j=1 k jx j

h1
r + h4

u ∑
N
j=1 k j

Therefore, the optimal total profit in this interval can be zN+1 (xN), zN+1
(
Q
)
, or

zN+1

(
−v−h2t2+[g−h3t3]∑N

j=1 k j+
h4
u ∑

N
j=1 k jx j

h1
r +

h4
u ∑

N
j=1 k j

)
.

Since the union of the sets 0 ≤ Q < x1, xn−1 ≤ Q < xn : ∀n = 2, . . . ,N, and xN ≤ Q ≤ Q,

is the set 0 ≤ Q ≤ Q, we can conclude that the optimal solution to the original problem is

the one that maximizes the following problem:

max

z1 (0) ,z1

 p− v−h2t2
h1
r +h3t3 ∑

N
j=1

[
k j
x j

]
 ,

zn (xn−1) : ∀n = 2..N,zn

−v−h2t2 +[g−h3t3]∑n−1
j=1 k j +

h4
u ∑

n−1
j=1 k jx j + p∑

N
j=n k j

h1
r + h4

u ∑
n−1
j=1 k j +h3t3 ∑

N
j=n

k j
x j

 : ∀n = 2..N,

zN+1 (xN) ,zN+1
(
Q
)
,zN+1

(
−v−h2t2 +[g−h3t3]∑N

j=1 k j +
h4
u ∑

N
j=1 k jx j

h1
r + h4

u ∑
N
j=1 k j

)■

The above problem obtains a maximum value over 2N + 3 values. Hence, it is quite

efficient even for very large number of scenarios.
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Abstract

This paper studies the newsvendor problem in the context of a supply chain where holding

costs are incurred over time. The supply chain consists of four phases including produc-

tion, transportation, as well as the two selling phases as in the standard newsvendor model,

i.e., a regular and a discount season. The cumulative production and demand functions are

assumed to have a general nonlinear form over the time of their corresponding seasons

and their holding cost, which depends on the amount of time and quantity that an item



is stored during each season, are taken into consideration in the newsvendor model. We

first mathematically derive the total holding cost of the production and demand phases and

then provide the solution process of the stochastic problem in its general form, under dis-

crete distribution, by partially leveraging the solution process of the problem under linear

production and demand functions in a former study (Ghaniabadi et al. 2023). To shed

light on the applicability of the general model and its solution, we use the general model

and solution to derive the holding costs and solution procedure under discrete distribution,

given Wright’s (Wright 1936) model for the production and Bass (Bass 1969) model for

the demand phase, which are well-known and able to represent a variety of functions. The

corresponding numerical experiments are then performed over synthetic and real datasets,

where the demand function of the first selling season is estimated from real data.

2.1 Introduction

The newsvendor model is one of the most well-studied problems in the literature of inven-

tory control. Holding costs play a major role in a supply chain and consequently it is im-

portant to have a comprehensive consideration of such costs in an inventory management

problem. Nevertheless, the standard newsvendor model does not take into consideration

the holding costs which occur over time during various phases of a supply chain. In this

paper, we study a supply chain of four phases which include production, shipping, regular

and discount selling seasons, where the holding cost of the inventory over these phases

are taken into account (Ghaniabadi et al. 2023). While the inventory during the trans-

portation period remains constant (Ghaniabadi et al. 2023), for the production and the two

selling seasons, we consider nonlinear cumulative functions for the amount of inventory

over time. The goal is to obtain an optimal quantity for production, so that the expected

profit of the supply chain is maximized. Ghaniabadi et al. (2023) study the same problem
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while only considering the linear production and demand functions over time. In practical

situations, however, this is not always the case and we can encounter a nonlinear demand

function over time. For instance, when a new product is introduced to the market, at the

beginning (the product introduction phase) and at the end (after the product saturation) of

the first selling season, we may have lower demand than in the middle of the first selling

season. Moreover, the production function can also be nonlinear, for instance, due to the

learning effects in production. The nonlinearities in production and demand functions im-

pact the amount of incurred holding cost. Hence, in this article, we model the newsvendor

problem under general production and demand functions which are nonlinear over time

and formulate their corresponding holding costs. We then provide a solution procedure

for the problem under the discrete distribution by extending the solution framework of

Ghaniabadi et al. (2023) which was developed under the same distribution for the case

of linear production and demand functions. In order to illustrate the applicability of our

model and solution process, we derive the holding costs of the production and demand

phases under Wright’s (Wright 1936) and Bass (Bass 1969) models, respectively, using

the developed general model and provide its solution via the proposed general solution

procedure. Both the models of Wright (1936) and Bass (1969) are well-known in the liter-

ature and are flexible which enables them to model a variety of functions by adjusting their

parameters. We also conduct numerical experiments, with synthetic and real datasets, for

the problem under the Wright (1936) and Bass (1969) models (for production and demand,

respectively) and compare the profitability of the optimal solution with solutions for the

basic newsvendor model without considering holding costs, the approximations based on

the basic newsvendor problem with consideration of holding costs, and the problem under

the linear case taken from Ghaniabadi et al. (2023). The results of the experiments show

that the novel model under nonlinear production and demand, brings forth solutions that,

on average, have higher expected profit than the solutions of simpler models examined
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by Ghaniabadi et al. (2023), evaluated under the nonlinear case. Moreover, in contrast

to the results of Ghaniabadi et al. (2023), there are instances where the approximations

based on the basic newsvendor model provide solutions with higher expected profits than

solutions of the linear production and demand case proposed by Ghaniabadi et al. (2023).

Nevertheless, considering all our experiments as a whole, the results indicate that the lin-

ear case still generally provides better solutions than the approximate solutions based on

the basic newsvendor model, when the nonlinear cumulative production function (in our

experiments according to the Wright’s model) is approximated as a linear function with a

specific constant production rate, while the nonlinear cumulative demand function for the

discount period (in our experiments based on the Bass model) is approximated as a linear

function with a specific constant demand rate.

Given the fact that holding costs are generally considered in the newsvendor literature

in a limited way (Ghaniabadi et al. 2023), besides our paper, some other studies aimed

at taking holding costs into consideration using functions that represent the real-world

conditions more accurately than the standard newsvendor problem, especially in regards

to considering the holding costs of inventory over time. Matsuo (1990), Chen and Chuang

(2000), Tang et al. (2018), Schlapp et al. (2022), and Ghaniabadi et al. (2023) consider

such holding costs in the newsvendor problem, which we outline in the next section.

We organize this paper as follows. We review the relevant literature in Section 2. In

Section 3, the new problem is formulated and the holding costs functions under general

nonlinear cumulative production and demand functions are derived for the production and

the two demand seasons. The solution procedure for the stochastic model of the general

problem under the discrete distribution is presented in Section 4. Section 5 studies the

problem under the Wright’s model (Wright 1936) for the cumulative production function

over time and Bass model (Bass 1969) for the cumulative demand functions over time

for the regular and discount selling periods, and derives the corresponding holding cost
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functions and the solution procedures based on the findings of the general case. The results

of the numerical experiments, and conclusions are given in Sections 6 and 7, respectively.

2.2 Literature review

In the traditional newsvendor literature, holding costs are only taken into account in a very

limited way, by considering that the holding costs for the overstocked items are part of the

overage costs. Ghaniabadi et al. (2023) review some of the papers in this area, e.g., Eppen

(1979), Urban (2002), Levi et al. (2007), and Maggioni et al. (2019). In particular, Urban

(2002) study a newsvendor model where the demand is a function of the stock amount

displayed on the shelf, and demand rate is constant (as is the assumption of Ghaniabadi et

al. 2023) up to the point the shelf is refilled, and the cumulative demand function becomes

nonlinear (although they do not consider a general nonlinear function, unlike our paper)

with a decreasing demand rate up to the end of the period. The holding cost is incurred

only for the excess inventory at the end of the period. Ghaniabadi et al. (2023) also review

some other papers (Pal et al. 2015 and Wang et al. 2019) which consider the holding cost

in a different way, although they still do not examine the holding cost of the stock amount

over a phase. Pal et al. (2015) consider a holding cost which is a nonlinear function of the

order quantity, for the newsvendor problem with customer balking, where backlogging is

partially allowed and only the mean and variance of the demand distribution are known.

Moreover, Wang et al. (2019) study a multi-product newsvendor model, where the total

holding cost of the order quantities of all products, must not exceed a certain threshold.

Only a small number of papers in the newsvendor literature (including this paper)

consider the holding cost as a result of holding inventory over a period of time, which we

outline as follows.

Matsuo (1990) studies a multi-item newsvendor problem motivated by production and
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selling of fashion products where the goal is to find the optimal sequence and amount

for production for families of products. As explained by Ghaniabadi et al. (2023), the

holding cost studied by Matsuo (1990), is a linear function of the production amount and

is equivalent to the holding cost of the transportation period considered by Ghaniabadi

et al. (2023). We also take into account the same holding cost used by Ghaniabadi et

al. (2023) for the transportation phase. The problem of Matsuo (1990) is the continuous-

time version of the problem studied by Bitran et al. (1986) which considers discrete time

periods and their holding cost.

Chen and Chuang (2000) examine a problem more complex than the standard newsven-

dor model where, in addition to the optimal order quantity, the optimal time of purchasing

needs to be determined, while a discount is applied for an early procurement, and there

is a holding cost from the order time until the order is satisfied. As noted by Ghaniabadi

et al. (2023), the holding cost in the transportation period of the article by Ghaniabadi et

al. (2023), which is also considered in our paper, is equivalent to the holding cost of Chen

and Chuang (2000), if the time between order and demand satisfaction is fixed and equal

to the length of the transportation period.

Tang et al. (2018) assume a constant demand rate for the regular selling phase and

consider its holding cost, while also proposing an approximation based on the standard

newsvendor model and examining its solution in the new model according to the objective

value. Their holding cost function is equivalent to the holding cost of our model in the

first selling phase assuming a linear cumulative demand (in the same way explained by

Ghaniabadi et al. 2023).

Schlapp et al. (2022) examine a newsvendor problem where timing and quantity of

inventory are decision variables, the start and duration of the selling season are uncertain,

the availability of inventory may be before or after the start of the selling phase, and there

is holding cost from the start time of inventory availability, till the end of the selling period.
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The holding cost of the third period in our paper would be equivalent to the one proposed

by Schlapp et al. (2022) if, in their paper, the inventory timing is at the start of a regular

selling phase which has a known start and end point in time (i.e., a deterministic regular

selling period, which they also examine as a special case). Furthermore, given a fixed

inventory timing which coincides with the start time of our transportation period (before

the selling starts), and a known duration for the regular selling period, the holding cost of

both our transportation and first-selling periods become equivalent to the holding cost in

the paper of Schlapp et al. (2022). The same equivalencies with Schlapp et al. (2022)

were also explained by Ghaniabadi et al. (2023) for the linear case. Schlapp et al. (2022)

provide some characteristics of the optimal solution, however, for numerical studies, they

use an approximate solution approach, for three specific demand rates, two of which would

result in a nonlinear cumulative demand function.

Ghaniabadi et al. (2023) proposed an optimal approach for the linear case of our prob-

lem, and in this paper, we provide an optimal solution approach for the general nonlinear

case. Ghaniabadi et al. (2023) take into consideration the holding cost of a supply chain

of four gradual phases consisting of production, transportation, a regular and a discount

selling phase, while assuming a linear function for cumulative production and demand.

Our model is an extension of their problem to general nonlinear cumulative production

and demand functions. Given constant production and demand rates (i.e., linear cumula-

tive production and demand functions) our model becomes the same as the one studied

by Ghaniabadi et al. (2023). The holding cost of our transportation phase is the same

as the one used by Ghaniabadi et al. (2023), and given linear cumulative production and

demand functions, the holding cost in other periods would also be the same as the ones

incorporated by Ghaniabadi et al. (2023). We incorporate the same assumptions made by

Ghaniabadi et al. (2023) where the duration of the second and third phases (i.e., trans-

portation and regular selling periods) are known, and the length of the first and fourth
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phases (i.e., the production and discount periods) are variable and a higher production

quantity, and also a higher stock amount at the beginning of the fourth phase, result in a

larger duration for these two periods, respectively, based on how the stock level changes

over time. Ghaniabadi et al. (2023) also propose new approximations via transforming the

basic newsvendor problem for the first, third and fourth phases and selecting the best one

(while considering an approximation by Tang et al. 2018 for the regular selling period)

for each period. They then examine the expected profits of solutions of their model, the

approximations and the basic newsvendor model, according to their problem. We use the

same numerical experiments of Ghaniabadi et al. (2023) under the discrete distribution,

to examine our new model with the solutions obtained by Ghaniabadi et al. (2023). Gha-

niabadi et al. (2023) also propose optimal solution procedures for their problem given a

general piece-wise linear distribution and discrete distribution for the demand. The solu-

tion approach of our paper is also an extension of the solution procedure of Ghaniabadi et

al. (2023) for discrete distribution, to the case of general nonlinear cumulative production

and demand functions. Only under linear cumulative production and demand functions,

our solution approach becomes the same as the solution approach of Ghaniabadi et al.

(2023) for the discrete distribution case.

2.3 Problem formulation

In this section, we formulate the newsvendor problem with quantity-and-time-dependent

holding cost and nonlinear production and demand functions. Throughout this paper, for

the standard newsvendor model, we use the same notation as Silver et al. (1998) and

Ghaniabadi et al. (2023). Moreover, our notation for the unit holding cost in each period,

the demand scenarios and their probabilities, and also the maximum production amount,

are the same as the ones used by Ghaniabadi et al. (2023).

78



We first formulate the total holding cost function for the production phase. We use

S1 (t) to denote the total production amount up to time t during the production phase. For

the special case of the linear production (Ghaniabadi et al. 2023), we have S1 (t) = rt

where r is a constant production rate, t ∈ [0, t1], and t1 =
Q
r .

Proposition 4. The total holding cost over the production phase under the nonlinear pro-

duction function is equal to

h1

[∫ {t|t≥0,t=S−1
1 (Q)}

0
S1 (t)dt

]
.

Proof. The average inventory during the production period is
∫ t1

0 S1(t)dt
t1

where t1 =

{t|t ≥ 0,Q = S1 (t)}=
{

t|t ≥ 0, t = S−1
1 (Q)

}
. Hence, the average inventory is

∫{t|t≥0,t=S−1
1 (Q)}

0 S1(t)dt
t1

and we will have the following total holding cost over the production phase.

h1

∫ {t|t≥0,t=S−1
1 (Q)}

0 S1 (t)dt
t1

t1

which is the multiplication of h1, the average inventory, and t1, and can be further

simplified as follows.

h1

[∫ {t|t≥0,t=S−1
1 (Q)}

0
S1 (t)dt

]
.■

We next formulate the total holding cost function when demand is greater than the

production quantity. A summary of the notations for this case (i.e., x ≥ Q), is presented as

below.

• D3 (t): The total demand up to time t of the first selling season when the demand

x = 1, where D3 (0) = 0 and D3 (t3) = 1. As an example, for the special case of the

linear demand case (Tang et al. 2018, Ghaniabadi et al. 2023), D3 (t) = t
t3

where
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t ∈ [0, t3]. For any given cumulative demand function Γ3 (t) (with the assumption

of Γ3 (0) = 0), we can derive D3 (t) as follows: D3 (t) =
Γ3(t)
Γ3(t3)

, which results in

D3 (0) = 0, and D3 (t3) = 1.

• X3 (t) = xD3 (t) : Total demand up to time t of the first selling season, where X3 (0) =

0 and X3 (t3) = x. Given this definition of X3 (t), D3 (t) is the standardized X3 (t).

• S3 (t) = Q− xD3 (t) : Net stock amount at time t of the first selling season, where

S3 (0) = Q, S3

(
D−1

3

(
Q
x

))
= 0.

• S4 (t) = 0: Stock amount at time t of the second selling season

Proposition 5. The total holding cost over the first selling season for a given x and under

the nonlinear demand function when x ≥ Q, is equal to

h3

[
Q
{

t|t ≥ 0, t = D−1
3

(
Q
x

)}
− x

∫ {t|t≥0,t=D−1
3 (Q

x )}
0

D3 (t)dt

]
.

Proof. Let S3 (t) be the stock amount at time t of the first selling season and let Q be the

produced quantity. Given D3 (t) as defined above, and x as the predicted demand for the

future second selling season, we can derive S3 (t) as follows.

S3 (t) = Q− xD3 (t)

Then, we note that when the stock amount during the first selling season becomes zero,

we have S3 (t) = Q− xD3 (t) = 0. Therefore, at t =
{

t|t ≥ 0, t = D−1
3

(
Q
x

)}
we reach the

zero stock level during the first selling season. We can illustrate the stock level over four

periods of the problem for the first case where the demand is greater than the produced

quantity (i.e., x ≥ Q) using Figure 2.1 (under the linear production and demand, this figure

will be the same as the one presented by Ghaniabadi et al. 2023 for the case of x ≥ Q).

We can now formulate the average inventory during this period as
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∫{t|t≥0,t=D−1
3 (Q

x )}
0 [Q−xD3(t)]dt

{t|t≥0,t=D−1
3 (Q

x )}
which is equal to

Q{t|t≥0,t=D−1
3 (Q

x )}−x
∫{t|t≥0,t=D−1

3 (Q
x )}

0 D3(t)dt

{t|t≥0,t=D−1
3 (Q

x )}
.

Hence, we will have the following total holding cost over the first selling season.

h3

Q
{

t|t ≥ 0, t = D−1
3

(
Q
x

)}
− x

∫ {t|t≥0,t=D−1
3 (Q

x )}
0 D3 (t)dt{

t|t ≥ 0, t = D−1
3

(
Q
x

)} {
t|t ≥ 0, t = D−1

3

(
Q
x

)}

which is the multiplication of h3, the average inventory, and the time during which we

have on-hand inventory, and can be further simplified as follows.

h3

[
Q
{

t|t ≥ 0, t = D−1
3

(
Q
x

)}
− x

∫ {t|t≥0,t=D−1
3 (Q

x )}
0

D3 (t)dt

]
.■

We now formulate the total holding cost function where the demand is less than or

equal to the production quantity. A summary of the notations for this case (i.e., x ≤ Q), is

presented as follows.

• D3 (t): as defined for the case of x ≥ Q.

• X3 (t) = xD3 (t) : as defined for the case of x ≥ Q.

• S3 (t) = Q− xD3 (t) : Net stock amount at time t of the first selling season, where

S3 (0) = Q, and S3 (t3) = Q− x.

• S4 (t) = [Q− x]−X4 (t): Stock amount at time t of the second selling season, where

S4 (0) = Q− x and S4 (t4) = 0.

• X4 (t) : Total demand up to time t of the second selling season, where X4 (0) = 0

and X4 (t4) = Q− x. As an example, for the special case of the linear demand case

(Ghaniabadi et al. 2023), X4 (t)= ut where u is a constant, t ∈ [0, t4], and t4 =
[

Q−x
u

]
.
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Proposition 6. The total holding cost over the first and second selling seasons for a given

x and under the nonlinear demand function when x ≤ Q, is equal to

h3

[
Qt3 − x

∫ t3

0
D3 (t)dt

]
+h4

[
[Q− x]

{
t|t ≥ 0, t = X−1

4 (Q− x)
}
−
∫ {t|t≥0,t=X−1

4 (Q−x)}
0

X4 (t)dt

]
.

Proof. Similar to the previous case, in this case we also have S3 (t) = Q− xD3 (t).

However, since the stock amount does not finish before the end of the first selling season,

the average inventory during the first selling season is
∫ t3

0 [Q−xD3(t)]dt
t3

which is equal to
Qt3−x

∫ t3
0 D3(t)dt
t3

. Hence, we will have the following total holding cost over the first selling

season.

h3
Qt3 − x

∫ t3
0 D3 (t)dt
t3

t3

which is the multiplication of h3, the average inventory, and t3, and can be further

simplified as follows

h3

[
Qt3 − x

∫ t3

0
D3 (t)dt

]
.

Since x ≤ Q, at the beginning of the second selling season the stock amount is equal

to Q− x. Therefore, the stock amount at time t of the second selling season is S4 (t) =

[Q− x]− X4 (t). The stock level over four periods of the problem for the second case

where the demand is less than or equal to the produced quantity (i.e., x ≤ Q), can be

illustrated using Figure 2.2 (given a linear production and demand, this figure will be the

same one illustrated by Ghaniabadi et al. 2023 for x ≤ Q).

Now, we can calculate the average inventory during the second selling season as∫ t4
0 [[Q−x]−X4(t)]dt

t4
which is then equal to [Q−x]t4−

∫ t4
0 X4(t)dt

t4
where

t4 = {t|t ≥ 0,Q− x = X4 (t)}=
{

t|t ≥ 0, t = X−1
4 (Q− x)

}
.
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Therefore, the average inventory is
[Q−x]{t|t≥0,t=X−1

4 (Q−x)}−∫{t|t≥0,t=X−1
4 (Q−x)}

0 X4(t)dt
t4

and

we will have the following total holding cost over the second selling season.

h4
[Q− x]

{
t|t ≥ 0, t = X−1

4 (Q− x)
}
−
∫ {t|t≥0,t=X−1

4 (Q−x)}
0 X4 (t)dt

t4
t4

which is the multiplication of h4, the average inventory, and t4, and can be further

simplified as follows.

h4

[
[Q− x]

{
t|t ≥ 0, t = X−1

4 (Q− x)
}
−
∫ {t|t≥0,t=X−1

4 (Q−x)}
0

X4 (t)dt

]
Therefore, when the demand is less than the production quantity, we will have the

following holding costs over the first and second selling seasons, in total.

h3

[
Qt3 − x

∫ t3

0
D3 (t)dt

]
+h4

[
[Q− x]

{
t|t ≥ 0, t = X−1

4 (Q− x)
}
−
∫ {t|t≥0,t=X−1

4 (Q−x)}
0

X4 (t)dt

]
.■

The production cost and revenues of the regular and discount selling periods, have the

same formulations as in the papers of Ghaniabadi et al. (2023) and Silver et al. (1998),

which are in common with the basic newsvendor problem as well.
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Figure 2.1: Depiction of the gradual stock amount over the supply chain periods under
nonlinear production and demand functions for Case 1: x ≥ Q.

Figure 2.2: Representing the gradual stock level over four phases of supply chain with
nonlinear production and demand functions for Case 2: x ≤ Q.
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2.4 The stochastic problem under discrete distributions

We let x j be the demand in the jth scenario, while we define k j as the probability of

jth scenario (Ghaniabadi et al. 2023). We present the following proposition in order to

solve the corresponding stochastic optimization problem under nonlinear production and

demand functions. The problem under linear production and demand studied by Ghani-

abadi et al. (2023), is a special case of this nonlinear case, and the following proposition

is an extension of the solution process of the linear production and demand case under

discrete distributions proposed by Ghaniabadi et al. (2023), to the nonlinear production

and demand case.

Proposition 7. The optimal profit and the corresponding optimal production (order) quan-

tity can be found by solving the following maximization problem.

max{z1 (0) ,z1 (Q∗
1) ,zn (xn−1) : ∀n = {2, ...,N} ,zn (Q∗

n) : ∀n = {2, ...,N} ,

zN+1 (xN) ,zN+1
(
Q∗

N+1
)
,zN+1

(
Q
)}

where 0 ≤ x1 ≤ x2 ≤ . . .≤ xN ≤ Q and we define

H1 (Q) = h1

[∫ {t|t≥0,t=S−1
1 (Q)}

0 S1 (t)dt
]

,

H j
3 (Q) = h3

[
Q
{

t|t ≥ 0, t = D−1
3

(
Q
x j

)}
− x j

∫ {t|t≥0,t=D−1
3

(
Q
x j

)}
0 D3 (t)dt

]
, and

H j
4 (Q) = h4

[[
Q− x j

]{
t|t ≥ 0, t = X−1

4
(
Q− x j

)}
−
∫ {t|t≥0,t=X−1

4 (Q−x j)}
0 X4 (t)dt

]
.

Moreover,

z1 (Q) =−vQ−H1 (Q)−h2t2Q+
N

∑
j=1

k j

[
pQ−H j

3 (Q)
]

where z1 (Q) is the expected profit corresponding to Q while 0 ≤ Q ≤ x1;
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zn (Q) =− vQ−H1 (Q)−h2t2Q

+
n−1

∑
j=1

k j

[
px j +g [Q− x j]−h3

[
Qt3 − x j

∫ t3

0
D3 (t)dt

]
−H j

4 (Q)

]
+

N

∑
j=n

k j

[
pQ−H j

3 (Q)
]
.

where zn (Q) is the expected profit corresponding to Q while xn−1 ≤ Q ≤ xn for all

n = 2, ...,N; and

zN+1 (Q) =−vQ−H1 (Q)−h2t2Q+
N

∑
j=1

k j

[
px j +g [Q− x j]−h3

[
Qt3 − x j

∫ t3

0
D3 (t)dt

]
−H j

4 (Q)

]

where zN+1 (Q) is the expected profit corresponding to Q while xN ≤ Q ≤ Q.

Furthermore,

Q∗
1 =

{
Q | −v− dH1 (Q)

dQ
−h2t2 + p−

N

∑
j=1

k j
dH j

3 (Q)

dQ
= 0,Q ∈ (0,x1)

}
,

Q∗
n =

{
Q | −v− dH1 (Q)

dQ
−h2t2 +

n−1

∑
j=1

k j

[
g−h3t3 −

dH j
4 (Q)

dQ

]

+
N

∑
j=n

k j

[
p−

dH j
3 (Q)

dQ

]
= 0,Q ∈ (xn−1,xn)

}
,

and

Q∗
N+1 =

{
Q | −v− dH1 (Q)

dQ
−h2t2 +

N

∑
j=1

k j

[
g−h3t3 −

dH j
4 (Q)

dQ

]
= 0,Q ∈

(
xN ,Q

)}
.

Proof. Similar to the linear production and demand case (Ghaniabadi et al. 2023), we

let 0 ≤ x1 ≤ x2 ≤ . . .≤ xN ≤ Q (i.e, sorting scenarios of demand in increasing order), and

also we note that for a given x j, the corresponding profit can be derived according to one

of the following two cases.
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Case 1: if Q ≤ x j

pQ− vQ−H1 (Q)−h2t2Q−H j
3 (Q) ,

where H1 (Q) = h1

[∫ {t|t≥0,t=S−1
1 (Q)}

0 S1 (t)dt
]

, and

H j
3 (Q) = h3

[
Q
{

t|t ≥ 0, t = D−1
3

(
Q
x j

)}
− x j

∫ {t|t≥0,t=D−1
3

(
Q
x j

)}
0 D3 (t)dt

]
.

Case 2: if Q ≥ x j

px j +g
[
Q− x j

]
− vQ−H1 (Q)−h2t2Q−h3

[
Qt3 − x j

∫ t3

0
D3 (t)dt

]
−H j

4 (Q)

where H1 (Q) = h1

[∫ {t|t≥0,t=S−1
1 (Q)}

0 S1 (t)dt
]

, and

H j
4 (Q) = h4

[[
Q− x j

]{
t|t ≥ 0, t = X−1

4
(
Q− x j

)}
−
∫ {t|t≥0,t=X−1

4 (Q−x j)}
0 X4 (t)dt

]
.

When 0 ≤ Q ≤ x1, we have Q ≤ x j for all j = 1, ...,N (as was the case in the linear pro-

duction and demand problem of Ghaniabadi et al. 2023), in which case the corresponding

expected profit function is z1 (Q) = −vQ−H1 (Q)−h2t2Q+∑
N
j=1 k j

[
pQ−H j

3 (Q)
]
. We

then use first order condition as follows.

dz1

dQ
=−v− dH1 (Q)

dQ
−h2t2 + p−

N

∑
j=1

k j
dH j

3 (Q)

dQ
= 0

We consequently have

Q∗
1 =

{
Q | −v− dH1 (Q)

dQ
−h2t2 + p−

N

∑
j=1

k j
dH j

3 (Q)

dQ
= 0,Q ∈ (0,x1)

}
.

As was also the case for the linear production and demand version of the problem

by Ghaniabadi et al. (2023), when xn−1 ≤ Q ≤ xn for all n = 2, ...,N, we have Q ≤

x j for all j = n, ...,N, and the revenues and costs corresponding to such scenario j is
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pQ−H j
3 (Q); on the other hand, we have Q ≥ x j for all j = 1, ...,n−1, in which case the

revenues and costs corresponding to the demand scenario j becomes px j + g
[
Q− x j

]
−

h3
[
Qt3 − x j

∫ t3
0 D3 (t)dt

]
−H j

4 (Q). Hence, the expected profit function zn (Q) can be for-

mulated as

zn (Q) =− vQ−H1 (Q)−h2t2Q

+
n−1

∑
j=1

k j

[
px j +g [Q− x j]−h3

[
Qt3 − x j

∫ t3

0
D3 (t)dt

]
−H j

4 (Q)

]
+

N

∑
j=n

k j

[
pQ−H j

3 (Q)
]
.

We can then utilize first-order condition as below.

dzn

dQ
=− v− dH1 (Q)

dQ
−h2t2 +

n−1

∑
j=1

k j

[
g−h3t3 −

dH j
4 (Q)

dQ

]
+

N

∑
j=n

k j

[
p−

dH j
3 (Q)

dQ

]
=0

As a result, we can then have

Q∗
n =

{
Q | −v− dH1 (Q)

dQ
−h2t2 +

n−1

∑
j=1

k j

[
g−h3t3 −

dH j
4 (Q)

dQ

]

+
N

∑
j=n

k j

[
p−

dH j
3 (Q)

dQ

]
= 0,Q ∈ (xn−1,xn)

}
.

When xN ≤ Q ≤ Q, we have Q ≥ x j for all j = 1, ...,N (as we had in the linear pro-

duction and demand version of the problem by Ghaniabadi et al. 2023), in which case the

corresponding expected profit function zN+1 (Q) can be calculated as

zN+1 (Q) =−vQ−H1 (Q)−h2t2Q+
N

∑
j=1

k j

[
px j +g [Q− x j]−h3

[
Qt3 − x j

∫ t3

0
D3 (t)dt

]
−H j

4 (Q)

]
Using first order condition, we can have
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dzN+1

dQ
=− v− dH1 (Q)

dQ
−h2t2 +

N

∑
j=1

k j

[
g−h3t3 −

dH j
4 (Q)

dQ

]
= 0

in which case, we can reach

Q∗
N+1 =

{
Q | −v− dH1 (Q)

dQ
−h2t2 +

N

∑
j=1

k j

[
g−h3t3 −

dH j
4 (Q)

dQ

]
= 0,Q ∈

(
xN ,Q

)}
.

Aside from the set
{

Q∗
1, ...,Q

∗
N+1
}

which were derived for their corresponding inter-

vals using first order condition (as in the paper of Ghaniabadi et al. 2023 for the linear

case), the endpoints of intervals (i.e., 0, {x1,x2, ...,xN}, and Q) must also be considered

in the set of possible solutions (which was also the case in the linear case studied by

Ghaniabadi et al. 2023). Therefore, overall, we can achieve the optimal profit and the

corresponding optimal decision variable by solving the following problem (which would

be the same as the one proposed by Ghaniabadi et al. 2023 for discrete distribution, given

linear cumulative production and demand functions of time).

max{z1 (0) ,z1 (Q∗
1) ,zn (xn−1) : ∀n = {2, ...,N} ,zn (Q∗

n) : ∀n = {2, ...,N} ,

zN+1 (xN) ,zN+1
(
Q∗

N+1
)
,zN+1

(
Q
)}

.■

2.5 The problem under Wright’s model for production

and Bass model for demand

In this part, we model the holding costs of production and demand phases, under models

of Wright (1936) and Bass (1969), respectively, and derive the corresponding solution
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process, all based on the models and solutions we developed from the general case. We

specifically chose the models of Wright (1936) and Bass (1969), since they are widely-

adopted in the literature and also since they can model different nonlinear functions via

adjustments in their parameters. Figures 2.3 and 2.4 demonstrate some examples of such

functions for Wright (1936) and Bass (1969) models, respectively. Under Wright (1936)

model, the cumulative production at time t, can be obtained using the formula
[ t

a

] 1
1−b ,

while a and b are parameters of the model. Under the model of Bass (1969), the cumulative

demand at time t can be calculated via the formula m 1−e−[p+q]t

1+ q
p e−[p+q]t where p, q, and m are

parameters of the Bass model.

Figure 2.3: Examples of cumulative production functions according to the model of
Wright (1936).

Figure 2.4: Examples of cumulative demand functions according to the model of Bass
(1969).
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Proposition 8. The total holding cost over the production phase under the Wright’s model

(Wright 1936) is equal to

H1 (Q) = h1a
[

1−b
2−b

]
Q2−b

Proof. Under Wright’s model (Wright 1936), the total time required for the produc-

tion of S1 (t) units can be derived as t = a [S1 (t)]
1−b (Wright 1936, Teplitz 1991, An-

zanello and Fogliatto 2011), where a > 0 and 0 < b < 1 are parameters of the model.

Hence, we can have S1 (t) =
[ t

a

] 1
1−b and

{
t|t ≥ 0, t = S−1

1 (Q)
}
= {t|t ≥ 0,Q = S1 (t)} ={

t|t ≥ 0,Q =
[ t

a

] 1
1−b
}
= aQ1−b.

We can now derive the holding cost function for the production phase under the Wright’s

model (Wright 1936), using Proposition 4, as follows.

H1 (Q) = h1

[∫ {t|t≥0,t=S−1
1 (Q)}

0
S1 (t)dt

]
=h1

[∫ aQ1−b

0

[ t
a

] 1
1−b

dt

]

=h1a
1

b−1

[
1−b
2−b

t
2−b
1−b

]aQ1−b

0

=h1a
1

b−1

[
1−b
2−b

][
aQ1−b

] 2−b
1−b

=h1a
−1

1−b+
2−b
1−b

[
1−b
2−b

]
Q2−b

=h1a
[

1−b
2−b

]
Q2−b.■

Proposition 9. The total holding cost over the regular selling season under the Bass de-

mand model (Bass 1969) when x ≥ Q and for a given x, is equal to

H3 (Q,x) =h3

Q

 ln
[
QF3 (t3)

q3
p3
+ x
]
− ln [x−QF3 (t3)]

p3 +q3

− xγ
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where

γ =
1

F3 (t3)

 1+ p3
q3

p3 +q3
ln

[
QF3 (t3)

q3
p3

+ x

x−QF3 (t3)
+

q3

p3

]
− p3

q3

 ln
[
QF3 (t3)

q3
p3

+ x
]
− ln [x−QF3 (t3)]

p3 +q3

− 1+ p3
q3

p3 +q3
ln
[

1+
q3

p3

]
and F3 (t3) = 1−e−[p3+q3]t3

1+ q3
p3

e−[p3+q3]t3
.

Proof. According to the Bass demand model (Bass 1969), the cumulative demand

function (for period 3) is Γ3 (t) = m3F3 (t) = m3
1−e−[p3+q3]t

1+ q3
p3

e−[p3+q3]t
. Therefore, we can have

{
t|t ≥ 0, t = D−1

3

(
Q
x

)}
=

{
t|t ≥ 0,

Q
x
= D3 (t)

}
=

{
t|t ≥ 0,

Q
x
=

m3F3 (t)
m3F3 (t3)

}

=

t|t ≥ 0,
Q
x
=

1− e−[p3+q3]t

F3 (t3)
[
1+ q3

p3
e−[p3+q3]t

]


=

{
t|t ≥ 0,QF3 (t3)+QF3 (t3)

q3

p3
e−[p3+q3]t = x− xe−[p3+q3]t

}
=

{
t|t ≥ 0,e−[p3+q3]t

[
QF3 (t3)

q3

p3
+ x
]
= x−QF3 (t3)

}
=

{
t|t ≥ 0,e−[p3+q3]t =

x−QF3 (t3)
QF3 (t3)

q3
p3
+ x

}

=

{
t|t ≥ 0,e−[p3+q3]t =

x−QF3 (t3)
QF3 (t3)

q3
p3
+ x

}

=

{
t|t ≥ 0,− [p3 +q3] t = ln [x−QF3 (t3)]− ln

[
QF3 (t3)

q3

p3
+ x
]}

=

t|t ≥ 0, t =
ln [x−QF3 (t3)]− ln

[
QF3 (t3)

q3
p3
+ x
]

− [p3 +q3]


=

t|t ≥ 0, t =
ln
[
QF (t3)

q3
p3
+ x
]
− ln [x−QF3 (t3)]

p3 +q3


Since under Bass model, 0 ≤ F3 (t3) ≤ 1 which (given that Q ≥ 0) implies that 0 ≤

QF3 (t3)≤ Q, and also since in this case we have Q ≤ x, then we can have 0 ≤ QF3 (t3)≤
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Q ≤ x which implies that 0 ≤ x−QF3 (t3) ≤ x. On the other hand, since QF3 (t3)
q3
p3

≥ 0,

QF3 (t3)
q3
p3
+ x ≥ x. Therefore, we can conclude that QF3 (t3)

q3
p3
+ x ≥ x−QF3 (t3) ≥ 0

which implies that ln [x−QF3 (t3)] ≤ ln
[
QF3 (t3)

q3
p3
+ x
]
. Moreover, x ≥ 1 must always

hold (which is not restrictive since one can simply scale the parameters of the problem

accordingly in order for x ≥ 1 to hold true), so as to make sure that QF3 (t3)
q3
p3
+x ≥ 1 and

that ln
(

QF3 (t3)
q3
p3
+ x
)
≥ 0. Hence, since we also have positive p3 and q3, we can then

have

{
t|t ≥ 0, t = D−1

3

(
Q
x

)}
=

t|t ≥ 0, t =
ln
[
QF3 (t3)

q3
p3
+ x
]
− ln [x−QF3 (t3)]

p3 +q3


=

ln
[
QF3 (t3)

q3
p3
+ x
]
− ln [x−QF3 (t3)]

p3 +q3

where F3 (t3) = 1−e−[p3+q3]t3

1+ q3
p3

e−[p3+q3]t3
.

Moreover,
∫ L

E F3 (t)dt for any E,L ∈ R and L > E, can be derived as follows.
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∫ L

E
F3 (t)dt =

∫ L

E

1− e−[p3+q3]t

1+ q3
p3

e−[p3+q3]t
dt

=
∫ L

E

[
1

1+ q3
p3

e−[p3+q3]t
− e−[p3+q3]t

1+ q3
p3

e−[p3+q3]t

]
dt

=
∫ L

E

[
e[p3+q3]t

e[p3+q3]t + q3
p3

− 1
e[p3+q3]t + q3

p3

]
dt

=
∫ L

E

[
e[p3+q3]t

e[p3+q3]t + q3
p3

− p3

q3

[ q3
p3

e[p3+q3]t + q3
p3

]]
dt

=
∫ L

E

[
e[p3+q3]t

e[p3+q3]t + q3
p3

− p3

q3

[ q3
p3
+ e[p3+q3]t − e[p3+q3]t

e[p3+q3]t + q3
p3

]]
dt

=
∫ L

E

[
e[p3+q3]t

e[p3+q3]t + q3
p3

− p3

q3

[
1− e[p3+q3]t

e[p3+q3]t + q3
p3

]]
dt

=
∫ L

E

[
e[p3+q3]t

e[p3+q3]t + q3
p3

− p3

q3
+

p3

q3

[
e[p3+q3]t

e[p3+q3]t + q3
p3

]]
dt

=
∫ L

E

[[
1+

p3

q3

][
e[p3+q3]t

e[p3+q3]t + q3
p3

]
− p3

q3

]
dt

=

[
1+ p3

q3

p3 +q3
ln
[

e[p3+q3]t +
q3

p3

]
− p3

q3
t

]L

E

We then derive
∫ {t|t≥0,t=D−1

3 (Q
x )}

0 D3 (t)dt as follows.
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∫ {t|t≥0,t=D−1
3

(
Q
x

)}
0

D3 (t)dt =
∫ ln

[
QF3(t3)

q3
p3

+x
]
−ln[x−QF3(t3)]

p3+q3

0

1− e−[p3+q3 ]t

F3 (t3)
[
1+ q3

p3
e−[p3+q3 ]t

]dt

=
1

F3 (t3)

∫ ln
[
QF3(t3)

q3
p3

+x
]
−ln[x−QF3(t3)]

p3+q3

0

1− e−[p3+q3 ]t

1+ q3
p3

e−[p3+q3 ]t
dt

=
1

F3 (t3)


[

1+ p3
q3

p3 +q3
ln
[

e[p3+q3 ]t +
q3

p3

]
− p3

q3
t

] ln
[
QF3(t3)

q3
p3

+x
]
−ln[x−QF3(t3)]

p3+q3

0



=
1

F3 (t3)


 1+ p3

q3

p3 +q3
ln

e
[p3+q3 ]

[
ln
[
QF3(t3)

q3
p3

+x
]
−ln[x−QF3(t3)]

p3+q3

]
+

q3

p3

− p3

q3

 ln
[
QF3 (t3)

q3
p3

+ x
]
− ln [x−QF3 (t3)]

p3 +q3


− 1+ p3

q3

p3 +q3
ln
[

1+
q3

p3

]
=

1
F3 (t3)

 1+ p3
q3

p3 +q3
ln
[

e
[
ln
[
QF3(t3)

q3
p3

+x
]
−ln[x−QF3(t3)]

]
+

q3

p3

]
− p3

q3

 ln
[
QF3 (t3)

q3
p3

+ x
]
− ln [x−QF3 (t3)]

p3 +q3

− 1+ p3
q3

p3 +q3
ln
[

1+
q3

p3

]
=

1
F3 (t3)

 1+ p3
q3

p3 +q3
ln

 eln
[
QF3(t3)

q3
p3

+x
]

eln[x−QF3(t3)]
+

q3

p3

− p3

q3

 ln
[
QF3 (t3)

q3
p3

+ x
]
− ln [x−QF3 (t3)]

p3 +q3

− 1+ p3
q3

p3 +q3
ln
[

1+
q3

p3

]
=

1
F3 (t3)

 1+ p3
q3

p3 +q3
ln

[
QF3 (t3)

q3
p3

+ x

x−QF3 (t3)
+

q3

p3

]
− p3

q3

 ln
[
QF3 (t3)

q3
p3

+ x
]
− ln [x−QF3 (t3)]

p3 +q3

− 1+ p3
q3

p3 +q3
ln
[

1+
q3

p3

]
Now, we can derive the holding cost function of the regular selling season when x ≥ Q

and for a given x, and under the Bass demand model (Bass 1969), using Proposition 5 as

follows.

H3 (Q,x) =h3

[
Q
{

t|t ≥ 0, t = D−1
3

(
Q
x

)}
− x

∫ {t|t≥0,t=D−1
3 (Q

x )}
0

D3 (t)dt

]

=h3

Q

 ln
[
QF3 (t3)

q3
p3
+ x
]
− ln [x−QF3 (t3)]

p3 +q3

− xγ


where

γ =
1

F3 (t3)

 1+ p3
q3

p3 +q3
ln

[
QF3 (t3)

q3
p3

+ x

x−QF3 (t3)
+

q3

p3

]
− p3

q3

 ln
[
QF3 (t3)

q3
p3

+ x
]
− ln [x−QF3 (t3)]

p3 +q3

− 1+ p3
q3

p3 +q3
ln
[

1+
q3

p3

]

and F3 (t3) = 1−e−[p3+q3]t3

1+ q3
p3

e−[p3+q3]t3
.■
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Proposition 10. The total holding cost over the regular and discount selling seasons under

the Bass demand model (Bass 1969) for a given x when x ≤ Q, is equal to

h3

[
Qt3 − x

∫ t3

0
D3 (t)dt

]
+H4 (Q,x) =h3

[
Qt3 −

x
F3 (t3)

[
1+ p3

q3

p3 +q3
ln
[

e[p3+q3]t3 +
q3

p3

]
− p3

q3
t3 −

1+ p3
q3

p3 +q3
ln
[

1+
q3

p3

]]]

+h4

[Q− x]

 ln
(
[Q− x] q4

p4
+m4

)
− ln(m4 −Q+ x)

p4 +q4

−∫ {t|t≥0,t=X−1
4 (Q−x)}

0
X4 (t)dt



where F3 (t3) = 1−e−[p3+q3]t3

1+ q3
p3

e−[p3+q3]t3
and

∫ {t|t≥0,t=X−1
4 (Q−x)}

0
X4 (t)dt =m4

 1+ p4
q4

p4 +q4
ln

(
[Q− x] q4

p4
+m4

m4 −Q+ x
+

q4

p4

)
− p4

q4

 ln
(
[Q− x] q4

p4
+m4

)
− ln(m4 −Q+ x)

p4 +q4

−[ 1+ p4
q4

p4 +q4
ln
(

1+
q4

p4

)] .
Proof. According to Proposition 6, and using the formulation for

∫ L
E F3 (t)dt for any

E,L ∈ R and L > E, which we obtained in the proof of Proposition 9, we first derive

h3
[
Qt3 − x

∫ t3
0 D3 (t)dt

]
under the Bass demand model (Bass 1969), as follows.

h3

[
Qt3 − x

∫ t3

0
D3 (t)dt

]
=h3

[
Qt3 − x

∫ t3

0

Γ3 (t)
Γ3 (t3)

dt
]

=h3

[
Qt3 − x

∫ t3

0

m3F3 (t)
m3F3 (t3)

dt
]

=h3

[
Qt3 −

x
F3 (t3)

∫ t3

0
F3 (t)dt

]

=h3

[
Qt3 −

x
F3 (t3)

[[
1+ p3

q3

p3 +q3
ln
[

e[p3+q3]t +
q3

p3

]
− p3

q3
t

]t3

0

]]

=h3

[
Qt3 −

x
F3 (t3)

[
1+ p3

q3

p3 +q3
ln
[

e[p3+q3]t3 +
q3

p3

]
− p3

q3
t3 −

1+ p3
q3

p3 +q3
ln
[

1+
q3

p3

]]]

where F3 (t3) = 1−e−[p3+q3]t3

1+ q3
p3

e−[p3+q3]t3
.

Moreover, according to Proposition 6, we derive

h4

[
[Q− x]

{
t|t ≥ 0, t = X−1

4 (Q− x)
}
−
∫ {t|t≥0,t=X−1

4 (Q−x)}
0 X4 (t)dt

]
under the Bass de-

mand model (Bass 1969) as follows.

We first derive
{

t|t ≥ 0, t = X−1
4 (Q− x)

}
as below.
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{
t|t ≥ 0, t = X−1

4 (Q− x)
}
={t|t ≥ 0,Q− x = X4 (t)}

={t|t ≥ 0,Q− x = m4F4 (t)}

=

{
t|t ≥ 0,Q− x = m4

1− e−[p4+q4]t

1+ q4
p4

e−[p4+q4]t

}

=

{
t|t ≥ 0,Q− x+[Q− x]

q4

p4
e−[p4+q4]t = m4 −m4e−[p4+q4]t

}
=

{
t|t ≥ 0,e−[p4+q4]t

[
[Q− x]

q4

p4
+m4

]
= m4 −Q+ x

}
=

{
t|t ≥ 0,e−[p4+q4]t =

m4 −Q+ x
[Q− x] q4

p4
+m4

}

=

{
t|t ≥ 0,− [p4 +q4] t = ln(m4 −Q+ x)− ln

(
[Q− x]

q4

p4
+m4

)}

=

t|t ≥ 0, t =
ln(m4 −Q+ x)− ln

(
[Q− x] q4

p4
+m4

)
− [p4 +q4]


=

t|t ≥ 0, t =
ln
(
[Q− x] q4

p4
+m4

)
− ln(m4 −Q+ x)

p4 +q4



Since in this case we have Q ≥ x, hence Q− x ≥ 0, and since q4
p4

≥ 0 and m4 ≥ 0,

we have [Q− x] q4
p4

+ m4 ≥ m4 − Q + x ≥ 0. This implies that ln
(
[Q− x] q4

p4
+m4

)
≥

ln(m4 −Q+ x). Moreover, m4 ≥ 1 must hold (this is not restrictive, since one can sim-

ply scale the problem parameters in such a way that m4 ≥ 1), so as to make sure that

[Q− x] q4
p4
+m4 ≥ 1 (since we have Q− x ≥ 0, and q4

p4
≥ 0), so that the inequality 0 ≤

ln
(
[Q− x] q4

p4
+m4

)
would also then hold, which implies that 0 ≤ ln

(
[Q− x] q4

p4
+m4

)
−

ln(m4 −Q+ x), since ln
(
[Q− x] q4

p4
+m4

)
≥ ln(m4 −Q+ x). Hence, also given that p4 +

q4 > 0, we can then have
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{
t|t ≥ 0, t = X−1

4 (Q− x)
}
=

t|t ≥ 0, t =
ln
(
[Q− x] q4

p4
+m4

)
− ln(m4 −Q+ x)

p4 +q4


=

ln
(
[Q− x] q4

p4
+m4

)
− ln(m4 −Q+ x)

p4 +q4

We can then also derive
∫ {t|t≥0,t=X−1

4 (Q−x)}
0 X4 (t)dt under the Bass demand model

(Bass 1969) as follows.

∫ {t|t≥0,t=X−1
4 (Q−x)}

0
X4 (t)dt =

∫ ln([Q−x]
q4
p4

+m4)−ln(m4−Q+x)
p4+q4

0
m4F4 (t)dt

=m4

∫ ln([Q−x]
q4
p4

+m4)−ln(m4−Q+x)
p4+q4

0

1− e−[p4+q4]t

1+ q4
p4

e−[p4+q4]t
dt

Using the formulation for
∫ L

E F3 (t)dt for any E,L ∈R and L > E, which we derived in

the proof of Proposition 9, we can similarly obtain
∫ L

E F4 (t)dt, and then have

∫ {t|t≥0,t=X−1
4 (Q−x)}

0
X4 (t)dt =m4


[

1+ p4
q4

p4 +q4
ln
(

e[p4+q4 ]t +
q4

p4

)
− p4

q4
t

] ln
(
[Q−x]

q4
p4

+m4
)
−ln(m4−Q+x)

p4+q4

0


= m4

 1+ p4
q4

p4 +q4
ln

e[p4+q4 ]
ln
(
[Q−x]

q4
p4

+m4
)
−ln(m4−Q+x)

p4+q4 +
q4

p4

− p4

q4

 ln
(
[Q− x] q4

p4
+m4

)
− ln(m4 −Q+ x)

p4 +q4

−[ 1+ p4
q4

p4 +q4
ln
(

1+
q4

p4

)]
=m4

 1+ p4
q4

p4 +q4
ln

 eln
(
[Q−x] q4

p4
+m4

)
eln(m4−Q+x)

+
q4

p4

− p4

q4

 ln
(
[Q− x] q4

p4
+m4

)
− ln(m4 −Q+ x)

p4 +q4

−[ 1+ p4
q4

p4 +q4
ln
(

1+
q4

p4

)]
=m4

 1+ p4
q4

p4 +q4
ln

(
[Q− x] q4

p4
+m4

m4 −Q+ x
+

q4

p4

)
− p4

q4

 ln
(
[Q− x] q4

p4
+m4

)
− ln(m4 −Q+ x)

p4 +q4

−[ 1+ p4
q4

p4 +q4
ln
(

1+
q4

p4

)]

The holding cost function for the fourth period under the Bass demand model (Bass

1969) can then be derived as follows.
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H4 (Q,x) =h4

[
[Q− x]

{
t|t ≥ 0, t = X−1

4 (Q− x)
}
−
∫ {t|t≥0,t=X−1

4 (Q−x)}
0

X4 (t)dt

]

=h4

[Q− x]

 ln
(
[Q− x] q4

p4
+m4

)
− ln(m4 −Q+ x)

p4 +q4

−∫ {t|t≥0,t=X−1
4 (Q−x)}

0
X4 (t)dt


where

∫ {t|t≥0,t=X−1
4 (Q−x)}

0
X4 (t)dt =m4

 1+ p4
q4

p4 +q4
ln

(
[Q− x] q4

p4
+m4

m4 −Q+ x
+

q4

p4

)
− p4

q4

 ln
(
[Q− x] q4

p4
+m4

)
− ln(m4 −Q+ x)

p4 +q4

−[ 1+ p4
q4

p4 +q4
ln
(

1+
q4

p4

)]

Now that we derived h3
[
Qt3 − x

∫ t3
0 D3 (t)dt

]
and H4 (Q,x) for a given x and for the

case of x ≤ Q, and under the Bass demand model (Bass 1969), we can then use the Propo-

sition 6 to reach the statement of Proposition 10.■

Proposition 11. The formulations for dH1(Q)
dQ , dH j

3(Q)
dQ , and dH j

4(Q)
dQ (as defined in Proposi-

tion 7 to obtain Q∗
1, Q∗

n for n = 2, ...,N, and Q∗
N+1) under Wright’s model for production,

and Bass model for demand in the regular and discount selling seasons, are as follows.

dH1 (Q)

dQ
=h1a [1−b] [2−b]Q1−b

dH j
3 (Q)

dQ
=

h3

p3 +q3

[
QF3 (t3)

[
q3

QF3 (t3)q3 + p3x j
+

1
x j −QF3 (t3)

]
+ ln

[
QF3 (t3)

q3

p3
+ x j

]
− ln

[
x j −QF3 (t3)

]]

−
h3x jq3

[
1+ p3

q3

]
p3 [p3 +q3]

 1
QF3(t3)

q3
p3

+x j

x j−QF3(t3)
+ q3

p3

[
1

x j −QF3 (t3)
+

QF3 (t3)+ x j[
x j −QF3 (t3)

]2
]

+
h3x j p3

q3 [p3 +q3]

[
q3

QF3 (t3)q3 + p3x j
+

1
x j −QF3 (t3)

]

where F3 (t3) = 1−e−[p+q]t3

1+ q
p e−[p+q]t3

;

and
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dH j
4 (Q)

dQ
=h4

[Q− x j
]

p4 +q4

 q4

p4

[[
Q− x j

] q4
p4

+m4

] + 1
m4 −Q+ x j

+
 ln

([
Q− x j

] q4
p4

+m4

)
− ln

(
m4 −Q+ x j

)
p4 +q4



− h4m4

p4

 1
[Q−x j]

q4
p4

+m4

m4−Q+x j
+ q4

p4

[ 1
m4 −Q+ x j

]

+
h4m4

p4 +q4

[
1[

Q− x j
] q4

p4
+m4

+
p4

q4
[
m4 −Q+ x j

]] .
Proof. Given H1 (Q) under the Wright’s model, as derived in the Proposition 8, we can

obtain the corresponding dH1(Q)
dQ as follows.

dH1 (Q)

dQ
= h1a

[
1−b
2−b

]
[2−b]Q1−b = h1a [1−b] [2−b]Q1−b

Under the Bass model for demand, we obtained H3 (Q,x) for the case of Q ≤ x, in

the Proposition 9. Given H j
3 (Q) = H3

(
Q,x j

)
, we can derive the corresponding dH j

3(Q)
dQ as

follows.

dH j
3 (Q)

dQ
=h3

Q

[
1

p3 +q3

[
F3 (t3)

q3
p3

QF3 (t3)
q3
p3

+ x j
+

F3 (t3)
x j −QF3 (t3)

]]
+

ln
[
QF3 (t3)

q3
p3

+ x j

]
− ln

[
x j −QF3 (t3)

]
p3 +q3


−

h3x j

F3 (t3)

 1+ p3
q3

p3 +q3

 1
QF3(t3)

q3
p3

+x j

x j−QF3(t3)
+ q3

p3

[ F3 (t3)
q3
p3

x j −QF3 (t3)
+F3 (t3)

QF3 (t3)
q3
p3

+ x j[
x j −QF3 (t3)

]2
]

+
h3x j

F3 (t3)

[
p3

q3

][
1

p3 +q3

[
F3 (t3)

q3
p3

QF3 (t3)
q3
p3

+ x j
+

F3 (t3)
x j −QF3 (t3)

]]

=
h3

p3 +q3

[
QF3 (t3)

[
q3

QF3 (t3)q3 + p3x j
+

1
x j −QF3 (t3)

]
+ ln

[
QF3 (t3)

q3

p3
+ x j

]
− ln

[
x j −QF3 (t3)

]]

−
h3x jq3

[
1+ p3

q3

]
p3 [p3 +q3]

 1
QF3(t3)

q3
p3

+x j

x j−QF3(t3)
+ q3

p3

[
1

x j −QF3 (t3)
+

QF3 (t3)+ x j[
x j −QF3 (t3)

]2
]

+
h3x j p3

q3 [p3 +q3]

[
q3

QF3 (t3)q3 + p3x j
+

1
x j −QF3 (t3)

]

where F3 (t3) = 1−e−[p+q]t3

1+ q
p e−[p+q]t3

.

In the Proposition 10, we derived H4 (Q,x) under the Bass demand model. Considering

H j
4 (Q) = H4

(
Q,x j

)
, we obtain the corresponding dH j

4(Q)
dQ as follows.
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dH j
4 (Q)

dQ
=h4

[Q− x j
]

p4 +q4

[ q4
p4[

Q− x j
] q4

p4
+m4

+
1

m4 −Q+ x j

]
+

 ln
([

Q− x j
] q4

p4
+m4

)
− ln

(
m4 −Q+ x j

)
p4 +q4


−h4m4

[
1+ p4

q4

p4 +q4

] 1
[Q−x j]

q4
p4

+m4

m4−Q+x j
+ q4

p4

[ q4
p4

m4 −Q+ x j

]
+h4m4

[
p4

q4

][
1

p4 +q4

][ q4
p4[

Q− x j
] q4

p4
+m4

+
1

m4 −Q+ x j

]

=h4

[Q− x j
]

p4 +q4

 q4

p4

[[
Q− x j

] q4
p4

+m4

] + 1
m4 −Q+ x j

+
 ln

([
Q− x j

] q4
p4

+m4

)
− ln

(
m4 −Q+ x j

)
p4 +q4



− h4m4

p4

 1
[Q−x j]

q4
p4

+m4

m4−Q+x j
+ q4

p4

[ 1
m4 −Q+ x j

]

+
h4m4

p4 +q4

[
1[

Q− x j
] q4

p4
+m4

+
p4

q4
[
m4 −Q+ x j

]] .■
We can use H1 (Q), H j

3 (Q), and H j
4 (Q), obtained in Propositions 8, 9, and 10, re-

spectively, and also dH1(Q)
dQ , dH j

3(Q)
dQ , and dH j

4(Q)
dQ obtained in Proposition 11, in the solution

procedure given in Proposition 7, in order to obtain the solution process of the problem

under Wright’s model for production and Bass demand model.

2.6 Numerical experiments

In this section, we present the numerical experiments on synthetic and real data. We

adopted the same parameters used by Ghaniabadi et al. (2023) in their numerical exper-

iments, and incorporate new parameters for the nonlinear production and demand func-

tions, under Wright’s and Bass models, respectively. As in the paper of Ghaniabadi et al.

(2023), we denote the solution of the standard newsvendor model as Q∗
NV , the solution of

the newsvendor problem with holding cost and linear production and demand function as

Q∗
NV H , and the solution of its approximations based on the standard newsvendor model as

Q∗
ANV H . We also denote the optimal solution of the new model under the nonlinear produc-
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tion and demand functions (here under Wright’s and Bass models, respectively) as Q∗
NV HN .

We evaluate the aforementioned solutions of the four models based on their expected profit

when used in the new model under the nonlinear production and demand functions (de-

noted as NV HN (Q∗
NV ), NV HN (Q∗

NV H), NV HN
(
Q∗

ANV H
)
, and NV HN (Q∗

NV HN), respec-

tively) and the profit gain of Q∗
NV HN over the other solutions. The same scheme was also

used by Ghaniabadi et al. (2023) to evaluate Q∗
NV , Q∗

NV H , and Q∗
ANV H based on their ex-

pected profit under linear production and demand functions, and the profit gain of Q∗
NV H

over Q∗
NV and Q∗

ANV H . In this paper, we also utilize the same values of Q∗
NV , Q∗

NV H , and

Q∗
ANV H achieved by Ghaniabadi et al. (2023), since we use the same data.

2.6.1 Synthetic dataset

We first provide the numerical results under synthetic data of Ghaniabadi et al. (2023)

(i.e., p = 20, v = 10, g = 9, r = 0.03 units per day (for the linear production case in phase

1), t2 = 56 days, t3 = 42 days, u = 0.02 units per day (for the linear demand case in phase

4), Q = 4, and the same values used by Ghaniabadi et al. (2023) for h1,h2,h3, and h4, and

also for demand scenarios x j and their probabilities k j for j = 1, ...,100).

In addition, we assume the parameters of the Wright’s model (for the nonlinear produc-

tion) in a way that at time Q
r (which is the maximum duration of the first period under the

linear production case) a production level around (we use the terms "around" or "roughly",

since we used the rounded numbers. Hence, although there might be small differences due

to precision, in principle they are the same) Q is achieved according to the Wright’s model.

By doing so, both the linear and nonlinear production reach around the same production

level (i.e., Q) at time Q
r . By letting a = 71.867, and b = 0.556 in the Wright’s model, it

takes roughly 133 days to reach a production amount of Q = 4, while in the linear produc-

tion case also at time Q
r = 4

0.03 ≃ 133 days, a production amount of Q = 4 is reached.
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Conversely, given a Wright’s production model with parameters a = 71.867 and b =

0.556, which takes roughly 133 days to reach a production of Q = 4, one can approx-

imate such nonlinear production function with a linear one with a production rate of

r = 4
133 ≃ 0.03. Similarly, for any nonlinear production function, where it takes an amount

of time equal to t1 to achieve a production level of Q, one can approximate that nonlinear

production function with a linear one which has a production rate r = Q
t1

.

For the parameters of Bass model for the regular selling season, we make use of the

dataset of SKU aa71ad878e provided by Shen et al. (2020), which contains the order

data over a period of 31 days. We first consider the daily demand data and then for

each day, calculate the cumulative demand up to the end of that day. In order to be

able to fit F3 (t3), we then normalize the cumulative demand values via diving them by

the total cumulative demand at the end of the 31st day. Hence, we will have 31 obser-

vational data of normalized cumulative demand, to be able to fit F3 (t3), which can be

fitted over the time data [1,2, ...,31]. However, since in our synthetic data we assumed

t3 = 42 days, we fit those 31 values of normalized cumulative demand over the time data[42
31 ,2∗

42
31 ,3∗

42
31 , ...,30∗ 42

31 ,42
]

which also contains 31 values. By doing so using the

Python Scipy library, we reach the values p3 = 0.0178 and q3 = 0.0865 (here rounded to

4 decimal points).

For the discount selling season, we assume the parameters of the Bass model in a

way that at time Q−x1
u (which is the maximum duration scenario for the discount selling

season under the linear demand case, where x1 is the minimum demand scenario), both the

linear and nonlinear demand cases reach a total demand level close to Q−x1 (which is the

maximum leftover scenario at the end of the regular selling season). By letting p4 = 0.001,

q4 = 0.046, and m4 = 3.11, under the corresponding Bass model, it approximately takes

149 days to achieve a total demand of Q− x1 ≃ 2.983, which is the same demand level

reached by the linear demand case with u = 0.02 units per day, at time Q−x1
u ≃ 2.983

0.02 ≃ 149
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days.

On the other hand, a given Bass model with parameters p4 = 0.001, q4 = 0.046, and

m4 = 3.11, which takes roughly 149 days to reach a total demand of Q− x1 ≃ 2.983,

can be approximated with a linear cumulative demand function with a demand rate of

u = 2.983
149 ≃ 0.02. Likewise, any given nonlinear cumulative demand function, which takes

an amount of time equal to t4 to reach a demand level of Q− x1, can be approximated

using a linear function with a demand rate of u = Q−x1
t4

.

The results of the numerical experiments are presented in the Table 2.1 (the values are

rounded, except for the unit holding cost, and when profit gain is zero, which are exact

values), where the profit gains of Q∗
NV HN over Q∗

NV H , Q∗
ANV H , and Q∗

NV , are calculated as
NV HN(Q∗

NV HN)−NV HN(Q∗
NV H)

NV HN(Q∗
NV H)

,
NV HN(Q∗

NV HN)−NV HN(Q∗
ANV H)

NV HN(Q∗
ANV H)

, and

NV HN(Q∗
NV HN)−NV HN(Q∗

NV)
NV HN(Q∗

NV)
, respectively. The results show that a higher holding cost re-

sults in a smaller optimal quantity Q∗
NV HN and also a lower optimal profit NV HN (Q∗

NV HN),

which is in line with the findings of Ghaniabadi et al. (2023) for the linear production and

demand case. However, unlike the results of Ghaniabadi et al. (2023), Q∗
NV H does not

always have a higher expected profit than Q∗
ANV H . For unit holding costs of 0.00275,

0.0055, and 0.006875, NV HN
(
Q∗

ANV H
)

is closer to the optimal profit NV HN (Q∗
NV HN)

than NV HN (Q∗
NV H), while for a unit holding cost of 0.00825, NV HN (Q∗

NV H) is closer

to the optimal profit, and for the unit holding cost 0.004125, Q∗
NV H = Q∗

NV HN . In the

presence of holding cost (i.e., excluding the case of the unit holding cost 10−100 ≃ 0 ),

the standard newsvendor model provides the least expected profit, due to ignoring holding

costs. When holding cost is present, Q∗
NV HN provides an average profit gain of 0.017%,

0.011%, and 0.48%, over Q∗
NV H , Q∗

ANV H , and Q∗
NV , respectively. This indicate that under

this case of synthetic data, Q∗
NV H and Q∗

ANV H result in profits close to the optimal one.
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Table 2.1: Comparison of the model under Wright’s production and Bass demand with
simpler models, for synthetic data.

h1,h2,

h3,h4

Q∗
NV HN NV HN(

Q∗
NV HN

) NV HN(
Q∗

NV H
) Profit

gain

over

NV H

NV HN(
Q∗

ANV H
) Profit

gain

over

ANV H

NV HN(
Q∗

NV
) Profit

gain

over NV

10−100 ≃ 0 2.7574 18.849600 18.849600 0% 18.849600 0% 18.849600 0%
0.00275 2.7170 17.879761 17.878759 0.006% 17.879607 0.001% 17.868648 0.06%

0.004125 2.6341 17.414470 17.414470 0% 17.414452 0.0001% 17.378171 0.21%
0.0055 2.6329 16.957515 16.955536 0.012% 16.957437 0.0005% 16.887695 0.41%

0.006875 2.5956 16.508684 16.499985 0.053% 16.508488 0.001% 16.397219 0.68%
0.00825 2.5112 16.070512 16.068425 0.013% 16.062167 0.052% 15.906742 1.03%

2.6.2 Real-world datasets

SKU bb5419c49b

We now consider the same parameters used by Ghaniabadi et al. (2023) for the SKU

bb5419c49b (from the dataset provided by Shen et al. 2020), which are as follows. p =

83.935, v = 60, g = 50, r = 0.04 units per hour (for the production phase of the linear

case), t2 = 8 hours, t3 = 24 hours, u = 0.02 units per hour (for the discount selling season

of the linear demand case), Q = 10, and the same values for unit holding cost, demand

scenarios and their probabilities which are utilized by Ghaniabadi et al. (2023).

Given that we have 31 days of data and the regular selling season is 24 hours, we

aggregate the hourly demands of all 31 days, in a single day. Therefore, this new aggre-

gated dataset, contains 24 values and each value is equal to the sum of the demand in that

specific hour of the day over all 31 days. We then calculate the cumulative demands of

the aggregated hourly dataset, which are then normalized by dividing each value by the

total cumulative demand in the last hour. This normalized dataset is then used along with

its corresponding time data [1,2, ...,24] in order to fit F3 (t3) using Python Scipy library
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which result in the parameters p3 = 0.00313 and q3 = 0.28360 (here rounded to 5 decimal

points) for the Bass model of the regular selling season.

For the parameters of the Wright’s model for production and the Bass model for the

discount selling season we incorporate the same method used for the synthetic data case.

For the Wright’s model, given a = 66.788, and b = 0.427, a production level of around

Q = 10 can be achieved in 250 hours, while in the linear production case with r = 0.04

units per hour, it also takes Q
r = 10

0.04 = 250 hours to reach a production amount of Q =

10. Moreover, with p4 = 0.0001, q4 = 0.032 and m4 = 9.601 for the parameters of the

Bass model for the discount selling season, it approximately takes 480 hours to achieve a

total demand level of Q− x1 = 9.6, whereas in the linear demand case also, a demand of

Q− x1 = 9.6 is reached in Q−x1
u = 9.6

0.02 = 480 hours.

Table 2.2 presents the result of the corresponding numerical experiments (the opti-

mal profits are rounded to 3 decimal points), which are in line with Ghaniabadi et al.

(2023), where a higher holding cost result in a lower expected profit, while Q∗
NV HN =

Q∗
NV H = Q∗

ANV H = Q∗
NV = 2. According to our experiments, this result remained the

same up to a unit holding cost of around 0.07. However, for a unit holding cost of 0.08,

Q∗
NV HN = 1.6 and NV HN (Q∗

NV HN) = 19.3146 (rounded to 4 decimal points), whereas

Q∗
NV H = Q∗

ANV H = Q∗
NV = 2 with an expected profit of 19.0999 (rounded to 4 decimal

points), resulting in a profit gain of 1.124% (rounded to 3 decimal points) for Q∗
NV HN .
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Table 2.2: Comparison of the model under Wright’s production and Bass demand with
simpler models, for SKU bb5419c49b (t3 = 1 day).

h1,h2,h3,h4 Q∗
NV HN NV HN (Q∗

NV HN) Profit gain
over NV H,
ANV H and

NV

10−100 ≃ 0 2 32.107 0%
0.000685 2 31.995 0%

0.0010275 2 31.940 0%
0.00137 2 31.884 0%

0.0017125 2 31.828 0%
0.002055 2 31.773 0%

Ghaniabadi et al. (2023) also studied the same SKU bb5419c49b under the case of

t3 = 42 days, and t2 = 56 days, while updating the demand scenarios and their probabilities

according to this longer regular selling season, and also letting Q = 300. The rest of the

parameters were kept the same as the case of t3 = 24 hours, and t2 = 8 hours.

In order to have a Bass model similar to the case of t3 = 24 hours, for this regular sell-

ing season of 42 days, we keep the same values of the normalized cumulative demand data,

while transforming the corresponding time data from [1,2, ...,24] to [1∗42,2∗42, ...,24∗42].

Fitting the corresponding F3 (t3) using Python Scipy library, results in p3 = 0.0000746 and

q3 = 0.0067525 (here rounded to seven decimal points).

For the parameters of the Wright’s model for production phase and Bass model for

the discount season, we again use the same method as in the synthetic data case. With

a = 264.937, and b = 0.414 for the Wright’s model, in production phase we reach an

amount of Q = 300 at roughly 7500 hours of production. In the linear production case, it

also takes Q
r = 300

0.04 = 7500 hours to achieve a production level of Q = 300. For a Bass

model of discount season, with parameters p4 = 2 ∗ 10−6, q4 = 0.001 and m4 = 283.3,

around 14160 hours is required for a demand level of Q− x1 = 283.2, while in the linear
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demand case, a demand level Q− x1 = 283.2 is achieved at Q−x1
u = 283.2

0.02 = 14160 hours.

Table 2.3 demonstrates the corresponding results (the profit values and the non-zero

profit gains are rounded), where up to a unit holding cost of 0.00137, Q∗
NV HN = Q∗

NV H =

Q∗
ANV H = Q∗

NV = 84. However, for the unit holding cost 0.0017125, Q∗
NV HN = 67.2, while

Q∗
NV H = Q∗

ANV H = Q∗
NV = 84, resulting in a profit gain of 1.24% for the new model over

the other ones. Under the unit holding cost 0.002055, the profit gain of Q∗
NV HN is even

more significant, which is 4.24% over Q∗
NV H , and 9.87% over both Q∗

ANV H and Q∗
NV .

Table 2.3: Comparison of the model under Wright’s production and Bass demand with
simpler models, for SKU bb5419c49b (t3 = 42 days).

h1,h2,h3,h4 Q∗
NV HN NV HN

(Q∗
NV HN)

NV HN
(Q∗

NV H)

Profit gain
over NV H

NV HN
(
Q∗

ANV H

)
,

NV HN (Q∗
NV )

Profit gain
over

ANV H
and NV

10−100 ≃ 0 84 1348.479 1348.479 0% 1348.479 0%
0.000685 84 1107.487 1107.487 0% 1107.487 0%

0.0010275 84 986.991 986.991 0% 986.991 0%
0.00137 84 866.494 866.494 0% 866.494 0%

0.0017125 67.2 755.245 745.998 1.24% 745.998 1.24%
0.002055 50.4 687.229 659.250 4.24% 625.502 9.87%

SKU d17d9135b0

We also use the same parameters considered by Ghaniabadi et al. (2023) for the SKU

d17d9135b0 (one of the SKU datasets provided by Shen et al. 2020), which are as follows.

p= 15.886, v= 9.5, g= 8.886, r = 0.2 units per hour, t2 = 8 hours, t3 = 24 hours, u= 0.04

units per hour, Q = 250, and the same values used by Ghaniabadi et al. (2023) for the unit

holding cost, and demand scenarios and their probabilities.

In order to have the parameters of the Bass model for the regular selling season, we use

the same method described for the numerical experiments of SKU bb5419c49b under the
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case of t3 = 24 hours, which results in fitted parameters p3 = 0.00785 and q3 = 0.22066

(here rounded to five decimal points). For the parameters of Wright’s model for production

and Bass model for the discount selling season, we use the same method explained for the

numerical experiments of synthetic data. Under the Wright’s model, by letting a= 66.251,

and b = 0.468, it approximately takes 1250 hours to reach a production level of Q = 250.

In the linear production, the time required for a production amount of Q = 250, is also
Q
r = 250

0.2 = 1250 hours. For the Bass model of the discount selling season, with parameters

p4 = 10−5, q4 = 0.002 and m4 = 244.53, a demand level of Q−x1 = 244.3 is achieved after

roughly 6107.5 hours, while in the linear demand case, it also takes Q−x1
u = 244.3

0.04 = 6107.5

hours to reach a demand level of Q− x1 = 244.3 in the discount season.

The results of the corresponding numerical experiments are presented in the Table 2.4

(the profit values and non-zero profit gains are rounded to 3 decimal points). For the

unit holding cost of 0.0001085 and 0.00016275, the profit gain over the linear produc-

tion and demand case is 1.609% and 0.536%, respectively, while for a unit holding cost

of 0.000217, 0.00027125 and 0.0003255, Q∗
NV HN = Q∗

NV H = 17.1. When holding cost

exists, the average profit gain of Q∗
NV HN over Q∗

NV H is 0.429%, while the average profit

gain of Q∗
NV HN over both Q∗

ANV H and Q∗
NV is 6.467%. This demonstrates that in this nu-

merical experiment for the SKU d17d9135b0, Q∗
NV H on average provides expected profits

considerably closer to the optimal one, compared with both Q∗
ANV H and Q∗

NV .

109



Table 2.4: Comparison of the model under Wright’s production and Bass demand with
simpler models, for SKU d17d9135b0.

h1,h2,h3,h4 Q∗
NV HN NV HN

(Q∗
NV HN)

NV HN
(Q∗

NV H)

Profit gain
over NV H

NV HN
(
Q∗

ANV H

)
,

NV HN (Q∗
NV )

Profit gain
over

ANV H
and NV

10−100 ≃ 0 28.5 48.143 48.143 0% 48.143 0%
0.0001085 17.1 46.411 45.676 1.609% 45.422 2.178%
0.00016275 17.1 45.907 45.662 0.536% 44.061 4.188%
0.000217 17.1 45.402 45.402 0% 42.701 6.326%

0.00027125 17.1 44.898 44.898 0% 41.341 8.605%
0.0003255 17.1 44.394 44.394 0% 39.980 11.039%

2.7 Conclusion

In this article, we studied a generalization of the newsvendor model examined by Gha-

niabadi et al. (2023), where we assume general nonlinear cumulative production and de-

mand functions, as opposed to linear ones. The supply chain of the product comprises four

periods as considered by Ghaniabadi et al. (2023), which includes production, transporta-

tion, a regular and a discount selling season. The holding cost of the general nonlinear

production and demand functions are then derived, while keeping the holding cost of the

transportation phase as in the paper of Ghaniabadi et al. (2023) due to the fact that the item

quantity is assumed not to change during this phase. A solution process for the correspond-

ing stochastic optimization problem under discrete distribution is proposed by extending

the solution procedure of Ghaniabadi et al. (2023) which was given for the linear case

of the problem. To numerically illustrate the application of the general problem and its

solution, we model the holding costs of the problem and derive the corresponding solution

procedure of the stochastic problem (by making use of the general model and solution),

under the models of Wright (1936) for production and Bass (1969) for the two demand
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periods, which are flexible and notable models in the literature. We then conduct the nu-

merical experiments of the problem under these specific production and demand function,

over synthetic and real sets datasets. We fit the cumulative demand function of the first

selling phase over real sets of demand data which we preprocessed. To do so, we take

advantage of Scipy Python library which performs the least squares method (commonly

used in data science and machine learning) to fit functions over a dataset. The results

of experiments demonstrate that the new model which makes use of the more realistic

nonlinear production and demand functions, provide solutions that are on average with

higher expected profit than the linear case of the problem, the basic newsvendor model,

and approximations based on the basic newsvendor problem. Contrary to the results of

Ghaniabadi et al. (2023), there are instances where the standard newsvendor based ap-

proximations give solutions with higher expected profit than the optimal solution of the

linear case. The numerical experiments are performed in a way that the Wright’s model

for the first period and the Bass model for the fourth period, take roughly the same amount

of time as their linear counterparts take, given the same maximum production and maxi-

mum leftover (at the end of the third phase) values, respectively. This results in solutions

which on average of our experiments altogether, are closer to the optimal solution than

the approximations based on the basic newsvendor model proposed by Ghaniabadi et al.

(2023). This indicates that linear case is a reasonably effective approximation when the

nonlinear production and demand (for the discount period) functions are approximated by

linear functions in a way that roughly the same amount of time is needed to reach the same

level of maximum production and maximum leftover, respectively. This corresponds to a

constant production rate of the linear case which is equal or close to Q divided by the time

it takes for the nonlinear cumulative production function to have a total production amount

of Q, and a constant demand rate of the linear case in the fourth period, equal or close to

Q− x1 divided by the time it takes for the nonlinear cumulative demand function to reach
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a total demand level of Q− x1 in the discount selling phase. A managerial insight of this

study is that, accurately considering the form of production and demand functions over

time (especially when nonlinearities are involved in that form) for calculating inventory

costs and accordingly making decisions on production or ordering quantity, can result in

having substantial more profits in the supply chain.
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Chapter 3

Robust Newsvendor Problem with

Inventory Costs
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Abstract

In this article, we examine a robust newsvendor model while explicitly considering the

holding costs of the corresponding supply chain which consists of a production and a ship-

ment period, a sales season with regular pricing, and a subsequent discount sale season,

with a discrete uncertainty set for the demand in the regular sales phase. The produc-

tion and demand functions are assumed to follow a general nonlinear pattern over time

(while the linear function is a special case of this) which affect the amount of total hold-

ing cost. We develop an optimal and efficient solution procedure for the problem and

perform several experiments leveraging artificial and real data for demand, by comparing



the robust solution, and the solution of the stochastic problem under a discrete probability

distribution. The results indicate the non-robustness of the stochastic solution, and the

conservativeness of the robust solution.

3.1 Introduction

One of the main issues in supply chain management is the optimization of supply chain

decisions based on its multiple phases and the corresponding involved costs and revenues,

instead of optimizing according to only a single period. Consequently, in this paper we

study a supply chain of four periods which incorporates production, shipment, and a reg-

ular sales period, and a second sales period for the discount season, and take into account

revenues and costs of the supply chain according to the well-known newsvendor model,

with a focus on holding costs (Ghaniabadi et al. 2023a and Ghaniabadi et al. 2023b). We

assume that the demand in the first sales season is uncertain and only the discrete demand

scenarios are known (without having the information on the probability distribution of

the demand scenarios). We aim to identify the optimal quantity for production, based on a

risk averse decision maker who wants to maximize the profit of this supply chain under the

worst case that can happen in the first selling phase for the demand scenario with respect

to its impact on the profit. Ghaniabadi et al. (2023a) and Ghaniabadi et al. (2023b) study

the same problem under the assumption of knowing the probability distribution of the de-

mand scenarios, while optimizing the production decision based on the expected profit,

rather than the worst case. As opposed to the stochastic optimization models developed

by Ghaniabadi et al. (2023a) and Ghaniabadi et al. (2023b), in robust optimization, a ma-

jor assumption is that we do not have full information on the distribution of the uncertain

parameter. Hence, in this article, we examine the robust optimization of the newsvendor

problem where holding costs of production and two sales periods given general nonlinear
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production and demand functions (as in the paper of Ghaniabadi et al. 2023b) are taken

into consideration, while the case of the linear production and demand functions (as in the

paper of Ghaniabadi et al. 2023a) is a special case of the nonlinear one. We propose an

efficient and optimal solution process for this robust optimization problem, and present

the corresponding numerical findings for both linear and nonlinear cases of the problem,

using artificial and real demand data as in the articles of Ghaniabadi et al. (2023a) and

Ghaniabadi et al. (2023b), where for the nonlinear case we assume a cumulative produc-

tion pattern according to Wright’s model (Wright 1936) and a cumulative demand pattern

according to Bass (1969) demand model (as in the paper of Ghaniabadi et al. 2023b),

in order to be able to conduct numerical results for the nonlinear production and demand

case. Based on our analysis of the experiments, the solution of the stochastic optimization

model, which considers the expected profit to optimize production quantity, is not robust,

in the sense that it results in low profits (and even a loss in some instances) in the worst

case, compared with the solution of the robust optimization problem. On the other hand,

the robust solution is conservative, which leads to low expected profits in contrast to the

solution of the stochastic optimization problem (which were derived by Ghaniabadi et al.

2023a and Ghaniabadi et al. 2023b, for linear and nonlinear cases, respectively).

We organize the remaining of this article as follows. In Section 2, we review the

related literature for the problem. In Section 3, the robust optimization problem under the

discrete uncertainty set is modeled and the corresponding solution process is proposed and

proved. In Section 4, we provide the numerical studies, under both linear and nonlinear

cases, using artificial and real demand data. In Section 5, the conclusions of the paper are

provided.
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3.2 Literature review

We divide the related literature in two parts. First we review the papers which incorporate

holding costs over the progression of time, into the newsvendor problem. Then we discuss

some of the newsvendor literature which take into account the robust decision making.

Matsuo (1990), and Chen and Chuang (2000) studied newsvendor problems with the

addition of a time-dependent holding cost as a linear function of the newsvendor decision

that is the production or order quantity. We also incorporate such a holding cost in our

shipment period, where the inventory level is constant and hence we have a linear function

for the holding cost (Ghaniabadi et al. 2023a, Ghaniabadi et al. 2023b). Tang et al. (2018)

examined a newsvendor model with additional holding costs for the sale period with a reg-

ular pricing, that is a nonlinear function of the decision variable (i.e., the order/production

quantity). Given a linear demand model over time, the holding cost function in our third

period (i.e., the regular sale period) will be equivalent to the holding cost function of Tang

et al. (2018) for the same period (as explained by Ghaniabadi et al. 2023a). Schlapp et al.

(2022) also consider a nonlinear model for the progression of cumulative demand over the

course of time and the holding cost function that it entails. As explained by Ghaniabadi et

al. (2023a) and Ghaniabadi et al. (2023b) (for linear and nonlinear cases, respectively), the

holding cost functions in the paper of Schlapp et al. (2022), can be considered equivalent

to those in our paper for the shipment and first sales periods (i.e., second and third phases

of our supply chain). Ghaniabadi et al. (2023a) studied the same four-phase supply chain

as in this paper, with newsvendor holding costs, where cumulative production and demand

progress linearly over time, under uncertain demand for the first sales phase, for two cases

of a general piecewise linear and discrete distributions, and provided the corresponding

solution approaches. Under the linear production and demand, over our supply chain, we

also take into consideration the same holding cost functions as Ghaniabadi et al. (2023a)
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did, for the discrete demand case. Ghaniabadi et al. (2023b) evaluated the same prob-

lem as the paper of Ghaniabadi et al. (2023a), while extending their model and solution

process to the case of nonlinear models for the progression of the cumulative production

and demand over time, under discrete demand distribution. For our general nonlinear case

and also its special case of Wright’s production (Wright 1936) and Bass demand (Bass

1969) models, we also consider the same holding cost functions proved by Ghaniabadi et

al. (2023b) for these cases.

The problems studied by Ghaniabadi et al. (2023a) and Ghaniabadi et al. (2023b),

assume that full information on the demand probability distribution is available, unlike

in robust optimization, where it is assumed that we have only a partial knowledge of the

distribution of the uncertain parameter. Scarf (1958) studied the robust newsvendor where

only the mean and variance of the demand are assumed to be known (as opposed to our

case where we assume we do not have such information and only the demand scenarios are

known) and developed a closed form solution under the worst case distribution. Ahmed

et al. (2007), study a risk averse newsvendor model with multiple selling periods where

holding cost is charged for each period for the excess inventory. In addition to the first

and second moments, Perakis and Roels (2008) also assume the availability of partial

knowledge on the shape (including support, symmetry and mode) of the distribution and

provide tractable robust solutions which are not conservative. Natarajan et al. (2018)

study a distributionally robust newsvendor problem with multiple items, where they take

into account the asymmetry in the probability distribution of the demand, and holding costs

incur for the unsold inventory. Their numerical results demonstrate that using asymmetry

information in the distributionally robust problem is more beneficial compared to the case

where only the covariance information is utilized in the problem. Das et al. (2021) study

the distributionally robust optimization of the newsvendor problem where the αth moment

of the demand distribution is known, for any α ≥ 1. Gao et al. (2022) study a new
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regularization for distributionally robust optimization under Wasserstein metric, and apply

their approach to a set of problems, including a multi-item newsvendor problem where

holding costs are considered for the excess inventory of each item.

To our knowledge, no paper in the robust newsvendor literature takes into consideration

the nonlinear holding cost functions over time for production and demand phases, as in our

problem.

3.3 Robust optimization under discrete uncertainty set

In this part, we present a solution approach for the robust optimization of the problem

studied by Ghaniabadi et al. (2023a) and Ghaniabadi et al. (2023b). We study the robust

optimization problem where we assume only the support of the uncertain parameter is

known under discrete uncertainty set (i.e., we assume that only the scenarios are known,

without their probabilities). The goal of our robust problem is to maximize profit under

the worst case scenario. We propose an efficient solution procedure to solve the problem.

We consider the same notations incorporated by Ghaniabadi et al. (2023b) which had

borrowed some of them from Ghaniabadi et al. (2023a) and Silver et al. (1998). We let

z j (Q) be the profit under scenario x j and a production amount of Q. Moreover, let z
′
j (Q)

and z”
j (Q) be the profit of producing an amount of Q under the scenario x j, where Q ≤ x j

and Q ≥ x j, respectively. Then we can have z j (Q) =

z
′
j (Q) Q ≤ x j

z”
j (Q) Q ≥ x j

, ∀ j = 1, ...,N

(where N is the total number of possible scenarios). As formulated in the paper Ghaniabadi

et al. (2023b), for the newsvendor problem with the holding cost corresponding to general

nonlinear functions for production and demand periods, z
′
j (Q) is composed of the revenue

pQ minus the costs vQ+H1 (Q)+ h2t2Q+H j
3 (Q), while z”

j (Q) is equal to the revenue

px j +g
[
Q− x j

]
subtracted by the costs vQ+H1 (Q)+h2t2Q+h3

[
Qt3 − x j

∫ t3
0 D3 (t)dt

]
+
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H j
4 (Q), where the holding costs H1 (Q), H j

3 (Q), and H j
4 (Q), are as formulated by Ghani-

abadi et al. (2023b), and represent the holding costs in the production phase, the regular

sales season (when the demand is greater than the production quantity), and the discount

season (when the demand is less than the production quantity), respectively. Moreover,

according to Ghaniabadi et al. (2023b),
dz

′
j(Q)

dQ = p − v − dH1(Q)
dQ − h2t2 −

dH j
3(Q)

dQ , and
dz”

j(Q)

dQ = g−v− dH1(Q)
dQ −h2t2−h3t3−

dH j
4(Q)

dQ (as described by Ghaniabadi et al. 2023b, the

aforementioned profit, holding cost, and derivative functions are also equivalent to those

developed by Ghaniabadi et al. 2023a, under the assumption of linear production and

demand functions). ∀n = 1, ...,N, we also define Q
′
n =

{
Q|0 < Q < xn,

dz
′
n(Q)
dQ = 0

}
and

Q”
n =

{
Q|xn < Q < Q,

dz”
n(Q)
dQ = 0

}
. We then develop the following proposition to solve

the robust optimization of the problem under discrete scenarios, which provides the max-

imum worst-case profit, and is a tractable solution which examines a limited number of

possible solutions.

Proposition. The robust optimization of the problem (to maximize the profit under the

worst case scenario) can be solved using the following maximization problem.

max
{

0, max
n=1,...,N

[
min

j=1,. . . ,N
z j (xn)

]
, max

n=1,...,N

[
min

j=1,. . . ,N
z j

(
Q

′
n

)]
,

max
n=1,...,N

[
min

j=1,. . . ,N
z j
(
Q”

n
)]

, min
j=1,. . . ,N

z j
(
Q
)}

.

Proof. Under each scenario x j (i.e., if we know scenario x j will happen), the optimal

production quantity is either 0, x j, Q
′
j =

{
Q|0 < Q < x j,

dz
′
j(Q)

dQ = 0
}

, Q”
j =

{
Q|x j < Q < Q,

dz”
j(Q)

dQ = 0
}

,

or Q (which are the same possible optimal solutions developed by Ghaniabadi et al.

(2023a) and Ghaniabadi et al. (2023b) given linear and nonlinear production and demand

functions, respectively, under discrete probability distribution, while assuming a single

scenario x j with a probability of occurring equal to 1). Therefore, irrespective of which
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scenario is the worst case, we can be sure that the value of production quantity which will

provide the maximum worst case profit (i.e., the optimal production quantity for the robust

optimization problem) is in the set QRO =
{

0,xn : ∀n = 1, ...,N,Q
′
n : ∀n = 1, ...,N,Q”

n : ∀n = 1, ...,N,Q
}

.

Therefore, for each of these possible solutions (i.e., if we produce an amount of Q ∈QRO),

the worst case profit can be found by solving the minimization problem min j=1,. . . ,N z j (Q).

Therefore, the maximum worst case profit must be in the set below

{
min

j=1,. . . ,N
z j (0) ,

[
min

j=1,. . . ,N
z j (xn)

]
: ∀n = 1, ...,N,

[
min

j=1,. . . ,N
z j

(
Q

′
n

)]
: ∀n = 1, ...,N,[

min
j=1,. . . ,N

z j
(
Q”

n
)]

: ∀n = 1, ...,N, min
j=1,. . . ,N

z j
(
Q
)}

.

Since ∀ j = 1, . . . ,N, z j (0) = 0, we have min j=1,. . . ,N z j (0) = 0. Hence, the above set

can be simplified as follows.

{
0,
[

min
j=1,. . . ,N

z j (xn)

]
: ∀n = 1, ...,N,

[
min

j=1,. . . ,N
z j

(
Q

′
n

)]
: ∀n = 1, ...,N,[

min
j=1,. . . ,N

z j
(
Q”

n
)]

: ∀n = 1, ...,N, min
j=1,. . . ,N

z j
(
Q
)}

.

Consequently, the maximum worst case profit can be obtained by solving the maxi-

mization problem below

max
{

0,
[

min
j=1,. . . ,N

z j (xn)

]
: ∀n = 1, ...,N,

[
min

j=1,. . . ,N
z j

(
Q

′
n

)]
: ∀n = 1, ...,N,[

min
j=1,. . . ,N

z j
(
Q”

n
)]

: ∀n = 1, ...,N, min
j=1,. . . ,N

z j
(
Q
)}

which is equivalent to
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max
{

0, max
n=1,...,N

[
min

j=1,. . . ,N
z j (xn)

]
, max

n=1,...,N

[
min

j=1,. . . ,N
z j

(
Q

′
n

)]
,

max
n=1,...,N

[
min

j=1,. . . ,N
z j
(
Q”

n
)]

, min
j=1,. . . ,N

z j
(
Q
)}

.■

3.4 Numerical studies

In this section, we first present the numerical studies of the robust problem under the linear

cumulative production and demand case, where we utilize the same parameters used by

Ghaniabadi et al. (2023a) for both synthetic and real datasets, under the discrete distri-

bution. We then present the numerical studies for the nonlinear case, where the Wright’s

model (Wright 1936) for the cumulative production function and Bass model (Bass 1969)

for the cumulative demand function are used. Using the same data studied by Ghaniabadi

et al. (2023b), the input parameters for the nonlinear case are the same as those for the

linear case (Ghaniabadi et al. 2023a) except for the parameters of the Wright’s and Bass

models which are adopted from Ghaniabadi et al. (2023b). The corresponding holding

cost functions are also the same as the ones used by Ghaniabadi et al. (2023a) and Ghani-

abadi et al. (2023b), for the linear and nonlinear cases, respectively.

For the linear case, the optimal production quantity and the corresponding optimal

profit are denoted by Q∗
RNV H and RNV H(Q∗

RNV H), respectively. As in the paper of Ghani-

abadi et al. (2023a), we denote the optimal production quantity and the optimal expected

profit of the stochastic optimization problem by Q∗
NV H and NV H (Q∗

NV H), respectively.

Since we use the same input parameters as in Ghaniabadi et al. (2023a), the values for

Q∗
NV H and NV H (Q∗

NV H) are also adopted from Ghaniabadi et al. (2023a). Moreover, we

report the values for NV H(Q∗
RNV H) which represent the expected profit of the robust so-

lution Q∗
RNV H according to the stochastic optimization problem under discrete distribution
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proposed by Ghaniabadi et al. (2023a). In addition, the values for RNV H(Q∗
NV H) are also

reported, representing the profit of the stochastic optimization solution Q∗
NV H , according

to the robust optimization problem.

Similarly, we also report these values for the nonlinear case: Q∗
RNV HN (the optimal

production quantity for the robust problem), RNV HN(Q∗
RNV HN) (the optimal profit for

the robust problem), Q∗
NV HN (the optimal production quantity for the stochastic problem),

NV HN (Q∗
NV HN) (the optimal expected profit for the stochastic problem), NV HN(Q∗

RNV HN)

(the expected profit of the robust solution), and RNV HN(Q∗
NV HN) (the robust profit of the

stochastic solution). The notation and values of Q∗
NV HN , and NV HN (Q∗

NV HN) are adopted

from Ghaniabadi et al. (2023b), since we utilize the same input parameters.

The results of the experiments for the synthetic data and the linear case, are given in

the Table 3.1. Overall, the values of RNV H(Q∗
NV H) are considerably lower than those

of RNV H(Q∗
RNV H), which reveals that the solution to the stochastic optimization prob-

lem (i.e., Q∗
NV H) is not a robust solution. On the other hand, NV H(Q∗

RNV H) values are

significantly lower than NV H (Q∗
NV H) values, which suggests that the solution to the ro-

bust optimization problem results in low expected profits. The optimal robust solution

(i.e., Q∗
RNV H) for all the instances of the the Table 3.1, are the same. However, this is

not necessarily always the case; for example, for a higher value of the unit holding as

h1,h2,h3,h4 = 0.08, we have Q∗
RNV H = 0.925 and RNV H(Q∗

RNV H) = 2.552.

In the Table 3.2, we have the results for the SKU bb5419c49b, under the linear case,

where t3 = 24 hours. In this case, the stochastic solution Q∗
NV H results in a loss (negative

value for RNV H(Q∗
NV H)), which indicate that Q∗

NV H performs poorly in the robust prob-

lem, i.e., in the worst case scenario. The robust solution Q∗
RNV H also provides significantly

less expected profit compared with the stochastic solution Q∗
NV H . The results for the same

SKU under the linear case and t3 = 42 days, provided in the Table 3.3, demonstrate sim-

ilar results, although the loss of the stochastic solution Q∗
NV H under the worst case (i.e.,
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in the robust problem) becomes even larger, which can be due to a higher holding cost

as a result of having a supply chain with a longer duration. In both cases, we can get an

optimal robust solution which is different than the ones in the tables, for a larger value

of unit holding cost, e.g., under the case of t3 = 24 hours for h1,h2,h3,h4 = 0.6, we have

Q∗
RNV H = 0.375 and RNV H(Q∗

RNV H) = 3.590, while under the case of t3 = 42 days for

h1,h2,h3,h4 = 0.009, we have Q∗
RNV H = 15.476 and RNV H(Q∗

RNV H) = 91.609.

For the SKU d17d9135b0, the numerical results are in the Table 3.4, which again

demonstrate that the stochastic solution Q∗
NV H is not a robust one (although it no longer re-

sults in a negative profit in the worst case, as opposed to the results of the SKU bb5419c49b),

while the robust solution Q∗
RNV H does not provide expected profits close to the optimal one

which is Q∗
NV H . In this case also even the optimal robust solution remains the same for all

instances in the table, for a higher value of unit holding cost, it may not be the case, as in

when h1,h2,h3,h4 = 0.11, we have Q∗
RNV H = 5.434 and RNV H(Q∗

RNV H) = 14.961.

In the tables 3.1, 3.2, and 3.4, the values of RNV H(Q∗
RNV H) and NV H(Q∗

RNV H) are rel-

atively close. Hence, it may be worthwhile to investigate what causes this proximity, espe-

cially in regards to the structure of profit function in these cases. Moreover, another anal-

ysis can be done to find out the likelihood of having a negative value for RNV H(Q∗
NV H),

which is the case in the tables 3.2 and 3.3.

The results for the nonlinear counterparts of the above case are presented in the Tables

3.5, 3.6, 3.7, and 3.8, respectively. The observations are similar to their corresponding lin-

ear cases where the optimal robust solution Q∗
RNV H can be too conservative compared with

the stochastic solution Q∗
NV H , while Q∗

NV H does not provide acceptable robust solutions.

Moreover, for a sufficiently higher value for the unit holding cost, in the nonlinear case

one can also reach solutions which are different from the ones in the corresponding table.
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Table 3.1: The numerical results for robust optimization problem under discrete uncer-
tainty set for synthetic data and linear case (N = 100).

h1,h2,h3,h4 Q∗
RNV H RNV H

(Q∗
RNV H)

NV H(Q∗
RNV H) Q∗

NV H NV H (Q∗
NV H) RNV H(Q∗

NV H)

10−100 1.017 10.170 10.170 2.757 18.850 8.429
0.00275 1.017 9.907 9.932 2.683 17.823 7.318

0.004125 1.017 9.775 9.814 2.634 17.336 6.829
0.0055 1.017 9.644 9.695 2.596 16.857 6.349

0.006875 1.017 9.513 9.576 2.538 16.386 5.949
0.00825 1.017 9.381 9.458 2.488 15.941 5.567

Table 3.2: The numerical results for robust optimization problem under discrete uncer-
tainty set for real data (SKU bb5419c49b) and linear case ( t3 = 24 hours, N = 5).

h1,h2,h3,h4 Q∗
RNV H RNV H(Q∗

RNV H) NV H(Q∗
RNV H) Q∗

NV H NV H (Q∗
NV H) RNV H(Q∗

NV H)

10−100 0.4 9.5740 9.5740 2.0 32.1066 -6.4260
0.000685 0.4 9.5672 9.5693 2.0 32.0324 -6.5446

0.0010275 0.4 9.5637 9.5669 2.0 31.9953 -6.6040
0.00137 0.4 9.5603 9.5646 2.0 31.9582 -6.6633

0.0017125 0.4 9.5569 9.5622 2.0 31.9211 -6.7226
0.002055 0.4 9.5535 9.5599 2.0 31.8840 -6.7819

Table 3.3: The numerical results for robust optimization problem under discrete uncer-
tainty set for real data (SKU bb5419c49b) and linear case (t3 = 42 days, N = 5).

h1,h2,h3,h4 Q∗
RNV H RNV H(Q∗

RNV H) NV H(Q∗
RNV H) Q∗

NV H NV H (Q∗
NV H) RNV H(Q∗

NV H)

10−100 16.8 402.108 402.108 84.0 1348.479 -269.892
0.000685 16.8 378.425 382.197 84.0 1159.550 -537.177

0.0010275 16.8 366.583 372.242 84.0 1065.085 -670.819
0.00137 16.8 354.741 362.287 84.0 970.620 -804.462

0.0017125 16.8 342.899 352.331 84.0 876.156 -938.104
0.002055 16.8 331.058 342.376 71.811 789.644 -765.623
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Table 3.4: The numerical results for robust optimization problem under discrete uncer-
tainty set for real data (SKU d17d9135b0), and linear demand case (N = 5).

h1,h2,h3,h4 Q∗
RNV H RNV H(Q∗

RNV H) NV H(Q∗
RNV H) Q∗

NV H NV H (Q∗
NV H) RNV H(Q∗

NV H)

10−100 5.7 36.400 36.400 28.5 48.143 22.401
0.0001085 5.7 36.379 36.380 26.058 47.277 23.071
0.00016275 5.7 36.368 36.370 19.010 47.033 27.633
0.000217 5.7 36.358 36.360 17.1 46.894 28.786

0.00027125 5.7 36.347 36.350 17.1 46.762 28.632
0.0003255 5.7 36.337 36.340 17.1 46.630 28.478

Table 3.5: The numerical results for robust optimization problem under discrete uncer-
tainty set for synthetic data and nonlinear case (N = 100).

h1,h2,h3,h4 Q∗
RNV HN RNV HN

(Q∗
RNV HN)

NV HN
(Q∗

RNV HN)

Q∗
NV HN NV HN

(Q∗
NV HN)

RNV HN
(Q∗

NV HN)

10−100 1.017 10.170 10.170 2.757 18.850 8.429
0.00275 1.017 9.900 9.921 2.717 17.880 7.275

0.004125 1.017 9.765 9.797 2.634 17.414 6.840
0.0055 1.017 9.631 9.673 2.633 16.958 6.271

0.006875 1.017 9.496 9.549 2.596 16.509 5.797
0.00825 1.017 9.361 9.424 2.511 16.071 5.482

Table 3.6: The numerical results for robust optimization problem under discrete uncer-
tainty set for real data (SKU bb5419c49b) and nonlinear case ( t3 = 24 hrs, N = 5).

h1,h2,h3,h4 Q∗
RNV HN RNV HN

(Q∗
RNV HN)

NV HN
(Q∗

RNV HN)

Q∗
NV HN NV HN

(Q∗
NV HN)

RNV HN
(Q∗

NV HN)

10−100 0.4 9.5740 9.5740 2.0 32.1066 -6.4260
0.000685 0.4 9.5638 9.5654 2.0 31.9953 -6.6247
0.0010275 0.4 9.5587 9.5612 2.0 31.9396 -6.7241
0.00137 0.4 9.5536 9.5569 2.0 31.8839 -6.8235

0.0017125 0.4 9.5485 9.5526 2.0 31.8282 -6.9229
0.002055 0.4 9.5434 9.5483 2.0 31.7725 -7.0222
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Table 3.7: The numerical results for robust optimization problem under discrete uncer-
tainty set for real data (SKU bb5419c49b) and nonlinear case (t3 = 42 days, N = 5).

h1,h2,h3,h4 Q∗
RNV HN RNV HN

(Q∗
RNV HN)

NV HN
(Q∗

RNV HN)

Q∗
NV HN NV HN

(Q∗
NV HN)

RNV HN
(Q∗

NV HN)

10−100 16.8 402.1080 402.108 84.0 1348.479 -269.892
0.000685 16.8 373.591 376.485 84.0 1107.487 -657.996

0.0010275 16.8 359.332 363.673 84.0 986.991 -852.048
0.00137 16.8 345.074 350.862 84.0 866.494 -1046.100

0.0017125 16.8 330.815 338.050 67.2 755.245 -808.021
0.002055 16.8 316.556 325.238 50.4 687.229 -487.621

Table 3.8: The numerical results for robust optimization problem under discrete uncer-
tainty set for real data (SKU d17d9135b0) and nonlinear case (N = 5).

h1,h2,h3,h4 Q∗
RNV HN RNV HN

(Q∗
RNV HN)

NV HN
(Q∗

RNV HN)

Q∗
NV HN NV HN

(Q∗
NV HN)

RNV HN
(Q∗

NV HN)

10−100 5.7 36.400 36.400 28.5 48.143 22.401
0.0001085 5.7 36.351 36.352 17.1 46.411 28.164
0.00016275 5.7 36.326 36.328 17.1 45.907 27.546
0.000217 5.7 36.302 36.304 17.1 45.402 26.928

0.00027125 5.7 36.277 36.280 17.1 44.898 26.310
0.0003255 5.7 36.252 36.255 17.1 44.394 25.692

3.5 Conclusion

This article studies a robust newsvendor problem where holding costs of a supply chain

with production, shipment, and two sale seasons (with regular and discount selling prices)

are taken into consideration, while the goal is to maximize the profit according to the worst

case scenario of the demand, and making a decision accordingly on the optimal produc-

tion quantity. We proved an optimal and efficient solution process for the problem, under

discrete uncertain demand set. We also conducted several numerical experiments lever-

aging artificial and real demand datasets, under both linear and nonlinear production and
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demand functions. The numerical analysis illustrates that the stochastic optimization prob-

lem under a given probability distribution does not provide profitable solutions compared

with the solution of the robust optimization problem, while the optimal robust solution

is conservative and yield low expected profit. This result suggests that developing distri-

butionally robust solutions can be a promising future research direction for this problem,

where the the goal can be developing robust solutions with acceptable expected profit.
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General Conclusion

In this dissertation, we studied a newsvendor problem with the addition of quantity-and-

time-dependent holding costs calculated over the progression of time, in a supply chain

consisting of production, shipping, and two selling seasons, first with a regular pricing and

then with discount. The first paper, examined linear cumulative production and demand

functions of time, considering general piecewise linear and discrete distributions for the

uncertain demand in the first selling season, while the second paper took into account gen-

eral nonlinear production and demand functions of time (with Bass (1969) demand and

Wright (1936) production functions, as a special case), and discrete distribution. In both

papers, we derive optimal and efficient solution processes, in regards to maximization of

the expected profit of the problem, and provide numerical results based on synthetic and

real datasets, which illustrate that overall both cases outperform the approximations based

on the standard newsvendor problem in terms of the expected profit, while the nonlin-

ear case outperformed the linear one as well. Under longer duration for production and

demand phases, and also higher holding costs, the profitability of our models compared

with the standard newsvendor model, becomes more significant. In the third paper, we use

the same models of the problem in the first two papers, under discrete demand scenarios,

while taking into account the goal of optimizing based on the worst possible scenario. The

corresponding numerical experiments show that the robust solution is conservative while



the solution based on maximizing the expected profit is not robust.

The findings in this dissertation can help managers in manufacturing and purchasing

sectors decide on how much of a product to produce or order so that the expected profit

of the corresponding supply chain is maximized, while considering the holding costs of

the supply chain, and utilizing the available data for the product demand, and also on

how the total production and demand may vary over time during production and selling

periods, respectively. Moreover, the efficiency of the proposed solution, helps in making

timely decisions. A managerial insight implied from this work is that, holding costs should

be accurately taken into account when the goal is to make profitable decisions related to

production or ordering amount of a product, especially when the supply chain involves

high holding costs and long periods. For example, for selling seasons which last for a few

weeks or a few months it can be more critical to take into account the holding costs when

making decisions on the production quantity, in order to avoid the profit loss incurred as a

result of making that production decision without considering the relevant holding costs.

The models and solutions proposed in this dissertation provide optimal solutions for

the cases where either the goal is maximizing the expected profit (i.e., the first two articles)

or maximizing the profit under the worst case scenario (i.e., the third article). Hence,

it may be worthwhile to investigate approaches which can provide solutions that have

high expected profits and are not too conservative, while at the same time are robust.

Accordingly, a distributionally robust optimization approach can be a promising research

avenue in order to diminish the aforementioned limitation of this dissertation.

Some other limitations and possible extensions of this dissertation are outlined as be-

low.

In this dissertation, we assume that the length of the regular selling season is fixed.

This is the case for many practical situations, for example, Christmas sales season or the

fashion sales for the 4 annual seasons, or fast fashion which can take a few weeks. In
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the book of Cachon and Terwiesch (2008) also provides an example for O’Neill’s wetsuit

sales where ordering to receipt can take 3 months (this can be considered equivalent to

our production and transportation periods), and the Spring selling period (equivalent to

our regular selling season) can take 6 months, from February to July, which is a fixed

period. Nevertheless, in case we assume that the length of regular selling season is variable

and depending on the inventory amount and the demand function it may have a different

duration, the corresponding profit function for this period can be derived using a process

similar to our discount season which has a variable length and depends on the leftover

amount and the demand function.

Another assumption is that we know how the demand evolves over time during the

selling season. Nevertheless, in the nonlinear demand case of our problem, it is possible to

extend our model to consider a different cumulative demand function for each particular

demand scenario. For instance, for the Bass (1969) demand model, we can extend the

model to use a different Bass model for each demand scenario.

Although in the linear demand case of the problem we assume that we have a constant

demand rate in the discount selling phase, in the nonlinear case we can have a variable

demand rate over this season, since we use a nonlinear cumulative demand function which

can have a demand rate which varies over time.

We also have the assumption of having a sufficiently long discount season with a vari-

able length during which all the items are sold. In case in a particular situation this is not

relevant and instead we have a shorter and fixed period during which only a portion of the

leftover inventory is sold, one can use a process similar to our regular selling season which

is also fixed, to model the profit function for this fixed discount season. In case there is

excess inventory at the end of the fixed discount season, they can be sold at a single point

in time (as in the standard newsvendor model) with a price lower than that of the fixed

discount season to a third-party.
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The structure of the profit functions can also be analyzed in more depth, especially

through establishing the concavity results wherever possible. We have shown the concavity

of the problem in the linear demand case under the general distribution, using the second

order derivative. Analyzing other profit functions of this dissertation through obtaining

and analyzing their second order derivative, can provide valuable insights in regards to the

structure of the profit functions.

This dissertation does not provide optimal solutions for the problem under arbitrary

continuous probability distributions for the demand. Nevertheless, since we provide effi-

cient solution processes for the problem under the discrete probability distribution for both

linear and nonlinear demand cases, we can leverage those solution approaches to solve the

problem under any continuous probability distribution, using the Sample Average Ap-

proximation (SAA) method. Due to efficiency of the proposed solutions, it is expected

that using the SAA approach will result in approximate solutions close to the optimal one,

since we will be able to utilize a large number of samples in the problem.

Aside from the optimal solution approaches made in this dissertation, it is also possible

to approximately solve the problem by enumeration where one can only consider a limited

set of discrete values for the decision variable which is the production quantity. This

method can also result in effective approximate solutions for the problem.

We can also take into account an extension of the problem where we have a discrete

set of possible prices for the discount season. Depending on each of these prices, we can

have a different demand pattern for the discount season. In such a case, we can utilize the

already developed solution processes where for each of the possible prices, we can solve

a different problem, and select the price which results in the highest optimal expected

profit. Since for each price level a different problem must be solved, the computational

tractability will also depend on the number of possible price levels in the pricing problem.

In case the firm wants to produce a new product where we have no demand data to
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model the problem, one can use the historical demand data of the products which have

similar characteristics to the new product. Machine learning approaches could be used to

predict the demand for such new products based on such similar characteristics of older

products.

In our numerical experiments in the third paper, the minimum demand was the worst

case scenario in the optimal robust solution. Hence, it can be interesting to see if one

can prove whether the optimal robust solution can be obtained only under the minimum

demand scenario, especially under the case of linear production and demand, or under

Wright’s model for production and Bass model for demand. If so, we can have an even

more efficient solution for the robust problem under such cases.

It may also be worthwhile to analyze the performance of the developed optimal solu-

tion processes in this dissertation in terms of their computational time. Some of the pre-

liminary results in this regard are as follows, using Google Colab (with Intel Xeon CPU,

and 13GB of RAM). For the problem in the first paper, for the discrete distribution case an

instance with 1000, 2000, 4000, and 10000 number of demand scenarios could be solved

in 1.4, 5.1, 21.3, and 151.6 seconds, respectively, while for the GPLD case, an instance

with 50, 100, 200, and 400 number of GPLD intervals was solved in 1.5, 5.49, 112.87, and

819.71 seconds, respectively. For the problem in the second paper, under Wright’s model

for production and Bass model for demand, an instance with 50, 100, 250, and 500 number

of demand scenarios could be solved in 5.8, 19.5, 73.4, and 292.6 seconds, respectively.

For the problem in the third paper, in the linear case, we could have the solution for an

instance with 1000, 2000, 4000, and 10000 number of scenarios in 2.1, 16.8, 87.2, and

261.9 seconds, respectively, while for the nonlinear case (under Wright’s model for pro-

duction and Bass model for demand), an instance with 250, 500, 1000, and 2000 number

of scenarios could be solved in 6.5, 21.7, 83.7, and 193.6 seconds, respectively. These

computational results also demonstrate the efficiency of the proposed approaches in this
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dissertation.

We can also study an extension of the problem where we have multiple items with a

common capacity constraint involving all items. For the problem in the first two papers,

one could leverage our efficient solution under the discrete distribution case, and use the

Lagrangian relaxation of the capacity constraint in the profit function, to reach a heuristic

solution using the Lagrange multipliers method.

Another possible extension could be considering the updated information on the future

demand during the production stage and study how this can affect the problem and how we

will need to accordingly adjust the decision on the production quantity. Moreover, during

the regular selling season we can get a more realistic view of how the future demand will

be in the remaining parts of this season, and hence have production and shipping in parallel

with the selling phase, especially if we have relatively fast production and transportation

for the corresponding supply chain.

136



Bibliography

Ahmed, S., Çakmak, U., & Shapiro, A. (2007). Coherent risk measures in inventory problems.

European Journal of Operational Research, 182(1), 226-238.

Anzanello, M. J., & Fogliatto, F. S. (2011). Learning curve models and applications: Literature

review and research directions. International Journal of Industrial Ergonomics, 41(5),

573-583.

Bass, F. M. (1969). A new product growth for model consumer durables. Management science,

15(5), 215-227.

Bitran, G. R., Haas, E. A., & Matsuo, H. (1986). Production planning of style goods with high

setup costs and forecast revisions. Operations Research, 34(2), 226-236.

Blackburn, J., & Scudder, G. (2009). Supply chain strategies for perishable products: the case

of fresh produce. Production and Operations Management, 18(2), 129-137.

Cachon, G. P., & Kök, A. G. (2007). Implementation of the newsvendor model with clearance

pricing: How to (and how not to) estimate a salvage value. Manufacturing & Service

Operations Management, 9(3), 276-290.

Cachon, G., & Terwiesch, C. (2008). Matching supply with demand (Vol. 20012). McGraw-Hill

Publishing.

137



Callioni, G., de Montgros, X., Slagmulder, R., Van Wassenhove, L. N., & Wright, L. (2005).

Inventory-driven costs. harvard business review, 83(3), 135-141.

Cárdenas-Barrón, L. E. (2001). The economic production quantity (EPQ) with shortage derived

algebraically. International Journal of Production Economics, 70(3), 289-292.

Chen, M. S., & Chuang, C. C. (2000). An extended newsboy problem with shortage-level con-

straints. International Journal of Production Economics, 67(3), 269-277.

Chen, W., Dawande, M., & Janakiraman, G. (2014). Integrality in stochastic inventory models.

Production and Operations Management, 23(9), 1646-1663.

Das, B., Dhara, A., & Natarajan, K. (2021). On the heavy-tail behavior of the distributionally

robust newsvendor. Operations Research, 69(4), 1077-1099.

Eppen, G. D. (1979). Note—effects of centralization on expected costs in a multi-location news-

boy problem. Management science, 25(5), 498-501.

Ferguson, M. E., & Koenigsberg, O. (2007). How should a firm manage deteriorating inven-

tory?. Production and Operations Management, 16(3), 306-321.

Gallego, G., & Moon, I. (1993). The distribution free newsboy problem: review and extensions.

Journal of the Operational Research Society, 44(8), 825-834.

Gao, R., Chen, X., & Kleywegt, A. J. (2022). Wasserstein distributionally robust optimization

and variation regularization. Operations Research.

Ghaniabadi, M., Adulyasak, Y., & Jans, R. (2023). A newsvendor problem with holding costs

in a multi-stage supply chain. (The first article of this dissertation)

Ghaniabadi, M., Adulyasak, Y., & Jans, R. (2023a). A newsvendor problem with holding costs

in a multi-stage supply chain. (The first article of this dissertation)

138



Ghaniabadi, M., Adulyasak, Y., & Jans, R. (2023b). Newsvendor problem under nonlinear pro-

duction and demand with holding cost. (The second article of this dissertation)

Hammond, J. H., & Raman, A. (2006). Sport Obermeyer Ltd. Harvard Business School Case

695-022.

Khouja, M. (1999). The single-period (news-vendor) problem: literature review and suggestions

for future research. Omega, 27(5), 537-553.

Khouja, M., & Park, S. (2003). Optimal lot sizing under continuous price decrease. Omega,

31(6), 539-545.

Kouvelis, P., & Gutierrez, G. J. (1997). The newsvendor problem in a global market: Opti-

mal centralized and decentralized control policies for a two-market stochastic inventory

system. Management Science, 43(5), 571-585.

Levi, R., Roundy, R. O., & Shmoys, D. B. (2007). Provably near-optimal sampling-based

policies for stochastic inventory control models. Mathematics of Operations Research,

32(4), 821-839.

Liao, Y., Banerjee, A., & Yan, C. (2011). A distribution-free newsvendor model with balking

and lost sales penalty. International Journal of Production Economics, 133(1), 224-227.

Maggioni, F., Cagnolari, M., & Bertazzi, L. (2019). The value of the right distribution in

stochastic programming with application to a Newsvendor problem. Computational

Management Science, 16(4), 739-758.

Matsuo, H. (1990). A stochastic sequencing problem for style goods with forecast revisions and

hierarchical structure. Management Science, 36(3), 332-347.

139



Mieghem, J. A. V., & Rudi, N. (2002). Newsvendor networks: Inventory management and ca-

pacity investment with discretionary activities. Manufacturing & Service Operations

Management, 4(4), 313-335.

Moily, J. P. (2015). Economic manufacturing quantity and its integrating implications. Produc-

tion and Operations Management, 24(11), 1696-1705.

Moon, I., & Choi, S. (1995). The distribution free newsboy problem with balking. Journal of

the Operational Research Society, 46(4), 537-542.

Muriel, A., Chugh, T., & Prokle, M. (2021). Efficient algorithms for the joint replenishment

problem with minimum order quantities. European Journal of Operational Research.

Natarajan, K., Sim, M., & Uichanco, J. (2018). Asymmetry and ambiguity in newsvendor mod-

els. Management Science, 64(7), 3146-3167.

Pal, B., Sana, S. S., & Chaudhuri, K. (2015). A distribution-free newsvendor problem with

nonlinear holding cost. International Journal of Systems Science, 46(7), 1269-1277.

Perakis, G., & Roels, G. (2008). Regret in the newsvendor model with partial information. Op-

erations research, 56(1), 188-203.

Perera, S., Janakiraman, G., & Niu, S. C. (2017). Optimality of (s, S) policies in EOQ models

with general cost structures. International Journal of Production Economics, 187, 216-

228.

Porteus, E. L. (1990). Stochastic inventory theory. Handbooks in operations research and man-

agement science, 2, 605-652.

Porteus, E. L. (2002). Foundations of stochastic inventory theory. Stanford University Press.

140



Qin, Y., Wang, R., Vakharia, A. J., Chen, Y., & Seref, M. M. (2011). The newsvendor problem:

Review and directions for future research. European Journal of Operational Research,

213(2), 361-374.

Rajan, A., Rakesh, & Steinberg, R. (1992). Dynamic pricing and ordering decisions by a mo-

nopolist. Management science, 38(2), 240-262.

Scarf, H. (1958). A min-max solution of an inventory problem. Studies in the Mathematical

Theory of Inventory and Production, Stanford University Press, Stanford, CA, 201–209.

Schlapp, J., Fleischmann, M., & Sonntag, D. (2022). Inventory timing: How to serve a stochas-

tic season. Production and Operations Management, 31, 2891–2906.

Shen, M., Tang, C. S., Wu, D., Yuan, R., & Zhou, W. (2020). JD. com: Transaction-level data for

the 2020 MSOM data driven research challenge. Manufacturing & Service Operations

Management.

Silver, E. A., Pyke, D. F., & Peterson, R. (1998). Inventory management and production plan-

ning and scheduling. New York: Wiley.

Sriram, S., Chintagunta, P. K., & Agarwal, M. K. (2010). Investigating consumer purchase be-

havior in related technology product categories. Marketing Science, 29(2), 291-314.

Tang, S., Cho, S., Wang, J. W., & Yan, H. (2018). The newsvendor model revisited: the impacts

of high unit holding costs on the accuracy of the classic model. Frontiers of Business

Research in China, 12, 1-14.

Teplitz, C.J., 1991. The Learning Curve Deskbook: A Reference Guide to Theory, Calculations

and Applications. Quorum Books, New York.

141



Urban, T. L. (2002). The interdependence of inventory management and retail shelf manage-

ment. International Journal of Physical Distribution & Logistics Management, 32(1),

41-58.

Wang, F., Li, Y., Zhou, A., & Tang, K. (2019). An Estimation of Distribution Algorithm for

Mixed-variable Newsvendor Problems. IEEE Transactions on Evolutionary Computa-

tion.

Wright, T. P. (1936). Factors affecting the cost of airplanes. Journal of the aeronautical sciences,

3(4), 122-128.

Wu, Q., & Honhon, D. (2023). Don’t waste that free lettuce! Impact of BOGOF promotions on

retail profit and food waste. Production and Operations Management, 32(2), 501-523.

142




	Résumé
	Abstract
	List of Tables
	List of Figures
	Acknowledgements 
	General Introduction
	A Newsvendor Problem with Holding Costs in a Multi-Stage Supply Chain
	Abstract 
	Introduction
	Literature review
	Problem description
	Solution procedures
	Stochastic optimization under a continuous distribution
	Stochastic optimization under a discrete distribution

	Approximation methods based on the standard newsvendor model
	Numerical results
	Experiments with synthetic data
	Experiments with real data

	Conclusion
	References
	Appendices
	Explanation on the holding cost of the regular selling season, proposed by Tang et al. (2018)
	Proof of Proposition 1 and concavity results for the general distribution case
	Proof of Proposition 2
	Proof of Proposition 3


	Newsvendor Problem under Nonlinear Production and Demand with Holding Cost
	Abstract 
	Introduction
	Literature review
	Problem formulation
	The stochastic problem under discrete distributions
	The problem under Wright's model for production and Bass model for demand
	Numerical experiments
	Synthetic dataset
	Real-world datasets

	Conclusion
	References

	Robust Newsvendor Problem with Inventory Costs
	Abstract 
	Introduction
	Literature review
	Robust optimization under discrete uncertainty set
	Numerical studies
	Conclusion
	References

	General Conclusion
	Bibliography

