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Résumé

Cette thèse se concentre sur des applications reliées à la volatilité et aux évènements ex-
trêmes dans les marchés des produits dérivés et de l’électricité.

Le premier essai propose une nouvelle représentation factorielle de la surface de volatil-
ité implicite dont le titre sous-jacent est le S&P 500. Les cinq facteurs proposés capturent
adéquatement le niveau, la pente de degré d’exercice et de l’échéance, de l’atténuation du
«smile» ainsi que du «smirk». De plus, leur comportement asymptotique permet d’effectuer
une extrapolation de la surface bien au-delà des échéances et des degrés d’exercice ob-
servés. Pour chaque échéance fixée, notre modèle de volatilité implicite garantit l’existence
d’une fonction de densité risque neutre pour le prix de l’actif sous-jacent. La performance
du modèle ajusté sur les options du S&P 500 se compare favorablement aux méthodes de
références existantes. Les avantages d’une surface de volatilité implicite lissée sont illustrés
lors de l’évaluation de dérivés d’indices non liquides, de l’extraction de la densité neutre
au risque et des moments neutres au risque ainsi que du calcul des sensibilités du prix des
options. Cet article est paru dans Journal of Futures Markets, 2022, 42(10), 1912–1940.

Dans le second essai, nous modélisons la dynamique conjointe de l’indice S&P 500 et
de sa surface de volatilité implicite. En effet, l’ensemble des caractéristiques de la surface
de volatilité actuelle est pris en compte pour modéliser les déformations futures. Deux
exercices sont effectués pour démontrer la capacité du modèle «joint implied volatility and
return» (JIVR) à générer avec précision des scénarios pour la surface de volatilité implicite
future conjointement avec le rendement du sous-jacent. Le premier exercice consiste à
évaluer le risque des positions «straddle» et «strangle». Le deuxième exercice analyse la



performance prédictive du modèle JIVR à prédire la distribution de l’indice VIX. Le mod-
èle JIVR s’avère efficace pour une gestion du risque liée aux options de l’indice S&P 500.

Le dernier essai se concentre sur la prévision des pics de prix d’électricité DART ob-
servé dans la zone de Long Island du NYISO. L’écart DART est d’une grande importance
économique pour les négociants d’énergie qui s’y exposent. Un ensemble de variables
comprenant des caractéristiques prospectives, rétrospectives et saisonnières est proposé.
Quatre algorithmes d’apprentissage automatiques sont utilisés : la régression logistique,
la forêt aléatoire, l’arbre de «gradient boosting» et les réseaux de neurones artificiels. Les
mesures de performance statistiques attestent que tous les modèles présentent un pouvoir
de prédiction, tant sur l’échantillon d’entraînement que sur l’échantillon test. Un exercice
d’évaluation des variables illustre la valeur ajoutée de plusieurs variables construites. Les
avantages de la prévision des pics de prix sont illustrés par un exercice de négociation. Cet
article est paru dans Energy Economics, 2023, p. 106521.

Mots clés: Volatilité implicite, Modèle factoriel, Grecs, Gestion des risques, VIX,
Marché de l’électricité, Écarts DART, NYISO, Analyse prédictive, Apprentissage statis-
tique.

Méthodes de recherche: Économétrie, Analyse multivariée, Apprentissage automa-
tique.
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Abstract

This thesis concentrates on applications related to the volatility and extreme events
present in the derivatives and electricity markets.

The first essay proposes a new factorial representation of the implied volatility surface
with the underlying security being the S&P 500. The five proposed factors adequately
capture the level, the moneyness and maturity slopes the smile attenuation, and the smirk.
In addition, their asymptotic behaviour allows for an extrapolation of the surface well be-
yond the range of observed maturities and moneyness. For each fixed maturity, our implied
volatility model guarantees the existence of a risk-neutral density function for the underly-
ing asset price. The performance of the adjusted model on the S&P 500 options compares
favourably with existing benchmarks. The benefits of a smoothed implied volatility surface
are illustrated through the valuation of illiquid index derivatives, the extraction of the risk-
neutral density and risk-neutral moments, and the calculation of option price sensitivities.
This article has been published in Journal of Futures Markets, 2022, 42(10), 1912–1940.

In the second essay, we model the joint dynamics of the S&P 500 index and of its as-
sociated implied volatility surface. Indeed, all the characteristics of the current volatility
surface are taken into account to model future deformations. Two exercises are conducted
to demonstrate the ability of the joint implied volatility and return (JIVR) model to accu-
rately generate scenarios for the future implied volatility surface jointly with the return of
the underlying asset. The first exercise consists of evaluating the risk of straddle and stran-
gle positions. The second exercise analyses the predictive performance of the JIVR model
in predicting the distribution of the VIX index. The JIVR model proves to be effective for
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managing the risk associated with S&P 500 index options.
The last essay concentrates on forecasting the electric day-ahead price minus the real-

time price (DART) spikes observed in the Long Island zone of the NYISO. DART spread is
of paramount importance to virtual bidders. A tailored feature set encompassing forward-
looking, backward-looking, and seasonal features, including novel engineered features, is
proposed. Four machine learning algorithms: logistic regression, random forest, gradient
boosting tree, and artificial neural networks are trained. Statistical performance measures
attest that all models exhibit prediction power, both in-sample and out-of-sample. A fea-
ture assessment exercise illustrates the value added of multiple engineered features. The
benefits of forecasting day-ahead spikes are illustrated through a trading exercise. This ar-
ticle has been published in Energy Economics, 2023, p. 106521.

Keywords: Implied volatility, Factor models, Greeks, Risk management, VIX, Power mar-
kets, Spikes prediction, DART spreads, NYISO, Predictive analytics, Statistical learning.

Research methods: Econometrics, Multivariate analysis, Statistical learning.
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Chapter 1

Introduction

Risk management is a core priority of financial institutions. The survival and profitability
of an institution are linked to the sound management and quantification of its portfolios.
Events such as the financial crisis of 2008 or the COVID-19 pandemic remind us of the im-
portance of a sound and strong risk management system to ensure that financial institutions
remain solvent during distressing periods. After the catastrophic financial crisis of 2008,
regulators accelerated the implementation of stricter regulations on financial institutions.
The regulations particularly concentrate on better quantifying the risks of the assets such
that institutions can better estimate the amount of capital to hold to meet their obligations
even during the worst economic downturns. This thesis share has a common theme the
quantification, management and assessment of risk over two markets: the derivatives mar-
ket and the electricity market.

The first two essays concentrate on the derivatives market. Derivatives are financial
contracts whose payoff is linked to an underlying asset. Derivatives are often used by fi-
nancial institutions as insurance contracts to reduce or limit the risk associated with some of
their positions. Even though derivatives are priced, market practitioners do not work with
option prices directly, but with the option’s implied volatility inferred from the Black and
Scholes, 1973 formula. Implied volatility is a measure of the expected future volatility of
an underlying asset based on the price of its options. It represents the market’s perception
of the underlying asset’s volatility and future price movements. In contrast, option prices
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alone do not provide clear information about the underlying asset’s future price movements
or volatility. By transforming option prices into implied volatility, market participants can
form views on options more easily. They can compare the implied volatility of different
options with varying moneyness and maturities to gain insights into the market’s expec-
tations about future price movements. Despite the limitations of the Black and Scholes,
1973 model, which is used to calculate implied volatility, it remains a widely accepted way
to calculate implied volatility and a crucial tool for options pricing and risk management.
The implied volatility surface obtained by combining the implied volatility of all quoted
options embeds a rich source of information about market participants’ forward-looking
view of the market dynamics. Leveraging this information to manage and estimate the
risk of derivatives is a core objective of the first two essays. The first essay takes a static
perspective, by proposing a factor model to complete the implied volatility surface. A
completed implied volatility surface generates multiple applications related to risk man-
agement and the mark-to-market of illiquid or complex derivatives that are not quoted. The
second essay concentrates on the dynamics of the implied volatility surface to quantify the
risk associated with these derivatives.

The first essay develops a model to complete the implied volatility surface since the im-
plied volatility surface is incomplete, i.e. only a few observations with limited moneyness
and maturity ranges are observed. Completing the implied volatility surface is of great
importance for financial institutions that trade illiquid or complex over-the-counter (OTC)
derivatives and have to manage their counterparty risk. A completed implied volatility
surface can be used to mark-to-market these derivatives throughout their lives, without the
need to observe a quoted derivative with the same characteristics. The implied volatility
surface shape is captured by five economically interpretable factors. Each factor is se-
lected to capture a particular component of the implied volatility surface. When choosing
the functional factors, special attention is paid to ensure that the fitted surface is smooth,
twice-differentiable and well-behaved asymptotically. These properties are necessary for
the extraction of the risk-neutral density and the limitation of arbitrage opportunities gen-
erated by the model. The resulting 5-factor model is able to interpolate and extrapolate
the implied volatility surface while being coherent with the observable surface. Complet-

2
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ing the implied volatility surface stems many applications related to risk management and
the extraction of market information from the implied volatility surface. In terms of risk
management, the 5-factor model can mark-to-market illiquid derivatives. The interpolation
and extrapolation capabilities of the model are paramount for extracting the complete risk-
neutral density, or when pricing derivatives from a replicating option portfolio based on
the Carr and Madan, 2001 that heavily relies on often scarce DOTM options. The 5-factor
model can also compute option’s Greeks by taking into account the shape of the implied
volatility surface, which is useful for hedging illiquid options.

The second essay builds on the first by introducing a joint model that captures the
dynamics of the implied volatility surface and the underlying asset’s log-returns (JIVR). A
model that captures these joint dynamics is able to forecast the distribution of a wide range
of derivatives. Therefore, the JIVR model is a powerful tool to effectively quantify the
risk of a derivative. Unlike the traditional approach, the JIVR model leverages information
from the implied volatility surface to forecast returns over short-term horizons of 1 and 5
days. Integrating the implied volatility surface as an input to the JIVR model allows for
a novel characterization of the S&P 500 log-returns. The JIVR model is used to jointly
simulate the forecasted distributions of implied volatility and log-returns. The derivative
return distribution can, thus, be computed from the forecasted distribution of the implied
volatility and the log-returns. This application can be paramount to large investors required
to compute the VaR of their positions over the standard 1-day and 5-day horizon.

Finally, the last chapter focuses on the electricity market while keeping risk manage-
ment as a central objective of the research paper. In this chapter, the view of virtual bid-
ders taking positions in the electricity market of the Long Island zone of New York State
is adopted. The objective of virtual bidders is to exploit the inefficiencies present in the
electricity market. One of their main strategies consists in selling or buying electricity
on the day-ahead market and reversing their position on the real-time market. However,
electricity prices are well known for their extreme volatility due to the fact that consump-
tion must equate with generation continuously. Therefore, the positions taken by virtual
bidders are exposed to large downside events known as price spikes. To reduce the risk
of their positions and improve the risk-reward profile of their trading strategies, we use
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statistical learning approaches to forecast the likelihood of such extreme events based on a
tailored feature set. Trading strategies that integrate the models’ forecasts are shown to be
substantially less risky and far more profitable than base case approaches.
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Chapter 2

Venturing into Uncharted Territory: An
Extensible Parametric Implied Volatility Surface
Model

Abstract∗

A new factor-based representation of implied volatility surfaces is proposed. The fac-
tors adequately capture the moneyness and maturity slopes, the smile attenuation, and the
smirk. Furthermore, the implied volatility specification is twice continuously differentiable
and well behaved asymptotically, allowing for clean interpolation and extrapolation over a
wide range of moneyness and maturity. Fitting performance on S&P 500 options compares
favorably with existing benchmarks. The benefits of a smoothed implied volatility surface
are illustrated through the valuation of illiquid index derivatives, the extraction of the risk-
neutral density and risk-neutral moments, and the calculation of option price sensitivities.

Keywords: Implied volatility surfaces, Derivatives pricing, Factor models, Greeks.

∗Joint work with Pascal François, Geneviève Gauthier, and Frédéric Godin. Fraçois and Gauthier are
affiliated with HEC Montréal and Godin is affiliated with Concordia University.



Chapter 2. Venturing into uncharted territory

2.1 Introduction

Since their introduction on exchanges, derivatives have become a central part in modern
asset pricing theory. Beyond their fundamental role as risk management tools, options
are contingent claims whose market prices convey all the information needed to deter-
mine state prices (Cox and Ross, 1976). In conjunction with the information embedded
in the underlying asset returns, these state prices can further be disentangled into physical
probabilities and the pricing kernel (Jackwerth, 2000, Ross, 2015). Breeden and Litzen-
berger, 1978 show that the risk-neutral density of the underlying asset price can be retrieved
from the continuum of options across strikes. From this seminal property, a rich set of ex-
tended results has emerged in the financial economics literature, including but not limited
to: the spanning of a terminal payoff with a portfolio of discount bonds and options (Bak-
shi and Madan, 2000, Carr and Madan, 2001), the inference of risk-neutral moments (Bak-
shi and Kapadia, 2003, Conrad et al., 2013, Neumann and Skiadopoulos, 2013, Ammann
and Feser, 2019), the construction of the risk-neutral density (Birru and Figlewski, 2012,
Figlewski, 2018), the static hedging of options (Carr and Wu, 2014), and the calculation
of risk metrics such as the VIX index (Neuberger, 1994), the SVIX ((Martin, 2017; Martin
& Wagner, 2019)), or the rare disaster index (RIX) (Gao et al., 2018, Gao et al., 2019).

The implementation of these applications is hampered, however, by the limited avail-
ability of traded options. Given the one-to-one correspondence between the European op-
tion premium and the implied volatility (IV) established by Black and Scholes, 1973, the
continuum of options across strikes and maturities can be represented by the IV surface. In
practice, observable IVs form a cloud of points only, and the construction of a smoothed IV
surface is an empirical challenge for academics and a mandatory daily exercise for indus-
try practitioners who trade options. Observed implied volatilities are particularly scarce far
from the money, which is precisely where information about the tails of the risk-neutral dis-
tribution can be retrieved. They are also scarce for medium and long maturities. Thus, an
accurate extrapolation of the IV surface can help better estimate the high-order risk-neutral
moments and how they aggregate over the time horizon.

This paper introduces a new functional form for the IV with three major benefits. First,
it is designed to accommodate the well-documented, stylized features of the IV surface
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for S&P 500 index options. Chalamandaris and Tsekrekos, 2011 (hereafter CT) explicitly
introduce the level, slope and curvature factors, in the spirit of how Nelson and Siegel,
1987 and Diebold and Li, 2006 model the yield curve. The IV specification presented in
this paper takes a step further by assigning precise roles to the factors. Specifically, the
factors are explicitly designed to capture the slopes in the moneyness and the maturity
dimensions, the smile attenuation, (i.e., the fact that the smile convexity decreases with the
maturity), and the smirk (i.e., the fact that the IVs for short-term, deep out-of-the-money
calls are higher than those at-the-money). In particular, the specific account of the slope
attenuation and the smirk greatly enhances the calibration performance on the SPX option
IV surface over the January 1996 – December 2019 period compared to the Heston, 1993,
the Goncalves and Guidolin, 2006 (hereafter GG), and the Chalamandaris and Tsekrekos,
2011 benchmarks.

Second, the factors are tailored to admit a stable asymptotic behaviour, which makes
it possible to extrapolate beyond quoted moneyness levels and maturities. This feature
proves to be particularly valuable when it comes to valuing long-term, illiquid, index-
option-related contracts (such as structured notes). Third, the factors are constructed so
that the surface is twice continuously differentiable, which produces a well-behaved risk-
neutral density function for each time horizon. These last two features represent a sig-
nificant improvement over factor-based benchmarks as extrapolating the IV surface has
remained an empirical challenge in the literature.2

Several smoothing methods have been proposed in the literature. They can be broadly
classified into parametric and non-parametric approaches.3

Parametric smoothing allows seamless interpolation, parsimony, interpretability, and
limited computational requirements for option pricing. However, the parametric specifi-
cations proposed in earlier works are chosen for their simplicity and convenience. Dumas

2Our numerical experiments show that CT and GG models often induce anomalous risk-neutral densities
when our method does not.

3Among non-parametric smoothing methods are the Gaussian kernel (Cont and Da Fonseca, 2002), the
principal component analysis (Israelov and Kelly, 2017), and the neural networks (Ackerer et al., 2019).
One major limitation of non-parametric approaches is that the extrapolation of the smoothed IV surface is a
non-trivial issue.
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et al., 1998 examine the IV as a polynomial function of strike and maturity. Goncalves
and Guidolin, 2006 apply a similar specification to the log-IV, replacing the strike with a
moneyness factor. Jackwerth and Rubinstein, 1996 and Bliss and Panigirtzoglou, 2002 use
cubic splines.

The paper adds to three strands of the literature. First, it is related to the mark-to-market
of thinly traded securities (Skiadopoulos, 2001, Henderson and Pearson, 2011, Célérier
and Vallée, 2017). A wide variety of derivatives are not publicly traded on exchanges,
e.g. over-the-counter derivatives, structured products, and options embedded in corporate
securities. Nevertheless, they can be priced in a consistent manner when the valuation
models are anchored to the IV surface of the vanilla options with same underlying asset
(Daglish et al., 2007, Bayraktar and Yang, 2011). The pricing consistency requires an
arbitrage-free smoothed IV surface (Fengler, 2009). The IV surface specification presented
in this paper successfully passes the arbitrage detection assessment using butterfly and
calendar spreads (Davis and Hobson, 2007) which represents sufficient conditions for the
absence of static arbitrage. A numerical application shows how a complete, smoothed
IV surface streamlines the mark-to-market of an equity-index-linked note, making it less
reliant on the entry and exit of available strikes and maturities. For the seller of the note,
this, in turn, reduces unnecessary liquidity stress on the management of the position.

Second, the paper contributes to the extraction of the risk-neutral density and risk-
neutral moments. As argued by Jackwerth, 2004, the challenge in constructing the risk-
neutral density does not reside in the centre of the distribution but in the tails, where few
options are observable. Parametric smoothing methods, therefore, complete the shape of
the density either with composite distributions or with mixture models (Figlewski, 2018).
The IV specification of this paper circumvents this issue by using factors that are twice
continuously differentiable and well-behaved asymptotically. The generated risk-neutral
densities are shown to be smooth and regular, and the mass of probability over the full
spectrum of moneyness levels adds up to exactly one. Furthermore, numerical experiments
show the substantial correction in the computation of risk-neutral skewness and kurtosis
when the Carr and Madan, 2001 formula is discretized.

Third, the specification for the implied volatility surface proposed in this paper can
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be applied to the dynamic hedging of options. Delta and gamma are derived analytically
and are shown to be smile-implied Greeks (Bates, 2005, Alexander and Nogueira, 2007,
François and Stentoft, 2021). That is, these Greeks are consistent with the observed shape
of the volatility smile and they do not depend on any assumption regarding the underlying
asset dynamics. Furthermore, the specification for the implied volatility surface allows
for the enhanced management of volatility risk, not only through the traditional definition
of the option vega but also through the sensitivity of the option value with respect to the
long-term volatility level and to the IV maturity slope.

The paper is structured as follows. Section 2.2 presents the data. Section 2.3 intro-
duces the IV specification, compares its fitting performance with selected benchmarks,
and checks for the presence of arbitrage opportunities in the smoothed IV surface. Sec-
tion 2.4 details the applications of the IV surface model to derivatives pricing and risk
management. Section 2.5 concludes.

2.2 Data

The dataset extracted from the OptionMetrics database consists of European call and put
options on the S&P 500 index (SPX options) quoted daily on the CBOE from January 4,
1996, to December 31, 2019.4 For each option quote, the data includes bid and ask prices,
from which mid-prices are calculated to serve as option prices. The data also includes
forward prices of the S&P 500 index associated with the same maturity date for each option.
For each quote, the associated option moneyness is defined as

M =
1√
τ
log

(
Ft,τ

K

)
, (2.1)

where τ is the annualized time-to-maturity5 of the option, Ft,τ is the day-t forward price of
maturity τ given by OptionMetrics, and K is the strike price. Thus, M = 0 corresponds
to at-the-money (ATM) options, M < 0 to out-of-the-money (OTM) calls and M > 0 to
OTM puts. As time-to-maturity increases, the range of traded strike prices also widens due

4Only spot options are considered, i.e., options clearing on the spot price of the S&P 500 index.
5For clarity of exposition, τ is reported in days in tables and figures.
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to the scaling property of volatility. Scaling the moneyness by 1√
τ

generates a comparable
moneyness measure across time-to-maturity.

Data exclusion procedures are in line with the filters of Bakshi et al., 1997. Options
with the following characteristics are removed: (i) a time-to-maturity shorter than 6 days,
(ii) a price lower than 3/8$, (iii) a zero bid price, and (iv) options with a bid-ask spread
larger than 175% of the option’s mid-price.6 Furthermore, all in-the-money options are
excluded (i.e., puts with M < 0 and calls with M ≥ 0). The resulting sample contains
3,468,515 option quotes spanning on 6,039 days.7

Calls Puts

M ≤ −0.2 −0.2 < M ≤ 0 0 < M ≤ 0.2 0.2 < M ≤ 0.8 M ≥ 0.8 All

Average IV(%) 17.90 15.23 19.95 28.43 44.12 23.94
Standard deviation IV(%) 7.19 5.46 5.53 6.40 9.60 10.30
Number of contracts 274,252 774,321 772,735 1,303,428 279,447 3,404,183

τ ≤ 30 30 < τ ≤ 90 90 < τ ≤ 180 180 < τ ≤ 365 τ ≥ 365 All

Average IV(%) 24.68 23.93 23.88 24.18 23.55 23.94
Standard deviation IV(%) 13.08 11.27 10.32 9.50 8.42 10.30
Number of contracts 277,521 1,008,508 610,650 703,008 804,496 3,404,183

Descriptive statistics of the SPX options implied volatility (IV) daily data from January 4, 1996, to June
26, 2019, across multiple times-to-maturity and moneyness buckets. M represents the moneyness defined in
Equation (2.1) and τ is the time-to-maturity of the option in days.

Table 2.1: Descriptive statistics of the SPX options data

For each option in the sample, its implied volatility is computed with the Black, 1976
formula. Table 2.1 presents descriptive statistics about option implied volatilities (hereafter
IV) associated with all quotes from the dataset. The IV surfaces from the various days
covered by the data typically display asymmetry and often the well-known smirk (i.e., calls
with a moneyness M < −0.2 having higher IV than calls with a moneyness −0.2 < M ≤

6This filter is inspired by Azzone and Baviera, 2022. Options with a large ratio of bid-ask spread over
price yield inaccurate mid-prices, which then induce anomalies in the IV surfaces and artificial spikes in the
factors’ time series. Options excluded by this filter represent a minuscule proportion of the sample (0.3%).

7The October 9, 2006, IV surface is removed from the dataset since the IV surface displays a broken
shape which most likely indicates that the data is erroneous for that specific day.
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0). Moreover, as seen in Table 2.1, there are slightly fewer options with short maturities
(less than or equal to 90 days) than there are options with long maturities (more than 90
days) options.
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Panel B: May 8, 2006

0
1

2
3

Time to maturity
-0.2

0
0.2

0.4
0.6

0.8

Moneyness

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Im
p
lie

d
 V

o
la

ti
lit

y

Panel C: December 1, 2008
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Panel D: December 31, 2019
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The various panels display the set of implied volatilities associated with retained option quotes from the
OptionMetrics dataset on four selected days. January 4, 1996, is the first day in the sample. May 8, 2006, is
a low volatility day. December 1, 2008, represents the peak of the 2008 financial crisis. December 31, 2019,
is the last day of the sample. The moneyness is defined in Equation (2.1).

Figure 2.1: Observed IV surfaces on four selected dates

Figure 2.1 shows the set of all option IV considered on four selected days. These days
are representative of stylized features of the IV surface. As observed when comparing the
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first day of the sample (Panel A) to others, the number of quoted options has significantly
gone up with time. The increased number of quoted options mainly results in much lower
strike intervals between the quotes of a given maturity, but also in additional traded matu-
rities. Panel B clearly displays the smile attenuation, where the moneyness slope flattens as
the time-to-maturity increases. The IV surface from Panel C observed during the subprime
crisis exhibits a time-to-maturity slope, i.e., a downward trend of the IV with respect to the
option’s time-to-maturity. The volatility smirk is particularly visible in Panel D, OTM calls
having a higher IV than ATM options. Such characteristics of IV surfaces are well-known
in the literature and are mentioned, for instance, in Cont and Da Fonseca, 2002 and Re-
bonato, 2005. Furthermore, all four panels highlight the positive impact of scaling the
moneyness by 1√

τ
where the range of moneyness remains similar for all time-to-maturities

and the implied volatility levels become comparable for options with similar moneyness
across time-to-maturity.

2.3 Model specification and performance

The following three requirements are considered for the parametric function: (i) factor
interpretability, (ii) twice differentiability, and (iii) extrapolation ability.

First, our factors are carefully selected functions of the strike and time-to-maturity.
Their specification has been designed to match patterns commonly observed on IV surfaces
such as the smile attenuation or the volatility smirk. Assigning a specific role to each
factor allows for their clear interpretation. It also contributes to an accurate calibration to
the observed IV surfaces, as shown below. Second, the functional forms for our factors
are twice continuously differentiable, which ensures the existence of a continuous risk-
neutral density function for the price of the underlying asset (Breeden and Litzenberger,
1978). This, in turn, limits the presence of arbitrage opportunities. Third, our factors
are asymptotically stable and can therefore be easily extrapolated beyond the observed
moneyness levels and maturities. As shown in Section 4, this property is helpful for various
applications including option pricing, risk management and asset pricing.

In the next subsections, we introduce and discuss our implied volatility model. We then
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report how the calibration of our specification strongly outperforms that of the parametric
models of Goncalves and Guidolin, 2006 and Chalamandaris and Tsekrekos, 2011. We
then proceed to a formal screening procedure detecting the presence of theoretical arbitrage
opportunities on both the raw data and the set of model-calibrated IV surfaces.8 For an
agent trading at the bounds of the bid-ask spread, arbitrage opportunities turn out to be
rare in the data, and even more so in the model-calibrated IV surfaces.

2.3.1 A parametric implied volatility specification
The implied volatility σ(M, τ) observed on a given day for an option with moneyness M
defined in Equation (2.1) and time to maturity τ is modeled as

σ (M, τ) = β1︸︷︷︸
Long-term ATM Level

+β2 exp
(
−
√
τ/Tconv

)
︸ ︷︷ ︸

Time to maturity slope

+β3

(
M1{M≥0} +

e2M − 1

e2M + 1
1{M<0}

)
︸ ︷︷ ︸

Moneyness slope

+ β4
(
1− exp

(
−M2

))
log(τ/Tmax)︸ ︷︷ ︸

Smile attenuation

+β5
(
1− exp

(
(3M)3

))
log(τ/Tmax)1{M<0}︸ ︷︷ ︸

Smirk

.

(2.2)

Fixed values Tmax and Tconv are parameters selected based on empirical observation. Tmax

is the maximal maturity represented by the model. Although the longest time to maturity
for options in the sample is three years, the value Tmax = 5 years is considered herein to
allow for extrapolation beyond the longest time to maturity. Tconv represents the location
of a fast convexity change in the IV term structure with respect to time to maturity. It is set
to Tconv = 0.25 for reasons explained below.

The five-factor representation in Equation (2.2) is parsimoniously designed to capture
the stylized facts of the IV surface. The first factor is constant and its coefficient β1 is a
proxy for the long-term ATM implied volatility. Since lim

τ→0
lim
M→0

σ (M, τ) = β1 + β2, the
coefficient β2 measures the time to maturity slope of the ATM implied volatility. Given that
the observed IV curvature over time to maturity is more pronounced for short-term options,
the convexity correction is increased for horizons less than three months by relating β2 with
a non-linear function of τ/0.25. The term τ/0.25 creates substantially more convexity
for the short-term (under 3 months) part of the IV surface. The third factor picks up the

8The method detects static arbitrage opportunities via calendar and butterfly spreads (Davis and Hobson,
2007, Fengler, 2009).
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The five factors of Equation (2.2) are represented on the left panels. The right column panels present the first
five factors obtained through a PCA applied to the options data as described in Appendix A.1. The proportions
of variation explained by each factor are respectively 94.84%, 3.32%, 1.45%, 0.22%, and 0.16%. The top
four panels are displayed using an angle highlighting the factor variation with respect to the time to maturity,
while the remaining six bottom panels show the variation with respect to the moneyness. Panels E and F
have a larger moneyness axis than the other panels to show the entire shape of the third factor.

Figure 2.2: Model factors versus PCA factors
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moneyness slope separately for put and call options. In the data, put IV increases almost
linearly as the moneyness increases. Conversely, while call IV decreases at first when the
moneyness decreases, it then either stabilizes or starts increasing for deeper OTM options
as shown in Panels B, C and D of Figure 2.1. The hyperbolic tangent function in the third
term generates a shape reminiscent of the blade of a hockey stick. It is strictly decreasing
with a negative second derivative equal to 0 atM = 0 creating this desirable shape for call
IV and generating a smooth moneyness slope function. The fourth factor accounts for the
smile attenuation, i.e., it ensures that the smile gets flatter as time to maturity increases.
Finally, the fifth factor captures the tilt in the smile for deep OTM calls, referred to as the
implied volatility smirk. The smirk factor is designed to fade away as time to maturity
increases toward the Tmax bound.

Figure 2.2 compares the five factors of Equation (2.2) with those extracted from a Prin-
cipal Component Analysis (PCA) decomposition of IV surfaces.9 The use of PCA for
the representation of volatility surfaces is motivated by the seminal paper of Cont and Da
Fonseca, 2002 proposing a Karhunen-Loève decomposition of the log-surface dynamics
generating orthogonal factors. Directly applying PCA to the option sample is not possible
since option numbers and characteristics (moneyness and time to maturity) vary from day
to day. Because PCA requires a stable sample every day, a grid with respect to money-
ness and time to maturity is constructed over the densely populated regions of the surface.
When applied to our dataset, the PCA is fitted to a sub-surface inside which only 41% of
observed options lie. There are similarities between our five factors (left panels) and the
first five PCA factors (right panels). Given that the PCA generates by construction the lin-
ear factors fitting the IV surface best in terms of RMSE, such similarity entails that Model
(2.2) has the potential to adequately capture the IV surface patterns without requiring the
construction of a subgrid of moneyness/time to maturity and discarding an important part
of the observations as in the PCA approach.

2.3.2 Daily calibration

As described in Appendix A.2, a daily re-estimation of the set of parameters
9The PCA approach is described in Appendix A.1.
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Panel A: Long-term ATM Level
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Daily evolution of estimates of parameters β = (β1, β2, β3, β4, β5) of Model (2.2), respectively capturing
the long-term ATM level, the time to maturity slope, the moneyness slope, the smile attenuation and the
moneyness smirk, from January 4, 1996, to June 26, 2019. The estimates are obtained by minimizing the
sum of the squared fitting errors while integrating Bayesian information (Appendix A.2).

Figure 2.3: Daily parameter estimates for the IV surface model
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β = (β1, β2, β3, β4, β5) is obtained by minimizing the sum of the squared fitting errors
while integrating Bayesian information for regularization purposes. Figure 2.3 plots the
time series of estimated parameters. The level of the ATM implied volatility (panel A)
remains low during calm market conditions. It spikes during financial turmoil, in particular
around the LTCM crisis in September 1998 and, most notably, after the Lehman Brothers
collapse by the end of 2008. The time to maturity slope of the IV surface (panel B) is
usually slightly positive (i.e., negative β2), but the 2008 financial crisis is associated with
a strong and short-lived slope inversion. The smile asymmetry appears to be more stable
in the second half of the sample with a less volatile coefficient β3 (panel C). The smile
attenuation β4 varies more at the beginning of the sample and during the financial crisis
(panel D). Finally, the smirk effect seems more pronounced but also more volatile over the
most recent period (panel E).

2.3.3 Benchmarking

The calibration performance of Model (2.2) is compared with that of two benchmarks: the
polynomial model of Goncalves and Guidolin, 2006 and the parametric model of Chala-
mandaris and Tsekrekos, 2011.

Goncalves and Guidolin, 2006, hereafter GG, regress the daily log IV surface on five
factors:

log σ
(
M̃, τ

)
= δ1 + δ2M̃ + δ3M̃

2 + δ4τ + δ5(M̃τ),

where their moneyness is defined as M̃ = 1√
τ
ln
[

K
S exp(rτ)

]
, with S being the underlying

asset price and r being the annualized risk-free rate. Working with log-volatilities ensures
a positive IV surface. The various factors clearly represent moneyness and maturity slopes
along with their interaction, on top of a convexity factor for the moneyness.

Chalamandaris and Tsekrekos, 2011, hereafter CT, fit the daily IV surface of foreign
exchange options using seven factors:

σ (m, τ) =θ1 + θ21m>0m
2 + θ31m<0m

2 + θ4
1− e−λτ

λτ

+ θ5

(
1− e−λτ

λτ
− e−λτ

)
+ θ61m>0mτ + θ71m<0mτ,

(2.3)
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where m = (∆− 0.5)× 100 and ∆ represents the Black-Scholes option delta.10

The first term of Equation (2.3) is the level of the surface. The second and third terms
account for the right and left smiles. The curvature of the IV surface at the short and at the
medium maturities is picked up by the fourth and fifth terms, respectively. The sixth and
seventh terms capture the right and left smile attenuation.

2.3.4 Calibration performance

Figure 2.4 illustrates how Model (2.2) and the CT and GG benchmarks fit the IV data points
for the four selected dates of Figure 2.1. The factor design is essential to obtain reliable
surfaces across time.

Inspection of Figure 2.4 confirms the well-behaved extrapolation of the IV surface using
Model (2.2). In particular, the shape of the IV surface remains consistent with the few
implied volatilities observed in extreme regions of time to maturity and moneyness. By
contrast, extrapolation of the IV surface using the GG benchmark induces a twist in the
maturity slope that does not fit with the data. Likewise, extrapolation of the IV surface
using the CT benchmark often induces a cap on far from the money-implied volatilities,
which, again, is not in line with market observations.

The calibration performance of each model over the entire sample is assessed by com-
puting the daily root mean square error (RMSE) between the observed IV and the corre-
sponding fitted values, that is,

RMSE =

√√√√ 1

N

N∑
i=1

(σ(Mi, τi)− σO
i )

2
,

10The CT study uses the Garman and Kohlhagen, 1983 delta defined in the context of the foreign exchange
market. The call option ∆ is computed as follows:

∆ =
∂c(K, τ)

∂S
= e(d−r)τϕ(d1 (K))

d1 (K) =
1

σobs
K,τ

√
τ
log

F0,τ

K
+ σobs

K,τ

√
τ .

where d is the foreign risk-free rate. The σobs
K,τ used when fitting the model to the observed IV surfaces

corresponds to the observed option IV.

18



Chapter 2. Venturing into uncharted territory

Model (2.2)

January 4, 1996

2

1.5

Time to maturity

1

0.08

0.1

0.5

0.12

0.14

0.5

0.16

Moneyness

0.4

Im
p

lie
d

 V
o

la
ti
lit

y

0.18

0.3

0.2

0.22

0.2

0.24

0.1

0.26

00 -0.1 -0.2

May 8, 2006

3

2.5

2

Time to maturity

1.5

10.05

0.1

0.15

1 0.5

0.2

Moneyness

Im
p

lie
d

 V
o

la
ti
lit

y

0.8

0.25

0.6

0.3

0.35

0.4

0.4

00.2
0

-0.2

December 1, 2008

2.5

2

1.5

Time to maturity

1
0.2

0.4

0.5

0.6

3 2.5

0.8

Moneyness

Im
p

lie
d

 V
o

la
ti
lit

y

2

1

1.5 1

1.2

0.5

1.4

00 -0.5 -1 -1.5

December 31, 2019

3

2.5

2

Time to maturity

1.5

10.05

0.1

0.15

0.2

1.6

0.25

0.51.4

0.3

Moneyness

Im
p

lie
d

 V
o

la
ti
lit

y

1.2

0.35

1

0.4

0.8

0.45

0.6

0.5

0.4

0.55

00.2 0 -0.2 -0.4

GG model

January 4, 1996

2

1.5

Time to maturity

1
0.05

0.5

0.1

0.15

0.5

0.2

Moneyness

Im
p

lie
d

 V
o

la
ti
lit

y

0.4

0.25

0.3 0.2

0.3

0.1

0.35

00 -0.1 -0.2

May 8, 2006

3

2

Time to maturity

10.05

0.1

0.15

0.2

1

0.25

Moneyness

Im
p
lie

d
 V

o
la

ti
lit

y

0.3

0.8

0.35

0.6

0.4

0.45

0.4

0.5

00.2 0 -0.2

December 1, 2008

2.5

2

1.5

Time to maturity

10

0.2

0.4

0.5

0.6

3

0.8

Moneyness

2.5

Im
p

lie
d

 V
o

la
ti
lit

y

1

2

1.2

1.5

1.4

1

1.6

0.5

1.8

00 -0.5 -1 -1.5

December 31, 2019

3

2

Time to maturity

10

0.1

0.2

0.3

0.4

1.6

0.5

1.4

Moneyness

Im
p

lie
d

 V
o

la
ti
lit

y

0.6

1.2

0.7

1

0.8

0.8 0.6

0.9

0.4

1

00.2 0 -0.2 -0.4

CT model
January 4, 1996

2

1.5

Time to maturity

1
0.08

0.1

0.5

0.12

0.14

0.5

0.16

Moneyness

Im
p

lie
d

 V
o

la
ti
lit

y

0.4

0.18

0.3

0.2

0.2

0.22

0.1

0.24

00 -0.1 -0.2

May 8, 2006

3

2

Time to maturity

10.05

0.1

0.15

1

0.2

Moneyness

Im
p
lie

d
 V

o
la

ti
lit

y

0.25

0.8

0.3

0.6

0.35

0.4

0.4

00.2 0 -0.2

December 1, 2008

2.5

2

1.5

Time to maturity

10.2

0.4

0.5

0.6

3

0.8

Moneyness

2.5

Im
p

lie
d

 V
o

la
ti
lit

y

2

1

1.5

1.2

1 0.5

1.4

00 -0.5 -1 -1.5

December 31, 2019

3

2

Time to maturity

10.05

0.1

0.15

0.2

0.25

1.6

0.3

1.4

Moneyness

Im
p
lie

d
 V

o
la

ti
lit

y

0.35

1.2

0.4

1

0.45

0.8 0.6

0.5

0.4

0.55

00.2 0 -0.2 -0.4

Observed IVs are plotted against the fitted IV surfaces derived from Model (2.2) –first row– and the two
benchmark models in rows 2 and 3. GG refers to Goncalves and Guidolin, 2006 and CT stands for Chala-
mandaris and Tsekrekos, 2011. January 4, 1996, is the first day in the sample. May 8, 2006, is a low volatility
day. December 1, 2008, represents the peak of the 2008 financial crisis. December 31, 2019, is the last day
of the sample.

Figure 2.4: Model (2.2) fitted surfaces compared with the benchmark surfaces

where σO
i is the observed IV for the ith quote available and Mi, τi are its associated mon-

eyness and time to maturity, respectively.

Figure 2.5 shows that the daily RMSE of Model (2.2) is lower than that of the GG and
CT models for most of the sample period. Despite the increase in the number of quoted
option contracts in more recent periods, the fitting performance of Model (2.2) does not
deteriorate over time. This is in sharp contrast with the GG and CT benchmarks. Note that
since the GG model is estimated on the log IV surfaces and the measurement error is based
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RMSE comparison on the full sample
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The daily RMSE is reported for Model (2.2) and the CT and GG benchmarks.

Figure 2.5: RMSE across time

on the IV level, the RMSE does not only capture the variability of the error term, but also
the convexity bias caused by Jensen’s inequality. The drop in performance of the CT and
GT models following the 2008 financial crisis is linked to the wider range of moneyness
levels traded after the crisis. Due to the asymptotic behaviour of the models, capturing the
surface shape with deeper out-of-the-money options becomes an issue.

Table 2.2 displays the average RMSE (ARMSE) across time over different subregions
of the IV surface. The ARMSE across the entire surface for the GG and CT benchmarks
is four times larger than that of Model (2.2). The quality of the fit obtained for the CT
and GG benchmarks is strongly sensitive to moneyness and time to maturity. In particular,
the two models poorly match the OTM put implied volatilities. Interestingly, the ARMSEs
associated with the Model (2.2) specification are of similar magnitude across all moneyness
and time to maturity buckets.

2.3.5 Arbitrage opportunities

To verify if Model (2.2) generates prices consistent with no-arbitrage principles, a screen-
ing procedure inspired by the work of Davis and Hobson, 2007 is applied. The detection of
prices violating no-arbitrage restrictions is performed on both the calibrated surfaces and
sample observations. The comparison of the number of such violations in both datasets
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Model M ≤ −0.1 (call) −0.1 < M ≤ 0.1 M > 0.1 (put) All
Model (2.2) 0.0141 0.0096 0.0098 0.0107
CT 0.0126 0.0158 0.0387 0.0308
GG 0.0223 0.0148 0.0505 0.0401
Number of options 638,645 846,247 1,983,623 3,468,515

Model τ ≤ 60 60 < τ ≤ 180 τ > 180 All
Model (2.2) 0.0116 0.0095 0.0109 0.0107
CT 0.0363 0.0309 0.0271 0.0308
GG 0.0537 0.0249 0.0399 0.0401
Number of options 856,524 1,090,187 1,521,804 3,468,515

The average RMSE over time is reported for each bucket of moneyness (M ) and days to maturity (τ ). The
sample period is January 4, 1996, to June 26, 2019.

Table 2.2: Average RMSE over time from IV surface estimation

serves as a sanity check to assess the propensity of Model (2.2) to either (i) generate prices
incompatible with the absence of arbitrage, or (ii) smooth out arbitrage opportunities found
in the data.

Davis and Hobson, 2007 study instances of so-called static arbitrage opportunities,
which is a convenient relaxation of the general no-arbitrage theory outlined for instance in
Delbaen and Schachermayer, 1994. The distinction between both types of arbitrages lies
in the difference between information sets (see Carr and Madan, 2005 for a more thorough
discussion). Davis and Hobson, 2007 provide sufficient conditions precluding the presence
of static arbitrage opportunities within a point-in-time set of European call option prices
for several strikes and maturities on a single underlying asset. They show that the absence
of no-arbitrage violations within prices of a set of butterfly spread and calendar spread
portfolios ensures that the entire set of option prices is arbitrage-free. The approach for the
construction of such spread portfolios is described in Appendix A.4.

When applying the screening on observed option quotes, boundaries of the bid-ask in-
terval are used instead of mid-prices. More precisely, whenever a call option is purchased
(sold) in the construction of the spread portfolio, the ask (bid) price is considered. Indeed,
using mid-prices instead would have led to flagging spurious arbitrage opportunities in the
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Observed prices Fitted surfaces

Arbitrage % Arbitrage Arbitrage % Arbitrage Number
detected detected detected detected of tests

τ ≤ 60

M ≤ 0 662 0.27% 340 0.14% 245,081
0 < M ≤ 0.3 791 0.33% 0 0% 243,235
M > 0.3 148 0.04% 109 0.03% 368,312

60 < τ ≤ 180

M ≤ 0 638 0.2% 26 0.01% 325,928
0 < M ≤ 0.3 1,263 0.3% 0 0% 426,276
M > 0.3 1,978 0.45% 0 0% 439,667

τ > 180

M ≤ 0 1,122 0.23% 0 0% 498,182
0 < M ≤ 0.3 1,954 0.38% 0 0% 516,449
M > 0.3 11,446 2.31% 0 0% 496,184

Summary statistics on violations per moneyness and time to maturity buckets of no-arbitrage constraints on
butterfly spreads and calendar spreads designed as per the methodology outlined in Section 2.3.5 inspired by
Davis and Hobson, 2007. The numbers and proportions of violations, which are aggregated across all dates
of the sample, are reported for both the data sample and fitted surfaces obtained with Model (2.2).

Table 2.3: Detected static arbitrage opportunities

data which would have been impossible to realize due to the limited ability to trade within
the bid-ask range. Conversely, when detecting no-arbitrage violations among calibrated
surfaces, prices generated by Model (2.2) are used without any correction for illiquidity
considerations. Such discrepancy in testing is a conservative choice as it puts more strin-
gent requirements on Model (2.2) for its prices to satisfy no-arbitrage constraints during
the screening. Moreover, the Davis and Hobson, 2007 methodology is based on call option
prices, whereas the current sample contains quotes for both call and put options. Thus, to
screen for arbitrage opportunities, put option bid and ask quotes in the data are transformed
into call ask and bid prices using the put-call parity.

Table 2.3 displays the number of arbitrage opportunities detected in the entire data
sample and on fitted surfaces. Numbers provided are aggregates across all dates of the data
sample. For each date, one butterfly spread arbitrage test is performed for each option in
the dataset. Moreover, there is one calendar spread test for almost all options in the dataset,
with the exception of options for which the construction of the calendar spread is impossible
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due to the lack of traded options that would have been needed for inclusion into the spread
portfolio. For instance, options whose maturity is the last one available on a given day
are not tested for calendar spread arbitrage. The counts provided in Table 2.3 thus include
both the butterfly and calendar arbitrage tests. Results show that the calibrated surfaces
exhibit fewer arbitrage opportunities than do quotes from the data sample in all buckets
of moneyness and time to maturity. This result provides reassurance about the suitability
of factors designed in Model (2.2). Indeed, the model tends to correct for the arbitrage
opportunities found in the data while it generally avoids producing prices violating no-
arbitrage constraints.

2.4 Applications of the volatility surface model

Having a complete surface with implied volatilities available on a large range of moneyness
and maturity has several practical applications, some of which are presented in this section.
Two main categories of applications are outlined: derivatives pricing and risk management.

2.4.1 Derivatives pricing applications

The most direct application of the volatility surface model developed herein is the pric-
ing of financial derivatives. The model can be applied in conjunction with three main
approaches, each described subsequently: direct interpolation or extrapolation of the im-
plied volatility, the Carr and Madan, 2001 formula, and the extraction of the underlying
asset price risk-neutral density. The three techniques are respectively tailored to different
classes of derivatives, which explains why all three are necessary.

Within the Model (2.2) framework, option prices are obtained by substituting the im-
plied volatility σ (M, τ) into the Black-Scholes formula. More precisely, the Black, 1976
formula using the forward price instead of the underlying asset price is considered. In-
deed, both the forward-based and underlying-based pricing formulas are equivalent in the-
ory, but the former takes advantage of the OptionMetrics dataset which provides forward
prices rather than underlying prices, and it allows circumventing the cumbersome task of
performing a daily extraction of implied dividend rates for the various option maturities.
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Because the moneyness defined in Equation (2.1) can be inverted to retrieve the strike price
through K = F0,τe

−
√
τM , the call11 and put prices are

c (M, τ) = e−rτF0,τ

[
Φ (δ1 (M))− e−

√
τMΦ (δ2 (M))

]
, (2.4)

p (M, τ) = e−rτF0,τ

[
−Φ (−δ1 (M)) + e−

√
τMΦ (−δ2 (M))

]
, (2.5)

where Φ is the standard normal cumulative distribution function,

δ1 (M) =
M

σ (M, τ)
+

1

2
σ (M, τ)

√
τ , and δ2 (M) =

M

σ (M, τ)
− 1

2
σ (M, τ)

√
τ .

Interpolation and extrapolation of the implied volatility

Derivatives traded over-the-counter often lack liquidity. Their pricing through mark-to-
market procedures can therefore be a challenging exercise. Determining prices of illiq-
uid derivatives is needed for several reasons: balance sheet assessment and corresponding
risk metrics calculation, financial statement reporting, or margin calls determination in the
presence of compensation by a clearinghouse.

Figure 2.1 shows that only a few maturities are actively traded on any day. A vanilla
option whose strike or maturity is not quoted publicly on an exchange is considered illiquid.
For such a contract, the pricing is made completely seamless by Model (2.2) as the implied
volatility can be directly obtained by substituting the option moneyness and maturity in the
latter formula. The computational effort required is close to nil, which makes the approach
extremely convenient for the quick valuation of a large portfolio of derivatives.

11Depending on the application, the call option prices are sometimes expressed as a function of the strike
price instead of the moneyness. In the Model (2.2) framework, the call price becomes

C (K, τ) = exp (−rτ) (F0,τΦ (d1 (K)) +KΦ (d2 (K)))

with

d1 (K) =
1

σ
(

1√
τ
log

F0,τ

K , τ
)√

τ
log

F0,τ

K
+ σ

(
1√
τ
log

F0,τ

K
, τ

)√
τ ,

d2 (K) = d1 (K)− σ

(
1√
τ
log

F0,τ

K
, τ

)√
τ .
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Figure 2.6: Typical Index-linked S&P 500 note payoff function

Consider for instance the mark-to-market of an index-linked S&P 500 note. A typical
terminal payoff is displayed in Figure 2.6. There are three thresholds: K1 for the “buffer"
region, K2 for the “accelerator" region, and K3 for the “ceiling" region. The terminal
payoff Xτ can be replicated with

Xτ = Sτ − C (K1, 0) + αC (K2, 0)− αC (K3, 0) , (2.6)

where Sτ is the time-τ underlying asset price and α is the return enhancement factor. The
price of calls whose payoff appears in (2.6) are often illiquid and thus can seldom be traded
directly, which complicates the valuation of the contract. Nevertheless, the IV surface
model (2.2) allows for continued, accurate mark-to-market of the note.

The left panels of Figure 2.7 present the estimated note price using either the quoted
options or Model (2.2) implied volatility surfaces, whereas the right panels contain the dif-
ference between the two approaches. The rows correspond to the pre-2008 crisis period
(first row), the financial turmoil (second and third row), and its aftermath (last row). Be-
cause only a limited number of maturities and strikes are quoted, it is often not possible to
observe quotes for options whose characteristics match exactly these of options embedded
in the note, an issue for the model-free approach. To remedy this issue, two alternative
notes are priced for the two closest (smaller and larger) maturities using the closest strikes
available for the buffer, the accelerator, and the ceiling. The desired note price is then
computed by linear interpolation. Due to liquidity issues, some strike prices appear and
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disappear during the note’s life, sometimes generating undesired price variation, which can
be witnessed in Panels A, C, E, and G of Figure 2.7. This phenomenon does not seem to
be related to the economic cycle and can appear at any moment during the note’s life.

These undesired price variations can result in unnecessary, large, and erroneous mark-
to-market movements. For example, in the two first rows of Figure 2.7, the note price
computed with the model-free approach spikes on two occasions at the end of 2003 and
2007. Panel A and Panel G also display long periods where note prices estimated with
quoted options are either overvalued or undervalued. However, using Model (2.2)’s implied
surfaces generates more stable note prices during the note’s life span.

The Carr & Madan formula and its discretization

For the pricing of several other contingent claims which are not call and put options, the
interpolation and extrapolation approach serves as a building block within the Carr and
Madan, 2001 methodology. Such a method relies on options prices for a continuum of
strike prices, which is provided by Model (2.2).

Carr and Madan, 2001 show that any twice differentiable payoff function can be eval-
uated using infinitely many out-of-the-money put and call option prices with the same
time-to-maturity as the payoff horizon. In practice, the valuation of such a payoff is ap-
plied in a model-free fashion using a discrete set of traded options. The volatility surface
of Model (2.2) improves the numerical implementation in two ways. First, the integrals
involving out-of-the-money options can be truncated at levels of moneyness beyond those
taken from the data. Second, these same integrals do not need to be discretized with respect
to the strike price dimension.
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Left panels display the price of a note estimated using (i) the closest observed quoted option prices in con-
junction with linear interpolation and (ii) Model (2.2). Right panels display the price difference between the
two methods. The first row is a note with a maturity of 550 days and strikes K1 = 775, K2 = 850, and
K3 = 975. The second row is a note with a maturity of 800 days and strikes K1 = 1425, K2 = 1550, and
K3 = 1675. The third row is a note with a maturity of 730 days and strikes K1 = 1000, K2 = 1200, and
K3 = 1400. The last row is a note with a maturity of 730 days and strikes K1 = 1350, K2 = 1550, and
K3 = 1700.

Figure 2.7: Mark-to-market of structured notes
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The main result of Carr and Madan, 2001 is adapted herein to provide an integration
with respect to the moneyness defined in Equation (2.1) rather than the strike price. In
what follows, the cash-and-carry relationship Ft,τ = St exp ((r − q) τ) is assumed to hold,
where r is the risk-free rate and q is the continuously compounded dividend yield.

For a twice differentiable payoff function f with second derivative f ′′, the Carr and
Madan, 2001 formula becomes

e−rτEQ [f (Sτ )] =e−rτf (F0,τ ) +
√
τF0,τ

∫ 0

−∞
f ′′
(
F0,τe

−
√
τM
)
c (M, τ) e−

√
τMdM

+
√
τF0,τ

∫ ∞

0
f ′′
(
F0,τe

−
√
τM
)
p (M, τ) e−

√
τMdM

(2.7)

where Q is the risk-neutral probability measure. The proof is in Appendix A.5. A numerical
implementation of Equation (2.7) requires truncation of the tails of the integral. The lower
and upper bounds m and m are set such that

e−rτEQ [f (Sτ )] ∼=e−rτf (F0,τ ) +
√
τF0,τ

∫ 0

m
f ′′
(
F0,τe

−
√
τM
)
c (M, τ) e−

√
τMdM

+
√
τF0,τ

∫ m

0
f ′′
(
F0,τe

−
√
τM
)
p (M, τ) e−

√
τMdM.

(2.8)

The bounds selection is determined by the extrapolation capacity of the implied volatility
surface model. Because Model (2.2) provides a closed-form solution for option prices for
a continuum of moneyness, the two integrals in Equation (2.8) can be computed without
being adversely impacted by the discretization bias stemming from the availability of only
a finite number of strike prices.

Among all potential applications, a particularly interesting one consists in recovering
risk-neutral moments of the underlying asset price. The continuum of out-of-the-money
options across moneyness levels is also involved in the calculation of the VIX and the val-
uation of variance swaps (Neuberger, 1994, Carr and Madan, 2001, Schneider and Trojani,
2015). As a matter of fact, the VIX is the expected log-return of the S&P 500 forward
contract. These economic quantities can be assessed with increased accuracy when the
implied volatility surface is smoothed and not restricted to available market data points.
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December 1, 2008 December 2, 2019

τ = 45 τ = 199 τ = 45 τ = 199

A B C A B C A B C A B C

VIX 66.72 66.70 66.70 54.95 57.68 58.80 15.48 16.10 16.22 18.27 18.11 18.17
Skewness -1.36 -1.41 -1.41 -1.35 -1.24 -1.63 -2.40 -2.07 -2.31 -2.43 -2.52 -2.65
Kurtosis 5.98 6.21 6.22 5.08 4.69 7.15 11.84 10.39 14.10 11.70 13.89 15.72
Num options 100 47 218 99

Estimation of the VIX and risk-neutral moments of the forward contract log-return log(Fτ,0/F0,τ ) using
either the quoted options and a discretization of Equation (2.8) (column A) or the Equation (2.8) on fitted
surfaces. In the latter case, the moneyness range is the one provided by quoted options of the same maturity
(column B) or it is extrapolated (column C). The extrapolated moneyness range is the largest and smallest
moneyness (M ) observed for all maturities for a given day.

Table 2.4: S&P 500 return risk-neutral moments

Table 2.4 presents the VIX and risk-neutral moments of the forward contract log-return
log(Fτ,0/F0,τ ) using either the quoted options and a discretization of Equation (2.8) (col-
umn A) or the Equation (2.8) on fitted surfaces. In the latter case, the moneyness range
is the one provided by the quoted options with interpolation only12 (column B), or it is
extrapolated (column C). For short maturities, the number of quoted options spans a wider
range resulting in similar results for the three approaches. However, for the longest two
maturities, there are important disparities across the three methods due to the lack of ob-
servations.13

12The integration is applied on the same moneyness range as that provided by quoted options of the same
maturity.

13As an additional verification of Model (2.2)’s extrapolation ability, we work with simulated instead of
real data. We choose to simulate the Andersen et al., 2015 underlying asset dynamics model with various
starting values for the latent variables to create different scenarios. Then we use Model (2.2) to extrapolate
the IV surface from simulated option prices. We find a high-quality fit between the extrapolated and the
simulated surfaces. Furthermore, we confirm a very accurate estimation of the risk-neutral moments using
the extrapolated IV surfaces.
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Extraction of the risk-neutral density

A particularly relevant application of option pricing on a continuum of strikes is the ex-
traction of the risk-neutral density of the underlying asset. Breeden and Litzenberger, 1978
initially noted that such distribution is related to the convexity of option prices with respect
to the strike, and that it could in theory be retrieved from a continuous implied volatility
surface. Although the risk-neutral underlying price distribution is interesting in itself, its
extraction provides incremental benefits in terms of derivatives pricing over the two other
aforementioned methods. Indeed, some derivatives are not options and do not have a twice
differentiable payoff function, rendering the interpolation and the Carr and Madan, 2001
methods inapplicable. Digital options with binary payoffs are a particular example. For
such derivatives, obtaining the risk-neutral distribution is a necessary endeavor for pricing.

For a given day, the index spot price risk-neutral density function gτ in τ years can be
calculated through

gτ (K) = erτ
∂2C(K, τ)

∂K2
, K > 0.

Within the Model (2.2) framework, the risk-neutral density function14 is

erτ
∂2c

∂K2
=
F0,τ

K2
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τ

∂δ1
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− 1√
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∂M2

)
, (2.9)
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2π

exp
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2
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)

is the density function of a standard normal random vari-
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14The arguments of the functions are omitted to simplify the notation.
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Risk-neutral density functions hτ (y) = exp(y)gτ (exp(y)) of the log-prices derived from Model (2.2) call
prices. January 4, 1996, is the first day in the sample. May 8, 2006, is a low volatility day. December 1,
2008, represents the peak of the 2008 financial crisis. December 31, 2019, is the last day of the sample.

Figure 2.8: Log-price risk-neutral densities implied by Model (2.2).

The proof is in Appendix A.6.1. Appendix A.6.1 shows that
∫∞
0
gτ (K)dK = 1 which is

one of the fundamental properties of a density function.

For the same four days that were selected in Figure 2.1, a set of risk-neutral log-price
densities hτ (y) = exp(y)gτ (exp(y)), each corresponding to a different maturity τ , is dis-
played in Figure 2.8. In all cases, volatility increases with time-to-maturity. Obviously,
the financial crisis shows a greater volatility for all maturities. For all four dates, Model
(2.2) implied densities exhibit negative skewness which is particularly apparent in 2008.
Appendix A.7 presents the analogue of Figure 2.8 for both the CT and GG models. The
polynomial structure of GG model which misbehaves for moneyness levels lying outside
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the observed range and the discontinuities in the CT model produce risk-neutral density
functions that may take negative values and have irregular patterns, especially in the tails
of the distribution.

2.4.2 Risk management for options

The smooth implied volatility surface of Model (2.2) provides the additional benefit, on
top of derivatives pricing, to allow for the computation of “Greek" parameter sensitivities
of option prices that are essential for replicating option payoffs or, more broadly speaking,
managing positions on option portfolios. As shown in Appendix A.6.2, the call option
delta and gamma15 are

∆ = e−qτ

(
Φ (δ1) + φ (δ1)

∂σ

∂M

)
, (2.10)

Γ =
e−qτ

√
τS0

φ (δ1)

(
∂δ1
∂M

− δ1
∂δ1
∂M

∂σ

∂M
+

∂2σ

∂M2

)
, (2.11)

where ∂d1/∂M , ∂σ/∂M , and ∂2σ/∂M2 are defined in Section 2.4.1. If the implied volatil-
ity surface is flat, then ∂σ/∂M = ∂2σ/∂M2 = 0 and the above formulas simplify into
the Black-Scholes Greeks. Therefore, the extra terms are measuring the sensitivity of the
implied volatility to the variation of the underlying asset price through the moneyness vari-
ation.

Using the factor specification of implied volatility, the computation of ∂σ/∂M and
∂2σ/∂M2 is immediate and its accuracy is not undermined by the limited availability of
traded strikes and maturities. This clearly represents a significant advantage for option risk
management purposes.

It should also be noted that the delta and the gamma defined above do not depend on
any assumption regarding the dynamics of the underlying asset. Rather, they are consistent
with the observed shape of the volatility smile and, as such, they comply with Bates, 2005’s

15The functions’ arguments are omitted to simplify the notation.
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definition of smile-implied Greeks:16

∆ =
1

S0

(
c−K

∂c

∂K

)
, Γ =

K2

S2
0

∂2c

∂K2
.

This is particularly useful for illiquid options, e.g. OTC transactions, having a moneyness
or a maturity that is quite remote from those of publicly quoted ones; a model-free assess-
ment of associated partial derivatives relying purely on finite differences would most likely
prove unstable due to the paucity of related observations.

Another Greek parameter of high importance is the vega, i.e., the sensitivity of the
option price with respect to the implied volatility. As shown in Appendix A.6.2, the call
option vega is

ϑ =
∂c

∂σ
= e−rτF0,τφ (δ1)

√
τ .

The call price sensitivity to the long-term volatility level is ∂σ
∂β1

∂c
∂σ

, and its sensitivity to the
maturity slope is ∂σ

∂β2

∂c
∂σ
.

2.5 Conclusion

This study develops a factor model for the representation of volatility surfaces. The de-
sign of the model makes it very parsimonious, easy to interpret, seamless to estimate and
quick to compute. Factors underlying the representation possess very intuitive meaning,
i.e., long-term level, time-to-maturity slope, moneyness slope, smile attenuation and smirk.
They are designed in accordance with the most salient empirical features of volatility sur-
faces as evidenced by the commonalities between loading vectors obtained from a PCA
analysis on historical surfaces and the designed model factors.

The construction of the model factors leads to volatility-surface-implied underlying
asset densities that are well-behaved and smooth. In particular, the convenient asymptotic
behaviour of the surface imposed by the model for large maturities and moneyness levels

16Bates, 2005 formulas for the delta and the gamma rely on the scale invariance of option prices, a property
verified by Model (2.2). The implied volatility is a function of the moneyness M = 1√

τ
ln

F0,τ

K which is not
affected when both the strike price and the underlying price are multiplied by a constant.
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allows for extrapolation beyond ranges observed in the data. This key characteristic of the
model is paramount in the applications discussed in this paper which crucially rely upon
extrapolation ability. Moreover, performing such extrapolation is a necessary endeavour
for multiple market participants requiring frequent marking-to-market of illiquid options.
Furthermore, our model produces IV surfaces that are twice continuously differentiable
with respect to the moneyness level, thereby limiting instances of model prices inconsistent
with no-arbitrage principles.

The fitting performance is assessed on historical S&P 500 option prices obtained from
the OptionMetrics database. Benchmarking against alternative literature models provides
evidence of strong calibration outperformance versus the competing Heston, 1993, Goncalves
and Guidolin, 2006, and Chalamandaris and Tsekrekos, 2011 models, especially in recent
periods. Indeed, the specification of the two latter factor-based benchmarks exhibits explo-
sive asymptotic behaviour, leading to poor fitting performance for deep-out-of-the-money
puts. By contrast, our model is much better suited for extrapolation to extreme moneyness
levels.

A screening procedure based on the Davis and Hobson, 2007 methodology highlights
that option prices generated by the model developed herein very infrequently violate no-
arbitrage restrictions, and that the model tends to smooth out theoretical arbitrage oppor-
tunities found in the data.

Several applications of the model are related to derivatives pricing and risk manage-
ment. Three different derivatives pricing methods, namely (i) pure interpolation or extrap-
olation, (ii) the Carr-Madan formula and (iii) risk-neutral density extraction through the
Breeden and Litzenberger, 1978 methodology, are shown to be applicable in conjunction
with the model, using fitted surfaces stemming from the latter as their main input. The pre-
sented pricing methods enable the valuation of different classes of illiquid derivatives for
which the mark-to-market is not straightforward. Closed-form expressions for European
option Greek letters (e.g., the delta and the gamma) in the context of the implied volatility
surface model are presented. The straightforward computation of option sensitivities in
this setting can facilitate the implementation of hedging procedures for options, especially
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for those whose strike or maturity is not quoted on public exchanges.

Further work expanding on the present study could include designing hedging strate-
gies consistent with the volatility surface factor representation and assessing the adequacy
of the model for options on individual stocks or alternative underlying assets instead of
equity indices.
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Chapter 3

Joint dynamics for the underlying asset and its
implied volatility surface: A new methodology
for option risk management

Abstract∗

The factor-based representation of implied volatility surfaces developed in François et
al., 2022 is fitted to daily observed implied volatility surfaces from 1996 to 2019. The
extracted time series of factor weight associated with the implied volatility surface’s char-
acteristics is then jointly modelled alongside the S&P 500 log-returns. The complex joint
dynamics are captured with a stochastic model reminiscent of the GARCH family with
Normal Inverse Gaussian innovations and a Gaussian copula. The model is the first step
towards predicting option prices and is required for the risk assessment of volatility posi-
tions such as straddles, strangles, and the VIX on horizons ranging from one to five days.

Keywords: Implied volatility, Dynamic factor model, Risk management, VIX.

∗Joint work with Pascal François, Geneviève Gauthier, and Frédéric Godin. Fraçois and Gauthier are
affiliated with HEC Montréal and Godin is affiliated with Concordia university.
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3.1 Introduction

The Black and Scholes, 1973 model revolutionized the practice of option trading. Not only
because it provided the first arbitrage-based, explicit option pricing formula, but also be-
cause it highlighted the bijective relationship between the option premium and its implied
volatility (IV). Since then, the IV surface has become the standard representation of option
market prices. It is also the output to which the performance of option pricing models is
benchmarked (Andersen et al., 2015). A rich option pricing literature has expanded over
the last four decades to extend the original Black and Scholes framework. Most contribu-
tions to this literature build upon the standard option pricing approach (SOPA). Despite
many different modelling assumptions, the SOPA typically proceeds in two steps. First,
it posits the dynamics of the underlying asset return under the historical probability mea-
sure. Various additional state variables can be specified (such as volatility, interest rates,
and convenience yields) to augment the model realism.2 Next, the SOPA establishes the
rules for the arbitrage-free valuation of contingent claims, which implies characterizing a
change of probability measure.

In this paper, we opt for a radically different route to model the dynamics of option
prices. We build on an early, yet underdeveloped literature that suggests using the IV sur-
face not as a model output but rather as an input. We propose a dynamic extension of the
parametric IV surface of François et al., 2022 that we couple with an asymmetric GARCH
process with non-Gaussian innovations for the underlying asset return. Our approach (la-
belled the JIVR model, which stands for Joint Implied Volatility and Return) forecasts the
future distributions of S&P 500 index straddle positions and of VIX in a very accurate
manner. It successfully does so because using the IV surface integrates the entire market
information and contributes to properly assessing higher-order moments and capturing tail
risk. A noteworthy merit of the JIVR model is its easy implementation. The estimation of

2A non-exhaustive list of modelling innovations includes: GARCH processes in discrete time (Glosten
et al., 1993, Duan, 1995, Heston and Nandi, 2000), stochastic volatility (Hull and White, 1987, Heston,
1993, Bates, 1996, Duffie et al., 2000), jumps in returns and in volatility (Merton, 1976, Broadie et al., 2007,
Bollerslev and Todorov, 2011), two-factor volatility (Bates, 2000, Christoffersen et al., 2008, Andersen et al.,
2015), non-normal innovations (Barndorff-Nielsen, 1998, Carr and Wu, 2004, Christoffersen et al., 2010).
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parameters is fast and only requires standard techniques such as least-square regressions
and maximum likelihood.3 To highlight the benefits of our approach, one can make a com-
parison with the modelling of the yield curve. As noted by Carr and Wu, 2016, 2020, using
the IV surface as a model input is reminiscent of the Heath-Jarrow-Morton (Heath et al.,
1992) framework for the term structure: a tight fit with current market data is guaranteed,
and forecasting option prices takes full advantage of the whole market information.4 First
attempts at directly modelling the IV surface include Zhu and Avellaneda, 1998, Schön-
bucher, 1999, Fengler, 2006, and Daglish et al., 2007. These early works assume diffusion
processes for implied volatilities, and they highlight the difficulty of deriving constraints
on the risk-neutral drift to prevent arbitrage. Carr and Wu, 2016 also emphasizes the prob-
lematic fit with the current shape of the IV surface. For that reason, Carr and Wu, 2016
restrict the modelling of the IV surface to near-term dynamics. They suggest using their
framework in conjunction with a parametric specification for the underlying asset return.
In the same spirit, Carr and Wu, 2020 limits the diffusion modelling of the IV to the man-
agement of the instantaneous P&L of an option position. Aside from diffusions, a related
approach consists in extracting the IV surface explanatory factors in a non-parametric fash-
ion (Cont and Da Fonseca, 2002, Israelov and Kelly, 2017). This method, however, only
applies to dense regions of the IV surface. It, therefore, rejects peripheral options (deep-
out-the-money and long-maturity) that are very informative about higher-order moments.
By contrast, the JIVR model works with an asymptotically well-behaved, parametric IV
surface representation that allows for clean interpolation and extrapolation.5

3This is in sharp contrast with the most recent models of the SOPA that work with several latent variables
(e.g., volatility components) and must therefore rely on heavy filtering techniques for estimation (see Bates,
2022, for a recent review).

4Pursuing the analogy with term structure modelling, Bates, 2022 writes: “Implied volatility surfaces
describe the pricing failures of [the Black-Scholes] model, in the same way that yields inferred from a bond
pricing model premised on identical discount rates for all maturities are used to describe nonflat term struc-
tures of bond yields.” That argument also applies to all Black-Scholes extensions that yield a closer, still
imperfect fit on the IV surface.

5In their study on S&P 500 options, François et al., 2022 show that this IV surface specification leaves
little room for arbitrage. They also document that its fitting performance compares favourably with existing
benchmarks.
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Most importantly, we show that a dynamic IV surface can be consistently incorporated
with a model for underlying asset returns. Focusing on S&P 500 index options, we opt
for an asymmetric GARCH with non-Gaussian innovations to capture the large variations
observed in returns and in the characteristics of the IV surface. The variance has two com-
ponents, as suggested by Christoffersen et al., 2013. Oh and Park, 2022 show that the
adequate estimation of a two-factor variance process requires additional sources of infor-
mation from the derivatives market. In contrast to the literature, our framework exploits
the available forward-looking information by connecting one of the variance factors to the
1-month, at-the-money (ATM) IV level. This approach displays better fitting performance
compared to a conventional one-factor NGARCH while preserving the stability of param-
eters. Furthermore, the first coefficient of the IV surface, representing the long-term ATM
implied volatility, is shown to have a volatility that is proportional to the 1-month ATM
implied volatility level – a result in support of Carr and Wu, 2016. The other IV factors
follow a GARCH-type process. To complete the JIVR model, a Gaussian copula captures
the dependence structure between the S&P 500 log-returns and the IV factors.

While our framework for joint underlying asset returns and IV surface dynamics has
many relevant applications, we focus on the risk management of volatility strategies. Two
validation tests are considered. First, we perform the backtests of the Value-at-Risk (VaR)
for S&P 500 index straddles and strangles from January 2, 1996, to December 31, 2020.
Our 1-day and 5-day VaR estimates successfully pass the coverage test (Kupiec et al.,
1995) on both tails of the distribution. Second, we forecast the distribution of the VIX
index. We use as a benchmark a GARCH model with non-normal innovations directly ap-
plied to the VIX. Using an expanding window starting in 2014, the yearly comparison of
log-likelihoods documents the superior performance of the JIVR model. Overall, the two
aforementioned tests show the ability of the JIVR model to adequately manage volatility
positions through the accurate forecasting of IV surface.

The rest of the paper is organized as follows. Section 3.2 presents the data. Section
3.3 reviews the parametric specification that serves as a building block for our dynamic IV
surface model. Section 3.4 describes and assembles the components of the JIVR model,
which is estimated in Section 3.5. Section 3.6 explains the risk management applications.
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Section 3.7 concludes.

3.2 Data

The OptionMetrics database provides the dataset, which includes daily quoted bid and ask
prices of European call and put options on the S&P 500 index (SPX options) from the
CBOE. The dataset extends from January 4, 1996, to December 31, 2020. On any given
day t, the data includes the option strike priceK, its maturity, and the associated underlying
asset forward price Ft,τ , with τ denoting the time-to-maturity. The OptionMetrics database
also includes the zero-coupon yield curve and dividend yields.6

Option exclusion filters are applied to the dataset, which mostly follows the Bakshi et
al., 1997 guidelines. More precisely, we exclude all in-the-money options as well as any
option with any of the following characteristics: a time-to-maturity shorter than six trading
days, a price lower than $3/8, a bid price of $0, or a bid-ask spread larger than 175% of the
option mid-price.7 The final dataset includes 6,292 days and a total of 3,814,217 option
quotes.8

For an option with strike price K and time-to-maturity τ = T − t, the moneyness is
defined as

Mt =
1√
τ
log

Ft,τ

K
. (3.1)

According to that definition, OTM calls (puts) are associated with a negative (positive)
6The OptionMetrics forward price is computed as

Ft,τ = Se(rt,τ−qt)τ ,

where rt,τ is the time-t continuously compounded risk-free rate for time-to-maturity τ , and qt is the S&P
500 dividend yield.

7This last criterion is similar to that of Azzone and Baviera, 2022. When the ratio of the bid-ask spread
over the mid-price is large, the latter induces implied volatilities largely deviating from the rest of the IV
surface. Options excluded due to this criterion represent a tiny proportion (0.3%) of the total number of
options in the dataset.

8The IV surface on October 9, 2006, is removed from the dataset because it is very erratic and most
likely due to unreliable data on that day.
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value for M . Implied volatilities are calculated by inverting the Black and Scholes, 1973
formula, using the mid-quote price as the observed price. Table 3.1 provides a brief de-
scription of the sample IVs. Detailed statistics are reported for buckets of moneyness and
maturity. The average IV increases withM , reflecting the well-known smile phenomenon,
except for DOTM calls (M < −0.2), where index option smiles typically exhibit a smirk.

On average, the term structure of IVs is slightly (but not monotonically) decreasing.
The standard deviation of the IV decreases with the time-to-maturity, indicating a time-
varying time-to-maturity slope.

Calls Puts

M ≤ −0.2 −0.2 < M ≤ 0 0 < M ≤ 0.2 0.2 < M ≤ 0.8 M ≥ 0.8 All

Mean (%) 18.89 15.85 20.83 29.53 47.69 25.37
Standard deviation (%) 7.57 5.89 6.27 7.25 12.69 11.74
Number of contracts 334,482 839,841 841,813 1,439,416 358,665 3,814,217

Days-to-maturity

τ̃ ≤ 30 30 < τ̃ ≤ 90 90 < τ̃ ≤ 180 180 < τ̃ ≤ 365 τ̃ ≥ 365 All

Mean (%) 27.27 25.54 25.99 25.36 23.00 25.37
Standard deviation (%) 15.48 12.75 12.22 10.77 8.72 11.74
Number of contracts 329,083 1,115,684 722,542 738,335 908,573 3,814,217

Some descriptive statistics of the daily SPX options implied volatility (IV) surfaces from January 4, 1996, to
December 31, 2020, grouped by buckets of moneyness and time-to-maturity. M characterizes the moneyness
defined in Equation (3.1), and τ̃ represents the time-to-maturity of the option in days.

Table 3.1: Descriptive statistics of the SPX options implied volatilities

3.3 Factor-based representation of volatility surfaces

This section recalls the static parametric volatility surface representation model of François
et al., 2022 on which the subsequent dynamic model is based.

On any day t, François et al., 2022 represent the implied volatility surface (i.e., IVs for
any combination of moneyness M and time-to-maturity τ ) with the following five-factor
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model:

σ (M, τ, βt) = βt,1︸︷︷︸
Long-term
ATM IV

+βt,2 e−
√

τ/Tconv︸ ︷︷ ︸
Time-to-maturity slope

+βt,3

(
M1{M≥0} +

e2M − 1

e2M + 1
1{M<0}

)
︸ ︷︷ ︸

Moneyness slope

+βt,4

(
1− e−M2

)
log(τ/Tmax)︸ ︷︷ ︸

Smile attenuation

+βt,5

(
1− e(3M)3

)
log(τ/Tmax)1{M<0}︸ ︷︷ ︸
Smirk

, τ ∈ [Tmin, Tmax]

(3.2)
where βt = (βt,1, βt,2, βt,3, βt,4, βt,5) are the stochastic factors, subsequently referred to as
the factor coefficients.

These factors represent the long-term at-the-money (ATM) level, the time-to-maturity
slope, the moneyness slope, the smile attenuation over long maturities, and the smirk, re-
spectively.

The model is fitted daily (i.e., for each t) to the options prices by minimizing the sum
of squared IV differences between the model and the observed prices while incorporating
prior information to maintain the financial interpretability of the coefficients.9

The black line in Panel A of Figure 3.1 represents the S&P 500 log-returns. The other
five panels contain the time series of estimated coefficients βt,1, . . . , βt,5 (black lines). The
time-to-maturity slope in Equation (3.2) represents the short-term ATM implied volatility
minus the long-term ATM implied volatility.10 Thus, the coefficient β2 is negative (resp.
positive) when the short-term implied volatility is lower (resp. greater) than the long-term
implied volatility. As expected, Panels B and C of Figure 3.1 show that the long-term
level and the slope strongly increase during the 2008 subprime crisis and the COVID-19
pandemic.

Table 3.2 presents summary statistics for fitted factor coefficients. The long-term level
coefficient βt,1 varies between 0.12 and 0.42 and displays a mean of 0.2, which is consistent
with expectations for a long-term volatility level. The time-to-maturity slope βt,2 ranges
between -0.2 to 0.92, and its skewness is strongly positive at 2.66, indicating that it slightly

9Following François et al., 2022, the model horizon Tmax is set to 5 years and Tconv to 0.25 to capture the
fast convexity change in the IV term structure. Tmin = 6

365 corresponds to the smallest time-to-maturity in
our sample. The parameters are estimated by means of least-square regressions with a Bayesian adjustment.

10Due to the fact that σt (0, 0, βt)− lim
τ→∞

σt (0, τ, βt) = βt,2.
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Panel A: S&P 500 log-returns
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Panel D: Moneyness slope (βt,3)
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On a two-scale graph, Panel A presents the S&P 500 log-returns (black line) and its estimated annualized
volatility (grey line) obtained from the conditional variance (3.3) of Section’s 3.4 dynamic model. The other
panels display daily estimates of the factor coefficients (black line) as well as their associated estimated
volatility (grey line) computed from Section 3.4’s conditional variances (3.4) or (3.5).

Figure 3.1: S&P 500 daily returns, daily IV surface coefficients and their volatilities
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Min Q1 Median Q3 Max Mean Std Skew Kurt
Long-term level (βt,1) 0.12 0.17 0.19 0.23 0.42 0.20 0.05 1.02 4.54

TmT Slope (βt,2) −0.20 −0.09 −0.05 0.00 0.92 −0.03 0.09 2.66 17.08

Moneyness Slope (βt,3) 0.12 0.21 0.24 0.27 0.33 0.24 0.04 −0.38 2.87

Smile attenuation (βt,4) −0.06 −0.01 0.00 0.02 0.07 0.00 0.02 0.19 3.71

Smirk (βt,5) −0.08 −0.03 −0.02 −0.01 0.04 −0.02 0.02 −0.44 3.48

Short-term vol. (βt,1 + βt,2) 0.02 0.09 0.15 0.21 1.21 0.17 0.11 2.40 13.14

Summary statistics of the factor coefficient estimates. The (ATM) long-term level is βt,1. TmT slope is
the term structure slope βt,2, that is, the difference between the short-term and the long-term ATM implied
volatilities. The moneyness slope corresponds to βt,3 and the smile attenuation to βt,4. The moneyness smirk
for call options is captured by βt,5. The last row (short-term volatility) is obtained by summing the long-term
level factor with the time-to-maturity slope factor (βt,1 + βt,2). It accounts for the interaction between βt,1
and βt,2.

Table 3.2: Summary statistics of the factor coefficients

decreases during periods of calm while it strongly increases during periods of turmoil.
The three quartiles for the time-to-maturity slope are all negative, showing that the IV
term structure is rarely increasing.

(1) (2) (3) (4) (5) (6) (7)

(1) S&P 500 log-returns 1 -0.54 -0.71 0.06 -0.21 -0.29 -0.77
(2) Long-term level (∆βt,1) -0.62 1 0.16 -0.06 0.24 0.15 0.29
(3) TmT Slope (∆βt,2) -0.76 0.33 1 -0.03 0.13 0.31 0.98
(4) Moneyness Slope (∆βt,3) 0.11 -0.06 -0.09 1 0.27 0.13 -0.03
(5) Smile attenuation (∆βt,4) -0.14 0.18 0.06 0.24 1 -0.05 0.16
(6) Smirk (∆βt,5) -0.24 0.15 0.33 0.11 -0.06 1 0.33
(7) Short-term vol. (∆(βt,1 + βt,2)) -0.81 0.46 0.99 -0.09 0.08 0.33 1

Pearson (below the diagonal) and Spearman (bold numbers above the diagonal) correlations between the
S&P 500 log-returns and the variations of the coefficients ∆βt,i = βt,i − βt−1,i from January 4, 1996, to
December 31, 2020.

Table 3.3: Correlation matrix of factor coefficient variations
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Table 3.3 displays the sample correlation matrix applied to the S&P 500 log-returns and
the factor coefficient estimate daily variations ∆βt = βt,i − βt−1,i, i = 1, . . . , 5. The S&P
500 log-returns are strongly negatively correlated with variations of the long-term volatility
coefficient ∆β1 and with those of the time-to-maturity slope ∆β2, but even more so with
those of the short-term ATM implied volatility ∆(βt,1 + βt,2). This is a manifestation of
the leverage effect generating higher short-term volatility that is associated with negative
S&P 500 log-returns. Thus, negative index returns generally impact long-term volatility
but not as much as short-term volatility. The almost perfect correlation between ∆β2 and
∆(β1 + β2) highlights the stability of long-term IVs.

3.4 The IV surface dynamics

Early attempts at directly modelling the IV dynamics (i.e. the “reverse approach" discussed
in the introduction) consist in treating the implied volatilities as state variables (e.g. Schön-
bucher, 1999). But, as Carr and Wu, 2020 emphasized, assuming diffusion dynamics for
IVs places strong restrictions on the drift and volatility coefficients to bar arbitrage, hence
rendering the approach hardly tractable.

To circumvent this issue, we first rely on a factor representation of the IVs, which has
been shown to leave little room for arbitrage (François et al., 2022). That factor represen-
tation, given by Equation (2.2), serves as a foundation for a dynamic representation of the
IV surface.

Three ingredients are required for the model to be fully characterized: (i) the physi-
cal dynamics for the underlying S&P 500 log-returns with time-varying volatility, (ii) the
physical dynamics for each of the five-factor coefficients, and (iii) a dependence structure
between the underlying asset and the coefficients. The contribution of the three model
components to the accurate modelling of IV surface dynamics is tested and validated in a
robustness check (see Appendix B.1).
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3.4.1 S&P 500 log-returns

In the spirit of Christoffersen et al., 2008’s GARCH volatility component model, in which
the conditional volatility is mean-reverting around a long-run component, the log-return
dynamics follow an adaptation of an NGARCH(1,1)-NIG model where the variance is an-
chored in the 1-month ATM implied volatility,11 thereby incorporating the forward-looking
information of the option data. The excess log-return12 Rt+1 = log St+1

St
− rt + qt satisfies

Rt+1 = λht+1,R∆− ψ(
√
ht+1,R∆) +

√
ht+1,R∆ϵt+1,R ,

ht+1,R = Vt + κR (ht,R − Vt) + aRht,R(ϵ
2
t,R − 1− 2γRϵt,R), (3.3)√

Vt = ωRσ

(
0,

1

12
, βt

)
,

where ∆ = 1
252

represents the daily time step.13 The parameter λ reflects the equity risk
premium. The sequence of innovations {ϵt,R}Tt=1 is constituted of independent standardized
NIG random variables with two parameters ζ and ϕ which influence the skewness and the
kurtosis of the distribution.14 The convexity correction ψ(

√
ht+1,R∆) is derived from the

cumulant generating function ψ of the standardized NIG distribution, which is described

11As shown by Ledoit and Santa-Clara, 1998 and Yan, 2011, the very short end of the IV surface at
the ATM point converges to the instantaneous volatility under the Equivalent Martingale Measure, i.e.
ωR should be very close to 1 in the absence of volatility risk premium. As shown in Christoffersen et
al., 2008, the parameter ωR should be different than 1. Note that in our framework, σ

(
0, 1

12 , βt
)

=(
βt,1 + βt,2 exp

(
−
√

1
12

1
Tconv

))
.

12S denotes the index level, r is the daily risk-free rate and q stands for the daily dividend yield.
13The conditional variance dynamics can be rewritten as

ht+1,R = (1− κR)Vt +
(
κR − aR(γ

2
R + 1)

)
ht + aRht (ϵt,R − γR)

2
.

Therefore, the conditional variance stays nonnegative if Vt > 0, 0 ≤ κR ≤ 1 and |γR| ≤
√

κR−aR

aR
.

14Their expectation, variance, skewness and excess kurtosis are, respectively:

E[ϵt,R] = 0, E[ϵ2t,R] = 1, E[ϵ3t,R] =
3ζ

ϕ2
and E[ϵ4t,R]− 3 = 3

(ϕ2 + 5ζ2

ϕ4

)
.
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in Appendix B.5.15

According to Equation (3.3), the conditional annualized daily variance of the S&P 500
log-returns, ht,R, exhibits mean-reverting behaviour around a fraction of the 1-month ATM
squared implied volatility. The conditional variance noise term

(
ϵ2t,R − 1− 2ϵt,RγR

)
is

centered around 0. Results in Appendix B.1 substantiate the largely superior fitting per-
formance of the standalone S&P 500 log-returns representation stemming from this novel
characterization of the variance process over a NGARCH-NIG(1,1) model.

3.4.2 Factor coefficient dynamics

The second model component specifies the long-term ATM surface level dynamics for βt,1.
As in Carr and Wu, 2016, we assume that the volatility of the implied volatility (the volvol)
is proportional to the implied volatility level. That assumption is substantiated by Figure
3.2, which reports the time series of the 1-month ATM implied volatility obtained from
Equation (2.2) and a proxy of the volvol consisting of the sample standard deviation of
∆β1 computed with a 5-day rolling window. On a two-scale graph, Figure 3.2 highlights
the similarity of the two time series.

In line with the evidence in Figure 3.2, we propose a volatility process for the long-
term level (βt,1) that is structurally similar to that of the underlying asset volatility process.
The ATM long-term level of the IV surface (βt,1) evolution is therefore modelled with an
AR-NGARCH(1,1)-NIG model:

βt+1,1 = α1 +
5∑

j=1

θ1,jβt,j +
√
ht+1,1∆ϵt+1,1,

ht+1,1 = Ut + κ1 (ht,1 − Ut) + a1ht,1(ϵ
2
t,1 − 1− 2ϵt,1γ1), (3.4)√

Ut = ω1σ

(
0,

1

12
, βt

)
,

15For −
√
ζ2 + ϕ2 − ζ < z <

√
ζ2 + ϕ2 − ζ, the cumulant generating function is given by

ψ(z) =
ϕ2

ϕ2 + ζ2

(
− ζz + ϕ2 − ϕ

√
ϕ2 + ζ2 − (ζ + z)2

)
.
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The long-term volatility of volatility proxy corresponds to the sample standard deviation of ∆β1 over
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Figure 3.2: Comparing the 1-month ATM IV to the long-term IV volatility proxy

where the variance process {ht,1} exhibits mean-reversion around a fraction ω1 of the 1-
month ATM implied volatility.

The evolution of the four other daily coefficients of Equation (2.2) is represented by an
AR-NGARCH(1,1)-NIG process. For i = 2, 3, 4, 5,

βt+1,i = αi +
5∑

j=1

θi,jβt,j + νβt−1,21{i=2} +
√
ht+1,i∆ϵt+1,i

ht+1,i = σ2
i + κi

(
ht,i − σ2

i

)
+ aiht,i

(
ϵ2t,i − 1− 2ϵt,iγi

)
.

(3.5)

A second-order lag for the time-to-maturity slope coefficient is included in the specifica-
tion to capture the auto-correlation present in its level and its variations. The IV surface
coefficients exhibit strong autocorrelation, parameters θi,i, i = 1, . . . , 5 are expected to be
close to 1.

3.4.3 Dependence structure

Specifying a dependence structure completes the modelling framework. A Gaussian cop-
ula captures the dependence among the NIG innovations (ϵt,R, ϵt,1, ..., ϵt,5). Interactions
between the IV surface coefficients are captured both through auto-regressive parameters
θi,j , i ̸= j, and through the dependence between the innovations ϵt,i, i ∈ {R, 1, . . . , 5}.
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Equations (3.3)-(3.5) coupled with the dependence structure of the Gaussian copula
comprehensively describe the dynamics of the joint implied volatility and return (JIVR)
model.

3.5 Estimation

The parameters from the dynamic model presented in Section 3.4 are estimated through a
two-step approach. In the first step, parameters of the marginal processes {Rt}, {βt,1}, . . . , {βt,5}
are estimated separately by maximum likelihood.16 In the second step, parameters of the
Gaussian copula are estimated from the model residuals obtained in the first step.17

P-value

S&P500 log-returns 30.0%
Long-term level (βt,1) 63.9%
TmT Slope (βt,2) 78.6%
Moneyness Slope (βt,3) 60.8%
Smile attenuation (βt,4) 65.5%
Smirk (βt,5) 30.7%

The table presents p-values of the Cramér-von Mises test applied to residuals of the AR-NGARCH-NIG
models displayed in Equations (3.3)-(3.5) over the whole period ranging from January 4, 1996, to December
31, 2020.

Table 3.4: Cramér-von Mises goodness-of-fit tests

To test the statistical adequacy of the model, Cramér-von Mises tests are applied to the
residuals of each marginal process. The null hypothesis is that the residuals have a NIG

16The backward parameter selection algorithm with the Bayesian Information Criterion (BIC) is imple-
mented. Such an iterative procedure is detailed, for instance, in James et al., 2013.

17The Gaussian copula is estimated by converting the residuals whose marginals are approximately NIG
into pseudo-residuals with approximately standard Gaussian marginals. This is done through the successive
application of the NIG cdf and the Gaussian inverse cumulative distribution function to original residuals. A
correlation matrix is computed from the set of residuals with Gaussian marginals, which corresponds to the
Gaussian copula parameters.
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distribution. Table 3.4 presents the p-values of the tests, with the null hypothesis never
being rejected.

Table 3.5 displays the estimated model parameters. Regarding the S&P 500 dynamics (3.3),
the constant ω linking the 1-month implied ATM volatility to the physical instant volatil-
ity is estimated at around 0.98, implying that the physical volatility factor is, on average,
smaller than the 1-month implied ATM volatility. The negative skewness and the positive
excess kurtosis of the NIG innovation distributions indicate the presence of extreme re-
turn movements. As a result, the speed of reversion of the S&P 500 conditional variance
(κR = 89%) is not as close to 1 as it would have been if noises were Gaussian. Indeed, a
smaller persistence makes scenarios with prolonged extreme volatility due to a single large
S&P 500 return less likely. As expected, the asymmetry parameter γR is positive, implying
that the S&P 500 variance reacts more strongly to negative return shocks than to positive
shocks.

The grey lines in Figure 3.1 display the time series of the estimated S&P 500 log-
returns annualized volatility (

√
hR) as well as the time series of the factor coefficients

annualized volatility (
√
hi for i = 1, 2, 3, 4, 5). The volatility time series of the log-

returns and the long-term level factor coefficient closely follow the IV surface level, which
is consistent with the specification of the respective variance processes. As expected, the
volatility sharply increases during periods of market turmoil, such as the 2008 financial
crisis or during the COVID pandemic, and is relatively low during periods where the market
is calm. Interestingly, the time-to-maturity slope volatility closely follows the time-to-
maturity slope level itself. The volatility time series of the other three factor coefficients
do not exhibit any clear pattern related to the underlying log-returns volatility or the IV
surface level.

For all five factor coefficients (βi) displayed in Table 3.5, large values for the auto-
regressive parameter θi,i imply strong persistence in their dynamics. Moreover, the speed
of reversion parameters κi are quite high, indicating that the volatilities of implied volatility
coefficients are also persistent. For the long-term implied volatility level β1, the asymmetry
parameter γ1 is negative, which is expected because a positive shock on the long-term im-
plied volatility is a sign of market uncertainty and increases the variability of the volatility
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surface. Because β2 represents the difference between the short- and the long-term implied
volatility levels, β2 increases during financial turmoil. Again, positive shocks on β2 have a
larger impact on the variability of the implied volatility surface than negative ones, result-
ing in a negative, yet non-statistically significant asymmetry parameter γ2.
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β1 β2 β3 β4 β5 S&P500

α 0.0009∗ 0.0084∗ 0.0008∗ −0.0014∗ 0.0007∗ λ 2.7324∗

(0.0002) (0.0009) (0.0003) (0.0003) (0.0002) (0.0002)

θ1 0.9963∗ −0.0139∗ 0.0028∗

(0.0009) (0.0030) (0.0008)

θ2 0.0037∗ 0.8778∗ 0.0013∗

(0.0005) (0.0119) (0.0006)

θ3 −0.0326∗ 0.9971∗ 0.0037∗ −0.0042∗

(0.0039) (0.0011) (0.0011) (0.0009)

θ4 0.9803∗

(0.0028)

θ5 −0.0478∗ 0.9860∗

(0.0073) (0.0023)

ν 0.0894∗

(0.0121)

σ
√
252 0.3803∗ 0.0522∗ 0.0486∗ 0.0515∗

ω 0.2676∗ 0.9774∗

(0.0064) (0.0009)

κ 0.8382∗ 0.9658∗ 0.9743∗ 0.9454∗ 0.9808∗ 0.8891∗

(0.0279) (0.0032) (0.0054) (0.0110) (0.0041) (0.0100)

a 0.1342∗ 0.0983∗ 0.0926∗ 0.1022∗ 0.1005∗ 0.0561∗

(0.0150) (0.0072) (0.0101) (0.0113) (0.0100) (0.0041)

γ −0.1118∗ −2.9657 0.1935 0.1211 −0.2060 2.5064∗

(0.0081) (2.2242) (0.1068) (0.1248) (0.1125) (0.1125)

βNIG 0.1438∗ 0.8529∗ 0.0291∗ −0.1591∗ 0.0927∗ −0.6412∗

(0.0375) (0.0008) (0.0007) (0.0004) (0.0004) (0.0004)

γNIG 1.3511∗ 1.5389∗ 2.2848∗ 1.4500∗ 1.4285∗ 2.0398∗

(0.0717) (0.0828) (0.1880) (0.0766) (0.0719) (0.0719)

Skew 0.24 1.08 0.02 −0.23 0.14 −0.4623

Ex. Kurt 1.74 3.21 0.58 1.51 1.50 1.0772

Log. Lkhd. −28, 314 −16, 940 −27, 532 −28, 040 −27, 874 −20, 673

Log. Lkhd. All −28, 322 −16, 897 −27, 535 −28, 042 −27, 879

JIVR model parameters estimated over the whole daily sample ranging from January 4, 1996, to December
31, 2020. The standard errors are displayed under the estimates in parentheses. The model is regularized
using a backward selection method with the BIC criterion. The log-likelihoods (Log. Lkhd.) and the log-
likelihood of the model where no parameter from the θ matrix is set to 0 (Log. Lkhd. All) are reported.
The skewness (Skew) and excess kurtosis (Ex. Kurt) of the NIG distributions for residuals are shown for all
coefficients and the S&P 500 log-returns. Parameters with a star superscript (∗) are significantly different
from 0 at the 5% confidence level.

Table 3.5: JIVR model parameter estimates
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(1) (2) (3) (4) (5) (6)

(1) S&P 500 log-returns (Rt) 1.00

(2) Long-term level (βt,1) −0.55 1.00

(3) TmT Slope (βt,2) −0.69 0.13 1.00

(4) Moneyness Slope (βt,3) 0.03 −0.03 −0.01 1.00

(5) Smile attenuation (βt,4) −0.22 0.25 0.12 0.28 1.00

(6) Smirk (βt,5) −0.34 0.17 0.37 0.13 −0.05 1.00

Estimated Gaussian copula parameters for the innovations of the JIVR model {ϵt,R, ϵt,1, . . . , ϵt,5}. The
Gaussian copula is estimated on the residuals extracted from estimated models illustrated in Equations (3.3)-
(3.5) over the whole sample ranging from January 4, 1996, to December 31, 2020.

Table 3.6: Gaussian copula

Table 3.6 presents estimates for the Gaussian copula parameter matrix. Results indicate
that the log-return innovations are strongly negatively associated with shocks on the first
two coefficients, i.e., the long-term level and time-to-maturity slope.

3.6 Risk management applications

We test the ability of the JIVR model to accurately estimate risk metrics for option port-
folios on real data. In a first set of numerical experiments, we examine standard positions
in volatility management. Then, we compare VIX index forecasts produced by the JIVR
model to those provided by an approach directly modelling the VIX time series. The goal
is to assess how well the model does in processing the information from remote areas of
the IV surface to capture higher moments and tail behaviour.

In the applications presented below, backtesting and forecasting procedures rely on an
expanding window methodology. More precisely, the total sample period is divided by
year. For each iteration N , where N = 2007, . . . , 2020, the model is first estimated over
the training sample, which covers years 1996 to N − 1. Then, for each day t in year N ,
multiple d-day-ahead IV surface predictions are generated using the estimated model, the
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latter being denoted by mN . Such predictions are then used to calculate daily outcomes.
Algorithm 1 summarizes the procedure.

Algorithm 1 The expanding window
for N = 2007 : 2020 do ▷ 2007 to 2020 is the out-of-sample period.

Compute mN , the estimated model over the training period 1996 to N − 1.
for t = 1 : DN do ▷ DN is the number of trading days in year N

for i = 1 : s do ▷ s is the number of simulations
Simulate β̃{i}

t+d and Ỹ {i}
t+d from model mN using the information set at time t.

end for
end for

end for

3.6.1 Straddle and strangle positions

Straddles and strangles are standard option strategies that can be used to take positions
in the underlying asset volatility. To evaluate the risk of such strategies, we consider the
Value-at-Risk (VaR), a popular risk metric used by practitioners. The accuracy of VaR
estimates is evaluated through a standard backtesting procedure. VaR estimates are pro-
duced for the six strategies being considered (1-month, 3-month and 6-month straddles and
strangles) over two possible time horizons, namely, one and five trading days.

Daily out-of-sample d-day-ahead VaR estimates for various confidence levels over the
years 2007 to 2020 are produced according to the expanding window approach.18 To fore-
cast the strategy return distribution for a horizon of d days, i.e. a return between times t
and t+ d, one must first compute the current price of the strategy at time t using the fitted

18The risk-free rate and the dividend yield are kept constant during the simulations over one and five
trading days. Under these assumptions, the forward price is simulated as follows:

F̃
{i}
t+d,τ−d = Ft,τe

∑d
u=1 R̃

{i}
t+u

where Ft,τ is the forward price at time t with maturity τ and R̃{i}
t+u is the simulated daily excess log-return

for path i.
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IV surface. The return V
{i}
t+d−Vt

Vt
is then computed for each simulated19 scenario i, where

Vt denotes the time-t strategy value. The return (not price) VaR is estimated to allow for
comparisons across straddles and strangles.

VaR coverage tests are conducted to assess the backtesting performance (Kupiec et al.,
1995). A VaR breach occurs when an observation falls below (above) the return quantile
associated with the 1% or 5% (95% or 99%) confidence level, addressing potential losses
for investors taking long (short) positions. The VaR coverage test is a likelihood ratio test
that determines if the proportion of realized VaR breaches is significantly different from
the VaR confidence level. More details are provided in Appendix B.3.

Table 3.7 exhibits the proportion of observed daily VaR breaches over the out-of-sample
period (from 2007 to 2020) for each confidence level. VaR coverage test p-values are
disclosed in parentheses. Panel A and B exhibit results for the 1-day-ahead and the 5-
day-ahead forecast horizons, respectively. The counts of VaR breaches are close to their
expected theoretical value, and therefore the results are economically conclusive. It is also
possible to perform tests to verify whether the differences are statistically significant. The
p-values are reported in parenthesis in the table. Overall, results of the VaR coverage tests
provide comfort about the ability of the developed methodology to produce reliable VaR
estimates.

3.6.2 Forecasting the VIX index distribution

The VIX index has high practical importance since it encompasses information related to
market perceptions about the future volatility of the S&P 500 index over a 30-day horizon.

The Chicago Board Options Exchange (CBOE) computes the VIX index (VIXindex
t )

from a portfolio of available put and call options as explained in detail in CBOE, 2014.
For a given time-to-maturity τ ,

VIXt,τ = 100

√√√√(2

τ

Nt,τ∑
i=1

∆Ki,τ

K2
i,τ

erτ τPt,τ (Ki,τ )−
1

τ

(
Ft,τ

Kj,τ

− 1

)2
)

(3.6)

19The Monte Carlo simulation is based on 75,000 paths.
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where K1,τ < ... < Kj,τ ≤ Ft,τ < Kj+1,τ < ... < KNt,τ are the strike prices of quoted
options with maturity τ , Pt,τ (Ki) is the time t out-of-the-money option price.20 The strike
price variations are ∆K1,τ = K2,τ −K1,τ , ∆Ki,τ = 1

2
(Ki+1,τ −Ki−1,τ ) for 1 < i < Nt,τ

and ∆KN,τ = KNt,τ ,τ − KNt,τ−1,τ . The (VIXindex
t,T )2 of maturity T = 30 days is a linear

interpolation between VIX2
t,τ1

and VIX2
t,τ2

, where τ1 ≤ T ≤ τ2 are the two nearest available
time-to-maturities surrounding T :

VIXindex
t,T =

√
τ2 − T

τ2 − τ1
VIX2

t,τ1
+
T − τ1
τ2 − τ1

VIX2
t,τ2
. (3.7)

We use the JIVR model to generate forecasts for the VIX variation

∆VIXJIVR
t,t+d = VIXJIVR

t+d − VIXJIVR
t

over a prediction horizon of d days. More precisely, VIXJIVR
t,τ is obtained from Equation

(3.7) by replacing the OTM option quoted prices by the ones obtained from the fitted IV
surface that day. This step requires the identification of the moneyness levelsM1, ...,MNt,τ

corresponding to the available strike prices K1, ..., KNt,τ . From Monte Carlo simulations,
the JIVR model generates scenarios for the IV surface and the underlying asset log-return
for horizon of d days. Using the same available moneyness levels and maturities as for
time t, the VIX forecast VIXJIVR

t+d is computed from the corresponding option prices on the
predicted IV surfaces. Lastly, the VIXindex

t+d,T forecast is

VIXindex
t+d,T = VIXindex

t,T +∆VIXJIVR
t,t+d.

This approach is compared to a direct modelling of the VIX index time series through:

VIXt = αVIX + βVIXVIXt−1 +
√
ht,VIX∆ ϵt,VIX (3.8)

hVIX
t+1 = σ2

VIX + κ
(
hVIX
t − σ2

VIX
)
+ ahVIX

t (ϵ2t,VIX − 1− 2ϵt,VIXγ) (3.9)

where the variance process {hVIX
t+1} exhibits mean-reversion around a fixed parameter σ2

VIX.
The sequence of innovations {ϵt,VIX}Tt=1 is constituted of independent standardized NIG
random variables.

20These prices are obtained from the bid-ask spread mid-points. They correspond to a put option for
Ki,τ ≤ Ft,τ , and a call option for Ki,τ > Ft,τ .
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To compare the log-likelihoods of both models, we introduce the average likelihood
ratio (ALR). The ALR is defined as the geometric average of the ratio of likelihood scores
for observations of one model over those of another,

ALR =

(
L(1)(O1:T |θ(1))
L(2)(O1:T |θ(2))

) 1
T

.

= exp

(
1

T

(
T∑
t=1

logL(1)
t

(
Ot|O1:t−1, θ

(1)
)
− logL(2)

t

(
Ot|O1:t−1, θ

(2)
)))

(3.10)

where T is the total number of days in the set of out-of-sample folds, L(1) and L(2) are
the likelihoods of the first and second models respectively, O1:T is the time series of out-
of-sample observations including all out-of-sample folds, and θ(1) and θ(2) represent the
model parameter sets considered when computing L(1) and L(2). In our case, model 1
corresponds to the JIVR model, while model 2 corresponds to the direct model. The ALR
indicates how much more or less likely an observation is, on average, in one model versus
the other in relative terms.

Out-of-sample yearly log-likelihoods are computed using the expanding window method-
ology described by Algorithm 1.21 However, the out-of-sample period is reduced to be-
tween 2014 and 2020, which corresponds to the period where reported VIX values are
computed with the most recent calculation method published in CBOE, 2014.

21The log-likelihood cannot be computed directly from the simulated VIX distribution generated by the
JIVR model. To circumvent this issue, a kernel density estimate (ksdensity function from the MATLAB

software with the default bandwidth) is applied to the simulated VIX values to obtain a density estimate. The
latter is then used to compute the log-likelihood for the JIVR model.
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JIVR Direct approach ALR P-values

2014 -343.80 -352.33 1.03 11.0%

2015 -446.86 -430.55 0.94 96.5%

2016 -385.73 -379.62 0.98 76.9%

2017 -261.53 -269.93 1.03 19.0%

2018 -427.71 -445.06 1.07 2.6%

2019 -359.82 -362.01 1.01 24.0%

2020 -517.91 -537.27 1.08 1.6%

Total -2,743.36 -2,776.77 1.02 8.2%

Log-likelihoods for each of the out-of-sample years as well as for the aggregated out-of-sample period (Total).
The log-likelihood for each year is computed using both the JIVR model and the direct model. The respective
parameters of both models are estimated over previous years’ observations. Bold numbers highlight which of
the two models outperforms the other, either for a specific year or in aggregate. The last column of the table
(p-values) corresponds to the Diebold and Mariano, 1995 test p-values. The Diebold and Mariano, 1995
test, described in Appendix B.4, verifies if the predictive accuracy of two models is equal for a specified
performance metric (log-likelihood). If the null hypothesis of the test is rejected, then one model statistically
outperforms the other.

Table 3.8: Out-of-sample performance for VIX distribution forecasting

Table 3.8 exhibits the log-likelihood, the ALR, and the p-values from the Diebold and
Mariano, 1995 test computed for each out-of-sample year as well as for the whole out-
of-sample period. The null hypothesis of Diebold and Mariano, 1995 test, described in
Appendix B.4, assumes that the predictive accuracy of the models is statistically equal.
For a significance level of 5%, a p-value under 2.5% (resp. over 97.5%) indicates that
the JIVR model (resp. direct model) significantly outperforms the direct model (JIVR
model). Results show that the JIVR model largely outperforms the direct model, with
ARL above 1 for five out of the seven out-of-sample years and for the entire aggregated
period (2014–2020). The Diebold and Mariano, 1995 test p-values reveal that the JIVR
model statistically outperforms the direct model for two of the seven out-of-sample years.
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Straddles Strangles
TmT in months 1 3 6 1 3 6

Panel A: 1 day

1%
% of VaR breaches 1.02% 0.77% 0.79% 1.02% 0.60% 0.57%
p-values (89.93%) (14.52%) (20.30%) (89.93%) (0.91%) (0.50%)

5%
% of VaR breaches 4.06% 3.32% 3.35% 5.19% 3.74% 3.69%
p-values (0.80%) (0%) (0%) (60.41%) (0.04%) (0.02%)

95%
% of VaR breaches 5.82% 4.68% 4.82% 6.18% 5.22% 4.99%
p-values (3.01%) (37.97%) (62.71%) (0.18%) (55.19%) (98.46%)

99%
% of VaR breaches 1.79% 1.22% 1.50% 1.76% 1.48% 1.50%
p-values (0%) (20.47%) (0.52%) (0%) (0.81%) (0.52%)
Panel B: 5 days

1%
% of VaR breaches 0.57% 1.33% 1.50% 0.96% 0.94% 1.28%
p-values (0.50%) (5.84%) (0.52%) (83.14%) (70.02%) (11.35%)

5%
% of VaR breaches 3.86% 5.19% 5.36% 4.11% 5.59% 5.93%
p-values (0.12%) (60.41%) (32.99%) (1.28%) (11.52%) (1.38%)

95%
% of VaR breaches 5.16% 4.57% 5.19% 4.99% 4.62% 5.05%
p-values (65.84%) (23.20%) (60.41%) (98.46%) (30%) (89.26%)

99%
% of VaR breaches 1.28% 1.13% 1.65% 1.36% 1.30% 1.56%
p-values (11.35%) (43.12%) (0.04%) (4.08%) (8.22%) (0.20%)

For strangles, the moneyness of the call option is M = −0.1 and that of the put option M = 0.1. For
straddles, both options are at-the-money. Time-to-maturity (TmT) is in months. The rows (1%, 5%, 95%,
and 99%) represent the VaR confidence levels. The distribution forecast horizon is either 1-day- or 5-day-
ahead. The backtest period extends from January 2, 2007, to December 31, 2020. The VaR coverage test
is described in Section B.3 in which the number of VaR estimates is N ≈ 14 × 250 = 3500. Values in
parentheses represent the p-values of the tests.

Table 3.7: VaR coverage test for straddles and strangles
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3.7 Conclusion

This study develops the JIVR model, a characterization of the joint dynamics of the S&P
500 index and of its associated implied volatility surface. The approach is reminiscent of
the dynamic Nelson-Siegel model of Diebold and Li, 2006 or the Heath-Jarrow-Morton
framework of Heath et al., 1992; the current implied volatility surface is used as an input
to the model, thereby greatly enhancing the ability of the approach to depict current market
conditions accurately. The parametric model of François et al., 2022 is leveraged to decom-
pose the implied volatility surface into contributions from five economically interpretable
factors. The parametric model has been shown to capture well the implied volatility shape
while supporting extrapolation beyond observable areas of the surface and leaving minimal
room for arbitrage when applied to real data.

The JIVR model relies on joint NGARCH-type dynamics with fat-tailed and asym-
metric NIG innovations to represent the evolution of the five IV surface factors and of the
S&P 500 log-returns. The NGARCH processes for log-returns and the long-term level
of the IV surface both include two variance components and are anchored in respective
proportions of the one-month ATM IV. This novel characterization effortlessly integrates
information from the IV surface into the variance dynamics of the S&P 500 log-returns and
of the long-term IV factor. Such model specification proves consistent with the Carr and
Wu, 2016 postulate expressing a proportionality relationship between the implied volatility
level and the volvol. All other IV factors are represented by regular NGARCH-NIG pro-
cesses. The dependence structure between innovations of all factors and of the underlying
return is captured by a Gaussian copula.

The estimation of the model is performed through least-squares and conventional max-
imum likelihood procedures and is quite seamless. Cramér-von Mises goodness-of-fit tests
applied to the residuals illustrate the appropriateness of the model specification. The JIVR
model is shown to provide a vastly superior fit to observations than conventional GARCH
processes estimated independently on each of the factors and on the underlying returns. In
particular, the marginal specification of the S&P 500 returns process extracted from the
JIVR model exhibits significantly higher performance than a standalone GARCH process,
thereby highlighting the strong value added of information borrowed from the IV surfaces
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when forecasting the S&P 500 return distribution.
Two exercises are conducted to demonstrate the capability of the JIVR model to accu-

rately generate scenarios for the future implied volatility surface and the underlying return.
The first exercise consists in assessing the risk of straddle and strangle positions with var-
ious times-to-maturity and one-day or five-day forecasting horizons. VaR coverage tests
following Kupiec et al., 1995 confirm the overall accuracy of VaR estimates provided by
the model.

The second exercise compares the predictive performance of the JIVR model and of a
conventional time series counterpart model to forecast the VIX index distribution. Diebold-
Mariano tests applied on out-of-sample likelihood scores confirm that the outperformance
provided by the JIVR model is statistically significant.

Early attempts at jointly modelling the underlying asset return and the corresponding IV
surface dynamics have been facing implementation challenges that were initially deemed
unsurmountable. The JIVR model proposed here shows that effective S&P 500 index op-
tions risk management is feasible when asset returns with non-Gaussian NGARCH pro-
cesses and two-factor volatility are combined with a robust, parametric IV surface specifi-
cation. More importantly, our contribution suggests that this stream of literature deserves
further investigation, as it may have much more applicability than originally thought. Fur-
ther tests involving option pricing and option replication, potentially applied to other types
of underlying assets, will help determine the exact potential of this approach.
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Chapter 4

Foreseeing the worst: Forecasting electricity
DART spikes

Abstract∗

Statistical learning models are proposed for the prediction of the probability of a spike
in the electricity DART (day-ahead minus real-time price) spread. Assessing the likelihood
of DART spikes is of paramount importance for virtual bidders, among others. The model’s
performance is evaluated on historical data for the Long Island zone of the New York Inde-
pendent System Operator (NYISO). A tailored feature set encompassing novel engineered
features is designed. Such a set of features makes it possible to achieve excellent predictive
performance and discriminatory power. Results are shown to be robust to the choice of the
predictive algorithm. Lastly, the benefits of forecasting the spikes are illustrated through a
trading exercise, confirming that trading strategies employing the model-predicted proba-
bilities as a signal generate consistent profits.

Keywords: Power markets, Spikes prediction, DART spreads, NYISO, Predictive an-
alytics, Statistical learning.

∗Joint work with Geneviève Gauthier and Frédéric Godin. Gauthier is affiliated with HEC Montréal and
Godin is affiliated with Concordia university.
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4.1 Introduction

Electricity generation and consumption must happen simultaneously, which makes the
electricity market particularly volatile. The slow reaction time of large producers of in-
expensive electricity, combined with bottlenecks and failures in the transmission grid, or
sudden increases (decreases) in demand, give rise to a phenomenon known as price spikes,
where electricity trades at extremely high (or low negative) prices.

The New York Independent System Operator (NYISO) administers electricity flow op-
erations for a large area in New York State. Electricity transactions are performed through
two main markets: the day-ahead (DA) market and the real-time (RT) market. The DA mar-
ket allows for the scheduling of power production and consumption one day in advance and
contains the bulk of traded electricity volumes. Conversely, the RT market acts as a balanc-
ing market, correcting for the real-time departure of electricity volumes previously booked
in the DA market. The NYISO is responsible for calculating DA and RT prices, which
are decided through an auction system matching supply and demand while preserving the
integrity of the power system. The DA market closes at 5:00 the day before the genera-
tion and distribution of electricity take place, and NYISO publishes DA prices at 11:00 on
the same day. Market participants, thus, learn about DA prices only after the DA market
closes. On the DA market, the scheduling of electricity is performed on an hourly basis,
which allows participants to submit different bids for each hour. Conversely, the RT prices
are updated every five minutes, and the hourly RT prices are obtained by aggregating all
5-minute RT prices published during the hour of interest.

On each transmission grid node, hourly DA and RT prices are determined through a
locational-based marginal pricing (LBMP) approach, reflecting the marginal cost of con-
sumption of an additional MWh of electricity on the node for that hour. When reported by
the NYISO, the LBMP is further decomposed into three components: (1) energy cost, (2)
congestion cost, and (3) losses. Congestion costs occur when the grid’s electrical transmis-
sion capacity is exceeded under the most economical dispatching scenario. The NYISO
is then constrained to dispatch more-expensive power generation units from local power
plants, leading to substantial price increases for the associated nodes.
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The present study is concerned with a quantity referred to as the DART spread, which is
the difference between the DA and RT prices of power for a given grid node and hour. Since
DA prices encompass market participants’ expectations about the next-day RT prices, the
DART spread could loosely be thought of as the market’s price forecast error, up to a risk
premium typically embedded in DA prices (Longstaff & Wang, 2004).

A thorough understanding of DART spread dynamics is essential for several market
participants. For instance, virtual bidders who do not possess production or supply capacity
and who must therefore reverse DA commitments in the RT markets are exposed to DART
spreads instead of standalone prices from the DA or RT markets. A long position on the DA
market puts the virtual bidders at risk when the DART is negative. DART spread dynamics
also have implications for production facility and retailer risk managers who must decide
on the volumes to be locked in ahead of time on the DA market to optimize risk-reward
trade-offs faced by their institution.

Spike events are strong sources of risk for electricity market participants. Most of the
literature is concerned with spikes in the electricity prices because generators, retailers,
and large electricity consumers are exposed to extreme price levels. This has led several
authors to explore price spike forecasting, e.g., Christensen et al., 2009, Christensen et al.,
2012, Eichler et al., 2014, and Sandhu et al., 2016.

The present study instead considers the perspective of virtual bidders who are con-
cerned with spikes in DART spreads rather than in prices. Therefore, this study considers
the problem of forecasting these extreme DART events, or more precisely, the probability
that a DART spread spike occurs in a given hour based on available information. Such a
problem is expressed as a supervised learning problem which is tackled with four machine
learning algorithms: (1) logistic regression, (2) random forests, (3) gradient boosting trees,
and (4) deep neural networks (DNN).

To illustrate the developed approach, this study focuses on the Long Island zone as it
is well known for being susceptible to DART spikes. This phenomenon results from Long
Island’s geographic location–it is a peninsula–which entails a smaller capacity to carry
electricity from inexpensive power plants situated outside of the zone. This reduced grid
capacity creates frequent bottlenecks, thereby raising the congestion price component for
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Long Island.
From an economic standpoint, the added value of the model-predicted spike probabil-

ities is assessed through trading backtests involving trading strategies that rely on these as
signals. Such strategies are compared to a base-case strategy that systematically holds long
positions on the DART spread. Such an approach seeks to collect the DART premium (the
average positive DART spread), which rewards investors for exposing themselves to nega-
tive DART spread spikes caused by high RT prices. However, the flip side of this strategy
is constant exposure to sudden significant losses stemming from such spikes. The signal
generated by the predictive models makes it possible to modify the base-case strategy to
develop novel strategies that avoid long positions when the likelihood of a price spike is
too high. Such strategies are shown to lead to significantly better profitability and lower
risk than the base-case strategy, outlining the contribution of the spike probability signals
generated by the models. Results show that trading strategy performance is robust to the
choice of the predictive model.

In summary, this paper offers two main contributions. The first is the comparison of
multiple statistical and machine learning models producing predictions of DART spread
spike occurrence. Since the bulk of the literature is concerned with price spikes, consider-
ing DART spreads instead of prices is a key differentiating feature of our study. The second
contribution consists in showcasing the usefulness of the informational content embedded
in spike probability forecasts by integrating such signals into trading strategies, which im-
proves trading performance.

The paper is subdivided as follows. Section 4.2 provides a review of the raw data,
describes the spike labeling methodology, and discusses the engineered feature set that is
considered. In Section 4.3, four predictive algorithms are trained on the data, and their
performance is assessed. Furthermore, individual features’ contribution to predictive per-
formance is assessed. Section 4.4 proposes simple trading strategies integrating the model-
generated signals to determine investment positions, with their profitability and risk as-
sessed during the conduction of an out-of-sample backtest. Section 4.5 concludes.
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4.2 Data description

This section discusses the raw data and their transformation for subsequent predictive anal-
ysis with supervised learning algorithms. In particular, the construction of labels and fea-
tures for each observation is outlined.

4.2.1 Raw Data

This research project focuses on the Long Island zone overseen by the NYISO. The NY-
ISO provides historical data on day-ahead and real-time electricity prices and loads for its
various zones, including Long Island, with hourly granularity, as well as the grid transfer
capacity of the multiple interfaces supplying Long Island.2 The electricity price (LBMP)
and load data considered extend from January 1, 2015, to October 31, 2021. The DART
spread for hour t is calculated by subtracting the hour-t real-time price RTt from the cor-
responding day-ahead price DAt, that is

DARTt = DAt − RTt.

Time series of the day-ahead and real-time prices are reported in Panel A of Figure 4.1,
whereas Panel B provides the associated DART spread time series. Panel C exhibits the
historical distribution of DART spreads through a histogram. As expected, real-time prices
are much more volatile than day-ahead prices. The sample average of the DART spread is
$0.45/MWh, implying a positive DART premium compensating for aversion to spike risk.

2The Long Island zone’s grid transfer capacity consists of the total transfer capacity from the Con ED-
LIPA, NPX-1385, NPX-CSC, SprainBrooke-Dunwoodie South lines Y50 and Y49, and PJM-NEPTUNE
interfaces as described in NYISO, 2016. In this work, the grid transfer capacity considered is the sum of
reported capacities for all such interfaces.
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Panel A: Day-ahead and real-time price (LBMP) time series
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Panel B: DART spread time series
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Panel C: DART spread Histogram
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Panel A displays the hourly real-time and day-ahead price (LBMP) time series for the Long Island zone of
the NYISO from January 1, 2015, to February 15, 2021. Panel B displays the corresponding DART spreads
(difference between the day-ahead and real-time prices) for the same dates. Panel C displays a histogram
characterizing the DART spread distribution on the same period.

Figure 4.1: Historical data for the real-time price, day-ahead price and DART spread

Various weather-related variables are obtained from the data provider Openweathermap.
First, hourly realized temperature (in degrees Celcius) is collected for Long Island between
January 1, 2015, and October 31, 2021.

Second, temperature forecast data are included, which consist of daily weather forecasts
as of 18:00 with horizons ranging from 30 to 54 hours in three-hour increments. More
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details about temperature forecasts are provided in Appendix C.1.
Historical temperature forecast data are only available as of October 7, 2017. Thus,

to complete the sample and make up for missing temperature forecasts between January
1, 2015, and October 6, 2017, synthetic forecasts are generated by adding statistical noise
on realized temperature data. Appendix C.1.2 explains this procedure in detail. Through-
out the study, synthetic temperature forecasts are never included in test samples used for
performance assessment, but only in training sets. This prevents spurious performance as-
sessment due to information leakage from training to test sets where information related
to realized temperature, rather than genuine forecasts, would unduly be provided to the
predictive model.

4.2.2 Identifying electricity price spikes

This study aims to perform a daily computation of probabilities of a DART spread spike
occurring in each hour of a given day. The task is approached as a supervised learning
exercise. The response variable has a binary format: either “1” for hours in which a spike
occurs or “0” otherwise. Such labels are not readily observable, and the first step is to
determine which observations are considered to be spikes.

Spike identification criteria

While there is consensus in the literature on the notion that price spikes are extreme price
events, no single, objective definition of “price spike" has emerged. Weron, 2007 and
Janczura et al., 2013 highlight this lack of consensus in the literature and explain that such
a definition is a subjective matter. Notwithstanding disparities among the various possible
definitions, many authors such as Sandhu et al., 2016 or Janczura et al., 2013 characterize
price spikes as extreme high prices that exceed a certain threshold and are short-lived.

Several approaches to identify electricity price spikes have been considered in the lit-
erature, among which the following three have proven quite popular:

• Fixed price threshold: Occurrences exceeding some selected fixed price threshold
are classified as spikes. See for instance Klüppelberg et al., 2010, Amjady and Key-
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nia, 2010, Christensen et al., 2012, Herrera and González, 2014, Eichler et al., 2014,
Clements et al., 2015 and Manner et al., 2016, He and Chen, 2016.

• Variable price threshold: Occurrences exceeding a given sample quantile of ob-
served values are flagged as spikes. For example, the highest (lowest) 5% of sample
prices are considered spikes. A non-exhaustive list of works applying this criterion
includes Trueck et al., 2007 and Sandhu et al., 2016.

• Statistical filtering of spikes: A stochastic process capturing price dynamics is se-
lected and fitted to the data, and statistical filtering methods such as Sequential
Monte-Carlo algorithms are applied to disentangle the portion of prices caused by
spikes from that caused by normal price movements. See for instance Benth et al.,
2007 and Gudkov and Ignatieva, 2021.

The aforementioned studies apply the threshold to electricity prices. However, other
studies, such as Cartea and Figueroa, 2005 and Weron and Misiorek, 2008, identify spikes
through price variations rather than through the level itself. For a more in-depth review of
spike identification methodologies, see Janczura et al., 2013.

The first two approaches (fixed and variable price thresholds) are conceptually simi-
lar as both set pre-determined thresholds and directly assign a spike label to any prices
exceeding such thresholds. The beauty of such methods lies in their simplicity. The third
approach based on statistical filtering differs vastly from the first two. An a priori stochastic
generative model for prices embedding the spike-generating mechanism must be specified,
and statistical inference, i.e., filtering, methods are applied to estimate the spike component
of prices based on its posterior distribution given observed prices. The use of sophisticated
statistical filtering methods and the requirement to design a stochastic process matching the
complex stylized facts of electricity prices are associated with higher inherent complexity.

This study uses a fixed threshold approach to identify spikes; it is a common choice
made in the literature and by practitioners, which makes it possible to avoid the technical
complexities that stem from the statistical filtering approach.
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Results for DART spread spike identification

In the literature, the target variable used for spikes labeling is often the real-time price.
However, for certain market participants, such as virtual bidders who take positions on the
day-ahead market and revert them on the real-time market, the payoff is the DART spread.
In this study, fixed thresholds are thus applied to DART spreads. The negative spikes are
obtained through

S−
t =

DARTt if DARTt < γ−,

0 otherwise
(4.1)

for some fixed threshold γ− < 0. Thus, observations are labeled as spikes, i.e., S−
t ̸= 0,

when the DART spread is smaller than the specified threshold for negative spikes. For the
remainder of this study, only negative spikes are considered. The size of a spike, when one
occurs, is considered to be the DART spread itself; the DART spread is not subdivided into
regular and spike components during an occurrence of a spike.

DART spikes thus embed an element of surprise associated with a sudden change of
circumstances within a one-day horizon. This element entails that DART spikes are most
likely to last less than one day, although definition (4.1) does not explicitly enforce short-
livedness.

The first three columns of Table 4.1 exhibit summary statistics for the DA prices, RT
prices and DART spreads. The standard deviation of RT prices (46.98) is larger than that of
DA prices (27.81), highlighting the more volatile nature of RT prices. The large negative
DART spread skewness (-7.62) stresses the significant risks to which the virtual bidders are
exposed when taking long positions on the DART. As seen in the Long Island electricity
price and DART spread time series exhibited in Figure 4.1, numerous extreme price events
of various sizes are displayed. The following threshold values are considered to capture
several spike magnitudes: γ− = −30,−45,−60.3 The last three columns of Table 4.1

3The selection of the -$30/MWh, -$45/MWh, and -$60/MWh values is driven by (i) discussions with
industrial partners, and (ii) statistical considerations. The first threshold is set to -$30/MWh since it is the
largest negative DART spread considered as an extreme economic event. The smallest threshold is set to
-$60/MWh since it is among the lowest threshold values providing enough spike observations to train the
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Spikes

DA RT DART γ− = −30 γ− = −45 γ− = −60

Count 3534 2294 1605
Proportion 0.06 0.04 0.03
Mean 39.41 38.96 0.45 -84.44 -110.34 -135.44
Standard Deviation 27.81 46.98 37.58 98.91 114.68 129.19
Median 32.49 27.91 3.54 -55.62 -76.16 -135.44
Min 2.57 -1476.07 -1971.57 -1971.57 -1971.57 -1971.57
Max 424.00 2045.79 1506.74 -30.01 -45.01 -60.02
10%-level quantile 18.40 14.31 -16.88 -157.75 -191.38 -229.92
25%-level quantile 24.04 19.86 -3.28 -90.08 -119.79 -146.09
75%-level quantile 44.00 41.97 10.56 -39.34 -57.06 -73.95
90%-level quantile 65.28 72.15 19.29 -33.34 -49.04 -64.57
Skewness 3.42 7.01 -7.62 -6.82 -6.09 -5.54

Various summary statistics for non-null values of (S−) labelled spikes. All numbers are expressed in $/MWh.

Table 4.1: Summary statistics for spikes

display summary statistics of the spikes, i.e., non-null values of S−
t , for each threshold. The

proportion of labeled spikes varies between 6% and 3%, indicating that only a minority of
observations are labeled as spikes.

Figure 4.2 displays the autocorrelations of the DART spikes time series {S−
t } for lags

extending from 1 to 72 hours. Results show that for the three considered thresholds, the
autocorrelations are high and statistically significant at lags 24, 48, and 72, indicating the
presence of spike clusters lasting multiple days.

Strong seasonal effects are detected in spike occurrences. Indeed, Figure 4.3 depicts

statistical learning models adequately. Indeed, Table 4.1 highlights that a threshold of -$60/MWh allows
capturing 3% of the observations (1605 data points), indicating events that are sufficiently rare to be consid-
ered spikes, but frequent enough to retain sufficient training data.
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Autocorrelations of the DART spikes time series {S−
t } for the three considered thresholds. The considered

lags extend from 1 hour to 72 hours. The autocorrelations are computed over the whole sample period (2015-
2021). The red line exhibits the upper bound of the 95% confidence intervals.

Figure 4.2: Autocorrelation of the DART spikes time series

the proportion of observed spikes across the various months, days of the week, or times of
day. Panel A indicates more frequent spikes in either summer or winter months but fewer
in fall and spring. Panel C shows more frequent spikes during the late afternoon and fewer
at night and in the early morning hours. Surprisingly, the week-versus-weekend effect is
not striking, as seen in Panel B.

4.2.3 Features used for prediction

This section discusses and defines the various features, i.e. explanatory variables, consid-
ered in the spike prediction analyses. While some features are directly extracted from the
raw data, others are obtained through data transformation. These engineered features aim
to complement the information set provided by the conventional sources of information
available. The steps involved in constructing such features are outlined.

Prediction generation timeline

Features should be included as predictive variables only if they are available at the time
when predictions are being generated. The perspective of a market participant placing bids
on the day-ahead market is considered herein. The timeline that determines availability of
the predictors is now explained.
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Proportion of spikes (number of spikes divided by the number of observations in the corresponding
hourly/daily/monthly bucket). Fixed thresholds considered are γ− = −$30/MWh, γ− = −$45/MWh
and γ− = −$60/MWh. The data sample extends from January 1, 2015, to October 31, 2021.

Figure 4.3: Proportion of spikes per month, day of the week and hour

Each daily round of predictions being performed is associated with a window of three
consecutive days. The third and last day, referred to as the target day, is the day on which
all hourly predictions apply. Predictions are performed on the first day, coined as the pre-
diction day. The second day (trading day) is where day-ahead bids are placed for all hours
of the target day. The reason to include a delay between the time at which predictions are
performed and the moment at which day-ahead bids are placed is to reflect that partici-
pants would typically require some time to process their predictive analysis outputs and
determine their bids. Key elements of the timeline are now presented.
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• Prediction day (day 1): At 11:00, the NYISO publishes hourly load forecasts for
each hour of the target day. At 18:00, the temperature forecasts for the target day are
published. All such information is combined with other available features to produce
hourly spike probability predictions at 18:00.

• Trading day (day 2): Bids for the day-ahead participants are placed by 5:00. At
11:00, the NYISO publishes day-ahead prices for the target day.

• Target day (day 3): Real-time prices are revealed throughout the day, allowing for
the computation of realized DART spreads.

In summary, all features entering the predictions applying to the target day must be available
by 18:00 of the prediction day, i.e., two days in advance. Figure 4.4 provides an illustration
of the timeline.

Prediction day
12 13 14 15 16 17 18 19 20 … 23 24 0 1 … 5 6 … 11 12 … 23 0 1 2 3 … 21 22 23

Feature set construction o o o o … o o o

Closing of the day-ahead market (5:00)

Day ahead prices (NYISO) published at 11:00 o o o o … o o o

Real time price o o o o … o o o
DART spread o o o o … o o o

Trading day Target day

Spike likelihood predictions

Figure 4.4: Timeline for spike predictions and subsequent DART spread realization

The list of features and their construction

The electricity literature identifies multiple features which are known to embed informa-
tional content that is useful to forecast prices and price spikes, see for instance Lago et al.,
2021. Even though DART spread spike forecasting is a different exercise than price and
price spike forecasting, we nevertheless consider features similar to these proposed in such
literature.
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The set of all selected features, which are listed in Table 4.2, can be divided into three
categories: (1) forward-looking features, (2) seasonal features, and (3) backward-looking
features.4

Forward-looking Seasonal Backward-looking

HDD forecast Hour Past spikes

CDD forecast Month Past day-ahead price error

Load/Grid Week-end/Holidays Past day-ahead load error

Table 4.2: Feature variables used for spike prediction

The forward-looking features encompass information related to market participants’
expectations about the future realization of various variables. For any observation, i.e.,
target hour, such features include the 48-hours-ahead load forecast to grid capacity ratio
(see below for details), and the time-18:00 prediction day’s temperature forecast associated
with the corresponding target hour, i.e., the 30- to 54-hours-ahead forecast depending on the
target hour. As explained below, two non-linear transformations of the latter temperature
forecast are considered.

The NYISO (see Itron, 2008) as well as the literature (see Fan et al., 2019, Zahedi et al.,
2013 or Yi-Ling et al., 2014) consider non-linear transformations of temperature metrics.
This makes it possible to reflect the non-linear relationship between electricity consump-
tion and temperature. Indeed, more electricity is consumed when temperatures are either
very low (as heaters are turned on) or very warm (as air conditioners are turned on). A pop-
ular methodology described in the literature and adopted by the NYISO (see Itron, 2008)
consists in transforming the temperature feature into heating degree day (HDD) and cool-
ing degree day (CDD) features. The HDD and CDD thus reflect the electricity demand for

4An experiment reported in Section C.4 of the Appendix integrates an additional feature called the cu-
mulative temperature and humidity index (CTHI), which is used as predictor by the NYISO to forecast the
load. Such inclusion does not improve the general performance of the models. Furthermore, a graphical ex-
ploration exercise reveals that the CTHI feature exhibits strong dependence with other features (HDD, CDD
and Load/Grid). Therefore, its inclusion in the feature set increases the likelihood of multicollinearity-related
issues. For such reasons, the CTHI is not included in the set of features.
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heating and cooling and are expressed as

HDDt = max (BP − Tt, 0) , CDDt = max (Tt − BP, 0) ,

where Tt is the hour-t temperature measurement and BP = 18.3◦ C (65◦ F) is the breakpoint
considered by the NYISO, which is also used herein. When used in conjunction with
predictive algorithms that do handle automatically non-linear relationships, the HDD and
CDD transformed variables are most likely more appropriate than the original temperature
forecast as a predictive feature.

The last forward-looking feature, load/grid, corresponds to the ratio of the 48-hours-
ahead load forecast over the grid transfer capacity supplying Long Island. Indeed, the load-
to-capacity ratio has been suggested by Anderson and Davison, 2008 as a driver of spike
likelihood, although the latter paper considers generation capacity instead of transmission
capacity. The interface transfer capacity is used in the denominator to reflect that, for the
same amount of load, a curtailed transmission capacity is associated with higher spike risk
due to an increase in the likelihood of bottlenecks.

The second class of features, namely the seasonal features, aim to capture well-known
seasonal patterns in electricity markets. They include dummy variables for each hour of
the day and month of the year, and another dummy variable indicating (additionally) if the
day of the target hour is either a weekend day or a holiday.

The last category, the backward-looking features, are engineered features that consist of
metrics computed from historical observations. Such features are meant to capture market
conditions of the recent past. The three backward-looking features are calculated once at
the prediction time, and each of them has identical values for all 24 hours of the target date.
The first backward-looking feature, past spikes, is the number of observed spikes in the 24
hours leading up to the prediction. This reflects the tendency of spikes to occur in clusters,
as highlighted for instance in Klüppelberg et al., 2010, Christensen et al., 2012, Herrera
and González, 2014, He and Chen, 2016, and Manner et al., 2016. Thus, the presence of
many recent spikes indicates a higher likelihood of observing spikes in the near future.

The second backward-looking feature, past day-ahead load error, aims to indicate pe-
riods where the estimation of near-term future load consumption by the market proves more
difficult. Such a feature is helpful because sudden and unexpected surges or drops in load
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increase the likelihood of observing a spike. The past day-ahead load error is computed
by summing the hourly squared load forecast errors (real-time load minus the day-ahead
load) over the 24-hour period leading up to the prediction.

The construction of the third backward-looking feature, past day-ahead price error, is
analogous to that of the past day-ahead load error; it is also calculated by summing the
last 24 hourly observed squared price forecast error (real-time price minus the day-ahead
price) in the period prior to the prediction. It is meant to capture periods with higher price
volatility.

Scatterplots of realized values for model features. The presented features are heating degree days (HDD),
cooling degree days (CDD), Load/Grid representing the load forecast to grid transfer capacity ratio, past
spikes, past day-ahead price error (Price error), and past day-ahead load error (Load error).

Figure 4.5: Scatterplots of model features

Figure 4.5 illustrates the scatterplots of realized values for all considered features in
each of the hourly observations, thereby illustrating the relationship between the features.
As expected, the HDD and CDD features are positively correlated with load/grid. The
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relationship between the other features does not display any clear dependence structure.
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Each panel illustrates the kernel density estimate of a feature distribution conditional on either the presence
(blue continuous line) or the absence (black dashed line) of a DART spike. The presented features are heating
degree days (HDD), cooling degree days (CDD), Load/Grid representing the load forecast to grid transfer
capacity ratio, past spikes, past day-ahead price error (Price error), and past day-ahead load error (Load
error).

Figure 4.6: Kernel density estimates of feature distributions

Figure 4.6 illustrates kernel density estimates of feature distributions conditional on
either the presence or the absence of a DART spike. All panels indicate that larger feature
values are more likely to occur when spikes are observed.

4.3 Spike prediction model

This section illustrates the prediction of DART spread negative spike probabilities based
on available information. Four predictive algorithms are applied to the data, and their per-
formance is assessed through conventional statistical metrics. A feature importance assess-
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ment evaluating the contribution of each feature to predictive performance is also provided.
We hereby focus solely on the spike occurrence probability and leave the challenging task
of predicting the spike magnitude to a future study.

4.3.1 The predictive models

The four predictive algorithms considered are (1) logistic regressions, (2) random forests,
(3) gradient boosting trees, and (4) feed-forward deep neural networks (DNN).5 Details
about their implementation are presented in Appendix C.2.

The logistic regression is a conventional base case for any binary classification prob-
lem. It expresses the logit of the probability of a spike as a linear function of predictors,
which makes the model easy to interpret and straightforward to estimate with conventional
regression tools. However, logistic regression is not necessarily well suited to handling
non-linear relationships with the target variable and interactions between features. Since
electricity market price data might be fraught with such complex relationships, it is de-
sirable to contemplate alternative predictive models. Therefore, random forests, boosting
trees, and neural networks are also considered as they can automatically represent complex
and non-linear interactions.

Except for logistic regression, the models considered here cannot be trained out-of-
the-box and require the user to select a set of hyperparameters. The hyperparameter tuning
methodology is described in greater detail in Appendix C.2.2.

4.3.2 Model performance

Model performance is assessed through two statistical metrics: the area under the receiver
operating curve (AUC) and the average log-likelihood. The former is meant to measure
the discriminatory power of the models, whereas the latter characterizes the precision of

5A stacked classifier combining the predictions of the four models (logistic regression, random forests,
gradient boosting trees, and DNN) is considered in Section C.5 of the Online appendix. Stacking the models
does not improve the out-of-sample predictive performance metrics (i.e. the log-likelihood and AUC) in
comparison to the standalone models.
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the predictive model. The receiver operating curve (ROC) provides the set of all possible
trade-offs between false positive and false negative error rates obtained across the possible
choices of probability thresholds for classification (see, for instance, James et al., 2013).
The value of the AUC must lie between 0 and 1, with a higher value indicating a higher
ability to distinguish between the two classes. An AUC under or equal to 0.5 indicates
that the model has no predictive power. The second performance metric, the average log-
likelihood, is computed by comparing spike labels and the predicted probabilities:

ℓ =
1

τ

τ∑
t=1

log (pt)1{S−
t <0} + log (1− pt)(1− 1{S−

t <0}) (4.2)

where pt corresponds to the model generated probability of observing a spike in hour t, τ
is the sample size and S−

t is zero if and only if no negative spike occurs in hour t.
The performance assessment relies on an expanding window approach consisting in

iteratively training the model over an expanding training set for each testing iteration. Dur-
ing the first iteration, the model is trained over the first three years of the dataset. The
out-of-sample performance metrics are computed over the following year, i.e., the fourth
year. One year is added to the training dataset for the subsequent iteration while generating
predictions for the following year. Performance metrics (AUC and average log-likelihood)
are computed for training and test set observations.

Panel A of Table 4.3 displays the AUC for negative spikes. The results presented are
for the training sets (in-sample) and test sets (out-of-sample). The last row of each panel
displays the aggregated out-of-sample results, i.e., the computed AUC over the merged out-
of-sample sets. A larger AUC indicates that the model is more powerful at discriminating
between the binary classes. All Panel A entries show an AUC considerably above 0.5 (more
precisely, always above 0.65), indicating that the four models exhibit material discrimi-
natory power for every threshold considered. The in-sample AUC is only slightly higher
than the out-of-sample AUC, implying that models are not plagued with over-fitting issues.
The gradient boosting trees displays the highest aggregated out-of-sample AUC for each
threshold (γ− = −$30/MWh (0.722), γ− = −$45/MWh (0.755), and γ− = $60/MWh
(0.769)).

However, all models display quite similar out-of-sample AUC across all thresholds.
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This result is confirmed in Figure 4.7, which illustrates aggregated out-of-sample ROC
curves for all models and threshold γ−. The displayed ROC curves are similar in shape
and height for all panels, except for the DNN, which is slightly lower than the others. Thus,
there is no apparent domination of one model over the others.

Panel A: γ− = −30
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Panel B: γ− = −45
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Panel C: γ− = −60
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Each panel displays the ROC curves for the four predictive models at a specific threshold (γ−). The ROC
curve illustrates the attained true positive rate on the y-axis against the corresponding false-positive rate on
the x-axis. The formula for the true positive rate and false positive rate is True positives/(True positives +
False negatives), and 1 − True negatives/(True negatives + False positives) respectively. The ROC curves
are computed over the aggregated out-of-sample set (2018 to 2021).

Figure 4.7: ROC curves

Panel B of Table 4.3 displays the average log-likelihood for each model and every
threshold considered (γ−) and confirms previous findings. Indeed, the gap between the
in-sample and out-of-sample model performance is quite small. Furthermore, the models
demonstrate similar performance for each threshold, although the gradient boosting trees
display a slightly higher aggregated log-likelihood. This showcases that prediction perfor-
mance is robust to the choice of predictive models. To assess which of the models are
the best-performing ones from a statistical standpoint, the Hansen et al., 2011 model con-
fidence set approach is considered.6 Stars in Panel B’s last row identify the best model(s)
associated with each threshold. The model confidence set approach indicates that for each
threshold, the gradient boosting tree model significantly outperforms the other models,

6The implementation of the Hansen et al., 2011 model confidence approach is described in detail in
Appendix C.3.
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with an exception for the γ− = −$60/MWh threshold where the gradient boosting tree
statistically outperforms the random forest and the DNN models but not the logistic re-
gression.

Figure 4.8 illustrates the scatterplot matrix of model-generated out-of-sample proba-
bilities for γ− = −$60/MWh. Most of the time, spike likelihoods are moderate. There-
fore, one should not expect to predict spikes with very a high degree of certainty. This
result raises the question of what level of spike likelihood could be considered substantial
enough to become actionable. This issue is investigated in Section 4.4. Despite the very
close performance of the models, material dissimilarities between the individual predicted
probabilities are observed, especially for the DNN model. For instance, unlike the other
models, the DNN rarely outputs probabilities of observing a spike of over 20%. This result
implies that although they all exhibit similar statistical performance, the models might not
be considered fully interchangeable. This is further investigated in the next section, where
trading strategies based on each model are examined.

Figure 4.9 reports the relationship between the proportion of observed spikes and the
spike probabilities generated by each model over the out-of-sample period (2018 to 2021).
To obtain such figure, the observations are regrouped into buckets based on their model
generated spike probability.7 Each bar indicates the proportion of observed spikes within
each bucket. The precision of the model is deemed adequate if the proportions are close
to the associated probabilities for each bucket, i.e. if the bars closely follow the identity
function (the 45-degree diagonal). This relationship seems to hold reasonably well for
buckets associated with low probabilities that contain large numbers of observations. For
high-probability buckets, unreported statistical tests highlight that the variability can be
attributed to the small number of observations. Indeed, the green dots indicate that only a
few dozen observations are associated with high spike probabilities.

7The non-overlapping bucket intervals are of size 2%. The first and last bucket intervals are [0%− 2%[

and [48%− 50%] respectively.
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The panels display the scatterplots for all pairs of predicted spike probabilities belonging to the aggregated
out-of-sample set (2018 to 2021). The threshold is γ− = −60. The identity curve is also displayed in each
panel.

Figure 4.8: Scatterplots of predicted spike probabilities across models for γ− = −60

4.3.3 Feature importance assessment

Spike prediction probabilities are constructed by combining the informational content of
several features. This section aims to provide information about how each feature con-
tributes to the overall model predictive performance, thereby making it possible to rank
features in terms of their absolute and relative importance.

Each feature’s importance is assessed through two approaches: (1) Shapley decompo-
sitions and (2) marginal performance loss through feature removal.

The Shapley, 2016 decomposition has recently been integrated into the machine learn-
ing literature through algorithms referred to as SHAP (Lundberg & Lee, 2017) or SAGE
(Covert et al., 2020). They make it possible to decompose individual predictions (in SHAP)
or their total predictive performance (in SAGE) into a sum of contributions from the vari-
ous features, thereby making it possible to evaluate their respective importance. This study
focuses on the SHAP algorithm, in which the feature i contribution to the spike probability

92



Chapter 4. Foreseeing the worst: Forecasting electricity DART spikes

���

���

���

γ−
=
−
30

�
��
��
��

���
��

���

���

���

γ−
=
−
45

�
��
��
��

���
��

��� ��� ���
���������� �

����
���

���

���

���

γ−
=
−
60

�
��
��
��

���
��

��� ��� ���
���������� �


������������

��� ��� ���
���������� �

	����������������

��� ��� ���
���������� �

���

��
�

��
�

��
�

�
��

��
���

��
��
��

��
��

���
��

��
�

��
�

��
�

�
��

��
���

��
��
��

��
��

���
��

��
�

��
�

��
�

�
��

��
���

��
��
��

��
��

���
��

Each panel’s x-axis reports spike probability intervals, while the y-axis displays the proportion of spikes
observed relative to the number of observations inside the interval. The figures are obtained using the out-
of-sample data period (2018 to 2021). The green dots display the number of observations in each interval
with a log-scale y-axis.

Figure 4.9: Proportion of spikes vs predicted probability

predictions made for hour t is defined as

ϕi,t =
∑

S⊆F \{i}

|S|!(|F | − |S| − 1)!

|F |!
[
fS∪{i}(xt,S∪{i})− fS(xt,S)

]
where F is the set of all predictors, | · | denotes the cardinality of a set, xt,S is the hour-t
features values for the subset of features S and fS(xt,S) is the spike probability generated
by the model trained exclusively with predictors S. It quantifies adjustments to predictions
when the subsets of features are incremented with predictor i. The Shapley decomposition
has the favourable property of explaining each prediction as the sum of its contributions:

fF (xt,F ) = ϕ∅,t +
∑
i∈F

ϕi,t.

To measure the importance of each respective feature, the average absolute feature contri-
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butions are presented:

ψi =
1

τ

τ∑
t=1

|ϕi,t|, (4.3)

with larger values of ψi relative to other features meaning that feature i is more impactful
when making predictions. SHAP values are computed using the Python package shap.

Figure 4.10 reports the mean absolute Shapley values (4.3) computed over the out-of-
sample period for every feature, model and threshold considered. Results indicate that
the load forecast over transfer capacity ratio (load/grid), the hourly and monthly indicators
(hour and month), the CDD/HDD and past spikes features contribute the most to the predic-
tions. Interestingly, for all predictive models, the past spikes feature offers a much higher
contribution when the threshold γ− is large than when it is small. Other features such as
weekend/holidays and past day-ahead load error exhibit generally low contributions to the
predictions.

To complement the information provided by SHAP, this study quantifies the marginal
performance loss through the decrease in out-of-sample average log-likelihood observed
when any of the features are omitted from the set during training. A drop in performance
implies that the feature does bring useful information, while minuscule improvements up to
degradation in performance suggest that the feature conveys little to no information. Figure
4.11 exhibits such percentage increase/drops in the average log-likelihood. Features with
the highest contribution are the load forecast to transfer capacity ratio, hourly indicators,
and the number of spikes in the previous day. Conversely, features like past day-ahead
price error, past day-ahead load error and weekend/holidays once again have little to no
predictive power relative to the other features for every model. Such findings are mostly
consistent with those provided by the SHAP algorithm.8

The Shapley, 2016 decomposition and the marginal performance loss provide different

8A model performance assessment with a revised feature set selected based on the results of the present
section is reported in Section C.6 of the Online appendix. Results are not reported in the body of the article
because the model performance with the revised feature set is improved artificially due to data leakage; the
decision to remove some features from the feature set described in Section 3.2 is based on performance
results computed over the out-of-sample period, thus leaking information from the out-of-sample period into
the feature selection procedure.
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information about the features contribution. While the Shapley decomposition quantifies
the extent to which the model relies on each respective feature, the marginal loss assesses
the incremental performance gain/loss when the feature is included into the model. The
Shapley, 2016 decomposition indicates that the models strongly rely on some of the vari-
ables that lead to low marginal performance gains, or even to a performance loss. This
phenomenon is the result of strong dependence between certain features. For example, the
month feature is extensively used by the models, but its associated marginal loss is mainly
negative (i.e. dropping such variable improves out-of-sample performance). This result
can be attributable to the fact that other features, such as load/grid, heating degree days,
and cooling degree days, exhibit strong dependence with the month feature and already in-
trinsically capture the information provided by the latter quantity related to spike likelihood
prediction.
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Logistic Random Gradient DNN
Regression Forest Boosting trees

γ− −30 −45 −60 −30 −45 −60 −30 −45 −60 −30 −45 −60

A AUC

In
-s

am
pl

e 2015-2017 0.712 0.730 0.742 0.758 0.784 0.818 0.768 0.783 0.796 0.722 0.699 0.715
2015-2018 0.704 0.727 0.743 0.743 0.769 0.793 0.757 0.774 0.791 0.725 0.751 0.767
2015-2019 0.710 0.739 0.755 0.747 0.775 0.798 0.752 0.783 0.806 0.727 0.715 0.734
2015-2020 0.713 0.740 0.756 0.749 0.776 0.800 0.752 0.791 0.794 0.725 0.746 0.766

O
ut

-o
f-s

am
pl

e 2018 0.669 0.708 0.729 0.672 0.710 0.729 0.680 0.719 0.726 0.657 0.686 0.718
2019 0.717 0.771 0.793 0.755 0.789 0.820 0.740 0.785 0.807 0.738 0.745 0.765
2020 0.740 0.762 0.786 0.741 0.746 0.761 0.740 0.756 0.780 0.705 0.736 0.757
2021 0.701 0.730 0.756 0.707 0.737 0.740 0.706 0.747 0.756 0.684 0.717 0.741
Aggregated 0.710 0.745 0.765 0.722 0.751 0.766 0.722 0.755 0.769 0.700 0.723 0.748

B Average log-likelihood

In
-s

am
pl

e 2015-2017 -0.210 -0.154 -0.121 -0.202 -0.147 -0.113 -0.201 -0.147 -0.115 -0.209 -0.158 -0.124
2015-2018 -0.213 -0.154 -0.120 -0.207 -0.149 -0.115 -0.203 -0.148 -0.116 -0.209 -0.151 -0.118
2015-2019 -0.203 -0.145 -0.112 -0.197 -0.140 -0.107 -0.196 -0.138 -0.106 -0.200 -0.148 -0.114
2015-2020 -0.197 -0.141 -0.107 -0.191 -0.136 -0.103 -0.190 -0.133 -0.103 -0.195 -0.140 -0.106

O
ut

-o
f-s

am
pl

e 2018 -0.224 -0.155 -0.120 -0.223 -0.156 -0.121 -0.222 -0.155 -0.121 -0.226 -0.157 -0.120
2019 -0.163 -0.109 -0.079 -0.162 -0.111 -0.079 -0.159 -0.109 -0.079 -0.162 -0.111 -0.080
2020 -0.172 -0.122 -0.086 -0.169 -0.121 -0.085 -0.167 -0.119 -0.084 -0.172 -0.124 -0.088
2021 -0.279 -0.196 -0.140 -0.278 -0.195 -0.142 -0.278 -0.194 -0.140 -0.284 -0.201 -0.143
Aggregated -0.206 -0.143 -0.105* -0.205 -0.143 -0.105 -0.203* -0.142* -0.104* -0.208 -0.146 -0.106

The four models are the logistic regression, the random forest, gradient boosting trees, and the deep neural
network (DNN). Panel A’s performance metric is the area under the curve (AUC), while Panel B is the
average log-likelihood. The models generate out-of-sample predictions for 2018 to 2021. The models are
trained on the previous years’ observations for each out-of-sample forecast. For example, to generate out-of-
sample forecasts for 2019, the models are trained on the observations from 2015 to 2018. For each threshold,
the Hansen et al., 2011 confidence set approach is applied to the aggregated out-of-sample log-likelihood to
identify the set of models whose performance cannot be distinguished from that with the highest performance.
The best models remaining in the model confidence set at a level of significance 5% are identified with a star
in the table. The testing procedure is described in Appendix C.3.

Table 4.3: In-sample and out-of-sample performance metrics
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Panel A: Logistic regression
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Panel B: Random forest
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Panel C: Gradient boosting trees
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Panel D: DNN
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Each panel reports, for the three thresholds considered, the features’ mean absolute SHAP contributions over
the out-of-sample period (2018 to 2021). The features are heating degree days (HDD), cooling degree days
(CDD), hour indicators, month indicators, weekend/holidays indicators (Weekend/Hol.), past spikes, past
day-ahead price error (Price error), and past day-ahead load error (Load error). The SHAP values for the
categorical features month and hour, which are divided into buckets for the logistic regression, are computed
by summing the SHAP values of each category.

Figure 4.10: Shapley additive explanation values
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Panel A: Logistic regression
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Panel B: Random forest
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Panel C: Gradient boosting trees
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Panel D: DNN
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Each panel reports the percentage decrease in the out-of-sample log-likelihood when the feature is excluded
from the feature set. More precisely, the model is re-trained with a reduced feature set where only the targeted
feature is removed. The table reports the ratio of the difference between the out-of-sample log-likelihood
from both models. The features are heating degree days (HDD), cooling degree days (CDD), hour indica-
tors, month indicators, weekend/holidays indicators (Weekend/Hol.), past spikes, past day-ahead price error
(Price error), and past day-ahead load error (Load error).

Figure 4.11: Decrease in average log-likelihood when removing a single predictor
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4.4 Trading strategies performance

This section aims at evaluating the performance of the four models from an economical
(rather than statistical) perspective. A large strand of the electricity literature integrates
price forecasting methods to devise the trading strategies (see Conejo et al., 2005, Zhang
et al., 2012, Ziel et al., 2015, Lago et al., 2018, and many others). This study concentrates
only on forecasting DART spikes as a complement to such methods.

In a first exercise, two trading strategies are implemented over the in-sample set, i.e. from
January 2015 to December 2017. Both strategies take a long position on the DART when
the model-predicted probability is lower than a predetermined cut-off point. The first strat-
egy takes no position otherwise, i.e., when the probability exceeds the cut-off point, while
the second strategy takes a short position in the DART. The first strategy reflects the situ-
ation of a participant trying to collect the DART premium when the risk of a spike is not
too considerable, while in the second strategy, the participant tries to also benefit from the
occurrence of a spike. The volume of any position taken in the two strategies is always
1 MWh. This first exercise is completely in-sample and aims to (1) better understand the
effect of the cut-off point on the strategies’ performance and (2) select a cut-off point for
the subsequent out-of-sample exercise. The left (respectively right) panels of Figure 4.12
display the cumulative hourly profits and losses (P&L) of the first (respectively second)
strategy as a function of the cut-off point over the in-sample horizon.

Every panel of Figure 4.12 unanimously indicates that profits are maximized for rela-
tively small cut-off points ranging between 5% and 12%, depending on the threshold γ−.
This result is explained by the asymmetry of the loss function, where gains associated with
the successful prediction of a spike far exceed the losses incurred when falsely predicting
a spike. Such asymmetry encourages the participant to short the DART spread as soon as
a small potential spike signal is detected. Comparing the two strategies, Strategy 2 out-
performs the first one, pointing toward the added value of short DART positions when the
spike probability is high.

The two same trading strategies are implemented in a second exercise, this time over
the out-of-sample set (from January 2018 to October 2021). To avoid information leak-
age, the considered cut-off points are selected based on the aforementioned first in-sample
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exercise exhibited in Figure 4.12 and are chosen as respectively 12%, 7% and 5% for
γ− = −$30/MWh, γ− = −$45/MWh and γ− = −$60/MWh.9 To further assess the
added value of the spike probability forecast as a trading signal, the two strategies are com-
pared against a third one, a base case strategy consisting in always taking a long position
in the DART.

The left (respectively right) panels of Figure 4.13 illustrate the time evolution of a port-
folio value starting at $0 and invested in the first (respectively second) strategy. Looking at
Strategy 1, for all thresholds and models, the portfolio value time series appears to closely
follow the upward trends of the base case portfolio from January 2018 to June 2019 and
January to June 2021 periods while being much less impacted by the downward trends
over June 2019 to January 2021 and May to October 2021 periods. Furthermore, Strategy
1 generates substantially higher profits over the out-of-sample period while holding fewer
positions than the base case strategy. The second strategy exhibits a different behaviour
where the portfolio value tends to increase steadily over time, except for a few downward
stretches.

Table 4.4 illustrates the average P&L per position and the total P&L organized by
model, threshold, and year. The results for Strategy 1 indicate that every model generates a
positive aggregated P&L, unlike the base case strategy, which generates a negative aggre-
gated P&L. For all predictive models, the cumulative profit is generally more significant for
lower thresholds (−$45/MWh and −$60/MWh) than for the higher ones (−$30/MWh). In
2018 and 2021, Strategy 1 generates a strong total P&L, while in 2019 and 2020, it is more
modest or even negative. Nonetheless, the four algorithms produce a higher total P&L in
most years compared with the base case strategy. As expected, the P&L produced by Strat-
egy 2 is more prominent than that of Strategy 1 since Strategy 2 additionally benefits from
the short positions on the DART spread when the spike probability is sufficiently high.

As in Section 4.3, the Hansen et al., 2011 model confidence set approach is harnessed to
identify the best-performing model(s) for each threshold using the P&L as the loss function.
Stars in the last row of each of the Table 4.4 panels identify models with superior predictive

9The cut-off points are selected as the values maximizing the cumulative in-sample P&L of the gradient
boosting trees model.
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ability. Results show that no single model significantly outperforms all others. The gradient
boosting tree model and the logistic regression are always included in the best-performing
set, while the random forest is included for the −$45/MWh and −$60/MWh thresholds.
However, the DNN model is only included in the best-performing set at the -$45/MWh
threshold, indicating that the DNN is, overall, the worst-performing model in terms of
generated P&L. Sets of best-performing models using the P&L as the loss function do
not coincide with these using the log-likelihood that are presented in Section 4.3. Such
disparities are mainly explained by the more volatile nature of the P&L in comparison to
log-likelihood scores, which makes the discrimination between models more difficult when
using the P&L as the performance metric.

The Hansen et al., 2011 model confidence set approach is also implemented to test
if each standalone model, for each threshold, statistically outperforms the base case (12
tests in total). In each of the tests, only two models (the considered model and the base
case) are initially included in the model confidence set. We then examine whether or not
the base case is removed from the set. Results indicate that for the vast majority of tests
(10 out of 12 tests), the models statistically outperform the base case for a confidence
level of 5% (α = 5%). Only the random forest and the DNN models for the threshold
γ− = −$30/MWh do not statistically outperform the base case.

Table 4.5 reports a risk-adjusted performance measure (the Sortino ratio) and two risk
metrics (the semi-deviation and the Value-at-Risk) for both strategies as well as the base
case.10 The Sortino ratio is (1) always positive for the two developed strategies, as opposed
to that of the base case, which is negative, and (2) large, i.e., always greater than one and
most of the time greater than two. Strategy 2 generally produces Sortino ratios larger than
those of Strategy 1, indicating that shorting the DART in periods of high spike probability
improves the strategy’s risk/reward profile. Both the semi-deviation (Std−) and the Value-

10The Sortino ratio is computed as follows:

8760
τ

∑τ
t=1 Pt√

8760
τ

∑τ
t=1(Pt)21{Pt<0}

where Pt is the hour-t P&L, and τ is the number of hours in the sample. The constant (365 × 24 = 8760)
corresponds to the number of hours in a year and is applied for annualization purposes.
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at-Risk at confidence level 1% (VaR 1%), are substantially smaller for both Strategy 1
and Strategy 2 than for the base case strategy. Therefore, the results outline that for every
model and threshold, Strategy 1 and Strategy 2 lead to significantly larger P&Ls than the
base case strategy and embed lesser risk (especially tail risk), thus highlighting the twofold
contribution of integrating the model signals to a trading strategy.

Table 4.6 exhibits the precision and recall metrics as well as the dissected aggregated
out-of-sample average P&L of Strategy 2. The precision illustrates the ratio of realized
predicted spikes over the total number of predicted spikes. The recall considers the pro-
portion of labeled spikes predicted by the models relative to the sample’s total number of
labeled spikes.11 The precision is relatively low for every threshold and all models, i.e., be-
tween 9% and 16%, which is not surprising considering the low cut-off points used for the
predictions. For all models, the recall is approximately 20%, 33%, and 37% for thresholds
γ− = −$30/MWh, γ− = −$45/MWh and γ− = −$60/MWh, respectively.

The average P&L associated with the true positives also corroborates this conclusion,
where the average P&L increases with the thresholds. However, it is interesting to note
that the average P&L for false positives is surprisingly low (between −$10 and −$20).
Therefore, high probabilities of observing spikes predicted by the models appear to be
associated with periods of high DART spread volatility and uncertainty. Unsurprisingly,
the average P&L of false negatives is strongly negative. However, it is worth noting that the
average P&L of false negatives is, in absolute terms, much lower than the average P&L of
true positives. This result indicates that, on average, the models capture the more significant
spikes. The last two rows of Table 4.6 display the average P&L when the models predict a
spike (Avg. pos.) and inversely when the models predict no spikes. Both scenarios generate
positive P&L for every model and each threshold. The average P&L is much larger when
the model predicts a spike. Nonetheless, the results clearly show the potential of integrating

11The precision (P ) and recall (R) are calculated as follows:

P =
Tp

Tp+ Fp
, R =

Tp

Tp+ Fn
,

where Tp denotes the True positives, Fp the false positives, and Fn the false negatives. A false positive is
a predicted spike that did not materialize.
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the model-generated signals into any trading strategy.

Logistic Random Gradient
DNN

Regression Forest Boosting Trees

γ− −30 −45 −60 −30 −45 −60 −30 −45 −60 −30 −45 −60

St
ra

te
gy

1

2018
Avg. 0.77 1.02 1.07 0.75 1.35 1.55 0.93 1.32 1.15 0.96 0.98 1.04
Total 6060 7612 7921 6201 10701 12063 7430 10197 8490 7545 7644 7973

2019
Avg. -0.29 -0.13 0.01 -0.34 -0.27 0.08 -0.08 -0.18 -0.25 -0.31 -0.03 -0.10
Total -2403 -1077 78 -2881 -2266 690 -685 -1449 -2014 -2581 -251 -799

2020
Avg. 0.40 0.45 0.52 0.04 0.19 0.24 0.28 0.28 0.44 -0.10 0.23 0.26
Total 2931 3185 3624 364 1522 1887 2246 2138 3280 -760 1628 1810

2021
Avg. 0.79 0.75 0.99 0.71 0.75 0.33 0.89 0.86 0.85 0.60 0.28 0.08
Total 4617 4083 5370 4416 4301 1846 5652 4918 4999 3217 1503 415

Agg.
Avg. 0.38 0.49 0.61 0.26 0.48 0.56 0.48 0.54 0.51 0.25 0.37 0.34
Total 11205* 13803* 16992* 8099 14258* 16486* 14644* 15804* 14756* 7422 10524* 9399

St
ra

te
gy

2

2018
Avg. 0.59 0.94 1.01 0.62 1.65 1.96 0.90 1.53 1.14 0.93 0.95 1.02
Total 5144 8248 8866 5425 14425 17151 7885 13418 10005 8115 8312 8970

2019
Avg. -0.10 0.20 0.47 -0.21 -0.07 0.61 0.29 0.12 -0.01 -0.14 0.39 0.27
Total -867 1785 4094 -1823 -592 5320 2570 1040 -88 -1223 3437 2342

2020
Avg. 0.72 0.78 0.88 0.13 0.40 0.48 0.56 0.54 0.80 -0.12 0.42 0.46
Total 6315 6824 7700 1180 3497 4226 4945 4728 7013 -1067 3709 4072

2021
Avg. 1.76 1.61 1.97 1.70 1.67 1 2.04 1.84 1.86 1.38 0.91 0.61
Total 12838 11770 14343 12435 12206 7295 14908 13440 13602 10038 6610 4433

Agg.
Avg. 0.70 0.85 1.04 0.51 0.88 1.01 0.90 0.97 0.91 0.47 0.66 0.59
Total 23430* 28626* 35003* 17217 29536* 33992* 30308* 32628* 30532* 15863 22068* 19817

2018 2019 2020 2021 Agg.

Ba
se

ca
se Avg. 0.79 -0.45 -0.05 -0.49 -0.03

Total 6976 -3939 -453 -3603 -1020

The table presents P&L statistics for the two trading strategies considered and the base case. The statistics
are divided by year (2018, 2019, 2020, and 2021) and combined over the out-of-sample period (2018 to
2021) under the rows named “Aggregated". Both strategies take a long position on the DART spread when
the model predicted probability remains under the pre-determined cut-off point, i.e., 12%, 7% and 5% for
γ− = −$30/MWh, γ− = −$45/MWh and γ− = −$60/MWh respectively. The first strategy takes no
position otherwise, i.e., when the probability does exceed the cut-off point, while the second strategy takes
a short position in the DART otherwise. The summary statistics are the total P&L and the average profit
per position. The Hansen et al., 2011 confidence set approach, identifying which of the models have a
performance that is statistically indistinguishable from that of the best model, is applied to the total P&L
for each threshold. The best models remaining in the model confidence set at a level of significance 5% are
identified with a star in the table. The testing procedure is described in Appendix C.3.

Table 4.4: Average and total out-of-sample P&L
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Logistic Random Gradient
DNNRegression Forest Boosting Trees

γ− −30 −45 −60 −30 −45 −60 −30 −45 −60 −30 −45 −60

St
ra

te
gy

1 Sortino ratio 1.64 2.32 3.03 1.03 2.20 2.73 2.05 2.55 2.32 1.12 1.68 1.58
Std− 21.80 19.80 18.83 23.42 20.25 19.26 21.80 19.88 20.67 21.11 20.55 20.14
VaR 1% -80.77 -75.01 -72.07 -92.08 -82.44 -79.31 -85.28 -78.21 -78.34 -83.41 -80.75 -77.14

St
ra

te
gy

2 Sortino ratio 2.45 3.08 4.01 1.75 3.16 3.65 3.23 3.59 3.26 1.79 2.38 2.06
Std− 26.69 25.90 24.30 27.47 26.02 25.94 26.11 25.34 26.09 24.75 25.88 26.78
VaR 1% -83.48 -77.85 -76.44 -94.72 -85.94 -84.53 -89.09 -82.46 -82.46 -85.24 -82.73 -80.86

Ba
se

ca
se Sortino ratio -0.09

Std- 32.61

VaR 1% -105.63

The table reports (1) the Sortino ratio, (2) the semi-deviation (Std.−), and (3) the Value-at-Risk at confidence
level 1% (VaR 1%) for hourly P&L of the considered strategies over the out-of-sample period (2018 to 2021).
Both Strategies 1 and 2 take a long position on the DART when the model-predicted probability is lower than
the pre-determined cut-off point, i.e. 12%, 7% and 5% for γ− = −$30/MWh, γ− = −$45/MWh and
γ− = −$60/MWh respectively. The first strategy takes no position otherwise, i.e., when the probability
exceeds the cut-off point, while the second strategy takes a short position in the DART otherwise.

Table 4.5: Risk-adjusted metrics for the out-of-sample hourly P&L

Logistic Random Gradient
DNNRegression Forest Boosting Trees

γ− −30 −45 −60 −30 −45 −60 −30 −45 −60 −30 −45 −60

Precision 0.16 0.12 0.09 0.16 0.13 0.09 0.18 0.13 0.09 0.16 0.12 0.08
Recall 0.21 0.34 0.39 0.14 0.24 0.29 0.22 0.34 0.37 0.20 0.33 0.38

Av
er

ag
e

P&
L True pos. 120.29 136.06 169.37 136.38 152.94 184.01 116.53 138.73 170.27 121.21 141.54 171.93

False pos. -17.62 -12.82 -10.03 -18.96 -15.45 -11.95 -17.61 -13.42 -11.59 -15.05 -12.04 -9.03
False neg. -70.80 -91.96 -112.44 -72.05 -92.67 -114.39 -71.36 -91.03 -113.01 -71.37 -90.05 -111.78
True neg. 4.06 3.15 2.61 4.29 3.31 2.69 4.11 3.14 2.52 4.28 3.21 2.68

Avg Pos. 5.03 5.57 6.00 6.19 6.64 6.17 6.10 5.97 5.39 7.15 6.01 5.89
Avg neg. 0.37 0.60 0.68 0.30 0.44 0.48 0.43 0.61 0.55 0.51 0.66 0.71

The first two rows of the table exhibit the precision and recall for each model. Rows 3 to 6 illustrate the average
P&L associated with either the true positives (True pos.)–predicted spikes that are effectively spikes; false
positives (False pos.)–predicted spikes that did not materialize; false negatives (False neg.)–spikes that were
not predicted; and true negatives (True neg.). The last two rows detail the average P&L when the model either
predicts a spike (Avg pos.) or no spike (Avg neg.). Results are computed over the out-of-sample period (2018
to 2021). The cut-off point for thresholds γ− = −$30/MWh, γ− = −$45/MWh and γ− = −$60/MWh are
respectively 12%, 7% and 5%.

Table 4.6: Precision/Recall and Strategy 2 hourly P&L dissected
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Strategy 1

Panel A: γ− = −30
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Panel C: γ− = −45
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Panel D: γ− = −45
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Panel E: γ− = −60
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Panel F: γ− = −60
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Each panel displays each model’s total P&L as a function of the cut-off value over the training set spanning
from 2015 to 2017. Strategy 1 (left panels) and 2 (right panels) take a long position in the DART spread
if the predicted spike probability is below the cut-off point. While Strategy 1 takes no position when the
spike probability is above the cut-off point, Strategy 2 takes a short position in such case. The volume of the
positions taken for both strategies is always 1MWh.

Figure 4.12: Total P&L for a continuum of cut-off values

105



Chapter 4. Foreseeing the worst: Forecasting electricity DART spikes

Strategy 1

Panel A: γ− = −30
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Strategy 2

Panel B: γ− = −30
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Panel C: γ− = −45
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Panel D: γ− = −45
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Panel E: γ− = −60
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Panel F: γ− = −60
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Each panel illustrates the time series of a portfolio value starting at $0 following strategies 1 and 2 over the
out-of-sample period (2018 to 2021). Strategy 1 (left panels) and 2 (right panels) take a long position in the
DART spread if the predicted spike probability is below the cut-off point. While Strategy 1 takes no position
when the spike probability is above the cut-off point, Strategy 2 takes a short position in such a case. The
cut-off point for threshold γ− = −$30/MWh, γ− = −$45/MWh and γ− = −$60/MWh are respectively
12%, 7% and 5%. The volume of the positions taken for both strategies is always 1MWh. The base case
strategy consists in taking a long position each period.

Figure 4.13: Portfolio value over time
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4.5 Conclusion

This paper studies the forecasting of DART spread spike probabilities. DART spreads of
the Long Island zone of the NYISO market are considered in developing the model. A
fixed threshold methodology commonly used in the literature is applied to identify spikes
in the data. A tailor-made feature set is proposed to perform predictions.

Four statistical learning approaches are considered in predicting spike occurrences. Re-
sults indicate that for every threshold considered, all models produce similar predictive
performance, although the gradient boosting trees slightly outperform their counterparts.
A feature importance assessment highlights the critical importance of forward-looking fea-
tures such as the load forecast over transfer capacity ratio, predicted heating degree days
and predicted cooling degree days, of seasonal features such as hourly and monthly indica-
tors, and of the backward-looking feature counting the number of spikes in the last 24 hours
before the prediction. Conversely, the weekly cycle indicators and some of the backward-
looking features measuring near-past load or price prediction errors exhibit lesser impor-
tance.

Finally, a backtest of two trading strategies integrating model-generated spike probabil-
ities as a market signal is implemented. Such strategies are shown to produce significantly
higher profits, lesser risk, and thus larger risk-adjusted performance in comparison to a
base case strategy systematically holding long DART spread positions. Therefore, results
highlight the added value of the developed signal from an economic perspective.

Future questions worth examining include: (1) applying the prediction scheme to posi-
tive DART spikes, (2) determining if the framework developed works well in other nodes of
the grid and other power markets, and (3) designing trading strategies where trade volumes
are modulated based on the intensity of the spike probability signal to improve profitability,
or where the cut-off point driving the trade direction varies depending on the season.
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Chapter 5

Concluding Remarks

The implied volatility surface offers a rich source of information about the participants’
view of the market’s future conditions.

Volatility and extreme events are present in the distribution of all asset returns. Estimat-
ing, quantifying and managing the inherent risk of these assets represent a major challenge
for market participants. To better quantify the risk of the assets, the extraction of infor-
mation from the market is paramount. The implied volatility represents one such source
of information. This thesis’s first two essays concentrate on leveraging the information
content of the implied volatility surface while the last essay departs from the derivatives
market and concentrates on the electricity market.

In the first essay, the static implied volatility surface is calibrated using a factor model.
The factors adequately capture the moneyness and maturity slopes, the smile attenuation,
and the smirk of the implied volatility surface while being economically interpretable. The
factor representation of the surface is twice differentiable, is asymptotically well-behaved
and allows for interpolating and extrapolating the surface. The factor model can be used to
mark-to-market illiquid derivatives since the model can generate coherent and clean inter-
polations of the implied volatility surface. Other applications related to derivatives pricing
and asset pricing are explored. The benefits of a smoothed implied volatility surface are
illustrated through the extraction of the risk-neutral density and risk-neutral moments and
the calculation of option price sensitivities.
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The second essay leverages the implied volatility factor decomposition previously de-
veloped to construct the joint implied volatility and return (JIVR) model. The JIVR model
is a characterization of the joint dynamics of the S&P 500 index and of its associated im-
plied volatility surface. It integrates the whole implied volatility surface as input to the
model. This approach allows for novel characterization of the underlying log-returns and
the implied volatility surface level. The JIVR model can efficiently forecast the distribu-
tion of any portfolio of options. The capabilities of the JIVR model are exhibited with
two exercises. Firstly, the risk metrics of straddle and strangle positions are computed
and backtested. Secondly, the predictive performance of the JIVR model is compared to
a conventional time series counterpart model to forecast the VIX index distribution. The
contribution suggests that further investigation should be invested in this strand of the lit-
erature.

The last essay concentrates on the electricity market, which is well-known for its volatil-
ity. In this essay, the perspective of virtual bidders, who are exposed to DART spreads, is
considered. The occurrence of DART spikes has important risk implications for these par-
ticipants. To improve the risk-reward profile of their trading strategy, a tailored feature set
combined with statistical learning methods are leveraged to forecast these extreme price
events. The models’ performance is first assessed with standard statistical performance
metrics. Results show the capabilities of the four considered statistical learning models to
predict the DART spikes. To evaluate the model performance from an economical point
of view, a base case trading strategy is compared to two alternative strategies that integrate
the models’ generated signals. The two alternative trading strategies generate statistically
larger profits and embed substantially less downside risk than the base case strategy. The
methodology developed could easily be extended to other zones of the NYISO and other
electricity markets. Furthermore, forecasting positive DART spikes is an exciting avenue
to reduce the risk further and increase the profitability of such strategies.
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Appendices of Venturing into Uncharted
Territory: An Extensible Parametric Implied
Volatility Surface Model

A.1 Principal component analysis

Directly applying PCA to the option sample is not possible since option numbers and char-
acteristics (moneyness and time-to-maturity) vary from day to day; PCA requires a stable
sample every day. To circumvent this issue, a grid with respect to moneyness and time-to-
maturity is constructed. For each point of the grid, the implied volatility can be interpo-
lated using quoted options IV. The interpolation scheme can be achieved through a variety
of methods. As in Israelov and Kelly, 2017, a spline interpolation scheme is implemented
using the MATLAB fit function with “thinplateinterp" fit type.

Because quoted moneyness levels vary greatly from day to day depending on the market
conditions, the grid covers a smaller surface than the one spanned by the quoted moneyness
and maturities. Two grids are used in this paper. In Figure 2.2 the moneyness M varies
between −0.2 and 0.6 by increments of 0.1 and the days-to-maturity are 30, 60, 91, 122,
152, 182, 270 and 365 days. The other figures and tables of Appendix A.1 are based on
the moneyness definition and the grid of Israelov and Kelly, 2017, that is, the moneyness
M∗ is between −2 and 1 with increments of 0.25 and the days-to-maturity are 30, 60, 91,
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122, 152, 182, 270, and 365 days-to-maturity. Because M∗ depends on the VIX value, the
two grids do not include the same option subsample, especially during financial turmoil.

The PCA is constructed from the sample covariance matrix of the interpolated IV time
series. The right panels of Figure 2.2 display the five factors with the greatest explanatory
power. Factor 1 can be interpreted as the level, factor 2 is the time-to-maturity slope, factor
3 corresponds to the moneyness slope, factor 4 is a curvature factor and factor five is the
smirk. The first factor explains 94.84% of the surface variations.

A.2 Bayesian regression

Model (2.2) is a linear function of the factors, which suggests that the ordinary least square
(OLS) estimation approach is straightforward. However, as documented in Gauthier and
Simonato, 2012 in the alternative context of zero-coupon yields, there can be several sets
of parameters which produce very similar surfaces. To preserve the economic interpre-
tation of each factor, the least squares method is coupled with a Bayesian approach for
regularization purposes, thereby avoiding erratic behaviour in parameter time series.

A typical linear model can be expressed as Y = Xβ + ϵ. A linear system incorporates
prior information as follows: [

Y

βprior

]
=

[
X

R

]
β +

[
ϵ

δ

]
(A.1)

where Y represents the observations, βprior the prior’s expectation, X the factors, R the
matrix linking the parameters to the priors, and (ϵ, δ) the vector of errors which follows a
multivariate normal distribution with a diagonal covariance matrix

Ω =

[
Σϵ 0

0 Σδ

]
.

The generalized least squares estimator of β with prior information is

β̂ =

[X
R

]⊤
Ω−1

[
X

R

]−1 [
X

R

]⊤
Ω−1

[
Y

βprior

]
.
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The value of Σϵ can be estimated using the ordinary least squares estimator (OLS) without
any priors and the matrix Σδ is a hyperparameter that controls the prior distribution. The
smaller the values on the diagonal of Σδ are, the closer to the prior expected value the es-
timated β is.

The observed 1-year ATM IV (ATM1y,t) serves as prior mean for β1,t. The slope prior
is constructed from the one-month ATM IV (ATM1m,t):

Slopet =
ATM1y,t − ATM1m,t

exp
(
−
√
4/12

) .

The priors for β3,t and β5,t are the previous day estimates β3,t−1 and β5,t−1, respectively.
Due to its interconnectedness with the other parameters, no prior is assigned to β4,t. This
entails setting

βprior =


ATM1y,t

Slopet
β3,t−1

β5,t−1

 , R =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

 and Σδ =


0.38 0 0 0 0

0 5.60 0 0 0

0 0 0.73 0 0

0 0 0 0 1

× 10−4.

The prior variances need to be set. For the first two priors associated with the long-term
level and the slope, the sample variance of the observable (ATM1y,t and Slopet) is consid-
ered. The β3 prior’s variance is the sample variance of the proxy variable for the moneyness
slope, namely the one-month ATM IV minus the one-month IV with moneynessM = 0.4.
Finally, for the last prior of β5, based on judgmental consideration, the standard deviation
is set to half the parameter’s level, resulting in a prior variance of 1 × 10−4. Because the
prior variances are large, the estimation procedure has extensive leeway to match the option
data, while keeping the economic interpretation of the coefficients due to regularization re-
moving large erratic movements in time series of parameter estimates.

A.3 Benchmarking with a non-parametric PCA approach

In Section 2.3.3, the calibration performance of Model (2.2) is compared to that of two
parametric benchmarks. In this section, the non-parametric PCA approach of Israelov and
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Kelly, 2017, hereafter IK, is instead considered for benchmarking. As mentioned by the
authors, their methodology is best suited to represent densely populated regions of the sur-
face. When applied to our dataset, their model is fitted to a sub-surface inside which only
41% of observed options lie, leaving aside useful information about extreme movement
expectations contained in the deep OTM options. Furthermore, PCA methods cannot ex-
trapolate beyond the restricted grid to generate prices for out-of-sample deep OTM options.
The main conclusion of this section is that on this restricted sample for which the PCA ap-
proach is optimal, Model (2.2) does almost as well, while allowing for IV interpolation and
extrapolation on the wider IV surface.

Israelov and Kelly, 2017 rely on an alternative definition of moneyness that is propor-
tional to the 30-day VIX level at day t,

M∗ =
log (K/S)

VIXt

√
(τ)

.

Such specification allows the model to adjust the grid relied upon by the PCA to the preva-
lent market state, i.e., to include more OTM options in periods of market turmoil. Indeed,
to perform a PCA over daily IV surfaces, Israelov and Kelly, 2017 construct a synthetic
IV surface on a pre-defined grid covering time-to-maturity values of 30, 60, 91, 122, 152,
182, 273, 365 days, and moneynessM∗ values varying between −2 and 1 with increments
of 0.25. They interpolate the grid points from available options IV with a thin plate spline.
The factors extracted from the PCA represent the most efficient linear decomposition to
minimize the squared fitting errors.

The fitting performance is assessed by computing the daily root mean square error
(RMSE) between the observed IV and the corresponding fitted values.

Figure A.1 shows that the daily RMSE is very similar between the PCA approach and
the specification (2.2) over the restricted sample. Such an outcome was expected due to
the similarity of Model (2.2) and PCA factors highlighted by Figure 2.2.

Table A.1 confirms that the ARMSEs of the PCA approach and Model (2.2) are very
close within each bucket of moneyness and time-to-maturity. As expected, the PCA ap-
proach slightly outperforms Model (2.2) for all buckets because, by construction, the PCA
designs factors so as to minimize mean squared discrepancies between data and fitted val-
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RMSE comparison on the restricted sample

Model (2.2) is estimated on a restricted sample corresponding to options with a time-to-maturity of between
30 and 365 days, and a M∗ moneyness of between −2 to 1.

Figure A.1: RMSE by bucket over the restricted sample

ues. It is reassuring to see that Model (2.2) has a very similar performance to the PCA,
while being able to fit over a much larger IV surface and even extrapolate beyond the ob-
servable IV.

Model M ≤ −0.1 −0.1 < M ≤ 0.1 M > 0.1 All

Model (2.2) 0.0080 0.0059 0.0057 0.0063
IK 0.0060 0.0045 0.0054 0.0052
Number of options 231,356 606,327 587,042 1,424,725

Model τ ≤ 60 60 < τ ≤ 180 τ > 180 All

Model (2.2) 0.0089 0.0036 0.0058 0.0063
IK 0.0082 0.0030 0.0031 0.0052
Number of options 435,642 585,176 403,907 1,424,725

The average RMSE over time is reported for each bucket of moneyness (M ) and days to maturity (τ ). The
sample period is January 4, 1996, to December 31, 2019. The restricted sample corresponds to options with
a time-to-maturity of between 30 and 365 days and a M∗ moneyness of between −2 to 1. Model (2.2) is
re-estimated on the restricted sample in Panel B.

Table A.1: Average RMSE over time from IV surface estimation over the restricted sample
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A.4 Butterfly and calendar spreads

On a given trading day t, let Dτ = exp(−rττ) be the risk-free discount factor where rτ is
the OptionMetrics zero-coupon interest rate associated with the maturity τ . For any traded
maturity τ , denote by K(τ)

0 < K
(τ)
1 < . . . < K

(τ)
n(τ) the set of all strikes for which quotes

are provided in the dataset. Thus, n(τ) represents the number of available options with
time-to-maturity τ . C(K, τ) denotes the call price for time-to-maturity τ and strike price
K.

As outlined in Davis and Hobson, 2007, the butterfly spread valueBS(τ)
i , i = 1, . . . , n(τ)−

1, defined as

BS(Kτ
i , τ) =

C(K
(τ)
i+1, τ)(

K
(τ)
i+1 −K

(τ)
i

)
Dτ

+
C(K

(τ)
i−1, τ)(

K
(τ)
i −K

(τ)
i−1

)
Dτ

− C(K
(τ)
i , τ)

Dτ

(
1

K
(τ)
i −K

(τ)
i−1

+
1

K
(τ)
i+1 −K

(τ)
i

)

needs to be positive, as otherwise, a butterfly spread arbitrage opportunity would arise.1

The calendar spread value CS(τ)
i is defined as

CS
(τ)
i (τ1, τ2, i1, i2) =C(K

(τ)
i , τ)−

(
K

(τ2)
i2

/F0,τ2 −K
(τ)
i /F0,τ

K
(τ2)
i2

/F0,τ2 −K
(τ1)
i1

/F0,τ1

)
DτF0,τ

Dτ1F0,τ1

C(K
(τ1)
i1

, τ1)

−

(
1−

(
K

(τ2)
i2

/F0,τ2 −K
(τ)
i /F0,τ

K
(τ2)
i2

/F0,τ2 −K
(τ1)
i1

/F0,τ1

))
DτF0,τ

Dτ2F0,τ2

C(K
(τ2)
i1

, τ2).

where τ1, τ2 > τ and i1, i2 are such that the strike prices satisfy
K

(τ1)
i1

F0,τ1
≤ K

(τ)
i

F0,τ
≤ K

(τ2)
i2

F0,τ2
. If

CS
(τ)
i (τ1, τ2, i1, i2) ≤ 0, then there is a calendar spread arbitrage opportunity in the data.
There are many combinations of maturities and strike prices that satisfy the calendar

spread restrictions. In Section 2.3.5, only one calendar spread per option in the sample is
1The butterfly spreads are computed differently at extremities of the strike price set:

BS(Kτ
0 , τ) = 1− C(K

(τ)
0 , τ)− C(K

(τ)
1 , τ)(

K
(τ)
1 −Kτ

0

)
Dτ

and BS(K(τ)
n(τ), τ) =

C(K
(τ)
n(τ)−1, τ)− C(K

(τ)
n(τ), τ)(

K
(τ)
n(τ) −K

(τ)
n(τ)−1

)
Dτ

.
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tested: for C(K(τ)
i , τ), τ1 and τ2 are the smallest maturities greater than τ and the ratios

K
(τ1)
i1

F0,τ1
and

K
(τ2)
i2

F0,τ2
are the closest to K

(τ)
i

F0,τ
. When no such strike and maturity combinations are

available, no calendar spread test is performed for that particular option.

A.5 Carr-Madan formula
This appendix contains the proof of Equation (2.7). The Carr and Madan, 2001 formula
states that for a twice differentiable payoff function f ,

EQ [e−rτf (Sτ )
]
=f (k) e−rτ + f ′ (k) [C (k)− P (k)]

+

∫ k

0
f ′′ (K)P (K) dK +

∫ ∞

k
f ′′ (K)C (K) dK

(A.2)

where C and P denote the put and call prices written on the underlying index Sτ with
maturity τ and strike price K. Due to the put-call parity, the second term vanishes if
k = F0,τ . In our framework, the moneyness M = (logF0,τ − logK) /

√
τ can be inverted

to retrieve the strike price K = F0,τe
−
√
τM . Since dK = −

√
τF0,τe

−
√
τMdM, applying a

change of variable in Equation (A.2), assuming that k = F0,τ , leads to Equation (2.7). □

A.6 Greeks and other partial derivatives

This appendix establishes Equations (2.9), (2.10) and (2.11). The functions’ arguments are
omitted to simplify the notation. Recall that the call price is

c = e−rτF0,τ

(
Φ (δ1)− e−M

√
τΦ (δ2)

)
with F0,τ = S0 exp ((r − q) τ), M = 1√

τ
ln F0,τ

K
, δ1 =

M
σ
+ 1

2
σ
√
τ , δ2 = δ1 − σ

√
τ , and σ

is the implied volatility from Model (2.2).

A.6.1 Risk-neutral density function

Equation (2.9) is derived in this appendix. Note that ∂F
∂S

= e(r−q)τ , ∂M
∂F

= 1√
τ

1
F0,τ

,

∂δ1
∂M

=
1

σ
−
(
M

σ2
− 1

2

√
τ

)
∂σ

∂M
and

∂δ2
∂M

=
1

σ
−
(
M

σ2
+

1

2

√
τ

)
∂σ

∂M
=
∂δ1
∂M

−
√
τ
∂σ

∂M
.
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Moreover,

φ (δ2) =
1√
2π

e−
1
2(δ1−σ

√
τ)

2

= φ (δ1) e
σ
√
τδ1− 1

2
σ2τ

=φ (δ1) e
σ
√
τ(M

σ
+ 1

2
σ
√
τ)− 1

2
σ2τ = φ (δ1) e

√
τM .

Because ∂M
∂K

= − 1√
τK

,

∂c

∂K
= e−rτF0,τ

(
Φ (δ1)− e−M

√
τΦ (δ2)

)
= e−rτF0,τ

∂M

∂K

(
φ (δ1)

∂δ1
∂M

+
√
τe−M

√
τΦ (δ2)− e−M

√
τφ (δ2)

∂δ2
∂M

)
= e−rτF0,τ

∂M

∂K

(
φ (δ1)

∂δ1
∂M

+
√
τe−M

√
τΦ (δ2)− φ (δ1)

(
∂δ1
∂M

−
√
τ
∂σ

∂M

))
= −e−rτ F0,τ

K

(
e−M

√
τΦ (δ2) + φ (δ1)

∂σ

∂M

)
= −e−rτ

(
Φ (δ2) + eM

√
τφ (δ1)

∂σ

∂M

)
.

The Gaussian density function satisfies ∂φ
∂z

(z) = −zφ (z) . Therefore, the risk-neutral den-
sity function is

erτ
∂2c

∂K2
=
∂M

∂K

∂

∂M

(
Φ (δ2) + eM

√
τφ (δ1)

∂σ

∂M

)
=
∂M

∂K

(
φ (δ2)

∂δ2
∂M

+
√
τeM

√
τφ (δ1)

∂σ

∂M
− eM

√
τδ1φ (δ1)

∂δ1
∂M

∂σ

∂M
+ eM

√
τφ (δ1)

∂2σ

∂M2

)
=
∂M

∂K

(
φ (δ1) e

√
τM

(
∂δ1
∂M

−
√
τ
∂σ

∂M

)
+
√
τeM

√
τφ (δ1)

∂σ

∂M
− eM

√
τδ1φ (δ1)

∂δ1
∂M

∂σ

∂M
+ eM

√
τφ (δ1)

∂2σ

∂M2

)
.

=
∂M

∂K
e
√
τMφ (δ1)

(
∂δ1
∂M

− δ1
∂δ1
∂M

∂σ

∂M
+

∂2σ

∂M2

)
=
F0,τ

K2

φ (δ1)√
τ

(
∂δ1
∂M

− δ1
∂δ1
∂M

∂σ

∂M
+

∂2σ

∂M2

)
The density integrates to one since∫ ∞

0

erτ
∂2c

∂K2
dK =erτ

(
lim

K→∞

∂c

∂K
− lim

K→0

∂c

∂K

)
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=− lim
M→−∞

(
Φ (δ2) + eM

√
τφ (δ1)

∂σ

∂M

)
+ lim

M→∞

(
Φ (δ2) + eM

√
τφ (δ1)

∂σ

∂M

)
= lim

M→∞
Φ (δ2) + lim

M→∞
eM

√
τφ (δ1)

∂σ

∂M
= 1.

A.6.2 Greeks computation

Equations (2.10) and (2.11) are derived in this appendix. Because ∂δ2
∂M

= ∂δ1
∂M

−
√
τ ∂σ
∂M

and
φ (δ2) = φ (δ1) e

√
τM ,

∆ =
∂c

∂S
=
∂F

∂S

∂c

∂F

=e−rτ ∂F

∂S

((
Φ (δ1)− e−M

√
τΦ (δ2)

)
+F0,τ

(
φ (δ1)

∂M

∂F

∂δ1
∂M

+ e−M
√
τ√τ ∂M

∂F
Φ (δ2)− e−M

√
τφ (δ2)

∂M

∂F

∂δ2
∂M

))
=e−rτ ∂F

∂S

((
Φ (δ1)− e−M

√
τΦ (δ2)

)
+F0,τ

∂M

∂F

(
φ (δ1)

∂δ1
∂M

+ e−M
√
τΦ (δ2)

√
τ − φ (δ1)

(
∂δ1
∂M

−
√
τ
∂σ

∂M

)))
=e−qτ

(
Φ (δ1) + φ (δ1)

∂σ

∂M

)
.

Recall that ∂φ
∂z

(z) = −zφ (z) . Therefore,

Γ =
∂2c

∂S2
=
∂F

∂S

∂

∂F

(
∂c

∂S

)
= e−qτ ∂F

∂S

∂

∂F

(
Φ (δ1) + φ (δ1)

∂σ

∂M

)
=e−qτ ∂F

∂S

(
φ (δ1)

∂M

∂F

∂δ1
∂M

− δ1φ (δ1)
∂M

∂F

∂δ1
∂M

∂σ

∂M
+ φ (δ1)

∂M

∂F

∂2σ

∂M2

)
=
e−qτe(r−q)τ

√
τF0,τ

φ (δ1)

(
∂δ1
∂M

− δ1
∂δ1
∂M

∂σ

∂M
+

∂2σ

∂M2

)
=

e−qτ

√
τS0

φ (δ1)

(
∂δ1
∂M

− δ1
∂δ1
∂M

∂σ

∂M
+

∂2σ

∂M2

)
.

A.7 Risk-neutral densities within CT and GG frameworks

This section illustrates the importance of the smoothness of the IV surface model as well
as its asymptotic behaviour. For the same four days that were selected in Figure 2.1, Fig-
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ures A.2 and A.3 present risk-neutral densities function obtained from the GG and CT
benchmark models. We observe negative values and irregular tail behaviour.

Panel A: January 4, 1996
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Panel D: December 31, 2019
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Risk-neutral density functions hτ (y) = exp(y)gτ (exp(y)) of the log-prices derived from GG model call
prices. January 4, 1996, is the first day in the sample. May 8, 2006, is a low volatility day. December 1,
2008, represents the peak of the 2008 financial crisis. December 31, 2019, is the last day of the sample. The
red line highlights regions where the density is negative.

Figure A.2: Log-price risk-neutral densities implied by the GG model

As explained in Section 2.3, the Chalamandaris and Tsekrekos, 2011 moneyness mea-
sure consists of a linear transformation of the Black-Scholes∆. To compute the risk-neutral
density from the Chalamandaris and Tsekrekos, 2011 implied volatility surface, the money-
ness measure is transformed back to the displayed moneyness measureK/F . To transform
back the Chalamandaris and Tsekrekos, 2011 moneyness measure to K/F , the option im-
plied volatility is required. A two-dimensional interpolation method using the observed
options implied volatility with their respective characteristics is implemented to obtain im-
plied volatilities with the desired characteristics (strike price and time-to-maturity). To
extrapolate from the surface, the options with the largest (smallest) moneyness are consid-
ered.
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Panel A: January 4, 1996
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Panel C: December 1, 2008
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Risk-neutral density functions hτ (y) = exp(y)gτ (exp(y)) of the log-prices derived from CT model call
prices. January 4, 1996, is the first day in the sample. May 8, 2006, is a low volatility day. December 1,
2008, represents the peak of the 2008 financial crisis. December 31, 2019, is the last day of the sample. The
red line highlights regions where the density is negative.

Figure A.3: Log-price risk-neutral densities implied by CT model
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A.8 Abnormal IV surface on October 9, 2006

The observed implied volatilities from October 9, 2006, are provided in Figure A.4.
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Figure A.4: IV surface on October 9, 2006
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Chapter B

Appendices of Joint dynamics for the underlying
asset and its implied volatility surface: A new
methodology for option risk management

B.1 Model components’ contribution to performance

The JIVR model, described in Section 3.4, encompasses multiple features such as (i)
GARCH-type stochastic volatilities, (ii) non-Gaussian innovations following NIG distribu-
tions, (iii) the leverage effect captured in the NGARCH’s asymmetric variance responses
as in Duan, 1995, (iv) a two-component stochastic volatility process for the underlying as-
set log-returns and the long-term level factor β1, and (v) a Gaussian copula to capture the
dependence structure between the innovations.

To study the contribution of each model feature, we compare the performance of a
sequence of nested sub-models with incremental complexity obtained by repeatedly adding
a model feature to the previous element of the sequence.

There are six sub-models: (1) BS, the Black-Scholes model, (2) Gaussian GARCH, (3)
Gaussian NGARCH, (4) NIG NGARCH, (5) the Indep. JIVR model where the Gaussian
copula is set to the identity matrix and (6) the JIVR model. The specifications of the
first four models are described in Table B.1. The fifth model (Indep. JIVR) is described
by Equations (3.3)-(3.5), but the innovations across the underlying return and IV factor
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components are assumed to be independent. Finally, the JIVR model from Section 3.4
includes the copula to capture the dependence between the various components.

S&P 500 log-returns Rt Volatility and surface factor coefficients βi

Rt =
(
rt,1/∆ − qt + λht+1,R

)
∆ βi = αi +

∑5
j=1 θi,jβt,j +

√
ht+1,i∆ϵt+1,i

−ψ(
√
ht+1,R∆) +

√
ht+1,R∆ϵt+1,R

BS ht+1,R = hR ϵt,R ∼ N (0, 1) ht+1,i = hi ϵt,R ∼ N (0, 1)

Gaussian ht+1,R = σ2
R + κR (ht,R − σ2

R) ht+1,i = σ2
i + κi (ht,i − σ2

i )

GARCH +aRht,R
(
ϵ2t,R − 1

)
ϵt,R ∼ N (0, 1) +aiht,i

(
ϵ2t,i − 1

)
ϵt,R ∼ N (0, 1)

Gaussian ht+1,R = σ2
R + κR (ht,R − σ2

R) ht+1,i = σ2
i + κi (ht,i − σ2

i )

NGARCH +aRht,R
(
ϵ2t,R − 1− 2γRϵt,R

)
ϵt,R ∼ N (0, 1) +aiht,i

(
ϵ2t,i − 1− 2γRϵt,i

)
ϵt,R ∼ N (0, 1)

NIG ht+1,R = σ2
R + κR (ht,R − σ2

R) ht+1,i = σ2
i + κi (ht,i − σ2

i )

NGARCH +aRht,R
(
ϵ2t,R − 1− 2γRϵt,R

)
ϵt,R ∼ NIG∗ +aiht,i

(
ϵ2t,i − 1− 2γRϵt,i

)
ϵt,i ∼ NIG∗

The first row displays the specification for the S&P 500 log-returns and the factor coefficients. The subsequent
rows indicate the volatility process and the distribution of the innovations for their respective model. The
NIG* refers to the standardized NIG distribution described in Appendix B.5.

Table B.1: Nested sub-models

Parameters from all sub-models are estimated through maximum likelihood, as de-
scribed in Section 3.5. The log-likelihood performance metric is computed out-of-sample
based on the expanding window method described in Section 3.6. The model performance
is measured out-of-sample to ensure that overfitting does not unduly give an advantage to
more complex sub-models. To compare the log-likelihoods across sub-models, the out-of-
sample log-likelihood and the corresponding ALR metric defined in Equation (3.10) are
considered.

Panel A of Table B.2 exhibits the out-of-sample log-likelihoods for each model. Results
are presented for all constituents (i.e. the S&P 500 log-returns and the factor coefficients)
individually, and the last row, Joint, presents the aggregated log-likelihood for the joint
model. Panel B displays the ALR metrics, which are computed based on the log-likelihood
of any model with respect to the previous one in the series of nested sub-models. The ALR
is described in detail in Section 3.6.2. Again, results are presented for separate constituents
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and in aggregate.
First, the results clearly highlight the importance of including a GARCH-type volatility

for all five factor coefficients and for the S&P 500 log-returns. The ALRs are all large and
far above 1, indicating that the superiority of the performance of the Gaussian GARCH
model over that of the BS is unequivocal. The addition of an asymmetric volatility re-
sponse through the replacement of GARCH with NGARCH processes results in improve-
ments mainly for the S&P 500 log-returns and for the time-to-maturity slope. For other
factors, such a modification does not lead to much (if any) improvement in performance.
Integrating NIG-distributed innovations positively impacts the fitting performance for the
S&P 500 log-returns and for all five factor coefficients. The second-to-last column (Indep.
JIVR) displays the relative performance of the full specification described in Equations
(3.3)-(3.5) over that of the NIG-NGARCH model. With an ALR of 1.03 for the S&P 500
log-returns and 1.02 for the long-term level factor, the results highlight a large improve-
ment stemming from the inclusion of the two-component variance process. Lastly, the last
column, which depicts the impact of including the Gaussian copula, exhibits an ALR of
2.29. This highlights the importance of taking the dependence structure into consideration.
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BS Gaussian Gaussian NIG JIVR Model

AR(1) GARCH NGARCH NGARCH Indep. Copula

Panel A: Log-lik.

S&P 500 log-returns 10,124 11,365 11,466 11,600 11,709

Long-term level 13,788 15,617 15,620 15,785 15,861

TmT Slope 7,115 8,681 8,843 9,304 9,319

Moneyness Slope 15,392 15,674 15,672 15,709 15,709

Smile attenuation 14,922 15,251 15,250 15,352 15,352

Smirk 14,441 14,861 14,860 14,995 14,995

Joint 75,785 81,452 81,713 82,748 82,947 85,873

Panel B: ALR

S&P 500 log-returns 1.42 1.03 1.04 1.03

Long-term level 1.68 1.00 1.05 1.02

TmT Slope 1.56 1.05 1.14 1.01

Moneyness Slope 1.08 1.00 1.01 1.00

Smile attenuation 1.10 1.00 1.03 1.00

Smirk 1.13 1.00 1.04 1.00

Joint 4.99 1.08 1.34 1.06 2.29

The table exhibits log-likelihoods (Panel A) and the ALR (Panel B) for the aggregated out-of-sample period
(2007-2020). The specification of the first four models (BS, Gaussian GARCH, Gaussian NGARCH, NIG
NGARCH) are presented in Table B.1 and the specification of last two models (JIVR Indep. and JIVR copula)
correspond to the specification exhibited in Section 3.4, i.e. Equation (3.3)-(3.5). The last row (Joint) displays
the log-likelihood for the joint models assuming independence between the log-returns and the five factors,
except for the last column (JIVR model copula) where the Gaussian copula captures the dependence. Panel
B exhibits the ALR metrics, which use the log-likelihood of the corresponding row and column of Panel A
as the numerator input, and the log-likelihood of the corresponding row but the previous column of Panel A
as the denominator input.

Table B.2: Out-of-sample model performance
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B.2 Cramér-von Mises test

The Cramér-von Mises p-value is computed through a two-step process. The first step
involves generating a cumulative distribution function for the Cramér-von Mises statistic
using a bootstrapping scheme.

More precisely, numerous sets of random variables following a NIG distribution with
the parameters exhibited in Table 3.4 are simulated. Parameters of the NIG distribution
are fitted over each simulated set. The Cramér-von Mises statistic is computed for all sim-
ulated sets using the fitted parameters. This method generates a large number of simulated
Cramér-von Mises statistics, which forms the Cramér-von Mises test distribution. The sec-
ond step consists in estimating the Cramér-von Mises statistic on the residuals. The p-value
of the Cramér-von Mises statistic is obtained using the simulated Cramér-von Mises statis-
tic’s distribution, as computed in Step 1.

Algorithm 2 Cramér-von Mises test
for n = 1 to N do

for m = 1 to M do
draw xm,n ∼ NIG(ζNIG, ϕNIG)

end for
[ζ̃n∗NIG, ϕ̃

n∗
NIG] = argmaxζ̃nNIG,ϕ̃

n
NIG

∑M
j=1 log

(
fNIG(xj,n; ζ̃

n
NIG, ϕ̃

n
NIG

)
CV (n) = 1

12M
+
∑M

j=1

(
2j−1
2M

− FNIG(xj,n; ζ̃
n∗
NIG, ϕ̃

n∗
NIG)

)2
end for
CV S = 1

12M
+
∑M

j=1

(
2j−1
2M

− FNIG(rj; ζNIG, ϕNIG)
)2

p-value = (
∑N

j=1 1{CV (j)>CV S})
N

;

In Algorithm 2, FNIG refers to the cumulative distribution function of the NIG distri-
bution, fNIG is the density distribution function of the NIG distribution, and r is the vector
of residuals.
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B.3 VaR coverage tests

In this section, the methodology for the VaR coverage test is presented for the specific
case where α < 0.5. The principle to compute the test for α > 0.5 is identical, mutatis
mutandis. The VaR coverage test verifies if the proportion of ex-post VaR breaches are
close to the model’s α percentile level. The notation VaRα

t represents the VaR estimate for
a specific day t and confidence level α.

The test is performed following the backtesting procedure called the hit sequence,
which is described in detail in Kupiec et al., 1995. The hit sequence of VaR breaches
is defined as follows:

It+d =

1 Vt+d−Vt

Vt
< VaRα

t+d,

0 otherwise

where Vt is the value of the strategy at time t. If the VaR calculation methodology is well
specified, the frequency of VaR breaches (i.e. elements It+d equal to 1) should be close to
α.

More precisely, the hit sequence should be composed of independent and identically
distributed Bernoulli random variables. The null hypothesis of the test is thusH0 :

∑N
t=d+1 It ∼

Binomial(α,N − d). The test is performed as follows:

m1 =
N∑

t=d+1

It, m0 = N − d−
N∑

t=d+1

It,

L1 = m0 log (1− α) +m1 logα

L2 = m0 log

(
1− m1

N − 1

)
+m1 log

(
m1

N − 1

)
.

According to the likelihood ratio test, −2 (L1 − L2) ∼ χ2
1 distribution where χ2

1 is a
Chi-squared distribution with one degree of freedom. The p-value of the test is computed
as 1− CDFχ2

1
(−2 (L1 − L2)).
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B.4 Diebold & Mariano (1995) test

In Section 3.6.2, we use the Diebold and Mariano, 1995 test to compare the predictive
performance of the JIVR model with that of the direct model from a statistical standpoint.
In our particular case, the considered predictive performance measure is the log-likelihood.
Let L(1)

t and L(2)
t be log-likelihoods at time t of the JIVR model and the direct model,

respectively.
We refer to the time-series of dt = L(1)

t − L(2)
t as the loss differential. The sample

autocovariance γk at lag k is defined as

γk =
1

N

N∑
t=k+1

(dt − d̄)(dt−k − d̄), d̄ =
1

N

N∑
t=1

dt.

The Diebold and Mariano, 1995 statistic is computed as DM = d̄√
(γ0+2

∑h−1
k=1 γk)/N

where h = ⌊N1/3 + 1⌋ and DM ∼ N (0, 1). The p-value of the test is computed as
1− CDFN (DM).

B.5 Standardized Normal Inverse Gaussian probability den-
sity function

The probability density function of the standardized NIG distribution is defined as:

f(x) =

B1

(√
ϕ6

ϕ2+ζ2
+ (ϕ2 + ζ2)

(
x+ ϕ2ζ

ϕ2+ζ2

)2)

π

√
1

ϕ2+ζ2
+ ϕ2+ζ2

ϕ6

(
x+ ϕ2ζ

ϕ2+ζ2

)2 e

(
ϕ4

ϕ2+ζ2
+ζ

(
x+ ϕ2ζ

ϕ2+ζ2

))
, x ∈ R,

where B1 denotes the modified Bessel function of the second kind with index 1, which is
described in Barndorff-Nielsen et al., 2001.1

1This density is obtained by replacing βNIG and γNIG with ζ and ϕ, respectively, in the common
(αNIG, βNIG, δNIG, µNIG)-specification of the NIG density and by imposing a null mean and unit variance
to express δNIG, µNIG in terms of αNIG, βNIG (or alternatively γNIG =

√
(αNIG)2 − (βNIG)2).
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Chapter C

Appendices of Foreseeing the worst: Forecasting
electricity DART spikes

C.1 Weather forecast simulation and interpolation

C.1.1 Temperature forecast interpolation

The temperature forecast data consist of daily weather forecasts as of 18:00 with horizons
ranging from 30 to 54 hours in three-hour increments, i.e., three-hour forecast periods
corresponding respectively to 00:00, 3:00, 6:00, ..., 21:00). Hourly spike forecasts per-
formed in Section 4.3 require hourly temperature forecasts as input. To handle the missing
temperature forecast for hours falling between the three-hour increments, a simple linear
interpolation scheme is implemented. More precisely, interpolated temperature forecasts
T̂F are computed as follows:

T̂F3t+i =
(3− i)TF3t + iTF3(t+1)

3
, where i = 1, 2,

where TF is the observed temperature forecast.

C.1.2 Synthetic temperature forecasts before October 2017

The historical temperature forecast dataset obtained is only available as of October 7, 2017.
To fill for missing observations in the dataset that starts in 2015, simulated forecasts are
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generated by injecting noise in realized value. Temperature forecasts are described as a
combination of the realized temperatures and error terms:

TFt = RTt + ϵt,

where TF is the temperature forecast, RT is the realized temperature, and ϵ is the forecast
error. To simulate temperature forecasts before October 7, 2017, a noise component ϵt is
added to the realized temperature RTt. Because the forecast error might be influenced by a
multitude of seasonal factors, the noise component is sampled using a simple bootstrapping
approach to circumvent this potential complexity.

The first step consists in storing the available forecast errors ϵt from October 7, 2017,
to December 31, 2021. The second step consists in simulating the temperature forecasts
from January 1, 2015, to October 6, 2017. For each hour of the sample, this is achieved by
randomly sampling a forecast error among all post-October 6, 2017, observations sharing
the same hour and date. For instance, to sample an error for hour 6:00 of May 8, 2017, we
would randomly pick the forecast error among these from 6:00 on May 8 of either 2018,
2019, 2020, or 2021.

C.2 Predictive models

C.2.1 Logistic regression

Due to a large number of categorical features, the dummy variables are aggregated into
buckets when applying the logistic regression. The categorical features month and hour
encompass, respectively, 12 and 24 categories. Due to the similarity between multiple cat-
egories and to reduce the dimensionality of the feature vector, the categories are regrouped
into bins: [January, February], [March, April, May], [June, July, August, September], [Oc-
tober, November, December] and [23:00 to 5:00], [6:00 to 10:00], [11:00 to 13:00], [14:00
to 16:00], [17:00 to 19:00], [20:00 to 22:00].

Another transformation is applied to the load/grid feature. The relation between the
target variable (spikes) and the load/grid feature is non-linear. To capture the non-linearity
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with the logistic regression model, a feature corresponding to the squared value of load/grid
is added to the feature set.

C.2.2 Model estimation and hyperparameter tuning

The random forests, gradient-boosting trees, and DNNs all encompass a set of hyperpa-
rameters. The choice of hyperparameters is largely related to the model’s performance.
Unfortunately, hyperparameters cannot be optimized with the regular model parameters
during the training step.

Several search methods, such as random search, grid search, or Bayesian optimization,
can be used to search over many sets of hyperparameters. Furthermore, the search process
must be paired with a performance evaluation technique to discriminate between the sets
of hyperparameters tested. The current study implements a grid search algorithm paired
with a k-fold cross-validation process. The grid search method takes as input a grid of
hyperparameters. The algorithm trains the model and computes the performance for each
possible combination in the grid. The k-fold cross-validation is a method that makes it
possible to compute each set of hyperparameters’ performance objectively. The k-fold
cross-validation starts by splitting the dataset into k folds. The algorithm then lists the k
possible combinations of the k−1 folds while keeping the remaining fold for a performance
review. The model is then trained for each of the k combinations, and the performance of
the model is assessed over the remaining fold. The overall model performance is computed
by aggregating the testing fold results for all k combinations. The hyperparameter set with
the greatest performance is selected. It is important to note that the size of the grids and
the number of folds impact the numerical load. In this study, five-fold cross-validation is
applied.

C.3 Model confidence set approach

In Section 4.3 and 4.4, the model confidence set approach of Hansen et al., 2011 is imple-
mented to identify the best performing model(s) using the log-likelihood and the trading
P&L as the performance measures. More precisely, the Hansen et al., 2011 method selects
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the best-performing model(s) through an iterative process based on a two-step approach,
with steps respectively being called the equivalence test and the elimination step. The
equivalence test verifies whether all models in the model confidence set generate perfor-
mances that are statistically indistinguishable. If such null hypothesis from the equivalence
test is rejected, the elimination step identifies which model is to be removed from the con-
fidence set.

Since the number of considered models is low compared to the number of out-of-sample
observations, Hansen et al., 2011 indicates that the statistic of the equivalence test can be
computed as follows. The forecast performance at time t for each model k in the model
confidence set is represented by Lt,k. Such quantities are collected in the matrix L = [Lt,k]

where t refers to the row and k to the column. Lt refers to row t of L. The total number
of considered models is K. In the current study, Xt is set to Xt = LtM , where the M is a
K×K−1 matrix such thatMi,j = 1 when i = j,Mi,j = −1 when i+1 = j andMi,j = 0

otherwise. Under the null hypothesis, Xt has a zero mean.
The test statistic is

T = nX̄ ′Σ̂−1X̄,

where X̄ is the arithmetic average of X1, . . . , Xn, Σ̂ is a consistent estimator of the co-
variance matrix of X̄ , and n is the number of observations. Under the null hypothesis,
T → χ2(q), where q = rank(Σ). In this study, the confidence level considered is 5%.
If the equivalence test is rejected, the model with the largest standardized excess loss is
removed from the model confidence set. The standardized excess loss for model j is com-
puted as follows:

tk =
p̄k√

v̂ar(p̄k)
,

where pt,k = Lt,k − 1
K

∑K
i=1 Lt,i and p̄k = 1

n

∑n
t=1 pt,k. The process iterates through steps

1 and 2 until either (i) the equivalence test is not rejected or (ii) only one model remains
inside the model confidence set.
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C.4 Assessment of the CTHI feature

A predictor used by the NYISO to forecast the load is the cumulative temperature and hu-
midity index (CTHI). As explained in NYISO, 2021, the CTHI index is a weather metric
that integrates information about temperature and humidity in the last three days and ac-
counts for the “heat buildup within building structures during a heatwave." More precisely,
the temperature and humidity index (THI) is a measure of bodily discomfort experienced
during warm weather. As described in NYISO, 2021, it is constructed by combining the
temperature and relative humidity:

THIt = 0.6Tt + 0.4WBt

where Tt represents the hour-t temperature and WBt is the corresponding wet-bulb tem-
perature.1 The THI∗d, for day d, is defined as the maximum observed hourly THI over the
last 24 hours, i.e., the 24-hour period ending at the prediction time 18:00. The day-dCTHI,
denoted CTHId, is a weighted average of the THI∗d over the past three days:

CTHId = 0.7THI∗d + 0.2THI∗d−1 + 0.1THI∗d−2.

Table C.1 reports the performance metrics (AUC and average log-likelihood) across
models and thresholds when the CTHI feature is added to the feature set described in Sec-
tion 3.2.

Comparing the performance metrics reported in Table C.1 with those from Table 4.3
outlines the general slight underperformance across models and thresholds when the CTHI
feature is included in the feature set.

1The hour-twet-bulb temperature WBt is defined as the temperature read from a thermometer submerged
in water. Since this information is not commonly found in historical weather datasets, an estimate of the WB
temperature is considered. As explained in Stull, 2011, the wet-bulb temperature is estimated by combining
the dry-bulb temperature and the relative humidity as follows:

WBt = Tt arctan
(
0.151977

√
RHt + 8.313659

)
+ arctan(Tt + RHt)

− arctan(RHt − 1.676331) + (0.00391838 (RHt)
1.5) arctan(2.3101RHt)− 4.686035

where RHt is the hour-t relative humidity in %. The dry-bulb temperature is the temperature directly drawn
from the dataset.
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Logistic Random Gradient DNN
Regression Forest Boosting Trees

γ− −30 −45 −60 −30 −45 −60 −30 −45 −60 −30 −45 −60

A AUC

In
-s

am
pl

e 2015-2017 0.720 0.737 0.747 0.760 0.784 0.809 0.778 0.805 0.815 0.733 0.753 0.766
2015-2018 0.707 0.730 0.745 0.747 0.771 0.792 0.751 0.774 0.805 0.735 0.713 0.730
2015-2019 0.715 0.743 0.758 0.754 0.777 0.799 0.756 0.788 0.807 0.700 0.728 0.746
2015-2020 0.716 0.743 0.759 0.752 0.778 0.803 0.805 0.783 0.806 0.719 0.746 0.756

O
ut

-o
f-s

am
pl

e 2018 0.661 0.700 0.724 0.675 0.707 0.728 0.684 0.709 0.735 0.647 0.688 0.710
2019 0.717 0.773 0.794 0.750 0.784 0.816 0.734 0.780 0.798 0.707 0.773 0.800
2020 0.733 0.756 0.780 0.735 0.748 0.760 0.734 0.753 0.771 0.710 0.728 0.753
2021 0.700 0.730 0.751 0.706 0.735 0.734 0.703 0.736 0.749 0.678 0.705 0.719
Agg. 0.707 0.743 0.763 0.719 0.749 0.763 0.717 0.749 0.767 0.691 0.727 0.744

B Average log-likelihood

In
-s

am
pl

e 2015-2017 -0.209 -0.154 -0.121 -0.201 -0.146 -0.113 -0.197 -0.143 -0.113 -0.207 -0.152 -0.119
2015-2018 -0.213 -0.154 -0.120 -0.205 -0.148 -0.114 -0.205 -0.148 -0.113 -0.207 -0.156 -0.122
2015-2019 -0.202 -0.145 -0.112 -0.196 -0.139 -0.106 -0.195 -0.138 -0.106 -0.204 -0.146 -0.113
2015-2020 -0.196 -0.140 -0.107 -0.191 -0.136 -0.102 -0.180 -0.135 -0.102 -0.196 -0.141 -0.108

O
ut

-o
f-s

am
pl

e 2018 -0.225 -0.157 -0.120 -0.223 -0.157 -0.121 -0.222 -0.156 -0.120 -0.229 -0.158 -0.122
2019 -0.162 -0.109 -0.078 -0.164 -0.112 -0.080 -0.161 -0.109 -0.079 -0.164 -0.109 -0.078
2020 -0.171 -0.122 -0.086 -0.169 -0.122 -0.086 -0.169 -0.121 -0.084 -0.174 -0.124 -0.088
2021 -0.281 -0.197 -0.141 -0.279 -0.196 -0.144 -0.279 -0.195 -0.141 -0.286 -0.203 -0.146
Agg. -0.206 -0.143 -0.105 -0.205 -0.143 -0.105 -0.203 -0.142 -0.104 -0.208 -0.146 -0.106

The four models are the logistic regression, the random forest, gradient boosting trees, and the deep neural
network (DNN). Panel A’s performance metric is the area under the curve (AUC), while Panel B is the average
log-likelihood. The models generate out-of-sample predictions for 2018 to 2021. The models are trained on
the previous years’ observations for each out-of-sample forecast. For example, to generate out-of-sample
forecasts for 2019, the models are trained on the observations from 2015 to 2018. The last row of each panel
displays the performance metric computed over the aggregated (Agg.) out-of-sample years.

Table C.1: In-sample and out-of-sample performance metrics when CTHI is added to the
feature set

138



Appendix C. Foreseeing the worst: Forecasting electricity DART spikes

C.5 Stacked Classifier

A common approach in machine learning is to consider ensemble models, which combine
the predictions of multiple models. In this study, four statistical learning algorithms are
trained. As shown in Figure 4.8, the predicted probabilities of each model are not perfectly
interchangeable and display differences from one another. Table C.2 exhibits the perfor-
mance of the combined models.2 Results show that combining the predictions from the
various models does not improve the performance of the out-of-sample predictions.

AUC Average log-likelihood

γ− −30 −45 −60 −30 −45 −60

In
-s

am
pl

e 2015-2017 0.760 0.771 0.796 -0.198 -0.144 -0.110
2015-2018 0.756 0.768 0.791 -0.202 -0.147 -0.115
2015-2019 0.751 0.782 0.801 -0.194 -0.137 -0.106
2015-2020 0.752 0.793 0.798 -0.189 -0.133 -0.102

O
ut

-o
f-s

am
pl

e 2018 0.659 0.673 0.650 -0.231 -0.166 -0.133
2019 0.751 0.776 0.811 -0.160 -0.111 -0.081
2020 0.727 0.692 0.688 -0.182 -0.135 -0.111
2021 0.705 0.740 0.727 -0.292 -0.210 -0.181
Aggregated 0.715 0.726 0.718 -0.213 -0.153 -0.124

The four models embedded in the ensemble model are: logistic regression, random forest, gradient boosting
trees, and a deep neural network (DNN). The models are combined by considering each model’s output as
the input of a logistic regression. The logistic regression is then trained over an in-sample set to predict
spikes, and the performance is computed over the out-of-sample set. Panel A’s performance metric is the
area under the curve (AUC), while Panel B is the average log-likelihood. The logistic regression generates
out-of-sample predictions from 2018 to 2021. The models are trained on the previous years’ observations
for each out-of-sample forecast. For example, to generate out-of-sample forecasts for 2019, the models are
trained on the observations from 2015 to 2018.

Table C.2: Ensemble model predictions

2The models are combined by considering each model’s output as the input of a logistic regression
model. The logistic regression is then trained over an in-sample set to predict spikes, and the performance is
computed over the out-of-sample set.
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C.6 Revised feature set based on Section 4.3.3 results

In Section 4.3.3, the feature importance assessment reveals that three features, namely
weekend/holidays, past day-ahead load forecast and past day-ahead price forecast, con-
tribute little to the predictions, not to mention sometimes being harmful in terms of pre-
dictive performance. To reduce overfitting issues and improve the out-of-sample model
performance, a common practice consists in removing these features from the feature set.
However, since some of the results presented in Section 4.3.3 are based on the out-of-
sample dataset, removing these features in Section 4.4 would be regarded as integrating
future information into the models and could potentially artificially improve the results.
Nevertheless, it is still interesting to test whether the revised feature set would improve the
results. Thus, Table C.3 reports the performance metrics over the in-sample and out-of-
sample sets with the revised feature set excluding those three features. Results indicate that
with such revised feature set, the aggregated performance is generally qualitatively similar
(albeit often slightly higher) for the various models and thresholds.
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Logistic Random Gradient DNN
Regression Forest Boosting Trees

γ− −30 −45 −60 −30 −45 −60 −30 −45 −60 −30 −45 −60

A AUC

In
-s

am
pl

e 2015-2017 0.711 0.729 0.741 0.747 0.776 0.799 0.754 0.771 0.780 0.720 0.738 0.749
2015-2018 0.702 0.726 0.741 0.736 0.764 0.784 0.775 0.808 0.826 0.713 0.729 0.755
2015-2019 0.709 0.737 0.753 0.741 0.772 0.793 0.773 0.773 0.790 0.716 0.745 0.764
2015-2020 0.712 0.739 0.755 0.742 0.773 0.796 0.772 0.805 0.826 0.730 0.746 0.759

O
ut

-o
f-s

am
pl

e 2018 0.669 0.709 0.729 0.682 0.719 0.734 0.688 0.712 0.725 0.666 0.707 0.732
2019 0.714 0.768 0.791 0.751 0.784 0.822 0.744 0.786 0.821 0.746 0.772 0.793
2020 0.743 0.764 0.789 0.744 0.755 0.765 0.742 0.767 0.774 0.723 0.733 0.741
2021 0.705 0.734 0.756 0.706 0.732 0.745 0.699 0.734 0.761 0.668 0.719 0.741
Agg. 0.711 0.747 0.766 0.724 0.752 0.769 0.691 0.752 0.771 0.697 0.736 0.757

B Log-likelihood

In
-s

am
pl

e 2015-2017 -0.210 -0.154 -0.121 -0.204 -0.148 -0.115 -0.203 -0.149 -0.117 -0.209 -0.154 -0.121
2015-2018 -0.213 -0.154 -0.121 -0.208 -0.149 -0.116 -0.200 -0.143 -0.111 -0.212 -0.154 -0.119
2015-2019 -0.203 -0.145 -0.112 -0.198 -0.141 -0.108 -0.207 -0.140 -0.108 -0.202 -0.144 -0.111
2015-2020 -0.197 -0.141 -0.107 -0.193 -0.137 -0.103 -0.186 -0.132 -0.100 -0.194 -0.140 -0.107

O
ut

-o
f-s

am
pl

e 2018 -0.224 -0.155 -0.120 -0.222 -0.155 -0.121 -0.221 -0.155 -0.120 -0.226 -0.156 -0.120
2019 -0.163 -0.109 -0.079 -0.162 -0.111 -0.079 -0.162 -0.110 -0.079 -0.160 -0.110 -0.079
2020 -0.170 -0.121 -0.085 -0.168 -0.121 -0.086 -0.188 -0.118 -0.084 -0.172 -0.123 -0.087
2021 -0.278 -0.195 -0.140 -0.278 -0.196 -0.142 -0.279 -0.195 -0.140 -0.290 -0.199 -0.143
Agg. -0.206 -0.143 -0.104 -0.204 -0.143 -0.105 -0.209 -0.142 -0.104 -0.208 -0.145 -0.105

The four models–logistic regression, random forest, gradient boosting trees, and deep neural network (DNN)–
are trained over a revised feature set. The revised feature set is composed of the heating degree days (HDD),
cooling degree days CDD, hour indicators, month indicators, and past spikes. Conversely, weekend/holidays,
past day-ahead load forecast, and past day-ahead price forecast features are excluded from the feature set.
Panel A’s performance metric is the area under the curve (AUC), while Panel B is the log-likelihood divided
by the number of observations. The models generate out-of-sample predictions for 2018 to 2021. The models
are trained on the previous years’ observations for each out-of-sample forecast. For example, to generate out-
of-sample forecasts for 2019, the models are trained on the observations from 2015 to 2018. The last row of
each panel displays the performance metric computed over the aggregated (Agg.) out-of-sample years.

Table C.3: Performance with the revised feature set
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