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Résumé 

Cette thèse explore diverses méthodologies pour estimer l'état mental des utilisateurs 

pendant l'interaction homme-machine (IHM) avec les technologies de l’information 

(TI). Les processus mentaux jouent un rôle important dans l'utilisation des TI et peuvent 

être influencés par de multiples facteurs, y compris les caractéristiques de la technologie 

elle-même, les choix de conception et la tâche à accomplir. Par conséquent, la 

compréhension des états mentaux est cruciale dans l'étude des artefacts technologiques 

nécessitant une interaction humaine. Pour relever ce défi, la thèse adopte une approche 

NeuroIS, tirant parti des connaissances de la littérature en neurosciences cognitives pour 

faire progresser le développement et la mesure des états mentaux durant l’utilisation des 

TI. 

Chaque chapitre de cette thèse contribue de manière unique à l'objectif global. Une 

revue de littérature est effectuée pour identifier les défis actuels de l'estimation de l'état 

mental en neurosciences appliquées en IHM. Cette recension des écrits a mis en 

évidence que ces défis découlent, en partie, d'une conceptualisation limitée des 

inférences psychophysiologiques et d'une adoption limitée des approches analytiques de 

pointe. Les chapitres suivants visent à remédier à ces limitations par le biais de deux 

méthodologies distinctes. La première approche utilise une méthodologie axée sur les 

données, en recourant à l'apprentissage automatique pour le décodage de l'état mental. 

L'objectif est de généraliser les réponses neurophysiologiques observées à partir de 

tâches synthétiques à une tâche naturelle. La seconde approche adopte une perspective 

hypothético-déductive et s'appuie sur la compréhension actuelle de l'intégration 

multisensorielle et de son interaction avec l'attention. En s'appuyant sur ce cadre 

théorique, une mesure de l'attention basée sur la perturbation des sens est développée et 

testée dans des tâches naturelles.  

En adoptant ces méthodologies, cette thèse contribue à faire avancer le domaine des 

NeuroIS et la mesure de l'état mental au cours de l'utilisation des TI. 
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Abstract 

This thesis explores various methodologies for estimating mental state constructs during 

Human-Computer Interaction (HCI) in Information Systems (IS). Mental processes play 

a significant role in the use of information technology and can be influenced by multiple 

factors, including the characteristics of the technology itself, design choices, and the 

task at hand. Consequently, understanding mental states is crucial in studying 

technological artifacts requiring human interaction. To tackle this challenge, the thesis 

adopts a NeuroIS approach, leveraging cognitive neuroscience insights to advance the 

development and measurement of mental state constructs during IS use. 

Each chapter of this thesis contributes uniquely to the overarching goal. A scoping 

review was conducted to identify current challenges in mental state estimation in applied 

neuroscience within HCI and IS. The review highlighted that these challenges arise, in 

part, from a limited conceptualization of psychophysiological inferences and a slow 

adoption of state-of-the-art analytical approaches. The subsequent chapters aim to 

address these limitations through two distinct methodologies. The first approach utilizes 

a data-driven methodology, employing advanced machine learning techniques for 

mental state decoding. The objective is to generalize the observed physical brain 

patterns from synthetic tasks to naturalistic settings. The second approach takes a more 

hypothetico-deductive perspective and draws on the current understanding of 

multisensory integration and its interplay with attention and various bottom-up and top-

down factors. Building upon this theoretical foundation, a perturbation-based measure of 

oriented attention in EEG is developed and tested within naturalistic tasks specific to the 

IS domain. 

By adopting these methodologies, this thesis contributes to advancing the field of 

NeuroIS and the measure of mental state over time during IS use.  

Keywords: NeuroIS, HCI, machine learning, evoked-related potential, 

electroencephalography, mental workload, multisensory integration, attention 

Research methods: Literature Review, Laboratory Experiment 
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Chapter 1 
Introduction 

1.1 Thesis Motivation 

This thesis aims to advance measurement methods for estimating mental state constructs 

during human-computer interaction (HCI) in Information Systems (IS). Mental 

processes (e.g., cognitive load, engagement, immersion) are omnipresent during the use 

of information technology. They can be influenced by multiple artifact characteristics 

(e.g., technology itself, design choices, or the task at hand), making it an important 

preoccupation in the study of technological artifacts at the individual level. In order to 

address it, NeuroIS pushes for the use of neurophysiological tools to study the neural 

substrates of emotional, cognitive, and social processes (Dimoka et al., 2012; Loos et 

al., 2010; vom Brocke et al., 2020). This thesis engages with this call for research by 

drawing on cognitive neuroscience literature to contribute to mental state constructs 

developments and measurements in IS. 

Neurophysiological methods offer the capability to uncover users’ automatic and 

unconscious mental states during computerized tasks (Dimoka et al., 2011; Loos et al., 

2010). These techniques enable a rich measurement of users’ mental states, which in 

turn can offer new insights into user cognition during interactions with systems (Riedl et 

al., 2014; vom Brocke et al., 2020). By measuring automatic brain processes, we can 

enhance the measurement and deepen our understanding of information systems 

constructs (De Guinea et al., 2013; Tams et al., 2014). 

In the recent decade, information system researchers have explored and utilized various 

methods, tools, and neuroscientific measurements. A review by Riedl et al. (2020) 

examined 73 articles from the past basket of eight information systems journals, 

revealing a substantial body of literature encompassing measures for both the automatic 

nervous system (ANS) and central nervous system (CNS). The study highlighted the 

relative frequency of various neuroscientific instruments used in empirical research, 

with electroencephalography (CNS), heart rate (ANS), skin conductance (ANS), 
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functional magnetic resonance imaging (CNS), eye-tracking (pupil dilatation) (ANS), 

and facial electromyography (ANS) being the most commonly employed. IS researchers 

applied these instruments to infer constructs related to emotions, stress, attention, or 

trust. 

This thesis focuses on electroencephalography (EEG), the most widely utilized 

instrument in IS (Riedl et al., 2020). This instrument records the electrical activity 

resulting from the activation of large numbers of neurons at the surface of a human scalp 

(see box 1.). According to Müller-Putz et al. (2015), EEG’s popularity stems from its 

relatively low cost compared to other neural imaging techniques like fMRI. The 

relatively affordable acquisition price and cost per subject make it accessible for 

researchers. Additionally, EEG offers excellent temporal resolution, typically ranging 

from approximately 250 to 1000 Hz, and it is relatively non-intrusive for HCI studies. 

However, its spatial resolution is significantly limited, approximately 1 cm compared to 

fMRI. However, EEG signals are susceptible to environmental and internal 

interferences, such as body movements and eye blinks. Nonetheless, EEG is well-suited 

for computerized tasks, such as those in HCI, as they often involve computer usage, a 

seated position, and minimal body movement. In this context, EEG enables the 

investigation of automatic and unconscious cognitive mechanisms in the central nervous 

system without disrupting the ecological validity of IS tasks. 

Box 1  

Electroencephalography (EEG) foundations from Müller-Putz et al. (2015) 

The neurons are the fundamental elements of the nervous system. They communicate with 

each other through chemical and electrical signals. A neuron is a nerve cell that receives, 

processes and sends information. Information is conveyed when neurons receive electrical 

stimulation from other neurons and release the chemical substance to the synapse.  

 

The electroencephalogram records the electrical activity of neurons within the cerebral 

cortex via electrodes. Electrodes are placed at the scalp’s surface and record the electrical 

signal generated by the synchronous excitation of neurons. Because neurons are microscopic 

and electrodes cover a small portion of the scalp, a large population of neurons in an outward 
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direction must activate altogether to detect the sensors. This measurable change is the result 

of the summation of post-synaptic potentials that occur in clusters of neurons at the same 

time. EEG activity is relatively small, measured in microvolts (mV). 

 

Event-related potentials (ERP) are physical brain responses originating from external stimuli 

and reflecting sensory, cognitive, or motor events. ERP signal is small (~ 5-20 mV), and it is 

difficult to decipher it from the other physical processes in the brain. An analytical technique 

is to record the same time-locked stimulation multiple times and average the electrical 

response. This procedure increases the signal-to-noise ratio.  

 

Neural Oscillations are the rhythmic and repetitive electrical activity generated 

spontaneously or in response to external stimulation by clusters of neurons. The electrical 

signal contains multiple concurrent oscillations from different frequencies. To uncover them, 

the electrical signal is decomposed into distinct frequency bands (e.g., delta (0.5–4 Hz), theta 

(4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz)) with mathematical processes such as Fourier 

analysis. 

 

Methodological contributions are emerging in NeuroIS for neurophysiological tools 

(Léger et al., 2014; Riedl et al., 2014; vom Brocke & Liang, 2014), but ones specific to 

instruments and methods to relate them to psychological constructs are still needed. 

Müller-Putz et al. (2015) proposed a first methodological introduction to EEG destined 

for IS researchers, but more research should focus on how to use those methods and 

incorporate in our practice efficiently. As noted by Riedl et al. (2014), “more research 

contributing to the systematic development of a NeuroIS research methodology is 

needed” (p. ii). This thesis directly engages in this call and transfers knowledge and 

techniques from cognitive neuroscience to NeuroIS. 

However, adopting methodologies from neuroscience to applied contexts, such as in IS, 

is not effortless and comes with rigorous experimental constraints. By methodology, we 

refer to Mingers (2001) definition: the “structured set of guidelines or activities to assist 

in generating valid and reliable research results” (p. 242). It comprises many techniques 

or methods that need to be used when necessary, and neuroscience has some specific 
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ones that may interfere and force compromises in IS research. Moreover, IS papers 

using these methodologies should be assessed based on the standard rigors expected in 

the related field of neuroscience (i.e., cognitive neuroscience and EEG) (vom Brocke & 

Liang, 2014). 

Electroencephalography methods bear important considerations and limitations when 

transposed to less controlled fields such as HCI research. Most of these limitations are 

due to three elements and their interactions: (1) the neurophysiological measurement 

instrument itself, (2) the functioning of the brain, and (3) the environment’s effect on 

those two. These elements are highly contextual and must be addressed in a particular 

study.  

To cite a few, EEG measurements are prone to noises. It is even impossible to record 

signals without contamination (Müller-Putz et al., 2015). Physiological noises come 

from the participant itself and are omnipresent. It includes heartbeats, muscle 

movements, ocular noises (i.e., blinks, vertical and horizontal eyeball movements), and 

ongoing parallel brain processes. Environmental noises can come from external 

electrical outlets, subject grounding, or electrode contacts. These noises are more 

prevalent in naturalistic and rich tasks such as in HCI research. 

Moreover, physical brain activity has many-to-many relationships with constructs 

(Cacioppo et al., 2007) and concurrent neurophysiological processes (e.g., working 

memory interacts with attention). Thus, it requires parsimonious experimental designs 

that carefully manipulate the targeted phenomena or constructs. It implies a good 

conceptualization of the IS task (e.g., characteristic of interaction, cognitive demand, 

top-down factor, stimuli saliency). Features of the task generate specific brain responses. 

Manipulating these features without considering the neural substrates might lead to 

uncontrolled change and the impossibility of explaining what drove it. This last point is 

particularly challenging in IS; such a task is often complex and involves intertwined 

brain functions. 

To tackle those challenges, significant advances for mental state measurement during 

complex interactions are being made in the field of neuroscience and more applied fields 
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such as neuroergonomics (Frey et al., 2018; Johnson & Proctor, 2013; Lotte & Roy, 

2019; Mehta & Parasuraman, 2013) or brain-computer interfaces (BCI) (Zander & 

Kothe, 2011). In parallel, recent developments in machine learning techniques combined 

with domain-specific methodologies are increasingly employed (Alzahab et al., 2021; 

Craik et al., 2019; Roy, Hubert, et al., 2019). Unfortunately, NeuroIS still lags in 

developing and leveraging robust and reliable state-of-the-art mental state measurement, 

enabling adequate ecological validity, especially during prolonged complex interactions. 

This need has been identified as two core NeuroIS opportunities, i.e. (1) the capture of 

hidden mental processes that are challenging to measure with traditional methods and 

(2) mental state measures to directly inform the usage or the design outcomes of 

technological artifacts (Dimoka et al., 2011; vom Brocke et al., 2020). 

This thesis aims to enhance methods for estimating mental states by integrating research 

from HCI with neuroscience. The objective is to provide a conceptual framework that 

bridges methodological perspectives with realistic application settings. These 

methodologies are applied to ecologically valid HCI tasks. Figure 1 visually depicts how 

the three essays interlock.  

The thesis is structured as follows. The first essay (Chapter 2) comprises a scoping 

review that surveys the literature on measuring mental states in applied fields of 

neuroscience. In chapters 2 and 3, we conducted empirical tests on two potential 

techniques for inferring mental states in simulator-based tasks under controlled 

experimental conditions. Chapter 3 specifically focuses on working memory and utilizes 

state-of-the-art end-to-end deep learning techniques to decode the mental state. Chapter 

4 delves into multisensory integration and explores its interaction with attention to gain 

a better understanding of its role in complex human-computer interactions.  

Overall, the thesis embraces the co-evolutionary perspective of IS and Neuroscience 

research, which will be outlined in the subsequent sections. Through the application of 

distinctly different mental state inference techniques in these two chapters, we hope to 

foster an insightful conversation on the challenges encountered in achieving our 

objective of robust mental state inferences. 
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Figure 1 

Thesis framework 

 

 

Before engaging in the contents of the thesis, it is crucial to explain the concepts used 

throughout the manuscript. Subsequently, the rationale behind our principal study 

settings, simulator-based environments, will be discussed. Such tasks offer unequivocal 

advantages in striking a balance between ecological and internal validity, essential for 

robust inferences regarding mental states in NeuroIS. Lastly, we will summarize the 

various essays in this thesis and demonstrate how they align with the adopted 

perspective. 

1.2 Concepts Clarification and Definitions 
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This thesis clearly distinguishes between mental states and the underlying brain 

processes. It is essential to recognize that nothing in the brain or within an individual 

mind is fixed or static. The physical processes occurring in the brain involve ongoing 

neural activities that can spontaneously arise or be triggered in response to stimulation. 

This dynamic nature is also observed in conscious sensory states, such as the experience 

of touch or pain, as well as in attitudes, such as beliefs and thoughts. Additionally, 

conscious cognitive states (e.g., attention, workload) and unconscious ones (e.g., 

sensory integration, working memory) exhibit inherent instability. Although these 

“states” exist at different levels of abstraction, they all refer to concepts that possess a 

certain degree of constancy, even though the underlying phenomena themselves may be 

dynamic. Therefore, the terms “process” and “state” are used interchangeably in 

describing relatively stable events occurring within the individual and the brain. 

In the previous paragraph, we just mentioned many concepts without introducing them. 

We might have guided an intuition by carefully choosing adjectives relating to “states.” 

However, definitions are still necessary to avoid confusion; “Mental states” is a broad 

concept. This thesis distinguishes three conceptual levels when referring to mental 

states: physical, cognitive, and conscious (see Figure 2). 
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Figure 2 

The three conceptual levels of mental state 

 

 

Conscious states are phenomenal states, the continually changing subjective and 

experiential aspects of the mind. A phenomenal state can be defined as a “mental state 

that is individuated by what it is like for one to be in it” (Chudnoff, 2015). Thus, a state 

is conscious if the ones experiencing it are, to some extent, aware of experiencing it 

(Rosenthal, 1986). It comprises intentional states like beliefs, thoughts, desires, 

attitudes, or judgments. It also relates to affective experiences such as emotions or 

moods, bodily experiences like pain or hunger, and cognitive experiences like boredom, 

immersion, and concentration (Schwarz & Clore, 2007). Some phenomenal states span 

across multiple of them, like stress can be felt via the body physically and 

physiologically, but also emotionally and cognitively. 
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The unconscious states refer to the unconscious and automatic processes happening 

within the brain during a task. We can all distinguish conscious mental processes we are 

aware of (e.g., thoughts, feelings, reasoning processes, pain). However, while we 

experience these processes, we are unaware of the brain’s underlying cognitive 

mechanisms and physical processes from which they emerge. Users are not mindful of 

their existence (De Guinea & Markus, 2009; De Guinea et al., 2013). They are still 

theoretical constructs that are sub-components of conscious processes while they are 

becoming experiential. 

The physical states correspond to the measurable physiological responses of the body. 

These states often reflect cognitive mechanisms associated with both conscious and 

unconscious activities. For instance, they encompass the electrical activity measured by 

EEG, oxygenation levels assessed through near-infrared spectroscopy, or the magnetic 

field generated by electrical currents measured by magnetoencephalography. 

Neurophysiological instruments and methods play a crucial role in capturing these 

physical patterns associated with underlying neurophysiological processes. 

However, as we aim for ecological validity and the naturalness of context and tasks in 

IS, it becomes crucial to consider cognition and mental states as embodied. Embodied 

cognition recognizes that mental states are not solely dependent on the brain, but also on 

the body and the surrounding world (Northoff, 2018). This perspective contrasts with 

the experimental approach traditionally adopted in cognitive neuroscience, which often 

studies cognitive processes in isolation (Ladouce et al., 2016; Stangl et al., 2023). 

Viewing the body as a simple input-output system where sensory integration and 

decoding only influence behaviors is an incomplete understanding. It generally relies on 

bottom-up influences on cognition. Instead, embodied cognition emphasizes the 

bidirectional influences between cognition and the body within its environment. 

Numerous pieces of evidence highlight the influence of top-down executive control 

factors on cognition along with bottom-up influences (Ladouce et al., 2016, 2019; 

Macaluso et al., 2016; Talsma et al., 2010). This suggests that cognition is not 

influenced only by sensory input but also by higher-level cognitive processes (also 
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called executing control, top-down factors) that shape our perception and behavior. 

Therefore, conceptualizing the user's mental states within the context of the task's 

interaction and the environment is essential for understanding cognition during IS tasks. 

This approach is particularly emphasized in Chapter 4 - Essay #3, where we delve into 

the topic more deeply. 

As a concrete illustration of those concepts, we can consider the well-known context-

updating theory of sensory input, which explains the cognitive process of receiving 

auditory stimulation (Figure 3). When an auditory stimulus is encountered, it starts a 

complex cognitive process until its conscious detection. The auditory stimulation is 

received, encoded, and enters the processing system. Resources are allocated to attend to 

and process this auditory input. Within the working memory, the internal representations 

of the stimulus are compared with existing representations and updated if necessary 

(Polich, 2007).  

From a neurophysiological perspective, the various components of this process can be 

directly associated with observable physical states. The neural responses to auditory 

stimulation can be measured and analyzed using event-related potentials (ERPs). Within 

the context of ERPs, the early responses (such as N100, P200, and N200) observed in 

the waveform correspond to the initial stages of auditory processing. These early neural 

responses reflect the early analysis of the sensory evoked potentials of the auditory 

stimulus at the physical level. The late positive response (P300) may signify the 

updating of the new stimulus representation. This late physical response is absent when 

no change is detected. It is important to acknowledge that this is a concise and 

simplified description of the sensory integration of auditory stimuli. For a more 

comprehensive perspective, refer to Gonsalvez and Polich (2002), Polich (1989, 1998), 

Polich (2007), Polich and Heine (1996), or Polich and Kok (1995). It should be noted 

that both top-down and bottom-up factors can influence this entire cognitive process; 

Chapter 4 extensively explores this subject. Nonetheless, these processes illustrate the 

relationship between physical, unconscious, and conscious states. 
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Figure 3 

Context-updating theory of sensory input  

 
Note. Figure adapted from Polich, 2007 

 

In this particular example, cognitive mechanisms manifest themselves as physical 

responses elicited by a discrete perturbation, namely, an auditory stimulus. In this case, 

mental states represent transient equilibria that persist for a few milliseconds, as 

evidenced by event-related potentials (ERPs). However, changes in mental states can 

also occur over more extended periods of time, giving rise to recurring patterns of 

physical responses, such as oscillations. To account for both conditions, we adopt two 

perspectives on mental states at the physical level: task-induced and stimulus-evoked. 

The task-induced perspective refers to the brain activity elicited by the task being 

performed. It manifests itself as an ongoing electrical activity that is influenced by the 

characteristics of the task, modulated by internal user factors and is often studied in a 

continuous manner. 

On the other hand, the stimulus-evoked perspective focuses on changes in brain activity 

induced by specific external stimuli (Müller-Putz et al., 2015). These stimuli are 

typically presented to the subject at a specific time and within a defined sensory 

modality, such as visual, auditory, or vestibular. The stimuli can be related or unrelated 

to the task at hand and are operationalized using time-locked paradigms. Task-induced 
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and stimulus-evoked perspectives are closely related to the psychological constructs that 

can be studied and their operationalization within the research context. 

Task-induced and stimulus-evoked brain activities are to be contrasted with spontaneous 

activity or resting state concepts. Spontaneous activity is the “neural activity that is 

generated within the brain itself independent of any external stimuli from outside the 

brain, including interoceptive stimuli from the body and exteroceptive stimuli from the 

world” (Northoff, 2018). It refers to the ongoing physical activities in the brain present 

even in the absence of any stimulation. 

Resting state often alludes to the operationalization to measure spontaneous activity and 

its behavioral condition (Northoff, 2018). During this period, no sensory systems are 

stimulated. It is often implemented as eyes opened or closed conditions with a fixed and 

stable fixation during a defined time. 

In short, task-induced and stimulus-evoked activity is operationally generated and tested 

with a particular task/event, while spontaneous activity goes on perpetually (Müller-Putz 

et al., 2015). By contrast, within an individual, the elicited physical neural response can 

be the difference between the two. However, it is now known that the separation of 

spontaneous and task-related brain activity is much more nuanced as they might 

modulate each other (Northoff, 2018). However, their relationships are beyond the scope 

of this thesis and won’t be addressed further. 

To put this thesis in perspective from this clarification, Chapter 3 - Essay #2 leverages a 

task-induced paradigm for mental state inference in fully naturalistic real-world research 

in a simulator out of the laboratory. Chapter 4 - Essay #3 uses a stimulus-evoked 

paradigm for mental state measurement in a naturalistic laboratory experiment. 

1.3 Co-evolutionary perspective of IS and Cognitive Neuroscience 

This thesis has been profoundly influenced by Churchland (1989) and Northoff (2018) 

books on the mind-brain problem. One of the main propositions of Churchland (1989) in 

her seminal books is that ‘[...] the theoretical framework resulting from the co-evolution 

of neuroscience and psychology is bound to be superior to folk psychology [...]’. This 
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thesis embraces a similar co-evolutionary perspective between IS and cognitive 

neuroscience and within IS. Here, we strive to integrate perspectives from cognitive 

neuroscience, IS, and NeuroIS, contributing to each of these disciplines. Figure 4 depicts 

the relationships between the different fields and their relevance paths. 

1.3.1 “Within” relevance path: motivate and enrich 

The “within” relevance path in IS research motivates the selection of constructs and 

phenomena to which NeuroIS can contribute. In return, NeuroIS enriches understanding 

of conscious states (i.e., constructs) with related unconscious states and their 

measurements at the physical level in IS tasks. In this perspective, the IS and NeuroIS 

viewpoints are co-dependent. IS elucidates perceptual and intentional states at the 

conscious level, while NeuroIS explores the underlying unconscious cognitive 

mechanisms and their corresponding brain physical processes. As Kirwan et al. (2023) 

highlighted, a significant motivation in IS research is to unveil the "black box" of the 

brain, which can be achieved through two approaches. The first approach involves 

employing neurophysiological methods to understand the brain's cognitive processes 

better. The second approach entails utilizing behavioral methods to investigate how 

inputs and outputs manifest in the user. By employing these approaches, researchers aim 

to describe the ongoing mechanisms and enhance our comprehension of cognitive 

processes and behaviors during naturalistic IS tasks. 

In this thesis, the chosen approach entails identifying pertinent psychological constructs 

related to mental states and deconstructing their dimensions into lower-level constructs 

at the cognitive mechanisms level. Subsequently, neurophysiological measurements are 

associated with these constructs. For instance, Chapter 3 - Essay #4 concentrates on a 

particular dimension of mental workload, namely working memory. Chapter 4 - Essay 

#4 focuses on the unconscious process of multisensory integration and attentional 

orientation. Understanding and quantifying this mechanism is crucial for investigating 

the underlying attentional mechanisms associated with conscious constructs like 

immersion, presence, and concentration. 
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The "within" relevance path contributes to the IS field in several significant ways. 

Firstly, it enhances our understanding of the cognitive mechanisms underlying key 

conscious states within IS. Providing instruments and methodologies for measuring 

these cognitive mechanisms at the physical level opens up new avenues for assessing IS 

constructs (Dimoka et al., 2012) and capturing their domain of unconscious processes 

(Tams et al., 2014). Thus, low-level explanations of the brain processes might increase 

our understanding of IS theories and constructs and even maybe revisit them. 

Additionally, within the context of Design Science Research (DSR), neurophysiological 

measurements can inform the design of IT artifacts (Riedl & Léger, 2016; vom Brocke 

et al., 2020). They can be utilized to investigate the impact of technology on users' 

cognitive mechanisms during usage and uncover differences arising from various design 

choices. 

 

Figure 4 

Co-evolutionary Perspective of IS, NeuroIS and Cognitive Neuroscience and their Relevance 

Paths 

 

 

1.3.2 “Between” relevant path: transfer and expand 

The “between” relevance path describes the transfer of descriptive and prescriptive 

knowledge from neuroscience to IS. While neuroscience provides insight into the brain, 
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methods, and instruments, enabling contributions to IS, IS, in turn, extends cognitive 

neuroscience knowledge by generalizing hypotheses to (quasi-)naturalistic settings and 

tasks.  This view emphasizes the two-way nature of the relevance path between IS and 

cognitive neuroscience. Cognitive neuroscience's understanding of the brain, 

methodologies, and instruments is initially transferred to IS, enabling the 

aforementioned contributions. However, IS also has the potential to expand the existing 

knowledge in cognitive neuroscience. Generalizing the understanding of the brain to 

naturalistic environments and tasks is a significant objective pursued by neuroscience 

researchers who aim to comprehend human cognition in real-world scenarios (Matusz et 

al., 2019; Northoff, 2018; Stangl et al., 2023). By informing NeuroIS research with the 

current domain of knowledge derived from laboratory experiments, a step towards real-

world studies in (quasi)naturalistic computerized tasks is taken, which expands the 

ecologically valid understanding of cognition. Therefore, NeuroIS contributes to the 

field of cognitive neuroscience in this way. 

In this thesis, the different chapters contribute to the "between" relevance path in 

different ways. Chapter 3 - Essay #2 focuses on improving mental state estimation in 

EEG using a data-driven approach and state-of-the-art machine learning techniques, 

specifically end-to-end deep learning architectures. Leveraging these advanced 

methodologies transfers knowledge and methodological techniques from cognitive 

neuroscience and machine learning to improve mental state estimation. On the other 

hand, Chapter 4 - Essay #3 builds on a conceptual framework derived from cognitive 

neuroscience that explores multisensory integration and its relationship to attention. This 

chapter also contributes to the "between" relevance path by transferring knowledge from 

cognitive neuroscience to the field of IS. It also provides novel evidence for applying 

this framework in naturalistic tasks, shedding light on how multisensory integration and 

attention operate in real-world settings. Both chapters exemplify the dissertation's 

commitment to transferring knowledge, methods, and frameworks from cognitive 

neuroscience to the IS field while demonstrating their practical application in 

naturalistic tasks. 
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In conclusion, while IS can benefit from a better understanding of neural mechanisms 

during interactions, it is essential to note that IS theories can and will continue to 

advance without explicitly referencing the brain processes underlying its constructs. 

Nevertheless, NeuroIS and cognitive neuroscience can contribute significantly to 

enriching the field's current understanding at the individual level. At the same time, IS 

tasks are inherently naturalistic. Therefore, the transfer and validation of hypotheses 

from cognitive neuroscience to NeuroIS can contribute to the goal of cognitive 

neuroscience by validating hypotheses in naturalistic settings. By bridging neuroscience 

and IS, we will gain insight into the brain processes involved in commonly used mental 

state constructs and foster the co-evolution of theoretical frameworks, further improving 

our understanding of the brain and IS constructs in tandem. 

A note of caution, we should address some pitfalls/limitations of the approaches we will 

expand on below and in light of this section. First, we selected psychological constructs 

(conscious state) as a starting point for both empirical studies in this thesis and broke 

them down into relevant cognitive mechanisms that we can operationalize with 

neuroscience methods. The contrary can be done and might lead to interesting new 

constructs. Secondly, breaking constructs to attain testable concepts in neuroscience can 

lead to the loss of meaning of the starting construct. Finally, the operational definition of 

the construct at the physical brain level can give a false impression that a single mental 

process has been addressed and manipulated (Kotchoubey et al., 2016). Brain processes 

are interdependent and involve many simultaneous components. The number of mental 

states and variations is infinite  (Haynes & Rees, 2006), while the manipulation or labels 

are limited. 

1.4 Simulator-based Task for NeuroIS 

NeuroIS often addresses real-world, complex, and dynamic phenomena. However, 

cognitive neuroscience and neurophysiological tools are challenging to use effectively in 

those environments. Indeed, many brain processes have been established in cognitive 

neuroscience with controlled, simplified, and artificial stimuli (Matusz et al., 2019). 

These paradigms put particular care into creating experimental paradigms manipulating 

well-defined brain functions. One core advantage of using artificial stimuli is their 
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parametrization (Felsen & Dan, 2005). Varying stimuli parameters (e.g., orientation, 

spatial position, tones) facilitate the study of fine-grained changes in neural responses. 

Unfortunately, these findings utilizing these paradigms do not generalize well to more 

complex and natural tasks (Felsen & Dan, 2005; Stangl et al., 2023). This limitation is 

not restricted to brain states but also behaviors (Ladouce et al., 2016), artificial stimuli 

produce different behaviors in control contexts than in-situ. 

However, cognitive neuroscience in naturalistic experiments is considered to be feasible 

and even encouraged (Matusz et al., 2019; Stangl et al., 2023). Authors have shown that 

some physical responses can be reliable even during an uncontrolled task like watching 

a movie (Hasson et al., 2010; Spiers & Maguire, 2007). Hasson et al. (2010) 

demonstrated in a review the existence of shared cortical responses across individuals 

during free watching. They also showed that robust brain responses were found within 

individuals or sub-groups. Ladouce et al. (2019) revealed that neural correlates of 

attention are reduced in real-world and natural behavior like walking in a dynamic 

environment. Thus, attentional processes and physical substrates in the brain are 

measurable with EEG and robust to real-world settings. 

Those findings might seem insignificant for NeuroIS, but it is quite the contrary. It 

reveals that applying cognitive neuroscience methods to IS phenomena is feasible 

despite the relaxation of the experimental internal validity. Furthermore, the quest for 

finding robust brain responses within and across users and their relation to psychological 

constructs might not be in vain. In the context of cognitive and social neuroscience, 

Matusz et al. (2019) propose that naturalistic research should build upon the detailed and 

controlled hypothesis tested at the expense of external validity (Figure 5). Thus, 

naturalistic laboratory studies can imitate real-world stimulation while keeping a relative 

stimulus and environmental control level. It offers a good trade-off between external 

validity and internal validity. Likewise, fully naturalistic real-world research allows 

building upon classic and naturalistic laboratory research. In those settings, stimulation 

and environmental control are impossible. However, context specific paradigms and 

analytical techniques might permit the use of neurophysiological measurements as well 

(Bevilacqua et al., 2019; Ladouce et al., 2016, 2019; Matusz et al., 2019; Midha et al., 
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2021). Moreover, Stangl et al. (2023) ascertain that technological advances and 

preprocessing techniques advances reduce some of the limitations that naturalistic tasks 

impose on data quality. Studying the neurophysiological mechanisms of cognition and 

behavior in real-world HCI seems, as time passes and research goes on, more and more 

plausible and promising. 

If we had to place NeuroIS experimental research on this schema, it would comprise 

quasi-naturalistic laboratory research to fully naturalistic real-world research for most 

studies. Even the most simplistic and artificial IS stimuli or artifacts are far from the 

level of control found in cognitive neuroscience. This limits the generalizability of the 

underlying understanding of the neurophysiological mechanisms and their physical 

response from synthetic tasks to HCI tasks. Thus, it is essential to use rigorous and 

aligned research paradigms that allow the creation of plausible inferences with 

knowledge of the limitations that our phenomena of interest bring.   

 

Figure 5 

Situating NeuroIS research paradigms in contrast to cognitive neuroscience opportunities and 

challenges of naturalistic research 

 
Note. Figure adapted from Matusz et al., 2019. 
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Now, we are left with the initial challenge. How do we deal with ecologically valid 

artifacts/tasks and the minimal control level necessary to study mental states in 

NeuroIS? There are many conceptual and methodological solutions to explore, but we 

adopted the context of simulator-based tasks in this thesis. Simulated environments and 

tasks, also referred as microworld, have been extensively used in neuroergonomics, 

BCI, and HCI to study mental states (Brehmer & Dörner, 1993; Mehta & Parasuraman, 

2013; Pope, 1995). Its use has even been proposed in NeuroIS (Loos et al., 2010). 

Similarly, augmented reality and virtual reality have been leveraged to study cognition 

to simulate naturalistic settings in laboratory experiments (Stangl et al., 2023). Recently, 

even the metaverse has been proposed to study human behavior (Gómez-Zará et al., 

2023). 

All these technologies share similar promises and advantages in experimental settings. 

They are adaptable technologies that can be used for research, interface design, and 

training. Simulators replicate real-world dynamical environments and offer a fine 

compromise between internal and external validity for quasi-real-world tasks in 

naturalistic settings (Brehmer & Dörner, 1993). Simulation-based tasks present 

significant advantages in research when studying mental processes—advantages that are 

vital for a rigorous study of mental states at the neurophysiological level in NeuroIS. 

These advantages are controllability, reproducibility, standardization, ease of 

comprehensive data collection, and safety. 

Controllability allows the creation of parametric tasks that facilitate the manipulation of 

specific aspects within the simulator while keeping other parameters constant (De 

Winter et al., 2012). Controllability is necessary to manipulate IS artifacts and task 

properties and observe robust and reliable brain patterns. The implications are more than 

conceptual. Operationally, it also allows the combining of neurophysiological signals 

within similar conditions and contrasts them between conditions. Repeatability (Bland 

& Altman, 1986) is deeply linked to controllability and is necessary for NeuroIS when 

using neurophysiological tools. Repeatability, or test-retest reliability, refers to the 

variation in repeated measurements taken on a subject with the same instrument in the 

same condition (Bland & Altman, 1986). A good paradigm should ensure that the 
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repetition of a task (i.e., the condition with specific parameters) will elicit similar brain 

responses and enable repeated and reliable measurement (Riedl et al., 2014). When 

using electroencephalography, the objective is to increase the signal-to-noise ratio (see 

Chapter 8 in Luck (2005, p. 261) for a detailed discussion). Very briefly, averaging the 

electrical signal will reduce the presence of noise or irrelevant brain processes that are 

not provoked by the task (Müller-Putz et al., 2015). Simulator-based tasks increase 

control over realistic tasks (Baldwin, 2019) and increase measurement reliability in 

NeuroIS.  

Reproducibility and standardization, Simulator-based tasks can be replicated in another 

location or even for complementary findings within multi-study research (De Winter et 

al., 2012). Simulators are digital artifacts that can be easily copied and installed in 

another environment. Simulator-based tasks can be standardized to reduce real-world 

environments’ randomness and uncontrolled nature. Reproducibility is an essential 

component of science, and even rigorous research can be subject to the issue. In a meta-

analysis conducted on 100 seminal studies in psychology, researchers found that out of 

97 that presented significant results, only 35 were replicable (Collaboration, 2015). This 

challenge is pervasive across many domains (Baker, 2016). Discussing those findings, 

Conrad and Bailey (2020) noted that NeuroIS conformed to the standard imposed in 

Neuroimaging. Unfortunately, Poldrack et al. (2017) showed that neuroimaging might 

not remain untouched by the problem. Nevertheless, reproducibility is an important 

feature of rigorous research, and simulator-based tasks can facilitate replications in 

NeuroIS. 

Secondly, De Winter et al. (2012) noted that simulator-based tasks ease the data 

collection for behavioral and performance measurements, especially in a controlled 

simulated environment with standardized tasks. Moreover, synchronizing events and 

behavioral data within the simulator with concurrent neurophysiological signals is a 

significant advantage. It provides an accurate temporal representation of physical 

processes within the brain during the task (Ladouce et al., 2016). Moreover, researchers 
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have already developed protocols to unify and synchronize time-series measurement 

with milliseconds precision, such as Lab Streaming Layer1. 

Thirdly, simulator-based tasks reduce ethical and safety concerns. It can be used to 

create unpredictable or unique conditions without risking dangerous situations for the 

subject (De Winter et al., 2012). IS tasks are often work-related, and interfering with 

someone’s work can have unwanted consequences for the subject. 

Naturally, simulator-based tasks possess some limitations. Firstly, low-fidelity 

simulators can lead to unwanted consequences (De Winter et al., 2012). Physical, 

perceptual, and behavioral fidelity negatively impact users’ attitudes and behaviors. 

Fidelity can also impact the generalizability of the study. Secondly, they cannot 

encompass all the environmental conditions present in natural settings (Baldwin, 2019). 

Third, there is still limited evidence that compares real-world and simulator-based tasks 

(De Winter et al., 2012), even if some study shows similitude in behaviors between 

simulated and real-world tasks (Wang et al., 2010). Fourth, simulator-based tasks 

require an adaptation period (Baldwin, 2019). Therefore, users should familiarize 

themselves with the simulator controls and characteristics. 

Researchers in IS developed microworld and argued for using simulation (Léger, 2006; 

Léger et al., 2011; Loos et al., 2010), but usage is still scarce. As an example of research 

using simulation in NeuroIS, Demazure et al. (2021) and Karran et al. (2018) used 

ERPsim (Léger et al., 2007) for the development of a neuro-adaptive system integrated 

to a business environment and task. Considering our previous arguments, simulation-

based tasks can offer the experimental contexts that IS needs. The clear balance between 

control and naturalism it offers fits the identity of the research field. As IS relevant 

simulations are still limited, we selected “extreme cases” of realistic simulators to push 

the boundaries of feasibility. Generalisability to IS tasks might. Engaging with this 

perspective, we leverage simulators as our main experimental context. We believe that 

methodological learning can be generalized to more common IS situations. 

 
 

1 https://labstreaminglayer.readthedocs.io/ 
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Figure 6 

Thesis positioning in terms of experimental naturalness 

 

 

In this thesis, we attempt to find cognitive mechanisms and measurement methods that 

generalize from synthetic and controlled tasks to naturalistic ones. We use simulation-

based tasks to study mental states and measurement techniques: (1) working memory 

aspect of the mental workload in a flight simulator (Chapter 3 - Essay #2) and (2) the 

orientation of attention in a driving simulator (Chapter 4 - Essay #3). Figure 6 shows 

how both empirical manuscripts map in terms of the naturalness of the experiment. Both 

manuscripts address this challenge in different manners. Chapter 3 attempts to find 

recurring physical patterns between a synthetic and empirically supported experimental 

paradigm and a natural one. Chapter 4 manipulates the level of naturalness of the task to 

evaluate the generalizability of a physical response to neurophysiological mechanisms.   

1.5 Application of the Concepts in the Essays 

The perspective presented in the introductory discussion profoundly shaped the 

manuscripts comprising the present thesis. Table 1 provides an overview of how the 

concepts outlined in the introduction are implemented and applied in the research 

conducted throughout the thesis. In addition, it demonstrates the operationalization of 

these concepts within the research endeavors undertaken. The subsequent section 

presents a summary of each essay that forms the foundation of this thesis. Each essay 
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begins with a brief introduction, followed by a description of its objectives and 

methodology. Finally, the contributions of each essay are outlined. 

Table 1 

Application of the Concepts in the two empirical essays 

 Chapter #3 – Essay #2 Chapter #4 – Essay #3 

Nature of the 
manuscripts 

Empirical study, laboratory 
experiment 

Empirical studies, laboratory 
experiments 

Conscious States Mental Workload Presence/Immersion 

Unconscious States Working Memory Attentional orienting 

Physical States Continuous estimations from 
EEG data 

Attentional-orienting ERPs 

Body and World Not considered Conceptually and experimentally 
considered 

States Manifestation Task-induced Stimulus-evoked 

Simulator-Based Task Synthetic and quasi-
naturalistic simulated tasks 
and environment 

Different degrees of quasi-
naturalistic simulated tasks and 
environment 

Primary “Within” 
Contributions 

Theoretical, Methodological, 
Empirical 

Theoretical, Methodological, 
Empirical, Practical 

Primary “Between” 
Contributions 

Methodological, Empirical Theoretical, Methodological, 
Empirical 

 

1.5.1 Chapter 2 - Essay #1 - Neurophysiological measurement of mental states for 
human-computer interaction: a scoping review 

1.5.1.1 Introduction 

Assessing cognitive and mental states plays a crucial role in neuroscience as it offers 

valuable insights into human brain function and behavior. However, the methods used 

for assessing these states often encounter limitations when applied to real-world tasks. 

Our current understanding of the brain and the hypotheses tested in controlled 

environments have limited generalizability to naturalistic settings (Matusz et al., 2019; 

Nastase et al., 2020; Stangl et al., 2023). Nevertheless, researchers in the field of neuro-

adaptive technologies, specifically brain-computer interfaces (BCI), have developed 

methods for estimating mental states that have practical applications in complex data 

collection environments. BCI research combines mental state estimation within 
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(quasi)naturalistic environments, enabling real-time monitoring and adaptation based on 

the user's brain signals (Zander & Kothe, 2011), which could inform our endeavor into 

mental state estimation in HCI and IS.  

1.5.1.2 Objectives and Methodology 

This review seeks to enhance the comprehension of neuro-adaptive system design and 

approaches in human-computer interaction (HCI) by conducting a scoping review. The 

review explores current research on neurophysiological measures and artificial 

intelligence techniques employed for mental state estimation in neuro-adaptive systems. 

The objectives of this paper are threefold: (i) to provide a comprehensive overview of 

the domain, tasks, methodologies, and psychophysiological inference utilized in neuro-

adaptive system research, (ii) to develop a descriptive understanding of neuro-adaptive 

systems in naturalistic and quasi-naturalistic environments, and (iii) to identify gaps and 

challenges within the inherently multidisciplinary body of literature. 

Given the emerging nature of the field and its fragmented presence across various 

domains, a scoping review methodology was adopted for this study. Following 

established guidelines for scoping reviews (Arksey & O'Malley, 2005; Daudt et al., 

2013; Pham et al., 2014), this essay encompasses a broad spectrum of related 

disciplines, including brain-computer interfaces (BCI), neuroergonomics, medicine, and 

IS. The review specifically focuses on the utilization of neurophysiological 

measurements for assessing mental states. 

A conceptual framework was built by combining a Design Science Research framework 

and a BCI design research framework to map out the domain, tasks, methodologies, and 

psychophysiological inference used in neuro-adaptive system research and to understand 

these systems in naturalistic environments. The record analysis will be done through a 

conceptual framework derived from Gregor and Hevner (2013), Hevner et al. (2004), 

Mason and Birch (2003), and Venable (2006). We treat the scientific contribution of the 

records as constructed artifacts and study them considering four three that influence the 

resulting technique: (i) the problem space, (ii) the knowledge space, and (iii) the 

solution space. 
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1.5.1.3 Contributions 

The literature review identified a total of 36 empirical studies that met the inclusion 

criteria. Utilizing the three-dimensional framework that encompasses the problem, 

knowledge, and solution spaces, the findings of the review offer a comprehensive 

overview of the current state of research in the field. The analysis encompasses the 

initial problem that serves as the foundation for the development of a neuro-adaptive 

system, as well as the knowledge acquired throughout the research process, leading to 

the creation of the evaluated artifact or solution. 

Our review offers three significant contributions. Firstly, it provides a comprehensive 

overview of the problems that drive the design of neuro-adaptive systems. Secondly, we 

present a thorough analysis of the functional components of neuro-adaptive systems and 

describe the relationships between different design choices and the corresponding 

psychophysiological inferences. This comprehensive examination enhances our 

understanding of how these systems operate and can guide future design decisions. 

Lastly, we consolidate the challenges encountered in neuro-adaptive systems research 

within the HCI field and propose guidelines and opportunities for future research. These 

include precise problem definitions, detailed descriptions of neurophysiological 

inferences, and the use of machine learning algorithms. By offering this guidance, we 

aim to assist IS researchers and designers. In summary, our review contributes by 

providing an extensive overview of the problems, conducting a comprehensive analysis 

of functional components, and offering guidelines for future research in developing 

neuro-adaptive systems. 

1.5.2 Chapter 3 - Essay #2 - End-to-end deep learning approaches to mental 
workload classification using electroencephalography in HCI 

1.5.2.1 Introduction 

During demanding cognitive tasks like operating advanced aeronautical vehicles human 

information processing capabilities tend to decline due to mental workload limitations. 

This decline in processing abilities leads to reduced attention and narrowing the ability 

to process incoming sensory and information integration, subsequently impacting 

situational awareness and effective decision-making skills (Wickens, 2002). 



26 
 

This empirical paper adopts a task-induced perspective to investigate mental workload 

during a digital simulator task. The methodological approach involves manipulating 

continuous electrical patterns in the brain using a validated task and aims to generalize 

these patterns to a novel task, specifically a flight training task. 

Machine learning is a common technique for inferring mental states from continuous 

electrical patterns (Craik et al., 2019; Muller et al., 2008). We surveyed the literature on 

state-of-the-art techniques for mental workload decoding using continuous signals. The 

result showed an important gap in end-to-end techniques. End-to-end decoding 

approaches attempt to classify brain signal with no manual feature engineering. Other 

authors have signaled the presence of this gap for EEG analysis in general (Roy, 

Banville, et al., 2019). 

An end-to-end process in the context of deep learning for mental workload estimation 

describes a process that takes raw EEG signal data, processes these data, derives 

discriminant and invariant features, then provides a classification of the target state as a 

complete functional solution. During our review of the literature regarding deep learning 

approaches to mental workload estimation, we discovered that most research approaches 

fail to leverage a major strength of the method: the ability to learn discriminative 

features and produce classifications directly from the raw EEG signal. Instead, most 

deep learning approaches toward estimating mental workload from EEG signals 

transform these data into features within the time or frequency domain. 

1.5.2.2 Objectives and Methodology 

Therefore, our overarching research objective in this essay is to create a deep learning 

model based on end-to-end methods for estimating mental workload during flight 

training within a high-fidelity simulator. The manuscript seeks to answer the question, 

“to what extent is it possible to estimate mental workload during naturalistic HCI tasks 

based on neurophysiological signal data using an end-to-end deep learning process?”. In 

order to answer the research question, the objectives of this work are threefold: (1) 

Benchmark end-to-end deep-learning models for mental workload classification; (2) 

Develop a mental workload classifier that achieves high classification performance; (3) 
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Estimate mental workload during a simulator task and replicate past empirical findings 

related to the relationship between task complexity, mental workload, and performance. 

Figure 7 represents a high-level depiction of the research approach. 

 

Figure 7  

Schematic methodological strategy for essay #2 – chapter 3 using a task-induced paradigm 

 
Note. Within-subject mental state decoding with machine learning, the same participant 

performs the artificial and the naturalistic HCI tasks.  

 

Eleven pilots participants performed within-subject experimental design composed of 

two experimental tasks. First, a synthetic and validated task consisting of an n-back 

meant to manipulate mental workload. The task has been used in a high number of 

studies to induce different levels of mental workload and is widely accepted for mental 
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workload estimation (Baldwin & Penaranda, 2012; Hefron et al., 2018; Kim et al., 2014; 

Kuanar et al., 2018; Saadati et al., 2020). An ecologically valid flight task was designed 

to induce different levels of mental workload mirroring n-back difficulty levels through 

the manipulation of maneuver difficulty.  

Informed by the ML and neuroscience literature, we made model design choices specific 

to EEG signal data and systematically assessed those choices in terms of performance 

and neurophysiological plausibility. We followed good practice in using machine 

learning for neuroimaging (Kohoutová et al., 2020). Design choices were systematically 

justified and tested. Moreover, models and features were assessed for their 

neurophysiological plausibility. We benchmarked several deep learning models and 

selected the two best-performing architectures (i.e., FCN, a fully convolutional neural 

network and,  ResNet, a residual network). 

Informed by the machine learning (ML) and neuroscience literature, design choices 

specific to EEG signal data were taken, and we present a systematic assessment of those 

choices. The two selected classifier models achieved an average accuracy of .933 (± 

.054) and .917 (± .074) for FCN and ResNet, respectively. We validate our models 

through rigorous assessments of their neurophysiological plausibility, robustness, and 

reliability. We then deployed these two classifier models on previously unobserved EEG 

data, intending to duplicate empirical outcomes pertaining to the interplay between 

complexity, mental workload, and performance. Our classification findings revealed a 

potential inverse U-shaped relationship between complexity and mental workload. 

1.5.2.3 Contributions 

The primary contributions of this study encompass empirical, methodological, and 

theoretical aspects. From an empirical perspective, the ResNet and FCN end-to-end 

deep learning models demonstrate superior performance compared to existing baselines 

in estimating mental workload, highlighting the practicality and effectiveness of these 

models. Furthermore, the utilization of end-to-end deep learning models enables the 

application of transfer learning techniques, which enhance generalizability, reduce 

training time, and facilitate test-retest capability. Methodologically, a framework is 
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proposed for benchmarking end-to-end deep learning models and conducting 

neurophysiological validation, thereby facilitating mental state estimation and future 

research in IS. Lastly, the study has theoretical implications for design science research 

and evaluation, emphasizing the importance of measuring constructs during tasks. 

1.5.3 Chapter 4 - Essay #3 - Oriented-attention measurement in multisensory 
human-computer interaction using electroencephalography 

1.5.3.1 Introduction 

The careful consideration of the mechanisms of attention and multisensory integration is 

crucial for understanding the impact of HCI on users. In naturalistic tasks and 

environments, technology users are subjected to the salience of ongoing concurrent 

events while exerting executive control to maintain attentional resources on the task at 

hand (Matusz et al., 2019). However, the cognitive mechanisms involved in 

multisensory integration and its interplay with attention in real-world human-computer 

interaction remains little explored. Gaining insights into these processes and developing 

methods to study them in HCI tasks could significantly enhance our understanding of 

technology's implications on users at the cognitive mechanism level for IS research. 

Furthermore, it could offer innovative techniques for evaluating artifacts in design 

science research. 

1.5.3.2 Objectives and Methodology 

To elucidate the role of naturalistic environments, multisensory integration, and 

attention during HCI tasks, we build on a conceptual framework that bridges 

multisensory integration mechanisms with attention (Talsma et al., 2010). This 

framework demonstrates how multisensory integration is sensitive to both bottom-up 

and top-down attentional forces. Consequently, we develop a multisensory perturbation 

technique to trigger a drift of the allocation of attention from the HCI task toward a 

distractor to measure the orientation of attention. Figure 8 presents a high-level 

representation of the approach described. It this approach, we do not need a synthetic 

task to learn brain responses from, but we theoretically predict a neurophysiological 

response (i.e., evoked-related potentials) which is sensible to bottom-up and top-down 

factors. Finally, by utilizing multisensory microworlds, we iteratively increase 
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naturalness to ensure that our measurement generalizes to quasi-naturalistic 

environments. 

Figure 8 

Schematic methodological strategy for essay #3 – chapter 4 using a stimulus-evoked paradigm 

 
Note. This approach does not use a synthetic task before the naturalistic HCI task. 

 

This essay aims to (1) better understand the role of intention orientation in multisensory 

simulation training at the neurophysiological level and (2) develop a novel measurement 

approach to the orientation of attention in a multisensory digital simulation context. 

We designed two studies. The first study is between subject experimental design 

composed of 16 participants. The design was composed of 1-factor manipulating the 

presence of the synchronous movement of the haptic chair. We created a multisensory 

environment (i.e., auditory, visual, haptic) with a racing video game and a haptic chair 

mimicking the physics of the car. Auditory and visual modalities were kept constant. In 

addition, an intermittent and random pure-tone auditory stimulus was triggered to 

generate an ERP. The objective was to measure the allocation toward the distractor at 

the physical level by analyzing the brain response to this auditory stimulation. This 
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study aims to reproduce past measurements to assess our capability to measure the 

orientation of attention in a multisensorial context using a traditional method, an 

unrelated auditory distractor.  

However, this approach showed limitations in multisensory contexts. Multisensory 

events tend to strongly capture attentional resources and have a gating effect on 

unpredictable stimulation in non-dominant sensory modalities to the task. In study two, 

we design a salient distractor that fits characteristics for automatic integration in a 

multisensory context to address this limitation. Using this novel stimulation, we aim to 

assess the orientation of attention and performance in a racing training simulator. With a 

two-by-two within-subject experimental design, we are manipulating movement and 

attentional demands for 23 participants inside a quasi-realistic HCI simulation context in 

the laboratory. 

1.5.3.3 Contributions 

Drawing on a conceptual framework that bridges attention and multisensory integration 

(Talsma et al., 2010), this manuscript presents a methodological approach that enables 

the exploration of covert mechanisms during complex and dynamic tasks in quasi-

naturalistic environments using a perturbation technique. The multisensory environment 

enhances attention orientation towards the task and reduces resource allocation for 

processing the perturbation. The results highlight the presence of a gating mechanism 

within a high multisensory HCI environment, where the brain prioritizes processing 

relevant sensory feedback crucial for task performance while inhibiting irrelevant 

distractions, even within the same sensory modalities. This finding aligns with previous 

research indicating that task demands, and cognitive processing influence late 

components of multisensory perturbation. In addition, the event-related potential (ERP) 

components are influenced by top-down attention. Therefore, the studies show that 

subjects allocate fewer resources to distractors when exposed to high multisensory 

environments and task sections requiring executive attention.  

These studies make a valuable contribution to the field of attention in cognitive 

neuroscience by investigating the interplay between attention and multisensory contexts 
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in quasi-naturalistic situations. The findings suggest that the orientation of attention to 

task-relevant but goal-irrelevant perturbation might show a reduction of attention drift 

when sensory modalities are added. This highlights the capacity of multisensory 

environments to effectively capture attentional resources. It offers conceptual 

advancement by better understanding how attention and multisensory integration 

interact in quasi-naturalistic environments.  

Furthermore, the approaches provide insights into the underlying cognitive mechanisms 

associated with constructs such as immersion, absorption, or presence, offering 

implications for IS and HCI research. The research methodology used allows for an in-

depth examination of relevant psychological constructs at the cognitive level, allowing 

IS researchers to gain a deeper understanding of their implications. 

Additionally, this study contributes to IS research by demonstrating how cognitive 

neuroscience can be used to inform and evaluate artifact designs. By addressing the 

evaluation methods through the lens of attentional orientation, the study aligns with the 

core principles of NeuroIS. The practical significance of this research lies in the 

identification of system design choices that impact attention in multisensory contexts, 

positively influencing the allocation of attentional resources. The studies also highlight 

the impact of multisensory simulation and microworld design on information 

processing, providing valuable insights for artifact designers constructing digital 

simulations for training purposes through the integration of multiple sensory modalities. 
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Chapter 2 
Essay #1 - Neurophysiological Measurement of Mental States 
for Human-Computer Interaction and Adaptation: A Scoping 

Review 

Abstract 

Background: Naturalistic HCI tasks and environments impose limitations on the use of 

neurophysiological methods. Cognitive and mental state assessment is essential in 

neuroscience, but traditional methods have limitations when applied to real-world tasks. 

Researchers in neuro-adaptive technologies and brain-computer interfaces have 

developed methods for mental state estimation in complex data collection environments. 

Objective: This review aims to increase the understanding of mental state estimation by 

conducting a scoping review that investigates the current research on neurophysiological 

measures and artificial intelligence techniques for mental state estimation in adaptive 

environments to inform NeuroIS research.  

Method: Due to the emergence of the field and its scatteredness across domains, we 

employed a scoping review methodology. A conceptual framework was built by 

combining a Design Science Research framework and a BCI design research framework 

to map out the domain, tasks, methodologies, and psychophysiological inference used in 

neuro-adaptive system research and to understand these systems in naturalistic 

environments. 

Results: The literature search resulted in 36 studies that met the inclusion criteria. By 

employing a three-dimensional framework (i.e., problem, knowledge, solution) to 

characterize the literature, the results provide a comprehensive overview of the current 

state of research, ranging from the initial problem that justifies the need for a neuro-

adaptive system to the final evaluated artifact. 

Conclusions: The scoping review highlights challenges encountered by neuro-adaptive 

systems in HCI, including problem definitions, descriptions of neurophysiological 
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inferences, and the utilization of machine learning algorithms. We provide guidance for 

researchers and designers within this domain and further work to enable mental state 

inference in naturalistic IS tasks. 

2.1 Introduction 

Cognitive and mental state assessment is crucial in neuroscience as it provides vital 

insights into human brain function and behavior. However, the methods used to assess 

cognitive and mental states face limitations when applied to real-world tasks. Our 

understanding of the brain and the hypotheses developed and tested in controlled 

environments generalize little to naturalistic ones (Matusz et al., 2019; Nastase et al., 

2020; Stangl et al., 2023). However, researchers in the field of neuro-adaptive 

technologies, or brain-computer interfaces (BCI), have developed methods for mental 

state estimation that have real-world applications in complex data collection 

environments. BCI research combines mental state estimation with naturalistic human-

computer interaction (HCI) to monitor and adapt in real-time to the user's brain signals 

(Zander & Kothe, 2011). vom Brocke et al. (2020) anticipate that neuro-adaptive 

technologies might contribute to the development of innovative artifacts and methods in 

NeuroIS. 

Naturalistic HCI tasks and environments impose limitations on the use of 

neurophysiological measures to estimate mental state, but the literature on BCI in HCI 

can shed light on this challenge. Those systems and mental state estimation techniques 

rely on the neurophysiological signal. In the case of electroencephalography (EEG) in 

naturalistic tasks, unconstrained users' mental processes, body movements, and 

environments cause other noises in the electrical signal recorded, which requires 

developing novel techniques. For example, Kline et al. (2015) created a technique to 

isolate gait artifacts induced in EEG signals while walking using a nonconductive layer 

on top of the sensors in addition to artifact removal techniques. Algorithmic techniques 

to improve the signal-to-noise ratio in the signal are also employed. For example, 

Independent Component Analysis (ICA) is the most popular method to remove artifacts 

(Gorjan et al., 2022). Moreover, feature extraction and machine learning techniques can 

also be leveraged. For example, Appriou et al. (2018) recognized the need for more 
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robust classification techniques for workload estimation in HCI. To do so, the authors 

benchmarked machine learning techniques from the BCI domains that achieved 

important performance.  

A BCI is a cyclic process where neural signals are acquired, processed, and translated 

into output commands that control an external device or application; this enables users 

to interact with their environment using neurophysiological activity alone (Van Gerven 

et al., 2009). The field emphasizes robust inference methods and evaluates technology 

through user interaction. BCI research is often referred to as live biofeedback (Lux et 

al., 2018), neuro-adaptive systems (vom Brocke et al., 2020), BCIs (Mason & Birch, 

2003), brain-machine interfaces (Nicolelis & Lebedev, 2009), and physiological 

computing (Fairclough, 2009). For the purpose of this review, we shall adopt the term 

"neuro-adaptive system(s)” to encompass the entirety of research within the BCI field.   

Neuro-adaptive systems are moving from experimental laboratory prototypes into real-

world applications. Advances in real-time processing of neurophysiological data and 

Artificial Intelligence (AI) applications for signal analysis (Roy et al., 2019) coupled 

with reduced sensor costs and data-dense environments (e.g., industry 4.0, healthcare) 

are facilitating this movement, and opportunities have started to emerge in the industry 

(Whelan et al., 2018), healthcare (Gu et al., 2021), and aeronautics (Lotte & Roy, 2019). 

Neuro-adaptive systems have been proposed to enhance human and system interaction 

in HCI (Zander & Kothe, 2011; Zander et al., 2010). Information systems research also 

shows interest in recent calls for research (vom Brocke et al., 2020), literature review 

(Lux et al., 2018), and design science research on neuro-adaptive artifacts (Demazure et 

al., 2021; Toreini et al., 2022). Those fields explored diverse mental states, such as 

visual attention allocation (Toreini et al., 2022), vigilance (Di Flumeri et al., 2019), 

mental workload (Arico, Borghini, Di Flumeri, Colosimo, Bonelli, et al., 2016), or 

affective state (Govindarajan et al., 2018). One of the main challenges of applied neuro-

adaptive systems in HCI is that this literature is scattered and emerging across different 

research domains (e.g., neuroscience, ergonomics, engineering, and information 

systems).  
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We aim to increase the current understanding of the design of neuro-adaptive systems 

(i.e., users, tasks, and environments) and design approaches (e.g., algorithms and 

psychophysiological inferences) in HCI, which could also inform mental state 

estimation in naturalistic IS tasks. To address this goal, we conducted a scoping review 

that answers the following research question: “What is the current state of research on 

the use of neurophysiological measures and artificial intelligence techniques for mental 

state estimation in HCI within adaptive environments?” For this review, we focused on 

artifacts with a certain degree of practical purpose in HCI. Our objectives are (i) to map 

out the domain, tasks, methodologies, and psychophysiological inference utilized in 

neuro-adaptive system research, (ii) to build a descriptive understanding of neuro-

adaptive systems in naturalistic and quasi-naturalistic environments, and (iii) to extract 

gaps and challenges from an inherently multidisciplinary body of literature. To achieve 

this, we built a conceptual framework by blending a Design Science Research 

framework (Gregor & Hevner, 2013; Hevner et al., 2004; Venable, 2006) and BCI 

design research framework (Mason & Birch, 2003; Van Gerven et al., 2009).  

We address the call for research presented by Riedl and Léger (2016) calling for the 

exploration of users' neurophysiological data in adaptive systems, as they argue that 

such systems can yield favorable outcomes in terms of health and performance. This 

avenue of investigation presents a distinctive opportunity for IS artifacts to incorporate 

users' emotions and cognition, thereby enhancing the capabilities of both the artifact and 

the user. Moreover, vom Brocke et al. (2020) anticipate that neuro-adaptive systems 

represent a promising field for the future of IS, with the potential for significant societal 

contributions. Consequently, an in-depth understanding of the existing literature on 

applied neuro-adaptive systems is crucial for advancing future design knowledge and 

facilitating practical applications. 

Our review makes three main contributions. First, it provides a broad overview of the 

design of neuro-adaptive systems. Second, we present a comprehensive analysis of the 

functional components of neuro-adaptive systems and the relationships between 

different design choices and psychophysiological inferences. Third, we consolidate the 

challenges found in the current literature and suggest guidelines and opportunities for 
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future research. The remainder of the manuscript is organized as follows: We introduce 

our analytical framework and outline the methodology used. Next, we present the 

descriptive results of the review before synthesizing the findings and identifying the 

challenges in the discussion. Finally, we address the limitations and offer conclusions. 

2.2 Analytical Framework 

To answer our research question and specify the scope of this review, we build upon the 

framework from Design Science Research (DSR) (Gregor & Hevner, 2013; Hevner et 

al., 2004; Venable, 2006). The DSR framework aims to inform the creation, evaluation, 

and dissemination of innovative artifact-building on design science and behavioral 

research. Our framework is built around three spaces: the problem space, the knowledge 

space, and the solution space (Figure 9). 

 

Figure 9 

Conceptual framework for the data charting, collating, and summarizing of neuro-adaptive 

artifacts 

 

 

The problem space (Table 2) is defined by the researcher’s understanding of the 

problem (Venable, 2006). In the current case, it comprises the environment and the 

nature of the interaction within the socio-technical system. Within this space, users and 
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their characteristics, tasks, organizations, or the technological ecosystem are all parts of 

the structure that will motivate the need for a neuro-adaptive artifact and the problem for 

which the researcher needs to provide a solution (Hevner et al., 2004). In essence, the 

problem space represents the situated knowledge justifying the need for the neuro-

adaptive artifact and directly influences the solution space.  

The problem space has two categories, the environment and problematization. The first 

category represents the environment from which the problem and the need for an artifact 

emerges. System designers build neuro-adaptive systems for prospective users, tasks, 

and operating environments. For instance, neuro-adaptive systems are researched in 

aeronautics, notably to support operators during air traffic control tasks (Arico, 

Borghini, Di Flumeri, Colosimo, Bonelli, et al., 2016). Therefore, effective designs 

should consider contextual users' inherent characteristics, the task's nature, and the 

environment's constraints (Mason & Birch, 2003). These elements become critical when 

system designers plan to deploy the artifact in naturalistic operating environments. The 

second category, problematization, represents the motivation of the researchers 

concerning the created and evaluated artifact. As such, the researchers should define the 

problem and communicate the artifact's research objective and goals (Gregor & Hevner, 

2013). Problematization is essential to motivate the artifact's need and define its 

purpose, scope, and relevance. In the case of neuro-adaptive artifacts, it can be the 

factors from which the problem emerges and the outcomes it leads to justifying the need 

to construct an artifact. For instance, surveillance tasks on the computer pressure the 

attentional resources and favor attentional decrement, which can lead to critical mistakes 

(Arico, Borghini, Di Flumeri, Colosimo, Pozzi, et al., 2016; Demazure et al., 2019; Di 

Flumeri et al., 2019). 
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Table 2 

Problem space categories, components, and definitions 

Category Components Definition Source 

Environment Target Users The expected user for whom 
the neuro-adaptative system is 
designed. 

Mason & 
Birch, 2003 

Target Task The expected task (and their 
characteristics) the neuro-
adaptive system is designed to 
support. 

Mason & 
Birch, 2003 

Organization / Domain Organization/Domain from 
which the problem emerges 

Hevner et al., 
2004 

Problematization Problem Statement The relevant problem the 
artifact aims to resolve 

Gregor & 
Hevner, 2013 

Research Objective / 
Research Question 

The objective of the research  

Artifact Goals The objective of the created 
and evaluated artifact 

 

The knowledge space (Table 3) represents the building blocks necessary for constructing 

the artifact (Hevner et al., 2004). Before creating neuro-adaptive systems, researchers 

and designers inquire “what do we know already? From what existing knowledge can 

we draw?” (Gregor & Hevner, 2013, p. 343). It comprises descriptive and prescriptive 

knowledge (Gregor & Hevner, 2013). Descriptive knowledge is the theories and patterns 

derived from the literature to inform the solution space. For example, 

psychophysiological phenomena are often complex given that psychological measures 

do not respect one-to-one relationships with mental states (Fairclough, 2009), forcing 

neuro-adaptive systems researchers to ground artifacts with neurophysiological 

knowledge to ensure plausibility. However, those inferences are often correlated with 

mental state theories, forcing researchers to anchor solutions to descriptions of the 

cognitive construct or phenomena of interest. Prescriptive knowledge embodies the 

"know-how", which relates to past artifacts, algorithms, or methods used to solve similar 

research problems in the literature. As defined by (Gregor & Hevner, 2013), 

“prescriptive knowledge concerns artifacts designed by humans to improve the natural 

world.” 
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Table 3 

Knowledge space categories, components, and definitions 

Category Components Definition Source 

Descriptive 
Knowledge 

Phenomena "Human-related phenomena are composed 
of observations, classifications, 
measurements, and the cataloging of these 
descriptions into accessible form" 

Gregor & 
Hevner, 
2013 

Sense-Making "Sense-making is represented by natural 
laws, principles, regularities, patterns, and 
theories" 

 

Prescriptive 
Knowledge 

Constructs "Constructs, which provide the 
vocabulary and symbols used to define 
and understand problems and solutions; 
for example, the constructs of “entities” 
and “relationships” in the field of 
information modeling" 

Gregor & 
Hevner, 
2013 

Models (and 
frameworks) 

"Models are designed representations of 
the problem and possible solutions. [...] 
Models corresponds to […] the abstract 
blueprint of an artifact’s architecture, 
which show an artifact’s components and 
how they interact." 

 

Methods "Methods are algorithms, practices, and 
recipes for performing a task" 

 

Instantiations “The physical realizations that act on the 
natural world, such as an information 
system that stores, retrieves, and analyzes 
customer relationship data. Instantiations 
can embody design knowledge, possibly 
in the absence of more explicit 
description. The structural form and 
functions embodied in an artifact can be 
inferred to some degree by observing the 
artifact." 

 

Design Theory "Which is an abstract, coherent body of 
prescriptive knowledge that describes the 
principles of form and function, methods, 
and justificatory theory that are used to 
develop an artifact or accomplish some 
end" 

 

Psychophysiological 
inference 

Describe the neurophysiological 
mechanisms' relationship with a 
psychological construct 

Mason & 
Birch, 
2003 
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The solution space (Table 4) is the process of building and evaluating the artifact. The 

literature targeted for this review often presents the produced neuro-adaptive artifact as 

the primary research contribution, which can take many forms (e.g., algorithm, software, 

physical machine). The solution space is often an iterative process between the design 

and development of the artifact. Its evaluation can be viewed as the treatment for the 

problem identified. 

Table 4 

Solution space (design and development, design evaluation approach, and design evaluation 

method) categories, components, and definitions 

Category Components Definition Source 

Design and 
Development 

Invention "Invent new solutions for new 
problems" 

Gregor & 
Hevner, 2013 

Improvement "Develop new solutions for known 
problems" 

 

Exaptation "Extend known solution new 
problems" 

 

Routine Design "Apply known solutions to known 
problems" 

 

Design 
Evaluation 
Method 

Actual Subjects  The actual user the neuro-adaptative 
the system is evaluated with.  

Mason & 
Birch, 2003 

Actual Task The actual task the neuro-adaptive 
system supports during evaluation.  

 

Actual Operating 
Environment  

refers to the physical environment, 
objects, and people around which the 
user interacts with the BCI during 
evaluation.  

 

Design 
Evaluation 
Method 

Observational Case Study, Field Study Hevner et al., 
2004 

Analytical Static Analysis, Architecture Analysis, 
Optimization, Dynamic Analysis 

 

Experimental  Controlled Experiment, Simulation  

Testing (Black Box) Testing, Structural (White 
Box) Testing 

 

Descriptive  Informed Argument, Scenarios  
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Within the solution space, functional components (Table 5) refer to the building blocks 

of the neuro-adaptive artifact. It represents the characteristics of the interaction human-

machine, the type of interaction that might directly influence the sensor selection, the 

neurophysiological mechanisms targeted, the features extracted from the signal, the 

translation of these features, the dynamic of control between the operator and the 

machine, and how the machine adapts to its user (Mason & Birch, 2003). They represent 

the minimal components that characterize neuro-adaptive systems. 

Table 5 

Functional components and definitions  

Category Components Definition Source 

Functional 
components 

Sensors Supplier/Type of the electrodes used 
during the evaluation.  

Mason 
& 
Birch, 
2003 

Feature extractor Description of the method used to create 
the features vector, or indexes/scores 
used as inputs 

 

Feature translator Description of the method used to 
translate the feature vector into logical 
control signals 

 

Neurophysiological 
mechanisms 

Description of the neurophysiological 
mechanisms or processes the user uses 
to control the neuro-adaptive system 
(pattern, physiological response, etc.) 

 

Neuro-adaptive 
systems control  

Description of the control mechanisms 
(e.g., feedback, retroaction, adaptation, 
allocation) 

 

 

In summary, we employ this conceptual framework to map and characterize the 

literature on neuro-adaptive system design within HCI. The framework comprises the 

solution space, which arises from the interplay between the problem and knowledge 

spaces. For this scoping review, this lens enables a broad description of the problem 

designers aim to address and how they achieve their objectives. 
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2.3 Methodology  

The methodology for this scoping review is based on Arksey and O'Malley (2005) and 

with consideration to the recommendations made by Levac et al. (2010) and  Daudt et 

al. (2013). To complete the review process, we followed the PRISMA extension for 

scoping reviews checklist (Tricco et al., 2018). The review comprised five key phases of 

the scoping process: (1) the research question identification, (2) relevant studies 

identification, (3) study selection, (4) data charting, and (5) summarizing and reporting 

the results. The optional "consultation exercise" is not conducted. 

2.3.1 Research question 

From initial motivation to review completion, our research question remained the same: 

“What is the current state of research on the use of neurophysiological measures and 

artificial intelligence techniques for mental state estimation in HCI within adaptive 

environments?” This research question and its motivation align strongly with the stated 

goals of a scoping review, where the process is “to map the literature on a particular 

topic or research area and provide an opportunity to identify key concepts; gaps in the 

research; and types and sources of evidence to inform practice, policymaking, and 

research” (Daudt et al., 2013). 

2.3.2 Scoping process 

The scoping process was instigated by emphasizing keyword set creation. The 

multidisciplinary focus of the scoping review (e.g., neuroscience, engineering, 

medicine) required a rigorous survey of the terms used in each domain that refer to our 

research question. We divided the scoping process into five phases (0-4), 0) grounding, 

1) tuning, 2-3) extending, and 4) validation. In addition, we utilized three collaborator 

workshops (phases 2 ½, 3 ½, 4 ½) (Figure 10). All queries, search dates, keywords, and 

data records were stored for each phase. The outcome of this scoping process was a set 

of queries for each database that has been refined during the multiple phases. The 

queries served during the search phase.  



50 
 

- Phase 0 – Grounding: The grounding phase consisted of listing a non-

comprehensive set of keywords based on a set of papers we though were 

representative of the type of literature we wanted to capture to answer the R.Q.  

- Phase 1 – Tuning: During the tuning phase, query design required multiple 

passes on Web of Science (WoS) to adjust the query for unwanted/unexpected 

results and to find the first balance between comprehensiveness and breath. After 

the fourth pass, an overview showed a majority of the pertinent papers for the 

R.Q. In total, 785 manuscripts resulting from the search query were exported 

with Title/Keywords/Abstract. We screened that information to expand our 

keyword list, thus increasing the depth and breadth of the scoping study. No 

judgment on keywords or quality was made; the objective was to capture the 

concepts used in different domains, and only those relevant to the R.Q. were 

assessed based on title and abstract. Keywords were assessed until saturation. 

After 237 papers (≈ 30%), the saturation point was reached. 

- Phase 2 – Extending: Based on the expanded keyword set, we continued the 

scoping process on four databases representative of the targeted literature (i.e., 

multidisciplinary databases with WoS and Scopus, medicine with PubMed, and 

ACM for engineering). The same saturation strategy was used. The following 

breakdown represents the number of papers screened for their keywords per 

source: WoS = 131, Scopus = 185, ACM = 115, PubMed = 158. 

- Phase 2 ½ – Scoping: The scoping phase involved a workshop conducted by the 

main research and a researcher knowledgeable of the subject that did not take 

part in the previous phases. The workshop aimed to refine the keyword sets by 

merging, cleaning, and adjusting keywords based on the R.Q.  

- Phase 3 – Extending: The same methodology was applied for phase 3 as was 

used in phase 2. However, due to the significant number of records, a stratified 

selection of records was applied (first 10 every 100 records for the first thousand, 

then the first 10 every 1000 records after, with a maximum of 200 records 

screened). The goal was to ensure that no relevant literature was missed because 

of the number of results and to control for the ordering of the different databases. 
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- Phase 3 ½ – Scoping: Similar process to phase 2 ½, however, we adjusted the 

inclusion/exclusion criteria based on the results of the previous phase queries to 

increase the quality of the search.  

- Phase 4 – Validation: The validation phase consisted of a subjective assessment 

of the search results based on the refined queries.  

- Phase 4 ½ – External Validation: Similar process to phase 2 ½ and 3 ½. The 

workshop was conducted with an independent subject matter expert. 

 

Figure 10 

Scoping Strategy 
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2.3.3 Data sources and search strategy 

The search phase was conducted on March 21, 2022, in seven electronic databases that 

span a comprehensive range of disciplines: multidisciplinary (Scopus, Web of Science, 

EBSCO), medicine (PubMed), business and economics (ProQuest ABI/INFORM 

Collection), psychology (PsycInfo), engineering (IEEExplore). IEEExplore was queried 

on March 22, 2022. Limits on dates (>= 2012 to today), language (English), and peer-

reviewed records were used if the function existed. 

The search string consisted of four categories of keywords which were gathered 

explicitly during the scoping process to cover the research question. The categories 

follow the subsequent framework: context of use AND (State AND Artifact Objectives) 

AND A.I. Within each category, the search operator OR was used between keywords. 

Context of use represents the relevant keywords to the environment for which the 

technological artifact was created. State includes mental state synonyms and concepts 

found in the literature. Artifact Objectives correspond to keywords covering the primary 

function of interest of the artifact, i.e., its adaptivity. A.I. corresponds to a broad 

selection of search terms for machine learning and predictive modeling. A first query 

was developed for WoS and then adapted to fit the format of each database searched. All 

queries and keywords are documented and available. 

2.3.4 Eligibility criteria 

We use the following inclusion criteria to screen the records: primary literature (peer-

reviewed) such as journal or conference articles, (neuro)physiological measurements as 

input of the artifact (e.g., facial emotion recognition does not qualify), subjects are 

healthy adults population, operators the task and the neuro-adaptive artifact (e.g., 

worker, surgeon, air traffic controller, pilot), direct interaction between the operator and 

the adaptive artifact, and finally, the produced artifact is empirically tested. Moreover, 

manuscripts should be in either English or French to be assessed by the review team. As 

exclusion criteria, all records before 2012, reviews, editorials, and proceeding 

summaries are discarded. We exclude neuro-adaptive artifacts for therapy, 
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rehabilitation, medication, artifact-patient interaction, and BCI for control as the study 

focuses on passive and reactive designs. No quality appraisal is performed. 

2.3.5 Screening process 

Covidence software (Veritas Health Innovation, 2023) supported the screening and data 

charting process. Two reviewers performed screening for record inclusion on 

title/abstract. Due to the number of records, each one is screened by one reviewer only, 

and to address this limitation, a training meeting was organized with the reviewers. 

Then, 50 records were randomly selected and screened independently by the reviewers, 

resulting in an inter-rater reliability of 0.88. Then, another meeting was conducted to 

discuss each record to ensure a common understanding of the procedure. Reviewers 

continued to meet during this stage to discuss progress, challenges, and ambiguities in 

the study selection. 

Finally, four reviewers conducted full-text screening of the remaining records (reviewer 

1: n = 427, reviewer 2: n = 366, reviewer 3: n = 70, reviewer 4: n = 49), and conflicts 

regarding the eligibility were resolved by consensus between the two leading reviewers. 

Two reviewers minimally screened each paper.  

During the data charting process, if multiple manuscripts were based on the same 

experiment, we applied the following decision process: (1) if a journal article is part of 

the duplicates (e.g., journal and conference articles), we code only the journal article, (2) 

if published only through conference proceedings, the most recent one is selected. The 

purpose is to avoid artificial literature inflation on a specific domain/artifact/BCI in the 

results. This case was applied for 3 papers during the process, making 36 articles 

eligible to be included in the results. 

2.3.6 Data charting 

After the full text screening process, all relevant manuscripts are coded based on the 

form created by the authors. The form is developed based on the conceptual framework 

presented in the relevant section. Following (Levac et al., 2010) recommendations, 

charting is implemented in an iterative process during which reviewers update the 
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conceptual model and the form. Descriptive numerical and qualitative thematic analysis 

will be performed on the data to answer the research question.  

Data is charted following a conceptual framework derived from DSR presented in the 

“analytical framework” section. Data is collated and summarized considering three 

spaces that influence the resulting artifact: (1) the problem space, (2) the knowledge 

space, and (3) the solution space (Figure 1). The level of detail reported varied 

noticeably across the reviewed manuscripts. As the literature is heterogeneous regarding 

the expected presence of components relative to the spaces, we code the relevant 

information only if clearly stated. We first assessed the presence of the components 

before coding the excerpts. If the component (e.g., problem statement, research 

goals/questions) were not clearly written, it was labeled as “unclear/inferred.” The 

extraction template is available in the appendix. 

2.4 Results 

2.4.1 Literature search and screening 

The initial search phase, conducted between March 21 and 22, 2022, yielded 11,027 

papers. Following the de-duplication procedure outlined by Bramer et al. (2016), 7,772 

papers were screened based on their abstracts and titles, of which 436 met the eligibility 

criteria. Subsequent full-text screening resulted in the inclusion of 38 papers for data 

extraction, while 398 records were excluded (Figure 11). Figure 3 provides descriptive 

statistics regarding the reasons for exclusion. Primary causes for exclusion included a 

lack of real-time adaptation in the artifact (e.g., classification method or offline testing 

of adaptation) and the absence of neurophysiological measurements as inputs for the 

adaptive system (e.g., facial emotion recognition). Among the included manuscripts for 

data extraction, two were consolidated due to their reliance on the same experiments and 

data, resulting in a total of 36 papers for the extraction and charting phase. 
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Figure 11 

PRISMA flow chart  

 
Note. Details the flow of screened manuscripts during the different phases and the 

reasons for exclusion. 

 

2.4.2 Study characteristics 

The 36 manuscripts were spread between 2012 and 2022. The number of publications 

has been steadily increasing, with a range of one to four papers per year between 2012 

and 2017 and five to eight papers per year from 2018 onwards (Figure 12). This trend is 

accompanied by a growing number of journal articles, indicating increased acceptance 

in the field and illustrating its ongoing emergence. Conference manuscripts and journal 

articles account for 47.22% and 52.78% of the publications, respectively. Most of the 

research was conducted in the United States (27.78%), followed by Italy (16.67%) and 

Australia (8.33%), Canada (8.33%), and Germany (8.33%) (see Table 6) 
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Figure 12 

Publication type and frequency of publications per year 

 

Table 6 

Publication outlets and country 

Study Characteristics (n = 36) Count (%) 

Publication outlet  Conference Proceeding 17 47.22% 

Journal article 19 52.78% 

Country Australia 3 8.33% 

Canada 3 8.33% 

China 2 5.56% 

Denmark 1 2.78% 

France 2 5.56% 

Germany 3 8.33% 

Italy 6 16.67% 

Netherlands 1 2.78% 

Poland 1 2.78% 

Portugal 1 2.78% 

Taiwan 1 2.78% 

U.K. 2 5.56% 

United States 10 27.78% 
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2.4.3 Problem space 

In the manuscripts, the problem space is characterized by the environments and the 

problematization. On one hand, the environment represents the socio-technical system 

from which the problem emerges. On the other hand, problematization denotes the 

researchers’ interpretation of the problem they are attempting to solve with a neuro-

adaptive artifact. 

2.4.3.1 Environment 

The included 36 manuscripts are spread across 10 different domains. Aeronautics is the 

domain with the largest number of occurrences, with 7 observations representing 

19.44% of the research charted. The training domain, with 7 occurrences, represents the 

same percentage as aeronautics. Those papers leverage neuro-adaptive systems for the 

training of a skill (e.g., stress management) (El-Samahy et al., 2015), and attention 

regulation (Zargari Marandi et al., 2019). We also found manuscripts in business (4, 

11.11%), education (3, 8.33%), robotics (3), transport (2, 5.56%), video games (2), and 

art (2). The smallest occurrences belong to the smart home (1, 2.78%) domain and 

virtual agent design (1), each with only 1 observation, representing 2.78% of the total. 

The domain could not be labelled for 4 manuscripts (11.11%). 

The defined target tasks were quite diverse in the included research. Neuro-adaptive 

systems were created to support hypothetical surveillance tasks in 7 studies (19.44%). 

We found 3 (8.33%) manuscripts for both human-robot and learning tasks. Target 

driving (2, 5.56%), game (2), self-regulation (2), and supervision tasks (2) were 

described to motivate the creation and integration of the created artifact. Tasks such as 

cognitive, computer, concentration, cooperation, information seeking, listening, natural, 

relaxation, and training tasks showed one (1, 2.78%) occurrence. Finally, 6 (16.67%) 

manuscripts were unclear on the target task. In this case, the manuscripts do not refer to 

a specific task when motivating the creation of the neuro-adaptive systems. For 

example, El-Samahy et al. (2015) describe the target users and the cause of the problem 

but refer to the task in vague terms. The manuscripts refer to the “chronic mental stress” 

caused by “job environments” in “human’s work” (El-Samahy et al., 2015, p. 1). 

Another manuscript documents the design of a neuro-adaptive virtual character but does 
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not refer to a hypothetical task of applications when motivating the study (Aranyi et al., 

2016). 

In most cases, the target users for the design of a neuro-adaptive system were 

unclear/inferred (15, 41.67%). Artifacts built for air traffic controllers (4, 11.11%), 

learners (4), and office workers (4) showed the most occurrences. They are followed by 

unmanned vehicle operators (3, 8.33%), video game players (2, 5.56%), drivers (2, 

5.56), machinery operators (1, 2.78%), and production line workers (1). 

2.4.3.2 Problematization 

Problematization represents the research objective/question, the artifact goals, and the 

problem's relevance, as stated in the research. Firstly, three (8.33%) manuscripts clearly 

stated a research question, while 33 (91.67%) did not. In those cases, the research 

question was unclear or inferred. However, 21 (58.33%) manuscripts presented clear 

research objectives. 

Secondly, the artifact objective was clearly defined in 22 papers (61.11%). For the 

remaining 14, the objective was either unclear (11, 30.56%) or merged with the research 

objectives (3, 8.33%). When clearly articulated, the artifact objectives were expressed as 

a general objective (e.g., "the artifact should do...") in 13 studies (36.11%), as 

hypotheses in 4 manuscripts (11.11%), and as a set of requirements in 5 instances 

(13.89%). 

Thirdly, to understand how the problem's relevance is motivated, we qualitatively 

analyzed the problem statements. The problem statement describes the problem that the 

neuro-adaptive system aims to resolve. It was clearly reported in 24 papers (66.67%) of 

the manuscripts. On the contrary, it was unclear in 12 (33.33%) of them. We divided the 

problem states into three components (refer to Figure 13 for a visual representation in a 

Sankey diagram): the factors that contribute to the emergence of the problem, the 

mechanisms and states impacted by these factors, and, ultimately, the outcomes 

resulting from these. The Sankey diagram (Figure 13) provides a qualitative 

representation of how the problem statements are constructed to justify the need for 

neuro-adaptive artifacts.



 

Figure 13 

Sankey diagram of problematization flow 

 
Note. Problem statements were grouped into grand categories depicting the emergence of the problem, the mechanisms, and the 

outcomes. Nodes represent categories within these grand categories. The size of the links represents the logical flow between these 

categories in the manuscripts.   



 

We found that they emerged from the task (e.g., information density (Toreini et al., 

2020), automation (Demazure et al., 2019), system supervision (Breslow et al., 2014)), 

the user (e.g., stress (Azgomi et al., 2021; Parnandi & Gutierrez-Osuna, 2021), mental 

pressure (Zhang et al., 2021)), or the neuro-adaptive system design (e.g., biofeedback 

design (Raaijmakers et al., 2013), individual physiological differences (Labonte-

Lemoyne et al., 2018)). These factors lead to problematic situations, such as unwanted 

user states (e.g., fatigue (Peternel et al., 2018), distraction (Pavlidis et al., 2021), 

workload (Breslow et al., 2014)) or design challenges (e.g., encoding implicit human 

feedback (Kim et al., 2020), or alignment between the adaptation and the user 

expectation (Causse et al., 2019; Govindarajan et al., 2018)). Finally, while 

problematizing, we found that manuscripts define the outcome either as user centric 

(e.g., learning, perceived experience, health), task centric (e.g., performance or error at 

the task), or system centric (e.g., effectiveness, maladaptation). 

2.4.4 Knowledge space 

Neuro-adaptive systems research is grounded upon prior literature concerning analogous 

artifact designs, theoretical frameworks, and the characterization of neurophysiological 

patterns. We have categorized these elements within our analytical framework under the 

knowledge space. This knowledge space encompasses descriptive knowledge (e.g., 

patterns and theories) and prescriptive knowledge (e.g., instantiations and 

methodologies). Table 7 showcases the knowledge utilized in the examined manuscripts 

to construct the artifacts, with components coded only if they were clearly stated. 

2.4.4.1 Descriptive knowledge 

Manuscripts utilized descriptive knowledge from the relevant literature to characterize 

the neurophysiological patterns upon which their neuroadaptive systems are based. 

Brain patterns such as Event Related Potential (ERP) or oscillatory activity were 

depicted in 8 studies. For instance, Kim et al. (2020) and Schiatti et al. (2018) built upon 

Error-Related Potentials, the neurophysiological responses associated with human error 

processing. Other studies described pertinent oscillatory activities under specific tasks or 

mental states (Arico, Borghini, Di Flumeri, Colosimo, Pozzi, et al., 2016; Dey et al., 

2019; Di Flumeri et al., 2019; Labonte-Lemoyne et al., 2018; Vortmann & Putze, 2020). 
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Gaze patterns were examined in three cases for attention (Causse et al., 2019; Toreini et 

al., 2020) and fatigue (Zargari Marandi et al., 2019). Physiological patterns were 

characterized in four instances for stress (Azgomi et al., 2021; Raaijmakers et al., 2013) 

and arousal (Pavlidis et al., 2021). Theories were employed to guide the design of 

neuro-adaptive systems in 6 manuscripts. It is worth noting that other manuscripts 

utilized concepts and explanations from these theories, particularly cognitive load 

theories, but did not explicitly state their use. We observed a relatively small proportion 

of manuscripts that thoroughly describe and explain the neurophysiological processes 

and patterns. As the subsequent prescriptive knowledge section demonstrates, most 

manuscripts employ measurement methods for these neurophysiological patterns. 

2.4.4.2 Prescriptive knowledge 

The most prevalent type of prescriptive knowledge utilized in the examined manuscripts 

involved a descriptive review of relevant instances of similar or closely related neuro-

adaptive systems. A total of 28 (77.785) manuscripts cited previous artifacts to inform 

or justify the design and evaluation of the current neuro-adaptive systems under 

evaluation. For instance, some manuscripts referenced general BCI literature (Arico, 

Borghini, Di Flumeri, Colosimo, Pozzi, et al., 2016; Ramos et al., 2021; Tseng et al., 

2012) specific instances such as BCI in Augmented Reality (AR) (Dey et al., 2019; 

Vortmann & Putze, 2020), or biofeedback (Azgomi et al., 2021; Parnandi & Gutierrez-

Osuna, 2021; Wang et al., 2019; Zargari Marandi et al., 2019; Zhang et al., 2021). 

Moreover, manuscripts drew upon specific artifacts from outside the neuro-adaptive 

systems literature, such as Causse et al. (2019) incorporating Decision Support System 

and Case-based reasoning systems, Peternel et al. (2018) focusing on human-robot 

collaboration designs, Govindarajan et al. (2018) referencing the design of Advanced 

Driver Assistance Systems (ADAS), or Yuksel et al. (2016) anchoring neuro-adaptive 

systems within Computer-based Education and Intelligent Tutoring Systems. 
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Table 7 

Knowledge space (descriptive and prescriptive knowledge) 

Knowledge space 
component 

Example Count % 

Descriptive Knowledge 

Brain patterns ERP (2), Oscillatory Activity of user mental states 
(5), Hemodynamic Response (1) 

8 22.22% 

Gaze patterns  Attention (2), fatigue (1) 3 8.33% 

Physiological 
patterns 

Arousal (1), stress (2), physiological linkage (1) 4 11.11% 

Psychological 
theory 

Arousal theory (1), automatic control theory (1), 
cognitive load theory (2), motivation theory (1), 
reinforcement theory (1) 

6 16.67% 

Prescriptive Knowledge 

Defined constructs Fan-out, internal/external/visual attention, mental 
workload, vigilance 

10 27.78% 

Psychophysiological 
inference 

Mental workload – brain patterns, attention – brain 
patterns, error processing – ERP, stress – 
physiological patterns   

22 61.11% 

Models Case-base reasoning, closed loop approach, Fan-
out model, Dynamic Difficulty Adjustment 
framework 

6 16.66% 

Methods Measurements (20) (e.g., classification algorithms, 
signal transformation techniques, indexes), practice 
(2) (e.g., EEG measurement in AR, transcranial 
direct current stimulation), Task (e.g., stressors, 
paradigm)  

24 66.67% 

Design theory Design science research (2) 2 5.56% 

Instantiations Affective Systems, Adaptive Systems, related BCI, 
Biofeedback and Neurofeedback systems, 
Computer based education, Intelligent tutoring 
systems, Case-based reasoning in DSS 

28 77.78% 

 

Manuscripts discussed relevant methods in 24 instances (66.67%). In most cases, the 

papers referred to measurement approaches such as classification algorithms, signal 

transformation techniques, and indexes. For example, some manuscripts cited 

algorithms used for classifying specific mental states based on sensor data (Arico, 

Borghini, Di Flumeri, Colosimo, Bonelli, et al., 2016; Azgomi et al., 2021; Kim et al., 
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2020; Ramos et al., 2021; Vortmann & Putze, 2020). Other manuscripts reviewed the 

utilization of instruments for measuring targeted states (e.g., EEG, GSR) (Demazure et 

al., 2019; El-Samahy et al., 2015; Szafir & Mutlu, 2012). Some manuscripts referred to 

specific practices, for example, Dey et al. (2019) reviewed the use of EEG in AR. 

Additionally, several manuscripts examined tasks designed to elicit the targeted user 

states (El-Samahy et al., 2015; Trachel et al., 2018; Zhou et al., 2015).  

In 22 manuscripts (61.11%), evidence was presented to support the psychophysiological 

inferences underlying the neuro-adaptive systems. The employed strategy involved 

listing empirical evidence that substantiated the inferences made. For example, Aranyi 

et al. (2016) described the correlates of the affective-motivational dimension of 

approach in the brain, referring to changes in oxygenated and deoxygenated hemoglobin 

measured with fNIRS. Breslow et al. (2014) discussed the link between fixation, 

attention allocation, and decision-making. Manuscripts also referred to oscillation 

activities correlated with engagement (Chaouachi et al., 2015), mental workload (Arico, 

Borghini, Di Flumeri, Colosimo, Bonelli, et al., 2016; Arico, Borghini, Di Flumeri, 

Colosimo, Pozzi, et al., 2016; Dey et al., 2019), or vigilance (Di Flumeri et al., 2019).  

Existing models, such as frameworks and mathematical models, were utilized in 6 

manuscripts. For example, (Breslow et al., 2014) built upon an established mathematical 

model to compute the number of autonomous aircraft operators that could be managed. 

In their research, they adapted this model to include the operator state. Labonte-

Lemoyne et al. (2018) informed their neuro-adaptive systems with the “dynamic 

difficulty adjustment framework.” Additionally, we identified 2 papers (5.56%) 

employing a design theory (Demazure et al., 2019; Toreini et al., 2020), both utilized a 

Design Science Research approach. 

2.4.5 Solution space 

2.4.5.1 Design and development, evaluation approaches and methods 

The solution space categories and components are reported in Table 8. To map how the 

manuscripts were positioned, we subjectively evaluated the contribution based on how 

the authors motivated the paper and how descriptive/prescriptive knowledge was 
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leveraged. Half of the manuscripts were positioned as exaptation (50%), followed by 

improvement (25%), and routine design (22.22%). Those results show that most papers 

either extend known solutions to a novel problem (exaptation) or develop novel 

solutions to a known problem (improvement). 

Most of the included manuscripts used laboratory experiments with 34 studies (94.44%) 

to evaluate the designed neuro-adaptive system. Only one manuscript leveraged 

simulation techniques to study the prototype (Azgomi et al., 2021), and one evaluated 

their artifacts during an uncontrolled field study (Ghandi et al., 2021). 38.89% of the 

studies had student participants during the artifact's evaluation. Those studies did not 

specify specific characteristics that would be congruent with the task. However, studies 

in aeronautics focused on neuro-adaptive artifacts for air traffic controllers. All of them 

either used aeronautics students (5.56%) or professional air traffic controllers (8.33%). 

A significant proportion of the manuscripts did not clearly state the participant sample 

used (44.44%). Moreover, the average number of participants was 14.78 (Std = 10.29), 

with a minimum number of 1 and a maximum of 47 participants. 

The majority of the assessed research used experimental design evaluation methods 

(97.22%), while only one used a descriptive evaluation method (2.78%) to assess the 

neuro-adaptive system. 38.89% of the papers used an experimental evaluation only. 

However, several studies combined multiple evaluation methods (58.33%). Analytical 

approaches (e.g., dynamic analysis and architecture analysis) were the most popular, 

with 27.78% of the papers combining experimental evaluation. We observed a 

heterogeneous use of methods in the sample of manuscripts, such as using descriptive 

(i.e., informed arguments) or observational methods with 8 and 6 studies, respectively. 
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Table 8 

Solution space component characteristics 

Solution space component Count % 

Design and Development   

Exaptation 18 50.00% 

Improvement 9 25.00% 

Invention 1 2.78% 

Routine design 8 22.22% 

Design Evaluation approach 
  

Field experiment 1 2.78% 

Laboratory experiment 34 94.44% 

Simulation 1 2.78% 

Actual subjects 
  

Aeronautic Students 2 5.56% 

Air Traffic Controllers 3 8.33% 

Psychology Students 1 2.78% 

Students 14 38.89% 

Unclear/inferred 16 44.44% 

Design Evaluation Method 
  

Descriptive 1 2.78% 

Experimental 14 38.89% 

Experimental / Analytical 10 27.78% 

Experimental / Descriptive 3 8.33% 

Experimental / Observational 1 2.78% 

Experimental / Analytical / Descriptive 2 5.56% 

Experimental / Analytical / Observational 3 8.33% 

Experimental / Observational / Descriptive 2 5.56% 

Tasks   

Ecologically Valid Paradigm 33 91.67% 

Validated/Standard Paradigm 3 8.33% 

Number of participants* 14.78 participants (Std = 10.29 [min 
= 1, max = 47]) 

Note. * In the case of multiple studies in one research, we compiled the participants of 

the evaluation study of the adaptive artifacts 
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2.4.5.2 Functional components 

Neuro-adaptive systems are composed of functional components. In this section, we 

map the sensors, the feature extractions (i.e., transforming the signal into features 

representing the neurophysiological mechanism targeted), and the features translator 

(i.e., translating the features into labels/continuous values). 

Table 9 

Sensors as inputs of the neuro-adaptive system 

Input Sensor Count % 

Instrument    

Electroencephalography 14 38.89% 

Galvanic skin response 4 11.11% 

Oculometry 4 11.11% 

Functional near-infrared 
spectroscopy 

2 5.56% 

Breathing sensors  1 2.78% 

Electrocardiography 1 2.78% 

Electromyography 1 2.78% 

Thermal facial imaging 1 2.78% 

Fusion    

Fusion (ECG, GSR) 1 2.78% 

Fusion (ECG, GSR, EMG) 1 2.78% 

Fusion (ECG, OCU) 2 5.56% 

Fusion (EEG, GSR, BVP) 1 2.78% 

Fusion (EEG, OCU) 2 5.56% 

Fusion (EEG, TFI) 1 2.78% 

 

As reported in Table 9, the primary neuro-adaptive systems' input sensors in the 

included manuscripts were EEG alone with 14 papers (38.89%), followed by GSR and 

oculometry with four papers (11.11%). In descending order, two studies used FNIRS 

(5.56%) alone, followed by breathing sensors (1, 2.78%), electrocardiography (1), 

electromyography (1), and thermal facial imaging (1). Sensor fusion was employed in 
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22.22% of the research. In this case, the configurations of instruments are 

heterogeneous. 

Table 10 displays the different sensors, domain (i.e., time or frequency) of features 

extracted from the signal, and features employed as inputs of the feature extractors. As 

we show later, overlaps might occur as some studies generated multiple features in 

different domains to create feature vectors. EEG is the most popular sensor. It presents a 

majority of signal transformation from the time-domain to the frequency-domain with 

18 papers. The research uses features derived from established signal transformation, 

such as Fast Fourier Analysis in the frequency domain. Another layer of transformation 

is applied to derive the band power of specific ranges linked to psychophysiological 

inferences (e.g., alpha, beta, theta, gamma). We will see in the next section that those 

features serve either in a features vector, often for the use of machine learning (e.g., 

(Arico, Borghini, Di Flumeri, Colosimo, Pozzi, et al., 2016; Vortmann & Putze, 2020)), 

or to construct indexes (e.g., (Demazure et al., 2019; Zhang et al., 2021)). 

The research mainly derives features in the time-domain (6) for GSR by characterizing 

the signal. Similar observations are made for the oculometry (8). However, in this case, 

features can be further categorized: (1) eye movements features (e.g., dwell time 

(Causse et al., 2019; Toreini et al., 2020), fixations (Breslow et al., 2014), saccades 

(Zargari Marandi et al., 2019), or gaze entropy (Lim et al., 2021)), (2) pupillometry 

features (e.g., pupil dilatation diameter (El-Samahy et al., 2015)) and blink movements 

features (e.g., blinks frequency (Zargari Marandi et al., 2019)).  

Studies with neuro-adaptive systems with ECG as sensor inputs implemented 

transformation in both the time domain (5) and frequency domain (2). In the time 

domain, the features employed were heart rate (Nalepa et al., 2019), inter-beats interval 

(Karthikeyan & Mehta, 2020), and descriptive statistics to characterize the signal 

further. In the frequency domain, spectral powers in low/high frequency ranges were 

computed to serve as features directly or create ratios (Darzi & Novak, 2021; 

Karthikeyan & Mehta, 2020).  
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For the rest of the sensors, signals were mainly transformed into features in the time 

domain. For example, the relative change in oxy-HB or left/right asymmetry was 

computed for fNIRS (2) (Aranyi et al., 2016; Yuksel et al., 2016). For electromyography 

(n = 2), the signal is derived into descriptive statistics like root-mean-square to estimate 

facial muscular activity (Darzi & Novak, 2021). In another case, when applied to the 

shoulder, the signal was transformed into features such as muscle activation level and 

maximal voluntary contraction (Peternel et al., 2018). Finally, breathing rate and its 

variation were used with breathing sensors (n = 2) (Darzi & Novak, 2021; Parnandi & 

Gutierrez-Osuna, 2021)



 

Table 10 

Sensors, features extractions mapping (sensors fusions are split across the individual sensors) 

Sensors Domain Features Reference 

Electroencephalography 
(n = 18) 

Time-domain  
(n = 2) 

XDAWN, ERPs characteristics (descriptive 
statistics) 

(Kim et al., 2020; Schiatti et al., 2018) 

 Frequency-
domain  
(n = 17) 

Frequency bands with Fast Fourier Analysis 
FFT (Alpha, Beta, Theta, Gamma), band ratio 
(theta/beta), relative power band, individual 
alpha frequency, sensorimotor rhythms, alpha 
asymmetry 

(Arico, Borghini, Di Flumeri, Colosimo, Bonelli, 
et al., 2016; Arico, Borghini, Di Flumeri, 
Colosimo, Pozzi, et al., 2016; Chaouachi et al., 
2015; Demazure et al., 2018; Dey et al., 2019; Di 
Flumeri et al., 2019; Ghandi et al., 2021; 
Govindarajan et al., 2018; Labonte-Lemoyne et 
al., 2018; Ramos et al., 2021; Schiatti et al., 2018; 
Szafir & Mutlu, 2012; Trachel et al., 2018; Tseng 
et al., 2012; Vortmann & Putze, 2020; Wang et 
al., 2019; Zhang et al., 2021) 

Galvanic skin response 
(n = 7) 

Time-domain  
(n = 6) 

Signal characteristics (peaks, amplitude of 
peaks, durations, rising time, Mean skin 
conductance, skin conductance difference, skin 
conductance response frequency, mean skin 
conductance response amplitude, standard 
deviation of response amplitude, binarized 
pulse) 

(Azgomi et al., 2021; Darzi & Novak, 2021; 
Larradet et al., 2017; Nalepa et al., 2019; 
Raaijmakers et al., 2013; Zhou et al., 2015) 

 Unclear/Inferred 
(n =1) 

 (Ghandi et al., 2021) 

Oculometry  
(n = 8) 

Time-domain  
(n = 8) 

Dwell time, Percentage of the duration of 
closed eyes to opened eyes, Saccade Frequency, 
Saccade Peak Velocity Amplitude Relationship, 
Pupil Diameter Interquartile Range, Gaze 

(Breslow et al., 2014; Causse et al., 2019; Di 
Flumeri et al., 2019; El-Samahy et al., 2015; Lim 
et al., 2021; Toreini et al., 2020; Vortmann & 
Putze, 2020; Zargari Marandi et al., 2019) 
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entropy 

Frequency of blinks, saccades, fixations 
Number of blinks, saccades, fixations 

Mean duration of blinks, fixations, saccades 
Pupil diameter mean, coefficient of variation, 
interquartile range,  

mean value of their peak velocity, amplitude, 
curvature 
Peak amplitude of saccadic acceleration and 
deceleration profiles, intersaccadic intervals 

Functional near-infrared 
spectroscopy  
(n = 2) 

Time-domain 
(n = 2) 

Optical density, relative change in oxy-HB, 
mean/linear regression slope, Left-Right 
Asymmetry 

(Aranyi et al., 2016; Yuksel et al., 2016) 

Breathing sensors 
(n = 2) 

Time-domain 
(n = 2) 

Breathing rate, rate variation, standard 
breathing rate 

(Darzi & Novak, 2021; Parnandi & Gutierrez-
Osuna, 2021) 

Electrocardiography 
(n = 5) 

Time-domain  
(n = 5) 

Inter-beat Interval (IBI), Heart Rate, median of 
absolute deviation from the average IBI, 
standard deviation of intervals between 
consecutive beats (C.B.), root mean square of 
successive differences between C.B. intervals, 
standard deviation of successive differences 
between C.B. intervals, proportion of 
differences between C.B. intervals, peaks, 
amplitude of peaks 

(Darzi & Novak, 2021; El-Samahy et al., 2015; 
Karthikeyan & Mehta, 2020; Lim et al., 2021; 
Nalepa et al., 2019) 

 Frequency-
domain  
(n = 2) 

Spectral powers across frequency regimes, 
power of low frequencies (L.F.), power of high 
frequencies (H.F.), ratio of LF/HF 

(Karthikeyan & Mehta, 2020) 

Electromyography 
(n = 2) 

Time-domain 
(n = 2) 

FEMG : root-mean-square (RMS), maximum 
and minimum RMS 

(Darzi & Novak, 2021; Peternel et al., 2018) 
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Shoulder EMG : maximal voluntary 
contraction, muscle activation level  

Thermal facial imaging 
(n = 2) 

Frequency-
domain 
(n = 2) 

Mean perinasal perspiration, mean temperature 
of region of interest (i.e., forehead, left eye, 
right eye, nose) 

(Govindarajan et al., 2018; Pavlidis et al., 2021) 

Blood volume pressure 
( n = 1) 

Unclear/Inferred 
(n =1) 

 (Ghandi et al., 2021) 



 

Table 11 showcases how the included research uses these features to construct index or 

feature vectors. As previously stated, techniques like Fast Fourier Transform or 

bandpass filtering are used to extract the absolute or relative powers in EEG signals. For 

a neuro-adaptive system, this process represents the end of the feature extraction phase, 

and the created data serve as inputs for the features translator. We grouped the literature 

into two primary techniques: a compilation of features to create a features vector (20, 

55.56%), or an aggregation of features to compute indexes/scores or relative indexes 

(15, 41.67%). A features vector represents an n-dimensional vector of features that often 

serves as a machine learning model. In the included manuscript, a compilation of 

features was used when a fusion of sensors was employed (6). It was also used for EEG 

(6), oculometry (3), GSR (2), and ECG (1). 

In the case of aggregation techniques, two approaches were identified. Studies derived 

indexes or scores (5, 13.89%) from the features or built relative indexes (10. 27.78%) by 

creating an index and comparing it to a baseline. Put differently, an index is an 

aggregated value created from chosen features. Conversely, a relative index represents 

an aggregated value that not only stems from selected features but is also derived from 

comparisons with the same index computed from the user in a different 

cognitive/physiological state (e.g., baseline, moving average). However, using indexes 

and feature vectors are not mutually exclusive. For example, Chaouachi et al. (2015) 

created an index based on the Beta/(Theta + Alpha) ratio and used it in a feature vector 

to train a machine learning algorithm. 
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Table 11 

Feature-domain, features extractor, and sensors 

Features Extractor Sensors F.D. TD TD + FD Total % 

Features Compilation 

Features vectors 
 

6 5 9 20 55.56% 

Fusion 3 2 3 8 22.22% 

EEG 3  3 6 16.67% 

OCU  2 1 3 8.33% 

GSR  1 1 2 5.56% 

ECG   1 1 2.78% 

Features Aggregation 

Index/Score 
 

5   5 13.89% 

EEG 3   3 8.33% 

GSR 1   1 2.78% 

TFI 1   1 2.78% 

Relative index 
 

5 5  10 27.78% 

EEG 5   5 13.89% 

FNIRS  2  2 5.56% 

BS  1  1 2.78% 

EMG  1  1 2.78% 

GSR  1  1 2.78% 

No transformation 
 

 1  1 2.78% 

OCU  1  1 2.78% 

Total 
 

16 11 9 36 100.00% 

Note. TD = Time-domain, FD = Frequency-domain 

Table 12 shows how the feature translator outputs are utilized to derive logical control 

via the features translator. From the 20 manuscripts utilizing feature vectors, 16 

(44.44%) built machine learning models to learn the relationship between the features 

and the outcome. Super Vector Machine (SVM) are popular with 6 occurrences (Schiatti 

et al., 2018; Yuksel et al., 2016), followed by Linear Discriminant Analysis (LDA) and 

some variations like asSWLDA (Arico, Borghini, Di Flumeri, Colosimo, Bonelli, et al., 

2016; Di Flumeri et al., 2019). In most cases, machine learning classifies discrete 
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outputs. For example, Schiatti et al. (2018) classify the presence of an error potential in 

EEG while supervising a robot's learning behaviors. In this case, the output is binary and 

represents the presence of the expected neurophysiological response. Similarly, Yuksel 

et al. (2016) learn from features extracted from fNIRS signal high and low cognitive 

workload. However, it is possible to derive continuous output using machine learning 

(Arico, Borghini, Di Flumeri, Colosimo, Bonelli, et al., 2016). 

Moreover, the literature shows that a layer of fuzzy logic can be added on top of 

machine learning techniques. Fuzzy methods use condition/logic decisions to generate 

the final output. For example, Lim et al. (2021) classified the workload into three classes 

(low to high), attention (low to high), and performance (low to high). Then, they added a 

fuzzy layer that would translate combinations of those three variables into three 

automation levels. 

Relative index and index/scores were mainly used with fuzzy methods, with 7 (19.44%) 

and 4 (11.11%) occurrences, respectively. In those cases, the feature translators are built 

based on thresholds. The output is derived from comparing the index during the task 

with the index during a baseline. For example, Labonte-Lemoyne et al. (2018) 

constructed fixed thresholds; when the real-time index is two times superior or inferior 

to the baseline, the system triggers an adaptation. Demazure et al. (2019) built a similar 

approach with dynamic thresholds derived from a calibration phase and the moving 

average during the task. 
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Table 12 

Transformation and feature translators 

Transformation Feature Translator 
Category 

Feature Translator Count % 

Features vector 
  

20 55.56% 

Fuzzy methods / 
Machine learning 

 
4 11.11% 

Adaptive neuro-fuzzy inference systems 
(ANFIS) (1), Mamdani-type fuzzy model (1), 
Thresholds (1), Unclear/Inferred (1) 

Machine learning 
 

16 44.44% 

Gradient boosting (1), K-NN (2), LDA (1), 
Logistic regression (1), LSTM (1), RNN (1), 
Random Forest (2), Stepwise Linear 
Discriminant Analysis (asSWLDA) (3), SVM 
(6), Naïve Bayes (1) 

No transformation 
  

1 2.78% 

No translator 
 

1 2.78% 

No translator (1) 

Relative index 
  

10 27.78% 

Fuzzy methods 
 

7 19.44% 

Thresholds (6), Statistical Thresholds (1) 

Machine learning 
 

2 5.56% 

SVM (1), Gaussian Process Regression (1) 

Unclear/Inferred 
 

1 2.78% 

Unclear/Inferred (1) 

Index/Score 
  

5 13.89% 

Fuzzy methods 
 

4 11.11% 

Thresholds (3), Statistical Thresholds (1) 

Unclear/Inferred 
 

1 2.78% 

Unclear/Inferred (1) 

 

Table 13 presents the psychophysiological inference grouped by the high-level 

mechanisms targeted by the neuro-adaptive systems. Such artifacts are built on the 

assumption that changes in the extracted characteristics of the signal represent the 

emergence of a mental state. The literature shows that while the psychophysiological 
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inferences are quite dispersed, they can be regrouped within high-level mechanisms. 

Neuro-adaptive systems designs centered on attentional mechanisms in 14 (38.88%) 

manuscripts. The studies focus on states like attention (3) (Lim et al., 2021; Wang et al., 

2019; Zhang et al., 2021), engagement (2) (Chaouachi et al., 2015; Szafir & Mutlu, 

2012) or visual attentional allocation (2) (Causse et al., 2019; Toreini et al., 2020). For 

example, Causse et al. (2019) built and evaluated a decision support system in air traffic 

control tasks for route suggestions on an airport tarmac. The neuro-adaptive system 

leverages users’ attention allocation via fixations to weight parameters based on past 

gaze behaviors in route selection. The authors argue that the approach increases the 

system's performance and aligns the system's suggestions with the user decision-making 

process. 

In 6 manuscripts, the artifacts target affective mechanisms (16.67%) referred as the 

user's affective state (2), valence/arousal (3), or emotion (1). For example, Darzi and 

Novak (2021) used ECG, GSR, and EMG to measure arousal and valence. They specify 

the relationship between the sensors, the features, and the psychophysiological 

inferences made. With ECG, they provide support that links interbeat intervals with 

tonic arousal. Mean conductance and conductance response frequency extracted from 

the GSR signal is related to arousal in the manuscript. The root mean square of the EMG 

signal at the zygomaticus major and the corrugator supercilia are influenced by smiling 

and frowning, respectively, and are correlated with the user's positive and negative 

affective states.  

The third targeted mechanism is related to the user's information processing, with 5 

manuscripts (13.89%). Referred to by different constructs (e.g., Cognitive load, 

Cognitive Workload, Mental workload, Overload), this research designs and builds 

neuro-adaptive mechanisms linked to the demand on working memory and information 

processing. Three manuscripts measure brain responses with EEG (2) and FNIRS (1), 

while the two others utilize oculometry (1) and GSR (1). For example, Zhou et al. 

(2015) derive time (i.e., peaks) and frequency domain (i.e., average power below 1 Hz) 

features from the GSR signal to classify the level of cognitive load with SVM, Naïve 

Bayes, and random forest.  
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Five manuscripts (13.89%) targeted stress mechanisms for their psychophysiological 

inferences. Two papers conceptualized it as cognitive stress (Azgomi et al., 2021; El-

Samahy et al., 2015), while 2 others framed it as physiological stress (Parnandi & 

Gutierrez-Osuna, 2021; Raaijmakers et al., 2013). One study targeted relaxation to drive 

biofeedback (Larradet et al., 2017). Most studies use physiological sensors such as ECG, 

GSR, and BR. One study used ECG and OCU (El-Samahy et al., 2015). For example, 

El-Samahy et al. (2015) used feature vectors composed of heart rate variability and pupil 

dilatation features to predict task performance using a fuzzy clustering technique (i.e., 

Mamdani-type fuzzy model). Interestingly, Raaijmakers et al. (2013) validated self-

regulation tasks with a third measurement instrument. ECG and GSR were used to 

measure physiological stress and drive the neuro-adaptive system to promote regulation 

in the user. In addition, the study used EEG to monitor the effect of stress regulation on 

change in frontal alpha asymmetry, which can be linked to cardiac activity modulation, 

per the authors.  

Two manuscripts (5.56%) utilized fatigue mechanisms at both the cognitive (Zargari 

Marandi et al., 2019) and the physical (Peternel et al., 2018) levels with OCU and EMG, 

respectively. Zargari Marandi et al. (2019) developed a neuro-adaptive system that 

triggers biofeedback based on user fatigue during computer work. The artifact applies 

pupil diameter measurements to infer fatigue and prompt feedback to consider 

microbreaks. Peternel et al. (2018) used EMG to measure operators' physical fatigue to 

modulate task allocation during a collaborative and physically demanding task with a 

robot. 
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Table 13 

Mechanisms and psychophysiological inference 

Mechanisms 
Targeted 

Psychophysiological 
Inference 

Sensors (Count) Count % 

Attentional 
Mechanisms 

 
 

14 38.88% 

Alertness EEG (1) 1 2.78% 

Arousal TFI (1) 1 2.78% 

Attention EEG (2), Fusion (ECG, 
OCU) (1) 

3 8.33% 

Covert Visuospatial 
Attention 

EEG (1) 1 2.78% 

Engagement EEG (2) 2 5.56% 

Steady-State Visually 
Evoked Potential (SSVEP) 

Fusion (EEG, OCU) 1 2.78% 

Sustained attention EEG (1) 1 2.78% 

Vigilance Fusion (EEG, OCU) (1), 
ECG (1) 

2 5.56% 

Visual Attention Allocation OCU (2) 2 5.56% 

Affective 
Mechanisms 

 
 

6 16.67% 

Affective state FNIRS (1), Fusion (EEG, 
TFI) (1) 

2 5.56% 

Emotion Fusion (EEG, GSR, BVP) (1) 1 2.78% 

Valence/Arousal EEG (1), Fusion (ECG, 
GSR) (1), Fusion (ECG, 
GSR, EMG) (1) 

3 8.33% 

Information 
Processing 
Mechanisms 

 
 

5 13.89% 

Cognitive load GSR (1) 1 2.78% 

Cognitive Workload FNIRS (1) 1 2.78% 

Mental workload EEG (2) 2 5.56% 

Overload Oculometry (1) 1 2.78% 

Stress 
Mechanisms 

 
 

5 13.89% 

Relaxation GSR (1) 1 2.78% 

Stress (Cognitive) Fusion (ECG, OCU), GSR(1) 2 5.56% 

Stress (Physiological) BS (1), Fusion(GSR, ECG) 
(1) 

2 5.56% 

Fatigue  
 

2 5.56% 
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Mechanisms Fatigue (Cognitive) OCU (1) 1 2.78% 

Fatigue (Physical) EMG (1) 1 2.78% 

Error 
Processing 
Mechanisms 

 
 

2 5.56% 

Error Potentials EEG (2) 2 5.56% 

Unclear/ 
Inferred 

 
 

3 8.33% 

Unclear/Inferred EEG (2) 2 5.56% 

Total 
  

36 100% 

 

Error Processing Mechanisms were targeted in 2 manuscripts (5.56%). Both papers 

(Kim et al., 2020; Schiatti et al., 2018) used EEG to measure error related potentials. 

The neurophysiological responses to unusual or wrong observable actions of robots 

were used in the reward function of the robot during the learning process.  

Finally, the targeted mechanisms were unclear for 2 manuscripts (5.56%). For example, 

(Labonte-Lemoyne et al., 2018), with EEG, measured the parietal upper alpha band to 

adapt Tetris game speed. However, the psychophysiological inferences are not clearly 

defined. 

Neuro-adaptive systems leverage the targeted neurophysiological mechanisms and the 

psychophysiological inferences targeted to drive adaptation. Table 14 presents how the 

manuscripts utilize the mechanisms to implement different types of controls during the 

task. We found various unisensory (e.g., visual, auditory, haptic) and multisensory (e.g., 

visual, and auditory) feedback. 18 manuscripts (50%) built artifacts that provided 

sensory feedback of some form. 9 of them focused on attentional mechanisms for 

developing the neuro-adaptive system. For example, in a dashboard task, Toreini, 

Langner et Maedche (2020) used dwell time on the different metrics to infer the visual 

allocation of attention. The neuro-adaptive system directly provided to which metrics 

the user concentrated its gaze. The authors observed that this visual feedback enables 

users to manage their focus more efficiently. Demazure et al. (2019) concentrated on 

attentional mechanisms using EEG in a dashboard monitoring task. The manuscripts 

evaluated the efficacy of visual feedback in supporting sustained attention during a long-

duration logistic task and measured the effect on behaviors and performance. Other 
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mechanisms were used to drive sensory feedback. For example, building on information 

processing mechanisms, Breslow et al. (2014) modeled users’ overload based on gaze 

behavior to drive visual cues in an unmanned vehicles supervision task. Those cues were 

designed to redirect users’ attention toward potential threats and to support the user 

during overload segments to reduce the risk of errors. This type of adaptation could 

qualify as biofeedback; they redirect information about their states to the user. 

Table 14 

Mechanisms and neuro-adaptive System Control 

Neuro-adaptive 
systems control Mechanism Targeted   

 Att. 
M. 

Aff. 
M 

S. 
M. 

I.P. 
M 

E.P. 
M 

F. 
M. 

Unclear 
Inferred Count % 

Visual feedback 6 2 3 1  1  13 36.11% 

Auditory feedback 1       1 2.78% 

Haptic feedback     1   1 2.78% 

Visual/Auditory 
feedback 1  1     2 5.56% 

Visual/Auditory/Haptic 
feedback 1       1 2.78% 

Task load adaptation 1 2 1 3   2 9 25.00% 

Task allocation 2 1    1  4 11.11% 

System behavior 
change 1 1   1   3 8.33% 

Neuromodulation 1       1 2.78% 

Unclear/inferred    1    1 2.78% 

Total 14 6 5 5 2 2 2 36 100% 

Note. Attentional Mechanisms (Att. M.), Affective Mechanisms (Aff. M), Information 

Processing Mechanisms (I.P. M.), Stress Mechanisms (S. M.), Fatigue Mechanisms (F. 

M.), Error Processing Mechanisms (E.P. M.), Fatigue Mechanisms (F. M.) 

 

However, neuro-adaptive systems were sometimes designed to control the 

characteristics of the HCI tasks. We noted three types of systems control: task load 
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adaptation (9, 25%), task allocation (4, 11.11%), and system behavior change (3, 

8.33%). In the case of task adaptation, the neuro-adaptive systems had control over 

specific parameters of the tasks but did not change their nature. For example, Labonte-

Lemoyne et al. (2018) adjusted the speed of a game using alpha power bands compared 

to a baseline, i.e., a rest state. Zhou et al. (2015) inferred cognitive load with GSR to 

adapt the task workload dynamically to its users. In the context of air traffic control, 

Arico, Borghini, Di Flumeri, Colosimo, Bonelli, et al. (2016) built an artifact that adapts 

the load level of an air traffic monitoring system based on the mental workload of the 

users measured via EEG. The adaptation rules are built to adjust task cognitive demand 

to support the user by lowering the mental workload. For example, in case of high 

workload, the system would activate critical alerts in the interface, or the system will 

preselect and display aircraft to display on the system. 

Another observed neuro-adaptive system control over tasks is task allocation, where the 

system controls the nature of the task. Some studies have utilized psychophysiological 

inferences to adjust the level of automation. In these cases, the neuro-adaptive system 

triggers either partial or complete task takeover between the automation and the user. 

For example, Di Flumeri et al. (2019) built an artifact to adjust the level of automation 

between two levels based on the vigilance of air traffic controllers measured by EEG. 

The neuro-adaptive system distributes the task load between the operator and the 

machine. The artifact operates under the assumption that automation reduces vigilance 

and switching to manual control maintains engagement. In a pilot test, Ramos et al. 

(2021) modeled the emotional states of a drone operator and created its digital twin. The 

predicted state of the twin would serve to gate commands to the drone and order it to 

stabilize autonomously. A neuro-adaptive system for physical task allocation between a 

robotic hand and an operator was developed in another study (Peternel et al., 2018). 

During the task, the robotic arms learn the operator's behavior to replicate it. Once the 

fatigue level is deemed too high, the neuro-adaptive system triggers the machine's 

takeover of the task. 

We have classified 3 (8.33%) manuscripts under the classification of "system behavior 

change". This type of control is defined as an adaptation triggered by a neuro-adaptive 
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system that continuously modifies the behavior of the system. This dynamic adaptation 

can be either covert or overt to the users. As examples of covert behavior adaptation, 

Govindarajan et al. (2018) integrated affective state estimation of the driver into a driver 

assistance system to predict breaking reaction time. The driver assistance system 

triggers the collision alerts based on the predicted reaction time, vehicle, and 

environmental parameters. Causse et al. (2019) created a decision support system for 

route suggestions in air traffic control. The systems adaptively adjust the decision 

system's parameters based on the users' fixations during the surveillance task. In both 

cases, the neuro-adaptive systems covertly modify the system's behavior for its user. On 

the other hand, one manuscript presented an artifact that overtly adapts a robot's 

behavior based on EEG. Kim et al. (2020) used error-related potential detection in a 

reinforcement learning protocol for robotic hand action execution. 

2.5 Discussion 

Our scoping review provides an overview of research on neuro-adaptive systems applied 

in HCI. We identified relevant primary literature by searching seven databases in 

diverse domains. However, given the emerging nature of this research, we did not assess 

the methodological quality of individual studies. We coded the manuscripts based on a 

framework adapted from design science (Gregor & Hevner, 2013; Hevner et al., 2004; 

Venable, 2006) and the neuro-adaptive system literature (Mason & Birch, 2003; Van 

Gerven et al., 2009). We mapped the neuro-adaptive artifacts using the three spaces of 

problem, knowledge, and solution. Based on this descriptive review, we report the 

current challenges and gaps in the literature. 

2.5.1 Overview of the neuroadaptive system literature in HCI 

Our results confirm the emergent nature of the research field. Over the last decade, we 

have observed a significant increase in journal and conference manuscripts related to 

this topic, indicating a growing momentum in this study area. The included manuscripts 

in our review appear to vary in their approach to defining the problem and motivating 

the artifact's creation. Only three studies (8.33%) clearly stated their research questions, 

while the artifact objective was clearly defined in 22 papers (61.11%). A qualitative 
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analysis of the motivation behind the research showed that the need for a neuro-adaptive 

system emerged from various factors such as the task (e.g., automation, task demand), 

the user (e.g., stress), or the neuro-adaptive system (e.g., biofeedback design). Despite 

this variation, designers commonly linked these factors to their impact on user states, 

such as workload, motivation, and fatigue. Additionally, the consequences of how these 

factors impact users were mainly centered around the user's learning, health, and 

experience, or the task's performance. These results offer an interesting perspective on 

how neuro-adaptive systems are motivated in the current literature, highlighting two 

distinct approaches in which considering user states during human-computer interaction 

can either benefit users personally or aid in accomplishing tasks. 

The literature shows diverse designs of neuro-adaptive systems and their components. 

When only one neurophysiological measure is employed, the most used measures of the 

users and inputs of the artifact were EEG (38.89%), followed by GSR (11.11%) and 

oculometry (11.11%). However, a significant proportion of the prototypes used sensor 

fusion techniques to leverage multiple measurement instruments (22.22%). Then, 

features in both the time and frequency domains were computed for two primary uses: 

their aggregation into indexes or their compilations into feature vectors. The use of 

indexes was diverse. Indexes translated the neurological signal into logical inputs for the 

systems using thresholds, fuzzy computational methods, and inputs for machine learning 

models. On the other hand, feature vectors only serve machine learning techniques to 

classify the state of the users. SVM and Linear Discriminant Analysis were popular 

choices for learning algorithms.  

Psychophysiological inferences and neurophysiological mechanisms are employed to 

drive controls of neuro-adaptive systems. We observe two categories of control 

approaches in the literature: sensory feedback provided to users and adaptations made to 

various aspects of HCI tasks. In the first category, the user interface incorporates 

feedback modalities like visual, auditory, and haptic cues, often capitalizing on attention 

mechanisms. For instance, visual feedback can be used to redirect users' attention 

towards potential threats. The second category encompasses a wider range of targeted 

neurophysiological mechanisms, but the underlying goal remains system control in HCI 
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tasks, including task load adaptation, task allocation, and system behavior modification. 

As an example, these systems can adjust the level of automation between the operator 

and the machine according to the user's vigilance and fatigue levels. Furthermore, they 

can continuously adapt the system's behavior, such as adjusting decision system 

parameters based on users' fixations during surveillance tasks. 

The results reveal a growing body of literature on applied neuro-adaptive systems, 

which employ diverse neurophysiological measures, measurement techniques, and 

control designs. However, this emerging field also faces several challenges that need to 

be addressed. This section will discuss these challenges and propose potential solutions. 

2.5.2 Challenges and guidelines of the literature 

2.5.2.1 Defining the problem space 

In manuscripts that aim to design and evaluate neuro-adaptive systems within HCI, it is 

essential to define the problem clearly. The necessity for a neuro-adaptive system arises 

from a specific problem that researchers or designers seek to address. Defining this 

problem is crucial in establishing the artifact's relevance and purpose (Gregor & Hevner, 

2013). However, we observed that the included manuscripts often lack clarity on this 

aspect. 

The current scarcity of guiding design frameworks and principles specifically tailored 

for passive neuro-adaptive systems is a potential reason for this issue. Fairclough and 

Lotte (2020) highlighted that this area remains less explored than the more established 

field of active control BCI design. Researchers have attempted to address this challenge. 

For instance, Mason and Birch (2003) proposed a functional model for BCI design. 

However, their framework primarily focuses on the components of the artifacts and does 

not directly address the problem definition. The authors made a commendable effort to 

define the artifact, yet their approach seems to encompass only specific aspects of the 

problem definition. The framework covers the users, the tasks, and the environments 

(e.g., target population, target tasks) with components of the neuro-adaptive systems, 

which muddles the differences between the problem definition and the designed artifact 

that solves it.  
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We posit that these aspects must be addressed within the problem space to clearly define 

the purpose, scope, nature, and relevance of the problem. For example, in this scoping 

review, we conceptualized the problem space as the environment from which the 

problem arises (i.e., the industry/domain, the target users, and the target task) and the 

problematization (i.e., the problem's relevance, research goal/question, and the neuro-

adaptive artifact's objective). In this case, "target users" and "target tasks" refer to the 

prospective users and tasks of the neuro-adaptive system, which may not initially be the 

ones with which the artifact is evaluated. Nonetheless, these components are essential 

for effectively communicating the contribution of the proposed design. 

In summary, manuscripts should clearly articulate the problem to be addressed with 

neuro-adaptive artifacts when motivating the research. While our conceptualization of 

the problem space can be used as a reference, researchers are encouraged to develop 

design frameworks for neuro-adaptive systems that specifically provide prescriptive 

requirements to address this challenge effectively. 

2.5.2.2 Anchoring psychophysiological inference and constructs in the understanding of 

the body and the brain 

Psychophysiological inferences constitute a significant challenge for neuro-adaptive 

artifacts. Neuro-adaptive systems inherently build on psychophysiological inferences 

(Fairclough, 2009) as the artifact relies on recognizing patterns in the sensor signal 

caused by mental states  (Van Gerven et al., 2009). However, we found that the current 

literature lacks in anchoring the inferences in the current understanding of the body and 

the brain. This can lead to consequences that might hinder the designed artifacts from 

attaining their objectives. We found undefined psychophysiological constructs and 

various similar constructs related to similar neurophysiological mechanisms. It can also 

lead to misalignment between the psychophysiological inferences, targeted patterns, and 

the task. Finally, it can impede the ability of future neuro-adaptive artifacts to build on 

existing inferences.  

To illustrate an example of multiple constructs that refer to the same mechanisms, we 

identified four constructs associated with information processing mechanisms: cognitive 
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load (Yuksel et al., 2016), cognitive workload (Zhou et al., 2015), and mental workload 

(Arico, Borghini, Di Flumeri, Colosimo, Bonelli, et al., 2016; Arico, Borghini, Di 

Flumeri, Colosimo, Pozzi, et al., 2016) and overload (Breslow et al., 2014). These 

constructs draw upon different psychological theories, such as cognitive load theory and 

working memory (Baddeley, 1992; Sweller, 1994). Nevertheless, all of these neuro-

adaptive artifacts are based on similar assumptions: users possess limited cognitive and 

attentional capacities, and performance declines when task demands exceed these 

capacities. The targeted mechanism is related to information processing processes and 

working memory (Baddeley, 1992). Notably, three of these manuscripts relied on 

neurophysiological measurements using EEG and fNIRS, while the others employed 

GSR and oculometry, demonstrating that researchers utilize instruments other than brain 

measurements. We found a similar situation with the attentional mechanisms and 

psychophysiological inference, a challenge already discussed extensively in the 

literature (Oken et al., 2006). This example highlights the diversity of explanations for 

closely related constructs, even when the underlying mechanisms are strongly 

interconnected.  

In another case, there was a misalignment between the psychophysiological inferences 

and the task. For example, Govindarajan et al. (2018) relied on EEG and TFI to 

characterize a car driver's "affective state" to adapt the parameters of the car's assistance 

system. However, they labeled training data on cognitive workload level using an n-

back task. This paradigm was created to manipulate working memory (Kirchner, 1958). 

Another manuscript avoided making psychophysiological inferences, mainly focusing 

on the neurophysiological patterns targeted (i.e., alpha activity in EEG) to adapt the 

speed of a game without clearly relating it to a clear and defined construct (Labonte-

Lemoyne et al., 2018). 

The literature review highlights the challenges of building upon psychophysiological 

inferences to create neuro-adaptive systems. Making psychophysiological inferences is 

difficult (Fairclough, 2009) as it requires establishing that a specific task elicits a 

particular change in the signal, even though the manipulation may induce multiple 

concurrent changes in the body and brain, which can vary across users (Fairclough, 
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2009). This challenge is even more significant in naturalistic tasks, such as those in HCI, 

as the task itself can induce simultaneous changes in users' mental states. Nonetheless, 

anchoring physiological inferences in our understanding of the body and brain can 

enhance the efficiency of neuro-adaptive artifacts. For example, understanding the brain 

can improve the creation of features from the signal and increase the classification 

models' performance (Van Gerven et al., 2009). Nicolelis and Lebedev (2009) even 

argue that neuro-adaptive systems can enhance our ability to test hypotheses and 

understand neurophysiological phenomena. Of course, it is essential to acknowledge that 

most manuscripts use correlates of the targeted users’ mental states. However, 

manuscripts should still clearly define constructs and the psychophysiological inferences 

(i.e., the relationship between the physiological patterns and the psychological 

constructs) on which the neuro-adaptive system is built before describing the features 

extracted. The artifact's description should describe the neurophysiological mechanisms 

used. 

2.5.2.3 Building on the state-of-the-art in decoding users’ states 

The scoping review highlighted that the current literature does not make use of state-of-

the-art machine learning algorithms for neurophysiological signal classification. For 

instance, several papers employ feature-based approaches using popular models such as 

SVM, variations of LDA, or Random Forest, which are widely accepted (Lotte et al., 

2018). However, there have been significant advancements in the use of adaptive 

classifiers (e.g., adaptive LDA, QDA, dynamic SVM, adaptive Gaussian classifiers), 

shrinkage LDA, or Riemannian Minimum Distance to the Mean, which are known to 

perform well in the context of limited data (Lotte et al., 2018), but seems to be 

underutilized. Deep learning techniques are also scarcely used despite their potential to 

provide better generalization and flexibility for neurophysiological data (Roy et al., 

2019). Although there are still performance concerns with deep learning techniques, 

compared to the above techniques, Lotte et al. (2018) anticipate that their use may be 

relevant for end-to-end domain adaptation and data augmentation techniques, such as 

generative adversarial networks. Both techniques are highly pertinent for neuro-adaptive 

systems as the research aims to enhance task generalizability in HCI, which is frequently 

built on small datasets. 
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Although we acknowledge the importance of evaluating state-of-the-art mental state 

classification techniques for neuro-adaptive systems development, it is also crucial to 

recognize that linear classifiers have demonstrated satisfactory performance (Van 

Gerven et al., 2009). The primary area for improvement lies in the feature design and 

selection process. For instance, some papers in the review have presented modified 

versions of linear discriminant analysis incorporating automatic feature selection 

techniques (Arico, Borghini, Di Flumeri, Colosimo, Pozzi, et al., 2016; Gianluca Di et 

al., 2019). However, this approach, which is focused on the data, performs well when 

trained and tested on the same users but may be limited in its ability to generalize to 

multiple users due to inherent differences in physiological responses across individuals. 

In such cases, deep learning techniques, particularly end-to-end approaches, may offer a 

solution to the issue of generalization performance (Roy et al., 2019). 

2.5.2.4 Acknowledging ethical considerations 

The ethical implications of transferring neuro-adaptive systems from the laboratory to 

consumer markets are vital. Our review reveals that the literature focuses on workplace 

and critical job applications. For example, several papers have investigated the use of 

neuro-adaptive systems in air traffic control (Arico, Borghini, Di Flumeri, Colosimo, 

Bonelli, et al., 2016; Arico, Borghini, Di Flumeri, Colosimo, Pozzi, et al., 2016; Causse 

et al., 2019; Di Flumeri et al., 2019) or business domains (Demazure et al., 2019; 

Toreini et al., 2020). However, none of the papers included in this review explicitly 

address ethical concerns despite their aim of designing neuro-adaptive systems for use in 

work environments or consumer applications. 

It is imperative for designers to consider future barriers and anticipate ethical issues that 

may impede the widespread adoption of neuro-adaptive systems. These systems pose 

significant challenges in this regard. (Fairclough, 2009) raises concerns regarding 

privacy issues and questions about who owns the physiological data such systems 

collect. Additionally, should the user be informed if the signal indicates the presence of 

a potential disease (e.g., cardiovascular risks, hypertension)? Furthermore, the author 

extends this notion to the public use of these technologies. Neuro-adaptive systems 

utilized in the workplace could inadvertently reveal personal information, such as covert 
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emotional responses to colleagues around the user. These systems also raise questions 

regarding user autonomy or self-determination. In this regard, Reynolds and Picard 

(2005, p. 2) directly address systems designers by asking, "Could a user be emotionally 

manipulated by a program with the capability to recognize and convey affect? […] 

Should an affective system try to change the emotional state of a user?" Designers and 

researchers must address these ethical concerns to ensure the responsible development 

and implementation of neuro-adaptive systems. 

In conclusion, our review of applied research on neuro-adaptive systems in HCI has 

revealed that ethical challenges are not being adequately addressed. Although 

discussions of these issues exist (Fairclough, 2009; Reynolds & Picard, 2005; Van 

Gerven et al., 2009), they need to be translated into practical implications for designers 

and researchers of such systems. We argue that there is a gap in the current literature 

regarding the actual requirements for neuro-adaptive systems design that would consider 

ethical and moral concerns specific to the artifact. To address this gap, an ethical space 

could be added to our current analytical framework. This space would refer to the 

characteristics of the neuro-adaptive artifact that could give rise to moral and ethical 

concerns for the designer, user, or organization. 

2.5.3 Challenges and guidelines of the literature 

This scoping review employed rigorous and transparent methods throughout the entire 

process. Firstly, the review protocol was developed following the methodology outlined 

by Arksey and O'Malley (2005) and followed the PRISMA extension for scoping 

reviews checklist (Tricco et al., 2018). To ensure a comprehensive literature search, we 

conducted searches across seven databases, carefully selecting multidisciplinary and 

specialized databases in medicine, business, psychology, and engineering. Secondly, for 

data charting, we adapted a central framework for design science research (Gregor & 

Hevner, 2013; Hevner et al., 2004; Venable, 2006), a field dedicated to constructing 

socio-technical artifacts (Gregor & Hevner, 2013), a relevant perspective for neuro-

adaptive systems. Thirdly, since the design choices in neuro-adaptive systems are highly 

interdependent, we described the components of the artifacts in relation to other choices 

(i.e., sensors and features, features extractions and translators, targeted mechanisms, and 
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systems control). This approach facilitated a coherent and fluid description of the 

artifacts throughout the results section. Fourthly, we identified and described three 

significant challenges in the design of neuro-adaptive systems for HCI and offered 

guidelines to inform future design and research opportunities in this domain. 

This analysis lays the foundation for constructing a conceptual framework to advance 

the integration of neurophysiological measures into IS artifacts, commonly known as 

neuro-adaptive systems. By delineating the problem, knowledge, and solution spaces 

concerning neuro-adaptive systems and their components (such as functional elements 

and neuropsychological inferences), this review becomes a crucial step toward 

establishing a theoretical basis for designing these artifacts. Ultimately, this approach 

facilitates the accumulation of descriptive and prescriptive knowledge within the field of 

NeuroIS. 

This review possesses some limitations. Firstly, although comprehensive, our search 

could have included more databases from the engineering field, which might result in a 

slight bias in the findings. While we included IEEExplore, we were unable to 

incorporate ACM due to the database's technical limitations. Secondly, we did not 

assess the quality of the manuscripts included in the scoping review, contrary to the 

recommendations of Daudt et al. (2013). Neuro-adaptive research in HCI still faces 

numerous challenges (Fairclough & Lotte, 2020). Our rationale for not conducting a 

quality assessment was that research outside active and clinical neuro-adaptive systems 

remains relatively nascent, and excluding research might conceal the domain's 

challenges. Thirdly, the initial search was conducted in March 2022; hence, an updated 

search should be performed to enhance the review's timeliness before publication. 

2.6 Conclusion 

In this manuscript, our objective is to understand the current state of the emerging field 

of neuro-adaptive system design in HCI, which could further inform mental state 

estimation in naturalistic IS tasks. This scoping review examines the existing literature 

on neuro-adaptive systems through a design science research framework. The findings 

illustrate a diverse body of literature that confronts various challenges. We discuss these 
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challenges and offer guidance for researchers and designers in the field. In summary, we 

argue that the problems neuro-adaptive systems aim to address should be better 

conveyed. In terms of mental state estimations, researchers should describe the 

psychophysiological inferences upon which the artifact is constructed. State-of-the-art 

methods for decoding user states should be employed and evaluated (e.g., end-to-end 

deep learning for mental state decoding). Lastly, ethical considerations regarding the 

created artifact must be discussed to engage in with potential ethical issues the field may 

encounter. We hope that the results of our scoping review assist researchers and 

designers in developing neuro-adaptive systems and robust mental state inferences. 
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Chapter 3 
Essay #2 - End-to-end Deep Learning Approaches to Mental 

Workload Classification using Electroencephalography in 
HCI 

Abstract 

We present research towards a complete end-to-end deep learning process for mental 

workload estimation during natural Human-Computer Interaction (HCI) tasks. We 

utilized two sets of tasks, an n-back task to elicit different levels of mental workload 

(MW) and an ecologically valid HCI task developed to provide similar difficulty levels 

using a simulated environment. A review of mental workload estimation using deep 

learning approaches and EEG signal data revealed that fully utilizing end-to-end 

processes (i.e., no manual engineering of features) is still rare in the scientific literature. 

Hence, we aim to answer the following question: Can end-to-end deep learning be used 

to classify MW in a natural HCI task? We benchmarked several deep learning models 

and selected the two best-performing architectures (i.e., FCN, a fully convolutional 

neural network, and ResNet, a residual network). Based on the machine learning (ML) 

and neuroscience literature, architectural and parameter design choices specific to EEG 

signal data were implemented, and we present a systematic assessment of those. The 

two selected classifier models achieved an average accuracy of .933 (± .054) and .917 (± 

.074) for FCN and ResNet, respectively. We validate our models through rigorous 

assessments of their neurophysiological plausibility, robustness, and reliability. We then 

deployed these two classifier models on previously unobserved EEG data, intending to 

measure empirical evidence pertaining to the relationship between complexity, mental 

workload, and performance. Our classification findings revealed an inverse U-shaped 

relationship between complexity and estimated mental workload. This research further 

enriches the academic discourse by thoroughly appraising architectural and design 

considerations relevant to EEG-based mental workload classification in natural HCI 

settings. 
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3.1 Introduction 

When exerting considerable mental effort during human-computer interaction (HCI), 

human information processing capabilities decrease in accordance with a mental 

workload (MW) increase, such that the ability to process and attend to incoming sensory 

and data streams attenuates, which may act to decrease situational awareness and 

impede effective decision-making abilities (Wickens, 2002). Thus, an individual’s 

workload capacity can constrain their ability during cognitively demanding tasks. 

Potential solutions relate to improvements in interface design and training or to 

dynamically and continuously adapt interfaces to maintain mental workload at optimal 

levels depending on the task. As a consequence, the ability to measure mental workload 

(Ayaz et al., 2012; Burke et al., 2004) has become an important concern for research and 

its application in HCI (e.g., game design, education applications, evaluating user 

experience, flight simulator training) (Appriou et al., 2018; Solovey et al., 2014).  

While interacting with computer interfaces, an increase of MW in excess of an 

individual’s capacity can lead to a state of cognitive overload that can reduce learning 

ability (Sweller et al., 2019; Sweller et al., 1998), and hinder one’s capacity to allocate 

attention to between multiple tasks (Thomas & Wickens, 2001). Attention is a critical 

and scarce resource for multitasking in an environment composed of multiple 

informational displays (Wickens et al., 2003). Therefore, identifying and managing MW 

levels can positively benefit HCI users and designers.  

The development of neurophysiological indices for the assessment of MW has been 

concurrent with advancements in the sensor technologies necessary to measure it. These 

measures can be utilized in various ways to evaluate the naturalness and efficacy of 

human-technology interfaces, monitor user responses to the computer-mediated task, or 

tailor the difficulty within the task. One popular technique for measuring MW is 

pupillometry. Variance in the diameter of the eye has been correlated with cognitive 

processing and activation of the brainstem (Laeng, Sirois, & Gredebäck, 2012). 

Numerous studies have used Pupillometry to measure mental workload in naturalistic 

contexts due to its non-intrusive nature (Buettner, 2013; Just et al., 2003; Klingner, 

Kumar, & Hanrahan, 2008; Palinko, Kun, Shyrokov, & Heeman, 2010). Other 
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instruments, such as functional near-infrared spectroscopy (fNIRS) and 

electrocardiogram (ECG), have also been reported as effective sensors for measuring 

mental workload. Durantin et al. (2014) noted changes in oxygenation in the pre-frontal 

cortex when inducing cognitive overload (when controlling for difficulty and processing 

load) and in LF/HF (percentage ratio of low-frequency to high-frequency power) heart 

rate variability. It is possible to combine various sensor instruments and technologies to 

offer a more granular estimation of the mental workload. This process is often referred 

to as multi-modal or sensor fusion and provides a favourable trade-off regarding higher 

complexity in research design versus more robust MW measurement and assessment 

(Debie et al., 2019). 

Chief among these technologies, electroencephalography (EEG) allows continuous 

monitoring of subjects’ mental workload conveniently in the laboratory or the field 

(Lohani et al., 2019). Studies have found correlations between MW and variance in 

brainwaves expressed as increases or decreases in alpha (8-12hz) and theta (4-8hz) 

bands in pre-frontal brain regions (Grimes et al., 2008). The majority of approaches to 

mental workload estimation transform the signal from EEG into features within the time 

or frequency domain, such as extracting event-related potentials in the time domain 

(Blankertz et al., 2011); in the frequency domain using Fast Fourier Transform (FFT) 

(Jiao et al., 2018; Kwak et al., 2019); or hybrid Short-Time Fourier Transform (STFT) 

(Hefron, Borghetti, Schubert Kabban, et al., 2018; Kim et al., 2014) or in the time-

frequency domain using wavelet transforms (WT) (Qayyum, Faye, et al., 2018; 

Qayyum, Khan, et al., 2018).  

Unfortunately, signal transformation techniques and engineered features (especially 

images used as input) can be computationally expensive and impede online 

classification. Moreover, evidence shows that feature parameters (e.g., power band) 

might dynamically change with age, task demands, and cognitive states within and 

between individuals (Donoghue et al., 2020). For example, (Donoghue et al., 2021) 

show that methods using predefined frequency bands might fail to capture oscillatory 

activity between subjects accurately. This evidence led to the development of analytical 
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methods that consider individual differences and highlight a significant limitation of 

engineered features (Donoghue et al., 2021).  

End-to-end deep learning is a potential approach to address engineered feature 

limitations (Roy, Banville, et al., 2019). Deep learning algorithms are “representation-

learning methods” that learn hierarchical representations of raw input data by 

decomposing the task into smaller non-linear problems (LeCun et al., 2015, p. 436). 

End-to-end models incorporate preprocessing feature extraction and discriminative 

classifiers in the learning phase. An end-to-end process in the context of deep learning 

for mental workload estimation describes a process that takes raw EEG signal data, 

processes these data, derives discriminant features, and then provides a classification of 

the target state as a complete functional solution. EEG processing and classification 

methodologies using deep learning techniques are experiencing rapid growth in research 

interest (Craik et al., 2019; Roy, Hubert, et al., 2019; Zhou et al., 2021, Chen et al., 

2022).  

Traditional approaches to classifying EEG data typically involve domain-specific 

processing methods, feature analysis, and supervised machine learning. These include 

Independent Component Analysis used for artefact removal (Jung et al., 2000), Principal 

Component Analysis (PCA), and local Fisher’s discriminant analysis applied for 

dimensionality reduction (Craik et al., 2019). For EEG feature classification and 

cognitive state estimation, supervised machine learning techniques often include Linear 

Discriminant Analysis (LDA), Riemannian Minimum Distance to Mean (RMDM), 

Support Vector Machines (SVM) in the researcher's arsenal of tools (Blankertz et al., 

2011; Gao et al., 2019; Jiao et al., 2018; Lotte et al., 2018; Rojas et al., 2020).  

Deep learning approaches offer novel yet complementary tools and have already shown 

promising results as part of an EEG processing pipeline (Craik et al., 2019). By design, 

deep learning techniques theoretically appear to provide a good fit for classifying the 

properties of EEG and addressing the processing challenges associated with EEG 

signals and deriving novel features that may potentially be more granular and 

discriminative than engineered features (Roy, Hubert, et al., 2019).  



103 
 

The research presented in this manuscript seeks to answer the question, “to what extent 

is it possible to estimate mental workload during naturalistic HCI tasks based on 

neurophysiological signal data using an end-to-end deep learning process?”. The 

overarching objective is to create an offline deep learning model based on end-to-end 

processes for assessing and estimating mental workload during realistic HCI tasks in a 

high-fidelity simulator. In order to answer the research question, the objectives of this 

work are threefold: (i) Benchmark end-to-end deep-learning models for mental 

workload classification; (ii) Develop a mental workload classifier that achieves high 

classification performance; (iii) Estimate mental workload during a simulator task and 

replicate past empirical findings related to the relationship between task complexity, 

mental workload, and performance.  

To begin, we reviewed the literature, revealing that complete end-to-end processes 

remain largely unused for EEG signal processing and classification of mental workload 

even though they provide some significant advantages. We demonstrate that specific 

end-to-end deep-learning architectures perform comparably to state-of-the-art baselines 

from the BCI literature. We show that a fully connected neural network and a residual 

neural network showed a significant increase in performance compared to a Riemannian 

geometry-based method, a technique that reaches state-of-the-art performance on recent 

BCI problems (Lotte et al., 2018). While these deep learning architectures presented 

superior performance, the lack of explainability related to the features used for training 

was a significant concern. Ensuring that a model does not learn from noise or systematic 

artefacts in the EEG signal is a concern raised in the current literature (Roy, Hubert, et 

al., 2019). To address this concern, we utilized an Integrated Gradients technique 

(Sundararajan, Taly et Yan, 2017) to validate the neurophysiological acceptability of the 

features learned by the models and then applied each model to new data and replicated 

previous findings regarding the relationship between mental workload and task 

complexity.  

This manuscript makes a significant contribution to the estimation of mental workload, 

an important construct in HCI, as well as in the broader context of mental state 

estimations in HCI and NeuroIS. Estimating mental states during technology interaction 
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holds the potential for valuable insights and contributions. Firstly, it can provide a 

deeper understanding of the cognitive mechanisms underlying the impact of 

technological artifacts on users' cognition and behavior (Riedl & Léger, 2016; vom 

Brocke et al., 2020). Consequently, mental state estimation can serve as a mediator 

between the artifact and user behavior (Riedl & Léger, 2016). Additionally, it can 

function as an evaluation tool in the design of artifacts (Riedl & Léger, 2016; vom 

Brocke et al., 2020). Lastly, real-time estimations can facilitate the development of 

neuro-adaptive systems (Riedl & Léger, 2016) further enhancing their design and 

functionality. 

3.2 Literature Review 

To better understand the state of the literature on the classification of mental workload 

with EEG using deep learning, we performed a literature review on the deep learning 

techniques used for mental workload decoding. To do so, we queried the “Web of 

Science” database using the following keywords: “deep learning,” “neural network,” 

with “working memory,” “workload,” “mental workload,” “cognitive load,” or 

“cognitive workload.” To constrain our results, we conjoined terms to include the 

instrument of measurement: “electroencephalography” or “EEG”. 

The search resulted in 169 articles from conferences and journals, both manuscript types 

were included. We then filtered articles based on a publication year > 2010 to reduce the 

sample to more recent research, resulting in 124 “current” manuscripts. Manuscripts 

were screened to ensure the inclusion of the instruments (“EEG” only or “EEG” with 

other instruments), the phenomena of interest (the focal construct must be in the 

nomological network of “mental workload”). Additionally, the classification techniques 

(“deep learning” or “deep learning” with other approaches),based on authors, content 

and model similarity (if the dataset, methods, and results were similar in multiple 

papers). In the case of similarity, the journal or the conference article with the most 

information available was retained.  

We extracted information from the 52 remaining articles related to model architectures, 

problem setting, task, preprocessing, tested design choices, and if the approach 
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developed was end-to-end (data table is available in appendix). Table 15 shows the 

manuscripts leveraging end-to-end deep learning techniques to classify mental workload



 

Table 15 

Manuscripts using fully end-to-end deep learning approaches for MW estimation with EEG 

Authors Problem 
Setting 

Task 
(condition) 

Inputs 
Domain  

Data 
curation 

Features Model Name Layer Activation 
Function 

Optimizers Regularization Training 
Strategies 

Design 
choices 

Baseline Accuracy 

Mohammad 
A. 
Almogbel et 
al., 2018 

Driver 
workload 
level, 
with 
subject 

Driving 
Simulator 
(dense 
traffic vs 
low 
traffic), 
within 
subject 

Time, raw No End-to-
end 

CNN 7 Hidden 
layers: 
ReLu 
Output 
Layers: 
Softmax 

RMSProp 
(lr =0.002) 

Normalized 
by z-score 

Overlapping 
windows at 
different 
time 

Windows 
size  
# Layers 

Deep 
learning 
with hand 
engineered 
features 
(1L CNN)  

95.31% 

Almogbel, 
Dang, 
Kameyama, 
et al., 2019 

Driver 
workload 
level, 
within 
subject, 

Driving 
Simulator 
(dense 
traffic vs 
low traffic 
vs zero 
traffic), 
within 
subject 

Time, raw No End-to-
end 

CNN 8 Hidden 
layers: 
ReLu 
Output 
Layers: 
Softmax 

RMSProp 
(lr=0.0001) 

Normalized 
by z-score 

Overlapping 
windows at 
different 
time 

Windows 
size 

Deep 
learning 
with hand 
engineered 
features 
(1L CNN)  

96% 

Gao et al., 
2019 

Driver 
fatigue, 
within-
subject 

Driving 
simulator. 
Highway 

Time, raw (1000 Hz, 
downsample 
100 Hz), 1-
50 Hz 

End-to-
end 

EEG-based 
spatial–
temporal 
convolutional 
neural 
network 
(ESTCNN) 

14 Hidden: 
ReLu 
Output: 
Softmax 

SGD (lr = 
0.001) 

Batch 
normalization 

10 fold 
cross 
validation 

Core block: 
three 
convolutional 
blocks and a 
pooling 
layer. 

SVM, 
LSTM, 
CNNs, 
FFT + 
CNNs 

97.37% 

Hua et al., 
2019 

Working 
memory, 
within 
subject 

Visuo-
spatial 
working 
memory 
task 

Time + 
Frequency, 
raw + 
values + 
images 

frequency 
bands: delta 
(0.5–4 Hz), 
theta (4–8 
Hz), alpha 
(8–14 Hz), 
beta (15–30 
Hz), low 
gamma (30–
45 Hz) and 
all (0.5–45 
Hz) 

End-to-
end + 
FIR 
filters for 
rhythm 
extraction 

Brain 
connection 
based on 
CNN 
(BCCNN) 

     Type of 
inputs 
(fusions) 

 99%, 
96.35% 

 



 

3.2.1 Feature extraction in deep learning for ML estimation 

During our review of the literature regarding deep learning approaches to mental 

workload estimation, we discovered that the majority of research approaches fail to 

leverage a major strength of the method, that is, the ability to learn discriminative 

features and produce classifications directly from the raw EEG signal. From 52 coded 

papers, only four papers used a fully end-to-end deep learning approach.  

Our review revealed the widespread use of engineered features before being used as 

input to a deep learning classifier. Highly utilized transformations consisted of Fast 

Fourier Transform (Casson, 2014; Jiao et al., 2018; Qiao & Bi, 2020; Tao et al., 2019; 

Yang et al., 2019), Short-Time Fourier Transform (Hefron, Borghetti, Kabban, et al., 

2018; Kim et al., 2014; Wang et al., 2012), or Wavelet Transform (Hefron et al., 2017; 

Qayyum, Khan, et al., 2018; Wu et al., 2019). Additionally, descriptive measures such 

as the mean, variance, skewness, and kurtosis of the power distribution, as well as the 

ratios between power bands, for example, Shannon entropy and spectral entropy (Hefron 

et al., 2017; Tao et al., 2019; Yang et al., 2019; Yin et al., 2019) also proved popular as 

input features for a model architecture. 

Transformations such as these can be supplied to a neural network as values or 

transformed into graphical representations, thus changing the task into an image 

classification problem (Hefron, Borghetti, Schubert Kabban, et al., 2018; Jiao et al., 

2018; Qayyum, Khan, et al., 2018; Qiao & Bi, 2020). Feature and domain-specific 

approaches were developed to solve problems inherent to EEG data (e.g., low signal-to-

noise ratio, signal non-stationarity, inter-subject variability) and derive meaningful 

interpretations. However, the choices made when deriving features can have a 

considerable positive or negative impact on the performance of the classifiers and, 

further, any inferences made from classifications as a result. 

Focusing our review efforts on the estimation of mental workload utilizing deep learning 

resulted in a low number of examples using end-to-end processes to discriminate 

between levels of mental workload directly from the sensor signals. However, the 

reported examples showed interesting results when utilizing end-to-end processes to 
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train classifiers directly from the raw signal (Mohammad A Almogbel et al., 2018; 

Almogbel, Dang, & Kameyama, 2019). Further work showed promising results when 

estimating mental workload using models trained using end-to-end processes after 

applying minimum data correction, such as bandpass filtering (Gao et al., 2019; Hua et 

al., 2019). 

End-to-end processes can offer a viable alternative to engineered features while reaching 

similar or improved performance to more traditional approaches. The main advantage of 

using end-to-end processes is that the resulting model is composed of hierarchical and 

translational invariant features that mitigate the problem of intra-class variability and 

inter-class similarities (Nweke et al., 2018). However, an issue that can arise when using 

EEG signals for mental workload estimation is when the levels of task difficulty and, 

thus, the neurophysiological responses are similar, such as when estimating moderate or 

high mental workload (Saadati et al., 2020b). 

3.2.2 Architecture and design choices 

Of the end-to-end approaches, the majority utilize a variation of convolutional networks 

(CNN). For example, Almogbel et al., 2018, 2019 leveraged CNNs with up to 8 layers. 

They made design choices such as ReLu as the activation function on the hidden layers 

and RMSProp as optimizers. Gao et al., 2019 developed an EEG-based spatial-temporal 

convolutional neural network (ESTCNN) of 14 layers, again using ReLu as the 

activation function and SGD as optimizers. Unfortunately, the reviewed papers show 

little consideration for explaining the design choices and their impacts.  

Several techniques can be applied, and hyperparameters tuned to models before 

applying them to unseen data to improve the performance and generalization of deep 

learning models. In the following sections, we discuss design choices and how they 

impact performance with EEG based on machine learning literature and our review. 

3.2.2.1 Optimization 

Optimization techniques attempt to reduce the difference between training and test 

errors by minimizing the cost function of the model based on its parameters (Ruder, 

2016). The current work aims to select an optimizer that provides fast convergence, 
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stability and high performance over the EEG data and across participants. The selection 

of the optimizer is crucial for the construction of a deep learning model for EEG 

decoding. Unfortunately, such design choices have not yet been reported in the current 

literature (Roy, Banville, et al., 2019). In this manuscript, we systematically assess four 

optimizers: Adam (Kingma & Ba, 2014), SGD, Adadelta (Zeiler, 2012), and Nadam 

(Dozat, 2016), of which  Adam and SGD are the two most used optimizers for deep 

learning applications on EEG data (Roy, Banville, et al., 2019). 

The Adam optimizer (Kingma & Ba, 2014) is a similar approach to Adadelta, in that it 

displays the ability to handle non-stationary and noisy data for EEG (Hefron, Borghetti, 

Schubert Kabban, et al., 2018). SGD updates parameters for each training trial 𝑋𝑋𝑛𝑛𝑛𝑛 and 

its hot label vector 𝑌𝑌𝑛𝑛𝑛𝑛, SGD has been reported be faster than its equivalent on Batch 

Gradient Descent that performs parameter updates based on a large portion of the 

datasets. However, as a trade-off, SGD can display high variance in objective stability 

during learning (Ruder, 2016).  

Adadelta (Zeiler, 2012) is an extension of Adagrad (Duchi et al., 2011). This 

optimization algorithm models the geometry of the data to prioritize the occurrence of 

informative and rare features, in contrast to stochastic gradient approaches that are naïve 

to data characteristics (Zeiler, 2012). In the context of EEG, Adadelta can influence the 

deep learning model to discover rare and predictive features in EEG data, while 

mitigating emphasis on predictive and common potential features such as noise (e.g. 

frontal noise from blinks, electrical noise from muscles).  Even after cleaning, artefacts 

may still be present in the signal data; for mental workload estimation, this additional 

signal information may be predictive of mental workload (Borghini et al., 2014; 

Veltman & Gaillard, 1998; Wilson, 2002).  

Nadam (Dozat, 2016) is a variant of Adam that uses Nesterov Momentum. Adam relies 

on traditional momentum functions, which influence model direction during training, 

and RMSprop, which adjusts parameters to influence directionality. (Sutskever et al., 

2013) showed that Nesterov Momentum could theoretically and empirically affect 

performance outcomes. Neither in our literature search nor in a systematic review of the 



110 
 

field (Roy, Banville, et al., 2019). However, we decided to include it in our 

benchmarking experiment as it is a variant of Adam, a common optimizer in EEG 

decoding research, which may prove useful for our goal. 

3.2.2.2 Trial wise training and window size 

Data window size can have a significant impact on accuracy. Schirrmeister et al. (2017) 

showed improved accuracy when the data window size was matched to the task trial 

window for motor movement classification, and it has also been shown that increasing 

temporal sequence length can positively impact accuracy (Hefron, Borghetti, Schubert 

Kabban, et al., 2018). However, these results contrast unfavorably with research on 

emotion recognition, which showed that increasing window size can reduce the accuracy 

and generalisability of deep learning approaches to novel data due to electrical signal 

nonstationarity (AlZoubi et al., 2009). Furthermore, conflicting evidence on increasing 

the data window size is also presented in Almogbel et al. (2018), Almogbel, Dang and 

Kameyama (2019). It is important to note that in classification tasks with EEG data, the 

data window size is similar to model hyperparameters and can impact classification 

accuracy (Saadati et al., 2020b).  

The choice of window size in the case of neurological data can be based on domain 

knowledge of the brain-related phenomena (short responses such as ERPs or longer 

responses such as mental states) and previous empirical evidence. An ensemble of 

neural networks with full trial windows of an n-back task (a popular task for inducing 

variations in mental workload) EEG data as inputs were implemented by Kim et al. 

(2014).  In a related n-back study, Saadati et al. (2020a) tested window sizes between 2s 

and 5s. They observed the best results when classifying workload using a 3s window. In 

our approach, we compare two data window sizes of an entire trial window: 3s from -

100ms to 2900ms and a half-trial window: from -100ms to 1400ms in order to replicate 

these results, avoid increased training time and try to maximise performance. 

3.2.2.3 Dropout 

Dropout is a regularization technique introduced by (Srivastava et al., 2014) that 

randomly deactivates neurons during model training. Neuron activation is temporarily 
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removed during the forward pass, and the weights are not updated during the backward 

pass. This reduces overfitting, improves model sparsity, and potentially improves 

feature quality by reducing co-adaptation. The trade-off, however, is that dropout can 

increase training time (Srivastava et al., 2014) by increasing in the number of learning 

epochs and the learning rate.  

Dropout has been shown to improve performance in deep learning approaches with EEG 

(Plis et al., 2014) and has been used in several studies for workload prediction from 

EEG (Hefron et al., 2017; Jiao et al., 2018; Kuanar, Athitsos, Pradhan, Mishra, & Rao, 

2018; Qiao & Bi, 2020; Saadati et al., 2020a). In this study, we test the effect of the 

dropout rate on hidden layers (i.e., a fixed percentage of inputs are randomly deactivated 

during a training cycle) for mental workload estimation directly from EEG signal data. 

The dropout for the visible layers was set to zero to maintain an unaltered and fixed 

representation of the signal at the input nodes of the models. Qiao and Bi (2020) 

systematically tested different levels of dropout between 0.1 and 0.9 for deep neural 

networks and showed peak performance with 50% of neurons randomly deactivated.  

However, these results are based on estimating mental workload from a spatial and 

spectral representation of EEG in images. In this research, we test the effect of dropout 

on the performance of end-to-end neural networks directly from the sensor signal. 

3.2.2.4 Activation functions 

Activation functions determine the output of a neural network and whether a neuron 

should be activated based on its inputs. In the case of EEG, Schirrmeister et al. (2017) 

argue that the choice of activation functions can be sensitive to specific features. 

Unfortunately, our literature review showed that the activation functions used within 

models were not reliably reported, reducing the reproducibility of some results. The 

Rectified Linear Unit (ReLU) is a commonly used function for mental workload 

decoding with deep learning (Mohammad A Almogbel et al., 2018; Almogbel, Dang, & 

Kameyama, 2019; Gao et al., 2019; Hefron, Borghetti, Schubert Kabban, et al., 2018; 

Jiao et al., 2018; Kuanar, Athitsos, Pradhan, Mishra, & Rao, 2018; Kwak et al., 2019; 

Qayyum, Khan, et al., 2018; Qiao & Bi, 2020; Saadati et al., 2020a). The ReLu 

activation function has been shown to reduce the training time of very deep neural 
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networks (Glorot et al., 2011) and to improve their classification performance (Dahl et 

al., 2013). Another activation function is the Exponential Linear Unit (ELU) (Saadati et 

al., 2020a; Schirrmeister et al., 2017). The ELU has been used within CNNs to classify 

mental workload Saadati et al. (2020a, 2020b) and for motor activity (Schirrmeister et 

al., 2017), and both studies reported increased accuracy. Several research approaches 

utilized other non-linear activation functions, such as the sigmoid function (Fukuda et 

al., 2019; Hefron et al., 2017; Tao et al., 2019; Yin & Zhang, 2017a, 2018; Yin et al., 

2019) or Parametric ReLU (PReLU) (Liu & Liu, 2017). However, they do not provide a 

rationale nor benchmark results of their application. 

3.2.2.5 Design choices 

Building on the above literature review, we derived a number of architectural design 

choices and then systematically tested each one to determine their influence on 

performance when employed for estimating mental workload using EEG data. Table 16 

encapsulates the design choices derived from the review, encompassing aspects such as 

the optimizer, the training window, the activation function, and the dropout rates. These 

design decisions are evaluated within the context of the architectures chosen following 

the benchmarking phase. 

Table 16 

Design Choices and Justification 

Design 
Choice 

Variant Justification 

Optimizers Adam, SGD, 
Adadelta, Nadam 

Rapid convergence and stability 

Features identification 

Training 
window 

Full trial windows, 
half trial windows 

The varying length of windows can impact the 
performance as shown 

Activation 
function 

ReLU and eLU Relu as shown to be faster in the hidden layers for deep 
neural networks, eLU shown to perform well with 
residual gates in EEG learning tasks 

Dropout From 0.5 to 0.2 on 
hidden layers 

Coadaptation 

Force the model to learn generalizable features instead of 
focusing on highly predictive one 

Performance 
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Note. Variant column displays the parameters used during model benchmarking. Design 

choice evaluations were performed on the selected models after architecture selection. 

We also implemented several default design choices, such as categorical cross-entropy 

as the loss function, automatically reducing the learning rate by a factor of 0.5 when the 

training loss did not improve with a patience of 50 epochs. In addition, we use early 

stopping with a model checkpoint. 

3.2.3 The n-back task for mental workload estimation 

Successful training of any machine learning classification method requires an objective 

ground truth to provide annotated examples of the target signal for classification. In the 

case of the research presented in this manuscript, a key requirement is the reliable 

induction of varying levels of mental workload. After reviewing the literature, we 

selected the n-back task based on the growing empirical evidence that this task can 

reliably induce and predict individual differences in higher cognitive functions such as 

low, medium and high mental load (Jaeggi et al., 2010).  

The n-back has been used in many studies to induce different levels of mental workload 

and is widely accepted as a training task for mental workload estimation (Baldwin & 

Penaranda, 2012; Hefron, Borghetti, Schubert Kabban, et al., 2018; Kim et al., 2014; 

Kuanar, Athitsos, Pradhan, Mishra, & Rao, 2018; Saadati et al., 2020b). The n-back has 

been used in EEG studies to estimate workload by deriving features from EEG signal 

data in the time domain (e.g. ERPs) (Brouwer et al., 2012; Saadati et al., 2020a, 2020b) 

and the frequency domain (e.g., spectral power) (Brouwer et al., 2012; Hefron, 

Borghetti, Kabban, et al., 2018). Brouwer et al. (2012) and Berka et al. (2007) both 

presented evidence that mental workload induced by n-back can be successfully 

classified during single trials. Moreover, Baldwin and Penaranda (2012) and Yin and 

Zhang (2018) demonstrated that an artificial neural network trained for mental workload 

estimation with EEG could be transferred to classify mental workload during the 

performance of other tasks. Two properties of the n-back task help explain the 

generalizability of the inference: both the perceptual and motor demands remain 

constant across difficulty levels of the task (Grimes et al., 2008). Furthermore, it has 
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been posited that the n-back task manipulates mental workload through additive 

working memory load, and not a reaction to a conceptually different stimulus (Grimes et 

al., 2008). Thus, we selected this paradigm to elicit different level of mental workload. 

3.2.4 Methodological framework 

Our methodology builds on the framework proposed by Kohoutová et al. (2020) on the 

use of machine learning for decoding and neuroimaging. This methodological 

framework is fundamental, given that end-to-end deep learning approaches present 

unique challenges related to EEG signal properties. For example, due to the use of raw 

sensor-level data, it is prone to confounding, non-random noise capture, and signal non-

stationarity. Our methodology follows four steps prior to model application: (1) 

background, (2) architecture selection, (3) model tuning, and (4) model validation 

(Figure 14).  

Firstly, a literature review was conducted to survey the literature to inform the research 

process and identify gaps. This activity also informs the phases of selecting the 

architecture, tuning the model and validating the model. In addition, this activity helps 

us generate architectural design decisions that can impact performance. Moreover, it 

also provides empirical evidence on the neurophysiological response of interest, which 

supports the plausibility assessment of the features. 

 

Figure 14 

Methodological Framework 
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Secondly, a benchmarking procedure is developed to select the best performing 

architecture. The aim is to select baseline models and specific architectures for which 

evaluations are deemed to contribute to answering the problem. Finally, the best 

performing models are selected for further tuning. 

Thirdly, we tune model architectures based on design choices and evaluate their impact 

on performance. In line with Schirrmeister et al. (2017), design choices are motivated 

based on the impact on task performance and generalizability in the study context.  

Fourthly, as previously discussed, caution must be exercised when applying end-to-end 

processes to EEG data without prior knowledge of the cognitive construct or the 

resulting dataset; the properties of the EEG signal and model tuning design choices will 

lack a plausible inference model. Predictive artifacts can confound and affect the 

performance and accuracy (either positively or negatively) of the model, depending on 

the task. Moreover, care must also be taken to ensure that only brain response signals 

are used for classification. In the case of end-to-end approaches, features are learned 

automatically, as opposed to engineered features, which can result in complex features 

to interpret (Nguyen et al., 2015). Thus, end-to-end approaches need further validation 

to ensure that the performance is not due to the model fitting noise or artifact signal 

(Lawhern et al., 2018). The model validation phase aims to ensure that the trained 

models learn from relevant neurological signals, not from prediction artefacts or 

confounds. The tuned models are evaluated for neurophysiological plausibility, and 

features are compared with EEG data and MW decoding evidence. This validation phase 

ensures that there is converging evidence from the neuroscience literature. 

3.3 Materials and Experiment Design 

3.3.1 Experimental environment 

The study took place at an aerospace company's training facility. Data were collected 

from within a high-fidelity prototype of a flight simulation presented through the CAE 

Medallion MR e-Series visual system. The visual display consists of partial sphere 

screen spanning 200°, measuring 1m in radius and 1.5m in height, providing a viewable 

surface area of 9.42m. Participants were situated within an aircraft cockpit designed to 
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scale with a replicated flight control system. The environment offered the operator an 

ecologically valid and realistic flight simulation. 

During the experiment, participants performed two experimental tasks: a synthetic task 

consisting of an n-back designed to manipulate mental workload, and an ecologically 

valid flight task designed to induce different levels of mental workload by manipulating 

maneuver complexity. The basis of the experimental design is that the manipulation of 

difficulty within the flight task mirrors the MW induced by the synthetic task (i.e., n-

back difficulty) while maintaining a valid flight training scenario. 

3.3.1.1 Synthetic task – n-back 

During the n-back task, the participant is asked to monitor a series of stimuli to 

memorize and compare unique items. Participants are required to respond through a 

keypress when the presented stimulus is the same as one presented in n trials before, 

where n is a parameter used to induce different levels of mental workload through the 

manipulation of working memory capacity. In this instance, the left arrow key was used 

for non-target letters and the right arrow key for target letters. We used a verbal stimulus 

(i.e., letters) and identity recognition (i.e., the same letter as presented n trials 

previously) design. To obtain a granular classification of working memory level, we 

opted to increment the number of iterations of n from 0 to 3, giving four difficulty 

levels. 

Each iteration of n is composed of 40 trials. Before each iteration, participants were 

allowed ten practice trials. The stimuli for each trial within an iteration of n were 

presented in a pseudo-randomized order for targets (35%) and non-targets (65%), for 

500 milliseconds followed by a 3000-millisecond interstimulus interval in which a 

cross-shaped fixation character was displayed. The task was implemented using E-Prime 

3.0 (Psychology Software Tools, Pittsburgh, PA). 

3.3.1.2 Naturalistic task – flight simulation maneuvers 

The simulated flight training scenario was developed to mimic and induce similar levels 

of mental workload as that produced by the n-back task. We followed a single task 

paradigm to induce three levels of MW through maneuver complexity. In this instance, 
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three blocks of flight maneuvers represent low, moderate, and high complexity (Table 

17). Each maneuver was coupled with appropriate flight actions and directed by a 

professional flight instructor, who logged each participant's performance, set the pace of 

the training scenario, and signaled the end of each maneuver. In this way, each flight 

maneuver was aligned with flight telemetry allowing for synchronization flags to be 

produced and associated with EEG signal data. A training maneuver (a) was utilized to 

introduce a simple “fly straight” and level maneuver where participants were asked to 

maintain heading, and banking angle, to familiarize participants with the simulator and 

the format of the training scenario and altitude. 

Table 17 

Flight complexity blocks and maneuvers  

Low Moderate High 

(b) Speed   change (f) Speed and Altitude (j) Altitude, Speed, and Heading 

(c) Altitude change (g) Heading and Banking (k) Altitude, Speed, Heading, and Banking 

(d) Heading change (h) Altitude and Heading (l) Vertical Loop (altitude, heading, banking) 

(e) Banking change (i) Speed and Banking  

Note. Single task paradigm for three levels of complexity: low, moderate, and high.  

In order to assess a participant's perceived assessment of mental workload and as a 

manipulation check, participants were asked to complete the NASA RAW-TLX (Hart, 

2006; Hart & Staveland, 1988). This approach has been previously reported as an 

effective method of assessing subjective changes in MW in response to task complexity. 

Descriptive statistics show that the mean subjective mental workload for the low 

complexity maneuvers is the lowest with 4.72 (±1.15), followed by 5.70 (±1.25) for the 

moderate complexity, and 6.12 (±1.03) for the high complexity maneuvers. We 

performed a single factor, within-subject repeated-measures ANOVA to determine the 

statistical significance between perceived mental workload and each maneuver block. 

Assumptions of normality and sphericity (Mauchly’s test p = .093) were met. The 

difference between means was statistically significant, F(2,20) = 7.995, p = .003. Post 

hoc analysis using Student’s t-test and Bonferroni adjusted alpha levels indicated that 

the average perceived mental workload was significantly lower in the low complexity 
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condition than in the moderate condition, p = .003, and the high condition, p =0.02 

(Figure 15). 

 

Figure 15 

Violin and box plot of manipulation check for the simulator task 

 
Note. X axis represents the complexity level, the Y axis the perceived mental workload 

measured with the NASA RAW-TLX 

 

3.3.2 Participants 

Eleven participants (3 females) with a mean age of 34.56 years (SD = 8.97), all novice 

airplane pilots, participated in the study. Novice pilots were selected due to the choice of 

the naturalistic task selected, see next section – experimental environment.  Participants 

were screened on the basis of good health and normal to corrected to normal vision. The 

study received ethical approval from the institution ethics review committee regarding 

data security (ethic certificate number: 2020-3559). Ethical approval was also obtained 
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through an internal review by the hosting aerospace company, and participants were 

recruited from within the company.  

Each participant signed consent following our institution ethical committee guidelines. 

Participants were further instructed that they could depart at any time during the 

experimental procedure. These instructions and subsequent consent were provided a 

priori, privately through communication with the primary researcher rather than through 

company channels. Participants were also instructed to avoid alcohol and caffeine before 

the experiment. 

3.4 Data Processing, Learning Task and Inputs 

3.4.1 Data processing 

EEG signal was recorded using a 32-channel BrainVision (Morrisville, USA) headset 

following the standard 10–20 montage. The signal was first referenced to Fz, then 

filtered using a bandpass 1-40 Hz Butterworth 2nd order IIR filter. Artifacts were 

removed using blind source separation by independent component analysis (extended 

infomax). During the signal quality assessment, data for two subjects were rejected: one 

due to poor signal quality and the other due to issues with event synchronization. The 

filtered EEG signal data was then down sampled to 500 Hz (from 1000Hz), then 

segmented by task, and split into n=160 epochs per participant for a total of 1440 

epochs. We chose full-trial windows of 3 seconds (-100ms to 2900ms) for each epoch to 

provide sufficient data to inform design decisions regarding to the effect of different 

window sizes on the deep learning modeling process. 

3.4.2 Problem, learning task, and inputs 

The modeling goal in this instance is to train and test a number of discriminative deep 

learning models 𝑓𝑓 on recorded EEG data from the n-back task such that: 𝑓𝑓: ℝ𝑆𝑆 × 𝑇𝑇 →

{𝐾𝐾} where K is a vector of classes, S represents the cleaned sensor-level signal, and T 

the time steps of the recorded signal.  For instance, in this study, S is composed of 32 

channels, T represents 1500 time steps at sampling rate of 500 Hz for a window of 3 

seconds. The task is to classify brain signals into a probability distribution of n class 
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labels. The learning problem consists of a task with K classes of j length equivalent to a 

2-class problem. We derive K=2 classes, by concatenating the n-back data per level 

were n = 0 and n = 1, represent low workload, and n = 2 and n = 3 represent high 

workload (see Figure 16). We took this approach for two reasons: discriminative 

features in sensor signals can be challenging when algorithms are trained to differentiate 

between mental workload levels where the variance between task difficulty is low and 

given the relatively low number of training examples. 

Figure 16 

Class labels for mental workload estimation 

 
Note. Class aggregation where K = 2 to create a two-class problem composed of a 

binary aggregate of the original 4 task difficulty condition. Each condition is composed 

of 40 trials per participant giving 80 trials per class. 

 

Each training input was designed as a subject dependent dataset 𝑖𝑖 composed of 

multivariate time series matrixes representing a trial 𝑗𝑗. More precisely, we define 𝑗𝑗 as an 

𝑆𝑆-dimensional multivariate time-series as 𝑋𝑋𝑗𝑗𝑛𝑛 =  [𝑋𝑋1
𝑗𝑗𝑛𝑛 ,𝑋𝑋2

𝑗𝑗𝑛𝑛 , … ,𝑋𝑋𝑆𝑆
𝑗𝑗𝑛𝑛] composed of 𝑆𝑆 

unique univariate time-series, 𝑋𝑋𝑠𝑠 𝜖𝜖 ℝ𝑇𝑇, where 𝑋𝑋𝑠𝑠 =  [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑇𝑇] with a length of X 

equal to a finite number of real values 𝑆𝑆 and T represents the cleaned sensor-level signal 

over time. Then, for a given subject 𝑖𝑖, we have a dataset 𝐷𝐷𝑛𝑛 =
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�(𝑋𝑋1𝑛𝑛 ,𝑌𝑌1𝑛𝑛�, … , (𝑋𝑋𝑛𝑛𝑛𝑛 ,𝑌𝑌𝑛𝑛𝑛𝑛)}, where for a pair (𝑋𝑋𝑛𝑛𝑛𝑛 ,𝑌𝑌𝑛𝑛𝑛𝑛), 𝑋𝑋𝑛𝑛𝑛𝑛 is a multivariate time series, 

𝑌𝑌𝑛𝑛𝑛𝑛is the related one-hot label vector of the trial, and 𝑁𝑁𝑖𝑖 represents all the recorded trials 

𝑗𝑗 for subject i. For a task containing K classes, 𝑌𝑌𝑛𝑛𝑛𝑛 is a vector of length K with 

𝑗𝑗 𝜖𝜖 [1,𝐾𝐾]. 

3.4.3 Architecture selection and baselines 

3.4.3.1 Models 

Informed by the literature, we identified a gap in the knowledge base related to mental 

workload classification using deep learning approaches as end-to-end processes to create 

internally generated discriminative features. To address this gap and using previously 

reported deep learning methods for engineered features and domain-specific techniques 

for mental workload classification as a starting point, we identified several deep learning 

models with the potential for end-to-end discriminative feature generation. We selected 

elven models for testing and evaluation based on the uniqueness of their architecture, 

their centrality in the literature, and the recent advances in the state-of-the-art of end-to-

end deep learning models for time series classification (Fawaz et al., 2019; Lawhern et 

al., 2018; Schirrmeister et al., 2017): a Multi-Layer Perception (MLP) (Wang et al., 

2017), a Fully Convolutional Neural Network (FCN) (Wang et al., 2017), a Multi-

Channel Deep Convolutional Neural Network (MCDCNN) (Zheng et al., 2016), a 

Residual Network (ResNet) (Wang et al., 2017), an Encoder (Encoder), and a Recurrent 

Neural Network with Long short-term memory (RNN+LSTM), a Deep Convolutional 

Network (Deep Conv Net) (Schirrmeister et al., 2017), a Shallow Convolutional 

Network (Shallow Conv Net) (Schirrmeister et al., 2017), and EEGNet (Lawhern et al., 

2018). The initial architectures are implemented as describe in the manuscripts. Finally, 

we added a simple perceptron (PPN) as a baseline deep learning model. Table 18 

provides a description of the architecture of the benchmarked models. 

The selected models are unique architectural variants of convolutional neural networks 

reported to possess advantageous characteristics and interesting performance when 

applied to multivariate time series datasets. These models learn hierarchical 
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representations directly from raw input signals and provide a probabilistic inference of 

the class prediction through successive non-linear transformations.  



 

 

Table 18 

Architectures for the benchmarked models 

 PPN  CNN FCN EEGNet Deep 
Conv 
Net 

MCDCNN MLP ResNet RNN-
LSTM 

Encoder Shallow 
Conv Net 

Layers 1  3 5 4 5 4 4 11 4 5 2 

Convolution 0  2 4 3 4 2 0 9 0 3 1 

Invariance  0  2 4 3 4 2 0 10 0 4 1 

Normalize None  None Batch Batch Batch None None Batch None Instance Batch 

Pooling None  Avg None Avg Max Max None None None Max Avg 

Feature FC  Conv GAP Conv Conv FC FC GAP FC Att Conv 

Activation 
Function 

Sigmoid  Sigmoid ReLU ReLu eLU ReLU ReLU ReLU Sigmoid PReLU Cust 

Regularization Dropout  None None Dropout Dropout None Dropout None Dropout Dropout Dropout 

Optimization 
Algorithm 

Adam  Adam Adam SGD Adam SGD AdaDelta Adam Adam Adam Adam 

Loss function Entropy  MSE Entropy Entropy Entropy Entropy Entropy Entropy Entropy Entropy Entropy 

Epochs 2000  2000 2000 2000 1500 120 5000 1500 10 100 1500 

Learning Rate .01  .001 .001 .001 .001 .01 .01 .001 .001 .00001 .001 

 



 

3.4.3.1 Baselines 

We use a varied set of baseline models to compare the selected end-to-end deep learning 

models (Table 19) with both simple and state-of-the art baselines. Nevertheless, all the 

baseline models could be classified as end-to-end approaches, given their minimal 

reliance on hand-engineered features, thereby ensuring a fair comparison. First, a simple 

end-to-end perceptron is implemented to have a baseline in deep learning. Secondly, we 

use non-deep learning multiple classification techniques known to perform well in EEG 

data. The simplest model is a linear regression on sensor data (LR), then we use 

preprocessing techniques with an estimation of covariance matrix (COV) and covariance 

matrix with Xdawn spatial filtering (Xdawn) before applying LR (Rivet et al., 2009). As 

a fourth baseline, we transform the EEG signal with a Principal component analysis 

(PCA) and signal decomposition using the Common Spatial Patterns (CSP) before 

applying a shrinkage Linear Discriminant Analysis (sLDA) as it is deemed more robust 

than classic LDA (Lotte et al., 2018). Finally, we use COV followed by Riemannian 

Minimum Distance to Mean (RMDM) as it is known to be one of the state of the art 

techniques in EEG decoding (Appriou et al., 2018; Lotte et al., 2018). 

Table 19 

Baseline models and implementations 

Baseline Model Implementation 

COV+LR Estimation of covariance matrix 
Data are vectorized (across time and channels) 
Features standardized by removing the mean and scaling to unit variance 
(normalize features across trials) 
Logistic Regression on covariance matrix 

COV+RMDM Estimation of covariance matrix 
Riemannian Minimum Distance to Mean (RMDM) 

LR Data are vectorized (across time and channels) 
Features standardized by removing the mean and scaling to unit variance 
(normalize features across trials) 
Logistic Regression on sensor data 

PCA+CSP+LDA Principal component analysis (PCA)  
Signal decomposition using the Common Spatial Patterns (CSP) 
shrinkage Linear Discriminant Analysis (sLDA) 

Xdawn+LR Covariance matrix with Xdawn spatial filtering (Xdawn) 
Data are vectorized (across time and channels) 
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Features standardized by removing the mean and scaling to unit variance 
(normalize features across trials) 
Logistic Regression on covariance matrix 

PPN Architecture defined with the deep learning models 

 

3.4.4 Statistical testing 

Benchmarked models are evaluated by calculating three standard performance metrics, 

accuracy, precision, and recall. The 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇

 calculates the total of correctly 

classified classes for the total number of predictions, which is equal to 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇

 in a 

binary classification where 𝑇𝑇𝑇𝑇 represents the total true positive, 𝑇𝑇𝑁𝑁 represents the total 

true negative, 𝐹𝐹𝑇𝑇 the false positive, and 𝐹𝐹𝑁𝑁 the false-negative classifications, 

respectively. We also calculate precision and recall. 𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

  represents the 

proportion of correctly predicted positive instances (true positives) out of all instances 

predicted as positive.  𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

  also known as sensitivity or true positive rate, 

measures the proportion of correctly predicted positive instances (true positives) out of 

all actual positive instances. Statistical tests are applied to the accuracy scores. We 

acknowledge that due to the balanced dataset of each class, combined with the 

utilization of macro-average recall, may result in similar accuracy and recall scores. 

We compute the statistical significance of the mean difference in performance between 

deep learning models to systematically test model architectures and design choices. We 

utilized Wilcoxon signed-rank tests, as suggested by (Benavoli et al., 2016). 

Additionally, we applied the Benjamini-Hochberg procedure for false-discovery-rate 

correction with a nominal α = 0.05 and a false discovery rate of 10% (Benjamini & 

Hochberg, 1995). A critical difference diagram to visually present post-hoc significant 

and non-significant pairwise comparisons of the mean ranks. A horizontal line between 

the ordered tested model shows a non-significant difference.  

3.4.5 Training hardware and software 

The deep learning models were trained using compute hardware composed of an Intel® 

Core™ i7-8700K @ 3.70GHz CPU, 32 GB of random-access memory (RAM), and one 
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NVidia Titan Xp GPU. Models were implemented using the open-source library Keras 

2.3.0 (Chollet, 2015), a high-level neural network library on Python built over 

TensorFlow 2.14 (Abadi et al., 2015).  

3.5 Architecture Selection 

This section is organized to present the performance assessment of the baselines, the 

eleven DL models trained and tested using the benchmark task (n-back), each model 

was trained over each participant using 5-fold cross validation. Details about the 

statistical procedure are available in appendix A2.4. 

3.5.1 Baselines 

Based on the average accuracy across all participant’s datasets and 5-fold cross 

validation, the results show (Table 20) that the COV+LR and COV+RMDM baseline 

models outperform the other models when classifying mental workload where K = 2 

(high or low MW) from the EEG. COV+LR reports a mean accuracy of .874 (± .088) 

and COV+RMDM .884 (± .098). In this instance, a low SD is representative of model 

stability across participant data. 

Table 20 

Baseline Models Performance Results 

Models Accuracy Precision Recall 

COV+LR .874 ±.088 .880 ±.086 .874 ±.088 

COV+RMDM .884  ±.098 .889 ±.094 .884 ±.098 

LR .601 ±.091 .605 ±.093 .601 ±.091 

PCA+CSP+LDA .678 ±.127 .684 ±.128 .678 ±.127 

Xdawn+LR .708  ±.111 .711 ±.110 .708 ±.111 

PPN .590  ±.090 .593 ±.092 .590  ±.090 

Note. K = 2. The results are the average of over five cross-validations.  Metrics are 

expressed as average ± standard deviation. 

A Wilcoxon Signed-Ranks test was conducted to determine the classification accuracy 

of the COV-RMDM (mean rank = 1.611) and COV+LR (mean rank = 1.778) models in 
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comparison to the other trained models (Figure 17). The results indicated that both 

models demonstrated a significantly higher classification accuracy than the other 

models. However, their performance was similar with no significant difference between 

them (Z = 458.5, p = 0.504). COV-RMDM was subsequently used as a baseline for the 

subsequent benchmarking process. 

 

Figure 17 

Critical plot difference for the baseline models 

 
Note. Critical Plot Difference based on Wilcoxon Signed-Rank test with Benjamini-

Hochberg procedure for false-discovery-rate correction for the Baseline models. A 

straight horizontal line between the models shows a nonsignificant difference in post-

hoc pairwise comparisons. Values show the average rank of the model. 

 

3.5.2 Models benchmarking 

Based on the average accuracy across all participant’s datasets and 5-fold cross 

validation procedure, Table 21 presents the models' performance metrics and the 

average training duration. The results show that the FCN and ResNet models outperform 

the other models and baseline when classifying mental workload. FCN reports a mean 

accuracy of .939 (± .052) and .921 (± .073) for the Resnet, followed by the EEGNet 

(mean = .873 ± .101) and the ShallowConvNet (mean = .846, ± .106). All end-to-end 

deep learning models were compared between each other and against the best 

performing baseline (Figure 5), i.e., COV+RMDM. 
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Table 21 

Descriptive Statistics Benchmarked Models 

Models Average of 
accuracy 

Average of 
precision 

Average of 
recall 

Average of duration 
(sec) 

CNN .588 ±.091 .590 ±.092 .588 ±.091 187.787 ±6.464 

Encoder .598 ±.100 .602 ±.103 .598 ±.100 63.288 ±1.685 

DeepConvNet .635 ±.099 .648 ±.112 .635 ±.099 550.378 ±4.358 

FCN .939 ±.052 .942 ±.049 .939 ±.052 316.535 ±11.131 

EEGNet .873 ±.101 .879 ±.100 .873 ±.101 232.858 ±4.492 

MCDCNN .611 ±.114 .611 ±.187 .611 ±.114 38.527 ±1.816 

MLP .615 ±.069 .620 ±.071 .615 ±.069 783.523 ±23.975 

ResNet .921 ±.073 .925 ±.070 .921 ±.073 515.206 ±14.190 

RNN LSTM .603 ±.104 .606 ±.106 .603 ±.104 581.033 ±24.224 

ShallowConvNet .846 ±.106 .851 ±.105 .846 ±.106 181.242 ±2.398 

 

A statistical comparison of the models using a Wilcoxon signed-rank test indicates that 

FCN (mean rank = 1.900) and ResNet (mean rank = 2.300) present classification 

accuracy superior to the baseline (mean rank = 3.367), EEGNet (mean rank = 3.656) and 

the other trained models (Figures 18). The Wilcoxon signed-ranks test indicated that 

FCN is significantly more accurate than COV+RMDM (Z = 135, p < 0.000) and ResNet 

(Z = 325.5, p = 0.027). ResNet is significantly more accurate than COV+RMDM (Z = 

220.5, p = 0.001). COV+RMDM showed no significant difference in accuracy than 

EEGNet (Z = 452.5, p = 0.461). Based on those results, FCN and ResNet were selected 

for further investigation. 
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Figure 18 

Critical plot diagram of the deep learning models against baseline 

 
Note. Baseline = COV + RMDM. 

 

3.6 Model Tuning 

3.6.1 Optimization algorithm 

In order to optimize the training of our model, we tested four different optimization 

algorithms. As discussed in the literature review, optimization techniques aim to reduce 

the difference between the training and test errors of the model by minimizing the cost 

function with respect to its parameters. The optimization algorithms were selected based 

on their internal mechanisms and previous research in the relevant field. 

Our objective was to choose optimizers that minimize the model training time while 

ensuring stable convergence and taking into account the unique properties of each 

optimizer. To achieve this, we tested four different optimizers: Stochastic Gradient 

Descent (SGD), AdaDelta, Adam, and Nadam. The descriptive statistics revealed that 

using any of these optimizers (Adam, AdaDelta, Nadam or SGD) produced stable 

classification accuracies for both FCN and ResNet (Table 22). 
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Table 22 

Descriptive statistics for the optimizer choice 

Model Optimizer Accuracy Precision Recall Duration 

FCN Adadelta .937 ±.057 .939 ±.056 .937 ±.051 311.222 ±3.109 

 Adam .935 ±.057 .938 ±.054 .935 ±.057 311.178 ±4.941 

 Nadam .941 ±.054 .944 ±.051 .941 ±.054 310.546 ±3.325 

 SGD .941 ±.044 .944 ±.042 .941 ±.044 295.880 ±3.982 

Resnet Adadelta .926 ±.065 .929 ±.062 .926 ±.065 520.839 ±5.147 

 Adam .926 ±.067 .930 ±.064 .926 ±.067 515.730 ±4.602 

 Nadam .915 ±.079 .918 ±.077 .915 ±.079 537.711 ±6.076 

 SGD .913 ±.069 .919 ±.063 .913 ±.069 479.178 ±4.863 

 

Figure 19 

Critical Difference Diagram for Optimizers 

 

 

For FCN, SGD and Nadam showed similar accuracy with .941 (±.044) and .941 (±.054), 

respectively. For Resnet, the best performing optimizer was Adam with an accuracy of 

.926 (±0.067). As shown by Figure 19, a statistical comparison of the models using a 

Wilcoxon signed-rank test indicates that Nadam (mean rank = 3.822) and SGD (mean 

rank = 3.900) were the two best performing optimizers for FCN. The Wilcoxon signed-

ranks test indicated no significant difference in the mean accuracy between the two (Z = 

514, p = 0.967). For ResNet, the results show not statistical difference between Adam 

(mean rank = 4.322) and Adadelta (mean rank = 4.756), Z = 514, p = .968). Based on 

these results, we selected Nadam as the optimizer of choice for FCN; Adam was 

retained for ResNet due to fast convergence and good accuracy.  
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3.6.2 Dropout rate 

In order to analyze the effect of dropout rates on model accuracy, we compared different 

rates for both the FCN and ResNet models and recorded the results in Table 23. As seen 

in the literature review, dropout is a regularization technique that randomly deactivates 

neurons during model training, to reduce overfitting, improve model sparsity, and 

potentially enhance feature quality by reducing co-adaptation.  

The dropout rate of hidden layers and visible layers was set to [0.1, 0.4], and [0.0], 

respectively. Figure 20 shows the impact of dropout rate on models’ accuracies and the 

critical difference diagrams. For FCN, when using a .4 dropout rate, the average 

accuracy was reduced to .865 (± .101). For Resnet, the accuracy remained stable; the 

average accuracy for the .4 dropout rate was .917 (± .069). When using a .2 dropout rate, 

accuracies remained stable for Resnet, reporting average accuracies of .926 (±.070). 

Figure 8 shows the accuracy evolution based on the FCN and ResNet dropout rate for 

each participant and fold.  Wilcoxon Signed-Rank tests show a statistical difference 

between .1 (mean rank = 1.922) and the .2 (mean rank 2.333) rates for FCN (Z = 90.5, p 

< 0.001). The ResNet showed no statistical difference when the dropout rate was 

increased. Based on these results, we selected a 0.2 dropout rate for Resnet for hidden 

layers to leverage the technique's positive effects on the risk of over-fitting, sparsity 

improvement, and quality of features learned. For FCN, the dropout rate was set at 0.1.  

Table 23 

Descriptive Statistics for Dropout rate 

Model Dropout Accuracy Precision Recall Duration 

FCN .1 .936 ±.057 .941 ±.052 .936 ±.057 329.348 ±7.519 

 .2 .922 ±.066 .931 ±.056 .922 ±.066 332.489 ±6.494 

 .3 .915 ±.075 .926 ±.062 .915 ±.075 332.457 ±6.466 

 .4 .865 ±.101 .897 ±.066 .865 ±.101 331.977 ±6.956 

ResNet .1 .926 ±.076 .929 ±.074 .926 ±.076 533.725 ±9.526 

 .2 .926 ±.07 .928 ±.068 .926 ±.07 533.88 ±8.953 

 .3 .923 ±.076 .929 ±.069 .923 ±.076 534.69 ±9.587 

 .4 .917 ±.069 .922 ±.065 .917 ±.069 534.062 ±10.283 
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Figure 20 

Impact of dropout rate on accuracy for FCN and ResNet 

FCN 

  

 
ResNet 
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3.6.3 Activation function 

We conducted a comparison of various activation functions for both FCN and ResNet 

models and recorded their respective impacts on performance in Table 24. Activation 

functions are responsible for determining the output of a neural network and whether or 

not a neuron should be activated based on its inputs. As discussed in the literature 

review, some researchers have suggested that the choice of activation functions for EEG 

may be sensitive to specific features of the data. For the FCN model, we found that 

using the Relu activation function yielded an accuracy of .933 (±.062), while using the 

Elu function resulted in an accuracy of .914 (±.064). As for the ResNet model, we found 

that using Elu as the activation function resulted in an accuracy of .933 (±.066), while 

using Relu returned an accuracy of .915 (±.078). 

Table 24 

Descriptive Statistics for Activation Function performance 

Model Activation 
Function 

Accuracy Precision Recall Duration 

FCN Elu .915 ±.064 .919 ±.06 .915 ±.064 326.474 ±3.932 

 Relu .933 ±.062 .938 ±.054 .933 ±.062 326.786 ±3.773 

Resnet Elu .933 ±.066 .936 ±.062 .933 ±.066 525.865 ±5.987 

 Relu .915 ±.078 .922 ±.073 .915 ±.078 523.997 ±4.165 

 

Figure 21 

Critical diagram plot for accuracy of activation function 
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A Wilcoxon Signed-Rank test was conducted to determine the statistical difference in 

accuracy between the Relu (mean rank = 2.244) and Elu (mean rank = 2.911) activation 

functions for the FCN model. The results revealed a significant difference in accuracy 

between these two functions (Z = 247.5, p < .002). Conversely, we observed a 

significant difference in accuracy between the Elu (mean rank = 2.156) and Relu (mean 

rank = 2.6889) activation functions for the ResNet model (Z = 309, p < .017). Given the 

statistical analysis results, we have decided to select the Relu activation function for the 

FCN model and the Elu activation function for the ResNet model. 

3.6.4 Window size 

To determine the effect of data window size upon training duration and model accuracy, 

we compared a full trial window of 3s (-100ms to 2900ms) with a 1.5s windows (-

100ms to 1400ms) relative to n-back trial onset. In this instance, both FCN and ResNet 

performed marginally worse than the baseline with the smaller window size (Table 25). 

The average accuracy for the 3s windows were .033 (±.062) and .933 (±.066) for FCN 

and ResNet, respectively, compared to .907 (±.08) and .865 (±.114) for FCN and Resnet 

using 1.5s windows. Furthermore, when using the smaller 1.5s window, ResNet 

accuracy displays more variance across datasets. 

Table 25 

Descriptive Statistics for Windows Size of 1.5 seconds and 3 seconds 

Model Accuracy Precision Recall Duration 

fcn_1.5s .907 ±.080 .911 ±.078 .907 ±.08 80.780 ±.684 

fcn_3s .933 ±.062 .938 ±.054 .933 ±.062 326.786 ±.773 

resnet_1.5s .865 ±.114 .871 ±.110 .865 ±.114 149.955 ±.985 

resnet_3s .933 ±.066 .936 ±.062 .933 ±.066 525.865 ±.987 
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Figure 22 

Critical diagram plot for accuracy of window size 

 

 

We conducted a Wilcoxon Signed-Rank test to examine the statistical difference in 

accuracy based on the window size used (as shown in Figure 22). Our findings indicate 

that for the FCN model, a window size of 1.5 seconds (mean rank = 2.567) resulted in 

significantly inferior accuracy compared to a window size of 3 seconds (mean rank = 

2.156) (Z = 307, p = .017). Similar results were observed for the ResNet model, where a 

window size of 1.5 seconds (mean rank = 3.289) resulted in significantly inferior 

accuracy compared to a window size of 3 seconds (mean rank = 1.989) (Z = 102.5, p < 

.001). Based on these results, we select a window size of 3 seconds for both the FCN 

and ResNet models. 

3.6.5 Performance replication 

In order to determine if the reported accuracies of our chosen models were unique to the 

data used to train them or generalizable across similar datasets, the two parametrized 

models were tested on an additional unique n-back dataset composed of 15 different 

participants collected in a laboratory setting. This time, A 64-channel headset from 

BrainVision was used to record the EEG. The sensor signal was preprocessed following 

the same pipeline used for the main dataset. The fifteen participants' brain signal was 

recorded during the same n-back task implemented with E-PRIME. FCN reported 

accuracies for this dataset was .909 (±.078). The reported accuracy for ResNet was .900 

(±.103). 
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Table 26 

Descriptive statistics for the replication procedure 

Model Accuracy Precision Recall Duration 

FCN .933 ±.054 .938 ±.050 .933 ±.054 326.248 ±2.229 

ResNet .917 ±.074 .921 ±.071 .917 ±.074 711.267 ±3.293 

COV+LR .861 ±.112 .866 ±.123 .867 ±.111 .477 ±.108 

COV+RMDM .861 ±.122 .865 ±.128 .866 ±.162 6.546 ±.639 

FCN Replication .909 ±.078 .915 ±.075 .910 ±.078 417.896 ±11.914 

LR .635 ±.086 .628 ±.086 .672 ±.138 2.177 ±.783 

PCA+CSP+LDA .656 ±.099 .661 ±.120 .667 ±.140 8.387 ±1.65 

ResNet Replication .900 ±.103 .906 ±.098 .900 ±.103 607.378 ±13.865 

Xdawn+LR .732 ±.108 .742 ±.117 .722 ±.135 3.327 ±.639 

 

Figure 23 

Critical Diagram Plot for the replication procedure 

 

 

We conducted a Wilcoxon signed-rank test to determine the accuracy of the FCN and 

ResNet models on the new dataset. Our findings indicate that there was no significant 

difference in accuracy between the FCN model (mean rank = 2.213) and the ResNet 

model (mean rank = 2.333) (Z = 1375.5, p = .793). However, both end-to-end deep 

learning architectures still performed significantly better than the baseline COV-RMDM 

model (mean rank = 3.133). We observed a significant difference in accuracy between 

the FCN model and the baseline (Z = 692, p < .001), as well as between the ResNet 

model and the baseline (Z = 753.5, p < .001). 
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3.7 Model Validation 

3.7.1 Neurophysiological plausibility assessment 

In this section, we conduct the neurophysiological plausibility assessment of the models. 

The objective is to evaluate the plausibility of the features (Kohoutová et al., 2020) and 

ensure that our model learns from brain-related signals. We then relate these results to 

the previous finding in the literature to validate the models. FCN and ResNet learned 

features directly from EEG signals and can potentially derive correlated information 

from more than brain signals (such as muscular activities, blinks). EEG has a low-

signal-to-noise ratio and captures a variety of information unrelated to the task that can 

affect the signal more than task-relevant information. Thus, we need converging 

evidence that the models leverage mental workload relevant information before applying 

it to the flight EEG data. 

Integrated Gradients is a backpropagation-based method that assesses how a model's 

input features affect their predictions (Sundararajan et al., 2017). It computes the 

attribution of all input features to the output value via a forward and backward network 

traversal. Integrated Gradients have been judged to be an appropriate method for 

capturing global nonlinear effects and cross interactions between different features 

(Ancona et al., 2017), i.e., properties that match EEG recorded waveform characteristics 

such as the different range of oscillations, spatial distribution, and related synchronized 

activity. The technique is recommended as explanation methods in neurophysiological 

data by (Thomas et al., 2023).  Moreover, Integrated Gradients respond to an important 

axiom related to neural network interpretability, i.e., “the notion of completeness” 

(Gilpin et al., 2018), which in this context, states that the sum of attributions should be 

equal to the original output. In brief, integrated gradients highlight areas of high network 

sensitivity where a change in signal input may significantly affect the output. We 

provide a note of caution that the results from this feature assessment are an 

oversimplification of what features a model has learned and do not represent the 

complexity of the models’ behavior.  
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For FCN and ResNet we applied Integrated Gradients to our validation dataset to 

determine which signal features and sensors contributed to classification. The 

contributions were measured relative to a baseline, which offered no information to the 

models. To ensure the representativeness of our results, we selected to baseline using 

two factors following (Sundararajan et al., 2017). 1) we use a baseline that conveys a 

total absence of signal using an all-zero multidimensional vector, and 2) use samples of 

participants' EEG during resting phases with eyes-open recorded prior to all tasks. 

Research has shown that baseline selection can drastically change feature attributions 

and provide advice to select one depending on the domain and the task (Kindermans et 

al., 2019).  

In order to make Integrated Gradients understandable, we computed the average 

marginal contribution of all EEG channels to the estimated high workload level per trial. 

Then, we produced a visualization of these gradients to illustrate positive contributions, 

where red shows a channel’s features that positively influence the prediction toward the 

classified output. In blue, the negative contribution that influences the prediction away 

from the expected output. Figure 24 is the result of this procedure.  

Figure 24 

Topography of the integrated gradient values for each sensors overtime.  

 
Note. It represents the grand average for each condition computed using the IG values 

averaged for all participants between the multiple folds. Note that these visualizations 

oversimplify what features a model has learned and do not represent the complexity of 

the models' behavior. 
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Previous research has linked mental workload to spectral markers of cortical activity in 

the parietal and frontal areas of the brain. Specifically, a decrease in the Alpha (8-12 Hz) 

frequency band in the parietal region, coupled with an increase in the Theta (4-8 Hz) and 

often Delta (1-4 Hz) bands in the frontal region, are commonly associated with an 

increase in mental workload (Antonenko et al., 2010; Borghini et al., 2014; Brouwer et 

al., 2012; Krause et al., 2000; Lei & Roetting, 2011; Roy et al., 2013). 

Our results from the assessment using Integrated Gradients revealed that similar cortical 

areas contribute to the mental workload output classification. Specifically, the 

visualization of the values showed that both the frontal and parietal areas contribute 

towards the classification. Moreover, we observed that noise-prone electrodes, which 

may pick up non-brain correlated information such as the prefrontal lobe (e.g., Fp1 and 

Fp2), contributed little to the classification. These two observations provide us with 

confidence in the neurobiological plausibility of the features utilized by our models. 

3.7.2 Model application 

In order to apply the trained models in classification mode to the EEG signal data 

recorded during the flight training simulation and thus estimate the mental workload 

level for each participant, we segmented and epoched the data. These data were 

segmented by maneuver with an extracted 10% buffer before the start and after the end 

of each maneuver to avoid confounding factors that can affect brain activity, such as 

muscle movement potentially linked to a participant's posture or moving for comfort 

within the simulator between maneuvers. Segments were then partitioned into 3000ms 

epochs using a 1500ms overlapping window to correspond with the data epochs used to 

train the classifiers. As a result of the process, the low complexity maneuvers took 

between 26 and 60.67 epochs on average, while the medium complexity maneuvers took 

61.11 to 84 epochs, and the high complexity maneuvers took 68.56 to 121.22 epochs 

(Table 27). It was expected that low-complexity maneuvers would be completed in a 

shorter time than the high-complexity maneuvers and thus result in a lower number of 

epochs per maneuver per participant. We then applied the trained models (i.e., FCN and 
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ResNet) to classify mental workload for each of the epochs. Before utilizing the 

estimations produced by our models, we conducted two validation procedures: inter-

level agreement and intra-model agreement. 

Table 27 

Number of epochs per participant, block and maneuveurs 

Block Maneuver 1 2 3 4 5 6 7 8 9 Average 

Low B 26 19 35 32 36 25 24 15 22 26 

C 56 36 65 72 57 41 50 28 38 49.22 

D 58 37 70 32 81 76 36 31 50 52.33 

E 61 45 70 65 51 50 53 77 74 60.67 

Moderate F 96 3 115 154 68 58 65 42 75 75.11 

G 73 46 66 74 64 56 40 68 63 61.11 

H 39 69 121 66 72 85 52 45 63 68 

I 35 77 93 109 121 108 41 43 129 84 

High J 107 77 185 119 137 96 207 79 72 119.89 

K 100 135 178 131 94 147 85 97 124 121.22 

L 139 31 43 68 63 62 94 55 62 68.56 

Note. Maneuvers starting from B to L was used. The training phase, maneuver A was 

discarded, as it serves as an adaptation period.  

 

3.7.3 Inter-model agreement 

Looking exclusively at the performance of individual models does not provide an 

indication of their generalizability. To assess the reliability of the models when applied 

to unseen data, we computed the agreement level between the models when classifying 

mental workload from the same EEG data epochs. We hypothesized that the two models 

with different designs might extract dissimilar features and leverage distinct information 

from the signal before computing the probabilistic classification outcome. However, if 

the two models agree on the estimation using similar features, it may indicate that 

discriminative information is present in the signal. 
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We use Cohen’s Kappa to measure the inter-classifier agreement level on the same 

classification problem: 𝜅𝜅 =  𝑝𝑝𝑜𝑜−𝑝𝑝𝑒𝑒
1−𝑝𝑝𝑒𝑒

 were 𝑝𝑝𝑜𝑜 represents the observed agreement and  𝑝𝑝𝑒𝑒 

the expected agreement by chance alone (Viera & Garrett, 2005). A kappa of 1 

represents a perfect agreement, while a kappa of 0 is equivalent to chance. We also 

compute two correlation measures, the Concordance Correlation Coefficient (CCC) 

(Lawrence & Lin, 1989) and the Matthews Correlation Coefficient (MCC) (Matthews, 

1975). The CCC represents the agreement between paired observations, enabling the 

comparison of two instruments intended to measure the same target. In our case, CCC 

measures the similarity of the probability in estimating the mental workload level for 

our two models, FCN and ResNet. The advantage of this measure is its applicability to 

continuous values. The MCC measures binary classification quality, considering true 

positives, false positives, true negatives, and false negatives. The MCC value ranges 

from -1, total disagreement, to 1, total agreement, with a value of 0 indicating random 

chance. In brief, MCC is a correlation measure for discrete observations, i.e., high or 

low workload.  

Figure 25 

Inter-Model Level Agreement  
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Figure 25 shows each participant's FCN and ResNet agreement scores on the same 

unseen data. The average scores for each metric were computed, along with their 

corresponding standard deviations, to measure the variability. The fourth participant was 

excluded from the analysis as the model consistently estimated a high workload level for 

all epochs. Upon careful consideration, this observation may be attributed to a potential 

drift in the distribution and magnitude of the EEG signal, likely caused by a decrease in 

signal quality between the synthetic the naturalistic task. Overall, the mean Kappa Score 

was 0.506 ± 0.216, indicating a moderate agreement between the predicted and actual 

classifications. The mean CCC was 0.603 ± 0.239, indicating moderate agreement 

between the models' predictions. For the MCC, the mean was calculated as 0.487, with a 

standard deviation of ± 0.257, suggesting a moderate level of prediction accuracy. We 

observed a decline in scores for the second participant, with an average Kappa Score of 

0.116 ± 0.136, CCC of 0.131 ± 0.112, and MCC of 0.163 ± 0.175. A comparative 

assessment of the features using Integrated Gradient revealed that FCN and ResNet 

utilized similar scalp areas over time. However, the cause of this disagreement is still 

unclear. In this case, they could not reliably infer the level of mental workload over the 

novel EEG flight data for this participant. 

3.7.4 Intra-model agreement 

Random initialization and the choice of training folds can impact the performance of 

deep learning models when applied to EEG datasets. Inconsistent estimations within the 

same model raise concerns about the instrument's reliability. We controlled for these 

factors during the performance benchmark to address this issue by employing 5-fold 

training on subject-dependent datasets for each model and design choice. 

However, we aimed to validate our models further and assess whether different 

initializations and training folds could affect the learned discriminative features and the 

prediction accuracy on unseen EEG data. Therefore, we employed the same approach as 

the intra-model agreement evaluation. For this assessment, we posed the question: "Will 

the models consistently estimate the level of mental workload if trained again?" We 

computed Cohen's Kappa, CCC, and MCC for FCN and ResNet models trained on the 5 
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folds and applied them to the unseen EEG data to answer this question. The scores were 

computed for each combination of the 5 models trained per participant. 

For the FCN model, the mean Cohen's Kappa is 0.635 ± 0.198, the mean Concordance 

Correlation Coefficient (CCC) value is 0.756 ± 0.182, and the mean Mathew Correlation 

Coefficient (MCC) value is 0.590 ± 0.266. In the case of the ResNet model, the mean 

Cohen's Kappa is 0.590 ± 0.191, the mean CCC value is 0.654 ± 0.204, and the mean 

MCC value is 0.554 ± 0.249. Figures 26 and 27 illustrate the scores for each pair of 

participants and metrics. Overall, the scores indicate substantial to moderate agreement 

within each training of the models and folds. 

Figure 26 

Intra-Model Level Agreement for FCN 
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Figure 27 

Intra-Model Level Agreement for ResNet 

 

 

3.8 Results 

We conducted a Linear Mixed Effects (LME) analysis to examine the relationship 

between flight maneuver complexity and participant performance during flight 

simulation training. This analysis was chosen since we had multiple measures per 

subject for each complexity level, violating the independence assumption of a linear 

regression model. We utilized the R programming language and the lme4 package 

(Bates et al., 2014) for performing the linear mixed effects analysis. Furthermore, we 

assessed the model's assumptions using the Performance package (Lüdecke et al., 2021). 

We applied both models to the EEG data collected during the flight simulation task, and 

epochs were segmented according to the procedure outlined in the section on model 

application. The statistical analysis used the performance scores assessed by a subject 

matter expert as the dependent variable for each maneuver corresponding to the three 

complexity levels. Mean Estimated Mental Workload (MEMW) was used as a predictor, 
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representing the average probability of estimated mental workload over all epochs of the 

maneuvers corresponding to a given complexity level. A value of 1 indicates full 

confidence in the model's estimation of high mental workload, while a value of 0 

indicates full confidence in the model's estimation of low mental workload. Estimated 

Mental Workload Proportion (EMWP) was also used as a predictor, representing the 

proportion of epochs classified as high mental workload, with a value of 1 signifying all 

epochs classified as high, a value of 0 signifying all epochs classified as low. Table 28 

and Figure 28 present the descriptive statistics of each of these variables per complexity 

level. 

 

Table 28 

Descriptive Statistics of the measures 

Model Measure Complexity 

  Low Moderate High 

 Performance 3.097 ± .379 2.856 ± .533 2.583 ± .612 

FCN MEMW .784 ± .315 .839 ± .300 .745 ± .360 

EMWP .695 ± .386 .791 ± .322 .685 ± .389 

Resnet MEMW .773 ± .293 .828 ± .299 .725 ± .357 

EMWP .715 ± .339 .802 ± .316 .693 ± .378 
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Figure 28 

Visual representation of the performance, MEMW, and EMWP per complexity level for both 

FCN and ResNet models. 
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To apply the LME, and to determine the appropriate maximal random effects structure, 

we followed the procedure outlined by Barr et al. (2013). Given our dataset, which 

includes multiple performance observations per subject and complexity level, we 

considered the possibility that the performance may be influenced by the manipulated 

factor—the complexity of the maneuver—and that this effect might vary across subjects. 

Similar considerations are appropriate considering estimated mental workload. To 

account for these factors, we specified a random gaussian intercept and random slope for 

subjects, allowing them to be influenced by the complexity of the maneuver. The LME 

models were estimated using the restricted maximum likelihood (REML) method with 

the nloptwrap optimizer. We calculated 95% confidence intervals and p-values to assess 

statistical significance using a Wald t-distribution approximation. Additionally, residual 

plots were visually examined for deviations from homoscedasticity or normality, and no 

significant deviations were observed. These plots are provided in the appendix for 

reference. To present our findings, we computed five LME models. Model 1 examined 

the association between complexity and performance. Models 2 and 3 included the fixed 

effects of the mental workload estimations (EMWP and MEMW) obtained from the 

ResNet model. Similarly, Models 4 and 5 incorporated the same fixed effects using the 

FCN model. 

The results indicate that maneuver complexity is significantly associated with 

performance, with higher complexity levels being negatively related to evaluated 

performance per maneuver. The effect of complexity was statistically significant and 

negative (β = -0.26, 95% CI [-0.41, -0.11], t(82) = -3.40, p = 0.001; Std. β = -0.37, 95% 

CI [-0.59, -0.15]). 

Next, we included EMWP and MEMW as fixed effects from both models. For the 

ResNet model, no significant association was found between EMWP or MEMW and 

performance. The effect of EMWP was statistically nonsignificant and negative (β = -

0.10, 95% CI [-0.51, 0.32], t(81) = -0.47, p = 0.642; Std. β = -0.06, 95% CI [-0.30, 

0.19]). Similarly, the effect of MEMW was statistically nonsignificant and negative (β = 

-0.08, 95% CI [-0.52, 0.36], t(81) = -0.36, p = 0.723; Std. β = -0.04, 95% CI [-0.29, 

0.20]). Comparable results were observed for the association between EMWP, MEMW, 
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and performance. The effect of MEMW was statistically nonsignificant and positive (β 

= 0.06, 95% CI [-0.38, 0.49], t(81) = 0.26, p = 0.796; Std. β = 0.04, 95% CI [-0.24, 

0.31]). Likewise, the effect of EMWP was statistically nonsignificant and positive (β = 

0.07, 95% CI [-0.33, 0.48], t(81) = 0.37, p = 0.716; Std. β = 0.05, 95% CI [-0.22, 0.31]). 

As post-hoc analysis, in order to examine the association between perceived MW, 

serving as our manipulation check, and the estimated mental workload, we conducted 

Pearson's correlation analyses as part of an exploratory investigation. For the ResNet 

model, a moderate positive correlation emerged between perceived MW and estimated 

mental workload for EMWP (r = 0.24, 95% CI [0.03, 0.42], t(86) = 2.25, p = 0.027), 

while a weak positive correlation was observed between perceived MW and estimated 

mental workload for MEMW (r = 0.22, 95% CI [0.01, 0.41], t(86) = 2.07, p = 0.041). 

The correlations obtained from the FCN model were consistent with these findings. 

Specifically, a moderate positive correlation was identified between perceived MW and 

estimated mental workload for EMWP (r = 0.25, 95% CI [0.04, 0.44], t(86) = 2.39, p = 

0.019), and a weak positive correlation was observed between perceived MW and 

estimated mental workload for MEMW (r = 0.25, 95% CI [0.04, 0.43], t(86) = 2.37, p = 

0.020). 

3.9 Discussion 

3.9.1 Empirical implications 

This work reviewed end-to-end deep learning techniques for mental workload 

estimation and benchmarked several to determine the best-performing architectures for 

the task. The results show that three deep learning architectures (FCN, ResNet, 

EEGNet) perform better than the state-of-the-art baselines (i.e., COV+RMNM). 

Furthermore, we systematically evaluated a number of end-to-end deep learning models, 

design choices, and architectures for mental workload estimation directly from the EEG 

signals. The two top-performing models ResNet and FCN produced an average accuracy 

of .917 (± .074) and .933 (± .054), respectively, over the training data. 

Our endeavour was motivated by our review of the research concerning the application 

of deep learning to mental workload estimation, which showed that the majority of 
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studies trained models using handcrafted and domain-specific engineered feature data. 

These feature data such as Fast Fourier Transform (Casson, 2014; Jiao et al., 2018; 

Kuanar, Athitsos, Pradhan, Mishra, & Rao, 2018; Qiao & Bi, 2020; Shang et al., 2017; 

Tao et al., 2019; Yang et al., 2019), Short-Time Fourier Transform (Hefron, Borghetti, 

Kabban, et al., 2018; Wang et al., 2012), Wavelet Transform approaches (Qayyum, 

Faye, et al., 2018; Wu et al., 2019), Event-Related Desynchronization/Synchronisation 

(Saadati et al., 2020b), and Functional Connectivity with EEG graph representation 

(Wang et al., 2019) were used to transform the signal and input unaltered or as image 

representation to deep neural networks for mental workload (or similar) estimation 

tasks, producing fair accuracies. However, feature engineering generally requires 

domain-specific expertise, additional computing resources and time, and does not 

consider individual variance in neurophysiological responses (Donoghue et al., 2020; 

Donoghue et al., 2021). Furthermore, feature engineering does not leverage the strength 

of recent developments in end-to-end processes for discriminative models using time 

series data. Models that utilize end-to-end processes can learn hierarchical 

representations directly from raw signal data to provide a probabilistic inference of the 

class prediction without assuming a prior domain knowledge representation of the EEG 

signal. Our work contributes to the literature by providing evidence of the performance 

of a wide selection of unique deep learning architecture for mental workload estimation. 

In terms of the results of the estimation of mental workload for the simulated flight task 

using the classification output from the FCN and ResNet models we trained using n-

back task data, we found the relationship between complexity, mental workload and 

performance to be a u-shape relationships in line with previously reported research 

(Svensson et al., 1997). Firstly, we found that the simulator training scenarios, through 

the manipulation of flight maneuver complexity, could elicit a linear increase in 

perceived mental workload (manipulation check: RAW-TLX), building a solid 

foundation of validity for subsequent results. Secondly, we found that performance was 

negatively associated with the complexity of the task, however we find no relationships 

with the estimated mental workload.  
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Table 29 

Research implications 

Element Implication 

Empirical ResNet and FCN end-to-end deep learning perform better than state-of-
the-art baselines of the same nature 

Benchmark of end-to-end deep learning architectures shows varying 
performances on mental workload estimation showing the importance of 
testing several models 

We show convergence between features learned by the models and the 
neurophysiological plausibility  

Methodological We propose a methodological framework for end-to-end deep learning 
benchmarking  

End-to-end deep learning models allow the user of transfer learning 
techniques that can increase further generalizability, reduce training time, 
and enable test-retest capability.  

Theoretical End-to-end deep learning models can offer theoretical insights on the 
relationship between physical responses, cognitive mechanisms and even 
behaviors.  

End-to-end deep learning models could serve as a rich and continuous 
measurement instrument of constructs in theory testing 

 

We observed that high-complexity maneuvers did not result in an increase in the number 

of estimations of high mental workload across the three flight task blocks. This finding 

contradicted the perceived mental workload assessed through the NASA Task Load 

Index (TLX) at the end of each difficulty block and its relationship with performance 

(Svensson et al., 1997). Contrary to our expectations, we discovered a reverse U-shaped 

relationship between the increase in complexity and the estimated mental workload. 

Specifically, we observed a non-significant increase in the estimation of high workload 

between low and moderate levels of complexity, followed by a decline at the high level 

of complexity. However, post-hoc analysis shows a significant positive correlation 

between estimated cognitive mental workload and perceived mental workload showing 

that the relationships might be more complex than expected.  

Although seemingly counterintuitive, these results can be interpreted in tree possible 

ways. Firstly, it could indicate a learning effect within the flight simulator and towards 
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the flight tasks. Participants might have experienced an increase in perceived mental 

workload, but this may not have been accompanied by significant psychophysiological 

reactivity. Secondly, the results could align with previous studies on mental workload, 

which propose the existence of an upper limit. According to this interpretation, the 

higher complexity flight maneuvers pushed participants beyond this upper limit, leading 

to a state of cognitive overload. In such a state, additional complexity does not elicit 

further psychophysiological reactivity (Jaeggi et al., 2007). A third alternative 

explanation is that the reliability and generalizability of the mental workload 

measurement can be improved. Consequently, further work should be conducted to 

improve the measurement techniques. 

3.9.2 Methodological implications 

Nonetheless, end-to-end deep learning analysis can offer a powerful complementary 

alternative to traditional approaches to the classification of mental states. However, the 

approach creates a new set of challenges that must be addressed. As shown in the 

neurophysiological plausibility assessment, when using deep learning to learn features 

and estimate mental state directly from the signal, a model will utilize any discriminant 

feature regardless of whether that feature is related to the target cognitive state for 

classification (Kohoutová et al., 2020). Predictive artifacts can confound and affect the 

performance and accuracy (either positively or negatively) of the model, depending on 

the task. 

As part of our methodology for model training, we performed a model assessment based 

on Integrated Gradients (Sundararajan et al., 2017) to compute the attribution of 

channels to the models’ outputs compared to a baseline (i.e., a total absence of signal 

using an all-zero multidimensional vector). We attempt to relate the findings of the 

neural networks to the past literature on mental workload assessment to identify the 

results' neurophysiologic plausibility. We found known brain-related patterns, such as 

frontal and central parietal activations. In this assessment, we found significant 

consonance with the neurophysiological literature.  
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Our findings demonstrate the relevance of our methodological framework, highlighting 

its relevance in practice. It is crucial to verify the plausibility of the features learned by 

the models prior to their application, ensuring that the end-to-end deep learning models 

effectively utilize physical brain data. By formalizing this method, we contribute to the 

enrichment of existing approaches, providing a systematic and rigorous framework for 

evaluating the appropriateness of the learned features during the benchmarking process. 

3.9.3 Theoretical implications 

Thus, this approach holds the potential to make significant contributions to theoretical 

advancement in two distinct ways. Firstly, an expanding body of evidence highlights the 

agreement between neural networks and the brain's physical responses (Doerig et al., 

2023; Thomas et al., 2023). Exploring the impact of architectural design choices on 

model learning can deepen our comprehension of the brain, electroencephalography 

(EEG), and their manifestations across various datasets, tasks, and relevant neural 

mechanisms. Furthermore, employing interpretation techniques to assess the 

neurophysiological plausibility of the acquired features provides valuable insights into 

how the models utilize brain data to make estimations, elucidating the relationship 

between physical responses, cognitive mechanisms and even behaviors (Doerig et al., 

2023). Models trained in this way can potentially be used as a form of fundamental 

discovery when coupled with traditional neuroscience analysis methods. 

Secondly, the utilization of end-to-end deep learning models presents an opportunity to 

employ them as measurement instruments for testing theoretical models. This approach 

offers a flexible means to operationalize and measure constructs in a longitudinal 

manner. By utilizing the output of the machine learning model as a measure within a 

statistical model, the temporal nature of the phenomena is preserved. Consequently, this 

methodology enables the examination of theories that account for mental states change 

over time, facilitating complex study of cognition in HCI. 

3.9.4 Limitations and further work 

Several limitations are associated with our current implementation of end-to-end deep 

learning processes. The first limitation is our sample of novice pilots. Their performance 
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and mental workload could be influenced by their limited experience and learning curve, 

which might be affected as the complexity of maneuvers increases. 

Secondly, we use a binary estimation of mental workload. We faced a trade-off between 

an increase in the discriminative power of the models (less class granularity for better 

generalization) and an increase in the confidence limit of the classifier to perform better 

than random. The binary class problem was chosen to increase the models' 

discriminative capability over the currently available brain data. Increasing the sample 

size might allow for more granularity in mental workload classification.   

Thirdly, we could apply additional design choices and hyperparameters to improve 

performance and accuracy. For example, we showed that the residual architecture (i.e., 

ResNet) increased the predictive accuracy through parameter tuning, which compares 

favorably with similar findings (Hefron, Borghetti, Schubert Kabban, et al., 2018). 

However, in our review of the literature, we did not uncover similar research that 

utilized this architecture for mental workload estimation based on EEG signal data. 

Moreover, while we do not leverage the commonly engineered features used for mental 

workload estimation in this work, we evaluated the model's learned features through 

feature attribution to assess their validity for a neurophysiological inference of mental 

workload.  

Moreover, advances in network design with the potential to improve accuracy and 

performance are being reported constantly in the rapidly advancing field of deep 

learning that can improve performance, e.g., the type of pooling layers, regularization, 

and normalization techniques. Thirdly, architectural design choices can be selected for 

specific properties of EEG signal data. For example, Gao et al. (2019) built upon the 

spatial and temporal dependencies of EEG signal data over spatial and spectral 

dependencies (Qiao & Bi, 2020), and (Hefron et al., 2017) showed that taking into 

account temporal dependencies in EEG data increased performance of models. Finally, 

instead of representing these signal data properties via engineered features, model 

architectures can be built to generate them, e.g., building a graph network for neural 
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connectivity, using a recurrent neural network coupled with a convolutional neural 

network for temporal dependencies and features learning.   

Thus far, we have also not attempted to train a fully generalizable subject-independent 

or time-independent model. Generalization across several days or the “test-retest” 

reliability of models remains an important challenge for mental state estimation using 

psychophysiological data (Wilson et al., 2010). According to Christensen et al. (2012) a 

model's capability to discriminate between different mental states decreases over time 

due to physiological factors. The non-stationarity of the target signal impedes the 

training and application of models at different points in time, even within-subject. 

Moreover, the heterogeneous nature of physiological responses across individuals 

hinders the creation of generalized deep-learning models and features. To tackle these 

challenges, the results from models benchmarked in this study support the use of 

transfer learning. Transfer learning is a technique that aims to train an original network 

on a first dataset and task and then transfer the learned features to a new network to be 

trained on a new dataset and task (Yosinski et al., 2014). Conditional to the first model 

to learn generalizable features, this practice can lead to better consistency in the 

performance of deep neural networks for training and testing within-subject across days 

or between-subjects when datasets of labeled data are limited.  

During our review of deep learning techniques for mental workload, we identified one 

study utilizing transfer learning for image classification using discrete wavelet transform 

to discriminate during resting and learning phases (Qayyum, Faye, et al., 2018). For 

tasks other than mental workload estimation, transfer learning has shown promising 

results when applied to EEG signal data. Lin and Jung (2017) proposed a transfer 

learning pipeline for emotion recognition that assesses the comparability of brain 

response prior to tuning the inter-subject train model. Fahimi et al. (2019) applied 

transfer learning based on the training of a deep CNN across-subject for attention 

discrimination. Similar approaches have been used for drowsiness detection (Wei et al., 

2018). 
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In our context, the synthetic n-back task and the recorded EEG signal data offer the 

opportunity to fine-tune a pre-trained model for mental workload estimation before its 

application to the ecologically valid simulated flight data affording faster training with 

less labeled EEG signal data windows. Our architectures allow for a cross-subject model 

that can be trained, then tuned and applied to the current subject. Finally, further work 

can focus on developing domain adaptation, a special form of transfer learning 

technique, to enhance classifier performance and generalizability when tasks are similar 

(Lotte et al., 2018).  

3.10 Conclusion 

In conclusion, this study demonstrates the feasibility of employing an end-to-end deep 

learning approach for classifying mental workload based on EEG signal data. The 

results show exciting results in estimating mental workload in naturalistic tasks and 

provide a path for further research in creating a reliable instrument. We argue that this 

approach holds significant potential as a powerful tool for the direct discrimination of 

mental states from raw data. However, it also presents inherent challenges that need to 

be addressed, such as conducting thorough analyses of the features and ensuring their 

neurophysiological plausibility. A challenge that might be exacerbated when the 

technique is applied to naturalistic environments due to even more noisy environments 

and potential body movements. Nonetheless, we believe that further research in 

estimating mental workload in naturalistic HCI tasks can lead to valuable scientific 

advancements. Building upon this research, evaluating EEG-specific design choices and 

incorporating transfer learning techniques for task-adaptive models can further enhance 

the performance and generalization of the estimation techniques for naturalistic tasks. 
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Chapter 4 
Essay #3 – Oriented-Attention Measurement in Multisensory 
Human-Computer Interaction using Electroencephalography 

Abstract 

This paper presents a methodological approach to infer attentional orienting 

neurophysiological responses during human-computer interaction (HCI) using a 

multisensory perturbation technique. We show that perturbation paradigms can elicit an 

attentional-orienting response (ERP) that is robust enough to be measured and sensible 

to intertwined attentional factors such as top-down forces. We also show that this 

response is influenced by the naturalistic environment while still being sensitive to 

attentional demand. We demonstrate that our approach is robust to complex 

multisensory environments while retaining sensitivity to task properties and attentional 

demands. This paper shows the utility of neuroscience methods and mental state 

inference to evaluate technological artifact design choices. 

4.1 Introduction 

Human-computer interactions are inherently multisensory and exert pressures on users’ 

attentional mechanisms. For instance, the sound and visual pop-up of an email on the 

screen, the vibration and sound of a phone ringing on a table, or colleagues conversing 

in the background. In this context, users employ their ability to enhance or inhibit 

attentional resources to optimize the brain's processing information emerging from our 

environment (Stein et al., 2014). The relevant cognitive mechanisms are automatically 

and unconsciously utilized by technology users in their daily lives at work, on 

computers, during hedonic technological activities, and in various other situations. Users 

are constantly inundated with induced multisensory cues affecting numerous sensory 

modalities (e.g., auditory, visual, somatosensory) originating from dynamic, complex, 

and ever-changing work environments, technology, or tasks. Multisensory integration 

helps humans navigate these contexts by solving the binding and causal inference 
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required to function effectively, determining which sensory cue originates from which 

common event (Noppeney, 2021).   

Multisensory cues can take many forms and profoundly influence our experience with 

technology. For example, spatiotemporally aligned multisensory stimuli have a higher 

chance of being prioritized for further processing and tend to capture humans’ attention 

(Driver, 1996; Talsma et al., 2010; Van der Burg et al., 2008, 2009) and increase 

reaction times (Diederich & Colonius, 2004; Hagmann & Russo, 2016). Thus, it can 

enhance our detection performance as much as they can distract us from the task. It has 

direct application in HCI design; for example (Ho et al., 2007) compared the design of 

unimodal auditory, unimodal vibrotactile, and audio-tactile collision warning while 

driving. The results showed lower reaction times in drivers braking responses following 

the multimodal warning signals compared to the unimodal ones. These cues can also 

have detrimental effects on users’ performance; they can be punctual salient events in 

the multisensory environment and can be perceived as interruptions. For example, 

(Addas & Pinsonneault, 2015) proposed a taxonomy of interruption showing that 

intrusion, task-irrelevant interruption (pop-up, electronic message, system message) can 

be detrimental to performance due to time consumption, attentional switching cost, or 

increased error rates. They can also be interventions, task-relevant interruption, and be 

beneficial to performance. Such technology-mediated interruptions have consequences 

on performance (Addas & Pinsonneault, 2018; Chen & Karahanna, 2018; Galluch et al., 

2015). Future technologies might also combine sensory modalities to enhance 

interaction through the fusion of digital and physical cues such as volumetric displays to 

combine vision and touch, focused ultrasound to stimulate senses of touch and hearing, 

and olfactory technologies (Cornelio et al., 2021).  

The careful consideration of the mechanisms of attention and multisensory integration is 

crucial for understanding the impact of HCI on users. In naturalistic tasks and 

environments, technology users are subjected to the salience of ongoing concurrent 

events while exerting executive control to maintain attentional resources on the task at 

hand (Matusz et al., 2019). However, the cognitive mechanisms involved in 

multisensory integration and its interplay with attention in real-world human-computer 
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interaction remains little explored. Multisensory integration is typically studied in 

controlled laboratory settings, but hypotheses tested in such environments poorly 

generalize to naturalistic tasks and settings (Matusz et al., 2019). Gaining insights into 

these processes and developing methods to study them in HCI tasks could significantly 

enhance our understanding of technology's implications on users at the cognitive 

mechanism level for NeuroIS. Furthermore, it could offer innovative techniques for 

evaluating artifacts in design science research. 

One methodology to explore the mechanisms linked to the multisensory integration of 

technological/environmental cues and attention is to measure neurophysiological 

response via an electroencephalogram (EEG) (Müller-Putz et al., 2015; vom Brocke et 

al., 2020). EEG is the dominant method used in NeuroIS research due to a variety of 

factors including its high spatial resolution, temporal resolution, cost-effectiveness, and 

availability of a comprehensive knowledge base (Müller-Putz et al., 2015; Riedl et al., 

2014; Riedl et al., 2020). Unfortunately, the naturalness of HCI tasks creates challenges 

with EEG in generalizing measurements and hypotheses applied and tested in laboratory 

paradigms that maximize internal validity (Matusz et al., 2019). Cognitive mechanisms 

are studied with experimental stimuli that manipulate well-defined brain functions and 

attempt to control for confounding brain processes (e.g., motor control, motion, sensory 

stimulation). However, the findings supported by these paradigms do not generalize well 

to more complex and natural tasks or show different neurophysiological responses 

(Felsen & Dan, 2005; Matusz et al., 2019; Northoff, 2018). This limitation is not 

restricted to brain states but also behaviors (Ladouce et al., 2016). That is, artificial 

stimuli produce different behaviors in controlled contexts than stimuli presented in situ. 

Thus, the challenge resides in finding neurophysiological responses linked to relevant 

cognitive mechanisms which are robust within naturalistic environments, human-

computer interaction, and tasks. In this research, we build on the neurophysiological 

response of attentional orienting to multimodal cues. Evidence indicates it is robust to 

complex environments and paradigms (Burns & Fairclough, 2015; Ladouce et al., 2019; 

Zink et al., 2016) and is sensitive to attentional mechanisms (Macaluso et al., 2016; 

Talsma et al., 2010; Tang et al., 2016).  
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Attentional orienting corresponds to an unintentional shift of attention toward a sensory 

event (Schröger & Wolff, 1998). Using task-irrelevant distracting stimuli, we can study 

the difference in processing resources allocated in the orientation of attention toward a 

perturbation. The technique involved using a perturbation of sensory inputs to trigger a 

reorientation of attention toward it. This attentional drift generates a neurophysiological 

response measurable with EEG under the form of an Event-Related Potential (ERP). 

This technique has been applied in naturalistic environments and tasks. Ladouce et al. 

(2019) revealed that neural correlates of attention toward an auditory stimulation are 

reduced in real-world and natural behavior like walking in a dynamic environment. 

Attentional processes are measurable with ERPs to auditory perturbation and robust to 

real-world settings. Burns and Fairclough (2015) used auditory perturbation while 

subjects were playing games and showed that the neurophysiological response was 

sensible to the game difficulty. With a similar paradigm, Zink et al. (2016) showed that 

ERPs were influenced by the increased cognitive load of the real-world and the active 

motion induced by the task, i.e., pedaling. Evidence shows that neurophysiological 

responses triggered by a temporary reorientation of attention toward a perturbation are 

robust but influenced by real-world environments and tasks.  

Therefore, developing such measurements necessitates consideration of the task and the 

environment in which it occurs. Consequently, conceptualizing the interaction between 

the user, the brain, and the environment is crucial (Chiel & Beer, 1997). Assuming that 

all human-machine interactions are multisensory, our research objectives are (i) to better 

understand the role of a naturalistic multisensory environment on the orientation of 

attention during HCI, and (ii) to develop an instrument for real-world HCI tasks to 

measure the orientation of attention. 

To accomplish these objectives, we conduct two laboratory studies examining the use of 

task-incongruent and task-congruent, but goal-unrelated, sensory perturbations to infer 

attentional orienting neurophysiological responses in naturalistic multisensory 

digital/physical environments using electroencephalography. To elucidate the role of 

naturalistic environments, multisensory integration, and attention during HCI tasks, we 

build on a conceptual framework that bridges multisensory integration mechanisms with 
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attention (Talsma et al., 2010). This framework demonstrates how multisensory 

integration is sensitive to both bottom-up and top-down attentional forces. 

Consequently, we develop a multisensory perturbation technique to trigger a drift of the 

allocation of attention from the HCI task toward a distractor to measure the orientation 

of attention. Finally, utilizing multisensory microworlds, we iteratively increase 

naturalness to ensure that our measurement generalizes to quasi-naturalistic 

environments. 

We empirically demonstrate that our approach is robust to complex multisensory 

environments while retaining sensitivity to task properties and top-down attention (i.e., 

attentional demand). We show that the naturalistic environment influences the 

neurophysiological response to perturbation while still being sensitive to top-down 

attentional mechanisms. Therefore, we present an approach that can be used to explore 

two significant IS and HCI research opportunities: (i) to understand better and measure 

attentional mechanisms in HCI, and (ii) to provide an approach that targets the impact of 

technology usage and design on relevant users’ cognitive mechanisms (Dimoka et al., 

2011; vom Brocke et al., 2020).  

The structure of this paper is as follows. First, we present the conceptual background. 

Next, we provide an overview of the research, followed by a description of the 

procedures, methods, perturbation design, and results for Study 1 and Study 2. Finally, 

we discuss the implications of our findings. 

4.2 Conceptual Background 

4.2.1 Multisensory integration 

Humans possess multiple sensory systems that provide complementary impressions of 

the environment, which is essential for perceptual mechanisms, cognitive processing, 

and control of motor actions in an automated fashion (Meredith, 2002). Multisensory 

modalities such as olfactory, auditory, visual, or tactile systems support daily living 

perceptions of the environment. The brain has the ability to integrate complex and 

disparate information from different modalities into a unique and coherent perceptual 

experience of a multisensory event (Talsma et al., 2010). 
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Multisensory integration refers to “the set of processes by which information arriving 

from the individual sensory modalities (e.g., vision, audition, touch) interacts and 

influences processing in other sensory modalities, including how these sensory inputs 

are combined to yield a unified perceptual experience of multisensory events” (Talsma 

et al., 2010). While this process is automatic, there is evidence that it is intertwined with 

attention (Tang et al., 2016). For example, (Talsma & Woldorff, 2005) showed that 

expected multimodal stimulations of the senses increased early neurophysiological 

responses compared to unexpected stimulations.  

Brain mechanisms integrate this information and even favor further downstream 

processing to positively bias or enhance the processing of multisensory events. Multiple 

sensory modalities increase the probability and speed of event detection events 

compared to single modalities (Diederich & Colonius, 2004; Gottfried & Dolan, 2003; 

Hagmann & Russo, 2016; Innes & Otto, 2019). It increases sensitivity and could 

improve perceptual abilities. Events stimulating multiple modalities have a higher 

chance of being prioritized for further processing, thus capturing human attentional 

resources and increasing detection time (Diederich & Colonius, 2004). This cognitive 

phenomenon is called the redundant signal effect. 
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Figure 29 

Conceptual framework on the interplay between multisensory integration and attention  

 
Note. Adapted from Talsma et al., 2010 

 

The multisensory information processing depends on several essential conditions, as 

outlined in Figure 29. (1) A multisensory event is registered when its saliency is above 

the detection threshold in one modality (e.g., vision for a spatial task) (Talsma et al., 

2010). If this condition is met, the brain will attempt to align the other modalities 

composing that event that are less dominant than the initial ones (e.g., auditory for the 

same spatial task). (2) Spatiotemporal realignment involves the alignment of sensory 

inputs across time and space (Talsma et al., 2010). Temporal and spatial alignment of 

sensory inputs is essential for the optimal integration of a multisensory event (Talsma et 

al., 2010). Aligned sensory inputs in different modalities have a higher chance of being 

prioritized for further processing, thus attracting human’s attention (Driver, 1996; Van 

der Burg et al., 2008, 2009). When this condition is met, the perceived modalities are 

congruent and evoke the same event. In addition, (3) if the realignment and congruency 

between the different modalities match, the brain allocates more resources for further 

downstream processing (Talsma et al., 2010). Congruency is achieved when spatial 
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characteristics and temporal features corresponding to multisensory events match. 

Examples of incongruent multisensory events are the McGurk illusion and the 

ventriloquist effects, in which lip movements do not match the auditory speech 

(Bertelson et al., 2000; McGurk & MacDonald, 1976). (4) Semantic analysis 

corresponds to high-level functions that can influence the integration of multisensory 

events, such as top-down processes (Talsma et al., 2010). 

This process leads to the unity assumption (Welch, 1999), “which corresponds to the 

degree to which observers infer (consciously or not) that two sensory inputs originate 

from a single common cause”. However, different modalities do not participate in the 

same degree of integration based on a bottom-up (stimulus-driven) process. The 

modality appropriateness hypothesis (Welch & Warren, 1980) posits that there are 

dominant sensory inputs depending on the characteristics of the task at hand. It means 

the task has a non-negligible influence on sensory inputs, integration, and processing.  

In the field of HCI, multisensory integration plays a crucial role in the design of 

interactive experiences. In virtual reality environments, integrating multiple sensory 

inputs (e.g., auditory, visual, haptic) can lead to more engaging and immersive 

experiences for the user. Marucci et al. (2021) showed that during a driving task in 

virtual reality environments, visual-audio and visual-audio-haptic feedback enhanced 

the sense of presence compared to visual feedback alone. However, the feedback design 

does not need to be congruent with the task and can serve as an information vector. 

Cooper et al. (2018) tested the effects of “substitute multisensory cues” on performance 

and the sense of presence and immersion. They showed that multimodal feedback 

improved task performance and increased the perceived sense of presence compared to 

bimodal and unimodal cues. Nevertheless, poorly designed multisensory environments 

have drawbacks. Multisensory integration can lead to unattended effects. A mismatch of 

sensory signals providing feedback on the body orientation might cause cybersickness 

(Gallagher & Ferrè, 2018). 

However, the characteristics of multisensory events are not the only factors influencing 

their integration. In addition, (6) top-down attentional forces influence the integration of 
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multisensory inputs (Talsma et al., 2008; Talsma et al., 2010). Stimuli attract attention 

not only because of their inherent salience but also because of their relevance to current 

goals. Top-down attention, also referred to as endogenous attention, is the “processing 

resources allocated according to internal goals or states of the observer” (Talsma et al., 

2010). In other words, top-down attentional forces refer to the attention that the 

individuals consciously or unconsciously direct toward the stimuli. It includes the 

volitional and executive control of attentional allocation, but also the context, learning, 

expectation, and historical aspects of the brain (e.g., selection history) during a task that 

influences perceptual processes (Gaspelin & Luck, 2018).  

Top-down attention modulates multisensory integration and is already underway in the 

brain before a bottom-up signal arrives. Endogenous attention can be voluntarily 

allocated to a stimulus, a sensory modality, or a specific region of space in order to 

achieve task goals. Therefore, this mechanism is crucial for allocating attentional 

resources toward relevant stimuli and inhibiting irrelevant stimuli, modalities, and 

spatial locations (Tang et al., 2016). Evidence showed that directing attention to an 

attended sensory cue enhances sensory responses (Choi et al., 2018; Hillyard et al., 

1973). Furthermore, attention can be oriented to a specific sensory modality based on 

internal goals (Tang et al., 2016). In this case, there is evidence for the presence of 

sensory gating mechanisms of the unattended modality (Talsma et al., 2007) and 

increased behavioral and neurophysiological responses to the intentionally attended 

modality (Talsma & Woldorff, 2005) (see Tang et al. (2016) for a comprehensive 

review on the interaction of endogenous and exogenous attention with multisensory 

integration). 

To conclude, attention-grabbing events (bottom-up forces) and the executive function of 

attention (top-down forces) influence attentional mechanisms in the environment. This 

indicates that the relationship between attention and multisensory integration is situated 

at the intersection of the user, the task, and the environment (Macaluso et al., 2016). 
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4.2.2 Attentional Orienting and Perturbation 

When faced with a multitude of stimuli, it is often impossible to process all the 

information simultaneously. Fortunately, the orientation of attention prioritizes 

processing certain stimuli or stimulus aspects at the cost of dealing less efficiently with 

others. Attentional orienting is a reflex that enables humans to immediately integrate 

cues in their environment under the form of multisensory stimulations (Sokolov, 1963). 

Attentional Orienting corresponds to “the process responsible for moving focus of 

attention from one location, feature or object, to another” (Talsma et al., 2010, p. 401). It 

corresponds to the automatic and covert task-directed mechanism involved in selecting 

relevant and inhibiting irrelevant sensory modalities, events, and task-related cues for 

further processing (Talsma et al., 2010). Attentional orienting is not necessarily 

followed by the detection, the conscious awareness, of the perturbation (Mulckhuyse & 

Theeuwes, 2010).  

Therefore, attention can also be involuntarily captured by exogenous sensory 

stimulations, even if the event is unrelated to the current task (Öhman et al., 2001; 

Zhang et al., 2012). The allocation of resources to this shift of attention toward a non-

goal-related perturbation can serve as a proxy measurement of the attentional orienting 

toward the task and is sensible to the multisensorial environment (Marucci et al., 2021; 

Zink et al., 2016), task properties (Burns & Fairclough, 2015; Marucci et al., 2021) and 

top-down forces (Horváth et al., 2008).  

A perturbation is an unexpected exogenous stimulation from the external world (Tang et 

al., 2016). It can take the form of an auditory (Burns & Fairclough, 2015; Conrad & 

Newman, 2021; Ladouce et al., 2019; Zink et al., 2016), visual (Barutchu & Spence, 

2021), somatosensory (Forschack et al., 2017), or multimodal stimulation (Bolton, 2015; 

Varghese et al., 2017). In this case, a perturbation is non-goal related and is triggered 

repeatedly with random intervals to avoid habituation and cognitive preparation due to 

its unpredictability (Allison & Polich, 2008; Duncan et al., 2009; Polich, 1989). This 

paradigm assumes that before a distracting event occurs, resources are allocated to 

optimize performance in the current task and that they are assigned to the processing of 
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goal-related and task-congruent (semantically matching) stimuli that are likely to 

appear. 

This orientation of attention to task-congruent features can further increase sensory 

integration and the resources allocated for its processing (Choi et al., 2018) and might 

inhibit non-relevant events. Moreover, as multisensory events are more salient than 

unisensory ones, attentional resources might be captured by the multisensory 

environment and gated for unisensory stimulation.  

In EEG research, exogenous attentional orienting toward a stimulus generates an event-

related potential (ERP). This neurophysiological response to a stimulus can characterize 

cognitive processes. In the case of sensory integration, a multisensory perturbation often 

presents an occipital P1 (positive component) and a frontocentral N1 response (negative 

component) (Talsma & Woldorff, 2005). Attentional resources toward a multisensory 

perturbation could be reflected by an enhancement of N1, followed by a late processing 

negativity in the frontal-central area. Multisensory perturbation involving body 

movement, in addition to auditory and visual stimulation, shows late potentials after N1 

such as P2 and N2 (Varghese et al., 2017). These late potentials are sensitive to the 

availability of attentional resources for an unattended perturbation (Talsma et al., 2007). 

In the case of multisensory perturbation, Quant et al. (2005) hypothesized that late 

components (P2, N2) could denote the cognitive processes linked with the task demand 

and the processing of the perturbation. 

Applied to HCI environments, multisensory aspects of the environment could influence 

the resources allocated to the attentional orientation toward an exogenous perturbation. 

A multisensory HCI environment could be attention-grabbing, which takes the form of 

directed attention resources toward processing information and inhibiting unrelated 

events. As discussed previously, it can represent the cognitive mechanisms that could 

lead to an increased sense of presence or immersion for the user (Marucci et al., 2021). 

Thus, we posit that a multisensory HCI environment will capture attentional resources 

and be observable under inhibited late components in ERPs triggered by a perturbation. 
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H1: High multisensory HCI environment will reduce the resources allocated to 

processing unexpected perturbations compared to a low multisensory one. 

However, not only the properties of the environment influence attentional mechanisms. 

Attentional orienting is sensitive to the bottom-up multisensory aspect of the 

perturbation, the environment, and top-down forces (Talsma et al., 2010). As ERPs, 

neurophysiological responses to this shift of attention are also sensitive to the user's 

internal state. The properties of the tasks could require an increase in attentional demand 

and thus force the user to voluntarily orient attentional resources toward the task or 

specific aspect of it. In this case, the user directs the top-down orientation of attention 

(motivation, concentration) when necessary and can be induced by the task demand. It 

can be applied when task-related feedback is necessary to solve the task. 

The sensitivity of early components, particularly the N1 evoked potentials (the negative 

amplitude around 100 ms), has been linked to top-down attentional processes. Quant et 

al. (2004) demonstrated that the N1 amplitude elicited by multisensory perturbation is 

reduced during a cognitively demanding task. The reduced magnitude of N1 may 

suggest the influence of top-down allocation of attentional resources toward the task on 

the early cortical activity following a perturbation. The inhibition of N1 may be 

attributed to the attentional demand required to process sensory information about the 

unexpected event. Similarly, multisensory events consisting of temporally and spatially 

aligned visual and auditory sensory perturbations have been shown to be enhanced with 

voluntary attention but reduced for ignored perturbations (Hopfinger & West, 2006; 

Talsma & Woldorff, 2005). These results show that the N1 component is modulated by 

a gating mechanism in the early perceptual stage that can be controlled by top-down 

attention.  

Applied to HCI, aspects of the computer task could influence the attentional resources 

required to achieve goals. Attentional demand requires the voluntary allocation of 

attentional resources to the task. For example, while investigating the cognitive 

mechanisms of immersion, Burns and Fairclough (2015) showed that ERPs components 

were influenced by a demand increase while playing a computer game using an 
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irrelevant unisensory perturbation. Terkildsen and Makransky (2019) showed that early 

component N1 amplitude was significantly lower during a high-presence task than a 

low-presence task during a computer game. It is to be noted that all the evidence above 

uses irrelevant auditory stimulations, and none of them used environmentally congruent 

perturbations. However, and most importantly for this research, this evidence shows that 

early components of ERPs are sensitive to top-down attention from the user, and the 

measure is sensible even in complex environments and tasks such as HCI. Thus, we 

posit as a second hypothesis: 

H2: High attentional demand periods (top-down attentional orienting toward the 

multisensory HCI environment) will reduce the resources allocated to processing 

unexpected perturbations compared to low attentional demand. 

4.3 Research Overview 

To test the hypotheses, we designed two experiments aimed at developing perturbations 

to measure the allocation of resources to a shift of attention to a non-goal-related event. 

In the first experiment, we manipulated the sensory modalities of the environment to 

assess the effect of environmental naturalness on attentional orientation, thereby testing 

H1. 

In the second experiment, we similarly manipulated the sensory modalities of the 

environment. However, we also adjust the attentional demand of the task to measure the 

sensitivity of the neurophysiological response, even in naturalistic environments and 

tasks, to top-down mechanisms. In doing so, we test both H1 and H2. 
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Table 30 

Overview of the Experiments 

Experiment Methodology Hypothesis  Perturbation 

1  Experiment 
manipulating 
multisensory HCI 
environment 

H1 Sensory Modality Auditory 

Task/Environment 
Relevance  

Task-irrelevant 
(exogenous 
distractor):  

Task/Environment 
Congruence  

Incongruent 
(unimodal 
synthetic tone) 

2 Experiment 
manipulating 
multisensory HCI 
environment and 
attention demand 

H1 and H2 Sensory Modality: Multimodal 

Task/Environment 
Relevance 

Task-irrelevant 
(exogenous 
distractor) 

Task/Environment 
Congruence 

Congruent 
(multisensory 
perturbation) 

 

4.4 Study 1 - Multisensory HCI Environment and Attentional 
Orienting 

In study #1, we test H1: a high multisensory HCI environment will show a reduction of 

the resources allocated to processing unexpected perturbations compared to a low 

multisensory one. We manipulated the naturalness of the environment with two levels, a 

high multisensory environment corresponding to the spatiotemporal alignment of three 

modalities (motion, visual, auditory) against a low multisensory environment (visual, 

auditory). All feedback modalities were temporally aligned with the task; here, a driving 

game. 

4.4.1 Procedure and manipulation 

D-BOX Technologies Inc. (Longueuil, Canada) designed and programmed the 

multisensory HCI environment stimuli, which were delivered via a D-BOX VK seat. 

The motion modality was embedded in a proprietary motion code file that was designed 

to synchronize with the computer videogame. The videogame was a driving game 

named “Dirt: Showdown” produced by Codemaster (Warwickshire, UK).  
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We used a between-group design that manipulated the HCI environment's multisensory 

aspect. At their arrival, the participant was divided into two groups, either in the high 

multisensory (HMS) condition (i.e., auditory, visual, motion) or low multisensory 

(LMS) (i.e., auditory, visual) condition.  

The task was composed of a first race, so the participants familiarized themselves with 

the controls. This first training race was the same for every participant with respect to 

their condition. Then, four races were randomly performed, and all participants played 

the same four races; only the order differed. To avoid disturbing the participant during 

the task and maintain immersion within the task some validity concerning the, the race 

order was given at the start. Then, the participant was instructed to autonomously do the 

race following a printed order provided to the participant.  

As a perceived measures and manipulation check, the participant filled out the 

Immersive Experience Questionnaire (IEQ), a subjective gaming experience 

questionnaire composed of 31 items (Jennett et al., 2008). The questionnaire was 

administered via an iPad at the end of each race. 

4.4.2 Perturbation 

To elicit attentional orientating toward a distractor, an auditory perturbation was 

designed. The perturbation duration was 1000 Hz sinewave tone of 100 milliseconds, 

with a sample rate of 44 100-kHz, and a 32-bit depth. The perturbation was presented 

just behind the participants at head level. The auditory perturbation was played with a 

second Mission 761 speaker placed 30 cm behind the participants at head level. The 

auditory perturbation was parametrized to be, on average, 10 dB higher than the game in 

order to be heard. We measured an average loudness of 84.2 dB for the tone (forward 

measurement = 84.2 dB, backward measurement = 85.5 dB). Loudness was measured 

using a REED R8080 sonometer setup at head level. This was particularly important to 

ensure the salience of the perturbation. The auditory stimuli were triggered randomly 

during the task using an interstimulus interval (ISI) following a gaussian distribution 

with an average of 12 seconds and a standard deviation of 3 seconds to avoid 

habituation and predictability.  
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To measure the onset of the auditory perturbation in the EEG data, we designed the 

auditory sound to be 2.0 stereo audio file with the right channel being the perturbation 

(100 ms, 1000 Hz sinewave tone), the left one was a square wave pulse (5 ms, 1000 Hz 

square pulse) that was rerouted directly from the receiver to the trigger box it was 

directly transmitted and marked as an event in the EEG recording. 

The audio channels of the game were routed via HDMI through a Pioneer VSX-324 AV 

receiver, with the front left and front right channels played on Mission 761 speakers 

(Mission, Huntingdon Cambridgeshire, UK) at a mean loudness of approximately 75.4 

dB (forward measurement = 75.4 dB, backward measurement = 73.9). 

4.4.3 Statistics 

Sensor-level EEG statistical analysis is performed with cluster-based permutation tests 

following (Maris & Oostenveld, 2007) in Python (3.8.11) and MNE (1.3) (Gramfort et 

al., 2013). In study #1, we developed a between-subject one-way design and performed 

a spatiotemporal cluster-based permutation F-test on all the sensor data. In study #2, we 

developed a within-subject two-factor design, where we applied a spatiotemporal 

cluster-based permutation repeated measures ANOVA. All statistics are applied at the 

2nd level, the averaged epochs of the evoked EEG responses. The FieldTrip neighbor 

templates are used to compute the adjacency between sensors. We applied the tests with 

1000 permutations on all sensor (32 channels) data in an interval between -100 ms and 

800 ms relative to stimuli onset. Critical F-value thresholds for forming a cluster were 

computed a priori, based on the statistical test employed, the number of participants, 

directionality, and the design, and for an α value of 0.05.  

The remaining statistical analyses, behavioral and subjective, are performed in R (4.1.0). 

Analysis of variance (ANOVA) is used in both study #1 (between-group) and #2 

(within-subject). To assess the internal constancy of the psychometric instruments, we 

computed Cronbach’s α with a bootstrap confidence interval (CI) based on 1000 

samples at 95%. In addition, heteroscedasticity (non-constant error variance) and the 

normal distribution of the residuals are checked. When applicable, we performed a 
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secondary analysis where statistical tests were non-significant. We calculate Base 

Factors (BF) with default priors to evaluate the absence of effect. 

4.4.4 Participants 

Sixteen healthy volunteers (mean = 26.65 ± SD 6.44 years old, 5 females) took part in 

the study. Participants were screened based on good health and normal to corrected 

vision. The experimental certificate was approved by the ethics committee of our 

institution (2022-4686). All participants gave their written and signed consent before the 

experiment. Participants were compensated 50 CAD after their participation in the 

study. 

4.4.5 EEG processing 

EEG signals were recorded raw at a 1000 Hz sampling frequency using BrainVision 

Recorder (Brain Products GmbH). EEG data processing was conducted with MNE 

(Gramfort et al., 2013) running on Python 3.7 (Figure 30). A band-pass filter (1 Hz – 40 

Hz) was applied with a notch filter at 60 Hz. Filter parameters were the following: 

Butterworth 2nd order IIR filter, hamming window with 0.0194 passband ripple and 53 

dB stopband attenuation, lower transition bandwidth: 1.00 Hz (-6 dB cutoff frequency: 

0.50 Hz), upper transition bandwidth: 10.00 Hz (-6 dB cutoff frequency: 45.00 Hz). 

Then, we conducted artifact removal using Independent Analysis (ICA) with Infomax 

method. Bad channels were removed before ICA and interpolated with a spherical spline 

interpolation after. Bad epochs were first automatically removed with a threshold of +- 

100 uV on the signal amplitude. Visual scanning for “sanity check” and rejection was 

then performed. 
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Figure 30 

EEG processing pipeline 

 

 

The processing of the EEG showed no wide difference between our conditions in the 

quality of the data (Table 31). The condition without motion shows relatively similar 

compared to the condition with motion in terms of bad channel removal (Low = 1.13 ± 

1.13; High = 1.50 ± 1.20) or excluded components due to artifacts (Low = 3.00 ± 0.76; 

High = 3.25 ± 0.89). We observed a slight difference in the number of epochs 

automatically rejected with a threshold of +- 100 uV (Low = 6.50 ± 5.73; High = 8.75 ± 

7.40), but that was expected has the activation of the chair-generated noise due to the 

motion. 

Before computing the grand average and the statistical analysis number of trials and the 

corresponding epochs were equalized. The approach tries to select for analysis an equal 

number of cleaned epochs occurring as close as possible in time between the two 

conditions. The argument for applying this technique is that we can assume a number of 

time-varying confounds in the epochs resulting from repeated auditory stimulation (e.g., 

noise, habituation). Thus, this method reduces this effect by minimizing the differences 

in the times of the events between participants. 
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Table 31 

Descriptive statistics of the EEG processing pipeline  

 
Low multisensory HCI 
environment 

High multisensory HCI 
environment 

Task average duration 853.14 ± 22.97 869.06 ± 16.62 

Bad channel 1.13 ± 1.13 1.50 ± 1.20 

ICA – Excluded Components 3.00 ± 0.76 3.25 ± 0.89 
   

# of epochs 61.63 ± 2.07 59.38 ± 2.83 

# of automatically rejected 
epochs (+- 100 uV) 

6.50 ± 5.73 8.75 ± 7.40 

# of epochs after auto 
rejection  

55.25 ± 7.55  
(15.81 % ± 16.33 %) 

51.25 ± 6.78  
(14.43 % ± 11.69 %) 

# of manually rejected epochs  6.50 ± 2.45 6.38 ± 3.11 

Final # of epochs 48.75 ± 7.57  
(21.25 % ± 10.61 %) 

44.50 ± 6.23  
(25.29 % ± 10.46 %) 

Note. Mean ± std (% of total # of epochs) 

 

4.4.6 Results 

4.4.6.1 Electroencephalography 

Grand Average ERPs are plotted in Figure 31. A visual analysis of the ERPs shows 

suppression of the positive component (P200) around 200 ms just after the first 

exogenous components (N100). 
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Figure 31 

Grand average of the auditory ERP 

 
Note. Left = low multisensory HCI environment, right = high multisensory HCI 

environment 

 

To test the difference between our two conditions (high and low multisensory HCI 

environment), we ran a between-condition spatiotemporal permutation one-tailed F-test 

on all sensors following (Maris & Oostenveld, 2007). The F threshold was selected a 

priori for a p-value of 0.05 for the given number of observations (Threshold = 4.600110, 

alpha level = 0.05). 
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Figure 32 

Statistical topography of the mean F-values 

 
Note. The color tone indicates the effect size. Blue = low multisensory HCI 

environment, Orange = high multisensory HCI environment 

 

The statistical test result shows a significant difference (p-value = 0.031) in the effect of 

the two conditions on ERP in frontal and central areas between 126 and 210 

milliseconds after initiating the sound stimulus (Figure 32), supporting H1. 

We extracted the average amplitude at P2 for the sensor Fz as the midline response of 

ERPs was shown to be the strongest in our data, and it is in line with the relevant 

literature. LMS condition presents an average amplitude of P2 at Fz of -0.02 microvolt 

(SD = 2.09, range: [-1.88, 4.56]), while HMS condition shows an average amplitude at 

the same location 1.99 mv (SD = 1.20, range: [-0.25, 3.51]). The ANOVA suggests that 

the main effect of the multisensory HCI environment is statistically significant: F(1, 13) 

= 5.03, p = 0.043; ηp2 = 0.28, 95% CI [0.06, 1.00]). 

4.4.6.2 Self-perceived measure 

We computed Cronbach’s α for internal constancy of the psychometric instrument IEQ 

(Items = 31) with a bootstrap at 95% confidence interval (CI) based on 1000 samples. 

The result shows Cronbach’s α = 0.766, CI = [0.416, 0.871]. The ANOVA suggests that 

the main effect of MS HCI is statistically significant and large (F(1, 13) = 6.55, p = 

0.024; ηp2 = 0.33, 95% CI [0.03, 1.00]).  
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4.4.6.3 Post-hoc analysis  

To look at the relationship between P2 amplitudes and self-perceived immersion, we 

correlated P2 Fz amplitude with the IEQ aggregated score. The Pearson’s correlation 

test revealed that P2 amplitudes at Fz were negatively correlated with IEQ Mean Score 

across subjects, but this effect was not statistically significant (p=0.056). However, the 

effect size (r=-0.50) is considered large per Cohen’s (1988) conventions (Figure 5.). The 

Bayes Factor for the same analysis revealed that the data were 1.881 times more 

probable under the alternative hypothesis as compared to the null hypothesis. The BF 

can be considered anecdotal evidence (Jeffreys, 1961) in favor of the alternative 

hypothesis (the existence of a correlation between P2 amplitude and subjective 

immersion). 

 

Figure 33 

Relationship between P2 mean amplitude and self-perceived immersion 
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4.5 Study 2 - Multisensory HCI Environment, Attentional Demand, 
and Attentional Orienting 

In study #2, we test H1 (a high multisensory HCI environment will show a reduction of 

the resources allocated to processing unexpected perturbations compared to a low 

multisensory one). Furthermore, we test H2 (high attentional demand periods (top-down 

attentional orienting toward the multisensory HCI environment), which states that we 

should observe a reduction of the resources allocated to processing unexpected 

perturbations compared to low attentional demand ones.). We manipulated the 

naturalness of the environment in the same fashion as study one by adding a modality, 

motion. It further increases the simulated environment's ecological validity by offering 

the sensory feedback of the body in space in the simulation, an essential sensory 

modality in driving. All feedback modalities were also temporally aligned with the task; 

here, a realistic driving simulation. Attentional demand was manipulated based on the 

lap sectors (curves were identified as high-demand sectors, straight as low-demand 

sectors). 

4.5.1 Procedure and manipulation 

This study uses a within-subject design with two factors. The first factor corresponds to 

the level of the multisensory environment (motion, visual, auditory). The second factor 

is the attentional demand of the task and is derived from the telemetry data 

corresponding to the circuit sections, straights, and curves sections (Figure 34), as low 

attentional demand (LAD) and high attentional demand (HAD), respectively.  

Participants were instructed to go the faster they could. They had two practice runs to 

discover the circuit and the controls. Then, they ran for ten laps. The simulator 

automatically stopped at the end of each lap, and the lap time was given. The 

participants were then instructed to complete a short questionnaire before starting the 

next run. Conditions were randomized between laps but balanced (50%). 
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Figure 34 

Racing trajectories and localization of perturbations 

 
Note. Racing Circuit trajectory corresponding to multiple runs from a random 

participant (blue and orange line). Green points represent the location of onset 

perturbation triggered during the laps. On top and left sides, the probability density 

function of the localization of the onset perturbation on the X and the Z axis. 

 

The perturbation was designed to fit the multisensory environment (visual, sound, 

movement). It took the form of a short vertical perturbation of 200 ms with an amplitude 

of a maximum of 1 cm of the whole chair. The vertical perturbation was relative to its 

position when triggered to ensure saliency. Perturbations were irregularly triggered to 
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avoid habituation and prediction from the participants. The interstimulus interval was 

randomly selected following a gaussian curve with an average of 7 seconds and a 

standard deviation of 2 seconds.  

To measure the perturbation onset, we used the 3D Acceleration Sensor from Brain 

Products (Germany) set at a sampling frequency of 1000 Hz (dynamic range of ± 2 g, 

sensitivity of 1450 mV/g ± 10%) connected to BrainAmp ExG AUX Box. The 

orientation of the acceleration was recorded on three orthogonal axes (x, y, z): lateral, 

distal, and ventral. The hardware was attached to the back of the chair, with the y 

position measuring the vertical acceleration. 

Data collection and signal synchronization were implemented using LabStreamingLayer 

protocol with LabRecorder as central recording software. EEG data were redirected 

from the amplifier to BrainAmp Series LSL connector. The LSL connector was used to 

stream the EEG stream, which was composed of 32 EEG channels and three 

accelerometer channels sampled at 1000Hz. Following advice from BrainVision, 

impedances, signal quality, and troubleshooting were conducted with BrainVision 

Recorder. BrainVision LSL Viewer was used to monitor the signal quality during the 

experiment. 
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Figure 35 

Experimental setup and simulator environment 

 

The driving simulator was eXpanSIM developed by Raving Bots (Wrocław, Poland). 

All telemetry data from the simulator is accessible through their C++ SDK. We 

integrated a data stream using LSL protocol as a plugin for the simulator using the SDK 

for this data collection; the plugin streams all the variables at a 50 Hz sampling rate in 

real-time. The data was recorded and synchronized using the same recording software as 

the EEG, accelerometer, and LabRecorder. It enables the telemetry data to synchronize 

with the neurophysiological data with a precision of milliseconds.  

As a perceived measures and manipulation check, the participant filled out a 

questionnaire administered via an iPad at the end of each race. The perceived presence 

was composed of 3 items (Jennett et al., 2008; Marucci et al., 2021). The reduced 

number of items was selected to fasten data collection between each lap. 

4.5.2 Participants 

Twenty-two healthy male expert driver volunteers (mean = 36.28 ± SD = 10.74 years 

old) participated in the study. Participants were screened on the basis of good health and 
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normal to corrected vision. All participants were selected with experience with race 

simulators and real-world sports driving. The experimental certificate was approved by 

the ethics committee of our institution (2022-4686). All participants gave their written 

and signed consent before the experiment. 

4.5.3 EEG processing 

The EEG signal recording and processing pipeline were precisely the same as in study 

#1. The raw signal was recorded at a 1000 Hz sampling frequency using LabRecorder  , 

the central recording software based on LabStreamingLayer . A 32 electrodes headset 

was used following the international 10–20 system. EEG data processing was conducted 

with MNE (Gramfort et al., 2013) running on Python 3.7. A band-pass filter (1 Hz – 40 

Hz) was applied with a notch filter at 60 Hz. Filter parameters were the following: 

Butterworth 2nd order IIR filter, hamming window with 0.0194 passband ripple and 53 

dB stopband attenuation, lower transition bandwidth: 1.00 Hz (-6 dB cutoff frequency: 

0.50 Hz), Upper transition bandwidth: 10.00 Hz (-6 dB cutoff frequency: 45.00 Hz). 

Then, we conducted artifact removal using Independent Analysis (ICA) with Infomax 

method. Bad channels were removed before ICA and interpolated with a spherical spline 

interpolation after. Bad epochs were first automatically removed with a threshold of +- 

100 uV on the signal amplitude. Visual scanning for “sanity checking” and rejection was 

then performed. 

ERPs onset of the perturbation was computed via the accelerometer due to latency 

between the order sent to the chair and the actual physical movement of the car (~ 100 

ms). Thus, the upward trajectory in the vertical axis y was used. To test our hypothesis 

on the effect of a multisensory HCI environment (i.e., audio-visual-motion / audio-

visual) and the effect of attentional demands of the section, we used the synchronized 

telemetry data to map the exact location of the vehicle and section during which a 

perturbation has been generated. 

4.5.4 Results 



192 
 

4.5.4.1 Electroencephalography 

Firstly, we computed the average perturbation measured via the accelerometer on the Y-

axis to ensure that the multisensory events triggered a neurophysiological response. 

Next, we computed the averaged Global Field Power (GFP) for each condition to 

observe this response better and aligned the data with the accelerometer. The data shows 

that the perturbation precedes the neurophysiological response, indicating that the 

vertical stimulation provoked increased electrical activity measured at the scalp's surface 

(Figure 36). 

Figure 36 

ERP to the multisensorial perturbation 

 
Note. On top, global field power represents all the electrodes' spatial standard deviation 

over time. Bottom: Accelerometer data in the Y-axis showing the perturbation. Blue = 

low multisensory HCI environment, Orange = high multisensory HCI environment. Full 

Line = Low demand, Dash line = high demand 
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Grand average ERPs obtained during the study are presented in Figure 37 to offer a 

visual indication of the neurophysiological response. While the same perturbation was 

triggered between conditions, substantial differences between the responses can be 

observed. 

Figure 37 

Grand average ERPs for each channel per conditions 

 
Note. High multisensory (HMS) and Low multisensory (LMS) conditions 

To test our hypotheses, we performed a two-way repeated measures ANOVA on sensor 

data with spatiotemporal clustering (Figure 38, 39). Critical F-value threshold for a two-

way ANOVA (repeated measures, within factors, one-tailed) was computed for 23 

participants, 2x2 conditions, and a p-value of 0.05. The a priori analysis gives us a F 

threshold = 4.300949. 

The interaction effect was not significant, all clusters p-value were > 0.05. However, the 

cluster‐based permutation test indicated a significant main effect between conditions 

low and high of the multisensory HCI Environment (Figure 38). Three clusters can be 

observed in the data between approximately 139 to 214 ms in the frontal area (p = 

0.005), 240 to 351 ms parietal area (p = 0.005), and 357 to 500 ms in the whole scalp (p 

= 0.011). 
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The cluster‐based permutation test indicated a significant main effect between 

conditions low and high attentional demands (Figure 39). One cluster can be observed 

between approximately 160 to 200 ms in the data (p = 0.0285), covering the frontal, 

central and parietal areas. 

 

Figure 38 

Main effect of Multisensory HCI Environment 

 

Notes. The grand average ERP represents the subtractions of LMS by HMS.  
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Figure 39 

Main effect of Attentional Demand (Low – High) 

 
Notes. The grand average ERP represents the subtractions of LAD by HAD.  

4.5.4.2 Self-Perceived Measure 

We computed the Cronbach’s α for internal constancy of the psychometric instrument of 

Presence (Items = 3) with a bootstrap at 95% confidence interval (CI) based on 1000 

samples. The result shows Cronbach’s α = 0.806, CI = [0.752, 0.850]. The average mean 

of perceived presence was 3.04 (SD = 2.02) for HMS and 2.77 (SD = 2.51) for LMS. An 

ANOVA suggests that the main effect of MS HCI environment is statistically 

insignificant F(1, 31) = 1.27, p = 0.268; ηp2 = 0.04, 95% CI [0.00, 1.00]. The Bayes 

Factor for the same analysis shows a BF10 = 0.338, representing anecdotal evidence for 

the null hypothesis compared to the alternative hypothesis. 

4.5.4.3 Behavioral Measure 

We computed the performance as the average lap time between conditions, see Figure 

40. The average run time is superior for HMS HCI condition with 112.77 seconds (SD = 

12.94, range: [97.84, 148.72]) than the LMS condition with 108.24 seconds (SD = 

10.89, range: [99.59, 148.34]). However, the difference is not statistically different. The 

repeated-measures ANOVA suggests that the main effect of MS HCI environment is 

statistically not significant (F(1, 21) = 3.87, p = 0.062; ηp2 = 0.16, 95% CI [0.00, 1.00]). 

The Bayes Factor for the same analysis shows a BF10 = 1.310, representing anecdotal 

evidence for the alternative hypothesis compared to the null hypothesis.  
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Figure 40 

Performance per conditions 

 
Note. Performance measured as Average Run Time in seconds between low 

multisensory HCI environment (LMS) and high multisensory HCI environment (HMS). 

 

4.6 Discussion 

The result of this study offers several significant contributions to research in HCI on the 

role of multisensory integration and attentional orienting and its measurement. This 

research's general goal was to better understand the orientation of attentional 

mechanisms and their relationship with the multisensory aspect of real-world HCI tasks. 

Building on a conceptual framework bridging attention and multisensory integration 

(Talsma et al., 2010), we provide a methodological approach and evidence 

demonstrating the possibility of exploring those covert mechanisms even during 

complex and dynamic tasks in quasi-naturalistic environments using a perturbation 

technique. 

We show the impact of naturalistic HCI environments on attentional orienting. Our 

results show that ERPs triggered by a shift of attention toward an auditory perturbation 
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are influenced by multisensory environments (number of sensory modalities) of the task 

and environment. Supporting H1, we showed a reduction in attentional resources 

allocated to external auditory distractors in the high multisensory HCI condition 

compared to conditions with visual and audio. This observation reflects a presumed 

increased attentional capture of multimodal environment and gating of unrelated 

distractions (Talsma et al., 2010). 

Study one showed that the early processing of stimuli is sensitive to attentional 

resources available. These results show a potential reduction of allocated attentional 

resources to the auditory distractors observable around 200 ms with a positive early 

component in the control condition, which is suppressed in the high multisensory HCI 

environment. The increased orientation and the reduced resources allocated to a shift of 

attention toward the auditory stimulation can indicate an increase in the orientation of 

attention toward the task imposed by the multisensory environment when a new sensory 

modality is added. In line with (Burns & Fairclough, 2015), this observation of the 

neurophysiological response also reflects a putative increase in attentional capture.  

Using a non-task-relevant auditory stimulation, we measured the orientation of attention 

by the resources allocated to a perturbation. However, to reduce some limitations of 

study #1, in study #2, we designed the perturbation to be task-relevant and fit the 

multisensorial environment using a vertical upward perturbation of the chair. Auditory 

stimulation might not respect the modality appropriateness hypothesis (Talsma et al., 

2010), thus inducing a more significant reduction in the shift of attention toward the 

distractor due to the saliency of the environment. 
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Table 32 

Study, perturbation, and hypothesis summary 

 Study 1 Study 2 

Perturbation 
parameters 

Modality: Auditory 
Task Relevance: Task-
irrelevant (exogenous 
distractor) 
Task/Environment 
Congruence: Incongruent 
(synthetic tone) 

Modality: Multimodal 
Task relevant: Task-irrelevant 
(exogenous distractor) 
Task/Environment Congruence: 
Congruent (multisensory upward 
perturbation) 

H1 (High-Low 
Multisensory 
Environment) 

Supported Supported 

H2 (High-Load 
Attentional Demand) 

 Supported 

 

In study two, we manipulated the naturalness of the multisensory environment to ensure 

the sensibility of the neurophysiological response of our novel perturbation design (H1). 

In the same manner, the objective of this study is to observe and measure the orientation 

of attention by the resources allocated to a perturbation. However, this distractor is a 

multisensory stimulation that fits the context of driving in a multimodal simulator.  

Similar to study one, we hypothesized that a high multisensory HCI environment would 

reduce the resources allocated to processing unexpected perturbations compared to a 

low multisensory one. We also manipulated the attentional demand based on the 

properties of specific task sections (H2). Some sections required additional top-down 

attention orientation, impacting unexpected distractor processing.  

The results show the presence of a gating mechanism applied to the perturbation within 

a high multisensory HCI environment. In line with the orientation of attention, the brain 

favors useful sensory feedback necessary for the task and inhibits irrelevant distraction, 

even in the same sensory modalities. This effect was observed in the neurophysiological 

response in the ERPs with an inhibition of the late components after N1 (Varghese et al., 

2017). This explanation is in line with Quant et al. (2005) hypothesis that late 

components of multisensory perturbation might be related to task demands or cognitive 



199 
 

processing. Thus, the multisensory environment may indeed increase the orientation of 

attention toward the task while reducing the resources allocated to processing the 

perturbation.  

Subjects allocated fewer resources to the distractor during the conditions in high 

multisensory environments and the demanding sections of the task. N100 appears to 

influence the subject's top-down attention, showing the effect of task demand on top of 

the multisensory environment. This observation aligns with current research showing 

that early ERP responses to multisensory perturbation (i.e., audio, visual, and body 

motion) are endogenous components and sensitive to the internal state of the subject 

(Quant et al., 2004; Varghese et al., 2017). Top-down attention allocation is reflected in 

a reduced N1 component in the frontocentral area (Talsma & Woldorff, 2005). 

Attentional orienting is indeed sensitive to attentional demand (top-down demand) and 

robust to the naturalness of the environment. 

Table 33 

Research implications 

Element Implication 

Empirical Attentional Orienting is sensible to the naturalness of the environment of 
HCI 

Attentional orienting is sensible to attentional demand (top-down 
demand) and robust to the naturalness of the environment  

Theoretical The study of attentional mechanisms and their interplay with sensory 
integration can shed a unique light on psychological-level constructs 
studied in IS.  

Methodological Perturbation paradigms elicit robust ERPs in ecologically valid HCI tasks 

Multisensory Perturbation techniques, we show that it is possible to 
generate an attention-orienting neurophysiological response based on 
task-congruent perturbation  

Practical Attentional Mechanisms are different in a natural task; designing 
simulators closer to reality elicit more natural cognition 

 

This paper makes a valuable contribution to the fields of cognitive neuroscience and 

mobile cognition by demonstrating the impact of the interplay between multisensory 
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integration and attention in a quasi-naturalistic environment (Gramann et al., 2011; 

Ladouce et al., 2016). Moreover, it provides further evidence that exogenous stimulation 

measures can effectively be employed to examine attention-related constructs within 

quasi-naturalistic settings. By adopting a unique theoretical and methodological 

approach, this manuscript explores cognition as an embodied process, encompassing the 

brain, body, and environment in naturalistic contexts (Matusz et al., 2019; Stangl et al., 

2023); thus, it directly contributes to the field of cognitive neuroscience. 

This research also contributes to methodological approaches in several ways. First, we 

show that perturbation paradigms can elicit an ERP that is robust enough during quasi-

naturalistic interaction to be measured and sensible to intertwined attentional factors 

such as top-down forces. It provides evidence that it can effectively measure 

unconscious attentional mechanisms even without detecting the perturbation. It adds to 

the NeuroIS methods that can help us understand users during HCI (Dimoka et al., 

2012) 

Second, we propose a multisensory perturbation technique congruent with the 

environment that minimizes interference with the HCI task. This technique can generate 

an attentional-orienting neurophysiological response based on task-congruent 

perturbation. The potential of this approach is to measure attentional orienting and proxy 

correlates (e.g., attentional demands) in an unobtrusive manner during naturalistic 

interaction with the technology. Thus, we posit that this approach is flexible in its 

application to different settings.  

Practitioners can leverage our findings and methodology to evaluate system design.  

Designing for capturing attentional resources is essential in learning and training 

environments. Training or performance-oriented simulators use multiple sensory 

modalities to augment factors associated with learning and transfer performance to the 

real world (Salas & Cannon-Bowers, 2001). Designers attempt to build digital 

simulations for training purposes by combining multiple sensory modalities without 

necessarily evaluating the artifact at the brain functions level. This manuscript shows the 

utility of neuroscience methods and mental state inference to evaluate technological 
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artifact design choices. Here, we carefully evaluated how aspects of the simulator 

impact sensory function and cognition. 

Measuring the orientation of attention inside those simulators can provide a rich 

understanding of the neurophysiological effect on users. It also can facilitate the 

evaluation of design decisions when those technological artifacts are created, and 

providing methods of evaluation for design principles is a significant component of 

NeuroIS research (vom Brocke et al., 2020). In this context, measuring the orientation of 

attention can be valuable to assess if the artifact reaches its designed goals. 

4.6.1 Limitations 

Our work carries limitations. One notable advantage of the perturbation technique is its 

ability to minimize interference with the HCI task, rendering it appealing for naturalistic 

tasks. However, it presents a fundamental limitation regarding the experimental control 

over the processing of the perturbation through detection and the recording of 

measurable behavioral responses towards it (e.g., reaction time, perturbation counting). 

This limitation is well-documented in dual-task paradigms involving perturbation (Kok, 

1997). Furthermore, another limitation we encountered relates to the challenge of 

establishing meaningful connections between neurophysiological responses and natural 

behaviors within this specific context, primarily due to the complexity inherent in the 

tasks and the associated cognitive mechanisms (Kirwan et al., 2023). 

4.6.2 Future research 

First, Further work can be invested into designing natural HCI experiments using 

multisensory perturbations that are congruent and relevant. For example, task 

interruption during HCI tasks using audio-visual stimulation can be a naturalistic 

approach to studying the impact of e-mail interruption and individual performance 

(Addas & Pinsonneault, 2018).  Integrating perturbation techniques congruent to IS 

tasks could enable the study of natural cognition at work. For example, incorporating 

visual and auditory notifications from emails or cell phone vibrations can serve as 

congruent and effective stimuli to evoke physiological responses while working. In such 
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a case, we advise using a similar approach to this thesis by incrementally ensuring the 

robustness of the neurophysiological responses from laboratory to the real-world.  

Secondly, the application of the conceptual framework of sensory integration and 

oriented attention to relevant IS phenomena is worth considering. The orientation of 

attention can be linked to psychological constructs such as immersion or presence 

(Burns & Fairclough, 2015; Marucci et al., 2021). Information System research is often 

interested in constructs at the individual level that include concepts close to attention 

and some of its mechanisms. For example, cognitive absorption is defined as “a state of 

deep involvement with software” and possesses five dimensions: Control, Curiosity, 

focused immersion, Heightened enjoyment, and temporal dissociation (Agarwal & 

Karahanna, 2000). Focused immersion refers to “the experience of total engagement 

where other attentional demands is, in essence, ignored.” This dimension is close to the 

orientation of attention and can be studied at the level of cognitive mechanisms. Our 

approach study can help us understand the implication of focused immersion during IS 

use. In the same spirit, our approach can help us investigate the experience of immersion 

in HCI, particularly real-world dissociation dimension (Jennett et al., 2008). Thus, IS 

researchers can use this method to explore relevant psychological constructs at the level 

of cognitive mechanisms.  

Thirdly, further work should focus on bridging the gap between user behavior and 

oriented attention, paving the way for a cohesive research program that unifies cognitive 

mechanisms with user behaviors. This approach aligns with a recent call for such 

integration (Kirwan et al., 2023) and holds the potential to enhance our understanding of 

the complex interplay between cognition and user actions. Moreover, it was a significant 

limitation of the current work. 

4.7 Conclusion 

This manuscript introduces an innovative ingenious perturbation technique and provides 

a conceptual framework for understanding sensory integration in naturalistic settings, 

specifically focusing on investigating oriented attention in users. This theoretical 

approach allows us to explore the role of oriented attention and sensory integration 
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within a multisensory environment. Through two studies, we gradually enhance the 

naturalness of a simulation to ensure that neurophysiological responses to the 

perturbation processing remain robust in real-world environments. Although the 

naturalness of the task can influence neurophysiological responses, the results 

demonstrate that these responses are sensitive to sensory processing and parallel top-

down attentional mechanisms. This research contributes to developing theoretical 

approaches and methodologies for studying cognition in real-world contexts. 
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Conclusion 

This thesis offers novel measurement methods and conceptual approaches for studying 

mental states during human-computer interaction in NeuroIS. Each chapter of the thesis 

contributes uniquely to this goal. The scoping review in the second chapter revealed 

current challenges in applied neuroscience within HCI and IS. It was observed that these 

challenges come, in part, from the limited conceptualization of psychophysiological 

inference and the slow adoption of state-of-the-art analytical approaches. The 

subsequent chapters aim to address these limitations through two distinct 

methodologies. The third chapter employs a data-driven methodology that utilizes state-

of-the-art machine learning techniques for mental state decoding. The aim is to 

generalize the physical brain patterns observed in a synthetic task to a naturalistic 

setting. The fourth chapter takes a more hypotheticodeductive approach, drawing upon 

the current understanding of multisensory integration and its complex interaction with 

attention and various bottom-up and top-down factors. Based on this theoretical 

foundation, a perturbation-based measure of oriented attention in EEG is developed and 

tested within naturalistic tasks specific to the IS domain. 

The overarching objective of the IT field is to gain a deeper understanding of how the 

design and utilization of information systems impact users and contribute to the 

theoretical and practical advancement of the technology (Dimoka et al., 2012; Riedl & 

Léger, 2016). This thesis aligns with this goal by offering techniques to study cognition 

during IT usage with high temporal precision, a challenge due to its naturalistic aspect 

(Riedl et al., 2020). Thus, we directly engage with the call made by Riedl et al. (2014) 

and vom Brocke et al. (2020) for more research methodology in NeuroIS.  

Furthermore, following the recommendations of vom Brocke and Liang (2014), we 

draw upon knowledge and methodologies from cognitive neuroscience while adhering 

to the rigorous procedures established within this field. Accordingly, this results in the 

rigorous benchmarking and validation methodologies applied in training neural 

networks for mental state decoding, as elaborated in Chapter 3. Additionally, Chapter 4 

presents the design of an astute perturbation design and the utilization of advanced data 
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collection architecture and analytical techniques to study oriented attention over time 

and space in a simulated environment. Our endeavor highlights significant challenges 

associated with integrating conceptual knowledge, experimental design, and analytical 

techniques in the study of cognition when considering the complexity and naturalness of 

the tasks. However, this thesis demonstrates that our rigorous approaches have yielded 

valuable findings and contributions to NeuroIS. 

Our effort illustrates the diverse paths toward improving mental state estimation during 

interactions, each possessing its strengths and weaknesses. The primary strength of 

Chapter 3 lies in its end-to-end deep learning approach for decoding mental states, 

which provides a means to operationalize and measure constructs longitudinally during 

usage. The output of the machine learning model serves as a measure in a statistical 

model while preserving the temporal nature of the phenomena, enabling the testing of 

theories that consider mental states. This approach seamlessly integrates with the current 

IS approach and offers an alternative method of studying cognition and behaviors. 

However, it is essential to acknowledge that this technique is still in its early stages and 

exhibits limitations in terms of generalizability and reliability. Nevertheless, we are 

optimistic that further research outlined below will enhance its potential as a powerful 

tool for NeuroIS researchers.  

Chapter 4 offers a conceptual foundation for understanding oriented attention in 

naturalistic contexts, aligning with our objective of investigating cognition as an 

embodied process encompassing the brain, body, and environment. This theoretical 

approach enables us to explore oriented attention within the context of sensory 

integration in a multisensory world. In doing so, we aim to enhance our understanding 

of cognition during various tasks and achieve a more comprehensive and generalized 

comprehension of cognitive processes. However, this approach necessitates specific 

methodological considerations. It required a specific experimental environment and 

design incorporating comprehensive data collection, including users' EEG, behaviors, 

and simulated surroundings. One limitation of this inherent complexity of the tasks and 

the involved cognitive mechanisms is the difficulty in establishing meaningful 

connections between neurophysiological responses and behaviors within these contexts.  
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Nevertheless, both empirical studies show the richness of conceptual, methodological, 

and analytical approaches that can be utilized to enhance state estimation during 

interactions. These diverse approaches contribute uniquely to the advancement of 

knowledge and methodology in the field of NeuroIS. Moreover, we are committed to 

undertaking further research to mitigate this limitation. 

This thesis sets the stage for many exciting future research opportunities. Chapter 2, 

through its scoping review, lays the foundation for further integrating 

neurophysiological measures into IS artifacts, also referred to as neuro-adaptive 

systems. This review paves the way for developing a conceptual framework that guides 

the design and evaluation of neuro-adaptive system artifacts within design science 

research. Defining the problem, knowledge, and solution spaces for neuro-adaptive 

systems and their components (e.g., functional components, neuropsychological 

inferences) is an essential step toward a theoretical base for designing such artifacts, 

enabling the accumulation of descriptive and prescriptive knowledge in IS. Furthermore, 

given the inherent naturalness of IS tasks, we have observed that there is still significant 

work to be done in identifying robust neurophysiological responses that are relevant to 

our field's cognitive processes. Future research should extend beyond the mere 

identification of these neurophysiological responses and also focus on the development 

of evaluation methods to determine the generalizability of such responses to natural IS 

tasks. 

Chapter 3 can inform a future methodology development manuscript for mental state 

decoding in IS with neurophysiological plausibility assessment building on the 

methodological framework used. Additionally, our deep-learning approach presents 

opportunities for further advancement. We identify three critical avenues for 

improvement. Firstly, implementing relevant data augmentation techniques can address 

the limitations of small datasets often encountered in experimental studies. Secondly, 

domain adaptation can be a powerful approach to enhance future deep learning models 

for mental state adaptation in IS. This technique adapts a model trained on one task to a 

different yet related task. Domain adaptation can improve mental state estimation 

generalizability, reliability, and robustness. Thirdly, general model development of 
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mental state estimation (i.e., across subjects) along with fine-tuning techniques show 

promise in leveraging larger datasets to enhance generalizability and expedite the 

training process. 

In Chapter 4, the focus should shift towards further generalizing the approach to 

encompass naturalistic IS tasks and enhancing ecological validity. By doing so, we aim 

to expand the boundaries and generalize our findings to more naturalistic contexts, 

including real-world IS tasks. Future research should explore the integration of seamless 

perturbation techniques into computerized tasks that closely resemble real-life scenarios. 

For example, incorporating visual and auditory notifications from e-mails or cell phone 

vibrations can serve as congruent and effective stimuli to evoke physiological responses 

while working. Furthermore, the application of the conceptual framework of sensory 

integration and oriented attention to various IS phenomena is worth considering. Further 

work should focus on bridging the gap between user behavior and oriented attention, 

paving the way for a cohesive research program that unifies cognitive mechanisms with 

user behaviors. This approach aligns with a recent call for such integration (Kirwan et 

al., 2023) and holds the potential to enhance our understanding of the complex interplay 

between cognition and user actions. Finally, it is crucial to recognize that NeuroIS offers 

a distinctive approach to understanding cognition in naturalistic contexts and provides 

direct contributions to cognitive neuroscience (Matusz et al., 2019; Stangl et al., 2023). 

Acknowledging this co-evolutionary perspective, it becomes evident that our ability to 

extend our understanding to NeuroIS tasks would significantly contribute to our overall 

comprehension of cognition. 

The approaches developed in this thesis, in conjunction with the embodied perspective 

of cognition, have the potential to enhance the traditional understanding of information 

systems (IS) phenomena, such as IT usage, interruptions, and technology-mediated 

tasks. For example, Addas and Pinsonneault (2018) demonstrated that daily 

incongruent/congruent e-mail interruptions at work impact performance through 

perceived cognitive workload and mindfulness. Similarly, Chen and Karahanna (2018) 

discovered that work-related interruptions during leisure time could lead to adverse 

outcomes, including psychological exhaustion and decreased performance in both work 
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and non-work-related activities. This thesis's methodological and theoretical approaches 

could complement these phenomena of interest, which focus on psychological aspects. 

The specific mediating mechanisms concerning users' cognition remain largely 

unexplored. Therefore, future research in NeuroIS holds promise for significantly 

advancing our understanding of why and how these detrimental effects occur via 

cognitive level mechanisms. For example, investigating how attention mechanisms and 

the integration of sensory information (such as visual and auditory cues) during 

interruptions impact exhaustion, mindfulness, and performance could provide valuable 

information. Furthermore, exploring the design of interruptions that alleviate the strain 

on attentional resources is another important avenue for research. 

Future contributions extend beyond the scope of the literature on interruption. For 

instance, Sullivan et al. (2022) focus on examining the impact of executive functions on 

IS learning outcomes. This investigation incorporates a three-dimensional 

conceptualization encompassing working memory, shifting, and inhibition. The findings 

indicate a positive correlation between these dimensions, declarative knowledge, and 

post-learning self-efficacy. However, it is essential to note that the measurement of these 

dimensions relies on behavioral assessments during neurophysiological tasks such as the 

n-back and the Stroop task. We can enhance the empirical findings by incorporating the 

approaches developed in this thesis. Chapter 4 of the thesis introduces the concept of 

oriented attention, which has been shown to be sensitive to executive functions (Talsma 

et al., 2010). Using this measure can provide valuable insight into the cognitive 

mechanisms at the physical level during IS learning tasks. Furthermore, it is worth 

considering that attention mechanisms and neurophysiological responses are influenced 

by age (Donoghue et al., 2020). Examining age-related cognitive functions can offer a 

unique perspective in comprehending the challenges older workers and IT users face in 

the workplace (Tams, 2022). 

The approaches developed in this thesis could also potentially contribute to studying 

contemporary phenomena. Adopting human-centered and cognition-centered 

approaches could provide valuable insights into the dynamics of human-AI interactions 

(Rahwan et al., 2019). Assuming that humans and AI will further interact, compete, and 



214 
 

cooperate, studying human psychological, behavioral, and cognitive phenomena is 

essential to understanding how they coexist (Dafoe et al., 2021; Makovi et al., 2023). In 

IS, multi-agents perspective, or the study of intelligent and human agents, is increasing 

in popularity (Collins et al., 2021; Padmanabhan et al., 2022). By examining how 

intelligent machines impact human behavior and cognition, we can better understand the 

underlying cognitive processes involved in delegation mechanisms when interacting 

with agentic IS artifacts (Baird & Maruping, 2021). For example, Fügener et al. (2021) 

show that human-ai collaboration positively affects human performance while 

negatively impacting unique human knowledge, showing an unexpected negative impact 

of AI on users. These insights can potentially improve the effectiveness of delegation 

mechanisms, cooperative behavior, and emergent properties of hybrid collectives. Such 

results justify the need to incorporate a cognitive level perspective of humans during 

interactions with AI to refine further interaction mechanisms that better align with 

human cognitive capabilities. Going beyond performance perspectives, we could study 

questions such as: What is the symbiotic or parasitic effect on the cognition of humans 

in hybrid dyads? Does interaction dynamics (e.g., reflexive, supervisory, anticipatory, 

prescriptive) augment or inhibit specific cognitive mechanisms? What is the impact of 

generative AI on users' cognition?  

I believe that enhancing our ability to investigate cognition within naturalistic tasks is a 

fundamental aim within the field of NeuroIS. Consequently, it is imperative to critically 

examine existing methods and develop innovative approaches, as they can significantly 

advance our understanding of how information systems impact users. This thesis 

represents a crucial step towards achieving this objective, with the aspiration of enabling 

further progress and inspiring future research in this direction. 
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Appendix 

A1 Chapter 2 

A1.1 PRISMA checklist 

Table 34 

Preferred reporting items for systematic reviews and meta-analyses extension for scoping 

reviews (prisma-scr) checklist (Tricco et al., 2018) 

SECTION ITEM PRISMA-ScR CHECKLIST ITEM REPORTED 
ON PAGE # 

TITLE 

Title 1 Identify the report as a scoping review. Page 1 

ABSTRACT 

Structured 
summary 

2 Provide a structured summary that includes (as 
applicable): background, objectives, eligibility 
criteria, sources of evidence, charting methods, 
results, conclusions and keywords that relate to 
the review questions and objectives. 

Page 1 

INTRODUCTION 

Rationale 3 Describe the rationale for the review in the 
context of what is already known. Explain why 
the review questions/objectives lend themselves 
to a scoping review approach. 

Pages 1-3 and 
9 

Objectives 4 Provide an explicit statement of the review 
question and objectives being addressed with 
reference to their key elements (e.g., population 
or participants, concepts, and context) or other 
relevant key elements used to conceptualize the 
review questions and/or objectives. 

Page 9 

METHODS 

Protocol and 
registration 

5 Indicate whether a review protocol exists; state if 
and where it can be accessed (e.g., a Web 
address); and if available, provide registration 
information, including the registration number. 

Unregistered 
review 

Eligibility criteria 6 Specify characteristics of the sources of evidence 
used as eligibility criteria (e.g., years considered, 
language, and publication status), and provide a 
rationale. 

Page 13 

Information 7 Describe all information sources in the search Page 12 
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sources* (e.g., databases with dates of coverage and 
contact with authors to identify additional 
sources), as well as the date the most recent 
search was executed. 

Search 8 Present the full electronic search strategy for at 
least 1 database, including any limits used, such 
that it could be repeated. 

Page 11 and 
Appendix  

Selection of 
sources of 
evidence† 

9 State the process for selecting sources of evidence 
(i.e., screening and eligibility) included in the 
scoping review. 

Page 13 

Data charting 
process‡ 

10 Describe the methods of charting data from the 
included sources of evidence (e.g., calibrated 
forms or forms that have been tested by the team 
before their use, and whether data charting was 
done independently or in duplicate) and any 
processes for obtaining and confirming data from 
investigators. 

Page 14 

Data items 11 List and define all variables for which data were 
sought and any assumptions and simplifications 
made. 

Appendix 

Critical appraisal 
of individual 
sources of 
evidence§ 

12 If done, provide a rationale for conducting a 
critical appraisal of included sources of evidence; 
describe the methods used and how this 
information was used in any data synthesis (if 
appropriate). 

Not 
conducted 

Synthesis of 
results 

13 Describe the methods of handling and 
summarizing the data that were charted. 

Page 38 

RESULTS 

Selection of 
sources of 
evidence 

14 Give numbers of sources of evidence screened, 
assessed for eligibility, and included in the 
review, with reasons for exclusions at each stage, 
ideally using a flow diagram. 

Pages 15-16 

Characteristics of 
sources of 
evidence 

15 For each source of evidence, present 
characteristics for which data were charted and 
provide the citations. 

Pages 15-16 

Critical appraisal 
within sources of 
evidence 

16 If done, present data on critical appraisal of 
included sources of evidence (see item 12). 

Not 
conducted 

Results of 
individual sources 
of evidence 

17 For each included source of evidence, present the 
relevant data that were charted that relate to the 
review questions and objectives. 

Results 
section 

Synthesis of 
results 

18 Summarize and/or present the charting results as 
they relate to the review questions and objectives. 

Results tables 
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DISCUSSION 

Summary of 
evidence 

19 Summarize the main results (including an 
overview of concepts, themes, and types of 
evidence available), link to the review questions 
and objectives, and consider the relevance to key 
groups. 

Discussion 

Limitations 20 Discuss the limitations of the scoping review 
process. 

Discussion 

Conclusions 21 Provide a general interpretation of the results with 
respect to the review questions and objectives, as 
well as potential implications and/or next steps. 

Discussion 

FUNDING 

Funding 22 Describe sources of funding for the included 
sources of evidence, as well as sources of funding 
for the scoping review. Describe the role of the 
funders of the scoping review. 

Ivado, 
FRQNT 

Notes. Relative paging in the scoping review.  
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A1.2 Scoping process 

A1.2.1 Search queries 
Table 35 

Phase 1 – Tuning queries 

Database # of results  Query Comment 

Web of 
Science 

215 TS=(("manifactur*" OR "smart manifactur*" OR "smart factory" OR "connected 
manufacturing" OR "industry 4.0" OR "aerospace" OR "aero*" OR "aeronautics" 
OR "automotive" OR "socio-technic*") AND ("Cognitive state" OR "mental 
state" OR "psychological state" OR "mental process" OR "mental condition") 

Observation: A lot of geriatric 
literature due to aerobic and  
mental states 

Web of 
Science 

25 TS=(("manifactur*" OR "smart manifactur*" OR "smart factory" OR "connected 
manufacturing" OR "industry 4.0" OR "aerospace" OR "aero*" OR "aeronautics" 
OR "automotive" OR "socio-technic*") AND ("Cognitive state" OR "mental 
state" OR "psychological state" OR "mental process" OR "mental condition") 
NOT ("aerobic*" OR “aerodynamic” OR “aerosol” OR “aerogenes”))  

Observation: Search operator 
NOT to exclude “aerobic, 
aerodynamic, aerosol” cleans the 
results enough. 

 

We increase the breath of the 
query. 

Web of 
Science 

1059 TS=(("manifactur*" OR "smart manifactur*" OR "smart factory" OR "connected 
manufacturing" OR "industry 4.0" OR "aerospace" OR "aero*" OR "aeronautics" 
OR "transport*" OR "automotive" OR "socio-technic*" OR "automat*" OR 
"digital automat*") AND ("cognitive state" OR "mental state" OR 
"psychological state" OR "mental process" OR "mental condition") NOT 
("aerobic*" OR “aerodynamic” OR “aerosol” OR “aerogenes”))  

Observation: geriatric, psychiatry, 
and neurology papers 

 

We increase the NOT  
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Web of 
Science 

787 TS=(("manifactur*" OR "smart manifactur*" OR "smart factory" OR "connected 
manufacturing" OR "industry 4.0" OR "aerospace" OR "aero*" OR "aeronautics" 
OR "transport*" OR "automotive" OR "socio-technic*" OR "automat*" OR 
"digital automat*") AND ("cognitive state" OR "mental state" OR 
"psychological state" OR "mental process" OR "mental condition") NOT 
("aerobic*" OR “aerodynamic” OR “aerosol” OR “aerogenes”)) NOT 
WC=("Geriatrics Gerontology" OR “Psychiatry” OR “Clinical Neurology”) 
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Table 36 

Phase 2 – Extending queries 

WoS 
2nd 
pass 
(02-28) 

4210 TS=(("manifactur*" OR "smart manifactur*" OR "smart factory" OR "connected manufacturing" OR "industry 
4.0" OR "aerospace" OR "aero*" OR "aeronautics" OR "transport*" OR "automotive" OR "socio-technic*" OR 
"automat*" OR "digital automat*" OR "cloud computing" OR "cognitive computing" OR "enterprise systems" 
OR "information system") AND ("cognitive state" OR "mental state" OR "psychological state" OR "mental 
process" OR "mental condition" OR "cognitive function" OR "cognitive mental state" OR "implicit cognitive 
processes" OR "psychological state" OR "cognition" OR "emotion") AND ("adaptive" OR "adapt*" OR 
"adaptive automation" OR "adaptive systems" OR "assistive" OR "inclusive design" OR "support" OR "human-
systems" OR "human-systems inclusion" OR "human-systems integration" OR "human-machine systems" OR 
"control systems" OR "Dependable systems" OR "Dependability" OR "rehabilitation" OR "augmented 
cognition" OR "real-time" OR "learner modeling" OR "human-automation performance" OR "cognitive state 
profile" OR "mitigation strategies" OR "biofeedback" OR "Real-time adaptive system" OR "adaptable 
automation" OR "dynamic function allocation" OR "fallback" OR "Human robot interaction" OR "Robot 
assisted" OR "psychological adjusting" OR "biofeedback" OR "cognitive performance enhancement" OR 
"Adaptive assistance" OR "Human-autonomy-teaming" OR "mental support" OR "human machine interaction" 
OR "dynamic adaptation" OR "safety, Supervisory control" OR "Dual control" OR "adaptive human-
automation systems")) 

131 papers 
screened 

Scopus 10,199 TITLE-ABS-KEY ( ( "manifactur*"  OR  "smart manifactur*"  OR  "smart factory"  OR  "connected 
manufacturing"  OR  "industry 4.0"  OR  "aerospace"  OR  "aero*"  OR  "aeronautics"  OR  "transport*"  OR  
"automotive"  OR  "socio-technic*"  OR  "automat*"  OR  "digital automat*"  OR  "cloud computing"  OR  
"cognitive computing"  OR  "enterprise systems"  OR  "information system" )  AND  ( "cognitive state"  OR  
"mental state"  OR  "psychological state"  OR  "mental process"  OR  "mental condition"  OR  "cognitive 
function"  OR  "cognitive mental state"  OR  "implicit cognitive processes"  OR  "psychological state"  OR  
"cognition"  OR  "emotion" )  AND  ( "adaptive"  OR  "adapt*"  OR  "adaptive automation"  OR  "adaptive 
systems"  OR  "assistive"  OR  "inclusive design"  OR  "support"  OR  "human-systems"  OR  "human-systems 
inclusion"  OR  "human-systems integration"  OR  "human-machine systems"  OR  "control systems"  OR  
"Dependable systems"  OR  "Dependability"  OR  "rehabilitation"  OR  "augmented cognition"  OR  "real-
time"  OR  "learner modeling"  OR  "human-automation performance"  OR  "cognitive state profile"  OR  

185 papers 
screened for 
new 
keywords 
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"mitigation strategies"  OR  "biofeedback"  OR  "Real-time adaptive system"  OR  "adaptable automation"  OR  
"dynamic function allocation"  OR  "fallback"  OR  "Human robot interaction"  OR  "Robot assisted"  OR  
"psychological adjusting"  OR  "biofeedback"  OR  "cognitive performance enhancement"  OR  "Adaptive 
assistance"  OR  "Human-autonomy-teaming"  OR  "mental support"  OR  "human machine interaction"  OR  
"dynamic adaptation"  OR  "safety, Supervisory control"  OR  "Dual control"  OR  "adaptive human-
automation systems" ) )  
 

PubMed 1225 (("manifactur*"[tiab] OR "smart factory"[tiab] OR "industry 4.0"[tiab] OR "aerospace"[tiab] OR "aero*"[tiab] 
OR "aeronautics"[tiab] OR "transport*"[tiab] OR "automotive"[tiab] OR "socio technic*"[tiab] OR 
"automat*"[tiab] OR "digital automat*"[tiab] OR "cloud computing"[tiab] OR "cognitive computing"[tiab] OR 
"enterprise systems"[tiab] OR "information system"[tiab]) AND ("cognitive state"[tiab] OR "mental state"[tiab] 
OR "psychological state"[tiab] OR "mental process"[tiab] OR "mental condition"[tiab] OR "cognitive 
function"[tiab] OR "cognitive mental state"[tiab] OR "implicit cognitive processes"[tiab] OR "psychological 
state"[tiab] OR "cognition"[tiab] OR "emotion"[tiab]) AND ("adaptive"[tiab] OR "adapt*"[tiab] OR "adaptive 
automation"[tiab] OR "adaptive systems"[tiab] OR "assistive"[tiab] OR "inclusive design"[tiab] OR 
"support"[tiab] OR "human-systems"[tiab] OR "human-systems inclusion"[tiab] OR "human-systems 
integration"[tiab] OR "human-machine systems"[tiab] OR "control systems"[tiab] OR "Dependable 
systems"[tiab] OR "Dependability"[tiab] OR "augmented cognition"[tiab] OR "real-time"[tiab] OR "learner 
modeling"[tiab] OR "human-automation performance"[tiab] OR "mitigation strategies"[tiab] OR 
"biofeedback"[tiab] OR "adaptable automation"[tiab] OR "fallback"[tiab] OR "Human robot interaction"[tiab] 
OR "Robot assisted"[All Fields] OR "biofeedback"[All Fields] OR "cognitive performance enhancement"[tiab] 
OR "Adaptive assistance"[tiab] OR "Human-autonomy-teaming"[tiab] OR "mental support"[tiab] OR "human 
machine interaction"[tiab] OR "dynamic adaptation"[tiab] OR "Dual control"[tiab] OR "adaptive human-
automation systems"[tiab])) 

158 papers 
reviewed 

ACM 
(02/28) 

3009 [[Full Text: "manifactur*"] OR [Full Text: "smart manifactur*"] OR [Full Text: "smart factory"] OR [Full Text: 
"connected manufacturing"] OR [Full Text: "industry 4.0"] OR [Full Text: "aerospace"] OR [Full Text: 
"aero*"] OR [Full Text: "aeronautics"] OR [Full Text: "transport*"] OR [Full Text: "automotive"] OR [Full 
Text: "socio-technic*"] OR [Full Text: "automat*"] OR [Full Text: "digital automat*"] OR [Full Text: "cloud 
computing"] OR [Full Text: "cognitive computing"] OR [Full Text: "enterprise systems"] OR [Full Text: 
"information system"]] AND [[Full Text: "cognitive state"] OR [Full Text: "mental state"] OR [Full Text: 
"psychological state"] OR [Full Text: "mental process"] OR [Full Text: "mental condition"] OR [Full Text: 

Book 
chapter were 
not 
considered 
(only 
conference 
and journal 
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"cognitive function"] OR [Full Text: "cognitive mental state"] OR [Full Text: "implicit cognitive processes"] 
OR [Full Text: "psychological state"] OR [Full Text: "cognition"] OR [Full Text: "emotion"]] AND [[Full Text: 
"adaptive"] OR [Full Text: "adapt*"] OR [Full Text: "adaptive automation"] OR [Full Text: "adaptive 
systems"] OR [Full Text: "assistive"] OR [Full Text: "inclusive design"] OR [Full Text: "support"] OR [Full 
Text: "human-systems"] OR [Full Text: "human-systems inclusion"] OR [Full Text: "human-systems 
integration"] OR [Full Text: "human-machine systems"] OR [Full Text: "control systems"] OR [Full Text: 
"dependable systems"] OR [Full Text: "dependability"] OR [Full Text: "rehabilitation"] OR [Full Text: 
"augmented cognition"] OR [Full Text: "real-time"] OR [Full Text: "learner modeling"] OR [Full Text: 
"human-automation performance"] OR [Full Text: "cognitive state profile"] OR [Full Text: "mitigation 
strategies"] OR [Full Text: "biofeedback"] OR [Full Text: "real-time adaptive system"] OR [Full Text: 
"adaptable automation"] OR [Full Text: "dynamic function allocation"] OR [Full Text: "fallback"] OR [Full 
Text: "human robot interaction"] OR [Full Text: "robot assisted"] OR [Full Text: "psychological adjusting"] 
OR [Full Text: "biofeedback"] OR [Full Text: "cognitive performance enhancement"] OR [Full Text: "adaptive 
assistance"] OR [Full Text: "human-autonomy-teaming"] OR [Full Text: "mental support"] OR [Full Text: 
"human machine interaction"] OR [Full Text: "dynamic adaptation"] OR [Full Text: "safety, supervisory 
control"] OR [Full Text: "dual control"] OR [Full Text: "adaptive human-automation systems"]] 

manuscripts) 
due to the 
absence of 
abstract and 
keywords 
when 
extracted 
from ACM 
database 
platform.  

 

115 papers 
screened 
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Table 37 

Phase 3 – Extending queries 

WoS 3rd 
pass 

22 
287 

TS=(“manifactur*” OR ”smart manifactur*” OR ”smart factory” OR ”connected manufacturing” OR ”industry 4.0” OR 
”aerospace” OR ”aero*” OR ”aeronautics” OR ”transport*” OR ”automotive” OR ”Automat*” OR ”digital automat*” OR 
”cloud computing” OR ”cognitive computing” OR ”enterprise systems” OR ”information system” OR ”robotics” OR 
”distance education” OR ”medical” OR ”medication service” OR ”medical” OR ”autonomous vehicules” OR ”cyber-physical 
systems” OR ”cognitive systems engineering” OR ”digital assistance systems” OR ”adaptive instructional systems” OR 
”agent based systems” OR ”Cognitive Medical Robots” OR ”Smart Environment” OR ”personalized medicine” OR 
”Ambient Intelligence” OR ”smart health environment” OR ”industrial robots” OR ”autonomous operations” OR ”medical 
robots and systems” OR ”smart cockpit” OR ”digital twin” OR ”one-to-many systems”) 

AND 

(TS=(“Cognitive state” OR ”mental state” OR ”psychological state” OR ”mental process” OR ”mental condition” OR 
”cognitive function” OR ”cognitive mental state” OR ” implicit cognitive processes” OR ”psychological state” OR 
”cognition” OR ”emotion” OR ”engagement” OR ”workload” OR ”mental workload” OR ”Situational awareness” OR 
”Multitasking” OR ”attention” OR ”drowsiness” OR ”distraction” OR ”alertness” OR ”fatigue” OR ”Boredom” OR 
”Anxiety” OR ”stress” OR ”emotion” OR ”Vigilance” OR ”Working memory” OR ”intent” OR ”distraction” OR ”alertness” 
OR ”confusion” OR ”human intention” OR ”cognitive absorption” OR ”mental diseases” OR ”information overload” OR 
”cognitive readiness”) 

AND 

TS=(“adaptive” OR ”adaptive automation” OR ”adaptive systems” OR ”assistive” OR ”inclusive design” OR ”human-
systems” OR ”human-systems inclusion” OR ”human-systems integration” OR ”human-machine systems” OR ”control 
systems” OR ”Dependable systems” OR ”Dependability” OR ”augmented cognition” OR ”real-time “ OR ”learner modeling” 
OR ”human-automation performance” OR ”cognitive state profile” OR ”mitigation strategies” OR ”biofeedback” OR ”Real-
time adaptive system” OR ”adaptable automation” OR ”dynamic function allocation” OR ”fallback” OR ”Human robot 
interaction” OR ”Robot assisted” OR ”psychological adjusting” OR ”biofeedback” OR ”cognitive performance 
enhancement” OR ”Adaptive assistance” OR ”Human-autonomy-teaming” OR ”mental support” OR ”human machine 
interaction” OR ”dynamic adaptation” OR ”Supervisory control” OR ”Dual control” OR ”adaptive human-automation 
systems” OR ”grasp planning” OR ”collaborative robots” OR ”cobots” OR ”admittance control” OR ”computer-aided 
diagnosis” OR ”social robots” OR ”Robot Assisted Training” OR ”Assistive Robotics” OR ”supervisory control” OR 
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”human in-the-loop” OR ”Cognitive assistant” OR ”intelligent assistant” OR ”virtual assistant” OR ”virtual agent” OR 
”adaptive interface” OR ”neurofeedback” OR ”driver analyzer” OR ”driver model” OR ”cognitive automation” OR ”intuitive 
cognition” OR ”embodied cognition” OR ”adaptive learning” OR ”cognitive monitoring”)) 

Scopus  58 
229 

(TITLE-ABS-KEY  

("manifactur*" OR "smart manifactur*" OR "smart factory" OR "connected manufacturing" OR "industry 4.0" OR 
"aerospace" OR "aero*" OR "aeronautics" OR "transport*" OR "automotive" OR "Automat*" OR "digital automat*" OR 
"cloud computing" OR "cognitive computing" OR "enterprise systems" OR "information system" OR "robotics" OR 
"distance education" OR "medical" OR "medication service" OR "medical" OR "autonomous vehicules" OR "cyber-physical 
systems" OR "cognitive systems engineering" OR "digital assistance systems" OR "adaptive instructional systems" OR 
"agent based systems" OR "Cognitive Medical Robots" OR "Smart Environment" OR "personalized medicine" OR "Ambient 
Intelligence" OR "smart health environment" OR "industrial robots" OR "autonomous operations" OR "medical robots and 
systems" OR "smart cockpit" OR "digital twin" OR "one-to-many systems") ) 

AND  

(TITLE-ABS-KEY ("Cognitive state" OR "mental state" OR "psychological state" OR "mental process" OR "mental 
condition" OR "cognitive function" OR "cognitive mental state" OR " implicit cognitive processes" OR "psychological state" 
OR "cognition" OR "emotion" OR "engagement" OR "workload" OR "mental workload" OR "Situational awareness" OR 
"Multitasking" OR "attention" OR "drowsiness" OR "distraction" OR "alertness" OR "fatigue" OR "Boredom" OR "Anxiety" 
OR "stress" OR "emotion" OR "Vigilance" OR "Working memory" OR "intent" OR "distraction" OR "alertness" OR 
"confusion" OR "human intention" OR "cognitive absorption" OR "mental diseases" OR "information overload" OR 
"cognitive readiness")  

AND  

(TITLE-ABS-KEY("adaptive" OR "adaptive automation" OR "adaptive systems" OR "assistive" OR "inclusive design" OR 
"human-systems" OR "human-systems inclusion" OR "human-systems integration" OR "human-machine systems" OR 
"control systems" OR "Dependable systems" OR "Dependability" OR "augmented cognition" OR "real-time " OR "learner 
modeling" OR "human-automation performance" OR "cognitive state profile" OR "mitigation strategies" OR "biofeedback" 
OR "Real-time adaptive system" OR "adaptable automation" OR "dynamic function allocation" OR "fallback" OR "Human 
robot interaction" OR "Robot assisted" OR "psychological adjusting" OR "biofeedback" OR "cognitive performance 
enhancement" OR "Adaptive assistance" OR "Human-autonomy-teaming" OR "mental support" OR "human machine 
interaction" OR "dynamic adaptation" OR "Supervisory control" OR "Dual control" OR "adaptive human-automation 
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systems" OR "grasp planning" OR "collaborative robots" OR "cobots" OR "admittance control" OR "computer-aided 
diagnosis" OR "social robots" OR "Robot Assisted Training" OR "Assistive Robotics" OR "supervisory control" OR "human 
in-the-loop" OR "Cognitive assistant" OR "intelligent assistant" OR "virtual assistant" OR "virtual agent" OR "adaptive 
interface" OR "neurofeedback" OR "driver analyzer" OR "driver model" OR "cognitive automation" OR "intuitive cognition" 
OR "embodied cognition" OR "adaptive learning" OR "cognitive monitoring")) ) 

PubMed 7 174  ("manifactur*"[tiab] OR "smart manifactur*"[tiab] OR "smart factory"[tiab] OR "connected manufacturing"[tiab] OR 
"industry 4.0"[tiab] OR "aerospace"[tiab] OR "aero*"[tiab] OR "aeronautics"[tiab] OR "transport*"[tiab] OR 
"automotive"[tiab] OR "Automat*"[tiab] OR "digital automat*"[tiab] OR "cloud computing"[tiab] OR "cognitive 
computing"[tiab] OR "enterprise systems"[tiab] OR "information system"[tiab] OR "robotics"[tiab] OR "distance 
education"[tiab] OR "medical"[tiab] OR "medication service"[tiab] OR "medical"[tiab] OR "autonomous vehicules" OR 
"cyber-physical systems"[tiab] OR "cognitive systems engineering"[tiab] OR "digital assistance systems"[tiab] OR "adaptive 
instructional systems"[tiab] OR "agent based systems"[tiab] OR "Cognitive Medical Robots"[tiab] OR "Smart 
Environment"[tiab] OR "personalized medicine"[tiab] OR "Ambient Intelligence"[tiab] OR "smart health environment"[tiab] 
OR "industrial robots"[tiab] OR "autonomous operations"[tiab] OR "medical robots and systems"[tiab] OR "smart 
cockpit"[tiab] OR "digital twin"[tiab] OR "one-to-many systems"[tiab]) 

AND  

( ("Cognitive state"[tiab] OR "mental state"[tiab] OR "psychological state"[tiab] OR "mental process"[tiab] OR "mental 
condition"[tiab] OR "cognitive function"[tiab] OR "cognitive mental state"[tiab] OR " implicit cognitive processes"[tiab] OR 
"psychological state"[tiab] OR "cognition"[tiab] OR "emotion"[tiab] OR "engagement"[tiab] OR "workload"[tiab] OR 
"mental workload"[tiab] OR "Situational awareness"[tiab] OR "Multitasking"[tiab] OR "attention"[tiab] OR 
"drowsiness"[tiab] OR "distraction"[tiab] OR "alertness"[tiab] OR "fatigue"[tiab] OR "Boredom"[tiab] OR "Anxiety"[tiab] 
OR "stress"[tiab] OR "emotion"[tiab] OR "Vigilance"[tiab] OR "Working memory"[tiab] OR "intent"[tiab] OR 
"distraction"[tiab] OR "alertness"[tiab] OR "confusion"[tiab] OR "human intention"[tiab] OR "cognitive absorption"[tiab] 
OR "mental diseases"[tiab] OR "information overload"[tiab] OR "cognitive readiness"[tiab])  

AND  

( ("adaptive"[tiab] OR "adaptive automation"[tiab] OR "adaptive systems"[tiab] OR "assistive"[tiab] OR "inclusive 
design"[tiab] OR "human-systems"[tiab] OR "human-systems inclusion"[tiab] OR "human-systems integration"[tiab] OR 
"human-machine systems"[tiab] OR "control systems"[tiab] OR "Dependable systems"[tiab] OR "Dependability"[tiab] OR 
"augmented cognition"[tiab] OR "real-time"[tiab] OR "learner modeling"[tiab] OR "human-automation performance"[tiab] 
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OR "cognitive state profile"[tiab] OR "mitigation strategies"[tiab] OR "biofeedback"[tiab] OR "Real-time adaptive 
system"[tiab] OR "adaptable automation"[tiab] OR "dynamic function allocation"[tiab] OR "fallback"[tiab] OR "Human 
robot interaction"[tiab] OR "Robot assisted"[tiab] OR "psychological adjusting"[tiab] OR "biofeedback"[tiab] OR "cognitive 
performance enhancement"[tiab] OR "Adaptive assistance"[tiab] OR "Human-autonomy-teaming"[tiab] OR "mental 
support"[tiab] OR "human machine interaction"[tiab] OR "dynamic adaptation"[tiab] OR "Supervisory control"[tiab] OR 
"Dual control"[tiab] OR "adaptive human-automation systems"[tiab] OR "grasp planning"[tiab] OR "collaborative 
robots"[tiab] OR "cobots"[tiab] OR "admittance control"[tiab] OR "computer-aided diagnosis"[tiab] OR "social robots"[tiab] 
OR "Robot Assisted Training"[tiab] OR "Assistive Robotics"[tiab] OR "supervisory control"[tiab] OR "human in-the-
loop"[tiab] OR "Cognitive assistant"[tiab] OR "intelligent assistant"[tiab] OR "virtual assistant"[tiab] OR "virtual agent"[tiab] 
OR "adaptive interface"[tiab] OR "neurofeedback"[tiab] OR "driver analyzer"[tiab] OR "driver model"[tiab] OR "cognitive 
automation"[tiab] OR "intuitive cognition"[tiab] OR "embodied cognition"[tiab] OR "adaptive learning"[tiab] OR "cognitive 
monitoring"[tiab])) ) 

 

ACM 35853 [[Full Text: "manifactur*"] OR [Full Text: "smart manifactur*"] OR [Full Text: "smart factory"] OR [Full Text: "connected 
manufacturing"] OR [Full Text: "industry 4.0"] OR [Full Text: "aerospace"] OR [Full Text: "aero*"] OR [Full Text: 
"aeronautics"] OR [Full Text: "transport*"] OR [Full Text: "automotive"] OR [Full Text: "automat*"] OR [Full Text: "digital 
automat*"] OR [Full Text: "cloud computing"] OR [Full Text: "cognitive computing"] OR [Full Text: "enterprise systems"] 
OR [Full Text: "information system"] OR [Full Text: "robotics"] OR [Full Text: "distance education"] OR [Full Text: 
"medical"] OR [Full Text: "medication service"] OR [Full Text: "medical"] OR [Full Text: "autonomous vehicules"] OR 
[Full Text: "cyber-physical systems"] OR [Full Text: "cognitive systems engineering"] OR [Full Text: "digital assistance 
systems"] OR [Full Text: "adaptive instructional systems"] OR [Full Text: "agent based systems"] OR [Full Text: "cognitive 
medical robots"] OR [Full Text: "smart environment"] OR [Full Text: "personalized medicine"] OR [Full Text: "ambient 
intelligence"] OR [Full Text: "smart health environment"] OR [Full Text: "industrial robots"] OR [Full Text: "autonomous 
operations"] OR [Full Text: "medical robots and systems"] OR [Full Text: "smart cockpit"] OR [Full Text: "digital twin"] OR 
[Full Text: "one-to-many systems"]] AND [[Full Text: "cognitive state"] OR [Full Text: "mental state"] OR [Full Text: 
"psychological state"] OR [Full Text: "mental process"] OR [Full Text: "mental condition"] OR [Full Text: "cognitive 
function"] OR [Full Text: "cognitive mental state"] OR [Full Text: " implicit cognitive processes"] OR [Full Text: 
"psychological state"] OR [Full Text: "cognition"] OR [Full Text: "emotion"] OR [Full Text: "engagement"] OR [Full Text: 
"workload"] OR [Full Text: "mental workload"] OR [Full Text: "situational awareness"] OR [Full Text: "multitasking"] OR 
[Full Text: "attention"] OR [Full Text: "drowsiness"] OR [Full Text: "distraction"] OR [Full Text: "alertness"] OR [Full Text: 
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"fatigue"] OR [Full Text: "boredom"] OR [Full Text: "anxiety"] OR [Full Text: "stress"] OR [Full Text: "emotion"] OR [Full 
Text: "vigilance"] OR [Full Text: "working memory"] OR [Full Text: "intent"] OR [Full Text: "distraction"] OR [Full Text: 
"alertness"] OR [Full Text: "confusion"] OR [Full Text: "human intention"] OR [Full Text: "cognitive absorption"] OR [Full 
Text: "mental diseases"] OR [Full Text: "information overload"] OR [Full Text: "cognitive readiness"]] AND [[All: 
"adaptive"] OR [All: "adaptive automation"] OR [All: "adaptive systems"] OR [All: "assistive"] OR [All: "inclusive design"] 
OR [All: "human-systems"] OR [All: "human-systems inclusion"] OR [All: "human-systems integration"] OR [All: "human-
machine systems"] OR [All: "control systems"] OR [All: "dependable systems"] OR [All: "dependability"] OR [All: 
"augmented cognition"] OR [All: "real-time "] OR [All: "learner modeling"] OR [All: "human-automation performance"] OR 
[All: "cognitive state profile"] OR [All: "mitigation strategies"] OR [All: "biofeedback"] OR [All: "real-time adaptive 
system"] OR [All: "adaptable automation"] OR [All: "dynamic function allocation"] OR [All: "fallback"] OR [All: "human 
robot interaction"] OR [All: "robot assisted"] OR [All: "psychological adjusting"] OR [All: "biofeedback"] OR [All: 
"cognitive performance enhancement"] OR [All: "adaptive assistance"] OR [All: "human-autonomy-teaming"] OR [All: 
"mental support"] OR [All: "human machine interaction"] OR [All: "dynamic adaptation"] OR [All: "supervisory control"] 
OR [All: "dual control"] OR [All: "adaptive human-automation systems"] OR [All: "grasp planning"] OR [All: "collaborative 
robots"] OR [All: "cobots"] OR [All: "admittance control"] OR [All: "computer-aided diagnosis"] OR [All: "social robots"] 
OR [All: "robot assisted training"] OR [All: "assistive robotics"] OR [All: "supervisory control"] OR [All: "human in-the-
loop"] OR [All: "cognitive assistant"] OR [All: "intelligent assistant"] OR [All: "virtual assistant"] OR [All: "virtual agent"] 
OR [All: "adaptive interface"] OR [All: "neurofeedback"] OR [All: "driver analyzer"] OR [All: "driver model"] OR [All: 
"cognitive automation"] OR [All: "intuitive cognition"] OR [All: "embodied cognition"] OR [All: "adaptive learning"] OR 
[All: "cognitive monitoring"]] 
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Table 38 

Phase 4 – Validation queries 

WoS  11700 TS=(“manifactur*” OR “smart manifactur*” OR “smart factory” OR “connected manufacturing” OR “industry 4.0” OR “smart 
environment” OR “digital twin” OR “internet of things” OR “control system” OR “dependable system” OR “supervisory 
control” OR “dual control” OR “aerospace” OR “aero*” OR “aeronautics” OR “transport*” OR “automotive” OR 
“autonomous vehicle” OR “smart cockpit” OR “air traffic control” OR “autonomous operation” OR “automated driving” OR 
“smart autonomous vehicle system” OR “automat*” OR “digital automat*” OR “digital assistance system” OR “automated 
decision aid” OR “ cloud computing” OR “cognitive computing” OR “enterprise system” OR “information system” OR 
“cognitive systems engineering” OR “agent based system” OR “ambient intelligence” OR “one-to-many system” OR “human-
systems” OR “human-machine system” OR “human-autonomy-teaming” OR “cognitive assistant” OR “intelligent assistant” 
OR “virtual assistant” OR “virtual agent” OR “synthetic teammate” OR “intelligent human-machine interaction” OR 
“cognitive assistance system” OR “emotional-based agent” OR “robotics” OR “cyber-physical system” OR “industrial robot” 
OR “social robot” OR “evolutionary robotics” OR “cognitive robotics” OR “aerial robotic” OR “teleoperation” OR 
“telerobotics” OR “cyber-physical-human-system” OR “human-cyber-physical system” OR “human robot interaction” OR 
“human machine interaction” OR “collaborative robot” OR “cobot” OR “physical human-robot interaction” OR “physical-
robot-human interaction” OR “shared robotic task” OR “human-robot team” OR “closed-loop human-robot interaction” OR 
“real-time human-robot interaction” OR “robotic symbiotic network” OR “human-robot collaboration” OR “safe physical 
human–robot collaboration” OR “brain mediated human-robot interaction” OR “admittance control” OR “distance education” 
OR “cognitive medical robot” OR “smart health environment” OR “medical robots and system” OR “robot assisted surgery” 
OR “robotic surgical procedures” OR “computer-aided diagnosis” OR “neuronavigation”) AND (TS=(“cognitive state” OR 
“mental state” OR “psychological state” OR “mental process” OR “mental condition” OR “cognitive function” OR “cognitive 
mental state” OR “cognitive processes” OR “psychological state” OR “cognition” OR “emotion” OR “engagement” OR 
“workload” OR “mental workload” OR “situational awareness” OR “multitasking” OR “attention” OR “drowsiness” OR 
“distraction” OR “alertness” OR “fatigue” OR “boredom” OR “anxiety” OR “stress” OR “emotion” OR “vigilance” OR 
“working memory” OR “intent” OR “distraction” OR “alertness” OR “confusion” OR “human intention” OR “cognitive 
absorption” OR “information overload” OR “cognitive readiness” OR “sleepiness” OR “attentional tunneling” OR “vigilance” 
OR “cognitive workload” OR “inattention”) AND TS=(“adaptive” OR “adapt*” OR “adaptive automation” OR “adaptive 
systems” OR “assistive” OR “inclusive design” OR “human-automation performance” OR “real-time adaptive system” OR 
“adaptable automation” OR “dynamic function allocation” OR “fallback” OR “adaptive assistance” OR “dynamic adaptation” 
OR “adaptive human-automation systems” OR “human in-the-loop” OR “adaptive interface” OR “cognitive automation” OR 
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“adaptive learning” OR “adaptive control” OR “system adaptation” OR “adaptive workload allocation” OR “adaptive aiding” 
OR “adaptive cruise control” OR “flexible automation” OR “adaptive mitigation strategies” OR “human-systems inclusion” 
OR “human-systems integration” OR “multimodal interaction” OR “biofeedback” OR “augmented cognition” OR 
“psychological adjusting” OR “biofeedback” OR “cognitive performance enhancement” OR “cognitive enhancement” OR 
“mental support” OR “neurofeedback” OR “cognitive monitoring”)) NOT TS=(“Plant” OR “Rehabilitation” OR “Disease” OR 
“Therapy” OR “Therapeutic” OR “Microbiology” OR “Microbial” OR “Pathogen” OR “Aerobic” OR “aerodynamic” OR 
“aerosol” OR “aerogenes”) 

Scopus  16792 ( (TITLE-ABS-KEY ("manifactur*" OR "smart manifactur*" OR "smart factory" OR "connected manufacturing" OR "industry 
4.0" OR "smart environment" OR "digital twin" OR "internet of things" OR "control system" OR "dependable system" OR 
"supervisory control" OR "dual control" OR "aerospace" OR "aero*" OR "aeronautics" OR "transport*" OR "automotive" OR 
"autonomous vehicle" OR "smart cockpit" OR "air traffic control" OR "autonomous operation" OR "automated driving" OR 
"smart autonomous vehicle system" OR "automat*" OR "digital automat*" OR "digital assistance system" OR "automated 
decision aid" OR " cloud computing" OR "cognitive computing" OR "enterprise system" OR "information system" OR 
"cognitive systems engineering" OR "agent based system" OR "ambient intelligence" OR "one-to-many system" OR "human-
systems" OR "human-machine system" OR "human-autonomy-teaming" OR "cognitive assistant" OR "intelligent assistant" OR 
"virtual assistant" OR "virtual agent" OR "synthetic teammate" OR "intelligent human-machine interaction" OR "cognitive 
assistance system" OR "emotional-based agent" OR "robotics" OR "cyber-physical system" OR "industrial robot" OR "social 
robot" OR "evolutionary robotics" OR "cognitive robotics" OR "aerial robotic" OR "teleoperation" OR "telerobotics" OR 
"cyber-physical-human-system" OR "human-cyber-physical system" OR "human robot interaction" OR "human machine 
interaction" OR "collaborative robot" OR "cobot" OR "physical human-robot interaction" OR "physical-robot-human 
interaction" OR "shared robotic task" OR "human-robot team" OR "closed-loop human-robot interaction" OR "real-time 
human-robot interaction" OR "robotic symbiotic network" OR "human-robot collaboration" OR "safe physical human--robot 
collaboration" OR "brain mediated human-robot interaction" OR "admittance control" OR "distance education" OR "cognitive 
medical robot" OR "smart health environment" OR "medical robots and system" OR "robot assisted surgery" OR "robotic 
surgical procedures" OR "computer-aided diagnosis" OR "neuronavigation") ) AND (TITLE-ABS-KEY ("cognitive state" OR 
"mental state" OR "psychological state" OR "mental process" OR "mental condition" OR "cognitive function" OR "cognitive 
mental state" OR "cognitive processes" OR "psychological state" OR "cognition" OR "emotion" OR "engagement" OR 
"workload" OR "mental workload" OR "situational awareness" OR "multitasking" OR "attention" OR "drowsiness" OR 
"distraction" OR "alertness" OR "fatigue" OR "boredom" OR "anxiety" OR "stress" OR "emotion" OR "vigilance" OR 
"working memory" OR "intent" OR "distraction" OR "alertness" OR "confusion" OR "human intention" OR "cognitive 
absorption" OR "information overload" OR "cognitive readiness" OR "sleepiness" OR "attentional tunneling" OR "vigilance" 
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OR "cognitive workload" OR "inattention") ) AND (TITLE-ABS-KEY ("adaptive" OR "adapt*" OR "adaptive automation" OR 
"adaptive systems" OR "assistive" OR "inclusive design" OR "human-automation performance" OR "real-time adaptive 
system" OR "adaptable automation" OR "dynamic function allocation" OR "fallback" OR "adaptive assistance" OR "dynamic 
adaptation" OR "adaptive human-automation systems" OR "human in-the-loop" OR "adaptive interface" OR "cognitive 
automation" OR "adaptive learning" OR "adaptive control" OR "system adaptation" OR "adaptive workload allocation" OR 
"adaptive aiding" OR "adaptive cruise control" OR "flexible automation" OR "adaptive mitigation strategies" OR "human-
systems inclusion" OR "human-systems integration" OR "multimodal interaction" OR "biofeedback" OR "augmented 
cognition" OR "psychological adjusting" OR "biofeedback" OR "cognitive performance enhancement" OR "cognitive 
enhancement" OR "mental support" OR "neurofeedback" OR "cognitive monitoring") ) AND NOT (TITLE-ABS-KEY ("Plant" 
OR "Rehabilitation" OR "Disease" OR "Therapy" OR "Therapeutic" OR "Microbiology" OR "Microbial" OR "Pathogen" OR 
"Aerobic" OR "aerodynamic" OR "aerosol" OR "aerogenes") ) ) AND PUBYEAR > 2011 AND ( EXCLUDE ( 
SUBJAREA,"BIOC" ) )  

PubMed 2270 ( (“manifactur*”[tiab] OR “smart manifactur*”[tiab] OR “smart factory”[tiab] OR “connected manufacturing”[tiab] OR 
“industry 4.0”[tiab] OR “smart environment”[tiab] OR “digital twin”[tiab] OR “internet of things”[tiab] OR “control 
system”[tiab] OR “dependable system”[tiab] OR “supervisory control”[tiab] OR “dual control”[tiab] OR “aerospace”[tiab] OR 
“aero*”[tiab] OR “aeronautics”[tiab] OR “transport*”[tiab] OR “automotive”[tiab] OR “autonomous vehicle”[tiab] OR “smart 
cockpit”[tiab] OR “air traffic control”[tiab] OR “autonomous operation”[tiab] OR “automated driving”[tiab] OR “smart 
autonomous vehicle system”[tiab] OR “automat*”[tiab] OR “digital automat*”[tiab] OR “digital assistance system”[tiab] OR 
“automated decision aid”[tiab] OR “cloud computing”[tiab] OR “cognitive computing”[tiab] OR “enterprise system”[tiab] OR 
“information system”[tiab] OR “cognitive systems engineering”[tiab] OR “agent based system”[tiab] OR “ambient 
intelligence”[tiab] OR “one-to-many system”[tiab] OR “human-systems”[tiab] OR “human-machine system”[tiab] OR 
“human-autonomy-teaming”[tiab] OR “cognitive assistant”[tiab] OR “intelligent assistant”[tiab] OR “virtual assistant”[tiab] 
OR “virtual agent”[tiab] OR “synthetic teammate”[tiab] OR “intelligent human-machine interaction”[tiab] OR “cognitive 
assistance system”[tiab] OR “emotional-based agent”[tiab] OR “robotics”[tiab] OR “cyber-physical system”[tiab] OR 
“industrial robot”[tiab] OR “social robot”[tiab] OR “evolutionary robotics”[tiab] OR “cognitive robotics”[tiab] OR “aerial 
robotic”[tiab] OR “teleoperation”[tiab] OR “telerobotics”[tiab] OR “cyber-physical-human-system”[tiab] OR “human-cyber-
physical system”[tiab] OR “human robot interaction”[tiab] OR “human machine interaction”[tiab] OR “collaborative 
robot”[tiab] OR “cobot”[tiab] OR “physical human-robot interaction”[tiab] OR “physical-robot-human interaction”[tiab] OR 
“shared robotic task”[tiab] OR “human-robot team”[tiab] OR “closed-loop human-robot interaction”[tiab] OR “real-time 
human-robot interaction”[tiab] OR “robotic symbiotic network”[tiab] OR “human-robot collaboration”[tiab] OR “safe physical 
human–robot collaboration”[tiab] OR “brain mediated human-robot interaction”[tiab] OR “admittance control”[tiab] OR 
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“distance education”[tiab] OR “cognitive medical robot”[tiab] OR “smart health environment”[tiab] OR “medical robots and 
system”[tiab] OR “robot assisted surgery”[tiab] OR “robotic surgical procedures”[tiab] OR “computer-aided diagnosis”[tiab] 
OR “neuronavigation”[tiab]) AND (“cognitive state”[tiab] OR “mental state”[tiab] OR “psychological state”[tiab] OR “mental 
process”[tiab] OR “mental condition”[tiab] OR “cognitive function”[tiab] OR “cognitive mental state”[tiab] OR “cognitive 
processes”[tiab] OR “psychological state”[tiab] OR “cognition”[tiab] OR “emotion”[tiab] OR “engagement”[tiab] OR 
“workload”[tiab] OR “mental workload”[tiab] OR “situational awareness”[tiab] OR “multitasking”[tiab] OR “attention”[tiab] 
OR “drowsiness”[tiab] OR “distraction”[tiab] OR “alertness”[tiab] OR “fatigue”[tiab] OR “boredom”[tiab] OR “anxiety”[tiab] 
OR “stress”[tiab] OR “emotion”[tiab] OR “vigilance”[tiab] OR “working memory”[tiab] OR “intent”[tiab] OR 
“distraction”[tiab] OR “alertness”[tiab] OR “confusion”[tiab] OR “human intention”[tiab] OR “cognitive absorption”[tiab] OR 
“information overload”[tiab] OR “cognitive readiness”[tiab] OR “sleepiness”[tiab] OR “attentional tunneling”[tiab] OR 
“vigilance”[tiab] OR “cognitive workload”[tiab] OR “inattention”[tiab]) AND (“adaptive”[tiab] OR “adapt*”[tiab] OR 
“adaptive automation”[tiab] OR “adaptive systems”[tiab] OR “assistive”[tiab] OR “inclusive design”[tiab] OR “human-
automation performance”[tiab] OR “real-time adaptive system”[tiab] OR “adaptable automation”[tiab] OR “dynamic function 
allocation”[tiab] OR “fallback”[tiab] OR “adaptive assistance”[tiab] OR “dynamic adaptation”[tiab] OR “adaptive human-
automation systems”[tiab] OR “human in-the-loop”[tiab] OR “adaptive interface”[tiab] OR “cognitive automation”[tiab] OR 
“adaptive learning”[tiab] OR “adaptive control”[tiab] OR “system adaptation”[tiab] OR “adaptive workload allocation”[tiab] 
OR “adaptive aiding”[tiab] OR “adaptive cruise control”[tiab] OR “flexible automation”[tiab] OR “adaptive mitigation 
strategies”[tiab] OR “human-systems inclusion”[tiab] OR “human-systems integration”[tiab] OR “multimodal 
interaction”[tiab] OR “biofeedback”[tiab] OR “augmented cognition”[tiab] OR “psychological adjusting”[tiab] OR 
“biofeedback”[tiab] OR “cognitive performance enhancement”[tiab] OR “cognitive enhancement”[tiab] OR “mental 
support”[tiab] OR “neurofeedback”[tiab] OR “cognitive monitoring”[tiab]) NOT (“Plant”[tiab] OR “Rehabilitation”[tiab] OR 
“Disease”[tiab] OR “Therapy”[tiab] OR “Therapeutic”[tiab] OR “Microbiology”[tiab] OR “Microbial”[tiab] OR 
“Pathogen”[tiab] OR “Aerobic”[tiab] OR “aerodynamic”[tiab] OR “aerosol”[tiab] OR “aerogenes”[tiab] OR “molecular”[tiab] 
OR “protein*” [tiab]) AND (2012:2022[pdat]) ) 

ACM 3155 [[Abstract: "manifactur*"] OR [Abstract: "smart manifactur*"] OR [Abstract: "smart factory"] OR [Abstract: "connected 
manufacturing"] OR [Abstract: "industry 4.0"] OR [Abstract: "smart environment"] OR [Abstract: "digital twin"] OR 
[Abstract: "internet of things"] OR [Abstract: "control system"] OR [Abstract: "dependable system"] OR [Abstract: 
"supervisory control"] OR [Abstract: "dual control"] OR [Abstract: "aerospace"] OR [Abstract: "aero*"] OR [Abstract: 
"aeronautics"] OR [Abstract: "transport*"] OR [Abstract: "automotive"] OR [Abstract: "autonomous vehicle"] OR [Abstract: 
"smart cockpit"] OR [Abstract: "air traffic control"] OR [Abstract: "autonomous operation"] OR [Abstract: "automated 
driving"] OR [Abstract: "smart autonomous vehicle system"] OR [Abstract: "automat*"] OR [Abstract: "digital automat*"] OR 
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[Abstract: "digital assistance system"] OR [Abstract: "automated decision aid"] OR [Abstract: " cloud computing"] OR 
[Abstract: "cognitive computing"] OR [Abstract: "enterprise system"] OR [Abstract: "information system"] OR [Abstract: 
"cognitive systems engineering"] OR [Abstract: "agent based system"] OR [Abstract: "ambient intelligence"] OR [Abstract: 
"one-to-many system"] OR [Abstract: "human-systems"] OR [Abstract: "human-machine system"] OR [Abstract: "human-
autonomy-teaming"] OR [Abstract: "cognitive assistant"] OR [Abstract: "intelligent assistant"] OR [Abstract: "virtual 
assistant"] OR [Abstract: "virtual agent"] OR [Abstract: "synthetic teammate"] OR [Abstract: "intelligent human-machine 
interaction"] OR [Abstract: "cognitive assistance system"] OR [Abstract: "emotional-based agent"] OR [Abstract: "robotics"] 
OR [Abstract: "cyber-physical system"] OR [Abstract: "industrial robot"] OR [Abstract: "social robot"] OR [Abstract: 
"evolutionary robotics"] OR [Abstract: "cognitive robotics"] OR [Abstract: "aerial robotic"] OR [Abstract: "teleoperation"] OR 
[Abstract: "telerobotics"] OR [Abstract: "cyber-physical-human-system"] OR [Abstract: "human-cyber-physical system"] OR 
[Abstract: "human robot interaction"] OR [Abstract: "human machine interaction"] OR [Abstract: "collaborative robot"] OR 
[Abstract: "cobot"] OR [Abstract: "physical human-robot interaction"] OR [Abstract: "physical-robot-human interaction"] OR 
[Abstract: "shared robotic task"] OR [Abstract: "human-robot team"] OR [Abstract: "closed-loop human-robot interaction"] OR 
[Abstract: "real-time human-robot interaction"] OR [Abstract: "robotic symbiotic network"] OR [Abstract: "human-robot 
collaboration"] OR [Abstract: "safe physical human–robot collaboration"] OR [Abstract: "brain mediated human-robot 
interaction"] OR [Abstract: "admittance control"] OR [Abstract: "distance education"] OR [Abstract: "cognitive medical 
robot"] OR [Abstract: "smart health environment"] OR [Abstract: "medical robots and system"] OR [Abstract: "robot assisted 
surgery"] OR [Abstract: "robotic surgical procedures"] OR [Abstract: "computer-aided diagnosis"] OR [Abstract: 
"neuronavigation"]] AND [[Full Text: "cognitive state"] OR [Full Text: "mental state"] OR [Full Text: "psychological state"] 
OR [Full Text: "mental process"] OR [Full Text: "mental condition"] OR [Full Text: "cognitive function"] OR [Full Text: 
"cognitive mental state"] OR [Full Text: "cognitive processes"] OR [Full Text: "psychological state"] OR [Full Text: 
"cognition"] OR [Full Text: "emotion"] OR [Full Text: "engagement"] OR [Full Text: "workload"] OR [Full Text: "mental 
workload"] OR [Full Text: "situational awareness"] OR [Full Text: "multitasking"] OR [Full Text: "attention"] OR [Full Text: 
"drowsiness"] OR [Full Text: "distraction"] OR [Full Text: "alertness"] OR [Full Text: "fatigue"] OR [Full Text: "boredom"] 
OR [Full Text: "anxiety"] OR [Full Text: "stress"] OR [Full Text: "emotion"] OR [Full Text: "vigilance"] OR [Full Text: 
"working memory"] OR [Full Text: "intent"] OR [Full Text: "distraction"] OR [Full Text: "alertness"] OR [Full Text: 
"confusion"] OR [Full Text: "human intention"] OR [Full Text: "cognitive absorption"] OR [Full Text: "information overload"] 
OR [Full Text: "cognitive readiness"] OR [Full Text: "sleepiness"] OR [Full Text: "attentional tunneling"] OR [Full Text: 
"vigilance"] OR [Full Text: "cognitive workload"] OR [Full Text: "inattention"]] AND [[Full Text: "adaptive"] OR [Full Text: 
"adapt*"] OR [Full Text: "adaptive automation"] OR [Full Text: "adaptive systems"] OR [Full Text: "assistive"] OR [Full Text: 
"inclusive design"] OR [Full Text: "human-automation performance"] OR [Full Text: "real-time adaptive system"] OR [Full 
Text: "adaptable automation"] OR [Full Text: "dynamic function allocation"] OR [Full Text: "fallback"] OR [Full Text: 
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"adaptive assistance"] OR [Full Text: "dynamic adaptation"] OR [Full Text: "adaptive human-automation systems"] OR [Full 
Text: "human in-the-loop"] OR [Full Text: "adaptive interface"] OR [Full Text: "cognitive automation"] OR [Full Text: 
"adaptive learning"] OR [Full Text: "adaptive control"] OR [Full Text: "system adaptation"] OR [Full Text: "adaptive workload 
allocation"] OR [Full Text: "adaptive aiding"] OR [Full Text: "adaptive cruise control"] OR [Full Text: "flexible automation"] 
OR [Full Text: "adaptive mitigation strategies"] OR [Full Text: "human-systems inclusion"] OR [Full Text: "human-systems 
integration"] OR [Full Text: "multimodal interaction"] OR [Full Text: "biofeedback"] OR [Full Text: "augmented cognition"] 
OR [Full Text: "psychological adjusting"] OR [Full Text: "biofeedback"] OR [Full Text: "cognitive performance 
enhancement"] OR [Full Text: "cognitive enhancement"] OR [Full Text: "mental support"] OR [Full Text: "neurofeedback"] 
OR [Full Text: "cognitive monitoring"]] AND NOT [[Abstract: "plant"] OR [Abstract: "rehabilitation"] OR [Abstract: 
"disease"] OR [Abstract: "therapy"] OR [Abstract: "therapeutic"] OR [Abstract: "microbiology"] OR [Abstract: "microbial"] 
OR [Abstract: "pathogen"] OR [Abstract: "aerobic"] OR [Abstract: "aerodynamic"] OR [Abstract: "aerosol"] OR [Abstract: 
"aerogenes"]] AND [Publication Date: (01/01/2012 TO 12/31/2022)] 
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A1.2.2 Final queries 

Data was extracted from the different database using as basis the Web of Science query. Query was adapted based on the database, 

Abstract/Title/Key word for the first part of the keyword, for the AI related keyword full text if available. 2012 to 2022 filter was set 

and when option for peer review filtering was available the option was used. 

Table 39 

Search Phase – Final queries 

WoS  2242 TS=(“manifactur*” OR “smart manifactur*” OR “smart factory” OR “connected manufacturing” OR “industry 4.0” OR “smart 
environment” OR “digital twin” OR “internet of things” OR “control system” OR “dependable system” OR “supervisory 
control” OR “dual control” OR “aerospace” OR “aero*” OR “aeronautics” OR “transport*” OR “automotive” OR 
“autonomous vehicle” OR “smart cockpit” OR “air traffic control” OR “autonomous operation” OR “automated driving” OR 
“smart autonomous vehicle system” OR “automat*” OR “digital automat*” OR “digital assistance system” OR “automated 
decision aid” OR “ cloud computing” OR “cognitive computing” OR “enterprise system” OR “information system” OR 
“cognitive systems engineering” OR “agent based system” OR “ambient intelligence” OR “one-to-many system” OR “human-
systems” OR “human-machine system” OR “human-autonomy-teaming” OR “cognitive assistant” OR “intelligent assistant” 
OR “virtual assistant” OR “virtual agent” OR “synthetic teammate” OR “intelligent human-machine interaction” OR 
“cognitive assistance system” OR “emotional-based agent” OR “robotics” OR “cyber-physical system” OR “industrial robot” 
OR “social robot” OR “evolutionary robotics” OR “cognitive robotics” OR “aerial robotic” OR “teleoperation” OR 
“telerobotics” OR “cyber-physical-human-system” OR “human-cyber-physical system” OR “human robot interaction” OR 
“human machine interaction” OR “collaborative robot” OR “cobot” OR “physical human-robot interaction” OR “physical-
robot-human interaction” OR “shared robotic task” OR “human-robot team” OR “closed-loop human-robot interaction” OR 
“real-time human-robot interaction” OR “robotic symbiotic network” OR “human-robot collaboration” OR “safe physical 
human–robot collaboration” OR “brain mediated human-robot interaction” OR “admittance control” OR “distance education” 
OR “cognitive medical robot” OR “smart health environment” OR “medical robots and system” OR “robot assisted surgery” 
OR “robotic surgical procedures” OR “computer-aided diagnosis” OR “neuronavigation”) AND (TS=(“cognitive state” OR 
“mental state” OR “psychological state” OR “mental process” OR “mental condition” OR “cognitive function” OR “cognitive 
mental state” OR “cognitive processes” OR “psychological state” OR “cognition” OR “emotion” OR “engagement” OR 
“workload” OR “mental workload” OR “situational awareness” OR “multitasking” OR “attention” OR “drowsiness” OR 
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“distraction” OR “alertness” OR “fatigue” OR “boredom” OR “anxiety” OR “stress” OR “emotion” OR “vigilance” OR 
“working memory” OR “intent” OR “distraction” OR “alertness” OR “confusion” OR “human intention” OR “cognitive 
absorption” OR “information overload” OR “cognitive readiness” OR “sleepiness” OR “attentional tunneling” OR “vigilance” 
OR “cognitive workload” OR “inattention”) AND TS=(“adaptive” OR “adapt*” OR “adaptive automation” OR “adaptive 
systems” OR “assistive” OR “inclusive design” OR “human-automation performance” OR “real-time adaptive system” OR 
“adaptable automation” OR “dynamic function allocation” OR “fallback” OR “adaptive assistance” OR “dynamic adaptation” 
OR “adaptive human-automation systems” OR “human in-the-loop” OR “adaptive interface” OR “cognitive automation” OR 
“adaptive learning” OR “adaptive control” OR “system adaptation” OR “adaptive workload allocation” OR “adaptive aiding” 
OR “adaptive cruise control” OR “flexible automation” OR “adaptive mitigation strategies” OR “human-systems inclusion” 
OR “human-systems integration” OR “multimodal interaction” OR “biofeedback” OR “augmented cognition” OR 
“psychological adjusting” OR “biofeedback” OR “cognitive performance enhancement” OR “cognitive enhancement” OR 
“mental support” OR “neurofeedback” OR “cognitive monitoring”)) AND TS=(“AI” OR “artificial intelligence” OR “digital 
intelligence” OR “machine learning” OR “analytics” OR “big data” OR “machine intelligence” OR “deep learning” OR 
“prediction model” OR “neural network” OR “computational intelligence” OR “predictive models” OR “affective computing” 
OR “physiological computing” OR “computer reasoning” OR “decision support systems” OR “big data” OR “expert systems” 
OR “statistical learning” OR “artificial consciousness” OR “machine consciousness” OR “wearable computing” OR 
“supervised learning” OR “unsupervised learning” OR “reinforcement learning” OR “artificial neural network” OR “artificial 
cognition” OR “machine perception” OR “attention-based computing” OR “computer vision” OR “support vector machines” 
OR “natural language processing” OR “convolutional neural network” OR “convolutional network” OR “computer heuristics” 
OR “regression” OR “transfer learning” OR “genetic algorithm” OR “recommender system” OR “recommendation algorithm” 
OR “random forest” OR “linear classifier” OR “nearest neighbor search” OR “decision tree” OR “hidden markov chain” OR 
“ensemble learning” OR “relevance vector machine” OR “brain-computer interface” OR “brain-machine interface” OR 
“neurotechnology”) NOT TS=(“Plant” OR “Rehabilitation” OR “Disease” OR “Therapy” OR “Therapeutic” OR 
“Microbiology” OR “Microbial” OR “Pathogen” OR “Aerobic” OR “aerodynamic” OR “aerosol” OR “aerogenes”) 

Scopus  4859 ( (TITLE-ABS-KEY ("manifactur*" OR "smart manifactur*" OR "smart factory" OR "connected manufacturing" OR "industry 
4.0" OR "smart environment" OR "digital twin" OR "internet of things" OR "control system" OR "dependable system" OR 
"supervisory control" OR "dual control" OR "aerospace" OR "aero*" OR "aeronautics" OR "transport*" OR "automotive" OR 
"autonomous vehicle" OR "smart cockpit" OR "air traffic control" OR "autonomous operation" OR "automated driving" OR 
"smart autonomous vehicle system" OR "automat*" OR "digital automat*" OR "digital assistance system" OR "automated 
decision aid" OR " cloud computing" OR "cognitive computing" OR "enterprise system" OR "information system" OR 
"cognitive systems engineering" OR "agent based system" OR "ambient intelligence" OR "one-to-many system" OR "human-



l 
 

systems" OR "human-machine system" OR "human-autonomy-teaming" OR "cognitive assistant" OR "intelligent assistant" 
OR "virtual assistant" OR "virtual agent" OR "synthetic teammate" OR "intelligent human-machine interaction" OR "cognitive 
assistance system" OR "emotional-based agent" OR "robotics" OR "cyber-physical system" OR "industrial robot" OR "social 
robot" OR "evolutionary robotics" OR "cognitive robotics" OR "aerial robotic" OR "teleoperation" OR "telerobotics" OR 
"cyber-physical-human-system" OR "human-cyber-physical system" OR "human robot interaction" OR "human machine 
interaction" OR "collaborative robot" OR "cobot" OR "physical human-robot interaction" OR "physical-robot-human 
interaction" OR "shared robotic task" OR "human-robot team" OR "closed-loop human-robot interaction" OR "real-time 
human-robot interaction" OR "robotic symbiotic network" OR "human-robot collaboration" OR "safe physical human--robot 
collaboration" OR "brain mediated human-robot interaction" OR "admittance control" OR "distance education" OR "cognitive 
medical robot" OR "smart health environment" OR "medical robots and system" OR "robot assisted surgery" OR "robotic 
surgical procedures" OR "computer-aided diagnosis" OR "neuronavigation") ) AND (TITLE-ABS-KEY ("cognitive state" OR 
"mental state" OR "psychological state" OR "mental process" OR "mental condition" OR "cognitive function" OR "cognitive 
mental state" OR "cognitive processes" OR "psychological state" OR "cognition" OR "emotion" OR "engagement" OR 
"workload" OR "mental workload" OR "situational awareness" OR "multitasking" OR "attention" OR "drowsiness" OR 
"distraction" OR "alertness" OR "fatigue" OR "boredom" OR "anxiety" OR "stress" OR "emotion" OR "vigilance" OR 
"working memory" OR "intent" OR "distraction" OR "alertness" OR "confusion" OR "human intention" OR "cognitive 
absorption" OR "information overload" OR "cognitive readiness" OR "sleepiness" OR "attentional tunneling" OR "vigilance" 
OR "cognitive workload" OR "inattention") ) AND (TITLE-ABS-KEY ("adaptive" OR "adapt*" OR "adaptive automation" 
OR "adaptive systems" OR "assistive" OR "inclusive design" OR "human-automation performance" OR "real-time adaptive 
system" OR "adaptable automation" OR "dynamic function allocation" OR "fallback" OR "adaptive assistance" OR "dynamic 
adaptation" OR "adaptive human-automation systems" OR "human in-the-loop" OR "adaptive interface" OR "cognitive 
automation" OR "adaptive learning" OR "adaptive control" OR "system adaptation" OR "adaptive workload allocation" OR 
"adaptive aiding" OR "adaptive cruise control" OR "flexible automation" OR "adaptive mitigation strategies" OR "human-
systems inclusion" OR "human-systems integration" OR "multimodal interaction" OR "biofeedback" OR "augmented 
cognition" OR "psychological adjusting" OR "biofeedback" OR "cognitive performance enhancement" OR "cognitive 
enhancement" OR "mental support" OR "neurofeedback" OR "cognitive monitoring")) AND (TITLE-ABS-KEY (“AI” OR 
“artificial intelligence” OR “digital intelligence” OR “machine learning” OR “analytics” OR “big data” OR “machine 
intelligence” OR “deep learning” OR “prediction model” OR “neural network” OR “computational intelligence” OR 
“predictive models” OR “affective computing” OR “physiological computing” OR “computer reasoning” OR “decision 
support systems” OR “big data” OR “expert systems” OR “statistical learning” OR “artificial consciousness” OR “machine 
consciousness” OR “wearable computing” OR “supervised learning” OR “unsupervised learning” OR “reinforcement 
learning” OR “artificial neural network” OR “artificial cognition” OR “machine perception” OR “attention-based computing” 
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OR “computer vision” OR “support vector machines” OR “natural language processing” OR “convolutional neural network” 
OR “convolutional network” OR “computer heuristics” OR “regression” OR “transfer learning” OR “genetic algorithm” OR 
“recommender system” OR “recommendation algorithm” OR “random forest” OR “linear classifier” OR “nearest neighbor 
search” OR “decision tree” OR “hidden markov chain” OR “ensemble learning” OR “relevance vector machine” OR “brain-
computer interface” OR “brain-machine interface” OR “neurotechnology”)) AND NOT (TITLE-ABS-KEY ("Plant" OR 
"Rehabilitation" OR "Disease" OR "Therapy" OR "Therapeutic" OR "Microbiology" OR "Microbial" OR "Pathogen" OR 
"Aerobic" OR "aerodynamic" OR "aerosol" OR "aerogenes") ) ) AND PUBYEAR > 2011 AND ( EXCLUDE ( 
SUBJAREA,"BIOC" ) )  

PubMed 395 ( (“manifactur*”[tiab] OR “smart manifactur*”[tiab] OR “smart factory”[tiab] OR “connected manufacturing”[tiab] OR 
“industry 4.0”[tiab] OR “smart environment”[tiab] OR “digital twin”[tiab] OR “internet of things”[tiab] OR “control 
system”[tiab] OR “dependable system”[tiab] OR “supervisory control”[tiab] OR “dual control”[tiab] OR “aerospace”[tiab] OR 
“aero*”[tiab] OR “aeronautics”[tiab] OR “transport*”[tiab] OR “automotive”[tiab] OR “autonomous vehicle”[tiab] OR “smart 
cockpit”[tiab] OR “air traffic control”[tiab] OR “autonomous operation”[tiab] OR “automated driving”[tiab] OR “smart 
autonomous vehicle system”[tiab] OR “automat*”[tiab] OR “digital automat*”[tiab] OR “digital assistance system”[tiab] OR 
“automated decision aid”[tiab] OR “cloud computing”[tiab] OR “cognitive computing”[tiab] OR “enterprise system”[tiab] OR 
“information system”[tiab] OR “cognitive systems engineering”[tiab] OR “agent based system”[tiab] OR “ambient 
intelligence”[tiab] OR “one-to-many system”[tiab] OR “human-systems”[tiab] OR “human-machine system”[tiab] OR 
“human-autonomy-teaming”[tiab] OR “cognitive assistant”[tiab] OR “intelligent assistant”[tiab] OR “virtual assistant”[tiab] 
OR “virtual agent”[tiab] OR “synthetic teammate”[tiab] OR “intelligent human-machine interaction”[tiab] OR “cognitive 
assistance system”[tiab] OR “emotional-based agent”[tiab] OR “robotics”[tiab] OR “cyber-physical system”[tiab] OR 
“industrial robot”[tiab] OR “social robot”[tiab] OR “evolutionary robotics”[tiab] OR “cognitive robotics”[tiab] OR “aerial 
robotic”[tiab] OR “teleoperation”[tiab] OR “telerobotics”[tiab] OR “cyber-physical-human-system”[tiab] OR “human-cyber-
physical system”[tiab] OR “human robot interaction”[tiab] OR “human machine interaction”[tiab] OR “collaborative 
robot”[tiab] OR “cobot”[tiab] OR “physical human-robot interaction”[tiab] OR “physical-robot-human interaction”[tiab] OR 
“shared robotic task”[tiab] OR “human-robot team”[tiab] OR “closed-loop human-robot interaction”[tiab] OR “real-time 
human-robot interaction”[tiab] OR “robotic symbiotic network”[tiab] OR “human-robot collaboration”[tiab] OR “safe physical 
human–robot collaboration”[tiab] OR “brain mediated human-robot interaction”[tiab] OR “admittance control”[tiab] OR 
“distance education”[tiab] OR “cognitive medical robot”[tiab] OR “smart health environment”[tiab] OR “medical robots and 
system”[tiab] OR “robot assisted surgery”[tiab] OR “robotic surgical procedures”[tiab] OR “computer-aided diagnosis”[tiab] 
OR “neuronavigation”[tiab]) AND (“cognitive state”[tiab] OR “mental state”[tiab] OR “psychological state”[tiab] OR “mental 
process”[tiab] OR “mental condition”[tiab] OR “cognitive function”[tiab] OR “cognitive mental state”[tiab] OR “cognitive 
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processes”[tiab] OR “psychological state”[tiab] OR “cognition”[tiab] OR “emotion”[tiab] OR “engagement”[tiab] OR 
“workload”[tiab] OR “mental workload”[tiab] OR “situational awareness”[tiab] OR “multitasking”[tiab] OR “attention”[tiab] 
OR “drowsiness”[tiab] OR “distraction”[tiab] OR “alertness”[tiab] OR “fatigue”[tiab] OR “boredom”[tiab] OR “anxiety”[tiab] 
OR “stress”[tiab] OR “emotion”[tiab] OR “vigilance”[tiab] OR “working memory”[tiab] OR “intent”[tiab] OR 
“distraction”[tiab] OR “alertness”[tiab] OR “confusion”[tiab] OR “human intention”[tiab] OR “cognitive absorption”[tiab] OR 
“information overload”[tiab] OR “cognitive readiness”[tiab] OR “sleepiness”[tiab] OR “attentional tunneling”[tiab] OR 
“vigilance”[tiab] OR “cognitive workload”[tiab] OR “inattention”[tiab]) AND (“adaptive”[tiab] OR “adapt*”[tiab] OR 
“adaptive automation”[tiab] OR “adaptive systems”[tiab] OR “assistive”[tiab] OR “inclusive design”[tiab] OR “human-
automation performance”[tiab] OR “real-time adaptive system”[tiab] OR “adaptable automation”[tiab] OR “dynamic function 
allocation”[tiab] OR “fallback”[tiab] OR “adaptive assistance”[tiab] OR “dynamic adaptation”[tiab] OR “adaptive human-
automation systems”[tiab] OR “human in-the-loop”[tiab] OR “adaptive interface”[tiab] OR “cognitive automation”[tiab] OR 
“adaptive learning”[tiab] OR “adaptive control”[tiab] OR “system adaptation”[tiab] OR “adaptive workload allocation”[tiab] 
OR “adaptive aiding”[tiab] OR “adaptive cruise control”[tiab] OR “flexible automation”[tiab] OR “adaptive mitigation 
strategies”[tiab] OR “human-systems inclusion”[tiab] OR “human-systems integration”[tiab] OR “multimodal 
interaction”[tiab] OR “biofeedback”[tiab] OR “augmented cognition”[tiab] OR “psychological adjusting”[tiab] OR 
“biofeedback”[tiab] OR “cognitive performance enhancement”[tiab] OR “cognitive enhancement”[tiab] OR “mental 
support”[tiab] OR “neurofeedback”[tiab] OR “cognitive monitoring”[tiab]) AND (“AI”[All Fields] OR “artificial 
intelligence”[All Fields] OR “digital intelligence”[All Fields] OR “machine learning”[All Fields] OR “analytics”[All Fields] 
OR “big data”[All Fields] OR “machine intelligence”[All Fields] OR “deep learning”[All Fields] OR “prediction model”[All 
Fields] OR “neural network”[All Fields] OR “computational intelligence”[All Fields] OR “predictive models”[All Fields] OR 
“affective computing”[All Fields] OR “physiological computing”[All Fields] OR “computer reasoning”[All Fields] OR 
“decision support systems”[All Fields] OR “big data”[All Fields] OR “expert systems”[All Fields] OR “statistical 
learning”[All Fields] OR “artificial consciousness”[All Fields] OR “machine consciousness”[All Fields] OR “wearable 
computing”[All Fields] OR “supervised learning”[All Fields] OR “unsupervised learning”[All Fields] OR “reinforcement 
learning”[All Fields] OR “artificial neural network”[All Fields] OR “artificial cognition”[All Fields] OR “machine 
perception”[All Fields] OR “attention-based computing”[All Fields] OR “computer vision”[All Fields] OR “support vector 
machines”[All Fields] OR “natural language processing”[All Fields] OR “convolutional neural network”[All Fields] OR 
“convolutional network”[All Fields] OR “computer heuristics”[All Fields] OR “regression”[All Fields] OR “transfer 
learning”[All Fields] OR “genetic algorithm”[All Fields] OR “recommender system”[All Fields] OR “recommendation 
algorithm”[All Fields] OR “random forest”[All Fields] OR “linear classifier”[All Fields] OR “nearest neighbor search”[All 
Fields] OR “decision tree”[All Fields] OR “hidden markov chain”[All Fields] OR “ensemble learning”[All Fields] OR 
“relevance vector machine”[All Fields] OR “brain-computer interface”[All Fields] OR “brain-machine interface”[All Fields] 
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OR “neurotechnology”[All Fields]) NOT (“Plant”[tiab] OR “Rehabilitation”[tiab] OR “Disease”[tiab] OR “Therapy”[tiab] OR 
“Therapeutic”[tiab] OR “Microbiology”[tiab] OR “Microbial”[tiab] OR “Pathogen”[tiab] OR “Aerobic”[tiab] OR 
“aerodynamic”[tiab] OR “aerosol”[tiab] OR “aerogenes”[tiab] OR “molecular”[tiab] OR “protein*” [tiab]) AND 
(2012:2022[pdat]) ) 

Proquest 185 ab(("manifactur*" OR "smart manifactur*" OR "smart factory" OR "connected manufacturing" OR "industry 4.0" OR "smart 
environment" OR "digital twin" OR "internet of things" OR "control system" OR "dependable system" OR "supervisory 
control" OR "dual control" OR "aerospace" OR "aero*" OR "aeronautics" OR "transport*" OR "automotive" OR "autonomous 
vehicle" OR "smart cockpit" OR "air traffic control" OR "autonomous operation" OR "automated driving" OR "smart 
autonomous vehicle system" OR "automat*" OR "digital automat*" OR "digital assistance system" OR "automated decision 
aid" OR " cloud computing" OR "cognitive computing" OR "enterprise system" OR "information system" OR "cognitive 
systems engineering" OR "agent based system" OR "ambient intelligence" OR "one-to-many system" OR "human-systems" 
OR "human-machine system" OR "human-autonomy-teaming" OR "cognitive assistant" OR "intelligent assistant" OR "virtual 
assistant" OR "virtual agent" OR "synthetic teammate" OR "intelligent human-machine interaction" OR "cognitive assistance 
system" OR "emotional-based agent" OR "robotics" OR "cyber-physical system" OR "industrial robot" OR "social robot" OR 
"evolutionary robotics" OR "cognitive robotics" OR "aerial robotic" OR "teleoperation" OR "telerobotics" OR "cyber-
physical-human-system" OR "human-cyber-physical system" OR "human robot interaction" OR "human machine interaction" 
OR "collaborative robot" OR "cobot" OR "physical human-robot interaction" OR "physical-robot-human interaction" OR 
"shared robotic task" OR "human-robot team" OR "closed-loop human-robot interaction" OR "real-time human-robot 
interaction" OR "robotic symbiotic network" OR "human-robot collaboration" OR "safe physical human robot collaboration" 
OR "brain mediated human-robot interaction" OR "admittance control" OR "distance education" OR "cognitive medical robot" 
OR "smart health environment" OR "medical robots and system" OR "robot assisted surgery" OR "robotic surgical 
procedures" OR "computer-aided diagnosis" OR "neuronavigation")) AND ab(("cognitive state" OR "mental state" OR 
"psychological state" OR "mental process" OR "mental condition" OR "cognitive function" OR "cognitive mental state" OR 
"cognitive processes" OR "psychological state" OR "cognition" OR "emotion" OR "engagement" OR "workload" OR "mental 
workload" OR "situational awareness" OR "multitasking" OR "attention" OR "drowsiness" OR "distraction" OR "alertness" 
OR "fatigue" OR "boredom" OR "anxiety" OR "stress" OR "emotion" OR "vigilance" OR "working memory" OR "intent" OR 
"distraction" OR "alertness" OR "confusion" OR "human intention" OR "cognitive absorption" OR "information overload" OR 
"cognitive readiness" OR "sleepiness" OR "attentional tunneling" OR "vigilance" OR "cognitive workload" OR "inattention")) 
AND ab(("adaptive" OR "adapt*" OR "adaptive automation" OR "adaptive systems" OR "assistive" OR "inclusive design" OR 
"human-automation performance" OR "real-time adaptive system" OR "adaptable automation" OR "dynamic function 
allocation" OR "fallback" OR "adaptive assistance" OR "dynamic adaptation" OR "adaptive human-automation systems" OR 
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"human in-the-loop" OR "adaptive interface" OR "cognitive automation" OR "adaptive learning" OR "adaptive control" OR 
"system adaptation" OR "adaptive workload allocation" OR "adaptive aiding" OR "adaptive cruise control" OR "flexible 
automation" OR "adaptive mitigation strategies" OR "human-systems inclusion" OR "human-systems integration" OR 
"multimodal interaction" OR "biofeedback" OR "augmented cognition" OR "psychological adjusting" OR "biofeedback" OR 
"cognitive performance enhancement" OR "cognitive enhancement" OR "mental support" OR "neurofeedback" OR "cognitive 
monitoring")) AND ("AI" OR "artificial intelligence" OR "digital intelligence" OR "machine learning" OR "analytics" OR "big 
data" OR "machine intelligence" OR "deep learning" OR "prediction model" OR "neural network" OR "computational 
intelligence" OR "predictive models" OR "affective computing" OR "physiological computing" OR "computer reasoning" OR 
"decision support systems" OR "big data" OR "expert systems" OR "statistical learning" OR "artificial consciousness" OR 
"machine consciousness" OR "wearable computing" OR "supervised learning" OR "unsupervised learning" OR "reinforcement 
learning" OR "artificial neural network" OR "artificial cognition" OR "machine perception" OR "attention-based computing" 
OR "computer vision" OR "support vector machines" OR "natural language processing" OR "convolutional neural network" 
OR "convolutional network" OR "computer heuristics" OR "regression" OR "transfer learning" OR "genetic algorithm" OR 
"recommender system" OR "recommendation algorithm" OR "random forest" OR "linear classifier" OR "nearest neighbor 
search" OR "decision tree" OR "hidden Markov chain" OR "ensemble learning" OR "relevance vector machine" OR "brain-
computer interface" OR "brain-machine interface" OR "neurotechnology") 

PsyInfo 150 (“manifactur*” OR “smart manifactur*” OR “smart factory” OR “connected manufacturing” OR “industry 4.0” OR “smart 
environment” OR “digital twin” OR “internet of things” OR “control system” OR “dependable system” OR “supervisory 
control” OR “dual control” OR “aerospace” OR “aero*” OR “aeronautics” OR “transport*” OR “automotive” OR 
“autonomous vehicle” OR “smart cockpit” OR “air traffic control” OR “autonomous operation” OR “automated driving” OR 
“smart autonomous vehicle system” OR “automat*” OR “digital automat*” OR “digital assistance system” OR “automated 
decision aid” OR “ cloud computing” OR “cognitive computing” OR “enterprise system” OR “information system” OR 
“cognitive systems engineering” OR “agent based system” OR “ambient intelligence” OR “one-to-many system” OR “human-
systems” OR “human-machine system” OR “human-autonomy-teaming” OR “cognitive assistant” OR “intelligent assistant” 
OR “virtual assistant” OR “virtual agent” OR “synthetic teammate” OR “intelligent human-machine interaction” OR 
“cognitive assistance system” OR “emotional-based agent” OR “robotics” OR “cyber-physical system” OR “industrial robot” 
OR “social robot” OR “evolutionary robotics” OR “cognitive robotics” OR “aerial robotic” OR “teleoperation” OR 
“telerobotics” OR “cyber-physical-human-system” OR “human-cyber-physical system” OR “human robot interaction” OR 
“human machine interaction” OR “collaborative robot” OR “cobot” OR “physical human-robot interaction” OR “physical-
robot-human interaction” OR “shared robotic task” OR “human-robot team” OR “closed-loop human-robot interaction” OR 
“real-time human-robot interaction” OR “robotic symbiotic network” OR “human-robot collaboration” OR “safe physical 
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human–robot collaboration” OR “brain mediated human-robot interaction” OR “admittance control” OR “distance education” 
OR “cognitive medical robot” OR “smart health environment” OR “medical robots and system” OR “robot assisted surgery” 
OR “robotic surgical procedures” OR “computer-aided diagnosis” OR “neuronavigation”) AND Abstract: (“cognitive state” 
OR “mental state” OR “psychological state” OR “mental process” OR “mental condition” OR “cognitive function” OR 
“cognitive mental state” OR “cognitive processes” OR “psychological state” OR “cognition” OR “emotion” OR “engagement” 
OR “workload” OR “mental workload” OR “situational awareness” OR “multitasking” OR “attention” OR “drowsiness” OR 
“distraction” OR “alertness” OR “fatigue” OR “boredom” OR “anxiety” OR “stress” OR “emotion” OR “vigilance” OR 
“working memory” OR “intent” OR “distraction” OR “alertness” OR “confusion” OR “human intention” OR “cognitive 
absorption” OR “information overload” OR “cognitive readiness” OR “sleepiness” OR “attentional tunneling” OR “vigilance” 
OR “cognitive workload” OR “inattention”) AND Abstract: (“adaptive” OR “adapt*” OR “adaptive automation” OR “adaptive 
systems” OR “assistive” OR “inclusive design” OR “human-automation performance” OR “real-time adaptive system” OR 
“adaptable automation” OR “dynamic function allocation” OR “fallback” OR “adaptive assistance” OR “dynamic adaptation” 
OR “adaptive human-automation systems” OR “human in-the-loop” OR “adaptive interface” OR “cognitive automation” OR 
“adaptive learning” OR “adaptive control” OR “system adaptation” OR “adaptive workload allocation” OR “adaptive aiding” 
OR “adaptive cruise control” OR “flexible automation” OR “adaptive mitigation strategies” OR “human-systems inclusion” 
OR “human-systems integration” OR “multimodal interaction” OR “biofeedback” OR “augmented cognition” OR 
“psychological adjusting” OR “biofeedback” OR “cognitive performance enhancement” OR “cognitive enhancement” OR 
“mental support” OR “neurofeedback” OR “cognitive monitoring”) AND Any Field: (“AI” OR “artificial intelligence” OR 
“digital intelligence” OR “machine learning” OR “analytics” OR “big data” OR “machine intelligence” OR “deep learning” 
OR “prediction model” OR “neural network” OR “computational intelligence” OR “predictive models” OR “affective 
computing” OR “physiological computing” OR “computer reasoning” OR “decision support systems” OR “big data” OR 
“expert systems” OR “statistical learning” OR “artificial consciousness” OR “machine consciousness” OR “wearable 
computing” OR “supervised learning” OR “unsupervised learning” OR “reinforcement learning” OR “artificial neural 
network” OR “artificial cognition” OR “machine perception” OR “attention-based computing” OR “computer vision” OR 
“support vector machines” OR “natural language processing” OR “convolutional neural network” OR “convolutional network” 
OR “computer heuristics” OR “regression” OR “transfer learning” OR “genetic algorithm” OR “recommender system” OR 
“recommendation algorithm” OR “random forest” OR “linear classifier” OR “nearest neighbor search” OR “decision tree” OR 
“hidden markov chain” OR “ensemble learning” OR “relevance vector machine” OR “brain-computer interface” OR “brain-
machine interface” OR “neurotechnology”) AND Peer-Reviewed Journals only AND Year: 2012 To 2022 

IEEE 2147 ("All Metadata":“manifactur*” OR "All Metadata":“smart manifactur*” OR "All Metadata":“industry 4.0” OR "All 
Metadata":“internet of things” OR "All Metadata":“aero*” OR "All Metadata":“transport*” OR "All Metadata":“autonomous 
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Explore vehicle” OR "All Metadata":“smart cockpit” OR "All Metadata":“air traffic control” OR "All Metadata":“autonomous 
operation” OR "All Metadata":“automat*” OR "All Metadata":“information system” OR "All Metadata":“cognitive systems 
engineering” OR "All Metadata":“human-machine system” OR "All Metadata":“intelligent assistant” OR "All 
Metadata":“virtual assistant” OR "All Metadata":“virtual agent” OR "All Metadata":“robotics” OR "All Metadata":“cyber-
physical system” OR "All Metadata":“teleoperation” OR "All Metadata":“human machine interaction” OR "All 
Metadata":“human-robot collaboration” OR "All Metadata":“education” OR "All Metadata":“medical robot” OR "All 
Metadata":“smart health environment” OR "All Metadata":“robot assisted surgery”) AND ("All Metadata":“cognitive state” 
OR "All Metadata":“mental state” OR "All Metadata":“psychological state” OR "All Metadata":“mental process” OR "All 
Metadata":“mental condition” OR "All Metadata":“cognitive function” OR "All Metadata":“cognitive mental state” OR "All 
Metadata":“cognitive processes” OR "All Metadata":“psychological state”) AND ("All Metadata":“adaptive” OR "All 
Metadata":“adapt*” OR "All Metadata":“adaptive automation” OR "All Metadata":“adaptive systems” OR "All 
Metadata":“assistive” OR "All Metadata":“inclusive design” OR "All Metadata":“human-automation performance” OR "All 
Metadata":“real-time adaptive system” OR "All Metadata":“adaptable automation” OR "All Metadata":“fallback” OR "All 
Metadata":“adaptive assistance” OR "All Metadata":“dynamic adaptation” OR "All Metadata":“adaptive human-automation 
systems” OR "All Metadata":“human in-the-loop” OR "All Metadata":“adaptive interface” OR "All Metadata":“biofeedback”) 
AND ("Full Text & Metadata":“AI” OR "Full Text & Metadata":“artificial intelligence” OR "Full Text & Metadata":“digital 
intelligence” OR "Full Text & Metadata":“machine learning” OR "Full Text & Metadata":“analytics” OR "Full Text & 
Metadata":“big data” OR "Full Text & Metadata":“machine intelligence” OR "Full Text & Metadata":“deep learning” OR 
"Full Text & Metadata":“prediction model” OR "Full Text & Metadata":“neural network” OR "Full Text & 
Metadata":“computational intelligence” OR "Full Text & Metadata":“predictive models” OR "Full Text & 
Metadata":“affective computing” OR "Full Text & Metadata":“physiological computing” OR "Full Text & 
Metadata":“computer reasoning” OR "Full Text & Metadata":“decision support systems” OR "Full Text & Metadata":“big 
data” OR "Full Text & Metadata":“expert systems” OR "Full Text & Metadata":“statistical learning” OR "Full Text & 
Metadata":“brain-computer interface” OR "Full Text & Metadata":“brain-machine interface” OR "Full Text & 
Metadata":“neurotechnology”) 
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A.1.3 Keywords 

Table 40 

Phase 1 – Keywords 

Context of use States Objective A.I. 

manifactur*, smart manifactur*, 
smart factory, connected 
manufacturing, industry 4.0, 
aerospace, aero*, aeronautics, 
transport*, automotive, 
socio-technic* 

Cognitive state, mental state, 
psychological state, mental 
process, mental condition 

adaptive, adapt*, adaptive 
automation, assistive, inclusive 
design, support, human-systems, 
human-systems inclusion, human-
systems integration, human-
machine systems, control systems, 
monitoring, 

Machine intelligence, deep 
learning, prediction model, neural 
network, support vector machines. 
natural language processing, 
computer vision, supervised 
learning, unsupervised learning, 
reinforcement learning, statistical 
learning, computational 
intelligence, computer reasoning, 
computer heuristics, expert 
systems 

 

  



lviii 
 

Table 41 

Phase 2 – Keywords 

Context of use States Objective A.I. 

manifactur*, smart manifactur*, 
smart factory, connected 
manufacturing, industry 4.0, 
aerospace, aero*, aeronautics, 
transport*, automotive, 
socio-technic*, Automat*, digital 
automat*, cloud computing, 
cognitive computing, enterprise 
systems, information system,  

Cognitive state, mental state, 
psychological state, mental 
process, mental condition, 
cognitive function, cognitive 
mental state,  implicit cognitive 
processes, psychological state, 
cognition, emotion 

adaptive, adapt*, adaptive 
automation, adaptive systems, 
assistive, inclusive design, support, 
human-systems, human-systems 
inclusion, human-systems 
integration, human-machine 
systems, control systems, 

AI, Artificial Intelligence, 
Digital Intelligence, Machine 
learning, analytics, big data, data 
mining, Machine intelligence, 
deep learning, prediction model, 
neural network, support vector 
machines. natural language 
processing, computer vision, 
supervised learning, 
unsupervised learning, 
reinforcement learning, 
statistical learning, 
computational intelligence, 
computer reasoning, computer 
heuristics, expert systems, brain 
computer interface, decision 
support, decisions support 
system, Closed-loop systems, 
regression, random forest, 
predictive models, Artificial 
neural network, Linear 
Classifier, Virtual agents, 
artificial companions, cognitive 
agents 

 
engagement, workload, mental 
workload, affect, Situational 
awareness, Decision making, 

Dependable systems, 
Dependability, rehabilitation, 
augmented cognition, real-time , 
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Multitasking, attention, 
drowsiness, distraction, 
alertness, fatigue, Boredom, 
Anxiety, stress, risk, emotion, 
Vigilance, Working memory, 
intent, distraction, alertness, 
confusion 

learner modeling, human-
automation performance, cognitive 
state profile, mitigation strategies, 
biofeedback, Real-time adaptive 
system, adaptable automation, 
dynamic function allocation, 
fallback, Human robot interaction, 
Robot assisted, psychological 
adjusting, biofeedback, cognitive 
performance enhancement, 
Adaptive assistance, Human-
autonomy-teaming, mental support, 
human machine interaction, 
dynamic adaptation, safety, 
Supervisory control, Dual control, 
adaptive human-automation 
systems 
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Table 42 

Phase 2 – Keywords 

Context of use States Objective A.I. 

manifactur*, smart manifactur*, 
smart factory, connected 
manufacturing, industry 4.0, 
aerospace, aero*, aeronautics, 
transport*, automotive, 
socio-technic*, Automat*, digital 
automat*, cloud computing, 
cognitive computing, enterprise 
systems, information system, 
robotics, distance education, 
medical, medication service, 
medical, autonomous vehicules, 
cyber-physical systems, cognitive 
systems engineering, digital 
assistance systems, adaptive 
instructional systems, agent based 
systems, Cognitive Medical 
Robots, Smart Environment, 
personalized medicine, Ambient 
Intelligence, smart health 
environment, industrial robots, 
autonomous operations, medical 
robots and systems, smart cockpit, 
digital twin, one-to-many systems 

Cognitive state, mental state, 
psychological state, mental 
process, mental condition, 
cognitive function, cognitive 
mental state,  implicit cognitive 
processes, psychological state, 
cognition, emotion 

adaptive, adapt*, adaptive 
automation, adaptive systems, 
assistive, inclusive design, 
support, human-systems, human-
systems inclusion, human-systems 
integration, human-machine 
systems, control systems, 
Dependable systems, 
Dependability, augmented 
cognition, real-time , learner 
modeling, human-automation 
performance, cognitive state 
profile, mitigation strategies, 
biofeedback, Real-time adaptive 
system, adaptable automation, 
dynamic function allocation, 
fallback, Human robot interaction, 
Robot assisted, psychological 
adjusting, biofeedback, cognitive 
performance enhancement, 
Adaptive assistance, Human-
autonomy-teaming, mental 
support, human machine 
interaction, dynamic adaptation, 
safety, Supervisory control, Dual 
control, adaptive human-
automation systems, grasp 
planning, collaborative robots, 

AI, Artificial Intelligence, Digital 
Intelligence, Machine learning, 
analytics, big data, data mining, 
Machine intelligence, deep 
learning, prediction model, neural 
network, support vector machines. 
natural language processing, 
computer vision, supervised 
learning, unsupervised learning, 
reinforcement learning, statistical 
learning, computational 
intelligence, computer reasoning, 
computer heuristics, expert 
systems, brain computer interface, 
decision support, decisions 
support system, Closed-loop 
systems, regression, random 
forest, predictive models, 
Artificial neural network, Linear 
Classifier, Virtual agents, artificial 
companions, cognitive agents, 
neurotechnologies, shoelace 
pattern, nearest neighbor search, 
optimized extreme learning 
machine, robust variabtional mode 
decomposition, Whale 
Optimization Algorithm, 
convultion network, human-
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cobots, admittance control, 
computer-aided diagnosis, social 
robots, Robot Assisted Training, 
Assistive Robotics, supervisory 
control, human in-the-loop, 
Cognitive assistant, intelligent 
assistant, virtual assistant, virtual 
agent, adaptive interface, 
neurofeedback, driver analyzer, 
driver model, cognitive 
automation, intuitive cognition, 
embodied cognition, adaptive 
learning, cognitive monitoring 

autonomy teaming, synthethic 
teammate, affective computing, 
aspect-oriented convolutional 
neural network , artificial 
cognition, Autonomous Adaptive 
Intelligence, Transfer learning; 
genetic algorithm, Recommender 
system, fuzzy system, decision 
tree 

vehicles, plane, jet, train, car, 
machine 

engagement, workload, mental 
workload, affect, Situational 
awareness, Decision making, 
Multitasking, attention, 
drowsiness, distraction, alertness, 
fatigue, Boredom, Anxiety, stress, 
risk, emotion, Vigilance, Working 
memory, intent, distraction, 
alertness, confusion, human 
intention, cognitive absorption, 
mental diseases, information 
overload, cognitive readiness 
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Table 43 

Phase 4 – Keywords 

Context of use States Objective A.I. 

manifactur*, smart manifactur*, 
smart factory, connected 
manufacturing, industry 4.0, smart 
environment, digital twin, internet of 
things, control system, dependable 
system, supervisory control, dual 
control, 
aerospace, aero*, aeronautics, 
transport*, automotive, autonomous 
vehicle, smart cockpit, air traffic 
control, autonomous operation, 
automated driving, smart 
autonomous vehicle system, 
automat*, digital automat*, digital 
assistance system, automated 
decision aid,  
cloud computing, cognitive 
computing, enterprise system, 
information system, cognitive 
systems engineering, agent based 
system, ambient intelligence, one-to-
many system, human-systems, 
human-machine system, human-
autonomy-teaming, cognitive 
assistant, intelligent assistant, virtual 
assistant, virtual agent, synthetic 
teammate, intelligent human-
machine interaction, cognitive 

cognitive state, mental state, 
psychological state, mental 
process, mental condition, 
cognitive function, cognitive 
mental state, cognitive 
processes, psychological state, 
cognition, emotion, 
engagement, workload, mental 
workload, situational 
awareness, multitasking, 
attention, drowsiness, 
distraction, alertness, fatigue, 
boredom, anxiety, stress, 
emotion, vigilance, working 
memory, intent, distraction, 
alertness, confusion, human 
intention, cognitive 
absorption, information 
overload, cognitive readiness, 
sleepiness, attentional 
tunneling, vigilance, cognitive 
workload, inattention 

adaptive, adapt*, adaptive 
automation, adaptive systems, 
assistive, inclusive design, human-
automation performance, real-time 
adaptive system, adaptable 
automation, dynamic function 
allocation, fallback, adaptive 
assistance, dynamic adaptation, 
adaptive human-automation 
systems, human in-the-loop, 
adaptive interface, cognitive 
automation, adaptive learning, 
adaptive control, system 
adaptation, adaptive workload 
allocation, adaptive aiding, 
adaptive cruise control, flexible 
automation, adaptive mitigation 
strategies, human-systems 
inclusion, human-systems 
integration, multimodal 
interaction, biofeedback, 
augmented cognition, 
psychological adjusting, 
biofeedback, cognitive 
performance enhancement, 
cognitive enhancement, mental 
support, neurofeedback, cognitive 

AI, artificial intelligence, digital 
intelligence, machine learning, 
analytics, big data, machine 
intelligence, deep learning, 
prediction model, neural network, 
computational intelligence, 
predictive models, affective 
computing, physiological 
computing, computer reasoning, 
decision support systems, big data, 
expert systems, statistical learning, 
artificial consciousness, machine 
consciousness (note of caution, 
very unspecific and badly worded), 
wearable computing, supervised 
learning, unsupervised learning, 
reinforcement learning, artificial 
neural network, artificial cognition, 
machine perception, attention-
based computing, computer vision, 
support vector machines, natural 
language processing, convolutional 
neural network, convolutional 
network, computer heuristics, 
regression, transfer learning, 
genetic algorithm, recommender 
system, recommendation algorithm, 
random forest, linear classifier, 
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assistance system, emotional-based 
agent 
robotics, cyber-physical system, 
industrial robot, social robot, 
evolutionary robotics, cognitive 
robotics, aerial robotic, 
teleoperation, telerobotics, cyber-
physical-human-system, human-
cyber-physical system, human robot 
interaction, human machine 
interaction, collaborative robot, 
cobot, physical human-robot 
interaction, physical-robot-human 
interaction, shared robotic task, 
human-robot team, closed-loop 
human-robot interaction, real-time 
human-robot interaction, robotic 
symbiotic network, human-robot 
collaboration, safe physical human–
robot collaboration, brain mediated 
human-robot interaction, admittance 
control, 
cognitive medical robot, smart health 
environment, medical robots and 
system, robot assisted surgery, 
robotic surgical procedures, 
computer-aided diagnosis, 
neuronavigation 

monitoring nearest neighbor search, decision 
tree, hidden markov chain, 
ensemble learning, relevance vector 
machine, brain-computer interface, 
brain-machine interface, 
neurotechnology 
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A1.4 Included manuscripts 

Table 44 

References of included manuscripts 

Study 
ID 

Reference Title Country Publication 
type 

Year 

7577  (Toreini et 
al., 2020) 

Using eye-tracking for visual 
attention feedback 

Germany Conference 
Proceeding 

2020 

7276  (Karthikeyan 
& Mehta, 
2020) 

Towards a Closed-Loop 
Neurostimulation Platform for 
Augmenting Operator 
Vigilance 

United 
States 

Conference 
Proceeding 

2020 

7067  (Wang et al., 
2019) 

The Effectiveness of EEG-
Feedback on Attention in 3D 
Virtual Environment 

China Conference 
Proceeding 

2019 

6892  (Demazure et 
al., 2019) 

Sustained attention in a 
monitoring task: Towards a 
neuroadaptative enterprise 
system interface 

Canada Conference 
Proceeding 

2019 

6320  (Peternel et 
al., 2018) 

Robot adaptation to human 
physical fatigue in human 
robot co-manipulation 

Italy Journal 
article 

2018 

5701  (Szafir & 
Mutlu, 2012) 

Pay attention! Designing 
adaptive agents that monitor 
and improve user engagement 

United 
States 

Conference 
Proceeding 

2013 

5683  (Parnandi & 
Gutierrez-
Osuna, 2021) 

Partial Reinforcement in 
Game Biofeedback for 
Relaxation Training 

United 
States 

Journal 
article 

2018 

4782  (Yuksel et 
al., 2016) 

Learn piano with BACh: An 
adaptive learning interface that 
adjusts task difficulty based on 
brain state 

United 
States 

Conference 
Proceeding 

2016 

4250  (Schiatti et 
al., 2018) 

Human in the Loop of Robot 
Learning: EEG-Based Reward 
Signal for Target 
Identification and Reaching 
Task 

Italy Conference 
Proceeding 

2018 

4154  (Raaijmakers 
et al., 2013) 

Heart Rate Variability and 
Skin Conductance 
Biofeedback: A Triple-Blind 
Randomized Controlled Study 

Netherlands Conference 
Proceeding 

2013 

3887  (Kim et al., 
2020) 

Flexible online adaptation of 
learning strategy using EEG-
based reinforcement signals in 

Germany Conference 
Proceeding 

2020 
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real-world robotic applications 

3716  (Dey et al., 
2019) 

Exploration of an EEG-Based 
Cognitively Adaptive Training 
System in Virtual Reality 

Australia Conference 
Proceeding 

2019 

3575  (Chaouachi 
et al., 2015) 

Adapting to learners' mental 
states using a physiological 
computing approach 

Canada Journal 
article 

2019 

3501  (Causse et 
al., 2019) 

Encoding decisions and 
expertise in the operator's 
eyes: Using eye-tracking as 
input for system adaptation 

France Journal 
article 

2019 

3438  (Ghandi et 
al., 2021) 

Embodied empathy: Using 
affective computing to 
incarnate human emotion and 
cognition in architecture 

United 
States 

Journal 
article 

2019 

3379  (Larradet et 
al., 2017) 

Effects of galvanic skin 
response feedback on user 
experience in gaze-controlled 
gaming: A pilot study 

Italy Conference 
Proceeding 

2017 

3293  (Zhou et al., 
2015) 

Dynamic workload 
adjustments in human-
machine systems based on 
GSR features 

Australia Conference 
Proceeding 

2015 

3292  (Labonte-
Lemoyne et 
al., 2018) 

Dynamic threshold selection 
for a biocybernetic loop in an 
adaptive video game context 

Canada Journal 
article 

2018 

3277  (Breslow et 
al., 2014) 

Dynamic operator overload: A 
model for predicting workload 
during supervisory control 

United 
States 

Journal 
article 

2014 

2339  (Azgomi et 
al., 2021) 

Closed-Loop Cognitive Stress 
Regulation Using Fuzzy 
Control in Wearable-Machine 
Interface Architectures 

United 
States 

Journal 
article 

2021 

2218  (Ramos et 
al., 2021) 

Building a Drone Operator 
Digital Twin using a Brain-
Computer Interface for 
Emotion Recognition 

Portugal Conference 
Proceeding 

2021 

2201  (Di Flumeri 
et al., 2019) 

Brain-Computer Interface-
Based Adaptive Automation to 
Prevent Out-Of-The-Loop 
Phenomenon in Air Traffic 
Controllers Dealing With 
Highly Automated Systems 

Italy Journal 
article 

2019 

2199  (Trachel et Brain-computer interaction for 
online enhancement of 

France Journal 2018 
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al., 2018) visuospatial attention 
performance 

article 

2187  (Tseng et al., 
2012) 

Brain Computer Interface-
based Multimedia Controller 

Taiwan Conference 
Proceeding 

2012 

2149  (Pavlidis et 
al., 2021) 

Biofeedback Arrests 
Sympathetic and Behavioral 
Effects in Distracted Driving 

United 
States 

Journal 
article 

2021 

1898  (Darzi & 
Novak, 2021) 

Automated affect 
classification and task 
difficulty adaptation in a 
competitive scenario based on 
physiological linkage: An 
exploratory study 

United 
States 

Journal 
article 

2021 

1844  (Vortmann & 
Putze, 2020) 

Attention-aware brain 
computer interface to avoid 
distractions in augmented 
reality 

Germany Conference 
Proceeding 

2020 

1606  (Nalepa et 
al., 2019) 

Analysis and Use of the 
Emotional Context with 
Wearable Devices for Games 
and Intelligent Assistants 

Poland Journal 
article 

2019 

1580  (Zargari 
Marandi et 
al., 2019) 

An oculometrics-based 
biofeedback system to impede 
fatigue development during 
computer work: A proof-of-
concept study 

Denmark Journal 
article 

2019 

1314  (Zhang et al., 
2021) 

An Adaptive Attention 
Regulation Method Based on 
Biocybernetic Loop 

China Conference 
Proceeding 

2020 

1228  (Aranyi et 
al., 2016) 

Affective Interaction with a 
Virtual Character Through an 
fNIRS Brain-Computer 
Interface 

UK Journal 
article 

2016 

1226  
(Govindarajan 
et al., 2018) 

Affective Driver State 
Monitoring for Personalized, 
Adaptive ADAS 

United 
States 

Conference 
Proceeding 

2018 

1000  (Lim et al., 
2021) 

Adaptive human-robot 
interactions for multiple 
unmanned aerial vehicles 

Australia Journal 
article 

2021 

926  (Arico, 
Borghini, Di 
Flumeri, 
Colosimo, 
Bonelli, et al., 
2016) 

Adaptive automation triggered 
by EEG-based mental 
workload index: A passive 
Brain-Computer Interface 
application in realistic air 
traffic control environment 

Italy Journal 
article 

2016 
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555  (Arico, 
Borghini, Di 
Flumeri, 
Colosimo, 
Pozzi, et al., 
2016) 

A passive brain-computer 
interface application for the 
mental workload assessment 
on professional air traffic 
controllers during realistic air 
traffic control tasks 

Italy Journal 
article 

2016 

471  (El-Samahy 
et al., 2015) 

A new computer control 
system for mental stress 
management using fuzzy logic 

UK Journal 
article 

2015 
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A1.5 Supplementary results 

A1.5.1 Problem Space – Environment 
Table 45 

Domain and references of manuscripts 

Domain Count % Study ID 

Aeronautics 7 19.44% 555, 926, 1000, 2201, 2218, 3277, 3501 

Art 2 5.56% 2187, 3438 

Business 4 11.11% 1580, 3293, 6892, 7577 

Education 3 8.33% 3575, 4782, 5701 

Robotics 3 8.33% 3887, 4250, 6320 

Smart-Home 1 2.78% 1844 

Training 7 19.44% 471, 1314, 2339, 3379, 3716, 4154, 5683 

Transports 2 5.56% 1226, 2149 

Video games 2 5.56% 1606, 3292 

Virtual Agent Design 1 2.78% 1228 

Unclear/Inferred  4 11.11% 1898, 2199, 7067, 7276 

 

 

Table 46 

Target tasks and references of manuscripts 

Target Task Count % Study ID 

Cognitive Task 1 2.78% 3293 

Computer Task 1 2.78% 1580 

Concentration Task 1 2.78% 7067 

Cooperation Task 1 2.78% 1898 

Driving Task 2 5.56% 1226, 2149 

Game Task 2 5.56% 1606, 3292 

Human-Robot Task  3 8.33% 3887, 4250, 6320 

Information Seeking Task  1 2.78% 7577 

Learning Task 3 8.33% 3575, 4782, 5701 

Listening Task 1 2.78% 2187 

Natural Task 1 2.78% 3438 
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Relaxation Task 1 2.78% 5683 

Self-Regulation Task 2 5.56% 3379, 4154 

Supervision Task 2 5.56% 1000, 3277 

Surveillance Task 7 19.44% 555, 926, 2201, 2218, 3501, 6892, 7276 

Training Task 1 2.78% 3716 

Unclear/Inferred  6 16.67% 471, 1228, 1314, 1844, 2199, 2339 

 

Table 47 

Target users and references of manuscripts 

Target Users Count % Study ID 

Air traffic controllers 4 11.11% 555, 926, 2201, 3501 

Drivers 2 5.56% 1226, 2149 

Learners 4 11.11% 3575, 3716, 4782, 5701 

Office workers 4 11.11% 1580, 2339, 6892, 7577 

Operators 1 2.78% 7276 

Production line workers  1 2.78% 6320 

Unmanned Vehicule operator 3 8.33% 1000, 2218, 3277 

Video game players 2 5.56% 1606, 3379 

Unclear/Inferred  15 41.67% 471, 1228, 1314, 1844, 1898, 2187, 2199, 
3292, 3293, 3438, 3887, 4154, 4250, 5683, 
7067 
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A1.5.2 Problem Space – Problematization 
Table 48 

Research questions and objectives 

 Research Question Research Objective 
 

Count % Count % 

Clearly reported 3 8.33% 21 58.33% 

Unclear/inferred 33 91.67% 15 41.67% 

 

Table 49 

Research goal and research questions 

  Research goal   
 

 Clearly Reported Unclear/inferred 
  

 
 

Count % Count % Total 
Count 

Total 
% 

Research 
Question 

Clearly reported 3 0.083 
 

0 3 0.083 

 
Unclear/inferred 18 0.5 15 0.417 33 0.917 

  
21 0.583 15 0.417 36 

 

 

Table 50 

Artifact objectives 

 
Defined Artifact 
Objectives 

Count % 

Clearly reported  22 0.611 

 General objective  13 0.361 

 Hypotheses 4 0.111 

 Set of requirements  5 0.139 

Unclear/inferred  14 0.389 

 Research goal 3 0.083 

 Unclear/inferred 11 0.306 
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A1.5.3 Solution Space - Target Users and Actual Subjects Comparison 
Table 51 

Target users and manuscripts participants  

Study 
ID 

Title Target Users 
L2 

Subjects L1 

7577 Using eye-tracking for visual attention feedback Office 
workers 

Students 

7276 Towards a Closed-Loop Neurostimulation Platform 
for Augmenting Operator Vigilance 

Operators Unclear/infer
red 

7067 The Effectiveness of EEG-Feedback on Attention in 
3D Virtual Environment 

Unspecified Students 

6892 Sustained attention in a monitoring task: Towards a 
neuroadaptative enterprise system interface 

Office 
workers 

Students 

6320 Robot adaptation to human physical fatigue in human 
robot co-manipulation 

Production 
line workers  

Unclear/infer
red 

5701 Pay attention! Designing adaptive agents that 
monitor and improve user engagement 

Learners Students 

5683 Partial Reinforcement in Game Biofeedback for 
Relaxation Training 

Unspecified Students 

4782 Learn piano with BACh: An adaptive learning 
interface that adjusts task difficulty based on brain 
state 

Learners Unclear/infer
red 

4250 Human in the Loop of Robot Learning: EEG-Based 
Reward Signal for Target Identification and 
Reaching Task 

Unclear/inferr
ed 

Unclear/infer
red 

4154 Heart Rate Variability and Skin Conductance 
Biofeedback: A Triple-Blind Randomized Controlled 
Study 

Unclear/inferr
ed 

Students 

3887 Flexible online adaptation of learning strategy using 
EEG-based reinforcement signals in real-world 
robotic applications 

Unclear/inferr
ed 

Unclear/infer
red 

3716 Exploration of an EEG-Based Cognitively Adaptive 
Training System in Virtual Reality 

Learners Students 

3575 Adapting to learners' mental states using a 
physiological computing approach 

Learners Students 

3501 Encoding decisions and expertise in the operator's 
eyes: Using eye-tracking as input for system 
adaptation 

Air traffic 
controllers 

Aeronautic 
Students 

3438 Embodied empathy: Using affective computing to 
incarnate human emotion and cognition in 
architecture 

Unclear/inferr
ed 

Unclear/infer
red 
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3379 Effects of galvanic skin response feedback on user 
experience in gaze-controlled gaming: A pilot study 

Video game 
players 

Unclear/infer
red 

3293 Dynamic workload adjustments in human-machine 
systems based on GSR features 

Unclear/inferr
ed 

Students 

3292 Dynamic threshold selection for a biocybernetic loop 
in an adaptive video game context 

Unclear/inferr
ed 

Students 

3277 Dynamic operator overload: A model for predicting 
workload during supervisory control 

Unmanned 
Vehicule 
operator 

Psychology 
Students 

2339 Closed-Loop Cognitive Stress Regulation Using 
Fuzzy Control in Wearable-Machine Interface 
Architectures 

Office 
workers 

Unclear/infer
red 

2218 Building a Drone Operator Digital Twin using a 
Brain-Computer Interface for Emotion Recognition 

Unmanned 
Vehicule 
operator 

Unclear/infer
red 

2201 Brain-Computer Interface-Based Adaptive 
Automation to Prevent Out-Of-The-Loop 
Phenomenon in Air Traffic Controllers Dealing With 
Highly Automated Systems 

Air traffic 
controllers 

Air Traffic 
Controllers 

2199 Brain-computer interaction for online enhancement 
of visuospatial attention performance 

Unclear/inferr
ed 

Unclear/infer
red 

2187 Brain Computer Interface-based Multimedia 
Controller 

Unclear/inferr
ed 

Unclear/infer
red 

2149 Biofeedback Arrests Sympathetic and Behavioral 
Effects in Distracted Driving 

Drivers Students 

1898 Automated affect classification and task difficulty 
adaptation in a competitive scenario based on 
physiological linkage: An exploratory study 

Unclear/inferr
ed 

Students 

1844 Attention-aware brain computer interface to avoid 
distractions in augmented reality 

Unclear/inferr
ed 

Students 

1606 Analysis and Use of the Emotional Context with 
Wearable Devices for Games and Intelligent 
Assistants 

Video game 
players 

Students 

1580 An oculometrics-based biofeedback system to 
impede fatigue development during computer work: 
A proof-of-concept study 

Office 
workers 

Unclear/infer
red 

1314 An Adaptive Attention Regulation Method Based on 
Biocybernetic Loop 

Unclear/inferr
ed 

Unclear/infer
red 

1228 Affective Interaction with a Virtual Character 
Through an fNIRS Brain-Computer Interface 

Unclear/inferr
ed 

Unclear/infer
red 

1226 Affective Driver State Monitoring for Personalized, 
Adaptive ADAS 

Drivers Unclear/infer
red 
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1000 Adaptive human-robot interactions for multiple 
unmanned aerial vehicles 

Unmanned 
Vehicule 
operator 

Aeronautic 
Students 

926 Adaptive automation triggered by EEG-based mental 
workload index: A passive Brain-Computer Interface 
application in realistic air traffic control environment 

Air traffic 
controllers 

Air Traffic 
Controllers 

555 A passive brain-computer interface application for 
the mental workload assessment on professional air 
traffic controllers during realistic air traffic control 
tasks 

Air traffic 
controllers 

Air Traffic 
Controllers 

471 A new computer control system for mental stress 
management using fuzzy logic 

Unclear/inferr
ed 

Unclear/infer
red 

  



lxxv 
 

A2 Chapter 3 

A2.1 Literature review query 

Example of query use in Web of Science 

TS=("deep learning" OR "neural network") AND TS=("working 

memory" OR "workload" OR "mental workload" OR "cognitive load" 

OR "cognitive workload") AND TS=("electroencephalography" OR 

"EEG") 
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A2.2 Literature review 

Table 52 

Literature review table 

Study – Title 
(Authors) 

Instrume
nt 

Problem 
Setting 

Task (condition) Inputs 
Domain  

Data 
curation 

Features Model Name Laye
r 

Activatio
n 
Function 

Optimizer
s 

Regularizati
on 

Training 
Strategies 

Design 
choices 

Baseline Accurac
y 

EEG-Signals 
Based Cognitive 
Workload 
Detection of 
Vehicle Driver 
using Deep 
Learning 
(Mohammad A. 
Almogbel et al., 
2018) 

EEG Driver 
workload 
level, with 
subject 

Driving Simulator 
(dense traffic vs low 
traffic), within 
subject 

Time, raw No End-to-end CNN 7 Hidden 
layers: 
ReLu 
Output 
Layers: 
Softmax 

RMSProp 
(lr 
=0.002) 

Normalized 
by z-score 

Overlapping 
windows at 
different 
time 

Windows 
size  
# Layers 

Deep 
learning 
with hand 
engineered 
features 
(1L CNN)  

95.31% 

Cognitive 
Workload 
Detection from 
Raw EEG-Signals 
of Vehicle Driver 
using Deep 
Learning 
(Almogbel, Dang, 
Kameyama, et al., 
2019) 

EEG Driver 
workload 
level, within 
subject, 

Driving Simulator 
(dense traffic vs low 
traffic vs zero 
traffic), within 
subject 

Time, raw No End-to-end CNN 8 Hidden 
layers: 
ReLu 
Output 
Layers: 
Softmax 

RMSProp 
(lr=0.000
1) 

Normalized 
by z-score 

Overlapping 
windows at 
different 
time 

Windows 
size 

Deep 
learning 
with hand 
engineered 
features 
(1L CNN)  

96% 

Adaptive training 
using an artificial 
neural network and 
EEG metrics for 
within- and cross-
task workload 
classification 
(Baldwin & 
Penaranda, 2012) 

EEG Task 
Workload 
Classificatio
n, within and 
cross task, 
within 
subject 

Reading span (2 
level), Visuospatial 
n-back (2 level), 
Sternberg task (2 
level) 

Frequenc
y, values 

band-pass: 
0.1 - 70 Hz 
Temporary 
artifacts 
Noisy 
channels 

8th order 
elliptical filters 
with stopband 
attenuation of 
20 dB and 
passband ripple 
of 1 dB: delta 
(0.01–3 Hz), 
theta (4–7 Hz), 
alpha (8–12 
Hz), beta (13–
30 Hz), and 
gamma (31–42 
Hz) / per 
channels  

Multi-layer 
perceptrons 

    
5 seconds 
non-
overlapping 
windows 

  
Within 
= 87.1% 
Cross = 
44.8% 

Artificial Neural 
Network 
classification of 
operator workload 
with an assessment 
of time variation 
and noise-
enhancement to 
increase 
performance 
(Casson, 2014) 

EEG Within, time 
effect post 
training, 
cross day  

Flight simulator task 
(low and high) 

Frequenc
y, values 

 
FFT Frequency 
bands: 0–4 Hz, 
4–7 Hz, 7–12 
Hz, 12–30 Hz, 
30–42 Hz, 42–
84 Hz, 84–128 
Hz 

ANN 5 
  

Features are 
zero mean 
and unit 
standard 
deviation 
normalized 

30 seconds 
windows, 
25 sec 
overlapping 
 
Trained on 
the first 20 
epochs, 
remaining 
epochs (11) 
used for 
testing 

Time 
independent 
average 
performanc
e 
Temporal 
performanc
e 
Temporal 
performanc
e with  
noise 

 
73% 
average 
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enhancemen
t techniques 

Identification of 
Mental Workload 
Using Imbalanced 
EEG Data and 
DySMOTE-based 
Neural Network 
Approach (Cui et 
al., 2016) 

EEG + 
ECG 

Mental 
workload, 
unbalanced 
dataset, 
Within 
subject 

Automation-
enhanced Cabin Air 
Management System 
(ACAMS) with 
complex tasks (Auto 
vs Manual (5 levels)) 

Frequenc
y, values 

Blink 
artifact 
Butterworth 
IIR filter 
band-pass 0-
40 Hz 

Butterworth IIR 
filter delta (1-
4Hz), theta(5-
8Hz), alpha(9-
12Hz), beta(13-
32Hz), gamma 
(33-40Hz) 

DySMOTE 
    

5 fold cross 
validation (5 
iterations 
per model) 

Sampling 
scheme: 
SMOTE 
oversamplin
g technique 
( vs CSUS, 
CSOS, 
DyROS) 

CSUS, 
CSOS, 
DyROS 

50 % to 
70 %  

Classification of 
Movement 
Direction From 
Electroencephalogr
am During Working 
Memory Time 
(Fukuda et al., 
2019) 

EEG Motor 
movement 
during 
working 
memory 
task, within 
subject 

 
Frequenc
y, values 

Trial 
rejection 
Blink 
artifact 
BTW (8th 
order) low 
cut-ff 49 Hz 

FFT for 1-40 
Hz, Phase (with 
imaginary parts) 

Neural 
Network 

3 Hidden: 
Sigmoid 

 
Sparse 
regularizatio
n of L1 
L1 norm 
Dropout 
(0.5) 

5 fold cross 
validation 

  
62% 

EEG-Based 
Spatio-Temporal 
Convolutional 
Neural Network 
for Driver Fatigue 
Evaluation (Gao et 
al., 2019) 

EEG Driver 
fatigue, 
within-
subject 

Driving simulator. 
Highway 

Time, raw (1000 Hz, 
downsample 
100 Hz), 1-
50 Hz 

End-to-end EEG-based 
spatial–
temporal 
convolutiona
l neural 
network 
(ESTCNN) 

14 Hidden: 
ReLu 
Output: 
Softmax 

SGD (lr = 
0.001) 

Batch 
normalizatio
n 

10 fold 
cross 
validation 

Core block: 
three 
convolution
al blocks 
and a 
pooling 
layer. 

SVM, 
LSTM, 
CNNs, 
FFT + 
CNNs 

97.37% 

Cross-Participant 
EEG-Based 
Assessment of 
Cognitive 
Workload Using 
Multi-Path 
Convolutional 
Recurrent Neural 
Networks (Hefron, 
Borghetti, Kabban, 
et al., 2018) 

EEG Cognitive 
Workload, 
Cross 
subject 

low-workload 
MATB, verbal N-
back (4 level)  

Frequenc
y, values 

High pass 1 
Hz  
Interpolate 
bad channels 
Line noise  
High 
variance 
artifact 

PSD (3 and 55 
Hz) / electrodes, 
STFT 2s 
hanning 
window, 1 sec 
overlap  

MPCRNN 
 

ReLu Adam L1/L2 
regularizatio
n 
batch 
normalizatio
n 
dropout (0.2)  

Zero-data 
cross 
participant, 
cross 
validated 
group (7 
fold), 
validation se 
group 

Individually 
trained 
models vs 
group-
trained 
models  
Temporal 
sequence 
length 
Ensemble 

Two NN 
(single-
hidden-
layer 
ANN, 2 
layers 
LSTM) 

86.80% 

Deep long short-
term memory 
structures model 
temporal 
dependencies 
improving cognitive 
workload 
estimation (Hefron 
et al., 2017) 

EEG Cognitive 
Workload, 
Within-
subject, 
cross day 

Multi-Attribute Task 
Battery (MATB) 

Frequenc
y, values 

 
frequency bands 
(delta (1–4 Hz), 
theta (4–8 Hz), 
alpha (8–14 
Hz), beta (15–
30), and gamma 
(30–55 Hz) 
Power spectral 
density (Morlet) 
Mean, variance, 
skewness, and 
kurtosis of the 
power 
distribution 

SVM 
Radial basis 
function 
ANN 
RNN 
LSTM 

 
Sigmoid Adam Dropout 4 fold cross 

validation 
Models 

 
93.00% 

Novel functional 
brain network 
methods based on 
CNN with an 
application in 
proficiency 
evaluation (Hua et 
al., 2019) 

EEG Working 
memory, 
within 
subject 

Visuo-spatial 
working memory 
task 

Time + 
Frequenc
y, raw + 
values + 
images 

frequency 
bands: delta 
(0.5–4 Hz), 
theta (4–8 
Hz), alpha 
(8–14 Hz), 
beta (15–30 
Hz), low 
gamma (30–
45 Hz) and 
all (0.5–45 

End-to-end + 
FIR filters for 
rhythm 
extraction 

brain 
connection 
based on 
CNN 
(BCCNN) 

     
Type of 
inputs 
(fusions) 

 
99%, 
96.35% 
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Hz) 
Deep Convolutional 
Neural Networks 
for mental load 
classification based 
on EEG data (Jiao 
et al., 2018) 

EEG Mental load, 
within 
subject  

Working memory, 
letters  

Frequenc
y, time, 
image 

 
FFT: theta (4–7 
Hz), alpha (8–
13 Hz), and beta 
(13–30 Hz) 
(sum of squared 
absolute values) 

CNNs 7 ReLu 
Softmax 

SGD Dropout 
(0.5) 

SVM, 
CNNs, 
CNN+LST
M, CNN + 
1D Conv 

Single-
model v 
double-
model 
method 
Input data 
(2-D scalp 
power maps 
/ temporal 
information
) 
PGBM 

SVM, 
LSTM, 
CNNs, 
FFT + 
CNNs 

 

Across-subject 
estimation of 3-
back task 
performance using 
EEG signals (Kim 
et al., 2014) 

EEG Working 
Memory,  

N-Back, letters (0-3) Frequenc
y, values 

Band-passed 
0.1 - 40 Hz, 
re-ref to 
common 
average, 
baseline 
correction 

STFT (-0.5:2s) MLP, ANN 
    

leave-one-
out cross-
subject 

Ensembles  
  

Investigating 
Ensemble Learning 
and Classifier 
Generalization in a 
Hybrid, Passive 
Brain-Computer 
Interface for 
Assessing 
Cognitive 
Workload 
(Klosterman & 
Eepp, 2019) 

EEG, 
HEOG, 
VEOG, 
ECG 

mental 
Workload, 
Within-
subject, 
cross day 

Multi-Attribute Task 
Battery (MATB) 

Fusion: 
Frequenc
y (EEG), 
Engineere
d Features 
for ECG 
and 
VEOG 

Fz, F7, Pz, 
T5, and O2.  
HEOG and 
VEOG 
artifact using 
a post-hoc 
regression 
method 
Blink 
Detection 

Inter-Beat 
interval for 
ECG 
delta (0.5–3 
[Hz]), theta (4–
7 [Hz]), alpha 
(8–12 [Hz]), 
beta (13–30 
[Hz]) and 
gamma (31–42 
[Hz]). 
Blink Rate 

ANN, LIN-
SVM, LDA 

3 
   

k fold cross-
validation 
Ensemble 
tested 
within and 
across day  

Ensembles, 
AdaBoost 
Number of 
day in the 
dataset 

  

Cognitive Analysis 
Of Working 
Memory Load From 
Eeg, By A Deep 
Recurrent Neural 
Network (Kuanar, 
Athitsos, Pradhan, 
Mishra, Rao, et al., 
2018) 

EEG Cognitive 
Load, cross 
subject 

Working memory 
(n0back), 4 level 

Image, 
Frequenc
y + 2D 
projection 
of sensors  

Bandpass FFT: theta (4-
7Hz), 
alpha (8-13Hz), 
beta (13-30 Hz). 

RNN + 
ConvNet 

12 hidden: 
ReLu 
Output: 
Softmaz 

SGD 
Adam 

L2 
Regularizati
on 
Dropout 
(0.5) 
Gaussian 
Noise 

leave 
subject- 
out cross 
validation 
technique 

Hybrid 
models 
(ConvNet, 
LSTM, 
Bidirectiona
l LSTM) 

Random 
Forest 
(RF), 
Support 
Vector 
Machines, 
Logistic 
Regression 

92.50% 

Classification of 
Working Memory 
Performance from 
EEG with Deep 
Artificial Neural 
Networks (Kwak et 
al., 2019) 

EEG Performance 
discriminati
on based on 
working 
memory, 
between 

Working memory, 
letters  

Frequenc
y, power 
ratios  

 
FFT: theta (4-8 
Hz), alpha (8-14 
Hz), beta (14-
30Hz), gamma1 
(30-50 Hz) and 
gamma2 (50-
100Hz). 

ANN 5 Relu 
Softmax 

Adam 
 

leave-one-
subject-out 
cross 
validation 

  
61% 

Convolutional 
Neural Networks 
with Large-Margin 
Softmax Loss 
Function for 
Cognitive Load 
Recognition (Liu & 
Liu, 2017) 

EEG Cognitive 
load 
recognition 

Working memory, 
letters (4 level)  

Frequenc
y, values 
+ images 

 
FFT: theta (4-7 
Hz), alpha (8-13 
Hz) and beta 
(13-30 Hz), sum 
of squared 
absolute values 
within every 
band for every 
electrode 

ConvNets  6 PReLU SGD Weight 
decay 
strategy 
batch 
normalizatio
n 

 
1D-2D 
Conv nets + 
large-
margin 
SoftMax 
loss 
functions + 
Batch size 

 
93%, 
92% 

Assessment of 
Cognitive Load 
using Multimedia 
Learning and 

EEG Cognitive 
load 
recognition 

Resting and learning 
tasks 

Time-
Frequenc
y, Image  

Bandpass: 0-
100HZ 
Eyes-
artifact, 

Discrete 
Wavelet 
Transform: 0-4 
Hz for delta, 3-7 

CNN, 
ResNet 

    
Transfer 
Learning 

Network 
Complexity 
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Resting States with 
Deep Learning 
Perspective 
(Qayyum, Faye, et 
al., 2018) 

heart rate, 
muscle 
movement 

for theta, 7-12 
for alpha and 
15-28 for beta 
wave. 

Classification of 
EEG Learning and 
Resting States using 
1D-Convolutional 
Neural Network for 
Cognitive Load 
Assessment 
(Qayyum, Khan, et 
al., 2018) 

EEG Cognitive 
load 
recognition 

Resting and learning 
tasks 

Time-
Frequenc
y, values 

Z-score 
normalizatio
n, Eyes-
artifact, 
heart rate, 
muscle 
movement 

Discret Wavelet 
Transform: 0-4 
Hz for delta, 3-7 
for theta, 7-12 
for alpha and 
15-28 for beta 
wave. 

1D-CNN 7 ReLu SGD Batch 
normalizatio
n 

 
Choice of 
features  

 
Betwee
n 85.6% 
and 93.2 

Ternary-task 
convolutional 
bidirectional neural 
turing machine for 
assessment of EEG-
based cognitive 
workload (Qiao & 
Bi, 2020) 

EEG Cognitive 
workload 
estimation, 
between 
subject 

Sternberg memory 
experiment (4 levels) 

Frequenc
y, Images 

 
Azimuthal 
Equidistant 
Projection + 
FFT (three 
frequency 
bands(0–7, 7–
14, 14–49 
Hertz). 

Ternary-task 
Convolution
al 
Bidirectional 
Neural 
Turing 
Machine 
(TT-
CBNTM) 
 
convolutiona
l neural 
network 
(CNN) + 
bidirectional 
neural turing 
machine 
(BNTM). 

 
ReLu SGD 

RMSProp 
optimizer 

Ternary-task 
regularizatio
n framework 
L2 norm 
Dropout 
Early-
stopping 

10-fold 
cross-
validation 

VGG 
architecture, 
dropout 
parameters, 
kernel size 

SVM, 
DBN-
3,VGGs, 
BNTM-3, 
NTM-3, 
C-SAE, C-
RNN, , C-
GRU, C-
NTM, 
ConvNet + 
LSTM/1D
-Conv 

96.30% 

Multimodal fNIRS-
EEG Classification 
Using Deep 
Learning 
Algorithms for 
Brain-Computer 
Interfaces Purposes 
(Saadati et al., 
2020b) 

FNIRS + 
EEG 

Mental 
workload 
classificatio
n, within 
subject 

n-back (4 levels), 
discrimination/selecti
on response task 
(DSR), word 
generation (WG) 
tasks 

Time, 
values 

bandpass 1-
40 Hz 

Event-related 
desynchronizati
on 
and 
synchronization 
analysis 

DNN 5 Elu and 
Relu 

   
Multiple 
window 
lengths 

SVM 87% 

Convolutional 
Neural Network for 
Hybrid fNIRS-EEG 
Mental Workload 
Classification 
(Saadati et al., 
2020a) 

FNIRS + 
EEG 

Mental 
workload 
classificatio
n,  within 
subject 

N-back (4 levels) Time, 
values 

band pass: 1-
40hz 

Event-related 
desynchronizati
on and 
synchronization 
analysis 

CNNs 
 

Elu and 
Relu 

 
Dropout 

 
Windows 
size, 
Activation 
function 

SVM 89% 

EEG-Based Mental 
Workload 
Estimation 
(Samima & Sarma, 
2019) 

EEG Mental 
workload 
Estimation, 
within 
subject 

Working Memory 
Test Battery (verbal 
and visuo-spatial) (3 
levels) 

Frequenc
y, values 
+ ratios 

Bandpass: 
0.5-45Hz 
Notch: 50Hz 
Normalizatio
n 
Artifact 
removal  

EEG rhythms 
namely, (4.0 - 
7.9Hz); (7.9 - 
10.0Hz); (10.0 - 
13:0Hz); (13.0 - 
18.0Hz); (18.0 - 
25.0Hz); (25.0 - 
45.0Hz) 
Spectral powers 

ANN 1 tansig 
   

Complete 
trial 
windows 
size 

 
96.6 

Cognitive Load 
Recognition Using 
Multi-channel 
Complex Network 

EEG Cognitive 
load 
recognition 

 
Frequenc
y, Images 

 
FFT: theta (4–7 
Hz), alpha (8–
12 Hz) and beta 
(13–30 Hz) 

Multi-
channel 
network + 
SVM 

    
10-fold 
cross 
validation 
and test 

 
ConvNet + 
1D-Conv 
ConvNet + 
LSTM 

33.86%, 
32.28%, 
85.66%, 
78.65% 
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Method (Shang et 
al., 2017) 

Network 
Structural 
Features 

error ConvNet + 
LSTM / 
1D-Conv 

and 
86.33% 

Individual-Specific 
Classification of 
Mental Workload 
Levels Via an 
Ensemble 
Heterogeneous 
Extreme Learning 
Machine for EEG 
Modeling (Tao et 
al., 2019) 

EEG Mental 
Workload, 
Within-
subject and 
across 

HM collaboration 
environment, 
Automation-
enhanced cabin air 
management systems 
(ACAMS) 

Frequenc
y, values 

Filtered via 
ICA  

FFT:  (4–8 Hz), 
alpha (8–13 
Hz), beta (14–
30 Hz), and 
gamma (31-40) 
power 
difference 
between 
hemispheres 
Mean, variance, 
zero, crossing 
rate, Shannon 
entropy, spectral 
entropy, 
kurtosis, and 
skewness 

extreme 
learning 
machine 
(ELM) 
heterogeneo
us ensemble 
ELM (HE-
ELM) 
Adaboost 

1 hardlim, 
sigmoid, 
sine 

Gradient 
Descent 

  
Activation 
function, 
Depth 

K-nearest 
neighbor 
(KNN), 
artificial 
neural 
network 
with single 
hidden 
layer 
(ANN), 
denoising 
autoencod
er (DAE), 
logistic 
regression 
(LR), 
Adaboost 
based on 
the 
decision 
tree, 
stacked 
denoising 
autoencod
er 
(SDAE),  
LPP-
KNN, 
LPP-
ANN, 
LPP-DAE, 
LPP-LR, 
LPP-AD, 
LPP-
SDAE, 
and LPP-
NB. 

0.88 

Cross-subject 
workload 
classification with a 
hierarchical Bayes 
model (Wang et al., 
2012) 

EEG workload, 
cross-subject 

MATB - Multi-
Attribute 
Task Battery (3 
level) 

Frequenc
y, values  

Down-
sampled to 
128 Hz 
Bandpass 
0.05 Hz - 
100 Hz  

STFT (40 sec 
windows, 35 sec 
overlap): delta 
[2–4 Hz], theta 
[5–8 Hz], alpha 
[9–13 Hz], beta 
[14–32 Hz] and 
gamma [33–43 
Hz]), gamma 
bands ([33–57 
Hz] and [63–
100 Hz]) 

Hierarchical 
Bayes model 

    
fivefold 
cross-
validation 

# of hidden 
stats in NB 

1 Layer 
NN 
(trained 
within 
subject) 

around 
80%  

Pilots' Fatigue 
Status Recognition 
Using Deep 
Contractive 
Autoencoder 
Network (Wu et al., 
2019) 

EEG Fatigue, 
within 
subject 

Flight Simulator, 
take, approach and 
landing 

Frequenc
y, ratios  

Downsample
d at 160 Hz. 

Wavelet packet 
transform: delta, 
theta, alpha and 
beta, channel: 
Fp1 

deep 
contractive 
autoencoder 
network 

3 Softmax 
  

fivefold 
cross-
validation 

window 
functions  

 
91.67% 

Assessing cognitive 
mental workload 

EEG Mental 
Workload, 

automatic 
enhanced cabin air 

Frequenc
y, values  

Butterworth 
filter with a 

FFT for power 
spectral density: 

Ensemble 
Stacked 

2 
   

10-fold 
cross 

Number of 
hidden 

LR, NB, 
ELM, 

0.8525 
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via EEG signals and 
an ensemble deep 
learning classifier 
based on denoising 
autoencoders (Yang 
et al., 2019) 

within 
subject 

management system 
(ACAMS) 

lowpass 
cut-off 
frequency of 
40 Hz 
Independent 
component 
analysis was 
employed 
to correct the 
ocular 
artifacts 

average power 
in the theta (4–8 
Hz), alpha (8–
13 Hz), beta 
(14–30 Hz), 
and gamma 
(31–40 Hz) 
bands (2sec 
windows) 
EEG temporal 
features 
including mean, 
variance, zero 
crossing rate, 
Shannon 
entropy, spectral 
entropy, 
kurtosis, and 
skewness 

Denoising 
Autoencoder 
(Ensemble 
SDAE) 

validation layers 
Number of 
hidden 
neurons  
Input: 
frequency 
vs time 

KNN 

Recognition of 
Cognitive Task 
Load Levels Using 
Single Channel 
EEG and Stacked 
Denoising 
Autoencoder (Yin 
& Zhang, 2016) 

EEG Cognitive 
Task Load, 
within 
subject 

automatic 
enhanced cabin air 
management system 
(ACAMS) 

Frequenc
y, values 

Butterworth 
filter, 4th 
order, Band 
pass: 1.5-40 
Hz  
Eye blink 
correction 
via ICA 

FFT, Single 
channel 

Stacked 
Denoising 
Autoencoder 

7 
    

Channel 
Selection 

 
74% 

Cross-subject 
recognition of 
operator functional 
states via EEG and 
switching deep 
belief networks 
with adaptive 
weights (Yin & 
Zhang, 2017b) 

EEG Operator 
Functional 
States, cross 
subject 

AutoCAMS Frequenc
y and 
more, 
values 

Butterworth 
IIR Filter, 
ICA for 
blink 
correction 

frequency, log-
energy entropy, 
mean, five 
power 
components, 
Shannon 
entropy, sum of 
energy, 
variance, zero-
crossing rate of 
each channel 
and power 
differences 
between four 
channel pairs. 

Switching 
Deep Belief 
Network 

      
KNN, NB, 
LR, 
LSSVM, 
SAE, 
DBN, 
PCA–
KNN, 
PCA–NB, 
PCA–LR, 
PCA–
LSSVM, 
PCA–
SAE, and 
PCA–
DBN 

62%, 
71%, 
and 
40% 

Cross-session 
classification of 
mental workload 
levels using EEG 
and an adaptive 
deep learning model 
(Yin & Zhang, 
2017a) 

EEG Mental 
workload, 
within 
subject, 
cross session 

AutoCAMS, 4 levels  Frequenc
y, values 

4-order 
Butterworth 
IIR filter: 
low-pass 
frequency of 
40 Hz 
Eye blink 
correction 
via ICA 

FFT: average 
power in theta 
(5–7.5 Hz), 
alpha(8–13.5 
Hz), beta1 (14–
20 Hz), beta2 
(20.5–30 Hz), 

Adaptive 
Stacked 
Denoising 
Autoencoder 

6 Sigmoid Gradient 
Descent 

  
Adaptive 
Shallow 
layer 
Within 
Session, 
Cross 
session 
 
Channel 
selection, 
features 
selection 
 
Noise 
robustness 

ANN, NB, 
KNN, 
SVM, 
BSVM 

Within: 
0.95 
Cross 
session: 
0.87 

Task-generic 
mental fatigue 
recognition based 
on 

EEG Mental 
Fatigue, 
cross task  

AutoCAMS, 2 
designs, 4 levels 

Frequenc
y and 
more, 
values 

4-order 
Butterworth 
IIR filter: 
bandpass .5 - 

Average power 
theta, alpha, 
beta (13–30 
Hz), and gamma 

dynamical 
deep 
extreme 
learning 

10 logistic 
sigmoid 

   
Complexity H-ELM, 

ELM, 
LSSVM, 
ANN, LR, 

0.7551, 
0.6551 
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neurophysiological 
signals and 
dynamical deep 
extreme learning 
machine (Yin & 
Zhang, 2018) 

40 Hz 
Eye blink 
correction 
via ICA 

(30–40 Hz) 
bands, mean, 
variance, zero-
crossing rate 
(ZCR), Shannon 
entropy 
(denoted as 
Entropy 1), log-
energy entropy 
(denoted as 
Entropy 2), 
kurtosis, and 
skewness 

machine NB, KNN, 
PCA-NB, 
PCA-
KNN, 
PCA-
LSSVM, 
PCA-NB, 
PCA-
ELM. 

Physiological-
signal-based mental 
workload 
estimation via 
transfer dynamical 
autoencoders in a 
deep learning 
framework (Yin et 
al., 2019) 

EEG Mental 
Workload, 
cross subject 

Two process control 
tasks, one emotion 
stimuli 

Frequenc
y and 
more, 
values 

downsample
d 128 Hz. 

average power 
spectral density 
(PSD) within 
frequency bands 
of theta (4–8 
Hz), alpha (8–
12 Hz), beta 
(12–30 Hz) and 
gamma (30–40 
Hz), Band 
power via FFT, 
mean, variation, 
zero crossing 
rate, Shannon 
entropy, spectral 
entropy, 
kurtosis, and 
skewness across 

transfer 
dynamical 
autoencoder 

 
logistic 
sigmoid 

   
Complexity NB, LR, 

KNN, 
ANN, 
ELM, 
LSSVM, 
SAE, 
DBN, 
CNN, 
TDAE 

0.8623, 
0.8987 
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A2.3 Manipulation check 

Figure 41 

Normal quantile-quantile plot 

 

Table 53 

Shapiro-Wilk test 

Maneuver variable statistic p 

Low       Workload      0.945 0.576 

Moderate Workload      0.897 0.171 

High      Workload      0.804 0.0107 

 

Table 54 

Mauchly's test for sphericity 

Effect W P 

Maneuver 0.59 0.093       
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Table 55 

Greenhouse-Geisser sphericity corrections 

Effect GGe DF[GG] p[GG] p[GG]<.05 HFe DF[HF] p[HF] p[HF]<.05 

Maneuver 0.709 1.42 14.18 0.008          0.793 1.59 15.85 0.006          
 
Table 56 

ANOVA 

Effect DFn DFd F p ges 

Maneuver 2 20 7.995 0.003 0.224 

 

Table 57 

Pairwise T-Tests 

.y.     group1 group2 n1 n2 statistic df p p.adj p.adj.signif 

Workload Low Moderate 11 11 -4.53 10 0.001 0.003 * 

Workload Low High 11 11 -3.40 10 0.007 0.02   * 

Workload Moderate High 11 11 -1.03 10 0.329 0.987 ns 

Note. Adjustment: Bonferroni 
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A2.4 Benchmark statistics 

We use Wilcoxon signed-rank tests to compute the statistical significance of mean 

difference of performance metrics between deep learning models as suggested by 

(Benavoli, Corani, & Mangili, 2016). For multiple tests correction, we used Benjamini-

Hochberg procedure for false-discovery-rate (10 %) correction with a nominal α = 0.05 

(Benjamini & Hochberg, 1995). 

 

Table 58 

Wilcoxon signed rank test comparing the baselines 

clf1 clf2 p_value statistic sig critical_p_value 

COV+RMDM LR 0 0 TRUE 0.007 

COV+LR LR 0 0 TRUE 0.013 

COV+LR ppn 0 0 TRUE 0.02 

COV+RMDM ppn 0 0.5 TRUE 0.027 

COV+RMDM PCA+CSP+LDA 0 11 TRUE 0.033 

COV+LR PCA+CSP+LDA 0 17.5 TRUE 0.04 

COV+RMDM Xdawn+LR 0 38 TRUE 0.047 

COV+LR Xdawn+LR 0 71.5 TRUE 0.053 

Xdawn+LR ppn 0 73.5 TRUE 0.06 

LR Xdawn+LR 0 117 TRUE 0.067 

PCA+CSP+LDA ppn 0 159.5 TRUE 0.073 

LR PCA+CSP+LDA 0 202 TRUE 0.08 

PCA+CSP+LDA Xdawn+LR 0.117 379 FALSE 0.087 

COV+LR COV+RMDM 0.313 428.5 FALSE 0.093 

LR ppn 0.504 458.5 FALSE 0.1 
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Table 59 

Wilcoxon signed rank test comparing deep learning models 

clf1 clf2 p_value statistic sig critical_p_value 

FCN MLP 0 0 TRUE 0.002 

CNN FCN 0 0 TRUE 0.004 

FCN MCDCNN 0 0 TRUE 0.005 

DeepConvNet FCN 0 0 TRUE 0.007 

Encoder FCN 0 0 TRUE 0.009 

MLP ResNet 0 0 TRUE 0.011 

DeepConvNet ResNet 0 0 TRUE 0.013 

CNN COV+RMDM 0 0 TRUE 0.015 

FCN RNN_LSTM 0 0 TRUE 0.016 

RNN_LSTM ResNet 0 0 TRUE 0.018 

COV+RMDM MLP 0 0 TRUE 0.02 

CNN ResNet 0 0 TRUE 0.022 

Encoder ResNet 0 0 TRUE 0.024 

COV+RMDM DeepConvNet 0 0 TRUE 0.025 

EEGNet RNN_LSTM 0 0 TRUE 0.027 

MCDCNN ResNet 0 0.5 TRUE 0.029 

COV+RMDM RNN_LSTM 0 0.5 TRUE 0.031 

RNN_LSTM ShallowConvNet 0 0.5 TRUE 0.033 

COV+RMDM Encoder 0 1 TRUE 0.035 

EEGNet MCDCNN 0 1.5 TRUE 0.036 

EEGNet Encoder 0 2 TRUE 0.038 

DeepConvNet EEGNet 0 4.5 TRUE 0.04 

COV+RMDM MCDCNN 0 4.5 TRUE 0.042 

CNN EEGNet 0 5 TRUE 0.044 

MCDCNN ShallowConvNet 0 7.5 TRUE 0.045 

MLP ShallowConvNet 0 7.5 TRUE 0.047 

EEGNet MLP 0 8 TRUE 0.049 

DeepConvNet ShallowConvNet 0 8 TRUE 0.051 

CNN ShallowConvNet 0 9.5 TRUE 0.053 

Encoder ShallowConvNet 0 14 TRUE 0.055 

FCN ShallowConvNet 0 27.5 TRUE 0.056 
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ResNet ShallowConvNet 0 56 TRUE 0.058 

EEGNet FCN 0 71.5 TRUE 0.06 

COV+RMDM FCN 0 135.5 TRUE 0.062 

EEGNet ResNet 0 140 TRUE 0.064 

COV+RMDM ResNet 0.001 220.5 TRUE 0.065 

COV+RMDM ShallowConvNet 0.006 277.5 TRUE 0.067 

CNN DeepConvNet 0.007 278 TRUE 0.069 

EEGNet ShallowConvNet 0.009 288 TRUE 0.071 

FCN ResNet 0.027 325.5 TRUE 0.073 

DeepConvNet Encoder 0.044 340 TRUE 0.075 

CNN MLP 0.077 361.5 FALSE 0.076 

DeepConvNet RNN_LSTM 0.171 396.5 FALSE 0.078 

DeepConvNet MLP 0.207 406 FALSE 0.08 

DeepConvNet MCDCNN 0.276 421.5 FALSE 0.082 

Encoder MLP 0.33 431.5 FALSE 0.084 

MLP RNN_LSTM 0.336 432.5 FALSE 0.085 

CNN MCDCNN 0.415 445.5 FALSE 0.087 

CNN Encoder 0.458 452 FALSE 0.089 

COV+RMDM EEGNet 0.461 452.5 FALSE 0.091 

Encoder MCDCNN 0.465 453 FALSE 0.093 

MCDCNN RNN_LSTM 0.5 458 FALSE 0.095 

CNN RNN_LSTM 0.501 458 FALSE 0.096 

MCDCNN MLP 0.671 480 FALSE 0.098 

Encoder RNN_LSTM 0.734 487.5 FALSE 0.1 
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Table 60 

Wilcoxon signed rank test comparing the optimizers 

clf1 clf2 p_value statistic sig critical_p_value 

fcn_nadam resnet_sgd 2.00E-05 148 TRUE 0.00357 

fcn_adadelta resnet_sgd 0.00018 190.5 TRUE 0.00714 

fcn_sgd resnet_sgd 0.00018 189.5 TRUE 0.01071 

fcn_nadam resnet_nadam 0.00347 261.5 TRUE 0.01429 

fcn_adadelta resnet_nadam 0.00652 280 TRUE 0.01786 

fcn_adam resnet_sgd 0.00661 280.5 TRUE 0.02143 

fcn_sgd resnet_nadam 0.00857 287.5 TRUE 0.025 

resnet_adam resnet_sgd 0.00883 288 TRUE 0.02857 

fcn_nadam resnet_adadelta 0.01875 312.5 TRUE 0.03214 

fcn_adam resnet_nadam 0.02847 326 TRUE 0.03571 

fcn_adadelta resnet_adadelta 0.03703 336 TRUE 0.03929 

fcn_sgd resnet_adadelta 0.06387 355.5 FALSE 0.04286 

resnet_adam resnet_nadam 0.07256 361 FALSE 0.04643 

resnet_adadelta resnet_sgd 0.08938 369 FALSE 0.05 

resnet_adadelta resnet_nadam 0.14461 390.5 FALSE 0.05357 

fcn_adam fcn_nadam 0.16645 397.5 FALSE 0.05714 

fcn_nadam resnet_adam 0.18904 403 FALSE 0.06071 

fcn_adam fcn_sgd 0.22723 412.5 FALSE 0.06429 

fcn_sgd resnet_adam 0.24738 416.5 FALSE 0.06786 

fcn_adam resnet_adadelta 0.25018 417.5 FALSE 0.07143 

fcn_adadelta resnet_adam 0.34362 435 FALSE 0.075 

resnet_nadam resnet_sgd 0.50394 459 FALSE 0.07857 

fcn_adam resnet_adam 0.58217 469.5 FALSE 0.08214 

fcn_adadelta fcn_sgd 0.59073 471 FALSE 0.08571 

fcn_adadelta fcn_nadam 0.69892 484 FALSE 0.08929 

fcn_adadelta fcn_adam 0.72187 486.5 FALSE 0.09286 

fcn_nadam fcn_sgd 0.96781 514 FALSE 0.09643 

resnet_adadelta resnet_adam 0.96807 514 FALSE 0.1 
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Table 61 

Wilcoxon signed rank test comparing the dropout rate for FCN 

clf1 clf2 p_value statistic sig critical_p_value 

FCN_.1 FCN_.4 0 90.5 TRUE 0.017 

FCN_.3 FCN_.4 0 93.5 TRUE 0.033 

FCN_.2 FCN_.4 0 103 TRUE 0.05 

FCN_.1 FCN_.3 0.009 290.5 TRUE 0.067 

FCN_.1 FCN_.2 0.014 305 TRUE 0.083 

FCN_.2 FCN_.3 0.593 471 FALSE 0.1 

 

Table 62 

Wilcoxon signed rank test comparing the dropout rate for ResNet 

clf1 clf2 p_value statistic sig critical_p_value 

ResNet_.3 ResNet_.4 0.206 407 FALSE 0.017 

ResNet_.1 ResNet_.4 0.209 407.5 FALSE 0.033 

ResNet_.2 ResNet_.4 0.221 410.5 FALSE 0.05 

ResNet_.1 ResNet_.3 0.475 455 FALSE 0.067 

ResNet_.2 ResNet_.3 0.484 456.5 FALSE 0.083 

ResNet_.1 ResNet_.2 0.796 495 FALSE 0.1 
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Table 63 

Wilcoxon signed rank test comparing the activation functions 

clf1 clf2 p_value statistic sig critical_p_value 

fcn_elu resnet_elu 0.002 244.5 TRUE 0.017 

fcn_elu fcn_relu 0.002 247.5 TRUE 0.033 

resnet_elu resnet_relu 0.017 309 TRUE 0.05 

fcn_relu resnet_relu 0.079 364.5 FALSE 0.067 

fcn_elu resnet_relu 0.692 483 FALSE 0.083 

fcn_relu resnet_elu 0.806 496 FALSE 0.1 

 

Table 64 

Wilcoxon signed rank test comparing the window size 

clf1 clf2 p_value statistic sig critical_p_value 

resnet_1.5s resnet_3s 0 102.5 TRUE 0.017 

fcn_3s resnet_1.5s 0 147 TRUE 0.033 

fcn_1.5s resnet_1.5s 0 186 TRUE 0.05 

fcn_1.5s resnet_3s 0.004 263.5 TRUE 0.067 

fcn_1.5s fcn_3s 0.017 307 TRUE 0.083 

fcn_3s resnet_3s 0.806 496 FALSE 0.1 
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Table 65 

Wilcoxon signed rank test comparing FCN, ResNet, and baselines on the replication dataset 

clf1 clf2 p_value statistic sig critical_p_value 

FCN LR 0 1.5 TRUE 0.005 

FCN PCA+CSP+LDA 0 6.5 TRUE 0.01 

LR ResNet 0 22.5 TRUE 0.014 

PCA+CSP+LDA ResNet 0 24.5 TRUE 0.019 

COV+RMDM LR 0 45.5 TRUE 0.024 

FCN Xdawn+LR 0 48.5 TRUE 0.029 

COV+LR LR 0 54 TRUE 0.033 

COV+RMDM PCA+CSP+LDA 0 67.5 TRUE 0.038 

COV+LR PCA+CSP+LDA 0 80.5 TRUE 0.043 

ResNet Xdawn+LR 0 153.5 TRUE 0.048 

COV+LR Xdawn+LR 0 309 TRUE 0.052 

COV+RMDM Xdawn+LR 0 354 TRUE 0.057 

LR Xdawn+LR 0 375 TRUE 0.062 

COV+LR FCN 0 582.5 TRUE 0.067 

PCA+CSP+LDA Xdawn+LR 0 691 TRUE 0.071 

COV+RMDM FCN 0 692 TRUE 0.076 

COV+RMDM ResNet 0 753.5 TRUE 0.081 

COV+LR ResNet 0.001 772.5 TRUE 0.086 

LR PCA+CSP+LDA 0.163 1161 FALSE 0.09 

FCN ResNet 0.793 1375.5 FALSE 0.095 

COV+LR COV+RMDM 0.816 1381 FALSE 0.1 
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A2.5 Validation statistics 

Table 66 

Intra-model agreement descriptive statistics 

Subject Kappa Score CCC MCC 

 Mean Std Mean Std Mean Std 

1 0.663 0.085 0.76 0.088 0.675 0.083 

2 0.116 0.136 0.131 0.112 0.163 0.175 

3 0.676 0.082 0.789 0.055 0.688 0.079 

5 0.606 0.131 0.746 0.118 0.644 0.108 

6 0.751 0.06 0.855 0.04 0.765 0.046 

7 0.285 0.103 0.53 0.139 0.401 0.091 

8 0.485 0.194 0.578 0.187 0.531 0.184 

9 0.464 0.216 0.434 0.195 0.518 0.175 
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Table 67 

Inter-model agreement descriptive statistics 

Subject Model Kappa Score CCC MCC 

  
Mean Std Mean Std Mean Std 

1 fcn 0.752 0.073 0.784 0.097 0.761 0.069 

 
resnet 0.629 0.097 0.712 0.076 0.636 0.093 

2 fcn 0.398 0.128 0.534 0.17 0.426 0.138 

 
resnet 0.582 0.248 0.61 0.281 0.636 0.202 

3 fcn 0.564 0.123 0.679 0.15 0.602 0.102 

 
resnet 0.465 0.129 0.523 0.156 0.509 0.102 

5 fcn 0.786 0.054 0.897 0.043 0.796 0.047 

 
resnet 0.637 0.08 0.707 0.088 0.659 0.072 

6 fcn 0.865 0.033 0.916 0.037 0.867 0.033 

 
resnet 0.825 0.037 0.894 0.025 0.829 0.036 

7 fcn 0.583 0.13 0.823 0.092 0.631 0.096 

 
resnet 0.692 0.064 0.766 0.064 0.714 0.047 

8 fcn 0.693 0.138 0.839 0.063 0.713 0.124 

 
resnet 0.313 0.14 0.362 0.132 0.390 0.113 

9 fcn 0.442 0.225 0.575 0.23 0.514 0.174 

 
resnet 0.581 0.146 0.657 0.165 0.610 0.119 
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A2.6 Results statistics 

A2.6.1 Measures 

• DV = Performance for each maneuver and complexity level.  

• IV = complexity level (1, 2, 3), MEMW, EMWP 

• Manipulation check = perceived mental workload (Raw-TLX) 

A2.6.2 Statistical tools 

We employed the R programming language and the lme4 package (Bates et al., 2014) to 

conduct a linear mixed effects analysis. This approach was chosen because it accounts 

for the within-subject measurement of performance that violates the independence 

assumption of a linear regression model. We assessed the model's assumptions using the 

Performance package (Lüdecke et al., 2021). 

A2.6.3 Linear mixed model procedure 

Maximal random effect structure:  

Specify a maximal LMEM based on the following criteria (Barr et al., 2013, p 275): 

• “If a factor is between-unit, then a random intercept is usually sufficient. 

• If a factor is within-unit and there are multiple observations per treatment level 

per unit, then you need a by-unit random slope for that factor. 

• Exception: single observation for every treatment level of every unit, random 

slope variance would be completely confounded with trial-level error” 

In our case, we have multiple observations of performance per subject and per 

complexity level. We assume that the effect of the manipulation, i.e., complexity might 

influence the performance and vary between subjects. Thus, we need to specify a 

random intercept and slope for subjects as influenced by the complexity of the 

maneuver.  

Standardized parameters were obtained by fitting the model on a standardized version of 

the dataset. 95% Confidence Intervals (CIs) and p-values were computed using a Wald 

t-distribution approximation.  
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Table 68 

Random effect structures 

 (1|subject) (1 | subject) + 
(1 | 
complexity) 

(1 + 
complexity 
|subject) 

(1 | subject) + 
(1 | complexity)  
+ (1 | 
maneuver) 

(Intercept) 2.869 (0.073) 2.850 (0.136) 2.879 (0.073) 2.856 (0.136) 

 [2.724, 3.015] [2.581, 3.120] [2.733, 3.024] [2.586, 3.126] 

SD  
(Intercept subject) 

0.133 (0.082) 0.158 (0.080) 0.519 (0.200) 0.168 

 [0.039, 0.449] [0.059, 0.424] [0.244, 1.103]  

SD  
(Complexity subject) 

  0.268 (0.099)  

   [0.130, 0.551]  

Cor 
(Intercept~Complexity 
subject) 

  -0.958 (0.732)  

   [-1.000, 1.000]  

SD  
(Observations) 

0.529 (0.042) 0.491 (0.039) 0.479 (0.040) 0.456 

 [0.453, 0.617] [0.419, 0.574] [0.407, 0.565]  

SD (Intercept 
Complexity) 

 0.193 (0.102)  0.163 

  [0.069, 0.545]   

SD (Intercept 
maneuver) 

   0.200 

Num.Obs. 88 88 88 88 

R2 Marg. 0.000 0.000 0.000 0.000 

R2 Cond. 0.059 0.206 0.540 0.313 

AIC 151.2 145.2 148.7 143.3 

BIC 158.6 155.2 161.1 155.7 

ICC 0.1 0.2 0.5 0.3 

RMSE 0.52 0.47 0.45 0.43 
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Figure 42 

Model check for the random structure (1 + Complexity |subject) 
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Table 69 

Linear mixed model results  

  ResNet FCN 

 M1 M2 M3 M4 M5 

Fixed Effects  

(Intercept) 
3.358  
p <0.001 
(0.161) 

3.434  
p <0.001 
(0.225) 

3.424  
p <0.001 
(0.245) 

3.304  
p <0.001 
(0.224) 

3.313  
p <0.001 
(0.240) 

 [3.037, 3.679] [2.986, 3.882] [2.937, 3.912] [2.858, 3.750] [2.835, 3.791] 

Complexity -0.256 p = 
0.001 (0.075) 

-0.257 p 
<p0.001 
(0.074) 

-0.258 p 
<0.001 (0.075) 

-0.256  
p = 0.001 
(0.076) 

-0.256 p = 
0.001  
(0.076) 

 [-0.406, -0.106] [-0.405, -
0.109] [-0.407, -0.108] [-0.407, -0.104] [-0.406, -0.105] 

EMWP  -0.096 p = 
0.642 (0.207)  0.074 p = 0.716 

(0.203)  

  [-0.508, 0.315]  [-0.329, 0.477]  

MEMW   -0.078 p = 
0.723 (0.221)  0.057 p = 0.796 

(0.218) 

   [-0.518, 0.361]  [-0.378, 0.491] 

Random Effect   

SD (Intercept 
Pilot) 0.256 (0.222) 0.228 (0.238) 0.238 (0.232) 0.290 (0.218) 0.282 (0.220) 

 [0.047, 1.395] [0.029, 1.768] [0.035, 1.604] [0.066, 1.269] [0.061, 1.297] 

SD (complexity 
Pilot) 0.110 (0.113) 0.104 (0.118) 0.108 (0.115) 0.113 (0.112) 0.111 (0.113) 

 [0.014, 0.831] [0.011, 0.966] [0.013, 0.871] [0.016, 0.789] [0.015, 0.820] 

Cor 
(Intercept~Comp
lexity subject) 

-0.758 (1.774) -0.631 (2.017) -0.678 (1.886) -0.787 (1.616) -0.760 (1.662) 

 [-1.000, 1.000] [-1.000, 1.000] [-1.000, 1.000] [-1.000, 1.000] [-1.000, 1.000] 

SD 
(Observations) 0.479 (0.040) 0.481 (0.040) 0.481 (0.040) 0.480 (0.040) 0.480 (0.040) 

 [0.407, 0.565] [0.408, 0.566] [0.408, 0.567] [0.408, 0.566] [0.408, 0.566] 

Num.Obs. 88 88 88 88 88 

Performance  

R2 Marg. 0.135 0.135 0.135 0.135 0.134 
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  ResNet FCN 

 M1 M2 M3 M4 M5 

R2 Cond. 0.252 0.266 0.263 0.264 0.265 

AIC 146.3 149.4 149.4 149.5 149.4 

BIC 161.1 166.8 166.7 166.9 166.8 

ICC 0.1 0.2 0.1 0.1 0.2 

RMSE 0.46 0.46 0.46 0.46 0.46 

Note. M1 = performance ~ complexity, M2 = performance ~ EMWP(ResNet) + 

complexity, M3 = performance ~ MEMW(ResNet)  + complexity, M4 = performance ~ 

EMWP(FCN)  + complexity, M5 = performance ~ MEMW(FCN)  + complexity. 

Random structure = (1 + Complexity |subject). Values represent: estimate, p.value 

(std.error) [conf.low, conf.high].  
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A2.6.4 Pearson's correlation analyses 
Table 70 

Pearson's correlation analyses 

Perceived 
Mental 
Workload 

Estimated 
Mental 
Workload 

r 95% CI t(86) p 

RAW-TLX  ResNet - 
EMWP 

0.24 [.03, .42] 2.25 .027* 

RAW-TLX  ResNet - 
MEMW 

0.22 [.01, .41] 2.07 .041* 

RAW-TLX  FCN - EMWP 0.25 [.04, .44] 2.39 .019* 

RAW-TLX  FCN - MEMW 0.25 [.04, .43] 2.37 .020* 
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A3 Chapter 4 

A3.1 Experimental setup – study 1 

Figure 43 

Study 1 - room configuration 

 

Figure 44 

Study 1 - data collection infrastructure and synchronisation 
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A3.2 Experimental setup – study 2 

Figure 45 

Study 2 - data collection infrastructure and synchronisation 
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