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Résumé

La pratique et la littérature sur la planification logistique intégrée mettent en évidence
d’importants potentiels d’économies dans les chaines d’approvisionnement. Les études
sur ces problémes de prise de décision intégrée se concentrent principalement sur 1’aval
de la chaine d’approvisionnement. Cette thése comble le vide en étudiant le probleme
intégré de tournées de véhicules pour le transport entrant, de planification de la pro-
duction et de gestion des stocks. Dans le premier chapitre, nous étudions un modele
général pour le probleme de tournées et assemblage (ARP), qui consiste a planifier si-
multanément ’assemblage d’un produit fini dans une usine et les tournées des véhicules
collectant des matiéres aupres des fournisseurs pour répondre aux exigences de stocks
imposées par la production. Chaque fournisseur fournit un composant unique nécessaire
a la production du produit final dans 1'usine de fabrication. Nous formulons le probleme
comme un programme linéaire en variables mixtes et nous proposons une matheuris-
tique de décomposition en trois phases qui s’appuie sur la solution itérative de différents
sous-problemes. L'algorithme est flexible et nous montrons comment il peut également
étre utilisé pour résoudre deux problémes de distribution bien connus liés a ’ARP: le
probleme de tournées et de production (PRP) et le probleme de tournées et de gestion
des stocks (IRP). En particulier, sur les instances multi-véhicules a grande échelle, le nou-

vel algorithme surpasse les heuristiques spécialisées de pointe pour ces deux problemes.

Dans le deuxiéme chapitre, nous étendons le champ d’application pour considérer le
cas ol1 chaque fournisseur peut fournir un sous-ensemble des composants nécessaires au
produit final et ol certains composants peuvent étre obtenus aupres de plusieurs four-
nisseurs. Nous proposons une formulation de programmation en nombres entiers mixtes

du probléme et proposons plusieurs familles d’inégalités valides pour renforcer la relax-



ation de programmation linéaire. Nous proposons deux nouveaux algorithmes pour sé-
parer les contraintes d’élimination des sous-circuits pour les solutions fractionnaires. Les
inégalités et les procédures de séparation sont utilisées dans un algorithme de séparation
et de coupe. Des expériences de calcul sur un grand nombre d’instances générées aléa-
toirement montrent que les inégalités valides et les nouvelles procédures de séparation
améliorent considérablement les performances de I'algorithme.

Dans le troisieme chapitre, nous étudions un autre probleme pratique et complexe se
posant dans le contexte de la planification logistique intégrée. Les nombreuses études
sur ces problémes supposent des durées de production et de planification des itinéraires
identiques. Nous présentons des modeles de programmation mathématique et des méth-
odes de résolution qui ne reposent pas sur cette hypotheése. Par conséquent, nous con-
sidérons la possibilité d’avoir différentes durées de production et de planification des
tournées. En plus, nous considérons la production de différents types de produit. Nous
développons des modeles et des algorithmes de résolution exacts pour optimiser simul-
tanément la production, les tournées de transport, ainsi que les décisions d’expédition et

de gestion des stocks.
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actes, séparation et coupes

Méthodes de recherche

Recherche opérationnelle, programmation mathématique

iv



Abstract

The practice and the literature on integrated logistics planning highlight a significant
potential for cost savings in supply chains. The studies on these integrated decision-
making problems are mostly focused on the downstream supply chain. This thesis fills
the gap by studying the problem of integrated inbound transportation routing, produc-
tion, and inventory planning. In the first chapter, we study a general model for the as-
sembly routing problem (ARP), which consists of simultaneously planning the assembly
of a finished product at a plant and the routing of vehicles collecting materials from sup-
pliers to meet the inventory requirements imposed by the production. Each supplier
provides a unique component necessary for the production of the final product at the
manufacturing plant. We formulate the problem as a mixed-integer linear program and
we propose a three-phase decomposition matheuristic that relies on the iterative solu-
tion of different subproblems. The algorithm is flexible and we show how it can also be
used to solve two well-known outbound distribution problems related to the ARP: the
production routing problem (PRP) and the inventory routing problem (IRP). In partic-
ular, on large-scale multi-vehicle instances, the new algorithm outperforms specialized

state-of-the-art heuristics for these two problems.

In the second chapter, we extend the scope to consider the case where each supplier
may provide a subset of the components necessary for the final product and where some
components can be obtained from more than one supplier. We provide a mixed integer
programming formulation of the problem and propose several families of valid inequal-
ities to strengthen the linear programming relaxation. We propose two new algorithms
to separate the subtour elimination constraints for fractional solutions. The inequalities

and separation procedures are used in a branch-and-cut algorithm. Computational ex-
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periments on a large set of randomly generated test instances show that both the valid
inequalities and the new separation procedures significantly improve the performance of
the branch-and-cut algorithm.

In the third chapter, we study another practical and complicated problem in the con-
text of integrated logistics planning. The numerous studies in the literature on these
problems all assume identical production and route planning period lengths. We present
mathematical programming models and solution methods that do not rely on this as-
sumption. Hence, we consider the possibility of having different production and route
planning period lengths. Furthermore, we consider the production of different types of
products. We develop models and exact solution algorithms to simultaneously optimize
the production setup and quantity, transportation and routing, and shipment and inven-

tory decisions.

Keywords
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tion matheuristic, valid inequalities, exact solution method, branch-and-cut
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General Introduction

To stay on top of the competition, more and more companies have to integrate their sup-
ply chains. The effective implementation of this integration is key in making a differ-
ence. A well-integrated supply chain allows for a reduction in wasted time and materi-
als, tightens the coordination between production, warehousing, and shipment planning,
and lowers overall costs. The integration requires a large-scale change in the decision-
making process across the chain. Every link in the chain benefits through sharing infor-
mation and working with other members and with customers. Traditional supply chain
planning consists of scheduling the sequential processes of production, storage, and dis-
tribution. Each process is usually planned and optimized having the decisions from the
previous process fixed. Reaching a level of integration that creates synergy through-
out the chain requires that the production and transportation decisions be optimized
together (Christopher, 1998; Simchi-Levi et al., 2013). Several studies and success sto-
ries have shown a significant potential for cost savings in the supply chain by combining
production and transportation decisions (Chandra and Fisher, 1994; Arntzen et al., 1995;
Viswanathan and Mathur, 1997; Fumero and Vercellis, 1999; Brown et al., 2001; Chen and
Vairaktarakis, 2005; Rudberg and Cederborg, 2011; Steinriicke, 2011; Archetti and Sper-
anza, 2016). More specifically, these studies highlight the need for the optimization and
management of the entire supply chain as a single entity to obtain cost reduction advan-

tages and hence service enhancements.

Considering all the decision levels in a single framework offers a holistic view of
the logistics network planning and provides a starting point for the full integration of
the supply chain. Due to the importance of the integration, vendor-managed inventory

(VMI) initiatives have become an increasingly effective process and business model to



help organizations share risk and information between suppliers and customers. VMI
connects suppliers to customers, with the former making the replenishment decisions
for products supplied to the latter, based on specific inventory and supply chain poli-
cies. VMl is often described as a win-win collaboration to benefit from lower stockouts,
reduced uncertainty, and lower costs. Particularly, suppliers save on distribution and
production costs as they are able to coordinate demand and combine shipments for dif-
ferent customers. Customers save by allocating the smallest necessary efforts to control
and manage inventories. The VMI approach cuts costs by benefiting from economies of
scale when a supplier plans the shipments to many retail stores in the downstream of the
supply chain.

In this context, different problems have been studied to optimize the necessary pro-
cesses. Examples include two classical problems in logistics, namely lot-sizing and vehi-
cle routing, which were introduced by Wagner and Whitin (1958), and by Dantzig and
Ramser (1959), respectively. The lot-sizing problem (LSP) consists of determining pro-
duction lot sizes and inventory levels over a given planning horizon. The vehicle routing
problem (VRP) consists of designing vehicle routes to make deliveries to customers in
each period. Each of these problems has been the subject of numerous studies, yet most
of them focus on a single problem and very few address the integration of the two prob-
lems. However, focusing on the cost minimization in one sub-process typically leads to
higher costs in the other. The problem of simultaneously planning the production at a
manufacturing plant and the outbound delivery routing is known in the literature as the
production routing problem (PRP) (Archetti et al., 2011; Adulyasak et al., 2015). When
the production plan at the factory is given and the decisions concern only the inventory
and route planning, the problem is referred to as the inventory routing problem (IRP)
(Andersson et al., 2010; Coelho et al., 2013). In contrast, few studies have considered
the integration of production planning with inbound transportation for the collection of
components from suppliers to assemble a final product. In this thesis, we investigate the
problem of achieving this integration in the upstream supply chain. When the manufac-
turer is the largest player in the chain and has the opportunity to benefit from economies
of scale, it can be responsible for organizing the inbound transportation of the various

components. Significant gains can be achieved in such a case by integrating production
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planning with inbound transportation (Carter and Ferrin, 1996).

In a standard supply chain, a manufacturing plant often uses several different com-
ponents to assemble a final product. These components are typically produced in other
plants or purchased from suppliers. If the assembly plant is responsible for organizing
the inbound transportation of the various components, then gains can be achieved by
integrating the production planning with the inbound vehicle routing. We refer to this
problem as the assembly routing problem (ARP). The ARP considers a joint planning
problem with a primary manufacturing plant that produces a final product to meet a
dynamic but deterministic demand. The factory gets the essential components from di-
verse suppliers, each providing a subset of the components. The plant coordinates the
production scheduling as well as the routing decisions and shipment quantities from the
suppliers. The aim is to minimize the total costs of production, inventory and routing
subject to certain constraints. The planning is done over a finite and discrete-time hori-
zon. The quantities available at the suppliers are assumed to be known in advance. The
factory has a limited capacity for the production and no backlogging or stockouts are al-
lowed. Both the factory and the suppliers can carry inventory. The factory has separate
and capacitated inbound and outbound storage areas for the incoming components from
suppliers and for the final product, respectively. Each supplier has a global storage ca-
pacity for its own components. The plant manages a limited fleet of capacitated vehicles
to handle the shipment of components from the suppliers to the factory. Similar to the
standard variants of the IRP and PRP, we do not allow a supplier to be visited by more
than one vehicle in a specific period (i.e., no split pickups). The objective is to optimize

the following decisions simultaneously:

* When to produce at the central manufacturing plant and the quantity to be pro-
duced,

* Routing decisions for the planning horizon which include the supplier visit timing

and vehicle assignment, and

* The quantity of each component to be transported from the suppliers to the factory.

3



A solution to this problem, within the planning horizon, gives the production amounts
that respect the manufacturing and inventory keeping limitations. It also includes the
visit schedules for each supplier and the amount of the components to be shipped to
the factory. The visit and shipment schedules satisfies the storage and transportation
capacities.

To the best of our knowledge, the problem of jointly optimizing production plan-
ning and inbound vehicle routing with a finite horizon and discrete planning periods
has only been considered by Hein and Almeder (2016). The authors consider two sce-
narios. In the first scenario, the plant is allowed to keep the components in stock while
in the second scenario, which represents a JIT environment, the components that arrive
at the plant must be used immediately in production. They examine both scenarios un-
der the traditional sequential planning approach and under the integrated approach. In
the sequential planning process, an LSP is solved first to obtain the production plan for
the final product. Then, in the second step, they solve an IRP for the first scenario and
one vehicle routing problem (VRP) for each period in the second scenario. Because the
authors did not consider the holding cost at the suppliers in their study, the integrated
decision-making is entirely focused on the costs associated with the plant. This is ap-
propriate when the suppliers and the assembly plant are separate organizations and the
assembly plant is not concerned with the inventory costs at the suppliers. Hence, the
gap to integrate the upstream supply by considering the costs at the suppliers is not fully
addressed yet.

Integrated logistics planning for manufacturers and their suppliers is a relevant prac-
tical problem in several business domains. This thesis is motivated in part by the practice
of many U.S. and German auto manufacturers that realized the value of the integrated
production and transportation. Fleischmann and Meyr (2003) indicate that in the auto-
motive industry the organization that receives the components is usually responsible for
the supply transport. Florian et al. (2011) show that in addition to the direct financial
benefits for the supply chain, inbound logistics integration for a German car manufac-
turer has some further important outcomes such as a reduction in CO, emissions. In
an application for the Delco Electronics Division of General Motors (GM), Blumenfeld

et al. (1987) find that the overall optimization of the inbound transportation resulted in a
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26% (2.9 million dollars per year, in 1987’s USD) savings potential. Closed loop supply
chain is another example in which the collection of the end-of-life products should be
coordinated with the disassembly planning (Guide and Van Wassenhove, 2009).

Danese (2006) presents the case of GlaxoSmithKline (GSK), an international pharma-
ceutical group that extended the VMI approach to its suppliers as a response to the highly
competitive and regulated market to benefit from the integrated and coordinated plan-
ning process. To benefit from economies of scale in shipping products to the stores, the
concept of factory gate pricing (FGP) has emerged in the retail sector (Whiteoak, 1994;
Le Blanc et al., 2006; Fernie and Sparks, 2014). Under FGP, the supplier no longer delivers
the products to the customer but makes them available at its own factory gate (Le Blanc
et al., 2006). This requires the customer to plan and synchronize the pickups from the
suppliers to reduce the transportation costs as reported by a number of FGP studies. Ex-
amples are Le Blanc et al. (2006) for a large Dutch retail distribution company and Potter
et al. (2007) for UK retailers.

Furthermore, we investigate, in this thesis, a generalized PRP which takes into ac-
count the fact that the production planning and the route planning period lengths are
not necessarily identical. The overall planning horizon may, as a consequence, contain a
different number of production and route planning periods. In such cases, the capacity
of the production and routing may be expressed in a different time dimension, which
creates the need to have a decoupled discretization of the time horizon. To the best of
our knowledge, this is the first effort in looking at this problem with this generality. For
the lot-sizing part of the formulation, we will consider multiple products and both big-
bucket and small-bucket problems (Pochet and Wolsey, 2006). In a big-bucket model, it
is possible to produce several different types of items within the same planning period
whereas in a small-bucket model only one type of item can be produced in a specific
time period. A single manufacturing plant synchronises the production scheduling for
these multiple products as well as the routing decisions and shipment quantities to the
customers. Demand at the customers is time-varying and predetermined for each prod-
uct. The aim is to minimize the total costs of production, inventories and distribution
routing subject to the limitations of the problem. Storage capacities as well as truck ca-

pacities are limited. Backlogging, stockouts, and split deliveries are allowed. Due to the
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difference in the planning period lengths for the production planning and for the distri-
bution routing, the mathematical models will be different from the basic PRP. In practice,
multiple periods of distribution and transportation exist within one production planning
period or vice versa. For example, daily distribution routing decisions might have to be
made together with weekly production scheduling. Consequently, an important aspect
of these multi-period problems is to deal with the different period lengths while properly
representing the available capacity.

As the benefits of considering and solving such integrated supply chain planning
problems highly depend on the quality and performance of the solution methods, this
thesis not only presents new models and frameworks but also aims to develop efficient
algorithms to solve these models. This thesis is composed of three papers.

Chapter 1 presents:

Chitsaz, M., Cordeau, |.-F., & Jans, R. (2019). A unified decomposition matheuristic for assembly,
production, and inventory routing. INFORMS Journal on Computing, 31(1), 134-152.

In this paper, we present the ARP in detail. Moreover, we develop a heuristic method
capable of solving not only this problem but also the IRP and PRP. The algorithm de-
composes the problem into three separate subproblems. The first subproblem is a spe-
cial lot-sizing problem that uses the number of dispatched vehicles to approximate the
routing costs in the objective function. A solution to this subproblem provides a given
setup schedule. Given this setup schedule, the second subproblem uses a transportation
cost approximation associated with each supplier visit, and schedules the visits and de-
termines the shipment quantities. For multi-vehicle instances, a modified model of the
second subproblem is employed in this phase to look for possible improvements in find-
ing better supplier visits and shipment volumes. The third subproblem solves a series of
separate vehicle routing problems, one for each planning period. This procedure is re-
peated for a number of iterations to reach a local optimum. The solutions of the routing
subproblems are used to update the supplier visit (transportation) cost approximation in
the second subproblem. To escape a local optimum, a local branching scheme forces a
change in the setup schedule and hence creates entirely new solutions. The entire pro-
cedure continues until a stopping condition is met. We introduce many ARP instances

on which we report the performance of the algorithm. Moreover, we show the excellent
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performance of the algorithm on standard data sets for the IRP and PRP. In particular,
the algorithm outperforms the state-of-the-art heuristics on large-scale multi-vehicle in-
stances for these problems. In addition, the results confirm the robust behavior of the
algorithm in tackling different problems, several data sets, and various sizes of instances.
This paper was selected as one of the four finalists in the 2017 best student paper compe-
tition of the Canadian Operational Research Society (CORS).
Chapter 2 presents:

Chitsaz, M., Cordeau, ] -F., & Jans, R. (2020). A branch-and-cut algorithm for an assembly rout-
ing problem. European Journal of Operational Research, 282(3), 896-910.

In this paper, we generalize the ARP of the first paper (Chapter 1). In that first paper,
we assume that every supplier provides a unique component and hence a one-to-one
relationship between the supplier and component sets. In this paper, we relax this as-
sumption to consider the case where each supplier potentially provides a subset of the
components necessary for the final product and some components are sourced from more
than one supplier. Moreover, we develop several new valid inequalities to strengthen
the linear programming relaxation of the mixed integer programming formulation of
the problem. Three classes of valid inequalities are presented. The first class contains
(1,5,WW)-type inequalities (Barany et al., 1984; Pochet and Wolsey, 1994). The second one
concerns tightening the bounds on the binary and integer decision variables. The last
class includes general inequalities for the problem. A novelty in the proposed inequali-
ties, compared to the existing ones in the literature of the LSP, is that some of them use
the known supply instead of the known demand. The inequalities are used in a branch-
and-cut algorithm. We adapt the unified method proposed in Chapter 1 and apply it to
the generalized ARP to obtain high quality feasible solutions as well as cutoff values that
can be used to prune branches in our branch-and-cut algorithm. We generate a large test
bed consisting of small to large instances with diverse ranges for the number of suppli-
ers, products and planning periods. Finally, we analyze the impact of each class of valid
inequalities on the value of the LP relaxation and on the final solution. Our extensive
computational experiments show that our valid inequalities notably enhance the perfor-

mance of the branch-and-cut algorithm.



Chapter 3 presents:
Chitsaz, M., Cordeau, [.-F., & Jans, R. Multi-Product Production Routing Under Decoupled
Planning Periods. Under Review at European Journal of Operational Research.
In this paper, we consider a generalized PRP> which takes into account the fact that the
production planning and the route planning period lengths are not necessarily identical.
As a consequence of this assumption, the overall planning horizon may contain a dif-
ferent number of production and route planning periods. This results in two different
discretizations of the planning horizon. This practical feature is a major source of com-
plication for supply chain planners. With respect to the production planning aspect, we
consider both big-bucket and small-bucket lot-sizing models. These models also consider
the production of multiple types of products. We mathematically formulate the problem
under different practical scenarios for the production and route planning period lengths.
An exact solution method and a heuristic algorithm are proposed to efficiently solve large
problem instances with this feature. To assess the effectiveness of our approach, we gen-
erate many test instances and perform an extensive computational study.

Finally, we summarize the main contributions of this thesis and point to several po-

tential future research avenues.



Chapter 1

A Unified Decomposition
Matheuristic for Assembly,

Production and Inventory Routing

Abstract

While the joint optimization of production and outbound distribution decisions in a man-
ufacturing context has been intensively studied in the past decade, the integration of pro-
duction, inventory and inbound transportation from suppliers has received much less
attention despite its practical relevance. This paper aims to fill the gap by introducing a
general model for the assembly routing problem (ARP), which consists of simultaneously
planning the assembly of a finished product at a plant and the routing of vehicles collect-
ing materials from suppliers to meet the inventory requirements imposed by the produc-
tion. We formulate the problem as a mixed-integer linear program and we propose a
three-phase decomposition matheuristic that relies on the iterative solution of different
subproblems. The first phase determines a setup schedule while the second phase opti-
mizes production quantities, supplier visit schedules and shipment quantities. The third
phase solves a vehicle routing problem for each period in the planning horizon. The algo-
rithm is flexible and we show how it can also be used to solve two well-known outbound

distribution problems related to the ARP: the production routing problem (PRP) and the



inventory routing problem (IRP). Using the same parameter setting for all problems and
instances, we obtain 781 new best known solutions out of 2,628 standard IRP and PRP
test instances. In particular, on large-scale multi-vehicle instances, the new algorithm

outperforms specialized state-of-the-art heuristics for these two problems.

1.1 Introduction

The literature on production planning has paid a lot of attention in the past decade to the
integration of lot sizing and outbound transportation decisions. The typical supply chain
that is considered consists of a plant that delivers final products to several customers.
Considering both the production planning at the plant and the outbound delivery to
the customers via routes results in what is called the production routing problem (PRP)
Adulyasak et al. (2015). If the production quantities at the plant are assumed to be given
and the decisions only relate to the inventory and route planning, the problem is referred
to as the inventory routing problem (IRP) (Andersson et al., 2010; Bertazzi et al., 2008;
Coelho et al., 2013).

In contrast, only few studies have focused on the integration of production planning
with inbound transportation planning. Yet, in a standard supply chain, a plant often
uses several different components to assemble a final product. These components are
typically produced in other plants or purchased from suppliers. If the assembly plant is
responsible for organizing the inbound transportation of the various components, then
gains can be achieved by integrating the production planning with the inbound vehicle
routing. We refer to this problem as the assembly routing problem (ARP).

The aim of this paper is to introduce a general model for the ARP. We provide a
mathematical formulation of the problem which serves as the basis for a decomposi-
tion matheuristic that iteratively solves different subproblems. We also explain how the
same methodology can solve the related IRP and PRP. Using the same parameter set-
ting for all three problems, this algorithm outperforms existing heuristics on large-scale
multi-vehicle instances of the IRP and PRP, obtaining new best known solutions to many
standard test instances.

The ARP has many industrial applications in situations where the production plant
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and several suppliers are owned by the same company, or when the manufacturer is
the biggest player in the supply chain and centrally coordinates the inbound logistics
decisions. This is a relevant practical problem in several areas. Fleischmann and Meyr
(2003) indicate that in the automotive industry the organization that receives the com-
ponents is usually responsible for the supply transport. Florian et al. (2011) show that
in addition to the direct financial benefits for the supply chain, inbound logistics inte-
gration for a German car manufacturer has some further important outcomes such as
a reduction in CO; emissions. In an application for the Delco Electronics Division of
General Motors (GM), Blumenfeld et al. (1987) find that the overall optimization of the
inbound transportation resulted in a 26% (2.9 million dollars per year, in 1987’s USD)
savings potential. They propose the use of an approximation method for the routing cost
estimation in their studies to reduce the complexity of the problem. Implementing their
solution package, GM of Canada reports savings of approximately 157 thousand USD in
four months. Danese (2006) presents the case of GlaxoSmithKline (GSK), an international
pharmaceutical group that extended the vendor managed inventory (VMI) approach to
its suppliers as a response to the highly competitive and regulated market to benefit from
the integrated and coordinated planning process.

Other cases where the buyer is responsible for the transportation are incorporated in
several Incoterms, which are often used to clearly define the contractual responsibilities
of the buyer and seller in international commercial transactions. Several of these terms
consider the cases where the buyer is responsible for the transportation costs and risks.
The Incoterm EXW (Ex Works) indicates a situation in which the seller makes the goods
available, typically at the factory or a warehouse, and the buyer is responsible for the
further transportation. In maritime transport, the Incoterms like FOB (Free On Board) for
sea transport or inland waterway transport and FCA (Free Carrier) for roll-on/roll-off
or container traffic, address the situation where the seller is responsible for the costs and
risks up to when the goods are delivered to the ship at the named port of shipment. Then,
it is the buyer who is responsible for the costs and risks from that point onwards.

In the retail sector, the concept of factory gate pricing (FGP) has emerged (Whiteoak,
1994; Le Blanc et al., 2006; Fernie and Sparks, 2014). Under FGP, the supplier no longer

delivers the products to the customer but makes them available at its own factory gate
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(Le Blanc et al., 2006). This requires the customer to plan and synchronize the pickups
from the suppliers to reduce the transportation costs as reported by a number of FGP
studies. Examples are Le Blanc et al. (2006) for a large Dutch retail distribution company
and Potter et al. (2007) for UK retailers. Potter et al. (2007), Whiteoak (1994) and Fernie
and Sparks (2014) report success in increasing the product flow while at the same time
reducing distance for Tesco, ASDA and Sainsbury’s retailers.

To the best of our knowledge, the problem of jointly optimizing production planning
and inbound vehicle routing with a finite horizon and discrete planning periods has only
been considered by Hein and Almeder (2016). They study the case of multiple compo-
nents and products, and consider two scenarios. In the first scenario, components can
be kept at the plant, whereas the second scenario considers a JIT environment assuming
that the components that arrive at the plant must be used immediately in production.
Furthermore, the holding cost at the suppliers is not considered in their specific study.
Consequently, the combined decision making is entirely centered on the plant costs with-
out taking the suppliers’ cost into account.

Motivated by the above-mentioned applications and to fill the gap in the literature, we
study for the first time the problem of the integrated inbound transportation, production
and inventory planning in a finite planning horizon with the standard basic assumptions
similar to the IRP and PRP. This is the first contribution of this paper. Second, we present
a unified decomposition matheuristic capable of solving not only the ARP, but also the
IRP and PRP. Also, we propose several cost update mechanisms to approximate the rout-
ing cost and, as our sensitivity analysis indicates, using a mix of two update mechanisms
improves the quality of the solutions. Third, we report the results of extensive com-
putational experiments on more than four thousand instances for these three problems,
including standard data sets for the IRP and PRP. The results indicate that our algorithm
outperforms the state-of-the-art heuristics on the large-scale multi-vehicle IRP and PRP
instances. Finally, further analyses demonstrate the robust behavior of the algorithm.

The remainder of the paper is organized as follows. We provide a short literature re-
view on the integration of production planning with outbound and inbound transporta-
tion in Section 1.2 in order to better position our problem with respect to the existing liter-

ature. Then, we define the ARP and express it mathematically in Section 1.3. We describe
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the decomposition matheuristic in Section 1.4. We present the algorithm implementation,
the benchmark algorithms and the results of extensive computational experiments on all

data sets in Section 1.5. Finally, Section 1.6 concludes the paper.

1.2 Literature Review

The majority of the research on the integrated production planning and outbound routing
problem, which is most commonly referred to as the PRP, considers a finite time horizon
with discrete planning periods. The associated models are typically formulated as mixed
integer linear programs. Chandra (1993) was the first to address this problem by assum-
ing a fixed cost for the warehouse orders, which in terms of modeling is similar to the
production setup cost; Chandra (1993) studies a problem with an uncapacitated order
size and an unlimited number of capacitated vehicles. Later, Chandra and Fisher (1994)
define the same multi-commodity version of the problem in a more formal way, this
time by considering the production setup costs. Several studies on this problem (Boudia
et al., 2007; Boudia and Prins, 2009; Bard and Nananukul, 2009, 2010; Adulyasak et al.,
2014a,b; Absi et al., 2015) consider one capacitated production plant producing a single
product for multiple customers with inventory costs and inventory capacities both at the
plant and customers. The plant is responsible for fulfilling the deterministic demand of
the customers during the planning periods. The production setup cost is considered to
be constant over the periods. A limited number of homogeneous and capacitated vehi-
cles is also considered to perform the shipments from the plant to the customers. The
multi-commodity version of the problem was studied by Fumero and Vercellis (1999)
and Armentano et al. (2011). Lei et al. (2006) is the only study that considers multiple
production plants producing one single final product and they assume a heterogeneous
fleet of vehicles. The studies of Solyali et al. (2009) and of Archetti et al. (2011) do not as-
sume a capacity for the production. The state-of-the-art heuristic algorithms for the PRP
are the adaptive large neighborhood search (ALNS) of Adulyasak et al. (2014b) and the
matheuristic of Absi et al. (2015). For the IRP, the heuristic of Archetti et al. (2012) is the
best performing algorithm for single-vehicle instances and the matheuristic of Archetti

et al. (2017) is the best algorithm for multi-vehicle instances.
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There are some studies that consider the optimization of the inbound transporta-
tion and inventory decisions without considering the production planning at the cen-
tral plant. Inspired by the automotive parts supply chain, Moin et al. (2011) and Mjirda
et al. (2014) study a multi-period, multi-supplier problem with a single assembly plant
in which each supplier provides a distinct part type. Popken (1994) and Berman and
Wang (2006) study a single period (static) multicommodity inbound logistics problem
with three sets of nodes: origin nodes or suppliers, a destination node, and transshipment
terminal nodes. In their model, the origin-destination commodity flows pass through the
paths of the network using at most one terminal node, but the vehicle routes are not
considered explicitly.

Some studies address inbound vehicle routing in JIT/lean production systems to co-
ordinate the material inflow with the production rate. Vaidyanathan et al. (1999) and,
later, Patel and Patel (2013) and Satoglu and Sahin (2013) investigate the delivery of parts
in a central warehouse to the stations of an assembly line on a JIT basis. The quantity
delivered per trip should meet the demand for the duration of the trip. As a result, ve-
hicles will have no idle time between trips and inventories at the demand points are
minimized. Qu et al. (1999) and Sindhuchao et al. (2005) consider the joint replenish-
ment of multiple items in an inbound material-collection system for a central warehouse
under the assumption of an infinite planning horizon. They do not take into account
the vehicle capacity and storage space limit. Chuah and Yingling (2005) consider these
two assumptions and study a JIT supply pickup problem for an automotive assembly
plant with a restricted set of possible discrete frequencies. They also assume time win-
dows at the suppliers. Stacey et al. (2007) and Natarajarathinam et al. (2012) offer new
heuristics for the same problem. Ohlmann et al. (2007) expand the work of Chuah and
Yingling (2005) by assuming general visit frequencies. They allow suppliers on the same
route to have different pickup frequencies so that not every supplier is visited every time.
Jiang et al. (2010) study a JIT parts supply problem in the automobile industry to mini-
mize the inventory and transportation costs under storage space limit and common fre-
quency routing assumptions. Yiicel et al. (2013) consider a bilevel optimization problem
for transporting specimens from a number of geographically dispersed sites to the pro-

cessing facility of a clinical testing company. At the first level they maximize the daily
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processed amount while at the second level they minimize the daily transportation cost.
Dong and Turnquist (2015) investigate a similar problem to design the inbound material
collection routes. They consider pick-up frequency and spatial design as joint decisions
to minimize total inventory and transportation costs with a single-level objective func-
tion. Lamsal et al. (2016) study a deterministic sugarcane harvest logistics problem in
Brazil. The decisions to make are the harvest rate at the geographically dispersed fields
and the truck assignment schedule to pick up the loads to minimize the time between
the cutting of the sugar cane in the field and the crushing at the mill. They consider the
constraint that the mill should never run out of raw material. Francis et al. (2006) study a
variation of the periodic vehicle routing problem (PVRP) in which service frequency is a
decision of the model. This brings more flexibility for the system'’s operator.

The problem of integrating inbound transportation with the production and inven-
tory decisions is also gaining attention. Almost all of the research on this problem, with
the exception of the previously mentioned study by Hein and Almeder (2016), consid-
ers an infinite planning horizon in a continuous time framework and uses mixed integer
nonlinear programming models. This problem is referred to in the literature as the eco-
nomic lot and supply scheduling problem (ELSSP) and was introduced by Liske and
Kuhn (2009). Extending the economic order quantity (EOQ) assumptions, the ELSSP
aims at finding synchronized cyclic production and routing patterns. Other studies on
this problem include Kuhn and Liske (2011), Kuhn and Liske (2014), Bae et al. (2014), and
Chen and Sarker (2014).

1.3 Problem Definition and Formulation

We consider a many-to-one assembly system where n suppliers, represented by the set
N; = {1,...,n}, each provide a unique component necessary for the production of a final
product at the central plant, denoted by node 0. The planning horizon comprises a finite
number of discretized time periods, represented by the set T = {1, ..,/}. The component
supply, s;;, at each supplier i € N; in each period t € T is predetermined over the plan-
ning horizon. The production system has to satisfy the external demand, d;, for the final

product at the plant in each period t € T without stockouts while respecting the plant’s
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production capacity, which is given by C. Both the suppliers and the plant can hold in-
ventory. Each supplier i € N; has a storage capacity L; for its components. The plant
provides a shared storage with capacity L for the components and has a separate out-
bound storage capacity K for the final product. A fleet of m homogeneous vehicles, each
with a capacity of Q, is available to perform shipments from the suppliers to the plant
using routes that start and end at the plant. We suppose throughout that the components
delivered to the plant in period t € T can be used for production in the same period.

We assume that one unit of each component is needed to make one unit of the final
product. Note that in basic assembly structures, it is possible to define the units of mea-
surement of the components so as to satisfy this assumption without loss of generality
(see Pochet and Wolsey, 2006, chap. 13). Obviously, the unit components may not have
identical sizes. Therefore, we consider that each component has a unit size of b;. This size
will be taken into account in the vehicle capacity and plant storage area for components.
We consider a unit production cost u and setup cost f at the plant level. The unit holding
costs of 1; and r; are imposed for the inventory of component i at its supplier and at the
plant, respectively. The inventory of the final product incurs a unit holding cost of rq at
the plant. When a vehicle travels from location i to j it entails a period-independent cost
of ¢jj.

In the ARP, the following decisions should be optimized simultaneously for each pe-
riod:

1. whether or not to produce the final product at the plant and the quantity to be pro-
duced;

2. the quantity to be shipped from the suppliers to the plant, and;

3. which suppliers to visit, in what order and by which vehicle.

To model the ARP we define a complete undirected graph G = (N, E), and assume
that the triangular inequality holds. Let N = N; U {0} be the set of nodes, and E =
1(i,j) +i,j € N,i < j} be the set of edges. Since we assume a one-to-one relationship
between suppliers and components, N; also represents the set of components and i = 0
the final product. For each period ¢ € T, we let the binary variable y; take value 1 if and
only if production takes place at the plant and we let p; denote the production quantity.

Let Ij; represent the inventory of component i at supplier i € N; at the end of period t.
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Define F;; as the inventory of component i € N; or of the final product i = 0 at the plant

at the end of period t. Let g;; indicate the shipment quantity from supplier i to the plant

in period t. The variable x;j; represents the number of times a vehicle traverses the edge

(i,j) € Ein period t € T. Since we define the model on an undirected network, x;;; is a

binary variable for i > 0 and may take values in {0,1,2} for i = 0. The binary supplier

visit variable z;; takes value 1 if and only if a supplier i € N; is visited in period ¢, and the

integer variable z(; indicates the number of vehicles dispatched from the plant in period

t. Table 1.1 presents a summary of the notation.

Table 1.1: ARP notation

Sets:

N Set of nodes, indexed by i € {0, ..., n}, where 0 represents the plantand Ny = N \ {0}
is the set of suppliers. Note that since there is a one-to-one relationship between nodes
and items, N also represents the set of components and the final product.

E Set of edges, E = {(i,j) :i,j € N,i < j}.

T Set of time periods, indexed by t € {1,..,1}.

E(S) Setofedges (i,j) € Esuchthati,j € S, where S C N is a given set of nodes.

5(S)  Setof edges incident toanode set S, 8(S) = {(i,j) e E:i€S,j¢ Sori ¢ S,j € S}.

Parameters:

f,u  Fixed setup and unit production costs, respectively.

h; Unit holding cost at node i € N.

r; Unit holding cost of component/final product i € N at the plant.

Cij Transportation cost between nodes i and j, (i, j) € E.

C,Q Production and vehicle capacity, respectively.

m Fleet size.

Sit Component supply at node i € N in period ¢.

b; Unit size of component i € N.

dy Demand for the final product in period t.

L; Inventory capacity for the components at node i € N.

L Shared inventory capacity for the components at the plant.

K Inventory capacity for the final product (at the plant).

Lip Initial inventory available at node i € N;.

F Initial inventory of component/final product i € N at the plant.

Decision variables:

Pt Production quantity in period ¢ at the plant.

Yi Equals to 1 if there is a setup at the plant in period ¢, 0, otherwise.

Iy Inventory of component i at node i € N; at the end of period t.

F; Inventory of component/final product i € N at the plant at the end of period ¢.

xjjt  Number of times a vehicle traverses the edge (i, j) € E in period t.

Zj Equals to 1 if node i € N; is visited in period t, 0, otherwise.

20t Number of vehicles dispatched from the plant in period t.

it Quantity shipped from node i € N; to the plant in period t.

Using this notation, the ARP can be formulated as the following mixed integer pro-

gram (M 4rp).
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(Magrp) min ) (up, +fye+ Y il + ) riFi + Z Cijxijt) (L.1)

teT i€Ng ieN (i,j)€E
s.t
Fiyoi+qi=pi+Fy Vie N,Vt€T (1.2)
For1+pr=di+Fy Vt€T (1.3)
Iijo1+si=qi+Iy Vie N,Vt€T (1.4)
pr <Cyy VEET (1.5)
Y biFy <LVteT (1.6)
i€ N
Fp <KVteT (L7)
Iy <L VieN,VteT (1.8)
zp<mvVteT (1.9)
bign < Qzjt Vi€ N;,VteT (1.10)
Y. xju=2z VieNVteT (1.11)
(") edi)
Q Y i< ) (Qa—bigi) VSC Ny, S| 22,VteT (1.12)
(i))EE(S) ics

2 €EZVLET (1.13)
Fo,pe 20,yp € {0,1} VteT (L.14)
li, Fit,qit 2 0,2 € {0,1} Vi€ N, VteT (1.15)
xip € {0,1} V(i,j) € E:i# 0Vt €T (1.16)
Xoit € {0,1,2} Vi€ N,,Vt € T. (1.17)

The objective function (1.1) minimizes the total production, setup and holding costs
in addition to the transportation costs. The holding cost includes component inventory at
the suppliers and plant as well as the final product inventory at the plant. The inventory
flow balance for the components and the final product at the plant is imposed through
constraints (1.2) and (1.3). Constraints (1.4) ensure the inventory flow balance at each
supplier. Constraints (1.5) force a setup at the plant for each period in which production

takes place. They also impose the production capacity. Constraints (1.6) and (1.7) repre-
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sent the storage capacity for the components and final product at the plant. The storage
capacity for the components at each supplier is imposed by constraints (1.8). Constraints
(1.9) limit the fleet size. Constraints (1.10) force a vehicle visit whenever components are
shipped from a supplier to the plant. The maximum component shipment quantity from
each supplier in each period is also limited by the vehicle capacity. Constraints (1.11) are
the degree constraints. Constraints (1.12) are the subtour elimination constraints (SECs)
and they also impose the vehicle capacity. These constraints are the modified version of
the VRP capacity-cut constraints (Toth and Vigo, 2002; Lysgaard et al., 2004; Iori et al.,
2007), and are referred to as generalized fractional subtour elimination constraints (GF-
SEC) (Adulyasak et al., 2014a) in the context of the PRP. Contardo et al. (2012) introduce
similar inequalities for the two-echelon capacitated location-routing problem that con-
sider the variable flow through satellite nodes to define capacity cuts.

It is easy to show that the ARP is NP-hard since the VRP is a special case of it. Note
that the ARP and PRP are not special cases of each other. Moreover, the ARP and PRP are
not mirror problems and one cannot simply exchange customers and suppliers. In the
ARP, we consider two separate storage areas at the plant for the components (inbound
storage) and the final product (outbound storage), respectively. This results in inventory
balance constraints for both the components and the final product at the plant. In the
ARP, one unit of each component is required for producing one unit of the final prod-
uct. In contrast, in the PRP, only the final product is represented. Another difference
is that in the ARP it may be necessary to visit a supplier to avoid exceeding the maxi-
mum storage capacity (overflow). However, in the PRP, one prevents the stockout at the
customers/retailers. For the same reasons, although the IRP is a special case of the PRP
(where the production rates are predetermined and given), it is not a special case of the
ARP.

14 A Decomposition Matheuristic

In this section we present a unified decomposition matheuristic for the ARP, which can
also be applied to the PRP and the IRP. We explain the algorithm in the context of the
ARP and its adaptation for the other two problems is explained in Section 1.5.2 and in
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Appendix A.

Our algorithm decomposes the M 4rp model into three separate subproblems. The
first subproblem, M,, is a special lot-sizing problem that determines a setup schedule
by using the number of dispatched vehicles to calculate an approximation of the rout-
ing costs (Section 1.4.1). Considering a given setup schedule, the second subproblem,
M, uses a transportation cost approximation (¢;;) associated with each visit to supplier
i, and chooses the node visits and shipment quantities (Section 1.4.2). For multi-vehicle
instances, a modified model (MP) is employed in this phase to look for possible im-
provements in node visits and shipments. Finally, the third subproblem solves a series
of separate vehicle routing problems (Section 1.4.3), one for each period ¢t (VRP;). The
solutions of the routing subproblems are then used to update the transportation cost ap-
proximation (v;;) in the M; subproblem (Section 1.4.4). This procedure is repeated for a
number of iterations to reach a local optimum. Then, a local branching scheme is used
to change the setup schedule and explore other parts of the feasible solution space, look-
ing for better solutions (Section 1.4.5). The entire procedure continues until a stopping

condition is met (Section 1.4.6).

Our algorithm shares similarities with the decomposition-based heuristic developed
by Absi et al. (2015) for the PRP. However, there are also important differences between
the two algorithms. The method of Absi et al. (2015) uses a two-phase approach where
in the first phase it fixes y;, p; and g;; decisions. In our algorithm, this is done in two sep-
arate phases: it fixes the y; decisions at the end of the first phase, then finds p; and g;; in
the second phase. Our method also prevents the same solution to appear twice by adding
diversification constraints (Section 1.4.5) to cut the current node visit pattern in the next
iteration and to cut the current setup schedule in order to diversify the search. We also
implement two transportation cost approximation mechanisms. Finally, for the diversi-
fication, Absi et al. (2015) employ a random transportation cost perturbation mechanism
while we change the setup schedule. An overview of our three-phase decomposition

heuristic is presented in Algorithm 1.



Algorithm 1: CCJ-DH
1: Initialize oy
2: repeat
3:  if first iteration or diversification step then

4 if diversification step then
B Cut the current setup schedule from M, subproblem
6: Reset aggregate fleet capacity for all periods
7: end if
8 Solve My — y; (and p1, zj1, qit)
9 Fix y; decisions
10:  else
12 Solve M. with fixed y: = pi, zit, it
122 endif

13:  Solve VRP; subproblems with fixed z, gy — xijt

14:  Select transportation cost update mechanism — o},

15:  if all VRP; solutions are feasible then

16: Update incumbent solution

i if (effective aggregate fleet capacity is reduced in some periods and
after a minimum number of iterations and
for a minimum quality of the current solution) then

18: repeat

19: Solve MR with fixed z;; — p, zit, 9it

20: Solve VRP; subproblems with fixed z;;, q;y — X1 — 0y

21: Update incumbent solution

22: until the stopping condition is met

23: end if

24:  else

25 Decrease effective aggregate fleet capacity for the periods with infeasible VRP,
26:  end if

27:  Cut the current node visit pattern from M subproblem
28: until the stopping condition is met
29: return_incumbent solution

14.1 Phase 1: The M, Subproblem

The M, subproblem aims to generate a good setup schedule by solving a simplified
problem in which we use an approximate transportation cost based on the number of
vehicles dispatched from the plant. To this end, we update the original objective function
(1.1) with the following:

min ) (upt +fye+ ) il + ) riFy +f70t20t)- (1.18)
teT ieN, ieN

We consider a cost () for each dispatched vehicle in each period (Section 1.4.4).

With this modification, constraints (1.11)-(1.12) become redundant and they are replaced
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with the following constraints which impose an aggregate fleet capacity:

Y bign < Qzor VtET. (1.19)
iEN,

We define the M, subproblem with the objective function (1.18) subject to constraints
(1.2)-(1.10), (1.13)~(1.15) and (1.19). This model yields a setup schedule in the first it-
eration and whenever a diversification step is performed. Adding a diversification con-
straint LBI, (Section 1.4.5) prevents the same setup schedule to appear when we solve the
model again. As a by-product, the solution to this model specifies the shipment quan-
tity variables, g;;. Based on these shipment quantities, we can deduce the corresponding
node visit variables. Therefore, whenever solving the M, subproblem, the execution of
phase 2 is not needed as the shipment quantities and node visits are already specified so
we can skip phase 2 and immediately go to phase 3 in which the VRP; subproblems (line

13 of Algorithm 1) are solved.

14.2 Phase 2: M. and MZ Subproblems

In the second phase, the focus is on obtaining proper node visit decisions and shipment
quantities. Using the solution found in the first phase, the binary decisions y; are fixed
in constraints (1.5) of the M 4gp subproblem. We approximate the transportation cost in
the objective function using the node visit variables z;;, which results in the following,

objective function:

min (up, + 3 iy + Y riFe+ Y cr;,z,-,). (1.20)
teT i€N, ieN i€N;

We assume a cost (¢;) for each node visit in each period (Section 1.4.4). With the
removal of variables x;;; and zp; as well as constraints (1.9) and (1.11)-(1.13), it is no longer
possible to enforce the vehicle capacity. However, by adding constraint ) ;e n bigir < mQ
for every period t we can preserve the aggregate fleet capacity. Since split pickups are not
allowed, we may not be able to find a feasible VRP solution for a certain period in phase
3 because the different quantities (g;;) to be shipped cannot be packed in the available

vehicles. Therefore, as in Absi et al. (2015), we use the following constraints to impose a
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smaller aggregate fleet capacity (0 < A; < 1):
Y bigi <AmQ VteT. (1.21)
i€N;

The M. subproblem minimizes the objective function (1.20) subject to constraints
(1.2)-(1.8), (1.10), (1.14)-(1.15) and (1.21). In the single-vehicle case (m = 1) and unlimited
vehicle case (m = n), a modification of the aggregate fleet capacity is not necessary since
a feasible VRP solution can always be found in phase 3 for each period; in these cases,
lines 19-21 of Algorithm 1 are not executed. When the routing subproblem cannot find
a feasible solution for a certain period, we reduce the A; for that period (line 25). Next,
the M. subproblem is solved with the reduced capacity (line 11), and based on this so-
lution the VRP; subproblems are solved (line 13). If all VRP; solutions are feasible, we
update the incumbent solution. Since we have reduced some Ay, this yields some unused
aggregate fleet capacity. To explore the possible benefits from the unutilized capacity, we
solve a modified M. subproblem. Let Ry; be the set of suppliers visited by vehicle k
in period t. We replace constraints (1.21) with the following constraints for the periods

where A; < 1 in the M, subproblem:

E biqit <Q Vke {1,...,m},‘v’t € T'/\t < s (1.22)

{ER

Each constraint (1.22) relates to a vehicle that is used in a period with A; < 1. Then, we
fix the node visit decisions z;; for these periods and obtain the Mf subproblem (line 19 of
Algorithm 1). Using the MR subproblem the algorithm can directly impose the vehicle
capacity for each route, while we avoid the vehicle-indexed formulation which requires
many more binary node visit variables for every vehicle as well as continuous quantity
variables. We repeatedly solve MR with an updated approximation of the transportation
cost (lines 18-22 of Algorithm 1) until the stopping criterion specified in Section 1.4.6 is

met.

1.4.3 Phase 3: VRP; Subproblems

Following each solution of the M, M; and Mf‘ subproblems, we fix for each time pe-

riod the current node visit decisions Z;; and the shipment amounts §;;. Therefore, we
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have to solve one VRP for each period. As discussed in the previous section, this routing
problem can be infeasible for one or several periods. To solve this subproblem we use the
tabu search heuristic of Cordeau et al. (1997), which allows violations of the vehicle ca-
pacity constraints through a penalty cost in the objective function. Based on this (possibly
infeasible) solution, we update the transportation costs for the next iteration. To reduce
the computing time in the tabu search heuristic, we implement the following formula to
specify the number of available vehicles for each VRP; subproblem:

iy = min {m,max {1, [% Y. b,vq',«,»l 1}} vVt e T. (1.23)

i€Ns|zjp=1

The intuition behind this equation relies on the observation that in a solution to the ca-
pacitated vehicle routing problem if two routes are loaded less than half of the vehicle
capacity, they can be merged as a single route that respects the vehicle capacity. This
transformation results in a new solution with a smaller or equal cost assuming that the
triangle inequality holds. Therefore, an optimal solution cannot include more than one
less-than-half loaded route. We prove the validity of this upper bound and analyze its

impact in Appendix A. Moreover, to control the running time of the heuristic, we set the

number of tabu search iterations (VR = 1"\/ 1t YieN,jzy=1 Zit» fOr every period t, where

V

1V is a parameter in our algorithm. To spend more time on promising solutions, we use a

¥ s lax] interval. When
\‘7
min’

linearly varying value for the tabu search coefficient (' in the [

the previous solution is more than g (%) away from the incumbent, we let /¥ =Y. , and

14

when it is better than or equal to the incumbent solution, we set (¥ = 1% ..

1.44 Node Visit and Vehicle Dispatch Costs

We tested three mechanisms to update the node visit costs for the next iteration. Having
a complete solution at hand, the first mechanism (Marginal) approximates the node visit
costs as follows: If node i is visited in the current solution, then we set 0;; = (c;,; +
Cii,) = Ciigr where i, and is are the predecessor and successor of node i in its current
route. If node i is currently not served in period t, then we set 0;; equal to the cost of
the cheapest insertion into an existing route. This is based on the assumption that when
a node i is eliminated from its route, an acceptable route can be obtained by connecting

the predecessor and successor nodes. Similarly, when inserting node i in a certain period
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t, an acceptable route can be obtained by the best insertion among all the routes in that
period. Hence, 0j; can be seen as the (estimated) marginal transportation cost for visiting
node i in period t. This marginal cost updating procedure is also used by Absi et al.
(2015).

The second mechanism (TSP-share) splits the TSP cost of each route in each period
over its nodes proportional to their direct shipment cost. Let c/F be the route cost of
vehicle k in period t, and Ry; be the set of suppliers visited by vehicle k in period ¢t. We
define

op =TSP % Vke {1,..,m},Vt € T,Vi € Ry,
LjeRy, C0j

k LieR,uli) C0j

where c}, is equal to the cheapest insertion cost for non-visited node i into vehicle route
k in period t. The last mechanism (VRP-share) divides the entire transportation cost of
a certain period among the visited nodes proportional to their direct shipment cost. Let
c/RP = 3, cISP be the total transportation cost in period t, and R be the set of suppliers
visited in period t. We define
_ VRP__Coi ;
op=¢" —— VteT,Vie R,
LijeR, Coj

. C . .
op=(c/RP +c)=—2 — VteT,Vie Ns|zy =0,
LicRu{i} Coj

where ci is equal to the cheapest insertion cost for a non-visited node i into the available
vehicle routes in period t.

The first and second mechanisms generally return better results than the last one. Our
initial experiments revealed that by switching between the first two mechanisms, after
using each for (Y iterations, we generally get better results compared to using any one of
them alone (line 14 of Algorithm 1). The maximum improvement by this hybrid update
mechanism in the average solution cost is 1.9% compared to the marginal cost mecha-
nism, 1.7% compared to the TSP-share mechanism, and 4.5% compared to the VRP-share
mechanism. We report results with this mixed mechanism in Section 1.5.4.

Throughout the algorithm, we fix the vehicle dispatch cost oo = Y ;e n, it/ m, where

7;: represents the initial node visit transportation cost. The performance analysis of using
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the three updating mechanisms as well as different initial node visit costs is presented in

Appendix A.

1.4.5 Local Branching Inequalities

To diversify the search, we rely on two types of inequalities inspired by the local branch-
ing approach of Fischetti and Lodi (2003). Fischetti et al. (2004) apply these inequalities
as diversification constraints for a telecommunication network design problem. The first
type of inequality, LBI, is specific to the M. subproblem and ensures that we do not
return to a node visit pattern (and hence solution) we obtained before. The inequality
Y, Q-z)+ Y z2r (1.24)
it za=1 itzZy=0
forces at least r node visit variables to change value compared to the current solution. By
varying r we can force different numbers of node visit changes in the next iteration of
our algorithm. Our experiments show that if we let 7 > 1 the algorithm reaches a better
solution in a shorter time compared to the case of r = 1. However, large values of r may
remove some good quality solutions. We choose two different values for r. When the
algorithm returns a better solution value compared to the previous iteration, we letr = 1
to allow the algorithm to search the entire neighborhood of the current solution. In case a
worse solution value (compared to the previous iteration) is obtained, we let r = I, where
I is the number of periods in the planning horizon. We add one inequality to the M.
subproblem at each iteration. Because these inequalities slow down the solution of the
M subproblem, we remove all the previous LBI, inequalities when the setup schedule
is changed (by means of the diversification mechanism), and we continue adding new
ones in future iterations.

The second type of inequality, LBI,, is specific to the M, subproblem and forces the
model to obtain a new setup schedule. Therefore, it is used as a means of diversification.
The inequality

Y -yw+ Y w1 (1.25)

Hin=1 Hie=0
forces at least one of the binary setup schedule variables to change value. We add one

inequality to the M, subproblem each time we execute the diversification procedure and
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we keep these inequalities until the end of the algorithm. Adulyasak et al. (2014b) use
this latter type of inequality to generate new setup schedules in their ALNS.

1.4.6 Stopping Conditions

The stopping condition for the overall algorithm (line 28 of Algorithm 1) is a maximum
number of iterations, (4. To terminate the search for a local optimum within a specific
setup schedule and introduce a diversification step (line 3 of Algorithm 1), we consider
two stopping conditions. The search procedure stops after a maximum number of local
search iterations, (L, or after a number of iterations without incumbent solution improve-
ment, (N. Whenever one of these stopping conditions is met, the algorithm stops the
local search, adds the associated LBI, and solves the M, subproblem to find another
setup schedule (lines 4-9 of Algorithm 1). We allow the algorithm to use the MF sub-
problem only when it has performed at least (* iterations. This is to avoid wasting time
with the very first solutions. The algorithm also runs the M* subproblem only for the
cases where the current solution obtained from the M. subproblem (and subsequent
VRP; subproblems) is close enough to the incumbent solution. More specifically, if the
gap is less than g (%) the algorithm starts using the M* subproblem to fix some vehicle
routes as explained in Section 1.4.2. The M subproblem is allowed to be run until a
maximum of (R iterations is reached or until at any iteration it fails to return a solution
with a gap less than g® (%) from the incumbent solution. This condition corresponds to
line 22 of Algorithm 1. The specific setting for the algorithm parameters and stopping

conditions will be presented in the next section.

1.5 Computational Experiments

We test our algorithm on three different problems, the IRP, the PRP and the ARP, with
a total of 4,068 instances. The IRP data sets were generated by Archetti et al. (2007) for
the single-vehicle case and were later adapted to the multi-vehicle case by Coelho and
Laporte (2013a) and by Desaulniers et al. (2015). The PRP data sets were introduced by
Archetti et al. (2011) and by Boudia et al. (2005). We introduce the ARP instances in

Section 1.5.1. Appendix A provides an overview of all the problem data sets.
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We consider the same parameter setting when applying our algorithm to all data

A

sets. The maximum number of algorithm iterations (* is set to 200 and the number of

local search iterations (" is set to 80. The maximum number of non-improving iterations
N is set to 60. A maximum number of MF subproblem iterations (/%) equal to 10 is
considered. The values of the minimum and maximum tabu search iteration coefficients
(V. and 1,,) are 100 and 500, respectively. We let the algorithm switch between the
marginal and TSP-share mechanisms every 7 iterations (:). The values of g and g™ are
set to 3% and 0.3%, respectively. We set the initial node visit cost equal to ¢q; /2, where
coi is the cost of the edge between the plant and node i. We explain the details of the

parameter setting procedure in Appendix A.

1.5.1 ARP Test Instances

We use the PRP data sets of Archetti et al. (2011) as a base for developing our ARP data
sets. For each test instance, the number of nodes, their position and the distance function
as well as the number of time periods and vehicles have been kept the same as in the
corresponding Archetti et al. (2011) instance. Note that the nodes are suppliers in the

ARP, but represent customers in the IRP and PRP.

As in Archetti et al. (2011), we consider an unlimited production capacity. The com-
ponent supply at each node, s, is constant and equal to the amount used for the demand
in Archetti et al. (2011). The demand at the central plant, d;, is set equal to the average
amount of all the suppliers’ production rates. We randomly generate an integer number
according to a uniform distribution in the interval [1,10] for each component’s size, b;.
Then, to adjust the vehicle capacity (Q) we multiply the values given in Archetti et al.
(2011) by a factor of 10. We set the component inventory capacities at the suppliers (L;)
the same as the retailers’ capacities presented in Archetti et al. (2011). We assume an un-
capacitated storage for the components at the plant. We consider a uniformly distributed
random integer between 2 to 4 times the product demand of a period as the storage limit,
K. The unit component holding cost at the suppliers, #;, is set the same as in Archetti et al.
(2011). The unit component holding cost at the plant, r;, is set equal to a uniform random

integer over the [I;, 2h;] interval. To generate the unit product holding cost, ro, we select

28



a uniformly distributed random integer over the interval [} ;cn, 7i,2 Lien, 7i]. The initial
inventory of the components at the suppliers, Ij, is set equal to the amount that Archetti
et al. (2011) established for the customers. The initial inventory of the final product at the
plant, Fy, is set randomly in the interval from 0 to the demand of two periods ([0, 2d;]).
To avoid infeasibility and meet the final product demand, we need to have enough ini-
tial component inventory at the plant. Therefore, we set for each component i the initial
inventory Fyy equal to max{0, Ler(di — sit) — lio — Foo}. Table 1.2 presents an overview

of the ARP instance parameters.

Table 1.2: ARP test instances

Set 1 Set 2 Set 3

# of instances (SA¥) 480 480 480

# of components (SA¥): n 14 50 100

# of periods (SA¥): I 6 6 6

# of suppliers (SAY): n 14 50 100

# of trucks (SAY): m 1 ULt ULt
Component supply: s;; SA¥
Production capacity: C SAt

Demand (final product): d; (X si)/n
Item size: b; UDRIM(1,10]
Vehicle capacity: Q SA* by a factor of 10
Supplier inventory capacity: L; SAt
Plant inventory capacity for components: L uLt
Plant inventory capacity for final product: K UDRI™ 24, 4d,]
Supplier initial inventory: I SA%
Plant initial inventory of components: Fig  max{0, L r(di — sit) — lip — Foo}
Plant initial inventory of final product: Fy UDRI(0, 2d,]
Supplier and plant x,y coordinates SA%
Unit production cost: u SAt
Production setup cost: f SAt
Unit transportation cost SA}
Travel distance SAY
Supplier unit holding cost: k; SA}
Plant unit component holding cost: 7; UDRI™ [k, 2h;)

Plant unit final product holding cost: 7y

UDRIM [Ticn, 7ir 2 Licn, 7il

T UL: Unlimited
¥ SA: The same as Archetti et al. (2011)

* UDRL Uniformly Distributed Random Integer

1.5.2 Algorithm Implementation

Some modules of the algorithm become redundant for some problems or data sets. The
main modules of the algorithm are the M,, M. and MF subproblems and VRP; sub-
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problems. The aim of the M, subproblem is to find proper setup schedules. Therefore,
this module is not applicable in the case of the IRP. The module with which we find node
visit schedules, the M, subproblem, is relevant and necessary for all data sets and prob-
lems. The MK subproblem is only required for the data sets with a limited number of
vehicles (1 < m < n). We present the M, subproblem for the PRP and M subproblems
for the IRP and PRP in Appendix A. We solve the M,, M. and M} subproblems with
CPLEX 12.6. Because all problems take the routing decisions into account, we must solve

the VRP; subproblems in every case.

1.5.3 Benchmark Algorithms

Since the ARP is a new problem, there is no algorithm to use as a benchmark. Conse-
quently, we developed two lower bounding procedures as a basis for comparison. Fur-
thermore, we validate the quality of our algorithm by applying it to the IRP and PRP
standard test instances. For the IRP and PRP, we select the state-of-the-art algorithms as
basis for comparison. Some of these are exact algorithms which we include for two rea-
sons: to show the difference in running times and to consider their best found solutions in
our comparison. We set the acronyms for each algorithm (including ours) by the authors’
family name initials, followed by the implemented method identifier. For example, BC
stands for branch-and-cut algorithm. Note that SV and MV in the data set names refer to

single-vehicle and multi-vehicle instances, respectively.

It is difficult to make comparisons between different platforms and algorithms. It
becomes more complicated when different numbers of threads are used. Therefore, we
report the running times for each benchmark algorithm as it was presented in the original
paper. To have an approximation of the speed of each employed platform, we addition-
ally report a time adjustment factor for each benchmark algorithm using the CPU marks
presented in PassMark®CPU marks (www.cpubenchmark.net/cpu_list.php). Table 1.3
provides the list of benchmark algorithms, their running platform, number of threads,
time adjustment factor and solver version. Since some of the algorithms for the IRP are
applied to only a subset of the instances, we provide more details in Table 1.4 on the

number of instances each algorithm was applied to.
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Table 1.3: Benchmark algorithms, the running platforms and standard MILP solver for
the IRP and PRP data sets

Prob  Reference Name Sol CPU #Thread TAF Solver
IRP Archetti et al. (2007) ABLS-BC E  Pentium IV 2.8CGHz Def 323 CPLEX9.0
Coelho and Laporte (2013b) CL-BC E  Xeon267GHz 6 7,518 CPLEX 123
Archetti et al. (2017) ABS-H HM  Xeon W3680, 3.33GHz 8 9,211 CPLEX 125
Avella et al. (2017) ABW-BC E  Corei7-2620, 2.70GHz 1 3,825 Xpress 7.6
Desaulniers et al. (2015) DRC-BPC E  Corei7-2600 3.4GHz 1 8,220 CPLEX 12.2
Archetti et al. (2012) ABHS-H H Intel Dual Core 1.86GHz Def 2,288 CPLEX 10.1
Coelho et al. (2012) CCL-ALNS M Intel T7700, 2.4GHz Def 1,419 -
Adulyasak et al. (2014a) ACJ-ALNS-1000 M 2.10GHz Duo CPU PC Def 6,340 CPLEX 123
PRP  Archetti etal. (2011) ABPS-BC E  AMD Athlon 64, 2.89GHz Def 437 CPLEX 10.1
ABPS-H H Intel Core 2, 240GHz 1 1,440 -
Boudia and Prins (2009) BP-MA M 230GHz PC 1 3,298 -
Bard and Nananukul (2009) BN-TS M 253GHzPC 1 3,538 -
Armentano et al. (2011) ASL-TS M  Pentium IV 2.8GHz 1 323 -
Adulyasak et al. (2014b) ACJ-ALNS-500 M 2.10GHz Duo CPU PC Def 6,340 CPLEX 122
ACJ-ALNS-1000 M
Absi et al. (2015) AADF-MS H Xeon 2.67GHz PC Def 7,518 CPLEX 12.1
AADEF-DMS H
AADF-VRP H
AADFE-MTSP H
Solyali and Siiral (2017) SS-H H 240GHz PC 12 3,538 CPLEX 125
Both  This paper CCJ-DH H  Xeon X5650 2.67GHz 1 7,518 CPLEX 12.6

Note. Prob: Problem, Sol: Solution approach, E: Exact, M: Metaheuristic, H: Heuristic, Def: Default
TAF: Time adjustment factor according to the CPU marks presented in PassMark®(accessed: 14 July 2017)

1.54 Computational Results for the IRP and PRP Data Sets

Tables 1.5, 1.6 and 1.7 present the computational results and comparison between our
algorithm, CCJ-DH, and the benchmark algorithms. Table 1.5 presents the average gap of
the different algorithms applied to the IRP and PRP data sets. We calculate the percentage
gap for each solution to each instance with respect to the previous best known solution
so far (not including CCJ-DH). Then, for each class and number of vehicles (m) of a data

set, we calculate the average gaps of the different algorithms.

Table 1.6 presents the number of best solutions found by different algorithms. Because
for some small instances it is possible that CCJ-DH finds the same previous best found
solution, we also present the number of new best solutions (NBS) in the last column
of this table. Table 1.7 shows the average running times (in seconds) of the different
algorithms.

For the SV-I1 data set, the exact BC algorithms (ABLS-BC and CL-BC) solved all the
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Table 1.4: Number of instances each benchmark algorithm is applied to for the IRP and
PRP data sets

2 § g 5 £
s e
T - ., 8 282 8 §
¢ ¥ 3 2 8 ¢ T p p3ER T T EE OB 3 g
g &~ & 5 ¥ 8 g B 5§ = 2z ® O O < < < i oy
Name of the Algorithm < U < < [ < tﬁ < 5 & @ < < < <« i < o] ]
Prob Set m  Class  Size E E HM E E M E H M M M M M H H H H H H
IRP SV-11 1 160 160 160 - = - 160 o0 - 160
MV-11 2 160 - 160 160 50 188 = = - « = = - 150 = - 160
3 160 - 160 160 50 160 - - - - e e e - 150 - - - - - 160
4 100 - 160 160 50 160 « - = - « - - - - - - - - - 160
5 138 - 158 188 49 158 - - - - e - . - - - - - - - 138
SV 60 60 - B 5 5 : 2 o0
MV-2 2 60 - 4 60 - - - - - e . . 60
3 - o0 0 60 - o« - o« o« - e m w om ow a - 60
4 B o0 ~ - [\ - - - - - ~ e . - - - - - - 60
5 - o) - -6 - - - - - - ... - - - - o0
PRP SV-A1 1 1 1200 - - - - . - - 120 120 - - - 120 120 120 120 - - 120 120
1 2 120 - - - - - - 1200 120 - - - 120 1200 120 120 - - 1200 120
1 K 120 - - - - - - ~ 120 120 - - - 120 120 120 120 - - 1200 120
1 4 120 - & - - - - - 116 10 - - - 120 120 120 120 - - 120 120
MV-A2 CL 1 120 - - - - - - - - 120 - - - 120 120 - - 120 120 1200 120
UL 2 120 - - - - - - - - 10 - - - 1200 120 - - 1200 120 1200 120
UL 3 120 - . - . - - - - 120 - - - 120 120 - - 1200 1200 120 120
Ut 4 120 - - . - . - - - 1200 - - - 1200 120 - - 1200 120 120 120
MV-A3 UL 1 120 - - - - - - - - 120 - - - 120 120 - - 1200 1200 120 120
UL 2 120 - - - - . - - - 2 -~ - - 120 120 - - 1200 120 120 120
UL 3 120 - . - - - - - - 120 - - - 120 120 - - 1200 1200 120 120
Ut + 120 - - - - - - - - 120 - o« - 1200 120 - - 120 120 1200 120
MV-BI 5 0 - - - - - - - - - 300 30 30 a0 30 - - 30 30 30 30
MV-B2 9 30 . . - - . - - - - 30 30 30 30 30 - " 30 30 30 30
MV-B3 13 - Rit) - - - . - - . - - 30 30 3 30 - - - 30 30 30 30
Total 2628 160 938 878 199 636 220 160 476 1440 90 S0 90 1530 1800 480 480 1050 1050 1530 2628

Note. E: Exact, H: Heuristic, M: Metaheuristic, MV: Multi-Vehicle, Prob: Problem, SV: Single-Vehicle, UL: Unlimited

instances to optimality. ABHS-H and CCL-ALNS are the state-of-the-art heuristics on this
data set. They were able to find 125 and 72 optimal solutions, respectively, and finished
with small gaps. Our algorithm was able to find 31 of the optimal solutions. The average
gap of our algorithm on this data set is 1.62%, which is higher than the gap of the other
algorithms. For the MV-I1 data set, the state-of-the-art heuristic algorithm is ABS-H. It
was applied to all the instances in this set and obtained 261 best solutions with average
gaps ranging from 0.21% to 1.5%. ACJ-ALNS-1000 found 26 best upper bounds (BUBs)
in total with gaps of more than 7%. CCJ-DH obtained solutions with an average gap of
2.4% to 2.75% and found 126 best solutions among which it was successful to obtain 66

new best solutions.

For the SV-12 data set, results are available for the CL-BC and ABHS-H algorithms.
The first algorithm (which is a BC) spent on average more than 64,000 seconds to solve

the instances in the set and obtained 30 BUBs. This algorithm has an average gap of more
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Table 1.5: Average gaps by different algorithms applied to IRP and PRP data sets (%)

g & 5
v
2 $ 2 g & B §
-
2 g = 2 § T 28 o p £ 32 3 & 4 £ 2 z
'EBEEEEE IR EEEEEREEEE:
Name of the Algorithm 2 ©o < & & 2 g% % &8 8 % ¥ ¥ 3 3 < % <
Prob Set m Class Swe E_E HM E E H ME H M M M M M H H H H H H
RP sVl 1 - 160 0 © - - - 005 046 - - - - - - - - - . . e
MV 2 160 - 0 021 13 202 - - S0 26
3 160 - 027 067 263 1841 - 72 - 24
4 160 - 532 134 375 1705 . - 285
5 138 - 1053 15 408 1485 - ; - 275
sv2 1 - e - w9 - - - o : . < a1
MVI2Z 2 - 60 - 6132 012 : E s
3 - 60 - 10628 0 . - . 286
4 - 6 - -0 - - -y
5 - 60 - 0 §om S E o® s - a9
PRP SV-A1 1 1 120 - . 0 221 173 17 009 0.3 S 003 o
12 1w - 003 036 036 001 002 -0 00
13 1w - 0 365 91 843 057 072 <008 149
1 4 10 - 0 09 09 09 004 007 - - 005 01
MV-A2 UL 1 120 - <208 114 113 ST007 109 005 -0.06
o2 1w - - 038 017 047 © 005 009 001 001
U 3 10 - - 38 a7 352 - 0W 273 09 -02
U o4 1w - - 125 02 019 01 046 006 -0.03
MV-A3 UL 1 120 - REEET 06 1 S 022 187 007 018
o2 10 - - 035 031 03 - 02 03 018 018
o3 120 - - 366 383 365 - 12 38 015 107
UL 4 120 - O 04 038 - 03 075 011 011
MVBI 5 - 30 - S 1435 77 537 115 104 ST165 141 003 078
MVB2 9 0 - “T1326 1291 871 097 09 -~ 085 132 007 121
MV-B3 13 0 - - 1609 1995 109 161 T7036 193 224 018

Note. The best average gap at each row is presented with the bold font.

than 10.9%. The ABHS-H heuristic spent an average computing time of 3,630 seconds
and obtained 31 BUBs. The UBs obtained by this algorithm are generally of high quality,
resulting in an average gap of 0.27%. CCJ-DH spent about 6,700 seconds on average for
the instances in this set and ended up with an average gap of around 3.5%.

For the MV-I2 data set there are two algorithms to compare with: CL-BC and ABS-H.
Because the size of the instances and the number of available vehicles are larger compared
to the MV-I1 data set, the CL-BC algorithm was not able to solve the instances with m = 4
and 5, and n = 200. This algorithm left average gaps of more than 61% and 106% for the
instances with m = 2 and 3, respectively and found only 8 BUBs (among the instances
with m = 2) while spending 86,400 seconds on every instance in the set. ABS-H was also
successful on this data set by finding 38 BUBs. CCJ-DH outperformed the two existing
approaches on this data set, finding 194 new best solutions which counts for more than
80% of the instances in this data set. Our algorithm obtained average gaps between -
1.82% and -4.9%. The larger the number of nodes and the number of vehicles, the better

the results obtained by CCJ-DH compared to ABS-H. This is an interesting result since
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Table 1.6: Number of BUBs found by different algorithms applied to IRP and PRP data
sets

; : g5 E
0 P &
; 2 -
4 .9 g rd¥z. .32 58353 z
w325 3T ppselizfLiLid . B
2 & 8 H B O B o8 2 o3 20 O 3 e 9: % 5 )
Name of the Algorithm T 0 Od°e 8 Y ST EE2Z2 o< é < < @ a
Prob Set m  Class Size I E HM E E H M EHMMMMM H HHH H H NBS
IRP Sv-11 1 - 160 160 160 = s -~ 126 72 - - - - = 31 0
MV-11 ] - 160 - 158 98 22 84 L - - = = - - 14 = 5 B 0B 28 0
3 160 - 142 402 9 I = om om = - 12 ~ om = 31 13
4 160 - 108 50 5 95 - - - - - - - - 29 22
5 158 =773 6 101 - - - “ - - 38 31
sv-2 1 60 <~ WM. = = w A ~ o« w & R o= w e o e ow o= w0
MV-2 2 L - ST
a B = 0 15 = = s e e w ow oa oa e om w % w ow o« d% #8
4 60 < = 9 & = o= s = s a2 w w o w m w @ = s 8§ Bl
5 - @ s = 9 9w & = o8 i = & = % ® & ® ® § @ & 8§ ‘B8
PRP  SV-Al ! 1 120 - - - - . =~ -~ 119 6 - 1 1 8 720 - - 71 19 0
1 2 120 - . . - - - 120 5 - - 0 0 B8 68 - 7120 0
1 3 120 - - o - - - 120 2 0 0 52 - 67 5 0
1 4 120 “ - - . - - - 116 4 - - - 1 1 8 76 - 70 32 0
MV-A2 UL i 120 - - w - - - -0 - - -~ 0 0 - 9 2 10 101 99
UL 2 120 - - - - - - - - 4 - - - 2 2 - 12 8 49 47 46
UL 3 120 - - - - - - - -0 - - - 0 0 & -2 2 27 9 &2
UL 4 120 - - - - - - - - 0 -~ - - 0 1 - - 10 6 29 75 7
MV-A3 UL 1 120 - . - = - - - = 9 -« - - 0 0 5 0 28 M 79
UL 2 120 - - -~ - -~ . - 24 - « -~ 0 0 - 17 4 29 46 16
UL 3 120 - - .- - . - . - 7 - -~ ~ 0 0 - 8 0 77 28 28
UL 4 120 - - - - . - . - % - - - 0 0 17 3 38 46 46
MV-BL 5 - 30 - - - - - - - - - 0 0 1 0 1 - 0 0 26 2 2
MV-B2 9 - 30 - - - - - -~ - - - 0 0 0 0 1 - 2 1 2 0 0
MV-B3 13 - 30 . = > = - = - - ~ 0 0 0 0 - - - 9 3 6 12 12
‘Total (All Instances) 2628 160 683 299 35 a4 166 72 475 87 0 0 1 4 33 299 258 91 29 624 955 781

Total (LSMV' Instances) 1290 0 8 38 0 0 0 0 06 0 0 1 2 5 0 0 91 29 345 722 715

Note. The largest number of obtained BUDS at each row 18 presented with the bold font, NBS: New best solutions.
‘ Large-scale multi-vehicle.

ABS-H is a specialized algorithm for the multi-vehicle IRP.

For the SV-Al data set, there are five algorithms available in the benchmark set that
were applied to all the instances: ABPS-BC, ABPS-H, ACJ-ALNS with 500 and 1000 it-
erations, AADF-MS, AADF-DMS and SS5-H. Among the heuristic and metaheuristic al-
gorithms, the specialized algorithms of AADF-MS, AADF-DMS and SS-H are the best
performing ones. ABPS-H, ACJ-ALNS (with 500 and 1000 iterations) and SS-H are the
only benchmark algorithms that were applied to all three data sets of Archetti et al. (2011).
While ABPS-H generally obtained better results than ACJ-ALNS for SV-A1 with almost
negligible computing times, both are outperformed by CCJ-DH in terms of the number
of BUBs and average gaps.

There are five sophisticated heuristic or metaheuristic algorithms available for the
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Table 1.7: Average running time of different algorithms applied to IRP and PRP data sets
(seconds)
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UL 4 120 - = -« o« . < .18 - . - 18 18 - - 8 87 125 213
MVBl 5 - 30 73 31 317 298 481 - - 551 1653 2464 3559
MV-B2 9 W - . oI 08 976 1148 1408 1570 - - 2054 9483 7487 98l
MV-B3 13 ) CTa98 2492 3926 5794 - - - 4197 19270 16365 15891
¥ The computing times are negligibl

MV-A2 and MV-A3 data sets. Due to the size of the instances (n = 50 and 100, | = 6),
no exact algorithm has yet been applied to these sets. The results presented in Tables 1.5
and 1.6 show that our algorithm and SS-H outperform all other algorithms on these two
data sets both in total number of BUBs and average gaps. Over all the eight subclasses of
MV-A2 and MV-AS3, our algorithm provides an equal or better performance with respect
to the gap for six subclasses compared to SS-H. Furthermore, our algorithm found 514
BUBs, while SS-H found 287 BUBs. Our algorithm was able to improve the overall pre-
vious best known solutions obtained by other benchmark algorithms on MV-A1, MV-A3
and MV-A4.

Seven different algorithms were tested on the MV-B1, MV-B2, and MV-B3 data sets:
BP-MA, BN-TS, ASL-TS, ACJ-ALNS with 500 and 1000 iterations, AADF-VRP, AADF-
MTSP and SS-H. On MV-B1 and MV-B2, SS-H is the best performing algorithm. How-
ever, on the MV-B3 which includes the largest PRP instances, CC]-DH is the best algo-
rithm with an average gap of 0.18%. SS-H returned a large gap of 2.24% on this data set.
Overall, SS-H and CCJ-DH are the best performing algorithms (non-dominated ones) on

35



these three data sets. The average gap of CC]-DH on all the 90 instances in these data sets
is 0.72%, performing better than §S-H with an overall average gap of 0.78%.

On all IRP and PRP data sets with 2,628 instances, CCJ-DH was able to find 955 BUBs
out of which 781 are new best solutions. Our algorithm shows consistent performance
especially on the large-scale multi-vehicle instances of both IRP and PRP. For this family
of instances, CCJ-DH successfully obtains improved solutions compared to the previous
BUBs found in the literature by the specialized algorithms. Among the 1,290 large-scale
multi-vehicle instances of IRP and PRP data sets (240 instances of MV-12, 960 instances of
MV-A2 and MV-A3 and 90 instances of MV-B1, MV-B2 and MV-B3), CCJ-DH found 715
new best solutions. The algorithm also finished with the best or one of the best average
gaps among the other benchmark algorithms. Moreover, CCJ-DH is the only algorithm
that has been applied to all the IRP and PRP data sets. ACJ]-ALNS-1000 is the only other
algorithm that has been applied to both the IRP and PRP problems. This metaheuristic
was developed specifically for the PRP (Adulyasak et al., 2014b) and was next applied
to a limited set of multi-vehicle IRP instances (Adulyasak et al., 2014a). The results in
Table 1.5 indicate that CCJ-DH obtains improved gaps compared to ACJ-ALSN-1000 in
all the tested classes, except for MV-B2.

In the existing algorithms for the IR and PRP, we observe imbalances between the
CPU times. Because we worked with the same parameters for all problems and data sets,
it was impossible to find one setting that led to similar CPU times for all classes compared

to the state-of-the-art algorithms.

1.5.5 Computational Results for the ARP Data Sets

On the ARP data sets, we compare our algorithm against a truncated BC method im-
plemented in C++ with the CPLEX callable library and a time limit of 12 hours. In the
M srp model, we include another type of SEC (Archetti et al., 2011) in addition to con-
straints (1.12), to strengthen the LP relaxation of M grp:

Y, xip <Y zi—za VSCN|S|22VeeS,VteT. (1.26)

(i,j)EE(S) i€s

We add SECs dynamically through the search whenever they are violated. To this end,
we use the CVRP package of Lysgaard et al. (2004) for separation. Moreover, we add the
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following valid inequalities together with constraints (1.19) a priori to the model:

Zip < zZop Vi e Ns,Vt eT, (127)
xijt < zjp and xy <zj V(i,j) € E(Ns),Vt € T. (1.28)

Our initial experiments showed that when relaxing GFSEC, i.e. constraints (1.12), from
the M 4rp model, CPLEX is able to solve the resulting MIP for large ARP instances in an
average of 60 seconds. However, the integral solution may have subtours in each period.
Therefore, we also implement another lower bounding method for the ARP instances.
We iteratively add GFSEC cutting planes for the violated subtours and re-solve the new
MIP (MIP-CP). Note that at each iteration the solution time grows significantly due to
the newly added SECs and the marginal benefit of adding them becomes smaller. We
observed that after five hours this method is no longer able to effectively improve the
solutions (lower bound) for the MV-C2 and MV-C3 data sets. Because the BC method is
able to solve the MV-C1 instances to optimality in a very short time, we did not apply the
MIP-CP method to these instances.

Table 1.8 presents the performance of CCJ-DH on the ARP data sets. Columns five
and six in this table show the number of upper bounds (UBs) and best upper bounds
(BUBs) obtained by the BC method, respectively. The next column presents the average
gap (%) of the BC UBs with respect to (w.r.t.) BUBs (found either by BC or CCJ-DH).
The rest of the columns for the BC method show the number of optimal solutions, the
number of best lower bounds (BLBs) found either by BC or MIP-CP, the average gap (%)
of the BC method (compared to its own LB), and the average gap (%) of its lower bounds
(LBs) w.r.t. BLBs (found either by BC or MIP-CP). The two columns for MIP-CP present
the number of BLBs and the average gap (%) of its LBs w.r.t. BLBs. Note that MIP-CP
does not produce a feasible solution. The four columns for CCJ-DH show the solution
time, number of BUBs, and the average gap (%) of its solutions w.r.t. BUBs and BLBs,
respectively.

The BC method is able to solve every instance in the SV-C1 data set in less than 44
seconds, but for the other two data sets it reaches the time limit of 12 hours. It finds
304 feasible solutions for MV-C2 within the time limit among which only 22 are better
UBs compared to CCJ-DH. On the MV-C3 data set, the BC method is unable to find any
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feasible solution in the time limit. On all classes of the MV-C2 data set and the third
class of the MV-C3 data set, the BC method finds more BLBs and better average lower
bounds compared to MIP-CP. Although the BC method finds more BLBs for the first two
classes of the MV-C3 data set, MIP-CP reaches better average BLBs. On the fourth class
of the MV-C3 data set, MIP-CP finds more BLBs and better lower bounds compared to
the BC method. MIP-CP proved to be efficient in obtaining 167 BLBs for the MV-C3
data set. The difference in the performance of these two lower bounding methods is due
to the different approaches to eliminate the subtours. The BC method has to deal with
the fractional node visits and hence should include many more (fractional) SECs in the
LP model along the search tree. However, MIP-CP is restricted to integral node visits
and consequently only needs the SECs to eliminate the integral subtours (disconnected
components) and enforce the vehicle capacity. The results show that the fractional SECs
applied in the BC method generally return better lower bounds on the instances with
large transportation cost (the third class of each data set). On the small test instances, our
heuristic provides good quality solutions, with an average gap between 0.3% and 1.1%,
compared to the optimal solutions of a specialized BC approach. On the medium and
large size instances, our algorithm generally provides high quality solutions compared
to the best lower bounds found either by the BC approach or a specialized lower bound
algorithm. These average gaps vary between 0.9% and 2.4%, except for the third class
(with very large transportation cost) of MV-C2 and MV-C3, for which the gaps are close
to 6% and 10%.

We further discuss the behavior of our algorithm in Appendix A. All instances, de-
tailed solutions and results can be found at

http://chairelogistique.hec.ca/en/scientific-data/.

1.6 Summary and Conclusion

This study fills a gap in the literature by introducing a MILP model for the integrated pro-
duction, inventory and inbound routing problem. Although some similarities between
the PRP and ARP exist, fundamental differences arise in the nature of the problem and in

the modeling such as the presence of inventory of both the final product and the compo-
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Table 1.8: CCJ-DH performance on ARP data sets.

BC MIP-CP* CCJ-DH

# # Gap-UB # # Gap Gap-LB # Gap-LB CPU # Gap-UB Gap-UB

Set m Class Size UB BUB BUB Opt BLB CPLEX BLB BLB BLB (sec) BUB BUB BLB
Sv-C1 1 1 120 120 120 0 120 120 0 0 - - 43 23 0.3 0.3
1 2 120 120 120 0 120 120 0 0 - -4 19 0.26 0.26
1 3 120 120 120 0 120 120 0 0 - - a2 M 1.07 1.07
1 4 120 120 120 0 120 120 0 0 - - 34 16 0.48 0.48
Mv-C2 UL 1 120 73 3 47.32 0 114 48.01 0.21 6 056 603 117 0 1.54
UL 2 120 76 7 47.35 0 117 4791 0.01 3 061 592 113 0.01 1.54
UL 3 120 &0 1 62.98 0 114 6461 0.19 6 256 468 119 0 5.98
UL 4 120 9% 1 26.85 0 67 2739 014 53 018 914 109 0.02 0.88
MV-C3 UL 1 120 0 0 100 0 95 100 056 25 032 2967 120 0 24
UE 2 120 0 0 100 0 93 100 047 27 03 2932 120 0 2.39
UL 3 120 0 0 100 0 92 100 056 28 114 1971 120 0 9.81
UL 4 120 0 0 100 0 33 100 1 87 011 4213 120 0 1.58

Note. BC: Branch-and-cut algorithm, MIP-CP: Cutting plane method with sequential MiPs.

* With a time limit of 12 hours and maximum 30 GB memory. The algorithm finds optimal solution for SV-C1 in less
than 44 seconds for any instance in the set, and it reaches the time limit for both MV-C2 and MV-C3,

* With a time limit of 5 hours.

nents at the plant. We present a compact formulation for the ARP (M 4gp) and developed
many test instances for this problem as well as an efficient heuristic algorithm. On the
small test instances, our heuristic provides good quality solutions, compared to the op-
timal solutions of a specialized BC approach. On the medium and large size instances,
our algorithm generally provides high quality solutions compared to the best obtained
lower bounds either by the BC approach or a specialized lower bound algorithm, with

the exception of the data sets with the high transportation cost.

We further test this algorithm on other problems of the same nature where the routing
decisions are integrated with inventory management (and production planning): the IRP
and the PRP. We consider standard data sets from the literature. These data sets include
2,628 instances ranging from small to very large-scale ones. We compare our results to
those from the current state-of-the-art algorithms. Our algorithm presents acceptable re-
sults on the small data sets and outperforms specialized state-of-the-art algorithms for
the large-scale multi-vehicle instances. We also outperform the only other algorithm that
has been applied to both the IRP and PRP problems. Moreover, we show that the algo-
rithm finds good quality solutions with different transportation cost update mechanisms
as well as different initial node visit costs. We believe this shows the robustness of our
decomposition approach. One of the most important contributions of this paper is the de-

sign of a unified algorithm that can be applied to different data sets of different problems
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(ARP, PRP and IRP) with the same parameter setting.
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Chapter 2

A Branch-and-Cut Algorithm for an
Assembly Routing Problem

Abstract

We consider an integrated planning problem that combines production, inventory and in-
bound transportation decisions in a context where several suppliers each provide a subset
of the components necessary for the production of a final product at a central plant. We
provide a mixed integer programming formulation of the problem and propose several
families of valid inequalities to strengthen the linear programming relaxation. We pro-
pose two new algorithms to separate the subtour elimination constraints for fractional
solutions. The inequalities and separation procedures are used in a branch-and-cut algo-
rithm. Computational experiments on a large set of generated test instances show that
both the valid inequalities and the new separation procedures significantly improve the

performance of the branch-and-cut algorithm.

2.1 Introduction

The literature on integrated planning in manufacturing industries highlights a signifi-
cant potential for cost savings in the supply chain by combining production and trans-

portation decisions (Viswanathan and Mathur, 1997; Fumero and Vercellis, 1999; Chen



and Vairaktarakis, 2005; Archetti and Speranza, 2016). The problem of simultaneously
planning the production at a plant and the outbound delivery routing is known in the
literature as the production routing problem (PRP) (Archetti et al., 2011; Adulyasak et al.,
2015). When the production plan at the plant is given and the decisions concern only
the inventory and route planning, the problem is referred to as the inventory routing
problem (IRP) (Andersson et al., 2010; Coelho et al., 2013). There exist many models and
solution algorithms for these two problems. In contrast, few studies have considered
the integration of production planning with inbound transportation for the collection of
components from suppliers to assemble a final product.

When the assembly plant is responsible for organizing the inbound transportation
of the various components, significant gains can be achieved by integrating production
planning with inbound transportation (Carter and Ferrin, 1996). Automotive industry
examples are studied in Blumenfeld et al. (1987) and Florian et al. (2011) for US and
German manufacturers. Fernie and Sparks (2014) indicate that in the retail industry the
logistics system should be effectively integrated with the suppliers. More specifically,
they highlight the need for the optimization and management of the entire supply chain
of retailers to be a single entity to obtain cost reduction advantages and service enhance-
ments. Closing the supply chain loop is another example where the collection of the
end-of-life products should be coordinated with the disassembly planning (Guide and
Van Wassenhove, 2009).

We study the assembly routing problem (ARP) which considers a joint planning prob-
lem with a central plant that produces a final product to satisfy a dynamic but determin-
istic demand. The plant collects the necessary components from several suppliers, each
providing a subset of the components. The plant coordinates the scheduling of the pro-
duction as well as the routing decisions and shipment quantities from the suppliers. The
aim is to minimize the total costs of production, inventory and routing subject to sev-
eral types of capacity constraints. The planning is done over a finite and discrete time
horizon. The quantities available at the suppliers are assumed to be known in advance.
The plant has a limited capacity for the production and no backlogging or stockouts are
allowed. Both the plant and the suppliers can carry inventory. The plant has separate

and capacitated inbound and outbound storage areas for the incoming components from
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suppliers and for the final product, respectively. Each supplier has a global storage ca-
pacity for its own components. The plant manages a limited fleet of capacitated vehicles
to handle the shipment of components from the suppliers to the plant.

Similar to the basic variants of the IRP and PRP, we do not allow a supplier to be
visited by more than one vehicle in a specific period (i.e., no split pickups).

Some studies in the literature consider the optimization of the inbound transporta-
tion and inventory decisions without taking the production planning at the central plant
into account. Popken (1994) and Berman and Wang (2006) study a single-period inbound
logistics problem. They consider a multicommodity network with the origin (suppliers),
destination (plant), and transshipment terminal nodes. The origin-destination commod-
ity flows are supposed to be optimally routed through this network using at most one ter-
minal node. The cost function includes the transportation and pipeline inventory costs
for all supplier-plant pairs. The optimization of the inventory decisions together with
the explicit inbound vehicle routes through multiple planning periods is studied in Moin
et al. (2011) and Mjirda et al. (2014). Considering the automotive parts supply chain,
these studies investigate the case of a single assembly plant for which multiple suppliers
each provide a distinct part type.

A number of studies investigate the coordination of the inbound vehicle routes with
the production rate in a just-in-time (JIT) environment where no end-period inventory
exists in the planning horizon. Vaidyanathan et al. (1999) and Satoglu and Sahin (2013)
study the parts delivery to an assembly line with the objective of minimizing the ma-
terial handling equipment requirements in a central warehouse. Qu et al. (1999) and
Sindhuchao et al. (2005) study the joint replenishment of multiple items in an inbound
material-collection system for a central warehouse under the assumption of an infinite
planning horizon. Chuah and Yingling (2005), Ohlmann et al. (2007), Stacey et al. (2007)
and Natarajarathinam et al. (2012) consider a JIT supply pickup problem for an auto-
motive assembly plant to minimize the inventory and transportation costs. Jiang et al.
(2010) study a similar problem taking the storage space limit into account. Yiicel et al.
(2013) consider the problem of transporting specimens from different sites to the central
processing facility of a clinical testing company. Lamsal et al. (2016) study a sugarcane

harvest logistics problem in Brazil that requires the continuous operation of the produc-
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tion mill. Therefore, the inbound flow of raw material should never terminate.

One observes that the ARP includes a lot-sizing substructure with additional inven-
tory constraints together with the distribution routing decisions in each period. Simi-
lar to the ARP, an inventory substructure exists in the uncapacitated LSP with inventory
bounds which is well-studied in the literature. This problem was first introduced by Love
(1973). Atamtiirk and Kiiglikyavuz (2008) propose an O(n?) dynamic programming al-
gorithm. Van Den Heuvel and Wagelmans (2008) show that the problem is equivalent
to the LSP with a remanufacturing option, the LSP with production time windows, and
the LSP with cumulative capacities. Di Summa and Wolsey (2010) consider a variable
upper bound on the initial inventory and give valid inequalities and extended formu-
lations to describe the convex hull. More recently, Hwang and van den Heuvel (2012)
and Phouratsamay et al. (2018) study this problem and propose polynomial and pseudo-
polynomial algorithms for different cost structures. Akbalik et al. (2015) study the multi-
item LSP with stationary production capacity, time-dependent inventory bounds and
concave costs as well as a global capacitated storage space for all the items. They show
that the problem is NP-hard even when each item has stationary and identical production
cost and capacity over periods. Also, other integrated problems such as the IRP (Archetti
et al., 2007; Solyali and Siiral, 2011; Avella et al., 2015), maritime IRP (Agra et al., 2013),
and PRP (Archetti et al., 2011; Adulyasak et al., 2014) consider bounded inventory in the
problem structure. Due to the inventory structure similarity, the feasible sets of these inte-
grated problems are related to each other. Although there are certain similarities between
the ARP and these problems, they possess a distribution lot-sizing structure whereas the
ARP is based on an assembly structure. The difference in the lot-sizing structure makes
the feasible set of the ARP different particularly because of the given rate of the supply at
the suppliers, and the fact that the suppliers and the production plant are connected via
a routing structure.

To the best of our knowledge, there are two papers that studied a problem close to
the one being addressed in this paper. A general case with multiple components and
products is introduced by Hein and Almeder (2016). The authors consider two scenar-
ios. In the first scenario, the plant is allowed to keep the components in stock while in

the second scenario, which represents a JIT environment, the components that arrive at
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the plant must be used immediately in production. They examine both scenarios under
the traditional sequential planning approach and under the integrated approach. In the
sequential planning process, an LSP is solved first to obtain the production plan for the
final product. Then, in the second step, they solve an IRP for the first scenario and one
vehicle routing problem (VRP) for each period in the second scenario. The computational
experiments are performed on randomly generated instances with either 4 suppliers, 8
components, 3 final products, and 5 periods or 6 suppliers, 12 components, 4 final prod-
ucts, and 10 periods. They report cost savings of up to 12% with the integrated planning
approach compared to the classical sequential approach. According to this study, one
may expect a higher potential for cost savings in the JIT scenario when applying the inte-
grated approach. Because the authors did not consider the holding cost at the suppliers
in their study, the integrated decision making is entirely focused on the costs associated
with the plant. This is appropriate when the suppliers and the assembly plant are sep-
arate organizations and the assembly plant is not concerned with the inventory costs at
the suppliers.

In the case where both the suppliers and the assembly plant belong to the same firm,
one should ideally take into account the suppliers’ inventory costs and capacities in the
integrated decision making process. Chitsaz et al. (2019) study the case with multiple
components and one final product but consider the inventory costs and storage capac-
ity of the suppliers as well as a component storage area at the plant. They assume
that every supplier provides a unique component. Consequently, a one-to-one relation-
ship exists between the suppliers and components. The authors develop a three-phase
decomposition-based matheuristic that iteratively solves different subproblems. They
apply their algorithm not only to the ARP, but also to the IRP and the PRP with the same
parameter setting. The computational experiments show that this algorithm returns high
quality solutions for the ARP instances and outperforms existing heuristics on large-scale
multi-vehicle instances of the IRP and PRP. The algorithm finds new best-known solu-
tions to many standard test instances of these two problems.

We extend the model of Chitsaz et al. (2019) to consider the case where each sup-
plier may provide a subset of the components necessary for the final product and some

components can be obtained from more than one supplier. This is the first contribution
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of this paper. Second, we develop several new valid inequalities to strengthen the lin-
ear programming (LP) relaxation of the mixed integer programming formulation of the
problem. Although several of the proposed inequalities are inspired from existing lot
sizing inequalities, a novelty is that some of the inequalities use the known supply in-
stead of the known demand. Third, we present novel algorithms to efficiently separate
the subtour elimination constraints for the LP solutions that contain fractional routes,
which can be adapted for other vehicle routing problems with the same feature. The in-
equalities and separation procedures are used in a branch-and-cut algorithm (BC). We
generate a large test bed consisting of small to large instances with diverse ranges for the
number of suppliers, products and planning periods. Finally, we analyze the impact of
each class of valid inequalities on the value of the LP relaxation and on the final solu-
tion. Our extensive computational experiments show that both the valid inequalities and
the new separation procedures notably enhance the performance of the branch-and-cut
algorithm.

The remainder of the paper is organized as follows. We formally define the ARP and
express it mathematically in Section 2.2. Section 2.3 is devoted to the presentation of
the inequalities and to the proof of their validity. In Section 2.4, we present the upper
bound generation procedure. To separate the subtour elimination constraints for our
multi-period VRP, we present two heuristic algorithms in Section 2.5. The generation of
the test instances and computational experiments are presented in Section 2.6. Finally,

Section 2.7 concludes the paper.

2.2 Problem Definition and Mathematical Formulation

We consider a many-to-one assembly system with n suppliers represented by the set
N = {1,..,n}. The planning horizon includes I discrete time periods forming the set
T = {1,..,1}. To produce the final product, k distinct components, represented by the set
K = {1,..,k}, are required. We extend the basic ARP introduced in Chitsaz et al. (2019)
by assuming that each supplier i may provide a subset of the components K; C K, where
K = JK;. Moreover, each component k can be provided by a subset of suppliers Ny C N,

where N = |J Ni. We define the problem on a complete undirected graph with the node
k
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set NT = N U {0}, where 0 represents the plant, and the edge set E = {(i,j) : i,j €
N*,i < j}. Welet K = KU {0} represent the set of all items, where 0 represents the
final product. The suppliers as well as the central plant each have a global storage area
for the components and may have some component inventory at hand at the beginning
of the planning horizon. Moreover, the central plant has a separate storage space for the
final product. A fleet of m homogeneous vehicles, each with a capacity of Q, is available
to transport the components from the suppliers to the plant.

The decisions to make include whether or not to produce the final product and the
quantity to be produced at the plant in each period, the supplier visit schedule and order
in each vehicle route, and the shipment quantities from the suppliers to the plant. The
manufacturing plant needs to minimize the production, inventory and transportation
costs simultaneously for the entire planning horizon. The complete list of notations is

presented in Table 2.1.

Table 2.1: ARP notation list

N¥ Set of nodes, N = {0, ...,n}, where 0 represents the plant, and N = N \ {0} represents the set of suppliers.
E Set of edges, E = {(i,j) : i,j € N*,i < j}.
K Set of components indexed by k € {1, ..., |K|}. We let K* = KU {0}.

K; Set of available components at supplier i € N, K; C K.
Ny Set of suppliers that provide component k € K, Ny C N.
) Set of time periods, indexed by t € T = {1,., [ }.

E(S)  Setofedges (i,j) € Esuchthati,j € S, where S C Nt is a given set of nodes.
6(S)  Setof edges incident to anode set S, 6(S) = {(i,j) € E: i€ S,j¢ Sori ¢ S,j € S}.

Decision variables:

Pt Production quantity in period t at the plant.

v Equal to 1 if there is production at the plant in period ¢, 0 otherwise.

i Inventory of component k € K; at supplier i € N at the end of period .

Tokt Inventory of component or final product k € K* at the plant at the end of period ¢.
Xijt Number of times a vehicle traverses the edge (i,j) € E in period t.

Zjg Equal to 1if node i € N is visited in period ¢, 0 otherwise.

Zot Number of vehicles dispatched from the plant in period t.

ikt Shipment quantity of component k € K from node i € N to the plant in period t.
Parameters:

fu Fixed setup and unit production costs, respectively.

hi Unit holding cost of item k at the plant or at supplier i € N+.

Cij Transportation cost between nodes i and j, (i, ) € E.

m Fleet size.

C,Q  Production and vehicle capacity, respectively.

Sikt Supply of component k € K at node i € Nj in period .

Sikiyt;  Cumulative supply of component k € K atnode i € N from period ¢ to period #; (inclusive), t1,t2 € T, b < b,
by Unit size of component k € K.

dy Demand for the final product at the plant in period ¢.

dyt, Cumulative demand for the final product at the plant from period t; to period t; (inclusive), ty, 2 € T, t < t5.
L; Global inventory capacity at supplier i € N for the components k € K;.

L Global inventory capacity at the plant for the components k € K.

Lo Inventory capacity at the plant for the final product.
Liro Initial inventory of component k € K available at supplier i € Nj.
Ioko Initial inventory of component or final product k € K* available at the plant.
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A compact formulation for the ARP can be written as the following M sgp model:

(Magp) min )" ('«'Pf +fy+ Y hodow + Y Y M + Z ‘C:‘y‘xijt) (2.1)

teT keK+ ieN kekK; (i,j)€E
s.t
Iooj-1+pr =di+Ioor VEET (2.2)
Ioki-1+ Y Gie = pr+ e VK€K VEET (2.3)
i€ N

Lit-1+Sikt = Gie + Iy Vi€ NYk€K; VEET (2.4)
pr<Cy VteT (2.5)
Ioot < Lg VEET (2.6)
Z bl KL VEET (2.7)

keK
Y bl <L VieNVteT (2.8)

kEK;
zp <mvVteT (2.9)
Y bigiy < Qzip VieN,VteT (2.10)

kekK;

Y. xp =2z VieNT,VteT (2.11)

(" es)
Q Z Xijt < E (QZ,’, e 2 hkt],‘k;) ) c N, |S| > 2,Vt eT (212)

(L)€ E(S) €8 keK;

pr20, € {0,1}, 2 €2 NVteT (2.13)
Ijw 20 Vke KY Wt e T (2.14)
I,'k,,q,“ >0 VieN,VkeK;,VteT (2.15)
xip € {0,1} V(i,j) e E:i#0,VteT (2.16)
xoir € {0,1,2},z;y € {0,1} Vie N,Vt e T. (2.17)

The objective function (2.1) minimizes the total production, setup, inventory, and
transportation costs. The inventory costs include both component inventories at the sup-
pliers and at the plant, as well as the final product at the plant. The set of constraints

(2.2) ensures the final product inventory flow while constraints (2.3) do the same for each
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component at the plant. Constraints (2.4) guarantee the inventory flow balance for each
component at each supplier. Constraints (2.5) force a setup at the plant in each period
where production takes place. They also impose a maximum limit on the production
quantity. Constraints (2.6) consider the storage capacity of the final product at the plant.
Constraints (2.7) impose the shared storage capacity of the components at the plant. The
shared storage capacity of components at each supplier is enforced by constraints (2.8).
Constraints (2.9) impose the limit on the fleet size. Constraints (2.10) force a vehicle visit
whenever components are shipped from a certain node to the plant. The total component
shipment quantity from each supplier in each period will also be limited by the vehicle
capacity. Constraints (2.11) are the degree constraints. Constraints (2.12) are the subtour
elimination constraints (SEC).

These constraints are the modified version of the VRP capacity-cuts (Toth and Vigo,
2002; Iori et al., 2007). They require each route to be connected to the plant and the
total shipments on each route to not exceed the vehicle capacity. There exists an expo-
nential number of these constraints. They are referred to in the literature as generalized
fractional subtour elimination constraints (GFSEC) (Adulyasak et al., 2014). Constraints
(2.13)-(2.17) are domain constraints.

2.3 Strengthening the LP Relaxation Bound

We present valid inequalities to improve the LP relaxation of Magrp. Moreover, we
present the links between these inequalities and related polyhedral studies in the liter-
ature. The polyhedral structure of the LSP and VRP has been researched extensively.
Barany et al. (1984) give a complete linear description of the convex hull of the solu-
tions for the uncapacitated LSP. Pochet (1988), Miller et al. (2000), and Atamtiirk and
Muiioz (2004) present inequalities for the capacitated LSP with unlimited storage capac-
ity. Atamtiirk and Kiiglikyavuz (2005) investigate the polyhedral structure of the lot-
sizing problem with inventory bounds and fixed costs. The polyhedral study of multi-
echelon LSP with intermediate demands is given in Zhang et al. (2012). The uncapaci-
tated LSP is a special case of fixed charge network design (Van Roy and Wolsey, 1985).
Gendron et al. (1999) and Kucukyavuz (2005) study polyhedral approaches for capaci-
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tated multicommodity network design and fixed-charge network flow problems, respec-
tively. Chouman et al. (2016) present cut-set-based inequalities for multicommodity ca-
pacitated fixed-charge network design problems. Similarly, many polyhedral studies are
presented in the literature for different variants of the VRP. Cornuejols and Harche (1993)
and Ralphs et al. (2003) study the capacitated variant and Belenguer et al. (2000) investi-
gate the split delivery VRP.

Three classes of valid inequalities are presented to improve the LP relaxation bound
for the M agp model. The first class contains (1,S,WW)-type inequalities. The second
one concerns the bounds on the variables. We present the proof of the propositions in
Appendix B. The last class includes general inequalities for the ARP. Propositions 1, 2
and 7 present inequalities derived from the particular structure of the underlying LSP
for each component k (Pochet and Wolsey, 2006). These inequalities take advantage of
the aggregated available inventory of each component k at the suppliers (that provide

component k) and the production plant for each period t € T.

231 (1,5, WW)-Type Inequalities

The (1,5) inequalities were introduced in Barany et al. (1984) and provide the convex hull
of the single-item uncapacitated LSP. In the (/, S) inequalities, [ refers to a period (I < |T/)
where T is the number of periods, and S is a subset of periods {1,...,/} not necessarily
connected (S C {1,...,/}) such as periods {1,3,7} when | = 10. For a numerical exam-
ple, we refer to Pochet and Wolsey (2006), pp. 122-123. Although there is an exponen-
tial number of these constraints for a general cost structure, Pochet and Wolsey (1994)
showed that under the Wagner-Whitin (WW) cost condition it is sufficient to consider
only O(/?) inequalities to describe the convex hull of the single item uncapacitated Iot
sizing problem which are referred to as (I, S, WW) inequalities. The WW non-speculative
cost structure requires the sum of unit production and inventory costs in every period to
be larger than or equal to the unit production cost in the next period. Therefore, when the

unit production costs are the same for all periods, the WW cost condition holds because

the inventory costs are nonnegative. We first present the known (I, S, WW) inequalities
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applied to the lot sizing structure (2.2) and (2.5):

3 iy
Y pe <Ioon+ ) denyye Vt,t2 € Tty < o (2.18)
e=bh e==ly

These inequalities link the production and setup variables at the plant with the predeter-
mined downstream demand in order to improve the LP relaxation lower bound. Next,
we derive three new families of valid inequalities for the ARP. The new inequalities are
inspired from the standard (I, S, WW) inequalities, but present some novelties. In Propo-
sition 2.1, we develop new inequalities that link the production and setup variables at the
plant with the known upstream supply. The structure of the proof (given in Appendix B)
follows a similar structure as for the (I, S) inequalities (Pochet and Wolsey, 2006), but with
an inverted logic as it takes into account the known supply at the suppliers. Moreover, in
Propositions 2.2 and 2.3 we propose new inequalities linking the shipment quantities and
node visit variables with the given supply and demand, respectively. The novelty in the
structure of these constraints is that, for a given period, the shipment variables are de-
fined for each supplier-component combination, whereas the supplier visit variables are
only related to the supplier. There is no setup-type constraint in the model that directly
links each component shipment variable to its supplier visit variable. This is different

from a traditional lot-sizing structure.

Proposition 2.1. Inequalities

5] )
Yo pe <Iop-1+ Y lin-1+ ) Y Siene¥e VK€KV, b eT,tp <t (219)
e=t iEN; e=t ieN

are valid for the M sgrp.

Notice that although both inequalities (2.18) and (2.19) provide bounds on the total
production quantities, the first set of inequalities considers the cumulative demand and
the remaining product inventory at the last period (¢2) while the second set of inequalities
takes the cumulative component supply and the available inventory at the beginning of

the first period (t;) into account.

Proposition 2.2. Inequalities

tr iy
Y Gike < Ligt—1 + Y Siknezie Vi € N,Vk €KiV, €T, < 1y (2.20)

e=h e=ly
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are valid for the M agp.

Proposition 2.3. Inequalities

ta t
Yo N Gike <Ioor, + Iokt, + Y, ders Y zie VK€K, Vi, t2 €T, 11 <t (2.21)
é=h ieNg e=h  iEN

are valid for the M srp.

Both inequalities (2.20) and (2.21) provide bounds on the total shipment quantities.
The first set of inequalities considers the cumulative component supply and the available
inventory at the beginning of the first period (f1) at each supplier while the second set
of inequalities takes the cumulative demand and the remaining product and component

inventory at the plant in the last period (t;) into account.

2.3.2 Bounds on Variables

The bounds we propose in this subsection are linked to the cut-set type inequalities.
Atamtiirk and Kiigiikyavuz (2005) observe that (1,5) inequalities may not cut off frac-
tional LP extreme solutions for lot-sizing with inventory bounds and fixed costs if for the
subset of periods S incoming or outgoing inventory is at capacity. They introduce cut-set
type inequalities to enforce one production setup for a certain number of periods. We
introduce inequalities that are both a generalization and an extension of the cut-set type
inequalities. We generalize the cut-set type inequalities to provide integer lower bounds
on the number of required production setups from period ¢ = 1 tot € T (Proposition 2.4).
We further extend these cut-set type inequalities to enforce integer lower bounds on the
number of vehicles dispatched (Proposition 2.5), and supplier visits from period ¢ = 1 to
t € T (Propositions 2.6-2.7).

Let Qj (measured in required space) be a parameter equal to the sum of cumulative
supply of components and the initial inventory of the components at supplier i minus its

available storage capacity, i.e.,

Qir = Lek, bk(Sikae + Iiko) — Li-

Proposition 2.4. Inequalities
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[max {0' dyt — Iooo, (Lkek brloro + Lien max{0, Qit} — L)/ Liek bk}l

t
: < VteT
min{C, maXee(1,..,t} {de} + Lo} Z s

e=1

(2.22)

are valid for M arp.

Notice that } ;¢ bx in the last expression of the LHS of the inequalities (2.22) repre-
sents the total required space by the components which are required to produce one unit
of the final product. Next, we present valid inequalities for the lower bound on the total
number of necessary vehicles dispatched from period e = 1 to t.

Proposition 2.5. Inequalities

t
[l max{ Z by max{0, dyr — Inoo — Ioko }, E max{0, Q,-,}}] < Z Zge VEET (223)
Q k€K ieN e=1

are valid for M arp.

Next, we present valid inequalities for a lower bound on the total number of necessary

node visits from period e = 1 to t in the following proposition.

Proposition 2.6. Inequalities

{ max{0, Q;}
min {Q: L; + maxey,. ) { Lkek; OeSike }» Liek, bk (Tiro + siklt)}

i
] <) zie VieNVteT
e==]

(2.24)
are valid for M aRrp.

At any supplier, when the initial inventories plus the cumulative supply of compo-
nents in the first ¢ periods exceed the storage capacity, inequalities (2.24) provide a lower
bound on the number of required visits to that supplier during these periods. The cu-
mulative shipments from the supplier in the first ¢ periods is limited first by the vehicle
capacity, second by the available storage plus the maximum total component supply in
any of those periods, and third by the sum of the initial inventories and the total supply

of all components during these periods.
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Proposition 2.7. Inequalities

max{0, dy; — Iogo — Ioko } < Z Z zi, Vke K,VteT (2.25)

min {%: maxXie N, { Lio + Siklt} } e=1ieN;

are valid for M arp.

For the periods whose cumulative demand cannot be satisfied from the initial prod-
uct inventory and in the case where the initial inventory of a given component is not
sufficient for the production, inequalities (2.25) force visits to the nodes which supply
that specific component. The cumulative shipments of a component from any of the as-
sociated suppliers in the first t periods is limited not only by the vehicle capacity but
also by the maximum of the initial inventory of that component plus the total supply of
the component from those suppliers in the same periods. It is possible to state inequal-
ities (2.24)-(2.25) for the edge variables (x;;;) instead of node visits (z;;). This leads to

identical constraints due to the degree constraints (2.11).

2.3.3 General Inequalities

Without the SECs (2.12) added a priori to the model (e.g., as in the case of a BC algorithm),
it may happen that the plant would not be connected to the other visited nodes in certain
periods. In these cases, the following inequalities impose a positive value on the number
of dispatched vehicles and hence on the degree of the plant if any node is visited in the
same period:

zp <zy VieN,VteT. (2.26)

Another type of SEC is Dantzig-Fulkerson-Johnson (DFJ), which can be represented
for the M 4rp as follows:
Y xp <Y zn—2za VSCN,|S|>2Vees,VteT. (2.27)
(i) €E(S) i€$
DFJ inequalities are referred to in the literature as connectivity constraints (Laporte, 1986),
infeasible-path constraints (Ascheuer et al., 2000; Iori et al., 2007), or clique constraints
(Bektag and Gouveia, 2014). They were first proposed by Dantzig et al. (1954) for the

travelling salesman problem (TSP). These inequalities imply that the number of edges
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that can be chosen from the set of all edges with both endpoints in a subset of nodes S
cannot be more than |S| — 1. The cardinality of these inequalities is exponential and thus
they cannot be added a priori to the model in practical applications. Both GFSECs and
DFJs can be added to the model at the same time. Observe that DFJs do not impose the
vehicle capacity. Archetti et al. (2007) and Archetti et al. (2018) employ DF] constraints
for the IRP, and Archetti et al. (2011) and Adulyasak et al. (2014) use them for the PRP.

The following inequalities enforce node visits for each edge traversal:
Xijt <z and Xijt < Zjt V(l,j) € E(N),VteT. (2.28)

Inequalities (2.26) and (2.28) are used by Archetti et al. (2007) for the IRP, and by Archetti
et al. (2011) and Adulyasak et al. (2014) for the PRP. Inequalities (2.28) are special cases
of DFJs for node pairs (Gendreau et al., 1998), which can be added to the model a priori
due to their polynomial cardinality.

24 Generating Upper Bounds

We adapted the unified matheuristic proposed in Chitsaz et al. (2019) and applied it to
the generalized ARP, where each supplier provides a subset of the components, to obtain
high quality feasible solutions as well as cutoff values that can be used to prune branches
in our BC algorithm. This matheuristic (CC]J-DH) works by decomposing the problem
into three separate subproblems and solving them iteratively. The first subproblem is a
special LSP which determines a setup schedule with an approximation of the total trans-
portation cost using the number of dispatched vehicles. The second subproblem returns
node visits and shipment quantities. The latter employs another approximation of the
total transportation cost using the node visit transportation cost. Finally, the third sub-
problem considers a separate VRP for each period ¢.

The solutions of the routing subproblems are used to update the node visit cost ap-
proximation in the second subproblem for the next iteration. This procedure is repeated
to reach a local optimum. Then, a change in the setup schedule is imposed to explore
other parts of the feasible solution space and diversify the search. The algorithm uses

diversification constraints (Fischetti et al., 2004) to generate both new setup schedules
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using the first subproblem, and new node visit patterns using the second subproblem.
The method terminates when a stopping condition is met. We present the detailed adap-
tation of CCJ-DH in Appendix B.

2.5 Separating Fractional Multi-Period Subtour Elimination

Constraints

Subtour elimination constraints (2.12) belong to the family of capacity-cut constraints
(CCC) which were developed for the capacitated VRP (Toth and Vigo, 2002; lori et al.,
2007). The RHS of these constraints represents the number of vehicles required to serve
the subset of nodes for which the inequality is applied. Depending on how the RHS
is computed, different classes of this set of constraints can be obtained. The direct use
of the fractional RHS results in the fractional capacity inequalities. This class of capac-
ity constraints can be separated by solving a series of max-flow or min-cut problems in
polynomial time (Semet et al., 2014). The next three classes of CCCs need specific algo-
rithms and their separation is known to be NP-complete (Augerat, 1995). When the RHS
is rounded up, one obtains the rounded capacity inequalities. Using the optimal value of
the bin-packing problem (where the weights of the items are equal to the shipment sizes
and the bin capacity is equivalent to the vehicle capacity) in the RHS results in the weak
capacity inequalities. Finally, computing the minimum number of required vehicles results
in global capacity constraints and gives the tightest form.

Unlike the other types of CCCs, the quantities in the RHS of GFSECs are not given
parameters but node visit (z;;) and shipment quantity (g;x) variables. For the non-vehicle
index formulations of the IRP and the PRP, GFSECs are necessary to maintain the vehi-
cle capacity of each route. To the best of our knowledge, there is no exact algorithm to
separate GFSECs in polynomial time and it is not known whether separating GFSECs is
NP-hard or not. Instead, a weak form of them (with z; = 1) is usually separated using
separation procedures designed for the TSP and VRP CCCs. Most of the BC algorithms
in the IRP and the PRP literature use the separation procedure of Padberg and Rinaldi
(1991) or heuristics that are included in the CVRPSEP package of Lysgaard et al. (2004).
The procedures of Padberg and Rinaldi (1991) and Lysgaard et al. (2004) were originally
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developed for the TSP and the VRP, respectively. The algorithm of Padberg and Rinaldi
(1991) is used by Archetti et al. (2007, 2011); Solyali and Siiral (2011); Avella et al. (2015)
and Archetti et al. (2018). The CVRPSEP package is used by Adulyasak et al. (2014). If
a violated inequality is found by one of these procedures, one has to check whether the
corresponding GFSEC is violated or not (Solyali and Stiral, 2011). In Appendix B, we
present two examples for the LP solutions to the routing problem containing fractional
values for the node visit (z;) and edge traversal (x;;;) variables. One example shows the
case where a non-violated subtour elimination constraint is returned. The other example
demonstrates the case where a violated subtour elimination constraint cannot be iden-
tified when the weak GFSEC is separated. Note that Contardo et al. (2012) propose a
polynomial time max-flow algorithm to separate the fractional capacity cuts for the two-
echelon capacitated location-routing problem. This suggests that it might be possible to
do the same for GFSECs.

The separation problem for GFSECs in the ARP is to find a subset of nodes S C N with
cardinality greater than or equal to 2 (|S| > 2) for which the corresponding constraint is
violated by the fractional solution. In each period ¢, the non-zero z* and x* values of the
optimal LP solution form a subgraph G'(N', E'). Each node in G' has a shipment volume
of Ykek, bxqjy- In order to define the separation problem, let the binary variable v; be
equal to 1if and only if node i € N' is selected and binary variable w;; be equal to 1 if and
only if edge (i,j) € E' is chosen. We formulate the GFSECs separation problem for each

period t as follows:

(SGrsec) min ) (Qzh— ) bigi)vi—=Q Y, xjjwj (2.29)

ieNt keK; (L) EE(N)

s.t.
Y vi>2 (2.30)
ieNt

wij < v; V(i,j) € E! (2.31)
wij < v; v(i,j) € E! (2.32)
v, wij € {0,1} Vi e N',V(i,j) € E. (2.33)

Since G' is defined for (i, ]) € E', it may not be a complete subgraph nor a connected

one. Observe that any feasible solution to this problem which has a strictly negative
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value returns one or more violated GFSECs. Notice that unlike the separation problem
for the VRP CCCs, this problem is independent of the plant’s (depot’s) adjacent edges
(Xoit). Moreover, the problem S(psp( is separable over the disconnected elements of the
subgraph of period t, as was first implemented by Laporte et al. (1985) for the VRP under
capacity and distance constraints.

To separate violated GFSECs with fractional node degrees, we propose two heuristics
which can also be adapted for other vehicle routing problems. We define e = (i, j,) € E,
the index of edges in the subgraph edge set of period t. We initialize sets (), ...,z
indexed by €, and populate each (). with edge € € E'. We define ®(Q)) as the set of
nodes corresponding to all the edges in Q.. Let C; = Qz}, — Yiek, biqjy, represent the
node cost and C = Q¥ (;er(nt) Xjj; the edge gain. The first algorithm (Algorithm A1)
finds violated GFSECs (for each period t) by adding to set (). the edge e which has the
least marginal cost (C;, + C;, — C*), not necessarily a negative cost, at each iteration. We
only check for e > € to force every initial set (), to deal with a different subset of edges.
Otherwise, different sets eventually may end up with the same result. Notice that the last

set, ()|, will not examine other edges.

Algorithm 2: GFSEC Separation Procedure: A1

1: Initialize |E'| sets Qg foralle € [
2: foralle € {1,..,|EY|} do

3 foralle € E'\Q¢e > ¢ do

4 e* = argming{C;, +C;, - C*}

5 Oc ¢ Qe U {e*)

6: if ®(Q,) introduces a violated GFSEC and ®({)) is not found yet then
7 Add () to the list of violated GFSECs

8: end if

9 end for

10: end for
11: return the list of violated GFSECs

The second algorithm (Algorithm .A2) has a similar structure as A1 with the differ-
ence that it terminates the search procedure for each set () when the set returns the first
violated GFSEC and then proceeds to the next set. Moreover, Algorithm A2 does not
accept the node sets which have (node) overlap with the violated GFSECs found earlier
in the current call of the algorithm. Because every violated GFSEC needs to have at least

two nodes, there is an explicit upper bound of |[N'|/2 on the number of violated GFSECs
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that A2 returns for each period t.

2.6 Computational Experiments

The experiments were performed on the Calcul Québec computing infrastructure with
Intel Xeon X5650 @ 2.67 GHz processors and a memory limit of 25 GB. The BC procedure
is implemented in C++ using the CPLEX 12.6 callable library. All experiments are per-
formed in sequential form using one thread. The algorithm applies the valid inequalities
at the root node and adds GFSECs and DFJs at each node of the search tree as cutting
planes whenever they are violated by more than 0.1 unit. To separate GFSECs, we either
use CVRPSEP, A1 or A2. When a violated GFSEC is found, the BC method also adds the
corresponding DFJ. In our experiments we set a time limit of one hour both for the BC
and for CCJ-DH. We run the BC experiments with and without the CCJ-DH cutoff values
to measure the performance of both methods in providing upper bounds.

We introduce a diverse set of instances to better study and evaluate the performance
of the BC. We present the test bed generation procedure for the ARP in Section 2.6.1. We
analyze the performance of CCJ-DH on the new instances in Section 2.6.2. We report the
sensitivity analysis of the effect of valid inequalities on the LP relaxation of the M arp
model, and the performance of the BC in Section 2.6.3. The performance analysis of the
BC with different separation procedures is presented in Section 2.6.4. In Appendix B, we
report the performance of the BC on the existing large instances of Chitsaz et al. (2019)

and compare our results with the two lower bounding methods presented in that paper.

2.6.1 ARP Tests Instances

Two out of three ARP data sets introduced in Chitsaz et al. (2019) include instances with
50 and 100 suppliers, all with 6 periods. Therefore, they are too large to be solved by our
exact algorithm. Moreover, those instances only consider the case where every supplier
provides a unique component. To cover the general case of the ARP presented in this
paper, and to test the BC on different sizes of instances, we generated three new classes
of instances. The first class includes instances where each supplier provides a unique

component type. The second class represents the case where each supplier provides a
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subset of components. The third class corresponds to the situation in which one single
component is offered by all suppliers. Each class includes data sets with five different
planning horizons ranging from 4 to 12 periods with a step of two. For each planning
horizon we consider eight different numbers of suppliers, increasing by steps of 3. For
each combination of the number of planning periods and suppliers we randomly gener-
ated five instances. Overall, 600 instances are generated for three classes, five planning
horizons, eight numbers of suppliers, and five instances per category. As a result, the
test bed includes small to large size instances. The rest of the specifications for the ARP
instances are developed similar to the practices of Archetti et al. (2011) for the PRP. Table

2.2 presents an overview of the ARP instance parameters.

Table 2.2: ARP test instances®

Class 1 2 3
Number of instances 200 200 200
Number of periods: | dto12
Number of suppliers: n (for | = 4) 18t0 39
Number of suppliers: n (for | = 6) 15to 36
Number of suppliers: n (for ! = 8) 12t0 33
Number of suppliers: n (for / = 10) 9 to 30
Number of suppliers: 1 (for | = 12) 6to27
Number of components: k n 0.4n 1
Number of vehicles: m ULt
Vehicle capacity: Q 2max; L;

Demand (final product): d; = d
Production capacity: C
Component supply: sy = $ix

Constant and UDRI' (50, 100]
UDRIM(d, 34]
Constant and UDRI™ (5, 0.54]

Component size: by UDRIM[1,2]
Plant inventary capacity for final product: Lo UDRTI(2d, 34
Plant inventory capacity for components: L Lien Li
Supplier inventory capacity: L; Lkek, bi(Tiko + 28it)
Plant initial inventory of final product: Iy UDRI [0, 1.54]
Plant initial inventory of components: Ijzo UDRIH[I b 1 I t 4+ 0.5d]
Supplier initial inventory: [y UDRIH (0, d]
Unit production cost: & hoo/5
Production setup cost: f 150u
Plant unit final product holding cost: hgo ~ UDRTH Ve 1ok, 1.5 e k Hox]
Plant unit component holding cost: fig max; li
Supplier unit holding cost for each component: hj UDRIH (1, 5]
Supplier and plant x,y coordinates UDRI[0, 1000]
Travel distance satt

Unit transportation cost

1

* Adapted from Chitsaz et al, (2019)
TIp = max{0,1(d ~ Lien, sit) — lo}, + Unlimited, ' Uniformly Distributed Random Integer,
 Similar to Archetti et al. (2011)
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Table 2.3: Summary of the CCJ-DH results

Data Set # #BUB CPU GapUB'(%) Gap LBt (%)
Class 1
Not Optimal 51 43 2489 -59.04 274
Optimal 149 1 119.6 1.19 1.19
Total 200 44 152.6 -14.17 1.59
Class 2
Not Optimal 81 66  2963.1 -62.24 3.62
Optimal 119 4 1786.3 1.22 1.22
Total 200 70 22629 -24.48 22
Class 3
Not Optimal 29 13 90.8 -15.54 2.86
Optimal 171 5 441 1.55 1.55
Total 200 18 50.9 -0.93 1.74

" Gap UB = (UBccy-pH - UBge) / UBge
¥ Gap LB = (UBccj-_pn - LBgc) / LBge

2.6.2 Performance of the Heuristic

Table 2.3 shows the performance of the adapted CCJ-DH on different classes of the new
ARP instances compared to the BC when using the best-bound node selection strategy
and algorithm A1 for separating fractional subtours, and with the imposed time limit of
one hour. The second column in this table presents the number of instances (#). The rest
of the columns show the number of best upper bounds (#BUB) found by CCJ-DH, the
average solution time (CPU), and the gaps of the heuristic solution with respect to the
upper bound (Gap UB) and lower bound (Gap LB) obtained by the BC, respectively. The
results highlight the fact that the instances of the second class need significantly more
computing time. In these instances, each supplier provides multiple components. There
are consequently more shipment variables (g;x;), which results in a larger lot-sizing part
compared to the instances in the two other classes. For the instances that are not solved to
optimality by BC (larger instances), the matheuristic finds 122 best upper bounds (BUB)
out of 161 instances (all classes). For these instances, CCJ-DH is able to improve the
UBs found by the BC by 59%, 62.2% and 15.5% on average for the instances in the first,
second and third class, respectively. For the instances solved to optimality, the heuristic
provides high quality solutions within 1.2%, 1.2% and 1.6% of the optimal solution for
the first, second and third class, respectively.
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2.6.3 Analysis of Valid Inequalities

To evaluate the effect of applying valid inequalities, we solve the LP relaxation of the
M srp model where the SECs (2.12) are relaxed. We present in Table 2.4 the average LI’
solution times and values when no valid inequality is added to the model (None), and
compare it with the cases where known valid inequalities (Known) from the literature
(ie., (2.18), (2.26)-(2.27)), or all valid inequalities (All) (i.e., (2.18)-(2.27)) are added to the
model. Each row in this table shows the results for a period-supplier size combination.
For the ease of comparison, the LP solution values are presented as a percentage of the
BUB (LP%) for each instance. The average LP solution values without the valid inequali-
ties vary in the range 63% to 65.9% for different classes and this range increases to 70.8%
to 76.9% when the known inequalities are added and further to 88.7% to 90.2% with all
valid inequalities added to the model. This is a significant improvement which is ob-
tained at the expense of longer LP solution times. The average CPU times grow by a
factor of 34, 22 and 10 for the instances in the first, second and third class, respectively
when comparing the formulation without the valid inequalities to the formulation with
all inequalities. We present details on the average LP solution values with and without

considering each valid inequality type in the model in Appendix B.

We also compare the effect of the valid inequalities on the BC performance. In Ta-
ble 2.5, we report a summary of the results on the performance of the BC when the de-
fault or the best-bound node selection strategies are employed, and either no inequality
(None), only known inequalities (Known) or all inequalities (All) are applied. In all of
these experiments we used algorithm A1 to separate SECs (2.12) and (2.27). This table
presents the number of optimal solutions (#Opt), CPU time, the average lower bound
values as a percentage of the upper bound obtained by the BC without applying the
CCJ-DH cutoffs (%UB) and as a percentage of the BUB (%BUB) for each BC scenario and
each class. To calculate the BUB for each BC scenario, we considered the upper bounds

obtained by either that BC scenario or CCJ-DH.

The results indicate that the BC returns better results, in terms of the number of op-
timal solutions, average solution time, and optimality gap, when all inequalities are ap-

plied and the best-bound node selection strategy is selected. The BC returns better %UB
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with the default node selection strategy on all classes of instances. This highlights the
fact that without applying CCJ-DH cutoffs, the default node selection strategy performs
better than the best-bound. By comparing %UB and %BUB for each node selection strat-
egy and each class, one observes the effect of applying CCJ-DH cutoffs within the BC.
The best-bound node selection strategy results in better average lower bounds and con-
sequently better results for %BUB.

On the instances of the first class, applying all inequalities and the best-bound node
selection strategy enables the BC to obtain 149 (out of 200) optimal solutions in an av-
erage of 1422 seconds compared to 52 optimal solutions when known inequalities are
employed, and only 8 optimal solutions when no valid inequality is considered. On the
harder instances of the second class, the BC finds 119 optimal solutions within the time
limit when all inequalities are added to the model while it is able to find 64 optimal so-
lutions with known inequalities and only 5 optimal solutions without the valid inequali-
ties. The same difference in the performance of the BC exists on the instances of the third
class where 171 optimal solutions are found with all valid inequalities compared to 107
optimal solutions with known inequalities, and 14 optimal solutions without the valid
inequalities. Overall, compared to the cases with no or only known inequalities, using
all inequalities in BC with both node selection strategies notably increases the number of
optimal solutions and significantly improves the %UB and %BUB for all classes. These
results show that our new valid inequalities make a substantial difference in the success
of the BC.

The detailed results for the same scenarios of the BC are presented in Tables 2.6 and 2.7.
Similarly, in all of these experiments we used algorithm A1 to separate SECs (2.12) and
(2.27). These tables present CPU, %UB, and %BUB for every period-supplier combination
group of each instance class. The number of instances (out of five) that are not solved to

optimality is specified in parentheses within the %BUB figures.

2.6.4 Analysis of Different Separation Procedures

In Table 2.8, we present the performance of the BC with all valid inequalities added when
the CVRPSEP package, Al and A2 are applied to separate SECs (2.12) and (2.27). We used

70



Table 2.5: Summary of the results of the BC with the default and the best-bound node
selection strategies, and with and without the valid inequalities on different instance
classes*

Node Valid Class 1 Class 2 Class 3
Selection Ineq. Size #Opt CPU %UB %BUB Size #Opt CPU %UB %BUB Size #Opt CPU %UB %BUB

Default None 200 11 3157 696 967 200 5 3234 654 9.2 200 22 3045 796 959
Known 200 51 2576 863 968 200 44 2729 839 952 200 107 1912 961 975
All 200 103 1980 91.2 9 200 69 2420 85 979 200 155 1205 983 995

Best-Bound None 200 8 3207 565 973 200 5 3260 369 963 200 14 3098 645 96.6
Known 200 52 2578 573 973 200 64 2418 618 963 200 107 1872 898 981
All 200 149 1422 847 994 200 119 1976 744 987 200 171 938 974 998

* Separation procedure used for all BC scenarios: algorithm Al

Size: Number of instances, None: With no inequality, Known: With known inequalities (2.18), (2.26) and (2.27),

All: With all inequalities (2.18)-(2.27)

the best-bound node selection strategy for all these experiments. In this table we report
CPU, %BUB and the number of instances that are not solved to optimality (inside the
parentheses) for each combination of the period-supplier setting. One observes that both
of our separation procedures outperform the CVRPSEP package by enabling the BC to
find more optimal solutions within the time limit. The results in this table suggest that the
BC is capable of closing the optimality gap for many more period-supplier combinations
in each class with a better solution time when it uses A1 and A2 compared to when it
employs the CVRPSEP package. Furthermore, the BC with A2 is performing better on
larger instances compared to the case with A1. This is why we use A2 in our BC when we
apply it to solve the large ARP instances of Chitsaz et al. (2019) presented in Appendix B.
The BC is capable of solving instances with up to 4 periods and 33 nodes, 6 periods and
30 nodes, 8 periods and 27 nodes, 10 periods and 24 nodes, and 12 periods and 21 nodes
within the time limit.

Moreover, in Table 2.9 we present more details on the BC performance. For each SEC
separation procedure and for each class, this table shows #Opt, the average number of
explored nodes in the search tree (#Node), the average number of added GFSECs (GFS),
the average amount of violation for the added GFSECs (AVC®), the average number of
added DFJs (DFJ), the average amount of violation for the added DFJs (AVP#/), and in-
formation about the number of cuts that are added automatically by CPLEX: cover cuts
(Cover), flow cover cuts (Flow), clique cuts (Clique), mixed integer rounding cuts (MIR),
flow path cuts (Path), implied bound cuts (ImplBd), zero-half cuts (ZeroHalf), and lift-
and-project cuts (LiftProj). The results indicate that for each class the BC has to explore

71



Table 2.6: Detailed results of the BC with the best-bound node selection strategy, and with and without the valid inequalities*

Class 1 Class 2 Class 3

Set CcPU %UB %BUB CPU %UB %BUB CcPU %UB %BUB

I/n  None Known All None Known Al None Known All None Known All None Known All None Known All None Known All None Known All None Known All
4/18 2778 1782 265 984 997 100 991 9971 100 32968 22149 6229 93 991 100 9815 991 106 14832 49 278 9 100 100 992 100 100
4/21 3296 1558 317 777 984 100 98250 9932 100 32959 15825 8925 958 998 100 9765  99.8% 106 22379 699 1517 978 100 100 9823 100 100
4/24 3294 3299 750 913 708 100 9789 9767 100 32922 30261 11564 775 9.9 100 9749 979 100 32974 1261 302 913 100 100 987 100 100
4/27 3295 2943 741 887 937 100 9779 9853 100 3297 26874 5872 737 966 100 9745 972 100 32928 464 727 774 100 100 9829 100 100
4/30 3295 3295 812 76 574 100 9789 9765 100 32953 32981 14941 779 798 100 97150 9579 100 32915 21534 2941 979 984 100 98205 9942 100
4/33 3295 3295 1374 806 468 998 9775 9685 9980 32942 32979 21789 436 601 999 977 9459 999U 32948 1829 5097 83 964 100 9729 99212 100
4/3% 3292 329 2663 395 323 756 955 975 9884 32939 32962 23431 254 413 797 9599 9449  991¥ 32932 31836 12293 598 794 9.1 954  967Y 9951
4/39 3295 N2 2716 41 19 481 95390 9545 975 32948 32944 32937 13 332 65 94200 9153 975 32984 27939 14074 91 886 993 9385 954 9931
6/15 3296 996 450 979 999 100 9940 999V 100 32966 9636 4241 899 999 100 9759 999" W0 29554 10025 2859 992 998 100 992¢% 998 100
6/16 3295 2675 562 918 982 100 98 989 100 32964 21349 8183 583 977 100 9729 9813 100 32936 4673 1009 95 100 100 9850 100 100
6/21 3295 3290 830 656 442 100 9675 97 100 32956 32977 15147 60 952 100 9685 9640 we 3295 13517 218 917 998 100 979 99.8Y 100
&/24 3297 3297 1050 417 57 100 976 9675 100 32971 32963 23203 136 358 939 9679 9449 995 32934 17246 3116 812 w5 100 9% 9757 100
6/27 329 3295 1092 629 369 100 9785 9579 100 32954 32953 2929 24 571 998 9665 9528 998" 32962 15305 4202 741 989 100 9589 997V 100
6/30 3293 3296 1639 409 397 95 9729 9643 995 32965 32964 2862 26 53 711 9559 9245 9774 3297 20988 6064 376 984 100 954 9882 100
6/33 3296 3295 3297 454 34 463 9619 9525 981 32959 32959 32939 119 57 39 9435 9089 9719 3947 32973 19487 344 914 998 954050 95700 9982
6/3 3297 3294 3297 401 248 345 94209 932050 96715 32926 32955 32968 297 292 242 937 9249 9683 32977 32951 26657 302 861 976 9469 9355 986l
8/12 3295 117 78 795 100 100 9937 100 100 32972 4401 570 786 100 100 9837 100 100 26837 6928 6637 996 100 100 99.6Y 100 100
8/15 3296 978 252 765 999 100 9885 999 100 32938 893 10741 508 100 100 9750 100 100 32947 1§75 2721 978 100 100 981®) 100 100
8/18 3297 2712 962 666 88 100 98.1% 9844 100 32941 2886 14462 O 778 100 9725 9834 100 32924 17359 2921 778 94 00 9755 9972 100
8/21 3295 3293 1037 511 333 100 9745 972 100 32942 28058 15911 149 938 100 975 98 w3977 057 652 806 971 100 9729 986 100
8/24 3295 3295 1141 568 276 100 9749  968% 190 32924 32937 31328 118 533 786 9657 9547 983% 3938 25935 10534 471 757 100 9579 9738 100
8/27 3293 329 1807 30 257 100 9685 957G 100 32992 3297 32971 347 422 462 957 9489  9r4S 3938 24575 1193 508 778 99 963 9827 999
8/30 3297 3295 2850 324 381 577 9585 944 9874 32973 32985 3295 172 128 206 9519 9327 9647 32963 32215 18286 111 10 639 9465 964 9862
8/33 3297 3293 329 147 128 131 9348 9385 964 32935 329 32974 121 12 196 9318 9225 595 3954 32926 28M9 279 744 975 9410 96165 9934
10/9 2738 208 237 997 100 100 99.7'% 100 100 32966 935 1207 956 100 100 975 100 W0 %18 6719 8 998 998 100 9981 998V 100
10/12 3293 724 437 395 981 100 9915 996V 100 32966 1625 2745 729 100 100 974 100 106 32944 6797 2752 78% 999 100 9819 9990 100
10/15 3293 2831 511 652 95 100 97750 99.3% 100 32967 5134 15224 173 00 100 9779 100 e 3284 7779 677 978 w00 100 9799 to0th 100
10/18 3297 3296 745 598 389 100 9735  975% 100 32925 31724 19146 84 977 100 %66 9% 100 32949 25483 6155 584 98 100 9627 9987 100
10/21 3297 329 1104 59 528 100 97 9715 100 32952 28053 29444 O 785 795 97% 7Y w86 32966 32945 8171 502 947 100 944 9619 100
10/24 3296 3297 2477 305 98 702 9665 9567 9890 32955 32975 32935 O 82 278 9545  929%  o7g4T 3979 26923 11646 153 937 100 939% 947 100
10/27 3291 3294 3073 287 281 375 9473 951 97280 3296 32926 32923 O 0 0 9335 9189 1% 32938 32025 24037 28 #4395 9505 9635 9952
10/30 3298 3296 3294 74 68 135 941% 9435 9729 32962 32978 32937 54 54 239 93% 9513% 9537 3294 32943 27554 O 357 829 9373 045 9gg3
12/6 1241 6 10 99 100 100 999" 100 100 18897 88 175 100 100 100 100 100 W0 15544 48 148 996 100 100 972 100 100
12/9 2906 354 281 598 100 100 99% 106 100 32921 1552 3175 576 100 100 9742 100 W0 32976 1289 146 991 100 100 99239 100 100
12/12 3293 140 606 364 100 100 9899 100 100 32924 2142 5622 512 100 100 976 100 100 32934 3034 3132 91 100 100 9799 100 100
12/15 3295 2727 686 60 77 100 982 9944 100 32922 13819 19027 O 80 80 9729 9970 987V 32929 26638 8608 769 98 100 9635  987% 100
12/18 3295 3298 969 322 41 100 9795 976 100 32936 26427 25814 O 40 60 9665 98 989 32966 20678 10617 775 986 100 961 996Y 100
12/21 3297 3296 2686 412 376 100 979 97% 1000V 32965 32981 32961 92 20 265 9629 9437 92T 32948 30243 18371 25 95 100 944 9664 1001V
12/24 3295 329 3206 34 208 668 9655 955 988 32932 32969 32965 152 0 255 944"  927'%  955% %63 32937 23753 215 252 797 9367 9360 989
12/27 3297 394 3295 0 88 256 9417 944 97 32963 32908 32936 76 76 77 93 s18%  ug¥ 395 U3 32972 138 568 775 931% 9389 9835
Total 3207 2578 1422 565 573 847 973019 97304 99450 3360 24177 19756 369 618 744 963U% 963 g3yt 30977 18718 9384 645 898 974 96.61%) 9810 9982

* Separation procedure used for all BC scenarios: algorithm A1
1/n- Number of periods /number of suppliers, None: With no inequality, Known: With known inequalities (2.18), (2.26) and (2.27), All: With all tnequalities 2184227}
The numbers in: parentheses present the number of instances ont of five that are not solved to optimality within the time fimit
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Table 2.8: Performance of the BC with different separation procedures*
Ciass 1 Class 2 Class 3

Set CVRPSEP Al A2 CVRPSEP Al A2 CVRPSEP Al A2

I/n CPU %BUB CPU %BUB CPU %BUB CPU %BUB CPU %BUB CPU %BUB C(PU %BUB CPU %BUB CPU %BUB
4/18 1446 999U 265 100 444 100 1304 9980 623 100 830 99501 80 100 28 100 29 100
4/21 959  99.622 317 100 123 100 832 9981 893 100 990 100V 236 100 152 100 84 100
4/24 1981 99.72 750 100 942 100 2089 997 1156 100 1277 1001 48 100 30 100 29 100
4/27 1984 999 741 100 190 100 1472 100U 587 100 617 100 137 100 73 100 2 100
4/30 2500 9954 812 100 311 100 1838 994 1494 100 1187 1000 530 1000 294 100 247 100
4/33 2876 994% 1374 9981 772 995 2726 9882 2179 999V 2054 9972 399 100 510 100 94 100
4/36 3298 9759 2663 9889w 2715 99.10 2901 9824 2343 9913 1821 99.3@ 1059 997V 1229 9950 743 9961
4/39 3298 96200 2716 9754 2230 987 3294 9690 3294 97550 3298 98805 1669 99 1407 99300 983 9951
6/15 755 9990 450 100 724 10010 1557 9982 424 100 252 100 697 100V 286 100 487 100
6/18 1976 99.62 562 100 483 100 1363 9990 818 100 946 9990 29 100 101 100 105 100
6/21 3295 9810 830 100 974 100 2673 9929 1515 100 1539 100 2034 9989 222 100 257 100
6/24 3106 997U 1050 100 1445 9990 3078 992@ 2320 9991 2519 9986 2855 9949 312 100 273 100
6/27 2848 9924 1092 100 805 100 2765 986037 2293 998U 1530 99.2(0 1847 9990 420 100 124 100
6/30 2510 987 1639 995 1517 9922 2854 9634 2862 9774 2740 977 2120 9923 606 100 241 100
6/33 3297 979 3297 9819 3298 9845 3298 9585 3294 9719 3296 9725 3297 999 1949 9980 1148 9991
6/36 3295 958 3297 96705 3293 97305 3297 96405 3297 96850 3297 9729 2639 982 2666 98.64 2032 99.6
8/12 176 100 78 100 80 100 882 9990 570 100 327 100 777 1000V 664 100 973 100'V
8/15 520 100 252 100 175 100 1640 997 1074 100 1100 99.9¢8 1073 1000 272 100 229 100
8/18 2029 9953 962 100 1076 9990 2188 9979 1446 100 1358 997V 1135 100 292 100 218 100
8/21 2977 991 1037  10C 845 100 2366 994 1591 100 1785 100V 2475 993 652 100 709 100
8/24 2305 9820 1141 100 793 100 3295 97400 3138 9834 2994 984% 2856 999 1053 100 1145 99.9V
8/27 3296 9845 1807 100 1767 997V 3297 95705 3297 9749 3295 9749 1542 993U 1196 9991 1045 99901
8/30 3297 985" 2850 9874 2843 994 3296 9551 3296 9645 3297 9655 2725 9699 1829 986D 1863 99.3%
8/33 3297 9545 3296 9649 3298 9729 3296 959 3297 95915 3298 9625 3291 9739 2805 99.3¢) 2288 9940
10/9 415 100 237 100 471 100 489 100 121 100 516 100 209 100 86 100 120 100
10/12 697 100 437 100 716 100 795 999 275 100 273 100 32 100 275 100 222 100
10/15 1503 99.8U 511 100 290 100 2641 993% 1522 100 1374 100D 746 999V 468 100 726 100V
10/18 2803 98.7¢4 745 100 602 1060 2520 9979 1915 100 2468 99.99 2858 1002 615 100 652 100
10/21 2728 978 1104 100 978 100 2914 9814 2944 9864 2895 986Y 2221 985 817 100 568 100
10/24 3296 9755 2477 989 2130 9922 3292 9710 3294 9745 3294 9869 1802 99700 1165 100 594 100
10/27 3297 96 3073 9729 2775 97.7% 3294 9369 3292 951 3298 953 3250 99.1 2404 9952 2391 99.6%
10/30 3297 96100 3294 97251 3298 9745 3298 9435 3294 9535 3298 95105 3294 9695 2755 98.8G) 1866 99.3%
12/6 24 100 10 100 13 100 18 100 17 100 2 100 14 100 15 100 12 100
12/9 862 100U 281 100 399 100 777 99.7¢0 318 100 246 100 804 100 145 100 196 100
12/12 925 999U 606 100 312 100 891 106 562 160 538 100 492 100 313 100 378 100
12/15 1510 99740 686 100 420 100 2607 986 1903 9970 2542 9950 2992 9934 861 100 822 100
12/18 2610 99.7% 969 100 824 100 2841 9764 2581 9892 2613 984 2754 9824 1062 100 844 100
12/21 3069 994 2686 10000 2142 999V 3292 964050 3296 9725 3298 979 3297 9729 1837 100 1910 100
12/24 3297 974 3206 988 3063 9893 3294 93605 3296 9557 3295 95205 3296 9535 2375 9890 2440 9843
12/27 3295 95785 3295 9750 3298  97(5 3300 9230 3294 9485 3298 947 3291 9619 3297 9830 3119 984
Total 2264 986''22 1427 9945V 1322 99552 2347 9813 1976 987'5L 1973 987F 1688 99.1%% 938 9982 806 99.8(2%

* Best-bound node selection strategy is used for all these experiments
I/n: Number of periods/number of suppliers,
The numbers in parentheses present the rumber of instanices that are not solved te optimality within the Hime it
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Table 2.9: Summary of added SECs and CPLEX cuts for different classes of instances
when different separation procedures are applied*

Sep Class Size #Opt #Node GFS AVSH DF]  AVPH Cover Flow Clique MIR Path ImplBd ZeroHalf LiftProj

CVRPSEP 1 20 78 7016 5613 04 34323 062 1722 2542 192 7459 261 699 295.9 17.8
2 20 77 2898 2091 04 16073 075 1561 6285 14 20105 89 3774 151.7 244

3 200 117 4452 5623 042 47537 076 1204 2322 33 6611 22 68.4 137.7 22

Total 600 272 4768 4422 041 32526 071 1495 3738 79 11464 395 1736 1944 215

Al 1 200 149 3940 9812 029 4528 04 9.6 1331 161 349.8 8 4.1 93.2 16.2
2 200 119 2295 10249 024 39587 037 96 3599 13 10348 393 2537 68.3 175

3 20 171 1887 7489 022 38391 042 565 1141 33 359 0.8 397 454 134

Total 600 439 2707 9183 025 41086 04 843 2024 69 581.2 16 1125 69 15.7

A2 1 200 148 5013 4321 021 1473 044 1278 1876 181 5103 132 582 168 147
2 200 105 1962 3493 018 11485 043 110 4191 14 13202 452 3044 79.6 17.6

3 200 174 2047 3059 019 14818 048 782 1735 33 535.9 1 50.1 70.5 135

Total 600 427 3007 3624 02 13677 045 1053 260.1 7.6 7888 198 1375 106 153

* Best-bound node selection strategy is used for all these experiments
Sep: Separation procedure

many more nodes and finds fewer optimal solutions when it employs the CVRPSEP pack-
age compared to when it uses one of the proposed separation procedures. Another obser-
vation is that the average violation amount of the SECs (both GFSECs and DFJs) found by
the CVRPSEP package is higher than the ones found by the other separation procedures.
The reason is that CVRPSEP is not able to find violated SECs in the initial stages of the
search tree because the node visit values are small in a fractional solution. In other words,
because the CVRPSEP package is not effective on the initial fractional solutions, the BC
explores more different node visit patterns within the search tree. The same is also true
for other types of cuts that are generated by CPLEX. Overall, the performance of the BC
when it uses one of the proposed separation algorithms, A1 or A2, is better than when it
employs CVRPSEP.

The results in Tables 2.5-2.9 indicate that instances in the second class are generally
harder and it takes longer for the BC method to solve them (higher average CPUs and
lower %UB and %BUB). Within the specified time limit, the BC obtains fewer optimal
solutions for the instances in this class compared to when it is applied to the instances
in the first and the third class. Instances in the third class are relatively easier to solve
compared to the other ones. The BC method obtains the largest number of optimal solu-
tions and lowest average gaps for the instances in this class within the smallest average

solution time.
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2.7 Summary

We generalized the assumptions of the assembly routing problem (ARP) to the case where
each supplier may provide a subset of the components necessary for production. We pre-
sented a mixed integer linear programming model for this problem. We also developed
many randomly generated test instances for this problem, for which we obtained good
quality upper bounds by adapting the matheuristic of Chitsaz et al. (2019). To solve
the problem to optimality, we proposed several types of valid inequalities and analyzed
their performance with respect to the LP solution value of the model. Based on the valid
inequalities, we proposed a branch-and-cut algorithm and performed extensive exper-
iments to analyze different aspects of the algorithm. In addition, we have developed
two algorithms to separate multi-period fractional capacity cut constraints and compared
their efficiency with the state-of-the-art separation procedures of Lysgaard et al. (2004) for

the single-period VRPs.

Our extensive computational experiments indicate that applying our newly devel-
oped valid inequalities significantly improves the performance of the branch-and-cut al-
gorithm. Furthermore, the performance of the branch-and-cut algorithm is substantially
enhanced when it employs any of our new separation procedures compared to the case

when it uses the separation procedures offered in Lysgaard et al. (2004).

An interesting avenue for future research on the ARP is to compare different refor-
mulations. The ARP is an integrated problem that considers lot-sizing (with an assembly
structure) and capacitated vehicle routing problems at the same time. Beside the stan-
dard formulation for the LSP, it is possible to consider echelon stock, facility location,
and shortest path, among others (Pochet and Wolsey, 2006). Available formulations for
the VRP (Toth and Vigo, 2014) are standard, single-/two-/multi-commodity formula-
tions as well as path-based formulations. These result in a large number of promising

possibilities to present reformulations for the ARP.
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Chapter 3

Multi-Product Production Routing
Under Decoupled Planning Periods

Abstract

We consider an integrated optimization problem including the production, inventory,
and outbound transportation decisions where a central plant fulfills the demand for sev-
eral final products at its customers. More specifically, we investigate cases where the
production planning and routing period lengths are not the same, e.g., days vs. shifts.
Thus, we consider the fact that two different discretizations of the planning horizon exist
in the decision-making process. This practical feature is a major source of complication
for supply chain planners. With respect to the production planning aspect, we consider
both big-bucket and small-bucket lot-sizing models. We mathematically formulate the
problem under different practical scenarios for the production and route planning pe-
riod lengths. An exact solution method, as well as heuristic algorithms, are proposed to
efficiently solve large problem instances with this feature. To assess the effectiveness of
our approach, we generate many test instances and perform an extensive computational

study.



3.1 Introduction

A major task in the supply chain planning process is the coordination of the produc-
tion plan with the distribution and delivery plans. This entails integrating production
scheduling with other important functions of the supply chain such as inventory man-
agement, shipment planning, and vehicle routing. Many studies in the literature, includ-
ing Blumenfeld et al. (1987); Chandra and Fisher (1994); Chen and Vairaktarakis (2005)
and Archetti and Speranza (2016), among others, report a significant cost saving poten-
tial by coordinating these activities. The problem that arises from the integration of the
production and route planning processes is referred to in the literature as the production

routing problem (PRP) (Adulyasak et al., 2015).

We investigate in this paper a generalized PRP which takes into account the fact that
the production planning and the route planning period lengths are not necessarily iden-
tical. The overall planning horizon may, as a consequence, contain a different number of
production and route planning periods. For the lot-sizing part of the formulation, we will
consider both big-bucket and small-bucket problems. Furthermore, we consider several
different products. A single plant coordinates the production scheduling for these mul-
tiple products as well as the routing decisions and shipment quantities to the customers.
The customers have a time-varying and predetermined demand for each product. The
aim is to minimize the total costs of production, inventories and distribution routing sub-
ject to the limitations of the problem. The plant has a limited capacity for the production.
No backlogging or stockouts are allowed at the plant or at the customers. Both the plant
and the customers can carry inventory from one period to the next. The plant, as well
as the customers, each have a global storage capacity. The plant manages a limited fleet
of capacitated vehicles to handle the shipment of products to the customers and split

deliveries are not allowed.

The mathematical models used to solve real-life cases can be different due to the prac-
tical conditions which vary from one company to another. One such practical issue, in
particular, is the difference in the planning period lengths for the production planning and
the distribution routing. In such cases, the capacity of the production and routing may

be expressed in a different time dimension, which creates the need to have a decoupled
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discretization of the time horizon. In practice, in some cases, multiple periods of distribu-
tion and transportation exist within one production planning period, e.g., the production
planning period is one week whereas the routing is done on a daily basis. Conversely,
in some other cases, the distribution planning is done using daily truck dispatches, but
the production planning is performed on a shift-basis, where one day contains multiple
shifts. Consequently, an important aspect of these multi-period problems is to deal with

the different period lengths while properly representing the available capacity.

The current literature on the PRP and its variants only considers identical production
planning and routing period lengths. This is in many cases an abstraction of the prob-
lem in the real world. We investigate the problem of coordinating the production and
the routing decisions in a decoupled planning horizon. To the best of our knowledge,
this is the first paper looking at this problem in this generality. This is the first contri-
bution of this paper. Next, we present mathematical programming formulations for the
problem. Third, we present a unified reformulation for which we develop cutting planes
to improve the linear programming relaxation of the original formulation. Fourth, we
show how to extend and enhance a state-of-the-art heuristic for the single-product PRP
(Chitsaz et al., 2019) to the multi-product PRP (MP-PRP). Based on these advancements,
we present an exact solution algorithm to solve MP-PRP. Finally, we show the significant

impact of our cutting planes through extensive computational experiments.

The remainder of the paper is organized as follows. We present a review of the re-
lated literature in Section 3.2 in order to position our study with respect to the existing
literature. Then, we formally define the problem and express it mathematically in Sec-
tion 3.3. We present a reformulation for the problem in Section 3.4, which we use to
prove new valid inequalities in Section 3.5. In Section 3.6, we describe the adaptation
of a state-of-the-art heuristic to obtain good quality upper bounds for the problem, and
further, we show how to enhance the method. The generation of the test instances and
computational experiments are presented in Section 3.7. Finally, Section 3.8 concludes

the paper.
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3.2 Review of the Related Literature

Adulyasak et al. (2015) provide a comprehensive survey on the PRP including a review of
different formulation schemes, various solution techniques, and algorithmic and compu-
tational issues. The literature reveals that the PRP has received a rapidly growing interest
in the operations research and management community. The majority of the studies focus
on the development of heuristic algorithms for this complex problem. Absi et al. (2015);
Solyah and Siiral (2017) and Chitsaz et al. (2019) develop multi-phase mixed integer lin-
ear programming (MILP)-based heuristics for the single-product PRP. Qiu et al. (2018a)
study another single-product PRP with pickups and deliveries in the context of reverse

logistics and remanufacturing.

We focus in this literature review on the related issues of the presence of multiple
products and the length of the planning period. In the literature on the lot-sizing prob-
lem (LSP) (Pochet and Wolsey, 2006), several different assumptions are made with respect
to the length of the planning periods for multi-product problems. Typically, a distinction
is made between small- and big-bucket models. In the basic big-bucket model, it is as-
sumed that several types of products can be made on a shared resource within one time
period, and no sequencing of products is done within a time period. The production of a
product in a given period requires a specific setup. All products made in a specific time
period can be used to satisfy demand at the end of the same time period. Big-bucket
models typically have time periods in the order of a day to a week or even a month. The
small-bucket models, on the other hand, assume that at most one type of product can
be produced within one time period. A start-up occurs when a machine is set up for a
new product which was not produced in the previous period. Typically, the small-bucket
models include short production periods of a shift or a day. Within the small-bucket mod-
els, a further distinction is made between the Discrete Lot-sizing and Scheduling Problem
and the Continuous Setup Lot-sizing Problem. In the former, one imposes that if there
is production in a period, it must be at full capacity, whereas in the latter the production

quantity can take any value up to the capacity limit.

In the following, we give examples from the literature on the application of big-

bucket models in production and distribution planning. Glover et al. (1979) develop a
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computer-based integrated model for the production, distribution, and inventory plan-
ning at Agrico Chemical Company with a 12-month planning horizon and monthly time
periods. Martin et al. (1993) optimize production, inventory, and distribution in a multi-
plant system for the Flat Glass Products group of Libbey-Owens-Ford over 12 one-month
planning periods. De Matta and Guignard (1994b) describe a big-bucket model with a
planning horizon consisting of 52 one-week periods. They study the effects of produc-
tion loss during setup in dynamic production scheduling for process industries produc-
ing several products on non-identical flexible processors. Hahn et al. (2000) present the
coordinated production planning and scheduling activities among supply chain mem-
bers of the Hyundai Motor Company at Ulsan, Korea. The company prepares a master
production schedule with monthly time periods on a six-month rolling horizon basis.
Next, they develop daily production and distribution schedules for each month to make
the deliveries possible in one week and not more than 15 days as promised. Brown et al.
(2001) study the cost minimization of integrated production, inventory, and distribution
plans for the cereal and convenience foods business of Kellogg with weekly periods in
a 30-week planning horizon. Cetinkaya et al. (2009) develop a cost-minimization model
for integrated production and shipment planning for the Frito-Lay North American plant
in Irving, Texas in a finite planning horizon of 12 weeks each representing one period.
Neves-Moreira et al. (2019) propose an optimization framework to minimize the total
production, inventory and transportation costs in a European meat processing center that
produces and distributes multiple meat products among its store chain within working
shifts of 8 hours and a break of 1 hour between shifts.

Similarly, some studies from the literature employed small-bucket planning periods
for the production planning and scheduling. De Matta and Guignard (1994a) consider the
manufacturing operations of a tile company with several production lines. The planning
horizon spans over six months and up to the entire year with planning periods of one
week for the bottleneck stage. Jans and Degraeve (2004) study the production planning
problem at the Solideal group which is one of the major manufacturers and distributors
of industrial tires worldwide. The authors report that the production start-ups only take
place at the beginning of the morning shifts due to the limited availability of the quali-

fied personnel and adequate supervision throughout the day. The planning period used
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is one day within a planning horizon of up to 30 days. Silva and Magalhaes (2006) study
a production planning problem to minimize the number of tool changeovers while meet-
ing the required due dates at an acrylic fibers production firm in the textile industry. In
this study, the planning horizon is divided into four or five weeks with days as plan-
ning periods. Marinelli et al. (2007) consider a rolling horizon of one week consisting
of five working days (periods) followed by two days off for a capacitated lot-sizing and
scheduling problem with parallel machines and shared buffers in a packaging company
producing yogurt.

Almost all of the literature on the MP-PRP focuses on the big-bucket LSP as the un-
derlying production model. Chandra and Fisher (1994) were the first to study the effect
of the coordination between the production planning and the vehicle routing to minimize
the total costs of production, inventories, and transportation. Fumero and Vercellis (1999)
study an MP-PRP variant in which split delivery to the customers is allowed. They pro-
pose a Lagrangian relaxation approach to solve the problem. Armentano et al. (2011) pro-
pose a tabu search with path relinking approach for the problem. Belo-Filho et al. (2015)
investigate the coordinated production and distribution of perishable goods. They pro-
pose an adaptive large neighborhood search (ALNS) algorithm for the problem. Brahimi
and Aouam (2016) study the problem with the possibility of backordering. They develop
a solution procedure consisting of a relax-and-fix heuristic and a local search algorithm.
Motivated by the industrial gas supply chains, Zhang et al. (2017) introduce an MP-PRP
with multiple production capacity levels (modes) in a continuous production environ-
ment. They propose an iterative MILP-based heuristic that works with a restricted set
of candidate routes at each iteration. The method dynamically updates the set of candi-
date routes for the next iteration. Miranda et al. (2018) study a rich MP-PRP arising in
the context of a Brazilian furniture manufacturer. They consider many practical problem
limitations such as sequence-dependent setup times, a heterogeneous fleet of vehicles,
and customer time windows and deadlines. They propose a two-phase MILP-based it-
erative heuristic for the problem. There is only one recent study by Qiu et al. (2018b)
on the integration of the small-bucket LSP and the vehicle routing problem (VRP). They
assume that the production period and routing period have equal lengths. The authors
present a MILP to model the problem and provide valid inequalities to tighten the linear
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programming (LP) relaxation of the proposed model. They further use these inequalities
in a branch-and-cut (BC) algorithm.

3.3 Problem Definition and Mathematical Formulation

We first present common problem assumptions and definitions in Section 3.3.1. Next,
we mathematically define the variables and constraints of the problem in Section 3.3.2.
Finally, we describe specific big- and small-bucket model constraints in Sections 3.3.3 and

3.3.4, respectively.

3.3.1 Common Assumptions and Definitions

We consider a one-to-many production system where a central plant, denoted by node 0,
provides several products for different customers, represented by the set V. Welet N+ =
N U {0} represent the set of all nodes including the customers and the central plant. Let
& ={(i,j) :i,j € N*t,i < j} be the set of all edges connecting the plant and the customers
together. We represent by K the set of all products. In the classical production routing
problem, the planning horizon comprises a finite number of discretized time planning

periods with an equal length for the production and routing periods (Figure 3.1).

Production planning periods IF { % ]l { I

Route planning periods | | | | | ]
planning p | 1 | 2 l 3 1 n | 5 |

Figure 3.1: Planning horizon with equal period lengths

As indicated in the introduction, we will consider integrated planning problems where
the production and routing periods do not necessarily have the same length. We assume
that the production and the route planning period lengths can be written as an integer
multiple of the micro period length, which is defined as the smaller planning period length
between the production and the route planning periods. We denoteby 1 € Nandp € N
the integer multiples of the micro period length for the production and the route plan-
ning period lengths, respectively. According to the definition, either the production or the
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route planning period length is equal to the micro period length. Consequently, when the
planning period lengths are different, either 7r or p is equal to 1 and the other is strictly
greater than 1. In case both planning period lengths are identical, then 7 = p = 1. Let
T = {1,...,|T|} be the set of micro periods. We assume that | 7| is divisible by 7 and p.
We denote the set of production planning periods by 77 = {1,...,,|T|/nr}. Likewise, we
represent the set of route planning periods by 7¢ = {1,...,|T|/p}. Figure 3.2 shows the
situation where the production planning period length is larger than the routing period

length, whereas Figure 3.3 represents the inverse situation.

Production planning periods } ]l I | | {
= . ;

Route plannin riods | | | | | | | | | | |
— i lu’;‘lI((v’:"z]wi:iTu’:«‘ll(d=5l(|)—_—.6lw.:7lw:8I(‘J:QIw:]OI

Figure 3.2: Longer production planning period lengths (|7 = 10,7 = 2,p = 1,7
T w e TP)

m

Production planning periods l—

Route planning periods | | | | | |
il M e=2 T w=3 T w=4¢ U w=s |

Figure 3.3: Longer route planning period lengths (|7 = 10,r = 1L,p =2,1 € T ,w €

Product availability for shipment. In most production environments and for practi-
cal limitations, the production in each period is typically only available for shipment in
the next period. This is because the shipments in the same period are already fixed, trucks
and drivers are determined and planned to be dispatched. This situation is illustrated in
Figure 3.4 for the case of equal production and route planning periods each equivalent
to one day of operation. We index the route planning periods with one period shift/lag.
Then, we consider the case that the production in each period is available for shipment
in the next routing period which is indexed the same as the current production period.
Figure 3.5 presents the case with longer production period. In this case, when we ship in
period w = 3 or w = 4, products made in T = 1,2 are available for shipment. Figure 3.6

presents the case with longer routing period in which the shipment in period w = 2 can
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include products made in production periods T = 1,2, 3,4.

. | | | | | |
Actual time | I i i T i

)

dayl day?2 day3 day4 day5 dayé
Producti ing periods | | ! | | |
on planning pe ! T=1 ! T=2 ! T=3 ! T=4 ! T=5 !
Route planni riods | | | | | |
& i ! w=1 I w =2 ! w=3 I w=4 I w=5 L

Figure 3.4: Product availability for shipment with equal period lengths (|7 = 5,77 =
lL,p=1T€Tr,we TP

; | | | | |
Actual time | i | dayd | dayd l day5 ! day6

dayl day2
Production planning periods | | | | | |
P g P! [ =1 | =2 I r=3 1 T | T=5 |
Route plannin riods | | | | | | | | | | |
g R |w:l‘w=2[7=3lw=4Iw=5'w=6]w=7|wr~8|¢:.1:9]w=10|

Figure 3.5: Product availability for shipment with longer production planning period
lengths (|7]=10,m=2,p=1,7€ T",w € TF)

: | | | | |
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Route planning periods } I % 1 { {
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Figure 3.6: Product availability for shipment with longer route planning period lengths
(|T|=10,r=1p=2,T€ T, we TF)

A one-period backward graphical shift in the routing period, makes Figures 3.4 to 3.6
equivalent to Figures 3.1 to 3.3, respectively. Therefore, without loss of generality, the
entire production in any period is available for distribution in the period with the same
index if the period lengths are equal. If the production period length is larger, the pro-
duction in any period 7 is available for distribution period w = 7T — 1. If the routing
period length is larger, the production in any period 7 is available for distribution period

w = |1/p| + 1. This choice of planning period indexing makes it possible to present
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formulations similar to those in many studies in the literature of the production routing
problem (Archetti et al., 2011; Absi et al., 2015; Adulyasak et al., 2014).

Demand. We consider that the demand period length is equal to the route planning
period length. Each customer i € N has a predetermined demand dy,, for each product
k € K in each period w € T*.

Production. The production system has to satisfy the demand for all products at
every customer in each demand period without stockouts while respecting the plant’s
production capacity, which is given by C. We denote by 6 the necessary capacity con-
sumption to produce one unit of product k € K. The production of every product k € X

at the plant in a certain period imposes a fixed setup cost f;.

Distribution. We consider by as the unit size of product k € K. A limited number of
homogeneous vehicles, i, each with a capacity of Q, is available to perform shipments
from the plant to the customers using routes that start and end at the plant. When a
vehicle travels from location i € N'* to j € N'* a period-independent routing cost of ¢;;

is incurred.

Inventory bookkeeping. We consider the inventory bookkeeping at the plant to be
aligned with the micro periods. When the production planning period length is smaller,
this assumption is intuitive (Figure 3.3). For the case where the routing period length
is smaller (Figure 3.7), during any production period, we have multiple route planning
periods and thus it is possible to ship products from the plant within each routing pe-
riod. Therefore, the level of the products’ inventory at the plant may change during the
production planning periods. Consequently, when the routing periods are smaller, micro
period inventory level tracking enables a precise calculation of the inventory cost at the
plant. We let Ipx and ;3o denote the initial inventory of product k at the plant and at the
customer i, respectively. The cost at the plant of carrying one unit of product k over to
the next micro period is /ig;. The cost at customer i to keep one unit of product k in the
inventory in one route planning period is /1. Each customer i € A has a global storage

capacity L;. The plant provides a shared storage with the capacity L for all products.

94



o1
Production planning periods | : | : } : | : | ; |
4 " I vl ! T=2 ! T3 ! T=d ! T=5 !

| | | | | | ] ] =

Route planning periods } |
. = 'w=1'w=2rw=3|w=4'w=5'w=6|w=7'w:8’w:9'w:lO‘

Figure 3.7: Inventory bookkeeping periods for the longer production planning period
lengths (|7 =10, =2,p = 1,7 € T™,w € T?)

3.3.2 Common Variables and Constraints

For each period T € T™, we let the binary variable ;. take value 1 if and only if product
k € K is produced at the plant and we let py, denote the production quantity. Let Io
and I;,, represent the inventory of product k € K at the end of period t € 7 at the plant,
and at the end of period w € T? at the customer i € N, respectively. Let g, indicate the
shipment quantity of product k € K from the plant to the customer i in period w € T*.
The variable x;j,, represents the number of times a vehicle traverses the edge (i,j) € &
in period w € 7. The binary variable z;, takes value 1 if and only if a customer i € N/
is visited in period w € TP. The integer variable zgy, indicates the number of vehicles
dispatched from the plant in period w € T*. The domain of the variables is imposed by
constraints (3.1)-(3.6):

Pkr > 0, Yk € {0,1} Vke K,Nte T, 3.1)

Ioxe 20 Vke K,VteT, (3.2)

Ly 2 0,Gires 2 0 Vie N,Vke K,Yw € T?, (3.3)

Zow € Z Yw € TP, (3.4)

Ziw € {0,1}, X0iw € {0,1,2} Vie N,Yw € T?, (3.5)
%ijw € {0,1} V(i,j) € €:i#0,Yw e TP, (3.6)

Constraints (3.7)-(3.9) provide the inventory flow balance at the plant. The production
and the shipment variables are simultaneously present only during specific micro periods
as presented in constraints (3.7). The cases are (i) the first micro period (t mod 7t = 1) of
each large production period (7t > 1 and p = 1), and (ii) the last micro period (f mod p =
0) of each large routing period (7 = 1 and p > 1). Note that in case we have equal
lengths for the production and routing periods, these are the only constraints needed. In
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the rest of the micro periods of the large production periods (t mod 7w # 1,77 > 1 and

p = 1), it is only necessary to balance the product inventory and the shipments as in

constraints (3.8). Moreover, no shipment will be possible until the last micro period of

the large routing periods (t mod p # 0,7 = 1 and p > 1). Thus, constraints (3.9) keep

track of the inventory at the plant for such cases:

Iot-1+ Pre = Y, Giko + lone
ieN

Vke K VteT,(tmodn=1p=1)V(r=,Ltmodp=0),t=(¢t-1)/r+Lw=t/p

(3.7)

Tog -1 = Z Gikeo + Lokt Vke K,ViteT,tmodnt#lL,p=1lw=t (3.8)

ieN
Iog -1 + Pre = Iogt Vke K,VteT, m=1,tmodp #0, 7=t (3.9
The inventory balance constraints at the customers can be written as

Licw-1 + Gikw = Bikew + Tikw Vie N,Vk e K,Vw € T*. (3.10)

Constraints (3.11) set the fleet size for each routing period. Constraints (3.12) enforce
a vehicle to visit a node in case of a shipment to that node. The storage capacity at the

plant and at the customers is imposed by constraints (3.13) and (3.14), respectively:

20w < m Yw e T* (3.11)
Y bidike < Qziw Vie N,Vw e TP (3.12)
kek
Y, bidok < Lo vte T (3.13)
keX
E bl < L; Vie N,Yw € T*. (3.14)
kek

Let £(.A) be the set of edges (i,j) € £ such thati,j € A, where A C N is a given subset
of nodes. Consider 6(.A) as the set of edges incident to a node set A, 6(A) = {(i,]) €
E:i€e Aj¢ Aori ¢ Aj € A}. The routing constraints include the node degree
requirements (3.15) and the generalized vehicle routing capacity cuts (3.16) to eliminate
the subtours and to impose the vehicle capacity. We refer to the latter set of constraints

as the generalized fractional subtour elimination constraints (GFSEC) (Adulyasak et al.,
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2014):

JC]"'lw = Zziw Vie N*,Vw € TP (315)
(") €d(i)
Q Y Xjw< ) (Qziw— ) bifike) VACN,|A| 22,Yw e T".
(i) €E(A) i€A kek
(3.16)

3.3.3 MP-PRP with Big-Bucket Lot-Sizing and Scheduling

The big-bucket LSP assumes the possibility of producing several products in the same pe-
riod on one shared resource with limited capacity (Trigeiro et al., 1989). Constraints (3.17)
impose the global production capacity for each production period. The setup for each

product is triggered by constraints (3.18) when its production takes place in any produc-

tion period:
Y Okpir < C VreT" (3.17)
ke
Ok Prr < Cykr Vke K,VteT™. (3.18)

The objective is to minimize the total cost of setups, inventory (at the plant and at the

customers), and transportation as follows:

min ) (Y fivke + X hokloe + Y. Y hadiw) + Y. Y cijijo (3.19)

keK teTn teT weTP ieN weTP (ij)e€

The mixed integer linear program for the PRP with a big-bucket lot-sizing structure,

M 1%1 p_prp 1 to minimize the objective function (3.19), subject to constraints (3.1)-(3.18).

3.3.4 MP-PRP with Small-Bucket Lot-Sizing and Scheduling

The small-bucket (continuous) LSP assumes that only one product can be made in every
production period (Loparic et al., 2003). We let the binary variable wy, be the start-up
variable for product k in period T with an associated start-up cost, gy. We consider the
start-up for product k when it is not produced in period T — 1, and the machine is set up

to produce it in period T (Pochet and Wolsey, 2006):

wie € {0,1} VkeK,VreT" (3.20)

74



The start-up variables are modeled in constraints (3.21). Constraints (3.22) enforce the
requirement that we can only produce one product in any production period. Con-

straints (3.23) impose the initial values for the setup variables:

Wi 2 Yer — Y1 Vke KNt eT™ (3.21)
Yo ke <1 Ve T™ (3.22)
keK

Yro = 0 Vk € K. (3.23)

The objective is to minimize the total cost of start-ups, inventory and transportation as
follows:

min Z( Z LkWir + E hox Toke + Z Z hiinkw) b5 Z E CijXijeo- (3.24)

kek teTn teT WweTPieN weTP (ij)e€

The MP-PRP with a small-bucket (continuous) lot-sizing structure, Mi,, p_prps Minimizes

the objective function (3.24), subject to constraints (3.1)-(3.16), (3.18), (3.20)-(3.23).

3.4 A Reformulation

Constraints (3.7)-(3.9) impose the assumptions on the product flow at the plant level.
However, it is not straightforward to strengthen the formulation and derive valid in-
equalities based on these constraints. We employ some modeling techniques to present
these sets of constraints in a unified manner. The general idea is to reformulate the prob-
lem using only the micro periods which result in a formulation with the same number of
periods at each level. We define 71 dummy micro periods for every large production plan-
ning period (7t > 1). We consider p dummy micro periods for every large routing period
(0 = 1). First, we redefine the product demand and the holding cost (problem parame-

ters) at the customers, d and h, respectively, on the micro periods (equations (3.25)-(3.26)):
dirt = dikw,  hige = hy Vie N,Vke K,Vte T,tmodp=0,w=1t/p (3.25)

diy =0,  hy =0 Vie N,Vke K,Vt€ T,tmodp #0. (3.26)

Figure 3.8 shows an example of how the redefinition works for 7 = 10 and p = 2.
Foralli € N and k € K, we letdy; = 0 for all t € T such that t mod p # 0, and we
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let dixt = dix(1/p) for all t € T such that t mod p = 0. In addition, we define d,;, as
the demand for product k € K at customer i € N from period #; to period t; (inclusive),
tl/ t2 = TI tl S t2'

diry diky dits dig dikio
diy =0 ldik3=0 ld.'k5=0_ ldik7=0 ldm=0 |
w=1 | w=2 I w=3 ! w=4 ! w=5 '

Route planning periods }

Figure 3.8: Dummy micro periods in the case of longer route planning period lengths
((TIl=10,r=1p=2,we T?

Next, for each micro period ¢t € 7, we define variables y, p, q, z and x similar to y, p,
g,z and x, respectively. Furthermore, we define new inventory variables, I;;; on the micro
periods t € T only for the customers i € A and for all k € K. Note that the inventory
variables of the original formulation (Section 3.3) for the plant, Iy, are already defined
on the micro periods ¢ € 7. The reformulation for the big-bucket MP-PRP can be written

as the following R% ,_,zp model:

(Ryp—prp) min { Y. (feyre +hocloe + ) higelie) + ) Cisz‘jt} (3.27)

teT " kek ieN (i,j)e€
s.t. (3.2),(3.13), and
Ioki-1+Pe = ), Qe +low VKkEK,VtEeT (3.28)
ieN
Lipa+qi=dip+Ine VieN,VkeK,VteT (3.29)
E Okpi <C VteT (3.30)
kek
Okpit <Cyie VkeK,VteT (3.31)
zp<m VteT (3.32)
Y bq <Qzy ViENVtET (3.33)
kek
Y bl <L VieNVteT (3.34)
kek
E X]']'It = 2z,-f Vie N+, Vte T (335)
(") ed(i)
Q Y. xiip<Y (Qzi—) bqn) VACN,|A>2VteT (3.36)
(i.j)€E(A) i€ A kek
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ye=0 Vkek,VteT,tmodn#1,p=1 (3.37)
zy=0 VieNVteT,m=1tmodp#0 (3.38)

zo=0 WVteT,m=1tmodp #0 (3.39)

Pt 20,y € {0,1} VkeK,VteT (3.40)

Lk 20,qe 20 VieN,Vke K, VteT (3.41)

zp€Z VteT (3.42)

ziy € {0,1},x0i € {0,1,2} VieN,VteT (3.43)
xijp € {0,1} V(i,j)eE:i#0,VteT. (3.44)

The objective function (3.27) minimizes the total production, inventory, and trans-
portation costs over the micro periods. Constraints (3.28) and (3.29) impose the product
flow balance at the plant and at the customers, respectively. Constraints (3.30) and (3.31)
are production capacity constraints. Constraints (3.32)-(3.34) enforce the fleet size, ship-
ment capacity, and storage capacity at the customers. Constraints (3.35)-(3.36) are the
node degree and subtour elimination constraints for the micro periods. Constraints (3.37)
prevent setups in the micro periods where no production is possible. Constraints (3.38)-
(3.39) forbid node visits and vehicle dispatches in the micro periods where no shipment
is available. Constraints (3.40)-(3.44) define the domain for the reformulation variables.

Next, for each micro period t € T, we define variables w similar to w. The reformu-
lation for the small-bucket MP-PRP, 'R‘?\,, p—prp- €an be written as follows:

(Rp—prp) min ) { Z (&KWt + hok Lokt + Z hili) + Y Cijxijt}r (3.45)
teT " kek ieN (i,j)e€

s.t. (3.2), (3.13), (3.28)-(3.29), (3.31)-(3.44), and

Wkt 2 Ykt — Yit—nr Vke K,Vte T, tmod m=1,p=1, (3.46)
Yoy <1 VieT, (3.47)
kek

wi =0 Vke K,VteT,tmodt #1,p=1, (3.48)
Yo =0 Vk € K, (3.49)
wy >0 Vke K,VteT. (3.50)
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Constraints (3.46)-(3.47) (together with (3.31)) impose the small-bucket LSP assump-
tions on the setup and start-up variables. Note that in constraints (3.46), the setup vari-
ables in each period t depend on the setup variables in periods t and ¢ — 7z. Constraints (3.48)
prevent start-ups in the micro periods where no production is possible. Constraints (3.49)
force the initial values for the setup variables. Constraints (3.50) define the domain for

the start-up variables.

B S ; ; B s
Theorem 3.1. Ry;p_prp @d R3,p_prp are valid reformulations for My p_prpand M3 p_prps

respectively.

Proof. See Appendix C.

3.5 Valid Inequalities

We develop several valid inequalities to improve the LP relaxation bound of RY,,_prp
and R$p_pgp- The inequalities in this section are inspired by prior work on similar prob-
lems: Archetti et al. (2007) for the IRP; Archetti et al. (2011) and Adulyasak et al. (2014)
for the single product PRP; Chitsaz et al. (2020) for the assembly routing problem (ARP)
which considers an assembly production structure; and Atamtiirk and Kiigtikyavuz (2005)
for the lot-sizing with inventory bounds and fixed costs. First, we present (I, S)-type and
cut-set-type inequalities for the the lot-sizing structures of the models. Then, we provide
inequalities concerning the distribution and routing structure of the models. The proofs

of the propositions are provided in Appendix C.

3.5.1 Inequalities for the Production and Inventory Flow Structures

The (1,S) inequalities were introduced in Barany et al. (1984) where [ refers to a period
(I €|T|), and S is a subset of periods {1, ...,1} not necessarily contiguous. Their cardi-
nality is exponential and they are known to provide the convex hull for the single-item
uncapacitated LSP. Pochet and Wolsey (1994) showed that when the sum of unit produc-
tion and inventory costs in every period is larger than or equal to the unit production cost
in the next period, it is sufficient to consider only a polynomial subset of these inequal-

ities to describe the convex hull. These inequalities improve the linear relaxation bound
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of the lot-sizing structure (3.28)-(3.29) and (3.31). Because these two sets of constraints

are present in both models, inequalities (3.51) are valid for R, prp and R3p_prp-

Proposition 3.1.

ta {2
Z Pke < [Uklg s Z Iikfg i a 2: ( Z dik!’fa)th‘ Vk € }C! thr b € TI’ t <t (351)
o=y &N o=y ”:".N’
are Uahldfor R§4p,_pRp; ‘Ri\;,‘p,, PRP*
Next, we present lower bounds for the total number of required production setups

(yx) from period ¢ = 1 to t € T and for each product k € K.

Proposition 3.2. Inequalities

max {0, Zie AN max{(), dikh’ s l,‘k()} o 1()“) }] ) L =
- . o w YEEK,VEeT 3.52
[ C/6 == }'_{ Y& ( )

‘ B RS
are valid for Riyyp_pgrp a1d R3qp_prp-

3.5.2 Inequalities for the Distribution and Inventory Flow Structures

Constraints (3.29) and (3.33) form a structure similar to those of constraints (3.28) and (3.31).

Therefore, we present new (/, S)-type inequalities in Proposition 3.3.

Proposition 3.3. Inequalities
!1'3_‘ s
Y. Qike S gty + Y, dikenszie Vi€ NVk€ K, Vi, tae Tt <t (3.53)
o=t 1 e=t 1
are valid for RYyp_prps Riyp—prp-

In Propositions 3.4 and 3.5, we present lower bounds for the total number of required

vehicle dispatches (z;), and node visits (z;), respectively, from periode = 1tot € 7.

Proposition 3.4. Inequalities

El i : A :
= Yo Y emax{0,digyy — X} | < Y zoe VEET (3.54)
QR ken e=1

are valid for RYp_prp and R3yp_prp-
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Proposition 3.5. Inequalities

Ykex b max{0, dixy; — Iixo } : .
. <Yz VieNVieT (3.55)
[mm {Q, Li + maxy<o<t{Liex bidiko } } eg'i “

" B S
are valid for Ry;p_prp a1d R3p_prp-

One observes that the LHS of inequalities (3.52) and (3.54)-(3.55) includes only prob-
lem parameters and hence returns integer values. In addition, we add two more sets of
inequalities to improve the routing structure of both models. Inequalities (3.56) require
a vehicle dispatch in case a node has to be visited in a certain period. The other set of
inequalities, (3.57), is the adaptation of the Dantzig-Fulkerson-Johnson (DFJ) constraints
to eliminate infeasible paths and maintain connectivity on the vehicle routes. They were
first proposed by Dantzig et al. (1954) for the travelling salesman problem (TSP). These
inequalities require that, in an integral solution, the number of edges in any subset of

visited nodes is smaller than the cardinality of the set:

z; <z VieNNVteT (3.56)

E Xijt < E Zit —Zg VAC N, I.A} >2,Vae ANVteT. (3.57)
(i,j)€E(A) ieA

The cardinality of these inequalities is exponential and thus they cannot be added a pri-

ori to the model in practical applications. These inequalities do not impose the vehicle

capacity.

3.6 An Upper Bound Heuristic

To obtain high-quality feasible solutions for the MP-PRP instances, we adapt the uni-
fied matheuristic proposed by Chitsaz et al. (2019). The authors applied this algorithm
(CCJ-DH) to an assembly routing problem (ARP) where each supplier provides a dis-
tinct component. In addition, they applied CCJ-DH on the classic PRP and IRP instances
where the plant/depot distributes only one type of product among many customers. In
both studies, the authors report small optimality gaps for the solutions obtained by this

heuristic especially on the large-scale instances of these problems. Therefore, to obtain
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high-quality feasible solutions for the MP-PRP instances, we adapt the unified matheuris-
tic proposed in Chitsaz et al. (2019). We pass the solution obtained by this heuristic as

cutoff values to our branch-and-cut algorithm.

The underlying idea in this algorithm is to heuristically solve the complex routing
part and efficiently communicate the obtained routing costs in the objective function and
with the rest of the model. This matheuristic works by decomposing the model into three
independent subproblems and solving them iteratively. The first subproblem (M) is
a special LSP. This subproblem returns a setup schedule using an approximation of the
total transportation cost in the objective function based on the number of dispatched ve-
hicles. Using this given setup schedule, the second subproblem (M:) determines node
visits and shipment quantities. In this subproblem, another approximation of the total
transportation cost is considered in the objective function: the node visit transportation
cost. Finally, the third subproblem considers a separate VRP for each period {. When the
routing subproblems are solved, the algorithm updates the node visit cost approxima-
tion in the M. model for the next iteration. This procedure is repeated to reach a local
optimum. Then, the algorithm adds a diversification constraint (Fischetti et al., 2004) to
the M, model to change the setup schedule to explore other parts of the feasible solution
space. The algorithm uses similar diversification constraints to generate new node visit

patterns using the M, model. The method terminates when a stopping condition is met.

Since we consider the multi-product variant of the PRP, we take this extension into
account, compared to CCJ-DH implementation of Chitsaz et al. (2019), in the calculation
of product inventories and inventory costs at the customers as well as the total shipment
amount from the plant to each customer in all subproblems. However, the existence of
multiple products as well as longer planning periods results in much larger subproblems
which slow down the solution of the M, and M. models in this implementation. Effi-
ciently solving these subproblems is a crucial step in the adaptation of CCJ-DH to obtain
quality solutions for the MP-PRP variants. To overcome this challenge and to obtain a
more efficient algorithm, we enhance the performance of CCJ-DH by adding relevant
inequalities from Section 3.5. We add inequalities (3.51)-(3.52) and (3.54) to the M, sub-

problem. Moreover, we incorporate inequalities (3.53) and (3.55) in the M. subproblem.
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3.7 Computational Experiments

The computational experiments were performed on the Calcul Québec computing infras-
tructure with Intel Xeon X5650 @ 2.67 GHz processors and a memory limit of 25 GB. The
BC procedure is implemented in C++ using the CPLEX 12.7 callable library. All experi-
ments were performed in sequential form using one thread. We consider the best-bound
node selection strategy for the BB search tree. We do not change any other CPLEX param-
eter. The algorithm applies the valid inequalities at the root node and adds GFSECs (3.36)
and DF] (3.57) at each node of the search tree as cutting planes whenever they are violated
by more than 0.1 unit. To separate GFSECs, we use algorithm A1 which is presented in
Chitsaz et al. (2020). When a violated GFSEC (3.36) is found, the BC method also adds
the corresponding DFJ (3.57). In our experiments, we set a time limit of one hour both for
the BC method and for CCJ-DH.

3.7.1 MP-PRP Test Bed

Although some studies were conducted on the MP-PRP, there is no standard data set
available for this problem. Therefore, we have developed the data sets for each of the
extensions of the MP-PRP. The test instances were generated on the basis of the following

data:

* micro period planning horizon |7 |: 12, 18, 24, 30;

¢ number of products |K|: 4, 6, §;

* number of customers |N| (increasing by steps of 5 for all |7| values): 5 to 35 for
|T| =12,5t030 for | 7| = 18,5t0 25 for | 7| = 24, 5 to 20 for | 7| = 30;

¢ demand at customer i for product k in period t: constant over time, and random
integer in the set {0, 1,2};

* storage capacity Lo at the plant: uniformly distributed random integer (UDRI) in
the interval [|T||K||N|/4,|T||K||N|/3], storage capacity L; at customer i: UDRI
in the interval [|7||K|/4,|T||K|/3];

* production capacity C: UDRI in the interval [| T||K||N|/5, |T||K||N|/4];

¢ production resource consumption 6y for product k: random integer in the set {1,2};

* unit size by of product k: random integer in the set {1,2};
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e truck capacity Q: [10|K|,20|K|;

¢ number of trucks m: [N}

* initial inventory Iy of product k at the plant: UDRI in the interval [0,3|K||N|/2],
initial inventory I of product k at customer it UDRI in the interval [0,3|K|/2];

* fixed setup/start-up cost fx and g, for product k: UDRI in the interval [5000, 6000;

* holding cost /iy of product k in each micro period at the plant: random integer
in the set {1,2}, holding cost /;; of product k in each micro period at customer i:
random integer in the set {3,4};

e longitude and latitude coordinates of the nodes (plant and the customers): UDRI
in the interval [0, 1500|, transportation cost ¢;j: Euclidean distance between nodes

(rounded up to the nearest integer).

For each combination of the number of planning periods and customers we randomly
generated 5 instances. As a vesult, the test bed includes medium (|7 = 12,|K| =
4,|N| = 5) to very large size (|'T| = 30, |K| = 8, |N| = 20 or | T| = 12, |K| = 8, |N] = 35)

instances. Overall, instances are generated with 22 combinations of the planning hori-

zons and numbers of customers, three numbers of product sizes and 5 instances per cat-
egory. We apply the RY,p_prp and Ryp. prp models for each instance. We consider
= {1,2,3},p = 1 for the RE;p_pgp model, and 7 = 1,p = {1,2,3} for the Ri;p_pxp
model. Note that the case where 7 = p == 1 corresponds to the case with equal pe-
riod lengths at the production and routing levels and can be applied for both R, _prp
and R3p_ pgp models. Considering 6 combinations of the 77 and p parameters for both

models, our test bed includes 1980 instances (990 instances for each model).
3.7.2 Performance of the Heuristic

We report in Table 3.1 the performance of CCJ-DH with and without the addition of the
valid inequalities. The results are presented for both small- and big-bucket models for
¢ = 7t = 1. Each row in this table corresponds to a combination of the number of plan-
ning periods, number of products, and number of customers. In these tables, columns
4 to 12 and 13 to 21 include the results for the small-bucket and big-bucket MP-PRP
instances, respectively. Columns four and five show the number of executed CCJ-DH

iterations in the time limit for CCJ-DH without applying valid inequalities (None), and
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for the case where CCJ-DH is equipped with the valid inequalities (All), respectively.
Column six presents the percent change in the number of iterations between these two
implementations. Columns seven and eight show the average solution time in seconds
for CCJ-DH with and without the inequalities, respectively. Column nine presents the
percent change in the solution times. Columns 10 and 11 show the average solution val-
ues obtained by CCJ-DH without and with applying the valid inequalities, respectively.
Column 12 presents the percent change in the average solution values. The same infor-

mation is provided in columns 13 to 21 for the big-bucket model.

By adding the valid inequalities we were expecting to obtain better solution times. In
addition, we also obtained better solution values due to the fact that on average the algo-
rithm is able to perform more iterations in the one-hour time limit. On the small-bucket
MP-PRP instances, the average number of iterations is increased by more than 29% and
the average computing time is decreased by 34.2%. Moreover, on average, the solution
values are improved by 0.4%. On the big-bucket MP-PRP instances, the improvement in
the average solution values is 4.0%. This is obtained by a 26.7% increase in the number of
iterations while the solution time is decreased by more than 38%. This is a significant im-
provement in the performance of CCJ-DH which is obtained by incorporating the valid

inequalities.

3.7.3 Performance of Valid Inequalities

We further compare the effect of the valid inequalities on the performance of the BC
method. In Tables 3.2-3.7, we report a summary of the results on the performance of the
BC when we apply no inequality (None) or we employ inequalities (3.51)-(3.57) (All).
These tables present CPU times, the average lower bound values as a percentage of the
upper bound obtained by the BC without applying CCJ-DH cutoffs (%UB) and as a per-
centage of the best upper bound (%BUB) for each BC setting. To calculate the best upper
bound (BUB) for each BC setting, we considered the upper bounds obtained by either
that BC setting or CCJ-DH. When we do not consider the valid inequalities in the BC
method (None), we do not apply them in CCJ-DH either. For the case where we include
all inequalities in the BC method (All), we apply them in the heuristic cutoff procedure
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Table 3.1: Performance of enhanced CCJ-DH with valid inequalities

Small-Bucket LSP (p = 1)

Big-Bucket LSP (77 = 1)

terations CPU (8) Avy Solution Value Iterations CPU (s) Avg Solution Value
i k u None Al ) None  All (%) None Al (%) None Al (%) Nome Al (%) None All (%)
12 04 5 200 200 02 M8 196 210 34183 3190 00 200 200 00 80 60 256 34230 34301 02
0200 20 00 57 212 630 40150 40011 03 200 200 02 331 92 721 39880 39962 02
15 200 200 00 912 267 P07 50775 50810 01 200 200 04 494 151 693 50331 50132 04
200 200 200 00 1430 294 2794 56281 56240 01 200 200 00 970 173 821 R5796 55658 -0.2
25200 200 02 2670 429 -89 63327 63562 04 2000 200 00 265 230 318 62888 62911 00
300192 200 44 3244 515 841 69228 02054 03 200 200 -02 2597 397 847 67852 67820 Q00
350177 200 133 3366 622 815 PEAM4 TROM 03 191 200 47 3040 653 785 77693 77652 -0
6 5200 200 00 365 241 W20 43093 43082 00 200 200 00 202 167 170 42723 42707 Q0
100 200 200 02 1478 329 777 4877 48891 03 200 200 00 631 225 644 48410 48525 02
5200 200 Q0 1718 980 -429 56683 56640 -01 200 200 00 1856 835 550 55924 56452 09
200 190 194 19 3170 1611 -492 61770 61472 02 197 200 14 2814 460 -836 61090 60595 -08
25 188 197 45 3201 1679 477 67404 67317 Q1 186 200 75 3[02 751 773 66360 66248 -0.2
3000 158 188 187 3582 2174 393 72819 72740 <01 166 200 208 3559 1398 607 71737 70892 -1.2
35 133 186 396 3597 2221 -383 77567 77207 -05 170 200 176 3579 1085 -69.7 75884 75480 05
8 5 200 200 00 450 240 835 K341 52767 -05 200 200 0.2 794 215 -729 53173 53073 -02
1o 184 200 89 3562 485 872 63032 62842 03 185 200 79 3508 299 -915 62413 61482 -15
15 167 200 201 3526 861 756 68983 68863 0.2 149 200 343 3589 780 -783 68040 67274 -1.1
20 431 3584 1600 -553 80499 7uBd2 08 143 200 401 3583 952 -734 80092 76515 45
25 Ahe 3393 1264 027 82656 81318 -l 166 200 208 3584 662 -81.5 80274 78480 -22
30 387 20811701 -448 90853 89879 -1 132 200 518 3588 1178 -67.2 89828 85252 Al
35 629 3597 2118 411 95675 95265 04 127 200 BRI 3596 1602 -555 93896 89776  -44
18 4 5 34 1529 1081 -298 44005 44193 04 195 195 00 1381 1163 158 47542 47354 04
10 87 3062 1228 599 5040l 5034 01 193 200 35 2986 1350 -548 50094 50390 0.0
15 201 3581 2304 387 6459 65661 03 173 200 160 3388 2542 202 67004 66833 03
] 192 3598 5005 -14.0 83147 83208 04 175 195 118 3367 3219 44 84535 84373 02
25 224 3371 3130 .69 91539 80713 <09 164 195 189 3280 3268 04 91764 91674  -0.1
n 204 3583 3063 145 105851 105052 -0.5 159 179 123 3597 3582 -04 107328 106134  -1.1
& & 0.2 2162 1159 464 48619 48686 Q01 200 200 00 1184 360 -69.6 47936 47956 00
(Y 420 3582 1433 -600 62216 61944 04 163 188 153 3586 149 596 61406 61210 03
15 430 3589 2054 428 73024 MWB7Y -0 171 200 172 3021 1071 645 72569 70633 27
20 745 3598 2243 377 84906 B4R 0.2 122 186 466 3589 1469 -39.1 85001 82481 -3.0
25 605 3589 2882 197 96786 96242 06 130 200 543 3579 1131 684 94421 92337 22
30 700 3597 3050 -152 102082 101396 0.7 110 200 821 3578 1561 -564 101295 98367 2.9
& 5 18 200 75 274 TR4 P2V 61821 61516 <05 200 200 00 2508 603 -759 60828 60521  -05
W8 2w W4 357 0y 1 78391 78052 05 129 200 550 3594 778 783 74838 73190 -2
e 104 2000 927 3%7 1786 499 8687e 8392 e 105 2000 912 3596 1913 468 87868 83270 19
20 99 2k 1012 3581 2668 255 99421 98795 .06 100 200 988 3588 2519 -298 101322 95169 -0
25 B3 200 1140 3583 3043 1B 111463 110933 05 96 182 896  35% 3464 -6 114865 105700 8.0
30 94 200 1137 3673 3036 181 126134 124048 1.7 94 188 1000 3BE3 3361 -62 126910 119132 -6.1
244 186 200 TR 2105 1427 2322 45357 45304 .0l 191 187 <21 1836 1617 -119 48114 48210 02
63 192 174 3886 2672 283 7057 0707 0.2 7LO195 144 3237 2835 124 77565 77060 -0.7
150 178 191 3582 3549 09 89644 R9II0 06 4L 70 206 3571 3541 -08 92714 91905 0.2
3394 3402 02 104324 104300 0.0 153 186 213 3572 3462 31 109874 109908 0.0
ANFR 3588 128542 12818% 03 16+ 182 109 3356 3569 04 132887 131388 -1l
W52 1056 4 5882 58960 05 200 200 00 1368 775 433 58364 58643 00
a2 2083 4Ry TMAL O TA210 03 130 181 389 3590 2318 <354 74195 72214 27
3582 2V6R 228 98203 ueB00 14 116 165 424 3589 2591 -27.8 102216 97108 50
587 3076 59 111720 112166 04 109 198 820 3579 2355 -342 118017 106025 -10.2
MM 3247 B0 129831 130443 05 125 200 595 3305 2228 326 133399 125202 -61
§ 5 126 194 K32 2560 1706 Bl 70934 Y0295 -09 152 200 316 3042 1993 -345 69948 69265 1.0
n 11191 8909 3589 2012 439 89034 8raeh <12 107 200 Se.6 3589 1683 B30 90867 86005 -S54
15 112 161 4hd 3348 2638 152 108971 109180 0.2 91 198 1186 3570 2910 -185 114113 103271 95
R\ o 145 603 3588 2895 193 129890 129134 -06 92 191 1076 3576 3303 76 132371 121384 -83
25 88 145 639 3592 G088 140 149381 149307 00 gl 187 1055 3390 3286 -85 155235 139698 -10.0
3004 S 148 169 148 3593 3082 142 5633 56214 02 168 172 21 3439 3381 -17 59814 59069  -04
10 146 180 230 3588 3314 76 86405 87148 09 154 162 53 B0 3452 -36 96627 94970 -1.7
15 138 181 209 B8 3578 02 107240 107804 05 M7 158 72 3576 3594 05 113827 112225 - 14
20 133 168 260 3588 3578 -03 131404 13184 03 141 169 201 3585 3585 00 1391% 137726 -1
6 5 113 179 585 3478 2537 291 64532 64005 -08 147 189 282 3508 2074 409 63748 62687 17
HY Q9 166 675 3598 3307 81 Y7895 Ye69 12 126 186 484 3253 2292 -295 99542 94685 4.9
15 95 176 849 3609 2762 235 113507 114587 10 95 200 1103 3583 2200 -386 123983 112317 94
20 109 167 328 35330 3587 -1 150344 146634 25 119 200 675 3300 3097 -62 154903 14543 64
8 & 106 198 879 3599 2772 230 82451 82577 02 121 198 634 3588 2461 -31.4 85282 80352 58
i 92 169 841 3589 3288 -84 110313 1OUR2 -03 a4 181 938 3580 2758 -23.0 122004 104552 -143
15 892 27 3588 2219 381 144806 145270 03 91 168 836 3575 2240 -37.3 154682 134254 -132
20 89 94 59 3587 2495 -305 170344 168063 -13 §9 161 805 3585 2687 -25.1 179248 155739 -13.1
Average 144 187 296 3107 2046 -342 84833 8&4R21 -04 152 192 267 2953 1810 -38.7 86641 83164 -4.0




Table 3.2: Performance of branch-and-cut algorithm on the big-bucket LSP (k = 4)

=1 =2 =3
None All None All None All
I n CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB

12 5 1059 998 998 383 1000 1000 235 1000 1000 184 1000 1000 170 1000 1000 68 1000 1000
9338 946 3587 962 965 3582 952 973 3587 971 97.1 3581 955 955 2934 983 98.3
3587 283 911 3589 159 934 3585 476 93.0 3589 156 943 3585 674 949 3588 61.3 95.9
3588 252 83.1 3589 135 922 3587 288 890 3589 106 933 3586 301 896 3589 137 95.7
3588 159 727 3589 85 89.7 3589 183 8.1 3590 115 915 3589 160 860 3589 85 93.3
359 79 67.2 3589 6.6 896 3590 96 826 3588 95 909 3590 102 853 3590 104 94.6
3590 39 621 35%0 79 883 3590 48 674 350 88 904 3591 71 721 3% 93 93.7

g

18 3584 902 90.5 2604 980 98.0 3212 984 984 2224 989 989 2437 986 986 2187 995 99.5
3588 308 86.8 3588 17.1 926 3586 461 926 3589 168 943 3587 504 947 3589 626 94.9

3590 137 762 3590 119 912 3590 189 887 3590 120 932 3589 231 936 3590 286 96.5

3589 117 700 35%0 58 88.7 3589 136 785 350 78 912 3589 153 879 3590 104 93.8

54 641 3590 72 888 3590 87 746 3590 100 910 350 7.0 853 3590 85 94.2

3590 39 583 3590 5.1 89.0 35%0 52 675 3590 75 915 3591 6.0 733 3590 8.0 94.8

24 3587 905 942 3216 979 979 3537 974 980 3187 988 988 3584 974 97.7 3297 9.1 99.1
3589 224 819 3590 100 9.7 3589 278 917 3590 437 930 3588 341 943 3590 153 96.4

3590 67 663 3590 89 883 3590 103 744 3590 114 910 3590 132 840 35% 120 93.7

3590 53 61.0 3590 111 880 3590 68 665 3590 111 899 3590 83 757 3590 122 92.1

3590 54 532 3590 76 859 3591 73 607 3590 83 880 3591 89 696 3589 93 90.6

30 3588 604 838 3590 814 968 3587 846 933 3589 966 977 3588 826 942 3432 743 98.3

3590 128 741 3590 68 888 3590 210 849 35%0 97 908 3589 307 9.0 3590 83 93.3
3590 56 608 3590 93 874 3590 77 650 3590 93 884 3590 94 715 35%0 112 90.6
3590 57 558 3589 73 868 3590 81 623 35%0 79 885 3590 93 695 3590 115 90.1

Avg 3474 293 749 3382 288 913 3417 348 822 3354 319 929 3381 373 865 3316 35.1 95.0

BGou 88G5u|88BGEw| 885G

Table 3.3: Performance of branch-and-cut algorithm on the big-bucket LSP (k = 6)

m=1 =2 =3
None All None All None All
I n CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB

12 5 686 1000 1000 56 1000 1000 99 1000 1000 21 1000 1000 78 1000 100.0 25 1000 1000
10 3587 964 972 1315 998 998 3009 973 975 1069 997 9.7 2733 99 99 864 99 9.9
15 3588 178 799 3590 650 96.1 3588 533 928 3590 971 973 3588 56.6 969 3050 828 98.1
20 3589 106 775 3590 261 956 3588 140 848 3590 309 962 3590 182 952 3590 47.1 971
25 3590 46 528 3591 44 942 3590 76 648 3590 8.0 948 3590 94 833 3591 8.3 95.3
30 3590 08 49.1 35% 16 940 3591 5.1 60.0 35%0 56 948 3590 33 734 359 6.3 94.9
35 3591 07 424 359 26 927 3590 29 540 359 8.1 939 3590 0.0 58.6 3590 39 93.7

18 5 3021 928 928 297 1000 1000 1391 998 998 145 1000 1000 1365 1000 1000 49 1000 1000
10 3589 241 87.0 3590 672 979 3589 338 956 3558 97.0 984 3588 394 958 3590 98.7 98.9
15 3589 77 702 3590 32 955 3590 111 886 3590 56 96.0 3590 163 930 3590 128 98.6
20 3590 51 594 3590 14 921 3590 76 716 359 19 941 3590 103 848 3590 6.7 98.2
25 359 35 488 3590 26 919 350 21 550 3590 48 923 3590 52 614 3590 8.0 97.0
30 3590 06 436 359 74 913 3591 08 551 35%0 33 924 3591 0.0 59.0 35% 73 96.7

24 5 358 861 86.7 2948 994 994 3588 96.4 9%.4 1934 999 999 3588 96.6 97.1 455 1000 1000
10 3589 128 720 3590 660 969 3589 187 913 3590 965 983 3589 235 931 359 808 98.4
15 3590 39 573 359 0.0 915 3590 67 675 3590 21 953 3590 103 770 3590 7.5 95.5
20 3590 37 48.1 35%0 25 928 3590 527 575 35% 52 935 3591 7.0 622 3590 39 94.4
25 3590 28 45 35% 38 920 3591 18 50.8 3590 59 920 3591 12 55.0 3590 9.8 97.6

30 5 3589 631 766 1733 1000 1000 3589 67.0 940 973 1000 1000 3589 859 97.3 1191 996 99.9
10 350 68 64.3 3590 24 93.7 3590 106 744 3590 74 945 359 146 817 3590 71 95.1
15 3590 32 472 3589 13 939 3590 6.2 56.8 3589 22 943 3590 89 632 3589 4.5 96.8
20 359 36 464 3589 39 90.8 3590 51 514 3589 33 915 3590 64 57.0 3589 9.2 94.6

Avg 3432 250 656 3063 346 95.1 3305 297 754 2961 402 959 3290 324 81.1 2867 411 97.3

as well. In these tables, a zero value under %UB columns means that no feasible solu-
tion (UB) is found by the BC method. The results indicate that the BC performs better, in
terms of the average solution time and optimality gap, when all inequalities are applied.
Furthermore, in all cases for the planning period length scenarios and the bucket size

models, valid inequalities create a significant improvement in the final results (%BUB).
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Table 3.4: Performance of branch-and-cut algorithm on the big-bucket LSP (k = 8)

Tl T=2 T=3

None All None All None All
I CPU %UB %BUB CPU  %UB  %BUB CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB CPU %UB %BUR
2 5 618 1000 100.0 71000 1000 1586 967 20.8 5 1000 1000 87 1000  100.0 4 1000 1000
10 53587 330 599 170 1000 1000 3688 497 201 139 1000 1000 3588 o624 893 123 1000 1000
15 3589 347 630 2365 998 998 3589 511 747 947 1000 1000 3589 &le6 88.0 1464 1000 1000
200 3590 79 512 3590 971 97.2 3587 9.0 635 3590 966 97.0 3588 115 727 3589 989 99.0
25 3588 3.5 484 35900 2158 953 3667 73 5.0 3590 389 956 3588 8.2 633 3590 952 974
30 3588 22 423 3590 1.4 94.2 3588 19 503 3590 0.0 947 3588 74 620 3590 184 95.4
35 3587 0.0 38.0 3590 0.0 930 3588 09 488 3590 18 932 3588 26 582 3590 1.8 0939
18 5 3585 828 89.4 3401000 1000 1968 1000 100.0 11 1000 1000 2268 997 9.7 15 1000 1000
10 3586 174 688 2702 994 994 3587 254 855 1990 997 997 3586  30.2 939 1364 1000 1000
15 3587 5.6 535 3589 404 976 3587 9.0 719 3550 488 983 3587 119 844 3147 785 98.9
20 3587 18 53.0 3589 13 919 3588 58 63.8 3590 Q.0 95.5 3589 9.9 78.6 3589 26 95.4
25 3588 3.6 452 3589 28 949 3588 32 51.8 359 1.9 952 3587 71 61.1 3589 23 95.1
30 3588 0.8 36.8 3590 1.3 93.0 3388 0.0 46.8 3590 33 938 3587 0.0 57.0 3590 18 G3.8
24 5 358 665 849 383 1000 1000 3585 792 927 158 1000 1000 3585 838 89.5 142 1000 1000
10 3586 2.6 024 3576 789 979 3589 139 758 3437 831 99.0 - 3587 159 90.6 3471 99.6 99.6
15 3589 43 50.5 3581 0.0 96.6 3590 58 64.0 3586 19 96.9 3590 8.5 773 3589 7 97.9
20 3390 39 479 3589 0.0 94.9 3589 43 548 3590 0.0 958 3590 6.1 645 3590 0.0 98.1
25 3589 34 435 3590 1.4 94.7 3589 5.0 50,2 3590 5.0 959 3589 6.4 554 3590 23 97.7
30 5 3588 301 703 763 1000 1000 3588  7AR 877 43¢ 1000 1000 3589 804 90.7 553 1000  100.0
10 3589 5.6 523 2590 22 Q0.6 3590 78 68,1 3590 34 Q6.8 3589 124 774 3590 4.8 96.2
15 3589 40 44.0 3590 0.0 962 3589 5.6 57.1 3590 1.8 973 3589 8.1 64.7 3589 8.3 937
20 3589 31 40,1 3590 0.0 944 3589 46 4.2 3590 18 959 3589 6.3 53.6 3590 4.6 97.2
Avg 3453 193 566 2738 431 968 3423 2850 67.2 2608 449 973 3369 289 76.1 2589 512 97.7

Table 3.5: Performance of branch-and-cut algorithm on the small-bucket LSP (k = 4)

Q= i P = 2 p = 3
None All Nune All None All
Ion CPU %UB %BUB CPU %UB %BUB CPU %UDR %BUB CPU %UB %BUB CPU %UB %BUB CPU 9%UB %BUB
12 5 1840 997 997 1003 998 99.8 380 1000 1000 741000 1000 25 1000 1000 141000 1000
10 3586 8L 94.0 3588 951 957 3581 982 982 3079 982 982 2418 995 995 2028 1000 1000
15 3589 403 701 3590 e 922 3584 512 013 3587 527 935 35681 0.0 938 3683 383 95.3
200 3589 00 641 3590 126 914 3587 270 855 3588 151 927 3584 132 93.6 3585 0.0 94.5
25 3890 00 §9.5 3691 0.0 88.1 3588 0.0 714 3589 Q0 911 3586 0.0 917 3587 125 N8
30 3891 0.0 56.0 3590 a0 855 3589 00 702 3590 a8 91 3588 0.0 832 3589 0.0 91.9
35 3590 00 46,6 3590 (.0 843 3390 00 68,9 3591 0.0 B9.8 3589 0.0 790 3590 00 914
18 5 3587 96 Y24 ABRe 976 926 2752 OR8.7 Y87 1788 99T 9.7 1252 998 99.8 1256 100.0 1000
10 3589 485 707 3589 164 209 3585 288 883 3887 00 93.7 3583 730 941 5584 B2 94.1
1§ 3390 Wt 60,6 3590 PR SR BRNZ 120 772 3588 3l 906 3586 288 Y0.6 3686 334 92.7
20 2890 0 595 3620 00 BLO 3589 Q0 700 30 00 899 3587 142 871 3588 00 905
PR [\ 517 3500 (Y] BLH 3500 00 680 350 00 .7 3589 0.0 812 3589 0.0 91.0
300 a%0 0 465 3H0 1] 783 3591 00 050 3560 00 848 3590 00 719 3590 00 89.8
M8 388 770 813 3589 963 963 3368 W23 o8R0 3001 991 99.1 1789 1000 1000 1356 999 99.9
10 3589 285 708 3590 189 9.4 3687 625 785 3589 412 917 3B/ 272 89.3 3587 2066 929
15 3590 Va4 7.2 3590 00 770 3588 20 674 3590 0.0 86.7 3587 127 80.1 3588 289 88.2
20 3590 0.0 475 3590 Q0 750 5500 0 612 3591 0.0 841 3589 0.0 752 3590 0.0 88.9
25 3590 0.0 441 3590 (1Y) 698 3590 0.0 60.0 3590 0.0 74.0 3390 0.0 744 3590 0.0 833
33 3589 136 746 3590 B4 o8 3586 56 878 3079 773 957 3456 910 946 2940 762 96.0
10 3590 71 589 3591 0.0 738 3388 LR 69.0 3590 44 85.6 3587 393 821 3589 13.0 87.3
15 3591 a0 50.7 3590 0 721 3589 00 629 3590 4.0 505 3588 00 73.6 359 0.0 854
20 3590 0.0 463 3H91 0.0 67.7 3500 0.0 600 3590 0.0 Y14 3590 0.0 68.7 3590 4.9 81.0
Avg 349 231 638 W72 224 849 3394 100 773 3275 317 89.7 3178 318 865 3118 312 921
More specifically, on the big-bucket MP-PRP instances with four products (k = 4), em-

ploying the valid inequalities improves %BUB on average from 74.9% to 91.3%, 82.2% to

the same LSP type MP-PRP instances with six products (k = 6), the addition of the valid

inequalities increases %BUB on average from 65.6% to 95.1%, 75.4% to 95.9%, and 81.1%
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Table 3.6: Performance of branch-and-cut algorithm on the small-bucket LSP (k = 6)

p=1 p=2 p=3
None All None All None All
I n CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB
12 5 3095 984 984 1247 999 999 98 1000 1000 109 1000 1000 127 1000 100.0 14 1000 1000
10 3583 658 68.2 3581 982 982 3578 885 887 2360 9.7 99.7 3570 994 994 272 100.0 1000
15 3584 272 542 3581 509 965 3580 146 772 3577 932 975 3573 689 90.0 3577 783 98.8
20 3581 0.0 499 3583 0.0 942 3578 133 704 3580 388 966 3579 479 889 2981 583 97.3
25 3587 53 40.1 3585 0.0 916 3582 0.0 622 3585 0.0 954 3581 250 832 3581 195 96.2
30 3587 00 334 3590 00 883 3580 00 600 3586 00 951 3577 00 785 3588 0.0 97.0
35 3581 0.0 293 359 0.0 844 3580 0.0 57.1 3585 0.0 925 3578 0.0 729 3583 0.0 95.4
18 5 3577 697 727 3184 95 95 3573 911 915 2049 98 98 3351 975 975 168 1000 1000
10 3579 384 604 3584 569 962 3576 375 708 3581 780 972 3573 416 803 3463 97.8 98.2
15 3586 0.0 50.8 3584 0.0 89.2 3583 325 710 3584 470 95.0 3575 495 771 3579 576 96.6
20 3586 0.0 425 3584 0.0 839 3583 0.0 60.7 3582 143 928 3582 105 714 3580 195 95.9
25 3586 0.0 393 3584 0.0 81.0 3581 0.0 56.6 3584 0.0 88.0 3584 0.0 67.7 3582 0.0 94.3
30 3586 0.0 307 3577 0.0 815 3591 0.0 529 3577 0.0 822 358 00 663 3576 0.0 93.6
24 5 3580 677 711 3404 973 973 3575 844 844 3193 980 982 3578 943 943 1405 99.8 99.8
10 3584 165 520 3582 00 88.0 3581 398 613 3581 834 945 3580 380 697 3571 968 98.0
15 3585 0.0 44.5 3576 0.0 799 3583 189 57.2 3578 0.0 874 3581 373 634 3581 174 91.6
20 3584 0.0 423 3577 0.0 76.1 3584 0.0 539 3577 0.0 79.8 3581 0.0 636 3581 138 88.3
25 3585 00 356 3583 00 710 3584 00 472 3583 00 749 3584 0.0 605 3578 0.0 85.5
30 5 3582 356 554 3579 921 939 3581 648 69.1 3585 944 963 3579 786 814 2236 978 97.8
10 3583 00 439 3587 114 736 3586 435 557 3586 0.0 837 3586 277 607 3581 179 87.7
15 3590 0.0 393 3582 00 712 3587 73 521 3583 0.0 756 3580 25.2 58.8 3582 27.8 84.8
20 3583 00 385 3582 00 645 3582 00 467 3582 00 676 3580 00 570 3582 0.0 779
Avg 3562 193 49.7 3450 276 864 3463 289 658 3281 385 904 3412 382 765 2920 45.6 943

Table 3.7: Performance of branch-and-cut algorithm on the small-bucket LSP (k = 8)

p=1 p=2 p=3
None All None All None All
I n CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB
12 5 3586 807 81.2 2276 9.8 998 3581 895 895 1261 1000 1000 2823 99.6 9.6 41 1000  100.0
10 358 0.0 59.6 3589 99.1 9.1 3585 171 781 1372 999 999 3583 631 772 180 1000  100.0
15 3589 0.0 478 3590 97.7 97.7 3587 563 698 3588 986 987 3584 29.1 729 1529 1000  100.0
20 3590 0.0 439 3590 371 922 358 0.0 654 3589 96.6 96.6 3586 0.0 705 3375 988 98.8
25 3590 0.0 367 3590 0.0 908 3589 0.0 596 3590 714 949 3587 409 694 3588 98.1 98.1
30 3590 0.0 374 3590 175 891 3590 0.0 524 3590 0.0 90.7 3589 133 654 3589 727 94.7
35 3590 0.0 274 3590 00 849 3590 0.0 520 3590 152 910 3590 0.0 65.6 3589 383 95.0
18 5 3588 443 61.1 2708 999 999 3586 73.0 741 1208 999 999 3584 847 847 305 1000 100.0
10 3589 0.0 486 3590 57.8 95.6 3587 128 655 3588 983 983 3586 47.6 695 3106 99.6 9.6
15 3590 0.0 432 359 0.0 869 3588 155 57.2 3589 919 944 3587 368 66.7 3588 98.1 98.1
20 3590 0.0 403 3590 0.0 855 3589 0.0 602 3590 513 934 3588 113 66.5 3588 575 96.0
25 3590 0.0 40.1 3590 0.0 836 3590 0.0 534 3590 0.0 88.0 3589 0.0 65.1 3590 358 94.1
30 3590 0.0 27.7 3590 0.0 813 359 00 484 3590 0.0 838 3590 00 64.0 3590 0.0 91.8
24 5 3588 309 545 3590 981 981 3586 413 658 3153 992 9.2 3585 721 722 1899 999 99.9
10 350 70 4.8 3590 161 862 3587 9.1 56.1 3590 955 95.7 3586 517 633 3589 972 97.2
15 3590 00 393 35%0 0.0 798 3589 83 529 3590 360 89.7 3588 370 59.4 3589 712 90.7
20 3590 00 386 3590 00 793 3590 0.0 519 3590 00 80.2 3589 00 60.7 3590 179 86.1
25 3590 0.0 392 350 00 700 3590 0.0 465 3590 0.0 772 3589 0.0 59.1 3591 0.0 85.0
30 5 3589 342 541 3590 658 921 3587 364 645 3059 993 993 3587 738 739 1810 996 99.6
10 3590 0.0 40.0 3590 0.0 759 3589 169 524 3590 66.1 831 3588 442 56.6 3590 835 85.7
15 3589 0.0 340 3590 00 659 358 0.0 478 3590 00 71.2 3587 77 542 3590 453 79.0
20 3589 0.0 355 3590 0.0 60.7 3589 0.0 433 3590 0.0 701 358 0.0 53.7 3590 0.0 749
Avg 3589 90 43 3490 313 86.1 3588 17.1 594 3231 554 90.7 3552 324 67.7 2841 688 93.8

to 97.3%, respectively for r = 1, r = 2 and 7t = 3 (Table 3.3). On the big-bucket MP-PRP
instances with eight products (k = 8) which consist of the highest number of products,

the implementation of the valid inequalities increases %BUB on average from 56.6% to
96.8%, 67.2% to 97.3%, and 76.1% to 97.7%, respectively for 1 = 1, m = 2and 7 = 3

(Table 3.4). This indicates the substantial impact of applying the valid inequalities.
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Similarly, on the small-bucket MP-PRP instances with four products (k = 4), em-
ploying the valid inequalities improves %BUB on average from 63.8% to 84.9%, 77.3% to
89.7%, and 86.5% to 92.1%, respectively for p = 1, p = 2 and p = 3 (Table 3.5). On the
small-bucket instances with six products (k = 6), the addition of the valid inequalities
increases %BUB on average from 49.7% to 86.4%, 65.8% to 90.4%, and 76.5% to 94.3%,
respectively for p = 1, p = 2 and p = 3 (Table 3.6). On the big-bucket instances with
eight products (k = 8) with the largest number of products, the addition of the valid in-
equalities increases %BUB on average from 44.3% to 86.1%, 59.4% to 90.7%, and 67.7% to
93.8%, respectively for p = 1, p = 2 and p = 3 (Table 3.7). This indicates the substantial
impact of applying the valid inequalities. In Appendix C, we report the lower bound im-
provements obtained by incorporating the valid inequalities in the small- and big-bucket
models. Generally, when the instances are harder to solve (smaller p and 7), the impact

of the inequalities on the lower bound improvement is bigger.

3.7.4 Analysis of the Cost Shares

Finally, we analyze the cost component shares on different MP-PRP instances. Tables 3.8
and 3.9 present the different cost component values and proportions for p = {1,2,3}
and 7 == {1,2,3}, respectively for the small- and big-bucket LSP instances. In Table 3.8,
columns three, 10, and 17 show the total cost values. Columns four to nine present the
production, inventory, and the transportation costs and shares (in percent), respectively
for p = 1. Columns 11 to 16 and 18 to 23 do the same for the cases where p = 2and p = 3,
respectively. Table 3.9 reports the same information for big-bucket LSP instances. In all
cases, the share of the production setup cost decreases when for the same number of pe-
riods, the number of customers increases. In most situations, for any number of periods
and 77 (or p) combination, the share of the inventory cost, and the share of the transporta-
tion cost increase when the number of customers increases. Note that the production
costs that are taken into account in the model are the fixed production costs. The variable
production costs are not included, since the total demand for all customers needs to be
satisfied and hence the total variable production cost represents a fixed amount that is

left out of the objective function.
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Table 3.8: Cost component values and proportions for small-bucket LSP

p=1

p=2

p=3

Production

Inventory

Transport

Total

Total

Production

Inventory

Transport

12

73.5%
63.9%
554%
49.0%
46.1%
423%
389%

3646

7355
10861
14936
16897
20703
24080

81%
143%
18.1%
2.0%
23.4%
264%
283%

7428
10246
14750
18194
20769
23355
26621

184%
21.8%
264%
20%
30.5%
31.3%
32.8%

43669

39427
67142

84989

32780
33160
32788

33166
32816

729%
54.8%

453%
41.4%

3745

2B
11685
13349
17580
21388
24059

82%
14.9%
19.2%

200%
26.7%
27.8%

7632
10174
14582
19005
21400
24332
28114

18.9%
21.6%
25.9%
296%

31.9%
33.9%

44212
52214

72.2%
62.0%
54.1%
47.9%
44.9%
41.1%
37.9%

79%
13.2%
179%
219%
23.8%
26.0%
27.5%

8345
12219
16117
19374
21784
25072
28720

20.0%
24.7%
28.0%
30.2%
31.3%
329%
34.6%

63.0%
518%
433%
36.4%
328%
296%

7781
14587
21881
28301

14.7%

286%

22%
255%
28.1%
2%
33.0%
34.1%

51956
62935

89445
100226
111469

62.5%
51.4%
429%

297%

8072
14442
21930

151%
2.3%
284%
31.1%
344%
36.1%

10947
15595

28536
32130

2.4%

28.7%

33.0%
34.3%

33013

13.4%
228%
27.4%
30.0%
33.2%
354%

12526
15401
21389
29262
33029
37891

24.7%
26.0%
29.6%
33.6%
34.1%
34.9%

24

558%
423%
33.1%
29.1%
25.0%

246%
28.3%

33.0%

78191

114614
133970

554%
42.0%
33.1%
2.0%
254%

20.6%
293%
36.5%
375%
40.7%

13137
21759
29286

44917

24.0%
28.7%
30.4%
33.5%
33.8%

33351

33919

18.2%
29.1%
34.6%
36.5%
41.3%

15586
21848
30902
38544
44981

27.5%
28.8%
32.1%
34.6%
34.0%

48.3%
34.3%
28.1%
250%

50127

25.1%
29.2%

324%

68019

121843
148201

48.0%
354%
278%
26.6%

22.2%

41.7%
41.5%

16085
27937
35802
45866

24.8%
4%
30.6%
31.9%

3391
35057

26.0%
34.8%
41.1%
41.8%

18272
28345
35739
46527

26.8%
29.9%
30.8%
32.5%

Table 3.9: Cost component values and proportions for big-bucket LSP

e

n=2

=3

Total

Production

Inventory Transport

Total

Production

Inventory

Transport

Production

Inventory

Transport

49989
57953

69213
74655

73.5%
645%
56.1%
50.3%
472%
438%
40.2%

3338
8619
9727
1311
15006
17920
20296

74%
129%
16.6%

7753
10657
15133
18357
2141
23569
27857

19.1%
7%
27.3%
2.7%
31.5%
325%
35.0%

37961

69176
74742

32273
32780
33160
32788
33066
33166
32816

73.6%
64.5%
56.1%
50.2%
47.2%
43.7%
40.2%

3331
6637
9728
13134
15151
17837
20239

74%
129%
16.6%
20.1%
21.6%
23.6%
24.8%

7691
10658
15140
18414
20939
28739
27838

19.0%
226%
27.3%
7%
31.3%
32.7%
35.0%

73.8%
64.5%
56.2%
50.3%
47.2%
43.8%
40.2%

3475
6759
9823
13123
15137
17768
20176

7.9%
13.1%
16.8%
20.1%
21.6%
23.5%
24.7%

18.3%
22.5%
27.0%
29.6%
31.2%
32.7%
35.0%

51943
61597

87341

107878

64.4%
525%
45.1%
376%
33.9%
30.7%

6903
13577
19502
26673
32145
38345

11185
15122

31413
36171

22.5%
259%
28.7%
32.1%
33.1%
34.0%

51802
61414
73451

96471
107441

34055

64.7%
526%
452%
37.9%
33.9%
30.9%

Uty
13312
19920
26528
32398
38078

134%
213%
26.7%
304%
33.3%
35.2%

10865
15205
20003
27136
31127
36001

21.9%
26.1%
28.1%
31.7%
32.8%
33.9%

107456

64.3%
52.5%
45.1%
37.9%
33.9%
30.9%

13.7%
21.2%
26.2%
.7%
33.2%
35.0%

22.0%
26.2%
28.7%
32.5%
328%
34.1%

24

97428
112439
13209

56.6%
45.6%
347%
309%
27.0%

11442
21351

41918

13523
21140

24.2%
27.1%
9%
32.0%
32.7%

58601

112490
132198

56.7%
45.6%
34.6%
30.9%
27.0%

11440
21564

41730

19.2%
27.5%
35.3%
36.9%
40.4%

13450
20926
28424
35837
42923

24.0%
26.9%
30.0%
323%
326%

112607
132138

35711

19.6%
26.7%
35.1%
36.8%
40.3%

23.7%
27.7%
30.2%
324%
32.8%

11959
146169

50.2%
37.9%
30.3%
299%

17681

48146
57433

15598
27311

45017

239%
28.1%
28%
31.2%

120592
146122

50.1%
37.9%
304%
30.0%

17443

37715

256%
34.0%
39.4%
39.1%

15873
27371
35584
44688

24.2%

30.1%
31.0%

119876
146593

37351

43719

17373

256%
33.5%
39.9%
39.0%

24.2%
28.7%
29.8%
311%

Figures (3.9) and (3.10) present a comparison of the cost component share (in per-

centage) for different numbers of customers and periods / = 12 and 30 when small- and

big-bucket LSP instances are considered, respectively. These figures show that by in-

creasing the number of planning periods it is possible to schedule the production in such

a way that the share of the production setups decreases. Similar tendencies are observed

for instances with periods / = 18 and 24. The challenge for the practitioners is in design-

ing and developing efficient methods to both obtain feasible solutions and proving the

quality of those solutions.
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Figure 3.9: Cost share (%) comparison for different number of customers and periods in
small-bucket LSP with p = 1

AN
Share
7088
GO%
0%
0%
0%

J0%

L0

L 5 18 15 @& 8 0 a5 4a¢

wemmn PrOCRICHON e brpvantory  ewsses Transport Custamers

Figure 3.10: Cost share (%) comparison for different number of customers and periods in
big-bucket LSP with 71 = 1

3.8 Conclusion

While classical production routing problems have received considerable attention from

the research community, all studies on this problem and its variants consider identical
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production and route planning period lengths. In this paper, we have presented formu-
lations for a multi-product production routing problem with the possibility of incorpo-
rating different production and route planning period lengths. This is the first attempt
in the literature to consider such a practical limitation. We model both big-bucket and
small-bucket lot-sizing problems at the production level. Next, we have adapted a state-
of-the-art matheuristic to obtain quality solutions for instances of this problem with dif-
ferent numbers of products, planning periods, and customers. We have developed many
sets of valid inequalities that exploit the structure of the problem. The effectiveness of
the derived valid inequalities within our branch-and-cut algorithm was tested through
an extensive set of computational experiments. The availability of an exact algorithm has
allowed us to measure the quality of the upper bounding heuristic. We have shown that
by including the relevant valid inequalities in the heuristic, significant improvements in
terms of the number of iterations, the solution time and quality can be achieved.

We observe that for the same numbers of micro periods, customers and products,
the problem can be solved more efficiently when the number of production planning
periods or routing periods decreases. One explanation is that in these cases the number

of decision variables will quickly decrease in our proposed reformulation model.
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General Conclusion

Making integrated supply chain decisions by considering the customers in the down-
stream supply chain or the suppliers in the upstream supply chain is quite different in
nature. Even though these two types of integrated problems show some similarities
with respect to the inventory structure, they possess a very different lot-sizing struc-
ture. Particularly, the IRP and PRP have a distribution structure (i.e., items are dis-
tributed from a central plant/warehouse to many customers), whereas the ARP is based
on an assembly structure (i.e., items are sent from many different suppliers to one central
plant/warehouse). Furthermore, multiple components are needed to produce one single
product in the basic variant of the ARP whereas in the standard IRP and PRP, a single
product is distributed in the network. Few studies have considered the integration of
production planning with inbound transportation for the collection of components from
suppliers to assemble a final product. In this thesis, we mainly focused on filling this
gap in the literature by proposing the standard ARP in Chapter 1. We studied the case
in which a manufacturer is responsible for organizing the inbound flow of raw mate-
rial and components necessary for the production from its suppliers. While producing
some finished or semi-finished goods, the manufacturer mainly faces two challenging
problems concerning the planning of the production of the final product and the supply
of input materials. The manufacturer has to optimize its internal processes with respect
to inventory, production and set-up costs to meet the customer’s demand. In addition,
the manufacturer has to simultaneously optimize its supply processes including the col-
lection and transportation of the components from the suppliers. These processes are
closely connected because the production volume in each period highly depends on the

available level of inventory of components at the plant which itself depends on the level



of shipments from the suppliers. We proposed an efficient unified method to find high
guality solutions for the instances of this problem in Chapter 1 and developed an exact
algorithm to solve the problem instances to optimality in Chapter 2.

Furthermore, in this thesis, we studied a practical and complex case arising in the
context of production planning and distribution routing. Very often in real-world logis-
tics management, the planning period lengths for the production and distribution rout-
ing are not the same. For example, the distribution planning is done using daily truck
dispatches, but the production planning is performed on a shift-basis, where one day
contains multiple shifts. There exist many studies in the literature on the classical PRP,
most of which consider identical production and route planning period lengths. In Chap-
ter 3, we presented models for a multi-product PRP which accommodates the possibility
of having different production and route planning period lengths. In addition, we have
adapted our unified method (Chapter 1) to obtain high quality solutions for instances of
this problem. In the following, we present an overview of the contributions of this thesis,

and possible interesting avenues for future research.

Contributions

This thesis contributes to the literature in several ways. First, it introduces two new prob-
lems together with mathematical programming models for them: the assembly routing
problem (ARP), and the production routing problem (PRP) under decoupled planning
periods. Second, this thesis offers advanced solution methods including a unified heuris-
tic capable of solving several integrated supply chain problems. Finally, the thesis pro-
vides many test instances for these new problems, and the results of extensive compu-
tational experiments which give the means to evaluate the high quality of the suggested

algorithms.

I. Integrated Inbound Transportation, Production and Inventory Planning

Motivated by the many practical applications mentioned in Chapter 1 and to fill the gap
in the literature, we studied the ARP. The ARP jointly optimizes the integrated inbound

transportation, production and inventory planning in a finite planning horizon with the
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standard basic assumptions similar to the IRP and PRP. In other words, the problem is
a complement to the IRP and PRP which focuses on the downstream supply chain and
integrates production planning with inbound routing decisions. In Chapter 1 we intro-
duce the problem and propose a mathematical programming formulation to model this
problem. In Chapter 2, we extend the presented model to consider the case where each
supplier provides a subset of the components necessary for the final product and some

components can be obtained from more than one supplier. This is the first contribution

of this thesis.

II. Production and Distribution Routing Under Decoupled Planning Periods

The current literature on the PRP and its variants only considers identical production
planning and routing period lengths. This is in many cases an abstraction of the problem
in the real world. In Chapter 3, we propose a generalized multi-product problem by con-
sidering decoupled planning periods for the production and distribution routing plan-
ning. This is a practical operational decision-making problem that has not been studied
before due to its complexity. We study the cases in which the production planning sub-
problem may necessitate the use of small- or big-bucket lot-sizing problem assumptions.
These cases include the situations where the route planning period length or production
planning period length are larger. We present mathematical programming formulations
for the problem and a unified reformulation that can be used to model different produc-

tion planning and distribution routing period length situations.

III. A Unified Heuristic Method for the ARP, IRP, and PRP

The originality of the models presented in this thesis demands the development of novel
algorithms capable of solving them effectively and efficiently. The successful develop-
ment of such methods requires both a well-designed structure and proper implementa-
tion of each part of the method. In Chapter 1, we introduce a novel unified matheuristic
capable of solving not only the ARP, but also the IRP and PRP. In Chapter 2, we show
how to adapt this method to solve the generalized ARP, and in Chapter 3, we present
the adaptation of this method for the PRP instances with decoupled planning periods.

123



The core idea is to decompose the problem into its natural subproblems and solve these
subproblems iteratively until a local optimum is found. We also suggest effective diver-
sification mechanisms. The search continues until a stopping condition, e.g., time limit is
reached. To have an efficient solution method, each subproblem has to include a proper
cost approximation of the other subproblem. The appropriateness of the approximation
depends on the level of the decisions to make at the current subproblem. For example,
when in a subproblem the main decisions to make concern the high-level production se-
tups, the average cost of dispatching each truck is sufficient to approximate the total cost
of distribution in the objective function. In another subproblem that is concerned with
the production volume decisions, the approximate cost of visiting each node (supplier or
customer) is needed to accommodate more detailed information about the distribution

cost in the objective function.
Another critical component in our unified method is in efficiently communicating be-

tween different subproblems. The communication here relates to which information to
transmit from one subproblem to another and how to calculate it. An example is in how
to assign the transportation cost share of a node, given the sequence of all nodes in the
route. We show in detail that different cost approximation mechanisms result in different
solution qualities. We propose several cost update mechanisms to approximate the rout-
ing cost. The sensitivity analysis indicates that using a mix of two update mechanisms
improves the quality of the solutions. Moreover, we propose a scheme to effectively
switch between different cost splitting methods. Using the same parameter setting for all
problems and instances, we obtain 781 new best known solutions out of 2,628 standard
IRP and PRP test instances. In particular, on large-scale multi-vehicle instances, the new

algorithm outperforms specialized state-of-the-art heuristics for these two problems.

IV. Valid Inequalities to Strengthen the Mathematical Models

In Chapters 2 and 3, we develop several new valid inequalities to strengthen the linear
programming, (LP) relaxation of the mixed integer programming formulations for the
ARP and for the PRP under decoupled planning periods. Three classes of valid inequal-
ities are presented. The first class contains inequalities for the production and inventory

flow structures. These inequalities improve the linear relaxation bound of the lot-sizing
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part of the models. The second class includes the bounds on the variables which are
essentially an extension of the cut-set inequalities for the lot-sizing problem. The last
class includes general inequalities. The inequalities are used in a branch-and-cut algo-
rithm. We show the significant impact of these valid inequalities by analyzing the effect
of each class on the value of the LP relaxation and on the final solution through exten-
sive computational experiments. In addition, in Chapter 2, we present two algorithms
to separate multi-period fractional capacity cut constraints and compared their efficiency
with the state-of-the-art separation procedures of Lysgaard et al. (2004) (CVRPSEP) for
the single-period VRPs. To the best of our knowledge, there is no exact algorithm to sep-
arate these constraints in polynomial time and it is not known whether separating them
is NP-hard or not. We show that the performance of the branch-and-cut algorithm is sig-
nificantly better when it uses one of the proposed separation algorithms compared to the

case when it employs CVRPSEP.

V. Development of Various Test Data Sets

We created many small, medium, and large instances for the standard ARP (Chapter 1),
the generalized ARP (Chapter 2), and the PRP under decoupled planning periods (Chap-
ter 3). The standard ARP instances include data sets with 14, 50, and 100 suppliers, each
with 6 periods. Each of these sets has four classes of instances. The first class includes
the normal or standard instances. The second class contains high unit production and
setup cost instances. The third class represents the case with high transportation costs.
The fourth class includes instances with no supplier inventory costs. Each of the three

sets has 480 instances resulting in a total of 1,440 instances.

For the generalized ARP, we generated three classes of instances. The first class in-
cludes instances where each supplier provides a unique component type. The second
class represents the case where each supplier provides a subset of components. The third
class corresponds to the situation in which one single component is offered by all suppli-
ers. Each class includes data sets with five different planning horizons ranging from 4 to
12 periods. For each planning horizon we considered eight different numbers of suppli-

ers. For each combination of the number of planning periods and suppliers we randomly
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generated five instances. Overall, 600 small to large size instances are generated for three
classes, five planning horizons, eight numbers of suppliers, and five instances per cate-

gory.

Various test instances were generated for the PRP under decoupled planning periods.
The test bed includes instances with a different number of periods, products, and cus-
tomers. We considered four different planning horizons varying from 12 to 30 periods, a
different number of products ranging from 4 to 8, and a different number of customers
from 5 to 35 (depending on the number of periods). Overall, instances are generated with
22 combinations of the planning horizon and number of customers, three numbers of
product sizes and five randomly generated instances per category. Considering six com-
binations for the period planning length scenarios, this test bed includes 1,980 instances.

All instances are available at http://chairelogistique.hec.ca/en/scientific-data/.

V1. Extensive Computational Experiments

We report the results of extensive computational experiments on all the generated in-
stances on the standard ARP, the generalized ARP, and the multi-product PRP under
decoupled planning periods as well as the results on the standard data sets for the IRP
and PRP. Standard IRP instances include various data sets provided by Archetti et al.
(2007), Archetti et al. (2012), Coelho and Laporte (2013) and Desaulniers et al. (2015).
Overall we consider 1,098 instances in four IRP data sets. The standard PRP instances
include six data sets. Archetti et al. (2011) and Boudia et al. (2005) each introduce three
data sets with a total number of 1,530 instances. The results indicate that our unified
method outperforms the state-of-the-art heuristics on the large-scale multi-vehicle IRP
and PRP instances. Further analyses confirm the robust behavior of this algorithm. The
computational experiments show that the valid inequalities for the ARP variants and the
multi-product PRP under decoupled planning periods notably enhance the performance

of the branch-and-cut algorithm.
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Future Work

This thesis not only fills important gaps in the theory and practice of the integrated pro-
duction and distribution routing for supply chains but also opens several doors for future
research. The possibilities can be categorized into two major directions, i.e., modeling,
and solution methodology. We explain the ideas for each category in the following sec-

tion.

I. Directions for Future Research on the Modeling

The first possible research direction is to integrate both the upstream and downstream
routing decisions for a central manufacturing plant. This is to combine the ARP and
PRP (or IRP) together. Several different pick-up (from the suppliers) and delivery (to the

customers) strategies can be considered.

¢ Separate pick-up and delivery routes, where the suppliers and retailers need to be
visited in separate routes. This routing policy itself includes three different opera-

tional variants.

- Joint fleet. In this case, the suppliers and the retailers should be visited in
separate routes, but the vehicles can be shared meaning that every available
vehicle can be used for either pick-ups or deliveries in each planning period.
This is relevant when we have trucks that can be used for both pick-ups and
deliveries, but it is not favourable or possible to do a joint pick-up and deliv-
ery operation e.g., because it is too complex, or because components and end
products cannot be in the same truck for safety reasons. As another example,
this fits for the cases where the same trucks can carry the different types of

trailers needed for shipments from suppliers and to the retailers.

- Separate fleet. In this case, the fleet for inbound and outbound transportation
are separate and the size for each is given in advance. This case is relevant
when the type of truck needed for the pick-up and delivery operation is differ-
ent. This addresses the manufacturing environments where the components

and final product cannot be loaded in the same type of truck e.g., auto man-
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ufacturing. In this example, the pick-up of the components can be done by
regular container trucks and the delivery of the final product, which is a car,

should be done by double-deckers.

* Mixed routes, in which the suppliers and retailers may be visited in the same route.
In this case, the components and the final product are allowed to be carried in the
same truck. This is relevant when we have trucks that can be used for both pick-ups

and deliveries.

An interesting extension of the model to include a more tactical decision is to optimize
the size of the fleet. Therefore, the number of inbound and outbound trucks will also be
a decision variable to be fixed for the entire planning horizon. This extension can be
applied for separate and mixed route strategies. In case of separate routes, both variants
(joint and separate fleets) can be considered. In the first variant, the total size of the fleet
as well as the assignment of vehicles to pick-up/delivery routes will be optimized. In
the second variant, the fleet size for the pick-up as well as the delivery operations will be
optimized. In the case of mixed routes, the total fleet size will be optimized.

Other possibilities for the future research directions on the modeling side include:

* Considering suppliers’ setup and production quantity decisions in the ARP.

» Studying the multi-product variant of the ARP in which different final products

require (overlapping) subsets of components.

¢ Studying the multi-depot variant of the ARP.

Furthermore, an interesting avenue for future research on the ARP is to compare
different reformulations. Beside the standard formulation for the LSP, it is possible to
consider echelon stock, facility location, and shortest path, among others (Pochet and
Wolsey, 2006). Available formulations for the VRP (Toth and Vigo, 2014) are standard,
single-/two-/multi-commodity formulations as well as path-based formulations. These

possibilities result in a large number of promising reformulations for the ARD.
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IL. Directions for Future Research on the Solution Methodology

The unified method presented in this thesis has the potential to be applied to many vari-
ants of the IRP and PRP with customer time windows, transshipment, and perishable
products. Furthermore, this framework can be applied to other integrated supply chain
problems that consider distribution routing as part of the decision-making process. Ex-

amples include the location routing problem, and the hub location routing problem.
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Appendix A - A Unified
Decomposition Matheuristic for
Assembly, Production and Inventory

Routing

Overview of Problem Data Sets

We test our algorithm on three different problems: the IRP, the PRP and the ARP. Each
problem has its own set of different instances. IRP instances include four data sets. The
first set (SV-I1) is provided by Archetti et al. (2007) and contains a total of 160 single-
vehicle IRP instances. This data set includes instances with 5 to 50 nodes and 3 periods
(100 instances) and instances with 5 to 30 nodes and 6 periods (60 instances). Coelho and
Laporte (2013a) and Desaulniers et al. (2015) further adapt the SV-I1 data set and con-
struct new instances (second data set) by dividing the fleet capacity equally between the
number of vehicles. They consider m = 2,3,4 and 5 vehicles for each SV-I1 instance and
develop four new multi-vehicle IRP instances (MV-I1). Dividing the vehicle capacity by 5
made two of the instances infeasible. Therefore, instead of 640 they have 638 instances in
this set. The third IRP data set (SV-12) includes bigger single-vehicle instances presented
by Archetti et al. (2012). This data set includes 60 instances with 6 periods and 50, 100
and 200 nodes (20 instances for each). Similar to the second data set, Coelho and Laporte

(2013b) adapt the SV-IRP instances of the third set and developed the fourth multi-vehicle
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IRP data set (MV-12) which includes 240 instance. Therefore, we consider a total of 1,098
instances in four IRP data sets.

PRP instances include six data sets. Archetti et al. (2011) and Boudia et al. (2005) each
introduce three data sets. Each set of Archetti et al. (2011) has 480 instances including four
classes of randomly generated problem instances. The first set provides single-vehicle
PRP instances (SV-A1). The other two sets include multi-vehicle instances (MV-A2 and
MV-A3). Sets SV-Al, MV-A2 and MV-A3 have 14, 50, 100 customers, respectively, each
with 6 periods. Each of these sets has four classes of instances. The first class includes
the normal or standard instances. The second class contains high production unit and
setup cost instances. The third class represents the case with high transportation costs (by
multiplying the customer coordinates of the first class by a factor of 5). Finally, the fourth
class includes instances with no retailer inventory costs. Boudia et al. (2005) present 30
test instances in each of their three sets: sets MV-B1, MV-B2 and MV-B3 which have 50,
100 and 200 customers, respectively, each with 20 periods. Accordingly, the total number
of instances in these six PRP data sets is 1,530.

We adapt the ARP instances from the PRP data sets of Archetti et al. (2011). ARP
instances include three data sets (SV-C1, MV-C2 and MV-C3) with a total number of 1,440
instances. Consequently, we are solving a total of 4,068 instances of the IRP, PRP and ARP

problems. Table A.1 provides an overview of the main characteristics of these instances.

Parameter Setting

We chose a random but varied subset of instances from the entire test bed of problems to
calibrate the parameters of the algorithm. For the IRP data sets of Archetti et al. (2007)
and Archetti et al. (2012), with a total number of 1,098 instances, we randomly chose
two instances for each combination of the fleet size (m), period (/) and inventory cost
level (/1) which resulted in a total of 60 instances: 40 instances from Archetti et al. (2007)
and 20 instances from Archetti et al. (2012). From the PRP data sets of Archetti et al.
(2011), we randomly selected four instances from each class of instances, resulting in 16
instances from each data set and a total of 48 instances. From the PRP data sets of Boudia

et al. (2005), we randomly chose four instances from MV-B1 and MV-B2, resulting in 8

il



Table A.1: Overview of the benchmark data sets for the IRP, PRP and ARP

Problem Reference Set name Size [ n m d C Ly Li I [ Q
IRP Archetti et al. (2007)  SV-I1 100 3 5to50 1 C - UL C V VvV C
60 6 5to50 1 € = UL € V VvV C

MV-I1 100 3 5to50 2 C = UL € V VvV €

60 6 5to50 2 C¢C - UL C v Vv C

100 3 5to50 3 ¢ - UL C Vv v C

60 6 5to50 3 ¢ - UL C VvV VvV C

100 3  5to50 4 C - UL C V VvV C

60 6 5to50 4 C - UL C Vv VvV C

100 3 5to50 5 € - UL C v Vv C

58 6 5to50 5 €¢C - UL C v Vv C

Archetti et al. (2012) SV-12 60 6 50to200 1 C - UL C V V C

MV-12 60 6 50to200 2 C - UL C V V C

60 6 50to200 3 C - UL C V VvV C

60 6 50to200 4 C - UL C V V C

60 6 50to200 5 C - UL C V V C

PRP Archetti etal. (2011)  SV-A1l 480 6 14 1 € UL UL C 0 V C
MV-A2 480 6 50 UL C UL UL C 0 V C

MV-A3 480 6 100 UL C UL UL € 0 V C

Boudia et al. (2005) MV-B1 30 20 50 5 v C¢C C C Vv 0 C

MV-B2 30 20 100 9 v C C C V 0 C

MV-B3 30 20 200 13 v €C € € V 0 €

ARP This paper Sv-C1 480 6 14 1 C UL UL C VvV VvV C
MV-C2 480 6 50 UL C UL UL C V V C

MV-C3 480 6 100 UL C UL UL C V VvV C

Total 4,068
Note. C: Constant/Capacitated, MV: Multi-vehicle, SV: Single-vehicle, UL: Unlimited, V: Varying.

instances. No instances from the MV-B3 data set were chosen since they require long
computing times. From the ARP data sets, we randomly selected four instances from
each class of instances, resulting in 48 instances. Therefore, we perform the parameter

setting experiments on 164 instances.

The most important algorithmic parameters to set are the maximum number of itera-
tions for the algorithm, 14, and the tabu search iterations coefficient, 1V, and i¥,,,, for the
solution of the VRP; subproblems. The rest of the parameters are the maximum number
of local optimum iterations, %, the maximum number of iterations without incumbent
solution improvement, N, the number of consecutive iterations for which the same cost
update mechanism is applied, (/, the maximum number of MR subproblem iterations,
(%, the right-hand-side of the LBI, inequalities, , the reduction in the aggregate fleet ca-
pacity in constraints (1.21), 1 — A;, the gap between the solution obtained using the M,
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subproblem and the incumbent solution, g, and the gap between the solution obtained

using the MF subproblem and incumbent solution, g~.

We perform an extensive study on the parameter setting and arrive at the values in

Table A.2. Then, we design a sensitivity analysis to make sure that the selected values are

174
min

the right choice for our algorithm. Obviously, when ¢, (¥ and 1}, increase we obtain
better results (see Tables A4, A.5 and A.6). But since the same parameter setting is used
for all the problems and data sets, we have an implicit limit on the number of iterations in
order to spend an acceptable computing time compared to other benchmark algorithms.
Our observation indicates that the algorithm has an acceptable performance with small
changes in , /¥, ¢ and ¢™ while the current setting for these four parameters helps us to
reduce the necessary computing time. Also, we noticed that the best 1 — A; varies among
different IRP and PRP data sets. The last column of Table A.2 contains the ranges of the

sensitivity analyses on the parameter values.

Table A.2: Parameter setting for the algorithm applied to all problems and data sets

Par Description Selected value  Other values for the
sensitivity analysis

i Max # of algorithm iterations 200 100, 150, 250, 300

:_%;‘m Minimum tabu search iterations coefficient 100 50, 200

[ Maximum tabu search iterations coefficient 500 400, 600

i Max # of local optimum iterations 80 (0.4%%) 60 (0.3%4), 100 (0.5%)

N Max # of non-improving iterations 60 (0.3%14) 40 (0.2%4), 80 (0.4%)

P # of iterations before M2 subproblem can be used 5 4,6

® Max # of MX subproblem iterations 10 5,15

M # of consecutive iterations to apply each mechanism 7 5,689

1— Ay  Aggregate fleet capacity reduction amount® 2/n 1/n,3/n,4/n

9 Gap of § obtained using M; subproblem and &* 3% 2%, 4%

g Gap of S obtained using MX subproblem and §* 0.5% 0.3%, 0.4%, 0.6%

Note. Max: Maximum, Par: Parameter, S: Current solution, §*: Incumbent solution
¥ Up to a maximum of 25%

We used the following CPLEX setting for all problems and data sets to solve the
My, M. and MF subproblems. We used CPLEX with one thread in all of our experi-
ments. We disable all the CPLEX MIP cuts except FlowCovers and Gomory. We set the
Advlnd parameter to zero to prevent CPLEX from spending time to recover the previous
iteration’s search tree with its built-in heuristic. The rest of the CPLEX settings follow

the strategy of getting quality upper bounds faster rather than closing the optimality gap
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when solving the M,, M, and MF subproblems. We set Dive to 2 (probing dive for
the MIP dive strategy), OrderType to 1 (to use decreasing costs for the MIP priority or-
der generation in the search tree), CoeffReduce to 1 (to reduce only to integral coefficients
when the coefficient reduction is used by CPLEX), DGradient to 4 (steepest-edge pricing
with unit initial norms for the dual simplex pricing algorithm) and MIP Emphasis to 1
(to emphasize feasibility over optimality in the search tree). These allow us to terminate
CPLEX sooner and execute more iterations. We set a maximum time limit of 40 seconds

for CPLEX when solving the M, M. and MF subproblems.

Subproblems for the PRP and IRP

In this section, we redefine the variables, objective, and constraints of our formulation
to match the outbound PRP and IRP models in the literature. In PRP and IRP, the set of
nodes Ny = {1,..,n}, indexed by i € N, represents the customers, i = 0 represents the
plant and N = N; U {0} is the set of all nodes. Let K; denote the storage capacity and
F;; represent the inventory of the product (at the end of period t) at customer i € N and
at the plant for i = 0. Let d;; be the total demand of customer/retailer i from period ¢
to the end of planning period /. The rest of the parameters and variables have a similar
definition as in the ARP. The M, subproblem for the PRP is defined as follows:

min } (upe + fye+ Y hiFi + tTmZo:) (A.1)

teT iEN

s.t.
Fop-1+pr= ) qu+Fe VtET (A.2)
iEN;
Fi1+qu=dy+Fy Vi€e N,VteT (A.3)
pr <min{C, }_ diy}y: Vt€T (A4)
i€N,

Qi < min{Ki, Q,dm}z“ Vie Ng,Vte T (AS)
Y g <Qzy VtET (A.6)
i€N;

zp<mVteT (A7)

\%



Fy <K; vie NVteT (A.8)

pe20ye{01},z20 € Z VteT (A9)
F;, >0VieN (A10)
gir > 0,z € {0,1} Vi€ N;,Vt € T. (A.11)

The objective function (A.1) minimizes the total production, setup, and inventory
costs both at the plant and customers together with the vehicle dispatch cost. Constraints
(A.2) and (A.3) ensure the inventory flow at the plant and at the customers, respectively.
Constraints (A.4) and (A.5) force setup costs at the plant and vehicle visits to the cus-
tomers, respectively. They also impose limits on production and shipment quantities.
Constraints (A.6) are equivalent to constraints (1.19) for the ARP. Constraints (A.7) and
(A.8) enforce the fleet size and storage limits at the plant and customers. The M; sub-

problem for the PRP is to minimize the following objective function:

min ) (upt + fyr+ Y hiFe+ ) m,z,-,), (A.12)
teT

ieN i€N;
subject to constraints (A.2)~(A.5), (A.7)-(A.11) and (A.13):

Yo <AmQ VteT. (A.13)
16N

Constraints (A.13) are the equivalent of constraints (1.21) for the PRP. Having the bi-
nary decisions y; fixed from the solution of the M, subproblem, they become constants
in constraints (A.4) for the M, subproblem. In the M. subproblem for IRP, p; is a pa-
rameter that makes the constraints (A.4) not applicable. The objective function of the M,

subproblem will then be:

min Y Y (hiFy + ozir). (A.14)

VETIEN

To comply with the replenishment process timing assumption in Archetti et al. (2007)
and Archetti et al. (2011), Adulyasak et al. (2014) suggested constraints (A.15) that should
be added to the M subproblem for IRP. Constraints (A.16) are equivalent to the original
assumption (Archetti et al., 2007, 2011), F;, _; + g;r < K;, and can be obtained by replacing

the LHS from constraints (A.3). The reason for this modification is to impose them as
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bounds on the inventory variables rather than adding constraints to the model.

F()t > Pt VteT (A15)
Fy <Ki—dy VteT (A.16)

Moreover, the fixed cost }_;cn hiFip has to be added to the final solution value for the
IRP instances, since Archetti et al. (2007) and Archetti et al. (2011) consider the inventory
costs at the beginning of the period starting from period zero.

Upper Bound on the Number of Vehicles

We present an analysis of the upper bound on the number of necessary vehicles (Sec-
tion 1.4.3). We first explain a naive procedure to merge two routes with a total load less
than or equal to the vehicle capacity in the capacitated vehicle routing problem. Next, we
use this in our proof of the upper bound.

Under the assumption that the triangle inequality holds, and given a solution to the
capacitated vehicle routing problem, two routes with a load less than or equal to half of
the vehicle capacity can be merged to obtain a new solution with a smaller or equal cost.
It is sufficient to remove exactly one of the edges incident to the plant (depot) from each
route and connect the resulting partial routes using exactly one new edge. This results
in a solution with a smaller or equal cost, while still satisfying the vehicle capacity. Note
that although this procedure gives a shorter route compared to total of the original two,

it does not necessarily produce the optimal route.

Proposition A.1. Under the assumption that the triangle inequality holds, in a feasible instance
of the capacitated vehicle routing problem with the set of nodes N to be visited, shipments g,
i € Ns, and route capacity Q, there exists an optimal solution with a number of routes smaller

than or equal to max{1, [§ Lien, 9i] — 1}.

Proof. Proof. Consider a feasible solution with m > 2 routes, and let k = &%’1& and Q/
denote the load in route j € {1,...,m}. If m > [2k], we show that there exists a better or
equivalent solution with m — 1 routes. Let j; and j, be the two routes with the smallest

loads among all routes. We will prove, by contradiction, that Qi + Qi < Q, in which
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case we can merge routes j; and j,, and arrive at a total number of routes equal to m — 1.
If m — 1 > [2k]|, we repeat this route reduction procedure until we have a solution with
|2k — 1 routes. Because this holds for any feasible solution, the number of routes in an
optimal solution cannot exceed max{1, | 2k| - 1}.

The proof, by contradiction, that Q/t + Qi < (, is as follows. Suppose that Q"' + Q7 >
Q, then the larger load among Q' and ©” must be strictly larger than Q/2. We then

have:

QN+ Q2 4 3 Q> Q+ (m-— 2)~Q—~ =m

> > [2k]
IT{lr/m}“f‘fl"?"h

>kQ=) 4

1€ N;

y'e)
T'e)

which is a contradiction. The first inequality is valid because for j; and j, Qh 4+ QR > (),
and each of the remaining m — 2 routes (j € {1,...,m}|j # ji,j # j2) has a load greater
than or equal to j; and j, by assumption. The next expression is obtained by algebraic
manipulation. The second inequality is valid based on the assumption that m > [2k].
The next expression is trivial because ['ZH%E2 > 2k%‘2 = kQ. The last expression is valid
based on the definition of k. This leads to the contradiction that the sum of the route
loads (first term) is strictly greater than the total shipments (last term). Therefore, the
sum of the two smallest loaded routes (j; and j;) cannot be strictly greater than the route

capacity. [

Table A.3 presents the effect of implementing this upper bound on the number of ve-
hicles when CCJ-DH is applied on the multi-vehicle IRP and PRP instances. The results
show that for the data sets with few available vehicles (MV-I1 and MV-12) the time sav-
ing of applying this bound is negligible. On the instances with an unlimited number of
vehicles, the time saving factor is about 3 (for MV-A2 data set with n = 50) to 4 (for MV-
A3 data set with n = 100). The average gaps and number of BUBs are almost the same
except for the MV-B3.

Further Analysis of the Algorithm

In addition to the 200 iterations that we fix for CCJ-DH for all problems and data sets
as reported in the main paper, we let it run for A = {100, 150,250, 300} with different
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Table A.3: Effect of valid upper bound on the number of vehicles on the algorithm’s
performance when applied to multi-vehicle IRP and PRP instances

Gap (%) # BUB # NBS Time (sec)

Prob Set m Class Size TB' NBt TB' NBY TB' NBY TB' NBt
IRP MVl 2 - 160 281 28 24 22 0 0 39 38
3 . 160 254 253 31 33 14 13 37 37

4 - 160 289 295 27 26 21 20 37 39

5 - 158 3.01 309 33 29 27 25 36 36

MV-2 2 - 60 -159 -15 40 39 40 39 2781 2761

3 . 60 -255 253 44 “u  u 44 2120 2282

4 - 60 -448 449 50 49 50 49 2780 2976

5 . 60 -4.65 -441 57 55 57 55 3232 3233

PRP MV-A2 UL 1 120 -0.05 -0.03 101 94 98 93 201 643
UL 2 120 002 002 39 33 39 33 170 562

UL 3 120 -01 -01 87 9 83 87 155 480

UL 4 120 -0.02 -0.02 71 77 7N 77 215 655

MV-A3 UL 1 120 021 018 73 7% 73 76 1103 5201

UL 2 120 018 018 39 4 39 44 961 4441

UL 3 120 115 118 26 26 26 26 729 3333

UL 4 120 011 011 47 52 46 52 1112 4518

MV-B1 5 - 30 089 0.86 1 1 1 1 1825 1980
MV-B2 9 - 30 128 126 0 0 0 0 5368 6911

MV-B3 13 - 30 022 0.5 12 18 12 18 8344 15750
Note. Other data sets include only single-vehicle instances and no tighter bound is applicable.
¥ Tight bound (Eq. 1.23) is applied.
¥ No bound is applied.

starting node visit costs. Tables A.4-A.7 report the average gap (%), number of BUBs,
number of NBS, and computing time (seconds). Moreover, we examined the effect of em-
ploying each of the three update mechanisms separately and present in the same tables
the results for 14 = {200,250} iterations. The results indicate that the mixed mechanism
works better than each of the cost update mechanisms separately. The exception is on the
Boudia et al. (2005) data sets for which the marginal cost update mechanism outperforms
the other mechanisms. CCJ-DJ is successful to find average gaps less than 0 or in other
words it outperforms the state-of-the-art algorithm (ABS-H) on the MV-I2 data set in
all scenarios. On the MV-A2 data set the algorithm with 100 iterations performs almost
the same or better than all the previous benchmark algorithms with different starting
node visit costs. The VRP route cost update mechanism leads to substantially bigger av-
erage gaps while it still is competitive on the large-scale multi-vehicle MV-12 instances
compared to the previous state-of-the-art heuristics. Overall, different CCJ-DH scenario

implementations return 1257 BUBs among which 973 are NBSs on all data sets.
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Table A.4: Average gaps by different cost update mechanisms and initial node visit costs
for IRP and PRP data sets (%)

Mined M' and T' Mechanisms M i vt
ol = oy wneh = Dogy ot =en 2

WO M0 2% a0 100 130 2000 2500 300 200 250 200 2% 200 250 OBM

Deob Sat mo Class Siee 1R 15

IRP SV 1 - 160 166 Lal 160 157 157 156 1R 165 le el 188 156 A2 292 208 2 53 Sl 13
MYl 2 - 60 281 268 266 25t 240 251 243 273 268 25v 261 25 406 361 282 276 826 605 1%
3. e 2% A 244 2 2% 23 219 249 245 242 233 221 373 362 277 268 697 649 167
4 - 10 280 anm 288 271 256 232 247 285 272 25 248 239 445 414 283 283 705 685 8T
- 236 28 272 258 249 299 292 273 285 26 466 457 30! 301 758 748 205
SV 60 371 28 267 A58 349 338 338 361 A 349 34 343 482 454 479 474
MV-R 2 - ORI RRRY L6 -0 AL <83 <197 152 LTS LSS <175 195 061 08 068 082
T s o0 255 a7 260 A9 28 304 293 224 267 241 -3 299 256 275 177 <183
' 60 AR 157 445 4T 42T A8 ATS A4l 432 -6 474 474 382 39 369 384
3 - 60 A5 hed A56 Adh LG AT AT7 442 AT6 A8 <08 54 42 -h26 44 45 305 318 578
PRP O SV-AL L 1 1200 005 028 0 029 025 022 017 035 029 026 022 016 039 038 05 049 083 0% O
T2 o 0 CO6 00T 004 003 003 006 O Uk 003 003 007 006 008 0DD8 Od6 OIS 001
Voo 10 18 et LEOL6Y 1B 120 12 L8 169 148 125 117 200 193 241 22 486 422 06l
T 120 o s 018 016 01 015 G009 08 015 @14 014 008 02 02 031 03 052 05 5
MV-A2 U 1 120 005 006 6 005 008 D05 005 005 D06 008 OO 004 005 005 05 04 003 01 01 032 031 000
UL20 1200 002 002 001 001 001 02 002 002 0M 001 003 002 002 001 001 0D 002 006 006 ©11 011 001
UL & 1200 1 007 <02 024 a3 07 023 026 028 029 001 02 <026 027 028 027 019 006 001 LN 1041
U, @ 120 002 002 003 Q03 LM 002 002 03 003 a0 <201 00 D02 003 003 Q03 003 002 081 011 Qa7
MVAZ UL 1 100 821 02 018 &dF 018 0% 019 017 017 0a7 049 Q8 01§ 017 017 023 023 053 05 058 06l 013
Ul 2 120 018 QOB 048 08 018 018 QI8 038 018 018 08 018 018 018 018 019 018 021 020 023 02 QOle
Ul 3 1200 105 K 107 2 086 126 126 LIT 102 L2 123 LM 108 103 L2 146 147 16t 16 226 Al5 079
UL 40 0dr 0l a1 0l GIT 02 ull 01 ar 041 Qa1 001 01 a1 04 01 013 043 0 0le 008
MVSBL 5 20 08 08 078 077 71 09 092 089 084 083 146 126 1M 131 128 074 071 W78 L6 207 21 05
MV-B2 @ 3000128 122 12 K 1I2 13 1A 132 122 L9 146 131 128 12 121 108 104 193 1™ 232 228 085
MV-B3 13 - 0 022 021 08 Odn GIF Q27 02 02 w19 02 026 019 Q17 018 015 004 005 191 191 21 213 -t

Nate. The best average gap at each row Is presented with the bold font.
! Transportation cost update mechanisms, M: Marginal, T TSP route cost share, Vi VRE route cost share, * Initial values for node visit cost.
' Qverall best obtained solution for each instance is taken into aceount,

Table A.5: Number of BUBs by different cost update mechanisms and initial node visit
costs for IRP and PRP data sets

Mixed M' and T' Mechanisms Mt Tt vt
™ e ot = 20 ot el
100 130 200 250 300 200 230 200 250 200 250 OB

Prob Set o Class  Sige

Iy [ B3 3 0 a3 0 33 % A 33 0 W W W W16 W
FE MWowow w2 2% 26 2% W 16 16 N M 101
C T ROE MR MM o®m 3 M % om W oA A 6T R
IR T WO WS M M2 A MM 15 8 26 2B 9 9 W
51 WS M I8 MW\ W AW M % 0 M N u

o0 {0 0 0 [4 4 0 0 0 0 Q 0 0 0 0 0 0 4
Aan 40 41 41 40 A0 4 @ 41 3 39 3 3 36 36 43

An 46 46 49 a8 M A8 48 45 4 46 46 43 43 41 W Al

0 82 & M 3 8 @ 49 5 S8l 500 48 47 48 48 44 45 58
ol % & 8% 55 8 M 8 57 56 56 52 52 57 5% 49 40 ol
20 1 12 1w 20 2 1 o1 %o’e w119 2t B 12 16 3 3 1 1 30
120 M 2 20 W 13 W o2t 2 W o1 17 oA w1 15 3 ? 1 1 A0
20 ] 3 3 + 3 2 3 L 4 3 2 3 4 4 3 3 5 2 2 0 ] 10
120 26 3 N MW 32 8 3 MM 3B 4 28 3 M O3¥ 41 ®» 3 8 8 2 2 63

1200 101 00 100 100 102 wR OO0 98 W00 102 7T N w97 98 81 81 & &4 57 57 10
2038 1 a7 @ 53 A A3 45 4 46 32 A MW ¢ 47 M 25 & 9 ra
1240 8 9 9 98 80 91 93 vy 95 RO 93 97 a7 98 14

120 71 % TS 80 o6 T TRO80 TR e VP 76 80 1 73 3B 42 A e o4

%
24
%
<3

6 Mm M R N 7N T 79 T 66 42 43 25 8 &
0 47 4 B3 32 3 W 45 50 45 42 2 1 8 [ 82
M 25 26 2 3 A 26 30 30 023 23 25 20 11 11 35
4 47 Bl 53 45 48 48 &3 7 53 56 28 20 16 17 71

2 3 3 3 0 2 2 2 3 2
o ¢ o0 ¢ o o o o0 o 0
W12 12 o 1 10 1 12 W 1 12 18 0
“Total (All Instances) 2624 S48 912 955 0K (003 882 914 O G74 993 866 S11 S50 975 1001 815 851 675 685 406 422 1257
fotal (LSMV* Instances) 1200 687 693 722 743 75 678 697 720 735 744 656 699 719 720 745 650 665 532 538 a%2 a6t 8ot
Note. The largest number of best solutions obtained at each row is presented with the bold font.

! Transportation cost update mechanisms. M: Marginal, T: TSP route cost share, V: VRP route cost share. * Initial values for node visit cost.
' Overall best obtained solution for each instance is taken into account. ¥ Large-scale multi-vehicle,

-

1212

-
©




Table A.6: Number of new best solutions found by different cost update mechanisms and

initial node visit costs for IRP and PRP data sets

Mixed M* and T* Mechanisms mt ™ vt
ot = eni/2 ot = ey ot = 2000 ot = cg/2
Prob  Set m Class Size 100 150 200 250 300 100 150 200 250 300 100 150 200 250 300 200 250 200 250 200 250 OB
IRP  SV-I1 1 - 160 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MVl 2 - 160 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 - 160 14 13 13 14 14 15 13 15 153 14 15 12 13 13 13 11 11 10 1n 3 3 19
4 - 160 21 21 2 21 21 20 20 22 2 20 21 21 2 23 23 11 14 18 18 6 6 26
5 - 18 27 27 31 32 31 27 29 29 33 32 28 2 30 32 30 20 21 26 26 10 10 39
SV-I2 1 - 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MV-2 2 - 60 40 40 40 40 40 40 40 40 #1 41 40 40 0 #N #3539 3B 3 36 36 43
3 - 60 H 44 45 46 48 46 46 46 49 4B M 45 45 45 46 46 46 43 43 41 40 51
4 - 60 5 49 51 50 50 52 53 54 54 53 48 49 52 51 530 48 47 47 48 44 45 58
5 - 60 57 57 38 57 58 54 5 5 55 56 54 55 57 56 56 52 52 57 3% 49 46 60
PRP  SV-A1 1 1 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 3 2€ ¢© o o o o o © o 0o o o0 O 0 0 o0 o 0 0o 0 0 0 0
1 4 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MV-A2 UL 1 120 98 97 99 97 99 95 97 9% 98 99 95 97 95 9 97 8 B0 8 8 52 55 108
uL 2 120 39 41 46 48 53 3B 43 M4 M4 46 32 40 M4 M4 & 4 4y 25 B 7 9 79
UL 3 120 83 88 89 92 95 8 88 92 94 92 8 91 94 94 95 63 70 B0 85 35 40 100
UL 4 120 71 76 74 78 7™ 6 7% 74 7 7 €6 7 75 79 78 71 72 3 41 24 25 93
MV-A3 UL 1 120 73 73 ™ 78 78 74 76 79 M 78 73 77 78 77 M 67 66 42 42 25 27 82
uL 2 120 39 36 46 48 50 39 40 47 46 88 31 3B 4 4 N 45 42 2 2 L} 6 82
uL 3 120 26 26 28 30 30 21 19 25 26 28 23 26 26 30 30 25 23 24 25 11 1 35
UL 4 120 46 46 46 52 52 45 46 47 30 353 44 48 48 52 37 53 55 27 25 15 16 71
MV-B1 5 - 30 1 1 2 2 3 2 2 3 3 3 0 2 2 2 3 2 3 0 0 0 0 5
Mv-B2 9 - 30 0o 0 o o 0 o o0 o 0o 0o o0 0 o 0 0 0 1 0 0o 0 0 1
MV-B3 13 - 3 12 12 12 ¥ 15 9 11 12 11 10 1w 12 14 1 12 18 1 0 0 0 0 21
Total (All Instances) 2628 741 747 781 799 816 732 753 780 797 804 713 753 779 790 BOB 691 708 577 583 363 375 973
Total (LSMV*! Instances) 1290 679 686 715 732 750 670 691 714 729 738 649 694 714 722 740 649 662 523 528 344 356 889
Note. The largest number of best soluti btained at each row is presented with the bold font.
* Transportation cost update mechanisms. M: Marginal, T: TSP route cost share, V: VRP route cost share. ¥ Initial values for node visit cost.
H Overall best obtained solution for each instance is taken into account. ! Large-scale multi-vehicle.
Table A.7: Average running time for different cost update mechanisms and initial node
visit costs for IRP and PRP data sets (seconds)
Mixed M* and T' Mechanisms Mt 1 vt
ot = ci/2 ot = e ot = 20, ot = /2
Prob Set m Class Sice 100 150 200 250 300 100 150 200 250 300 100 150 200 25 300 200 250 200 250 200 250
IR SV 1 160 24 3% 48 6 72 25 3% 51 e ™ 27 3% 48 60 73 44 56 5 71 5 68
MV 2 160 M 5 e & % ¥ 60 69 8 18 3% 52 6 8 98 7 95 & 92 & 7
3 10 3 52 & 18 125 3 5 e/ & 104 38 2 72 8 100 Y5 9% 69 95 54 78
4 10 37 53 74 8 W W 6l 77 8 102 38 34 71 94 115 7 88 68 86 45 70
5 158 3% 52 65 8 98 40 54 6 9 9 37 49 68 BS 94 64 7 65 B 58 68
svaz 1 60 3363 4998 6668 8295 9209 3361 8019 6831 BIVS 9250 3423 5061 6725 8300 9397 4394 3436 795 w472 7617 9169
M2 2 60 2781 4122 5657 6914 B029 2889 4116 5351 6494 BI172 2011 4718 6045 6860 8397 dol7 5890 5043 7492 6473 7957
3 60 2120 3513 4209 5386 6624 2088 3272 4397 8328 6923 2044 3219 450 3478 6401 4441 6008 4159 5204 B354 6683
4 - 60 2780 4083 5132 6236 46 3102 4126 5289 6371 V26 2916 4199 5333 6502 7222 5918 7204 3%93 6668 6880 8160
5 - 60 3232 4319 5527 6290 7101 2983 3907 5167 6213 6952 911 4122 513 6211 7163 649 748 4733 5807 6925 8119
PRP SV-A1L 1 1 120 8 13 18 24 20 8 13 18 4 2 8 13 18 2 N 17 2 B 3B 13 17
1 2 1220 8 13 8 B ¥ & 13 B8 2B ¥ 8 13 18 B M B 2 B 3N 12 15
103 120 8 12 17 2 8 8 12 17 2 W 8 W &7 2 W W 8 B B 9 1
1 4 120 8 13 18 4 0 8 13 18 2 9 8 13 18 23 M 15 19 2B 3B 15 0
MV-A2 UL 1 120 201 300 400 497 600 201 299 400 500 598 202 301 434 503 605 522 714 %5 460 301 378
UL 2 120 170 258 34 42 54 10 2% M7 433 SM 169 257 355 431 662 38 55 31 42 257
UL 3 120 15 23 39 385 465 15 234 313 385 467 158 2% 3% 394 473 353 4% 288 3 1% 200
UL 4 120 215 36 43 540 661 217 329 43 528 660 216 325 470 54 654 468 669 426 656 04 448
MVA3 UL 1 120 1103 1612 2125 2644 3162 1084 1636 2131 2642 3174 1080 1886 2124 2637 3458 2933 3495 1720 2204 1848 1965
UL 2 120 961 1454 1947 2432 2920 962 1461 1946 2422 2923 962 1453 1938 2431 3323 2134 2614 1791 2248 1563 1958
UL 3 120 729 1088 1461 1802 2173 730 1093 1456 1809 2065 757 124 1473 1846 2681 1767 2171 1485 1883 916 1147
UL 4 120 1112 1664 213 2767 3317 1110 1663 2204 2753 3285 1106 le61 2223 3225 37 293 2844 2050 2703 1985 2463
MVBI 5 30 1825 2622 3559 446 5326 1840 2642 3546 4480 5361 1729 2494 3408 4319 509 1347 1698 6760 B47 8602 10381
MVB2 9 30 5368 7460 9811 1173 13911 5888 K23 10876 12812 15280 3619 7925 9894 12401 14623 9488 12849 13256 16648 14130 17406
MVBI 13 - 30 &34 1204 15891 1939 22858 8294 11878 15747 19310 23012 8191 11705 15621 18950 22520 17955 22625 2230 27584 23869 28820
TTransportation cost update mechanisms. M: Marginal, T. TSP route cost share, V: VRP route cost share.
# Initial values for node visit cost.



We also present the sensitivity analysis on the relevant instances to evaluate the ef-
fect of the M* subproblem for the multi-vehicle instances with m < n. Table A.8 shows
the results with and without implementing MF subproblem. We performed the exper-
iments of these two tables by setting 100 iterations and ¢;; = 0.5cg; for CCJ-DH, similar
to the scenario in the sixth column of Tables A.4-A.7. Our observation is that the algo-
rithm without using MZ faces more infeasible VRP; subproblems for these instances.
Therefore, the MZ subproblem implementation is crucial to obtain quality solutions.
Moreover, it resulted in better average gaps and more BUBs on all data sets and classes,
except for MV-12 with m = 3,

Table A.8: Effect of implementing M subproblem in CCJ-DH on relevant IRP and PRP
instances

Gap (%) #BUB # NBS Time (sec)
Prob  Set m  Class  Size ME  NM' MR ONMP O ME NMP o ME NMT
RP MVl 2 - 160 281 362 24 8 0 0 39 37
3 - 160 254 342 31 6 14 3 a7 38

4 - 160 289 342 27 14 bal 1 37 38

5 - 158 301 339 33 18 27 16 36 36

MV-I2 2 60 <159 <156 40 a0 40 40 2781 2698

3 . 60 <255 <239 44 45 44 45 2120 1842

4 60 448 413 50 4 50 44 2780 1761

60 465 451 57 54 57 54 3232 1917

PRP MV-B1L 5 ‘ 30 089 251 1 0 1 0 1825 1778
MV-B2 9 - 300 128 218 0 0 0 0 5368 4318
MV-B3 13 . 300 022 048 12 1 12 1834 9171

Note. Other data sets include only single-vehicle or unlimited multi-vehicle instances.
¥ Without implementing M X subproblem.

xii



Appendix B — A Branch-and-Cut
Algorithm for an Assembly Routing

Problem

Proofs

Proposition 2.1. Inequalities
ta [5)
Yo pe <lopy-1+ Y Tin—1+ Y Y SikneYe VKE KV, ta € T,t1 <t  (2.19)
e=t iGNk e=H iENk

are valid for the M arp.

Proof. The inequalities for }:E:,I Y. = 0 are trivial because Zﬁitl pe = 0. Otherwise, let 6
be the last period in which the production setup is performed, i.e., § = max.{t; < e <
t2lye = 1}. Then,

iy 6
Y Pe=)_ pe

e=H e=H

9
=Y (oke-1 — Ioke + Y Gike)

e=ty 1€ Ny
6
=), (I()k,ewl — Ioke + Y, (Tge-1 — I +5ike))
e=H i€ Ny
= Tokt,—1 — ko + Y, (Tikty—1 — Like + Sikt,0)
1€ Ny

< Ipkt -1+ Z Lig g1 + Z Sikt,6
1E€Ng 1€Ng



= Tkt -1+ 3 likp-1+ Y Sika¥e

i€N; i Ny
in
. s TR o o
< oy -1+ L liky -1+ L L Siktyele-
i€ Ng e=h i€N

The first four equations follow from the definition of #, constraints (2.3), constraints (2.4),
and the definition of s;y,1,, respectively. The first inequality holds due to the non-negativity
of inventory variables. The next equation is valid because ys = 1. The last inequality

holds because the y. variables are nonnegative. O
Proposition 2.2. Inequalities

t by
Y Gike < likpy—1+ Y Sikne2ie Vi € N,Vk € K;, Vi, th € T,y < 1 (2.20)

o=ty e=h

are valid for the M axp.

Proof. 1f Z.f,,;, , Zie = 0, then the supplier i will not be visited during periods f; to f,.
Therefore, for these periods no shipment is possible (Y% 1, Qike = 0) and inequalities (2.20)
are satisfied. Otherwise, let @ be the last period in which the supplier i will be visited, i.e.,
6 = max.{t; < e < ta)zje = 1}. Then,

0

i L
Z fike = }__, Tike
ey

cwity

¢
il
i L (like—1 = lie + Sike)

ety
= Lig gy -1 = lixg + Sikry0
:\ I”\'«h -1 + Sikh@

o 1”\’,’.‘ -+ S,kh@zlﬂ

, 2,
S—‘ Ifk,l;“l + L bikl[{’“iﬂ'

e=h
The first three equations hold due to the definition of 6, constraints (2.4), and the def-
inition of sj,;,, respectively. The first inequality is valid because of the non-negativity
of inventory variables. The next equality is valid for the reason that z;; = 1. The last

inequality holds because the z;, variables are nonnegative. O
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Proposition 2.3. Inequalities

5 ta
Yo Y Gike < Toor, + ok, + ) dety ) zie VkEK,Vh, b eT,h<h (2.21)
e=H ieN; e=H 1€ Ny
are valid for the M 4rp.

Proof. If Y2, , Lien, Zie = 0, then no visit to the suppliers i € N; will be made during
periods t; to ¢, and hence no shipment of component k is possible during this period
(Zézzt . Lien, Gike = 0). Then, inequalities (2.21) are satisfied because the left-hand-side
(LHS) will be equal to zero and the inventory variables in the right-hand-side (RHS) are
nonnegative. Otherwise, let 6 be the first period in which at least one node i € N; is

visited, i.e., § = min,{t; < e < t| Lien, zie > 1}. Then,

5]

2 EQike:tzquike

e=h ieN =0 i€ N
b
= Y (oke — Ioke-1+ pe)
e=0
5}
=3, (IOke — Ipke—1 + (Iooe — Ipo,e-1+ de))
e=0

= Ioot, — Ino,0-1 + Iokt, — Toke—1 + dot,
< Ipot, + Iokt, + der,

S IOOtz + IOklz - delz 2 Zjg
1€ Ny

t2
S 10012 4 IOklz =t E de[g Z Zje
e=f0 1€EN;

5
= Ioot, + Iokt, + Z det, Z Zije-

e=h  i€N;
The first four equations follow from the definition of 6, constraints (2.3), constraints (2.2),
and the definition of dy,1,, respectively. The first inequality holds due to the non-negativity
of inventory variables. The next inequality is valid because at least one node is visited in
period 0, i.e., }icn, zip > 1. The last inequality is valid since the z;, variables are nonneg-
ative. The last equation holds due to the assumption that 6 is the first period in which at

least one node i € Ny is visited. O



Lemma B.1. Inequalitics

t
max{0, Oy} < ): Z bxqixe Vi€ Nt e T
e=1kekK;

are valid for M agrp.

Proof. We have

©

1< Y bi(sien + Tivo) — Y bilixe
keK; kek;

!
= Y B }_(8ike + Te-1 = Tie)
k EK. e=1
t
=Y Y Uik
e=1kekK;
where the inequality follows from the storage capacity constraints (2.8), and the equa-

tions hold due to the definition of sj,;, and constraints (2.4), respectively. Because only

a strictly positive Q;; triggers the shipment to the plant, we obtain:

max{0, Qit} < Yowt Tiek; Oidike-

0
Proposition 2.4. Inequalities
max {0, d1r = Iooo, (Lkek beloco + Lien max{0, Qit} — L)/ Liex bk} t
; < Z ye VteT
mm{C, maxeé{l ..... t} {db} =+ LO} e=1
(2.22)

are valid for M 4gp.

Proof. We first obtain two lower bounds on the cumulative production from period 1 to
t.
L t
2 Pe = Z(dc + looe — 100,(’-1)
e=1 e=1

= dyy + loor — looo

> dyy — Ingo-
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The first and the second equations hold because of constraints (2.2), and the definition
of dy,1,, respectively. The inequality is valid due to the non-negativity of the inventory

variables. Moreover,

Y by ZPe Y by Z(I()ke 1= Toke + Y Gike)

keK  e=1 keK  e=1 IENk
=Y belowo — Y belowe + Y Z Y bidike
kek kek iEN e=1keK;
> Z brlowo — L + E max{0, Qit}.
kek ieN

The first equation follows from constraints (2.3). The second equation is obtained by
rearranging the terms. The inequality holds based on the component storage capacity at
the suppliers and Lemma B.1. Next, we determine two upper bounds on the cumulative
production from period 1 to t. The cumulative production amount forces a minimum
number of production setups due to production capacity constraints (2.5): Y\ _; pe <
CY!_ ;Y. Then, we present another expression for the minimum number of required

production setups:

E Pe < E(de + IOOe)ye

II
B
Q)
X
,_A,
™
+
Py
g
——
L1~
b

& (e,gn{laxt}{de'} + Lo) Zye-

The first inequality is valid since p; = d; + Ipot — Ioot-1 < d¢ + Ipot, and the fact that y; = 0
forces p; = 0. The second inequality and the equation hold trivially. The last inequality is
valid because of the product storage capacity (Ly). Combining the two parts of the proof,

we obtain:

max {0: dir — Iooo, ( Lkek brloko + Lien max{0, Qit} — L)/ Tkek bk} <
Yoot Pe < min {C,maxeqy,. i {de} + Lo} Loy Ye-



Proposition 2.5. [nequalities
1 o e
[ max{ ): by max{0,dy — Iooo — Loko }» L max{0, 9 ,,}}] < Lzﬂe Vte T (223)
Q keK ieN =]

are valid for M arp.

Proof. We obtain the first expression as follows:

E Qzpe > }; E Z bGike

e=1 e=1KkeKIEN;

t
et 2_: z bk(dg -+ }()Qc = I(]O,e«l =t Iﬂh‘ - IOk,P‘"])
e=1keK

s Z bk(d” -+ IQ()( - IOO(} + Iﬂkl - I(H\’O)
k&R

> ¥ be(dy ~ Too = Towo)-
kK

The first inequality is valid since the LHS is the total capacity of the dispatched vehicles
from period ¢ = 1 to t, and the RHS is the total shipped amount over the same periods,
all components and all suppliers. The first equation follows from constraints (2.3), and
by replacing the p; variables using constraints (2.2). The second equation is valid due to
the definition of dy,s,. The second inequality holds due to the non-negativity of inventory
variables. Next, we have

L Qzoe 2 ); Y ) bfike

el ieN keK;

2 Y max{0, Qy},

IEN
where the first inequality is valid because of the total fleet capacity, and the second in-

equality follows from Lemma B.1. O
Proposition 2.6. [nequalitics

lF max{0, Qi }
|

t
<Y z VieNVteT
min {Q Li + maxeeqa,. i1 Lkek, DaSike P Lkek; kackO“!'brku)}

e=1

(2.24)

are valid for M agp.
Proof. Based on Lemma B.1 we know that
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max{0, Qit} < Yb_y Liek, biike-

Now, we present upper bounds on the cumulative shipments from node i during period 1
to t. The vehicle capacity constraints (2.10) provide the first upper bound: Y™\ _; Y¢ K, bifike <
QY!_, zi. Next, we have

¢

Z Z bigike < Z(Ll + Z biSike)Zie

e=1kek; =] keK;
t
< E i max {E bsike' } )zw
e=1 ee{lt} rek,
(L + max {Z bkszke'} Ez:e
¢e{lot} kek,

Where the first inequality follows from Y ek, biqike < Li + Yxe k; biSike which is valid due
to constraints (2.4) and (2.8), and the fact that z;; = 0 forces Y ¢k, bxgiir = 0. The second
inequality and the equation hold trivially. Moreover, we have

t t
Yo Y bigie < Y0 Y be(Tio + Sikre) Zie

e=1keK; e=1kek;

& E Z bk 1k0+ max {stkle'})zze
e=1kek;, = F Sl

— Z E br(Lixo + Sik1t)Zie

e=1keK;

E by (Liko + Sikat Ezle

kek;

Where the first inequality is valid for the reason that g, < Ijxo + Six1. Which is valid due

to constraints (2.4), the definition of s,—kmz, and the fact that z;; = 0 forces Y ek, begixe = 0.

.....

siki+- The second equation holds trivially. Consequently, we obtain

t
max{0, Qir} < Y Y bigire

e=1kekK;

< mln{Q L; + max {Z biSike }» Z by (Tixo +Szk1t)} Ezle

kGI( keK;
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Proposition 2.7. Inequalities

max{0, di; — Tooo — Toko } < i Z .
min { 2, maxien, { Lo + sine} } |~ 1R,

m
'-o-.
n\
3
—
o
3
U1
~

are valid for M arp.
Proof. We have

- -}
dit — Tooo — Toko < Lem1 Lien, Fikes

which can be obtained by replacing p; using constraints (2.2) in constraints (2.3), and the

non-negativity of the inventory variables. Next, we have

~} oo N ) ~f i
Yoe=1 LaieN, Jike < % Ye=1 LieN, Zies

which is valid due to bygiiy < Qzj;. Furthermore, we have

f
L Lq ke S L Urh(l+"’1k1t }:Zw

iENy e= 0=
¢
< Z }fz?\i"{li'ﬂ) + Sirkae } Y_, Zie
e N | EN p
max{ k0 + s Ik“} Z Z Zjp.
!cN(t

Where the first inequality comes from constraints (2.4), and by checking for ¥/ ; zi, = 0

and §\_ z;. > 1. The second inequality and the equation are valid trivially. Finally, we

obtain
!
max{0,dir — Iooo — loo} < Y Y Gike
e=1i€N
< min{ = ,max{l,ko + Sikar } | Z 2 Zie-
e=1i€N;
&

Adaptation of CCJ-DH

In this section, we present the adaptation of CCJ-DH (Chitsaz et al., 2019) to the gen-
eralized version of the ARP. The algorithm decomposes the problem into three distinct

subproblems. The framework of the heuristic is presented in Figure B.1.
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1 1
1 1
X Subproblem 1. Make pro- X
! duction setup (y:) decision !
1 1
1 1

( Subproblem 2. Make production volume (p:), i
node visit (z;), and

vl cost (o) i shipment quantity (g ) decisions

Subproblem 3. Make routing (x;:) decisions

Figure B.1: CCJ-DH framework

The first subproblem returns a setup schedule. It uses an approximate transporta-
tion cost based on the number of vehicles dispatched from the plant. This results in the
following objective function:

min ) (upt + fye+ Y hoelow + Z Y hili + Umzm) (B.1)
teT kek+ ieN kekK;
where oy is the cost of each vehicle dispatch. This objective function does not include
any routing decision and hence constraints (2.11)-(2.12) become redundant. To impose
the aggregate fleet capacity in the first subproblem, the algorithm adds the following
constraints to constraints (2.3)-(2.10), and (2.13)-(2.15):
Y ) bigie < Qzor VEET. (B.2)
ieN keK;
After solving this subproblem using CPLEX, the algorithm fixes the setup schedule and
uses it as a given parameter in the second subproblem.

The second subproblem returns node visit and shipment quantity decisions. The al-

gorithm employs another approximation of the transportation cost in the objective func-

tion based on the cost associated with visiting each supplier (node). This results in the

following objective function:
min ) | (“Pt + Y hodoe+ Y Y Ml + ) Uitzit) (B.3)
teT keK+ i€N keK; ieN

where 0;; represents the node visit cost estimation. Similarly as in the first subproblem,

this subproblem ignores the routing decisions. To enforce the vehicle capacity and to
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make sure that the shipments can be packed into the available vehicles, the algorithm
considers the following constraints as well as constraints (2.3)-(2.8), (2.10), and (2.14)-
(2.15) in the second subproblem:

Yo ¥ begie < AmQ Ve T. (B.4)
ieN kek;
Here, A; = 1 — £ is a parameter. CCJ-DH solves this subproblem using CPLEX. Having
the node visit and the shipment quantity decisions fixed for each time period, the algo-
rithm solves one capacitated VRP for each period as the third subproblem. CCJ-DH uses
the tabu search heuristic of Cordeau et al. (1997) to solve the VRPs.

To intensify the search, CC]-DH updates the node visit cost estimates (¢;) for the next
iteration. The algorithm uses two estimation mechanisms. The first mechanism is the
cheapest insertion cost among all existing routes. The second mechanism splits the cost
of each route (in each period) over its nodes proportional to their direct shipment cost.
In this mechanism, if a node is not visited in a certain period, the algorithm considers the
direct shipment cost as the estimated cost for that node. CCJ-DH switches between these

two mechanisms after using each for 7 consecutive iterations.

To diversify the search, the algorithm adds a local branching type cut (Fischetti et al.,
2004) to the set of constraints in the first subproblem in order to consider a new setup
schedule. The stopping condition for the overall algorithm is a maximum of 200 intensi-
fication iterations. To perform a diversification, CCJ-DH considers two stopping condi-
tions: a maximum of 80 intensification iterations, or 60 intensification iterations without

incumbent solution improvement.

Examples for Fractionally Violated and Non-Violated Subtours

Figure B.2 shows an example where CVRPSEP returns a violated VRP CCC which is
a non-violated ARP GFSEC in the ARP (or the IRP and the PRP). Figure B.3 shows an
example for the case that a fractionally violated GFSEC or DFJ in the ARP (or the IRP and

the PRP) cannot be found if the node visit variables (z;;) are not considered.
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Figure B.2: A violated VRP CCC which is a non-violated GFSEC.
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Satisfied (non-violated) fractional ARP GFSEC

Figure B.3: Violated ARP GFSEC and DFJ which is a non-violated VRP CCC and DFJ.
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Results on the Large ARP Instances

Chitsaz et al. (2019) presented two lower bounding methods for the ARP. The first method
(BC-T) is a truncated BC with a time limit of 12 hours. BC-T uses the best-bound node
selection strategy. It adds inequalities (2.26) and (2.28) a priori to the model, and SECs
(2.12) and (2.27) dynamically through the search using the CVRPSEP package for sepa-
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ration. The second method (MIP-CP) relaxes SECs (2.12) from the model and solves the
resulting MIP. Then, it iteratively adds the violated SECs (2.12) as cutting planes for the
resulting integral subtours and re-solves the new MIP. A time limit of five hours is set for
this method.

In Table B.1, we present the performance of CCJ-DH, BC-T, and MIP-CP, and compare
them with our BC. In these experiments, the BC uses all inequalities and implements
algorithm A2 to separate SECs. Two branching node selection strategies are examined:
balanced between optimality and feasibility (default) or the best-bound node selection.
Because BC-T is able to solve the small instances with 14 suppliers in the first set (MV-C1)
to optimality in a very short time, we did not apply our BC to these instances. Columns
four to six present the results for CCJ-DH: CPU, #BUB, and the average solution value as
a percentage of the best lower bound obtained by the BC method (%BLB). Columns 7 to
11 show the results for BC-T: CPU, #BUB, the number of best lower bounds (#BLB), %UB,
and %BUB. Columns 12 to 14 show the results for MIP-CP which only generates lower
bounds: CPU, #BLB, and %BUB. Columns 15 to 19, and 20 to 24 include similar results as
columns 7 to 11 for the BC of this paper with the default and with the best-bound node
selection strategies, respectively.

Columns under #BUB and %UB for the BC-T and our BC methods reflect the resuits
without considering the CCJ-DH cutoffs. The comparison of columns under %UB and
%BUB for each of the BC-T and our BC methods shows the effectiveness of CCJ-DH in
finding upper bounds for these large instances. Most of the BUBs for the instances with
1 = 50 and all of the BUBs for the instances with n = 100 are obtained by CCJ-DH. BC-T
is unable to find upper bounds for the instances with n = 100. Therefore, it returns zero
under column %UB in all four classes of these instances. Our BC with the best-bound
node selection strategy is performing better than with the default node selection strategy.
Moreover, it outperforms the two other methods presented in Chitsaz et al. (2019), both
in terms of number of BLBs, and %BUBs.

Finally, we present more details on the performance of our BC with the default and
with the best-bound node selection strategies in Table B.2. In this table we present #Node,
GFS, AVSFS, DF], and AVPF/. Although within the default node selection strategy the

BC explores more nodes, the best-bound strategy returns better lower bounds. Another
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interesting observation is that the method with the default node selection strategy applies
more GFSECs and DFJs with almost the same average violation on the instances with
i = 50. This reflects the fact that the method with the default node selection strategy

explores some nodes that do not contribute much to improve the lower bound.

Table B.2: Summary of the results of the BC on the large ARP instances of Chitsaz et al.
(2019) with different node selection strategies

Node Selection 11 Class Size %UB %BUB #Node GFS AVEFS DF]  AVPH
Default 50 1 120 476 98.6 20143 1625 021 6039 04
50 2 120 406 98.6 17789 1533 021 5666 0.4
3 120 295 94.6 1547 1814 0.21 5882  0.39
50 4 120 513 989 24346 1069 022 5640 048
Total 480 423 97.7 19442 1510 0.21 5806 0.42

L 120 14 97.1 4.6 193¢ 028 3549 037

100 2 120 26 97.4 53 2032 028 3728 036
100 3 120 03 0.5 0.6 2263 025 3859 032
100 4 120 25 97.7 358 1346 032 3429 048
Total 480 1.7 95.7 115 189 028 3641 038

Best-Bound 50 1 120 23 99 9871 1160 022 3907 0.39
50 2 120 237 99 10701 1146 022 4047 039
3
|

50 120 101 96.2 653 1336 022 3760 037
50 : 120 24 993 22552 700 024 3969 05

Total 480
100 1 120
100 2 120 26 97.9 1.3 2098 028 3730 0.57
100 3 120 0 91.3 0.1 2140 026 3970 0.33
100 4 120 26 98.5 226 1442 032 3664 048
Total 480 22 26.4 6.4 1899 028 3757 039

Size: Number of instances, Time limit = 1 hour

202 984 12421 1085 023 3921 041
3.4 97.9 1.7 1921 028 3668 038

Detailed Results on Effect of Valid Inequalities

Each type of valid inequality introduced in Section 2.3 of the main paper has a differ-
ent effect on the LP relaxation value and solution time of the M sgp model. To evalu-
ate the effect of applying different inequality types, we performed a sensitivity analysis
considering different scenarios. We consider the effect on the LP solution value when
only one inequality type is added to the model. Also, we evaluate the effect when all
types of valid inequalities but one are added. Furthermore, we consider the cases where
no valid inequality (None), known valid inequalities (Known) from the literature (i.e.,
(2.18), (2.26), and (2.28)), or all valid inequalities (All) (i.e., (2.18)-(2.26), and (2.28)) are
added to the model. Similar to the results presented in Table 2.4, we present the obtained

lower bound as a percentage of the best upper bound found by the BC method or CCJ-

XXV1



DH. Tables B.3, B.4 and B.5 present the results for each class of instances. Each column
number in these tables refers to the associated valid inequality type number presented in
Section 2.3 of the paper. For the first class of instances, inequalities (2.18), (2.21) and (2.24)
have the greatest impact. For the second and third classes of instances, inequalities (2.18),

(2.22) and (2.24) show the largest LP solution value improvements.

Table B.3: Effect of individual valid inequality types on average LP solution value as a
percentage of BUB (class 1)

Including only one type Excluding only one type
Set (.S, WW)-type Var Bnd Gen Ineq 1S, WW)-type Var Bnd Gen Ineq
C/l/n  Size None (218) (219) (220) 221) (222) (223) (224) (225) (226) (228) Known (218) (219) (220) (221) (222) (223) (224) (225 (226) (2.28) Al

1/4/18 5 604 696 663 661 661 655 62 674 604 604 607 69.9 828 862 844 849 844 86 852 866 866 842 866
1/4/21 5 572 699 608 609 615 646 598 631 573 573 576 703 776 861 844 849 825 853 853 863 863 841 863
1/4/24 5 565 685 61 61 619 62 587 63 5.5 565 568 689 786 856 842 848 832 856 853 863 863 836 863
1/4/27 5 591 701 624 634 64 651 609 651 91 1 593 704 785 859 846 854 833 858 856 866 866 B4 866
1/4/30 5 621 763 652 656 661 689 631 684 621 621 623 76.6 806 908 899 901 871 907 894 Nn 91 889 91

1/4/33 5 61 734 643 654 658 674 627 679 6l 61 612 737 808 892 882 86 86 89 88 89.7 897 882 897
1/4/3 5 612 723 667 662 669 66 622 676 612 612 614 725 821 875 857 82 8 874 869 89 879 859 879
1/4/39 5 539 637 582 584 592 619 57 594 539 54 544 64.2 784 824 813 82 796 823 822 833 833 804 833
1/6/15 5 675 791 713 A8 722 711 W1 22 &5 6726 678 25 89 923 912 904 911 9Nn 913 924 924 8§98 924
1/6/18 5 658 74 678 A2 727 683 68 724 658 658 661 2 8838 8 877 82 878 877 877 89 89 87 89

1/6/21 5 56.4 e 634 607 618 617 58 627 564 564 567 24 M3 86 87 858 853 869 861 874 874 854 874
1/6/24 5 603 74 639 648 673 655 624 661 603 604 606 743 814 899 884 87 877 894 894 90 90 88 90

1/6/27 5 635 762 673 679 692 679 646 698 635 635 637 764 827 907 89 83 82 911 89 93 913 89 913
1/6/30 5 605 743 656 656 674 644 625 665 605 605 609 a7 827 896 879 8 89 891 892 898 898 871 898
1/6/33 5 559 62 613 608 658 611 588 619 559 56 56.2 9.7 821 869 8.7 81 858 872 868 88 878 862 88

1/6/3 5 54 736 598 588 601 607 568 609 54 542 543 74 777 897 81 83 876 89 885 897 897 875 897
1/8/12 5 6.7 M 21 29 756 24 2 43 97 8 ] 3 858 916 909 891 904 906 93 917 917 89 917
1/8/15 5 689 M1 6 n 44 26 W2 M2 M 693 NS 844 912 9 98 896 914 896 915 915 896 915
1/8/18 5 646 789 681 675 713 68 664 687 647 647 649 N3 824 922 914 887 903 918 914 922 921 902 922
1/8/21 5 627 753 682 667 674 657 637 674 627 627 628 785 806 869 866 8.7 874 882 877 884 833 869 884
1/8/24 5 654 775 731 A M2 685 673 704 654 655 656 77 86 898 883 87 899 903 89 904 903 82 %4
1/8/27 5 666 M7 713 705 09 695 682 719 666 667 669 80 841 908 897 897 %07 9 904 912 912 94 912
1/8/30 5 613 738 628 646 694 652 637 669 614 614 618 745 808 8935 891 869 877 892 884 897 896 868 897
1/8/33 5 63 741 691 669 681 662 647 678 63 63 633 744 823 8 851 851 866 86 862 869 869 B4B 869
1/10/9 5 67 827 682 692 725 712 683 712 673 671 673 831 818 933 932 91 922 933 921 935 934 921 935
1/10/12 5 673 783 687 N4 741 711 689 718 674 674 678 788 841 918 914 89 9201 919 909 2 919 895 2
1/10/15 5 645 79 679 675 686 677 661 69 646 646 648 M4 M6 899 897 888 896 905 898 07 905 891 907
1/10/18 5 682 806 718 719 718 7 691 732 682 682 683 80.8 822 903 894 899 901 906 9% 908 907 894 908
1/10/21 5 6723 805 712 AQ 728 70 683 722 673 673 674 80.7 8.1 917 904 891 w07 96 9 917 916 903 917
1/10/24 5 642 767 691 682 694 693 662 696 642 643  6dd ” 834 894 887 881 8 894 89 899 899 881 B899
1/10/27 5 646 745 678 687 05 668 674 692 646 647 649 749 814 875 861 853 871 864 875 878 878 862 878
1/10/30 5 628 74 659 677 696 655 654 683 628 623 631 44 816 878 867 857 876 868 876 882 832 861 882
1/12/6 5 n2 83 731 742 76 M4 BY B8 N2 13 714 83.3 840 93 922 918 96 928 921 931 93 914 931
1/12/9 5 638 756 674 681 09 661 66 687 638 638 641 7 822 882 871 8 881 875 877 885 885 868 885
1/12/12 5 61 781 635 64 682 65 623 661 612 61 613 784 782 907 94 888 894 9 90 91 91 894 911
1/12/15 5 662 822 697 692 697 23 671 09 663 663 663 824 816 927 92 918 915 929 97 93 929 912 93
1/12/18 5 686 804 718 7138 2 n 6.7 736 687 686 688 80.7 835 909 905 906 908 915 903 916 9.6 895 916
1/12/21 5 639 74 659 678 706 684 646 689 644 64 644 745 818 8.2 87 8.7 8.1 878 865 89 877 861 879
1/12/24 5 662 793 704 695 723 686 668 02 662 662 664 »S5 821 895 895 86 902 905 901 96 905 888 906
1/12/27 5 568 771 617 606 655 628 585 619 571 57 574 777 6 904 902 88 902 909 903 911 908 889 911

Total 200 63 757 669 669 687 673 648 684 631 631 633 76.1 818 893 84 877 881 892 887 897 897 877 897

Note. C/1/n: Class/Number of periods/Number of suppliers, Var Bnd: Bounds on the variables, Gen Ineq: General inequalities
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Table B.4: Effect of individual valid inequality types on average LP solution value as a
percentage of BUB (class 2)

Including coly one type Excluding only one type

Set (LS, WWi-type Var Bod Gen foeg (LS, WiN)-type Var Bnd Gen Ineq
Crifn Size None {219 20 @2y @23 (29 (226) (22%) (219 20 (@21} (222) (223) (224) {225) (226) (228) Al
o e 719 748 766 TAT 78S 9 e 928 918 27 912 924 78 9928 N7 %17 R8s
5 a4 (&) 75 /6 0T T/ &1 o0 827 886 894 863 891 856 897 896 886 BUT
5 oAb [ XUNNN PR ol T P ) o4 M3 w2 9 89 908 864 913 912 8T 93
5 oA 66.7 BE N7 3 o8 QN 91T ®E WF 25 8T 929 N8 97 W9
5 87 87 Ja 746 T 759 W6 MY 926 Y12 924 BP9 e N6 94 W6
5 694 [ 21 M3 a2 923 W7 NV2 W 92 78 23 22 91 N3
2443 5 e e T L ele M3 217 W9 917 81 N7 81 917 97 W2 97
2/4/® 5 852 B2 6 [ S ) 883 2 884 & 879 89 884 884 #67 W4
2/6415 5 729 7 M2 s 927 %03 W27 911 N2 W4 927 927 918 N7
XA} 681 olh 634 Qe 879 e BB 901 871 W6 6 886 Ao
721 773 The 784 WO 884 G088 893 902 878 W09 N8 W5 w9
Y 75K S el 92 NS W2 9le %21 W8 QB2 92 W2 W32
56.7 641 578 631 897 8& 897 B84 893 869 897 395 E7A 87
598 2 618 6ol LRI X M2 B8 RIS &6 N3 902 88 903
594 b3 et s 307 87 506 N8 L B85 907 %4 36 W7
538 als 554 6l8 V18 &80 917 WY 913 881 918 Yle 899 4918
nz oy TRE TN wuy o %2 90 Mne 912 Wi 921 @ 91 921
sl R ms 5 96 M2 We 811 9L WS e 926 N7 e
a4 LR HER - K W2 WS N2 WY %19 e w22 N2 W09 N2
63 o7 o o3 92 SB6 W2 882 R 9 12 Wl 6 12
38 548 597 643 $87 834 887 853 8’5 8.7 887 886 878 87
R3 ole e 609 900 &Y %01 877 835 72 W1 899 S5 w1
6.6 660.7 618 664 NG 39 919 %01 98 .7 91% 918 WS 91y
613 691 3 exd 99 B7  91H W2 91 e N9 9E w1 N9
2/1049 5 &b ™ 723 & M 8t 817 906 872 06 RS B9 8E N6 W6 W2 Na
27041 5 62 [l B SV R T4 NG B3 562 83 S8 83 835 883 R3.2 Bal 333
271015 5 s [ o [C RN ¥ & 72 8L 09 866 903 889 LY 88 w1l 849 882 Nl
2078 & 518 at.? B8 B8 T M4 Te4 We WBH  WNE Te NS 78 906 W5 373 W6
27/28 5 65 7R Treé 62 L 92 BL7 0y L 9WE 86 904 84 908 9T 896 908
2710028 % 59 8.1 el w7 ahd 59 LT N a5 ME WNE B8 s 9 G904 81 90E 907 B84 908
201002 5 622 (8 &b 671 o022 622 a4 7a 772 W& BoH SR 82 887 B 895 §9.8 883 898
2/10/% 5 526 Ly o5 583 KT w29 B 6.2 i 1 B4 825 796 8L &6 825 824 8Ll 25
2/12/0 5 705 33 M3 S s 08 7 &24 893 862 #3887 881 878 893 893 882 893
2721 5 8.7 s 731 N7 687 &38 777 B B8 859 893 888 888 82 898 898 884 89S
2/12712 5 632 3 a9 7L6 652 6R2 653 To.1 N18 821 832 892 886 891 874 893 892 87T 893
2/12/15 & 553 644 6Lz a4 554 Sha Boe el I3 MWE 83 We 895 9035 885 906 903 874 We
2712/ 5 524 549 o885 576 "8 & 528 24 Ty 8B4 85 &4 B13 849 832 8§54 851 84T 834
) 1) B 525 B [EX) a5 i () [ 788 829 sue 828 TR4 824 791 829 826 804 829
241224 & 565 738 65.1 617 582 64 Y 507 Mo 762 W2 8de  BR2 B&SN BBl 864 .2 88 869 882
72/22 5 546 729 M5 59 832 3B6 0 624 M7 Me ST kxRl TT5 85 842 ¥6 888 BLS 884 896 834 876 &26

Total 20 & 766 686 636 696 o 64 631 631 32 764 a1 902 874 902 83§97 75 W2 N1 886 N2

Note. € /1/n: Class/Number of periods/Number of suppliers. Var Bnd: Bounds on the variables, Gen Ineq: General inequalities



Table B.5: Effect of individual valid inequality types on average LP solution value as a
percentage of BUB (class 3)

Including only one type Excluding only one type
Set (1,5, WW)-type Var Bnd Gen Ineq 1,3, WW)-type Var Bnd Gen Ineq

C/l/n  Size None (218) (219) (2200 @21) (22) (223) (224) (22%) (226) (228) Known (218) (219) @20) (221) (222) (223) (224) (225 (226) (2.28) All
3/4/18 5 681 704 681 688 681 743 699 821 681 683 683 709 919 925 924 N5 88 92 779 N5 925 %02 9R25
3/4/21 5 85 684 665 668 666 746 684 782 666 667 669 689 88 906 %35 %6 85 899 78 906 905 881 906
3/4/24 5 647 681 647 658 647 764 661 73 647 649 65 685 915 929 927 9NY 8 925 811 929 928 916 929
3/4/27 5 653 676 653 661 653 B2 662 784 653 654 655 68 943 943 942 943 836 942 806 943 941 922 N3
3/4/30 5 67 M5 67 672 67 774 686 M4 67 671 673 n 926 939 939 939 855 931 812 939 939 921 939
3/4/33 5 646 683 646 652 646 39 663 785 646 648 649 689 916 929 928 929 859 925 784 929 929 89 929
3/4/3 5 615 668 615 621 617 716 656 759 617 62 622 67.8 915 923 921 923 866 903 71 923 923 %2 923
3/4/39 5 461 535 461 482 462 622 48 667 462 462 464 539 871 887 884 87 781 88 696 887 885 857 887
3/6/15 5 74 735 M4 712 NS 8 22 813 N4 N6 08 74 9 92 919 92 8727 914 812 92 919 902 92
3/6/18 5 693 79 63 W4 M3 B4 W3 N5 N3 HO4 95 732 M 899 896 899 84 895 M6 899 897 872 899
3/6/21 5 636 69 636 655 637 N8 656 742 637 638 639 69.6 869 882 877 82 851 875 778 882 877 849 832
3/6/24 5 659 683 659 675 66 729 6721 759 66 66 663 68.8 881 884 882 884 834 881 778 834 882 843 884

3/6/27 5 673 716 673 68 674 764 689 781 674 674 675 79 904 9 %7 9N 855 905 801 9 9 887 91
3/6/30 5 609 67 609 823 61 746 & 718 6l 61 61.1 67.3 893 905 902 905 817 905 M2 %NS 90 879 95
3/6/33 5 655 68 655 667 655 726 692 732 655 659 661 &9 84 871 86 871 816 854 M9 81 865 846 871
3/6/3 5 603 695 603 619 604 732 631 692 604 605 609 702 869 893 87 893 831 84 813 893 891 865 893

3/8/12 5 734 742 74 MY A5 W5 w4 811 A5 W7 738 749 90.7 9N 9N 9N 864 894 846 91 Nn 896 91
3/8/15 5 658 723 658 671 658 756 671 747 658 658 659 27 87 893 82 83 87 8 811 893 892 877 83
3/8/18 5 75 B9 A5 B2 718 W6 B4 N1 N6 N6 N8 763 876 898 893 898 869 895 832 898 897 876 898
3/8/21 5 677 M7 677 688 678 751 699 748 678 678 68 (481 85 879 86 89 & 873 808 879 877 855 879
3/8/24 5 635 676 635 653 635 W2 649 732 635 636 639 68.1 841 853 851 853 815 851 76 853 853 821 853
3/8/27 5 715 743 A5 ” ns 77 9 M1 NS e N7 7 883 893 89 83 856 887 817 893 892 82 83
3/8/30 5 M6 744 N6 N4 W6 B8 716 B2 N6 N6 08 748 86.3 88 878 88 849 878 802 88 879 861 88
3/8/33 5 654 73 654 665 655 734 665 732 654 655 656 733 842 874 82 874 838 873 N7 874 87 856 874
3/10/9 5 66 719 66 678 662 M2 715 722 661 665 665 3 857 888 883 838 835 865 854 888 888 877 888
3/10/12 5 642 699 642 669 643 W9 668 724 643 644 647 06 836 858 85 858 828 847 803 858 853 838 858
3/10/15 5 6723 734 673 692 674 733 694 75 674 674 676 738 845 874 87 874 847 869 812 874 873 854 874

3/10/18 5 63 675 63 647 631 689 654 714 63 631 632 679 82 84 835 84 806 837 762 84 836 817 84
3/10/21 5 657 672 657 676 658 08 685 739 657 659 66 67.7 849 856 852 856 812 852 779 856 856 823 856
3/10/24 5 658 699 658 675 659 721 676 738 658 659 661 0.3 842 861 857 861 82 861 ~ 86.1 86 838 861
3/10/27 5 677 718 677 €97 678 737 683 764 678 678 679 1 83 8721 868 871 834 871 792 8.1 869 849 871
3/10/30 5 663 721 663 677 664 742 681 734 663 664 665 3 85 869 864 869 829 867 801 869 868 85 869
3/12/6 5 704 74 4 28 05 A4 N3 We N4 N3 N6 743 8.1 882 88 82 857 877 818 882 88 86,6 .2
3/12/9 5 65 738 5 1 695 75 2.7 7% 95 695 697 741 83 876 84 86 84 872 815 876 874 851 876
3/12/12 5 676 717 676 1 679 725 N4 M4 677 679 679 722 88 858 853 858 83 853 81 858 857 842 858
3/12/15 5 687 713 687 73 688 33 08 M8 687 688 &9 7138 832 845 842 845 813 839 94 845 844 823 845
3/12/18 5 657 701 657 676 658 737 682 717 658 658 662 708 845 862 86 862 809 859 814 862 857 832 862
3/12/21 5 652 701 652 676 653 W5 669 735 652 653 654 204 85 858 854 858 831 857 M 858 854 829 858
3/12/24 5 663 719 663 684 663 72 694 744 663 665 665 24 843 874 873 874 842 861 809 874 873 859 874
3/12/27 5 601 688 601 629 607 A2 625 682 602 603 608 69.7 832 869 865 89 818 83 809 869 867 845 869
Total 200 659 703 659 674 66 736 68 753 659 661 662 7208 871 837 884 887 837 8.1 799 887 885 864 887

Note. C/1/n: Class/ Number of periods/ Number of suppliers, Var Bnd: Bounds on the variables, Gen Ineq: General inequalities






Appendix C — Multi-Product
Production Routing Under

Decoupled Planning Periods

Proofs

B S : ; B $
Theorem 3.1. Ry;p_prp and Ry,p_ prp are valid reformulations for Myp_prpand M3,p_prps

respectively.

Proof. First we show that for every feasible solution of the M¥%,,_pzp» model, there exists
a feasible solution to the RE,, ,z, model with the same solution value. Suppose that 7,

p, I, §, Z and % satisfy the system of (3.1)-(3.18) (feasible in ME,, ,zp).

® Forevery T € T™ and for every k € K, we let 5 = Jir and Py = P Where
t = m(T — 1) + 1. Constraints (3.37) fix the rest of the § and p variables to zero.

e For every w € TP and for every i € N, we let Z; = 2, where t = wp. Con-

straints (3.38) fix the rest of the z variables to zero.

* Forevery w € T?, for every i € N and for every k € K, we let §ixt = §ixo Where
t = wp. Constraints (3.38) fix the rest of the q variables to zero.

* For every w € T°, we let Zy; = Zy, where t = wp. Constraints (3.39) fix the rest of

the z(; variables to zero.

¢ For every w € T* and for every (i,j) € £, we let X;;; = %;j,, where t = wp. Con-
ry Ty \&] j j P

straints (3.35) and (3.38)-(3.39) force the rest of the x variables to zero.

xXxxi



¢ For every w € T?, for every i € N and for every k € K, we let Iy = I, where

t = wp. For the rest of the micro periods (t € 7,¢ mod p # 0), we let Iy = _,-M L

¢ The inventory variables (and hence the solutions) at the plant level, Iy, are defined

on the micro periods and are the same in both formulations.

One observes that the solution ¥, p, I, §, Z satisfies the system of constraints (3.2), (3.13),
(3.28)-(3.44) and hence is feasible in RE;,_,.p. Similarly, we can show that for every fea-
sible solution in R%,,_.xp there exists a feasible solution in M5%,_pzp. Thus, R _prp
is a valid reformulation of MY, pp. In the same way, we can show R3p_pgp is a valid

. 5 C
reformulation of M3p_prp- .

Proposition 3.1.
ta 1
Y Pre < okt ) Ty + ) () diken)VeeVk €KV, b ET i <ta (351
pamrs ieN o=t [EN

are valid for R p_prp» Rip—prp-

Proof. 1f Zi,i_,_h Vke = 0, then no setup will be done during periods t; to t; and hence no
production of product k € K is possible during these periods ():ﬁ,?__,,1 Pre = 0). Then,
inequalities (3.51) are satisfied because the left-hand-side (LHS) will be equal to zero and
the inventory variables in the right-hand-side (RHS) are nonnegative. Otherwise, let 6
be the first period in which the production setup for product k € K is performed, i.e.,
0 = mine{t; < e < fa|yk = 1}. Then,

12 f_‘z*
5_: Pke = L Pke

e==hy o=

]
v Z(I()kc. e I(_)k"wnl “%“’ L Qike)
ieN

o=

b
= ¥ (Iﬂke = Tke-1+ ) (Te — Bipn + dike))
e==0 ieN

= Ioxt, — Tokg-1 + Y, (Tikt, — Lico—1 + diker,)
ieN

< Iogn + Y (Riks, + dicar,)

ieN
= lgwy + Y Tiry + Y dikor, Yk
ieN ieN
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b
< Tokt, + Y Tikty + Yo () dikets)Yie

ieN e-9 ieN
IOktz oy 2 Ilkl‘z + Z ( E dzketz)Yke
e=h ieN

The first four equations follow from the definition of 6, constraints (3.28), constraints (3.29),
and the definition of d i, ;,, respectively. The first inequality holds due to the non-negativity
of inventory variables. The next equation is valid because yss = 1. The last inequality is
valid since the y;, variables are nonnegative. The last equation holds due to the assump-

tion that there is no setup from period ¢; to 6. O

Proposition 3.2. Inequalities

Eyke Vke K,VteT (3.52)

e=

max {0, Ljcy max{0, dix1t — Lo} — Ioko }
C/06x

are valid for RY»_prp ad R3yp_prp-

Proof. First we show:

t

Epke

e=1

|
M-.

Z Qike + Toke — Toke—1)
ieN

©
Il
b

Il
M»

( Y (dike + Lige — Lo 1) + Ioke — IOk,e~1>
ieN

(dikre + Like — Liko) + Tore — Ioko

~.

Il
QM T

v

(dikrr — Tiko) — Ioko-

2

The first two equation are obtained based on constraints (3.28) and (3.29), respectively.
The third equation holds due to the definition of djk,,. The first inequality follows from

the non-negativity of inventory variables. We can write

Y1 Pke > max {0, Tie y max{0, dix; — Lo} — Ioko }

because only a strictly positive product shortage triggers the production at the plant.
Finally, the validity of the proposition comes from the fact that:

max {0, }  max{0, dix1s — Iio} — Ioro } < Z Pke

ieN e=1
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3
< C/Gk ZYke-
e=x]

Proposition 3.3. Inequalities

ty
L Qire <= Lk, + L d,;\m.,z,( Vie N,Vke KVt €T, 0 <t (3.53)

[ ewaly

ate valid for Rl pape Rim_pup:

Proof. 1f Y2

This results in no shipment of product k¥ € K to that customer during the associated

ety Zie = 0, then customer i € N will not be visited during periods #; to f,.
periods. Then, inequalities (3.53) are satisfied because the inventory variables in the RHS
are nonnegative. Otherwise, let 6 be the first period in which customer i € N is visited,
i.e., 8 = min,{t; < e < t|z; = 1}. Then,

2 fa
Y o= ) G
p".‘.:[] e=0
2
ot L(Iik(’ = Ijk’e—-l ki dlk(')

el

= likf: Ifk,6->—1 + dikl"?z
< l,';\»;? g dikﬂlz
= lii’fg -+ dikmzzm

{2
& -
< Likty + Y, dikernZie

=t

b
"
= Likr, + L diket, Zie-

e=ily
The first three equations hold because of the definition of 8, constraints (3.10) for periods
¢ to ty, and the definition of dj,,. The first inequality is valid due to the non-negativity
of the inventory variables. The fourth equation follows from z;; = 1. The last inequality

and equation are valid because the y;, variables are nonnegative. O

Proposition 3.4. Inequalities

1 o
[ 3 Y Z by max {0, djx; -I,k0}] <Y zp VteT (3.54)
ieN kekK e=1
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; B S
are valid for Ryp_prp a1d Ry p_prp-

Proof. We have

M-
O

N

&

v
-

brQike
kex

T
Il
M-I
I™M i

>¢-
?§

bk(dike + Like = Lige-1)

)
Il

—

-

k(dikle + Like — Lino)

Y Y be(dikie — Tio)-

ieN keK

v
=
Z,
3
?s

The first inequality is valid since the LHS is the total fleet capacity for period e = 1 to ¢,
and the RHS is the total shipment for the same periods. The first equation follows from
constraints (3.29). The second equation is valid due to the definition of djy,;,. The second
inequality holds due to the non-negativity of inventory variables. The proposition is

valid because only strictly positive demand shortages necessitate vehicles” dispatch. O

Proposition 3.5. Inequalities

Zke)C bk max{O dlklt lko} 1
e ViEN,VEET 3.55
[mm {Q Li + maxicp<{Liex bidire } } Z “ o

. B S
are valid for Ry;p_prp and Ry p_prp-

Proof. Similar to the proof presented in Proposition 3.4 we have
Lkex bi(dinrr — Tiro) < Lo Lkex biQike-
Thus,
Lkex b max{0, dixyr — Lo} < Lo Lkex biQikes

is valid for the reason that only strictly positive product shortage volumes force ship-

ments. The vehicle capacity constraints (3.33) provide the first upper bound:

bl itne € O3ty 2
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Next, we have
Y. beqie = Y, bi(dig + Lige — Ligs—1)
kek kek

< Y br(dig + Lige)
kek

< Y bidigg + L,
KK

which gives
Trex i < (Lrex brdike + Li) zip.
Therefore, we deduce

Yokex bk max{0, dixys — Lo} < Lhoq Tkex OrQike <
min {Q, L; + maxi<p<t{Tkex bidiko } } L1 Zic-

Impact of Inequalities on Lower Bound Improvement

Table C.1 reports the improvement of the lower bounds obtained by incorporating the
valid inequalities in the small- and big-bucket models. On the small-bucket instances,
applying the valid inequalities results in an average increase of the lower bounds by
70.5%, 38.7%, and 25.6%, respectively for p = 1, p = 2 and p = 3. On the big-bucket in-
stances, the lower bound improvements obtained by the addition of the valid inequalities
are 48.8%, 32.8%, and 22.7%, respectively for m = 1, m = 2 and 7 = 3. Notice that in this
table, for the cases where the inequalities improve the lower bound more than twice, the
percentage increase reported is more than 100%. Overall, the larger (more periods, prod-
ucts, and nodes) and the harder to solve (smaller p and ) the instances are, the bigger

the improvement is.
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Table C.1: Lower bound improvement with valid inequalities

A

Small-Bucket LSP

Big-Bucket LSP

p=1

p=2

p=3

=2

=3

All

(%)

All

(%)

None

All

(%)

None

(%)

None

All

(%)

None

All

(%)

12 4

o

3277
37826
46818
51379
56009
58977
65812

02

13
314
425
484
519
80.2

32722
38663
47836
52614
58209
63216
71

0.0
05
22
87
272
299
304

33124
38576
47675
52233
57714
56972
61081

33124
38743
47998
52553
58240
63068
70838

00
04
07
0.6
09
107
16.0

32149
37270
45810
46319

48263

51293

60708
68569

0.3
20
21
107
231
327
421

32296
38165
46775
49448
52459
56186
52506

3229
38841
47339
52076
57442
61856
70189

0.0
1.8
12
53
9.5
101
337

40690
47581
50711

58221

32797
41902
48216
54006
58588
64360
219

0.0
3.0
13
6.5
83
105
299

41381
33196
30768

27061

41807
47535

10
432
775
883

127.8
163.7
186.1

43318
42123
43812
44497

41869
47923
55253
59456

69387
71968

0.0
113
264
373
333
584
61.7

42431
48248
51466
55455
57162
58190
57718

42431
48491
56256
60735
66127
71632
75366

00
05
93
95
157
231
306

41549
46726

35242
32224

41551
47330
54216
57941
62377
66655
69960

0.0
13
212
24
780
89.1
171

41725
46612
51539
51515

42974
41089

41726
47484

58387
62716
67181
70541

0.0
19
57
133
459
56.3
7

41633
47389
33907

55226
52642
44369

41634
47435
54722
58790
63144
67172
70382

0.0
0.1
15
15
14.3
27.6
58.6

211
63.6
9.3
107.6
1436
1359
2084

47042
49309
49858

50749
49220
51421

52465

68103
77393

89173

115
269
36.6
416
55.6
736
734

52703
49285
52410
59535
59812
62520
66248

52911
62761
68933

81722
89341
93864

04
273
) B
338
36.6
429
417

51640
37317
42816

37900

51646
60607
65689
73662
74784
80278
83457

0.0
624
534
80.1
924

1118
1352

50137
43597
50349
49006

43849

51646
60667
65761
74018
75041

83776

3.0
392
306
510
61.0
84.1
883

51718
55322
59367
55803
51947
53250
52561

51720
60799
66560
74858
76288
81233
84461

0.0

9.9
121
341
46.9
52.6
60.7

18 4

33
285
438
356
546

41912

61869
69313

42162

59761

81651

06
50
172
277
320
298

43152

59067
1m

75892

43201
an7z
60456
74928
82170
94457

01
04
24
39
114
245

40764

51158

44644
46648
60741
74832
81305
94454

95
6.9
187
259
379
51.0

44757

66375
69300
72992

47592
62126
76946

0.5
23
47
159
204
334

46421

74651

79337

46750
49143
64340
79524
86216
100585

07

21
6.5

268

37114
36140
38148
31380

372
572
745
96.6
104.2
163.1

52130
51488

69758

85132

91
354
338
533
545
547

49879
56146
59969
64799
67555

70331
80467

95073

27
214
253

393
407

43733
53397
51033

46074
4227

47348
58827
67416
75849
84758
89723

83
102
321
50.1
84.0

1029

47474
57935

59250
51369

47534
59162
67732
76265
85181

0.1
21
70
287
65.8
644

48132

68518
71374
58356

48133
60428
70757
79473
89193
94703

0.0
23
33
113
52.8

37505

44748
34879

92675
100873

609
95.7
100.0
1103
107.1
189.2

45791
49792
49870

60036
61152

61484
74072

93408
99228
105629

343
488
65.0
55.5
653
n7

52629
53239
58549

73512
81373

62055

95822
106397
116921

179
416
453
4335
7
437

51253

51905

59791
71851
81133
90199
100244
110800

108
40.2
731
68.8
93.1
1389

59814

60627
55547

59823
71997
81250

110893

0.0
142
336
49.2
80.7
947

60239
69282
70824
74627
64873
67506

60329
72735
81722
90514
100563
111051

24 4

BBGSuw| 8B 0 85850808580 8888w 688885855

36759
50151
51188
49617
56931

42541
62422

78196

157
245
338
57.6
571

43126
54811
61052

43587

78158
86937
94160

11
16.0
280
299
232

61985
71569

93332

64155
79344
91181
104852

00
35
109
179
123

43961

61418
67335

45648
70675
81087
96631
112880

38
12
320
435
597

45847
70741
69306
73930
81229

46200
72049

98913
115793

0.8
18
205
338
426

48018
74116

92936

48345
74980
85904
101629
118924

=
5855w

41723
38617

a7

55935
65411

92487

341
694
769
80.7
1009

56743
70576

158

522
458
562

54927
51752
61809

78391

nr7

97616
110354

42
387
“7
388
408

50097
53410
58591
56619
59196

56736
69747
88695
98396
115140

133
30.6
514
738
945

55861
66603

62872
65476

99074
115886

27
55
364
57.6
770

56765
70141

m7s
73358

58253
73279
94911
104064
122441

o™
B8a5wn

39921

50100

68186
75831
87070
102655
104333

764
90.0
103.5
1049
783

69136
84312

103666
116094

4835
688
701
544
647

51114
56734
65219
78414
88498

100268
113330
128494

370
520
537
445
452

56690

67318

67577
83155
99720
115110
132210

148
46.7
733
82.0
96.4

64180
66275

70139
72592

67725
83691
100247
116232
133255

55
263
46.5
65.7
83.6

62049
78877

82650
81444

68559
85354
102014
119220
136383

g
-
8558w

41914

51320
64490
77646
89133

24
26.7
42.6
46.5

52661
73973

92806

69
249
278
189

52745

87915

53506
75481
91194
104617

14
72
168
190

49829
71829
69166
76932

55906
84310
98065
119510

122
174
4138
553

81387
74267
85681

57370
86160
100129
121507

43
59
348
418

58277
86628
81083
96420

59437
88413
102269
124022

286

™
—
BU’OU!

59195
71091
81966

66.3
659
839
63.0

81988

99637

37.0
521
46.6
437

51872

82484

62278

113483

201
458
45.2
376

63260

71824

61609
88507
105409
131624

26.5
399
80.3
833

59139

76242

61885

106106
132635

4.6
240
61.6
740

62722
83197
76228
86641

63888
94600
110982
137613

19
137
45.6
58.8

x®
852w

44742
44031
49287
60258

76233
83196
96033
101687

704
889
9438
68.8

721m

92055
102163
116843

519
609
50.2
62.0

60955

88653

95017
113785
124326

328
531
471
40.2

60149

67947
71759

79002
100983
129109
146924

313
587
90.0
104.7

72118
75878
81801
75811

103136
132076
149248

10.2
359
61.5
96.9

87215
93833
89133

80878
106309
136203
152974

78
219
452
71.6

Average

40781

69512

705

53412

74086

387

61591

256

52131

77562

488

59078

78434

328

80452

227







