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Résumé

Une prise de décision fiable dans des environnements incertains nécessite souvent non

seulement de la robustesse, mais aussi une adaptabilité au contexte. Ce travail propose une

approche unifiée de la robustesse contextuelle, en développant des méthodes qui condi-

tionnent la quantification de l’incertitude aux caractéristiques observées, afin d’améliorer

la qualité des décisions. Une innovation clé dans cette direction est le développement

de l’Optimisation Robuste Conditionnelle (Conditional Robust Optimization, CRO), un

cadre qui adapte les ensembles d’incertitude à l’information contextuelle. Plutôt que

de s’appuyer sur des ensembles d’incertitude statiques représentant les pires cas, cette

approche partitionne l’espace des covariables et construit des ensembles d’incertitude

spécifiques à chaque région, s’adaptant ainsi à la structure des données. Cette stratégie

permet de prendre des décisions qui conservent des garanties de couverture tout en évitant

un excès de conservatisme. L’analyse théorique fournit des garanties en termes de risque et

de couverture, et les évaluations empiriques démontrent une amélioration des performances

par rapport aux méthodes classiques d’optimisation robuste.

Afin d’aligner plus étroitement l’estimation de l’incertitude avec les objectifs de prise

de décision, un nouveau cadre d’apprentissage de type end-to-end est introduit. Il intègre

directement la construction des ensembles d’incertitude à l’objectif d’optimisation en

aval. En apprenant conjointement la couverture conditionnelle et la qualité de la décision

à l’aide d’une fonction de perte différentiable, cette approche surmonte les problèmes

de désalignement inhérents aux méthodes classiques de type estimer-puis-optimiser. Le

résultat est une méthode flexible et guidée par les données, qui améliore à la fois la



robustesse et la performance de la tâche, comme le démontrent les résultats empiriques.

Ce cadre est ensuite étendu à la prise de décision séquentielle, où l’incertitude doit être

quantifiée non plus sur des résultats immédiats, mais sur des estimations de valeurs à long

terme. Cela mène naturellement au cadre de l’apprentissage par renforcement hors ligne,

où un agent doit apprendre des politiques à partir de jeux de données statiques, sans interac-

tion supplémentaire avec l’environnement. Pour répondre aux défis uniques de ce contexte,

nous développons un cadre général de robustesse épistémique contextuelle, qui remplace

l’estimation conventionnelle de l’incertitude par des ensembles d’incertitude structurés,

conditionnés à l’état, sur les valeurs-Q. Cette formulation généralise les principes de ro-

bustesse conditionnelle aux environnements dynamiques, afin de permettre l’apprentissage

de politiques efficaces à partir de données hors ligne. Les résultats empiriques sur une

variété de tâches démontrent que cette méthode améliore la robustesse et les performances

hors distribution, comparativement aux approches basées sur les ensembles.

Ces contributions offrent une perspective unifiée de la robustesse contextuelle, montrant

que l’incertitude peut être modélisée comme un objet structuré, apprenable, adaptable aux

données et sensible à la tâche décisionnelle. En intégrant des outils issus de l’optimisation

robuste, de l’apprentissage statistique et de l’apprentissage par renforcement, ce travail

établit une base rigoureuse pour la conception de systèmes décisionnels plus fiables,

interprétables et dignes de confiance dans des environnements incertains.
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Optimisation robuste, Optimisation contextuelle, Quantification de l’incertitude, Prédiction

conforme, Apprentissage orienté tâches, Apprentissage par renforcement hors ligne.
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Abstract

Reliable decision making in uncertain environments often requires not just robustness, but

also adaptability to context. This work develops a unified approach to contextual robust-

ness, proposing methods that condition uncertainty quantification on observed features to

improve quality of decision making. A key innovation in this direction is the development

of Conditional Robust Optimization (CRO), a framework that adapts uncertainty sets

to contextual information. Instead of relying on static, worst-case uncertainty sets, the

approach partitions the covariate space and constructs region specific uncertainty sets that

adapt to the structure of the data. This leads to decisions that maintain coverage guarantees

while avoiding excessive conservatism. Theoretical analysis provides guarantees on risk

and coverage, and empirical evaluations demonstrate improved performance over classical

robust optimization methods.

To further align uncertainty estimation with decision making objectives, a new End-To-

End learning framework is introduced that directly integrates uncertainty set construction

with the downstream optimization objective. By jointly learning conditional coverage

and decision quality using a differentiable surrogate loss, this approach overcomes the

misalignment issues inherent to the traditional Estimate-Then-Optimize methods. The

result is a flexible, data driven approach that consistently improves both robustness and

task performance, as shown in experimental results.

We further extend this framework to sequential decision making, where uncertainty

must be quantified over long term value estimates rather than immediate outcomes. This

naturally leads to the setting of offline reinforcement learning, in which an agent must

v



learn policies from static datasets without additional environment interaction. To address

the unique challenges of this setting, we develop a general framework for contextual

epistemic robustness that replaces conventional ensemble based uncertainty estimation with

structured, state conditional uncertainty sets over Q-values. This formulation generalizes

the principles of conditional robustness to dynamic environments to learn efficient policies

from offline data. Empirical results across a range of tasks demonstrate that this method

offers improved robustness and out-of-distribution performance compared to ensemble-

based baselines.

These contributions present a unified perspective on context aware robustness showing

that uncertainty can be modeled as a structured, learnable object adaptable to data and

responsive to the decision making task. By integrating tools from robust optimization, sta-

tistical learning, and reinforcement learning, this work establishes a principled foundation

for building more reliable, interpretable, and trustworthy decision systems in uncertain

environments.

Keywords

Robust Optimization, Contextual Optimization, Uncertainty Quantification, Conformal

Prediction, Task based Learning, Offline Reinforcement Learning.

Research Methods

Quantitative research; Mathematical programming.
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General Introduction

In complex real world environments, businesses are routinely required to navigate uncer-

tainty by making decisions that remain robust in the face of adversity while simultaneously

adapting to evolving contextual conditions, thereby ensuring both reliability and respon-

siveness. Whether in financial planning through portfolio optimization (Xidonas, Steuer,

and Hassapis 2020), managing supply chains (Suryawanshi and Dutta 2022; Bertsimas

and Thiele 2004) or controlling autonomous systems (Rosolia, Zhang, and Borrelli 2018),

presence of uncertainty can result in unreliable or even infeasible solutions. Seminal work

by Ben-Tal and Nemirovski (2000) demonstrates that small perturbations in the problem

parameters can make the optimal solution infeasible, thereby undermining their practical

value. The sources of such uncertainty are varied, ranging from noisy environments, and

inconsistencies in data collection processes to the limited availability of high quality data.

These challenges become even more pronounced in the modern data-driven, interconnected

decision making pipelines where the output of one model often serves as the input to

another. These are commonly referred to as Estimate-then-Optimize pipelines, in which

predictions from machine learning models are used as inputs in subsequent optimization

processes (Elmachtoub et al. 2023). In such settings, even small errors from base models

can propagate and compound downstream, raising a fundamental question: how can we

make reliable and trustworthy decisions when the input data to the models can not be fully

trusted?

Stochastic optimization emerged as a natural response to decision making under uncer-

tainty. Foundational works such as Birge and Louveaux (1997) and Shapiro, Dentcheva,



and Ruszczynski (2021) present the key formulations together with their analytical prop-

erties and associated computational techniques. The central paradigm assumes access to

a probability distribution over uncertain parameters and seeks to optimize the expected

value of an objective function (see also Li and Grossmann (2021) for a recent survey).

When the underlying distribution is well specified, stochastic optimization provides a

powerful and elegant framework to identify solutions that perform well on average across

possible realizations. The practical effectiveness of stochastic optimization, however,

critically depends on the validity of its distributional assumptions. In data driven settings,

we are again dependent on the quality and representativeness of the available data used

to estimate the distribution. In practice, the empirical distributions used to model uncer-

tainty can misalign with the true environment, especially in cases with limited, noisy, or

non-stationary data (Bennouna et al. 2024; Besbes, Gur, and Zeevi 2015). This disconnect

can lead to decisions that perform well in expectation under the assumed model but fail

systematically when deployed in the real world, making it less robust (Smith and Winkler

2006). Related concerns have motivated alternative paradigms, including distributionally

favorable optimization (DFO), which emphasizes optimistic model selection in the pres-

ence of endogenous outliers (Jiang and Xie 2023), as well as recent work that highlights

the connections between distributionally robust optimization and classical robust statis-

tics (Blanchet et al. 2024). In such cases, the inherent optimism of the expected value

optimization becomes a liability rather than an asset, highlighting the need for alternative

formulations that are more resilient to data uncertainty.

To address the limitations of distribution based approaches, Robust Optimization

(RO) offers a compelling alternative that avoids explicit probability models. RO considers

a minimax formulation where decisions are optimized for the worst-case realizations

of the uncertain parameters within a predefined uncertainty set (Chen, Sim, and Sun

2007). This framework trades off average case performance for worst case guarantees,

making it suitable for deployment in poorly understood real world environments. In RO,

uncertainty is modeled using a deterministic, typically compact and convex uncertainty

set that encompasses all plausible realizations of uncertain parameters. The objective is

2



to identify solutions that minimize the maximum possible loss over this set. When both

the objective and the uncertainty set are convex, the minimax problems admit tractable

reformulations via duality, enabling scalable solutions with linear, second-order cone, or

semidefinite programming (Beck and Ben-Tal 2009).

Robust Optimization has found widespread application across various domains, where

uncertainty sets are commonly constructed using budgeted uncertainty sets (Bertsimas and

Sim 2003), ellipsoidal approximations (Ben-Tal et al. 2011), or confidence regions derived

from statistical estimations (Bertsimas, Gupta, and Kallus 2018; Goerigk and Kurtz 2020).

However, classical formulations often rely on fixed, global uncertainty sets that are applied

uniformly across all problem instances. This design choice can lead to overly conservative

decisions, as it ignores contextual or structural dependencies among parameters that may

vary with observable features or data specific characteristics.

As decision making becomes increasingly data driven, there is growing interest in

contextual optimization, a framework that adapts not only to uncertainty but also to

the specific context or features observed at decision time (Sadana et al. 2025; Mandi

et al. 2024). In many practical settings, such as personalized pricing, healthcare resource

allocation, or demand forecasting, uncertainty is not uniform across instances but varies

with covariates like location, demographic profiles, or time. Ignoring such structure leads

to overly generic and potentially suboptimal decisions. This resulted in growing interest in

research into context aware optimization frameworks that incorporate observable features

into both predictive and prescriptive models. Similar ideas have emerged in fields like

contextual bandits, meta-learning (Zhou 2015; Lemke, Budka, and Gabrys 2015) where

both decision policies and uncertainty estimates are adapted to instance-specific features.

In Chapter 1, we propose Conditional Robust Optimization (CRO) as a novel contri-

bution that unifies ideas from contextual optimization and robust decision-making.This

work was published in Advances in Neural Information Processing Systems (NeurIPS

2022) (Chenreddy, Bandi, and Delage 2022). CRO generalizes classical robust optimiza-

tion by allowing uncertainty sets to be conditioned on observed features enabling adaptive

and data-driven robustness. Rather than optimizing against a single worst-case distribu-
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tion, CRO seeks decisions that are robust to context-dependent uncertainty (Chenreddy,

Bandi, and Delage 2022). Our approach provides the framework to learn region specific

uncertainty sets from data while maintaining statistical coverage guarantees ensuring that

the true outcome lies within the set with high probability. We show that, under mild

assumptions, the resulting robust optimization problem remains computationally tractable.

This contrasts with classical robust optimization, which applies static, global uncertainty

sets that often lead to over conservatism. While data driven CRO framework provides a

flexible way to incorporate context into uncertainty modeling, it often relies on a two stage

pipeline where uncertainty sets are first estimated from data and then used in a separate

robust optimization step. While modular and interpretable, this ETO approach often suffers

from a misalignment between the loss function used to construct the uncertainty sets and

the final decision making objective. A key result also shows that this coverage based

construction can be viewed as a contextual extension of value-at-risk optimization, which

naturally leads to conservative solutions. This perspective connects to prior observations

in the literature (see Lam 2019; Van Parys, Esfahani, and Kuhn 2021).

To overcome this, in Chapter 2, we introduce an end-to-end CRO framework that jointly

learns both the uncertainty sets and the optimal decisions. This work is published in the

Proceedings of the 40th Conference on Uncertainty in Artificial Intelligence (UAI 2024)

(Chenreddy and Delage 2024). By integrating a differentiable optimization layer into the

learning process, the model receives direct feedback from the downstream task, allowing it

to shape the uncertainty sets in a way that improves decision quality. We also propose a

novel joint loss function aimed at enhancing the conditional coverage of the contextual

uncertainty sets while optimizing the CRO objective. Empirical results demonstrate that

this end-to-end approach surpasses traditional ETO methods in decision quality while

achieving comparable or superior conditional coverage.

While the earlier chapters addressed problems aimed at optimizing immediate rewards,

these settings assume one time interactions where historical data consist of (ψ,ξ ) pairs.

The objective is to map covariates ψ to decisions that influence an observed outcome ξ ,

which directly determines the reward. However, many real-world applications involve
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sequential decision-making, where actions not only yield immediate returns but also

influence future states. In such settings, we may observe tuples of the form (ψ,ξ ,ψ ′,r),

where ψ is the current context, ξ the realized outcome conditional on the action, ψ ′ the

subsequent context, and r ∈ R the immediate reward. Yet we lack access to the underlying

system dynamics or a decision oracle. The goal is to learn a policy that maximizes

long-term reward using only logged data. This defines the offline reinforcement learning

setting, which differs from online RL in that the agent cannot interact with the environment

to collect new data. Offline RL introduces specific challenges, including distributional

mismatch between the behavior and target policies, and limited coverage of the state-action

space, both of which can lead to poor generalization and unsafe decisions.

In Chapter 3, we introduce Epistemic Robust Soft Actor-Critic (ERSAC), a novel

framework that generalizes Conditional Robust Optimization (CRO) to the sequential

setting of offline reinforcement learning. In classical CRO, uncertainty sets are conditioned

on observable features to induce decisions that are robust to instance-specific variability

(Chenreddy, Bandi, and Delage 2022; Y. P. Patel, Rayan, and Tewari 2024). ERSAC

extends this principle by constructing state-dependent uncertainty sets over long term

expect return values (a.k.a. Q-values), capturing how epistemic uncertainty varies across

the state space in dynamic environments.

Traditional approaches to epistemic robustness in offline RL, such as SAC-N, use

discrete Q-function ensembles to generate conservative value estimates (An et al. 2021).

While effective, these methods rely on sampling-based approximations and require large

ensembles to encode directional uncertainty, making them computationally expensive and

statistically inefficient.

ERSAC replaces ensembles with a learned, structured uncertainty set U (ψ) at each

state ψ , capturing both the shape and orientation of epistemic variability in Q-values. These

sets are parameterized using a scalable variant of Epistemic Neural Networks (Osband

et al. 2023), which generate distributions over Q-values conditioned on latent context.

This construction enables the learning of robust Bellman backups without relying on

bootstrapped ensembles or explicit variance penalization. In doing so, ERSAC preserves
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the conditional robustness of CRO while introducing a richer and more computationally

efficient mechanism for sequential decision-making under uncertainty.

Together, the three chapters of this thesis present a unified perspective on decision

making under uncertainty through the lens of data driven and context aware robustness.

Chapter 1 introduces a modular framework for learning conditional uncertainty sets from

data, enabling robust decisions that adapt to observable covariates. Chapter 2 builds on

this foundation by coupling uncertainty estimation with optimization in an end-to-end

manner, eliminating the disconnect between prediction and prescription in robust settings.

Chapter 3 extends these ideas to the sequential setting, proposing a principled framework

for epistemic robustness in offline reinforcement learning, where uncertainty sets are used

to stabilize value estimates and improve generalization from static datasets.

Across these settings, we show that treating uncertainty as a structured, learnable object

leads to more effective and robust decisions. By bridging robust optimization, statistical

learning, and reinforcement learning, this work contributes to a growing body of work

that seek to integrate prediction models with decision making frameworks for reliable,

interpretable trustworthy decision making in uncertain environments.
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Chapter 1

Data-Driven Conditional Robust

Optimization

Abstract

In this chapter, we study a novel approach for data-driven decision-making under uncer-

tainty in the presence of contextual information. Specifically, we address this problem

using a new Conditional Robust Optimization (CRO) paradigm that seeks the solution

of a robust optimization problem where the uncertainty set accounts for the most recent

side information provided by a set of covariates. We propose an integrated framework

that designs the conditional uncertainty set by jointly learning a partition in the covariate

data space and simultaneously constructing region specific deep uncertainty sets for the

random vector that perturbs the CRO problem. We also provide theoretical guarantees

for the coverage provided by conditional uncertainty sets and for the value-at-risk per-

formances obtained using the proposed CRO model. Finally, we use simulated and real

world data to illustrate the implementation of our approach and compare it against two

non-contextual robust optimization benchmark approaches to demonstrate the value of

exploiting contextual information in robust optimization.



1.1 Introduction

In most real world decision problems, the decision maker (DM) faces uncertainty either

in the objective function that he aims to optimize, or some of the constraints that he

needs to satisfy. Stochastic Programming and Robust Optimization (RO) are the most

popular methods for addressing this issue. With the growing availability of data, there has

recently been a surge of interest in modeling optimization under uncertainty as contextual

optimization problems that seek to leverage rich feature observations to make better

decisions (Ban and Rudin 2019; Bertsimas and Kallus 2020). In a simple cost minimization

problem, where X ⊆ Rn and c(x,ξ ) respectively capture the feasible set of actions and

a cost that depends on both the action x and a random perturbation vector ξ ∈ Rm, the

“contextual” DM has access to a vector of covariates ψ ∈ Rm assumed to be correlated to

ξ . This DM therefore traditionally wishes to identify an optimal policy, i.e. a functional

xxx : Rm→X that suggests an action in X adapted to the observed realization of ψ , with

respect to his expected cost over the joint distribution of (ψ,ξ ):

min
xxx(·)

E[c(xxx(ψ),ξ )]. (1.1)

From a theoretical point of view, one can exploit the interchangeability property (see

Theorem 14.60 in Rockafellar and Wets (2009)) to identify an optimal policy for Problem

(1.1) using the following conditional stochastic optimization (CSO) problem:

(CSO) xxx∗(ψ) ∈ argmin
x∈X

E[c(x,ξ )|ψ]. (1.2)

While the literature that treats contextual optimization through the CSO problem is rich,

much less attention has been given to contextual optimization in the risk averse setting.

Namely, one can think about replacing the risk neutral expected value operator in Problem

(1.2) with a risk measure such as value-at-risk or conditional value-at-risk in order to

prevent the DM from being exposed to the possibility of large costs. Moreover, while

robust optimization is being used pervasively in disciplines that employ decision models,

including chemical, civil, electrical engineering, medicine, and physics (see respectively

Bernardo and Saraiva (1998), Bendsøe, Ben-Tal, and Zowe (1994), Mani, Singh, and
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Orshansky (2006), Chu et al. (2005), and Bertsimas, Nohadani, and Teo (2007)) to name a

few, the question of how to systematically integrate contextual information in this important

class of decision models remains to this day unexplored.

In this work, we therefore tackle for the first time the contextual optimization problem

from the point of view of robust optimization. Namely, we will consider a contextual DM

that wishes to exploit the side information in the design and solution of a robust optimiza-

tion problem. This naturally gives rise to the following conditional robust optimization

(CRO) problem

xxx∗(ψ) := argmin
x∈X

max
ξ∈U (ψ)

c(x,ξ ) ,

where U (ψ) is an uncertainty set designed to contain with high probability the realization

of ξ conditionally on observing ψ . Our proposed approach will be data-driven in the

sense that the design of the CRO problem will make use of historical observations of joint

realizations of ψ and ξ .

Our contribution can be summarized as follows.

• We propose for the first time a framework for learning from data an uncertainty set

for RO that adapts to side information. The “training” of this conditional uncertainty

set is done by jointly learning a partition in the covariate data space using deep

clustering methods, and simultaneously constructing region specific deep uncertainty

sets, using techniques from one-class classification, for the random vector that

perturbs the CRO problem.

• We establish theoretical connections between CRO and Contextual Value-at-Risk

Optimization (CVO):

min
xxx(·)

VaR1−ε(c(xxx(ψ),ξ )), (1.3)

where VaR1−ε(Z) := inf{t|P(Z ≤ t) ≥ 1− ε} refers to the value-at-risk of 1− ε

confidence level of Z.
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• We demonstrate empirically that contextual robust optimization can improve the

performance of robust optimization models in a data-driven portfolio optimization

problem that employs real world data from the U.S. stock market. In particular, we

find that in conditions where side information carries a strong signal about future

returns, the risk of the portfolio can be reduced by up to 15%.

The chapter is organized as follows. Section 1.2 surveys related work. Section 1.3

summarizes the approach discussed in Goerigk and Kurtz (2020). Section 1.4 presents a

Deep Cluster then Classify (DCC) scheme and our Integrated Deep Cluster then Classify

(IDCC) scheme to generate conditional uncertainty sets. It also establishes the connections

to CVO. Our case study based on real world portfolio optimization is presented in Section

1.5 followed by conclusions in Section 1.6.

1.2 Related Work

Conditional Stochastic Optimization Hannah, Powell, and Blei (2010) was possibly the

earliest work on CSO, where a kernel density estimation approach is exploited to formulate

and solve a CSO problem. Ban and Rudin (2019) apply CSO to a newsvendor optimization

problem where the performance of linear policies and kernel density estimation is explored

and where generalization error can be controlled using regularization. Kallus and Mao

(2020) studied methods to train forest decision policies for CSO in a way that directly

targets the optimization costs. Ban, Gallien, and Mersereau (2019) use residual tree

methods to solve general multi-stage stochastic programs where information about the

underlying uncertainty is available through covariate information. Kannan, Bayraksan, and

J. R. Luedtke (2020) propose data-driven SAA frameworks for approximating the solution

to two-stage stochastic programs with access to a finite number of samples of random

variables and concurrently observed covariates. Recently, Lin et al. (2022) has applied a

conditional VaR constrained CSO formulation to the newsvendor problem. While most

of the related work focuses on an “estimate-then-optimize” approach (see also Srivastava
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et al. (2021) and Hu, Kallus, and Mao (2022)), there have also been recent efforts in

designing CSO models using an end-to-end paradigm (see Elmachtoub and Grigas (2022)

and Donti, Amos, and J. Kolter (2017)).

Distributionally robust CSO One common challenge with the applications of CSO

is due to the fact that often there are only a few samples (if any at all) drawn from the

conditional distribution of ξ given ψ for each realization of ψ (Hu et al. 2020). This in turn

causes a poor approximation of the true conditional distribution resulting in poor out-of-

sample performance. Most proposed solutions to this issue have relied on distributionally

robust optimization (DRO). For example, Bertsimas and Van Parys (2021), Bertsimas,

McCord, and Sturt (2022) and Nguyen et al. (2021), and Srivastava et al. (2021) all propose

DRO approaches that employ distribution sets that are centered at either the estimated

conditional distribution or joint empirical distribution of (ψ,ξ ). Kannan, Bayraksan, and

J. Luedtke (2021) applies distributionally robust optimization to the residual-based CSO

model proposed in Kannan, Bayraksan, and J. R. Luedtke (2020). We finally note that none

of these works have considered the problem of conditional DRO where the distributional

ambiguity set itself, namely its support or size, depending on contextual information.

Data-driven Robust Optimization and One-class Classification There has been a

growing set of papers (see Ohmori (2021), C. G. McCord (2019), and Wang and Jacquillat

(2020)) proposing various frameworks that use both supervised and unsupervised one-class

classification techniques in designing the uncertainty sets which are further integrated into

the RO problems. Some approaches make use of variance and covariance of historical data

(Natarajan, Pachamanova, and Sim 2008) while others (Goerigk and Kurtz 2020; C. Wang

et al. 2021) have exploited the representative power of deep neural networks to construct

compact uncertainty sets. Up to this day, none of the data-driven robust optimization

approaches have considered accounting for contextual information.

Deep Clustering Methods Traditional clustering methods like Gaussian Mixture

Models (GMM) and k-means clustering rely on the original data representations and suffer

from the curse of dimensionality. Recent developments in DNNs led to the learning of high

quality representations, especially auto-encoder (AE) and decoder systems are particularly
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appealing as they are able to learn the representations in a fully unsupervised fashion.

Several works like Chang et al. (2017), X. Guo et al. (2017), and Ji et al. (2017) combine

variational AEs and GMMs to perform clustering and non-linearly map the input data into

a latent space. Few works like Fard, Thonet, and Gaussier (2020) try to jointly learn the

representations and jointly cluster with k-means and learning representations. We modify

these algorithms to introduce a probability simplex that interacts with the centroids and

also the center of the uncertainty sets.

1.3 The Deep Data-Driven Robust Optimization

(DDDRO) Approach

Focusing on a classical robust optimization model, i.e. minx∈X maxξ∈U c(x,ξ ), the

authors of Goerigk and Kurtz (2020) propose to employ deep learning to characterize the

uncertainty set U in a data-driven environment. In particular, they consider describing the

uncertainty set U in the form:

U (W,R) := { ξ ∈ Rm : ∥ fW (ξ )− f̄0∥ ≤ R} , (1.4)

where fW : Rm→ Rd is a deep neural network, parametrized using W , that projects the

perturbation vector ξ to a new vector space where the uncertainty set can be more simply

defined as a sphere of radius R centered at some f̄0.

Given a dataset Dξ = {ξ1,ξ2 . . .ξN}, they propose discovering the underlying structure

of U by training the NN using a method found in the one-class classification literature,

namely minimizing the empirical centered total variation of the projected data points:

min
W

1
N

N

∑
i=1
∥ fW (ξi)− f̄0∥2 , (1.5)

where f̄0 := (1/N)∑i∈[N] fW0(ξi) is the center of the projected points under some initial

random choice of fW0 . Once the network is trained, they calibrate the radius R of U in

order to reach a targeted coverage 1− ε of the data set.
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In terms of NN architecture, they favor a special class of fully connected neural

networks of depth L:

fW (c) = σ
L(W L

σ
L−1(W L−1 . . .σ1(W 1(c)) . . .)) (1.6)

where each W ℓ captures a linear projection while each σ ℓ captures a term-wise piecewise

linear activation function (e.g. ReLU, Hardtanh, or hard sigmoid):

σ
ℓ
j (w j) = aℓkw j +bℓk if α

ℓ
k ≤ w j ≤ α

ℓ
k, k = 1, . . . ,K

with {aℓk,bℓk,αℓ
k,α

ℓ
k}K

k=1 as the parameters that identifies each of the K affine pieces.

The motivation for such an architecture comes from the proposed solution scheme

for the RO problem, which relies on a constraint generation approach (see Algorithms 3

and 4 in Appendix). This scheme relies on progressively adding scenarios to a reduced

set U ′ ⊆U until the worst-case cost of the solution under U ′ is the same as under U .

Numerically, a critical step consists in identifying the worst-case realization in U , which

is shown to reduce to a mixed-integer linear program when c(x,ξ ) is linear in ξ under the

selected NN architecture due to the following representation of U (W,R):

U (W,R) =



ξ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃u ∈ {0, 1}d×K×L, ζ ∈ Rd×L, φ ∈ Rd×L

∑
K
k=1 uk,ℓ

j = 1, ∀ j, ℓ

φ 1 =W 1ξ

ζ ℓ
j = ∑

K
k=1 uk,ℓ

j aℓkφ ℓ
j +∑

K
k=1 uk,ℓ

j bℓk, ∀ j, ℓ

φ ℓ =W ℓζ ℓ−1, ∀ℓ≥ 2

∑
K
k=1 uk,ℓ

j αℓ
k ≤ φ ℓ

j ≤ ∑
K
k=1 uk,ℓ

j α
ℓ
k, ∀ j, ℓ

∥ζ L− f̄0∥ ≤ R



, (1.7)

where we assume for simplicity that each layer of the deep neural network has d neurons

and φ ℓ is the output at l-th layer of the neural network. We refer interested readers to

Goerigk and Kurtz (2020) for more details.
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1.4 Deep Data-driven Conditional Robust Optimization

Let (ψ,ξ ) be a pair of random vectors defining respectively the side-information and

random perturbation vectors of a contextual optimization problem. We can call our

dataset Dψξ := {(ψ1,ξ1), . . . ,(ψN ,ξN)}. Our objective is to train a data-driven conditional

uncertainty set U (ψ) that will lead to robust solutions that are adapted to the type of

perturbance that is experienced when ψ is observed. In this section, we propose two

algorithms, namely the Deep cluster then classify (DCC) and the Integrated Deep cluster

then classify (IDCC), to do so, and propose a calibration procedure that offers some

guarantees with respect to a contextual value-at-risk problem.

1.4.1 The Deep “Cluster then Classify” (DCC) Approach

A direct extension of G&K’s DDDRO approach in Section 1.3 consists in reducing the

side-information ψ to a set of K different clusters, which provides states of the environment

in which one wishes to design customized data-driven uncertainty sets. Mathematically,

U (ψ) := Ua(ψ), where a : Rm → [K], is a trained K-class cluster assignment function

for ψ , and each Uk, for k = 1, . . . ,K, is an uncertainty sets for ξ that is trained and sized

using the procedure described in Section 1.3 with the dataset Dk
ξ

:= ∪(ψ,ξ )∈Dψξ :a(ψ)=k{ξ}.
This process implicitly involves multiple sequential steps of training deep neural net-

works. Following Moradi Fard, Thonet, and Gaussier (2020), when performing deep

K-mean clustering to obtain a(ψ), training can take the form of Algorithm 5, where

the deep K-means algorithm trains simultaneously a representation gVE : Rm→ Rd , us-

ing an encoder and gVD : Rd → Rm, using a decoder network, and a K-mean classifier

āθ (φ) := argmink∈[K] ∥φ − θ k∥2 by minimizing, using stochastic gradient descent in a

coordinate descent scheme, a trade-off (using αK) between reconstruction error and the

within cluster centered total variation in the encoded space:

L 1(V,θ) := (1−αK)
1
N

N

∑
i=1
∥gVD(gVE (ψi))−ψi∥2 +αK

1
N

N

∑
i=1
∥gVE (ψi)−θ

a(ψi)∥2 , (1.8)
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where a(ψ) := āθ (gVE (ψ)). To solve this problem, we iterate between improving V :=

(VE ,VD) while keeping θ fixed, and improving θ while preserving V fixed.

Once the K-mean and one-class classifiers are trained, we correct for a deficiency of

DDDRO approach, which assumes wrongfully that the projected fW k(ξ ) are normalized

for each Dk
ξ
. Namely, we replace U (W,R) with a set that employs an ellipsoid in the

projected space according to the statistics of Dk
ξ

:

U (W k,Rk,S k) := {ξ ∈ Rm : ∥Σk
f
−1/2

( fW k(ξ )−µ
k
f )∥ ≤ Rk} , (1.9)

where S k is short for (µk
f ,Σ

k
f ) with

µ
k
f := |Dk

ξ
|−1

∑
ξ∈Dk

ξ

fW k
0
(ξ ) and Σ

k
f := |Dk

ξ
|−1

∑
ξ∈Dk

ξ

( fW k(ξ )−µ
k)( fW k(ξ )−µ

k)T .

The calibration of each Rk can finally be done using the same procedure as in Goerigk and

Kurtz (2020) but using the reduced dataset Dk
ξ

.

1.4.2 The Integrated Deep Cluster-Classify (IDCC) Approach

While the simplicity of the approach presented in Section 1.4.1 makes it appealing, we

identify two important weaknesses. First, by separating the training into multiple steps,

it omits tackling the conditional uncertainty set learning problem as a whole. Namely,

that low total variation in the ψ space (or a projection of it) does not necessarily imply

that low total variation can easily be achieved in a projection of the ξ space. Second, it is

unclear how to adapt the approach to a context where a clear separation of the clusters is

impossible and where the notion of partial membership to a cluster is more appropriate.

To address the first problem, we propose an integrated framework for performing deep

clustering and deep uncertainty set design jointly. Namely, we propose to optimize all of

V , θ , and {W k}K
k=1 jointly using a loss function that trades-off between the objectives used

for clustering and each of the K versions of one-class classifiers. We also tackle the issue

of hard assignments by training a parameterized random assignment policy π : Rm→ ∆K ,

where ∆K is the probability simplex in RK , and θ the parameters that define the policy
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space. In the context of employing a soft version of deep K-means (Fard, Thonet, and

Gaussier 2020), this random assignment policy takes the form of π(ψ) := π̄θ (gV (ψ)),

where

π̄
θ
k (ψ) :=

exp{−β∥gV (ψ)−θ k∥2}
∑

K
k′=1 exp{−β∥gV (ψ)−θ k′∥2} (1.10)

With these adjustments, our proposed loss function takes the form of:

L 3
α (V,θ ,{W k}K

k=1) :=αS

(
(1−αK)Eπ

D [∥gVD(gVE (ψi))−ψi∥2]

+αKEπ

D [TotalVarπ

D(gVE (ψ),θ ã(ψ) |ã(ψ))]
)

+(1−αS)
1
K

K

∑
k=1

min
ϑ k

TotalVarπ

D( fW k(ξ ),ϑ k |ã(ψ) = k) , (1.11)

where ã(ψ)∼ π̄θ (gVE (ψ)) is the randomized assignment based on ψ , TotalVarπ

D(φ ,θ |ã(ψ))

:= ∑
d
j=1Eπ

D [(φ j−θ j)
2|ã(ψ)] is the conditional centered total variation of given ã(ψ). In

fact, all statistics are measured using the empirical distribution expressed in Dψξ and the

conditional distribution produced by the randomized assignment policy π̄θ (gV (ψ)), i.e.

Pπ

D((ψ,ξ , ã) ∈ E ) = (1/N)∑
N
i=1 ∑

K
k=1 111{(ψi,ξi,k) ∈ E }π̄θ

k (gV (ψi)). The explicit form of

equation (1.11) can be found in Appendix 1.7.2.

Overall, L 3
α trades off (using αS) between the reconstruction error of the encoder-

decoder networks on ξ , the expected recognizability of the K clusters, i.e. the fact that the

observed features gVE (ψ) form distinct clusters of points, and the average compactness

of the produced conditional uncertainty sets. In particular, as αS→ 1, we can expect the

minimizer of L 3
α to converge to the minimizer of the cluster and classify approach. At

the other end of the spectrum, when αS→ 0, the model will produce more self contained

conditional uncertainty sets but at the price of less distinguishable clusters (in terms of ψ)

that might poorly exploit the side-information. Algorithm 1 presents our proposed training

scheme for the IDCC approach.

Given that we employ a random assignment policy, we propose replacing the determin-

istic CRO problem with its randomized version:

x̃xx∗(ψ) ∈ argmin
x∈X

max
ξ∈Ũ (ψ)

c(x,ξ ) ,
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where Ũ (ψ) := U (W ã(ψ),Rã(ψ),S ã(ψ))1 is a random uncertainty set, and where we

express the fact that conditionally on ψ , x̃xx(ψ) is a random policy that depends on the

realization of ã. Given the randomness of Ũ (ψ), one needs to be more careful in defining

a calibration scheme for each Rk. Our proposed scheme is motivated by the following

lemma, which proof can be found in Appendix 1.7.1.

Lemma 1.4.1. Let the random uncertainty set Ũ (ψ) satisfy:

Pπ

D(ξ ∈ Ũ (ψ)|ã(ψ) = k)≥ 1− ε, ∀k , (1.12)

then it satisfies:

Pπ

D(ξ ∈ Ũ (ψ))≥ 1− ε. (1.13)

In particular, this lemma suggests calibrating each Rk using the bisection to solve:

inf

{
R

∣∣∣∣∣∑N
i=1 111{ξi ∈U (W k,R,S k)}π̄θ

k (gVE (ψi))

∑
N
i=1 π̄θ

k (gVE (ψi))
≥ 1− ε

}
, (1.14)

given that the resulting Rk are the smallest that satisfy (1.12).

1Here, S k refers to ( f̄ θ ,V
W k|ã(ψi)=k

, Σ̄θ ,V
Wk|ã(ψ)=k) with

Σ̄
θ ,V
Wk|ã(ψ)=k :=

N

∑
i=1

π̄θ
k (gVE (ψi))

∑
N
i=1 π̄θ

k (gVE (ψi))
· ( fW k(ξi)− f̄ θ ,V

W k|ã(ψi)=k
)( fW k(ξi)− f̄ θ ,V

W k|ã(ψi)=k
)T

.
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Algorithm 1 : Integrated deep cluster-classify with deep K-means
Input : Dataset Dξ ,ψ ; number of clusters K; hyperparameters αK,αS,β

Randomly initialize θ0, V0, and W0

Let π0 := π̄θ0(gVE 0(ψ)) and W k
0 :=W0 for all k’s

Set t := 0

repeat

Set t := t +1

Update θ k
t := Eπ

D [gVEt−1(ψ) | ã(ψ) = k] using πt−1

Update (Vt ,{W k
t }K

k=1) using gradient descent on Eq. (1.11) with θt

Get πt := π̄θt (gVEt (ψ))

until t ≥ T or convergence

Let π(·) := πt(·) and W k :=W k
t for all k

for k = 1 to K do

Calibrate Rk using Eq. (1.14)

Let U k := U (W k,Rk,S k)

return π(·) and {U k}K
k=1

1.4.3 Connections to Contextual Value-at-Risk Optimization

In the previous subsections, we proposed two different schemes to produce a possibly

randomized uncertainty set Ũ (ψ) that can be employed in a randomized CRO problem2.

We also proposed a scheme for radii calibration so that they would satisfy the coverage

property in equation (1.13). Hence, one can derive the following connection between

conditional robust optimization and the CVO Problem (1.1). The proof is pushed to

Appendix 1.7.1.

Lemma 1.4.2. When Ũ satisfies (1.13), the random policy x̃xx(·) to the randomized CRO

2Note that in the case of Section 1.4.1, the conditional uncertainty set is deterministic thus reducing the
randomized version of CRO to a pure CRO problem
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problem together with

v∗ := esssupπ

D min
x∈X

max
ξ∈Ũ (ψ)

c(x,ξ )

provide a conservative approximate solution to the CVO problem under the empirical

measure Pπ

D . Namely,

VaRD ,π
1−ε

(c(x̃xx(ψ),ξ ))≤ v∗.

In particular, in the case of the proposed DCC and IDCC approaches we have that

v∗ = max
k∈[K]

min
x∈X

max
ξ∈U (W k,Rk.S k)

c(x,ξ ) .

As the robust optimization paradigm traditionally aims at offering statistical guarantees

on the out-of-sample performance of the prescribed solutions, we describe below how a

bootstrap method can be used to estimate the radii Rk’s.

Remark 1.4.1. Using bootstrapping methods, we can get a conservative approximation of

each Rk as:

R̃k := inf

{
R

∣∣∣∣∣PD̃

(
N

∑
i=1

π̄θ
k (gVE (ψi)

∑
N
i=1 π̄θ

k (gVE (ψi)
111{ξi ∈U (W k,R,S k)} ≥ 1− ε

)
≥ 1−δ

}
where PD̃ measures the probabibility when resampling a new dataset of size N with

replacement from Dψξ . When N is large enough and assuming that each data point is

drawn i.i.d. according to some unknown probability measure P, we asymptotically get the

guarantee that P(ξ ∈ Ũ (ψ))≥ 1− ε with probability higher than approximately 1−Kδ .

1.5 Experiments

In this section, we illustrate the coverage aspect of the IDCC approach using simulated

data. We will further demonstrate the advantage of the CRO problem using a standard risk

minimizing portfolio optimization problem. We compare the performance of IDCC with

that of DCC, DDDRO (with ellipsoidal correction in (1.9)), and the classical ellipsoidal

uncertainty approach (i.e. DCC with K = 1 and fW 1(ξ ) := ξ ). The IDCC and DCC

methods incorporate the covariate information whereas DDDRO and ellipsoid approaches
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ignore this information. The neural network architecture and other modeling information

are available in Appendix 1.7.2. The code can be found on github3. Our code uses the

Pytorch implementation from Goerigk and Kurtz (2020), which is available online4.

1.5.1 Conditional Uncertainty Set Illustration Using Simulated Data

For ease of illustration, we consider a simulation environment where [ψT ξ T ] ∈ R4 is a

random vector whose distribution is an equal-weighted mixture of two 4-d multivariate

normal distributions. We consider N = 500 and train IDCC (with K = 2), DDDRO, and

the ellipsoid and calibrate the uncertainty sets for a probability coverage of 90%, 99%

(i.e. ε ∈ {1%, 10%}). As a result, DDDRO and IDCC, which use deep neural networks,

identify non-convex uncertainty sets, whose convex hulls are presented in Figure 1.1

together with the calibrated ellipsoid.The figure also presents the conditional distribution

of ξ according to Pπ

D(·|ã(ψ) = k), using IDCC’s randomized assignment, and the training

dataset. One can remark that the conditional sets produced by IDCC exploit the side

information by concentrating the uncertainty set on the region that has the most mass

according to Pπ

D(·|ã(ψ) = k) thus leading to a less conservative RO problem then DDDRO

and the ellipsoid, which are oblivious to ψ . In fact, it appears to have successfully learned

to at least partially recognize the mixture membership using ψ and exploit this information

to adapt the uncertainty set.

1.5.2 Robust Portfolio Optimization

We further investigate the empirical out-of-sample performance of the proposed uncertainty

sets on a classical robust portfolio optimization problem. Namely, we consider a situation

where an investor is trying to minimize the worst-case return based on an uncertainty

set that provides 1− ε probabilistic coverage of the uncertain future return vector. In

particular, given that x captures a vector of investment in n = m different assets whose

3https://anonymous.4open.science/r/Data-Driven-Conditional-Robust-Optimization-E160/
4https://github.com/goerigk/RO-DNN
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(a) ã(ψ) = 1,
90% coverage

(b) ã(ψ) = 1,
99% coverage

(c) ã(ψ) = 2,
90% coverage

(d) ã(ψ) = 2,
99% coverage

IDCC DDDRO Ellipsoid

Figure 1.1: Convex hull of trained uncertainty sets for two levels of coverage and with a
conditional uncertainty set for IDCC that exploits two clusters. The heatmap represents the
conditional distribution of ξ according to Pπ

D(·|ã(ψ) = k). The cloud of points represents
the training dataset.
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return are captured using ξ , we let c(x,ξ ) :=−ξ ⊺x to capture the return on investment,

and let X := {x ∈ Rn|∑n
i=1 xi = 1, x≥ 0} to capture the need to invest one unit of wealth

among the available assets. Following Lemma 1.4.2, this model can in turn be interpreted

as conservatively approximating a minx∈X VaR1−ε(ξ
⊺x), where the objective is a risk

averse value-at-risk metric.

Dataset Our experiments make use of historical data from the U.S. stock market. We

collect the adjusted daily closing prices for 70 stocks (as used in Xu and Cohen (2018))

coming from 8 different sectors from January 1, 2012, to December 31, 2019, using the

Yahoo! Finance’s API. Each year has 252 data points and we compute the percentage

gain/loss w.r.t the previous day to create our dataset for ξ . As for side information, we use

the trading volume of individual stocks and other market indices5 over the same period

as covariates. Our algorithm gives the flexibility to use any number of such metrics as

contextual information. Given the time series nature of the data, at a given instance, we use

3 years of data to train and the following year as validation to pick the hyperparameters of

our model such as learning rate, weight decay, and the optimal number of clusters. We then

retrain the model using the 4 years of data to build the final model. Upon calibrating the

uncertainty set, we use it to solve the robust portfolio optimization problem. We then apply

this policy to the next 1 year’s of data and compute the performance metric, namely Value

at risk (VaR) for different confidence levels to compare the performances. VaR quantifies

the level of risk of a portfolio over a specified time frame. Here, it gives an estimate of the

maximum % loss the decision maker can incur over a period of 1 year when he uses the

policy from the RO model. Intuitively, lower the VaR, less riskier is the generated policy.

Many financial institutions use VaR to determine the amount of collateral needed when

trading financial products so lowering VaR for high confidence levels is crucial.

Experiment Design To test for the robustness of the IDCC algorithm, we experiment

on various randomly sampled stock combinations across different time periods. We

randomly sampled a subset of 15 stocks in a time window and repeated the experiment

5Volatility Index (VIX), 10-year Treasury Yield Index (TNX), Oil Index (CL=F), S&P 500 (GSPC),
Global Income & Currency Fund (XGCFX), Dow Jones Index (DJI)

22



0.8 0.9 0.95 0.99
Confidence level

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Av
g.

 V
aR

(a) 2017

0.8 0.9 0.95 0.99
Confidence level

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Av
g.

 V
aR

(b) 2018

0.8 0.9 0.95 0.99
Confidence level

0.0

0.5

1.0

1.5

2.0

2.5

Av
g.

 V
aR

(c) 2019

IDCC DCC DDDRO Ellipsoid

Figure 1.2: Avg. VaR across portfolio simulations. Error bars report 95% CI.

for 10 runs on 3 moving time frames. We used learning rate = 0.01, αK = 0.5,αS = 0.5,

β = 0.1 for all the experiments. We use a cold start K-means approach to determine K for

each run. We do this across all these experiments as it will be computationally expensive

to tune the parameters through grid search for each run and also our intention is to show

the learning capability of our algorithm even with minimal tuning. The parameter tuning

and implementation details can be found in Appendix 1.7.2.

Results Figure 1.2 shows the avg. VaR across the runs at different confidence levels. It

is evident that IDCC generally performs better than the baseline models. This difference

is especially noticeable at a higher confidence level and vanishes as we move to lower

confidence levels. Table 1.1 provides more details by comparing the overall and conditional

cluster level VaR with the baseline models. Specifically, in each run, we identify each
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cluster as either the “majority” or “minority” cluster depending on its frequency and report

averages of VaR (among the 10 runs) for each of these labels. The average frequencies for

each label are also reported in the table. In particular, one can observe that the improvement

on average overall VaR can reach up to ∼15% (see in 2019 at a 0.99 confidence level).

This advantage is even more clearly visible when we look at the individual cluster-level

conditional VaR. For instance, in the year 2018 for the 0.99 confidence level, the majority

cluster (∼68% data) provides an improvement of 19% and an overall improvement of

9% compared to the second best baseline model. A similar pattern is observed for the

year 2019 as well. In the year 2017, the overall performance of IDCC is close and for

some confidence levels slightly above the baseline models. However, we see that the

majority cluster (∼80% data) is performing better than the baseline models while the

minority cluster has a slightly higher risk. We attribute this loss in performance to the fact

that the minority clusters are much less frequent (∼20% data) and therefore have fewer

data available to properly learn its conditional uncertainty set. This large difference in

frequencies might also indicate that the side information does not have a strong signal for

the behavior of the returns during this period of time.

2017 2018 2019
Conf. 1− ε 0.8 0.9 0.95 0.99 0.8 0.9 0.95 0.99 0.8 0.9 0.95 0.99
IDCC 0.30 0.55 0.75 1.37 0.64 1.16 1.67 2.86 0.44 0.77 1.11 2.02

Overall DDDRO 0.31 0.52 0.79 1.46 0.63 1.24 1.84 3.17 0.45 0.84 1.27 2.35
Ellipsoid 0.30 0.49 0.75 1.45 0.72 1.45 2.04 3.19 0.47 0.81 1.30 2.52

Cond. on Cluster Freq. 80% 68% 59%
Majority IDCC 0.31 0.52 0.71 1.30 0.57 1.08 1.50 2.62 0.44 0.75 1.17 1.88
Cluster DDDRO 0.31 0.52 0.74 1.35 0.59 1.15 1.63 3.23 0.45 0.85 1.31 2.06

Ellipsoid 0.32 0.52 0.74 1.41 0.69 1.29 1.92 3.08 0.47 0.85 1.25 2.31
Cond. on Cluster Freq. 20% 32% 41%
Minority IDCC 0.30 0.61 0.77 1.43 0.96 1.57 2.05 3.13 0.48 0.82 1.15 2.22
Cluster DDDRO 0.30 0.56 0.84 1.39 1.00 1.66 2.04 3.30 0.49 0.84 1.40 2.39

Ellipsoid 0.28 0.47 0.69 1.13 1.17 1.80 2.43 3.43 0.49 0.82 1.38 2.57

Table 1.1: Comparison of average value-at-risk (over 10 runs) for different levels of
probability coverage. Both the overall VaR and conditional VaR given the membership to
the majority/minority clusters are presented.
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1.6 Conclusion and Future Work

In this work, we introduced a new approach, Conditional Robust Optimization, for solving

contextual optimization problems in a risk averse setting. We proposed a novel integrated

approach to design uncertainty sets that adapt to revealed covariate information. We

identified connections to contextual value-at-risk optimization and showed empirically

that our method reduces the out-of-sample VaR considerably compared to non-contextual

RO schemes when the level of protection needed is high. As future work, we find that it

should be interesting to integrate data-driven conditional uncertainty sets in the context of

multi-stage robust optimization models. Given that clustering techniques are often prone

to capturing correlations that do not reflect true causal relations, a promising direction for

future work is to integrate causal inference methods into our approach. One might also

be concerned regarding fairness considerations in contexts where side information might

allow to treat of a certain class of individuals differently from others. This last issue might

be addressed by adding fairness consideration in our integrated loss function.
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1.7 Appendix

1.7.1 Proofs

As mentioned in Sections 3 and 4, our dataset D contains the random perturbation vectors

ξ and side information ψ . Ũ (ψ) represents the conditional uncertainty set that satisfies

the following properties.

Lemma 1.4.1. Let the random uncertainty set Ũ (ψ) satisfy:

Pπ

D(ξ ∈ Ũ (ψ)|ã(ψ) = k)≥ 1− ε, ∀k (1.15)

then it satisfies:

Pπ

D(ξ ∈ Ũ (ψ))≥ 1− ε. (1.16)

Proof. The claim follows from:

Pπ

D(ξ ∈ Ũ (ψ)) =
K

∑
k=1

Pπ

D(ξ ∈ Ũ (ψ)|ã(ψ) = k)Pπ

D(ã(ψ) = k)

≥∑
k
(1− ε)Pπ

D(ã(ψ) = k) = 1− ε .

Lemma 1.4.2. When Ũ satisfies (1.13), the random policy x̃xx(·) to the randomized CRO

problem together with

v∗ := esssupπ

D min
x∈X

max
ξ∈Ũ (ψ)

c(x,ξ )

provide a conservative approximate solution to the CVO problem under the empirical

measure Pπ

D . Namely,

VaRD ,π
1−ε

(c(x̃xx(ψ),ξ ))≤ v∗.

In particular, in the case of the DCC and IDCC approaches we have that

v∗ = max
k∈[K]

min
x∈X

max
ξ∈U (W k,Rk.S k)

c(x,ξ ) .
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Proof. First, by definition of x̃xx(·) and v∗, we have that when ξ ∈ Ũ (ψ):

c(x̃xx(ψ),ξ )≤ max
ξ∈Ũ (ψ)

c(x̃xx(ψ),ξ ) = min
x∈X

max
ξ∈Ũ (ψ)

c(x,ξ )≤ v∗ .

Hence, we must have that:

Pπ

D(c(x̃xx(ψ),ξ )≤ v∗)≥ Pπ

D(c(x̃xx(ψ),ξ )≤ v∗|ξ ∈ Ũ (ψ))Pπ

D(ξ ∈ Ũ (ψ))

≥ 1 · (1− ε) .

We thus obtain our result based on the following argument:

VaRD ,π
1−ε

(c(x̃xx(ψ),ξ )) := inf{t|Pπ

D(c(x̃xx(ψ),ξ )≤ t)≥ 1− ε} ≤ v∗ .

In the case of the DCC and IDCC approaches we have that

v∗ = max
k∈[K]

min
x∈X

max
ξ∈U (W k,Rk)

c(x,ξ ) ,

since Ũ (ψ) is supported on {U (W k,Rk,Dπ
k )}K

k=1.

1.7.2 Deep Learning Implementation of IDCC Approach

IDCC Loss Function:

Mathematically, the conditional total variation loss function (1.11) can be explicitly written

as:

L 3
α (V,θ ,{W k}K

k=1) := (1−αS)
1
K

K

∑
k=1

N

∑
i=1

π̄θ
k (gVE (ψi))

∑
N
i=1 π̄θ

k (gVE (ψi))
∥ fW k(ξi)− f̄ θ ,V

W k|ã(ψi)=k∥
2

+αS

(
(1−αK)

1
N

N

∑
i=1
∥gVD(gVE (ψi))−ψi∥2 +αK

1
N

N

∑
i=1

K

∑
k=1

π̄
θ
k (gVE (ψi))∥gVE (ψi)−θ

k∥2
)

(1.17)

where

f̄ θ ,V
W k|ã(ψi)=k :=

N

∑
i=1

π̄θ
k (gVE (ψi))

∑
N
i=1 π̄θ

k (gVE (ψi))
fW k(ξi) .
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IDCC Network Architecture:

The joint loss minimization task is performed using the following network architecture

which has 2 parallel networks training simultaneously. The first network(gV := (gVE ,gVD))

takes the side information(ψ) as the input and generates a randomized assignment ã(ψ)∼
π̄θ (gVE (ψ)). The second network({ fW k}K

k=1) takes the random perturbation vector(ξ ) and

ã(ψ) as the input to generate W ã(ψ),S ã(ψ)6 which are subsequently used to design the

uncertainty set Ũ (ψ) := U (W ã(ψ),Rã(ψ),S ã(ψ)).

gV is an auto-encoder (AE) network which generates the assignment vector ã(ψ).

They are trained to learn lower dimension data representations at the bottleneck of the

network. They have the capability to learn representations in a fully unsupervised way

which makes them suitable for the task at hand. The encoder(gVE (.)) consists of the

input(dim=m), hidden and the output layers(dim=d). The decoder(gVD(.)) uses this low

dimension representation to reconstruct the original input data. The decoder is a mirrored

version of the encoder. The input layer is fully connected to the output layers with an

intermediate ReLU activation layer in both the encoder and the decoder. We initialize

the network weights using kaiming normal initialization. The output from the encoder is

passed through a softmax layer to generate a soft version of deep K-means Fard, Thonet,

and Gaussier (2020) which gives the assignment simplex ã(ψ)∼ π̄θ (gVE (ψ)) where

π̄
θ
k (gVE (ψ)) :=

exp{−β∥gVE (ψ)−θ k∥2}
∑

K
k′=1 exp{−β∥gVE (ψ)−θ k′∥2} (1.18)

The parallel network({ fW k}K
k=1) designs the K customized data-driven uncertainty sets

using a slightly modified deep SVDD method from Goerigk and Kurtz (2020). The input

to these networks is the perturbations ξ and the assignment policy(π̄θ (gVE (ψ))). Each fW k

has an input layer(dim=15), hidden layer and an output layer(dim=5). All layers are fully

connected with a ReLU activation function. All the networks are initialized with a uniform
6Here, S k refers to ( f̄ θ ,V

W k|ã(ψi)=k
, Σ̄θ ,V

Wk|ã(ψ)=k) with

Σ̄
θ ,V
Wk|ã(ψ)=k :=

N

∑
i=1

π̄θ
k (gVE (ψi))

∑
N
i=1 π̄θ

k (gVE (ψi))
· ( fW k(ξi)− f̄ θ ,V

W k|ã(ψi)=k
)( fW k(ξi)− f̄ θ ,V

W k|ã(ψi)=k
)T ,

.
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distribution in [0,1]. Our approach constructs a weighted center, f̄ θ ,V
W k|ã(ψi)=k which uses

π̄θ (gVE (ψ)) to compute the loss in equation (1.17).

Suggested Extensive Parameter Tuning Procedure

In this section, we discuss the parameter tuning strategy that can be used to train the

network proposed in Section 1.7.2 using the portfolio optimization example discussed

in Section 1.5.2. Here, given the time series nature of the data, we follow the rolling

window approach for network training. Our architecture uses a set of hyperparameters,

hp = (lr,αK,αS,β ,K) where lr represents the learning rate, αK regulates the trade-off

between seeking good representations for ψ that are faithful to the original data and

representations that are useful for clustering purposes. αS plays a similar trade-off between

the recognizability and compactness of uncertainty sets. Finally, β is a softmax temperature

parameter and K represents the number of clusters. We split the data into training and

validation periods and search for the optimal combination through the grid search method.

For each combination, we train the network and generate the optimal policy using training

data which is applied to the unseen validation data. The optimal combination is the one that

gives the lowest VaR1−ε on the validation dataset as this is a worst case return minimization

problem. This is shown in Algorithm 2. Once the hyperparameters are selected, we re-train

the network using the complete data. It is important to note that the results reported in

Section 1.5 did not use parameter tuning to reduce computations.

Algorithm 2 : Hyperparameter tuning
Input : hp = (lr,αK,αSV,β ,K)

for year= y to y+M do

Obtain {U k}K
k=1 from Algorithm 1

Get optimal portfolio using:

min
x∈X

VaR1−ε(ξ
⊺x) (see Section 1.5.2)

Choose hp which minimizes out-of-sample VaR1−ε over M periods
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Simulated Data Generation Process

In this section, we discuss the data generation process for the simulated data used in Section

1.5.1. For easy visualization, we consider a simulation environment where [ψT ξ T ]T ∈R4

is a random vector whose distribution is an equal-weighted mixture of two 4-d multivariate

normal distributions.7 Namely, [ψT ξ T ]T ∼ 0.5N(µ1,Σ1)+0.5N(µ2,Σ2) where:

µ1 :=


1

2

0

4

 , Σ1 :=


1.0 0.0 0.3 −0.1

0.0 1.0 0.1 −0.2

0.3 0.1 1.0 2.0

−0.1 −0.2 2.0 1.0



µ2 :=


5

5

4

0

 , Σ2 :=


1.0 0.0 0.3 −0.1

0.0 1.0 0.1 −0.2

0.3 0.1 1.0 0.0

−0.1 −0.2 0.0 1.0

 .

The distribution marginalized over the random vectors ψ ∈R2 and ξ ∈R2 can respectively

be visualized in Figure 1.3(a) and (b).

(a) (b)

Figure 1.3: Density plot of the marginalized distributions over ψ (in (a)) and ξ (in (b))
from a mixture of two Gaussian distributions on the joint space [ψT ξ T ]T .

7The data is generated using Page Jr (1984).
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Sensitivity Analysis for Parameters

Here, we show the sensitivity analysis for the parameters αS and K. For each of these

analyses, we keep all the other parameters constant and train the model by varying the

considered parameters. For αS, we consider the range of values between 0 and 1. For

the sensitivity analysis of K, we considered 1 to 9 clusters. We conducted 10 such runs

in the year 2019 and observe the average validation VaR. The results can be seen in

the plots below. The analysis in Figure 1.4b shows that 2 clusters result in similar or

improved performance compared to using more clusters. Regarding the influence of αS on

out-of-sample performance, we did not observe any insightful behavior. We believe this

hyperparameter can play a role in problem settings where the convergence of TV losses in

contextual and perturbed spaces is different and needs moderation. However, in this case,

we don’t notice any such issues and the choice of αS as 0.5 seemed to work generally well

across all experiments as seen in Figure 1.4a. The sensitivity analysis also highlights the

same, which points to 0.5 as being a legitimate choice for αS.

(a) (b)

Figure 1.4: Sensitivity analysis (using validation data) across portfolio simulations for the
year 2019.
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1.7.3 Algorithms

In this section, we provide the pseudo-code for the Iterative constraint generation and the

Deep Cluster then Classify techniques from Section 1.4.1.

Iterative constraint generation

We present the iterative constraint generation algorithm for both the Robust Objective

problem:

min
x∈X

max
ξ∈U

c(x,ξ ),

and a Robust Constraint problem of the form:

min
x∈X :c(x,ξ )≤0,∀ξ∈U

f (x).

We note that when X is convex and c(x,ξ ) is convex in x and linear in ξ , then

argminx∈X maxξ∈U ′ c(x,ξ ) can be obtained using convex optimization algorithms, while

ξ ∗ ∈ argmaxξ∈U c(x∗,ξ ) can be obtained using mixed-integer linear programming solvers

such as MOSEK (see MOSEK ApS (2022)). In more general setting, one might need to

employ more general non-linear programming software.

Algorithm 3 : Iterative constraint generation for robust objective problem
Input : Maximum number of iterations M

Initialize U ′ := {ξ0} ⊆U

for iter= 1 to M do

Set x∗ ∈ argminx∈X maxξ∈U ′ c(x,ξ )

Set ξ ∗ ∈ argmaxξ∈U c(x∗,ξ )

if c(x∗,ξ ∗)> maxξ∈U ′ c(x∗,ξ ) then

Add ξ ∗ to U ′

else

break

return x∗
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Algorithm 4 : Iterative constraint generation for robust constraint problem
Input : Maximum number of iterations M

Initialize U ′ := {ξ0} ⊆U

for iter= 1 to M do

Set x∗ ∈ argminx∈X :c(x,ξ )≤0,∀ξ∈U ′ f (x,ξ )

Set ξ ∗ ∈ argmaxξ∈U c(x∗,ξ )

if c(x∗,ξ ∗)> 0 then

Add ξ ∗ to U ′

else

break

return x∗
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Algorithm for Deep Cluster then Classify with deep K-means

Algorithm 5 : Deep Cluster then Classify with deep K-means
Input : Dataset Dξ ,ψ ; number of clusters K; maximum number of iterations T ;

coverage error ε

Randomly initialize θ0, V0, and all W k
0

Let a0(ψ) := āθ0(gVE 0(ψ))

Set t := 0

repeat

Set t := t +1

Update θ k
t := ∑i∈Ik

gVEt−1(ψi)/|Ik|, where Ik := {i : at−1(ψi) = k}
Let at(ψ) := āθt (gVEt−1(ψ))

Update Vt using SGD on Eq. (1.8) with at(ψi)

until t ≥ T

Let a(ψ) := at(ψ)

for k = 1 to K do

Train the parameters W k using Eq. (1.5) with Dk
ξ

Calibrate Rk on Dk
ξ

using coverage target 1− ε

Let U k := U (W k,Rk,S k)

return a(·) and {U k}K
k=1
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Chapter 2

End-to-End Conditional Robust

Optimization

Abstract

The field of Contextual Optimization (CO) integrates machine learning and optimization to

solve decision making problems under uncertainty. Recently, a risk sensitive variant of CO,

known as Conditional Robust Optimization (CRO), combines uncertainty quantification

with robust optimization in order to promote safety and reliability in high stake applications.

Exploiting modern differentiable optimization methods, we propose a novel end-to-end

approach to train a CRO model that accounts for both the empirical risk of the prescribed

decisions and the quality of conditional coverage of the contextual uncertainty set that

supports them. While guarantees of success for the latter objective are impossible to obtain

from the point of view of conformal prediction theory, high quality conditional coverage

is achieved empirically by ingeniously employing a logistic regression differentiable

layer within the calculation of coverage quality in our training loss. We show that the

proposed training algorithms produce decisions that outperform the traditional “estimate

then optimize” approaches.



2.1 Introduction

In a standard machine learning setting, Ψ⊆ Rm represent the input set and Ξ⊆ Rm repre-

sent the output sets and we aim to learn a model Fθ parameterized by θ that approximates

the relationship between the input and output by minimizing a loss function L . In real-

world applications, we usually have a dataset of M samples, Dψξ := {(ψi,ξi)}M
i=1 which

are used to approximate the underlying input-output relationship learned by the model. For

a new data sample ψ ∈Ψ, the model trained on Dψξ is used to predict a corresponding

target ξ = Fθ (ψ). Recently, there has been a growing interest in developing data-driven

optimization solutions that integrate this learning process with the subsequent optimization

process. In this context, one accounts for the fact that the prediction is used within a

cost minimization problem x̂∗(ψ) := argminx∈X c(x,Fθ (ψ)), where X ⊆Rn is the set of

feasible decisions and c(x,ξ ) the cost function. The intent is to adapt the training procedure

to produce an adapted decision with low out-of-sample expected cost E[c(x̂∗(ψ),ξ )].

When there is a mismatch between the training loss L and the cost function c(x,ξ ), a

small error in predicting ξ for a given ψ can lead to highly suboptimal x∗(ψ) (Elmachtoub

and Grigas 2022). Task-based (or decision-focused) learning (Mandi et al. 2024; Donti,

Amos, and J. Z. Kolter 2017) addresses this issue by training the model Fθ directly on the

performance of the policy x∗(ψ). By trading off predictive performance in favor of task

performance, the task-based approach can give near optimal decisions.

In high stakes applications, a Decision Maker (DM) usually demonstrates a certain

degree of risk aversion by requiring some level of protection against a range of plausible

future scenarios. A natural risk averse variant of integrated learning and optimization takes

the form of Conditional Robust Optimization (CRO) (Chenreddy, Bandi, and Delage 2022),

which integrates conformal prediction with robust optimization. Specifically, machine

learning is first used to estimate an uncertainty set U (ψ) for an observed context ψ . This

set U (ψ), known to contain the realized ξ with a high probability, is then inserted into
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the conditional robust optimization model:

x∗(ψ) := arg min
x∈X

max
ξ∈U (ψ)

c(x,ξ ) (2.1)

To this date, the methods proposed in the conditional robust optimization literature follow

an Estimate Then Optimize (ETO) paradigm. Namely, data is first used to estimate the

contextual uncertainty sets which are then calibrated to meet the required coverage levels.

These sets are then used as input to the CRO problem to get the adapted robust decision

x∗(ψ). However, the process of calibrating uncertainty sets does not take into account

the downstream optimization task, potentially resulting in misalignment between the loss

function used in the initial estimation and the objective of robust optimization.

In this chapter, we propose a novel end-to-end learning framework for conditional

robust optimization that constructs the contextual uncertainty set by accounting for the

downstream task loss. Our contributions can be described as follows:

• We propose for the first time an end-to-end training algorithm to produce contextual

uncertainty sets, U (ψ) that lead to reduced risk exposure for the solution of the

down-stream CRO problem

• We introduce a novel joint loss function aimed at enhancing the conditional coverage

of U (ψ) while improving the CRO objective

• We demonstrate through a set of synthetic environments that our end-to-end approach

surpasses ETO approaches at the CRO task while achieving comparable if not

superior conditional coverage with its learned contextual set

• We show empirically how our end-to-end learning approach outperforms other state-

of-the-art methods on a portfolio optimization problem using real world data from

the U.S. stock market

Remark 2.1.1. It is worth noting that when the estimated uncertainty set U (ψ) reduces

to a singleton {Fθ (ψ)}, i.e. a point prediction, the CRO problem simplifies to the de-

terministic contextual optimization problem: x∗(ψ) := argminx∈X c(x,Fθ (ψ)). For this
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special case, the training of Fθ (ψ) using an end-to-end paradigm has been more heavily

studied, see for instance Amos and Kolter (2017), Berthet et al. (2020), and Elmachtoub

and Grigas (2022). End-to-end CRO therefore constitutes a more general and unexplored

framework that can potentially answer to a need to provide more robust decisions in

situations where parameters cannot be perfectly estimated. This is particularly noticeable

in a portfolio optimization problem where a point estimate of the return of assets will

necessarily motivate investing all available wealth in the one single asset with highest

predicted return. In contrast, it is rather easy to formulate an uncertainty set U (ψ) such

that the CRO problem encourage diversification of the investment.

2.2 Related Work

Estimate Then Optimize popularized by the pioneering work of Hannah, Powell, and Blei

(2010) is a framework that integrates machine learning and optimization tasks. Several

approaches are proposed to learn the conditional distribution from data. Kannan, Bayraksan,

and J. R. Luedtke (2020) and Sen and Deng (2018) propose using residuals from the

trained regression model to learn conditional distributions. Bertsimas and Kallus (2020)

assign weights to the historical observations of the parameters and solve the weighted

SAA problem. We refer the readers to the Mišić and Perakis (2020) survey for various

applications of the ETO framework. Besides the mentioned risk neutral applications, there

is a growing interest in integrating machine learning techniques to Robust Optimization

to handle risk-averse scenarios. Chenreddy, Bandi, and Delage (2022) identify clusters

of the uncertain parameters based on the covariate data and calibrate the sets for these

clusters. Y. Patel, Rayan, and Tewari (2023) propose using non-convex prediction regions

to construct uncertainty sets. Blanquero, Carrizosa, and Gómez-Vargas (2023) construct

contextual ellipsoidal uncertainty sets by making normality assumptions. Ohmori (2021)

use a non-parametric K-nearest neighbors model to identify the minimum volume ellipsoid

to be used as an uncertainty set. Sun, Liu, and Li (2023) solve a robust contextual LP

problem where a prediction model is first learned, and then uncertainty is calibrated to

42



match robust objectives. It is to be noted that all these CRO approaches follow the ETO

paradigm.

End-to-end learning is a more recent stream of work that integrates the Estimation

and Optimization tasks and trains using the downstream loss. Donti, Amos, and J. Z.

Kolter (2017) proposed using an end-to-end approach for learning probabilistic machine

learning models using task loss. Elmachtoub and Grigas (2022) learn contextual point

predictor by minimizing the regret associated with implementing prescribed action based

on such a point predictor. Amos and Kolter (2017) use implicit differentiation methods

to train an end-to-end model. Butler and Kwon (2023) solve large-scale QPs using the

ADMM algorithm that decouples the differentiation procedure for primal and dual vari-

ables. Elmachtoub and Grigas (2022) and Mandi, Stuckey, Guns, et al. (2020) propose

using a surrogate loss function to train integrated methods to address loss functions with

non-informative gradients. I. Wang et al. (2023) propose learning a non-contextual un-

certainty set by maximizing the expected performance across a set of randomly drawn

parameterized robust constrained problems while ensuring guarantees on the probability

of constraint satisfaction with respect to the joint distribution over perturbance and robust

problems. Costa and Iyengar (2023) propose a distributionally robust end-to-end system

that integrates residual based distribution estimation and robustness tuning to the portfolio

construction problem. We refer the reader to Kotary et al. (2021), Qi and Shen (2022),

Mandi et al. (2024), and Sadana et al. (2025) for broader discussions on both ETO and

end-to-end approaches.

Uncertainty quantification methods are employed to estimate the confidence of deep

neural networks over their predictions (Kontolati et al. 2022). Common uncertainty quan-

tification approaches include using Bayesian methods like stochastic deep neural networks,

ensembling over predictions from several models to suggest intervals, and models that

directly predict uncertain intervals (Gawlikowski et al. 2021). Beyond estimating predictive

uncertainty, ensuring its statistical reliability is crucial for safe decision-making (C. Guo

et al. 2017). Conformal prediction has become popular as a distribution-free calibration

method (Shafer and Vovk 2008). Although conformal prediction ensures marginal cov-
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erage, attaining conditional coverage in the most general case is desirable (Vovk 2012).

Although considered infeasible, Romano et al. (2020) offers group conditional guarantees

for disjoint groups by independently calibrating each group.

2.3 Estimate then Robust Optimize

The concept of “Estimate Then Optimize” comes from the contextual optimization litera-

ture, as discussed by Sadana et al. (2025). In the context of CRO, the role of the Estimation

process is to quantify the uncertainty about ξ given the observed ψ . This is given as input

to an Optimization problem that prescribes an optimal contextual decision x∗(ψ).

When the downstream optimization problem is a CRO problem, the estimation step

is required to produce a region that adapts to the observed covariates ψ and is expected

to contain the response ξ with high confidence. This can be executed in two steps: first,

by learning a parametric conditional distributional model denoted as Fθ (ψ), and second,

by calibrating an implied confidence region Uθ (ψ) to ensure PFθ (ψ)(ξ ∈Uθ (ψ)) = 1− ε .

For e.g., when one assumes that ξ |ψ ∼N (µ̂(ψ), Σ̂(ψ)), one can learn (µ̂(ψ), Σ̂(ψ)) by

maximizing the log-likelihood function (see Barratt and Boyd (2023))

−n
2

log(2π)+
n

∑
j=1

logL(ψ) j j−
1
2
∥L(ψ)⊤(ξ − ν̂(ψ))∥2

2

where L(ψ) and ν̂(ψ) are the parametric mappings that can be used to compose µ̂(ψ) :=

(L(ψ)−1)⊤ν(ψ) changed from L(ψ)⊤ to (L(ψ)−1)⊤ and Σ̂(ψ) = (L(ψ)−1)⊤L(ψ)−1. Us-

ing the α quantile from the chi-squared distribution with m degrees of freedom, one can

define Uθ (ψ) that satisfies P(ξ ∈Uθ (ψ)) = 1− ε asymptotically.

Some recent work completely circumvents the need for the intermediary Fθ by cali-

brating some Uθ (ψ) directly on the dataset. For example, Chenreddy, Bandi, and Delage

(2022) propose identifying a k-class classifier, a : Rm→ [K] to reduce Uθ (ψ) :=Uθ (a(ψ))

such that P(ξ ∈ Uθ (k)|a(ψ) = k) ≥ 1− ε ∀ k. The literature on conformal prediction

also belongs to the family of distribution-free approaches. It separates the calibration of

the shape of Uθ (ψ) from the calibration of its size, parameterized by a radius r > 0, on
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a reserved validation set to provide out-of-sample marginal coverage guarantees of the

form P(ξ ∈ Uθ (ψ)) ≥ 1− ε, where the probability is taken over both the draw of the

validation set and of the next sample.According to the Lemma 4.2 in Chenreddy, Bandi,

and Delage (2022), such a coverage guarantee is sufficient to ensure that the out-of-sample

Value-at-risk of the robust policy produced by CRO is bounded above by the worst-case

value of the in-sample problem.

2.4 End-to-End Conditional Robust Optimization

While the ETO approach presented in Section 2.3 presents an efficient way to quantify

the uncertainty conditionally, it does not take into account the quality of decisions x∗(ψ)

prescribed by the downstream CRO model. In practice, the quality of a robust decision is

usually assessed by measuring the risk associated with the cost produced on a new data

sample (a.k.a. out-of-sample). We assume that this risk is measured by a risk measure

that reflects the amount of risk aversion experienced by the DM. For instance, one can use

conditional value-at-risk represented by the function, ρα(X) := inft t +(1/(1−α))E[(X−
t)+], which computes the expected value in the right tail of the random cost X for a certain

risk aversion α and it covers both expected value and the worst-case cost as special cases

(i.e. when α = 0 and 1 respectively). In an ETO framework, once the optimal decision

x∗(ψ) is determined, the DM can assess the associated risk, also known as task loss,

ρα(c(x∗(ψ),ξ )). This metric allows comparison across models to select the suitable one.

However, it is important to note that the model with the best performance in terms of task

loss may differ from the optimal model based on prediction loss. Motivated by recent

evidence from Elmachtoub and Grigas (2022) indicating that performance improvement

can be achieved by employing a decision-focused/ task-based learning paradigm, we

propose end-to-end conditional robust optimization.
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2.4.1 The ECRO Training Problem

Formally, we let Ψ⊆ Rm be an arbitrary support set for ψ whereas Ξ⊆ Rm is assumed for

simplicity to be contained within a ball centered at 0 of radius Rξ . We consider c(x,ξ ) to

be convex in x and concave in ξ and let X (ψ) := {x ∈ Rn|g(x,ψ)≤ 0, h(x,ψ) = 0} be a

convex feasible set for x, possibly dependent on ψ , and defined through a set of convex

inequalities, identified using g : Rn×Rm→ RJ and affine equalities, identified using an

affine mapping h : Rn×Rm→ RJ . The conditional optimal policy then becomes:

x∗(ψ,U ) := arg min
x∈X (ψ)

max
ξ∈U (ψ)

c(x,ξ ), (2.2)

where we make explicit how the decision depends on both the contextual uncertainty set

and the realized covariate. Given a parametric family of contextual uncertainty set Uθ

with θ ∈ Θ and a dataset Dψξ := {(ψ i,ξ i)}M
i=1, the ECRO training problem consists in

identifying

min
θ∈Θ

LECRO(θ) := ρi∼M(c(x∗(ψ i,Uθ ),ξ
i)), (2.3)

where ρi∼M refers to the risk when i is drawn uniformly from 1 to M, while, for simplicity,

we assume ρ(·) to be a conditional value-at-risk measure, and Uθ (ψ) to be ellipsoidal for

all ψ . Namely, we can assume that

Uθ (ψ) = E (µθ (ψ),Σθ (ψ),r) (2.4)

:= { ξ ∈ Rm : (ξ −µθ (ψ))T
Σθ (ψ)−1(ξ −µθ (ψ))≤ 1} ,

for some µθ : Rm→ Rm and Σθ : Rm→S+, where S+ is the set of positive definite ma-

trices, for all θ ∈Θ. While the robust optimization literature suggests various uncertainty

set structures that facilitate the resolution of the RO problem, the ellipsoidal set stands out

as a natural one to employ as it retains numerical tractability (see Ben-Tal and Nemirovski

(1998)) and can easily be described to the DM.

The training pipeline for the task-based learning approach is illustrated in Figure 2.1.

In this pipeline, one starts from an arbitrary θ 0, the optimization problem (2.2) is solved
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Estimation

Optimization

Task loss

Dψξ

Uθ

x∗(·,Uθ )

Uθ∗ , x∗(·,Uθ∗)

∇θLECRO(θ)

Figure 2.1: Training pipeline for task-based learning

first for each data point, and the resulting optimal actions are then implemented in order

to measure the empirical risk under Dψξ , which we call empirical ECRO loss of θ 0. A

gradient of LECRO(θ) can then be used to update θ 0 in a direction of improvement. Key

steps in this pipeline consist of computing x∗(ψ i,Uθ ) efficiently and in a way that enables

differentiation with respect to θ .

2.4.2 Reducing and Solving the Robust Optimization Task

Given the convex-concave structure of c(x,ξ ) and the convexity and compactness of the

ellipsoidal set, we can employ Fenchel duality (see Ben-Tal, Den Hertog, and Vial 2015)

to reformulate the min-max problem as a simpler minimization form over an augmented

decision space. Specifically, we first replace the original cost function with the equivalent

cost

c̄(x,ξ ) :=

 c(x,ξ ) if ∥ξ∥2 ≤ Rξ

−∞ otherwise
,

which integrates information about the domain of ξ . One can then employ theorem 6.2 of

Ben-Tal, Den Hertog, and Vial (2015), to show that problem (2.1) can be reformulated as:

min
x∈X (ψ),v

f (x,v,ψ) := δ
∗(v|Uθ (ψ))− c̄∗(x,v) (2.5)
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where the support function

δ
∗(v|Uθ (ψ)) := sup

ξ∈Uθ (ψ)

ξ
T v = µθ (ψ)T v+

√
vT Σθ (ψ)v, (2.6)

while the partial concave conjugate function is defined as

c̄∗(x,v) := inf
ξ

vT
ξ − c̄(x,ξ ) = inf

ξ :∥ξ∥2≤Rξ

vT
ξ − c(x,ξ ).

This leads to x∗(ψ,U (ψ)) being the minimizer of the convex minimization problem:

min
x∈X (ψ),v

f (x,v,ψ) (2.7)

with f (x,v,ψ) := µθ (ψ)T v+
√

vT Σθ (ψ)v− c̄∗(x,v), a jointly convex function of x and v

and finite valued over its domain, and with sub-derivatives:

∇v f (x,v,ψ) = µθ (ψ)+(1/
√

vT Σθ (ψ)v)Σθ (ψ)v−ξ
∗(x,v)

∇x f (x,v,ψ) = ∇xc(x,ξ ∗(x,v)),

where ξ ∗(x,v) := argminξ :∥ξ∥2≤Rξ
vT ξ − c(x,ξ ). Revisiting the procedure outlined in

Figure 2.1, one can observe that the training process requires a forward pass to find the

optimal solutions and a backward pass to update the parameter vector θ . This requires

the computation of the gradients of the solution to the problem (2.3) with respect to the

input parameters that are passed through the reformulated CRO problem. Furthermore, the

minimization procedure in problem (2.3) entails navigating through the risk measure ρ .

These aspects will be further explored in the next section.
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2.4.3 Gradient for Problem (2.3)

In training problem (2.3), the gradient of LECRO(θ) with respect to θ can be obtained

using the chain rule:

∇θLECRO(θ) = ∑
i

∂ρi∼M(yi)

∂yi

∣∣
yi=c(x∗(ψ i,Uθ ),ξ i)

·

∇xc(xxx)
∣∣
x=x∗(ψ i,Uθ )

·(
∇µx∗(ψ i,E (µ,Σθ (ψ

i)))
∣∣
µ=µθ (ψ i)

∇θ µθ (ψ
i)

+∇Σx∗(ψ i,E (µθ (ψ
i),Σ))

∣∣
Σ=Σθ (ψ i)

∇θ Σθ (ψ
i)

)

Based on Ruszczyński and Shapiro (2021), when ρ(Y ) := CVaRα(Y ), one can employ

the subdifferential:

∇yyyρi∼M(yi) = υυυ(yyy)

with υυυ(yyy) ∈ argmax
υυυ∈RM

+ :111T
υυυ=1,υυυ≤((1−α)N)−1 υυυT yyy.

Given that ∇xxxc(xxx), ∇θ µθ (ψ), and ∇θ Σθ (ψ) can be readily obtained using auto-

differentiation (Seeger et al. 2017) when c(xxx), µθ (ψ), and Σθ (ψ) are differentiable, we

focus the rest of this subsection on the process of identifying ∇(µ,Σ)x∗(ψ,E (µ,Σ)). Fol-

lowing the decision-focus learning literature (see Blondel et al. 2022), one can identify

such derivatives by exploiting the fact that any optimal primal-dual pair (x∗,v∗,λ ∗,ν∗) of

problem (2.7) must satisfy the Karush-Kuhn-Tucker (KKT) conditions, which take the

form:

G(x∗,v∗,λ ∗,ν∗,µ,Σ,ψ) = 0, g(x∗,ψ)≤ 0,λ ∗ ≥ 0.

where

G(x∗,v∗,λ ∗,ν∗,µ,Σ,ψ) :=
∇x f (x∗,v∗,ψ)+∇xg(x∗,ψ)T λ ∗+∇xh(x∗,ψ)T ν∗

λ ∗ ◦g(x∗,ψ)

h(x∗,ψ)


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and ◦ denotes the Hadamard product of two vectors.

One can therefore apply implicit differentiation to the constraints G(x∗,v∗,λ ∗,ν∗,µ,Σ,ψ)=

0 to identify ∇(µ,Σ)x∗(ψ,E (µ,Σ)) simultaneously with the derivatives of v∗, λ ∗, and ν∗

with respect to the pair (µ,Σ). Specifically, one is required to solve the system of equations:

∂

∂x,v,λ ,ν
G(x∗,v∗,λ ∗,ν∗,µ,Σ,ψ)·

∂

∂ (µ,Σ)
(x∗,v∗,λ ∗,ν∗)(µ,Σ) =

− ∂

∂ (µ,Σ)
G(x∗,v∗,λ ∗,ν∗,µ,Σ,ψ),

where ∂

∂ (x,v,λ ,ν)G denotes the Jacobian of the mapping G with respect to (x,v,λ ,ν). We

refer to Blondel et al. (2022) and Duvenaud, Kolter, and Johnson (2020) for further details

on the computations of related to implicit differentiation.

2.4.4 Task-based Set (TbS) Algorithm

In this section, we delve into the implementation details of the ECRO training pipeline.

Regarding the contextual ellipsoidal set E (µθ (ψ),Σθ (ψ)), we follow the ideas proposed

in Barratt and Boyd (2023) and employ a neural network that maps from Fθ : Rm →
Rm×Rm(m+1)/2×R. The first set of outputs is used to define µθ (ψ) while the second

and third set forms a lower triangular matrix Lθ (ψ) and scalar rθ (ψ), which is made

independent of ψ w.l.o.g., used to produce Σθ (ψ) := rθ (ψ)Lθ (ψ)Lθ (ψ)T . The positive

definiteness of Σθ (ψ) is ensured by taking an exponential in the last layer of the network

for the output that appears in the diagonal of L. The architecture of the neural network can

be found in Appendix 2.8.2.

The second set of notable details has to do with solving for x∗(ψ i,E (µ i
θ
,Σi

θ
,rθ )) ∀i. In

our implementation of end-to-end learning for conditional robust optimization, we found

that a trust region optimization (TRO) method (see Byrd, Gilbert, and Nocedal 2000)

could efficiently solve the reformulated robust optimization problem (2.7) and provide

primal-dual solution pairs for this problem. Given that each episode of the training would

pass through the same set of data points, we further observed that the training accelerated

50



significantly (see Figure 2.6 in Appendix 2.8.2) when the trust region was interrupted early

(after K = 5 iterations) as long as it would be warm started at the solution found at the

previous epochs. Algorithm 6 presents our proposed training framework for the ECRO

approach.

Algorithm 6 : ECRO Training with Trust Region Solver
Input : Dataset Dξ ,ψ ; max epochs T ; max TRO steps K; batch size N; protection

level α

Initialize warm start buffer {x̄1, . . . , x̄M} with each x̄i ∈X (ψi)

Initialize network parameters θ and set t := 1

while not converged and t ≤ T do

Sample a batch of N indices B ⊂ {1, . . . ,M}
for i ∈B do

// Run TRO for up to K steps

(xt
i,λ

t
i ,ν

t
i )← TRO(x̄i,µθ (ψi),Σθ (ψi),K)

x̄i← xt
i // Update warm start

Compute LECRO(θ) and ∇θLECRO(θ) for i∼B

θ ← θ − step size ·∇θLECRO(θ)

t← t +1

return θ

2.5 End-to-End CRO with Conditional Coverage

Recall that the ETO framework summarized in Section 2.3 focused on producing contextual

uncertainty set with appropriate marginal coverage (of 1− ε) of the realization of ξ . The

training pipeline in Section 2.4 was at the other end of the spectrum, disregarding entirely

the objective of coverage to increase task performance. In practice, coverage can be a

heavy price to pay to obtain performance as it implies a loss in the explainability of the

prescribed robust decision. It is becoming apparent that many DMs suffer from algorithm

aversion (see Burton, Stein, and Jensen 2020) and could be reluctant to implement a robust

decision produced from an ill covering uncertainty set.
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We further argue that traditional ETO might already face resistance to adoption given

the type of coverage property attributed to the ETO sets, i.e. P(ξ ∈U (ψ)) = 1−ε . Indeed,

marginal coverage guarantees only hold in terms of the joint sampling of ψ and ξ . This

implies that it offers no guarantees regarding the coverage of ξ given the observed ψ for

which the decision is made. In fact, a 90% marginal coverage can trivially be achieved

if U (ψ) returns Ξ when ψ ∈ Ψ, for some arbitrary set Ψ, and otherwise returns /0, as

long as P(ψ ∈ Ψ) = 1− ε . This is clearly an issue for applications with critical safety

considerations and motivates seeking conditional coverage in addition to the marginal

coverage when designing U (ψ). In this section, we outline a training procedure that

integrates a sub-procedure that enhances the conditional coverage performance.

2.5.1 The Conditional Coverage Training Problem

We start by briefly formalizing the difference between the two types of coverage in the

definition below.

Definition 2.5.1. Given a confidence level 1−ε , a contextual uncertainty set mapping U (·)
is said to satisfy marginal coverage if P(ξ ∈U (ψ)) = 1− ε , and to satisfy conditional

coverage if P(ξ ∈U (ψ)|ψ) = 1− ε almost surely.

The following lemma identifies a necessary and sufficient condition for a contextual

set to satisfy conditional coverage.

Lemma 2.5.1. A contextual uncertainty set U (ψ) satisfies conditional coverage, at

confidence 1− ε , if and only if

LCC(θ) := E[ (P(ξ ∈U (ψ)|ψ)− (1− ε))2 ] = 0

Proof. For any random variable X , one can show that :

X = 1− ε a.s

⇒ E[(X− (1− ε))2] = 1 · (1− ε− (1− ε))2 = 0
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and that, since y2 ≤ 0⇔ y = 0,

E[(X− (1− ε))2] = 0

⇒ (X− (1− ε))2 = 0 a.s. ⇒ X = 1− ε a.s..

By letting X := P(ξ ∈Uθ (ψ)|ψ), we obtain our result.

Equipped with Lemma 2.5.1, we formulate the “theoretical” conditional coverage

training problem as minθ∈Θ LCC(θ). Since the true conditional distribution P(ξ ∈
Uθ (ψ)|ψ) is typically inaccessible to the DM, we propose an approximation that will

make LCC(θ) practical.

2.5.2 Regression-Based Conditional Coverage Loss

Given a set U , one can define a binary random variable y(ψ,ξ ,U ) := 111{ξ ∈U (ψ)}, and

rewrite the conditional probability distribution P(ξ ∈U (ψ)|ψ) as P(y(ψ,ξ ,U ) = 1|ψ).

Using the i.i.d sample data in Dψξ , one can approximate this conditional probability

using a parametric model, i.e. P(y(ψ,ξ ,U )= 1|ψ) ≈ gφ (ψ) for some φ ∈ Φ. The

parameters φ can be calibrated by minimizing the negative conditional log-likelihood of

{y(ψ i,ξ i,U )}M
i=1:

φ
∗(U ) := argmin

φ∈Φ
− 1

M

M

∑
i=1

loggφ (ψ
i)yi

(1−gφ (ψ
i))1−yi

, (2.8)

where yi := y(ψ i,ξ i,U ). Using the parametric approximation gφ∗(U )(ψ)≈P(ξ ∈U (ψ)|ψ)

and replacing the unknown true distribution of (ψ,ξ ) with the empirical one, we obtain

our regression-based conditional coverage loss function

L̂CC(θ) := EDψξ [(gφ∗(Uθ )(ψ)− (1− ε))2].
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The gradient of L̂CC(θ) can be obtained using similar decision-focused training meth-

ods as employed for LECRO(θ) given that:

∇θL̂CC =
M

∑
i=1

2(gφ∗(Uθ )(ψ
i)− (1− ε))∇φ gφ∗(Uθ )(ψ

i)·

M

∑
j=1

∂φ
∗(E (µ,Σθ (ψ

i)))/∂y j·(
∇µy j(ψ j,ξ j,E (µ,Σθ (ψ

j)))
∣∣
µ=µθ (ψ j)

∇θ µθ (ψ
j)

+∇Σy j(ψ j,ξ j,E (µθ (ψ
j),Σ))

∣∣
Σ=Σθ (ψ j)

∇θ Σθ (ψ
j)

)
,

where the main challenges reside again in the step of differentiating through the minimizer

of problem (2.8).

2.5.3 Dual Task Based Set (DTbS) Algorithm

Estimation

Optimization

CRO
Task Loss

Regression

Coverage
Task Loss

Dual
Task Loss

Dψξ

Uθ

gφ∗(Uθ )(·)x∗(·,Uθ )∇θLDT (θ)

Uθ∗,x∗(·,Uθ∗)

Figure 2.2: Training pipeline for dual task based learning

We conclude this section with the presentation of our novel integrated algorithm that

learns the contextual uncertainty set network Fθ by incorporating both the risk mitigation

and conditional coverage tasks in the training. Indeed our DTbS training algorithm
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minimizes the following double task loss function that trades off between the two task

objectives:

LDT (θ) = γLECRO(θ)+(1− γ)L̂CC(θ). (2.9)

The training pipeline for this algorithm can be seen in Figure 2.2. It closely mirrors

the structure of the TbS algorithm, with additional crucial steps to compute the necessary

components of the loss presented in equation (2.9). Within each epoch, the predicted uncer-

tainty set Uθ serves two purposes: i) Optimizing CRO to find the optimal policy x∗(·,Uθ )

and assessing its associated risk; and ii) producing the binary variable y(ψ,ξ ,Uθ ), which

regression leading to gφ∗(Uθ )(·) serves to quantify the quality of the conditional coverage.

The sum of task losses produces LDT (θ), which can be differentiated using decision-

focused learning methods. The regression model gφ (ψ) takes the form of a feed-forward

neural network with a sigmoid activation in the final layer and is optimized using stochas-

tic gradient descent. Algorithm 7 in Appendix 2.8.1 presents the details of this DTbS

algorithm.

Remark 2.5.1. It is to be noted that achieving distribution-free finite sample conditional

coverage guarantees is known to be impossible in the conformal prediction literature (see

Barber et al. 2020). Recently, some progress has been made towards partial forms of

conditional coverage guarantees (see Gibbs, Cherian, and Candès 2023) yet it is unclear

what are the implications of exploiting such partial coverage properties for the downstream

CRO decisions. It is also unclear how such conditional conformal prediction procedures

could be integrated within an end-to-end CRO approach.

2.6 Experiments

This section outlines our experimental framework devised to demonstrate the advantages

of the ECRO method in learning the uncertainty sets tailored to covariate information.

Our focus lies in assessing the utility of the model in i) improving the CRO performance;

and ii) achieving conditional coverage. We conduct a comparative analysis between our
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(a) (b) (c)
ETO-CPS ETO-ACPS ETO-DbS TbS DTbS

Figure 2.3: Comparison of uncertainty set (α = 0.9) coverage for different ψ realizations:
(a) [2.5,−0.2]T , (b) [−2.6,0.5]T , (c) [2.7,1.9]T . The shade indicate the true conditional
distribution.

two end-to-end approaches, TbS and DTbS, and three state-of-the-art ETO approaches to

formulate contextual ellipsoidal sets. We first consider a Distribution-based contextual

ellipsoidal uncertainty Set (ETO-DbS) recently introduced in Blanquero, Carrizosa, and

Gómez-Vargas (2023), where the conditional distribution of ξ given ψ is presumed to

follow a multivariate normal distribution. Additionally, we explore two distributional-free

approaches. A vanilla Conformal Prediction Set (ETO-CPS) uses conformal prediction

on the output of a point predictor for ξ given ψ , after shaping the ellipsoid (through an

invariant Σ) using the residual errors (see Johnstone and Cox 2021). An Adapted version of

Conformal Prediction Set (ETO-ACPS) proposed in Messoudi, Destercke, and Rousseau

(2022) adapts the shape Σ using local averaging around the observed ψ . The code can be

found on the github1 repository.

2.6.1 The Portfolio Optimization Application

We explore the effectiveness of the proposed methodologies in addressing a classic robust

portfolio optimization problem. In this context, we define the cost function c(x,ξ ) as−ξ T x,

where x represents a portfolio comprising investments in m different assets, with their

respective returns denoted in the random vector ξ . Additionally, we impose constraints

on x, encapsulated within X , defined as X := {x ∈ Rm|∑m
i=1 xi = 1,x≥ 0}. For this cost

1https://github.com/Achenred/End-to-end-CRO
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function, we obtain the partial concave conjugate function:

c̄∗(x,v) = inf
ξ :∥ξ∥2≤Rξ

vT
ξ −ξ

T x =−Rξ∥v− x∥2 (2.10)

Thus leading to problem (2.7) becoming

min
x∈X

f (x,ψ) := xT
µθ (ψ)+

√
xT Σθ (ψ)x (2.11)

when Rξ → ∞, thus capturing Ξ := Rm.

2.6.2 CRO Performance Using Synthetic Data

We first consider a simple synthetic experiment environment where m = 2 and where the

pair (ψ,ξ ) is drawn from a mixture of three 4-d multivariate normal distributions. We

sample N = 2000 observations and use 600 observations to train 400 as validation and 1000

observations for testing. All our results present statistics that are based on 10 simulations,

each of which employed a slightly modified mixture model (see Section 2.8.2 for details).

The TbS and DTbS algorithms leverage deep neural networks with the corresponding

task losses to learn the necessary components (µθ (ψ),Σθ (ψ)) of Uθ (ψ). All sets are

calibrated for a probability coverage of 90% and the risk of decisions is measured using

CVaR at risk level α = 0.9. We also consider an “oracle” method that leverages the exact

knowledge of the underlying distribution as an additional benchmark. The method is based

on formulating a scenario tree approximation of the joint distribution of ψ and ξ in order

to obtain an investment policy that minimizes the CVaR objective (2.3) directly. More

details can be found in Appendix 2.8.3. The average CVaR objective values and marginal

coverages of the uncertainty sets can be found in Table 2.1. One can notice that the

end-to-end based methods, TbS and DTbS significantly outperform the ETO methods on

the CVaR performance. It appears that in order to maintain the required marginal coverage,

the ETO approaches learned sets that resulted in overly conservative RO solutions. We

also observe that the TbS and DTbS models achieve a CVaR performance that is very close

to our estimate of the best achievable performance, i.e. the oracle method’s performance.
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Figure 2.4: Average cumulative distribution of conditional coverage frequency when ψ is
sampled uniformly from dataset over 10 simulated environments. Shaded region represent
90% CI

METHOD CVAR MARGINAL COVERAGE

ETO-CPS 1.59±0.03 91±1.8%
ETO-ACPS 1.68±0.04 91±1.4%
ETO-DBS 1.66±0.06 85±7.8%
TBS 1.05±0.09 23±6.1%
DTBS 1.07±0.09 92±1.5%
ORACLE 1.06±0.10 −

Table 2.1: Avg. CVaR and marginal coverage for α = 1− ε = 0.9 over 10 simulated
environments, error represent 90% CI. Note that the oracle method exploits full information
about the Gaussian mixture model.

Additionally, all the models except TbS appear to have the marginal coverage 90%

which corresponds to the α level they are trained for. By disregarding the aspect of

coverage, TbS was able to improve on the CVaR task but performs poorly in terms of

coverage. Comparatively, the dual task based approach DTbS was able to improve on

the CVaR performance over the ETO approaches while still maintaining the necessary

coverage.

As pointed out earlier, conditional coverage is a highly desirable property. Given that

a synthetic environment gives us access to exact measurements of conditional coverage,

Figure 2.4 presents the cumulative distribution of the observed conditional coverage

frequencies when ψ is sampled uniformly from the data set. One can notice from the
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plot that ETO-DbS, despite being closer to the required marginal coverage, failed to

provide accurate conditional coverage. Among the methods that use conformality score

to calibrate the radius, ETO-ACPS method which uses localized covariance matrices has

better conditional coverage. However, this comes at the price of CVaR performance. The

advantages of the dual task-based approach, DTbS, over the single task one are obvious.

While DTbS appears to have overshot the coverage compared to ETO-ACPS, which aligns

closer to 90%, we argue that this is not an issue as it ends up providing more coverage than

needed while generating nearly the best average CVaR value. In Figure 2.3 which overlays

the various sets learned on the conditional distribution of ξ , one can notice that the sets

adapt to the covariate information ψ to provide the necessary conditional coverage.
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Figure 2.5: Avg. CVaR of returns across 10 portfolio trajectory simulations. Error bars
report 95% CI.
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2.6.3 CRO Using U.S. Stock Data

We follow the experimental design methodology proposed in Chenreddy, Bandi, and

Delage (2022). Our experiments utilize historical US stock market data, comprising

adjusted daily closing prices for 70 stocks across 8 economical sectors from January 1,

2012, to December 31, 2019, obtained via Yahoo! Finance’s API. Each year contains 252

data points, and we calculate percentage gain/loss relative to the previous day to construct

our dataset, denoted as ξ . We incorporate the trading volume of individual stocks and

other market indices as covariates. We test the robustness of all the model’s performance

by solving the portfolio optimization problem on randomly selected stock subsets across

different periods. Utilizing 15 stocks in each window, we ran the experiment ten times over

three moving time frames. We maintain consistent parameters (learning rate lr, number

of epochs T , step size K, γ). Further implementation and parameter tuning details can be

found in Appendix 2.8.2. Figure 2.5 compares the avg. CVaR of returns and Table 2.2

presents the marginal coverage across different confidence levels for models.

It is evident from the CVaR comparison that the task based methods TbS and DTbS con-

sistently perform better over the ETO models. Among ECRO approaches, we can clearly

observe an advantage for DTbS over TbS, which has on par CVaR performance while hav-

ing out of sample marginal coverage closer to the expected target level. Conformal-based

ETO methods have good marginal coverage as they are designed to have the desired cover-

age. Especially, ETO-ACPS and ETO-CPS, being calibrated using conformal prediction

which produces statistically valid prediction regions have near target coverage levels.

2.7 Conclusion

In summary, this chapter introduces a novel framework for conditional robust optimization

by combining machine learning and optimization techniques in an end-to-end approach.

The study focuses on enhancing the conditional coverage of uncertainty sets and improving

CRO performance. Through comparative analysis and simulated experiments, the proposed
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MODEL YEAR MARGINAL COV. (%)
TARGET 1− ε

70% 80% 90%
ETO-CPS

2017

68 78 87
ETO-ACPS 68 77 89
ETO-DBS 54 72 85
TBS 22 26 28
DTBS 72 79 88
ETO-CPS

2018

67 79 88
ETO-ACPS 68 78 87
ETO-DBS 59 75 87
TBS 23 24 29
DTBS 71 80 93
ETO-CPS

2019

69 78 88
ETO-ACPS 71 78 89
ETO-DBS 61 76 86
TBS 26 30 32
DTBS 69 78 92

Table 2.2: Marginal coverage (%) evaluated at target coverage levels of 70%, 80%, and
90%. Bold values indicate the best-performing model for each year and target.

methodologies show superior results in robust portfolio optimization. The findings point to

the importance of uncertainty quantification and highlight the effectiveness of an end-to-end

approach in risk averse decision-making under uncertainty.
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2.8 Appendix

2.8.1 Algorithms

DTbS algorithm:

Algorithm 7 : Dual ECRO Training with Trust Region Solver
Input : Dataset Dξ ,ψ ; max epochs T ; max TRO steps K; batch size N; protection

level α

Initialize warm start buffer {x̄1, . . . , x̄M} with each x̄i ∈X (ψi)

Initialize network parameters θ and set t := 1

while not converged and t ≤ T do

Sample a batch of N indices B ⊂ {1, . . . ,M}
for i ∈B do

// Run TRO for up to K steps

(xt
i,λ

t
i ,ν

t
i )← TRO(x̄i,µθ (ψi),Σθ (ψi),K)

x̄i← xt
i // Update warm start

yt
i← I{ξi ∈ E (µθ (ψi),Σθ (ψi))} // Coverage task label

φ t ← solve problem (2.8) for {(ψi,yt
i)}i∈B

Compute LDT (θ) and ∇θLDT (θ) for i∼B

θ ← θ − step size ·∇θLDT (θ)

return θ

2.8.2 Supplementary for Experiments

Synthetic Data Generation Process

Our synthetic experiments rely on a set of mixtures of three multivariate normal distribu-

tions created in a way that produces a bimodal mixture of a normal distribution with a pos-

sibly non-normal one with similar covariance matrix. Specifically, each mixture model is

constructed using the same three mean vectors µa =
[
0 0 0 0

]T
, µb =

[
0 5 5 0

]T
,
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and µc = µb while the covariance matrices take the form

Σa =


1 0 0.37 0

0 1.5 0 0

0.37 0 2 0.73

0 0 0.73 3

 ,

Σb = αΣa and Σc =
Σa
α

for some α ∈ [0,1], which controls the non-normality of the second

mode. Furthermore, we introduce asymmetry in the mixture model by using the mixing

proportion pa = φ , pb =
1−φ

α+1 , and pc =
α(1−φ)

α+1 for some φ ∈ [0,1], which controls the

dominance of the first mode over the second. Furthermore, pb and pc are such that the

covariance matrix of the non-normal mixture is equal to the covariance of the normal one,

Σa.

Synthetic Conditional Data Generation

To generate conditional samples for the synthetic data generated in Section 2.8.2, we first

compute the conditional mean µξ |ψ and covariance Σξ |ψ of ξ given the observed variables

ψ for each mixture component. Specifically, for each mean vector µ and covariance matrix

Σ associated with the mixture components (denoted as a, b, and c in Section 2.8.2), we

calculate the conditional parameters as,

µξ |ψ = µξ +Σξ ψΣ
−1
ψψ(ψ−µψ)

Σξ |ψ = Σξ ξ −Σξ ψΣ
−1
ψψΣψξ

Next, we determine the conditional probability of each mixture given the ψ observation

using Bayes theorem as P(mixture = i|ψ) ∝ P(ψ|mixture = i)P(mixture = i). Finally,

we can use these conditional probabilities to sample new data points from the respective

conditional distributions of ξ given ψ .

Parameter Tuning Procedure

In this section, we explore the parameter tuning methodology applied to train the network

introduced in Section 2.6.3. Given the time series nature of the data, we employ a
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rolling window technique for network training. Our architecture depends on a set of

hyperparameters, defined as follows: lr for learning rate, T for the maximum number of

epochs, K for the maximum TRO steps, B for the batch size, and α for the target level. We

partition the data into training and validation periods and examine the optimal combination

through grid search. For each combination, we train the network and derive the optimal

policy using the training data, then apply it to the unseen validation data. The optimal

combination is selected based on the lowest CVaR on the validation dataset, viewing this

as a worst-case return minimization problem.

Regarding the DTbS algorithm, which balances between two losses, the CRO objective

and the conditional coverage loss, we follow a specific strategy to identify the best-

performing model. At each epoch, we save the model and initiate model selection only

after achieving the required training coverage. Subsequently, we retain the best models

meeting the coverage criteria until convergence conditions are met. Among all saved

models meeting the coverage requirement, we choose the one with the best CVaR objective.

Sensitivity analysis:

We conducted a sensitivity analysis of the validation performance as a function of γ , which

balances the CVaR loss and the conditional coverage loss. The table below presents the

model performances on the validation data for different values of γ . It illustrates how

varying γ enables a trade-off between the two loss objectives.

γ 0.01 0.1 0.5 0.9 0.99

avg. LECRO 1.30 1.05 1.04 1.06 1.05

avg. LCC 5.49 6.25 8.15 8.98 8.81
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Figure 2.6: Convergence comparison between 5-steps TRO (46 min) and full TRO (129
min).

Architecture

...
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...
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input hidden

µ ∈ Rm

l d ∈ Rm

l tl ∈ R
m(m−1)

2

r ∈ R1

We construct a parametric model for µ and Σ using Cholesky decomposition to ensure

positive definiteness of Σ. We employ a shallow neural network architecture with m input

units, one hidden layer of size h, and 2m+ m(m−1)
2 +1 units in the output layer. We use

tanh for activation functions and softplus for diagonal elements of L to ensure strictly

positive values.
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2.8.3 Oracle Method for Synthetic Experiments

Given that experiments in Section 2.6.2 are based on a synthetic model, we can evaluate

the level of sub-optimality of the portfolio policies proposed by the different models. To

do so, we developed an “oracle”-based method that has access to the true underlying joint

distribution of ψ and ξ and attempts to identify the “true” optimal value of the CVaR

objective, namely

min
xxx:Ψ→X

CVaR(−ξ
T x(ψ)).

We utilize a scenario tree {ψ i,{ξ i j}M
j=1}N

i=1 to approximate the joint distribution of (ψ,ξ ),

where ψ i ∼ Fψ and ξ i j ∼ Fξ |ψ i . Under such scenario tree, the CVaR optimization problem

reduces to a linear program:

min
{xi}N

i=1,λ ,{si j}N,M
i=1, j=1

λ +
1

NM(1−α)

N

∑
i=1

M

∑
j=1

si j (2.12a)

subject to si j ≥ 0 ,

∀i = 1, . . . ,N, j = 1, . . . ,M (2.12b)

si j ≥−(ξ i j)T xi−λ ,

∀i = 1, . . . ,N, j = 1, . . . ,M (2.12c)

xi ≥ 0 , ∀i = 1, . . . ,N (2.12d)

111T xi = 1 , ∀i = 1, . . . ,N. (2.12e)

To be consistent we the test environment, we consider the {ψi}N
i=1, with N = 1000, to

take on the values of the test set, while {ξ i j}M
j=1, for each i with M = 1000, are randomly

sampled from Fξ |ψ i . This is repeated for the 10 problem instances. The average CVaR

optimal value of problem (2.12) is reported in Table 2.1 as the performance of the oracle

method.
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Chapter 3

Epistemic Robustness in Offline

Reinforcement Learning

Abstract

Offline reinforcement learning aims to learn policies from fixed datasets without further

environment interaction. A key challenge in this setting is epistemic uncertainty, which

arises from limited or biased data coverage, particularly when the behavior policy system-

atically avoids certain actions. This can lead to inaccurate value estimates and unreliable

generalization. Ensemble-based methods like SAC-N mitigate this by conservatively esti-

mating Q-values using the ensemble minimum, but they require large ensembles and often

conflate epistemic with aleatoric uncertainty. To address these limitations, we propose

a unified and generalizable framework that replaces discrete ensembles with compact

uncertainty sets over Q-values. We further introduce an Epinet based model that directly

shapes the uncertainty sets to optimize the cumulative reward under the robust Bellman

objective without relying on ensembles. We also introduce a benchmark for evaluating

offline RL algorithms under risk-sensitive behavior policies, and demonstrate that our

method achieves improved robustness and generalization over ensemble-based baselines

across both tabular and continuous state domains.



3.1 Introduction

Offline Reinforcement Learning (RL) aims to learn effective policies from static datasets

without further interactions with the environment. A key challenge in this setting is that the

uncertainty arises due to insufficient knowledge of the environment, particularly in regions

of the state-action space that are poorly represented in the data. This is a prevalent problem

in many real world applications where data collection is an inherently costly process. For

instance, in personalized healthcare treatment planning or industrial control, collecting

large scale interaction data may be impractical or unethical due to cost, safety, or privacy

constraints (Ghosh et al. 2022; Levine et al. 2020). This lack of coverage can lead to

erroneous value estimates and unreliable generalization, particularly when standard RL

algorithms attempt to extrapolate beyond observed data (Y. Yang et al. 2021).

To mitigate this, modern offline RL algorithms such as Soft Actor-Critic with Ensem-

bles (SAC-N) and its variants employ ensembles of Q-networks to quantify uncertainty

of the Q-value estimates (An et al. 2021). These methods maintain a collection of N

independently initialized but jointly trained critics {Q(i)
θ
}N

i=1 and construct a conservative

Bellman target using the pointwise minimum:

y(s,a) := r+ γ min
i∈[N]

Q(i)
θ
(s′,a′)−α logπφ (a′|s′), (3.1)

where (s,a,r,s′)∼D , with D as the dataset, and a′ ∼ πφ (·|s′) is an action sampled from

the policy πφ , parameterized by φ , which maps a state s′ to a distribution over actions.

Here, γ ∈ (0,1] is the discount factor and α > 0 controls the entropy of the policy. This

formulation treats the minimum over ensemble members as a proxy for a lower confidence

bound, promoting conservative estimates in uncertain regions. While empirically effective,

ensemble based methods suffer from key limitations. First, reliable uncertainty estimation

typically requires large ensemble sizes (N ≥ 10 in common implementations, and in some

cases even hundreds, e.g., N = 500 for Hopper-Medium in An et al. (2021)), incurring

substantial computational and memory overhead during both training and inference, and

limiting scalability in high-dimensional domains (Wen, Tran, and Ba 2020). Second, the
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pointwise minimum discards inter-action correlations thereby reducing expressivity of

the ensembles. Third, ensembles conflate epistemic and aleatoric uncertainty, making

it difficult to disentangle uncertainty due to data scarcity from inherent environmental

stochasticity (Amini et al. 2020; Osband et al. 2023). This can hinder robust reasoning

about what the agent does not know, and can lead to unsafe or overly conservative policies.

Even in scenarios with abundant data, epistemic uncertainty can persist due to behav-

ioral policy bias, when the data is generated by a policy that systematically favors certain

actions (Schweighofer et al. 2022). To illustrate, consider a machine replacement problem

(Wiesemann, Kuhn, and Rustem 2013) formulated as a Markov decision process with

|S | = 10 states and |A | = 2 actions. At each state s ∈ {1, . . . ,10}, the agent chooses

either to continue operation (a = 1) or to replace the machine (a = 2). Continuing oper-

ation increases the chances of reaching a level of severe machine failure. A risk-averse

behavioral policy may choose to replace early to minimize the chances of reaching the

failure state, whereas a risk-seeking policy may defer replacement until imminent failure

becomes more certain to keep replacement costs to a minimum. Data collection under such

fixed policies can result in certain severely underexplored state-action pairs. This sparse

coverage leads to erroneous estimation of both the transition dynamics p(s′ | s,a) and

value function Q(s,a). The resulting epistemic uncertainty poses a significant challenge in

offline reinforcement learning, where the agent must learn an optimal policy from static

data without further environment interaction. Appendix 3.9.1 presents this example in

detail, including the optimal policies under varying risk preferences and the resulting

state-action visitation distributions under different risk tolerance levels.

To overcome these limitations, we introduce a unified and generalizable alternative that

replaces the discrete ensemble {Q(i)(s,a)}N
i=1 with a compact uncertainty set U (s)⊂R|A |

defined at each state. This leads to the following set-based Bellman target:

y(s,a) := r+ γ min
q∈U (s′)

Ea′∼πφ (·|s′)
[
q(a′)−α logπφ (a′|s′)

]
, (3.2)

where U (s′) compactly models a set of plausible Q-value vectors over actions at state s′.

This formulation enables richer representation of uncertainty.
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Our key contributions are as follows:

• We propose the Epistemic Robust Soft Actor-Critic (ERSAC) model as an alterna-

tive and generalization for the ensemble based SAC-N method. ERSAC exploits

uncertainty sets to capture epistemic joint uncertainty about the Q-values of each

action, thus enabling richer and more structured epistemic uncertainty modeling

• We integrate epistemic neural network (Epinets) (Osband et al. 2023) in the new

ERSAC framework and show how Epinets can be adapted to directly produce

uncertainty sets, circumventing the need for resampling at inference time. This latter

implementation is shown to scale efficiently to high-dimensional offline RL settings.

• We introduce a benchmark framework for evaluating offline RL algorithms under risk-

sensitive behavioral policies, spanning both tabular and continuous state domains.

Empirically, our method outperforms ensemble-based baselines across diverse tasks,

achieving improved robustness and generalization.

3.2 Related Work

While the motivation for offline RL originates primarily from safety, cost, and deployment

constraints in domains such as healthcare, robotics, and industrial control, recent work

highlights its broader benefits, including improved generalization and sample efficiency

when combined with online learning (Ball et al. 2023; Jelley et al. 2024). Offline data

can stabilize learning and accelerate convergence through pretraining or regularization

(Kumar et al. 2022). However, the absence of environment interaction exacerbates chal-

lenges like overestimation and error compounding, especially when using deep value

function approximators. These failures are often attributed to epistemic uncertainty in out

of distribution state-action pairs, where neural networks are known to make overconfi-

dent predictions (Lakshminarayanan, Pritzel, and Blundell 2017; Kendall and Gal 2017).

Ensemble-based and Bayesian methods partially mitigate this by explicitly modeling

uncertainty, highlighting the need for structured epistemic reasoning in offline settings.
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Model-free methods primarily focus on constraining the learned policy or value

estimates to remain within the support of the dataset, thereby mitigating extrapolation

errors. One class of such methods, known as policy constraint methods, restricts the learned

policy to stay close to the behavior policy. This reduces the likelihood of selecting actions

not well represented in the data. Approaches like BCQ (Fujimoto, Hoof, and Meger 2018),

BEAR (Kumar et al. 2019), and BRAC (Wu, Tucker, and Nachum 2019) explicitly enforce

such constraints using divergence penalties or support matching. Another class focuses

on value regularization, where conservative value estimates discourage overoptimistic

Q-values for out-of-distribution actions. Notably, CQL (Kumar et al. 2020) enforces a

soft lower-bound on Q-values, while EDAC (An et al. 2021) and other ensemble-based

methods use Q-function diversity to reduce overestimation risk.

Model-based methods instead aim to learn an explicit model of the environment’s

dynamics, which can be used for policy learning or evaluation via simulated rollouts.

Examples include MOPO (Yu et al. 2020), which penalizes uncertainty in model rollouts,

and MOReL (Kidambi et al. 2020), which builds a pessimistic MDP based on model

confidence. COMBO (Yu et al. 2021) combines model-based rollouts with conservative

value estimation to balance optimism and safety.

Other notable directions include trajectory optimization and decision-based methods,

such as Decision Transformer (DT) (L. Chen et al. 2021) and Implicit Q-Learning (IQL)

(Kostrikov, Nair, and Levine 2021), which cast offline RL as a supervised learning problem

over sequences or value distributions. Additionally, imitation-based methods like BAIL

(X. Chen et al. 2020) interpolate between behavior cloning and value-based methods using

uncertainty-aware selection of demonstration trajectories. We refer the reader to Levine

et al. (2020) and Prudencio, Maximo, and Colombini (2023) for comprehensive review of

offline RL algorithms.

While uncertainty quantification is well studied in supervised learning and Bayesian

RL (Ghavamzadeh et al. 2015), its structured application in offline reinforcement learning

remains underexplored. Traditional methods often conflate epistemic and aleatoric uncer-

tainty or rely on coarse approximations such as ensemble minima, which can misrepresent
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uncertainty in regions with limited data. Recent work has begun to address these limitations

by introducing methods that model epistemic uncertainty more explicitly. For example,

Filos et al. (2022) propose Epistemic Value Estimation (EVE), which provides a task-aware

mechanism for quantifying value uncertainty in offline settings. Similarly, Shi and Chi

(2022) explore distributionally robust model-based offline RL using uncertainty sets over

dynamics to improve robustness to model misspecification. Other approaches such as

Panaganti et al. (2022) adopt a risk-sensitive view, incorporating epistemic uncertainty

directly into policy optimization to avoid unsafe actions. Ensemble-based methods are a

practical way to capture epistemic uncertainty. They have been used in both model-based

settings (e.g., MOReL in Kidambi et al. (2020)) and model-free methods (e.g., EDAC in

An et al. (2021)) to stabilize learning by regularizing the Bellman backups or penalizing

high-variance predictions. However, ensembles can be computationally expensive and

coarse. More structured representations of epistemic uncertainty have been proposed

using Epistemic Neural Networks (ENNs) (Osband et al. 2023), which offer a flexible

way to encode and sample from belief distributions over value functions. Building on

these insights, our work introduces a structured, epistemic-robust alternative to ensemble

pessimism by defining uncertainty sets over Q-values, allowing richer representations and

more targeted conservatism in offline RL.

Additionally, benchmarking offline RL remains challenging due to limited dataset

diversity. While D4RL (Fu et al. 2020) and RL Unplugged (Gulcehre et al. 2020) have

improved standardization, existing benchmarks largely omit risk sensitive evaluation

settings. Such behavior policies tend to handle high cost differently depending on whether

they are risk averse or risk seeking. This implicit preference skews the data distribution

and contributes to epistemic uncertainty, particularly in cases with less data. Despite its

significance, there is currently no benchmark that allows systematic control over the risk

sensitivity of the behavior policy to study its impact on offline RL performance. As a

first step toward addressing this gap, we introduce a framework that enables controlled

variation of behavioral risk preferences using dynamic expectiles. This allows us to

generate offline datasets with adjustable risk profiles, facilitating principled evaluation of
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offline RL algorithms under different uncertainty conditions. Our proposed framework is

aligned with recent efforts like the Minari platform proposed by Younis et al. (2024), but

uniquely focuses on how risk sensitivity shapes epistemic uncertainty in offline datasets.

3.3 Preliminaries

We consider a Markov Decision Process (MDP) characterized by a possibly continuous

state space S , a discrete action space A , a state-transition distribution p(st+1|st ,at), a

reward function r(st ,at), and a discount factor γ ∈ (0,1). The reinforcement learning

objective is to identify an optimal (possibly random) policy π∗(·|s), with π∗(a|s) defining

the likelihood of doing action a when in state s, that maximizes the expected discounted

cumulative reward:

Eπ

[
∞

∑
t=0

γ
tr(st ,at)

]
.

Below, we summarize the Soft Actor-Critic (SAC) Algorithm and one of its adaptations

for offline RL that performs conservative updates using an ensemble of Q-functions.

3.3.1 Soft Actor-Critic Algorithm (SAC)

We adopt Soft Actor-Critic (SAC), originally developed for continuous action spaces, and

adapt it to discrete actions (Christodoulou 2019). By introducing entropy regularization,

SAC strikes a balance between exploration and exploitation. Formally, for discrete actions,

the SAC objective is:

J(π) := Eπ

[
∞

∑
t=0

γ
t (r(st ,at)+αH (π(·|st)))

]
, (3.3)

where the entropy H (π(·|st)) is defined as

H (π(·|st)) :=− ∑
a∈A

π(a|st) logπ(a|st),

and α is a temperature hyperparameter that controls the influence of the entropy term

as a regularizer promoting policy stochasticity. We further define a Q-function Q(s,a),
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estimating the entropy regularized expected cumulative reward from a state-action pair

(s,a) under policy π:

Q(s,a) := Eπ

[
∞

∑
t=0

γ
t
(

r(st ,at)+αH
(
π(· | st)

)) ∣∣∣ s0 = s, a0 = a.

]
(3.4)

We typically represent the Q-function using a parametric model Qθ (s,a), e.g. a neural

network, to effectively handle continuous and high-dimensional state spaces. The policy

πφ (a|s), parameterized by φ , is defined as a categorical probability distribution over

discrete actions conditioned on continuous states, facilitating straightforward computation

of entropy terms.

The parameters of the policy and Q-functions are updated iteratively using off-policy

experiences drawn from a replay buffer D . Specifically, the Q-function parameters θ are

updated to minimize the temporal difference (TD) error:

θ ← θ −ηQ∇θE(s,a,r,s′)∼D

[(
Qθ (s,a)−

(
r+ γ Ea′∼π(·|s′)[Qθ ′(s

′,a′)−α logπφ (a′ | s′)]
))2]

where ηQ is the Q-function learning rate, and θ ′ denotes parameters of a target Q-network

periodically synchronized with θ to enhance training stability. The policy parameters φ

are updated to maximize the entropy-regularized expected Q-values:

φ ← φ +ηπ∇φEs∼D ,a∼πφ (·|s)[Qθ (s,a)−α logπφ (a|s)],

where ηπ is the policy learning rate.

3.3.2 SAC with an Ensemble of Q-functions (SAC-N)

While Soft Actor-Critic provides a stable framework for policy learning, its direct applica-

tion to offline reinforcement learning is challenging as the agent must learn solely from a

fixed dataset without further interaction with the environment. As a result, standard SAC

algorithms are prone to overestimation bias, which arises when the learned Q function

extrapolates inaccurately to out-of-distribution state-action pairs. This is particularly prob-

lematic in the policy improvement step in SAC, which explicitly encourages the selection
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of actions that maximize Q-values, amplifying the impact of overestimated values and

potentially steering the policy toward suboptimal or unsafe regions of the state-action space.

To address this, An et al. (2021) proposed the SAC-N model that maintains an ensemble

of N Q-functions, {Qθi}N
i=1, to capture epistemic uncertainty and mitigate overestimation

bias. Each Q-function Qθi represents an independent estimate of the expected return for a

given state-action pair. To stabilize training and further reduce bias, SAC-N uses a target

Q-network ensemble {Qθ ′i
}N

i=1, where each θ ′i is updated via Polyak averaging of the

corresponding online parameters θi. The target used for the Q-function update is based on

the clipped double Q-learning objective (Fujimoto, Hoof, and Meger 2018), with SAC-N

extending it by considering the minimum over the Q-functions ensemble as,

y(r,s′,a′) := r+ γ

(
min

i=1,...,N
Qθ ′i

(s′,a′)−α logπφ (a′ | s′)
)
, (3.5)

The use of the minimum over the ensemble acts as a conservative estimate of the expected

return, reducing the likelihood of propagating overestimated values from out-of-distribution

state-action pairs that are common in offline datasets. Each Q-function Qθi is updated by

minimizing the mean squared Bellman error between its predicted value and the target

y(r,s′,a′):

LQ(θi) := E(s,a,r,s′)∼D , a′∼πφ (·|s′)
[(

Qθi(s,a)− y(r,s′,a′)
)2
]
, (3.6)

where D denotes the static replay buffer of environment interactions, which, unlike in

online RL, is fixed and is collected a priori without further interactions. The policy πφ

is then optimized to maximize the conservative estimate of the expected return, given by

the minimum Q-value across the ensemble, while incorporating the entropy regularization

term:

Jπ(φ) := Es∼D ,a∼πφ (·|s)

[
min

i=1,...,N
Qθi(s,a)−α logπφ (a|s)

]
. (3.7)

This objective encourages the policy to achieve a trade-off between maximizing a

conservative estimate of expected returns and maintaining high entropy. Higher entropy

promotes stochasticity in action selection, allowing the policy to occasionally choose

actions that are less frequent in the offline dataset. This behavior is particularly beneficial in
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the early stages of training, where increased randomness helps avoid overfitting to spurious

correlations in the data. To gradually shift the focus to maximize the rewards during the

training process, we follow Haarnoja et al. (2018) and learn the entropy coefficient α by

minimizing a dual objective that encourages the policy entropy to match a target value.

This approach allows the agent to maintain high entropy when uncertainty is high and

gradually shift focus to reward maximization as learning progresses.

Although SAC-N mitigates overestimation by maintaining an ensemble of Q-functions,

it often requires a large ensemble size for stable performance. To address this, An et

al. (2021) introduced the Ensemble-Diversified Actor-Critic (EDAC), which adds a

diversification term to encourage diversity among the Q-function ensemble members. In

continuous action setting, they quantify similarity using an ensemble similarity (ES) metric

defined as:
⟨∇aQθi(s,a),∇aQθ j(s,a)⟩
∥∇aQθi(s,a)∥∥∇aQθ j(s,a)∥

,

which measures the cosine similarity between the gradients of different Q-functions with

respect to the action vector. In the discrete action setting, where ∇aQ(s,a) is ill defined,

we adapt the ES metric by instead computing the mean squared deviation between the

Q-values across all actions. Specifically, we define gθ (s,a) :=
(
Qθ (s,a′)−Qθ (s,a)

)
a′∈A ,

and compute the cosine similarity between gθi(s,a) and gθ j(s,a):

ESθi,θ j(s,a) :=
∑a′∈A

(
Qθi(s,a

′)−Qθi(s,a)
)(

Qθ j(s,a
′)−Qθ j(s,a)

)√
∑a′∈A

(
Qθi(s,a′)−Qθi(s,a)

)2
√

∑a′∈A
(
Qθ j(s,a′)−Qθ j(s,a)

)2
.

The diversification loss is then given by:

LES(θ) := E(s,a)∼D

[
N

∑
i=1

N

∑
j=i+1

ESθi,θ j(s,a)

]
.

where θ is short for {θi}N
i=1. The overall loss for each Q-function incorporates this

diversification term:

L̄Q(θ) := (1/N)
N

∑
i=1

LQ(θi)+ηLES(θ), (3.8)
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where η is a hyperparameter controlling the strength of the diversity regularization. En-

couraging diversity among the Q-functions was shown empirically to improve uncertainty

estimation and leads to more reliable policy learning.

3.4 Epistemic Robustness with SAC

Ensemble based approaches, as discussed in Section 3.3.2, model the epistemic uncertainty

in value estimation using a finite collection of Q-functions, {Qθi}N
i=1. Each Qθi encodes a

different hypothesis about the long term expected return, and conservative estimates are

obtained by taking the minimum over the ensemble mini=1,...,N Qθi(s
′,a′). To formalize

the uncertainty captured by such an ensemble, we model the long term actions values

at a given state s as a distribution Fq
θ
(s) ∈M (R|A |). Here, Fq

θ
(s) defines a probability

measure over Q-value vectors q ∈ R|A |, induced by the variability among the Q-functions,

and parameterized through θ . Each sample q̃∼ Fq
θ
(s) is a vector in R|A | representing the

epistemic uncertainty about the action-wise values Q(s, ·). For example, in the case of

SAC-N, this distribution takes the form of a scenario-based distribution:

Fq
θ
(s) :=

1
N

N

∑
i=1

δQθi(s,·), (3.9)

where δx is the Dirac measure centered at x ∈ R|A |. Thus obtaining that Fq
θ
(s) is the

distribution of q̃ := Qθĩ
(s, ·) with ĩ∼U(N), i.e. the uniform distribution over 1, . . . ,N.

Given a Q-value distribution Fq
θ

: S →M (R|A |), which maps each state s ∈S to a

probability measure over Q-value vectors, one can define an uncertainty set operator:

U : M (R|A |)→ C (R|A |),

that maps a Q-value distribution to a compact set of plausible Q-value vectors. The com-

position U ◦Fq
θ

: S → C (R|A |) defines an epistemic uncertainty set U (Fq
θ
(s)) in each

state s, which can be used to construct robust evaluation and optimization of policies. For

notational simplicity, we will use Uθ (s) as shorthand for U (Fq
θ
(s)) when the dependencies

on Fq
θ

are clear from context.
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This set captures uncertainty around the predicted Q-values and can take various

forms depending on the modeling assumptions. For instance, if Fq
θ
(s) is Gaussian, the

corresponding uncertainty set U (Fq
θ
(s)) may be defined as an ellipsoidal confidence region

centered at the mean and shaped by the covariance matrix. In the ensemble setting, where

Fq
θ
(s) is a discrete distribution over Q-functions, U (Fq

θ
(s)) can be constructed again as a

confidence region or even as the convex hull enclosing the ensemble realizations, i.e. the

distribution’s support.

In the next section, we introduce our proposed framework, Epistemic Robust Soft Actor-

Critic (ERSAC), a framework that generalizes SAC-N by incorporating the uncertainty

sets constructed from the distribution over Q-values. We begin with a version of ERSAC

that operates with an ensemble of N Q-functions and establish the connections between

ERSAC and SAC-N methods. We then formalize the ERSAC algorithm, outlining its key

components, including the set-based Bellman backup and robust policy update.

3.4.1 The Epistemic Robust SAC (ERSAC) Model

Similarly as for SAC-N, our epistemic robust SAC algorithm trains the Q-function by

minimizing the expected squared Bellman error between the sampled realization and a

conservatively estimated target value measured using the distribution Fq
θ

over Q-functions.

Specifically, for each next state s′ ∈S , the robust target value in equation (3.5) is first

modified to,

y(r,s′) := r+ γ

(
min

q∈U (Fq
θ ′(s

′))
Ea′∼πφ (·|s′)

[
q(s′,a′)−α logπφ (a′ | s′)

])
, (3.10)

where the minimum operator provides a robust estimate of the regularized expected

total discounted return and can be calculated using the support function associated to

U (Fq
θ ′(s
′)):

min
q∈U (Fq

θ ′(s
′))
Ea′∼πφ (·|s′)[q(s

′,a′)] =−δ
∗(−πφ (· | s′)|Uθ ′(s

′))

with δ ∗(v|U ) := supq∈U ⟨v,q⟩. We refer the reader to Ben-Tal, Den Hertog, and Vial

(2015) for closed form expressions of δ ∗(v|U ) for a list of popular forms of uncertainty
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sets. The loss function in (3.6) is then redefined as:

L R
Q (θ) := E(s,a,r,s′)∼D , q̃∼Fq

θ
(s)

[(
q̃(a)− y(r,s′)

)2
]
. (3.11)

It is important to note that without additional regularization, the Objective in (3.11)

may admit a degenerate solution Fq
θ∗(s) = δq̄(s,·), where q̄(s,a) := E(s,a,r,s′)∼D [y(r,s′)],

which collapses the distribution to a deterministic point estimate. In practice, this requires

regularization strategies such as early stopping, entropy constraints on Fq
θ

, or prior-based

regularization to avoid mode collapse.

Similar to the Q-value target, the policy loss in the epistemic robust setting replaces

the ensemble minimum with a worst-case expectation over the uncertainty set. The robust

policy loss in equation (3.7) becomes:

J R
π (φ) : = Es∼D

[
min

q∈Uθ (s)
Ea∼πφ (·|s)

[
q(a)−α logπφ (a | s)

]]
= Es∼D ,a∼πφ (·|s)

[
min

q∈Uθ (s)
⟨πφ (· | s),q⟩−α logπφ (a | s)

]
. (3.12)

Importantly, when using an ensemble based representation, the ERSAC formulation

encompasses SAC-N as a special case under a particular choice of uncertainty set. We for-

malize this connection in the following proposition and defer the proof to Appendix 3.9.2.

Proposition 3.4.1. Let Fq
θ
(s) be defined as in equation (3.9), and let the uncertainty set

operator be defined as

Ubox(F
q
θ
(s)) :=×a∈A

[
essinfq̃∼Fq

θ
(s)[q̃(a)], esssupq̃∼Fq

θ
(s)[q̃(a)]

]
, (3.13)

i.e., a coordinate-wise box containing the support of Fq
θ
(s). Then, the robust Q-loss and

policy loss reduce to the SAC-N losses:

L R
Q (θ) =

1
N

N

∑
i=1

LQ(θi)+C and J R
π = Jπ ,

for some constant C ∈ R that is independent of θ .

This result demonstrates that ERSAC generalizes SAC-N under a unified uncertainty

set framework. In the next section, for any compact set representation Uθ (s), we outline

the detailed training algorithm.
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3.4.2 The ERSAC Training Algorithm

In the earlier case, we modeled Fq
θ
(s) such that each sample q̃∼ Fq

θ
(s) is a vector in R|A |

that represents the action-wise values Q(s, ·). To place this representation in a more general

framework, we consider a reparametrized formulation as introduced in the Assumption

3.4.1. This formulation includes the ensemble case as a special instance where the noise

variable z indexes a finite set of Q-functions. More generally, this formulation admits

expressive stochastic representations with both discrete and continuous support.

Assumption 3.4.1. Fq
θ

is associated to a sampling operator qθ (s,a,z) and a distribution

Fz ∈M (Rdz), such that qθ (s, ·, z̃) is distributed according to Fq
θ
(s) when z̃∼ Fz.

Given a noise sample z̃∼ Fz, a corresponding Q-vector sample q̃∼ Fq
θ
(s) is obtained

by evaluating the sampling operator over all actions:

q̃(a) := qθ (s,a, z̃), for all a ∈A .

Formally, q̃ = qθ (s, ·, z̃)∈R|A | is a realization from the epistemic Q-distribution Fq
θ
(s),

induced via the sampling operator with epistemic variability governed by the latent variable

z̃∼ Fz. This reparameterized formulation subsumes the ensemble-based model described

in equation 3.9 as a special case, where the latent variable z̃ ∈ {1, . . . ,N} indexes a finite

set of Q-functions, and the sampling operator reduces to qθ (s,a, ẑ) = Qθz̃(s,a).

In order to minimize L R
Q , when Assumption 3.4.1 is satisfied, one can use a popular

reparametrization trick to derive a gradient for the critic parameters θ as:

∇θL R
Q (θ) = ∇θE(s,a,r,s′)∼D , z̃∼Fz

[
(qθ (s,a, z̃)− y(r,s′))2]

= E(s,a,r,s′)∼D , z̃∼Fz

[
2(qθ (s,a, z̃)− y(r,s′)) ·∇θqθ (s,a, z̃)

]
. (3.14)

This gives rise to the stochastic update:

θ ← θ −ηQ ·2
(
qθ (s,a, z̃)− y(r,s′)

)
·∇θqθ (s,a, z̃).

The question of optimizing J R
π is a bit more complex. We start by letting q∗(s, · ;φ)

be any statewise adversarial Q-value vector for policy πφ :

q∗(s, · ;φ) ∈ arg min
q∈Uθ (s)

⟨πφ (· | s),q⟩, ∀s ∈S , (3.15)

86



which is well-defined due to compactness of Uθ (s). Then, noting that the function

f (π) : = Es∼D ,a∼π(·|s)

[
min

q∈Uθ (s)
⟨π(· | s),q⟩−α logπ(a | s)

]
= Es∼D

[
min

q∈Uθ (s)
⟨π(· | s),q⟩−αEa∼π(·|s) [logπ(a | s)]

]
is concave with respect to π , one can invoke the envelope theorem to identify one of its

supergradients as

∇πEs∼D

[
⟨π(· | s),q∗(s, · ;φ)⟩−αEa∼π(·|s) logπ(a | s)

]
∈ ∇π f (π)

We therefore obtain, fixing φ̄ to φ that:

∇φJ R
π (φ) : = Es∼D

[
∇φ ⟨πφ (· | s),q∗(s, · ; φ̄)⟩−α ∇φEa∼πφ (·|s)

[
logπφ (a | s)

]]
= Es∼D

[
∑

a∈A
q∗(s,a ;φ)∇φ πφ (a | s)−α∇φ ⟨πφ (· | s), logπφ (· | s)⟩

]
. (3.16)

This produces a standard entropy-regularized policy gradient, but is evaluated with

respect to the worst-case value vector q∗(s, · ;φ) in the uncertainty set, providing robustness

to epistemic uncertainty. We summarize the training procedure for Robust SAC-N in

Algorithm 8.

3.5 Sample Based Construction of Uθ(s) from qθ(s,a, z̃)

In Section 3.4, we introduced a robust SAC-N framework in which Bellman backups are

computed using uncertainty sets Uθ (s) derived from distributions Fq
θ
(s) over Q-values.

While this formulation assumes access to the full distribution, often one can only ap-

proximate Fq
θ
(s) using Monte-Carlo samples, which form an empricial distribution F̂q

θ
(s).

Having access to F̂q
θ
(s), one can approximate U (Fq

θ
(s)) with U (F̂q

θ
(s)).

In practice, constructing the uncertainty set Uθ (s) from the empirical distribution

F̂q
θ
(s) requires choosing a specific set operator that defines the shape and inductive bias of

the epistemic uncertainty representation. Different choices of U (F̂q
θ
(s)) lead to varying

trade-offs between computational tractability, policy sensitivity, and expressiveness. In
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Algorithm 8 : Epistemic Robust SAC Training
Input : Initial policy parameters φ , Q parameters θ , target Q parameters θ ′,

offline data replay buffer D , learning rates ηQ,ηπ , target update rate τ

for each epoch do
Sample minibatch B := {(s,a,r,s′)} from D
Compute target:

y(r,s′)← r+ γ

(
min

q∈U
θ ′(s′)
⟨πφ (·|s′),q⟩−αEa′∼πφ

[logπφ (a′|s′)]
)

Critic update:

θ ← θ −ηQ ·2
1
|B| ∑

(s,a,r,s′)∈B
Ez̃∼Fz

[
(qθ (s,a, z̃)− y(r,s′)) ·∇θqθ (s,a, z̃)

]
Compute worst-case q∗ vectors:

q∗(s, · ;φ)← arg min
q∈Uθ (s)

⟨πφ (· | s),q⟩

Actor update:

φ← φ +ηπ ·
1
|B| ∑

s∈B

(
∑

a∈A
q∗(s,a ;φ)∇φ πφ (a | s)−α∇φEa∼πφ (a|s)[logπφ (· | s)]

)

Update target network: θ ′← τθ +(1− τ)θ ′

the remainder of this section, we present three popular sets from the literature of robust

optimization: box set, convex hull set and ellipsoidal set. Each of these constructions

induces a distinct worst-case Q-vector q∗(s, ·;φ), shaping the Bellman backup in different

ways. We formalize each construction below and analyze their implications for robust

policy evaluation and learning.

3.5.1 Box Set

Let {z̃i}N
i=1 be N values sampled from Fz. The simplest construction is the box set intro-

duced in equation (3.13), which defines Uθ (s) as the Cartesian product of the intervals
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covering q̃(a) for each action. In a sample-based setting, this reduces to :

Ubox(F̂
q
θ
(s)) :=×a∈A

[
min

i=1,...,N
qθ (s,a, z̃i), max

i=1,...,N
qθ (s,a, z̃i)

]
. (3.17)

This construction treats Q-values for each action as independent and corresponds to

the uncertainty model used in SAC-N. However, it produces a worst-case Q-vector that

is insensitive to changes in the policy due to its over-conservative, i.e. q∗(s,a;φ) =

mini∈[N] q(s,a, z̃i) (see proof of Lemma 3.4.1) independently of φ .

3.5.2 Convex Hull Set

A more expressive alternative is the uncertainty set operator that produces the convex hull

of the support of Fq
θ
(s). In a sample-based setting, this reduces to:

Uhull(F̂
q
θ
(s)) :=

{
N

∑
i=1

λiqθ (s, ·, z̃i)

∣∣∣∣∣∃λ ∈ RN , λi ≥ 0 ∀i = 1, . . . ,N,
N

∑
i=1

λi = 1

}
. (3.18)

This set captures all convex combinations of the sampled Q-values and preserves de-

pendencies between actions. The worst-case Q-vector takes the form: q∗(s,a;φ) =

qθ (s,a,z∗(s,φ)) with z∗(s,φ) ∈ argminiEa∼πφ (·|s)[qθ (s,a, z̃i)]. This is due to:

min
q∈Uhull(F̂

q
θ
(s))

Ea∼πφ (·|s)[q(a)] = min
λ≥0:∑N

i=1 λi=1
Ea∼πφ (·|s)[

N

∑
i=1

λiqθ (s,a, z̃i)]

= min
λ≥0:∑N

i=1 λi=1

N

∑
i=1

λiEa∼πφ (·|s)[qθ (s,a, z̃i)]

≥ min
i∈[N]

Ea∼πφ (·|s)[qθ (s,a, z̃i)] = Ea∼πφ (·|s)[qθ (s,a,z∗(s,φ))].

3.5.3 Ellipsoidal Set

In this work, we will mainly consider an ellipsoidal set operator that aim to cover a certain

proportion υ of the total mass of Fq
θ
(s). In a sample-based setting, this can be done by

estimating the empirical mean and covariance of the sampled Q-vectors:

µ̂(s) :=
1
N

N

∑
i=1

qθ (s, ·, z̃i), Σ̂(s) :=
1
N

N

∑
i=1

(qθ (s, ·, z̃i)−µ(s))(qθ (s, ·, z̃i)−µ(s))⊤.
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and estimating the radius as

ϒ̂(s) := inf{ϒ| 1
N

N

∑
i=1

111{(qθ (s, ·, z̃i)− µ̂(s))⊤Σ̂(s)−1(qθ (s, ·, z̃i)− µ̂(s))≤ ϒ
2} ≥ υ}

The corresponding uncertainty set is defined as:

Uell(F̂
q
θ
(s)) :=

{
q ∈ R|A |

∣∣∣(q− µ̂(s))⊤Σ̂(s)−1(q− µ̂(s))≤ ϒ̂(s)2
}

(3.19)

This set encodes second-order structure and supports efficient optimization. Indeed, when

Σ̂(s) is positive definite, the worst-case Q-vector under a given policy admits the closed-

form solution:

q∗(s, · ;φ) = µ̂(s)− ϒ̂(s) · Σ̂(s)πφ (· | s)
∥Σ̂(s)1/2πφ (· | s)∥

.

This is due to:

min
q∈Uell(F̂

q
θ
(s))

Ea∼πφ (·|s)[q(a)] = min
q:(q−µ̂(s))⊤Σ̂(s)−1(q−µ̂(s))≤ϒ̂(s)2

Ea∼πφ (·|s)[q(a)]

= min
q:(q−µ̂(s))⊤Σ̂(s)−1(q−µ̂(s))≤ϒ̂(s)2

⟨πφ (· | s),q⟩

= min
ζ :∥ζ∥≤ϒ̂(s)

⟨πφ (· | s), µ̂(s)+ Σ̂
1/2

ζ ⟩

≥ ⟨πφ (· | s), µ̂(s)⟩− ϒ̂(s)∥Σ̂1/2
πφ (· | s)∥

=

〈
πφ (· | s), µ̂(s)− ϒ̂(s) · Σ̂(s)πφ (· | s)

∥Σ̂(s)1/2πφ (· | s)∥

〉
,

where we employed Cauchy–Schwartz inequality.

We refer the reader to Algorithm 9 for the pseudocode of the training algorithm based

on ellipsoidal uncertainty sets. The algorithm implements the robust Bellman backup and

policy update described in Section 3.4.2, leveraging ellipsoidal sets to model epistemic

uncertainty. Critic targets are constructed by penalizing the expected Q-value with a

Mahalanobis norm term aligned with the current policy, while the actor is optimized to

maximize the worst-case return within the ellipsoid. For completeness, pseudocode for the

box and convex hull variants is provided in Appendix 3.9.3.
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Algorithm 9 : Sample-based Epistemic Robust SAC with Ellipsoidal Uncertainty

(ERSAC-E)
Input : Initial policy parameters φ , Q parameters θ , target Q parameters θ ′,

offline data replay buffer D , learning rates ηQ,ηπ , target update rate τ ,

sample size N

for each epoch do

Sample minibatch B := {(s,a,r,s′)} from D

Sample N i.i.d. realizations {z̃i} from Fz

µ̂(s)← 1
N ∑

N
i=1 qθ (s, ·, z̃i)

Σ̂(s)← 1
N ∑

N
i=1(qθ (s, ·, z̃i)− µ̂(s))(qθ (s, ·, z̃i)− µ̂(s))⊤

ϒ̂(s)← inf{ϒ|
1
N ∑

N
i=1 111{(qθ (s, ·, z̃i)− µ̂(s))⊤Σ̂(s)−1(qθ (s, ·, z̃i)− µ̂(s))≤ ϒ2} ≥ υ}

µ̂(s′)← 1
N ∑

N
i=1 qθ ′(s′, ·, z̃i)

Σ̂(s′)← 1
N ∑

N
i=1(qθ ′(s′, ·, z̃i)− µ̂(s′))(qθ ′(s′, ·, z̃i)− µ̂(s′))⊤

ϒ̂(s′)← inf{ϒ|
1
N ∑

N
i=1 111{(qθ ′(s′, ·, z̃i)− µ̂(s′))⊤Σ̂(s′)−1(qθ ′(s′, ·, z̃i)− µ̂(s′))≤ ϒ2} ≥ υ}

Compute target:

y(r,s′)← r+ γ

(
⟨πφ (·|s′), µ̂(s′)⟩− ϒ̂(s′)

∥∥∥Σ̂
1/2(s′)πφ (·|s′)

∥∥∥
−α Ea′∼πφ

[
logπφ (a′|s′)

])
Critic update:

θ ← θ −ηQ ·2
1
|B| ∑

(s,a,r,s′)∈B
Ez̃∼Fz

[
(qθ (s,a, z̃)− y(r,s′)) ·∇θqθ (s,a, z̃)

]
Actor update:

φ ← φ +ηπ ·
1
|B| ∑

s∈B
∑

a∈A

µ̂(s,a)− ϒ̂(s)
Σ̂(s)πφ (· | s)∥∥∥Σ̂1/2(s)πφ (· | s)

∥∥∥
∇φ πφ (a | s)

−α∇φEa∼πφ (·|s)
[
logπφ (a | s)

]
Update target network: θ ′← τθ +(1− τ)θ ′
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3.5.4 Sensitivity of Worst-Case Q Vector to πφ

While the box set yields a fixed q∗(s, · ;φ) independent of the policy, both the convex hull

and ellipsoidal sets adapt their minimizer q∗(s, · ;φ) to πφ (· | s). This flexibility introduces

a richer learning dynamic, allowing the Bellman backup to respond differently depending

on the current policy. From game theoretic point of view, at each state s, the agent proposes

a policy πφ (· | s), and an adversary selects the worst-case Q-vector q∗(s, · ;φ) ∈Uθ (s) that

minimizes the expected return ⟨πφ (· | s),q⟩. When the uncertainty set contains multiple

non-dominated extremal points, as is the case for convex hulls and ellipsoids, the Bellman

update becomes more responsive, capable of adjusting its conservativeness based on the

agent’s action preferences.

To illustrate this, consider the Machine Replacement example discussed in Section 3.1.

Figure 3.1 highlights this adaptivity across selected states by comparing the q∗ responses

of the three sets Ubox(s),Uhull(s) and Uell(s) as the policy π varies uniformly over the

probability simplex. This behavior leads to a more expressive training process that is

sensitive to the epistemic structure captured by the generative model.

(a) (b) (c)

Box Convex Hull Ellipsoid

Figure 3.1: (a)–(c): Uncertainty sets and worst-case policy evaluations for states 0, 5, and
10 in the machine replacement example at epoch 1. Each subplot illustrates the distribution
of ensemble Q-values along with the corresponding box, convex hull, and ellipsoidal
uncertainty sets. Markers “X” indicate the worst-case Q-value q∗ under different policies
π .

This adaptivity is particularly important in offline settings, where data coverage is often
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limited or biased. Structured uncertainty sets enable value estimates that are conservative

in underexplored regions while remaining responsive in well-covered ones, leading to

improved generalization without excessive pessimism.

The construction of these sets connects with the recent evolving literature in Estimate-

then-Optimize Conditional Robust Optimization (CRO). One line of work as proposed in

Chenreddy, Bandi, and Delage (2022), Goerigk and Kurtz (2020), Ohmori (2021), Sun, Liu,

and Li (2023), and Blanquero, Carrizosa, and Gómez-Vargas (2023) focuses on calibrating

uncertainty sets over realizations drawn from a conditional distribution F(q | s). These

methods construct high-probability sets U (s) ⊂ Rd such that for a random realization

q∼ F(· | s), it holds that P(q∈U (s))≥ 1−δ . Such calibrated sets enable robust decisions

of the form maxπ∈Π minq∈U (s)π⊤q, that ensure performance against probable realizations

of the uncertain quantity q, conditioned on covariates s.

A second line of work, common in distributionally robust optimization and robust

RL constructs ambiguity sets over the distribution F(· | s) itself, e.g., using moment

constraints, Wasserstein balls, or scenario-based support (Bertsimas, McCord, and Sturt

2022; C. McCord 2019; Wang and Chen 2020; I. Wang et al. 2023; Nguyen et al. 2021;

Esteban-Pérez and Morales 2022). In this setting, one solves:

max
π∈Π

min
F∈F (s)

Eq∼F [π
⊤q] = max

π∈Π
min

q̄∈U (s)
π
⊤q̄,

where F (s) is an ambiguity set over distributions and U (s) := {Eq∼F [q] : F ∈F (s)} is

the implied uncertainty set over expected values.

Our work aligns more closely with the former, wherein we directly parameterize and

sample from a learned conditional distribution F̂q
θ
(s), and define a structured uncertainty set

U (F̂q
θ
(s)) over sampled realizations q∼ F̂q

θ
(s). This allows us to reason about epistemic

variability in Q-values without requiring a full ambiguity set over Fq
θ
(s). Bridging these

two lines of work could lead to rich formulations for epistemically robust reinforcement

learning, which we leave for future work.
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3.6 The ERSAC Model with Epinet (ERSAC(Epi))

Recall from Assumption 3.4.1 that we require a parametric sampling operator qθ (s,a,z),

with z∼ Fz, such that qθ (s, ·,z)∼ Fq
θ
(s), where Fq

θ
(s) ∈M (R|A |) denotes a distribution

over Q-value vectors. We instantiate this generative model using an Epistemic Neural

Network (Epinet) introduced by Osband et al. (2023), which enables structured and

differentiable sampling from a single neural network. An Epinet supplements a base

network µθµ
(s,a) ∈ R, parameterized by θµ , which yields the mean Q-value vector. From

this base, we extract a feature representation ψθµ
(s) ∈ Rdψ , typically taken from the last

hidden layer. Epistemic variation is introduced via a latent index z ∼ N (0, I) ∈ Rdz .

These components are combined through a stochastic head σθσ
(ψθµ

(s),a,z) ∈ R, which

modulates the structured uncertainty. The sampling operator for the Q-value vector is then

defined as,

qθ (s, ·,z) := µθµ
(s, ·)+σθσ

(ψθµ
(s), ·,z). (3.20)

The stochastic head is constructed as:

σθσ
(ψ, ·,z) := σ

L
θσ
(ψ, ·,z)+σ

P(ψ, ·,z), (3.21)

with σL
θσ

: Rdψ ×A ×Rdz → R as a learnable function and σP : Rdψ ×A ×Rdz → R as a

fixed prior. The fixed prior network σP encodes initial epistemic uncertainty by inducing

variability in predictions across samples of indices z. In well explored regions, σL
θσ

can

learn better distributions for the predictive uncertainty, while in data sparse areas, σP can

induce the prior beliefs of the decision maker to guide conservative predictions. We can

now use it to generate the realizations of the Q-value vectors at a given state s by drawing

z ∼N (0, I) to form the empirical distribution F̂θ (s) over Q values. This enables us to

employ the sample based epistemic uncertainty sets introduced earlier in the Section 3.5.

This construction yields a parameter efficient and fully differentiable reparameterization

of the Q distribution. Further, one can train these networks using a perturbed squared loss
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inspired by Gaussian bootstrapping following the loss:

L ENN
Q (θ) :=E(s,a,r,s′,c)∼D̄ , z̃∼Fz

[(
qθ (s,a,z)− y(r,s′)− σ̄⟨c,z⟩

)2
]
+λµ∥θµ∥2+λσ∥θσ∥2,

(3.22)

where each member (s,a,r,s′) from the dataset D is augmented with some c randomly

sampled from the surface of the unit sphere Sdz to produce D̄ , where σ̄ > 0 denotes

the bootstrap noise scale, and where λζ ,λη are regularization coefficients. This loss

encourages the network to match bootstrapped Q-targets while introducing variability

across z samples. It can be minimized via standard stochastic gradient methods. The ENN

critic updates thus become:

θµ ← θµ −2ηQ ·
(

1
|B| ∑

(s,a,r,s′,c)∈B̄
Ez̃∼Fz

[
(qθ (s,a, z̃)− y(r,s′)

− σ̄⟨c, z̃⟩) ·∇θµ
µθµ

(s,a)
]
+2λµθµ

)
(3.23)

θσ ← θσ −2ηQ ·
(

1
|B| ∑

(s,a,r,s′,c)∈B̄
Ez̃∼Fz

[
(qθ (s,a, z̃)− y(r,s′)

− σ̄⟨c, z̃⟩) ·∇θσ
σ

L
θσ
(ψθµ

(s),a,z)
]
+2λµθµ

)
(3.24)

In order to accelerate the evaluation of U (Fq
θ
(s) when employing an ellipsoidal un-

certainty set operator, we introduce additional structure in σL
θσ
(ψ, ·,z) and σP(ψ, ·,z) as

outlined in Assumption 3.6.1, namely that both operators are linear in z.

Assumption 3.6.1. The stochastic heads σL
θσ
(ψ, ·,z) and σP(ψ, ·,z) are linear in z, i.e.

σ
L
θσ
(ψ,a,z) = ⟨σ̄L

θσ
(ψ,a),z⟩ , σ

P(ψ,a,z) = ⟨σ̄P(ψ,a),z⟩,

for some σ̄L
θσ

: Rdψ ×A → Rdz and σ̄P : Rdψ ×A → Rdz .

Assumption 3.6.1 induces a Gaussian distribution,

qθ (s, ·,z)∼N (µθµ
(s), Σθ (s)), (3.25)
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where the covariance is defined as,

[Σθ (s)]a,a′ := ⟨σ̄L
θσ
(ψθµ

(s),a) + σ̄P(ψθµ
(s),a), σ̄L

θσ
(ψθµ

(s),a′) + σ̄P(ψθµ
(s),a′)⟩. This

gives rise to the Epinet based ellipsoidal set:

U ENN
ell (s) =

{
q ∈ R|A | : (q−µθµ

(s))⊤Σθ (s)−1(q−µθµ
(s))≤ F−1

χ2
|A |

(υ)

}
, (3.26)

where F−1
χ2
|A |

(υ) is the inverse cumulative distribution function of the χ2 distribution with

|A | degrees of freedom. This construction provides a computationally efficient alternative

to ensemble-based epistemic modeling and enables closed-form worst-case Q-vector

computation for robust policy evaluation.

The training procedure for ERSAC with Epinet (ERSAC(Epi)) mirrors the structure of

the ensemble based approach described in Algorithm 9. However, rather than computing

the empirical mean and covariance from sampled Q-values, the special structured Epinet

model provides these quantities in closed form. Specifically, the mean vector is given by

the deterministic head µθµ
(s), and the covariance matrix Σθ (s) is derived analytically from

the structure of the stochastic head under Assumption 3.6.1. The ellipsoidal radius is set

to ϒ2(s) = F−1
χ2
|A |

(υ), corresponding to a υ-confidence level. This eliminates the need for

sampling when constructing the uncertainty set, allowing efficient and differentiable com-

putation of the Bellman target and policy gradient. The full ERSAC(Epi) algorithm follows

the similiar steps as Algorithm 9 and is deferred to Appendix 3.9.3 for completeness.

3.7 Experiments

In this section, we present a comprehensive empirical evaluation of our proposed frame-

work for epistemic robustness in offline reinforcement learning. We quantify epistemic

uncertainty through uncertainty sets that can be seamlessly integrated into robust policy op-

timization. In Section 3.5, we introduced three types of sample-based uncertainty sets: box,

convex hull, and ellipsoid constructed from distributions over Q-values. Based on these

constructions, we instantiate three corresponding methods within the ERSAC framework:

ERSAC-B-N, which uses box set constructed over N ensembles, ERSAC-CH-N, which
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employs convex hulls over the N ensembles and ERSAC-Ell-N, which forms ellipsoidal

sets using the empirical mean and covariance of the ensemble. We further introduce

the ERSAC-Ell-Epi model from Section 3.6, which replaces the ensemble with samples

drawn from an Epistemic Neural Network (Epinet). To maintain consistency with the

ensemble-based variants, we sample N latent indices z from the Epinet to generate Q-value

vectors. Finally, we propose ERSAC-Ell-Epi* which leverages the special structure for

the stochastic head σθσ
(ψ, ·,z) as defined in Assumption 3.6.1 to constructs the ellipsoidal

set directly without requiring sampling of Q vectors. We benchmark these methods against

the standard SAC-N baseline, which we have shown as a special case of our framework

under a box uncertainty set. To remain consistent with prior literature, we will refer to

ERSAC-B-N as SAC-N throughout the experimental section.

Our experiments span a diverse set of environments, including tabular domains (Ma-

chine Replacement and Riverswim), classic control benchmarks (CartPole and LunarLan-

der). Across these domains, we evaluate the ability of each method to learn effective

policies under distributional shifts arising due to changes in the behavioral policies gener-

ating the data and limited data coverage.

A key contribution of our experimental setup is a novel offline RL benchmarking frame-

work that enables control over the risk sensitivity of the behavior policy used to generate

offline datasets. By adjusting the level of optimism or pessimism through expectile-based

value learning, we can systematically evaluate how the nature of behavioral data affects

the performance of offline RL algorithms.

To induce risk sensitivity in behavior policies, we adopt a modified actor-critic al-

gorithm that incorporates the dynamic expectile risk measure (Marzban, Delage, and Li

2023). This implementation constructs one-step expectile targets using a bootstrapped

Bellman update. Specifically, for each traversed (s,a), we compute the target as

y := sup
{

z :

Es′∼p̂Ns(·|s,a)
[∣∣∣∣τ− I

(
z < r+ γ max

a′
Qθ ′(s

′,a′)
)∣∣∣∣ ·(z− r− γ max

a′
Qθ ′(s

′,a′)
)]
≤ 0
}
,

where p̂Ns(·|s,a) is the empirical distribution of Ns resampling of the transition from (s,a).
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We then update the critic to minimize the squared error to this expectile target. The actor is

trained using standard policy gradient objective, which seeks to maximize the expected

Q values. After a fixed number of training episodes, the resulting policy πφ reflects the

desired level of risk sensitivity encoded by τ . We then use this policy to collect an offline

dataset of size ND via ε-greedy interaction with the environment, selecting a random action

with probability ε = 0.1. This process yields datasets that systematically vary in their

underlying behavioral bias. Full details of the implementation are provided n Appendix

3.9.3 (see Algorithm 13).

3.7.1 Evaluation on Tabular Tasks

We begin our evaluation with focusing on two popular tabular MDP environments, Ma-

chine Replacement problem and Riverswim. These settings offer interpretable structure

while capturing key challenges in offline RL, including sparse state-action coverage, and

high sensitivity to policy extrapolation. More importantly, the tabular setup allows us to

isolate the effects of epistemic uncertainty arising from limited data coverage, without

confounding factors introduced by function approximators used in deep RL such as overfit-

ting, instability, or extrapolation error. This enables a clean evaluation of how different

uncertainty set constructions mitigate overestimation in offline learning, specifically in

settings where epistemic uncertainty is the dominant source of error. For each environment,

we construct a variety of offline datasets by systematically varying two key parameters,

dataset size and behavior policy risk sensitivity. To evaluate sample efficiency, we vary

the dataset size across three levels, 10×|S |, 100×|S |, and 1,000×|S |, where |S |
denotes the number of states in the environment. These correspond to increasing levels

of coverage over the state-action space and allow us to systematically study the impact of

data availability on policy performance. Empirically, we observe that beyond 1,000×|S |
samples, the learned empirical transition dynamics closely approximate the true transition

model, yielding diminishing returns from additional data. To induce behavioral bias and

control epistemic uncertainty, we vary the behavior policy using the dynamic expectile
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risk measure at three levels: risk-seeking (τ = 0.1), risk-neutral (τ = 0.5), and risk-averse

(τ = 0.9). These settings correspond to qualitatively distinct exploration profiles and result

in datasets with varying coverage of the state-action space.

We evaluate performance using normalized returns, which measure the improvement

of a learned policy over a uniformly random policy, scaled relative to the performance of

the optimal policy. Specifically, for a learned policy π , we compare

(J(π)− J(πrand))/(J(π∗)− J(πrand))

where J(π) is the expected returns under policy π , computed as the average return over

100 evaluation episodes, πrand is the random policy, and π∗ is the optimal policy.

Table 3.1 summarizes normalized returns across methods and data regimes. We observe

that in small datasets (e.g., 100 samples), CH-N and Ell_0.9-N outperform B-N by up to

75% demonstrating the advantage of structured epistemic reasoning in the case of low

coverage. As dataset size increases, all methods improve, but structured uncertainty sets

tend to converge more quickly toward optimal returns. Under risk-averse data regimes

(τ = 0.9), where epistemic uncertainty is highest, ellipsoidal variants remain robust, with

Ell-N and Ell_0.9-N effectively modulating conservativeness to sustain performance.

A key advantage of the ellipsoidal uncertainty set is its tunable scaling parameter

ε , which controls the conservativeness of the set. To validate its impact, we compare

ellipsoids constructed to cover 100% of ensemble samples (Ell-N) versus 90% (Ell_0.9-

N). Empirically, we observe that the more compact ellipsoid with 90% coverage often

yields better performance, likely due to excluding outlier critics and avoiding excessive

pessimism. Based on this finding, we adopt the 90% coverage threshold as the default

configuration for ellipsoidal sets in subsequent Gym based experiments.

3.7.2 Evaluation on Gym Environments

We next evaluate the proposed methods on two widely used Gym environments—CartPole

and LunarLander. CartPole is a well known control problem involving binary rewards and

continuous states, while LunarLander presents a more complex challenge with continuous
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Env DS τ SAC-N CH-N Ell-N Ell_0.9-N Beh. Policy

MR

10× 0.1 80±3 85±2 87±1 88±2 86±3
100× 0.1 97±1 97±1 95±2 96±2 86±3

1,000× 0.1 98±2 98±2 96±2 96±1 86±3
10× 0.5 87±2 88±2 90±2 91±2 100±0

100× 0.5 97±1 98±1 92±2 94±2 100±0
1,000× 0.5 98±2 98±2 98±2 99±0 100±0

10× 0.9 85±2 86±2 90±2 90±2 92±2
100× 0.9 96±2 96±2 95±2 96±2 92±2

1,000× 0.9 96±2 96±2 96±2 96±1 92±2

RS

10× 0.1 37±4 64±2 57±3 66±3 −20±3
100× 0.1 92±2 94±2 94±3 94±3 −20±3

1,000× 0.1 99±1 100±0 100±0 100±0 −20±3
10× 0.5 56±2 60±2 60±2 62±1 100±0

100× 0.5 97±2 99±1 98±1 99±1 100±0
1,000× 0.5 99±1 99±1 100±0 100±0 100±0

10× 0.9 49±2 49±4 48±1 52±3 34±4
100× 0.9 99±1 99±1 100±0 99±1 34±4

1,000× 0.9 99±1 99±1 100±0 100±0 34±4

Table 3.1: Normalized returns with 90% confidence interval achieved by SAC-N, CH-
N, Ell-N, and Ell_0.9-N across dataset sizes {10×,100×,1,000×} and behavior policy
risk levels τ ∈ {0.1,0.5,0.9} in the Machine Replacement and RiverSwim environments.
Scores are computed over 10 evaluation seeds and normalized relative to the random and
optimal policy baselines. Bold and underline highlight respectively the best and worst
performing method when the margin is larger or equal to one. The final column reports the
return of the behavior policy used to generate the offline data.

states, shaped rewards, and a higher dimensional state-action space. Similiar to the tabular

setting, To construct the offline datasets, we again vary two key factors: dataset size and

behavior policy risk profile. For each environment, we generate nine datasets by crossing

three data sizes, 1,000, 10,000, and 100,000 transitions and with three expectile levels,

τ = 0.1 (risk-seeking), τ = 0.5 (risk-neutral), and τ = 0.9 (risk-averse). Behavior policies

are trained to convergence using a dynamic expectile based actor-critic model, and fixed

trajectories are collected for each configuration.

Table 3.2 presents normalized returns across the different methods and dataset regimes.
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Env DS τ SAC-N CH-N Ell_0.9-N Ell-Epi Ell-Epi∗ Beh. Policy

CP

1k 0.1 84±3 81±2 86±1 84±1 85±2 86±2
10k 0.1 92±2 94±2 100±0 100±0 100±0 86±2

100k 0.1 100±0 100±0 100±0 100±0 100±0 86±2
1k 0.5 70±2 72±1 73±3 72±2 71±2 100±0

10k 0.5 97±2 99±1 100±0 100±0 100±0 100±0
100k 0.5 100±0 100±0 100±0 100±0 100±0 100±0

1k 0.9 73±2 70±3 78±2 80±1 75±2 83±2
10k 0.9 100±0 100±0 100±0 100±0 100±0 83±2

100k 0.9 100±0 100±0 100±0 100±0 100±0 83±2

LL

1k 0.1 72±1 77±1 98±2 97±3 98±2 94±3
10k 0.1 94±2 98±1 102±1 102±3 103±1 94±2

100k 0.1 99±1 100±3 106±1 110±3 108±1 94±2
1k 0.5 68±3 73±3 96±3 95±1 97±1 100±2

10k 0.5 93±3 99±1 100±1 99±1 102±1 100±2
100k 0.5 98±2 100±1 102±2 108±2 105±2 100±2

1k 0.9 67±2 73±2 97±2 98±2 97±2 78±3
10k 0.9 92±2 92±3 101±2 100±4 102±2 78±3

100k 0.9 98±2 101±2 103±1 104±2 105±1 78±3

Table 3.2: Normalized returns with 90% confidence intervals achieved by the five
algorithms across dataset sizes {1k,10k,100k} and behavior-policy risk levels τ ∈
{0.1,0.5,0.9} in CartPole and LunarLander. Scores are averaged over 10 evaluation
seeds and normalized against random and optimal baselines. Bold and underline highlight
respectively the best and worst performing method when the margin is larger or equal to
one.

We consider the policy trained under the risk neutral behavior(τ = 0.5) as the reference

optimal policy. First, models CH-N, Ell_0.9-N, Ell-Epi consistently outperform the

box baseline B-N, particularly in data scarce and risk averse settings where epistemic

uncertainty plays a larger role. When we aggregate returns across dataset sizes by risk

level (As presented in Table 3.3), we observe that Ell_0.9-N consistently achieves strong

performance under risk-neutral and risk-seeking behavior policies, suggesting that the

method effectively leverages optimistic data to enhance policy learning.

Further, ellipsoidal variants offer robust and often best performance across most

settings. Notably, Ell-Epi∗ matches or surpasses ensemble based Ell_0.9-N in several
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Env τττ === 000...111 τττ === 000...555 τττ === 000...999

MR 93±5 95±4 94±3
RS 87±15 87±17 84±22
CartPole 95±8 93±14 92±14
LunarLander 103±7 99±5 99±5

Table 3.3: Aggregated performance of Ell_0.9-N across environments with mean ±
standard deviation. Bold and underline highlight respectively the best and worst performing
source of data.

settings, indicating that Epinet based uncertainty representations can serve as lightweight

and effective alternatives to ensembles. This advantage is further supported by runtime

measurements (Table 3.4), which show that the Epinet based model, which learns the

ellipsoidal sets directly, are able to achieve comparable performance with significantly

lower computational cost, making it an attractive choice for scaling to more complex

domains.

Model SAC-N CH-N Ell_0.9-N Ell-Epi Ell-Epi∗

Runtime (s/epoch) 0.35 0.42 0.56 0.60 0.10

Table 3.4: Runtime per training epoch for each model in LunarLander with 100,000 offline
transitions and τ = 0.5, averaged over 10 seeds

To further understand how uncertainty sets affect learning dynamics, we analyze pol-

icy entropy during training. Figure 3.2 shows that Box-based methods (B-N) exhibit

consistently lower entropy throughout training, indicating less stochastic policies. This

behavior leads to early convergence toward deterministic actions, which may result in

suboptimal local solutions. While all methods eventually stabilize, as discussed in Sec-

tion 3.5.4, CH-N, Ell-N, and Ell-Epi offer greater flexibility in shaping the value function

q∗(s, · ;φ). This flexibility translates to more exploratory behavior when deriving the policy

πφ (· | s), ultimately enabling better identification of high-performing actions under offline

constraints.
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(a) CartPole

(b) Lunar Lander

B_N CH_N Ell_0.9 Ell_Epi

Figure 3.2: Policy entropy during training across B_N, CH_N, Ell_0.9, and Ell_Epi models
in the CartPole and LunarLander environments. Entropy is computed per epoch and
averaged over 10 evaluation seeds. Lower entropy indicates more confident, deterministic
policies, while higher entropy reflects greater stochasticity.

3.8 Conclusion

This chapter presented Epistemic Robust Soft Actor-Critic (ERSAC), a unified frame-

work for offline reinforcement learning that robustly accounts for epistemic uncertainty

through structured uncertainty sets over Q-values. By replacing traditional ensemble based

pessimism with compact and expressive uncertainty sets, ERSAC enables conservative

yet flexible value estimation and policy optimization. We showed that our framework

generalizes SAC-N as a special case, and supports multiple set constructions such as box,
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convex hull, and ellipsoids, each offering trade-offs in expressiveness and computational

cost. Building on this, we introduced an Epinet based variant of ERSAC that generates

ellipsoidal uncertainty sets in closed form, thus eliminating the need for sample-based

approximations and significantly reducing runtime without compromising performance.

Through comprehensive evaluations across tabular and continuous environments, we

demonstrated that ERSAC variants, particularly those using ellipsoidal and Epinet-based

sets, achieve better performance. Our experiments also introduced a novel benchmark to

systematically assess offline RL algorithms under varying degrees of risk sensitivity in

behavior policies, highlighting the importance of aligning epistemic modeling with the

data generation process.

Beyond these results, ERSAC demonstrates how set-based modeling can replace

variance inflation or large ensembles as a principled approach to epistemic uncertainty. By

explicitly bounding plausible Q-values, the Bellman backup adapts its conservativeness to

the data by being nearly deterministic in well covered states, and cautious in underexplored

ones. Such adaptivity is especially valuable in offline to online deployment and sim-to-real

transfer. In sim-to-real settings, the gap between simulated dynamics and real world

behavior often leads to systematic performance drops. Existing approaches typically

address this mismatch through domain randomization or by inflating ensemble variance,

both of which can be computationally expensive and prone to over conservatism. ERSAC

instead frames these discrepancies as a form of epistemic uncertainty, modeling them with

structured sets that explicitly capture the range of plausible Q-values. By doing so, ERSAC

ensures that policies remain cautious in regions where the simulator is unreliable, while

still exploiting reliable aspects of the model without excessive conservatism.

There remain, however, several promising directions for future research. One natural

extension is to construct uncertainty sets that are robust not only to epistemic variation

but also to distributional ambiguity, thereby capturing a broader range of model mis-

specification. Another direction involves incorporating risk-sensitive objectives directly

into the learning process so that agents can explicitly account for tail events in returns.

Extending epistemic robustness to multi-agent and hierarchical reinforcement learning is
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also compelling, as it would require coordinating uncertainty across interacting agents or

abstraction layers. Furthermore, many real-world environments feature state-dependent

feasible actions, A (s) ⊆ A , rather than a single global action set. In such cases the

uncertainty set Uθ (s) must be restricted to feasible coordinates, altering its geometry and

influencing the adversary’s choice of q∗(s, ·;φ). Finally, while our methods show strong

empirical performance, establishing finite-sample guarantees and deriving robust regret

bounds under epistemic uncertainty remain important theoretical challenges. Taken to-

gether, these contributions highlight that structured and computationally efficient epistemic

modeling offers a foundation for safe, generalizable, and scalable offline reinforcement

learning.

Acknowledgements

The authors thank Esther Derman and Wenjie Huang for helpful discussions. The au-

thors also gratefully acknowledge support from the Institut de Valorisation des Données

(IVADO), the Canadian Natural Sciences and Engineering Research Council [RGPIN-

2022-05261], and the Canada Research Chair program [CRC-2018-00105].

105



3.9 Appendix

This appendix provides theoretical and implementation details that support our main results.

Section 3.9.2 presents a formal lemma and proofs. Section 3.9.3 contains algorithmic

pseudocode for the ERSAC variants proposed in this work and Section 3.9.3 details the

details regarding experiments training and additional analysis.

3.9.1 Machine Replacement Example

τ 1 2 3 4 5 6 7 8 9 10

0.1 0 0 0 0 0 0 0 0 1 1
0.5 0 0 0 0 0 0 1 1 1 1
0.9 0 0 0 0 0 1 1 1 1 1

Table 3.5: Optimal actions for each state under different expectile levels τ . Action 0
corresponds to progressing forward; Action 1 corresponds to jumping to state 1 with -100
reward.

(a) State Visitation

τ = 0.1 τ = 0.5 τ = 0.9

Figure 3.3: State visitation frequency distributions under different expectile policies.

3.9.2 Proof for Proposition 3.4.1

We begin by analyzing the robust estimator term present in both the conservative target

value in equation (3.10) and the policy loss in (3.12): minq∈Uθ (s)⟨πφ (· | s),q⟩. Given that
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the uncertainty set is defined as a coordinate-wise product box and that πφ (· | s)≥ 0, the

minimum must be achieved at the coordinate-wise lower bound:

q∗(a) = essinfq̃∼Fq
θ
(s)[q̃(a)] = essinfĩ∼U(N)[Qθĩ

(s,a)] = min
i∈[N]

Qθi(s,a), ∀a ∈A .

The robust evaluation then becomes,

min
q∈Uθ (s)

⟨πφ (· | s),q⟩= ∑
a∈A

πφ (a | s)min
i∈[N]

Qθi(s,a) = Ea∼πφ (·|s)

[
min
i∈[N]

Qθi(s,a)
]
.

Hence, the conservative target value becomes

y(r,s′) = r+ γ

(
Ea′∼πφ (·|s′)

[
min
i∈[N]

Qθi(s
′,a′)−α logπφ (a′ | s′)

])
= Ea′∼πφ (·|s′)

[
r+ γ

(
min
i∈[N]

Qi(s′,a′)−α logπφ (a′ | s′)
)]

= Ea′∼πφ (·|s′)
[
y(r,s′,a′)

]
We thus have that

L R
Q (θ) = E(s,a,r,s′)∼D , q̃∼Fq

θ
(s)

[(
q̃(a)− y(r,s′)

)2
]

= E(s,a,r,s′)∼D , q̃∼Fq
θ
(s)

[(
q̃(a)−Ea′∼πφ (·|s′)[y(r,s

′,a′)]
)2
]

= E(s,a,r,s′)∼D , q̃∼Fq
θ
(s)

[
q̃(a)2−2q̃(a)Ea′∼πφ (·|s′)[y(r,s

′,a′)]+Ea′∼πφ (·|s′)[y(r,s
′,a′)]2

]
= E(s,a,r,s′)∼D , q̃∼Fq

θ
(s)

[
q̃(a)2−2q̃(a)Ea′∼πφ (·|s′)[y(r,s

′,a′)]+Ea′∼πφ (·|s′)[y(r,s
′,a′)2]

]
+E(s,a,r,s′)∼D

[
Ea′∼πφ (·|s′)[y(r,s

′,a′)]2−Ea′∼πφ (·|s′)[y(r,s
′,a′)2]

]
= E(s,a,r,s′)∼D , q̃∼Fq

θ
(s),a′∼πφ (·|s′)

[
q̃(a)2−2q̃(a)y(r,s′,a′)+ y(r,s′,a′)2]+C

= E(s,a,r,s′)∼D , q̃∼Fq
θ
(s),a′∼πφ (·|s′)

[(
q̃(a)− y(r,s′,a′)

)2
]
+C

= (1/N)∑
i
E(s,a,r,s′)∼D ,a′∼πφ (·|s′)

[(
Qθi(s,a)− y(r,s′,a′)

)2
]
+C

= (1/N)∑
i

LQ(θi)+C

where

C := E(s,a,r,s′)∼D [(Ea′∼πφ (·|s′)[y(r,s
′,a′)])2]−E(s,a,r,s′)∼D ,a′∼πφ (·|s′)

[
y(r,s′,a′)2]

107



due to q̃(a) being independent of y(r,s′,a′) given (s,a,r,s′).

On the other hand, we have that:

J R
π (φ) = Es∼D ,a∼πφ (·|s)

[
min

q∈Uθ (s)
⟨πφ (· | s),q⟩−α logπφ (a | s)

]
= Es∼D ,a∼πφ (·|s)

[
Ea′∼πφ (·|s)[min

i∈[N]
Qθi(s,a

′)]−α logπφ (a | s)
]

= Es∼D ,a∼πφ (·|s)

[
min
i∈[N]

Qθi(s,a)−α logπφ (a | s)
]

= Jπ(φ).

This completes our proof.
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3.9.3 Algorithmic Implementation Details

In this section, we present the pseudo-code for the algorithms discussed in the main work.

ERSAC with Box and Convex Hull Sets

Algorithm 10 : Sample-based Epistemic Robust SAC with Box Set
Input : Initial policy parameters φ , Q parameters θ , target Q parameters θ ′, offline

data buffer D , learning rates ηQ,ηπ , target update rate τ , sample size N

for each epoch do

Sample minibatch B := {(s,a,r,s′)} from D

Sample N i.i.d. latent variables {z̃i}N
i=1 from Fz

Compute robust targets:

ybox(r,s′) := r+γ

(
∑

a∈A
πφ (a|s′) ·min

i∈[N]
qθ ′(s

′,a, z̃i)−α ∑
a∈A

πφ (a|s′) logπφ (a|s′)
)

Update critic network:

θ ← θ −ηQ ·
2
|B| ∑

(s,a,r,s′)∈B
Ez̃∼Fz

[
(qθ (s,a, z̃)− y(r,s′)) ·∇θqθ (s,a, z̃)

]
Update actor network:

φ← φ +ηπ ·
1
|B| ∑

s∈B
∑

a∈A
min
i∈[N]

qθ (s,a, z̃i)∇φ πφ (a|s)−α∇φEa∼πφ (·|s)
[
logπφ (a | s)

]
Update target network: θ ′← τθ +(1− τ)θ ′
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Algorithm 11 : Sample-based Epistemic Robust SAC with Convex Hull Set
Input : Initial policy parameters φ , Q parameters θ , target Q parameters θ ′, offline

data buffer D , learning rates ηQ,ηπ , target update rate τ , sample size N

for each epoch do

Sample minibatch B := {(s,a,r,s′)} from D

Sample N i.i.d. latent variables {z̃i}N
i=1 from Fz

Compute robust targets:

yhull(r,s′) := r+γ

(
min
i∈[N]

∑
a∈A

πφ (a|s′) ·qθ ′(s
′,a, z̃i)−α ∑

a∈A
πφ (a|s′) logπφ (a|s′)

)

Update critic network:

θ ← θ −ηQ ·
2
|B| ∑

(s,a,r,s′)∈B
Ez̃∼Fz

[
(qθ (s,a, z̃)− y(r,s′)) ·∇θqθ (s,a, z̃)

]
Update actor network:

i∗(s,a) := arg min
i∈[N]

∑
a∈A

πφ (a | s) ·qθ (s,a, z̃i)

φ← φ +ηπ ·
1
|B| ∑

s∈B
∑

a∈A
qθ (s,a, z̃i∗(s,a))∇φ πφ (a|s)−α∇φEa∼πφ (·|s)

[
logπφ (a | s)

]
Update target network: θ ′← τθ +(1− τ)θ ′
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Epinet-based ERSAC with Ellipsoidal Uncertainty

Algorithm 12 : Sample-based ERSAC with Ellipsoidal Uncertainty using Epinet
Input : Initial parameters for policy φ , Q-network (θµ ,θσ ), and target network

(θ ′µ ,θ
′
σ ); offline data D ; learning rates ηQ,ηπ , and τ; noise scale σ̄ ;

regularization coefficients λµ ,λσ ; sample size N

for each epoch do

Sample minibatch B̄ := {(s,a,r,s′,c)} from augmented buffer D̄

Sample N i.i.d. latent indices {z̃i}N
i=1 ∼N (0, I)

Construct uncertainty set (Epinet-based ellipsoid):

µ̂(s′)← µθ ′µ (s
′), σ̄θ ′(s′,a)← σ̄L

θ ′σ
(ψθ ′µ (s

′),a)+ σ̄P(ψθ ′µ (s
′),a)

Σθ ′(s′)a,a′ ← ⟨σ̄θ ′(s′,a), σ̄θ ′(s′,a′)⟩
Compute robust targets:

y(r,s′)← r+γ

(
⟨πφ (·|s′), µ̂(s′)⟩−ρ

∥∥∥Σ
1/2
θ ′ (s

′)πφ (·|s′)
∥∥∥

2
−α Ea′∼πφ

[logπφ (a′|s′)]
)

Update critic network:

θµ ← θµ −2ηQ ·
1
|B̄| ∑

(s,a,r,s′,c)∈B̄
Ez̃∼N (0,I)

[
(
qθ (s,a, z̃)− y(r,s′)− σ̄⟨c, z̃⟩

)
·∇θµ

µθµ
(s,a)

]
+2λµθµ

θσ ← θσ −2ηQ ·
1
|B̄| ∑

(s,a,r,s′,c)∈B̄
Ez̃∼N (0,I)

[
(
qθ (s,a, z̃)− y(r,s′)− σ̄⟨c, z̃⟩

)
·∇θσ

σ
L
θσ
(ψθµ

(s),a, z̃)
]
+2λσ θσ

Update actor network:

φ ← φ +ηπ ·
1
|B̄| ∑

s∈B̄

[
∑

a∈A

(
µ̂(s,a)−ρ · Σθ (s)πφ (a|s)

∥Σ1/2
θ

(s)πφ (·|s)∥

)
∇φ πφ (a|s)

−α ·∇φEa∼πφ
[logπφ (a|s)]

]

Update target network: θ ′← τ ·θ +(1− τ) ·θ ′
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Risk-Sensitive Offline Data Generation

Algorithm 13 : Offline Data Generation via Dynamic Expectile Risk Policies
Input : Environment M ; risk level τ ∈ (0,1); dataset size ND ; initial policy

parameters φ , Q parameters θ , target Q parameters θ ′, learning rates ηQ,

ηπ ; exploration rate ε; number of samples Ns for P(·|s,a) approximation

Output : Offline dataset D

Initialize policy parameters φ and value function parameters θ

for each epoch do

Reset environment M and observe state s

while Episode not done do

Sample transition (s,a,r,s′) by executing current policy πφ

Resample Ns transitions from (s,a) to assemble p̂Ns(·|s,a)
Compute expectile target:

y← sup
{

z : Es′∼p̂Ns(·|s,a)
[∣∣∣∣τ− I

(
z < r+ γ max

a′
Qθ ′(s

′,a′)
)∣∣∣∣ ·(

z− r− γ max
a′

Qθ ′(s
′,a′)

)]
≤ 0
}

Update value function:

θ ← θ −ηQ ·∇θ (Qθ (s,a)− y)2

Update policy:

φ ← φ +ηπ ·Ea∼πφ (·|s)
[
∇φ logπφ (a|s) ·Qθ (s,a)

]
Move to next state: s← s′

Update target network: θ ′← τθ +(1− τ)θ ′

112



Algorithm 13 : (continued)

Offline Data Collection with ε-Greedy Exploration:

Initialize empty dataset D ← /0

while |D |< ND do

Observe state s from environment M

if RandomUniform(0,1) < ε then

Sample action a∼ Uniform(A )

else

Sample action a∼ πφ (·|s)

Execute action a in environment to observe r and s′

Store (s,a,r,s′) in buffer D

return Dataset D

Training algorithm details

We evaluate all algorithms on a tabular Machine Replacement MDP with S = 10 states and

A = 2 actions. Transition dynamics are defined probabilistically, with increasing expected

costs for continued operation and a reset mechanism triggered by replacement actions.

Rewards are state- and transition-dependent, with negative values to simulate maintenance

costs and catastrophic penalties for failure.

To construct behavior policies, we implement risk-sensitive value iteration using the

expectile risk measure at levels τ ∈ {0.1,0.5,0.9}. Expectile backups are computed by

solving a convex root-finding problem for each state-action pair. Policies are derived via

one-hot argmax over the resulting Q-values.

We generate offline trajectories using the expectile-optimal policy πτ for each τ . At

each step, with probability 0.1, a uniformly random action is taken for exploration. We

vary the number of transitions M ∈ {100,1,000,10,000} and use ten random seeds per

setting. Each trajectory entry records (s,a,s′,r).

We evaluate three risk-sensitive SAC-N variants using N = 100 Q-ensemble members.
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Each method includes entropy regularization with coefficient α = 0.01 and actor-critic

learning rates ηq = ηπ = 0.01. Target networks are updated using Polyak averaging with

τ = 0.005.

We report normalized returns with respect to the optimal and random policies:

Normalized Return =
Veval−Vrandom

Voptimal−Vrandom
,

averaged over 1,000 episodes. Returns are discounted with γ = 0.9. We repeat all experi-

ments across ten seeds and report the mean and standard deviation. All code is implemented

in Pytorch and NumPy using vectorized operations. Root-finding in expectile computation

uses a bisection method with machine epsilon tolerance.
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General Conclusion

This thesis presented Conditional Robust Optimization (CRO), a novel framework for

learning context dependent uncertainty sets that enable robust, data driven decisions.

Unlike classical robust optimization, which relies on global worst-case uncertainty sets, the

CRO paradigm models uncertainty as a function of observable covariates, thus allowing

decisions to respond meaningfully to evolving information. Chapter 1 formalized this

paradigm, provided formulations with statistical coverage guarantees, and established a

foundation for contextual robustness in data driven settings.

Subsequent work has extended CRO in several directions centered around the core

insight that robust decisions should also adapt to context. Y. P. Patel, Rayan, and Tewari

(2024) apply conformal prediction to construct non-convex uncertainty sets with finite-

sample guarantees. Sun, Liu, and Li (2023) propose a predict-then-calibrate framework

that decouples prediction from robust optimization in linear programs. J. Yang et al. (2022)

introduce causal transport-based sets that preserve conditional dependence structures,

while Zhang et al. (2024) leverage high-dimensional support vector clustering to construct

localized, feature-dependent sets.

To align uncertainty quantification more tightly with decision objectives, Chapter 2

further developed an end-to-end CRO (E2E-CRO) methodology that jointly learns uncer-

tainty sets and robust decisions via a differentiable surrogate for the robust objective. This

contributes to the growing literature on decision-aware uncertainty modeling. For example,

Ma, Ning, and Du (2024) propose differentiable DRO layers for mixed-integer programs,

Cortes-Gomez et al. (2024) optimize conformal prediction sets for decision utility, and



Jacquillat and Li (2024) study regret-optimal learning in settings with irreversible deci-

sions. I. Wang et al. (2023) propose directly minimizing expected decision loss through a

stochastic augmented Lagrangian approach to uncertainty set learning.

In the third chapter, we extended these ideas to the sequential decision-making setting

using Epistemic Robust Soft Actor-Critic (ERSAC) model. ERSAC brings conditional

robustness to offline reinforcement learning by constructing state dependent uncertainty

sets over Q-values that reflect epistemic uncertainty. Rather than relying on large ensem-

bles, ERSAC leverages an Epistemic Neural Network to model rich uncertainty structure

while maintaining scalability and differentiability. This enables robust Bellman backups

and conservative policy learning in data limited, high stakes environments. ERSAC gener-

alizes the CRO philosophy of adapting robustness to context in dynamic settings where

uncertainty evolves along with the trajectory, and decisions must remain safe under limited

feedback from the environment.

Looking ahead, several promising directions emerge under the broader theme of

contextual uncertainty. A key challenge is to develop generalization guarantees for decision

performance when uncertainty sets are learned from finite data. Extending contextual

robustness to multi-stage or sequential optimization also remains largely open. Here,

uncertainty not only depends on context but can evolve as a function of both past states and

decisions, suggesting the need for autoregressive constructions that remain tractable while

preserving statistical validity (Malinin and Gales (2020)). Another emerging direction

is the integration of fairness constraints into the structure of context dependent sets.

This involves ensuring that the coverage and conservativeness of the learned sets do

not systematically vary across sensitive groups or features. For example, one could

enforce demographic parity in coverage rates, or penalize heterogeneity in set sizes across

subpopulations, thereby preventing minority groups from being systematically over or

under protected. Incorporating fairness at the level of uncertainty sets requires balancing

statistical guarantees with equitable treatment and would expand the applicability of

contextual robustness to socially sensitive domains such as healthcare, credit allocation,

and personalized decision making (Kuzucu et al. (2023)).
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Beyond structured tabular covariates, there is also growing potential in leveraging

unstructured and multimodal data such as text, images, or sensor streams to inform

uncertainty set construction. Multimodal contexts could allow decision making models

to incorporate richer side information (e.g., medical imaging in healthcare, or natural

language in recommendation systems) when quantifying epistemic uncertainty. However,

integrating high dimensional modalities raises challenges for both statistical validity and

computational tractability i.e., coverage guarantees must extend to feature spaces where

distances are poorly defined, and scalable learning procedures must be developed to

map complex embeddings into tractable uncertainty sets. One promising direction is to

combine representation learning with contextual robustness, using pre-trained encoders to

extract lower dimensional features while calibrating set construction on the latent space.

Successfully incorporating multimodal data could substantially broaden the scope of

contextual robustness, enabling its deployment in modern AI systems where decisions

increasingly rely on heterogeneous sources of information.
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