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Résumé

Une prise de décision fiable dans des environnements incertains nécessite souvent non
seulement de la robustesse, mais aussi une adaptabilité au contexte. Ce travail propose une
approche unifiée de la robustesse contextuelle, en développant des méthodes qui condi-
tionnent la quantification de I’incertitude aux caractéristiques observées, afin d’améliorer
la qualité des décisions. Une innovation clé dans cette direction est le développement
de I’Optimisation Robuste Conditionnelle (Conditional Robust Optimization, CRO), un
cadre qui adapte les ensembles d’incertitude a I’information contextuelle. Plutdt que
de s’appuyer sur des ensembles d’incertitude statiques représentant les pires cas, cette
approche partitionne I’espace des covariables et construit des ensembles d’incertitude
spécifiques a chaque région, s’adaptant ainsi a la structure des données. Cette stratégie
permet de prendre des décisions qui conservent des garanties de couverture tout en évitant
un exces de conservatisme. L’analyse théorique fournit des garanties en termes de risque et
de couverture, et les évaluations empiriques démontrent une amélioration des performances

par rapport aux méthodes classiques d’optimisation robuste.

Afin d’aligner plus étroitement 1’estimation de 1’incertitude avec les objectifs de prise
de décision, un nouveau cadre d’apprentissage de type end-to-end est introduit. Il integre
directement la construction des ensembles d’incertitude a I’objectif d’optimisation en
aval. En apprenant conjointement la couverture conditionnelle et la qualité de la décision
a I’aide d’une fonction de perte différentiable, cette approche surmonte les problemes
de désalignement inhérents aux méthodes classiques de type estimer-puis-optimiser. Le

résultat est une méthode flexible et guidée par les données, qui améliore a la fois la



robustesse et la performance de la taiche, comme le démontrent les résultats empiriques.

Ce cadre est ensuite étendu a la prise de décision séquentielle, ou I’incertitude doit étre
quantifiée non plus sur des résultats immédiats, mais sur des estimations de valeurs a long
terme. Cela mene naturellement au cadre de 1’apprentissage par renforcement hors ligne,
ou un agent doit apprendre des politiques a partir de jeux de données statiques, sans interac-
tion supplémentaire avec 1’environnement. Pour répondre aux défis uniques de ce contexte,
nous développons un cadre général de robustesse épistémique contextuelle, qui remplace
I’estimation conventionnelle de I’incertitude par des ensembles d’incertitude structurés,
conditionnés a I’état, sur les valeurs-Q. Cette formulation généralise les principes de ro-
bustesse conditionnelle aux environnements dynamiques, afin de permettre I’apprentissage
de politiques efficaces a partir de données hors ligne. Les résultats empiriques sur une
variété de taches démontrent que cette méthode améliore la robustesse et les performances
hors distribution, comparativement aux approches basées sur les ensembles.

Ces contributions offrent une perspective unifiée de la robustesse contextuelle, montrant
que I’incertitude peut étre modélisée comme un objet structuré, apprenable, adaptable aux
données et sensible a la tache décisionnelle. En intégrant des outils issus de 1’optimisation
robuste, de 1’apprentissage statistique et de I’apprentissage par renforcement, ce travail
établit une base rigoureuse pour la conception de systemes décisionnels plus fiables,

interprétables et dignes de confiance dans des environnements incertains.
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conforme, Apprentissage orienté taches, Apprentissage par renforcement hors ligne.
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Abstract

Reliable decision making in uncertain environments often requires not just robustness, but
also adaptability to context. This work develops a unified approach to contextual robust-
ness, proposing methods that condition uncertainty quantification on observed features to
improve quality of decision making. A key innovation in this direction is the development
of Conditional Robust Optimization (CRO), a framework that adapts uncertainty sets
to contextual information. Instead of relying on static, worst-case uncertainty sets, the
approach partitions the covariate space and constructs region specific uncertainty sets that
adapt to the structure of the data. This leads to decisions that maintain coverage guarantees
while avoiding excessive conservatism. Theoretical analysis provides guarantees on risk
and coverage, and empirical evaluations demonstrate improved performance over classical

robust optimization methods.

To further align uncertainty estimation with decision making objectives, a new End-To-
End learning framework is introduced that directly integrates uncertainty set construction
with the downstream optimization objective. By jointly learning conditional coverage
and decision quality using a differentiable surrogate loss, this approach overcomes the
misalignment issues inherent to the traditional Estimate-Then-Optimize methods. The
result is a flexible, data driven approach that consistently improves both robustness and

task performance, as shown in experimental results.

We further extend this framework to sequential decision making, where uncertainty
must be quantified over long term value estimates rather than immediate outcomes. This

naturally leads to the setting of offline reinforcement learning, in which an agent must



learn policies from static datasets without additional environment interaction. To address
the unique challenges of this setting, we develop a general framework for contextual
epistemic robustness that replaces conventional ensemble based uncertainty estimation with
structured, state conditional uncertainty sets over Q-values. This formulation generalizes
the principles of conditional robustness to dynamic environments to learn efficient policies
from offline data. Empirical results across a range of tasks demonstrate that this method
offers improved robustness and out-of-distribution performance compared to ensemble-
based baselines.

These contributions present a unified perspective on context aware robustness showing
that uncertainty can be modeled as a structured, learnable object adaptable to data and
responsive to the decision making task. By integrating tools from robust optimization, sta-
tistical learning, and reinforcement learning, this work establishes a principled foundation
for building more reliable, interpretable, and trustworthy decision systems in uncertain

environments.

Keywords

Robust Optimization, Contextual Optimization, Uncertainty Quantification, Conformal

Prediction, Task based Learning, Offline Reinforcement Learning.
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General Introduction

In complex real world environments, businesses are routinely required to navigate uncer-
tainty by making decisions that remain robust in the face of adversity while simultaneously
adapting to evolving contextual conditions, thereby ensuring both reliability and respon-
siveness. Whether in financial planning through portfolio optimization (Xidonas, Steuer,
and Hassapis 2020), managing supply chains (Suryawanshi and Dutta 2022; Bertsimas
and Thiele 2004) or controlling autonomous systems (Rosolia, Zhang, and Borrelli 2018),
presence of uncertainty can result in unreliable or even infeasible solutions. Seminal work
by Ben-Tal and Nemirovski (2000) demonstrates that small perturbations in the problem
parameters can make the optimal solution infeasible, thereby undermining their practical
value. The sources of such uncertainty are varied, ranging from noisy environments, and
inconsistencies in data collection processes to the limited availability of high quality data.
These challenges become even more pronounced in the modern data-driven, interconnected
decision making pipelines where the output of one model often serves as the input to
another. These are commonly referred to as Estimate-then-Optimize pipelines, in which
predictions from machine learning models are used as inputs in subsequent optimization
processes (Elmachtoub et al. 2023). In such settings, even small errors from base models
can propagate and compound downstream, raising a fundamental question: how can we
make reliable and trustworthy decisions when the input data to the models can not be fully

trusted?

Stochastic optimization emerged as a natural response to decision making under uncer-

tainty. Foundational works such as Birge and Louveaux (1997) and Shapiro, Dentcheva,



and Ruszczynski (2021) present the key formulations together with their analytical prop-
erties and associated computational techniques. The central paradigm assumes access to
a probability distribution over uncertain parameters and seeks to optimize the expected
value of an objective function (see also Li and Grossmann (2021) for a recent survey).
When the underlying distribution is well specified, stochastic optimization provides a
powerful and elegant framework to identify solutions that perform well on average across
possible realizations. The practical effectiveness of stochastic optimization, however,
critically depends on the validity of its distributional assumptions. In data driven settings,
we are again dependent on the quality and representativeness of the available data used
to estimate the distribution. In practice, the empirical distributions used to model uncer-
tainty can misalign with the true environment, especially in cases with limited, noisy, or
non-stationary data (Bennouna et al. 2024; Besbes, Gur, and Zeevi 2015). This disconnect
can lead to decisions that perform well in expectation under the assumed model but fail
systematically when deployed in the real world, making it less robust (Smith and Winkler
20006). Related concerns have motivated alternative paradigms, including distributionally
favorable optimization (DFO), which emphasizes optimistic model selection in the pres-
ence of endogenous outliers (Jiang and Xie 2023), as well as recent work that highlights
the connections between distributionally robust optimization and classical robust statis-
tics (Blanchet et al. 2024). In such cases, the inherent optimism of the expected value
optimization becomes a liability rather than an asset, highlighting the need for alternative

formulations that are more resilient to data uncertainty.

To address the limitations of distribution based approaches, Robust Optimization
(RO) offers a compelling alternative that avoids explicit probability models. RO considers
a minimax formulation where decisions are optimized for the worst-case realizations
of the uncertain parameters within a predefined uncertainty set (Chen, Sim, and Sun
2007). This framework trades off average case performance for worst case guarantees,
making it suitable for deployment in poorly understood real world environments. In RO,
uncertainty is modeled using a deterministic, typically compact and convex uncertainty

set that encompasses all plausible realizations of uncertain parameters. The objective is

2



to identify solutions that minimize the maximum possible loss over this set. When both
the objective and the uncertainty set are convex, the minimax problems admit tractable
reformulations via duality, enabling scalable solutions with linear, second-order cone, or
semidefinite programming (Beck and Ben-Tal 2009).

Robust Optimization has found widespread application across various domains, where
uncertainty sets are commonly constructed using budgeted uncertainty sets (Bertsimas and
Sim 2003), ellipsoidal approximations (Ben-Tal et al. 2011), or confidence regions derived
from statistical estimations (Bertsimas, Gupta, and Kallus 2018; Goerigk and Kurtz 2020).
However, classical formulations often rely on fixed, global uncertainty sets that are applied
uniformly across all problem instances. This design choice can lead to overly conservative
decisions, as it ignores contextual or structural dependencies among parameters that may
vary with observable features or data specific characteristics.

As decision making becomes increasingly data driven, there is growing interest in
contextual optimization, a framework that adapts not only to uncertainty but also to
the specific context or features observed at decision time (Sadana et al. 2025; Mandi
et al. 2024). In many practical settings, such as personalized pricing, healthcare resource
allocation, or demand forecasting, uncertainty is not uniform across instances but varies
with covariates like location, demographic profiles, or time. Ignoring such structure leads
to overly generic and potentially suboptimal decisions. This resulted in growing interest in
research into context aware optimization frameworks that incorporate observable features
into both predictive and prescriptive models. Similar ideas have emerged in fields like
contextual bandits, meta-learning (Zhou 2015; Lemke, Budka, and Gabrys 2015) where
both decision policies and uncertainty estimates are adapted to instance-specific features.

In Chapter 1, we propose Conditional Robust Optimization (CRQO) as a novel contri-
bution that unifies ideas from contextual optimization and robust decision-making.This
work was published in Advances in Neural Information Processing Systems (NeurIPS
2022) (Chenreddy, Bandi, and Delage 2022). CRO generalizes classical robust optimiza-
tion by allowing uncertainty sets to be conditioned on observed features enabling adaptive

and data-driven robustness. Rather than optimizing against a single worst-case distribu-



tion, CRO seeks decisions that are robust to context-dependent uncertainty (Chenreddy,
Bandi, and Delage 2022). Our approach provides the framework to learn region specific
uncertainty sets from data while maintaining statistical coverage guarantees ensuring that
the true outcome lies within the set with high probability. We show that, under mild
assumptions, the resulting robust optimization problem remains computationally tractable.
This contrasts with classical robust optimization, which applies static, global uncertainty
sets that often lead to over conservatism. While data driven CRO framework provides a
flexible way to incorporate context into uncertainty modeling, it often relies on a two stage
pipeline where uncertainty sets are first estimated from data and then used in a separate
robust optimization step. While modular and interpretable, this ETO approach often suffers
from a misalignment between the loss function used to construct the uncertainty sets and
the final decision making objective. A key result also shows that this coverage based
construction can be viewed as a contextual extension of value-at-risk optimization, which
naturally leads to conservative solutions. This perspective connects to prior observations
in the literature (see Lam 2019; Van Parys, Esfahani, and Kuhn 2021).

To overcome this, in Chapter 2, we introduce an end-to-end CRO framework that jointly
learns both the uncertainty sets and the optimal decisions. This work is published in the
Proceedings of the 40th Conference on Uncertainty in Artificial Intelligence (UAI 2024)
(Chenreddy and Delage 2024). By integrating a differentiable optimization layer into the
learning process, the model receives direct feedback from the downstream task, allowing it
to shape the uncertainty sets in a way that improves decision quality. We also propose a
novel joint loss function aimed at enhancing the conditional coverage of the contextual
uncertainty sets while optimizing the CRO objective. Empirical results demonstrate that
this end-to-end approach surpasses traditional ETO methods in decision quality while
achieving comparable or superior conditional coverage.

While the earlier chapters addressed problems aimed at optimizing immediate rewards,
these settings assume one time interactions where historical data consist of (y, &) pairs.
The objective is to map covariates ¥ to decisions that influence an observed outcome &,

which directly determines the reward. However, many real-world applications involve

4



sequential decision-making, where actions not only yield immediate returns but also
influence future states. In such settings, we may observe tuples of the form (y, &,y r),
where v is the current context, & the realized outcome conditional on the action, Y’ the
subsequent context, and r € R the immediate reward. Yet we lack access to the underlying
system dynamics or a decision oracle. The goal is to learn a policy that maximizes
long-term reward using only logged data. This defines the offline reinforcement learning
setting, which differs from online RL in that the agent cannot interact with the environment
to collect new data. Offline RL introduces specific challenges, including distributional
mismatch between the behavior and target policies, and limited coverage of the state-action
space, both of which can lead to poor generalization and unsafe decisions.

In Chapter 3, we introduce Epistemic Robust Soft Actor-Critic (ERSAC), a novel
framework that generalizes Conditional Robust Optimization (CRO) to the sequential
setting of offline reinforcement learning. In classical CRO, uncertainty sets are conditioned
on observable features to induce decisions that are robust to instance-specific variability
(Chenreddy, Bandi, and Delage 2022; Y. P. Patel, Rayan, and Tewari 2024). ERSAC
extends this principle by constructing state-dependent uncertainty sets over long term
expect return values (a.k.a. Q-values), capturing how epistemic uncertainty varies across
the state space in dynamic environments.

Traditional approaches to epistemic robustness in offline RL, such as SAC-N, use
discrete Q-function ensembles to generate conservative value estimates (An et al. 2021).
While effective, these methods rely on sampling-based approximations and require large
ensembles to encode directional uncertainty, making them computationally expensive and
statistically inefficient.

ERSAC replaces ensembles with a learned, structured uncertainty set % (y) at each
state y, capturing both the shape and orientation of epistemic variability in Q-values. These
sets are parameterized using a scalable variant of Epistemic Neural Networks (Osband
et al. 2023), which generate distributions over Q-values conditioned on latent context.
This construction enables the learning of robust Bellman backups without relying on

bootstrapped ensembles or explicit variance penalization. In doing so, ERSAC preserves
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the conditional robustness of CRO while introducing a richer and more computationally
efficient mechanism for sequential decision-making under uncertainty.

Together, the three chapters of this thesis present a unified perspective on decision
making under uncertainty through the lens of data driven and context aware robustness.
Chapter 1 introduces a modular framework for learning conditional uncertainty sets from
data, enabling robust decisions that adapt to observable covariates. Chapter 2 builds on
this foundation by coupling uncertainty estimation with optimization in an end-to-end
manner, eliminating the disconnect between prediction and prescription in robust settings.
Chapter 3 extends these ideas to the sequential setting, proposing a principled framework
for epistemic robustness in offline reinforcement learning, where uncertainty sets are used
to stabilize value estimates and improve generalization from static datasets.

Across these settings, we show that treating uncertainty as a structured, learnable object
leads to more effective and robust decisions. By bridging robust optimization, statistical
learning, and reinforcement learning, this work contributes to a growing body of work
that seek to integrate prediction models with decision making frameworks for reliable,

interpretable trustworthy decision making in uncertain environments.



Chapter 1

Data-Driven Conditional Robust

Optimization

Abstract

In this chapter, we study a novel approach for data-driven decision-making under uncer-
tainty in the presence of contextual information. Specifically, we address this problem
using a new Conditional Robust Optimization (CRO) paradigm that seeks the solution
of a robust optimization problem where the uncertainty set accounts for the most recent
side information provided by a set of covariates. We propose an integrated framework
that designs the conditional uncertainty set by jointly learning a partition in the covariate
data space and simultaneously constructing region specific deep uncertainty sets for the
random vector that perturbs the CRO problem. We also provide theoretical guarantees
for the coverage provided by conditional uncertainty sets and for the value-at-risk per-
formances obtained using the proposed CRO model. Finally, we use simulated and real
world data to illustrate the implementation of our approach and compare it against two
non-contextual robust optimization benchmark approaches to demonstrate the value of

exploiting contextual information in robust optimization.



1.1 Introduction

In most real world decision problems, the decision maker (DM) faces uncertainty either
in the objective function that he aims to optimize, or some of the constraints that he
needs to satisfy. Stochastic Programming and Robust Optimization (RO) are the most
popular methods for addressing this issue. With the growing availability of data, there has
recently been a surge of interest in modeling optimization under uncertainty as contextual
optimization problems that seek to leverage rich feature observations to make better
decisions (Ban and Rudin 2019; Bertsimas and Kallus 2020). In a simple cost minimization
problem, where 2~ C R” and c¢(x, &) respectively capture the feasible set of actions and
a cost that depends on both the action x and a random perturbation vector & € R, the
“contextual” DM has access to a vector of covariates ¥ € R assumed to be correlated to
&. This DM therefore traditionally wishes to identify an optimal policy, i.e. a functional
x:R™ — 2 that suggests an action in 2~ adapted to the observed realization of y, with

respect to his expected cost over the joint distribution of (y,&):

rﬁiglE[c(x(w),é)]- (1.1)

From a theoretical point of view, one can exploit the interchangeability property (see
Theorem 14.60 in Rockafellar and Wets (2009)) to identify an optimal policy for Problem
(1.1) using the following conditional stochastic optimization (CSO) problem:

(CSO) x"(y) € argminE[c(x, &)|y]. (1.2)
xe&

While the literature that treats contextual optimization through the CSO problem is rich,
much less attention has been given to contextual optimization in the risk averse setting.
Namely, one can think about replacing the risk neutral expected value operator in Problem
(1.2) with a risk measure such as value-at-risk or conditional value-at-risk in order to
prevent the DM from being exposed to the possibility of large costs. Moreover, while
robust optimization is being used pervasively in disciplines that employ decision models,
including chemical, civil, electrical engineering, medicine, and physics (see respectively

Bernardo and Saraiva (1998), Bendsge, Ben-Tal, and Zowe (1994), Mani, Singh, and
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Orshansky (2006), Chu et al. (2005), and Bertsimas, Nohadani, and Teo (2007)) to name a
few, the question of how to systematically integrate contextual information in this important
class of decision models remains to this day unexplored.

In this work, we therefore tackle for the first time the contextual optimization problem
from the point of view of robust optimization. Namely, we will consider a contextual DM
that wishes to exploit the side information in the design and solution of a robust optimiza-
tion problem. This naturally gives rise to the following conditional robust optimization

(CRO) problem

x* :=argmin max c(x,§),
¥) x%% Se% (v) (x2)

where %/ (y) is an uncertainty set designed to contain with high probability the realization
of £ conditionally on observing y. Our proposed approach will be data-driven in the
sense that the design of the CRO problem will make use of historical observations of joint
realizations of y and &.

Our contribution can be summarized as follows.

* We propose for the first time a framework for learning from data an uncertainty set
for RO that adapts to side information. The “training” of this conditional uncertainty
set is done by jointly learning a partition in the covariate data space using deep
clustering methods, and simultaneously constructing region specific deep uncertainty
sets, using techniques from one-class classification, for the random vector that

perturbs the CRO problem.

¢ We establish theoretical connections between CRO and Contextual Value-at-Risk

Optimization (CVO):

min VaR|_¢(c(x(),§)), (1.3)

x()

where VaR|_¢(Z) := inf{¢t|P(Z <t) > 1 — €} refers to the value-at-risk of 1 — €

confidence level of Z.



* We demonstrate empirically that contextual robust optimization can improve the
performance of robust optimization models in a data-driven portfolio optimization
problem that employs real world data from the U.S. stock market. In particular, we
find that in conditions where side information carries a strong signal about future

returns, the risk of the portfolio can be reduced by up to 15%.

The chapter is organized as follows. Section 1.2 surveys related work. Section 1.3
summarizes the approach discussed in Goerigk and Kurtz (2020). Section 1.4 presents a
Deep Cluster then Classify (DCC) scheme and our Integrated Deep Cluster then Classify
(IDCC) scheme to generate conditional uncertainty sets. It also establishes the connections
to CVO. Our case study based on real world portfolio optimization is presented in Section

1.5 followed by conclusions in Section 1.6.

1.2 Related Work

Conditional Stochastic Optimization Hannah, Powell, and Blei (2010) was possibly the
earliest work on CSO, where a kernel density estimation approach is exploited to formulate
and solve a CSO problem. Ban and Rudin (2019) apply CSO to a newsvendor optimization
problem where the performance of linear policies and kernel density estimation is explored
and where generalization error can be controlled using regularization. Kallus and Mao
(2020) studied methods to train forest decision policies for CSO in a way that directly
targets the optimization costs. Ban, Gallien, and Mersereau (2019) use residual tree
methods to solve general multi-stage stochastic programs where information about the
underlying uncertainty is available through covariate information. Kannan, Bayraksan, and
J. R. Luedtke (2020) propose data-driven SAA frameworks for approximating the solution
to two-stage stochastic programs with access to a finite number of samples of random
variables and concurrently observed covariates. Recently, Lin et al. (2022) has applied a
conditional VaR constrained CSO formulation to the newsvendor problem. While most

of the related work focuses on an “‘estimate-then-optimize” approach (see also Srivastava
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et al. (2021) and Hu, Kallus, and Mao (2022)), there have also been recent efforts in
designing CSO models using an end-to-end paradigm (see Elmachtoub and Grigas (2022)
and Donti, Amos, and J. Kolter (2017)).

Distributionally robust CSO One common challenge with the applications of CSO
is due to the fact that often there are only a few samples (if any at all) drawn from the
conditional distribution of £ given y for each realization of y (Hu et al. 2020). This in turn
causes a poor approximation of the true conditional distribution resulting in poor out-of-
sample performance. Most proposed solutions to this issue have relied on distributionally
robust optimization (DRO). For example, Bertsimas and Van Parys (2021), Bertsimas,
McCord, and Sturt (2022) and Nguyen et al. (2021), and Srivastava et al. (2021) all propose
DRO approaches that employ distribution sets that are centered at either the estimated
conditional distribution or joint empirical distribution of (y, ). Kannan, Bayraksan, and
J. Luedtke (2021) applies distributionally robust optimization to the residual-based CSO
model proposed in Kannan, Bayraksan, and J. R. Luedtke (2020). We finally note that none
of these works have considered the problem of conditional DRO where the distributional
ambiguity set itself, namely its support or size, depending on contextual information.

Data-driven Robust Optimization and One-class Classification There has been a
growing set of papers (see Ohmori (2021), C. G. McCord (2019), and Wang and Jacquillat
(2020)) proposing various frameworks that use both supervised and unsupervised one-class
classification techniques in designing the uncertainty sets which are further integrated into
the RO problems. Some approaches make use of variance and covariance of historical data
(Natarajan, Pachamanova, and Sim 2008) while others (Goerigk and Kurtz 2020; C. Wang
et al. 2021) have exploited the representative power of deep neural networks to construct
compact uncertainty sets. Up to this day, none of the data-driven robust optimization
approaches have considered accounting for contextual information.

Deep Clustering Methods Traditional clustering methods like Gaussian Mixture
Models (GMM) and k-means clustering rely on the original data representations and suffer
from the curse of dimensionality. Recent developments in DNNs led to the learning of high

quality representations, especially auto-encoder (AE) and decoder systems are particularly
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appealing as they are able to learn the representations in a fully unsupervised fashion.
Several works like Chang et al. (2017), X. Guo et al. (2017), and Ji et al. (2017) combine
variational AEs and GMMs to perform clustering and non-linearly map the input data into
a latent space. Few works like Fard, Thonet, and Gaussier (2020) try to jointly learn the
representations and jointly cluster with k-means and learning representations. We modify
these algorithms to introduce a probability simplex that interacts with the centroids and

also the center of the uncertainty sets.

1.3 The Deep Data-Driven Robust Optimization
(DDDRO) Approach

Focusing on a classical robust optimization model, i.e. min,c 2- maxgcq c(x,§), the
authors of Goerigk and Kurtz (2020) propose to employ deep learning to characterize the
uncertainty set %/ in a data-driven environment. In particular, they consider describing the

uncertainty set 7/ in the form:

% (W.R):={E€R": | fw() - fol <R}, (1.4)

where fiy : R™ — R? is a deep neural network, parametrized using W, that projects the
perturbation vector & to a new vector space where the uncertainty set can be more simply
defined as a sphere of radius R centered at some f;.

Given a dataset Z¢ = {&1, &, ... En}, they propose discovering the underlying structure
of % by training the NN using a method found in the one-class classification literature,

namely minimizing the empirical centered total variation of the projected data points:
min Y"1 &) P 15
m — i) — y .
VN & 14 0

where fo := (1/N) Liciv) fn, (&) is the center of the projected points under some initial
random choice of fy,. Once the network is trained, they calibrate the radius R of % in

order to reach a targeted coverage 1 — € of the data set.
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In terms of NN architecture, they favor a special class of fully connected neural

networks of depth L:
fw(c) =otWhtet= YWt sl (Wl(c))...)) (1.6)

where each W captures a linear projection while each o captures a term-wise piecewise

linear activation function (e.g. ReLLU, Hardtanh, or hard sigmoid):

O'f(wj):aiwj—l—bi if gigwjgﬁi, k=1,....K

with {ai, b, gi,ﬁi}kl{zl as the parameters that identifies each of the K affine pieces.

The motivation for such an architecture comes from the proposed solution scheme
for the RO problem, which relies on a constraint generation approach (see Algorithms 3
and 4 in Appendix). This scheme relies on progressively adding scenarios to a reduced
set %' C % until the worst-case cost of the solution under %’ is the same as under % .
Numerically, a critical step consists in identifying the worst-case realization in %, which
is shown to reduce to a mixed-integer linear program when c¢(x, &) is linear in & under the

selected NN architecture due to the following representation of % (W, R):

Ju € {O, 1}d><K><L, C c I&dXL7 (P c RdXL )
k,t .
leuj =1,Vj¢
0 =W
%W.R) =& Cf = Yi1 ”§7£a£¢f+21§:1 ”];jbiv Vit (1.7)
or =Wt e >2
l {— .
Zszl M];’ gi S (Pf S Zszl l/l]; a£7 vjag

ICF = fol <R

where we assume for simplicity that each layer of the deep neural network has d neurons
and ¢’ is the output at [-th layer of the neural network. We refer interested readers to

Goerigk and Kurtz (2020) for more details.

13



1.4 Deep Data-driven Conditional Robust Optimization

Let (y,&) be a pair of random vectors defining respectively the side-information and
random perturbation vectors of a contextual optimization problem. We can call our
dataset Pye := {(y1,81),...,(wn,8En)}. Our objective is to train a data-driven conditional
uncertainty set % (y) that will lead to robust solutions that are adapted to the type of
perturbance that is experienced when Y is observed. In this section, we propose two
algorithms, namely the Deep cluster then classify (DCC) and the Integrated Deep cluster
then classify (IDCC), to do so, and propose a calibration procedure that offers some

guarantees with respect to a contextual value-at-risk problem.

1.4.1 The Deep “Cluster then Classify”’ (DCC) Approach

A direct extension of G&K’s DDDRO approach in Section 1.3 consists in reducing the
side-information y to a set of K different clusters, which provides states of the environment
in which one wishes to design customized data-driven uncertainty sets. Mathematically,
U (W) = Uy(y), Where a : R™ — [K], is a trained K-class cluster assignment function
for v, and each %;, for k= 1,..., K, is an uncertainty sets for & that is trained and sized
using the procedure described in Section 1.3 with the dataset Qg = U(y,8)e Py al k{é}
This process implicitly involves multiple sequential steps of training deep neural net-
works. Following Moradi Fard, Thonet, and Gaussier (2020), when performing deep
K-mean clustering to obtain a(y), training can take the form of Algorithm 5, where
the deep K-means algorithm trains simultaneously a representation gy, : R" — R4, us-
ing an encoder and gy, : R — R™, using a decoder network, and a K-mean classifier
a®(¢) = argmingc k) [|¢ — 0%||> by minimizing, using stochastic gradient descent in a
coordinate descent scheme, a trade-off (using o) between reconstruction error and the

within cluster centered total variation in the encoded space:
1 Al 2 1 ¥ 112
21(V,60):= (1= )5 Yl ove () — il gy Yl ()~ 0V, (18
i=1 i=1
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where a(y) := a®(gy, (y)). To solve this problem, we iterate between improving V :=
(Ve,Vp) while keeping 6 fixed, and improving 6 while preserving V fixed.

Once the K-mean and one-class classifiers are trained, we correct for a deficiency of
DDDRO approach, which assumes wrongfully that the projected f«(&) are normalized
for each _@é‘ . Namely, we replace % (W,R) with a set that employs an ellipsoid in the

projected space according to the statistics of .@g:
-1/2
wWRSN) = (E R P (@) - <R, a9)
where .7 is short for (u’;,Z’]i) with

pi=1Zg 1 Y fyp(8) and Zh= L7 Y (fin(8) — 1) (fyn(8) — )"
£egt 2%
The calibration of each R* can finally be done using the same procedure as in Goerigk and

Kurtz (2020) but using the reduced dataset Qg.

1.4.2 The Integrated Deep Cluster-Classify (IDCC) Approach

While the simplicity of the approach presented in Section 1.4.1 makes it appealing, we
identify two important weaknesses. First, by separating the training into multiple steps,
it omits tackling the conditional uncertainty set learning problem as a whole. Namely,
that low total variation in the ¥ space (or a projection of it) does not necessarily imply
that low total variation can easily be achieved in a projection of the & space. Second, it is
unclear how to adapt the approach to a context where a clear separation of the clusters is
impossible and where the notion of partial membership to a cluster is more appropriate.
To address the first problem, we propose an integrated framework for performing deep
clustering and deep uncertainty set design jointly. Namely, we propose to optimize all of
V, 0, and {Wk}kK:] jointly using a loss function that trades-off between the objectives used
for clustering and each of the K versions of one-class classifiers. We also tackle the issue
of hard assignments by training a parameterized random assignment policy 7 : R — Ak,

where Ak is the probability simplex in RX, and 6 the parameters that define the policy
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space. In the context of employing a soft version of deep K-means (Fard, Thonet, and
Gaussier 2020), this random assignment policy takes the form of m(y) := 7% (gy (y)),
where

20(y) o — PLBllav(w)— 04)P) 110

- Yhoexp{—Bllev(y) —6¥}

With these adjustments, our proposed loss function takes the form of:

Za(v,0, W) i=ars (1= o) B [l (gv; () — will)

+ B [TotalVar (g (), 67 a(y))))
1 K

+(1- aS)Ekzl %iknTotal\/ar?fﬁ(fWk(g), 8% la(y) =k), (1.11)
where a@(y) ~ @9 (gy, (y)) is the randomized assignment based on y, Total VarZ, (¢, 6|a(y))
= Zj?:l EZ[(¢; — 6;)?|a(y)] is the conditional centered total variation of given a(y). In
fact, all statistics are measured using the empirical distribution expressed in Z,,¢ and the
conditional distribution produced by the randomized assignment policy 7% (gy (w)), i.e.
PL((y,8,a) € &) = (1/N) LN, T H{(w, &i,k) € E372 (gv (). The explicit form of
equation (1.11) can be found in Appendix 1.7.2.

Overall, Zé’ trades off (using org) between the reconstruction error of the encoder-
decoder networks on &, the expected recognizability of the K clusters, i.e. the fact that the
observed features gy, () form distinct clusters of points, and the average compactness
of the produced conditional uncertainty sets. In particular, as &g — 1, we can expect the
minimizer of .%; to converge to the minimizer of the cluster and classify approach. At
the other end of the spectrum, when og — 0, the model will produce more self contained
conditional uncertainty sets but at the price of less distinguishable clusters (in terms of y)
that might poorly exploit the side-information. Algorithm 1 presents our proposed training
scheme for the IDCC approach.

Given that we employ a random assignment policy, we propose replacing the determin-

istic CRO problem with its randomized version:

X (y) € argmin max c¢(x,&),
xe2 SeU(y)
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where % (y) := % (W) RAW) #dWN1 is a random uncertainty set, and where we
express the fact that conditionally on v, ¥(y) is a random policy that depends on the
realization of @. Given the randomness of % (), one needs to be more careful in defining
a calibration scheme for each R¥. Our proposed scheme is motivated by the following

lemma, which proof can be found in Appendix 1.7.1.

Lemma 1.4.1. Let the random uncertainty set % (W) satisfy:
P7 (& € % (y)|a(y) =k) > 1 —&,Vk, (1.12)
then it satisfies:

PL(E e (y)>1-e. (1.13)

In particular, this lemma suggests calibrating each R¥ using the bisection to solve:

inf {R

given that the resulting R¥ are the smallest that satisfy (1.12).

(1.14)

£, U& e % (WhR SN (gv(w)) 1_8}
LI 7 (gve (w1)) B ’

1 k 70,V 6.V .
Here, .7 refers to (fWkld(wi)zk’EWk\d(w)=k) with

sov A (w)

=0,V ) 70.V
Wela(y)=k = “ m . (fWk(gi) _fWk\d(y/,-):k)(fWk(&) _fWk\d(q/,-):k)T
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Algorithm 1 : Integrated deep cluster-classify with deep K-means

Input : Dataset Z¢ ,,; number of clusters K; hyperparameters 0k, os, B
Randomly initialize 6y, Vp, and Wy

Let my := % (gy,,(y)) and W} := W, for all k’s

Sett:=0

repeat

Sett:=t+1

Update le = ]E%[gVEF1 (v) | a(y) = k] using m;_;

Update (V;, {W}}X_|) using gradient descent on Eq. (1.11) with 6,
Get 1, := % (gv,, (V)

until > T or convergence

Let 7t(-) := m(-) and W* := W¥ for all k

for k=1to K do
Calibrate R* using Eq. (1.14)
Let %% := % (WK RK, .7F)

return 7(-) and {Z*}X_|

1.4.3 Connections to Contextual Value-at-Risk Optimization

In the previous subsections, we proposed two different schemes to produce a possibly
randomized uncertainty set % () that can be employed in a randomized CRO problem?.
We also proposed a scheme for radii calibration so that they would satisfy the coverage
property in equation (1.13). Hence, one can derive the following connection between
conditional robust optimization and the CVO Problem (1.1). The proof is pushed to
Appendix 1.7.1.

Lemma 1.4.2. When % satisfies (1.13), the random policy X(-) to the randomized CRO

ZNote that in the case of Section 1.4.1, the conditional uncertainty set is deterministic thus reducing the
randomized version of CRO to a pure CRO problem
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problem together with

V' i=esssupy, min max c(x,&)
XEL LU (y)

provide a conservative approximate solution to the CVO problem under the empirical

measure IP’%. Namely,
D, ~ *
VR (c(%(),&)) <.

In particular, in the case of the proposed DCC and IDCC approaches we have that

v = max min max c(x,&).
ke[K|x€ X Eca (Wk Rk .7k)
As the robust optimization paradigm traditionally aims at offering statistical guarantees

on the out-of-sample performance of the prescribed solutions, we describe below how a

bootstrap method can be used to estimate the radii R¥’s.

Remark 1.4.1. Using bootstrapping methods, we can get a conservative approximation of

each Ry, as:

Ry = inf{R

N =6 :
oo (el e ez ) 2129}

where P measures the probabibility when resampling a new dataset of size N with
replacement from 9\,e. When N is large enough and assuming that each data point is
drawn i.i.d. according to some unknown probability measure P, we asymptotically get the

guarantee that P(E € % (y)) > 1 — & with probability higher than approximately 1 — K§.

1.5 Experiments

In this section, we illustrate the coverage aspect of the IDCC approach using simulated
data. We will further demonstrate the advantage of the CRO problem using a standard risk
minimizing portfolio optimization problem. We compare the performance of IDCC with
that of DCC, DDDRO (with ellipsoidal correction in (1.9)), and the classical ellipsoidal
uncertainty approach (i.e. DCC with K = 1 and fy1(§) := &). The IDCC and DCC

methods incorporate the covariate information whereas DDDRO and ellipsoid approaches
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ignore this information. The neural network architecture and other modeling information
are available in Appendix 1.7.2. The code can be found on github®. Our code uses the

Pytorch implementation from Goerigk and Kurtz (2020), which is available online*.

1.5.1 Conditional Uncertainty Set Illustration Using Simulated Data

For ease of illustration, we consider a simulation environment where [y’ £7] ¢ R*isa
random vector whose distribution is an equal-weighted mixture of two 4-d multivariate
normal distributions. We consider N = 500 and train IDCC (with K = 2), DDDRO, and
the ellipsoid and calibrate the uncertainty sets for a probability coverage of 90%, 99%
(i.e. € € {1%, 10%}). As a result, DDDRO and IDCC, which use deep neural networks,
identify non-convex uncertainty sets, whose convex hulls are presented in Figure 1.1
together with the calibrated ellipsoid.The figure also presents the conditional distribution
of § according to P7,(-|a(y) = k), using IDCC’s randomized assignment, and the training
dataset. One can remark that the conditional sets produced by IDCC exploit the side
information by concentrating the uncertainty set on the region that has the most mass
according to IP7, (-|@(y) = k) thus leading to a less conservative RO problem then DDDRO
and the ellipsoid, which are oblivious to y. In fact, it appears to have successfully learned
to at least partially recognize the mixture membership using ¥ and exploit this information

to adapt the uncertainty set.

1.5.2 Robust Portfolio Optimization

We further investigate the empirical out-of-sample performance of the proposed uncertainty
sets on a classical robust portfolio optimization problem. Namely, we consider a situation
where an investor is trying to minimize the worst-case return based on an uncertainty
set that provides 1 — € probabilistic coverage of the uncertain future return vector. In

particular, given that x captures a vector of investment in n = m different assets whose

3https://anonymous.4open.science/r/Data-Driven-Conditional-Robust-Optimization-E160/
“https://github.com/goerigk/RO-DNN
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1 &1
(@) a(y)=1. (b) a(y)=1.
90% coverage 99% coverage

&1 &1
(¢) a(y)=2. (d) a(y) =2.
90% coverage 99% coverage

B IDCC H DDDRO B Ellipsoid

Figure 1.1: Convex hull of trained uncertainty sets for two levels of coverage and with a
conditional uncertainty set for IDCC that exploits two clusters. The heatmap represents the
conditional distribution of § according to P7,(-|@(y) = k). The cloud of points represents
the training dataset.
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return are captured using &, we let ¢(x,&) := —&Tx to capture the return on investment,
and let 2 :={x e R*|Y" ,x; =1, x > 0} to capture the need to invest one unit of wealth
among the available assets. Following Lemma 1.4.2, this model can in turn be interpreted
as conservatively approximating a min,c - VaR|_¢(£Tx), where the objective is a risk

averse value-at-risk metric.

Dataset Our experiments make use of historical data from the U.S. stock market. We
collect the adjusted daily closing prices for 70 stocks (as used in Xu and Cohen (2018))
coming from 8 different sectors from January 1, 2012, to December 31, 2019, using the
Yahoo! Finance’s API. Each year has 252 data points and we compute the percentage
gain/loss w.r.t the previous day to create our dataset for £. As for side information, we use
the trading volume of individual stocks and other market indices® over the same period
as covariates. Our algorithm gives the flexibility to use any number of such metrics as
contextual information. Given the time series nature of the data, at a given instance, we use
3 years of data to train and the following year as validation to pick the hyperparameters of
our model such as learning rate, weight decay, and the optimal number of clusters. We then
retrain the model using the 4 years of data to build the final model. Upon calibrating the
uncertainty set, we use it to solve the robust portfolio optimization problem. We then apply
this policy to the next 1 year’s of data and compute the performance metric, namely Value
at risk (VaR) for different confidence levels to compare the performances. VaR quantifies
the level of risk of a portfolio over a specified time frame. Here, it gives an estimate of the
maximum % loss the decision maker can incur over a period of 1 year when he uses the
policy from the RO model. Intuitively, lower the VaR, less riskier is the generated policy.
Many financial institutions use VaR to determine the amount of collateral needed when
trading financial products so lowering VaR for high confidence levels is crucial.

Experiment Design To test for the robustness of the IDCC algorithm, we experiment
on various randomly sampled stock combinations across different time periods. We

randomly sampled a subset of 15 stocks in a time window and repeated the experiment

>Volatility Index (VIX), 10-year Treasury Yield Index (TNX), Oil Index (CL=F), S&P 500 (GSPC),
Global Income & Currency Fund (XGCFX), Dow Jones Index (DJI)
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Figure 1.2: Avg. VaR across portfolio simulations. Error bars report 95% CI.

for 10 runs on 3 moving time frames. We used learning rate = 0.01, ax = 0.5, 05 = 0.5,
B = 0.1 for all the experiments. We use a cold start K-means approach to determine K for
each run. We do this across all these experiments as it will be computationally expensive
to tune the parameters through grid search for each run and also our intention is to show
the learning capability of our algorithm even with minimal tuning. The parameter tuning

and implementation details can be found in Appendix 1.7.2.

Results Figure 1.2 shows the avg. VaR across the runs at different confidence levels. It
is evident that IDCC generally performs better than the baseline models. This difference
is especially noticeable at a higher confidence level and vanishes as we move to lower
confidence levels. Table 1.1 provides more details by comparing the overall and conditional

cluster level VaR with the baseline models. Specifically, in each run, we identify each
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cluster as either the “majority” or “minority” cluster depending on its frequency and report
averages of VaR (among the 10 runs) for each of these labels. The average frequencies for
each label are also reported in the table. In particular, one can observe that the improvement
on average overall VaR can reach up to ~15% (see in 2019 at a 0.99 confidence level).
This advantage is even more clearly visible when we look at the individual cluster-level
conditional VaR. For instance, in the year 2018 for the 0.99 confidence level, the majority
cluster (~68% data) provides an improvement of 19% and an overall improvement of
9% compared to the second best baseline model. A similar pattern is observed for the
year 2019 as well. In the year 2017, the overall performance of IDCC is close and for
some confidence levels slightly above the baseline models. However, we see that the
majority cluster (~80% data) is performing better than the baseline models while the
minority cluster has a slightly higher risk. We attribute this loss in performance to the fact
that the minority clusters are much less frequent (~20% data) and therefore have fewer
data available to properly learn its conditional uncertainty set. This large difference in
frequencies might also indicate that the side information does not have a strong signal for

the behavior of the returns during this period of time.

\ 2017 \ 2018 \ 2019 |
Conf.1—g |08 [09 |095[099]08 [09 |095][099]0.8 |09 |0.95]0.99 |
IDCC 030 055 0.75 137|064 116 1.67 2.86 (044 077 1.11 2.02 |

Overall | DDDRO 031 052 079 146]0.63 124 1.84 3.17[045 0.84 127 235 |
Ellipsoid | 0.30 049 075 145|072 145 204 3.19]047 081 130 252 |

Cond. on | Cluster Freq. ‘ 80% ‘ 68% ‘ 59% ‘

Majority | IDCC 031 052 071 130|057 1.08 1.50 2.62 (044 075 1.17 1.88 |

Cluster | DDDRO 031 052 074 135]059 115 1.63 3.23 (045 0.85 131 2.06 |
Ellipsoid 032 052 074 141|069 129 192 308|047 085 125 231

Cond. on | Cluster Freq. 20% 32% 41%

Minority | IDCC 030 0.61 077 143]096 157 2.05 3.13[048 0.82 115 2.22 |

Cluster | DDDRO 030 0.56 0.84 139 |1.00 166 2.04 330|049 084 140 239 |
Ellipsoid | 0.28 0.47 0.69 1.13|1.17 180 243 343|049 082 138 257 |

Table 1.1: Comparison of average value-at-risk (over 10 runs) for different levels of
probability coverage. Both the overall VaR and conditional VaR given the membership to
the majority/minority clusters are presented.
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1.6 Conclusion and Future Work

In this work, we introduced a new approach, Conditional Robust Optimization, for solving
contextual optimization problems in a risk averse setting. We proposed a novel integrated
approach to design uncertainty sets that adapt to revealed covariate information. We
identified connections to contextual value-at-risk optimization and showed empirically
that our method reduces the out-of-sample VaR considerably compared to non-contextual
RO schemes when the level of protection needed is high. As future work, we find that it
should be interesting to integrate data-driven conditional uncertainty sets in the context of
multi-stage robust optimization models. Given that clustering techniques are often prone
to capturing correlations that do not reflect true causal relations, a promising direction for
future work is to integrate causal inference methods into our approach. One might also
be concerned regarding fairness considerations in contexts where side information might
allow to treat of a certain class of individuals differently from others. This last issue might

be addressed by adding fairness consideration in our integrated loss function.
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1.7 Appendix

1.7.1 Proofs

As mentioned in Sections 3 and 4, our dataset & contains the random perturbation vectors
& and side information y. % (y) represents the conditional uncertainty set that satisfies

the following properties.

Lemma 1.4.1. Let the random uncertainty set % (W) satisfy:
P (& € % (y)|a(y) =k) > 1—¢,Vk (1.15)
then it satisfies:
PL(E e (y) > 1. (1.16)
Proof. The claim follows from:

PL(E e % (y

v

)= LG € Z(w)laly) = kP a(y) =4
Y (- (y)=k)=1—¢.
k

O

Lemma 1.4.2. When % satisfies (1.13), the random policy X(-) to the randomized CRO

problem together with

*
V' i=esssupy, min max c(x,&)
XEX Eed (y)

provide a conservative approximate solution to the CVO problem under the empirical

measure IP’%. Namely,
9, ~ %
VaR| " (c(x(y),§)) < V'

In particular, in the case of the DCC and IDCC approaches we have that

v" = max min max c(x,&).
ke[K|x€Z" Eca (WK Rk .7F)
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Proof. First, by definition of ¥(-) and v*, we have that when & € % (y):

c(®(y),8) < max c(¥(y),§)=min max c(x,§) <
e (y) €2 £ (y)

Hence, we must have that:

Py (c((),§) < V') = Py (c(E(w),§) <V'|§ € Z (W)PL(E € % (v))
>1-(1—¢).

We thus obtain our result based on the following argument:

-@7 3 . 1 3 *
VaR {5 (c((w),§)) = inf{t[PF(c(R(y),&) <1) > 1—¢} <v".
In the case of the DCC and IDCC approaches we have that

v =maxmin max c¢(x,&),
ke[K]xe 2" Eea (Wk,RK)

since % () is supported on {% (W*, R, DI, O

1.7.2 Deep Learning Implementation of IDCC Approach
IDCC Loss Function:

Mathematically, the conditional total variation loss function (1.11) can be explicitly written

as:

3 k _ X g (v (wi)) 2
L3O W) 1= (1 - as) ;;1 lfnk(gVE(w)ufwk@) Fiatuy—i]

N K
ros((1- o) p MEACALD) il 4 o ;g (v (v)) gz (i) — 64]12)
(1.17)

where

0.V oy T (gve(w) ,
fWk|d(Wi):k ) Zl Zz . ﬁ.k (gVE(Wl))fWk(él) .
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IDCC Network Architecture:

The joint loss minimization task is performed using the following network architecture
which has 2 parallel networks training simultaneously. The first network(gy := (gv;,&v,))
takes the side information(y) as the input and generates a randomized assignment a(y) ~
%9 (gv, (W)). The second network({ fyy« }X_,) takes the random perturbation vector(&) and
a(y) as the input to generate W(¥) . 74(V)6 which are subsequently used to design the
uncertainty set % (y) := % (W) RAV) ga(v)),

gv is an auto-encoder (AE) network which generates the assignment vector a(y).
They are trained to learn lower dimension data representations at the bottleneck of the
network. They have the capability to learn representations in a fully unsupervised way
which makes them suitable for the task at hand. The encoder(gy, (.)) consists of the
input(dim=m), hidden and the output layers(dim=d). The decoder(gy,(.)) uses this low
dimension representation to reconstruct the original input data. The decoder is a mirrored
version of the encoder. The input layer is fully connected to the output layers with an
intermediate ReLU activation layer in both the encoder and the decoder. We initialize
the network weights using kaiming normal initialization. The output from the encoder is
passed through a softmax layer to generate a soft version of deep K-means Fard, Thonet,
and Gaussier (2020) which gives the assignment simplex a(y) ~ % (gy, (¥)) where

exp{—Blgve (v) — 6“|*}
Yio—r exp{—Bllgv. (w) — 6%}

The parallel network({ fWk},[le) designs the K customized data-driven uncertainty sets

2 (gv, () = (1.18)

using a slightly modified deep SVDD method from Goerigk and Kurtz (2020). The input
to these networks is the perturbations & and the assignment policy(7Z® (gv, (w))). Each fy
has an input layer(dim=15), hidden layer and an output layer(dim=5). All layers are fully

connected with a ReLLU activation function. All the networks are initialized with a uniform

®Here, .7* refers to ( fv?/’k‘?a (yi)=k ZSVX“ _,) with
s - 7 (gve (W)
SRR . L) Ry T N BN TN B AN

ST (v (wh)
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distribution in [0, 1]. Our approach constructs a weighted center, fv?/}c‘(a _, Which uses

(w)
7% (gv, (w)) to compute the loss in equation (1.17).

Suggested Extensive Parameter Tuning Procedure

In this section, we discuss the parameter tuning strategy that can be used to train the
network proposed in Section 1.7.2 using the portfolio optimization example discussed
in Section 1.5.2. Here, given the time series nature of the data, we follow the rolling
window approach for network training. Our architecture uses a set of hyperparameters,
hp = (Ir,ag, o5, B,K) where Ir represents the learning rate, ax regulates the trade-off
between seeking good representations for y that are faithful to the original data and
representations that are useful for clustering purposes. o plays a similar trade-off between
the recognizability and compactness of uncertainty sets. Finally, 8 is a softmax temperature
parameter and K represents the number of clusters. We split the data into training and
validation periods and search for the optimal combination through the grid search method.
For each combination, we train the network and generate the optimal policy using training
data which is applied to the unseen validation data. The optimal combination is the one that
gives the lowest VaR|_¢ on the validation dataset as this is a worst case return minimization
problem. This is shown in Algorithm 2. Once the hyperparameters are selected, we re-train
the network using the complete data. It is important to note that the results reported in

Section 1.5 did not use parameter tuning to reduce computations.

Algorithm 2 : Hyperparameter tuning
Input : hp = (lra Ok, aSVaB’K>

for year=ytoy+M do
Obtain {Z*}K_| from Algorithm 1

Get optimal portfolio using:

min VaR|_¢(&Tx) (see Section 1.5.2)
xeZ

Choose hp which minimizes out-of-sample VaR|_, over M periods
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Simulated Data Generation Process

In this section, we discuss the data generation process for the simulated data used in Section
1.5.1. For easy visualization, we consider a simulation environment where [y’ E7]7 € R4
is a random vector whose distribution is an equal-weighted mixture of two 4-d multivariate

normal distributions.” Namely, [y? ET]T ~ 0.5N(u1,21) +0.5N(p,Xo) where:

1 1.0 00 03 -0.1
2 00 1.0 0.1 -02
0 03 01 1.0 2.0
4 -0.1 -0.2 20 1.0
5 1.0 00 03 —-0.1
5 00 1.0 0.1 -0.2
Mo = s Yo =
4 03 0.1 1.0 0.0
0 -0.1 -0.2 0.0 1.0

The distribution marginalized over the random vectors ¥ € R? and & € R? can respectively

be visualized in Figure 1.3(a) and (b).

|

s ‘
. |
)

o I
(a) (b)

Figure 1.3: Density plot of the marginalized distributions over ¥ (in (a)) and & (in (b))
from a mixture of two Gaussian distributions on the joint space [y! E7]T.

1)
&>

"The data is generated using Page Jr (1984).
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Sensitivity Analysis for Parameters

Here, we show the sensitivity analysis for the parameters ag and K. For each of these
analyses, we keep all the other parameters constant and train the model by varying the
considered parameters. For o, we consider the range of values between 0 and 1. For
the sensitivity analysis of K, we considered 1 to 9 clusters. We conducted 10 such runs
in the year 2019 and observe the average validation VaR. The results can be seen in
the plots below. The analysis in Figure 1.4b shows that 2 clusters result in similar or
improved performance compared to using more clusters. Regarding the influence of og on
out-of-sample performance, we did not observe any insightful behavior. We believe this
hyperparameter can play a role in problem settings where the convergence of TV losses in
contextual and perturbed spaces is different and needs moderation. However, in this case,
we don’t notice any such issues and the choice of o as 0.5 seemed to work generally well
across all experiments as seen in Figure 1.4a. The sensitivity analysis also highlights the

same, which points to 0.5 as being a legitimate choice for o.

Sensitivity analysis for as parameter Sensitivity analysis for cluster parameter(K)
1.80
1.74
A
1.72 175 /\ // \
\ 2R I
' / i \
@ 1.70 \, @ 1.70- / \.\ / \
© \, / © \ / / N\
A\ ; \ K
> 168 \, i/ Zies N / \ / AN
o \, / o \ / \ ! \
S 1.66 S~ b > \ / \ !
S . - / Z 160 \ / : /
1.64 N AN ! N s e
\\ -~ - S ! | 4 =
w62l el - ~J 155
1.60 0.0 0.2 0.4 0.6 0.8 1.0 150 1 2 3 4 5 6 7 8 9
as Number of clusters(K)
(a) (b)

Figure 1.4: Sensitivity analysis (using validation data) across portfolio simulations for the
year 2019.
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1.7.3 Algorithms

In this section, we provide the pseudo-code for the Iterative constraint generation and the

Deep Cluster then Classify techniques from Section 1.4.1.

Iterative constraint generation

We present the iterative constraint generation algorithm for both the Robust Objective

problem:

min maxc(x
xeZ Ecw ( ’§>7

and a Robust Constraint problem of the form:

min (x).
xeZ c(x,)<0NVEEU

We note that when 2" is convex and ¢(x, ) is convex in x and linear in &, then

arg minye 9° Maxg o/ ¢(x,&) can be obtained using convex optimization algorithms, while
§* € argmaxg 4 ¢(x*, ) can be obtained using mixed-integer linear programming solvers
such as MOSEK (see MOSEK ApS (2022)). In more general setting, one might need to

employ more general non-linear programming software.

Algorithm 3 : Iterative constraint generation for robust objective problem
Input : Maximum number of iterations M

Initialize %' .= {&} C %
for iter=1toM do

Set x* € argmin,c o maxgcqc(x,§)

Set §* € argmaxgcq c(x*, &)

if c(x*, &%) > maxg g c(x*, ) then
L Add E* to %'

else

L break

return x*
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Algorithm 4 : Iterative constraint generation for robust constraint problem

Input : Maximum number of iterations M
Initialize %' := {&y} C %
for iter=1toM do
Set.x* € argmin,c (v <oz (&)
Set §* € argmaxgcq c(x*, &)
if c(x*,&*) > 0 then

L Add &* to %'

else

L break

return x*
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Algorithm for Deep Cluster then Classify with deep K-means

Algorithm 5 : Deep Cluster then Classify with deep K-means

Input : Dataset @&W; number of clusters K; maximum number of iterations 7';
coverage error €

Randomly initialize 6y, Vp, and all W({‘

Let ao(y) := a* (gu,, ()

Setr:=0

repeat

Sett:=t+1

Update 6/ := Yic s gvi, , (W0)/| !, where F == {i : a,—1(y;) = k}

Let a; () :=a% (gvy, , (W)

Update V; using SGD on Eq. (1.8) with a,(y;)

untilt > T

Leta(y) :=a;(y)
fork=1to K do

Train the parameters W* using Eq. (1.5) with _@é‘
Calibrate R* on .@é‘ using coverage target 1 — €
Let %% := % (WK Rk, .7K)

return a(-) and {%*}K |
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Chapter 2

End-to-End Conditional Robust

Optimization

Abstract

The field of Contextual Optimization (CO) integrates machine learning and optimization to
solve decision making problems under uncertainty. Recently, a risk sensitive variant of CO,
known as Conditional Robust Optimization (CRO), combines uncertainty quantification
with robust optimization in order to promote safety and reliability in high stake applications.
Exploiting modern differentiable optimization methods, we propose a novel end-to-end
approach to train a CRO model that accounts for both the empirical risk of the prescribed
decisions and the quality of conditional coverage of the contextual uncertainty set that
supports them. While guarantees of success for the latter objective are impossible to obtain
from the point of view of conformal prediction theory, high quality conditional coverage
is achieved empirically by ingeniously employing a logistic regression differentiable
layer within the calculation of coverage quality in our training loss. We show that the
proposed training algorithms produce decisions that outperform the traditional “estimate

then optimize” approaches.



2.1 Introduction

In a standard machine learning setting, ¥ C R™ represent the input set and = C R™ repre-
sent the output sets and we aim to learn a model §g parameterized by 6 that approximates
the relationship between the input and output by minimizing a loss function .. In real-
world applications, we usually have a dataset of M samples, ¢ := {(y;, &), which
are used to approximate the underlying input-output relationship learned by the model. For
a new data sample y € ¥, the model trained on %,,¢ is used to predict a corresponding
target & = Fo (). Recently, there has been a growing interest in developing data-driven
optimization solutions that integrate this learning process with the subsequent optimization
process. In this context, one accounts for the fact that the prediction is used within a
cost minimization problem £*(y) := argmin,c - c(x,§g(y¥)), where 2~ C R" is the set of
feasible decisions and ¢(x, ) the cost function. The intent is to adapt the training procedure

to produce an adapted decision with low out-of-sample expected cost E[c(£*(y),&)].

When there is a mismatch between the training loss . and the cost function c(x, &), a
small error in predicting & for a given y can lead to highly suboptimal x*(y) (Elmachtoub
and Grigas 2022). Task-based (or decision-focused) learning (Mandi et al. 2024; Donti,
Amos, and J. Z. Kolter 2017) addresses this issue by training the model §g directly on the
performance of the policy x*(y). By trading off predictive performance in favor of task

performance, the task-based approach can give near optimal decisions.

In high stakes applications, a Decision Maker (DM) usually demonstrates a certain
degree of risk aversion by requiring some level of protection against a range of plausible
future scenarios. A natural risk averse variant of integrated learning and optimization takes
the form of Conditional Robust Optimization (CRO) (Chenreddy, Bandi, and Delage 2022),
which integrates conformal prediction with robust optimization. Specifically, machine
learning is first used to estimate an uncertainty set % () for an observed context y. This

set 7 (y), known to contain the realized £ with a high probability, is then inserted into
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the conditional robust optimization model:
% X .
X' (y) := arg min : gg;gw)c(x,é) (2.1)
To this date, the methods proposed in the conditional robust optimization literature follow
an Estimate Then Optimize (ETO) paradigm. Namely, data is first used to estimate the
contextual uncertainty sets which are then calibrated to meet the required coverage levels.
These sets are then used as input to the CRO problem to get the adapted robust decision
x*(y). However, the process of calibrating uncertainty sets does not take into account
the downstream optimization task, potentially resulting in misalignment between the loss
function used in the initial estimation and the objective of robust optimization.
In this chapter, we propose a novel end-to-end learning framework for conditional
robust optimization that constructs the contextual uncertainty set by accounting for the

downstream task loss. Our contributions can be described as follows:

* We propose for the first time an end-to-end training algorithm to produce contextual
uncertainty sets, % (y) that lead to reduced risk exposure for the solution of the

down-stream CRO problem

* We introduce a novel joint loss function aimed at enhancing the conditional coverage

of % (y) while improving the CRO objective

* We demonstrate through a set of synthetic environments that our end-to-end approach
surpasses ETO approaches at the CRO task while achieving comparable if not

superior conditional coverage with its learned contextual set

* We show empirically how our end-to-end learning approach outperforms other state-
of-the-art methods on a portfolio optimization problem using real world data from

the U.S. stock market

Remark 2.1.1. It is worth noting that when the estimated uncertainty set % (y) reduces
to a singleton {Fo(Y)}, i.e. a point prediction, the CRO problem simplifies to the de-

terministic contextual optimization problem: x*(y) := argmin,e o~ ¢(x,Fo(y)). For this
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special case, the training of §o (W) using an end-to-end paradigm has been more heavily
studied, see for instance Amos and Kolter (2017), Berthet et al. (2020), and Elmachtoub
and Grigas (2022). End-to-end CRO therefore constitutes a more general and unexplored
framework that can potentially answer to a need to provide more robust decisions in
situations where parameters cannot be perfectly estimated. This is particularly noticeable
in a portfolio optimization problem where a point estimate of the return of assets will
necessarily motivate investing all available wealth in the one single asset with highest
predicted return. In contrast, it is rather easy to formulate an uncertainty set % (y) such

that the CRO problem encourage diversification of the investment.

2.2 Related Work

Estimate Then Optimize popularized by the pioneering work of Hannah, Powell, and Blei
(2010) is a framework that integrates machine learning and optimization tasks. Several
approaches are proposed to learn the conditional distribution from data. Kannan, Bayraksan,
and J. R. Luedtke (2020) and Sen and Deng (2018) propose using residuals from the
trained regression model to learn conditional distributions. Bertsimas and Kallus (2020)
assign weights to the historical observations of the parameters and solve the weighted
SAA problem. We refer the readers to the Misi¢ and Perakis (2020) survey for various
applications of the ETO framework. Besides the mentioned risk neutral applications, there
is a growing interest in integrating machine learning techniques to Robust Optimization
to handle risk-averse scenarios. Chenreddy, Bandi, and Delage (2022) identify clusters
of the uncertain parameters based on the covariate data and calibrate the sets for these
clusters. Y. Patel, Rayan, and Tewari (2023) propose using non-convex prediction regions
to construct uncertainty sets. Blanquero, Carrizosa, and Gémez-Vargas (2023) construct
contextual ellipsoidal uncertainty sets by making normality assumptions. Ohmori (2021)
use a non-parametric K-nearest neighbors model to identify the minimum volume ellipsoid
to be used as an uncertainty set. Sun, Liu, and Li (2023) solve a robust contextual LP

problem where a prediction model is first learned, and then uncertainty is calibrated to
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match robust objectives. It is to be noted that all these CRO approaches follow the ETO

paradigm.

End-to-end learning is a more recent stream of work that integrates the Estimation
and Optimization tasks and trains using the downstream loss. Donti, Amos, and J. Z.
Kolter (2017) proposed using an end-to-end approach for learning probabilistic machine
learning models using task loss. Elmachtoub and Grigas (2022) learn contextual point
predictor by minimizing the regret associated with implementing prescribed action based
on such a point predictor. Amos and Kolter (2017) use implicit differentiation methods
to train an end-to-end model. Butler and Kwon (2023) solve large-scale QPs using the
ADMM algorithm that decouples the differentiation procedure for primal and dual vari-
ables. Elmachtoub and Grigas (2022) and Mandi, Stuckey, Guns, et al. (2020) propose
using a surrogate loss function to train integrated methods to address loss functions with
non-informative gradients. I. Wang et al. (2023) propose learning a non-contextual un-
certainty set by maximizing the expected performance across a set of randomly drawn
parameterized robust constrained problems while ensuring guarantees on the probability
of constraint satisfaction with respect to the joint distribution over perturbance and robust
problems. Costa and Iyengar (2023) propose a distributionally robust end-to-end system
that integrates residual based distribution estimation and robustness tuning to the portfolio
construction problem. We refer the reader to Kotary et al. (2021), Qi and Shen (2022),
Mandi et al. (2024), and Sadana et al. (2025) for broader discussions on both ETO and
end-to-end approaches.

Uncertainty quantification methods are employed to estimate the confidence of deep
neural networks over their predictions (Kontolati et al. 2022). Common uncertainty quan-
tification approaches include using Bayesian methods like stochastic deep neural networks,
ensembling over predictions from several models to suggest intervals, and models that
directly predict uncertain intervals (Gawlikowski et al. 2021). Beyond estimating predictive
uncertainty, ensuring its statistical reliability is crucial for safe decision-making (C. Guo
et al. 2017). Conformal prediction has become popular as a distribution-free calibration

method (Shafer and Vovk 2008). Although conformal prediction ensures marginal cov-
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erage, attaining conditional coverage in the most general case is desirable (Vovk 2012).
Although considered infeasible, Romano et al. (2020) offers group conditional guarantees

for disjoint groups by independently calibrating each group.

2.3 Estimate then Robust Optimize

The concept of “Estimate Then Optimize” comes from the contextual optimization litera-
ture, as discussed by Sadana et al. (2025). In the context of CRO, the role of the Estimation
process is to quantify the uncertainty about & given the observed y. This is given as input
to an Optimization problem that prescribes an optimal contextual decision x*(y).

When the downstream optimization problem is a CRO problem, the estimation step
is required to produce a region that adapts to the observed covariates Y and is expected
to contain the response & with high confidence. This can be executed in two steps: first,
by learning a parametric conditional distributional model denoted as Fy (), and second,
by calibrating an implied confidence region % () to ensure Pr, (& € % (v)) =1 —¢.
For e.g., when one assumes that & |y ~ .4 (fi(y),£(y)), one can learn (i (y),Z(y)) by
maximizing the log-likelihood function (see Barratt and Boyd (2023))

3 108(2)+ Y og (v)s— 3 1Lv) (€~ 9w
where L(y) and V() are the parametric mappings that can be used to compose [1(y) :=
(L(y)~")"v(w) changed from L(y) " to (L(y)~") " and £(y) = (L(y)~") "L(y)~". Us-
ing the o quantile from the chi-squared distribution with m degrees of freedom, one can
define %y (y) that satisfies P(§ € % (y)) = 1 — € asymptotically.

Some recent work completely circumvents the need for the intermediary Fy by cali-
brating some %y (y) directly on the dataset. For example, Chenreddy, Bandi, and Delage
(2022) propose identifying a k-class classifier, a : R™ — [K] to reduce %y (y) := %y (a(y))
such that P(§ € %y(k)|a(y) = k) > 1 —¢€ V k. The literature on conformal prediction
also belongs to the family of distribution-free approaches. It separates the calibration of

the shape of % (y) from the calibration of its size, parameterized by a radius r > 0, on
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a reserved validation set to provide out-of-sample marginal coverage guarantees of the
form P(& € %y (y)) > 1 — €, where the probability is taken over both the draw of the
validation set and of the next sample.According to the Lemma 4.2 in Chenreddy, Bandi,
and Delage (2022), such a coverage guarantee is sufficient to ensure that the out-of-sample
Value-at-risk of the robust policy produced by CRO is bounded above by the worst-case

value of the in-sample problem.

2.4 End-to-End Conditional Robust Optimization

While the ETO approach presented in Section 2.3 presents an efficient way to quantify
the uncertainty conditionally, it does not take into account the quality of decisions x*(y)
prescribed by the downstream CRO model. In practice, the quality of a robust decision is
usually assessed by measuring the risk associated with the cost produced on a new data
sample (a.k.a. out-of-sample). We assume that this risk is measured by a risk measure
that reflects the amount of risk aversion experienced by the DM. For instance, one can use
conditional value-at-risk represented by the function, py (X) :=inf, ¢+ (1/(1 — a))E[(X —
1) "], which computes the expected value in the right tail of the random cost X for a certain
risk aversion o and it covers both expected value and the worst-case cost as special cases
(i.e. when o =0 and 1 respectively). In an ETO framework, once the optimal decision
x*(y) is determined, the DM can assess the associated risk, also known as task loss,
Pal(c(x*(y),&)). This metric allows comparison across models to select the suitable one.
However, it is important to note that the model with the best performance in terms of task
loss may differ from the optimal model based on prediction loss. Motivated by recent
evidence from Elmachtoub and Grigas (2022) indicating that performance improvement
can be achieved by employing a decision-focused/ task-based learning paradigm, we

propose end-to-end conditional robust optimization.
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2.4.1 The ECRO Training Problem

Formally, we let ¥ C R" be an arbitrary support set for y whereas & C R" is assumed for
simplicity to be contained within a ball centered at 0 of radius Rg. We consider c(x, &) to
be convex in x and concave in & and let 2" (y) := {x € R"[g(x, y) <0, h(x,y) =0} be a
convex feasible set for x, possibly dependent on y, and defined through a set of convex
inequalities, identified using g : R” x R™ — R’ and affine equalities, identified using an
affine mapping /4 : R"* x R™ — R’. The conditional optimal policy then becomes:

xX(y,%):=arg min max c(x,¢&), (2.2)
v %) gxe%(w)ée%(w)( 2

where we make explicit how the decision depends on both the contextual uncertainty set
and the realized covariate. Given a parametric family of contextual uncertainty set %
with 8 € © and a dataset D¢ := {(y',E)}M,, the ECRO training problem consists in

identifying
minZcro () = Piom (c(x" (¥, %), €")); 23)

where p;- refers to the risk when i is drawn uniformly from 1 to M, while, for simplicity,
we assume p (-) to be a conditional value-at-risk measure, and % () to be ellipsoidal for

all y. Namely, we can assume that

Uo (W) = &E(Le(V),Zo(Y),7) (2.4)
={EER™: (E—pp(w) Zo(v) ' (& —po(w)) <1},

for some g : R™ — R™ and Xy : R" — ., where .7 is the set of positive definite ma-
trices, for all 8 € ®. While the robust optimization literature suggests various uncertainty
set structures that facilitate the resolution of the RO problem, the ellipsoidal set stands out
as a natural one to employ as it retains numerical tractability (see Ben-Tal and Nemirovski
(1998)) and can easily be described to the DM.

The training pipeline for the task-based learning approach is illustrated in Figure 2.1.

In this pipeline, one starts from an arbitrary 8°, the optimization problem (2.2) is solved
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Figure 2.1: Training pipeline for task-based learning

first for each data point, and the resulting optimal actions are then implemented in order
to measure the empirical risk under D¢, which we call empirical ECRO loss of 6°. A
gradient of Zzcro(0) can then be used to update 6° in a direction of improvement. Key
steps in this pipeline consist of computing x*(y’, %) efficiently and in a way that enables

differentiation with respect to 6.

2.4.2 Reducing and Solving the Robust Optimization Task

Given the convex-concave structure of ¢(x, &) and the convexity and compactness of the
ellipsoidal set, we can employ Fenchel duality (see Ben-Tal, Den Hertog, and Vial 2015)
to reformulate the min-max problem as a simpler minimization form over an augmented
decision space. Specifically, we first replace the original cost function with the equivalent

cost

E(x,‘g’):: C<x7€) lfHéHZSRé ,

—oo  otherwise

which integrates information about the domain of &. One can then employ theorem 6.2 of

Ben-Tal, Den Hertog, and Vial (2015), to show that problem (2.1) can be reformulated as:

min - f(x,v, ) := 8" (v|%(y)) — C(x,v) (2.5)
x€Z (y),v
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where the support function

8 (%o (w)) = sup &Tv=pe(w) v+ /v Zg(w)v, (2.6)

Ecy(y)

while the partial concave conjugate function is defined as

Cs(x,v := infyv! —¢(x,6)= in vl —c(x,§).
()= E—en8) =l 2TE—e(x)

This leads to x*(y, % (y)) being the minimizer of the convex minimization problem:

min X, V, 2.7)
min f (x,v, )

with £(x,v, ) := e (W) v+ /YT Zg(y)v —é.(x,v), a jointly convex function of x and v

and finite valued over its domain, and with sub-derivatives:

Vif (x,v, ) = o (W) + (1/4/vIZe (W)v)Zo (W)v — &7 (x,v)
fo(xa V, IV) = ch(x,é*(x,v)),

where &*(x,v) := argming. ¢, < R vI'E —c(x,&). Revisiting the procedure outlined in
Figure 2.1, one can observe that the training process requires a forward pass to find the
optimal solutions and a backward pass to update the parameter vector 6. This requires
the computation of the gradients of the solution to the problem (2.3) with respect to the
input parameters that are passed through the reformulated CRO problem. Furthermore, the
minimization procedure in problem (2.3) entails navigating through the risk measure p.

These aspects will be further explored in the next section.
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2.4.3 Gradient for Problem (2.3)

In training problem (2.3), the gradient of Zzcro(6) with respect to 6 can be obtained

using the chain rule:

apiNM(yi)
VegECRO(e) = Z a—)h }yi:C(X*(wi7%9)7éi) .
Vie(x) |x:x*(ll/i,7/e) ‘

(V”x*(y/i,é"(u,ZQ(l]Ii)))|u_“9(wi)veﬂe(‘l/i)

0 (9 o (V). E)) s, Vo)

Based on Ruszczynski and Shapiro (2021), when p(Y) := CVaR(Y), one can employ
the subdifferential:

Vypirm (vi) = 0(y)
with v(y) € AZMAX M. 1T p— | p<((1-ct)N) ! vly.

Given that Vyc(x), Voug(y), and VgXg(y) can be readily obtained using auto-
differentiation (Seeger et al. 2017) when c(x), ug(y), and Xg () are differentiable, we
focus the rest of this subsection on the process of identifying V , v)x*(y, & (i, X)). Fol-
lowing the decision-focus learning literature (see Blondel et al. 2022), one can identify
such derivatives by exploiting the fact that any optimal primal-dual pair (x*,v*, A%, v*) of
problem (2.7) must satisfy the Karush-Kuhn-Tucker (KKT) conditions, which take the

form:
G(x* v A" viu,X w) =0, g(x*,y) <0,A*>0.
where
G(x* VA v U2 w) =
Vo f(x* v, w) + Vg (x*, w)T A" + V,h(x*, w)T v
Arog(x", )
h(x*, y)
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and o denotes the Hadamard product of two vectors.
One can therefore apply implicit differentiation to the constraints G(x*, v, A*, v u X y) =
0 to identify V(, »x*(y,& (1, X)) simultaneously with the derivatives of v*, 1%, and v*

with respect to the pair (i,X). Specifically, one is required to solve the system of equations:

d
ax’v7l7v ('x 7v ) ) 7“7 71”)
d
(X*,V*,A*,V*)([J,Z) =
(1, %)
d
- G X*v‘}*aﬂ‘*v\I*vu?Zaw )
o) )
where WG denotes the Jacobian of the mapping G with respect to (x,v,A,v). We

refer to Blondel et al. (2022) and Duvenaud, Kolter, and Johnson (2020) for further details

on the computations of related to implicit differentiation.

2.4.4 Task-based Set (TbS) Algorithm

In this section, we delve into the implementation details of the ECRO training pipeline.
Regarding the contextual ellipsoidal set & (ug (¥),Lg(V)), we follow the ideas proposed
in Barratt and Boyd (2023) and employ a neural network that maps from §g : R” —
R™ x R™m+1)/2 5 R The first set of outputs is used to define Uo (y) while the second
and third set forms a lower triangular matrix Lg(y) and scalar rg(y), which is made
independent of ¥ w.l.o.g., used to produce X () := rg(W)Lo(W)Lg(y)”. The positive
definiteness of Xg () is ensured by taking an exponential in the last layer of the network
for the output that appears in the diagonal of L. The architecture of the neural network can
be found in Appendix 2.8.2.

The second set of notable details has to do with solving for x* (', &( ,ué,Zie ,rg)) Vi. In
our implementation of end-to-end learning for conditional robust optimization, we found
that a trust region optimization (TRO) method (see Byrd, Gilbert, and Nocedal 2000)
could efficiently solve the reformulated robust optimization problem (2.7) and provide
primal-dual solution pairs for this problem. Given that each episode of the training would

pass through the same set of data points, we further observed that the training accelerated
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significantly (see Figure 2.6 in Appendix 2.8.2) when the trust region was interrupted early
(after K =5 iterations) as long as it would be warm started at the solution found at the
previous epochs. Algorithm 6 presents our proposed training framework for the ECRO

approach.

Algorithm 6 : ECRO Training with Trust Region Solver
Input : Dataset ‘@5,1!/; max epochs 7'; max TRO steps K; batch size N; protection

level o
Initialize warm start buffer {%y,...,%y } with each ¥ € 27 (y;)
Initialize network parameters 0 and set ¢ := 1
while not converged andt < T do
Sample a batch of N indices # C {1,..., M}
fori c # do
// Run TRO for up to K steps

(xf, Af, Vi) <= TRO(%;, Lo (W), Zo (W), K)

X <X // Update warm start
Compute Zcro(0) and Vg LEcro(0) for i ~ £
0 < 6 —step size - Vg-ZEcro(0)

t—t+1

r;turn 0

2.5 End-to-End CRO with Conditional Coverage

Recall that the ETO framework summarized in Section 2.3 focused on producing contextual
uncertainty set with appropriate marginal coverage (of 1 — €) of the realization of &. The
training pipeline in Section 2.4 was at the other end of the spectrum, disregarding entirely
the objective of coverage to increase task performance. In practice, coverage can be a
heavy price to pay to obtain performance as it implies a loss in the explainability of the
prescribed robust decision. It is becoming apparent that many DMs suffer from algorithm
aversion (see Burton, Stein, and Jensen 2020) and could be reluctant to implement a robust

decision produced from an ill covering uncertainty set.
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We further argue that traditional ETO might already face resistance to adoption given
the type of coverage property attributed to the ETO sets, i.e. P(& € Z (y)) = 1 — €. Indeed,
marginal coverage guarantees only hold in terms of the joint sampling of y and &. This
implies that it offers no guarantees regarding the coverage of £ given the observed y for
which the decision is made. In fact, a 90% marginal coverage can trivially be achieved
if 7 (y) returns E when y € W, for some arbitrary set ¥, and otherwise returns 0, as
long as P(y € ¥) = 1 —¢. This is clearly an issue for applications with critical safety
considerations and motivates seeking conditional coverage in addition to the marginal
coverage when designing % (). In this section, we outline a training procedure that

integrates a sub-procedure that enhances the conditional coverage performance.

2.5.1 The Conditional Coverage Training Problem

We start by briefly formalizing the difference between the two types of coverage in the

definition below.

Definition 2.5.1. Given a confidence level 1 — g, a contextual uncertainty set mapping % (-)
is said to satisfy marginal coverage if P(E € % (v)) = 1 — €, and to satisfy conditional

coverage if P(& € % (y)|y) = 1 — € almost surely.

The following lemma identifies a necessary and sufficient condition for a contextual

set to satisfy conditional coverage.

Lemma 2.5.1. A contextual uncertainty set % (y) satisfies conditional coverage, at

confidence 1 — &, if and only if
Lec(6) :=E[(P(§ € % (y)|y) —(1-¢))*] =0
Proof. For any random variable X, one can show that :

X=1—-¢€as

= E(X-(1-¢)}=1-(1-g—(1—¢))>=0
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and that, since y2 <0&y=0,

E[(X—(1—¢))’]=0

= (X—(1-¢)?’=0as. > X=1—¢as.

By letting X :=P(& € %y(y)|y), we obtain our result.

Equipped with Lemma 2.5.1, we formulate the “theoretical” conditional coverage
training problem as mingce -Zcc(6). Since the true conditional distribution P(§ €
Uy (y)|y) is typically inaccessible to the DM, we propose an approximation that will

make Z¢c(0) practical.

2.5.2 Regression-Based Conditional Coverage Loss

Given a set % , one can define a binary random variable y(y,§,% ) := 1{& € % (y)}, and
rewrite the conditional probability distribution P(§ € % (y)|y) as P(y(y, &, %) = 1|y).
Using the i.i.d sample data in %, one can approximate this conditional probability
using a parametric model, i.e. P(y(y,&,%)=1|y) ~ g¢(y) for some ¢ € . The

parameters ¢ can be calibrated by minimizing the negative conditional log-likelihood of

{y(wiaéia%) ?il:

i

. 14 iy i\ 1—
0 (%) :zargggg—ﬂglogw(w)y(l—g¢(l/f))1 Y, (2.8)

where y; := y(y',E!, 7). Using the parametric approximation 8o+ (W) =P(S €% (y)|y)
and replacing the unknown true distribution of (y, &) with the empirical one, we obtain

our regression-based conditional coverage loss function

Zec(0) :==E7vE[(g4 () (W) — (1 - €))7].
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The gradient of jcc(e) can be obtained using similar decision-focused training meth-

ods as employed for ZEcro(0) given that:

VoZec = ;2 8o (2e) (W) — (1 =€)V &or () (W)
M
Z, 20*(& (1, Zo(y'))) /9y

]_

lI/J éj &(u, Ee(ll/])))‘“:ue(l,,j)veue(‘l’j)

/\

sz (II/J &J éa(.ue(wj }Z =% V,/)VGZG(IVJ))

where the main challenges reside again in the step of differentiating through the minimizer

of problem (2.8).

2.5.3 Dual Task Based Set (DTbS) Algorithm

[Optimizaﬂo} [Regression}

(-, %)
CRO Coverage
Task Loss Task Loss

8¢*(%)(‘)

Figure 2.2: Training pipeline for dual task based learning

We conclude this section with the presentation of our novel integrated algorithm that
learns the contextual uncertainty set network §g by incorporating both the risk mitigation

and conditional coverage tasks in the training. Indeed our DTbS training algorithm
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minimizes the following double task loss function that trades off between the two task
objectives:

D%DT(Q) :’)/D%ECRo(e)—l—(l—’}/)jcc(e). (2.9)

The training pipeline for this algorithm can be seen in Figure 2.2. It closely mirrors
the structure of the TbS algorithm, with additional crucial steps to compute the necessary
components of the loss presented in equation (2.9). Within each epoch, the predicted uncer-
tainty set % serves two purposes: i) Optimizing CRO to find the optimal policy x* (-, %p)
and assessing its associated risk; and ii) producing the binary variable y(y, &, %), which
regression leading to gy+(%,) (+) serves to quantify the quality of the conditional coverage.
The sum of task losses produces #pr(0), which can be differentiated using decision-
focused learning methods. The regression model g4 () takes the form of a feed-forward
neural network with a sigmoid activation in the final layer and is optimized using stochas-
tic gradient descent. Algorithm 7 in Appendix 2.8.1 presents the details of this DTbS

algorithm.

Remark 2.5.1. It is to be noted that achieving distribution-free finite sample conditional
coverage guarantees is known to be impossible in the conformal prediction literature (see
Barber et al. 2020). Recently, some progress has been made towards partial forms of
conditional coverage guarantees (see Gibbs, Cherian, and Candes 2023) yet it is unclear
what are the implications of exploiting such partial coverage properties for the downstream
CRO decisions. It is also unclear how such conditional conformal prediction procedures

could be integrated within an end-to-end CRO approach.

2.6 Experiments

This section outlines our experimental framework devised to demonstrate the advantages
of the ECRO method in learning the uncertainty sets tailored to covariate information.
Our focus lies in assessing the utility of the model in i) improving the CRO performance;

and 11) achieving conditional coverage. We conduct a comparative analysis between our
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two end-to-end approaches, TbS and DTbS, and three state-of-the-art ETO approaches to
formulate contextual ellipsoidal sets. We first consider a Distribution-based contextual
ellipsoidal uncertainty Set (ETO-DbS) recently introduced in Blanquero, Carrizosa, and
Go6mez-Vargas (2023), where the conditional distribution of & given y is presumed to
follow a multivariate normal distribution. Additionally, we explore two distributional-free
approaches. A vanilla Conformal Prediction Set (ETO-CPS) uses conformal prediction
on the output of a point predictor for £ given y, after shaping the ellipsoid (through an
invariant X) using the residual errors (see Johnstone and Cox 2021). An Adapted version of
Conformal Prediction Set (ETO-ACPS) proposed in Messoudi, Destercke, and Rousseau
(2022) adapts the shape X using local averaging around the observed y. The code can be

found on the github! repository.

2.6.1 The Portfolio Optimization Application

We explore the effectiveness of the proposed methodologies in addressing a classic robust
portfolio optimization problem. In this context, we define the cost function ¢(x, &) as —&7 x,
where x represents a portfolio comprising investments in m different assets, with their
respective returns denoted in the random vector &. Additionally, we impose constraints

on x, encapsulated within 2", defined as 2" := {x € R"| Y7, x; = 1,x > 0}. For this cost

Thttps://github.com/Achenred/End-to-end-CRO
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function, we obtain the partial concave conjugate function:

Ci«(x,v) = inf vIE—ETx=_Re|lv—x (2.10)
(&) £:NE <R S8 ellv=ala

Thus leading to problem (2.7) becoming

min f(x, ) :=x' o (y) +1/x"Zo (W) (2.11)

when Rg — oo, thus capturing & := R"™.

2.6.2 CRO Performance Using Synthetic Data

We first consider a simple synthetic experiment environment where m = 2 and where the
pair (y, &) is drawn from a mixture of three 4-d multivariate normal distributions. We
sample N = 2000 observations and use 600 observations to train 400 as validation and 1000
observations for testing. All our results present statistics that are based on 10 simulations,
each of which employed a slightly modified mixture model (see Section 2.8.2 for details).
The TbS and DTbS algorithms leverage deep neural networks with the corresponding
task losses to learn the necessary components (Ug(y),Lg(y)) of Zg(y). All sets are
calibrated for a probability coverage of 90% and the risk of decisions is measured using
CVaR at risk level a = 0.9. We also consider an “oracle” method that leverages the exact
knowledge of the underlying distribution as an additional benchmark. The method is based
on formulating a scenario tree approximation of the joint distribution of ¥ and & in order
to obtain an investment policy that minimizes the CVaR objective (2.3) directly. More
details can be found in Appendix 2.8.3. The average CVaR objective values and marginal
coverages of the uncertainty sets can be found in Table 2.1. One can notice that the
end-to-end based methods, TbS and DTbS significantly outperform the ETO methods on
the CVaR performance. It appears that in order to maintain the required marginal coverage,
the ETO approaches learned sets that resulted in overly conservative RO solutions. We
also observe that the TbS and DTbS models achieve a CVaR performance that is very close

to our estimate of the best achievable performance, i.e. the oracle method’s performance.
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METHOD CVAR MARGINAL COVERAGE
ETO-CPS 1.59£0.03 91£1.8%
ETO-ACPS 1.68+0.04 91£1.4%
ETO-DBS  1.66+0.06 85+£7.8%
TBS 1.0540.09 234+6.1%
DTBS 1.074+0.09 92+1.5%

ORACLE 1.06£0.10 —

Table 2.1: Avg. CVaR and marginal coverage for @ = 1 — & = 0.9 over 10 simulated
environments, error represent 90% CI. Note that the oracle method exploits full information
about the Gaussian mixture model.

Additionally, all the models except TbS appear to have the marginal coverage 90%
which corresponds to the o level they are trained for. By disregarding the aspect of
coverage, TbS was able to improve on the CVaR task but performs poorly in terms of
coverage. Comparatively, the dual task based approach DTbS was able to improve on
the CVaR performance over the ETO approaches while still maintaining the necessary
coverage.

As pointed out earlier, conditional coverage is a highly desirable property. Given that
a synthetic environment gives us access to exact measurements of conditional coverage,
Figure 2.4 presents the cumulative distribution of the observed conditional coverage

frequencies when Y is sampled uniformly from the data set. One can notice from the
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plot that ETO-DbS, despite being closer to the required marginal coverage, failed to
provide accurate conditional coverage. Among the methods that use conformality score
to calibrate the radius, ETO-ACPS method which uses localized covariance matrices has
better conditional coverage. However, this comes at the price of CVaR performance. The
advantages of the dual task-based approach, DTbS, over the single task one are obvious.
While DTbS appears to have overshot the coverage compared to ETO-ACPS, which aligns
closer to 90%, we argue that this is not an issue as it ends up providing more coverage than
needed while generating nearly the best average CVaR value. In Figure 2.3 which overlays
the various sets learned on the conditional distribution of &, one can notice that the sets

adapt to the covariate information ¥ to provide the necessary conditional coverage.

0.7 08 0.9 ' 07 08 0.9
n n
(a) 2017 (b) 2018
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5
—
—

0.7 0.8 0.9
led
(c) 2019
ETO-CPS W ETO-ACPS ETO-DbS TbS  H DTbS

Figure 2.5: Avg. CVaR of returns across 10 portfolio trajectory simulations. Error bars
report 95% CIL.
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2.6.3 CRO Using U.S. Stock Data

We follow the experimental design methodology proposed in Chenreddy, Bandi, and
Delage (2022). Our experiments utilize historical US stock market data, comprising
adjusted daily closing prices for 70 stocks across 8 economical sectors from January 1,
2012, to December 31, 2019, obtained via Yahoo! Finance’s API. Each year contains 252
data points, and we calculate percentage gain/loss relative to the previous day to construct
our dataset, denoted as £&. We incorporate the trading volume of individual stocks and
other market indices as covariates. We test the robustness of all the model’s performance
by solving the portfolio optimization problem on randomly selected stock subsets across
different periods. Utilizing 15 stocks in each window, we ran the experiment ten times over
three moving time frames. We maintain consistent parameters (learning rate /r, number
of epochs T, step size K, ). Further implementation and parameter tuning details can be
found in Appendix 2.8.2. Figure 2.5 compares the avg. CVaR of returns and Table 2.2
presents the marginal coverage across different confidence levels for models.

It is evident from the CVaR comparison that the task based methods TbS and DTbS con-
sistently perform better over the ETO models. Among ECRO approaches, we can clearly
observe an advantage for DTbS over TbS, which has on par CVaR performance while hav-
ing out of sample marginal coverage closer to the expected target level. Conformal-based
ETO methods have good marginal coverage as they are designed to have the desired cover-
age. Especially, ETO-ACPS and ETO-CPS, being calibrated using conformal prediction

which produces statistically valid prediction regions have near target coverage levels.

2.7 Conclusion

In summary, this chapter introduces a novel framework for conditional robust optimization
by combining machine learning and optimization techniques in an end-to-end approach.
The study focuses on enhancing the conditional coverage of uncertainty sets and improving

CRO performance. Through comparative analysis and simulated experiments, the proposed
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MODEL YEAR MARGINAL COV. (%)
TARGET 1 —¢
70% 80% 90%

ETO-CPS 68 78 87
ETO-ACPS 68 77 89
ETO-DBS 2017 54 72 85
TBS 22 26 28
DTBS 72 79 88
ETO-CPS 67 79 88
ETO-ACPS 68 78 87
ETO-DBS 2018 59 75 87
TBS 23 24 29
DTsBS 71 80 93
ETO-CPS 69 78 88
ETO-ACPS 71 78 89
ETO-DBS 2019 61 76 86
TBS 26 30 32
DTBS 69 78 92

Table 2.2: Marginal coverage (%) evaluated at target coverage levels of 70%, 80%, and
90%. Bold values indicate the best-performing model for each year and target.

methodologies show superior results in robust portfolio optimization. The findings point to
the importance of uncertainty quantification and highlight the effectiveness of an end-to-end

approach in risk averse decision-making under uncertainty.
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2.8 Appendix

2.8.1 Algorithms

DTDbS algorithm:

Algorithm 7 : Dual ECRO Training with Trust Region Solver
Input : Dataset .@g,w; max epochs 7'; max TRO steps K; batch size N; protection

level o
Initialize warm start buffer {Xy,...,%) } with each X; € 2" (y;)
Initialize network parameters 0 and set 7 := 1
while not convergedand t < T do
Sample a batch of N indices # C {1,...,M}
fori € # do

// Run TRO for up to K steps

(xf, AL, Vi) < TRO(%;, o (wi), Zo (W), K)

Xj ¢ X // Update warm start

Vi I{& € &(uo(vi),. Lo (i)} // Coverage task label

¢' < solve problem (2.8) for {(y;,y}) }icx
Compute Zpr(0) and V¢.%pr(0) fori ~ %
0 < 6 —step size- Vg Zpr(0)

return 0

2.8.2 Supplementary for Experiments
Synthetic Data Generation Process

Our synthetic experiments rely on a set of mixtures of three multivariate normal distribu-
tions created in a way that produces a bimodal mixture of a normal distribution with a pos-
sibly non-normal one with similar covariance matrix. Specifically, each mixture model is

T T
constructed using the same three mean vectors y, = [() 00 0} , Up = [0 55 ()} ,
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and u. = y, while the covariance matrices take the form

1 0 037 O
0 15 O 0
037 0 2 073
0 0 073 3

Yy=0aX,and X, = % for some a € [0, 1], which controls the non-normality of the second

mode. Furthermore, we introduce asymmetry in the mixture model by using the mixing

proportion p, = ¢, p, = (lx;fi, and p. = aExl;f) ) for some ¢ € [0, 1], which controls the

dominance of the first mode over the second. Furthermore, p; and p. are such that the
covariance matrix of the non-normal mixture is equal to the covariance of the normal one,

X

Synthetic Conditional Data Generation

To generate conditional samples for the synthetic data generated in Section 2.8.2, we first
compute the conditional mean ¢, and covariance X¢)y, of & given the observed variables
v for each mixture component. Specifically, for each mean vector y and covariance matrix
¥ associated with the mixture components (denoted as a, b, and c¢ in Section 2.8.2), we

calculate the conditional parameters as,
Hely = Mg + Ty Ty (Y — y)

Zely = Zez —ZeyTyy Ly
Next, we determine the conditional probability of each mixture given the y observation
using Bayes theorem as P(mixture = i|y) o P(y|mixture = i)P(mixture = ). Finally,
we can use these conditional probabilities to sample new data points from the respective

conditional distributions of £ given y.

Parameter Tuning Procedure

In this section, we explore the parameter tuning methodology applied to train the network

introduced in Section 2.6.3. Given the time series nature of the data, we employ a
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rolling window technique for network training. Our architecture depends on a set of
hyperparameters, defined as follows: /r for learning rate, 7' for the maximum number of
epochs, K for the maximum TRO steps, B for the batch size, and o for the target level. We
partition the data into training and validation periods and examine the optimal combination
through grid search. For each combination, we train the network and derive the optimal
policy using the training data, then apply it to the unseen validation data. The optimal
combination is selected based on the lowest CVaR on the validation dataset, viewing this

as a worst-case return minimization problem.

Regarding the DTbS algorithm, which balances between two losses, the CRO objective
and the conditional coverage loss, we follow a specific strategy to identify the best-
performing model. At each epoch, we save the model and initiate model selection only
after achieving the required training coverage. Subsequently, we retain the best models
meeting the coverage criteria until convergence conditions are met. Among all saved

models meeting the coverage requirement, we choose the one with the best CVaR objective.

Sensitivity analysis:

We conducted a sensitivity analysis of the validation performance as a function of 7y, which
balances the CVaR loss and the conditional coverage loss. The table below presents the
model performances on the validation data for different values of 7. It illustrates how

varying Y enables a trade-off between the two loss objectives.

Y ‘0.01‘ 0.1 ‘ 0.5 ‘ 0.9 ‘0.99
avg. Zgcro | 1.30 | 1.05 | 1.04 | 1.06 | 1.05
avg. Zec | 549 16.25(8.15(8.98 | 8.81
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Convergence Comparison
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Figure 2.6: Convergence comparison between 5-steps TRO (46 min) and full TRO (129
min).
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We construct a parametric model for 1 and X using Cholesky decomposition to ensure
positive definiteness of . We employ a shallow neural network architecture with m input
units, one hidden layer of size s, and 2m + M + 1 units in the output layer. We use
tanh for activation functions and softplus for diagonal elements of L to ensure strictly

positive values.



2.8.3 Oracle Method for Synthetic Experiments

Given that experiments in Section 2.6.2 are based on a synthetic model, we can evaluate
the level of sub-optimality of the portfolio policies proposed by the different models. To
do so, we developed an “oracle”-based method that has access to the true underlying joint
distribution of ¥ and & and attempts to identify the “true” optimal value of the CVaR
objective, namely

min CVaR(—&ETx(y)).

x¥Y—-Z
We utilize a scenario tree {y', {E/ }1]”: 1 1Y, to approximate the joint distribution of (y, &),
where Y’ ~ Fy and £/ ~ Fg ,,i. Under such scenario tree, the CVaR optimization problem
reduces to a linear program:

N M
min Ad —— Sii (2.12a)
{xi}évzp/lv{si.i}ﬁ%:l NM(l o OC) lg{ ]; !

subject to s5ij >0,

Vi=1,....N,j=1,....M (2.12b)

Vi=1,...,N,j=1,....M (2.12¢)
x>0,Vi=1,...,N (2.12d)
1"x'=1,vi=1,...,N. (2.12¢)

To be consistent we the test environment, we consider the {I/I,}i\’: 1» with N = 1000, to
take on the values of the test set, while {5’7 }1}\/1: 1» for each i with M = 1000, are randomly
sampled from Fg,. This is repeated for the 10 problem instances. The average CVaR
optimal value of problem (2.12) is reported in Table 2.1 as the performance of the oracle

method.
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Chapter 3

Epistemic Robustness in Offline

Reinforcement Learning

Abstract

Offline reinforcement learning aims to learn policies from fixed datasets without further
environment interaction. A key challenge in this setting is epistemic uncertainty, which
arises from limited or biased data coverage, particularly when the behavior policy system-
atically avoids certain actions. This can lead to inaccurate value estimates and unreliable
generalization. Ensemble-based methods like SAC-N mitigate this by conservatively esti-
mating Q-values using the ensemble minimum, but they require large ensembles and often
conflate epistemic with aleatoric uncertainty. To address these limitations, we propose
a unified and generalizable framework that replaces discrete ensembles with compact
uncertainty sets over Q-values. We further introduce an Epinet based model that directly
shapes the uncertainty sets to optimize the cumulative reward under the robust Bellman
objective without relying on ensembles. We also introduce a benchmark for evaluating
offline RL algorithms under risk-sensitive behavior policies, and demonstrate that our
method achieves improved robustness and generalization over ensemble-based baselines

across both tabular and continuous state domains.



3.1 Introduction

Offline Reinforcement Learning (RL) aims to learn effective policies from static datasets
without further interactions with the environment. A key challenge in this setting is that the
uncertainty arises due to insufficient knowledge of the environment, particularly in regions
of the state-action space that are poorly represented in the data. This is a prevalent problem
in many real world applications where data collection is an inherently costly process. For
instance, in personalized healthcare treatment planning or industrial control, collecting
large scale interaction data may be impractical or unethical due to cost, safety, or privacy
constraints (Ghosh et al. 2022; Levine et al. 2020). This lack of coverage can lead to
erroneous value estimates and unreliable generalization, particularly when standard RL
algorithms attempt to extrapolate beyond observed data (Y. Yang et al. 2021).

To mitigate this, modern offline RL algorithms such as Soft Actor-Critic with Ensem-
bles (SAC-N) and its variants employ ensembles of Q-networks to quantify uncertainty
of the Q-value estimates (An et al. 2021). These methods maintain a collection of N
independently initialized but jointly trained critics {Qg) fV: | and construct a conservative

Bellman target using the pointwise minimum:

y(s,a) :=r+ }/m[i]\lfll Qg) (s',d) — alogmy (d'|s'), 3.1)
4SS

where (s,a,r,s") ~ 2, with Z as the dataset, and @’ ~ 7y (+|s’) is an action sampled from
the policy 7y, parameterized by ¢, which maps a state s’ to a distribution over actions.
Here, y € (0, 1] is the discount factor and & > 0 controls the entropy of the policy. This
formulation treats the minimum over ensemble members as a proxy for a lower confidence
bound, promoting conservative estimates in uncertain regions. While empirically effective,
ensemble based methods suffer from key limitations. First, reliable uncertainty estimation
typically requires large ensemble sizes (N > 10 in common implementations, and in some
cases even hundreds, e.g., N = 500 for Hopper-Medium in An et al. (2021)), incurring
substantial computational and memory overhead during both training and inference, and

limiting scalability in high-dimensional domains (Wen, Tran, and Ba 2020). Second, the
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pointwise minimum discards inter-action correlations thereby reducing expressivity of
the ensembles. Third, ensembles conflate epistemic and aleatoric uncertainty, making
it difficult to disentangle uncertainty due to data scarcity from inherent environmental
stochasticity (Amini et al. 2020; Osband et al. 2023). This can hinder robust reasoning
about what the agent does not know, and can lead to unsafe or overly conservative policies.

Even in scenarios with abundant data, epistemic uncertainty can persist due to behav-
ioral policy bias, when the data is generated by a policy that systematically favors certain
actions (Schweighofer et al. 2022). To illustrate, consider a machine replacement problem
(Wiesemann, Kuhn, and Rustem 2013) formulated as a Markov decision process with
|-7| = 10 states and |.<7| = 2 actions. At each state s € {1,...,10}, the agent chooses
either to continue operation (a = 1) or to replace the machine (a = 2). Continuing oper-
ation increases the chances of reaching a level of severe machine failure. A risk-averse
behavioral policy may choose to replace early to minimize the chances of reaching the
failure state, whereas a risk-seeking policy may defer replacement until imminent failure
becomes more certain to keep replacement costs to a minimum. Data collection under such
fixed policies can result in certain severely underexplored state-action pairs. This sparse
coverage leads to erroneous estimation of both the transition dynamics p(s" | s,a) and
value function Q(s,a). The resulting epistemic uncertainty poses a significant challenge in
offline reinforcement learning, where the agent must learn an optimal policy from static
data without further environment interaction. Appendix 3.9.1 presents this example in
detail, including the optimal policies under varying risk preferences and the resulting
state-action visitation distributions under different risk tolerance levels.

To overcome these limitations, we introduce a unified and generalizable alternative that
replaces the discrete ensemble { Q") (s,a) Y| with a compact uncertainty set % (s) C R/
defined at each state. This leads to the following set-based Bellman target:

y(s,a) :=r+ ngnql/igf)E“/N”‘P('M [q(d") — alogmy (d'|s')] , (3.2)
where % (s") compactly models a set of plausible Q-value vectors over actions at state s’

This formulation enables richer representation of uncertainty.
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Our key contributions are as follows:

* We propose the Epistemic Robust Soft Actor-Critic (ERSAC) model as an alterna-
tive and generalization for the ensemble based SAC-N method. ERSAC exploits
uncertainty sets to capture epistemic joint uncertainty about the Q-values of each

action, thus enabling richer and more structured epistemic uncertainty modeling

* We integrate epistemic neural network (Epinets) (Osband et al. 2023) in the new
ERSAC framework and show how Epinets can be adapted to directly produce
uncertainty sets, circumventing the need for resampling at inference time. This latter

implementation is shown to scale efficiently to high-dimensional offline RL settings.

* We introduce a benchmark framework for evaluating offline RL algorithms under risk-
sensitive behavioral policies, spanning both tabular and continuous state domains.
Empirically, our method outperforms ensemble-based baselines across diverse tasks,

achieving improved robustness and generalization.

3.2 Related Work

While the motivation for offline RL originates primarily from safety, cost, and deployment
constraints in domains such as healthcare, robotics, and industrial control, recent work
highlights its broader benefits, including improved generalization and sample efficiency
when combined with online learning (Ball et al. 2023; Jelley et al. 2024). Offline data
can stabilize learning and accelerate convergence through pretraining or regularization
(Kumar et al. 2022). However, the absence of environment interaction exacerbates chal-
lenges like overestimation and error compounding, especially when using deep value
function approximators. These failures are often attributed to epistemic uncertainty in out
of distribution state-action pairs, where neural networks are known to make overconfi-
dent predictions (Lakshminarayanan, Pritzel, and Blundell 2017; Kendall and Gal 2017).
Ensemble-based and Bayesian methods partially mitigate this by explicitly modeling

uncertainty, highlighting the need for structured epistemic reasoning in offline settings.
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Model-free methods primarily focus on constraining the learned policy or value
estimates to remain within the support of the dataset, thereby mitigating extrapolation
errors. One class of such methods, known as policy constraint methods, restricts the learned
policy to stay close to the behavior policy. This reduces the likelihood of selecting actions
not well represented in the data. Approaches like BCQ (Fujimoto, Hoof, and Meger 2018),
BEAR (Kumar et al. 2019), and BRAC (Wu, Tucker, and Nachum 2019) explicitly enforce
such constraints using divergence penalties or support matching. Another class focuses
on value regularization, where conservative value estimates discourage overoptimistic
Q-values for out-of-distribution actions. Notably, CQL (Kumar et al. 2020) enforces a
soft lower-bound on Q-values, while EDAC (An et al. 2021) and other ensemble-based
methods use Q-function diversity to reduce overestimation risk.

Model-based methods instead aim to learn an explicit model of the environment’s
dynamics, which can be used for policy learning or evaluation via simulated rollouts.
Examples include MOPO (Yu et al. 2020), which penalizes uncertainty in model rollouts,
and MOReL (Kidambi et al. 2020), which builds a pessimistic MDP based on model
confidence. COMBO (Yu et al. 2021) combines model-based rollouts with conservative
value estimation to balance optimism and safety.

Other notable directions include trajectory optimization and decision-based methods,
such as Decision Transformer (DT) (L. Chen et al. 2021) and Implicit Q-Learning (IQL)
(Kostrikov, Nair, and Levine 2021), which cast offline RL as a supervised learning problem
over sequences or value distributions. Additionally, imitation-based methods like BAIL
(X. Chen et al. 2020) interpolate between behavior cloning and value-based methods using
uncertainty-aware selection of demonstration trajectories. We refer the reader to Levine
et al. (2020) and Prudencio, Maximo, and Colombini (2023) for comprehensive review of
offline RL algorithms.

While uncertainty quantification is well studied in supervised learning and Bayesian
RL (Ghavamzadeh et al. 2015), its structured application in offline reinforcement learning
remains underexplored. Traditional methods often conflate epistemic and aleatoric uncer-

tainty or rely on coarse approximations such as ensemble minima, which can misrepresent
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uncertainty in regions with limited data. Recent work has begun to address these limitations
by introducing methods that model epistemic uncertainty more explicitly. For example,
Filos et al. (2022) propose Epistemic Value Estimation (EVE), which provides a task-aware
mechanism for quantifying value uncertainty in offline settings. Similarly, Shi and Chi
(2022) explore distributionally robust model-based offline RL using uncertainty sets over
dynamics to improve robustness to model misspecification. Other approaches such as
Panaganti et al. (2022) adopt a risk-sensitive view, incorporating epistemic uncertainty
directly into policy optimization to avoid unsafe actions. Ensemble-based methods are a
practical way to capture epistemic uncertainty. They have been used in both model-based
settings (e.g., MOReL in Kidambi et al. (2020)) and model-free methods (e.g., EDAC in
An et al. (2021)) to stabilize learning by regularizing the Bellman backups or penalizing
high-variance predictions. However, ensembles can be computationally expensive and
coarse. More structured representations of epistemic uncertainty have been proposed
using Epistemic Neural Networks (ENNs) (Osband et al. 2023), which offer a flexible
way to encode and sample from belief distributions over value functions. Building on
these insights, our work introduces a structured, epistemic-robust alternative to ensemble
pessimism by defining uncertainty sets over Q-values, allowing richer representations and

more targeted conservatism in offline RL.

Additionally, benchmarking offline RL remains challenging due to limited dataset
diversity. While D4RL (Fu et al. 2020) and RL Unplugged (Gulcehre et al. 2020) have
improved standardization, existing benchmarks largely omit risk sensitive evaluation
settings. Such behavior policies tend to handle high cost differently depending on whether
they are risk averse or risk seeking. This implicit preference skews the data distribution
and contributes to epistemic uncertainty, particularly in cases with less data. Despite its
significance, there is currently no benchmark that allows systematic control over the risk
sensitivity of the behavior policy to study its impact on offline RL performance. As a
first step toward addressing this gap, we introduce a framework that enables controlled
variation of behavioral risk preferences using dynamic expectiles. This allows us to

generate offline datasets with adjustable risk profiles, facilitating principled evaluation of
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offline RL algorithms under different uncertainty conditions. Our proposed framework is
aligned with recent efforts like the Minari platform proposed by Younis et al. (2024), but

uniquely focuses on how risk sensitivity shapes epistemic uncertainty in offline datasets.

3.3 Preliminaries

We consider a Markov Decision Process (MDP) characterized by a possibly continuous
state space ., a discrete action space .27, a state-transition distribution p(s;41|s;,a;), a
reward function r(s;,a;), and a discount factor y € (0,1). The reinforcement learning
objective is to identify an optimal (possibly random) policy 7*(-|s), with *(a|s) defining
the likelihood of doing action a when in state s, that maximizes the expected discounted

cumulative reward:

Ez

i ’}/r(slaat>
t=0

Below, we summarize the Soft Actor-Critic (SAC) Algorithm and one of its adaptations

for offline RL that performs conservative updates using an ensemble of Q-functions.

3.3.1 Soft Actor-Critic Algorithm (SAC)

We adopt Soft Actor-Critic (SAC), originally developed for continuous action spaces, and
adapt it to discrete actions (Christodoulou 2019). By introducing entropy regularization,
SAC strikes a balance between exploration and exploitation. Formally, for discrete actions,

the SAC objective is:

(o)

J(n):=E, ZO;/ (r(st,a:) +a(w(-|s))) |, (3.3)

where the entropy ¢ (7(-|s;)) is defined as

H(w(-|s)) = — %n(a]s;)logn(a!st),

and « is a temperature hyperparameter that controls the influence of the entropy term

as a regularizer promoting policy stochasticity. We further define a Q-function Q(s,a),
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estimating the entropy regularized expected cumulative reward from a state-action pair

(s,a) under policy 7:

O(s,a) :=Eg Zy'( r(s;,a —1—06%( (- |s,))>

S0 =3, ay = a.] (3.4)

We typically represent the Q-function using a parametric model Qg (s,a), e.g. a neural
network, to effectively handle continuous and high-dimensional state spaces. The policy
7ty (als), parameterized by ¢, is defined as a categorical probability distribution over
discrete actions conditioned on continuous states, facilitating straightforward computation
of entropy terms.

The parameters of the policy and Q-functions are updated iteratively using off-policy
experiences drawn from a replay buffer Z. Specifically, the Q-function parameters 6 are

updated to minimize the temporal difference (TD) error:

2
0« 0— nQveE(sa rs')~9 [(QG (S a) (l”—|— yEa’wﬂ(~\s’)[Q9’ (Slva/) — otlog Tty (a, | S/)])) }

where 1) is the Q-function learning rate, and 6’ denotes parameters of a target Q-network
periodically synchronized with 6 to enhance training stability. The policy parameters ¢

are updated to maximize the entropy-regularized expected Q-values:

¢ < ¢ + nﬂV¢Es~@ a~y (- [Q@ (S a) (X]Og Ty (a‘s)]a

where 1 is the policy learning rate.

3.3.2 SAC with an Ensemble of Q-functions (SAC-N)

While Soft Actor-Critic provides a stable framework for policy learning, its direct applica-
tion to offline reinforcement learning is challenging as the agent must learn solely from a
fixed dataset without further interaction with the environment. As a result, standard SAC
algorithms are prone to overestimation bias, which arises when the learned Q function
extrapolates inaccurately to out-of-distribution state-action pairs. This is particularly prob-

lematic in the policy improvement step in SAC, which explicitly encourages the selection
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of actions that maximize Q-values, amplifying the impact of overestimated values and
potentially steering the policy toward suboptimal or unsafe regions of the state-action space.
To address this, An et al. (2021) proposed the SAC-N model that maintains an ensemble
of N Q-functions, {Qg, }{\; |» to capture epistemic uncertainty and mitigate overestimation
bias. Each Q-function Qg, represents an independent estimate of the expected return for a
given state-action pair. To stabilize training and further reduce bias, SAC-N uses a target
Q-network ensemble {Qgi/}i.\’: |» Where each 6/ is updated via Polyak averaging of the
corresponding online parameters 6;. The target used for the Q-function update is based on
the clipped double Q-learning objective (Fujimoto, Hoof, and Meger 2018), with SAC-N
extending it by considering the minimum over the Q-functions ensemble as,

y(r,s',d) = r+ }/( ~_I}linNQ9i/ (s'.d") — atlog 7y (d’ | s/)), (3.5)

i=1,...,

The use of the minimum over the ensemble acts as a conservative estimate of the expected
return, reducing the likelihood of propagating overestimated values from out-of-distribution
state-action pairs that are common in offline datasets. Each Q-function Qg, is updated by
minimizing the mean squared Bellman error between its predicted value and the target
y(r,s',d'):

Z0(6) = E(s.0.1.5)~2, a'~my (1) [(Qgi(s,a) —y(r, s’,a'))z} , (3.6)

where & denotes the static replay buffer of environment interactions, which, unlike in
online RL, is fixed and is collected a priori without further interactions. The policy 7y
is then optimized to maximize the conservative estimate of the expected return, given by
the minimum Q-value across the ensemble, while incorporating the entropy regularization

term:

I2(0) =Esgaumy(s) |, min_Qp(s,a) —alogmy(als)| . (3.7)

i=1,...,.N
This objective encourages the policy to achieve a trade-off between maximizing a
conservative estimate of expected returns and maintaining high entropy. Higher entropy
promotes stochasticity in action selection, allowing the policy to occasionally choose

actions that are less frequent in the offline dataset. This behavior is particularly beneficial in
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the early stages of training, where increased randomness helps avoid overfitting to spurious
correlations in the data. To gradually shift the focus to maximize the rewards during the
training process, we follow Haarnoja et al. (2018) and learn the entropy coefficient @ by
minimizing a dual objective that encourages the policy entropy to match a target value.
This approach allows the agent to maintain high entropy when uncertainty is high and
gradually shift focus to reward maximization as learning progresses.

Although SAC-N mitigates overestimation by maintaining an ensemble of Q-functions,
it often requires a large ensemble size for stable performance. To address this, An et
al. (2021) introduced the Ensemble-Diversified Actor-Critic (EDAC), which adds a
diversification term to encourage diversity among the Q-function ensemble members. In
continuous action setting, they quantify similarity using an ensemble similarity (ES) metric

defined as:
<VLZQ9,' (S, Cl), Vaer <S7 a))
1VaQe(5,a) 1 VaQe,(s,a) |’

which measures the cosine similarity between the gradients of different Q-functions with

respect to the action vector. In the discrete action setting, where V,Q(s,a) is ill defined,
we adapt the ES metric by instead computing the mean squared deviation between the
Q-values across all actions. Specifically, we define gg(s,a) := (Qg (s,a") — Qg (s,a))a,ed,

and compute the cosine similarity between gg,(s,a) and gg, (s, a):

ESg.6.(5,a) = Yoco (Qo(s,d") — Qg(s,a)) (Qo,(s,d') — Qo,(s,a)) |
h \/Za’eﬂf (Qa,(s,a") — QG;(Saa))Z \/Za'e@z (ng (s,a') — Qe (s,a))2

The diversification loss is then given by:

N

g}gs(e) = E(sﬂ)wg [Z i ESG,-,Gj(S7a)] .

i=1 j=i+1

where 0 is short for {6;}% ;. The overall loss for each Q-function incorporates this

diversification term:

M=

Z0(8):=(1/N) Y Lo(6;) +nLes(6), (3.8)

=1

~
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where 1) is a hyperparameter controlling the strength of the diversity regularization. En-
couraging diversity among the Q-functions was shown empirically to improve uncertainty

estimation and leads to more reliable policy learning.

3.4 Epistemic Robustness with SAC

Ensemble based approaches, as discussed in Section 3.3.2, model the epistemic uncertainty
in value estimation using a finite collection of Q-functions, {Qgi}i.\; 1- Each Qg, encodes a
different hypothesis about the long term expected return, and conservative estimates are
obtained by taking the minimum over the ensemble min;—; _y Qpg,(s",a’). To formalize
the uncertainty captured by such an ensemble, we model the long term actions values
at a given state s as a distribution F{ (s) € .4 (R1). Here, Fg(s) defines a probability
measure over Q-value vectors ¢ € R, induced by the variability among the Q-functions,
and parameterized through 0. Each sample § ~ Fg (s) is a vector in Rl representing the
epistemic uncertainty about the action-wise values Q(s,-). For example, in the case of

SAC-N, this distribution takes the form of a scenario-based distribution:
q 1 ¢
FQ (S) = NESQGI'(S"% (39)
1=

where &, is the Dirac measure centered at x € RI/I. Thus obtaining that Feq (s) is the
distribution of G := Qg.(s,-) with i~ U(N),i.e. the uniform distribution over 1,...,N.
Given a Q-value distribution Fg = M (RW |), which maps each state s € . to a

probability measure over Q-value vectors, one can define an uncertainty set operator:
U MR = R,

that maps a Q-value distribution to a compact set of plausible Q-value vectors. The com-
position % oFy : ./ — % (RI1) defines an epistemic uncertainty set % (F{(s)) in each
state s, which can be used to construct robust evaluation and optimization of policies. For
notational simplicity, we will use % (s) as shorthand for % (Fy (s)) when the dependencies

on Feq are clear from context.
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This set captures uncertainty around the predicted Q-values and can take various
forms depending on the modeling assumptions. For instance, if Feq(s) is Gaussian, the
corresponding uncertainty set % (F (s)) may be defined as an ellipsoidal confidence region
centered at the mean and shaped by the covariance matrix. In the ensemble setting, where
F{(s) is a discrete distribution over Q-functions, % (F{ (s)) can be constructed again as a
confidence region or even as the convex hull enclosing the ensemble realizations, i.e. the
distribution’s support.

In the next section, we introduce our proposed framework, Epistemic Robust Soft Actor-
Critic (ERSAC), a framework that generalizes SAC-N by incorporating the uncertainty
sets constructed from the distribution over Q-values. We begin with a version of ERSAC
that operates with an ensemble of N Q-functions and establish the connections between
ERSAC and SAC-N methods. We then formalize the ERSAC algorithm, outlining its key

components, including the set-based Bellman backup and robust policy update.

3.4.1 The Epistemic Robust SAC (ERSAC) Model

Similarly as for SAC-N, our epistemic robust SAC algorithm trains the Q-function by
minimizing the expected squared Bellman error between the sampled realization and a
conservatively estimated target value measured using the distribution Feq over Q-functions.
Specifically, for each next state s’ € .7, the robust target value in equation (3.5) is first

modified to,

y(r,s') i=r+ '}/(qeq/r?;gl( ,))an%(.\y) lq(s',d") — alogmy(d' | s')] ), (3.10)
/ (Fg (s

where the minimum operator provides a robust estimate of the regularized expected

total discounted return and can be calculated using the support function associated to

% (Fi(s")):

min [E

wmy (1) a(s )] = =8 (— (- | )| U ('
bt o Bt [0, d)] = =8 (o )12 ()

with 6*(v|% ) := sup,ecq, (v,q). We refer the reader to Ben-Tal, Den Hertog, and Vial

(2015) for closed form expressions of §*(v|% ) for a list of popular forms of uncertainty

84



sets. The loss function in (3.6) is then redefined as:

LE(0) =Bty gorgis | (@@ —3(55))?] (3.11)

It is important to note that without additional regularization, the Objective in (3.11)
may admit a degenerate solution Fg.(s) = 8.). where q(s,a) := E(; 4, ¢\ a[y(r,5)],
which collapses the distribution to a deterministic point estimate. In practice, this requires
regularization strategies such as early stopping, entropy constraints on Fg , or prior-based
regularization to avoid mode collapse.

Similar to the Q-value target, the policy loss in the epistemic robust setting replaces
the ensemble minimum with a worst-case expectation over the uncertainty set. The robust

policy loss in equation (3.7) becomes:

/Jf(q)): Es~@

in E —al
i By @) - alogy(a )]

min (7 (- | 5),q) — ologmy(a | s)] . (3.12)

:EN/ ~ .
s~ ,a 7'c¢(\s) 1o (s)

Importantly, when using an ensemble based representation, the ERSAC formulation
encompasses SAC-N as a special case under a particular choice of uncertainty set. We for-

malize this connection in the following proposition and defer the proof to Appendix 3.9.2.

Proposition 3.4.1. Let Fg (s) be defined as in equation (3.9), and let the uncertainty set

operator be defined as

Upox(Fi(5)) = X e [essin GFd(s) [G(a)], eSSSUP G Fd (5) [c}(a)]] , (3.13)

i.e., a coordinate-wise box containing the support of Fg (s). Then, the robust Q-loss and

policy loss reduce to the SAC-N losses:
R ¢ R
25(6)= Y. Lo(6)+C and gE= g7,
i=1
for some constant C € R that is independent of 6.

This result demonstrates that ERSAC generalizes SAC-N under a unified uncertainty
set framework. In the next section, for any compact set representation % (s), we outline

the detailed training algorithm.
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3.4.2 The ERSAC Training Algorithm

In the earlier case, we modeled Fy (s) such that each sample G ~ Fg(s) is a vector in R/|
that represents the action-wise values Q(s, -). To place this representation in a more general
framework, we consider a reparametrized formulation as introduced in the Assumption
3.4.1. This formulation includes the ensemble case as a special instance where the noise
variable z indexes a finite set of Q-functions. More generally, this formulation admits

expressive stochastic representations with both discrete and continuous support.

Assumption 3.4.1. F/ is associated to a sampling operator q¢(s,a,z) and a distribution

F, € . (R%), such that qg(s,-,%) is distributed according to Feq(s) when 7 ~ F,.

Given a noise sample 7 ~ F7, a corresponding Q-vector sample § ~ Fg (s) is obtained
by evaluating the sampling operator over all actions:
g(a) :==qg(s,a,z), forallac <.

Formally, § = qg (s, -,Z) € RI| is a realization from the epistemic Q-distribution Fg(s),
induced via the sampling operator with epistemic variability governed by the latent variable
7 ~ F,. This reparameterized formulation subsumes the ensemble-based model described
in equation 3.9 as a special case, where the latent variable 7 € {1,...,N} indexes a finite
set of Q-functions, and the sampling operator reduces to gg(s,a,2) = Qe.(s,a).

In order to minimize .Z%, when Assumption 3.4.1 is satisfied, one can use a popular

reparametrization trick to derive a gradient for the critic parameters 0 as:
Vo L5(0) =VoE (s ars)ng.znr. [(a0(s,a,2) — y(r.'))?]
=E(surs)~z.~F [2(06(s,a,2) —y(r,s')) - Voqe(s,a,2)] . (3.14)
This gives rise to the stochastic update:
0 6192 (q0(s.4,2) —y(r5)) - Voda(s,a.).

The question of optimizing /,f is a bit more complex. We start by letting ¢*(s,; ¢)

be any statewise adversarial Q-value vector for policy 7y:

q*(s,-;¢) €arg min (my(-|s),q), Vs € .7, (3.15)
qEUp(s)
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which is well-defined due to compactness of % (s). Then, noting that the function

):=FE; 9 a4untls)| min (7w(-|s),q) —alogm(als
F(8) s =Es-zaentiy| min (3 |5).0) - aloga(al )

= ESN%@

in (7(- |
min (R(-[5):0) - 0B log(a )]

is concave with respect to 7, one can invoke the envelope theorem to identify one of its

supergradients as

V?rESrv@

(71 ).4"(5,-:0)) — AEqony log () sﬂ € Vaf(n)

We therefore obtain, fixing ¢ to ¢ that:

Vo Z2(9): =Esu [Vo (T (- | 5),4°(5,-39)) — A VoEyr,(fs) [logmy(a|s)] ]

= ESN@[ Zﬂq*(s,a;gb)v(pmp(a ’ S) — (XV¢<7L’¢(' | s),logmp(- | S)>] . (3.16)

This produces a standard entropy-regularized policy gradient, but is evaluated with
respect to the worst-case value vector g*(s, - ; @) in the uncertainty set, providing robustness
to epistemic uncertainty. We summarize the training procedure for Robust SAC-N in

Algorithm 8.

3.5 Sample Based Construction of % (s) from qy(s,a,?)

In Section 3.4, we introduced a robust SAC-N framework in which Bellman backups are
computed using uncertainty sets % (s) derived from distributions Fy (s) over Q-values.
While this formulation assumes access to the full distribution, often one can only ap-
proximate Fy (s) using Monte-Carlo samples, which form an empricial distribution ﬁeq (s).
Having access to Fy (s), one can approximate % (Fg (s)) with % (F{(s)).

In practice, constructing the uncertainty set %y (s) from the empirical distribution
ﬁg (s) requires choosing a specific set operator that defines the shape and inductive bias of
the epistemic uncertainty representation. Different choices of % (fg (s)) lead to varying

trade-offs between computational tractability, policy sensitivity, and expressiveness. In
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Algorithm 8 : Epistemic Robust SAC Training

Input : Initial policy parameters ¢, Q parameters 6, target Q parameters 6’,
offline data replay buffer &, learning rates )¢, 1z, target update rate 7

for each epoch do

Sample minibatch % := {(s,a,r,s')} from 2

Compute target:

y(r,s') < r+y (qegir% ,)<7F¢(‘\S/)aCI> — 0By, [log 7y (a/]s')])
AC)

Critic update:

1
0 0-mg 27 Y Eier [(d0(s,0,2) —¥(r,5) - Veqe(s,a,2)]

‘ | (s,a,r,s")€RB

Compute worst-case g* vectors:

“(s,-;0) < arg min (my(-|s),
(5.0) arg. min (7y(-|).0)

Actor update:

1
¢ ¢+nn-@ ) ( Y 4 (5,a:9)Vems(als) = aVyEy r, (als)log Ty (- | S)])

SEAB \acd

| Update target network: 6" <— 76 + (1 —1)6’

the remainder of this section, we present three popular sets from the literature of robust
optimization: box set, convex hull set and ellipsoidal set. Each of these constructions
induces a distinct worst-case Q-vector ¢*(s, -; ¢), shaping the Bellman backup in different
ways. We formalize each construction below and analyze their implications for robust

policy evaluation and learning.

3.5.1 Box Set

Let {Zi}é\; | be N values sampled from F;. The simplest construction is the box set intro-

duced in equation (3.13), which defines % (s) as the Cartesian product of the intervals

88



covering g(a) for each action. In a sample-based setting, this reduces to :

%bOX<F6q(S)) = Xaco i_l'{liang(S,a,Zi), iinl'laXqu(&a?Zi) : (317)
This construction treats Q-values for each action as independent and corresponds to
the uncertainty model used in SAC-N. However, it produces a worst-case Q-vector that
is insensitive to changes in the policy due to its over-conservative, i.e. ¢*(s,a;¢) =

min;c ] q(s,a,Z;) (see proof of Lemma 3.4.1) independently of ¢.

3.5.2 Convex Hull Set

A more expressive alternative is the uncertainty set operator that produces the convex hull

of the support of Fy (s). In a sample-based setting, this reduces to:
)|IAeRY, 4, >0Vi=1,...,N,

Y (F, {ZACIG 855 Zi)

This set captures all convex combinations of the sampled Q-values and preserves de-

M=

Ai = 1}. (3.18)

pendencies between actions. The worst-case Q-vector takes the form: ¢*(s,a;¢) =
qo(s,a,z"(s,9)) with z*(s, ¢) € argmin; E, 7, (.|)[q6 (s, a,Z)]. This is due to:

min K, min B, 0[Y Aige(s,a,Z;
€U (Fg (5)) ol [q( = A>0:pY | Ai=1 o )[Z’ 6! )

= min ME,. s,a,Z
A0y 1_12 7o 90 )

> g{iI\III}EaN%(.B)[QG(&a,Zi)] =Bz (Js)[a0(s,a,:27(s,9))].

3.5.3 Ellipsoidal Set

In this work, we will mainly consider an ellipsoidal set operator that aim to cover a certain
proportion v of the total mass of Fg (s). In a sample-based setting, this can be done by

estimating the empirical mean and covariance of the sampled Q-vectors:

1
N

1

~ 2 (a0 (s,,2) — () (a0 (s, 2) = u(s)) -

™M=

Cle(smfi), i(s) =

=
=
I
1=

i=1
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and estimating the radius as

~

= , 1 & A _ &
Y(s) :=inf{X]Z ) H{(ao(s:,2) — () "2(s) " (ap (s, 2:) — (s)) <T?} > v}
i=1
The corresponding uncertainty set is defined as:

Un(F(s) = {a € R (g - () TE(0) (g - 26 < TGP (319)

This set encodes second-order structure and supports efficient optimization. Indeed, when
f(s) is positive definite, the worst-case Q-vector under a given policy admits the closed-

form solution: R
—X(s)- AZ(SI)Z(P(' | 5) ‘
IZ()"/27a (- | 5)ll

This is due to:

min B,z lg(a)] = _ min  Eueny(gs)la(a)]
qE€Uen(Fg (s)) q:(g—f1(s)) TE(s) "1 (g—f(5)) <X (s)?

= _ min (7 (-]9),9)
q:(q—1(s)) TE(s) "1 (g—fa(5)) <X(s)?

= min_ (my(- |5), f(s) +2'/3C)
GEI<T()

> (s (-] ), () = Y(S)IE"2m(- | )]

A 2(s) 7 (- | )
= 1), a(s)—Y(s) — ,
<7T¢( | 5), f(s) —X(s) 50) 2, (- IS)H>

)

where we employed Cauchy—Schwartz inequality.

We refer the reader to Algorithm 9 for the pseudocode of the training algorithm based
on ellipsoidal uncertainty sets. The algorithm implements the robust Bellman backup and
policy update described in Section 3.4.2, leveraging ellipsoidal sets to model epistemic
uncertainty. Critic targets are constructed by penalizing the expected Q-value with a
Mahalanobis norm term aligned with the current policy, while the actor is optimized to
maximize the worst-case return within the ellipsoid. For completeness, pseudocode for the

box and convex hull variants is provided in Appendix 3.9.3.
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Algorithm 9 : Sample-based Epistemic Robust SAC with Ellipsoidal Uncertainty

(ERSAC-E)

Input : Initial policy parameters ¢, Q parameters 6, target Q parameters 6’,
offline data replay buffer &, learning rates 1¢, 1z, target update rate 7,
sample size N
for each epoch do
Sample minibatch % := {(s,a,r,s')} from
Sample N i.i.d. realizations {Z;} from F;
(s) «— y XLy do (s, 2)
£(s) ¢ X1 (a0 (s, 2) = () (a0 (s, %) — ()T
T(s) — 1nf{Y]
" (@005, 2) = () TZ(5) " (aa (5., 2) — A(5) < X2} = 0}
ﬁt(S’) NZ, 190 (', %)
£() ¢ H X (e (s 2) — () (e (s',.2) — ()T
Y(s') ¢ inf{Y]
L H(ar (s, 2) — () TG (aor (5,20 — A() < X7} > v}

Compute target:

¥(r) = (1), 2()) = T() || £
_ (an/N,r¢ [log Ty (a’\s’)] )
Critic update:

1 ~ ~
0 Q_WQZ@ Z EZNFZ [(Cle(sa%Z)—)’(”75/))'VGCI9(5761;Z)}
(s,a,rs')eB

Actor update:
oot o ¥ ¥ (6010 2R Ny
|%|s€%a€d HZ‘.1/2 775¢ H

—aVEqr,(s) [logms(als)]

Update target network: 6’ < 76 + (1 —1)6’
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3.5.4 Sensitivity of Worst-Case Q Vector to 7,

While the box set yields a fixed ¢*(s,-; ¢) independent of the policy, both the convex hull
and ellipsoidal sets adapt their minimizer g*(s,-;¢) to 7y (- | s). This flexibility introduces
a richer learning dynamic, allowing the Bellman backup to respond differently depending
on the current policy. From game theoretic point of view, at each state s, the agent proposes
a policy 7y (- | 5), and an adversary selects the worst-case Q-vector g*(s,-;9) € %p(s) that
minimizes the expected return (7y (- | 5),q). When the uncertainty set contains multiple
non-dominated extremal points, as is the case for convex hulls and ellipsoids, the Bellman
update becomes more responsive, capable of adjusting its conservativeness based on the
agent’s action preferences.

To illustrate this, consider the Machine Replacement example discussed in Section 3.1.
Figure 3.1 highlights this adaptivity across selected states by comparing the g* responses
of the three sets Zox (5), Zhun(s) and %y (s) as the policy 7 varies uniformly over the
probability simplex. This behavior leads to a more expressive training process that is

sensitive to the epistemic structure captured by the generative model.
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Figure 3.1: (a)—(c): Uncertainty sets and worst-case policy evaluations for states 0, 5, and
10 in the machine replacement example at epoch 1. Each subplot illustrates the distribution
of ensemble Q-values along with the corresponding box, convex hull, and ellipsoidal
uncertainty sets. Markers “X” indicate the worst-case Q-value ¢* under different policies
.

This adaptivity is particularly important in offline settings, where data coverage is often
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limited or biased. Structured uncertainty sets enable value estimates that are conservative
in underexplored regions while remaining responsive in well-covered ones, leading to

improved generalization without excessive pessimism.

The construction of these sets connects with the recent evolving literature in Estimate-
then-Optimize Conditional Robust Optimization (CRO). One line of work as proposed in
Chenreddy, Bandi, and Delage (2022), Goerigk and Kurtz (2020), Ohmori (2021), Sun, Liu,
and Li (2023), and Blanquero, Carrizosa, and Gémez-Vargas (2023) focuses on calibrating
uncertainty sets over realizations drawn from a conditional distribution F (g | s). These
methods construct high-probability sets % (s) C R such that for a random realization
g~ F(-|s),itholds that P(q € % (s)) > 1— 0. Such calibrated sets enable robust decisions
of the form maxzermingey (4 n' g, that ensure performance against probable realizations

of the uncertain quantity g, conditioned on covariates s.

A second line of work, common in distributionally robust optimization and robust
RL constructs ambiguity sets over the distribution F(- | s) itself, e.g., using moment
constraints, Wasserstein balls, or scenario-based support (Bertsimas, McCord, and Sturt
2022; C. McCord 2019; Wang and Chen 2020; I. Wang et al. 2023; Nguyen et al. 2021;

Esteban-Pérez and Morales 2022). In this setting, one solves:

max min E,r[n' g]=max min 7'g,
nell Fe.7(s) rell e (s)
where .7 (s) is an ambiguity set over distributions and % (s) := {E,-rlq] : F € F(s)} is

the implied uncertainty set over expected values.

Our work aligns more closely with the former, wherein we directly parameterize and
sample from a learned conditional distribution I?eq (s), and define a structured uncertainty set
w (feq (s)) over sampled realizations g ~ I:“\eq (s). This allows us to reason about epistemic
variability in Q-values without requiring a full ambiguity set over F{ (s). Bridging these
two lines of work could lead to rich formulations for epistemically robust reinforcement

learning, which we leave for future work.
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3.6 The ERSAC Model with Epinet (ERSAC(Epi))

Recall from Assumption 3.4.1 that we require a parametric sampling operator qg(s,a,z),
with z ~ F;, such that qg(s,-,z) ~ Fg (s), where F (s) € A (RI¥1) denotes a distribution
over Q-value vectors. We instantiate this generative model using an Epistemic Neural
Network (Epinet) introduced by Osband et al. (2023), which enables structured and
differentiable sampling from a single neural network. An Epinet supplements a base
network g, (s,a) € R, parameterized by 6, which yields the mean Q-value vector. From
this base, we extract a feature representation Yy, (s) € R, typically taken from the last
hidden layer. Epistemic variation is introduced via a latent index z ~ .4°(0,1) € R%,
These components are combined through a stochastic head og, (Y, (5),a,z) € R, which
modulates the structured uncertainty. The sampling operator for the Q-value vector is then

defined as,

qe<S,',Z) = .u'9”<sa')+GGG<IV9”<S)7'>Z)- (320)

The stochastic head is constructed as:

oo, (¥,-,2) = op. (¥,-.2) + 6" (v, ,2), 3.21)

with Gé‘c :R% x o x R% — R as a learnable function and 6¥ : R% x &/ x R% - Rasa
fixed prior. The fixed prior network o¥ encodes initial epistemic uncertainty by inducing
variability in predictions across samples of indices z. In well explored regions, G(%G can
learn better distributions for the predictive uncertainty, while in data sparse areas, ¥ can
induce the prior beliefs of the decision maker to guide conservative predictions. We can
now use it to generate the realizations of the Q-value vectors at a given state s by drawing

2~ A (0,1) to form the empirical distribution Fg(s) over Q values. This enables us to
employ the sample based epistemic uncertainty sets introduced earlier in the Section 3.5.
This construction yields a parameter efficient and fully differentiable reparameterization

of the Q distribution. Further, one can train these networks using a perturbed squared loss

94



inspired by Gaussian bootstrapping following the loss:

LEN(0) =yt 5. o | (10(5,0:2) = 3(18') = 64, 2)| + Au | P+ Ao 1651,

(3.22)
where each member (s,a,r,s’) from the dataset 2 is augmented with some ¢ randomly
sampled from the surface of the unit sphere S% to produce &, where 6 > 0 denotes
the bootstrap noise scale, and where A¢, Ay are regularization coefficients. This loss
encourages the network to match bootstrapped Q-targets while introducing variability
across z samples. It can be minimized via standard stochastic gradient methods. The ENN

critic updates thus become:

1 -
Oy < 6y —2np- <@ Z _H“32~FZ [(qe(s,a,z) —y(r,s")

(s,a,rs' c)eB

—6{c,2)) -V, lg, (s,a)] + 22y 9#) (3.23)

1
05 < eg—an’ <§ Z _EZNFZ [(qe(s,a,i)—y(r,sl)

| | (s,a,n,s' ,c)eP

_6<C7Z>) .VQGGSG(WGM (S),G,Z):| +2A’IJGIJ> (324)

In order to accelerate the evaluation of % (Fj (s) when employing an ellipsoidal un-
certainty set operator, we introduce additional structure in GGLG( v,-,z) and o (y,-,7) as

outlined in Assumption 3.6.1, namely that both operators are linear in z.

Assumption 3.6.1. The stochastic heads Ggg(l//, -,7) and 6 (y,-,7) are linear in 7, i.e.
o, (v.a,2) = (Gg,(v,a).2) . o' (y,a,2)=(6"(y,a).2),
for some 656 ‘R x of — R% and 67 : R x of — R%.
Assumption 3.6.1 induces a Gaussian distribution,

qo(s,",2) ~ A (He, (s), Za(s)), (3.25)
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where the covariance is defined as,
[29 (s)]a,a’ = <650 (WGM (S)7a) + GP(WO,L (S),Cl), 550 (WG,J (S) ) 61/) + 6P<w9u (S) ) al)>' This
gives rise to the Epinet based ellipsoidal set:

%6 = {a € R (g 10, 6) 20l -, ) < B! o)}, 329

where F);f;‘ (v) is the inverse cumulative distribution function of the y? distribution with
|/ | degrees of freedom. This construction provides a computationally efficient alternative
to ensemble-based epistemic modeling and enables closed-form worst-case Q-vector
computation for robust policy evaluation.

The training procedure for ERSAC with Epinet (ERSAC(Epi)) mirrors the structure of
the ensemble based approach described in Algorithm 9. However, rather than computing
the empirical mean and covariance from sampled Q-values, the special structured Epinet
model provides these quantities in closed form. Specifically, the mean vector is given by
the deterministic head g, (s), and the covariance matrix g (s) is derived analytically from
the structure of the stochastic head under Assumption 3.6.1. The ellipsoidal radius is set
to Y2(s) = F?;f;\ (v), corresponding to a v-confidence level. This eliminates the need for
sampling when constructing the uncertainty set, allowing efficient and differentiable com-

putation of the Bellman target and policy gradient. The full ERSAC(Epi) algorithm follows

the similiar steps as Algorithm 9 and is deferred to Appendix 3.9.3 for completeness.

3.7 Experiments

In this section, we present a comprehensive empirical evaluation of our proposed frame-
work for epistemic robustness in offline reinforcement learning. We quantify epistemic
uncertainty through uncertainty sets that can be seamlessly integrated into robust policy op-
timization. In Section 3.5, we introduced three types of sample-based uncertainty sets: box,
convex hull, and ellipsoid constructed from distributions over Q-values. Based on these
constructions, we instantiate three corresponding methods within the ERSAC framework:

ERSAC-B-N, which uses box set constructed over N ensembles, ERSAC-CH-N, which

96



employs convex hulls over the N ensembles and ERSAC-EII-N, which forms ellipsoidal
sets using the empirical mean and covariance of the ensemble. We further introduce
the ERSAC-EII-Epi model from Section 3.6, which replaces the ensemble with samples
drawn from an Epistemic Neural Network (Epinet). To maintain consistency with the
ensemble-based variants, we sample N latent indices z from the Epinet to generate Q-value
vectors. Finally, we propose ERSAC-EII-Epi* which leverages the special structure for
the stochastic head oy, (y,-,z) as defined in Assumption 3.6.1 to constructs the ellipsoidal
set directly without requiring sampling of Q vectors. We benchmark these methods against
the standard SAC-N baseline, which we have shown as a special case of our framework
under a box uncertainty set. To remain consistent with prior literature, we will refer to
ERSAC-B-N as SAC-N throughout the experimental section.

Our experiments span a diverse set of environments, including tabular domains (Ma-
chine Replacement and Riverswim), classic control benchmarks (CartPole and LunarLan-
der). Across these domains, we evaluate the ability of each method to learn effective
policies under distributional shifts arising due to changes in the behavioral policies gener-
ating the data and limited data coverage.

A key contribution of our experimental setup is a novel offline RL benchmarking frame-
work that enables control over the risk sensitivity of the behavior policy used to generate
offline datasets. By adjusting the level of optimism or pessimism through expectile-based
value learning, we can systematically evaluate how the nature of behavioral data affects
the performance of offline RL algorithms.

To induce risk sensitivity in behavior policies, we adopt a modified actor-critic al-
gorithm that incorporates the dynamic expectile risk measure (Marzban, Delage, and Li
2023). This implementation constructs one-step expectile targets using a bootstrapped

Bellman update. Specifically, for each traversed (s,a), we compute the target as

yi= sup{z:

B, () |

71 <z <r+ }/maxQef(s’,a’)> ’ : (z— r— }/maxQef(s’,a')) } < 0},
a a
where py, (-|s,a) is the empirical distribution of N resampling of the transition from (s,a).
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We then update the critic to minimize the squared error to this expectile target. The actor is
trained using standard policy gradient objective, which seeks to maximize the expected
Q values. After a fixed number of training episodes, the resulting policy 7y reflects the
desired level of risk sensitivity encoded by 7. We then use this policy to collect an offline
dataset of size Ny via €-greedy interaction with the environment, selecting a random action
with probability € = 0.1. This process yields datasets that systematically vary in their
underlying behavioral bias. Full details of the implementation are provided n Appendix

3.9.3 (see Algorithm 13).

3.7.1 Evaluation on Tabular Tasks

We begin our evaluation with focusing on two popular tabular MDP environments, Ma-
chine Replacement problem and Riverswim. These settings offer interpretable structure
while capturing key challenges in offline RL, including sparse state-action coverage, and
high sensitivity to policy extrapolation. More importantly, the tabular setup allows us to
isolate the effects of epistemic uncertainty arising from limited data coverage, without
confounding factors introduced by function approximators used in deep RL such as overfit-
ting, instability, or extrapolation error. This enables a clean evaluation of how different
uncertainty set constructions mitigate overestimation in offline learning, specifically in
settings where epistemic uncertainty is the dominant source of error. For each environment,
we construct a variety of offline datasets by systematically varying two key parameters,
dataset size and behavior policy risk sensitivity. To evaluate sample efficiency, we vary
the dataset size across three levels, 10 x ||, 100 x ||, and 1,000 x ||, where |.|
denotes the number of states in the environment. These correspond to increasing levels
of coverage over the state-action space and allow us to systematically study the impact of
data availability on policy performance. Empirically, we observe that beyond 1,000 X |.|
samples, the learned empirical transition dynamics closely approximate the true transition
model, yielding diminishing returns from additional data. To induce behavioral bias and

control epistemic uncertainty, we vary the behavior policy using the dynamic expectile
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risk measure at three levels: risk-seeking (7 = 0.1), risk-neutral (7 = 0.5), and risk-averse
(T =0.9). These settings correspond to qualitatively distinct exploration profiles and result
in datasets with varying coverage of the state-action space.

We evaluate performance using normalized returns, which measure the improvement
of a learned policy over a uniformly random policy, scaled relative to the performance of

the optimal policy. Specifically, for a learned policy 7, we compare
(‘](ﬂ:) _J(ﬂ:rand)) / (J(TL'*) _J(nrand))

where J(7) is the expected returns under policy 7, computed as the average return over
100 evaluation episodes, T,nq is the random policy, and 7* is the optimal policy.

Table 3.1 summarizes normalized returns across methods and data regimes. We observe
that in small datasets (e.g., 100 samples), CH-N and Ell_0.9-N outperform B-N by up to
75% demonstrating the advantage of structured epistemic reasoning in the case of low
coverage. As dataset size increases, all methods improve, but structured uncertainty sets
tend to converge more quickly toward optimal returns. Under risk-averse data regimes
(T = 0.9), where epistemic uncertainty is highest, ellipsoidal variants remain robust, with
Ell-N and Ell_0.9-N effectively modulating conservativeness to sustain performance.

A key advantage of the ellipsoidal uncertainty set is its tunable scaling parameter
€, which controls the conservativeness of the set. To validate its impact, we compare
ellipsoids constructed to cover 100% of ensemble samples (ElI-N) versus 90% (Ell_0.9-
N). Empirically, we observe that the more compact ellipsoid with 90% coverage often
yields better performance, likely due to excluding outlier critics and avoiding excessive
pessimism. Based on this finding, we adopt the 90% coverage threshold as the default

configuration for ellipsoidal sets in subsequent Gym based experiments.

3.7.2 Evaluation on Gym Environments

We next evaluate the proposed methods on two widely used Gym environments—CartPole
and LunarLander. CartPole is a well known control problem involving binary rewards and

continuous states, while LunarLander presents a more complex challenge with continuous
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Env DS 7 [SAC-N CH-N EI-N EIL0.9-N | Beh. Policy
10x 01| 80+3 85+2 87+1 88+2 86+3
100x 01| 971 97+1 95+2 9642 86+3
1,000 0.1 | 98+2 9842 9642 96+ 1 86 +3
10x 05| 87+2 88+2 90+2 91+2 10040

MR 100x 05| 97+1 98+1 9242 9442 10040
1,000x 0.5 | 98+2 98+2 98+2 99+ 0 10040
10x 09| 85+2 86+2 90+2 90 +2 92+2
100x 09| 96+2 96+2 9542 9642 92+2
1,000x 09| 96+2 9642 9642 96 + 1 92+2
10x 01| 37+4 64+2 57+3 66+3 —20+3
100x 0.1 | 92+2 9442 94+3 94+3 —20+3
1,000x 0.1 | 99+1 100£0 1000 10040 —20+3
10x 05| 56+£2 60+2 60+2 62+1 100+0

RS 100x 05| 9742 99+1 98+1 99+ 1 10040
1,000x 05| 99+1 99+1 1000  100=+0 10040
10x 09| 49+2 49+4 48+1 5243 34+4
100x 09| 99+1 99+1 1000  99+1 34+4
1,000x 09| 99+1 99+1 1000 10040 34+4

Table 3.1: Normalized returns with 90% confidence interval achieved by SAC-N, CH-
N, ElI-N, and Ell_0.9-N across dataset sizes {10x,100x,1,000x } and behavior policy
risk levels 7 € {0.1,0.5,0.9} in the Machine Replacement and RiverSwim environments.
Scores are computed over 10 evaluation seeds and normalized relative to the random and
optimal policy baselines. Bold and underline highlight respectively the best and worst
performing method when the margin is larger or equal to one. The final column reports the
return of the behavior policy used to generate the offline data.

states, shaped rewards, and a higher dimensional state-action space. Similiar to the tabular
setting, To construct the offline datasets, we again vary two key factors: dataset size and
behavior policy risk profile. For each environment, we generate nine datasets by crossing
three data sizes, 1,000, 10,000, and 100,000 transitions and with three expectile levels,
T = 0.1 (risk-seeking), T = 0.5 (risk-neutral), and T = 0.9 (risk-averse). Behavior policies
are trained to convergence using a dynamic expectile based actor-critic model, and fixed

trajectories are collected for each configuration.

Table 3.2 presents normalized returns across the different methods and dataset regimes.
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Env DS T | SAC-N CH-N ENL09-N Ell-Epi EI-Epi* | Beh. Policy
lk 01| 84=£3 81%£2 861 84+1 85+2 86+2
10k 0.1 92£2 94+£2 1000 100+0 100=£0 86+2

100k 0.1 [ 100£0 1000 1000 1000 100=£0 86+2

Ik 05| 702 72+1 73+£3 T72+2 71£2 100£0

CP 10k 05| 972 99+1 1000 1000 100+£0 100£0
100k 0.5 | 1000 100+£0 100£0 1000 100+£0 100£0

Ik 09| 73£2 70£3 78+2 80+1 75+2 83£2

10k 0.9 | 1000 100=£0 1000 1000 100=£0 83+£2

100k 0.9 | 100£0 100+£0 1000 1000 100+£0 83+2

Ik 01| 721 771 BLt2 97+£3 98+t2 94+£3

10k 0.1 94+£2 98+£1 102+1 102+3 103+1 94+£2

100k 0.1 | 99+1 100+3 1061 110+3 108=+1 94+2

Ik 05| 683 73£3 9%6+3 95+1 97+1 100£2

LL 10k 05| 93£3 99+1 1001  99+1 102+1 1002
100k 05| 98+£2 100+£1 102+2 108+2 105+2 100£2

Ik 09| 67£2 73£2 972 98+2 97+2 78£3

10k 09| 92+2 92£3 101+2 100+4 102+2 78+3

100k 09| 98+2 101+£2 103+1 104+2 105+1 78+3

Table 3.2: Normalized returns with 90% confidence intervals achieved by the five
algorithms across dataset sizes {1k, 10k, 100k} and behavior-policy risk levels 7 €
{0.1,0.5,0.9} in CartPole and LunarLander. Scores are averaged over 10 evaluation
seeds and normalized against random and optimal baselines. Bold and underline highlight
respectively the best and worst performing method when the margin is larger or equal to
one.

We consider the policy trained under the risk neutral behavior(t = 0.5) as the reference
optimal policy. First, models CH-N, Ell_0.9-N, Ell-Epi consistently outperform the
box baseline B-N, particularly in data scarce and risk averse settings where epistemic
uncertainty plays a larger role. When we aggregate returns across dataset sizes by risk
level (As presented in Table 3.3), we observe that Ell_0.9-N consistently achieves strong
performance under risk-neutral and risk-seeking behavior policies, suggesting that the
method effectively leverages optimistic data to enhance policy learning.

Further, ellipsoidal variants offer robust and often best performance across most

settings. Notably, Ell-Epi* matches or surpasses ensemble based Ell_0.9-N in several
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Env 7=0.1 =05 =09

MR 93+£5 95+4 94+£3
RS 8715 87+£17 84+£22
CartPole 95+8 93+14 92414

LunarLander 103+7 9945 99+5

Table 3.3: Aggregated performance of Ell_0.9-N across environments with mean =+
standard deviation. Bold and underline highlight respectively the best and worst performing
source of data.

settings, indicating that Epinet based uncertainty representations can serve as lightweight
and effective alternatives to ensembles. This advantage is further supported by runtime
measurements (Table 3.4), which show that the Epinet based model, which learns the
ellipsoidal sets directly, are able to achieve comparable performance with significantly
lower computational cost, making it an attractive choice for scaling to more complex

domains.

Model SAC-N CH-N EIlL09-N El-Epi El-Epi*
Runtime (s/epoch)  0.35 0.42 0.56 0.60 0.10

Table 3.4: Runtime per training epoch for each model in LunarLander with 100,000 offline
transitions and 7 = 0.5, averaged over 10 seeds

To further understand how uncertainty sets affect learning dynamics, we analyze pol-
icy entropy during training. Figure 3.2 shows that Box-based methods (B-N) exhibit
consistently lower entropy throughout training, indicating less stochastic policies. This
behavior leads to early convergence toward deterministic actions, which may result in
suboptimal local solutions. While all methods eventually stabilize, as discussed in Sec-
tion 3.5.4, CH-N, ElI-N, and Ell-Epi offer greater flexibility in shaping the value function
q*(s,-;¢). This flexibility translates to more exploratory behavior when deriving the policy
7y (- | 5), ultimately enabling better identification of high-performing actions under offline

constraints.

102



™

4 1000 2000 3000 4000 5000
Epochs

(a) CartPole

0 1000 2000 3000 4000 5000
Epochs

(b) Lunar Lander

B B_N B CH_N M EIl 09 [J Ell_Epi

Figure 3.2: Policy entropy during training across B_N, CH_N, Ell_0.9, and Ell_Epi models
in the CartPole and LunarLander environments. Entropy is computed per epoch and
averaged over 10 evaluation seeds. Lower entropy indicates more confident, deterministic
policies, while higher entropy reflects greater stochasticity.

3.8 Conclusion

This chapter presented Epistemic Robust Soft Actor-Critic (ERSAC), a unified frame-
work for offline reinforcement learning that robustly accounts for epistemic uncertainty
through structured uncertainty sets over Q-values. By replacing traditional ensemble based
pessimism with compact and expressive uncertainty sets, ERSAC enables conservative
yet flexible value estimation and policy optimization. We showed that our framework

generalizes SAC-N as a special case, and supports multiple set constructions such as box,
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convex hull, and ellipsoids, each offering trade-offs in expressiveness and computational
cost. Building on this, we introduced an Epinet based variant of ERSAC that generates
ellipsoidal uncertainty sets in closed form, thus eliminating the need for sample-based
approximations and significantly reducing runtime without compromising performance.

Through comprehensive evaluations across tabular and continuous environments, we
demonstrated that ERSAC variants, particularly those using ellipsoidal and Epinet-based
sets, achieve better performance. Our experiments also introduced a novel benchmark to
systematically assess offline RL algorithms under varying degrees of risk sensitivity in
behavior policies, highlighting the importance of aligning epistemic modeling with the
data generation process.

Beyond these results, ERSAC demonstrates how set-based modeling can replace
variance inflation or large ensembles as a principled approach to epistemic uncertainty. By
explicitly bounding plausible Q-values, the Bellman backup adapts its conservativeness to
the data by being nearly deterministic in well covered states, and cautious in underexplored
ones. Such adaptivity is especially valuable in offline to online deployment and sim-to-real
transfer. In sim-to-real settings, the gap between simulated dynamics and real world
behavior often leads to systematic performance drops. Existing approaches typically
address this mismatch through domain randomization or by inflating ensemble variance,
both of which can be computationally expensive and prone to over conservatism. ERSAC
instead frames these discrepancies as a form of epistemic uncertainty, modeling them with
structured sets that explicitly capture the range of plausible Q-values. By doing so, ERSAC
ensures that policies remain cautious in regions where the simulator is unreliable, while
still exploiting reliable aspects of the model without excessive conservatism.

There remain, however, several promising directions for future research. One natural
extension is to construct uncertainty sets that are robust not only to epistemic variation
but also to distributional ambiguity, thereby capturing a broader range of model mis-
specification. Another direction involves incorporating risk-sensitive objectives directly
into the learning process so that agents can explicitly account for tail events in returns.

Extending epistemic robustness to multi-agent and hierarchical reinforcement learning is
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also compelling, as it would require coordinating uncertainty across interacting agents or
abstraction layers. Furthermore, many real-world environments feature state-dependent
feasible actions, 7 (s) C <7, rather than a single global action set. In such cases the
uncertainty set % (s) must be restricted to feasible coordinates, altering its geometry and
influencing the adversary’s choice of ¢*(s, -; ¢). Finally, while our methods show strong
empirical performance, establishing finite-sample guarantees and deriving robust regret
bounds under epistemic uncertainty remain important theoretical challenges. Taken to-
gether, these contributions highlight that structured and computationally efficient epistemic
modeling offers a foundation for safe, generalizable, and scalable offline reinforcement

learning.
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3.9 Appendix

This appendix provides theoretical and implementation details that support our main results.

Section 3.9.2 presents a formal lemma and proofs. Section 3.9.3 contains algorithmic

pseudocode for the ERSAC variants proposed in this work and Section 3.9.3 details the

details regarding experiments training and additional analysis.

3.9.1 Machine Replacement Example

T 1 2 3 45 6 7 8 9 10
01. 0 0 00 0 0 O0O0OT1 1
05 000000111 1
09 0 0000 T1TT1T1T1 1

Table 3.5: Optimal actions for each state under different expectile levels 7. Action 0
corresponds to progressing forward; Action 1 corresponds to jumping to state 1 with -100

reward.
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Figure 3.3: State visitation frequency distributions under different expectile policies.

3.9.2 Proof for Proposition 3.4.1

We begin by analyzing the robust estimator term present in both the conservative target

value in equation (3.10) and the policy loss in (3.12): mingeg, () (7T (- | 5), ). Given that
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the uncertainty set is defined as a coordinate-wise product box and that 7y (- | s) > 0, the

minimum must be achieved at the coordinate-wise lower bound:

q (a)= essinfy_pa() [G(a)] = essinf;_y;(y)[Qg;(s,a)] = lm[g/l} Qg,(s,a), Va€ .

The robust evaluation then becomes,

Eior (s
qem%lﬁ )<7T aez:;/% (als) mlﬂ Qg,(s,a) =By, (s) Lfé% Qo (s, a)}

Hence, the conservative target value becomes

y(rs') =r+ Y(EQ/N% (1) {mln Qq,(s',d") — alogmy(d' | s’)} )

€[N]
= Eyry (1) [H— y(zrg[lz\rfl] Qi(s',d") — alogmy (d' | s’))}
- Ea’~n¢( |s") [y(r, Slaa/)}

We thus have that

Z50) =E(4ri)na. G~F(s) :(q(a)—y“s/))z}

2
= E(s.ars)~a, g~FJ(s) (ﬂa)—Eal~n¢(.|sf)MHS’M')]) }

= E(s,a,r,s’)w,@, G~F{(s) _Q(a)z - 2@(a>Ea’~n¢(~|s’) [y(rv Sl? a/)] + Ea’~7r¢(~\s’) [)7(7’, S/, a,)]z}

= E(s.ars)~a, g~Fl(s) _67(61)2 —24(a)E gz, (5 (1,8', )] + ooy (1) (1 S',a/)z]}
+ E(s,a,r,s’)w.@ [Ea’~ﬂ¢( |s’) [y(rv Sla a/)]Z - Ea’~n¢(~|s’) [y(r7 Sl) al)Z]:|

- IE“(s,a,r,s’)w.@, GFg (s),a ~ms (-|s') [Q( ) 2(]( )y(rv Slva/> +y(r7 Slva/)z] +C

:H‘E(s,a,rwv’)fv@7 qNF‘I( s),a' ~7(-|s") |:(67 (rs a ))2:| +C
=(1/N) ZEM,S )~ D.d ~Ty(-]s") [(Qe, y(r,s/,a/))Z] +C
— (1/N) Y. Zo(6

where
C:= E(s,a,r,s’)w@[(]Ea’Nmp( Is") [y(r, Slaa/)])z] - E(s,a,r,s’)w@ﬂ’wﬂqj(~|s’) [y(r, Slya/)z}
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due to g(a) being independent of y(r,s',a’) given (s,a,r,s’).

On the other hand, we have that:

FHO) =By | min (7(-19).)~ clogolal 5]

=B 9.4y (1s) | Barmmy (-1s) [lfél[gl} Qg,(s,a")] — atlog my(a | S)]

= Es~9,a~n¢(-|s) lfél&\lfl] Qp,(s,a) — alogmy(a | s)]

This completes our proof.
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3.9.3 Algorithmic Implementation Details

In this section, we present the pseudo-code for the algorithms discussed in the main work.

ERSAC with Box and Convex Hull Sets

Algorithm 10 : Sample-based Epistemic Robust SAC with Box Set
Input : Initial policy parameters ¢, Q parameters 6, target Q parameters 6’, offline

data buffer &, learning rates 7o, Nz, target update rate 7, sample size N

for each epoch do
Sample minibatch % := {(s,a,r,s')} from
Sample N i.i.d. latent variables {Z;}? | from F,
Compute robust targets:

yoox(r8) = r 47 [ ¥ mplals)- minag (s'.a,2) — o Y mp(als))log zp(als')

ace/ i[N] ace/
Update critic network:
2 . p .
QFG_nQ'@ Z EZNFZ [(Cle(svaaz)—}’(ras))'VGCIG(S,G,Z)]
(s,a,r,s"\EB
Update actor network:

1 ) -
¢ ¢+nn‘@ Zﬂ Z;{lrg&g] qe(s,a,21)V 7y (als) — aVyEqr, (|5 [logms(a | )]
SsEH ac.

Update target network: 6’ < 70+ (1 —1)0’
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Algorithm 11 : Sample-based Epistemic Robust SAC with Convex Hull Set

Input : Initial policy parameters ¢, Q parameters 6, target Q parameters 6’, offline
data buffer &, learning rates 1o, Nz, target update rate 7, sample size N
for each epoch do
Sample minibatch 8 := {(s,a,r,s")} from 7
Sample N i.i.d. latent variables {z;}YY | from F,
Compute robust targets:
Yhatt(7,8') :=r+7y (min Z my(als’)-qg/(s',a,2) — o Z 7y (als") log my (a|s’))
i€[N] jcoy acd
Update critic network:
00-no T Eer[(@0(5.0.2) ~y(n))- Vodo(s.a.2)
(s,a,r,s"\€B
Update actor network:

i*(s,a) := argmin Z my(als)-qe(s,a,z;)
ie[N](lG,Q{

1 -
¢ ¢+nn-@ Zj %qe(S,a,zi*(s,a))v¢7f¢(a|~9)—OCVq)EaN:%(.s) [logmy(a|s))
sERBac

Update target network: 6’ < 70+ (1 —1)60’
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Epinet-based ERSAC with Ellipsoidal Uncertainty

Algorithm 12 : Sample-based ERSAC with Ellipsoidal Uncertainty using Epinet
Input : Initial parameters for policy ¢, Q-network (6, 65), and target network

(9"“ 65 ); offline data Z; learning rates 1¢, )z, and T; noise scale G;
regularization coefficients A, As; sample size N
for each epoch do
Sample minibatch % := {(s,a,r,s’,c)} from augmented buffer ¥
Sample N i.i.d. latent indices {Z;}Y | ~ .47(0,1)
Construct uncertainty set (Epinet-based ellipsoid):
A() gy (), Gor(s'sa) Ok (v, (5).) + 67 (v (), )
Yo/ (5 ) < (Og/(s',a),69(s',d"))

Compute robust targets:

¥() = ry (o (1), () = p | 242 (19') || — @ Err, log s (@15)] )

Update critic network:
1
Oy < Oy —2ng- 7 Y Bz (o) [
(s,a,n,s' ,c)eAB

(qg(s,a,i) —y(r,s') — 6<C,Z>) -V, L, (s,a)] +24,0,

05 <+ 05 — 2TIQ e Z ]EZNJV(O,]) [
| | (s,a,r,s' ,c)ER

(q0(57a72) _y(r7sl) - (_5<C,Z>) : VQgGgg(WGH (s),a,Z)} +2l<;90-

Update actor network:

O O+ng- ‘%‘ ) [Z (,ﬂ(s,a) 0 Zo(s)7y(als) >V¢7t¢(a|s)

o A DEEGEAEDI

— - VyEqun,[logmy (a|s)]]

Update target network: 6’ + 7-6+ (1 —1)-6’
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Risk-Sensitive Offline Data Generation

Algorithm 13 : Offline Data Generation via Dynamic Expectile Risk Policies

Input : Environment .#; risk level 7 € (0, 1); dataset size Ng; initial policy
parameters ¢, Q parameters 6, target Q parameters ', learning rates 1,
Nr; exploration rate €; number of samples N for P(:|s,a) approximation

Output : Offline dataset &

Initialize policy parameters ¢ and value function parameters 0

for each epoch do

Reset environment .# and observe state s

while Episode not done do

Sample transition (s,a,r,s") by executing current policy 7y

Resample N; transitions from (s,a) to assemble py, (+|s,a)

Compute expectile target:

y < sup {z ' Egpy, (Isa) { 71 (z <r-+ ymax ng(s’,a’)) ‘ :
(z— r —ymax Qe/(S’,c/)) } < 0}
Update value function:
0« 0 —1g-Vo(Qp(s,a) —y)’

Update policy:

¢ ¢+ Mz Equry(fs) [Vologms(als) - Qe (s,a)]

Move to next state: s < s’

Update target network: 6’ < 70+ (1 —1)0’
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Algorithm 13 : (continued)

Offline Data Collection with £-Greedy Exploration:
Initialize empty dataset & < 0
while | 7| < Ny do
Observe state s from environment .#
if RandomUniform(0,1) < € then
‘ Sample action a@ ~ Uniform(.%?)
else
L Sample action a ~ 74 (-|s)

Execute action a in environment to observe r and s’

Store (s,a,r,s") in buffer 2

return Dataset

Training algorithm details

We evaluate all algorithms on a tabular Machine Replacement MDP with § = 10 states and
A =2 actions. Transition dynamics are defined probabilistically, with increasing expected
costs for continued operation and a reset mechanism triggered by replacement actions.
Rewards are state- and transition-dependent, with negative values to simulate maintenance
costs and catastrophic penalties for failure.

To construct behavior policies, we implement risk-sensitive value iteration using the
expectile risk measure at levels 7 € {0.1,0.5,0.9}. Expectile backups are computed by
solving a convex root-finding problem for each state-action pair. Policies are derived via
one-hot argmax over the resulting Q-values.

We generate offline trajectories using the expectile-optimal policy 7; for each 7. At
each step, with probability 0.1, a uniformly random action is taken for exploration. We
vary the number of transitions M € {100,1,000, 10,000} and use ten random seeds per
setting. Each trajectory entry records (s,a,s’,r).

We evaluate three risk-sensitive SAC-N variants using N = 100 Q-ensemble members.
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Each method includes entropy regularization with coefficient @ = 0.01 and actor-critic
learning rates 1, = 1z = 0.01. Target networks are updated using Polyak averaging with
7 = 0.005.

We report normalized returns with respect to the optimal and random policies:

) Veval — Vi
Normalized Return = eval random

)
optimal — Vrandom

averaged over 1,000 episodes. Returns are discounted with ¥ = 0.9. We repeat all experi-
ments across ten seeds and report the mean and standard deviation. All code is implemented
in Pytorch and NumPy using vectorized operations. Root-finding in expectile computation

uses a bisection method with machine epsilon tolerance.
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General Conclusion

This thesis presented Conditional Robust Optimization (CRO), a novel framework for
learning context dependent uncertainty sets that enable robust, data driven decisions.
Unlike classical robust optimization, which relies on global worst-case uncertainty sets, the
CRO paradigm models uncertainty as a function of observable covariates, thus allowing
decisions to respond meaningfully to evolving information. Chapter 1 formalized this
paradigm, provided formulations with statistical coverage guarantees, and established a

foundation for contextual robustness in data driven settings.

Subsequent work has extended CRO in several directions centered around the core
insight that robust decisions should also adapt to context. Y. P. Patel, Rayan, and Tewari
(2024) apply conformal prediction to construct non-convex uncertainty sets with finite-
sample guarantees. Sun, Liu, and Li (2023) propose a predict-then-calibrate framework
that decouples prediction from robust optimization in linear programs. J. Yang et al. (2022)
introduce causal transport-based sets that preserve conditional dependence structures,
while Zhang et al. (2024) leverage high-dimensional support vector clustering to construct

localized, feature-dependent sets.

To align uncertainty quantification more tightly with decision objectives, Chapter 2
further developed an end-to-end CRO (E2E-CRO) methodology that jointly learns uncer-
tainty sets and robust decisions via a differentiable surrogate for the robust objective. This
contributes to the growing literature on decision-aware uncertainty modeling. For example,
Ma, Ning, and Du (2024) propose differentiable DRO layers for mixed-integer programs,

Cortes-Gomez et al. (2024) optimize conformal prediction sets for decision utility, and



Jacquillat and Li (2024) study regret-optimal learning in settings with irreversible deci-
sions. I. Wang et al. (2023) propose directly minimizing expected decision loss through a
stochastic augmented Lagrangian approach to uncertainty set learning.

In the third chapter, we extended these ideas to the sequential decision-making setting
using Epistemic Robust Soft Actor-Critic (ERSAC) model. ERSAC brings conditional
robustness to offline reinforcement learning by constructing state dependent uncertainty
sets over Q-values that reflect epistemic uncertainty. Rather than relying on large ensem-
bles, ERSAC leverages an Epistemic Neural Network to model rich uncertainty structure
while maintaining scalability and differentiability. This enables robust Bellman backups
and conservative policy learning in data limited, high stakes environments. ERSAC gener-
alizes the CRO philosophy of adapting robustness to context in dynamic settings where
uncertainty evolves along with the trajectory, and decisions must remain safe under limited
feedback from the environment.

Looking ahead, several promising directions emerge under the broader theme of
contextual uncertainty. A key challenge is to develop generalization guarantees for decision
performance when uncertainty sets are learned from finite data. Extending contextual
robustness to multi-stage or sequential optimization also remains largely open. Here,
uncertainty not only depends on context but can evolve as a function of both past states and
decisions, suggesting the need for autoregressive constructions that remain tractable while
preserving statistical validity (Malinin and Gales (2020)). Another emerging direction
is the integration of fairness constraints into the structure of context dependent sets.
This involves ensuring that the coverage and conservativeness of the learned sets do
not systematically vary across sensitive groups or features. For example, one could
enforce demographic parity in coverage rates, or penalize heterogeneity in set sizes across
subpopulations, thereby preventing minority groups from being systematically over or
under protected. Incorporating fairness at the level of uncertainty sets requires balancing
statistical guarantees with equitable treatment and would expand the applicability of
contextual robustness to socially sensitive domains such as healthcare, credit allocation,

and personalized decision making (Kuzucu et al. (2023)).
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Beyond structured tabular covariates, there is also growing potential in leveraging
unstructured and multimodal data such as text, images, or sensor streams to inform
uncertainty set construction. Multimodal contexts could allow decision making models
to incorporate richer side information (e.g., medical imaging in healthcare, or natural
language in recommendation systems) when quantifying epistemic uncertainty. However,
integrating high dimensional modalities raises challenges for both statistical validity and
computational tractability i.e., coverage guarantees must extend to feature spaces where
distances are poorly defined, and scalable learning procedures must be developed to
map complex embeddings into tractable uncertainty sets. One promising direction is to
combine representation learning with contextual robustness, using pre-trained encoders to
extract lower dimensional features while calibrating set construction on the latent space.
Successfully incorporating multimodal data could substantially broaden the scope of
contextual robustness, enabling its deployment in modern Al systems where decisions

increasingly rely on heterogeneous sources of information.
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