
HEC MONTRÉAL
École affiliée à l’Université de Montréal

Heuristic and Exact Methods for Workforce
Scheduling and Routing Problems

par
Nicolás Cabrera Malik

Thèse présentée en vue de l’obtention du grade de Ph. D. en administration
(Spécialisation Gestion des opérations et de la logistique)

Mai 2025

© Nicolás Cabrera Malik, 2025





HEC MONTRÉAL
École affiliée à l’Université de Montréal

Cette thèse intitulée :

Heuristic and Exact Methods for Workforce
Scheduling and Routing Problems

Présentée par :

Nicolás Cabrera Malik

a été évaluée par un jury composé des personnes suivantes :

Yossiri Adulyasak
HEC Montréal

Président-rapporteur

Jean-François Cordeau
HEC Montréal

Codirecteur de recherche

Jorge E. Mendoza
HEC Montréal

Codirecteur de recherche

Marilène Cherkesly
Université du Québec à Montréal

Membre du jury

Dominique Feillet
École Nationale Supérieure des Mines de Saint-Étienne

Examinateur externe

Okan Arslan
HEC Montréal

Représentant du directeur de HEC Montréal





Résumé

Cette thèse explore le problème de planification et de tournées du personnel (WSRP),

une variante du problème de tournées de véhicules qui vise à organiser les déplace-

ments d’un groupe de travailleurs pour réaliser des tâches auprès d’une clientèle

variée. Le WSRP est crucial dans des secteurs comme la maintenance du réseau

électrique et les soins à domicile, où l’on cherche à optimiser l’efficacité, les coûts

et la satisfaction des clients. Les approches classiques supposent souvent que les

travailleurs peuvent se garer directement chez les clients, ce qui est peu réaliste en

milieu urbain dense où le stationnement est limité. Cela peut causer des inefficac-

ités, car les travailleurs doivent trouver une place de stationnement et se rendre à

pied chez les clients, engendrant ainsi des retards et des surcoûts.

Cette thèse comble cette lacune en introduisant des itinéraires de type station-

nement et boucle. Un tel itinéraire combine un trajet principal en véhicule avec des

sous-tours effectués à pied ou en utilisant un mode de transport alternatif (par exem-

ple, un scooter électrique ou un vélo). Dans le deuxième chapitre, nous définissons le

problème des tournées avec stationnement et boucle et proposons une approche par

décomposition et évaluation, reposant sur la génération de colonnes et de coupes,

ainsi qu’un algorithme spécialisé pour le sous-problème. Notre méthode améliore la

performance des métaheuristiques de pointe en termes de la qualité de la solution

tout en restant compétitive en termes de temps de calcul.

Dans le troisième chapitre, nous abordons le WSRP avec stationnement et boucle

pour une main-d’œuvre hétérogène, chaque travailleur ayant des compétences spé-



cifiques. Nous proposons une formulation basée sur la programmation linéaire en

nombres entiers mixtes et nous développons un algorithme de séparation et évalua-

tion basé sur le modèle du chapitre 2. Nos expériences montrent que cet algorithme

améliore les performances des algorithmes de référence et peut aussi s’appliquer au

problème de tournées et de planification des techniciens.

Enfin, dans le quatrième chapitre, nous étudions le cas où certaines demandes

de clients apparaissent dynamiquement au cours de la journée. Nous développons

des politiques de planification basées sur une heuristique d’échantillonnage multi-

espace, qui génère des routes de haute qualité à chaque nouvelle demande, puis

sélectionne la meilleure solution avec un modèle de partitionnement en ensembles.

Nous proposons également une méthode pour calculer une borne sur le nombre de

demandes pouvant être satisfaites sans hypothèse d’information complète.

Mots-clés

Routage, stationnement et boucle, heuristiques, partitionnement en ensembles, in-

égalités valides, séparation et évaluation avec génération de colonnes et coupes,

algorithme de pulsation, programmation mathématique.

Méthodes de recherche

Recherche opérationelle, programmation mathématique, heuristiques
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Abstract

This thesis addresses the workforce scheduling and routing problem (WSRP), a

variant of the vehicle routing problem that involves scheduling and routing a set

of workers to complete tasks for a diverse set of customers. The WSRP is preva-

lent in numerous fields, such as utility field operations and home healthcare, where

companies seek to balance efficiency, cost, and customer convenience. Traditional

approaches to the WSRP assume workers can park directly at customer locations,

a simplification that is often unrealistic in dense urban areas with limited parking

availability. This assumption can lead to inefficiencies, as workers may need to search

for parking and walk to customer locations, resulting in delays and increased costs.

In the first chapter, we present a comprehensive review of WSRPs and identify key

open research areas.

This thesis contributes to filling the gap by studying the design of park-and-loop

routes. A park-and-loop route is composed of a main tour that is carried out using a

vehicle, and subtours that are performed on foot or by alternative modes of transport

such as an electric scooter. In the second chapter, we introduce the park-and-loop

routing problem, which consists in finding a set of least cost park-and-loop routes to

serve a set of customers. We formulate the problem as a set covering problem and

we propose an exact branch-price-and-cut method that relies on the pulse algorithm

to solve the pricing problem. We also present a set of acceleration strategies that

boost performance. The algorithm outperforms three state-of-the-art metaheuristics

in terms of solution quality and compares reasonably in terms of the computational

v



effort.

In the third chapter, we study another practical and difficult problem known as

the workforce scheduling and routing problem with park-and-loop. As opposed to

the problem described in Chapter 2, the set of workers is not homogeneous. That is,

each worker in the workforce masters a subset of skills with a potentially different

level of proficiency. Similarly, customer requests may require one or more skills, each

at a given level of proficiency. We first formulate the problem as a mixed integer

program model with a polynomial number of constraints and variables, and then

we present a path-based formulation that has an exponential number of variables.

To solve the latter, we propose a branch-price-and-cut algorithm that builds on

the method described in Chapter 2. Our experiments show that our algorithm

outperforms the benchmark algorithms.

In the fourth chapter, we extend the scope to consider the case where some of

the customer demand is revealed dynamically throughout the workday. To address

this problem, we propose a set of scheduling policies that build on the multi-space

sampling heuristic. Every time a new customer request is revealed, this method

generates a set of high-quality routes and then it builds a new solution by selecting

from these routes using a set partitioning model. We also present a method to

compute a bound on the number of customer requests that can be completed under

the assumption of complete information.

Keywords

Routing, park-and-loop, heuristics, set partitioning, valid inequalities, branch-price-

and-cut, pulse algorithm, mathematical programming

Research Methods

Operations research, mathematical programming; heuristics
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General Introduction

The workforce scheduling and routing problem (WSRP) is one of the most widely

studied variants of the vehicle routing problem. The WSRP involves the transporta-

tion and scheduling of a set of workers (e.g., technicians, nurses, and security guards)

to fulfill different tasks for a set of heterogeneous customers. This problem naturally

arises in a wide range of applications. For example, Cabrera et al. (2022) consider

the case of a large electricity maintenance provider in France where technicians per-

form meter readings at customer locations. Similarly, Zamorano and Stolletz (2017)

consider the case of an external maintenance service provider specialized in the re-

pair and maintenance of electric forklifts. In the field of homecare, Braekers et al.

(2016) consider the case of an organization in Austria that schedules nurses and care

workers to visit patients while taking into account the trade-off between the cost

and the client inconvenience. Other applications include the scheduling of personnel

at consolidation and transshipment ports (Li et al. 2005) and security personnel

performing routine rounds (Misir et al. 2011).

The standard assumption in the WSRP literature is that workers can and should

always park their vehicles at customer locations, thus following pure vehicle routes.

Although this assumption can facilitate the design of the routing plan for each

worker, it can be wildly optimistic in practice, particularly, when customers are

located in urban areas such as city centers. Indeed, these locations are often subject

to restricted mobility and scarce access to parking. As a result, workers may not

be able to park directly at every customer (as suggested by the routing plan) and



instead may be obligated to cruise for parking. In that case, only after finding a

suitable parking spot, they can walk to serve the customer. Cruising for parking

may take up to five minutes in a city center (Reed et al. 2024) and can significantly

increase the total duration of a route. This can be troubling as workers are often

subject to tight schedules. As a result, companies end up paying millions of dollars

in delays and overtime fees (Chiara et al. 2020).

Furthermore, when routing plans do not consider parking decisions, workers are

often faced with the task of modifying the routes on the fly. Indeed, workers have

to choose between visiting other nearby customers or returning to the parking spot

to recover the vehicle. Although workers’ experience may help them to make a

decision, it may not be the correct one. Le Colleter et al. (2023) found that even

when parking times are low, walking to serve several customers departing from the

same parking spot can reduce driving time by more than 15% and parking times by

more than 50%. Similarly, Cabrera et al. (2022) showed that costs can be reduced

up to 12% as a result of better balancing the use of driving and walking, and by

decreasing the number of workers needed to visit all the customers. Thus, significant

productivity gains can be expected by optimizing parking decisions.

In this thesis, we investigate the design of efficient park-and-loop routes. For-

mally, a park-and-loop route consists of a main tour that is completed using a vehicle

(i.e., a car, a van, a truck) and subtours, visiting one or more customers, that are car-

ried out after safely parking the vehicle, using a more flexible transportation mode

(i.e., on foot, by bike, by electric scooter). Furthermore, we define three new vari-

ants of the WSRP. First, we introduce the park-and-loop routing problem (PLRP).

This problem consists of designing minimum-cost park-and-loop routes for a set of

workers while ensuring a maximum duration for each subtour and a maximum total

walking distance. Second, we describe the workforce scheduling and routing prob-

lem with park-and-loop (WSRP-PL). This problem generalizes the PLRP by taking

into account the skills compatibility between workers and tasks, and the presence

of time windows at customer locations. Third, we introduce the dynamic park-and-
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loop routing problem (DPLRP). This problem extends the PLRP by considering

both scheduled and on-demand requests. Scheduled requests are known beforehand

and as such must be completed before the end of the planning horizon. On the con-

trary, on-demand requests appear randomly throughout the day, and it is possible

to reject them.

This thesis is composed of four chapters. Each chapter is a self-contained paper.

Chapter 1 presents:

Cabrera, N., Cordeau, J.-F, & Mendoza, J.E. Workforce Scheduling and Routing

Problems: A Literature Review. Working-paper.

In this paper, we present a comprehensive review of WSRPs. To do so, we start by

introducing two mathematical formulations for the problem and thoroughly discuss

their main advantages and disadvantages. Then, we describe the most relevant fea-

tures addressed in the literature and classify each article accordingly. By presenting

these features we identify key open research areas on the WSRP. In particular, we

emphasize the importance of developing new methodologies to solve WSRPs that

include multi-modal routes and precedence constraints. In addition, we present an

overview of the solution methods and we describe the most common applications

of the WSRP. Finally, we present and discuss multiple practical considerations to

build more applicable and successful solutions.

Chapter 2 presents:

Cabrera, N., Cordeau, J.-F, & Mendoza, J.E. (2023) Solving the Park-and-loop

Routing Problem by Branch-price-and-cut. Transportation Research Part C: Emerg-

ing Technologies, 107, p. 104369.

In this paper, we present the PLRP in detail. Moreover, we describe an exact

method capable of optimally solving 39 out of 40 instances with up to 50 customers

belonging to what is probably the most studied testbed in the PLRP literature.

The algorithm is based on the branch-price-and-cut framework. To solve the pricing

problem we extend the pulse algorithm to generate park-and-loop routes and propose

a new pruning strategy that significantly improves the algorithm’s performance. We
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rigorously evaluate the impact of each component of the proposed algorithm. We also

present a detailed comparison with three state-of-the-art metaheuristics. Finally, we

evaluate the impact of considering park-and-loop routes on the total driving distance

and the final solution structure. Our experiments show that introducing park-and-

loop routes can decrease the driven distance by up to 18%.

Chapter 3 presents:

Cabrera, N., Cordeau, J.-F, & Mendoza, J.E. (2025) The Workforce Scheduling and

Routing Problem with Park-and-loop. Networks, 85, pp. 38-60.

In this paper, we introduce the WSRP-PL and two mixed integer programming

models to solve it. The first model is an arc-based formulation with a polynomial

number of constraints and variables concerning the number of customers and work-

ers. However, the bound obtained by solving its LP relaxation is weak. The second

model is a path-based formulation that has an exponential number of variables. To

solve the latter, we propose a branch-price-and-cut algorithm that builds on the

method described in Chapter 2. A key component of this algorithm is the pricing

problem solver. The solver simultaneously builds a team of workers and the route

they follow. Moreover, the solver evaluates multiple team compositions in parallel,

which significantly speeds up the algorithm. We generate a large testbed consisting

of small to large instances and compare the performance of a mixed integer program-

ming solver that solves the arc-based formulation (i.e., CPLEX) with the proposed

algorithm. Our experiments show that our algorithm is faster and can optimally

solve more instances. Finally, we test the performance of our algorithm on a related

problem for which the algorithm finds 12 new best solutions.

Chapter 4 presents:

Cabrera, N., Cordeau, J.-F, & Mendoza, J.E. The Dynamic Park-and-Loop Routing

Problem. Working-paper.

In this paper, we introduce the dynamic park-and-loop routing problem, an exten-

sion of the park-and-loop routing problem in which some of the customer demand is

revealed dynamically throughout the workday. Each time a new customer request is
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received, the current plan must be re-evaluated and, in many cases, revised to accom-

modate the new request. The objective is to maximize the number of requests served.

To address this problem, we propose a set of myopic and anticipatory scheduling

policies that build on a very fast metaheuristic known as the multi-space sampling

heuristic, a two-phase approach that follows the route-first, assemble-second princi-

ple. Every time a new customer request is revealed, this method generates a set of

high-quality routes and then it builds a new solution by selecting from these routes

using a set partitioning model. We evaluate all policies on a new set of instances

with up to 100 requests, considering various spatio-temporal demand distributions.

We also present a method to compute a bound on the number of customer requests

that can be completed under the assumption of complete information.

Finally, we summarize the main contributions of this thesis and point to several

potential future research avenues.
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Chapter 1

Workforce Scheduling and Routing

Problems: A Literature Review

Abstract

The workforce scheduling and routing problem (WSRP) involves assigning geograph-

ically dispersed tasks to workers and planning their routes to complete these tasks

efficiently. This problem arises in numerous real-world scenarios, including techni-

cians conducting preventive maintenance at customer sites, nurses providing home

care, and security guards patrolling multiple locations. To address these challenges,

researchers have incorporated a wide range of constraints, such as time windows,

skill compatibility, and team building. In this study, we systematically structure and

analyze the WSRP literature, identifying its core characteristics and uncovering key

research gaps. Our findings highlight critical areas for future investigation, includ-

ing the integration of multi-modal routes and precedence constraints. Additionally,

we emphasize practical features that should guide the development of new solu-

tion methods for this family of problems, ensuring their applicability to real-world

workforce management challenges.



1.1 Introduction

Vehicle routing problems (VRPs) have been a central focus for both academics

and practitioners for decades, driven by their widespread real-world applications.

Businesses and organizations rely on VRP solutions in diverse fields, including dis-

tribution logistics, laundry services, and urban waste management. Researchers

worldwide have dedicated significant efforts to modeling and solving countless VRP

variants, striving to bridge the gap between theory and practice. For a comprehen-

sive overview of existing and emerging VRP variants, we refer the reader to Vidal

et al. (2020). In this paper, we focus on VRP variants that arise in service-oriented

contexts. Specifically, we examine problems that involve scheduling and routing

workers to perform tasks at multiple locations—collectively referred to as workforce

scheduling and routing problems (WSRPs).

WSRPs combine elements from both scheduling and routing problems, both of

which are NP-hard (Goel and Meisel 2013). The scheduling aspect involves assign-

ing workers—such as technicians, nurses, and security guards—to perform services

or complete tasks for customers. Worker assignments must account for various con-

straints, including skill compatibility (when only certain workers are qualified for

a task), team building (when multiple workers are required), service priorities, and

task precedence. The routing aspect focuses on designing efficient travel routes for

workers moving between locations. Several critical factors influence route planning,

including time windows, the presence of one or multiple depots, and the availabil-

ity of different transportation modes. This review concentrates on problems that

integrate both scheduling and routing. Note that we exclude in our review pick-up

and delivery problems because no significant work occurs at the customer location.

We also do not consider studies that address only the scheduling component and

instead refer the interested reader to Estellon et al. (2009), Cordeau et al. (2010),

Hashimoto et al. (2011), and Fırat and Hurkens (2012) for detailed discussions on

pure scheduling problems.
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WSRPs naturally emerge in a wide range of real-world applications. Goel and

Meisel (2013) examined a large electricity network in central Germany, where techni-

cians perform maintenance on power infrastructure. Similarly, Çakırgil et al. (2020)

tackled a scheduling problem for an energy distribution company in Turkey, opti-

mizing technician assignments for failure diagnosis and corrective maintenance. In

home health care, Algethami et al. (2019) studied six UK-based scenarios where

nurses and caregivers are scheduled to visit patients at home. Other notable appli-

cations include personnel scheduling at airport check-in counters (Zamorano et al.

2018) and security officers conducting routine patrols (Misir et al. 2011).

The widespread applicability of WSRPs has drawn significant interest from re-

searchers across various fields. Depending on the application, different studies have

introduced distinct names and acronyms for their specific problem variants, such as

the technician scheduling and routing problem (TSRP), the health care scheduling

and routing problem (HSRP), and the manpower allocation and routing problem

(MARP), among others. This lack of uniformity has led to two major challenges.

First, the field lacks a clear consensus on the state-of-the-art algorithms or method-

ologies for solving WSRPs. Second, there is no standardized terminology for distin-

guishing between different problem variants. The most recent review on WSRPs,

conducted by Paraskevopoulos et al. (2017), addresses these issues by proposing a

taxonomy based on three key categories: resource qualifications, service require-

ments, and objectives. Their work also provides an overview of the main solution

methodologies and suggests directions for future research. However, the field has

evolved significantly since then, with more than 30 new studies published after their

review.

This paper provides an up-to-date, comprehensive literature review of WSRPs,

covering key constraints and datasets. As a foundational step for advancing the

field, this review equips researchers with the necessary insights to develop new so-

lution approaches and identify critical directions for future research. Our contri-

bution is twofold. First, we synthesize the evolution of the field—past, present,
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and future—by systematically analyzing the existing literature. Second, unlike

Paraskevopoulos et al. (2017), we emphasize methodological advancements and prac-

tical considerations, offering guidance that will help researchers design more appli-

cable and effective solutions.

The remainder of this article is structured as follows. Section 1.2 formally de-

fines the baseline WSRP and presents two mathematical formulations of the prob-

lem. Section 1.3 reviews the key features explored in the literature, while Section

1.4 highlights emerging practical aspects that remain largely unaddressed. Finally,

Section 1.5 concludes the paper and outlines directions for future research.

1.2 Problem description

In this section, we introduce a canonical WSRP, which serves as a fundamental

framework for understanding and extending the problem in various directions. Many

WSRP variants build upon this core structure by incorporating additional con-

straints, objectives, or problem-specific characteristics. We first provide a formal

problem definition that captures the essential features of a WSRP. We then present

two mixed integer programming formulations: an arc-based model and a route-based

model. These formulations not only offer a formal mathematical representation of

the problem, but also serve as a reference point for analyzing more complex exten-

sions explored later in this review.

1.2.1 Problem statement

The WSRP can be formally defined on a complete graph G = (N ,A), where N is

the set of all nodes and A is the set of arcs. The set of nodes comprises a start

depot 0, the set of tasks C = {1, . . . , 𝑛}, and an end depot 0. Arcs in A represent the

connections between two nodes. Traveling along arc (𝑖, 𝑗) ∈ A has a cost 𝑐𝑖 𝑗 and a

travel time 𝑡𝑖 𝑗 . To complete tasks a set of workersW are assigned to teams in the set
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T . A maximum of Γ workers can be assigned to a team. Worker qualifications are

represented by 𝑝𝑤𝑠𝑙 , which is a binary parameter equal to 1 if worker 𝑤 ∈ W has at

least a proficiency level 𝑙 ∈ L for skill 𝑠 ∈ S. On the other hand, skill requirements

are represented by 𝑞𝑖𝑠𝑙 , a binary parameter stating if task 𝑖 ∈ C needs a worker with

at least a proficiency level 𝑙 ∈ L for skill 𝑠 ∈ S.

Each task 𝑖 ∈ C has a duration 𝑑𝑖 and an associated time window indicating

possible visit times. Let [𝑎𝑖, 𝑏𝑖] be the earliest and latest starting time of task 𝑖 ∈ C.

All teams depart from the start depot at time 𝑎0 and must return before time 𝑏0. If

the assembled teams cannot fulfill a certain task, it may be outsourced at a cost 𝑜𝑖.

The objective of the WSRP is to minimize the total cost while ensuring that each

task is fulfilled precisely once and the total duration of each route does not exceed

the working day duration.

1.2.2 Arc-based formulation

In the following, we provide a model similar to the one in Kovacs et al. (2012) and

Xie et al. (2017). The model uses the following binary variables:

• 𝑥𝑡
𝑖 𝑗

= 1 if team 𝑡 ∈ T travels from node 𝑖 to node 𝑗 , for (𝑖, 𝑗) ∈ A and 0,

otherwise,

• 𝑦𝑡
𝑖
= 1 if team 𝑡 ∈ T is assigned to complete task 𝑖 ∈ C and 0, otherwise,

• 𝑣𝑡𝑤 = 1 if worker 𝑤 ∈ W is assigned to team 𝑡 ∈ T and 0, otherwise,

• ℎ𝑡 = 1 if team 𝑡 ∈ T is selected and 0, otherwise,

• 𝑧𝑖 = 1 if task 𝑖 ∈ C is outsourced and 0, otherwise.

We also define the following continuous variables:

• 𝑢𝑡
𝑖
if the arrival time of team 𝑡 ∈ T to node 𝑖 ∈ N .

The arc-based formulation (ABF) for the WSRP is stated as follows:
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min
∑︁
(𝑖, 𝑗)∈A

∑︁
𝑡∈T

𝑐𝑖 𝑗𝑥
𝑡
𝑖 𝑗 +

∑︁
𝑖∈C

𝑜𝑖𝑧𝑖 (1.1)

subject to

∑︁
𝑡∈T

∑︁
𝑗∈N

𝑥𝑡𝑖 𝑗 + 𝑧𝑖 = 1 ∀𝑖 ∈ C (1.2)∑︁
𝑗∈N

𝑥𝑡0 𝑗 = 1 ∀𝑡 ∈ T (1.3)∑︁
𝑖∈N

𝑥𝑡
𝑖0
= 1 ∀𝑡 ∈ T (1.4)∑︁

𝑖∈N
𝑥𝑡𝑖 𝑗 −

∑︁
𝑖∈N

𝑥𝑡𝑗𝑖 = 0 ∀ 𝑗 ∈ C, 𝑡 ∈ T (1.5)

(𝑡𝑖 𝑗 + 𝑑𝑖)𝑥𝑡𝑖 𝑗 + 𝑢𝑡𝑖 ≤ 𝑢𝑡𝑗 + 𝑏𝑖 (1 − 𝑥𝑡𝑖 𝑗 ) ∀(𝑖, 𝑗) ∈ A, 𝑡 ∈ T (1.6)

𝑢𝑡𝑖 ≤ 𝑎𝑖 ∀𝑖 ∈ N , 𝑡 ∈ T (1.7)

𝑢𝑡𝑖 ≥ 𝑏𝑖 ∀𝑖 ∈ N , 𝑡 ∈ T (1.8)∑︁
𝑡∈T

𝑣𝑡𝑤 ≤ 1 ∀𝑤 ∈ W (1.9)∑︁
𝑤∈W

𝑝𝑤𝑠𝑙𝑣
𝑡
𝑤 ≥ 𝑞𝑖𝑠𝑙𝑦𝑡𝑖 ∀𝑡 ∈ T , 𝑠 ∈ S, 𝑙 ∈ L, 𝑖 ∈ C (1.10)∑︁

𝑗∈N
𝑥𝑡𝑗𝑖 = 𝑦

𝑡
𝑖 ∀𝑖 ∈ C, 𝑡 ∈ T (1.11)∑︁

𝑤∈W
𝑣𝑡𝑤 ≥ ℎ𝑡 ∀𝑡 ∈ T (1.12)∑︁

𝑤∈W
𝑣𝑡𝑤 ≤ Γℎ𝑡 ∀𝑡 ∈ T (1.13)

ℎ𝑡 ≥ ℎ𝑡+1 ∀𝑡 ∈ T |𝑡 < |T | (1.14)∑︁
𝑖∈C

𝑦𝑡𝑖 ≥ ℎ𝑡 ∀𝑡 ∈ T (1.15)

𝑥𝑡𝑖 𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ A, 𝑡 ∈ T (1.16)

𝑧𝑖 ∈ {0, 1} ∀𝑖 ∈ C (1.17)
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𝑦𝑡𝑖 ∈ {0, 1} ∀𝑖 ∈ C, 𝑡 ∈ T (1.18)

𝑣𝑡𝑤 ∈ {0, 1} ∀𝑤 ∈ W, 𝑡 ∈ T (1.19)

ℎ𝑡 ∈ {0, 1} ∀𝑡 ∈ T (1.20)

𝑢𝑡𝑖 ≥ 0 ∀𝑖 ∈ N , 𝑡 ∈ T . (1.21)

The objective function (1.1) minimizes the total cost comprised of the trans-

portation and outsourcing costs. Constraints (1.2)-(1.8) represent the routing part

of the problem. Constraints (1.2) ensure that all tasks are either completed or

outsourced. Constraints (1.3) guarantee that all teams leave the start depot. Con-

straints (1.4) state that all the teams must arrive at the end depot. Constraints

(1.5) are the flow balance constraints. Constraints (1.6) define the arrival time to

every node. These constraints are subtour elimination constraints in the form of

the Miller-Tucker-Zemlin inequalities. Constraints (1.7) and (1.8) enforce the time

window restrictions. The remaining constraints, i.e., (1.9)-(1.15), are the scheduling

constraints. Constraints (1.9) state that a worker can only be assigned to one team.

Constraints (1.10) and (1.11) ensure that tasks are only completed by teams with

the appropriate qualifications. Constraints (1.12) and (1.13) impose a minimum

and maximum number of workers for each selected team. Constraints (1.14) remove

symmetric solutions concerning the selection of the teams. Constraints (1.15) guar-

antee that all selected teams complete at least one task. Constraints (1.16)-(1.21)

state the variable domains.

The ABF is compact, as it contains a polynomial number of variables and con-

straints. However, due to the large number of binary variables, the quality of the

lower bound obtained by solving its LP relaxation is very poor. As a result, general-

purpose solvers (i.e., Gurobi, CPLEX) can only solve small instances, with a few

workers and customers.
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1.2.3 Route-based formulation

The WSRP can also be modeled with a route-based formulation. Let R denote the

set of feasible routes, where a route is an ordered set of arcs starting and ending at

the depot. A route 𝑟 is feasible if and only if it satisfies the time windows and the

skills compatibility constraints. The parameter 𝑐𝑟 is the total cost of using route 𝑟.

Let 𝑔𝑖𝑟 be a binary parameter that takes the value of 1 if and only if route 𝑟 ∈ R

completes task 𝑖 ∈ C. Also, let 𝑚𝑤𝑟 be a binary parameter that takes the value of

1 if and only if route 𝑟 ∈ R uses worker 𝑤 ∈ W. The binary variable 𝜆𝑟 is equal to

one if and only if the route 𝑟 is selected. Then, the route-based formulation (RBF)

for the WSRP is stated as follows:

min
∑︁
𝑟∈R

𝑐𝑟𝜆𝑟 +
∑︁
𝑖∈C

𝑜𝑖𝑧𝑖 (1.22)

subject to (1.17) and

∑︁
𝑟∈R

𝑔𝑖𝑟𝜆𝑟 + 𝑧𝑖 = 1 ∀𝑖 ∈ C (1.23)∑︁
𝑟∈R

𝑚𝑤𝑟𝜆𝑟 ≤ 1 ∀𝑤 ∈ W (1.24)

𝜆𝑟 ∈ {0, 1} ∀𝑟 ∈ R. (1.25)

The objective function minimizes the total transportation and outsourcing costs.

Constraints (1.23) ensure that all tasks are either completed by one team or out-

sourced. Constraints (1.24) state that only one route can be selected for each worker.

Constraints (1.25) define the variables domain. As opposed to the ABF, the RBF

has an exponential number of variables. Enumerating all these variables (i.e., routes)

is only possible for trivial instances. As an alternative, route-based formulations are

typically solved by using column generation (CG). The intuition behind CG is to

find the optimal solution without explicitly considering all variables. To do so, two
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optimization problems are solved sequentially: A master problem that considers only

a small subset of variables and a pricing problem that delivers promising variables

to the master problem. More details about CG approaches can be found in Uchoa

et al. (2024) and in Desrosiers et al. (2024).

In the WSRP, the master problem corresponds to the relaxed version of formula-

tion (1.22)-(1.25). The relaxed RBF considers only a subset of feasible routes R ⊆ R

and is obtained by relaxing the binary constraints on the 𝜆𝑟 variables. The pricing

problem is the route generator. Let 𝜋𝑖 ∈ R and 𝜎𝑤 ≤ 0 be the dual variables as-

sociated with constraints (1.23) and (1.24) respectively. Then, the pricing problem

can be stated by dropping the team 𝑡 index from the ABF, updating the objective

function, and by slightly modifying constraints (1.2). More specifically, the pricing

problem is stated as follows:

min
∑︁
(𝑖, 𝑗)∈A

𝑐𝑖 𝑗𝑥𝑖 𝑗 −
∑︁
𝑖∈C

𝜋𝑖𝑦𝑖 −
∑︁
𝑤∈W

𝜎𝑤𝑣𝑤 (1.26)

subject to

∑︁
𝑗∈N

𝑥𝑖 𝑗 = 𝑦𝑖 ∀𝑖 ∈ C (1.27)∑︁
𝑗∈N

𝑥0 𝑗 = 1 (1.28)∑︁
𝑖∈N

𝑥
𝑖0
= 1 (1.29)∑︁

𝑖∈N
𝑥𝑖 𝑗 −

∑︁
𝑖∈N

𝑥 𝑗𝑖 = 0 ∀ 𝑗 ∈ C (1.30)

(𝑡𝑖 𝑗 + 𝑑𝑖)𝑥𝑖 𝑗 + 𝑢𝑖 ≤ 𝑢 𝑗 + 𝑏𝑖 (1 − 𝑥𝑖 𝑗 ) ∀(𝑖, 𝑗) ∈ A (1.31)

𝑢𝑖 ≤ 𝑎𝑖 ∀𝑖 ∈ N (1.32)

𝑢𝑖 ≥ 𝑏𝑖 ∀𝑖 ∈ N (1.33)∑︁
𝑤∈W

𝑣𝑤 ≤ Γ (1.34)
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∑︁
𝑤∈W

𝑝𝑤𝑠𝑙𝑣𝑤 ≥ 𝑞𝑖𝑠𝑙𝑦𝑖 ∀𝑠 ∈ S, 𝑙 ∈ L, 𝑖 ∈ C (1.35)∑︁
𝑗∈N

𝑥 𝑗𝑖 = 𝑦𝑖 ∀𝑖 ∈ C (1.36)

𝑥𝑖 𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ A (1.37)

𝑦𝑖 ∈ {0, 1} ∀𝑖 ∈ C (1.38)

𝑣𝑤 ∈ {0, 1} ∀𝑤 ∈ W (1.39)

𝑢𝑖 ≥ 0 ∀𝑖 ∈ N . (1.40)

The objective function (1.26) aims to minimize the reduced cost of the route.

Constraints (1.27)-(1.36) are equivalent to constraints (1.2)-(1.11). The pricing

problem can also be modeled as an elementary shortest path problem with resource

constraints (ESPPRC) as in Cabrera et al. (2023). To solve the ESPPRC one usually

resorts to dynamic programming algorithms such as the labeling algorithm intro-

duced by Feillet et al. (2004). For more details regarding the ESPPRC and solution

methods, we refer the reader to Costa et al. (2019a).

1.3 The WSRP and its variants

Over the years, researchers have extended the basic WSRP to better reflect real-

world applications. The following subsections outline key problem variations studied

in the literature, providing concrete examples and discussing their implications. We

also examine how each feature impacts problem complexity and solution method-

ologies.

1.3.1 Skill compatibility

The need for specific skills to complete tasks is a key feature in many WSRPs. When

this constraint is included, only a subset of the workforce is qualified for certain

tasks, and task durations may vary depending on the worker’s skill level. This shift
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introduces complexity, moving from a homogeneous (often unlimited) workforce to

a heterogeneous (typically limited) one.

One of the earliest studies incorporating skill compatibility in WSRPs was by

Tsang and Voudouris (1997), who examined British Telecom’s workforce scheduling

problem. In this case, service time depended on a worker’s skill factor. For instance,

if a worker had a skill factor of 0.9 and a task had a standard duration of 20 minutes,

the worker would complete it in 18 minutes. Accounting for such variations is crucial

for optimizing workforce schedules, as it enables better task allocation, reduces idle

time, and can ultimately decrease the total number of workers needed. To tackle this

problem, Tsang and Voudouris (1997) proposed a fast local search heuristic capable

of producing solutions in approximately three hours. Over a decade later, Günther

and Nissen (2013) improved solution quality using a particle swarm optimization

algorithm, further minimizing idle time and lowering overall costs. However, this

approach did not improve computational efficiency.

Beyond varying task durations, some WSRP applications impose stricter con-

straints, where only a subset of workers can perform certain tasks. For example, Li

et al. (2005) studied workforce scheduling at the Port of Singapore, where a pool

of heterogeneous workers must be dispatched from a central hub to complete tasks

across the port. Proper worker-task assignments in this context is critical, as mis-

assignments could disrupt operations — an aspect overlooked in previous research

by Lim et al. (2004). Li et al. (2005) addressed this gap by introducing a simu-

lated annealing heuristic, which improved prior solutions while incorporating skill

constraints.

More recently, researchers explore additional aspects of skill compatibility. Braek-

ers et al. (2016) study a home care organization in Austria, where nurses are sched-

uled to perform tasks at patient locations. Beyond skill constraints, patients have

preferences for specific nurses, and not being attended by their preferred caregiver

reduces their perceived level of service. To address this, the authors propose a meta-

heuristic that explicitly considers the trade-off between minimizing total costs and
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reducing patient inconvenience. Their results show that minimal-cost solutions can

be significantly improved in terms of reducing patient inconvenience with only a

slight increase in overall costs, even for instances with up to 300 tasks.

Chen et al. (2016) examine how workers can acquire new skills through expe-

rience. They model a heterogeneous workforce where initial proficiency levels and

learning rates are known. As workers complete tasks, their experience grows, allow-

ing them to reduce service times or take on more complex assignments. Their study

demonstrates that explicitly modeling skill acquisition leads to better and more

adaptive solutions compared to approaches that assume static proficiency levels. De-

spite their potential, learning effects and patient preferences remain underexplored

in the WSRP literature, highlighting a key area for future research.

1.3.2 Team building

Closely related to skill compatibility, team building is often necessary to complete

tasks requiring multiple workers. This occurs when a task demands two or more

equally skilled workers or when different skill sets must be combined.

Bredström and Rönnqvist (2008) study a home care scheduling problem where

many patients require synchronized visits from multiple caregivers. The authors first

propose a mixed-integer programming model, but as the number of tasks and workers

increases, the model’s complexity grows exponentially, making it impractical for

large instances. To address this, they develop a heuristic method that finds solutions

in under 10 minutes for instances with up to 60 tasks. This work highlights how

synchronizing the schedules and routes of multiple workers significantly increases

WSRP complexity.

In many applications, tasks require workers with complementary skills. Zamorano

and Stolletz (2017) investigate an external maintenance service provider specializing

in electric forklifts, where maintenance and failure diagnosis tasks demand multiple

skills. To address this, the authors propose a branch-and-price approach capable of
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solving instances with up to 60 tasks exactly. Their results emphasize the impor-

tance of problem decomposition to handle large-scale instances efficiently. Similarly,

Anoshkina and Meisel (2019) explore a setting where teams must be formed while

considering worker skills and experience levels. Unlike previous studies, they incor-

porate three simultaneous objectives: service quality, workload fairness, and cost

minimization. To tackle this, they introduce a bi-level decomposition approach that

separates team rostering from routing and scheduling, reinforcing the need for de-

composition techniques in solving large-scale WSRPs.

Most studies assume that teams remain together throughout the planning hori-

zon. However, in some scenarios, partial team splitting improves operational effi-

ciency. Dohn et al. (2009) analyze ground handling operations at a major European

airport, where workers handle baggage and cleaning tasks between aircraft arrivals

and departures. In this setting, workers cooperate for specific tasks before continuing

their schedules independently. The authors develop a branch-and-price algorithm

that finds optimal solutions for instances with up to 150 tasks.

Similarly, Rasmussen et al. (2012) study a Danish healthcare center where home

carers visit patients requiring either multiple caregivers or exclusive skill combina-

tions. Their model allows partial team splitting, leading to more efficient solutions

than those found in Bredström and Rönnqvist (2008), where teams remained fixed.

However, this added flexibility increases problem complexity, and instances with

over 100 tasks remain unsolved optimally. Other studies considering team splitting

include Dohn et al. (2009), Kovacs et al. (2012), and Zhan and Wan (2018).

Future research should further explore decomposition approaches to enhance the

scalability of WSRP solutions, particularly for large instances involving complex

team structures.
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1.3.3 Outsourcing

In many contexts, it is not always feasible to complete all tasks with the available

workforce. Companies may therefore rely on outsourcing tasks to external providers

or, in some cases, leave tasks unfulfilled while incurring a penalty cost. This feature

increases the complexity of the WSRP, as decisions about whether to fulfill, defer, or

outsource tasks must be integrated into the model. When outsourcing is an option,

researchers must adapt both mathematical models and heuristic procedures. This

often requires additional decision variables in exact models or modified insertion

operators in heuristic methods to properly balance internal workforce scheduling

with outsourcing costs.

Dohn and Sevel (2008) study a European healthcare system where nurses and

medical personnel visit patients at home to perform daily tasks. Due to the high

number of scheduled visits, completing all tasks within a single day is often im-

possible. To address this, the authors introduce decision variables that allow tasks

to remain uncovered. In a similar setting, Kovacs et al. (2012) examine a mainte-

nance service provider where scheduling all tasks within a day is challenging. Unlike

the healthcare case, unassigned tasks are not left unfulfilled but instead outsourced

to third-party contractors at a fixed cost. The authors develop an adaptive large

neighborhood search heuristic that incorporates destroy-and-repair operators while

adjusting task insertion criteria to account for outsourcing costs. If integrating a

task into the schedule is infeasible, the model automatically outsources it. Their ap-

proach produces high-quality solutions for instances with up to 100 tasks in under

two minutes. Zamorano et al. (2018) explore outsourcing in a German ground-

handling agency, where check-in workforce scheduling at European airports allows

tasks to be outsourced to qualified supervisors or back-office managers at a cost

based on task duration. The authors incorporate outsourcing decisions into their

model and propose an exact branch-and-price algorithm that efficiently solves in-

stances of up to 60 tasks in short computational times.
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1.3.4 Planning horizon

Traditionally, WSRPs have been used for daily operational planning, where schedul-

ing decisions are made for a single day. However, recent research has shifted toward

multi-period planning, extending the scheduling horizon to several days, weeks, or

even months. This shift introduces a key challenge: tasks must first be assigned

to specific days before scheduling workers and constructing routes, significantly in-

creasing problem complexity.

One of the earliest studies incorporating a multi-period planning horizon was

conducted by Tricoire et al. (2013), who examined a water distribution company de-

ploying field workers for commercial operations. In this setting, each customer had

to be visited exactly once over a set of consecutive days. The authors developed a

branch-and-price algorithm capable of solving instances with up to 100 tasks. How-

ever, the increased complexity of the problem led to computational times exceeding

24 hours in some cases, preventing optimal solutions for all instances.

In the rehabilitative services sector, Shao et al. (2012) studied an agency that de-

signs weekly schedules for therapists to better align patient demand with therapist

skills while minimizing treatment, travel, administrative, and mileage reimburse-

ment costs. They proposed a mixed-integer programming model, which was effec-

tive for small instances but computationally prohibitive for larger ones. To address

this, they developed a GRASP heuristic that could handle instances with up to 200

tasks. Later, Bard et al. (2014) enhanced this approach by introducing new search

neighborhoods, improving solution quality. Their work highlights the importance

of multi-period planning in accommodating real-world constraints, such as ensuring

patients are first seen by a licensed therapist and managing overtime costs, which

typically apply only after 40 hours of regular work.

Recently, multi-period WSRPs have gained significant attention in home health

care planning. Liu et al. (2018) studied a nursing agency responsible for planning

visits and travel schedules over a weekly horizon. Unlike previous studies, they
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incorporated a bi-objective approach, balancing total costs with patient satisfac-

tion. To address this, they applied an 𝜖-constrained method capable of generating

non-dominated solutions for small instances. Similarly, Mosquera et al. (2019) intro-

duced an optimization-based decision support model that accounts for the trade-off

between workforce workload and the number of completed tasks over the planning

horizon.

These studies demonstrate that extending WSRPs to multi-period settings en-

hances operational efficiency by incorporating broader performance metrics. With

relatively minimal effort, organizations can achieve significant scheduling improve-

ments, making multi-period planning a valuable direction for future research.

1.3.5 Time windows

In many WSRP applications, tasks must be performed within predefined time win-

dows, representing the period between the earliest and latest allowable service times.

These constraints can be hard (strict) or soft, depending on the flexibility permitted

in scheduling. Time windows have been widely studied since the seminal work of

Solomon (1987), where the authors evaluated heuristic performance across various

problem settings. The benchmark instances introduced in that study have since

been widely adopted in subsequent research (Lim et al. 2004; Pillac et al. 2013,

2012; Yuan et al. 2015; Zamorano and Stolletz 2017).

Building on this foundation, Akjiratikarl et al. (2007) examined community care

providers in the UK, where time windows are determined during the patient as-

sessment process. Depending on task priority, time constraints can be either hard

or soft. The authors propose a particle swarm optimization heuristic, claiming im-

proved solution quality. However, their study provides limited details on the bench-

mark instances used and does not report computational times, making it difficult to

fully assess the algorithm’s effectiveness.

In practice, respecting time windows depends on unpredictable factors, such as
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variable task durations or travel delays due to traffic, which are often overlooked

in traditional deterministic models. Recently, researchers have begun incorporating

stochastic elements into WSRPs to better reflect real-world uncertainties. Yuan et

al. (2015) investigate medical and paramedical service providers, where task dura-

tions follow stochastic distributions. They propose a stochastic programming model

with recourse, accounting for penalties incurred by late arrivals. Similarly, Zhan

and Wan (2018) introduce a tabu search-based approach, modeling uncertain ser-

vice times through multiple scenarios. Both studies emphasize that ignoring task

variability can lead to unrealistic, overly tight schedules, increasing the risk of over-

time and reduced service quality.

Future research should focus on developing both exact and heuristic methodolo-

gies that effectively integrate stochasticity into WSRPs. Addressing uncertainty in

service times and travel conditions will improve solution robustness and ensure more

practical implementations in real-world workforce scheduling.

1.3.6 Multi-modal routes

Most WSRP studies focus on single-mode transportation, typically assuming that

workers travel exclusively by vehicle. However, in dense urban areas, mobility is

often constrained by traffic congestion, limited parking, and accessibility restrictions.

To address these challenges, companies increasingly seek solutions that incorporate

multi-modal routes, where workers use different transportation modes in a park-

and-loop structure.

A multi-modal route consists of a main tour, usually completed by car or van,

and subtours performed using alternative modes such as walking, biking, or electric

scooters after parking at a designated location. These subtours are often subject to

duration constraints, such as battery life for electric scooters. Despite its potential

benefits, the integration of multi-modal routing into WSRPs remains underexplored

(Cabrera et al. 2025, 2022, 2023; Coindreau et al. 2019; Le Colleter et al. 2023).
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In the service sector, Coindreau et al. (2019) analyze a European energy provider

where technicians travel between distant customer locations by car, then perform

walking subtours to service multiple customers after parking. This structure re-

duces overall routing costs. Similarly, Cabrera et al. (2022) study an application at

ENEDIS, a subsidiary of the French electricity provider EDF. Unlike the previous

study, their model incorporates duration constraints for walking subtours and allows

routes to start and end at customer locations.

The introduction of multi-modal routes significantly increases problem complex-

ity. Key decisions include where to park, how long subtours should last, and how to

balance speed, cost, and accessibility across different transportation modes. How-

ever, integrating these features into WSRPs could yield significant benefits, includ-

ing reduced congestion, lower environmental impact, and more sustainable workforce

mobility.

1.3.7 Precedence constraints

Another key yet underexplored feature in WSRPs is the temporal dependence be-

tween tasks, where certain tasks cannot begin until others are completed. Incorpo-

rating precedence constraints significantly increases problem complexity, requiring

careful task sequencing and synchronization.

Goel and Meisel (2013) study a German electricity network maintenance problem

where some tasks depend on prior actions. For example, maintenance can only

begin after disconnecting the affected part of the network. Efficiently scheduling

and synchronizing workers is crucial to minimize downtime. Due to the problem’s

complexity, the authors employ a decomposition approach, combining exact and

heuristic methods. Their approach yields high-quality solutions for instances with

up to 100 tasks.

More recently, Pereira et al. (2020) addressed a multi-period WSRP with depen-

dent tasks, where a company must execute interdependent jobs at multiple customer
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locations. The presence of precedence constraints and synchronization requirements

complicated the design of an efficient local search algorithm. They also tried a

mixed-integer programming model that could only solve small instances, limiting

its applicability. To overcome these challenges, the authors propose an ant colony

optimization metaheuristic, which is independent of local search and requires fewer

computational resources. Their method successfully handles instances with up to

60 tasks.

Notwithstanding these advances, precedence constraints remain understudied

in WSRPs despite their relevance in maintenance, healthcare, and field services.

Existing methods face scalability challenges, and heuristic approaches often overlook

problem-specific structures. Future research should focus on developing scalable

exact and heuristic methods that better handle task synchronization and temporal

dependencies

1.3.8 Constrained resources

Workforce scheduling often assumes unlimited transportation and equipment avail-

ability, but in many real-world applications, these resources are constrained. Limited

vehicle range, tool availability, and spare parts logistics add significant complexity

to WSRPs, requiring specialized optimization approaches.

Villegas et al. (2018) study the case of ENEDIS, a company where workers use

both electric and internal combustion vehicles. Electric vehicles are preferred due to

their lower operating costs and their contribution to reducing the company’s carbon

footprint. However, their limited availability and short driving range require careful

assignment to the most suitable operations and drivers. The authors emphasize the

importance of incorporating recharging stops, noting that failing to do so diminishes

the cost savings and operational benefits of using electric vehicles. To address this

issue, they develop a two-phase parallel matheuristic capable of solving instances

with up to 200 customers.
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In maintenance and repair services, workers often require specific tools and spare

parts to complete tasks. Pillac et al. (2013) examine a case where technicians start

their routes from home with a predefined inventory and must replenish materials

at depots before continuing their routes. Similarly, Mathlouthi et al. (2018) focus

on electronic transaction equipment maintenance, developing a mixed-integer linear

programming model to analyze problem complexity. Initially, their methodology

could only solve small instances (fewer than 20 tasks). To improve scalability, they

later introduced a matheuristic approach (Mathlouthi et al. 2021a) and a branch-

and-price algorithm (Mathlouthi et al. 2021b), successfully handling instances with

up to 200 tasks.

Resource limitations are a crucial yet often overlooked aspect of WSRPs. Fu-

ture research should focus on scalable methodologies that efficiently integrate trans-

portation constraints, equipment availability, and replenishment strategies, ensuring

practical solutions for real-world workforce scheduling.

1.3.9 Synthesis and key takeaways

Table 1.1 summarizes the key features explored in WSRP literature. Column 1

lists the references, while Column 2 provides the acronym used to describe each

problem variant. Columns 3 to 11 indicate the inclusion of specific features in

each study, marked with an “x” when present and left empty otherwise. This table

serves two important purposes. First, it allows researchers working on WSRPs to

quickly identify relevant studies that share similar constraints or problem settings,

providing a valuable baseline for future work. Second, it highlights well-explored

areas with limited opportunities for novel contributions, as well as underrepresented

topics where further research is needed.

The majority of WSRP studies include time windows (48 out of 58) and skill com-

patibility (44 out of 58), indicating their central role in problem modeling. In con-

trast, multi-modal routes (5 studies) and precedence constraints (3 studies) remain
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largely unexplored. Additionally, most existing works that incorporate multi-modal

routes assume a homogeneous workforce and are limited to single day planning. This

gap highlights an opportunity to develop algorithms that integrate both multi-modal

routing and a multi-period planning horiozon in WSRPs.

Another key observation is the high variability in acronyms used to refer to

WSRP variants. Even when two studies consider the same features, their chosen

acronyms often differ, creating challenges for both researchers and practitioners.

First, this inconsistency makes it difficult to locate relevant studies without prior

knowledge of how features are incorporated into the problem title. Second, it in-

creases the risk of redundant research, as similar works may go unnoticed due to

naming discrepancies.

To address this issue, we propose the following standardization guidelines. First,

since time windows and skill compatibility are commonly included in WSRPs, they

should not be explicitly mentioned in problem titles or acronyms. Second, re-

searchers should avoid embedding specific job roles in problem acronyms, opting

instead for a more general designation that applies across different workforce types

(e.g., replacing “technician scheduling and routing problem” with “workforce schedul-

ing and routing problem”). Finally, additional problem features should be appended

to the acronym using hyphen-separated abbreviations. For example, the MFSRP

acronym used in Tricoire et al. (2013) (which includes team building, multiple peri-

ods, and time windows) would be standardized as WSRP-MPTB under these guide-

lines.

Table 1.2 categorizes the solution methodologies used in WSRP research. Col-

umn 1 lists the methodologies, Column 2 cites the studies that applied each ap-

proach, and Column 3 indicates the total number of articles using each method.

A final category includes methodologies that have been used only once. Notably,

eight studies employ a branch-and-price approach, making it the most widely used

exact method. In contrast, only four studies present a mixed-integer programming

model as their main contribution. Overall, just 17 out of 58 studies propose exact
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approaches, and many of these are limited to solving small instances. This high-

lights the need for further research on exact algorithms that can efficiently handle

larger-scale WSRP instances.
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Table 1.2: Solution algorithms and methodologies.

Methodology References # Articles

Simulated annealing Lim et al. (2004), Li et al. (2005),
Bazirha et al. (2023). 3

Particle swarm optimization Akjiratikarl et al. (2007), Günther and Nissen (2013),
Pekel (2020). 3

Fast local search Solomon (1987), Tsang and Voudouris (1997). 2

Adaptive large neighborhood search
Kovacs et al. (2012), Pillac et al. (2012),
Pillac et al. (2013), Goel and Meisel (2013),
Coindreau et al. (2019).

5

Branch-and-price

Dohn and Sevel (2008), Dohn et al. (2009),
Tricoire et al. (2013), Rasmussen et al. (2012),
Yuan et al. (2015), Zamorano and Stolletz (2017),
Zamorano et al. (2018), Mathlouthi et al. (2021b).

8

Branch-price-and-cut
Cabrera et al. (2023), Su et al. (2023),
Du and Wang (2024), Huang et al. (2024),
Cabrera et al. (2025).

5

Mixed integer program Lau and Gunawan (2012), Shao et al. (2012),
Bard et al. (2014), Mathlouthi et al. (2018). 4

Matheuristic
Villegas et al. (2018), Çakırgil et al. (2020),
Mathlouthi et al. (2021a), Cabrera et al. (2022),
Guastaroba et al. (2021), Grenouilleau et al. (2020).

6

Other (heuristic)

Bredström and Rönnqvist (2008), Mendoza et al. (2009),
Misir et al. (2011), Chen et al. (2016),
Braekers et al. (2016), Xie et al. (2017),
Liu et al. (2018), Zhan and Wan (2018),
Grenouilleau et al. (2019), Algethami et al. (2019),
Anoshkina and Meisel (2019), Mosquera et al. (2019),
Pereira et al. (2020), Zhou et al. (2020),
Gu et al. (2022), Le Colleter et al. (2023),
Naderi et al. (2023), Clapper et al. (2023),
Qiu et al. (2023), Nowak and Szufel (2024),
Delavernhe et al. (2024), Rastegar et al. (2024),
Li and Liu (2025).

23

1.4 From theory to practice

The previous section reviewed various exact and heuristic methodologies developed

to solve different WSRP variants. However, little discussion has been devoted to the

practical implementation of these solutions in real-world settings. A key example of

this challenge is presented by Holland et al. (2017), who examines the deployment

of an optimization system for UPS to organize its pick-up and delivery operations.

Although the study focuses on parcel delivery, it illustrates how neglecting prac-

tical considerations can lead to implementation failure. Initially, UPS adopted a
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metaheuristic-based approach that achieved significant savings in laboratory tests.

However, when applied in practice, the generated routes proved difficult for drivers

to follow, leading to low adoption rates. After investigating the issue, UPS revised

its methodology to generate consistent, easy-to-follow routes that also promoted

safer driving behavior, avoiding unnecessary zigzags and left turns on busy streets.

The revised approach was successfully implemented, generating annual savings of

up to 300 million dollars highlighting the critical role of practical considerations in

WSRP applications.

Beyond operational feasibility, several practical factors influence the effective-

ness of WSRP solutions. The following subsections examine research focused on

integrating continuity, visual attractiveness, and worker behavior into scheduling

and routing problems. Each subsection begins with a brief explanation of the prac-

tical consideration, followed by a review of related works and guidelines for future

research.

1.4.1 Continuity

Continuity in WSRPs refers to the consistent assignment of the same worker to a

given customer over multiple visits. This feature is particularly relevant in health

care, where continuity between patients and medical professionals has been linked

to improved patient outcomes.

Russell et al. (2011) analyze the relationship between service continuity and

patient outcomes, proposing a continuity measure based on the total number of pa-

tient visits and the number of visits conducted by the same nurse. They evaluate

its impact on three key outcomes: hospitalization rates, emergency room visits, and

quality of daily living. Using a logistic regression model on a dataset of approxi-

mately 60,000 patients in the UK, their findings indicate that greater continuity is

associated with better patient outcomes. However, their analysis does not account

for correlations within patient groups (e.g., based on location or financial status),
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which may lead to underestimated variance and potential bias in their results. Sim-

ilarly, Facchinetti et al. (2020) conduct a meta-analysis on patient readmission,

concluding that continuity of care prevents service quality deterioration and reduces

readmissions, a costly and undesirable event.

From a managerial perspective, Gjevjon et al. (2013) explore service continu-

ity in health care organizations through semi-structured interviews with managers

from small, medium, and large providers in Norway. Their findings reveal com-

mon challenges, including budget constraints, staff shortages, and heavy workloads,

which often limit the feasibility of ensuring continuity. While managers recognize its

importance and consider patient preferences when scheduling workers, operational

constraints frequently prevent full implementation. This highlights the trade-off

between continuity and logistical feasibility, underscoring the need for workforce

scheduling models that balance efficiency with patient-centered care.

As discussed, continuity plays a crucial role in improving patient outcomes by

fostering trust and enhancing service quality. Despite its importance, this feature

has been largely overlooked in WSRP methodologies. Future research should focus

on incorporating constraints that ensure continuity in scheduling. For instance,

in multi-period planning models (see Section 1.3.4), constraints could enforce that

a given customer is always assigned to the same subset of workers. Additionally,

heuristic approaches could introduce operators that prioritize continuity, making it

a key factor in workforce scheduling optimization.

1.4.2 Visual attractiveness

The debate over what constitutes a good-looking versus bad-looking route has gained

significant attention in routing research. Rossit et al. (2019) present a compre-

hensive literature review on this topic, concluding that visually attractive routes

should be simple, compact, and non-overlapping. Simplicity relates to intuitiveness,

compactness ensures that customers within a route are geographically close, and
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non-overlapping routes prevent workers from covering the same area multiple times.

The authors also evaluate metrics for assessing these features, such as the number

of route crossings, which could be integrated into WSRP methodologies.

Similarly, Hollis and Green (2012) analyze metrics for visual attractiveness and

operational robustness using data from a beverage distribution company. Their

findings indicate that prioritizing visual attractiveness over cost minimization leads

to better service quality, as it allows greater flexibility in revisiting customers when

needed. They argue that visually structured routes improve operational efficiency by

making adjustments easier, particularly in unpredictable environments. Other stud-

ies, such as Sahoo et al. (2005) and Shao et al. (2014), explore visual attractiveness

from the perspective of routing complexity.

In the WSRP context, considering visual attractiveness could lead to significant

operational improvements. As highlighted by Rossit et al. (2019), visually struc-

tured routes enhance solution acceptance, making them more practical for real-

world implementation rather than just academic models. Additionally, compact

routes improve adaptability in dynamic environments, where traffic congestion or

road closures require real-time adjustments. For example, in multi-modal WSRPs,

where workers park before completing subtours, a compact routing structure ensures

alternative paths are available if a designated parking spot is occupied. Researchers

could integrate this feature by imposing constraints that limit the maximum distance

between consecutive customers, ensuring better flexibility and responsiveness.

1.4.3 Workers behavior

Regardless of the algorithm or methodology used to generate WSRP solutions, their

effectiveness ultimately depends on worker behavior. However, as noted by Sri-

vatsa Srinivas and Gajanand (2017), researchers and practitioners often overlook

behavioral factors when designing scheduling and routing plans. Worker behavior is

influenced by various factors, including traffic congestion and task-related fatigue.
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Ma et al. (2014) analyze the impact of traffic alerts on driver decisions, specifi-

cally focusing on variable message signs (VMS) in Beijing. They conducted a set of

interviews and used a multinomial logit model, where the dependent variable is the

driver’s response and the independent variables include demographic factors and

VMS-related characteristics, such as message intensity and display mode. Their

findings indicate a strong relationship between socioeconomic characteristics and

route choice behavior. Specifically, workers driving private vehicles are more likely

to take alternative routes in response to traffic jams, while those driving company-

owned vehicles tend to adhere to the original route. While the study provides

well-defined categories and a clear sampling methodology, its applicability outside

Beijing remains uncertain due to differences in traffic management systems.

Similarly, Zhou et al. (2014) examine VMS impact through prospect theory,

demonstrating how different worker personalities and characteristics influence route

choices. Other studies exploring the relationship between worker conditions and

decision-making include Haughton (2009), Gastaldi et al. (2014), and Morris and

Hirsch (2016)

1.5 Concluding remarks

This work presents a comprehensive literature review of the workforce scheduling

and routing problem (WSRP) and its many variants, which have garnered increasing

attention from researchers over the past decades. Our review categorizes the most

relevant studies according to eight key features found in the literature. For each

feature, we discuss real-world applications and examine how its inclusion affects the

methodologies developed for solving WSRPs. By outlining the past, present, and

future of this problem, we aim to inspire further research and the development of

new methodologies in this field.

One major challenge identified in this review is the lack of a recognized state-

of-the-art algorithm for solving the WSRP. This gap stems from the limited direct

36



comparisons between existing methodologies. To advance the field, a comprehensive

benchmark study evaluating multiple approaches on a common set of instances is

essential. We also urge researchers to avoid introducing new algorithms without

assessing their performance against previous methods, both in terms of solution

quality and computational efficiency.

Beyond methodological advancements, this review highlights practical consider-

ations that should be incorporated into WSRP models to enhance real-world ap-

plicability. We conclude that future research would benefit from integrating factors

such as continuity, visual attractiveness, and worker behavior into solution methods.
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Chapter 2

Solving the Park-and-loop Routing

Problem by Branch-price-and-cut

Abstract

The park-and-loop routing problem is a variation of the vehicle routing problem in

which routes include a main tour that is completed using a vehicle and subtours that

are carried out on foot after parking the vehicle. Additionally, the route duration

and total walking distance are bounded. To solve the problem, we propose an exact

solution method based on the branch-price-and-cut framework. In particular, our

method uses problem-specific components to solve the pricing problem. We report

on computational experiments carried out on a standard set of 40 instances with up

to 50 customers. The results show that our method delivers solutions that compare

favorably to existing metaheuristic algorithms, matching all previously best-known

solutions and improving 11 of them in reasonable computational times. Moreover,

our method provides optimality certificates for 39 out of the 40 instances.



2.1 Introduction

Let G = (V,A) be a directed multigraph where V is the set of vertices and A de-

notes the set of directed arcs. The set of vertices comprises a depot 0 and the set of

customers C = {1, ..., 𝐶}. Each customer 𝑖 ∈ C has a service time 𝑠𝑖. There are 𝑘 ho-

mogeneous workers available to serve the customers. These workers can either drive

or walk between locations. Accordingly, the set of arcs A = {(𝑖, 𝑗)𝑚 |𝑚 = {𝑑, 𝑤}}

contains two arcs between each pair of vertices, namely, a driving arc (𝑑) and a

walking arc (𝑤). Each arc (𝑖, 𝑗)𝑚 ∈ A has two main attributes: the distance 𝛿𝑖 𝑗 and

the time 𝜂𝑖 𝑗 . Each worker has a maximum daily walking distance 𝜁 and is hired for

a full working day lasting 𝜙 units of time. The maximum distance that a worker

may walk between two points is 𝜃. The fixed cost of hiring a worker is 𝑐 𝑓 . Addition-

ally, there is a variable cost associated with driving (𝑐𝑣 per unit of distance). The

park-and-loop routing problem (PLRP) consists in finding a set of least cost routes

(starting and ending at the depot) while ensuring that: each customer is served

precisely once; the total duration of each route does not exceed the working day

duration; and the distance walked by any worker does not exceed the limit. Because

it is a generalization of the well-known vehicle routing problem (VRP), the PLRP

is NP-hard.

In order to serve the set of customers three types of routes can be designed:

pure vehicle routes performed by a worker driving between customers; pure walking

routes performed by a worker walking between customers; and finally park-and-loop

routes that are vehicle routes with walking subtours. The number of customers in a

walking subtour is not constrained. Figure 2.1 shows a feasible solution to a small

PLRP instance with 7 customers. In this solution, customers 1 and 2 are served by a

worker driving a vehicle (i.e., a pure vehicle route), while customers 3 to 7 are served

by a worker following a park-and-loop route. More specifically, the worker leaves

(i.e., parks) the vehicle at the depot and walks to serve customer 3. The worker

then walks back to the depot to pick up the vehicle and drives to customer 4. After
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serving customer 4, the worker parks the vehicle and walks to serve customers 5

and 7. The worker then walks back to customer 4. Finally, the worker drives to

customer 6 and then returns to the depot.

0

1

2

3

4

5

6

7

(a) Node locations

0

1

2

3

4

5

6
walking

driving

7

(b) PLRP solution

Figure 2.1: PLRP instance and solution example.

The PLRP is closely related to the two-echelon last-mile delivery problem (2E-

LMDP) discussed by Martinez-Sykora et al. (2020); a variant of the traveling sales-

man problem (TSP) consisting in finding a single park-and-loop route to serve a set

of customers. The authors propose an exact branch-and-cut algorithm capable of

solving instances with up to 30 customers. As opposed to the PLRP, the number

of walking subtours starting at a given parking spot is limited to one. More re-

cently, Reed et al. (2024) introduced the capacitated delivery problem with parking

(CDPP). This problem extends the 2E-LMDP by allowing the worker to perform

an unlimited number of walking subtours starting at the same parking spot. The

authors propose a mixed integer programming (MIP) formulation that can solve

instances with up to 50 customers. In addition, they describe a two-step heuristic

that can handle instances with up to 100 customers. However, the authors limit

the number of customers in a walking subtour to three. As stated previously, in the

PLRP, the number of customers in a walking subtour is not constrained.

Another related problem is the two-echelon vehicle routing problem with time
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windows and mobile satellites (2EVRP-TM) introduced by Li et al. (2020). In this

variant of the VRP each vehicle (i.e., truck) carries a fixed number of drones. These

drones are launched either at the depot or at customer locations after parking the

vehicle. After all the dispatched drones return to the vehicle, the route continues.

To solve this problem, the authors propose an adaptive large neighborhood search

(ALNS) heuristic that can handle instances with up to 100 customers. More recently,

Zhou et al. (2023) presented a branch-and-price algorithm for solving a problem

similar to the 2EVRP-TM in which the number of drones in each vehicle is treated

as a decision variable. In this problem variant, once a drone returns to the truck, it

may immediately depart to deliver a parcel to another customer. The authors test

their algorithm on instances with up to 25 customers. As opposed to the PLRP,

in the 2EVRP-TM it is possible that two (or more) subtours are carried out at

the same time (by different drones) departing from the same parking spot. Another

stream of research has focused on variants of the vehicle routing problem with drones

(VRPD). In this setting, drones may be launched at one location and retrieved at

another. This drastically changes the structure of the routes, which no longer follow

a regular park-and-loop structure, and introduces synchronization issues that are

not present in the PLRP. The interested reader is referred to Tamke and Buscher

(2021) and Yin et al. (2023) for more details.

The PLRP is also related to the truck and trailer routing problem (TTRP)

introduced by Semet (1995). This variant of the VRP considers a fleet of trucks

pulling trailers to serve a set of customers. The problem also considers a set of

decoupling locations (i.e., parking places), where trailers can be detached as some

of the customers are only accessible by the truck without the trailer. Most of the

work on the TTRP has focused on heuristic algorithms (Chao 2002; Derigs et al.

2013; Lin et al. 2009; Sheuerer 2006; Villegas et al. 2013, 2011). These methods are

capable of providing high quality solutions for instances with up to 150 customers.

In the TTRP, routes are constrained by the combined capacity of the truck and the

trailer. In contrast, routes in the PLRP are constrained by the maximum walking
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distance and the working day duration.

In the last decade, researchers have turned their attention to developing exact

methods for more restricted TTRP variants (Belenguer et al. 2016; Parragh and

Cordeau 2017; Rothenbächer et al. 2018). Belenguer et al. (2016) propose a branch-

and-cut algorithm for the single truck and trailer routing problem with satellite

depots (STTRPSD). This algorithm is capable of optimally solving instances with

up to 50 customers when limiting the number of parking places to 10. Parragh

and Cordeau (2017) propose a branch-and-price algorithm to solve the truck and

trailer routing problem with time windows (TTRPTW). Their method is capable

of solving instances with up to 100 customers. Rothenbächer et al. (2018) propose

a branch-price-and-cut algorithm that outperforms the algorithm of Parragh and

Cordeau (2017) on the same TTRPTW variant. Their method is capable of finding

the optimal solution for 35 additional instances. As opposed to the TTRPTW,

customers in the PLRP do not have an associated time window. Therefore, the

latter can be expected to be more difficult to solve using branch-price-and-cut.

Another related problem is the doubly open park-and-loop routing problem (DO-

PLRP) introduced by Cabrera et al. (2022). This variant of the VRP consists in

finding a set of least-cost routes that may start and end at any customer. To solve

the DOPLRP, the authors propose a two-phase matheuristic called MSH. This ap-

proach was capable of handling instances with up to 3,800 customers. As opposed

to the PLRP, the time duration of each walking subtour is bounded. More recently,

Le Colleter et al. (2023) defined the park-and-loop routing problem with parking

selection (PLRP-PS). The main difference with other problem variants is that the

vehicle can only be parked at dedicated parking locations. To solve the PLRP-PS,

the authors introduce a small and large neighborhood search metaheuristic (SLNS).

The authors use new specific techniques to select parking spots that significantly

speed up the algorithm. Their algorithm was capable of providing solutions for

instances with up to 400 customers and 352 dedicated parking spots.

The closest problem to the PLRP is the VRP with transportable resources

51



(VRPTR) introduced by Coindreau et al. (2019). In the VRPTR, a set of workers

has to serve a set of customers. The workers can either walk or drive to their next

location and are allowed to carpool (i.e., share a vehicle). To solve their VRPTR,

the authors use a mixed integer linear program (MILP). Their experiments show

that their MILP can only solve instances with up to 18 customers. Thus, they also

propose a variable neighborhood search (VNS) algorithm. This method can solve

instances with up to 50 customers with a running time limit of 10 hours. The au-

thors also studied a version of their problem in which carpooling is not allowed. The

latter perfectly matches the PLRP definition. Le Colleter et al. (2023) reported re-

sults benchmarking VNS, MSH, and SLNS on the Coindreau et al. (2019) instances.

Their study sets SLNS as the state-of-the-art algorithm since it unveiled eight new

best-known solutions. Note, however, that neither of these methods is exact. More-

over, none of those approaches has been assessed with respect to a lower bound. In

other words, no optimality gaps have been reported for the solutions they provide.

The contribution of this article is two-fold. From a methodological perspective,

we propose a branch-price-and-cut algorithm to solve the PLRP. The key algo-

rithmic component of our method is the pulse algorithm used to solve the pricing

problem. The latter extends the procedure introduced in Lozano et al. (2016) to

handle the park-and-loop structure of the routes and the inclusion of the subset

row inequalities proposed by Jepsen et al. (2008). In addition, we present a set of

acceleration strategies tailored to the PLRP. From a computational perspective, we

perform extensive experiments on the set of 40 instances introduced by Coindreau

et al. (2019), arguably the most widely used testbed for VRPs with park-and-loop

structure. Our algorithm is the first to prove optimality for 39 of the instances.

To further assess the advantages and limitations of our approach, we also perform

experiments on a new challenging set of instances. In addition, we developed an

online web application 1 that allows researchers to visualize and download the best-

known solutions for the PLRP. They can also upload their solutions for plotting

1Available at https://chairelogistique.hec.ca/en/scientific-data/
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and checking.

This paper is organized as follows. Section 2.2 presents the mathematical formu-

lation. Section 2.3 describes the proposed branch-price-and-cut algorithm. Section

2.4 presents the acceleration strategies that crucially improve the algorithm’s per-

formance. Section 2.5 contains the computational experiments. Finally, Section 2.6

presents the conclusions and outlines potential paths for future research.

2.2 Problem formulation

We define a route 𝑟 as an ordered set of directed arcs starting and ending at the

depot. The customers served in the route are represented by the set C𝑟 . Let the

subsets A𝑑
𝑟 and A𝑤

𝑟 contain the driving and the walking arcs in 𝑟 respectively. Every

arc (𝑖, 𝑗) ∈ A𝑤
𝑟 must satisfy the condition 𝛿𝑖 𝑗 ≤ 𝜃. A route 𝑟 is time-feasible if∑︁

(𝑖, 𝑗)∈A𝑑
𝑟 ∪A𝑤

𝑟

𝜂𝑖 𝑗 +
∑︁
𝑖∈C𝑟

𝑠𝑖 ≤ 𝜙. (2.1)

Similarly, a route 𝑟 is walking-feasible if∑︁
(𝑖, 𝑗)∈A𝑤

𝑟

𝛿𝑖 𝑗 ≤ 𝜁 . (2.2)

The cost 𝑐𝑟 of a route is equal to the sum of the variable and the fixed cost, that is,

𝑐𝑟 =
∑︁
(𝑖, 𝑗)∈A𝑑

𝑟

𝛿𝑖 𝑗𝑐
𝑣 + 𝑐 𝑓 . (2.3)

Let R be the set of all feasible routes and let 𝑎𝑖𝑟 be a parameter that takes the

value 1 if and only if route 𝑟 ∈ R serves customer 𝑖 ∈ C. Finally, let 𝑥𝑟 be a binary

variable equal to 1 if route 𝑟 ∈ R is selected and 0 otherwise. A set covering (SC)

formulation for the PLRP can be stated as follows:

min
∑︁
𝑟∈R

𝑥𝑟𝑐𝑟 (2.4)
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subject to

∑︁
𝑟∈R

𝑎𝑖𝑟𝑥𝑟 = 1 ∀𝑖 ∈ C (2.5)∑︁
𝑟∈R

𝑥𝑟 ≥
⌈∑

𝑖∈C 𝑠𝑖
𝜙

⌉
(2.6)∑︁

𝑟∈R
𝑥𝑟 ≤ 𝑘 (2.7)

𝑥𝑟 ∈ {0, 1} ∀𝑟 ∈ R. (2.8)

The objective function (2.4) minimizes the total cost. Constraints (2.5) ensure

that all customers are served exactly once. Constraints (2.6) and (2.7) provide,

respectively, a lower and an upper bound on the number of routes used to serve

the set of customers. Constraints (2.8) are the domain restrictions. Note that the

number of feasible routes |R | grows exponentially. Thus, solving SC by enumerating

all the feasible routes is usually not possible. As an alternative, the SC can be solved

using a branch-price-and-cut algorithm which is described next.

2.3 Solution method

In this section, we present an exact branch-price-and-cut algorithm (BPC) to solve

the SC model. A BPC algorithm is a branch-and-bound algorithm in which, at each

node of the enumeration tree, the linear relaxation of an integer formulation is solved

using column generation (CG) and tightened by adding valid inequalities (i.e., cuts).

For completeness, Section 2.3.1 describes the column generation algorithm. Section

2.3.2 defines the pricing problem. Section 2.3.3 describes the key strategies used in

the pricing problem algorithm. Section 2.3.4 presents the valid inequalities. Finally,

Section 2.3.5 describes the branching rules.
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2.3.1 Column generation

CG is a solution method that can solve integer programs with a large number of de-

cision variables (i.e., columns). To achieve this goal, two optimization problems are

solved iteratively: A master problem that considers only a small subset of variables

and a pricing problem that generates promising variables to be added to the master

problem. If, at a given iteration, no variables are added to the master problem,

the CG algorithm ends. We refer the interested reader to the book by Desrosiers

et al. (2024) and the study by Uchoa et al. (2024) for a review of techniques and

applications of column generation.

In our case, the master problem corresponds to the relaxed version of formula-

tion (2.4)-(2.8). The relaxed set covering problem (RSCP) considers only a subset

of feasible routes (columns) R ⊆ R and is obtained by relaxing the integrality con-

straints on the 𝑥𝑟 variables. Let 𝜋𝑖 ∈ R, 𝜎 ≥ 0, and 𝜌 ≤ 0 be the dual variables

associated with constraints (2.5), (2.6), and (2.7) respectively. The reduced cost of

variable 𝑥𝑟 is then given by the following expression:

𝔯𝑟 = 𝑐𝑟 −
∑︁
𝑖∈C

𝑎𝑖𝑟𝜋𝑖 − 𝜎 − 𝜌. (2.9)

Having min
𝑟∈R {𝔯𝑟} ≥ 0 ensures that the RSCP is solved optimally. If there

exists a route 𝑟 with 𝔯𝑟 < 0, we add the corresponding variable 𝑥𝑟 to the subset

R. Therefore, the goal after solving the RSCP is to identify a route with negative

reduced cost. This problem is referred to as the pricing problem and is the topic of

the next section.

2.3.2 Pricing problem

Let G′ = (V′,A′) be a directed multigraph, henceforth referred to as the modified

network, where V′ is the set of nodes including a start depot 0 and an end depot 0.

Thus, V′ = C ∪
{
0, 0

}
and A′ = A1 ∪ A2 ∪ A3 ∪ A4 ∪ A5, where
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• A1 =
{
(𝑖, 𝑗)𝑑 |𝑖 ∈ C ∪

{
0
}
, 𝑗 ∈ C

}
is the set of driving arcs arriving to any

customer,

• A2 =
{
(𝑖, 𝑗)𝑤 |𝑖 ∈ C ∪

{
0
}
, 𝑗 ∈ C|𝛿𝑖 𝑗 ≤ 𝜃

}
is the set of walking arcs arriving to

any customer,

• A3 =
{
(𝑖, 0)𝑑 |𝑖 ∈ C

}
is the set of driving arcs going from any customer to the

end depot,

• A4 =
{
(𝑖, 0)𝑤 |𝑖 ∈ C|𝛿𝑖0 ≤ 𝜃

}
is the set of walking arcs going from any customer

to the start depot, and

• A5 =
{
(0, 0)𝑤

}
is a fictitious arc connecting the start and end depots.

The attributes of the arc connecting 0 and 0 are set to zero. Note that arcs A4

are necessary in order to allow workers to start walking subtours from the depot.

Figure 2.2 shows how the routes in Figure 2.1b are mapped to the modified network.

walking
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2

3

4

5

6

0

7

Figure 2.2: Route representation on the modified network.

As mentioned previously, the objective of the pricing problem is to find routes

from 0 to 0 with a negative reduced cost. With this in mind, we must define the

reduced cost of each arc in G′. The reduced cost of an arc (𝑖, 𝑗)𝑚 ∈ A′ is defined as:
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𝑟𝑖 𝑗 =



𝛿𝑖 𝑗𝑐
𝑣 − 𝜋 𝑗 , (𝑖, 𝑗)𝑚 ∈ A1;

−𝜋 𝑗 , (𝑖, 𝑗)𝑚 ∈ A2;

𝛿𝑖 𝑗𝑐
𝑣, (𝑖, 𝑗)𝑚 ∈ A3;

0, (𝑖, 𝑗)𝑚 ∈ A4;

0, (𝑖, 𝑗)𝑚 ∈ A5.

(2.10)

In terms of network flows, the start depot offers one unit of flow that is demanded

by the end depot. Thus, the formulation of the pricing problem partially follows

that of the shortest path problem in which the weight of the arcs corresponds to

their reduced cost. Nevertheless, in the context of the PLRP, a node in graph G′

can only be visited once (unless the node is used as a parking spot), which means

that paths are pseudo-elementary. Moreover, paths (i.e., routes) are constrained by

two resources: the time 𝜙 and the walking distance 𝜁 . Hence, the pricing problem

corresponds to solving a variant of the elementary shortest path problem with re-

source constraints (ESPPRC) in which routes have a park-and-loop structure. We

will refer to our specific pricing problem as the elementary shortest path problem

with resource constraints and park-and-loop (ESPPRC-PL).

The ESPPRC itself is NP-hard. For this reason, considerable research effort

has been devoted to designing algorithms to solve versions of the problem in which

the elementarity constraints are partially (or completely) relaxed. Even though the

quality of the bounds provided by the MP may be significantly reduced, solving

these relaxations is usually faster. The interested reader is referred to Costa et

al. (2019b) for a detailed review of ESPPRC relaxations. The resulting shortest

path problem with resource constraints (SPPRC) is often solved using dynamic

programming algorithms. To put it simply, these algorithms are based on the idea

of extending labels following a breadth-first search paradigm. Each label represents

a partial path and stores the consumption of resources. In order to avoid a complete

enumeration of the partial paths in the network, labels are discarded using problem-
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specific dominance rules. These algorithms can be very fast for small and medium-

sized networks. Nevertheless, the number of labels to store can be extremely large.

Thus, they may fail to scale to large networks.

Another stream of research has focused on solving the ESPPRC without ex-

plicitly applying any relaxations. As a result, the bounds provided by the MP are

typically tighter (stronger), which potentially leads to the exploration of smaller

branch-and-price trees. One of the algorithms that is commonly used in this setting

is the pulse algorithm (PA) proposed by Lozano et al. (2016). The PA is based

on a recursive depth-first search that crucially combines multiple pruning strate-

gies that discard partial paths. A vital feature of the PA is that it does not rely

on asserting dominance between labels. More crucially, labels are never stored at

nodes, which significantly decreases the memory requirements of the algorithm. An-

other interesting feature of the PA is its flexibility. In recent years, it has been

adapted (with mild changes) to solve the orienteering problem with time windows

(Duque et al. 2014), the bi-objective shortest path problem (Duque et al. 2015), the

weight-constrained shortest path problem with replenishment (Bolívar et al. 2014),

the shortest 𝛼-reliable path problem (Corredor-Montenegro et al. 2021), and, more

recently, the least expected travel-time path problem (Yamín et al. 2022). The PA

has been also used as a component in algorithms to solve other hard combinatorial

optimization problems (Arslan et al. 2018; Lozano and Smith 2017; Montoya et al.

2016; Restrepo et al. 2012; Schrotenboer et al. 2019).

Based on the above observations, we decided to adapt the PA to solve the

ESPPRC-PL. Following the same intuition of the original PA, our algorithm propa-

gates pulses through the network from a start node (i.e., the start depot) 0 to an end

node (i.e., the end depot) 0. While traversing the network node by node, the pulse

builds a partial path P that includes all the nodes already visited. Additionally, the

pulse contains information on the attributes associated with the path, such as the

cumulative reduced cost or the resource consumption. Whenever a pulse reaches

the end node 0 it contains all the information of a feasible path P from 0 to 0. If
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the path has a negative reduced cost, it can be added to the subset R and the best

solution can be updated.

The PA ensures that the optimal path P∗ is always found by implicitly enumer-

ating all paths from 0 to 0. However, one can easily truncate the PA to accelerate

the search by solving the problem heuristically, as it is discussed in Section 2.4.2.

To prevent the PA from explicitly enumerating all possible paths, the algorithm

uses a set of pruning strategies. These strategies allow the PA to stop (prune) the

propagation of a partial path as soon as there is enough evidence that the partial

path will not improve the current best solution or that it will lead to an infeasible

solution. Note that stopping a partial path from propagating allows for discarding a

large number of paths, as it discards all the paths that begin with it. Thus, the ear-

lier a partial path is stopped, the better. This idea is shared with other algorithms,

like branch-and-bound, where an implicit enumeration is performed. Similarly, the

strength of the pulse algorithm depends on the pruning strategies. In what follows

the terms stopping or pruning a path are used interchangeably.

Algorithm 1 presents the main logic of the pulse algorithm. Line 1 initializes the

partial path. Lines 2 to 4 initialize the reduced cost and the cumulative resource

consumption. Line 5 runs the bounding procedure given the bound step size Δ and

the bounding time limits [𝑡, 𝑡]. Line 6 extends a pulse at the start node. Finally, line

7 returns the optimal path. Note that in the case where reaching the end node 0 is

not possible due to the resource constraints (i.e., the pricing problem is infeasible),

the optimal path ends up empty.

Algorithm 2 shows the recursive procedure pulse, where Γ+𝑤 (𝑖) corresponds to

the set of arcs leaving node 𝑖 on foot and Γ+
𝑑
(𝑖) by driving. Lines 1 to 4 use the

pruning strategies, namely, infeasibility, bounds, rollback, and path completion, to

try to prune a partial path. If the pulse is not pruned, line 5 adds the node to the

partial path. From lines 6 to 10, the algorithm recursively propagates the pulse by

driving to node 𝑗 . From lines 11 to 17, the algorithm recursively propagates the

pulse using Algorithm 3 by walking to node 𝑗 , thus parking the vehicle at node 𝑖.
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Algorithm 1 pulseSearch function
Require: G′, directed multi graph; 𝜙, duration limit; 𝜁 , walking distance limit; 0,

start node; 0, end node; Δ, bound step size; [𝑡, 𝑡], bounding time limits.
Ensure: P∗, optimal path.
1: P∗ ← ∅
2: 𝑟 (P) ← 0
3: 𝑡 (P) ← 0
4: 𝑤(P) ← 0
5: bound(G′,Δ, [𝑡, 𝑡]) ⊲ see §2.3.3
6: pulse(0, 𝑟 (P), 𝑡 (P), 𝑤(P),P) ⊲ see Algorithm 2
7: return P∗

Algorithm 2 pulse function
Require: 𝑖, current node; 𝑟, cumulative reduced cost; 𝑡, cumulative time; 𝑤, cumu-

lative walking distance; P, partial path.
1: if ¬feasibility(𝑖, 𝑡 (P), 𝑤(P)) then ⊲ see §2.3.3
2: if ¬bounds(𝑖, 𝑟 (P), 𝑡 (P)) then ⊲ see §2.3.3
3: if ¬rollback(𝑖, 𝑟 (P), 𝑡 (P), 𝑤(P),P) then ⊲ see §2.3.3
4: if ¬complete_path(𝑖, 𝑟 (P), 𝑡 (P), 𝑤(P),P) then ⊲ see §2.3.3
5: P′← P ∪ {𝑖}
6: for 𝑗 ∈ Γ+

𝑑
(𝑖) do

7: 𝑟 (P′) ← 𝑟 (P) + 𝑟𝑖 𝑗
8: 𝑡 (P′) ← 𝑡 (P) + 𝜂𝑖 𝑗 + 𝑠 𝑗
9: pulse( 𝑗 , 𝑟 (P′), 𝑡 (P′), 𝑤(P),P′)

10: end for
11: for 𝑗 ∈ Γ+𝑤 (𝑖) do
12: 𝑟 (P′) ← 𝑟 (P) + 𝑟𝑖 𝑗
13: 𝑡 (P′) ← 𝑡 (P) + 𝜂𝑖 𝑗 + 𝑠 𝑗
14: 𝑤(P′) ← 𝑤(P) + 𝛿𝑖 𝑗
15: 𝑝𝑠← 𝑖

16: pulse_parked( 𝑗 , 𝑟 (P′), 𝑡 (P′), 𝑤(P′), 𝑝𝑠,P′)
17: end for
18: end if
19: end if
20: end if
21: end if
22: return void

Algorithm 3 shows the recursive procedure pulse_parked. Lines 1 to 3 try to

prune the partial path using the infeasibility, bounds, and rollback pruning strate-

gies. If the pulse is not pruned, line 4 adds the node to the partial path. From lines
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5 to 22, the algorithm recursively propagates the pulse by walking to node 𝑗 . At

line 9, we check if the path is returning to the parking spot. If so, at line 14 the

algorithm checks if it is possible to prune the partial path by using the subtour fixing

strategy. If the partial path is not pruned, the algorithm recursively propagates the

pulse using Algorithm 2.

Algorithm 3 pulse_parked function
Require: 𝑖, current node; 𝑟, cumulative reduced cost; 𝑡, cumulative time; 𝑤, cumu-

lative walking distance; 𝑝𝑠, parking spot; P, partial path.
1: if ¬feasibility(𝑖, 𝑡 (P), 𝑤(P)) then ⊲ see §2.3.3
2: if ¬bounds(𝑖, 𝑟 (P), 𝑡 (P)) then ⊲ see §2.3.3
3: if ¬rollback(𝑖, 𝑟 (P), 𝑡 (P), 𝑤(P),P) then ⊲ see §2.3.3
4: P′← P ∪ {𝑖}
5: for 𝑗 ∈ Γ+𝑤 (𝑖) do
6: 𝑟 (P′) ← 𝑟 (P) + 𝑟𝑖 𝑗
7: 𝑡 (P′) ← 𝑡 (P) + 𝜂𝑖 𝑗 + 𝑠 𝑗
8: 𝑤(P′) ← 𝑤(P) + 𝛿𝑖 𝑗
9: if 𝑝𝑠 = 𝑗 then

10: 𝑡 (P′) ← 𝑡 (P′) − 𝑠 𝑗
11: if 𝑗 ∈ C then
12: 𝑟 (P′) ← 𝑟 (P) + 𝜋 𝑗
13: end if
14: if ¬subtour_fixing( 𝑗 , 𝑡 (P),P) then ⊲ see §2.3.3
15: pulse( 𝑗 , 𝑟 (P′), 𝑡 (P′), 𝑤(P′),P′)
16: end if
17: else if 𝑝𝑠 ≠ 𝑗 then
18: pulse_parked( 𝑗 , 𝑟 (P′), 𝑡 (P′), 𝑤(P′), 𝑝𝑠,P′)
19: end if
20: end for
21: end if
22: end if
23: end if
24: return void

The following section provides further detail regarding the pruning strategies

used by the PA.
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2.3.3 Pruning strategies

In Sections 2.3.3, 2.3.3, and 2.3.3 we describe the adaptation of the original PA

pruning strategies proposed by Lozano et al. (2016), namely, infeasibility, bounds,

and rollback pruning. In Section 2.3.3 we present the path completion strategy (line

4 in Algorithm 2) adapted from Cabrera et al. (2020) which was used to solve the

constrained shortest path problem (CSP). Finally, in Section 2.3.3 we describe a

new pruning strategy for the PA specifically tailored for our pricing problem called

subtour fixing (line 16 in Algorithm 3).

Infeasibility pruning

The intuition of this pruning strategy is to stop a pulse as soon as it becomes

evident that it will not be able to reach the end node 0 while meeting the resource

constraints. Thus, we can safely stop a partial path P from propagating if any of

the following conditions holds:

• 𝑡 (P) > 𝜙;

• 𝑤(P) > 𝜁 .

Discarding infeasible partial paths is often used as a key strategy to improve the

performance of labeling algorithms. Note that this strategy could easily be extended

to include other route constraints such as the presence of time windows at customer

locations or a time limit on each walking subtour.

Bounds pruning

Similar to the infeasibility pruning strategy, we can stop a pulse from propagating

if there is enough information to prove that the current partial path will not lead to

improving the best solution found so far. More specifically, if there is evidence that

the partial path will not be able to decrease the best objective function 𝑟 (P∗) we

can stop the partial path from propagating. With this purpose, we use a bounding
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scheme that computes lower bounds 𝑟 (𝑖, 𝑡 (P)) for every node 𝑖 ∈ G′ and for a set of

possible values of time resource consumption 𝑡 (P). More specifically, these bounds

contain the minimum reduced cost from any node 𝑖 to the end node 0 given a partial

resource consumption 𝑡 (P).

To compute the lower bounds, we solve an ESPPRC-PL from every node 𝑖 ∈ G′

to 0 given a time consumption of 𝑡 (P) = 𝑡−Δ. These problems are overly-constrained

as the pulse only has Δ units of time available to reach the end node 0. Accordingly,

the pulse algorithm can easily solve these problems to optimality. Each of the

solutions found is a valid lower bound on the minimum reduced cost that can be

obtained from node 𝑖 given a time consumption 𝑡 (P) ≥ 𝑡 − Δ. After finding these

bounds, we proceed to solve an ESPPRC-PL from every node 𝑖 ∈ G′ to 0 given a time

consumption of 𝑡 (P) = 𝑡 −2Δ. Although the resulting problems are less constrained,

we already have vital information for partial paths with a time consumption between

[𝑡 − Δ, 𝑡]. We continue with this procedure, solving ESPPRC-PL problems with{
𝑡 − 3Δ, 𝑡 − 4Δ, ..., 𝑡

}
. Note that at the end of this procedure, we have a lower bound

for every node and every discrete time step between 𝑡 and 𝑡. With this information,

we can prune a partial path P if 𝑟 (P) + 𝑟 (𝑖, 𝑡 (P)) ≥ 𝑟 (P∗).

For further details regarding this strategy, the reader is referred to Lozano et

al. (2016). Note that in this section we describe the bounding scheme using only

the time consumption 𝑡 (P). In preliminary experiments, we considered computing

additional bounds with respect to the walking distance 𝑤(P). However, this did not

lead to a major improvement in performance.

Rollback pruning

The choice between a depth-first search (DFS) and a breadth-first search (BFS)

strategy has been widely studied in the literature as it affects the performance of

every labeling setting/correcting algorithm. Although it is possible to affect the

behavior of the pulse algorithm to make a BFS exploration through the usage of

pulse queues as presented in Cabrera et al. (2020), in this article we consider a
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version of the pulse algorithm that follows a pure DFS strategy.

In some cases, this behaviour could lead to exploring vast unpromising regions

of the search space, before backtracking to correct poor decisions made earlier. To

overcome this problem, the rollback pruning strategy re-evaluates the last choice

made. More specifically, consider a partial path P0,𝑖 from 0 to 𝑖 that is extended to

node 𝑙 and then reaches node 𝑗 , namely, P0, 𝑗 = P0,𝑖 ∪ 𝑙 ∪ 𝑗 . Once the partial path

P0, 𝑗 reaches node 𝑗 , we compare it with the partial path which skips node 𝑙, that is,

P′0, 𝑗 = P0,𝑖 ∪ 𝑗 . If 𝑟 (P′0, 𝑗 ) ≤ 𝑟 (P0, 𝑗 ) and 𝑡 (P′0, 𝑗 ) ≤ 𝑡 (P0, 𝑗 ) we can prune path P0, 𝑗 as

it is dominated by path P′0, 𝑗 . As pointed out by Lozano et al. (2016), this strategy

is based on simple arithmetic calculations for 𝑟 (P′0, 𝑗 ) and 𝑡 (P′0, 𝑗 ) and does not rely

on storing any kind of labels.

Path completion

One of the main drawbacks of the PA, as it was presented by Lozano et al. (2016),

is that the best path P∗ is only updated when the end node 0 is reached. Thus, the

main purpose of the path completion strategy is to update the best path (primal

bound) at intermediate nodes in the network.

To do so, we take advantage of the information computed in the bounding proce-

dure presented in Section 2.3.3. Formally, let us consider a partial path P0,𝑖 arriving

to node 𝑖. The path completion strategy adds the minimum reduced cost path P𝑟𝑡
𝑖,0

given a time consumption 𝑡 (P0,𝑖) to the partial path P0,𝑖, that is, P0,0 = P0,𝑖 ∪ P𝑟𝑡𝑖,0.

If the completed path is feasible and the reduced cost is lower than the current

primal bound, we update the incumbent solution accordingly. Furthermore, we can

stop the incoming partial path P0,𝑖 from propagating, because (by construction) we

know that the complete path is already the minimum reduced cost path stemming

from this partial path given the current time consumption. This procedure is used

in Line 4 of Algorithm 2 and is adapted from the path completion strategy proposed

by Cabrera et al. (2020) for the constrained shortest path problem.
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Subtour fixing

Consider a partial path P0, 𝑗 from 0 to 𝑗 in which 𝑗 is used as a parking spot. More-

over, consider a walking subtour 𝑠 visiting a subset C 𝑗𝑠 of three or more customers

C 𝑗𝑠 =

{
𝑖1, 𝑖2, ..., 𝑖 |C 𝑗

𝑠 |

}
and stemming from node 𝑗 . The number of possible walking

subtours visiting all the customers in C 𝑗𝑠 and using 𝑗 as a parking spot can be calcu-

lated as |C 𝑗𝑠 |!. Thus, during the recursive search, the algorithm can visit 𝑗 to retrieve

the vehicle following several different sequences in which all the customers in C 𝑗𝑠 are

visited. The total reduced cost associated with each of these sequences is the same

(i.e.,
∑
𝑖∈C 𝑗

𝑠
−𝜋𝑖), while the total time may differ. Note that a slower walking subtour

may result in the impossibility of visiting other customers using the partial path

P0, 𝑗 .

Once again, as the algorithm follows a pure DFS strategy, is possible that many

partial paths will be explored before backtracking and correcting the sequence fol-

lowed for visiting the customers in C 𝑗𝑠 . For this reason, every time a partial path

completes a walking subtour 𝑠 we check if it is possible to stop that path from prop-

agating. In practice, we follow two steps. First, we check if it is the first time (since

the BPC algorithm started) that the customers C 𝑗𝑠 are visited by a walking subtour

stemming from 𝑗 . If so, we solve a traveling salesman problem minimizing the total

walking time and store the value 𝑡∗(C 𝑗𝑠 ) in memory. If not, we retrieve the value

stored previously. Second, we compare the current time of the subtour 𝑡 (𝑠) with the

best time 𝑡∗(C 𝑗𝑠 ). If the total time 𝑡 (𝑠) of the subtour 𝑠 currently included in the

partial path P0, 𝑗 is larger than the total time of the optimal TSP (i.e., 𝑡 (𝑠) > 𝑡∗(C 𝑗𝑠 ))

we can prune the path and thus avoid exploring paths that use an inefficient walking

subtour.

2.3.4 Valid inequalities

The optimal solution of the RSCP can be fractional. In that case, before apply-

ing branching decisions we first try to improve (lift) the lower bound. To do so,
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we draw upon valid inequalities (cuts). Particularly, we include the subset row in-

equalities proposed by Jepsen et al. (2008) for subsets of three customers. These

inequalities have been used in different applications as the multi-depot vehicle rout-

ing problem (Contardo and Martinelli 2014), the vehicle routing problem with time

windows (Costa et al. 2019b), and the two-echelon capacitated vehicle routing prob-

lem (Marques et al. 2020). The subset row inequalities with |S| = 3 are defined

as

∑︁
𝑟∈R

⌊
1/2

∑︁
𝑖∈S

𝑎𝑖𝑟

⌋
𝑥𝑟 ≤ 1, ∀S ⊆ C. (2.11)

Each of these inequalities has an associated dual variable 𝛽S ≤ 0. These inequal-

ities ensure that for a given subset S ⊆ C the number of routes serving two or more

customers is less or equal to 1.

To separate these inequalities we enumerate all customer triplets and check if

the inequality is violated in the current optimal solution. It has been observed

by multiple researchers that even if subset row inequalities tend to have a positive

impact on the quality of the lower bound, they significantly increase the complexity

of solving the pricing problem. Thus, in line with Jepsen et al. (2008), we allow

our BPC algorithm to add up to 𝜑 at each iteration with a minimum violation of

𝜀. Inequalities with greater violations are given priority. In our BPC, we set 𝜑 to 5

and 𝜀 to 0.1.

Note that adding these inequalities modifies the definition of the reduced cost

of a route. More specifically, if we denote 𝒮 as the subset of triplets of customers

for which the subset row inequality has been generated and added to the master

problem, then the reduced cost of a route is defined as

𝔯𝑟 = 𝑐𝑟 −
∑︁
𝑖∈C

𝑎𝑖𝑟𝜋𝑖 − 𝜎 − 𝜌 −
∑︁
S∈𝒮

𝛽S

⌊
1

2

∑︁
𝑖∈S

𝑎𝑖𝑟

⌋
. (2.12)
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Adding a subset row inequality implies that a penalty of 𝛽S must be paid if

two or more customers of the corresponding triplet are served by the route. To

account for this term using the PA, we add a new resource for each subset in 𝒮

that stores the number of times that a customer in the subset has been visited. If,

while extending a pulse this value reaches a value of 2 we subtract the 𝛽S from

the cumulative reduced cost. The reader should note that all the pruning strategies

outlined in Section 2.3.3 can still be used without any changes. This is an advantage

compared to algorithms that rely on assessing dominance between two partial paths

(labels) in which extending the dominance criteria is required.

In addition, to strengthen the linear relaxation of the SC formulation, we lifted

constraint (2.6) using the value of the objective function of the minimum spanning

tree on the graph G, as follows:

⌈∑
𝑖∈C 𝑠𝑖 + 𝑀𝑆𝑇 (G)

𝜙

⌉
≤
∑︁
𝑟∈R

𝑥𝑟 . (2.13)

Constraint (2.13) ensures that the number of routes in the solution of the RSCP

is at least the minimum number of routes needed to serve all the customers. Lifting

this constraint does not have any impact on the pricing problem structure.

2.3.5 Branching rules

Adding the inequalities outlined in Section 2.3.4 does not guarantee that the optimal

solution of the RSCP will be integral. In the case in which the optimal solution of

the RSCP is still fractional, we resort to branching on the arc flow variables. To

do so, we define 𝑎𝑚
𝑖 𝑗𝑟

as the number of times an arc (𝑖, 𝑗)𝑚 ∈ A appears in route

𝑟. Then, for each arc (𝑖, 𝑗)𝑚 ∈ A it is possible to compute the number of times it

appears in a solution as

𝑏𝑚𝑖 𝑗 =
∑︁
𝑟∈R

𝑎𝑚𝑖 𝑗𝑟 . (2.14)
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We select for branching the arc for which the value of 𝑏𝑚
𝑖 𝑗

is closest to 0.5. In the

case of a tie, we prioritize driving arcs.

Branching on an arc implies creating two child nodes for the branch-and-price

tree: one child in which the arc is forbidden (the value is set to zero) and one child in

which the arc is fixed (the value is set to one). These conditions are enforced locally

in the pricing problem by modifying the graph G′. If an arc must be forbidden, the

arc is simply removed from graph G′. However, fixing an arc is not as straightforward

as it depends on the transportation mode. If the arc (𝑖, 𝑗) is a driving arc, we remove

all the driving arcs starting from node 𝑖 and ending at any node different than 𝑗 .

Moreover, we remove all the driving arcs ending at node 𝑗 that start at any node

different than 𝑖. In addition, we remove the walking arcs (𝑖, 𝑗)𝑤 and ( 𝑗 , 𝑖)𝑤. If the

arc (𝑖, 𝑗) is a walking arc, we remove all the walking arcs starting from node 𝑖 and

ending at any node different than 𝑗 . We also remove all the walking arcs ending at

node 𝑗 that start at any node different than 𝑖. In addition, we remove the driving

arcs (𝑖, 𝑗)𝑑 and ( 𝑗 , 𝑖)𝑑. In order to select the next node to branch on we use best

bound search.

2.4 Acceleration strategies

We now describe several ideas that we use to speed up our BPC algorithm.

2.4.1 Dual stabilization

Usually, CG-based algorithms suffer from slow convergence, a phenomenon called

the tailing-off effect (Desrosiers et al. 2024). An important technique for alleviating

this issue is to implement a dual stabilization method. In this work, we implemented

the 𝛼-schedule procedure presented by Pessoa et al. (2013). This procedure aims to

correct the values of the dual variables used to solve the pricing problem based on

previous dual solutions. Algorithm 4 shows the pseudocode of the procedure. Line

68



1 initializes the value of 𝑙. Line 2 initializes the value of the dual variables. Line

3 updates the smoothing factor. Line 4 computes the value of the dual variables

that will be used for solving the pricing problem. Line 5 updates the value of

𝑙. Line 6 calls the pricing problem solved with the procedure described in Section

2.3.2. Solving the pricing problem with the modified dual variables may result in the

impossibility to find a column with a negative reduced cost, even if such a column

exists. This phenomenon is called mis-pricing. If mis-pricing occurs the algorithm

returns to line 3. Otherwise, the number of iterations is updated, and the master

problem is solved once again.

Algorithm 4 𝛼-scheduling function
Require: 𝛼, smoothing factor.
1: 𝑙 ← 1
2: 𝜋0 ← 𝜋𝑖𝑛

3: 𝛼← [1 − 𝑙 (1 − 𝛼)]+
4: 𝜋𝑠𝑒𝑝 = 𝛼𝜋0 + (1 − 𝛼)𝜋𝑜𝑢𝑡
5: 𝑙 ← 𝑙 + 1
6: Call the pricing problem with 𝜋𝑠𝑒𝑝
7: if Mis-pricing occurs then
8: Go to step 3
9: else

10: 𝑡 ← 𝑡 + 1
11: Solve the master problem
12: Go to step 1
13: end if

2.4.2 Heuristic pulse algorithm

The pricing problem does not have to be solved to optimality at every iteration of

the CG. Thus, it is a common practice to design heuristics to quickly find promising

solutions in the first iterations of the CG (Desaulniers et al. 2005). In our case, we

can easily truncate the PA to solve the pricing problem heuristically by imposing a

stopping criterion. More specifically, we can heuristically stop the PA from propa-

gating more pulses if the number of paths found with negative reduced cost reaches
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Υ. Moreover, we can impose a time limit Λ. Then, if the CPU time for solving the

pricing problem reaches Λ and the PA has already found a promising path, we stop

the PA.

Furthermore, note that by allowing the PA to find paths with a park-and-loop

structure, the complexity of solving the pricing problem increases heavily. However,

it is possible that in some iterations of the CG, paths without subtours may have

a negative reduced cost. Accordingly, we adopt a leveled pricing strategy in which

we first run the PA without considering the walking arcs. Only if the algorithm was

not able to find promising paths do we proceed to run the PA by allowing walking

subtours.

2.4.3 Initialization

It is well known that the performance of a CG algorithm is affected by the initial

set of columns. Usually, including a high-quality set of initial columns can help

the algorithm perform a better estimation of the dual variables associated with

the RSCP constraints. Although one could initialize the pool of columns using

|C| routes visiting one customer, in our implementation we use the output of the

sampling phase of the MSH matheuristic proposed by Cabrera et al. (2022). For the

sake of completeness, we briefly describe the procedure here.

Algorithm 1 presents the main logic of the sampling phase of MSH. Line 1 ini-

tializes the set of initial routes R. Line 2 initializes the iteration number. From

lines 4 to 13, the algorithm populates R using a set of TSP heuristics H and the

splitting procedure 𝑠𝑝𝑙𝑖𝑡⟨·, ·⟩. Line 4 randomly selects a TSP heuristic ℎ from H .

Line 5 generates a giant route 𝜏𝑡 visiting all customers using ℎ. Line 6 generates a

solution, denoted as 𝑠𝑡 . Line 7 joins the routes in solution 𝑠𝑡 to set R. Lines 8-12

update the incumbent solution. Line 15 returns the set of initial routes that will be

used by our BPC.
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Algorithm 5 MSH sampling function
Require: G, graph; H , heuristic set; 𝑇 , iteration limit; 𝑄, time limit.
Ensure: initial solution R
1: R ← ∅
2: 𝑡 ← 1
3: while 𝑡 < 𝑇 ∧ 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔𝑇𝑖𝑚𝑒 < 𝑄 do
4: ℎ←H
5: 𝜏𝑡 ← ℎ(G)
6: 𝑠𝑡 ← 𝑠𝑝𝑙𝑖𝑡⟨G, 𝜏𝑡⟩
7: R ← R ∪ 𝑠𝑡
8: if t = 1 then
9: 𝑠∗ ← 𝑠𝑡

10: else if 𝑓 (𝑠𝑡) < 𝑓 (𝑠∗) then
11: 𝑠∗ ← 𝑠𝑡

12: end if
13: 𝑡 ← 𝑡 + 1
14: end while
15: return R

The key algorithmic component of the sampling phase of MSH is the 𝑠𝑝𝑙𝑖𝑡⟨·, ·⟩

procedure used to extract a solution 𝑠𝑡 from the giant TSP-like tour in Line 6. The

split procedure follows two steps. In the first step, it constructs a directed acyclic

graph defined by a set of nodes N = (𝑣0, 𝑣1, ..., 𝑣𝑖, ..., 𝑣𝑛) and the set of arcs A. Node

𝑣0 is a dummy node, while nodes numbered 1 to 𝑛 represent the customer in the

𝑖-th position of the giant tour 𝜏𝑡 . Each arc (𝑖, 𝑗) ∈ A represents a feasible route

𝑟 (𝑣𝑖+1, 𝑣 𝑗 ) visiting customers (𝑣𝑖+1, ..., 𝑣 𝑗 ). To evaluate if an arc should be added

to G (line 12) it solves a subproblem that can be seen as a multi-resource version

of the single truck and trailer routing problem with satellite depots (STTRPSD)

proposed in Villegas et al. (2010). The solution to this subproblem yields a route

with one or more walking subtours. In the second step, the split procedure finds

the shortest path from 𝑣0 to 𝑣𝑛 in G. The set of arcs (i.e., routes) along the shortest

path corresponds to a feasible solution 𝑠𝑡 .

In our BPC algorithm, we use the default parameters of the MSH. Namely, the

number of iterations is set to 2,500, and the time limit is set to 60 seconds. For

further detail regarding the MSH, the reader is referred to Cabrera et al. (2022).
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2.5 Computational experiments

In this section, we present the computational experiments that we performed on a

set of standard instances from the literature. Our goal is to analyze the performance

of the proposed BPC algorithm and its main components. In addition, we describe

a web application that can be used to check the quality of the solutions found by

any researcher working on the PLRP or related variants. The BPC algorithm was

implemented in Java using the jORLib2 library and compiled using Java 1.8.0_331.

The experiments were performed on an Intel core i7 @2.30 GHz Quad-Core processor

with 12GB of RAM. We used CPLEX 20.1 to solve the SC formulation and the

RSCP. Due to the randomness induced by the initialization procedure described

in Section 2.4.3, for every experiment, we ran five replicates. On each replicate,

we used a different value from the set {1, 2, 3, 4, 5} to seed Java’s pseudo-random

number generator. This way we ensure consistency across the initial solutions used

by each algorithm and validate the consistency of the proposed BPC. We also set a

time limit of 2 hours for every run.

2.5.1 Test instances

To assess the efficiency and effectiveness of the BPC algorithm, we use the set of

instances proposed by Coindreau et al. (2019) for the VRPTR without carpooling.

Each instance considers a number of customers 𝑛 in the set {20, 30, 40, 50} located

inside a square grid of 10 km by 10 km. The depot is located at the center of the

grid. The distance between nodes (customers and depot) is the Euclidean distance.

In addition, to compute driving and walking times they consider a driving speed of

30 km/h and a walking speed of 4 km/h. The customer service times range from 20

to 35 minutes. The maximum daily walking distance for each worker is 5 km and the

day duration is 7 hours (i.e., 420 minutes). It is worth recalling that any customer

location can be used as a parking spot. For each instance, Coindreau et al. (2019)
2The latest version of jORLib can be downloaded at: http://coin-or.github.io/jorlib/.
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fixed the number of available workers as the number of routes in the corresponding

VRP solution. The fixed cost is set to 0$ and the variable cost is set to 1$/km. The

objective is to minimize the total cost. An instance is referred to as “n_A_i”, where

n stands for the number of customers, A represents the size of the used time window

(i.e., all day), and i denotes the instance unique identifier. A total of 10 instances

are considered for each instance size (i.e., number of customers). After fine tuning,

we set the bound step size in the PA (Δ) to 15. The bounding time limits [𝑡, 𝑡] are

set to [120, 420]. In addition, the maximum number of paths Υ is set to 10 and the

time limit Λ to 15 seconds. Finally, the parameter 𝛼 used to stabilize the values of

the dual variables is set to 0.8.

2.5.2 Assessing the BPC performance

In this section, we analyze the performance of the proposed BPC and compare it to

that of the state-of-the-art algorithms for the PLRP, namely, the VNS introduced

by Coindreau et al. (2019), the MSH designed by Cabrera et al. (2022), and the

SLNS developed by Le Colleter et al. (2023).

Table 2.1 compares the performance of the proposed branch-price-and-cut al-

gorithm in the best performing replicate against the benchmark algorithms (meta-

heuristics) in terms of solution quality. Each row corresponds to an instance size.

Columns 2, 5, 8, and 11 show the number of best-known solutions (BKSs) found by

each algorithm. Columns 3, 6, 9, and 12 report the average gap with the best-known

solution. Columns 4, 7, 10, and 13 show the maximum gap with the best-known

solution.

Table 2.1: Solution quality on the Coindreau et al. (2019) instances.

|C| VNS MSH SLNS BPC
BKSs Avg. Δ Max. Δ BKSs Avg. Δ Max. Δ BKSs Avg. Δ Max. Δ BKSs Avg. Δ Max. Δ

20 1/10 4.09% 8.87% 10/10 0.00% 0.00% 10/10 0.00% 0.00% 10/10 0.00% 0.00%
30 0/10 3.13% 5.89% 7/10 0.01% 0.04% 8/10 0.00% 0.04% 10/10 0.00% 0.00%
40 3/10 1.23% 5.31% 6/10 0.15% 0.69% 7/10 0.22% 1.39% 10/10 0.00% 0.00%
50 2/10 2.12% 6.11% 2/10 0.91% 2.60% 4/10 0.14% 0.54% 10/10 0.00% 0.00%

Total/Avg. 6/40 2.64% 6.54% 25/40 0.27% 0.83% 29/40 0.09% 0.49% 40/40 0.00% 0.00%
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As the results show, BPC matched all previous best-known solutions and unveiled

11 new best-known solutions in all the replicates. On the subset of instances with

20 customers, both MSH and SLNS matched all the best-known solutions. However,

as the number of customers increases, the quality of the solutions found decreases.

Table 2.2 compares the performance of BPC in the best performing replicate

against the benchmark algorithms in terms of the optimality gap. To compute the

optimality gap we used the lower bound found by our BPC. Similar to Table 2.1

the results are grouped by instance size. Columns 2, 5, 8, and 11 show the number

of optimal solutions found by each algorithm. Columns 3, 6, 9, and 12 contain the

average optimality gap. Columns 4, 7, 10, and 13 show the maximum optimality

gap.

Table 2.2: Assessing optimality on the Coindreau et al. (2019) instances.

|C| VNS MSH SLNS BPC
#Opt. Avg. Δ Max. Δ #Opt. Avg. Δ Max. Δ #Opt. Avg. Δ Max. Δ #Opt. Avg. Δ Max. Δ

20 1/10 4.09% 8.87% 10/10 0.00% 0.00% 10/10 0.00% 0.00% 10/10 0.00% 0.00%
30 0/10 3.13% 5.89% 7/10 0.01% 0.04% 8/10 0.00% 0.04% 10/10 0.00% 0.00%
40 3/10 1.23% 5.31% 6/10 0.15% 0.69% 7/10 0.22% 1.39% 10/10 0.00% 0.00%
50 2/10 2.22% 6.11% 2/10 1.00% 2.60% 4/10 0.23% 0.93% 9/10 0.09% 0.91%

Total/Avg. 6/40 2.67% 6.54% 25/40 0.29% 0.83% 29/40 0.11% 0.59% 39/40 0.02% 0.23%

Note that BPC is the first to prove optimality for 39 (out of 40) instances.

Moreover, the average optimality gap of the solutions found by BPC is 0.02%. Ad-

ditionally, the maximum optimality gap on the unsolved instances is 0.91%. With

regard to the metaheuristics, SLNS has the best performance finding solutions with

an average optimality gap of 0.11%.

Finally, Table 2.3 compares the performance of each algorithm in terms of com-

putational efficiency. Each row corresponds to an instance size. Columns 2, 3, 4,

and 5 show the average runtime in seconds reported by each algorithm. Columns 6

and 7 show the minimum and maximum CPU time employed by the BPC.
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Table 2.3: Computational times on the Coindreau et al. (2019) instances.

|C| VNS MSH SLNS BPC
Avg. CPU (s) Avg. CPU (s) Avg. CPU (s) Avg. CPU (s) Min. CPU (s) Max. CPU (s)

20 71.0 13.4 15.0 28.1 22.1 40.1
30 381.0 35.9 30.0 75.9 51.3 127.7
40 1993.0 56.1 60.0 288.7 100.2 1340.8
50 6779.0 110.5 120.0 1877.4 276.6 7200.0

Average 2306.0 54.0 56.3 567.5 112.5 2177.1

While a perfect head-to-head comparison is hard to make because of differences

in the programming languages and testing environment, the results suggest that

in the subset of instances with 20 and 30 customers, BPC is close to match the

performance of the state-of-the-art matheuristics. On average BPC uses less than

10 minutes.

2.5.3 Assessing the impact of the initialization step and the

pruning strategies

As our proposed method uses a metaheuristic to initialize the set of columns, it is

only logical to assess the performance of our BPC without this component. With

this in mind, we ran our BPC while only using one iteration of MSH. This version

of the algorithm is labeled as BPC-W. Moreover, to measure the impact of the

problem-specific algorithmic components that we designed, we ran our BPC with a

version of the PA that does not include the path completion and the subtour fixing

strategies. This version of our BPC is labeled as BPC-O.

Table 2.4 compares the performance of the branch-price-and-cut algorithms de-

scribed above in terms of solution quality. Each row corresponds to a combination

between a version of our BPC algorithm and an instance size. Recall that each algo-

rithm was tested on every instance across five replicates in which the initial solution

is modified. Column 3 shows the average number of best-known solutions found by

each algorithm. Column 4 shows the average number of optimal solutions found by

each algorithm. Columns 5, 6 and 7 present the average, minimum, and maximum
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computational time in seconds used by each algorithm. Finally, columns 8, 9 and

10 show the average, minimum, and maximum number of columns.

Table 2.4: Solution quality of the BPC variants with 𝜁 = 5 km.

Algorithm |C| Avg. #BKS Avg. # Optimal CPU time (s) # Columns
Avg. Min Max Avg. Min Max

BPC

20 10/10 10/10 28.11 22.12 40.13 219.30 85 461
30 10/10 10/10 75.90 51.29 127.67 393.74 92 693
40 10/10 10/10 288.72 100.17 1340.78 1647.88 387 6050
50 10/10 8.8/10 1877.42 276.60 7200.00 1864.00 779 5426

BPC-O

20 10/10 10/10 27.19 21.32 39.61 221.54 85 461
30 10/10 10/10 74.07 50.60 138.73 392.72 92 664
40 10/10 10/10 317.17 96.14 1755.69 1562.46 486 6824
50 9/10 8.2/10 2026.22 279.66 7200.00 1807.70 646 3934

BPC-W

20 10/10 10/10 14.43 4.15 41.62 2246.14 555 5155
30 10/10 10/10 118.84 28.60 342.65 12998.62 1586 35468
40 10/10 10/10 1018.09 242.95 4219.65 5871.14 1874 39067
50 8.8/10 8.4/10 2346.02 354.07 7200.00 10070.38 2312 53989

Note that BPC is the only algorithm that finds the best-known solution for every

instance in all the replicates. Moreover, it is the algorithm that on average provides

the highest number of optimal solutions. Nevertheless, note that BPC-W is capable

of finding high quality solutions and of proving optimality of at least 38 out of 40

instances. This shows that the BPC solution quality is not exclusively due to the

initialization procedure. In addition, note that BPC-O is not capable of finding one

of the best-known solutions before reaching the running time limit, thus showing

the importance of including problem-specific pruning strategies inside the PA.

With respect to the computational times, BPC is on average faster than its

counterparts, especially on the subset of instances with 40 and 50 customers, where

both the initialization procedure and the additional pruning strategies improve the

algorithm’s performance. However, in the subset of instances with 20 customers, it

seems that the overhead incurred by the initialization procedure does not pay off,

as BPC-W is faster than BPC and delivers solutions of equivalent quality.
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2.5.4 A new data set

In the previous experiments, we showed that our algorithm is able to optimally

solve most of the 50-node instances in the PLRP set. It is worth recalling that

these instances are the largest benchmarks available for our problem. To test the

limits of our method, we designed a new set of larger instances. To build them,

we followed the procedure described by Coindreau et al. (2019). Each instance

considers a number of customers n in the set {60, 70, 80, 90}. For each value of n,

we randomly generate 10 instances in which the (x,y)-coordinates of the customers

and the depot are taken from a continuous uniform distribution on the intervals

[0, 10] × [0, 10]. In this new set of instances, the number of available workers 𝑘 is set

to the minimum number of workers needed to serve all the customers. This value

is calculated using the left-hand side of constraint 2.13. All the other parameters

described in Section 2.5.1 remain the same. The new set is publicly available at

www.vrp-rep.org (VRP-REP-ID 2023-0001).

Table 2.5 describes the performance of the BPC algorithm on the new set of

larger instances. Each row corresponds to an instance size. Column 2 shows the

number of optimal solutions found by the algorithm. Columns 3, 4 and 5 report

the average, minimum, and maximum optimality gap, respectively. Columns 6, 7

and 8 contain the average, minimum, and maximum CPU time employed by the

BPC. Columns 9, 10 and 11 report the average, minimum, and maximum gap in the

objective function of the solutions found by BPC with respect to those delivered by

the initialization method, MSH. More specifically, for each instance in the set, the

gap was computed as
𝑓 (𝐵𝑃𝐶) − 𝑓 (𝑀𝑆𝐻)

𝑓 (𝑀𝑆𝐻) , (2.15)

where 𝑓 (·) denotes the objective function of the solution delivered by a given ap-

proach. For these experiments, the time limit is set to two hours. All the parameters

used by MSH (e.g., 𝑇 = 2500, 𝑄 = 60) were fixed to their standard values (see Section

2.4.3).
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Table 2.5: Branch-price-and-cut performance on larger PLRP instances.

|C| # Opt. Optimality gap CPU time (s) Δ vs initial solution
Avg. Min Max Avg. Min Max Avg. Min Max

60 3 1.62% 0.00% 3.66% 5460.14 396.02 7200.00 -2.04% -5.83% 0.00%
70 0 3.43% 2.17% 5.39% 7200.00 7200.00 7200.00 -0.17% -0.58% 0.00%
80 0 5.66% 4.07% 8.21% 7200.00 7200.00 7200.00 -1.21% -5.17% 0.00%
90 0 5.93% 3.73% 8.26% 7200.00 7200.00 7200.00 -0.49% -2.20% 0.00%

Total/Avg. 3 4.16% 2.49% 6.38% 6765.03 5499.01 7200.00 -0.98% -3.44% 0.00%

As expected, the performance of the BPC decreases when the number of cus-

tomers |C| increases. Nevertheless, BPC is capable of proving optimality for 3 out

of 10 instances with 60 customers within the time limit. Moreover, the average

optimality gap in the subset of instances with 60 customers is 1.62%. Regarding

the subset of instances with 70, 80, and 90 customers, BPC is not capable of closing

the optimality gap for any of the instances within the time limit. While performing

our experiments, we noticed that most of the time spent by BPC is used to try to

improve the lower bound. Indeed, in this new set of instances, the average improve-

ment of the solutions found by MSH is only 0.98%. Thus one possible direction to

extend the reach of our method to 70-plus-customer instances would be to devise

new valid inequalities to strengthen the lower bound faster. For completeness, Ta-

ble B.2 in Appendix B shows the objective function value of the solutions found by

MSH and BPC on each individual instance. It also reports the lower bound found

by BPC before reaching the time limit.

2.5.5 Analyzing the pricing problem algorithm

Most modern BPC algorithms for vehicle routing solve the pricing problem using

labeling algorithms that rely on the NG-path relaxation proposed by (Baldacci et al.

2011). This relaxation consists in defining a neighborhood N𝑖 for every customer

𝑖 ∈ C that includes the X closest customers to 𝑖 and the customer itself. An NG-path

can include cycles starting and ending at customer 𝑗 if and only if there exists a

customer 𝑖 in the cycle such that 𝑗 ∈ N𝑖. Thus, such a cycle is forbidden if and only

if 𝑗 ∈ N𝑖 for every customer 𝑖 it contains. The higher the value of X, the tighter
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the relaxation will be. Due to its success in column generation based algorithms,

we believe it is interesting to compare the performance of our adaptation of the PA

against a classical single-directional labeling algorithm implementing the NG-path

relaxation. The implemented labeling algorithm uses dominance rules to discard

labels. It also exploits an adapted version of the infeasibility, bounds, and rollback

pruning strategies. Moreover, during the first iterations, the labeling algorithm is

applied heuristically following the same logic described in Section 2.4.2. In addition,

at every iteration, we first relax the dominance rules by ignoring conditions (33)-(34).

An in-depth description of the algorithm is available in Appendix A.

To compare the performance of the PA and the labeling algorithm, we solve the

RSCP without applying any cuts or branching decisions. In the remainder of this

section, the version of the algorithm using the PA to solve the pricing problem is

labeled CG-PA, and that using the labeling algorithm is labeled CG-NG-X. For these

experiments, we solve the instances with 20 and 30 customers under two settings.

First, the case in which walking is not allowed, namely 𝜁 = 0 km. Second, the case

in which walking is allowed, namely 𝜁 = 5 km. We consider these two settings to

isolate the impact of including park-and-loop routes on both pricing algorithms.

Table 2.6 compares the performance of each column generation algorithm while

solving the RSCP when walking is not allowed. Each row in the table corresponds

to a pricing algorithm and a number of customers. Columns 3, 4 and 5 show the av-

erage, minimum, and maximum lower bound produced by each approach. Columns

6, 7 and 8 present the average, minimum, and maximum computational time in

seconds. Finally, columns 9, 10 and 11 show the average, minimum, and maximum

number of columns found by the corresponding pricing algorithm.

As the results show, CG-PA provides on average a better (higher) lower bound

than the CG algorithms that use the NG-path relaxation. However, in this subset of

instances the CG algorithms using the NG-path relaxation solve the RSCP faster.

With respect to the number of columns, CG-PA requires on average a lower number

of columns. These results are expected, as both CG-NG-10 and CG-NG-7 are solving
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Table 2.6: Performance of the CG algorithms solving the RSCP root node with
𝜁 = 0.

CG algorithm |C| Lower bound CPU time (s) # Columns
Avg. Min Max Avg. Min Max Avg. Min Max

CG-PA 20 41.85 33.64 46.01 21.53 17.61 24.66 321.00 117 827
30 52.35 47.91 55.84 43.49 37.20 49.84 538.06 167 1046

CG-NG-10 20 41.84 33.64 46.01 11.38 10.37 13.30 548.30 125 2592
30 52.22 47.78 55.84 21.72 18.58 26.35 769.04 215 1762

CG-NG-7 20 41.75 33.43 46.01 11.53 10.34 15.38 758.88 171 3565
30 52.11 47.49 55.54 21.90 18.88 26.08 938.98 209 2364

a relaxation of the pricing problem. Moreover, without the presence of walking

subtours, the subtour fixing strategy used by the PA does not have an impact on

the algorithm’s performance.

Table 2.7 compares the performance of each column generation algorithm while

solving the RSCP when walking is allowed. Similarly, each row in the table cor-

responds to a pricing algorithm and a number of customers. Columns 3, 4 and 5

show the average, minimum, and maximum lower bound delivered by each approach.

Columns 6, 7 and 8 present the average, minimum, and maximum computational

time in seconds. Finally, columns 9, 10 and 11 show the average, minimum, and

maximum number of columns found by the corresponding pricing algorithm.

Table 2.7: Performance of the pricing algorithms solving the root node with 𝜁 = 5
km.

CG algorithm |C| Lower bound CPU time (s) # Columns
Avg. Min Max Avg. Min Max Avg. Min Max

CG-PA 20 36.64 29.61 42.28 25.79 21.10 30.95 194.06 90 503
30 45.16 40.64 49.59 61.02 50.78 78.54 349.54 84 672

CG-NG-10 20 36.62 29.61 42.28 35.94 21.36 69.54 287.70 95 666
30 45.08 40.21 49.59 370.70 127.06 918.51 475.64 72 1036

CG-NG-7 20 36.51 28.90 42.28 32.81 19.23 63.07 349.28 89 641
30 44.89 40.00 49.59 273.68 94.67 749.04 591.86 78 1195

Note that the CG algorithms using the NG-paths relaxation provide lower bounds

of lower quality in comparison with the bounds found by CG-PA. This can have a

large impact on the solution algorithm as branch-and-bound nodes can be pruned

early. Moreover, the computational time required to solve the RSCP is signifi-
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cantly larger for the NG-paths based algorithms. Indeed, considering the subset of

instances with 30 customers, on average CG-PA takes 61.02 seconds to solve the

RSCP while CG-NG-10 and CG-NG-7 take 370.70 and 270.68 seconds, respectively.

Although we can only speculate, we suspect there are two main reasons for these

differences in performance. First, recall that the PA executes a depth-first search,

while the labeling algorithm performs a breadth-first search. Thus, the PA tends to

find promising routes faster and, as such, it significantly benefits from the increased

strength of the bounds pruning strategy. Secondly, as opposed to the PA, the label-

ing algorithm relies heavily on dominance rules in order to discard labels. However,

when walking subtours are allowed, labels are only comparable if they have the same

parking status (i.e., same parking spot), which is often not the case, especially when

the number of customers is high. As a result, in our experiments we observed that

the size of the labels queue considerably grows in comparison with the case in which

walking is not allowed.

To push the analysis forward, we implemented a BPC algorithm that uses the

labeling algorithm to solve the pricing problem and reuses all the branching and

cutting machinery in our BPC algorithm. For quick reference, we denote this alter-

native method as BPC-NG-X. We ran experiments on the Coindreau et al. (2019)

instances setting X equal to 7. All other parameters for both two algorithms (e.g.,

𝜑 = 5, 𝜀 = 0.1, Υ = 10) were fixed to their standard values (see Section 2.5.1).

Table 2.8 describes the performance of both BPC algorithms. Each row corresponds

to an instance size. Columns 2 and 4 show the number of instances in which the

corresponding BPC algorithm was able to prove optimality. Columns 3 and 5 show

the number of best-known solutions found by each BPC algorithm. Columns 6, 7

and 8 contain the average, minimum, and maximum computational time used by

BPC-NG-7. The computational times of BPC are shown in Table 2.4.

As the results show, our BPC outperforms BPC-NG-7 in both solution quality

and running times. More specifically, BPC-NG-7 only proves optimality for 19/40

instances while BPC proves optimality for 39/40 instances. Moreover, BPC-NG-7
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Table 2.8: Performance of BPC algorithms on the Coindreau et al. (2019) instances.

|C| BPC BPC-NG-7
# Opt. # BKS # Opt. # BKS Avg. CPU (s) Min. CPU (s) Max. CPU (s)

20 10/10 10/10 10/10 10/10 182.52 25.92 1218.00
30 10/10 10/10 7/10 9/10 2795.20 129.32 7200.00
40 10/10 10/10 2/10 6/10 6572.29 2640.12 7200.00
50 9/10 10/10 0/10 0/10 7200.00 7200.00 7200.00

Total/Avg. 39/40 40/40 19/40 25/40 4187.50 2498.84 5704.50

is only capable of matching 25/40 of the best-known solutions within the time limit.

Regarding the computational times, BPC-NG-7 uses on average 4187.50 seconds

to solve PLRP instances while BPC only uses 567.5. Thus, the performance drop

observed by changing the algorithm that solves the pricing problem is significant.

Furthermore, it seems that BPC-NG-7 particularly struggles on the subset of in-

stances with 50 customers, in which even matching the best-known solution can be

challenging.

2.5.6 Assessing the importance of introducing

park-and-loop routes

Introducing park-and-loop routes helps to decrease the driven distance. To assess

their potential impact, we compare the objective function of the best-known solu-

tions while varying the maximum walking distance. Namely, we consider the vehicle

routing configuration (i.e., 𝜁 = 0) and the park-and-loop configuration with 𝜁 equal

to 5 or 10 kilometers.

Table 2.9 compares the average driven distance of each configuration. Each row

corresponds to an instance size. Column 2 shows the average driven distance without

allowing walking subtours. Columns 3 and 5 show the average driven distance while

imposing a limit of 5 or 10 kilometers on the total walking distance respectively.

Finally, Columns 4 and 6 show the average savings gained by introducing walking

subtours.

As the results show, introducing walking subtours decreases the driven distance
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Table 2.9: Average driven distance while varying the maximum walking distance.

# Customers VRP PLRP (𝜁 = 5) PLRP (𝜁 = 10)
Avg. km Avg. km % Δ vs VRP Avg. km % Δ vs VRP

20 42.08 36.71 -12.8% 32.63 -22.5%
30 53.35 45.32 -15.0% 38.04 -28.7%
40 60.82 56.84 -6.5% 54.97 -9.6%
50 69.38 61.80 -10.9% 60.43 -12.9%

Average 56.41 50.17 -11.3% 46.52 -18.4%

by 11.3% and 18.4% on average. As expected, increasing the walking distance limit

allows for larger walking subtours and, in turn, for greater savings. Figure 2.3 shows

the best-known solutions for instance 30_A_1. When walking subtours are not

allowed, the total driven distance is 48.81 km. If walking subtours are allowed, the

driven distances are 40.73 km and 32.93 km while setting 𝜁 to 5 and 10 kilometers,

respectively. As stated before, major savings can be achieved by introducing park-

and-loop routes. As this figure shows, increasing the maximum walking distance has

an impact on the size and length of the walking subtours present in each route.

We have developed a website available at https://chairelogistique.hec.

ca/en/scientific-data/ where researchers can download the instances, access

instance-by-instance results, and upload their own solutions in order to encourage

future research on this problem and make comparisons with our results easier.

2.6 Concluding remarks

In this paper, we presented a branch-price-and-cut algorithm for solving the PLRP.

To do so, we formulated the PLRP as a set covering problem that considers a large

set of paths. To solve this model, we use a column generation approach that unveils

promising paths that favor the objective of minimizing the total cost. The master

problem selects paths to serve all customers, while the pricing problem generates

feasible paths. We leveraged a tailored and improved version of the pulse algorithm

to solve an elementary resource constrained shortest path with park-and-loop, that
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(a) VRP configuration (b) PLRP with 𝜁 = 5 km

(c) PLRP with 𝜁 = 10 km

Figure 2.3: Solutions for instance 30_A_1.

includes additional pruning strategies and allows for considering the subset row

inequalities. Using this new version of the pulse algorithm improves the performance

of the branch-price-and-cut algorithm.

We compared our branch-price-and-cut algorithm with the state-of-the-art al-

gorithms for solving a related problem called the vehicle routing problem with

transportable resources without carpooling. The proposed algorithm was capable

of finding all the previously best-known solutions. Moreover, it found 11 previously

unknown optimal solutions. In addition, our method is the first capable of solving

39 instances to optimality out of the 40 instances that composed the testbed. Our

experiments also show the advantages of providing a high quality pool of columns

as a warm start as it significantly decreases the computational effort required by the

algorithm.

We also showed the benefits of introducing a park-and-loop structure in the
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routing plan, as it allows decreasing the total driven distance. To encourage fu-

ture research on the PLRP, we developed an online tool that allows the members

of the community to visualize the best-known solutions and upload their own so-

lutions for checking and plotting. Future research should focus on extending the

branch-price-and-cut algorithm to solve the PLRP with time windows. Moreover,

improving the performance of the pricing problem by implementing bidirectional

search strategies and other problem-specific pruning strategies seems promising to

decrease the computational time needed by each CG iteration.
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Chapter 3

The Workforce Scheduling and

Routing Problem with Park-and-loop

Abstract

This paper introduces formulations and an exact algorithm for the workforce schedul-

ing and routing problem with park-and-loop. This problem extends the standard

workforce scheduling and routing problem by allowing the use of walking subtours

in the routes. We introduce a compact arc-based formulation as well as a path-

based formulation with an exponential number of variables. To efficiently solve the

latter, we propose a branch-price-and-cut algorithm that leverages state-of-the-art

techniques, including a tailored version of the pulse algorithm to solve the pric-

ing problem and the separation of subset row inequalities to strengthen the lower

bound. We report on computational experiments carried out on a set of instances

with up to 75 tasks adapted from the literature. The results show that our method

systematically outperforms a standard MIP solver, proving optimality for 241 out of

324 instances. We also report experiments on the closely-related service technician

routing and scheduling problem, where our method delivered 12 new best solutions

on a 54-instance testbed from the literature.



3.1 Introduction

In this paper, we study the workforce scheduling and routing problem with park-

and-loop (WSRP-PL). While our initial inspiration came from a real-world appli-

cation in France, similar problems are encountered by utility and service companies

around the world. In our problem, a company must perform a set of on-site tasks

(e.g., connection to utility grids, troubleshooting, meter reading). Each task has an

associated duration and an associated time window. In addition, depending on its

nature, a task may require one or more skills, each at a potentially different level

of proficiency. Tasks are executed either by the company’s workforce or by a third

party. Every worker in the force masters a subset of skills, each at a given proficiency

level. Workers can work individually or in teams. To simplify the narrative, we as-

sume that workers always work in teams (but a team can comprise just one worker).

Teams depart from and must return to a single depot within working hours driving

a vehicle (i.e., a car). Because many customers are located in densely populated

areas, in which access to parking may be limited, workers can walk between nearby

locations (after safely parking the car). The WSRP-PL consists in building a plan

to execute all the tasks while minimizing the total operational cost. The latter is

composed of (i) the outsourcing cost of tasks assigned to the third party and (ii)

the cost of the total distance driven by the internal teams. A plan is defined by the

assignment of workers to teams for the day and the routing of the vehicles driven

by the teams.

Our problem is closely related to the park-and-loop routing problem (PLRP) and

the workforce scheduling and routing problem (WSRP), both of which are NP-Hard.

The PLRP is a variation of the vehicle routing problem (VRP), where routes consist

of a primary tour completed using a vehicle, along with sub-tours performed on foot

after parking the vehicle. In the PLRP, and most of its variants, the route duration

and total walking distance are bounded. Coindreau et al. (2019) introduced the

vehicle routing problem with transportable resources (VRPTR). In this variant of

92



the PLRP, workers are allowed to share a vehicle (i.e., carpool). To address this

problem, the authors proposed a variable neighborhood search (VNS) algorithm.

They assessed their algorithm using a set of new instances containing up to 50

customers. The experiments showed that their VNS could provide solutions for all

instances within a computing time of 10 hours. It is worth noting that, in contrast

to our WSRP-PL, in the VRPTR, workers are considered identical and capable of

fulfilling all tasks.

Cabrera et al. (2022) introduced the doubly open park-and-loop routing prob-

lem (DOPLRP). In this variant of the PLRP workers initiate and conclude their

routes at customer locations. To address this problem, they proposed a customized

implementation of the multi-space sampling heuristic (Mendoza and Villegas 2013).

They conducted experiments using a dataset of real-world instances provided by a

French utility, featuring up to 3,000 customers. Their findings demonstrated that

their method consistently produced solutions that resulted in significant cost sav-

ings compared to those generated by the company’s routing software. Additionally,

they applied their method to instances introduced by Coindreau et al. (2019) and

were able to enhance 32 out of the 40 previously best-known solutions. There are

two key distinctions between our problem and their DOPLRP. First, in DOPLRP,

tasks do not have time windows or skill requirements. Consequently, workers are

not required to form teams. Second, in our WSRP-PL, a fundamental requirement

is that all routes must both start and end at the depot.

In a similar vein, Le Colleter et al. (2023) conducted a study on the park-and-

loop routing problem with parking selection (PLRP-PS). In this particular variant

of the PLRP, the vehicle can only be parked at predefined parking locations. The

authors introduced a small and large neighborhood search metaheuristic. To en-

hance the algorithm’s efficiency, they implemented operators specifically designed

for selecting parking spots. The algorithm unveiled eight new best-known solutions

for the Coindreau et al. (2019) instances. These solutions were later improved or

confirmed as optimal by Cabrera et al. (2023), who introduced a branch-price-and-
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cut (BPC) algorithm for the PLRP. Through their algorithm, they found optimal

solutions for 39 out of the 40 Coindreau et al. (2019) instances. The key compo-

nent of their method is the pulse algorithm (PA), employed for solving the pricing

problem. They improved the classical PA with problem-specific pruning strategies

that significantly accelerated the algorithm. It is worth noting that their BPC is

not equipped to handle task skill requirements, team formation, or time windows.

The workforce scheduling and routing problem (WSRP) combines elements from

both scheduling and routing problems. In the scheduling component of this problem,

the objective is to assign workers (e.g., technicians, nurses, and security guards) to

provide a service or complete tasks for customers. When making these worker assign-

ments, various features are taken into account, including skills compatibility (Braek-

ers et al. 2016; Chen et al. 2016; Kovacs et al. 2012), team formation (Bredström

and Rönnqvist 2008; Zamorano et al. 2018), multiple time periods (Guastaroba et

al. 2021; Tricoire et al. 2013), and precedence constraints (Goel and Meisel 2013;

Pereira et al. 2020), among others. On the other hand, the routing component

involves designing a set of routes that workers use to travel between different loca-

tions. This routing process takes into consideration factors such as customer time

windows, the presence of multiple depots, and the potential use of alternative trans-

portation modes. For further exploration of applications and variants of the WSRP,

interested readers are referred to Castillo-Salazar et al. (2016) and Paraskevopoulos

et al. (2017) for a comprehensive review.

Our problem is a generalization of the technician routing and scheduling prob-

lem (STRSP) introduced by Kovacs et al. (2012), one of the most studied WSRP

variants. They solved two versions of the problem. The no-team version in which

routes are carried out by individual workers, and the team version in which routes

are designed for multiple workers. They proposed an adaptive large neighborhood

search (ALNS) heuristic that includes a set of classical destroy and repair operators.

Using this methodology, the authors provided high-quality solutions to instances

with up to 100 tasks in less than two minutes. The authors also proposed a mathe-
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matical formulation that they solve by means of a mixed integer problem solver (i.e.,

CPLEX). They tested their exact method on instances with 25 tasks. As opposed to

the WSRP-PL, in the STRSP workers are only allowed to drive between locations.

Most of the work on the no-team version of the STRSP has focused on heuristic

algorithms (Gu et al. 2022; Xie et al. 2017; Zhou et al. 2020). Xie et al. (2017)

proposed an iterated local search (ILS) algorithm that uses cleverly designed neigh-

borhood structures. Their method was evaluated against the ALNS of Kovacs et al.

2012, showing an improved performance in both solution quality and speed. Build-

ing on the algorithm by Xie et al. (2017), Zhou et al. 2020 presented an iterated

local search with hybrid neighborhood search (ILS-HNS) algorithm. This algorithm

switches between small and large neighborhoods, which allows the algorithm to es-

cape local optima. The proposed algorithm improved 12 of the best known solutions.

Similarly, Gu et al. (2022) presented a Lagrangian iterated local search (L-ILS) al-

gorithm which significantly outperforms ILS-HNS. Their study sets L-ILS as the

state-of-the-art algorithm. Note, however, that neither of these methods is exact.

Moreover, neither of these methods is capable of solving the team version of the

STRSP.

Our study contributes to the existing literature in several key ways. First, we

introduce the workforce scheduling and routing problem with park-and-loop, a prob-

lem that arises at the intersection of two challenging combinatorial problems: the

PLRP and the WSRP. Both of these problems have gained increasing practical rel-

evance due to concerns such as labor shortages and carbon emissions. Second, to

tackle this challenging problem, we have developed an exact Branch-Price-and-Cut

(BPC) algorithm that leverages state-of-the-art techniques. Our computational ex-

periments demonstrate the superior efficiency of our BPC algorithm when compared

to a standard mixed-integer programming (MIP) solver. Third, we have applied our

algorithm to provide optimality certificates for 24 instances on a standard testbed

for the no-team version of the STRSP. Out of these, 12 represent new best-known

solutions. Finally, we have created an online tool that enables researchers to visual-
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ize and download all the solutions and instances reported in our paper, enhancing

accessibility and usability for the research community.

This paper is organized as follows. Section 3.2 formally introduces the WSRP-

PL. Section 3.3 presents a path-based formulation for the problem. Section 3.4

describes the proposed branch-price-and-cut algorithm. Section 3.5 presents the

computational experiments. Finally, Section 3.6 presents the conclusions and out-

lines potential paths for future research.

3.2 Problem description and arc-based formulation

The WSRP-PL can be formally defined on a complete and directed graph G =

(N ,A), where N is the set of nodes and A is the set of directed arcs. The set of

nodes comprises a start depot 0, an end depot 0, and the set of tasks C = {1, ..., 𝑛}.

Note that, 0 and 0 can represent the same or distinct geographical locations. Arcs

in A represent the connections between two tasks or between a task and the depot.

To perform the tasks, a set of workers W = {1, ..., 𝑚} are assigned to teams in the

set T . Note that |T | must be an upper bound on the maximum number of teams

to form. A maximum of 𝜔 workers can be assigned to a team. Each team 𝑡 ∈ T

departs from and arrives to the depot after performing its route. Each route has a

maximum duration 𝜙. Teams can drive or walk between locations. Accordingly, each

arc (𝑖, 𝑗) ∈ A has four main attributes: the driving distance 𝜇𝑖 𝑗 , the driving time

𝜏𝑖 𝑗 , the walking distance 𝛿𝑖 𝑗 , and the walking time 𝜂𝑖 𝑗 . The maximum distance that

can be traveled on foot between two points is 𝜃. Moreover, the maximum distance

that can be traveled by a team on foot in one day is 𝜁 . Driving the car involves a

variable cost 𝑐𝑣 per unit of distance while walking is assumed to be free of charge.

Each task 𝑖 ∈ C has a duration 𝑠𝑖 and an associated time window indicating

possible visit times. Let [𝑎𝑖, 𝑏𝑖] be the earliest and latest starting time of task 𝑖 ∈ C.

Also, let 𝑓𝑖 be the outsourcing cost of task 𝑖 ∈ C. Skill requirements are represented

by 𝜈𝑖𝑞𝑙 , an integer parameter stating the number of workers with the skill 𝑞 ∈ Q with
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at least a proficiency level 𝑙 ∈ L that the task 𝑖 ∈ C needs. Worker qualifications are

represented by 𝜉𝑘𝑞𝑙 , which is a binary parameter equal to 1 if worker 𝑘 has at least a

proficiency level 𝑙 for skill 𝑞. The objective of the WSRP-PL is to minimize the total

cost while ensuring that: each task is fulfilled precisely once; the total duration of

each route does not exceed the working day duration; and the total walking distance

of each team does not exceed the distance limit. Figure 3.1 shows an example of

a feasible solution to a toy WSRP-PL instance with nine tasks. In this example,

there are four workers (1 to 5) and four potential skills (blue, yellow, green, and

red), each with two proficiency levels (dark and light tones). To complete the tasks,

the workers are divided into two teams. The green team is formed by workers 1 and

2 while the blue team is formed by workers 4 and 5. Worker 3 is not assigned to a

team and remains at the depot for the day. The green team completes tasks 1, 2,

and 4; the blue team completes tasks 5 to 9; and task 3 is outsourced.

Not used

Blue team

Green team
7

00

9

3

6

8

5

1 2
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4 5
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Skills

Levels
1

2

31 42
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WorkerWalking

Figure 3.1: WSRP-PL solution example.

To mathematically state the WSRP-PL, we start by defining an additional set

N+ = {𝑛 + 1, 𝑛 + 2, . . . , 2𝑛}∪
{
0
∗}

that contains a copy of every node 𝑖 ∈ N \
{
0
}
. Any

node (𝑖+𝑛) ∈ N+ represents the end of a subtour starting at node 𝑖 ∈ C. Node 0
∗
rep-

resents the end of a subtour starting at 0. Let 𝑑 (𝑖) be the copy of node 𝑖 ∈ N\
{
0
}
. We
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also define two sets of arcs. Arc set A1 =
{
(𝑖, 𝑗) : 𝑖 ∈ (N ∪ N+) \

{
0
}
, 𝑗 ∈ N

}
con-

tains the arcs in which teams can drive. Arc setA2 =
{
(𝑖, 𝑗) : 𝑖 ∈ N \

{
0
}
, 𝑗 ∈ (N ∪ N+) \

{
0, 0

}
|𝛿𝑖 𝑗 ≤ 𝜃

}
contains the arcs in which teams can walk. The reader should note that some arcs

belong to both A1 and A2. Building on top of the formulations presented by Ko-

vacs et al. (2012) and Cabrera et al. (2022), the arc-based integer programming

formulation (AF) of the WSRP-PL uses the following binary variables:

• 𝑥𝑡
𝑖 𝑗

= 1 if team 𝑡 ∈ T drives from node 𝑖 to node 𝑗 , for (𝑖, 𝑗) ∈ A1 and 0,

otherwise,

• ℎ𝑡
𝑖 𝑗

= 1 if team 𝑡 ∈ T walks from node 𝑖 to node 𝑗 , for (𝑖, 𝑗) ∈ A2 and 0,

otherwise,

• 𝑔𝑡
𝑖
= 1 if team 𝑡 ∈ T parks the vehicle at node 𝑖 ∈ N \

{
0
}

and 0, otherwise,

• 𝑦𝑡
𝑖
= 1 if team 𝑡 ∈ T is assigned to complete task 𝑖 ∈ C and 0, otherwise,

• 𝑣𝑡
𝑘
= 1 if worker 𝑘 ∈ W is assigned to team 𝑡 ∈ T and 0, otherwise,

• 𝑧𝑖 = 1 if task 𝑖 ∈ C is outsourced and 0, otherwise,

• 𝑤𝑡 = 1 if team 𝑡 ∈ T is selected and 0, otherwise.

We also define the following continuous variables:

• 𝑢𝑡
𝑖
is the arrival time of team 𝑡 ∈ T to node 𝑖 ∈ N ∪N+.

An arc-based formulation for the WSRP-PL can be stated as follows:

min
∑︁
(𝑖, 𝑗)∈A1

∑︁
𝑡∈T

𝜇𝑖 𝑗𝑐
𝑣𝑥𝑡𝑖 𝑗 +

∑︁
𝑖∈C

𝑓𝑖𝑧𝑖 (3.1)

subject to

∑︁
𝑡∈T

𝑣𝑡𝑘 ≤ 1 ∀𝑘 ∈ W (3.2)
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∑︁
𝑘∈W

𝑣𝑡𝑘 ≥ 𝑤𝑡 ∀𝑡 ∈ T (3.3)∑︁
𝑘∈W

𝑣𝑡𝑘 ≤ 𝜔𝑤𝑡 ∀𝑡 ∈ T (3.4)

𝑤𝑡 ≥ 𝑤𝑡+1 ∀𝑡 ∈ T |𝑡 < |T | (3.5)

𝑤𝑡 ≤
∑︁
𝑖∈C

𝑦𝑡𝑖 ∀𝑡 ∈ T (3.6)∑︁
𝑡∈T

𝑦𝑡𝑖 + 𝑧𝑖 = 1 ∀𝑖 ∈ C (3.7)∑︁
(0, 𝑗)∈A1

𝑥𝑡
0 𝑗
+

∑︁
(0, 𝑗)∈A2

ℎ𝑡
0 𝑗

= 𝑤𝑡 ∀𝑡 ∈ T (3.8)∑︁
(𝑖,0)∈A1

𝑥𝑡𝑖0 = 𝑤𝑡 ∀𝑡 ∈ T (3.9)∑︁
(𝑖, 𝑗)∈A1

𝑥𝑡𝑖 𝑗 +
∑︁
(𝑖, 𝑗)∈A2

ℎ𝑡𝑖 𝑗 = 𝑦
𝑡
𝑗 ∀ 𝑗 ∈ C, 𝑡 ∈ T (3.10)∑︁

( 𝑗 ,𝑑 (𝑖))∈A2

ℎ𝑡
𝑗 𝑑 (𝑖) = 𝑔

𝑡
𝑖 ∀𝑖 ∈ N \

{
0
}
, 𝑡 ∈ T (3.11)∑︁

(𝑖, 𝑗)∈A2

ℎ𝑡𝑖 𝑗 −
∑︁
( 𝑗 ,𝑖)∈A2

ℎ𝑡𝑗𝑖 = 𝑔
𝑡
𝑖 ∀𝑖 ∈ N \

{
0
}
, 𝑡 ∈ T (3.12)∑︁

( 𝑗 ,𝑖)∈A2

ℎ𝑡𝑗𝑖 +
∑︁
( 𝑗 ,𝑖)∈A1

𝑥𝑡𝑗𝑖

−
∑︁
(𝑖, 𝑗)∈A2

ℎ𝑡𝑖 𝑗 −
∑︁
(𝑖, 𝑗)∈A1

𝑥𝑡𝑖 𝑗 = 0 ∀ 𝑗 ∈ N ∪N+, 𝑡 ∈ T (3.13)∑︁
( 𝑗 ,𝑖)∈A2

ℎ𝑡𝑗𝑖 +
∑︁
( 𝑗 ,𝑖)∈A1

𝑥𝑡𝑗𝑖 ≤ 𝑤𝑡 ∀ 𝑗 ∈ N ∪N+, 𝑡 ∈ T (3.14)∑︁
𝑡∈T
(ℎ𝑡𝑖 𝑗 + 𝑥𝑡𝑖 𝑗 ) ≤ 1 ∀(𝑖, 𝑗) ∈ A1 ∩ A2 (3.15)

𝜏𝑖 𝑗𝑥
𝑡
𝑖 𝑗 + 𝜂𝑖 𝑗ℎ𝑡𝑖 𝑗 + 𝑠𝑖𝑦𝑡𝑖 + 𝑢𝑡𝑖

−𝜙(1 − ℎ𝑡𝑖 𝑗 − 𝑥𝑡𝑖 𝑗 ) ≤ 𝑢𝑡𝑗 ∀(𝑖, 𝑗) ∈ A1 ∩ A2, 𝑡 ∈ T (3.16)

𝜏𝑖 𝑗𝑥
𝑡
𝑖 𝑗 + 𝑠𝑖𝑦𝑡𝑖 + 𝑢𝑡𝑖

−𝜙(1 − 𝑥𝑡𝑖 𝑗 ) ≤ 𝑢𝑡𝑗 ∀(𝑖, 𝑗) ∈ A1 \ (A1 ∩ A2), 𝑡 ∈ T (3.17)

𝜂𝑖 𝑗ℎ
𝑡
𝑖 𝑗 + 𝑠𝑖𝑦𝑡𝑖 + 𝑢𝑡𝑖
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−𝜙(1 − ℎ𝑡𝑖 𝑗 ) ≤ 𝑢𝑡𝑗 ∀(𝑖, 𝑗) ∈ A2 \ (A1 ∩ A2), 𝑡 ∈ T (3.18)

𝑢𝑡𝑖 ≤ 𝑢𝑡𝑑 (𝑖) ∀𝑖 ∈ N \
{
0
}
, 𝑡 ∈ T (3.19)

𝑢𝑡𝑖 ≤ 𝑏𝑖 ∀𝑖 ∈ C, 𝑡 ∈ T (3.20)

𝑢𝑡𝑖 ≥ 𝑎𝑖 ∀𝑖 ∈ C, 𝑡 ∈ T (3.21)∑︁
(𝑖, 𝑗)∈A2

𝛿𝑖 𝑗ℎ
𝑡
𝑖 𝑗 ≤ 𝜁 ∀𝑡 ∈ T (3.22)∑︁

𝑘∈W
𝜉𝑘𝑞𝑙𝑣

𝑡
𝑘 ≥ 𝜈𝑖𝑞𝑙𝑦

𝑡
𝑖 ∀𝑖 ∈ C, 𝑡 ∈ T , 𝑞 ∈ Q, 𝑙 ∈ L (3.23)

𝑥𝑡𝑖 𝑗 ∈ {0, 1} ∀𝑡 ∈ T , (𝑖, 𝑗) ∈ A1 (3.24)

ℎ𝑡𝑖 𝑗 ∈ {0, 1} ∀𝑡 ∈ T , (𝑖, 𝑗) ∈ A2 (3.25)

𝑔𝑡𝑖 ∈ {0, 1} ∀𝑡 ∈ T , 𝑖 ∈ N \
{
0
}

(3.26)

𝑦𝑡𝑖 ∈ {0, 1} ∀𝑡 ∈ T , 𝑖 ∈ C (3.27)

𝑣𝑡𝑘 ∈ {0, 1} ∀𝑡 ∈ T , 𝑘 ∈ W (3.28)

𝑧𝑖 ∈ {0, 1} ∀𝑖 ∈ C (3.29)

𝑤𝑡 ∈ {0, 1} ∀𝑡 ∈ T (3.30)

𝑢𝑡𝑖 ≥ 0 ∀𝑡 ∈ T , 𝑖 ∈ N ∪N+. (3.31)

The objective function (3.1) minimizes the total cost comprised of the routing

and outsourcing costs. Constraints (3.2) ensure that a worker is only assigned to one

team. Constraints (3.3) and (3.4) impose a minimum and a maximum number of

workers for each selected team. Constraints (3.5) remove symmetric solutions with

respect to the selection of teams. Constraints (3.6) state that every selected team

must complete at least one task. Constraints (3.7) ensure that all tasks are either

completed or outsourced. Constraints (3.8) state that all teams must leave the start

depot. Constraints (3.9) ensure that all the teams arrive at the end depot.

Constraints (3.10) guarantee that all the tasks are executed by a team. Con-

straints (3.11) ensure that the vehicle is recovered after performing a subtour. Con-

straints (3.12) and (3.13) ensure flow conservation. Constraints (3.14) impose a
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limit on the number of arcs that can be used by a team departing from any location.

Constraints (3.15) state that an arc can only be used once. Constraints (3.16)-(3.19)

define the time of arrival at every location. Constraints (3.20)-(3.21) ensure that the

completion of each task starts within their time windows. Constraints (3.22) impose

a limit on the duration the overall walking distance. Constraints (3.23) ensure that

tasks are fulfilled by a team with the appropriate skills.

The proposed arc-based formulation is compact (i.e., the number of variables

and constraints is polynomial with respect to the dimension of a problem instance).

However, as mentioned by Dellaert et al. (2019), arc-based formulations suffer from

poor performance caused by the bad quality of the lower bound obtained by solving

its LP relaxation. As a result, we propose using a new path-based formulation which

is the topic of the next section.

3.3 Path-based formulation

Let Ḡ = (N̄ , Ā) be a directed graph, henceforth referred to as the modified net-

work, where N̄ is the set of nodes and Ā is the set of directed arcs. The set of

nodes N̄ = N ∪ {𝔰} ∪ W comprises the nodes in graph G, a source node 𝔰, and

one node for every worker 𝑘 ∈ W. There are two types of arcs in the modified

network, namely, routing and scheduling arcs. Routing arcs in A represent con-

nections between tasks, as defined in Section 3.2. Scheduling arcs represent the

selection of workers. More precisely, let A′ = A′1 ∪A
′
2 ∪A

′
3 be the scheduling arcs,

where A′1 = {(𝔰, 𝑘) : 𝑘 ∈ W} are arcs from the source node to every worker node,

A′2 =
{
(𝑘, 0) : 𝑘 ∈ W

}
are arcs from every worker node to the start depot node, and

A′3 = {(𝑘, 𝑘
′) : 𝑘, 𝑘′ ∈ W|𝑘′ > 𝑘} are arcs between workers nodes. A worker 𝑘 ∈ W

is said to be selected if an arc ending at the corresponding node is used. Figure 3.2

shows an illustrative example of the modified network on an instance that includes

five workers and four tasks. The maximum number of workers in a team is three.

The number of skills is set to four and each skill has two proficiency levels. For the
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sake of simplicity, some routing arcs were omitted. Note that by using this graph,

both scheduling and routing decisions can be made simultaneously.
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Figure 3.2: Modified network example.

Let path 𝑝 be an ordered set of directed arcs starting at the source node 𝔰 and

ending at the end depot 0. Let also P be the set of all feasible pseudo-elementary

paths. Pseudo-elementary means that each node included in the path can only

appear once unless it is used as a parking spot. The scheduling arcs in 𝑝 are

contained in subsets A𝑠
𝑝. The driving and the walking arcs in 𝑝 are contained in

subsets A𝑑
𝑝 and A𝑤

𝑝 , respectively. Let W𝑝 be the workers selected in the path.

Also, let C𝑝 be the tasks completed in the path starting the service within their

corresponding time windows. A path 𝑝 is feasible if the following conditions hold:

|A𝑠
𝑝 | ≤ 𝜔 + 1 (3.32)∑︁

(𝑖, 𝑗)∈A𝑤
𝑝

𝜂𝑖 𝑗 +
∑︁
(𝑖, 𝑗)∈A𝑑

𝑝

𝜏𝑖 𝑗 +
∑︁
𝑖∈C𝑝

𝑠𝑖 ≤ 𝜙 (3.33)

∑︁
(𝑖, 𝑗)∈A𝑤

𝑝

𝛿𝑖 𝑗 ≤ 𝜁 (3.34)
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∑︁
𝑘∈W𝑝

𝜉𝑘𝑞𝑙 ≥ 𝜈𝑖𝑞𝑙 ∀𝑖 ∈ C𝑝, 𝑞 ∈ Q, 𝑙 ∈ L. (3.35)

Condition (3.32) ensures that the maximum number of workers per team is re-

spected. Condition (3.33) states that the total duration of a path must be less than

the time limit. Condition (3.34) guarantees that the total walking distance respects

the limit. Conditions (3.35) state that all tasks completed in the path must be

fulfilled by a team with the appropriate skills. Figure 3.3 shows an example of a

path carried out by a team composed of workers 1 and 2. This team fulfills tasks 1,

2, and 4 (in that order).
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𝒜#
"  arc
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Task

Worker

5

Walking arc

Figure 3.3: Feasible path example.

The reader should note that the path shown in Figure 3.3 could alternatively use

worker 5 instead of worker 2. More generally, consider the case in which two workers

𝑘 and 𝑘′ have the same qualifications 𝜉𝑘𝑞𝑙 = 𝜉𝑘 ′𝑞𝑙 for every skill 𝑞 ∈ Q and proficiency

level 𝑙 ∈ L. Then, every path 𝑝 ∈ P that uses worker 𝑘 can be replicated by using

worker 𝑘′. To deal with this potential source of inefficiency due to symmetry, we

slightly modify graph Ḡ as follows. First, we define a set of worker profiles O. All

the workers with the same level of proficiency at every skill are associated with

one unique worker profile. Let Γ𝑜 be the number of available workers with profile
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𝑜 ∈ O. Then, we can re-define node set N̄ as N̄ = N ∪ {𝔰} ∪ O, in which instead

of having one node for every worker, the graph has one node per worker profile.

Also, we re-define the set of scheduling arcs A′ as A′ = A′1 ∪ A
′
2 ∪ A

′
3, where

A′1 = {(𝔰, 𝑜)𝛼 : 𝑜 ∈ O, 𝛼 ∈ 1 . . . Γ𝑜 |𝛼 ≤ 𝜔} are arcs from the source to every worker

profile node, A′2 =
{
(𝑜, 0) : 𝑜 ∈ O

}
are arcs from every profile node to the start

depot node, and A′3 = {(𝑜, 𝑜′)𝛼 : 𝑜, 𝑜′ ∈ O, 𝛼 ∈ 1 . . . Γ𝑜′ |𝑜′ > 𝑜 ∧ 𝛼 ≤ 𝜔}. A worker

profile 𝑜 ∈ O is said to be selected if an arc (·, 𝑜)𝛼 ending at the corresponding node

is used. The number of workers used of the associated worker profile is 𝛼. For ease

of notation we will denote the number of workers selected when using arc (𝑖, 𝑗) ∈ A′

by 𝜒𝑖 𝑗 . Similarly, we denote their profile 𝑜 ∈ O by 𝜚𝑖 𝑗 .

Figure 3.4 shows how the graph presented in Figure 3.2 can be represented using

the updated modified network. Numbers next to the arcs represent the number of

workers selected if the arc is used. By convention, if no number is shown along the

arc, the number of workers is 1. Note that workers 2 and 5 are now represented

by a single node. Moreover, note that there are two arcs from the source node to

the node corresponding to profile 2. Similarly, there are two arcs between the nodes

representing profile 1 and profile 2. As a result, this alternative representation allows

us to remove redundant paths from the graph.
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Figure 3.4: Modified network example using worker profiles.
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The cost 𝑐𝑝 of a path is equal to the driving cost, that is,

𝑐𝑝 =
∑︁
(𝑖, 𝑗)∈A𝑑

𝑝

𝜇𝑖 𝑗𝑐
𝑣 . (3.36)

Let 𝑎𝑖𝑝 be a binary parameter that takes the value 1 if and only if path 𝑝 ∈ P

completes task 𝑖 ∈ C, and let 𝑏𝑜𝑝 be a parameter that takes the value of the number

of workers of profile 𝑜 ∈ O in the team assigned to path 𝑝 ∈ P. Also, let 𝜗𝑖 be a

binary variable equal to 1 if task 𝑖 ∈ C is outsourced and 0 otherwise. Finally, let

𝜆𝑝 be a binary variable equal to 1 if path 𝑝 ∈ P is selected and 0 otherwise. A set

partitioning (SP) formulation for the WSRP-PL can be stated as follows:

min
∑︁
𝑝∈P

𝜆𝑝𝑐𝑝 +
∑︁
𝑖∈C

𝜗𝑖 𝑓𝑖 (3.37)

subject to

∑︁
𝑝∈P

𝑎𝑖𝑝𝜆𝑝 + 𝜗𝑖 = 1 ∀𝑖 ∈ C (3.38)∑︁
𝑝∈P

𝑏𝑜𝑝𝜆𝑝 ≤ Γ𝑜 ∀𝑜 ∈ O (3.39)

𝜆𝑝 ∈ {0, 1} ∀𝑝 ∈ P (3.40)

𝜗𝑖 ∈ {0, 1} ∀𝑖 ∈ C. (3.41)

The objective function (3.37) minimizes the total cost. Constraints (3.38) ensure

that all tasks are fulfilled or outsourced. Constraints (3.39) guarantee that the

number of workers used of each profile is less or equal than the number available.

The SP model has one variable for every possible feasible path. However, the number

of feasible paths |P | grows exponentially with the number of tasks and workers. As

a result, enumerating all the feasible paths to solve SP is only possible for trivial

instances. As an alternative, the SP can be solved using a branch-price-and-cut

algorithm, which is described next.

105



3.4 Solution method

We propose a BPC algorithm for the above SP formulation. BPC is a branch-and-

bound procedure for solving mixed integer linear programming models with a large

number of variables. The algorithm’s objective is to find the optimal solution with-

out explicitly enumerating the complete set of feasible variables (paths). Instead,

the algorithm iteratively builds a subset P ⊆ P of promising paths. To do so, the

algorithm relies on two optimization problems. A master problem that evaluates

the performance of the current subset of paths and a pricing problem that finds new

promising paths. Usually, the subset P is initialized using heuristic methods. We

refer the interested reader to Costa et al. (2019b) for a review of techniques and

applications of BPC algorithms.

In our case, the master problem is the relaxed version of formulation (3.37)-

(3.41). The master problem is obtained by relaxing the integrality constraints on

the 𝜆𝑝 and 𝜗𝑖 variables. Let 𝜋𝑖 ∈ R and 𝜎𝑜 ≤ 0 be the dual variables associated with

constraints (3.38) and (3.39), respectively. Then, the pricing problem, which aims

to find the pseudo-elementary path in graph Ḡ that minimizes the total reduced

cost is formulated as follows:

min
𝑝∈P

{
𝔯𝑝 = 𝑐𝑝 −

∑︁
𝑖∈C

𝑎𝑖𝑝𝜋𝑖 −
∑︁
𝑜∈O

𝑏𝑜𝑝𝜎𝑜

}
. (3.42)

If the pricing problem finds a path with 𝔯𝑝 < 0, we add the corresponding path 𝑝

to the subset P. In the opposite case, the current master problem is solved optimally.

If the optimal solution to the master problem is fractional, the algorithm uses a cut

separator to generate valid inequalities and strengthen the linear relaxation. Lastly,

if the solution is still fractional, the algorithm resorts to branching. In the following

subsections, we present a detailed description of the algorithm used to solve the

pricing problem, the cut separator, and the branching strategy. We also describe

several ideas that we use to speed up our BPC algorithm.
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3.4.1 Pricing problem

The goal of the pricing problem is to find the path with the lowest reduced cost.

The total reduced cost of a path corresponds to the sum of the reduced cost of all

its arcs. The reduced cost 𝑟𝑖 𝑗 of an arc (𝑖, 𝑗) ∈ Ā depends on the arc’s type (i.e.,

scheduling or routing). The reduced cost of a scheduling arc (𝑖, 𝑗) ∈ A′ is defined

as:

𝑟𝑖 𝑗 =


−𝜒𝑖 𝑗𝜎𝜚𝑖 𝑗 , (𝑖, 𝑗) ∈ A′1 ∪ A

′
3;

0, (𝑖, 𝑗) ∈ A′2.
(3.43)

The reduced cost of a routing arc (𝑖, 𝑗) ∈ A depends on the transportation mode

used. In particular, if arc (𝑖, 𝑗) is traversed on foot, the reduced cost 𝑟𝑤
𝑖 𝑗

is defined

as:

𝑟𝑤𝑖 𝑗 =


−𝜋 𝑗 , (𝑖, 𝑗) ∈ A| 𝑗 ≠ 0;

0, (𝑖, 𝑗) ∈ A| 𝑗 = 0.

(3.44)

Conversely, if arc (𝑖, 𝑗) ∈ A is traversed by driving, the reduced cost 𝑟𝑑
𝑖 𝑗

is defined

as:

𝑟𝑑𝑖 𝑗 =


𝜇𝑖 𝑗𝑐

𝑣 − 𝜋 𝑗 , (𝑖, 𝑗) ∈ A| 𝑗 ≠ 0;

𝜇𝑖 𝑗𝑐
𝑣, (𝑖, 𝑗) ∈ A| 𝑗 = 0.

(3.45)

To identify the path with the lowest reduced cost, an (elementary) shortest path

problem with resource constraints and park-and-loop (ESPPRC-PL) from the source

node 𝔰 to the end depot 0 has to be solved. A distinctive feature of this pricing

problem is that paths have a park-and-loop structure. Also, paths are constrained
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by three resources: the time 𝜙, the walking distance 𝜁 , and the size of the team

𝜔. The ESPPRC is typically solved by means of labeling algorithms, where labels

represent partial paths (Feillet et al. 2004; Parragh and Cordeau 2017; Pessoa et al.

2018). The efficiency of these algorithms depends on the ability to identify and

discard dominated partial paths by performing dominance checks (Schrotenboer

et al. 2019). In the case of the ESPPRC-PL, two labels at a task node are only

comparable if they have the same parking spot, which may lessen the effectiveness

of the dominance checks. As a result, the number of labels stored can grow rapidly.

As an alternative, the ESPPRC-PL can be solved using the pulse algorithm (PA).

The PA is a recursive algorithm that performs a depth-first search exploration of

the network. Crucially, the PA does not store labels at any task node and does not

rely on asserting dominance between them. Instead, to avoid enumerating all the

possible paths in the graph, the algorithm uses pruning strategies that aggressively

and effectively discard partial paths. This algorithm was originally proposed by

Lozano et al. (2016) and was later extended by Cabrera et al. (2023) to handle the

park-and-loop structure of the paths. Building on these previous works, we extend

the PA to consider the scheduling decisions that arise in the WSRP-PL.

Algorithm 6 presents the main logic of the PA. Line 1 creates an empty partial

path. Lines 2 to 4 initialize the reduced cost, the team size, and a |Q| × |L| matrix

that contains the number of workers that have at least a proficiency level 𝑙 ∈ L for

skill 𝑞 ∈ Q. We will refer to this matrix, as the skills matrix. Line 5 extends the

partial path at the source node 𝔰. Finally, line 6 returns the path with the lowest

reduced cost.

Algorithm 7 defines the pulse_scheduling function, where Π+(𝑖) contains all

the scheduling arcs leaving node 𝑖. Line 1 adds the current node to the partial

path. From lines 2 to 16, the algorithm recursively propagates the pulse through

arc (𝑖, 𝑗) ∈ Π+(𝑖). Line 3 updates the cumulative reduced cost. Line 4 checks if the

current arc arrives at the start depot 0. If so, line 5 temporarily removes all the

nodes associated with tasks that cannot be performed by the current team. That
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Algorithm 6 pulseSearch function
Require: Ḡ, directed graph; 𝜙, duration limit; 𝜁 , walking distance limit; 𝜔, team

size limit; 𝔰, start node; 0, end node; Δ, bound step size; [𝑡, 𝑡], bounding time
limits.

Ensure: 𝒫
∗, optimal path.

1: 𝒫← ∅
2: 𝑟 (𝒫) ← 0
3: 𝑛(𝒫) ← 0
4: 𝑆𝑞𝑙 (𝒫) ← 0
5: pulse_scheduling(𝔰, 𝑟 (𝒫), 𝑆𝑞𝑙 (𝒫), 𝑛(𝒫),𝒫) ⊲ see Algorithm 7
6: return 𝒫

∗

is, the tasks 𝑖′ ∈ C for which the number of workers 𝑆𝑞𝑙 with proficiency level 𝑙

at skill 𝑞 is lower than the number required 𝜈𝑖′𝑞𝑙 . Then, line 6 runs the bounding

procedure given the bound step size Δ and the bounding time limits [𝑡, 𝑡]. Finally,

line 7 extends a pulse at the start depot using Algorithm 8. If the current arc arrives

at a different node, line 9 updates the skills matrix associated with the current team

of workers and line 10 updates the team size. Then, line 11 checks if the team size is

lower than the limit. If so, the algorithm evaluates if the current team of workers is

dominated. If the team is not dominated, then the algorithm recursively propagates

the pulse to node 𝑗 .

Algorithm 8 defines the pulse_routing function, where Σ+(𝑖) contains all the

routing arcs leaving node 𝑖. Lines 1 to 3 try to prune the current partial path using

the feasibility, bounds, and rollback pruning strategies. If the partial path is not

pruned, line 4 adds the current node to the partial path. From lines 5 to 9, the

algorithm recursively propagates the pulse by driving through arc (𝑖, 𝑗) ∈ Σ+(𝑖).

From lines 10 to 14, the algorithm recursively propagates the pulse using Algorithm

3 by walking to node 𝑗 . When this occurs, the vehicle is parked at node 𝑖.

Algorithm 9 defines the pulse_parked function. Lines 1 to 3 try to prune the

current partial path using the feasibility, bounds, and rollback pruning strategies. If

the partial path is not pruned, line 4 adds the current node to the partial path. From

lines 5 to 18, the algorithm recursively propagates the pulse by walking through arc
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Algorithm 7 pulse_scheduling function
Require: 𝑖, current node; 𝑟, cumulative reduced cost; 𝑆𝑞𝑙 , current skills matrix; 𝑛,

cumulative team size; 𝒫, partial path.
1: 𝒫

′← 𝒫 ∪ {𝑖}
2: for 𝑗 ∈ Π+(𝑖) do
3: 𝑟 (𝒫′) ← 𝑟 (𝒫) + 𝑟𝑖 𝑗
4: if 𝑗 = 0 then
5: prune_by_skills(C, 𝑆𝑞𝑙 (𝒫′))
6: start_bounding(Ḡ,Δ, [𝑡, 𝑡]) ⊲ see §3.4.2
7: pulse_routing( 𝑗 , 𝑟 (𝒫′), 𝑡 (𝒫′), 𝑤(𝒫′),𝒫′) ⊲ see Algorithm 8
8: else if 𝑗 ≠ 0 then
9: 𝑆𝑞𝑙 (𝒫′) ← update_matrix(𝑆𝑞𝑙 (𝒫), 𝜚𝑖 𝑗 , 𝜒𝑖 𝑗 )

10: 𝑛(𝒫′) ← 𝑛(𝒫) + 𝜒𝑖 𝑗
11: if 𝑛(𝒫′) ≤ 𝜔 then
12: if ¬dominance( 𝑗 , 𝑟 (𝒫′), 𝑆𝑞𝑙 (𝒫′)) then ⊲ see §3.4.2
13: pulse_scheduling( 𝑗 , 𝑟 (𝒫′), 𝑆𝑞𝑙 (𝒫′), 𝑛(𝒫′),𝒫′)
14: end if
15: end if
16: end if
17: end for
18: return void

(𝑖, 𝑗) ∈ Σ+(𝑖). At line 8, the algorithm checks if the pulse is returning to the parking

spot. If so, at line 13 the algorithm recursively propagates the pulse using Algorithm

8.

3.4.2 Pruning strategies

This section outlines the core pruning strategies implemented for the ESPPRC-PL

adapted from Lozano and Medaglia (2013) and Lozano et al. (2016). Section 3.4.2

provides details of line 12 in Algorithm 7. Sections 3.4.2, 3.4.2, and 3.4.2, provide

details of lines 1, 2, and 3 in Algorithm 8, respectively.

Dominance pruning

During the recursive search, a worker node 𝑜 ∈ O can be reached more than one

time by different pulses representing different teams of workers. With this in mind,
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Algorithm 8 pulse_routing function
Require: 𝑖, current node; 𝑟, cumulative reduced cost; 𝑡, cumulative time; 𝑤, cumu-

lative walking distance; 𝒫, partial path.
1: if ¬feasibility(𝑖, 𝑡 (𝒫), 𝑤(𝒫)) then ⊲ see §3.4.2
2: if ¬bounds(𝑖, 𝑟 (𝒫), 𝑡 (𝒫)) then ⊲ see §3.4.2
3: if ¬rollback(𝑖, 𝑟 (𝒫), 𝑡 (𝒫), 𝑤(𝒫),𝒫) then ⊲ see §3.4.2
4: 𝒫

′← 𝒫 ∪ {𝑖}
5: for 𝑗 ∈ Σ+(𝑖) do ⊲ Driving
6: 𝑟 (𝒫′) ← 𝑟 (𝒫) + 𝑟𝑑

𝑖 𝑗

7: 𝑡 (𝒫′) ← max{𝑎 𝑗 , 𝑡 (𝒫) + 𝜏𝑖 𝑗 + 𝑠 𝑗 }
8: pulse_routing( 𝑗 , 𝑟 (𝒫′), 𝑡 (𝒫′), 𝑤(𝒫′),𝒫′)
9: end for

10: for 𝑗 ∈ Σ+(𝑖) do ⊲ Walking
11: 𝑟 (𝒫′) ← 𝑟 (𝒫) + 𝑟𝑤

𝑖 𝑗

12: 𝑡 (𝒫′) ← max{𝑎 𝑗 , 𝑡 (𝒫) + 𝜂𝑖 𝑗 + 𝑠 𝑗 }
13: 𝑤(𝒫′) ← 𝑤(𝒫) + 𝛿𝑖 𝑗
14: pulse_parked( 𝑗 , 𝑟 (𝒫′), 𝑡 (𝒫′), 𝑤(𝒫′), 𝑖,𝒫′) ⊲ see Algorithm 9
15: end for
16: end if
17: end if
18: end if
19: return void

we define dominance relations between two partial paths 𝒫1 and 𝒫2 arriving at

node 𝑜. Partial path 𝒫1 dominates 𝒫2 if:

𝑟 (𝒫1) < 𝑟 (𝒫2) ∧ 𝑛(𝒫1) < 𝑛(𝒫2) ∧ 𝑆𝑞𝑙 (𝒫1) > 𝑆𝑞𝑙 (𝒫2) ∀𝑞 ∈ Q, 𝑙 ∈ L.

(3.46)

Condition (3.46) states that a partial path 𝒫1 dominates 𝒫2 if it has a lower

reduced cost, if it includes fewer workers, and if it includes a higher number of

workers with at least a level of proficiency 𝑙 ∈ L at every skill 𝑞 ∈ Q. This condition

guarantees that every path that starts with partial path 𝒫2 can be replicated using

partial path 𝒫1. To check conditions (3.46) we store a list of nondominanted labels

ℳ𝑜 =
{
(𝑟 (𝒫𝑚), 𝑆𝑞𝑙 (𝒫𝑚)) |𝑚 = 1, . . . , |ℳ |

}
corresponding to partial paths at every

node 𝑜 ∈ O, where |ℳ | denotes the memory size. Note that the correctness of the

algorithm does not rely on storing all non-dominated labels. Moreover, choosing

|ℳ | << ∞ poses a trade-off between the ability to efficiently discard unpromising
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Algorithm 9 pulse_parked function
Require: 𝑖, current node; 𝑟, cumulative reduced cost; 𝑡, cumulative time; 𝑤, cumu-

lative walking distance; 𝑝𝑠, parking spot; 𝒫, partial path.
1: if ¬feasibility(𝑖, 𝑡 (𝒫), 𝑤(𝒫)) then ⊲ see §3.4.2
2: if ¬bounds(𝑖, 𝑟 (𝒫), 𝑡 (𝒫)) then ⊲ see §3.4.2
3: if ¬rollback(𝑖, 𝑟 (𝒫), 𝑡 (𝒫), 𝑤(𝒫),𝒫) then ⊲ see §3.4.2
4: 𝒫

′← 𝒫 ∪ {𝑖}
5: for 𝑗 ∈ Σ+(𝑖) do
6: 𝑟 (𝒫′) ← 𝑟 (𝒫) + 𝑟𝑤

𝑖 𝑗

7: 𝑤(𝒫′) ← 𝑤(𝒫) + 𝛿𝑖 𝑗
8: if 𝑝𝑠 = 𝑗 then
9: 𝑡 (𝒫′) ← 𝑡 (𝒫) + 𝜂𝑖 𝑗

10: if 𝑗 ∈ C then
11: 𝑟 (𝒫′) ← 𝑟 (𝒫′) + 𝜋 𝑗
12: end if
13: pulse_routing( 𝑗 , 𝑟 (𝒫′), 𝑡 (𝒫′), 𝑤(𝒫′),𝒫′) ⊲ see Algorithm 8
14: else if 𝑝𝑠 ≠ 𝑗 then
15: 𝑡 (𝒫′) ← max{𝑎 𝑗 , 𝑡 (𝒫) + 𝜂𝑖 𝑗 + 𝑠 𝑗 }
16: pulse_parked( 𝑗 , 𝑟 (𝒫′), 𝑡 (𝒫′), 𝑤(𝒫′), 𝑝𝑠,𝒫′)
17: end if
18: end for
19: end if
20: end if
21: end if
22: return void

teams of workers and the amount of memory required to execute the algorithm. In

our algorithm we set |ℳ | = 3.

Infeasibility pruning

The purpose of the infeasibility pruning strategy is to prune partial paths that

exceed the resource constraints. More specifically, a partial path 𝒫 from 𝔰 to 𝑗 ∈ C

is pruned if any of the following condition holds:

𝑡 (𝒫) > 𝜙; (3.47)

𝑤(𝒫) > 𝜁 ; (3.48)

𝑡 (𝒫) > 𝑏 𝑗 . (3.49)
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Condition (3.47) states that a partial path is pruned if the total time of the

partial path is greater than the time limit. Similarly, condition (3.48) states that a

partial path is pruned if the cumulative walking distance if greater than the limit.

Finally, condition (3.49) states that the partial path is pruned if node 𝑗 is visited

after the latest starting time of the corresponding task.

Bounds pruning

The previous strategy prunes partial paths as soon as it becomes evident that they

will not meet the resource constraints. This strategy may be very effective when

solving tight instances. However, it may not be enough if the available quantity for

each resource is large. To address this, the bounds pruning strategy prunes partial

paths as soon as there is enough information to prove that they will not improve the

current best solution in terms of the objective function 𝑟 (𝒫∗). With this objective

in mind, we can prune a partial path if the following condition holds:

𝑟 (𝒫) + 𝑟 ( 𝑗 , 𝑡 (𝒫)) ≥ 𝑟 (𝒫∗), (3.50)

where 𝑟 ( 𝑗 , 𝑡 (𝒫)) is a lower bound on the minimum reduced cost from any node 𝑗 ∈ C

to the end node 0. In the original PA, these lower bounds are computed before the

start of the algorithm by solving an ESPPRC-PL from every node 𝑖 ∈ C to the end

node 0 while setting the time consumption 𝑡 (𝒫) to
{
𝑡 − Δ, 𝑡 − 2Δ, 𝑡 − 3Δ, . . . , 𝑡

}
. As

a result, after solving this sequence of problems, the algorithm has a valid lower

bound on the minimum reduced cost for every node and for every discrete time step

between 𝑡 and 𝑡. Note, however, that information regarding the team configuration is

ignored during this step. In a one-to-one implementation of the PA, this would lead

to weak bounds. Moreover, preliminary experiments showed that the computational

time needed to compute these bounds can be large. Thus, we modified condition

(3.50) as follows:

𝑟 (𝒫) + 𝑟 ( 𝑗 , 𝑡 (𝒫), 𝑆𝑞𝑙 (𝒫)) ≥ 𝑟 (𝒫∗), (3.51)
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where 𝑟 ( 𝑗 , 𝑡 (𝒫), 𝑆(𝒫)) is a lower bound on the minimum reduced cost from any node

𝑗 ∈ C to the end node 0 given the current cumulative resource consumption 𝑡 (𝒫) and

the skills matrix 𝑆𝑞𝑙 (𝒫) associated with the current team of workers. These bounds

are not computed before the start of the algorithm. Instead, they are computed

every time that a pulse reaches the start depot 0 following a two step procedure

(i.e., lines 5 and 6 of Algorithm 7). In the first step, the algorithm temporarily

removes tasks from graph Ḡ if the number of workers in the team 𝑆𝑞𝑙 (𝒫) with at

least proficiency level 𝑙 at skill 𝑞 is lower than the number of workers required 𝜈 𝑗𝑞𝑙 to

perform them. This significantly quickens the pulse propagation during the second

step, in which the algorithm solves a ESPPRC-PL from every node 𝑖 ∈ C to the

end node 0 while setting the time consumption 𝑡 (𝒫) to
{
𝑡 − Δ, 𝑡 − 2Δ, 𝑡 − 3Δ, . . . , 𝑡

}
.

In Appendix D, we report on an experiment that empirically shows that condition

(3.51) significantly increases the effectiveness of the bounds pruning strategy.

Rollback pruning

As stated previously, the PA performs a depth-first search exploration of the net-

work. In practice, this means that a pulse (i.e., a partial path) only stops propagating

if it reaches the end depot or if it is pruned by one of the pruning strategies. In some

cases, this behavior may have a negative impact on the algorithm’s performance,

as it may take a while before the algorithm backtracks and corrects poor decisions

made earlier. To deal with this potential source of inefficiency, we use the rollback

pruning strategy. This strategy evaluates if a partial path 𝒫𝔰𝑘 = 𝒫𝔰𝑖 ∪ { 𝑗} ∪ {𝑘}

should continue to propagate by comparing it with a partial path that skips node

𝑗 , that is, 𝒫′
𝔰𝑘

= 𝒫𝔰𝑖 ∪ {𝑘}. In particular, the partial path 𝒫𝔰𝑘 should be pruned if

the following conditions hold:

𝑟 (𝒫𝔰𝑘 ) ≥ 𝑟 (𝒫′𝔰𝑘 ); (3.52)

𝑡 (𝒫𝔰𝑘 ) ≥ 𝑡 (𝒫′𝔰𝑘 ). (3.53)
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Conditions (3.52)-(3.53) state that a partial path should be pruned if its total

reduced cost and its total time are greater or equal to the total reduced cost and

the total time of a partial path that skips the penultimate node visited.

3.4.3 Initial set of paths

The master problem is always feasible as it is always possible to outsource all tasks.

Thus, it is entirely possible to start the BPC algorithm with an empty set of paths.

However, it has been observed by multiple researchers that the performance of BPC

algorithms is largely affected by the initial set of variables. Our algorithm follows

a two-step approach to generate paths carried out by single-worker teams. First,

we run our own implementation of the constructive heuristic proposed by Xie et

al. (2017). Second, we apply a modified version of the tabu search metaheuristic

proposed by Lozano et al. (2016) that considers the skills required by each task to

quickly improve those paths.

3.4.4 Cut separator

Although path-based formulations have the potential to offer tighter lower bounds

compared to compact formulations, these bounds may still lack the strength nec-

essary to produce an efficient algorithm (Costa et al. 2019b). Consequently, the

master problem is usually reinforced with valid inequalities (cuts) that can signif-

icantly decrease the size of the branch-and-price tree. In our BPC algorithm, we

use the subset row inequalities. These inequalities were proposed by Jepsen et al.

(2008) and have since then become an essential component in BPC algorithms for

solving many vehicle routing problems (Contardo and Martinelli 2014; Costa et al.

2019b; Marques et al. 2020). Given a subset of tasks S ⊆ C of size 3, the subset

row inequalities can be defined as follows:
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∑︁
𝑝∈P

⌊
1/2

∑︁
𝑖∈S

𝑎𝑖𝑝

⌋
𝜆𝑝 ≤ 1, ∀S ⊆ C. (3.54)

Constraints (3.54) state that in a feasible integer solution, the number of paths

that perform two or more tasks in a subset S ⊆ C must be less than or equal to

1. Adding these inequalities to the master problem changes the formulation of the

pricing problem. Let 𝒮 be the subset of triplets of customers for which the subset

row inequality has been generated and added to the master problem. Also, let

𝛽S ≤ 0 be the dual variable associated with subset S. Then, the pricing problem is

formulated as:

min
𝑝∈P

{
𝔯𝑝 = 𝑐𝑝 −

∑︁
𝑖∈C

𝑎𝑖𝑝𝜋𝑖 −
∑︁
𝑜∈O

𝑏𝑜𝑝𝜎𝑜 −
∑︁
S∈𝒮

𝛽S

⌊
1

2

∑︁
𝑖∈S

𝑎𝑖𝑝

⌋}
. (3.55)

This formulation is usually more challenging to solve, particularly if the number

of subset row inequalities already added to the master problem is high. As a conse-

quence, the cut separator follows three steps. First, it enumerates all task triplets

and checks if the current fractional solution violates the associated inequality by at

least 𝜀 units. If so, the inequality is added to a list. After this step is completed,

the list is sorted ensuring that inequalities with greater violations remain on top.

Finally, the cut separator adds the first 𝜑 inequalities to the master problem. We

set 𝜑 to 10 and 𝜀 to 0.1.

The PA used to solve the pricing problem handles these inequalities by adding

a new resource for each subset S ∈ 𝒮. These resources keep track of the number of

tasks in the subset that have been fulfilled. Every time that one of these resources

reaches a value of 2, the associated dual variable 𝛽S is subtracted from the objective

function.
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3.4.5 Branching strategy

Even after adding inequalities, the optimal solution of the master problem can re-

main fractional. In such a case, the algorithm uses a set of branching rules. We

implement a five-stage hierarchical branching. At all levels, we branch on the vari-

able for which the fractional value is closer to 0.5. The first level branches on driving

flow variables. We branch on the implicit variable 𝑥𝑖 𝑗 which equals 1 if any team

drives through arc (𝑖, 𝑗) ∈ A, and 0 otherwise. To enforce 𝑥𝑖 𝑗 = 0 we remove all

the paths that involve driving between tasks 𝑖 and 𝑗 from the master problem and

we also forbid the PA to use the arc while solving the pricing problem. To enforce

𝑥𝑖 𝑗 = 1 we remove all the paths in the master problem that fulfill tasks 𝑖 or 𝑗 without

using arc (𝑖, 𝑗). In addition, we forbid the PA to use any arc starting at node 𝑖 and

ending at any node different than 𝑗 . We also forbid the PA to use any arc ending

at node 𝑗 and starting at any node different than 𝑖. The second level branches on

walking flow variables. Similarly, we branch on the implicit variable ℎ𝑖 𝑗 that takes

the value of 1 if any team walks through arc (𝑖, 𝑗) ∈ A, and 0 otherwise. Decisions

are enforced in the same manner as for the first level.

The third level branches on the assignment of tasks to workers. More specifically,

we branch on the implicit variables 𝑦𝑘
𝑖

which take 1 if worker 𝑘 ∈ W fulfills task

𝑖 ∈ C. To enforce 𝑦𝑘
𝑖
= 0 we remove all the paths that fulfill task 𝑖 and include worker

𝑘 in the team. Also, we forbid the PA to fulfill task 𝑖 if the worker is currently in the

team. To enforce 𝑦𝑘
𝑖
= 1 we remove all the paths that fulfill task 𝑖 without including

worker 𝑘 in the team. In addition, we remove the possibility of outsourcing task

𝑖 and we forbid the PA to fulfill task 𝑖 using teams that do not include worker 𝑘.

The fourth level branches on the selection of workers. More specifically, we branch

on the implicit variables 𝑣𝑘 which equals 1 if worker 𝑘 ∈ W is included in any path

of the current solution, and 0 otherwise. To guarantee that 𝑣𝑘 = 0, we remove all

the paths that include worker 𝑘 in the team and remove the corresponding node

from the modified network. To enforce 𝑣𝑘 = 1, we add a constraint to the master

117



problem. The fifth level branches on the 𝜗𝑖 variables to either forbid or enforce the

outsourcing of task 𝑖 ∈ C. To enforce this branching rule, we add a constraint to the

master problem. The algorithm explores the enumeration branch-and-bound tree

using a best-bound search strategy.

3.4.6 General enhancements

In the following sections, we present key strategies that we use to enhance the

performance of our BPC algorithm.

Heuristic and leveled pricing

Solving the pricing problem (3.42) to optimality can be a challenging task. Fortu-

nately, the pricing problem does not have to be solved to optimality at every iteration

(Parragh and Cordeau 2017). Instead, it is sufficient to find at least one path with

negative reduced cost. Following this intuition, we allow the PA to heuristically

terminate the search if one of the following two conditions holds:

• The PA has found at least Υ paths with negative reduced cost;

• The PA has found at least one path with negative reduced cost and the com-

putational time spent during the search is higher than Λ.

In a first set of experiments with our BPC algorithm, we observed that some

paths inside the pool were almost identical. More precisely, they included the same

subset of tasks but were using different team of workers. These paths were usually

generated in different iterations of the pricing problem. This may happen for two

reasons. First, it may take a while before the PA backtracks completely from the end

depot to the source node to select a different subset of workers. Second, because

we allow the PA to heuristically terminate the search, thus not all paths will be

necessarily considered before the PA stops. To address this issue, every time we

find a path with negative reduced cost, we check if there are other teams of workers
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that could perform the same subset of tasks and add them to the pool. In this step,

we only consider the teams of workers that are currently used in the solution of the

master problem. This strategy saves time on the pricing problem and also has the

potential to decrease the number of column generation iterations.

To further speed up the solution of the pricing problem, we use a leveled pricing

strategy. This strategy consists of solving the pricing problem in two stages. In

the first stage, we solve the pricing problem without considering the possibility of

walking between two locations. This means that lines 10 to 14 of the Algorithm 8

are temporarily ignored. As a result, during this stage, walking subtours are not

allowed. Only if the PA was not able to find paths with negative reduced cost during

the first stage, we proceed to the following stage. In the second stage, we solve the

pricing problem while considering both driving and walking. In addition, following

the ideas of Lozano and Medaglia (2013), our PA propagates different partial paths

in parallel. In practice, we trigger multiple threads at the source node 𝔰 that begin

to propagate partial paths starting from different outgoing arcs. This allows the

algorithm to test different team configurations almost simultaneously. Similarly,

once a partial path reaches the start depot 0, it also triggers multiple threads that

propagate partial paths using the current team configuration.

Initial set of paths

The master problem is always feasible as it is always possible to outsource all tasks.

Thus, it is possible to start the BPC algorithm with an empty set of paths. Several

researchers have observed that the performance of BPC algorithms can be affected

by the initial set of variables. In particular, building an initial solution can help to

better estimate the values of the dual variables associated with each constraint of the

master problem, which may reduce the possibility of producing irrelevant columns

during early iterations (Lübbecke and Desrosiers 2005). Thus, it is a common prac-

tice to use fast heuristics to warm-start BPC algorithms. In our algorithm, we use

an adaptation of the constructive heuristic proposed by Xie et al. (2017) to quickly
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generate paths carried out by single-worker teams.

Algorithm 10 presents the main logic of the build_initial_solution function.

From lines 1 to 8, the algorithm iterates over the set of tasks C. Line 2 computes

the angle 𝜃𝑖 between the geographical location of each task 𝑖 ∈ C and a horizontal

line drawn from the depot’s location. From lines 3 to 7, the algorithm iterates over

the set of workers W. Line 4 checks if task 𝑖 can be performed by worker 𝑘. If

so, the number of tasks 𝜎̃𝑘 that worker 𝑘 can perform is increased by one. Then,

line 9 constructs list ℛ1 by sorting the workers in W in non-increasing order of

the number of tasks they are qualified to perform 𝜎̃𝑘 . Similarly, line 10 constructs

list ℛ2 by sorting every task 𝑖 ∈ C in non-decreasing order of the angle 𝜃𝑖. After

constructing both lists, from lines 11 to 19 the algorithm iterates over each task in

list ℛ2. Line 12 initially sets task 𝑖 as outsourced (i.e., 𝜗𝑖 = 1). Then, from lines

13 to 18, the algorithm iterates over each worker in list ℛ1, as long as the task is

still set as outsourced. Line 14 evaluates the feasibility of inserting the task into

the path of the current worker. If the insertion is feasible, line 15 sets the task as

completed (i.e., 𝜗𝑖 = 0), and line 16 inserts the task into the path 𝑝𝑘 of worker 𝑘.

Line 20 returns the initial set of paths.
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Algorithm 10 build_initial_solution function
Require: C, Set of tasks;W, Set of workers; 0, Depot.
Ensure: 𝒫

∗, optimal path.
1: for 𝑖 ∈ C do
2: 𝜃𝑖 ← compute_angle(𝑖, 0)
3: for 𝑘 ∈ W do
4: if evaluate_skills(𝑖, 𝑘) then
5: 𝜎̃𝑘 ← 𝜎̃𝑘 + 1
6: end if
7: end for
8: end for
9: ℛ1 ← sort_non_increasing(W, 𝜎̃)

10: ℛ2 ← sort_non_decreasing(C, 𝜃)
11: for 𝑖 ∈ ℛ2 do
12: 𝜗𝑖 ← 1
13: for 𝑘 ∈ ℛ1 |𝜗𝑖 = 1 do
14: if evaluate_insertion(𝑖, 𝑝𝑘 ) then
15: 𝜗𝑖 ← 0
16: 𝑝𝑘 ← insert(𝑖, 𝑘)
17: end if
18: end for
19: end for
20: return

⋃
𝑘∈W 𝑝𝑘

3.5 Computational experiments

The proposed BPC algorithm was implemented in Java using the jORLib1 library

and compiled using Java 1.8.0 331. We rely on CPLEX 20.1 to solve the master

problem. All the experiments were conducted on the Beluga cluster of the Digital

Research Alliance of Canada using eight threads and 20GB of RAM in a Linux

environment. The time limit for all the experiments is 2 hours. After fine tuning, we

set the bound step size in the PA to 10. The bounding time limits are set to 0.2𝜙 and

𝜙. The maximum number of paths Υ is set to 10 and the time limit Λ to 5 seconds.

All the instances and solutions are available at https://chairelogistique.hec.

ca/en/scientific-data/.
1The latest version of jORLib can be downloaded at: http://coin-or.github.io/jorlib/.
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3.5.1 Set of instances

We created a set of instances based on the testbed designed by Kovacs et al. (2012)

for the STRSP. These instances were derived from the well-known VRPTW instances

proposed by Solomon (1987). There are three classes of instances (D), denoted as

random (R), clustered (C), and semi-clustered (RC). For each class of instances, two

types of planning horizons (T) were considered, namely, short (1) and long (2). In

addition, the percentage of tasks that have a time window constraint (m) can take

two values, where 01 is used to indicate 100% and 03 to specify 50%. To fulfill tasks,

two sets of workers (E) are considered: complete (C) and reduced (R). These sets

differ in the number of workers available. In the complete set, up to 130 workers

are available. In the reduced set, up to 25. The number of skills domains (S) is

selected in the set {5, 6, 7} and each skill may have different levels of proficiency (L)

selected from the set {4, 6}. Finally, the number of tasks (n) is selected in the set

{25, 50, 75}. A total of 162 instances are considered. An instance is referred to as

“DTm_E_S×L_n”.

For each instance, the skills requirements 𝜈𝑖𝑞𝑙 , the time window [𝑎𝑖, 𝑏𝑖], the

outsourcing cost 𝑓𝑖, and service time associated with each task 𝑖 ∈ C are known.

Similarly, information regarding the qualifications 𝜉𝑘𝑞𝑙 of each worker 𝑘 ∈ W is

given. The driving distance (in kilometers) 𝜇𝑖 𝑗 between nodes (tasks and depot)

is computed using the Euclidean distance. The maximum duration of each route

corresponds to the latest arrival time to the depot 𝑏0. To extend this set of instances

to the WSRP-PL, we compute driving and walking times considering a driving speed

of 60 km/h and a walking speed of 4 km/h. We assume that driving and walking

distances are equal. The maximum number of workers per team can be either two

or three and we fixed |T | = 𝑚. In addition, we consider a maximum daily walking

distance 𝜁 for each worker of 5 km. The maximum walking distance between two

nodes 𝜃 is set to 2.5 km. Finally, the variable cost 𝑐𝑣 is set to 1.
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3.5.2 Experiment 1: assessing the BPC performance

To assess the effectiveness and efficiency of our BPC algorithm, we present a compar-

ison with the solution of the arc-based formulation described in Section 3.2, which is

the only other exact method available to solve the WSRP-PL. This formulation was

solved using CPLEX 20.1. In preliminary experiments, we used CPLEX indicator

constraints to express the big-M constraints (3.16)-(3.18). However, this did not

lead to an improvement in the performance of AF.

Tables 3.1 and 3.2 present the detailed results of the comparison between the

BPC algorithm and the arc-based formulation (AF) setting the maximum number

of workers in a team to 2 and 3, respectively. Column 1 denotes the set of workers.

Column 2 provides information regarding the instance class and the percentage of

tasks having a time window. Column 3 gives the number of tasks. The remaining

columns give the number of optimal solutions found, the average optimality gap,

and the computational time in seconds used by each algorithm. To compute the

optimality gap we use the best lower bound known for each instance (i.e., the highest

lower bound between the bounds found by AF and BPC).

Tables 3.1 and 3.2 present the detailed results of the comparison between the

BPC algorithm and the arc-based formulation (AF) setting the maximum number

of workers in a team to 2 and 3, respectively. Column 1 denotes the set of workers.

Column 2 provides information regarding the instance class and the percentage of

tasks having a time window. Column 3 gives the number of tasks. The remaining

columns give the number of optimal solutions found, the average optimality gap,

and the computational time in seconds used by each algorithm. To compute the

optimality gap we use the best lower bound known for each instance (i.e., the highest

lower bound between the bounds found by AF and BPC). Whenever AF ran out of

memory, we used the last integer solution found to compute the optimality gap.

Table 3.1 shows that BPC can solve 138 out of 162 instances to optimality, while

AF can only solve 79. Remarkably, BPC can solve all the instances with 25 tasks
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Table 3.1: Comparison between AF and BPC on the WSRP-PL instances with
𝜔 = 2.

E Tm n
AF BPC

#Opt. Avg. Δ CPU (s) #Opt. Avg. Δ CPU (s)
C 101 25 8/9 0.31% 1119.66 9/9 0.00% 293.41
C 103 25 3/9 14.68% 7200.00 9/9 0.00% 306.25
C 201 25 7/9 2.10% 2943.23 9/9 0.00% 220.25
C 101 50 6/9 9.21% 4168.58 8/9 0.44% 1145.64
C 103 50 0/9 33.07% 7200.00 7/9 9.09% 2389.94
C 201 50 4/9 14.32% 5420.10 9/9 0.00% 687.24
C 101 75 4/9 22.09% 5631.28 9/9 0.00% 1464.49
C 103 75 0/9 46.37% 7200.00 5/9 12.50% 3677.19
C 201 75 1/9 31.94% 6413.09 5/9 15.54% 3760.98
R 101 25 9/9 0.00% 844.16 9/9 0.00% 67.01
R 103 25 6/9 5.45% 7200.00 9/9 0.00% 590.97
R 201 25 9/9 0.00% 650.00 9/9 0.00% 88.68
R 101 50 7/9 0.42% 3064.41 9/9 0.00% 360.22
R 103 50 1/9 14.47% 7200.00 6/9 2.53% 2466.72
R 201 50 7/9 4.46% 1953.28 7/9 6.21% 1632.36
R 101 75 4/9 9.37% 4159.29 7/9 0.21% 1893.61
R 103 75 0/9 30.26% 7200.00 5/9 12.45% 4055.22
R 201 75 3/9 8.01% 5648.70 7/9 22.22% 2345.15
Total/Avg. 79/162 13.70% 4734.21 138/162 4.51% 1524.74

to optimality. As expected, instances in which the percentage of tasks having a

time window is lower (i.e., Tm = 103) are harder to solve. This is especially the

case for AF, as it can only solve 10 out of 54 instances with this setting. A similar

argument can be used for the subset of instances with wider time windows (i.e., Tm

= 201). As routes are longer, BPC, a column generation-based method, decreases

its performance. With regard to the number of workers available, it seems that

AF better handles instances with a lower number of workers (i.e., E = R), as it

can solve 12 more instances (46 vs 33) compared with the subset of instances with

the complete set of workers. One plausible explanation is that the reduction in

the number of variables has a strong positive impact on AF’s performance. With

respect to the computational times, on average BPC takes 1524.74 seconds to solve

the WSRP-PL, while AF takes 4734.21 seconds. BPC is particularly fast on the
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subset of instances with 25 customers.

Table 3.2: Comparison between AF and BPC on the WSRP-PL instances with
𝜔 = 3.

E Tm n
AF BPC

#Opt. Avg. Δ CPU (s) #Opt. Avg. Δ CPU (s)
C 101 25 8/9 2.21% 1155.05 8/9 1.83% 2482.04
C 103 25 1/9 23.74% 7200.00 5/9 15.90% 4415.58
C 201 25 7/9 3.02% 4135.11 9/9 0.00% 3295.42
C 101 50 4/9 11.27% 4983.59 6/9 1.58% 4417.96
C 103 50 0/9 51.22% 7200.00 3/9 19.23% 5795.05
C 201 50 1/9 16.17% 5733.85 6/9 6.85% 3810.50
C 101 75 2/9 21.66% 6513.46 7/9 12.28% 4437.02
C 103 75 0/9 70.86% 7200.00 2/9 45.78% 5951.84
C 201 75 1/9 34.23% 6415.43 2/9 15.45% 6401.91
R 101 25 9/9 0.00% 462.03 9/9 0.00% 229.99
R 103 25 4/9 4.22% 7200.00 9/9 0.00% 360.98
R 201 25 9/9 0.00% 432.66 9/9 0.00% 410.75
R 101 50 5/9 1.90% 4274.53 9/9 0.00% 1682.59
R 103 50 0/9 15.40% 7200.00 6/9 1.57% 3730.21
R 201 50 4/9 4.35% 4176.98 6/9 3.87% 3030.08
R 101 75 2/9 16.54% 6414.02 3/9 4.00% 5222.80
R 103 75 0/9 50.31% 7200.00 2/9 29.92% 6021.39
R 201 75 4/9 12.07% 5813.69 2/9 14.31% 6347.66
Total/Avg. 61/162 18.84% 5206.13 103/162 9.59% 3780.15

Table 3.2 shows that BPC can solve 103 out of 162 instances to optimality, while

AF only solves 61. The average optimality gap of the solutions retrieved by BPC

is 9.59% while the average optimality gap of the solutions found by AF is 18.84%.

With respect to the computational times, on average BPC takes 3780.15 seconds

to solve the WSRP-PL, while AF takes 5206.13 seconds. Note, that increasing the

maximum number of workers per team increases the difficulty of the problem. This

is expected because the possible number of teams that can be formed is significantly

larger.
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3.5.3 Experiment 2: analyzing the BPC components

In order to evaluate the contribution of some of the components of our algorithm,

we compare three variants of our BPC algorithm. The first variant, labeled as BAP

(i.e., branch and price), corresponds to a version of the BPC algorithm that does

not use the cut separator. The second variant, labeled as BPC-WI, is a version of

the BPC algorithm without the initialization procedure described in Section 3.4.6.

Finally, the third variant, labeled as BPC, corresponds to the full version of our

branch-price-and-cut algorithm.

Table 3.3 compares the performance of each variant. Each row in the table

corresponds to an algorithm. Columns 2, 3, and 4 contain the average optimality

gap, the average number of cuts, and the average number of columns generated at

the root node. Column 5 reports the average number of branch-and-price nodes

solved. Column 6 shows the average number of cuts generated. Column 7 gives

the average number of column generation iterations. Column 8 reports the average

number of columns generated during the execution of the algorithm. Columns 9

and 10 show the average computational time spent in the master problem and the

average total computational time in seconds. Finally, column 11 reports the number

of instances solved to optimality.

Table 3.3: Comparison of the BPC variants.

Variant Root node Nodes Cuts Iters Cols Master Total # Opt.Gap (%) Cuts Cols CPU (s) CPU (s)
BAP 15.3 0.0 1461.7 23.9 0.0 448.1 3977.5 2.6 3008.1 221/324

BPC-WI 14.0 5.4 1615.9 3.1 10.3 208.7 2719.3 2.1 2835.0 232/324
BPC 12.3 5.6 1530.9 2.9 10.5 202.1 2641.7 1.9 2609.9 241/324

As the results show, the BAP variant of the algorithm usually explores a larger

branch-and-price tree. In particular, on average BAP solves almost 7 times more

branch-and-price nodes than the variants of the algorithm that use a cut separator.

As a consequence, the BAP algorithm requires almost twice as many column gen-

eration iterations to solve an instance. Furthermore, the number of columns (i.e.,
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paths) generated is at least 1.5 times as large as the ones generated by the other

two variants. With respect to the impact of the initialization procedure, the average

optimality gap at the root node decreases by 1.7%. This can be explained by the

fact that BPC has early access to a stronger upper bound. The impact of the initial-

ization procedure is also shown on the average number of columns generated both

at the root node and in the complete branch-and-price tree. On average, BPC is the

algorithm that generates the fewest columns. In terms of the computational times,

the three variants of the algorithm have a similar performance. However, BPC solves

20 and 9 more instances to optimality than BAP and BPC-WI, respectively.

3.5.4 Experiment 3: analyzing the computational impact of

park-and-looping

We set up an experiment to shed some light into the computational impact of allow-

ing park-and-loop routes. To accomplish this goal we ran our BPC on the whole set

of instances setting 𝜁 = 0 (i.e., forbidding the walking subtours). Next, we compared

the results to those obtained when park-and-looping is allowed (see Experiment 1).

Table 3.4 summarizes the results delivered by BPC running with (BPC) and without

(BPC-D) park-and-looping. Each row corresponds to a combination of a set of work-

ers, the maximum number of workers per team, and the number of tasks. Columns

4 and 7 report the number of optimal solutions found in each setting. Columns 5

and 8 show the average optimality gap. Columns 6 and 9 contain the average CPU

time in seconds.

The results indicate that allowing park-and-looping significantly increases the

difficulty of the problem. Out of the 324 instances, BPC-D proves optimality on

267, while BPC achieves it in 241. Moreover, BPC-D is able to establish optimality

in all 25-task instances and in 95 out of 108 of the 50-task instances. A closer

examination of the optimality gaps and CPU times confirms the conclusion. While

BPC-D reports an average gap of 3.35%, BPC reports a nearly twofold average gap
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Table 3.4: Comparison of BPC performance on the WSRP-PL with and without
allowing park-and-loop routes.

E Tm n
BPC-D BPC

#Opt. Avg. Δ CPU (s) #Opt. Avg. Δ CPU (s)
C 101 25 18/18 0.00% 773.75 17/18 0.91% 1387.73
C 103 25 17/18 0.14% 733.82 14/18 7.95% 2360.92
C 201 25 18/18 0.00% 835.73 18/18 0.00% 1757.84
C 101 50 16/18 1.19% 2036.43 14/18 1.01% 2781.80
C 103 50 13/18 5.90% 3038.96 10/18 14.16% 4093.49
C 201 50 17/18 0.42% 1730.15 15/18 3.43% 2284.87
C 101 75 17/18 0.88% 2359.70 16/18 6.14% 2950.76
C 103 75 9/18 12.83% 4425.10 7/18 29.14% 4814.51
C 201 75 10/18 4.56% 4791.78 7/18 15.49% 5081.45
R 101 25 18/18 0.00% 91.39 18/18 0.00% 147.00
R 103 25 18/18 0.00% 270.48 18/18 0.00% 475.98
R 201 25 18/18 0.00% 60.89 18/18 0.00% 249.72
R 101 50 18/18 0.00% 850.00 18/18 0.00% 1021.41
R 103 50 15/18 1.15% 1908.46 12/18 2.05% 3098.46
R 201 50 14/18 3.27% 2108.47 13/18 5.04% 2331.22
R 101 75 11/18 2.27% 3822.91 10/18 2.10% 3558.20
R 103 75 8/18 19.27% 4624.48 7/18 21.19% 5038.30
R 201 75 12/18 8.35% 3335.90 9/18 18.27% 4346.41
Total/Avg. 267/324 3.35% 2099.91 241/324 7.05% 2652.45

of 7.05%. The former also runs (on average) nearly 30% faster (2099.91 vs. 2652.45

seconds).

3.5.5 Experiment 4: measuring the impact of the subtour

transportation mode

In this experiment, we aim to measure the impact of using a faster and longer-range

transportation mode (e.g., an electric bike or scooter) to perform the subtours. More

specifically, we compare the solutions we obtained in Experiment 1 with those ob-

tained for each instance while increasing the walking speed (10 km/h) and the max-

imum daily walking distance (20 km) to mimic the behavior of an electric scooter.

Table 3.5 compares the solutions found by BPC for each instance when consid-
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ering both configurations. We denote the configuration that mimics the e-scooter

behavior as BPC-S. The first three columns provide information regarding the set of

workers, the instance series, and the number of customers. Columns 4 and 9 report

the number of optimal solutions found by BPC under each configuration. Columns

5 and 10 present the average optimality gap. The optimality gap is computed using

the lower bound found by each algorithm. Columns 6 and 11 report the average

computational time in seconds. Columns 7 and 12 present the average number of

subtours in each solution. Columns 8 and 13 report the average maximum walking

distance. Finally, Column 14 presents the average gap in the objective function

when both BPC and BPC-S solved the instance to optimality. More specifically, for

each instance in the set, the gap was computed as

𝑓 (𝐵𝑃𝐶-𝑆) − 𝑓 (𝐵𝑃𝐶)
𝑓 (𝐵𝑃𝐶) , (3.56)

where 𝑓 (·) is the objective function found by BPC under each configuration.

Table 3.5: Comparison of BPC performance while varying the walking speed and
the maximum walking distance.

E Tm n
BPC BPC-S

Δ OF#Opt. Avg. Δ CPU (s) #S. WD #Opt. Avg. Δ CPU (s) #S. WD
C 101 25 17/18 0.91% 1387.73 0.72 2.39 13/18 3.49% 2511.84 1.72 12.14 -0.49%
C 103 25 14/18 7.95% 2360.92 1.06 2.25 13/18 16.50% 2783.15 2.11 11.78 -0.72%
C 201 25 18/18 0.0% 1757.84 0.61 1.33 14/18 7.11% 2929.02 3.39 17.20 -2.66%
C 101 50 14/18 1.01% 2781.80 0.56 1.16 10/18 6.93% 4201.41 3.22 13.22 -0.54%
C 103 50 10/18 14.16% 4093.49 0.78 1.14 8/18 23.15% 4741.30 2.56 12.42 -0.69%
C 201 50 15/18 3.43% 2248.87 0.67 1.56 7/18 21.01% 4919.81 3.83 17.69 -1.83%
C 101 75 16/18 6.14% 2950.75 0.67 1.19 8/18 12.05% 4807.59 4.17 15.90 -0.85%
C 103 75 7/18 29.14% 4814.51 0.41 0.50 5/18 30.70% 5913.82 2.33 10.94 -0.19%
C 201 75 7/18 15.49% 5081.45 0.44 1.11 4/18 35.26% 6217.24 2.56 12.36 -0.59%
R 101 25 18/18 0.00% 147.00 0.78 2.61 17/18 0.03% 805.21 2.50 13.48 -1.12%
R 103 25 18/18 0.00% 475.98 1.11 2.27 17/18 4.91% 1087.30 2.61 12.57 -2.75%
R 201 25 18/18 0.00% 249.72 0.83 2.00 18/18 0.00% 350.98 3.83 19.35 -3.35%
R 101 50 18/18 0.00% 1021.41 0.72 1.39 15/18 1.07% 1955.17 3.67 14.94 -0.58%
R 103 50 12/18 2.05% 3098.46 1.11 1.80 12/18 12.67% 3490.83 3.89 16.69 -0.90%
R 201 50 13/18 5.04% 2331.22 0.72 1.78 10/18 15.89% 3713.64 4.39 17.86 -0.61%
R 101 75 10/18 2.10% 3558.20 0.78 1.39 8/18 5.72% 4192.80 4.22 12.58 -0.42%
R 103 75 7/18 21.19% 5038.30 0.67 0.72 5/18 22.83% 5491.86 2.28 9.91 -0.34%
R 201 75 9/18 18.27% 4346.41 0.69 1.25 5/18 24.19% 5373.63 3.17 15.73 -0.44%
Total/Avg. 241/324 7.05% 2652.45 0.74 1.55 189/324 13.53% 3638.14 3.14 14.26 -1.06%

As the results show, increasing the speed and the range of the mode employed

for the subtours has a positive impact on the objective function. On average, the
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objective function decreases by 1.06%, but the savings are probably greater. Note

that BPC-S only solves to optimality 189 out of 324 instances while BPC solves 241

out of 324. As a result, the average optimality gap reported by BPC-S is 13.53%,

while BPC solutions have an average optimality gap of 7.05%. These figures also

indicate that solving an instance of the WSRP-PL under the second configuration is

significantly harder. A possible explanation for this behavior is given by the average

number of subtours performed in each route under both settings. Indeed, while BPC

finds solutions with an average of 0.74 subtours, BPC-S builds solutions with 3.14

subtours on average.

3.5.6 Experiment 5: solving the no-team STRSP

In Experiment 1, we demonstrated that our BPC can optimally solve WSRP-PL

instances with up to 75 nodes. The most closely related problem, featuring publicly

available instances of comparable size, is the no-team version of the STRSP. Note

that our WSRP-PL reduces to that problem when 𝜔 = 1 and 𝜁 = 0. We, therefore,

ran our AF and BPC on the set of large 100-task instances proposed by Kovacs

et al. (2012), available at http://prolog.univie.ac.at/research/STRSP/ and

compared our results to the state of the art.

Table 3.6 and 3.7 compare the performance of BPC and AF on the no-team

STRSP instances when the set of workers is complete and reduced, respectively.

Columns 1 and 2 denote the class of the instance and the instance series. Column

3 presents the average number of workers available. Columns 4 and 7 report the

number of optimal solutions found by each algorithm. Columns 5 and 8 show the

average optimality gap. Columns 6 and 9 contain the average CPU time employed

by each algorithm in seconds.

Tables 3.6 and 3.7 clearly indicate that in this problem our BPC also outperforms

AF. In the subset of instances in which the complete set of workers is available, BPC

solves 13 out of 27 instances to optimality, while AF solves none. The solution found
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Table 3.6: Comparison between AF and BPC on the Kovacs et al. (2012) 100-task
complete instances of the no-team STRSP.

D Tm |W| AF BPC
#Opt. Avg. Δ CPU (s) #Opt. Avg. Δ CPU (s)

C 101 16.7 0/3 24.68% 7200.0 3/3 0.00% 929.9
R 101 26.3 0/3 7.19% 7200.0 3/3 0.00% 717.9

RC 101 23 0/3 68.52% 7200.0 3/3 0.00% 1027.5
C 103 16.7 0/3 91.76% 7200.0 0/3 4.74% 7200.0
R 103 26.3 0/3 96.28% 7200.0 1/3 0.36% 4929.0

RC 103 23 0/3 95.01% 7200.0 0/3 4.97% 7200.0
C 201 7.67 0/3 9.22% 7200.0 2/3 5.29% 2425.5
R 201 8 0/3 35.78% 7200.0 1/3 17.79% 4855.9

RC 201 8.67 0/3 55.01% 7200.0 0/3 6.37% 7200.0
Total/Avg. 0/27 53.72% 7200.0 13/27 4.39% 4054.0

Table 3.7: Comparison between AF and BPC on the Kovacs et al. (2012) 100-task
reduced instances of the no-team STRSP.

D Tm |W| AF BPC
#Opt. Avg. Δ CPU (s) #Opt. Avg. Δ CPU (s)

C 101 4.67 0/3 33.42% 7200.0 3/3 0.00% 102.7
R 101 4.67 0/3 34.15% 7200.0 3/3 0.00% 398.1

RC 101 4.67 0/3 77.86% 7200.0 3/3 0.00% 3514.4
C 103 4.67 0/3 92.90% 7200.0 1/3 14.84% 6750.8
R 103 4.67 0/3 93.83% 7200.0 1/3 3.62% 4835.2

RC 103 4.67 0/3 91.70% 7200.0 0/3 16.52% 7200.0
C 201 4.67 2/3 2.23% 2583.3 0/3 18.38% 7200.0
R 201 4.67 0/3 39.15% 7200.0 0/3 40.75% 7200.0

RC 201 4.67 0/3 50.25% 7200.0 0/3 29.66% 7200.0
Total/Avg. 2/27 57.28% 6683.1 11/27 13.75% 4933.5

by BPC improves the best known solution reported by Gu et al. (2022) in 3 of these

13 instances. Moreover, the average optimality gap of the solutions found by BPC is

4.39% while AF reports solutions with an average optimality gap of 53.72%. With

respect to the computational times, AF always reached the time limit. In contrast,

BPC uses on average 4054 seconds. A similar situation is observed in the subset of

instances with a reduced set of workers. AF solves 2 out of 27 instances to optimality,

while BPC solves 11. The solution found by BPC is the new best known solution

for 9 of these instances. On average the optimality gap of the solutions provided by
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AF is 57.28% while BPC finds solutions with an average optimality gap of 13.75%.

The objective function of the new best known solutions found by BPC is available

in Appendix C.

3.6 Concluding remarks

In this paper, we introduced the workforce scheduling and routing problem with

park-and-loop. Routing decisions can be particularly challenging as routes can in-

clude one or more subtours that are covered on foot. To solve this problem we

presented a branch-price-and-cut algorithm that is capable of solving instances with

up to 75 tasks and 130 workers in less than two hours. The algorithm also provided

optimal solutions for the closely related technician routing and scheduling problem.

Extensive computational experiments carried out on instances derived from a

popular benchmark in the literature suggest that the proposed algorithm can out-

perform a standard arc-based formulation both in terms of solution quality and

running times. Indeed, our algorithm solved 241 out of 324 instances to optimality

while the arc-based formulation only solved 140. This performance gap comes as a

result of using state-of-the-art techniques and exploiting problem-specific features

to enhance the pricing problem algorithm.

To encourage further research on the WSRP-PL we designed an online tool where

all the instances and solutions are available. Further research will focus on a more

challenging variant of the problem in which teams can partially split (i.e., workers

can fulfill a task on their own and then rejoin the team). In some cases, splitting a

team may be beneficial to the company’s efficiency. However, it can easily disrupt

the structure of the routes, that do not longer follow a regular park-and-loop struc-

ture.
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Chapter 4

The Dynamic Park-and-loop Routing

Problem

Abstract

This paper introduces the dynamic park-and-loop routing problem, an important

practical extension of the park-and-loop routing problem in which some of the cus-

tomer demand is revealed dynamically during the planning horizon. Each time a

new customer request is received, the current plan must be re-evaluated and, in

many cases, revised to accommodate the new request. The objective is to maximize

the number of requests served. To address this problem, we propose a set of an-

ticipatory scheduling policies that build on the multi-space sampling heuristic. We

evaluate these policies on a new set of instances with up to 100 requests and assess

their performance using a dual bound based on the perfect information relaxation.

Our results show the great value of anticipation in both offline and real-time rout-

ing decisions. We also provide a comprehensive analysis of the problem parameters

leading to valuable insights.



4.1 Introduction

In many countries, public utilities are responsible for providing essential services

such as water, gas, electricity, and internet access. Ideally, these services should be

provided without any interruption to millions of people. To ensure this, utilities

perform on a daily basis a wide range of tasks at customer locations such as pre-

ventive maintenance, repairs, and meter readings. Some of these tasks are related

to unforeseen problems (e.g., the wi-fi stopped working, the electricity is down, the

water is not running). As a result, even if some requests are scheduled beforehand,

many requests are received dynamically throughout the day (i.e., on demand). Due

to the high number of customers simultaneously requesting service, utilities often

lack the resources to serve all scheduled and on-demand requests on the same day.

Thus, they sometimes outsource some of these requests to third-party contractors.

Another difficulty faced by utilities is the inconvenient location of many customers.

Indeed, in most cases, customers are located in areas with restricted access to park-

ing. Vehicles transiting in these areas are subject to traffic delays, mixed traffic

flow, or collisions. In contrast, pedestrians transit mostly without unexpected inter-

ruptions. Therefore, utilities often design vehicle routes following a park-and-loop

structure (Cabrera et al. 2022; Coindreau et al. 2019; Parragh and Cordeau 2017).

These routes involve a main tour that is completed using a vehicle and subtours

that are carried out on foot after parking the vehicle. This leads to the dynamic

park-and-loop routing problem (DPLRP).

The DPLRP is a sequential decision problem where acceptance and routing de-

cisions are made continuously in response to, and in anticipation of, new customer

requests. Solving this problem poses two big challenges. The first involves con-

structing an initial routing plan that accommodates all scheduled requests while

maintaining sufficient flexibility to incorporate most of the on-demand requests.

This initial plan must strike a delicate balance between efficiency and adaptability,

ensuring that it can handle on-demand requests without substantial disruptions.
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Initial routing plans are typically designed using heuristics or exact methods that

minimize travel distance or time and are built offline. Flexibility can be built into

the initial plan in different ways. For instance, one can design route plans that are

based on both the scheduled requests and a set of sampled dynamic requests (Bent

and Van Hentenryck 2004; Zhang et al. 2023). Another stream of research has fo-

cused on the design of waiting strategies (Bent and Van Hentenryck 2007) according

to which workers may wait at their current location after serving a request.

The second challenge lies in the online adjustment of the initial routing plan

whenever a new customer request is accepted. Updating the routing plan dynam-

ically requires an algorithm that not only re-evaluates the current routes but also

integrates new requests seamlessly. In the literature, routing plans are typically

updated by inserting the new request into one of the routes, without rearranging

the accepted requests or reassigning the requests among workers (Ulmer et al. 2019,

2018; Zhang and Van Woensel 2023). As a result, routing plans can be updated

very fast. However, opportunities to anticipate and make room for incoming re-

quests may be lost. To take advantage of these opportunities, researchers have also

explored using more complex methods based on metaheuristics (Chen and Xu 2006;

Gendreau et al. 1999). These algorithms are usually tailored to the application at

hand. In the DPLRP, updating the routing plan may involve a wide range of actions,

such as extending or shortening an existing walking subtour, inserting or removing a

walking subtour, reassigning requests between workers, and reordering the requests

in a route, among others.

To tackle these challenges, we propose a set of myopic and anticipatory scheduling

policies based on a state-of-the-art metaheuristic known as the multi-space sampling

heuristic (MSH), a two-phase approach that follows the route-first, assemble-second

principle. Each time a new customer request is revealed, this method generates

a set of high-quality routes that consider the current locations of all workers. A

new solution is then formed by selecting from these routes using a set partitioning

model. Although the MSH was originally a tailored method to solve the vehicle
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routing problem with stochastic demands (Mendoza and Villegas 2013), thanks to

its flexibility and efficiency it has been extended to other challenging vehicle routing

problems. For instance, the MSH has been successfully adapted to the vehicle

routing problem with stochastic travel and service times (Gómez et al. 2015), the

combined maintenance and routing problem (Fontecha et al. 2016), the green vehicle

routing problem (Montoya et al. 2016), the multi-period electric vehicle routing

problem (Echeverri et al. 2019), and the doubly open park-and-loop routing problem

(Cabrera et al. 2022).

The contributions of this paper are the following. First, we introduce and solve

the dynamic park-and-loop routing problem. This problem extends the park-and-

loop routing problem by considering both scheduled and on-demand requests. Sec-

ond, we develop a set of scheduling policies that leverage the multi-space sampling

heuristic. In contrast to other scheduling policies in the literature, our best policy

allows for inter-route operations. Third, we describe a method to compute a bound

on the number of requests that can be served under the assumption of perfect in-

formation. Fourth, we propose a new set of instances using the street network of

Vienna, Austria. These instances are derived from the testbed introduced by Zhang

et al. (2023). We make the instances, our results, and a solution checker publicly

available to foster future research on this topic.

This document is organized as follows. Section 4.2 reviews the related literature.

Section 4.3 formally defines the DPLRP and introduces a route-based sequential

decision process. Section 4.4 describes in detail our set of scheduling policies. Section

4.5 defines the perfect information bound problem and discusses a method to solve

it. Section 4.6 presents the computational experiments. Finally, Section 4.7 presents

the conclusions and outlines potential paths for future research.
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4.2 Literature review

In this section, we first review the literature on problems related to the DPLRP.

This is followed by an overview of solution methods in Section 4.2.2.

4.2.1 Related problems

The DPLRP is closely related to the truck-and-trailer routing problem (TTRP)

originally introduced by Semet (1995). In the TTRP, a fleet of trucks pulling trailers

is used to serve a pre-determined set of customers, some of which can only be

reached by truck without the trailer. For this reason, a subset of customers are

set as decoupling points (i.e., parking places) where the trailer can be detached

from the truck. The truck can then visit customers with accessibility constraints

following a park-and-loop structure. Because all customers are assumed to be known

beforehand, the TTRP is typically solved using static algorithms, which may be

heuristic (Derigs et al. 2013; Villegas et al. 2013) or exact (Belenguer et al. 2016;

Parragh and Cordeau 2017; Rothenbächer et al. 2018). These algorithms provide a

routing plan that remains unchanged during the planning horizon. In contrast to

the TTRP, in the DPLRP the routing plan can be updated every time a new request

is revealed.

Another related problem is the truck and trailer routing problem with stochastic

demand (DTTRP) introduced by Maghfiroh and Hanaoka (2018). This problem

extends the TTRP by considering the random arrival of on-demand requests. To

solve this problem, the authors proposed a modified simulated annealing algorithm

with variable neighborhood search. This method builds an initial solution based

on static information which is later modified by randomly choosing a local search

operator (e.g., swap, insertion, 2-opt). To account for stochastic information, the

method samples scenarios of yet-to-serve customer demand to estimate the impact

of each move on the objective function. The authors test their algorithm on a set

of instances with up to 70 customers. Unlike in the DTTRP, in our problem the
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vehicle can be parked at any customer. As a result, the decision of where and when

to park the vehicle is more complex.

The DPLRP is obviously related to the (static) park-and-loop routing problem

(PLRP). This optimization problem consists of designing routes to serve a set of

customers considering that workers can either walk or drive to their next location.

This problem has recently received substantial attention from the research commu-

nity. Coindreau et al. (2019) proposed a variable neighborhood search algorithm

and a fast insertion mechanism. Cabrera et al. (2022) presented a metaheuristic

based on the multi-space sampling heuristic. Le Colleter et al. (2023) introduced a

small and large neighborhood search heuristic. More recently, Cabrera et al. (2023)

introduced the first exact method based on the branch-price-and-cut framework ca-

pable of solving most of the existing instances with 50 customers. In the PLRP all

requests are assumed to be known before the start of the planning horizon.

Finally, another related problem is the dynamic vehicle routing problem (DVRP).

The DVRP consists of finding optimal vehicle routes to complete geographically dis-

persed deterministic and stochastic requests. There is a significant body of literature

addressing the DVRP (Bent and Van Hentenryck 2007; Bent and Van Hentenryck

2004; Ferrucci et al. 2013; Sarasola et al. 2016; Ulmer et al. 2018). Bent and Van

Hentenryck (2004) proposed a multiple scenario approach that consists of storing

a pool of routes that resemble the current routing plan. This pool is continuously

updated by performing local search on the routes that belong to the routing plan

and by considering possible future requests. Bent and Van Hentenryck (2007) intro-

duced a set of waiting and relocation strategies that allow vehicles to either wait at

their current location or relocate to arbitrary sites. Ferrucci et al. (2013) introduced

a real-time control approach that leverages a tabu search algorithm with the goal

of guiding vehicles to request-likely areas. Sarasola et al. (2016) proposed a vari-

able neighborhood search algorithm that adjusts the routing plan using current and

sampled requests. More recently, Ulmer et al. (2018) introduced the anticipatory

time budgeting heuristic, a method that relies on performing multiple simulations to
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approximate an optimal decision policy, subject to the available time. This method

outperformed the state-of-the-art heuristics. As opposed to the DPLRP, the DVRP

only considers one type of transportation mode (i.e., driving).

4.2.2 Solution methods

To solve dynamic vehicle routing problems, researchers have explored many alter-

natives. Arguably the most common method is known as reoptimization. Reopti-

mization updates the current routing plan by solving a static version of the problem

with the most recent available information. Typically, this is done by using meta-

heuristics, as solutions are to be obtained in relatively short computational times.

Depending on how often the static problem is solved, reoptimization methods can

be classified into periodic (PR) and continuous (CR). As the name suggests, PR

methods solve the static problem at fixed intervals of time (e.g., every 5 minutes)

or after observing a pre-defined number of events (e.g., after five customer requests

are received). For example, Pillac et al. (2018) developed a fast metaheuristic that

is applied every time a new customer request is revealed. Alternatively, CR meth-

ods run continuously during the planning horizon. To do so, these methods often

rely on maintaining a pool of solutions that can be adapted to the newly disclosed

information without significant effort. For instance, Gendreau et al. (1999), pre-

sented a parallel tabu search to continuously improve the set of feasible solutions.

This method is executed in multiple threads that are only interrupted when new

information is available.

Another line of research models dynamic vehicle routing problems as Markov

decision processes (MDPs). An MDP is well-suited for modeling as it explicitly in-

corporates uncertainty and stepwise planning (Ulmer 2017). However, these models

face the well-known curse of dimensionality (Powell 2007), as real-world problems

involve vast state, action, and outcome spaces, rendering exact solution methods

computationally infeasible. As a result, researchers have focused on the design of
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approximate dynamic programming (ADP) methods. The simplest ADPs are my-

opic policies, which, as the name suggests, ignore future customer requests. Instead,

they focus solely on maximizing immediate rewards, often resulting in poor per-

formance. To overcome this, more complex methods that explicitly sample and

simulate dynamic requests have been developed. These methods can be classified

into three categories: rollout algorithms, policy function approximation (PFA), and

value function approximation (VFA).

Rollout algorithms, introduced by Bertsekas et al. (1997), leverage an existing

policy, known as the base policy, to improve decision-making in dynamic program-

ming problems. The intuition behind these methods is to roll out the base policy

by simulating multiple future steps starting from the current state. These simu-

lations generate potential outcomes for different actions, enabling an evaluation of

their quality based on the expected cumulative reward over the simulated horizon.

For instance, Secomandi (2001) developed a rollout algorithm for the vehicle rout-

ing problem with stochastic demands, using the cyclic heuristic as the base policy.

Their results demonstrated performance improvements of up to 4% on instances

with up to 40 customers. However, a key limitation of rollout algorithms is that all

simulations are performed online, which can result in significant delays in real-time

decision-making. In this paper, we use a rollout algorithm as one of our benchmark

algorithms.

In a search of efficiency, researchers have developed policy function approxima-

tion methods (Ulmer and Streng 2019; Ulmer and Thomas 2018). These methods

use decision rules designed to emulate effective decision-making, typically relying on

thresholds determined through offline simulations. For instance, Ulmer and Thomas

(2018) proposed a PFA for solving the dynamic vehicle routing problem with hetero-

geneous fleets of drones and vehicles. Their approach divides the service area into

two zones based on vehicle travel time from the depot. Customers within a specified

threshold distance are served by vehicles, while those beyond it are served by drones.

Similarly, Ulmer and Streng (2019) designed a PFA for same-day delivery systems
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involving pickup stations and autonomous vehicles. This method determines when

and where to dispatch vehicles to pickup stations and which goods to load, using a

threshold to balance fast delivery with consolidation efficiency. Since the thresholds

are pre-defined, PFA methods are highly efficient. However, they are only suitable

for problems in which a good policy can be readily observed (Powell 2007).

Value function approximation is another common approach (Soeffker et al. 2024;

Ulmer et al. 2019, 2020; Ulmer and Thomas 2020). This method estimates the

value of being in a particular state or the expected value of taking a specific action.

Due to the typically large number of states, they are often aggregated into a set of

features. Ulmer et al. (2018) proposed a non-parametric value function based on

the available time to approximate the cost of routing decisions. Their solution in-

corporates a dynamic lookup table that adaptively partitions the state space during

the learning process. Soeffker et al. (2024) introduced parametric VFAs that model

vehicle workloads at varying levels of detail, enabling effective customer request as-

signments. Similarly, Ulmer and Thomas (2020) developed a meso-parametric VFA

(M-VFA) that integrates non-parametric and parametric VFAs, leveraging their

strengths while mitigating their limitations. In a related effort, Ulmer et al. (2019)

combined a VFA with a rollout algorithm to address the dynamic vehicle routing

problem with stochastic requests. This hybrid approach demonstrated the benefits

of blending offline and online methods to generate higher-quality policies.

The primary drawback of VFAs lies in their high computational complexity, as

these methods often rely on lookup tables that are susceptible to the curse of dimen-

sionality. To address this issue, Zhang et al. (2023) proposed a set of knapsack-based

linear models that compute the expected reward of a decision without requiring of-

fline simulations. In these models, each vehicle is represented as a knapsack, where

the capacity corresponds to the remaining service time available in the vehicle’s

shift. By combining these models with an intra-route routing policy, they devel-

oped efficient online scheduling policies. Under these policies, once a request is

assigned to a vehicle, it cannot be reassigned. Their experiments on large-scale,
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real-time instances demonstrated that these policies outperformed traditional ADP

approaches in both solution quality and computational efficiency. Building on this

concept, we adapt the knapsack-based linear models and propose scheduling poli-

cies that leverage the multi-space sampling heuristic to enable efficient inter-route

operations. Our experiments indicate that our scheduling policies enhance solution

quality with minimal impact on computational efficiency.

Table 4.1 presents a classification of the literature related to this paper. Column

1 provides a reference for each article. Columns 2 and 3 indicate whether or not

the article considers routing and parking decisions, respectively. Column 4 shows

if the article considers uncertainty in the problem parameters, such as the travel

times (T) or the demand (D). Column 5 shows if the method proposed in the article

anticipates the impact of a decision in the future costs or rewards. Column 6 reports

the method used to build the initial solution. Column 7 shows the method that

updates the initial solution.

4.3 Problem definition

In this section, we formally define the DPLRP. We first present the problem de-

scription and we provide an illustrative example. We then present a route-based

sequential decision process inspired by the route-based Markov decision processes

introduced by Ulmer et al. (2020).

4.3.1 Problem description

The DPLRP can be formally defined on a directed graph G = (N ,A), whereN is the

node set and A is the arc set. The set N comprises the depot represented by node

0 and the customer request set C. Each customer request 𝑖 ∈ C has a fixed duration

𝜈𝑖. To serve customer requests, a setW of homogeneous workers is available. Arcs

in A represent the connections between two locations. Each arc (𝑖, 𝑗) has four main
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Table 4.1: Literature classification.

Author Decisions Uncertainty Anticipation Offline policy Online policyRouting Parking
Chao (2002) ✓ ✓ TS n/a
Derigs et al. (2013) ✓ ✓ LNS n/a
Villegas et al. (2013) ✓ ✓ GRASP n/a
Belenguer et al. (2016) ✓ ✓ B&C n/a
Parragh and Cordeau (2017) ✓ ✓ BAP n/a
Rothenbächer et al. (2018) ✓ ✓ BPC n/a
Coindreau et al. (2019) ✓ ✓ VNS n/a
Martinez-Sykora et al. (2020) ✓ ✓ B&C n/a
Cabrera et al. (2022) ✓ ✓ MSH n/a
Cabrera et al. (2023) ✓ ✓ BPC n/a
Le Colleter et al. (2023) ✓ ✓ SLNS n/a
Zhou et al. (2023) ✓ ✓ BAP n/a
Cabrera et al. (2025) ✓ ✓ BPC n/a
Gendreau et al. (1999) ✓ D TS TS
Bent and Van Hentenryck (2004) ✓ D ✓ MSA MSA
Mitrović-Minić and Laporte (2004) ✓ D n/a TS
Bent and Van Hentenryck (2007) ✓ D ✓ LNS LNS
Ferrucci et al. (2013) ✓ D TS TS
Ulmer et al. (2018) ✓ D ✓ CI PFA+rollout
Maghfiroh and Hanaoka (2018) ✓ ✓ D CI SA
Pillac et al. (2018) ✓ D ALNS ALNS
Ulmer et al. (2019) ✓ D ✓ CI VFA+rollout
Voccia et al. (2019) ✓ D ✓ n/a MSA
Ulmer and Thomas (2020) ✓ D ✓ n/a VFA
Ulmer et al. (2020) ✓ D ✓ n/a VFA
Zhang and Van Woensel (2023) ✓ D ✓ PB PB
This work ✓ ✓ D ✓ PB-MSH PB-MSH

attributes: the walking distance 𝜆𝑖 𝑗 , the driving distance 𝜇𝑖 𝑗 , the walking time 𝛾𝑖 𝑗 ,

and the driving time 𝛿𝑖 𝑗 . Every time a worker arrives at a location using a vehicle,

there is an associated parking time 𝜏. The maximum walking distance between two

points is Υ and the maximum duration of a walking subtour is Γ.

Set C can be divided into two disjoint subsets. The first subset contains the

scheduled requests C𝑠, which are known at the beginning of the planning horizon.

These requests must be served before the end of the planning horizon. The second

set contains the on-demand requests C𝑑, which are not known in advance. We

assume these requests appear randomly during the working hours [𝑒, 𝑓 ]. For each

new customer request, a decision is made to either accept or reject it. If the request

is accepted, it must be served within the planning horizon. On the contrary, if

rejected, it is assumed to be outsourced or postponed to a later date.

We also define a route plan 𝜃 as a set of park-and-loop routes {𝑟1, . . . , 𝑟W} for
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each worker. A park-and-loop route 𝑟 =
{
0, 𝑖1, 𝑖2, . . . , 𝑖 |𝑟 |−2, 0

}
is a sequence of nodes

that starts and ends at the depot. The objective of the DPLRP is to design a

route plan that maximizes the number of on-demand requests served such that: the

total duration of all routes performed by any worker does not exceed the workday

duration; the walking distance for each worker does not exceed the walking distance

limit; and the total duration of a waking subtour does not exceed the time limit.

Figure 4.1 shows an example of an instance of the DPLRP with three workers.

In this instance, the service time of every customer request is ten minutes and the

time limit for a route is seven hours. Also, the parking time is set to two minutes.

The driving or walking times between each location are indicated next to each arc.

Figure 4.1a shows the initial routing plan composed of two park-and-loop routes.

This routing plan is built before the start of the workday. According to the initial

routing plan, Worker 1 (light blue) departs at 8:00 am from the depot towards

Request 1. There, the worker parks the vehicle before serving the request. Later,

the worker walks to serve requests 2 and 3, before going back to retrieve the vehicle.

Afterward, the worker drives to Request 4. After parking the car and serving the

request, the worker walks to serve requests 5 and 6. Then, after going back to the

parking spot, the worker walks to Request 7. Finally, after serving the request and

retrieving the vehicle, the worker returns to the depot. Similarly, Worker 2 (dark

blue) is scheduled to drive towards Request 8. Then, the worker walks to serve

requests 9 and 10. Finally, after retrieving the vehicle, the worker drives to the

depot.

Figure 4.1b shows the park-and-loop routes being executed at the start of the

planning horizon. Figure 4.1c shows the park-and-loop routes being executed at

8:19 am, right after Request 11 appears. At 8:19 am, Worker 1 is about to reach

the location of Request 1, while Worker 2 is already servicing Request 8. Due to

the arrival of a new request and the proximity of Worker 2 to Request 11, the initial

routing plan is modified as shown in Figure 4.1d. In particular, a new subtour is

added to the route of Worker 2 to ensure that Request 11 will be served. The route
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Figure 4.1: Illustrative example of an instance of the DPLRP.

of Worker 1 remains unchanged. At 8:30 am, a new on-demand request is unveiled,

namely, Request 12 as shown in Figure 4.1e. To add this request to the routing plan,

the route of Worker 1 is slightly changed and a new route is created (dark orange)

as shown in Figure 4.1f. In addition, Worker 1 is now scheduled to serve Request
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12.

This example illustrates the challenges and complexity of the DPLRP. When a

new customer request appears, it is crucial to decide whether to accept or reject

it. While accepting a new customer request may seem advantageous at the time, it

could prevent the acceptance of two or more subsequent requests. Additionally, if

the customer request is accepted, the routing plan must be adjusted to accommodate

it. For instance, a subtour could be created within an existing route, or an existing

subtour could be shortened or extended. Another option is to reassign requests

among workers. This option could drastically change each route in the routing plan

and could also involve creating new routes for idle workers at the depot. A solution

method for the DPLRP must consider all these aspects and be able to quickly provide

a solution.

4.3.2 Route-based sequential decision process

In this section, we present a route-based sequential decision process that captures

the different forms of uncertainty in the DPLRP.

Decision epochs

Decision epochs 𝑘 ∈ {0, . . . ,K} refer to specific points in time when decisions are

made. In the DPLRP, a decision is made every time that an on-demand request

𝑖𝑘 appears. In addition, a decision is made at the start of the planning horizon to

design the initial routing plan. The number of decision points per day K is a random

variable.

States

A state represents the current status of the system at a specific decision epoch 𝑘.

We define the state of the system at decision epoch 𝑘 as S𝑘 . In our problem, the

state S𝑘 consists of the following eight components:

150



· the current time denoted by 𝑡𝑘 ∈ R≥0,

· the current routing plan denoted by 𝜃𝑘 ,

· the current destination of each worker 𝑤 denoted by 𝚤̂𝑤𝑘 ∈ N ,

· the arrival time of each worker 𝑤 at their current destination denoted by

𝚥̂𝑤𝑘 ∈ [𝑒, 𝑓 ],

· the available time that each worker 𝑤 has in their current walking subtour

denoted by 𝑢𝑤𝑘 ∈ [0, Γ],

· the distance that can still be walked by each worker 𝑤 denoted by 𝑙𝑤𝑘 ∈ [0,Υ],

· the current parking spot of the vehicle of each worker 𝑤 denoted by 𝑝𝑤𝑘 ∈ N ,

· and the set of accepted but not yet served requests denoted by C𝑘 .

State S𝑘 can be summarized as S𝑘 = (𝑡𝑘 , 𝜃𝑘 , 𝚤̂𝑘 , 𝚥̂𝑘 , 𝑢𝑘 , 𝑙𝑘 , 𝑝𝑘 , C𝑘 ) with 𝚤̂𝑘 , 𝚥̂𝑘 , 𝑢𝑘 ,

𝑙𝑘 , and 𝑝𝑘 being |W|-dimensional vectors. If a worker is serving a request, the

value of 𝚤̂𝑘 is set to the worker’s current location. In addition, if a worker is not

performing a subtour at time 𝑡𝑘 , the value of 𝑢𝑤𝑘 is set to 0. Also, if the worker is

driving between two locations, 𝑝𝑤𝑘 is set to the current destination. In the initial

state S0 = (0, 𝜃0, 𝚤̂0, 𝚥̂0, 𝑢0, 𝑙0, 𝑝0, C0), all workers are idle at the depot and C0 = C𝑠.

To guarantee feasibility, we assume that there exists a routing plan that can serve all

the requests in C𝑠. At the final decision epoch K, the process is at a terminal state

SK = (𝑡K , 𝜃K , 𝚤̂K , 𝚥̂K , 𝑢K , 𝑙K , 𝑝K ,∅), where all the workers are back at the depot and

all accepted requests are served.

Actions

Actions are the decisions made at each decision epoch 𝑘 that influence the state

of the system. At state S0 the set of feasible decisions F is composed of all the

feasible routing plans 𝜃 that include the set of scheduled requests C𝑠. We represent
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the initial decision by 𝜃0 ∈ F . This decision is made offline prior to the start of

the planning horizon. For the remaining decision epochs 𝑘 ≠ 0, decisions are made

online. Given S𝑘 , an acceptance decision is made about whether to accept or reject

the new on-demand request 𝑖𝑘 . In case the new on-demand request is accepted, it

is also necessary to make a routing decision according to which the routing plan 𝜃𝑘

is updated. There are only two possible acceptance decisions, but there are many

possible routing decisions.

We denote by X𝑘 the set of feasible decisions at state S𝑘 . Each decision 𝑥𝑘 ∈ X𝑘
specifies both the acceptance and the routing decisions. If the new on-demand

request is rejected, the routing decision defaults to preserving the current routing

plan. Formally, a decision is a tuple 𝑥𝑘 = (I𝑥𝑘 , 𝜃
𝑥
𝑘
), where I𝑥

𝑘
is an indicator variable

that takes the value of 1 if the on-demand request 𝑖𝑘 is accepted and 𝜃𝑥
𝑘

is the

updated routing plan that must include all the request that are yet to be served:

C𝑘 = C𝑘 ∪ {𝑖𝑘 }. A decision is feasible when the following conditions hold:

· the park-and-loop routes 𝑟 ∈ 𝜃𝑥
𝑘

are feasible,

· the workers driving or walking between two locations pursue their current

destinations,

· and the accepted request is assigned to exactly one worker.

Transitions

When a decision 𝑥𝑘 is made at decision epoch 𝑘, it leads to the state transition from

the pre-decision state S𝑘 to post-decision state S𝑥
𝑘
= (𝑡𝑥

𝑘
, 𝜃𝑥
𝑘
, 𝚤̂𝑥
𝑘
, 𝚥̂𝑥
𝑘
, 𝑢𝑥

𝑘
, 𝑙𝑥
𝑘
, 𝑝𝑥

𝑘
, C𝑥

𝑘
).

In S𝑥
𝑘

we update the workers’ destinations and arrival times of the previously idle

workers. These values are inherited from the updated routing plan 𝜃𝑥
𝑘
. Similarly,

we update the available time for performing a walking subtour and the remaining

distance to be covered on foot. We also update the current parking spots for each

worker. Finally, the set of accepted but not yet served requests is updated by remov-
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ing the requests served between decision epochs 𝑘 − 1 and 𝑘, and by adding request

𝑖𝑘 in case an accept decision was made. The transition from the post-decision state

S𝑥
𝑘

to the next pre-decision state S𝑘+1 = (𝑡𝑘+1, 𝜃𝑘+1, 𝚤̂𝑘+1, 𝚥̂𝑘+1, 𝑢𝑘+1, 𝑙𝑘+1, 𝑝𝑘+1, C𝑘+1)

occurs at the time of the (𝑘 + 1)-th decision epoch 𝑡𝑘+1. The transition updates the

state as follows:

· the routing plan 𝜃𝑘+1 is obtained by removing the requests served before 𝑡𝑘+1

from 𝜃𝑥
𝑘
,

· the set of accepted but not yet served requests is modified as C𝑘+1 = C𝑥
𝑘
\ C̃,

where C̃ corresponds to the request served before time 𝑡𝑘 ,

· and a new on-demand request 𝑖𝑘+1 appears.

Rewards

The reward quantifies the immediate benefit (or cost) of an action. We describe

the reward of a decision 𝑥𝑘 as a marginal reward that accounts for the difference

between the value of a previous route plan and the new one. Let 𝐶𝑅(𝜃) be the

reward obtained by route plan 𝜃 . Also, let Ĩ𝑘 be an indicator variable that takes the

value of 1 if the on-demand request 𝑖𝑘 was accepted. Then, the reward reflecting

the accepted requests at any decision epoch 𝑘 is defined as:

𝐶𝑅(𝜃𝑘 ) =
𝑘−1∑︁
𝑖=0

I𝑖 + |C𝑠 |. (4.1)

This equation considers both the scheduled requests and the previously accepted

on-demand requests. After decision 𝑥𝑘 is taken at decision epoch 𝑘, the reward of

the updated routing plan 𝜃𝑥
𝑘

can be written as:

𝐶𝑅(𝜃𝑥𝑘 ) = 𝐶𝑅(𝜃𝑘 ) + I
𝑥
𝑘 . (4.2)
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Then, the reward 𝑅 (·) of a decision 𝑥𝑘 is defined as:

𝑅 (S𝑘 , 𝑥𝑘 ) = 𝐶𝑅(𝜃𝑥𝑘 ) − 𝐶𝑅(𝜃𝑘 ). (4.3)

Objective

Let Π denote the set of Markovian deterministic scheduling policies, where a policy

𝜋 ∈ Π is a sequence of decision rules (𝑋𝜋0 , 𝑋
𝜋
1 , . . . , 𝑋

𝜋
K) to map a state S𝑘 to decision

𝑥𝑘 = 𝑋
𝜋
𝑘
(S𝑘 ). These decision rules may be identical for every epoch 𝑘 ∈ {1, . . . ,K}.

We seek an optimal scheduling policy 𝜋∗ ∈ Π that maximizes the expected total

reward beginning from the initial state S0:

𝑉 (S0) = max
𝜋∈Π

E

[ K∑︁
𝑘=0

𝑅 (S𝑘 , 𝑋𝜋𝑘 (S𝑘 )) |S0

]
. (4.4)

In the context of the DPLRP, a scheduling policy comprises an offline policy

that defines the initial routing plan 𝜃0, an acceptance policy that decides whether

to accept or reject a request, and a routing policy that updates the routing plan after

the acceptance decisions. In the following section, we present different alternatives

for each of these policies.

4.4 Scheduling policies

In the following, we present an overview of the multi-space sampling heuristic. Then,

we define the routing, acceptance, and offline policies.

4.4.1 Multi-space sampling heuristic

The MSH comprises two phases, namely, a route generation and an assembly phase.

In the route generation phase, the algorithm iteratively builds a pool (i.e., a set) of
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high-quality routes by using a set of route generation functions. A route generation

function can for example take the form of a local search procedure that improves an

existing route. In the assembly phase, the algorithm solves a set partitioning model

that builds a final solution. This step is carried out by an assembler. Figure 4.2

illustrates the two phases of MSH applied to an instance of the DPLRP with ten

scheduled requests and two on-demand requests. Figure 4.2a depicts the current

state of the system: one worker, colored in green, is idle at the depot, while the

other two workers, colored in blue and orange, are walking toward Requests 2 and

10, respectively. Figure 4.2b shows a selection of routes generated during the first

phase of the MSH, with each route beginning from the workers’ current destinations

or, in the case of the idle worker, their current location. Finally, Figure 4.2c displays

the updated routing plan. In this new routing plan, the worker in green is assigned

to depart immediately toward Request 7.

Algorithm 11 presents the main logic of the MSH. Line 1 initializes the pool

of park-and-loop routes Ω𝑤 for each worker 𝑤 ∈ W. Then, we enter the outer

loop (lines 2-9) where the algorithm populates each pool of routes by iterating over

a set of route generation functions Ξ. This outer loop is executed in parallel by

𝜁 independent threads. Line 3 initializes the iteration number. Afterward, the

algorithm uses the inner loop (lines 5-7) for a given number of iterations (𝑄) or

a maximum execution time (Ψ). Line 5 computes a subset of routes 𝑟𝑞 using the

selected route generation function. Line 6 adds the routes found to the corresponding

pool of routes. Line 10 assembles a solution composed of one or multiple routes by

calling the assembler. This solution is stored in Ω̃𝑤. Finally, Line 11 returns the

final solution Ω̃𝑤.

Depending on the definition of the set of route generation functions Ξ and the

assembler, different scheduling policies emerge. In what follows, we provide a general

definition of the assembler. A more detailed discussion and definition of the route

generation functions is deferred to Sections 4.4.3 and 4.4.3. The assembler can be

generally defined as follows. Let Ω𝑘
𝑤 define a subset of feasible park-and-loop routes
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Figure 4.2: Multi-space sampling heuristic example.

Algorithm 11 MSH function
Require: G, graph; Ξ, route generation functions; 𝑄, iteration limit; Ψ, time limit

route generation phase; Φ, time limit assembly phase.
Ensure: final solution Ω̃𝑤

1: Ω𝑤 ← ∅
2: for 𝜉 ∈ Ξ do
3: 𝑞 ← 1
4: while 𝑞 < 𝑄

|Ξ| ∧ 𝑟𝑜𝑢𝑡𝑒_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒 < Ψ do
5: 𝑟𝑞 ← 𝜉 (G)
6: Ω𝑤 ← Ω𝑤 ∪ 𝑟𝑞
7: 𝑞 ← 𝑞 + 1
8: end while
9: end for

10: Ω̃𝑤 ← Assembly(G,Ω𝑤,Φ)
11: return Ω̃𝑤
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for each worker given their status at decision epoch 𝑘. Let ℎ𝑟 be the cost of route 𝑟.

Also, let 𝑎𝑖𝑟 be a binary parameter that takes the value 1 if route 𝑟 serves request

𝑖, and 0 otherwise. Let 𝑦𝑟 be a binary variable that takes the value 1 if route 𝑟

is selected, and 0 otherwise. Then, the assembler at any decision epoch 𝑘 > 0 is

defined as:

min
∑︁
𝑤∈W

ℎ𝑟 𝑦𝑟 (4.5)

subject to ∑︁
𝑤∈W

∑︁
𝑟∈Ω𝑘

𝑤

𝑎𝑖𝑟 𝑦𝑟 = 1 ∀𝑖 ∈ C𝑘 (4.6)∑︁
𝑤∈W

∑︁
𝑟∈Ω𝑘

𝑤

𝑎𝑖𝑟 𝑦𝑟 ≤ 1 ∀𝑖 = 𝑖𝑘 (4.7)∑︁
𝑟∈Ω𝑘

𝑤

𝑦𝑟 = 1 ∀𝑤 ∈ W (4.8)

𝑦𝑟 ∈ {0, 1} ∀𝑤 ∈ W, 𝑟 ∈ Ω𝑘
𝑤 . (4.9)

The objective function (4.5) minimizes the total cost of the routing plan. Con-

straints (4.6) ensure that all the scheduled and previously accepted requests are

included in the routing plan. Constraints (4.7) state that if accepted, the new on-

demand request can only be assigned to one route. Constraints (4.8) guarantee that

one route is assigned to each worker. Formulation (4.5)-(4.9) can be easily adapted

to handle additional constraints. Moreover, the definition of the cost ℎ𝑟 for each

route can be redefined to accomplish different goals. For example, one could con-

sider the total travel time of a route as its cost, which would likely result in selecting

shorter routes.

4.4.2 Acceptance policies

An acceptance policy determines whether or not to accept a new customer request.

A straightforward approach to maximize the number of served requests is to employ
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a greedy acceptance policy 𝜚𝐺 , which accepts customer requests whenever feasible.

Formally, the greedy acceptance policy accepts every customer request if it can be

integrated into the current routing plan using one of the routing policies described

in Section 4.4.3. However, the greedy policy does not account for the potential

arrival of future on-demand customer requests, leading to suboptimal performance

in many scenarios. In the following, we define an acceptance rule and we introduce

two acceptance policies.

Acceptance rule

We define the expected reward-to-go at state S𝑘 when using scheduling policy 𝜋 as:

Φ𝜋 (S𝑘 ) = E

[ K∑︁
𝑖=𝑘+1

𝑅 (S𝑖, 𝑋𝜋𝑖 (S𝑖)) |S𝑘

]
. (4.10)

Then, the acceptance rule at any decision epoch 𝑘 is defined as:

I𝑥𝑘 = I(Φ𝜋 (S+𝑘 ) ≥ Φ𝜋 (S−𝑘 )), (4.11)

where S+
𝑘

and S−
𝑘

are the post-decision states corresponding to accept and reject

decisions, respectively. Equation (4.11) states that a customer request is accepted if

and only if the expected reward obtained after accepting the request is higher than

the expected reward obtained if the request is rejected. Computing the expected

reward of a decision is not easy. For this reason, most researchers have turned to

approximations based on simulation (Ulmer et al. 2019, 2018; Zhang et al. 2023).

For the sake of conciseness, we define a set of scenarios Σ in which each scenario

𝜎 ∈ Σ represents a sample path of the customer request arrival process from a given

epoch 𝑘 ∈ K to the end of the planning horizon. In what follows we describe our

adaptation of the multi-knapsack approximation introduced by Zhang et al. (2023)

that is used to build a potential-based acceptance policy. We also present a rollout

acceptance policy.
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Multi-knapsack approximation

The multi-knapsack approximation of the expected reward was introduced by Zhang

et al. (2023) in the context of the DVRP. The intuition behind this approximation

is to quickly assess how many future customer requests can be potentially accepted

considering the current routing plan 𝜃𝑘 . To do so, it uses the set of scenarios Σ. Let

C𝜎 represent the on-demand requests that arrive in scenario 𝜎 and let 𝜂𝑖𝑟 be the

increase in the duration of a route if request 𝑖 ∈ C𝜎 is inserted into route 𝑟 ∈ 𝜃𝑘 . Also,

let 𝑧𝑖𝑟 be a binary variable that takes the value 1 if the request 𝑖 ∈ C𝜎 is inserted

into route 𝑟 ∈ 𝜃𝑘 , and 0 otherwise. Then, the multi-knapsack approximation model

when considering scenario 𝜎 ∈ Σ can be defined as:

𝜙𝜎𝜋 (S𝑘+1) = max
∑︁
𝑖∈C𝜎

∑︁
𝑟∈𝜃𝑘

𝑧𝑖𝑟 (4.12)

subject to ∑︁
𝑖∈C𝜎

𝜂𝑖𝑟 𝑧𝑖𝑟 ≤ 𝑓 − 𝑇𝑟 ∀𝑟 ∈ 𝜃𝑘 (4.13)∑︁
𝑟∈𝜃𝑘

𝑧𝑖𝑟 ≤ 1 ∀𝑖 ∈ C𝜎 (4.14)

𝑧𝑖𝑟 ∈ {0, 1} ∀𝑖 ∈ C𝜎, 𝑟 ∈ 𝜃𝑘 . (4.15)

The objective function (4.12) maximizes the number of requests inserted into the

routing plan. Constraints (4.13) guarantee that the total increase in the duration

of a route does not exceed the time available. Constraints (4.14) state that each

on-demand request can be inserted into at most one route. Constraints (4.15) state

that the variables are binary. To speed up the solution of each independent model,

Zhang et al. (2023) suggest relaxing the integrality requirements on the 𝑧𝑖𝑟 variables.

We follow this suggestion in our implementation. To obtain the expected reward,

this model has to be solved independently for each scenario 𝜎 ∈ Σ. Then, the

expected reward Φ𝜋 (S𝑘 ) when at state S𝑘 can be approximated as:
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Φ𝜋 (S𝑘 ) ≈
1

|Σ |
∑︁
𝜎∈Σ

𝜙𝜎𝜋 (S𝑘+1). (4.16)

The potential-based acceptance policy 𝜚𝑀𝐾−|Σ | consists of using the multi-knapsack

approximation to evaluate the acceptance rule (4.11).

Rollout acceptance policy

As previously explained, a rollout algorithm is a method that leverages a base policy

to improve decision-making (Bertsekas et al. 1997). To do so, it evaluates different

actions by rolling out the base policy from the current state to the end of the

planning horizon. This approach ensures that each decision is made considering its

long-term impact, leading to more effective and adaptive solutions. Due to the large

number of simulations required, the base policy must be highly computationally

efficient. In our case, the base policy corresponds to the greedy acceptance policy

𝜚𝐺 . Formally, given a routing policy 𝜌 and a state S𝑘 , the rollout policy 𝜚𝑅−|Σ |

simulates the system over the set of scenarios Σ given that policy 𝜚𝐺 is in effect.

That is, every time a new request appears, an acceptance decision is made using

policy 𝜚𝐺 . Let 𝜙𝜎 (S+
𝑘
) and 𝜙𝜎 (S−

𝑘
) be the total reward obtained in scenario 𝜎 ∈ Σ

after accepting and rejecting request 𝑖𝑘 , respectively. Then, request 𝑖𝑘 is accepted if∑
𝜎∈Σ 𝜙

𝜎 (S+
𝑘
) ≥ ∑

𝜎∈Σ 𝜙
𝜎 (S−

𝑘
). Otherwise, the request is rejected.

4.4.3 Routing policies

A routing policy determines how workers are mobilized to serve requests. Routing

policies are usually designed to achieve specific objectives such as minimizing the

total travel distance or total cost. Our first two routing policies are myopic. That is,

they ignore that new customer requests may appear before the end of the planning

horizon. Instead, they aim to minimize the total travel time. On the contrary,

our third routing policy is anticipatory. That is, it aims to maximize the expected
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number of served customer requests. In what follows, we describe these policies in

detail.

Myopic best-insertion routing policy

The first routing policy relies on the best insertion route generation function 𝜉𝐵𝐼 (𝑟, 𝑖) ∈

Ξ. This route generation function creates a new route 𝑟′ using as input an existing

route 𝑟 and a request 𝑖. More precisely, route 𝑟′ is computed by inserting request

𝑖 in the position of the route 𝑟 that minimizes the insertion cost without changing

the order for the customers that are already in the route. Mathematically, this cost

can be defined as follows. Let A𝑑
𝑟 be the ordered set of driving arcs used by route

𝑟. Let C̃𝑟 represent the ordered set of requests in route 𝑟. Also, let 𝑇𝑟 represent

the total duration of route 𝑟. Then, the cost 𝑐𝑑
𝑖 𝑗 𝑙

of inserting request 𝑖 ∈ C between

request 𝑗 and request 𝑙 can be computed as 𝑐𝑑
𝑖 𝑗 𝑙

= 𝛿 𝑗𝑖 + 𝛿𝑖𝑙 − 𝛿 𝑗 𝑙 , where ( 𝑗 , 𝑙) ∈ A𝑑
𝑟 .

If the insertion is not feasible, that is if 𝑐𝑑
𝑖 𝑗 𝑙
+𝑇𝑟 + 𝜈𝑖 > 𝑓 , this value is set to infinity.

Note that this route generation function assumes that request 𝑖 is served using the

vehicle. In some cases, this may be suboptimal, as it could be beneficial to walk

between requests instead.

To overcome this issue, we start by defining the cost of creating a new walking

subtour departing from request 𝑗 ∈ C̃𝑟 and serving request 𝑖 ∈ C as 𝑐𝑤
𝑖 𝑗
= 𝛾 𝑗𝑖 + 𝛾𝑖 𝑗 .

Similarly, if the insertion is not feasible, that is if 𝑐𝑤
𝑖 𝑗
+ 𝑇𝑟 + 𝜈𝑖 > 𝑓 , this value is set

to infinity. Then, using this definition, we propose the route generation function

𝜉𝑇 𝐼 (𝑟, 𝑖) that builds a route 𝑟′ by creating a new walking subtour such that 𝑐𝑤
𝑖 𝑗

is

minimized. In addition, we define a route generation function 𝜉𝐸𝑆 (𝑟, 𝑖) ∈ Ξ that

extends an existing subtour. Let U𝑟 be the set of the walking subtours in route 𝑟. A

walking subtour 𝑢 ∈ U𝑟 is defined as a sequence of nodes {𝑖1, 𝑖2, . . . , 𝑖1} that starts

and ends at the same node. The walking arcs (in order) in each subtour are defined

by A𝑢. Also, let T𝑢 be the total duration of the walking subtour 𝑢 ∈ U𝑟 . Then, we

define the cost of extending a walking subtour 𝑢 ∈ U𝑟 by inserting request 𝑖 ∈ C as:
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𝑐𝑒𝑖𝑢 = min
( 𝑗 ,𝑙)∈A𝑢

{
𝛾 𝑗𝑖 + 𝛾𝑖𝑙 − 𝛾 𝑗 𝑙

}
+ 𝜈𝑖 . (4.17)

If the insertion is not feasible, that is if 𝑐𝑒
𝑖𝑢
+ T𝑢 > Γ or 𝑐𝑒

𝑖𝑢
+ T𝑢 > 𝑓 , this value

is set to infinity. Then, the route generation function 𝜉𝐸𝑆 (𝑟, 𝑖) builds a route 𝑟′ by

extending the walking subtour 𝑢 ∈ U𝑟 such that the cost of extending the walking

subtour is minimized. Note that the route generation functions 𝜉𝐵𝐼 (𝑟, 𝑖), 𝜉𝑇 𝐼 (𝑟, 𝑖),

and 𝜉𝐸𝑆 (𝑟, 𝑖) do not change the order of the already accepted requests. Moreover,

they do not consider accepted requests other than those already serviced by the

current route.

Using route generation functions 𝜉𝐵𝐼 (𝑟, 𝑖), 𝜉𝑇 𝐼 (𝑟, 𝑖), and 𝜉𝐸𝑆 (𝑟, 𝑖) we define the

myopic best-insertion routing policy 𝜌𝑀𝐼 in which the set of route generation func-

tions is defined as Ξ =
⋃
𝑟∈𝜃 𝜉

𝐵𝐼 (𝑟, 𝑖) ∪⋃
𝑟∈𝜃 𝜉

𝑇 𝐼 (𝑟, 𝑖) ∪⋃
𝑟∈𝜃 𝜉

𝐸𝑆 (𝑟, 𝑖). Moreover, the

cost of each route in the assembler ℎ𝑟 is set to the total duration of the route 𝑇𝑟 .

Myopic inter-route routing policy

Our second routing policy allows for inter-route operations. That is, it allows for

the reassignment of accepted requests between workers. It also allows for more

complex operations such as extending or shortening existing walking subtours, and

the insertion of new ones if convenient. To do so, we define the route generation

function 𝜉𝜏 (𝑤, C𝑘 , 𝑖𝑘 ). This route generation function creates a new subset of routes

Ω𝑤 for worker 𝑤 using as input the set C𝑘 of accepted but not yet served requests,

and the new on-demand request 𝑖𝑘 . The route generation function 𝜉𝜏 (𝑤, C𝑘 , 𝑖𝑘 ) relies

on two components. First, we use a randomized traveling salesman problem (TSP)

heuristic that creates paths from the worker’s current location to the depot, including

both the accepted but not yet served requests and the new on-demand request. In

particular, we use four classic TSP construction heuristics, namely, randomized

nearest neighbor (RNN), randomized nearest insertion (RNI), randomized farthest

insertion (RFI), and randomized best insertion (RBI). Second, we use a tailored
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split algorithm introduced by Cabrera et al. (2022) that partitions the path into

feasible routes.

Figure 4.3 illustrates how route generation function 𝜉𝜏 (𝑤, C𝑘 , 𝑖𝑘 ) operates. Figure

4.3a presents the current state of the system, including the location of an idle worker

highlighted in green. Figure 4.3b displays the eligible requests, i.e., the accepted but

not served requests and the new on-demand Request 12. Figure 4.3c shows a feasible

path that begins at the worker’s current location (i.e., the depot) and visits all the

accepted but not yet served requests, as well as the new on-demand Request 12.

Finally, Figure 4.3d shows two park-and-loop routes obtained after using the split

algorithm, one of which includes the new on-demand request.
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(d) Feasible routes

Figure 4.3: Inter-route route generation function example.

The inter-route routing policy 𝜌𝑀𝑆 uses the set of route generation functions

defined as Ξ =
⋃
𝑤∈W,𝜏∈𝑇 𝜉

𝜏 (𝑤, C𝑘 , 𝑖𝑘 ), where 𝑇 = {𝑅𝑁𝑁, 𝑅𝐵𝐼, 𝑅𝐹𝐼, 𝑅𝑁𝐼}. The cost
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of each route in the assembler ℎ𝑟 is set to the total duration of the route 𝑇𝑟 .

Potential-based routing policy

The routing policies described in Sections 4.4.3 and 4.4.3 ignore the arrival of new

requests and instead focus on immediate benefits. As a result, they may yield

suboptimal long-term decisions, where routes that seem efficient at first become

inefficient over time. We propose a potential-based routing policy that builds on the

multi-knapsack approximation model (4.12)-(4.15) and aims to remedy these issues.

This policy takes into account the expected number of requests that can potentially

be inserted into a given park-and-loop route. In particular, let us again consider

the set of scenarios Σ. Let us also define the potential 𝑔𝑟 of each route 𝑟 as the

expected number of on-demand requests that can be feasibly inserted. Then, the

potential 𝑔𝑟 of a route 𝑟 can be computed by setting 𝜃 = {𝑟} and solving formulation

(4.12)-(4.15). This amounts to setting the routing plan to be equal to a single route

𝑟. Note, that in this case constraints (4.14) can be removed.

Using this definition, we define two potential-based routing policies that improve

on policies 𝜌𝑀𝐼 and 𝜌𝑀𝑆. The key difference with the myopic policies is that the cost

of each route in the assembler ℎ𝑟 is set to the potential of the route 𝑔𝑟 multiplied

by −1. These two policies are denoted as 𝜌𝑃𝐼 and 𝜌𝑃𝑆. Using these policies, one

can expect the design of routing plans that would tend to better accommodate new

on-demand requests. However, it must be noted that computing the potential of

each route in the subset of routes generated by the route generation functions can

be computationally expensive if the number of routes is too large.

4.4.4 Offline policies

A key step to solving the DPLRP is to build a high-quality initial routing plan at

the initial state S0. In this section, we describe two policies that can be used to

build such a plan.
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Myopic offline routing policy

The first offline policy only considers the set of scheduled requests C𝑠. Let 𝑅 be

the set of all feasible park-and-loop routes that serve only the scheduled requests.

Also, let 𝑎𝑖𝑟 be a parameter that takes the value 1 if route 𝑟 serves request 𝑖, and 0

otherwise. Let 𝑐𝑟 be the total distance covered using the vehicle in route 𝑟. Finally,

let 𝑦𝑟 be a binary variable that takes the value 1 if route 𝑟 is selected as part of the

initial routing plan and 0 otherwise. Then, an initial routing plan can be computed

using the following set partitioning formulation:

min
∑︁
𝑟∈𝑅

𝑐𝑟 𝑦𝑟 (4.18)

subject to ∑︁
𝑟∈𝑅

𝑎𝑖𝑟 𝑦𝑟 = 1 ∀𝑖 ∈ C𝑠 (4.19)∑︁
𝑟∈𝑅

𝑦𝑟 ≤ |W| (4.20)

𝑦𝑟 ∈ {0, 1} ∀𝑟 ∈ 𝑅. (4.21)

The objective function (4.18) minimizes the total distance covered by the vehi-

cles. Constraints (4.19) guarantee that all scheduled requests are served. Constraints

(4.20) impose a limit on the number of routes that are selected. Constraints (4.21)

state the decision variables are binary. Generating the complete set of routes 𝑅

may not be possible if the number of scheduled requests |C𝑠 | is large. Thus, exactly

solving the mathematical formulation (4.18)-(4.21) is not always feasible in prac-

tice. Instead, one may rely on metaheuristics or column generation-based methods

to generate a high-quality set of routes. In the context of the DPLRP, we define the

route generation function 𝜉𝑇 (C𝑠) that builds a subset of routes 𝑅 using as input the

scheduled requests. This route generation function starts by building a TSP tour

that includes all scheduled requests. Then, the TSP tour is partitioned into routes

using the split algorithm proposed by Cabrera et al. (2022).
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The myopic offline routing policy 𝜗𝑀 uses the set of route generation functions

defined as Ξ =
⋃
𝜏∈𝑇 𝜉

𝜏 (C𝑠), where 𝑇 = {𝑅𝑁𝑁, 𝑅𝐵𝐼, 𝑅𝐹𝐼, 𝑅𝑁𝐼}. For the assembler

that builds the initial routing plan, this policy uses formulation (4.18)-(4.21).

Potential-based offline routing policy

The previous policy may result in the assignment of very long routes to some workers,

and very short ones to others. Some workers may even remain idle at the depot for

some time, as the result of not being assigned to any of the routes. A shortcoming

of this behavior is that in the long run, a higher number of on-demand requests will

be rejected. Thus, in a similar fashion to the potential-based online routing policies,

we use a set of scenarios Σ to compute the potential of each route 𝑔𝑟 . To do so, we

solve the multi-knapsack model (4.12)-(4.15) for each scenario in set Σ. Using the

notation presented in the previous section, we can compute an initial routing plan

with the following formulation:

max
∑︁
𝑟∈𝑅

𝑔𝑟 𝑦𝑟 (4.22)

subject to (4.19)-(4.21).

The objective function (4.22) maximizes the total potential of the initial routing

plan. The potential-based offline routing policy 𝜗𝑃 uses the set of route generation

functions defined as Ξ =
⋃
𝜏∈𝑇 𝜉

𝜏 (C𝑠), where 𝑇 = {𝑅𝑁𝑁, 𝑅𝐵𝐼, 𝑅𝐹𝐼, 𝑅𝑁𝐼}. Again,

the assembler that builds the initial routing plan solves formulation (4.19)-(4.22).

Table 4.2 summarizes our set of scheduling policies. Each policy is a combination

of an offline policy (𝜗𝑀 , 𝜗𝑃), a routing policy (𝜌𝑀𝑆, 𝜌𝑀𝐼 , 𝜌𝑃𝑆, 𝜌𝑃𝐼), and an acceptance

policy (𝜚𝐺 , 𝜚𝑀𝐾−50, 𝜚𝑅−50). We denote a scheduling policy by 𝜗 − 𝜌 − 𝜚.

4.5 Perfect information bound

To further evaluate the quality of a policy, we establish a dual bound on the value of

the optimal policy though the use of a perfect information relaxation. To compute
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Table 4.2: Summary of the scheduling policies.

Scheduling policy Offline policies Routing policies Acceptance policies

Myopic Potential Myopic
best-insertion

Myopic
Inter-route

Potential
best-insertion

Potential
Inter-route Greedy Potential Rollout

𝜗𝑀-𝜌𝑀𝐼-𝜚𝐺 X X X
𝜗𝑀-𝜌𝑀𝑆-𝜚𝐺 X X X
𝜗𝑀-𝜌𝑀𝐼-𝜚𝑀𝐾−50 X X X
𝜗𝑀-𝜌𝑀𝑆-𝜚𝑀𝐾−50 X X X
𝜗𝑀-𝜌𝑀𝐼-𝜚𝑅−50 X X X
𝜗𝑀-𝜌𝑀𝑆-𝜚𝑅−50 X X X
𝜗𝑃-𝜌𝑀𝐼-𝜚𝐺 X X X
𝜗𝑃-𝜌𝑀𝑆-𝜚𝐺 X X X
𝜗𝑃-𝜌𝑀𝐼-𝜚𝑅−50 X X X
𝜗𝑃-𝜌𝑀𝑆-𝜚𝑅−50 X X X
𝜗𝑃-𝜌𝑀𝑆-𝜚𝑀𝐾−50 X X X
𝜗𝑃-𝜌𝑃𝐼-𝜚𝐺 X X X
𝜗𝑃-𝜌𝑃𝑆-𝜚𝐺 X X X

this bound we must solve the DPLRP exactly under the assumption that all the

stochastic information is known and is available before the start of the planning

horizon. This means that all the arrival times of the on-demand requests are known.

To mathematically state this problem we start by defining the set Ω that contains

all feasible park-and-loop routes. All the routes in this set satisfy the property that

a request is never served before it is received. We also let 𝑎𝑖𝑟 be a binary parameter

that takes the value 1 if route 𝑟 serves request 𝑖, and 0 otherwise. Then, let 𝑦′𝑟 be a

binary variable that takes the value 1 if the park-and-loop route is selected, and 0

otherwise. Also, let 𝑧′
𝑖
be a binary variable that takes the value 1 if the on-demand

request is served, and 0 otherwise. Then, the perfect information bound can be

computed by solving the following mathematical integer program:

max
∑︁
𝑖∈C𝑑

𝑧′𝑖 (4.23)

subject to ∑︁
𝑟∈Ω

𝑎𝑖𝑟 𝑦
′
𝑟 = 1 ∀𝑖 ∈ C𝑠 (4.24)∑︁

𝑟∈Ω
𝑎𝑖𝑟 𝑦

′
𝑟 = 𝑧

′
𝑖 ∀𝑖 ∈ C𝑑 (4.25)∑︁

𝑟∈Ω
𝑦′𝑟 ≤ |W| (4.26)
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𝑦′𝑟 ∈ {0, 1} ∀𝑟 ∈ Ω (4.27)

𝑧′𝑖 ∈ {0, 1} ∀𝑖 ∈ C𝑑 . (4.28)

The objective function (4.23) maximizes the number of on-demand requests

served. Constraints (4.24) ensure that all scheduled requests are served. Con-

straints (4.25) state that on-demand requests can be served only once. They also

guarantee that these requests can only be served by a route that visits their location.

Constraints (4.26) impose an upper bound on the number of routes. Constraints

(4.27)-(4.28) state that variables are binary. Formulation (4.23)-(4.28) assumes that

the set of all park-and-loop routes Ω is known. However, the size |Ω| of the route set

grows exponentially with the number of requests. As an alternative, one can resort

to column generation-based approaches. In this work, we use, with mild changes, the

branch-price-and-cut algorithm introduced in Cabrera et al. (2023). We specifically

adjusted the pricing problem to incorporate time windows at customer locations and

redefined the formula for calculating the reduced cost of a route.

4.6 Computational experiments

In this section, we present our computational experiments. Our goal is to analyze

the performance of the different online and offline policies. All algorithms and

simulations were implemented in Java and executed on an Intel core i7 @2.30 GHz

Quad-Core processor with 12 GB of RAM. We used Gurobi version 9.5.1 to solve

linear and integer programs. The branch-price-and-cut algorithm to obtain the PIB

was implemented in Java using the jORLib1 library. We rely on CPLEX 20.1 to

solve the master problem. All instances, the corresponding solution files, and a

solution checker are available at https://github.com/ncabrera10/DPLRP-SC.

1The latest version of jORLib can be downloaded at: http://coin-or.github.io/jorlib/.
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4.6.1 Test instances

We created a new set of instances based on the testbed designed by Zhang et al.

(2023). They constructed a graph comprising 16,080 nodes representing the city of

Vienna, Austria, which is publicly available. Figure 4.4 illustrates the graph with a

random sample of 150 nodes, where the depot location is indicated by a red icon.

In the following sections, we first introduce the concept of the degree of dynamism,

followed by a detailed description of the procedure used to generate each instance.

Figure 4.4: Sample of Vienna graph.

Degree of dynamism

The degree of dynamism is a measure of the speed and frequency with which new

information is revealed in dynamic optimization problems. Originally introduced by

Lund et al. (1996), the degree of dynamism 𝛿 is defined as the ratio of new requests

to the total number of requests. Using our notation, 𝛿 is mathematically defined as:

𝛿 =
|C𝑑 |

|C𝑑 | + |C𝑠 |
∈ [0, 1] . (4.29)

According to (4.29) the degree of dynamism increases if |C𝑑 | increases or if

|C𝑠 | ≥ 1 decreases. When the degree of dynamism is low, the routing plan requires

169



infrequent updates, making the initial routing plan generated by offline policies par-

ticularly crucial. Conversely, when the degree of dynamism is high, the routing plan

must be updated frequently, increasing the importance of effective acceptance and

routing policies.

Instance design and parameters

We generated a total of 270 instances for this study. Each instance is denoted

as 𝐵_𝛿_𝜆_Λ_𝑛_W, where 𝐵 = {1, 2, 3, 4, 5} identifies the random seed, 𝛿 is the

degree of dynamism, 𝜆 is the arrival rate of on-demand requests, Λ corresponds to

the spatiotemporal distribution of the on-demand requests, 𝑛 is the total number of

requests, andW is the number of workers. Table 4.3 details the parameters used. In

Column 1, we list the number of requests, while Column 2 specifies the arrival rate in

requests per minute. Column 3 indicates the degree of dynamism, and columns 4 and

5 show the number of on-demand and scheduled requests, respectively. In Column 6,

we detail the number of workers. For each combination of parameters, we generated

15 instances. We calculated driving and walking times based on assumed speeds of

20 km/h and 4 km/h, respectively. The service time for each request ranges from

20 to 35 minutes, with a parking time set at 5 minutes. The maximum walking

distance between two locations is 2.5 km, and each worker has a daily walking limit

of 5 km. Each walking subtour lasts up to 2 hours, and the total planning horizon

spans 7 hours. These parameters were selected based on a real-world application

described in Cabrera et al. (2022).

The process to generate an instance is the following. First, we compute the num-

ber of on-demand requests as ⌈ 𝑓 × 𝜆⌉. Then, we compute the number of scheduled

requests |C𝑠 | as
⌈
C𝑑×(1−𝛿)

𝛿

⌉
. Third, we sample |C𝑠 | locations from the graph, which are

assigned as scheduled requests. Then, we assign the arrival time of each on-demand

request using a Poisson distribution with a mean equal to 𝜆 and we determine the

location of each on-demand request. In this process, we consider three spatiotempo-

ral distribution types: uniform time-independent (UTI), clustered time-independent
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Table 4.3: Instances information.

𝑛 𝜆 𝛿 |C𝑑 | |C𝑠 | |W|
30 0.007 0.10 3 27 3
30 0.018 0.25 6 24 3
30 0.036 0.50 15 15 3
30 0.054 0.75 24 6 3
30 0.064 0.90 27 3 3
30 0.068 0.95 29 1 3
50 0.012 0.10 5 45 6
50 0.030 0.25 11 39 6
50 0.060 0.50 25 25 6
50 0.089 0.75 39 11 6
50 0.107 0.90 45 5 6
50 0.113 0.95 47 3 6

100 0.024 0.10 10 90 12
100 0.060 0.25 25 75 12
100 0.119 0.50 50 50 12
100 0.179 0.75 75 25 12
100 0.214 0.90 90 10 12
100 0.226 0.95 95 5 12

(CTI), and clustered time-dependent (CTD). For the UTI distribution, on-demand

request locations are randomly sampled across the graph. In contrast, for the CTI

distribution, requests are sampled with equal probability from two distinct clusters,

as illustrated in Figure 4.4. These clusters, each with a 3 km radius, are centered

at coordinates (48.2499, 16.4434) and (48.1924, 16.3158). Requests colored in blue

and green belong to clusters one and two, respectively. Lastly, for the CTD distri-

bution, the likelihood of selecting a node from the second cluster increases linearly

over time, resulting in a higher concentration of on-demand requests in this cluster

as the planning horizon approaches its end. Figure 4.5 depicts the request locations

for instance 3_0.25_0.03_CTD_50_6.

4.6.2 Assessing the performance of the scheduling policies

In this section, we assess the performance of the scheduling policies. For all policies

that use the MSH matheuristic, we set 𝑄 = 1000, Ψ = 60 seconds, and Φ = 10
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Figure 4.5: Instance 3_0.25_0.03_CTD_50_6.

seconds. To compute the perfect information bound we use the default parameters

as described in Cabrera et al. (2023). To compare the scheduling policies we consider

two metrics. First, the acceptance rate which is computed as the ratio between the

number of on-demand requests served and the total number of on-demand requests

received during the planning horizon. Second, the computational time required to

select an action at each decision epoch.

The perfect information bound problem is at the intersection of two challenging

combinatorial optimization problems: the team-orienteering problem and the park-

and-loop routing problem with time windows. Hence, solving it can be a daunting

task. Our preliminary experiments confirmed this intuition as the branch-price-

and-cut algorithm was consistently able to solve all instances with 30 requests, but

was only able to solve a few of the instances with 50 and 100 requests. For this

reason, we first evaluate the scheduling policies in the subset of instances with 30

requests. Figure 4.6 compares the acceptance rate obtained using each scheduling

policy considering this subset of instances. We depict the average perfect information

bound with a red line. On average, the perfect information solutions serve 77.7%

of the on-demand requests. As this figure shows, the 𝜗𝑃 − 𝜌𝑀𝑆 − 𝜚𝐺 and 𝜗𝑃 −
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𝜌𝑀𝑆 − 𝜚𝑅−50 scheduling policies are the ones that find the closes results. They fail

to serve 20.07% of the maximum attainable demand (i.e., 77.7%−62.1%
77.7%

= 20.07%).

This figure indicates that the scheduling policies that use the offline policy 𝜗𝑃 tend

to outperform their counterparts that use the offline policy 𝜗𝑀 by increasing the

acceptance rate up to 4 percentage points.
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Figure 4.6: Comparison of scheduling policies acceptance rate and the perfect infor-
mation bound in the subset of instances with 30 requests.

To further evaluate the performance of these scheduling policies, we also use

the large instances with 50 and 100 requests. Figure 4.7 compares the performance

of the proposed scheduling policies based on the average acceptance rate across

these instances. The results show that the 𝜗𝑃 − 𝜌𝑃𝑆 − 𝜚𝐺 scheduling policy achieves

the highest acceptance rate at 79.8%. Our results indicate that considering the

uncertainty of new request arrivals both in the design of the initial routing plan and

when updating the routing plan positively impacts the acceptance rate. In contrast,

the 𝜗𝑀 − 𝜌𝑀𝐼 − 𝜚𝑀𝐾−50 policy, which neither anticipates new request arrivals when

building the initial routing plan nor allows for reassigning requests among workers

during updates, exhibits the lowest acceptance rate. This lack of flexibility often

leads to difficulties in adapting to new requests.
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Figure 4.7: Comparison of scheduling policies acceptance rate in the subset of in-
stances with 50 and 100 requests.

We also compare the scheduling policies based on the computational time re-

quired to make a decision when a new on-demand request appears. Figure 4.8

presents the average and maximum decision times, in seconds, across all instances.

As shown, all policies make decisions in under one minute, regardless of the instance.

However, scheduling policies 𝜗𝑀 − 𝜌𝑀𝐼 − 𝜚𝐺 and 𝜗𝑃− 𝜌𝑀𝐼 − 𝜚𝐺 are the fastest. These

two policies rely on the 𝜌𝑃𝐼 routing policy. In contrast, policies that use the 𝜚𝑅−50

acceptance policy tend to be slower on average, which is expected due to the high

number of simulations required before making a decision.

4.6.3 Assessing the performance of the offline policies

In this section, we analyze the performance of the offline policies as the degree of

dynamism varies in the set of instances with 50 and 100 requests. Figure 4.9 illus-

trates the average acceptance rate for each offline policy as a function of the degree

of dynamism. The results indicate that policies using the potential-based offline pol-

icy consistently achieve a higher average acceptance rate, regardless of the degree

of dynamism. However, the difference between using a myopic and an anticipatory
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Figure 4.8: Comparison of scheduling policies computational effort in the subset of
instances with 50 and 100 requests.

policy becomes more pronounced when the degree of dynamism approaches 0.5,

where the expected number of on-demand requests roughly equals the number of

scheduled requests. This suggests that the choice between myopic and anticipatory

policies should be carefully considered, especially when operating in scenarios with

a moderate degree of dynamism.

To further explain the performance differences between the offline policies, we

begin by showcasing the routing plans generated by each approach on a given in-

stance. Figures 4.10a and 4.10b depict the initial routing plans created by the

myopic and potential-based offline policies for instance 1_0.5_0.06_CTD_50_6,

which includes 27 scheduled requests and 23 on-demand requests, with six available

workers. As these figures demonstrate, the initial routing plans from the two policies

can differ significantly. The myopic policy, for instance, generates only three routes,

leaving three workers idle at the depot. In contrast, the potential-based policy cre-

ates six routes, utilizing all available workers from the outset. Using these initial

routing plans as inputs, we evaluated all scheduling policies and observed that the

175



𝜗! 𝜗"

𝜗! 𝜗"

70.5%

81.1%
75.9%

69.2% 68.8% 67.8%
72.0%

86.5%
82.1%

77.6%
74.0%

70.8%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.1 0.25 0.5 0.75 0.9 0.95

Ac
ce

pt
an

ce
 ra

te

Degree of dynamism

M P𝜗! 𝜗"

Figure 4.9: Comparison of the offline policies in the subset of instances with 50 and
100 requests.

maximum number of served on-demand requests was 17 for the myopic plan and 20

for the potential-based plan. We believe that engaging all workers from the start

provides greater flexibility in handling on-demand requests.

(a) Myopic (b) Potential based

Figure 4.10: Initial routing plans on instance 1_0.5_0.06_CTD_50_6.

To further assess the impact of the offline policies, we compare the percentage of

time that workers spend idle at the depot under each approach. Figure 4.11 shows

the percentage of idle time as a function of the degree of dynamism. The results
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indicate that when the degree of dynamism is low, idle times are minimal, nearing

0%. However, as the degree of dynamism increases, idle times can rise to 34.6% and

29.7%. The figure also demonstrates that, regardless of the degree of dynamism,

the offline potential-based policy generally reduces idle time. In some cases, the

difference between the two policies is as much as 11.2%, highlighting the efficiency

gains from using the potential-based approach.
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Figure 4.11: Comparison of the offline policies idle times in the subset of instances
with 50 and 100 requests.

4.6.4 Assessing the performance of the online policies

In this section, we evaluate the performance of both the routing and the acceptance

policies using the acceptance rate and the computational times in the set of instances

with 50 and 100 requests. Figure 4.12 illustrates the average acceptance rate relative

to the degree of dynamism. The results show that using routing policy 𝜌𝑃𝑆 generally

improves the performance of the scheduling policies. Specifically, when comparing

routing policy 𝜌𝑀𝑆 with routing policy 𝜌𝑃𝑆, we find that the potential-based routing

policy increases the acceptance rate by an average of 3.75%. This positive impact

is even more pronounced when comparing routing policies 𝜌𝑀𝐼 and 𝜌𝑃𝐼 , where the
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acceptance rate improves by an average of 5.55%. This increase can be attributed

to the fact that these routing policies do not reassign requests between workers,

making the anticipation of future requests more critical.
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Figure 4.12: Comparison of the routing policies acceptance rate in the subset of
instances with 50 and 100 requests.

We also compare the routing policies in terms of the computational time required

to update the routing plan. Figure 4.13 shows both the average and maximum

update times for each policy. As illustrated, routing policy 𝜌𝑀𝐼 consistently updates

the routing plan in just a few milliseconds, making it the fastest on average, followed

by routing policy 𝜌𝑃𝐼 . As mentioned earlier, these two policies do not reassign

requests among workers, unlike policies 𝜌𝑀𝑆 and 𝜌𝑃𝑆, which allows them to compute

an updated routing plan much faster. However, note that routing policy 𝜌𝑃𝐼 has an

average update time of nearly 0.9 seconds, indicating that calculating the potential

for each route in the pool and solving the set partitioning problem with the updated

objective is significantly more computationally demanding. A similar observation

can be made when comparing routing policies 𝜌𝑀𝑆 and 𝜌𝑃𝑆, where the average

update time increases from 1.13 seconds to 2.51 seconds.

Concerning the acceptance policies, Figure 4.14 depicts the acceptance rate rela-
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Figure 4.13: Comparison of the routing policies computational effort in the subset
of instances with 50 and 100 requests.

tive to the degree of dynamism when considering instances with 50 and 100 requests.

As this figure shows, using an anticipatory acceptance policy only marginally im-

proves the performance of the scheduling policies. A possible explanation for this

behavior is that the anticipatory policies 𝜚𝑅−50 and 𝜚𝑀𝐾−50 may not be exploring

a broad enough set of future possibilities. This limited exploration could lead to

suboptimal decision-making, particularly in a problem as complex as the DPLRP,

where small changes in decision variables can have significant impacts. Additionally,

the greedy policy may be already performing near optimally, leaving little room for

the rollout policy to offer substantial improvements.

We also compare the acceptance policies in terms of the computational time re-

quired to make an acceptance decision. Figure 4.15 shows the average and maximum

decision times for each policy, when using the fastest routing policy, that is, 𝜌𝑀𝐼 . As

this figure shows, the greedy policy 𝜚𝐺 can take a decision almost immediately. In

contrast, the acceptance policies 𝜚𝑀𝐾−50 and 𝜚𝑅−50 take almost 0.8 and 4.1 seconds

on average to decide whether to accept or reject an on-demand request.
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Figure 4.14: Comparison of the acceptance policies acceptance rates in the subset
of instances with 50 and 100 requests.
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Figure 4.15: Comparison of the acceptance policies decision times in the subset of
instances with 50 and 100 requests.

4.7 Concluding remarks

In this paper, we introduced the dynamic park-and-loop routing problem and pro-

posed a route-based sequential decision process to address it. To solve this problem,

we developed a set of scheduling policies that leverage the multi-space sampling
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heuristic. The use of MSH enables real-time consideration of complex routing de-

cisions, including extending or shortening existing walking subtours, inserting or

removing subtours, reassigning requests between workers, and reordering requests

within a route. Each scheduling policy integrates an offline routing policy, an ac-

ceptance policy, and a real-time routing policy, ensuring adaptability to dynamic

conditions. Additionally, we formulated the perfect information bound problem,

providing a benchmark for evaluating the effectiveness of our approach.

We evaluated our set of scheduling policies using a newly generated set of in-

stances with up to 100 requests. Our computational results demonstrate that these

policies can produce solutions that, on average, are within 15% of the perfect infor-

mation bound, showcasing their effectiveness under dynamic conditions. Regarding

offline routing policies, our experiments indicate that employing an anticipatory

policy can significantly enhance decision-making by anticipating sources of uncer-

tainty, leading to an improvement in the acceptance rate by up to 4.95% on average.

Furthermore, our results highlight the superiority of the potential-based inter-route

routing policy. This policy not only effectively anticipates the arrival of new requests

but also facilitates the efficient reassignment of requests among workers, ensuring a

more responsive routing plan. These findings underscore the importance of incor-

porating anticipation mechanisms in both offline and real-time routing decisions to

improve overall system performance.

Future research should focus on incorporating other sources of uncertainty into

the DPLRP such as stochastic travel times between locations and stochastic service

times. These factors could significantly impact the performance of the proposed

routing policies, and accounting for them would enhance the robustness and adapt-

ability of the solutions in real-world scenarios.
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General Conclusion

This thesis offers an in-depth analysis of the workforce scheduling and routing prob-

lem, which involves assigning geographically dispersed tasks to workers and design-

ing cost-effective routes to minimize the total expected cost. Within this context, we

explored three extensions of the problem, with a particular emphasis on multi-modal

routes. To address these extensions, we developed and evaluated various solution

methodologies. The remainder of this section provides an overview of the chapters

in this thesis, followed by a detailed discussion of its key contributions. Finally, we

outline potential directions for future research.

In Chapter 1, we presented a comprehensive review of the workforce scheduling

and routing problem. In our review, we described the key features previously ad-

dressed in the literature and identified promising research areas. We also introduced

two mathematical formulations for the problem and presented an overview of the

solution methods that have been used to tackle this family of problems. Finally, we

discussed multiple features to build more applicable and successful solutions.

In Chapter 2, we introduced the park-and-loop routing problem and described a

branch-price-and-cut algorithm capable of optimally solving small and medium size

instances. We also introduced and solved an extension of the elementary shortest

path problem with resource constraints that allows for the design of multi-modal

routes. Finally, we investigated the impact of introducing park-and-loop routes in

both the solution structure and the total distance covered using a vehicle.

In Chapter 3, we focused on the workforce scheduling and routing problem with



park-and-loop. We addressed a general setting in which workers may have different

skills and in which tasks may require one or more skills, each at a potentially different

level of proficiency. We described a general branch-price-and-cut algorithm and two

mathematical formulations. Finally, we showed how the proposed methods could

also be used to solve the technician routing and scheduling problem.

In Chapter 4, we studied the dynamic park-and-loop routing problem that ex-

tends the park-and-loop routing problem by considering the arrival of on-demand

requests. We presented a set of myopic and anticipatory scheduling policies based

on the multi-space sampling heuristic. Also, we investigated the impact of using

different methods to build the initial routing plan. Finally, we showed the value of

allowing the reassignment of requests between workers in a dynamic setting.

Contributions

This thesis contributes to the literature in several ways. First, it introduces three

new problems together with sophisticated solution methods to solve them: the park-

and-loop routing problem (PLRP), the workforce scheduling and routing problem

with park-and-loop (WSRP-PL), and the dynamic park-and-loop routing problem

(DPLRP). Second, this thesis extends the pulse algorithm for solving variants of the

well-known elementary shortest path problem with resource constraints. Finally,

this thesis provides many test instances for these new problems as well as online

tools to visualize and check new solutions. The proposed methods are evaluated

through extensive computational experiments in terms of their solution quality and

efficiency.

I. Improving and Extending the Pulse Algorithm

Typically, column generation-based algorithms for solving vehicle routing problems

require the solution of an elementary shortest path problem with resource con-
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straints. In this work, we extended the pulse algorithm for allowing the design of

park-and-loop routes and the selection of workers based on their skills. We presented

a set of new pruning strategies that crucially improve the performance of the algo-

rithm. We also compared the pulse algorithm with a traditional labeling algorithm

under different parameters settings.

II. A Branch-price-and-cut Algorithm for the PLRP and the
WSRP-PL

We proposed two branch-price-and-cut algorithms for solving the PLRP and the

WSRP-PL. Our algorithms leverage on state-of-the-art techniques for initializing

the set of columns, solving the pricing problem, and strengthening the relaxation of

the set partitioning formulation via valid inequalities. We compared our algorithms

with benchmark algorithms from the literature and found encouraging results. In

particular, we found 11 previously unknown optimal solutions for the PLRP. We

solved 241 out of 324 of the WSRP-PL instances to optimality and we obtained

nine new best known solutions for the technician routing and scheduling problem

(TRSP) instances. Finally, we extended the branch-price-and-cut algorithm pro-

posed in Chapter 2, to obtain a perfect information bound for the DPLRP instances.

III. Value of Multi-modal Routes

Most of the research on the workforce scheduling and routing problem considers a

single transportation mode. We addressed this gap in the literature by investigating

the value of designing multi-modal routes consisting of a main tour that is completed

using a vehicle (i.e., a car, a van, a truck) and subtours, that are carried out on foot

after safely parking the vehicle. We developed new algorithms that are able to pro-

vide optimal park-and-loop routes for many instances in the literature. Moreover,

through extensive numerical experiments we showed that multi-modal routes can
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decrease the average driven distance up to 18.4% on average without increasing the

size of the fleet.

IV. Development of Test Data Sets And Visualization Tools

We created 40 large instances for the PLRP (Chapter 2). These instances com-

prise between 60 to 90 customers. We also provided a lower bound on the objective

function for each of these instances. For the WSRP-PL we created a set of 324

instances (Chapter 3) that we derived from a classic testbed from the literature.

These instances, with both tight and loose time windows, consider between 25 to 75

customers. Finally, for the DPLRP (Chapter 4) we created 270 instances with 30,

50, and 100 requests using data from the city of Vienna. All instances are available

at http://chairelogistique.hec.ca/en/scientific-data/. An online solution

checker in which researchers can upload their own solutions for plotting and check-

ing is also available.

V. Extensive Computational Experiments

We report the results of extensive computational experiments on all generated in-

stances for the PLRP, the WSRP-PL, and the DPLRP. We also report results on the

stantard data sets for the PLRP and the TRSP proposed by Kovacs et al. (2012).

Overall we consider 728 instances. The results on the PLRP instances indicated

that our branch-price-and-cut outperforms the state-of-the-art heuristics in terms

of solution quality without a significant increase in computing time. The results on

the WSRP-PL and the TRSP showed that our method performs well on instances

with tight time windows and demonstrate the effectiveness of the proposed pruning

strategies.
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Future Work

This thesis opens several paths for future research. The possibilities can be cate-

gorized in two categories, modeling, and solution methodology. In what follows, we

describe the ideas for each category.

I. Modeling Perspective

One of the challenges faced by the utilities is the location of the customers. Indeed,

in most cases, customers are located in highly populated areas. Vehicles transiting

in these areas are subject to traffic delays, mixed traffic flow, collisions, or even

changing weather conditions. In contrast, pedestrians transit mostly without unex-

pected interruptions. This highlights an opportunity to extend the park-and-loop

routing problem to consider stochastic driving travel times between locations while

still considering deterministic walking travel times.

Another interesting path for future research is to extend the workforce schedul-

ing and routing problem with park-and-loop by adding the possibility of carpooling.

The possibility of sharing a vehicle between workers opens a wide range of options to

improve efficiency and increase the amount of customers than can be served within

a given workday. Exploring methods and algorithms to handle the synchronization

between drivers and passengers can be very engaging.

II. Solution Methodology

Solving the elementary shortest path problem with resource constraints and park-

and-loop efficiently is a critical step of solving park-and-loop routing problems.

Adapting and applying the multi-space sampling heuristic to solve this problem

during the first column generation iterations is a promising research avenue. Alter-
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natively, combining the pulse algorithm and the ng-paths relaxation proposed by

Baldacci et al. (2011) can certainly be an interesting path for further research.

The branch-price-and-cut algorithm presented in Chapter 2 has the potential

to be applied to many related problems. In particular, adapting this method to

solve other multi-modal optimization problems such as the truck-and-drone routing

problem and the truck-and-trailer routing problem is another interesting path for

new research.
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Appendix A. Labeling algorithm:

In-depth description

In this section, we present a labeling algorithm to solve the pricing problem described

in Section 2.3.2. Our algorithm is partially based on the ideas presented by Feillet

et al. (2004) and Baldacci et al. (2011).

The algorithm extends labels ℓ (i.e., partial paths) starting at 0 and ending at a

given node 𝑛(ℓ). A label ℓ stores the cumulative reduced cost 𝑟 (ℓ), the cumulative

time 𝑡 (ℓ), the cumulative walking distance 𝑤(ℓ), the parking spot 𝑝(ℓ), a resource

Π𝑢
𝑖
∈ {0, 1} that takes the value of one if customer 𝑖 ∈ C cannot be visited by the

partial path (due to time limit and walking distance constraints), and a resource

Π
𝑛𝑔

𝑖
∈ {0, 1} that takes the value of one if a customer 𝑖 ∈ C is forbidden by the ng-

paths cycling restrictions described in Section 2.5.5. If the vehicle is not currently

parked, 𝑝(ℓ) = −1. Whenever a label has a resource consumption that exceeds

the corresponding resource availability it is immediately discarded. Labels are also

discarded if they do not comply with the ng-paths cycling restrictions or if they are

dominated by other labels. We also discard labels using the rollback and the bounds

pruning strategies described in Section 2.3.3. All the labels successfully extended

to node 0 can be added to the MP as they represent feasible routes with negative

reduced costs.

The main logic of the algorithm is presented in Algorithm 12. Line 1 runs the

bounding procedure given the bound step size and the bounding time limits. To the

i



best of our knowledge, this is the first time that the pulse algorithm is included as

a component of a labeling algorithm. Line 2 initializes the labels queue Q with a

label ℓ representing the source depot (i.e., 𝑛(ℓ) = 0) such that 𝑟 (ℓ) = 0, 𝑡 (ℓ) = 0,

𝑤(ℓ) = 0, 𝑝(ℓ) = −1, and Π𝑢
𝑖
∈ {0, 1} = Π

𝑛𝑔

𝑖
∈ {0, 1} = 0 for all customers 𝑖 ∈ C.

Line 3 initializes the set of negative reduced cost routes H . From lines 4 to 9, the

algorithm retrieves and expands non-dominated labels until Υ routes with negative

reduced cost have been found or until the queue of labels is empty. Line 5 retrieves

the first label from the queue. Line 6 checks if the label is not dominated by another

label at the same node. Line 7 checks if the label can be discarded using a bound

on the best reduced cost that can be achieved given the current time consumption.

Line 8 checks if the label can be discarded using the rollback pruning strategy. If

the label is not discarded, line 9 extends the label through all the outgoing arcs of

the current node and adds the new labels to Q. Line 14 returns all the routes at the

end depot with negative reduced cost stored in H .

Algorithm 12 Labeling algorithm
Require: Ḡ, directed multi graph; 𝜙, duration limit; 𝜁 , walking distance limit; 0,

start node; 0, end node; Δ, bound step size; [𝑡, 𝑡], bounding time limits; ℓ, initial
label.

1: bound(Ḡ,Δ, [𝑡, 𝑡]) ⊲ see §2.3.3
2: push(Q, ℓ)
3: H ← ∅
4: while Q ≠ ∅ ∧ |H | ≤ Υ do
5: ℓ ←pop(Q)
6: if ¬dominance(ℓ) then ⊲ see §4.7
7: if ¬bounds(𝑛(ℓ), 𝑟 (ℓ), 𝑡 (ℓ)) then ⊲ see §2.3.3
8: if ¬rollback(𝑛(ℓ), 𝑟 (ℓ), 𝑡 (ℓ), 𝑤(ℓ)) then ⊲ see §2.3.3
9: Q ← Q ∪ extend(ℓ) ⊲ see §4.7

10: end if
11: end if
12: end if
13: end while
14: return H
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A.1. Dominance rules

During the execution of the algorithm, several labels representing different partial

paths will be expanded to a given node 𝑖 ∈ V′. With this in mind, we define

dominance relations between two labels ℓ and ℓ′ at a current node 𝑛(ℓ) = 𝑛(ℓ′).

More precisely, label ℓ dominates label ℓ′ if the following conditions hold:

𝑝(ℓ) = 𝑝(ℓ′), (30)

𝑟 (ℓ) ≤ 𝑟 (ℓ′), (31)

𝑡 (ℓ) ≤ 𝑡 (ℓ′), (32)

𝑤(ℓ) ≤ 𝑤(ℓ′), (33)

max
{
Π
𝑛𝑔

𝑖
(ℓ),Π𝑢

𝑖 (ℓ)
}
≤ max

{
Π
𝑛𝑔

𝑖
(ℓ′),Π𝑢

𝑖 (ℓ′)
}
∀𝑖 ∈ C. (34)

Conditions (30) ensure that the two labels represent partial paths with equal

parking status. Conditions (31)-(34) imply that any feasible extension of the domi-

nated label ℓ′ is also a feasible extension of label ℓ with an equal or better reduced

cost. During the first iterations of the BPC procedure, is possible to ignore condi-

tions (33)-(34) to accelerate the solution of the pricing problem.

The previous dominance rules are only valid if the master problem does not

include a subset row inequality (SRI). To account for the presence of SRIs, we

modified the dominance rules following the ideas presented by Jepsen et al. (2008).

More specifically, let 𝜐S (ℓ) denote the number of times modulo 2 that label ℓ has

served the customers in S ⊆ C. When extending label ℓ through arc (𝑖, 𝑗) ∈ Ā

to create label ℓ′, we set 𝜐S (ℓ′) = 𝜐S (ℓ) if 𝑗 ∉ S and 𝜐S (ℓ′) = (𝜐S (ℓ) + 1) mod 2

otherwise. If, 𝜐S (ℓ′) = 0 and 𝜐S (ℓ) = 1 we subtract the dual variable 𝛽S from 𝑟 (ℓ′).

Then, the dominance rules are modified by replacing condition 31 with:
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𝑟 (ℓ) −
∑︁

S⊆C|𝜐S (ℓ)>𝜐S (ℓ′)
𝛽S ≤ 𝑟 (ℓ′), (35)

Condition 35 ensures that 𝑟 (ℓ) is sufficiently less than 𝑟 (ℓ′) to compensate for

any possible additional penalties.

A.2. Label extension

A label is only extended if 𝑡 (ℓ) ≤ 𝜙 and 𝑤(ℓ) ≤ 𝜁 . When a label ℓ is extended

through arc (𝑖, 𝑗) ∈ Ā to create label ℓ′ the resources are updated depending on

the operation performed. There are four types of label extensions: (1) driving, (2)

parking the vehicle and walking, (3) walking without unpark, and (4) walking with

unpark. In what follows, we will describe the extension rules in detail for each case.

Case 1: Driving. In this case, the route is extended by driving between nodes

𝑖 and 𝑗 . This extension is only possible if 𝑝(ℓ) = −1 and (𝑖, 𝑗) ∈ A1 ∪ A3 (i.e.,

through a driving arc). Label ℓ′ has the following attributes:

𝑝(ℓ′) = 𝑝(ℓ), (36)

𝑟 (ℓ′) = 𝑟 (ℓ) + 𝑟𝑖 𝑗 , (37)

𝑡 (ℓ′) = 𝑡 (ℓ) + 𝜂𝑖 𝑗 + 𝑠 𝑗 , (38)

𝑤(ℓ′) = 𝑤(ℓ), (39)

Π𝑢
𝑚 (ℓ′) =


0, 𝑡 (ℓ′) + 𝜂 𝑗𝑚 + 𝑠𝑚 ≤ 𝜙 | ( 𝑗 , 𝑚) ∈ A1;

1, otherwise;
∀𝑚 ∈ C, (40)
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Π
𝑛𝑔
𝑚 (ℓ′) =


1, (𝑚 = 𝑗) ∨ (Π𝑛𝑔

𝑚 (ℓ) = 1 ∧ 𝑚 ∈ N𝑗 );

0, otherwise;
∀𝑚 ∈ C. (41)

Case 2: Parking the vehicle and walking. In this case, the route is extended by

walking between nodes 𝑖 and 𝑗 after parking the vehicle at node 𝑖. This extension is

only possible if 𝑝(ℓ) = −1 and (𝑖, 𝑗) ∈ A2 ∪ A4 (i.e., through a walking arc). Label

ℓ′ has the following attributes:

𝑝(ℓ′) = 𝑖, (42)

𝑟 (ℓ′) = 𝑟 (ℓ) + 𝑟𝑖 𝑗 , (43)

𝑡 (ℓ′) = 𝑡 (ℓ) + 𝜂𝑖 𝑗 + 𝑠 𝑗 , (44)

𝑤(ℓ′) = 𝑤(ℓ) + 𝛿𝑖 𝑗 , (45)

Π𝑢
𝑚 (ℓ′) =


0, 𝑡 (ℓ′) + 𝜂 𝑗𝑚 + 𝑠𝑚 + 𝜂𝑚𝑖 ≤ 𝜙 | ( 𝑗 , 𝑚), (𝑚, 𝑖) ∈ A2;

1, otherwise;
∀𝑚 ∈ C, (46)

Π
𝑛𝑔
𝑚 (ℓ′) =


1, (𝑚 = 𝑗) ∨ (Π𝑛𝑔

𝑚 (ℓ) = 1 ∧ 𝑚 ∈ N𝑗 );

0, otherwise;
∀𝑚 ∈ C. (47)

Case 3: Walking without unpark. In this case, the route is extended by walking

between nodes 𝑖 and 𝑗 . The vehicle remains parked at node 𝑝(ℓ). This extension is

only possible if 𝑝(ℓ) ≠ −1 and (𝑖, 𝑗) ∈ A2 ∪ A4 (i.e., through a walking arc). Label

ℓ′ has the following attributes:

𝑝(ℓ′) = 𝑝(ℓ), (48)

v



𝑟 (ℓ′) = 𝑟 (ℓ) + 𝑟𝑖 𝑗 , (49)

𝑡 (ℓ′) = 𝑡 (ℓ) + 𝜂𝑖 𝑗 + 𝑠 𝑗 , (50)

𝑤(ℓ′) = 𝑤(ℓ) + 𝛿𝑖 𝑗 , (51)

Π𝑢
𝑚 (ℓ′) =


0, 𝑡 (ℓ′) + 𝜂 𝑗𝑚 + 𝑠𝑚 + 𝜂𝑚𝑝(ℓ) ≤ 𝜙 | ( 𝑗 , 𝑚), (𝑚, 𝑝(ℓ)) ∈ A2;

1, otherwise;
∀𝑚 ∈ C,

(52)

Π
𝑛𝑔
𝑚 (ℓ′) =


1, (𝑚 = 𝑗) ∨ (Π𝑛𝑔

𝑚 (ℓ) = 1 ∧ 𝑚 ∈ N𝑗 );

0, otherwise;
∀𝑚 ∈ C. (53)

Case 4: Walking with unpark. In this case, the route is extended by walking

between nodes 𝑖 and 𝑗 . The vehicle is recovered at node 𝑝(ℓ). This extension is only

possible if the 𝑝(ℓ) ≠ −1 and (𝑖, 𝑗) ∈ A2 ∪ A4 (i.e., through a walking arc). Label

ℓ 𝑗 has the following attributes:

𝑝(ℓ′) = −1, (54)

𝑟 (ℓ′) = 𝑟 (ℓ) + 𝑟𝑖 𝑗 + 𝜋 𝑗 , (55)

𝑡 (ℓ′) = 𝑡 (ℓ) + 𝜂𝑖 𝑗 , (56)

𝑤(ℓ′) = 𝑤(ℓ) + 𝛿𝑖 𝑗 , (57)

Π𝑢
𝑚 (ℓ′) =


0, 𝑡 (ℓ′) + 𝜂 𝑗𝑚 + 𝑠𝑚 ≤ 𝜙 | ( 𝑗 , 𝑚) ∈ A1;

1, otherwise;
∀𝑚 ∈ C, (58)

Π
𝑛𝑔
𝑚 (ℓ′) =


1, (𝑚 = 𝑗) ∨ (Π𝑛𝑔

𝑚 (ℓ) = 1 ∧ 𝑚 ∈ N𝑗 );

0, otherwise;
∀𝑚 ∈ C. (59)
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Appendix B. Detailed results for

each PLRP instance

Table B.1 shows the performance of each algorithm on each instance of the VRPTR

without carpooling. Each row corresponds to an instance. Columns 2 to 5 show

the objective function of the solution found by the VNS, MSH, SLNS, and the

BPC algorithm respectively. Column 6 shows the objective function of the current

best-known solution.

Table B.2 reports the solutions found by MSH and BPC to the set of large

instances. Each row corresponds to an instance. Column 2 reports the number of

available workers 𝑘. Columns 3 and 4 show the objective function of the solution

found by MSH and BPC. Column 5 reports the lower bound found by BPC.
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Table B.1: Detailed results on the Coindreau et al. (2019) instances.

Instance VNS MSH SLNS BPC BKS
20_A_1 32.4037 30.9482 30.9482 30.9482 30.9482
20_A_2 41.6349 41.5547 41.5547 41.5547 41.5547
20_A_3 39.4469 36.2344 36.2344 36.2344 36.2344
20_A_4 39.1459 36.0251 36.0251 36.0251 36.0251
20_A_5 35.2747 35.2747 35.2747 35.2747 35.2747
20_A_6 43.7627 42.2866 42.2866 42.2866 42.2866
20_A_7 40.1143 38.6881 38.6881 38.6881 38.6881
20_A_8 39.1395 36.8504 36.8504 36.8504 36.8504
20_A_9 29.9427 29.6105 29.6105 29.6105 29.6105
20_A_10 41.2404 39.6656 39.6656 39.6656 39.6656
30_A_1 41.2853 40.7372 40.7372 40.7372 40.7372
30_A_2 46.6485 45.6635 45.6465 45.6465 45.6465
30_A_3 50.9785 49.1828 49.1828 49.1828 49.1828
30_A_4 46.3310 43.7556 43.7556 43.7556 43.7556
30_A_5 48.3961 47.0619 47.0619 47.0619 47.0619
30_A_6 51.6505 49.5880 49.5880 49.5880 49.5880
30_A_7 45.5537 45.5537 45.5537 45.5340 45.5340
30_A_8 45.3691 43.6799 43.6799 43.6799 43.6799
30_A_9 41.8553 41.1629 41.1629 41.1609 41.1609
30_A_10 49.5241 46.8936 46.8936 46.8936 46.8936
40_A_1 59.1695 59.1695 59.1695 59.1695 59.1695
40_A_2 58.5186 58.5186 58.5186 58.1191 58.1191
40_A_3 63.1723 62.9222 62.9222 62.9222 62.9222
40_A_4 50.3730 50.3730 50.3730 50.3730 50.3730
40_A_5 52.7504 51.7278 51.7278 51.7278 51.7278
40_A_6 63.0658 61.2621 61.2621 61.2621 61.2621
40_A_7 57.7673 54.8824 55.6158 54.8554 54.8554
40_A_8 56.3737 56.3140 55.9774 55.9774 55.9774
40_A_9 56.4612 56.3871 56.3871 56.3013 56.3013
40_A_10 57.6954 57.6954 57.6954 57.6954 57.6954
50_A_1 60.5063 57.0235 57.0235 57.0235 57.0235
50_A_2 62.4825 62.1686 60.6031 60.5906 60.5906
50_A_3 65.8727 63.8855 63.6788 63.5529 63.5529
50_A_4 58.2333 57.9472 56.9391 56.6342 56.6342
50_A_5 64.1751 64.0909 64.0909 64.0909 64.0909
50_A_6 66.1254 65.0105 65.0105 64.8116 64.8116
50_A_7 63.6674 63.6674 63.6674 63.6350 63.6350
50_A_8 70.9057 69.7911 68.8367 68.6323 68.6323
50_A_9 58.2212 58.7191 58.2212 58.2212 58.2212
50_A_10 60.7796 61.2239 60.7796 60.7796 60.7796

viii



Table B.2: Detailed results on the PLRP set of large instances.

Instance 𝑘 MSH BPC LB
60_A_1 5 63.6180 63.6180 61.6495
60_A_2 5 67.9332 64.8337 63.1645
60_A_3 5 66.7018 64.3194 63.3934
60_A_4 5 69.4019 68.8561 68.8561
60_A_5 5 72.0505 67.8520 67.4220
60_A_6 5 65.7642 65.6751 64.3115
60_A_7 5 65.4693 64.7246 64.7246
60_A_8 5 66.4684 65.6574 65.6574
60_A_9 5 69.3708 67.1968 65.3779
60_A_10 6 77.4000 77.3963 74.5644
70_A_1 6 80.7800 80.3145 77.4835
70_A_2 5 85.1100 85.1052 81.5012
70_A_3 6 71.4200 71.4182 69.7106
70_A_4 6 74.8472 74.4721 71.8464
70_A_5 5 79.0669 79.0669 76.9217
70_A_6 6 70.8563 70.8563 69.3213
70_A_7 6 78.2697 78.2697 76.0983
70_A_8 6 75.8930 75.8930 71.8024
70_A_9 5 80.0280 79.8592 75.8490
70_A_10 6 82.5269 82.1809 80.0585
80_A_1 6 92.0970 91.4923 86.1695
80_A_2 6 92.2233 90.9719 86.9094
80_A_3 6 96.9931 96.2431 90.0295
80_A_4 6 99.6504 94.4960 89.9932
80_A_5 6 93.4427 93.4428 86.3854
80_A_6 6 94.6270 91.1502 87.4419
80_A_7 6 90.1759 90.1759 86.4039
80_A_8 6 92.4352 92.4352 86.7532
80_A_9 6 101.2854 101.0565 92.7555
80_A_10 6 93.1675 92.9522 88.3396
90_A_1 7 92.1341 92.1341 88.6969
90_A_2 7 85.6971 85.6971 80.8916
90_A_3 7 88.6107 88.6107 81.9134
90_A_4 7 94.0196 91.9519 87.9134
90_A_5 7 100.7159 100.3967 94.3991
90_A_6 7 81.6312 81.5321 76.5057
90_A_7 7 95.2463 95.2463 88.8707
90_A_8 7 97.8633 96.7539 91.6895
90_A_9 7 85.2391 85.2391 78.1943
90_A_10 7 99.6994 98.5392 92.9275
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Appendix C. New best known

solutions for the no-team STRSP

Table C.1 compares the solution found by BPC and the best solution reported in the

literature. Column 1 shows the instance identifier. Column 2 shows the objective

function of the best known solution reported by Gu et al. (2022). Column 3 reports

the objective function of the solution found by BPC.

Table C.1: New best known solutions for the no-team STRSP 100-task instances.

Instance L-ILS BPC
RC101_C_5x4_100 1658.37 1654.80
RC101_C_6x6_100 1654.98 1644.32
R103_C_7x4_100 1335.65 1325.31
C101_R_5x4_100 5587.52 5572.99

RC101_R_5x4_100 4829.37 4764.44
C103_R_6x6_100 4804.61 4799.01
R101_R_6x6_100 5945.14 5944.91

RC101_R_6x6_100 4903.70 4835.20
C101_R_7x4_100 5241.93 5208.30
C103_R_7x4_100 1980.72 1940.21
R103_R_7x4_100 2104.89 2104.17

RC103_R_7x4_100 2585.95 2568.25
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Appendix D. Relative effectiveness of

the pruning strategies

We designed an experiment to assess the relative contribution of each pruning strat-

egy to the overall performance of the pulse algorithm (PA) used to solve the pricing

problem. This experiment consists of solving every instance of the WSRP-PL de-

scribed in Section 3.5.1 using two versions of the PA. In the first version, the PA

uses a one-time pre-processing procedure to compute lower bounds on the minimum

reduced cost from any node to the end node. Then, condition (3.50) is used to prune

partial paths. We label this version of the PA, as PA-OTB. On the contrary, in the

second version, the PA computes the lower bounds on the fly after deciding which

workers are assigned to the team. Then, condition (3.51) is used to prune partial

paths. We denote this version as PA-OTF.

Figures D.1 and D.2 show the relative effectiveness of the pruning strategies as

the number of customers varies when using PA-OTB and PA-OTF. Regardless of

the version of the PA used, the most effective strategy is pruning by infeasibility.

More specifically, the algorithm relies on this strategy to prune almost 67% and

57% of the paths, followed by pruning by bounds, and rollback. Note however, that

there is an increase of up to 15% on the relative effectiveness of the bounds pruning

strategy when condition (3.51) is used. This result can be explained by an increase

in the quality of the lower bounds used by the PA-OTF.
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Figure D.1: Relative effectiveness of the pruning strategies, when using PA-OTB.
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Figure D.2: Relative effectiveness of the pruning strategies, when using PA-OTF.

xiv




	Résumé
	Abstract
	List of Tables
	List of Figures
	List of Acronyms 
	Acknowledgements 
	General Introduction
	References

	Workforce Scheduling and Routing Problems: A Literature Review
	Abstract 
	Introduction
	Problem description
	Problem statement
	Arc-based formulation
	Route-based formulation

	The WSRP and its variants
	Skill compatibility
	Team building
	Outsourcing
	Planning horizon
	Time windows
	Multi-modal routes
	Precedence constraints
	Constrained resources
	Synthesis and key takeaways

	From theory to practice
	Continuity
	Visual attractiveness
	Workers behavior

	Concluding remarks
	References

	Solving the Park-and-loop Routing Problem by Branch-price-and-cut
	Abstract 
	Introduction
	Problem formulation
	Solution method
	Column generation
	Pricing problem
	Pruning strategies
	Valid inequalities
	Branching rules

	Acceleration strategies
	Dual stabilization
	Heuristic pulse algorithm
	Initialization

	Computational experiments
	Test instances
	Assessing the BPC performance
	Assessing the impact of the initialization step and the pruning strategies
	A new data set
	Analyzing the pricing problem algorithm
	Assessing the importance of introducing park-and-loop routes

	Concluding remarks
	References

	The Workforce Scheduling and Routing Problem with Park-and-loop
	Abstract 
	Introduction
	Problem description and arc-based formulation
	Path-based formulation
	Solution method
	Pricing problem
	Pruning strategies
	Initial set of paths
	Cut separator
	Branching strategy
	General enhancements

	Computational experiments
	Set of instances
	Experiment 1: assessing the BPC performance
	Experiment 2: analyzing the BPC components
	Experiment 3: analyzing the computational impact of park-and-looping
	Experiment 4: measuring the impact of the subtour transportation mode
	Experiment 5: solving the no-team STRSP

	Concluding remarks
	References

	The Dynamic Park-and-loop Routing Problem
	Abstract 
	Introduction
	Literature review
	Related problems
	Solution methods

	Problem definition
	Problem description
	Route-based sequential decision process

	Scheduling policies
	Multi-space sampling heuristic
	Acceptance policies
	Routing policies
	Offline policies

	Perfect information bound
	Computational experiments
	Test instances
	Assessing the performance of the scheduling policies
	Assessing the performance of the offline policies
	Assessing the performance of the online policies

	Concluding remarks
	References

	General Conclusion
	Bibliography
	Appendix A. Labeling algorithm: In-depth description
	A.1. Dominance rules
	A.2. Label extension

	Appendix B. Detailed results for each PLRP instance
	Appendix C. New best known solutions for the no-team STRSP
	Appendix D. Relative effectiveness of the pruning strategies

