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Résumé

Cette thèse se concentre sur des applications liées au risque de crédit sur le marché des
titres à revenu fixe et explore la prévision de la structure par terme des écarts de crédit.
Elle se divise en trois essais.

Dans le premier essai, les impacts de la dette Contingente Convertible (CoCo) sur les
actionnaires sont étudiés. La dette contingente convertible est un instrument financier hy-
bride émis par les banques, caractérisé par une conversion en actions en cas de détresse
financière de l’établissement. Les CoCo comportent deux risques majeurs : le risque de
défaut, inhérent à tout instrument de dette, et le risque spécifique de conversion obligatoire
en actions. Dans cette étude, nous introduisons un modèle d’évaluation des instruments
CoCo en fonction du ratio d’endettement de l’émetteur. Bien que les CoCo soient générale-
ment plus coûteux que les instruments de dette traditionnels, leur présence dans la structure
de capital de la banque réduit le coût de la dette ordinaire, diminuant ainsi le coût global
du service de la dette. Pour les actionnaires initiaux, l’intégration des CoCo dans la struc-
ture de capital de la banque accroît la valeur totale des actions, ce qui a des implications
bénéfiques pour la gestion du capital bancaire. Cet article a été publié dans Risk, 2019,
7(2), 47.

Le deuxième essai propose et évalue des méthodologies pour prévoir la structure par
terme des écarts de crédit ainsi que les prix des obligations d’entreprise, en s’attaquant aux
défis posés par les fréquences de négociation hétérogènes des obligations entre émetteurs.
Pour les émetteurs à haute fréquence de négociation, nous implémentons un modèle en
deux étapes de type Nelson–Siegel, couplé à un cadre autorégressif vectoriel. En raison
d’une disponibilité de données plus limitée pour les émetteurs à faible fréquence, nous



développons une méthode de regroupement en deux étapes : d’abord, l’identification de
groupes d’émetteurs à haute fréquence à l’aide d’un modèle de mélange gaussien ; en-
suite, le rattachement de chaque émetteur à faible fréquence à ces groupes selon ses carac-
téristiques, puis le calcul d’une courbe d’écart de crédit moyennée d’après les probabilités
d’appartenance aux clusters. L’analyse empirique, réalisée sur des obligations libellées en
USD, montre des performances prédictives satisfaisantes, bien que la précision diminue
pour les maturités longues et les émetteurs faiblement représentés.

Le dernier essai examine la modélisation prédictive de la structure par terme des écarts
de crédit en intégrant des indicateurs d’incertitude macroéconomique et des méthodolo-
gies d’apprentissage automatique. Nous proposons une nouvelle fonction de perte pénal-
isée visant à améliorer l’interprétabilité économique et la stabilité temporelle des coef-
ficients des écarts de crédit estimés selon le modèle Nelson-Siegel. Nous prédisons en-
suite les coefficients de la structure par terme des écarts de crédit en étendant l’ensemble
des variables traditionnellement utilisées dans la littérature par l’intégration de mesures
d’incertitude macroéconomique et financière. Enfin, nous comparons des modèles de ré-
gression linéaire à des techniques d’apprentissage automatique basées sur des modèles
d’ensemble. L’analyse empirique montre l’influence des variables spécifiques aux en-
treprises et renforce le lien entre l’incertitude économique et les spreads de crédit. Parmi
les approches testées, le modèle des arbres renforcés (boosted trees) offre les meilleures
performances pour prédire la structure par terme des écarts de crédit.

Mots clés: Dette contingente convertible; risque de crédit; écart de crédit; modélisation
financière; gestion des risques; crise financière; analytique prédictive; apprentissage statis-
tique.

Méthodes de recherche: Modèle d’ensemble; modèle de mélange gaussien; modélisation
mathématique; optimisation numérique; régression; apprentissage statistique.
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Abstract

This thesis concentrates on applications related to credit risk in the fixed-income mar-
ket. It also explores the prediction of the credit-spread term structure. It is divided into
three essays.

In the first essay, the impacts of Contingent Convertible (CoCo) debt on equity holders
are investigated. Contingent Convertible debt is a hybrid financial instrument issued by
banks, with a specific feature forcing its conversion to equity in the event of the bank’s
financial distress. CoCos incorporate two major risks: the default risk, inherent to all debt
instruments, and the exclusive risk of mandatory conversion into equity. In this study,
we introduce a valuation model for CoCo instruments as a function of the issuer’s debt
ratio. Although CoCos tend to be costlier than traditional debt instruments, their inclusion
within the bank’s capital structure reduces the cost associated with ordinary debt, thereby
lowering the overall debt-servicing cost. For preliminary equity holders, the presence of
CoCos in the banks’ capital structure increases the shareholders’ aggregate value, providing
beneficial implications for the bank’s capital-management strategy. This article has been
published in Risk, 2019, 7(2), 47.

The second essay proposes and evaluates methodologies to forecast credit-spread term
structures and corporate bond prices, by addressing challenges related to bond-trading
frequencies across issuers. For high-frequency issuers, we implement a two-step Nel-
son–Siegel model coupled with a Vector-Autoregressive framework. Due to limited data
availability for low-frequency issuers, we develop a two-step clustering approach: we first
identify distinct clusters of high-frequency issuers using a Gaussian Mixture Model; we
then link each low-frequency issuer to these clusters using issuer-specific information, and

v



we compute weighted-average credit-spread curves according to posterior cluster proba-
bilities. Empirical analysis on USD-denominated corporate bond data demonstrates some
predictive performance, although accuracy declines for longer maturities and sparsely pop-
ulated issuer clusters.

The final essay investigates the predictive modelling of the credit-spread term structure
by incorporating macroeconomic-uncertainty indicators and statistical-learning method-
ologies. We propose a new penalized-loss function designed to enhance the economic
interpretability and temporal stability of the estimated Nelson-Siegel credit spread coef-
ficients. We then predict these Nelson-Siegel credit spread coefficients by extending the
set of features generally used in the literature to incorporate macroeconomic and financial-
uncertainty measures. Finally, we compare linear regression models with ensemble based
machine learning techniques. Empirical analyses show the influence of firm-level vari-
ables and reinforce the link between economic uncertainty and credit spreads. Boosted
trees outperform other approaches to predict the term structure of credit spreads.

Keywords: Contingent convertible debt; credit risk, credit spread; financial modelling;
risk management; financial crisis; predictive analytics; statistical learning.

Research methods: Ensemble model; Gaussian mixture model; mathematical modelling;
numerical optimization; regression; statistical learning.
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Chapter 1

Introduction

Banks face several distinct types of risks, including credit, market, liquidity, operational,
and regulatory risks. This thesis explores the modelling and prediction of credit risk within
the fixed-income market.

Risk management in the financial sector has evolved significantly over the decades, fol-
lowing major financial crises such as the 2008 global financial crisis, which triggered re-
visions in regulatory frameworks. The Basel Committee on Banking Supervision (BCBS)
acts as a central coordinator for regulatory standards, notably through the Basel Accords.
In response to the 2008 crisis, Basel III introduced stricter capital and liquidity require-
ments for banks and recommended the issuance of Contingent Convertible bonds (CoCos)
as part of banks’ Capital Adequacy Requirements (CAR). The first essay investigates the
impact of Contingent Convertible bonds on equity holders.

The fixed-income market widely employs the term structure of credit spreads as a crit-
ical tool for quantifying credit risk. The term structure of credit spreads represents the
yield spread between a risky bond and its risk-free benchmark across various maturities.
The term structure of credit spreads emerges as the premium that investors require to com-
pensate for credit risk. The last two essays of this thesis focus on developing predictive
models of the term structure of credit spreads.

The first essay examines Contingent Convertible (CoCo) bonds and how t their inclu-
sion in a bank’s capital structure affects the value and strategic incentives of the equity



holders. CoCo bonds are hybrid financial instruments designed to convert into equity when
a predefined trigger, linked to the issuer’s financial health is breached. They absorb losses
and act as automatic stabilizers by recapitalizing institutions during times of financial dis-
tress. CoCos carry two major risks: the risk of default, inherent to all debt instruments,
and the unique risk of mandatory conversion. We propose a valuation model for CoCo in-
struments as a function of the issuer’s debt ratio, and analyze how their introduction alters
capital structure, debt composition, and dividend policy. While CoCos provide a buffer
against default, conversion can inject new equity at potentially unfavourable terms. The
presence of CoCos can alter the bank’s risk profile from the perspective of equity holders.
Anticipating the possibility of dilution, shareholders may adjust their investment and risk-
taking behaviour. Although the CoCos are costlier instruments than traditional debt, their
presence in the capital structure lower the cost of ordinary debt and reduce the total cost of
debt. For preliminary equity holders, the presence of CoCos in the bank’s capital structure
increase the shareholder’s aggregate value.

The second essay addresses the predictive challenges posed by issuer heterogeneity and
disparities in bond-trading frequencies. We propose forecasting methodologies for credit
spreads and bond prices that distinguish between frequently traded (“high-frequency”)
and infrequently traded (“low-frequency”) issuers, based on a private database of USD-
denominated corporate bond data. For high-frequency issuers, we implement a two-step
Nelson–Siegel model combined with a Vector Autoregressive framework to predict credit
spreads and bond prices. For low-frequency issuers, we develop a clustering approach
based on Gaussian Mixture Models (GMM), which leverages issuer-specific attributes to
infer credit-spread curves from comparable high-frequency issuers.

The third essay builds on the second and investigates the predictive modelling of the
credit-spread term structure through the integration of macroeconomic-uncertainty indi-
cators and statistical-learning approaches. Employing the Nelson-Siegel framework, we
examine credit spreads using a comprehensive academic database of U.S. corporate bonds
from July 2002 to June 2020, which encompasses periods of market stress and stability.
To address known estimation challenges, we introduce a novel penalized-loss function that
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enhances both the stability and economic interpretability of the estimated coefficients. We
compare statistical-learning approaches and apply SHAP (Shapley Additive Explanations)
values for interpretability. Our findings demonstrate the superior predictive performance
of ensemble models relative to traditional linear models and provide valuable insights into
the key variables influencing credit-spread dynamics.
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Chapter 2

Contingent Convertible Debt: The Impact on
Equity Holders

Abstract1

Contingent Convertible (CoCo) is a hybrid debt issued by banks with a specific feature
forcing its conversion to equity in the event of the bank’s financial distress. CoCo carries
two major risks: the risk of default, which threatens any type of debt instrument, plus the
exclusive risk of mandatory conversion. In this paper, we propose a model to value CoCo
debt instruments as a function of the debt ratio. Although the CoCo is a more expensive
instrument than traditional debt, its presence in the capital structure lowers the cost of or-
dinary debt and reduces the total cost of debt. For preliminary equity holders, the presence
of CoCo in the bank’s capital structure increases the shareholder’s aggregate value.

1Joint work with Geneviève Gauthier and Farhad Pourkalbassi. Gauthier is affiliated with HEC Montréal.



2.1 Introduction

The 1988 Basel accord ties bank capitalization to portfolio risk by introducing the Capital
Adequacy Requirements (CAR). Subsequently, Basel II obliges banks to maintain sufficient
loss-absorbing capital on an annual basis. However, several studies on the 2008 financial
crisis, such as Flannery, 2014 and Duffie, 2010 reveal that, in practice, regulators are un-
able to force banks to maintain adequate loss-absorbing capital. To alleviate banks under-
capitalization, Flannery, 2005 introduced Contingent Convertibles, hereafter referred to as
CoCo in accordance with most of the main-related studies. CoCo is a hybrid debt with a
specific clause stipulating that the issuer would either convert it to equity or write down
its face value if the level of loss-absorbing capital falls below a certain threshold. This is
supposed to help with a firm’s recapitalization under distress, while equity holders would
be reluctant to raise capital voluntarily by issuing new shares. Basel III recommends large
financial institutions to issue CoCo as a part of their Capital Adequacy Requirements.

CoCo carries two major risks: the risk of default, which threatens any type of debt
instrument, plus the exclusive risk of mandatory conversion. CoCo differs greatly from a
traditional convertible bond, which the conversion is optional and generally rewards the
bondholder; hence, it is not a risk. Mandatory conversion of CoCo is a punishing mech-
anism which decreases the value of the bondholder in most scenarios; hence, it is a risk
factor.

Most literature employs the structural approach to model CoCo dynamics. Studies gen-
erally define a trigger threshold as the barrier, then calculate the conditional probability of
hitting the barrier. What makes this group of studies different is the choice of underlying
instrument that triggers the conversion and the dynamics of the underlying trigger. The
trigger is the book-equity-to-book-asset ratio in Glasserman and Nouri, 2012, where they
model the book asset process using a Geometric Brownian motion (GBM). Conversion oc-
curs if the book-equity-to-book-asset ratio exceeds a predetermined exogenous ratio. Chen
et al., 2013 use the same underlying instrument while they model the book asset process us-
ing a jump-diffusion. Conversion is triggered if the asset value goes over a predetermined
exogenous threshold. In Brigo et al., 2015, firm asset value is a GBM process and the con-
version barrier is a linear function of the asset-to-equity ratio. De Spiegeleer et al., 2017,
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in a more recent study, come closer to the Basel III accord and define the implied Com-
mon Equity Tier 1 (CET1) volatility as the conversion trigger while modelling the CET1
capital ratio as a GBM. Structural modelling based on a GBM makes the conversion time
predictable, while being counterfactual. Uncertainty with respect to the conversion is due
not only to the use of accounting capital ratio as the conversion trigger, but also to the stip-
ulations in Basel III that allow regulators to choose the conversion time at their discretion.
Studies such as Albul et al., 2010 and Hilscher and Raviv, 2014 model the CoCo as a con-
tingent claim on the value of the bank’s assets. The results are relatively tractable models
in which the bank’s incentive to issue CoCo voluntarily could be examined. Once again,
the main challenge of these approaches is in triggering the conversion by the unobservable
market value of assets.

In Cheridito and Xu, 2015, the CoCo price is modelled using a pure reduced form ap-
proach where the conversion and default events are modelled with a time-changed Poisson
process. However, the reduced form approach is less intuitive by ignoring the link between
the capital ratio and the trigger event (Brigo et al., 2015). Chung and Kwok, 2016 use a
structural approach to model the conversion when the capital ratio falls below a certain
threshold and also use a Poisson process to model the potential unexpected conversion
imposed by the regulator.

Conversion price is also a matter of debate in the literature. As a basic design, Flannery,
2005 proposes that the number of shares received by CoCo holders at conversion is deter-
mined by the face value of the CoCo bonds divided by the market price of stock on the day
of conversion. However, this basic conversion mechanism gives an opportunity to short
sellers to bid down the share price, force conversion and dilute the market by increasing
the number of outstanding shares. To avoid share price manipulation, Duffie, 2010 argues
that the number of shares should be based on a multi-day average of closing prices. Other
studies such as Flannery, 2016 and Pennacchi, 2010 propose converting the CoCo into a
predetermined number of shares at a fixed price. However, there is a high risk that CoCo
investors will suffer some value losses upon conversion due to a jump in the market price
of shares.

Regulators insist that the CoCo conversion trigger should be based on the accounting
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capital ratio. Indeed, this is determined by the Basel Committee on Banking Supervision
(BCBS) at a global level in Basel III, the European Banking Authority through the Cap-
ital Requirements Directive IV/Capital Requirements Regulation (CRD IV/CRR) and the
Office of the Superintendent of Financial Institutions (OSFI) in Canada through the CAR
guidelines. The CET1 should not fall bellow a certain percent of Risk-Weighted Asset
(RWA). Although accounting measures are not forward looking and can be manipulated
by managers, they ensure that CoCo conversion occurs when a firm encounters serious fi-
nancial problems. Glasserman and Nouri, 2012 and Chen et al., 2013 choose asset book
value as the trigger through the book-equity-to-book-asset ratio, claiming that the book
asset value truly approximates the market asset value. Many studies are against employ-
ing book value as a basis of conversion because it generates a delayed signal of financial
distress. McDonald, 2013 and Bolton and Samama, 2012 assume that the market price
of equity can measure a bank’s loss-absorbing capacity. They propose a CoCo design in
which the share price functions as the conversion trigger. Sundaresan and Wang, 2015
point out two shortcomings of employing the market price of shares as the conversion
trigger within their framework, both of which are linked to the fact that CoCo conversion
generates a value exchange between CoCo holders and initial equity holders. First, if the
value is transferred from shareholders to CoCo investors at conversion, there can be more
than one rational expected equilibrium price for both the stocks and CoCos. Second, if the
value is transferred to shareholders, the model sometimes lacks an equilibrium share price.
Sundaresan and Wang, 2015 conclude that a unique competitive equilibrium exists if the
conversion does not induce a value transfer. Glasserman and Nouri, 2012 maintain that this
multiple equilibrium problem is a feature of discrete-time models and can be alleviated in a
continuous time framework. Closer to our paper, Chen et al., 2017 study the design and in-
centive effects of contingent convertible debt on optimal capital structure. The asset value
is modelled as a jump diffusion, default and conversion occur whenever the firm value trig-
gers some critical value. The default threshold is determined by the equity holder in such a
way to maximize the equity value. They conclude that equity holders often have a positive
incentive of issuing CoCos because the presence of CoCos reduces the bankruptcy costs
when the conversion trigger is large enough.
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In this paper, we also study the impact of having a contingent debt instrument in the debt
structure in the perspective of equity holders. Based on a discrete time dynamic optimiza-
tion approach, we reach similar conclusions as Chen et al., 2017. Indeed, our framework
differs from the latter in various ways. First, the endogenous floating coupon rates of the
standard and the CoCo debts account for the indebtedness of the firm. Second, the number
of shares received by CoCo debt holders at conversion time is also designed differently. In
our study, the optimal dividend stream is solved through a dynamic optimization approach:
the equity holders have an incentive to control the firm debt ratio to maximize their share
of the firm equity value, avoiding the dilution effect caused by conversion. It also benefits
the bondholder as its mitigates the default risk.

A numerical simulation based on realistic data evaluates the benefits and the costs of
having CoCos in the bank’s debt structure. The parameters are estimated using three banks
from three different regions (Europe, Canada, and the United States), for three different
periods of time (pre-crisis, crisis, and post-crisis). The results help to understand how
CoCos can help "Too big to fail” banks in different economic conditions. Although there
are important differences among these three cases, common behaviours are observed: the
presence of CoCos in the debt structure reduces the probability of default, the coupon of
the standard debt, the cost of debt and capital. However, the CoCo is a more expensive
instrument than the standard debt, mainly because the investor bears more risk. This study
contributes to the literature by evaluating the effectiveness of adding CoCos to the financial
firm’s capital structure. We do not only evaluate the CoCo debt itself, but also examine its
impact on the firm’s management strategy by optimizing the per-share value of the cumu-
lated dividend stream. Equity holders modify the optimal dividend policy to account for
the conversion risk that affect them through the dilution effect (after conversion, there are
more equity shares).

This paper is structured as follows. Section 2.2 presents the model to value CoCo and
defines the conversion as well as the default intensity. Section 2.3 presents the dynamic
programming model use to examine how CoCo impact the firm’s management strategy.
Section 2.4 is decomposed into three parts. First, the data used to have realistic scenarios
are presented. Second, the results are presented for each bank and each year. Third, a
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sensitivity analysis follows. Section 2.5 presents conclusions.

2.2 The Model

The asset value satisfies
At = Et +Dt, (2.1)

where Et andDt are the equity and debt values, respectively. The debt is decomposed into
three main components: the deposit whose time t value is Ft, the coupon-paying bonds and
other debt instruments for a value of Bt, and a convertible contingent instrument (CoCo)
whose value is Ct:

Dt = Ft +Bt + Ct.

The debt ratio is defined as
Xt =

Dt

At

. (2.2)

The presence of the CoCo debt alleviates the default risk since, in case of financial
distress, the CoCo debt is converted into equity, leading to a smaller debt ratio. CoCo
debt holders bear not only a default risk, but also a conversion risk; therefore, they require
compensation in the form of a coupon payment that differs from that of a standard debt,
which is subject only to credit risk. More precisely, once converted into equity, the CoCo
debt has a zero recovery rate in case of default. However, if the firm survives after the
conversion, then it is not clear whether the proportion of equity value held by the CoCo
debt holders will be more or less profitable than for a standard debt.

The default time is denoted τD, and the conversion time satisfies τC = min (τα, τD),
which means that the CoCo debt is always converted before the default event. Because
other factors may influence the conversion decision, it does not necessarily occur as soon
as the leverage ratio triggers α, but it is very likely to occur. Consequently, the conversion
intensity driving τα,

Gt = g (Xt) =

(
Xt

θC

)βC

,

is a positive and convex function ofXt, taking large values wheneverXt is above θC ∈ (0, 1]

and small values otherwise. θC should be close to α. The parameter βC is usually a large
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positive constant. Therefore,

Pt (τα = t |τα > t− 1, τD > t− 1) = [1− exp (−Gt)]1τα>t−11τD>t−1.

Intuitively, the conversion should occur whenever the leverage ratio is close to the critical
level α determined by the regulator. If the CoCo debt still exists at time t, then the super-
script t− denotes the pre-conversion values of the considered variables. The convertible
contingent instrument is a coupon-paying bond with the floating coupon rate c (Xt). At
conversion, CoCo debt holders receive, in the form of equity shares, an amount equivalent
to the debt’s face value Cτ−C

and a fraction ρC of the coupon. In other words, at conversion,
the convertible debt holders receive

NτC =
Cτ−C

(1 + ρCc (XτC−1))

SτC

equity shares, where SτC is the post-conversion price per share. Assuming that initially
there were N outstanding equity shares, the post-conversion price per share becomes

SτC =
EτC

N +NτC

=
Eτ−C

+ Cτ−C
(1 + ρCc (XτC−1))

N +
C

τ−
C
(1+ρCc(XτC−1))

SτC

.

Multiplying both sides by N +
C

τ−
C
(1+ρCc(XτC−1))

S
τ−
C

and isolating SτC leads to

SτC =
Eτ−C

N
= Sτ−C

,

which implies that the price per share is not affected by the conversion. Then, the equity
value becomes

EτC = Eτ−C
+ Cτ−C

(1 + ρCc (XτC−1)) .

Letting
yt =

Ct

Dt

∈ [0, γ] ⊆ [0, 1] (2.3)

be the proportion of convertible debt in the total debt value. Because there are always
deposits, then the convertible instrument represents less than 100% of the debt value, which
implies that γ < 1. The number of additional shares issued at conversion satisfies

NτC = N (1 + ρCc (XτC−1)) y
τ−
C

Xτ−C

1−Xτ−C

∼= N (1 + ρCc (α)) y
τ−
C

(
α

1− α

)
. (2.4)
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Proof.

NτC =
Cτ−C

(1 + ρCc (XτC−1))

SτC

= N
Cτ−C

(1 + ρCc (XτC−1))

Eτ−C

= N
Cτ−C

(1 + ρCc (XτC−1))

Dτ−C

Dτ−C

Aτ−C

Aτ−C

Eτ−C

= N (1 + ρCc (XτC−1))
Cτ−C

Dτ−C

Dτ−C

Aτ−C

1

1−
D

τ−
C

A
τ−
C

= N (1 + ρCc (XτC−1)) y
τ−
C

Xτ−C

1−Xτ−C

.

The standard debt pays the floating coupon rate of b (Xt, yt) unless default occurs. In-
terestingly, the debt coupon is affected by the presence of the CoCo instrument because the
latter mitigates both the default and recovery risks. If

1− zt =
Ft

Ft +Bt

=
Ft

Dt − Ct

=
1

1− yt

Ft

Dt

denotes the proportion of the non-convertible contingent debt value that consists of de-
posits, then

Ft = (1− zt) (1− yt)Dt, Bt = zt (1− yt)Dt and Ct = ytDt. (2.5)

2.2.1 The Debt Ratio P−Dynamics

Assume that the firm survives up to time t : τD > t. At the beginning of the t+1th period,
the invested capital yields returns:

Rt+1 = mt+1 + σt+1ε
P
t+1,

where m and σ2 are predictable processes and the sequence of εt is formed with inde-
pendent standard normal random variables. The information structure is provided by the
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filtration {Ft}∞t=1 , where Ft = σ
({
εPu
}t
u=1

)
is the σ−field modelling the information

available at time t. Throughout the period, decisions about the convertible contingent debt
conversion and the dividend payment affect the debt and debt ratio values. At time t + 1,

free cash flow (FCF ) is
FCFt+1 = AtRt+1.

The financial flow (FF ) is decomposed into the deposit interest payment rt+1Ft,where
rt+1 is the predictable risk-free rate, the interest payment on standard and convertible debts,
b (Xt, yt)Bt and c (Xt)Ct respectively, the dividend payment δt+1At+1, and the debt struc-
ture variation,

Dt+1 −Dt = (Ft+1 − Ft) + (Bt+1 −Bt) + (Ct+1 − Ct)1τC>t+1 − Ct1τC=t+1.

The floating interest rates reflect the risk embedded in both standard and CoCo debts. Both
types of debts contain credit risk because the firm may default. See Appendix A.1.

The debt structure variation is expressed as a ratio:

ηt+1 =
Dt+1 −Dt

Dt

.

New debt issuance makes ηt+1 > 0, whereas debt reaching maturity or CoCo debt conver-
sion leads to ηt+1 < 0.

Assumption 1. Let yt = y01τC>t, where y0 = C0/D0. In other words, whenever the
contingent convertible debt exists, its proportion of the total debt value remains constant.
Similarly, assuming that the proportion of deposits with respect to the non-convertible
debt value remains constant over time, (1− zt) = (1− z0) = F0/(F0 + B0) and z0 =

B0/(F0 +B0).

Assumption 2. At conversion time, if there is no variation in the other types of debt, then
ητC = −ytC−1. In the numerical implementation, we assume that ηt+1 = −yt1τC=t+1. In
other words, the debt value at conversion is modified only by the conversion of the CoCo
debt to equity.

Thus, the weighted average interest rate is

µt+1 = µt+1 (Xt, zt, yt,1τC>t+1)

12



= (rt+1Ft + b (Xt, yt)Bt + c (Xt)Ct1τC≥t+1) /Dt

= rt+1 (1− zt) (1− yt) + b (Xt, yt) zt (1− yt) + c (Xt) yt1τC>t+1. (2.6)

Since
Dt+1 = Dt (1 + ηt+1) , (2.7)

the financial flow satisfies

FFt+1 = µt+1Dt +Dt −Dt+1 + δt+1At+1

= (µt+1 − ηt+1)Dt + δt+1At+1.

The bank’s profit is the difference FCF −FF between the free cash flow and the financial
flow. Therefore,

At+1 = At + FCFt+1 − FFt+1

= (1 +Rt+1)At − (µt+1 − ηt+1)Dt − δt+1At+1,

which is equivalent to

At+1 =
(1 +Rt+1)At − (µt+1 − ηt+1)Dt

1 + δt+1

. (2.8)

Dividing both sides of Equation (2.8) by At,

At+1

At

=
(1 +Rt+1)− (µt+1 − ηt+1)Xt

1 + δt+1

.

Since
At+1

At

=
At+1

Dt+1

Dt+1

Dt

Dt

At

=
1

Xt+1

(1 + ηt+1)Xt,

comparing both equations and isolating Xt+1 implies that the (post-dividend) debt ratio
must satisfy

Xt+1 =
(1 + δt+1) (1 + ηt+1)Xt

(1 +Rt+1)− (µt+1 − ηt+1)Xt

. (2.9)

Note that
Xt+1 = (1 + δt+1)X

0
t+1, (2.10)

where X0
t+1 denotes the pre-dividend debt ratio

X0
t+1 = Xt+1|δt+1=0 =

(1 + ηt+1)Xt

(1 +Rt+1)− (µt+1 − ηt+1)Xt

.
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2.2.2 Conversion

The conversion decision is taken under the assumption that δt+1 = 0, ηt+1 = 0 (no debt
issuing or refunding), and that the full interest payment includes the CoCo debt coupon:

µC
t+1 = rt+1 (1− zt) (1− yt) + b (Xt, yt) zt (1− yt) + c (Xt) yt. (2.11)

The conversion intensity

Gt+1 = g
(
XC

t+1

)
=

(
XC

t+1

θC

)βC

(2.12)

is a positive, increasing, and convex function of the debt ratio

XC
t+1 =

Xt

(1 +Rt+1)− µC
t+1Xt

, (2.13)

which is a particular case of Equation (2.9). The parameter θC is the critical level from
which the conversion probability grows fast beyond this threshold. Because of the convex
relation between the conversion intensity and the conversion probability, θC is not exactly
equal to the regulator critical level α, but it is in its neighborhood. The parameter βC
captures the growth speed. In the numerical implementation, both parameters are obtained
through a calibration approach based on the regulator critical level α. For this reason, τα
denotes the conversion time characterized by the conversion intensity α. The conditional
conversion probability at time t + 1 triggered by the critical level α (letting βC → ∞, we
recover the case where conversion occurs as soon as Xt− > α) is

Pt+1 (τα = t+ 1 |τC > t) = [1− exp (−Gt+1)]1τC>t.

Because immediate conversion may also arise as a consequence of an unpredicted de-
fault, the survival conversion probability is

Pt+1 (τC > t+ 1 |τC > t) = Pt+1 (τα > t+ 1, τD > t+ 1 |τC > t)

= Pt+1 (τα > t+ 1 |τC > t)Pt+1 (τD > t+ 1 |τC > t)

= exp (−Ht+11τC>t −Gt+1) .
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Then, the conditional conversion probability arising from both the critical level and the
potential default is

Pt+1 (τC = t+ 1 |τC > t) = [1− exp (−Ht+11τC>t −Gt+1)]1τC>t, (2.14)

where the default intensity Ht+1 is defined at Equation (2.17).

2.2.3 Default

Since default occurs after conversion, the interest payment does not include the CoCo debt
coupon. Indeed, a fraction of the CoCo coupon is paid back to CoCo debt holders in the
form of equity shares. This means that

µD
t+1 = rt+1 (1− zt) (1− yt) + b (Xt, yt) zt (1− yt) . (2.15)

The default intensity is based on the pre-dividend debt ratio. More precisely, assuming
that there are no dividends, δt+1 = 0, and that the only debt variation considered is the one
arising from an immediate conversion, ηt+1 = −yt1τC=t+1, the pre-dividend debt ratio is

XD
t+1 =

(1− yt)Xt

(1 +Rt+1)−
(
µD
t+1 + yt

)
Xt

1τα>t +
Xt

(1 +Rt+1)− µD
t+1Xt

1τα≤t. (2.16)

Since a debt ratio augmentation has more impact on the default probability when the
debt ratio is already high, the default intensity Ht+1 is a positive, increasing, and convex
function of the debt ratio. More precisely,

Ht+1 = h
(
XD

t+1, yt
)
= λD +

(
XD

t+1

θD,t

)βD

, (2.17)

where θD,t = θD + yt, λD ≥ 0, θD > α, βD > 1. Indeed, θD,t represents the critical debt
ratio from which the increasing behaviour of the default probability (seen as a function of
the debt ratio) accelerates. Because the CoCo instrument provides the standard debt holders
with an additional protection against default risk, the critical debt ratio is θD,t slightly higher
whenever the CoCo debt is present in the debt structure. Consequently, the conditional
default probabilities are

Pt+1 (τD = t+ 1 |τC > t, τD > t) = [1− exp (−Ht+11τC>t)]1τD>t, (2.18)
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and

Pt+1 (τD = t+ 1 |τC ≤ t, τD > t) = [1− exp (−Ht+11τC≤t)]1τD>t. (2.19)

2.3 Stochastic Optimum Control Problem

The period ]t, t+ s] discount factor is

DFt,t+s =
t+s−1∏
u=t

1

1 + w (Xu)
,

where the cost of capital is a weighted average of the cost of equity, rE , and the cost of
debt, µ:

w (Xu) = (1−Xu) r
E
u +Xuµu. (2.20)

The current equity holders want to maximize their share of dividends. More precisely,
given a stream of dividend rates δ1:∞ = {δi}∞i=1, the expected value of the discounted
dividends at time t is

V
(
t,X0

t , δt:∞
)
1τD>t =

∞∑
u=t

EPt

[
DFt,uδuAu

(
1τC>u +

N

N +NτC

1τC≤u

)
1τD>u

]
1τD>t

∼=
∞∑
u=t

EPt

[
DFt,uδuAu

(
1− (1 + ρCc (α)) y0α

1− α + (1 + ρCc (α)) y0α
1τC≤u

)
1τD>u

]
1τD>t,

since Assumption 1 and Equation (2.4) imply that

1τC>u +
N

N +NτC

1τC≤u = 1− NτC

N +NτC

1τC≤u

∼= 1− (1 + ρCc (α)) y0α

1− α + (1 + ρCc (α)) y0α
1τC≤u.

Since V allows for the decomposition

V
(
t,X0

t , δt:∞
)
1τD>t

∼= δtAt

(
1− (1 + ρCc (α)) y0α

1− α + (1 + ρCc (α)) y0α
1τC≤t

)
1τD>t

+ EPt
[
DFt,t+1V

(
t+ 1, X0

t+1, δt+1:∞
)
1τD>t+1

]
1τD>t, (2.21)
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the optimal dividend rate sequence δopt
1:∞ can be constructed recursively using backward

recursion over time:

δopt
t = arg max

δt∈[0,δmax
t ]

{
Atδt

(
1− (1 + ρCc (α)) y0α

1− α + (1 + ρCc (α)) y0α
1τC≤t

)
(2.22)

+EPt

[
V
(
t+ 1, X0

t+1, δ
opt
t+1:∞

)
1 + w (Xt)

1τD>t+1

]}
1τD>t.

See Appendix A.4. Because At+1

At
= Dt

At

Dt+1

Dt

At+1

Dt+1
= Xt

Xt+1
(1 + ηt),

v
(
t,X0

t , δt:∞
)
1τD>t =

V (t,X0
t , δt:∞)

At

1τD>t (2.23)

∼= δt

(
1− (1 + ρCc (α)) y0α

1− α + (1 + ρCc (α)) y0α
1τC≤t

)
1τD>t

+ EPt

[
DFt,t+1

Xt

Xt+1

(1 + ηt) v
(
t+ 1, X0

t+1, δt+1:∞
)
1τD>t+1

]
1τD>t,

and

δopt
t = arg max

δt∈[0,δmax
t ]

{
δt

(
1− (1 + ρCc (α)) y0α

1− α + (1 + ρCc (α)) y0α
1τC≤t

)
+EPt

[
Xt

Xt+1

(1 + ηt)
v
(
t+ 1, X0

t+1, δ
opt
t+1:∞

)
1 + w (Xt)

1τD>t+1

]}
1τD>t.

Therefore, we work with a standardized version of the primary equity holders’ share of
cumulated discounted dividends. Indeed, under this form, the dynamic optimization does
not require the modelling of the dynamics of A.

The dividend rate is bounded above. Indeed, if the dividend payment is too large, the eq-
uity value will drop below its current level. More precisely, noting that Xt = (1 + δt)X

0
t ,

the expected variation of the pre-dividend equity is (see Appendix A.2.3)

EPt

[
Et+1|δt+1=0 − Et

]
≤
(
mt+1 − (1 + δt)X

0
t µt+1

(
(1 + δt)X

0
t

))
At.

We restrict δt, making the right-hand side bound positive. Now, let x0 be the solution of
mt+1 − x0µt+1 (x0) = 0. Indeed, since xµ (x) is an increasing function of x starting at
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0, a unique solution exists. Since equity holders do not reduce the expected equity value
deliberately, it follows that

mt+1 − (1 + δt)X
0
t µt+1

(
(1 + δt)X

0
t

)
≥ 0 ⇐⇒ (1 + δt)X

0
t µt+1

(
(1 + δt)X

0
t

)
≤ mt+1

⇐⇒ (1 + δt)X
0
t ≤ x0

⇐⇒ δt ≤
x0
X0

t

− 1.

In addition, since x0

X0
t
− 1 → ∞ as X0

t → 0, this upper dividend rate bound is not active
for small debt ratio values. However, the dividend rate is generally lower than the expected
asset returns, which leads to δt ∈ [0, δmax

t ], where

δmax
t = min

(
max

(
x0 −X0

t

X0
t

, 0

)
,mt+1

)
. (2.24)

Dynamic programming optimization allows using a recursive method starting from T

with backward induction. At each time period, the value function is the sum of the imme-
diate dividend and the expected future dividend gain. To initialize the recursion, a long
time horizon T is chosen for which some simplifications are made. Because the model is
Markovian, after some iterations, the terminal conditions vanish and, for that reason, the
following assumption has no impact on our numerical results. The algorithm stops when
the variations in the optimal dividend become very small. Then, for time T , the following
simplifications are to be assumed.

Assumption 3. For any t > T ,

1. The asset returns are no longer uncertain, that is, Rt = mT , σ2
t = 0;

2. There is no more possibility of conversion, that is, the CoCo debt becomes a standard
debt;

3. The dividends are the remaining part of the returns once the interest rate payment
on the debts is deducted:

δtAt = max (mTAt − µtDt−1, 0) ; (2.25)

18



4. If the dividend payment mTAt − µtDt−1 is positive, then there is no variation of the
debt value, that is, Dt = Dt−1 or, equivalently, ηt = 0;

5. The risk-free rate rt is constant and equal to r.

Since a potential conversion is no longer possible (Assumption 3-2), for all t > T , the
coupon on the CoCo debt is the same as the one on the ordinary debt, that is,

µt = r (1− zt−1) (1− yT ) + b (Xt−1, 0) zt−1 (1− yT ) + b (Xt−1, 0) yT

= r (1− zt−1) (1− yT ) + b (Xt−1, 0) (1− (1− zt−1) (1− yT )) .

Assume for a moment that mTAt − µtDt−1 ≥ 0. As a consequence of Assumption
3-3, ∀t > T ,

FCFt − FFt = mTAt−1 − (µt − ηt)Dt−1 − δtAt = 0,

which implies that At = At−1. Therefore,

δt =
1

At

max (mTAt − µtDt−1, 0)

= max

(
mT − µt

At−1

At

Dt−1

At−1

, 0

)
= max (mT − µtXt−1, 0) .

Moreover, from Assumption 3-4,Dt = Dt−1, it follows thatXt = Xt−1 and µt+1 = µt.

In addition, a recursive argument leads to the following conclusion: if the dividend rate is
positive, that is

0 ≤ δT+1 =
mTAT+1 − µT+1DT

AT+1

= mT − µT+1
AT

AT+1

XT

= mT − µT+1XT ,

then for all t > T , Xt = XT , At = AT , µt = µT+1 and δt = δT+1 = mT − µT+1XT . The
discount factor then becomes

DFt,t+s =
t+s−1∏
u=t

(1 + w(XT ))
−1 = (1 + w (XT ))

−s .
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If mTAt − µtDt−1 < 0, then not only is there no dividend payment, but also the firm
needs to issue more debt to cover the interest expenses: Dt = Dt−1 + µtDt−1 −mTAt. In
that case,

FFt = µtDt−1 +Dt−1 −Dt

= µtDt−1 +Dt−1 −Dt−1 − µtDt−1 +mTAt

= mTAt

= FCFt,

and At = At−1 +FCFt −FFt = At−1. Therefore, the debt is growing and the asset value
is stable, which implies that the debt ratio will increase until default.

Lemma 1. Under Assumption 3, the expected value of the discounted dividends at time T
satisfies

V
(
T,X0

T , δT
)
1τD>T (2.26)

∼= AT

(
1− y0α

1− α + y0α
1τC≤T

){
δT + δT+1

(
exp (−h (XT ))

1 + w (XT )− exp (−h (XT ))

)}
1τD>T ,

where δT+1 = mT−µT+1XT , h (XT ) = λD+
(

1
θD

max (XT ; 0)
)βD

andXT = (1 + δT )X
0
T .

See proof in Appendix A.2.4.

2.4 Numerical Results

To generate realistic scenarios, the parameters correspond to the financial ratio of three
banks in three different countries (Europe, Canada, and the United States (U.S.)). The aim
is to analyze how "too big to fail" banks can react in the case where there is or not CoCo
in the debt structure. We focus the analysis on three different periods corresponding to the
pre-crisis (2006), the crisis (2008), and the post-crisis (2015).
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2.4.1 Data

The sample is composed of three banks listed as Global-Systemically Important Banks
(G-SIBs): Société Générale for Europe, Royal Bank of Canada for Canada, and Bank of
America in the United States. For each bank and for each year, the debt ratio is calculated
from Equation (2.2). The total amount of asset (At), deposit (Ft), long and short-term
debt (Bt) and CoCo (Ct) are obtained using Bloomberg (Bloomberg Financial Analysis
and Bloomberg Contingent Convertibles Search).

Figure 2.1 shows the evolution of the debt ratio over time, according to the banks. The
French bank has the highest debt ratio during the financial crisis of 2008. Nowadays, the
French and the Canadian banks appear to have the same level of debt in their financial
structure. The decomposition of the debt structure, as presented in Table 2.1, bring out
that the French bank finance these activities with fewer deposit and more bonds than the
Canadian and U.S. banks.

CoCo was first launched in Europe at the end of 2009, after the financial crisis, to
fulfill a need in terms of risk management. CoCos appear as a potential solution to absorb
losses when the capital of banks fall below a certain level. CoCos issuance has started to
rapidly increase since 2013/2014: under Basel III, certain specific CoCos are categorized
as Additional Tier 1 capital (AT1). Nowadays, CoCos throughout the world are mainly
issued by European and Asian companies. Canadian banks started to issue CoCos in 2014
while U.S. banks do not.

Figure 2.1. Evolution of the Debt Ratio Over Time
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Table 2.1. Source of Assets

Société
Générale

Royal Bank of
Canada

Bank of
America

Equity/Asset 5.41% 6.43% 10.62%
Deposit/Asset 40.60% 77.37% 58.86%
Bonds (including CoCo)/Asset 53.99% 16.20% 32.52%

The table presents the average of three financial ratios over 19 years, from 1999 to 2018. Asset is computed
using Equation (2.1). Deposit, Equity and Bonds (including CoCo) are based on the financial statement
available on Bloomberg.

To initialize the dynamic optimization, the percentage of CoCos in the debt structure
is assumed to be 1%, since it is quite representative of the European and Canadian banks.
Indeed, based on the debt value and the amount of CoCos issued by banks, obtained from
Bloomberg, the percentage of CoCos in the debt structure is around 1.15% for European
banks and around 0.64% for Canadian banks. For the U.S. banks, assuming 1% of CoCos
could shed light on how it could help the bank in case of financial distress.

Table 2.2 presents the parameter values obtained from the financial ratio of three banks,
for three different periods (pre-crisis (2006), crisis (2008), and post-crisis (2015)). The crit-
ical debt ratio parameters (θC and θD) and the convexity parameters (βC and βD) character-
izing the conversion and default intensities were obtained by calibrating the conversion and
default probabilities (c.f., Appendix A.3). The results obtained for the critical debt level of
the conversion intensity θC is near 95%. Indeed, under Basel III, CoCos that have a mini-
mum trigger level of 5.125% in terms of CET1 by RWA and that have perpetual coupons
are qualified as AT1. Hence, there had been a trend towards issuing CoCos with such char-
acteristics. This corresponds to a trigger level imposed by the regulator (α) in terms of debt
ratio close to 1–5.125% of RWA. The critical debt ratio of the default intensity obtained,
θD, is slightly greater than 100%. When a firm has more liabilities than assets, there is a
high risk of insolvent and excess leverage. The convexity conversion (default) parameter,
βC (βD), is designed to increase the conversion probability (default probability) rapidly
around the critical debt ratio θC (θD). This leads to high convexity parameters.
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Table 2.2. Parameter Values of the Dynamic Optimization per Bank per Year.

Société Générale Royal Bank of Canada Bank of America
2006 2008 2015 2006 2008 2015 2006 2008 2015

Returns

rt 3.76% 1.99% −0.2% 4.07% 0.89% 0.51% 4.94% 0.28% 0.73%

rEt 20.04% 7.02% 6.23% 23.21% 17.64% 18.42% 18.07% 1.81% 6.27%

m 3.07% 3.43% 1.26% 3.5% 4.35% 2.25% 3.84% 4.66% 0.36%

σ2 2% 2% 2%

Initial debt structure

F0 31.41% 29.71% 44.35% 79.58% 86.39% 83.45% 54.78% 56.13% 70.29%

y0 1% 1% 1%

Conversion risk

α 98.47% 98.43% 98.63% 97.86% 98.03% 98.03% 96.30% 96.28% 96.65%

βC 74.48 66.55 39.85

θC 97.42% 96.82% 94.69%

ρC 90% 90% 90%

Default risk

θD 107.7% 104.11% 107.29%

βD 47.2 69.9 40.46

λD 0 0 0

ρD 0.4 0.4 0.4

Numerical scheme

T 30 30 30

∆x 0.002 0.002 0.002

∆t 1 1 1

rt stands for risk-free rate and corresponds to the one-year zero coupon curve computed by each central
bank of each region. rEt stands for the Return on Equity. m stands for the average of the expected return
on capital and σ2 its variance. F0 means the percentage of deposit at time 0. y0 = C0/D0 is the initial
proportion of CoCo debt. The conversion and default intensities functions are respectively Equations (2.12)
and (2.17). The debt ratio mesh parameter ∆x represents the distance between two consecutive debt ratios.
The time discretization is ∆t = 1 year. 23



The credit risk management literature suggests that the recovery rate is around 40%,
based mainly on observed data (Altman and Kishore, 1996; Duffie and Lando, 2001). The
risk-free rate corresponds to the one-year zero coupon curve computed by the European
Central Banking, Bank of Canada, and the Federal Reserve Bank of St. Louis. rEt cor-
responds to the Return on Equity (ROE). m is the expected capital return expected by in-
vestors and is therefore not directly observable. We have chosen to proxymt by the average
ROE over the last five years and the average risk-free rate, such thatmt = (1−x)r̄Et +xr̄t.

2.4.2 Empirical Results

Using the parameters presented in Table 2.2, Equations (2.14), (2.18) and (2.19) are used
to compute the one-year conversion probability and the one-year default probabilities as a
function of the actual debt ratio. Figure 2.2 shows that, for each bank and for each year, the
conversion probability increases with the debt ratio. Around the debt ratio critical level,
the conversion probability tends to climb to 100% reflecting the mandatory conversion. As
expected, the presence of CoCo debt instruments reduces the default probabilities. When
there is no more CoCo in the debt structure, the default probability increases more rapidly.
It confirms that having CoCos in the debt structure acts like a safety buffer. The conversion
and default probabilities are not only driven by the intensity parameters, but also by the
actual market conditions, that is, the risk-free rate, the expected return on the capital, and
the debt structure. Figure 2.2 shows that the probabilities of default were greater in 2006,
with more indebted banks.

Equations (A.4)–(A.6) give the coupon rate on the standard debt (with and without Co-
Cos) and the CoCo debt. CoCo debt holders face two risks: the risk of default (like the
standard debt holders), plus the risk of mandatory conversion. However, since at conver-
sion, CoCo debt holders receive in terms of equity the value of their investment, there is no
conversion recovery risk. Figure 2.3 shows that when the contingent debt is present in the
debt structure, the CoCo debt is more expensive than the standard debt. Moreover, as the
contingent debt mitigates the default risk, the coupon rate of the ordinary debt is notably
lower in the presence of CoCos. Comparing the result for each bank and each year, Figure
2.3 shows that the coupons are lower over the years due to lower interest rate. The risk-free
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Figure 2.2. One-Year Conversion and Default Probabilities

All curves are obtained from a Monte Carlo simulation based on 2×106 paths. The parameters are described
in Table 2.2. Each column corresponds to a specific bank and each line corresponds to a specific year. The
dark grey dotted line represents the conversion probability. The black line represents the one-year default
probability in the presence of CoCos in the debt structure. The light grey circle dash line represents the one-
year default probability without CoCos in the debt structure. The vertical dashed-dotted line corresponds to
the trigger level (α) of 1-5.125% of risk-weighted assets. The dark grey dotted line corresponds to the debt
ratio observed for the specified bank at the specified year.

rates were higher before the financial crisis and stayed at low levels after the crisis.

The cost of debt (Equation (2.6)) is a weighted average of each component (deposit,
standard debt, and CoCo debt). Figure 2.4 shows that the cost of debt increases for large
debt ratio which is a direct consequence of the coupon curve behaviour, as observed in
Figure 2.3. Even if the CoCo coupon rate is large relatively to the standard debt coupon
rate, for high-debt ratio, the presence of CoCo in the debt structure reduces the cost of debt.
Over the years, the cost of debt decreases, mainly due to the lower risk-free rate. Because
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Figure 2.3. CoCos and Standard Debts Coupons
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All curves are obtained from a Monte Carlo simulation based on 2×106 paths. The parameters are described
in Table 2.2. Each column corresponds to a specific bank and each line corresponds to a specific year. The
dark grey dotted line represents the coupon on the CoCo debt. The black line represents the coupon on the
standard debt in the presence of CoCos in the debt structure. The light grey circle dash line represents the
coupon on the standard debt without CoCos in the debt structure. The vertical dashed-dotted line corresponds
to the trigger level (α) of 1-5.125% of risk-weighted assets. The dark grey dotted line corresponds to the debt
ratio observed for the specified bank at the specified year.

Royal Bank of Canada uses mainly deposits over bonds, the cost of debt is not so much
affected by the increase in the coupon value for high-debt ratio.

The cost of debt directly affects the cost of capital (Equation (2.20)). Indeed, the lower
the cost of capital, the more likely the bank is creating value. The cost of capital indicates
the minimum rate of return before generating profit. When the debt ratio is close to 0%, the
bank is financed by equity: the cost of capital corresponds to the cost of equity. Between
the two extremes, the cost of capital tends to decrease: the cost of debt is generally a
cheaper source of financing than equity, except when the firm is in financial distress. As
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Figure 2.4. Cost of the Debt
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All curves are obtained from a Monte Carlo simulation based on 2×106 paths. The parameters are described
in Table 2.2. Each column corresponds to a specific bank and each line corresponds to a specific year. The
black line represents the cost of debt when there is CoCos in the debt structure. The light grey dashed line
represents the cost of debt without CoCos in the debt structure. The vertical black dashed-dotted line corre-
sponds to the trigger level (α) of 1-5.125% of risk-weighted assets. The dark grey dotted line corresponds to
the debt ratio observed for the specified bank at the specified year.

shown in Figure 2.5, the equity return declines substantially during the 2008 financial crisis,
especially for the U.S. and European banks and stays at a low level after the crisis. The low
cost of capital for Société Générale and Bank of America in 2008 and 2010 is in line with
the low ROE and risk-free rate observed for these periods. The effects of the 2008 financial
crisis were less important for the Canadian banks. In Europe, the 2011 debt crisis is also a
reason for these low interest rates and ROE. In all studied cases, the cost of capital is at its
lowest just before the debt ratio conversion trigger, around 95%. In Figure 2.5, we see that,
for all studied cases, the debt ratio is to the left of the debt ratio level that minimizes the
cost of capital. In a multi-period setting, banks use a precautionary cushion to stay away
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from the conversion and default thresholds.

Figure 2.5. Cost of the Capital
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All curves are obtained from a Monte Carlo simulation based on 2×106 paths. The parameters are described
in Table 2.2. Each column corresponds to a specific bank and each line corresponds to a specific year. The
black line represents the cost of capital when there is CoCos in the debt structure. The light grey dashed line
represents the cost of capital without CoCos in the debt structure. The vertical dashed-dotted line corresponds
to the trigger level (α) of 1-5.125% of risk-weighted assets. The dark grey dotted line corresponds to the debt
ratio observed for the specified bank at the specified year.

To mitigate the effect of Assumption 3, the dynamic optimization program is applied
recursively using a backward recursion until there are no significant changes in the dividend
policy and the value of the discounted aggregated dividend per share (Equation 2.21) and
Equation 2.22). Figure 2.6 shows the optimal dividend rate in function of the debt ratio at
time t = T − 30. The optimal dividend rate is more permissive when there is CoCo in the
debt structure in 2008 and 2015. The difference between the optimal dividend rate with
and without CoCos is the largest for Bank of America during the financial crisis. The U.S.
banks were the most affected by the subprime crisis. The presence of CoCos in the debt
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structure has a significant effect on the optimal dividend rate. The optimal dividend rate
in 2015 for Bank of America is very small (0.36%) due to the expected return on capital:
we use a weighted average over the mean ROE and risk-free rate over the last five years,
and these parameters are very small due to the low interest rate policy and the effect of the
crisis.

Figure 2.6. Optimal Dividend at Time T = 0
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All curves are obtained from a Monte Carlo simulation based on 2×106 paths. The parameters are described
in Table 2.2. Each column corresponds to a specific bank and each line corresponds to a specific year. The
black line represents the optimal dividend rate when there is CoCos in the debt structure. The light grey
dashed line represents the optimal dividend rate without CoCos in the debt structure. The vertical dashed-
dotted line corresponds to the trigger level (α) of 1-5.125% of risk-weighted assets. The dark grey dotted
line corresponds to the debt ratio observed for the specified bank at the specified year.

Figure 2.7 shows the (normalized) discounted cumulated dividend value of the primary
equity holders at time t = T − 30. The primary equity holders have larger dividend gains
when the CoCo debt is part of the debt structure. This is due to the dilution effect created
by the CoCo conversion: CoCo debt holders become equity holders, then, mechanically,
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decrease the dividend-per-share. The (normalized) discounted cumulated dividend value
is at its maximum for a debt ratio around 50%, except for Bank of America in 2015. For all
studied cases, the observed debt ratio does not maximize the future dividends. The level
of the discounted cumulated dividend for Bank of America in 2008 reflects the sudden
financial crisis and our parametrization of the expected return on capital. The ROE was in
average equal to 18.82% from 2003 to 2006, 10.77% in 2007 and 1.81% in 2008. The low
ROE in 2008 affected the level of the cost of capital and so the discount factor used in the
dynamic program. However, the expected return on capital is difficult to estimate, and so
we use past observations on the ROE and risk free rate instead of prospective data. This
leads to a high expected return on capital, which affects the level of the optimal dividend
rate. A sensitivity analysis follows.

2.4.3 Sensitivity Analysis

Sensitivity analysis is performed to examine how changes in the parameters affect our con-
clusions and in particular the discounted cumulated dividend. First, what is the impact of
letting the proportion of CoCos in the debt structure increases from 1% to 10%, all other
parameters being the same? Obviously, Figure 2.8 shows that, after conversion, discounted
cumulated dividends are much lower because the dilution effect is more important: there
is more debt converted to equity. Before the conversion, there is not much impact or a
slight decrease due to the modest increase of the conversion risk. For a large debt ratio, the
discounted cumulated dividends are slightly smaller.

Second, we analyze how good the situation is for the firms, that is, how firms with
high ROE affect the dividends. We fix the ROE for each bank equal to the maximum
ROE observed from 1999 to 2017, all other parameters being the same as in the base case.
Changing the ROE also impacts the expected return on capital (m). These two parameters
impact the cost of capital, the discount factor, and thus the discounted cumulated dividends,
as well as the optimal dividend rates. Indeed, an increase of the expected return on capital
leads to higher optimal dividend rates. For example, the optimal dividend rate for Bank
of America in 2015 increases at 2.97% and create higher discounted cumulated dividends.
In 2008, for Bank of America, increasing the ROE allows to have reasonable values of

30



Figure 2.7. (Standardized) Value of Discounted Cumulated Dividends at Time T = 0
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All curves are obtained from a Monte Carlo simulation based on 2×106 paths. The parameters are described
in Table 2.2. Each column corresponds to a specific bank and each line corresponds to a specific year. The
black line represents the case when there is CoCos in the debt structure. The light grey dashed line represents
the case without CoCos in the debt structure. The vertical dashed-dotted line corresponds to the trigger level
(α) of 1-5.125% of risk-weighted assets. The dark grey dotted line corresponds to the debt ratio observed for
the specified bank at the specified year.

discounted cumulated dividends, as shown in Figure 2.9. For Société Générale in 2008 and
2015, increasing the ROE slightly decrease the discounted cumulated dividends. There is a
trade-off between having high dividend today and a high dividend in the future, which can
create impatience for the equity holder. Indeed, increasing the ROE leads to an increase of
the expected return on capital due to our parametrization. This also leads to an increase in
the cost of capital that affects the discount factor of the future dividend. It is not clear what
is the expectation of the discounted cumulated dividends in that context.

Finally, we change the default intensity to have higher default probabilities, reflecting
bad conditions for banks. We assume a one-year default probability of 8% around the
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Figure 2.8. Discounted Cumulated Dividends at Time T = 0, with y = 10%

0% 50% 100%

0%

5%

10%

15%

Société Générale-2006

0% 50% 100%

0%

10%

20%

Royal Bank of Canada-2006

0% 50% 100%

0%

10%

20%

Bank of America-2006

0% 50% 100%

0%

20%

40%

Société Générale-2008

0% 50% 100%

0%

20%

40%

Royal Bank of Canada-2008

0% 50% 100%

0%

100%

200%

Bank of America-2008

0% 50% 100%

0%

10%

20%

30%
Société Générale-2015

0% 50% 100%

0%

10%

20%

Royal Bank of Canada-2015

0% 50% 100%

0%

2%

4%

Bank of America-2015

critical debt ratio imposed by the regulator. An increase of the default probability decreases
the value of the discounted cumulated dividend faster when the bank is largely indebted,
as shown in Figure 2.10. As expected, when the bank is not so much indebted, there is no
or a slight decrease in the level of the discounted cumulated dividend, especially, in the
absence of CoCo in the debt structure, as observed for Société Générale in 2006 and 2008.
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Figure 2.9. Optimal Dividend and Discounted Cumulated Dividends at Time T = 0, With High
Return on Equity.
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Figure 2.10. Optimal Dividend and Discounted Cumulated Dividends at Time T = 0, With Higher
Default Probabilities
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2.5 Conclusion

We introduced a reduced form approach that also includes information about the financial
health of the firm to model the impact of CoCos in the debt structure by taking into account
the uncertainty and the time-varying default and conversion risks. To analyze the impact of
CoCos in the bank’s capital structure, we set up a hypothetical capital structure consisting of
equity, ordinary debt, and CoCo debt in order to understand the benefits/costs of convertible
contingent debt. Real parameters are used, corresponding to three banks considered as
G-SIBs (too big to fail) in three different markets (Europe, Canada, and U.S.) for three
periods (pre-crisis, crisis, and post-crisis) to generate scenarios. Results reveal that CoCos
reduce the cost and the risk of standard debt when they are being added to the capital
structure. In fact, CoCos acts as a precautionary buffer to prolong the default time and
hence to reduce the risk of default for ordinary debt. Meanwhile, CoCo itself is a more
expensive instrument compared to the ordinary debt, remembering that it has zero chance
of recovery on default. Furthermore, the results show that the presence of CoCos in the debt
structure reduce the total cost of debt, knowing that the cost of debt is a weighted average
of each debt component. From the point of view of primary equity holders, the presence
of CoCos in the bank’s capital structure increases the aggregated value for shareholders.
The optimal dividend policy derived from the dynamic optimization suggests paying more
dividends when the CoCo is active and leads to higher aggregated dividends, especially in
the context of crisis and low return.
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Chapter 3

Predicting the Term Structure of Credit Spreads
for High- and Low-Frequency Issuers: A
Combined Nelson-Siegel and Clustering
Approach

Abstract

We propose and evaluate methodologies to forecast credit spread term structures and cor-
porate bond prices by addressing challenges related to bond-trading frequencies across
issuers. For high-frequency issuers, we implement a two-step Nelson–Siegel model cou-
pled with a Vector Autoregressive (VAR) framework. Due to limited data availability for
low-frequency issuers, we develop a two-step clustering approach: we first identify dis-
tinct clusters of high-frequency issuers using a Gaussian Mixture Model; we then link each
low-frequency issuer to these clusters using issuer-specific information, and we compute
weighted-average credit-spread curves according to posterior cluster probabilities. Em-
pirical analysis on USD-denominated corporate bond data demonstrates predictive perfor-
mance, although accuracy declines for longer maturities and in sparsely populated issuer
clusters, emphasizing the critical importance of data quality.



3.1 Introduction

This study examines methodologies for predicting the term structure of corporate credit
spreads and bond prices, developed in collaboration with a partner company, a Toronto-
based financial analytics firm specializing in fixed-income markets, and supported by a
Mitacs scholarship. In exchange for access to a promising, unique data lake, the partner
company requested forecasts of bond prices at different time horizons. We chose to pre-
dict the corporate credit spread term structure to address the bond-price prediction chal-
lenge. Corporate credit spreads are defined as the differences between corporate zero-
coupon yield curves and a risk-free benchmark, typically U.S. Treasury yields for USD-
denominated corporate issuers. Corporate issuers differ in their frequency and volume of
trading activity. We classify issuers into two categories: those with extensive historical
bond-trading data (“high-frequency issuers”) and those with limited or infrequent trading
activity (“low-frequency issuers”). This paper addresses three research questions: How
can the zero-coupon spread curves and associated bond prices be predicted from one- to
five-day-ahead time horizons for high-frequency issuers? Can issuance prices be forecast
for newly issued bonds by high-frequency issuers? For low-frequency issuers, or issuers
without sufficient historical bond data, how can we reliably estimate zero-coupon corporate
spread curves and subsequently predict issuance prices for their bonds?

We approach these questions by first estimating issuer-specific zero-coupon spread
curves through the Nelson-Siegel framework, originally proposed by Nelson and Siegel,
1987. The Nelson-Siegel model is well-known for its flexibility and parsimony, which can
accommodate diverse yield curve shapes using only four coefficients: level, slope, cur-
vature, and hump position of the term structure (Diebold & Li, 2006; Sundaram & Das,
2011). Despite these advantages, the Nelson-Siegel model is known for parameter instabil-
ity, posing challenges for reliable forecasting. To enhance parameter stability, we adopt the
two-stage estimation approach proposed by Gauthier and Simonato, 2012. This approach
initially utilizes a linearized version of the Nelson-Siegel model informed by prior infor-
mation, providing starting values for subsequent optimization. Moreover, we introduce a
penalization component into the optimization criterion whenever parameter estimates devi-
ate beyond one standard error from previous periods, thus further stabilizing the parameter
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estimation.
We then forecast the zero-coupon spread curves from one- to five-day ahead time hori-

zons. While Diebold and Li, 2006 applied an autoregressive approach, our analysis iden-
tifies substantial correlations among estimated coefficients, which motivate us to employ a
Vector AutoRegressive (VAR) model to better capture these dependencies. This method-
ology allows us to predict new bonds issued by high-frequency issuers.

For low-frequency issuers, the Nelson-Siegel methodology is infeasible due to its mini-
mum requirement of four actively traded bonds per issuer per day. Furthermore, extrapolat-
ing credit spreads beyond observed maturities can introduce significant pricing biases. To
address these constraints, we propose a two-step clustering methodology. First, we apply
a Gaussian Mixture Model to group high-frequency issuers into distinct clusters based on
their credit-risk characteristics. We then build a confusion matrix summarizing the proba-
bility of membership in each cluster given sector, seniority, and credit rating. Second, for
low-frequency issuers, we compute a weighted-average credit-spread curve using cluster
probabilities derived from the confusion matrix. This allows us to predict the credit spread
and thus the bond prices for those low-frequency issuers.

Although the partner company initially committed to providing an extensive, high-
quality fixed-income securities database essential for robust predictive modelling, practical
implementation encountered significant obstacles due to limited data accessibility and data
quality issues. These limitations influenced both the methodological development and the
reliability of the resulting predictions.

The remainder of the paper is structured as follows. Section 3.2 describes the dataset
and discusses our data-cleaning and validation protocols. Section 3.3 details the Nel-
son–Siegel estimation and VAR forecasting for high-frequency issuers. Section 3.4 presents
the clustering methodology for low-frequency issuers. Section 3.5 concludes the paper.

3.2 The Data

Significant challenges emerged related to data accessibility and quality. We encountered
inconsistencies such as unflagged simulated data, which complicated the analysis. For
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the estimation of the zero-coupon (ZC) yield curve for U.S. government securities and
the ZC spread curves for corporate issuers, we require precise inputs: dirty price, bond
maturity (tenor), coupon rate, and coupon frequency. Market platforms typically provide
bond prices as clean prices, which exclude accrued interest. Consequently, we convert these
clean prices into dirty prices by incorporating accrued interest. Given data-quality issues,
our analysis began with rigorous cleaning procedures. We focused exclusively on plain-
vanilla bonds, excluding covered bonds, Islamic bonds, structured products (e.g., asset-
backed or mortgage-backed securities), and private placements. Only bonds with at least
USD 250 million outstanding were retained, per the partner company’s requirement. We
further refined the dataset by excluding securities with anomalous pricing. Observations
were removed if bid or ask yields were negative or if the bid yield was inexplicably lower
than the ask yield. Because the yields in the dataset are averages across recent trades
rather than closing yields, bid yields can occasionally appear below ask yields when trades
occur at wide spreads. Although infrequent, this inconsistency affected up to 25 percent
of observations for certain issuers, underscoring a major data-quality concern. We also
removed records where the issue date occurred after the trade date. Descriptive statistics
of the average number of bonds per year and per issuer can be found in Table 3.1 and Table
3.3.

Given the absence of prices with accrued interest1, we derived mid prices based on the
provided mid yields as the sum of discounted cash flows with Accrued Interest (AI):

Bi = 100× ci
fi

1−
(
1 + ytmi

fi

)−T×fi

ytmi

fi

+
100(

1 + ytmi

fi

)T×fi
+ AIi,

AIi = 100× ci
fi

×
(

days since last coupon
days in coupon period

)
,

where 100 is the face value, ci is the coupon rate of bond i, fi represents the coupon fre-
quency, T is the time to maturity in years, and ytmi is the yield-to-maturity. To mitigate
the impact of outliers, we eliminated bond prices falling outside the 0.1% and 99.9% per-
centiles. Credit spread curves for each issuer were constructed using bonds sharing uniform

1dirty price
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seniority. For 16.81% of USD-denominated bonds, we are missing coupon frequency in-
formation; hence, we assumed that coupons are paid semi-annually, aligning with North
American market standards. This assumption is supported by our data: when not missing,
semi-annual coupon frequency accounts for approximately 57.95% of USD-denominated
bonds in our dataset. Due to incomplete data on day-count conventions, we estimated the
remaining number of coupon payments by rounding up the product of each bond’s tenor
and coupon frequency. These extensive data-cleaning and adjustment procedures were crit-
ical to ensuring the integrity of our empirical analysis and subsequent predictive-modelling
efforts.

3.3 Prediction for High-Frequency Issuers: Nelson-Siegel
Model Using the Two-Step Approach

3.3.1 Nelson-Siegel Two-Step Approach

The model is based on the construction of the zero-coupon curve using coupon-bearing
bond prices. The price of a coupon-bearing bond can be represented as a function of zero-
coupon bond prices, as follows:

Bi =

mi∑
j=1

ci,j, P
(
ti,j
)

=

mi∑
j=1

ci,je
−yZC(ti,j)ti,j , (3.1)

where P (ti,j) is the zero-coupon bond price serving as the discount factor; mi is the num-
ber of remaining coupon payments of bond i; ti,j is the time-to-maturity to the jth coupon
payment of bond i; and yZC is the zero-coupon yield curve. The jth coupon payment of
bond i, ci,j , is defined as

ci,j = 100
(

ci
fi
Ij<mi

+
(
1 + ci

fi

)
Ij=mi

)
,

where 100 is the face value, ci is the coupon rate, and fi is the coupon frequency of bond i.
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The zero-coupon (ZC) yield yZC is modelled using the Nelson-Siegel framework (Nel-
son & Siegel, 1987) as

yZC(θ, t) = β0 + β1ϕ1(t, τ) + β2ϕ2(t, τ), (3.2)

ϕ1(t, τ) =
1− e−t/τ

t/τ
, (3.3)

ϕ2(t, τ) = ϕ1(t, τ)− e−t/τ , (3.4)

where θ = β0, β1, β2, τ is the vector of unknown parameters. Here, β0 denotes the long-
term yield; β1 controls the slope (so that β0 + β1 corresponds to the short-term yield); β2
captures the curvature; and τ determines the placement of the hump.

3.3.1.1 Estimation of the Zero-Coupon Yield Curve for Government Issuers

Our initial step is to estimate the zero-coupon yield curve for government bonds using
Equation (3.1). We determine the Nelson-Siegel coefficients by numerically minimizing
the root-mean-squared relative error (RMSRE), defined as:√√√√ 1

Nt

Nt∑
i=1

(
B̂i −Bi

Bi

)2

, (3.5)

where Nt is the number of bonds available at time t, B̂i is the model-estimated price, and
Bi is the observed bond price.

The Nelson-Siegel approach is known to encounter optimization challenges: different
coefficient sets can produce almost identical yield curves, and there are several local optima
(Gauthier & Simonato, 2012; Sundaram & Das, 2011). To mitigate this issue, we adopt the
two-step linearized Nelson-Siegel approach proposed by Gauthier and Simonato, 2012 to
establish initial coefficient values prior to nonlinear optimization. The intuition underlying
this linearization is as follows: for a given fixed τ , the three other coefficients (β0, β1,
β2) can be estimated by ordinary least squares (OLS); then, over a grid of τ values, we
select the one that minimizes the RMSRE in Equation (3.5). This procedure is based on
a Bayesian framework, as prior information on the coefficients is incorporated into the
estimation process.
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For the estimation of U.S. Treasury yields, our priors are derived from the long-term
yield, slope, and curvature of the Treasury constant-maturity yields, available through the
Federal Reserve Economic Data (FRED) database.2 The long-term yield prior corresponds
to the 30-year constant-maturity yield; the slope prior corresponds to the spread between
the 3-month and 30-year constant-maturity yields; and the curvature prior corresponds to
twice the 5-year yield minus the sum of the 3-month and 30-year yields. The details of the
linearization step are presented in Appendix B.1.

We verify coefficient stability by ensuring each estimated coefficient remains within
one standard error of its previously estimated value.3 If any coefficient deviates beyond
this threshold, we re-estimate the coefficient set by introducing a penalty term into the
RMSRE objective function to enforce coefficient stability over time. The penalized-loss
function is defined as:√√√√ 1

Nt

Nt∑
i=1

(
B̂i −Bi

Bi

)2

+
2∑

j=0

(
β̂j,t − βj,t−1

)2
+

(
τ̂t − τt−1

τt−1

)2

, (3.6)

where B̂i is the estimated price from Equation (3.1) using the estimated Nelson-Siegel
coefficients β̂0,t, β̂1,t, β̂2,t, τ̂t. This penalty term ensures stability and interpretability of the
coefficients over time, which is essential for subsequent forecasting.

3.3.1.2 In-Sample Results for United States Treasury Bonds

Table 3.1 provides descriptive statistics for the dataset of U.S. Treasury bonds, covering the
period from January 2013 through December 2019. The daily number of bonds available
increases over this period, from an average of 59 bonds per trading day in 2013 to 178

bonds per day in 2019, reflecting improved database coverage in recent years. The average
coupon rate decreases over the period, from 4.12% in 2013 to 2.25% in 2019, consistent
with the general downward trend in U.S. interest rates during this period. The average bond
maturity decreases from 15.76 years in 2013 to 5.80 years in 2019; the median indicates

2https://fred.stlouisfed.org/categories/115
3The standard errors are calculated using a rolling window of three months. During the first three months

of the dataset, standard errors are computed based on the linearized model’s coefficient estimates.
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Table 3.1. Descriptive Statistics of U.S. Treasury Bonds per Year

Bonds per day Coupon Tenor
Year Min Avg Max Avg Min Avg Med Max
2013 7 58.79 76 4.12% 3.87 15.76 13.14 30
2014 4 39.96 80 3.12% 2.87 13.50 8.43 30
2015 4 57,38 114 2.65% 1.88 11.87 6.63 30
2016 5 81.61 143 2.33% 0.88 10.19 5.74 30
2017 8 114.04 185 2.16% 0.25 8.31 4.7 30
2018 4 151,77 227 2.3% 0.83 7.23 3.90 30
2019 29 177.98 460 2.25% 0.025 5.8 4 2.88 30

The data cover the period from January 2, 2013, to December 31, 2019. Dates with fewer than four traded
securities (8 out of 1,752 days) were excluded.

a concentration of bonds at shorter maturities. Despite these observations, bonds span the
full range of the zero-coupon curve up to 30 years.

The time series of the estimated U.S. Treasury Nelson-Siegel coefficients are presented
in Figure 3.1. The estimated coefficients are stable across the sample period, with the long-
term yield coefficient (β0) decreasing over time. The slope coefficient (β1) approaches zero
beginning in 2018, reflecting a flattening yield curve. The τ coefficient increases during
2018 and 2019, coinciding with periods when the U.S. Treasury zero-coupon yield curve
flattened or became inverted.

Figure 3.2 presents the estimated zero-coupon yield surface for U.S. Treasury bonds
over the 2013–2019 period. The surface reveals negative short-term rates in 2013, reflect-
ing both historically low short-term yields and the known limitations of the Nelson-Siegel
model in capturing yields at very short maturities, exacerbated by the scarcity of very short-
term bonds in the data. Starting in 2018, the yield curve flattens and transitions into an
inversion observed in 2019. These dynamics mirror the evolution of the Nelson-Siegel
coefficients shown in Figure 3.1.

To assess model precision, we compute three accuracy measures: Mean Absolute Error
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Figure 3.1. Time Series of the Estimated Nelson-Siegel Coefficients of the Zero-Coupon Yield
Curve for U.S. Treasuries

The panels visually document estimated coefficients from January 2, 2013, to December 31, 2019. The
coefficients are estimated using the two-step linearized NS approach on Equations (3.1) and (3.2), minimizing
either Equation (3.5) or Equation (3.11) when the coefficients deviate beyond one standard error of previous
estimates. From top to bottom: long-term yield (β0), slope (β1), curvature (β2), hump position (τ ), and
RMSRE as defined in Equation (3.5).

(MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE), defined as:

MAE =
1

Nt

Nt∑
i=1

|B̂i −Bi|, (3.7)

MSE =
1

Nt

Nt∑
i=1

(
B̂i −Bi

)2
, (3.8)

RMSE =
√
MSE. (3.9)

Table 3.2 presents these results by maturity bucket. Accuracy improves as maturity
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Figure 3.2. Surface of the Estimated U.S. Treasury Yield Curve from 2013 to 2019

The surface is computed using the estimated coefficients shown in Figure 3.1, covering January 2, 2013, to
December 31, 2019.

shortens: the overall average absolute difference between estimated and observed prices
is approximately $17 cents, declining to less than $0.11 for maturities up to ten years.
Figure 3.3 depicts the distribution of pricing errors, which is leptokurtic with many small
deviations and occasional large outliers.

3.3.1.3 Estimation of the Zero-Coupon Spread Curve for Corporate Issuers

To capture issuer-specific risks in corporate bond prices, we estimate the zero-coupon
spread curve rather than the zero-coupon yield curve. This approach requires first es-
timating the zero-coupon yield curve for the corresponding government issuer. Indeed,
Equation (3.1) can be decomposed to account for both government (risk-free) yields and
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Table 3.2. Precision Errors Between the Estimated Price and the Observed Price by Bucket of
Maturity for U.S. Treasury Bonds

MAE MSE RMSE
T ≤ 1 0.04 0.00 0.06

1 < T ≤ 2 0.04 0.00 0.07
2 < T ≤ 5 0.07 0.01 0.12
5 < T ≤ 10 0.11 0.03 0.17
10 < T ≤ 15 0.12 0.04 0.20
15 < T ≤ 20 0.15 0.08 0.28
20 < T ≤ 25 0.17 0.10 0.32
25 < T ≤ 31 0.18 0.11 0.33

Overall 0.17 0.10 0.32

The results cover the period from January 2, 2013, to December 31, 2019. The estimated prices are com-
puted using the estimated coefficients presented in Figure 3.1. Accuracy metrics are defined in Equations
(3.7)–(3.9).

issuer-specific spreads as follows:

Bi =

mi∑
j=1

ci,je
−yZC(θ(Gov),ti,j)ti,je−yZC(θ(issuer),ti,j)ti,j , (3.10)

where θ(Gov) is the coefficient set for the government’s zero-coupon yield curve, and θ(issuer)

is the coefficient set for the issuer-specific zero-coupon spread curve.
The estimation procedure closely follows that for government issuers. We numeri-

cally optimize the issuer-specific spread coefficients using initial values obtained from a
linearized Nelson-Siegel approach adapted explicitly for the zero-coupon spread (see Ap-
pendix B.2). After initial optimization, coefficient stability is assessed by verifying that
each coefficient remains within one standard error of its value computed over the previous
three-month rolling window. If any coefficient deviates beyond this threshold, we perform
a penalized re-estimation by modifying the loss function to incorporate penalties based on
deviations from the previous day’s coefficient values and on prior information about the
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Figure 3.3. Distribution of the Pricing Errors Between Estimated and Observed Prices from 2013
to 2019 for US (U.S. Treasury Bonds)

The histogram shows the distribution of errors between estimated and observed bond prices from January 2,
2013, to December 31, 2019. The orange line corresponds to a fitted Gaussian density.

plausible range of coefficients. The modified loss function is defined as:√√√√ 1

Nt

Nt∑
i=1

(
B̂i −Bi

Bi

)2

+
2∑

j=0

(
β̂j,t − βj,t−1

)2
+

(
τ̂t − τt−1

τt−1

)2

+
2∑

j=0

(
β̂j,t − βprior

j,t−1

)2
(3.11)

Since our primary objective is prediction, coefficient stability is crucial. Although many
coefficient sets can generate the spread, only a few produce interpretable weight structures.
Incorporating prior information on long-term spread levels, slope spreads, and curvature
significantly enhances coefficient interpretability and stability. A complete description of
the priors’ construction is provided in Appendix C.1 of Chapter 4.

3.3.1.4 In-Sample Results for U.S. Corporate Issuers

We evaluate the performance of our approach using data on six U.S. corporate issuers:
Goldman Sachs (ID=580), RBC4 (ID=270), Johnson & Johnson (ID=939), The Walt Dis-
ney Company (ID=973), Amgen (ID=979), and Verizon (ID=995). Table 3.3 summarizes

4USD-denominated bonds.
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the average daily number of traded bonds per issuer and year. Our analysis covers bond
prices from 2015 through 2019, although data availability for RBC and Verizon begins
in 2016 and mid-2017, respectively. RBC has a limited number of traded bonds per day
compared to the other five firms, which have between 10 and 51 traded bonds per day.

Table 3.3. Average Number of Bonds per Issuer and Year

RBC
(ID=270)

Goldman Sachs
(ID=580)

Johnson
(ID=939)

Walt Disney
(ID=973)

Amgen
(ID=979)

Verizon
(ID=995)

2015 - 12.27 9.81 10.22 17.44 -
2016 4.32 16.92 13.77 14.90 21.68 -
2017 6.38 20.75 18.30 18.53 28.15 40.78
2018 7.85 22.46 23.44 19.55 29.31 41.67
2019 9.67 19.26 23.67 51.05 29.88 42.98

The data cover the period from January 2, 2015, to December 31, 2019. Data for RBC and Verizon begin in
2016 and mid-2017, respectively. Dates with fewer than four traded securities are excluded.

Figure 3.4 shows the time series of Mean Absolute Error and Mean Squared Error over
the sample period for each issuer. RBC has fewer traded bonds and exhibits lower MAE
and MSE values, indicating higher estimation accuracy. Conversely, Verizon has numerous
traded bonds per day and shows higher MAE and MSE, especially in 2019. Verizon’s per-
formance divergence reflects substantial variability in yields across maturities within the
dataset. For instance, on August 30, 2019, among the 13 Verizon bonds with maturities ex-
ceeding 20 years, yields ranged from 2.4% to 4.02%, with mean and median values around
3.4%. Variations in yield-to-maturity and, accordingly, in prices, are observed across dif-
ferent maturity buckets and trading dates, which complicates accurate price estimation and
shows significant data-quality limitations within the dataset.

Appendix B.3 visually documents the estimated Nelson-Siegel spread coefficients and
the corresponding root-mean-squared relative errors (RMSRE) for each issuer over the
sample period. For the six issuers considered, the long-term spread coefficients range from
1% and 3.5%, while the slope coefficients tend to remain negative. The τ coefficient is
relatively stable over time; notably, RBC, Walt Disney, and Verizon have τ between 1.5

and 3 years, while Goldman Sachs, Johnson & Johnson, and Amgen exhibit a higher and
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broader range, from 4 to 8 years.

Figure 3.5 presents the surface of the Nelson-Siegel spread curve for each issuer. All
issuers generally exhibit positively sloped (normal) spread curves. RBC and Johnson &
Johnson display consistently lower yield spreads relative to the other issuers, although
RBC’s spreads rise during 2019. Given RBC’s limited bond maturities, the estimation ac-
curacy of its long-term spread coefficient might be compromised. We observe two periods
where the spread increases: early 2016 and throughout 2019. Between these two periods,
the spread reduces and the curve flattens, except for Verizon. These corporate credit spread
dynamics differ markedly from the U.S. Treasury curve, which began flattening in 2018 and
became inverted in 2019.

Table 3.4 summarizes the in-sample pricing errors (MAE, MSE, and RMSE) for each
issuer. Similar conclusions to those observed in Figure 3.5 are reached. RBC achieves the
highest estimation accuracy, benefiting from fewer traded bonds and reduced variability.
In contrast, Verizon demonstrates substantially lower accuracy, reflecting extensive yield
fluctuations across maturities, particularly evident in the 2019 data.

Table 3.4. In-Sample Precision Errors Between the Estimated Price and the Observed Price for
U.S. Corporate Issuers

MAE MSE RMSE
RBC (ID=270) 0.10 0.07 0.27
Goldman Sachs (ID=580) 0.50 0.69 0.83
Johnson (ID=939) 0.75 1.26 1.12
Walt Disney (ID=973) 1.02 3.04 1.74
Amgen (ID=979) 1.31 3.58 1.89
Verizon (ID=995) 2.29 20.07 4.48

The data cover the period from January 2, 2015, to December 31, 2019. Data for RBC and Verizon begin in
2016 and mid-2017, respectively. The statistics are computed using Eqs. (3.7)–(3.9).
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3.3.2 Prediction of the Yield and Spread Curve

To forecast yield curves and bond prices, we first predict the dynamics of the Nelson-Siegel
coefficients (i.e., the long-term yield, β0; the slope, β1; and the curvature, β2) by modelling
their joint evolution using a Vector Autoregressive (VAR) model:

β0,t = γ0,0 +
AR∑
i=1

γ0,iβ0,t−i + ε0,t, (3.12)

β1,t = γ1,0 +
AR∑
i=1

γ1,iβ1,t−i + ε1,t, (3.13)

β2,t = γ2,0 +
AR∑
i=1

γ2,iβ2,t−i + ε2,t, (3.14)

where t is the time period,AR is the selected autoregressive lag, and the residual terms ε0,t,
ε1,t, and ε2,t are correlated. We use the estimated VAR parameters (γ̂j,i, with j = 0, 1, 2

and i = 0, 1, ..., AR) to obtain one- to h-step-ahead forecasts of each the Nelson-Siegel
coefficients via its conditional expectations given the information available at time t− 1:

Et−1 [βj,t] = Et−1

[
γ̂j,0 +

AR∑
i=1

γ̂j,iβj,t−i + εj,t

]

= γ̂j,0 +
AR∑
i=1

γ̂j,iEt−1 [βj,t−i] + Et−1 [εj,t]

= γ̂j,0 +
AR∑
i=1

γ̂j,iβj,t−i,

for j = {0, 1, 2}. Finally, these forecasted coefficients are then used to reconstruct the
predicted yield curves and associated bond prices.

The first three Nelson-Siegel coefficients are linear; however, the fourth coefficient, τ ,
introduces nonlinear complexity. Due to Jensen’s inequality, we cannot directly use the
conditional expectation of τ to forecast the yield curve without introducing bias. Indeed,
the Nelson-Siegel basis functions, ϕ1(T, τ) and ϕ2(T, τ) in Equations (3.3) and (3.4), ex-
hibit nonlinear (concave or convex) relationships in maturity T and coefficient τ . The
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function ϕ1(T, τ) is strictly concave, starting at 1 for T = 0 and decreasing monotoni-
cally to 0 as T increases; thus, smaller τ accelerates this decay. The function ϕ2(T, τ) is
concave for smaller values of T and convex otherwise. Jensen’s inequality implies that the
expectation of a nonlinear function does not equal the function evaluated at the expectation,
introducing a bias if the expectation of τ is used directly to forecast the yield curve:

Et−1

[
yZC
t (θ, T )

]
= Et−1 [β0,t + β1,tϕ1(T, τ) + β2,tϕ2(T, τ)]

= Et−1 [β0,t] + Et−1 [β1,tϕ1(T, τ)] + Et−1 [β2,tϕ2(T, τ)]

̸= Et−1 [β0,t] + Et−1 [β1,t]Et−1 [ϕ1(T, τ)] + Et−1 [β2,t]Et−1 [ϕ2(T, τ)] .

To mitigate this issue and avoid bias, we fix the value of τ at its most recently observed
value and forecast only the linear coefficients (β0, β1, and β2). Furthermore, given the
strong correlations among the NS coefficients both within and across issuers, we explicitly
model these correlations among each series of βi (i = 0, 1, 2) within the VAR framework.
Forecasting is performed using a Seemingly Unrelated Regression (SUR) approach. Fur-
ther details on the SUR methodology and its implementation are provided in Appendix
B.4.

3.3.2.1 Out-of-Sample Prediction Results for U.S. Treasury Bonds

To evaluate the predictive performance of our model, we conduct an out-of-sample analysis
by dividing the dataset into two distinct subsets: an in-sample training set with observations
from January 2015 to June 2018, and an out-of-sample test set with observations from
July 2018 to December 2019. This split corresponds to a 70% in-sample and 30% out-of-
sample division. Using the in-sample data, we estimate the VAR model parameters of the
NS coefficients’ dynamics, which are then employed to forecast these coefficients on the
out-of-sample data.

To measure predictive accuracy, we compute the MAE between the predicted and ob-
served bond prices for forecast horizons of one to five days ahead. Table 3.5 presents
the out-of-sample MAE results for U.S. Treasury bonds across various maturity buckets.
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Consistent with prior findings, prediction accuracy improves with shorter maturities and
remains stable across all forecast horizons from one to five days ahead. Compared to the
in-sample analysis, out-of-sample MAEs are generally stable, except for bonds with ma-
turities between 25 and 31 years, where the MAE increases by approximately five cents,
indicating slightly lower accuracy at the long end of the yield curve.

Table 3.5. Mean Absolute Error for X-day Ahead Out-of-Sample Price Predictions for U.S. Trea-
sury Bonds

1-day 2-day 3-day 4-day 5-day

T ≤ 1 0.0400 0.0397 0.0398 0.0399 0.0395
1 < T ≤ 2 0.0539 0.0540 0.0545 0.0552 0.0552
2 < T ≤ 5 0.0879 0.0903 0.0917 0.0934 0.0944
5 < T ≤ 10 0.1207 0.1243 0.1261 0.1293 0.1304
10 < T ≤ 15 0.1224 0.1262 0.1283 0.1316 0.1328
15 < T ≤ 20 0.1424 0.1464 0.1497 0.1542 0.1557
20 < T ≤ 25 0.1735 0.1779 0.1822 0.1882 0.1922
25 < T ≤ 31 0.2251 0.2286 0.2346 0.2428 0.2467
Overall 0.2068 0.2099 0.2153 0.2227 0.2261

Mean absolute error by maturity bucket between forecasted and observed bond prices for U.S. Treasury
bonds. Predictions are generated one to five days ahead using VAR parameters estimated from the in-sample
dataset (January 2015-June 2018) and evaluated over the out-of-sample period (July 2018-December 2019).

3.3.2.2 Out-of-Sample Precision Errors for One- to Five-Days-Ahead Predicted Psrices
for Corporates

s We apply the same out-of-sample forecasting framework to our six U.S. corporate issuers.
The dataset from January 2015 through June 2018 serves as the in-sample estimation win-
dow, while July 2018 through December 2019 constitutes the out-of-sample test period (ad-
justed slightly for Verizon and RBC to account for their later data start dates). We generate
one- to five-day-ahead forecasts of bond prices by propagating the estimated VAR–SUR
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system of Nelson-Siegel coefficients and then reconstructing prices via the coupon-bond
pricing formula. Predictive accuracy is measured by the Mean Absolute Error (MAE) be-
tween forecasted and realized prices. Tables 3.6 through 3.10 report the detailed MAE
results for each issuer and forecast horizon.

We observe a decline in predictive accuracy as maturity and forecast horizon increase.
Comparing the out-of-sample MAE with the in-sample MAE (cf. Table 3.4), Goldman
Sachs’s predictive performance surpasses its in-sample accuracy, while RBC, Johnson &
Johnson, and Amgen exhibit out-of-sample accuracy comparable to their respective in-
sample levels; however, Walt Disney and Verizon experience decreased accuracy. These
conclusions hold consistently across one- to five-day forecast horizons.

Figure 3.6 presents the distribution of one-day-ahead forecast errors between forecasted
and observed prices for all six U.S. issuers. Each distribution exhibits leptokurtosis, char-
acterized by many small errors concentrated around the mean and a limited number of
extreme deviations. Verizon displays a significant number of outliers, reinforcing the po-
tential data-quality issues noted earlier. Given these findings, further verification of data-
integration processes within the database is recommended to enhance predictive reliability.
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Table 3.6. One-Day Ahead Precision Errors (MAE) Between Forecasted and Observed Prices by
Maturity Bucket for U.S. High-Frequency Issuers

RBC
(ID=270)

Goldman Sachs
(ID=580)

Johnson
(ID=939)

Walt Disney
(ID=973)

Amgen
(ID=979)

Verizon
(ID=995)

T ≤ 1 0.185 0.099 0.116 0.070 0.216 -
1 < T ≤ 2 0.105 0.142 0.131 0.139 0.185 0.210
2 < T ≤ 5 0.158 0.207 0.247 0.328 0.310 0.485
5 < T ≤ 10 0.180 0.284 0.515 1.016 1.848 1.848
10 < T ≤ 15 - 1.345 1.256 1.179 - 2.863
15 < T ≤ 20 - - 1.235 2.724 3.610 3.268
20 < T ≤ 25 - 1.807 1.726 1.584 1.876 2.845
25 < T ≤ 31 - 0.889 1.029 2.830 1.765 4.340
Overall 0.144 0.348 0.744 1.319 1.334 2.688

MAE is defined in Eq.(3.7). The in-sample data set covers the period of January 2015 to June 2018. The
out-of-sample data set covers the period of July 2018 to December 2019. The out-of-sample set is used to
test the precision of the forecasted prices versus the observed prices.

Table 3.7. Two-Day Ahead Precision Errors (MAE) Between Forecasted and Observed Prices by
Maturity Bucket for U.S. High-Frequency Issuers

RBC
(ID=270)

Goldman Sachs
(ID=580)

Johnson
(ID=939)

Walt Disney
(ID=973)

Amgen
(ID=979)

Verizon
(ID=995)

T ≤ 1 0.185 0.099 0.115 0.069 0.216 -
1 < T ≤ 2 0.105 0.142 0.130 0.139 0.184 0.209
2 < T ≤ 5 0.164 0.211 0.249 0.330 0.313 0.487
5 < T ≤ 10 0.175 0.301 0.522 1.020 1.852 1.856
10 < T ≤ 15 - 1.333 1.276 1.192 - 2.860
15 < T ≤ 20 - - 1.240 2.710 3.602 3.272
20 < T ≤ 25 - 1.821 1.732 1.591 1.877 2.851
25 < T ≤ 31 - 0.896 1.048 2.836 1.776 4.362
Overall 0.147 0.354 0.750 1.321 1.337 2.694

MAE is defined in Eq.(3.7). The in-sample data set covers the period of January 2015 to June 2018. The
out-of-sample data set covers the period of July 2018 to December 2019. The out-of-sample set is used to
test the precision of the forecasted prices versus the observed prices.
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Table 3.8. Three-Days Ahead Precision Errors (MAE) Between Forecasted and Observed Prices
by Maturity Bucket for U.S. High-Frequency Issuers

RBC
(ID=270)

Goldman Sachs
(ID=580)

Johnson
(ID=939)

Walt Disney
(ID=973)

Amgen
(ID=979)

Verizon
(ID=995)

T ≤ 1 0.185 0.099 0.115 0.069 0.215 -
1 < T ≤ 2 0.107 0.143 0.130 0.140 0.183 0.209
2 < T ≤ 5 0.168 0.221 0.252 0.332 0.316 0.492
5 < T ≤ 10 0.170 0.328 0.529 1.028 1.858 1.864
10 < T ≤ 15 - 1.360 1.291 1.192 - 2.858
15 < T ≤ 20 - - 1.251 2.692 3.589 3.277
20 < T ≤ 25 - 1.832 1.732 1.606 1.883 2.857
25 < T ≤ 31 - 0.937 1.070 2.851 1.796 4.390
Overall 0.149 0.367 0.757 1.325 1.344 2.702

MAE is defined in Eq.(3.7). The in-sample data set covers the period of January 2015 to June 2018. The
out-of-sample data set covers the period of July 2018 to December 2019. The out-of-sample set is used to
test the precision of the forecasted prices versus the observed prices.

Table 3.9. Four-days Ahead Precision Errors (MAE) Between Forecasted and Observed Prices by
Maturity Bucket for U.S. High-Frequency Issuers

RBC
(ID=270)

Goldman Sachs
(ID=580)

Johnson
(ID=939)

Walt Disney
(ID=973)

Amgen
(ID=979)

Verizon
(ID=995)

T ≤ 1 0.184 0.099 0.115 0.068 0.214 -
1 < T ≤ 2 0.107 0.144 0.129 0.140 0.183 0.208
2 < T ≤ 5 0.172 0.227 0.253 0.334 0.318 0.493
5 < T ≤ 10 0.173 0.345 0.535 1.032 1.861 1.866
10 < T ≤ 15 - 1.376 1.309 1.213 - 2.861
15 < T ≤ 20 - - 1.265 2.690 3.585 3.287
20 < T ≤ 25 - 1.850 1.750 1.627 1.897 2.868
25 < T ≤ 31 - 0.985 1.089 2.868 1.802 4.406
Overall 0.151 0.378 0.766 1.333 1.349 2.709

MAE is defined in Eq.(3.7). The in-sample data set covers the period of January 2015 to June 2018. The
out-of-sample data set covers the period of July 2018 to December 2019. The out-of-sample set is used to
test the precision of the forecasted prices versus the observed prices.
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Table 3.10. Five-days Ahead Precision Errors (MAE) Between Forecasted and Observed Prices by
Maturity Bucket for U.S. High-Frequency Issuers

RBC
(ID=270)

Goldman Sachs
(ID=580)

Johnson
(ID=939)

Walt Disney
(ID=973)

Amgen
(ID=979)

Verizon
(ID=995)

T ≤ 1 0.185 0.099 0.114 0.068 0.214 -
1 < T ≤ 2 0.108 0.146 0.129 0.140 0.183 0.207
2 < T ≤ 5 0.175 0.232 0.255 0.335 0.318 0.493
5 < T ≤ 10 0.173 0.364 0.538 1.034 1.864 1.866
10 < T ≤ 15 - 1.361 1.321 1.219 - 2.863
15 < T ≤ 20 - - 1.275 2.683 3.582 3.299
20 < T ≤ 25 - 1.875 1.762 1.639 1.906 2.874
25 < T ≤ 31 - 0.987 1.094 2.873 1.804 4.414
Overall 0.153 0.385 0.771 1.336 1.352 2.715

MAE is defined in Eq.(3.7). The in-sample data set covers the period of January 2015 to June 2018. The
out-of-sample data set covers the period of July 2018 to December 2019. The out-of-sample set is used to
test the precision of the forecasted prices versus the observed prices.
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Figure 3.4. MAE and MSE for U.S. Corporate Issuers from 2015 to 2019

MAE and MSE are defined in Eq. (3.7) and Eq. (3.8), respectively. The issuers are RBC (ID=270), Gold-
man Sachs (ID=580), Johnson & Johnson (ID=939), Walt Disney (ID=973), Amgen (ID=979), and Verizon
(ID=995). The data cover January 2, 2015, to December 31, 2019; data for RBC and Verizon begin in 2016
and mid-2017, respectively.
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Figure 3.5. Surface of Credit Spreads for U.S. Corporate Issuers for 2015 to 2019

RBC (ID=270) Goldman Sachs (ID=580)

Johnson & Johnson (ID=939) The Walt Disney Company (ID=973)

Amgen (ID=979) Verizon (ID=995)

Zero-coupon spread curves are computed using the estimated coefficients presented in Appendix B.3, which
are obtained via the Nelson-Siegel two-step approach. The data cover January 2, 2015, to December 31,
2019; data for RBC and Verizon begin in 2016 and mid-2017, respectively.
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Figure 3.6. Distributions of the Errors Between Forecasted and Observed Prices for U.S. High-
Frequency Issuers

RBC (id=270) Goldman Sachs (id=580)

Johnson & Johnson (id=939) The Walt Disney Company (id=973)

Amgen (id=979) Verizon (id=995)

Out-of-sample errors between the forecasted prices and the observed prices from July 2018 to De-
cember 2019. The orange line corresponds to a Gaussian distribution with the parameters (mean
and variance) of the error distribution.
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3.4 Prediction for Low-Frequency Issuers or New Issuers:
Clustering Approach

In this section, we present the two-step methodology used to forecast credit spread curves
for low-frequency issuers. Our approach involves, firstly, clustering high-frequency issuers
exhibiting similar credit-risk profiles through a Gaussian Mixture Model. Secondly, we
match low-frequency issuers to the appropriate high-frequency issuer clusters based on
issuer characteristics, allowing us to use the cluster-specific credit spread curves as proxies.
These proxy curves are then leveraged to predict credit spread curves for low-frequency
issuers. Empirical results follow.

3.4.1 Gaussian Mixture Model

We employ an unsupervised clustering methodology to forecast credit spread curves where
limited bond data prevents the direct estimation of credit spread curves. We start by esti-
mating the Nelson–Siegel zero-coupon credit spread curves on subsets of issuers having at
least five traded bonds per day,5 covering selected periods: April 2017, August 2017, De-
cember 2017, and June 2018. This approach ensures representative spread curves across
distinct market conditions.

In addition to the credit spread term structure values, we incorporate issuer-specific
characteristics into the database. Firstly, we classify bonds by seniority into four categories:
unsecured, secured, other unsecured,6 and other secured.7 Secondly, we standardize credit
ratings across the three primary rating agencies (S&P, Fitch, and Moody’s) into comparable
categories as described in Table 3.11. Thirdly, we enrich our dataset by including one-year

5Given the four-parameter Nelson–Siegel model, a minimum of four bonds per issuer-day is required to
ensure identifiability; we impose a slightly stricter threshold of five bonds to ensure sufficient data points for
robust estimation.

6The category “other unsecured” aggregates bond seniorities labeled as subordinated unsecured, senior
subordinated unsecured, junior unsecured, junior subordinated unsecured, senior non-preferred unsecured,
or similar subordinated rankings.

7The category “other secured” aggregates bonds labeled senior secured mortgage, senior secured first
mortgage, senior secured first lien, and other secured classes.
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and five-year default probabilities obtained from Bloomberg. Default probabilities offer a
continuous, nonlinear metric of credit risk, providing more granular insights than discrete
credit ratings alone. We end up with a database of 43, 507 rows.

Table 3.11. Cluster of Credit Rating Note in Function of the Rating Agency

Cluster of Credit Rating S&P Fitch 500 Moody’s
Prime AAA Aaa
High Grade AA+/AA/AA- Aa1/Aa2/Aa3
Upper Medium Grade A+/A/A- A1/A2/A3
Lower Medium Grade BBB+/BBB/BBB- Baa1/Baa2/Baa3
Non Investment Grade Speculative BB+/BB/BB- Ba1/Ba2/Ba3
Highly Speculative B+/B/B- B1/B2/B3
Substantial risks CCC+ Caa1
Extremely Speculative CCC Caa2
Default imminent CC+/CC/CC- Caa3 Ca
In Default D C
NR missing or unrated

Comparison of the credit rating note by rating agency.

Since issuer clusters are unobservable, we apply three unsupervised learning meth-
ods to cluster corporate issuers based on similarities in their estimated spread curves: K-
Means, K-Prototypes, and Gaussian Mixture Models (GMM). These unsupervised algo-
rithms identify patterns in the data by grouping issuers with similar profiles into clusters
while maximizing differentiation between distinct clusters. Due to superior predictive re-
sults, we subsequently focus exclusively on the Gaussian Mixture Model.

The Gaussian Mixture Model aims to identify a mixture of multidimensional Gaussian
probability distributions that best fit the dataset, treating cluster membership as a latent
variable. Given a set of N observations S = {x1,x2, ...,xN}, we aim to partition the data
into K distinct clusters C = {C1, C2, ..., CK}. For each observation xn, the conditional
probability distribution given membership in cluster k is assumed to follow a multivariate
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Gaussian distribution:

f(xn | Cn = k; θ) =
1√
2πσk

exp−
(
xn − µk

σk

)2

,

where θ = {µk, σk} denotes the parameter set, µk and σk represent the mean vector and
covariance matrix of cluster k, for k = 1, 2, ..., K, and Cn is the cluster of observation n.
The probability of an observation belonging to a cluster k is modeled by:

p (Cn = k) = πk,

for k = 1, 2, ..., K. Using Bayes’ theorem, the joint distribution of each observation and
its latent cluster membership is thus given by:

f(xn, Cn; θ) = p (Cn = k) f(xn | Cn = k; θ).

The marginal distribution of each observation is obtained by summing the joint distribution
over all clusters, which gives

p (xn) =
K∑
k=1

p (Cn = k) f (xn | Cn = k; θ) .

Thus, the Gaussian mixture distribution is expressed as a linear combination of Gaussian
distributions. The corresponding log-likelihood function is:

L (θ | x) = log p (x; θ) =
N∑

n=1

log

{ K∑
k=1

p (Cn = k; θ) f (xn | Cn = k; θ)

}
.

We estimate the parameters of the GMM model via the Expectation-Maximization
(EM) algorithm proposed by Dempster et al., 1977, which iteratively maximizes the likeli-
hood by alternating between expectation and maximization steps. The first step of the EM
algorithm, the expectation step, evaluates the conditional expectation of the log-likelihood,
i.e., the likelihood that the data belongs to cluster k given a set of parameters (or initial val-
ues), that is

Q
(
θ, θold

)
= E[log{f (x, C = k; θ) | x; θold}]
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=
N∑

n=1

K∑
k=1

p
(
Cn = k | xn; θ

old
)
log{f (xn, Cn = k; θ)}

where θold represents the current parameter estimates. The second step, the maximization
step, finds the new estimates of the parameters that maximize this expectation:

θnew = argmax
θ

Q
(
θ, θold

)
These steps are repeated until convergence. A detailed description of the EM algorithm
implementation can be found in Bishop, 2006.

To construct clusters of high-frequency issuers based on credit risk, we utilize corpo-
rate credit spreads at selected tenors (i.e., 1, 2, 3, 4, 5, 7, 10, 12, 15, 17, 20, 25, and 30

years), both with and without incorporating one-year and five-year default probabilities.
The inclusion of default probabilities, sourced from Bloomberg, is motivated by their abil-
ity to capture nonlinearities in issuer-specific default risk. Issuer characteristics (i.e., bond
seniority, sector, and aggregated credit ratings from S&P, Fitch, and Moody’s) are included
to ensure economically meaningful cluster identification.

To select the optimal number of clustersK, we use the Bayesian Information Criterion
(BIC) and the Akaike Information Criterion (AIC), defined respectively as:

BIC = q ln(n)− 2L (θ | x) , (3.15)

AIC = 2q − 2L (θ | x) , (3.16)

where q is the total number of parameters estimated, n is the number of observations, and
L (θ | x) is the maximized log-likelihood. The optimal number of clusters K is the one
minimizing these information criteria.

Table 3.12 summarizes the optimal number of clusters suggested by each criterion, both
with and without incorporating default probabilities. Consistent with expectations, the BIC
tends to suggest fewer clusters (18) compared to the AIC (47).

The decision regarding the optimal number of clusters balances statistical fit against
economic interpretability and practical forecasting considerations. While models with
more clusters can capture finer nuances in issuer-specific risk profiles, a large number of
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Table 3.12. Optimal Number of Clusters Based on Information Criteria for the Gaussian Mixture
Model

Data AIC BIC
Credit spread 40 9

Credit spread + default probabilities 47 18

AIC and BIC are based on the log-likelihood. AIC is defined in Equation (3.16), and BIC is defined in
Equation (3.15).

clusters may result in sparsity, with some clusters potentially having few observations or
even no available data during forecast periods. In our data, employing 18 clusters provides
better predictive performance than 47 clusters. A disproportionate representation among
clusters has been identified: five clusters represent approximately 80% of the data. The
weight of the other clusters is less than 3.5%. A pie chart illustrating the proportion of
each cluster is provided in Appendix B.5.1. Some clusters contain a very limited number
of bonds, presenting challenges for subsequent out-of-sample forecasting.

3.4.2 Prediction Based on the Clustering

The GMM provides posterior probabilities of belonging to each cluster for each traded
bond in the database. We aggregate these posterior probabilities into a confusion matrix
summarizing the likelihood of being in cluster k based on sector, seniority, and credit rat-
ing. For each bond to be priced, we match its triplet (sector, seniority, and credit rating)
against the confusion matrix, identifying the cluster that best characterizes its risk profile.
The confusion matrix is available in Appendix B.5.2. The advantage of this approach is
its ability to produce price predictions even when no bonds with identical characteristics
(sector, seniority, or credit rating) have recently traded, as each cluster typically aggregates
multiple issuer profiles sharing common risk characteristics.

For each tenor and each cluster, we compute the average credit spread curve and its
predictive confidence intervals. Formally, for x ∈ Ck and for t = {1, 2, ..., 30}, we define
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the mean credit spread x̄k,t at tenor t for cluster k as follows:

yk,t = x̄k,t, (3.17)

and construct the predictive interval for the spread as

CIk,t = yk,t ± tα/2,ni−1σk,t, (3.18)

where tα/2,nk−1 is the critical value of the Student’s t-distribution at significance level α,
and σk,t is the standard deviation of spreads within cluster k a tenor t. We assume the
absence of correlation between the clusters.

Bond prices are then predicted using the government zero-coupon yield curve com-
bined with the weighted-average spread curve of the assigned clusters. This leads to:

B̂i =

mi∑
j=1

ci,je
−yZC(θ(Gov),ti,j),ti,je−

∑K
k=1(wkyk,tti,j), (3.19)

where θ(Gov) is the coefficients set of the government ZC yield curve, andwk is the posterior
probability of belonging to cluster k.

3.4.3 Low-Frequency Issuer Predicted Bond Price Results

We have considered a set of 114 newly issued bonds in March and April 2019, and we were
able to predict 101 of them. For the remaining 13, issuer-specific information was missing.
To evaluate the predictive accuracy of the proposed clustering approach, we assess how
frequently the observed bond issuance prices fall within the calculated predictive intervals
(i.e., Eq. (3.18)): 97 bonds fall within the predictive interval. We also examine absolute
pricing errors by evaluating whether the differences between predicted and actual issuance
prices are within 50 and 1 dollar thresholds. These thresholds were chosen to be consistent
with the MAE observed during the estimation of credit spreads and the prediction of credit
spread curves for high-frequency issuers using the VAR model. 19 bonds have differences
of less than 50 cents from the observed price, while 27 bonds have differences of less than
1 dollar from the observed price.
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Table 3.13 summarizes the standard errors of the predictive intervals across maturity
buckets. The table shows that predictive intervals widen as the maturity of the bonds in-
creases. Longer-maturity bonds entail greater uncertainty due to less frequent trading and
heightened sensitivity to underlying economic and credit-risk assumptions, as reflected by
larger standard errors.

Table 3.13. Descriptive Statistics of Standard Errors for Predictive Intervals by Tenor

Tenor count mean std min 50% max
2 < T ≤ 5 15 1.29 0.44 0.63 1.10 2.15
5 < T ≤ 10 34 3.56 2.21 1.54 2.61 9.67
10 < T ≤ 20 26 6.27 4.35 3.11 4.79 24.03
20 < T ≤ 30 26 8.71 3.35 0.60 9.02 13.00

Observations correspond to bonds issued in March and April 2019. The prediction intervals are derived from
estimated GMM cluster spreads using Equation (3.17) and Equation (3.18). Specifically, using the average
credit spread and predictive interval credit spread, we compute the predicted price and the corresponding
bounds. Finally, knowing tα/2,ni−1 we obtain:

SEi =
B̂i −B

tα/2,ni−1
, (3.20)

where B̂i is computed using Equation (3.19), and B is the observed issuance price.

Table 3.14 reports the mean absolute prediction errors by cluster and maturity bucket.
For each low-frequency issuer, the cluster presented is the one with the highest weight in
computing the predicted credit spread. Consistent with theoretical expectations, predictive
accuracy generally deteriorates as bond maturity increases. Short- to intermediate-term
maturities (2–5 and 5–10 years) exhibit relatively lower mean absolute errors, whereas ma-
turities beyond 20 years display substantially higher errors. For example, bonds in Cluster
11 exhibit large deviations (average absolute error exceeding 28 dollars) at maturities be-
yond 20 years. Cluster 10 maintains prediction accuracy consistently below 1 dollar, as
does one tenor bucket for clusters 13 and 0. These three clusters collectively account for
63% of the data from high-frequency issuer clusters. Thus, clusters with substantial rep-
resentation in the dataset tend to exhibit higher forecasting accuracy, while clusters with
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Table 3.14. Mean Absolute Prediction Errors by Cluster and by Bucket of Tenor for Low-Issuers

Cluster 2 < T ≤ 5 5 < T ≤ 10 10 < T ≤ 20 20 < T ≤ 30

0 1.72 5.92 0.56 5.11
1 - 5.49 5.07 -
3 - 1.30 - -
4 - 4.46 - -
5 - 1.08 3.47 2.96
10 1.04 0.87 0.26 0.71
11 - - 1.43 28.13
12 - 3.01 7.14 -
13 0.94 1.54 4.99 4.14
16 - 1.64 2.34 -

Mean absolute errors are calculated as absolute deviations between observed and predicted bond issuance
prices. The predicted price is computed using Equation (3.19). Missing entries indicate no observations
within the respective cluster-tenor combination. For each low-frequency issuer, the cluster presented is the
one with the highest weight in computing the predicted credit spread. Predicted prices are computed using
Equation (3.19). Data cover bond issuances from March and April 2019.

fewer observations, particularly at longer maturities, display larger prediction errors. This
highlights potential challenges in accurately forecasting credit spreads for sparse clusters,
which is further confirmed by the histogram of bond price errors shown in Figure (3.7).

The three clusters most represented among high-frequency issuers are also the most
prevalent among low-frequency issuers. These clusters exhibit relatively symmetric dis-
tributions, though with varying dispersion levels. The remaining clusters, accounting for
21.8% of low-frequency issuers in March and April 2019, contain fewer observations, lim-
iting interpretability and complicating robust conclusions. Cluster 11 notably displays ex-
treme negative errors, with magnitudes significantly larger than those observed in other
clusters. This suggests substantial prediction difficulties likely attributable to limited or
inconsistent data within the cluster.

Overall, these results emphasize variability in predictive performance across clusters.
They suggest that while the clustering approach effectively captures issuer heterogeneity
for well-represented groups, predictive accuracy can deteriorate significantly in clusters
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Figure 3.7. Histogram of the Prediction Errors by Cluster

Prediction error is the difference between the predicted price and the observed price for each cluster. For
each low-frequency issuer, the cluster presented is the one that has the highest weight in the computation of
the predicted credit spread.

with limited or heterogeneous observations. This indicates the potential need for further
refining the clustering strategy or improving data quality.

3.5 Conclusion

This paper proposes and evaluates methodologies for forecasting corporate bond prices
and credit spread term structures, addressing challenges related to varying bond trading
frequencies across issuers. Utilizing a proprietary dataset, we apply distinct methodologi-
cal approaches depending on issuer trading frequency. For high-frequency issuers, we em-
ploy a two-step Nelson-Siegel framework combined with a Vector Autoregressive (VAR)
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model to predict issuer-specific zero-coupon credit spread curves and bond prices for fore-
cast horizons ranging from one to five days ahead. The two-step approach leverages a
linearized version of the Nelson-Siegel model with informative priors to generate stable
initial estimates. To ensure coefficient stability over time, a penalty term is included in the
optimization loss function whenever model coefficients deviate by more than one standard
error from prior estimates. Subsequently, a VAR model is used to predict the Nelson-
Siegel coefficients by capturing interdependencies among them. Empirical evidence based
on USD-denominated corporate bonds indicates good predictive accuracy for short- and
medium-term maturities. Precision notably declines for longer maturities, highlighting
uncertainties associated with modeling longer-dated fixed-income securities.

For low-frequency issuers, we introduce an innovative clustering approach based on
Gaussian Mixture Model (GMM). This methodology addresses data scarcity by aggre-
gating issuer characteristics and market information derived from high-frequency issuers
exhibiting similar risk profiles. The clustering model leverages posterior probabilities of
cluster membership, conditioned on issuer characteristics such as sector, seniority, and
credit ratings, to construct a weighted-average credit spread curve for each low-frequency
issuer. Including issuer-specific default probabilities alongside credit spread data improves
cluster identification and forecasting accuracy. Our analysis reveals heterogeneity in pre-
dictive performance across clusters: clusters with more observations yield more accurate
price predictions, whereas clusters with fewer observations exhibit higher prediction errors.
This emphasizes the necessity for cautious interpretation and further model refinement.

Throughout our analysis, we identified significant data-quality issues, including miss-
ing bond characteristics, the unflagged inclusion of simulated data, and substantial yield
variability within clusters. These deficiencies impact predictive accuracy, highlighting the
need for rigorous data validation protocols and increased transparency in data sourcing
practices.

In summary, this research contributes methodologically to the literature on fixed-income
analytics by proposing predictive frameworks tailored specifically to high-frequency and
low-frequency corporate bond issuers. Future research could benefit from employing higher-
quality datasets, thereby reducing data-driven noise and enhancing forecast reliability, and
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extending our approach by incorporating additional issuer-specific attributes and macroe-
conomic indicators.
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Chapter 4

Enhancing Credit Spread Forecasts through
Macroeconomic Uncertainty Variables and
Statistical Learning Approaches

Abstract1

This essay investigates the predictive modelling of the credit spread term structure by in-
corporating macroeconomic uncertainty indicators and statistical learning methodologies.
We propose a new penalty loss function designed to enhance the economic interpretability
and temporal stability of the estimated Nelson-Siegel credit spread coefficients. We then
predict these coefficients by extending the set of features generally used in the literature
to include macroeconomic and financial uncertainty measures. Finally, we compare linear
regression models with ensemble-based machine learning techniques. Empirical analysis
using SHapley Additive exPlanation (SHAP) values show the influence of firm-level vari-
ables and reinforce the link between economic uncertainty and credit spreads. Boosted
trees outperform other approaches to predict the term structure of credit spread.

1Joint work with Geneviève Gauthier. Gauthier is affiliated with HEC Montréal.



4.1 Introduction

In the fixed-income market, credit risk reflects the possibility that a bond issuer may fail to
meet its contractual obligations. The credit spread emerges as the premium that investors
require to compensate for this risk. The term structure of credit spreads represents the
yield spread between a risky bond and its risk-free benchmark across various maturities.
Consequently, modelling and predicting this term structure is essential from both a risk-
management perspective and a valuation perspective.

Credit spreads are not fixed but rather vary across maturities (Litterman & Iben, 1991),
seniority levels, and credit-rating classes (Jarrow et al., 1997). The literature recognizes
that these factors are not the sole determinants of credit-spread changes. For instance,
Longstaff and Schwartz, 1995, Duffee, 1998, and Collin-Dufresne et al., 2001 document
how changes in the spot rate and the slope of the yield curve drive fluctuations in credit
spreads. Litterman, 1991 find that level and slope factors explain a substantial portion of
yield-curve dynamics. Collin-Dufresne et al., 2001 underscore that aggregate variables,
such as interest rates, business-cycle indicators, and market volatility, directly influence
credit spreads through their impact on default expectations and recovery processes.

Firm-specific characteristics also play a role in determining credit-spread behaviour.
Traditional asset-pricing models (e.g., the three-factor model of Fama and French 1993,
1996) reveal that size and book-to-market ratios capture risk components not explained by
market betas. While initially developed in the equity context, these firm-level factors are
also relevant to credit risk, given the close link between equity valuations and default risk
(Jarrow, 2001; Kwan, 1996).

Credit spreads reflect default probability and loss given default, with the latter typi-
cally inversely related to recovery rates. Empirical evidence suggests that recovery rates
are driven by idiosyncratic factors, such as the seniority of the debt or the economic sector
in which the firm operates (Altman & Kalotay, 2014; Boudreault et al., 2013). Macroeco-
nomic variables also exert an impact on recovery outcomes. For instance, Altman et al.,
2005 shows that historical default rates negatively impact recovery levels. Recent contri-
butions highlight economic uncertainty as a central systematic driver of both default and
recovery (Gambetti et al., 2019), in line with structural and reduced-form credit risk mod-
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els that link macroeconomic variables to default probabilities (Duffie & Singleton, 1999;
Merton, 1974).

Macroeconomic factors in the bond literature have shown promising results. Ang and
Piazzesi, 2003 found that incorporating observable macroeconomic variables, such as in-
flation and output growth, significantly improves the forecasting of Treasury bond yields
compared to models relying solely on latent factors, especially at short and medium matu-
rities. Recent macro-finance models of the term structure have shown that Treasury bond
risk premia are driven by macroeconomic variables. Ludvigson and Ng, 2009 and Cooper
and Priestley, 2009 document that various macroeconomic indicators contain information
about future excess bond returns. Joslin et al., 2014 also show that variation in economic
activity and inflation in the United States affects the term structure of U.S. Treasury yields.
Nevertheless, most existing research focuses on Treasury or sovereign yield curves, with
comparatively fewer studies investigating credit spreads. Amato and Luisi, 2006 show that
sector- and rating-specific credit-spread dynamics are influenced by macroeconomic condi-
tions. Despite these insights, the prediction of credit spreads via macroeconomic indicators
and macroeconomic uncertainty variables remains limited. This study asks whether incor-
porating macroeconomic indicators and uncertainty measures can improve the predictive
term structure of credit spreads.

Despite the growing recognition of uncertainty’s importance, there is no universal con-
sensus on how to define or measure it (Bloom, 2014; Knight, 1921; Zhang, 2006). Proxies
range from financial-market volatilities (e.g., the VIX) to factor-based uncertainty mea-
sures derived from large datasets (Jurado et al., 2015; Ludvigson et al., 2021), each cap-
turing different facets of the underlying economic environment.

Recent advances in computer science have made machine learning the new trend in
finance. Numerous studies have explored its potential for asset pricing and risk-premium
measurement (Bianchi et al., 2021; Gu et al., 2020), return predictability (Feng et al., 2018),
and portfolio hedging (Carbonneau, 2021). Comparative analyses often conclude that tree-
based ensemble models (e.g., random forests, gradient-boosted trees) and neural networks
outperform traditional parametric regressions in a variety of forecasting tasks—such as
recovery-rate prediction (Bellotti et al., 2021; Gambetti et al., 2022), loss-given-default
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estimation (Hartmann-Wendels et al., 2014; Loterman et al., 2012; Qi & Zhao, 2011), ex-
cess Treasury bond-return prediction across different maturities (Bianchi et al., 2021), and
credit scoring (Liu, Fan, & Xia, 2022; Liu, Fan, Xia, & Xia, 2022). Despite their predictive
advantages, machine-learning models have faced criticism in financial economics for their
“black-box” nature, which complicates parameter inference and interpretability (Bianchi
et al., 2021; Mullainathan & Spiess, 2017). However, recent developments in eXplain-
able Artificial Intelligence (XAI) now provide methodologies to isolate the contributions
of each variable to the model’s output, thereby addressing key interpretability challenges.

In this study, we examine whether machine-learning approaches can outperform more
traditional models by capturing the interdependencies among the coefficients of the credit-
spread term structure.

Based on the Nelson-Siegel framework (Nelson & Siegel, 1987), we estimate the term
structure of credit spreads for U.S. firms from July 2002 through June 2020. This long sam-
ple enables us to evaluate model performance across periods of market stress and volatility
as well as periods of stability. To ensure both stability and economic interpretability in the
estimated coefficients, we introduce a penalized loss function that mitigates known chal-
lenges in estimating Nelson-Siegel credit spread coefficients.

We then predict these Nelson-Siegel credit spread coefficients by extending the feature
set commonly used in the literature to include macroeconomic and financial uncertainty
measures highlighted by Gambetti et al., 2019, 2022. Following Bellotti et al., 2021; Gam-
betti et al., 2022, we compare the performance of linear regression models with a range of
machine learning algorithms (bagging, random forests, and boosted trees) to assess both in-
sample explanatory power and out-of-sample predictive accuracy. We also employ SHAP
values (Lundberg & Lee, 2017) to interpret the machine learning models, thereby quanti-
fying each feature’s contribution to the predictions. Finally, we conduct robustness tests to
validate our results.

Our study makes three main contributions to the literature. First, we propose a new
penalized loss function designed to enhance the economic interpretability and temporal
stability of the estimated Nelson-Siegel credit spread coefficients. This penalty loss func-
tion addresses known problems when estimating Nelson-Siegel credit spread coefficients,
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thereby extending the literature. It also improves the prediction of these coefficients. Sec-
ond, our empirical analysis illustrates the influence of firm-level variables (firm age, equity
price, and book-to-market ratio) on credit spreads, aligning with prior findings. Moreover,
we reinforce the link between economic uncertainty and credit spreads by showing that
uncertainty variables explain and predict the shape of the credit-spread curve, particu-
larly at longer forecasting horizons. The influence of macroeconomic uncertainty features
varies across coefficients, resulting in heterogeneous impacts on the long-term rate, slope,
and curvature of the credit-spread term structure. Third, we show that machine-learning
algorithms provide a robust and parsimonious solution for capturing potential nonlinear
interactions and heterogeneous risk-factor effects across firms. Notably, boosted trees out-
perform other models in both accuracy and stability, particularly during periods of market
stress. By integrating a novel estimation strategy, a comprehensive set of predictors, and
machine-learning tools, our study contributes to a more nuanced understanding of credit-
spread dynamics and offers practical insights for researchers and risk managers.

The chapter is structured as follows. Section 4.2 describes the data sources. Section 4.3
presents the credit spread estimation and data analysis. Section 4.4 outlines the method-
ological framework for both the linear and machine-learning models. Section 4.5 presents
our empirical findings, including predictive performance, variable importance, and robust-
ness. Section 4.6 concludes.

4.2 Data Description

Our study integrates a multifaceted dataset encompassing bond transaction details, bond
features, equity trade information, corporate balance sheets, U.S. default rates, indices of
economic uncertainty, and various systematic factors.

We source our bond transaction data from the enhanced historical Trade Reporting
and Compliance Engine (TRACE) database, maintained by the Financial Industry Regula-
tory Authority (FINRA). This database provides comprehensive information on Over-The-
Counter (OTC) transactions involving U.S. dollar–denominated fixed-income securities,
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complete with intraday timestamps.2 Our analysis spans from July 2002, when TRACE
data first became available, through June 2020. We apply the data-cleaning methodology
outlined in Dick-Nielsen, 2009, 2014, which involves removing duplicates, cancellations,
and corrected transactions. To prevent double-counting, we eliminate one side of agency
transactions as per Dick-Nielsen, 2014. We further exclude equity-linked notes, trades ex-
ecuted under exceptional conditions, and commissioned trades (i.e., transactions inclusive
of commission fees). Ultimately, we retain only end-of-day standard trades executed on
the secondary market. For each retained trade, we record the CUSIP, execution date and
time, trade volume, clean price3, yield, trade side, and whether the trade was conducted by
a customer or a dealer.

We integrate the TRACE transaction data with the Fixed Income Securities Database
(FISD) to acquire bond features, using the CUSIP as the key to merge the two datasets.
To ensure consistency in pricing, we focus on vanilla bonds, i.e., those without complex
features (Berndt et al., 2020; Elton et al., 2001; Eom et al., 2004) such as foreign curren-
cies, private placements, derivatives, sinking-fund provisions, convertibility, exchangeabil-
ity, unit deals, Rule 144A securities, Yankee bonds, Canadian bonds, or asset-backed and
mortgage-backed enhancements. We also remove all corporate floating-rate debt. From
the FISD, we extract detailed bond characteristics, including maturity, bond type, senior-
ity, coupon size, payment frequency, and credit ratings from S&P, Fitch, and Moody’s, as
well as issuing-firm sector.

To calculate the mid-close price, we focus on bonds with at least one bid and one ask
price available per day. Out of the 19, 951, 603 end-of-day bond prices in our dataset, we
isolate 1, 823, 265 vanilla bonds, representing 9.14% of the database. After consolidating
all data sources, excluding bonds lacking a credit rating, and cleansing anomalies (e.g.,
negative tenors), we end up with 1, 147, 390 bonds. We further narrow our analysis to bonds
with maturities exceeding three months. For estimating the credit-spread curve, we employ

2The enhanced TRACE database includes additional transaction details beyond the standard database,
such as actual volume data and indicators of the buying and selling parties. In contrast, the standard database
caps volume data for trades exceeding 1millionforhigh − yieldbondsand5 million for investment-grade
bonds and only disseminates the selling side of inter-dealer trades.

3The price of a coupon bond without accrued interest, as quoted on financial news sites.
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the Nelson-Siegel framework, which requires optimizing four coefficients. We restrict to
issuers that have a minimum of four bonds available per day for each issue and seniority
level, to facilitate Nelson-Siegel optimization. Consequently, 813, 154 bonds contribute to
the construction of 52, 564 zero-coupon credit-spread curves.

Figure 4.1 shows the number of bonds and issuers over time. On average, there are 181
bonds and 11 firms per day throughout the period. These numbers are lower before 2009
and increase thereafter. We categorize bonds into four seniority classes: unsecured, se-
nior secured, senior subordinated, and subordinate; and eight industry sectors: industrials,
consumer discretionary, consumer staples, health care, financials, information technology,
communication services, and utilities.

We use the Center for Research in Security Prices (CRSP) database to acquire daily
stock prices and calculate market capitalization4 for each firm; Compustat to compute quar-
terly book-to-market values; and the U.S. zero-coupon yield term structure from Gürkaynak

Figure 4.1. Time Series of the Number of Bonds and Firms per Day

The top panel displays the daily number of bonds, while the bottom panel shows the daily count of firms.
The time series spans from July 1, 2002, to June 30, 2020.

4Market capitalization is determined as the product of the stock price and the number of shares outstand-
ing.
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et al., 2007 to compute credit spreads.

Long-established firms are often perceived as less uncertain due to their extensive mar-
ket history, while newer firms face greater uncertainty owing to limited information avail-
ability. We measure firm age from the IPO date in Compustat or, when absent, from the
initial listing in the CRSP database (Pástor & Veronesi, 2003; Zhang, 2006). We also
calculate firm-specific volatility as the standard deviation of daily equity returns over a
three-month rolling window, providing a dynamic assessment of market-based volatility.

Credit spreads are influenced by a range of aggregate variables, such as changes in in-
terest rates, business-cycle conditions, and market volatility, as noted by Collin-Dufresne et
al., 2001. Therefore, we incorporate macroeconomic indicators that reflect the business cy-
cle, including quarterly Gross Domestic Product (GDP) and monthly Industrial Production
(IP), as well as the monthly recession indicators based on the National Bureau of Economic
Research (NBER) from the FRED database. We also consider the Aruoba-Diebold—cotti
(ADS) Business Conditions Index (Aruoba et al., 2009), which offers a daily snapshot
of economic conditions. This index integrates various macroeconomic series such as the
U.S. Treasury yield-curve term premium, weekly initial unemployment insurance claims,
monthly non-farm payrolls, and quarterly real GDP. The ADS Index is disseminated by the
Federal Reserve Bank of Philadelphia.

Credit spread is a function of default probability and recovery rate. To approximate
default probability, we calculate the monthly U.S. default rate using data from Moody’s
Default & Rating Analytics database, defined as the number of companies in default di-
vided by the total number of companies monitored each month. As a proxy for recovery
rate, we utilize uncertainty measures linked to recovery rates in prior research (e.g., Gam-
betti et al., 2019). Specifically, we employ the CPI uncertainty measure and the policy-
related macroeconomic uncertainty indices for federal and state/local (FSL) government
purchases proposed by Baker et al., 2016. These indices are based on the dispersion of
economic forecasters’ expectations, sourced from the Federal Reserve Bank of Philadel-
phia’s Survey of Professional Forecasters, regarding future levels of the consumer price
index, federal expenditures, and state and local government spending.

Additionally, we include the Economic Policy Uncertainty (EPU) Index from Baker et
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al., 2016, which quantifies policy uncertainty based on the frequency of newspaper cover-
age, using a normalized index derived from articles in ten major newspapers. These three
series are accessible via the website maintained by Baker et al., 2016. We also integrate
the financial and macroeconomic uncertainty measures from Jurado et al., 2015 and Lud-
vigson et al., 2021, which aggregate the volatilities of the unpredictable components of
numerous economic indicators. Lastly, we incorporate stock market volatility measures
from the VIX index and the S&P 500 index, both available on the CBOE website.

Figure 4.2. Dynamic of Uncertainty Measures and Macrovariables from July 2002 to June 2020

The grey shaded areas represent NBER-defined recession periods: from December 2007 to June 2009, asso-
ciated with the subprime crisis, and from March to April 2020, corresponding to the onset of the Covid-19
pandemic. The VIX index measures stock market volatility. Fin unc. refers to the financial uncertainty mea-
sure, and macro unc. denotes the macroeconomic uncertainty measure; both are from Jurado et al., 2015
and Ludvigson et al., 2021. EPU is the Economic Policy Uncertainty measure developed by Baker et al.,
2016. CPI unc. indicates the inflation uncertainty measure, and FSL unc. signifies the uncertainty related to
federal and state/local government purchases, both of which are also from Baker et al., 2016. IP stands for
U.S. Industrial Production, GDP for U.S. Gross Domestic Product, and SP500 for the S&P 500 index. The
ADS Index, which reflects economic conditions, is defined by Aruoba et al., 2009.
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Figure 4.2 illustrates the trends of selected uncertainty proxies and macroeconomic
variables across four phases from July 2002 to June 2020: a return-to-stability phase (post-
dot-com recovery); a heightened uncertainty, volatility, and downturn during the subprime
crisis; a period of relative improvement with ongoing market uncertainty; and the onset of
the Covid-19 pandemic with its heightened uncertainty and economic challenges.

4.3 Zero-Coupon Credit Spread Curve Estimation

This section describes the bond-price model and the estimation procedure. The term struc-
ture of interest rates is the sum of the risk-free rate (government yield) curve and the credit
spread curve, both modelled using Nelson and Siegel, 1987.

4.3.1 Estimation Method

The price of a coupon-bearing bond can be represented as a function of the price of a
zero-coupon bond, as follows:

Bmodel
i,t =

mi∑
j=1

ci,jP (ui,j) =

mi∑
j=1

ci,je
−y(ui,j)ui,j , (4.1)

where P (ui,j) denotes the zero-coupon bond price acting as the discount factor; mi is the
number of remaining coupon payments of bond i; ui,j is the time-to-maturity for the jth

coupon payment of bond i; and y(ui,j) is the zero-coupon yield at each point ui,j . The jth

coupon payment for bond i, ci,j , is calculated as

ci,j = 100

(
ci
fi

Ij<mi
+

(
1 +

ci
fi

)
Ij=mi

)
,

where 100 represents the face value, ci is the coupon rate, and fi is the number of coupon
payments per year for bond i.

Our objective is to estimate the zero-coupon spread curve to better understand the risks
associated with each issuer. We model the term structure of the yield curve as a combina-
tion of the risk-free zero-coupon bond yield and the credit-spread term structure, expressed
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as:
y(θi,t, ui,j) = y(θgovt , ui,j) + y(θspreadi,t , ui,j), (4.2)

where θgovt represents the set of coefficients for the government’s zero-coupon yield curve
at time t, and θspreadi,t denotes the set of coefficients for the zero-coupon spread curve of
issuer i at time t. Applying Equation (4.2) to Equation (4.1) yields

Bmodel
i,t (θgovt , θspreadi,t ) =

mi∑
j=1

ci,je
−y(θgovt ,ui,j)ui,je−y(θspreadi,t ,ui,j)ui,j . (4.3)

In practice, we first estimate the government yield curve and subsequently determine each
issuer’s credit-spread curve.

The zero-coupon yield y is modelled using the Nelson-Siegel (NS) framework of Nel-
son and Siegel, 1987, specified as

y (θt, t) = β0,t + β1,tϕ1(t, τt) + β2,tϕ2(t, τt), (4.4)

ϕ1(t, τt) =
1− e−t/τt

t/τt
,

ϕ2(t, τt) = ϕ1(t, τt)− e−t/τt .

θt = {β0,t, β1,t, β2,t, τt} represents the vector of time-specific unknown coefficients. β0,t
denotes the long-term yield, β1,t represents the slope of the yield curve between the short-
term and long-term yields (so that β0,t + β1,t approximates the short-term yield). β2,t

captures the curvature of the yield curve, and τt indicates the location of the curve’s peak.
This same Nelson-Siegel framework is applied to estimate the zero-coupon spread curve.

4.3.2 U.S. Treasury Yield Curve Estimation

4.3.2.1 Methodology

In this study, we reconstruct the Nelson-Siegel coefficients for U.S. Treasury zero-coupon
yield curves, which are unobservable, by leveraging the daily estimates provided by Gürkay-
nak et al., 20075, derived from the Svensson model (Svensson, 1994). From a forecasting

5https://www.federalreserve.gov/econres/feds/the-us-treasury-yield-curve-1961-to-the-present.htm
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standpoint, directly relying on the Svensson coefficients of Gürkaynak et al., 2007 can be
challenging for two reasons: first, the six coefficients exhibit strong interdependencies (e.g.,
τ1 and τ2 are particularly difficult to disentangle); second, their estimates are not always
stable over time. Consequently, we adopt the four-coefficient Nelson-Siegel model and
ensure coefficient stability over time. To implement this, our approach involves a reverse-
engineering procedure that optimizes the set of coefficients θgovt by minimizing the root
mean squared relative error between our fitted yield curves and those reported by Gürkay-
nak et al., 2007:

θ̂govt = argmin
θgov

{√√√√ 1

T

T∑
j=1

(
y(j, θgov)− ySv,gov(j)

ySv,gov(j)

)2

+ p (θgovt )

}
, (4.5)

such that

βgov
0,t > 0,

τ gov ∈ (0, T ].

ySv,gov is the U.S. Treasury zero-coupon yield curve of Gürkaynak et al., 2007, θgovt =

{βgov
0,t , β

gov
1,t , β

gov
2,t , τ

gov
t }, and T = 30.

Given known challenges of the Nelson-Siegel model, such as its susceptibility to pro-
duce nearly identical yield curves from different coefficient sets and the existence of mul-
tiple local optima (Gauthier & Simonato, 2012; Sundaram & Das, 2011), we employ a nu-
merical optimization strategy that incorporates a penalty function. This penalty function
ensures that the coefficients are both economically interpretable and temporally consistent
by mitigating excessive day-to-day fluctuations. Specifically, we define

p
(
θXt
)
=

2∑
l=0

(
βX
l,t − β∗X

l,t

)2
+

2∑
l=0

(
βX
l,t − βX

l,t−1

)2
+

(
τXt − τXt−1

τXt−1

)2

, (4.6)

withX ∈ {gov, spread}. The first summation of Equation (4.6) penalizes deviations from
target coefficients β∗gov

0,t , β∗gov
1,t , and β∗gov

2,t , which capture the behaviour of the U.S. Treasury
zero-coupon yield curves reported by Gürkaynak et al., 2007. Assuming coefficient values
should be relatively stable from day to day, the second and third summations promote
stability by penalizing changes in the model’s coefficients. Because the government yield
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curve is derived from observable yields, the first penalty term exerts a relatively smaller
influence on its estimation; for issuer credit-spread curves, however, which rely on bond
prices, this component becomes more significant. Details on the construction of β∗gov

l,t for
l = 0, 1, 2 are provided in Appendix C.1.1. This penalized optimization framework ensures
that our reconstructed yield curves align closely with observed data while maintaining a
parsimonious and robust structure that is both economically meaningful and consistent over
time for forecasting.

4.3.2.2 Estimation Results

Figure 4.3 depicts the time series of the estimated Nelson-Siegel coefficients θ̂govt from 2002
to 2020. The long-term yield exhibits a general downtrend over this period. In the prelude
to the subprime crisis, the slope coefficient approaches zero, indicative of a predominantly
flat or occasionally inverted yield curve, as corroborated by Figure 4.4.

The temporal evolution of the government yield curve’s shape, shown in Figure 4.4,
aligns with four distinct economic phases identified by macroeconomic dynamics. First, in
the aftermath of the dot-com bubble, the yield curve is notably steep. Second, as the sub-
prime crisis looms, the curve flattens or inverts, with elevated short-term yields reflecting
heightened economic risks. The crisis itself precipitates a drop in short-term yields and a
return to a steep curve, driven largely by quantitative easing measures. Third, from 2014 to
2020, a period marked by uncertainty yet favourable economic conditions, the long-term
yield declines while the short-term yield rises, transitioning the curve from normal to flat.
Fourth, the onset of the Covid-19 pandemic inverts the curve once more.

The correlation matrix for the Nelson-Siegel coefficients of the U.S. zero-coupon yield
curve, presented in Table 4.1, reveals notable interdependencies among the coefficients.
There is a strong negative correlation between the long-term yield coefficient (β̂gov

0 ) and
the other coefficients, and a strong positive correlation between the slope coefficient (β̂gov

1 )
and the curvature coefficient (β̂gov

2 ). These patterns suggest that movements in the long-
term yield are typically inversely related to changes in slope and curvature, while slope
and curvature tend to move together, illustrating the interconnectedness of the yield curve’s
shape in response to evolving economic conditions.
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Figure 4.3. Estimated Nelson-Siegel Coefficients of the U.S. Zero-Coupon Treasury Yield Curve

Model (4.4) is fitted on the daily Fed yield curves of Gürkaynak et al., 2007 by minimizing Equation (4.5)
from July 1, 2002 to June 30, 2020. The grey shaded areas correspond to the NBER-recession from December
2007 to June 2009 and from March 2020 to April 2020. The numbers in the top panel correspond to the four
distinct economic phases that composed our database.

Table 4.1. Lower Triangle Correlation Matrix Between the Nelson-Siegel Coefficients of the U.S.
Zero-Coupon Yield Curves from July, 2002, to June, 2020

β0 β1 β2 τ

β0 1
β1 -0.45 1
β2 -0.50 0.65 1
τ -0.70 0.28 0.58 1

Model (4.4) is fitted on the daily Fed yield curves of Gürkaynak et al., 2007 by minimizing Equation (4.5)
from July 1, 2002 to June 30, 2020.

86



Figure 4.4. Estimated U.S. Zero-Coupon Treasury Yield Curve

Model (4.4) is fitted on the daily Fed yield curves of Gürkaynak et al., 2007 by minimizing Equation (4.5)
from July 1, 2002 to June 30, 2020. The grey shaded areas correspond to the NBER-recession from December
2007 to June 2009 and from March 2020 to April 2020.

4.3.3 Firm-Specific Zero-Coupon Spread Curve Estimation

4.3.3.1 Methodology

In contrast to the estimation of government curve coefficients, where we calibrated the
yield structure to Gürkaynak et al., 2007, we estimate the firm-specific zero-coupon spread
curve directly from bond prices. The clean price, (Bclean

i,t ), excludes accrued interest since
the last coupon payment. The dirty price, (Bobs

i,t ), includes accrued interest and is computed
as:

Bobs
i,t = Bclean

i,t + accrued interest at time t,

= Bclean
i,t + 100

ci
fi

360(t− ui,j−1)

360(ui,j − ui,j−1)
, (4.7)

where (t−ui,j−1) represents the fraction of year since the last coupon payment, and (ui,j−
ui,j−1) is the fraction of year between consecutive coupon payments.
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To estimate the firm-specific coefficients of the zero-coupon spread curve, we minimize
the following loss function:

θ̂spreadi,t = argmin
θspreadi,t

{√√√√ 1

Ni,t

Ni,t∑
j=1

(
Bmodel

j,t (θ̂govt , θspreadi,t )−Bobs
j,t

Bobs
j,t

)2

+ p
(
θspreadi,t

)}
, (4.8)

such that

βspread
0 > 0,

τ spread ∈ (0, uj,last].

Ni,t is the number of bonds issued by firm i at time t, Bmodel
j,t (θ̂govt , θspreadi,t ) is the model-

derived price of the jth bond defined by Equation (4.3), Bobs
j,t is the observed dirty price

defined by Equation (4.7), and p
(
θspreadi,t

)
is the penalty function defined in Equation (4.6)

ensuring the coefficients’ economic interpretability and temporal stability. The penalty
function is applied to the spread coefficients θspreadi,t = {βspread

0,i,t , βspread
1,i,t , βspread

2,i,t , τ spreadi,t },
with uj,last indicating the time-to-maturity of the last coupon payment for bond j. The
target coefficients β∗spread

l,i,t are determined using the long-term yield, slope, and curvature
derived from the yield-to-maturity curve of issuer i at time t (c.f., Appendix C.1.2).

4.3.3.2 Estimation Results

To assess the accuracy of our model, we calculate the pricing error between the estimated
price from Equation (4.3) and the observed dirty price:

ei,t = Bmodel
i,t (θ̂govi,t , θ̂

spread
i,t )−Bobs

i,t (4.9)

The results in Table 4.2 indicate that model precision improves for shorter bond maturi-
ties. On average, the MAE is 96 cents, with a median of 57 cents for a face value of $100,
representing less than 1% of face value. This error remains below $1 for bonds matur-
ing in less than ten years, which account for 75.85% of the dataset, and exceeds $1 for
longer maturities. The mean is approximately double the median, reflecting the influence
of outliers.6

6To ensure robustness, we re-estimated the model after excluding bonds with errors beyond the 99.99th
percentile. This adjustment did not significantly alter the MAE distribution, suggesting that the estimated
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Table 4.2. Absolute Error Between Observed and Estimated Prices by Maturity Bucket

count mean std min 25% 50% 75% 95% 99% max
T ≤ 1 73, 457 0.41 0.71 0 0.08 0.21 0.48 1.44 3.02 21.40
1 < T ≤ 5 365, 192 0.63 0.79 0 0.16 0.40 0.83 1.96 3.60 25.68
5 < T ≤ 10 178, 121 0.99 0.94 0 0.33 0.75 1.38 2.75 4.21 17.31
10 < T ≤ 20 144, 885 1.72 1.59 0 0.58 1.28 2.34 4.92 7.60 19.30
20 < T ≤ 30 51, 499 1.82 1.72 0 0.55 1.30 2.54 5.39 7.69 16.61
Overall 813, 154 0.96 1.17 0 0.22 0.57 1.26 3.19 5.79 25.68

Errors correspond to the difference between estimated and observed prices for a face value of $100 (Equation
(4.9)) from July 1, 2002, to June 30, 2020. Estimated prices use the NS coefficients of the U.S. Treasury
yield curve (Equation (4.5)) and the firm-specific spread curve coefficients (Equation (4.8)).

4.3.4 Preliminary Data Analysis of the Zero-Coupon Credit Spread
Curves

Figure 4.5 depicts the distribution of credit spread curves, highlighting outliers particularly
during the subprime crisis. 50% percent of the credit spreads lie between 0.8887% and
2.173%, with an upward trend for longer tenors. The largest credit spread was recorded by
Ford on November 21, 2008. Credit spreads began to spike in September 2008, peaking by
the end of November 2008, coinciding with the worst days of the crisis (c.f., Figure 4.6).
During this period, major automotive companies, such as General Motors, Chrysler, and
Ford, were on the brink of insolvency, averted through government intervention.

Credit-spread curves, differentiated by credit rating and sector in Figures 4.7a and 4.7b,
show that higher-rated firms have lower spreads due to reduced risk,7 while firms in finan-
cial distress, especially during the subprime crisis, such as Ford, exhibit higher spreads.
Less economically sensitive sectors (e.g., industrials and health care), have lower spreads,
while finance and consumer discretionary sectors show higher spreads, with Ford’s spreads
during the 2008 crisis illustrating the latter’s economic vulnerability.

coefficients are not disproportionately influenced by extreme values.
7The prime credit-spread curve includes General Electric up to early 2009.
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Figure 4.5. Boxplot of the Zero-Coupon Credit Spreads from July 2002 to June 2020

The x-axis corresponds to tenor (in years). ZC CS are computed using end-of-day vanilla bond prices from
TRACE (July 1, 2002–June 30, 2020). Curves are estimated by minimizing the RMSRE plus a penalty
function. 52, 564 curves were estimated across 75 issuers.

Figure 4.6. Time Series of RMSE Between Observed and Estimated Price

RMSE of pricing errors. Estimated bond prices are computed using Equation (4.9).The blue curve shows
the RMSE across all issuers; the red dotted curve (magenta dashed curve) is for Ford (General Electric).
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Figure 4.7. Boxplot of the Zero-Coupon Credit Spreads from July 2002 to June 2020

by Credit Rating

by Sectors

The x-axis corresponds to tenor (in years). The top (bottom) panel displays the distribution of zero-coupon
credit spreads by rating (sector). Numbers in parentheses in each subtitle indicate the total count of credit-
spread curves in that category. Curves are computed using end-of-day mid dirty prices of vanilla corporate
bonds from TRACE for July 2002–June 2020. Coefficients are estimated via the Nelson-Siegel model by
minimizing the RMSRE plus a penalty function for interpretable and stable estimates (Equation (4.8)).
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4.4 Models

In this section, we first categorize the explanatory variables into three major groups. We
then introduce the two classes of predictive models employed in our analysis: linear models
and ensemble-based models. Next, we discuss our forecasting framework and the perfor-
mance metrics used to evaluate model accuracy. Finally, we present the SHAP feature-
importance measure, which quantifies each variable’s marginal contribution to the predic-
tive model.

4.4.1 Features

The explanatory variables presented in Section 4.2 can be classified into three groups.
The first group comprises firm-specific variables: firm age, bankruptcy indicator, se-

niority, sector dummies, and rating dummies. These features are denoted by the vector
Xi,t.

The second group comprises equity, macroeconomic, and uncertainty variables. Table
4.3 reveals strong correlations among several indicators, notably a 0.79 correlation between
the VIX and the financial-uncertainty measure, underscoring how market sentiment aligns
with broader stability perceptions. Similarly, the S&P 500 Index exhibits a 0.78 correla-
tion with Industrial Production, suggesting a link between stock-market performance and
industrial activity. Lastly, the financial-uncertainty measure has a 0.72 correlation with
the macroeconomic-uncertainty measure from Ludvigson et al., 2021, reflecting the inter-
twined nature of financial and economic uncertainties.

To mitigate multicollinearity, we select the variables most highly correlated with the
Nelson-Siegel coefficients for inclusion: namely, the VIX, Industrial Production, and the
macroeconomic-uncertainty measure. A rank-plot analysis (see Appendix C.2) indicates
minimal relationships among the remaining variables. Consequently, this second group
includes equity prices, equity trading volume, equity returns, bid-ask spreads, high-low
spreads, market capitalization, book-to-market ratio, VIX, federal-and-state/local purchases
uncertainty, firm-specific uncertainty, CPI uncertainty, Economic Policy Uncertainty, macroe-
conomic uncertainty measure, default rates, Industrial Production, GDP, and the ADS In-
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dex. These variables are denoted by the vector Zi,t.
The third group consists of the issuer’s own lagged coefficients, grouped in θspread

i,t−1 ,
defined as

θspread
i,t−1 =

[
β0,i,t−1, β1,i,t−1, β2,i,t−1, τi,t−1

]′
.

Taken together, these three sets of explanatory variables serve as the inputs for our
empirical analysis.

Table 4.3. Lower-Triangle Correlation Matrix Between the Uncertainty Measures and the
Macrovariables from July 2002 to June 2020

Default
rate

EPU FSL
unc.

CPI
unc.

VIX Fin
unc.

IP GDP SP500
index

Macro
unc.

ADS
in-
dex

Default Rate 1
EPU 0.43 1
FSL unc. 0.44 0.26 1
CPI unc. 0.21 -0.01 0.46 1
VIX 0.49 0.45 0.36 0.40 1
Fin unc. 0.65 0.53 0.38 0.41 0.79 1
IP -0.45 -0.01 -0.53 -0.44 -0.46 -0.34 1
GDP -0.55 -0.60 -0.23 -0.13 -0.45 -0.49 0.17 1
SP500 index 0.01 0.34 -0.27 -0.42 -0.33 -0.06 0.78 -0.18 1
Macro unc. 0.55 0.21 0.18 0.45 0.68 0.72 -0.41 -0.47 -0.31 1
ADS index -0.29 -0.40 0.04 -0.04 -0.45 -0.43 0.12 0.40 -0.04 -0.47 1

EPU stands for the Economic Policy Uncertainty measure of Baker et al., 2016. FSL unc. stands for the
uncertainty relative to both federal and state/local purchases of Baker et al., 2016. CPI unc. stands for the
inflation uncertainty measure of Baker et al., 2016. The VIX index measures stock market volatility. The
ADS index reflects the economic state condition and is defined by Aruoba et al., 2009. Fin unc. refers to
the financial uncertainty measure, and macro unc. denotes the macroeconomic uncertainty measure; both
are derived from the work of Jurado et al., 2015 and Ludvigson et al., 2021. IP stands for U.S. Industrial
Production, and GDP for U.S. Gross Domestic Product.
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4.4.2 Models Specification

The identification of the best class of models is undertaken through a benchmark study. We
compare seven models belonging to the classes of linear and rule-based machine learning
methods.

4.4.2.1 Linear Models

A linear representation of the model is encompass in

θspread
i,t+h = α0 +αXi,t + ΓZi,t +Ψθspread

i,t + εt+h,

where h is the forecast horizon; α0 is a constant; α, Γ, and Ψ are parameter vectors for
firm-specific characteristics Xi,t , financial, macroeconomic, and uncertainty indicators
Zi,t, and the issuer’s own lagged coefficients θspread

i,t , respectively.
We consider four linear models: ordinary least squares (OLS), lasso regression, ridge

regression, and elastic net regression. Each can be defined as a special case of the following
minimization problem:

argminα0,α,Γ∥θ
spread
i,t+h − α0 −αXi,t − ΓZi,t −Ψθspread

i,t ∥22
+ λ

(
(1− γ)∥α+ Γ∥22 + γ∥α+ Γ∥1

)
. (4.10)

λ > 0 and γ ∈ [0, 1] are two penalty factors. In particular, λ = 0 defines the standard linear
regression (OLS). When λ > 0 the model become a penalized model and threes models
can occurs:

• if γ = 0, Eq. (4.10) corresponds to the ridge model;

• if γ = 1, Eq. (4.10) corresponds the lasso model;

• if γ ∈]0, 1[, Eq. (4.10) corresponds the elastic net model.

These regularization techniques help reduce model complexity and prevent overfitting.
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4.4.2.2 Rule-Based Models

An ensemble model is a predictive framework that combines multiple "weak learners" (in
this case, decision trees) into a single aggregated predictor. A decision tree itself is a
supervised learning model that uses a tree-like structure to make predictions by iteratively
splitting the training dataset into subsets based on selected feature thresholds. The growth
of each tree is guided by minimizing the Mean Squared Error (MSE).

We consider three nonlinear regression models derived from tree-based ensembles:
bagging trees, random forests, and boosted trees. Although each method aggregates mul-
tiple decision trees into one final predictor, they differ in their sources of randomness and
in whether the trees are trained in parallel or sequentially.

The bagging trees model (Breiman, 1996) is a combination of multiple decision trees
trained in parallel on different observations of the dataset; thus, each tree sees a slightly
different subset of the training data. The final prediction is the average of the individual
trees’ predictions. The random forest model (Breiman, 2001) is a combination of multiple
decision trees trained in parallel on different observations of the dataset and on different
subset of features (Ho, 1998). This decorrelation among trees diminishes the chance that
any single feature will dominate the prediction, thereby improving predictive accuracy and
reducing the overall variance. By contrast, the boosted trees model is a combination of
multiple decision trees trained sequentially such that each new tree is trained to reduce
the residual errors produced by the existing ensemble. This approach often yields high
accuracy, but it requires careful hyper-parameter tuning. The list of hyper-parameters and
their values for each model can be found in Appendix C.3.

4.4.3 Pipeline, Prediction, and Model Assessments

The explanatory variables are scaled using the min-max transformation. In line with stan-
dard practice, we allocate the first 75% of the sample (ending January 7, 2016) to the
in-sample (train) set and the remaining 25% (from February 8, 2016 onward) to the out-
of-sample (test) set. Following De Prado, 2018, we enforce a one-month "purging period"
between these sets to prevent data leakage, that is, unintended information overlap between
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the training and testing samples. Specifically, leakage may occur when either the features
or labels at the boundary of the training period closely resemble those in the test period.
Consequently, the in-sample set consists of all the credit spread curves from July 1, 2002,
to January 7, 2016, totalling 39, 386 curves and covers the post-dot-com bubble era and
the global financial crisis. The out-of-sample set consists of all the credit spread curves
from February 8, 2016, to June 30, 2020, totalling 12, 900 curves and encompass a period
of uncertainty that finish with the covid-19 pandemic.

Hyper-parameters are tuned using 10-fold time-series split cross-validation, where the
training set is partitioned into 10 sequential sub-blocks. At each iteration, a new block
serves as a validation set, while the preceding blocks is added to the in-sample set.8 A
one-month gap is included between these sub-samples to further safeguard against data
leakage. The RMSE is used as cost function.

All models are implemented, trained, and validated in Python using scikit-learn.
We adopt a two-stage procedure. In the first stage, we estimate the four Nelson-Siegel
coefficients jointly using the MultiOutputRegressor class. Let

θspread
i,t+h|t = E

P
t

[
θspread
i,t+h

∣∣Ft

]
(4.11)

denote the h-day-ahead predicted Nelson-Siegel coefficients conditional on the information
set Ft for issuer i. The loss function in this multi-output setting is defined as the mean
squared error across the four coefficients:

MSE =
1

N

T∑
t=1

Nt∑
i=1

∣∣∣θspread
i,t+h − θ

spread
i,t+h|t

∣∣∣2, (4.12)

where N =
∑T

t=1Nt. Estimating the coefficients jointly via a single loss function allows
us to capture their interdependencies.

In the second stage, to forecast the credit spread itself, we use the predicted Nelson-
Siegel coefficients and compute the RMSE between predicted and realized spreads, such

8In others word, at the first iteration, the first block is used as in-sample set, and the second block is used
as validation set. At the second iteration, the first two blocks are used as in-sample set, and the third block is
used as validation set, and so on.
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that:

RMSE(h,model) =

√√√√ 1

N

T∑
t=1

Nt∑
i=1

20∑
j=1

(
y
(
θspread
i,t+h , j

)
− y

(
θspread
i,t+h|t , j

))2
, (4.13)

where the model minimizing this loss function is selected as the best performer. In addition,
we employ three further precision metrics (Mean Absolute Error, R2, and pseudo R2) to
provide a comprehensive assessment of forecasting performance.

MAE is defined as

MAE(h,model) =
1

N

T∑
t=1

Nt∑
i=1

20∑
j=1

∣∣∣y (θspread
i,t+h , j

)
− y

(
θspread
i,t+h|t , j

) ∣∣∣. (4.14)

The R2 statistic can be defined in numerous way. As mentioned in Kvalseth, 1985
the different specifications of R2 statistics generally yield different values except for linear
models with an intercept term. Following Campbell and Thompson, 2008, we define the
out-of-sample R2 statistic as

R2
OS(h,model) = 1−

∑T
t=1

∑Nt

i=1

∑20
j=1

(
y
(
θspread
i,t+h , j

)
− y

(
θspread
i,t+h|t , j

))2
∑T

t=1

∑Nt

i=1

∑20
j=1

(
y
(
θspread
i,t+h , j

)
− y

(
θspread
i,t+h , j

))2 , (4.15)

where θspreadi,t+h is the historical average coefficient of the out-of-sample set. As mentioned
in Campbell and Thompson, 2008, a positive R2

OS indicates that the predictive model out-
performs the historical average (in terms of mean squared error), with larger R2

OS values
reflecting stronger predictive performance.

Following Ferrari and Cribari-Neto, 2004 and Bellotti et al., 2021, we also compute
the pseudo-R2 (R2

p), defined as the squared sample correlation between the predicted and
the actual credit spreads:

R2
p(h,model) = ρ2

y(θspread
i,t+h|t),y(θ

spread
i,t+h )

, (4.16)

where y
(
θspread
i,t+h|t

)
denotes the predicted credit spread at time t+h knowing the informa-

tion at time t for issuer i:

y
(
θspread
i,t+h|t

)
= y

(
θspread
i,t+h|t , T

)
, (4.17)
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where T ∈ {1, 2, 3, ...20} representing the set of maturities. This measure captures how
well the predicted curve co-moves with the realized spread across all maturities, regardless
of scale. Collectively, these metrics offer a robust framework for comparing and validating
the predictive accuracy of the various models examined.

4.4.4 Feature Importance Assessment

Predicted credit spreads are computed by integrating information from multiple features.
To evaluate each variable’s individual contribution to predictive accuracy, we employ SHAP
(SHapley Additive exPlanations) values (Lundberg & Lee, 2017), which measure feature
importance by decomposing a model’s prediction into feature-specific contributions.

SHAP values extend the concept of Shapley values from cooperative game theory, orig-
inally formulated to fairly allocate the total gains of a coalition among its members. In the
context of predictive modelling, each "player" in the coalition corresponds to a feature,
and the "value" to be divided is the model prediction. For each feature, the SHAP value is
calculated by determining its marginal contribution to the prediction when added to every
possible subset of features. This involves computing the difference between the model’s
prediction with and without the feature in question. By examining every possible combi-
nation of features and quantifying how the prediction changes when a specific feature is
included or excluded, SHAP values provide a theoretically justified measure of each fea-
ture’s importance.capturing both direct effects and interaction effects.

Let F represent the complete set of features, and consider a specific observation for
firm i at time t. The SHAP value for feature s ∈ F , denoted ϕs,i,t, is defined by

ϕs,i,t =
∑

S⊆F\s

|S|!(|F | − |S| − 1)!

|F |!

[
y
(
θspread
i,t+h|t | S ∪ s(xi,t,S∪s)

)
− y
(
θspread
i,t+h|t | S(xi,t,S)

)]
,

(4.18)
where xi,t,S denotes the values of the feature subset S for firm i at time t, and y(θspread

i,t+h|t |
S(xi,t,S)) is the predicted credit spread using a model trained on the subset S only. By
averaging across all possible subsets S that exclude s, the SHAP value ϕs,i,t isolates the
fair contribution of feature s for this particular observation.
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To measure overall feature importance, we aggregate SHAP values by average absolute
contribution:

Φs =
1

N

T∑
t=1

Nt∑
i=1

|ϕs,i,t|, (4.19)

where higher value of Φs indicates greater predictive influence. In practice, we compute
these values using the shap package in Python.

4.5 Results and Discussion

In this section, we analyze the precision metrics of the predicted coefficients and the feature
importances of the explanatory variables over different time horizons (h ∈ 1, 5).

4.5.1 Models Performance

Figure 4.8 visually documents the in-sample and the out-of-sample predictive performance
of the seven credit spread models evaluated using RMSE, MAE, R2, and R2

p. Each model
is assessed both at the one-day (h = 1) and five-day (h = 5) forecast horizons. The pink
(blue) dots represent the one-day ahead (five-day ahead) in-sample forecasts, whereas the
red (black) dots represent the one-day ahead (five-day ahead) out-of-sample forecasts.

Contrary to expectations, out-of-sample RMSE and MAE values are lower than their
in-sample counterparts. This is attributable to the large credit spreads in the in-sample
dataset during the subprime crisis (Section 4.3.4). These extreme values—concentrated
within a short period and reflecting high systemic risk—pose challenges for the models,
which struggle to capture abrupt spikes in credit spreads, thereby inflating in-sample error
metrics. Figure 4.9 illustrates this by showing the histogram of RMSE aggregated by month
and firm at the one-day ahead forecast horizon. All models except boosted trees exhibit
extreme in-sample errors, driven by Ford’s large credit spreads between October 2008 and
March 2009. Similar patterns occur at the five-day ahead horizon. Despite these spikes,
the models predict unseen data with reasonable accuracy.

Figure 4.10 shows RMSE over time for each model. The boosted trees is the most
stable, closely followed by random forests. Other models show larger divergences between
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Figure 4.8. Comparison of Credit Spread Model Performances Across Metrics (In Sample and Out
of Sample) - One-Day Ahead (h = 1) and Five-Day Ahead (h = 5)

The pink (blue) dots represent the one-day head (five-day-ahead) in-sample forecasts, whereas the red (black)
dots represent the one-day ahead (five-day ahead) out-of-sample forecasts. The first 75% dates constitute the
train set (from July 1, 2002, to January 7, 2016) and the remaining 25% of the date constitute the test set
(January 8, 2016 to June 30, 2020) with a one-month purging period between the train set and the test set.
The precision metrics are defined in Equation (4.13), (4.14), (4.15), and (4.16).

in-sample and out-of-sample performance during the 2008 crisis. Appendix C.4 reports
that removing Ford from the sample narrows the gap between in-sample and out-of-sample
metrics (Figure C.3).
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Figure 4.10. Time Series of the RMSE Between Predicted and Observed Credit Spread - One-Day
Ahead (h = 1) and Five-Day Ahead (h = 5)

The first 75% date constitutes the train set (from July 1, 2002, to January 7, 2016) and the remaining 25% of
the date constitutes the test set (January 8, 2016 to June 30, 2020) with a one-month purging period between
the train set and the test set.

Overall, ensemble tree-based methods outperform linear models by achieving lower
RMSE and MAE, as well as higherR2 andR2

p. This suggests their ability to capture nonlin-
ear relationships and complex features interactions. In particular, the boosted trees model
minimizes the discrepancy between out-of-sample and in-sample performance metrics and
achieves the lowest RMSE across the two forecast horizons. Except for the out-of-sample
R2 at five-day ahead, it also delivers the highestR2

OOS andR2
p. At five-day ahead, however,

linear regression, lasso, and random forest models exhibit similar out-of-sample perfor-
mance.

Regularized linear approaches (lasso, ridge, elastic net) do not improve results over
basic linear regression, which is consistent with near-zero penalty estimates (see Appendix

102



C.3). All models perform better at one-day ahead forecast horizon than five-day ahead,
highlighting the increasing challenge of making longer-term predictions.

4.5.2 Feature Importance Results: SHAP values

SHAP values are employed to interpret the boosted trees model, with out-of-sample results
illustrated in Figure 4.11.

Figure 4.11. SHAP Values of the Predicted Nelson-Siegel Coefficients at t+ h

SHAP-based decomposition of feature contributions to the prediction of the four Nelson-Siegel coefficients
at two forecast horizons (h = 1 and h = 5) under the boosted-trees model. Each subplot corresponds to
one coefficient, and the bars show how much each feature contributes to its predicted value, computed using
Equation (4.19).

As expected, each Nelson-Siegel coefficient draws significant explanatory power from
its own historical values and those of the other three coefficients, highlighting both the per-
sistence and the interconnected nature of yield curve dynamics. The y-axis are capped: β0’s
SHAP value for one-day ahead and five-day ahead are 0.00595 and 0.00526 respectively;
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β1’s SHAP value for one-day ahead and five-day ahead are 0.00525 and 0.00437 respec-
tively; β2’s SHAP value for one-day ahead and five-day ahead are 0.00886 and 0.00759

respectively; τ ’s SHAP value for one-day ahead and five-day ahead are 2.8901 and 2.8248

respectively. However, these lagged coefficients are not the sole drivers; additional features
also contribute to the predictions to a lesser extent.

Firm-specific characteristics, such as firm age, equity price, and book-to-market ra-
tio, exhibit substantial explanatory power across all four coefficients. Measures capturing
liquidity (e.g., market capitalization, equity trading volume) also appear relevant. Interest-
ingly, firm-specific uncertainty has a significant impact on the long-term yield level of the
credit spread, and this impact increases as the forecast horizon lengthens.

Macroeconomic and uncertainty measures (e.g., macroeconomic uncertainty, FSL, VIX,
ADS, EPU) further enrich the predictive landscape. Although their individual contribu-
tions may be smaller than those of lagged coefficients and firm-level features, their impor-
tance tends to grow as the forecasting horizon extends. This aligns with the intuition that
short-term uncertainty is lower, while uncertainty increases over longer horizons. Among
the macroeconomic indicators, the ADS Index has greater SHAP values than the other
variables. Because the ADS Index aggregates several macro variables, such as monthly In-
dustrial Production and quarterly real GDP, this result suggests that a composite indicator
may have more predictive power than its individual components. Moreover, the total con-
tribution of the macroeconomic uncertainty variables exceeds that of the macrovariables,
indicating that uncertainty measures are more predictive than macroeconomic levels.

Sector classifications (e.g., “Sec: Financials”) and seniority features (e.g., “Sen: Subor-
dinated”) also emerge as contributors, demonstrating that the coefficients respond, in part,
to credit-quality signals associated with specific economic and bond-market segments.

Figure 4.12 presents violin plots of SHAP values, visualizing the distribution and vari-
ability of feature contributions. The y-axis lists the features, and the x-axis shows SHAP
values, indicating the magnitude and direction of each feature’s influence on the Nelson-
Siegel coefficients. The color bar reflects feature values. The empirical evidences sug-
gest that high values of macroeconomic uncertainty tend to increase β0 and β1, steepen-
ing the credit-spread curve. Low values of firm-specific indicators tend to decrease β0.
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Subordinated bonds tend to increase β1 and decrease β0 and β2. Firms in the consumer-
discretionary sector exhibit higher β0 and β1 but lower β2, consistent with the sector’s eco-
nomic sensitivity. From a macroeconomic perspective, these results confirm that macro-
financial conditions shape credit spread term-structure dynamics.
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Figure 4.12. Violin Plot of the SHAP Value by Nelson-Siegel Coefficients

One-Day Ahead Forecast Prediction

Five-Day Ahead Forecast Prediction

SHAP-based decomposition of feature contributions to the prediction of the four Nelson-Siegel coefficients
under the boosted trees model. 106



Overall, different sets of variables become relevant depending on the Nelson-Siegel
coefficient and forecast horizon. Longer-term forecasts incorporate more macroeconomic
and uncertainty-driven features. This complexity underlines the importance of using a
broad and diverse set of predictors to fully capture credit-spread curve dynamics.

4.5.3 Robustness

Figure 4.13 presents the histogram of the RMSE and pseudo R2
p aggregated by firm and

by month for the boosted trees model. The distribution of these performance metrics does
not exhibit pronounced outliers, thereby underscoring the model’s robustness.

Figure 4.13. Histogram of RMSE and R2
p for the Boosted Trees Model

RMSE and R2
p are aggregated by firm and by month. For one-day-ahead forecasts, there are 2, 374 in-sample

curves and 771 out-of-sample curves. For five-day-ahead forecasts, there are 2, 347 in-sample curves and
768 out-of-sample curves.

To assess the robustness of each model, we employ 13 expanding rolling windows and
examine the performance metrics within each window. This approach highlights how con-
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sistently each model performs over time. The first window spans five consecutive years as
the in-sample period, followed by one year of out-of-sample data, with a one-month purg-
ing gap in between. The initial in-sample period runs from July 2002 to June 2008, with
its out-of-sample period from August 2008 through July 2009. At each subsequent iter-
ation, the in-sample period is extended by one additional year. Consequently, the second
in-sample period covers July 2002 through June 2009, and its out-of-sample period runs
from August 2009 to July 2010, and so forth.

Figure 4.14 reports the daily RMSE across the 13 out-of-sample windows. Overall per-
formance remains relatively stable, except during the subprime crisis, when credit spreads
for certain firms surged sharply. The RMSE spikes in 2008 align with earlier observations.
Smaller fluctuations also occur toward the end of 2015 and the beginning of 2016 for the
boosted trees model, likely reflecting challenges in selecting hyper-parameters that avoid

Figure 4.14. Daily Out-of-Sample RMSE

The daily RMSE is computed on expanding, out-of-sample rolling windows. The in-sample training set
starts with five consecutive years (July 2002-June 2008) and expands by one year at each iteration. RMSE is
defined in Equation (4.13).
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overfitting.
To gauge the contribution of additional features, we compare the predictive perfor-

mance of two boosted-trees models. Model M1 includes all available features, whereas
Model M2 relies exclusively on lagged coefficients. Since this comparison focuses solely
on predictive performance, we do not necessarily expect M1 to outperform M2 on every
metric. As shown in Table 4.4,M2 achieves a lower RMSE thanM1, butM1 outperforms
M2 in MAE, R2, and R2

p. Overall, these findings imply that incorporating firm-specific
characteristics, macroeconomic indicators, and uncertainty measures enhances the model’s
predictive power.

Table 4.4. Comparison of the Boosted Trees Performance Metrics between M1 and M2

Desc. Model RMSE MAE R2 R2
p

h = 1 - IS
M1 0.00344 0.00213 99.12% 99.12%
M2 0.00240 0.00508 98.86% 98.19%

h = 1 - OS
M1 0.00222 0.00154 88.59% 89.39%
M2 0.00135 0.00198 90.72% 91.87%

h = 5 - IS
M1 0.00409 0.00251 98.77% 98.78%
M2 0.00377 0.00943 93.50% 94.11%

h = 5 - OS
M1 0.00313 0.00199 76.91% 80.92%
M2 0.00220 0.00323 75.50% 79.51%

h = 1 and h = 5 denote one- and five-day-ahead forecast horizons, respectively. The in-sample (IS) period
is July 1, 2002–January 7, 2016; the out-of-sample (OS) period is January 8, 2016–June 30, 2020. Model
M1 uses all available variables; Model M2 uses only lagged coefficients. Performance metrics are defined
in Equations (4.13), (4.14), (4.15), and (4.16).

4.6 Conclusion

This study contributes to the credit-spread modelling literature by integrating macroeco-
nomic uncertainty indicators and statistical-learning techniques into the predictive frame-
work for the term structure of credit spreads. Our findings highlight that the historical
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values of the credi spread term-structure coefficients are not the sole drivers; firm-specific
variables and macroeconomic uncertainty measures also shape credit spreads.

We propose a penalized loss function that improves the stability and economic inter-
pretability of Nelson-Siegel credit-spread coefficients. We then compare seven models
across two statistical-learning approaches: linear models and ensemble models. Our re-
sults show that the boosted-trees model outperforms others in predicting the credit-spread
term structure. Using SHAP values, we demonstrate that the coefficients’ historical values
play a major role in prediction, but they are not the only drivers. Incorporating firm-specific
variables and macroeconomic uncertainty measures enhances both explanatory power and
predictive accuracy. The marginal contribution of features varies by Nelson-Siegel coef-
ficient and forecast horizon: firm age, equity price, and book-to-market ratio are the most
important firm-specific variables, while the impact of macroeconomic uncertainty mea-
sures increases with the forecast horizon. Among these, the firm-specific uncertainty mea-
sure and the macroeconomic-uncertainty measure of Ludvigson et al., 2021 are the most
important for predicting the credit-spread term structure.

Future research could extend this framework by incorporating alternative uncertainty
measures or by applying neural-network or deep-learning approaches to further improve
predictive accuracy.
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Chapter 5

Concluding Remarks

In this thesis, we explore credit risk in the bond market through the lens of Contingent
Convertible debt and the prediction of the term structure of credit spreads.

The first essay provides insight about the integration of Contingent Convertible debt
into banks’ capital structures and the impact from an equity holder’s perspective, employing
a reduced-form model and dynamic optimization. Although CoCos are expensive debt
instruments due to higher coupon payments rewarding the underlying risk of default and
the possible zero chance of recovery on default, they offer significant benefits. CoCos
reduce the cost associated with standard debt and the overall cost of debt by acting as
precautionary buffers that delay the occurrence of default. From the viewpoint of equity
holders, integrating CoCos into banks’ capital structures increases aggregate shareholder
value, particularly through enhanced dividend payouts during financial distress or periods
characterized by low returns.

The second essay proposes a methodology to predict the term structure of credit spreads
and bond prices by addressing challenges related to varying bond-trading frequencies across
issuers. While conventional models adequately estimate the term structure of credit spreads
for frequently traded bonds, predicting the credit spreads remains challenging due to the
instability of term-structure coefficients. We tackle this by introducing an augmented loss
function incorporating penalty terms. Given limited data for issuers with infrequently
traded bonds, we develop a two-step clustering methodology: we identify clusters of high-



frequency issuers using a Gaussian Mixture Model, and we associate low-frequency issuers
with these clusters based on issuer-specific characteristics. Our results reveal heterogene-
ity in predictive performance across clusters, where clusters with more observations yield
more accurate price predictions, and inversely.

In the third essay, the prediction of the term structure of credit spreads is investigated
through the integration of macroeconomic uncertainty indicators and statistical learning
methodologies. Our findings demonstrate the importance of firm-specific variables to ex-
plain credit spread dynamics. As the prediction horizon increases, the explanatory power
of macroeconomic uncertainty indicators intensifies, reflecting greater uncertainty over ex-
tended periods. Additionally, ensemble statistical learning models show superior predictive
performance over traditional linear models, underscoring their effectiveness in credit-risk
modelling.

As demonstrated throughout this thesis, the analysis of credit risk remains critically
important. Recent events involving CoCos have provoked debate regarding their inherent
risks and regulatory implications, forcing regulators to reassess governance frameworks
aimed at mitigating associated systemic risks. Ultimately, incorporating statistical learn-
ing techniques into credit-risk research offers valuable opportunities to revisit established
questions and develop innovative, more robust solutions.
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Chapter A

Appendices of Contingent Convertible Debt: The
Impact on Equity Holders

A.1 The Floating Rates
Since pricing is performed under the risk-neutral measure, the first step is to determine the
risk factor Q−dynamics.

A.1.1 The Q−Dynamics of the Debt Ratio

The model uncertainty is captured by the noise series
{
εPt
}
t∈N. The link between the P

probability measure and some risk neutral probability measure Q is achieved through a
Radon–Nikodym derivative dQ

dP
. The latter is based on the Girsanov theorem,

dQ
dP

∣∣
Ft+1

dQ
dP

∣∣
Ft

= exp

(
γεPt+1 −

γ2

2

)
,

where the γ parameter is interpreted as the price of risk. The conditional risk-neutral mo-
ment generating function (MGF) of εPt+1 is

MQ
t (x) = EQ

[
e−xεPt+1

∣∣∣Ft

]
= EP

[
exp

(
γεPt+1 −

γ2

2

)
e−xεPt+1

∣∣∣∣Ft

]
= exp

(
1

2
x2 − xγ

)
,



which corresponds to the MGF of a Gaussian random variable with expectation −γ and
variance 1. Thus, we construct a risk-neutral noise term centred at zero:

εQt+1 = εPt+1 + γ.

Under the risk-neutral measure Q, the asset return satisfies

Rt+1 = mt+1+σt+1ε
P
t+1 = mt+1+σt+1

(
εQt+1 − γ

)
= mt+1 − γσt+1︸ ︷︷ ︸

rt+1

+σt+1ε
Q
t+1 = RQt+1.

Therefore, mt+1 = rt+1 + γσt+1 and the risk-neutral debt ratio dynamics are

XQ
t+1 =

(1 + δt+1) (1 + ηt+1)Xt(
1 +RQt+1

)
− (µt+1 − ηt+1)Xt

(A.1)

=
(1 + δt+1) (1 + ηt+1)Xt(

1 +RQt+1

)
− (rt+1 (1− zt) (1− yt) + b (Xt, yt) zt (1− yt) + c (Xt) yt)Xt

1τC>t+1

+
(1 + δt+1) (1 + ηt+1)Xt(

1 +RQt+1

)
− (rt+1 (1− zt) (1− yt) + b (Xt, yt) zt (1− yt) + yt)Xt

1τC=t+1

+
(1 + δt+1) (1 + ηt+1)Xt(

1 +RQt+1

)
− (rt+1 (1− zt) + b (Xt, 0) zt)Xt

1τC<t+1.

The conversion decision depends on the debt ratio, given that there is no dividend pay-
ment, δt+1 = 0 , no change in debt structure, ηt+1 = 0, and with the CoCo interest payment.
More precisely,

XQ,C
t+1 =

Xt

1 +RQt+1 − (rt+1 (1− zt) (1− yt) + b (Xt, yt) zt (1− yt) + c (Xt) yt)Xt

and
GQt+1 = g

(
XQ,C

t+1

)
. (A.2)

The default intensity is computed after the conversion (if the latter has not already
occurred):

XQ,D
t+1 =

(1 + ηt+1)Xt(
1 +RQt+1

)
− (rt+1 (1− zt) (1− yt) + b (Xt, yt) zt (1− yt) + yt)Xt

1τC>t

ii



+
Xt

1 +RQt+1 − (rt+1 (1− zt) + b (Xt, 0) zt)Xt

1τC≤t,

and
HQ

t+1 = h
(
XQ,D

t+1

)
. (A.3)

A.1.2 Credit Sensitive Debt

Lemma 2. Assume that the time t+ 1 value of the standard risky debt is

B(t+1)−1τD>t = Bt ((1 + b (Xt, yt))1τD>t+1 + ρD1τD=t+1)1τD>t.

Then, the interest rate b (Xt, yt) of the standard debt satisfies

b
(
XQ

t , 0
)
1τC≤t =

[
rt + (1− ρD + rt)

(
1

Qt [τD > t+ 1 |τD > t, τC ≤ t ]
− 1

)]
1τC≤t

(A.4)
and

b
(
XQ

t , yt

)
1τC>t =

[
rt + (1− ρD + rt)

(
1

Qt [τD > t+ 1 |τD > t, τC > t ]
− 1

)]
1τC>t,

(A.5)
where rt is the risk-free rate and ρD represents the recovery rate.

See proof in Appendix A.2.1. The risk-neutral survival probabilities are provided by Lemma
6.

A.1.3 Convertible Contingent Debt

Lemma 3. Assume that the time t+ 1 value of the convertible contingent debt is

Ct ((1 + c (Xt))1τC>t+1 + (1 + ρCc (Xt))1τC=t+1)1τD>t+1.

It follows that the convertible contingent debt interest rate satisfies

c (Xt)1τC>t1τD>t (A.6)

=
(1 + rt)1τC>t1τD>t −Qt [τD > t+ 1| τC > t, τD > t]

Qt [τC > t+ 1| τC > t, τD > t] + ρCQt [τD > t+ 1 and τα = t+ 1| τC > t, τD > t]
1τC>t1τD>t.
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Remarks If ρC = 1, then c (Xt) = b
(
XQ

t , yt

)
, where ρD = 0.

See proof in Appendix A.2.2. The risk-neutral conditional probabilities are detailed in
Lemmas 4–6.

A.1.4 Conditional Probabilities

The proofs of the following lemmas are available in the Appendix A.2.5.

Lemma 4 (No conversion risk-neutral probability).

Qt [τC > t+ 1| τα > t, τD > t] = Qt [τα > t+ 1 and τD > t+ 1| τα > t, τD > t]

= EQt

[
exp

(
−HQ

t+11τC>t −GQt+1

)∣∣∣ τα > t, τD > t
]
,

where GQt+1 and HQ
t+1 are defined by Equations (A.2) and (A.3).

Lemma 5 (Conversion and survival risk-neutral probability).

Qt [τα = t+ 1 and τD > t+ 1| τα > t, τD > t]

= EQt

[
exp

(
−HQ

t+11τC>t

)(
1− exp

(
−GQt+1

))∣∣∣ τC > t, τD > t
]
,

where GQt+1 and HQ
t+1 are defined at Equations (A.2) and (A.3).

Lemma 6 (Survival risk-neutral probabilities).

Qt [τD > t+ 1 |τD > t, τα > t ] = EQt

[
exp

(
−HQ

t+11τC>t

)∣∣∣ τD > t, τα > t
]
,

Qt [τD > t+ 1 |τD > t, τα ≤ t ] = EQt

[
exp

(
−HQ

t+11τC≤t

)∣∣∣ τD > t, τα ≤ t
]
,

where HQ
t+1 is defined at Equation (A.3).

A.1.5 Approximations

A.1.5.1 Approximation of b (x, 0)

From Equation (A.1), we note thatXQ,D
t+1 can be viewed as a function ofRQt+1. To emphasize

this relation, we write XQ,D
t+1 = XQ,D

t+1

(
RQt+1

)
. Since RQt+1 is centered at rt+1, a Taylor
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expansion of exp
(
−h
(
XQ,D

t+1

))
around RQt+1 = rt+1 leads to

EQt

[
exp

(
−h
(
XQ,D

t+1

))]
1τD>t

∼= exp
(
−h
(
XQ,D

t+1 (rt+1)
))

− exp
(
−h
(
XQ,D

t+1 (rt+1)
))

h′
(
XQ,D

t+1 (rt+1)
) ∂XQ,D

t+1

∂RQt+1

(rt+1) E
Q
t

[(
RQt+1 − rt+1

)]
︸ ︷︷ ︸

=0

,

that is,

Qt [τD > t+ 1 |τD > t, τα ≤ t ]

∼= exp

(
−h
(

Xt

1 + rt+1 − (rt+1 (1− zt) + b (Xt, 0) zt)Xt

))
1τC≤t.

Placing it back in Equation (A.4),

b (x, 0) ∼= rt+(1− ρD + rt)

(
exp

(
h

(
x

1 + rt+1 − (rt+1 (1− zt) + b (x, 0) zt)x

))
− 1

)
.

A.1.5.2 Approximation of b (x, y) and c (x)

Similarly, let

XQ,D
t+1 (rt+1)1τC>t =

(1− yt)Xt

(1 + rt+1)− (rt+1 (1− zt) (1− yt) + b (Xt, yt) zt (1− yt) + yt)Xt
,

XQ,C
t+1 (rt+1) =

Xt

1 + rt+1 − (rt+1 (1− zt) (1− yt) + b (Xt, yt) zt (1− yt) + c (Xt) yt)Xt
.

From Lemmas 4–6, we derive the following approximations:

Qt [τD > t+ 1 |τD > t, τα > t ] ∼= e−h(XQ,D
t+1 (rt+1)1τC>t),

Qt [τC > t+ 1| τC > t, τD > t] ∼= e−h(XQ,D
t+1 (rt+1)1τC>t)−g(XQ,C

t+1 (rt+1)),

Qt [τα = t+ 1 and τD > t+ 1| τα > t, τD > t] ∼= e−h(XQ,D
t+1 (rt+1)1τC>t)

(
1− e−g(XQ,C

t+1 (rt+1))
)
.

Placing it back in Equations (A.5) and (A.6) leads to

b (Xt, yt) ∼= rt + (1− ρD + rt)
(
eh(X

Q,D
t+1 (rt+1)1τC>t) − 1

)
,

c (Xt) ∼=
(1 + rt)− e−h(XQ,D

t+1 (rt+1)1τC>t)

e−h(XQ,D
t+1 (rt+1)1τC>t)−g(XQ,C

t+1 (rt+1)) + ρCe
−h(XQ,D

t+1 (rt+1)1τC>t)
(
1− e−g(XQ,C

t+1 (rt+1))
)

=
(1 + rt) exp

(
h
(
XQ,D

t+1 (rt+1)1τC>t

))
− 1

(1− ρC) exp
(
−g
(
XQ,C

t+1 (rt+1)
))

+ ρC
.
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A.2 Proofs
A.2.1 Standard Bond Floating Coupon Rate

Proof of Lemma 2. The time t price of a credit-sensitive debt is denoted Bt. At time t+1,
there is an interest rate payment ofBtb

(
XQ

t , yt

)
if no default occurs and there is a recovery

of ρDB(t+1)− in case of default. We set the interest rate b
(
XQ

t , yt

)
such that the next

period debt value, before the dividend payment, remains constant, that is, B(t+1)− = Bt.

Interestingly, the floating rate is affected by the presence (or absence) of the CoCo debt
instrument. We therefore study two cases: τC > t and τC ≤ t.

If τC ≤ t, then the standard risky bond pricing corresponds to the classic case:

Bt1τC≤t1τD>t

= EQt


(
Bt +Btb

(
XQ

t , 0
))

1τD>t+1 + ρDBt1τD=t+1

1 + rt

1τC≤t1τD>t

= BtE
Q
t


(
1 + b

(
XQ

t , 0
))

1τD>t+1 + ρD (1− 1τD>t+1)

1 + rt

1τC≤t1τD>t

= Bt

ρD +
(
1− ρD + b

(
XQ

t , 0
))
Qt [τD > t+ 1 |τD > t, τC ≤ t ]

1 + rt
1τC≤t1τD>t.

Since

ρD +
(
1− ρD + b

(
XQ

t , 0
))
Qt [τD > t+ 1 |τD > t, τC ≤ t ]

1 + rt
1τC≤t1τD>t = 1τC≤t1τD>t,

b
(
XQ

t , 0
)
1τC≤t1τD>t

=

[
rt + (1− ρD + rt)

(
1

Qt [τD > t+ 1 |τD > t, τC ≤ t ]
− 1

)]
1τC≤t1τD>t.
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Similarly, if τC > t, then the risky debt interest rate is

b
(
XQ

t , yt

)
1τC>t1τD>t

=

[
rt + (1− ρD + rt)

(
1

Qt [τD > t+ 1 |τD > t, τC > t ]
− 1

)]
1τC>t1τD>t.

A.2.2 Convertible Bond Floating Coupon Rate

Proof of Lemma 3. The goal is to choose the coupon rate c (Xt) so that the convertible
contingent debt value at time t + 1 is the same as its value at time t, that is C(t+1)− = Ct.
Assume that τC > t and that τD > t, since, otherwise, the convertible instrument is worth
0. In that case, the time t value of the convertible contingent debt value satisfies

Ct1τC>t1τD>t

= EQt

[
Ct + c (Xt)Ct

1 + rt
1τD>t+11τα>t+1 +

Ct + ρCc (Xt)Ct

1 + rt
1τD>t+11τα=t+1

]
1τC>t1τD>t,

which is equivalent to

1τC>t1τD>t

= EQt

[
1 + c (Xt)

1 + rt
1τD>t+11τα>t+1 +

1 + ρCc (Xt)

1 + rt
1τD>t+11τα=t+1

]
1τC>t1τD>t

=
1

1 + rt

(
(1 + c (Xt)) E

Q
t [1τD>t+11τα>t+1| τC > t, τD > t]

+ (1 + ρCc (Xt)) E
Q
t [1τD>t+11τα=t+1| τC > t, τD > t]

)
1τC>t1τD>t.

Consequently,

c (Xt)1τC>t1τD>t

=
(1 + rt)1τC>t1τD>t − EQt [1τD>t+1| τC > t, τD > t]

EQt [1τD>t+11τα>t+1| τC > t, τD > t] + ρCE
Q
t [1τD>t+11τα=t+1| τC > t, τD > t]

1τC>t1τD>t.

Lastly, note that 1τD>t+11τα>t+1 = 1τC>t+1.
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A.2.3 The Equity Value Variation

From Equations (2.7) and (2.8), it follows that

Et+1 − Et

= At+1 −Dt+1 − Et

=
(1 +Rt+1)At − (µt+1 − ηt+1)Dt

1 + δt+1

−Dt (1 + ηt+1)− (At −Dt)

=

(
Rt+1 − δt+1

1 + δt+1

− µt+1 + ηt+1δt+1

1 + δt+1

Xt

)
At.

Therefore,

EPt

[
Et+1|δt+1=0 − Et

]
= EPt [Rt+1 − µt+1Xt]At =

(
mt+1 − EPt [µt+1]Xt

)
At1τC≤t,

where

EPt [µt+1]

= (rt+1 (1− zt) + b (Xt, 0) zt)1τC≤t

+(rt+1 (1− zt) (1− yt) + b (Xt, yt) zt (1− yt))Pt [τC = t+ 1 |τC > t ]1τC>t

+(rt+1 (1− zt) (1− yt) + b (Xt, yt) zt (1− yt) + c (Xt) yt)Pt [τC > t+ 1 |τC > t ]1τC>t.

A.2.4 The Value of Expected Discounted Dividends at T

Proof of Lemma 1. Since u > T , we can substitute Xu = XT , Au = AT , µu = µT+1,
δ∗u = δ∗T+1 = mT − µT+1XT , and DFT+1,T+1+u = (1 + w (XT ))

−u in Equation (2.21).
Therefore,

V
(
T + 1, X0

T+1

)
1τD>T+1

∼=
∞∑

u=T+1

EPT+1

[
DFT+1,uδuAu

(
1− y0α

1− α + y0α
1τC≤u

)
1τD>u

]
1τD>T+1

= δT+1AT

(
1− y0α

1− α + y0α
1τC≤T

) ∞∑
u=T+1

(1 + w (XT ))
−(T+1−u) EPT+1 [1τD>u]1τD>T+1.
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Because the debt ratio remains constant over time, the default intensity is

Hu = HT = λD +

(
1

θD
max (XT ; 0)

)βD

.

Therefore, the conditional survival probabilityEPT+1 [1τD>u]1τD>T+1 = exp (− (u− T − 1)HT )

and

V
(
T + 1, X0

T+1

)
1τD>T+1

∼= δT+1AT

(
1− y0α

1− α + y0α
1τC≤T

) ∞∑
s=0

(
exp (−HT )

1 + w (XT )

)s

1τD>T+1.

The final result is obtained using the geometrical series property
∑∞

s=0 a
s = (1− a)−1 ,

provided that |a| < 1:

V
(
T + 1, X0

T+1

)
1τD>T+1

∼= δT+1AT

(
1− y0α

1− α+ y0α
1τC≤T

)(
1 +

exp (−HT )

1 + w (XT )− exp (−HT )

)
1τD>T+1

and

V
(
T,X0

T , δT
)
1τD>T

∼=

{
δTAT

(
1− y0α

1− α + y0α
1τC≤T

)
+ EPT

[
V
(
T + 1, X0

T+1

)
1 + w (XT )

1τD>T+1

]}
1τD>T

=

{
δTAT

(
1− y0α

1− α + y0α
1τC≤T

)
+ EPT

[
V
(
T + 1, X0

T+1

)
1 + w (XT )

EPT+1 [1τD>T+1]

]}
1τD>T

=

{
δTAT

(
1− y0α

1− α + y0α
1τC≤T

)
+ EPT

[
V
(
T + 1, X0

T+1

)
1 + w (XT )

exp (−HT+1)

]}
1τD>T

=

{
δTAT

(
1− y0α

1− α + y0α
1τC≤T

)
+
V (T + 1, X0

T )

1 + w (XT )
exp (−HT )

}
1τD>T

= AT

(
1− y0α

1− α + y0α
1τC≤T

){
δT + δT+1

(
exp (−HT )

1 + w (XT )− exp (−HT )

)}
1τD>T .
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A.2.5 Proofs of Lemmas 4–6

Proof of Lemma 4. Note that {τC > t− 1} = {τα > t− 1} ∩ {τD > t− 1} . Once we
condition on the time t debt ratio, the events {τα > t} and {τD > t} are independent.
Therefore,

Qt (τα > t and τD > t |τα > t− 1, τD > t− 1)

= Qt (τD > t |τα > t− 1, τD > t− 1)Qt (τα > t |τα > t− 1, τD > t− 1)

= exp
(
−HQ

t 1τC>t−1

)
exp

(
−GQt

)
1τα>t−11τD>t−1.

Finally, the law of iterated conditional expectation implies that

Qt (τα > t+ 1 and τD > t+ 1 |τα > t, τD > t)

= EQt

[
EQt+1 [1τα>t+11τD>t+1| τα > t, τD > t]

∣∣∣ τα > t, τD > t
]

= EQt

[
exp

(
−HQ

t+11τC>t

)
exp

(
−GQt+1

)∣∣∣ τα > t, τD > t
]
.

Proof of Lemma 5. Given the time t debt ratio, the events {τα = t} and {τD > t} are in-
dependent. Therefore,

Qt (τα = t and τD > t |τα > t− 1, τD > t− 1)

= Qt (τD > t |τα > t− 1, τD > t− 1)Qt (τα = t |τα > t− 1, τD > t− 1)

= exp
(
−HQ

t 1τC>t−1

)(
1− exp

(
−GQt

))
1τα>t−11τD>t−1

and

Qt (τα = t+ 1 and τD > t+ 1 |τα > t, τD > t)

= EQt [1τα=t+11τD>t+1 |τα > t, τD > t ]

= EQt

[
EQt+1 [1τα=t+11τD>t+1 |τα > t, τD > t ] |τα > t, τD > t

]
= EQt

[
exp

(
−HQ

t+11τC>t

)(
1− exp

(
−GQt+1

))
|τα > t, τD > t

]
.
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Proof of Lemma 6. First, Qt [τD > t+ 1| τα > t, τD > t] is a consequence of Lemmas 4
and 5:

Qt [τD > t+ 1| τα > t, τD > t]

= Qt [τα > t+ 1 and τD > t+ 1| τα > t, τD > t]

+Qt [τα = t+ 1 and τD > t+ 1| τα > t, τD > t]

= EQt

[
exp

(
−HQ

t+11τC>t

)∣∣∣ τC > t, τD > t
]
.

We now compute Qt [τD > t+ 1 |τD > t, τα ≤ t ] . Since

Qt [τD > t |τα ≤ t− 1, τD > t− 1] = exp
(
−HQ

t 1τC≤t−1

)
1τα≤t−11τD>t−1,

Qt [τD > t+ 1 |τD > t, τα ≤ t ] = EQt [1τD>t+1 |τD > t, τα ≤ t ]

= EQt

[
EQt+1 [1τD>t+1 |τD > t, τα ≤ t ] |τD > t, τα ≤ t

]
= EQt

[
exp

(
−HQ

t+11τC≤t

)∣∣∣ τD > t, τα ≤ t
]
.

A.3 Calibration of Default and Conversion Probabilities

We use the one-year default probability computed by Bloomberg in order to calibrate the
one-year default probability. We also impose a default probability of 1.5% around the
critical debt ratio imposed by the regulator. Using a log-linearization of Equation (2.19),
the function Ht+1 can be expressed such that

Ht+1 = − log(1− Pt+1 (τD = t+ 1 |τC ≤ t, τD > t)).

Fixing the coefficient βD, a log-linear regression can be done. We have

− log (1− Pt+1(τD = t+ 1 |τC ≤ t, τD > t)) = β0 + β1 (Xt+1)
βD ,
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where β0 = λ and β1 =

(
1

θD

)βD

. A simple transformation of β1 gives the estimated

parameter θD:

θD =

(
1

β1

)1/βD

.

From Equation (2.14), we can isolate the parameter θC , such that

θC =
XC

t+1

(− log(1− Pt+1(τC = t+ 1 |τC > t))−Ht+11τC>t+1)
1/βC

.

The conversion probability is calibrated such that there is a 10% conversion probability
over the observed mean debt ratio and a 90% conversion probability at the trigger level
imposed by the regulator. We are in the presence of two equations with two unknown
parameters: θC and βC . The observed mean debt ratio, denoted by X̄obs, corresponds to
the average debt ratio from 2004 to 2017. The trigger level used, denoted by X̄obs

α , is the
average trigger level imposed by the regulator from 2004 to 2017. Solving the system of
equation, we have

θC = exp

{
log(fα) log(X̄

obs)− log(fX) log(X̄
obs
α )

log(fα)− log(fX)

}
,

βC =
log(fα) log(fα)− log(fα) log(fX)

log(fα) log(X̄obs
α )− log(fα) log(X̄obs)

,

where

fα = − log(1− 0.9)−

(
λ+

(
X̄obs

α

θC

)1/βD
)
,

fX = − log(1− 0.1)−

(
λ+

(
X̄obs

θC

)1/βD
)
.

A.4 Finding the Optimal Dividend Rate Sequence
A.4.1 Post-Conversion Optimal Dividend Rates

We use the subscript C to indicate that the conversion occurred, that is, to indicate that
τC ≤ t. Let vC (t,X0

t , δt:∞) = A−1
t VC (t,X0

t , δt:∞) and v∗C (t,X0
t ) = A−1

t VC (t,X0
t , δ

∗
t:∞) ,
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where δ∗t:∞ represents the optimal dividend rates from t onward when τC ≤ t. In that case,
since

At+1

At

=
Dt

At

Dt+1

Dt

At+1

Dt+1

1τC≤t =
Xt

Xt+1

(1 + ηt+1)1τC≤t =
Xt

Xt+1

,

Equation (2.22) becomes

δ∗t = arg max
δt∈[0,δmax

t ]
At

{
δt

(
1− (1 + ρCc (α)) y0α

1− α + (1 + ρCc (α)) y0α
1τC≤t

)
+ EPt

[
Xt

Xt+1

v∗C
(
t+ 1, X0

t+1

)
1 + w (Xt)

1τD>t+1

]}
1τD>t.

The conditional expectation is evaluated numerically. More precisely, let

0 = x0 < x1 < ... < xn = 1

be a discretization of the pre-dividend debt ratio X0
t+1 support. For i ∈ {1, 2, ..., n}, ξi =

(xi−1 + xi) /2 is the mid-point of each interval. Assuming that X0
t = ξi and that the

dividend rate for that particular state is δt,i, Equations (2.10), (2.9), (2.6), (2.16), and (2.24)
become respectively

Xt,i = (1 + δt,i) ξi,

Xt+1 =
(1 + δt+1)Xt,i

(1 +Rt+1)− µt+1,iXt,i

,

µt+1,i = rt+1 (1− zt) + b (Xt,i, 0) zt,

XD
t+1 =

Xt,i

(1 +Rt+1)− µt+1,iXt,i

= Xt+1|δt+1=0 , and

δmax
t,i = min

(
max

(
x∗0 − ξi
ξi

, 0

)
,mt+1

)
,

where x∗0 is the solution of mt+1 − x∗0 [rt+1 (1− zt) + b (x∗0, 0) zt] = 0. As shown in the
Appendix A.4.3, the transition probabilities are

πij (δt,i) = Pt

[
xj−1 ≤ X0

t+1 < xj ,τD > t+ 1
∣∣ τC ≤ t,X0

t = ξi
]

∼= [Φ (φi,j−1 (δt,i))− Φ (φi,j (δt,i))] exp (−h (ξj)) , (A.7)
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where Φ is the cumulative distribution function of a standard normal random variable and

φi,j (δt,i) =

(
x−1
j + µt+1,i

)
Xt,i − 1−mt+1

σt+1

. (A.8)

Lastly,

EPt

[
Xt,i

Xt+1

v∗C
(
t+ 1, X0

t+1

)
1 + w (Xt,i)

1τD>t+1

∣∣∣∣∣ Xt|δt=0 = ξi, τα ≤ t, τD > t

]
∼=

n∑
j=1

(1 + δt,i) ξi(
1 + δ∗t+1,j

)
ξj

v∗C (t+ 1, ξj)

1 + w ((1 + δt,i) ξi)
πij (δt,i) ,

δ∗t,i = arg max
δt,i∈[0,δmax

t,i ]
δt,i

(
1− (1 + ρCc (α)) y0α

1− α + (1 + ρCc (α)) y0α
1τC≤t

)
(A.9)

+
n∑

j=1

(1 + δt,i) ξi(
1 + δ∗t+1,j

)
ξj

v∗C (t+ 1, ξj)

1 + w ((1 + δt,i) ξi)
πij (δt,i) ,

and

v∗C (t, ξi) = δ∗t,i
(1 + ρCc (α)) y0α

1− α + (1 + ρCc (α)) y0α
1τC≤t (A.10)

+
n∑

j=1

(
1 + δ∗t,i

)
ξi(

1 + δ∗t+1,j

)
ξj

v∗C (t+ 1, ξj)

1 + w
((
1 + δ∗t,i

)
ξi
)πij (δ∗t,i) .

A.4.2 Pre-Conversion Optimal Dividend Rates

We use the subscript NC to indicate that the CoCo debt is not yet converted, that is, to
indicate that τC > t. Let vNC (t,X0

t , δt:∞) = A−1
t VNC (t,X0

t , δt:∞) and v∗∗NC (t,X0
t ) =

A−1
t VNC

(
t,X0

t , δ
opt
t:∞
)
, where δopt

t:∞ is the optimal dividend rate sequence:

δopt
t+1 = δ∗t+11τC=t+1 + δ∗∗t+11τC>t+1.
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In that case, Equation (2.22) becomes

δ∗∗t (A.11)

= arg max
δt∈[0,δmax

t ]
At

{
δt + EPt

[
(1 + ηt+1)

Xt

Xt+1

A−1
t+1VC

(
t+ 1, Xt+1, δ

∗
t+1:∞

)
1 + w (Xt)

1τC=t+11τD>t+1

]

+ EPt

[
Xt

Xt+1

A−1
t+1VNC

(
t+ 1, X0

t+1, δ
opt
t+1:∞

)
1 + w (Xt)

1τC>t+11τD>t+1

]}
1τD>t

= arg max
δt∈[0,δmax

t ]
At

{
δt + (1− yt) E

P
t

[
Xt

Xt+1

v∗C
(
t+ 1, X0

t+1

)
1 + w (Xt)

1τC=t+11τD>t+1

]
(A.12)

+ EPt

[
Xt

Xt+1

v∗∗NC

(
t+ 1, X0

t+1

)
1 + w (Xt)

1τC>t+11τD>t+1

]}
1τD>t.

Assuming that X0
t = ξi and that the dividend rate for that particular state is δt,i, then

Equations (2.10), (2.9), (2.6), (2.13), (2.16) and (2.24) become

Xt,i = (1 + δt,i) ξi

Xt+1 =
(1 + δt+1) (1− yt)Xt,i

(1 +Rt+1)− (µt+1,i − c (Xt,i) yt + yt)Xt,i

1τα=t+1 +
(1 + δt+1)Xt,i

(1 +Rt+1)− µt+1,iXt,i

1τα>t+1,

µt+1,i = rt+1 (1− zt) (1− yt) + b (Xt,i, yt) zt (1− yt) + c (Xt,i) yt,

XC
t+1 = X0

t+1

∣∣
τa>t+1

=
X0

t+1

∣∣
τa=t+1

(1− yt) + (1− c (Xt,i)) yt X0
t+1

∣∣
τa=t+1

,

XD
t+1 = X0

t+1

∣∣
τa=t+1

=
(1− yt) X

0
t+1

∣∣
τa>t+1

1− (1− c (Xt,i)) yt X0
t+1

∣∣
τa>t+1

, and

δmax
t,i = min

(
max

(
x∗∗0 − ξi
ξi

, 0

)
,mt+1

)
,

where x∗∗0 is the solution ofmt+1−x∗∗0 [rt+1 (1− zt) (1− yt) + b (x∗∗0 , yt) zt (1− yt) + c (x∗∗0 ) yt] =

0. As shown in Appendix A.4.3, the transition probabilities are

π∗
ij (δt,i) (A.13)

= Pt

[
xj−1 ≤ X0

t+1

∣∣
τa=t+1

< xj, τα = t+ 1, τD > t+ 1
∣∣∣ τC > t, Xt|δt=0 = ξi

]
∼=

(
1− exp

(
−g

(
X0

t+1

∣∣
τa=t+1

(1− yt) + (1− c (Xt,i)) yt X0
t+1

∣∣
τa=t+1

)))
exp (−h (ξj))
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×
[
Φ
(
φ∗
i,j−1 (δt,i)

)
− Φ

(
φ∗
i,j (δt,i)

)]
,

with

φ∗
i,j (δt,i) =

[
x−1
j (1− yt) + µt+1,i + (1− c (Xt,i)) yt

]
Xt,i − 1−mt+1

σt+1

(A.14)

and

π∗∗
ij (δt,i) (A.15)

= Pt

[
xj−1 ≤ X0

t+1

∣∣
τa>t+1

< xj, τα > t+ 1, τD > t+ 1
∣∣∣ τC > t, Xt|δt=0 = ξi

]
∼= exp

(
−g (ξj)− h

(
(1− yt) ξj

1− (1− c (Xt,i)) ytξj

))[
Φ
(
φ∗∗
i,j−1 (δt,i)

)
− Φ

(
φ∗∗
i,j (δt,i)

)]
,

with

φ∗∗
i,j (δt,i) =

(
x−1
j + µt+1,i

)
Xt,i − 1−mt+1

σt+1

. (A.16)

The conditional expectations are approximated with

EPt

[
Xt

Xt+1

v∗C
(
t+ 1, X0

t+1

)
1 + w (Xt)

1τC=t+11τD>t+1

∣∣∣∣∣ Xt|δt=0 = ξi, τC > t

]
∼=

n∑
j=1

(1 + δt,i) ξi(
1 + δ∗t+1,j

)
ξj

v∗C (t+ 1, ξj)

1 + w ((1 + δt,i) ξi)
π∗
ij (δt,i)

and

EPt

[
Xt

Xt+1

v∗∗NC

(
t+ 1, X0

t+1

)
1 + w (Xt)

1τC>t+11τD>t+1

∣∣∣∣∣ Xt|δt=0 = ξi, τC > t

]
∼=

n∑
j=1

(1 + δt,i) ξi(
1 + δ∗∗t+1,j

)
ξj

v∗∗NC (t+ 1, ξj)

1 + w ((1 + δt,i) ξi)
π∗∗
ij (δt,i) .

Lastly,

δ∗∗t,i

= arg max
δt,i∈[0,δmax

t,i ]
At

{
δt,i + (1− yt)

n∑
j=1

(1 + δt,i) ξi(
1 + δ∗t+1,j

)
ξj

v∗C (t+ 1, ξj)

1 + w ((1 + δt,i) ξi)
π∗
ij (δt,i)
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+
n∑

j=1

(1 + δt,i) ξi(
1 + δ∗∗t+1,j

)
ξj

v∗∗NC (t+ 1, ξj)1τC>t+1

1 + w ((1 + δt,i) ξi)
π∗∗
ij (δt,i)

}
1τD>t.

and

v∗NC (t, ξi) ∼= δ∗∗t,i + (1− yt)
n∑

j=1

(
1 + δ∗∗t,i

)
ξi(

1 + δ∗t+1,j

)
ξj

v∗C (t+ 1, ξj)

1 + w
((
1 + δ∗∗t,i

)
ξi
)π∗

ij

(
δ∗∗t,i
)

+
n∑

j=1

(
1 + δ∗∗t,i

)
ξi(

1 + δ∗∗t+1,j

)
ξj

v∗∗NC (t+ 1, ξj)

1 + w
((
1 + δ∗∗t,i

)
ξi
)π∗∗

ij

(
δ∗∗t,i
)
. (A.17)

A.4.3 Proofs

A.4.3.1 Proof of Equation (A.7)

Pt

[
xj−1 ≤ X0

t+1 < xj
∣∣ τC ≤ t,X0

t = ξi
]

= Pt

[
xj−1 ≤

Xt,i

(1 +Rt+1)− µt+1,iXt,i

< xj

∣∣∣∣ τC ≤ t,X0
t = ξi

]
= Pt

[
x−1
j <

(1 +Rt+1)− µt+1,iXt,i

Xt,i

≤ x−1
j−1

∣∣∣∣ τC ≤ t,X0
t = ξi

]
= Pt

[
φi,j (δt,i) <

Rt+1 −mt+1

σt+1

≤ φi,j−1 (δt,i)

∣∣∣∣ τC ≤ t,X0
t = ξi

]
,

where the φi,j (δt,i) are provided in Equation (A.8). The proof is completed by noting that

Rt+1 −mt+1

σt+1

∣∣∣∣
Ft

is a standard normal random variable. Finally,

Pt

[
xj−1 ≤ X0

t+1 < xj ,τD > t+ 1
∣∣ τC ≤ t,X0

t = ξi
]

= Pt

[
τD > t+ 1| τC ≤ t,X0

t = ξi, xj−1 ≤ X0
t+1 < xj

]
Pt

[
xj−1 ≤ Xt+1|δt+1=0 < xj

∣∣∣ τC ≤ t,X0
t = ξi

]
∼= exp (−h (ξj))Pt

[
xj−1 ≤ Xt+1|δt+1=0 < xj

∣∣∣ τC ≤ t,X0
t = ξi

]
.
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A.4.3.2 Proof of Equation (A.13)

The probability that X0
t+1

∣∣
τa=t+1

lies between xj−1 and xj is

Pt

[
xj−1 ≤ X0

t+1

∣∣
τa=t+1

< xj

∣∣∣ τC > t,X0
t = ξi

]
= Pt

[
xj−1 ≤

(1− yt)Xt,i

(1 +Rt+1)− (µt+1,i − c (Xt,i) yt + yt)Xt,i

< xj

∣∣∣∣ τC > t,X0
t = ξi

]
= Pt

[
x−1
j ≤ (1 +Rt+1)− (µt+1,i − c (Xt,i) yt + yt)Xt,i

(1− yt)Xt,i

< x−1
j−1

∣∣∣∣ τC > t,X0
t = ξi

]
= Pt

[
φ∗
i,j (δt,i) <

Rt+1 −mt+1

σt+1

≤ φ∗
i,j−1 (δt,i)

∣∣∣∣ τC > t,X0
t = ξi

]
= Φ

(
φ∗
i,j−1 (δt,i)

)
− Φ

(
φ∗
i,j (δt,i)

)
,

where φ∗
i,j (δt,i) is defined at Equation (A.14).

The probability that X0
t+1

∣∣
τa=t+1

is contained between xj−1 and xj while the conversion
occurs without the firm default is

Pt

[
xj−1 ≤ X0

t+1

∣∣
τa=t+1

< xj, τα = t+ 1, τD > t+ 1
∣∣∣ τC > t,X0

t = ξi

]
= Pt

[
τα = t+ 1

∣∣∣xj−1 ≤ X0
t+1

∣∣
τa=t+1

< xj, τC > t,X0
t = ξi

]
×Pt

[
τD > t+ 1

∣∣∣xj−1 ≤ X0
t+1

∣∣
τa=t+1

< xj, τC > t,X0
t = ξi

]
×Pt

[
xj−1 ≤ X0

t+1

∣∣
τa=t+1

< xj

∣∣∣ τC > t,X0
t = ξi

]
∼=

(
1− exp

(
g

(
X0

t+1

∣∣
τa=t+1

(1− yt) + (1− c (Xt,i)) yt X0
t+1

∣∣
τa=t+1

)))
× exp (−h (ξj))

[
Φ
(
φ∗
i,j−1 (δt,i)

)
− Φ

(
φ∗
i,j (δt,i)

)]
.

A.4.3.3 Proof of Equation (A.15)
Pt

[
xj−1 ≤ X0

t+1

∣∣
τa>t+1

< xj

∣∣∣ τC > t,X0
t = ξi

]
= Pt

[
xj−1 ≤

Xt,i

(1 +Rt+1)− µt+1,iXt,i

< xj

∣∣∣∣ τC > t,X0
t = ξi

]
= Pt

[
x−1
j <

(1 +Rt+1)− µt+1,iXt,i

Xt,i

≤ x−1
j−1

∣∣∣∣ τC > t,X0
t = ξi

]
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= Pt

[
φ∗∗
i,j (δt,i) <

Rt+1 −mt+1

σt+1

≤ φ∗∗
i,j−1 (δt,i)

∣∣∣∣ τC > t,X0
t = ξi

]
,

where the φ∗∗
i,j (δt,i) are provided in Equation (A.16).
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Chapter B

Appendices of Predicting the Term Structure of
Credit Spreads for High- and Low-Frequency
Issuers: A Combined Nelson-Siegel and
Clustering Approach

B.1 The Linear Nelson-Siegel and Svenson Models of Gau-
thier and Simonato, 2012

This model facilitates the estimation of the Nelson-Siegel and Svensson zero-coupon (ZC)
yield curves using coupon-bearing bond prices by:

1. Linearizing the model with respect to the level, slope, and curvature coefficients by
applying a Taylor approximation to the discount factor.

2. Incorporating prior information to assist the estimation procedure through a Bayesian
approach

Linearization is feasible when the term inside the exponential function from Equation
(3.1) is close to zero. Because this condition typically does not hold in our context, we
introduce an additional weight (ξ) reflecting the mean yield to satisfy this constraint. Thus,



the discount factor is rewritten as:

P (θi, T ) = e−ξT e(ξ−yZC(θ,T ))T . (B.1)

We linearize the model using the Taylor approximation ex ≈ 1 + x. The model is then
estimated by replacing yZC(θ, T ) with either the Nelson-Siegel formulation. A Bayesian
approach based on the Theil–Goldberger estimator (Goldberger, 1964) is employed to in-
corporate prior information. Given that coefficients should exhibit limited day-to-day vari-
ation, prior information provides a valuable reference for today’s coefficient values.

Ultimately, the model is linear in the level, slope, and curvature coefficients (the betas).
Therefore, we create a grid of possible τ values and estimate a Bayesian linear model for
each τ . The optimal τ is selected as the one minimizing the sum of squared errors.

To validate the linear approximation, we adopt a two-step estimation procedure. First,
we estimate the linearized model using Generalized Least Squares (GLS). Further details
are provided in the internet appendix of Gauthier and Simonato, 2012. In the second step,
we estimate the fully nonlinear model using the linearized coefficients from the first step
as initial values for optimization.

B.2 Linearized Nelson-Sigel ZC Spread Curve for Coupon-
Bearing Bond Price With Prior Information

From Eq.(4.3), we introduce an additional weight ξ to get

Bi =

mi∑
j=1

ci,je
−yZC(θ(Gov),ti,j)ti,je−ξti,je(ξ−yZC(θ(issuer),ti,j))ti,j .

The last exponential is linearized to obtain

Bi =

mi∑
j=1

ci,je
−yZC(θ(Gov),ti,j)ti,je−ξti,j

(
1 + ξti,j − yZC(θ(issuer), ti,j)ti,j

)
=

mi∑
j=1

c̃i,jψ0(ti,j)− β
(2)
0

mi∑
j=1

c̃i,jψ1(ti,j)− β
(2)
1

mi∑
j=1

c̃i,jψ2(ti,j)− β
(2)
2

mi∑
j=1

c̃i,jψ3(ti,j),

(B.2)
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with

c̃i,j = ci,je
−yZC(θ(Gov),ti,j)ti,j ,

ψ0(ti,j) = e−ξti,j (1 + ξti,j) ,

ψ1(ti,j) = e−ξti,j ti,j,

ψ2(ti,j) = e−ξti,jϕ1(ti,j, τ)ti,j,

ψ3(ti,j) = e−ξti,jϕ2(ti,j, τ)ti,j.

Fixing ξ and τ , Equation(B.2) can be solve by an OLS estimation. Assumingn bonds prices
observed, the weighted bond prices may be written as a linear system Y ξ = Xξ,τθξ,τ + e

where Xξ,τ = (X1, X2, X3) with the n × 1 vectors Xi =


1

P1

∑m1

j=1 c̃1,jψi(t1,j)

...
1

Pn

∑mn

j=1 c̃n,jψi(tn,j)

 and

Y ξ =


1

P1

[∑m1

j=1 c̃1,jψ0(t1,j)− P1

]
...

1

Pn

[∑mn

j=1 c̃n,jψ0(t1,j)− Pn

]
, for i = 1, 2, 3 where each elements of the system

of equation are weighted with the inverse of the modified bond duration.
To incorporate the prior information, the system becomes(

Y ξ

θprior

)
=

(
Xξ,τ

R

)
θξ,τ +

(
e

d

)
. (B.3)

θprior is an r × 1 vector containing the prior values about the parameter; R is a r × 3

matrix describing the linear combinations of the parameter; d = (d1, d2, d3)
⊤ is a Gaussian

random vector withE [d] = 0,E
[
de⊤] = 0, and diagonal covariance matrix of dimension

r denoted by Σd = E
[
dd⊤]. In this framework, a GLS estimation is used instead of the

OLS estimation, which leads to θBayes
ξ,τ =

(
X̃

⊤
Ω−1X̃

)−1

X̃
⊤
Ω−1Ỹ with X̃ =

(
Xξ,τ

R

)
,

Ỹ =

(
Y ξ

θprior

)
, and Ω =

(
σ2
eIn 0n×r

0n×r Σd

)
.
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B.3 Time Series of the Coefficients Set for USD Corporate
Issuers

The following graphics visually present the estimated Nelson-Siegel spread coefficients
and the corresponding root mean squared relative errors (RMSRE) for each issuer over the
sample period. For the six issuers considered, long-term yield spreads range between 1%

and 3.5%, while the slope coefficient tends to remain negative. The τ coefficient is rela-
tively stable over time. Notably, RBC, Walt Disney, and Verizon exhibit τ values between
1.5 and 3 years, whereas Goldman Sachs, Johnson & Johnson, and Amgen show higher
and τ values ranging from 4 to 8 years.

Figure B.1. Time Series of the NS Coefficients for the Credit Spread Curve from 2016 to 2019 for
RBC (id=270)
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Figure B.2. Time Series of the NS Coefficients for the Credit Spread Curve from 2015 to 2019 for
Goldman Sachs (id=580)
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Figure B.3. Time Series of the NS Coefficients for the Credit Spread Curve from 2015 to 2019 for
Johnson & Johnson (id=939)
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Figure B.4. Time Series of the NS Coefficients for the Credit Spread Curve from 2015 to 2019 for
The Walt Disney Company (id=973)
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Figure B.5. Time Series of the NS Coefficients for the Credit Spread Curve from 2015 to 2019 for
Amgen (id=979)
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Figure B.6. Time Series of the NS Coefficients for the Credit Spread Curve from 2017 to 2019 for
Verizon (id=995)
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B.4 Prediction: Seeming Unrelated Regression

We consider a system of three equations:

β0,t = γ0,0 +
AR∑
i=1

γ0,iβ0,t−i + ε0,t, (B.4)

β1,t = γ1,0 +
AR∑
i=1

γ1,iβ1,t−i + ε1,t, (B.5)

β2,t = γ2,0 +
AR∑
i=1

γ2,iβ2,t−i + ε2,t, (B.6)

where t = 2, ..., T is the time period, and the error terms ε0,t, ε1,t, and ε2,t are correlated.
The Seemingly Unrelated Regressions (SUR) model is estimated using Feasible Gen-

eralized Least Squares (FGLS). The first step is to estimate the system of equations using
Ordinary Least Squares (OLS).

The system of Equation (B.5)-(B.6) can be rewritten in matrix form as:

Y = Xβ + ε (B.7)y1y2
y3

 =

X1 0 0

0 X2 0

0 0 X3


β1β2
β3


6×1

+

ε1ε2
ε3

 , (B.8)

where yi =


βi,2

βi,3
...

βi,T

, Xi =


1 βi,1

1 βi,2
... ...
1 βi,T−1

, βi =

[
γi,0

γi,1

]
, and ε =


εi,2

εi,3
...
εi,T

.

Let n = T − 1.Then, Y and ε are vectors of size 3n × 1; for an autoregression of
order one, X is of size 3n × 6, and β is of sized 6 × 1. The OLS estimator is given by
β = (X⊤X)−1X⊤Y . From this step, we compute the residuals and estimate the error
covariance matrix Σ, whose elements are defined as: σij =

1

n
ε⊤i εj .

In the second step, we estimate the GLS model using the variance matrix Ω̂ = Σ̂⊗ In.
The FGLS estimator is then: β = (X⊤(Σ̂−1 ⊗ In)X)−1X⊤(Σ̂−1 ⊗ In)Y .
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B.5 ClusteringApproach

B.5.1 Distribution of Clusters Among High-Frequency Issuers

The proportion of high-frequency issuers by cluster is presented in the pie chart below. A
total of 18 clusters have been retained based on the BIC criterion. Cluster membership was
estimated using the Gaussian Mixture Model (GMM). A disproportionate representation
across clusters has been identified: 5 clusters account for approximately 80% of the data,
while the remaining clusters each represent less than 3%.

Figure B.7. Proportion of High-Frequency Issuers by Cluster

Clusters were estimated using a Gaussian Mixture Model. The number of clusters was determined using the
Bayesian Information Criterion (BIC).
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B.5.2 Confusion Matrix

The table below presents the confusion matrix obtained from the high-frequency issuers.
The confusion matrix displays the posterior probabilities of cluster membership, condi-
tional on the triplet of sector, seniority, and credit rating.

xxxi



Ta
bl

e
B.

1.
Co

nf
us

io
n

M
at

rix
of

th
e

H
ig

h-
fre

qu
en

cy
Is

su
er

sB
as

ed
on

G
M

M
Cl

us
te

rs

Se
n.

Se
c.

Ra
tin

g
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
OtherSecured

En
er

gy
Su

bs
ta

nt
ia

lr
isk

s
-

-
-

-
10

0.
00

-
-

-
-

-
-

-
-

-
-

-
-

-

Fi
na

nc
ia

ls
N

R
23

.9
1

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
76

.0
9

-
N

IG
S

-
-

-
-

-
-

-
-

-
-

-
-

10
0.

00
-

-
-

-
-

U
M

G
-

-
33

.6
2

-
-

50
.2

9
-

-
-

2.
30

2.
01

-
-

5.
46

-
6.

32
-

-

U
til

iti
es

LM
G

-
-

0.
46

-
-

89
.5

0
9.

59
-

-
-

-
-

-
-

-
0.

46
-

-
U

M
G

-
-

-
-

-
10

0.
00

-
-

-
-

-
-

-
-

-
-

-
-

OtherUnsecured

Fi
na

nc
ia

ls
LM

G
15

.3
1

-
-

-
-

80
.6

1
-

-
-

-
4.

08
-

-
-

-
-

-
-

N
R

-
5.

66
2.

83
64

.1
5

-
7.

08
-

-
-

0.
47

-
-

-
-

-
9.

91
-

9.
91

U
M

G
17

.9
2

2.
63

-
9.

59
-

15
.0

7
-

-
2.

51
1.

71
4.

45
38

.5
8

-
-

-
-

2.
97

4.
57

Te
le

co
m

.
LM

G
-

-
-

-
-

-
-

-
-

-
-

-
-

10
0.

00
-

-
-

-

SeniorSecured

En
er

gy
LM

G
-

-
-

-
-

-
80

.9
9

-
-

-
-

-
-

-
19

.0
1

-
-

-

Fi
na

nc
ia

ls

H
ig

h
G

ra
de

-
-

-
-

-
-

-
-

-
-

52
.0

7
-

-
47

.9
3

-
-

-
-

N
R

3.
56

-
-

0.
32

-
-

-
-

-
-

1.
29

3.
88

-
90

.2
9

-
-

0.
65

-
N

IG
S

6.
67

-
-

-
-

-
-

-
-

-
-

93
.3

3
-

-
-

-
-

-
U

M
G

1.
86

-
1.

24
1.

24
-

31
.0

6
-

-
-

-
7.

45
-

-
52

.8
0

-
3.

73
0.

62
-

H
ea

lth
Ca

re
H

ig
hl

y
Sp

ec
ul

at
iv

e
-

67
.5

7
-

2.
70

10
.8

1
-

-
-

5.
41

-
-

-
-

-
13

.5
1

-
-

-
N

IG
S

45
.1

0
-

-
-

-
-

-
-

-
-

-
39

.2
2

-
-

-
-

15
.6

9
-

U
til

iti
es

H
ig

hl
y

Sp
ec

ul
at

iv
e

-
56

.6
7

-
-

-
-

-
-

-
-

-
-

43
.3

3
-

-
-

-
-

SeniorUnsecured

Co
ns

um
er

D
isc

r.

H
ig

h
G

ra
de

8.
27

-
-

-
-

-
-

-
-

-
-

-
-

91
.7

3
-

-
-

-
H

ig
hl

y
Sp

ec
ul

at
iv

e
-

55
.8

1
-

-
-

-
-

-
39

.5
3

4.
65

-
-

-
-

-
-

-
-

LM
G

24
.6

5
0.

17
-

-
-

2.
32

-
-

-
1.

24
-

13
.6

5
-

54
.1

8
-

-
0.

08
3.

72
N

R
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

10
0.

00
N

IG
S

23
.8

2
8.

66
-

4.
33

-
-

-
-

18
.5

0
6.

50
-

2.
17

-
2.

36
-

-
33

.6
6

-
U

M
G

3.
11

-
-

-
-

-
-

-
-

-
1.

40
5.

28
-

90
.0

6
-

-
0.

16
-

Co
ns

um
er

St
ap

le
s

H
ig

h
G

ra
de

-
-

-
-

-
-

-
-

-
-

-
-

-
10

0.
00

-
-

-
-

H
ig

hl
y

Sp
ec

ul
at

iv
e

-
6.

06
-

-
-

-
-

-
4.

55
-

-
-

-
-

-
-

89
.3

9
-

LM
G

20
.8

9
0.

29
-

0.
29

-
0.

33
-

-
0.

33
0.

58
2.

22
12

.8
6

-
56

.9
8

0.
54

-
3.

21
1.

48
N

R
41

.5
5

-
-

-
-

-
-

-
-

-
-

12
.0

8
-

36
.7

1
-

-
9.

66
-

U
M

G
0.

46
-

-
-

-
-

-
-

-
-

0.
93

1.
55

-
96

.9
0

-
-

0.
15

-

En
er

gy

H
ig

h
G

ra
de

2.
71

-
20

.6
2

-
-

3.
75

-
-

-
-

13
.1

2
3.

12
-

56
.6

7
-

-
-

-
H

ig
hl

y
Sp

ec
ul

at
iv

e
-

45
.0

0
-

-
10

.0
0

-
-

-
45

.0
0

-
-

-
-

-
-

-
-

-
LM

G
42

.5
1

0.
31

0.
79

0.
66

-
9.

52
0.

60
-

0.
16

1.
82

0.
47

16
.6

5
-

20
.4

2
0.

41
0.

50
5.

12
0.

06
N

R
20

.2
3

13
.9

2
3.

40
-

-
6.

31
-

-
-

6.
15

4.
37

24
.7

6
-

20
.8

7
-

-
-

-
N

IG
S

9.
89

47
.8

0
-

-
17

.5
8

-
-

-
10

.7
1

1.
65

-
0.

27
2.

47
-

1.
65

-
7.

69
0.

27
U

M
G

17
.1

9
-

-
-

-
3.

47
-

-
-

-
18

.6
8

17
.0

2
-

43
.6

4
-

-
-

-

Fi
na

nc
ia

ls

H
ig

h
G

ra
de

3.
57

0.
18

9.
17

0.
09

-
3.

12
-

-
-

0.
18

56
.5

5
4.

67
-

11
.6

4
0.

09
10

.7
2

-
-

LM
G

28
.4

1
3.

24
1.

90
3.

77
-

14
.5

6
0.

07
-

1.
87

1.
44

12
.3

9
5.

98
0.

23
6.

74
5.

71
0.

80
7.

15
5.

74
N

R
19

.0
3

1.
59

3.
06

0.
82

-
6.

23
0.

21
-

0.
27

2.
29

13
.7

8
10

.2
7

1.
99

23
.3

1
3.

18
7.

24
1.

92
4.

80
N

IG
S

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
10

0.
00

Pr
im

e
3.

62
-

0.
99

-
-

14
.4

7
-

-
-

0.
33

78
.6

2
1.

64
-

0.
33

-
-

-
-

U
M

G
10

.1
7

1.
28

6.
66

0.
72

-
13

.8
1

0.
35

-
0.

17
0.

89
27

.7
0

7.
22

1.
59

16
.0

0
2.

44
10

.3
4

0.
39

0.
27

Th
ec

lu
ste

rs
ar

ep
re

di
ct

ed
us

in
g

G
M

M
on

th
eh

ig
h-

fre
qu

ec
y

iss
ue

r.
LM

G
sta

nd
sf

or
Lo

w
er

M
ed

iu
m

G
ra

de
.U

M
G

sta
nd

sf
or

U
pp

er
M

ed
iu

m
G

ra
de

.N
IG

S
sta

nd
sf

or
N

on
In

ve
stm

en
tS

pe
cu

la
tiv

e.
N

R
sta

nd
sf

or
N

on
Ra

te
d.

xxxii



Ta
bl

e
B.

2.
Co

nf
us

io
n

M
at

rix
of

th
e

H
ig

h-
fre

qu
en

cy
Is

su
er

sB
as

ed
on

G
M

M
Cl

us
te

rs

Se
n.

Se
c.

Ra
tin

g
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17

SeniorUnsecured

G
ov

er
nm

en
t

H
ig

h
G

ra
de

14
.0

5
-

-
-

-
-

-
-

-
-

-
-

-
85

.9
5

-
-

-
-

N
R

2.
48

-
-

-
-

-
-

-
-

-
-

-
-

97
.5

2
-

-
-

-
Pr

im
e

0.
21

-
-

-
-

-
-

-
-

-
99

.7
9

-
-

-
-

-
-

-
U

M
G

-
-

1.
49

-
-

-
-

-
-

-
55

.8
2

-
-

42
.6

9
-

-
-

-

H
ea

lth
Ca

re

H
ig

h
G

ra
de

0.
84

-
-

-
-

-
-

-
-

-
-

-
-

99
.1

6
-

-
-

-
H

ig
hl

y
Sp

ec
ul

at
iv

e
-

8.
00

-
-

30
.0

0
-

-
-

62
.0

0
-

-
-

-
-

-
-

-
-

LM
G

25
.7

4
-

-
1.

12
-

1.
12

-
-

0.
06

0.
24

0.
35

11
.3

1
-

58
.3

6
-

-
1.

24
0.

47
N

R
1.

66
14

.0
8

-
-

-
-

-
-

1.
24

-
5.

18
-

12
.6

3
52

.8
0

4.
14

8.
28

-
-

N
IG

S
2.

00
-

-
-

-
-

-
-

-
2.

00
-

-
-

-
-

-
96

.0
0

-
Pr

im
e

1.
65

-
-

-
-

-
-

-
-

-
-

-
-

98
.3

5
-

-
-

-
U

M
G

8.
10

-
-

-
-

-
-

-
-

-
-

3.
49

-
88

.4
0

-
-

-
-

In
du

str
ia

ls

H
ig

h
G

ra
de

4.
28

-
-

-
-

2.
33

-
-

-
-

6.
61

9.
34

-
77

.4
3

-
-

-
-

H
ig

hl
y

Sp
ec

ul
at

iv
e

-
28

.6
8

-
-

41
.1

8
-

-
-

23
.5

3
-

-
-

-
-

-
-

6.
62

-
LM

G
16

.7
6

0.
50

3.
97

0.
56

-
11

.6
7

0.
93

-
-

0.
06

9.
19

10
.2

4
-

36
.0

6
2.

79
-

0.
43

6.
83

N
R

-
-

-
-

-
-

-
-

-
-

-
19

.6
2

-
22

.4
9

29
.1

9
28

.7
1

-
-

N
IG

S
-

-
-

-
-

-
-

-
3.

09
-

-
-

1.
03

-
95

.8
8

-
-

-
U

M
G

6.
35

-
-

-
-

2.
06

-
-

-
0.

09
10

.9
0

1.
55

-
79

.0
6

-
-

-
-

In
fo

rm
at

io
n

Te
ch

.

H
ig

h
G

ra
de

2.
86

-
-

-
-

-
-

-
-

-
15

.1
0

-
-

82
.0

4
-

-
-

-
H

ig
hl

y
Sp

ec
ul

at
iv

e
-

19
.6

1
-

-
7.

84
-

-
-

-
-

-
-

-
-

72
.5

5
-

-
-

LM
G

23
.1

8
-

-
2.

42
-

-
-

-
-

0.
35

-
4.

15
-

64
.0

1
-

-
5.

88
-

N
R

45
.6

9
-

-
12

.9
3

-
-

-
-

-
-

-
12

.9
3

-
7.

76
-

-
20

.6
9

-
N

IG
S

0.
86

30
.1

7
-

-
-

-
-

-
-

12
.9

3
-

-
-

-
-

-
56

.0
3

-
Pr

im
e

-
-

-
-

-
-

-
-

-
-

-
-

-
10

0.
00

-
-

-
-

U
M

G
8.

90
-

-
-

-
-

-
-

-
-

6.
79

2.
56

-
81

.7
5

-
-

-
-

M
at

er
ia

ls

H
ig

hl
y

Sp
ec

ul
at

iv
e

-
23

.8
6

-
-

76
.1

4
-

-
-

-
-

-
-

-
-

-
-

-
-

LM
G

31
.4

4
2.

65
3.

13
0.

08
-

4.
73

0.
16

-
-

2.
09

3.
69

10
.8

3
-

24
.6

2
0.

80
-

11
.2

3
4.

57
N

R
3.

12
7.

50
-

-
-

-
7.

19
-

2.
19

-
-

2.
50

28
.7

5
9.

38
1.

88
-

37
.5

0
-

N
IG

S
19

.1
4

33
.3

3
-

-
-

-
-

31
.0

2
5.

94
3.

30
-

-
-

-
-

-
6.

93
0.

33
U

M
G

-
-

-
-

-
-

-
-

-
-

-
-

-
10

0.
00

-
-

-
-

Re
al

Es
ta

te

LM
G

16
.3

2
-

-
1.

28
-

-
-

-
-

-
0.

58
17

.7
2

-
63

.0
5

-
-

1.
05

-
N

R
15

.3
8

-
-

-
-

10
.2

6
-

-
-

-
2.

56
9.

40
-

15
.3

8
-

-
-

47
.0

1
N

IG
S

-
-

-
-

10
0.

00
-

-
-

-
-

-
-

-
-

-
-

-
-

U
M

G
11

.2
6

-
5.

98
-

-
7.

59
-

-
-

0.
46

20
.0

0
0.

23
-

54
.4

8
-

-
-

-

Te
le

co
m

.

H
ig

hl
y

Sp
ec

ul
at

iv
e

-
95

.3
5

-
-

1.
16

-
-

-
3.

49
-

-
-

-
-

-
-

-
-

LM
G

14
.7

7
-

-
-

-
-

-
-

-
0.

22
-

34
.4

5
-

50
.5

6
-

-
-

-
N

R
17

.6
5

31
.8

6
-

4.
90

-
5.

88
-

-
5.

39
0.

49
-

1.
96

-
-

9.
80

-
21

.5
7

0.
49

N
IG

S
13

.6
0

36
.0

0
-

-
-

-
-

-
48

.8
0

-
-

-
-

-
-

-
1.

60
-

U
til

iti
es

LM
G

23
.4

7
-

-
0.

33
-

0.
17

6.
61

-
-

-
0.

83
12

.5
6

-
42

.6
4

9.
92

3.
31

0.
17

-
N

R
3.

12
-

-
-

-
-

-
-

-
-

-
4.

17
-

90
.6

2
-

-
2.

08
-

N
IG

S
27

.0
3

2.
70

-
34

.2
3

-
-

-
-

6.
31

1.
80

-
9.

91
-

-
-

-
18

.0
2

-
U

M
G

10
.4

2
-

0.
09

-
-

26
.9

8
10

.9
5

-
-

1.
60

2.
67

5.
16

-
39

.6
3

-
0.

71
0.

09
1.

69

Th
ec

lu
ste

rs
ar

ep
re

di
ct

ed
us

in
g

G
M

M
on

th
eh

ig
h-

fre
qu

en
cy

iss
ue

r.
LM

G
sta

nd
sf

or
Lo

w
er

M
ed

iu
m

G
ra

de
.U

M
G

sta
nd

sf
or

U
pp

er
M

ed
iu

m
G

ra
de

.N
IG

S
sta

nd
sf

or
N

on
In

ve
stm

en
tS

pe
cu

la
tiv

e.
N

R
sta

nd
sf

or
N

on
Ra

te
d.

xxxiii



References

Gauthier, G., & Simonato, J.-G. (2012). Linearized nelson–siegel and svensson models for
the estimation of spot interest rates. European Journal of Operational Research,
219(2), 442–451.

Goldberger, A. S. (1964). Econometric theory. New York: John Wiley & Sons.



Chapter C

Appendices of Enhancing Credit Spread
Forecasts through Macroeconomic Uncertainty
Variables and Statistical Learning Approaches

C.1 Target Coefficients’ Procedure

C.1.1 Governmental Nelson-Siegel Coefficients Target (β∗gov
0,t , β∗gov

1,t , and
β∗gov
2,t )

The target coefficients are defined with respect to Gürkaynak et al. (2007)’s U.S. Treasury
zero-coupon yield curve features. From Gürkaynak et al. (2007), we obtain the Svensson
parameters and the estimated U.S. Treasury zero-coupon yield curves for each day in the
sample. Based on these estimated curves, we derive β∗gov

l,t , l = 0, 1, 2, as follows:

• β∗gov
0,t represents the average long-term yield for maturities beyond 25 years, i.e.,

β∗gov
0,t =

1

5

30∑
u=26

y(θgovt , u).

• β∗gov
1,t is derived from the slope of the U.S. Treasury zero-coupon yield curve, calcu-

lated as the difference between the one-year yield and β∗gov
0,t :

β∗gov
1,t = y(θgovt , 1)− β∗gov

0,t .



• β∗gov
2,t captures the curvature by evaluating twice the two-year yield minus the sum of

the one-year yield and the average long-term yield:

β∗gov
2,t = 2y(θgovt , 2)− β∗gov

0,t − y(θgovt , 1).

C.1.2 Firms-Specific Spread Nelson-Siegel Coefficients Target (β∗spread
0,i,t ,

β∗spread
1,i,t , and β∗spread

2,i,t )

Defining β∗spread
l,i,t is more challenging than defining β∗gov

l,t because corporate bond matu-
rities are not uniformly distributed. To determine these target coefficients β∗spread

l,i,t (for
l = 0, 1, 2) for each firm and each day, we employ the following algorithm:

• If there is more than one corporate bond with a maturity exceeding 15 years (n15+y
i,t >

1), then β∗spread
0,i,t is set to the average yield-to-maturity (YTM) of those bonds. Oth-

erwise, it equals the YTM of the bond with the longest maturity. More precisely,

β∗spread
0,i,t =


1

n15+y
i,t

∑n15+y
i,t

j=1 Y TMuj
, if n15+y

i,t > 1,

Y TMulast
, otherwise.

where n15+y
i,t denotes the number of bonds with maturities longer than 15 years, uj is

the time-to-maturity of the jth coupon payment, and ulast is the time-to-maturity of
the final coupon payment.

• If there is more than one corporate bond with a maturity under 5 years (n5−y
i,t ) and

more than one corporate bond with a maturity exceeding 15 years, then, β∗spread
1,i,t

is defined as the difference between the average yield-to-maturity of the short-term
bonds and β∗spread

0,i,t . This represents 18.06% of the credit spread curves. Otherwise,
β∗spread
1,i,t equals the difference between the yield-to-maturity of the shortest-maturity

bond and that of the longest-maturity bond. More precisely,

β∗spread
1,i,t =


1

n5−y
i,t

∑n5−y
i,t

j=1 Y TMuj
− β∗spread

0,i,t , if n5−y
i,t > 1 and n15+y

i,t > 1.

Y TMu1 − Y TMulast
, otherwise.
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n5−y
i,t denotes the number of obligation maturing in less than 5 years, and u1 is the

time-to-maturity for the first coupon payment.

• If there is at least one corporate bond with a maturity between 5 and 15 years (n[5−15]y
i,t

), then, β∗spread
2,i,t is defined as twice the average yield-to-maturity of those bonds mi-

nus β∗spread
0,i,t and β∗spread

1,i,t . If no such bond exists, then β∗spread
2,i,t is calculated as twice

the yield-to-maturity of the bond closest to the 25% percentile of the firm’s bond
distribution at time t (i.e., Y TM⌈0.25ni,t⌉) minus the yield-to-maturity of the bond
with the longest maturity minus the yield-to-maturity of the bond with the shortest
maturity. More precisely,

β∗spread
2,i,t =


2

n
[5−15]y
i,t

∑n
[5−15]y
i,t

j=1 Y TMuj
− β∗spread

0,i,t − β∗spread
1,i,t , if n[5−15]y

i,t ≥ 1.

Y TM⌈0.25ni,t⌉ − β∗spread
0,i,t − β∗spread

1,i,t , otherwise.

The yield-to-maturities(YTM) are available from the dataset. If the bond is a zero-
coupon, the YTM is calculated as

Y TMi,t = −
log

(
P (t, Ti)

100

)
Ti

,

where P (t, Ti) is the price at time t for company i of the zero-coupon bond maturing at
Ti; Otherwise, The YTM is computed as the value y that minimizes the pricing error:

Y TMi,t = argmin
y

√√√√( mi∑
j=1

ci,je−y(ui,j)ui,j −Bobs
i,t

)2

,

where mi is the number of remaining coupon payment for bond i; ui,j is the time-to-
maturity of the jth coupon payment for bond i; and y(ui,j) is the zero-coupon yield corre-
sponding at each point ui,j . ci,j is the jth coupon payment for bond i.

The distribution of bonds maturities across the curve is shown in Figure C.1.
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Figure C.1. Percentage of Credit Spread Curves by Bond Maturity

34.92% 1.92%

0.06%

17.23%

39.27%

0.84% 5.75%

< 5 years [5, 15] years

> 15 years

52, 564 curves constitutes the sample of credit spreads from July1, 2002, to June 30, 2020.

C.2 Rank Analysis of Macroeconomic and Uncertainty Vari-
ables

A normalized rank analysis was performed to explore relationships and dependencies among
features by converting raw observations into their respective ranks. This approach facil-
itates comparisons across variables on different scales and can uncover nonlinear asso-
ciations that might otherwise be obscured. For each element in feature s, the algorithm
counts how many values in feature s′ are strictly less than that element, then divides by
(n_obs+ 1) to normalize the rank.

Figure C.2 illustrates rank plots for all features, with each panel corresponding to a
specific variable. A clear linear relationship emerges between the S&P 500 and Indus-
trial Production (IP), while IP and the financial-uncertainty indicator exhibit a nonlinear
association. Beyond these patterns, no other strong dependencies are observed.
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Combining the rank analysis with the correlation results in Table 4.3 motivated the
exclusion of the S&P 500 and financial-uncertainty measures, given their high overlap with
other explanatory variables. Consequently, no substantial linear or nonlinear correlation
remains among the retained features.
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Figure C.2. Rank Analysis of the Macroeconomic and Uncertainty Variables
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ADS Index

EPU stands for the Economic Policy Uncertainty measure of Baker et al. (2016). FSL unc. stands for the
uncertainty relative to both federal and state/local purchases of Baker et al. (2016). CPI unc. stands for the
inflation uncertainty measure of Baker et al. (2016). The VIX index measures stock market volatility. The
ADS index reflects the economic state condition and is defined by Aruoba et al. (2009). Fin unc. refers to
the financial uncertainty measure, and macro unc. denotes the macroeconomic uncertainty measure; both
are derived from the work of Jurado et al. (2015) and Ludvigson et al. (2021). IP stands for U.S. Industrial
Production, and GDP for U.S. Gross Domestic Product.
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C.3 Hyper-parameters of Ensemble Models

Model hyper-parameters are tuned using 10-fold time-series split cross-validation. The
training set is divided into 10 time-series blocks. In the first iteration, the first block serves
as the in-sample set and the second block as the validation set. In the second iteration, the
first two blocks are in-sample and the third block is validation, and so on. We leave a one-
month purging gap between each sub-training and sub-validation set to prevent data leakage
and ensure an accurate performance measure. The Root Mean Squared Error (RMSE) of
the credit spread curves, defined in Equation (4.13), is used as the cost function.

Table C.1 presents the hyper-parameters values of the linear models.

Table C.1. Values of the Hyper-parameters for the Linear Models

Ridge Lasso Elastic Net
h = 1 h = 5 h = 1 h = 5 h = 1 h = 5

λ 0.00415 0.00115 1e-06 1e-06 9e-06 7.5e-07
γ 0 0 1 1 0.6 0.1

The hyper-parameters are tuned using 10 time-series blocks. The Root Mean Squared Error (RMSE) of the
credit-spread curves (Equation (4.13)) is used as the cost function. h denotes the forecast horizon.

Table C.2 shows the hyper-parameter values for the ensemble models. For the bag-
ging regressor, we use the same algorithm as the random forest but force it to consider
all features. Its hyper-parameters are the number of trees (n_estimators), the maximum
depth of each tree (max_depth), the minimum number of observations required to split an
internal node (min_samples_split), and the minimum number of observations required
in a leaf node (min_samples_leaf). The hyper-parameters of the random forest are the
same as the bagging regression hyper-parameters, plus the number of randomly sampled
features (max_features). The hyper-parameters of the boosted trees are the same as the
random forest hyper-parameters, plus a learning rate that shrinks the contribution of each
tree (learning_rate).
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Table C.2. Values of the Hyper-parameters for the Ensemble Models

Bagging Trees Random Forest Boosted Trees
h = 1 h = 5 h = 1 h = 5 h = 1 h = 5

n_estimator 50 50 300 100 600 600
max_depth 10 5 5 5 5 5
min_samples_split 2 4 4 4 4 4
min_sample_leaf 2 2 2 1 1 1
max_features None None 35 25 20 20
learning_rate 0.01 0.01

The hyper-parameters are tuned using 10 time-series blocks. The Root Mean Squared Error (RMSE) of the
credit spread curves (Equation (4.13)) is used as the cost function. h denotes the forecast horizon.

C.4 Model Results

Figure C.3 visually documents the in-sample and out-of-sample performance of the seven
credit-spread models’ predictions without Ford, evaluated using four key metrics: RMSE,
MAE, RMSE, MAE, R2, and R2

p. Each model is assessed at one-day (h = 1) and five-day
(h = 5) forecast horizons. The pink (blue) dots represent one-day-ahead (five-day-ahead)
in-sample forecasts, while the red (black) dots represent one-day-ahead (five-day-ahead)
out-of-sample forecasts.

The out-of-sample results remain unchanged, as Ford’s ticker was updated in our database
after March 2010. Moreover, out-of-sample performance metrics continue to exceed in-
sample ones because Ford was not the only issuer displaying extremely large credit spreads
during the subprime crisis. However, Ford did register the highest number of days with ab-
normally high spreads, so excluding it substantially narrows the gap between in-sample
and out-of-sample results.

Table C.3 reports descriptive statistics of the in-sample MSE both with and without
Ford’s credit-spread curves. Across all models, the MSE is significantly lower once Ford
is removed: linear models decrease by almost 70%, while bagging and random forests
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Figure C.3. Comparison of Credit Spread Model Performances Without Ford Company Across
Metrics (In Sample and Out of Sample) - One-Day Ahead (h = 1) and Five-Day Ahead (h = 5)
Comparison of Credit Spread Model Performances Without Ford Across Metrics (In-Sample and

Out-of-Sample) — One-Day Ahead (h = 1) and Five-Day Ahead (h = 5)

The pink (blue) dots represent one-day-ahead (five-day-ahead) in-sample forecasts, while the red (black)
dots represent one-day-ahead (five-day-ahead) out-of-sample forecasts. The first 75% of observations (July
1, 2002–January 7, 2016) constitute the training set, and the remaining 25% (January 8, 2016–June 30, 2020)
constitute the test set, with a one-month purging period between them. Ford’s credit spread curves have been
removed. Performance metrics are defined in Equations (4.13), (4.14), (4.15), and (4.16).

see around a 50% reduction. Even boosted trees, which appear less sensitive, display an
approximate 11% improvement. The maximum MSE without Ford is drastically reduced,
highlighting the influence of Ford’s extreme observations on overall results. These findings
underscore how the large increase in credit spreads during the subprime crisis dispropor-
tionately affects predictive performance.

Finally, Figure C.4 shows that the RMSE spikes during 2008’s crisis have reduced
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Table C.3. Statistical Descriptive of the In-Sample Credit Spread Curves Squared Errors

(a) With Ford

Linear
Reg.

Ridge Lasso Elastic
Net

Bagging
Trees

Random
Forest

Boosted
Trees

count 32946
mean 0.000931 0.000930 0.000930 0.000945 0.000388 0.000327 0.000241
std 0.036407 0.036381 0.036717 0.038512 0.018106 0.013809 0.000910
min 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
25% 0.000020 0.000020 0.000019 0.000019 0.000012 0.000012 0.000014
50% 0.000064 0.000064 0.000062 0.000060 0.000041 0.000040 0.000047
75% 0.000205 0.000205 0.000199 0.000187 0.000140 0.000136 0.000156
max 3.816696 3.809219 3.859075 4.166843 3.115655 2.401139 0.042896

(b) Without Ford

Linear
Reg.

Ridge Lasso Elastic
Net

Bagging
Trees

Random
Forest

Boosted
Trees

count 31284
mean 0.000299 0.000298 0.000294 0.000283 0.000181 0.000179 0.000213
std 0.001156 0.001158 0.001155 0.001164 0.000613 0.000589 0.000761
min 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
25% 0.000019 0.000019 0.000018 0.000018 0.000011 0.000011 0.000013
50% 0.000061 0.000061 0.000059 0.000057 0.000038 0.000038 0.000044
75% 0.000191 0.000190 0.000185 0.000172 0.000129 0.000127 0.000145
max 0.061420 0.061663 0.062494 0.065757 0.027606 0.020018 0.026823

These tables present the statistical descriptive of the squared errors between the in-sample predicted and and
observed credit spread curves, with and without Ford. The results cover the daily sample period from July 1,
2002, to June 30, 2020.
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without Ford company.

Figure C.4. Time Series of the RMSE Between Predicted and Observed Credit Spreads - One-Day
Ahead (h = 1) and Five-Day Ahead (h = 5)

The first 75% of observations (July 1, 2002–January 7, 2016) constitute the training set; the remaining 25
% (January 8, 2016–June 30, 2020) constitute the test set, with a one-month purging period between them.
Precision metrics are defined in Equations (4.13), (4.14), (4.15), and (4.16).
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