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Résumé

Les forêts aléatoires peuvent être utilisées pour former l’ensemble des plus proches voisins

pour l’observation que nous voulons prédire. Nous utilisons cette caractéristique des

forêts aléatoires pour proposer de nouvelles méthodes pour différents problèmes dans

les trois chapitres de cette thèse. Dans le premier chapitre, nous nous concentrons sur

l’analyse de corrélation canonique, qui est une méthode statistique pour étudier la rela-

tion entre deux ensembles de variables, et en particulier, sur son extension pour prendre en

considération l’effet de covariables liées au sujet sur la corrélation. Nous proposons une

nouvelle méthode appelée Random Forest with Canonical Correlation Analysis (RFCCA)

pour estimer la corrélation canonique conditionnelle entre deux ensembles de données

multivariées étant donné des covariables liées au sujet. Après avoir développé les arbres

individuels avec une règle de division spécialement conçue pour trouver des sous-groupes

d’observations avec des corrélations canoniques distinctes, pour une nouvelle observation,

nous formons l’ensemble des plus proches voisins de la forêt et estimons la corrélation

canonique à l’aide des observations de cet ensemble. Dans le deuxième chapitre, nous

intégrons l’idée d’utiliser les observations du plus proche voisin pour estimer la distri-

bution de l’erreur de prédiction conditionnelle pour une variable réponse continue à la

méthode de la forêt boostée en une étape qui produit des prédictions ponctuelles avec

correction du biais. Nous proposons une nouvelle méthode pour construire pour con-

struire les intervalles nommée Prediction Intervals with Boosted Forests (PIBF). Après

avoir construit une forêt boostée, pour une nouvelle observation, nous obtenons la pré-

diction ponctuelle avec correction du biais et construisons l’intervalle de prédiction pour



cette prédiction ponctuelle en utilisant l’ensemble des voisins les plus proches. Dans le

troisième chapitre, nous nous concentrons sur l’estimation de la matrice de covariance

conditionnelle pour un vecteur de réponse multivariée compte tenu de l’ensemble de co-

variables et sur l’analyse de la variation de ces matrices de covariance conditionnelle par

rapport aux covariables. Nous proposons une nouvelle méthode appelée Covariance Re-

gression with Random Forests (CovRegRF) pour estimer la matrice de covariance condi-

tionnelle d’une réponse multivariée à l’aide de forêts aléatoires. Les arbres de la forêt sont

construits avec une règle de division spécialement conçue pour trouver des sous-groupes

d’observations avec des matrices de covariance distinctes. Ensuite, pour une nouvelle ob-

servation, nous trouvons les observations des voisins les plus proches à l’aide de la forêt et

estimons la matrice de covariance à l’aide de ces observations. Les méthodes proposées

présentées dans cette thèse sont évaluées par des études de simulation, et leurs perfor-

mances surpassent généralement celles des méthodes concurrentes. Les trois méthodes

sont implémentées dans des packages R librement disponibles sur CRAN et peuvent être

très utiles dans la pratique.

Mots-clés

Forêt aléatoire, analyse de corrélation canonique, intervalle de prédiction, forêt boostée,

régression de covariance, règle de division, test d’hypothèse, importance des variables.

Méthodes de recherche

Exploration de données, intégration de données, analyse multivariée.

iv



Abstract

Random forests can be used to form the set of nearest neighbours for the observation we

want to predict. We utilise this feature of random forests to propose new methods for

different problems in the three chapters of this thesis. In the first chapter, we focus on

canonical correlation analysis, which is a statistical method to investigate the relationship

between two sets of variables, and in particular, on extending it to take into considera-

tion a subject-related covariate effect on the correlation. We propose a new method called

Random Forest with Canonical Correlation Analysis (RFCCA) to estimate the conditional

canonical correlation between two multivariate data sets given subject-related covariates.

After growing the individual trees with a splitting rule specifically designed to find sub-

groups of observations with distinct canonical correlations, for a new observation, we

form the set of nearest neighbours from the forest and estimate the canonical correlation

using the observations in this set. In the second chapter, we integrate the idea of using

the nearest neighbour observations for estimating the conditional prediction error distri-

bution for a continuous response variable to the one-step boosted forest method which

produces bias-corrected point predictions. We propose a new method to build Prediction

Intervals with Boosted Forests (PIBF). After training a boosted forest, for a new obser-

vation, we predict the bias-corrected point prediction and build the prediction interval for

that point prediction using the set of nearest neighbours. In the third chapter, we focus

on estimating the conditional covariance matrix for a multivariate response vector given

the set of covariates and analyzing how these conditional covariance matrices vary with

respect to the covariates. We propose a new method called Covariance Regression with

v



Random Forests (CovRegRF) to estimate the conditional covariance matrix of a multi-

variate response using random forests. The trees in the forest are built with a splitting rule

specifically designed to find subgroups of observations with distinct covariance matrices.

Then, for a new observation, we find the nearest neighbour observations using the for-

est and estimate the covariance matrix using those observations. The proposed methods

presented in this thesis are evaluated through simulation studies, and they generally out-

perform their current competing methods. All three methods are implemented in freely

available R packages on CRAN and can be very useful in practice.

Keywords

Random forest, canonical correlation analysis, prediction interval, boosted forest, covari-

ance regression, splitting rule, significance test, variable importance.

Research methods

Data mining, data integration, multivariate analysis.
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General Introduction

Random forest (Breiman, 2001) is a widely used ensemble method for statistical learning.

Random forests were introduced as a way to get predictions by averaging the predictions

from many decision trees and are typically studied as a useful method for non-parametric

conditional mean estimation, i.e. E[Y |X = x] = µ(x) where Y is a real-valued response

variable and X is a vector of predictors. Besides this traditional view, random forests can

be seen as a way to find nearest neighbour observations that are close to the one we want

to predict. This modern view of random forests is utilised to propose novel methods for

several problems in the following three chapters of this thesis. In all three chapters, after

building the forest with the training data, for a new observation, we find the set of nearest

neighbours and use this set to obtain the final estimation.

The first and third chapters share the concept of estimating a conditional measure

given a set of covariates using a random forest. For the first chapter, this conditional

measure is the canonical correlation, while for the third, it is the covariance matrix. In both

chapters, individual trees in the forest are built with a splitting rule specially designed to

maximize the difference between the measure of interest of child nodes which enables to

find subgroups of observations with distinct canonical correlations or covariance matrices.

Different from those two chapters, the second chapter investigates building prediction

intervals with random forests.

The first chapter focuses on multi-view data integration using random forests. Multi-

view data denotes many kinds of data that provide information about a subject from mul-

tiple sources. Developing integrative statistical and machine learning models for better



use of information from multi-view data is a challenging and important step to deepening

our understanding of biological systems. The relationship between two multivariate data

sets can be investigated with canonical correlation analysis (CCA) which is a two-view

data integration tool. CCA assumes that the correlation between the two sets of variables

is constant for all subjects. However, in practice, the correlation between the two sets

can sometimes depend on a third set of covariates, often subject-related ones such as age

or gender. In this case, applying CCA to the whole population is not optimal and the

subject-related covariates should be accounted for in the analyses. We propose a new

method called Random Forest with Canonical Correlation Analysis (RFCCA) to estimate

the conditional canonical correlations between two sets of variables given subject-related

covariates. The individual decision trees in the forest are built with a splitting rule spe-

cially designed to partition the data to find subgroups of subjects with distinct canonical

correlations. Once the random forest is built, for a new observation, the set of near-

est neighbours is formed, and the canonical correlation is computed using these nearest

neighbours. The proposed method assumes that the subject-related covariates are indeed

relevant to estimating the conditional canonical correlations of subjects which may not

always be true. Therefore, we propose a significance test to detect the global effect of

the subject-related covariates on the canonical correlations. The performance of the pro-

posed method and the global significance test is evaluated through simulation studies

which show accurate canonical correlation estimations and well-controlled Type-1 error.

We also propose a way to compute variable importance measures of the subject-related

covariates. We demonstrate an application of the significance test and proposed method

with EEG data.

In the second chapter, we investigate building prediction intervals with random forests.

In predictive modeling, the main goal is to provide a point prediction for a new observa-

tion. However, a point prediction does not include information about its reliability. In

the decision-making context, assessing and quantifying the uncertainty in the prediction

is also important, and can be achieved with a prediction interval. In regression analysis,

which is a form of predictive modeling, random forests provide point predictions for a

2



new observation, i.e. conditional mean of the response given the covariates. Random

forests reduce over-fitting by combining many decision trees. However, final predictions

can be still biased because each tree in the forest is built under the same random process

and captures the same part of the response signal, so weaker parts of the response signal

may be left untargeted. Ghosal and Hooker (2021) propose a bias correction method for

regression forests called one-step boosted forest. The main idea of this method is to pre-

dict the bias of the prediction, which is the out-of-bag residuals of the point predictions

obtained with the first random forest, using a second random forest. The final prediction

for a new observation is then the sum of the predictions from two random forests. We

propose a new method to build Prediction Intervals with Boosted Forests (PIBF). In the

proposed method, besides using the second random forest for bias correction, we use it to

form the set of nearest neighbours for a new observation. Then, we build the prediction

interval for a new observation by estimating the conditional prediction error distribution

from that neighbourhood. We compare the performance of the proposed method to ten

existing methods for building prediction intervals with random forests through an exten-

sive simulation study and real data analyses that show it globally outperforms competing

methods.

In the third chapter, we study estimating the conditional covariance matrix of a mul-

tivariate response vector given a set of covariates with random forests. For most of the

existing multivariate regression analysis methods, the main goal is to estimate the con-

ditional mean of the response vector based on its covariates. Usually, these methods

assume a constant covariance matrix for the response vector for all subjects. However,

this assumption may not be valid for some data sets in practice. Therefore, estimating the

conditional covariances amongst multiple response variables given a set of covariates is

also important. We propose a new method called Covariance Regression with Random

Forests (CovRegRF) to estimate the conditional covariance matrix of a multivariate re-

sponse using random forests and to analyze how these conditional covariance matrices

vary with respect to the covariates. Each tree in the forest is built with a splitting rule

specially designed to find subgroups of subjects with distinct covariance matrices. Sim-

3



ilar to what we do in the first chapter, for a new observation, we form the set of nearest

neighbour observations using the forest and we estimate the conditional covariance ma-

trix using these nearest neighbours. Like RFCCA, the proposed method assumes that

the set of covariates is important to identify the subgroups of subjects with similar co-

variance matrices, but some or all covariates may not be relevant. Hence, we propose a

significance test to evaluate the effect of a subset of covariates on the covariance matrix

estimates while controlling for the other covariates. We perform a simulation study to

evaluate the performance of the proposed method and the significance test. Like in the

first chapter, we propose a way to compute the variable importance of covariates. We

show an application of the significance test and proposed method with a thyroid disease

data set.
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Chapter 1

Conditional canonical correlation

estimation based on covariates with

random forests

Abstract

Investigating the relationships between two sets of variables helps to understand their

interactions and can be done with canonical correlation analysis (CCA). However, the

correlation between the two sets can sometimes depend on a third set of covariates, often

subject-related ones such as age, gender, or other clinical measures. In this case, applying

CCA to the whole population is not optimal and methods to estimate conditional CCA,

given the covariates, can be useful. We propose a new method called Random Forest with

Canonical Correlation Analysis (RFCCA) to estimate the conditional canonical correla-

tions between two sets of variables given subject-related covariates. The individual trees

in the forest are built with a splitting rule specifically designed to partition the data to

maximize the canonical correlation heterogeneity between child nodes. We also propose

a significance test to detect the global effect of the covariates on the relationship between

two sets of variables. The performance of the proposed method and the global significance



test is evaluated through simulation studies that show it provides accurate canonical cor-

relation estimations and well-controlled Type-1 error. We also show an application of the

proposed method with EEG data.

1.1 Introduction

Data from multiple sources, called multi-view data, refers to many types of data that in-

clude complementary information from different aspects to characterize a subject. For

example, in biomedical studies, the collection of data may include subject-related covari-

ates (e.g. age, gender, medical history), DNA sequencing, transcriptomics (e.g. mRNA,

microRNA, RNA sequencing) and proteomics for a single subject (Cancer Genome Atlas

Network, 2012; ENCODE Project Consortium, 2012). As another example, in functional

neuroimaging, we may have subject-related covariates (e.g. age, gender, intracranial

volume (ICV)), brain imaging data, and cognitive measurements for subjects (Fratello

et al., 2017). Integration of multiple feature sets and investigating the relationships be-

tween them may help to understand their interactions and obtain more meaningful in-

terpretations. Studying the integration of multiple feature sets requires statistical and

machine-learning tools which include methods for dimension reduction, clustering, clas-

sification, and association studies for multi-view data integration (see Sun (2013); Meng

et al. (2016); Min et al. (2017); Li et al. (2018) for comprehensive reviews).

Canonical correlation analysis (CCA), firstly introduced in Hotelling (1936), is a mul-

tivariate statistical method that analyzes the relationship between two multivariate data

sets, X and Y . CCA searches for linear combinations of each of the two data sets, Xa and

Y b, having maximum correlation. In CCA, the components Xa and Y b are called canon-

ical variates and their correlations are the canonical correlations. CCA is a two-view

data integration tool. It was later generalized to data with more than two views (Ketten-

ring, 1971). There are some extensions of CCA for under-determined data sets through

regularized CCA (Vinod, 1976; Cruz-Cano and Lee, 2014), for sparse data sets through

sparse-CCA (Witten et al., 2009; Hardoon and Shawe-Taylor, 2011) and for nonlinear
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relationships through generalized CCA (Melzer et al., 2001), deep CCA (Andrew et al.,

2013), kernel CCA (KCCA) (Akaho, 2001) and non-parametric CCA (NCCA) (Michaeli

et al., 2016). Although very flexible, all these methods suppose that the relationship be-

tween the two sets of variables is constant for all subjects, which is not always the case in

practice. For example, hundred of gene-environment studies have shown that gene effects

on diseases are modulated by environmental factors (Caspi and Moffitt, 2006; Hunter,

2005; Ma et al., 2011). In the field of neuroscience, age and gender are known to inter-

act with brain-behaviour correlations (Davis et al., 2008; Li et al., 2010) and this should

be accounted for in the analyses. In this paper, we focus on CCA and specifically on

extending it to account for a subject-related covariate effect on the correlation.

There are several ways to account for subject-related covariates in multi-view data

integration. They can be treated as one of the views (Hanna et al., 2010; Li and Jung,

2017; Moser et al., 2018; Mihalik et al., 2020) or they can be used to identify subgroups

in the data while analyzing the relationships between other views. Recently, Choi et al.

(2020) proposed a recursive partitioning approach, namely correlation tree, to identify

homogeneous correlated subgroups within data. In their work, the data consists of a set of

subject-related covariates Z (e.g. age, gender, education) and two univariate continuous

variables X and Y which are assumed to be correlated. The correlation tree method grows

a decision tree with covariates to identify subgroups of subjects with different correlations

between the two univariate variables. A simple illustration of this approach is shown in

Figure 1.1 with a single split of the decision tree (see Appendix A for more examples). In

this example, the overall correlation between X and Y is ρ = 0.329. However, this hides

the fact that the subgroup with Z1 > 0.011 has a much higher correlation of ρR = 0.741

while the other subgroup Z1 ≤ 0.011 has almost no correlation (ρL = 0.018). Such a

situation can be modeled in practice with a regression model including an interaction

effect between X and Z, but the situation is not as straightforward when both Y and X are

multivariate and when the interaction pattern with Z is complex enough to not be captured

efficiently by a single tree. Therefore, the goal of this paper is to propose a novel way

to estimate the canonical correlations between two sets of multivariate variables X and Y ,
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depending on Z, using a random forests framework.

𝑍! ≤ 0.011 𝑍! > 0.011

𝜌" = 0.018 𝜌# = 0.741

𝜌 = 0.329
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Figure 1.1: Example of a dataset (X ,Y ) where the correlation between X and Y depends on a
covariate Z1. This can be captured by a single split of the decision tree.

Random forest is an ensemble method which contains many decision trees. It is a

powerful prediction method due to its ability to limit over-fitting. Moreover, random

forests can be seen as a way to find nearest neighbor observations that are close to the one

we want to predict (Hothorn et al., 2004; Lin and Jeon, 2006; Moradian et al., 2017, 2019;

Roy and Larocque, 2020; Tabib and Larocque, 2020). Each tree in the proposed random

forest framework is built with a new splitting rule designed to produce child nodes with

maximum difference in the canonical correlation between X and Y . For a new observation

with subject-related covariate values z∗, the proposed random forest provides a set of

similar observations from the training data set that will be used to compute a canonical

correlation estimate given z∗. Moreover, we propose a significance test to detect the global

effect of Z on the relationship between X and Y .

This paper is organized as follows. In Section 1.2, we describe the proposed method,

global significance test and variable importance measure. In Section 1.3, simulation study

results for accuracy evaluation and global effect of covariates are presented to show the
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performance of the method. A real data example is provided in Section 1.4, followed by

concluding remarks in Section 1.5.

1.2 Proposed method

In this section, we describe the proposed method in detail.

1.2.1 Canonical correlation analysis (CCA)

Canonical correlation analysis (CCA), firstly introduced in Hotelling (1936), seeks vec-

tors of a ∈ Rp and b ∈ Rq, given two mean centered multivariate data sets X ∈ Rn×p and

Y ∈ Rn×q, such that Xa and Y b are maximally linearly correlated. We can formulate the

problem as finding the coefficients (a∗,b∗) such that:

(a∗,b∗) = argmax
a,b

corr(Xa,Y b), (1.1)

where

corr(Xa,Y b) =
aT ΣXY b√

aT ΣXX a
√

bT ΣYY b
,

where ΣXX and ΣYY are the covariance matrices of X and Y , respectively, and ΣXY is

the cross-covariance matrix. Since rescaling a and b does not affect corr(Xa,Y b), we

can add the constraints aT ΣXX a = 1, bT ΣYY b = 1 to the maximization problem (1.1).

There are several ways to solve the CCA problem, such as solving standard or generalized

eigenvalue problems (Hotelling, 1936; Hardoon et al., 2004; Bach and Jordan, 2002),

using alternating least squares regression (Branco et al., 2005; Wilms and Croux, 2015)

and using singular value decomposition (Healy, 1957; Ewerbring and Luk, 1989). See

Appendix B for the details.

1.2.2 Tree growing process

We use an unsupervised random forest based on the set of covariates Z to find subgroups

of observations with similar canonical correlations between X and Y . This random forest
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consists of many unsupervised decision trees with a specialized splitting criterion. The

tree growing process follows the CART approach (Breiman et al., 1984). The basic idea of

tree growing with CART is to select the best split at each parent node among all possible

splits to obtain the purest child nodes. Assume we want to split a parent node with nP

observations into two child nodes, namely left and right nodes. To split a node, all possible

splits are evaluated with the selected splitting criterion. A split value for each split point

is calculated by using the observations in the parent node. Then, the best split is selected

among all possible splits. The CART algorithm evaluates all possible splits to decide

the split variable and split point. In random forests, instead of evaluating all possible

splits, the best split search is limited to a randomly selected subset of covariates. Splitting

continues until all nodes become terminal nodes.

Since the goal is to find subgroups of subjects with distinct canonical correlations, we

propose a splitting rule that will seek to increase the canonical correlation heterogeneity

as fast as possible (Athey et al., 2019; Moradian et al., 2017; Tabib and Larocque, 2020).

Define ρL and ρR as the canonical correlation estimations of the left and right nodes,

respectively. The proposed splitting criterion is

√
nLnR ∗ |ρL −ρR|, (1.2)

where nL and nR are the left and right node sizes, respectively. The best split among

all possible splits is the one that maximizes (1.2). Choi et al. (2020) propose a similar

criterion without the
√

nLnR term among one of three possible splitting criteria for their

correlation tree method.

1.2.3 Random forest and estimation of canonical correlation for new

observations

The previous section describes the splitting criterion and tree growing process for a sin-

gle tree. The final canonical correlations are estimated with a random forest. Random

forest (Breiman, 2001) is a data-driven weight generator. For example, for a continuous
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outcome, we can represent random forest predictions for a new observation as a weighted

average of the true responses such as ônew = ∑
N
i=1 ŵi(cnew)oi, where ŵi are the predicted

weights from the random forest, cnew are the covariates of the new observation, and oi are

the observed outcomes (Hothorn et al., 2004; Lin and Jeon, 2006).

A slightly different representation of these weights was presented in Moradian et al.

(2017) and later used in Moradian et al. (2019), Roy and Larocque (2020) and Tabib and

Larocque (2020). For a new observation, we form a set of observations which includes

the training observations that are in the same terminal nodes as the new observation. Roy

and Larocque (2020) called this set of observations the Bag of Observations for Prediction

(BOP). We can define BOP for a new observation cnew as

BOP(cnew) =
B⋃

b=1

Snew
b ,

where Snew
b is the set of training observations that are in the same node as cnew in the bth

tree. Any desired measure can be obtained by using the constructed BOP. In this paper, we

use the BOP idea to estimate the canonical correlations for the new observations. Once

we train the random forest, we can estimate the correlation for any new observation. In

our problem, for a new observation with covariates znew, we firstly form BOP(znew). Then,

we apply canonical correlation analysis for X and Y with the observations in BOP(znew),

to compute the canonical correlation estimation ρ̂(znew).

We can estimate CCA components only if the sample size, n, is larger than (p+ q).

In fact, if n < (p+q), the first (p+q−n) canonical correlations will be exactly one and

uninformative (Pezeshki et al., 2004). When n > (p+ q), although we can estimate the

CCA correlations, overfitting can still be a problem. As the sample size in proportion to

(p+q) increases, the likelihood of overfitting decreases. During the tree building process,

the number of observations in the nodes are getting smaller as we move down in the tree.

When the sample size of a node in proportion to a fixed total number of X and Y variables

is close to one, we are more likely to overfit. Therefore, we need to control the minimum

sample size in the nodes and we do it using the nodesize feature of random forests.
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1.2.4 Global significance test

For each tree grown in the forest, the proposed method uses the covariate space to iden-

tify groups of observations with similar canonical correlations. By doing so, we might

be tempted to assume that the set of covariates is indeed relevant to distinguish between

canonical correlations. However, this might not be the case and we propose a hypothe-

sis test to evaluate the global effect of the covariates on the canonical correlation. The

unconditional canonical correlation between X and Y can be found by computing CCA

using the whole sample. If there is a global effect of Z on such correlations, the estimated

conditional canonical correlations with the proposed method should be significantly dif-

ferent from the unconditional canonical correlation. We perform the following statistical

significance test for the null hypothesis

H0 : ρ(X ,Y |Z) = ρCCA(X ,Y ), (1.3)

where ρ(X ,Y |Z) is the conditional canonical correlation between X and Y given Z, and

ρCCA(X ,Y ) is the unconditional CCA correlation in the population.

Before describing the global significance test, we will describe how to estimate canon-

ical correlations for the training data using out-of-bag (OOB) observations. We train a

random forest with B trees using the training observations. Each tree b = {1, ...,B} is

built with the selected random bootstrap sample, i.e. inbag observations (IBb), that con-

tains approximately 63% distinct observations from the original sample. The remaining

training observations are the OOB observations for that tree, namely OOBb, and they are

not used for building the bth tree. After training a random forest with B trees, we have

(IBb,OOBb) sets for each tree. The estimation of canonical correlation with OOB obser-

vations is described in Algorithm 1.1 for a training set with a sample of size n. Basically,

for a given training observation, the canonical correlation is estimated with the BOP, but

using only the trees for which that observation is OOB.

The proposed global significance test is described in Algorithm 1.2. Firstly, we apply

CCA to all X and Y to compute the unconditional canonical correlation, which is the root

node correlation, say ρroot . Then, we apply the proposed method for X ,Y ,Z and estimate
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Algorithm 1.1 Estimation of canonical correlation for a training observation zi with OOB
observations

1: for i=1,...,n do
2: for b=1,...,B do
3: if zi ∈ OOBb then
4: Find the terminal node of zi at tree b, say d
5: BOPoob(zi) = BOPoob(zi)∪ IBb

d(zi) (where IBb
d(zi) is the inbag observa-

tions that are in the same terminal node d as zi)
6: end if
7: end for
8: Apply CCA for X and Y with the observations in BOPoob(zi) to find the estimated

canonical correlation ρ̂(zi)
9: end for

the canonical correlations for each training observation, ρ̂(zi), by using OOB observations

as described in Algorithm 1.1. Finally, we compute the global test statistic with

T =
1
n

n

∑
i=1

(
ρ̂(zi)−ρroot

)2
. (1.4)

The global test statistic is the mean squared difference between the unconditional

canonical correlation between X and Y , and the estimated canonical correlations with the

proposed method. It measures how far the estimated canonical correlations are spread out

from the unconditional canonical correlation between X and Y . The larger T is, the more

evidence against H0 we have. We perform a permutation test under the null hypothesis

(1.3) by randomly permuting rows of Z. For each permuted Z, we compute the global test

statistic (1.4) and estimate a p-value with

p =
1
R

R

∑
r=1

I(T ′
r > T ), (1.5)

where T ′
r is the test statistic for the rth permuted Z and R is the total number of permuta-

tions. If the p-value is less than the pre-specified significance level α , we reject the null

hypothesis (1.3).
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Algorithm 1.2 Global permutation test for covariates’ effects
1: Compute CCA for X and Y in the root node, say ρroot
2: Train RF with X , Y , Z
3: Compute estimated canonical correlations with Algorithm 1.1, say ρ̂(zi)

4: Compute test statistic with T = 1
n ∑

n
i=1
(
ρ̂(zi)−ρroot

)2

5: for r = 1 : R do
6: Permute rows of Z, say Zr
7: Train RF with X , Y , Zr
8: Compute estimated canonical correlations with Algorithm 1.1, say ρ̂ ′

r(zi)

9: Compute test statistic with T ′
r = 1

n ∑
n
i=1
(
ρ̂ ′

r(zi)−ρroot
)2

10: end for
11: Approximate the permutation p-value with (1.5)
12: Reject the null hypothesis when p < α . Otherwise, do not reject the null hypothesis.

1.2.5 Variable importance

Random forests use OOB samples to construct variable importance (VIMP) measures by

evaluating the average change in prediction accuracy (see Appendix C for the details).

However, we do not have a true response variable since the problem is unsupervised by

nature. Therefore, we use the predicted values to compute any VIMP measures we want

from existing packages. The idea is that we are measuring the importance of the vari-

ables by using a regression forest to reproduce the canonical correlation estimations we

obtained from our method. Hence, the VIMP measures reflect the predictive power of the

variables on the estimated canonical correlations. Therefore, higher value of VIMP mea-

sure implies higher importance for the estimation of canonical correlations. We propose

a two-step process to estimate VIMP measures. Firstly, we build a random forest with the

proposed splitting criterion for X , Y , Z and compute the estimated canonical correlations,

ρ̂(zi), as described in Algorithm 1.1. Then, we use the ρ̂(zi) estimations as a continuous

response variable for the original covariates (Z) and we train a regression random forest.

Finally, we use the VIMP measures from this random forest.
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1.2.6 Implementation

We utilised the custom splitting feature of the randomForestSRC package (Ishwaran

and Kogalur, 2020) to implement our splitting criterion in the tree building process.

We have developed an R package called RFCCA. The package is available on CRAN,

https://CRAN.R-project.org/package=RFCCA.

1.3 Simulations

Evaluating the performance of the proposed method with a real data set is not possi-

ble since the true relationships between X and Y with varying Z are typically unknown.

Hence, we perform a simulation study with a known data generation process (DGP) to

show the performance of our method. We first describe the DGP used in the simula-

tion study. Next, we construct scenarios to validate the proposed global significance test.

Since we know the true correlations, we can evaluate the accuracy of the correlation es-

timations. We can also evaluate the estimated importance ranking of the covariates since

we know the set of covariates that are effectively related to the relationship between X

and Y , and the ones that are redundant.

1.3.1 DGP

Assume we want to generate a data set with X ∈ Rn×p, Y ∈ Rn×q and Z ∈ Rn×r where n is

the sample size. We firstly generate the covariates Z according to a standard multivariate

normal distribution with an equicorrelated covariance matrix, that is from N(0,ΣZ) where

ΣZ = (1−ρz)Ir +ρzJr, Ir and Jr are r×r identity matrix and matrix of ones, respectively.

Then, the true correlation between Xa and Y b for each observation i, ρ(zi), is generated

with the following logit model

ρ(zi) =
1

1+ exp(−(β0 +∑
r
l=1 βlzil + z2

i1))
,

where β0 is the intercept parameter and βl are the weights for the Z variables. In the

simulations, we set all βl to be 1/r.
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Next, we generate the X and Y coefficients for CCA, a and b in (1.1) respectively, with

the following two linear equations:

ai j = max{0,(1− sx ×ρ(zi)× j)} ∀ j = {1,2, ..., p},

bik = max{0,(1− sy ×ρ(zi)× k)} ∀k = {1,2, ...,q},

where sx and sy are some slope parameters to be defined. Note that according to these

equations, the X and Y variables have a descending order of relative importance. Also,

we may set some coefficients to be 0 with an appropriate choice of sx and sy, in order to

have redundant covariates that are not directly related to the canonical correlations.

Finally, for each observation i, we generate the X and Y variables with a multivariate

normal distribution N(0,Σi), where Σi =

 ΣX Σi
XY

Σi
Y X ΣY

, ΣX = (1−ρx)Ip +ρxJp, ΣY =

(1−ρy)Iq +ρyJq and Σi
XY = ρ(zi)ΣX aib

T
i ΣY . See Appendix D for examples of sample

distributions with different parameter settings.

1.3.2 Simulation design

Evaluation of the power of the global significance test

In order to evaluate the effect of Z, we consider four scenarios where two of them are

under the null hypothesis (1.3) and the other two are under the alternative hypothesis.

For all scenarios, we generate X and Y with two levels of CCA correlation defined to be

low (0.3) and high (0.6). For the first scenario (case 1 under H0), these levels represent

the population correlation. For the other three scenarios, they represent the mean sample

correlation. We generate the data sets for these scenarios as follows:

1. H0 (case 1): We generate 5 X , 5 Y with a constant population canonical correlation

and 10 Z variables which are all independent and following a standard normal dis-

tribution. In this case, the correlation between X and Y is independent of Z and we

are therefore under the null hypothesis.
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2. H0 (case 2): We first generate 5 X , 5 Y and 5 Z with the proposed DGP. Then, we

replace the Z set with 10 independent Z variables generated with a standard normal

distribution. In this case, the correlation between X and Y varies with some of the Z

variables but those Z variables are not available in the training set. Hence, although

the correlation between X and Y is a function of covariates, these covariates are not

part of the training set. Therefore, we are again under the null hypothesis.

3. H1 (without noise): We generate 5 X , 5 Y and 5 Z with the proposed DGP, and the

covariates are available in the training set. In this case, the correlation between X

and Y varies with all Z variables.

4. H1 (with noise): We generate 5 X , 5 Y and 5 Z with the proposed DGP and we add

5 independent Z variables to the covariates’ training set. In this case, the correlation

between X and Y varies with some of the Z variables.

Each of the scenarios above are repeated under the low and high correlation set-

tings, which leads to a total of 8 scenarios to investigate. We also investigate how the

performance of the proposed method varies with the training sample sizes, and we use

ntrain = {200,300,500,1000,1500}. The number of permutations in the permutation test

is set to 500 and each scenario is repeated 500 times. Type-1 error is estimated as the

proportion of rejection in the scenarios simulated under H0. Similarly, we estimate power

as the proportion of rejection in the scenarios simulated under H1.

For each replication of the simulation, we obtain an estimated p-value from the per-

mutation test. If the p-value is less than the significance level α = 0.05, we reject the null

hypothesis. The proportion of rejection is then calculated over the 500 replications.

Accuracy evaluation

We perform a simulation study to evaluate the accuracy of the method for estimating

the canonical correlation. Table 1.1 presents the DGP parameter settings for these sim-

ulations. We generate Z with (r,rnoise) = {(1,5),(5,5),(10,5)} where r and rnoise are

17



Parameters Low CCA correlation High CCA correlation
(p,q) (1,1), (5,5), (10,10) (1,1), (5,5), (10,10)

(r,rnoise) (1,5), (5,5), (10,5) (1,5), (5,5), (10,5)
(ρx,ρy,ρz) (0.3, 0.3, 0.1) (0.3, 0.3, 0.1)
(β0,βl) (-2,1

r ) (-0.3,1
r )

(sx,sy) (0.7, 0.4) (0.4, 0.3)

Table 1.1: DGP parameter settings for accuracy evaluation simulations. We consider two levels
of average CCA correlation: low (0.3) and high (0.6).

the number of important and noise Z variables, respectively. We generate X and Y with

(p,q) = {(1,1),(5,5),(10,10)} where p and q are the number of X and Y variables,

respectively. We use training sample sizes of ntrain = {100,200,300,500,1000,5000}.

Also, we consider six values for parameter nodesize that controls the size of the trees:

nodesize = {2× (p+q),3× (p+q),4× (p+q),6× (p+q),8× (p+q),10× (p+q)}.

Overall, these combinations produce 648 settings (2 mean CCA correlation levels × 3

Z dimensionality × 3 X and Y dimensionality × 6 training sample sizes × 6 nodesize

levels). Each setting is repeated 100 times for a total of 64,800 runs. In each run, we

generate an independent test set of new observations with ntest = 1000.

We evaluate the performance with the mean absolute errors (MAE), given by

MAE =
1

ntest

ntest

∑
i=1

|ρ̂(zi)−ρ(zi)|, (1.6)

where ρ̂(zi) is the estimated canonical correlation and ρ(zi) is the true correlation for the

ith test observation with covariates zi. Smaller values of the MAE show better perfor-

mance. We use ordinary CCA, without covariates, as a simple benchmark method. In this

case, we let ρtrain be the training sample estimated canonical correlation with CCA. This

value is used as the correlation estimation for all new observations from the test set.

1.3.3 Results

Global significance test

Figure 1.2 illustrates the estimated Type-1 error for different training sample sizes for

both H0 case 1 and 2. In the first and second columns, we have results for the low and
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Figure 1.2: Global significance test results for H0 cases. In case 1 the correlation between X and
Y is not varying with Z and in case 2 the correlation between X and Y is varying with some of
the Z variables but those Z variables are not used in the training set. Left and right plots are for
low and high correlated data sets, respectively. Dashed line represents the significance level of
α = 0.05.
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Figure 1.3: Global significance test results for H1 scenarios. In without noise case, we have
only important covariates for the varying correlation between X and Y and in with noise case we
have additional noise covariates. Left and right plots are for low and high correlated data sets,
respectively. Dashed line represents the significance level of α = 0.05.
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high correlated data sets, respectively. In H0 scenarios, we expect the Type-1 error to be

close to the significance level (α = 0.05). As can be seen from plots, the Type-1 error is

well controlled in both cases. Figure 1.3 illustrates the power of the test. In all scenarios

and as expected, the power is increasing with the sample size. However, adding noise

covariates slightly decreases the power when the sample size is small. As the sample size

increases, the power is not affected by the presence of noise covariates.

nodesize selection

In this section, we compare the performance of the proposed method with six levels of

nodesize, {2× (p+ q),3× (p+ q),4× (p+ q),6× (p+ q),8× (p+ q),10× (p+ q)}

, for low and high correlated data settings and ntrain = {100,200,300,500,1000,5000}.

Figures 1.4 and 1.5 present the average MAE over the 100 repetitions with each ntrain for

the low and high correlation settings, respectively. See Appendix E for the MAE results

with each nodesize for the low and high correlation settings. As can be seen from the

results, in some scenarios, MAE increases as nodesize increases (e.g., high correlation

setting with p = 10,q = 10,r = 5 and ntrain = 1000) whereas in some scenarios MAE

decreases as nodesize increases (e.g., low correlation setting with p = 5,q = 5,r = 5

and ntrain = 1000). Moreover, there are some cases where MAE decreases first and then

increases as nodesize increases (e.g., low correlation setting with p = 5,q = 5,r = 5 and

ntrain = 300). In such situations, normally we do a hyperparameter tuning with cross-

validation or by dividing the data set into train and validation sets. However, in our case,

we cannot tune the nodesize parameter because we do not have a target. As can be seen

from the nodesize comparison results, although it is not optimal, the proposed method

is almost always better than the benchmark method.

The best accuracy is achieved with different levels of nodesize parameter for each

scenario and it is hard to select the global best level of nodesize for all scenarios from

those figures. Hence, we provide a global view of the performance for nodesize pa-

rameter in Figure 1.6. To be able to compare the accuracy of the proposed method with

different levels of nodesize parameter across different scenarios, we use the percentage

20



r = 1 r = 5 r = 10

p =
 1, q =

 1
p =

 5, q =
 5

p =
 10, q =

 10

2 3 4 6 8 10 2 3 4 6 8 10 2 3 4 6 8 10

0.20

0.25

0.30

0.35

0.20

0.25

0.30

0.35

0.20

0.25

0.30

0.35

M
A

E

ntrain = 100

r = 1 r = 5 r = 10
p =

 1, q =
 1

p =
 5, q =

 5
p =

 10, q =
 10

2 3 4 6 8 10 2 3 4 6 8 10 2 3 4 6 8 10

0.15

0.20

0.25

0.15

0.20

0.25

0.15

0.20

0.25

ntrain = 200

r = 1 r = 5 r = 10

p =
 1, q =

 1
p =

 5, q =
 5

p =
 10, q =

 10

2 3 4 6 8 10 2 3 4 6 8 10 2 3 4 6 8 10

0.12

0.16

0.20

0.24

0.12

0.16

0.20

0.24

0.12

0.16

0.20

0.24

M
A

E

ntrain = 300

r = 1 r = 5 r = 10

p =
 1, q =

 1
p =

 5, q =
 5

p =
 10, q =

 10

2 3 4 6 8 10 2 3 4 6 8 10 2 3 4 6 8 10

0.10

0.15

0.20

0.10

0.15

0.20

0.10

0.15

0.20

ntrain = 500

r = 1 r = 5 r = 10

p =
 1, q =

 1
p =

 5, q =
 5

p =
 10, q =

 10

2 3 4 6 8 10 2 3 4 6 8 10 2 3 4 6 8 10

0.12

0.16

0.20

0.12

0.16

0.20

0.12

0.16

0.20

nodesize

M
A

E

ntrain = 1000

r = 1 r = 5 r = 10

p =
 1, q =

 1
p =

 5, q =
 5

p =
 10, q =

 10

2 3 4 6 8 10 2 3 4 6 8 10 2 3 4 6 8 10

0.05

0.10

0.15

0.20

0.05

0.10

0.15

0.20

0.05

0.10

0.15

0.20

nodesize

ntrain = 5000

CCA RFCCA

Figure 1.4: Accuracy evaluation results for low correlated data sets. rnoise = 5 in all settings.
The values in the x-axis correspond to the levels of nodesize parameter. CCA is the benchmark
method. Smaller values of MAE are better.
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Figure 1.5: Accuracy evaluation results for high correlated data sets. rnoise = 5 in all settings.
The values in the x-axis correspond to the levels of nodesize parameter. CCA is the benchmark
method. Smaller values of MAE are better.
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Figure 1.6: Distributions of the percentage increase in MAE of each level of nodesize parameter
with respect to best performing nodesize value for a given scenario for all 108 scenarios in the
simulation study.

increase in MAE with respect to the best performer nodesize value for a given scenario.

This way, we can aggregate the results across all scenarios. There are 108 scenarios for

each level of nodesize parameter in this simulation study (2 mean CCA correlation lev-

els × 3 Z dimensionality × 3 X and Y dimensionality × 6 training sample sizes). For a

given scenario, we have the MAE on the test set for each nodesize level. Let MAEn be

the MAE of nodesize n, where n = {2× (p+q),3× (p+q),4× (p+q),6× (p+q),8×

(p+q),10× (p+q)}, for this scenario. The percentage increase in MAE of nodesize n

with respect to the best performer for this scenario is computed as

100× MAEn −minn{MAEn}
minn{MAEn}

where minn{MAEn} is the smallest MAE for this scenario. Hence, the smaller values indi-
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cate better accuracy. Figure 1.6 shows the distributions of this measure for the nodesize

parameter. The results show that, the mean and median of 3× (p+ q), 4× (p+ q) and

6× (p+ q) are very similar and among them 3× (p+ q) has a smaller median and in-

terquartile range. Overall, selecting nodesize as 3× (p+q) leads to globally smaller or

very similar MAE results. Hence, we evaluate the accuracy of the proposed method by

setting nodesize = 3× (p+q) for all scenarios.
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Figure 1.7: Accuracy evaluation results for low correlated data sets when nodesize = 3×(p+q).
rnoise = 5 in all settings. CCA is the benchmark method. Smaller values of MAE are better.

Accuracy evaluation

We provide a summary of the results in Figures 1.7 and 1.8 which present the average

MAE over the 100 repetitions when nodesize = 3× (p+q) for the low and high correla-
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tion settings, respectively. The plots illustrate the change in MAE with increasing training

sample size for different r and (p,q) settings. As can be seen from both figures, the pro-

posed method and the benchmark have a similar performance, with a slight advantage

for the proposed method in some cases when n = 100. When the sample size increases,

the MAE of both methods decrease but markedly faster for the proposed method. Hence,

in the settings considered, a small sample size of 100 is not sufficient for the proposed

method to improve over the ordinary CCA. But when the sample size increases, the pro-

posed method successfully exploits the covariates to provide more accurate estimations

of the canonical correlation, the relative gain being more important in the high correlation

settings.
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Figure 1.8: Accuracy evaluation results for high correlated data sets when nodesize = 3×(p+q).
rnoise = 5 in all settings. CCA is the benchmark method. Smaller values of MAE are better.
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Figure 1.9: Accuracy evaluation results for low correlated data sets when ntrain = 1000. rnoise = 5
in all settings. CCA is the benchmark method. Smaller values of MAE are better.

In randomForestSRC, the default sampling for random forest training is sampling

without replacement (sub-sampling), unlike the original random forest algorithm that uses

bootstrapping. We investigate the effect of sampling on the performance of the proposed

method on the scenarios with ntrain = 1000. Also, we analyze the effect of sampling on

the selection of the nodesize parameter. Figures 1.9 and 1.10 present the average MAE

over the 100 repetitions when ntrain = 1000 for the low and high correlation settings, re-

spectively. The values in the x-axis correspond the values of the nodesize parameter

which are {2×(p+q),3×(p+q),4×(p+q),6×(p+q),8×(p+q),10×(p+q)}. We

can both compare the effect of sampling method and nodesize parameter on the accuracy

with those plots. CCA is used as the benchmark method. In most of the settings, there is
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Figure 1.10: Accuracy evaluation results for high correlated data sets when ntrain = 1000. rnoise =
5 in all settings. CCA is the benchmark method. Smaller values of MAE are better.

no significant difference in performance between sub-sampling and bootstrapping. How-

ever, in some cases (e.g. low correlated data sets with p = 10,q = 10), sub-sampling

has slightly better accuracy than bootstrapping. There are also some cases, for instance

in high correlated data sets with p = 10,q = 10, sub-sampling shows better performance

for the smaller nodesize values whereas bootstrapping has smaller MAE for the larger

nodesize values. However, in those cases the best accuracy is still obtained with sub-

sampling and smaller nodesize values. Hence, we use sub-sampling in our simulations.

Overall, although the optimal value for the nodesize parameter may change with the se-

lected sampling method, the accuracy of the proposed method with both sampling meth-

ods have a very similar pattern for different levels of nodesize parameter.
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Variable importance

For the variable importance, we evaluate if the estimated VIMP measures tend to rank the

important variables first. In all scenarios for performance evaluation, we include noise

covariates. Figures 1.11 and 1.12 present the average rank, from the estimated VIMP

measures, for the important variables group and noise variables group, for both low and

high correlated data sets, respectively. The most important variable (the one with the

highest VIMP measure) has rank 1. As ranks increases, variable importance decreases.

In almost all settings, the important variables have smaller average ranks than noise vari-

ables. Only in a few settings when ntrain = 100, we have close average ranks for the

important and noise variables.
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Figure 1.11: Average ranks from estimated VIMP measures for low correlated data sets when
nodesize = 3× (p+ q). Smaller values of rank indicate a more important variable (the most
important variable has rank 1).
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Figure 1.12: Average ranks from estimated VIMP measures for high correlated data sets when
nodesize = 3× (p+ q). Smaller values of rank indicate a more important variable (the most
important variable has rank 1).

1.4 Real data example

Electroencephalogram (EEG) measures neuronal activity. Electrodes are distributed on

the scalp to record ongoing electrical fields coming from assembles of pyramidal neurons

situated in the cortex. The signal is composed of continuous variation in rhythms that can

be spectrally decomposed over time through time and frequency analyses. Oscillations

at different frequency bands have been found to be interdependent (Samiee and Baillet,

2017). Only a handful of studies have assessed the effect of age on cross-frequency

interdependencies. Its relationship with the intellectual level is still unknown.
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In this study, 241 participants between 3 and 64 years old (113 male/128 female) and

with performance IQ (pIQ) within [56, 129] and verbal IQ (vIQ) within [50, 127] were

submitted to broadband noises of 50ms at 1Hz while the EEG signal was recorded using

the 128 electrode EGI system (auditory evoked potentials, AEPs) (see Lippé et al. (2009)

for paradigm details). 99 participants presented a copy number variation (CNV). The data

collection and preprocessing steps are described in Appendix F. After applying the time-

frequency (TF) and inter-trial coherence (ITC) analyses, we have two variables of interest,

power, and phase-locking value (PLV) for each window. The time and frequency windows

of interest are selected to assess low and high-frequency dependencies. In particular, the

three windows for PLV are in theta waves with 3–5 Hz (100–300 ms), 3–10 Hz (4–400

ms), and 3–10 Hz (100–300 ms), and the window for power is in gamma wave with 30–50

Hz (50–150 ms).

When recording auditory evoked potential, the electrodes capture information com-

ing from the auditory cortex in the signal at the scalp level over the mid-frontal region

(Albrecht et al., 2000). We want to analyze the association between the PLV variables

in theta waves (X , p = 3) and power in gamma wave (Y , q = 1) in the mid-frontal (MF)

region which is composed of Fz-Fcz in addition to four surrounding electrodes. We apply

the proposed method with the subject-related covariates age, sex, pIQ, vIQ (Z, r = 4) to

investigate the correlation between PLV and power for the sample with n = 241. We first

perform the global significance test to evaluate the global effect of the covariates. Using

500 permutations, the estimated p-value with (1.5) is 0.004 and we reject the null hypoth-

esis (1.3), indicating that the canonical correlation varies significantly with the covariates.

Next, we apply the proposed method to the data and obtain the canonical correlation esti-

mations. Figure 1.13 presents the VIMP showing that age is the most important variable

followed by pIQ, vIQ and sex. Then, we use the Boruta approach (Kursa and Rudnicki,

2010), which is a permutation test based variable selection algorithm, to evaluate the sta-

tistical significance of variable importances. The main idea of this method is to compare

the variable importance of the original variables with those of randomly permuted copies

using statistical testing and several runs of random forests. All four covariates are selected
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as important variables within the significance level α = 0.01.
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Figure 1.13: Variable importance measures computed with the proposed method.
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Figure 1.14: SHAP summary plot.

We also use SHAP values (Lundberg and Lee, 2017) to gain additional insights. SHAP

values are the contributions of each variable to the difference between the actual predic-

tion and the expected model prediction. The sum of the contributions for each variable

(SHAP values) is equal to the prediction. SHAP values show how much each variable

contributes, either positively or negatively, to the individual predictions. Since the prob-

lem is unsupervised, as in the VIMP computation, we use the predicted correlations to

compute the SHAP values, using Lundberg et al. (2020). Figure 1.14 presents the sum-

mary plot. The covariates are ordered in the y-axis of the plot according to their global

importance showing that we obtain the same ranking as with the VIMP and thus that age

is again the most important variable. The insights from this exploratory analysis fall into

the expectations. Age, or brain maturation, is accompanied by important neurofunctional

modifications that are reflected in the strength of the theta phase coherence and gamma
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power co-variations. The demonstration of a positive correlation and a strong contribu-

tion to the model in children and adolescents (3 to 20 years of age) is concordant with

current brain development literature (Cho et al., 2015). Intellectual quotient, the hallmark

of cognitive abilities, is found to be the second most contributive variable to the theta-

gamma co-variation. Current literature focused on the theta-gamma coupling links with

performances on specific cognitive tasks (Alekseichuk et al., 2016), and showed positive

correlations. This result points to the relevance of theta-gamma co-variation in the context

of abnormal neurodevelopment (Port et al., 2019).

Figure 1.15 shows the main effect of age on the predictions. We can see how age’s

attributed importance changes as its value varies. The attributed importance is on the

y-axis. The points are colored according to the predicted correlation. We can interpret

this plot as the impact of age on correlation is positive and high for subjects younger than

20. Then it drops sharply reaching 0 (no impact) around 25 (note that we do not have

observations around 20 and the results should be interpreted cautiously in that age range).

It then continues to decrease in the negative direction, meaning the impact increases un-

til the beginning of the 30’s where it stabilizes with a slight increase afterwards (i.e. a

decreasing impact).

Left plot in Figure 1.16 presents the interaction effect between sex and pIQ. Similarly,

right plot in Figure 1.16 presents the interaction effect between sex and vIQ. We see that

the impact increases as we move away from the average IQ. The impact of the interaction

on the theta phase coherence strength and gamma power co-variation is positive for high

IQ females and negative for low IQ females. The opposite is observed in males.

As a neuroscientific conclusion, PLV in theta waves and power in gamma waves are

statistically coupled and this coupling varies according to age and IQ. This confirms that

the co-variation in these frequency bands relate to cognitive development. The results

suggest that the co-variation between theta and gamma and intellectual capacities is non-

linear and that it follows a distinct pattern in males and females. Overall, these results

indicate the importance of considering sex, intellectual capacities, and age in the study of

brain signal dynamics.
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Figure 1.15: SHAP main effect values for age.
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1.5 Conclusion

In this paper, we study and propose a novel random forest method to estimate the canon-

ical correlations between two sets of variables depending on a set of subject-related co-

variates. The trees of the forest are built with a new splitting rule designed to form child

nodes with maximum difference in the canonical correlation between the two multivariate

data sets. Random forest is used to build Bag of Observations for Prediction (BOP) which

can be used to compute any desired measure. We use the BOP to estimate the correlations

with canonical correlation analysis for the new observations. The proposed method is

flexible to various extensions. One of them is to use CCA variants such as sparse CCA

(Witten et al., 2009) and regularized CCA (Vinod, 1976; Leurgans et al., 1993) for final

canonical correlation estimation for a new observation using the constructed BOP. An-

other one is to build trees with alternative splitting rules such as nLρ2
L + nRρ2

R where ρL

and ρR are left and right canonical correlation estimations and nL and nR are left and right

node sizes, respectively. It would be interesting to investigate these extensions as a future

work.

We also propose a global significance test to evaluate the global effect of the subject-

related covariates and a way to compute variable importance measures. It would also

be interesting to study the statistical significance of variable importance measures. The

proposed method is based on the CART approach. Other tree-growing paradigms could

be used, like the one that separates the variable and split point selections; the conditional

inference framework (Hothorn et al., 2006) being one popular method. In principle, the

proposed permutation test for covariates’ effects could be used to select the split variable

at a node, analogous to the conditional inference framework. More precisely, assume we

are at a node and want to decide whether to split it or not and with which covariate. Using

only the observations in the node;

1. For one covariate at a time, apply the permutation test described in Section 1.2.4.

However, permute only the rows of the given covariate instead of permuting rows

of covariate set (Z). Obtain a p-value for that covariate.
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2. Repeat Step 1 for all covariates to obtain one p-value per covariate.

3. If none of the covariates are significant (after applying a multiple testing correction

if deemed appropriate), then do not split the node.

4. Otherwise, select the covariate with the smallest p-value as the split variable. Find

the best split using the proposed split criterion.

However, a limitation of the proposed method is the computational time. Computing

CCA for X ∈ Rn×p and Y ∈ Rn×q has a time complexity O
(
n(p2 +q2)

)
where n > p+q.

For each node split in each tree of the forest, we compute CCA for left and right nodes

which brings a lot of CCA computations. Therefore, testing the statistical significance

of variable importance of covariates at each node with a permutation test has a great

computational cost.

For simulations and real data analysis, we used the default parameter settings for

randomForestSRC except the number of trees and the nodesize argument. We train

random forests with 200 trees and nodesize= 3× (p+q). The simulation study results

showed that using different levels of nodesize could change the performance of the pro-

posed method. In such situations, normally, we do a hyperparameter tuning to select the

optimal level of the parameter. However, in our case, it is not straightforward to tune the

nodesize parameter because we do not have an observed target. It would be interesting

to find such a way to tune nodesize parameter as a future work. Moreover, by default,

only 10 random splits are considered at each candidate splitting variable to increase the

speed. Evaluating all possible splits could also improve the performance.

The proposed method can be used in other bioinformatics studies. For example, in

gene-environment interaction studies (Caspi and Moffitt, 2006; Hunter, 2005; Ma et al.,

2011), the covariates (Z) would be the environment variables, and the two multivariate

data sets (X and Y ) would correspond to brain imaging and genomic variables. In another

application, the proposed method would allow us to investigate how gene expression (Z)

can modulate the correlation between genomic (X) and brain imaging data (Y ). In all
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these examples, the proposed algorithm can capture nonlinear interactions, which is new

compared to existing approaches.
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Chapter 2

RFpredInterval: An R Package for

Prediction Intervals with Random

Forests and Boosted Forests

Abstract

Like many predictive models, random forests provide point predictions for new obser-

vations. Besides the point prediction, it is important to quantify the uncertainty in the

prediction. Prediction intervals provide information about the reliability of the point pre-

dictions. We have developed a comprehensive R package, RFpredInterval, that inte-

grates 16 methods to build prediction intervals with random forests and boosted forests.

The set of methods implemented in the package includes a new method to build predic-

tion intervals with boosted forests (PIBF) and 15 method variations to produce prediction

intervals with random forests, as proposed by Roy and Larocque (2020). We perform an

extensive simulation study and apply real data analyses to compare the performance of

the proposed method to ten existing methods for building prediction intervals with ran-

dom forests. The results show that the proposed method is very competitive and, globally,

outperforms competing methods.



2.1 Introduction

Predictive modelling is the general concept of building a model that describes how a group

of covariates can be used to predict a response variable. The objective is to predict the

unknown responses of observations given their covariates. For example, predictive mod-

els could be used to predict the sale price of houses given house characteristics (De Cock,

2011). In its simplest form, a predictive model aims to provide a point prediction for a new

observation. However, a point prediction does not contain information about its precision

that can tell us how close to the true response we can expect the prediction to be, which is

often important in decision-making context. Hence, although the point prediction is often

the main goal of predictive analysis, assessing its reliability is equally important, and this

can be achieved with a prediction interval (PI). A PI contains a set of likely values for

the true response with an associated level of confidence, usually, 90% or 95%. Given that

shorter PIs are more informative, developing predictive models that can produce shorter

PIs along with the point predictions is crucial in assessing and quantifying the predic-

tion error. In real-world applications, knowing the prediction error alongside the point

prediction increases the practical value of the prediction.

Regression analysis is a form of predictive modelling technique that examines the

relationship between a response variable and a group of covariates. In this paper, we

consider a general regression model

Y = g(X)+ ε, (2.1)

where Y is a univariate continuous response variable, X is a p-dimensional vector of pre-

dictors, and ε is an error term. We assume g(.) is an unknown smooth function ℜp → ℜ

and E [Y |X = x] = g(X). A confidence interval of the prediction is a range likely to con-

tain the location of the response variable’s true population mean. However, a prediction

interval for a new observation is wider than its corresponding confidence interval and

provides a range likely to contain this new observation’s response value.

In the past decade, random forests have increased in popularity and provide an effi-

cient way to generate point predictions for model (2.1). A random forest is an ensemble

44



method composed of many decision trees, which can be described with a simple algo-

rithm (Breiman, 2001). For each tree b = {1, ...,B}, a bootstrap sample of observations

is drawn and a fully grown tree is built such that a set of predictors is randomly selected

at each node and the best split is selected among all possible splits with those predictors

only. The random forest prediction for a new observation is the average of the B trees

ŷnew =
1
B

B

∑
b=1

ŷb
new,

where ŷb
new is the tree prediction for the new observation in the bth tree, i.e. the average of

observations in the terminal node corresponding to the new observation. Besides this tra-

ditional description, the modern view also considers random forests as data-driven weight

generators (Hothorn et al., 2004; Lin and Jeon, 2006; Moradian et al., 2017, 2019; Athey

et al., 2019; Roy and Larocque, 2020; Tabib and Larocque, 2020; Alakuş et al., 2021).

Although random forests limit over-fitting by combining many trees, which reduces

the variance of the estimator, final predictions can be biased (Mentch and Hooker, 2016;

Wager and Athey, 2018). Since each tree is built under the same random process, all

trees focus on the same part of the response signal, usually the strongest. Therefore, some

parts of the response signal may be left untargeted, which could result in biased point

predictions. Wager and Athey (2018) provide bounds for the extent of the bias of random

forests under some assumptions about the tree growing process. Following their work,

Ghosal and Hooker (2021) proposed a bias correction method in a regression framework

called one-step boosted forest, which is introduced in Breiman (2001) and Zhang and Lu

(2012). The main idea of the proposed method is to sum the predictions of two random

forests, where the first is a regression forest fitted on the target data set and the second is

fitted on the out-of-bag residuals of the former. Empirical studies show that this method

provides a significant bias reduction when compared to a simple random forest.

The current paper proposes an R package providing, among other features, an exten-

sion of the one-step boosted forest method described above (Ghosal and Hooker, 2021).

The literature on prediction intervals for random forests consists mostly of recent studies.

The first method is the Quantile Regression Forests (QRF) method proposed by Mein-
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shausen (2006). The aim of QRF is to estimate conditional quantiles of the response vari-

able, instead of conditional means, using an estimated cumulative distribution function

obtained with the nearest neighbour forest weights introduced by Hothorn et al. (2004).

Prediction intervals can be built directly from the estimated conditional quantiles. The

method is implemented in the CRAN package quantregForest (Meinshausen, 2017).

In a more recent study, Athey et al. (2019) proposed Generalized Random Forests

(GRF), a very general framework to estimate any quantity, such as conditional means,

quantiles or average partial effects, identified by local moment equations. Trees are grown

with splitting rules designed to maximize heterogeneity with respect to the quantity of

interest. Quantile regression forest is one of the applications of GRF. Similar to the QRF,

the GRF method uses the neighbourhood information from different trees to compute

a weighted set of neighbours for each test point. Unlike QRF, which grows trees with

the least-squares criterion, GRF uses a splitting rule designed to capture heterogeneity

in conditional quantiles. An implementation of quantile regression forest with GRF is

available in the function quantile_forest of the CRAN package grf (Tibshirani et al.,

2021).

Vovk et al. (2005, 2009) introduced a general distribution-free conformal prediction

interval framework. Any predictive model, including random forests, can be used within

the proposed methodology. The idea is to use an augmented data set that includes the new

observation to be predicted to fit the model, and apply a set of hypothesis tests to provide

an error bound around the point prediction for the new observation. Although this method

does not require any distribution assumptions, it is computationally intensive. Lei et al.

(2018) proposed a variant of this method, called Split Conformal (SC) prediction, which

splits the data into two subsets, one to fit the model, and one to compute the quantiles

of the residual distribution. We note that, while the original full conformal prediction

interval framework produces shorter intervals, SC is computationally more efficient. The

R package conformalInference (Tibshirani, 2019), available on GitHub, implements

this method.

Roy and Larocque (2020) proposed 20 distinct variations of methods to improve the
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performance of prediction intervals with random forests. These approaches differ ac-

cording to 1) the method used to build the forest and 2) the method used to build the

prediction interval. Four methods can be used to build the forest: three from the clas-

sification and regression tree (CART) paradigm (Breiman and Breiman, 1984) and the

transformation forest method (TRF) proposed by Hothorn and Zeileis (2021). Within

the CART paradigm, in addition to the default least-squares (LS) splitting criterion, two

alternative splitting criteria, L1 and shortest prediction interval (SPI), are considered. Pre-

diction intervals are built using the Bag of Observations for Prediction (BOP), which is

the set of nearest neighbour observations previously used in Moradian et al. (2017, 2019).

In addition to the type of forest chosen, there are also five methods to build prediction

intervals: the classical method (LM), the quantile method (Quant), the shortest prediction

interval (SPI), the highest density region (HDR), and the contiguous HDR (CHDR). LM

is computed based on an intercept-only linear model using the BOP as the sample, and

produces a symmetric PI around the point prediction. The quantile method, similar to

the QRF method, is based on the quantiles of the BOP. SPI corresponds to the shortest

interval among the intervals that contain at least (1−α)100% of the observations in the

BOP. As an alternative to SPI, HDR is the smallest region in the BOP, with the desired

coverage (1−α). Note that HDR is not necessarily a single interval. If the distribution is

multimodal, it can be formed by multiple intervals. Finally, CHDR is a way to obtain a

single prediction interval from HDR intervals by building an interval with the minimum

and maximum bounds of the HDR intervals.

Zhang et al. (2020) proposed a forest-based prediction interval method, called Out-

of-Bag (OOB) prediction intervals, to estimate prediction intervals using the empirical

quantiles of the out-of-bag prediction errors. The method assumes that OOB prediction

errors are identically distributed and that their distribution can be well approximated by

the out-of-bag prediction errors obtained from all training observations. The resulting

prediction intervals have the same width for all test observations. The method is imple-

mented in the CRAN package rfinterval (Zhang, 2019).

Lu and Hardin (2021) proposed a very interesting and useful method to estimate the
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conditional prediction error distribution of a random forest. The main idea of the proposed

method is to use a random forest to compute the out-of-bag residuals for the training

observations and to form a set of out-of-bag neighbours for each test point. Then, the

conditional prediction error distribution for each test point is determined with the out-of-

bag residuals in the neighbourhood. Estimating the prediction error distribution enables

the estimation of conditional quantiles, conditional biases and conditional mean squared

prediction errors. The prediction interval for a test point x, defined by P̂Iα (x), is formed

by adding the α/2 and 1−α/2 quantiles of the conditional prediction error distribution to

the random forest point prediction. The estimators are implemented in the CRAN package

forestError (Lu and Hardin, 2020).

Note that the conformal inference, OOB approach of Zhang et al. (2020) and the

P̂Iα (x) method of Lu and Hardin (2021) all use the prediction errors to build the pre-

diction intervals. Instead of using the training responses directly to estimate quantiles,

using prediction errors provides a better predictive power. However, unlike conformal

inference and the OOB approach, the P̂Iα (x) method uses the nearest neighbour obser-

vations to estimate the prediction error distribution. This idea is very similar to the BOP

idea (Roy and Larocque, 2020), but instead of using in-bag observations, Lu and Hardin

(2021) use out-of-bag observations to form the neighbourhoods. This approach allows

the local information for the test observations to be extracted.

In this paper, we introduce the R package RFpredInterval (Alakus et al., 2022),

which is the novel implementation of 16 methods to build prediction intervals with ran-

dom forests and boosted forests. The set of methods implemented in the package includes

a new method to build prediction intervals with boosted forests and 15 method variations

(three splitting rules with the CART paradigm which are LS, L1 and SPI, and five meth-

ods to build prediction intervals which are LM, SPI, Quant, HDR and CHDR) proposed

by Roy and Larocque (2020). These 15 methods had been thoroughly investigated before

through simulation studies and with real data sets in Roy and Larocque (2020). However,

they are not easily available to use. One of the main contributions of our package is the

implementation of these competitive methods and the ability for users to compare various
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prediction interval methods within the same package. The other main contribution of our

paper is a new method to build prediction intervals. Contrary to the 15 methods proposed

by Roy and Larocque (2020), the newly introduced method was not tested before. That is

why in the paper we placed a greater emphasis on investigating the new method through

extensive simulation studies and with real data. For performance comparison purposes,

we compared the new method to 10 existing methods which include:

• 5 of the 15 implemented method variations of Roy and Larocque (2020); see the

Competing methods subsection for details.

• 5 other competing methods from the literature: Quantile Regression Forests (QRF),

Generalized Random Forests (GRF), Split Conformal prediction method (SC), Out-

of-Bag (OOB) prediction intervals method and P̂Iα (x) method.

The new proposed method to build Prediction Intervals with Boosted Forests is called

PIBF. This approach integrates the idea of using the nearest neighbour out-of-bag ob-

servations to estimate the conditional prediction error distribution presented in Lu and

Hardin (2021) to the one-step boosted forest proposed by Ghosal and Hooker (2021). We

will show in this paper that PIBF significantly improves the performance of prediction

intervals with random forests when compared with 10 existing methods using a variety of

simulated and real benchmark data sets.

The rest of the paper is organized as follows. In the next section, we describe the

algorithm implemented in PIBF. We then present the details of the package and provide a

practical and reproducible example. We also perform a simulation study to compare the

performance of our proposed method to existing competing methods, and we investigate

the performance of the proposed method with real data sets. Lastly, we conclude with a

discussion of the results.
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2.2 Method and implementation

The proposed method is based on the one-step boosted forest method proposed by Ghosal

and Hooker (2021). It consists in fitting two regression random forests: the first is fitted

to get point predictions and out-of-bag (OOB) residuals using the given data set, whereas

the second is fitted to predict those residuals using the original covariates. As empirical

studies demonstrate, the one-step boosted forest provides point predictions with reduced

bias compared to the simple random forest. Ghosal and Hooker (2021) use subsampling

for their theoretical investigations, even though random forests were originally described

with bootstrap samples and obtain notable performance improvements. They have also

investigated the effect of using bootstrapping with the one-step boosted forest on the bias

estimations. From the results presented in their appendix, the use of bootstrapping yields

the best performance and reduces the bias the most in exchange for an increase in their

proposed variance estimator, which is defined under asymptotic normality. In this paper,

we use bootstrapping for the one-step boosted forest method following the better perfor-

mance results on bias reduction. The final prediction for a new observation, xnew, is the

sum of the predictions from the two random forests

ŷ∗new = ŷnew + ε̂new, (2.2)

where ŷnew is the point prediction obtained from the first random forest and ε̂new is the

bias estimation from the second forest.

Besides bias correction, we use the second random forest as a way to construct a

prediction interval by finding the nearest neighbour observations that are close to the one

we want to predict. The idea of finding the nearest neighbour observations, a concept

very similar to the ’nearest neighbour forest weights’ (Hothorn et al., 2004; Lin and Jeon,

2006), was introduced in Moradian et al. (2017) and later used in Moradian et al. (2019),

Roy and Larocque (2020), Tabib and Larocque (2020) and Alakuş et al. (2021). For a new

observation, the set of in-bag training observations that are in the same terminal nodes as

the new observation forms the set of nearest neighbour observations. Roy and Larocque

(2020) called this set of observations the Bag of Observations for Prediction (BOP). We
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can define the BOP for a new observation xnew as

BOP(xnew) =
B⋃

b=1

Ib (xnew) , (2.3)

where Ib (xnew) is the set of in-bag training observations, i.e., observations in the bootstrap

sample that are in the same terminal node as xnew in the bth tree. Ib (.) consists of the

training observations that are in the bootstrap sample of the bth tree.

Instead of forming the set of nearest neighbour observations with the in-bag training

observations, we can use the out-of-bag observations which are not in the bootstrap sam-

ple, as used in Lu and Hardin (2021). We can define the out-of-bag equivalent of the BOP

for a new observation xnew (2.3) as

BOP∗ (xnew) =
B⋃

b=1

Ob (xnew) , (2.4)

where Ob (xnew) is the set of out-of-bag observations that are in the same terminal node as

xnew in the bth tree. Ob (.) consists of the training observations that are not in the bootstrap

sample of the bth tree.

Out-of-bag observations are not used in the tree growing process. Thus, for the trees

where the training observations are out-of-bag, they are like the unobserved test obser-

vations for those trees. The only difference is that, for a new observation, we use all the

trees in the forest whereas for an out-of-bag observation we have only a subset of the

forest trees. By using the out-of-bag equivalent of the BOP for a new observation, we can

make use of the analogy between the out-of-bag observations and test observations. The

out-of-bag neighbours of a new observation represent the new observation better than the

in-bag neighbours.

Any desired measure can be obtained by using the constructed BOPs. In this paper,

we use the BOP idea to build a prediction interval for a test observation. For a new

observation with covariates xnew, we firstly form BOP∗ (xnew) (2.4) using the out-of-bag

neighbours. Then, as proposed by Lu and Hardin (2021), we estimate the conditional

prediction error distribution, F̂ (xnew), but now with the bias-corrected out-of-bag residu-

als of the observations in BOP∗ (xnew). Lastly, we build a prediction interval for the new
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observation as

PI (xnew) =
[
ŷ∗new +SPIl

α

(
F̂ (xnew)

)
, ŷ∗new +SPIu

α

(
F̂ (xnew)

)]
, (2.5)

where ŷ∗new is the bias-corrected prediction, SPIl
α

(
F̂ (xnew)

)
and SPIu

α

(
F̂ (xnew)

)
are the

lower and upper bounds of the SPIα

(
F̂ (xnew)

)
, which is the shortest interval formed by

the observations in BOP∗ (xnew) that contains at least (1−α)100% of the observations.

By using the bias-corrected residuals to form prediction error distribution and picking

the shortest interval among the qualified intervals, we can expect narrower prediction

intervals.

We can summarize the steps of the proposed method as follows:

1. Train the first regression RF with covariates X to predict the response variable Y ,

and get the OOB predictions Ŷoob

2. Compute the OOB residuals as ε̂oob = Y − Ŷoob

3. Train the second regression RF with covariates X to predict the OOB residuals ε̂oob,

and get the OOB predictions for residuals ˆ̂εoob

4. Update the OOB predictions as Ŷ ∗
oob = Ŷoob +

ˆ̂εoob

5. Compute the updated OOB residuals after bias-correction as ε̂∗oob = Y − Ŷ ∗
oob

6. For a new observation xnew, get the point predictions ŷnew from the first RF, and get

the predicted residuals ε̂new from the second RF, then the final prediction for the

new observation is

ŷ∗new = ŷnew + ε̂new

where ε̂new is the estimated bias.

7. Form a BOP for xnew with the OOB neighbours using the second RF, BOP∗ (xnew) (2.4)

and estimate the conditional prediction error distribution for xnew as

F̂ (xnew) =
{

ε̂
∗
oob,i|i ∈ BOP∗ (xnew)

}
8. Build a PI for xnew as PI (xnew) =

[
ŷ∗new +SPIl

α

(
F̂ (xnew)

)
, ŷ∗new +SPIu

α

(
F̂ (xnew)

)]
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2.2.1 Calibration

The principal goal of any prediction interval method is to ensure the desired coverage

level. In order to attain the desired coverage level (1−α), we may need a calibration

procedure. The goal of the calibration is to find the value of αw, called the working

level in Roy and Larocque (2020), such that the coverage level of the PIs for the training

observations is closest to the desired coverage level. Roy and Larocque (2020) presented

a calibration procedure that uses the BOPs that are built using only the trees where the

training observation xi is OOB. The idea is to find the value of αw using the OOB-BOPs.

In this paper, we call this procedure OOB calibration.

We also include a cross-validation-based calibration procedure with the proposed

method to acquire the desired (1−α) coverage level. In this calibration, we apply k-

fold cross-validation to form prediction intervals for the training observations. In each

fold, we split the original training data set into training and testing sets. For the training

set, we go through the steps 1-5 defined above. Then, for each observation in the testing

set, we apply steps 6-8 and build a PI. After completing CV, we compute the coverage

level with the constructed PIs and if the coverage is not within the acceptable coverage

range, then we apply a grid search to find the αw such that αw is the closest to the target

α among the set of αw’s. Once we find the αw, we use this level to build the PI for the

new observations.

2.2.2 The RFpredInterval package

In our package, we implement 16 methods that apply random forest training. Ten of these

methods have specialized splitting rules in the random forest growing process. These

methods are the ones with L1 and shortest prediction interval (SPI) splitting rules proposed

by Roy and Larocque (2020). To implement these methods, we have utilised the custom

split feature of the randomForestSRC package (Ishwaran and Kogalur, 2021).

The randomForestSRC package allows users to define a custom splitting rule for

the tree growing process. The user needs to define the customized splitting rule in the
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splitCustom.c file with C-programming. After modifying the splitCustom.c file, all

C source code files in the package’s src folder must be recompiled. Finally, the package

must be re-installed for the custom split rule to become available.

In our package development process, we froze the version of randomForestSRC to

the latest one available at the time, which is version 2.11.0, to apply specialized splitting

rules. After defining the L1 and SPI splitting rules, all C files were re-compiled. Finally,

all package files including our R files for prediction interval methods were re-built to

make the package ready for the user installation.

The RFpredInterval package has two main R functions as below:

• pibf(): Constructs prediction intervals with the proposed method, PIBF.

• rfpi(): Constructs prediction intervals with 15 distinct variations proposed by Roy

and Larocque (2020).

Table 2.1 presents the list of functions and methods implemented in RFpredInterval.

For pibf(), RFpredInterval uses the CRAN package ranger (Wright et al., 2020) to

fit the random forests. For rfpi(), RFpredInterval uses randomForestSRC package.

For the least-squares splitting rule, both randomForestSRC and ranger packages are

applicable.
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In this section, we illustrate the usage of the RFpredInterval package with the Ames

Housing data set (De Cock, 2011). The data set was introduced as a modern alternative

to the well-known Boston Housing data set. The data set contains many explanatory

variables on the quality and quantity of physical attributes of houses in Ames, IA sold

from 2006 to 2010. Most of the variables give information to a typical home buyer who

would like to know about a house (e.g. number of bedrooms and bathrooms, square

footage, heating type, lot size, etc.).

The AmesHousing (Kuhn, 2020) package contains the raw data and processed ver-

sions of the Ames Housing data set. The raw data contains 2930 observations and 82

variables, which include 23 nominal, 23 ordinal, 14 discrete, and 20 continuous variables,

involved in assessing house values. The processed version of the data set has 2330 obser-

vations and 81 variables, including the target variable Sale_Price representing the value

of houses in US dollars. The usual goal for this data set is to predict the sale price of each

house given covariates.

We load the processed version of the Ames Housing data set from the AmesHousing

package and prepare the data set that we will use for the analyses. The preprocessing

steps are presented in Appendix G. This version of the data set contains 22 factors and 59

numeric variables, including 1 response variable Sale_Price, for 2929 observations. We

split the data set into training and testing samples.

set.seed(3456)

n <- nrow(AmesHousing)

trainindex <- sample(1:n, size = round(0.7*n), replace = FALSE)

traindata <- AmesHousing[trainindex, ]

testdata <- AmesHousing[-trainindex, ]

We fit a random forest with 1000 trees using the training data and construct 95%

prediction intervals for the observations in the testing data with the proposed method. We

apply 5-fold cross-validation based calibration and set the acceptable coverage range to

[.945, .955]. We can pass the list of random forest parameters for ranger package.
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out <- pibf(formula = Sale_Price ~ .,

traindata = traindata,

testdata = testdata,

alpha = 0.05,

calibration = "cv",

numfolds = 5,

coverage_range = c(0.945, 0.955),

params_ranger = list(num.trees = 1000),

oob = TRUE)

We can then analyze the constructed PIs and bias-corrected random forest predictions

for the testing data, as shown below. The PI output is a list containing lower and upper

bounds. For example, we can print the point prediction and prediction interval for the

tenth observation in the testing data.

out$pred_interval

out$test_pred

c(out$pred_interval$lower[10], out$test_pred[10],

out$pred_interval$upper[10])

[1] 133.8629 160.2426 194.5804

We can also print the summary output. In the summary output, we can always see the

mean PI length over the test data set. If calibration is applied, we can see the working

level of α . If the test data set has true response information, as in our example, coverage

and prediction errors for the test set are also printed. Moreover, since we have entered

oob = TRUE in the function arguments, in the summary output we can see the mean PI

length and coverage measures along with the prediction errors for the training set. The

prediction intervals are built with the out-of-bag (OOB) predictions and prediction errors.

print(out)
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> alpha_w: 0.050

> Mean PI length: 73.081

> Coverage: 96.8%

> MAE of test predictions: 12.773

> RMSE of test predictions: 19.545

>

> Mean PI length (OOB PIs): 74.823

> Coverage (OOB PIs): 94.7%

> MAE of OOB train predictions: 14.179

> RMSE of OOB train predictions: 23.875

Next, we construct 95% prediction intervals using the variations proposed by Roy and

Larocque (2020). In the following example, the splitting is rule is set to L1 and we want

to apply LM, Quant and SPI methods for building prediction intervals. We apply OOB

calibration and set the acceptable coverage range to [.945, .955]. We can pass the the list

of random forest parameters for randomForestSRC package.

out2 <- rfpi(formula = Sale_Price ~ .,

traindata = traindata,

testdata = testdata,

alpha = 0.05,

calibration = TRUE,

split_rule = "l1",

pi_method = c("lm", "quant", "spi"),

params_rfsrc = list(ntree = 1000),

params_calib = list(range = c(0.945, 0.955)),

oob = FALSE)

We can analyze the constructed PIs for the testing data as below. Each PI output is

a list containing lower and upper bounds. For instance, we can print the point prediction
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and LM prediction interval for the tenth observation in the testing data.

out2$lm_interval

out2$quant_interval

out2$spi_interval

c(out2$lm_interval$lower[10], out2$test_pred[10],

out2$lm_interval$upper[10])

[1] 129.9474 154.2098 176.8429

We print the summary output. In the summary output, we can see the splitting rule

selected in the first row. Since the test data set has true responses in our example, we can

see the coverage information for the selected PI methods besides the mean PI length and

αw in the printed table. Below the table, we have the mean prediction errors for the test

set.

print(out2)

> Split rule: L1

> -------------------------------------------------------------------

> Mean PI length Coverage alpha_w

> Classical method (LM) 81.641 96.2% 0.140

> Shortest prediction interval (SPI) 81.953 96.1% 0.100

> Quantile method (Quant) 80.893 95.8% 0.120

> -------------------------------------------------------------------

> MAE of test predictions: 14.605

> RMSE of test predictions: 22.603

Although, with the pibf() and rfpi() functions, we have more flexibility to set

the arguments for the methods, we can build prediction intervals with all 16 methods

implemented in the package with the piall() function. We will build 95% prediction

intervals for the test set.
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out3 <- piall(formula = Sale_Price ~ .,

traindata = traindata,

testdata = testdata,

alpha = 0.05,

num.trees = 1000)

The output is a list of constructed prediction intervals with 16 methods and point

predictions obtained with the PIBF method, LS, L1, and SPI split rules. Hence, the output

includes 16 prediction intervals and 4 point predictions which is a list of 20 items in total.

We print the summary output.

print(out3)

> ----------------------------------------

> Mean PI length Coverage

> PIBF 72.752 96.6%

> LS-LM 81.800 96.5%

> LS-SPI 82.662 95.4%

> LS-Quant 81.523 95.2%

> LS-HDR 81.733 96.0%

> LS-CHDR 83.025 96.1%

> L1-LM 81.649 96.1%

> L1-SPI 81.805 96.1%

> L1-Quant 80.836 95.3%

> L1-HDR 83.032 96.4%

> L1-CHDR 82.482 96.1%

> SPI-LM 81.578 96.0%

> SPI-SPI 81.960 96.2%

> SPI-Quant 81.036 95.4%

> SPI-HDR 84.404 96.6%
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> SPI-CHDR 82.927 96.1%

> ----------------------------------------

> MAE RMSE

> PIBF 12.774 19.428

> LS split 14.412 22.413

> L1 split 14.596 22.569

> SPI split 14.558 22.600

Lastly, we plot the constructed prediction intervals with all 16 methods, for the 15th

observation in the test set.

plot(out3, test_id = 15)

Figure 2.1 presents the prediction intervals and point predictions for the test observa-

tion. The methods are ordered in the y-axis based on their resulting PI length. For each

method, the red point presents the point prediction and blue lines show the constructed

prediction interval(s) for the test observation. If the true response of the test observation

is known, it is demonstrated with a dashed vertical line. Note that we may have multiple

prediction intervals with the HDR PI method. As we can see from the figure, we may

have four different point predictions for the same test observation. The PIBF method and

the three splitting rules LS, L1 and SPI can produce different point predictions. But all PI

method variations for the same splitting rule have the same point prediction.

2.3 Simulation study

In this section, we compare the predictive performance of the prediction intervals con-

structed with our proposed method to the existing methods presented in the Introduction

using a variety of simulated and real benchmark data sets.
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Figure 2.1: Prediction intervals for the 15th test observation in the test data. The x-axis represents
the sale price of houses in thousands. For each method, red dots represent the point prediction and
blue lines show the prediction interval(s). The vertical dashed line shows the true response value
for the test observation. PIBF: Prediction intervals with boosted forests (the proposed method).
The notation for the other 15 methods is split rule-PI method. Splitting rules are LS: Least-squares,
L1: L1, SPI: Shortest PI split rule. PI methods are LM: Classical method, Quant: Quantiles, SPI:
Shortest PI, HDR: Highest density region, CHDR: Contiguous HDR.

2.3.1 Simulation design

We apply a simulation study based on seven simulated data sets from the literature. The

first three of the data sets are Friedman’s benchmark regression problems described in

Jerome H. Friedman (1991) and Breiman (1996). We use the CRAN package mlbench

(Leisch and Dimitriadou, 2021) to generate these data sets.

In Friedman Problem 1, the inputs are 10 independent variables uniformly distributed

on the interval [0,1]. The first five covariates are used to generate the response:

y = 10sin(πx1x2)+20(x3 −0.5)2 +10x4 +5x5 + ε,
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where ε is N
(
0,σ2) and the default standard deviation of ε is 1 which yields a signal-

to-noise ratio (SNR) (i.e., the ratio of the standard deviation of signal to the standard

deviation of error) of 4.8:1.

In Friedman Problem 2, the response is generated as

y =

(
x2

1 +

(
x2x3 −

1
x2x4

)2
)0.5

+ ε,

where the inputs are four independent variables uniformly distributed over the ranges

0 ≤x1 ≤ 100

40π ≤x2 ≤ 560π

0 ≤x3 ≤ 1

1 ≤x4 ≤ 11

and ε is N
(
0,σ2). The default value of 125, which yields a SNR of 3:1, is used for the

standard deviation of ε .

In Friedman Problem 3, the inputs are four independent variables uniformly dis-

tributed over the same ranges as Friedman Problem 2. The response is generated as

y = arctan

(
x2x3 − 1

x2x4

x1

)
+ ε,

where ε is N
(
0,σ2) and the default value of 0.01 for the standard deviation of ε is used,

which yields a SNR of 3:1.

The fourth data set is the Peak Benchmark Problem which is also from the mlbench

package. Let r = 3u where u is uniform on [0,1] and let x be uniformly distributed on the

d-dimensional sphere of radius r. The response is y = 25exp
(
−0.5r2). The default value

of d = 20 dimensions is used.

The fifth one is a modification of Friedman Problem 1, which was used in Hothorn

and Zeileis (2021) in their H2c setup. This data set was designed to have heteroscedas-

ticity. The inputs are 10 independent variables uniformly distributed on the interval [0,1].
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The first five covariates are used in the mean function and the unscaled mean function is

defined as

µ = 10sin(πx1x2)+20(x3 −0.5)2 +10x4 +5x5.

Then, the scaled mean function on the interval [−1.5,1.5] is

µ
S =

3(µ −µmin)

µmax −µmin
−1.5,

where µmin and µmax are the minimum and maximum values of µ over the sample. The

last five covariates are used in the standard deviation function and the unscaled standard

deviation function is

σ = 10sin(πx6x7)+20(x8 −0.5)2 +10x9 +5x10.

The standard deviation is scaled as

σ
S = exp

(
3(σ −σmin)

σmax −σmin
−1.5

)
,

where σmin and σmax are the minimum and maximum values of σ over the sample. The

response is generated as a normal random variable with mean µS and standard deviation

σS.

The last two data sets, which were used in Roy and Larocque (2020), have a tree-based

response variable. The inputs are seven independent variables generated from the standard

normal distribution. The response is generated with the seven covariates according to a

tree model with a depth of three, with eight terminal nodes:

y =u1I (x1 < 0,x2 < 0,x4 < 0)

+u2I (x1 < 0,x2 < 0,x4 ≥ 0)

+u3I (x1 < 0,x2 ≥ 0,x5 < 0)

+u4I (x1 < 0,x2 ≥ 0,x5 ≥ 0)

+u5I (x1 ≥ 0,x3 < 0,x6 < 0)

+u6I (x1 ≥ 0,x3 < 0,x6 ≥ 0)

+u7I (x1 ≥ 0,x3 ≥ 0,x7 < 0)

+u8I (x1 ≥ 0,x3 ≥ 0,x7 ≥ 0)+ ε,
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where the terminal node means are u = (5,10,15,20,25,30,35,40) and I is the indicator

function. The difference in the two data sets is the distribution of the error. In the first

one, ε is generated from a standard normal distribution and in the other it is from an

exponential distribution with mean 1. The signal-to-noise ratio is 11.5:1 for both data

sets.

We use training sample sizes of ntrain = {200,500,1000,5000}, resulting in 28 sce-

narios. Each scenario is repeated 500 times. In each run, we generate an independent test

set of new observations with ntest = 1000.

2.3.2 Competing methods

We compare our proposed prediction interval estimator with 10 competing methods which

were presented in the Introduction. The first is the P̂Iα method. We fit the random forest

with the ranger package and use the forestError package to build PIs. The second

is the OOB method. The rfinterval package is used. The third is the split conformal

method. The conformalInference package is used. The fourth is the QRF method

and the quantregForest package is used. The fifth is the GRF method. The function

quantile_forest in the grf package is used.

The last five are variations of Roy and Larocque (2020). To compare the performance

of the method variations, a comprehensive simulation study and real data analyses were

performed in Roy and Larocque (2020). One of the biggest conclusions from these com-

parison studies was that, among the three alternative splitting criteria within the CART

paradigm, the impact of the choice of the splitting rule on the performance of the predic-

tion intervals was moderate whereas the selection of the PI method had a much greater

impact on the performance. Hence, in this simulation study, we set up the splitting rule

to the least-squares (LS) and only compare the five PI methods: LM, Quant, SPI, HDR,

and CHDR. For those methods, the rfpi() function of the RFpredInterval package is

used. We fit the random forest with the ranger package.
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2.3.3 Parameter settings

For the simulations, we use the following parameters. For all methods, we set the number

of trees to 2000. Letting p be the number of covariates, then the number of covariates to

randomly split at each node, mtry, is set to max{⌊p/3⌋,1} (except for the GRF method).

For the GRF method, following Athey et al. (2019), mtry is set to min
{
⌈√p+20⌉, p

}
.

Also, we use the honest splitting regime with the default fraction of 0.5 for the GRF

method. The minimum node size parameter for all forests is set to 5. The desired coverage

is set to 95% for all methods. For the proposed method, we perform the cross-validation-

based calibration as the primary calibration procedure, but we also investigate the OOB

calibration. For the method variations in Roy and Larocque (2020), we perform the OOB

calibration procedure as they proposed. For both calibration procedures, the acceptable

range of coverage is set to [.945, .955]. Calibration is not performed for the competing

methods since no option for calibration is offered in their CRAN packages.

2.3.4 Performance with the simulated data sets

We can evaluate the performance of the competing methods with two measures: the mean

coverage and the mean prediction interval length. Table 2.2 presents the average coverage

rate of each method on the test set over 500 replications for a given simulated data set and

sample size, with average mean prediction interval lengths shown in parentheses. The

principal goal of any prediction interval method is to ensure the desired coverage level. In

this simulation study, the desired coverage level is set to 95% for all methods. The left plot

in Figure 2.2 shows the mean coverages over the 28 scenarios for all methods. Overall, all

of the methods, except the QRF and GRF methods which tend to be conservative, provide

a mean coverage close to the desired level. QRF and GRF methods have an average mean

coverage of 0.975 and 0.974 over all scenarios, respectively. Although the P̂Iα method

has an average of the mean coverages of 0.957, close to the desired level, its variability

is large. Over 308 (11 methods × 28 scenarios) average coverage values, there is only

one case where the mean coverage is below 0.94. It corresponds to the P̂Iα method in
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Friedman Problem 2 with ntrain = 5000.

Once the prediction intervals provide the desired coverage level, the next goal of any

PI method is to provide the shortest PI length. Prior to carrying out a detailed comparison

of interval lengths, we can globally compare the interval lengths over all scenarios with

the percentage increase in mean PI length of a method with respect to the best method for

a given run. For a given run, define mli as the mean PI length of method i and ml∗ as the

shortest mean PI length over the 10 competing methods. The percentage increase in PI

length for method i is computed as 100× (mli −ml∗)/ml∗. Smaller values for this mea-

sure indicate better performances. The right plot in Figure 2.2 presents the relative lengths

of the methods across 14,000 runs (28 scenarios × 500 replications). The prediction in-

tervals with the GRF method are the widest, followed by the QRF method. However, as

we saw in the left plot in Figure 2.2, GRF and QRF produce conservative prediction inter-

vals, so their PI lengths cannot be fairly compared to the other methods with a coverage

closer to 0.95. Based on the global results, the proposed method, PIBF, performs the best.

Following PIBF, P̂Iα , OOB, LM, SPI, HDR and CHDR perform similarly well, with P̂Iα

being slightly better. Among the variations of Roy and Larocque (2020), the PIs with

quantiles produce longer prediction intervals than the other four variations.

Now, we investigate the performance of the methods separately for each scenario.

Figures 2.3 to 2.9 present the mean PI length results of each method for each simulated

data set. Each figure has four facets corresponding to the four levels of the training sample

size. For all methods and data sets, the mean PI lengths and their variability decrease as

the sample size increases (except the GRF method for the tree-based data sets). We see

that for Friedman Problem 1, from Figure 2.3, for all sample sizes, PIBF consistently

outperforms the 10 competing methods in terms of mean PI length while ensuring the

desired coverage level (see Table 2.2 for the mean coverage results). QRF and GRF

provide the widest prediction intervals for all sample sizes. However, as presented in

Table 2.2, these methods heavily over-cover and are therefore not comparable with the

other methods. While the P̂Iα method also slightly over-covers, it has shorter PIs than

other methods.
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Figure 2.2: (Left) Boxplots for the mean coverage over all scenarios. All methods, except the
QRF and GRF methods, are able to provide a mean coverage close to the desired coverage level of
0.95. Each white circle is the average of the mean coverages over 28 scenarios. (Right) Boxplots
for the percentage increase in mean PI length of each method compared to the shortest PI length
for a given run across 14,000 runs. The smallest is the percentage increase, the better is the
method. Each white circle is the average of the relative lengths over 14,000 runs. Since the outlier
values are distorting the scales, they are removed from the graph. PIBF: Prediction intervals
with boosted forests (the proposed method), P̂Iα : Conditional α-level prediction interval, OOB:
Out-of-Bag approach, LM: Classical method, Quant: Quantiles, SPI: Shortest PI, HDR: Highest
density region, CHDR: Contiguous HDR, SC: Split conformal, QRF: Quantile regression forest,
GRF: Generalized random forest.

For Friedman Problem 2 (Figure 2.4), we see that the proposed method has the shortest

mean PI length for the smallest sample size, and as the sample size increases P̂Iα provides

shorter PIs. However, we should also take into account the mean coverages presented in

Table 2.2. The proposed method has smaller coverage levels for ntrain = 200 compared to

P̂Iα , but as the sample size increases the coverage levels decrease for the P̂Iα method (up

to 0.937 for ntrain = 5000) whereas PIBF keeps it around 0.945. For ntrain = 5000, the

OOB method builds shorter PIs while ensuring the desired coverage level. Again, QRF

and GRF have the widest PIs for all sample sizes due to their conservative PIs.
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The performance of PIBF and P̂Iα is very similar for Friedman Problem 3 (Figure

2.5). Both methods provide the shortest PIs with similar coverage levels and mean PI

lengths. Results for the Peak Benchmark Problem presented in Figure 2.6 are very similar

to those of Friedman Problem 1. For all sample sizes, PIBF consistently outperforms the

10 competing methods in terms of mean PI length. But this time, SPI method with LS

splitting rule comes in second place.

For the H2c setup (Figure 2.7), which is the modification of Friedman Problem 1, we

can see that all methods are comparable since QRF and GRF do not over-cover. In this

setting, all methods also perform fairly well with respect to PI length. Overall, the LM

prediction interval method with the LS splitting rule provides slightly shorter PIs.

For the tree-based data sets (figures 2.8 and 2.9), overall, it seems that the distribution

of the error does not have a significant effect on the results. Again, QRF and GRF have

conservative PIs. Unlike the other data sets, we see here that the mean PI lengths of the

GRF method decrease very slowly as the sample size increases. For ntrain = 5000, all

methods (except QRF and GRF) perform similarly. For the smallest sample size, HDR

PI building methods and the proposed method perform slightly better than other methods.

As the sample size increases, PIBF produces the shortest prediction intervals.
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Figure 2.3: Distributions of the mean PI length over the test set across 500 replications for Fried-
man Problem 1.
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Figure 2.4: Distributions of the mean PI length over the test set across 500 replications for Fried-
man Problem 2.
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Figure 2.5: Distributions of the mean PI length over the test set across 500 replications for Fried-
man Problem 3.
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Figure 2.6: Distributions of the mean PI length over the test set across 500 replications for Peak
Benchmark Problem.
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Figure 2.7: Distributions of the mean PI length over the test set across 500 replications for the
H2c setup.
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Figure 2.8: Distributions of the mean PI length over the test set across 500 replications for the
tree-based problem with normally distributed error.
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Figure 2.9: Distributions of the mean PI length over the test set across 500 replications for the
tree-based problem with exponentially distributed error.
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2.3.5 Effect of calibration on the performance of prediction

intervals

In this section, we investigate the effect of the proposed calibration on performance of

the prediction intervals. We apply the same simulation study using the seven simulated

data sets. We compare the results of the proposed method without calibration, with OOB

calibration and calibration with cross-validation. The desired coverage level is set to 95%.

In Figure 2.10, the left plot presents the mean coverages over 28 scenarios for the three

variations, and the right plot shows the percentage increase in mean PI length of each

of the three calibration variants across 14,000 runs (28 scenarios × 500 replications).

Although we obtain the shortest prediction intervals without calibration, the variability of

the mean coverage level is larger and sometimes the coverage falls below 0.94. Looking

at the left plot, we can say that the variability of the mean coverage level decreases with

both calibration procedures. However, applying OOB calibration provides conservative

PIs. The median of the mean coverage level is more than 0.96 and the PIs with the OOB

calibration are the widest. Applying calibration with CV produces slightly longer PIs than

those with no calibration, but these PIs have coverage levels closer to the desired level.

In the package, both calibration procedures are implemented for the PIBF method.

Simulation study results show that, compared to the OOB calibration, calibration with CV

produces shorter PIs while maintaining the desired coverage level. Therefore, the default

calibration procedure is set to CV in the pibf() function. In terms of computational time

(see tables 2.4 and 2.5), calibration with k-fold CV is slower than OOB calibration since

it needs to fit two additional random forests for each fold.

2.3.6 Performance with real data sets

To further explore the performance of the prediction intervals built with the proposed

method, we use 11 real data sets. Since two of the data sets have two response variables,

we consider that we are analyzing 13 real data sets. Boston housing and Ames housing

data sets are from the R packages mlbench and AmesHousing, respectively. The other
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Figure 2.10: Global performance results of the proposed method for the simulated data sets with
different calibration procedures. NC: No calibration, OOB: OOB calibration, CV: Calibration with
cross-validation. (Left) Boxplots for the mean coverage over 500 replications across all scenarios.
(Right) Boxplots for the percentage increase in mean PI length of each calibration procedure com-
pared to the shortest PI length for a given run across 14,000 runs. Smaller values are better. Since
outlier values are distorting the scales, they are removed.

data sets are obtained through the UCI Machine Learning Repository (Dua and Graff,

2017).

For each data set, we apply 100 times 10-fold cross-validation for each method.

Hence, for each fold, the training and testing sets correspond to 90% and 10% of the

whole data set, respectively. The desired coverage level is set to 95% for all methods. Ta-

ble 2.3 presents the results of the real data analyses (n is the number of observations and

p is the number of predictors) with the average coverage rate of each method over 100

repetitions, and mean prediction interval lengths averaged over 100 repetitions shown

in parentheses. Figure 2.11 illustrates the global results of the analyses across datasets.

The left plot in Figure 2.11 shows the mean coverages over the 13 real data sets for all

methods. Similar to what we have seen with the simulated data sets, the QRF and GRF

methods produce conservative prediction intervals, whereas the other methods provide a

mean coverage close to the desired level. Again, the P̂Iα method maintains the target

level on average with 0.959, but its variability is the highest among all methods. Across
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all data sets, there are three cases where the mean coverage is below 0.94: the proposed

method for Concrete slump, and the P̂Iα method for Auto MPG and Computer hardware.

The right plot in Figure 2.11 presents the relative lengths of methods across 13 real

data sets. For each method, there are 13 points in the boxplot, and each point corresponds

to the percentage increase in mean PI length compared to the best method for a single

real data set. Again, the prediction intervals with GRF and QRF are the widest among

eleven methods. Among the other nine methods, the proposed method performs the best,

followed by P̂Iα .

For each real data set, we analyze the performance of each method through the mean

PI lengths presented in figures 2.12 to 2.14. For the Abalone data set, the HDR method

produces the shortest prediction intervals, followed by the SPI and Quant methods. While

the QRF method over-covers, its PIs are no wider than those of most of the other methods.

The proposed method, PIBF, is distinctly the best prediction interval method yielding the

shortest PI lengths for the Air quality data set with absolute and relative humidity response

variables, Airfoil selfnoise, Ames housing, Boston housing, Concrete compression, En-

ergy efficiency data set with cooling and heating load response variables, and Servo data

sets. In the Auto MPG data set, P̂Iα has the shortest mean PI length but with a mean

coverage of 0.929. Among the other methods, PIBF, OOB, LM, Quant and SPI methods

show similarly good performances while maintaining the desired coverage level. For the

Computer hardware data set, PIBF, P̂Iα , and SPI methods perform better than the other

methods. They have similar mean PI lengths. For the Concrete slump data set, the pro-

posed method has the shortest mean PI length, but with a slightly smaller coverage of

0.939. This data set is the only one of the simulated and real data sets where the proposed

method has a mean coverage below 0.94. After PIBF, P̂Iα and LM show a good perfor-

mance with a mean coverage close to the target level. Overall, we can conclude that the

proposed method shows better performance than the 10 competing methods for almost all

of the real data sets.
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Figure 2.11: (Left) Boxplots for the mean coverage over all real data sets. All methods except
the QRF and GRF methods are able to provide a mean coverage close to the desired coverage
level of 0.95. Each white circle is the average of the mean coverages over 13 real data sets. (Right)
Boxplots for the percentage increase in mean PI length of each method compared to the shortest PI
length for a given real data set across 13 data sets. The smallest the percentage increase, the better
the method. Each white circle is the average of the relative lengths over 13 real data sets. One of
the outlier values for GRF with the percentage increase of 1244% is removed from the graph since
it is distorting the scales. PIBF: Prediction intervals with boosted forests (the proposed method),
P̂Iα : Conditional α-level prediction interval, OOB: Out-of-Bag approach, LM: Classical method,
Quant: Quantiles, SPI: Shortest PI, HDR: Highest density region, CHDR: Contiguous HDR, SC:
Split conformal, QRF: Quantile regression forest, GRF: Generalized random forest.
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Figure 2.12: Distributions of the mean PI length across 100 repetitions for Abalone, Air quality
with absolute and relative humidity, Airfoil selfnoise, and Ames housing data sets.
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Figure 2.13: Distributions of the mean PI length across 100 repetitions for Auto MPG, Boston
housing, Computer hardware, and Concrete compression data sets.
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Figure 2.14: Distributions of the mean PI length across 100 repetitions for Concrete slump, En-
ergy efficiency with cooling and heating load, and Servo data sets.
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2.3.7 Comparison of the computational times

All simulations and real data analyses were conducted in R version 3.6.0 on a Linux

machine with Intel(R) Xeon(R) E5-2667 v3 @ 3.20GHz with 396 GB of memory. The

average computational time of each method for the simulated and real data sets are pre-

sented in tables 2.4 and 2.5. For the proposed method (PIBF), the computational times

for both calibration methods, cross-validation and OOB, are presented in the tables. We

can see from the tables that, for most of the data sets, calibration with cross-validation

has longer running times than OOB calibration, which is expected since with the k-fold

cross-validation, we fit 2k more random forests than applying OOB calibration.

For the variations of Roy and Larocque (2020), since we can build prediction intervals

with the five PI methods by only fitting a single random forest with a selected splitting

rule, we present the total computational time for building the five variations under RFPI.

To be clear, for a given splitting rule, the rfpi() function fits a random forest and then the

set of PI methods requested by the user are applied to the output of the random forest. In

our simulations, we choose to return all five PI methods for the selected splitting rule, i.e.

when we measure the running time of the rfpi() function, we get the total running time

of building five prediction intervals. Therefore, we should interpret the values for RFPI

with care while comparing the computational times of the methods. Although not all PI

methods have similar computational complexities, we can say that even the average time

of building prediction intervals with one of these variations, assuming they have similar

running times, is reasonable. Since, for the HDR-based PI methods, an optimal band-

width has to be chosen, which is a time-consuming process, among the five PI methods,

the slowest ones are the HDR and CHDR. From the remaining variations, the classical

method, LM, is the fastest, followed by the Quant and SPI methods.

For both the simulations and real data analyses, the OOB and GRF methods have the

smallest running times. For most of the methods, the increase in the sample size has a

mild effect on the ratio of increase in running times. However, for the split conformal

method with the simulated data sets, running times increase more than the proportional
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Table 2.4: Average computational time (in seconds) of each method over 500 replications for each
simulated data set. The values represent the average time to build prediction intervals for a test
set with 1000 observations. PIBF-CV: The proposed method with the cross-validation calibration,
PIBF-OOB: The proposed method with the OOB calibration, RFPI: The average total running
time of the five PI methods, i.e. LM + Quant + SPI + HDR + CHDR.

ntrain Data PIBF-CV PIBF-OOB P̂Iα OOB RFPI SC QRF GRF

Friedman 1 21.36 13.44 9.62 0.25 87.79 0.61 3.05 0.27
Friedman 2 21.83 13.96 9.62 0.23 59.50 0.44 2.61 0.26
Friedman 3 28.84 16.03 11.46 0.20 75.47 0.41 2.50 0.22
Peak 18.76 10.95 11.91 0.28 73.15 0.89 4.05 0.43
H2c 12.92 9.83 7.99 0.27 36.94 0.79 4.05 0.30
Tree-N 22.75 21.17 12.21 0.23 100.02 0.50 2.81 0.26

200

Tree-exp 16.28 15.62 15.65 0.23 87.49 0.53 2.85 0.25

Friedman 1 38.37 14.63 8.50 0.44 96.18 2.45 9.29 0.66
Friedman 2 27.07 13.64 7.64 0.43 84.19 1.80 6.79 0.47
Friedman 3 18.85 17.49 7.98 0.47 70.78 1.86 4.96 0.45
Peak 29.16 18.14 9.72 0.70 212.23 2.29 7.49 1.26
H2c 14.84 11.29 11.20 0.44 58.60 1.74 4.95 0.78
Tree-N 17.80 20.31 7.70 0.51 183.92 2.21 4.28 0.51

500

Tree-exp 18.05 19.05 7.74 0.51 170.24 1.72 4.45 0.49

Friedman 1 32.92 18.07 12.11 0.64 181.30 3.35 9.54 1.50
Friedman 2 23.07 15.94 10.25 0.45 135.64 2.14 6.26 0.90
Friedman 3 23.24 16.07 7.37 0.44 96.76 2.27 6.40 0.69
Peak 51.93 33.12 7.95 0.83 374.89 5.35 19.71 1.65
H2c 26.81 12.56 8.07 0.59 80.38 3.68 13.11 0.87
Tree-N 22.84 16.70 7.11 0.47 288.35 2.72 9.53 0.78

1000

Tree-exp 21.06 17.26 7.03 0.48 272.52 2.62 10.38 0.69

Friedman 1 155.81 139.88 28.70 3.72 928.84 40.79 134.97 4.84
Friedman 2 155.62 101.58 35.25 2.30 430.80 33.43 60.99 2.65
Friedman 3 106.70 91.72 34.41 2.36 330.81 28.47 73.18 2.72
Peak 287.67 245.17 22.76 6.84 1914.56 57.96 123.19 11.80
H2c 283.53 107.57 24.12 4.31 271.18 42.69 79.19 5.01
Tree-N 106.17 71.78 22.97 3.19 753.32 26.88 74.81 3.86

5000

Tree-exp 95.85 68.90 21.76 3.32 779.42 26.09 64.02 3.85

increase in sample sizes. Similarly, we can see that the QRF method is also affected from

the training sample size as it rises to 5000.

2.4 Conclusion

In this paper, we have introduced an R package named RFpredInterval. This package

implements 16 methods to build prediction intervals with random forests: a new method

to build Prediction Intervals with Boosted Forests (PIBF) and 15 different variations to

produce prediction intervals with random forests proposed by Roy and Larocque (2020).
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Table 2.5: Average computational time (in seconds) of each method over 100 times 10-fold cross-
validation for each real data set. PIBF-CV: The proposed method with the cross-validation cal-
ibration, PIBF-OOB: The proposed method with the OOB calibration, RFPI: The average total
running time of the five PI methods, i.e. LM + Quant + SPI + HDR + CHDR.

Data n p PIBF-CV PIBF-OOB P̂Iα OOB RFPI SC QRF GRF

Abalone 4177 8 102.37 64.39 17.65 5.20 422.10 20.42 45.39 6.32
Air quality (AH) 383.60 126.95 26.63 11.55 1256.56 45.45 126.36 16.07
Air quality (RH)

6941 13
383.53 124.71 26.60 11.55 1111.16 46.13 127.02 15.95

Airfoil selfnoise 1503 5 256.92 16.61 3.57 0.31 271.35 1.80 3.65 0.65
Ames housing 2929 80 195.07 28.56 15.64 8.73 333.28 42.95 226.49 11.34
Auto MPG 392 7 11.02 7.08 1.82 0.35 47.84 0.58 1.73 0.40
Boston housing 506 13 14.77 8.89 2.32 0.49 63.20 1.31 3.63 0.70
Computer hardware 209 6 6.53 3.80 0.93 0.22 26.49 0.28 0.98 0.24
Concrete compression 1030 8 28.28 17.80 3.38 0.38 257.19 2.03 5.86 0.66
Concrete slump 103 7 9.52 2.10 0.65 0.14 26.60 0.13 0.62 0.11
Energy efficiency (CL) 85.97 15.93 2.51 0.34 341.73 0.94 2.39 0.52
Energy efficiency (HL)

768 8
99.95 20.31 2.47 0.34 380.97 0.92 2.42 0.42

Servo 167 4 12.05 3.99 0.72 0.15 53.14 0.12 0.65 0.15

PIBF provides bias-corrected point predictions obtained with the one-step boosted forest

and prediction intervals by using the nearest neighbour out-of-bag observations to esti-

mate the conditional prediction error distribution.

We performed an extensive simulation study with a variety of simulated data sets

and applied real data analyses to investigate the performance of the proposed method.

The performance was evaluated based on the coverage level and length of the prediction

intervals. We compared the performance of the proposed method to 10 existing methods

for building prediction intervals with random forests. The proposed method was able to

maintain the desired coverage level with both the simulated and real data sets. In terms

of the PI lengths, globally, the proposed method provided the shortest prediction intervals

among all methods. The conclusions drawn from the analysis of real data sets were very

similar to those with the simulated data sets. This provides evidence for the reliability of

the proposed method. All results obtained indicate that the proposed method can be used

with confidence for a variety of regression problems.

Note that the coverage rate of prediction intervals for new observations can have sev-

eral interpretations. An interesting discussion about this issue is given in Mayr et al.

(2012). In that paper, the authors presented two interpretation of coverage: sample cover-
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age and conditional coverage. Sample coverage means that if we draw a new sample from

the same population as the training sample and build PIs with a desired coverage level of

(1−α), then the global coverage rate over this sample will be (1−α). The conditional

coverage means that if we sample many new observations always having the same set of

covariates and build PIs for them with a desired coverage level of (1−α), then about

(1−α)100% of these prediction intervals will contain the true value of the response. To

hold a desired level of conditional coverage, the predictive method needs to provide the

desired coverage level over the entire covariate space. On the other hand, sample coverage

needs only maintain the desired coverage level over the new sample, on average. There-

fore, if the conditional coverage holds, then the sample coverage also holds. In practice,

predictive models are mostly evaluated with their global predictive performance. Hence,

ensuring that the sample coverage level is achieved should be sufficient for most appli-

cations. The proposed calibration method with cross-validation is designed to ensure the

sample coverage property. From the simulation study and real data analyses, we can see

that the sample coverage is attained with the proposed calibration method.
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Chapter 3

Covariance regression with random

forests

Abstract

Capturing the conditional covariances or correlations among the elements of a multi-

variate response vector based on covariates is important to various fields including neu-

roscience, epidemiology and biomedicine. We propose a new method called Covariance

Regression with Random Forests (CovRegRF) to estimate the covariance matrix of a mul-

tivariate response given a set of covariates, using a random forest framework. Random

forest trees are built with a splitting rule specially designed to maximize the difference

between the sample covariance matrix estimates of the child nodes. We also propose a

significance test for the partial effect of a subset of covariates. We evaluate the perfor-

mance of the proposed method and significance test through a simulation study which

shows that the proposed method provides accurate covariance matrix estimates and that

the Type-1 error is well controlled. We also demonstrate an application of the proposed

method with a thyroid disease data set.



3.1 Introduction

Most existing multivariate regression analyses focus on estimating the conditional mean

of the response variable given its covariates. For example, in traditional regression anal-

ysis, the expectation of the response variables is related to linear combinations of co-

variates. While estimating the conditional covariances or correlations among multiple

responses based on covariates is also important, it is a less studied problem. For exam-

ple, functional brain connectivity focuses on the exploration of the co-occurrence of brain

activity in different brain regions, and this co-variability can be explained as a function

of covariates (Seiler and Holmes, 2017). As another example, human biomarkers such as

glucose, cholesterol, iron, albumin, and so on, are important for biomedical research and

the covariance of these biomarkers is influenced by age (Le Goallec and Patel, 2019). In

microbiome studies, the changes in the co-occurrence patterns among taxa with respect

to the covariates have been studied (Levy and Borenstein, 2013; McGregor et al., 2020).

In general terms, let Yn×q be a matrix of q response variables measured on n observa-

tions, where yi represents the ith row of Y. Similarly, let Xn×p be a matrix of p covariates

available for all n observations, where xi represents the ith row of X. For an observation

with covariates xi and responses yi, the goal is to estimate the covariance of the response

variables based on the covariates Σxi and to analyze how this conditional covariance ma-

trix varies with respect to the covariates. For this problem, Yin et al. (2010) use a kernel

estimator to estimate the conditional covariance matrix for a single continuous covariate.

However, it is not clear how to extend this approach to situations with multiple covariates.

Hoff and Niu (2012) propose a linear covariance regression model

yi = (A+ γiB)xi + εi,

where the mean and covariance of the multivariate response is parameterized as functions

of covariates. This model can also be interpreted as a special random-effects model where

Aq×(p+1) and Bq×(p+1) characterize the fixed and random parts of the model, respectively.

The scalar γi can be interpreted as an individual-level variability in addition to the random

error εi. The rows of B indicate how much this additional variability affects yi. The vector
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εi is of dimension q× 1 and is assumed to be normally distributed. In this framework,

they assume that E[γi] = 0, E[εi] = 0, E[γiεi] = 0, Var[γi] = 1, Var[εi] = Ψ, leading to the

following covariance matrix

Σxi = Ψ+BxixT
i BT .

Niu and Hoff (2019) illustrate an application of this model with a four-dimensional health

outcome. Fox and Dunson (2015) propose a Bayesian nonparametric model for co-

variance regression within a high-dimensional response context. Their approach relates

the high-dimensional multivariate response set to a lower-dimensional subspace through

covariate-dependent factor loadings obtained with a latent factor model. The conditional

covariance matrix is a quadratic function of these factor loadings. The method is limited

to data sets with smaller sample sizes. Franks (2021) proposes a parametric Bayesian

model for high-dimensional responses. In this model, the conditional covariance matrices

vary with continuous covariates. Zou et al. (2017) propose another covariance regres-

sion model where the covariance matrix is linked to the linear combination of similarity

matrices of covariates.

In this study, we propose a nonparametric covariance regression method for estimating

the covariance matrix of a multivariate response given a set of covariates, using a random

forest framework. The above-mentioned methods are very useful in modelling covariance

matrix but compared to them the proposed method offers higher flexibility in estimating

the covariance matrix given the set of covariates. For example, with the proposed method,

we can estimate the conditional covariance matrix for a set of covariates including multi-

ple continuous and categorical variables, and the proposed method can be used to capture

complex interaction patterns with the set of covariates. Moreover, the proposed method

is nonparametric and needs less computational time compared to the parametric models,

and can be applied to data sets with larger sample sizes.

Random forest (Breiman, 2001) is an ensemble tree-based algorithm involving many

decision trees, and can also be seen as an adaptive nearest neighbour predictor (Hothorn

et al., 2004; Lin and Jeon, 2006; Moradian et al., 2017, 2019; Roy and Larocque, 2020;
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Tabib and Larocque, 2020; Alakuş et al., 2021). In the proposed random forest frame-

work, we grow each tree with a splitting rule specially designed to maximize the differ-

ence in the sample covariance of Y between child nodes. For a new observation y∗ with

covariates x∗, the proposed random forest finds the set of nearest neighbour observations

among the out-of-bag (OOB) observations that are not used in the tree growing process.

This set of nearest neighbour observations is then used to estimate the conditional covari-

ance matrix of y∗ given x∗. In each tree built in the proposed random forest framework,

the set of covariates is used to find subgroups of observations with similar conditional co-

variance matrices, assuming that they are related to conditional covariance matrices. We

propose a hypothesis test to evaluate the effect of a subset of covariates on the estimated

covariance matrices while controlling for the others. We investigate two particular cases,

the global effect of the covariates and the partial effect of a single covariate.

This paper is organized as follows. In Section 3.2, we give the details of the proposed

method, significance test and variable importance measure. The simulation study results

for accuracy evaluation, global and partial effects of covariates, and variable importance

are presented in Section 3.3. We provide a real data example in Section 3.4, and conclude

with some remarks in Section 3.5.

3.2 Proposed method

Let Σxi be the true conditional covariance matrix of yi based on covariates xi, and ΣX be

the collection of all conditional covariance matrices for n observations. Similarly, let Σ̂xi

be the estimated conditional covariance matrix of yi based on covariates xi, and Σ̂X be

the collection of all estimated conditional covariance matrices for n observations. In this

section, we describe the proposed method in detail.
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3.2.1 Tree growing process and estimation of covariance matrices

for new observations with random forests

We aim to train a random forest with the set of covariates X to find subgroups of observa-

tions with similar covariance matrices of Y, based on many unsupervised decision trees

built with a specialized splitting criterion. The tree growing process follows the CART

approach (Breiman et al., 1984). The basic idea of the CART algorithm is to select the

best split at each parent node among all possible splits, all evaluated with a selected split-

ting criterion, to obtain the purest child nodes. The algorithm evaluates all possible splits

to determine the split variable and split point. Instead of considering all possible splits at

each parent node, the best split search in random forests is confined to a randomly chosen

subset of covariates that varies from node to node. The splitting process continues until

all nodes are terminal.

Our goal is to obtain subgroups of observations with distinct covariance matrices.

Hence, we propose a customized splitting rule that will seek to increase the difference in

covariance matrices between two child nodes in the tree (Athey et al., 2019; Moradian

et al., 2017; Tabib and Larocque, 2020; Alakuş et al., 2021). We define ΣL as the sample

covariance matrix estimate of the left node as follows:

Σ
L =

1
nL −1 ∑

i∈tL

(yi − ȲL)(yi − ȲL)
T ,

where tL is the set of indices of the observations in the left node, nL is the left node

size and ȲL = 1
nL

∑i∈tL yi. The sample covariance matrix estimate of the right node, ΣR,

is computed in the same way, where nR is the right node size. The proposed splitting

criterion is
√

nLnR ∗d(ΣL,ΣR), (3.1)

where d(ΣL,ΣR) is the Euclidean distance between the upper triangular part of the two

matrices and computed as follows:

d(A,B) =

√√√√ q

∑
i=1

q

∑
j=i

(Ai j −Bi j)2, (3.2)
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where Aq×q and Bq×q are symmetric matrices. The best split among all possible splits is

the one that maximizes (3.1).

The final covariance matrices are estimated based on the random forest. For a new

observation, we use the nearest neighbour observations to estimate the final covariance

matrix. The idea of finding the nearest neighbour observations, a concept very similar

to the ‘nearest neighbour forest weights’ (Hothorn et al., 2004; Lin and Jeon, 2006), was

introduced in Moradian et al. (2017) and later used in Moradian et al. (2019); Roy and

Larocque (2020); Tabib and Larocque (2020); Alakuş et al. (2021). Roy and Larocque

(2020) called this set of observations the Bag of Observations for Prediction (BOP).

For a new observation x∗, we form the set of nearest neighbour observations with the

out-of-bag (OOB) observations (Lu and Hardin, 2021; Alakuş et al., 2022). We can define

the BOPoob for a new observation as

BOPoob(x∗) =
B⋃

b=1

Ob(x∗),

where B is the number of trees and Ob(x∗) is the set of OOB observations in the same

terminal node as x∗ in the bth tree. Each tree is built with a selected random sub-sample,

i.e. in-bag observations (Ib), which has about 63 percent distinct observations from the

original sample. The remaining training observations, namely Ob, are OOB observations

for that tree and are not used to build the bth tree.

BOPoob is slightly different than the nearest neighbour sets in the previous papers

who use in-bag observations to form BOP. Since the OOB observations are not used in

the tree building process, for the trees where they are OOB, they act as new observations.

Therefore, OOB observations represent a new observation better than in-bag observations.

Using OOB observations for neighbourhood construction is similar to the idea of honesty

in the context of forests. An honest double-sample tree splits the training subsample into

two parts: one part for tree growing and another part for estimating the desired response

(Wager and Athey, 2018). We use the nearest neighbour construction idea to estimate the

covariance matrices for the new observations. Algorithm 3.1 describes how to estimate

the covariance matrix with OOB observations for a new or training observation. After
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training the random forest with the specialized splitting criterion, for a new observation

x∗, we form BOPoob(x∗) and then we estimate the covariance matrix by computing the

sample covariance matrix of the observations in BOPoob(x∗).

3.2.2 nodesize tuning

The number of observations in the nodes decreases as we progress down the tree during

the tree-building process. The nodesize parameter is the target average size for the

terminal nodes. Lowering this parameter results in deeper trees, which means more splits

until the terminal nodes. Tuning the nodesize parameter can potentially improve the

prediction performance (Lin and Jeon, 2006).

In typical supervised problems where the target is the observed true response, random

forests search for the optimal level of the nodesize parameter by using out-of-bag (OOB)

prediction errors computed using the true responses and OOB predictions. The nodesize

value with the smallest OOB error is chosen. However, in our problem, the target is

the conditional covariance matrix which is unknown. Therefore, we propose a heuristic

method for tuning the nodesize parameter. For nodesize tuning, we use the OOB

covariance matrix estimates, as described in Algorithm 3.1.

The general idea of the nodesize tuning method is to find the nodesize level where

the OOB covariance matrix predictions at two consecutive nodesize levels become simi-

lar. We first train separate random forests for a set of nodesize values (see the Parameter

settings section in simulation study). Then, we compute the OOB covariance matrix

estimates as described in Algorithm 3.1 for each random forest. Define MAD(A,B) =
2

q(q+1) ∑
q
i=1 ∑

q
j=i |Ai j −Bi j|. Let Σ̂s

xi
be the estimated covariance matrix for observation

i when nodesize= s. Let s(1) < .. . < s(M) be a set of increasing node sizes. For

j = {1, . . .M−1}, let

MAD j =
1
n

n

∑
i=1

MAD
(

Σ̂
s( j)
xi , Σ̂

s( j+1)
xi

)
.

Then we select s( j) that corresponds to the value j for which MAD j is the minimum
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among {MAD1, . . . ,MADM}. See Appendix H for the results of a nodesize tuning ex-

periment.

When a node sample size nd is smaller than the number of responses q, the sample

covariance matrix becomes highly variable. In fact, if nd −1 < q, the estimate is singular

and hence non-invertible. Therefore, the tuning set of nodesize levels should be larger

than q. In fact, we need more than q distinct values, so we use sub-sampling instead of

bootstrap resampling for tree building to guarantee distinctness, assuming the observa-

tions in the original sample are distinct.

Algorithm 3.1 Estimation of covariance matrix for a new or training observation
Input: A forest built with the proposed method

1: BOPoob(xi) = /0
2: for b=1,...,B do
3: if xi is a new observation or (xi is a training observation and xi ∈ Ob) then
4: Find the terminal node of xi at tree b, say d
5: BOPoob(xi) = BOPoob(xi)∪Od

b(xi) (where Od
b(xi) is the set of OOB obser-

vations in the same terminal node d as xi, excluding xi itself when xi is a training
observation)

6: end if
7: end for
8: Compute sample covariance matrix with the observations in BOPoob(xi)

3.2.3 Significance test

The proposed method uses covariates to find groups of observations with similar covari-

ance matrices with the assumption that the set of covariates is important to distinguish

between these covariance matrices. However, some (or all) covariates might not be rel-

evant. In this paper, we propose a hypothesis test to evaluate the effect of a subset of

covariates on the covariance matrix estimates, while controlling for the other covariates.

If a subset of covariates has an effect on the covariance matrix estimates obtained with

the proposed method, then the conditional covariance matrix estimates given all covariates

should be significantly different from the conditional covariance matrix estimates given

the controlling set of covariates. We propose a hypothesis test to evaluate the effect of a
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subset of covariates on the covariance matrix estimates for the null hypothesis

H0 : ΣX = ΣXc, (3.3)

where ΣX is the conditional covariance matrix of Y given all X variables, and ΣXc is the

conditional covariance matrix of Y given only the set of controlling X variables. The

proposed significance test is described in Algorithm 3.2. After computing the covariance

matrix estimates for all covariates and control variables only, we compute the test statistic

with

T =
1
n

n

∑
i=1

d
(
Σ̂xi, Σ̂xc

i

)
, (3.4)

where d(., .) is computed as (3.2). The test statistic specifies how much the covariance

matrix estimates given all covariates differ from the estimates given only the controlling

set of covariates. As T becomes larger, we have more evidence against H0.

We conduct a permutation test under the null hypothesis (3.3) by randomly permuting

rows of X. Let R be the total number of permutations and Tr be the global test statistic

(3.4) computed for the rth permuted X. We estimate the test p-value with

p =
1
R

R

∑
r=1

I(Tr > T ), (3.5)

and we reject the null hypothesis (3.3) at a pre-specified level α if the p-value is less than

α .

In the significance test described above, we need to apply the proposed method many

times: for the original data with (i) all covariates and (ii) the set of control covariates, and

at each permutation for the permuted data with (iii) all covariates and (iv) the set of control

covariates. The proposed method applies a nodesize tuning as described in the previous

section. Since tuning the nodesize parameter can be computationally demanding, we

tune the nodesize for the original data with all covariates and with the set of control

covariates only and use those tuned values for their corresponding permutation steps.

The proposed significance test has two particular cases of interest. The first is to

evaluate the global effect of the covariates on the conditional covariance estimates. If X
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Algorithm 3.2 Permutation test for a subset of covariates effect
1: Train RF with X and Y, estimate covariance matrices as described in Algorithm 3.1,

say Σ̂xi ∀i = {1, . . . ,n}
2: Train RF with Xc and Y, and estimate covariance matrices as described in Algorithm

3.1, say Σ̂c
xi
∀i = {1, . . . ,n}

3: Compute test statistic with T = 1
n ∑

n
i=1 d

(
Σ̂xi, Σ̂

c
xi

)
, where d(., .) is computed as (3.2)

4: for r = 1 : R do
5: Permute rows of X, say Xr
6: Train RF with Xr and Y
7: Estimate covariance matrices as described in Algorithm 3.1, say Σ̂

′
xi

∀i =
{1, . . . ,n}

8: Train RF with Xc
r and Y

9: Estimate covariance matrices as described in Algorithm 3.1, say Σ̂c′
xi

∀i =
{1, . . . ,n}

10: Compute test statistic with Tr =
1
n ∑

n
i=1 d

(
Σ̂

′
xi
, Σ̂c′

xi

)
11: end for
12: Approximate the permutation p-value with p = 1

R ∑
R
r=1 I(Tr > T )

13: Reject the null hypothesis when p < α . Otherwise, do not reject the null hypothesis.

has a global effect on the covariance matrix estimates obtained with the proposed method,

then the conditional estimates ΣX should be significantly different from the unconditional

covariance matrix estimate Σroot which is computed as the sample covariance matrix of

Y. The null hypothesis (3.3) becomes

H0 : ΣX = Σroot . (3.6)

See Appendix I for the details of the global significance test. The second case is to eval-

uate the effect of a single covariate when the other covariates are in the model. In that

particular case, the null hypothesis (3.3) remains. The only difference between the global

and partial significance tests is the number of forests we need to train. In the partial sig-

nificance test, we need to train two random forests per sample, one for all covariates and

one for the controlling variables, which makes a total 2R+ 2 random forests. However,

when we test for the global effect, we need to train only one random forest per sample

(in total R+1 random forests) since we do not need to build a random forest for the root

node.
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3.2.4 Variable importance

For traditional regression tree problems, we can get the variable importance (VIMP) mea-

sures by computing the average change in prediction accuracy using the OOB samples.

However, the covariance regression problem does not have an observed target. We can

compute the VIMP measures by using the fit-the-fit approach which has been applied to

enhance interpretability of the covariates on the response (Lee et al., 2020; Alakuş et al.,

2021; Bargagli Stoffi et al., 2021; Spanbauer and Sparapani, 2021; Stoffi et al., 2021; Meid

et al., 2022). In the univariate response case, we get the importance measures by fitting a

regression forest to re-predict the predicted values. However, in covariance regression, we

have a predicted covariance matrix for each observation and not a single value. Therefore,

we use a multivariate splitting rule based on the Mahalanobis distance (Ishwaran et al.,

2021) to re-predict the predicted covariance matrices. We begin by applying the proposed

method using the original covariates and responses and estimate the covariance matrices

as described in Algorithm 3.1. Next, we train a random forest with the original covariates

and the vector of upper-triangular estimated covariance matrix elements as a multivariate

response. VIMP measures are obtained from this random forest. Covariates with higher

VIMP measures indicate higher importance for the estimation of covariance matrices.

3.2.5 Implementation

We have developed an R package called CovRegRF. We used the custom splitting feature

of the randomForestSRC package (Ishwaran and Kogalur, 2022) to implement our spe-

cially designed splitting criterion in the tree building process. The package is available on

CRAN, https://CRAN.R-project.org/package=CovRegRF.

3.3 Simulations

In this section, we perform a simulation study to demonstrate the performance of the pro-

posed method, validate the proposed significance test with two particular cases—global
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and partial significance tests—and evaluate the variable importance estimations of the

covariates.

3.3.1 Data generating process

We carry out a simulation study using four Data Generating Processes (DGPs). The de-

tails of the DGPs are given in Appendix J. The first two DGPs are variations of the first

simulated data set used in Hoff and Niu (2012). Both DGPs include one covariate and

two response variables. The covariate x is generated uniformly on [−1,1]. In DGP1, the

covariance matrix for the observation xi is Σxi =Ψ+BxixT
i BT where xT

i = (1,xi)
T . DGP2

is similar to DGP1, except that we add a quadratic term to the covariance matrix equation

such as Σxi = Ψ+BẋiẋT
i BT where ẋT

i = (1,(xi + x2
i ))

T .

In DGP3, the vector of covariates includes seven independent variables generated

from the standard normal distribution. For the covariance structure, we use an AR(1)

structure with heterogeneous variances. The correlations are generated with all seven

covariates according to a tree model with a depth of three and eight terminal nodes. The

variances are functions of the generated correlations. In DGP4, the covariance matrix

has a compound symmetry structure with heterogeneous variances. Both variances and

correlations are functions of covariates. The covariates are generated from the standard

normal distribution. The correlations are generated with a logit model and the variances

are functions of these generated correlations. The number of covariates and response

variables varies depending on the simulation settings. For all DGPs, after generating Σxi ,

yi is generated from a multivariate normal distribution N(0,Σxi).

3.3.2 Simulation design

Accuracy evaluation

We perform a simulation study based on the four DGPs described above to evaluate the

accuracy of the proposed method for estimating the covariance matrices. For DGP3 and

DGP4, we consider five response variables. For each DGP, we use several values of
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the training sample size ntrain = {50,100,200,500,1000}, which generates a total of 20

settings (4 DGPs × 5 training sample sizes). We repeat each setting 100 times. In each

run of the simulations, we generate an independent test set of new observations with

ntest = 1000.

We evaluate the performance of the covariance matrix estimates using the mean abso-

lute errors (MAE) computed for both the estimated correlations and standard deviations

separately. For the estimated correlations, we compute the MAE between the upper trian-

gular (off-diagonal) matrices of the true and estimated correlations over all observations

as follows:

MAEcor(ĈX,CX) =
2

q(q−1)ntest

ntest

∑
i=1

q

∑
j=1

q

∑
k= j+1

|ρ̂i jk −ρi jk|,

where CX and ĈX are the collection of all correlation matrices corresponding to ΣX and

Σ̂X, respectively. The values ρi jk and ρ̂i jk represent the correlations in row j and column

k of Cxi and Ĉxi , respectively.

For the estimated standard deviations, we compute the normalized MAE between the

true and estimated standard deviations over all observations as follows:

MAEsd(Σ̂X,ΣX) =
1

qntest

ntest

∑
i=1

q

∑
j=1

∣∣∣∣∣ σ̂i j −σi j

σi j

∣∣∣∣∣.
The values σ2

i j and σ̂2
i j represent the jth diagonal element of Σxi and Σ̂xi , respectively.

Smaller values of MAEcor and MAEsd indicate better performance. We compare our

proposed method with the original Gaussian-based covariance regression model covreg

which was presented in the Introduction. This method is currently available in the covreg

R package (Niu and Hoff, 2014). Moreover, as a simple benchmark method, we compute

the sample covariance matrix without covariates, which is then used as the covariance

matrix estimate for all new observations from the test set.

Variable importance

For the variable importance evaluation simulations, we use DGP3 and DGP4 in which

we add five noise variables X to the covariates set. As above, we consider several values
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for the training sample sizes ntrain = {50,100,200,500,1000}, for a total of 10 scenarios

studied. We examine whether the estimated VIMP measures tend to rank the important

variables first. The variable with the highest VIMP measure has a rank of 1. For each

scenario, we compute the average rank for the important variables group and for the noise

variables group.

Evaluating the power of the global significance test

We studied four scenarios to evaluate the global effect of the covariates, two of which are

under the null hypothesis (3.6) and the other two under the alternative hypothesis. We

generate the data sets for these scenarios as follows:

1. H0 (case 1): we generate 5 Y with a constant population covariance matrix and 10

X variables which are all independent following a standard normal distribution. In

this case, the covariance of Y is independent of X and we are therefore under the

null hypothesis.

2. H0 (case 2): we first generate 7 X and 5 Y under DGP3. Then, we replace the X

matrix with 10 independent X variables generated from a standard normal distribu-

tion. In this case, the covariance of Y varies with some of the X variables but those

X variables are not available in the training set. Therefore, we are again under the

null hypothesis.

3. H1 (without noise): we generate 7 X and 5 Y under DGP3, and the covariates are

available in the training set. In this case, the covariance of Y varies with all X

variables.

4. H1 (with noise): we generate 7 X and 5 Y under DGP3 and we add 3 independent

X variables to the covariates’ training set. In this case, the covariance of Y varies

with some of the X variables but not all.
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Evaluating the power of the partial significance test

We can consider three scenarios to evaluate the effect of a single covariate, where one is

under the null hypothesis (3.3) and the other two under the alternative hypothesis. We

generate the data sets for these scenarios as follows:

1. H0: We first generate 2 X and 5 Y with DGP4 and we add 1 independent X variable

to the covariates’ training set. In this case, the covariance of Y varies only with the

first two X variables. The control set of variables is {X1,X2} and we evaluate the

effect of the X3 variable. Therefore, we are under the null hypothesis.

2. H1(weakest): We generate 3 X and 5 Y with DGP4. In this case, the covariance

of Y varies with all X variables. The control set of variables is {X1,X2} and we

evaluate the effect of X3, which has the weakest effect on the covariance matrix.

3. H1(strongest): We generate 3 X and 5 Y with DGP4. In this case, the covariance of

Y again varies with all X variables. But now the control set of variables is {X2,X3}

and we evaluate the effect of X1, which has the strongest effect on the covariance

matrix.

For both the global and partial significance test simulations, we use training sample

sizes of ntrain = {50,100,200,300,500}. The number of permutations and the number of

replications for each scenario are set to 500. We estimate the type-1 error as the propor-

tion of rejection in the scenarios simulated under H0 and the power as the proportion of

rejection in the scenarios simulated under H1. We estimate a p-value for each replication

and we reject the null hypothesis if the p-value is less than the significance level α = 0.05.

Finally, we compute the proportion of rejection over 500 replications.

3.3.3 Parameter settings

For the simulations, we use the following parameters for the proposed method. We set

the number of trees to 1000. Letting p be the number of covariates, then the number of
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covariates to randomly split at each node, mtry, is set to ⌈p/3⌉. The number of random

splits for splitting a covariate at each node, nsplit, is set to max{ntrain/50,10}. We tune

the nodesize parameter with the set of nodesize= {[sampsize× (2−1,2−2,2−3, . . .)]>

q} where q is the number of responses and sampsize= 0.632ntrain. In each replication,

covreg is run in four independent chains for 8000 iterations, with the first half taken as

burn-in.

3.3.4 Results

Accuracy evaluation

Figures 3.1 and 3.2 present the accuracy results for 100 repetitions. For each method,

we can see the change in MAEcor and MAEsd computed for 100 repetitions with an

increasing training sample size. As demonstrated in Figure 3.1, for DGP1 and DGP2

when ntrain = 50, the proposed method and covreg both have a similar performance with

respect to the correlation estimation, with a slight advantage for covreg. For DGP1,

covreg performs better for both the correlation and standard deviation compared to the

proposed method as the sample size increases. This is expected since DGP1 is generated

exactly under the covreg model. However, the proposed method still remains competi-

tive. For DGP2, in which a quadratic term is added, the proposed method performs better

for the correlation than covreg with increasing sample size. covreg shows better stan-

dard deviation estimation performance for smaller sample sizes, but after ntrain = 500 the

proposed method performs slightly better. As demonstrated in Figure 3.2, for DGP3, the

proposed method shows a significantly smaller MAEcor and MAEsd than covreg for all

sample sizes. Moreover, for the smaller sample sizes, the proposed method has consider-

ably lower variance in MAE. For DGP4, both methods improve with increasing sample

size, but the proposed method shows smaller or equal MAEs for both correlation and

standard deviation estimations. For DGP3 and DGP4, these results are expected, since

the proposed method can capture a nonlinear effect.

For the nodesize tuning, we compare the accuracy results for different levels of
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nodesize along with the proposed tuning method. Figures H1 and H2 in Appendix H

present the MAE results for all DGPs which show that the tuning method works well.
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Figure 3.1: Accuracy evaluation results for DGP1 and DGP2. Smaller values of MAEcor and
MAEsd are better.

Variable importance

Figure 3.3 presents the average ranks of the VIMP measures for both the important and

noise sets of variables for DGP3 and DGP4. In all scenarios, the important variables have

smaller average ranks than noise variables. As the sample size increases, the difference

between the average ranks of important and noise variables increases, as expected.
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Figure 3.2: Accuracy evaluation results for DGP3 and DGP4. Smaller values of MAEcor and
MAEsd are better.
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Figure 3.3: Average ranks from estimated VIMP measures for DGP3 and DGP4. Smaller rank
values indicate a more important variable (the most important variable has rank 1).
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Global significance test

The left plot in Figure 3.4 presents the estimated type-1 error and power for different

training sample sizes for the two H0 scenarios and two H1 scenarios, respectively. We

expect the type-1 error to be close to the significance level (α = 0.05) and we can see that

it is well controlled in both cases studied. In both H1 scenarios, the power increases with

the sample size. When the sample size is small, adding noise covariates slightly decreases

the power, but this effect disappears as the sample size increases.
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Figure 3.4: Significance test results. The left and right plots present the results for global and
partial significance tests, respectively. The proportion of rejection corresponds to the type-1 error
for H0 scenarios, and power for H1 scenarios. The dotted line represents the significance level of
α = 0.05.

Partial significance test

The right plot in Figure 3.4 presents the estimated type-1 error and power for different

training sample sizes for the H0 scenario and two H1 scenarios, respectively. As can be

seen from the H0 line, the type-1 error is close to the significance level (α = 0.05). In

both H1 scenarios, the power increases with the sample size as expected. However, the

power is much smaller when one tests the weakest covariate compared to the strongest

covariate.
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3.4 Real data example

Thyroid hormone, the collective name for two hormones, is widely known for regulat-

ing several body processes, including growth and metabolism (Yen, 2001; Shahid et al.,

2022). The main hormones produced by the thyroid gland are triiodothyronine (T3) and

thyroxine (T4). The synthesis and secretion of these hormones are primarily regulated by

thyroid stimulating hormone (TSH), which is produced by the pituitary gland. Primary

hypothyroidism is a condition that occurs when the thyroid gland is underactive and the

thyroid hormone produced is insufficient to meet the body’s requirements, which leads to

an increase of TSH. Contrarily, when the thyroid gland produces levels of thyroid hor-

mones that are too high, leading to decreased levels of TSH, the resulting condition is

hyperthyroidism.

Serum levels of the thyroid hormones and TSH are used to evaluate subjects’ thyroid

function status and to identify subjects with a thyroid dysfunction. Therefore, establishing

reference intervals for these hormones is critical in the diagnosis of thyroid dysfunction.

However, reference ranges are affected by age and sex (Kapelari et al., 2008; Aggarwal

and Razvi, 2013; Biondi, 2013; Strich et al., 2017; Park et al., 2018). Furthermore, there

is a relationship between TSH and thyroid hormone, and the effects of age and sex on this

relationship have not been well described (Hadlow et al., 2013; Lee et al., 2020). Serum

levels of these hormones are also affected by the subject’s diagnosis, i.e. hormone levels

would be within the reference ranges for normal subjects and out of range for subjects with

thyroid dysfunction. The conditional mean of these hormones based on the covariates is

studied in the literature, but to our knowledge, no study has yet explicitly investigated the

effect of covariates on the conditional covariance matrix of these hormones. Hence, our

contribution is to study the effect of age, sex and diagnosis on the covariance matrix of

the thyroid hormones and TSH.

In this study, we investigate the thyroid disease data set from the UCI machine learn-

ing repository (Dua and Graff, 2017). This data set originally included 9172 subjects and

30 variables including age, sex, hormone levels and diagnosis. Following the exclusion
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criteria applied in Hadlow et al. (2013) and Strich et al. (2017), we exclude pregnant

women, subjects who have euthyroid sick syndrome (ESS), goitre, hypopituitarism or tu-

mour, subjects who use antithyroid medication, thyroxine or lithium, who receive I131

treatment, or who have had thyroid surgery. The subjects have different diagnoses includ-

ing hypothyroidism and hyperthyroidism, as well as normal subjects. Since the sample

size of hyperthyroidism subjects is small, we exclude them from the analysis. We also

exclude the very young and very old subjects, since there are only a few subjects on the

extremes. The remaining data set consists of 324 hypothyroidism and 2951 normal sub-

jects (n = 3275) between 20 and 80 years of age (2021 females/1254 males). We want

to estimate the covariance matrix of four thyroid-related hormones—TSH, T3, TT4 (total

T4) and FTI (free thyroxine index/free T4)—based on covariates and investigate how the

relationship between these hormones varies with the covariates. We apply the proposed

method with the covariates age, sex and diagnosis to estimate the covariance matrix of the

four hormones. We first perform the significance test with 500 permutations to evaluate

the global effect of the three covariates. The estimated p-value with (3.5) is 0 and we

reject the null hypothesis (3.6), which indicates that the conditional covariance matrices

vary significantly with the set of covariates. Next, we apply the proposed method and

obtain the covariance matrix estimates. We analyze the correlations between hormones

as a function of covariates, and as shown in Figure 3.5, age seems not to have much ef-

fect on the estimated correlations. We also compute the variable importance measures,

and age (0.001) is found to be the least important variable where diagnosis (1.000) is the

most important variable, followed by sex (0.011). Therefore, we apply the significance

test to evaluate the effect of age on covariance matrices while controlling for sex and di-

agnosis. Using 500 permutations, the estimated p-value with (3.5) is 0.42 and we fail to

reject the null hypothesis (3.3), indicating that we have insufficient evidence to prove that

age has an effect on the estimated covariance matrices while sex and diagnosis are in the

model. Although the mean levels of TSH and thyroid hormones differ with age (Kapelari

et al., 2008; Aggarwal and Razvi, 2013; Biondi, 2013; Park et al., 2018), the correlation

between these hormones may not be affected by aging. Similarly, we apply the signifi-
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cance test for diagnosis and sex while controlling for the remaining two covariates, and

the estimated p-values for both tests are 0, which indicates that both diagnosis and sex,

taken individually, have an effect on the covariance matrix of the four hormones. We

compare the estimated correlations using the proposed method to the sample correlations

computed using the whole sample, which are represented with the black dashed lines in

Figure 3.5. For example, the sample correlation between TSH and T3 over all samples is

-0.28 which is not close to the estimated correlation of either hypothyroidism or normal

subjects. Furthermore, the estimated variances of the four hormones as a function of age,

sex and diagnosis are presented in Figure 3.6. We can see that the variances also differ

with covariates. For a mean regression analysis for any of these hormones, assuming a

constant variance could yield misleading results.
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Figure 3.5: Estimated correlations between the four hormones as a function of age, sex and
diagnosis. Dashed lines represent the sample correlations computed using the whole sample.
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Figure 3.6: Estimated variances for the four hormones as a function of age, sex and diagnosis.
Dashed lines represent the sample variances computed using the whole sample.

3.5 Conclusion

In this study, we propose a nonparametric covariance regression method, using a ran-

dom forest framework, for estimating the covariance matrix of a multivariate response

given a set of covariates. Random forest trees are built with a new splitting rule designed

to maximize the distance between the sample covariance matrix estimates of the child

nodes. For a new observation, the random forest provides the set of nearest neighbour

out-of-bag (OOB) observations which is used to estimate the conditional covariance ma-

trix for that observation. We perform a simulation study to test the performance of the

proposed method and compare it to the original Gaussian-based covariance regression

model covreg. The average computational times of both methods for the simulations are
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presented in Appendix K. We can see from the table that the proposed method is signifi-

cantly faster than covreg. For the real data analysis, the computational time was 200.14

seconds. Furthermore, we propose a significance test to evaluate the effect of a subset

of covariates while the other covariates are in the model. We investigate two particular

cases: the global effect of covariates and the effect of a single covariate. We also propose

a way to compute variable importance measures.

The proposed method can be extended in a variety of ways. One of them is to com-

pute the weighted Euclidean distance between covariance matrices of the child nodes as

d(A,B) =
√

∑
q
i=1 ∑

q
j=i wi j(Ai j −Bi j)2 for the splitting rule. The weights are like the mea-

sures of importance for the elements of the covariance matrices. Another one is that for

the final covariance matrix estimation for a new observation, we can use sparse or ro-

bust covariance matrix estimations (Rousseeuw and Driessen, 1999; Bien and Tibshirani,

2011) using the nearest neighbour observations. Similarly, it is theoretically possible to

use the sparse or robust covariance matrix estimations instead of the sample covariance

matrix for the tree building process. However, the computational time could be a limiting

factor. The proposed method can be applied to larger X dimensions. The computational

time increases linearly with mtry which is the number of covariates to randomly split at

each node. It can also be adapted to larger Y dimensions, but the computational time

could be a limitation for very large Y dimensions. Computing the sample covariance ma-

trix has a time complexity O(nq2) for q response variables and we compute covariance

matrix for each node split in each tree of the forest which necessitates many covariance

matrix computations.
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General Conclusion

This thesis proposes a new method in each chapter, using the random forest framework,

1. Random Forest with Canonical Correlation Analysis (RFCCA) estimates the con-

ditional canonical correlation between two multivariate data sets given the subject-

related covariates,

2. Prediction Intervals with Boosted Forests (PIBF) builds a prediction interval for the

bias-corrected point prediction,

3. Covariance Regression with Random Forests (CovRegRF) estimates the conditional

covariance matrix of a multivariate response vector based on covariates.

The first and third chapters are similar in terms of the idea of estimating a conditional

measure, which is the canonical correlation for the first chapter and the covariance matrix

for the third, given a set of covariates using a random forest. Along the same line, the

proposed splitting criteria in these two chapters target maximizing the difference in child

nodes in order to identify the subgroups of subjects with distinct canonical correlations or

covariance matrices. For a new observation, a set of nearest neighbours are formed from

the forest and the conditional measure of interest is computed using these neighbours.

Indeed, estimating the conditional canonical correlation between two univariate data sets

based on a set of covariates in the first chapter is analogous to estimating the conditional

correlation matrix of a two-dimensional response vector given a set of covariates in the

third chapter. Moreover, we propose a significance test to evaluate the effect of the covari-

ates on the estimated canonical correlations or covariance matrices and a way to compute



variable importance measures. Both methods are evaluated through simulation studies

that show they provide accurate canonical correlation or covariance matrix estimations.

In both chapters, an application of the proposed method is demonstrated.

In the second chapter, the proposed method provides bias-corrected point predictions

obtained with the one-step boosted forest and prediction intervals built from the condi-

tional prediction error distribution which is estimated using the set of nearest neighbour

observations. We perform a simulation study and apply real data analyses to compare the

performance of the proposed method to ten competing methods. The results show that the

proposed method, globally, provides the shortest prediction intervals among all methods.

The proposed methods presented in this thesis are implemented in freely available R

packages on CRAN and can be very useful in practice.

The proposed methods in the first and third chapters can be extended in a variety of

ways. One of them is that for the final canonical correlation estimation for a new observa-

tion in the first chapter, we can use sparse CCA (Witten et al., 2009) or regularized CCA

(Leurgans et al., 1993; Vinod, 1976) using the nearest neighbour observations. Similarly,

for the final covariance matrix estimation for a new observation in the third chapter, we

can use sparse or robust covariance matrix estimations (Rousseeuw and Driessen, 1999;

Bien and Tibshirani, 2011). We can also use these sparse or robust variants instead of

CCA or sample covariance matrix for the tree building process. However, the computa-

tional time could be a limiting factor for both methods. Other extensions would be to use

alternative splitting rules to build the trees, such as the weighted sum of canonical corre-

lations in the child nodes or the weighted euclidean distance between covariance matrices

of the child nodes. Extending the proposed method in the second chapter to time-series

data or spatial data would be interesting for future research.
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Appendix A – Motivating examples

Example with univariate X and Y

We generated a data set with Z = (Z1, . . . ,Z10) ∈ Rn×10, X ∈ Rn×1 and Y ∈ Rn×1 where

n = 500, Zi ∼ N(0,1) ∀i = {1,2, ...,10} and (X ,Y )∼ MV N(0,Σ) where Σ =
(

1 ρ

ρ 1

)
. The

correlation between X and Y is a function of Z1 given by

ρ =

 0 Z1 ≤ 0,

0.8 Z1 > 0,

where ρ is the population correlation between X and Y . The sample correlation between

X and Y , as a function of Z1, is

r(X ,Y ) =

 0.017 Z1 ≤ 0,

0.737 Z1 > 0,

whereas the sample correlation between all X and Y is 0.329. Our aim is to identify the

two groups of observations having the most different correlation. After applying the pro-

posed method with a single tree and a single split, we have two groups of observations.

Figure A1 illustrates the single split of the method. The observations are grouped accord-

ing to their Z1 values, the first group has Z1 ≤ 0.011 and the second group has Z1 > 0.011.

The correlation between X and Y in those two groups are respectively 0.018 and 0.741.

Hence, the proposed method was able to identify the two groups.
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Figure A1: Illustration for the example, single split of a single decision tree.

Example with multivariate X and Y

As a second example, now with multivariate X and Y , we have a data set with Z ∈ Rn×10,

X ∈ Rn×2 and Y ∈ Rn×2 where n = 500, Zi ∼ N(0,1) ∀i = {1,2, ...,10}. The canonical

correlation between X and Y is a function of Z1

ρCCA =

 0.2 Z1 ≤ 0,

0.8 Z1 > 0,

where ρCCA is the population CCA correlation between X and Y . The sample CCA corre-

lations between X and Y as a function of Z1 is

rCCA(X ,Y ) =

 0.237 Z1 ≤ 0,

0.785 Z1 > 0,

whereas the sample CCA correlation between all X and Y is 0.535. Again, after applying

the proposed method with a single tree and single split, we have two groups of obser-

vations. The observations are grouped according to their Z1 values, the first group has

Z1 ≤ 0.014 and the second group has Z1 > 0.014. The CCA correlation between X and Y

ii



in those two groups are respectively 0.237 and 0.785. Thus, again, the proposed method

was able to identify the two groups.
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Appendix B – Computing canonical

correlations

Canonical correlation analysis, firstly introduced in Hotelling (1936), seeks vectors of

a ∈ Rp and b ∈ Rq for two multivariate data sets X ∈ Rn×p and Y ∈ Rn×q such that Xa and

Y b are maximally linearly correlated. We can formulate the problem

(a∗,b∗) = argmax
a,b

corr(Xa,Y b), (7)

where

corr(Xa,Y b) =
aT ΣXY b√

aT ΣXX a
√

bT ΣYY b
,

and where ΣXX and ΣYY are the covariance matrices of X and Y , respectively, and ΣXY

is the cross-covariance matrix. The choice of rescaling of a and b does not affect the

corr(Xa,Y b), so we can add the constraints aT ΣXX a= 1, bT ΣYY b= 1 to the maximization

problem (7).

In Hotelling (1936), the CCA solution is based on two similar-looking equations

(ΣY X Σ
−1
XX ΣXY −ρ

2
ΣYY )y = 0, (8)

(ΣXY Σ
−1
YY ΣY X −ρ

2
ΣXX)x = 0, (9)

where ΣY X is the transpose of ΣXY . We can find canonical correlations and (a∗,b∗) by

solving two standard eigenvalue problems. Basically, eigenvalues of (8) and (9) are the

same and equal to the squared canonical correlations.

In addition to solving standard eigenvalue problem, there are some alternative ways to

solve CCA. We can solve the generalized eigenvalue problem (Hardoon et al., 2004; Bach

v



and Jordan, 2002). We can find the solution of CCA by alternating least squares regression

(Branco et al., 2005; Wilms and Croux, 2015). Alternatively, we can use singular value

decomposition (SVD) to find the canonical correlations (Healy, 1957; Ewerbring et al.,

1990). In the SVD method, we firstly find the singular value decompositions of X and Y

as

X =UX DXV T
X ,

Y =UY DYV T
Y ,

where the columns of UX(UY ) and the columns of VX(VY ) are called the left and right

singular vectors of X(Y ), respectively. Then, we can find the canonical correlations by

finding the singular values of UT
X UY . Overall, this method requires three singular value

decompositions.

Another way to compute canonical correlations is to find the QR decomposition of X

and Y and then apply SVD (Golub, 1969; Björck and Golub, 1973). The QR decomposi-

tion of X and Y are

X = QX RX ,

Y = QY RY ,

where QT
X QX = Ip, QT

Y QY = Iq, and RX and RY are upper triangular matrices. Following

this, we can express ΣX and ΣY as

ΣX = XT X

= RT
X QT

X QX RX

= RT
X RX ,

ΣY = Y TY

= RT
Y QT

Y QY RY

= RT
Y RY ,

vi



where ΣX = RT
X RX and ΣY = RT

Y RY are the Cholesky decompositions. The singular values

of QT
X QY , which are derived from

(RT
X)

−1
ΣXY R−1

Y = (RT
X)

−1RT
X QT

X QY RY R−1
Y

= QT
X QY ,

are the canonical correlations. This method requires two QR decompositions and one

singular value decomposition. Since QR decomposition for a matrix requires less com-

putational work than computing SVD (Do Q, 2012), we utilise QR decomposition to

compute canonical correlations in the implementation of our methods.
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Appendix C – Variable importance

computation

The quantification of variable importance (VIMP) is important to assess relative impor-

tance of covariates. In the random forest framework, the mostly used VIMP idea proposed

by Breiman (2001) is based on the increase in the prediction error when the link between

the covariates and the response is broken by permuting out-of-bag (OOB) observations.

In a regression setting with a set of covariates X and for a continuous response variable

Y , VIMP for X j can be computed as

V IMP(X j) =
1
B

B

∑
b=1

(
MSE(OOBb

j)−MSE(OOBb)
)
,

where OOBb is the OOB sample of the bth tree of the forest, OOBb
j is the OOB sample of

the bth tree where the jth covariate is randomly permuted and MSE stands for the mean

squared error. The average over B trees gives the variable importance measure for X j.

Larger VIMP shows greater importance.

randomForestSRC uses the same idea of breaking the link between covariates and the

response but with another way of permuting X j as proposed in Ishwaran (2007). Instead

of permuting OOB samples at each tree, during the tree growing process, observations in

the parent node are assigned to child nodes at random or consistently to the other child

node when the split variable is X j. VIMP for X j can be computed as

V IMP(X j) =
1
B

B

∑
b=1

(
MSE(t̃b,OOBb)−MSE(tb,OOBb)

)
, (10)

ix



where tb is the original bth tree of the forest, t̃b is the permuted bth tree, and OOBb is the

OOB sample of the bth tree.
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Appendix D – Examples of sample

distributions with DGP

Figures D1 and D2 show some examples for sample distributions with different parameter

settings. See Section 1.3.1 for the explanation of DGP. Figures D1 and D2 correspond to

the low and high correlated data settings with ntrain = 1000 in the simulations for accu-

racy evaluation (Section 1.3.2), respectively. The left plot in the figures is the histogram

of the generated sample. In the low correlated data setting (Figure D1), the mean and

median correlations of the sample are 0.29 and 0.20, respectively. In the high correlated

setting (Figure D2), the mean and median correlations of the sample are 0.61 and 0.57,

respectively. The right plot in the figures is the ordered bar chart for the average of the

coefficients within the X and Y sets over the sample. The selection of parameters sx and

sy affects the coefficients of variables. In both low and high correlated settings, sx > sy

which result in faster decrease in generated X coefficients (a) compared to Y coefficients

(b).
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Figure D1: In this example, we have 5X ,5Y,5Z variables and the sample size is 1000. The DGP
parameters are β0 = −2, ρx = ρy = 0.3, ρz = 0.1, sx = 0.7, sy = 0.4. The mean and median
correlations are 0.29 and 0.20, respectively. This setting corresponds to the low correlated data set
with ntrain = 1000. (left) The sample distribution of correlations. (right) The ordered bar chart for
the average of the coefficients within the X and Y sets over the sample.
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Figure D2: In this example, we have 5X ,5Y,5Z variables and the sample size is 1000. The DGP
parameters are β0 = −0.3, ρx = ρy = 0.3, ρz = 0.1, sx = 0.4, sy = 0.3. The mean and median
correlations are 0.61 and 0.57, respectively. This setting corresponds to the high correlated data
set with ntrain = 1000. (left) The sample distribution of correlations. (right) The ordered bar chart
for the average of the coefficients within the X and Y sets over the sample.
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Appendix E – Performance results for

different values of parameter nodesize

Figures E1 and E2 present the average MAE over the 100 repetitions when nodesize =

{2× (p+ q),3× (p+ q),4× (p+ q),6× (p+ q),8× (p+ q),10× (p+ q)} for the low

and high correlation settings, respectively. In fact, top right plot in Figure E1, which

shows the results of nodesize = 3× (p+ q), is the Figure 1.7 and is represented here

to be able to compare with the results of other nodesize values. Similarly, top right

plot in Figure E2 is the Figure 1.8. As can be seen in Figures E1 and E2, for the larger

nodesize values MAE of the proposed method and the benchmark method are the same

for scenarios with smaller ntrain. For example, when nodesize = 6× (p+ q), MAE of

the proposed method and the benchmark method are the same for p = 10,q = 10 when

ntrain = {100,200,300}. For this setting, nodesize = 6× (10+10) = 120 which results

in no splits for ntrain = {100,200}. For ntrain = 300, a single split can occur in trees with

this nodesize. However, the BOP of a new observation may include all of the training

observations due to randomness. Each tree of the forest is a stump and there is a high

chance that the union of the training observations that are in the same terminal nodes

as the new observation is equal to the set of training observations. Estimating canonical

correlation with this BOP is the same as computing CCA for all X and Y . When the

sample size is small, increasing the nodesize may cause underfitting.
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Figure E1: Accuracy evaluation results for low correlated data sets for six values of parameter
nodesize = {2×(p+q),3×(p+q),4×(p+q),6×(p+q),8×(p+q),10×(p+q)}. rnoise = 5
in all settings. CCA is the benchmark method. Smaller values of MAE are better.
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Figure E2: Accuracy evaluation results for high correlated data sets for six values of parameter
nodesize = {2×(p+q),3×(p+q),4×(p+q),6×(p+q),8×(p+q),10×(p+q)}. rnoise = 5
in all settings. CCA is the benchmark method. Smaller values of MAE are better.
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Appendix F – EEG data

In this section, the data collection process and preprocessing steps are explained.

Neuropsychological scale

To evaluate the intellectual disabilities, performance IQ (pIQ) and verbal IQ (vIQ), which

are the scores for total IQ, were obtained using the Mullen, the WPPSI-IV, the WISC-V,

and the WAIS-IV batteries depending on the age of the participant. The administration

was adapted for the clinical participants by starting at the first item rather than the starting

point for their chronological age, frequent breaks were proposed, and participants were

motivated through many creative incentives if necessary (songs, games, conversations

about their interests, etc.).

EEG auditory task

The auditory task was prepared using E-prime 2.0 software (Psychology Software Tools

Inc., Pittsburgh, PA, USA) on a screen placed at a viewing distance of 60 cm. Sounds,

which are presented binaurally and simultaneously, were delivered through two speakers

located laterally at 30 cm from the participants’ ears. The auditory stimulus consisted of

24 dB/octave white noise burst. Each stimulus lasted 50 ms with an inter-stimulus interval

varying between 1200 and 1400 ms to avoid a process of habituation. The task was

composed of 150 trials. The total task duration was around 4 minutes. To assure maximal

collaboration, a movie without sound and subtitles was presented. The participant was

told to focus his/her attention on the movie and not to give attention to the auditory stimuli.
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EEG recordings

The subject was placed in an electrically shielded room in the Sainte Justine’s Hospi-

tal. The continuous EEG was recorded with a high-density EEG system containing 128

electrodes placed according to the extended 10 - 20 system (Electrical Geodesics Sys-

tem Inc., Eugene, OR, USA). Signals were acquired and processed by a G4 Macintosh

computer using NetStation EEG Software (Version 2.0). Before recording, impedances

were verified and were kept below 40 kΩ (Tucker, 1993). EEG data were amplified,

band-pass-filtered 0.1–4000 Hz, and sampled at 1000 Hz with a vertex reference.

Preprocessing for the analysis

Off-line signal processing and ERP analyses were performed using the EEGLAB toolbox

via custom Matlab scripts (Delorme and Makeig, 2004). EEG acquired data was sub-

jected to the following pre-processing steps. First, EEG signals were digitally filtered

with a high-band pass filter (0.5 Hz) and a 60 Hz notch filter. Twenty-eight electrodes

placed on the neck and the face and containing muscular artifacts have been removed to

avoid contamination of average reference. Moreover, a voltage threshold method (2–200

µV) was applied to exclude channels with artifacts. Data were off-line re-referenced to

the mean of the EEG selected electrodes (100 channels). Independent component analysis

(ICA) as implemented in the EEGLAB toolbox (with default parameters) was used to re-

move ocular artifacts. By removing or minimizing the effects of overlapping components,

ICA enables a detailed examination of the separate dynamics of electrical brain activity

as well as artifacts to remove them (Delorme et al., 2007). Ocular and cardiac ICA com-

ponents (range across subjects: 1–3 components) were identified by visual inspection and

deleted from the global signal. Continuous EEG was segmented into epochs covering

a time window from -200 ms to 800 ms relative to the onset of the tone. Also, as the

artifact ICA components could be deemed unsatisfactory, the segmented EEG recordings

were visually inspected by a well-trained experimenter, and trials presenting with residual

artifacts were rejected.
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For time-frequency (TF) and inter-trial coherence (ITC) analyses, segments were ex-

ported to MATLAB (version R20174b) (The MathWorks Inc., Natik, MA, USA) after

artifact rejection. TF and ITC analyses were processed using the EEGLAB toolbox

(v.13.6.5b) (La Jolla, CA, USA). TF analysis allows us to explore different frequency

bands in terms of their power and temporal distributions (Herrmann et al., 2005). We used

complex Morlet’s wavelet transformation (Tallon-Baudry and Bertrand, 1999) to provide

power maps in time and frequency domains. The simplified mathematical expression for

applying this specific wavelet convolution on our EEG signal is as follows:

M(t, f ) =
∫

t
W
(t −a

b
, f
)

S(t)dt,

where M(t, f ) is a matrix of complex values (vectors) for a given time (t) and frequency

( f ), S is the signal as a function of time (t) and W corresponds to Morlet’s wavelet which

is a complex exponential (Fourier) with a Gaussian envelope that undergoes a series of

translations (a) and dilations (b) dependently of the frequency ( f ). The event-related

spectral perturbation (ERSP) computation uses the complex values (amplitude and phase)

given by Morlet’s wavelet transform as shown in the following formula calculating the

power spectrum for each time and frequency point:

P(t, f ) = 10log10 |M(t, f )|2,

where P(t, f ) denotes TF power in terms of decibels (dB). Final TF maps were computed

as follows:

T F =
1
N

N

∑
n=1

P(t, f ),

where N is the total number of trials. The range of frequency investigated was from 3

to 100 Hz. ITC, analogous to phase-locking value (PLV), allows the assessment of the

strength of phase coherence across trials in temporal and spectral domains (Makeig et al.,

2004). The ITC computation uses only the phase of the complex values given by Morlet’s

wavelet transform. ITC was computed as in Lachaux et al. (1999) to extract PLV. ITC

measures phase coupling across trials at all latencies and frequencies and is defined by:

ITC =
1
N

∣∣∣ N

∑
n=1

exp( jθ( f , t,n))
∣∣∣,
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where θ represents the phase for a given frequency ( f ), time point (t), and trial (n). The

obtained values are always defined between 0 and 1. Phase-locking values close to 1

indicate strong inter-trial phase-locking, thus representing evoked activity while scores

closer to 0 indicate a high inter-trial phase variability, thus representing induced activity

(Lachaux et al., 1999).
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Appendix G – Data preprocessing

In this section, we present the steps to prepare Ames Housing data set for the analysis.

We use the processed version of the data set from the AmesHousing package.

library("AmesHousing")

AmesHousing <- make_ordinal_ames()

## Data preprocessing

# remove observations with missing values

AmesHousing <- AmesHousing[complete.cases(AmesHousing), ]

# convert the response variable in thousands

AmesHousing$Sale_Price <- AmesHousing$Sale_Price/1000

# convert the ordered factors to numeric to preserve the ordering of

# the factors

ord_vars <- vapply(AmesHousing, is.ordered, logical(1))

nam_ord <- names(ord_vars)[ord_vars]

AmesHousing[, nam_ord] <- data.frame(lapply(AmesHousing[, nam_ord],

as.numeric))

# group together levels with less than 30 observations,

# we use the combineLevels() function from "rockchalk" package
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# for this step

library("rockchalk")

fac_vars <- vapply(AmesHousing, is.factor, logical(1))

AmesHousing[, fac_vars] <- data.frame(

lapply(AmesHousing[, fac_vars],

function(x, nmin) combineLevels(x,

levs = names(table(x))[table(x)<nmin],

newLabel=c("combinedLevels")),

nmin=30)

)
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Appendix H – nodesize tuning

Figures H1 and H2 present the accuracy results for different levels of nodesize along

with the proposed method which applies a nodesize tuning as described in Section 3.2.2

of the main paper. In the figures, the red boxplots illustrate the MAE results for the

proposed nodesize tuning heuristic, and the remaining boxplots show the accuracy ob-

tained when we set the nodesize to a specific value. For the set of nodesize levels to be

searched in the proposed method, we have nodesize= {[(2−1,2−2,2−3, . . .)s]> q} where

q is the number of outcomes and s is the sub-sample size computed as s = 0.632ntrain. As

can be seen from the results in Figure H1, as nodesize decreases, first MAEcor and

MAEsd decrease and after a point increase for both DGP1 and DGP2. Since we have

more levels of nodesize in the larger sample scenarios, it is easier to see this behaviour.

For these two DGPs, smaller nodesize values do not mean better performance. As can

be seen from Figure H2, for DGP3 and DGP4, contrary to results of DGP1 and DGP2,

MAEcor and MAEsd decrease as the nodesize increases. Hence, the best performing

nodesize is mostly the smallest. Overall, when we compare the accuracy of the pro-

posed nodesize tuning heuristic to the individual results of different nodesize values,

we can see that it mostly performs well, especially for the larger sample sizes.
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Figure H1: MAE results for different nodesize values for DGP1 and DGP2. Smaller values of
MAEcor and MAEsd are better. s is the sub-sample size, i.e. s = .632ntrain. Red boxplots illustrate
the accuracy for the proposed nodesize tuning, and the rest of the boxplots show the accuracy
obtained when we set the nodesize to a specific value.
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Figure H2: MAE results for different nodesize values for DGP3 and DGP4. Smaller values of
MAEcor and MAEsd are better. s is the sub-sample size, i.e. s = .632ntrain. Red boxplots illustrate
the accuracy for the proposed nodesize tuning, and the rest of the boxplots show the accuracy
obtained when we set the nodesize to a specific value.
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Appendix I – Global significance test

The proposed global significance test is described in Algorithm I1. After computing

the unconditional and conditional covariance matrices, Σroot and Σxi , respectively, we

compute the global test statistic with

T =
1
n

n

∑
i=1

d
(
Σ̂xi,Σroot

)
, (11)

where d(., .) is computed as (3.2) in the main paper.

Algorithm I1 Global permutation test for covariates’ effects
1: Compute sample covariance matrix of Y in the root node, say Σroot
2: Train a RF with X and Y
3: Estimate covariance matrices as described in Algorithm 3.1 of the main paper, say

Σ̂xi ∀i = {1, . . . ,n}
4: Compute test statistic T as in (11)
5: for r = 1 : R do
6: Permute rows of X to obtain Xr
7: Train a RF with Xr and Y
8: Estimate covariance matrices as described in Algorithm 3.1 of the main paper,

say Σ̂
′
xi
∀i = {1, . . . ,n}

9: Compute test statistic with T ′
r = 1

n ∑
n
i=1 d

(
Σ̂

′
xi
,Σroot

)
10: end for
11: Approximate the permutation p-value with p = 1

R ∑
R
r=1 I(T ′

r > T )
12: Reject the null hypothesis at level α when p < α . Otherwise, do not reject the null

hypothesis.

xxvii





Appendix J – Data generating process

In DGP1, the covariance matrix for the observation xi is

Σxi = Ψ+BxixT
i BT ,

where xT
i = (1,xi)

T , B0 = [(1,−1)T ,(1,1)T ], B = w
w+1B0, Ψ0 = B0[(1,0)T ,(0,1/3)T ]BT

0 ,

Ψ = 1
w+1Ψ0 and w = 1.

In DGP3, the correlations are generated with all seven covariates according to a tree

model with a depth of three and eight terminal nodes:

ρ(xi) = u1I (xi1 < 0,xi2 < 0,xi4 < 0)

+u2I (xi1 < 0,xi2 < 0,xi4 ≥ 0)

+u3I (xi1 < 0,xi2 ≥ 0,xi5 < 0)

+u4I (xi1 < 0,xi2 ≥ 0,xi5 ≥ 0)

+u5I (xi1 ≥ 0,xi3 < 0,xi6 < 0)

+u6I (xi1 ≥ 0,xi3 < 0,xi6 ≥ 0)

+u7I (xi1 ≥ 0,xi3 ≥ 0,xi7 < 0)

+u8I (xi1 ≥ 0,xi3 ≥ 0,xi7 ≥ 0) ,

where the terminal node values are u = (0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9) and I is the

indicator function. The variances are functions of ρ and computed as Var(y j|xi) = (1+

ρ(xi))
j, j = {1, . . . ,q}.

In DGP4, for an observation xi, we can generate the correlation with the logit model,

ρ(xi) =
1

1+ exp
(
− (β0 +∑

p
j=1 β jxi j + x2

i1)
) ,
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where β0 is the intercept parameter fixed to β0 =−1 and β j are the weights for the covari-

ates, fixed to (1,1− 1
p ,1−

2
p , . . . ,1−

(p−1)
p ). For an observation xi, the variance of each

response is generated as Var(y j|xi) = (1+ρ(xi))
j, j = {1, . . . ,q}.
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Appendix K – Comparison of

computational times

All simulations were run in R version 3.6.0 on a Linux machine with Intel(R) Xeon(R)

E5-2667 v3 @ 3.20GHz with 396 GB of memory. The average computational time of

each method for the four DGPs is presented in Table K1. For both methods, the time for a

setting consists of the time for training and the time for prediction for a new data set. We

can see that the proposed method is significantly faster than covreg.
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Table K1: Average computational time (in seconds) of both methods over 100 replications for
each simulated data set.

ntrain DGP CovRegRF covreg

DGP1 2.89 148.23
DGP2 2.85 149.12
DGP3 2.60 304.43

50

DGP4 2.46 248.27

DGP1 4.01 151.55
DGP2 4.01 151.97
DGP3 3.74 283.25

100

DGP4 3.44 247.77

DGP1 6.46 228.57
DGP2 6.67 229.55
DGP3 6.48 428.89

200

DGP4 5.82 495.07

DGP1 15.07 383.16
DGP2 14.77 384.52
DGP3 15.38 593.00

500

DGP4 13.49 744.41

DGP1 52.64 771.69
DGP2 52.34 739.52
DGP3 62.96 984.28

1000

DGP4 53.95 1318.28
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