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Résumé

Cette thése traite du risque de saut dans les dérivés de taux d’intérét et examine

aussi les implications du nouveau systéme de compensation des swaps de défaillance

(CDS).

Le premier chapitre présente un cadre général d’évaluation de produits dérivés
de type bermudéen reposant sur la programmation dynamique associée a la trans-
formation de processus de diffusion affine avec saut proposée par Duffie, Pan &
Singleton (2000). Ce cadre général est appliqué a I'évaluation d’obligations sans
risque comportant des options d’achat ou de vente implicites, de swaptions de type
Européen et Bermudien, et de contrats a terme sur obligations comportant des op-
tions implicites de livraison. Des résultats numériques sont proposés dans le cadre
du modele de Vasicek (1977) augmenté de sauts exponentiels a la hausse et a la

baisse.

Le deuxiéme chapitre est consacré a 'évaluation de I'erreur de modéle résultant
de l'utilisation d'un modéle de diffusion pure par rapport a un modele de diffu-
sion avec sauts. Cette évaluation est faite pour divers dérivés de taux d’intérét en
utilisant le cadre général décrit dans le premier chapitre. Elle permet d’identifier
des situations pour lesquelles la possibilité de sauts joue un réle important dans
I’évaluation du prix d’'un produit. Nous montrons que le choix d’un modéle avec
sauts calibré sur la courbe des taux peut conduire a des différences de prix signi-
ficatives, plus particuliérement dans les circonstances suivantes: un environnement a

faible volatilité, des taux d’intérét élevés et une faible vitesse de retour a la moyenne,



surtout lorsque la structure a terme des taux d’intérét est croissante ou inversée.

Le troisiéme chapitre se concentre sur la stratégie de livraison des contrats a
terme sur bons du Trésor, notamment sur le contrat transigé au Chicago Board
of Trade (CBOT). Ce contrat est 'un des plus négociés au monde pour couvrir
le risque de taux d’intérét. L’existence de plusieurs options implicites de livraison
complique le choix de la date d’exercice. Nous comparons les stratégies de livraison
appliquées historiquement par les détenteurs d’une position courte a la stratégie
optimale calculée selon I'approche décrite dans le premier chapitre. Notre évaluation
a posteriori de la stratégie de livraison sur la période 2005-2015 montre que les
détenteurs du contrat ont généralement attendu la fin du mois de livraison, optant
de ce fait pour une position plutdt risquée par rapport a la stratégie optimale. Nous
constatons cependant que le bénéfice moyen réalisé est proche de celui qui aurait
été obtenu en appliquant la stratégie préconisée par le programme dynamique.

Le quatrieme chapitre examine I'impact du nouveau systéme volontaire de com-
pensation centrale sur le marché des CDS. L’approche utilisée est celle des dif-
férences de différences généralisée. Pour pallier le probléme d’endogénéité da a
I'adhésion volontaire, nous proposons une méthodologie reposant sur un appariement
dynamique du score de propension. Nos résultats empiriques montrent que la com-
pensation centrale entraine une légére augmentation (estimée a 19 points de base)
des écarts de taux des CDS. Par contre, nous ne trouvons aucune évidence sig-
nificative ni d’amélioration de la liquidité ou de l'activité sur le marché, ni d’une
détérioration du risque de crédit de I'obligation sous-jacente. Ces résultats suggérent
que I'augmentation des écarts de taux des CDS peut étre principalement attribuée
a une réduction du risque de contrepartie.

Mots-clés: Taux d’intérét, sauts, dérivés bermudéens, swaps de défaillance,
chambre de compensation, risque de crédit, liquidité, stratégie d’exercice, erreur de
modeéle.

Méthodes de recherche: Recherche quantitative, recherche empirique, pro-

grammation dynamique, différence-des-différences.
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Abstract

The aim of this thesis is to provide various contributions on the subjects of the jump
risk in interest-rate derivatives and the new central clearing scheme for single name

credit default swaps (CDS).

The first chapter presents a general pricing framework for Bermudan-style deriva-
tives relying on dynamic programming combined with the transform analysis for
affine jump-diffusion processes proposed in Duffie, Pan & Singleton (2000). This
general framework is used to price risk-free bonds with embedded call or put options,
European and Bermudan swaptions, and T-bond futures with embedded delivery op-
tions. Numerical results are provided under the Vasicek (1977) model augmented

with upward and downward exponential jumps.

The second chapter is devoted to the assessment of the model error resulting
from using a pure diffusion model against a jump-diffusion. This assessment is done
for various interest-rate derivatives using the general pricing framework described
in the Chapter 1. This allows to identify situations where the possibility of jumps
plays an important role in the derivative price. We show that ignoring jumps and
relying on a pure diffusion model calibrated to the yield curve could lead to large
price differences, more specifically in the following circumstances: a low volatility
environment, high interest rates and a low speed of mean reversion, and more so

when the term structure is upward sloping or when it has a humped shape.

The third chapter focuses on the delivery strategy of bond futures, namely on

the Chicago Board of Trade (CBOT) T-Bond futures contract. This contract is



one of the most actively traded in the world in order to hedge interest-rate risk.
However, the existence of several embedded options complicates the choice of the
exercise strategy. We compare the delivery strategies actually applied historically
by the short traders to the optimal strategy, obtained using the approach described
in Chapter 1. Our post-trade evaluation of the deliveries over the period 2005-2015
shows that the traders generally waited until the end of the delivery month, thus
taking a riskier position with respect to the optimal strategy. However, we find that
the average profits they realized is close to what they would have gained had they
used the strategy computed by the dynamic programming.

The fourth chapter revisits the issue of the impact of the voluntary central clear-
ing scheme on the CDS market using a generalized difference-in-differences (DID)
methodology. In order to address the endogeneity issue due to voluntary adhesion,
we propose a methodology relying on a dynamic propensity-score matching. Our
empirical findings show that central clearing results in a small increase (estimated
at 19 bps) in CDS spreads, while there is no evidence of an associated improvement
in CDS market liquidity and trading activity, or of a deterioration in the default
risk of the underlying bond. These results suggest that the increase in CDS spreads
can be mainly attributed to a reduction in CDS counterparty risk.

Keywords: Interest rates, jumps, Bermudan derivatives, credit default swaps,
central clearing, counterparty risk, liquidity, exercise strategy, model error.

Research methods: Quantitative research, empirical research, dynamic pro-

gramming, difference-in-differences.
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Chapter 1

Introduction

Fixed-income securities represent a large proportion of the overall traded securities
in the financial markets. These securities are widely used by practitioners to get
access to the debt market or to hedge interest-rate risk exposure. According to the
BIS, the total notional amount outstanding in fixed-income securities was 437, 837
billion USD by the end of 2018. This thesis focuses on fixed-income securities, more
specifically on the pricing and exercise strategy of those securities that include some

form of optionality, and on the market for their protection from credit risk.

The evaluation of fixed-income securities is often straightforward, consisting of
evaluating the value of a stream of future payoffs under some given theoretical model
for the interest-rate dynamics. However, many fixed-income securities include im-
plicit embedded options, which requires the use of more advanced approaches. These
problems are generally addressed by either directly solving the partial differential
equation characterizing the value of the option, given its boundary values, or by
computing the expectation, under the risk-neutral measure, of the future poten-
tiality of the contract under an optimal exercise strategy. The former approach
generally involves quasi analytical solutions or finite differences methods, while the

second is usually done through dynamic programming.

The dynamic programming approach has been widely used thanks to its simplic-



ity, efficiency and ability to handle pricing problems involving intermediate decisions,
as in the case of Bermudan options. Dynamic programming is a general approach,
encompassing trees and other lattice methods, that finds the optimal exercise strat-
egy and the corresponding value of a derivative, at all possible dates, and for all
possible states of the world, provided the state variable is observable and is a suffi-
cient statistic describing all the relevant information. Dynamic programs are usually
solved by backward recursion, from the known value of the derivative at maturity.

Clearly, the model used to represent the dynamics of the underlying asset is an
important ingredient of the valuation process. Simple models are appealing, but may
not be flexible enough to represent market expectations and may result in pricing
errors, while more involved models may increase the computational complexity of a
pricing algorithm. One interesting question is to what extent the use of a complex
model is granted, given the additional computational burden implied. In this thesis,
we consider two popular class of interest-rate dynamics, that is, pure diffusion and
jump-diffusion models. The inclusion of jumps in interest-rate dynamics has been
advocated to account for discontinuous movements that frequently occur following
Central Banks announcements and macroeconomic events. In fact, numerous studies
find that jumps do occur and that they cannot be captured by pure diffusion models.
A first contribution of this thesis is the examination of the opportunity of using jump-
diffusion models for the evaluation of a variety of interest-rate derivatives, possibly
including optionality clauses.

It is worthwhile noting that products that do not contain optional clauses can be
evaluated in a straightforward manner, either analytically or by Monte-Carlo simu-
lation. In the same way, one can easily compute the expected payoff of a security
corresponding to a given exercise strategy. Accordingly, another important ingredi-
ent of the valuation process is the determination of the optimal exercise strategy.
Products involving interrelated options, as for instance T-bond futures and callable
and putable bonds, are difficult to price because of the complexity of their exercise

strategy. Another interesting question about the pricing of interest-rate derivatives



is the relative sensitivity of the value of the instrument to the exercise strategy of its
implicit options. A second contribution of this thesis is the analysis, using histori-
cal data, of the impact of differences in the exercise strategies of complex implicit
options.

Pricing methodologies and models represent only one part of the picture con-
cerning fixed-income securities. Regulations should be in place to help organise
the trades and reduce the overall risk in the market. A large part of the fixed-
income security market consists of debt instruments (e.g. bonds and notes), that
are subject to credit risk. The credit default swap (CDS) acts as an insurance con-
tract against the default of the issuer of an underlying bond. The large size of the
CDS market and its interconnectedness with the bond market makes this product a
particularly interesting research topic. Initially, CDS were solely exchanged in the
over-the-counter (OTC) market, until they were heavily criticized for their lack of
transparency and for the role they consequently played in the recent financial crisis.
By the end of 2009, voluntary clearing operations began in North America and in
Europe for single-name CDS, with the objective of mitigating counterparty risk of
single-name CDS. A third contribution of this thesis is to evaluate the impact of
this central clearing scheme on the CDS and bond markets.

The rest of the thesis is organised as follows. Chapter 2 presents a general
dynamic programming pricing framework and shows how this framework can be
used to price various fixed-income derivatives including callable bonds, Bermudan
swaptions and T-bond futures, under different interest-rate models. Chapter 3 as-
sesses the importance of model error by comparing the prices of several types of
interest-rate derivatives under pure diffusion and jump-diffusion models and iden-
tifies situations where the modeling choice could lead to large pricing differences.
Chapter 4 performs a post-trade evaluation of the delivery strategy of the U.S. T-
bond futures, comparing the actual delivery behavior of short traders to the optimal
strategy and assessing the impact of using a sub-optimal strategy. Chapter 5 evalu-

ates the impact of the voluntary central clearing scheme on the liquidity and trading

3



volume of the CDS market and on the credit risk in the bond market. Chapter 6

concludes the thesis and proposes avenues for future research.



Chapter 2

Pricing American-style interest-rate
derivatives under affine jump

diffusions

2.1 Introduction

Numerical methods for the valuation of interest-rate derivatives are frequently im-
plemented under the assumption that the underlying security’s movements are de-
scribed by a diffusion process. Several methodologies have also been proposed in
order to incorporate potential jumps in the valuation procedure. Bouziane (2008)
applies Fourier transform techniques to one- and multi-factor models to price Eu-
ropean interest-rate options. Beliaeva, Nawalkha & Soto (2008) use recombin-
ing multinomial trees constructed assuming various jump-size distributions and
rely on the jump-extended Vasicek model. Beliaeva & Nawalkha (2012) rely on
the same approach but consider instead the jump-extended constant-elasticity-of-
variance (CEV) models. Lim & Linetsky (2012) use an eigenfunction expansion
approach to price sovereign bonds with embedded options. Jaimungal & Surkov

(2013) combine Fourier transform with a sequence of measure changes to solve the



partial integro-differential equation. More recently, Park & Kim (2015) use Monte
Carlo simulation to price caplets under short and forward rate models augmented
with normally-distributed jumps.

The inclusion of jumps not only helps accounting for macroeconomic news an-
nouncements, but also alleviates the need for stochastic volatility and regime switch-
ing models when pricing interest-rate derivatives. In fact, shifts in monetary policy
that are usually captured by regime switching models could also be captured by ap-
propriately calibrating jump parameters. For instance, in a low (high) interest-rate
regime, we should have a low (high) probability of occurrence and magnitude of
jumps. Moreover, Bali and Wu (2006) show that regime switching models can com-
pensate for not incorporating a nonlinear drift specification to the short rate process.
Das (2002) shows that jump models also mitigate the nonlinear drift specification
since nonlinearity is caused by information effects, which is taken into account by
jumps. On the other hand, stochastic volatility models better capture persistence
in volatility across periods as well as fat-tailed distribution. Johannes (2004) shows
that jump-diffusion models can easily generate patterns of conditional and uncon-
ditional kurtosis. In addition, they generate a non-negligible proportion of the con-
ditional variance of interest rates. Hence, jump-diffusion models help address the
drawbacks associated with pure diffusion models and also add improvements that
are usually associated with regime switching and stochastic volatility models.

In this chapter, we propose a general numerical pricing approach, under a jump-
diffusion model, for interest-rate derivatives that could offer multiple optional exer-
cise opportunities. We then investigate the impact of jumps on the behavior of such
derivatives.

The procedure is based on a dynamic programming (DP) formulation, com-
bined with Fourier transform, to price American-style derivatives under affine jump-
diffusion models (Duflie, Pan & Singleton 2000). The formulation is flexible and can
be applied to many instruments with a low-dimensional state space. As illustrations,

we price risk-free bonds with embedded call and put options, European and Bermu-



dan swaptions, as well as T-Bond futures with delivery options. Starting from known
exercise value at maturity, the derivative is evaluated by backward induction at all
decision dates, and for all possible states of the world. We rely on the Vasicek (1977)
model, augmented with exponential jumps (Vasicek-EJ) to describe the interest-rate
dynamics. Discontinuities are represented using two Poisson processes, one control-
ling the upward movements, and the other the downward movements. The jump
size in either directions is exponentially distributed.

The organization of this chapter is as follows. Section 2.2 provides a description
of a general DP framework for the evaluation of interest-rate derivatives with early-
exercise opportunities. Section 2.3 explains how the dynamic program is solved.
Section 2.4 describes how to implement the DP procedure under the Vasicek-EJ
model. Section 2.5 specializes this DP model to various interest-rate derivatives,

Section 2.6 provides some numerical illustrations and Section 2.7 concludes.

2.2 The general dynamic programming valuation
framework

The pricing of interest-rate derivatives with early-exercise features requires the use
of lattice methods as they cannot generally be priced using analytical formulas. In
this thesis, we use a dynamic programming formulation where the stage variable
corresponds to decision or monitoring dates and the state variable is the underly-
ing asset value (here, the interest rate). The derivative contract is thus priced by
backward induction until the contract’s inception date. The exercise decision of
the option holder, at each possible exercise opportunity, and for each possible value
of the state variable, is based on a comparison between the exercise value—which
is the outcome earned from immediate exercise-and the holding value-representing
the discounted value of the expected future potentialities of the contract, should the

holder decide to wait at least until the next exercise date. At a given state and



date, the value function is the maximum between the exercise and holding values,
which allows to determine the optimal exercise strategy. We now briefly present the
setting and corresponding notation.

We consider an interest-rate derivative contract with inception date ¢ = 0 and
maturity 7. Denote by (7)o<t<7 the short-term interest rate, which evolves in con-
tinuous time. We assume that the process r; is Markovian and denote by F; the
filtration generated by (r;)o<t<7. In the sequel, depending on the context, the nota-
tion E, [-] (resp. E,, []) represents the expectation, under the risk-neutral measure,
conditional on the filtration F; (resp. F,,).

According to the contract, exercise is possible at dates t;,...,t,, where t, = T
and [0,¢1) is the protection period. The exercise payoff at date t,,, m = 1,....n is
contingent on the underlying interest rate and is denoted by e, (r, ).

We also assume that the contract allows for a notice period A, € [0,¢,, — t;_1)
at exercise date t,,, that is, the exercise decisions are made at dates 7,, = t,, — A,
while the exercise payoff is obtained at t¢,, for m = 1,...,n. Define 7y = t; = 0.

Finally, a fixed cash flow ¢, (which could be positive, negative or 0) is received
by the option holder at date t,,, m = 1,...,n, if the option has not been exercised
at t,, or earlier.

For a given m =0, ...,n — 1, denote by

Tm+1
Pm = €xXp (—/ rsd5>
Pi(r,u) = E; {exp (—/ T’Sd8>:| .
t

where P;(r,u) is the price at (t,r, = r) of a zero-coupon bond maturing at u > t.

and define

The exercise value at decision date 7,,, m = 1,...,n is then given by
U () =By [exp (— /tm rsds) em(rtm)] : (2.1)
The holding value v” (r) at date 7, Whe;ln ., = 7 is defined by
ol () = Bg [PmUm+1(Trmss)] + €mPrn (T tm), m=0,...,n — 1. (2.2)
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The value function v,,(r) at date 7, when r, = r is the maximum between the

exercise value and the holding value when exercise is allowed:

vn(r) = wi(r) (2.3)
Um(r) = max{vS(r),vk(r)}, m=1,..,n-1 (2.4)
vo(r) = vi(r). (2.5)

The framework presented here is general as it can accommodate various spec-
ifications of interest-rate instruments (i.e. exercise payoffs and schedules), as well
as different specifications for the interest-rate dynamics, including the possibility of

jumps, provided the expected values in (2.1) and (2.2) can be obtained.

2.3 Solving the dynamic program

Starting from the known function v,,, the dynamic program (2.1-2.5) yields the value
of vy, for m = 0,...,n by backward recursion, providing the value of the derivative
contract at all decision dates 7, as a function of the interest rate at that date.
In general, the value function cannot be obtained in closed-form, and numerical
approximation techniques are required.

Assume that zero-coupon bond prices P,(r, T) can be obtained in closed form.
One possible approach is to interpolate the value function to a form chosen in such
a way that the expected value in (2.2) is analytical (see Breton & de Frutos 2012).
More precisely, consider a family V of functions such that E, [exp (— ftT rsds) ‘U(TT)}
can be obtained analytically for v € V and assume that e,, € V for m =1, ..., n.

Now suppose that v,,.; € V. This implies that Equations (2.1), (2.2) and (2.4)
can be used to obtain the value of v,, on a finite grid of points. We then use these
results to obtain an interpolation function v,, € V approximating v,,. Starting
from the known function v, this process yields, by backward induction, analytical

interpolation functions v, (r) € V for all evaluation dates 7,,.



Define a set G ={r;,j =0, ...,p} of p grid points, such that
O=rp<r <rg<..<mp <00

where 7, is chosen so that P [r; > r,|rg] < ¢ for t € [0, T], with € a very small number.
An interpolation function o, for v, is defined by

p

@m (7") = chnFJ(T) ifre [To,rp]

j=0

.....

In the numerical experiments reported in this thesis, we use finite-element in-
terpolation with linear splines (piecewise linear interpolation) of the value function,
where

r—rj—1
ri—Tj—1

Fi(r) = ¢ 2 ifry<r<rp ,j=1L..p

if rji—1 <T < rj

0 otherwise

=l ifrg <r <y
Fo) = 4 "R
0 otherwise

T—Tp—1

Fol) = o
0 otherwise

frp1<r<n

so that

. oV (ry) F(r) if 7 € [ro, ]
Vg () =
0 otherwise.
As a consequence, the dynamic program (2.1) and (2.2) can be solved for any specifi-

cation of the interest-rate dynamics such that P,(r,T), Ep, [pnl(r < rr,.., <T)] and
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E,, [pmrrm L <ry,, < F)} can be obtained in closed form, and for any piecewise

linear exercise payoff function, where I is the indicator function

1if S is true

0 otherwise.

In the next section, we show how to use the transform analysis proposed in Duffie,
Pan & Singleton (2000) to apply this numerical approach to an affine jump-diffusion

interest-rate model.

2.4 Valuation under the Vasicek-EJ interest-rate
model

We consider the following jump-diffusion dynamics for the instantaneous spot inter-

est rate r; (Chacko & Das 2002):
dr, = a(C — ry)dt + odW, + JudNy (M) — JudNa()

where N, and V4 are two independent Poisson processes with intensities A, and \g,
respectively. J, (resp. Jy) represents the magnitude of the upward (resp. downward)
jump and is exponentially distributed with positive mean (1/n,) (resp. 1/n4), a is
the speed of mean reversion, ¢ is the long-term mean and o is the volatility.

Such dynamics for the interest rate, that is a Vasicek (1977) model with double
exponential jumps, allows for separate exponential distributions for the upward and
downward jumps. The advantage of this representation is that the probability of
obtaining negative interest rates can be significantly lowered by reducing the size
and frequency of downward jumps. Nonetheless, given the continuously observed
negative interest rates in the European market during the last years, what was widely
known as a disadvantage of the Vasicek model may no longer be valid. The model
also allows to take into account different possible interest-rate regimes (e.g., in a

regime characterized by low interest rates, the size and frequency of upward jumps
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may be lower than those associated with downward jumps, to reflect the lower
magnitude and probability of occurrence). In addition, according to Andersen &
Andreasen (2001), the Wall Street practice of using continuously re-calibrating single
factor models (instead of using multiple-factor models) does not lead to significant
mispricing. One other remarkable advantage of the Vasicek-EJ model is that it is
straightforward to move from jump-diffusion models to pure diffusion models, simply
by setting both jump intensities to zero.

In the sequel, we use the notation

u = an,+1
d = ang+1

0 = exp(—a(T —1)).

Under this model, Chacko & Das (2002) and Beliaeva et al. (2008) derive a closed-
form solution for the zero-coupon bond price that is expressed as follows under the

risk neutral measure
P(r,T)=exp(C(T —t) = (r—¢)D(T —t) = H(t,T)) (2.6)
where

H<t7T> = C(T—t),

1—
D(T —t) = —5,
«
1-8, 02 5(1—4)
AuTlu u AdTd d—0
1 1 .
T u adn, T d adng

This interest-rate model is a particular case of the general affine jump diffusion
model proposed by Duffie et al. (2000). Using the Duffie et al. (2000) transform and

extended transform, the following expectations can be computed under Vasicek-EJ
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(details are provided in Appendix 2.8):

IEm [pm]l(t S T(Tm-i-l) < F)]
1 /°° Im X (iw, 77, s T, Tma1) (€xp (—iwr) — exp(—iw?))]dw

T w
and
Ep [r(Tims1) pnl(r < 7(Ting1) < T)]
1 /00 Im[¢X(1, iw, Tr,,, Tm, Tm+1)(exp (—iwr) — exp (—in))]dw
T Jo w
where
wX(iw, T, t, T) = exp (Qt + Hff')
¢X(iw7r*t7T) = ’l/JX(Z'w,T,t,T) (At + BtT') :
Denote

1
b=iw+ —
o

After solving four ordinary differential equations, we obtain the following expres-

sions for €, Il;, A, and B;:

Ht = b6 - l
a
o? o2b?
Q= b(¢— @)(1—5)4‘ 1 (1-10%)

. A
s o 1 “"“+a/\d"d—Au—Ad—m)(T—t)

20¢2 U d
Ao Tl u — bad Ad"d d — bad
M ln(u—ba>+ d ln(d—ba
Bt -
e a?b
— e 1 Y P ]_ _ 52
A= C=D)-0+ 0=
1— _
+abA, My d + ab\gngy L=

(u —ba) (u — bad)
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2.5 Application to the pricing of various
American-style interest-rate derivatives

In this section, we illustrate how to adapt the general dynamic programming model
presented above to evaluate various interest-rate instruments. The instruments con-
sidered here include risk-free bonds embedding call and put features, European and

Bermudan interest-rate swaptions, as well as futures contracts written on Treasury

bonds.

2.5.1 Bonds with embedded call and put options

A callable bond allows the issuer to buy his debt back at some time before its
maturity. Because this call feature is at the option of the issuer and the bondholder
is exposed to the risk of redemption, callable bonds generally trade at lower prices
compared with similar option-free bonds. When interest rates are significantly high,
callable bonds behave like their straight counterparts, as there is no incentive to
exercise the option. However, when interest rates are low, the embedded call option
becomes valuable because of the high probability of redemption. A putable bond, on
the other hand, is a security that allows its holder to ask for an early payment of
the principal. The embedded put option is more likely to be exercised when interest
rates are high, and the price of a putable bond should be higher than that of the
corresponding option-free bond. Because of these early-exercise features, callable
and putable bonds are considered American-style interest-rate derivatives.

We now briefly describe the adaptation of the dynamic program (2.2)-(2.5) for
the pricing of options embedded in risk-free bonds, as proposed in Ben-Ameur et al.
(2007).1

'Ben-Ameur et al. (2007) price options embedded in bonds under the Vasicek (1977), Cox-
Ingersoll-Ross (1985), and Hull & White (1990) interest-rate models.
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The security to be priced is a risk-free bond embedding at the same time the
option to call when interest rates are low, so that the issuer refinances at lower rates,
and the option to put when interest rates are high, so that the holder can invest
the proceeds of early exercise at higher rates. The bond principal is normalized at
1. The bond pays a fixed coupon, denoted by ¢, at regular discrete dates. The
exercise dates, after the protection period, correspond to the coupon dates. The call
and put prices at each exercise date are denoted by A,, and I',,, respectively, with
A, >T,, >0.

Note that the call and put options are held by two decision makers with opposing
interests: the investor, who maximizes the bond value, and the bond issuer, who
minimizes it. More specifically, the issuer should call the bond when the continuation
value is higher than the call price, while the investor should put the bond when the
continuation value is lower than the put price. Neither option should be exercised
in the remaining cases. At the maturity date, if neither option has been exercised,
the bond value is equal to the principal to which the coupon payment is added.

The dynamic program (2.2-2.5) is adjusted to account for the presence of two
decision makers and of payments during the protection period, where the value

function v,,(r) represents the value of the bond with its embedded option at date

Tm-
Un(r) = 1l+4ec
V() = ElomOmsr ()] + Py (5 tm) m= 1, in — 1
Un(r) = max {P (r,ty)lp,min { P, (r,tm)Ap, 0% (1)} m=1,..,n -1
vo(r) = Eo[povi(rs) + 5]

where S is the value, discounted to date 0, of all the coupons due during the pro-
tection period.

The difference between v,,(r) and the value of the associated straight bond at
Tm, m = 0,...n, yields the combined value of the two embedded options. The value

of a callable bond is obtained by setting I',, = 0 and the value of a putable bond is
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obtained by setting A,, = co. Note that, because exercising one’s option cancels the
option of the other holder, the combined value of two embedded options is smaller

than the sum of their independent values.

2.5.2 European and Bermudan interest-rate swaptions

Under a swap contract, the two counterparties agree to exchange interest payments
based on a notional amount, at fixed installment dates. The payer swap pays a fixed
rate, also known as the swap rate, whereas the receiver swap pays a floating rate.
The swap rate is determined by setting the value of the contract at zero at inception
(no money transfer between the two counterparties). The position of a payer (resp.
receiver) swap is equivalent to a short (resp. long) position in a bond with a fixed
rate along with a long (resp. short) position in a bond with a floating rate.

A receiver swaption gives the holder the right, but not the obligation, to enter into
a swap agreement as the floating-rate payer and fixed-rate receiver. This position
is equivalent to a call option with a strike K on a coupon bond with rate x and
notional M.

A payer swaption gives the holder the right to enter into a swap agreement as
the fixed-rate payer and floating-rate receiver. Similarly, the position of a payer
swaption is equivalent to a put option, with a strike price K, on a coupon bond with
a rate x and notional M.

We consider Bermudan swaptions that offer the option holder the right to enter
into an underlying swap contract with inception date ¢; and maturity ¢, at any of
a fixed set of dates t,,, m = 1,...,n — 1, that coincide with instalment dates.? This
type of Bermudan swaption, where the underlying swap tenor changes over time, is

the most common instrument variety used in practice (see Andersen & Andreasen

2001).

2Swaption can also involve a notification period before exercise. Here, we assume that A, = 0
to alleviate the notation. The adjustment to allow for notification is straightforward.
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For instance, consider a Bermudan ¢,_; noncall ¢; receiver swaption with rate
k, which offers the holder the option to enter at any date t,,, m = 1,...,n — 1, into
a interest-rate receiver swap with a swap rate of k. For a swaption notional value
M normalized to 1, the adaptation of the general model (2.2-2.5) is then as follows,

where the value function v,,(r) represents the value of the Bermudan swaption at

date t,,

) = D

v;(T) = max {/1 Z P, (r tk) (tp — tr—1) + P, (rt,) — K;O} m=1..,n-1
k=m+1

W (r) = Enlpmtma(re, )], m=1,..,n—1

Um(r) = max {vﬁz(r),vﬁl(r)} ,m=1,..n—1

vo(r) = Eolpovi(rs,)]

Note that, since there is no notice period, 7,, = t,, for m =0, ..., n.
European swaptions are priced by assuming that the only exercise date is ¢,

(n—1=1).

2.5.3 Treasury Bond futures

The Chicago Board of Trade T-Bond futures is one of the most actively traded
futures contracts in the world. It is mainly used to hedge interest-rate risk. Ac-
cording to the contract’s specifications, short traders are afforded the timing option,
which allows them to deliver the cheapest-to-deliver bond (CTD) on any business
day during the delivery month. Because of this implicit early exercise feature, the
U.S. T-Bond futures contract belongs to the category of American-style interest-rate
derivatives. The decision dates 7, correspond to the position days, during which
the short trader can declare his intention to deliver at dates t,,.

The DP algorithm (2.2-2.5) needs to be adjusted to account for various spe-
cific features of this derivative contract. One important feature that needs to be

accounted for is the so-called quality option, that is, the option to choose which
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issue to deliver among a set of deliverable bonds. A system of conversion factors is
used by the CBOT to adjust the price received by the short trader upon delivery
according to the quality (coupon and maturity) of the delivered issue. In addition,
the delivery month where exercise is allowed (from ¢; to ¢,) is further divided into
two sub-periods, that is the switch period (from t; to t,), during which the futures
contract is traded, and the end-of-month period (from ts,; to t,), during which the
futures market is closed but delivery remains possible, where t; <ty < t,. During
the switch period, parties are required to make payments in a marking-to-market
account to reflect the variations in the quoted futures price.

To alleviate notation, in the following adaptation of the general model (2.2-2.5),
we assume that 7,, = ¢,,.> The value function v,,(\, ) represents the value (for the
short trader) of the futures contract at date t,,, as a function of the futures price
and interest rate observed at ¢,,.

The exercise value at t,,, m = 1,...,n is given by

€ (1) = Aort = b (roe, M)}, m=1,...m,
V(1) = max (Ao = b (. M)}, m =1, m,

where © is the set of bonds that are eligible for delivery, f.,s is the CBOT conversion
factor for a bond with a coupon rate ¢ and maturity M > n, and b, (r,¢, M) is the
price at ¢, of a bond with a coupon rate ¢ and maturity M when r, =r.

Note that the futures settlement price at date t¢,,, m = 1, ..., s, should be such
that the value to both parties is 0, taking into account the timing and quality

options. Accordingly, the holding value is given by

E,. [pmvm+1()\7rtm+1)] form=s+1,...n—-1
Em [pm(A = At (re,s1))] form=0,...,s.
vb(Ar) = Eo[po(A = Amst (Tenir))]

vﬁl()\, r] =

where A — Ajiq (r,,,,) is the variation of the marking-to-market account of the

short trader. The function A, (r) characterizes the dependence between the futures

3We refer the reader to Ben-Abdallah, Ben-Ameur, and Breton (2012) for more details about
way to account for the three-day delivery sequence in the DP model.
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price and the interest rate, taking into account the value of the options embedded
in the futures contract. Since the value of the contract is 0 at all settlement dates,

Am(r) is obtained by solving the implicit equation

Finally, the value function v,,(\, r) at date t,, when ., = r and \,, = X is the

maximum between the exercise value and the holding value when exercise is allowed:

(A7) = vi(\ 1) (2.7)
Um(A ) = max {v, (A, r), oA}, m=1,..,n-1 (2.8)
vo(\ 1) = v\ 7). (2.9)

2.6 Numerical illustrations

In this section, we present illustrative numerical results of the DP procedure applied
to the pricing of risk-free bonds with embedded options, European and Bermudan

swaptions, and U.S. T-Bond futures under the Vasicek-EJ model.

2.6.1 Callable coupon bonds

We consider the 4.25% callable bond issued by the Swiss Confederation for the period
1987-2012. This security was used as a reference by several papers to compare their
numerical pricing methods (Buttler & Waldvogel 1996, d'Halluin, Forsyth, Vetzal
& Labahn 2001, Ben-Ameur et al. 2007, Lim et al. 2012). The pricing date ¢, = 0
is December 23, 1991 and the Vasicek parameter values as well as the call prices are
presented in Table 2.1.

Numerical experiments are performed using 600 grid points. When jump inten-
sities are set to 0, we obtain prices under the Vasicek (1977) model. We perform a

sensitivity analysis of the embedded bond call value with respect to jump param-
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Table 2.1 — Call prices and parameter values for the Vasicek model used to price the
Swiss callable bond.

¢ Q a Cn Cia Cis Cuy Cis Cig=...=Cy
0.098397028 0.44178462 0.13264223 1.025 1.02 1.015 1.01 1.005 1

eters. The value of the embedded option (for the issuer) is the difference between
the price of the callable bond and that of the corresponding option-free bond.

In Figure 2.1, we plot the value of the embedded option as a function of the
interest rate for different values of \, and A\;. We observe that the value of the
embedded call option decreases with \,, decreases with )4, and increases with the
interest rate. In fact, when rates are sufficiently high, the probability that the issuer
calls the bond becomes extremely small, and the value of the embedded option
converges to zero.

In Figure 2.2 we study the sensitivity of the embedded call option to the jump
size parameters. The size of the jump is measured by the quantities 1/, and
1/n4. We observe that the value of the embedded call option is increasing with 7,,
decreasing with 74, and decreasing with the interest rate. Increasing 7, (resp. ny) is
equivalent to decreasing (resp. increasing) the jump size, and implicitly decreasing

(resp. increasing) the interest rate.

2.6.2 Bermudan swaptions

We now provide illustrative results by pricing European and Bermudan swaptions

under Vasicek-EJ using the dynamic programming procedure.?

Parameter values,
provided in Table 3.1, are obtained by calibrating to the term structure of interest
rates on December 1%, 2015.

Tables 2.3 and 2.4 report the prices of, respectively, European and Bermudan

receiver swaptions for various strikes, swap tenors and option maturity. Swap pay-

“Beliaeva et al. (2008) price a payer European swaption under the Vasicek-EJ model using
multinomial trees and the cumulant expansion approximation of Collin-Dufresne and Goldstein
(2002).
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Figure 2.1 — Impact of the jump intensity parameters on the value of the embedded
call option. In the top panel, A\; = 0 and 7, = 100. In the bottom panel, \, = 0
and 1y = 100. The remaining model parameters are in Table 2.1.
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Table 2.2 — Parameter values for the Vasicek-EJ model on December 1%, 2015.

a ¢ o Ay, Ad M Nd
0.175 0.051 0.034 0.034 4.364 x 107> 491.013 —5.533
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Figure 2.2 — Impact of the jump size parameters on the value of the embedded call
option. In the top panel, A, = 1 and A; = 0. In the bottom panel, A\, = 0 and
A¢ = 1. The remaining model parameters are in Table 2.1.
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ments are exchanged on a semi-annual basis. Obviously, the price of a Bermudan
swaption is higher than the corresponding European swaption, where the option
holder benefits from multiple exercise dates. In fact, the Bermudan swaption could
be considered as a portfolio of European swaptions with expiration dates corre-
sponding to the exercise dates.

In Table 2.5, we report the Bermudan premium as a percentage of the corre-
sponding European swaption price. Depending on maturity, tenor and strike, the
multiple exercise premium value ranges between 1.53% and 176.18% of the swaption
price. As expected, the premium is an increasing function of the swap tenor and a
decreasing function of the earliest exercise date.

In Figures 2.3 and 2.4, we analyze the sensitivity of the Bermudan payer swaption

to the jump parameters A\, and \; as a function of the interest rate for different
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Table 2.3 — European receiver swaptions. The first row is the swap tenor in years.
The first column is the option maturity. Parameter values are given in Table 3.1.
The underlying swap pays a 5% fixed rate on a semi-annual basis.

Tenor t, - t;

~
—

= W o = Ut WO N =

U= W N =

1

0.015577
0.018548
0.020154
0.021056
0.021527

0.010356
0.013589
0.015375
0.016427
0.017033

0.006446
0.009591
0.011401
0.012511
0.013188

2

0.024105
0.029934
0.033142
0.035004
0.036040

0.019140
0.025162
0.028519
0.030512
0.031671

0.014909
0.020926
0.024346
0.026418
0.027664

3

0.031808
0.040022
0.044592
0.047277
0.048801

0.026871
0.035271
0.039987
0.042802
0.044447

0.022477
0.030915
0.035712
0.038618
0.040358

4

0.038894
0.049103
0.054826
0.058211
0.060149

0.033910
0.044317
0.050191
0.053709
0.055771

0.029372
0.039856
0.045828
0.049448
0.051611

5 6
K—0.99
0.045579  0.052014
0.057442  0.065237
0.064129 0.072721
0.068101  0.077175
0.070383  0.079736
K=1
0.040501  0.046820
0.052588  0.060298
0.059438  0.067959
0.063548 0.072561
0.065958  0.075255
K-1.01
0.035819  0.041983
0.048022  0.055620
0.054987  0.063414
0.059209  0.068138
0.061728 0.070948

7

0.058315
0.072638
0.080772
0.085616
0.088395

0.052981
0.067598
0.075925
0.080926
0.083846

0.047980
0.062800
0.071281
0.076416
0.079460

8

0.064549
0.079749
0.088404
0.093556
0.096501

0.059063
0.074598
0.083464
0.088784
0.091877

0.053892
0.069676
0.078716
0.084182
0.087408

9

0.070767
0.086648
0.095712
0.101099
0.104163

0.065120
0.081379
0.090673
0.096240
0.099461

0.059772
0.076328
0.085817
0.091543
0.094904

10

0.077001
0.093392
0.102766
0.108327
0.111469

0.071186
0.087999
0.097623
0.103377
0.106683

0.065657
0.082816
0.092657
0.098582
0.102038

Table 2.4 — Bermudan receiver swaptions. The first row is the swap tenor
The first column is the earliest exercise date. Parameter values are given
3.1. The underlying swap pays a 5% fixed rate on a semi-annual basis.

in years.
in Table

Tenor t, - t;

~
-

o= W DN = U= W N =

Tt W N =

1

0.017276
0.019879
0.021292
0.022068
0.022449

0.011257
0.014265
0.015945
0.016932
0.017493

0.006843
0.009886
0.011651
0.012732
0.013391

2

0.029920
0.034528
0.037094
0.038534
0.039262

0.023704
0.028672
0.031510
0.033174
0.034098

0.018477
0.023631
0.026641
0.028459
0.029526

3

0.042990
0.048934
0.052295
0.054179
0.055112

0.036708
0.042970
0.046596
0.048706
0.049841

0.031148
0.037623
0.041447
0.043735
0.045032

4

0.056224
0.063036
0.066922
0.069076
0.070098

0.049926
0.057024
0.061165
0.063544
0.064770

0.044198
0.051508
0.055855
0.058422
0.059820

5 6
K—0.99
0.069433  0.082484
0.076781  0.090129
0.080985  0.094494
0.083273  0.096812
0.084294  0.097759
K1
0.063144 0.076219
0.070754  0.084105
0.075204  0.088709
0.077714  0.091246
0.078938  0.092396
K-1.01
0.057323 0.070347
0.065138 0.078431
0.069796  0.083241
0.072499 0.085973
0.073901  0.087304

7

0.095288
0.103055
0.107463
0.109729
0.110549

0.089055
0.097049
0.101688
0.104170
0.105191

0.083158
0.091342
0.096186
0.098863
0.100067

8

0.107784
0.115547
0.119909
0.122062
0.122713

0.101587
0.109566
0.114153
0.116518
0.117368

0.095682
0.103844
0.108633
0.111193
0.112227

9

0.119932
0.127601
0.131851
0.133845
0.134296

0.113774
0.121649
0.126117
0.128321
0.128969

0.107872
0.115925
0.120592
0.122989
0.123821

10

0.131709
0.139220
0.143308
0.145110
0.145339

0.125593
0.133300
0.137602
0.139610
0.140034

0.119701
0.127581
0.132079
0.134279
0.134887

23



Table 2.5 — Bermudan receiver premium as a percentage of the European Swaption
price. Parameter values are given in Table 3.1. The underlying swap pays a 5%
fixed rate on a semi-annual basis.

Tenor t,, - t;

1 2 3 4 5 6 7 8 9 10
t K=0.99
1 1091 2412 3516 4456 52.33 5858 63.40 66.98 69.47 71.05
2 718 1535 2227 2838 33.67 3816 41.87 44.89 47.26 49.07
3 5.65 11.92 17.27 22.06 26.28 29.94 33.04 35.64 37.76 39.45
4 481 10.09 14.60 18.67 2228 2544 28.16 30.47 32.39 33.96
5 428 894 1293 16.54 19.77 22,60 25.06 27.16 28.93 30.39
K=1
1 870 2385 36.61 47.23 5591 62.79 68.09 72.00 74.71 76.43
2 497 1395 21.83 28.67 34.54 39.48 43.57 46.88 4948 51.48
3 371 1049 16.53 21.86 26.53 30.53 33.93 36.77 39.09 40.95
4 307 872 13.80 1831 2229 2575 28.72 31.24 33.33 35.05
5 270 766 1214 16.14 19.68 2278 2546 27.74 29.67 31.26
K=1.01
1 6.15 2393 3858 50.48 60.04 67.56 73.32 77.54 80.47 82.31
2 3.08 1293 21.70 29.24 35.64 41.01 4545 49.04 51.88 54.05
3 219 943 16.06 21.88 26.93 31.27 34.94 38.01 40.52 4255
4 177 773 1325 1815 2244 26.17 29.38 32.09 34.35 36.21
5 153 6.73 11.58 1591 19.72 23.05 2593 2839 3047 32.19

strikes. The value of the swaption increases with A, and with the strike and decreases

with )‘d'

2.6.3 T-Bond futures

Figure 2.5 illustrates the sensitivity of futures prices to the jump parameter values
as a function of the interest rate under the Vasicek-EJ model, using the parameters
in Table 3.1 and the set of conversion factors and basket of deliverable bonds on
December 1°*, 2015 (see Table 2.6). We observe that the value of futures contracts
is decreasing in A,: when upward jumps in the interest-rate movements are more
likely to occur, the value of the futures contract decreases as a result of a decrease in
the price of the deliverable bonds. The impact of the upward and downward jump
intensities is more important when interest rates are low. The opposite effect on the

value of the futures contract is observed when we change the values of A4, i.e. the
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Figure 2.3 — Impact of A\, on the value of the Bermudan payer swaption. Parameter
values are given in Table 3.1. The underlying swap pays a 5% fixed rate on a
semi-annual basis. ¢t; = 5 and ¢,, = 10.
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P |
-0.05 0 0.05 0.1 0.15 0.2 0.25 03
Interest rate

futures prices increases when downward jumps are more likely to occur. °

2.7 Conclusion

In this chapter, we present a general dynamic programming procedure combined
with Fourier transform to price American-style interest-rate derivatives under affine
jump-diffusion models. Specifically, we price risk-free bonds with embedded op-
tions, European and Bermudan swaptions, as well as the U.S. T-Bond futures under
the Vasicek-EJ interest-rate model. Numerical illustrations are provided, allowing
to assess the sensitivity of various interest-rate derivatives to interest-rate jumps
parameter values.

One interesting extensions to this work would be to adapt the model to account

®Similar results are obtained for the other jump parameters M and 7g.
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Figure 2.4 — Impact of A\; on the value of the Bermudan payer swaption. Parameter
values are given in Table 3.1. The underlying swap pays a 5% fixed rate on a
semi-annual basis. t; = 5 and t,, = 10.

°
o
8

o
°
3

Value of the Bermudan Payer swaption

Table 2.6 — Basket of deliverable bonds on December 1%¢, 2015.

Coupon Maturity Conversion factor

45 02/15/36 0.8266
475  02/15/37 0.8519
5 05/15/37 0.8807
4375 02/15/38 0.8029
45 05/15/38 0.8170
3.5 02/15/39 0.6903
425  05/15/39 0.7820
45 08/15/39 0.8123
4375  11/15/39 0.7956
4625  02/15/40 0.8263
4375 05/15/40 0.7937
3875 08/15/40 0.7290
425  11/15/40 0.7758
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Figure 2.5 — Impact of A, on futures prices. Parameter values are given in Tables
3.1 and 2.6.
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for default risk, in order to price corporate bonds and other credit-sensitive instru-
ments. This would most probably require an additional state variable indicating the

level of a relevant risk factor.
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2.8 Appendix

The Duffie, Pan and Singleton (2000) transform analysis for

affine jump-diffusion processes

Duffie et al. (2000) provide closed-form solutions for an extended transform of a
state vector X that follows an affine jump-diffusion process and with realizations
{X:,0 <t < oo} in some state space D C RY. The proposed extended transform of
X is the expectation at time ¢ of a terminal payoff function of X7, T > ¢, discounted

at a stochastic discount rate R(X;), and is expressed as follows

E, <exp (— /t ! R(Xs)ds) by ) e (uXT)>

where vg, v1 and u are scalars.

In the following paragraphs, we provide a brief description of the transforms
proposed by Duffie et al. (2000) for affine jump-diffusion state vectors. The authors
obtain closed-form solutions for these transforms thanks to the use of a Fourier-
Stieltjes transform and a Lévy inversion. We refer to the original paper for the
proofs and mathematical details related to these transforms.

The authors consider a state vector X that follows the Markov process

where W is a standard Brownian motion in R%; g : D — R% ¢ : D — R9? and Z
Is a pure jump process whose jumps have a fixed probability distribution v on RY
and arrive with intensity {A(X;) : ¢ > 0}, for some X\ : D — [0, 00).

For the process X; to be affine, Duffie et al. (2000) impose the following affine

structures on the parameters and the stochastic discount rate R(X;) at z = X :

w(r) = Ko+ Kz, for K = (K, K;) € R? x R7¥4
(o(z)o(x)T)ij = (Ho)ij + (Hy)ijz, for H = (Hy, Hy) € RI%? x RI¥4%4
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Azx) =l + Lz, for I = (lp,1;) € R x R?
R(.’L’) = po + 1T, for p = (P07,01) e R x RY

The jump transform is defined as 6(c) = [, exp(c - z)dv(z) for ¢ € C and
determines the jump-size distribution.

The transform
For any real number y, any a, b, d in R? and set of characteristics x = (K, H,1,0, p),

we define the following transform :

i
Guoly X0 ) = B (exp (= [ ROX)AS ) exp (o ) 10 X < ) 7
YX(a, Xy, t,T) 1 /°° Im[yX(a + iwb, X3, t,T) exp (—iwy)]
0

dw

2 T w

where

wx(% Xt7 ta T)

RX (exp (— /tT R(Xs)ds> exp (a - Xr) !E)

= exp(Q+1I; - 2)

Q) and II; are the solutions to two complex-valued ordinary differential equations
and Im(c) denotes the imaginary part of ¢ € C4. EX denotes the expectation under
the distribution of X determined by Y.

The extended transform

Gupalts XeT,X) = EX (p( / <Xs>ds) (@ Xr)exp(d - Xr) 10+ Xr <) |7

qD(adXt,tT 1/°°Im¢xad+zwat,t,T)exp( iwy)}d
w

3

0 W

where

oX(a,d, X, t, T) = EX (exp (— /T R(Xs)ds) (a- Xr)exp(d- Xr) I.Ft)
= wx(a,a:,t,T)(;lt + B, - 1)

and A; and B, satisfy two linear ordinary differential equations.
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The Vasicek-EJ interest-rate model

The Vasicek-EJ interest-rate model is a particular case of the general affine jump

diffusion model (2.10) where the coefficient vector x = (K, H, 1, p) is set as follows:
K():OéC HOZO ZOZO pOZO
Klz—a H1=0'2 l1:1 p1=1

and where the jump transform (i.e., the moment generating function of the jumps)

is given by

i) = P— for ¢; <

d
Oaley) = 77d77_ - for ¢; < ngy.

The Vasicek-GJ interest-rate model

The same general setting could be used under the Vasicek model with normally

distributed jumps:
dr(t) = a(C — re)dt + odW; + JdN (N)

where J is the jump size and is assumed to be normally distributed with mean
and variance 6% and N()) is a Poisson process with intensity .

Under this model, the closed-form solution of the zero-coupon bond price is
the same as the one under Vasicek-EJ model except for the term C(T — ), which

becomes:

1—5)0_2_02(1—5)2

a 202 43

O(T—t) = (T—t— 5

Tt
1
+/\/ (exp(—uD(w)+=0% (B(v))*)—1)dw
0
The dynamic program expectations are also computed using the Duffie et al.
(2000) transform, yielding the following functions:

1
Ht:bé——
«
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(1-4%

o? ooh?
0 = bC-T-0)+ 2
o2

H— = A=) (T —t)+ /\/TO(HS)ds

202

Bt:5

o2

A=C-2)1-0+ ;—2)(1 e 5P A/T O(11,) B,ds

o2

where 6 is the jump transform:

O(c) = /n exp (cz) du(2)

0.22

= exp(uc+ TC) force C

and

B(e) = /nzexp(cz)dv(z)

g c

2 2
= (u+co®)exp (,uc+ T) :

The main drawback of this model is that the probability of having negative interest
rates could be significant since jumps with the same magnitude and frequency could

occur in both directions.
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Chapter 3

Impact of interest-rate jumps

3.1 Introduction

The importance of including jumps in the dynamics of the underlying asset has
been well established for equity derivatives, particularly after the emergence of Mer-
ton (1976) jump-diffusion model. For instance, Campolongo, Cariboni & Schoutens
(2006) show that, for European options, jumps drive most of the uncertainty in
the option price, so that their inclusion can improve the model accuracy, particu-
larly when the strike price is high. Using S&P 100 American options data, Kang,
Nikitopoulosa, Schlogl & Taruvinga (2019) show that including jumps improve the
model’s ability to fit market data as well as the overall pricing performance com-
pared to pure diffusion models. Moreover, the inclusion of jumps in asset prices
could alter the optimal exercise decision and increase the free boundary.

However, the literature about the impact of jumps on the value of interest-rate
derivatives is still scarce, even though jumps in interest rates are not rare events.
Empirical studies show that jumps in the interest-rate movements do occur and
that they cannot be captured by pure diffusion models. In fact, several papers find
strong evidence that interest rates contain unexpected discontinuous changes (see,

for instance, Farnsworth & Bass 2003; Johannes 2004; Andersen, Benzoni & Lund



Figure 3.1 — Daily changes (in bps) in the 3-month treasury bill rate from Jan 2000
to Jan 2018

2004; Piazzesi 2005; Jiang & Yan 2009; and Juneja & Pukthuanthong 2016). These
movements generally occur before or after major economic events, Central banks
announcements, as well as during particular economic regimes. As an illustration,
Figure 3.1 shows the daily variation in the 3-month Treasury bill rate from January
2000 to January 2018. Large spikes are clearly observable, and can even reach 80
basis points during the period 2007-2009 corresponding to the last financial crisis.
Few papers examine the impact of jumps on the valuation of fixed-income instru-
ments, due to the lack of flexible methods that incorporate unexpected discontinuous
changes in interest-rates. Jarrow, Li & Zhao (2007) find that adding a jump com-
ponent to the interest-rate dynamics is necessary to explain the volatility smile of
interest rate caps. The authors show that, even though a three-factor stochastic
volatility model is able to price at-the-money caps fairly accurately, the smile can-
not be captured without including jumps. Feldhutter, Trolle & Schneider (2008)

use a dataset of Eurodollar futures and options and show that interest-rate jumps
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significantly affect the tails of both the conditional risk-neutral and physical distri-
butions of interest rates, making jumps important, not only for pricing purposes, but
also for risk management. Wright & Zhou (2009) use high-frequency Treasury bond
futures data and augment the standard regressions of excess bond returns on the
term structure of forward rates with jump related measures. The authors find that
the R? of the forecasting regression significantly increases, almost doubling in some
cases, which indicates that incorporating unanticipated jumps in the movement of
interest rates helps better understand the yield curve future behaviour as well as
its risk premium. More recently, Lund (2019) shows that the jump-risk premium
has a significant magnitude, and that term structure models that incorporate jumps
can better explain the interest-rate risk premium and are more suitable for option
pricing.

The above-mentioned studies focus on demonstrating the importance of jumps
and their role in explaining returns. However, they do not address the issue of the
instruments’ potential mispricing if these discontinuous changes were not taken into
account. While all models are approximation of reality, one interesting question is
to what extent the assumption of continuous movement of interest rates may lead
to evaluation and hedging errors.

The aim of this chapter is to contribute to this literature by assessing the model
error resulting from using a pure diffusion model against a jump-diffusion one when
pricing interest-rate derivatives. We evaluate the impact of the presence of interest-
rate jumps on the value of the derivatives, both numerically and empirically, using
the general pricing framework described in Chapter 2, which allows us to test sev-
eral types of interest-rate instruments. To the best of our knowledge, this is the
first study providing a complete analysis of the pricing differences that could occur
if interest-rate jumps were not taken into account and identifying the different cir-
cumstances under which the model specification would have a larger impact on the
prices of interest-rate derivatives.

Specifically, we price a sample of various types of interest-rate derivatives under
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the Vasicek and the Vasicek-EJ models, and we analyse the difference between the
prices obtained under the two specifications.

We focus on actively traded instruments with various payoff functions that could
be linear or convex, namely, payer and receiver interest-rate swaps and swaptions,
straight and callable bonds, and T-bond futures. These instruments are used on a
daily basis by fixed-income traders as well as other market participants for funding
or hedging purposes. According to the BIS, most OTC interest-rate derivatives
activity is coming from swaps, while futures and options dominate the exchange-
traded markets given their high liquidity and capacity to cover different types of
exposures to interest-rate risk. As a matter of fact, the total notional amount
outstanding of interest-rate swaps reached 326, 690 Billion USD by the end of 2018,
representing approximately 75% of the total notional amount of all interest rate
derivatives'. Likewise, the demand for Treasury futures remains always high due to
their important role in hedging interest-rate risk, especially during major economic
events; for instance, post UK referendum and post U.S. election in 2016, the total
number of traded contracts during the day reached 5.9 and 8.9 millions respectively?.

Our analysis allows us to conclude that jumps have a higher impact in the follow-
ing particular circumstances: a low volatility environment, a high level of interest
rates and a low speed of mean reversion. We show that a small increase in the proba-
bility of occurrence of jumps could result in significant changes in derivatives prices,
and consequently alter the exercise boundary for instruments with early exercise
features. In addition, we find that interest-rate jumps play an important role when
the term structure is steep and upward sloping or when it has a humped shape. In
these cases, the derivatives prices could be significantly different when using Vasicek
or Vasicek-EJ models.

The rest of this chapter is organized as follows. In Section 3.2, we perform a sen-

sitivity analysis to evaluate how the jump parameters interact with the other model

!Source: Bank for International Settlements (BIS).
2Source: Chicago Mercantile Exchange (CME).
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parameters. Section 3.3 sets up different theoretical shapes for the term structure of
interest rates and evaluates the corresponding model error. Finally, in Section 3.4,
we price Treasury bond futures using historical yield curves to investigate whether

including jumps could have made a significant difference. Section 3.5 is a conclusion.

3.2 Sensitivity to parameter values

The objective of this section is to illustrate the impact of incorporating unantici-
pated changes in the interest-rate model, not only on derivative prices, but also on
the exercise frontier of American-style instruments. We show that fixed-income in-
struments are not insensitive to the inclusion of jumps, even when their probability
of occurrence is relatively low. We find that changes in prices are not linear in the
variation of jump intensity, so that a relatively small increase in \,, for instance,
can cause a significant increase in a derivative’s price. We also find that there is an
interaction between the jump parameters and other model parameters, so that, in
some cases, high volatility levels or low levels of the long-term mean can mitigate
the impact of jumps.

For illustration purposes, we first price an interest-rate receiver swap with a swap
rate x, maturity ¢, = T" and principal equal to K. The swap value at t,,, ry,, =7

can be expressed in closed form:

Sm (1) = K <1 — K Y P (rt) (tk — tier) — Pr, (1, T))

k=m+1

where the fixed and floating payments are exchanged on the same dates t,,,m =

P(r,u) = E, lexp (— /t u rsdsﬂ

is the price at t of a zero-coupon bond maturing at u > ¢.

1, .ss 1 @014

We price a 10-year swap with a swap rate of 5% and semi-annual payments. The

base-case Vasicek-EJ parameters are given in Table 3.1.
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Table 3.1 — Parameter values for the sensitivity of swaps in the Vasicek-EJ model.

«a C 9 /\d e Mda N K tm — tm—1 r K
0.05 0.05 005 0 100 0 20 2.5% 0.5 5% 100

Figure 3.2 — Sensitivity of the swap value to the interest rate r for various values
of upward jump intensities \,. Other parameter values are given in Table 3.1. Left
panel: value of sq (). Right panel: percentage change with respect to the case where
Ag = 0.

g &

N}
3

20

15

Value of the swap
Percentage change

-005 0 005 0.1 "o0s 004 -0.02 0 002 004 006 0.08 0.1
Interest rate Interest rate

In Figures 3.2 to 3.7, we plot the value of the swap as a function of each one
of the model parameters for values of the upward jumps intensities varying from 0
to 1.5 when Ay = 0. The thick line corresponds to the case where A\, = 0, which
corresponds to the valuation under the Vasicek model without jumps. The right
panel in each case shows the percentage change of the value with respect to the base
Vasicek model without jumps. Similar results are obtained for the downward jump
parameter \,.

In all graphs, it is clear that the receiver swap value is decreasing with \,; this
is expected since an increase in A, implies that the interest rate is more likely to
increase. Note that the impact of jump intensity can be important, particularly when
the interest rate is high. For instance (see Figure 3.2) for A\, = 0.25, a relatively
low value, the value of the swap could change by up to 20% relative to the price

obtained without jumps in a very high interest-rate environment. When \, = 1.5,
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Figure 3.3 — Sensitivity of the swap value to the number of coupon dates n for
various values of upward jump intensities \,. Other parameter values are given in
Table 3.1. Left panel: value of sy (n). Right panel: percentage change with respect
to the case where A\, = 0.
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Figure 3.4 — Sensitivity of the swap value to the volatility o for various values of
upward jump intensities \,. Other parameter values are given in Table 3.1. Left
panel: value of sy (o). Right panel: percentage change with respect to the case
where A\, = 0.
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Figure 3.5 — Sensitivity of the swap value to the long-term mean ¢ for various values
of upward jump intensities \,. Other parameter values are given in Table 3.1. Left
panel: value of sy (¢). Right panel: percentage change with respect to the case
where A\, = 0.
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Figure 3.6 — Sensitivity of the swap value to the speed of mean reversion « for
various values of upward jump intensities \,. Other parameter values are given in
Table 3.1. Left panel: value of sy (). Right panel: percentage change with respect
to the case where )\, = 0.
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Figure 3.7 — Sensitivity of the swap value to the swap rate k for various values of
upward jump intensities A\,. Other parameter values are given in Table 3.1. Left
panel: value of so (k). Right panel: percentage change with respect to the case
where A\, = 0.
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still a moderate value, the percentage change reaches 60% at r = 4%.

Figure 3.3 shows that the negative impact of jump intensity become increasingly
important as the maturity and number of coupons increase, so that the value of
a swap may decrease with maturity when maturity and jump intensity become
sufficiently high. Again, we observe that for moderate values of the jump intensity,
the percentage change in swap prices relatively to a pure diffusion model could reach
100% for long-maturity swaps.

Figure 3.4 shows how the swap value is increasing with volatility, so that a higher
jump intensity could be offset by a high volatility level, and Figure 3.5 illustrates
the sensitivity of the swap value to the long-term mean, which is similar to that of
the interest rate.

Figure 3.6 shows that the impact of the speed of mean reversion parameter «
depends on the intensity of jumps: while « has a negative impact on the swap value
in a pure diffusion model, its impact becomes positive when jumps are present and
when « is sufficiently high. The negative impact of the jump parameter value is
decreasing with «, and can reach 80% when a = 0.1. This can be explained by

the fact that when an upward jump in the interest rate occurs, it takes more time
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to revert to normal levels in an environment characterized by a low speed of mean
reversion.

Finally, Figure 3.7 shows that the swap value is slightly more sensitive to the
jump intensity parameter when the swap rate is low.

We now investigate the impact of jump intensity on the value of different in-
struments, namely straight and callable bonds, and European interest-rate payer
swaption.

The bonds used for the illustration are the Swiss callable bond used in Chapter
2 (see bond parameters in Table 2.1) and its straight version. Sensitivity analyses
pertaining to the straight bond are qualitatively similar to those of a swap, which is
expected given the close relationship between the two instruments. Detailed results
are provided in Figure 3.13 in Appendix 3.6. For callable bonds, Figure 3.8 plots
the exercise frontier over time for various values of the jump intensity parameter \,.
The value at which the embedded call option should be exercised is decreasing with
the upward jump intensity, and the impact of jump intensity decreases with time to
maturity. These results are intuitive since it becomes less interesting for the issuer
to call his debt when the interest rate is more likely to increase.

The parameters of the European swaption used for the illustration are described
in Table 3.1, with ¢{;, = 3 and ¢, = 5. For a payer swaption, the value should
increase with the intensity of upward jumps. Detailed results on the impact of all
parameters are provided in Figure 3.14 in Appendix 3.6. These results indicate that
the impact of jumps is more important for swaptions with shorter maturities and
smaller swap rates and for lower volatility and mean reversion rate environments.
All these results are intuitive. An interesting observation is that the convexity of
the exercise payoff makes optional instruments’ sensitivity to jumps more complex
than that of instruments with linear payoffs, such as swaps and bonds.

These illustrative examples show that interest-rate jumps can affect the prices of
fixed-income derivatives, as well as their exercise frontier, in a significant way, even

when their probability of occurrence is small. In some situations resulting from com-
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Figure 3.8 — Callable bond exercise frontier. The call dates and prices as well as the
Vasicek-EJ parameters are described in Table 2.1.

Interest rate

Decision dates

binations of parameters, the percentage difference in the value of a derivative with
or without jumps could be very high, for instance when the volatility is low or when
the long-term mean is high. In addition, depending on the product specifications,
prices of derivatives with long or short maturities may become very sensitive to the
presence of jumps, even at a low intensity.

It is worth noting that these sensitivity analyses do not yet address the issue
of model error, as presumably the parameters of a pure diffusion model and of a
models including jumps would differ when calibrated on the same set of data. This

issue is the object of the analyses presented in the next sections.

3.3 The term structure of interest rates

The term structure of interest rates can take various shapes depending on the eco-
nomic environment and policies. One obvious observation is that jump-diffusion

models, having more parameters than pure diffusion models, should provide a closer
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fit to the term structure. In this section, we investigate various typical shapes of
the term structure in order to determine how these would influence the calibration
by either a pure diffusion model or a jump-diffusion model.

We use the Nelson-Siegel model (Nelson & Siegel 1987) to generate various dif-
ferent hypothetical term structures. The Nelson-Siegel formula for the spot rate

corresponding to a maturity 7 is given by

(1 —exp(=T/6)) 1 —exp(=T/6)
LT (1T )

where 3y, 31, 3, and 6 > 0 are constants. The constant [, represents the long-term

r(T) = By + B4

level of interest-rates; 3, is the coefficient of the decay component, a positive (resp.
negative) value generating a downward (resp. upward) slope; the coefficient /3, is a
shape parameter, generating either a hump (5, > 0) or a through (3, < 0); finally,
¢ is a second shape parameter characterizing the steepness of the slope and the
location of the hump/through.

We focus on the five following scenarios characterizing the shape of the term

structure (see Figure 3.15 in Appendix 3.6):

S1 The yield curve is upward sloping with decreasing short-term steepness. The
corresponding Nelson-Siegel parameters are 5y = 2, 5, = —2, 3» = 1 and

¢ € [0.5,25].

S2 The yield curve is downward sloping with decreasing short-term steepness. The
corresponding Nelson-Siegel parameters are 5y = 2, 3, = 2, 3, = —2 and

6 €[0.1,15].

S3 The yield curve is upward sloping with increasingly pronounced humps. The
corresponding Nelson-Siegel parameters are: ) = 2, 51 = —1, 5, € [0.5,15]
and # = 1.5,

S4 The yield curve is downward sloping with decreasingly pronounced throughs.
The corresponding Nelson-Siegel parameters are: Sy = 3.7, 5, = 2, 3, €
[—15,—0.5] and 6 = 1.5.
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S5 The yield curve is flattening, from an upward to a downward trend. The cor-
responding Nelson-Siegel parameters are: fy = 4, 51 € [—3,3], 8, = 0 and
g=1.

We fit both the Vasicek and the Vasicek-EJ models to these term structures
using a non-linear optimisation approach. Specifically, we follow Zeytun and Gupta
(2007) and find the model parameters reproducing the prices of zero-coupon bonds
by minimizing the sum of squared differences between the discount factors implied
from the theoretical term structure and the ones implied by each model for 11
different maturities (1 month, 3 months, 6 months, 1 year, 2 years. 3 years, 5 years,
7 years, 10 years, 20 years and 30 years).The model-implied rate, obtained from
Equation (2.6), is given by

(ro = OD(T) +¢T - C(T)
4

r(T) =

where 7 is fixed at the shortest-maturity rate.

Finally, we price both a 5-year and a 10-year receiver interest-rate swaps, using
the fitted parameters under each model, in order to evaluate the pricing difference
due to the model specification. Results, in terms of the percentage difference with
respect to the Vacisek-EJ model, are presented in Figure 3.9.

Results reported in Figure 3.9 show that, even though the two interest-rate
models are calibrated to the same term structure, the pricing differences resulting
from using a pure diffusion model against a jump-diffusion model can be sizable,
depending on the shape of the term structure.

Specifically, the difference in prices obtained under the two model can reach 20%
to 35% when the yield curve is steeply upward sloping (see Panels a and e of Figure
3.9). The difference can be even higher (up to 120%) when the curve is humped,
specially when the hump is pronounced, so that short-term rates become larger than
long-term rates. In this case, the price difference can reach 12% of the swap notional

value. We note that pricing differences are generally positive (the Vasicek-EJ price
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is generally lower) and generally increasing with the swap maturity, except for the
case where the yield curve is humped.

It is interesting to point out that the most common situation (upward sloping
yield curve) is also the one where the difference in prices is the most important.
Moreover, the present situation belongs to one of the cases where pricing differences

can be sizable, (short-term rates are presently higher than long-term rates).

3.4 Empirical observation of model error for
Treasury bond futures

In this section, we calibrate both the Vasicek and the Vasicek-EJ model to the his-
torical term structure of interest rates. More specifically, we fit both the Vasicek
and the Vasicek-EJ models to the observed U.S. yield curves downloaded from the
U.S. Department of the Treasury website, on the first business day of March, June,
September and December, from 2005 to 2017. Figure 3.10 is a graphical representa-
tion of the term structure over this period. We find the model parameters minimizing
the sum of squared differences between observed prices and the corresponding zero-
coupon prices, obtained using Equation (2.6), for maturities of one month, three
months, six months, one year, two years, three years, five years, seven years, ten
years, twenty years and thirty years. Detailed results are provided in Tables 3.2 -
3.3 and Figures (3.16)-(3.17)- in Appendix 3.6. Observation of Figure (3.16) shows
high values of a and ¢ in 2006, which could be explained by the restoration of the
30-year U.S. treasury bonds that started in February 2006 and changed the shape
of the term structure. The volatility parameter is relatively stable after this period
due to the Federal Reserve near zero short rate policy, which continued even after
2009, maintaining the volatility at a very low level. On the other hand, observation
of Figure (3.17) shows that parameter values are reasonably stable over time, with

high values of a and ¢ in 2006-2007 and a relatively stable long term mean ¢, and
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Figure 3.9 — Percentage difference in swap prices under various scenarios for the
term structure of interest rates. Swap prices are evaluated under the Vasicek and
Vasicek-EJ models fitted to the term structure. The 5- and 10-year swaps have a
5% swap rate and coupons are exchanged on a semi-annual basis.
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Figure 3.10 — Historical term structure 2005 - 2017
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with a high intensity and amplitude of upward jumps in 2005-2006, a high intensity
of small amplitude upward jumps between 2007 and 2014, and the occurence of
downward jumps since 2016.

The next step consists of pricing a derivative contract under the Vasicek and
Vasicek-EJ models, using the dynamic programming model presented in Chapter 2
and the calibrated parameter values, and comparing these prices with the observed
market prices.

The observations of the CBOT T-bond futures market prices are available from
Bloomberg, along with the deliverable baskets and conversion factors for each of the
52 future contracts traded during the time period 2005-2017. Theoretical prices are
computed using the dynamic program (2.7)-(2.9) on the first day of each delivery
month.

Figure 3.11 is a plot of the prices obtained under each of the two models and of
the market prices of each contract on the first day of each delivery month during
the period 2005-2017. A first observation is that the theoretical prices, under both

models, are close to observed prices.

Figure 3.12 plots the percentage difference between the model-implied theoretical
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Figure 3.11 — Comparison of futures theoretical prices and market prices over the
period 2005-2017. Market prices are obtained from Bloomberg. Theoretical prices
are obtained using the parameters in Table 3.3 for the Vasicek-EJ model and Table
3.2 for the Vasicek pure diffusion model.
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price and the market price under the two models. We observe that differences are
generally positive (theoretical futures price are higher than market prices by more
than 2 bps on average) and that the Vasicek-EJ model seems to perform slightly
better in predicting T-bond futures market prices, with a RMSE of 4.11, compared
to 4.67 for the pure diffusion model.

3.5 Conclusion

In this chapter, we investigated the impact of model specification on the valuation
of interest-rate derivatives by assessing the impact of jump intensity on the price of
derivatives and by comparing prices implied by a pure diffusion and a jump-diffusion
Vasicek model, calibrated to the same data, namely the term structure of interest
rates.

We rely on the flexible general dynamic programming procedure combined with

Fourier transform presented in Chapter 2 to study the impact interest-rate jumps

48



Figure 3.12 — Comparison of the percentage difference between observed futures
market prices and model-implied theoretical prices. Market prices are obtained
from Bloomberg. Theoretical prices are obtained using the parameters in Table 3.3
for the Vasicek-EJ model and Table 3.2 for the Vasicek pure diffusion model.
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on several fixed-income instruments.

By pricing actively traded products under both the Vasicek and Vasicek-EJ
interest-rate models, we find that the contribution of jumps can be non-negligible,
particularly when the term structure is steep and upward sloping or when it has
a humped shape. In addition, depending on the derivative, upward or downward
jumps can be more important and have a greater impact on the prices of interest-
rate derivatives. We notice also that under some particular situations such as a low

a volatility environment , price differences can become very large.

3.6 Appendix
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Table 3.2 — Parameter values for the Vasicek pure diffusion model calibrated to the
Treasury bond yield curve on the first day of March, June, September and December
from 2005 to 2017.

Date alpha zeta sigma

Mars-2005  0.530  0.050  0.010
June-2005  0.280  0.050  0.022
Sept-2005  0.192  0.050  0.016
Dec-2005 0.386  0.050  0.010
Mars-2006 1.121  0.055 0.150
June-2006  1.939 0.054 0.139
Sept-2006  2.175  0.050  0.150
Dec-2006 2.193  0.047  0.150
Mars-2007 2,196 0.048  0.150
June-2007  1.736  0.052  0.099
Sept-2007  0.200  0.047  0.010
Dec-2007 0.071  0.052 0.010
Mars-2008  0.093  0.060 0.010
June-2008  0.206  0.055  0.010
Sept-2008  0.240  0.050  0.010
Dec-2008  0.259 0.040  0.010
Mars-2009  0.232  0.046  0.010
June-2009  0.250  0.056  0.010
Sept-2009  0.258 0.051  0.010
Dec-2009 0.192  0.055 0.010
Mars-2010  0.214  0.057  0.010
June-2010  0.208  0.053  0.010
Sept-2010  0.129  0.052  0.010
Dec-2010  0.184 0.050  0.010
Mars-2011  0.247  0.050  0.010
June-2011  0.184 0.050  0.010
Sept-2011 0.100 0.055 0.010
Dec-2011 0.104 0.050 0.010
Mars-2012  0.082  0.057  0.010
June-2012  0.080 0.046  0.010
Sept-2012  0.070  0.052  0.010
Dec-2012 0.070  0.053  0.010
Mars-2013  0.080 0.055  0.010
June-2013  0.099 0.054 0.010
Sept-2013  0.171  0.050  0.010
Dec-2013 0.135 0.055 0.010
Mars-2014  0.149  0.049  0.010
June-2014  0.078 0.100  0.028
Sept-2014  0.084 0.100  0.031
Dec-2014 0.076  0.100  0.029
Mars-2015  0.102  0.083  0.034
June-2015  0.084 0.096 0.031
Sept-2015  0.126  0.070  0.034
Dec-2015 0.172  0.052  0.034
Mars-2016  0.149 0.043  0.023
June-2016  0.189  0.040  0.028
Sept-2016  0.181  0.034  0.025
Dec-2016  0.218 0.053  0.043
Mars-2017  0.258 0.047  0.044
June-2017  0.169 0.041  0.023
Sept-2017  0.145  0.040  0.020
Dec-2017  0.374  0.035  0.046
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Table 3.3 — Parameter values for the Vasicek-EJ model calibrated to the Treasury
bond yield curve on the first day of March, June, September and December from
2005 to 2017.

Date alpha zeta sigma lambda_up lambda_down 1/eta up 1/eta down
Mars-2005  0.0886  0.0500  0.0100 0.0136 0.00119 1.11128 -5.29282
June-2005  0.0718  0.0500 0.0100 0.0080 0.00137 2.47507 -0.10615
Sept-2005  0.0820 0.0500 0.0100 0.0035 0.00099 5.62487 -0.11353
Dec-2005  0.4906 0.0438 0.0486 0.0081 0.00001 1.38444 -0.49094
Mars-2006  1.5000 0.0002 0.1831 0.9124 0.00013 0.09270 -12.72789
June-2006  1.2284  0.0300 0.1492 0.2047 0.00002 0.18420 -1.23410
Sept-2006  1.4220 0.0300 0.1401 0.1032 0.00001 0.33018 -1.42511
Dec-2006  1.4295 0.0300 0.1064 0.0561 0.00001 0.46564 -1.43293
Mars-2007  0.9991  0.0277  0.0100 0.0460 0.00010 0.42553 -1.01616
June-2007  0.7952  0.0500 0.1092 0.1230 0.00010 0.04952 -0.82172
Sept-2007  0.7713  0.0415  0.0100 1.0000 0.00010 0.00012 -0.78012
Dec-2007  0.8998 0.0302 0.0100 0.9869 0.00010 0.00017 -0.90509
Mars-2008  0.0100 0.0500 0.0100 1.0000 0.00644 0.00183 -0.25588
June-2008  0.0201  0.0500 0.0189 0.9788 0.00135 0.00472 -1.24267
Sept-2008  0.0324  0.0500 0.0218 0.9853 0.00110 0.00493 -5.21815
Dec-2008  0.0100 0.0499 0.0205 1.0000 0.00211 0.00593 -4.70042
Mars-2009  0.0455 0.0398  0.0268 0.9974 0.00009 0.00703 -0.06110
June-2009  0.0661 0.0492  0.0352 1.0711 0.00242 0.00797 -0.43281
Sept-2009  0.0577  0.0500 0.0317 1.0000 0.00236 0.00733 -0.62415
Dec-2009  0.0420 0.0500 0.0265 0.9999 0.00271 0.00657 -0.41868
Mars-2010  0.0564  0.0500 0.0309 1.0000 0.00268 0.00753 -0.42875
June-2010 - 0.0360  0.0500  0.0250 0.9961 0.00269 0.00638 -0.60457
Sept-2010  0.1614 0.0413  0.0100 0.0010 0.00261 0.00017 -0.34382
Dec-2010  0.0315 0.0500 0.0211 0.9963 0.00330 0.00518 -0.27777
Mars-2011  0.2034  0.0496  0.0100 0.0174 0.00281 0.00010 -0.50259
June-2011  0.0232  0.0400 0.0188 0.4827 0.00290 0.01187 -0.39065
Sept-2011  0.0200  0.0500 0.0140 1.0000 0.00383 0.00313 -0.25828
Dec-2011  0.0357 0.0800 0.0178 0.7391 0.00316 0.00241 -0.26804
Mars-2012  0.1053 0.0424  0.0100 0.0110 0.00272 0.00010 -0.29793
June-2012  0.0119 0.0120 0.0109 0.7414 0.00141 0.00376 -0.23737
Sept-2012  0.0200 0.0500 0.0105 0.9976 0.00259 0.00177 -0.24621
Dec-2012  0.0200 0.0500 0.0100 1.0000 0.00267 0.00174 -0.24448
Mars-2013  0.0010 0.0600 0.0116 0.8971 0.00283 0.00362 -0.24020
June-2013 - 0.1191  0.0425 0.0100 0.0010 0.00238 0.00018 -0.31263
Sept-2013  0.0448  0.0300 0.0235 0.9981 0.00309 0.00577 -0.41462
Dec-2013  0.1815 0.0402 0.0100 0.0303 0.00353 0.00022 -0.35807
Mars-2014  0.0353  0.0600 0.0205 0.9762 0.00317 0.00386 -40.52654
June-2014  0.0678 0.0984 0.0256 0.1855 0.00292 0.00053 -0.43682
Sept-2014  0.0647 0.0886 0.0246 0.2178 0.00349 0.00231 -0.64567
Dec-2014  0.0760 0.0778 0.0249 0.9995 0.00269 0.00022 -0.64122
Mars-2015  0.1354  0.0536  0.0315 0.0008 0.00237 0.00193 -0.71776
June-2015  0.0958 0.0722  0.0283 0.1750 0.00187 0.00061 -0.68071
Sept-2015  0.1291  0.0607 0.0295 0.2514 0.00079 0.00284 -0.13316
Dec-2015  0.1756 0.0514 0.0344 0.0350 0.00004 0.00204 -0.18073
Mars-2016  0.0651 0.0372  0.0100 0.0115 0.07133 0.53755 -0.00011
June-2016  0.0714  0.0293  0.0100 0.0146 0.00000 0.55134 -0.00091
Sept-2016  0.0755 0.0293 0.0103 0.0104 0.51853 0.59795 -0.00025
Dec-2016  0.1903  0.0009 0.0271 0.1517 0.06016 0.07551 -0.00020
Mars-2017  0.2087 0.0177 0.0389 0.3811 0.00044 0.01921 -9.49846
June-2017  0.1681 0.0521 0.0100 0.0016 0.89438 9.61703 -0.00353
Sept-2017  0.1449 0.0224 0.0176 0.157 0.03341 0.01680 -0.00070
Dec-2017  0.2037 0.0267 0.0180 0.0066 0.00112 2.09226 -0.00016
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Figure 3.13 — Sensitivity analysis of the straight bond value with respect to the

interest-rate parameters and upward jumps. The model parameters are given in
Table 2.1.
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Figure 3.14 — Sensitivity analysis of the European payer swaption value with respect
to the interest-rate parameters and upward jumps. The model parameters are given
in Table 3.1.
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Figure 3.15 — Various scenarios representing possible shapes of the term structure
of interest rates. Parameter values are given in Section 3.3.
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Chapter 4

Post-trade evaluation of the exercise
strategy of CBOT Treasury bond

futures

The CBOT Treasury bond (T-bond) futures is one of the most actively traded
futures contract in the world; it is widely used to hedge long-term interest-rate risk.
The seller of the contract (or short trader) is required to deliver a 20-year bond with
a 6% coupon and a face value of 100,000$ (the notional bond). However, as the
notional bond is not necessarily traded in the market, the short trader can choose
to deliver any bond from a defined basket (the delivery basket). In order to make
the delivery fair for both parties, each bond of the delivery basket is assigned a
conversion factor that takes into account the difference in coupon and maturity
between this bond and the notional bond. The conversion factor system is not
perfect, so that all eligible bonds are not equal for delivery; the bond that maximizes
the short trader’s profit is called the CTD. The flexibility of the short trader in the
choice of the bond to be delivered is called the quality option.

Moreover, the seller has the option to deliver the bond on any day during the last

trading month. This timing option allows the traders to profit from changes in the



interest rate that will affect the price of the CTD, or even change the ranking of the
bonds in the delivery basket, and thus their profit or loss. Recall that the delivery
month, where exercise is allowed, is further divided into the switch period, during
which the futures contract is traded, and the end-of-month period, during which
the futures market is closed but delivery remains possible. Another timing option
relates to the fact that the futures market closes and the futures price is settled at 2
p.m. each day, while the market for T-bonds stays open. The flexibility to use any
new information regarding the bond prices after 2 p.m., before announcing delivery
by 8 p.m., is known as the wild card option. The interaction between the timing and
quality options makes the choice of the delivery day complex. As shown in Chapter
2, the determination of the optimal delivery strategy can be modeled as a dynamic
program, where the strategy of the short trader depends on the value of two state
variables, that is, the observed futures price and the current level of interest rates.

Most of the literature on the options embedded in the T-bond futures concerns
the pricing of the quality and timing options (see, for instance, Ben-Abdallah, Ben-
Ameur & Breton 2012 and Chen & Yeh 2015). Few papers focus on the timing
strategy. Gay & Manaster (1986) show how the embedded options, and particularly
the wild card option, can give positive results when skilfully exercised. The authors
propose an exercise strategy that is based mainly on the movements of the spot price
and the value of the conversion factor. The general rule is that, for a conversion
factor greater than one, if the bond spot price becomes lower than the futures invoice
price during the wild card period, then the short trader should deliver. An ex-post
evaluation of this strategy shows that the wild card option was not used optimally
by traders, resulting in non negligible losses. This simple delivery rule was later
challenged by Kane & Marcus (1986), who develop a valuation model for the wild
card option as well as rules for its optimal exercise. The authors argue that the rule
proposed by Gay & Manaster (1986) is not value-maximizing for the short trader
and that the spot price must decrease below a certain critical value before delivery

becomes optimal. Other rules of thumb have been suggested, indicating situations
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where the short trader should deliver early (see Burghardt et al. 2005 and Choudry
2010).

More recently, Breton & Ben-Abdallah (2018) study the short traders delivery
behavior observed in the CBOT T-Bond futures market from 1985 to 2016 and
determine, using a regression analysis, the most important factors affecting the
traders decisions, namely, the slope of the U.S. Treasury yield curve, the number of
days where the CTD basis has been negative and the total amount of the outstanding
Treasury bonds. With hindsight, the authors evaluate the exercise strategy actually
used by the traders, comparing their profits with those made by delivering in the
beginning versus in the end of the delivery month. They find that, even when
positive profits could be made by delivering early, postponing delivery until the end
of the delivery month generally resulted in higher profits. However, the authors do
not evaluate traders decisions against the ex-ante optimal exercise strategy.

Our main contribution in this chapter is to evaluate the advantage of using an
optimal exercise strategy, with respect to the delivery strategy that was actually
used by traders over the period 2005 to 2015. The optimal exercise strategy is
obtained, using the algorithm described in Chapter 2, on every day of the delivery
month of each futures contract traded between 2005 and 2015. We find that traders
generally used a commonly recognized rule of thumb that consists of relying on the
slope of the term structure of interest rates to determine if one should postpone
delivery until the end of the delivery month. Our results show that this simple rule
of thumb resulted in a very volatile profit, as measured by the CTD bond gross
basis. On the other hand, the optimal strategy, computed using market data and
the Vasicek-EJ model, differs significantly from decisions taken by the majority of
traders, and would have resulted in a comparable average profit, however with a
significantly lower volatility.

The chapter is organized as follows. Section 4.1 describes the data set. Section
4.2 discusses the issues in choosing a delivery strategy and characterizes the nature

of the timing decisions made by traders over the study period. Section 4.3 gives
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the details of the implementation used to compute the optimal exercise strategy.
Section 4.4 compares the optimal strategy to the observed delivery behavior, and

Section 4.5 is a conclusion.

4.1 Data

Our study covers 44 futures contracts (March, June, September and December) from
2005 to 2015. We elect to analyze this specific period because it covers a full eco-
nomic cycle, including the financial crisis of 2008, while avoiding some outstanding
episodes due to market anomalies during the period from 1985 to 1995.

The physical-delivery data set is provided by the CBOT. For each contract, it
includes the dates on which deliveries took place during the delivery month, the
number of futures contract settled on each of these dates, as well as the T-bond
actually delivered. This data allows us to obtain the distribution, during the delivery
month, of the observed timing of deliveries (see Figure 4.1).

The price data is provided by Bloomberg. For each day during the delivery
month of each futures contract, we obtain the prices of the futures contracts, along
with the CTD bond and its corresponding conversion factor and spot price.

Finally, the daily observations of the interest rate are obtained from the U.S.

Treasury website.

4.2 Delivery strategy: issues and market rules

The difference between the cash price of a T-bond and the futures invoice price (that
is, the settlement price multiplied by the conversion factor) is called the bond’s gross
basis. The gross basis represents the immediate cost of delivering a T-bond into a
futures contract at a given date, and, therefore, the CTD is the bond with the lowest

gross basis in the delivery basket. The interest earned from holding a bond, that is,

1See Breton and Ben-Abdallah (2018) for a case-by-case analysis of early delivery episodes.
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Figure 4.1 — Timing of actual deliveries from 2005 to 2015. Period 1 corresponds to
the two first business days of the delivery month. Periods 3 and 4 correspond to the
end of the month period (last seven business days), where Period 4 refers to the two
last business days of the delivery month. Period 2 contains the rest of the delivery
month.

Distribution of deliveries

91.92%

i 6.21%
0.39% 1.47%
1 2 3 4

the difference between the coupon income and the financing cost, is called the bond
carry.

While the basis indicates the profit or loss related to immediate delivery, it gives
no indication of whether or not delivery should take place, as the basis could increase
or decrease during the delivery month. Note however that a negative gross basis,
corresponding to a delivery profit, gives rise to an arbitrage opportunity (sell the
futures, buy the CTD and deliver it immediately) that should rapidly vanish.

A commonly used rule of thumb (Burghardt et al. 2005) consists of postponing
delivery whenever the term structure of interest rates is upward sloping; by doing so,
the short trader benefits from the positive carry of the CTD, while keeping possession
of the futures embedded delivery options. According to this rule of thumb, early
delivery is only advisable under extreme circumstances, when the slope of the term
structure of interest rates is negative and market volatility is low.

Observation of Figure 4.1 shows that 98% of the deliveries during the period
2005-2015 took place during the last seven business days of the delivery month, with
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Figure 4.2 — Slope of the yield curve, obtained by subtracting the spot from the 30
year Fed Fund rate on the first day of the delivery month. Rates are obtained from
the Federal Reserve Statistical Release.
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92% during the last two days. Deliveries during the two first business days occurred
in December 2005 (3% of the total deliveries for this contract) and December 2006
(15% or total deliveries); in both cases, the slope of the yield curve (see Figure 4.2)
was negative on the first day of the delivery month.

Figure 4.3 represents the evolution of the gross basis of the CTD during the
delivery month of the future contracts traded between 2005 and 2015. This figure
clearly shows the increase in volatility of the gross basis during the end of the delivery
months, and specially during their last seven business days, where the trading of
futures contract is suspended while the bond market remains open and delivery
remains possible based on the last futures settlement price.

Figure 4.4 shows the value of the gross basis of the CTD, that is, the immediate

loss resulting from the delivery, on the days where at least one delivery was made.
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Figure 4.3 — Gross basis of the CTD on each business day of the delivery month of
futures contracts from 2005 to 2015. The vertical line separates the switch period
from the end-of-month period.
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Figure 4.4 — Gross basis of the CTD on days where delivery occured from 2005 to
2015. The vertical line separates the switch period from the end-of-month period.
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4.3 Delivery strategy implied by the dynamic
programming algorithm

In this section, we describe how we determine the delivery day that would have
been suggested by the dynamic programming algorithm described in Chapter 2, for
each of the futures contract during the period 2005-2015. Specifically, we follow the

following steps, for each futures contract:

1. Obtain the basket of deliverable bonds as well as their corresponding conver-

sion factors.

2. Estimate the parameters of the Vasicek-EJ interest-rate model on the first
day of the delivery month, by calibrating the model to the observed U.S. yield

curve at that date.

3. Run the DP algorithm (2.7)-(2.9) and obtain the holding value function v (X, r)
for all business days of the delivery month (indexed by m) on a grid of values

for the futures price A and spot interest rate r.

4. For each delivery day m =1, ..., n:

a) Observe the interest r,,, the futures price \,,, and the gross basis of the

CTD e,,. Compute the holding value v (\,,,7,,) by interpolation.

b) If —e, > v (N, ) or if m = n, the last delivery day, stop and store

m, the optimal delivery date, and e,,, the realised loss on delivery.

¢) Otherwise, set m = m + 1 and return to step 4 a.

Figure 4.5 shows the distribution of the delivery days according to the optimal
exercise strategy under the Vasicek-EJ model, and Figure 4.6 compares actual and

optimal delivery dates. We observe that the delivery strategy obtained using the
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Figure 4.5 — Timing of deliveries from the dynamic program. Period 1 corresponds
to the two first business days of the delivery month. Periods 3 and 4 correspond
to the end of the month period (last seven business days), where Period 4 refers to
the two last business days of the delivery month. Period 2 contains the rest of the
delivery month.
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dynamic program differs significantly from the timing of deliveries actually observed
over the period 2005-2015.

In particular, early delivery is recommended for almost 60% of the contracts,
and only 16% of deliveries would have occurred on the last two days of the delivery
month according to the dynamic program. For many contracts, exercise is recom-
mended whenever the gross basis becomes negative. Contracts where exercise is
deferred to the last trading days are those where the gross basis remain positive
during the whole delivery month. We notice however that the majority of early
deliveries are recommended during the period from September 2005 to June 2008, a
period encompassing the financial crisis. It is interesting to note that the strategy
recommended by the dynamic program is in line with the numerical illustrations of
Kane and Marcus (1986), in which they compute the critical bond price increase
or decrease that will initiate the contract settlement. Depending on the number of
trading days left in the month as well as the conversion factor, the authors find that

a change of 0.1 to 1.5 in the bond spot price will trigger delivery. Indeed, for many
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Figure 4.6 — Comparison of actual and optimal delivery days. Numbers in the table
indicate the percentage of actual deliveries. Shaded cells correspond to the delivery
day obtained by dynamic programming.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 -7 6 -5 -4 -3 -2 -1
Mar-05 00 00 00f 01 00 99.9
Jun-05 = 0.1 99.9
Sep-0 00 00 0.0 0.0 99.8
Dec-05| 2.8 0.0 = 97.2
Mar-06 100
Jun-06 100
Sep-06 0.1 0.1 99.9
Dec-0 00 15 50.2 33.8
Mar-07 7.1 406 0.0 0.2 52.1
Jun-07 206 07 17 08 76.3
Sep-07 865 45 01 20 11 14 43
Dec-07 39 96.1
Mar-08 0.2 99.8
Jun-08 100
Sep-08 = 596 321
Dec-08 0.2 99.8
Mar-09 47.7 523
Jun-09
Sep-09 0.1
Dec-09 0.6
Mar-10 = 0.0
Jun-10 0.2
Sep-10 -
Dec-10 §
Mar-11 - = 0.5
Jun-11 E
Sep-11 B
Dec-11
Mar-12
Jun-12
Sep-12 0.0 100
Dec-12 100
Mar-13 100
Jun-13 03 50.6 49.0
Sep-13 ﬁ
Dec-13 27 87.5
Mar-14 8.0 B oo
Jun-14 - 100
Sep-14 == 100
Dec-14 = 0.1 99.9
Mar-15 100
Jun-15 100
Sep-15 74.7
Dec-15| - 100
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Figure 4.7 — Gross basis of the CTD on days where delivery is optimal according to
the Vasicek-EJ model, from 2005 to 2015.

Gross basis of optimal deliveries

L

L
g
L] 2
LI )
<
L]
e e e ¢eet 240 3 :
. ..8 ® .
b -1
L
-2
25 20 15 15 5 0

contracts, the DP algorithm suggests delivery after a sizable change in the CTD

price or in its gross basis.

4.4 Comparison of the two delivery strategies

We now compare the outcome of the delivery strategy obtained by the dynamic
programming approach to those actually obtained by the traders. Figure 4.7 shows
the gross basis (the exercise loss) corresponding to the optimal delivery strategy
during the period 2005-2015.

Comparison of Figures 4.4 and 4.7 show that the distribution of exercise gains
or losses is quite different in terms of dispersion, not only in values, but also in
chronology. We observe that the profits implied by the DP strategy are less volatile
than those realized by the traders, who are clearly more agressive, resulting in either
a severe loss or a high profit.

This observation is confirmed by the descriptive statistics in Table 4.1 below;
over the period 2005-2015, the average profits of the two strategies are very close

and not statistically different but with a higher standard deviation for the strategy
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followed by the traders (1.88 against 1.15) and interquartile range (2.65 against
0.21).

For instance, in September 2009, the realized profit obtained by exercising on
the delivery day recommended by the DP approach is 52% per contract against a loss
of 206$ for traders who delivered in the last business day (99.7% of the contracts).
In June 2013, the algorithm suggests delivering on day 19 to realize a profit of 728$;
those who waited until the end (50% of the contracts) realised a profit of 297$; the
others delivered on the 25 and realized a profit of 466$. In September 2014, the DP
suggests delivering on day 24, incurring a delivery loss of 563; all the contracts were
settled on the last trading day, at a more severe loss of 176$. Finally, if we consider
a short trader who held a single position in all the contracts from 2005 to 2015, we
find that his cumulative loss would have been 1265$ by always delivering on the last

trading day, against a loss of 1164$ by using the optimal delivery strategy.

Table 4.1 — Descriptive statistics of the gross basis under the two delivery strategies

Mean Std Min P25 P50 P75 Max

DP delivery day GB 026 115 -142 -0.15 -0.05 005 4.11
Realized GB (average) 0.23 1.88 -3.83 -1.21 038 144 4.11

Finally, to better understand, the difference between the two delivery strategies
and assess whether it is related to interest-rate jumps, we evaluate again the dynamic
program under the pure diffusion Vasicek model. We only find six contracts with
a different delivery date compared to what is obtained under the jump-diffusion
model. In addition, we verify that the delivery dates obtained with the dynamic
program are not related to the major macro economic announcements such us FOMC
meetings, unemployment rate, non-farm payrolls, etc. These results confirm that
the difference between the two delivery strategies is mainly due to the timing effect

and that traders rely on the simple rule of thumb to take their decision.
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4.5 Conclusion

The timing of the delivery for T-bond futures contract is a complex decision due to
the existence of multiple interacting embedded options. The rule of thumb used by
the traders generally implies delivery in the last two business days of the trading
month. In this chapter, we perform an ex-post evaluation of the observed delivery
behavior and compare it to what is implied by the dynamic programming approach
described in Chapter 2. Even though the profits realised under the two approaches
are not statistically different, we find that the traders took a higher level of risk
by being exposed to the volatility of the basis as opposed to delivering earlier as
suggested by DP, in other words, traders could have realized the same average profit
by being more prudent.

It is important to point out that the strategy computed by dynamic program-
ming is optimal for the interest-rate model used to represent uncertainty. The opti-
mal strategy discussed in this chapter was obtained using the Vasicek-EJ model, a
specification where jumps in the interest rate are likely to happen. Under this spec-
ification, it is not surprising that the strategy suggested by the dynamic program is
relatively prudent, often avoiding the end of the month period, where jumps in the
interest rate would not be reflected in the futures price, when profits can be made
during the switch period.

As an extension to this work, it would be interesting to use intraday data and
evaluate again the exercise strategy using the dynamic programming approach by
taking into account intraday prices of the cheapeast-to-deliver between 2 p.m. and

8 p.m. (i.e. considering the impact of the wild card option).
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Chapter 5

The impact of central clearing on the
market for single-name credit default

swaps

5.1 Introduction

Credit default swaps (CDS) are insurance contracts that act against the default of the
issuer of an underlying bond. They were first introduced by J.P. Morgan in 1994 to
meet the need for an instrument to manage and transfer credit risk. These contracts
can also be used for speculation purposes, in order to benefit from a change in the
credit quality of a particular reference entity. When they were first introduced, CDS
were solely exchanged in the over-the-counter (OTC) market, until they were heavily
criticized for their lack of transparency and for the role they consequently played in
the 2007 financial turmoil (see Acharya, Philippon, Richardson & Roubini 2009 and
Acharya, Engle, Figlewski, Lynch & Subrahmanyam 2009). In the aftermath of the
2007-2008 global financial crisis, the large size of the CDS market, as well as the
amount of inherent risk associated with it, made market participants more cautious

about their existing positions and pushed regulators to step in and announce reforms



that mainly consisted of standardizing the CDS market and introducing central
clearing.

After the introduction of the Dodd-Frank Wall Street Reform and the Consumer
Protection Act, central clearing became an alternative for single-name CDS. By the
end of 2009, clearing operations began in North America and Europe, conducted by
the Intercontinental Exchange Clear Credit (ICECC). By stepping in as the buyer
for every seller and the seller for every buyer, the clearinghouse plays the role of
a counterparty to both traders. The introduction of central clearing was meant
to reduce the counterparty risk of cleared contracts: while the default probability
of the reference entity is normally not affected by the move to central clearing,
the protection of the CDS holder should be enhanced, as long as the clearinghouse
itself is well protected against default (see Acharya, Engle, Figlewski, Lynch, and
Subrahmanyam 2009). Central clearing may also boost trading activity and attract
new players to the market. However, to guarantee a good protection against default,
the clearinghouse requires that its clients post daily margins in the form of cash or
highly liquid assets in addition to paying administrative fees.

This paper is part of the ongoing research on the impact of introducing a central
counterparty (CCP) that stands between buyers and sellers of default protection
in the CDS market. In a generalized difference-in-difference setting, we revisit this
impact on spreads, liquidity, and trading activity by considering CDS contracts
written on North American reference entities over the 2009-2015 period. We also
analyze this impact on the default risk of the underlying bonds during the same
period. Our contribution is twofold. First, the propensity score matching approach
that we propose addresses the endogeneity problem originating from the voluntary
choice of adhering to central clearing. This matching approach also allows to account
for a variety of treatment dates, as observed in the data set. We then show that
the choice of a matching approach plays a significant role in the evaluation of the
impact of the introduction of a CCP, and that differences between our results and

those obtained in the previous literature are mainly explained by differences in
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methodology. Second, we find evidence that CDS spreads increase once a reference
entity becomes centrally cleared. We show that this spread increase does not pertain
to an improvement in CDS liquidity or trading activity, nor is the default risk of
the underlying bond affected by CDS central clearing. We therefore argue that this
increase in the CDS spreads provides an assessment of the magnitude of counterparty
risk in the non-cleared CDS market.

The empirical literature on the impact of central clearing on the CDS market
is still scarce. The papers focusing on this topic employ various methodologies
and data sets, and reach different conclusions about the implications of introducing
clearinghouses into the CDS market. Slive, Witmer, and Woodman (2012) use
an event study and find that the new clearing mechanism slightly increases CDS
liquidity. They argue that this improvement is the result of two opposite effects: an
increase in collateral requirements, generating higher clearing costs, and an increase
in transparency and operational facilities, leading to better competition and a more
liquid market. They also find an improvement in trading activity as measured by
gross notional amounts. Kaya (2017), using panel regression in a sample of non-
financial firms, reports an increase in CDS spreads after central clearing. He argues
that this rise is not the result of a reduction in counterparty risk, but is rather due
to an increase in clearing costs that is passed on to end-users. Du, Gadgil, Gordy,
and Vega (2018) investigate the impact of counterparty credit risk on the pricing of
CDS using confidential data from the Depository Trust and Clearing Corporation
(DTCC). They analyze the effects of the introduction of central clearing on CDS
prices using a panel regression of cross-sectional variations of CDS spreads. Their
findings show that counterparty risk has negligible effects on CDS spreads and that
centrally-cleared trades have significantly lower spreads than uncleared interdealer
trades. They argue that this latter result could be attributed to the impact of
a more transparent centrally-cleared market on the competitive structure. They
also conclude that this finding is consistent with market participants’ managing

counterparty risk, which would result in a modest impact of counterparty risk on
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the pricing of CDS contracts.

Loon and Zhong (2014) were the first to investigate the impact of central clearing
on CDS spreads, as well as on liquidity and trading activities in the CDS market.
They use an event study methodology and find that the spreads widen around
the initiation of central clearing. This change is explained by a reduction in CDS
counterparty risk and, to a lesser extent, by an improvement in CDS liquidity. They
then combine a DID approach with a static propensity-score matching to provide
evidence of an improvement in CDS liquidity as well as in trading activity.

While the framework of our paper is close to theirs, our methodology, scope,
and findings are different. We focus on the changes in CDS spreads using the DID
methodology. Our approach aims at eliminating the selection bias by proposing
two improvements. First, we improve the matching technique, relying on firm data
Just prior to the move to central clearing, instead of using a fixed estimation period
to match all the firms. Second, we estimate a generalized DID model including
time and firm fixed effects. As in Loon and Zhong (2014), we obtain an increase
in CDS spreads. The main difference between our results and theirs is that we do
not find any significant impact of the move to central clearing on CDS liquidity,
nor on trading activity. We show that this difference in results can be attributed to
the improvements in the methodology. Finally, we also consider the effect of central
clearing on bond default spread and find no effect.

Table 5.1 summarizes the main features of the literature dealing with the impact
of central clearing on the CDS market, highlighting the differences in data sets,

methodologies, and empirical results.
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The remainder of this chapter is organized as follows. Section 5.2 presents an
overview of the CDS market and its regulatory reforms. Section 5.3 presents the
framework and methodology applied in this paper. Section 5.4 is a description of the
data. Section 5.5 reports our empirical results about the impacts of the introduction
of central clearing on the CDS market and discusses other potential factors that may

have affected the CDS spread. Section 5.6 is a conclusion.

5.2 The CDS market

5.2.1 CDS prices and their determinants

In a credit default swap contract, the buyer agrees to make regular payments, known
as the premium leg of the contract, until the earliest between the contract maturity or
the default event. The seller makes one contingent payment, known as the protection
leg, when the default event occurs. This payment is considered as a compensation
for the protection buyer’s net loss. The most common methodology for pricing CDS
contracts is to use a reduced-form setting and compute the fair spread, obtained
by equalizing the values of the premium and protection legs, discounted at the
inception date. As an illustration (see, e.g., Longstaff, Mithal, and Neis 2005),
consider stochastic and independent interest-rate and default-intensity processes,
denoted respectively by 7, and &. Given a bond with a unit par value, assume that
the buyer pays a continuous premium c and receives an amount [ upon default (I is
the so-called loss given default of the bond). The present value of the premium leg

can be expressed as follows:

cE [/OTexp (- /Ot(rqufu) du> dt], (5.1)

where T is the maturity of the contract and ¢ is the default date of the underlying

bond. Similarly, the present value of the protection leg can be expressed as

IE [/OTftea:p (- /Ot(ru + &) du) dt] . (5.2)
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The equilibrium premium c is obtained by equalizing (5.1) and (5.2):

. lE [foT Eexp (— fot(ru + &) du) dt] | 5.3

E [fOT exp (— f;(ru + &) du) dt}

Formula (5.3) is obtained under the assumption that the price of the contract
is not affected by liquidity, trading activity, or counterparty risk. Longstaff et al.
(2005) mention that the premium s should be lower if the protection seller might
not be able to honor its contractual obligations. The authors also argue that CDS
spreads are less sensitive to liquidity risk than are corporate bonds because of their
contractual nature, and they hence consider the spread to be a pure measure of
default risk. This assumption was challenged after the 2007 financial crisis.

Recent papers provide empirical evidence that CDS spreads contain a non-
negligible liquidity premium. Tang and Yan (2007) document that this premium is
on average 13.2 basis points (bps). Buhler and Trapp (2009), relying on a reduced-
form approach that includes a liquidity discount factor, find that the liquidity pre-
mium accounts for 5% of the mid quotes. Junge and Trolle (2015) develop an asset
pricing model to extract liquidity from CDS data, and estimate that liquidity risk
represents about 24% of CDS spreads. Many other papers, using various methodolo-
gies, confirm the existence of a liquidity premium in non-centrally-cleared markets
(see, for instance, Chen, Fabozzi, and Sverdlove 2010; Bongaerts, Jong, and Driessen
2011; Qiu and Yu 2012; Lesplingart, Majois, and Petitjean 2012; Kuate Kamga and
Wilde 2013; and Pires, Pereira, and Martins 2015). Since the premium varies cross-
sectionally and over time, it is not straightforward to provide a general estimation for
this component. In addition, numerous liquidity measures can be used, which may
lead to different estimates. Nonetheless, our concern in this paper is not to measure
how liquidity affects CDS spreads but rather to evaluate the relative magnitude of
a potential liquidity premium between cleared and non-cleared markets.

On the other hand, trading-activity measures can disclose additional trading

information that is not necessarily contained in liquidity measures. In fact, Kyaw
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and Hillier (2011) find that the relation between trading activity and liquidity is not
always positive. They show that an increase in trading activity is associated with an
improvement in liquidity for large stock portfolios, but with a reduction in liquidity
for small stock portfolios. Moreover, Silva (2015) argues that the informational
content of open-interest variables can be used as a predictor of CDS spread changes,
by showing that open-interest measures contain private information that precedes
CDS price movements. Hence, it is important to account for CDS trading-activity
variables, since they may be used as an additional predictor of spreads.

Finally, the debate about the contribution of counterparty risk in the price of
credit protection is still open, due to the difficulty of obtaining data that identifies
the protection seller. Jarrow and Yu (2001) and Hull and White (2001) develop
theoretical models that account for a possible correlation between the default of
the reference entity and that of the seller of the credit protection (i.e., the so-
called wrong-way risk), and show that CDS spreads decrease when this correlation
increases. In their numerical illustrations, Hull and White (2001) find that an im-
provement in the credit rating of a protection seller, from BBB to AAA, increases
CDS spreads by 5 to 36.1 bps, depending on the default correlation reflecting the
counterparty risk in the CDS valuation. Empirically, Arora, Gandhi, and Longstaff
(2012) document that the relation between the dealer’s credit risk and the CDS
spreads is statistically significant but economically very small. Specifically, they
estimate that an increase of 645 bps in the dealer’s credit risk results in a decrease
of only 1 basis point in the price of protection. These results are supported by
the analysis of Du et al. (2018), who also rely on panel regressions and argue that
market participants manage counterparty risk by selecting dealers with a low credit
risk. They estimate that a 100 bps increase in the dealer’s credit spread reduces the
CDS spread by about 0.6 bps.

Counterparty risk can also be analyzed from a different perspective, by quantify-
ing the Credit Value Adjustment (CVA), which is defined as the difference between

the value of a counterparty-risk-free portfolio and that of a comparable portfolio
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subject to counterparty risk. The CVA, an adjustment made to compensate one
party for the other’s default risk, also represents the market value of the counter-
party risk. Brigo and Chourdakis (2009) evaluate the CVA of CDS contracts, taking
into account default correlation and credit spread volatility. In their illustrations,
the CVA of CDS contracts ranges from zero to 91 bps when the correlation is very
strong. In the case of a moderate correlation of 20%, the CVA ranges between 15
and 25 bps, depending on the credit spread volatilities of the reference entity and
of the counterparty. These estimates are in line with those of Gregory (2011), who
finds a range of zero to 48 bps, where the CVA increases with the level of correlation.
Brigo, Capponi, and Pallavicini (2014) evaluate the counterparty risk of collateral-
ized agreements. They find that the CVA is an increasing function of the default
correlation, ranging from 10 to 60 bps, with a maximum of 20 bps for a moderate

correlation of 20%.

5.2.2 The principles of central clearing

In recent years, CDS contracts have become very attractive tools to hedge a credit
exposure or take a speculative position without having to purchase the underlying
reference bond. The market grew dramatically after the beginning of the 2000s,
reaching a peak in 2007, and then gradually declined afterwards. Figure 5.1 reports
on the total notional amount outstanding in the CDS market, growing from $6.4
trillion in 2004 to $58.2 trillion in 2007, and dropping to $9.9 trillion by the end of
20161,

Because of the large size of their market and because of their interconnectedness
with other derivatives, CDS play an important role in the stability of the financial
system; hence, the importance of monitoring the risks associated with CDS trading,
and more specifically, counterparty risk. Following the 2007 financial crisis, regula-

tory authorities took new measures to control counterparty risk and increase market

ISource: Bank for International Settlements (BIS).
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Figure 5.1 - CDS Trading Volumes.

This figure plots the notional amounts outstanding in trillion dollars for single-name CDS
contracts (left axis) as well as the proportion of notional amounts cleared by central coun-
terparties (right axis). The data is obtained from the Bank for International Settlements.
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transparency. The most important regulatory change for CDS trades was the in-
troduction of central clearing, as recommended by the Dodd-Frank Act in 2009. A
clearinghouse acts as an intermediary between seller and buyer, and its main role
Is to mitigate counterparty risk. Once a trade is cleared, each party is unaffected
by any default by the other. If a market participant defaults, the CCP honors its
exposures and shares the losses with the other CCP members. The remaining coun-
terparty risk is limited to the default of the CCP itself, which is highly unlikely,
given the strong risk-management procedures it applies?.

ICECC is the market leader in Europe and North America for clearing CDS
trades. It started clearing CDS indices in March 2009 and single-name CDS in
December 2009. Other clearinghouses, such as LCH Clearnet and CME, offer sim-
ilar services but their market share is still small compared to that of ICECC. At

present, the clearing of most CDS indices is mandatory, whilst that of single-name

#We refer the reader to Gregory (2014) for a detailed discussion of the structure and mechanics
of clearinghouses.

79



CDS remains on a voluntary basis. The new system has become increasingly popu-
lar since its inception, and a growing number of reference entities have adhered to
it. Investors are also increasingly aware of the benefits of trading through a clear-
inghouse. According to BIS data, the proportion of notional amount outstanding
with CCPs increased from around 15% in 2010 to 44% in 2016 (see Figure 5.1).
The viability of a CCP is measured by its ability to absorb the losses caused
by the default of one or more of its members. This is generally achieved by impos-
ing strict collateral requirements in the form of margins or contributions to specific
funds. Additionally, clearinghouses rely on a waterfall approach with several lay-
ers of protection, to be able to respond to extreme events. The first layer consists
of the membership criteria. To become a cleared member, an entity must meet
certain requirements of financial stability and operational capabilities. The second
protection layer consists of margin requirements. Members must make an upfront
payment, known as the initial margin, which may be used to close out the posi-
tions of a defaulting member without losses. Daily adjustments to this amount, or
variation margins, are made to mark-to-market losses or gains. Intra-day margin
calls can also be made in case of a large price movement. Under extreme market
scenarios, clearinghouses rely on a third layer of protection, known as the guaranty
fund. Members contribute to this fund by posting additional amounts of collateral,
which help in mutualizing losses if the two first layers are insufficient. The CCP
holds the assessment rights and may ask its members for additional contributions
to the guaranty fund. All of the aforementioned measures are supposed to guaran-
tee sufficient financial resources to bring confidence to the market and reduce the

counterparty risk associated with bilateral trades.

5.3 Methodology

In order to study the impact of central clearing, we compare the spreads of single-

name CDS contracts in two groups of firms, namely, cleared reference entities that
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are members of the clearinghouse and non-cleared reference entities; this comparison
is undertaken before and after adhesion to the CCP, in a DID framework.

The DID methodology has been widely used in various application areas to
evaluate the impact of an exogenous event or of a policy change. The classical two-
by-two design uses data from a treatment group and from a control group, measured
at two different dates: before treatment and after treatment. This methodology is
flexible and can be generalized to the case of multiple groups and multiple time
periods (see, e.g., Bertrand, Duflo, and Mullainathan 2004; Imbens and Wooldridge
2009; and Gormley and Matsa 2011). In our case, since we are dealing with multiple
treatment (clearing) dates, we opt for a generalized DID framework with firm and
time fixed effects.

Since its introduction in 2009, central clearing for single-name CDS has been
conducted on a voluntary basis. Note that when subjects can choose to take the
treatment or not, the two groups are more likely to differ and, therefore, estimates
may be biased due to this endogeneity issue.?

Moreover, not all reference entities are eligible to become clearinghouse members;
firms must meet some capital requirements and show sufficient financial strength in
order to be accepted for central clearing.

To alleviate these endogeneity and heterogeneity concerns, we rely on propensity-
score matching (see Rosenbaum and Rubin 1983; Heckman, Ichimura, and Todd
1997; and Dehejia and Wahba 2002) to construct treatment and control groups
that have similar pre-clearing characteristics, before applying a generalized DID
approach.

The combination of these two methodologies has been used in many fields, in-
cluding finance (Greenaway and Kneller 2008; Lemmon and Roberts 2010; Hofmann
2013; Bandick, Gorg, and Karpaty 2014; Sari and Osman 2015; and Amiram, Beaver,
Landsman, and Zhao 2017), but has not yet been applied to analyze the impact of

#We refer to Li and Prabhala (2005) and Roberts and Whited (2012) for a detailed discussion
on this subject.
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central clearing on CDS spreads.

5.3.1 Generalized DID with dynamic matching

To apply DID, we need to compose a treatment and a control group containing
firms that have similar characteristics just before the treatment event. The first
step consists of constructing a sample of candidate treatment and control entities,
and computing their propensity scores on the basis of pre-clearing characteristics.
Specifically, we consider the 29 clearing dates enumerated in Table 5.2 as the various
possible times for adhering to a CCP. These treatment dates can be interpreted as
hypothetical events for the control group. Each non-cleared firm thus generates up
to 29 firm-event entities. The sample also contains the cleared firms, paired with
the event corresponding to their clearing date.

We then estimate the following Probit model, using the sample of cleared and
non-cleared firm-event entities and the corresponding observable variables that are

relevant to clearinghouses:
Pr(Y =1|X) =9(X - 5), (5.4)

where Y is a binary random variable that equals 1 if the firm is centrally cleared
and 0 otherwise, ® is the standard normal cumulative distribution function, X is the
vector of regressors that influence the outcome Y, - is the inner product operator,
and [ is a vector of parameters. The vector 3 is obtained by maximum likelihood and
is used to estimate the probability, for each firm-event entity, of being accepted for
central clearing. This probability is the propensity score associated to a combination
of a firm and a possible clearing date. We estimate the regressors by averaging them
over a window of [—8, —2] months before the relevant event, where the two months
immediately prior to the clearing date are excluded so that the data does not contain
any market anticipation. The propensity score of a given control firm-event entity
thus indicates the joint probability of the firm being selected for central clearing and

deciding to adhere to a CCP at the corresponding clearing date.
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Table 5.2 — Clearing Dates.

This table presents the clearing dates and the number of cleared entities per date for North-
American firms cleared from 2009 to 2015. This information is obtained from ICECC.

Clearing date Number of cleared entities
21-Dec-09 2
11-Jan-10 3
01-Feb-10 2
15-Feb-10 14
08-Mar-10 9
29-Mar-10
19-Apr-10
10-May-10
07-Jun-10
06-Jul-10
09-Aug-10
30-Aug-10
28-Mar-11
11-Apr-11
02-May-11
13-Jun-11
14-Nov-11
09-Oct-12
22-Oct-12
05-Nov-12
19-Nov-12
30-Sep-13
23-Jun-14
07-Jul-14
21-Jul-14
04-Aug-14
20-Jul-15
03-Aug-15
17-Aug-15

—
ot

— — —
NSO D OO0 UW© 00O 00— D0
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The second step consists of matching cleared and non-cleared entities on the
basis of the propensity scores. We match with replacement each cleared firm with
its closest neighbor from the group of non-cleared firm-event entities. Our final
sample is then composed of matched firm-event entities. A detailed example of the
matching procedure is provided in Appendix A.

We then apply generalized DID regression to the matched sample in order to test
for the presence of statistically significant impact factors. Using a generalized DID
framework allows us to account for the different treatment times of CDS contracts.
More specifically, to isolate the effect of central clearing on a given factor, we estimate

the following DID equation:
Factor;y = By + f1Cleared; s + y1i + Yot + €its (5:5)

where subscript i denotes a firm-event entity and subscript ¢ denotes a date in the
event window. The dependent variable Factor;; will take various definitions in order
to investigate the impact of central clearing on CDS spreads, liquidity, trading ac-
tivity, as well as on bond default spreads. The main explanatory variable Cleared, ;
is a binary variable that indicates whether the reference entity 7 is centrally cleared
or not on date ¢t. This variable is the equivalent of the interaction term in the
classic two-by-two DID design. The treatment effect is given by the corresponding
coefficient 3;. The fixed effects of the generalized DID setting help control for unob-
served heterogeneity across time and reference entities, thereby alleviating concerns
about any omitted variables that might affect both groups in the same way. The
firm fixed effect, 7;, captures differences across firms that are constant over time
and replaces the dummy variable that indicates whether the firm is belongs to the
treatment group or not under the classic DID design. The time fixed effect, 7y,
captures differences over time that are common to all firms and replaces the dummy
variable that indicates whether we are in the post-event period or not in the classic
DID design. We deliberately do not control for specific time-varying variables to

avoid confounding estimates of (3, since these variables might also be affected by
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the move to central clearing. In all our regressions, the standard errors are clustered

by firm.

5.3.2 Standard DID with static matching

In order to assess the robustness of our findings to the choice of methodology, we
apply to our sample the methodology used in Loon and Zhong (2014) to analyze
liquidity and trading activity. This methodology consists of using data from a fixed
period (a window prior to December 2009) to estimate the Probit model (5.4) and
then matching with replacement each cleared entity with the five noncleared entities
that have the closest propensity score. The difference-in-difference is then evaluated
by comparing, around the treatment date, the change in the relevant factor of a
cleared firm with the average change in the corresponding matched firms. We call
this procedure static matching; under this matching procedure, a firm cleared in
2011, for example, is matched with a control firm that had similar characteristics to
it in 2009.

We argue that the period over which the independent variables are measured is
important for the performance of the matching operation and the elimination of the
selection bias. Clearly, a firm’s financial situation can change considerably over time,
making a good match in 2009 no longer valid two years later. The dynamic matching
procedure outlined above matches cleared firms with firms that are similar to them
at the moment of their decision to adhere to central clearing. Our experiments
indicate that the differences between our findings and those of Loon and Zhong

(2014) can be mainly explained by the difference in methodology.

5.4 Data

We use seven years of CDS data on North American firms, observed from January

2009 to December 2015, and compiled from different sources. From Markit, we
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obtain daily CDS spreads of five-year senior unsecured contracts denominated in
USD (CDS_Spr). We follow the market convention for North American contracts
since April 8, 2009, and focus on contracts with a no-restructuring clause (XR). We
delete observations with a missing five-year spread and keep only reference entities
with at least 20 observations. We also obtain from Markit the Composite Depth
(Comp_ Dep), which is the number of contributors whose CDS spreads have been

used to calculate the five-year CDS spread.

5.4.1 Liquidity data

Our liquidity measures are mainly collected from Markit Liquidity. This database
contains data that starts in April 2010 and was updated in November 2011 to include
new variables. Specifically, we obtain bid-ask spreads from Markit Liquidity, and
supplement the missing pre-April 2010 information from CMA and, where necessary,
from Bloomberg to obtain a larger coverage. We then construct the Relative Quoted
Spread (RQS), computed as the bid-ask spread divided by the spread midpoint. In
addition, we rely on other liquidity measures from Markit Liquidity, depending on
data availability. From April 2010 to December 2015, we use the Upfront five-year
bid-ask spread (Upf BA) and the Markit liquidity score (Lig_sc), defined on a
scale from 1 to 5, where 1 indicates the highest liquidity. During this period, we
also have the Quotes count (Quotes) and the Dealers count ( Dealers), defined as the
total number of unique quotes for a reference entity and the total number of distinct
dealers quoting the reference entity across all available tenors, respectively. From
November 2011 to December 2015, we have more detailed information about the
quotes and dealers count. We obtain the Five-year quotes count (5Y _ Quotes) and
the Five-year dealers count (5Y  Dealers), defined respectively as the total number
of unique quotes for a reference entity and the total number of distinct dealers
quoting the reference entity for the five-year tenor. Data about the remaining tenors

is given by the variables Non five-year quotes count (Non_5Y Quotes) and Non
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five-year dealers count (Non_5Y  Dealers).

5.4.2 Trading activity data

The data on trading activity is obtained from the Depository Trust and Clearing
Corporation, which covers approximately 98% of all credit derivative transactions
in the global marketplace. The first available report is for the week that ended on
October 31, 2008.

For each entity, we have weekly information on the gross and net notional
amounts outstanding, i.e., the par amount of credit protection that is bought or
sold, as well as the number of contracts outstanding. The gross notional amount
includes all the contracts on a given firm, and thus increases with every trade, even
if a new position offsets another. On the other hand, the net notional amount,
which accounts for offsetting trades, indicates the actual amount insured by CDS
contracts.

DTCC also discloses weekly data about market risk transfer activity in terms
of gross notional value and number of contracts. This activity captures transaction
types that result in a change in the market risk position of market participants,
such as new trades, the termination of an existing transaction, and the assignment
of an existing transaction to a third party. These measures exclude moving bilateral
trades to CCPs, portfolio compression, and back-loaded trades, since all these trades
do not change the risk profile. The market risk transfer activity data is available on
a weekly basis, starting from the week that ended on July 16, 2010.

We end up with the five following variables defining the CDS trading activ-
ity: Gross notional amounts (Gross_ Not), Net notional amounts (Net_ Not), Con-
tracts (Contr), Gross notional-Risk transfer (Gross Not_Risk), and Contracts-

Risk transfer (Contr_Risk).
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5.4.3 Central clearing data

We identify the name of the entities that were centrally cleared as well as the cor-
responding clearing date by using the official list on the ICECC website and the
regularly published circulars announcing the single-name CDS that are going to be
cleared. We also check whether the entity has gone through any type of restructur-
ing event that might affect its CDS spread. In such cases, the entity is excluded
from the list, since we want to focus exclusively on the impact of central clearing.
Reference entities that have experienced a merger or were acquired by another com-
pany are also eliminated. We keep entities that had a renaming event since this is
unlikely to affect the spreads. We finally merge DTCC with Markit by name and
then identify centrally-cleared entities with the Markit redcode. After this filtering
and merging process, we obtain a total of 607 reference entities, of which 198 are
centrally cleared. Our sample for the Probit estimation contains 7,102 firm-events.
The final matched sample for the DID consists of the 198 cleared firms and their

corresponding non-cleared firm-events.*

5.4.4 Bond data

To analyze the impact of central clearing on the default probability in the underlying
bond market, we need to construct a bond default spread measure, since default
spread is not observed in the market. To do so, we implement the J.P. Morgan Par
Equivalent CDS Spread (PECS) methodology.

The data is mainly obtained from TRACE, which provides information about
the prices, and FISD, which contains the different characteristics of the bonds. We
keep only straight and redeemable bonds in FISD and we apply the Dick-Nielsen
(2009) filter to TRACE data before merging the two datasets in order to eliminate

reporting errors. Our objective is to have a unique bond for each issuer and therefore

4Because the match is made with replacement and because a firm can be matched at various
event dates, the total number of control firms in the final sample is 100.
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we choose, among bonds with maturities between three to ten years, the bond with
the maturity closest to five years. We complement this dataset with the bond
ratings obtained from S&P to be able to classify bonds into investment grade and
high yield. To avoid losing observations, we replace any missing information with
Moody’s rating.

Since most of the bonds in the data set are callable, we need to apply a correction
to the maturity in the computation of the PECS. For investment-grade bonds, we
keep the original maturity since the bonds are not likely to be called. For callable
high-yield bonds, we compute a new maturity based on the Yield-To-Worst (YTW),
defined as the minimum between the Yield-To-Call, computed for each possible call
date, and the Yield-To-Maturity (YTM), assuming no prior default. If one or more
call dates have passed and the bond has not yet been called, then the calculation of
the YTW is based on all the remaining call dates. This adjusted maturity reflects
the worst scenario for a bondholder.

We then compute the daily default spread measure of the bond associated to

each CDS contract using the following steps:

e Bootstrap default probabilities from the associated CDS market quotes.
e Compute the present value of the bond, using the implied default probabilities.

e Apply a parallel shift to the default probability curve so that the computed
present value matches the bond’s market price. The shift is obtained by solving

a minimization problem.

e Compute survival probabilities using these implied probabilities and use the
traditional CDS pricing equation (5.3) to compute an implied CDS spread.
This spread is the variable PEC'S, which is a measure of bond default risk.
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5.4.5 Variables

Table 5.3 provides the list of all the variables used in our analysis, along with
the expected sign of the interaction term in the DID regression. Clearinghouses
are expected to reduce counterparty risk, and boost liquidity and trading activity.
Therefore, CDS contracts in the treatment group are anticipated to have higher
spreads, liquidity and trading activity following central clearing, as compared to the
control group. This translates into a positive sign for the coefficient 8; in Equation
(5.5) for the case of CDS spread, liquidity, and trading-activity variables and a

negative sign for this coefficient in the case of illiquidity variables.
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5.5 Empirical results

5.5.1 Matching procedure

We first have to choose the appropriate variables to include in the Probit estimation.
These variables should have an impact on the decision of a CCP about accepting a
firm for central clearing. Intuitively, a CCP selects liquid contracts that have a low
default risk, in order to be able to liquidate the position quickly and efficiently in
the case of an undesirable event. Cleared contracts should therefore have lower CDS
spreads and be traded more often than the other contracts. To support this intuition,
Slive et al. (2012) conduct a Cox survival analysis and find that CCPs are more likely
to accept contracts with larger notional amounts outstanding, higher liquidity, and
smaller CDS spreads. Loon and Zhong (2014) also confirm that liquidity and open
interests (available through DTCC data) are important criteria to accept obligors
for central clearing. Hence, we take into account variables that fall into the above
categories to construct the two groups.

In Table 5.4, we present four different specifications, including different combi-
nations of variables, in order to select the best model. In all four specifications,
variables are statistically significant and have the expected sign, in line with the
ICECC requirements. The higher the CDS spread, the lower is the probability
of being accepted for central clearing, because the firm has a higher default risk.
Moreover, we confirm that reference entities with more liquid contracts and larger
open interests have higher probabilities of being accepted by a CCP. We finally se-
lect Model 3, which has the highest log likelihood ratio and includes the important
determinants of central clearing.

After matching with replacement each cleared entity with its nearest neighbor
from the control group, we evaluate the quality of this matching and investigate
whether a selection bias is present, using various statistics presented in Table 5.5.

Panel A compares the mean of each variable included in the model in the treatment
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Table 5.4 — Probit Estimation.

This table presents four probit estimations involving different combinations of variables
and fitted on cleared and non-cleared entities, where the dependent variable is a binary
variable that equals 1 if the firm is centrally cleared by ICECC during 2009-2015 and 0
otherwise, The vector of regressors’ coefficients is estimated by maximum likelihood. We
use data in the six-month period defined by the firm-event entity to compute the aver-
age of each regressor. CDS_Spr is the composite spread for the five-year tenor. RQS is
the five-year relative quoted spread computed by dividing the bid-ask spread by the mid
spread. Comp_ Dep is the number of contributors whose CDS spreads have been used to
calculate the five-year CDS spread. Contr is the number of contracts outstanding for each
CDS contract. Contr? is the squared value of Contr. Net_Not is the sum of the net pro-
tection bought by net buyers (or equivalently sold by net sellers). Net Not? is the squared
value of Net_Not. Industry dummies are included in all the models and constructed
based on the ten following sectors: telecommunications services, healthcare, technology,
basic materials, utilities, industrials, financials, energy, consumer services and consumer
goods. N is the number of firm-event entities. Numbers in brackets are standard errors.
*, **, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.

Variables Model 1 Model 2 Model 3 Model 4
CDS _Spr -0.00145%**  -0.00143***  -0.00141*** _0.00127%**
(0.000218)  (0.000218)  (0.000217)  (0.000208)
Contr 7.77e-05***  (0.00157*** 0.00152%**
(2.39¢-05)  (0.000151)  (0.000156)
Contr? -2.70e-07*** 2 64e-Q7***
(2.96e-08)  (2.99¢-08)
RQS -0.106*** -0.0904*** -0.0899*** -0.0946%**
(0.0127) (0.0132) (0.0132) (0.0129)
Comp_ Dep 0.0379 0.0913***
(0.0316) (0.0297)
Net_ Not 7.91e-10%**
(1.24e-10)
Net_ Not? -1.8e-19%**
(3.00e-20)
Constant ), 597 ** -2 391 FH* SN -1.620%**
(0.216) (0.275) (0.314) (0.276)
Pseudo R? 0.121 0.2155 0.2163 0.1645
LR Chij? 219.54 391.12 392.56 298.67
Log likelihood -797.80 -712.02 -711.30 -758.24
N 7,102 7,102 7,102 7,102

93



and control groups, both before and after the matching. We also compute the
standardized bias, which is the difference between the means of the two groups,
scaled by the average standard deviations. After the matching, and for all the
variables, the means are closer for the matched sample, and the bias is reduced by
more than 81%, which indicates that the characteristics of the two groups are very
similar.

In Panel B, we perform additional tests to assess the matching quality. Specif-
ically, we fit the Probit model again, this time on the matched sample. If the two
groups are well matched, then we should obtain a bad fit. In fact, the variables
that were useful for deciding if a company is eligible for central clearing should
no longer be, since the non-cleared firms are similar to the cleared ones along the
key dimensions relevant for central clearing. This intuition is confirmed by our re-
sults. We obtain a very low likelihood ratio and pseudo R?, as shown in Table 5.5.
Furthermore, we can no longer reject the null hypothesis that all the variables are
jointly nonsignificant (p-value = 0.905). The mean and median biases (4.9 and 3.4,
respectively) are also greatly reduced, compared to the Probit estimation with the
unmatched sample (25.4 and 16.5, respectively). All the above results suggest that
the selection bias is substantially reduced across the two samples.

In the next sections, we rely on the matched sample to study the implications of

joining a CCP.

5.5.2 Impact of central clearing

Impact on CDS spreads

Here, we examine the impact of clearing on CDS spreads by using the generalized
DID methodology. Specifically, we test the following hypothesis:
H1: CDS spreads increase when the reference entity becomes centrally cleared.
We start by plotting in Figure 5.2 the daily mean CDS spread for the treatment

and control groups during a period of [—250,50] days around the central clearing
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Table 5.5 — Balancing Tests.

This table presents balancing tests between the treated and control groups in the un-
matched and matched samples. In Panel A we compare the means of the two groups
and we compute the standard bias, that is, the difference between the means of the two
groups scaled by the average standard deviations. CDS Spr is the composite spread for
the five-year tenor. RQS is the five-year relative quoted spread computed by dividing the
bid-ask spread by the mid spread. Comp Dep is the number of contributors whose CDS
spreads have been used to calculate the five-year CDS spread. Contr is the number of
contracts outstanding for each CDS contract. Contr? is the squared value of Contr. In
panel B, we fit the Probit model first on the unmatched sample and then on the matched
sample to test if variables that were useful in predicting the probability of a firm being
eligible for central clearing in the full sample are still significant in the matched sample.

Panel A : Mean comparison

Variable Sample Mean Treated Mean Control % bias % bias reduction
CDS Spr Unmatched 173.2 241.01 -13.6 81.9

Matched 173.2 185.47 -2.5
Contr Unmatched 2260.2 1511.5 61.6

Matched 2260.2 2280.9 -1.7 97.2
Contr? Unmatched  6,00E+06 4,30E+06 20.2

Matched 6,00E-+-06 6,10E-+06 -1 94.9
RQS Unmatched 7.672 12.339 -74.3

Matched 7.672 7.459 34 95.4
Comp_Dep Unmatched 6.3666 5.2254 81.2

Matched 6.3666 6.236 9.3 88.6
Panel B : Probit estimations
Sample Pseudo R? Likelihood ratio Chi®> p>Chi? Mean bias Median bias
Unmatched 0.216 392.56 0.000 25.4 16.5
Matched 0.014 7.69 0.905 4.9 34
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event (Day 0). We first note that both groups have the same pre-treatment trend,
which confirms again the matching quality and makes it possible to graphically
verify the parallel trend assumption of the difference-in-differences model. We also
observe that the mean CDS spread of cleared entities is initially lower, and then
increases following the event date. This is consistent with the notion of CCPs
accepting entities with a lower default risk. Figure 5.2 also suggests that the spread
of cleared entities gradually increases after the move to central clearing, and shows
that the difference between the two groups reaches approximately 28 bps by the
end of our event window. This behavior could be the result of increased confidence
in the clearinghouse as an entity able to protect the investor against the seller’s
default and to mitigate counterparty risk, where market participants are willing to
pay more to benefit from this advantage. We also observe that the trend increase in
the spreads of cleared entities starts on average one week before the clearing date.
This pattern could reflect an anticipatory effect by market participants.

We then test hypothesis H1 by conducting a difference-in-differences analysis on
the matched sample. We estimate Equation (5.5) with CDS_Spr as the dependent
variable and we focus on the coefficient (3, of the variable Cleared. In the first
column of Table 5.6, we start with a large event window of [-250, 50] days and we
find that the coeflicient [ is positive and statistically significant. Our results show
that moving a CDS contract from the OTC market to a clearinghouse increases its
spread by 19.2 bps on average.

Despite the differences in methodology and sample size, this result is in accor-
dance with most of the findings in the literature. Loon and Zhong (2014), using
an event study with 132 cleared firms find that the spreads rise with the initiation
of central clearing. Kaya (2017), using panel regression, estimates this increase to
around 24 bps in a sample of 85 nonfinancial firms. Du et al. (2018) find a decrease

in CDS spreads using panel regression with 142 cleared firms.”

5To check the robustness of our estimations, we consider different event windows of various
lengths, including the [-250, 20] days considered by Du et al. (2018). All the specifications lead to a
positive and statistically significant coefficient, with a lower magnitude for shorter event windows.
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Figure 5.2 — Comparison of CDS Spreads.

This figure compares the CDS spreads of cleared and non-cleared entities. CDS Spr is
the composite spread for the five-year tenor and is obtained from Markit. The horizontal
axis represents time in days where date 0 denotes the central clearing event. The dotted
and solid lines represent the average daily CDS spread of the treatment group and the
control group respectively. Both groups are constructed using dynamic propensity score
matching.

CDS_Spr

Considering the main purpose of creating a central counterparty and the magni-
tude of the increase in CDS spreads, we can presume that this change is likely to be
a reflection of a reduction in counterparty risk. The estimation of the coefficient /3,
is in the range provided by the papers that study the pricing of counterparty credit
risk in CDS spreads. For instance, Brigo and Chourdakis (2009) find a range of 15
to 25 bps in the case of a moderate default correlation. The CCP provides several
layers of protection that make the contract more reliable, and thus, more expen-
sive. However, other factors, such as a possible improvement in liquidity or trading
activity, or an increase in the underlying bond default risk, may also contribute to
this observed rise in the CDS spreads. We assess the potential effects of the other

factors in the following subsections.
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Table 5.6 — Difference-in-Differences Analysis for CDS Spreads

This table presents the estimates of the coefficients in the generalized DID equation
where the dependent variable CDS Spr is the composite spread for the five-year tenor.
Observations are pairs of firms (i) and dates (t). Cleared;; is a binary variable that
indicates if the firm ¢ is centrally cleared at date t or not. The constant term in-
cludes firm and time fixed effects (a; and 7 respectively). In each column, we esti-
mate the equation using a different estimation window around the clearing event date.
In all the regressions, the standard errors (in brackets) are clustered by firm. *, **
and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.

CDS_Spriy = Bo + Bi1Cleared; s + a; + v + €4

CDS _Spr [-250 , 50| [-250, 20| [-100, 50] [-100 , 20]
Cleared 19.2%* 18.2%* 10.1%* 8.37*
(8.38) (7.79) (5.57) (4.70)
Constant 385.4%%*  386.6***  166.4***  164.1%**
(73.2) (72.2) (18.4) (18.8)
Observations 102,691 93,139 53,035 42,777
Number of firms 298 298 298 298
R-squared 0.224 0.224 0.260 0.247

Impact on liquidity

The introduction of central clearing may help improve CDS liquidity by attracting
more market participants. In fact, the mitigation of counterparty risk, the increased
transparency, and the reduction of operational risk may all incite more institutions
to get involved in CDS trading. On the other hand, the demands of this new
scheme, and particularly the margin requirements, could prevent some participants
from having access to clearinghouses: not all investors can afford to pay collateral
demands on a daily basis and to set aside a non-negligible amount of capital as a
contribution to the default fund. According to Cont (2017), the collateral maintained
by CCP members in the form of liquid assets was more than 400 billion USD in 2016.
Hence, the overall impact of central clearing on market liquidity is still unclear. If the
first effect prevails, then an improvement in CDS liquidity will widen CDS spreads.

The second effect might also be sizeable and compensate for the benefits of the first
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improvement. We expect, however, an improvement in liquidity, as shown by Slive
et al. (2012) and Loon and Zhong (2014).

By applying the same methodology as in the previous section, consisting of
comparing groups matched on the basis of propensity scores, we empirically test the
following hypothesis:

H2: Central clearing improves CDS liquidity.

We have a total of 10 liquidity measures, mainly obtained from Markit Liquid-
ity. In Figure 5.3, we plot the evolution of the daily mean of the variables RQS
and Comp_ Dep in the control group against that of the treatment group during a
period of [~250,50] days around the central clearing event. Since liquidity is a key
dimension for accepting a reference entity for central clearing, it is important to have
similar pre-clearing trends for both groups. Figure 5.3 shows that the two graphs
are very similar and have the same trend over the whole event window. Figures
comparing the graphs for other liquidity measures are presented in Appendix B and
show similar behavior. Unlike in the previous analysis of CDS spreads, where the
cleared entities had a different behavior after the clearing event date, none of our
liquidity measures exhibit a divergence in trend following the move to a clearing-
house. Overall, this preliminary investigation seems to indicate that CDS liquidity
is not affected by the clearing event.

We now apply the difference-in-differences analysis to each liquidity measure,
used as the dependent variable in Equation (5.5). We mainly focus on the RQS
and Comp Dep variables because they fully cover our sample period. For these two
measures, we fit the regression equation using various event windows. For all the
specifications, presented in Table 5.7, none of the coefficients of the binary variable
Cleared are statistically significant, suggesting that central clearing does not have
any impact on CDS liquidity.

As a robustness check, we estimate the same equation using the remaining lig-

uidity measures. The results for an event window of [—250,50] days are reported
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Figure 5.3 — Comparison of liquidity measures.

This figure compares the liquidity measures of cleared and non-cleared entities. RQS
is the five-year relative quoted spread computed by dividing the bid-ask spread by
the mid spread. Comp_Dep is the number of contributors whose CDS spreads have
been used to calculate the five-year CDS spread. The horizontal axis represents time
in days where date 0 denotes the central clearing event. The dotted and solid lines
represent the average daily liquidity measure of the treatment group and the control
group respectively. Both groups are constructed using dynamic propensity score matching.

Panel A : Comparison of Relative Quoted Spreads.

RQS

)
wn

Panel B : Comparison of Composite Depths.

Comp_Dep




in Table 5.8.5 All interaction coefficients 3; are negligibly small and statistically
nonsignificant, except for the coefficient of the variable Lig sc, which is significant
at the 10% level.

Our results suggest that cleared reference entities do not experience a significant
improvement in their liquidity following central clearing. The only variable where the
null hypothesis can be rejected (at the 10% level) does not have strong granularity
(it takes integer values from one to five, while the coefficient 3; = 0.0553) and may
not have much discriminatory power with respect to the treatment event (see panel
B of Figure B.1 in Appendix B).

The positive effects caused by the mitigation of counterparty risk and increased
transparency may be counterbalanced by the inconvenience of daily margining. It
might also be the case that the accepted contracts are already liquid, which makes
them less likely to gain any additional liquidity benefit. Note that these results
do not mean that liquidity is not priced in CDS contracts, but rather that liquid-
ity is homogeneous among cleared and non-cleared contracts of firms with similar

characteristics that would be eligible for central clearing.

6Results for smaller event windows are qualitatively the same.
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Table 5.7 — Difference-in-Differences Analysis for the liquidity measures.

This table presents the estimates of the coefficients in the generalized DID equation. In
panel A, the dependent variable RQS is the five-year relative quoted spread computed
by dividing the bid-ask spread by the mid spread. In panel B, the dependent variable
Comp_Dep is the number of contributors whose CDS spreads have been used to calculate
the five-year CDS spread. Observations are pairs of firms (i) and dates (t). Cleared;;
is a binary variable that indicates if the firm 7 is centrally cleared at date t or not. The
constant term includes firm and time fixed effects (o; and v; respectively). In each col-
umn, we estimate the equation using a different estimation window around the clearing
event date. In all the regressions, the standard errors (in brackets) are clustered by firm.
*, ¥ and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.

Liquidity _measure; ; = o + B1Cleared; + + o; + v + €4
Panel A : Difference-in-Differences Analysis for the Relative Quoted Spread.

RQS [-250 , 50] [-250 , 20] [-100 , 50] [-100 , 20]
Cleared -0.0194 -0.0161 0.0173 -0.00285
(0.151) (0.0612) (0.149) (0.0609)
Constant 5.2] %% ey g, g5t N
(0.763) (1.67) (1.18) (0.410)
Observations 102,591 93,07 52,947 42,720
Number of firms 298 298 298 298
R-squared 0.159 0.019 0.174 0.031

Panel B : Difference-in-Differences Analysis for the Composite Depth.

Comp_Dep [-250 , 50] [-250, 20] [-100 , 50] [-100 , 20]
Cleared -0.0171 0.0264 0.00627 0.0376
(0.0273) (0.0295) (0.0457) (0.0327)
Constant 5.965%%  6.651%**  T.150** 5.686%**
(0.460) (0.460) (0.571) (0.800)
Observations 102,691 93,139 53,035 42,777
Number of firms 298 298 298 298
R-squared 0.018 0.019 0.266 0.028
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These results differ notably from those of Loon and Zhong (2014) who find a
significant improvement in liquidity using standard DID with static matching. To
show that the difference in our results may be explained by methodology, we first
omit the fixed effects v;; and vy from the DID estimation in Equation (5.5), and
find a significant impact for the liquidity variables RQS and Comp Dep. We then
apply the methodology used in Loon and Zhong (2014) to our data. The results,
provided in Table 5.9, indicate a significant impact for the liquidity variables RQ.S

and Dealers.
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Impact on trading activity

Since it has been shown that CCPs have a preference for contracts with large open
interests, we find it interesting to check whether the introduction of central clearing
affects trading-activity variables. Open interest indicates how much debt is insured
with CDS, and could be considered a good measure of the market participants’ de-
mand. On the one hand, the trading activity could increase if participants wanted
to benefit from the reduction in counterparty risk following central clearing. This
behavior could raise the demand and exert an upward pressure on CDS spreads.
On the other hand, informed traders may start looking for alternative derivatives
and more opaque markets because of the increased transparency brought by clear-
inghouses. In such a case, demand for credit protection could decrease and drive
CDS spreads down. We expect the first effect to dominate, given the numerous
advantages of trading through a clearinghouse. Therefore, we propose the follow-
ing hypothesis to test the overall impact of the introduction of central clearing on
trading activity:

H3: Central clearing increases CDS trading activity.

We employ the same methodology to analyze the five trading activity variables
provided by DTCC. We construct weekly means for these variables in the control
and treatment groups matched with propensity scores over a period of [—50,10]
weeks around the clearing event date. Figure 5.4, illustrating gross and net notional
amounts, respectively, shows that the means in the two groups move together during
the pre-treatment period.

Panel A of Figure 5.4 shows an increase of around 7% of the mean gross notional
amount in the treatment group, while the control group maintains the same trend
for the whole event window. Note that there is no such increase in the net notional
amount, indicating that this increase is essentially due to the event itself, that is,
the transfer of the contracts to a clearinghouse, rather than to an increase in the

amount of risk managed in the CDS market.
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For all other trading activity measures, we do not observe any change in trend
following the clearing event (see Appendix B).

To confirm these preliminary observations, we perform difference-in-differences
regressions, using each trading activity variable as the dependent variable in Equa-
tion (5.5). The results corresponding to a window of [—50,10] weeks around the
clearing event are reported in Table 5.10.” We find that Gross _Not (the gross
notional amount) is the only variable having a positive and statistically significant
coefficient for the interaction term. For all the remaining variables, which represent
better proxies for trading activity, coefficients of the interaction term are nonsignif-
icant. Consequently, our results suggest that central clearing does not have any
significant impact on trading activity.

Again, our findings differ from those of Loon and Zhong (2014) who find a sig-
nificant increase in trading activity after a move to central clearing. To show that
this difference is due to the difference in methodology and not to the difference in
samples, we report in Table 5.9 the results obtained by applying the same method-
ology as in Loon and Zhong (2014) to our data. These results show a significant
increase in the number of contracts and net notional amount, suggesting a positive

impact on trading activity.

Impact on bond default spread

The CDS and bond markets are strongly related since the CDS contract is essentially
used to hedge bond positions. Bond issuers may take riskier positions if they know
that their associated CDS are protected against counterparty risk once they are
centrally cleared. A similar moral-hazard situation was documented in the bank-
ing industry, where bank managers became less risk averse when their customers
obtained a deposit insurance protecting them from a bank default event (Diamond
and Dybvig, 1983). In fact, this moral-hazard effect is often used to justify banking
regulations (Crouhy, Galai, and Mark, 2000).

"Results for smaller event windows are qualitatively the same.
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Figure 5.4 — Comparison of trading activity measures

This figure compares the trading activity measures of cleared and non-cleared entities.
Gross_ Not represents the total notional of CDS contracts bought (or equivalently sold)
for each reference entity. Net Not is the sum of the net protection bought by net buyers
(or equivalently sold by net sellers). The data is on a weekly basis and is obtained from
DTCC. The horizontal axis represents time in weeks where date 0 denotes the central
clearing event. The dotted and solid lines represent the weekly average trading activity
measure of the treatment group and the control group respectively. Both groups are
constructed using dynamic propensity score matching.
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Table 5.10 — Difference-in-Differences Analysis for the trading activity measures.

This table presents the estimates of the coefficients in the generalized DID equation
where, in each column, the dependent variable is a trading activity measure obtained
from DTCC. Gross_Not is the sum of all notional CDS contracts bought (or equiva-
lently sold) for each reference entity. Net Not is the sum of the net protection bought
by net buyers (or equivalently sold) by net sellers. Contr is the number of contracts
outstanding for each CDS contract. Gross_Not Risk Captures transaction types that
result in a change in the market risk position. Contr Risk is the number of con-
tracts involved in market risk transfer. Observations are pairs of firms (i) and dates
(t). Cleared;; is a binary variable that indicates if the firm 7 is centrally cleared at
date t or not. The constant term includes firm and time fixed effects (o; and ; re-
spectively). The estimation window is [-50, 10] weeks around the clearing event date.
In all the regressions, the standard errors (in brackets) are clustered by firm. *, **,
and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.

Trading _activity_measure;; = By + f1Cleared; s + a; + v + €it

Measure Gross Not Net  Not Contr  Gross_ Not_Risk  Contr_Risk
Cleared 1.072e+09***  -1.303e+06 19.29 5.039e+06 -1.117
(1.509e+08) (1.539e—07) (18.88) (7.264e-+06) (1.386)
Constant 1.472e+10%*%  1.388e+09*** 2 312%** 9 570e--(7*** 21.71%**
(6.617e+08)  (5.805e—07) (73.83) (1.625e--07) (3.545)
Observations 20,389 20,389 20,389 12,452 12,452
Number of firms 296 296 296 237 237
R-squared 0.403 0.386 0.433 0.301 0.317

We now check whether the increase in CDS spreads may be due to a change in
the default risk of the underlying bond, by testing the following hypothesis:

Hj: Central clearing increases the bond default risk.

We compute the daily mean of the variable PEC'S for the control and treatment
groups over the period [—250, 50] around the clearing event date. Figure 5.5 shows
that there is no trend change after the event, suggesting that the default spread
of bonds of cleared entities is the same before and after joining the clearinghouse.
We confirm this observation by estimating the DID in Equation (5) using PEC'S
as a dependent variable. For all the estimation windows reported in Table 5.11, the

coefficient of the interaction term is not statistically significant, which indicates that
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Figure 5.5 — Comparison of Par Equivalent CDS Spreads.

This figure compares the Par Equivalent CDS Spreads (PEC'S) of cleared and non-cleared
entities. This variable measures the default spread of the underlying bond and is computed
using the J.P. Morgan methodology. The horizontal axis represents time in days where
date 0 denotes the central clearing event. The dotted and solid lines represent the daily
average PECS of the treatment group and the control group respectively. Both groups are
constructed using dynamic propensity score matching.
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the default risk of the underlying bond does not increase due to a move to central
clearing,® confirming that the increase in CDS spreads is not caused by a change in
the bond market.

In addition, we assess whether central clearing reduces the negativity of the
CDS Bond basis computed as the CDS spread minus the PECS. If the negative
basis persists, then arbitrage opportunities could arise due to counterparty risk,
bond illiquidity or high funding risks. We apply the same previous methodology by
estimating the DID and computing the daily means of the basis for the treatment
and control groups. Figure 5.6 and table 5.12 show that there is no impact on the

basis following the clearing event.

8Similar results are obtained when we add bond rating dummies as control variables.
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Table 5.11 - Difference-in-Differences Analysis for the Par Equivalent CDS Spread.

This table presents the estimates of the coefficients in the generalized DID equation where
the dependent variable PECS measures the bond’s default risk using the J.P. Morgan
methodology. Observations are pairs of firms (i) and dates (t). Cleared;; is a binary
variable that indicates if the firm i is centrally cleared at date ¢ or not. The con-
stant term includes firm and time fixed effects (c; and 7, respectively). In each column
we estimate the equation using a different estimation window around the clearing event
date. In all the regressions, the standard errors (in brackets) are clustered by firm. *,
**, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.

PECSi,t = Bo + BlClearedi,t + @ + Y+ € g

PECS [250 , 50] [-250 , 20] [-100 ,50] [-100, 20]
Cleared 3.025 2.533 6.317 5.900

(8.503)  (8.311)  (4.476)  (3.943)
Constant B28.0%FF  526.3%KK  365.2%%% 360 grk

(24.33)  (25.64)  (21.11)  (20.70)

Observations 36,659 33,292 19,263 15,568
Number of firms 121 121 121 121
R-squared 0.443 0.453 0.338 0.319

The issue of clearing costs

Reducing counterparty risk comes at the expense of higher margin requirements
relative to OTC transactions. As argued by Kaya (2017), the increase in the CDS
spreads following central clearing could be partially explained by an increase in
clearing costs that is passed on to end-users. However, as documented in the liter-
ature, clearinghouses do not necessarily ask for larger collateral amounts and such
a contribution to the increase in the CDS spread should be small. Evidence in that

direction is provided, for instance, in the following publications:

e Duflie, Scheicher and Vuillemey (2015) take a snapshot on December 30, 2011
of the CDS bilateral exposures provided by DTCC and show that central clear-
ing helps lower collateral demand relative to the OTC market, as long as there

is no significant proliferation of central counterparties. In fact, the benefits of
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Figure 5.6 — Comparison of the CDS Bond basis.

This figure compares the CDS Bond basis of cleared and non-cleared entities. The hori-
zontal axis represents time in days where date 0 denotes the central clearing event. The
dotted and solid lines represent the daily average basis of the treatment group and the
control group respectively. Both groups are constructed using dynamic propensity score
matching.

CDS Bond Basis

o0
€

CONtroigroup  eeeeee Treatment group

multilateral netting and diversifications outweigh the increased initial margin

requirements.

e Mello and Parsons (2012) present a replication argument and show that the
cost of initial margin requirements is insignificant. They find that there is no
additional cost with the margin mandate but that the credit risk associated

with the derivative is accounted for separately.

e According to the Committee on Global Financial System (2013), variation
margin is not as costly as some argue. It represents a transfer of resources and

does not affect the net demand for collateral.

Finally, clearing fees themselves should not represent a burden for those trading
cleared contracts. The clearing fees charged by ICECC to its clients and members

amount, respectively, to $20 per million of notional for single-name CDS, and $15
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Table 5.12 — Difference-in-Differences Analysis for the CDS Bond basis.

This table presents the estimates of the coefficients in the generalized DID equation
where the dependent variable Basis is the difference between the CDS spread and the
PECS. Observations are pairs of firms (i) and dates (t). Cleared;; is a binary vari-
able that indicates if the firm ¢ is centrally cleared at date t or not. The constant
term includes firm and time fixed effects (a; and ~; respectively). In each column we
estimate the equation using a different estimation window around the clearing event
date. In all the regressions, the standard errors (in brackets) are clustered by firm. *,
**, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.

Basis;t = o + f1Cleared; ; + a; + v + €4

Basis [-250 , 50] [-250, 20| [-100 , 50] [-100 , 20]

Cleared 2.630 2.767 4.516 4.139
(5.745) (5.680) (3.353) (3.162)

Constant -203.4%%%  _200.2%**  _246.6%** _244 5¥**

(10.89)  (11.46)  (9.365)  (9.083)

Observations 36,659 33,292 19,263 15,568
Number of firms 121 121 121 121
R-squared 0.251 0.252 0.142 0.160

per million of notional. We therefore argue that the clearing fees and additional

margin requirements should not affect significantly the CDS spreads.

5.5.3 Summary of empirical results

Our empirical findings indicate that neither CDS liquidity, nor trading activity or
bond default risk are significantly affected by the introduction of clearinghouses,
while CDS spreads do increase. In addition, clearing costs are small and should not
impact the spreads significantly. Consequently, our results suggest that the increase
in CDS spreads following adhesion to a CCP can be mainly attributed to the reduc-
tion in counterparty risk. Assuming the counteparty risk of a CCP to be small (see,
e.g., Cruz Lopez, Harris, Hurlin & Perignon 2017 on central counterparty risk), the
magnitude of this increase could therefore be used as a measure of the counterparty

risk present in the market before a reference entity joins central clearing. We find
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that this risk could reach up to 19 bps, which is in the range of what is found in the
literature.

Participants in clearinghouses have higher trust in a central counterparty and
less concern about the possibility of a default event. Hence, they could be willing to
pay more to buy better credit protection. The ability of a CCP to prevent default
contagion and to continuously monitor the risks arising from trading CDS contracts
helps establish a safe and robust clearing environment. This was one of the main

goals of the Dodd-Frank Wall Street Reform and Consumer Protection Act.

5.6 Conclusion

In this paper, we study the impact of central clearing on single-name CDS. The
opportunity of voluntarily joining a CCP to trade these contracts has been effective
since December 2009. This new scheme, mandated by the Dodd-Frank Act, aims
at reducing the overall risk in the market and enforcing new regulations to avoid
another financial crisis. The clearinghouse uses multiple layers of protection and
strong risk-management strategies to prevent a potential domino effect.

Despite the economic importance of this regulatory change, little empirical evi-
dence has been provided about its implications. In this work, we perform a gener-
alized difference-in-differences analysis with fixed effects on samples matched with
propensity scores computed just prior to the clearing event. This type of dynamic
matching ensures that the cleared and non-cleared groups have similar pre-clearing
characteristics, and alleviates the concern about the selection bias arising from the
voluntary choice to adhere to central clearing. Our results indicate that the CDS
spread increase resulting from a reference entity joining the clearinghouse could
reach as high as 19 bps. We test whether this price change is due to various factors
by separately analyzing the impact on liquidity and on trading activity, but we find
that central clearing does not cause any significant change in these two factors. We

also find that the clearing event has no significant impact on the underlying bond

114



market. In addition, according to the recent literature it does not seem that im-
portant additional costs are passed on to end-users. Therefore, we argue that the
change in CDS spreads can be used as an indication of the amount of counterparty

risk that is reduced thanks to the clearinghouse.
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5.7 Appendix A : Matching example

In this appendix, we present a detailed example of the dynamic propensity score
matching procedure. For illustration purposes, consider a small sample of four
firms, A, B, C, and D over the 2009-2015 period. Firms A was centrally cleared on
December 21, 2009 and Firm B on March 28, 2011. Firms C and D were not centrally
cleared during the sample period. Suppose that the event window is [—8, —2] months
before the clearing date, we consider data from 21/04,/2009 to 21/10/2009 for firm
A, and from 28/07/2010 to 28/01/2011 for firm B. We then assume that firms C
and D had the possibility of being centrally cleared on December 21, 2009, or on
March 28, 2011. Therefore, we create the following firm-event entities:

C;: Data for Firm C from 21,/04,/2009 to 21,/10/2009; the firm-event corresponds to
the possibility of Firm C adhering to central clearing on December 21, 2009

Cy: Data for Firm C from 28/07/2010 to 28/01/2011; the firm-event corresponds to
the possibility of Firm C adhering to central clearing on March 28, 2011

D;: Data for Firm D from 21,/04/2009 to 21/10/2009; the firm-event corresponds
to the possibility of Firm D adhering to central clearing on December 21, 2009

D, : Data for Firm D from 28/07/2010 to 28/01/2011; the firm-event corresponds
to the possibility of Firm D adhering to central clearing on March 28, 2011

A and B constitute the treatment group and could be matched to any firm-event in
the control group: C;, Cy, Dy, or Dy. We apply the Probit model to the sample of
six firm-events and match each firm in the treatment group to a firm in the control
group having the closest propensity score. For instance, if A is matched to Dy and
B is matched to C;, then the control group is Dy and C;. The firms in the control
group that are not matched are dropped from the sample. This procedure allows
us to construct a control group that exhibits pre-clearing characteristics that are
similar to that of the treatment group, and thus eliminate the potential selection

bias.
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5.8 Appendix B : Additional figures
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Figure B.1 — Comparison of other liquidity measures.

This figure compares other liquidity measures of cleared and non-cleared entities. All these
variables are obtained from Markit Liquidity. Upf BA represents the bid-ask spread in
upfront points for the five-year tenor. Lig Sc is a score defined on a scale from 1 to 5
where 1 indicates the highest liquidity. Quotes is the total number of unique quotes for
a reference entity, all tenors combined. Dealers is the total number of distinct dealers
quoting the reference entity across all available tenors. 5Y  Dealers is the total number of
distinct dealers quoting the reference entity for the five-year tenor. 5Y  Quotes is the total
number of unique quotes for a reference entity for the five-year tenor. Non_5Y Dealers
is the total number of distinct dealers quoting the reference entity for the non-five-year
tenors. Non_5Y Quotes is the total number of unique quotes for a reference entity for the
non-five-year tenor. The horizontal axis represents the event time in days where 0 denotes
the beginning of central clearing. The dotted and solid lines represent the daily average
of the liquidity measure of the treatment group and the control group respectively. Both
groups are constructed using dynamic propensity score matching.
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Figure B.2 — Comparison of other trading activity measures

This figure compares other trading activity measures of cleared and non-cleared entities,
obtained from DTCC. Contr is the number of contracts outstanding for each CDS contract.
Gross_ Not_ Risk is the sum of all notional CDS contracts bought (or equivalently sold) for
each reference entity. It captures transaction types that result in a change in the market
risk position. Contr Risk is the number of contracts outstanding for each CDS contract
of cleared and non-cleared entities. It captures contracts involved in a market risk transfer
activity. The horizontal axis represents time in weeks where date 0 denotes the clearing
event date. The dotted and solid lines represent the weekly average number of the trading
activity measure of the treatment group and the control group respectively. Both groups
are constructed using dynamic propensity score matching.
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Panel C : Comparison of the number of contracts - Risk transfer.
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Chapter 6

Conclusion

This thesis proposes various contributions pertaining to the large family of interest-
rate derivatives and securities. In a first part of the thesis, we address issues related
to the evaluation and exercise strategies of interest-rate derivatives, while in the
second part, we discuss questions raised by recent regulatory reforms concerning the
CDS market.

A first contribution is a general pricing framework for low-dimensional derivatives
under an affine jump-diffusion specification. We propose a flexible model that can
be adapted to a large range of securities allowing for early-exercise opportunities.
We show how to use transform analysis in order to adapt linear spline interpolation
to the family of affine diffusion processes and how to adapt exercise and holding
value functions to price a variety of products, namely bonds with embedded call
or put options, European and Bermudan swaptions, and Treasury-bond futures.
This general pricing framework can be used, for instance, to compare the value of
derivatives under different model specification, or under different exercise strategies.

Accordingly, we use this pricing framework to analyse the sensitivity of derivative
prices to the model specification. Specifically, we evaluate the pricing differences that
could result from including or not jumps in the movement of interest-rates when

pricing fixed-income securities. We perform numerical and empirical investigations



in order to identify situations under which interest-rate jumps have a significant
impact on derivatives prices. We consider various hypothetical shapes for the term
structure and find that price differences can be particularly large when the yield
curve is steep and upward sloping or when it has a humped shape. We also use
historical observations of the yield curve to assess pricing differences with respect to
observed market prices. Future research in that direction could be to investigate the
impact of model specification on the sensitivity of calibrated parameters to option
characteristics, such as maturity and moneyness.

We also evaluate to what extent the value of a derivative is sensitive to the
use of sub-optimal strategies, particularly for complex products embedding multiple
inter-related options. Specifically, we perform a post-trade evaluation of the exercise
strategy of the U.S. T-bond futures. Since the contract involves several embedded
options (quality option, timing option, wild card option, etc), choosing the delivery
strategy is not straightforward. We compare the actual delivery behavior of the short
traders to the optimal solution and find that the delivery strategies were historically
very different. However, we find that the average gains and losses resulting for
these different strategies over a 10-year period were very close, but that the optimal
strategy implies a significantly lower outcome volatility. Future research arising from
this essay could use intraday data for the spot price of the cheapest-to-deliver bond,
allowing for a more accurate valuation of the wild card option.

Finally, we study the impact of the voluntary central clearing scheme on the
market for single-name credit default swaps, which was introduced in order to mit-
igate counterparty credit risk and increase the market transparency. We revisit
the conclusions obtained in the literature and find that some of these conclusions
are reversed when the methodology is adapted to the dynamic nature of the data.
Applying a dynamic propensity score matching allows us to better match the char-
acteristics of cleared and un-cleared entities at the moment of adhesion to central
clearing. We argue that the increase in CDS spreads following central clearing can be

mainly attributed to a reduction in counterparty credit risk. An interesting future
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line of research related to this essay could be to investigate the impact of central
clearing on other derivatives such as the interest-rate swaps and more importantly

on the overall collateral demand in the market.
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