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Résumé

Les investisseurs sur les marchés d’actions et d’obligations se soucient de l’état de la gran-

ularité de l’économie. En tant que variable d’état corrélée à des ensembles d’opportunités

d’investissement futures, la granularité commande une prime dans la section transversale

des rendements des actions et des obligations. De plus, en tant que facteur de risque com-

mun aux marchés des actions et des obligations, la granularité correspond à des corréla-

tions actions-obligations plus élevées. Dans cette thèse, nous construisons tout d’abord

un cadre théorique et montrons que l’effet "faible risque" apparaît naturellement lorsque

l’économie est granulaire. Ensuite, nous fournissons de nombreuses preuves empiriques

que la granularité est un prédicteur négatif des excès de rendement futurs des actions et

des obligations d’entreprises.

Mots-clés

Granularité, effet de faible risque, parier contre le bêta, CAPM conditionnel, obligations

d’entreprise, corrélation actions-obligations, primes de risque, contagion financière.

Méthodes de recherche

Analyse transversale, analyse de portefeuille, développement de modèles théoriques.





Abstract

Investors in equity and bond markets care about the state of granularity of the economy.

As a state variable that correlates with future investment opportunity sets, granularity

commands a premium in the cross section of equity and bond returns. Further, as a com-

mon risk factor in equity and bond markets, granularity corresponds to higher equity-bond

correlations. In this thesis, first, we build a theoretical framework and show that the ’low-

risk effect’ arises naturally when the economy is granular. Second, we provide ample

empirical evidence that granularity is a negative predictor of future excess returns on eq-

uity and corporate bonds.

Keywords

Granularity, Low-risk effect, Betting against Beta, Conditional CAPM, Corporate Bonds,

Equity-Bond Correlation, Risk Premia, Financial Contagion

Research methods

Cross-sectional analysis, Portfolio Analysis, Theoretical model development
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General Introduction

A growing strand in literature examines the micro origins of macro fluctuations (Gabaix,

2011; Acemoglu et al., 2012; Herskovic et al., 2020). Contrary to the longstanding as-

sumption that firm-specific risk will eventually average out in the aggregate (Lucas, 1977),

the nascent literature uncovers ample evidence that firm-specific risk could propagate

throughout the economy and lead to aggregate fluctuations when the linkages between

firms nurture a network effect and/or when the distribution of firms’ size is significantly

heavy-tailed. The second channel is known as granularity. This thesis comprises two

chapters that investigate the implications of granularity for asset prices.

Granularity portrays a state of the economy where a small number of firms repre-

sent a relatively substantial, hence incompressible, fraction of the economy. The state of

granularity is measured similar to market concentration. We focus on one such measure

that considers the market value of the largest 20 firms in the economy as fraction of total

market value of all firms.

Throughout the first chapter, we shed fresh light on the low-risk effect in a granular

economy. The low-risk effect refers to the inability of the Capital Asset Pricing Model

(CAPM) to explain expected asset returns (Black, 1972). By the CAPM, expected re-

turns are proportionate to the degree asset returns co-move with the market portfolio.

Hence, higher expected returns must correspond to higher market betas. Empirical find-

ings, however, reveal an inverse relation between betas and expected asset returns, known

as the low-risk effect.

We argue that the low-risk effect arises naturally in a granular economy. To motivate



this claim, we develop a theoretical economy with two firms, and derive equity betas as

function of granularity. Higher granularity corresponds to higher betas for larger firms.

On the other hand, in a more granular economy, the market portfolio, the value-weighted

return on individual firms, is more representative of larger firms, which in turn indicates

that these firms are more systematic. As a result, despite higher betas, investors view

large firms safer, and ask a lower premium to hold them in their portfolios. The rela-

tion reverses for smaller firms that have lower betas while are perceived less systematic,

therefore higher expected returns pair with lower market betas for these firms.

To corroborate the theoretical predictions of the model, we run a battery of tests based

on US equity markets, and show that the slope of the Security Market Line (SML) is

negatively related to news about the state of granularity of the economy. In months when

granularity increases, the SML is flat even negatively slopes, hence the low-risk anomaly.

In months when the state of granularity decreases, the SML is upward sloping and the

predictions of the CAPM hold.

While the empirical findings of the first chapter are statistically persuasive, it is imper-

ative to acknowledge the divergence between the predictions of the model where the level

of granularity is the main driver of equity betas and expected returns, and the empirical

analyses where we establish that changes in granularity matter to equity valuation. We

hope that future explorations of the topic will bridge this limitation.

In the second paper, we study the cross section of corporate bond returns in a granular

economy. We argue that as a state variable, granularity is negatively related to future

investment and consumption opportunity sets. By Merton’s ICAPM, any state variable

that is correlated with future opportunity sets is priced in the capital markets (Merton,

1973).

The empirical investigation in this paper relies on daily transaction data from En-

hanced TRACE, and bond characteristics from Mergent FISD. We compute monthly re-

turns on individual corporate bonds throughout 2002 to 2019. The empirical tests in this

paper are twofold, Fama-Macbeth cross sectional regressions, and portfolio analysis.

For the cross-sectional analysis we proceed by estimating individual bonds’ betas with

2



respect to granularity, measured as the market value of largest 20 firms as fraction of total

market value of all firms where the value of the firm is the value of firm equity plus that of

firm debt. The granularity measure is orthogonalized on common risk factors in the bond

market. This procedure yields a panel of estimated betas.

Then, every month, we regress future excess returns on corporate bonds on granularity

betas while controlling for other risk factors as well as firm characteristics. Repeating

this procedure yields a time series of risk premia. We verify that the time series average

of the granularity premium is always negative and economically significant. In other

words, investors ask for a premium to hold bonds with negative granularity betas in their

portfolios. These bonds are perceived riskier when the economy grows more granular.

A granularity strategy takes a long (short) positions in bonds with negative (positive)

granularity betas. We form granularity portfolios by sorting individual bonds into deciles.

The first (last) decile comprises bonds with negative (positive) granularity betas, which

are estimated based on a similar procedure used in cross sectional analysis.

When we regress the excess return on the granularity strategy on risk factors in bond,

equity, and bond and equity markets, the alpha of the strategy is always positive and

economically significant, 6% on an annual basis. This finding is robust to weighting

scheme, and it holds in double sorts with respect to credit ratings and time to maturity.

We also study the conditional correlation between equity and bond returns, and show

that in months when the state of granularity of the economy increases, equity-bond cor-

relations are on average 50% larger. Cross-sectional tests corroborate the hypothesis that

higher equity-bond correlations are because granularity is similarly priced in the cross

section of corporate bond as well as equity returns.

3





Chapter 1

Equity Prices in a Granular Economy

Abstract

This paper1 revisits the properties of the conditional CAPM when the economy is gran-

ular. When some firms are more like ’grains’ than atoms, shocks to such firms are not

diversified away. When a large firm becomes larger, the economy becomes more granu-

lar, as the large firm represents a greater share of the market. This increase in granularity

translates into a higher cross-sectional difference in equity betas, which reduces the slope

of the Security Market Line (SML). We provide empirical support for the negative rela-

tion between the slope of the SML and various granularity measures from the U.S. equity

market. When granularity decreases, portfolio betas are strongly and positively related to

average equity returns. In contrast, the relation turns negative when granularity increases,

thereby explaining the relatively ’flat’ SML observed unconditionally.

1.1 Introduction

Modern asset pricing theory dictates that investors should be rewarded for bearing sys-

tematic risk. More than half a century after the seminal contributions of Sharpe (1964)

and Lintner (1965), the literature on stock returns still offers no definitive answer regard-
1This article is co-authored with Harjoat Bhamra, Christian Dorion, and Alexandre Jeanneret



ing the nature of systematic risk. It might be a 400-dimensional animal, as suggested by

the factor census of Harvey and Liu (2019). Or, as suggested by Kozak et al. (2018), a

few factors might suffice, the “market” return being, comfortingly, the central one. Our

work suggests that the distribution of firm sizes has profound implications on how one

relates stock returns to this market factor. Many anomalies could arise from overlooking

those implications.

As opposed to what is implicitly assumed in most theoretical asset pricing models,

firms are not all atomistic. As documented by Axtell (2001) and Gabaix (2011), the

distribution of firm sizes is fat-tailed, which implies that the world is best characterized

as a granular economy. When some firms are more like grains than atoms, their impact

on aggregate measures do not vanish as it may be the case for atomistic firms under the

central limit theorem. We show that nontrivial impacts of firm-specific risk on equity

prices arise endogenously in a granular economy.

We consider a two-firm economy, in the spirit of Cochrane et al. (2007), to study how

the distribution of firm size generates asset pricing implications for all firms. Investors

price firm-specific risk, as the aggregate shock to the economy is a combination of the

firms’ shocks. We analyze how the stock returns of the two firms interact with the market

index composed of these stocks. The model helps understand the properties of the condi-

tional CAPM. When firms are identical, they have the same market beta, and their alpha

is zero. However, as firms are hit by idiosyncratic shocks, the economy deviates from this

initial condition. The beta of a firm directly relates to the weight of this firm in the econ-

omy. A larger firm contributes more to the market, which increases its beta and reduces

its alpha. In equilibrium, the opposite applies to the other firm as the value-weighted av-

erage beta must be one. So if the larger firm has a beta larger than one (and a negative

alpha), the smaller firm must have a beta less than one (and a positive alpha). A shock

to one firm thus affects the other firm in the opposite direction through market clearing

conditions, which increases the dispersion in their systematic exposure to the market. The

cross-sectional relationship between individual stocks’ expected excess returns and their

market beta thus weakens with the level of granularity in the economy, that is when a

6



large firm becomes a greater contributor to the market.

Our empirical analysis confirms the prediction that the slope of the security market

line (SML) is negatively related to the level of granularity in the equity market. We

consider straightforward measures of granularity, such as the market capitalization of

the (100 or 50) largest firms relative to that of the entire market. Our main finding is

summarized in Figure 1.1. We plot the average returns of various test portfolios against

their conditional market betas, conditioning on the monthly change in granularity. The

slope of the SML is positive in times of lower granularity (red diamonds) and negative in

times of lower granularity (blue points). We show using the Fama-MacBeth approach that

the slope of the SML is statistically different across both subsamples. We obtain similar

findings with alternative test assets, namely 25 equally-weighted and value-weighted beta

portfolios, 48 industry portfolios, or 25 size and book-to-market portfolios. Overall, the

negative relation between the conditional slope of the SML and granularity is statistically

significant and robust to the choice of portfolios and granularity measures.

We verify that our results are not capturing alternative explanations suggested by the

existing literature. First, we control for market (excess) returns, as Savor and Wilson

(2014) find that the slope of the SML is particularly strong when macroeconomic news is

scheduled for announcement, which correspond to large market return days. Second, we

control for investor sentiment, as Antoniou et al. (2015) show that the slope of the SML

is positive during pessimistic sentiment periods and negative during optimistic periods.

Third, we control for inflation as money illusion, intensified by high inflation rates, affects

the slope of the SML according to Cohen et al. (2005). Finally, we account for the impact

of funding liquidity conditions on the slope of the SML using the TED spread following

Antoniou et al. (2015). In all cases, the negative relation between the slope of the SML

and our measures of granularity remains significant after controlling for these dimensions.

Building on our theoretical and empirical findings on the negative relation between

the SML slope and granularity, we revisit one of the most studied implications of the

’too-flat’ slope of the SML: the betting-against-beta (BAB) strategy. Frazzini and Peder-

sen (2014) show that a long position in low-beta assets and a short position in high-beta
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Figure 1.1: Variations in Granularity and the Conditional SML.

This figure shows the average conditional monthly returns against the previous month’s average
conditional market betas for 10 value-weighted and 10 equal-weighted beta portfolios, and 48
industry portfolios. We separate portfolio returns by months of increases (∆Gt > 0) and decreases
(∆Gt < 0) in granularity, where granularity, Gt , is the market value of top 100 firms as fraction of
total market capitalization. Monthly data span 1973-2018.

assets produces significant positive risk-adjusted returns. Our analysis predicts that such

returns should be particularly high when granularity increases (and the slope of the SML

decreases), while they should be reduced when granularity decreases. We provide strong

evidence for this prediction and find that BAB returns are significantly and positively

related to changes in granularity, even after controlling for alternative predictors. This

analysis sheds new light on the conditional performance of the BAB strategy.

The contribution of this paper is to shed light on the asset pricing implications of

granularity in the equity market. Firms are subject to specific shocks, i.e., news that are

independent of other firms, and it is intuitive to believe that these shocks should diversify

away. That is, such shocks should not have any global impact on stock market prices.
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However, this view does not hold in a granular economy. For sufficiently large firms,

a firm-specific shock becomes systematic in nature, as a large positive shock implies a

greater market capitalization of the firm and, thus, an increase in the value of the stock

market index. For example, the 5 largest firms dominating the tech sector in the U.S.

(Amazon, Apple, Facebook, Netflix, and Microsoft) have recently represented more than

a fifth of the total stock market capitalization of the S&P500. These tech giants have

therefore contributed largely to evolution of the U.S. stock market in 2020, thereby pro-

viding a clear illustration of a granular equity market. The comovement between such

firms’ stock returns and the index return would suggest an increase in their systematic

risk, as measured by the equity beta. As the average beta of the market must be one, the

remaining firms in the market should experience a reduction in their beta. This mechanism

illustrates how firm-specific shocks can propagate through the economy and potentially

affect all firms.

Overall, both our model and our empirical analysis suggest that this propagation of

shocks can help explain the failure of the CAPM, as captured by an empirical SML that

is unconditionally "too flat" compared to what the CAPM predicts. We find that this

feature of the data is an artifact of an economy in which firm-specific shocks are not

diversified away and, thus, end up affecting asset prices globally through fundamental

market clearing conditions. This paper thus revisits the conditional CAPM through the

lens of a granular economy, providing novel insights on the fundamental relation between

a firm’s equity risk premium and systematic risk.

This paper proceeds as follows. Section 1.2 provides a summary of the literature,

Section 1.3 describes the model and its predictions. Section 1.4 presents the data and the

methodology, while Section 1.5 discusses the empirical results. Section 1.7 contains the

concluding remarks.
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1.2 Related Literature

This paper relates to two strands of the literature which study, first, the failure of the con-

ditional CAPM and, second, the implications of firm-specific risk in a granular economy.

We now discuss each body of the literature.

Stocks with lower systematic exposure tend to have a larger CAPM alpha, a phe-

nomenon first documented by Black (1972) and referred to as the ’low-risk effect’. Sev-

eral studies reconcile this observation with leverage constraints. When borrowing is con-

strained, investors willing to invest more in risky opportunities increase their exposure to

systematic risk by tilting their portfolios toward high beta assets. These assets tend to

underperform and involve lower alphas.

Based on this insight, Frazzini and Pedersen (2014) construct a model with con-

strained investors who bid up high beta assets to address their limited leverage to in-

vest in rewarding opportunities. The authors document a significant return on a strategy

that shorts high beta and holds low beta assets, the betting against beta (BAB) strategy.

Similarly, Boguth and Simutin (2018) show that the tightness of leverage constraints is

reflected in the average market beta of mutual funds. Jylhä (2018) finds that exogenous

changes in the margin requirement corroborate the pricing implications of the constrained

leverage story, predicting a flatter SML. Malkhozov et al. (2018) show how a measure of

international illiquidity predicts BAB returns worldwide.

A parallel strand of literature associates the low-risk effect to behavioral explanations.

Bali et al. (2017) show that the buying pressure exerted towards high beta stocks arises

from lottery preferences of investors, while Liu et al. (2018) argue that this phenomenon

only appears among over-priced stocks. Antoniou et al. (2015) associate this effect to

investor sentiment: In optimistic periods, bullish trades distort prices, while prices are in

line with the CAPM in pessimistic periods. The low-risk effect can also be attributed to

aggregate disagreement among investors, which affects speculative demand for financial

assets (Hong and Sraer, 2016).

From a different perspective, Buchner and Wagner (2016) link the presence of BAB
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returns to measurement errors. They argue that, due to optionality of equity, hence its non-

linearity, equity returns should not be explained by a linear CAPM regression. Providing

a review of different explanations of the low-risk effect, Asness et al. (2020) decompose

the BAB strategy into Betting-against-Correlation (BAC) and Betting-against-Volatility

(BAV). They show that BAC is more related to funding constraints, while BAV is more

tied to sentiment. Finally, firm-specific risk can be priced when information is costly

to acquire, as pointed by Merton (1987). Building on this insight, Campbell and Kassa

(2018) argue that costly acquisition of information develops segmented markets. They

show that returns on the BAB strategy are consistent with their story.

A direct consequence of the low-risk effect is that the SML is flatter than what the

CAPM predicts. Therefore, the low-risk effect directly relates to the literature examining

the drivers of the slope of the SML. Such determinants include money illusion among

investors (Cohen et al., 2005), arbitrage (Huang et al., 2016), sensitivity of asset prices

to macroeconomic announcements (Savor and Wilson, 2014), or the informational gap

between investors and the econometrician (Andrei et al., 2018). We contribute to this

literature by showing how the distribution of firm sizes, which we refer to as granularity,

affects individual stocks’ market beta, alphas, and eventually the slope of the SML.

The idea of considering a granular economy is not new. As firm size in the econ-

omy is not normally but power law distributed, the law of large numbers does not apply

and firm-specific risk of relatively large firms (grains) becomes incompressible (Gabaix,

2011; Gabaix and Koijen, 2020). Granularity also implies that country size and trade

affect macroeconomic volatility (di Giovanni and Levchenko, 2012), that large firms

drive business cycles (Carvalho and Grassi, 2019), and that firm-specific shocks prop-

agate through production networks and affect firms’ sales growth and stock prices (Barrot

and Sauvagnat, 2016).

Several studies focus on the asset pricing implications of granularity. Herskovic et al.

(2016) find that systematic versus firm-specific risk are not easily distinguished, suggest-

ing that the two are fundamentally linked and driven by a common component. Herskovic

et al. (2020) explore the channels through which firm size distribution determines how
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firm-specific shocks propagate and affect firm volatilities. Granularity also offers a fresh

angle and a theoretically sound basis to revisit the literature on whether firm-specific risk

is priced (e.g. Ang et al., 2006; Fu, 2009; Bali et al., 2011). Building on this literature,

we show that granularity in the U.S. stock market plays a fundamental role in driving the

conditional CAPM.

1.3 Theory

We consider a simple economic environment to illustrate how granularity shapes the rela-

tion between the expected excess return of an asset and its market beta, which lies at the

core of the capital asset pricing model (CAPM). In the spirit of Gabaix (2011), we refer

to granularity as to an economy in which firms are not atomistic, i.e., firm-specific risk is

not fully diversifiable.

1.3.1 Environment

The economy consists of two Lucas trees, which can be viewed as two individual firms

(or industries). Each firm i = {A,B} generates a stream of dividends Xi in the form of a

consumption good, whose dynamics satisfies

dXi,t

Xi,t
= µidt +σidZi,t , (1.1)

where µi and σi reflect the expected growth and volatility, while dZi,t is the incremental

change of a standard Brownian motion defined on the probability space (Ω,F ,P). We

assume that the processes are independent across firms.

We assume there exists an exogenous stochastic discount factor (SDF) πt :

dπt

πt
=−rdt −ηAσAdZA −ηBσBdZB , (1.2)

where r is a constant risk-free rate and ηiσi reflects the market price of risk for the shocks

dZi, i.e., the agent prices both sources of shocks in the economy.2 All parameters of the
2An economy with a representative agent consuming a Cobb-Douglas basket of the two goods can

generate a stochastic discount factor of this form (see Appendix A.1.1).
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economy are common knowledge.

1.3.2 Equity valuation

In the absence of debt, the equity value of firm i is given by

Ei,t(X) = EQ
[∫

∞

t
e−r(s−t)Xi,sds

]
=

Xi,t

r− µ̃i
, (1.3)

where µ̃i = µi+E
(dπt

πt

dXi,t
Xi,t

)
= µi−ηiσ

2
i is the expected growth rate under the risk-neutral

probability measure Q. Firm i’s equity is then governed by the following dynamics:

dEi,t

Ei,t
= µidt +σidZi,t . (1.4)

and its expected excess return is given by

E
(dEi,t

Ei,t
− rdt

)
=−E

(
dπt

πt

dEi,t

Ei,t

)
= ηiσ

2
i , (1.5)

which implies an equity risk premium equal to the product between the market price of

risk and the volatility of a firm’s equity returns. Note that the equity risk premium is

constant over time but varies across firms.

1.3.3 Equity Betas

In the spirit of the CAPM, we compute the equity beta of each firm, which corresponds

to the exposure of its equity returns to the market index returns.

We first determine the dynamics of the market index, denoted by It , whose return is

the value-weighted average of each firm’s equity returns:

dIt
It

= wA,t

dEA,t

EA,t

+wB,t

dEB,t

EB

(1.6)

= µI,t dt +σI,t dZI,t , (1.7)

where wi,t denotes the date-t weight of firm i’s equity value into the market, which is

defined as wi,t =
Ei,t

EA,t+EB,t
. The expected return of the index is µI,t = wA,t µA +wB,t µB , while
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its volatility is given by σI,t and dZI,t is the Brownian motion that characterizes shocks on

the index, such that σI,t dZI,t = wA,t σAdZA,t +wB,t σAdZB,t .

The conditional equity beta of firm i’s is given by

βi,t =
covt(

dIt
It
,

dEi,t
Ei,t

)

vart(
dIt
It
)

=
wi,t σ

2
i

w2
A,t

σ2
A
+w2

B,t
σ2

B

, (1.8)

which implies that the beta of a firm fluctuates over time through variation in firms’ market

weights, wA,t and wB,t . A change in a firm’s weight in the market directly affects the

covariance between individual equity and market returns, covt(
dIt
It
,

dEi,t
Ei,t

), and the variance

of the market index returns, vart(
dIt
It
).

Equity betas, by construction, result in the market clearing conditions, that is at any

date t, we have

wA,t βA,t +wB,t βB,t = 1, (1.9)

as the beta of the market index must always be equal to one, by definition. Hence, all

equity betas in the economy cannot jointly increase (or decrease) in equilibrium. That is,

if a firm becomes more exposed to the market, the other firm must become less exposed,

although its riskiness may not change fundamentally. This is a specific property of a

granular economy, i.e., when firm weights are non-negligible, shocks on one firm affect

the whole market. We hereafter exploit this property to shed new light on the relation

between expected excess returns and betas, which is at the core of the CAPM paradigm.

1.3.4 Conditional CAPM

According to the CAPM, the market risk exposure of every firm is captured by its equity

beta. In this case, the expected excess returns of individual assets are simply their eq-

uity beta times the market risk premium. We can thus express the conditional CAPM as

follows:

E
(

dEi,t

Ei,t
− rdt

)
= αi,t +βi,tE

(
dIt
It

− rdt
)
, (1.10)
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where αi,t denotes firm i’s equity alpha, which is equal to zero if the CAPM holds per-

fectly. Put it differently, the central cross-sectional implication of the CAPM is that the

individual firms’ equity risk premia only vary with their betas.

The premise that investors price systematic market risk only, as in the CAPM, is at

the core of modern asset pricing. We now discuss how the conditional CAPM no longer

holds in an economy that consists of non-atomistic firms, in the spirit of Gabaix (2011).

We first study the implications of such an economy on firms’ equity alphas and betas, and

eventually on the slope of the security market line (SML).

1.3.5 Predictions

In this section, we study the asset pricing implications of the CAPM in a granular econ-

omy. We hereafter assume that XA >XB and ηA >ηB, such that the larger firm (A) displays

a higher equity risk premium (Equation 1.5), has a higher weight in the market index, and

thus has a higher beta (Equation 1.8) than the other firm (B). Firms are otherwise identical.

Non-zero equity alphas

In the economy, the agent prices securities by their exposure to the SDF, which is de-

termined by a linear combination of the firm shocks. The first expectation of Equation

(1.10), which is the expected excess equity return for firm i, is

E
(dEi,t

Ei,t
− rdt

)
= ηiσ

2
i , (1.11)

whereas the expectation on the right-hand side of Equation (1.10), which is the expected

excess return of the market index, equals

E
(dIt

It
− rdt

)
= ηAσ

2
A

wA,t +ηBσ
2
B

wB,t . (1.12)

Substituting Equations (1.11) and (1.12) in Equation (1.10) yields the following date-t

equity alphas of firm i:

αi,t = ηiσ
2
i −βi,t

(
ηAσ

2
A

wA,t +ηBσ
2
B

wB,t

)
, (1.13)
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which shows that a firm’s equity alpha, αi,t , will generally differ from zero.

The mechanism driving non-zero alphas is as follows. While the CAPM predicts that

the expected excess equity return of a firm i is increasing in its beta, the ’true’ equity risk

premium is in fact constant, being equal to ηiσ
2
i . Hence, a relatively high-beta firm would

be characterized as a negative-alpha firm, such that the expected excess equity return

remains unchanged. In equilibrium, a firm i’s equity alpha therefore varies negatively

with its equity beta, both over time and in the cross-section. In addition, market clearing

conditions imply that if one firm has a positive alpha, the other firm must have a negative

alpha given that that the market index, which is the value-weighted average of the two

firms, has no alpha by definition. Hence, there exists a tight connection across firms’

alphas.

Conditional equity betas and alphas

We now discuss the implications for the conditional equity betas and alphas. The beta of

a firm directly relates to its weight in the market. Following Equation (1.8), the beta of a

firm i becomes zero as its equity weight in the market portfolio converges to zero, as the

shocks are independent to those of the market index. Observe that, in this case, the alpha

of this firm equals exactly ηiσ
2
i , which corresponds to the equity risk premium.

As the firm becomes larger, it naturally contributes more to the total market and its

beta begins to increase correspondingly, as illustrated by Panel A of Figure 1.2. The

equity beta first increases and then declines until it equals one again, i.e., when this firm

becomes the entire market. Similarly, the firm’s alpha decreases with the firm’s market

weight, becoming negative, and then reverts to increase to 0 as the weight converges to

1, as illustrated by Panel B of Figure 1.2. Hence, both a firm’s alpha and beta are non-

monotonically related to the weight of the firm in the market.

FIGURE 1.2 ABOUT HERE
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In equilibrium, the opposite applies to the other firm as the value-weighted average

beta must be one. So if a firm has a beta larger than one, the other firm must have a beta

less than one. Similarly if a firm has a positive alpha, the other firm must have a a negative

alpha. A shock to one firm thus affects the other firm in the opposite direction through

market clearing conditions, as illustrated in Figure 1.2. Observe that the cross-sectional

difference in equity alphas and betas increases as the economy becomes dominated by a

single firm.

Conditional Slope of the SML

We now discuss how the slope of the SML varies with the relative weights of firms in the

market, that is when the granularity of the economy changes. One can directly interpret

the weight of the larger firm as a measure of granularity (Gabaix, 2011). Granularity

increases when the larger firm experiences a positive dividend shock and thus contributes

relatively more to the market index.

The conditional slope of the SML, denoted by St , is given by

St =
E
(dEA,t

EA,t
− rdt

)
−E

(dEB,t
EB,t

− rdt
)

βA,t −βB,t

, (1.14)

=

(
ηAσ2

A
−ηBσ2

B

)(
w2

A,t
σ2

A
+w2

B,t
σ2

B

)
w

A,t
σ2

A
−w

B,t
σ2

B

, (1.15)

which indicates that the slope of the SML varies over time depending on the firms’ relative

equity betas. It is interesting that the slope of the SML is solely driven by the dispersion of

equity betas, hence the denominator of the equation. Note that if both firms have identical

risk premia (ηAσA = ηBσB), the SML is exactly flat, as the numerator of Equation (1.15)

is zero. By contrast, an economy with ηAσA > ηBσB and βA > βB generates a positive

slope of the SML, as the firm with the higher expected excess return also has a higher

beta.

Panel A of Figure 1.3 shows that the SML slope decreases with the weight of firm A,

while the opposite applies to the intercept of the SML, equal to
(
ηAσ2

A
wA,t +ηBσ2

B
wB,t

)
−

St (Panel B). As the larger asset (firm A) becomes a greater contributor to the market
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due to a positive dividend shock, its equity beta increases, whereas the equity beta of

firm B decreases through market clearing conditions. However, fundamentally, the ’true’

expected excess returns of these firms are independent of their equity betas. As a result,

a positive shock on the weight of firm A amplifies the cross-sectional difference in betas

(βA,t − βB,t ) but not the difference in expected excess returns, thus flattening the SML.

Hence, when granularity increases (the larger firm becomes larger), the relation between

expected excess equity returns and equity betas weakens, as illustrated in Figure 1.4.

FIGURES 1.3 AND 1.4 ABOUT HERE

In sum, we show that the slope of the SML decreases with the weight of the larger

firm in the economy, which reflects a more granular market. This firm’s specific shocks

become a greater determinant of the market returns, which affects the levels of systematic

risk of all firms in equilibrium. The cross-sectional relationship between individual as-

sets’ expected excess returns and their exposure to the market thus weakens. The central

theoretical prediction is therefore that the slope of the SML becomes negatively related

to the level of granularity in the economy, which we aim to verify empirically in the

following sections.

1.4 Data & Methodology

This section first details the data we employ in our empirical study and then describes the

main methodology.

1.4.1 Portfolio Returns

We obtain stock and Treasury bond return data, spanning January 1973 to December 2018,

from the Center for Research in Security Prices (CRSP).3 The value-weighted index of
3CRSP starts including firms traded on NYSE American and NASDAQ in 1962 and 1972, respectively.

The latter almost doubles the number of firms in the CRSP universe. We consider data from 1973 to avoid
having our analysis contaminated by substantial changes in the number of firms.
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all listed shares (NYSE, Amex, and Nasdaq) is our stock market proxy. To obtain returns

on beta-sorted portfolios, we first estimate (pre-formation) betas for each individual stock

using 60 months of monthly returns and sort stocks into 25 portfolios according to their

beta. We then compute returns on value-weighted and equal-weighted portfolios. We also

retrieve returns on alternative test assets (e.g., 25 size and book-to-market, 48-industry

portfolios) from Kenneth French’s website.

1.4.2 Granularity

We consider various measures of granularity in the equity market. Our approach builds

on Gabaix (2011), who defines granularity in the economy as the sum of sales of the top

100 firms as a fraction of the GDP. We adapt this measure to the U.S. equity market and

measure granularity, denoted by Gt , as the market capitalization value of the top 100 firms

as a fraction of the total market capitalization from CRSP. We alternatively consider the

market capitalization value of the top 50 and top 1% of firms as fraction of total market

capitalization. In addition, we compute a measure of market concentration using the

excess Herfindahl-Hirschman Index (HHI) proposed by Gabaix and Koijen (2020). These

measures are defined in Table 1.1, while Figure 1.5 plots their time series. A higher value

of an index means that the U.S. market is more granular.

TABLE 1.1 AND FIGURE 1.5 ABOUT HERE

Panel A in Table 1.2 presents the descriptive statistics for our measures of granularity.

The market weight of the top 100 firms represents 45% of the total market, on average,

and ranges between 39% and 55%. There is a high correlation between these measures,

as reported in Panel A of Table 1.3.4 We can thus conclude that these alternative measures

capture similar information.
4Panel B of Table 1.3 shows correlation coefficients between granularity and various variables that are

known to predict the slope of the SML. Granularity appears to be weakly correlated with investor sentiment
(0.03), inflation (-0.12), market returns (-0.27), and the TED spread (0.27), whose roles are discussed in
Section 1.5.
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TABLES 1.2 AND 1.3 ABOUT HERE

1.4.3 Methodology

We test the theoretical prediction that the slope of the SML decreases with positive shocks

to granularity. We provide three types of analysis. First, we separate times of increases

and decreases in granularity and plot the conditional SML. Second, we conduct a Fama-

MacBeth estimation and test the difference in slope across both subsamples. Third, we

use a regression analysis to exploit the time-series of the SML slope and study how the

slope varies with granularity after controlling for alternative explanations.

For each portfolio, we compute the conditional (post-formation) betas over rolling a

60-month-windows using monthly returns. Specifically, we estimate the CAPM beta βp,t

of portfolio p in month t by estimating the regression

Rp,τ −R f ,τ = αp,t +βp,t(Rmkt,τ −R f ,τ)+ εp,τ , (1.16)

where Rp,τ is the return on portfolio p at time τ ∈ {t −59, t}, R f ,τ is the risk-free rate

given by the 1-month Treasury bill return, and Rmkt,τ is the market return. This procedure

yields a times series of conditional beta estimates for each portfolio, β̂p,t .

As a first exercise, we compute the average conditional betas for every test asset, β̂ H
p

and β̂ L
p , where the superscript H and L denote the months when granularity increases

(∆Gt > 0) and decreases (∆Gt < 0), respectively. We then compute the corresponding

average conditional portfolio returns over the following month, RH
p and RL

p. Figure 1.6

plots RH
p against β̂ H

p and RL
p against β̂ L

p for different test assets.

FIGURE 1.6 ABOUT HERE

We then present results using the classic two-step testing procedure for the CAPM.

For the second-stage regressions, we adopt the Fama-MacBeth procedure and compute
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coefficients separately by estimating, for each month t, the following cross-sectional re-

gressions:

RH
p,t −RH

f ,t = aH + γ
H

β̂
H
p,t−1 + ε

H
p (1.17)

and

RL
p,t −RL

f ,t = aL + γ
L
β̂

L
p,t−1 + ε

L
p , (1.18)

where H (L) denotes months with increases (decreases) in granularity, i.e., ∆Gt > 0

(∆Gt < 0). We calculate the sample coefficient estimates, γ̄H and γ̄L, as the average

across time of the cross-sectional estimates, while their standard error equal the time se-

ries standard deviation of the cross-sectional estimates divided by the square root of the

respective sample lengths. We can thus test whether the difference in coefficient estimates

is statistically significant by applying a simple t-test for a difference in means. Table 1.4

reports the results for different test portfolios in Panel A and using various granularity

measures in Panel B.

TABLE 1.4 ABOUT HERE

As a last exercise, we quantify the conditional slope of the SML and study its rela-

tion with granularity after controlling for alternative explanations. Specifically, we first

estimate, for every month t, the slope of the SML with a cross-sectional regression of

portfolio excess returns on their beta obtained in the previous month:

Rp,t −R f ,t = a0,t + γt β̂p,t−1 + εp,t . (1.19)

We then regress the estimates of the slope of the SML, denoted by γ̂t , on changes

in granularity ∆Gt , controlling for existing predictors, such as market returns (Savor and

Wilson, 2014), inflation (Cohen et al., 2005), or funding liquidity (Frazzini and Pedersen,

2014). Table 1.5 reports the results, using t-statistics based on Newey-West standard

errors with 12 lags.

TABLE 1.5 ABOUT HERE
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1.5 Main Results

This section presents and discusses the main empirical results of the paper. We study the

conditional slope of the SML, conduct a robustness analysis using different test portfolios,

and discuss the results when we control for alternative explanations.

1.5.1 Conditional SML slope

Figure 1.6 plots average realized excess returns for 25 beta-sorted (Panel A) and 48 indus-

try (Panel B) portfolios against their conditional portfolio betas separately for increases

(∆Gt > 0) and decreases (∆Gt < 0) in granularity. The slope of the SML is positive in

times of increasing granularity and negative in times of decreasing granularity, whether

we consider beta-sorted portfolios or industry portfolios. Figure 1.7 shows that the results

are robust to using alternative granularity measures to condition the analysis. Consistent

with our theoretical prediction, the slope of the SML is negatively related to granularity.

FIGURE 1.7 ABOUT HERE

Table 1.4 reports the average of the conditional slope of the SML, estimated with

Equations (1.17) and (1.18), and the difference of the two, with the t-statistics reported

in parentheses. Panel A reports the results for different test assets. Column 1 uses 25

equally-weighted beta portfolios (our benchmark case), Column 2 uses 25 value-weighted

beta portfolios, Column 3 uses 48 industry portfolios, Column 4 uses 25 size and book-to-

market portfolios, while Column 5 uses a mix of 10 equally-weighted, 10 value-weighted

beta, 10 industry, and 6 size and book-to-market portfolios. We find that the slope of

the SML is always positive when the U.S. market becomes less granular (i.e., the largest

firms playing a smaller role in terms of market capitalization), but the slope of the SML

turns negative in times of higher granularity. A test for the difference, based on the t-test

comparing means between months of increase vs. decrease in granularity, indicates that

the slope of the SML is statistically different across both subsamples.

22



Panel B reports the conditional slope of the SML using different measures of granu-

larity. The difference in the conditional means is always significantly different from zero

and with the expected sign. Hence, the negative relation between the conditional slope of

the SML and granularity is statistically significant and robust to the choice of test assets

and granularity measures.

1.5.2 Controlling for alternative explanations

We now consider a regression specification to study how the slope of the SML varies

with granularity once we account for alternative explanations. We first estimate the con-

ditional slope of the SML by regressing equally-weighted monthly returns of 25 beta

portfolios at time t on the market betas of the same portfolios at time t −1, according to

Equation (1.19). We then regress the SML slope estimates on changes in granularity and

report the results in Table 1.5. Column 1 presents the results without controls. In Column

2 through 4, we increment the specification by including various control variables. All

variables are standardized to facilitate the interpretation of their coefficients.

The results indicate that the slope of the SML decreases with granularity, computed

as change in the market capitalization of the top 100 firms as a fraction of the total market

capitalization in the U.S. The regression coefficient equals -0.445 with a t-statistic of -

7.80, which is both statistically and economically significant. A one-standard-deviation

increase in granularity implies a decrease in the slope of the SML by almost one half

(0.445) of a standard deviation in the slope.

We now verify that the role of granularity is not subsumed by alternative explana-

tions, as suggested by the existing literature. First, we control for market (excess) returns,

as Savor and Wilson (2014) find that the slope of the SML is particularly strong when

macroeconomic news is scheduled for announcement, which corroborate with large mar-

ket return days. Column 2 of Table 1.5 shows that the effect of granularity decreases by

almost one half but remains highly statistically significant. Hence, we can safely rule

out the possibility that variations in granularity are merely capturing return fluctuations
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of the market. Note that we do not need separate days with and without macroeconomic

announcements, following Savor and Wilson (2014), as our analysis uses monthly data.

Another explanation for the time-variation in the SML slope is money illusion. Modigliani

and Cohn (1979) argue that inflation, by driving a wedge between nominal versus real dis-

count rates, brings about major errors in how investors price equity. Based on the same

argument, Cohen et al. (2005) hypothesize that money illusion, intensified by high infla-

tion rates, affects the slope of the SML. They show that the slope of the SML preceded

by low inflation months is steeper than the slope of the SML preceded by high inflation

months. Following Cohen et al. (2005), we control for lagged inflation using monthly

changes in the producer price index. Yet, the impact of granularity remains unchanged,

as indicated by Column 3 of Table 1.5.

Finally, we account for changes in funding liquidity conditions. Frazzini and Ped-

ersen (2014) use the TED spread as a measure for funding conditions and show that it

is negatively correlated with contemporaneous returns on the betting-against-beta (BAB)

strategy. We include the TED spread in our set of control variables to account for the

potential impact of funding conditions on the slope of the SML. This control has no effect

on the role of granularity, as evidenced by Column 4 of Table 1.5.

Alternatively, Antoniou et al. (2015) show that the slope of the SML is positive during

pessimistic sentiment periods and negative during optimistic periods. Optimism attracts

equity investment by less sophisticated traders in risky opportunities (high beta stocks),

while such traders stay along the sidelines during pessimistic periods (see, e.g., Grinblatt

and Keloharju (2001); Lamont and Thaler (2003)). Thus, high beta stocks become over-

priced in optimistic periods, which induces the negative slope of the SML. Following

Antoniou et al. (2015), we use the Baker and Wurgler (2006)’s index of investor senti-

ment, which we obtain from the authors’ website. In Table 1.6 (1.7) we regress the SML

slope estimates on changes in granularity when the investor sentiment index is positive

(negative). The sign and statistical significance of estimated coefficients remain consis-

tent with Table1.5. These findings suggest that granularity does not reflect high versus

low sentiment periods, as the coefficient of interest remains very similar across the three
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tables.

Overall, the negative relation between the slope of the SML and granularity remains

significant after controlling for existing explanations such as aggregate market fluctua-

tions, money illusion, investor sentiment, and funding liquidity conditions. In addition,

the results are robust to using the SML slope estimated with the cross-section of individual

stocks (Table 1.8–1.10) instead of the cross-section of 25 portfolios.

1.6 Revisiting Betting Against Beta

In this section, we revisit one of the most studied implications of the ’too-flat’ slope of the

SML, which is known as the betting-against-beta (BAB) strategy. Frazzini and Pedersen

(2014) show that a long position in low-beta assets and a short position in high-beta assets

produces significant positive risk-adjusted returns. Our theoretical analysis predicts that

such returns should be particularly high when granularity increases, while they should be

reduced when granularity decreases. We now test this prediction and shed new light on

the conditional performance of the BAB strategy.

1.6.1 Conditional Beta-sorted Portfolio Alpha

We start by studying the conditional performance of 10 beta-sorted portfolios with respect

to granularity. Consistent with the rest of the paper, we first use the (pre-formation)

betas estimated for each individual stock using 60 months of monthly returns. We then

sort stocks into 10 portfolios according to their beta and compute the equally-weighted

returns for each portfolio. Following prior work, we exclude stocks with prices below $5

to ensure that results are not driven by small, illiquid stocks.

The unconditional CAPM alpha of a portfolio is the intercept of a regression of a

portfolio’s excess return on the market excess return over the whole sample. For the

conditional analysis, we first split the portfolio returns into two subsamples corresponding

to months when granularity decreases (∆Gt < 0) and increases (∆Gt > 0). Then, we
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estimate the intercept of the regression based on each subsample.

Figure 1.8 illustrates the annualized CAPM alphas of each portfolio in the uncondi-

tional case (Panel A), when granularity increases (Panel B), and when granularity de-

creases (Panel C). The results reproduce the typical betting-against-beta pattern in the

unconditional estimation: the low-beta portfolios exhibit positive alphas, while the high-

beta portfolios exhibit negative alphas. However, the relation varies according to granu-

larity, as we find a negative (positive) relation between CAPM alphas and corresponding

betas in Panel B (Panel C). Note that alphas are on average negative in Panel B, which in-

dicates that relatively-small stocks underperform the market when granularity increases,

i.e., when the larger firms become even larger and thus overperform the market. The

opposite applies to Panel C, when granularity decreases.

FIGURE 1.8 ABOUT HERE

We present the results of the 10 beta-sorted portfolios and assess their statistical sig-

nificance in Table 1.11. The first two rows report the post formation market betas and

time series averages of monthly excess returns for each of the portfolios. We then report

the unconditional (Panel A) and the conditional (Panel B) portfolio alphas. The rightmost

column presents the difference in estimates between the top beta and the bottom beta port-

folios, i.e., P10-P1. In Panel C, we conduct a robustness analysis when we orthogonalize

changes in granularity to excess market returns, thus avoiding that our conditioning anal-

ysis merely reflects good vs. bad market days. The conditional results reported in Panels

B and C of Table 1.11 are qualitatively similar. In both cases, we find that the high-beta

portfolio (P10) alpha is statistically lower than the low-beta portfolio (P1) alpha when

granularity increases, but the relation becomes statistically insignificant (and of the op-

posite sign) when granularity decreases. That is, the classic BAB pattern appears to be

concentrated in times of increasing granularity.

TABLE 1.11 ABOUT HERE
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1.6.2 Explaining BAB Returns with Granularity

In this section we examine the conditional performance of the long-short BAB strategy,

which we construct as buying the low-beta portfolio (P1) and selling the high-beta port-

folio (P10). That is, the long portfolio is an equal-weighted average of the bottom decile

stocks, when stocks are ranked according to their beta, whereas the short portfolio is an

equal-weighted average of the top decile stocks.

We first compute the conditional average return of the BAB strategy. The first two

rows in Table 1.12 show the average BAB return for months when granularity increases

(∆Gt > 0) and decreases (∆Gt < 0), respectively. We use four different granularity mea-

sures corresponding to each of the columns and report, in each case, the average BAB

return (with t-statistics in parentheses). The different granularity measures are based on

the market value of the top 100, 50, and 1% largest firms as fraction of total market

capitalization, as well as the excess Herfindahl-Hirschman Index (exHHI). The last row

reports the difference between the conditional averages and the corresponding t-statistics.

In all cases, the BAB strategy yields a positive average return when granularity increases

and a negative average return when granularity decreases. Hence, the performance of the

BAB strategy appears to be highly related to granularity.

TABLE 1.12 ABOUT HERE

We then examine how the return on this BAB strategy relates to changes in granularity

by estimating the following regression:

rBAB,t = b+βG∆Gt +X′
tβC + εt , (1.20)

where the BAB return rBAB,t is regressed on granularity changes ∆Gt , while Xt is a vector

of financial conditions that we use as control variables. The set of controls includes ex-

cess market returns, lagged inflation, lagged BAB returns, and the TED spread. Table 1.13
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presents the results, which indicate that BAB returns are significantly and positively re-

lated to changes in granularity, even after controlling for alternative predictors. The effect

is statistically significant and of the expected sign.

In sum, we provide evidence that the performance of the BAB strategy appears to be

particularly high when granularity in the U.S. stock market increases, which is when the

slope of the SML decreases, as predicted by our theory.

TABLE 1.13 ABOUT HERE

1.7 Conclusion

This paper shows that granularity drives the joint dynamics of asset prices. According

to the CAPM, firm-specific risk is fully compressed and systematic risk is the sole de-

terminant of the equity risk premium. However, investors consider the granular context

of financial markets to form their expectations about the risk-return trade-off. They ask

for a premium to hold assets with incompressible firm-specific exposure. We construct a

two-firm economy and show that the equity beta are functions of the relative weight of

the firms in the economy.

We show that assuming that the CAPM holds reveals an alpha different from zero.

Larger firms are more correlated with the market, have larger betas, and, hence have

smaller alphas. Unless the pricing kernel compensates firm-specific risk, we find that the

CAPM alpha is always different from zero. This mechanism arises naturally in a granular

economy. Accordingly, the empiricist’s CAPM-implied SML is always flatter than what

theory predicts and the slope of the SML is negatively correlated with granularity. We

develop an empirical analysis that confirms the predictions of our theory. The data suggest

a significant and negative relation between various measures of granularity and the slope

of the SML.
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Table 1.1
Definition of Variables

This table defines the variables underpinning this study and the corresponding data sources. All
series are retrieved monthly.

Variable Definition Source

G Degree of granularity measured as the to-
tal market capitalization value of the largest
firms in the U.S. in percentage of the to-
tal market capitalization of the CRSP uni-
verse. We use either the top 50, 100, or 1%
of the firms with the largest market capital-
ization. Alternatively, we consider the ex-
cess Herfindahl-Hirschman Index proposed
by Gabaix and Koijen (2020), defined as

exHHI =
√

− 1
N +∑

N
1 w2

i , where wi the mar-
ket value of firm i to total market capitaliza-
tion and N is the total number of firms.

Wharton Research Data Services

Rm - R f Market excess return, computed as the
value-weighted return on the CRSP uni-
verse.

Wharton Research Data Services

Sentiment Sentiment composite index based on the
common variation in six underlying prox-
ies for sentiment: the closed-end fund dis-
count, NYSE share turnover, the number
and average first-day returns on IPOs, the
equity share in new issues, and the dividend
premium.

Baker and Wurgler (2006)’s website

TED The TED spread, measured by difference
between the three-month Treasury bill and
the three-month LIBOR rates based in US
dollars.

Federal Reserve Bank of Saint Louis

Inflation Inflation measured as the exponentially
weighted average (36-month window) of
the log growth rates on the monthly Pro-
ducer Price Index (PPI) for all commodi-
ties, following Cohen et al. (2005).

Federal Reserve Bank of Saint Louis
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Table 1.2
Summary Statistics

This table presents the summary statistics of the main variables. Panel A considers different
measures of granularity, including the market capitalization value of the 100, 50, and 1% largest
firms in fraction of total market capitalization of the CRSP universe, and the excess Herfindahl-
Hirschman index (exHHI) defined in Gabaix and Koijen (2020). Panel B reports the estimated
slope and intercept of the security market line (SML), while Panel C presents the statistics for the
control variables used in our regression analysis. The slope and intercept of the SML are estimated
from Fama-MacBeth regressions based on 25 equally-weighted beta portfolios. Beta portfolios
and granularity measures are computed using monthly individual stock information from CRSP.
Detailed description of the control variables is provided in Table 1.1. Data span January 1973 to
December 2018.

Measure Min Max Mean Med Std 1% 25% 75% 99% Skw Kur

Panel A: Granularity measures

Top100 0.39 0.55 0.45 0.44 0.04 0.40 0.42 0.48 0.54 0.74 2.47

Top50 0.28 0.43 0.34 0.33 0.04 0.29 0.31 0.37 0.42 0.63 2.41

Top1% 0.32 0.52 0.39 0.37 0.04 0.32 0.36 0.40 0.51 1.28 4.31

exHHI 0.05 0.09 0.06 0.06 0.01 0.05 0.06 0.07 0.09 0.75 2.27

Panel B: Slope and intercept of the SML

Slope -
0.23

0.22 -
0.00

-
0.00

0.06 -
0.14

0.04 0.03 0.18 0.12 4.33

Intercept -
0.15

0.12 0.01 0.01 0.03 -
0.09

-
0.01

0.03 0.08 -
0.63

4.99

Panel C: Control variables

Rm - R f -
0.22

0.17 0.01 0.01 0.04 -
0.11

-
0.01

0.04 0.12 -
0.41

4.89

Sentiment -
2.44

3.20 0.01 0.05 0.89 -
2.25

-
0.30

0.52 2.34 -
0.29

4.18

Inflation -
0.64

0.69 0.04 0.03 0.12 -
0.30

-
0.02

0.08 0.35 -
0.28

9.71

TED(%) 0.12 3.15 0.58 0.46 0.44 0.13 0.26 0.72 2.30 2.10 9.33
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Table 1.3
Correlation between Variables

This table presents the correlations among the main variables. Panel A shows the correlations
between changes in different measures of granularity, including the market capitalization value of
the 100, 50, and 1% largest firms in fraction of total market capitalization of the CRSP universe,
and the excess Herfindahl-Hirschman index (exHHI) defined in Gabaix and Koijen (2020). Panel
B displays the correlations between changes in granularity (using the top 100 firms), the excess
market return (Rm - R f ), the investor sentiment of Baker and Wurgler (2006), inflation as in Cohen
et al. (2005), and the TED spread following Antoniou et al. (2015), which are used as control
variables in the regression analysis. Detailed description of the control variables is provided in
Table 1.1. We obtain individual stock information from CRSP. Monthly data span January 1973
to December 2018.

Panel A: Change in granularity measures

∆ Measure ∆Top100 ∆Top50 ∆Top1% ∆exHHI

∆Top100 1 0.97 0.96 0.78

∆Top50 1 0.97 0.84

∆Top1% 1 0.80

∆exHHI 1

Panel B: Granularity and control variables

Variable ∆G Rm - R f Sentiment Inflation TED

∆G 1 -0.27 0.02 -0.12 0.24

Rm - R f 1 -0.09 0.06 -0.15

Sentiment 1 -0.08 0.06

Inflation 1 -0.16

TED 1
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Table 1.4
Conditional SML Slope from Fama-MacBeth Regressions

This table reports estimates of the conditional slope of the security market line (SML) from Fama-
MacBeth regressions. Every month, excess portfolio returns are regressed on post-formation mar-
ket betas of the same portfolios from the previous month. The table reports the average of the SML
slope coefficient estimates when granularity increases (γ̂H) or decreases (γ̂L) in a given month. The
difference in estimates is reported in the last row, where t-statistics (in parentheses) are calculated
using the standard deviation of the time series of the coefficient estimates. In Panel A, the aver-
age slope of the SML is estimated across five different test assets: 25 equally-weighted (Column
1) and 25 value-weighted (Column 2) beta portfolios, 48 industry portfolios (Column 3), 25 size
and book-to-market portfolios (Column 4), and a portfolio composed of 10 value-weighted, 10
equally-weighted beta portfolios, 10 industry portfolios, and 6 size and book-to-market portfolios
(Column 5). Panel B reports results for different granularity measures when the test asset is the
25 equally-weighted beta portfolio. The granularity measures are the market capitalization value
of the top 100 (Column 1), top 50 (Column 2), and top 1% (Column 3) largest firms in fraction
of total market capitalization, and the excess excess Herfindahl-Hirschman index (exHHI) defined
in Gabaix and Koijen (2020) (Column 4). Beta portfolios are formed based on monthly individ-
ual stock returns obtained from CRSP. All other portfolio returns are from Kenneth French’s data
library. Monthly data span January 1973 to December 2018. *, **, and *** indicate statistical
significance at the 10%, 5%, and 1% level, respectively.

Panel A: Conditional mean of SML slope across test assets

(1) (2) (3) (4) (5)

γ̂H -0.265∗∗∗ −0.135∗∗∗ −0.169∗∗∗ −0.332∗∗∗ −0.202∗∗∗

(-6.25) (−2.93) (−4.32) (−6.27) (−4.67)

γ̂L 0.211∗∗∗ 0.316∗∗∗ 0.169∗∗∗ 0.244∗∗∗ 0.257∗∗∗

(5.10) (7.40) (4.51) (5.10) (6.36)

γ̂H − γ̂L -0.476∗∗∗ −0.452∗∗∗ −0.337∗∗∗ −0.575∗∗∗ −0.458∗∗∗

(-8.03) (−7.18) (−6.24) (−8.08) (−7.76)

Panel B: Conditional mean of SML slope across granularity measures

(1) (2) (3) (4)

γ̂H -0.265∗∗∗ −0.242∗∗∗ −0.220∗∗∗ −0.250∗∗∗

(-6.25) (−5.70) (−5.19) (−5.89)

γ̂L 0.211∗∗∗ 0.197∗∗∗ 0.191∗∗∗ 0.196∗∗∗

(5.10) (4.74) (4.61) (4.74)

γ̂H − γ̂L -0.476∗∗∗ −0.438∗∗∗ −0.411∗∗∗ −0.446∗∗∗

(-8.03) (−7.40) (−6.93) (−7.53)
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Table 1.5
Slope of the SML and Granularity – Portfolio Level

This table reports the effect of changes in granularity on the conditional slope of the security mar-
ket line (SML). The dependent variable is the slope of the SML, which is obtained from regressing
equally-weighted monthly returns of 25 beta portfolios on the previous month’s market betas of
the same portfolios. Conditional betas are estimated by rolling a 60-month window. The variable
of interest is the change in granularity (∆Gt), measured by the market capitalization value of the
100 largest firms in fraction of total market capitalization of the CRSP universe. The control vari-
ables include excess market return (Rm,t - R f ), investor sentiment of Baker and Wurgler (2006),
lagged inflation as in Cohen et al. (2005), and the TED spread following Antoniou et al. (2015).
Details about the variables are provided in Table 1.1. Newey-West t-statistics with 12 lags are re-
ported in parentheses. Monthly data span January 1973 to December 2018, obtained from CRSP.
All variables are normalized. *, **, and *** indicate statistical significance at the 10%, 5%, and
1% level, respectively.

(1) (2) (3) (4)

∆Gt -0.445∗∗∗ −0.237∗∗∗ −0.233∗∗∗ −0.244∗∗∗
(-7.80) (−5.17) (−5.16) (−4.47)

Rm,t-R f ,t 0.704∗∗∗ 0.711∗∗∗ 0.765∗∗∗
(11.29) (11.61) (11.47)

Inflationt−1 0.088∗∗∗ 0.039
(3.17) (0.95)

TEDt 0.118∗∗∗
(3.97)

Adj. R2(%) 0.20 0.65 0.66 0.67

Observations 551.00 551.00 551.00 387.00
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Table 1.6
Slope of the SML and Granularity – Portfolio Level, High Sentiment Months

This table reports the effect of changes in granularity on the conditional slope of the security mar-
ket line (SML). The dependent variable is the slope of the SML, which is obtained from regressing
equally-weighted monthly returns of 25 beta portfolios on the previous month’s market betas of
the same portfolios. Conditional betas are estimated by rolling a 60-month window. The variable
of interest is the change in granularity (∆Gt), measured by the market capitalization value of the
100 largest firms in fraction of total market capitalization of the CRSP universe. The control vari-
ables include excess market return (Rm,t - R f ), investor sentiment of Baker and Wurgler (2006),
lagged inflation as in Cohen et al. (2005), and the TED spread following Antoniou et al. (2015).
Details about the variables are provided in Table 1.1. Newey-West t-statistics with 12 lags are re-
ported in parentheses. Monthly data span January 1973 to December 2018, obtained from CRSP.
All variables are normalized. *, **, and *** indicate statistical significance at the 10%, 5%, and
1% level, respectively.

(1) (2) (3) (4)

∆Gt -0.352∗∗∗ −0.191∗∗∗ −0.184∗∗∗ −0.230∗∗∗
(-6.83) (−3.36) (−3.21) (−3.40)

Rm,t-R f ,t 0.718∗∗∗ 0.724∗∗∗ 0.743∗∗∗
(9.37) (9.44) (7.85)

Inflationt−1 0.091∗ 0.073
(1.88) (1.44)

TEDt 0.109∗∗∗
(3.86)

Adj. R2(%) 0.13 0.61 0.61 0.60

Observations 300.00 300.00 300.00 237.00
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Table 1.7
Slope of the SML and Granularity – Portfolio Level, Low Sentiment Months

This table reports the effect of changes in granularity on the conditional slope of the security mar-
ket line (SML) when the investor sentiment index of Baker and Wurgler (2006) is negative. The
dependent variable is the slope of the SML, which is obtained from regressing equally-weighted
monthly returns of 25 beta portfolios on the previous month’s market betas of the same portfo-
lios. Conditional betas are estimated by rolling a 60-month window. The variable of interest is
the change in granularity (∆Gt), measured by the market capitalization value of the 100 largest
firms in fraction of total market capitalization of the CRSP universe. The control variables in-
clude excess market return (Rm,t - R f ), lagged inflation as in Cohen et al. (2005), and the TED
spread following Antoniou et al. (2015). Details about the variables are provided in Table 1.1.
Newey-West t-statistics with 12 lags are reported in parentheses. Monthly data span January 1973
to December 2018, obtained from CRSP. All variables are normalized. *, **, and *** indicate
statistical significance at the 10%, 5%, and 1% level, respectively.

(1) (2) (3) (4)

∆Gt -0.545∗∗∗ −0.294∗∗∗ −0.293∗∗∗ −0.278∗∗∗
(-6.87) (−4.68) (−4.71) (−5.22)

Rm,t-R f ,t 0.678∗∗∗ 0.681∗∗∗ 0.800∗∗∗
(7.42) (7.54) (11.28)

Inflationt−1 0.032 −0.060
(1.10) (−0.97)

TEDt 0.161∗∗∗
(2.60)

Adj. R2(%) 0.29 0.71 0.71 0.80

Observations 251.00 251.00 251.00 150.00

36



Table 1.8
Slope of the SML and Granularity – Individual Stock Level

This table reports the effect of changes in granularity on the conditional slope of the security mar-
ket line (SML). The dependent variable is the slope of the SML, which is obtained from regressing
individual monthly stock returns on the previous month’s market betas of the stocks. Conditional
betas are estimated by rolling a 60-month window. The variable of interest is the change in gran-
ularity (∆Gt), measured by the market capitalization value of the 100 largest firms in fraction of
total market capitalization of the CRSP universe. The control variables include excess market re-
turn (Rm,t - R f ), lagged inflation as in Cohen et al. (2005), and the TED spread following Antoniou
et al. (2015). Details about the variables are provided in Table 1.1. Newey-West t-statistics with
12 lags are reported in parentheses. Monthly data span January 1973 to December 2018, obtained
from CRSP. All variables are normalized. *, **, and *** indicate statistical significance at the
10%, 5%, and 1% level, respectively.

(1) (2) (3) (4)

∆Gt -0.443∗∗∗ −0.237∗∗∗ −0.237∗∗∗ −0.243∗∗∗
(-7.35) (−5.00) (−5.02) (−4.59)

Rm,t-R f ,t 0.697∗∗∗ 0.697∗∗∗ 0.783∗∗∗
(10.74) (10.82) (10.19)

Inflationt−1 0.010 −0.036∗∗
(0.29) (−2.10)

TEDt 0.113∗∗∗

(3.92)

Adj. R2(%) 0.19 0.64 0.64 0.68

Observations 551.00 551.00 551.00 387.00
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Table 1.9
Slope of the SML and Granularity – Individual Stock Level, High Sentiment Months

This table reports the effect of changes in granularity on the conditional slope of the security
market line (SML) when the investor sentiment index of Baker and Wurgler (2006) is positive.
The dependent variable is the slope of the SML, which is obtained from regressing individual
monthly stock returns on the previous month’s market betas of the stocks. Conditional betas are
estimated by rolling a 60-month window. The variable of interest is the change in granularity
(∆Gt), measured by the market capitalization value of the 100 largest firms in fraction of total
market capitalization of the CRSP universe. The control variables include excess market return
(Rm,t - R f ), lagged inflation as in Cohen et al. (2005), and the TED spread following Antoniou
et al. (2015). Details about the variables are provided in Table 1.1. Newey-West t-statistics with
12 lags are reported in parentheses. Monthly data span January 1973 to December 2018, obtained
from CRSP. All variables are normalized. *, **, and *** indicate statistical significance at the
10%, 5%, and 1% level, respectively.

(1) (2) (3) (4)

∆Gt -0.331∗∗∗ −0.177∗∗∗ −0.178∗∗∗ −0.223∗∗∗
(-6.09) (−3.39) (−3.43) (−3.65)

Rm,t-R f ,t 0.686∗∗∗ 0.684∗∗∗ 0.725∗∗∗
(7.89) (7.90) (6.68)

Inflationt−1 −0.042 −0.053∗
(−1.48) (−1.72)

TEDt 0.106∗∗∗
(3.33)

Adj. R2(%) 0.12 0.60 0.60 0.61

Observations 300.00 300.00 300.00 237.00
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Table 1.10
Slope of the SML and Granularity – Individual Stock Level, Low Sentiment Months

This table reports the effect of changes in granularity on the conditional slope of the security
market line (SML) when the investor sentiment index of Baker and Wurgler (2006) is negative.
The dependent variable is the slope of the SML, which is obtained from regressing individual
monthly stock returns on the previous month’s market betas of the stocks. Conditional betas are
estimated by rolling a 60-month window. The variable of interest is the change in granularity
(∆Gt), measured by the market capitalization value of the 100 largest firms in fraction of total
market capitalization of the CRSP universe. The control variables include excess market return
(Rm,t - R f ), lagged inflation as in Cohen et al. (2005), and the TED spread following Antoniou
et al. (2015). Details about the variables are provided in Table 1.1. Newey-West t-statistics with
12 lags are reported in parentheses. Monthly data span January 1973 to December 2018, obtained
from CRSP. All variables are normalized. *, **, and *** indicate statistical significance at the
10%, 5%, and 1% level, respectively.

(1) (2) (3) (4)

∆Gt -0.564∗∗∗ −0.307∗∗∗ −0.306∗∗∗ −0.286∗∗∗
(-6.80) (−4.39) (−4.42) (−5.03)

Rm,t-R f ,t 0.694∗∗∗ 0.694∗∗∗ 0.861∗∗∗
(7.57) (7.70) (11.19)

Inflationt−1 0.010 −0.023
(0.24) (−0.84)

TEDt 0.155∗∗
(2.13)

Adj. R2(%) 0.29 0.70 0.69 0.79

Observations 251.00 251.00 251.00 150.00

39



Table
1.11

B
eta-sorted

Portfolio
R

eturnsand
G

ranularity

T
his

table
show

s
the

beta-sorted
portfolio

returns
by

granularity.T
he

firsttw
o

row
s

reportthe
m

arketbeta
and

the
tim

e
series

average
of10

equally-w
eighted

beta-sorted
portfolios

(C
olum

ns
P1

to
P10).T

he
rightm

ostcolum
n

corresponds
to

the
difference

betw
een

the
high-beta

portfolio
and

the
low

-beta
portfolio

(P10-P1).
C

A
PM

alpha
is

the
intercept

from
a

regression
w

here
excess

portfolio
returns

are
regressed

on
excess

m
arket

returns.
Panel

A
presents

the
unconditionalresults.PanelB

presents
results

conditionalon
granularity

increases
(∆

G
t
>

0)and
decreases

(∆
G

t
<

0),w
here

granularity
is

m
easured

by
the

m
arketvalue

ofthe
100

top
firm

s
as

fraction
oftotalm

arketcapitalization.PanelC
conditions

the
analysis

on
∆

G
orth ,w

hich
is

given
by

∆
G

orthogonalized
to

excess
m

arket
returns.

R
obust

N
ew

ey-W
estt-statistics

w
ith

12
lags

are
reported

in
parentheses.

M
onthly

data
span

January
1973

to
D

ecem
ber

2018,
obtained

from
C

R
SP.*,**,and

***
indicate

statisticalsignificance
atthe

10%
,5%

,and
1%

level,respectively.

P1
P2

P3
P4

P5
P6

P7
P8

P9
P10

P10-P1
(L

ow
β

)
(H

igh
β

)

PanelA
:U

nconditional

B
eta

0.428
0
.577

0.718
0.821

0.925
1.018

1.111
1.213

1.360
1.675

1.247

E
x.R

et
0.749

0
.870

0.987
1.015

1.016
1.075

1.093
1.108

1.204
1.429

0.680

C
A

PM
α

0.246
0
.193

0.145
0.052

−
0.069

−
0.120

−
0.210 ∗

−
0.315 ∗∗

−
0.391 ∗∗∗

−
0.536 ∗∗∗

−
0.783 ∗∗∗

(1.60)
(1
.45

)
(1
.09

)
(0
.41

)
(−

0.52
)

(−
0.99

)
(−

1.84
)

(−
2.40

)
(−

2.83
)

(−
2.66

)
(−

2.82
)

PanelB
:C

onditionalon
∆

G

C
A

PM
α

,
∆

G
>

0
-0.317 ∗

−
0.446 ∗∗

−
0.587 ∗∗∗

−
0.780 ∗∗∗

−
0.983 ∗∗∗

−
1.077 ∗∗∗

−
1.278 ∗∗∗

−
1.555 ∗∗∗

−
1.804 ∗∗∗

−
2.252 ∗∗∗

−
1.935 ∗∗∗

(-1.67)
(−

2
.42

)
(−

3
.66

)
(−

5
.17

)
(−

6
.15

)
(−

7.47
)

(−
10.17

)
(−

11.88
)

(−
13.37

)
(−

10.80
)

(−
6.12

)

C
A

PM
α

,
∆

G
<

0
0.939 ∗∗∗

0
.931 ∗∗∗

0
.995 ∗∗∗

1
.023 ∗∗∗

0
.982 ∗∗∗

0
.935 ∗∗∗

0
.969 ∗∗∗

1
.021 ∗∗∗

1.076 ∗∗∗
1.137 ∗∗∗

0.198
(5.05)

(5
.48

)
(5
.41

)
(5
.60

)
(5
.51

)
(5
.53

)
(5
.60

)
(5
.75

)
(5
.60

)
(4
.26

)
(0
.56

)

PanelC
:C

onditionalon
∆

G
orth

C
A

PM
α

,
∆

G
orth

>
0

-0.388 ∗
−

0.449 ∗∗
−

0.586 ∗∗∗
−

0.761 ∗∗∗
−

0.986 ∗∗∗
−

1.078 ∗∗∗
−

1.310 ∗∗∗
−

1.576 ∗∗∗
−

1.809 ∗∗∗
−

2.303 ∗∗∗
−

1.915 ∗∗∗
(-1.90)

(−
2
.34

)
(−

3
.44

)
(−

4
.82

)
(−

5
.97

)
(−

7.28
)

(−
10.07

)
(−

11.98
)

(−
13.23

)
(−

12.33
)

(−
5.82

)

C
A

PM
α

,
∆

G
orth

<
0

0.951 ∗∗∗
0
.899 ∗∗∗

0
.945 ∗∗∗

0
.944 ∗∗∗

0
.939 ∗∗∗

0
.929 ∗∗∗

0
.995 ∗∗∗

1
.062 ∗∗∗

1.157 ∗∗∗
1.385 ∗∗∗

0.434
(5.82)

(5
.98

)
(5
.42

)
(5
.06

)
(5
.33

)
(5
.56

)
(5
.70

)
(5
.62

)
(5
.67

)
(4
.91

)
(1
.29

)

40



Table 1.12
Conditional BAB returns

This table presents the conditional mean of betting-against-beta (BAB) returns by changes in gran-
ularity. We construct BAB returns from the strategy that is long the low-beta stocks and short the
high-beta stocks. The long portfolio is an equally-weighted average of the bottom decile stocks,
when stocks are ranked according to their beta, whereas the short portfolio is an equally-weighted
average of the top decile stocks. The conditioning criteria correspond to changes in four measures
of granularity Gt : the market value of the top 100, 50, and 1% largest firms as fraction of total
market capitalization, as well as the excess Herfindahl-Hirschman Index (exHHI). The first two
rows show the average BAB return for months when granularity increases (∆Gt > 0) and decreases
(∆Gt < 0), respectively. The last row reports the difference between the conditional means and
the test of the difference. Robust Newey-West t-statistics with 12 lags are reported in parentheses.
Equal weighted beta portfolios are formed based on CRSP. Monthly data span January 1973 to
December 2018. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level,
respectively.

∆Top100 ∆Top50 ∆Top1% ∆exHHI

(1) rBAB, ∆G>0 0.024∗∗∗ 0.022∗∗∗ 0.019∗∗∗ 0.022∗∗∗
(6.25) (5.73) (5.29) (5.53)

(2) rBAB, ∆G<0 -0.019∗∗∗ −0.018∗∗∗ −0.017∗∗∗ −0.017∗∗∗
(-4.82) (−4.32) (−3.93) (−4.47)

(1) - (2) 0.043∗∗∗ 0.039∗∗∗ 0.036∗∗∗ 0.039∗∗∗
(7.81) (7.07) (6.43) (7.09)
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Table 1.13
BAB returns and Granularity

This table presents results of a regression of betting-against-beta (BAB) returns on changes in
granularity. We construct BAB returns from the strategy that is long the low-beta stocks and
short the high-beta stocks. The long portfolio is an equally-weighted average of the bottom decile
stocks, when stocks are ranked according to their beta, whereas the short portfolio is an equally-
weighted average of the top decile stocks. The explanatory variables include contemporaneous
changes granularity, excess market return, lagged inflation, the lagged return of the long-short
strategy, and the TED spread. Granularity is the market value of the 100 largest firms as a fraction
of total market capitalization. Robust Newey-West t-statistics with 12 lags are reported in paren-
theses. Monthly data span January 1973 to December 2018. All variables are normalized. *, **,
and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively.

(1) (2) (3) (4) (5)

∆Gt 0.409∗∗∗ 0.200∗∗∗ 0.197∗∗∗ 0.196∗∗∗ 0.225∗∗∗
(7.43) (4.76) (4.70) (4.69) (4.10)

Rm,t−R f ,t −0.705∗∗∗ −0.711∗∗∗ −0.710∗∗∗ −0.833∗∗∗
(−9.45) (−9.60) (−9.58) (−8.91)

Inflationt−1 −0.072∗∗∗ −0.072∗∗∗ −0.065
(−2.67) (−2.67) (−1.13)

rBAB,t−1 0.006 0.010
(0.29) (0.44)

TEDt −0.122∗∗∗
(−3.27)

Adj. R2(%) 16.54 61.88 62.26 62.20 64.89

Observations 552 552 551 551 387
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Figure 1.2: Equity beta and alpha by market index weight.
This figure shows how the equity beta and alpha of two firms vary with the market index compo-
sition, measured by with one firm’s equity weight in the market index. Panel A reports the equity
betas of firms A and B, which correspond to the exposure of a firm’s equity excess return to the
market excess return. Panel B reports the equity alphas of firms A and B, which correspond to
the expected excess return less the compensation for the market exposure. The weight of firm A,
denoted by wA , reflects the equity value of firm A as a fraction of total market value (sum of equity
values of firms A and B). The weight wA varies endogenously by changing firm A’s dividend level,
maintaining firm B unchanged. Parameters are set to µB = µA = 0.05, σA = σB = 0.15, ηA = 0.60,
ηB = 0.40, XB = 1, and r = 0.05.
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Figure 1.3: Security market line by market index weight.
This figure shows how the security market line (SML) changes with the market index composition,
measured by one firm’s equity weight in the market index. Panel A reports the slope of the SML,
which corresponds to the difference in firms’ equity excess return divided by the the difference in
firms’ equity betas. Panel B reports the intercept of the SML. The weight of firm A, denoted by wA ,
reflects the equity value of firm A as a fraction of total market value (sum of equity values of firms
A and B). The weight wA varies endogenously by changing firm A’s dividend level, maintaining
firm B unchanged. Parameters are set to µB = µA = 0.05, σA = σB = 0.15, ηA = 0.60, ηB = 0.40,
XB = 1, and r = 0.05.
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Figure 1.4: Security market line and granularity.
This figure illustrates the security market line (SML) in a two-firm economy for different levels
of granularity. The red line corresponds to the benchmark case, while the blue line reflects an
increase in granularity. Granularity increases when the larger firm becomes larger and the smaller
firm smaller, which implies that the market is more exposed to the larger firm. In this example,
a positive dividend shock to firm A, which has the higher weight in the market index (wA > wB),
increases its equity beta (β

A′ > βA) but decreases the other firm’s equity beta (β
B′ < βB) by market

clearing conditions. As a result, the slope of the SML decreases when the economy becomes more
granular.
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Figure 1.5: Time series of granularity.
This figure shows the time series of four different measures of granularity. Panel A, B, and C,
respectively, plot the market value of the 100, the 50, and the 1% largest firms as a fraction of
total market capitalization. Panel D displays the excess Herfindahl-Hirschman Index, defined in
Table 1.1. Monthly data span January 1973 to December 2018 and are obtained from CRSP.
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(A) 25 VW Beta Portfolios
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(B) 48 Industry Portfolios

 G>0  G<0

Figure 1.6: Conditional SML and granularity – Alternative portfolios.
This figure shows the average conditional monthly returns against the average conditional market
betas, computed in the previous month, of 25 value weighted beta portfolios (Panel A) and 48
industry portfolios (Panel B). We separate portfolio returns and corresponding betas for increases
(∆Gt > 0) versus decreases (∆Gt < 0) granularity months. Granularity, denoted by Gt , is the mar-
ket value of top 100 firms as a fraction of total market capitalization. Monthly data span January
1973 to December 2018. Beta portfolios are formed based on monthly individual stock returns
obtained from CRSP, while industry portfolio returns are from Kenneth French’s data library.
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(A) VW Beta Portfolios, G = Top1%
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(B) VW Beta Portfolios, G = exHHI

 G>0  G<0

Figure 1.7: Conditional SML and granularity – Alternative granularity measures.
This figure shows the average conditional monthly returns against the average conditional market
betas, computed in the previous month, of 25 value weighted beta portfolios. We separate portfolio
returns and corresponding betas for increases (∆Gt > 0) versus decreases (∆Gt < 0) granularity
months. Granularity, denoted by Gt , is the market value of top 100 firms as a fraction of total
market capitalization in Panel A and the excess Herfindahl-Hirschman Index in Panel B. Detailed
description of the granularity measures is provided in Table 1.1. Monthly data span January 1973
to December 2018 and are obtained from CRSP.
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Figure 1.8: Conditional Alpha of Beta-sorted Portfolios.
This figure plots the CAPM alphas of 10 equally-weighted portfolios based on beta-sorted stocks.
The unconditional alpha of a portfolio is the intercept of a regression of a portfolio’s excess return
on the market excess return over the whole sample. For the conditional analysis, we first split
the portfolio returns into two subsamples corresponding to months when granularity decreases
(∆Gt < 0) and increases (∆Gt > 0), where granularity Gt is the market value of top 100 firms as
a fraction of total market capitalization. We then estimate the intercept of the regression based
on each subsample. Panel A displays the unconditional portfolio alphas, while Panels B and C
report results for increases and decreases in granularity, respectively. Beta portfolios are formed
based on monthly individual stock returns obtained from CRSP. Monthly data span January 1973
to December 2018.
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Chapter 2

Granular Gravity: Equity-Bond

Returns & Correlation

Abstract

Investors care about the state of granularity, the heavy tail of firms’ size distribution. I

adapt and extend an existing granularity measure, and show that changes in granularity

are negatively related to the cross-section of corporate bond returns. I verify that the risk-

adjusted return on a strategy that provides effective hedge against granularity shocks is

economically significant. I further document that the correlation between firms bond and

equity returns is 50% higher when the economy becomes more granular than atomistic.

Data supports the hypothesis that this arises from granularity being a priced factor in the

cross-sections of both equity and corporate bond returns.



2.1 Introduction

A granular economy comprises a small number of very large, and a large number of atom-

istic firms. Such economy does not yield to classic arguments where firms, no matter how

large, are always negligible relative to the whole economy (Lucas, 1977). On the contrary,

in a granular economy risk inherent in large firms is not compressible (Gabaix, 2011). I

argue that granularity is a state variable that correlates with the future investment oppor-

tunity set (Merton, 1973). As such, a typical investor (or consumer) cares about this state

variable. Positive innovations in granularity correspond to a narrower future opportunity

set, hence they deteriorate the utility from future consumption, and lower the expected

return on financial assets. In this paper, I study the cross section of corporate bond re-

turns, and provide ample empirical evidence that corporate bonds with more exposure to

granularity pay less.

The law of large numbers (LLN) states that in an economy with N firms, firm-specific

risk of portfolios decays at the order of 1√
N

. Gabaix (2011) argues that LLN applies

when the distribution of firms’ size is thin-tailed. However, the distribution of firms’ size,

like many other variables of interest in economics, is substantially heavy-tailed, and well

approximated by a power law (Axtell, 2001). With a heavy-tailed distribution, the decay

mechanism predicted by the LLN is hindered. Strictly speaking, in a granular economy,

firm-specific risk decays at the order of 1
lnN rather than 1√

N
(Gabaix, 2011). For example,

when N = 10,000, 1
lnN implies a ten times slower decay than 1√

N
. The number of firms in

the economy as well as the heaviness of firms’ size distribution varies over time, so does

the rate of decay (theoretically between 1√
N

and 1
lnN ). I adapt a measure for granularity to

capture this time variation, and study the corresponding cross-sectional implication in the

cross section of corporate bond returns.

Granularity is an economy-wide phenomenon, and it impacts debt markets as much

as equity markets, as they are both exposed to negative firm-level shocks that do not av-

erage out in the aggregate. Imagine an earnings shock to largest firms in the economy.

Such incompressible shock propagates and alters the riskiness of the market portfolio,
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hence becomes systematic in nature. Expected returns on securities across markets ad-

just accordingly. An investor quantifies the impact proportionate to the sensitivity of her

portfolio to the state of granularity.

Notice that as a state variable, granularity represents the likelihood that full diversifi-

cation, an assumption that CAPM investors take for granted, no longer holds. As such,

I do not ask whether a particular shock brings about lasting effects on the risk-return re-

lation. Instead, the focus is on whether heightened levels of granularity, corresponding

to a state of the world where granularity shocks are expected to propagate with a higher

probability, generate cross-sectional effects. This chapter compliments the findings in the

first chapter of the thesis by documenting that not only is granularity a priced factor in the

cross section of equity returns but also corporate bond returns.

As such, I hypothesize that exposure to state of granularity of the economy shows

in the correlation between firms’ security returns. In months when the economy grows

more granular, it is more likely that firm-specific risk propagates across markets. As a

result these months correspond to higher equity-bond correlations. On the other hand,

in months when granularity decreases, it is less likely that shocks stemming from large

firms matter in the aggregate. These months correspond to a narrower granularity channel

where equity-bond returns correlate less.

In my empirical investigation, I document that positive innovations in granularity cor-

respond to an increase in equity-bond correlation (henceforth EBC). Thereby, the state of

granularity of the economy helps us better understand the conditional behaviour of secu-

rity prices within markets, as well as the conditional co-movement of different financial

securities across markets. A direct application of this finding would be for risk managers

especially involving investment strategies in equity and corporate bond portfolios. Higher

granularity translates into riskier equity-bond portfolios as they grow more correlated,

lessening the diversification benefit expected from such strategies.

In the first chapter of this thesis, we constructed a granularity index, and provided

empirical and theoretical evidence that granularity innovations are priced in the cross

section of equity returns. I adapt and extend this index to reflect the relative size of the
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g largest firms in the economy as a fraction of total market value of firms’ equity and

debt. The granularity index depicts the extent to which the economy is dominated by a

certain number of firms. For instance, since the beginning of the millennium 20 firms

accounted for an average of a quarter (between 18 to 28 percent) of the combined value

of equity and corporate bond markets1. Hence, the higher my granularity index, the less

likely it is to achieve full diversification of firm-specific risk. A positive shock to the index

therefore reflects that the state of the economy deteriorated in that diversification benefits

are more elusive.

Bali et al. (2017), and Bali et al. (2020b) use the economic uncertainty index of Jurado

et al. (2015), and study the cross-sectional implication of innovations in economic uncer-

tainty on expected equity and corporate bond returns. I contribute to this nascent literature

and show that variation in granularity, similar to economic uncertainty, is linked to future

returns on corporate bonds. To test this hypothesis, first, I estimate the conditional betas

of corporate bond returns with respect to the granularity index using a rolling window re-

gression. Then, every month, I estimate Fama-Macbeth cross-sectional regressions where

I regress future excess bond returns on estimated betas from the prior period. I show that

the time series average of the estimated slope coefficient is negative and economically

significant. I provide evidence that results do not depend on choice of number of firms in

the granularity index, and hold with betas with respect to past innovations in granularity.

Besides, I form a strategy that takes a long position in corporate bonds that are least

sensitive to innovations in granularity (negative betas), and a short position in bonds that

are most sensitive to these innovations (positive betas). Specifically, I estimate conditional

granularity betas by estimating rolling window regressions. Every month, I sort bonds into

ten deciles. The first (tenth) decile contains bonds with negative (positive) betas. Effec-

tively shorting granularity shocks yields a risk-adjusted return that remains economically

significant after controlling for established risk factors in the corporate bond and equity

markets.

1As comparison, the smallest 100 firms in the S&P500 represent less than 4% of total market capital-
ization.
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Bonds that are more sensitive to granularity shocks (i.e. with positive granularity be-

tas) are perceived riskier when granularity increases. These bonds are relatively larger

(measured by the amount outstanding), with better credit quality, and longer time to ma-

turity. I ensure that granularity is not a proxy for size, credit quality, or time to maturity

by including them in cross-sectional regressions. Besides, I sort bonds into granularity

deciles only for short versus long time to maturity bonds, and investment grade versus

non-investment grade bonds. I find that the risk-adjusted return on the granularity strat-

egy remains economically significant in all cases.

Next, I examine whether exposure of firms’ securities to this common source of risk

explains conditional correlations between equity and corporate bond returns. I proceed by

estimating conditional EBCs and show that firms’ securities are 50% more correlated in

months where granularity shocks are large and positive. Then, I construct a panel of cor-

relation coefficients by estimating a rolling window correlation coefficient for every firm

in the sample. Fixed effect regressions verify that EBCs are positively and significantly

related to granularity.

The granularity index is a measure of market concentration, and it is imperative to

examine the robustness of the empirical findings with regard to alternative measures. I

use the Herfindahl-Hirschman Index (HHI), the excess HHI of Gabaix and Koijen (2020),

and the granularity index of Abolghasemi et al. (2020) for different values of g and repeat

the main asset pricing tests in this paper. I verify that the results hold regardless of the

type of granularity measure.

The remainder of this paper is organized as follows. I provide a brief review of the

literature in Section II, and describe the data in Section 2.3. I then proceed by describing

the details of my empirical methodology and data analysis in Section 2.4, and presenting

the concluding remarks in Section 2.6. In the Appendix, I provide a sketch of a theoretical

framework that shows how granularity affects equity and bond returns.
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2.2 Literature Review

This paper contributes to a number of streams in the literature: granularity, cross sec-

tional predictors of corporate bond returns, and the drivers of the bond-equity conditional

correlation. I provide a brief review of these streams in the following sections.

2.2.1 Granularity

The literature on granularity is one of two strands that examine micro foundations of

macroeconomic fluctuations. Axtell (2001) documents that like many variables of in-

terest in economics, the size of the firms is well approximated by the power law, hence

it is substantially heavy-tailed. As a consequence, firm-specific risk of relatively large

firms becomes incompressible (Gabaix, 2011). The granularity channel implies that coun-

try size and trade affect macroeconomic volatility (di Giovanni and Levchenko, 2012),

and that large firms are potential drivers of business cycles (Carvalho and Grassi, 2019).

Gabaix and Koijen (2020) build on the idea of granularity and propose a granular instru-

mental variable (GIV). This instrument is easy to construct, it is the difference between a

value-weighted index and its equally-weighted counterpart, and it is used to address many

questions in economics and finance where the endogeneity issue obscures empirical find-

ings.

A parallel strand in the literature examines networks and linkages among firms. This

literature does not consider a heavy-tailed distribution of firms’ size. Rather, micro shocks

propagate via linkages and networks among firms. Acemoglu et al. (2012) provide a the-

oretical framework for how these linkages aid micro-shocks to grow into macro fluctua-

tions, and Barrot and Sauvagnat (2016) show how production networks affect firms’ sales

growth and stock prices.

Herskovic et al. (2020) explore the joint capacity of granularity and networks as chan-

nels through which firm size distriution determines how firm-specific shocks propagate

and affect firm volatilities. From an asset pricing perspective, Abolghasemi et al. (2020)

show that the slope of the SML (Security Market Line) is flat even negative, when gran-
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ularity is high, hence revisiting the properties of the conditional CAPM. They show that

the low-risk anomaly reflects the state of granularity of the economy.

2.2.2 Cross Section of Corporate Bond Returns

Traditional predictors of corporate bond returns, the term and default spreads, reflect eco-

nomic conditions. The term spread captures unexpected changes in interest rates, and

the default spread the likelihood of default (Fama and French, 1993). Other variables

such as inflation (Elton et al., 1995; Kang and Pflueger, 2015), or uncertainty about the

macroeconomy (Bali et al., 2020b), are shown to affect corporate bond returns. Bali et al.

(2020b) and Bali et al. (2017) measure exposure of corporate bonds and equity, respec-

tively, to the measure of economic uncertainty of Jurado et al. (2015). The current study

follows a similar methodology to measure the exposure of corporate bonds with respect

to a granularity index.

Elton et al. (2001) provide evidence that excess corporate bond returns are explained

by common risk factors in the equity market. Subsequently, the literature substantiates the

relevance of factors such as (il)liquidity (Chen et al., 2007; Covitz and Downing, 2007;

Bao et al., 2011; Lin et al., 2011; Friewald et al., 2012; Acharya et al., 2013), volatility

(Chung et al., 2019), investor sentiment (Guo et al., 2019), momentum (Jostova et al.,

2013), and reversal (Bali et al., 2020a) to corporate bond returns.

Inspired by Daniel and Titman (1997), Gebhardt et al. (2005) compare the pricing

implications of systematic risk (default and term) versus characteristics (e.g. ratings and

duration) in the bond market. Corroborating the relevance of either approach, they find

that systematic risk matters in the cross section of bond returns. Israel et al. (2018) con-

sider, in tandem, the carry, quality, momentum, and value factors in the bond market.

Israelov (2019) investigates the capacity of the option markets to explain corporate bond

returns.

Mostly through a default channel, factors exclusive to bonds are also shown to claim

a premium in the cross section of corporate bond returns. Driessen (2004) shows that
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default event risk is priced in the cross section of corporate bonds. Bai et al. (2019)

develop three bond-market-specific measures of down-side risk that are priced in the cross

section of corporate bonds. Not only default events, but also ambiguity about the credit

rating, an indicator for default, predicts higher premium for the corporate bonds (Kim

et al., 2018).

2.2.3 Equity-Bond Return Correlation

Correlation between bond and equity returns is examined in the literature via some information-

based models. Kwan (1996) argues that information flows from the equity to the bond

market, and Acharya and Johnson (2007) provide evidence that the equity market reacts

to innovations in the CDS market, derivatives written on corporate bonds. In a similar

investigation, Bao and Pan (2013) show that corporate-bond CSD returns volatilities ex-

ceed equity return volatilities and what the Merton model predicts. When it comes to the

sign of the correlation, Back and Crotty (2014) use a Kyle model and argue that when

information is about the asset means, the correlation is positive, and when it is about the

asset risk, it is negative.

Aretz and Yang (2019) use a disinvestment model to explain the negative relation be-

tween bond returns and firm distress risk, measured by Campbell’s measure of distress.

The bond-equity correlation literature is richer for government issued rather than corpo-

rate bonds. Baele et al. (2010) develop a structural model for the Treasury bonds and

equity returns correlation, estimated via the component model of dynamic correlations of

Colacito et al. (2011).

In a more recent work, Baele et al. (2019) propose a regime-switching model to iden-

tify Flight-to-Safety (FTS) episodes where in distressed times, large and positive bond

returns are accompanied by large and negative equity returns. They show that FTS repre-

sents a flight to quality, but not liquidity, in the corporate bond market, hence a potential

explanation for equity-corporate-bond correlation.

Bethke et al. (2017) argue that bond-equity correlation stems from correlated risk fac-
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tors. They show that investor sentiment is the main driver of bond-equity (positive and

negative) correlation. Bektić (2018a) shows that high beta equity corresponds to low re-

turn in the equity market for European firms. Bektić (2018b) also documents momentum

spill-over from the equity market to the global bond market.

2.3 Data

2.3.1 Corporate Securities

I construct my bond sample from the Enhanced TRACE (Trade Reporting and Compli-

ance Engine) daily OTC transactions. TRACE transaction data is more prevalently used

in recent corporate bond pricing studies. Bessembinder et al. (2006) document that bonds

eligible for TRACE transaction reporting are less prone to external liquidity issues than

bonds that are not eligible for TRACE reporting. I retrieve bond characteristics such as

coupon information, time to maturity, and ratings from the Mergent Fixed Income Se-

curities Database (FISD). The sample spans July 2002 to June 2019. To compute bond

returns, I follow the methodology of Bai et al. (2019). I apply the procedure recommended

by Nielsen (2014) to clean the Enhanced TRACE transaction data, then exclude all bonds

with special features. Also, due to their peculiar properties, I exclude bonds with less than

a year to maturity. For an exhaustive list of filters applied to the dataset see the Appendix.

The return on bond b in month t is defined as

rb,t =
Pb,t +AIb,t +Cb,t

Pt−1 +AIb,t−1
−1, (2.1)

where Pb,t is the bond price, AIb,t is accrued interest, and Cb,t the coupon payment. This

procedure yields 1.4 million month-return observations. The cross section of monthly

bond returns contains between 2,600 to 8,000 observations. This sample is based on

47,900 unique bonds issued by 5,588 firms.

I use NCUSIP from CRSP and the Issuer CUSIP and Issue Id from TRACE and FISD,

and match securities for 1,797 firms. Generally, there is a unique equity issue correspond-
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ing to each firm in the equity dataset. However, firms issue more than one bond (on aver-

age 6 and maximum 167 issues per firm). The final subset of matched securities contains

10,900 bonds, 23% of the initial bonds dataset. When I examine equity-bond correlations,

I aggregate bond returns at firm level. Table 2.2 shows descriptive statistics of the final

bond sample.

2.3.2 Granularity Index

Abolghasemi et al. (2020) construct a measure for granularity that is the market value of a

certain number, g, of firms’ equity as fraction of total capitalization of the equity market.

I extend this measure by replacing the equity value with the combined market value of

firm equity and debt (VM). This measure is closer to capturing the value of firm assets

by including the right hand side of the balance sheet, combined value of debt and equity.

Since this measure follows the relative market value of the largest g firms in the market,

Topg =
∑

g
i=1Vi

∑
N
j=1Vj

=
∑

g
i=1Vi

VM
. (2.2)

VM = ∑
N
j=1Vj is the total market capitalization of firms. This measure is simple to con-

struct, and intuitive too. As Topg increases, the economy is relatively more dominated by

the same number of firms and vice versa.

Topg is relatively close to measures of market concentration, for instance the Herfind-

ahl–Hirschman Index (HHI),

HHI =

√
N

∑
i=1

w2
i , (2.3)

or Gabaix and Koijen (2020)’s excess Herfindahl–Hirschman Index (exHHI), an adjust-

ment to HHI,

exHHI =

√
− 1

N
+

N

∑
i=1

+w2
i , (2.4)

where wi =
Vi
VM

, Vi is the market value of firm i.

Since any number of firms could be used to construct this measure, I show in Figure

(2.1) that for g ∈ {10, ...,20}, Topg=20 is close to perfectly (ρ = 0.98) correlated with
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exHHI. As g increases, the correlation coefficient starts to decrease. In Panel A and B

of Figure (2.2) I plot exHHI and Top20, and in Panel C and D I display shocks to these

measures.

Topg is a persistent variable, hence I follow Bali et al. (2017) and use innovations in the

granularity index in my empirical tests. Throughout the upcoming sections of the paper,

I use ∆Topt
20 as measure of granularity innovations. In every month t, I consider corre-

sponding change over the past three months, ∆Topt
20 = Topt

20 - Topt−3
20 . While changes

over shorter horizons are significant in many of the analyses in the paper, changes over

the past three months are consistently significant within and across equity and bond return

datasets.

Topg captures the relative appreciation in firm value for the top g firms. An average

appreciation in firms value could correspond to average positive return on constituents of

Topg. The immediate question is whether granular innovations are a nonlinear proxy of

the market return. I investigate this question in Figure (2.3). First, I compute return on

two hundred portfolios. Consider a universe of firms composed of the largest 100 firms in

the market. Proxy return on grains by return on the top g firms when g = {1,2, ...,100}.

As well, proxy return on non-grains by returns on 100− g firms. Then, I compute the

correlation between different measures of granularity and these portfolio returns and plot

the result.

It is evident that ∆Topg is positively correlated with the value weighted return on the

top g firm, and this result does not depend on measure of granularity nor on the number

of firms in Topg. After all, when Topg firms occupy a bigger slice of the market pie, it

means they have, on average, appreciated in value, hence offering positive returns (blue

lines). On the other hand, ∆Topg is always negatively correlated with return on bottom

firms. I also produce similar figures based on equity and bond market valuation data only

(Figure 2.4-2.5). These figures are suggestive of a similar story.

Notice that for any number greater than 20, the value weighted return on the Top g

firms is highly correlated with the market return. Therefore, in the main tests conducted

in the next section, I only control for market return. I verify that substituting the market
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return with return on Togg firms yield similar results.

I show the correlation structure between granular innovations and documented risk

factors in the bond market in Table 2.3. Granular innovations are modestly negatively re-

lated to measures of market return in equity and bond markets. While they are positively

correlated with the term spread, granular innovations are negatively correlated with the

default spread. Granularity and economic uncertainty are positively correlated. This ob-

servation comes from the fact that both measures tend to increase in bad economic times.

Finally, there is almost no correlation with the downside risk factor of Bai et al. (2019),

but negative and modest correlation with their liquidity and credit risk factors.

2.3.3 Cross Sectional Predictors of Bond and Equity Returns

I examine the robustness of all empirical findings of his paper after controlling for es-

tablished risk factors in the corporate bond market to better understand how exposure to

granularity shocks is different from exposure to other sources of risk. Following Fama

and French (1993), I control for default and term spreads. Default spread is the difference

return between a government issued bond and a AAA corporate bond with the same ma-

turity. I proxy default spread by taking the difference in return between 10-year corporate

and Treasury bond returns. Term spread is the difference in return between a short term

and a long term government-issued bond. I proxy the term spread by taking the difference

between 10-year T-bonds and 3-month T-bills.

Following Daniel and Titman (1997), I control for firm characteristics such as size,

time to maturity, and crediting ratings. Size is measured by the natural logarithm of the

amount outstanding, the product of number of bonds outstanding and the price of the

bond. Credit ratings are from rating agencies, assigned to firms based on the ability of the

firm to service its debt. I combine credit rating information from Moody’s and Standard

and Poor’s. When there are more than two ratings available for the same bond, I follow

Bai, Bali, and Wen (2019) and consider the average of the two ratings. Time to maturity

measures the remaining life of the bond before maturity time in years.
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Bai et al. (2019) propose a model with three risk factors that explains the cross section

of future bond returns. These factors are based on bond market variables, and measure

credit, downside, and liquidity risks in the cross section of corporate bond returns. Bai

et al. (2019) show that these factors, along with return reversal, explain most of the varia-

tion in the cross section of corporate bond returns. I retrieve these data from the authors’

website.

Bali, Subrahmanyam, and Wen (2020b) argue that economic uncertainty affects the

cross section of corporate bonds. Similar to Bali et al. (2017), the authors use the eco-

nomic uncertainty measure of Jurado et al. (2015). An increase in economic uncertainty

translates into a narrower investment opportunity set for investors. Since increase in gran-

ularity is correlated with an increase in economic uncertainty, I include this variable to

distinguish between the two channels. Additionally, I control for financial uncertainty.

It is standard practice to control for firm-level characteristics in cross-sectional regres-

sions (Bai et al., 2019; Bali et al., 2017). Accordingly, I control for short-term reversal,

return from the prior month, size, the natural logarithm of bonds amount outstanding, time

to maturity, the number of days before an issue matures, and credit ratings, the numerical

equivalent of credit ratings assigned to bond issues by rating agencies.

Abolghasemi et al. (2020) show that granularity is priced in the cross section of com-

mon stocks. I reproduce their results and use the same set of control variables in the cross

sectional regressions. Namely, I control for Fama and French SMB and HML factors,

market return, momentum factor of Carhart (1997), aggregate liquidity (Pástor and Stam-

baugh, 2003), and economic uncertainty of Bali et al. (2017). I also control for size and

reversal. Size is the natural logarithm of market capitalization. Reversal is equity returns

from the past month.

2.4 Empirical Methodology and Analysis

I present two sets of results in this section. First, I perform standard asset pricing tests that

examine the cross section of corporate bond returns. These tests include Fama-Macbeth
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cross-sectional regressions at individual bond level, portfolio sorts, and panel regressions

at portfolio level.

Second, I show that the conditional correlation between firms’ bond and equity returns

is higher when the economy is more granular (either level or shocks). My findings further

show that changes in the correlation coefficient are predicted by granularity innovations.

Additionally, I present a more formal set of results to support the hypothesis that this

co-movement is due to exposure of firms’ securities to common risk factor in the cross-

section of equity and bond returns.

2.4.1 Asset Pricing Implications

In this section, I show that granularity innovations influence expected corporate bond and

equity returns. I conduct two analyses, a standard two-pass Fama-Macbeth regression

as well as panel regressions. I concur the findings in ABDJ (2020), and focus the asset

pricing implications of granularity innovations to the corporate bond market. Further, I

estimate cross sectional regressisons to develop an understanding about how granularity

betas relate to exposure to traded risk factors.

Fama-MacBeth Regressions

In this section, I perform the standard two-step Fama-Macbeth cross sectional regressions,

and estimate the slope coefficient associated with granularity innovations in equity and

bond markets. I proceed such that for each security (bond or equity) i, at a given time τ , I

run the following time-series regression

Rt,i −Rt, f = ai +β
∆G
τ,i ∆Gt +∑

j
β

j
τ,iXt, j + et,i, t ∈ {τ −35, . . . ,τ}, (2.5)

where Xt, j are aggregate risk factors in the corporate bond market. This procedure yields

a cross-section of {β̂τ,i}.

Then, I perform the cross-sectional regression where future excess returns on firms

bond or equity in month τ + 1 are regressed on estimated betas with respect to different

risk factors, including granularity shocks, from month τ ,
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Rτ+1,i −Rτ+1, f = ατ+1 + γ
∆G
τ+1β̂

∆G
τ,i +∑

j
γ

j
τ+1β̂

j
τ,i +∑

c
γ

c
τ+1Cτ,i + ετ+1,i, i ∈ {1, . . . ,N},

(2.6)

where N is the number of securities in the sample, and Cτ,i represents firm-level char-

acteristics such as size and reversal. Repeating the analysis at each time τ + 1 in turns

yields a time-series of {γ̂∆G
τ+1}. I report the average value of this slope coefficient, with the

standard error around the mean.

One common criticism to the Fama-Macbeth cross-sectional regressions is erroneous

estimations of factor betas in the first step. I observe that the level of granularity is higher

in bad economic times, and granular innovations are modestly correlated with default

and market returns. Based on these observations and common practice in the literature, I

estimate granularity betas from

Rt,i −Rt, f = ai +β
∆G
τ,i ∆Gt +β

Mkt
τ,i Mktt +β

De f
τ,i DEFt +β

Term
τ,i T ERMt

+β
CRF
τ,i CRFt +β

LRF
τ,i LRFt +β

DRF
τ,i DRFt

+β
Unc f
τ,i ∆Unc f ,t +β

Unce
τ,i ∆Unce,t + et,i,

t ∈ {τ −35, . . . ,τ}.

(2.7)

Thus, even in the nested specification of equation 2.5, β ∆G
τ,i is estimated after controlling

for sources of bias in obtaining granularity betas. I report the average slope coefficients

for individual bond returns in Table 2.4 and 2.5, and for firm equity returns in Table 2.6.

Each table presents results for various nested versions of equation 2.6, corresponding to

different columns.

In Table 2.4, the first column shows estimation results when only granularity inno-

vations explain future excess bond returns. The time series average of granularity slope

coefficients is negative and significantly different from zero. In the second column, I

highlight the fact that changes in the relative size of grains, the largest firms in the econ-

omy, is different from changes in the relative size of large, but not the largest firms in the

economy. In other words, a granularity index should capture the dynamics of firms that
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are far in the tail of the size distribution. Accordingly, I construct an index that captures

the relative size the bottom 50 firms among the top 200 largest firms. The market value

of these firms is not negligible, still they are not far in the tail of firms’ size distribution,

and the estimated slope coefficient is on average insignificant.

In the third column, I control for bond market betas, term spread betas, and default

spread betas (Fama and French, 1993). Market beta risk premiums are positive and signif-

icantly different from zero in all nested estimations. Term spread and default spread pre-

miums are not significant predictors of future returns. In the forth and the fifth columns,

bond market risk factors of Bai, Bali, and Wen (2019), and innovations to economic and

financial uncertainty measures of Jurado, Ludvigson, and Ng (2015) are included. In the

full specification, the last column, granularity shocks remain a negative and economically

significant predictor of expected corporate bond returns.

As represented in equation 2.6, I examine whether granularity is picking firms char-

acteristics. In Table 2.5, I include short term reversal, size, credit worthiness, and time to

maturity. Following Bai et al. (2019), I add returns from the prior month to control for

short term reversal (Jegadeesh, 1990). Consistent with the literature, reversal, the return

from prior month, is a negative and significant predictor of future bond returns. Size, the

natural logarithm of the amount outstanding of bonds issued by firms, is also a negative

and significant predictor of future corporate bond returns. Credit worthiness is proxied by

credit ratings from Moody’s and Standard and Poor’s, with the average estimated slope

coefficient that is not different from zero. Time to maturity is the number of days before

each bond matures, and it is significant in the last column, with a positive coefficient.

Regardless of the nested specification, the time series average of granularity slope coef-

ficients remains negative, hence granularity is a significant predictor of future corporate

bond returns.

Table 2.6 concurs the findings of Abolghasemi, Bhamra, Dorion, and Jeanneret (2020)

who document that granularity innovations are negatively related to future common stock

returns. Similar to the bond analysis, I start by including granularity innovations as the

sole explanatory variable in Column 1. In the second column, similar to the bond analysis,

70



I construct and include a measure that captures the size dynamics of large, but not the

largest firms, and include shocks to this measure. Market betas, along with betas with

respect to the Fama and French factor betas (SMB, HML, CMA, and RMW), are included

in the third and fourth columns.

Bali et al. (2017) argue that uncertainty is a predictor of future stock returns. There-

fore, I include innovations in both financial and economic uncertainty measures of Jurado

et al. (2015) in column 5. In column 6, I add the aggregate liquidity measure of Pástor

and Stambaugh (2003). In the remaining columns I augment the specification by includ-

ing short-term reversal, and size. Granularity remains a negative and significant predictor

of future equity returns.

In all the empirical tests described so far, standard errors are robust to heteroskedas-

ticity and autocorrelation (Newey and West, 1987) with an optimal number of lags.

Granularity Betas versus Other risk Factors

It is constructive to develop an understanding of how granularity betas relate to traded

risk factors in the cross section of corporate bond returns. Accordingly, I follow Bail et

al. (2020) and estimate this cross sectional regression

β∆Gt = c0 + ciβt,i + c jXt, j + εt , (2.8)

where granularity betas every month are regressed on betas with respect to aggregate

risk factors (βt,i) and firms characteristics (Xt, j). Table 2.13 reports the average slope

coefficient for each predictor in equation 2.8. Columns correspond to estimation results

from nested versions of of equation 2.8 where predictors are incrementally included in

the specification. From Table 2.13 one learns that exposure to granularity is positively

and significantly related to exposure to market, default spread, and aggregate liquidity

and downside risk factors. Granularity betas are on average higher for firms that are more

liquid. They are also negatively related to reversal, return from prior month.
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Granularity Portfolios

In this section, I sort corporate bonds with respect to their granularity betas, and investi-

gate the return on a strategy that provides effective hedge against granularity innovations.

This strategy takes a long position in bonds that are least exposed to granularity (with low-

est granularity beta), and a short position in bonds that are most exposed to granularity

(with highest granularity beta). I document that the risk-adjusted return on this strategy

is economically significant after controlling for established risk factors in the bond and

equity markets. First, I follow the these steps to form granularity sorted portfolios,

• Obtain bond preformation betas over 36-month rolling window regressions, where

excess returns on firm bonds from in period τ = {t −35, ..., t} is regressed on gran-

ularity shocks (∆Gt), market excess return (RB,t −R f ,t ), and the interaction between

market and granularity shocks ( ∆Gt × (RB,t −R f ,t ) over the same period,

Rt,i−Rt, f = ai+β
∆G
τ,i ∆Gt +β

Mkt
τ,i (RB,t −R f ,t )+β

Mkt×∆Gt
τ,i (∆Gt × (RB,t −R f ,t ))+et,i,

(2.9)

where similar to the first step in the Fama-Macbeth regressions, t ∈ {τ −35, . . . ,τ}.

Including market excess return and the interaction term ensures that the estimated

granularity beta is not biased by potential common drivers of market returns and

granularity shocks,

• For every month τ sort bonds into 10 portfolios based on the preformation betas in

time τ − 1 such that the first (last) decile comprises bonds with smallest (largest)

granularity betas.

• Consider both equal and value weighting schemes to compute corresponding time

series of returns on bonds included in each decile.

Table 2.7 presents the characteristics of granularity portfolios. The first column re-

ports the average return for each decile. Columns 2-3 report the intercept of a regression

where excess portfolio returns are regressed on a constant and bond market risk factors

72



(1), equity market risk factors (2), and both equity and bond market risk factors (3). T-

statistics are computed by HAC standard errors.The last row reports the results for the

L-H strategy. Columns 5-7 report portfolio betas, and columns 8-10 the average portfolio

characteristics, credit ratings, time to maturity, and size.

The first decile is comprised of bonds with less favourable credit ratings, shorter time

to maturity, and smaller amount outstanding. A credit rating of 11 is the threshold that

separates investment grade (IG) from non-investment grade (non-IG) bonds. In the Ap-

pendix of the paper I show that the results hold even if portfolios are built on only IG or

non-IG, or short versus long time to maturity bonds.

The granularity strategy takes a long position in the low beta decile and a short position

in the high beta decile. I regress the return on the long-short strategy on cross sectional

predictors of equity and corporate bond returns. I show the estimation results in Table 2.8.

Each column corresponds to a nested specification. For example the first shows the alpha

of the strategy with respect to traditional bond market risk factors. The first row reports

the regression alphas with t-statistics (based on HAC standard errors) in parentheses. I

repeat the same exercise for equal-weight returns (Table 2.9).

The average return on the long-short strategy is positive, and the excess return on the

long-short strategy, after controlling for risk factors, is significantly positive too. Thus,

being least exposed to granularity by keeping the first decile while shorting the tenth

decile yields a risk-adjusted return that is economically significant. These findings are

consistent with a negative slope coefficient, estimated in cross-sectional regressions. The

quantity of granularity risk of the L-H strategy is negative (β ∆G
l -β ∆G

h < 0 ), the slope co-

efficient from Fama-MacBeth regressions is negative,γ̂∆G < 0, hence the expected return

on L-H strategy is positive.

Panel Regressions

In this section, I provide further evidence to support the hypothesis that granularity inno-

vations matter in the cross section of portfolios of corporate bonds, sorted based on vari-

ous criteria. I use an alternative estimation methodology, namely fixed effect regressions.
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The cross section of bond portfolios is significantly narrower than the cross section of in-

dividual bonds. Compared to Fama-Macbeth two-pass approach, fixed effect estimations

allow for a reliable estimation of the slope coefficient at portfolio level tests (Petersen,

2009).

I use rolling betas with respect to granularity shocks as well as all the bond market

predictors mentioned Table 2.1. I then estimate

Rb,τ+1 −R f = γgβg,τ + ∑
j=1

γ jβb,τ +ηb,τ+1, (2.10)

where excess bond returns in month τ +1 are regressed on betas from month τ .

I estimate fixed effect regressions for value and equal weighted returns on bond port-

folios, including beta-sorted, credit rating sorted, and maturity sorted portfolios. Portfolio

betas are estimated from regressing excess bond returns on excess bond marker return and

a constant. For credit rating portfolios I combine Moody’s and Standard & Poor’s credit

ratings. Where there is an overlap, I consider the average of credit scores reported by

different rating agencies. Each column in Table 2.10 corresponds to estimation results

for a specific portfolio, but the last column shows results for all portfolios in tandem.

The first row reports the granularity coefficient, where as expected is always negative and

significantly different from zero.

Results in these two tables concur with those of the Fama-Macbeth regressions. Gran-

ularity innovations are negatively related to the cross section of corporate bond returns.

2.4.2 Conditional Correlations

The empirical evidence from the previous section supports the hypothesis that granular-

ity innovation are influential factors in the cross section of equity and corporate bond

returns. In this section, I show that granularity is significantly related to the conditional

co-movement of securities issued by the same firm, but traded in different markets. This

significant relation supports the hypothesis that granularity is perceived similarly in equity

and corporate bond markets.
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As argued earlier, I argue that months when granularity increases (decreases) corre-

spond to higher (lower) correlation between firms’ equity and bond returns. To support

this story, I propose two tests.

First, I follow a two-step procedure to examine the conditional EBC, estimated as

ρh =Corr(rb,t ,re,t)|∆Gt > Q∆G,70,

ρl =Corr(rb,t ,re,t)|∆Gt < Q∆G,30.
(2.11)

ρh(ρl) is the correlation between firm bond and equity returns when granularity is high

(low). I consider the 70th and 30th percentiles of granularity shocks, ∆Gt , at time t as

thresholds for high or low granularity, respectively, and measure granularity by the market

value of the 20 largest firms as fraction of total market value of the firms. The latter, as

in previous analyses, is the combined value of firm equity and bond(s). The histogram of

the bootstrapped averages of conditional versus unconditional correlations is illustrative

for the purpose of this section.

Considering the length of the sample, and the conditioning criterion, there remains

a small number of firms to estimate EBCs. Notice that with a balanced panel of firm

equity and bond return observations, the conditioning criterion yields estimates based on

50 months for high and 50 months for low granularity months. But the firm level bond and

equity data are not balanced, hence estimations are not reliable. To address this problem,

I form equity and bond micro portfolios (Barras, 2019) comprised of 20 randomly chosen

firms. This approach yields a time series of returns for firms securities with a reliable

number of observations to estimate conditional correlations. For every random draw of

portfolios, I estimate corresponding EBC coefficients.

Portfolio construction based on characteristics or betas is not applicable here two rea-

sons. First, the main purpose of portfolio formation in this section is to make sure there

are enough observations in the equity versus bond returns time series to have a reliable

estimate of conditional EBCs. Second, portfolio construction procedures usually require

an estimation window, hence a less inclusive final sample. Besides, investigating cor-

relations based on sorted securities forces the reader to wonder whether the underlying
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characteristic is crucial to the results.

In the second step, to construct the distribution of the mean for the EBC, I draw 50,000

samples from the estimated EBCs, and record the mean of the corresponding sample

for each iteration. I plot the histogram of the bootstrapped means for both conditional

correlations and the corresponding difference in Figure 2.6 where returns are conditioned

on ∆exHHI. I also present the histograms in Figure 2.7 with respect to ∆Top20.

In either figure, the average EBC is higher when granularity is higher. Panel A and

C do not overlap, suggestive of a significant difference in conditional correlations. In

absolute terms, conditional correlations are more than 50% higher in high versus low

granularity months. The results are robust to including as few as five firms in the ∆Topg

measure. It is hard to claim that only five firms among thousands are representative of the

market return. In other words, the ∆Topg measure picks a different economic force. Still,

I provide other tests.

A more formal empirical test should substantiate what the histograms show. Similar to

previous tests, I obtain conditional coefficients by estimating a rolling window correlation

measure for each firm,

ρ̂e,b,t =
∑

t−1
s=t−w−1 re,s,rb,s(

∑
t−1
s=t−w−1 r2

e,s

)(
∑

t−1
s=t−w−1 r2

b,s

) . (2.12)

where w is the length of the estimation window, 36 months. This procedure yields a panel

of EBCs. I then test if changes in the rolling correlations relate to granularity shocks. Due

to a relatively short span of my corporate bond returns (about 200 months), applying a

more sophisticated methodology such as the Dynamic Conditional Correlation would not

be reliable (Engle and Sheppard, 2001).

I estimate

∆ρ̂ f ,t = β ∆Gt ∆Gt +∑
j

β jControl j + e f ,t , (2.13)

where the evolution of the cross section of changes in firms EBC is regressed on changes

in granularity as well as control variables. In Table 2.11, I report fixed effect results,

and take into account, incrementally, potential predictors of EBC in the specification. I
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provide a detailed list of control variables underpinning the empirical analysis of this

paper in Table 2.1. I compute t-statistics by clustering standard deviations at firm level.

The first row in Table 2.11 reports the granularity coefficient. It is always positive

and significantly different from zero. Hence, these results support the hypothesis that

granularity shocks lead to co-movement between firm securities.

Among other control variables, I include excess return on the top 20 firms, Rtop-R f ,

same firms used to construct the granularity measure. Unlike granularity, return on top

firms could be positively, negatively, or insignificantly related to changes in correlations.

This finding highlights the distinct nature of changes in granularity and return on top

firms.

2.5 Granularity and Industry Competition

A strand of literature in industrial organization links expected equity returns to industry

competition. Hou and Robinson (2006) document that firms in more concentrated, hence

less competitive, industries are expected to deliver lower expected returns. The authors

attribute this empirical finding to entry barriers and propensity of firms to embrace inno-

vation. Entry barriers insulate the firms from aggregate demand shocks, and innovation, as

a more prominent characteristic of a competitive industry, corresponds to more uncertain

cashflows, hence riskier equity. Bustamante and Donangelo (2017) develop a theoretical

framework and argue that assuming an only negative relation between industry compe-

tition and expected returns is incomplete for it does not consider the dynamic nature of

competition nor the role of higher industry discount rates as barriers to entry.

While granularity is a market-wide phenomenon, industry competition is the concen-

tration in the product markets of firms that belong to the same industry. I argue in this

section that the industry competition premium is different from the granularity premium.

First, as Bustamante and Donangelo (2017) indicate, the final effect of industry compe-

tition on expected equity returns, both in terms of magnitude and sign, depends on the

operating leverage versus the threat of entry channels, and it could be insignificant, pos-
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itive, or negative. Second, the empirical investigation in this literature is based on the

level, rather than innovations in industry competition. Third, both portfolio sorts and

cross-sectional tests reveal a positive risk premium on measures of industry competition

while the granularity premium is negative (Hou and Robinson, 2006).

To investigate the relation and importance of industry competition to the granularity

channel, I follow Hou and Robinson (2006) and Bustamante and Donangelo (2017) and

proxy industry competition by an industry-level HHI index. Industries are recognized

based on the Standard Industrial Classification (SIC) codes, leading to 86 industries in the

cross section of firms in my sample. Rather than using sales data, which is available in

quarterly frequency, I use the market capitalization of firms, consistent with other tests in

this paper. This procedure yields a panel of industry concentration measures.

First, I verify that granularity innovations are insignificantly to modestly correlated

with innovations in industry competitiveness indexes. The correlation coefficients range

from -0.06 to 0.50 for the period 1973-2020. To further examine the role industry concen-

tration measures, I focus on three industry HHIs that are at least 35% correlated with the

granularity measure, hence potentially belonging to a similar economic force. In Table

2.12, I estimate cross sectional regressions where future excess returns on corporate bonds

are regressed on granularity as well as industry concentration betas. Industry competition

premium could be positive or negative but it does not provide any marginal explanation

of cross-sectional variation after controlling for firm characteristics. The granularity pre-

mium remains negative and significant after including industry concentration measures.

2.6 Conclusion

In this paper I argue that time variation in the heavy tail of firms distribution is informative

about corporate bond prices. Security returns are driven by the gravity towards the largest

firms in the economy, the grains. I document that granularity is similarly perceived in

equity and corporate bond markets, and it explains conditional correlations between firms’

equity and bond returns. In months where the state of granularity is high, EBC is on
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average 50% higher. Throughout this paper, I adapt Abolghasemi et al. (2020)’s measure

of granularity, Topg, the total market value of largest g firms as fraction of total market

capitalization. For example for g = 20, Top20 = 25% means that 20 firms account for 25%

of the combined value of equity and corporate bond markets.

In the spirit of Merton (1973), granularity is a state variable that correlates with future

investment and consumption opportunity sets. As such, innovations to state of granularity

affect expected asset returns. I show that granularity is an influential factor in the cross

section of bond returns, and corporate bonds that are more exposed to granularity pay

less. Further, I concur the results of Abolghasemi et al. (2020) that granularity is an in-

fluential factor in the cross section of equity returns, and market and security risk premia

are negatively related to granularity innovations. The empirical findings of this paper are

robust to including an extensive set of established risk factors as control variables. Also,

the findings are robust to using alternative measures for granularity such as the HHI, or

current and past values of Topg for g = {5,10,20}.

The negative sign of the slope coefficient comes from the fact that granularity is in-

versely related to the health of the investment opportunity set. A more granular economy

corresponds to an adverse shift, and less diversification benefits for a typical investor.

From the perspective of a consumer, the consumption basket grows less diversified with

positive granular innovations, and an unfavourable shock to one of the firms disrupts

smooth consumption even more. Hence, assets that are least sensitive to granularity will

have a higher expected return. Assets that that are more exposed to granularity, including

the market portfolio itself, deliver a lower expected return.

There are many questions that remain open to future research. Among others, it would

be interesting to understand why, in the first place, some firms grow much larger in the

economy. Is it a purely random phenomenon, or there is some predictability. This ques-

tion aims at a multifaceted and endogenous phenomenon. Still, it is viable to examine

potential relations such as institutional investment and how it contributes to mega-large

firms.

Also, it would be interesting to understand whether granularity is informative about
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returns on derivative products written on firms securities. Culp et al. (2018) and Culp et al.

(2021), in the spirit of Merton’s credit risk model, derive the cross section of implied bond

spreads, and shed light on the dynamics of option risk premia. The question is whether

the dynamics of option implied credit spreads and option risk premia evolve differently

with respect to the state of granularity of the economy.

A more challenging still exciting research path is building a theoretical framework that

explains the empirical findings in this paper. The existing literature studies the dynamics

of expected returns and conditional correlations in Lucas economies (see Cochrane et al.

(2007) and Martin (2013)). However, solving these models is far from trivial. There are

two dimension to improve in these models. First, starting with firms that finance their

activities by issuing both equity and debt. The challenge is incorporating the endogenous

decisions of firms to issue debt, with the stochastic and endogenous nature of relative

firms’ size, the granularity measure. Second, to incorporate a large number of firms in

the model. While having two or three firms is a sizeable leap towards understanding the

dynamics of prices with respect to granularity, the ultimate goal is solving for prices when

the granular economy comprises a large number of firms.
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2.7 Tables

81



Table 2.1
Definition of Variables

This table defines the variables underpinning this study and the corresponding data sources. All
data are retrieved at monthly frequency.

Variable Definition Source

G Degree of granularity measured as the total mar-
ket capitalization value of the largest firms in the
U.S. as fraction of the total market capitaliza-
tion of the CRSP universe. We use 20 of the
firms with the largest market capitalization. Al-
ternatively, we consider the excess Herfindahl-
Hirschman Index proposed by Gabaix and Koi-

jen (2020), defined as exHHI =
√

− 1
N +∑

N
1 w2

i ,
where wi the market value of firm i as fraction
of total market capitalization, and N is the total
number of firms.

Wharton Research Data
Services

RB - R f Bond market excess return, computed as the
value-weighted return on the Enhanced TRACE
universe.

Enhanced TRACE &
Mergent FISD

Term Term spread. The difference between long-term
Treasury bond return and 3-month Treasury bill
return.

Bloomberg

Def Default spread. The difference in return between
a corporate bond and treasury bond indices.

Bloomberg

BBW Bond market risk factors of Bai et al. (2019), in-
cluding Credit risk factor (CRF), downside risk
factor (DRF), and liquidity risk factor (LRF).

Author’s Website

Uncertainty Measures of financial (Unc f ) and economic
(Unce) uncertainty à la Jurado, Ludvigson, and
Ng (2015).

Author’s Website

Fama French
Factors

Fama and French five factor model as control for
the cross section of equity returns: Excess market
return, SMB, HML, RMW, and CMA.

Kenneth French data li-
brary
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Table 2.2
Summary Statistics: Individual Bonds

This table presents the summary statistics for individual bonds. Enhanced TRACE and Mergent
FISD datasets are main sources of corporate bond price and characteristics information. Variables
include excess monthly return (Rb-R f ), bond market betas (βbond), time-to-maturity (TTM), credit
ratings (Credit Rating), and Size (amount outstanding, in millions of dollars). Monthly data span
July 2002 to June 2019.

Measure Mean Med Std 1% 5% 25% 75% 95% 99%

Rb-R f 0.64 0.40 6.98 -
11.86

-3.96 -0.53 1.59 5.30 14.67

βbond 1.20 0.90 1.67 -0.40 0.10 0.46 1.54 3.03 7.39

TTM 9.84 6.73 9.06 1.12 1.56 3.69 13.20 27.62 30.26

Credit Rating 8.21 8.00 3.13 1.00 4.00 6.00 10.00 14 17.50

Size (m) 491.8 338.4 652.5 0.9 6.0 132.6 615.4 1543.1 2840.9
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Table 2.3
Correlations with Granular Innovations

This table shows the correlation among the main variables used in the empirical analysis of this
paper. The list of variables includes granularity innovations (based on largest 20 firms), excess
bond market returns, term and default spreads, downside, credit, and liquidity risk factors of Bail,
Bali, and Wen (2019), and innovations to financial (Unc f ) and economic (Unce) measures of
uncertainty of Jurado et al. (2015). Data span July 2002 to June 2019.

∆ Gt RB-
R f

Term Def DRF CRF LRF Unc f Unce

∆ Gt 1 -0.16 0.23 -0.43 -0.02 -0.25 -0.21 0.30 0.26

RB-R f 1 0.36 0.22 0.34 0.49 0.48 -0.47 -0.41

Term 1 -0.62 0.25 -0.03 0.02 0.01 -0.07

Def 1 0.07 0.41 0.22 -0.30 -0.24

DRF 1 0.39 0.35 -0.42 -0.35

CRF 1 0.33 -0.55 -0.52

LRF 1 -0.39 -0.36

Unc f 1 0.52

Unce 1
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Table 2.4

Fama-Macbeth Regressions, Cross Section of Individual Bond Returns (2002 - 2019)

This table shows estimation results of Fama-Macbeth cross-sectional regressions where the depen-

dent variable is individual bond excess returns. Granularity is the total market value of equity and

debt for the 20 largest firms as fraction of total market value of equity and debt of all firms. Ex-

planatory variables include past betas with respect to granularity, innovations to the relative market

value of smallest 50 firms among the 200 largest firms, bond excess market returns, default and

term spreads, the three factors of Bai et al. (2019), downside risk (DRF), credit risk (CRF) and

liquidity risk (LRF), and measures of financial (Unc f ) and economic (Unce) uncertainty of Jurado

et al. (2015). Bond data are from Enhanced TRACE and Mergent FISD datasets. Data span July

2002 to June 2019. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level,

respectively.

(1) (2) (3) (4) (5)

∆Gt −0.173∗∗∗ −0.181∗∗∗ −0.104∗∗∗ −0.134∗∗∗ −0.118∗∗∗

(−3.12) (−3.06) (−2.70) (−3.56) (−3.07)

∆Bt 0.005 0.004 0.004 0.006

(0.92) (0.98) (0.97) (1.02)

RB - R f 0.117∗∗ 0.121∗ 0.171∗∗

(2.51) (1.69) (1.99)

Term −0.105 −0.040 −0.014

(−0.58) (−0.21) (−0.07)

Def 0.175 0.168 0.194

(1.45) (1.17) (1.29)

DRF 0.124 0.317∗∗∗

(1.58) (2.92)

CRF −0.043 0.081

(−0.40) (0.70)

LRF 0.065 0.142∗

Continued on next page
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Table 2.4 – Continued from previous page

(1) (2) (3) (4) (5)

(0.88) (1.69)

Unc f −0.456∗∗

(−2.37)

Unce −0.049

(−0.46)

adj-R2 1.04 2.08 9.54 15.35 17.53

Obs. 137.00 137.00 137.00 137.00 137.00
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Table 2.5

Fama-Macbeth Regressions, Cross Section of Individual Bond Returns and Characteristics

(2002 - 2019)

This table shows estimation results of Fama-Macbeth cross-sectional regressions where the dependent

variable is individual bond excess returns. Granularity is the total market value of equity and debt for the 20

largest firms as fraction of total market value of equity and debt of all firms. Explanatory variables include

past betas with respect to granularity, innovations to the relative market value of smallest 50 firms among

the 200 largest firms, bond excess market returns, default and term spreads, the three factors of Bai et al.

(2019), downside risk (DRF), credit risk (CRF) and liquidity risk (LRF), and measures of financial (Unc f )

and economic (Unce) uncertainty of Jurado et al. (2015). Columns 1-4 augment the list of risk factors

with firm level characteristics including reversal (Rev), Size, credit ratings (Rating), and time to maturity

(TTM), respectively. The last column reports results for the full specification. Bond data are from Enhanced

TRACE and Mergent FISD datasets. Data span July 2002 to June 2019. *, **, and *** indicate statistical

significance at the 10%, 5%, and 1% level, respectively.

(1) (2) (3) (4) (5)

∆Gt −0.114∗∗∗ −0.130∗∗∗ −0.105∗∗∗ −0.119∗∗∗ −0.141∗∗∗

(−2.92) (−3.49) (−4.29) (−3.09) (−4.04)

∆Bt 0.005 0.006 −0.000 0.007 0.002

(0.98) (1.00) (−0.06) (1.26) (0.53)

RB - R f 0.206∗∗ 0.173∗∗ 0.169∗∗ 0.160∗∗ 0.153∗∗

(2.36) (2.09) (2.15) (2.21) (2.45)

Term 0.115 0.075 −0.047 −0.076 −0.034

(0.54) (0.37) (−0.26) (−0.43) (−0.19)

Def 0.175 0.174 0.194∗ 0.218 0.194∗

(1.17) (1.18) (1.68) (1.43) (1.69)

DRF 0.387∗∗∗ 0.379∗∗∗ 0.382∗∗∗ 0.294∗∗∗ 0.424∗∗∗

(3.63) (3.41) (2.76) (3.05) (3.01)

CRF 0.022 0.067 0.096 0.094 0.123

(0.20) (0.60) (1.12) (0.80) (1.37)

LRF 0.146∗ 0.129 0.129∗ 0.143∗ 0.127∗∗

(1.66) (1.55) (1.81) (1.76) (2.03)

Unc f −0.394∗∗ −0.407∗∗ −0.425∗∗ −0.468∗∗ −0.453∗∗
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(1) (2) (3) (4) (5)

(−2.15) (−2.17) (−2.33) (−2.51) (−2.48)

Unce −0.082 −0.083 −0.240∗∗ −0.038 −0.237∗∗

(−0.80) (−0.85) (−2.44) (−0.35) (−2.33)

Rev −0.078∗∗∗ −0.185∗∗∗

(−4.38) (−10.21)

Size −0.055∗∗∗ −0.030∗

(−2.99) (−1.77)

Rating 0.001 −0.005

(0.07) (−0.25)

TTM 0.000 0.000∗∗

(1.23) (2.00)

adj-R2 1.65 2.91 9.50 15.39 19.10

Obs. 137.00 137.00 137.00 137.00 137.00
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Table 2.6

Fama-Macbeth Regressions, Equity Returns (1973 - 2019)

This table shows estimation results of Fama-Macbeth cross-sectional regressions where the dependent

variable is individual equity excess returns. Granularity is the market capitalization of the 20 largest firms

as fraction of total market value of all firms. Explanatory variables include past betas with respect to

granularity, innovations to the relative market value of smallest 50 firms among the 200 largest firms, Fama

and French five-factor model, measures of financial (Unc f ) and economic (Unce) uncertainty of Jurado

et al. (2015), and aggregate liquidity (Liq). Also, firm level characteristics including reversal (Rev), and

Size. Equity data is from CRSP. Data span July 1973 to June 2019. *, **, and *** indicate statistical

significance at the 10%, 5%, and 1% level, respectively.

(1) (2) (3) (4) (5) (6) (7) (8)

∆G −0.018∗∗ −0.023∗∗ −0.045∗∗∗ −0.061∗∗∗ −0.066∗∗∗ −0.071∗∗∗ −0.056∗∗∗ −0.041∗∗

(−2.19) (−2.30) (−2.90) (−3.76) (−3.97) (−3.83) (−2.86) (−2.13)

∆B 0.002 0.003 0.003 0.003 0.004 0.002 0.001

(1.01) (1.10) (0.98) (0.93) (1.28) (0.57) (0.36)

RE -R f 0.031 0.072 0.123 0.159 0.112 0.186

(0.39) (0.71) (1.16) (1.38) (0.90) (1.49)

SMB 0.158∗∗∗ 0.186∗∗∗ 0.210∗∗∗ 0.226∗∗∗ 0.140∗∗ 0.044

(3.67) (3.38) (3.65) (3.77) (2.31) (0.76)

HML 0.010 0.052 0.065 0.072 0.113 0.089

(0.24) (0.74) (0.91) (1.00) (1.46) (1.17)

RMW −0.089∗ −0.093∗ −0.096∗ −0.050 −0.030

(−1.89) (−1.89) (−1.93) (−0.98) (−0.58)

CMA 0.015 0.018 0.021 0.033 0.010

(0.34) (0.39) (0.44) (0.67) (0.22)

Unc f −0.230∗∗∗ −0.241∗∗∗ −0.187∗∗∗ −0.170∗∗∗

(−4.32) (−4.49) (−3.33) (−3.08)

Unce −0.037∗ −0.041∗ −0.019 −0.015
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(1) (2) (3) (4) (5) (6) (7) (8)

(−1.69) (−1.67) (−0.69) (−0.53)

Liq 0.287∗∗ 0.210∗ 0.178

(2.47) (1.84) (1.58)

Rev −0.042∗∗∗ −0.042∗∗∗

(−11.58) (−11.55)

Size −0.130∗∗∗

(−5.09)

Obs. 504.00 504.00 504.00 504.00 504.00 504.00 504.00 504.00
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Table 2.7

Granularity Sorted Portfolios, Characteristics (2002 - 2019)

This table shows intercept and slope coefficients of a regression where return on granularity sorted port-

folios is regressed on bond and equity market risk factors. The first column is the intercept with respect

to bond market risk factors, namely market, default and term spreads, and Bai et al. (2019)’s factors. The

second column reports alphas with respect to the Fama and French five-factor model. The third shows the

alpha with respect to all factors in the bond and equity market. Columns three to six report the average

preformation betas, post-formation betas, and bond market betas. I obtain pre-formation betas by rolling a

36-month window. Data span July 2002 to June 2019. *, **, and *** indicate statistical significance at the

10%, 5%, and 1% level, respectively. Standard errors are HAC robust.

Avg. Ret αbond αequity αall β pre β post β Mkt Credit TTM Size (m)

Low 1.160 0.620∗∗∗ 0.860∗∗∗ 0.550∗∗∗−2.280−1.090 1.290 10.619 9.328 379.322

(4.22) (2.81) (3.46)

2 0.710 0.220∗∗∗ 0.500∗∗∗ 0.170∗∗∗−0.770−0.370 0.940 9.455 8.503 477.041

(4.92) (2.89) (3.31)

3 0.570 0.180∗∗∗ 0.430∗∗∗ 0.150∗∗∗−0.360−0.120 0.700 8.797 7.425 514.653

(4.03) (2.79) (3.25)

4 0.460 0.190∗∗∗ 0.350∗∗∗ 0.160∗∗∗−0.130−0.120 0.480 8.187 6.509 592.211

(3.69) (3.23) (3.84)

5 0.390 0.140∗∗∗ 0.300∗∗∗ 0.110∗∗∗ 0.040 0.010 0.420 7.863 6.043 644.027

(3.47) (3.14) (3.44)

6 0.360 0.130∗∗∗ 0.280∗∗∗ 0.100∗∗∗ 0.180 0.040 0.380 7.768 6.257 659.775

(2.75) (3.20) (2.59)

7 0.410 0.150∗∗∗ 0.300∗∗∗ 0.110∗∗ 0.330 0.030 0.460 7.883 7.303 658.453

(3.14) (2.84) (2.51)

8 0.470 0.150∗∗ 0.330∗∗∗ 0.100∗ 0.530 0.080 0.570 7.889 9.134 633.931

(2.50) (2.63) (1.78)

9 0.490 0.110 0.310∗ 0.030 0.870 0.110 0.720 7.808 12.639 636.757

(1.46) (1.88) (0.45)

H 0.560 0.030 0.290 −0.070 1.750−0.060 1.060 7.994 15.605 555.392

(0.35) (1.34) (−0.80)

L-H 0.600 0.580∗∗∗ 0.570∗∗∗ 0.630∗∗∗−4.030−1.030 0.240
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Avg. Ret Bond Factor α Equity Factor α All Factor α Pre β Post β Market β Credit Rating TTM (Year)

(3.92) (2.69) (3.46)
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Table 2.8

VW Long-Short Granularity Strategy (2002 - 2019)

This table shows estimation results from a regression where the dependent variable is value-weighted

excess return on a long-short portfolio of corporate bonds (D1 - D10) formed with respect to granularity

betas. Each column corresponds to a set of explanatory variables included in the analysis. The first row

reports the estimated alpha of the strategy. Granularity is the total market value of equity and debt for the

20 largest firms as fraction of total market value of equity and debt of all firms. Controls variables include

bond and equity market risk factors, and measures of financial (Unc f ) and economic (Unce) of Jurado et al.

(2015). More details about control variables is provided in Table I. Bond data are from Enhanced TRACE

and Mergent FISD datasets. I obtain betas by rolling a 36-month window. Data span July 2002 to June

2019. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. Standard

errors are HAC robust.

(1) (2) (3) (4)

Constant(%) 0.592∗∗∗ 0.568∗∗∗ 0.659∗∗∗ 0.497∗∗∗

(4.15) (2.69) (4.26) (4.11)

rB - r f −0.185∗∗ −0.218∗∗ −0.281∗∗∗

(−2.10) (−2.26) (−4.18)

Term 0.194 0.340∗ 0.189

(1.16) (1.78) (1.52)

Def 0.478∗∗∗ 0.623∗∗∗ 0.545∗∗∗

(3.26) (4.00) (4.36)

rE - r f 0.131∗∗ −0.128∗∗∗ −0.170∗∗∗

(2.44) (−2.73) (−2.92)

SMB 0.036 −0.009 0.009

(0.36) (−0.12) (0.14)

HML 0.162 0.097 0.058

(1.22) (1.08) (0.95)

CMA −0.218 −0.082 −0.100

(−1.36) (−0.81) (−0.99)

RMW −0.043 0.081 0.045
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(1) (2) (3) (4)

(−0.30) (0.53) (0.34)

DRF 0.282∗∗

(2.30)

LRF 0.137

(1.19)

CRF 0.154

(0.98)

Adj. R̄2(%) 0.42 0.15 0.43 0.52

Observations 172.00 169.00 169.00 169.00
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Table 2.9

EW Long-Short Granularity Strategy (2002 - 2019)

This table shows estimation results from a regression where the dependent variable is equal-weighted

excess return on a long-short portfolio of corporate bonds (D1 - D10) formed with respect to granularity

betas. Each column corresponds to a set of explanatory variables included in the analysis. The first row

reports the estimated alpha of the strategy. Granularity is the total market value of equity and debt for the

20 largest firms as fraction of total market value of equity and debt of all firms. Controls variables include

bond and equity market risk factors, and measures of financial (Unc f ) and economic (Unce) of Jurado et al.

(2015). More details about control variables is provided in Table I. Bond data are from Enhanced TRACE

and Mergent FISD datasets. I obtain betas by rolling a 36-month window. Data span July 2002 to June

2019. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. Standard

errors are HAC robust.

(1) (2) (3) (4)

Constant(%) 0.369∗∗ 0.405∗ 0.442∗∗ 0.553∗∗∗

(2.20) (1.65) (2.44) (3.26)

rB - r f −0.727∗ −0.763∗ −0.440∗∗

(−1.71) (−1.91) (−2.14)

Term 1.070∗∗∗ 1.223∗∗∗ 0.893∗∗∗

(2.61) (3.09) (3.96)

Def 0.964∗∗∗ 1.111∗∗∗ 0.902∗∗∗

(3.33) (4.16) (4.91)

rE - r f 0.153∗ −0.146∗∗ −0.222∗∗

(1.67) (−2.10) (−2.54)

SMB 0.119 0.109 0.128

(0.84) (0.86) (1.31)

HML 0.082 0.086 0.031

(0.51) (0.83) (0.29)

CMA −0.090 −0.038 −0.055

(−0.55) (−0.34) (−0.44)

RMW 0.028 0.089 0.083
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(1) (2) (3) (4)

(0.15) (0.56) (0.56)

DRF 0.165

(1.13)

LRF 0.607∗∗∗

(4.46)

CRF −0.986∗∗∗

(−3.17)

Adj. R̄2(%) 0.27 0.07 0.28 0.48

Observations 172.00 169.00 169.00 169.00
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Table 2.10

Fixed Effect Regressions, Bond Returns, Various Portfolios (2002 - 2016)

This table presents estimates of fixed effect regressions where the dependent variable is excess return on

various portfolios of corporate bonds. These portfolios are sorted by market beta (P1 and P2, different

weighting schemes), credit ratings (P3), and time to maturity (P4). The last column includes all these

portfolios in tandem (P5). Granularity is the total market value of equity and debt for the 20 largest firms

as fraction of total market value of equity and debt of all firms. Independent variables include bond market

return, default and term spreads, the three factors of Bai et al. (2019), downside risk (DRF), credit risk (CRF)

and liquidity risk (LRF), and measures of financial (Unc f ) and economic (Unce) uncertainty of Jurado et al.

(2015). Bond data are from Enhanced TRACE and Mergent FISD datasets. I obtain betas by rolling a

36-month window. Data span July 2002 to June 2019. *, **, and *** indicate statistical significance at the

10%, 5%, and 1% level, respectively. Standard errors are clustered at portfolio level.

(P1) (P2) (P3) (P4) (P5)

∆Gt −0.258∗∗∗ −0.298∗∗∗ −0.207∗∗∗ −0.239∗∗∗ −0.246∗∗∗

(−13.81) (−7.62) (−7.96) (−6.32) (−17.00)

RB - R f −0.085 0.079 0.033 0.088∗ 0.052∗

(−1.22) (1.07) (0.96) (1.72) (1.81)

Term 0.120∗∗∗ 0.236∗∗∗ 0.165∗∗∗ 0.228∗∗∗ 0.189∗∗∗

(3.80) (6.91) (5.75) (6.18) (11.71)

Def 0.393∗∗∗ 0.373∗∗∗ 0.249∗∗∗ 0.437∗∗∗ 0.346∗∗∗

(3.09) (3.70) (3.44) (4.79) (7.64)

DRF −0.126∗∗∗ −0.229∗∗∗ −0.161∗∗∗ −0.134∗∗∗ −0.164∗∗∗

(−4.80) (−5.66) (−9.09) (−3.96) (−10.70)

CRF −0.104∗∗ −0.227∗∗∗ −0.084∗∗ −0.171∗∗∗ −0.146∗∗∗

(−2.29) (−5.08) (−2.27) (−5.05) (−7.13)

LRF −0.167∗∗∗ −0.069 −0.081∗∗∗ 0.007 −0.071∗∗∗

(−6.31) (−1.30) (−3.49) (0.16) (−3.73)

Unc f −0.113∗∗∗ −0.098∗∗ −0.184∗∗∗ −0.107∗∗ −0.129∗∗∗
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(P1) (P2) (P3) (P4) (P5)

(−3.05) (−2.32) (−5.87) (−2.20) (−5.59)

Unce 0.201∗∗∗ 0.148∗∗∗ 0.212∗∗∗ 0.162∗∗∗ 0.166∗∗∗

(8.61) (3.66) (14.02) (3.16) (6.57)

adj-R2(%) 15.614 12.325 13.058 12.068 12.709
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Table 2.11

Fixed Effect Regressions, Equity-Bond Correlation (2002 - 2016)

This table presents estimates of fixed effect regressions where the dependent variable is value weighted

return on 15 (market) beta-sorted portfolios. Granularity is the market value of total assets for the 20 largest

firms to total market value of assets. Independent variables include return on top 20 firms, bond market

return, default and term spreads, and the three factors of Bai et al. (2019), downside risk (DRF), credit risk

(CRF) and liquidity risk (LRF), and measures of financial (Unc f ) and economic (Unce) uncertainty ofJurado

et al. (2015). Bond data are from Enhanced TRACE and Mergent FISD datasets. I obtain betas by rolling a

36-month window. Data span July 2002 to June 2019. *, **, and *** indicate statistical significance at the

10%, 5%, and 1% level, respectively. Standard errors are clustered at portfolio level.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

∆Gt 0.132∗∗ 0.128∗∗ 0.128∗∗ 0.125∗∗ 0.095∗∗ 0.119∗∗ 0.107∗ 0.114∗∗ 0.119∗∗ 0.118∗∗

(2.05) (2.13) (2.11) (2.09) (2.12) (2.51) (1.84) (2.02) (2.06) (2.08)

RB - R f 0.001 −0.017 0.152 0.159 0.175 0.100 0.102 0.111

(0.01) (−0.24) (1.22) (1.37) (1.60) (0.98) (1.02) (1.10)

Term 0.066 −0.280∗∗−0.343∗∗−0.326∗∗−0.284∗∗−0.299∗∗−0.322∗∗

(0.79) (−1.99) (−2.56) (−2.38) (−2.27) (−2.31) (−2.19)

Def −0.419∗∗−0.463∗∗∗−0.440∗∗−0.419∗∗−0.438∗∗−0.469∗∗

(−2.21) (−2.59) (−2.24) (−2.33) (−2.37) (−2.24)

DRF 0.086 0.103∗ 0.067 0.061 0.059

(1.20) (1.78) (1.17) (1.14) (1.15)

CRF −0.059 −0.053 −0.066 −0.078

(−0.59) (−0.53) (−0.68) (−0.85)

LRF 0.110∗ 0.105 0.108∗

(1.67) (1.62) (1.74)

Unc f −0.037 −0.097

(−0.83) (−0.98)

Unce 0.067
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(0.80)

adj-R2(%) 1.723 1.957 1.950 2.332 3.893 5.269 5.427 6.025 6.106 6.241
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Table 2.12

Granularity versus Industry Concentration (2002 - 2019)

This table shows estimation results of Fama-Macbeth cross-sectional regressions where the dependent

variable is individual bond excess returns. Granularity is the total market value of equity and debt for the

20 largest firms as fraction of total market value of equity and debt of all firms. Other explanatory variables

include ∆HHI for industries that are significantly correlated with the granularity measure, bond market

return, default and term spreads, the three factors of Bai et al. (2019), downside risk (DRF), credit risk

(CRF) and liquidity risk (LRF), measures of financial (Unc f ) and economic (Unce) uncertainty of Jurado

et al. (2015), and changes in VIX. Firm level characteristics include reversal (Rev), Size, credit ratings

(Rating), time to maturity (TTM), momentum (Mom), illiquidity (Illiq), and trade volume (Volume). The

last column reports results for the full specification. Bond data are from Enhanced TRACE and Mergent

FISD datasets. Data span July 2002 to June 2019. *, **, and *** indicate statistical significance at the 10%,

5%, and 1% level, respectively.

(1) (2) (3) (4) (5) (6) (7) (8)

Constant 0.669∗∗∗ 0.568∗∗∗ 0.451∗∗ 0.452∗∗∗ 0.380∗∗∗ 0.545∗ 0.437∗ 1.023∗∗∗

(2.89) (3.25) (2.53) (3.56) (3.64) (1.90) (1.66) (3.67)

∆Gt −0.095∗∗∗−0.086∗∗∗−0.082∗∗ −0.106∗∗∗−0.117∗∗∗−0.097∗∗∗−0.101∗∗∗−0.216∗∗∗

(−2.89) (−2.92) (−2.55) (−2.96) (−2.81) (−2.60) (−2.78) (−3.09)

∆HHIInd1 0.170∗ 0.156∗ 0.106 0.017 0.007 0.055 0.079 −0.232

(1.67) (1.72) (1.36) (0.24) (0.09) (0.52) (0.79) (−1.32)

∆HHIInd2 −0.013 −0.018∗∗ −0.023∗∗ −0.028∗∗∗−0.026∗∗ −0.023∗ −0.017 −0.049∗∗

(−1.50) (−2.58) (−2.56) (−2.96) (−2.50) (−1.66) (−1.33) (−1.98)

∆HHIInd3 −0.049∗ −0.042 −0.025 −0.035 −0.020 −0.003 −0.039∗ −0.036

(−1.72) (−1.62) (−0.85) (−1.31) (−0.97) (−0.07) (−1.72) (−0.71)

Rb - R f 0.064∗ 0.116∗∗∗ 0.115∗ 0.168∗∗ 0.071 0.053 0.179∗∗

(1.96) (2.67) (1.84) (2.01) (1.10) (0.78) (2.34)

Term 0.040 0.001 0.007 0.017 0.010 −0.121

(0.23) (0.05) (0.03) (0.08) (0.05) (−0.49)
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(1) (2) (3) (4) (5) (6) (7) (8)

Def 0.055 0.104 0.168 0.071 0.046 0.246

(0.67) (0.92) (1.11) (0.45) (0.31) (1.32)

DRF 0.112∗ 0.046 0.281∗∗∗ 0.481∗∗∗ 0.438∗∗∗ 0.461∗∗∗

(1.71) (0.56) (3.61) (4.19) (3.57) (2.72)

CRF −0.026 0.058 0.102 0.088 0.192

(−0.25) (0.55) (0.79) (0.71) (1.53)

LRF 0.081 0.099 0.128 0.104 0.173∗∗

(1.04) (1.20) (1.60) (1.36) (2.38)

Uncecon −0.377∗∗∗−0.352∗ −0.270 −0.583∗∗

(−2.62) (−1.87) (−1.47) (−1.97)

Unc f in −0.129 −0.109 −0.104 −0.234

(−1.58) (−0.97) (−0.97) (−1.30)

∆VIX −23.337 5.180 13.753 −52.177

(−1.01) (0.21) (0.53) (−1.45)

Rev −0.077∗∗∗−0.080∗∗∗−0.073∗∗∗−0.182∗∗∗

(−4.05) (−4.22) (−3.81) (−9.91)

Size −0.013 −0.007 −0.009

(−1.11) (−0.70) (−0.72)

TTM 0.000∗ 0.000∗ 0.000

(1.76) (1.68) (1.36)

Mom 0.216 0.287 −1.399

(0.18) (0.24) (−1.15)

Illiq 1.923∗∗ 3.967∗∗∗

(2.05) (3.18)

Rate −0.052∗∗
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(1) (2) (3) (4) (5) (6) (7) (8)

(−2.35)

Volume 0.000

(0.33)

adj-R2 2.80 4.50 9.81 14.45 21.37 28.87 31.37 34.45

Obs. 137.00 137.00 137.00 137.00 137.00 137.00 137.00 137.00
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Table 2.13

Granularity and Risk Factors (2002 - 2019)

This table shows estimation results of cross-sectional regressions where the dependent variable is granu-

larity betas for individual corporate bond returns. Granularity is the total market value of equity and debt

for the 20 largest firms as fraction of total market value of equity and debt of all firms. Other explanatory

variables include betas with respect to bond market return, default and term spreads, the three factors of Bai

et al. (2019), downside risk (DRF), credit risk (CRF) and liquidity risk (LRF), measures of financial (Unc f )

and economic (Unce) uncertainty of Jurado et al. (2015), and changes in VIX. Firm level characteristics

include reversal (Rev), Size, credit ratings (Rating), time to maturity (TTM), momentum (Mom), illiquidity

(Illiq), and trade volume (Volume). The last column reports results for the full specification. Bond data are

from Enhanced TRACE and Mergent FISD datasets. Data span July 2002 to June 2019. *, **, and ***

indicate statistical significance at the 10%, 5%, and 1% level, respectively.

(1) (2) (3) (4) (5) (6) (7)

Constant −6.815∗∗∗ −9.756∗∗∗ −6.990∗∗ −10.573∗∗∗ −12.049 −24.858∗∗ 17.057

(−3.08) (−3.06) (−2.17) (−3.65) (−1.05) (−2.30) (1.45)

βMkt 4.901∗ 7.052∗∗ 4.546 5.103∗ 12.791∗∗∗ 15.590∗∗∗ 20.968∗∗∗

(1.81) (2.07) (1.38) (1.80) (4.26) (3.95) (5.12)

βTerm 11.685 −1.388 7.593 29.053∗∗∗ 22.345∗ 2.272

(1.27) (−0.16) (0.88) (3.05) (1.75) (0.20)

βDe f 9.115∗∗∗ 11.272∗∗∗ 8.108∗∗∗ 16.746∗∗∗ 31.196∗∗∗

(3.65) (5.92) (3.57) (4.74) (6.17)

βDRF −6.959 −4.246 −1.837 0.470 −12.196∗

(−1.43) (−1.20) (−0.67) (0.08) (−1.66)

βCRF 6.706 9.076∗∗ 7.353 18.134∗∗ 14.194∗

(1.09) (2.51) (1.63) (2.46) (1.86)

βLRF 13.535∗∗∗ 10.774∗∗∗ 15.034∗∗∗ 16.249∗∗∗

(3.87) (2.89) (3.02) (3.11)

βUncecon −49.010∗∗∗ −63.132∗∗∗ −73.852∗∗∗ −67.308∗∗∗
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(1) (2) (3) (4) (5) (6) (7)

(−3.41) (−4.19) (−4.95) (−4.94)

βUnc f in −21.485∗∗∗ −28.674∗∗∗ −35.054∗∗∗

(−5.85) (−4.71) (−5.08)

β∆V IX −3249.742∗∗∗−5716.270∗∗∗−5179.221∗∗∗

(−3.29) (−4.18) (−3.89)

Rev −1.172∗∗∗ −1.327∗∗∗ −0.998∗∗∗

(−2.94) (−3.19) (−3.48)

Size −0.415 0.268 −0.929

(−0.71) (0.49) (−1.39)

TTM 0.001 0.001

(0.37) (1.60)

Mom −51.997 −34.409

(−1.24) (−0.86)

Illiq −117.798∗∗∗ −246.767∗∗∗

(−4.94) (−4.88)

Rate −3.397∗∗∗

(−7.09)

Volume −0.001∗∗∗

(−2.63)

adj-R2 6.56 13.18 22.56 31.39 35.40 46.19 50.80

Obs. 137.00 137.00 137.00 137.00 137.00 137.00 137.00
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2.8 Figures

Figure 2.1: Compare exHHI with Topg .
This figure shows the correlation coefficient between the exHHI measure and the Topg measure.
The latter is constructed for the top i firms with i = {1,2, ...,500}. Enhanced TRACE and Mergent
FISD datasets are main sources of corporate bond data. Equity data is retrieved from CRSP. Data
span July 2002 to June 2019.
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Figure 2.2: Model implied Risk Premia, Equity and Bond.
This figure shows two different measures of granularity. The excess HHI measure of Gabaix and
Koijen (2020) versus Top20, the total market value of equity and debt for the 20 largest firms as
fraction of total market value of equity and debt of all firms. The top panels show the measures at
level, the bottom panel plot the corresponding change. The red lines indicate the 30th versus 70th
percentile of each measure. Enhanced TRACE and Mergent FISD datasets are main sources of
corporate bond data. Equity data is retrieved from CRSP. Data span July 2002 to June 2019.
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Figure 2.3: Changes in Firm Granularity versus Market Return.
This figure plots the correlation between changes in a granularity measure, and returns on the top
i (blue lines) as well as the bottom 100-i firms (red lines) in the market. Granularity is measured
at firm level. Enhanced TRACE and Mergent FISD datasets are main sources of corporate bond
data. Equity data is retrieved from CRSP. Data span July 2002 to June 2019.
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Figure 2.4: Changes in Equity Granularity versus Market Return.
This figure plots the correlation between changes in a granularity measure, and returns on the top
i (blue lines) as well as the bottom 100-i firms (red lines) in the market. Granularity is measured
at equity level. Enhanced TRACE and Mergent FISD datasets are main sources of corporate bond
data. Equity data is retrieved from CRSP. Data span July 2002 to June 2019.
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Figure 2.5: Changes in Bond Granularity versus Market Return.
This figure plots the correlation between changes in a granularity measure, and returns on the top
i (blue lines) as well as the bottom 100-i firms (red lines) in the market. Granularity is measured
at bond level. Enhanced TRACE and Mergent FISD datasets are main sources of corporate bond
data. Equity data is retrieved from CRSP. Data span July 2002 to June 2019.
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Figure 2.6: Conditional Distribution of Equity-Bond Correlations, ∆exHHI.
This figure plots the conditional EBC when granularity shocks are below the 30th percentile (Panel
A), above the 70th percentile (Panel C), and the corresponding difference (Panel B). First, corre-
lations are computed based on 90 random portfolios (each portfolio 20 firms). These correlations
are then re-sampled 50,000 times and the the distribution of the bootstrapped mean of conditional
correlations is plotted. Granularity shocks are measured based on changes in the excess HHI mea-
sure. Enhanced TRACE and Mergent FISD datasets are main sources of corporate bond data.
Equity data is retrieved from CRSP. Data span July 2002 to June 2019.
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Figure 2.7: Conditional Distribution of Equity-Bond Correlations, ∆Top20.
This figure plots the conditional EBC when granularity shocks are below the 30th percentile (Panel
A), above the 70th percentile (Panel C), and the corresponding difference (Panel B). First, corre-
lations are computed based on 90 random portfolios (each portfolio 20 firms). These correlations
are then re-sampled 50,000 times and the the distribution of the bootstrapped mean of conditional
correlations is plotted. Granularity shocks are measured based on changes in the Top20 measure.
Enhanced TRACE and Mergent FISD datasets are main sources of corporate bond data. Equity
data is retrieved from CRSP. Data span July 2002 to June 2019.
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Figure 2.8: Return on Long-Short Granular Portfolios.
This figure plots return on a strategy that is long the low beta and short the high beta decile of gran-
ularity sorted portfolios (36-month rolling window). To obtain pre-formation betas I regress bond
excess returns granularity shocks, market returns, and an interaction term. Granularity shocks are
measured based on changes in the Top20 measure. Enhanced TRACE and Mergent FISD datasets
are main sources of corporate bond data. Data span July 2002 to June 2019.
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General Conclusion

In this thesis we study equity and corporate bond prices when the economy is relatively

dominated by a small number of firms, hence granularity. We show that a more granular

economy is deemed unfavorable to risk-averse investors who care about diversification.

As a result, assets with negative granularity beta are considered riskier, and yield higher

expected returns. We provide ample empirical evidence from corporate bond and equity

markets to support this hypothesis.

Since granularity is an economy-wide phenomenon, an increase in state of granularity

corresponds to a higher correlation between equity and corporate bond returns. This find-

ing signifies that granularity is similarly perceived by investors in the equity and corporate

bond markets.

We construct a theoretical framework that show the low-risk effect in the equity market

arises naturally in a granular economy. Our model predicts that larger firms tend to have

higher market betas because the market is more represented by these firms. As they are

more systematic, investors require lower returns, hence the low-risk effect. On the other

hand, smaller firms tend to have smaller betas as they are relatively more idiosyncratic

compared to larger firms. Investors ask for compensation for exposure to less systematic

risk.
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Appendix A.1

A.1.1. SDF with Cobb-Douglas Preferences

Consider an economy that consists of two independent Lucas trees. Each tree i = {A,B}

generates a stream of dividends Xi in the form of a consumption good, whose dynamics

satisfies
dXi,t

Xi,t
= µidt +σidZi,t , (A.1)

where µi and σi reflect the expected growth and volatility, while dZi,t is the incremental

change of a standard Brownian motion defined on the probability space (Ω,F ,P).

The representative agent consumes a Cobb-Douglas basket of goods, denoted by Y ,

coming from the dividends of trees A and B:

Yt = XΦ
A,tX

(1−Φ)
B,t , (A.2)

where 0 ≤ Φ ≤ 1 is the elasticity of substitution between the consumption goods.

The basket of goods Y is governed by the following stochastic process

dYt

Yt
=

{
ΦµA +(1−Φ)µB −

1
2

Φ(1−Φ)
[
σ

2
A +σ

2
B

]}
dt +ΦσAdZA,t +(1−Φ)σBdZB,t ,

(A.3)

which is obtained by first applying Ito’s lemma:

dYt =
∂Yt

∂XA,t
dXA,t +

∂Yt

∂XB,t
dXB,t +

1
2 ∑

i
∑

j

∂ 2Yt

∂Xi,t∂X j,t
d⟨Xi,t ,X j,t⟩, i, j = {A,B},

= ΦXΦ−1
A,t X1−Φ

B,t dXA,t +(1−Φ)X−Φ

B,t XΦ
A,tdXB,t

− 1
2

σ
2
AΦ(1−Φ)XΦ

A,tX
1−Φ

B,t dt − 1
2

σ
2
BΦ(1−Φ)XΦ

A,tX
1−Φ

B,t dt,
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and then by dividing all terms by Yt and simplifying the terms

dYt

Yt
=

ΦXΦ−1
A,t X1−Φ

B,t

XΦ
A,tX

1−Φ

B,t
dXA,t +

(1−Φ)X−Φ

B,t XΦ
A,t

XΦ
A,tX

1−Φ

B,t
dXB,t

− 1
2

σ
2
AΦ(1−Φ)

XΦ
A,tX

1−Φ

B,t

XΦ
A,tX

1−Φ

B,t
dt − 1

2
σ

2
BΦ(1−Φ)

XΦ
A,tX

1−Φ

B,t

XΦ
A,tX

1−Φ

B,t
dt,

=

{
−1

2
Φ(1−Φ)σ2

A −
1
2

Φ(1−Φ)σ2
B

}
dt +Φ

dXA,t

XA
+(1−Φ)

dXB,t

XB,t
,

=

{
−1

2
Φ(1−Φ)σ2

A −
1
2

Φ(1−Φ)σ2
B

}
dt +Φ

[
µAdt +σAdZA,t

]
+(1−Φ) [µBdt +σBdZB,t ] ,

=

{
ΦµA +(1−Φ)µB −

1
2

Φ(1−Φ)
[
σ

2
A +σ

2
B
]}

dt +ΦσAdZA,t +(1−Φ)σBdZB,t .

The representative agent derives her utility of consumption from

Ut = Et

(∫
∞

0
e−δ s ln(Yt+s)ds

)
(A.4)

where Yt is the aggregate consumption basket. This utility function implies that assets are

priced by the following kernel:

πt =
eδ s

Yt
(A.5)

with
dπt

πt
=−dYt

Yt
+ var(

dYt

Yt
)−δdt, (A.6)

or equivalently

dπt

πt
=

{
−δ −ΦµA − (1−Φ)µB +

1
2

Φ(1−Φ)
[
σ

2
A +σ

2
B
]
+Φ

2
σ

2
A +(1−Φ)2

σ
2
B

}
dt

−ΦσAdZA,t − (1−Φ)σBdZB,t ,

(A.7)

with the equilibrium risk free rate being equal to

rt = δ +ΦµA +(1−Φ)µB −
1
2

Φ(1−Φ)
[
σ

2
A +σ

2
B
]
−Φ

2
σ

2
A − (1−Φ)2

σ
2
B. (A.8)

The stochastic discount factor considered in Section 1.3 is thus of the form of Equation

(A.7). Specifically, it corresponds to the case ηA = Φ and ηB = 1−Φ.
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A.1.2. Alternative Granularity Measures

Table A1 displays the correlation structure among alternative measures for granularity.

The Herfindahl-Hirschman Index (HHI) is a measure of market concentration. It is de-

fined as

HHI =

√
N

∑
1

w2
i , (A.9)

where wi is the market value of firm i as fraction of total market capitalization. N is

the number of firms in the market. Gabaix and Koijen (2019) introduce a modified HHI

measure, called the excess HHI measure, defined as

exHHI =

√
− 1

N
+

N

∑
1

w2
i . (A.10)

A higher exHHI means that the market is more granular. When all the firms have the

same size, exHHI = 0.

We also use the skewness of the cross section of firm values (skw) as well as the

dispersion of the log of total market capitalization (σlogmkt) as other potential measures.

By Panel A, our measure, Top100, is highly positively correlated with HHI and exHHI. It

is positively correlated with skewness but negatively related to σlogmkt . When we consider

the change in granularity (Panel B), all correlation coefficients are both positive and larger

than corresponding coefficients in Panel A. This table suggests that our results are not

driven by the specificity of a measure for granularity.

A.1.3. Alternative Measures and Slope of the SML

Table A2 shows estimation results for the regression analysis developed in the paper. The

slope of the SML is similarly related to granularity when it is proxied by the alternative

measures introduced in Section 2.8. Except for skewness, skw, other measures explain

the slope of the SML significantly, and as expected, with a negative sign. T-statistics are

reported in parentheses.
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Table A1
Correlation Structure: Granularity Measures

This table presents the correlation matrix among alternative measures for granularity.

Panel A: Granularity measures

Measure Top1% Top20% Top50 Top100 HHI exHHI skw σlogmkt

Top1% 1 0.77 0.75 0.83 0.31 0.34 -0.10 0.08

Top20% 1 0.46 0.58 0.02 0.04 -0.30 0.47

Top50 1 0.98 0.80 0.82 0.32 -0.20

Top100 1 0.72 0.74 0.22 -0.12

HHI 1 0.99 0.76 -0.46

exHHI 1 0.76 -0.45

skw 1 -0.50

σlogmkt 1

Panel B: Change in granularity measures

Measure Top1% Top20% Top50 Top100 HHI exHHI skw σlogmkt

Top1% 1 0.76 0.96 0.96 0.77 0.80 0.36 0.13

Top20% 1 0.73 0.80 0.53 0.56 0.18 0.49

Top50 1 0.97 0.80 0.84 0.37 0.14

Top100 1 0.75 0.78 0.30 0.18

HHI 1 0.99 0.75 0.08

exHHI 1 0.76 0.09

skw 1 0.01

σlogmkt 1
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Table A2
Slope of the SML and alternative Granularity Measures

The dependent variable is the conditional slope of the SML, obtained from regressing equal
weighted monthly returns of 25 beta portfolios at time t on the market betas of the same portfolios
at time t−1. Conditional betas are estimated by rolling a 60-month window. Explanatory variables
include granularity, Gt , measured by the alternative definitions introduced in Section 2.8, and
control variables; investor sentiment, inflation, TED Spread, and excess market return. Details
about the control variables are provided in Table 1.1 in the paper. Robust Newey-West t-statistics
with 12 lags are reported in parentheses. Monthly data span January 1973 to December 2018,
obtained from CRSP. All variables are normalized. *, **, and *** indicate statistical significance
at the 10%, 5%, and 1% level, respectively.

HHI exHHI skw σlogmkt

∆Gt -0.22∗∗ −0.20∗∗∗ −0.01 −0.21∗∗∗
(-2.41) (−2.73) (−0.20) (−4.14)

Inft−1 -0.00 −0.00 −0.01 0.03
(-0.09) (−0.10) (−0.13) (0.69)

TEDt 0.10∗∗∗ 0.10∗∗∗ 0.09∗∗∗ 0.13∗∗∗
(3.60) (3.64) (3.17) (4.65)

Rm,t - R f 0.78∗∗∗ 0.78∗∗∗ 0.81∗∗∗ 0.85∗∗∗
(12.27) (12.18) (14.06) (14.30)

Adj. R-Squared 0.66 0.66 0.64 0.69
Observations 387 387 387 387
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Appendix A.2

A.2.1. Data Cleaning Procedure Applied to Enhanced

TRACE Transactions

To clean the Enhanced TRACE transaction data I first apply the procedure offered by

Nielsen (2014), where 35% of the raw transaction data is deleted due to various problem-

atic issues. Then, I use the following criterion, à la Bail, Bali, and Wen (2019), to filter

the corporate bond dataset.

• Remove bonds that are not listed or traded in the US public market, which include

bonds issued through private placement, bonds issued under the 144A rule, bonds

that do not trade in US dollars, and bond issuers not in the jurisdiction of the United

States.

• Remove bonds that are structured notes, mortgage backed or asset backed, agency

backed, or equity linked.

• Remove convertible bonds since this option feature dis- torts the return calculation

and makes it impossible to compare the returns of convertible and nonconvertible

bonds

• Remove bonds that trade under $5 or above $1,000.

• Remove bonds that have a floating coupon rate, which means the sample comprises

only bonds with a fixed or zero coupon.
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• Remove bonds that have less than one year to maturity.

• Eliminate bond transactions that are labeled as when-issued, locked-in, or have

special sales conditions, and that have more than a two- day settlement.

• Remove transaction records that are canceled and ad- just records that are subse-

quently corrected or re- versed.

• Remove transaction records that have trading volume less than $10,000.
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A.2.2. Cross-sectional Regressions with Alternative

Granularity Measures
This table presents Fama-MacBeth cross sectional regressions when the granularity al-
ternates across columns. As you can observe, the negative and economically significant
effect of granularity remains robust to measuring granularity.

Table A3

Fama-Macbeth Regressions, Cross Section of Individual Bond Returns and Characteristics,

Different Granularity Measures (2002 - 2019)

In Table A3 shows estimation results of Fama-Macbeth cross-sectional regressions where the dependent

variable is individual bond excess returns. Columns correspond to estimation results with different granu-

larity measures. In columns 1-4, respectively, granularity is the total market value of equity and debt for the

{5,10,15,20} largest firms as fraction of total market value of equity and debt of all firms. In the last column,

granularity is the exHHI index. Other explanatory variables include innovations to the relative market value

of smallest 50 firms among the 200 largest firms, bond market return, default and term spreads, the three

factors of ?, downside risk (DRF), credit risk (CRF) and liquidity risk (LRF), and measures of financial

(Unc f ) and economic (Unce) uncertainty of ?. Columns 1-4 augment the list of risk factors with firm level

characteristics including reversal (Rev), Size, credit ratings (Rating), and time to maturity (TTM), respec-

tively. The last column reports results for the full specification. Bond data are from Enhanced TRACE and

Mergent FISD datasets. Data span July 2002 to June 2019. *, **, and *** indicate statistical significance

at the 10%, 5%, and 1% level, respectively.

(1) (2) (3) (4) (5)

Constant 1.026∗∗∗ 1.026∗∗∗ 1.018∗∗∗ 1.003∗∗∗ 1.010∗∗∗

(3.44) (3.52) (3.52) (3.58) (3.60)

∆Gt −0.117∗∗∗ −0.165∗∗∗ −0.185∗∗∗ −0.223∗∗∗ −0.007∗∗∗

(−3.62) (−3.35) (−2.86) (−2.74) (−2.88)

Rb - R f 0.207∗∗ 0.200∗∗ 0.199∗∗ 0.205∗∗ 0.208∗∗

(2.51) (2.43) (2.45) (2.49) (2.49)

Term 0.043 0.038 0.024 0.023 0.034

(0.16) (0.14) (0.09) (0.09) (0.13)

Def 0.229 0.202 0.205 0.211 0.212

Continued on next page
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Table A3 – Continued from previous page

(1) (2) (3) (4) (5)

(1.51) (1.30) (1.31) (1.36) (1.39)

DRF 0.368∗∗∗ 0.344∗∗∗ 0.359∗∗∗ 0.370∗∗∗ 0.357∗∗∗

(2.81) (2.69) (2.86) (2.93) (2.84)

CRF 0.146 0.123 0.134 0.143 0.141

(1.26) (1.03) (1.12) (1.20) (1.19)

LRF 0.157∗∗ 0.148∗∗ 0.152∗∗ 0.154∗∗ 0.154∗∗

(2.36) (2.21) (2.18) (2.18) (2.29)

Uncecon −0.648∗∗ −0.571∗∗ −0.565∗∗ −0.617∗∗ −0.666∗∗

(−2.21) (−2.08) (−2.14) (−2.18) (−2.26)

Unc f in −0.513∗∗∗ −0.504∗∗ −0.495∗∗ −0.519∗∗ −0.524∗∗

(−2.60) (−2.53) (−2.51) (−2.53) (−2.54)

∆VIX −48.522 −47.233 −48.673 −50.194 −49.961

(−1.51) (−1.46) (−1.49) (−1.53) (−1.55)

Rev −0.175∗∗∗ −0.175∗∗∗ −0.175∗∗∗ −0.175∗∗∗ −0.174∗∗∗

(−9.58) (−9.54) (−9.57) (−9.57) (−9.57)

Size −0.015 −0.015 −0.013 −0.013 −0.015

(−1.07) (−1.07) (−0.99) (−0.98) (−1.06)

TTM 0.000 0.000 0.000 0.000 0.000

(0.83) (0.93) (1.05) (1.02) (0.94)

Mom −1.068 −1.203 −1.339 −1.351 −1.074

(−1.00) (−1.10) (−1.23) (−1.26) (−1.00)

Illiq 3.695∗∗∗ 3.640∗∗∗ 3.661∗∗∗ 3.630∗∗∗ 3.691∗∗∗

(2.98) (2.95) (2.96) (2.95) (2.99)

Rate −0.048∗∗ −0.048∗∗ −0.048∗∗ −0.047∗∗ −0.048∗∗

(−2.16) (−2.15) (−2.13) (−2.14) (−2.17)

Volume −0.000 −0.000 −0.000 −0.000 −0.000

(−0.09) (−0.14) (−0.08) (−0.05) (−0.12)

adj-R2 33.17 33.25 33.31 33.24 33.18

Obs. 137.00 137.00 137.00 137.00 137.00
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A.2.3. Sketch of a Toy Model

This Appendix sketches a theoretical framework for how granularity affects equity and

bond returns. The results in this Appendix are still preliminary and incomplete.

Setting

There are N firms in the economy, represented by a cashflow dynamics that is governed,

under the P measure, by
dXi

Xi
= µidt +σidBi, (A.11)

where µi and σi are constant parameters, and dBi is the incremental change of a standard

Brownian motion defined on the probability space (Ω,F ,P). The parameters of the model

are common knowledge. The cashflow of the grains is less volatile than other firms in the

economy2, σg < σi. The firm cashflow process is composed of a market-wide systematic

as well as an orthogonal firm-specific component,

dXi

Xi
= µidt +σi

(
ρidZM +

√
1−ρ2

i dZi
)
, (A.12)

where ρi = Corr(dBi,dZM), and dZM ⊥ dZi for all i. The typical investor is concerned

about shocks to the earnings process of the firms. Therefore, the SDF that prices assets in

this economy looks like

dπt

πt
=

N

∑
i=1

wi
dXi

Xi

=
N

∑
i=1

wi

[
µidt +σi

(
ρidZM +

√
1−ρ2

i dZi
)]
,

= µM dt +σM dZM +
N

∑
i=1

wiσi

√
1−ρ2

i dZi,

(A.13)

I further assume that all firms are similarly productive, that is for any firm i, µi = µ .

So far this setting does not differ from standard pricing models we already know of.

2? argue that the volatility of earnings of small firms has grown more volatile since the 1980s. I also
provide evidence in the empirical section that the equity return volatility is negatively related to firm size.
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However, the second term in Equation (A.13) reveals a plausible interpretation. Granu-

larity boils down to how idiosyncratic shocks are weighted by relative size of firms in the

economy. When size is normally distributed, by Law of Large Numbers, diversification

is proportionate to 1
N , and with a large enough number of firms ∑

N
i=1 wiσi

√
1−ρ2

i dZi

is eventually compressed. But we know that firms size is power-law distributed (Gabaix,

2011), the LLN does not hold, and ∑
N
i=1 wiσi

√
1−ρ2

i dZi remains a significant component

regardless of the number of firms in the economy.

From the perspective of an investor, idiosyncratic innovations stemming from firms

that dominate the portfolio are too large to ignore.

Unlevered Risk Premia

Cochrane, Longstaff, and Santa Clara (2008) solve a similar consumption based model

in a representative agent framework with two firms in an endowment economy. In such

setting wi is a stochastic process, affecting the valuation ratios. Martin (2013) solves for

the price dividend ratio in a three-firm economy model and provides semi-closed form

solutions.

Such partial equilibrium model leads to an endogenous stochastic discount factor. On

one hand, the representative agent cares about the firms in her consumption portfolio, on

the other hand she needs to be compensated for the risk arising from the stochasticity

of the weights. She wonders if the more volatile firm ends up dominating her basket or

vice versa. Solving this model endogenously is quite complex. Cochrane, Longstaff, and

Santa Clara (2008) propose closed form solutions for a two-tree economy. Martin (2013)

derives semi-analytical solutions for a three-firm economy. In both these papers the firms

do not undertake leverage.

As I show in the empirical section, granularity is a highly persistent phenomenon with

an auto-regressive coefficient of 0.97. Therefore, investors, at each point of time, have

quite an accurate estimate of the level of portfolio weights. I build on this observation and

assume that the agent solves the her problem knowing the vector of weights for firms in
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the economy.

Drawing analogy to consumption-based models, a larger wi signifies that the con-

sumption basket is more dominated by a specific firm. Also, by granularity, relatively

(very) large firms can bring about systematic impact through their firm-specific shocks.

These shocks grow incompressible because granular economies do not yield full diversi-

fication of firm-specific risk. Since granularity limits the scope of diversification of the

future wealth portfolio, it is negatively related to the future opportunity set.

There is one free parameter in the model, ρi, that shows the systematic versus firm-

specific riskiness of firms cashflow. Without loss of generality, I consider a base scenario

where regardless of the composition of the consumption basket ρi is constant for all firms.

I then discuss alternative assumptions about ρi in Figure A.3.

I am interested in how dominance of the grains in the investors preferences, all else

equal, affects any firm i in the economy. Hence, I examine the risk premium channel,

−E
[dπ

π
,
dXi

Xi

]
=

−E
[(

σMdZM +
N

∑
i=1

wi

√
(1−ρ2

i )σidZi
)
,
(
ρiσidZM +

√
(1−ρ2

i )σidZi
)]

=

ρiσiσM +wi(1−ρ
2
i )σ

2
i .

(A.14)

The unlevered risk premium is determined by two main components, one proportionate

to systematic risk, second to firm-specific risk. Both components are functions of granu-

larity. Notice that wi shows up in both components. When a firm is large enough it can

grow systematic such that σM gravitates towards the volatility of the grain. The same logic

applies for the second component. The first channel affects all firms in the economy. The

second channel is more prominent for firms that are more dominant in the SDF dynamics,

hence with larger wi. The overall effect determines the cross sectional behaviour of risk

premia in a granular economy.

For the first component, it is straightforward to show that the volatility of the system-

atic component changes the share of the grains in the economy. Without loss of generality,

I consider an economy with one grain, firm N. I use the subscript g to refer to the weight,
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volatility, or drift of the grain. Hence,

∂σM

∂wg
=

∂ ∑
N
i=1 wiρiσi

∂wg
=

∂
(
ρgwgσg +∑

N−1
i=1 wiρiσi

)
∂wg

= ρgσg +
N−1

∑
i=1

wi

wg
ρiσi.

(A.15)

The overall effect on expected risk premia is

∂ E
[

dπ

π
, dXi

Xi

]
∂wg

= ρiσi
∂σM

∂wg
+

∂wi

∂wg
(1−ρ

2
i )σ

2
i

= ρiσi
[
ρgσg +

N−1

∑
i=1

∂wi

∂wg
ρiσi

]
+

∂wi

∂wg
(1−ρ

2
i )σ

2
i

= ρiσiρgσg︸ ︷︷ ︸
>0

+ρiσi

N−1

∑
i=1

∂wi

∂wg
ρiσi︸ ︷︷ ︸

<0

+
∂wi

∂wg
(1−ρ

2
i )σ

2
i︸ ︷︷ ︸

<0

(A.16)

Since ρi, σi, and σg are constant parameters, the first out of three terms in equation

(A.16) is always positively related to the risk premium. Changes in wg in the second and

third terms are negatively related to firm risk premia. To find out which effect offsets the

other, I solve the model for different values for the share of the grain in the SDF dynamics.

For simplicity, I consider three types of firms in the model economy (N = 3), grain, big,

and small. Three (types of) firms capture any potential nonlinearity in behaviour of risk

premiums. Yet, the result are intact for any number of firms greater than three. All else

equal, I increase share of the grain in the SDF dynamics. By definition the grain is the

largest among firms. Hence, when wg < wi it means that the agent consumes wiC from a

continuum of firms i.

By Figure (A.2), the market as well as small and big firm risk premia are negatively

related to granularity. The risk premium of the grain increases with its importance to

investors, reflected in the SDF dynamics, namely granularity. I show in the empirical

section that this patter supports what I observe in the data.

To examine how equity and bond risk premia related to granularity, I need to show that

this relation holds in the equity and bond dimensions too. To this end, I examine bond and
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equity risk premia in the next section. I solve the firm problem and show that the equity

and bond market risk premia mirror those of the firm cashflows in other scenarios

Levered Risk Premia

To investigate the behaviour of risk premia for firm equity and bond, I assume firms make

an optimal debt mix decision. I borrow from Leland (1994) that is a standard trade-off

model in the literature where firms choose an optimal level of debt. This trade-off arises

from the fact that firms have a tax advantage in issuing debt. I provide the details of the

model in the Appendix. By applying Ito’s lemma, equity and bond dynamics of the firm

are governed by
dEt

Et
= µedt +ρiσedZM +

√
1−ρ2

i σedZi, (A.17)

and
dBt

Bt
= µbdt +ρiσbdZM +

√
1−ρ2

i σbdZi, (A.18)

and equity and bond risk premia are

−E
[dπt

πt
,
dEt

Et

]
= ρiσeσM +wi(1−ρ

2
i )σeσi, (A.19)

and

−E
[dπt

πt
,
dBt

Bt

]
= ρiσbσM +wi(1−ρ

2
i )σbσi, (A.20)

respectively. σe =
∂E
∂X

X
E is the levered equity volatility, and σb =

∂B
∂X

X
B is the levered bond

volatility. I solve the model for a range of cashflow values for the grain. Results are

displayed in Figure (A.4). Panel A shows the equity risk premium. Similar to the patterns

observed in Figure (A.2), the equity risk premium, for firms as well as the market, is

negatively related to granularity. This observation is supported by empirical evidence

provided in the next section.

Panel B shows that bond risk premia behave similarly. However, the bond risk pre-

mium for the grains decreases with granularity. Since the current theoretical framework

is meant to examine cross sectional effects, hence a static structural model, increasing the
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cashflow of the grains means that they de-lever as they grow, driving the levered bond

volatility considerably low. Thus, bonds issued by grains grow less risky with granularity.

Figure A.1: Size versus Return Volatility.
This figure plots time series average of the log market capitalization of firms that issue both equity
and debt versus the volatility of firms equity over the same period of time. Monthly equity data is
from CRSP and it spans Jan 2002 to Dec 2019.
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Figure A.2: Model implied Risk Premia, Firm.
This figure plots the cashflow risk premium for small, big, and grain firms in a three-firm economy.
All else equal, only the level of cashflow for the grain varies. Grains are less volatile than the rest
of the economy, and the systematic versus firm-specific components of firm cashflow are constant,
ρi = ρ̄ .
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Figure A.3: Model implied Risk Premia, Firm.
This figure plots the cashflow risk premium for small, big, and grain firms in a three-firm economy.
All else equal, only the level of cashflow for the grain varies. Panel A shows a scenario where
grains grow more systematic, ρg = wg while for other firms ρi = ρ̄ . Panel B displays a scenario
where for all firms, ρi = wi. Panel C shows risk premia when grains are systematically counter-
cyclical, ρg =−wg while for non-grains ρi = ρ̄ .
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Figure A.4: Model implied Risk Premia, Equity and Bond.
This figure plots the bond and equity risk premia where the cashflow of grains and non-grains is
invariatly systematic versus firm-specific, ρi = ρ̄ . To obtain bond and equity risk premia, I solve
the firm debt-mix problem à la Leland (1994) and plot security risk premia accordingly.
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A.2.4. Solving the Firm’s Capital Mix Problem

Environment

There are two firms in the economy, A & B, and each owns a technology that generates a

stream of cashflow ruled by

dXi

Xi
= µX ,idt +σX ,idZi, i = {A,B}, (A.21)

where µX ,i and σX ,i are constant parameters and dZi is the incremental change of a standard

Brownian motion defined on the probability space (Ω,F ,P). The cashflow processes of

firms are independent and all the parameters of the model are common knowledge.

SDF

As discussed in the main text, such SDF is governed by the following dynamics,

dπt

πt
= r f dt +gσAdZA +(1−g)σBdZB, (A.22)

This Appendix provides the framework explained in the paper to risk neutralize firm cash-

flows and solve for the optimal equity-debt mix.

Risk Neutral Dynamics of Revenue

To value firm securities, we need to write the firm revenue dynamics under the Q measure.

Regardless of the SDF, the following adjustment presents output dynamics under the Q

measure,

dXi

Xi
= µ̃X ,idt +σX ,idZ̃i, (A.23)

where µ̃X ,i = µX ,i +Et
(dπ

π

dXi
Xi

)
is the growth rate of firm i under the probability measure Q.
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Unlevered Firm Value

The unlevered firm value is a claim on the total earnings of the firm,

V u
t (X) = EQ

[∫
∞

t
e−r(s−t)(1− τ)Xsds

]
=

(1− τ)

r− µ̃X ,i

Xt . (A.24)

Debt Value

The value of debt for firm i comprises two components, the claim on a coupon until

bankruptcy and the claim on the assets at bankruptcy,

Dt(X) = EQ
[∫ TD

t
ce−r(s−t)ds

]
+EQ

[∫ TD

t
(1−α)(1− τ)Xsce−r(s−t)ds

]
(A.25)

in which TD = in f {t ≥ 0, | Xt ≤ XD} is the first hitting time. We can write the first part in

Equation (A.25) as

EQ
[∫ TD

t
ce−r(s−t)ds

]
= EQ

[∫
∞

t
ce−r(s−t)ds

]
−EQ

[∫
∞

TD

ce−r(s−t)ds
]

(A.26)

The first integral gives the value of a perpetuity,

EQ
[∫

∞

t
ce−r(s−t)ds

]
=

c
r

(A.27)

The second integral is over a random domain. By Karatzas & Shreve (1991)

EQ
[∫

∞

TD

ce−r(s−t)ds
]
=−c

r

(
Xt

XD

)ω

(A.28)

where
( Xt

XD

)ω is the Arrow-Debreu price bankruptcy and ω is the negative root of the

characteristic equation 1
2σ2

X ,i
ω(1−ω)+µX ,iω − r = 0. Put differently, the value of a claim,

ν that pays a one unit of cashflow at bankruptcy and zero anywhere else, yields the risk

free rate by no arbitrage,

EQ [dν ] = rν (A.29)

and since ν is a function of the firm earnings, it must satisfy the following PDE

∂ν

∂X
µ̃X ,iX +

1
2

∂ 2ν

∂X2 σ̃
2

X ,i
X2 = rν (A.30)
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The general solution to the PDE is

ν(X) = aν
α1 +bν

α2 (A.31)

By applying the boundary conditions the specific solution is derived,

ν(X) =

(
X
XD

)ω

(A.32)

and

ω =
1
2
− µX

σ2
X

−

√(
1
2
− µX

σ2
X

)2

+
2r
σ2

X

(A.33)

The Arrow-Debreu price of bankruptcy is used in other claims in a similar manner. The

second part in Equation (A.25) is solved by the strong Markov property for Brownian

motions by which

EQ
[∫ TD

t
(1−α)(1− τ)Xsce−r(s−t)ds

]
=

EQ
[
(1−α)(1− τ)XD

∫
∞

t
eσXs−(r−µX+

σ2
2 )ds

]
=

(1−α)(1− τ)
XD

r− µ̃X

(
X
XD

)ω

(A.34)

Therefore, the value of debt is given by what we derived in Equation (A.27), (A.28) and

(A.34).

Dt(X) =
c
r

[
1−

(
Xt

XD

)ω]
+(1−α)(1− τ)

XD

r− µ̃X

(
X
XD

)ω

=
c
r
−
[

c
r
− (1−α)(1− τ)

XD

r− µ̃X ,i

](
Xt

XD

)ω

,

(A.35)

Levered Firm Value

By issuing debt, shareholders enjoy tax benefits on one hand and are exposed to costs of

distress on the other hand. Tax benefits and costs of distress are both claims contingent

on the earnings of the firm,

Tt(X) = EQ
[∫ TD

t
τce−r(s−t)ds

]
(A.36)
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Lt(X) = EQ
[∫

∞

TD

α(1− τ)Xse−r(s−TD)ds
]

(A.37)

where Equations (A.38) and (A.39) are expected tax benefits and expected distress costs

respectively. Following a similar procedure as in deriving debt value, the value of each

claim is obtained as follows

Tt(X) =
τc
r

[
1−

(
Xt

XD

)ω]
(A.38)

Lt(X) =
α(1− τ)XD

r− µ̃X ,i

(
X
XD

)ω

(A.39)

V l
t (X) =V u

t (X)+Tt(X)−Lt(X)

=
(1− τ)

r− µ̃X ,i

Xt +
τc
r

[
1−

(
Xt

XD

)ω]
− α(1− τ)XD

r− µ̃X ,i

(
X
XD

)ω (A.40)

Equity

Shareholders have a claim on the earnings of the firm net of coupon payments until

bankruptcy and the value of firm equity is then equal to

Et(X) = (1− τ)EQ
[∫ TD

t
(Xs − c)e−r(s−t)ds

]
= (1− τ)

[
Xt

r− µ̃X ,i

− c
r
−
(

XD

r− µ̃X ,i

− c
r

)(
Xt

XD

)ω]
.

(A.41)

Optimal Capital Structure

The optimality of the default boundary is ensured by the smooth pasting condition

∂Et

∂Xt
|Xt=XD = 0, (A.42)

that yields the optimal default boundary as

XD = c
ω

1−ω

r− µ̃X ,i

r
. (A.43)

By Equation (A.43), the default boundary is directly related to the value of the coupon.

More leverage induces a higher default boundary, hence proximity to default.
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Issuing debt is not costless, it increases the probability of default and the expected cost

of distress. Thus, shareholders choose a level of leverage for which the marginal benefit

of issuing and extra unit of debt is equal to the marginal cost of distress. Formally, firms

solve the following problem

c∗ = argmax V0(c), (A.44)

therefore,

c∗ = X0c
ω

1−ω

r
r− µ̃X ,i

(
1−ω − ωα(1− τ)

τ

) 1
ω

. (A.45)
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