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Résumé

Cette these porte sur des applications de la théorie des jeux dynamiques a 1’analyse de
problemes de gestion de la péche. Ce cadre méthodologique permet de prendre a la fois

les externalités intertemporelles et stratégiques. La thése est composée de trois essais.

Dans le premier essai, nous examinons le probleme de la gestion efficace d’une péche-
rie ou des externalités de pollution sont présentes. Le modele bionomique de péche en
libre acces est analysé dans le cadre d’un jeu différentiel a n joueurs avec deux variables
d’état, a savoir, le stock de poissons et le stock de pollution. Nous caractérisons la solu-
tion coopérative et I’équilibre de Nash en rétroaction, et définissons une régle de partage
€galitaire pour allouer le gain coopératif total sur un horizon temporel infini, et montrons

que cette regle est cohérente dans le temps.

Dans le deuxiéme essai, nous considérons un modele de pécherie a deux espéces qui
interagissent biologiquement de fagon compétitive, symbiotique ou selon une relation
proie-prédateur. Chaque espéce est péchée par un groupe de pécheurs différent. Nous
caractérisons et comparons les stratégies de péche a 1’équilibre, les stocks de la ressource
a I’état stationnaire et la somme des utilités actualisées sous différents modes de jeu, a
savoir, la non-coopération dans les deux groupes, la coopération dans chacun des groupes
et coopération dans un seul groupe de pécheurs. Nos principaux résultats sont les suivants:
(1) Dans tous les scénarios, la stratégie d’équilibre d’un joueur péchant I’une des deux
especes consiste a pécher, a chaque période, une proportion du stock disponible. (ii) Les
dividendes de la coopération dans un groupe donné augmentent avec le nombre de joueurs

dans ce méme groupe. (iii) La coordination entre les acteurs d’un groupe donné peut étre



nuisiblé (biologiquement et économiquement) aux autres especes.

Finalement, dans le troisieme essai, nous considérons un modele a deux périodes
d’une pécherie exploitée par deux monopoles vendant leurs prises sur deux marchés sé-
parés. En supposant que le cofit de la péche est une information privée et qu’il existe
une autorité capable de réguler le marché, nous montrons que le régulateur est en mesure
de faire le design d’un contrat qui permet a la fois de résoudre le probleme d’asymétrie

d’information et d’amener les firmes & pécher au niveau collectivement optimal.

Mots-clés

Pécherie; Pollution; Jeux dynamiques; Partage égalitaire; Cohérence dans le temps; Péche-
rie a deux especes; Interactions biologiques; Strategies noncooperatives et cooperatives,

Monopoles; Competition par comparaison; Régulation; Asymmetrie d’information.
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Abstract

This thesis is composed of three essays concerning fisheries management problems. To
account for both intertemporal and strategic interactions between agents, we adopt a dy-

namic game theory framework.

In the first essay, we consider the problem of efficiently managing a fishery where
pollution externalities are present. The open-access bionomic model is analyzed in an
n-player differential game framework with two-state variables, that is, the fish stock and
the pollution stock. We characterize the noncooperative feedback-Nash equilibrium and
cooperative solution. We define an egalitarian sharing rule to allocate the joint welfare

maximizing payoff over an infinite time horizon and show that this rule is time consistent.

In the second essay, we consider a two-species fishery model where the species can
have different biological interactions, namely, competitive, symbiotic or prey-predator
relationships. Each species is harvested by a group of fisherpersons. We characterize
and compare equilibrium harvesting strategies, steady-state stocks and total discounted
utilities under different modes of play, that is, noncooperation in both groups, cooperation
in each of the groups and cooperation in only one group of fisherpersons. Our main results
are as follows: (i) In all scenarios, the equilibrium strategy of an agent fishing either
species consists of harvesting, in each period, a proportion of the available stock. (ii) The
dividend of cooperation in a given group is increasing with the number of members in
that group. (ii1) Coordination between agents fishing a given species may be detrimental

(biologically and economically) to the other species.

Finally, in the third essay, we consider a two-period model of a fishery exploited by

v



two firms selling their harvests in separate local markets. The harvesting cost is private
information. Assuming there is an agency that can regulate the market, we propose a
contract in the realm of yardstick competition framework that allows the regulator to

solve the information asymmetry problem and achieve cooperation.

Keywords

Fisheries; Pollution; Dynamic Games; Fair Sharing; Time Consistency; Two-species
Fisheries; Biological interactions; Noncooperative and cooperative strategies; Monopoly;

Yardstick Competition; Regulation; Asymmetric Information.
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General Introduction

Achieving a sustainable exploitation of a renewable natural resource requires a wise ar-
bitrage between the current vailue of the resource, and its discounted value of future use.
For example, in fisheries management, harvesting a higher level today results in limited
access to the stocks for future generations, whereas, a lower level of harvest reduces the
amount of fish available on the market while eliminating a considerable portion of the

profit of the fishermen.

According to the Food and Agriculture Organization of the United Nations (FAO), the
decline in fish stocks is a worrying and potentially dangerous threat to life in the ocean.
Pollution and overfishing are considerably endangering the marine biodiversity. In the
absence of successful actions to protect this resource, most of the species may be subject
to a dramatic extinction in the near future. FAO reports claim that half of the world’s
available fish is fully exploited, with at least 76 species being an over-exploitation activ-
ity. From FAQO’s 2018 report The state of world fisheries and aquaculture, we quote its
director general’s foreword: "(...) Fish production in 2016 reached an all-time high of 171
million tonnes, of which 88 percent was utilized for direct human consumption. (...) This
production resulted in a record-high per capita consumption of 20.3 kg in 2016. Since
1961 the annual global growth in fish consumption has been twice as high as population
growth. (...) These and other challenges engendered FAO'’s Blue Growth Initiative, an in-
novative, integrated and multisectoral approach to the management of aquatic resources
aimed at maximizing the ecosystem goods and services obtained from the use of oceans,

inland waters and wetlands, while also providing social and economic benefits. '



Moreover, when the resource is exploited by more than one agent, the need to con-
sider strategic externalities, and a game-theoretic approach, on the top of the intertempo-
ral ones. A seminal paper in the fisheries literature is Hardin’s tragedy of the commons,
which stipulates that open access, or competition, leads to harvesting at levels that are
higher than the resource’s rate of reproduction, which may cause its depletion (Hardin,
1968). This result highlighted the need for further studies to prevent such a tragedy.
A rich literature developed over the last five decades. Certainly, Munro (1979), Clark
(1980), and Levhari and Mirman (1980) represent the contributions that have drawn the
guidelines of this game theoretical approach for analyzing the exploitation of renewable
resources, fisheries in particular; for more details, we refer the reader to the surveys in Bai-
ley, Sumaila, and Lindroos (2010), Gronbaek, Lindroos, Munro, and Pintassilgo (2018),
Hannesson (2011), Long (2011, 2018), and Sumaila (2013). In its three essays, this thesis
contributes to the dynamic game theory literature in fisheries. Using dynamic games as
a methodological framework is the only way to account for both the intertemporal and

strategic interactions mentioned above.

In the first essay, we consider the problem of efficiently managing a fishery where
pollution externalities are present. We study the open-access bionomic model in a mul-
tiplayer differential game framework with two-state variables, that is, the fish stock and
the pollution stock. The reason for this essay stems from the fact that most of the con-
tributions focused on harvesting quantity under different institutional settings, mode of
play by the agents, the species and their biological interactions, leaving often aside the
quality of the marine environment. For instance, Matsuoka et. al (2005) advocates that
nearly 212,000 to 505,000 octopus are killed per year due to marine pollution within the
area’s fishing grounds in southern Japan. Few contributions shed a light on this envi-
ronmental issue, e.g., Tahvonen (1991), Xepapadeas (1995), and Wirl (2004). In fact,
the main reason that prevents adopting a game model, where both (nonlinear) resource
dynamics and environmental dynamics are interacting, is the mathematical complexity
behind the model solving, that is, the nonlinearity of the fish growth rate, renders the

analytical characterization of the equilibrium a very complicated task. This chapter en-
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titled "A fair and time-consistent sharing of the joint exploitation payoff of a fishery"
in which we consider a fishery exploited by numerous strategic agents, where harvesting
activities damage the environment and accumulated pollution has a negative impact on
the growth rate of the resource. For this purpose, we adopt a modified version of the
dynamic game model in Xepapadeas (1995) and determine the feedback-Nash equilib-
rium and cooperative harvesting strategies and outcomes. Furthermore, we assume that
the community of fisherpersons agree on a fair sharing of the dividend of cooperation,
that is, each player gets her open-access outcome plus an equal share of the dividend
of cooperation. Next, we define a sustainable sharing over time, in such a way that no
player will be tempted to choose competition over cooperation. This work contributes to
the fisheries literature at two levels. First, at a mathematical level, the model considers
the resource-environment interactions, which should lead to better predictions and nor-
mative implications. To avoid the above-mentioned tractability difficulties, in a two-state
variables framework we approximate the nonlinear resource dynamics by an inverted-V
shaped function as in Benchekroun (2003). This simplifies the characterization of the
equilibrium strategies and payoffs. Second, we propose a scheme to enforce the sustain-
ability of cooperation over time, which gives larger collective and individual outcomes,
as well as higher biological benefits, that is, a larger stock of the biomass than under
noncooperation. The closest work to this chapter is Mazalov and Rettieva (2010), where
also a time-consistent scheme is adopted to enforce cooperation over time. However, their
~ model does not include any environmental considerations. Given the mounting evidence
that fish stocks are overexploited and that fishing activities affect the marine environment,
a model accounting for pollution is clearly relevant and timely.

The next chapter of this thesis is entitled "Equilibria in a two-species fishery".> Here,
we consider a two-species fishery model where the species biologically interact, accord-

ing to a competitive, symbiotic or prey-predator relationship. Each species is harvested

I"This chapter was published as: Dahmouni I, Vardar B, Zaccour G. A fair and time-consistent sharing
of the joint exploitation payoff of a fishery. Natural Resource Modeling. 2019; e12216.

2This chapter is published as : M. Breton, I. Dahmouni, G. Zaccour, “Equilibria in a two-species
fishery”, Mathematical Biosciences, 309, 78-91, 2019.
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by a group of fisherpersons. We characterize and compare equilibrium harvesting strate-
gies, steady-state stocks and total discounted utilities under different modes of play, that
1s, noncooperation in both groups, cooperation in each of the groups and cooperation
in only one group of fisherpersons. This chapter is motivated by the simple idea that
fisheries are typically populated by more than one species, which brings the following
question on the table: how the results obtained in one-species models generalize to mul-
tiple species? Furthermore, in addition to the dynamic (intertemporal) externalities, the
analysis must account for the biological interactions between the species. Fischer and
Mirman (1992, 1996) studied a fishery with two species, each harvested by one player.
In this paper, we extend their analysis by assuming that each species is harvested by more
than one agent, more specifically, we add a competitive dimension to the fishing activities
of each species. That is, the characterization of equilibrium harvesting strategies and out-
comes under various mode of plays, as well as various biological relationships between
the species. Our investigation mainly focus on separating the effects of three sources of
externalities, namely, the intertemporal, biological and behavioral externalities. The con-
tribution of this chapter can be summarized as follows: (i) In all setups, the equilibrium
strategy of an agent fishing either species consists of harvesting, in each period, is a fixed
proportion of the available stock. (ii) The dividend of cooperation in a given group is
increasing with the number of agents in that group. (iii) Coordination among a group of
agents fishing a given species may be detrimental (biologically and economically) to the

other species.

From the political economy point of view, the last chapter is an occasion to discuss
the important role of regulations and law enforcement in sustaining an environmental
friendly fish stock while allowing the fishing business to stay profitable. This chapter is
entitled "A Note on Yardstick Regulation of Fishery Monopolies". In a principal-agent
framework we consider a fishery exploited by two firms, acting as monopolies in two
distinct local markets. We assume the harvesting cost to be a private information to each
firm. This realistic assumption is due to the fact that the fishing vessels face different and

variable costs everyday, especially in high seas. The principal in this story is a central
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planner that has the power of regulating fishing activities. The objective of this note is
to design a mechanism that would induce the firms to truthfully report their costs and to
adopt harvesting levels that are at the same time beneficial to consumer by leading to a
competitive price, and to the resource by having a higher stock. Cooperation, or central
management, can be a necessary condition to sustain a healthy stock level of the resource.
However, when cooperation amounts to collusion between the agents, the consumer may
have to spend more for less. Following Fisher and Mirman (1992, 1996), we consjder a
two-period game model, where the available stock grows with birth and decreases with
the catch.

For this purpose, a series of mechanisms can be used, with each adopting a specific
metric to benchmark the outcome or the harvesting effort exerted by the firm, e.g., the rate
of return on investment, quotas, price cap, marginal cost, etc. The common denominator
to these mechanisms is to bring the market to its competitive level. The Implementation
of any designed mechanism becomes feasible when the fishing parameters are common
knowledge to all. However, when the information is asymmetric, the regulator must in-
centivize the firms to reveal their private information. In this chapter, we consider the
so-called yardstick competition introduced by Shleifer (1985) as a regulatory tool to en-
courage competitive behavior by natural monopolies.

Finally, to illustrate the kind of insight that can be obtained from our models, for the
two first essays, we provide a numerical example and conduct a sensitivity analysis to
check the impact of varying key parameter values on the results.

To summarize, this thesis attempts to answer the following questions:

1. While accounting for negative pollution externalities, what are the harvesting poli-
cies under noncooperative and cooperative modes of play? How to share the total
dividend of cooperation among the players? How to insure that the cooperative
agreement, established at the beginning of the game, remains in force as time goes

by?
2. Assuming biological interaction between fish species, what are the equilibrium har-
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vesting strategies corresponding to various modes of play? How do the results vary
with the type of biological interaction and with parameter values? How do the var-
ious outcomes compare in terms of environmental and economical considerations?

Under what conditions is it better for agents in one group to act cooperatively?

. As a benevolent regulator pursuing the public interest, how to design a mechanism
capable to simultaneously sustaining a higher fish stock and a lower price on the
market? How to overcome the information asymmetry by implementing yardstick

competition mechanism?



Chapter 1

A Fair and Time-Consistent Sharing of
the Joint Exploitation Payoff of a
Fishery

Abstract

We consider the problem of efficiently managing a fishery where pollution externalities
are present. The open-access bionomic model is analyzed in an n-player differential game
framework with two-state-variables, i.e., the fish stock and the pollution stock. We char-
acterize the non-cooperative feedback-Nash equilibrium and cooperative solution, and
define an egalitarian sharing rule to allocate the joint welfare maximizing payoff over an

infinite time horizon, and show that this rule is time consistent.!

1.1 Introduction

The exploitation of a renewable resource, e.g., fishery, involves a fundamental trade-off

between the current consumption value of fish, and the discounted value of future con-

I'This chapter was published as: Dahmouni I, Vardar B, Zaccour G. A fair and time-consistent sharing
of the joint exploitation payoff of a fishery. Natural Resource Modeling. 2019; e12216.



sumption. A large (low) harvest level today leaves less (more) for the future. Further, if
the resource is exploited by few agents, then one needs to account for both the intertempo-
ral and strategic externalities. Following the early contributions by Munro (1979), Clark
(1980), and Lehvari and Mirman (1980), dynamic game theory has became a natural
methodology for analyzing the exploitation of renewable resources, particularly fisheries,
when these two externalities are present; see the surveys in Bailey et al. (2010), Grgnbzk

et al. (2018), Hannesson (2011), Long (2011, 2018), and Sumaila (2013).

The fisheries literature has repeatedly highlighted Hardin’s tragedy of the commons,
which stipulates that open access, or competition, leads to harvesting at levels that are
higher than the resource’s rate of reproduction, which may cause its depletion (Hardin
(1968)). This observation clearly signals the need for mechanisms to prevent such a
tragedy. One possibility is central management, or cooperation. The role of cooperation
in fisheries has been investigated in, e.g., Sumaila (2002), Kaitala and Lindroos (2004),
Lindroos et al. (2005), Trisak (2005), Munro (2006), Sumaila and Armstrong (2006),
Kronbak and Lindroos (2007), Pintassilgo and Lindroos (2008), Mazalov and Rettieva
(2010) and Breton et al. (2019). A main issue here is how to build and sustain over time

a cooperative agreement.

The above-cited contributions focused on harvesting quantity under different institu-
tional settings (regulated or unregulated fishery), mode of play by the agents (cooperation,
competition), the number of species and their biologiqal interactions, leaving often aside
the quality of the marine environment. Fishing debris such as nets, buoys, and lines,
accounts for a majority of plastic debris found in the oceans, and this pollution causes the
so-called ghost fishing, i.e., the netting debris that entangle and capture fish. To illustrate,
a study in southern Japan estimated that 212,000 to 505,000 octopus are killed per year
within the area’s fishing grounds (Matsuoka et al. (2005)). Few contributions accounted
for the interrelationship between harvesting activities and the marine environment while

also taking into account the strategic behavior by the agents; see, e.g., Tahvonen (1991),
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Xepapadeas (1995) and Wirl (2004). % 3 In fact, the main reason that prevents adopting a
game model, where both (nonlinear) resource dynamics and environmental dynamics are
interacting, is probably a purely technical one. Since the rate of growth is nonlinear in
stock, the analytical characterization of the equilibrium becomes out of reach.

In this paper, we consider a fishery exploited by n strategic agents, where harvesting
activities damage the environment and accumulated pollution has a negative impact on the
growth rate of the resource. Assuming that each player aims at maximizing her welfare
over an infinite planning horizon, and having in mind that cooperation yields, at least in
the long term, a higher stock of the resource than noncooperation extraction, our research

questions are as follows:

1. What are the harvesting policies under a noncooperative and éooperative mode of

play?
2. How to share the total dividend of cooperation among the players?

3. How to insure that the cooperative agreement, established at the game’s initial date,

remains in force as time goes by?

To answer these questions, we adopt a tractable version of the dynamic game model
in Xepapadeas (1995) and determine the feedback-Nash equilibrium and cooperative har-
vesting strategies and outcomes. Next, we assume that the community of fisherpersons
agree on a fair sharing of the dividend of cooperation, that is, each player gets her non-
cooperative outcome plus 1/n of the dividend of cooperation. (Of course, other criteria
could be used to share the dividend of cooperation, but fairness seems a natural choice in
the absence of a specific context.) Finally, we build a sustainable sharing over time, in

such a way that no player will be tempted to deviate from cooperation.

20f course, many studies have considered the impact of climate change on the fishing industry—see,
e.g., Miller and Munro (2004) and Cheung et al. (2009) for illustrative examples—but not in a strategic-
interactions framework.

3There is also a (generally non-strategic) literature accounting for the impact of the quality of the
habitat on the stock of the biomass. The early contributions are Barbier and Strand (1998), Barbier (2000),
Fluharty (2000), Kaiser and de Groot (2000).



Our work contributes to the fisheries literature at two levels. First, at the modeling
level, our model accounts for the resource-environment interactions, which should lead
to better predictions and normative implications. To avoid the above-mentioned tractabil-
ity difficulties, we follow the method—first proposed in Benchekroun (2003, 2008) for
one state variable and extended to two state variables in Vardar and Zaccour (2018)—of
approximating the nonlinear resource dynamics by an inverted-V shaped function. This
simplifies the characterization of the equilibrium strategies and payoffs. Second, we pro-
pose a scheme to enforce the sustainability of cooperation over time, which gives larger
collective and individual outcomes, as well as higher biological benefits, i.e., a larger stock
of the biomass than under noncooperation. Here, the closest paper to ours is Mazalov and
Rettieva (2010), which also adopts a time-consistent scheme to enforce cooperation over
time. However, their model does not include any environmental considerations.* Given
the mounting evidence that fish stocks are overexploited and that fishing activities affect
the marine environment, which in turn has an impact on the biomass, we believe that an-
alyzing these issues, albeit at an abstract level, is a useful addition to the literature. We
mention here that our approach follows a cooperative game framework, that is, the grand
coalition optimizes its total payoff and then allocates it to its members. An alternative
approach is to build a coalition of cooperators adopting noncooperative thinking; here,
a player would join the coalition if her payoff as a member is higher than it would be

outside the coalition.

The rest of the paper is organized as follows. Section 2 introduces the model, and
Section 3 the noncooperative and cooperative solutions. In Section 4, we determine a
fair and time-consistent sharing of the dividend of cooperation. Section 5 provides a few

numerical illustrations, and Section 6 briefly concludes.

4There is a sizeable literature in applied cooperative dynamic games on time consistency, a concept
that was initially proposed in Petrosjan (1977). The concept and its ramifications are covered in the books
by Yeung and Petrosjan (2005, 2012) and in the recent contributions by Yeung and Petrosjan (2018) and
Petrosjan and Zaccour (2018). For tutorials on time consistency in differential games and in games played
over event trees, see Zaccour (2008, 2017).
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1.2 The model

We consider a fishery exploited by n symmetric players over an infinite planning horizon.
We denote by ¢; (1) player i’s fishing effort (number of boats, crew members, equipment,
etc.) attime ¢ € [0, ), and assume that the resulting harvest is given by a linear production
function, i.e., gi(e; (t)) = ae; (t), where a is a positive parameter measuring productivity.
The cost of the effort is given by the convex increasing function g;(e;) = be?, with b > 0.

Denote by S (7) and Z () the resource and pollution stock at time ¢, respectively. Fol-
lowing Xepapadeas (1995), we assume that the growth rate of the resource is affected by
the pollution stock. The evolution of the resource over time is described by the following

differential equation:

$(1) =F(S(1),Z(t)) = ) qi(eit)), S(0)=5">0, (1.1)

-

1

~

where F(S(t),Z (t)) is a function describing the growth rate of the resource.

Harvesting (production) pollutes the shared environment. As we have a monotone
(linear-increasing) relationship between fishing effort and production, we can directly
express pollution emissions E; (¢) in terms of effort. We assume that this relationship is
linear, i.e., E;(t) = we; (1), where @ > 0. The stock evolves according to the following

ordinary differential equation:
n
Z(1)=Y wei(t)—kZ(t), Z(0)=2">0, (1.2)
i=1

where k > 0 is the natural absorption rate of pollution. The resulting environmental dam-

age cost is captured by the following quadratic function:

Di(z) = gzz, (1.3)

where ¢ is a strictly positive parameter.
With few exceptions, the literature has typically assumed that the growth function

F (-) in (1.1) depends only on the stock S. The assumption is that F(S) is a concave

1]

function that reaches its maximum at § = 5, where S is the habitat’s carrying capacity
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beyond which the resource growth rate is negative and F (§) is the maximum sustainable
yield of the resource. Benchekroun (2003) proposes the following approximation of this

function:

[\SlooN)

oS, for § <
F(S) = ) (1.4)
5§(5-5), fors>$,

where 0 is a positive constant. This approximation allows to have (piecewise) linear
dynamics, which simplifies the characterization of the noncooperative equilibrium and
the optimal solution.

In this paper, we extend the above formulation by adding the impact of pollution on
the stock of the resource. We suppose that this influence is linear and let F(S(z),Z (¢)) be

defined as follows:

Ny

0S—AZ, for § <
F(8,2) = (1.5)
8(§—8)—Az, forS>

)

[\S][emT]

where A is a positive parameter capturing the negative externality of pollution stock on
the rate of growth of the resource.

The utility function of player i from consumption is given by
Ui (ei (1)) = gi(ei (1)) — g (ei (1)) = ae; (1) — be} (¢), (1.6)

where a and b are strictly positive parameters, and her instantaneous welfare function is
given by
¢

Ji(1) = Ui (e (1)) = D; (Z (1)) = aei (1) = bef (1) — 5.2° (1), (1.7)

that is, the difference between the resource-based utility and the environmental damage

cost.
Assuming welfare-optimizing behavior over the infinite planning horizon, then player

i’s objective function is given by

Iy = /Owe_pt (aei (t) — be? (1) — 92222 (t)) dt, (1.8)

where p > 0 is the common discounting rate.

12



Remark 1. One should normally add the constraint that total production cannot exceed
the available stock. We deal with this constraint by seeking a positive steady-state value

of the resource.

Remark 2. If the fisherpersons do not internalize the pollution damage, then it suffices to

set ¢ = 0 in the results to follow.

To wrap up, by (1.8), (1.1), and (1.2), we have defined an n-player differential game,
with one control variable for each player (e; (1) > 0) and two state variables (S(¢) and
Z(t)). To keep the focus on designing a sustainable agreement, we assumed that the
players are symmetric. We discuss in the conclusion the impact of relaxing this assump-
tion.

At the modeling level, the closest model to ours is the one in Vardar and Zaccour
(2018). In both contributions, the model involves a renewable resource and pollution
externalities. However, we differ from Vardar and Zaccour in at least three respects.
First, in our model, each player’s utility function depends only on her control, whereas
in Vardar and Zaccour, it depends on all the players’ controls. Put differently, here, the
players are linked through the scarcity of the resource and the pollution stock, whereas
in Vardar and Zaccour, they are also linked through a market price, i.e., they compete
a la Cournot. In this sense, the model is simpler here, as are the characterizations of
the noncooperative equilibrium and the optimal solution. Second, Vardar and Zaccour
assumes one-to-one relationship between effort and the resulting harvest, but here, the
productivity of effort is also taken into account in the model as a parameter, which changes
the fish stock dynamics. Third, and more importantly, in Vardar and Zaccour, cooperation
and its sustainability over time are not at all on the menu, whereas here, they are the main
focus.

In the next section, we characterize the noncooperative and cooperative solutions.
In the noncooperative game, which can be seen as a benchmark, we seek a stationary
feedback-Nash equilibrium, which is subgame perfect. By stationary, we mean that the

strategies depend on the state variables and not (explicitly) on time, i.e., we look for
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strategies of the form e;(S,Z). In the cooperative game, we suppose that the players

maximize their joint payoff.

1.3 Solutions

We shall superscript the equilibrium strategies and outcomes with N (for Nash equilib-
rium), and the jointly optimal solution with C (for cooperation). Denote by Vij (8,2)
player i’s value function in game j € {N,C}. Recall that the value function Vij (8,Z) is
a mapping from the state space into R, and gives the payoff-to-go of player i from any
position (S,Z) in game j € {N,C}.

Although we shall focus in the sequel on interior solutions, we mention the existence

of the following three regions in the two-state-variables space:

Region of no economic activity ,%é : In this region, we have

v/(s,z) wav/ (,2)

e{(S,Z)zO and a<a 35 37

Region of scarce resource %’é : In this region, we have

v/ (s,2) _wc?Vij(S,Z) o v/ (s,2)

/(S,Z) > 0, 0.
€;(S,Z)>0, a>a 35 57 @ 35 >
Region of abundant resource %f; : In this region, we have
: avi(s,z)  av/(s,Z) vV/(s,2)
€/(S,Z)>0, a>a las - laz and las =
j j
In these definitions, the term aav" a(g,z) — coav" a(ZS’Z) is the opportunity cost of a unit of

harvesting effort of player i in game j € {N,C}. Accordingly, in region !, the marginal
utility of the initial unit of effort (denoted by U/(0) = a) is less than its opportunity cost
for the given position in the game, and thus, harvesting the resource is not profitable
because productivity a is too low. In the two other regions, the fishing effort is positive.
The regions %_’é and 921{ differ in the magnitude of the marginal value of the resource; in

23, this value is positive, whereas it is zero in region Z3.
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Remark 3. In this work, we only focus on the behavior in the scarcity region (%é ), where
players’ strategy depends on both the resource stock and the pollution stock. We refrain
from characterizing the regions %({ and ,%/{, and refer interested readers to Vardar and
Zaccour (2018) for their characterization method. (A full characterization involves a
lot of technicalities, which would take us away from our main objective of building a

sustainable cooperative agreement between the players.)

The next subsection studies the noncooperative game. Then in Subsection 1.3.2, we

will determine the optimal behavior of agents under cooperation.

1.3.1 Noncooperative solution

The following proposition characterizes the unique feedback-Nash equilibrium strategies

in region ZY .

Proposition 1. Fori=1,...,n, the unique symmetric feedback-Nash equilibrium harvesting-
effort is given by
' 1
eN(S,Z):%(a—l-BNnLnNS—I-CNZ), (1.9)

where the constants O ", and N are given by

oV — (an+(2n—1)6") (( ® )(éN_Zb/lnN>_(anN ) (1.10)

2b k+p (p—96) p—29)
—1+g¢"
N
= 1.11
1 2 (572 + g*v —isq)’ (1.11)
N P —aF+2gv+ \/(af—f2—2qv)2—4(v—ff2) (572 4+ ¢°v — irg) e
& = 2 (572 + v — iarg) il
where {q,7,5,1,i,V} are constants given in the Appendix.
Proof. See Subsection 1.7.1 in the Appendix. O

The above proposition shows that the harvesting effort is linear in both state variables

in region #ZY. It is shown in Subsection 1.7.1 of the Appendix, that player i’s value
S
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function in the noncooperative game is quadratic in the state variables and given by

%N N
vN(s,2)=VvN(8,Z) = oV + 752 +ENS+ %22 +&NZ+ N5z, (1.13)

where &7V ..., . Z" are constants given in the Appendix. This value will play an important
role in the sharing of the cooperative outcome and its sustainability over time. Given the
complexity of the expressions, it is unfortunately out of reach to get much qualitative
insight into the equilibrium strategies and outcome.

Denote by

_na(a+6N) 2bA+nagN  , now(a+6%) nonV
V7268 —nan™’ 7?7 266 —nan™’ P T 2bk—nwlN’ * T 2bk—nwlN

Proposition 2. The feedback-Nash equilibrium steady-state values are given by

274
AR fo__erfvjlvxfg (1.15)
2 %4

Proof. Substituting the equilibrium strategies eV (S,Z) given in Proposition 1 into (1.1)-
(1.2), then solving the system $(z) =0 and Z(¢) = 0 for S and Z. We then use the solutions

given in (1.10) to (1.12) and rearrange the terms to obtain the result. ]

Again, the expressions of the steady-state values are by no means amenable to a qual-

itative analysis. We shall conduct a numerical sensitivity analysis in Section 1.5.

1.3.2 Cooperative solution

The following proposition characterizes the optimal solution when the players jointly
maximize their welfare:

Proposition 3. The unique optimal harvesting-effort policy ¢ (S,Z),Vi is given by

e€(S,2) :zib(a+ 6 +n°s+¢¢z), (1.16)
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where the constants 6€,n€, and € are given by

o - (a+90) (W(CC p— ;)_Zb:pni6)>’ 1)

c _ —1+g¢¢
~ 2(ih? + g2 — khg)

n (1.18)

o _ P B ol (- 2gl)’ 4 (I ) (I + 2T -Fhg)
& = 2 (th? + g*1 — khg) R

where {g,h,1, j,k,1 } are constants given in the Appendix.

Proof. See Subsection 1.7.2 in the Appendix. E

As in the noncooperative equilibrium, the harvesting policy is linear in both state
variables. It is shown in Subsection 1.7.2 of the Appendix that the value function in the

cooperative solution is quadratic in the state variables and given by

C
ve(s,z) =o€+ %32 +EC8 + ?2—22

where &7€, ..., . ZC are constants also given in the Appendix.

+&Z+ FCsZ, (1.20)

Let us denote by
N (a+6°) C_ 2bA+nal® o _no (a+6°) [ __non
268 —nan€’ "% " 268 —nan€’ 2 T 2bk—nolC’ Tt T 2bk—nwlC
Proposition 4. The steady-state values in the optimal solution are given by
458

G

€ = 2 (1.21)
Z < x“c (1.22)

Proof. We substitute €€ (S,Z) into (1.1)—(1.2), and then solve for S(¢) = 0 and Z (1) =0.

It suffices to use the values given in (1.17) to (1.19) to get the results. O

To implement a time-consistent sharing, we need to compute the trajectories of the

two state variables. We show in the Appendix that they are given by

; bidl +1ig)
Jj — F]I J It .1
§/(t) 5 e B T T2l — B
; : i i (STt o T bd+1 ~j
. —rlelte]  Telaicd a ( el 4 el2ted 4 = bli) =
Z'(1) = —_— -+ - ;
bJ bJ bi
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for j € {N,C}. All the constants involved in the above expressions are defined in the
Appendix. Writing them in full yields very large expressions with no apparent qualitative

insight.

1.4 A fair and time-consistent allocation

In this section, we define a time-consistent decomposition over time of each player’s total
welfare, based on an egalitarian sharing rule. The objective is, as stated in the introduc-
tion, to have a sustainable agreement. This is achieved by implementing the following

four-step algorithm:

Step 1: Compute the total payoff to be shared by the players.
Step 2: Determine the individual payoffs in the absence of an agreement.
Step 3: Share the total cooperative payoff.

Step 4: Define a time-consistent solution.

The total payoff to be shared is the jointly maximized discounted welfare over the
infinite planning horizon, that is, JC. In the parlance of cooperative game theory, this
collective payoff corresponds to the characteristic-function value of the grand coalition.
It is also the optimal cooperative value function evaluated at initial state, that is,

S VO (0,25) =+ 2 (07 4 6050+ L () 1 6520 + 2P, (1.2

In the absence of an agreement, the game is played noncooperatively and each player

gets her feedback-Nash equilibrium outcome JV, that is,

N N N, B 2 N Z 2 N N
JN=vN(5°2% =& +—2—(SO) =X 3 SO+T(ZO) +&NZ0+ ZNSZ0 (1.29)

which is obtained by evaluating (1.13) at (59,Z°).
Cooperative game theory offers a series of solutions to share the grand coalition’s

outcome in (1.23), e.g., core, Shapley value, nucleolus, Nash bargaining solution. Here,
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we require that the solution satisfy the following three properties, which are all embedded

in the Nash bargaining solution:

Individual rationality: Globally, no player would accept a form of sharing that left her
with less than what she could achieve in the noncooperative game. Formally, denote
by (J},...,J;) an allocation of the total cooperative payoff. Then, we require that

this allocation satisfy the following inequalities:

Individual rationality : Jf > JN, i=1,...,n. (1.25)

Collective rationality: The total payoff obtained under joint maximization must be fully
allocated, that is,

n
Collective rationality : JC = Z J7. (1.26)

i=1
Any vector (J5,...,J) satisfying ( 1.25) and (1.26) is called an imputation. (Col-
lective rationality means that the players do not waste resources, nor expect a sub-

sidy from an outside entity.)

Egalitarian sharing: The total dividend of cooperation D, which is measured by
n n
D=J-Y JN=ve(s°,2°) - Y vV (s°,2),
i=1 i=1

that is, the total cooperative payoff minus the sum of individual noncooperative
outcomes must be shared equally. This is achieved by allocating to each player
her outcome in the noncooperative game plus 1/n of the dividend of cooperation.

Formally, player i obtains

J~*=JN+;, i=1,...,n. (1.27)

The last step is to design a time-consistent mechanism of J;. Time consistency means
that, at any intermediate instant of time 7 € (0, ), no player finds it individually rational
to abandon the agreement and switch to her noncooperative strategy. A formal definition

follows.
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The fair allocation in (1.27) is time consistent at initial state (%, Z°) if, at any (S (1), Z€ (7))
and all 7 € (0,00), it holds that

I (sc(r),zc(r)) > JN (Sc(r),ZC(r)>, i=1,...,n, (1.28)

where (S€(7),Z€ (1)) denotes the joint maximization state trajectory.

The condition in (1.28) states that the cooperative payoff-to-go of playeri,i=1,...,n,
must dominate, at least weakly, her noncooperative payoff-to-go under noncooperation.
Note that this dominance test is carried out along the cooperative state trajectory (S (7),Z¢ (1)),
meaning that, at any comparison time 7, the assumption is that the players have cooper-
ated from the initial instant of time till 7.

Since the condition in (1.28) must hold at any instant of time, we need to compute
the players’ cooperative and noncooperative payoffs-to-go for all z, not only at the initial
time. These values are simply obtained by evaluating J© and JV at (S€ (7),ZC (7)), that
is,

J° (SC(T) Z€ (r)) - Ve (SC(T) ,ZC('E)) = + —‘?;f (sC(r))2 +EC5C (1)
¢ 2
+5 (zC (r)) +ECZC (1) + FCSC (1) Z€ (1),
N (Sc(r) Z€ (r)) = yN (sC (t) ,zC(r)) =N+ ‘%N (s‘f(ﬂc))2 +ENSC (1)
gN 2
+5 (zC (1)) +EVZE (1) + ZVSC (1) 26 (7).
To determine the allocation that player i gets in the subgame starting at time 7, it suffices
to use the above formulas and (1.27) to compute J; (S (7),Z° (7)) .

Observe that, at any 7 € (0,0), J; (SV (1),ZV (1)) and J;} (S€ (), ZC (1)) are (gener-
ally) not equal. The reason is that (S" (1),Z" (1)) # (S (1),Z€ (7)).

To implement a time-consistent solution, we introduce the concept of an imputation
distribution procedure (IDP) of the game (Petrosjan (1977)).

A vector B(t) = (Bi(2), ..., Bu(t)) of time functions is an imputation distribution pro-

cedure if, for all i = 1,...., n, it satisfies
I (8%.2%) = / e P! B(t)dr. (1.29)
0

20



An IDP simply decomposes over time the imputation that player i is entitled to receive
under the agreement. Clearly, there is an infinite number of time functions that satisfy the
equality in (1.29). We select the time functions that possess the additional property of
being time consistent.

The IDP B(¢) is time consistent, if

Jp (s0,2%) = /0 P (1) +e Uy (55(2), 2 @), (1.30)

where J; (S€(7),Z€()) is player i’s payoff-to-go in the subgame starting at time 7, along
the cooperative state trajectory.

The interpretation of the condition in (1.30) is as follows: suppose that the players
wish to renegotiate the agreement at (any) intermediate instant of time 7 € (0,o0). At that
moment, the state of the system is (S€(7), Z¢( 7)), meaning that cooperation has prevailed
from the initial time until 7, and that each player i would have been allocated the stream
of monetary amounts given in the first right-hand-side term. Now, if the subgame starting
with initial condition (S(7),Z(7)) = (S(t),Z¢(7)) is played cooperatively, then player
i will get her fair share in this game, which is given by the second right-hand-side term
of (1.30). If what she has received on [0, 7] and what she will get from 7 onward add up
to her payoff under the original agreement, i.e., J; (SO ,ZO) , then a renegotiation would
leave the original agreement unaltered. If one can find an IDP B(¢) = (B;(¢),-- -, Bu(t))

such that (1.30) holds true, then this IDP is time consistent.

Proposition 5. Let B;(1),i = 1,...,n be given by
* d *
Bit) = pJ; (sC (1),2€ (t)) - =J; (sC (1),2€ (t)) . (1.31)
Then, B(t) = (Bi(t), -+, Bu(t)) is a time-consistent IDP.
Proof. First, we show that it satisfies (1.29):

/Oooe_ptﬁi(t)dt - /Oooe—Pt (le." (SC (t),ZC(I)) = %J,* (Sc(t),ZC(t)))dt,
= =P (50, 2°0)|7 =77 (500, 2 0) =77 (°.2)..
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Second, we show that it satisfies (1.30):

/0 e P Bi(0)dr +¢ 77 (5°(0),25(2)
= [ (e (0.2 0) - G (0.2 0) )+ P (5500.2°)
=~ PR (SC0,Z°0)|; +e (s%) )
= P (0.2 () 44 (S°0).2°0)) + e (). 2(0))
- (sC(O),zC(O)).

O

Two comments can be made regarding this result. First, the time-consistent IDP de-
fined in (1.31) holds true for any functional form of the payoff functions. Second, it has a
nice interpretation. Indeed, the formula in (1.31) allocates at instant of time 7 to player i a
reward corresponding to the interest payment (interest rate times her cooperative payoff-
to-go) minus the variation over time of this payoff-to-go.

Replacing the terms appearing in (1.31) by their values, we get

o) = 35 (=20 (2°0)" - (6 4050+ £2°) ).

which can be rewritten as follows:

2
¢ (z°()
1) = (50,250 (a—be(s0), 20 - LEOL
Therefore, the IDP is expressed in terms of the optimal harvesting effort and the damage
cost. Note that the IDP is equivalent to the instantaneous welfare function evaluated at

the optimal harvesting effort, i.e.,

To wrap up, it is collectively in the best interest of the fisher community to coordinate
harvesting strategies by jointly maximizing their payoff. The next step is to share the

resulting outcome, which can be done according to principles acceptable to the players.
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Assuming that fairness is the criterion adopted by the fisherpersons, we equally divided
the dividend of cooperation among them. Now, it is well known that a cooperative solu-
tion is not, in general, an equilibrium, implying that it is not self-supported. Consequently,
it may be rational for a player to deviate at some subsequent date to her noncooperative
strategy. A time-consistent solution gives a sufficient incentive to abide by the agreement
as time goes by. Note that this solution is not an equilibrium; it is a necessary, not suf-
ficient, condition for the sustainability of cooperation. In deriving such mechanism, the
assumption is that either the players will continue playing the game cooperatively or the
agreement will fall apart. Put differently, if one player deviates, the whole agreement is

canceled, and we do not seek a new agreement with n — 1 players.

1.5 Numerical illustration

Although all our results are analytical, the complexities of all the derived expressions
(e.g., steady-state values, harvesting effort trajectories, etc.) do not allow for an analytical
comparison between the different cases under consideration. To illustrate the kind of
insight that can obtained from our model, we provide a numerical example and compare
the outcomes of cooperative and noncooperative solutions. Also, we conduct a sensitivity
analysis to check the impact of varying key parameter values on the results. Since the
analytical derivations focused on the behavior in %Y, we set a constellation of parameters
such that the initial state and the trajectories of the state variables remain in region ,%’é for
both solutions (j € {N,C}).

As a benchmark scenario, the following parameter values are chosen:

Welfare function parameters : a=4, b=10, ¢ =0.1,
Resource dynamics parameters : S° =10, § =0.1, A =0.1,
Pollution dynamics parameters : Z°=0. 1, @ =105, k=0 12‘,

Other parameters : p =0.002, n=2.
To approximate the infinite horizon, we run the model for ¢ € [0;15 .000] time interval. In
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the figures, we plot the first # € [0; 150] periods of the game. The steady-state values for

this parameter constellation are:

SN =10.2135, S€ =11.9889, ZV =1.0655, Z€ =1.2528,

oo

that is, larger resource and pollution stocks under cooperation than in the Nash equi-
librium. The result that central management (cooperation or joint optimization) yields

higher resource stock in the long term is expected.

A comparison of the trajectories associated to the cooperative and noncooperative
solutions is presented in Figure 1.1. The results show that in the cooperative solution
players harvest less of the resource in the short term and more in the long run. The long-
term resource stock is higher when the players are jointly maximizing their payoffs than
when they play Nash. This result holds true also for the pollution stock. In the short term,
the ordering of the control and state trajectories depends on the parameter constellation.
For instance, changing the value of initial resource stock to S = 15, again shows that
the harvesting level, resource and pollution stocks are indeed higher in the cooperative
solution than in the Nash equilibrium in the long term, but not in the short term (see
Figure 1.2). Note that for both initial resource stocks, that is, S° = 10 and $° = 15,
the steady-state values are the same, which is expected in a feedback equilibrium of an
infinite horizon differential game. However, whereas the convergence to the steady state

is from below when S° = 10, it is from above when $° = 15 (see Figure 1.2).
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(a) Fishing effort e*(t) (b) Production function g*(t)

016 085

(c) Resource stock S(t) L e (d) Pollution stock Z(t)
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Figure 1.1 — Comparison of trajectories in the cooperative and noncooperative solutions

(s =10)

(a) Fishing effort e‘(t) (b) Production functionlq*(t)

50 10 150 ¢ 5¢ 100 150
~—Cooperation
-~ Nash

(c) Resource stock S(t)

Figure 1.2 — Comparison of trajectories in the cooperative and noncooperative solutions

($9=15)
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Now, we look at the impact on the state and control trajectories of varying some
parameter values, one at time, while keeping the others at their benchmark levels. We
focus on the impact of the dynamic parameters of the model, namely, the discount rate (p),
the intrinsic growth rate of the resource (8), the decay rate of pollution (k), and pollution
externalities (A).

The effects of the discount rate (p) are illustrated in Figure 1.3, where we vary the
value of p from 0.001 to 0.02. Quantitatively speaking, the changes in p do not have a
significant effect on the long-term harvesting levels and steady-state values of pollution
and resource stocks. Indeed, multiplying the discount rate by 20, leads to a variation of
less than 10% in the long-term control and state variables values. Note, however, that the
effect of p is more pronounced in the Nash equilibrium than in the cooperative solution,
and also the ranking of the steady-state values is not the same in the two solutions. One
possible explanation is that, in the short term, the harvesting effort is decreasing in the
Nash equilibrium, whereas it is increasing in the cooperative solution.

The impact of varying the growth rate of the resource 6 between 0.07 and 0.16 is
shown in Figure 1.4. The two main takeaways that apply to both solutions are: (i) the
higher the growth rate, the higher the harvesting effort in the short term, and so is pollution
accumulation, which is intuitive; (ii) the higher the growth rate, the lower the steady-state
value of the resource. This second result is counterintuitive as'one would expect that
a higher growth rate would lead to higher stock. However, the conservation behavior
adopted in the short term when J is low, that is, lower harvesting effort, is probably the
element driving the result.

The results for varying the decay rate of pollution (k) are shown in Figure 1.5. As
for 6, the ranking of trajectories is the opposite in the short and long term. When £ is
low (say 0.11), the players harvest at significantly higher rate in the short term than when
k is large (0.14). This result holds true in both solutions and leads to higher pollution
accumulation, which in turn affects negatively the growth of the resource and its steady-
state value. Further, we note that the impact of varying k is much more pronounced in

the Nash equilibrium than in the cooperative solution.
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Figure 1.6 shows the impact of varying the pollution externality (1) on the harvest
and resource and pollution stocks. In the long term, we obtain a counterintuitive re-
sult, namely, the larger A, the larger the long-term harvesting and resource and pollution
stocks. It is counterintuitive because one expects that a higher A means less resource and
consequently lower production. In an attempt to explain this result, we look more closely
at the short-term trajectories. In Figure 1.7, we provide the results for the two extreme
values of A for the first 25 time steps. In both solutions, in the short term the stock of the
resource is lower when A is higher, but it increases at a higher rate over time, which leads
to a reverse situation. Interestingly, in both solutions, the trajectories of the pollution
stocks are almost the same for the two values of A. Back to Figure 1.6, we highlight the
result that in fact the impact of varying A on the two state variables is very minor. Indeed,
an increase by 500% of A (0.05/0.01) leads to an increase of the resource and pollution
steady-state values by at most 30%. Put differently, the results are robust to changing A.

To illustrate the shape of the IDP, we plot in Figure 1.8 the trajectories for three initial
values of the resource stock, that is, S° = 4,10 and 15. We added here the trajectory for
5% = 4 to show that the IDP can take negative values. In all cases, the convergence to a

steady-state value is rather fast.

; ‘ Cooperation S Nash
NCI _\O‘Q\
%5 //”" ° o5 \wa/ﬂam
“c 100 1 ‘—"-0'001 o8 — Hnsr : = 100 ~ 150
i ? ‘ 0,005 ¢ ¢ z 9 0
l _ Cooperation 000 Nash
S . |- p=0.02 | "
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£ // £ /_,_,_.__...._..
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Figure 1.3 — Impact of the discount rate on harvesting and state variables
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Figure 1.4 — Impact of the resource growth rate on the trajectory of production
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Figure 1.5 — Impact of the pollution decay on the trajectory of production
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Figure 1.8 — IDP trajectories for different initial resource stock

1.6 Conclusion

Using a differential game framework, this work studies a sustainable agreement in an
open-access fishery with finite number of fisherpersons where pollution externalities are
present, and characterizes the symmetric noncooperative and cooperative solutions. We
also define a fair and time-consistent imputation distribution procedure of the cooperative
outcome. To finish, we discuss the implications of relaxing our symmetry assumption for
the characterization of the equilibrium and optimal solutions, and for the derivation of

the IDP.

The characterization of the noncooperative and cooperative solutions would be con-
siderably complicated if we took into account asymmetry between the players in our two-
state variable framework, with one state dynamics being approximated by a piecewise
linear function. The symmetry between the players allows us to look for a single value
function associated to each. Combining this property with the linear-quadratic model
specification, we are able to obtain the six-dimensional equation system, then reduce it to

a system of two equations, which gives us the explicit solution for the harvesting strate-
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gies. In the case of asymmetric n players, it would be necessary to find the value function
associated to each player. This would mean obtaining and solving the system of 6n equa-
tions. Recalling that the harvesting solution can be in three different regions of the state
space, the construction of trajectories and the stability analysis would become quite chal-
lenging. However, once the quantities involved in computing a fair solution are in place,
asymmetry would not cause any intrinsic difficulty in computing the IDP. Recall that the
formula derived in (1.31) holds for any functional forms.

A starting point to improve our understanding of how to build a sustainable agreement
among asymmetric players, would be to consider a two-player game. While not easy,
characterizing the feedback-Nash equilibrium is feasible, as is determining the optimal

solution.

1.7 Appendix

1.7.1 Proof of Proposition 1

Using a dynamic programming approach, the Hamilton-Jacobi-Bellman (HJB) equation

associated to player i’s optimization problem is written as follows:
ovN(s,z 2
N(S,Z) = max {ae,- — be? — ﬂZz + Wi (5,2) (F(S,Z) - Zae,)
i=1

e 2 as
IVN(S,Z) [ &
+—-—az—— < 1606,—](2)}. (1.32)

=
We are looking for a symmetric feedback-Nash equilibrium, which exists if there is a
function ViN = VN(S,Z),Vi, that satisfies the above equation, and is continuously differ-
entiable in S and Z (Haurie et al. (2012)). Maximization of the right-hand side results in
the following first-order condition:

avN(s,Z) wav,.N (S,Z)
as 0z

We focus on the symmetric equilibrium in which all players harvest at the same effort level

(e; = €V, Vi), and have the same value function (VN (S,Z) = VN(S,Z),Vi). Consequently,
l

a—2be;=a (1.33)
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the condition above can be rewritten as follows:

e 1 9vN(s,z) | aVN(S,Z)
e —max{O,Zb (a a 35 + 37 ’ (1.34)

We make the informed guess that, within an interior solution, the value function is a

polynomial of degree 2 in two state variables. We consider the function V" given by
BN N
VNS, Z) = N + 752 +ENS+ T22 +&NZ+ FNSZ. (1.35)

Replacing e; = ¢V given in (1.34) into the HJB equation and applying the undetermined

coefficients method (Haurie et al. 2012) leads to the following equation system:

(a+ &N —a®™) (a+ (2n—1) (0&N —a®™N))

N _
o = 4br ’
%N_(2n—1)(a)9N—a%’N)2
B 2b(p —26) ’
N _(wﬁzN—a%N) [an+ (&N —a®™N) (2n—1)]
B 2b(p —98) ’
N 2n—1
2b(p +2k)
N N2 sy, 26A (0FN —aBV) N v A(eFY—aB)
((w@ aF")" —2b¢ i p 5 0P" —aF 2 (p —26)
éaN:an—}—(Zn—l)(wé"N—a‘ﬁN) w@N_ayN_l(wa—a%N)
2b(k+p) p—29 ’
yN:(Zn—l)(a)fN—a%N) ng_ayN_l(wa—a%N) .
2b(k+p—20) p—25

Introduce the change of variables given by 8" = @& —a€™, nV = 0.FN — aB",
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and {V = w2V —a.ZN. The above system becomes

v (a+6Y)(a+(2n—1)6")
N = s , (1.36)
v (2n—1)(nY)?
= 2b(p—29) A
N_nN(an+9N(2n—l))
T = 2b(p—9) , (1.38)
v_ (2n—1) M2 26An" (. AV
7= mran (205 (g ) 09
N_an+(2n—1)9N< N_ lnN) :
& =\ 505 ) (1.40)
v_ _@n-1)n" [y n¥
F = krp-9) (C p— 5 @41
It is easy to check that the equations above reduce to the following:
v _(a+6Y)(a+(2n—1)6")
o = 4bp ; (1.42)
N N N
eN:(an—l-(Zn—l)G )( ® ( N 2bAn >_ an >’ {43
2 Cp\*  -9) -9 (149
N _(n, N(f_ o [N AN B an”
" =0 (g (- s o)
(1.44)
@ (2n=1) (M) =269 A(2n—Dn¥¢¥ A1) (nV)
 2b(p +2k) 2b(p+2k) (k+p—9) 2b(k+p—8)(p—26)
an—1)n"N [ _» nN )
“ 2 (k+p—0) (C p_ oY (143)

Equations (1.44)—(1.45) is a system of equations in ™ and ¢V that has four solutions.
In one pair of solutions, we have NV # 0, and, in the other, nV = 0. The solution with
n™ = 0 is associated to region %7, and not characterized in this paper. The solution
associated to region %’Q’ is given by

N_ —1+gg¥

= 1.46
2572 + 2%V — 2arg’ (1.46)

P —ir+2gv £ \/(ﬁf— 72— 2G7)2 — 4 (5 — T72) (572 + G2% — aFq)
2(572 +g*v —rg)

¢N = , (1.47)
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where

q :2;2—153;15——1_)6)’ (1.48)
s ().
g:%, (1.50)
szb?p%k—)’ | (1.51)
ﬁzzb((lf’:u;l—)s) (p(ilzﬁ“)’ (1.52)
- wA%(2n—1) (1.53)

“ 4R (k+p—8)(p+2k) (p—25)

It can be verified that the solutions that make it possible to characterize an equilibrium
are the ones with negative roots, given in Proposition 1. The terms <7V and 6" are de-
termined by these solutions, and the value function V" (S,Z) can be obtained by inserting

these values into equations (1.36) to (1.41).

Using these solutions, we characterize the region %g’ in the noncooperative solution,

written as follows:

,%N:{(S,Z)|—a+9N il NS —p) (p—26)(an+9N(2n—l))},

—t 78S Z—
nv o nN nN(k+p—9) nN(@2n—1)(p —9)
(1.54)

in which the noncooperative strategies given in Proposition 1 constitute a symmetric

feedback-Nash equilibrium.

The value function in region %"{;’ can be found by solving the following partial differ-

ential equation:

¢

N N
V(5.2 = 2224 550D 7V 5.2

aS Z

(1.55)

which we do not characterize in detail in this paper.
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1.7.2 Proof of Proposition 3

Similarly to the noncooperative solution, we write the Hamilton-Jacobi-Bellman equation

associated to the joint welfare maximization as follows:

n € n
(0] vV« (S,Z2)
pVC(S,Z)=me'ci1x{i§i (ae,-—be,z—522 —I-T F(S,Z)—igiaei
ove(s,z) [ &
— ;—kZ | ». (1.56
Maximizing the right-hand side leads to the following first-order condition:

ve(s,z) (DavC (S,2)

a—2be;=a 35 57 (1.57)

Considering symmetry among the players, the above condition becomes

1 ove(s,z)  adve(s,z)
C ) )
- —la— . L.
e max{O,Zb (a a 35 + 57 )} (1.58)
Denote the function VE by
B¢ 9¢

vEe(s,z) = dc+752+%cs+722+£’cz+ FCsz. (1.59)

By substituting e; = €€, Vi iﬁto the HIB equation and applying the undetermined coeffi-
cients method, we obtain the following system of equations:
n [az + (a)cg’c — a‘fc) (2a+ (wé"c — a‘fc))]
4br ’

n (0FC€ - aﬁc)2
- 2b(p-28)
©.7C — a%C) (a+ (0EC - a%©))

2b(p —9) ’

o€ =

o -

n
“2b(p+2k)
2bA (a)ﬂc — a@c)

A (a)ﬂc - a%’c)

2
((w@c—aﬁ?C) —2b¢ — TRy (w@c—afc- % (p 25

C:n(a+wé"c—a‘€c) wgc_ayc_l(wfc—aﬂc) ’
2b(p +k) p—2a
C:n(wﬂc—aﬂc) wgc_ayc_;t(wfc—a%’c) .

2b(p 1 k—9) b —25
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Let 8¢ = 0&€ — a%, N€ = 0.F€ —a%BC, and (€ = 02 —a.FC. The above system

becomes

c n(a2—|—9c (2a+9c))

o= dbp , (1.60)
c\2
:M, (1.61)
2b(p —296)
o g
_m“(a+6 ), (1.62)
2b(p —9)
n (Cc)2 —2nb¢ 2bn2.£¢n¢ L A%n (nc)2
~ 2b(p+2k) (p+k—68)(p+2k) 4b*(p+k—8)(p—268)(p+2k)’
(1.63)
c_ n&€(a+6°) B Ann© (a+6°) (L64)
~ 2b(p+k)  (ptk)(p—9) '
Enl C)2
goo e __ An(m) (1.65)
2b(p+k—906) (p+k—9)(p—29)
It is easy to verify that the above system can be reduced to the following:
C_n(a2+9c(2a+ec))
o= 4bp , (1.66)
c_ c - c_ An© B an®
o = (a+0)n (5w (¢ p—a) s, (on
G @ c_ An© B an®
1= (s (- rom) 3 ) o9
c__n0  Tre\t g AN (e AN
6 ~ 2b(p +2k) [<C> 2b¢ p+k—5(§ 2b(p —26)
B ann® c_ An€ ,
2b(p +k—0) [C p_25] (1.69)

The solution to the system given above is the pair (7, {¢) (with two possibilities, but, as
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in the noncooperative case, we do not report the solutions associated to %f):
—14+52€
nCo_ 1185 (1.70)
2 (lh2 + g2l — khg)
72— K+ 25T+ \| (Rh— 12 — 2g1)* — 4 (I — i) (2 + g1 — khg)
2 (ih? + 21 — khg)

(1.71)

(€=

n
2b(k+p—90)’

n oA
2 (p—25) <k+p—6 +") ’
on
2b(p +2k)’
2nwb¢
2b(p +2k)’

oQ
[l

ol
Il

~|

J

=1
Il

n A
2b(k+p—0) <p+2k+a> ’
wA’n
4% (p+k—08)(p—28)(p+2k)

I=

The solutions associated to the joint maximization are those with negative roots, given in
Proposition 3. Lastly, region %g is given by
a+6° {° {°(28-p) , (a+6(p—26)

C __ . _
,%—{(S,ZH e nCZ<S<nC(k+p-6)Z T =3 }.(1.72)

The value function in region %g can be obtained by solving the following partial differ-

ential equation:

¢ c
pve(s.2)= -2z 4 55200 7V 52)

as 0Z (1.73)

1.7.3 Trajectories of the state variables

In the following, we derive the analytical solutions for the trajectories of the state variables
associated to solutions j = {N,C}. This includes replacing the harvesting effort e/ (S, Z)
in the system of ODEs in (1.1)—(1.2), then solving for S(¢) and Z(z).
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For j = {N,C}, denote by
R o T
- (Fern. B (@ ()

The time representation of the stock of resource at date ¢ is given by

C\l

=
II

bidl+1é

Jj gLt J Lot J
SI(E) = e S = TETIATAL (1.74)
and the time representation of the stock of pollution by
i gl (eDited 4 Tt o) 4 bdHIE _ i
) 1“.1 Flt erl“ztcl . a‘l ( 1 +e + Ta— bk) C
Zi(r) = Bf “_ 7 Ly 7 : (1.75)

The constants ¢] and ¢} are written as

L . L[ (bidi+ D |
S = —[2b) AT @ L g
1= 507 [26/Z(0) + (—a’ — IV + ©/) 5(0)] Y, [F (—l_ja'f—l-)jl_cj>+zc]’ (1.76)
=t T e 1 bidi + i .
) = Y YN =Y 1 bld7+le\
% =597 (72 Z(O) (@ +P+@)S0)] + g; lrz(l'fai—iyf/‘cf> 2c], (1.77)
and
i _(@-U o i (@-T L
F‘_< 2 T2 ) et 1) 9’—\/(af) +2lal + (1) —4bik/.
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Chapter 2

Equilibria in a Two-Species Fishery

Abstract

In this paper, we consider a two-species fishery model where the species can have differ-
ent biological interactions, namely, competitive, symbiotic or prey-predator relationships.
Each species is harvested by a group of fisherpersons. We characterize and compare
equilibrium harvesting strategies, steady-state stocks and total discounted utilities under
different modes of play, that is, noncooperation in both groups, cooperation in each of
the groups and cooperation in only one group of fisherpersons. Our main results are as
follows: (i) In all scenarios, the equilibrium strategy of an agent fishing either species con-
sists of harvesting, in each period, a proportion of the available stock. (ii) The dividend of
cooperation in a given group is increasing with the number of members in that group. (iii)
Coordination between agents fishing a given species may be detrimental (biologically and

economically) to the other species.!

I'This chapter is published as : M. Breton, 1. Dahmouni, G. Zaccour, “Equilibria in a two-species
fishery”, Mathematical Biosciences, 309, 78-91, 2019.



2.1 Introduction

The exploitation of fisheries, and more generally of renewable resources, has been the
subject of a large number of contributions over a long period of time. Two decades ago,
Wilen (2000) recalled and discussed the main developments in fisheries economics and
policy over the past half century. One landmark in this literature is the seminal paper
by Hardin (1968) where the concept of the tragedy of the commons is introduced. In
short, this concept specifies that open access, or competition between the agents, leads
to harvesting levels above the rate of reproduction of the resource, which may cause its
depletion. Levhari & Mirman (1980) were the first to model and quantify the tragedy
of commons in a fishery context. A large number of contributions followed, where the
Levhari & Mirman’s model is modified or extended in various directions. A common
denominator in this literature is the use of dynamic games to analyze the exploitation of a
renewable asset over time. This choice is quite natural as a dynamic game allows to cap-
ture current and future externalities, as well as strategic interactions between agents. We
refrain from reviewing this literature and refer the interested reader to the comprehensive
surveys by Long (2011, 2018).?

As fisheries are typically populated by more than one species, a natural question is
how the results obtained in one-species models generalize to multiple species. In that case,
in addition to the dynamic (intertemporal) externalities, the analysis must account for the
biological interactions between the species. Fischer & Mirman (1992, 1996) pioneered
the domain by studying a fishery with two species, each harvested by one player. They
used this fishery model, designated by FM in the sequel, to characterize and contrast
cooperative and noncooperative strategies, taking into account various types of biological
interactions between the two species.

In this paper, we extend the FM model by assuming that each species is harvested
not by one, but by a group of agents, that is, we add a competitive dimension to the

fishing activities of each species. Our objective is in the same vein as that of Fischer &

ZFor reviews of game theory applications to fisheries, see, e.g., Bailey et al. (2010), Hannesson (2011),
Sumaila (2013), and Grgnbak et al. (2018).
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Mirman (1992, 1996), that is, the determination and comparison of equilibrium harvesting
strategies and outcomes under various behavioral assumptions about the agents exploiting
the fishery, as well as various biological relationships between the species.

The papers that are most related to ours are those of Mazalov & Rettieva (2010),
Rettieva (2012) and Gérniewicz & Wiszniewska-Matyszkiel (2018). Mazalov & Rettieva
(2010) and Rettieva (2012) extend the FM model to a case where the fishing grounds
have different locations and fish can migrate. Goérniewicz & Wiszniewska-Matyszkiel
(2018) modify the FM model in order to account for the possibility of extinction under
the so-called Allee effect.> The authors also offer a rigorous mathematical analysis of the
equilibria in models a la FM.

Other contributions involving multi-species dynamic games use different bioeconomic
models, with objectives that differ from ours.* For instance, Doyen et al. (2018) discuss
the tragedy of open ecosystems using a model with n species. Wang & Ewald (2010)
extend the one-fishery model of Jgrgensen & Yeung (1996) to a stochastic differential
game of a two-spécies fishery with ecological interaction and characterize the stationary
feedback Nash-equilibrium. They also analyze various cases of competitive, restricted
and cooperative fisheries management and their impact on the ecological system. Salenius
(2018) models a three-species fishery with three players (Norway, the European Union
and Iceland) as a differential game and estimates empirically open-loop equilibria under
various settings related to the management of the fishery.

Our research questions are as follows:

1. What are the equilibrium harvesting strategies corresponding to various modes of

play?

2. How do the results vary with the type of biological interaction and with parameter

values?

3The Allee effect refers to a species starting to degenerate and soon becoming extinct when it reaches
some critical level of biomass (Joosten 2016).
“4For optimal-control two-species models, see, e.g., Hannesson (1983) and Mesterton-Gibbons (1996).
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3. How do the various outcomes compare in terms of environmental and economical

considerations?
4. Under what conditions is it better for agents in one group to act cooperatively?

By answering the above questions, we seek to separate the effects of three sources
of externalities, namely, the intertemporal, biological and behavioral externalities. Un-
derstanding and untangling these effects are clearly of conceptual, methodological and
practical values.

In a nutshell, our main results are as follows: (i) In all setups, the equilibrium strategy
of an agent fishing either species consists of harvesting, in each period, a fixed proportion
of the available stock. (ii) The dividend of cooperation in a given group is increasing with
the number of agents in that group. (iii) Coordination among a group of agents fishing a
given species may be detrimental (biologically and economically) to the other species.

The rest of the paper is organized as follows: In Section 2.2, we recall the FM model
and define the scenarios we are interested in. In Section 2.3, we state some preliminary
results that are valid across all scenarios. Section 2.4 is devoted to the benchmark case,
where a single agent exploits the fishery. In Section 2.5, we characterize the equilibrium
strategies and outcomes in various scenarios. In Section 2.6, we compare these scenarios,

focusing on biological and economic outcomes. Section 2.7 briefly concludes.

2.2 Model

Consider a fishery with two species. To simplify notation, whenever a species [ € {1,2}
is considered, m = 3 — [ will represent the other species. Let x;; be the stock levels of
species [ at date 7 € [0,o0). In the absence of any human activity, the one-period growth
functions of the stocks are

Xl = xf:‘xg,‘,, xj0 given, [ = 1,2, (2.1

where the parameter o > 0 characterizes the regeneration capacity of species / and the

parameter f3; # 0 characterizes the indirect effect that species m exerts on species /. Fisher
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& Mirman (1992,1996) identify three possible combinations of interactions, namely: (i)
symbiotic relationship when B and 3, are both positive; (ii) competitive relationship when
B1 and B, are both negative, which corresponds to a case where both species feed on the
same resource; and, finally, (iii) prey-predator relationship when f; and 3, have opposite
signs.

We use the notatton X; to refer to the steady-state value of the stock level of species /.
As in Fischer & Mirman (1992), we make the following assumption ensuring the stability

of X; in the absence of human intervention:

og+Bl <1, 1=1,2.

Remark 4. In the absence of human intervention, it is easy to verify that, under Assump-
tion 1, the unique positive steady state is given by (R’l'f 5 J‘cgf ) = (1,1), where the superscript
nf stands for no fishing. The common interpretation in that case is that the saturation or
natural equilibrium level of each species is normalized to 1. When the stock level x;; < 1,
| = 1,2, the impact of constant 0y on the fish stock is negative: the smaller is 0y, the
higher is the regeneration capacity of the fish stock l. In the same way, the smaller is [,

the higher is the (positive or negative) effect of the other species on the fish stock 1.

Suppose that two specialized fleets exploit the fishery. Denote by N, the set of agents
(fisherpersons, vessels) harvesting species / and by n; the cardinality of N}, [ = 1,2. De-
note by c¢;;; the catch by agent i € N; at date . Consequently, when fishing activities are

undertaken, the stock dynamics become
_ o Bi
Xigr1 = | Xu— Y Cie Xm— Y, Cimi | , X given,l=1,2. (2.2)
iENl IENy,

The utility function of an agent, in both groups, is concave increasing in her catch. For
simplicity, let this utility function be logarithmic, and denote by & € (0, 1) the common

periodic discount factor. Assuming that each agent maximizes her stream of utility over
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an infinite horizon, the optimization problem of Agent i € N;, [ = 1,2, is then:

(=]

max Y & In(c; 2.3)
cin€Ciy ,;0 (cir) (
subject to (2.2) 2.4)

where Cyj; is the set of feasible decisions for player i € N; at date ¢. Clearly, feasible
decisions are restricted by the level of the stock and by the decisions of other agents.” We
suppose that the agents observe the level of the stock of the two species in each period
and use a feedback (or Markovian) information structure, thus defining a discrete-time
dynamic Markov game.

We consider the following scenarios:

Single owner: In this benchmark scenario (labeled S), we assume that there is only one

owner of the fishery who exploits both species.

Specialized fishing: We assume, as in the FM model, that fishing the two species is
specialized, that is, each species requires a specific equipment. To assess the impact
of cooperation on the results, we characterize and contrast equilibrium solutions in

the following setups:

N The game is played fully noncooperatively. A Nash equilibrium involving n; +

ny players is sought.

C Agents in each specialized group coordinate their fishing policies, that is, they
maximize their joint payoff, and play noncooperatively against the cartel formed
by the other group. In this case, we solve for a Nash equilibrium involving two

players.

NI Agents in the specialized group fishing species / play noncooperatively, whereas
agents in the other group coordinate their strategies. We solve for a Nash

equilibrium involving n; + 1 players.

3 A precise definition of the sets Cj;; is provided in Appendix 2.8.1.
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As alluded to before, characterizing and contrasting the results according to these sce-
narios allow us to untangle the effects of three externalities, namely: dynamic interactions,
biological interactions and ownership of the resource. The comparisons are made in terms
of the species’ steady-state stock levels, which are biological indicators, and in terms of
the agents’ total discounted utilities, which are economic indicators. For instance, com-
~ paring the results in Scenario NI/ to those obtained in Scenario C provides a measure
of the dividend of cooperation in group /, while comparing them to those obtained in
Scenario N provides a measure of the dividend of cooperation in group m. Similarly, set-
ting ny = np = 1 in Scenario N and comparing the results to those according to the single
owner scenario S gives an assessment of the benefit of centralization, or of having a single

technology that enables fishing the two species.

2.3 Preliminary results

Before presenting the outcomes in various settings related to the number of players fishing
each species and their cooperative or noncooperative behavior, we establish in this section
results that are valid in all cases in order to avoid unnecessary repetitions. To save on

notation, let

= (1-8a)(1-8am)—8°Bipy, (2.5)
= (1—a)(1-@) - BB, 26)
_ 1-0¢ B
4 = =, 1=12, 2.7)
_ 6B,
B = 2, 1=12 2.8)
pr = al(l_arn)+BIBZ7 l:1’2, (29)
& = og(1-6am)+Pn(1+6p), 1=1,2. (2.10)

The following two remarks establish the signs of Q and ©.

Remark 5. Irrespective of the signs of B and Ba, Q is positive. Indeed, if sign(B;) =
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sign(PB,), then by Assumption 1, we have
1-6oy>1—0oy> (B> 6B, 1=1,2,
which implies Q > 0. If sign(P1) = —sign(B2), then Q is trivially positive.

Remark 6. Irrespective of the signs of Bi and B, © is positive. If sign(B) = sign(B,),
then by Assumption 1, we have |B)| < 1 — oy, and consequently ® > 0. If sign(B;) =
—sign(Pa), then ® is trivially positive.

The following proposition characterizes the steady-state values of the two fish stocks '
when the fishing strategy of each species is linear in the stock level of that species. We
show later on that a linear strategy is part of a feedback-Nash equilibrium in a competitive

setting and corresponds to the optimal policy in a cooperative setting.

Proposition 6. For any fishing strategy of the form c; = yjx; where 3 € [0,1), | = 1,2, the

steady-state values of the fish stocks are
P B
5=(1-1)0(1-%)®, (=12 @.11)
Proof. The steady state is obtained by solving the following system of equations:

1= (0 (1=1)% (om (1= )P, 1= 1,2.
Straightforward manipulations lead to the result. 0

Recalling that in the absence of human intervention, the steady state is (&7,¥}") =
(1,1), steady-state values in a given scenario can be interpreted as proportions with re-
spect to f‘l“f and fgf.

Proposition 6 establishes the form that the steady-state values of the two species take
in all considered scenarios, provided that the equilibrium fishing strategies be linear in the
stock level. What will vary across these scenarios are the actual values of these steady
states through the changes in ¥ and 9, which depend on the setup, i.e., on the type of

biological interaction, on the number of agents, and on their behavior (cooperation or not
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within each group). Clearly, for any y; and % € [0, 1), the steady-state values are positive,
that is, a resource collapse is not possible.
The impact of the intensity of fishing on the steady-state level of the fish stock / = 1,2

is as follows:

LRy /A

=~ & : 2.12
a o—7) ol2)
dx _ B
_— = Y —m 2.13
am - el k)

Note that p; > 0 when f; 8, > 0, but could be negative in the prey-predator case. We

make the following additional assumption:

Under Assumption 2, the steady-state stock of a given species is decreasing in the
fishing intensity of this species. In the prey-predator case, fishing the prey has a negative
impact on the stock of its predator. Assumption 2 means that the direct effect of fishing
the prey dominates the indirect effect due to the decrease in its predator stock. In the same
way, under Assumption 2, the direct effect of fishing the predator dominates the indirect
effect due to the increase in the stock of its prey.

The impact of fishing a given species on the stock of the other is positive in the com-
petitive and predator cases, and negative in the symbiotic and prey cases. These results

are fairly intuitive.

Remark 7. Note that it is possible that the steady-state stock level of the prey species
be greater than 1, if the reduction in the stock of the predator due to harvesting more
than compensates for the harvesting of the prey species. Steady-state levels above the
saturation level due to human intervention could also happen in the competitive case.
Recall that the interpretation of the biological parameters & and B changes when the
stock level is above the saturation level. For that reason, in our numerical analysis, we

restrict the range of parameter values to those yielding a steady state in (0,1] x (0,1].
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The impact of parameter values on the steady-state levels for / = 1,2 is given by

B (e (2) - 2 (B
Y = xl(ln(l ’}’l)ac<®)+ln(l ym)ac (@
ox; 0y = 0% Ym
—+———+__7
8)/18C a'}'m 9C

where § € {a, n, B1, B }-

(2.14)

2.4 Single owner

Suppose that a technology exists for fishing simultaneously both species, and that the fish-
ery is owned by a single entity. This setup results in a standard infinite-horizon discrete-
time dynamic optimization problem. Let V (x) represent the maximal total discounted util-
ity of the owner over an infinite horizon when the current stock is x = (x1,x2) € Rt x RT
(the value function). Using Bellman’s principle of optimality (Bellman 1957), the opti-

mization problem (2.3)-(2.4) has an equivalent recursive representation:

V(x) = max {In(c;)+In(c2)+8V (x},x5)} (2.15)
c1€Cy(x)
céeC;(x)
where
X o= (=) (m—cm)?, 1=1,2, (2.16)

and where C(x) and C,(x) are the sets of feasible decisions at x. In the infinite-horizon
case, some technical conditions are needed to establish the equivalence between the for-
mulations (2.3)-(2.4) and (2.15)-(2.16) and the existence of the value function. These are
discussed in Appendix 2.8.1.

In the next proposition, we show that the optimal fishing policy is linear, and that the
value function is log-linear. To do so, we use the following assumption on the parameter
values:

The parameter values satisfy the following restriction:

§x0 =12
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Proposition 7. Under Assumptions 1-3, for (x,y) € R* X R™, the unique optimal policy
of a single owner is to fish a proportion

1

=——€(0,1),1=1,2,
i 15 <O

of the stock of each species, and the value function is given by

(Ap +Bp)In(x;) +C5,

MN

xl,x2

~
—

where

2

(1- = Y (Ai+B;—1)In(A;+B,— 1)
=1
—(A;+B;)In(A;+B)). -

Proof. See Appendix 2.8.2. O

Remark 8. For all the scenarios analyzed in the sequel, it is straightforward to show in a
similar way that the optimal response of any given player i € Nj to a joint strategy of the
Jorm Y sien, c1j = ViXi, ¥ jeN,, Cmj = YmXm, | = 1,2, is a linear strategy, so that we will be

looking for equilibrium in the space of linear strategies.

From an economic point of view, the single-owner case yields the highest discounted
utility. The reason is that the harvesting operations are then fully centralized and the
solution is obtained by solving an optimization problem, whereas in all other scenarios
we solve for an equilibrium, which at best can match the centralized (optimal) outcome.

The impact of parameter values on the optimal fishing strategies is as follows for

l=1,2:

ﬁ o 1-68a,

doy 61—5(am—l3m)<0’

dv, 2 1 =3 (0 —Bn)

G _  _5 :

do (=5 )"

ﬁ — —62 Bm

dap; 1—8(0m—Pm)’

dyp  (1=80)(1—8(0m—Pm))
dp, ° (1-8(0g—By))? <0
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An increase in the parameter ¢ (decrease in regeneration capacity of species /) results
in less fishing activity for species / and in less fishing for the other species if the interaction
~ parameter f; is positive (symbiotic or when [ is a predator). An increase in the parameter
B results in less fishing activity for species m. The impact of an increase in f; on the
fishing activity of species / depends on the sign of 3, that is, on the indirect effect species
[ has on the other, resulting in less fishing activity when this effect is positive (symbiotic
or when [ is a prey).

Table 2.1 indicates the signs of the four terms of Equation (2.14) characterizing the
impact of each model parameter on the steady-state stock level of species I. As indicated
in this table, the impact is ambiguous for the three types of interaction. Various possi-
bilities are illustrated in Figure 2.1.° Table 2.2 contains the numerical values used for
the cases illustrated in Figure 2.1. Numerical experiments indicate that o has a negative
impact on ¥; in the symbiotic case and that §; has a negative impact on X; when S;,, > 0

and f3; > 0, and a positive impact on X,, when S,, < 0.

c | %@ #(8) HE RE
oy - —B; + +
m | —P1B2 —B B B
Bl _ﬁm - ﬁm ﬁl
ﬁm _Bl - + o

Table 2.1 — Impact of model parameters on the steady-state levels. This table contains the
sign of each of the four terms of Equation (2.14) when the fishery is managed by a single
owner.

2.5 Specialized fishing

Suppose that no single technology exists for harvesting simultaneously both species and

that the fishery is exploited by two groups of specialized fleets, with n; agents fishing

®Note that we restrict the range of parameter values for this numerical analysis to those satisfying
Assumptions 1-3 and yielding a steady state in (0, 1] x (0, 1].
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Cases |C1 C2 C3 c4 G5 Co6 (C7 c8 C9 Cl10
o 05 05 05 03 05 09 036 04 03 06
(s 28 05 05 06 02 05 02 097 09 08 06
|B] 0.1 0.05 0.005 05 0.1 0.01 04 0.13 0.1 0.1
B/ 0.1 0.1 0.05 05 0.05 05 0015 001 0.1 0.1

Table 2.2 — Numerical illustrations. This table contains the parameter values used to
produce the numerical illustrations in Figures 2.1 and 2.2 and in Tables 2.4 and 2.5.

species [, [ = 1,2. Assuming that the total catch of each species is proportional to the
stock of that species, the next proposition gives the form of the total discounted utility of
any agent i belonging to group / = 1,2. Note that this form is valid for any mode of play,

that is, cooperation or noncooperation within and between groups of agents.

Proposition 8. Assume that the total catch is given by yix| and Yoxa, where Y = Y icy, Pi,
| = 1,2. The total discounted utility over an infinite horizon of an agent i in group | €

{1,2} corresponding to the strategy pair y = (11, 7) is given by
Via(x1,%2;¥) = AmIn(x;) + By In (x) +Cit (1), 1= 1,2,

where

(1-8)Ca(y) =In(pu) + (An — DIn(1=7) + B/ In(1 — ).
Proof. See Appendix 2.8.3. U

In the specialized fishing setting, agents in a given group can coordinate their fishing
strategies or not. The following sections establish the equilibrium strategies of agents in

a given group according to their mode of play.

2.5.1 Non-cooperative fishing

First assume that each agent in group / € {1,2} unilaterally decides on her harvested

quantity, given the fishing strategy of the other agents.
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Proposition 9. If agents in group | € {1,2} act unilaterally, given that the total catch rate

in the other group is Y,, then under Assumptions 1-3, the catch rate by agent i € N is

N 1
il =

Pi= A, —1

and the total catch rate by agents in group | is given by

W ——n’—e(o,l).

Tt A,—1

The total discounted utility over an infinite horizon of an agent i in group l is given by
VN (1,225 Ym) = AmIn (x7) + By 1n (%) + C (%),
where

(1=8)C' () = (An—1)In(An—1)—Apln(Ap+n —1)

+B;1ln (1 — ’}’m) .
Proof. See Appendix 2.8.4. » a

The above proposition shows that the equilibrium harvesting strategy of species / €
{1,2} depends on the number of non-cooperating players harvesting species [ and is in-

dependent of the harvesting strategy used by the players in the other group. Using (2.11),

we obtain:
a_ -—
o B M. g
ony OA,+n—1
% _ Pn Fm
an; ®Am+n1—1'

Increasing the number of non-cooperating players leads to a decrease in the steady-state
stock of the species they are fishing. This is hardly surprising as we are simply adding
fleets in an open-access fishery context. As a consequence, the impact of increasing the
number of non-cooperating players on the steady state of the stock of the other species

depends on the sign of the interaction parameter f3,,.
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2.5.2 Cooperative fishing

Now assume that the agents in group / € {1,2} agree to coordinate their harvesting strate-
gies by jointly maximizing their total utility, given the fishing strategy of the agents in the

other group.

Proposition 10. If agents in group | € {1,2} coordinate their strategies, then under As-

sumptions 1-3, the catch rate by agent i € Nj is

c_ 1
il —

and the total catch rate by agents in group [ is given by
Y= ;&; €(0,1).
The total discounted utility over an infinite horizon of an agent i in group | is given by
V,C(xl , %23 Ym) = AmIn (x7) + B In(x,,) —I-C,C('ym),
where

(1=8)Cf () = (Am—1)In(Ap—1)—Apln(Ap)

+B;In(1 —%,) —In(ny).

Proof. See Appendix 2.8.5. O

The total catch in a cooperating group is independent of the number of agents in the
group. It is equal to the optimal catch in a group containing a single agent and this total
catch is distributed equally among the members of the cooperating group. As a conse-
quence, the steady-state level of the stock is independent of the number of cooperating

agents.
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2.5.3 Impact of model parameters

Under specialized fishing, the impact of model parameters on the fishing strategies of

cooperating and non-cooperating players is given by

dy Sn(1—8ay,)? -

doy — (Qn+8(oy(1—80m)+6BiBn))?
G _pp o

dom " (Qnt 8 (0 (1— 80) + 5BiBn))
an _ g 8%n (1 - 80m)

dB T (Qn+8 (o (1—804)+8BiBm))

dy B 8%n(1—8ay)

B~ " (Qn+8(0y(1— 50m)+OBiBm))

where n = n; when players in group / are not cooperating, and n = 1 when they are. As
in the single owner case, an increase in ¢y reduces the fishing intehsity of species [; other
impacts depend on the type of interaction between the two species. Table 2.3 indicates
the signs of the four terms of Equation (2.14) characterizing the impact of each model
parameter on the steady-state stock level of species /. As in the single owner case, the

impact of all parameters is ambiguous for the three interaction possibilities.

|-k -4() 2 8%
(0] - _ﬁl + ﬁm
n | —BiB2 —B B1 B2 B
ﬁl —Bm - Bm +
B B = Bi Bi B2

Table 2.3 — Impact of model parameters on the steady-state values. This table contains
the sign of each of the four terms of Equation (2.14) when fishing is undertaken by two
independent fleets.

2.6 Comparison

In all comparisons to follow, we shall focus on the difference in the steady-state values of

the two species (a biological measure), and on the difference in the individual discounted
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utilities (an economic measure).

2.6.1 Specialized vs. non-specialized fishing

Suppose that the sets N; are singletons, that is, only one agent harvests each species.
Obviously when n; = 1, the equilibrium fishing strategies YIC and yIN coincide. This special
case corresponds to the scenario analyzed in Fischer and Mirman (1992) and the results
according to this scenario are superscipted with F. Comparing scenario F to the single-
owner case (scenario S) assesses the impact of having a single technology that enables to
harvest both species and the value of coordinating the harvest of two species.

The following proposition compares the steady-state values.

Proposition 11. When the biological interaction is symbiotic, the steady-state levels with
a single owner harvesting both species are higher than with two specialized agents. When
one of the species preys on the other one, the steady-state level of the prey is higher with

a single owner harvesting both species than with two specialized agents.

Proof. When n; =n2:1,yf:yIN:yF:t, [ =1,2. We have

1 1

P =

An+Bn  An

By,
= —— " __ =12
Am (Am+Bp)

The result for the symbiotic and the prey cases follows from (2.12)-(2.13). In the two

~ other cases, the result is ambiguous. U

Proposition 11 shows that the institutional arrangement (or alternatively the available
technology), e.g., allowing one agent to exploit both species or having two players, each
one harvesting one species, leads to different results depending on the relationship be-
tween the two species. In the competitive scenario and for the stock level of the predator,
the differences in steady-state levels can be higher or lower when the two species are

harvested by a single agent.
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Using Proposition 8, the discounted utility for each player under scenario F is
VE(x1,x2) = ApIn (x;) + By In (x,) + CF, 1 = 1,2,

where

(1-8)CF =(Ap—1)In(A, — 1) —ApIn(A,) +B;In (AIA_, 1) :

Proposition 12. The difference in total discounted utilities between a single owner and

two specialized fleets is independent of the stock levels of both species and is given by

D VS (x1,x2) = Vi (x1,%2) — VA (x1,%2)
o —af =k
(1-9)

This difference is positive for all biological interactions and all parameter values.
Proof. See Appendix 2.8.6. (|

As alluded to before, the single owner scenario involves an optimization (centralized)
problem, whereas all other specialized fishing scenarios, including scenario F, are equi-
librium (decentralized) problems, leading to lower total payoffs.

Figure 2.2 illustrates the impact of the model parameters on DSF by varying them
around a base-case value corresponding to Case C1. These results are robust to the model
parameter values.

Varying oy has the same impact for all types of biological interactions. That is, DSF
is U-shaped and nearly flat for intermediate values: the difference in utilities between the
single owner and the two specialized fleets is almost constant, except for extreme values
of the regeneration parameter.

The impact of varying the interaction parameter f8; on DS depends on the sign of f3;;
DSF is increasing convex in |B;|. Recall that the larger is |B], the lower is the (positive
or negative) impact of the other species on the stock of species /, and the higher are the

benefits of centralization.
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2.6.2 Cooperation versus competition

In this section, we assess the difference between cooperation and competition within a
group given an arbitrary fishing strategy used by the agents in the other group. We start
by comparing the difference in steady-state values of the two species. The following
proposition shows that cooperation leads, not surprisingly, to a lower exploitation of the

resource, but not necessarily to a higher steady-state level of both species.

Proposition 13. For all biological interactions, cooperation within group | € {1,2} leads
to a lower fishing intensity of species | than competition. Cooperation within group [ leads
to a higher steady-state level of species l. It leads to a higher steady-state level of species
m when.the biological interaction is symbiotic or when species m is a predator. When the
interaction is competitive or when species m is a prey, cooperation within group [ leads
to a lower steady-state level of species m. The gap between the steady-state levels under

cooperation and competition is increasing with the number of players in group 1.

Proof. The difference in harvesting strategies is

Am_l
Py = (my—1 >0
P = "

where the two solutions coincide when n; = 1. Recall that when agents in group / play
non-cooperatively, the impact of the number of agents in group / on the steady-state stock

levels is given by

a— —

9 _ _&L<o,
R

an; O An+nm—1

Since the steady-state stock levels when agents in group / play cooperatively do not
depend on n; and coincide with the non-cooperative levels when n; = 1, the result fol-

lows. ' O

When the game is played noncooperatively in group /, a player does not internalize the

harvesting decisions of the other players when making her own, which leads to overfishing
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with respect to the cooperative solution. Increasing the number of players widens the gap
between the cooperative and non-cooperative steady-state levels. In the case of a predator
or a competing species, overfishing benefits the other species.

We now consider the economical dividend of cooperation for group / € {1,2}, as

measured by

DN = p (VIC(xl,xz;Ym)_VlN(xl’xZ;Y’"))
= n <CIC(Ym) _ClN(}'m)) ’

where
(1-8) (CE )~ CF () = —AnIn(An) = In(m) + Apn (m + A — 1)
= Apln (%)—ln(m).

Proposition 14. Independently of the strategy used by the members .of the other group,
it is always beneficial for agents in group | € {1,2} to cooperate, and the economical
benefits of cooperation are increasing with n;. Cooperation in group | is detrimental to
the agents in the other group when the biological relationship is competitive or when
species | is a predator to the other species. When the biological relationship is symbiotic
or when species [ is a prey to the other species, cooperation in group l is beneficial to the
agents of the other group. The gap between the payoffs in the other group is increasing

with n;.

Proof. The benefit of cooperation in group / is

n; Ap+n—1
DICN = T (Amln (m—A'm——> —ln(n1)>

n

= 15 (),

and is independent of the stock of both species and of the fishing strategy used by the

agents in the other group. Note that

1 n1~1

W= =y =1 r——— &
fm) n,(’" )Am+n1—1_
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so that

D?N i« >0forn; > 1

=0forn =1
and is increasing in hl. Using Proposition 8, the impact of cooperation in group / on the

payoff of an agent i in group m is given by

Cin(¥> %) = Cim(1> %)
_ (IB_’"S) (n(1-9) - (1-2%)

- Bm nl—l
= (1—5)ln(1+_Am )

The gap between the payoffs in group m is positive if B, > 0, negative otherwise. This

gap is increasing with n;:

Ry Y PO ) |
dn; A C Aptm—1

2.6.3 Global impact of cooperation

The results in the preceding section establish that it is always beneficial for agents in a
given group to coordinate their fishing strategy, and that cooperation in group / € {1,2}
has a positive impact on the steady-state fish stock level of species /. This means that, for
agents in group /, Scenario C where the agents in each group coordinate their strategy is
better than Scenario N/ where agents in group m coordinate their strategies while agents
in group / act non-cooperatively, and results in a higher steady-state level for the species
l.

In the same way, for agents in group /, Scenario Nm where agents in group / coordinate
their strategies while those in group m act non cooperatively is better than Scenario N, and
results in a higher steady-state level for the species /.

However, depending on the biological interaction between the species, cooperation in

group / may have a detrimental impact on the steady-state stock of species m and on the

59



payoff of the agents fishing that species. This happens when the biological interaction is
competitive, or when species [ is a predator of species m.

Our last proposition compares the global impact of cooperation by comparing the
outcome of Scenario C, where agents cooperate in both groups, with that of Scenario N,

where agents do not coordinate their harvesting strategies in either group.

Proposition 15. The steady-state stock of species 1 is larger under cooperation if B; >
0. Otherwise, the steady-state stock quantity of species | can be higher or lower under
cooperation. The economical dividend of cooperation is positive when the relationship

between the species is symbiotic. In other cases, it can be positive or negative.
Proof. See Appendix 2.8.7. U

Examples where cooperation is detrimental to the steady-state stock of one or both
species and where cooperation is not economically profitable are provided in Tables 2.4
and 2.5.

Table 2.4 provides the signs of the differences in steady-state values and individual
and global utilities between the fully cooperative scenario C and the fully non-cooperative
scenario N, when the biological relationship is competitive. Parameter values are sym-
metrical and correspond to Case C1 of Table 2.2. The results in Table 2.4 show that all
possible outcomes can be obtained in the competitive case, and, in particular, that co-
operation may result in a decrease in the payoffs of all agents or in a decrease in the
steady-state stock of one of the species.

Table 2.5 provides the signs of the differences in steady-states and individual and
global utilities between the fully cooperative scenario C and the fully non-cooperative
scenario N, when the biological relationship is prey/predator. As indicated in Proposition
15, the stead);-state stock level of the predator is always higher under cooperation. Table
2.5 shows that the steady-state stock level of the prey can be higher or lower, and that the
benefits of cooperation can be higher or lower for both types of agents. Parameter values

are provided in Table 2.2.
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Case C1 n1:n2:2 n1=n2:3 n1:2,n2:10
F- |+ g -
X5 —% + + +
g-cv| - . -
s - - + +
DN —~ + 4

Table 2.4 — Global impact of cooperation, competitive case. This table provides the signs
of the differences in steady-states and individual and global utilities between the fully
cooperative scenario C and the fully non-cooperative scenario N, when the biological
relationship is competitive. Parameter values are symmetrical and correspond to Case C1
of Table 2.2.

n=n=2 m=m=2 n=2nm=3 n=10,nmn=2 n=2,n=10
Cas Cl C8 C8 C9 C10
X5 —-x + + - + —
X5 —% + + 4 + +
g-cr| - - - - -
& =cy - + + + +
= — — - + +

Table 2.5 — Global impact of cooperation, prey/predator case. This table provides the
signs of the differences in steady-states and individual and global utilities between the
fully cooperative scenario C and the fully non-cooperative scenario N, when species 1 is
the prey. Parameter values are provided in Table 2.2.

2.7 Concluding remarks

In this paper, we investigated the impact of biological interactions and agents’ behavior on
equilibrium strategies and outcomes in a two-species fishery. Our model extends the setup
of Fischer & Mirman (1992, 1996) to a framework where there is a group of fisherper-
sons exploiting each species. Our results indicate that cooperation among two competing
groups of agents is not necessarily beneficial, both from a biological and an environmen-
tal point of view. This is due to the biological interactions between the two species, and to
the fact that coordination only happens among players in the same group. This is not the
case when decisions are completely centralized (single owner scenario), which is shown

to provide the highest overall utility. As in the FM model, two assumptions play a crucial

61



role in the determination of equilibrium strategies and outcomes. First, the fact that both
species procure the same utility, and, second, the fact that each agent harvests only one
species. Relaxing either one of these assumptions would require the use of a numerical
approach to obtain the resulting equilibria. This is clearly a worthy extension to this work

as these two assumptions are quite restrictive.

2.8 Appendix

2.8.1 Existence of the value function
The symbiotic case

Define the set of feasible decisions by
Ci(x)={c;:0< ¢ <x},1=1,2. (2.17)

Note that in that case, the immediate reward In(c;) + In(c;) is not bounded. When f; >0
and B, > 0, Equation (2.2) implies that, if x € (0,1] x (0, 1], then the transition state
x' € (0,1] x (0,1] for all possible decisions, so that the state space can be restricted to
(0,1] x (0,1]. As a consequence, the immediate reward is non-positive for all feasible
harvesting strategies and all possible states, so that the optimization problem (2.15)-(2.16)
satisfies the conditions of Negative Dynamic Programming. In that case, it has been
established (Strauch 1966) that the value function exists and that the optimal strategy is
obtained by solving the Bellman equation. Moreover, since the discount factor é < 1, the

value function is the unique solution of the Bellman equation.

The competitive and prey-predator cases

As shown in Gorniewicz & Wiszniewska-Matyszkiel (2018), when at least one of the
biologic parameters is negative, the FM model needs to be slightly modified in oder to
obtain the optimal strategies and the value function from the solution of the Bellman

equation. Note that, when f3; < 0, Equation (2.2) implies that the stock of species m tends
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to infinity when the stock of species / € {1,2} vanishes. As the authors rightly point out,
the behavior of the FM model is then unrealistic.

Define the set of feasible decisions by
C[(X)Z{CIZO<C1<XI(1—£)}, (2.18)

where 0 < € < 1. It is then straightforward, using Equation (2.2), to obtain bounds on the

value of x; and x, such that
0 <Nt < x; < M [ =1,2.

By restricting the set of available decisions in that way, the immediate reward In(c;) +

In(cy) is bounded above by a constant M = In (") + In (%)

In(¢;) < In(x(1—¢g))

< In(™ (1—-¢€)) <ln(n™), 1= 1,2,

and the value function is bounded above by 1—{"—6 It is easy to show that the optimization

problem (2.15)-(2.16) is then equivalent to

W) = max {In(er)+ln(er) ~M+8W (x].%)}
c1€Cy(x)
C;GC;(X)
X = (x—c)™ (xm_cm)Bl, 1=1,2,

where V (x) = W(x) + % and where W (x) satisfies the conditions of Negative Dynamic
Programming.

Note that the positive constant € can be selected so that the constraint on the catch is
not binding, so that the solutions obtained by Fisher & Mirman (1992,1996) are also solu-
tions of the restricted problem. As pointed out by Gorniewicz & Wiszniewska-Matyszkiel
(2018), the existence of the value function in the unrestricted FM model is an open prob-
lem when at least one of the biological parameters is negative.

Assuming that there is an upper bound on the proportion of the stock that can be

harvested is not necessarily unrealistic; while harvesting costs are not taken into account
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in the FM model, one can assume that these costs become prohibitive when the stock
becomes very low, which could motivate such an assumption.

In the sequel, we will assume that the set of feasible decisions is given by Equation
(2.17) in the symbiotic case and by Equation (2.18) in the two other cases, and that the
constraint in Equation (2.18) is not binding.

Note that other modifications of the model can be implemented to ensure the existence
of a solution, for instance by changing the dynamics so that the stock of a given species
cannot be larger than the saturation level, or so that the size of the stock of a species ceases
to have an impact on the evolution of the other when it falls under a given threshold.

We refer the interested reader to Gorniewicz & Wiszniewska-Matyszkiel (2018) where
modifications of the dynamics, motivated by the Allee effect, are proposed, and where
alternative proofs of the existence of a solution are provided for the restricted model

presented above.

2.8.2 Proof of Proposition 7

Assume that, for x; > 0 and x; > 0,

MN

V(x1,x2) (Am+Bm)In(x;) +C.
=1
We then have
V(x1,x2) = max {G(cy,c2;x1,%2)}, (2.19)
cleCI(x)
62€C2(x)

where
2
G(cy,c25%1,x2) = Z In(c;) 4+ 0 (Am+Bm) (0g1n(x; — ¢;) + By In (X, — cm)) + 6C.

I=1
Differenciating G with respect to the decision variables yields

G c;—x;+0¢; (0 (Am+Bm)+ Bn (A1 +B)))

dcy c(c1—xp) ’
a_zg _ _(cl—x1)2+5cl2 (0 (Am +Bm) + Bm (A1 +By))
dci }(c1—x1)* ’
°G
dcidc, 0.
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Forl=1,2,

0y (Am+Bm) + Bm (A1 + By)
- 1—5(Xm 6ﬁm 1—5(11 5[31
= az( o T Q)+Bm<—g—+6>
0y (1—806m)+Pm(1+8p)
Q

and is strictly positive under Assumption 3. Therefore, for a given (x1,x2), G(c1,c2;x1,X2)

is a strictly concave function of (c1,c;). As a consequence, the first-order conditions are

sufficient, and the optimal solution at (x;,x;) is given by

X
¢ (%, %
(x¥1,%2) 148 (04 (Am~+Bm) + B (A1 +By))
Am+Bny

Assume that ¢ (x) is interior. Replacing the optimal values for ¢;, [ = 1,2, in Equation

(2.19) yields

2
X]
V(xl,)C2) = ln( )
AV
An+Bn—1
+6 (Am +Bm) ((X] In <x1—+—))

Ap+ By,
Aj+B;—1
+0C
2
= Z (Am =+ Bm)In (x;)

=1
+(A;+B;—1)In(A;+B;—1)

— (A[ +B;)In(A; + B))

+6C,

which satisfies our assumption with

C(1-96)= i (Aj+B;—1)In(A;+B;—1)— (A;+B;)In(A; + B)).
=1

It remains to show that ¢ (x1,x2) is interior, that is
X1

0< <x(l—¢€),l1=1,2,
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where € = 0 in the symbiotic case and € > 0 in the competitive and prey-predator cases.

Note that
A B 1'—5a;,,2+5/3,,,
%1 80m) +Bu(148B)
Q
1+%§’>1.

The solution is clearly interior in the symbiotic case. In the other cases, it suffice to set €

to any value satisfying

, 681 66
O<£<mm{9+6§1’§2+5§2}'
We then have
L, s
Ap+ By Q+ 6§
< l1-—&¢.

2.8.3 Proof of Proposition 8

The total discounted utility of Agent i fishing species / satisfies
Vir(x1,x2;7) = In(pux) + 6Viy (x1 — 1ix1,x2 — 1223 7).
Assuming Vj;(x1,x2;Y) = AmIn(x;) + By In (x,) + Cyi(y) yields
Va(xi,x237) = In(pix;)+ 6AnIn ((xl = 121)* (om — mem)ﬁ’>
8810 ( (i — o) ™ (51— 75" ) + 8Cu(7)
= (1+6(aAm+PmB1))In(x;) + 8 (BiAm + 0mBy) In ()

+6 (alAm ‘+‘ﬁmBl) ln(l - 71) 40 (BlAm = amBl)ln(l - Ym)

+6Cu(Y) +1n(pa),
where
1+ 6 (Am+BmBi) = 1_—;;5_a,,, =Am,
S (BAm+amB)) = % =By.
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It comes

Vi(x1,x2;¥) = Amln(x;)+B;ln(xy)

+(An = 1)In(1=%)+B/In(1 = %)+ 8Cy(7) +1n(pa),
which satisfies our assumption with

(1=8)Cu(y) =In(pu) + (An—1)In(1 =) +BIn (1 — %)

2.8.4 Proof of Proposition 9

Consider Player i in group / € {1,2} and define P; to be the total catch rate of all the other
players in group /, so that 3 = p;; + P;.

Given Y, and Py, Player i € N; maximizes

Gy (pa) = Ca(y)
= In(py)+ (Am—1)In(1—py—Py)+B;In(1 —y,).

Differentiating w.r.t. p;; yields

dGy _ 1 PutAwpi—1
dpi  pu Pi+pi—1"
Gy  (Putpu—1)’+pi(An+1)
dpj P} P+ pa—1)* .

This is a concave optimization problem and the best response of Player i € N; to the
fishing strategy of the other agents is given by

1—-Py
An

pPil =

Simultaneously solving for i = 1, ...,n; yields the equilibrium fishing strategy of the play-

ers in group /, which is independent of the fishing strategy of the agents in group m:

1

mtA,—1"
ny

W= Ay 1"

N
pll — = 1,...,"1,
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Note that
6“’(1 —00m) + 612
Q

The numerator is positive if B; 3, > 0; If 13, < 0,

A—1=

, 1=1,2.

o (1—=60a,)+06Bi1Br> (1 —6a,)+pif2>0

under Assumption 2. As a consequence, A; > 1 for / = 1,2 and the equilibrium fishing
strategy 7 € (0,1).
Replacing the equilibrium strategy 7\ in C;(7) yields
(1=8)CN (W) = (Am—1In(An—1)—AnIn(A,+n—1)

—{—Bﬂn(l —’}’m) .

2.8.5 Proof of Proposition 10
Given %, the agents in group / jointly maximize

G () = ) Cu(v)

= Zln(pi1)+n1(Am—1)ln (1— Z pj1> +mBIn(1— 7).

iEN; JEN;

Differentiating w.r.t. p;; yields

IG} _ n—ltmpa(An—1) . o
apir pi(p—1) ’ e
9*GS 1 m(An—1)

5 = ——2——2, l:1,...,nl,
ap; pi  (1-m)
22G¢ Ay —1

L = = i, j=1,.,n, i#].

dpidp (1—y)*
Since A, > 1, this is a concave optimization problem and the best response of the
group of agents fishing species / is independent of the fishing strategy of the agents fishing

the other species and is given by

C = I———— .: see
Pi = nlAl’l yeeey N,
1
= —€(0,1).
- Leon



Replaéing the equilibrium strategy ylc in Cj(y) yields

(1 _a)CIC(Ym) = (Am - l)ln(Am_ l) _Amln(Am)

+B;In(1 —79,) —1In(n;).

2.8.6 Proof of Proposition 12

We have

e

(1-8)DF = Y (A/+B,—1)In(A;+B;—1)—(A;+B;)In(A; + B;)

~
—

A;—1)In(A;—1)+A;In(A;) +B;In(A;— 1) —B;In(A))

B B
Aj—1+B;)In(1 —(A;+B)In{1+—).
(A —1+ l)n( +A1—1) (Ar+ l)n( +A,)

Il
M-

S
Il

1

Consider the function

fi(A)) = (A/+B))In (1 +%>

l

B\ B
'(A]) = 1n(1+—’)——<0.
fi(Ar) 4,) A

Since fj is strictly decreasing in A;,

fitAi=1) > fi(A))

and

2
(1-8)D =} filAi—1)~ fi(A1) > 0.
=1

2.8.7 Proof of Proposition 15

The steady-state of species / under scenarios C (all agents coordinate their strategies) and

N (all agents act individualistically) compare as follows:

) B
+C _ 1 \® _1 \d
£ - 1- 4
xN - 1— N 1— .,
1 nj+Am—1 nm+A;—1
B




When f3; > 0, this expression is larger than 1.

The global dividend of cooperation is given by
DN =y (VE (1523 0) = VN (01,23 0))

2
= Yom (0 - cia).

where
(1-8)C'(m) = An—1)In(Ap—1)—Apln(Ay+n—1)
+B,1n<1——nm+"/’;’l_l),
(1-8)Cr (1) = (Am—1D)In(An—1)—Anln(Ay)
+Blln <1 —All) —ln(nl) .
It comes
1 2 nl—l
CFOR) =) = gL m (ntn (1425 ) =in(u)
+n;B;In (1 + nmA7 1)
I & Ny — 1
> (1_5)l=]nlBlln<1+ yy )

DN is positive when B and B, are both positive, which is the case under symbiotic

interactions.
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Chapter 3

A Note on Yardstick Regulation of

Fishery Monopolies

Abstract

We consider a two-period model of a fishery exploited by two firms selling their har-
vests in separate local markets. The harvesting cost is private information. Assuming
there is an agency that can regulate the market, we propose a contract in the realm of yard-
stick competition framework that allows the regulator to solve the information asymmetry

problem and achieve cooperation.

3.1 Introduction

We consider a fishery exploited by two firms, selling their harvests in two separate lo-
cal markets. The harvesting cost, which depends on series of items such as labour and
weather conditions, is a private information to each firm. Assuming there is an authority
that has the power of regulating fishing activities, the objective of this note is to design a
mechanism that would induce the firms to truthfully report their costs and to adopt har-

vesting levels that are at the same time beneficial to consumer by leading to a competitive



price, and to the resource by having a higher stock. Cooperation, or central management,
can be a necessary condition to sustain a healthy stock level of the resource (see, e.g.,
Mazalov and Rettieva (2010) and Breton et al. (2019) for a discussion of the benefits of
cooperation and its implementation under different settings). However, when cooperation
amounts to collusion, consumer may suffer from higher prices. To proceed, we adopt a
simple two-period game model a la Fisher and Mirman (1992, 1996), where the available
stock grows with birth and decreases with harvesting.

Fisheries regulation has been an active research area for few decades (see the recent
survey in Jensen et al. (2017)). There are several reasons behind the necessity of regu-
lation, among them stock externalities, overexploitation of the resource, illegal landings,
etc. Fisheries involve information uncertainties, both biological, e.g., size of the stock,
and economical, e.g., prices, as well as information asymmetry about the cost, benefit
and growth functions that are known to the firm but not to the regulator, which renders
the regulation exercise more complicated. To highlight thé importance of information
asymmetry in natural resources management, we quote Hanna et al. (1996): “Informa-
tion critical for efficient management may be hard to centralize, or be asymmetric (people
have different information), leading to inefficient management. Broadly viewed, natu-
ral resource problems are problems arising from incomplete and asymmetric information
combined with incomplete, inconsistent, or unenforced property rights.”

Different approaches have been proposed to regulate the industry (see, e.g., Jenseﬁ
(2008) for an overview). Generally speaking, when it comes to regulating monopolies,
a series of mechanisms can be used, with each adopting a specific metric to benchmark
the outcome or the harvesting effort exerted by the firm, e.g., the rate of return on in-
vestment (ROR), quotas, price cap, marginal cost, etc. The common philosophy to these
mechanisms is to induce the monopoly to produce/price at a (more) competitive level.
Implementing any of these mechanisms is, at least in principle, easy when the bench-
mark is common knowledge and observable by the regulator. When the information is
asymmetric, the regulator must incentivize the firms to reveal their private information,

e.g., production cost. This can be done in the framework of mechanism design. For a
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discussion in the context of fisheries, see, e.g., Sappington (1991) and Armstrong and Sap-
pington (2006), and for examples of principal-agent analysis in fisheries, see, e.g., Clark
and Munro (1987, 1991), Jensen and Vestergaard (2002), Bailey and Sumaila (2008) and
Munro et al. (2009)).

In this note, we shall use the so-called yardstick competition (YC) introduced by
Shleifer (1985) as a regulatory tool to encourage competitive behavior by natural mo-
nopolies. It has been shown in Armstrong and Sappington (2006) that the regulator can
ensure with a YC mechanism the full information outcome as the unique symmetric Nash
equilibrium among the monopolies. The authors proposed a compensation scheme that
equalizes the firm’s marginal cost and the average cost-reducing expenditure of the others.

The rest of this note is organized as follows: In Section 2, we introduce the model
and in Section 3, we solve for cooperative and noncooperative solutions. In section 4, we
design the mechanism for the yardstick competition implementation. Finally, we briefly

conclude in Section 5.

3.2 The Model

Consider a fishing zone where the resource stock is accessible to two identical firms,
with each being a monopolist in its local market. To keep the model as parsimonious as
possible, we retain a two-period model. Denote by #;; the harvest level by firm i = 1,2
and by x; > O the stock of the resource at time ¢ = 0, 1. The evolution of the fish stock is

described by the following difference equation:

Xt+1 = Xt (1 +06) —hy; — hy, xg given,

where o € [0,1] is the fish birth rate.

The cost of fishing is given by

Ci (hit, etv-xt) = 6h; (1 - Cxt),
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where ¢ € (0, 1). The productivity parameter 6; is a private information to the firm reflect-
ing the state of nature (weather, labour, fuel price, etc.) at the beginning of each period.
To keep it simple, while still being able to highlight the strategic issues involved in having
private information, we assume that 6y is common knowledge and 6; can take two values,
namely, high (6) or low (6;), with 6, > 6;. The probability of 6 being equal to 6, is p
and equal to 6; is 1 — p. The regulator cannot observe the firm’s production cost in period
1, and its objective is to implement a competitive market through a mechanism design.
We make the following remarks on the cost function: First, to prevent the cost from
becoming negative, we could specify the cost function as 6;h; (A — cx;), with A being a
large positive constant. To save on parameters, we set A = 1 and verify that in equilibrium
the cost is strictly positive. Second, again for simplicity, we let 6, and 6; be the same for
both players. Given our interpretation that 6; reflects exogenous state-of-nature condi-
tions, this simplification is not unrealistic. Finally, we note that the cost is decreasing in

the stock of fish, which is an intuitive common assumption in the literature.

Let the inverse-demand function in each market be given by
Py =a— hy,

where P; is the price obtained by player i and a > 1 is a time-invariant parameter. The
linear form of the demand function can be justified on the ground that it is derivable from
the maximization of a consumer’s quadratic utility function. The revenues of firm i from

harvesting the resource in period ¢ are given by

Ri = hy; (a - hit) .

Assuming profit-maximization behavior, firm i optimizes the discounted sum of its

profits over the two periods, that is,

1
max Eg, Z &' (Ri — Cit) +S(x1),
hiohiy =0
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where 6 € (0, 1) is the discount factor and S (x;) is the salvage value assumed to be linear

and given by S (x;) = s.x].

3.3 Solutions

In this section, we determine and contrast the noncooperative and collusive solutions.
In the noncooperative game, we seek a feedback-Nash equilibrium, that is, harvesting
strategies that are functions of the stock of the resource. When the two firms collude, they

jointly maximize their payoff. Denote by 8; the realization of ;.

Proposition 16. Assuming an interior solution, the unique feedback-Nash equilibrium

harvesting strategies are given by

{h]1VO(x07 90a él),hllvl (X] ) 90, él)}, {hIZVO(x()’ 60, é] )7h]2vl (X] 5 90, él)}a

where,

1
6 (o, (17 67) |

—2(680—a+s8*(1+a)) + (2586 —a)c8 ((1— p) 81+ pBuin) +¢8 ((1— p) 64 + pb?,)) ,

h% (xo, 6o, él) = 7 2c¢xp (90 —cd(1+a) (p912h +(1+p) 9121))

a—6, (l—cxllvh%) —0Os
> .

Y (x1,60,01) =

The equilibrium state dynamics are given by
2
lev =x(1+a)— Zh%
i=1
Proof. See Appendix. (]

The results in the above proposition call for the following remarks. First, the strategy

is linear in the fish stock, a result that is expected in view of the linear-quadratic structure
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of the game. Second, the harvesting strategy in period 1 is increasing in the stock. Indeed,

we have . ~
ah% (x1,90,61) _ Glch%
8x1 2

This is an intuitive result, which however cannot be replicated in period 0. Differentiating

=10,

the harvesting policy at time O with respect to xp, we get

OhY (x0,60,61)  c(60—cS(1+a)(pbf,+(1+p)67))

dxo 2(2-8c2(pb?,+ (1—p)63))
.| =0, if6>cé(1+a)(pbi,+(1+p)67),
1S
<0, otherwise.

That is, harvesting increases in the stock of resource if the productivity in period 0 exceeds
the product of the expected discounted marginal cost (¢& (p63, + (1+ p) 67)) times the
increase in the stock (1+ ).

The next proposition characterizes the jointly optimal solution.

Proposition 17. Assuming an interior solution, the unique pair of strategies under collu-

sive behavior is given by

{h?()(x()’ 90) él),hf] (an 907 él)}) {h?()()(] ’ 90, él)ahfl (xl P 907 él)}’

where,

1
2(2—268¢2(p0%,+(1—p

—(6o—a+28%s(1+ a)) +c8 ((28s—a) (pbin+ (1—p) 61) + (P91h +(1-p) 911)))

hzc(; ()C(), 60791) =

)9121)) (cxo (Bo—cd(1+ ) (P91h+( )911))

a—6, (1 = EX hlco) 20s

hﬁ (X],e(),é]) = )

The state dynamics are given by
9
xlc o(1+a) Z
Proof. See Appendix. O
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The strategies have the same form (but not values) as in the noncooperative game.
Therefore, there is no need to repeat the same comments made before.

Now, we compare the harvests obtained in the two scenarios.

Proposition 18. Collusive and noncooperative harvesting levels compare as follows:

1. In period 0, we have

1 (x0,60,61) — hl) (x0,60,81) <0, i=1,2.

2. In period 1, if
2 2
5s>élc<lzh%} hig — [th%} h%>, 3.1)
i=1 i=1
then
thi (X],G(),é]) _hi\{ ()C],G(),é]) < 0, i= 1,2

Proof. The difference in harvesting levels in period 0 is given by

15, (0, 00, B1) — (o, 6

: ) (28%s (c (PO + (1—p) B1) — (1 + @)

- 2(2-8c2(p62,+(1-p) 62

—8¢(a(pBin+(1—p)6y) — (P67, + (1—p) 67)) +cxo (1+ @) (pB3, + (1 —p) 6%))) <O.

Negativity follows from the facts that (i) the denominator is positive, (ii) ¢ (p6y;, + (1 — p) 6y;) <
(14 @), and (iii) a (p6y, + (1 — p) 61;) > (p6Z, + (1—p) 62).
In period 1, we have

B1c ([£21 o] o — [E2.1 1) ) — Bs
2 )

hy (x1,60,6:) —hY (x1,60,61) =
and hence the result. 0O

The result in period O recalls the established one that noncooperative behavior leads to
higher production than collusion. In period 1, writing in detail the difference in harvest-

ing levels, i.e., h§ (x1,60,01) — hY (x1,60,6;) yields a very long expression whose sign
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cannot be unambiguously determined. However, we know that

2
i=1

is positive. Therefore, harvesting under collusion will be lower than its noncooperative

2
91C ( I:Z h%
i=1

counterpart in period 1, if the discounted marginal salvage value ds, which measures
future gains, is sufficiently large. In this case, collusion leaves a higher fish stock for the

long term.

Remark 9. If the players are myopic, that is, they do not account for payoffs beyond the
two-period planning horizon by setting s = 0, then harvesting is higher under collusion
then under noncooperative mode of play. In such case, in equilibrium the players harvest

more in period 0 and less in period 1 than in the joint optimization solution.

We assume in the rest of the paper that the assumption in (3.1) is satisfied. Con-
sequently, we have that the price, an economic measure, and the fish stock, a biological

measure, are higher under collusion than in the Nash equilibrium.

3.4 Regulation

Framework

In this section, we consider an institution having the legislative power of regulating the
monopolies (federal/provincial government, international organization, local municipal-
ity commission, etc) with two objectives, (i) sustaining an environmental friendly level of
the resource, (ii) eliminating the market inefficiency from dead weight loss as the result to
the monopolistic pricing behaviour in each market. The regulator’s objectives is in reach-
ing the collusive resource stock level xC and the Nash equilibrium price (pY = a— h) at
each period. To implement this outcome, the regulator requests that the firms harvest ¢

and set their price at p), and reimburse them the positive amount
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. 1 g . .
Ai(907 91) = 5 Z 6t (Vc(pz{:)htc’ 907 9]) - VC(Pﬁv,htC,eo,el)) )
t=0

1 _ i o
= 5Z5thtc(9o,91)(h§v(90,91)—htc(90,91))>0,
t=0

where VC is value function in the joint optimization scenario. The function Ai(69,61)

measures the potential loss to the firms due to the regulation.

This framework positions the regulator in an uncertain situation regarding the assess-
ment of the harvest levels and the prices. Indeed, since 8; is only known to the monopo-
lies, the cost of harvest remains uncertain to proceed with the compensation. To obtain
the necessary information, i.e., the cost of the fishing activity, we assume that the regu-
lator uses a revelation principle approach. In each period, the monopolies are asked to
report their respective total harvesting cost by revealing their value of 6;. Recall that this
quantity is a private information to the monopolies. As cheating behavior may occur, the
regulator must design a contract that would avoid it and is able to enforce a harvesting
cooperative regime. At the start of the game, nature chooses the cost parameters {6y, 6, }
and reveals them to the fishing monopolies at the beginning of each period. The regulator
then offers a contract to the firms and commits to it. This contract will be based on the
firms’ reports of their respective second-period cost parameters {él } under the regulation
tool chosen by the regulator, e.g., a net transfer, a subsidy, a tax refund ...etc. Finally,
the monopolies are allowed to start the fishing activity according to the terms of this con-
tract. The first best contract cannot be used because there exists an incentive to deviate.
Two approaches have been suggested for this situation: (i) Defining the optimal individ-
ual incentive contract to regulate the firms, (see Baron and Myerson (1982) and Laffont
and Tirole (1993)); (ii) Allowing the regulator to artificially simulate competition among
firms in order to overcome the asymmetry in information (see Auriol and Laffont (1992)).

Yardstick competition belongs to the second stream.
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Yardstick competition

In yardstick competition, the regulator offers contracts with monetary transfers, which can
be either a positive (reward) or a negative (fine) amount, to incentivize the truth telling.
Each monopoly i = 1,2 is required to reveal its second-period cost ;, that is, either a high
cost 0y, or a low cost 0.

If both players report the same cost 8; = 6,, then the regulator offers a positive amount T
to each of them.! If the two firms report different values, i.e., 8; # 6>, then the monopoly
with the highest cost report is the chéating player since the game is fully symmetric.
Then, the regulator offers different contracts to the monopolies. The player reporting 6,

must pay a fine 7', which is transferred to the other firm that reported 6y;.

We provide the possible rents that the players may extract from their respective reports

if the regulator chooses to reimburse their costs.

e If the realized cost is 0y, then the outcomes are as follows:

Firm 2
O1p 01

. 6 | T, T ~T =@ , T —06y
Firm 1

6y | T—-0,,-T—-0, | T—-0,,T—-0,

IThe regulator may offer a "nil" contract as the situation where he does not react and let the game as it
is without any regulatory action, but in this case players will always report a lower cost as it is the unique
stable Nash equilibrium for this reporting game and may harm them if their real costs are higher.
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e If the realized cost is 6y, then the outcomes are given by

Firm 2
O1n 011

) 6, | T+0,,T+0, | —-T,T
Firm 1

6, | T,-T T.,T

where

®; = Ai(60, 014) — Ai(60,01), i=1,2.
1 1 -
@i =5 " 8 (A (B0,611) | (60, 61) — € (60, 014) | — h (B0, 611) |1 (80, 811) — K (60, 611)
t=0 -
Let Ji(6;,0,61,) be the payoff of firm i when the report parameters of firms i and j

are respectively 6; and 8; and the observed ex-post cost is 8y,,, with m € {,h}. The truth

telling is an equilibrium only if the following inequalities are satisfied for player i = 1,2.

Ji(B11, 01, 011) > Ji(O11, 011, 011) (3.2)
Ji(811,611,611) > Ji(61, 611, 611) (3.3)
Ji(B11, 011, 011) > Ji(617, 011, 611) (3.4)
Ji(611, 011, 011) > Ji(B14, O11, O11) (3.5)

Conditions (3.2) and (3.4) refer to the case where the ex-post cost is high. Here,
player i is better off reporting a high cost rather than a low cost independently of the cost
reported by the other player. Conditions (3.3) and (3.5) refer to the other case, namely,
an ex-post low cost. In this case, player i cannot gain from reporting a high cost whatever
the choice of the other player. In particular, condition (3.5) guarantees that player i will

benefit from truthfully reporting the lower cost when the other player is reporting a higher
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cost. This condition may not bind and the mechanism requires further adjustments. The
level of the transfer T is the key stone decision for this situation. Player i will prefer to
truly report 6; = 6;; when player 2 reports 0 i = Oy, if and only if this parameter is large

enough. This result can be summarized in the following proposition:

Proposition 19. The level of the reward (fine) T* to enforce player i’s true cost reporting

satisfies the following condition:
T* > (01, — 6y) (1 —cx) K, k={N,C}. (3.6)

Proof. 1t is straightforward to check that this value of T satisfies the equilibrium condi-

tions (3.2)-(3.5). O

In other words, the right-hand side of the above inequality defines the level of reward
(fine) T for which player i is indifferent between reporting the true cost or not. A direct
consequence of the above proposition is that the level of reward (fine) T¥ will depend on

the mode of play chosen by the monopolies during their fishing activities.

3.5 Conclusion

In this paper, we considered a two-period fishery model with a shared fish stock exploitéd
by two identical firms having each a monopoly power in its local market. We showed
that the regulator can overcome the information asymmetry problem by implementing a
yardstick competition mechanism, which leads the monopolists to reveal their true costs
and to play cooperatively.

We have made some simplifying assumptions that are worth relaxing in future work.
First, the two firms could be asymmetric in their costs, which renders the model and the
mechanism design problem more complicated, but more realistic. Second, it would be

interesting to extend the analysis to an infinite planning horizon context.
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3.6 Appendix

3.6.1 Proof of Proposition 1

To have a feedback (or subgame-perfect) equilibrium, we solve the two-period model in
backward. Denote by V; (x) the value function of player i and by V;; (x) the value function
in period 1.

Second-period equilibrium problem

The optimization problem of player i in period 1 is as follows:

Vii{x} = II}llaXEé1 (h,'] (a—bhj) — élhil (1 —CX1)) + 5‘/,-/1 (x)},
il
= nllzaXEél (h,'] (a—bh,-l) - é]h,’] (1 —CX1)) + Os (x1 (1 +(X) —h;j —hjl)}.
il

Assuming an interior solution, the first-order optimality conditions are as follows:

a—2bhj; — 0 (1—cx;)—86s=0, i=1,2.

The equilibrium harvest of player i in period 1 is given by

a—01(1—cx)—8s _ a—6 (1—c(xo(1+0)— (hio+hjo))) —5s.

N _
hin = 2b 2b

To insure that the stock of fish is not exhausted, the following condition must hold true:

a—§1—6s

b—6 —a+0,+8s>0&x > =
(b—61c)x1 —a+ 61 +8s 0> s

Substituting for AY in V;; (x), we get
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Vi = 57 [a=81 (1= (x (1 + @)~ (o +hy0))) — 8]

L s (-t + ) (o)) - 5

- S—,l, [a—61 (1—c(xo(1+ @) — (hio+hjo))) —&s] (1—c(xo(1+ ) — (hio+hj)))
+0s ((l-i—a) (0 (14 @) — (hio+hj0)) — (a—é1 (1—c(xo(1 +(z) — (hio+hjo))) —63)) |

Overall equilibrium problem

Player i’s overall optimization problem is given by
Vi (x) = max {hio (a — bhio) — ohio (1 — cx0) + & [PVY (-,61) + (1= p)Vi¥ (.-, 611)] }.
i0

The first-order equilibrium conditions yield

a—2bhijy — 6y (1 —cxp) — [528(1 + O!)]

oc(1—cxp)

2SC— ac
o1 [ 1y [ ]

2b
=0.

Define ®" as:

200
O =a— 8% (1+ )+ (p62,+ (1— p) 62) (%)Hpelw(l—p)e],) (26 sc 5ac)'

2b

Then the above condition becomes
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J +(p6f,+ (1—p) 67) [5762} hio

= 2bhjo,

8c2xo (1 + @)

<I>N—90(1—cxo)—(P912h+(1—P)9121)[ 2b

which gives

2b (PN — 6y (1 —cxg)) — 8c?xo (1+ ) (p62, + (1 p) 9121)_

N 3\ —
hip (x0, 60,61) = 4b2 —26¢* (p63, + (1—p) 63)

And therefore,

V' = g (a— i — 60 (1 - cx0))
15 ((a—él (1= Vi) — 8s) (a— By (1— cxVhY) —3685)
1 .

; +6sx’;’h%(1+a)>.

3.6.2 Proof of Proposition 2

As in the proof of Proposition 1, we solve the two-period model in backward. Denote by
V (x) the joint value function and by V; (x) the joint value function in period 1.
Second-period optimization problem

The joint optimization problem in period 1 is as follows:

2
V(x) = max Ej, Y (hit (@ =bhit) — B1hiy (1—cx1) +8s (x; (1+a) — by —hj1)) .
11,7121 i=1

Assuming an interior solution, the first-order optimality conditions yield

c a—él(l—cxl)—25s B a—6 (I—C(x0(1+a)_(hio+hj0)))_263

hjy = 5 o i=1,2.
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To insure that the stock of fish is not exhausted, the following condition must hold

true:

a—é] —25S

b—6 —a+60,+28s>0 x; > -
( 1c)x1 a 1 R} X1 b—elc

Substituting for 4§ in V; (x), we get

Ve a—0;(1—cx;)28s <a_a—§1 (l—cxl)—25s>

2b 2
4, (a—@l (l—cxl)—5s> (1—cxy)+ 65 (x1(1+a)— (a—@l (1—cx1)~25s>>
2b b
Giving,

Ve = za_b [a— 61 (1—c (x0(1+ @) —hiy —hj1)) — 28]

_Zl_[; [a_él (l—c(xO(l‘i—(X)—hil —hjl))—26S]2
_% [a—0; (1—c(xo(1+a)—hy—hj1)) —28s] (1—c(xo(1+a)—hy —hj1))

+8s ((1+a) (0 (14 &) — it — hj1) — (“—él (I—C(XO(HZ)—hu —hj1)) —26s>>.

Overall optimization problem

The joint optimization problem is as follows:

2
V(%)= max ) (h,-o (a— bhig) — Bohio (1 — cxg) + & <pv,.1€(.,.,el,,) +(1 —p)v,.f(.,.,el,))) .

h10,h20 i=1

Assuming an interior solution, the first-order optimality conditions give for i = 1,2
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2bhjy =a— 6y (1 —cxp) —252S(1 +a)+ (p912h+(1 -p) 9121) <§>

b
Sctxy (1+ o b Yous
— (p6f, +(1—p)67) <%> +2(p6f,+(1—p) 67) (%) hio
6%2sc— &
+ (PO +(1—p)611) (%)

Define &€ as:

S¢

282sc —
<I>C:a-252s(1+a)+2(p912,,+(1—p)ef,)(2b>+2(p91h+(1_p)9”)< sc 5ac).

2b

Then, the above optimality condition becomes

8cxo(1+ o 8c?
€ — oy (1 —cx0) =2 (o, + (1) ) (=25 ) #2068+ (1= ) 2) (5 )

= 2bhy,

which gives

b (@ — 6 (1 —cxo)) — 8c%xo (1+ @) (p63, + (1-p) 63)

Cx 3.\ —
hig" (x0,60,61) = 262 —28¢2 (p6, + (1—p) 63)

Inserting in the value function, we get

VE = hy (a—h%—Go(l —cx0)>

— 01 (1—cxXCHE) — 3
+5E9~1 ((a 0, ( CX] hzo) 55) <a— 6; (1 —cxlh,%) —35s> +5sxfhg)(1 +a)> .

4
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General Conclusion

Climate change, lack of cooperation, environmental variability, economic uncertainty and
political crises are compounding threats to the sustainable exploitation of fisheries. In
this thesis, we have analyzed fisheries management problems using a game theoretical
approach with the objective of designing some possible solutions to overexploitation of
the stock and promoting the sustainability of the resource. Given that some players
may see their income decreasing in the short term, which may be the cost to pay for
securing higher future revenues, the success of these solutions requires more patient-
conscious behavior and stronger law enforcement for the benefit of all. The role of the
central planner is crucial and is not to be neglected in a way that the existence of more
powerful states (organizations) is necessary but not sufficient to solve this very complex
environmental problem. The demand for this protein is continuously increasing whereas
-according to the FAO- the captured amount of fish is reported to remain stable for at least
during the next decade. From an economical point of view, a higher demand facing an
unchanged supply results in higher prices and more profits, this situation strengthen the

incentive for overexploiting the resource stocks more than ever.

We have contributed to the literature by modeling three different problems. In a dy-
namic game framework we have analyzed the role of designing a cooperative scheme as
the corner stone solution to an environmental friendly exploitation of the world marine
resource. The voluntary nature of cooperation remains a difficult problem to deal with.
Using a differential game framework, we considered in the first essay an open-access

fishery with a finite number of players, assuming negative externalities from endogenous



pollution, and characterized noncooperative and cooperative solutions. Further, we have
designed a fair and time-consistent imputation distribution procedure (IDP) of the out-
come when the players are jointly maximizing their profits. Finally, we discussed the
implications of relaxing our symmetry assumption on the characterization of the equi-
librium and optimal solutions, and on the derivation of the IDP. A complicated, but a
possible extension to this work is the relaxation of the symmetry assumption between the
players in the two-state variable framework, with one-state dynamics being approximated
by a piece-wise linear function. Relaxing this assumption would imply to define for each
of the n players an associated value function, which means deriving and solving the sys-
tem of 6n equations. Another challenging direction for future studies is to investigate the
steady-state trends in the two other regions of the state space. The good news is that, once
the quantities involved in computing a fair solution are in place, asymmetry would not
cause any intrinsic difficulty in computing the IDP. Recall that the formula derived holds
for any functional forms. In this essay we suggest a fair sharing rule a la Nash bargaining
solution. In an n-player setting, it would be interesting to allocate the outcome among
the coalition members according to different schemes, e.g., Shapley value, Nucleolus etc.

and see how they compare to each others.

In the second essay, we have analyzed the impact of biological interactions and modes
of play on equilibrium strategies and outcomes in a fishery with two-species, each being
harvested by a group of players. Our main take-away message is that cooperation among
two competing groups of agents is not necessarily beneficial, both from a biological and
an environmental point of view. This counter-intuitive result is due to the biological in-
teractions between the two species, and to the fact that coordination only happens among
players in the same group. However, in the single owner scenario (centralized decision),
this result does not hold true. In the same line as the FM model, relaxing the tWo fol-
lowing restrictive assumptions may lead to a worthy extension. First, the fact that both
species procure the same utility, and, second, the fact that each agent harvests only one
species. Relaxing either one of these assumptions would require the use of a numerical

approach to obtain the resulting equilibria.
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The last essay consisted of a two-period fishery model with a shared fish stock ex-
ploited by two identical firms having each a monopoly power in its local market. We
showed that the regulator can overcome the information asymmetry problem by imple-
menting a yardstick competition mechanism, which incentivizes the monopolies to truth-
fully report their fishing costs and adopt a cooperative behavior. One extension for this
paper is to consider the firms being asymmetric in their costs in an infinite time horizon
setting. Short of determining whether collusion among players will occur we can address

the problem from different angles of possible strategies (Tit-for-tat, Trigger, etc.).

Finally, dealing with a sensitive topic, this thesis has probably raised more questions

than responses.
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