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Résumé

Nous considérons le risque de variance en temps discret dans le contexte de produits

dérivés sur indices d’actions. Nous effectuons deux études dont l’une est de nature em-

pirique et l’autre est de nature numérique. La première est motivée par les préférences en

termes de risque de variance observées sur le marché des options. Nous proposons une

approche de couverture utilisant les rendements hautes fréquences et démontrons qu’elle

améliore la performance ajustée pour le risque d’une stratégie d’investissement. Deux-

ièmement, nous proposons une approche de quantisation conditionnelle qui approxime

les dynamiques de marché sous risque de variance. La quantisation est un sous-champ

des mathématiques probabilistes permettant la discrétisation des états d’un processus

stochastique. L’algorithme proposé est numériquement efficace, particulièrement lorsque

la dépendance entre la variance et le prix est forte. Nous démontrons le fort potentiel

numérique de l’approche pour des applications à grand déploiement et/ou en temps réel.

Les deux premiers chapitres étudient la valeur économique pouvant être extraite de

prévisions de volatilité dans le contexte d’une exposition prolongée aux primes de risque

contenues dans les options sur l’indice S&P 500. Nous considérons un investisseur qui

vend une option, s’engage à la laisser expirer et réajuste de manière journalière des po-

sitions dans l’indice sous-jacent dans le but de minimiser sa variance terminale. Nous

estimons la valeur incrémentale d’utiliser des modèles de prévision basés sur des don-

nées journalières versus hautes fréquences. Dans ce dernier cas, la stratégie proposée

est une contribution novatrice à la littérature portant sur la couverture en temps discret.

Le test empirique proposé est robuste aux effets de maturité et de prix d’exercice, à



un test hors-échantillon et à différents types de préférences. Entre 2002 et 2014, nous

trouvons une valeur incrémentale positive provenant de l’utilisation de données hautes

fréquences. Tous les protocoles de couverture proposés performent mieux qu’une ap-

proche non-paramétrique de type couverture-delta couramment utilisée en pratique.

Le troisième chapitre examine l’application de la quantisation aux modèles GARCH.

Notre objectif est une approximation des dynamiques de marché à l’aide de chaînes de

Markov à temps inhomogène et à états discrets. Certaines particularités des lois de prob-

abilité GARCH peuvent s’avérer problématiques dans ce contexte. Nous considérons des

algorithmes stochastiques et déterministiques. Dans le premier cas, nous standardisons la

variance et le prix à cause d’une différence d’échelle. Dans le cas déterministique, nous

considérons des produits cartésiens de quantisations à une dimension. Cette approche

donne lieu à des algorithmes d’optimisation convexe très rapides. En général, nous dé-

montrons que l’approche déterministique est beaucoup plus stable et efficace pour un

grand nombre d’états discrets. Cette efficacité nous permet d’atteindre des niveaux de

précision inaccessibles (dans un temps raisonnable) sous l’approche stochastique. Étant

donnée une quantisation optimale, le calcul du prix d’une option peut être effectué à très

bas coût. Nos résultats suggèrent que la quantisation est appropriée pour des applications

qui sont trop exigeantes pour l’approche Monte Carlo telles que le courtage d’options à

haute fréquence.
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tion Dynamique
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Abstract

We present an empirical study and a numerical investigation of time-varying volatility

and discrete-time models in the context of financial derivatives written on equity indices.

Firstly, acknowledging empirical facts concerning aggregate variance risk preferences

for the S&P 500 index, we investigate a set of profitable investment opportunities for

exchange-traded vanilla options. We propose a protocol relying on high-frequency returns

which yields positive incremental economic value i.e. in a risk-adjusted sense. Secondly,

we turn to a class of model approximations known as quantizations, which improves the

numerical efficiency of many recursive algorithms related to financial derivatives. We

propose a conditional quantization which better accommodates strong price-variance de-

pendence effects than existing methodologies. The proposed approach is applied to S&P

500 index vanilla options in a stylized numerical experiment and displays strong numeri-

cal potential for large scale and/or real-time applications.

More precisely, we first examine the economic value of volatility timing when hedging

for a profit-oriented agent who sells and hedges options on a daily basis. A held-until-

maturity hypothesis allows us to depart from classical delta-hedging towards variance-

optimal hedging, which offers a more viable test for ranking volatility forecasts. In

particular, we estimate the incremental value of hedging under volatility models based

on low-frequency (i.e. daily) versus high-frequency (i.e. five minutes) data. In the lat-

ter case, the proposed methodology is a novel non-myopic approach to hedging contin-

gent claims in incomplete markets using realized variance. Our empirical focus is on

out-of-the-money put options sold unconditionally from 2002 to 2014. We find positive
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incremental economic value from relying on high-frequency data. Our conclusions are ro-

bust to model specifications, moneyness-maturity effects, an out-of-sample exercise and

prospect-theory preferences. All proposed variance-optimal hedges under time-varying

volatility significantly outperform model-free delta-hedges often used by practitioners.

We then investigate quantization methods when applied to GARCH models towards

approximating price-variance dynamics by a time-inhomogeneous discrete-state Markov

chain. The special nature of GARCH probability supports may be problematic in this

context. Both stochastic and deterministic methods are considered. In the former case, a

standardized distortion function is minimized over R2 using a stochastic gradient descent.

Standardization is critical due to an inherent gap in price-variance scale. In the determin-

istic case, we focus on Cartesian products of component-wise quantizations. This proce-

dure —commonly known as product quantization— involves fast convex optimizations.

Our numerical study shows deterministic methods are more reliable and efficient for large

quantizers. Once proposed quantizations are obtained, option prices and variance-optimal

hedge ratios are computed at very low cost, making the approach suitable for computa-

tionally challenging applications where Monte Carlo fails, such as high-frequency option

trading.

Keywords

GARCH, Hedging, Market Incompleteness, Volatility Timing, Realized Volatility, Vari-

ance Risk Premium, Risk Management, Quantization, Dynamic Programming
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General Introduction

The seminal work of Black and Scholes (1973) (B&S) exposes the relationship between fi-

nancial derivatives and underlying asset risk. It does so in the most elementary framework

i.e. under constant volatility. Time-varying volatility, however, is a natural feature of fi-

nancial markets. Following the dramatic fall of Lehman Brothers during the last financial

crisis, most market participants likely anticipated stressed market conditions would en-

dure for some time before returning to normal levels. Many statistical models have been

proposed for formalizing this behavior, mostly stemming from either the discrete-time

GARCH model of Bollerslev (1986) or the continuous-time stochastic volatility model of

Heston (1993).

The most important contribution of B&S remains the axiomatic independence of fi-

nancial derivatives to underlying asset return expectations, commonly known as drifts.

This independence is unfortunately premised on a very strong set of assumptions pertain-

ing to market completeness i.e. the ability to dynamically replicate financial derivatives

using the underlying asset (and a bond).

This ability invariably presupposes infinitely frequent transactions in the underlying

market, which are prevented by transaction costs in practice. Time-varying volatility is an

additional source of market incompleteness, due to volatility being an untradable math-

ematical construct. Perfect replication is thus unavailable in reality and option market

participants must account for un-hedgeable risk factors, e.g. discrete-time trading, time-

varying volatility, jumps and model misspecification.

The redistribution of such risks amongst option market participants explains the strik-



ing success of derivatives markets; the Chicago Board Options Exchange [CBOE] has

annual trading volumes above 1 billion contracts and aggregate notional values for the

S&P 500 index are typically above 4 trillion USD. For example, a pension plan may par-

ticipate in the option market for the protection provided by put options against jump risk,

as this protection can not be acquired in the underlying market alone.

Assuming perfect replication is available, investors are indifferent to holding self-

financing replication portfolios or actual derivatives. From absence of arbitrage, portfolio

values thus equate derivatives prices. Harrison and Pliska (1981) show prices may be

formulated as mathematical expectations under a market model with no propensity for

either positive or negative returns, i.e. under a martingale or risk-neutral measure.

Several facts explain why both researchers and practitioners make do with complete

market frameworks. Risk neutral prices do not explicitly depend on drifts, which are chal-

lenging to forecast over short horizons. Complete market frameworks are typically more

tractable than their incomplete market counterparts, often yielding analytical pricing and

hedging expressions. Under B&S, the so-called implicit volatility derived from market

observations allows practitioners to efficiently communicate prices. The replication strat-

egy under complete markets —commonly known as delta-hedging— is model-free; see

e.g. Alexander and Nogueira (2007).

To circumvent markets being incomplete in reality, researchers often first posit prefer-

ences holding at the market equilibrium for a representative agent and then infer a replica-

tion protocol from resulting option prices —which we henceforth refer to as preference-

based pricing.

The empirical success of a preference-based pricing model is unsurprisingly related

to its flexibility. Most successful works allow for a parameterized family of risk-neutral

measures and rely on parameter estimates from historical datasets including option prices;

see e.g. Bates (2003) for a related discussion. For example, Heston (1993) allows for a

price of volatility risk parameter, while Christoffersen et al. (2013) allows for a volatility

aversion parameter. Too much flexibility, however, may create identifiability issues; see

Branger and Schlag (2008).
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While the preference-based approach is motivated by market equilibria, utility func-

tions and stochastic discount factors in the spirit of Rubinstein (1976), hedged and risk-

averse participants likely assess their ability to replicate an option prior to determining

its value. In other words, deriving protocols from prices somewhat inverts the natural

causality.

Unfortunately, replication is often viewed as a second-tier concept, which rarely mer-

its empirical inquiries of its own. A search for “option pricing” in the Web of Science

database yielded roughly 20,000 results, as opposed to 2,500 results for “option hedging”

—most of which were actually focused on option pricing.

The striking success of risk-neutral pricing appears to have further prompted researchers

and practitioners to overlook (or have little interest in) drifts in all derivatives matters. But

dynamics of un-hedged option prices implicitly depend on drifts, as a direct consequence

of future derivatives prices being a function of future underlying prices. The first rele-

vant option return investigation was tardily proposed by Coval and Shumway (2001) in

the context of the capital asset pricing model (CAPM); also see Broadie et al. (2009) and

references therein.

For equity indices, volatility dynamics being negatively correlated to levels is a well-

acknowledged empirical fact, classically attributed to a leverage effect in firms balance

sheet; see e.g. Campbell and Hentschel (1992). Since (1) investors dislike scenarios for

which the S&P 500 index is low and (2) the index is negatively related to volatility, we

may reasonably expect investors to dislike scenarios for which volatility is high.

Since (1) volatility acts as a negative beta asset in the CAPM and (2) options are pos-

itively related to volatility, holding an option has a positive cost in the long-run, similarly

to insurance. This cost can not be explained by leveraged market exposure under the

CAPM and is attributed to a volatility risk premium by Bakshi and Kapadia (2003). The

existence of such a premium is consistent with the fast and sustained growth in volatility-

related investment products, such as over-the-counter variance swaps.

Alexander and Nogueira (2007) show delta-hedging protocols are not variance-optimal

under leverage effects; see also Garcia and Renault (1998). Preference-based pricing
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under time-varying volatility hence fails to provide a truly unified pricing and hedging

framework. Schweizer (1996) somewhat solves this issue in continuous-time, but fails

in discrete-time due to signed pricing measures. In our opinion, Gârleanu et al. (2009)

propose the first economically satisfying and empirically successful resolution by consid-

ering market segmentation.

Overall, market incompleteness as generated by time-varying volatility and discrete-

time trading offers a rich and highly relevant framework. It is the focus of the present

thesis. Our contribution to this framework is both empirical and numerical. The first and

second chapters present an empirical study on the economic value of volatility forecasts

for profit-oriented agents who sell and hedge S&P 500 index options. The third chapter

investigates numerical methodologies, which may be used to solve hedging protocols

more efficiently.

The first chapter is motivated by the following facts: (1) selling and hedging S&P

500 options is risky and profitable in the long-run, (2) hedging protocols are impacted by

volatility views, and (3) volatility forecasting methodologies have varying degrees of sta-

tistical success. A large strand of the literature is indeed dedicated to improving volatility

forecasts under the family of GARCH models. For example, recent advances proposed by

Shephard and Sheppard (2010) show significant statistical value from considering high-

frequency datasets.

A natural question arising in this context is whether better volatility forecasts (in a

statistical sense) translate to better risk-adjusted returns when selling and hedging options.

We build an empirical test towards answering this question and quantifying incremental

economic values from statistical improvements in forecasts.

The proposed test isolates the impact of volatility timing abilities in a manner that is

robust to model specifications. In particular, we work under a martingale constraint which

prohibits market timing abilities i.e. drift forecasts. We also refrain from distributional

assumptions about model innovations.

We empirically find significant incremental economic value from considering volatil-

ity estimators based on high-frequency data —commonly known as realized variances.
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The second chapter contains methodological details pertaining to the proposed empir-

ical test, such as data cleaning procedures and robustness checks.

The first two chapters highlight numerical challenges which arise from market in-

completeness. We indeed resort to Monte Carlo for recursively solving conditional ex-

pectations emerging from the dynamic programming principle when building hedging

protocols. Explicitly solving such expectations is particularly challenging under time-

varying volatility in discrete-time as (1) time-discreteness prevents us from relying on

the local behavior of the solution (e.g. using the Feynman-Kac formula) and (2) price-

volatility continuum requires us to search in a large space of two-dimensional functions.

Many financial problems such as portfolio allocation or American option pricing behave

similarly. Attempts to guess an analytical solution are usually doomed to fail.

The third chapter is a numerical endeavor which investigates GARCH dynamics ap-

proximations given by time-inhomogeneous discrete-state Markov chains. The theoretical

foundation is provided by quantization theory, which may be traced back to information

theory introduced in the late 1950s by Bell Laboratories for approximating electrical sig-

nals; see e.g. Lloyd (1982). This theory was only recently applied to the field of numerical

probability by Pagès (1997), allowing for many interesting financial applications, such as

American option pricing by Bally et al. (2005).

While quantization has already been applied to other market models, GARCH dy-

namics pose specific challenges. For example, the two-dimensional Euclidean norm is

flawed, due to conditional variances being several orders of magnitude smaller than log-

prices. One-day ahead GARCH probability supports are also very peculiar, which could

pose additional challenges not met by typical stochastic volatility models.

We propose novel conditional quantizations inspired by product quantizations of Fiorin

et al. (2017). We show the high relative numerical efficiency of the proposed conditional

approach in three stylized settings for the S&P 500 index, namely European and Ameri-

can option pricing and variance-optimal hedging. The proposed approach yields levels of

accuracy comparable to existing pricing benchmarks. Preliminary results suggest the ap-

proach is suitable for numerically challenging applications, such as high-frequency option
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trading or real-time option data streaming.
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Chapter 1

The Economic Value of Volatility

Timing using Realized Volatility for

Hedged S&P 500 Index Options
HUGO LAMARRE

DEBBIE J. DUPUIS

BRUNO RÉMILLARD

Abstract

This paper examines the economic value derived from holding negative inventories of

S&P 500 index options from 2002 to 2014. Our focus is on profit-oriented and risk-

averse agents attempting to improve their terminal risk-reward trade-off using volatility-

driven protocols in the underlying market. More precisely, we perform variance-optimal

risk minimization under various GARCH-type specifications. The resulting test is well-

specified, robust to market timing abilities, and relevant to practitioners. We focus on the

incremental value of high- over low-frequency-based volatility forecasts. In the former

case, the proposed protocol is a novel non-myopic approach to hedging contingent claims



using realized variance. For out-of-the-money put options with one to three months-to-

maturity, we find positive incremental value ranging from 5 to 95 basis points per an-

num on a risk-adjusted basis. The positiveness is robust to an out-of-sample exercise,

moneyness-maturity effects, short-run option premia dynamics, and prospect-theory pref-

erences.

1.1 Introduction

Volatility models are believed to have practical relevance for agents in equity markets.

Beyond mean-variance portfolio allocation, few investment opportunities have actually

been studied and empirically shown to benefit from volatility forecasts. We provide novel

measurements for the S&P 500 index in an opportunity set characterized by static option

positions and dynamic index protocols. In other words, we look at dynamic hedging as

a means for profit-oriented and risk-averse agents —e.g. proprietary traders— to convert

volatility knowledge into economic value.

Our work is closely related to Fleming et al. (2001, 2003) from whom we borrow the

nomenclature economic value of volatility timing. We use it here in its broadest sense, i.e.

as it refers to risk-averse agents implementing volatility-driven protocols towards improv-

ing the risk-reward trade-off of some already profitable investment opportunity. Whereas

they consider minimum-variance portfolios à la Markowitz (1952), we consider variance-

optimal hedging of a contingent claim à la Schweizer (1995). Under incomplete markets,

it makes sense for agents to minimize terminal risk without fully reconciling market dy-

namics with option prices through arbitrage theory —effectively disentangling risk and

reward concerns.

Our setting is economically motivated by recent empirical pricing advances of Gâr-

leanu et al. (2009) who expose the role of buying demand pressures in the S&P 500 index

option market. They propose a satisfying explanation for portfolios of interest having pos-

itive long-run expectations, with positiveness empirically robust to underlying dynamics.

A profit-oriented agent hence has ongoing motivation for selling options on a daily basis,
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regardless of his or her adopted forecasting methodology for subsequently managing risk.

Investors having access to statistically superior forecasts presumably implement protocols

that reduce risk more efficiently, translating into higher economic value e.g. by allowing

agents to reap more profits (in absolute) for a given budget of risk. Quantifying this eco-

nomic value is the purpose of this paper.

We present empirical results under a comprehensive range of GARCH-type specifi-

cations, including realized variance-based models relying on high-frequency data. Such

models are known to react more quickly to changes in prevailing volatility —a feature

which is likely beneficial to protocols. We derive variance-optimal protocols relying on

realized variance under the multiplicative-error-model (MEM) class of Engle (2002). To

our knowledge, this is a novel methodological contribution to the discrete-time hedging

literature.

To further illustrate our empirical endeavor, we preliminarily present a numerical ex-

periment under a highly stylized economy, where agents are constrained to the model of

Black and Scholes (1973) (B&S) and where market incompleteness arises from discrete-

time portfolio revisions only. A daily revision setting is selected as a practical compromise

between achievable risk diminution and transaction costs throughout. The equity market

index mt indexed by trading days t = 0, . . . ,τ follows a discretized geometric Brownian

motion with an initial value of 1 i.e. m0 = 1, a drift parameter of 5% per annum and a

(constant) volatility parameter of 18% per annum.

For a given put contract with strike price k0 and τ trading-days-to-maturity (TDM),

our interest lies in the opportunity set,

π = c0︸︷︷︸
Initial option proceeds

− (k0−mτ)
+︸ ︷︷ ︸

Contingent liability

+
τ

∑
t=1

φt(mt−mt−1)︸ ︷︷ ︸
Volatility timing profits & losses

,

spanned by volatility timing protocols φt , where (x)+ = max(x,0) and c0 is the initial

value of the contract. In line with the sign of the premium documented by e.g. Bakshi and

Kapadia (2003), we assume c0 corresponds to a 5% implicit volatility markup, i.e. a B&S

price with a volatility parameter of 23% per annum. We further assume investors commit
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one unit of capital per option sold, such that π is readily interpreted as the overall rate of

return of the strategy —presented in basis points per annum (bps/yr) throughout.

We consider two investors performing volatility timing via a classical B&S delta-

hedging strategy: an uniformed investor who relies on the long-run volatility of 18% and

a perfect volatility foresight investor who unrealistically relies on an ex-post volatility

estimator. Table 1.1 presents simulation results when selling one-month-to-maturity out-

of-the-money (OTM) put options.

Table 1.1: Risk-reward analysis of preliminary Monte Carlo experiment using 10,000,000 simu-
lations for a put option with τ = 21 and k0 = 0.95. The market index is given by mt = exp(∑t

i=1 ri)
with ri = u− δ/2 +

√
δηi, where ηi are uncorrelated standard normal random variates. We

assume u = 0.05/252 and δ = 0.182/252. Volatility timing protocols are given by φt(σt,τ) =
−Φ

(
−(log(mt−1/k0)+σ2

t,τ/2)/σt,τ
)

where σt,τ is a total volatility forecast over [t,τ] and Φ is
the standard normal cumulative density function. Numbers are converted to bps/yr according to
12000×π . E[π] corresponds to a sample mean, std[π] to a standard deviation and Sharpe ratio to
the first row divided by the second row.

Investor Type Uninformed Perfect Foresight
σ2

t,τ (τ− (t−1))δ ∑
τ
i=t r2

i

E[π] (bps/yr) 460.32 456.53
std[π] (bps/yr) 316.56 267.68
Sharpe Ratio 1.45 1.71

Under this toy economy, our working hypothesis takes the following form: agents

with more(less) accurate volatility forecasts have Sharpe ratios closer to the upper(lower)

bound of 1.71(1.45). This conjecture is consistent with absence of arbitrage due to market

incompleteness. As long as market imbalance conditions described by Gârleanu et al.

(2009) persist, agents are indeed being fairly compensated (by a 5% volatility markup)

for bearing risk generated by discrete-time revisions. How this risk is managed in reality

is a source of heterogeneity amongst profit-oriented agents, with some likely having a

persisting economic advantage over others.

While the previous market model allows us to remain in the realm of B&S, it is ob-

viously at odds with volatility timing. In a similar numerical experiment with market
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simulations performed under the GARCH specification of Heston and Nandi (2000)1, we

find Sharpe ratios ranging from 0.59 to 1.15. An agent with perfect volatility foresight

now nearly doubles the Sharpe ratio of a uniformed agent. Given that such a GARCH

specification is known to capture key features of equity markets including non-normality

and a leverage effect, this preliminary numerical result should convince readers of the

merit of the present endeavor and its practical relevance.

B&S delta-hedges are highly misspecified under GARCH dynamics as evidenced by

the strong non-normality of previous π simulations (not shown). We henceforth depart

from B&S towards risk-minimizing (i.e. variance-optimal) protocols. Roughly speaking,

we assume agents minimize E[π2] under their respective expectation operator capturing

future volatility views. This approach uses volatility knowledge more efficiently than

B&S by overcoming its well-known shortcomings related to continuous-time revisions,

constant volatility and normality.

While empirical tests could be designed using other criteria (e.g. the maximization of a

given utility function), our framework is inherently robust to uncertainty in expected S&P

500 returns through a carefully selected change of measure. In order words, we isolate

the value of volatility timing by preemptively prohibiting agents from performing market

timing. The resulting approximation which we refer to as martingale hedging may be

viewed as an intermediary step between delta-hedging and variance-optimal hedging of

Schweizer (1995). In contrast, Fleming et al. (2001, 2003) dedicate considerable efforts

to demonstrating robustness to expected returns —a feature which is here achieved by

design.

Regarding practical benefits, martingale hedging is highly tractable and reminiscent

of a recursive regression. Typical variance-optimal protocols likely violate liquidity and

risk constraints e.g. by suggesting S&P 500 exposures well above(below) 100%(−100%)

or doubling-down behaviors during market crises. The proposed test instead reflects a

realistic set of market opportunities, yielding relevant implications for option market par-
1 Model parameters are estimated using S&P 500 index returns from 2000 to 2014. The initial condi-

tional variance is set to its long-run expectation corresponding to a volatility of roughly 18% per annum.
Option prices are still assumed to be given by B&S with a volatility of 23% per annum.
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ticipants.

Our empirical focus is on the incremental value of using models based on high-

frequency (i.e. realized variance) data over models based on low-frequency (i.e. daily)

data. The terms low-frequency and high-frequency refer to the filtration used only; deci-

sions are always taken on a daily (i.e. low-frequency) basis. Risk-minimizing protocols

are non-myopic and rely on multi-period dynamics, e.g. as opposed to Fleming et al.

(2001, 2003) who rely on one day ahead forecasts only. Model structure hence plays a

critical role due to our proposed test effectively being a joint test of model specification

and economic value. To maximize the scope of results, we first consider naive exponen-

tial smoothing specifications and incrementally introduce two structural requirements,

namely mean reversion (i.e. the GARCH effect) and leverage effect.

Martingale hedging protocols are solved semi-parametrically using filtered historical

simulation in the spirit of Barone-Adesi et al. (2008). We hence avoid normality as-

sumptions (both in returns and model innovations) and also overcome an endogeneity

challenge in the MEM framework, i.e. the need to specify a family of copulas for model

innovations. We presumably improve efficiency by enforcing the martingale condition

on a sample-to-sample basis, similarly to empirical martingale simulations of Duan and

Simonato (1998).

To avoid unfair advantage to either low- or high-frequency-based forecasts, models

are constrained to two state variables (namely asset price and conditional variance) and to

the same long-run return and volatility expectations. We measure economic value using

the performance metric of Ingersoll et al. (2007), which is reminiscent of an ex-post utility

expectation. S&P 500 options are sold on a fixed lattice of moneyness and maturity and

performance metrics are calibrated over the resulting lattice to empirically control for

option contract specificities.

Our empirical results show incremental risk-adjusted gains from considering high-

over low-frequency data are systematically positive, ranging roughly from 5 to 95 bps/yr

in the case of put options. Models allowing for both GARCH and leverage effects deliver

more stable economic value for longer-term options and higher value when shortfalls
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are more heavily penalized. In particular, loss averse agents should be as concerned by

improving one day ahead volatility forecasts as correctly specifying future volatility ex-

pectations. All risk minimizing protocols outperform model-free delta-hedging of Bates

(2005). The positiveness of the incremental value is further robust to an out-of-sample

exercise and volatility timing in the option market —with all robustness checks presented

in the supplementary material.

Our contribution differs from the existing related literature. Option papers using re-

alized variance focus mainly on pricing, including Bandi et al. (2008) and Corsi et al.

(2013). In particular, Christoffersen et al. (2014) study the economic value of using real-

ized variance when pricing options.

This paper proceeds as follows. Section 1.2 motivates the proposed test of economic

value by situating it in the option pricing and hedging literature. Section 1.3 presents

martingale hedging protocols using high-frequency data. Section 1.4 formalizes the test,

with empirical considerations further discussed in Section 1.5 and details sent to the sup-

plementary material. Empirical results are presented and discussed in Section 1.6, with

robustness checks also sent to the supplementary material. Section 1.7 concludes.

1.2 Volatility timing and hedging

1.2.1 Setting

We first make some mild option pricing assumptions which allow the aggregation of em-

pirical results in time, while guaranteeing from the onset that volatility timing profits &

losses (P&Ls) account for the net cost of financing underlying positions, without the need

for subsequent cumbersome adjustments.

Let Sn be the official close value of the S&P 500 index on trading day n ∈ {0, . . . ,τ},

where τ is the number of trading days to the expiration of an option —a put or call— with

price C0 and strike price K0. The forward contract value at n maturing at τ is given by,

Fτ
n = (Sn−Dτ

n)B
τ
n, (1.1)
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where Bτ
n is a bank account value at τ from one dollar deposited at n and Dτ

n is the present

value of the sum of all dividends vested over (n,τ], with both interest rates and cash

dividends assumed deterministic. We introduce normalized forward contract prices mτ
n =

Fτ
n /Fτ

0 for n = 0, . . . ,τ and normalized option prices,

c0(k0,τ) =C0Bτ
0/Fτ

0 , (1.2)

with forward-moneyness (or simply moneyness) kn = K0/Fτ
n for n = 0, . . . ,τ such that

kn > 1 for an OTM call option and kn < 1 for an in-the-money (ITM) call option, and

vice-versa for put options. In the supplementary material, we interpret this setting as a

change of numéraire and c0 as the price of an option written on m —under no interest nor

dividends— with strike price k0 and τ TDM.

We further introduce a self-financing portfolio value {vn}τ
n=0. Letting {φn}τ

n=1 be a

volatility timing protocol, we have for n = 0, . . . ,τ ,

vn = c0 +
n

∑
i=1

φi(mi−mi−1), (1.3)

where the sum is zero when n= 0 by convention and φn is the fraction of forward contracts

held during [n−1,n).

The hedged option return over [0,τ] is defined as,

π = vτ − cτ ,

where cτ is the option payoff, namely cτ = (mτ − k0)
+ for a call option and cτ = (k0−

mτ)
+ for a put option. Under our numéraire interpretation, π is an excess rate of return

when the strategy is fully funded with one unit of numéraire, namely with one zero-

coupon bond of notional value Fτ
0 . Our empirical focus is on the economic value derived

from strategy returns π .

1.2.2 Disentangling pricing and hedging

Finding and motivating the presence of risk premia embedded in option prices has been

an ongoing research topic since the seminal work of Coval and Shumway (2001). By
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testing implications of the CAPM, they found other risk factors beyond leveraged market

exposure are heavily priced in equity index options. Buraschi and Jackwerth (2001) argue

options are non-redundant securities in that they expand one’s investment opportunity set

with additional un-hedgeable sources of priced risk such as stochastic volatility, jumps,

hedge portfolio misspecification (i.e. model risk) and/or discrete-time hedge portfolio re-

visions. Empirical evidence for the S&P 500 overwhelmingly suggests un-hedgeable risk

factors are positively rewarded in equilibrium such that selling and hedging options is not

only risky, but profitable in the long-run.

As a possible explanation, Gârleanu et al. (2009) consider risk-averse market-makers

who are compensated for absorbing buying pressures from end-users. Their theoretical

results suggest market-makers increase option prices proportionally to the variance of un-

hedgeable risk factors, which translates to E[π] ∝ Var[π] in our setting. We refer to E[π]

as the hedged option premium to emphasize the transfer of wealth from un-hedged option

buying end-users to hedged participants. This term is also coined as a comprehensive

alternative to model-specific premia such as the volatility risk premium, the presence of

which is still debated in the literature most notably with respect to the competing jump

risk premium. We work under the assumption that the hedged option premium is positive

for reasonable choices of volatility timing protocols.

Interestingly, results from Gârleanu et al. (2009) improve when proprietary traders

are included with market-makers as hedged intermediaries. Our focus is on such profit-

oriented agents who have no liquidity-providing requisite and remain sufficiently small

relative to end-users not to disturb the market equilibrium. In practice, profit-oriented

agents likely have heterogeneous market views, hedging objectives and hedge revision

frequencies leading to ex-ante disagreements about Var[π] and incidentally E[π]. While

working out the details of the resulting equilibrium falls outside the scope of this paper,

it is plausible that some agents with access to more sophisticated risk management tools

have a persisting economic advantage over others without violating absence of arbitrage

due to market incompleteness. For example, heterogeneity could arise from transaction

costs, leading to more or less frequent revisions or technology constraints such as limited
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access to high-frequency data.

While this conjecture provides a sound basis for a test of economic value, we make

an additional assumption which ensures its viability by further disentangling pricing and

hedging concerns: our agent pre-commits to holding option positions until maturity. This

guarantees the price of un-hedgeable risk factors is never paid out by buying options back.

In the same spirit, we prohibit buying options of other strike prices and/or maturities for

hedging purposes e.g. towards performing delta-gamma hedging under B&S.

As a direct consequence, our agent is indifferent to intermediary option prices, steer-

ing concerns from local to global and towards the ability to cover a terminal liability. Un-

der global concerns, delta-hedges calibrated to option prices are likely suboptimal when

prices are significantly impacted by non-arbitrage considerations such as market segmen-

tation. The quality of delta-hedges is further shown by Alexander and Nogueira (2007)

to be only impacted by the fit of underlying dynamics to option prices. Delta-hedging is

hence driven by aggregated volatility expectations as conveyed by option prices, not in-

vestors’ individual volatility forecasting abilities. We next propose risk-minimizing pro-

tocols which are better suited to measuring the economic value of volatility timing under

the current opportunity set.

1.2.3 Martingale hedging

With replication arguments failing under incomplete markets, an investor is faced with the

somewhat arbitrary task of selecting a criterion to optimize, e.g. variance, value-at-risk,

utility, etc. This choice is critical as it characterizes the impact of expected (underlying)

returns on protocols. Volatility timing strategies should also be sufficiently tractable and

well-behaved to mirror how profit-oriented agents would presumably go about extracting

the hedged option premium in practice.

We focus on a quadratic criterion for risk as resulting hedges have been shown to con-

verge to delta-hedges under complete markets and offer a natural extension of replication

arguments to incomplete markets. Two quadratic risk-minimizing approaches have been
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proposed: local risk minimization and variance-optimal hedging; see e.g. Föllmer and

Schied (2011) and references therein for a review in discrete-time.

The latter approach minimizes the stochastic distance between the liability due at ex-

piration (cτ) and the terminal value of a portfolio (vτ) under the strictly self-financing

formulation of Eq. (1.3). It does so by optimally controlling for the accumulation of

hedging errors over time by solving for argmin{φ}E
[
π2]. This last expectation is usu-

ally taken under a probability measure representing an agent’s best guess about market

dynamics —including expectations about market returns and conditional variances.

The resulting mean-variance demand leads to time inconsistency and practical con-

cerns e.g. by inciting investors to take increasingly more risk as large P&Ls accumulate.

Resulting protocols could fall well-outside typical B&S delta-hedge bounds of ±[0,1],

possibly provoking internal or external risk-overseeing entities to impose arbitrary con-

straints on trading or increase margin requirements. Brandt (2003) expresses similar con-

cerns and relaxes the self-financing property to achieve time consistency. We instead

preemptively fix the role of expected returns prior to optimizing protocols.

We assume profit-oriented agents cast their market views in terms of a subjective

martingale measure Q constrained by the condition,

EQ
n−1
[
mn−mn−1

]
= 0, for n = 1, . . . ,τ, (1.4)

where EQ
n [.] denotes the expectation under measure Q conditional on information up to

time n. Basak and Chabakauri (2012) find Eq. (1.4) to be a necessary condition for the

time consistency of the variance-optimal hedging criterion, alleviating aforementioned

practical concerns and making local risk minimization optimal in the variance-optimal

sense. In other words, if an investor has no educated guess about market returns, a unique

risk-minimizing approach arises that consolidates the two main strands of the quadratic

hedging literature under incomplete markets. More importantly, the martingale condition

guarantees investors are only set apart by their volatility forecasting skills, not by their

market timing abilities.
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Following Schweizer (1995),

argmin
{φ}

EQ [
π

2] ,
is solved recursively for n = τ, . . . ,1 by,

φn =
EQ

n−1 [(mn−mn−1)pn]

EQ
n−1 [(mn−mn−1)2]

, (1.5)

where pn−1 = EQ
n−1 [pn] and pτ = cτ . We refer to the resulting protocol as the martingale

hedging strategy. Since our focus is on Markovian processes, protocols may be solved as

daily functions of m and possibly other latent variables (such as conditional variance) by

means of dynamic programming.

It might appear as if we trade one arbitrary criterion for another, namely a risk-

minimizing criterion for a martingale measure. Elliott and Madan (1998) propose a spe-

cific change of measure for deriving Q under which investors nullify their expected return

prior to minimizing risk2. This is formalized by the extended Girsanov principle (EGP)

which fits naturally in our setting as it yields the change of measure minimally disrupting

the information content about volatility.

Even though the resulting setting is reminiscent of option pricing, we emphasize that

the motivation for introducing Q is not related to the classical risk-neutral valuation prin-

ciple of Harrison and Pliska (1981). In particular, p0 is never interpreted as an option

price, since it fails to account for the price of un-hedgeable risk factors —the presence

of which motivates the current paper. The apparent discrepancy in preferences used for

hedging versus pricing is here motivated by market segmentation. We now turn to the

main methodological contribution of this paper, namely realized variance-based proto-

cols.

2 More precisely, investors “minimize the variance of a risk adjusted discounted cost of hedging that
uses risk adjusted asset prices in calculating hedging returns”.
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1.3 Hedging using realized variance

1.3.1 Realized variance-based volatility forecasting

We introduce a realized variance process {νn}τ
n=0, where νn is an estimator of the quadratic

variation of a continuous-time Itô representation of markets over trading day n. Lagged

realized variance νn−1 is used to predict the conditional variance of excess log-returns

rn = log(mn/mn−1) in the spirit of Engle and Gallo (2006) or Shephard and Sheppard

(2010). We work under a probability space (Ω,F,Q), where F= {Fn,n = 0, . . . ,τ} is the

filtration generated by the sigma-algebra σ({mn,νn}).

We consider a return generating function rn = R(hn,ηn) where hn = Varn−1[rn] is the

conditional variance of log-returns. Model innovations ηn are mean zero and variance one

independent and identically distributed (iid) random variables under Q with ηn ⊥⊥Fn−1,

where ⊥⊥ denotes independence. To ensure the martingale condition is verified for mn =

mn−1ern , we let,

R(h,η) = ηh1/2−κ(h1/2), (1.6)

where κ(z) = log(E[eη1z]) is the cumulant-generating function of η1.

We focus on a single realized variance indicator and one lag auto-regressive specifi-

cations3,  rn = R(hn,ηn),

hn+1 = H (hn,µn,rn,νn),
(1.7)

 νn = µnεn,

µn+1 = U (hn,µn,rn,νn),
(1.8)

where µn = En−1[νn] is the conditional expectation of realized variance and εn are posi-

tive innovations with mean one under Q. Joint innovations are further assumed iid with

(ηn,εn)⊥⊥Fn−1.

Similarly to GARCH models, H and U represent auto-regressive functions of lagged

{r,ν} such that {h,µ} is a predictable process, i.e. (hn,µn) is Fn−1-measurable. For
3 This choice is motivated by computational constraints pertaining to dynamic programming.
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example, the HEAVY model of Shephard and Sheppard (2010) is given by,

H (h,µ,r,ν) = ωr +αrν +βrh,

U (h,µ,r,ν) = ων +ανν +βν µ,
(1.9)

with parameters {ωr,αr,βr,ων ,αν ,βν}. For the S&P 500 index, typical estimates for

αr are greater than their GARCH counterparts, such that the HEAVY model puts more

weight on recent observations and reacts more quickly to changes in prevailing volatility.

Our purpose is to translate such a desirable feature into a protocol.

In this context, specifying realized variance dynamics by Eq. (1.8) is necessary, even

though option payoffs do not explicitly depend on realized variance. Future daily return

variances indeed depend on future realized variances for typical choices of H . The de-

pendence structure of (η ,ε) must hence be specified, which poses the additional challenge

of selecting a family of copulas. For empirical tests, we overcome this issue by sampling

from historical estimates.

1.3.2 Variance-optimal protocols

We may now derive protocols sourcing volatility information from high-frequency data

under the martingale condition given by Eq. (1.4). Since {mn−1,hn,µn} is a three-dimensional

Markovian process under Eq. (1.7)-(1.8), martingale hedging protocols φn are computed

as functions of (mn−1,hn,µn). We solve for pn on a three-dimensional grid by backward

induction according to,

pn−1(m,h,µ) =
∫

p̆n

(
meR ,H (h,µ,R,µε),U (h,µ,R,µε)

)
dF,

for n= τ−1, . . . ,0 starting from pτ = cτ , where F denotes the joint distribution of (η1,ε1)

under Q and where the dependence of R on (h,η) is omitted for clarity. The x̆(·) operator

henceforth represents an interpolation function. Here, p̆n(m,h,µ) is a three-dimensional

interpolation function applied to previously computed values of pn on a given grid. Inte-

grals are hence estimated using a combination of standard Monte-Carlo and interpolation

techniques. A specific Monte-Carlo estimator is later proposed for empirical tests.
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Similarly, protocols are recursively solved for n = τ, . . . ,1 according to,

φn(m,h,µ) =
∫
(eR−1)p̆n

(
meR ,H (h,µ,R,µε),U (h,µ,R,µε)

)
dF

m
∫
(eR−1)2dF

,

where φn is predictable since mn−1, hn and µn are Fn−1-measurable.

1.4 Economic value of volatility timing

1.4.1 Measuring economic value

We assume agents sell options on a daily basis. Each trading day is associated to an

excess return πt representing the overall outcome from selling a single option at t and

hedging it for τ additional trading days until maturity is reached. Our empirical focus is

on the resulting time series {πt}T
t=1, where T represents the total number of trading days

in our sample minus τ to allow for the last option to be hedged until maturity. This time

series is auto-correlated due to heavily overlapping hedging periods. For example, an

investor selling monthly options on a daily basis faces 20 trading days of overlap between

an option sold today and an option sold yesterday —assuming 21 trading days per month.

We next consider unconditional economic metrics (i.e. specified as a sample mean) which

statistically benefit from overlaps due to the path dependence of P&Ls. Sample size thus

takes precedence over auto-correlation concerns.

Numerous performance measures have been proposed in the literature typically moti-

vated by a utility function, a set of axioms, or both. In this last category, Ingersoll et al.

(2007) propose a measure which is robust to uninformed portfolio manipulations, is rem-

iniscent of a utility expectation under relative risk aversion ρ , and can be adapted to our

setting. We use,

ΘU(π;ρ) =
252

(1−ρ)τ
log

(
1
T

T

∑
t=1

(1+wtπt)
1−ρ

)
,

where wt is related to the number of options sold at time t and is shared by all volatility

timing protocols. We consider uninformed exposures given by wt = 1 for simplicity.
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We calibrate ρ by level of moneyness and time-to-expiry,

ρk0,τ =
log(E[1+wtπ

0
t;k0,τ

])

Var[log(1+wtπ
0
t;k0,τ

)]
,

where π0
t;k0,τ

represents benchmark returns achieved under no volatility-timing for a single

option contract characterized by moneyness-maturity (k0,τ). The variance is carefully

estimated from non-overlapping subsamples and averaged to avoid biases.

Figure 1.1 displays calibrated risk aversion parameters. The calibration procedure

ensures agents relying on long-run volatility views are appropriately incentivized for all

option contracts. For example, only agents having the lowest risk aversion contemplate

selling deeply OTM options, due to the corresponding ex-post risk-reward trade-off being

particularly unfavorable. The resulting normalization greatly improves cross-sectional

comparability along maturity and moneyness.

Figure 1.1: Cross-sectional calibration of risk aversion parameters ρk0,τ for utility-based
performance measures ΘU .

Our risk aversion calibration, however, fails to correct for short-run dynamics in op-

tion premia. Under the model proposed by Bakshi and Kapadia (2003) for example,

their hedged option premium increases with the sensitivity of an option price to volatility,

commonly known as the vega. By assuming wt = 1, one could hence argue that agents

indirectly perform volatility timing in the option market, as the vega of a single option

varies in time with prevailing risk levels. In this context, uniformed wt exposures are

24



arguably better defined by a fixed amount of vega, as opposed to a fixed number of op-

tion contracts. While different choices for wt may indeed lead to different conclusions

regarding incremental economic value, establishing robustness in a model-free manner is

challenging. In the supplementary material, we consider vega-constant exposures under

B&S using implicit volatilities.

As a fundamental feature of our test, the best hedging strategy (from a risk perspec-

tive) may not yield the best economic value if considerable profits must be forgone. For

example, deeply OTM short-term options very rarely benefit from hedging. An un-hedged

protocol (i.e. φn = 0) may hence very well yield the best ex-post economic value e.g. due

to extreme market events never occurring over the empirical sample —an issue commonly

known as the peso problem. In the supplementary material, we consider a prospect theory-

based performance measure which penalizes hedging shortfalls more aggressively in an

attempt to realign ex-ante hedging objectives with ex-post performance assessment.

1.4.2 Historical volatility dynamics

We now introduce three classes of volatility forecasts —namely static (S0), low-frequency

(LF) and high-frequency (HF)— to be tested. We follow the notation introduced in Sec-

tion 1.3, but work under a probability space (Ω,F,P) where P now reflects the likelihood

of market events as they occurred over our entire sample, namely the physical measure.

Distributions of η and ε under P are left unspecified, but still represent respectively real-

valued and positive innovations.

The S0 specification serves as a benchmark and corresponds to the case when volatil-

ity timing is unavailable. The S0 model is characterized by independent and identically

distributed log-returns with constant unconditional mean and variance, respectively given

by u = E[rn] and δ = Var[rn]. More precisely, the S0 model is specified as rn = u+ηnδ 1/2

which may be viewed as the discretization of a Brownian motion with drift when ηn is

Gaussian.

The incremental value from expanding one’s information set should be distinguish-
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able using naive model structures. While this goal is similar in spirit to Fleming et al.

(2001, 2003), they do not provide a valid market model. Their exponential smoothing

specification indeed allows volatility expectations to go to zero with time. Given the

non-myopic nature of our setting, optimal protocols rely on volatility expectations until

the expiration of an option. A first model requirement is hence the mean reversion of

volatility expectations towards a strictly positive value, namely the GARCH effect. A

second model requirement is to have agents adjust volatility forecasts more aggressively

following negative market returns. This choice is motivated by the documented first order

impact of leverage effects on hedging protocols; see e.g. Nandi (1998).

Finding specifications that are representative of their class (i.e. LF and HF) under such

stringent structural requirements is challenging. The GJR model of Glosten et al. (1993)

offers a reasonable anchor point for model selection as it introduces leverage effects using

the most rudimentary mechanism, namely an indicator function —denoted here by I(.).

To decompose the relative contribution of each requirement, we first consider the naive

estimator of Fleming et al. (2001, 2003) and gradually introduce mean reversion and a

leverage effect. Table 1.2 lists resulting specifications under all three classes.

The HF class follows the previously introduced MEM-type system Eq. (1.7)-(1.8).

We let hn be an affine and contemporaneous transformation of µn, i.e. hn+1 = a+bµn+1,

inspired by Brownlees and Gallo (2010). This choice is motivated by the fact (mn,hn+1)

is now a Markovian process, hence limiting the structural superiority of HF versus LF

classes and isolating the impact of expanding one’s information set from modeling as-

sumptions. As documented by Shephard and Sheppard (2010), the addition of a state

variable (µ) indeed allows momentum in volatility, in contrast to strictly monotonic term

structures under classical GARCH models.

We use realized variances computed from intra-daily returns during normal market

hours, i.e. from open-to-close. Since close-to-close log-returns are also impacted by

overnight gaps, b plays the critical role of increasing realized variances from an open-

to-close to a close-to-close scale. In contrast, estimates for a are usually insignificant.

To fully exploit the potential of HF data, the HFA model substitutes realized variance
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Table 1.2: Overview of model specifications under P.

No Volatility Timing
Static (S0)

{
rn = u+ηnδ 1/2.

Low-Frequency

Naive (LF0)

{
rn = u+ηnh1/2

n ,
hn+1 = αe−α(rn−u)2 + e−αhn.

Mean Reversion (LFG)

{
rn = u+ηnh1/2

n ,
hn+1 = ω +α(rn−u)2 +βhn.

Leverage Effect (LFA)

{
rn = u+ηnh1/2

n ,
hn+1 = ω +(α + I(rn < u)γ)(rn−u)2 +βhn.

High-Frequency

Naive (HF0)


rn = u+ηnh1/2

n ,
hn+1 = a+bµn+1,
νn = εnµn,
µn+1 = αe−ανn + e−α µn.

Mean Reversion (HFG)


rn = u+ηnh1/2

n ,
hn+1 = a+bµn+1,
νn = εnµn,
µn+1 = ω +ανn +β µn.

Leverage Effect (HFA)


rn = u+ηnh1/2

n ,
hn+1 = a+bµn+1,
ν?

n = εnµn,
µn+1 = ω +(α + I(rn < u)γ)ν?

n +β µn.

for realized semi-variance ν?
n , e.g. given by the sum of squared five-minute returns over

negative returns. While parameter γ controls for the asymmetry generated by negative

daily returns, the HFA model further accounts for the asymmetry generated by negative

intradaily returns. This choice introduces a novel leverage effect related to ideas sketched

by Shephard and Sheppard (2010). While we limit our specification to realized semi-

variance to maintain a similar structure to the LF class, economic value derived from

the HFA model would likely improve when including both realized semi-variance and

realized variance to the information set.
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1.4.3 Casting subjective volatility views

This section applies the EGP to models previously calibrated to historical market returns.

The EGP —roughly speaking— preserves the martingale part of market dynamics from

P to Q: volatility dynamics are untouched, similarly to the local risk-neutral valuation

relationship of Duan (1995).

For the S0 model, the EGP modifies return dynamics in a way that respects the martin-

gale condition Eq. (1.4) and preserves the distribution of innovations. The application of

the EGP is more challenging under the LF class as volatility dynamics depend on return

observations.

Subjective martingale views rely on the previously introduced martingale return-generating

function given by Eq. (1.6). The martingale adaptation of the S0 model is given by

rn = R(δ ,ηn) which may be viewed as the discretization of the B&S model when ηn

is Gaussian, i.e. rn = ηn
√

δ −δ/2.

All applications of the EGP are presented in Table 1.3, where we rely on starred

innovations defined as,

η
?
n = ηn−

u+κ(hn
1/2)

hn
1/2 .

Regarding HF models, only the HFA specification actually depends on daily log-

returns and therefore must be adjusted under the EGP. In particular, the martingale adap-

tations of both HF0 and HFG remain unchanged beyond the return-generating function.
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Table 1.3: Overview of model specifications under Q.

No Volatility Timing
Static (S0)

{
rn = ηnδ 1/2−κ(δ 1/2).

Low-Frequency

Naive (LF0)

{
rn = ηnh1/2

n −κ(hn
1/2),

hn+1 = αe−αη?2
n hn + e−αhn.

Mean Reversion (LFG)

{
rn = ηnh1/2

n −κ(hn
1/2),

hn+1 = ω +αη?2
n hn +βhn.

Leverage Effect (LFA)

{
rn = ηnh1/2

n −κ(hn
1/2),

hn+1 = ω +(α + I(η?
n < 0)γ)η?2

n hn +βhn.

High-Frequency

Naive (HF0)


rn = ηnh1/2

n −κ(hn
1/2),

hn+1 = a+bµn+1,
νn = εnµn,
µn+1 = αe−ανn + e−α µn.

Mean Reversion (HFG)


rn = ηnh1/2

n −κ(hn
1/2),

hn+1 = a+bµn+1,
νn = εnµn,
µn+1 = ω +ανn +β µn.

Leverage Effect (HFA)


rn = ηnh1/2

n −κ(hn
1/2),

hn+1 = a+bµn+1,
ν?

n = εnµn,
µn+1 = ω +(α + I(η?

n < 0)γ)ν?
n +β µn.

1.5 Empirical methodology

1.5.1 Dataset

The dataset is comprised of daily best bid and ask prices for put and call options written

on the spot S&P 500 index and traded on the Chicago Board Options Exchange (CBOE)

from 02-Jan-2002 to 31-Dec-2014. The selected period covers a full economic cycle,

including the bull market of the mid-2000s, the financial crash of 2008-2009 and its re-

covery. All option contracts are European and cash-settled. Option quotes, underlying

close prices and US zero-coupon yield curves are sampled from the OptionMetrics Ivy
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Database. Historical cash dividends for the S&P 500 index and overnight USD LIBOR

rates are extracted from Bloomberg4. Realized measures are extracted from Oxford-Man

Institute’s realized library (Heber et al., 2009). We select 5-minute estimators using 1-

minute subsamples for both realized variance and realized semi-variance.

The distribution of hedged option returns most likely depends on both moneyness and

maturity. Our empirical test is hence complicated by varying option contract availability

over the moneyness-maturity plane. We interpolate available contracts in an arbitrage-

free manner over both moneyness and maturity. Details of the procedure can be found in

the supplementary material, together with data cleaning filters. For each trading day, the

procedure yields an arbitrage-free pricing surface calibrated to mid-quotes, which may

reasonably be interpreted as market clearing prices over moneyness-maturity intervals of

interest.

1.5.2 Resolving forward price uncertainty

Forward contract prices matching the maturity of options are not observed on financial

markets and must therefore be estimated. We resolve dividend and rate uncertainty in Eq.

(1.1) using market realizations,

Bτ
n =

τ−1

∏
k=n

1+
ck×LIBORk

100×360
,

Dτ
n =

τ−1

∑
k=n

Divk

Bk
n
,

where LIBORk is the overnight USD LIBOR fixed at k, ck is the number of calendar days

from k until the next business day and Divk is the weighted sum of all index components’

cash dividends with ex-dividend date k. By convention, Bn
n = 1 and Dn

n = 0. This setting

ensures empirical results reflect the actual net cost of financing S&P 500 index positions

on a daily basis.

4 Dividend data are retrieved from Bloomberg by requesting the field ’LAST_DPS_GROSS’ for the
’SPX Index’ ticker.
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The only remaining source of uncertainty in Eq. (1.1) is the spot value S0. Option

cross-sections and index spot prices have historically been sampled at their respective

market close time, i.e. 15 minutes apart. In the supplementary material, we synchronize

S&P 500 spot prices with option cross-sections by performing daily regressions on var-

ious interest rate term structures. Typical corrections range from 5 to 20 bps, but can

reach 100 bps on particularly volatile days. Corrections are especially significant prior to

29-Sept-2008, the day on which OptionMetrics implemented significant improvements to

its sampling methodology.

1.5.3 Model estimation

Models are calibrated on a 2000-2014 time series of appended quarterly forward contracts

computed according to Eq. (1.1) using rates and dividends actually vested over the period

and a synchronized spot underlying value. A two-year burn-in period prior to 2002 is

added to allow for the impact of initial state estimates, i.e. ĥ1 and µ̂1, to decay before

selling the first option.

We impose the same long-run log-return expectation across all models for compara-

bility, estimated at û = 7.1434e−5. With the exception of naive specifications which have

zero long-run volatility expectations, Var[rn] is similarly imposed to δ̂ = 1.6415e−4 for

all models. The validity of this approach, known as variance targeting, has been studied

in both the LF and HF case. Regarding the LF class, we target the long-run variance in

the LFG model by setting ω to δ̂ (1−α −β ) and ω to δ̂ (1−α − 0.5γ −β ) in the LFA

model.

For the HF class, variance targeting is achieved by constraining parameters a and b.

Let us first introduce v = E[ν ] and v? = E[ν?], estimated as respectively v̂ = 1.0653e−4

and v̂? = 5.3216e−5. Letting (â = 0, b̂ = δ̂/v̂) for the HFG model and (â = 0, b̂ = δ̂/v̂?)

for the HFA model, the long-run variance of daily returns matches δ̂ . As anticipated,

b̂ = 3.0847 for the HFA case is significantly larger than b̂ = 1.5409 for the HFG model.

Realized semi-variances are indeed bounded above by realized variances and must hence
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be scaled more aggressively. Table 1.4 shows quasi-maximum likelihood (QML) esti-

mates for remaining parameters.

Table 1.4: QML parameter estimates. Standard errors, shown between parentheses, are computed
according to Bollerslev and Wooldridge (1992).

Static Low-Frequency High-Frequency
S0 LF0 LFG LFA HF0 HFG HFA

α̂ - 0.06(0.01) 0.09(0.01) 0.00(0.01) 0.23(0.01) 0.49(0.02) 0.34(0.02)
β̂ - - 0.90(0.01) 0.89(0.01) - 0.49(0.02) 0.63(0.02)
γ̂ - - - 0.19(0.02) - - 0.02(0.03)

LogL(η̂) 14439 15268 15317 15400 15446 15472 15501
E[η̂ ] −0.000 0.003 0.002 −0.003 0.004 0.001 0.000

Var[η̂ ] 1.00 1.12 0.99 0.97 1.13 0.98 0.95
ρ(η̂2

t , η̂
2
t−1) 0.19 −0.02 −0.05 −0.07 −0.04 −0.07 −0.07

LogL(ε̂) - - - - 16187 16237 17518
E[ε̂] - - - - 1.16 1.01 1.00

Var[ε̂] - - - - 0.75 0.45 0.65
ρ(ε̂t , ε̂t−1) - - - - 0.16 −0.01 0.01

The resulting constrained estimation procedure is rather crude. For example, the vari-

ance targeting specification for the HFA model implicitly presupposes (rn− û < 0)⊥⊥ ν?
n

and En[rn− û < 0] = 0.5. Both assumptions are likely violated in practice: the correlation

between (rn− û < 0) and ν?
n is 0.15 and the sample mean of (rn− û < 0) is 0.46. This

approach is nonetheless consistent with our focus on expanding one’s information set,

as opposed to fine tuning modeling assumptions. In particular, empirical results likely

understate economic values that could be derived from more sophisticated specifications

and/or estimation procedures.

The statistical value of using HF data and allowing for structural requirements (namely,

mean reversion and leverage effect) is evidenced by log-likelihood of return innovations

increasing steadily from left to right in Table 1.4. As already noted by others, the sta-

tistical superiority of the HF class stems from the lower signal-to-noise ratio of realized

variances versus squared daily returns. This in turns leads to higher α̂ and lower β̂ and

allows high-frequency models to assimilate lagged information more quickly than their

low-frequency counterpart. For example, α goes from 0.09 for LFG to 0.49 for HFG, with
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yesterday’s realized-variance having roughly five times the impact of yesterday’s squared

daily return on one day ahead volatility forecasts. In the HFA case, γ is insignificant,

suggesting the leverage effect driven by intradaily returns overwhelms the one driven by

daily returns.

1.5.4 Protocol estimation

We easily show that risk-minimizing protocols Eq. (1.5) are homogeneous functions of

degree zero with respect to (mn−1,k0), i.e. φn(αmn−1,αk0) = φn(mn−1,k0) for α ∈ R.

Normalizing the underlying by the initial moneyness and introducing ξn = mn/k0, proto-

cols may be written as,

φn =
EQ

n−1 [(ξn−ξn−1)p′n]

EQ
n−1 [(ξn−ξn−1)2]

=
EQ

n−1 [(e
rn−1)p′n]

ξn−1EQ
n−1 [(e

rn−1)2]
, (1.10)

where p′n−1 = EQ
n−1 [p

′
n] and p′τ = cτ/k0. For example, p′(ξ ) = (ξ −1)+ for a call option

and p′(ξ ) = (1−ξ )+ for a put option. Since Eq. (1.10) has no explicit dependence on

initial moneyness, entire cross-sections are solved under a single application of dynamic

programming, greatly decreasing the overall computational burden of empirical tests.

Until now, we purposely left distributions unspecified. In particular, we must still

specify how expectations in Eq. (1.10) are estimated. It is a widely accepted empirical fact

that market returns and GARCH-type innovations have non-zero higher order cumulants;

see e.g. Engle (2002). While various non-Gaussian distributions have been studied, we

adopt a semi-parametric approach by using estimated model innovations, referred to as

residuals.

Test features are first highlighted under the most tractable S0 setting. Residuals under

the static volatility model are first retrieved according to,

η̂t =
rt− û√

δ̂

,

where (as previously) t is an index over our entire sample; i.e. {rt} represents market
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returns from 2000 to 2014. We then solve static protocols according to,

p′n−1(ξ ) =
1
T

T

∑
t=1

p̆′n(ξ eR̂(δ̂ ,η̂t)),

φn(ξ ) =
∑

T
t=1

(
eR̂(δ̂ ,η̂t)−1

)
p̆′n(ξ eR̂(δ̂ ,η̂t))

ξ ∑
T
t=1

(
eR̂(δ̂ ,η̂t)−1

)2 ,

(1.11)

for n = τ, . . . ,1, where R̂ is the empirical counterpart of R given by,

R̂(h,η) = ηh1/2− log

(
1
T

T

∑
t=1

eη̂th1/2

)
, (1.12)

and depends on the entire sample of residuals.

To meet requirements of the EGP, the S0 specification under Q must respect two con-

ditions. First, Q innovations must have the same law as under P. This is met by summing

over the empirical distribution {η̂t}T
t=1. Second, the model must satisfy the martingale

condition Eq. (1.4), which may be written in terms of log-returns as EQ
n−1
[
ern
]
= 1 for

n = 1, . . . ,τ. This property is guaranteed on a sample-by-sample basis by construction,

i.e. 1
T ∑

T
t=1 eR̂(δ̂ ,η̂t) = 1, in a manner reminiscent of the empirical martingale simulation

of Duan and Simonato (1998). Efficiency gains when pricing arguably translate to our

hedging setting, but a rigorous demonstration of this statement falls outside the scope of

this paper.

Here, we follow an “in-sample” approach in the sense that a protocol is estimated

using parameters and residuals calibrated on data from 2000 to 2014 and used throughout.

We do so in a spirit similar to Bates (2003), i.e. to ensure each model is taken seriously

“as a genuine data generating process”. This choice is once again consistent with our

focus on expanding one’s information set, this time by avoiding frequent recalibrations

and time-varying model parameters.

Our semi-parametric approach arguably raises in-sample bias concerns. When hedg-

ing monthly options however, preliminary tests suggest excluding any 21-day residual

block, i.e. {η̂t}t0+20
t=t0 , from sums in Eq. (1.11) does not have a significant impact on pro-

tocols. For robustness, we present out-of-sample results (by re-estimating models on a

yearly basis) in the supplementary material.
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Under the LF class, we similarly estimate residuals according to

η̂t =
rt− û√

ĥt

where ĥt are the filtered states from any of the three LF specifications, namely LF0, LFG

or LFA. We solve LF protocols as functions of two variables since {ξn,hn+1} is a Marko-

vian process,

p′n−1(ξ ,h) =
1
T

T

∑
t=1

p̆′n(ξ eR̂(h,η̂t),Ĥ (h, η̂t)),

φn(ξ ,h) =
∑

T
t=1

(
eR̂(h,η̂t)−1

)
p̆′n(ξ eR̂(h,η̂t),Ĥ (h, η̂t))

ξ ∑
T
t=1

(
eR̂(h,η̂t)−1

)2 ,

(1.13)

for n = τ, . . . ,1, where Ĥ can be found in Table 1.5, with,

η̂
?(h,η) = η− û√

h
− 1√

h
log

(
1
T

T

∑
t=1

eη̂th1/2

)
, (1.14)

the empirical counterpart of previously introduced starred innovations η?. As already

mentioned, this innovation adjustment ensures the conditional variance process is mini-

mally disrupted by the change of measure —as per the EGP. Both R̂(h,η) and η̂?(h,η)

implicitly rely on the entire sample through {η̂t}T
t=1, which in this case represents resid-

uals filtered using either LF0, LFG or LFA.

Under the HF class, we first retrieve bivariate residuals as(
η̂t =

rt− û√
ĥt

, ε̂t =
νt

µ̂t

)
,

for the HF0 and HFG models, with ε̂t = ν?
t /µ̂t computed from realized semi-variances in

the HFA case. We then solve HF protocols,

p′n−1(ξ ,h) =
1
T

T

∑
t=1

p̆′n(ξ eR̂(h,η̂t),Ĥ (h, η̂t , ε̂t)),

φn(ξ ,h) =
∑

T
t=1

(
eR̂(h,η̂t)−1

)
p̆′n(ξ eR̂(h,η̂t),Ĥ (h, η̂t , ε̂t))

ξ ∑
T
t=1

(
eR̂(h,η̂t)−1

)2 ,

(1.15)
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for n = τ, . . . ,1, where Ĥ is also given by Table 1.5. R̂ and η̂? are still respectively given

by Eq. (1.12) and (1.14), but defined according to their respective HF residuals —either

HF0, HFG or HFA.

Using the direct proportionality between contemporaneous states under the HF class,

we simplified specifications such that Û does not explicitly appears in Eq. (1.15). For

example, the HF0 specification may be written as, rn = ηnh1/2
n −κ(hn

1/2),

hn+1 = αe−α
εnhn + e−αhn,

when a = 0 and b > 0. For general choices of U however, solutions would rely on µn,

consistently with expressions derived in Section 1.3.

By summing over empirical pairs (η̂t , ε̂t), the dependence between η and ε is implic-

itly characterized by the empirical copula, hence overcoming the challenge of appropri-

ately specifying a parametrized family of copulas.

Table 1.5: Overview of Ĥ . These expressions are used in conjunction with Eq. (1.13) and
(1.15) to respectively compute LF and HF protocols; see also Eq. (1.14) for the definition
of η̂?.

Requirement Specification

Low-Frequency
Naive (LF0) Ĥ (h,η) = α̂e−α̂ η̂?(h,η)2h+ e−α̂h.
Mean Reversion (LFG) Ĥ (h,η) = δ̂ (1− α̂− β̂ )+ α̂η̂?(h,η)2h+ β̂h.
Leverage Effect (LFA) Ĥ (h,η) = δ̂ (1− α̂−0.5γ̂− β̂ )

+(α̂ + I(η̂?(h,η)< 0)γ̂)η̂?(h,η)2h+ β̂h.

High-Frequency
Naive (HF0) Ĥ (h,η ,ε) = α̂e−α̂εh+ e−α̂h.
Mean Reversion (HFG) Ĥ (h,η ,ε) = δ̂ (1− α̂− β̂ )+ α̂εh+ β̂h.
Leverage Effect (HFA) Ĥ (h,η ,ε) = δ̂ (1− α̂−0.5γ̂− β̂ )

+(α̂ + I(η̂?(h,η)< 0)γ̂)εh+ β̂h.

Table 1.5 shows the HF class essentially replaces squared adjusted return innovations

η?2 with realized variance innovations ε . Our framework hence succeeds in expanding
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one’s information set and maintaining strong comparability under all structural require-

ments i.e. from naive to leverage effect. We also emphasize that proposed protocols are

derived non-myopically. In particular, volatility timing protocols are distinguished by

both differences in variance forecasts and hedging surfaces i.e. φn as a function of un-

derlying price and conditional variance. This approach contrasts with naively feeding

variance estimators into the B&S delta-hedging formula; e.g. as performed by Bakshi and

Kapadia (2003).

Regarding implementation concerns related to the evaluation of p̆′(·), we maximize

knot density in areas of high option price curvature and interpolate using splines. More

precisely, since m carries most of the curvature around k0, we concentrate interpolation

knots around the strike price using a quadratic transformation. In contrast, p is almost

linear in variance, especially at higher levels. We hence consider less variance knots

distributed exponentially over h. We extrapolate linearly for simulations falling outside

the grid.

For put options, we find the S0 protocol is very close to a B&S delta-hedging strat-

egy calibrated to the long-run variance δ̂ . The S0 protocol sells slightly more underlying

contracts than B&S for deeply OTM options. This is consistent with a fatter than normal

left tail for the empirical distribution of log-returns. In line with unfavorable volatility

spikes being empirically related to negative log-returns, protocols allowing for a leverage

effect (i.e. LFA and HFA) systematically sell roughly 0 to 5% more underlying contracts

than their strictly mean reverting counterparts (i.e. respectively LFG and HFG). Also, LF0

and HF0 hedging surfaces are almost indistinguishable, most likely due to their similar

variance term structures. Naive cases hence allow for a rough assessment of incremental

economic value derived from differing one day ahead variance forecasts only, i.e. exclud-

ing the non-myopic impact of variance term structures on hedging surfaces.
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1.6 Results and discussion

1.6.1 Preliminary analysis

We now present empirical results for OTM put options with one to three months-to-

maturity and with levels of moneyness ranging from 0.9 to 1. These contracts have well-

documented premia and are highly liquid. Corresponding results for OTM call options

can be found in the supplementary material. The model-free delta-hedging methodology

(DH) of Bates (2005) is reported as a volatility timing benchmark relevant to both practi-

tioners and researchers. As pointed out by e.g. Alexander and Nogueira (2007) however,

DH is risk-minimizing if and only if the correlation between the variance and the under-

lying is non-zero. A priori, risk minimizing protocols under a leverage effect (i.e. LFA

and HFA) hence over-perform DH in terms of risk reduction. Un-hedged (UH) results are

also presented for completeness.

Table 1.6 presents descriptive statistics for π . The hedged option premium is always

above 100 bps/yr. Under DH and S0, it is maximized for at-the-money(ATM) options, in

line with the volatility risk premium interpretation of Bakshi and Kapadia (2003). Under

LF and HF cases however, the premium is maximized for OTM options i.e. k0 = 0.95.

Correlations with market returns are significantly lower under LFA and HFA, consistent

with protocols under a leverage effect systematically selling more underlying contracts.

Sample means for π2 (not shown) decrease with increasing model likelihoods, as is

expected from our risk minimizing objective. In particular, allowing for a leverage ef-

fect leads to the most significant risk reduction. This observation confirms the strong

linkage between forecasting abilities and hedging effectiveness and is consistent with the

preliminary numerical experiment presented in Section 1.1.

Sharpe ratios in Table 1.6 provide a preliminary assessment of economic value. They

increase steadily from S0 to LF and from LF to HF. This effect appears to be mostly

driven by a decrease in risk as captured by standard deviations —once again in line with

the preliminary numerical experiment. But OTM Sharpe ratios decrease from 1.15 for
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HF0 to 1.09 when allowing for a leverage effect.

Hedged option returns have significantly greater Sharpe ratios than the market in all

cases, with a market and hedged option correlation typically below 0.4. These last statis-

tics provide strong ex-post motivation for selling and hedging options, e.g. towards di-

versifying an investor’s portfolio using premia embedded in options. Still, the Sharpe

ratio may not be appropriate here due to the large kurtosis. We next turn to proposed

utility-based metrics and main results of this paper.
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Table 1.6: Descriptive statistics for hedged put returns with 21 TDM. The first row(M) shows
statistics for corresponding market returns. The mean(Mean), standard deviation(Std) and 95%
value-at-risk(VaR) are presented as bps/yr. The Sharpe ratio(Shrp) is the first column (i.e. Mean)
divided by the second column (Std). All statistics are computed from strictly non-overlapping
subsamples which are then averaged, including one lag autocorrelation(Auto) and correlation with
market returns(Corr).

Mean Std Shrp Skew Kurt Auto VaR Corr

M 560.44 1,679.71 0.33 -1.04 7.28 0.00 -2,182.68 1.00
At-the-Money (k0 = 1)

UH 622.07 1,095.09 0.57 -2.68 14.43 -0.02 -1,830.56 0.89

DH 231.48 288.02 0.80 -1.59 9.86 0.12 -408.50 0.58

S0 173.41 252.96 0.69 -2.73 21.58 0.12 -484.34 0.32

LF
LF0 176.63 209.73 0.84 -0.95 11.93 0.13 -298.70 0.32
LFG 177.62 204.87 0.87 -1.21 11.74 0.13 -298.70 0.33
LFA 164.36 188.74 0.87 -0.55 9.57 0.08 -238.82 0.08

HF
HF0 182.41 202.24 0.90 -1.17 11.32 0.12 -291.98 0.36
HFG 173.48 188.63 0.92 -0.99 9.50 0.13 -247.62 0.30
HFA 167.95 180.91 0.93 -0.65 8.60 0.10 -225.22 0.12

Out-of-the-Money (k0 = 0.95)
UH 415.00 667.02 0.62 -4.79 36.88 -0.02 -1,501.34 0.69

DH 205.09 252.84 0.81 -2.94 18.16 0.24 -424.59 0.49

S0 138.75 296.47 0.47 -3.78 30.49 0.20 -626.35 0.33

LF
LF0 197.95 200.42 0.99 -2.17 17.40 0.20 -337.32 0.28
LFG 190.19 199.98 0.95 -2.44 18.11 0.21 -344.38 0.35
LFA 171.69 176.05 0.98 -1.24 14.10 0.17 -274.73 0.04

HF
HF0 215.17 186.48 1.15 -2.08 17.32 0.18 -309.84 0.36
HFG 202.86 185.06 1.10 -1.85 16.56 0.20 -300.81 0.34
HFA 190.23 175.17 1.09 -1.49 16.00 0.19 -280.18 0.18

Deeply Out-of-the-Money (k0 = 0.9)
UH 253.01 408.81 0.62 -6.42 65.09 -0.05 -1,092.05 0.51

DH 131.06 206.03 0.64 -4.95 39.35 0.22 -454.17 0.39

S0 106.96 278.26 0.38 -4.55 38.94 0.12 -619.05 0.42

LF
LF0 142.02 164.02 0.87 -3.48 28.65 0.21 -317.06 0.25
LFG 138.13 163.97 0.84 -3.77 28.88 0.23 -317.83 0.34
LFA 120.11 137.66 0.87 -1.42 18.14 0.21 -220.98 0.00

HF
HF0 148.89 146.75 1.01 -3.07 26.10 0.22 -270.13 0.31
HFG 139.74 149.43 0.94 -2.84 23.86 0.25 -270.37 0.32
HFA 130.01 139.98 0.93 -2.26 21.60 0.25 -244.81 0.18
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1.6.2 Economic value measurements

Table 1.7 presents cross-sections of absolute economic value metrics ΘU under previously

calibrated risk aversion parameters. Figure 1.2 displays corresponding cross-sections of

incremental economic value and provides a continuous view over the moneyness-maturity

half-plane.

We readily observe strictly positive gains from performing volatility timing (i.e. from

S0 to LF) and from relying on realized variance-based protocols (i.e. from LF to HF) un-

der all structural requirements and over the entire moneyness-maturity half-plane. Volatil-

ity timing under LF indeed generates economic value over S0 ranging from roughly 22 to

132 bps/yr under the naive case (i.e. LF0-S0), 50 to 153 bps/yr under the mean reversion

case (i.e. LFG-S0) and 53 to 190 bps/yr under the leverage effect case (i.e. LFA-S0). More

interestingly, volatility timing under HF generates gains over the LF class ranging from

10 to 67 bps under the naive case (i.e. HF0-LF0), 5 to 95 bps under the mean reversion

case (i.e. HFG-LFG) and 7 to 27 bps under the leverage effect case (i.e. HFA-LFA).

On an absolute basis, naive specifications —i.e. LF0 and HF0— surprisingly perform

best for short-term OTM options. This suggests accuracy of one day ahead variance fore-

casts is the main driver of economic value, as opposed to differences in hedging surfaces.

The over-performance, however, quickly dissipates for closer-to-the-money options and

longer-term maturities, The leverage effect appears to be most relevant for ATM options

under LF. Interestingly, we do not observe similar gains under HF, suggesting realized

variances already capture most of the information related to the leverage effect.

Regarding DH, risk minimizing protocols over-perform under all metrics and spec-

ifications. Market segmentation or other non-arbitrage effects (e.g. a volatility risk pre-

mium) significantly impacting option prices presumably yields DH protocols that are sub-

optimal under global concerns. In the leverage effect case, the strong over-performance of

risk minimizing protocols is further consistent with DH omitting the partial derivative of

option prices with respect to variance; e.g. as documented by Garcia and Renault (1998).
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Table 1.7: Cross-section of economic value ΘU from selling and hedging put options.

Trading-Days-to-Maturity (τ)
21 32 42 53 63

At-the-Money (k0 = 1)
UH -6,738.76 -11,328.20 -11,856.53 -12,257.27 -10,732.84
DH 102.30 61.80 45.16 34.32 5.27
S0 49.49 -11.13 -80.76 -73.16 -64.19

LF
LF0 113.92 87.85 51.47 8.22 -37.37
LFG 117.18 96.96 72.43 46.80 20.20
LFA 115.26 112.10 109.35 100.32 89.41

HF
HF0 124.01 102.35 78.72 56.32 30.32
HFG 123.59 123.48 126.99 124.86 115.52
HFA 122.94 124.21 126.48 123.61 114.79

Out-of-the-Money (k0 = 0.95)
UH -395.92 -1,235.17 -2,454.53 -3,909.42 -4,887.83
DH 149.65 139.24 134.64 113.15 85.74
S0 51.39 44.02 33.34 39.26 36.58

LF
LF0 164.86 155.72 146.09 119.17 90.66
LFG 156.97 147.76 139.90 118.63 95.60
LFA 147.16 140.41 135.44 124.02 113.76

HF
HF0 186.82 179.05 174.29 156.21 134.79
HFG 175.17 172.01 171.85 159.55 146.15
HFA 165.78 162.27 160.90 150.46 140.34

Deeply Out-of-the-Money (k0 = 0.9)
UH 40.76 46.41 -161.93 -595.05 -659.07
DH 97.96 99.67 103.17 102.31 87.44
S0 40.75 39.68 38.46 38.11 39.32

LF
LF0 122.60 127.85 126.46 119.31 108.12
LFG 118.60 120.69 117.36 108.65 97.18
LFA 107.17 106.01 103.55 100.64 92.38

HF
HF0 133.60 143.86 145.47 143.06 135.56
HFG 124.00 130.77 131.73 131.44 125.17
HFA 116.41 120.84 121.26 122.64 116.94
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Figure 1.2: Cross-section of incremental economic value ΘU from selling and hedging put options.
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Table 1.8: Subsample analysis of ΘU for 63 TDM OTM (k0 = 0.95) put options. The last col-
umn sums the subsample-to-subsample absolute value differences, with higher values indicative
of model misspecification.

Subsample
2002-2004 2005-2007 2008-2011 2012-2014 ∑ |Diff|

UH -1,843.24 152.75 -6,705.78 568.58 16,128.88
DH 258.36 145.23 -181.04 275.39 895.82
S0 202.22 101.94 -185.41 144.49 717.53

LF
LF0 275.70 101.66 -99.46 184.52 659.13
LFG 255.19 104.03 -76.76 188.21 596.92
LFA 237.52 95.07 62.88 80.83 192.59

HF
HF0 256.87 120.72 16.58 202.20 425.92
HFG 248.94 109.52 80.56 176.28 264.10
HFA 242.08 102.01 101.80 132.71 171.20

Table 1.8 presents subsample results for 63 TDM OTM put options. Unsurprisingly,

we find that volatility timing is most beneficial during the highly turbulent 2008-2011

period, with incremental gains from LF to HF ranging from roughly 39 to 157 bps. Results

for other periods are less definitive. In particular, positive incremental economic value

appears to be robust in the leverage effect case only —i.e. from LFA to HFA. The last

column shows the sum of absolute value differences from subsample-to-subsample. High

values suggest misspecification; i.e. under-hedged protocols benefit during calm periods,

but fail when markets are stressed. For example, S0 outperforms all volatility timing

protocols during 2012-2014 at the cost of a negative 185 bps performance during 2008-

2011. We find that HF offers the most stability for longer-term options. Allowing for

a leverage effect also appears beneficial, e.g. with a subsample-to-subsample variation

decreasing from roughly 597 bps for the LFG model to 193 bps for the LFA model.

The strong decline in performance for naive protocols across maturities, together with

the wild corresponding subsample variations, suggest naive protocols may be misspecified

and under-hedged. In particular, agents concerned with hedging shortfalls likely select

either LFA or HFA, as these protocols generally offer a much more stable performance

with mild drawdowns. Under the LF class, LFA even delivers a positive performance
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during 2008-2011. Another concern is the strong performance of the un-hedged protocol

during 2005-2007 and 2012-2014. Over such short subsamples, we face a Peso problem;

i.e. managing risk for put options is never beneficial during strong market rallies. Given

the extreme negative performance of roughly−67% during 2008-2011, risk-averse agents

are unlikely to select the un-hedged protocol on an ex-ante basis.

We confirm these intuitions in the supplementary material using a prospect theory

metric under loss aversion. We calibrate this metric towards deterring agents from selling

un-hedged options. The resulting metric heavily focuses on hedging shortfalls and is ar-

guably more consistent with our hedging objective. Protocols with a leverage effect now

systematically outperform exponential smoothing specifications, in line with misspecifi-

cation suspicions. In absolute, the HFA model performs best.

In the supplementary material, we test robustness to calibration procedures, vega-

constant selling strategies in the option market, and out-of-sample protocols. While some

variations are observed, the positiveness of the incremental value from LF to HF is robust

in all cases.

1.7 Conclusion

This paper embraces market incompleteness in order to provide a novel investment setting

for testing the economic value of volatility timing in the S&P 500 option market. We set

aside option pricing concerns and instead provide empirical insights on risk minimiza-

tion. This setting is motivated by the empirical fact that hedged net short index option

inventories are profitable in the long-run for a wide range of risk management protocols.

Our empirical results show the statistical value of using realized variance does trans-

late to significant economic value. This suggests statistical arbitrage opportunities persist

in the option market: agents selling and hedging options under better variance forecasts

have better risk-adjusted returns.

Since our focus is on the economic impact of expanding one’s information set, we pri-

oritize comparability between low- and high-frequency models in terms of model struc-
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ture, long-run expectations and the dimensionality of Markovian processes. This puts

stringent constraints on high-frequency models which could be relaxed in practice in or-

der to further improve economic value.

Under the model of Gârleanu et al. (2009), time variations in ex-ante π expectations

are likely driven by other factors than underlying variance, such as the prevailing risk

aversion of a representative agent and the put buying demand of end-users e.g. pension

plans. This observation motivates our focus on volatility timing for underlying positions,

as opposed to option positions. In particular, empirical inquiries related to when to sell

options, which option contracts to sell, and how many short option positions to hold, likely

benefit from inventory data —a conjecture left for future research.

While we do not provide pricing implications, our endeavor is still consistent with

arbitrage-free option prices resulting from complex interactions between option buying

end-users, profit-oriented proprietary traders and liquidity providing market-makers —

each having their own individual views about future volatility. In particular, our re-

sults could likely be interpreted in the context of a three-agent equilibrium under which

market-makers redistribute risk from end-users to proprietary traders. Under our held-

until-maturity assumption, proprietary traders presumably handle excess inventories more

efficiently by disregarding shocks on intermediary option prices (e.g. shocks in option de-

mand) which are costly to hedge. A quantity of interest would be the overall welfare

gains from disentangling the role of market-makers and proprietary traders in the model

of Gârleanu et al. (2009), i.e. respectively (1) scalping and hedging option demand risk

and (2) volatility timing and hedging underlying market risk.
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Abstract

The supplementary material proceeds as follows. Section 2.1 interprets the normalization

of option prices as a change of numéraire. Section 2.2 synchronizes underlying spot prices

with option cross-sections by performing rate term structure regressions on a daily basis.

Section 2.3 presents the option data reduction procedure, including an overview of the

raw dataset and a data cleaning methodology. Section 2.4 performs robustness checks for

empirical results and Section 2.5 concludes with tests of economic value for call options.



2.1 Change of numéraire

We consider a synthetic forward contract denoted by mτ
n. Such a contract may be viewed

as a non-dividend-paying asset, namely (Sn−Dτ
n), relative to the numéraire Fτ

0 /Bτ
n, i.e.

a zero-coupon bond maturing in τ trading days with notional value Fτ
0 . Option prices

relative to the numéraire given by Eq. (1.2) are interpreted as stationary prices for option

contracts written on asset mτ
n under no dividends nor interests. This interpretation relies

on three assumptions.

Firstly, the underlying process is scale-invariant, i.e. the distribution of index returns

does not depend on the level measurement scale. Alexander and Nogueira (2007) show

the homogeneity of a payoff is preserved by the pricing operator under scale-invariance.

Secondly, an option is priced as a function of a forward contract matching its maturity.

This last assumption is reasonable given a futures contract is the most common hedging

instrument in practice.

Under these first two assumptions, we have,

C0(S0,K0,τ,Bτ
0,D

τ
0) =

f (Fτ
0 ,K0,τ)

Bτ
0

,

f (αFτ
0 ,αK0,τ) = α f (Fτ

0 ,K0,τ), ∀α > 0.

We obtain c0 by setting α to 1/Fτ
0 ,

C0(S0,K0,τ,Bτ
0,D

τ
0)B

τ
0/Fτ

0 = f (Fτ
0 /Fτ

0 ,K0/Fτ
0 ,τ)≡ c0(k0,τ).

Thirdly, we assume options are free of static arbitrage opportunities, a sufficient con-

dition for the existence of an arbitrary risk-neutral measure Q̃ under which C0 is a dis-

counted expectation; see e.g. Carr and Madan (2005). For call options,

c0(k0,τ) =

(
1

Bτ
0

EQ̃[(Sτ −K0)
+]

)
Bτ

0/Fτ
0 ,

= EQ̃[(Fτ
τ /Fτ

0 −K0/Fτ
0 )

+],

= EQ̃[(mτ
τ − k0)

+].
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The aforementioned interpretation follows.

In practice, volatility timing protocols are likely implemented using futures contracts

and a margin account. The committed capital covers initial margin requirements and

subsequent margin calls. Hedged option returns hence act as excess rates of return if one

unit of numéraire is initially committed. In this case, the value of a margin account has a

lower absorbing bound, namely π = −1, at which point positions are forcedly unwound

by the brokerage firm and an agent is ruined.

An alternative numéraire commonly used is the initial option price. This choice as-

sumes significantly more leverage and generates larger absolute rates of return. Unsched-

uled cash infusions are most likely needed on a regular basis to keep the strategy afloat,

more so when markets are stressed and availability of capital is low. Using option prices as

numéraire hence understates the effect of forced liquidation; see Santa-Clara and Saretto

(2009). In contrast, the probability of margin requirements depleting all committed cap-

ital is low under our numéraire —at least under reasonable protocols. In this sense, our

empirical results are robust to margin requirements.

The change of numéraire could presumably impact how agents cast market views in

term of a martingale measure. If an equivalent martingale measure exists under which the

discounted asset Sn−Dτ
n is a martingale, a τ-forward measure also exists under which

Sn−Dτ
n relative to the proposed numéraire is a martingale, and vice-versa; see e.g. Ex-

ample 2 of Geman et al. (1995). Under deterministic interest rates and dividends, we can

show the two measures coincide. Investors are thus indifferent between applying the EGP

to Sn or to mτ
n.

The change of numéraire greatly streamlines classical option pricing results. For ex-

ample, usual arbitrage-free bounds are expressed as c0 ∈ ((k0−1)+,k0)(c0 ∈ ((1− k0)
+,1))

for put(call) options. Put-call parity is expressed as 1− k0 = cc
0− cp

0 , where cp
0(cc

0) is a

normalized put(call) price. The B&S pricing model is expressed as c0 = k0N(−d−)−

N(−d+)(c0 =N(d+)−k0N(d−)) for put(call) options where d±=
(
− log(k0)±σ2τ/2

)
/σ
√

τ

and σ is the single model parameter.
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2.2 Underlying spot price synchronization

Our test relies on an non-observable forward contract matching the maturity of an option.

With interest rate and dividend realizations assumed known, the only remaining source of

uncertainty in forward contract price is the underlying spot price. Option cross-sections

are likely sampled at a slightly different time than official S&P 500 close prices. Our

purpose is to estimate S?0, the underlying spot price used by market participants to price

options, and use it in lieu of the official close price during tests.

We first estimate option-implicit bank account values using unsynchronized prices S0

and put-call parity Fτ
0 −K0 = Bτ

0(C
c
0−Cp

0 ), where Cp
0 and Cc

0 are respectively a put and

call mid-quote,

Bτ
0(K0) =

K0

(S0−Dτ
0)− (Cc

0−Cp
0 )

. (2.1)

This procedure is common in the literature; see e.g. Jackwerth and Rubinstein (1996),

Ait-Sahalia and Lo (1998), or Buraschi and Jackwerth (2001). For all maturities, we

estimate a single option-implicit bank account B̂τ
0 as the median of all near-the-money

(NTM) evaluations of Eq. (2.1)1. We also introduce B̃τ
0 the value at time τ of one dollar

invested at time 0 in U.S. Treasury instruments2.

Table 2.1 presents descriptive statistics for total interest rates defined as logarithms

of bank account values. More precisely, implicit rates (IR) and risk-free rates (RFR) are

respectively given by log(B̂τ
0) and log(B̃τ

0).

IRs generally follow RFRs over the period, with a sustained hike from the mid-2000s

to the banking crisis and a strong subsequent drop. Biases between IR and RFR, computed

as the median of IR−RFR, are typically within±4 bps, with the exception of longer-term

1 More precisely, B̂τ
0 is computed as a median over all options such that K/((S0−Dτ

0)B̃
τ
0)∈ [0.95,1.05],

where B̃τ
0 acts as a preliminary bank account estimate and is defined hereinafter. Quotes with no bid price

or with a bid price greater than its ask price are excluded from computations. If B̂τ
0 can not be computed for

a given maturity, we linearly interpolate or horizontally extrapolate annual implicit rates log(B̂τ
0)×252/τ .

We interpolate for 212 estimates over a total of 45,721; 108 out of these were linear extrapolations.
2 B̃τ

0 is inferred from the zero-coupon yield curve provided by OptionMetrics. We linearly interpolate
or horizontally extrapolate the curve and use an “actual over 365” day-count convention with continuous
compounding, i.e. B̃τ

0 = exp((r(τ̃)× τ̃)/(100×365)) where r(τ̃) is the extrapolated interest rate at τ̃ and τ̃

is the number of calendar days corresponding to τ trading days.
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Table 2.1: Descriptive statistics of option-implicit and risk-free total rates by subsample and
TDM. The first two columns show the median (Med) and median absolute deviation (MAD) of
IR−RFR where IR and RFR are respectively given by log(B̂τ

0) and log(B̃τ
0). The last column

(X-MAD) is the MAD of log(Bτ
0(K0))− log(B̂τ

0) across strike prices. All values are presented in
bps.

IR−RFR IR
TDM (τ) Subsample Med MAD X-MAD

[0.0,10.0)

2002−2004 2.83 9.47 1.65
2005−2007 1.93 5.93 0.95
2008−2011 -0.44 3.85 1.33
2012−2014 0.00 3.26 0.94

[10.0,31.0)

2002−2004 0.95 9.29 1.52
2005−2007 0.39 6.36 0.99
2008−2011 -0.91 4.16 1.64
2012−2014 0.94 3.42 1.04

[31.0,63.0)

2002−2004 0.54 9.34 1.58
2005−2007 -0.17 6.50 0.81
2008−2011 -2.07 5.20 1.68
2012−2014 3.34 4.02 1.36

[63.0,252.5)

2002−2004 2.77 10.15 1.91
2005−2007 0.31 7.46 1.19
2008−2011 -3.88 7.61 2.35
2012−2014 13.19 8.80 2.46

options having a bias above 10 bps towards the end of the sample. Dispersions in IR and

RFR differences, computed as the median absolute deviation (MAD) of IR−RFR, range

from roughly 3 to 10 bps.

The last column (X-MAD) shows cross-sectional dispersions in option-implicit bank

account estimates i.e. across strikes. Corresponding values are typically well below 3 bps,

suggesting put-call parity holds tightly for any given maturity.

The partial derivative of IR with respect to log(S0) converges to one for ATM options

approaching maturity3. The underlying spot price is thus the overwhelming source of IR

errors for short-term NTM options, with a 1% error in S0 roughly resulting in a 1% error

in option-implicit bank account value. We hence expect intercepts in IR term structure to

3 The partial derivative is given by S0/((S0−Dτ
0)− (Cc

0−Cp
0 )), where, by definition, Cc

0−Cp
0 = 0 for

ATM options and Dτ
0 = 0 when τ = 0.
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be informative of synchronization issues.

For example, the top panel of Figure 2.1 displays an extreme manifestation of this

effect on 29-Sept-2008, a highly volatile day following the bankruptcy of Lehman Broth-

ers. From 4:00PM to 4:15PM, the index increased by roughly 2%, consistent with the

observed gap in term structure between IRs and RFRs. We inspected several other days

in late 2008 with large market variations in the last minutes of trading and observed con-

sistent gaps. The bottom panel of Figure 2.1 shows a large difference in slope between IR

and RFR term structures. This observation is typical for the last two years of our sample

and consistent with previously reported biases for long-term maturities.

Figure 2.1: Total implicit (IR) and risk-free (RFR) rates for all available maturities below 252
TDM on 29-Sept-2008 and 30-Sept-2013. Solid lines represent the estimated regression equation
(2.2).

We perform the following regression on a daily basis for expirations with less than

252 TDM,

log(b) = β10τ +β01x+β11xτ +β20τ
2 + ε, (2.2)

where x is 1 or 0 whether b is respectively given by the option-implicit B̂τ
0 or the U.S.

Treasury B̃τ
0 bank account and ε is a white noise. On any given day, β̂01 is interpreted as

the synchronization error and β̂11 as the difference in IR and RFR slopes.
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Resulting R2 values are always above 0.9 and have a sample mean of 0.997. Table

2.2 presents yearly statistics for β̂01 and β̂11. Average IR intercept β̂01 is typically be-

low 2 bps in absolute value. Slope differences β̂11 display significantly more persistence

than β̂01, with auto-correlations often above 0.60. These results are consistent with in-

tercepts capturing transient and unbiased measurement errors in S0, but slope differences

capturing persistent effects which could be economically significant, e.g. related to the

relative ability of an agent to finance short- versus long-term option strategies. Overall,

our two-factor characterization of option-implicit and U.S. Treasury rates appears well

specified.

Table 2.2: Descriptive statistics of estimated parameters β01 and β11 for the regression equation
(2.2). Avg(Std) is a sample mean(standard deviation) over daily observations. AC is the corre-
sponding one-lag autocorrelation. We convert β̂01 to bps and β̂11 to annualized bps according to
respectively 10000× β̂01 and 252×10000× β̂11.

β̂01 β̂11
Year Avg Std AC Avg Std AC

2002 0.86 20.70 0.08 6.68 8.88 0.56
2003 1.54 14.12 0.13 7.04 8.52 0.85
2004 -0.92 11.82 -0.00 1.69 4.76 0.71
2005 -1.46 10.05 0.20 -1.82 4.41 0.40
2006 -0.36 10.26 0.11 -2.73 6.80 0.72
2007 -0.25 13.87 0.10 6.64 6.91 0.70
2008 2.60 22.28 0.24 -7.28 23.00 0.93
2009 -3.57 8.76 0.08 -6.39 13.49 0.91
2010 -0.52 5.49 0.09 -5.12 9.97 0.73
2011 -1.08 9.13 0.15 3.97 6.26 0.62
2012 -0.50 5.75 0.02 8.51 8.63 0.58
2013 -1.70 5.64 0.14 36.73 7.34 0.78
2014 -0.86 5.49 0.34 33.36 6.13 0.74

Finally, the synchronized underlying value is given by,

Ŝ?0 = S0eβ̂01 . (2.3)

This last expression arises when evaluating Eq. (1.1) at time 0, i.e. F0
0 = (S0−D0

0)B
0
0,

with B0
0 estimated according to Eq. (2.2) for the option-implicit bank account i.e. in the

case x = 1.
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Following manual inspections, the proposed regression successfully identifies days

with large index variations in the last minutes of trading throughout our sample. In par-

ticular, the procedure appears most relevant prior to 2008, as OptionMetrics improved its

sampling methodology in following years. Figure 2.2 still shows large occasional cor-

rections after 2008 e.g. during the U.S. debt crisis in late 2011. This last observation is

consistent with synchronization issues being more problematic during volatile periods.

Overall, observations suggest persisting benefits to relaxing market integration assump-

tions and inferring underlying spot prices from option cross-sections.

Figure 2.2: Daily time series of β̂01 in bps from regression equation (2.2). We truncated 29-
Sept-2008 (207bps). The dashed vertical line marks 5-Mar-2008, the day on which OptionMetrics
implemented significant improvements to its sampling methodology.

2.3 Option data reduction

Distributional properties of hedged option returns most likely depend on moneyness and

maturity. For example, Bakshi and Kapadia (2003) show the hedged option premium

is maximized for ATM options under stochastic volatility models. Branger and Schlag

(2008) extend the characterization of hedged option returns to models with jumps and to

discrete-time portfolio revisions. Controlling for moneyness and maturity factors during

tests is complicated by daily changes in contract availability, e.g. as markets move, as

CBOE adds new strike prices or expiration types, or simply as time passes.

Some papers focus on a single option contract closest to a moneyness-maturity tar-

get; see e.g. Buraschi and Jackwerth (2001), Coval and Shumway (2001), or Driessen
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and Maenhout (2007). To mitigate data rejections, other papers aggregate options falling

within a given moneyness-maturity interval; see e.g. Bakshi et al. (1997). Finally, some

authors advocate interpolating option prices. For example, Broadie et al. (2007) argue in-

terpolation is a “pragmatic compromise, as it uses nearly all of the information in the cross

section of option prices without, in [their] opinion, introducing any substantive biases”.

We stand by this opinion. Using best bid and ask prices provided by OptionMetrics, our

goal is to build a daily set of arbitrage-free pricing surfaces.

While our test relies on interest rate realizations, a similar assumption here would

create spurious arbitrage opportunities, leading to unwarranted arbitrage-based data re-

jections and awkward bends in calibrated pricing surfaces. These effects are most prob-

lematic for long-term deeply ITM options. During the option data reduction only, forward

contracts are evaluated using an unsynchronized underlying S0 and a put-call parity-based

bank account B̂τ
0 defined in Section 2.2. This approach corrects for possible synchro-

nization issues, while reflecting interest rate expectations as conveyed by option market

prices4.

Next, we present the raw dataset, extract mid-quotes deemed as sufficiently efficient

estimators of market-clearing prices, mitigate induced sparsity by applying put-call parity

and finally calibrate surfaces to processed mid-quotes.

2.3.1 Dataset

We register an option observation at (τ,k0) on any trading day if at least a put or a call

quote appears in the raw dataset provided by OptionMetrics. We reject 17 official trading

days due to missing data entries in the Oxford-Man Institute’s realized library (Heber

et al., 2009), presumably due to the poor quality of corresponding intradaily data. We

retrieve roughly 2.7M observations distributed unevenly over 3,256 trading days from

2002 to 2014, with cross-section presented in Table 2.3. We refer to this set as the set of

daily option quotes. This is not to be confused with the set of distinct option contracts,

4 We experimented with various discounting schemes for dividends in Eq. (1.1), including no discount-
ing, and found no material impact on results.
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containing roughly 40,674 put and 40,674 call contracts, each with a life ranging from a

few days to a few years.
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Table 2.3: Number of daily option quotes by TDM (τ), subsample, and moneyness (k0).

k0
TDM (τ) Subsample < 0.925 [0.925,0.975) [0.975,1.025) [1.025,1.075) ≥ 1.075 Total

[0.0,10.0)

2002−2004 5,627 2,361 2,784 2,031 4,243

324,613
2005−2007 10,485 4,976 6,161 3,820 2,482
2008−2011 41,964 10,261 10,915 9,173 21,830
2012−2014 100,543 25,853 25,826 21,051 12,227

[10.0,31.0)

2002−2004 11,584 4,280 5,561 4,202 8,862

614,939
2005−2007 23,236 9,661 10,123 8,700 5,535
2008−2011 81,297 12,711 12,996 12,933 44,762
2012−2014 197,659 46,044 46,174 40,662 27,957

[31.0,63.0)

2002−2004 14,375 3,426 4,520 3,745 11,624

591,927
2005−2007 22,652 8,166 11,077 8,058 5,663
2008−2011 94,111 15,252 15,893 15,582 54,081
2012−2014 178,038 31,949 32,573 30,102 31,040

[63.0,252.5)

2002−2004 27,478 5,333 5,558 5,859 29,064

789,566
2005−2007 43,441 9,948 9,513 7,324 12,823
2008−2011 123,313 16,827 17,480 16,959 102,784
2012−2014 220,409 24,091 25,171 24,628 61,563

≥ 252.5

2002−2004 13,851 2,843 2,845 2,290 13,346

380,879
2005−2007 27,701 4,823 3,913 3,158 8,859
2008−2011 60,778 5,906 6,071 5,979 51,219
2012−2014 100,835 8,608 8,919 8,583 40,352

Total 1,399,377 253,319 264,073 234,839 550,316 2,701,924
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Table 2.4 shows daily cross-sections have greatly evolved over the years, with the

daily number of (τ,k0) pairs increasing from 250 in 2002 to 3000 in late 2014. In fact,

more than 50% of all quotes are observed during the last three years of the sample.

Table 2.4: Yearly sum (Total) and median (Daily) of number of daily option quotes.

Year Total Daily

2002 64,861 253
2003 64,412 259
2004 68,419 275
2005 74,795 296
2006 85,300 337
2007 112,203 439
2008 154,819 580
2009 214,588 848
2010 235,818 939
2011 255,852 1,015
2012 324,930 1,298
2013 411,492 1,644
2014 634,435 2,345

Total 2,701,924 -

We now give a brief overview of extensions made to the listing by CBOE. When

appropriate, we refer to a CBOE Regulatory or Information Circular identification number

as respectively (RCXX-XXX) or (ICXX-XXX).

Table 2.5 shows the bulk of the dataset is composed of traditional expirations which

settle on the third Friday of each month. On any given trading day, there is a minimum

of three consecutive near-term traditional expirations and a total of six concurrent tradi-

tional expirations. By the end of 2007, the number of consecutive near-term traditional

expirations increased by one, for a total of up to seven (IC07-204).

CBOE gradually introduced new expiration types to complement traditional expira-

tions. Quarterly and end-of-month expirations were respectively introduced on 21-Feb-

2007 (IC07-013) and 07-Jul-2014 (RG14-081), with four concurrent expirations each.

Long Term Equity Anticipation Securities (LEAPs) offer longer-term maturities, typi-

cally ranging from one to three years. They are eventually converted back into traditional
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Table 2.5: Daily number of expirations and strike prices by expiration type. The typical number of
expirations (nExp) and number of strike prices per expiration (nStr) are computed as respectively
a mode and median. Since end-of-month expirations only appear at the very end of our sample,
they were omitted.

Traditional Weekly Quarterly LEAP
Year nExp nStr nExp nStr nExp nStr nExp nStr

2002 6 34 0 - 0 - 2 25
2003 6 33 0 - 0 - 2 25
2004 6 34 0 - 0 - 2 23
2005 6 36 0 5 0 - 2 25
2006 6 43 1 5 0 - 3 20
2007 6 44 1 7 4 12 3 23
2008 7 55 1 7 4 12 3 29
2009 7 78 1 15 4 28 3 48
2010 7 81 1 15 4 26 3 50
2011 7 85 1 45 4 31 3 51
2012 7 85 4 67 4 44 3 53
2013 7 92 4 85 4 51 3 63
2014 7 84 6 123 4 54 4 75

expirations as they come to maturity. At least two LEAP expirations maturing in two

years or less are available on any given trading day. A third LEAP expiration with a

maturity of at least two years was added in late 2005.

The Short-Term Option Series Program introduced weekly expirations on 28-Oct-

2005. It was initially limited to a single concurrent expiration with five strike prices and

a contract duration of one week (IC05-138). This program was later replaced by the End-

of-Week Expirations Program on 02-Dec-2010 (IC10-174, RG10-112), which increased

weekly contract duration. On 31-May-2012 (RG12-066) and 30-Jan-2014 (RG14-010),

CBOE added respectively five and eight consecutive near-term expiration weeks.

For traditional expirations, the settlement value is computed from an underlying open-

ing price. All other expirations, with the exception of weekly expirations before 02-Dec-

2010, are settled at the close price. For options settling on market open, we adjust τ by

subtracting 0.5, i.e. with τ ∈ {0,0.5,1,1.5, . . .}.

Table 2.5 also presents the typical number of strike prices by expiration type. From
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2002 to 2014, CBOE increased by a little less than three times the number of strike prices

for traditional expirations. Corresponding changes for weeklys are even more dramatic,

from five strike prices to over a hundred. CBOE further adds strike prices as a given

expiration approaches maturity; e.g. we observe more than 150 strike prices for the front-

month expiration after 2012 (not shown), nearly double the corresponding median over

all traditional expirations5.

The first two columns of Table 2.6 show typical moneyness ranges for front-month ex-

pirations. Upward jumps in maximum moneyness during the banking crisis are explained

by a decrease in index levels. In contrast, CBOE lowered the minimum strike price from

around 700 index points before the crisis to 200 by late 2008. To this day, CBOE main-

tains extremely low strike prices with moneyness as low as 5%. The last column shows

the number of NTM options. Since 2005, all NTM options have a constant strike price in-

terval of five index points, the smallest allowed by CBOE. Reported variations are hence

driven by fluctuations in index levels.

Overall, the typical number of available expirations sustained a three-fold increase

from 8 in 2002 to 25 in 2014. The quality of strike price listings has also improved

over the years in terms of moneyness, with more NTM contracts and lower levels of

moneyness, as a consequence of both the direct involvement of CBOE and index levels

increasing.

5 The front-month expiration is defined as the first traditional expiration coming to maturity.
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Table 2.6: Strike price coverage for front-month expirations, i.e. the first traditional expiration
coming to maturity. The typical available moneyness range (Min & Max) and the daily number of
NTM options (N) are both computed as the median of daily data. NTM options are characterized
by k0 ∈ [0.95,1.05].

Moneyness NTM
Year Min Max N

2002 0.67 1.49 12
2003 0.60 1.33 15
2004 0.46 1.30 21
2005 0.43 1.21 24
2006 0.56 1.16 26
2007 0.54 1.14 29
2008 0.52 1.46 26
2009 0.22 1.60 19
2010 0.19 1.38 23
2011 0.12 1.50 26
2012 0.11 1.33 28
2013 0.06 1.28 33
2014 0.27 1.24 39

2.3.2 Preliminary processing

As opposed to transaction data, quote data allow for synchronized cross-sectional ob-

servations at the cost of uncertainty in clearing prices. A small percentage of option

transactions even occurs outside bid and ask prices. Mid-quotes acting as estimators of

market-clearing prices are subject to cross-sectional heteroskedasticity due to variation in

market making costs; see e.g. George and Longstaff (1993). Possibly worse, mid-quotes

may be biased over moneyness-maturity areas with extremely low trading activity, lead-

ing to cross-sectional correlation. For example, deeply OTM options often have no bid

price or the same ask price for multiple contracts of a given expiration.

The calibration of pricing surfaces (to come) —while robust to sparsity— is not robust

to cross-sectional heteroskedasticity nor correlation. We hence calibrate pricing surfaces

using exclusively mid-quotes deemed as sufficiently efficient estimators of clearing prices,

a property which we loosely refer to as liquidity.
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To do so, we filter the dataset according to how traders perceive liquidity in practice,

namely by their ability to convert put-call quote pairs into a single B&S implicit volatility

parameter (IV), defined as the σ parameter solving the B&S pricing equation for a given

market price. Our goal is to attain a reasonable trade-off between biases of retained mid-

quotes and moneyness-maturity sparsity induced by data filters.

We apply three filters sequentially:

I Routine Filter; We discard all expirations with τ /∈ [1.5,252.5) and reject quotes

with a bid or ask price lower than or equal to zero and/or with a bid price greater

than its ask price.

II Bid-Ask IV Spread Filter; First, we reject all options for which either the bid or ask

price may not be converted to IV. Second, we discard options for which IVb
0 and/or

IVa
0 do not fall into [5%,100%], where IVb

0 and IVa
0 are respectively the annualized

IV computed from a bid and ask option price. Third, we reject quotes for which

the relative bid-ask IV spread (IVa
0− IVb

0)/δ0 is greater than 2, where δ0 is the 21

TDM NTM bid-ask IV spread6.

III Put-Call IV Difference Filter; We first fit a piecewise quadratic polynomial on OTM

IVs (from both put and call options) for each expiration; as described in Appendix

B of Broadie et al. (2007). We then compute the historical median and MAD of

relative calibration errors for different moneyness-maturity intervals. We use the

intervals shown in Table 2.3. For each interval, we reject put and call options —

including ITM options— which have a relative IV error falling outside the median

plus or minus five MADs.

The preliminary maturity upper bound filter is motivated by the focus of empirical

tests on one to three months-to-maturity options. The lower bound is motivated by issues
6 We first compute the median of (IVa

0 − IVb
0) over NTM options for the front- and back-month

expirations using both put and call options, denoted respectively by δFM and δBM. The back-month
expiration is defined as the second traditional expiration coming to maturity. We then let δ0 =
(τBM−21)/(τBM− τFM)δFM + (21− τFM)/(τBM− τFM)δBM, where τFM(τBM) is the TDM for the front-
(back-)month.
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in computing IVs for options coming to maturity.

By relying on bid and ask IVs, the second filter implicitly censors all quotes for which

either the bid and/or ask price do not respect usual arbitrage bounds; see e.g. Manaster and

Koehler (1982). We then discard options with large bid-ask IV spreads (IVa
0− IVb

0). This

spread is approximated to the first order by (ca
0− cb

0)/vega, where ca
0(cb

0) is a normalized

ask(bid) option price and vega is the partial derivative of B&S prices with respect to the

volatility parameter; see e.g. Hentschel (2003).

Over moneyness, vega is bell-shaped, centered close to one, and more peaked for

short-term maturities. As we move away-from-the-money and closer-to-maturity, the cu-

mulative effect of larger observed bid-ask spreads and lower vega generates extreme IV

uncertainty. Resulting rejection patterns are hence cone-shaped over moneyness-maturity,

with tighter retained moneyness ranges for shorter-term maturities. For example, this is

in line with the intuition that an OTM put option with k0 = 0.95 is more liquid for a

three months-to-maturity expiration than for a one week-to-maturity expiration, as the

probability of ending ITM is almost zero for the latter.

Cross-sections of bid-ask IV spreads are normalized by δ0 to avoid rejection trends

coming from long-run liquidity levels. In fact, rejection rates slightly decreased during

the last banking crisis due to volatility levels increasing and vega being less peaked, even

though liquidity decreased and bid-ask spreads increased (not shown). This is consistent

with far-away-from-the-money options containing more valuable IV information when

prevailing volatility levels are high.

The third filter is intended to control for two types of faulty observations. First, large

calibration errors are treated as outliers —e.g. due to data entry errors— and are rejected

similarly to Constantinides et al. (2013). Put and call options with the same strike price

and maturity theoretically share the same IV7. The ability to communicate the prices

of both a put and a call option using a single IV is presumably an important factor of

perceived liquidity. Second, we hence discard ITM call(put) options for which IVs sig-

7. Under B&S, put-call parity can be written as (1− k) = (N(dc
+)+N(−dp

+))− k(N(dc
−)+N(−dp

−)),
where values with superscript p(c) are computed from the put(call) volatility parameter.
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nificantly diverge from their OTM put(call) counterparts. This is implicitly achieved by

quadratic polynomials being fitted to OTM options only, but being used to reject both

OTM and ITM options.

Figure 2.3 shows a typical application on call options of proposed filters for two expi-

rations. We readily see bid-ask IV spreads (delimited by light-gray areas) widening as we

move away-from-the-money. This effect is much more aggressive for the short-term ma-

turity in the left tail, resulting in systematic rejections for k0 < 0.96 by the second filter;

see the left side of the top panel. The third filter rejects five nonconsecutive quotes for the

short-term maturity and a NTM quote for the mid-term maturity, due to sampling anoma-

lies. The third filter further rejects three consecutive deeply ITM quotes for the mid-term

maturity, due to biased mid-quotes being exposed by strong put and call IV differences.

Figure 2.3: Typical pattern for filter II and III in the IV space for call options (22-Apr-
2005). Solid lines are the quadratic polynomials fitted on OTM options only. Light-gray
areas represent IVs bid-ask spreads, i.e. with upper bound IVa

0 and lower bound IVb
0.

Markers indicate IV at mid-quotes.

Table 2.7 shows resulting rejections throughout the period for each filter. The pre-

liminary maturity filter censors roughly 1/6 of all options, mostly LEAP contracts. The

majority of erroneous quotes reported in the second row occurred for deeply OTM options

due to missing bid prices.
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The significant put-call difference for the second filter is explained by the higher num-

ber of contracts available in the left tail (i.e. k0 � 1) and the IV transformation failing

significantly more often for deeply ITM calls than for deeply OTM puts; see third row.

This last effect is mostly due to lower arbitrage bound violations by bid prices.

The third filter rejects equal proportions of ITM and OTM options for shorter-term

maturities, but significantly more ITM options than OTM options for longer-term matu-

rities (not shown). This is consistent with the third filter capturing sampling anomalies

that are equally likely over the moneyness-maturity plane, but also mid-quote biases that

are particularly strong for long-term ITM options. Both issues are relatively small, as

evidenced by a rejection rate of roughly 3% for both put and call options; see sixth row.

Table 2.7: Number of censored quotes (Censored) and corresponding rate of rejection (%) from
sequentially applying filters (I,II and III) to put and call options. We start with 2,701,924 raw
observations for both put and call options.

Put Options Call Options
# Filter Censored % Censored %

I
τ < 1.5 or τ ≥ 252.5 455,428 16.1 455,428 16.1
Erroneous or no bid 263,676 9.3 186,692 6.6

II
No IVb

0 or IVa
0 360,353 12.8 705,633 25.0

IVa,b
0 ≤ 5% or ≥ 100% 2,856 0.1 5,681 0.2
(IVa

0− IVb
0)/δ ≥ 2 427,442 15.1 441,218 15.6

III 5-MADs from OTM IV 91,485 3.2 82,880 2.9

Total 1,601,240 56.7 1,877,532 66.5

Table 2.8 displays cross-sectional rejection rates by subsample. We readily confirm

anticipated cone-shaped rejection patterns and further note a slight asymmetry, i.e. with

ITM options being rejected more often than OTM options. Rejection rates for OTM put

options with k0 ∈ [0.925,0.975) and more than 10 TDM are always below 7%.

As a final step before the calibration of surfaces, we mitigate induced sparsity by en-

forcing put-call parity and replacing rejected put mid-quotes by cp?
0 = cc

0−(1−k0), where

cc
0 is a retained call mid-quote. Data imputation is performed only if a put-call parity-
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based price c?0 falls within initial bid and ask prices, i.e. cp?
0 ∈ [cpb

0 ,cpa
0 ] where cpb

0 (cpa
0 )

are bid(ask) put prices. We proceed similarly for rejected call mid-quotes according to

cc?
0 = cp

0 +(1− k0).

Over a total of 240,741(515,744) possible data imputations for put(call) options, only

4,628(6,387) were discarded due to put-call parity-based prices falling outside initial bid

and ask prices. Such a high imputation rate suggests data filters capture biases in mid-

quotes, as opposed to genuine arbitrage opportunities. For example, differences in put-call

IVs captured by the third filter can not be arbitraged using put-call parity in practice.

Overall, the final number of processed mid-quotes is very close for put and call op-

tions, with a total retention of roughly 51.8% for both. The data imputation procedure

hence succeeds at mitigating asymmetric rejection patterns; surface estimators for put

and call options should behave similarly. While the final retention rate may seem low,

the procedure retains more than 95% of put contracts for moneyness-maturity intervals

considered in tests, namely τ ∈ [21,63] and k0 ∈ [0.9,1]), in more than 90% of trading

days.

When one is concerned with liquid option quotes, the proposed filtering methodol-

ogy formalizes ad hoc rejection schemes classically found in the literature. First, static

rectangular filters (e.g. as used by Dumas et al. (1998)) are often motivated by liquidity

considerations, but fail to adapt to time variations in cross-sectional liquidity patterns.

Second, our procedure acts as a data-driven alternative to the systematic imputation of

all ITM options e.g. as performed by Ait-Sahalia and Lo (1998). Third, data imputation

mitigates arbitrage-based rejections in the spirit of Bakshi et al. (1997). Such rejections

are unwarranted when surface estimators already non-trivially correct for arbitrage op-

portunities present in the dataset e.g. as noted by Ait-Sahalia and Duarte (2003). Finally,

we abstain from filtering negative option-implicit interest rates e.g. as performed by Con-

stantinides et al. (2013). Corresponding options indeed contain valuable information once

synchronization issues have been mitigated.
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Table 2.8: Percentage rejection rates by TDM (τ), subsample, and moneyness (k0). Panels for
τ ≥ 252.5 (not shown) are systematically equal to 100% due to the routine filter (I).

k0
TDM (τ) Subsample < 0.925 [0.925,0.975) [0.975,1.025) [1.025,1.075) ≥ 1.075

Put Options

[0.0,10.0)

2002−2004 88.0 39.7 38.1 97.8 100.0
2005−2007 94.4 54.7 51.0 99.7 100.0
2008−2011 82.2 34.6 46.8 96.6 99.9
2012−2014 86.3 34.5 47.4 100.0 100.0

[10.0,31.0)

2002−2004 56.0 3.1 4.5 57.8 96.9
2005−2007 68.4 6.8 11.3 82.4 99.5
2008−2011 62.8 4.0 4.9 48.6 95.7
2012−2014 60.6 2.7 10.0 89.6 100.0

[31.0,63.0)

2002−2004 39.9 2.4 3.7 11.3 86.6
2005−2007 47.7 3.1 3.8 40.2 94.0
2008−2011 44.9 2.5 3.0 12.4 82.9
2012−2014 51.7 3.2 4.5 53.1 98.9

[63.0,252.5)

2002−2004 13.9 2.2 3.3 2.9 66.0
2005−2007 27.3 4.5 3.8 8.1 55.4
2008−2011 31.3 5.8 4.0 4.4 65.8
2012−2014 43.4 4.4 3.7 14.9 75.9

Call Options

[0.0,10.0)

2002−2004 100.0 97.9 38.6 42.0 93.7
2005−2007 100.0 99.4 51.4 58.9 96.5
2008−2011 99.9 95.4 44.0 37.9 87.6
2012−2014 100.0 99.5 46.0 49.2 95.2

[10.0,31.0)

2002−2004 96.6 51.9 3.4 5.3 74.3
2005−2007 97.9 68.8 9.7 20.7 75.8
2008−2011 95.3 33.5 3.5 4.7 64.0
2012−2014 99.9 67.9 8.3 16.8 75.9

[31.0,63.0)

2002−2004 82.0 4.2 2.7 1.7 58.5
2005−2007 89.4 13.8 3.5 8.3 58.7
2008−2011 81.7 4.9 2.6 2.2 50.0
2012−2014 96.7 20.7 3.8 7.2 61.3

[63.0,252.5)

2002−2004 50.7 3.1 1.9 1.3 33.9
2005−2007 58.9 3.3 3.4 5.1 21.2
2008−2011 61.6 6.2 3.7 3.0 37.5
2012−2014 83.8 7.9 3.2 3.9 29.4
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2.3.3 Surface calibration

Bates (1991, 2000) fits unidimensional splines on moneyness slices during tests. Our

purpose is to extend the empirical methodology to bivariate splines in order to further

control for the maturity factor. Maturity extrapolation dramatically increases sample size.

For example, one-month-to-maturity options are estimated on a daily basis, rather than

observed once a month (for traditional expirations).

We do so under arbitrage constraints to ensure calibrated surfaces may reasonably be

interpreted as simultaneous and rational market-clearing prices over the entire moneyness-

maturity plane. More precisely, we estimate arbitrage-free bivariate tensor-product B-

splines on processed mid-quotes. We follow Fengler and Hin (2015), who provide rele-

vant asymptotic results and numerical simulations. We slightly adapt their estimator by

fixing pricing surfaces to the payoff at τ = 08. The resulting estimator yields prices for

options coming to maturity, required for the implementation of model-free delta-hedging

strategies until maturity.

Regarding spline knot selection, we find daily guided knot searches generate highly

volatile knot sets, ultimately leading to jagged time series. Consistently, Fengler and

Hin (2015) find guided searches in the spirit of Zhou and Shen (2001) are unstable and

often break down early. When delta-hedging, daily price instability leads to unwarranted

portfolio revisions and excessive transaction costs. We thus use a single fixed set of

moneyness and maturity knots, with knot density matching the expected convexity of the

option pricing operator9.

Finally, we retrieve surfaces under the original pricing scale,

Ĉ0(Fτ
0 ,B

τ
0,K0,τ) = ĉ0(k0,τ)Fτ

0 /Bτ
0,

8 Following the notation of Fengler and Hin (2015), we let ν0 = . . .= νp2 = 0 and perform the quadratic
optimization under the additional constraint θ j1,0 = (ξ ∗j1−1,0)+ for puts, and similarly for calls θ j1,0 = (1−
ξ ∗j1 ,0)

+, for j1 = {0, . . . ,q1}. To accommodate the discontinuity in first derivative, we consider moneyness
knot sequences of the form x= ξ0 = . . .= ξp1 < ξp1+1 < .. . < ξp1+k = . . .= ξ2p1+k−1 < .. . < ξq1 < ξq1+1 =
. . .= ξq1+p1+1 = x̄ with k > 0, ξp1+k = 1 and q1 > 2p1.

9 We consider 20 moneyness knots distributed quadratically and concentrated at k0 = 1. TDM knots
are fixed at critical horizons, namely {0,10,21,63,126,252}. Average of daily AICs is -15.08(-15.37) for
put(call) options, only slightly worse than the optimal AIC of -16.72 on 1-Dec-2010 reported by Fengler
and Hin (2015).
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where ĉ0(k0,τ) is a calibrated surface, K0 = k0Fτ
0 , and (Fτ

0 ,B
τ
0) is computed for all rel-

evant TDMs by linearly interpolating or horizontally extrapolating annualized option-

implicit interest rates, i.e. log(B̂τ
0)×252/τ .

Overall, the data reduction procedure summarizes 2.7M scattered raw quote observa-

tions from 2002 to 2014 into roughly 0.8M spline coefficients which are neatly organized

over a fixed moneyness-maturity grid. Figure 2.4 shows a typical pricing surface. The

observed non-monotonicity along τ for deeply ITM put options is a consequence of the

de-normalization procedure from ĉ0 to Ĉ0; normalized ĉ0 surfaces always respect static

arbitrage constraints, including monotonicity along τ . Interpolated price time series (not

shown) reflect genuine —not overly jagged nor biased— changes in option market con-

ditions. For example, the correlation between one-month-to-maturity ATM ĉ0 prices and

the VIX index is 0.994.

Figure 2.4: Typical put pricing surface (22-Nov-2006). Markers represent available S&P
500 option mid-quotes constrained over K0 ∈ [1200,1500] and τ ∈ [10,207] for clarity.
The official S&P 500 close value was 1406.09.

Table 2.9 presents medians and MADs of bid-ask deviations defined as −1+2 Ĉ0−Cb
0

Ca
0−Cb

0
,

where (Cb
0 ,C

a
0) are respectively bid and ask prices. A bid-ask deviation is -100%, 0% or
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100% when Ĉ0 corresponds to respectively the bid, mid or ask price. Since corresponding

statistics are computed over the raw dataset (as opposed to the processed dataset), devia-

tions allow us to assess mid-quote biases in areas where minimum liquidity requirements

were not met. We find mid-quotes for OTM options usually underestimate clearing prices,

as evidenced by positive bid-ask deviations. This is consistent with corresponding quotes

often having no bid (i.e. a bid price of zero), in which case transactions are more likely

to occur closer to the ask price. Interestingly, mid-quotes for deeply OTM call options

appear to overestimate clearing prices.

For put options, the mean bid-ask deviation is 1.63% and the standard deviation is

34.25% over moneyness-maturity intervals considered during tests (not shown). Cali-

brated put surfaces hence act as economically relevant representations of prices over in-

tervals of interest. Regarding call options, surface fit quickly degrades as we approach

k0 = 1.1, as evidenced by MADs above 50%. In intervals of interest, roughly 21% of cal-

ibrated call prices fall outside bid-ask prices, as opposed to only 2% for put options. The

corresponding mean bid-ask deviation for call options is 36.73% and the standard devia-

tion is 127.97%. Overall, surface fits appear consistent with most common presumptions

regarding S&P 500 index option liquidity, such as deeply OTM call options being less

liquid than deeply OTM put options.

The semi-parametric approach of Fengler and Hin (2015) provides flexibility in cap-

turing cross-sectional features. Strong shape restrictions from arbitrage constraints im-

prove efficiency and mitigate over-fitting concerns often associated to nonparametric ap-

proaches. Competing maturity extrapolation approaches mostly apply the forward equa-

tion of Dupire (1994) under daily recalibrations of local variance functions. While semi-

parametric in nature, these approaches react badly to the presence of arbitrage opportu-

nities in the dataset. For example, Kahalé (2004) presupposes cross-sections are already

free of arbitrage opportunities. Non-trivial corrections proposed by Andreasen and Huge

(2011) are more or less severe on short-term options depending on the choice of a for-

ward or backward resolution algorithm. Bachem et al. (2013) propose a global correction

scheme that overcomes the presence of arbitrage opportunities in a non-trivial fashion.
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Other approaches interpolate IVs instead of prices, motivated by the fact IVs are typ-

ically less convex and have a more regular scale than prices, a feature first exploited by

Shimko (1993). The relevant dataset is even provided by OptionMetrics. The IV trans-

formation, however, introduces non-linearity in the formulation of arbitrage constraints.

While Gatheral and Jacquier (2014) propose a valid arbitrage-free parameterization of

IVs, arbitrage-free and semi-parametric IV surface estimators have yet to be proposed in

the literature. To our knowledge, Fengler and Hin (2015) are the first and only to show

efficiency gains from imposing arbitrage constraints to option prices in both moneyness

and maturity in a semi-parametric setting.
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Table 2.9: Medians of bid-ask deviations, i.e.−1+2 Ĉ0−Cb
0

Ca
0−Cb

0
, for calibrated S&P 500 option

pricing surfaces by TDM (τ), moneyness (k0) and subsample. Corresponding MADs are
given in parentheses. All numbers are presented in percent.

Moneyness (k0)
TDM(τ) Subsample < 0.925 [0.925,0.975) [0.975,1.025) [1.025,1.075) ≥ 1.075

Put Options (%)

[0.0,10.0)

2002−2004 34(69) 6(40) 8(28) 9(11) -2(19)
2005−2007 14(72) 1(55) 25(39) 5(9) -1(11)
2008−2011 21(75) 21(57) 8(38) 15(14) 2(11)
2012−2014 46(75) 15(87) 21(53) 6(10) -1(9)

[10.0,31.0)

2002−2004 27(50) 0(16) -1(11) 10(13) 3(21)
2005−2007 25(45) -1(16) -2(18) 28(18) 8(17)
2008−2011 16(35) -1(10) -1(10) 9(16) 6(14)
2012−2014 19(45) -1(32) -3(38) 20(17) 1(11)

[31.0,63.0)

2002−2004 4.7(22) 0(8) 1(6) -2(10) 4(23)
2005−2007 8(22) 0(8) 0(11) 20(27) 23(21)
2008−2011 3(13) 1(6) 2(8) -4(12) 10(17)
2012−2014 5(22) -5(15) -2(22) 16(22) 7(17)

[63.0,252.5)

2002−2004 1(7) -0(3) -0(3) -0(4) -1(22)
2005−2007 3(10) 0(4) 0(6) -1(10) 6(15)
2008−2011 2(9) 0(5) 0(6) 0(7) 3(16)
2012−2014 4(15) 0(9) 2(12) -3(13) -2(16)

Call Options (%)

[0.0,10.0)

2002−2004 -0(20) 3(12) 6(29) 31(71) -78(19)
2005−2007 4(16) 7(10) 32(54) 23(100) -92(7)
2008−2011 5(10) 8(11) 6(40) 106(142) -86(12)
2012−2014 2(9) 4(10) 20(69) 11(108) -93(6)

[10.0,31.0)

2002−2004 3(21) -1(6) -1(9) 24(40) -55(34)
2005−2007 6(18) 0(6) -2(14) 74(92) -70(27)
2008−2011 5(12) -1(5) -0(9) 15(39) -56(41)
2012−2014 2(11) 1(11) -4(35) 89(112) -78(21)

[31.0,63.0)

2002−2004 0(19) 0(4) 0(5) -1(14) -17(37)
2005−2007 2(16) -0(4) 2(8) 24(54) 2(73)
2008−2011 3(10) 1(5) 2(7) -4(16) -5(49)
2012−2014 -1(13) -2(9) -1(22) 39(64) -15(59)

[63.0,252.5)

2002−2004 -1(11) -0(3) -0(2) 0(4) -0(13)
2005−2007 0(11) 0(3) 0(4) -0(8) 2(15)
2008−2011 2(10) 0(4) -0(5) 1(8) -2(16)
2012−2014 -10(18) 0(7) 1(10) -2(14) 0(21)
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2.4 Robustness checks

2.4.1 Volatility timing in the option market

The single contract rule, namely wt = 1, is devised for simplicity to shield empirical

results from volatility timing in the option market. One could, however, argue that such

timing still implicitly occurs, as agents are likely aware of the dependence of Et [πt ] on

market volatility. For example under the model of Bakshi and Kapadia (2003), Et [πt ]

is proportional to the vega of an option and to the volatility risk premium (VRP), both

impacted by prevailing volatility. A similar effect is observed under the model of Gârleanu

et al. (2009). Et [πt ] as a function of market volatility is unfortunately highly model-

dependent.

Our goal is to show robustness to uninformed decision rules in the option market, i.e.

decisions taken under an information set shared by all option market participants. For

example, the option-implicit vega under B&S is readily available, whereas VRP predic-

tions require additional knowledge. The vega is further the main source of residual (i.e.

un-hedgeable) risk for hedged option returns under many pricing frameworks. All agents

may thus reasonably be expected to react to changes in risk, i.e. Vart [πt ], using vega as

the relevant ex-ante proxy.

For the proposed robustness check, we let agents hold a fixed amount of vega, as op-

posed to a fixed number of contracts. This approach only partly correct for time variations

in premium, i.e. Et [πt ], under the framework of Bakshi and Kapadia (2003). Uninformed

agents indeed remain unaware of changes in VRP. We recall that wt acts as a constant

scaling parameter from t to t + τ for options sold at time t. In particular, agents still

pre-commit to holding options until maturity.

For a given moneyness and maturity, we consider a vega-constant decision rule,

wt =

(
B&S implicit vega at t

B&S long-run vega

)−1

=
ϕ(d̄+)
ϕ(dt,+)

,

where

dt,+ =
− log(k0)+ IV2

t τ/2
IVt
√

τ
,
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with IVt the σ parameter solving the B&S model for an option price given by our data

reduction procedure on trading day t (for moneyness k0 and τ TDM), and,

d̄+ =
− log(k0)+ δ̂ τ/2√

δ̂ τ

,

with δ̂ the long-run variance estimate presented in the main paper.

Figure 2.5 shows resulting weights for one-month-to-maturity put options. The vega

of ATM options is not significantly impacted by market volatility, such that the vega-

constant rule is indistinguishable from the single contract rule, i.e. wt ≈ 1. In other words,

any deviation from the single contract rule for ATM options is informed and requires

additional abilities e.g. with regards to VRP predictions.

For OTM options, we observe leveraged exposures (as high as 225%) during calm

markets and conservative exposures (as low as 25%) during stressed markets. This is

consistent with the intuition that agents must sell less OTM option contracts during market

crises to reap the same profits as during bull markets. This effect gets stronger as we move

further away-from-the-money.

Figure 2.5: Daily option weights by level of moneyness under the vega-constant decision
rule for one-month-to-maturity put options.

Figure 2.6 shows proposed weights succeed in stabilizing Et [wtπt ] through time for

deeply OTM options. The new decision rule is particularly effective for positive shocks

in premium, e.g. with spikes in early 2003, early 2009, late 2010 and late 2011 being

almost entirely smoothed. Drawdowns are greatly mitigated, but not fully eliminated. For
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example, the minimum return during the last financial crisis goes from roughly -48% to

roughly -12%.

Figure 2.6: Monthly rolling average of wtπt under the static (S0) protocol for one-month-
to-maturity deeply OTM options with k0 = 0.9.

We calibrate risk aversion parameters in ΘU using the same procedure as in the main

paper. Resulting ρk0,τ parameters (not shown) span a tighter range. In particular, the ex-

post risk-reward trade-off under the static protocol —as captured by ρk0,τ— now appears

almost as favorable for deeply OTM options as for ATM options. In other words, the

additional risk management layer preemptively corrects for cross-sectional effects. The

calibration procedure for ρ is thus not as essential here as in the main paper, but is still

applied for consistency.

Figure 2.10 shows the resulting cross-section of economic values. We readily see

the positiveness of incremental value from the LF class to the HF class is robust under

all model requirements. As expected, ATM results are not materially impacted by the

current exercise and were omitted for conciseness. In absolute, OTM options under the

HF0 protocol still maximize economic value.

Deeply OTM options now generate significantly less economic value. In particular, all

un-hedged protocols now yield negative economic values. Subsample results (not shown),

however, show an increase in economic value for un-hedged protocols during 2005-2007

and 2012-2014 under the vega-constant rule.
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Table 2.10: Cross-section of economic value ΘU under the vega-constant decision rule.

Trading-Days-to-Maturity (τ)
21 32 42 53 63

Out-of-the-Money (k0 = 0.95)
UH -807.20 -2,227.68 -3,224.00 -4,632.63 -5,395.24
DH 145.38 131.16 124.51 104.46 77.40
S0 50.13 42.52 32.74 39.46 37.05

LF
LF0 156.10 145.54 135.93 110.22 81.49
LFG 149.98 138.84 130.97 110.82 87.93
LFA 139.40 132.33 128.52 118.80 109.60

HF
HF0 179.11 169.41 165.16 148.64 128.03
HFG 168.33 164.56 165.63 154.82 142.56
HFA 158.60 154.99 154.84 145.91 136.97

Deeply Out-of-the-Money (k0 = 0.9)
UH -292.43 -241.16 -462.25 -1,166.42 -1,157.30
DH 41.98 61.89 71.78 75.03 67.13
S0 15.82 26.16 28.70 30.91 33.26

LF
LF0 57.23 83.70 92.58 90.89 85.45
LFG 56.38 79.24 85.34 81.95 76.26
LFA 51.22 67.17 73.18 75.80 73.29

HF
HF0 66.04 95.95 107.65 112.04 111.06
HFG 62.73 87.44 97.75 103.76 103.73
HFA 58.29 79.94 89.15 96.35 96.51

2.4.2 Peso problem and loss aversion

Similarly to most classic utility functions, the metric used in the main paper can be ap-

proximated by a quadratic utility function. This metric hence arguably leads to con-

clusions that are more or less consistent with a mean-variance framework, as e.g. used

by Fleming et al. (2001, 2003). ΘU could favor un-hedged (or under-hedged) protocols

when adverse events are rare and corresponding return distributions are strongly nega-

tively skewed. This effect is related to the Peso problem discussed by Bondarenko (2003)

in a similar context. Our goal is to present ex-post results that are consistent with un-

hedged protocols never adopted on an ex-ante basis. We do so by using a prospect-theory

metric under loss aversion.

More precisely, we focus on reward-to-risk ratios derived from behavioral utility func-
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tions; see e.g. Holthausen (1981). Zakamouline (2014) proposes a generalization nesting

most reward-to-risk performance measures, such as the Sortino or Omega ratio. We follow

their empirical application and consider, for a given coefficient of loss aversion (λ ≥ 1)

and a minimum acceptable return (MAR),

ΘPT(π;λ ,MAR) =

√
252
τ

(
HOP(π)− (λ −1)HS1(π)

(HS2(π))
1/2

)
,

where

HOP(π) =
1
T

T

∑
t=1

wtπt ,

is related to the hedged option premium and,

HSβ (π) =
1
T

T

∑
t=1

(MAR−wtπt)
β I(wtπt < MAR)

is related to hedging shortfalls below the MAR, with β ∈ {1,2}.

We focus on the vega-constant decision rule for wt . As discussed in Section 2.4.1, this

choice partly corrects for cross-sectional effects and already slightly penalizes un-hedged

protocols. We assume MAR= 0 for simplicity. We ensure un-hedged agents are indif-

ferent to extracting the hedged option premium by calibrating loss aversion parameters

according to ΘPT = 0,

λk0,τ =
HOP(c0− cτ)

HS1(c0− cτ)
+1.

Figure 2.7 shows calibrated loss aversions are increasing in moneyness. During calm

periods, the fact adverse events are less pronounced than anticipated is increasingly bene-

ficial as we move away-from-the-money, e.g. with deeply OTM options never exercised.

The calibration procedure hence effectively counteracts this effect by increasingly focus-

ing on stressed periods as we move away-from-the-money. In contrast, we recall cali-

brated risk aversions ρk0,τ decrease with k0 under the utility-based metric. ΘPT hence

provides additional insights under drastically different attitudes towards risk than ΘU ,

both in time due to loss aversion and over the moneyness-maturity plane due to our pro-

posed calibration procedure.
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Figure 2.7: Cross-sectional calibration of loss aversion parameters λk0,τ for prospect
theory-based performance measure ΘPT .

Table 2.11 presents cross-sectional results under loss aversion. The positiveness of in-

cremental economic values is robust under all model requirements, confirming our main

conclusion. In stark contrast to the utility metric, we observe a systematic increase in eco-

nomic value with maturity, with the exception of LF0 for ATM options. This observation

is explained by the negative skewness being more pronounced for shorter-term maturities,

such that loss averse agents prefer to sell and hedge longer-term maturities.

Interestingly, specifications accounting for leverage effects now appear much more

attractive relative to exponential-smoothing and mean-reverting models, at least for ATM

and OTM options. This last observation is consistent with naive protocols being systemat-

ically under-hedged —a fact which eluded the utility metric for shorter-term maturities. In

absolute, HFA yields the best performance with ΘPT = 1.33 for three months-to-maturity

OTM options, as compared to 1.17 for HFG.

The un-hedged protocol now over-performs LFG and LFA for short-term deeply OTM

options. The proposed calibration thus falls short of mitigating the high appeal of un-

hedged protocols for such contracts. As a further robustness check, we let agents relax

their MARs, such that only the most extreme negative returns are perceived as losses.
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Table 2.11: Cross-section of prospect theory-based metric ΘPT for put options. Results for un-
hedged option returns are not shown as they are systematically equal to zero by construction.

Trading-Days-to-Maturity (τ)
21 32 42 53 63

At-the-Money (k0 = 1)
DH 0.39 0.52 0.66 0.76 0.75
S0 0.30 0.55 0.67 0.73 0.78

LF
LF0 0.59 0.67 0.67 0.64 0.58
LFG 0.61 0.72 0.76 0.76 0.74
LFA 0.65 0.85 0.99 1.03 1.01

HF
HF0 0.66 0.74 0.77 0.79 0.76
HFG 0.68 0.92 1.13 1.26 1.26
HFA 0.72 0.98 1.20 1.34 1.35

Out-of-the-Money (k0 = 0.95)
DH 0.14 0.32 0.32 0.40 0.48
S0 -0.25 -0.02 -0.00 0.10 0.28

LF
LF0 0.39 0.54 0.54 0.55 0.60
LFG 0.34 0.50 0.52 0.55 0.62
LFA 0.46 0.68 0.72 0.81 0.90

HF
HF0 0.68 0.84 0.87 0.89 0.92
HFG 0.67 0.91 1.03 1.13 1.17
HFA 0.70 0.98 1.11 1.25 1.33

Deeply Out-of-the-Money (k0 = 0.9)
DH -0.19 -0.07 0.01 0.15 0.12
S0 -0.61 -0.43 -0.35 -0.22 -0.17

LF
LF0 0.06 0.24 0.30 0.39 0.37
LFG -0.00 0.14 0.17 0.26 0.24
LFA -0.05 0.21 0.30 0.43 0.42

HF
HF0 0.28 0.51 0.59 0.69 0.68
HFG 0.21 0.38 0.44 0.60 0.61
HFA 0.20 0.43 0.55 0.78 0.80

Table 2.12 presents corresponding results for MARs of -50, -100, -500 bps/yr. Lower-

ing the MAR by only 50 bps/yr yields systematically positive values for volatility timing

protocols. These metrics hence succeed in deterring loss-averse agents from selling un-

hedged options. All previous conclusions regarding relative and absolute economic values

hold. In particular, deeply OTM options now reach their highest economic values under

the HFA protocol, consistent with previous observations for ATM and OTM options. We
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finally note that the over-performance of risk-minimizing versus delta-hedging protocols

is robust to loss aversion in all cases.

Table 2.12: Prospect theory metric ΘPT under different minimum acceptable returns (MARs) for
deeply OTM put options. Loss aversion is calibrated as previously, such that results for un-hedged
option returns are still systematically equal to zero by construction.

Trading-Days-to-Maturity (τ)
21 32 42 53 63

MAR of -50 bps/yr
DH -0.14 -0.04 0.05 0.19 0.15
S0 -0.57 -0.40 -0.32 -0.18 -0.13

LF
LF0 0.16 0.31 0.38 0.46 0.43
LFG 0.10 0.21 0.24 0.33 0.30
LFA 0.26 0.41 0.50 0.62 0.60

HF
HF0 0.43 0.61 0.70 0.78 0.77
HFG 0.35 0.48 0.54 0.71 0.72
HFA 0.38 0.57 0.70 0.94 0.96

MAR of -100 bps/yr
DH -0.09 -0.01 0.08 0.23 0.19
S0 -0.54 -0.38 -0.29 -0.15 -0.10

LF
LF0 0.25 0.38 0.45 0.52 0.49
LFG 0.19 0.27 0.31 0.39 0.36
LFA 0.47 0.56 0.64 0.75 0.73

HF
HF0 0.56 0.71 0.80 0.88 0.86
HFG 0.48 0.56 0.64 0.82 0.84
HFA 0.53 0.69 0.83 1.08 1.11

MAR of -500 bps/yr
DH 0.25 0.23 0.40 0.61 0.59
S0 -0.31 -0.23 -0.09 0.13 0.21

LF
LF0 0.91 0.88 0.96 0.97 0.92
LFG 0.88 0.78 0.82 0.84 0.80
LFA 1.72 1.46 1.53 1.75 1.82

HF
HF0 1.54 1.48 1.59 1.67 1.69
HFG 1.68 1.43 1.62 1.99 2.27
HFA 1.82 1.67 1.99 2.61 3.15
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2.4.3 Performance measure calibration

Table 2.13 shows a sensitivity analysis with respect to aversion parameters ρ and λ for

one-month-to-maturity OTM put options. We readily see how proposed calibration pro-

cedures appropriately penalize the UH protocol, i.e. with ΘU going from 310 to -807 and

ΘPT going from 0.82 to 0. Most importantly, conclusions regarding incremental economic

values are robust to calibration procedures in all cases.

Table 2.13: Sensitivity analysis of performance measures for one-month-to-maturity OTM put
options. Calibrated values (Cal.) correspond to ρ0.95,21 = 23.90 and λ0.95,21 = 2.17. We assume
agents follow the vega-constant rule.

ΘU ΘPT

ρ = 5 ρ = 10 Cal. λ = 1 λ = 1.5 Cal.

UH 310.24 173.05 -807.20 0.82 0.47 0.00

DH 198.95 186.16 145.38 1.21 0.75 0.14

S0 128.97 111.57 50.13 0.72 0.31 -0.25

LF
LF0 190.40 181.99 156.10 1.46 1.00 0.39
LFG 183.97 175.67 149.98 1.41 0.95 0.34
LFA 163.83 157.63 139.40 1.62 1.13 0.46

HF
HF0 207.92 200.78 179.11 1.75 1.30 0.68
HFG 195.21 188.49 168.33 1.73 1.28 0.67
HFA 182.27 176.30 158.60 1.78 1.32 0.70

2.4.4 Out-of-sample exercise

Table 2.14 displays economic values ΘU derived under out-of-sample protocols. More

precisely, we re-estimate each model on a yearly basis —with data going back to 2000—

and use hedging surface estimates for the following year only.

We find previous conclusions regarding the incremental value from the LF to the HF

class are robust in all cases. We emphasize that DH results differ from the main paper,

even tough DH is out-of-sample by construction. This is due to risk aversion now being

calibrated to out-of-sample hedged option returns under S0. Gaps in performance between

risk-minimizing and delta-hedging protocols unsurprisingly decrease when compared to
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in-sample results, especially for ATM and OTM options. Still, we find that the HF class

over-performs DH under all model requirements.

Table 2.14: Cross-section of economic value ΘU from selling and hedging put options under
out-of-sample protocols. We assume agents follow the single contract decision rule.

Trading-Days-to-Maturity (τ)
21 32 42 53 63

At-the-Money (k0 = 1)
UH -5,321.88 -10,083.28 -10,846.10 -11,290.20 -10,101.95
DH 115.07 83.43 75.21 65.43 34.67
S0 47.11 -18.37 -89.48 -93.46 -110.75

LF
LF0 120.78 103.43 80.68 48.66 9.58
LFG 123.01 106.92 89.10 65.92 37.91
LFA 118.90 113.51 110.25 100.46 88.12

HF
HF0 129.79 110.20 91.00 69.87 41.43
HFG 129.49 123.84 124.52 119.49 106.69
HFA 127.94 125.52 126.39 121.79 111.07

Out-of-the-Money (k0 = 0.95)
UH -70.55 -511.53 -1,136.79 -2,219.88 -3,564.66
DH 163.67 158.92 157.34 137.54 111.46
S0 47.60 43.20 35.91 37.67 32.74

LF
LF0 170.85 166.04 160.58 137.89 113.72
LFG 163.08 156.45 149.91 129.78 107.98
LFA 155.74 148.62 141.72 127.75 116.22

HF
HF0 191.99 186.26 183.17 165.51 143.83
HFG 184.64 180.71 177.93 162.26 146.16
HFA 172.76 167.61 163.61 150.43 138.70

Deeply Out-of-the-Money (k0 = 0.9)
UH 74.21 86.18 -77.28 -403.64 -381.04
DH 101.51 104.08 108.42 108.76 97.81
S0 39.22 37.17 35.11 32.91 34.51

LF
LF0 123.33 129.67 129.80 123.74 115.07
LFG 119.32 122.33 120.03 111.10 101.13
LFA 114.30 113.69 110.94 105.62 96.47

HF
HF0 134.55 144.67 146.23 143.42 136.96
HFG 126.40 133.67 134.78 132.69 126.09
HFA 118.54 122.51 122.14 121.16 114.56
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2.5 Call option results

Table 2.15 shows descriptive statistics for hedged call returns. Our focus is on the single

contract rule here. ATM call results are consistent with ATM put results. As we move

away-from-the-money, however, the hedged call premium decreases. Lower return ex-

pectations are accompanied by lower risk measures; e.g. with a value-at-risk of roughly

−10% for un-hedged ATM call options, as opposed to −18% for corresponding put op-

tions.

This last observation is consistent with the intuition that put options are vulnerable

to violent market crashes, whereas negative inventories of call options under-perform

during less volatile market rallies. Sharpe ratios for call options now increase slightly

when allowing for a leverage effect. Overall, preliminary statistics suggest selling and

hedging call options is less attractive than put options, significantly less so for deeply

OTM options.

Table 2.16 shows incremental economic value from the LF class to the HF class dis-

sipates as we move away-from-the-money and closer-to-maturity. Still, subsample and

prospect theory evidences10 suggest model misspecification leads to under-hedged call

strategies, as similarly discussed for put options. Economic values derived from HFG

and HFA also remain very close for longer-term maturities, in line with realized variance

already capturing —at least part of— the leverage effect.

Overall, economic values extracted from put options are greater than call options,

motivating our focus on put options in the main paper. We still find volatility timing

benefits when hedging call options, even though call results are less definite regarding the

incremental value of using realized variance-based forecasts.

10 Results are available on request.
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Table 2.15: Descriptive statistics for hedged call returns with 21 TDM. The first row(M) shows
statistics for corresponding market returns. The mean(Mean), standard deviation(Std) and 95%
value-at-risk(VaR) are presented as bps/yr. The Sharpe ratio(Shrp) is the first column (i.e. Mean)
divided by the second column (Std). All statistics are computed from strictly non-overlapping
subsamples which are then averaged, including one lag autocorrelation(Auto) and correlation with
market returns(Corr).

Mean Std Shrp Skew Kurt Auto VaR Corr

Market 560.44 1,679.71 0.33 -1.04 7.28 0.00 -2,182.68 1.00
At-the-Money (k0 = 1)

UH 42.61 862.03 0.05 -0.92 5.85 0.06 -1,039.57 -0.81

DH 214.05 288.46 0.74 -1.46 9.47 0.13 -411.42 0.60

S0 154.39 254.46 0.61 -2.41 18.76 0.14 -468.02 0.34

LF
LF0 157.60 212.94 0.74 -0.79 11.44 0.14 -291.48 0.34
LFG 158.60 208.24 0.76 -1.03 11.18 0.14 -291.39 0.35
LFA 145.34 191.17 0.76 -0.46 9.85 0.09 -236.46 0.11

HF
HF0 163.39 206.10 0.79 -0.99 10.80 0.14 -289.49 0.39
HFG 154.45 191.44 0.81 -0.84 9.47 0.14 -248.70 0.32
HFA 148.93 183.03 0.81 -0.58 8.93 0.10 -226.32 0.15

Out-of-the-Money (k0 = 1.05)
UH 211.22 401.36 0.53 -2.33 26.18 0.13 -758.42 -0.48

DH 135.84 184.70 0.74 -0.57 15.15 0.19 -253.01 0.53

S0 155.42 224.51 0.69 -1.00 11.38 0.04 -313.68 0.42

LF
LF0 134.31 174.17 0.77 -0.31 14.21 0.15 -252.63 0.52
LFG 132.16 160.66 0.82 -0.68 14.36 0.16 -241.01 0.48
LFA 120.75 139.37 0.87 -0.60 15.57 0.08 -190.25 0.16

HF
HF0 113.79 153.94 0.74 -1.10 16.11 0.17 -242.85 0.47
HFG 115.12 130.94 0.88 -0.83 11.93 0.13 -175.49 0.33
HFA 108.83 123.22 0.88 -1.04 13.29 0.06 -170.31 0.07

Deeply Out-of-the-Money (k0 = 1.1)
UH 82.01 203.29 0.40 -0.67 55.76 0.31 -388.72 -0.24

DH 25.80 103.40 0.25 0.10 43.65 0.11 -175.50 0.35

S0 26.33 124.36 0.21 -3.16 37.05 0.04 -277.23 0.12

LF
LF0 10.24 128.72 0.08 -0.37 33.12 0.08 -223.59 0.46
LFG 14.00 111.14 0.13 -1.22 35.26 0.13 -205.68 0.40
LFA 21.84 95.50 0.23 -1.29 39.98 0.05 -180.31 0.09

HF
HF0 9.33 106.34 0.09 -1.41 34.35 0.13 -201.53 0.42
HFG 21.16 79.98 0.26 -1.10 33.40 0.05 -148.04 0.21
HFA 24.18 78.77 0.31 -1.96 41.00 0.01 -165.91 -0.03
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Table 2.16: Cross-section of economic value ΘU from selling and hedging call options.

Trading-Days-to-Maturity (τ)
21 32 42 53 63

At-the-Money (k0 = 1)
UH -1,299.67 -2,730.87 -7,571.93 -4,580.92 -7,056.93
DH 103.43 76.24 63.57 56.86 43.75
S0 54.68 25.33 -6.35 8.85 20.02

LF
LF0 101.63 84.77 58.41 30.69 3.46
LFG 104.59 92.52 75.52 59.77 43.93
LFA 101.29 102.10 102.89 97.24 89.63

HF
HF0 110.83 96.47 79.35 66.35 50.97
HFG 109.68 113.74 119.38 119.61 113.15
HFA 108.57 113.34 118.38 117.93 111.81

Out-of-the-Money (k0 = 1.05)
UH -524.98 -1,952.38 -6,724.84 -4,240.51 -6,900.10
DH 80.16 86.62 73.40 49.86 47.54
S0 48.65 45.86 60.22 60.58 60.70

LF
LF0 85.98 72.55 39.89 -1.81 -32.51
LFG 90.68 85.63 61.90 38.40 28.78
LFA 90.00 97.01 83.73 72.34 73.98

HF
HF0 75.15 68.94 42.87 14.46 2.18
HFG 87.97 102.19 93.55 86.34 90.63
HFA 84.66 98.66 89.86 82.21 86.01

Deeply Out-of-the-Money (k0 = 1.1)
UH 28.92 -389.51 -4,072.88 -2,271.64 -4,864.96
DH 16.84 30.45 34.82 41.35 46.61
S0 11.35 28.38 43.44 57.91 67.33

LF
LF0 -3.69 -6.04 -7.40 -12.37 -21.47
LFG 3.50 9.06 14.94 21.27 22.91
LFA 14.13 25.70 33.51 44.30 46.04

HF
HF0 -0.30 2.49 3.54 2.31 -2.01
HFG 15.75 32.56 45.02 56.72 62.66
HFA 18.80 32.61 42.16 51.70 55.29
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Chapter 3

On the Marginal and Recursive

Quantization of GARCH Models
HUGO LAMARRE

Abstract

We investigate quantization methods when applied to GARCH models. We do so in the

context of approximating price-variance dynamics by a discrete-state time-inhomogeneous

Markov chain. Such an approximation is useful for solving various stochastic optimal

control problems in finance. Both stochastic and deterministic methods are considered. In

the former case, a standardized distortion function is minimized over R2 using a stochas-

tic gradient descent. Standardization is critical due to an inherent gap in price-variance

scale. In the deterministic case, we focus on Cartesian products of componentwise quan-

tizations. This procedure —commonly known as product quantization— involves fast

convex optimizations. Our numerical study shows deterministic methods are more reli-

able and efficient for large quantizers. We further propose a novel deterministic quantiza-

tion of variances conditional on prices which better accommodates strong price-variance

dependence effects. We successfully apply this conditional quantization to option pricing

—both European and American— and variance-optimal hedging in discrete-time.



3.1 Introduction

GARCH models (Bollerslev, 1986) successfully capture time-varying risk in financial

assets time series. They are characterized by conditional variances taking values in a con-

tinuum as a function of lagged variances and log-returns. While state continuity provides

statistical flexibility, it may complicate some applications —notably when recursive con-

ditional expectations need to be solved backwards in time. For example, special numerical

methods have been proposed for pricing and/or hedging options1. We instead investigate

a general approach to solving many financial stochastic optimal control problems —be

it option pricing, risk management or portfolio allocation— using an approximation of

GARCH dynamics obtained via quantization theory.

While quantization theory dates back to the late 1950s, it has only been recently

applied to the field of numerical probability due to the seminal work of Pagès (1997)

—allowing for many interesting (mostly financial) applications. The goal is typically

a time-inhomogeneous Markov chain over discrete states for some predetermined time

steps. In the daily GARCH model case for example, a quantization boils down to (1)

discrete sets of conditional variances and asset prices (i.e. one for each future trading day)

and (2) transition probabilities (i.e. from one future trading day to the next).

Under a given optimal quantization, many stochastic control problems may be solved

as recursive weighted sums at very low computational costs. An optimal quantization can

be reused for as many scenarios as needed e.g. when pricing and hedging a large portfolio

of options with different strike prices or when optimizing portfolios for a large number

of investors with different risk aversions. The quantization approach hence offers great

scalability, but a fixed initial cost must be paid in order to obtain an optimal quantization.

We investigate different numerical optimization methods which may broadly be cate-

gorized as stochastic and deterministic. Our focus is on a quadratic criterion —referred

to as the distortion— which offers nice properties under both categories.

For stochastic methods, we mostly rely on the competitive learning vector quanti-

1 See e.g. Stentoft (2005), Ben-Ameur et al. (2009) or Rémillard and Rubenthaler (2013).
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zation [CLVQ] algorithm over a two-dimensional space characterized by log-prices and

conditional variances. The algorithm is essentially a stochastic gradient descent motivated

by classical stochastic approximation convergence results2. Since conditional variances

are typically several orders of magnitude smaller than log-prices, the two-dimensional

Euclidean distance is dominated by log-prices. Standardizing variables is hence critical

—a point which (to our knowledge) is not discussed in the literature.

We first apply the CLVQ algorithm to marginal daily laws. This approach provides

best results when one is solely concerned with time t quantization errors. When solving fi-

nancial problems, daily quantizations do not suffice as full dynamics (i.e. including transi-

tion probabilities) are required. We consider two approaches: (1) building Markov chains

from marginal daily quantizations using Monte Carlo estimators for transition probabili-

ties [Marginal] and (2) recursively applying the CLVQ algorithm to the time t law induced

by the time t− 1 optimal quantization (known by recursion) in the spirit of Pagès et al.

(2004a) [Markov]. The latter approach is also known as recursive quantization.

For deterministic methods, we focus on componentwise and recursive quantizations.

Analytical expressions are unavailable over two-dimensional spaces such that relaxed cri-

teria over one-dimensional spaces must be considered. Resulting criteria are continuous

and may be optimized using traditional tools (e.g. trust-region or BFGS algorithms) which

are typically much faster than stochastic gradient descents. Deterministic methods hence

potentially improve the trade-off between numerical burden and quantization quality.

We consider two recursive deterministic approaches: (1) separately optimizing one

quantizer for log-prices and one for conditional variances then computing a Cartesian

product in R2 as proposed by Fiorin et al. (2017) [Product] and (2) first optimizing one

quantizer for log-prices and then optimizing one conditional variance quantizer per con-

temporaneous log-price quantizer element under conditional laws [Conditional]. While

more demanding, the latter approach offers more flexibility and is embarrassingly parallel

such that the increased burden may be mitigated by additional processing units. For both

deterministic approaches, transition probabilities are computed analytically —a consider-

2 See e.g. Kushner and Yin (2003).

97



able advantage over stochastic methods.

We implement quantization methods under the GARCH specification of Heston and

Nandi (2000) for which the limit as the time interval shrinks is the stochastic volatility

model of Heston (1993). Semi-analytical formulas may be solved via numerical integra-

tion for the pricing of European options, which allows us to demonstrate the quantiza-

tion approach in a controlled environment. We further investigate applications to Ameri-

can option pricing and variance-optimal hedging in discrete-time. Quantization methods

may easily be adapted to other popular one-lag GARCH specifications, be it a classical

GARCH, a NGARCH (Engle and Ng, 1993) or a GJR-GARCH (Glosten et al., 1993).

In related works, Pagès and Sagna (2015) perform quantized option pricing under

a local volatility model i.e. in a one-dimensional setting. Callegaro et al. (2016) and

Fiorin et al. (2017) consider the Euler discretization of stochastic volatility models with

latent variances linearly driven by two normal random variates. Our setting differs in that

conditional variance is a quadratic function of a single common normal random variate

and is bounded from below. One day ahead conditional laws considered under recur-

sive GARCH quantization are hence strikingly different from their continuous-time limit

counterparts surveyed in the literature. Practical applications further benefit from the

parsimony of GARCH models since conditional variances are observable quantities —

allowing for straightforward estimation of parameters typically by maximum likelihood.

This paper proceeds as follows. We first provide some background on quantization

and its possible applications in Section 3.2. We then turn to specific concerns related to the

quantizaton of a GARCH model in Section 3.3. We discuss stochastic and deterministic

methods in respectively Sections 3.4 and 3.5. In Section 3.6, we contrast numerical results

for the four quantization methodologies and provide some practical guidelines. Section

3.7 presents some applications. Proofs, explicit expressions and other implementation

concerns are presented and/or discussed in the Appendix. Section 3.8 concludes.
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3.2 Background & Motivation

Generally speaking, letting xt ∈Rn be a stochastic process, x̂t(Γt)=∑
Pt
i=1 x(i)t I(xt ∈C(i)(Γt))

is the quantization of xt induced by the quantizer Γt = {x(1)t ,x(2)t , . . . ,x(Pt)
t }, where C(i)(Γt)

is the so-called Voronoi tessellation satisfying

C(i)(Γt)⊂
{

y ∈ Rn
∣∣∣∣|x(i)t − y|= min

1≤ j≤Pt
|y− x( j)

t |
}
,

with |·| the Euclidean norm and I(·) the indicator function. One is typically interested in

a set of optimal quantizations {x̂t(Γt)}T
t=1 minimizing distortion functions

Dxt (Γt) = ‖xt− x̂t(Γt)‖2
2 (3.1)

e.g. for all time steps t = 1, . . . ,T . Quantization applications to finance typically focus

on a Euler discretization x̃t of a continuous-time process xt solving a given stochastic

differential equation. The random variable x̂t(Γt) taking values in a set of cardinality

Pt ∈ N+ then acts as the best discrete approximation of x̃t in L2 space for t = 1, . . . ,T .

Given the critical role of the cardinality of a quantization, quantizers are often referred to

as Pt-quantizer. We assume the cardinality to be constant in time (i.e. Pt = P ∈ N+) and

henceforth drop the explicit dependence of x̂t on Γt for notational convenience.

Theoretical properties of optimal quantizers have been extensively studied; see e.g.

Pagès (1997) for a rigorous treatment. Under mild assumptions, the distortion function

unsurprisingly goes to zero as P→ ∞. A more relevant result is the corresponding sharp

asymptotic rate given by the so-called Zador theorem, namely limP→∞ Pn/2Dxt = G where

G is a constant entirely specified by the law of xt ; see Graf and Luschgy (2000).

Our main motivation for finding an optimal quantization is related to stochastic control

problems. When straightforward solutions are unavailable, one is often able to break

down a multi-period financial problem and focus on more easily solved sub-problems, a

method commonly known as dynamic programming.

For example when solving optimal stopping time problems, this approach involves

recursively (i.e. for t = T − 1, . . . ,1) solving conditional expectations such as vt
∣∣Ft =
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E
[

f (vt+1,xt+1)
∣∣Ft
]

where vt is commonly known as the value function, F = {Ft , t =

0, . . . ,T} is the usual filtration generated by xt and both f and vT (i.e. boundary condi-

tions) are specified by the problem. For example when f and vT are related to the reward

from holding or exercising an American option, the value function is interpreted as an

option price.

Such a recursion is unsolvable for GARCH models when the functional form of v

over the continuum of conditional variances and asset prices is unknown3. One must

then resort to approximating vt+1 using semi-parametric methods and solving conditional

expectations vt either analytically or through Monte Carlo.

When the market model is given by an optimal quantization {x̂t}, conditional expec-

tations are solved according to

v(i)t = E
[

f (vt+1, x̂t+1)
∣∣x̂t = x(i)t

]
=

P

∑
j=1

P(x̂t+1 = x( j)
t+1

∣∣x̂t = x(i)t ) f (v( j)
t+1, x̂

( j)
t+1) (3.2)

for i = 1, . . . ,P and t = T − 1, . . . ,0 where we assume a degenerated initial P-quantizer

Γ0 = {x0, . . . ,x0} for convenience (since x0 is F0-measurable by construction). We hence

avoid semi-parametric approximations altogether.

When an optimal quantization is interpreted as an approximation of market dynamics

however, Eq. (3.2) provides a locally constant estimator (denoted by v̂) of the actual solu-

tion v over the price-variance continuum. Convergence of v̂ towards v as P→∞ and other

asymptotic behaviors would then rely on additional technical conditions on v and f . Un-

der such an interpretation, optimal quantizers may be used to improve ad hoc grids (also

called knots or meshes) commonly used in the related literature4. For example, Duan and

Simonato (2001) argue their ad hoc "Markov chain reproduces the probabilistic behav-

ior of the target GARCH process". While their statement is true asymptotically, Markov

chains proposed here are pre-asymptotically optimal i.e. optimal for a given finite grid

size. This pre-asymptotic optimality presumably leads to numerical benefits e.g. with a

given level of precision achieved using smaller grids when pricing options.
3 In some relatively rare cases, one may guess a functional form and find an analytical (recursive)

solution; see Section 3.1 of Basak and Chabakauri (2010) for such a case under a Euler discretization.
4 See Section 3.1. of Duan and Simonato (2001) or Section 3.6 of Ben-Ameur et al. (2009).

100



Furthermore, an optimal quantization is computed off-line and may be applied to mul-

tiple valuation functions and/or boundary conditions. The quantization approach is hence

highly scalable and efficient once optimal quantizers (and transition probabilities) are

obtained. For example, Glasserman (2003) notes “the effort might be justified if a [quan-

tization], once constructed, could be applied to price many different American options”.

3.3 GARCH Quantization

The HN-GARCH specification of Heston and Nandi (2000) is,

rt = (µ−1/2)ht +
√

htzt ,

ht+1 = ω +βht +α

(
zt− γ

√
ht

)2
,

(3.3)

for t = 1, . . . ,T indexing trading days, where rt and ht are respectively a log-return and a

corresponding conditional variance, zt is a standard normal random variable and {h1,µ,ω,α,β ,γ}

are model parameters. We consider the forward log-price of some financial asset

st =
t

∑
s=1

rs

for t = 0, . . . ,T with ∑
0
s=1 rs = 0 by convention. One may recover observable spot prices

according to St = S0 exp(st +(r−δ )t) where S0 is an initial asset price, r is a risk-free

rate and δ is a dividend yield5. This setting allows us to henceforth abstract from risk-free

rates and dividends.

We investigate the quantization of HN-GARCH models using two sets of parameters.

First, we consider an asymmetric case under which parameters are representative of esti-

mates on S&P 500 index (forward) log-returns from 1996 to 2014. Second, we consider

a symmetric case under which γ is forced to 0 and β is set to match persistence estimates

for the S&P 500 index, namely β +αγ2 ≈ 0.962. In both cases, ω and µ are set such that

5 This setting essentially follows from a change of numéraire under deterministic and constant interest
and dividend rates. More precisely, exp(st) may be viewed as a total-return index (i.e. including divi-
dends) given by St exp(−δ (T − t)) relative to the price of a zero-coupon bound with a notional value of
S0 exp(r−δ )T .
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long-run daily log-return and volatility expectations are respectively 5% and 18% per an-

num —once again plausible values for a forward contract on the S&P 500 index6. Table

3.1 shows parameter values used throughout. The symmetric HN-GARCH model is not a

classical GARCH model. Shocks in conditional variance are indeed driven by shocks in

model innovation only, as opposed to ztht under the classical GARCH model.

Table 3.1: Parameters of HN-GARCH model (3.3) in the asymmetric and symmetric case.

Parameter Asymmetric Symmetric

µ 2.04 2.04
ω 3.28e−7 3.28e−7
α 4.5e−6 4.5e−06
β 0.8 0.962
γ 190 0

Figure 3.1 shows daily standard deviations of log-prices and conditional variances for

the next 126 trading days in the symmetric and asymmetric cases. Corresponding analyt-

ical expressions are derived in Appendix A.1. We readily observe conditional variances

are several order of magnitude smaller than log-prices. The scale of log-price increases

monotonically through time, whereas conditional variance converges towards its limiting

unconditional distribution such that its scale stabilizes in time.

While our ultimate goal is an optimal quantization for the Markovian process {st ,ht+1}T
t=1,

the Euclidean distance is a flawed measure of distortion as log-price errors would domi-

nate variance errors —more so for distant time steps. We hence instead consider

xt =

(
st√

Var [st ]
,

ht+1√
Var[ht+1]

)
(3.4)

and minimize distortions (3.1) for standardized vectors xt . More precisely, our pre-

liminary goal is a set of optimal standardized quantizers Γt = {x(1)t , . . . ,x(P)t } for t =

1, . . . ,T with corresponding transition probabilities p(i, j)t = P(x̂t = x( j)
t
∣∣x̂t−1 = x(i)t−1) and

unconditional probabilities p( j)
t = P(x̂t = x( j)

t ) for i, j = 1, . . . ,P. Since h1 is assumed
6 For the HN-GARCH model, the long-run log-return variance is given by σ̄ = (ω +α)/(1− β −

αγ2) and the long-run log-return expectation is given by (µ − 1/2)σ̄ . Daily variances h are converted to
annualized volatility percentages according to

√
252h throughout.
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Figure 3.1: Term structures of unconditional standard deviations for future daily log-prices and
conditional variances until roughly 6 months.

known e.g. estimated from historical log-returns, we define an initial P-quantizer Γ0 =

{(0,h1), . . . ,(0,h1)} with p(1)0 = 1 (and p(i)0 = 0 otherwise) and p(i, j)1 = p(1, j)1 for i, j =

1, . . . ,P for notational convenience.

For practical applications, we simply revert standardized vectors according to

(
s(i)t ,h(i)t+1

)
=
(

x(i)1,t

√
Var [st ],x

(i)
2,t

√
Var[ht+1]

)
(3.5)

where x(i)1,t and x(i)2,t are respectively the first and second components of x(i)t for t = 1, . . . ,T

and i = 1, . . . ,P. We then consider the quantization

 ŝt

ĥt+1

=


P
∑

i=1
s(i)t I

(
xt ∈C(i)(Γt)

)
P
∑

i=1
h(i)t+1I

(
xt ∈C(i)(Γt)

)


for t = 0, . . . ,T with s(i)0 = 0 and h(i)1 = h1. Unconditional and transition probabilities are

not impacted by the standardization.

For convenience, we introduce S and H such that st = S (st−1,ht ,zt), and ht+1 =

H (ht ,zt). For example in the HN-GARCH case,

S (s,h,z) = s+(µ−1/2)h+
√

hz

H (h,z) = ω +βh+α(z− γ
√

h)2.
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Our focus is on two marginal metrics, the daily root-mean-squared [RMS] marginal quan-

tization error,

RMSt =

√√√√1
S

S

∑
s=1

min
1≤ j≤P

|ξt,s− x( j)
t |2

and the total root-mean-squared [TRMS] marginal quantization error

TRMST =

√√√√1
S

T

∑
t=1

S

∑
s=1

min
1≤ j≤P

|ξt,s− x( j)
t |2

where {ξt,s} represents a typical (unconditional) GARCH simulation standardized ac-

cording to (3.4) with each path indexed by s and S = 1,000,000. The simulation pro-

cedure is formalized in Algorithm B.5 found in Appendix A.2. We assume a starting

conditional volatility of
√

252h1 = 14% throughout.

3.4 Stochastic Methods

In Section 3.4.1, we introduce three sub-algorithms which are specified up to a random

variate sequence denoted by {ξs}S
s=1 where S is a given number of simulations. Spe-

cific quantization methods differ in their choice of random variate sequence and in their

estimator of transition probabilities, with Marginal and Markovian methods respectively

given in Sections 3.4.2 and 3.4.3.

3.4.1 Sub-Algorithms

Unless otherwise specified, Γ0 = {x
(1)
0 ,x(2)0 , . . . ,x(P)0 } is an initial random quantizer i.e. a

random variate sequence of size P. Here subscripts no longer represent trading days but

rather iterations of a given algorithm. In particular, sub-algorithms are later used on a

daily basis when quantizing full dynamics.

We first introduce competitive learning in Sub-Algorithm 1. The CLVQ algorithm

relies on the distortion function (3.1) being sufficiently smooth for the convergence of

a stochastic gradient descent towards a local minimum characterized by ∇Dxt = 0; see
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e.g. Kushner and Yin (2003) for convergence results. The choice of a quadratic criterion

ensures optimal quantizers lie inside the convex hull of the support. Since conditional

variances are bounded from below by (at least) zero, this inherently prevents quantizer

elements from having negative conditional variances.

Sub-Algorithm 1. Competitive Learning Vector Quantization

Draw a random variates sequence {ξs}S
s=1 with

S =

⌈
4P3/2

δ ?π2

⌉
(3.6)

for a desired precision δ ?. Assuming δ0 a given initial step parameter, let s := 0

1. (Competitive Phase)

is+1 = argmin
1≤ j≤P

|ξs+1− x( j)
s |;

2. (Learning Phase) x(is+1)
s+1 = x(is+1)

s −δs(x
(is+1)
s −ξs+1)

x( j)
s+1 = x( j)

s , j 6= is+1

(3.7)

where

δs =

(
1
δ0

+
π2s

4P3/2

)−1

;

let s := s+1 and go back to step 1 or stop if s≥ S.

The step parameter (also called learning rate) δs is a heuristic proposed by Pagès

and Printems (2003). This sequence ensures convergence for the univariate uniform law

and is arguably relevant near the mode of any distribution i.e. where a distribution is

locally flat and mimics the uniform distribution. The number of simulations S is specified

as a function of P to ensure the last step reaches a given threshold i.e. δS ≤ δ ?. This

is consistent with larger quantizers requiring more simulations in order to meet some

minimum level of precision and later allows us to compare optimal quantizers of different

sizes. Under the standardization introduced in Section 3.3, the problem is well scaled and

it generally makes sense to let δ0 = 1 (unless otherwise specified).
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For practical degrees of precision (say δ ? = 1e−2), we observe significant variability

in quantizers obtained from consecutive CLVQ runs with different random variate se-

quences. White bars in Figure 3.2 [CLVQ] display the dispersion in distortion obtained

from 1,000 CLVQ runs. RMS are highly variable with a total range of roughly 2-3%. We

consider two additional sub-algorithms which improve the stability of optimal quantizers,

namely the randomized Lloyd’s method I (or simply Lloyd’s method) and the splitting

method —respectively given by Sub-Algorithms 2 and 3.

Figure 3.2: Histogram of RMS at 21 trading days for 1,000 stochastic optimization runs with
P = 100 and δ ?

S = 1e−2. Optimal quantizers are obtained using unconditional random variates
according to Algorithm B.5. White bars [CLVQ] are obtained using the CLVQ algorithm only
(Sub-Algorithm 1). Grey bars [CLVQ+Lloyd] are obtained using the CLVQ algorithm followed
by 10 iterations of Lloyd’s method (Sub-Algorithm 2). Black bars [Split+Lloyd] are obtained
using the splitting method (Sub-Algorithm 3) followed by 10 iterations of Lloyd’s method.

Optimal quantizers are stationary i.e. E[x|x̂] = x̂ under a quadratic criterion, as a di-

rect consequence of ∇Dxt = 0. Lloyd’s method as proposed by Lloyd (1982) relies on

x(i)→ E[x|x̂= x(i)] admitting a unique fixed point when x follows a univariate log-concave

law. In the multivariate case, optimal quantizers are stationary, but multiple stationary

quantizers could and in fact do exist in a GARCH setting.

Still, we empirically observe that Lloyd’s method converges (at least locally) to a

stationary quantizer7. The method is hence useful for refining a quantizer already near

7 Formal convergence results related to Lloyd’s method in a multivariate setting have yet to be estab-
lished.
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a local minimum (i.e. near stationary) such as one obtained via CLVQ. Since analytical

expressions for E[x|x̂] are unavailable here, we consider a randomized adaptation under

which conditional expectations are estimated via Monte Carlo as discussed by Pagès et al.

(2004b). For consistency, we use a Monte Carlo sample size given by (3.6).

Sub-Algorithm 2. Randomized Lloyd’s Method I

Let U be a fixed number of iterations and u := 0,

1. Draw a sequence of random variates {ξs}S
s=1 and compute for s = 1, . . . ,S

is = argmin
1≤ j≤P

|ξs− x( j)
u |;

2. For i = 1, . . . ,P, let

x(i)u+1 =
x(i)u +∑

S
s=1 I(is = i)ξs

1+∑
S
s=1 I(is = i)

;

let u := u+1 and go back to step 1 or stop if u≥U.

Figure 3.2 shows that performing as few as 10 iterations of Lloyd’s method following

a CLVQ run [CLVQ+Lloyd] leads to a significant decrease in RMS. But optimal quan-

tizers remain quite variable. Preliminary observations (not shown) suggest little benefit

to considering more than 10 to 20 iterations as subsequent variations in quantizers are

quickly dominated by (conditional expectation) sampling errors —especially in the tails.

This is consistent with observations from Pagès and Printems (2003) in the pure Gaussian

case. We let U = 10 throughout.

Pagès (1997) further suggests initializing the optimization of a P-quantizer using an

optimal P− 1-quantizer. This method —referred to as the splitting method— is formal-

ized in Sub-Algorithm 3. The updating method for the initial step parameter δ0 allows

stochastic gradient descents to adapt to decreasing scales as additional knots are added8.

8 Following Pagès and Printems (2003), this choice is motivated by the inequality 1/2mini 6= j |x( j)−
x(i)| ≤ (Dx)

1/2. When the bound is close to being tight, we protect progress made in past iterations and
otherwise fall back to δ0 = 1. Since only a rough estimate of Dx is needed, step 2 of the splitting method is
typically performed as a companion procedure to step 1 for numerical efficiency.
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Sub-Algorithm 3. Splitting Method

Let δ ? be a desired precision, δ0 := 1 and p := 1,

1. Set Γp to an optimal p-quantizer obtained via CLVQ (see Sub-Algorithm 1) with

precision δ ?, δ0 as the initial step parameter and Γp−1∪{x
(p)
0 } as the initial quan-

tizer if p > 1 or {x(1)0 } otherwise.

2. Using the sequence of random variates {ξs}S
s=1 used in step 2, let

δ0 := min

(1
S

S

∑
s=1

min
1≤ j≤p

|ξs− x( j)
p |2

)1/2

,1


where Γp = {x(1)p , . . . ,x(p)

p };

let p := p+1 and go back to step 1 or stop if p > P.

Benefits from the splitting method are readily apparent in Figure 3.2. The splitting

method (followed by 10 iterations of Lloyd’s method) [Split+Lloyd] consistently yields

by far the lowest distortion —even lower than the best runs of the other two methodolo-

gies. Figure B.1 in the Appendix shows that most of the remaining variability comes

from sampling errors in RMS metrics. In other words under a precision of δ ? = 1e−2,

quantization improvements become difficult to detect using a sample size of 1,000,0009.

Since such a sample size is reasonable for most practical applications, we let δ ? = 1e−2

throughout. We are now ready to specify marginal and Markovian quantization methods.

3.4.2 Marginal Quantization

Algorithm 1 introduces the marginal quantization method as first proposed by Bally et al.

(2001)10. We find an optimal quantizer for each time t marginal law —hence the name—

and build a time-inhomogeneous Markov chain using Monte Carlo estimators for transi-

tion probabilities. Even though formulated sequentially, optimizations performed in the
9 Preliminary observations (not shown) suggest this conclusion is robust to quantizer size (here P =

100).
10See also Bally et al. (2005).
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first step can be performed in parallel. For consistency, transition probabilities are esti-

mated using a sample size given by (3.6).

Algorithm 1. Marginal Quantization

Draw unconditional random variates {ξt,s}S
s=1 according to Algorithm B.5. For t =

1, . . . ,T ,

1. Set Γt = {x(1)t , . . . ,x(P)t } to an optimal P-quantizer obtained via a splitting method

(Sub-Algorithm 3) followed by Lloyd’s method (Sub-Algorithm 2) using uncondi-

tional random variates;

2. Compute transition probabilities for i, j = 1, . . . ,P according to

p(i, j)t =
∑

S
s=1 I(is = i, js = j)

∑
S
s=1 I(is = i)

(3.8)

where

is = argmin
1≤k≤P

|ξt−1,s− x(k)t−1|, js = argmin
1≤k≤P

|ξt,s− x(k)t |

with Γt−1 known by recursion when t > 1 or p(i, j)1 = (1/S)∑
S
s=1 I( js = j) otherwise;

3. Compute unconditional probabilities according to p( j)
t = ∑

P
i=1 p(i)t−1 p(i, j)t for j =

1, . . . ,P with p(1)0 = 1 and 0 otherwise.

Figure 3.3 displays an optimal marginal quantizations at 21 trading days for both

symmetric and asymmetric cases. When displaying quantizations, we first de-standardize

according to (3.5) and then convert log-prices s and conditional variances h according to

respectively 100exp(s) and 100
√

252h. Each colored patch represents a Voronoi tile C(i)

associated to a given quantizer element x(i) displayed as a black dot. Color intensities

reflect unconditional probabilities.

While Voronoi tiles are delimited by straight segments, parabolic boundaries observed

in Figure 3.3 come from the conversion of variances into volatilities. The negative cor-

relation between variances and log-prices is readily apparent in the asymmetric case. We

may also visualize the lower support bound for conditional variances, taking a parabolic
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smile and smirk shape in respectively the symmetric and asymmetric case. Under non-

standardized variables (i.e. (st ,ht+1) as opposed to xt), distances would be dominated by

log-prices and Voronoi tiles would be delimited by nearly vertical segments.

Figure 3.3: Optimal marginal quantization (Algorithm 1) at 21 trading days with P = 100 and
δ ? = 1e−6.

Figure 3.4 displays the empirical counterpart of Zador’s limiting constant in two di-

mensions, namely P(RMSt)
2. We readily confirm Zador’s prediction. We further observe

a significant increase in the constant G through time with the first time step undoubtedly

being the easiest for quantization. Figure B.2 in the Appendix shows RMS for each fu-

ture trading day for a large quantizer size i.e. with Zador’s rate nearly attained. We see

daily empirical errors quickly increase in the first few days but then stabilize —and even

plateau in the symmetric case.

Strong performance observed in the first few days appear to be related to the fact

GARCH models are driven by a single innovation. The support of (st ,ht+1)|(st−1,ht) de-

picts a parabola in price-variance space parameterized by zt . Since (s0,h1) is assumed

known, the support of (s1,h2) is a line as opposed to a surface for later time steps.

Supports indeed converge towards the first quadrant of R2 as t → ∞ i.e. towards the

continuous-time limit of Heston (1993). This explains wide early gaps in RMS e.g. be-

tween t = 1 and t = 2.

Figure 3.4 suggests the limiting constant G is higher in the symmetric case. This is

consistent with Pagès and Printems (2003) finding independent variables are the most dif-
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Figure 3.4: Empirical estimates for Zador’s constant under marginal quantization (Algorithm 1)
as a function of quantizer size (P) for different trading days (t = 1,2,5,11,21).

ficult for quantization in the Gaussian case. The asymmetric i.e. strongly dependent case

is increasingly difficult for more distant trading day, as evidenced by the significant posi-

tive slope for t ≈ 21 in the right panel of Figure B.2. As a likely explanation, the leverage

effect in the asymmetric case generates strongly skewed and fat-tailed distributions which

are presumably more difficult for quantization. These distribution features are readily

apparent by comparing the top-left corners in Figure 3.3 where worst (quantized) mar-

ket losses are given by respectively −12% and −20% in the symmetric and asymmetric

cases.

Strictly speaking, the set of quantizations {x̂t} in Algorithm 1 is not a Markov chain.

Marginal quantization indeed imposes an ad hoc Markovian structure by relying on quan-

tized transition probability estimators (3.8). Concerns related to the optimality of such an

ad hoc Markovian structure are typically understated in practice as a Markov chain can

always be built in this way and does converge to GARCH dynamics as P→∞11. We next

present the recursive approach of Pagès et al. (2004a) which targets Markovian laws and

is later used under deterministic methodologies.

11 See Theorem 5.1 of Pagès and Pham (2005) for convergence results.
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3.4.3 Markovian Quantization

Pagès et al. (2004a) propose to recursively optimize distortions under time t laws in-

duced by time t − 1 optimal quantizations. Non-standardized random variates targeted

by Markovian quantization (also referred to as recursive quantization) in Algorithm 2 are

more precisely given at time t by

(
S (ŝt−1, ĥt ,zt),H (ĥt ,zt)

)
where (ŝt−1, ĥt) is an optimal (time t−1) quantization known by recursion and zt is still a

standard normal random variable. We henceforth simply refer to the resulting law as the

Markovian law. It is a mixture of P conditional GARCH laws, which as previously noted

are defined over parabolas in price-variance space. Markovian quantization yields true

Markov chains that converge to GARCH dynamics as P→ ∞12, but is suboptimal from a

marginal standpoint.

Algorithm 2. Markovian (Recursive) Quantization

For t = 1, . . . ,T , assuming the optimal time t− 1 quantizer Γt−1 = {x
(1)
t−1, . . . ,x

(P)
t−1} and

corresponding unconditional probabilities p(i)t−1 = P(x̂t−1 = x(i)t−1) are known at t = 1 and

otherwise known by recursion

1. Draw a sequence of standard normal random variates {zs}S
s=1;

2. Draw a sequence of integer random variates {is}S
s=1 with probability P(is = i) =

p(i)t−1 for i ∈ {1, . . . ,P} and 0 otherwise;

3. Compute standardized Markovian random vectors for s = 1, . . . ,S

ξs =

(
S (s(is)t−1,h

(is)
t ,zs)√

Var [st ]
,
H (h(is)t ,zs)√

Var[ht+1]

)
;

where Var [ht+1] and Var [st ] are predetermined constants respectively given by (??)

and (??);

12 See Footnote 11.
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4. Set Γt = {x(1)t , . . . ,x(P)t } to an optimal P-quantizer obtained via a splitting method

(see Sub-Algorithm 3) followed by Lloyd’s method (see Sub-Algorithm 2) using

standardized Markovian random variate sequences {ξs}S
s=1;

5. Compute transition probabilities

p(i, j)t =
∑

S
s=1 I(is = i, js = j)

∑
S
s=1 I(is = i)

for i, j = 1, . . . ,P, where js = argmin
1≤k≤P

|ξs− x(k)t | and is was previously computed at

step 2 (with p(i, j)1 = p(1, j)1 by convention);

6. Compute unconditional probabilities according to p( j)
t = ∑

P
i=1 p(i)t−1 p(i, j)t for j =

1, . . . ,P.

Regarding numerical efficiency of Algorithm 2, some authors such as Bally et al.

(2005) suggest harvesting probability estimators as companion parameters in the CLVQ

algorithm. We find the computational impact to be negligible. Once optimal quantiz-

ers are computed, we may indeed rely on fast KD-trees to find nearest neighbors when

estimating probabilities; see Bentley (1975). In contrast to marginal quantization, the

recursive formulation of the Markovian algorithm prohibits parallel computations.

Markovian laws are fundamentally different from their unconditional counterparts

considered previously under marginal quantization. The Markovian support is indeed

given by a union of P parabolas as opposed to the first quadrant of R2 in the limit under

unconditional laws. We expect such discrepancies to be exacerbated by the inherent accu-

mulation of quantization errors under the Markovian approach i.e. as errors in time t−1

quantizers recursively impact time t Markovian laws. This distinguishes our work from

existing stochastic volatility quantization approaches such as Callegaro et al. (2016) un-

der which unconditional and Markovian laws are structurally similar i.e. defined over the

same support. For example here we expect pre-asymptotic Markovian quantizer elements

not to be in the targeted support, but still converge towards it.

Figure 3.5 shows an optimal Markovian quantization at 21 trading days. The ge-

ometry in the asymmetric case is quite different than its marginal counterpart i.e. with
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Figure 3.5: Optimal Markovian quantization (Algorithm 2) at 21 trading days with P = 100 and
δ ? = 1e−6.

optimal quantizers forming multiple diagonal segments as opposed to being much more

diffused previously. Quantizers generally appear noisier on any given day and display

erratic variations in time (not shown). This noise is not related to the stochastic nature

of the algorithm which did in fact converge (here δ ? = 1e−6 corresponding to roughly

140,000,000 simulations in the last iteration of the splitting method). These preliminary

observations instead suggest distortion functions under Markovian laws have many at-

tracting local minima and are particularly difficult to optimize.

Deterministic approaches (introduced next in Section 3.5) must be solved in a Marko-

vian setting since time t > 1 marginal laws quickly become too convoluted for analytical

solutions. Markovian quantization is hence a relevant benchmark for deterministic ap-

proaches to come, whereas marginal quantization provides best results under marginal

metrics (by construction).

3.5 Deterministic Methods

Nearest neighbors are highly tractable in one dimension with Voronoi tiles simply delim-

ited by mid-points of adjacent quantizer elements. Gradients for log-price and conditional

variance distortions may hence be derived under the recursive quantization approach. We

do so towards implementing numerically efficient optimization routines. We first adapt
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product quantizations of Fiorin et al. (2017) to GARCH dynamics in Section 3.5.1. This

approach intuitively wastes quantizer elements over effectively null probability areas —

more so in the asymmetric case e.g. in the top-right and bottom-left areas in the right

panel of Figure 3.3. We thus propose a novel deterministic alternative which targets mul-

tiple conditional laws in Section 3.5.2. Scaling issues related to the Euclidean norm in

price-variance space (discussed in Section 3.3) do not apply here since quantizers to be

optimized are one-dimensional.

3.5.1 Product Quantization

For t = 1, . . . ,T , we preliminarily define Γst = {s
(1)
t , . . . ,s(K)

t } and Γht+1 = {h
(1)
t+1, . . . ,h

(N)
t+1}

for some price and variance quantizer sizes denoted by respectively K and N. For nota-

tional convenience, we further assume initial quantizers Γs0 = {0, . . . ,0} (containing K

elements) and Γht+1 = {h1, . . . ,h1} (containing N elements). Without loss of generality,

we assume all time t > 0 quantizers are ordered, i.e. with s(i+1)
t > s(i)t for i = 1, . . . ,K−1

and h(l+1)
t+1 > h(l)t+1 for l = 1, . . . ,N−1.

The Cartesian product quantizer Γt = Γst ×Γht+1 is a typical rectangular grid over R2

containing KN elements. In particular, we let KN ≈ P when later comparing deterministic

and stochastic methodologies. Regarding the GARCH quantization, we drop optimal

Voronoi tessellations in favor of much more tractable product tessellations, ŝt

ĥt+1

=


K
∑

i=1
s(i)t I(st ∈C(i)

st )

N
∑

l=1
h(l)t+1I(ht+1 ∈C(l)

ht+1
)


where one-dimensional Voronoi tessellations for t > 0 are simply

C(i)
st =

(
(s(i−1)

t + s(i)t )

2
,
(s(i)t + s(i+1)

t )

2

)
, C(l)

ht+1
=

(
h(l−1)

t+1 +h(l)t+1)

2
,
h(l)t+1 +h(l+1)

t+1 )

2

)

for i = 1, . . . ,K and l = 1, . . . ,N with s(0) =−∞ and s(K+1) = ∞ and h(0)t = 0 and h(N+1)
t =

∞ by convention. We do so towards analytically solving transition probabilities p(il, jm)
t =

P(ŝt = s( j)
t , ĥt+1 = h(m)

t+1

∣∣ŝt−1 = s(i)t−1, ĥt = h(l)t ) and unconditional probabilities p(il)t−1 =
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P(ŝt−1 = s(i)t−1, ĥt = h(l)t ) where by convention p(11)
0 = 1 (and 0 otherwise). Algorithm 3

presents the product quantization optimization method. Henceforth, dϕ(z)= e−z2/2/
√

2πdz

is the standard normal probability density function [PDF] and Φ(z) is the associated cu-

mulative density function [CDF].

Algorithm 3. Product Quantization.

For t = 1, . . . ,T , assuming the optimal time t − 1 Cartesian product quantizer Γt−1 =

{(s(i)t−1,h
(l)
t ), i = 1, . . . ,K, l = 1, . . . ,N} and corresponding unconditional probabili-

ties p(il)t−1 are known at t = 1 and otherwise known by recursion,

1. Find a log-price quantizer Γst = {s
(1)
t , . . . ,s(K)

t } minimizing the distortion for s̃t =

S (ŝt−1, ĥt ,zt),

Dst = E

[
K

∑
i=1

I(s̃t ∈C(i)
st )(s̃t− s(i)t )2

]

=
K

∑
i=1

N

∑
l=1

p(il)t−1

∫
∞

−∞

K

∑
j=1

I(S (s(i)t−1,h
(l)
t ,z) ∈C( j)

st )(S (s(i)t−1,h
(l)
t ,z)− s( j)

t )2dϕ(z);

(3.9)

2. Find a conditional variance quantizer Γht+1 = {h
(1)
t+1, . . . ,h

(N)
t+1} minimizing the dis-

tortion for h̃t+1 = H (ĥt ,zt),

Dht+1 = E

[
N

∑
l=1

I(h̃t+1 ∈C(l)
ht+1

)(h̃t+1−h(l)t+1)
2

]

=
K

∑
i=1

N

∑
l=1

p(il)t−1

∫
∞

−∞

N

∑
m=1

I(H (h(l)t ,z) ∈C(m)
ht+1

)(H (h(l)t ,z)−h(m)
t+1)

2dϕ(z);

3. Compute transition probabilities according to

p(il, jm)
t = P(s̃t ∈C( j)

st , h̃t+1 ∈C(m)
ht+1
|ŝt−1 = s(i)t−1, ĥt = h(l)t )

=
∫

∞

−∞

I(S (s(i)t−1,h
(l)
t ,z) ∈C( j)

st )I(H (h(l)t ,z) ∈C(m)
ht+1

)dϕ(z);

4. Compute unconditional probabilities according to p( jm)
t = ∑

K
i=1 ∑

N
l=1 p(il)t−1 p(il, jm)

t .
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In Appendix A.3, we explicitly solve distortions, gradients and transition probabilities

for the HN-GARCH case. We experimented with various optimization methods, includ-

ing trust-region methods using both analytical gradients and Hessians13. We generally

find the fastest convergence is achieved by a simple BFGS algorithm under a proposed

change of variable (presented in Appendix A.5) and analytical gradients. Preliminary ex-

periments suggest global optimization routines such as the Basin-Hopping algorithm14

fail to improve optimal distortions obtained via the BFGS algorithm, presumably due to

the large number of dimensions.

Figure 3.6 shows an optimal product quantization at 21 trading days. As anticipated,

quantizers in low(high) price and low(high) variance areas have very low probability es-

pecially in the asymmetric case; see white areas in the top-right and bottom-left corners of

the right panel. Similarly to stochastic Markovian quantization presented in Section 3.4.3,

we observe erratic variations in time (not shown) for conditional variance quantizers,

but deterministic quantizers are significantly less noisy than their stochastic counterparts.

Overall, these observations suggest supports of Markovian laws (informally character-

ized in Sections 3.4.2 and 3.4.3) are an inherently difficult case for quantization. We next

consider a quantization that allows conditional variance quantizers to vary with log-price

quantizers and hence better accommodates strong dependence effects.

3.5.2 Conditional Quantization

We consider quantizers of the form Γt = {(s(i)t ,h(il)t+1), i = 1, . . . ,K, l = 1, . . . ,N} for

t = 1, . . . ,T where univariate quantizers Γst and Γ
(i)
ht+1

are assumed ordered. More pre-

cisely, we have one variance quantizer per price quantizer element given by Γ
(i)
ht+1

=

{h(i1)t+1, . . . ,h
(iN)
t+1 } for i = 1, . . . ,K. Quantizers are still assumed ordered for t > 0, i.e.

h(il+1)
t+1 > h(il)t+1 for l = 1, . . . ,N with h(i0)t = 0 and h(iN+1)

t = ∞ by convention. As usual, we

consider initial variance quantizers Γ
(i)
h1

= {h1, . . . ,h1} (with N elements) for i = 1, . . . ,K

13 See Nocedal and Wright (2006) for more on numerical optimization routines such as trust-region or
BFGS algorithms.

14 See e.g. of Wales and Doye (1997).
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Figure 3.6: Optimal product quantization (Algorithm 3) at 21 trading days with K = 10 and
N = 5.

for notational convenience.

The bi-variate quantizer Γt is now an irregular rectangular grid over the price-variance

plane. Introducing

C(il)
ht+1

=

(
h(il−1)

t+1 +h(il)t+1

2
,
h(il)t+1 +h(il+1)

t+1

2

)
,

for t > 0, i = 1, . . . ,K and l = 1, . . . ,N, we propose the following conditional quantization ŝt

ĥt+1

=


K
∑

i=1
s(i)t I(st ∈C(i)

st )

K
∑

i=1
I(st ∈C(i)

st )
N
∑

l=1
h(il)t+1I(ht+1 ∈C(il)

ht+1
)

 (3.10)

where variance tessellations are selected conditionally —hence the name— on the con-

temporaneous price quantization. Similarly to the product quantization approach, we de-

rive analytical expressions for transition probabilities p(il, jm)
t =P(ŝt = s( j)

t , ĥt+1 = h( jm)
t+1

∣∣ŝt−1 =

s(i)t−1, ĥt = h(il)t ) and unconditional probabilities p(il)t−1 = P(ŝt−1 = s(i)t−1, ĥt = h(il)t ) with

p(11)
0 = 1 (and 0 otherwise). We propose a conditional quantization optimization pro-

cedure in Algorithm 4.

Algorithm 4. Conditional Quantization

For t = 1, . . . ,T , assuming the optimal time t− 1 conditional quantizer Γt−1 and corre-

sponding unconditional probabilities p(il)t−1 are known at t = 1 and otherwise known by

recursion,
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1. Find a log-price quantizer Γst = {s
(1)
t , . . . ,s(K)

t } minimizing the recursive distortion

given by (3.9);

2. For j = 1, . . . ,K, find a conditional variance quantizer Γ
( j)
ht+1

= {h( j1)
t+1 , . . . ,h

( jN)
t+1 }

minimizing the distortion of h̃t+1 = H (ĥt ,zt) conditional on {s̃t ∈C( j)
st },

D( j)
ht+1

= E

[
N

∑
l=1

I(h̃t+1 ∈C( jl)
ht+1

)(h̃t+1−h( jl)
t+1)

2
∣∣∣∣s̃t ∈C( j)

st

]

∝

K

∑
i=1

N

∑
l=1

p(il)t−1

∫
∞

−∞

I(S (s(i)t−1,h
(il)
t ,z) ∈C( j)

st )

N

∑
m=1

I(H (h(il)t ,z) ∈C( jm)
ht+1

)(H (h(il)t ,z)−h( jm)
t+1 )2dϕ(z)

where the final expression holds up to a normalization factor which may safely be

disregarded during the optimization process;

3. Compute transition probabilities according to

p(il, jm)
t = P(s̃t ∈C( j)

st , h̃t+1 ∈C( jm)
ht+1
|st−1 = s(i)t−1,ht = h(il)t )

=
∫

∞

−∞

I(S (s(i)t−1,h
(il)
t ,z) ∈C( j)

st )I(H (h(il)t ,z) ∈C( jm)
ht+1

)dϕ(z);

4. Compute unconditional probabilities according to p( jm)
t = ∑

K
i=1 ∑

N
l=1 p(il)t−1 p(il, jm)

t .

Explicit expressions for distortions, gradients and transition probabilities are solved

under the HN-GARCH specification in Appendix A.4 and implementation concerns dis-

cussed in Appendix A.5 also apply to conditional quantization. Step 1 of Algorithm 4 is

identical to product quantization, but Step 2 iterates over j = 1, . . . ,K and is thus signif-

icantly more demanding. This step is embarrassingly parallel so that the burden under

large K may be mitigated by additional processing units. Also, transition probabilities are

obtained as a by-product of Step 2 such that no additional computations are required for

Step 3 as opposed to product quantization.

Figure 3.7 displays an optimal conditional quantization at 21 trading days. We readily

visualize the significant advantage of conditional quantization over product quantization
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for the asymmetric case. Optimal quantizers are indeed placed diagonally as opposed to

being constrained to a rectangle. This leads to a more efficient utilization of resources

i.e. with significantly less low probability (white) areas. The added flexibility appears

less exploited in the symmetric case. We next confirm these intuitions and compare all

methodologies presented so far under marginal metrics.

Figure 3.7: Optimal conditional quantization (Algorithm 4) at 21 trading days with K = 10 and
N = 5.

3.6 Summary of Numerical Results

As discussed by Pagès and Sagna (2015), uniform dispatching (i.e. Pt = P) is suboptimal,

but minimizes overall complexity and hence estimation/storage costs of transition proba-

bilities. Under deterministic approaches, an additional practical concern is the allocation

of price-variance quantizer sizes (K,N) for some budget P = KN. We assume K and N

are uniform through time with one notable exception; for conditional quantizations we let

(K = P, N = 1) at t = 1 towards accommodating the parabolic shape of optimal quantiz-

ers. We emphasize that this shape is a priori inferred from supports of targeted recursive

distributions; see e.g. top panels of Figure B.4 in the Appendix.

Figure 3.8 presents total quantization errors over 21 trading days for different (K,N)

allocations under both product and conditional approaches. In order to mitigate over-

fitting concerns, we limit allocations to three scenarios: the same number of quantizer
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elements, twice the number of quantizer elements for prices and twice the number of

quantizer elements for variances. We find the same number of elements for both price

and variance quantizers is typically best. The only exception is under the asymmetric case

for conditional quantization where allocating twice the number of quantizer elements to

prices is better15.

Figure 3.8: TRMS at 21 trading days for product and conditional quantizations under three (K,N)
allocations: the same number of elements for both price and variance quantizers with (K = 17,
N = 17) [K = N], twice the number of price elements as variance elements with (K = 24, N = 12)
[K = 2N], and vice-versa with (K = 12, N = 24) [N = 2K].

Figure 3.9 shows total recursive quantization errors in excess of the marginal ap-

proach. We observe roughly linear trends in total errors past the first few time steps. Fig-

ure B.3 in the Appendix shows corresponding daily excess recursive quantization errors.

Daily errors stabilize in time —and even slightly decrease for deterministic approaches

in the asymmetric case. These observations mitigate concerns related to the transmis-

sion and possible accumulation of errors in time under recursive approaches. Figure B.3

makes apparent the instability in time faced by recursive approaches when compared to

corresponding —much smoother— curves under marginal quantization in Figure B.2. For

example, the left panel of Figure B.3 shows an anomaly under product quantizations at

t = 15 which is most likely related to the BFGS algorithm converging to a local minimum.

15 This is a desirable feature for dynamic programming as the price dimension is often the primary
source of convexity (and hence of errors) in value functions e.g. when pricing options.
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Figure 3.9: TRMS of all recursive approaches over the marginal approach through time i.e.
TRMST −TRMS?

T where TRMS? represents total quantization errors under marginal quantiza-
tions of Section 3.4.2. We use P = 1681 for both marginal and Markovian stochastic approaches,
(K = 41, N = 41) for both product and conditional quantization under the symmetric case and
(K = 58, N = 29) under the asymmetric case for conditional quantization.

The stochastic Markovian approach significantly over-performs deterministic approaches

for a given budget P ≈ KN. This is not surprising given strong rectangular (i.e. grid-

like) constraints imposed on deterministic quantizations. Conditional quantization sig-

nificantly over-performs product quantization in both cases. While this is expected —

and undoubtedly confirmed— for the asymmetric case, the conditional approach further

roughly halves errors under product quantization for the symmetric case. This is mostly

due to letting (K = P, N = 1) at t = 1 under the conditional approach. The flexibility to

reallocate variance elements (N) to price elements (K) during early time steps appears as

a considerable advantage of conditional quantization over product quantization.

At this point, it is unclear why one would rely on deterministic approaches in practice.

Figure 3.10 presents main results of practical interest, namely total quantization errors

against computation times —with lower curves corresponding to higher efficiency. While

both marginal and conditional methods are embarrassingly parallel, we focus on serial

implementations to avoid (as much as possible) machine-dependent effects16. The large-

16 More precisely, the CLVQ algorithm under stochastic approaches and distortion functions/gradients
under deterministic approaches are implemented in pure C and linked using Python/Cython. Computations
are done on two Intel Xeon clocked at 2.4GHz using 15MB of (L3) cache and 64GB of random access
memory.
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scale scenario P = 9801 could not be computed in a reasonable time (less than a few

weeks) for stochastic methods and was hence omitted17.

Figure 3.10: TRMS for 21 trading days against corresponding computational times in clock
seconds. For clarity, both axes are shown in logarithmic scale. For each approach, markers rep-
resent (P,K,N) triplets (49,7,7), (289,17,17), (1681,41,41) and (9801,99,99), with the exception
of the conditional approach for the asymmetric case where triplets are (49,10,5), (289,24,12),
(1681,58,29) and (9801,140,70). The case P = 9801 is omitted for stochastic approaches as it
could not be computed in a reasonable time.

Stochastic Markovian quantization performs poorly for all sizes. The increase in com-

putation times over the marginal approach is mostly driven by the cost of performing sim-

ulations at each time step, rather than in a single stride18. Simulation and nearest neighbor

search costs overwhelm probability estimation costs under both stochastic approaches. In

particular, harvesting CLVQ companion parameters has a negligible impact due to fast

O(log(P)) KD-trees being utilized in Monte Carlo estimators. For small quantizers (e.g.

with 100 elements), marginal stochastic quantization is the most efficient and definite

choice in practice.

For larger quantizer sizes however, we readily see deterministic approaches benefit

from exponential efficiency gains, surpassing stochastic methods for quantizers with more
17 One could relax the splitting method e.g. by adding 10 to 100 elements instead of a single element at

each step. But this approach raises additional concerns related to the optimal trade-off between the number
of elements added and quantization quality.

18 Simulations are performed using numpy, a widespread Python package warping low-level C arrays.
This package implicitly parallelizes matrix operations (e.g. similarly to MATLAB) such that performing
a single GARCH time-series simulation for a given T is much more efficient than performing T one-step
Markovian simulations.
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than roughly 300 elements. Product quantization performs surprisingly well, especially

under symmetric models. The conditional approach offers the lowest achievable (i.e. in

a reasonable time) distortion under both symmetric and asymmetric cases by a margin of

respectively 0.77% and 4.1% TRMS. Given sufficient computational units, times under

conditional quantization could theoretically approach times under product quantization.

A parallelized implementation of conditional quantization hence appears as the most ef-

ficient, stable and versatile (i.e. under leverage effect or not) choice in practice. The

simplicity of product quantization could still warrant its use e.g. as a direct replacement

of ad hoc regular grids typically used in dynamic programming applications; as discussed

earlier in Section 3.2.

Marginal metrics under recursive approaches are only indirectly impacted by transi-

tion probabilities through targeted laws. In the next section, we turn to practical applica-

tions which explicitly rely on GARCH dynamics.

3.7 Applications

We consider three applications under the asymmetric case using conditional quantization:

European option pricing, American option pricing, and variance-optimal hedging. Our

focus on conditional quantization is motivated by its overwhelming marginal efficiency in

the asymmetric case, the availability of analytical expressions for transition probabilities

(not explicitly tested so far), and the fact large-scale (KN > 5000) quantizers may be opti-

mized in a reasonable time. Experimentations are performed in highly stylized settings in

the context of the S&P 500 index and numerical results are provided as proofs of concept.

Thorough empirical (i.e. using actual market data) and numerical work in any particular

setting (i.e. pricing or hedging) is left for future research.

Given the results in Section 3.6, we henceforth use twice the number of elements for

log-prices as for conditional variances, with the exception of the first time step.
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3.7.1 European Call Option Pricing

We compare European call option prices obtained via the quantization of a risk-neutral

HN-GARCH model against semi-analytical expressions of Heston and Nandi (2000). Un-

der the change of numéraire introduced in Section 3.3, call option prices are given by

c(k,T,h1) = E
[(

esT − ek
)+]

where (x)+ = max(x,0), k is a forward log-strike price related to observable strike prices

K by k = log(K/S0)− (r− δ )T where r is a risk-free rate and δ is a dividend yield19.

Observable option prices may be recovered according to C = cS0e−δT .

According to empirical results of Heston and Nandi (2000), the GARCH option pric-

ing model is most relevant when variances are strongly correlated with prices i.e. under

a leverage effect. We hence risk-neutralize the previously introduced asymmetric model.

Risk-neutral parameters are obtained directly under the variance-dependent pricing kernel

of Christoffersen et al. (2013) which allows for a variance risk premium. This premium is

due to higher volatility states being perceived (in equilibrium) as worst market scenarios;

see e.g. Gârleanu et al. (2009) and references therein for more empirical insights. We

use a variance aversion parameter which roughly matches the estimate on S&P 500 op-

tion and log-return data from Christoffersen et al. (2013)20. Table 3.2 shows risk-neutral

parameters.

The risk-neutral persistence is slightly higher (0.965 versus 0.962) and the long-run

log-return variance is markedly higher (23.5% versus 18%) as expected under variance

aversion. The γ parameter is slightly lower (152 versus 190) which —while surprising—

is consistent with variance aversion21. Investors are indeed averse to surges in variance

caused by extreme positive log-returns, hence shifting some of the pricing kernel weight

19 See the empirical supplement of Lamarre et al. (2017) for hypotheses underlying this change of
numéraire and other empirical implications.

20 More precisely, we set the ξ parameter of Christoffersen et al. (2013) to 23,000 in line with their
estimate of (1−2αξ )−1 ≈ 1.26 and adjust parameters according to their Equation (11) where φ =−(µ−
1/2+ γ)(1−2αξ )+ γ−1/2.

21 In particular, the classical pricing principle under no variance aversion of Duan (1995) would increase
the γ parameter; see Proposition 1 of Heston and Nandi (2000).

125



towards the right log-price tail. This setting does not rely on the local risk-neutral valua-

tion relationship of Duan (1995) which in contrast leaves conditional variance dynamics

untouched.

Table 3.2: Parameters of HN-GARCH model (3.3) in the risk-neutral (asymmetric) case.

Parameter Risk-Neutral

µ 0
ω 4.14e−7
α 7.16e−6
β 0.8
γ 152

Following empirical option pricing convention, we present results as Black-Scholes

implicit volatilities [IVs] defined as the σ parameter solving (for k and T fixed) c =

Φ(d+(0,k,σ ,T ))−ekΦ(d−(0,k,σ ,T )) for a given c where d±(s,k,σ ,τ)= (s−k±σ2τ/2)/(σ
√

τ).

We underline that the change of numéraire used here greatly streamlines the Black-

Scholes framework. Due to put-call parity, there exists a single IV for any put and call

pair of a given maturity and strike price. Without loss of generality, we hence consider

call options only. B&S is typically not a valid empirical pricing model and IV is merely

used as a normalization function towards controlling variations in days-to-maturity and/or

strike price.

Under an optimal conditional quantization as obtained in Section 3.5.2, option prices

are given by

ĉ =
K

∑
i=1

N

∑
l=1

p(il)T

(
es(i)T − ek

)+

.

The left and right panels of Figure 3.11 display the convergence of IVs in respectively

strike and days-to-maturity space. Figure 3.12 shows more accurately the convergence

for two monthly contracts: at-the-money (k = 0%, T = 21) in the left panel and out-of-

the-money (k = 2%, T = 21) in the right panel.

First, we note prices obtained from the quantization approach underestimate true

prices, as evidenced by IVs converging from below in Figures 3.11 and 3.1222. This
22 IV is a strictly monotonic increasing function of option prices.
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Figure 3.11: Annual IVs for European call options obtained via the conditional quantization
methodology. In the left panel, we show IVs as a function of k for 21 trading-days-to-maturity
options and in the right panel as a function of trading-days-to-maturity for an at-the-money (k = 0)
option. True prices are computed according to semi-analytical expressions of Heston and Nandi
(2000).

Figure 3.12: Annual IVs for 21-trading-days-to-maturity European call options obtained via the
conditional quantization methodology as a function of quantizer size (KN = 200, 800, 1800, 3200,
5000, 7200). In the left panel, we show an at-the-money option (k = 0) and in the right panel
an out-of-the-money option (k = 0.02). True prices are computed according to semi-analytical
expressions of Heston and Nandi (2000).

is consistent with Jensen’s inequality. As noted by Pagès and Printems (2003), we in-

deed have E[ f (x̂T )] = E[ f (E[xT |x̂T ])]≤ E[E[ f (xT )|x̂T ]] = E[ f (xT )] due to optimal quan-

tizers being stationary i.e. E[xT |x̂T ] = x̂T . Second, the at-the-money error is 0.012% when

KN = 7200. This error translates to 5 cents for the S&P 500 index with S0 ≈ 2800,

significantly less than typical bid-ask spreads of roughly 30 cents as of late 2018.

Even though semi-analytical expressions are available, quantized European option
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pricing still has practical uses when computation times are critical. Given an optimal

quantization, we indeed compute a hundred prices in roughly 0.5 seconds for KN = 7200

as opposed to roughly 35 seconds under Heston and Nandi (2000). These computation

times are achieved using a naive sequential python implementation. More sophisticated

implementations would most likely be suitable for real-time applications with numerous

option contracts such as live data streaming or high-frequency option trading. When mar-

kets fluctuate greatly intra-daily, a quantization previously optimized for some initial daily

variance h1 likely becomes irrelevant for real-time applications. To prevent such scenar-

ios, we may devise ad hoc schemes which account for intra-daily market realizations23.

3.7.2 American Put Option Pricing

We now turn to American options i.e. allowing for the possibility of early exercise. Our

benchmark is given by the least squares Monte Carlo [LSM] methodology of Stentoft

(2005) which is an adaptation for GARCH models of Longstaff and Schwartz (2001).

This choice is motivated by LSM being the most popular in practice. But LSM unfor-

tunately yields biases of opposite signs to the quantization approach24. Significant pre-

asymptotic differences are hence anticipated, with true prices lying somewhere between

both estimators. We emphasize biases are not an artifact of the quantization approach per

se, but an inherent feature of the two main American option pricing frameworks; value

function approaches such as Carriere (1996), Duan and Simonato (2001) and our current

approach have positive biases, whereas stopping time approaches such as Longstaff and

Schwartz (2001) have negative biases25.

23 For completeness, we propose such a scheme here. We find one optimal quantization for each element
of a pre-defined grid of h1. Intra-daily quantizations are then selected by predicting h1 using the real-time
partial daily market log-return (and h0) and selecting quantizations according to the nearest neighbor rule.
An obvious choice for the conditional variance grid is an optimal quantizer targeting h1|h0. The set of
quantizations is then re-optimized and stored following the re-estimation of model parameters, typically on
a daily basis when markets are closed (i.e. overnight).

24 See e.g. Chapter 5 of Bell et al. (2013).
25In the former case, the positive bias is related to Jensen’s inequality and the maximum operator being

convex; see the first proof in Section 5.1 of Carriere (1996). In the latter case, optimal stopping time
estimators are by construction suboptimal, hence yielding lower continuation values. See Stentoft (2010)
for a thorough numerical comparison of both approaches.
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American option pricing is relevant in the presence of interests for in-the-money put

options and/or dividends for in-the-money call options as the early exercise premium is

otherwise worthless. Here, we focus on the former case i.e. put options under interests. To

do so, we first introduce spot log-prices s̃t = st + tr for t = 0, . . . ,T where r is a constant

risk-free rate (and s̃0 = 0). To ensure early exercise effects are significant, we consider

a high annual risk-free rate of 5% i.e. r ≈ 0.0002 under no dividends. Observable asset

prices are St = S0es̃t for some initial asset price S0.

Following the notation introduced in Section 3.3, we formalize the valuation function,

vt(st ,ht+1) = max
(

e−rE
[
vt+1

∣∣Ft
]
,(ek̃− es̃t )+

)
for t = 0, . . . ,T − 1 where k̃ = log(K/S0) is a spot log-strike price for some observable

strike price K and vT = (ek̃− es̃T )+. The conditional expectation is computed under the

previously introduced risk-neutral model under variance aversion; see Table 3.2 for pa-

rameters. Strictly speaking, this setting characterizes Bermudian options i.e. with early

exercise only allowed on market closes. Under conditional quantizations of Section 3.5.2,

the problem is solved similarly to Duan and Simonato (2001) or Bally et al. (2005) as a

backward recursion for t = T −1, . . . ,0,

v̂(il)t = max

(
e−r

K

∑
j=1

N

∑
m=1

p(il, jm)
t v̂( jm)

t+1 ,(ek̃− es̃(i)t )+

)
,

for i = 1, . . . ,K and l = 1, . . . ,N26 where v̂( jm)
T = (ek̃− es̃( j)

T )+. Quantizers are optimized

for forward log-prices st first —as done throughout this paper— and then converted to

spot values s̃(i)t = s(i)t + rt for i = 1, . . . ,K. The option price is finally given by ĉ = v̂(11)
0

with observable option prices recovered according to C = S0c.

Regarding LSM, we first obtain unconditional GARCH simulations using Algorithm

B.5 (omitting the third step) and then accumulate interests according to s̃t = st + tr. When

26 For notational convenience, we assume fixed quantizer sizes under conditional quantization. Remem-
ber from Section 3.6, we set N = 1 for t = 1 such that v̂(il)1 is actually defined over i = 1, . . . ,P and l = 1
for some fixed (overall) number of elements P. The shape of transition probability matrices for t = 0,1 and
corresponding summation indices in v̂(il)0 are easily adjusted.
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estimating continuation values, we consider quadratic and cross-product terms

{1,es̃t ,ht+1,e2s̃t ,h2
t+1,e

s̃t ht+1}

as regressors and discounted cash flows (as opposed to previously estimated continua-

tion values) of currently in-the-money options as the dependent variable. This setting

corresponds to the standard algorithm of Longstaff and Schwartz (2001).

We present empirical results in terms of IV as introduced in Section 3.7.1. The Black-

Scholes model is given by c = ekΦ(−d−(0,k,σ ,T ))−Φ(−d+(0,k,σ ,T )) for put options

where we first appropriately recover forward log-strike prices from spot log-strike prices

according to k = k̃− rT . American option prices are theoretically bounded from below

by their European counterparts and American option IVs are well-defined if correspond-

ing European IVs are well-defined27. It hence makes sense to empirically focus on the

IV early exercise premium, defined as IV− IV? > 0 where IV and IV? are respectively

computed from matching American and European option prices.

The left and right panels of Figure 3.13 show the IV early exercise premia in re-

spectively strike and days-to-maturity space. The LSM algorithm is performed using

10,000,000 simulations such that resulting 95% confidence bounds are hardly distinct

(and hence omitted for clarity). We confirm American option pricing is most relevant

for in-the-money options as early exercise quickly becoming otherwise worthless (i.e. for

k̃� 0).

Figure 3.14 shows the convergence for two monthly in-the-money option contracts

where the LSM algorithm is now performed under 1,000,000 simulations with resulting

95% confidence intervals shown as dashed lines. As anticipated, we observe significant

differences between both approaches due to opposite biases. For American options writ-

ten on SPY, the premium difference of roughly 0.075% (for KN = 7200) in the left panel

of Figure 3.14 translates to 2.3 cents (with S0 ≈ 280), as compared to corresponding bid-

27Strictly speaking, European put option prices are bounded from above by c < ek from absence of static
arbitrage opportunities. European prices are typically sufficiently away from upper bounds that American
prices also remain within static arbitrage bounds —at least under realistic interest rates.
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Figure 3.13: Annual early exercise IV premia for American put options obtained via the condi-
tional quantization methodology. In the left panel, we show early exercise premia as a function of
k̃ for 21 trading-days-to-maturity options and in the right panel as a function of trading-days-to-
maturity for an in-the-money option (k̃ = 0.02) option. LSM premia are computed according to
Stentoft (2005) under 10,000,000 simulations with 95% confidence bounds omitted for clarity.

ask spreads of roughly 10 cents as of late 201828. Remember that the actual error is

slightly less than 2.3 cents since LSM is negatively biased.

This accuracy is quite remarkable given a single American option price is computed

in less than 0.3 seconds under the quantization approach (for KN = 7200) as opposed to

roughly 6 seconds under LSM with 1,000,000 simulations29. Given the very fast conver-

gence of the quantization approach, the accuracy provided by KN = 3200 might suffice

for most practical applications —in which case an option is priced under roughly 0.05 sec-

onds. While numerical results from Stentoft (2010) suggest LSM-type algorithms have

the smallest absolute biases, our preliminary results undoubtedly illustrate the potential

of quantization towards real-time and/or large-scale applications such as discussed in the

last paragraph of Section 3.7.1.

28 SPY is an exchanged-traded fund which is designed to track roughly one tenth of the S&P 500
index level. Due to the scale invariance property of GARCH models, GARCH parameters for SPY are
presumably very similar to parameters for the S&P 500 index i.e. our asymmetric case. The back-of-the-
envelope calculation presented here is for illustration purposes only. In particular, monthly rates were much
closer to 2% in late 2018 and dividend yields were also significant. Both effects would have a negative
impact on early exercise premia and would hence decrease absolute errors in price.

29 Computation times are obtained under a naive Python implementation and could most likely be im-
proved (in absolute) using pure C.
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Figure 3.14: Annual early exercise IV premia for 21-trading-days-to-maturity American put
options obtained via the conditional quantization methodology as a function of quantizer size
(KN = 200,800,1800,3200,5000,7200). In the left panel, we show an in-the-money option
(k̃ = 0.02) and in the right panel a deeply in-the-money option (k̃ = 0.05). LMS premia are com-
puted according to Stentoft (2005) under 1,000,000 simulations. Corresponding 95% confidence
bounds are estimated by bootstrap using 10,000 LSM runs and are shown as dashed lines.

3.7.3 Variance-Optimal Hedging

For the final application, we consider variance-optimal hedging as proposed by Schweizer

(1995). While this setting provides a tractable solution to the challenging problem of mar-

ket incompleteness, it does so under an assumed quadratic criterion which is inconsistent

with increasing utility of wealth because of large hedging gains being penalized as much

as large hedging losses. Still the fact variance-optimal hedging ratios converge to their

complete market counterparts as time intervals shrink to zero in the Black-Scholes frame-

work legitimizes the approach; see e.g. Prigent (2003).

We consider an empirical application to European put payoffs in the context of mone-

tizing the variance risk premium by selling and hedging at-the-money (i.e. k = 0%) S&P

500 index options similarly to Lamarre et al. (2017). Introducing a dynamically rebal-

anced hedging portfolio value at time t = 0, . . . ,T

vt = v0 +
t

∑
k=1

∆k(esk− esk−1),

where v0 is an amount that must be set aside in risk-free instruments at inception and ∆k

represents a predictable exposure over [t−1, t), we focus on the overall profits and losses
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[PNL],

PNL = c0 + vT − v0− (ek− esT )+,

where c0 is a put option price computed under the risk-neutral model. Under our change

of numéraire, PNLs may be interpreted as excess returns from committing S0e−δT capital

for a dividend yield δ and selling and hedging a single option until maturity.

Regarding the benchmark, we consider classical delta-hedging [DH] i.e. the partial

derivative of option prices with respect to the asset price. DH presupposes continuous-

time portfolio rebalancing. Alexander and Nogueira (2007) further show DH is variance-

optimal if and only if price-variance correlation is zero. DH indeed fails to account for

the partial derivative of option prices with respect to conditional variances; see e.g. Garcia

and Renault (1998). By construction, we hence expect variance-optimal hedging [OH]

of Schweizer (1995) to decrease risk with respect to DH under a leverage effect when

rebalancing at predetermined discrete time intervals (here at market close).

Variance-optimal hedging ratios indeed minimize the expected squared distance be-

tween the portfolio and the payoff,

min
v0,{∆}

E
[(

vT − (1− esT )+
)2
]
,

where the expectation is taken under a physical model i.e. with model parameters given by

the asymmetric case in Table 3.1. From Example 1 of Schweizer (1995), such a protocol

exists (i.e. their non-degeneracy condition is respected) under conditional quantizations

of Section 3.5.2 when KN > 1. The solution is then given by30 v0 = c(11)
0 and

∆
OH
t (vt−1,st−1,ht) =

K

∑
i=1

I(st−1 ∈C(i)
st−1)e

−s(i)t−1

N

∑
l=1

I(ht ∈C(il)
ht

)
q(il)t−1,1− vt−1m(il)

t,1

m(il)
t,2

30This solution is obtained by rearranging expressions in Section 2.1 and 2.2 of Rémillard and Ruben-
thaler (2013) in the univariate case and solving conditional expectations under quantizations. In particular,
γt matches their definition, mt,2 corresponds to their At/S2

t , mt,1 to their µt/St and mt,0 to E[γt+1|Ft ]. Also,
their Pt+1|Ft−1 may be replaced by γt+1|Ft−1 as already pointed out by their alternative formulation of Eq.
(2.3).
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where we compute by backward recursion (i.e. for t = T, . . . ,1),

m(il)
t,p =

K

∑
j=1

N

∑
m=1

p(il, jm)
t (es( j)

t −s(i)t−1−1)p
γ
( jm)
t+1 for p = 0,1,2,

q(il)t−1,p =
K

∑
j=1

N

∑
m=1

p(il, jm)
t (es( j)

t −s(i)t−1−1)pc( jm)
t γ

( jm)
t+1 for p = 0,1,

with γ
(il)
t = m(il)

t,0 − (m(il)
t,1 )

2/m(il)
t,2 ≤ 1 where γ

(il)
T+1 = 1 and with

c(il)t−1 =
q(il)t−1,0−

(
m(il)

t,1 /m(il)
t,2

)
q(il)t−1,1

γ
(il)
t

where c(il)T = (ek− es(i)T )+ for i = 1, . . . ,K and l = 1, . . . ,N31. m(il)
t,p and γ

(il)
t are computed

off-line following optimal quantizations. v0 is interpreted as the expected cost of hedging

due to E[vT − (ek− esT )+] = 032. Since we have c0 = 0.01913 and v0 = 0.01737, we

expect excess monthly PNLs of roughly 0.18% i.e. 2.1% per annum —a premium which

is motivated by variance aversion in our toy economy. Under no variance aversion (i.e.

under the valuation principle of Duan (1995) and Heston and Nandi (2000)), we instead

have c0 = 0.01738 and the framework of Schweizer (1995) appears suitable for option

pricing.

Regarding the benchmark, we consider

∆
DH
t (st−1,ht) =−E[esT−st I(sT ≤ k)|Ft ]

where the expectation is now computed under the risk-neutral model and explicit expres-

sions are found in Appendix A.6 for completeness33. We let v0 = c0 i.e. proceeds from

the sale of the option.

We perform a numerical experiment under the physical model using S = 10,000,000

unconditional GARCH simulations —still obtained via Algorithm B.5 (omitting the third
31 See Footnote 26.
32 The expectation is taken under the physical measure. See also Remark (3) following Corollary 3.2 of

Schweizer (1995).
33 In Appendix A.6, we further show this choice corresponds to ∂Ct/∂ S̃t where Ct = S0ert−δT E[(ek−

esT )+|Ft ] is the observed option price at time t and S̃t = e−δ (T−t)St is a total-return index at time t i.e.
including dividends.
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step). Our focus is on 21 trading days at-the-money put options. For each path s= 1, . . . ,S,

we retrieve hedging protocols {∆OH
t,s (vt−1,s,st−1,s,ht,s),∆

DH
t,s (st−1,s,ht,s)}t,s and compute

resulting profits and losses after 21 trading days i.e. PNLOH
s and PNLDH

s .

The left panel of Figure 3.15 shows a histogram of hedging ratios at t = 10, whereas

the right panel displays estimated PNL densities at maturity. First, we note that OH ratios

are typically lower than DH ratios. This is consistent with OH shorting additional units of

the underlying asset towards mitigating adverse effects from spikes in volatility (due to the

negative price-variance relationship under a leverage effect). From density estimations,

we readily observe PNLs under OH are much closer to normality and are slightly less

(negatively) skewed. In particular, the very odd shape of the density under DH suggests

misspecification.

Figure 3.15: Numerical results from selling and hedging at-the-money monthly put options under
delta-hedging [DH] and optimal hedging [OH] obtained via the conditional quantization method-
ology. The left panel displays hedging ratios under both DH and OH after roughly two weeks.
More precisely, we show a two-dimensional histogram with darker colors associated to more ob-
servations and where the black line is the identity function (both axes are truncated at−1 and 0 for
clarity). The right panel displays Gaussian kernel density estimators for PNLs (truncated at ±2%
for clarity).

Table 3.3 shows descriptive statistics for PNLs in percent. Mean PNL under OH is

consistent with an annual premia of roughly 2.1%, which is the empirical manifestation of

E[vT − (ek− esT )+] = 0. Standard deviations further confirm OH minimizes risk. While

DH shoulders more risk and reaps more reward (roughly 2.4% per annum), the overall

risk-reward trade-off is interestingly best under OH as evidenced by a Sharpe(Omega)
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ratio of 0.42(2.90) versus 0.38(2.46). This last observation is in line with empirical ob-

servations from Lamarre et al. (2017) using actual S&P 500 data.

The high excess kurtosis under OH (4.67) is mostly explained by 59 (out of 10,000,000)

extreme PNL observations falling outside±5%. All such observations correspond to large

quantization error realizations, typically with sT � 0.1. Roughly speaking, extreme PNLs

are related to undue extrapolations caused by market realizations falling outside a quan-

tization. Such extrapolations are easily avoided in practice by re-optimizing quantizers

following significant market returns. As a final comment, we underline that the numerical

experiment is completed under two minutes for the OH quantization approach, whereas

DH ratios under Heston and Nandi (2000) are computed in roughly three hours.

Table 3.3: Descriptive statistics of PNL (in percent) when selling and hedging monthly at-the-
money (k = 0%) put options under delta-hedging [DH] and optimal hedging [OH] obtained via
the conditional quantization methodology.

DH (%) OH (%)

Mean 0.1992 0.1763
Std.Dev. 0.5239 0.4207
Sharpe 0.38 0.42
Min. −4.83 −19.31
Max. 1.77 25.28
Skew. −0.70 −0.67
Kurt. 0.44 4.67

Omega 2.46 2.90

3.8 Conclusion

We obtain Markov chains approximating GARCH dynamics under a quadratic optimal-

ity criterion known as the distortion. We do so both under stochastic and deterministic

methodologies. When assuming resulting Markov chains as market models, many finan-

cial problems relying on dynamic programming are solved as straightforward recursive

summations. When instead assuming Markov chains as approximating GARCH dynam-
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ics, our approach is relevant towards improving the pre-asymptotic behavior of existing

Markov chain-based approximations such as Duan and Simonato (2001).

Numerical results suggest a novel conditional quantization approach is the most ef-

ficient in terms of marginal metrics, especially for large quantizer sizes under leverage

effects. This approach is successfully applied to three different scenarios corresponding

to option pricing and hedging for the S&P 500 index and appears suitable for real-time

and large-scale applications such as high-frequency option trading.

Further avenues of research include quantizations under non-normal innovations (e.g.

using the empirical law inferred from model residuals) and under other GARCH specifi-

cations. The quantization of dynamics based on high-frequency datasets is of particular

interest; see e.g. the HEAVY model of Shephard and Sheppard (2010). As pointed out

by Pagès and Printems (2003), quantization extensions to high dimensional processes

have limited potential when compared to Monte Carlo approaches, but remain relevant

e.g. when dynamically optimizing portfolio allocations across a maximum of 5 to 7 asset

classes.
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General Conclusion

Firstly, empirical observations from Gârleanu et al. (2009) under market segmentation

prompt us to investigate how volatility forecasts of differing statistical quality impact risk-

reward trade-offs for a profit-oriented agent extracting risk premia embedded in options.

We present robust empirical results corroborating volatility timing results of Fleming et al.

(2003); statistical value generated by realized volatility does translate to significant eco-

nomic value in the option market.

Market option prices are likely the result of a complex equilibrium involving partic-

ipants with varying degrees of sophistication e.g. with access (or not) to high-frequency

datasets. Building theoretical pricing implications under such heterogeneity proves to be

challenging. Still, a restrained three-agents model could be sufficiently tractable to yield

insights regarding exchanges of un-hedgeable risk factors amongst end-users, market-

makers and proprietary traders. Proprietary traders are better positioned for absorbing

long-run market imbalances, i.e. for hedging underlying market shocks. In contrast,

market-makers are naturally better positioned for absorbing short-lived imbalances be-

tween end-users and proprietary traders, i.e. for hedging option demand shocks. Net wel-

fare gains presumably appear from respectively attributing long- and short-run responsi-

bilities to proprietary traders and market-makers —a conjecture left for future research.

Secondly, we turn to numerical strategies for mitigating computational burdens faced

by stochastic optimal control problems under GARCH dynamics. We evidence the strong

potential of proposed conditional quantizations with regard to applications for which

Monte Carlo is unavailable.



Resulting discrete-state Markov chains are particularly well suited to retirement in-

vestment advice in the spirit of Goldstein et al. (2008). Under this framework, investors

directly specify discrete state probabilities for their retirement income, as opposed to op-

timizing a presupposed utility function parametrized by risk aversion. The quantization of

pricing kernels allows for the construction of cost-efficient payoffs in the spirit of Dybvig

(1988a,b). Desired retirement income probability distributions can then be targeted under

GARCH dynamics in a unified framework e.g. by considering variance-optimal pricing

kernel and variance-optimal protocols of Schweizer (1995). This quantization applica-

tion to distributional targeting is promising in regard to some of the challenges raised by

fin-tech shifts in the financial advisory industry. Recent advances in artificial intelligence

paired with proposed Markov chains may indeed help tackle growing customization needs

of investors.
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Appendix A

Appendix to “On the Marginal and

Recursive Quantization of GARCH

Models”
HUGO LAMARRE

A.1 Standardization under HN-GARCH

Without further mention, we rely on zt being independent of hs for all t ≥ s, zt being a

standard normal random variate for all t > 0 and h1 being a known constant. In particular,

we freely use the following results: E[zths] = E[zt ]E[hs] = 0 and E[z2
t hs] = E[z2

t ]E[hs] =

E[hs] for t ≥ s and E[h1] = h1 and Var[h1] = 0. We also follow the usual convention

∑
0
u=1 xu = 0.

A.1.1 Conditional Variance

Lemma B.1. For t ≥ s > 0,

E[ht ] = (ω +α)
t−s

∑
u=1

(β +αγ
2)u−1 +(β +αγ

2)t−sE[hs]

i



In particular,

E[ht ] = (ω +α)
t−1

∑
u=1

(β +αγ
2)u−1 +(β +αγ

2)t−1h1

Proof. We may easily show that E[hs+1] = (ω+α)+(β +αγ2)E[hs] such that the Lemma

holds for t = s+1. Then by induction,

E[ht ] = (ω +α)+(β +αγ
2)E[ht−1]

= (ω +α)+(β +αγ
2)

(
(ω +α)

t−1−s

∑
u=1

(β +αγ
2)u−1 +(β +αγ

2)t−1−sE[hs]

)

= (ω +α)+(ω +α)
t−1−s

∑
u=1

(β +αγ
2)u +(β +αγ

2)t−sE[hs]

= (ω +α)
t−s

∑
u=1

(β +αγ
2)u−1 +(β +αγ

2)t−sE[hs]

Lemma B.2. For t,s > 0,

E[hths] = (ω +α)E[hs∧t ]
|t−s|

∑
u=1

(β +αγ
2)u−1 +E[h2

s∧t ](β +αγ
2)|t−s|

Proof. Without loss of generality, we assume t > s. First note that

E[hths] = E
[(

ω +βht−1 +α(zt−1− γ
√

ht−1)
2
)

hs

]
= ωE[hs]+βE[ht−1hs]+αE[z2

t−1hs]−2αγE[zt−1
√

ht−1hs]+αγ
2E[ht−1hs]

= (ω +α)E[hs]+E[ht−1hs](β +αγ
2).

In particular, E[hs+1hs] = (ω +α)E[hs] +E[h2
s ](β +αγ2) which proves the Lemma for

t = s+1. Then for t > s+1, we have by induction

E[hths] = (ω +α)E[hs]+

(
(ω +α)E[hs]

t−1−s

∑
u=1

(β +αγ
2)u−1 +E[h2

s ](β +αγ
2)t−1−s

)
(β +αγ

2)

= (ω +α)E[hs]

(
1+

t−1−s

∑
u=1

(β +αγ
2)u

)
+E[h2

s ](β +αγ
2)t−s

= (ω +α)E[hs]
t−s

∑
u=1

(β +αγ
2)u−1 +E[h2

s ](β +αγ
2)t−s.

ii



We are now ready for the main result.

Proposition B.1. For t > 0,

Var[ht ] = 2α
2

t−1

∑
s=1

(β +αγ
2)2(s−1) (1+2γ

2E[ht−s]
)

Proof. Since Var[h1] = 0, the result is true for t = 1. It is also relatively well-known (see

e.g. Equation (7) of Christoffersen et al. (2013)) that Var[h2] = 2α2+4α2γ2h1 so that the

Proposition holds for t = 2. Then for t > 2,

Var[ht ] = E
[(

βht−1 +α(zt−1− γ
√

ht−1)
2
)2
]
−
(

E
[
βht−1 +α(zt−1− γ

√
ht−1)

2
])2

= E
[
α

2
γ

4h2
t−1−4α

2
γ

3h3/2
t−1zt−1 +6α

2
γ

2ht−1z2
t−1−4α

2
γ
√

ht−1z3
t−1 +α

2z4
t−1

+2αβγ
2h2

t−1−4αβγh3/2
t−1zt−1 +2αβht−1z2

t−1 +β
2h2

t−1
]
−
(
α +(β +αγ

2)E[ht−1]
)2

= α
2
γ

4E[h2
t−1]+6α

2
γ

2E[ht−1]+3α
2 +2αβγ

2E[h2
t−1]+2αβE[ht−1]+β

2E[h2
t−1]

−
(
α

2
γ

4E[ht−1]
2 +2α

2
γ

2E[ht−1]+α
2 +2αβγ

2E[ht−1]
2 +2αβE[ht−1]+β

2E[ht−1]
2)

=
(
α

2
γ

4 +2αβγ
2 +β

2)(E[h2
t−1]− (E[ht−1])

2)+2α
2 +4α

2
γ

2E[ht−1]

= (β +αγ
2)2Var[ht−1]+2α

2 +4α
2
γ

2E[ht−1],

and by induction,

Var[ht ] = (β +αγ
2)2

(
2α

2
t−2

∑
s=1

(β +αγ
2)2(s−1) (1+2γ

2E[ht−1−s]
))

+2α
2 +4α

2
γ

2E[ht−1]

= 2α
2

(
1+2γ

2E[ht−1]+
t−2

∑
s=1

(β +αγ
2)2s (1+2γ

2E[ht−1−s]
))

= 2α
2

t−1

∑
s=1

(β +αγ
2)2(s−1) (1+2γ

2E[ht−s]
)
.

The following Lemma will be useful in the next Section.

Lemma B.3. For t,s > 0,

Cov(ht ,hs) = (β +αγ
2)|t−s|Var[ht∧s]
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Proof. Using Lemma B.2 and B.1 and assuming without loss of generality t > s,

Cov(ht ,hs) = E[hths]−E[ht ]E[hs]

=

(
(ω +α)E[hs]

t−s

∑
u=1

(β +αγ
2)u−1 +E[h2

s ](β +α
2)t−s

)

−

(
(ω +α)

t−s

∑
u=1

(β +αγ
2)u−1 +(β +αγ

2)t−sE[hs]

)
E[hs]

= (β +αγ
2)t−sVar[hs]

A.1.2 Log-Price

Lemma B.4. For t > s > 0,

E[ht
√

hszs] =−2αγ
(
β +αγ

2)t−s−1
E[hs]

Proof. The Proposition holds for t = s+1 since

E[hs+1
√

hszs] = E
[
(ω +βhs +α(zs− γ

√
hs)

2)
√

hszs

]
= ωE[

√
hszs]+βE[h3/2

s zs]+αE[z3
s

√
hs]−2αγE[z2

s hs]+αγ
2E[h3/2

s zs]

=−2αγE[hs]

When t > s+1, we similarly have

E[ht
√

hszs] = E
[
(ω +βht−1 +α(zt−1− γ

√
ht−1)

2)
√

hszs

]
= ωE[

√
hszs]+βE[ht−1

√
hszs]+αE[z2

t−1

√
hszs]

−2αγE[zt−1
√

ht−1hszs]+αγ
2E[ht−1

√
hszs]

= (β +αγ
2)E[ht−1

√
hszs]

since E[z2
t−1
√

hszs] =E[z2
t−1
√

hs]E[zs] = 0 and E[zt−1
√

ht−1hszs] = E[zt−1]E[
√

ht−1hszs] =

0. Hence by induction,

E[ht
√

hszs] = (β +αγ
2)
(
−2αγ

(
β +αγ

2)t−1−s−1
E[hs]

)
=−2αγ

(
β +αγ

2)t−s−1
E[hs]
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Lemma B.5. For t > s and t,s > 0,
E[rt ] = (µ−1/2)E[ht ],

E[r2
t ] = (µ−1/2)2E[h2

t ]+E[ht ]

E[rtrs] = (µ−1/2)2E[hths]−2αγ(µ−1/2)(β +αγ
2)t−s−1E[hs]

Proof. Regarding the first two statements, we trivially have

E[rt ] = E[(µ−1/2)ht +
√

htzt ] = (µ−1/2)E[ht ]

E[r2
t ] = E[(µ−1/2)2h2

t +2(µ−1/2)h3/2
t zt +htz2

t ] = (µ−1/2)2E[h2
t ]+E[ht ].

For the last statement,

E[rtrs] = E
[(

(µ−1/2)ht +
√

htzt

)(
(µ−1/2)hs +

√
hszs

)]
= (µ−1/2)2E[hths]+ (µ−1/2)

(
E[ht

√
hszs]+E[hs

√
htzt ]

)
+E[

√
hthsztzs]

= (µ−1/2)2E[hths]+ (µ−1/2)E[ht
√

hszs]

since E[hs
√

htzt ] = E[hs
√

ht ]E[zt ] = 0 and E[
√

hthsztzs] = E[
√

hthszs]E[zt ] = 0. The result

follows from Lemma B.4.

We are now ready for the main result.

Proposition B.2. For t > 0,

Var

[
t

∑
s=1

rs

]
=

t

∑
s=1

E[hs]+ (µ−1/2)2
t

∑
s=1

t

∑
u=1

Cov[hs,hu]

−4αγ(µ−1/2)
t

∑
s=1

s−1

∑
u=1

(β +αγ
2)s−u−1E[hu]

Proof. Using the well-know fact

Var

[
t

∑
s=1

xs

]
=

t

∑
s=1

(
Var[xs]+2

s−1

∑
u=1

Cov[xs,xu]

)

=
t

∑
s=1

t

∑
u=1

Cov[xs,xu],
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and return expectations from Lemma B.5

Var

[
t

∑
s=1

rs

]
=

t

∑
s=1

(
E[r2

s ]− (E[rs])
2 +2

s−1

∑
u=1

(E[rsru]−E[rs]E[ru])

)
=

t

∑
s=1

(
(µ−1/2)2Var[hs]+E[hs]

+2
s−1

∑
u=1

(
(µ−1/2)2Cov[hs,hu]−2αγ(µ−1/2)(β +αγ

2)s−u−1E[hu]
))

=
t

∑
s=1

E[hs]+ (µ−1/2)2
t

∑
s=1

t

∑
u=1

Cov[hs,hu]

−4αγ(µ−1/2)
t

∑
s=1

s−1

∑
u=1

(β +αγ
2)s−u−1E[hu]

where E[ht ] and Cov(ht ,hs) are respectively given by Lemma B.1 and B.3.

A.2 Unconditional Simulation under HN-GARCH

Algorithm B.5. Unconditional Standardized GARCH Random Variates

Assuming a known initial variance h1,s = h1, s0,s = 0 and S a given number of simulations,

we do the following for t = 1, . . . ,T and s = 0, . . . ,S,

1. Draw a standard normal random variate zt,s;

2. Compute st,s and ht+1,s according to the GARCH recursion, st,s = S (st−1,s,ht,s,zt,s)

ht+1,s = H (ht,s,zt,s)

3. Standardize according to

ξt,s =

(
st,s√

Var [st ]
,

ht+1,s√
Var[ht+1]

)
.

where Var [ht+1] and Var [st ] are predetermined constants respectively given by (??) and

(??).
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A.3 Product Quantization under HN-GARCH

A.3.1 Log-Price Quantization

For typical GARCH specifications, S (s,h,z) is strictly monotonic in z such that we may

map prices tiles to innovation tiles. We do so by implicitly defining Z
(il)

t (s) according to

s = S (s(i)t−1,h
(l)
t ,Z

(il)
t (s)) e.g. in the HN-GARCH case

Z
(il)

t (s) =
s− s(i)t−1− (µ−1/2)h(l)t√

h(l)t

.

Letting

I
(il)

t p (s) =
∫ Z

(il)
t (s)

−∞

(S (s(i)t−1,h
(l)
t ,z′))p

ϕ(z′)dz′

for p = 0,1,2, e.g. in the HN-GARCH case

I
(il)

t0 (s) = Φ(Z
(il)

t (s)),

I
(il)

t1 (s) =
(

s(i)t−1 +(µ−1/2)h(l)t

)
Φ(Z

(il)
t (s))−

√
h(l)t ϕ(Z

(il)
t (s))

I
(il)

t2 (s) =
((

s(i)t−1 +(µ−1/2)h(l)t

)2
+h(l)t

)
Φ(Z

(il)
t (s))

−
((

s(i)t−1 +(µ−1/2)h(l)t

)√
h(l)t +Z

(il)
t (s)h(l)t

)
ϕ(Z

(il)
t (s)),

the distortion function to be minimized for log-prices is

Dst =
K

∑
i=1

N

∑
l=1

p(il)t−1

K

∑
j=1

[
I

(il)
t2 −2I

(il)
t1 s( j)

t +I
(il)

t0 (s( j)
t )2

]
C( j)

st

where use the notation [I ]C = I (b)−I (a) for I : R 7→ R with C = (b,a) an open

interval over R and [I ] /0 = 0 by convention.

Proposition B.3. For k = 1, . . . ,K, i = 1, . . . ,K, l = 1, . . . ,N and p = 0,1,2,

d

ds(k)t

K

∑
j=1

[
I

(il)
t p

]
C( j)

st

= 0

Proof. Letting

s(i)t = (s(i−1)
t + s(i)t )/2, s(i)t = (s(i)t + s(i+1)

t )/2,

h(l)t+1 = (h(l−1)
t+1 +h(l)t+1)/2, h(l)t+1 = (h(l)t+1 +h(l+1)

t+1 )/2,
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for i = 1, . . . ,K and l = 1, . . . ,N, where s(0) = −∞ and s(K+1) = ∞ and h(0)t = 0 and

h(N+1)
t = ∞, we preliminarily note using the chain rule

d

ds(k)t

I
(il)

t p ◦ s( j)
t = (s( j)

t )p
ϕ(Z

(il)
t (s( j)

t ))

(
dZ

(il)
t

ds
◦ s( j)

t

)
ds( j)

t

ds(k)t

.

where ds( j)
t /ds(k)t = 1

2 for k = j− 1, j and 0 otherwise. We find a similar expression for

the derivative of I
(il)

t p ◦s( j)
t with respect to s(k)t which is non-null for k = j, j+1. Defining

δ
(il)
t p (s) =

1
2

sp
ϕ(Z

(il)
t (s))

dZ
(il)

t

ds

for notational convenience, we hence have

d

ds( j−1)
t

[
I

(il)
t p

]
C( j)

st

=−δ
(il)
t p (s( j)

t ),

d

ds( j)
t

[
I

(il)
t p

]
C( j)

st

= δ
(il)
t p (s( j)

t )−δ
(il)
t p (s( j)

t ),

d

ds( j+1)
t

[
I

(il)
t p

]
C( j)

st

= δ
(il)
t p (s( j)

t ),

and
d
[
I

(il)
t p

]
C( j)

st

ds(k)t

= 0

otherwise i.e. for k 6= j−1, j, j+1. Finally,

d
ds(k)

K

∑
j=1

[
I

(il)
t p

]
C( j)

st

=−δ
(il)
t p (s(k+1)

t )+δ
(il)
t p (s(k)t )−δ

(il)
t p (s(k)t )+δ

(il)
t p (s(k−1)) = 0

using the fact s(k+1) = s(k) and s(k−1) = s(k).

As a direct consequence of Proposition B.3, the corresponding gradient is given by

∇ jDst =
dDst

ds( j)
t

=−2
K

∑
i=1

N

∑
l=1

p(il)t−1

[
I

(il)
t1 −I

(il)
t0 s( j)

t

]
C( j)

st

, (A.1)

which may be obtained at virtually no additional cost following the computation of dis-

tortions.
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A.3.2 Conditional Variance Quantization

For typical GARCH models, H (h,z) is quadratic in innovations z and has up to two real

roots. We first let X
(l)

t± (h) the real part of roots of function h(x) = H (h(l)t ,x) e.g. in the

HN-GARCH case

X
(l)

t± (h) = γ

√
h(l)t ±

√√√√max

(
h−ω−βh(l)t

α
,0

)
.

We also let

L
(l)

t p (h) =

(∫ X
(l)

t+ (h)

−∞

−
∫ X

(l)
t− (h)

−∞

)
(H (h(l)t ,z′))pdϕ(z′)

for p = 0,1,2 with indefinite integrals in the HN-GARCH case obtained by elementary

integration,∫
H (h,z′)dϕ(z′) =

∫ (
ω +(β +αγ

2)h−2αγ
√

hz+αz2
)

ϕ(z)dz

=
(
ω +(β +αγ

2)h+α
)

Φ(z)+α

(
2γ
√

h− z
)

ϕ(z)

and∫
(H (h,z′))2dϕ(z′) =

∫ (
ω +(β +αγ

2)h−2αγ
√

hz+αz2
)2

ϕ(z)dz

=
(
α

2(γ2h(γ2h+6)+3)+2α(γ2h+1)(βh+ω)+(βh+ω)2)
Φ(z)

+α

(
α

(
2γ

2h(2γ
√

h−3z)+4γ
√

h(z2 +2)− z(z2 +3)
)

+2(2γ
√

h− z)(βh+ω)

)
ϕ(z).

The distortion to be minimized for conditional variances may hence be explicitly written

as

Dht+1 =
K

∑
i=1

N

∑
l=1

p(il)t−1

N

∑
m=1

[
L

(l)
t2 −2L

(l)
t1 h(m)

t+1 +L
(l)

t0 (h(m)
t+1)

2
]

C(m)
ht+1

(A.2)

where we use the notation for [L ]C introduced in Appendix A.3.1.

Proposition B.4. For l = 1, . . . ,N, n = 1, . . . ,N and p = 0,1,2,

d

dh(n)t

K

∑
m=1

[
L

(l)
t p

]
C(m)

ht+1

= 0

The proof is similar to the proof of Proposition B.3 and is omitted for brevity.
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As a direct consequence of Proposition B.4, the gradient is given by

∇mDht+1 =
dDht+1

dh(m)
t+1

=−2
K

∑
i=1

N

∑
l=1

p(il)t−1

[
L

(l)
t1 −L

(l)
t0 h(m)

t+1

]
C(m)

ht+1

, (A.3)

which may be computed at virtually no additional cost.

A.3.3 Transition Probabilities

Using notations previously introduced in Appendices A.3.1 and A.3.2, transition proba-

bilities may be written as

p(il, jm)
t = [Φ]

Z
(il)

t (C( j)
st )∩X (l)

t− (C(m)
ht+1

)
+[Φ]

Z
(il)

t (C( j)
st )∩X (l)

t+ (C(m)
ht+1

)

where the first(second) term captures the probability of a transition arising from low(high)

innovations i.e. from the left(right) branch of the parabolic support of the price-variance

distribution. While only one of these terms is non-null for most (il, jm), we must solve

both set intersections in practice. These set operations remain computationally negligible

with respect to normal CDF evaluations.

A.4 Conditional Quantization under HN-GARCH

The variance distortion conditional on the event
{

s̃t ∈C( j)
st

}
is

D( j)
ht+1

=
1

d( j)
t

K

∑
i=1

N

∑
l=1

p(il)t−1

∫
∞

−∞

I(S (s(i)t−1,h
(il)
t ,z) ∈C( j)

st )

N

∑
m=1

I(H (h(il)t ,z) ∈C( jm)
ht+1

)(H (h(il)t ,z)−h( jm)
t+1 )2dϕ(z)

where

d( j)
t =

K

∑
i=1

N

∑
l=1

p(il)t−1

∫
∞

−∞

I(S (s(i)t−1,h
(il)
t ,z) ∈C( j)

st )dϕ(z)

is a normalization constant, intuitively interpreted as the unconditional probability of se-

lecting the j-th conditional variance quantizer Γ
( j)
ht+1

.
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We proceed as previously for product quantization by introducing X
(il)

t± (h) the real

part of roots of h(x) = H (h(il)t ,x). We follow the left-right branch decomposition of

Appendix A.3.3 and define definite integrals of interest,

M(il, jm)
t p =

(∫
Z

(il)
t (C( j)

st )∩X (il)
t− (C( jm)

ht+1
)
+
∫
Z

(il)
t (C( j)

st )∩X (il)
t+ (C( jm)

ht+1
)

)
(H (h(il)t ,z′))pdϕ(z′);

see Appendix A.3.2 for explicit expressions and corresponding indefinite integrals in the

HN-GARCH case. In practice, set intersections must be solved prior to evaluating in-

tegrals, which as previously noted is computationally negligible with regards to CDF

evaluations. The K distortion functions to be minimized may finally be written as

D( j)
ht+1

=
1

d( j)
t

K

∑
i=1

N

∑
l=1

p(il)t−1

N

∑
m=1

(
M(il, jm)

t2 −2M(il, jm)
t1 h( jm)

t+1 +M(il, jm)
t0 (h( jm)

t+1 )2
)

(A.4)

for j = 1, . . . ,K where we may further solve

d( j)
t =

K

∑
i=1

N

∑
l=1

p(il)t−1

[
I

(il)
t0

]
C( j)

st

.

This is typically unnecessary in practice.

A result similar to Proposition B.4 holds here such that the gradient is1

∇mD( j)
ht+1

=
dD( j)

ht+1

dh( jm)
t+1

=
−2

d( j)
t

K

∑
i=1

N

∑
l=1

p(il)t−1(L
(il, jm)
t1 −L(il, jm)

t0 h( jm)
t+1 ) (A.5)

Finally, transition probabilities are obtained as a by-product since we have

p(il, jm)
t =

∫
∞

−∞

I(S (s(i)t−1,h
(il)
t ,z) ∈C( j)

st )I(H (h(il)t ,z) ∈C( jm)
ht+1

)dϕ(z) = M(il, jm)
t0 .

A.5 Numerical Implementation

The strict ordering of quantizers is likely to be violated during a gradient descent. We

are also concerned with tiles stalling over null probability areas (e.g. when conditional
1 More precisely, we can show

d

dh( jn)
t

K

∑
m=1

M(il, jm)
t p = 0

for i = 1, . . . ,K, l = 1, . . . ,N, j = 1, . . . ,K, n = 1, . . . ,N and p = 0,1,2.
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variance quantizers approach zero) where the distortion function is flat. We propose a

change of variable that overcomes these issues.

Letting Γ either an asset price (i.e. Γst ) or a conditional variance quantizer (i.e. either

Γht+1 under product quantization or Γ
( j)
ht+1

under conditional quantization). Here, P refers

to the size of Γ, namely K for log-price quantizers and N for conditional variance quan-

tizers. We optimize over λ ∈RP implicitly defined by Γ = Ψ(λ ;a,b,c) with m-th compo-

nent given by ψ(m) = a+(b−a)`(cθ (m)) for m = 1, . . . ,P where `(y) = (1+e−y)−1 is the

logistic function, θ (m) =−1
2 +∑

m
n=1

eλ (n)

P and a, b, c ∈ R are predetermined parameters.

The proposed re-parameterization Ψ maps RP to the space of valid (i.e. with increas-

ing components) P-quantizers bounded by (a,b) i.e. a <ψ(m) < b for m = 1, . . . ,P. While

quantizers are theoretically unbounded, limiting gradient descents to areas of significant

probability improves convergence. For example, we let (a,b) be(
min
{i,l}

S (s(i)t−1,h
(il)
t ,−d), max

{i,l}
S (s(i)t−1,h

(il)
t ,d)

)
for log-price quantizers and similarly(

min
{i,l}

min
z∈(−d,d)

H (h(il)t ,z), max
{i,l}

max
z∈(−d,d)

H (h(il)t ,z)
)

for conditional variance quantizers (i.e. when Γ = Γht+1) where d > 0 is a truncation

parameter. Under conditional quantization (i.e. when Γ = Γ
( j)
ht+1

), it makes sense to let

(a,b) be (
min
{i,l}

min
z∈Y (il, j)

t

H (h(il)t ,z), max
{i,l}

max
z∈Y (il, j)

t

H (h(il)t ,z)

)

where Y (il, j)
t = Z(il)

t (C( j)
st )∩ (−d,d) and min /0 = /0 and max /0 = /0 by convention. Overall,

we found that setting c = 50 and d = 10 provides satisfactory results.

The gradient of a distortion D (either Dst , Dht+1 or D( j)
ht+1

) as a function of λ is given

by

∇̃nD =
dD

dλ (n)
=

P

∑
m=1

(∇mD)(∇mnΨ)

where the Jacobian of Ψ is
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∇mnΨ =
dψ(m)

dλ (n)
= I(m≥ n)(b−a)

ceλ (n)

P
`′(cθ

(m))

and ∇nD corresponds to one of the gradients given in either Appendix A.3 or A.4 and

`′(x) = `(x)(1− `(x)).

A.6 Delta-Hedging

Proposition B.5.

∂Ct/∂ S̃t =−E[esT−st I(sT ≤ k)|Ft ]

where Ct = S0ert−δT E[(ek− esT )+|Ft ] and S̃t = e−δ (T−t)St .

Proof. Since est = St/S0e−(r−δ )t by definition,

∂Ct

∂ S̃t
=−S0ert−δT ∂

∂ S̃t
est E[esT−st I(st ≤ k)|Ft ]

=−S0ert−δT ∂

∂ S̃t

St

S0
e−(r−δ )tE[esT−st I(st ≤ k)|Ft ]

=−e−δ (T−t) ∂

∂ S̃t
S̃teδ (T−t)E[esT−st I(st ≤ k)|Ft ]

=−E[esT−st I(sT ≤ k)|Ft ]

where the last step is justified by the dominated convergence theorem which relies on

some technical conditions met by the HN-GARCH model and vanilla payoffs; see e.g.

Section 7.2.2 of Glasserman (2003).

Proposition B.6.

∆
DH
t (st−1,ht) =−

1
2
+

1
πest

∫
∞

0
Re
[

e−iφk ft−1(iφ +1)
iφ

]
dφ

where ft(φ) = E[eφsT |Ft ] = exp(φst +At(φ)+Bt(φ)ht+1) with At() and Bt() found in

Heston and Nandi (2000) (with their r set to zero).

Proof. From the usual decomposition ct = E[(esT − ek)+] = est P1()− ekP2() of Eq. (10)

of Heston and Nandi (2000), we have for call options

E[esT−st I(sT ≥ k)|Ft ] =
1
2
+

1
πest

∫
∞

0
Re
[

e−iφk ft(iφ +1)
iφ

]
dφ .
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The result for put options follows from put-call parity est − ek = ct,call − ct,put by taking

the partial derivative with respect to est .

A.7 Supplementary Figures

Figure B.1: Box-plot of RMS at 21 trading days for 1,000 runs of the splitting method (Sub-
Algorithm 3) followed by 10 iterations of Lloyd’s method (Sub-Algorithm 2) for varying degrees
of precision δ ? with P = 100. Optimal quantizers are obtained using unconditional random vari-
ates computed according to Algorithm B.5. White boxes [Precision+Sampling] capture both RMS
sampling errors and finite precision errors from the CLVQ algorithm, while black boxes [Sam-
pling] capture RMS sampling errors only (for a single randomly selected optimal quantizer). More
precisely, white boxes are obtained by first computing 1,000 optimal quantizers and then comput-
ing a single RMS per optimal quantizer. Black boxes are obtained by first randomly selecting a
single optimal quantizer and then computing 1,000 RMS.
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Figure B.2: RMS for optimal quantizations obtained via marginal quantization (Algo-
rithm 1) with P = 1681.

Figure B.3: Excess RMS from recursive quantization in time, i.e. RMS−RMS? where
RMS? is a quantization error under the marginal approach (see Algorithm 1). Optimal
recursive quantizations are obtained via Algorithms 2 [Markov], 3 [Product] and 4 [Con-
ditional]. We use P = 1681 for both marginal and Markovian stochastic approaches,
(K = 41, N = 41) for both product and conditional quantization under the symmetric case
and (K = 58, N = 29) under the asymmetric case for conditional quantization.
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Figure B.4: Optimal quantizations at t = 1,5,10,21 obtained via marginal quantization
(Algorithm 1) with P = 50 and δ ? = 1e−6.
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Figure B.5: Comparison of all optimal quantizations, i.e. obtained via Algorithms 1
[Marginal], 2 [Markov], 3 [Product] and 4 [Conditional] in the asymmetric case at 21
trading days for P = 800 and (K = 40, N = 20). Quantizer elements are not shown for
clarity.
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