

HEC MONTRÉAL
École affiliée à l’Université de Montréal

Three Essays on Nonparametric Prediction Intervals
and Robust Variable Selection

par
Marie-Hélène Roy

Thèse présentée en vue de l’obtention du grade de Ph. D. en administration
(option Sciences de la décision)

Décembre 2018

c©Marie-Hélène Roy, 2018

HEC MONTRÉAL
École affiliée à l’Université de Montréal

Cette thèse intitulée :

Three Essays on Nonparametric Prediction Intervals
and Robust Variable Selection

Présentée par :

Marie-Hélène Roy

a été évaluée par un jury composé des personnes suivantes :

Jean-François Plante
HEC Montréal

Président-rapporteur

Denis Larocque
HEC Montréal

Directeur de recherche

Codirecteur de recherche

Aurélie Labbe
HEC Montréal

Membre du jury

Hemant Ishwaran
University of Miami
Examinateur externe

Daniel Parent
HEC Montréal

Représentant du directeur de HEC Montréal

Résumé

Cette thèse propose de nouvelles méthodes dans deux champs d’expertise de l’apprentissage su-

pervisé: la construction d’intervalles de prédiction et la sélection de variables. Les deux premiers

chapitres présentent et étudient de nouvelles approches pour la construction d’intervalles de pré-

diction basées sur les forêts aléatoires. Dans le premier chapitre, nous considérons le contexte

classique. L’impact du choix de critère de coupure utilisé dans la construction des arbres ainsi

que la méthode de construction des intervalles de prédictions sont minutieusement étudiés et testés

sur des données simulées et réelles. Dans le deuxième chapitre, la recherche concerne le con-

texte des modèles de mélange fini. Une nouvelle façon d’utiliser les forêts aléatoires pour mod-

éliser une variation de l’algorithme EM est présentée. Cinq différentes approches pour l’obtention

d’intervalles de prédiction sont étudiées en détails dans une étude par simulation. Ces méthodes

sont basées sur la perspective moderne qui traite les forêts aléatoires comme une façon d’identifier

des observations similaires voisines (dans l’espace des covariables) pour obtenir des estimations.

Dans le troisième chapitre, une méthode robuste de filtrage de variables pour données de très

grande dimension est présentée et testée sur des données simulées propres et contaminées, ainsi

que sur de vrais jeux de données. Il s’agit d’une méthode ensembliste appliquée à une technique de

sélection de variables robuste. Celle-ci est utilisée itérativement pour atteindre l’objectif d’éliminer

graduellement les variables non désirées. La performance des méthodes proposées dans cette thèse

surpasse généralement celle des compétiteurs actuels respectifs et peuvent être très utiles dans la

pratique.

Mots-clés

Forêt aléatoire, Intervalle de prédiction, Calibration Out-Of-Bag, Modèle de mélange, Algorithme

EM, Régression nonparamétrique, Méthodes ensemblistes, Filtrage de variables, Sélection de vari-

ables, Données en grande dimension, Forage de données, Analyse multivariée.

Méthodes de recherche: Exploitation de données, Analyse multivariée

iv

Abstract

This thesis proposes new methods in two areas of supervised learning: Building prediction inter-

vals and variable selection. The first two chapters present and investigate new methods based on

random forests to build prediction intervals. In the first chapter, the classical setting is considered.

The impact of the splitting rule used to build the trees and of the method used to build the predic-

tion interval are thoroughly investigated with simulated and real data sets. In the second chapter,

finite mixture regression models are considered. A new way of using random forests for mod-

elling with a pseudo EM-algorithm is presented. Five ways to derive prediction intervals from this

model are extensively investigated in a simulation study. These methods are based on the modern

view that considers a random forest as a way to identify a set of locally (in the covariate space)

similar observations for estimation. In the third chapter, a robust screening method for ultra-high

dimensional data is presented and tested with clean and contaminated simulated data and a real

data set. It is an ensemble method applied to a robust variable selection technique, used iteratively,

to gradually eliminate spurious variables. The proposed methods presented in this thesis generally

outperform their current competing methods and can be very useful in practice.

Keywords

Random Forest, Prediction Interval, Splitting rule, Out-Of-Bag Calibration, Mixture Models, EM

algorithm, Nonparametric Regression, Ensemble Method, Variable Screening, Robust Variable

Selection, High-Dimensional Data, Data Mining, Multivariate Analysis.

Research Methods: Data Mining, Multivariate Analysis

v

Contents

Résumé iii

Abstract v

List of Tables ix

List of Figures xi

Acknowledgements xv

General Introduction 1

1 Prediction Intervals with Random Forests 3

Abstract . 3

1.1 Introduction . 4

1.2 Methodology . 8

1.2.1 Splitting Rules . 9

1.2.2 Methods for Building a Prediction Interval 11

1.2.3 Calibration . 12

1.2.4 Implementation . 13

1.3 Simulation Study . 13

1.3.1 Simulation Design . 14

1.3.2 Competing Methods . 16

1.3.3 Parameters and calibration for the Simulation Study 16

1.4 Results of the Simulation Study . 17

vi

1.5 Performance with Real Datasets . 21

1.6 Conclusion . 33

References . 35

2 Prediction Intervals for Finite Mixture of Regressions Based on Random Forests 37

Abstract . 37

2.1 Introduction . 38

2.2 Methodology . 40

2.2.1 The modified EM algorithm . 41

2.2.2 Prediction Intervals . 43

2.2.3 Four PI methods based on the Bag of Observations for Prediction (BOP) . . 44

2.2.4 Calibration for the four BOP methods . 47

2.3 Simulation Study . 48

2.3.1 Simulation Design . 48

2.4 Results of the Simulation Study . 50

2.4.1 Computational Efficiency . 68

2.5 Conclusion . 69

References . 71

3 High-Dimensional Variable Screening using a Robust Ensemble Method 75

Abstract . 75

3.1 Introduction . 76

3.2 Methodology . 80

3.2.1 Robust VIF Regression . 80

3.2.2 The SERVIF Algorithm . 82

3.3 Simulation Study . 86

3.4 Real Data . 91

3.5 Concluding remarks . 93

References . 93

General Conclusion 97

vii

Appendix A i

viii

List of Tables

1.1 Averaged results of the five repetitions of 10-fold cross-validation for the seven real

datasets . 28

2.1 Complete results of the simulation study aggregated by DGP, sample size and error

variance setup . 52

3.1 Mean number of covariates in the final subset - non-contaminated scenario 89

3.2 Mean number of covariates in the final subset - contaminated scenario 89

3.3 MSE and the MAE for the SERVIF and its three competitors 92

A Appendix A - Complete results of the simulation study presented in Chapter 1 aggre-

gated by DGP and sample size . i

ix

List of Figures

1.1 Distributions of the percentage increase in PI length of each method with respect to

best performer for a given run for all 68,400 runs in the simulation study 19

1.2 Distributions of the PI length for DGP 1 . 22

1.3 Distributions of the PI length for DGP 2 . 23

1.4 Distributions of the PI length for DGP 3 . 24

1.5 Distributions of the PI length for DGP 4 . 25

1.6 Distributions of the PI length for DGP 5 . 26

1.7 Distributions of the PI length for DGP 6 . 27

1.8 Distributions of the mean PI length for datasets Boston Housing, BWC and Concrete

Slump . 30

1.9 Distributions of the mean PI length for datasets Concrete Compression and Airfoil Self

Noise . 31

1.10 Distributions of the mean PI length for datasets Music Origin Latitude and Music Ori-

gin Longitude . 32

2.1 Distributions of the percentage increase in PI length with respect to best performer for

each run for DGP A, training sample size n = 100 . 56

2.2 Distributions of the percentage increase in PI length with respect to best performer for

each run for DGP B, training sample size n = 100 . 57

2.3 Distributions of the percentage increase in PI length with respect to best performer for

each run for DGP C, training sample size n = 100 . 58

2.4 Distributions of the percentage increase in PI length with respect to best performer for

each run for DGP D, training sample size n = 100. 59

xi

2.5 Distributions of the percentage increase in PI length with respect to best performer for

each run for DGP A, training sample size n = 250. 60

2.6 Distributions of the percentage increase in PI length with respect to best performer for

each run for DGP B, training sample size n = 250. 61

2.7 Distributions of the percentage increase in PI length with respect to best performer for

each run for DGP C, training sample size n = 250 . 62

2.8 Distributions of the percentage increase in PI length with respect to best performer for

each run for DGP D, training sample size n = 250 . 63

2.9 Distributions of the percentage increase in PI length with respect to best performer for

each run for DGP A, training sample size n = 1000 64

2.10 Distributions of the percentage increase in PI length with respect to best performer for

each run for DGP B, training sample size n = 1000 65

2.11 Distributions of the percentage increase in PI length with respect to best performer for

each run for DGP C, training sample size n = 1000 66

2.12 Distributions of the percentage increase in PI length with respect to best performer for

each run for DGP D, training sample size n = 1000 67

2.13 Number of times, on average, a method takes to compute compared to the FMRLASSO 74

3.1 Number of selected covariates for non-contaminated scenarios 90

3.2 Number of selected covariates for contaminated scenarios 91

xii

To all women of the era and other eras who

did not have this incredible chance to pursue

higher education, and more specifically, to my

dear grandmother, Madeleine, who would have

made a stellar researcher. And to my dad, Ré-

jean, for his dedication, kindness and uncondi-

tional support.

xiii

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my advisor, Professor Denis

Larocque, for his continuous support, his guidance and kindness and for sharing his enthusiasm

and his extensive knowledge. I have felt very lucky throughout my PhD to be under his supervi-

sion. I could not have imagined a better advisor and mentor to begin this path in the world of data

science and scientific research.

I would also like to thank my other co-authors, Dr Ilmari Ahonen, Professor Jaakko Nevalainen

& Professor Debbie Dupuis for contributing to this work and sharing their knowledge. In addition,

I would like to thank the members of my PhD committee Professors Hemant Ishwaran, Aurélie

Labbe and Jean-François Plante for their time, insightful feedback and suggestions.

I thank all the great people of the Department of Decision Sciences for their help, warmth

and encouragement throughout my time in this program. I also thank Andrée-Ann, Hoora and

Mohammed Ali for being such kind and supportive friends in and out of school throughout this

journey. Your presence through all times has meant a lot to me.

My special recognition goes to my family; my parents, brother and sister, Guillaume and Lau-

rianne and my extended family who have always supported me and encouraged me in pursuing my

passion. Their presence by my side has been a precious gift.

To my mother, who has always believed in me and encouraged me to never settle and to have

confidence. I am inspired by her hard work and perseverance and her dedication as a mother. All

that and more, helped me get to where I am today.

xv

To my father, for his unwavering support, his loving-kindness and generosity. I would not be

here, completing this great work and pursuing my passion without his presence and guidance.

I also acknowledge the support of the Natural Sciences and Engineering Research Council of

Canada (NSERC) for this research and for investing in discovery and innovation in Canada.

xvi

General Introduction

The classical and most commonly used approach to building prediction intervals is the parametric

approach. However, its main drawback is that its validity and performance highly depend on

the assumed functional link between the covariates and the response. The first two chapters of

this thesis investigate new and computationally efficient methods that improve the performance

of prediction intervals with random forests. The first chapter explores predictions intervals in the

classical supervised learning setting, while the second chapter investigates predictions intervals for

finite mixture regression models.

In the first chapter two aspects are explored: The splitting rule and the method used to build the

prediction interval. In addition to the default least squares splitting rule, two alternative splitting

criteria are investigated. We also present and evaluate the performance of five flexible methods

for constructing prediction intervals. This yields 15 distinct method combinations. To reliably

attain the desired confidence level, we include a calibration procedure performed on the out-of-bag

information provided by the forest. The 15 method combinations are thoroughly investigated, and

compared to four alternative methods through simulation studies and in real data settings. The

results show that the proposed methods are very competitive as they outperform commonly used

methods.

In the second chapter, we propose an extension of these methods to finite mixture regression

models, which are a flexible tool for statistical modeling of data that originate from heterogeneous

populations. The classical mixture regression model relies on mixtures of linear models. We

propose a nonparametric regression method for finite mixture models that captures nonlinear de-

pendencies links between the response and the covariates. To achieve this, we use the structure of

the classical EM algorithm but substitute the traditionally used linear models with random forests.

We propose five variations to build prediction intervals and a calibration method that ensures the

intervals reach the desired coverage level. The performance of the methods are assessed in an ex-

tensive simulation study. The results show that the calibration method is very reliable in attaining

the prescribed coverage, even with small samples. The results also show that the new methods

produce short prediction intervals compared to existing methods in a variety of situations involv-

ing linear and nonlinear dependencies, small and large sample sizes, and even with heteroscedastic

data. Moreover, four out of the five methods also show very good computational efficiency.

The third chapter proposes a method that belongs to another area of computational statistics,

variable screening for high-dimensional data. We propose a robust variable screening method for

large high-dimensional data. The method is based on the very fast and robust variable selection

technique by Dupuis and Victoria-Feser [1]. To produce a variable screening method, we combine

this technique in an iterative ensemble scheme where we proceed to a safe and gradual elimination

of covariates. This strategy insures the survival of the true model covariates through the procedure

and into the final subset. The performance of the method is assessed in a simulation study with both

clean and contaminated data and includes scenarios with a number of covariates up to 100,000. It

is also tested on a real data set. The results show very good and consistent performance on both

clean and contaminated data even with a very large number of covariates. Furthermore, the method

offers built-in automatic final subset size determination. This constitutes an innovative feature for

a variable screening method.

2

Chapter 1

Prediction Intervals with Random Forests

Marie-Hélène Roy & Denis Larocque

Abstract

The classical and most commonly used approach to building prediction intervals is the parametric

approach. However, its main drawback is that its validity and performance highly depend on the

assumed functional link between the covariates and the response. This research investigates new

and computationally efficient methods that improve the performance of prediction intervals with

random forests. Two aspects are explored: The splitting rule and the method used to build the

prediction interval. In addition to the default least squares splitting rule, two alternative splitting

criteria are investigated. We also present and evaluate the performance of five flexible methods

for constructing prediction intervals. This yields 15 distinct method combinations. To reliably

attain the desired confidence level, we include a calibration procedure performed on the out-of-bag

information provided by the forest. The 15 method combinations are thoroughly investigated, and

compared to four alternative methods through simulation studies and in real data settings. The

results show that the proposed methods are very competitive. They outperform commonly used

methods in both in simulation settings and with real data.

1.1 Introduction

We assume the regression model with a continuous (or a variable treated as such) response variable

Y and a p-dimensional vectorX = (X1,X2, . . . ,Xp) of covariates

E(Y |X = x) = g(X)

where g is an unknown function. The goal of predictive models is to provide a point predic-

tion ŷnew for a new observation Ynew with covariates X = xnew. However, the precision of the

prediction is also highly relevant and one way to quantify it is to use a prediction interval (PI)

PI(xnew) = [a(xnew),b(xnew)], whose magnitude provides information about the reliability of the

point prediction. To be clear, we focus on building a prediction interval for Y |X =xnew rather than

a confidence interval for the conditional mean E(Y |X = xnew). A confidence interval provides in-

formation about the likely location of the true population mean. A prediction interval, on the other

hand, gives a range of possible values for an unobserved instance. Not only do we need to take

into account the uncertainty in the estimation of E(Y |X = xnew), as confidence intervals do, but

also to take into consideration the variance associated with the new Y itself. Hence, a prediction

interval is wider than its corresponding confidence interval.

The typical way to construct prediction intervals is the parametric approach, under an assumed

linear regression model which can be described as

E(Y |X = x) = β0 +β1x1 + . . .+βpxp, and V (Y |X = x) = σ
2.

In this case, the parameters can be estimated by least-squares using a sample of n observations

(y1,x1), . . .(yn,xn), and a PI with (1−α)100% coverage probability has the form

PIreg(xnew) =

[
ŷnew± t1−α/2,(n−p−1)

√
V̂ (ynew− ŷnew)

]
, (1.1)

where ŷnew = β̂0 + β̂1x1new + . . .+ β̂pxpnew is the point prediction, tα,d is the α quantile of the

t-distribution with d degrees of freedom, V̂ (ynew− ŷnew) is an estimation of the variance of the

prediction error

V (ynew− ŷnew) = σ
2 +σ

2xT
new(X

TX)−1xnew,

4

andX is the n× (p+1) design matrix 
1 xT

1
...

...

1 xT
n

 .

To build the PI, V̂ (ynew− ŷnew) replaces the sole unknown quantity σ2 by its unbiased estimate, the

MSE, given by 1
n−p−1 ∑

n
i=1(yi− ŷi)

2, where ŷi is the prediction for the ith observation.

This is the classical and most commonly used approach to building prediction intervals. It is

a quick, easy way to provide more information than with only point predictions. However, its

main drawback is that its validity and performance highly depends on the assumed functional link

between the covariates and the response. This is why using more flexible methods to compute

prediction intervals can be useful. The random forest (RF) algorithm [4] is a well known and

powerful non-parametric statistical learning method. The traditional regression random forest can

be described by a simple algorithm.

For b = 1, . . . ,B

1. Draw a boostrap sample of the original data

2. Grow a regression tree (usually a large unpruned tree) using the bootstrap data with the fol-

lowing modification. At each node, rather than choosing the best split among all predictors,

randomly sample p0 (0 < p0 ≤ p) of the p predictors and choose the best split among those

variables.

3. Compute the predictions. For a new observation, the prediction from the tree, ŷb,new, is the

average of the observations that are in the same terminal node as xnew.

The final RF prediction for xnew is the average of the individual tree predictions

ŷRF,new =
1
B

B

∑
b=1

ŷb,new.

A limited amount of methods to build PI with RF algorithms have appeared so far. These

methods take advantage of the extra information given by the forests to construct the intervals.

One of them is the Quantile Regression Forests (QRF), proposed by Meinshausen [15]. Instead of

5

estimating the conditional mean, the aim of QRF is to estimate the conditional quantiles

qτ(xnew) = Qτ(Y |X = xnew) = inf{y : FY |X(y|xnew)≥ τ}, (1.2)

for a given 0 < τ < 1, where FY |X is the conditional cumulative distribution function (cdf) of Y .

The main idea of Meinshausen [15] is to use the “nearest neighbor forest weights" (name coined

by Lin and Jeon [14]) that were first used by Hothorn et al. [7]. These weights come from the fact

that a prediction from a RF is a weighted average of the observations, that is

ŷRF,new =
n

∑
i=1

ŵi(xnew)yi.

This is easy to see since the RF prediction is the average of the predictions of all tree and each of

them is the average of the observations that are in the terminal node where xnew ends up. From

this point of view, a RF is a way to generate data-driven weights. The QRF approach estimates the

quantiles using an estimated cdf obtained with the nearest neighbor forest weights. More precisely,

F̂(y|X = xnew) =
n

∑
i=1

ŵi(xnew)I(yi ≤ y),

where I is the indicator function. The estimated quantiles are then

q̂τ(xnew) = inf{y : F̂Y |X(y|xnew)≥ τ}.

Finally, the PI can be extracted directly from the estimated quantiles as

PIQRF(xnew) = [q̂α/2(xnew), q̂1−α/2(xnew)].

This PI uses the data adaptively in two ways: 1) the RF lets the data find the link between the

covariates and the response automatically, and 2) the PI itself is more flexible since the quantiles

produce a PI not necessarily symmetric around the point prediction.

Lei et al. [12] proposed another interesting and useful methodology for building PIs without

requiring distribution assumptions, using the conformal inference approach introduced by Vovk

et al. [23]. Their approach is very general and can be used with any predictive model, including a

RF. The basic idea is to fit the model with an augmented data set that includes the new observation

(xnew,z), then use a test of the hypothesis of Ynew = z, and finally let z vary to build a PI. More

6

precisely, let ŷz be the prediction when (y1,x1), . . .(yn,xn),(z,xnew) is used as the augmented

training data. Define the absolute residuals of this augmented data as

Rz,i = |yi− ŷi|, i = 1, . . . ,n, and Rz,n+1 = |z− ŷz|.

Define

π(z) =
1

n+1

(
n

∑
i=1

I(Rz,i ≤ Rz,n+1)+1

)
.

Hence, (n+1)π(z) is the rank of Rz,n+1 among the n+1 absolute residuals. The conformal PI is

given by

PIconf(xnew) = {z : (n+1)π(z)≤ d(1−α)(n+1)e},

where d·e is the ceiling function. This method is very computationally intensive since, in principle,

the model must be fitted many times for each new observation. This is why Lei et al. [12] also

propose two alternative methods for practical use. The first one, the split conformal prediction, is

the fastest and works by splitting the data to separate the fitting and ranking steps. The second one,

jackknife prediction, lies between the first two in terms of speed.

In a closely related problem, some authors have proposed methods to estimate the variance

of a RF prediction, V (ŷnew). For instance, Sexton and Laake [22] and Wager et al. [24] use dif-

ferent versions of the jackknife and bootstrap while Mentch and Hooker [17] use the U-statistics

framework with trees built on subsamples. With such an estimate, say V̂ (ŷnew), we can build a

confidence interval (CI) for the conditional mean E(Y |X = xnew) with

CI(xnew) =

[
ŷnew± zα/2

√
V̂ (ŷnew)

]
. (1.3)

But it is also possible to use the variance estimates to derive a PI. One such way will be investigated

in this paper.

This research investigates new potential avenues to improve the performance of prediction in-

tervals with random forests. Two aspects are explored. Firstly, we look at alternatives to the default

least squares (LS) splitting rule in the tree construction itself. Two alternative splitting criteria will

be evaluated for their impact on the performance of the resulting PIs. Secondly, we present and

evaluate the performance of five methods for constructing prediction intervals. Hence, the three

splitting criteria (the default LS criterion plus the two new criteria) for the tree construction and the

7

five PI methods yield 15 distinct method combinations. The performance of these 15 combinations

will be thoroughly investigated through simulation studies and in real data settings.

The paper is organized as follows. Section 2 presents the methodology, the three random forest

splitting criteria and the five prediction interval methods. In Section 3, we present the results from

an extensive simulation study with six Data Generating Processes (DGPs) where the proposed

methods are compared to four competitors. Section 4 presents the performances when the same

methods are applied to seven real data sets. Section 6 concludes the paper with a short discussion.

1.2 Methodology

The proposed methods are all using an idea, already employed in Moradian et al. [18] and Moradian

et al. [19], very similar to the nearest neighbor forest weights. Assume we have built a forest of

B trees with any tree growing algorithm. For a new observation xnew, we define the “Bag of

Observations for Prediction" (BOP) to be the pooled set of training observations that are in the

same terminal nodes as xnew in the forest. More precisely, let Sb(xnew) be the training responses

that are in the same terminal node as xnew for the bth tree. Note that an observation can be present

more than once in Sb(xnew) because of the bootstrapping. The BOP for xnew is

BOP(xnew) =
B⋃

b=1

Sb(xnew).

For example, suppose that n = 5 and B = 2, that the terminal nodes where xnew falls have the train-

ing responses S1 = {y1,y1,y2}, and S2 = {y1,y2,y2,y3}. Then BOP(xnew)= {y1,y1,y1,y2,y2,y2,y3},

whereas the vector of nearest neighbor forest weights for xnew is (11/24,10/24,3/24,0,0). If all

terminals nodes have the same number of observations, then the proportion of points in the BOP

is the same as the nearest neighbor forest weights. The idea is to use BOP(xnew) to compute any

desired summary for this new observation. The advantage of the BOP over a weight vector is that

it is possible to compute any quantity directly without needing a “weighted" version of it. Obvi-

ously, we could build a BOP with the weights but they would typically involve more observations

(24 instead of 7 in the above example) and would require more computation time. With a large

number of trees involving terminal nodes with similar terminal node sizes, these two approaches

are practically equivalent.

8

The main methodology proposed in this paper is to

1. Build a forest and get the BOPs for the new observations.

2. Compute the PIs using these BOPs.

3. Calibrate the PIs using the Out-Of-Bag (OOB) information.

The original regression RF is built with the CART method and thus uses the least-squares

splitting rule. However, it might be the case that using another splitting rule, more in line with

the final goal which is to build a PI, might be preferable. Hence, three ways of performing step

1) will be investigated. Moreover, there are many ways to use a BOP to build a PI in step 2) and

five of them will be investigated. This general method is in line with the modern view that sees

RF as a weight generating machine, and that the splitting rule should be designed according to the

specific problem at hand. For example, to estimate the survival function in the context of dependent

censoring, this view was used in Moradian et al. [19] with a specific splitting rule (L1 splitting,

see below) and by computing an estimate valid under dependent censoring (copula-graphic) with

the BOP. This general method is now starting to be formalized into general frameworks in the

interesting work of Athey et al. [1] and Hothorn and Zeileis [8].

1.2.1 Splitting Rules

The first step of the method is to build a forest. Any algorithm can do the job in principle but the

CART paradigm will be used in this paper. Assume that we want to split a node. Let SL and SR

be the set of observations that are in the left and right nodes after the split, with respective sizes nL

and nR.

Least-squares splitting rule (LS)

The default splitting rule for a CART regression tree is the least squares (LS) criterion which will

be the first one we consider in this study. The best split is the one that minimizes

∑
SL

(yi− ȳL)
2 +∑

SR

(yi− ȳR)
2, (1.4)

9

where ȳL and ȳR are the averages of the observations in the left and right node, respectively.

The LS criterion is certainly a sensible choice when the goal is to predict a new observation

with the L2 loss function under the assumption of homoscedastic error, but it is not obvious that it

is the best one if the final goal is to build a PI. This is why two additional splitting rules will be

investigated.

L1 splitting rule

The first alternative is the L1 splitting rule. This splitting rule was used in Moradian et al. [18] and

Moradian et al. [19] with censored survival data with the ultimate goal of estimating the survival

function. The best split is the one that maximizes

nLnR

∫
|F̂L− F̂R|, (1.5)

where F̂L (F̂R) is the empirical cdf of the left (right) node. The idea is that a splitting rule that

uses the whole conditional distribution, and not only the conditional mean, might provide better

information to build a PI. Note that in Moradian et al. [18], the Kaplan-Meier estimate is used

instead of the empirical cdf because of the censoring.

Shortest prediction interval (SPI) splitting rule

Even though it uses the whole distribution, the L1 splitting rule is still not aimed directly at the task

at hand, building a PI. Hence, the last splitting rule, that we call the shortest prediction interval

(SPI) splitting rule, is designed with that task in mind. Let D = {z1, . . . ,zm} be a one variable

data set and let z(1) ≤ . . . ≤ z(m) denote the order statistics. For a given value of 0 < α < 1, we

define SPIα(D) to be the shortest interval of the form [z(l),z(u)], with l ≤ u, that contains at least

(1−α)100% of the observations. The SPI splitting rule is the one such that the best split minimizes

nLlength(SPIα(SL))+nRlength(SPIα(SR)). (1.6)

The idea is to seek splits that produce compact nodes, with the hope that the resulting PIs will also

be short. Contrarily to the first two splitting rules, this one has a tuning parameter, α . It could be

set to the same value as the desired coverage for the final PI. Alternatively, it could be estimated

from the data.

10

1.2.2 Methods for Building a Prediction Interval

The second aspect explored is the method to construct the PI for a given xnew, that is PI(xnew).

We propose five alternatives. All of them are computed using BOP(xnew).

Classical (LM)

The first method is the simplest one. We compute the classical PI, in an intercept only linear model

(no covariates) using the BOP(xnew) as the sample. This produces a PI symmetric around the mean

of the BOP(xnew).

Quantile

The second method is based on the quantiles, like the QRF method. Like above, let D be a one

variable data set and define qα(D) to be a α-quantile of D. The PI is [qα/2(BOP(xnew)),

q1−α/2(BOP(xnew))]. This PI is not necessarily symmetric around the mean of the BOP(xnew).

Shortest prediction interval (SPI)

The third one is derived from the splitting rule with the same name described in the previous

section. The PI is SPIα(BOP(xnew)), that is, the shortest interval formed by two observations in

BOP(xnew) that contains at least (1−α)100% of the observations.

In a sense, the first three PI construction methods are the natural counterparts to the three

splitting rules described previously. It is natural to use the classical PI when the forest is built with

the least-squares splitting rule, and it is also natural to use the SPI to build the PI if we used the

SPI splitting rule. Although less direct, it is also natural to use quantiles to build the PI if the forest

is built with the L1 splitting rule, which aims at estimating the whole cdf.

Highest density region (HDR)

The SPI is a quick and easy way to aim at the shortest possible PI. An alternative way is to use

the highest density region (HDR); Hyndman [9]. For completeness, the definition of a HDR from

Hyndman [9] is reproduced here.

11

Definition. Let f (x) be the density function of a random variable X . The (1−α)100% HDR

is the subset R(fα) of the sample space of X such that R(fα) = {x : f (x) ≥ fα} where fα is the

largest constant such that Pr(X ∈ R(fα))≥ 1−α .

The HDR is the smallest region, with the desired coverage (1−α)100%, such that the density

of every point inside it is at least as large as the density of every point outside it. For a sample, the

HDR can be estimated using density estimators (like the kernel); Hyndman [9] and Samworth and

Wand [21].

Let ĤDRα(D) be an estimation of the HDR, for a given α , for a one variable data set D. With

this method, the PI is ĤDRα(BOP(xnew)).

The HDR is not necessarily a single interval. It can be formed by multiple intervals, in the

case of a multimodal distribution. The estimated HDR can also be formed by multiple intervals.

This can arise if the true density is multimodal or simply by variability if, for instance, a too small

bandwidth is used with a kernel density estimate. In some applications, having a PI formed by

more than one interval might be acceptable but sometimes a single interval might be preferred.

This is why we also consider the following fifth and last method.

Contiguous highest density region (CHDR)

This method is a simple modification of the previous one. Compute ĤDRα(BOP(xnew)). The

CHDR PI is [min(ĤDRα(BOP(xnew))),max(ĤDRα(BOP(xnew)))]. If ĤDRα(BOP(xnew)) is al-

ready a single interval, then the CHDR PI is the same. Otherwise, the CHDR fills the gaps to get

a single interval. This might seem suboptimal at first but, with the calibration method described in

the next section, it performs quite well.

In principle, we could design a splitting rule around the HDR (or the CHDR). For instance, we

could replace the SPI by a HDR. However, the computation cost of a HDR is too high to be used

in practice in a tree building algorithm, where it has to be computed numerous times.

1.2.3 Calibration

If we apply the PI building methods described in the previous section using the desired coverage

level (for example 1−α = .95), then the resulting PIs tend to be conservative, that is they are too

12

long with an actual coverage higher than what we aim at. In order to reliably attain the desired

1−α level, we include a calibration procedure. This calibration uses the BOPs that are collected

from the predictions of the OOB observations for all trees. The OOB BOPs are created similarly

to the BOPs for a new observation. The OOB BOP for the ith training observation xi is

BOPoob(xi) =
B⋃

b=1,i∈OOBb

Sb(xi),

where Sb(xi) is the set of training responses that are in the same terminal node as xi, and OOBb is

the set of OOB observations, for the bth tree. Note that BOPoob(xi) is built using only the trees

where xi is OOB. This is in contrast with BOP(xnew) which uses all trees. Hence we have a BOP

for each training observations.

The calibration is done through the parameter 1−α . Let 1−α be the target coverage level

and let αw be the “working" value of α . The idea is to find the value of αw such that the coverage

level computed with the training observations, using the BOPoob(xi), is close enough to the target

level. Once found, 1−αw becomes the level used to build the PI for the new observations. To fix

ideas, in the following simulations, the target 1−α is .95 and αw is selected such that the OOB

coverage level lies in the interval [.94, .95].

1.2.4 Implementation

The R software [20] was used to implement the proposed methods. The RF are built with the

function rfsrc in the package randomForestSRC [11]. The least-squares splitting rule is the

default one for a continuous response. Moreover, the function also allows to use custom splitting

rules. Hence, the L1 and SPI splitting rules were coded in C and incorporated in rfsrc for this

work. The classical PI can easily be obtained with a predict on a lm fit without covariates. For the

HDR and CHDR methods the CRAN package hdrcde [10] is used. The functions for the Quantile

and SPI approaches were coded in R.

1.3 Simulation Study

To assess the performance of the 15 proposed method combinations (three splitting criteria × five

PI approaches) we carry out a simulation study using six Data Generating Processes (DGPs).

13

1.3.1 Simulation Design

For the first two DGPs (DGP1 and DGP2), the vector of independent predictors X = (X1, ...,X7)

is generated such that each Xi is from the standard normal distribution. The response is generated

according to a depth 3 tree model, with 8 terminal nodes:

Y = u1(I(X1 < 0,X2 < 0,X4 < 0)

+u2(I(X1 < 0,X2 < 0,X4 >= 0)

+u3(I(X1 < 0,X2 >= 0,X5 < 0)

+u4(I(X1 < 0,X2 >= 0,X5 >= 0)

+u5(I(X1 >= 0,X3 < 0,X6 < 0)

+u6(I(X1 >= 0,X3 < 0,X6 >= 0)

+u7(I(X1 >= 0,X3 >= 0,X7 < 0)

+u8(I(X1 >= 0,X3 >= 0,X7 >= 0)+ ε,

where the terminal nodes mean are u = (5,10,15,20,25,30,35,40). In DGP1, ε is generated

from a standard normal distribution and in DGP2 from an exponential distribution with mean 1.

The reason to use the exponential distribution is to investigate the performance with an asymmetric

error distribution. This might have an impact because some methods build symmetric PIs and other

built (possibly) asymmetric PIs based on quantiles.

The other four DGPs are generated using functions from the CRAN mlbench package [13].

DGP3, DGP4 and DGP5 are variations of Friedman’s benchmark problems.

DGP3 is Friedman problem 1, a regression problem described in Friedman [5] and Breiman

[3]. The inputs are ten independent variables uniformly distributed on the interval [0,1]. Five out

of these ten predictors are used to generate the response:

y = 10sin(πx1x2)+20(x3−0.5)2 +10x4 +5x5 + ε,

where ε is N(0,σ). The standard deviation of ε is left at the default value of 1.

14

Data for DGP4 is generated following Friedman problem 2, also found in Friedman [5] and

Breiman [3]. For this regression problem, the inputs are four independent variables uniformly

distributed over the ranges

0≤ x1 ≤ 100

40π ≤ x2 ≤ 560π

0≤ x3 ≤ 1

1≤ x4 ≤ 11.

The response is generated with

y = (x2
1 +

(
x2x3−

(
1

x2x4

)2
)0.5

+ ε

where ε is N(0,σ). It is used with the default value of 125 for the standard deviation of noise.

This yields a signal to noise ratio of 3:1.

Data for DGP5 is generated with Friedman problem 3 [5, 3]. For this regression problem, the

inputs are also four independent variables uniformly distributed over the same ranges as Friedman

problem 2. For this problem the response is generated with

y = tan−1

x2x3−
(

1
x2x4

)
x1

+ ε

where ε is N(0,σ). It is used with the default value of 0.1 for the standard deviation of noise.

This yields a signal to noise ratio of 3:1.

DGP6 is generated using the Peak Benchmark Problem also from the mlbench package. The

description goes as follows: Let r = 3u where u is uniform on [0,1]. Let x be uniformly distributed

on the d-dimensional sphere of radius r. The response is y = 25exp(−.5r2). We have left the

default value of d = 20 dimensions.

The sample sizes for the training set for each of the six DGPs is equal to 150, 500 and 1000,

resulting in 18 scenarios. In each case a test set of size 1000 observations was generated. For all

scenarios the results are averaged over 200 simulations.

15

1.3.2 Competing Methods

We compare the predictive performance of the prediction intervals supplied by our methods to four

competitors which were all presented in the Introduction. The first one is the QRF method [15].

The CRAN package, quantregForest [16] is used.

The second and third competing methods are two versions of the conformal inference method

by Lei et al. [12], also discussed in the Introduction. These are the jackknife version (CI-jack)

and the splitted conformal inference version (CI-split). The full conformal inference method was

excluded due to its very large computational time. We used them exclusively with random forests

as base estimators and also kept the default settings. The conformalInference package [6] found

on GitHub was used.

The fourth competitor is an adaptation of the approach proposed by Wager et al. [24]. We

use its associated GitHub package randomForestCI. For a new observation, this method provides

the point prediction ŷnew along with a jackknife estimation of its variance V̂ (ŷnew). These two

quantities can be used directly to build a confidence interval through (1.3). However, we want a

prediction interval. The way we proceed is by considering intervals of the form

PI(xnew) =

[
ŷnew± zα/2

√
V̂ (ŷnew)+ σ̂2

]
,

where the value σ̂2 is used to calibrate the PIs. We look for a value such that the cross-validated

coverage rate is close to 0.95. More precisely, the MSE computed by 5-fold CV is used as the

starting value for σ̂2. Then we let this value vary until we find a value such that the coverage rate,

computed by 5-fold CV, is within the interval [.940, .950]. Then this value is used to build the PIs

for the new observations. We call this method IF-jack.

1.3.3 Parameters and calibration for the Simulation Study

The target coverage probability is set to .95 for all scenarios and methods. Calibration, as pre-

sented in Section 2, is performed for all the proposed method combinations. For calibration, the

acceptable range of 1−α on the OOB data is [.940− .950]. Because no option for calibration for

QRF is offered in its CRAN package, it is not performed for this method. For CI-jack and CI-split,

the calibration process is automatically done using five-fold cross validation in their respective

16

functions. For IF-jack we used the calibration process described above and set the target coverage

range to [.940− .950], the same as for the proposed methods.

For all methods, to build the forests, the number of trees was set to 500, the minimum num-

ber of observations in the terminal nodes is 1 and all other parameters were left to the package

randomForestSRC default settings.

In the HDR and CHDR PI methods, a bandwidth has to be chosen. The hdrcde package offers

an option in the hdr function to choose the optimal bandwidth for each BOP. However, estimating

the bandwidth separately for all observations in the test set takes a long time. This is why we used

the following method to gain computational efficiency. For a given forest, we find the optimal

bandwidth for 10 BOPs. The mean of these bandwidths is then used as the bandwidth for all BOPs

for this forest.

1.4 Results of the Simulation Study

The detailed results from the simulation study are presented in Table A in the Appendix. Each

of the 18 sections (6 DGPs × 3 sample sizes) of the table provides the mean coverage of the PIs,

the mean length of the PIs and their standard deviation on the test set, over the 200 runs, for a

given DGP and sample size. The first and foremost important property of a PI is to maintain the

prescribed coverage, which was set to .95 throughout this study. All methods were able to do so.

Indeed, all the 342 (19 methods × 6 DGPs × 3 sample sizes) reported mean (over the 200 runs)

coverage are greater or equal to .94, except one which is at .939. Moreover, all methods are able

to stay close to .95 except the QRF method which tends to be conservative. The 15 proposed

methods have a built-in calibration procedure. The results show that this procedure works well.

The 4 competitors were taken as they are. The two conformal inference methods also have a

built-in calibration procedure and it was reliable as well. Since the IF-jack method is designed to

build a confidence interval, we had to implement a calibration procedure for it to derive predictions

intervals, as explained in the last section, and the results show that it also worked well. Only the

QRF method does not have a calibration procedure when used “off-the-shelf", and we see that

applying it as it is tends to produce conservative PIs.

Once a method is able to produce reliable PIs maintaining the desired coverage, the length of

17

the PIs becomes the performance measure, the shorter the better. Before comparing in details the

mean lengths of the PIs for all DGPs and sample sizes, we first provide a global view of the results.

To be able to compare the lengths across the different scenarios, we use the percentage increase in

PI length of a method with respect to the best performer for a given run. This way, only the relative

lengths are used and the results can be aggregated across all scenarios. There are 68,400 runs in

all in this simulation study (19 methods × 6 DGPs × 3 sample sizes × 200 runs). For a given run,

we have the mean length (on the test set) of the PIs for each method. Let MLk be the mean length

of method k, k = 1,2, . . . ,19, for this run. Let mink{MLk} be the smallest mean length for this

run. The percentage increase in PI length of method k with respect to best performer for this run is

defined to be

100
(MLk−mink{MLk})

mink{MLk}
.

Hence, the smallest is this value, the better is the method. Figure 1.1, shows the distributions of this

measure for all 68,400 runs in the simulation study. All methods are there except QRF because its

performance was so poor compared to the others that including it would have distorted the graph.

But the results for QRF will be shown in the following figures, scenario by scenario. The first 5

box-plots are the ones of the proposed methods when the RF is built with the LS splitting rule. The

next 5 box-plots correspond to the RF built with the L1 splitting rule. The following 5 are the ones

with the RF built with the SPI splitting rule. The last three are the competing methods: CI-jack,

CI-split, and IF-jack. The results show that, globally, the proposed methods perform well, and are

slightly better than the competitors, except when the PIs are built with the quantiles. The HDR

method produced the shortest PIs. But this method can produce a PI formed by more than one

interval, while all other methods provide a PI formed by a single interval. If this is an issue, the

CHDR, SPI and LS methods work very well too, and provide PIs with a single interval. Among the

two conformal inference methods, the CI-jack is preferable to CI-split. Also, the performance of

CI-jack is very close to the one of IF-jack. It is interesting to see that, globally, using the simplest

approach (fifth box-plot from the start) which is to build the RF with the LS splitting rule and using

the classical method to build the PIs performs very well.

We now examine the detailed results for each scenario. We are using directly the mean PI

length since they are comparable within a scenario. Figures 1.2 to 1.7 show the distribution of the

mean length (ML) for each of the 19 methods and 18 scenarios. Each figure corresponds to a DGP.

18

● ●● ● ●●

● ●● ● ● ● ●

● ●● ●● ●● ● ●● ●●

●● ●● ● ● ●●

●● ●● ●● ●● ● ●

●● ●● ●●●

050100150200

%
 i
n

c
re

a
s
e

 v
s
 b

e
s
t
−

 a
ll
 s

c
e

n
a

ri
o

s

L
S

L
1

S
P

I

H
D

R
C

H
D

R
Q

u
a

n
ti
le

s
S

P
I

L
M

C
I−

ja
c
k

C
I−

s
p

li
t

IF
−

ja
c
k

Fi
gu

re
1.

1:
D

is
tr

ib
ut

io
ns

of
th

e
pe

rc
en

ta
ge

in
cr

ea
se

in
PI

le
ng

th
of

ea
ch

m
et

ho
d

w
ith

re
sp

ec
tt

o
be

st
pe

rf
or

m
er

fo
ra

gi
ve

n
ru

n
fo

ra
ll

68
,4

00
ru

ns
in

th
e

si
m

ul
at

io
n

st
ud

y.

19

Looking at Figure 1.2, we see that for DGP1, for all sample sizes, 12 out of the 15 proposed

methods combinations clearly outperform the four competitors in terms of PI length. When looking

at the comparative performance of the three splitting rules, no significant difference is noted. The

differences in ML seem to be a result of the choice of PI method used and not the choice of splitting

criterion. This conclusion can also be drawn, to different extents, for most of the scenarios. The

HDR PI method is distinctly the best approach with DGP1 yielding the shortest, thus more precise

PIs. Among the competitors, CI-jack and IF-jack show the best performances, with CI-jack, the

most computationally intensive method of the two conformal inference methods in this study,

having a slight advantage in terms of median ML. QRF has clearly had the longest MLs. But as

we saw this is mainly due to the fact that the PIs of this method are conservative. Also, as could be

expected, for all methods and scenarios, the MLs and their variability significantly decrease with

the increase in sample size.

In Figure 1.3, the results of DGP2 are very similar to those of DGP1. The only difference

between the two are in the ε , it follows a normal distribution in DGP1 and an exponential distri-

bution in DGP2. We wanted to investigate the impact of an asymmetrical error distributions on the

symmetrical PI methods, such as LM. We can conclude from the results for DGP2 vs DGP1 that

the effect is minimal. LM is only very slightly affected by DGP2’s asymmetrical error distribution.

Once again, for the proposed methods, we note that it is clearly the choice of PI method rather than

splitting criterion that impacts the results.

The performances of the methods with DGP3, in Figure 1.4, are quite different from the first

two. The splitting criteria have a noticeable impact on the performance, with LS showing the

shortest intervals. In these three scenarios CI-jack and IF-jack show the best overall performances,

but most of the proposed methods are not far behind.

For DGP4 and DGP5 (Figures 1.5 and 1.6), generated following Friedman problems 2 and 3,

most of the proposed proposed methods achieve shorter MLs than the competing methods on all

sample sizes, except for DGP 5 and n = 1000, where IF-jack is among the best ones. This time,

the PI methods performances are very similar, especially with DGP5. In most scenarios, only the

quantiles and SPI have slightly longer MLs. CI-jack and IF-jack yield again the shortest MLs

among the competing methods.

In Figure 1.7, that presents the results of the scenarios using DGP6, the discrepancies between

20

all the methods is much more noticeable. This time, the overall best performing methods are the

ones using the SPI PI approach followed by CHDR, especially with the LS splitting criterion.

The quantile approaches, quantiles PI and QRF, are quite far behind compared to the others MLs,

especially as the sample size increases.

When looking globally at the results of the simulation study, we can conclude on three aspects.

First, in a majority of scenarios, one or many of the proposed methods yield distinctly better or

equal performances in terms of MLs than the competing methods. Second, the choice of split-

ting criterion, with respect to the three criteria tested in this study, has very little impact on the

performance when constructing PIs. Third, it is the choice of the PI construction approach that

has the most significant impact on the performance. Furthermore, although HDR is the best over-

all performing PI method, a simple straightforward approach such as the classical LM provides a

very good overall performance. Quantiles is the only PI method that in all tested settings has no

advantage in being used over the other proposed PI approaches.

1.5 Performance with Real Datasets

To further explore the performance of the 15 proposed method combinations and their competitors,

we test them on 7 real data sets (in fact, 6 data sets but one of them has two response variables).

All of them were found on the UCI Machine Learning Repository [2] under the task regression.

They have sample sizes that range between 103 to 1503 and a number of covariates varying from

5 to 68. The details are presented in Table 1.1.

Five times 10-fold cross-validation was performed for each method on every data set. In each

fold, the RF is built with the training data (90% of the data), and the PIs (with a target of 1−α =

.95) are calculated for the validation data (10% of the data). The coverage and mean length (ML)

of the PIs were then computed. These results are averaged over the 5 repetitions of 10-fold cross-

validation, and are reported in Table 1.1. Figures 8, 9, and 10 present the box-plots of the ML,

over the 5 repetitions of 10-fold cross-validation, in graphs similar to those used for the simulation

study.

We can see in Table 1.1 that, like for the simulation study, all methods were able to maintain the

target coverage. Only in one case did the mean coverage fell below .94, at .936. We can also see

21

●

5 10 15 20 25 30

D
G

P
 1

 n
: 1

5
0

mean PI length

L
S

L
1

S
P

I

H
D

R
C

H
D

R
Q

u
a

n
tile

s
S

P
I

L
M

Q
R

F
C

I−
ja

c
k

C
I−

s
p

lit
IF

−
ja

c
k

● ●●● ● ●● ● ●●● ● ●● ● ● ●●●● ● ●●

●● ● ● ●● ●●●● ● ●● ●● ●● ● ●●

● ●● ●● ● ●● ● ●●● ● ● ●● ●● ● ●● ●● ● ● ●

● ●● ●●● ●●● ●● ● ●● ● ●●● ● ●●

●● ●● ●● ● ● ●●●● ● ●●● ●● ●●● ●● ● ● ●●●

● ●● ●●● ●●●● ●●● ●●● ● ●● ● ●●●

●●●● ●● ●●●● ●●● ● ●● ● ●●

●● ●● ● ● ●●

● ●●● ● ●● ● ●●

●● ●● ● ● ●●● ● ●● ●●●

● ●● ●● ● ●● ●●● ●● ●● ●● ● ●●

● ●● ●●●● ●● ●● ● ● ●●● ●●

●● ●● ●● ●● ● ●● ●

● ●● ● ●● ●●● ●●● ● ●● ● ● ●●● ● ● ●●

●● ●● ●● ● ● ● ●●● ●

● ●

● ●● ● ●● ● ● ●

●●● ● ●● ●● ●● ●● ● ●

●● ●● ●●● ●● ●● ● ●

5 10 15 20 25 30

D
G

P
 1

 n
: 5

0
0

L
S

L
1

S
P

I

●● ●●● ●

●●● ●

●● ●●● ●●●● ● ●● ●●● ●●

●● ●● ●● ●● ● ●

● ●●

●●●

●●● ●● ● ●●

●● ● ●●

●●● ●● ●● ●● ●

●● ●●

●● ●● ●●

●● ●● ●● ●●

● ●● ●

●● ● ●

●●

● ●● ●● ●● ●● ●

● ●●● ● ●●● ●●● ●● ●●

●● ● ●● ●●

5 10 15 20 25 30

D
G

P
 1

 n
: 1

0
0

0

L
S

L
1

S
P

I

Figure
1.2:

D
istributions

ofthe
PIlength

forD
G

P
1.

22

●

5101520253035

D
G

P
 2

n

:
 1

5
0

mean PI length

L
S

L
1

S
P

I

H
D

R
C

H
D

R
Q

u
a

n
ti
le

s
S

P
I

L
M

Q
R

F
C

I−
ja

c
k

C
I−

s
p

li
t

IF
−

ja
c
k

●● ●● ● ● ●● ●● ●

●● ● ●● ●●● ●●● ●● ●● ●● ●● ● ●

●● ●●●● ● ● ●● ●●● ●●● ●●

● ●● ●● ●● ●● ●● ● ● ●● ●●● ● ●●●●

● ● ●● ●● ●● ● ● ●● ●●

●● ● ●● ●

●● ●● ● ● ● ● ●●● ● ●

● ●● ● ●●●● ● ●

● ● ● ●● ●● ● ●● ● ●● ● ●● ●●● ● ●●
● ● ● ● ●

●● ● ●● ●●●
● ●● ●●●● ● ●● ● ●● ●● ●

● ● ●● ● ●● ●● ●● ●●●● ● ●

●● ●●● ●● ●● ●●● ● ●●● ●● ●●● ●●

●● ●● ● ●● ● ●● ● ●● ●● ●●● ●

●●●● ●●● ●● ●● ● ●● ● ● ●● ●●● ●

●● ● ●● ● ●●● ●●● ●●●● ● ●● ●●●

● ●●●● ●●● ● ●

5101520253035

D
G

P
 2

 n

:
 5

0
0

L
S

L
1

S
P

I

● ● ●● ●● ●●● ●

●●

● ● ●● ● ●●
●

●●●● ● ●

● ●

●●●●
●●

● ●●● ● ●●

●●

●● ●● ● ● ● ●

●● ● ●●
● ●● ●

● ●

5101520253035

D
G

P
 2

 n

:
 1

0
0

0

L
S

L
1

S
P

I

Fi
gu

re
1.

3:
D

is
tr

ib
ut

io
ns

of
th

e
PI

le
ng

th
fo

rD
G

P
2.

23

8 10 12 14 16

D
G

P
 3

 n
: 1

5
0

mean PI length

L
S

L
1

S
P

I

H
D

R
C

H
D

R
Q

u
a

n
tile

s
S

P
I

L
M

Q
R

F
C

I−
ja

c
k

C
I−

s
p

lit
IF

−
ja

c
k

● ●● ●●● ●● ● ●● ● ●●● ● ●● ●● ● ● ●● ● ● ●●● ●●
● ●● ●●● ●● ●● ● ●●● ● ● ● ●● ●●● ● ●●● ●●

●●● ●● ●● ●●●●● ●● ●

● ●● ●●● ●● ●● ●● ● ● ●●● ● ● ● ● ●

● ● ●●● ●● ●●● ●● ●●●● ●● ●● ● ●● ● ●

●● ●● ● ●● ●●● ● ●● ●●

● ●● ●● ●●● ● ●● ●●

●● ●● ●● ●●● ●● ●● ●

●●●●● ●● ● ● ●

● ●● ●●● ●● ● ●● ● ●● ●

● ● ●● ● ●● ● ●● ●●● ● ●● ●●

● ● ●●● ● ●● ● ●● ●● ● ●● ●●

●● ●● ●●● ●●● ●● ● ●● ●

● ● ● ● ●● ●● ●● ●●● ●●● ● ● ● ●● ●

●● ● ●●● ●●● ●● ●● ● ●●●

● ●● ●●●● ●●●● ● ●●●● ● ●●● ● ●●● ● ●● ● ● ●●● ●●

●● ●● ●● ● ● ●●●● ●●● ●● ●●● ● ●● ●● ●●●

●●● ●● ● ●●●● ●● ●●● ●● ●

● ● ●●● ●●●● ●● ●●● ●● ●●●●

8 10 12 14 16

D
G

P
 3

 n
: 5

0
0

L
S

L
1

S
P

I

● ●●● ● ● ●●

● ●● ● ● ●●

●● ●●● ●●● ●●

● ● ● ●●● ●

● ● ● ●●● ● ●● ●● ●● ●

● ● ●●
● ●

● ●
●

●● ●●●● ●

●● ● ●● ●● ●● ●

●● ●●

●●●● ●● ●● ●●● ●

● ●● ●● ●●● ● ●●

●● ● ●●● ●● ●

8 10 12 14 16

D
G

P
 3

 n
: 1

0
0

0

L
S

L
1

S
P

I

Figure
1.4:

D
istributions

ofthe
PIlength

forD
G

P
3.

24

●

●●

● ●●●● ●● ●● ●

● ●●●● ●● ●● ●

● ●●● ● ●●

●●

● ●●●●

● ●●●●

● ● ●●●●● ● ●●

● ●

● ●

● ●

● ● ●● ●● ●● ●●● ●

●●●

●●● ●

●

4006008001000120014001600

D
G

P
 4

n

:
 1

5
0

mean PI length

L
S

L
1

S
P

I

H
D

R
C

H
D

R
Q

u
a

n
ti
le

s
S

P
I

L
M

Q
R

F
C

I−
ja

c
k

C
I−

s
p

li
t

IF
−

ja
c
k

●● ● ● ●●● ●● ●

●● ● ● ●● ●● ●

●● ● ● ●● ● ●●● ●● ●●● ●● ●●● ●●●●

● ●●● ●●● ●● ● ●●● ●

●●● ● ●●● ● ●● ●● ●

●● ● ● ● ●● ●

●● ● ●● ●● ●

● ● ● ● ●● ●●●●●●● ●●

●● ●● ●●● ● ● ●●● ● ●

●●●● ●● ●● ● ●

●● ● ● ● ●● ●● ● ●●
●● ●● ● ● ● ● ●● ●● ●●●

●● ● ● ● ● ●● ●● ● ●●●● ●●● ●

●● ●● ● ● ● ●● ●●●● ● ●●

● ● ●● ●● ● ●●

●● ●● ● ●●● ●● ●●● ●●

●● ●●● ●● ● ●● ●●● ● ●●●●●

● ● ● ●●● ● ● ●●● ● ●● ●● ●● ● ●●●

● ●● ●●●● ●● ● ● ●● ● ●● ●● ● ●

4006008001000120014001600

D
G

P
 4

 n

:
 5

0
0

L
S

L
1

S
P

I

● ● ●● ●
● ●● ●

●● ●● ●

●● ● ●

●● ●
●● ●●

●● ●●

●● ●

●●● ●● ●

● ● ●●●

● ●●

● ●●

●● ● ● ●

● ●

● ●

●● ● ●● ●

● ●●● ●● ●● ● ●●

● ● ●●● ●●●● ● ● ●●

● ●● ●●● ●● ●

4006008001000120014001600

D
G

P
 4

 n

:
 1

0
0

0

L
S

L
1

S
P

I

Fi
gu

re
1.

5:
D

is
tr

ib
ut

io
ns

of
th

e
PI

le
ng

th
fo

rD
G

P
4.

25

●

●

0.5 1.0 1.5 2.0

D
G

P
 5

 n
: 1

5
0

mean PI length

L
S

L
1

S
P

I

H
D

R
C

H
D

R
Q

u
a

n
tile

s
S

P
I

L
M

Q
R

F
C

I−
ja

c
k

C
I−

s
p

lit
IF

−
ja

c
k

●● ●●● ●●●● ●● ●● ●●● ●● ● ●●

● ●●●● ●● ●● ●● ●●

● ● ●● ●● ●● ●●

● ●● ●●● ●● ●● ● ●● ●●

● ● ● ●● ● ●●● ●●●

●● ●●● ●● ●● ●● ●● ●

●● ● ●● ●● ●●

● ● ●●● ● ●● ● ●●
●●●● ● ● ● ● ●

●● ●●● ● ●● ●

●● ●●● ●●● ● ●● ● ●●

●●● ● ●● ●●

●●● ● ● ●● ●● ●

●●●● ●● ●●● ● ●

● ● ●● ●● ●● ● ●● ●● ● ●

●●● ● ●● ● ●● ●● ●● ●●● ●●● ●●

● ● ● ●● ●● ● ●● ●●●● ● ● ●

●●●● ●●● ●● ●●●● ●● ●●● ● ● ●

●● ●● ●● ●● ●● ●● ● ●●● ● ●●

0.5 1.0 1.5 2.0

D
G

P
 5

 n
: 5

0
0

L
S

L
1

S
P

I

●●
●

●

● ●

● ● ●● ●
●

● ● ●●

● ●●●

● ● ●

●

●●●●

●● ●●

● ● ●●●●

● ● ●

● ●●

● ●

●●●

0.5 1.0 1.5 2.0

D
G

P
 5

 n
: 1

0
0

0

L
S

L
1

S
P

I

Figure
1.6:

D
istributions

ofthe
PIlength

forD
G

P
5.

26

10152025

D
G

P
 6

n

:
 1

5
0

mean PI length

L
S

L
1

S
P

I

H
D

R
C

H
D

R
Q

u
a

n
ti
le

s
S

P
I

L
M

Q
R

F
C

I−
ja

c
k

C
I−

s
p

li
t

IF
−

ja
c
k

●

●●● ● ●● ●● ●● ●●●● ●● ●●●● ●●● ● ●●● ●● ● ●●

● ●● ● ●● ● ●

● ●● ●●● ●● ● ● ●● ●● ● ●● ●● ● ● ●● ●● ●●● ● ●●● ●● ●● ●●●● ●●

●● ● ●●● ●● ● ●● ● ●● ●●● ● ●●● ●●

● ● ●● ●● ●

●● ●●● ●● ●●

● ●●● ●●●● ●● ● ● ●●●

●● ●● ● ●●● ●● ●●● ●● ●● ●● ● ● ●●

●● ●●●

● ●● ●

●● ● ● ●● ● ● ●● ●

● ● ●● ●

●● ●●

●

● ●●● ●●●● ●● ● ●●● ● ●● ●●● ●

● ●●● ● ●●● ● ●

● ●● ● ● ●● ●●● ●● ● ●●● ●● ● ● ●● ●● ●● ● ●

10152025

D
G

P
 6

 n

:
 5

0
0

L
S

L
1

S
P

I

●● ●● ● ●●

● ● ●

● ●

● ●● ●●●● ●● ●● ●● ● ●● ●● ●● ●● ●●

● ● ● ● ●

● ●●● ●●● ● ●●●● ●●● ●

● ● ●● ●

● ●●● ●●●● ●● ● ● ●●● ●● ●●●

● ● ●

● ●

●

● ●●● ● ● ●●● ●●● ●●●

●●

●●●● ●●●● ●●●● ● ●

10152025

D
G

P
 6

 n

:
 1

0
0

0

L
S

L
1

S
P

I

Fi
gu

re
1.

7:
D

is
tr

ib
ut

io
ns

of
th

e
PI

le
ng

th
fo

rD
G

P
6.

27

Table 1.1: Averaged results of the five repetitions of 10-fold cross-validation for the seven real datasets. The column
‘cov’ shows the mean coverage of the PIs, and ‘ml’ their mean length. The 15 proposed method combinations are
presented in a matrix format where the line (LS, L1, SPI) represent the splitting rule and the column (HDR, CHDR,
Quant, SPI, LM) represent the method used to build the interval. The 4 competitors (QRF, CI-jack, CI-split, IF-jack)
are presented right under the proposed methods.

cov ml cov ml cov ml cov ml cov ml

Dataset : Boston Housing HDR CHDR Quant SPI LM
n : 506 LS 0.95010.68 0.947 11.09 0.945 10.78 0.947 10.60 0.94711.15
p : 13 L1 0.95110.87 0.949 11.34 0.946 11.27 0.946 10.87 0.95711.85

SPI0.94710.64 0.948 11.00 0.948 10.85 0.946 10.68 0.95111.36
QRF CI-jack CI-split IF-jack
0.98115.65 0.952 12.41 0.953 14.73 0.943 11.12

Dataset : BWC HDR CHDR Quant SPI LM
n : 198 LS 0.9540.678 0.950 0.689 0.952 0.735 0.953 0.742 0.9510.688
p : 29 L1 0.9500.682 0.952 0.685 0.949 0.736 0.952 0.734 0.9520.717

SPI0.9510.664 0.951 0.665 0.952 0.705 0.948 0.702 0.9500.671
QRF CI-jack CI-split IF-jack
0.9961.981 0.946 0.952 0.953 1.474 0.952 0.953

Dataset : Concrete Slump HDR CHDR Quant SPI LM
n : 103 LS 0.96114.95 0.961 14.82 0.949 18.37 0.942 17.71 0.95115.60
p : 10 L1 0.96415.34 0.961 15.11 0.946 17.67 0.948 17.55 0.96915.94

SPI0.96315.24 0.956 15.10 0.947 19.25 0.936 18.38 0.96215.76
QRF CI-jack CI-split IF-jack
0.96722.41 0.951 15.44 0.967 21.64 0.954 15.95

Dataset : Concrete Compression HDR CHDR Quant SPI LM
n : 1030 LS 0.94420.20 0.945 19.34 0.945 20.92 0.949 20.23 0.95118.87
p : 8 L1 0.94721.03 0.952 19.95 0.946 22.65 0.947 20.85 0.94919.48

SPI0.94321.01 0.949 19.89 0.947 22.50 0.943 20.68 0.94919.43
QRF CI-jack CI-split IF-jack
0.97934.19 0.953 19.70 0.952 25.98 0.959 20.32

Dataset : Airfoil Self Noise HDR CHDR Quant SPI LM
n : 1503 LS 0.94711.29 0.948 9.19 0.943 10.70 0.942 9.935 0.9499.134
p : 5 L1 0.94911.99 0.949 9.67 0.946 11.45 0.943 10.4310.9489.857

SPI0.94611.52 0.950 9.26 0.945 10.99 0.943 9.974 0.9489.271
QRF CI-jack CI-split IF-jack
0.98820.25 0.949 13.35 0.949 14.55 0.946 13.049

Dataset : Music Origin (latitude) HDR CHDR Quant SPI LM
n : 1059 LS 0.94742.74 0.945 47.01 0.945 45.64 0.946 43.73 0.94255.59
p : 68 L1 0.94846.07 0.947 49.34 0.944 46.30 0.945 45.60 0.94057.51

SPI0.94542.08 0.946 47.16 0.942 44.82 0.946 43.69 0.94257.56
QRF CI-jack CI-split IF-jack
0.98960.81 0.951 66.57 0.953 68.36 0.942 62.52

Dataset :Music Origin (longitude) HDR CHDR Quant SPI LM
n : 1059 LS 0.949143.5 0.948 144.6 0.947 132.9 0.944 129.3 0.945150.5
p : 68 L1 0.946146.1 0.946 146.8 0.948 135.2 0.948 132.9 0.947154.0

SPI0.944141.5 0.945 142.2 0.943 129.9 0.944 127.1 0.943152.3
QRF CI-jack CI-split IF-jack
0.988177.4 0.951 173.3 0.950 177.5 0.940 165.1

28

again that the QRF method is conservative while all other methods produce PIs with a coverage

closer to .95. Hence, we can compare the methods through their mean lengths. A first general

finding clearly apparent in Figures 8, 9, and 10 is that the MLs of the QRF method are too long

and not competitive. This is similar to what we found in the simulation study and can be easily

explained by the fact that it is too conservative. Likewise, among the two conformal inference

methods, CI-jack provides systematically shorter PIs than CI-split.

Figure 1.8 presents the results for the first 3 data sets. For the Boston Housing data set, the

proposed 15 method combinations perform fairly well in comparison to the four competitors. Ten

out of the 15 perform better than the best competing method, IF-jack. The results with the LS

splitting criterion are slightly better than the ones from the two other splitting criteria. With LS,

the best PI construction method is SPI, followed by HDR and quantiles, respectively. For the

BWC data set, all the proposed methods show a distinctly better performance than the competing

methods. For the Concrete Slump data set, 6 of the proposed methods are better than the best

competing methods, which are CI-jack and IF-jack. For the proposed methods, CHDR followed

by HDR and LM yield noticeably shorter intervals than the QRF and SPI construction methods. In

terms of splitting rule, LS has a small advantage over the two others.

Figure 1.9 presents the results for the next 2 data sets. With the Concrete Compression data

set, LM is the best PI construction method, especially with the LS splitting criterion, followed by

CHDR. CI-jack and IF-jack show a very good performance with this data set, and provide ML

almost as short as the ones of the best proposed methods. This is not the case for with the Airfoil

data set, where all 15 proposed methods provide shorter PIs than all competing methods. The

CHDR and LM PI construction methods are the best performers.

Figure 1.10 presents the results for the 2 response variables, latitude and longitude, with the

Music Origin data set. The 15 proposed methods are distinctively better than the 4 competitors for

both responses. However, we see a different behavior from the methods for these 2 responses. With

the latitude response variable, HDR and SPI are the best performing PI methods. Meanwhile, LM

shows a particularly poor performance but that is still better than the competitors. The longitude

response yields different performance patterns. The SPI and quantiles construction methods show

a very good performance.

We can conclude that several or all the proposed methods showed better performance than

29

11 12 13 14 15
B

o
s
to

n
 H

o
u

s
in

g
 n

: 5
0

6
 p

: 1
3

mean PI length

L
S

L
1

S
P

I

H
D

R
C

H
D

R
Q

u
a

n
tile

s
S

P
I

L
M

Q
R

F
C

I−
ja

c
k

C
I−

s
p

lit
IF

−
ja

c
k

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

B
W

C
 n

: 1
9

8
 p

: 2
9

mean PI length

L
S

L
1

S
P

I

16 18 20 22 24

C
o

n
c
re

te
 S

lu
m

p
 n

:1
0

3
 p

:1
0

mean PI length

L
S

L
1

S
P

I

Figure
1.8:

D
istributions

ofthe
m

ean
PIlength

fordatasets
B

oston
H

ousing,B
W

C
and

C
oncrete

Slum
p.

30

202530

C
on

cr
et

e
C

om
pr

es
si

on
 n

: 1
03

0
p:

 8

mean PI length

LS
L1

SP
I

H
D

R
C

H
D

R
Q

ua
nt

ile
s

SP
I

LM Q
R

F
C

I−
ja

ck
C

I−
sp

lit
IF

−j
ac

k

101214161820

Ai
rfo

il
Se

lf−
N

oi
se

 n
: 1

50
3

p:
5

mean PI length
LS

L1
SP

I

Fi
gu

re
1.

9:
D

is
tr

ib
ut

io
ns

of
th

e
m

ea
n

PI
le

ng
th

fo
rd

at
as

et
s

C
on

cr
et

e
C

om
pr

es
si

on
an

d
A

ir
fo

il
Se

lf
N

oi
se

.

31

45 50 55 60 65 70

M
usic O

rigin (latitude) n: 1059 p: 68

mean PI length

LS
L1

SPI

H
D

R
C

H
D

R
Q

uantiles
SPI
LMQ

R
F

C
I−jack

C
I−split

IF−jack

130 140 150 160 170 180

M
usic O

rigin (longitude) n: 1059 p: 68

mean PI length
LS

L1
SPI

Figure
1.10:

D
istributions

ofthe
m

ean
PIlength

fordatasets
M

usic
O

rigin
L

atitude
and

M
usic

O
rigin

L
ongitude.

32

the competitors. Among the proposed methods, there is no clear winner, or best performing PI

construction method or method combination

1.6 Conclusion

The goal of this research was to investigate new avenues to improve the performance of prediction

intervals with random forests. The basic idea is to use the forest to extract local information at a

given value of the covariates xnew through the Bag of Observations for Prediction (BOP). The BOP

is simply the pooled set of observations that are in the same terminal nodes as xnew in the forest,

a concept very similar to the nearest neighbor forest weights [7, 14]. The general method can be

summarized is three steps: 1) Build a forest and get the BOPs for the new observations; 2) Compute

the PIs using these BOPs; 3) Calibrate the PIs using the Out-Of-Bag (OOB) information. First,

we looked at two alternatives to the default least squares (LS) splitting rule in the tree construction

itself (step 1). Second, we presented five methods for constructing prediction intervals once a

forest is built (step 2). The resulting 15 method combinations were evaluated in a simulation study

and with real data sets.

The proposed methods performed very well. First of all, they were able to maintain the desired

coverage level in the simulation study and with the real data sets, showing that the proposed cali-

bration method is reliable. In terms of length, some, or in some cases all, of the proposed methods

provided shorter PIs compared to the ones of the competing methods in the simulation study and

with real data sets.

In the light of the simulation study and real data sets evaluation, we can conclude that, con-

sidering the three splitting criteria investigated, the impact of the choice of this criterion on the

performance of the PIs is minimal. The method used for constructing the intervals shows to have

a significantly greater impact on the performance. A similar conclusion was obtained in Moradian

et al. [19] in the context of estimating the survival function with a survival forest when dependent

censoring is present. In that paper, it was shown that correcting for dependent censoring when

computing the survival function with the BOP had more positive impact than using a splitting rule

that accounts for dependent censoring.

However, there is no clear best performing approach among the five PI methods investigated.

33

They all provide a solid performance in at least one simulation scenario or real data context. How-

ever, the quantiles method was globally the weakest method and we can not recommend it at this

time. The simplest method, using the default least-squares criterion to build the forest and then

constructing the prediction intervals with the classical linear model method performed very well

all around.

With respect to the evaluated competitors, after evaluation in the simulation study and with

real data sets, we conclude that the two best performers are the jackknife version of the conformal

inference method (CI-jack) by Lei et al. [12] and an adaptation of the infinitesimal jackknife (IF-

jack) by Wager et al. [24], that we proposed here. The proposed adaptation was required because

the Wager et al. [24] method provides the quantities to build confidence intervals and not prediction

intervals. However, the IF-jack method is the most computationally intensive method among those

studied here. The present study was limited to random forests. One of the main appeal of the

conformal inference approach is that it can be used with any prediction models, and not only with

forests.

The QRF method provided longer intervals than all other methods but it was due to the fact that

they were conservative, with a coverage higher than required. We used this method off-the-shelf

with no additional calibration procedure. Calibrating it would certainly improve its performance.

However, the QRF method used a forest built with the least-squares criterion, then estimates the

cdf using the nearest neighbor forest weights, and finally computes the PI using the estimated

quantiles. In essence, the QRF method is very close to the combination LS-quantiles of the pro-

posed methods, that is, build the forest with the least-squares criterion, and use the quantiles of the

BOP to build the PI. This is why we expect that the QRF method, once calibrated, would provide

a similar performance to the LS-quantiles combination. But we saw that the quantiles construction

method was the weakest method among the five proposed and studied here. Intuitively, we would

expect some benefits from using the quantiles when the error distribution is asymmetric. DGP2

in the simulation study was such a case with an exponential error. But even then, the quantiles

construction method did not perform well.

Interesting avenues for future research that are currently under investigation include the ex-

tension of the proposed methods to more complex settings, including survival data and mixture

models.

34

References

[1] Athey, S., Tibshirani, J., and Wager, S. (2017). Generalized random forests. arxiv preprint.

arXiv preprint arXiv:1610.01271.

[2] Bache, K. and Lichman, M. (2013). Uci machine learning repository.

[3] Breiman, L. (1996). Bagging predictors. Machine learning, 24(2):123–140.

[4] Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

[5] Friedman, J. H. (1991). Multivariate adaptive regression splines. The annals of statistics,

pages 1–67.

[6] G’Sell M., Lei J., R. A. T. R. and L., W. (2017). e Tools for conformal inference in regression.

R package conformalInference version 1.0.0.

[7] Hothorn, T., Lausen, B., Benner, A., and Radespiel-Tröger, M. (2004). Bagging survival trees.

Statistics in medicine, 23(1):77–91.

[8] Hothorn, T. and Zeileis, A. (2017). Transformation forests. arXiv preprint arXiv:1701.02110.

[9] Hyndman, R. J. (1996). Computing and graphing highest density regions. The American

Statistician, 50(2):120–126.

[10] Hyndman, R. J. (2015). Highest density regions and conditional density estimation. R pack-

age version 3.1.

[11] Ishwaran, H. and Kogalur, U. B. (2017). Random Forests for Survival, Regression, and

Classification (RF-SRC). R package version 2.5.1.

[12] Lei, J., G’Sell, M., Rinaldo, A., Tibshirani, R. J., and Wasserman, L. (2017). Distribution-

free predictive inference for regression. Journal of the American Statistical Association, (just-

accepted).

[13] Leisch, F. and Dimitriadou, E. (2010). mlbench: Machine Learning Benchmark Problems. R

package version 2.1-1.

35

[14] Lin, Y. and Jeon, Y. (2006). Random forests and adaptive nearest neighbors. Journal of the

American Statistical Association, 101(474):578–590.

[15] Meinshausen, N. (2006). Quantile regression forests. Journal of Machine Learning Research,

7(Jun):983–999.

[16] Meinshausen, N. (2016). Quantregforest: quantile regression forests. R package version

1.3-5.

[17] Mentch, L. and Hooker, G. (2016). Quantifying uncertainty in random forests via confidence

intervals and hypothesis tests. The Journal of Machine Learning Research, 17(1):841–881.

[18] Moradian, H., Larocque, D., and Bellavance, F. (2017a). L_1 splitting rules in survival

forests. Lifetime data analysis, 23(4):671–691.

[19] Moradian, H., Larocque, D., and Bellavance, F. (2017b). Survival forests for data with de-

pendent censoring. Statistical Methods in Medical Research, page 0962280217727314.

[20] R Core Team (2017). R: A Language and Environment for Statistical Computing. R Founda-

tion for Statistical Computing, Vienna, Austria.

[21] Samworth, R. J. and Wand, M. P. (2010). Asymptotics and optimal bandwidth selection for

highest density region estimation. The Annals of Statistics, 38(3):1767–1792.

[22] Sexton, J. and Laake, P. (2009). Standard errors for bagged and random forest estimators.

Computational Statistics & Data Analysis, 53(3):801–811.

[23] Vovk, V., Gammerman, A., and Shafer, G. (2005). Algorithmic learning in a random world.

Springer Science & Business Media.

[24] Wager, S., Hastie, T., and Efron, B. (2014). Confidence intervals for random forests: the

jackknife and the infinitesimal jackknife. Journal of Machine Learning Research, 15(1):1625–

1651.

36

Chapter 2

Prediction Intervals for Finite Mixture of

Regressions Based on Random Forests

Marie-Hélène Roy, Denis Larocque, Ilmari Ahonen, & Jaakko Nevalainen

Abstract

Finite mixture regression models (FMR) are a flexible tool for statistical modeling of data that

originate from heterogeneous populations. The classical FMR methods rely on mixtures of linear

models. We propose a nonparametric regression method for finite mixture models that captures

nonlinear dependencies links between the response and the covariates. To achieve this, we use

the structure of the classical EM algorithm but substitute the traditionally used linear models with

random forests. We propose five variations to build prediction intervals and a calibration method

that ensures the intervals reach the desired coverage level. The performance of the methods are

assessed in an extensive simulation study. The results show that the calibration method is very

reliable in attaining the prescribed coverage, even with small samples. The results also show that

the new methods produce short prediction intervals compared to existing methods in a variety of

situations involving linear and nonlinear dependencies, small and large sample sizes, and even with

heteroscedastic data. Moreover, four out of the five methods also show very good computational

efficiency.

2.1 Introduction

Finite mixture regression models (FMR) are a flexible tool for statistical modeling when there is

heterogeneity in the population or group-structure in the data. Consider a continuous response

variable y and a p-dimensional vector x = (x1,x2, . . . ,xp) of covariates. When the population is

heterogenous, the relationship between y and x may differ across different groups of observa-

tions. FMR models offer a convenient way of modeling such heterogenous relationships. In the

classic FMR model, for a population that includes K components (subpopulations or groups), the

conditional density function of y given x is

f (y|x) =
K

∑
k=1

πkφ(y;β0k +x
Tβk,σ

2
k), (2.1)

where φ(y; µ,σ2) is the density of a normal distribution with mean µ and variance σ2. For

each k = 1, . . . ,K, (β0k,β
T
k) are the regression parameters associated with the k-th subpopulation,

and σ2
k is the variance of the distribution of this subpopulation. The mixing probabilities πk, such

that πk > 0, ∑
K
k=1 πk = 1, assign a proportion or contribution to the k-th subpopulation. In most

methods, the number of components K, also called the order of the model, is assumed known

a priori. In this case, the set of all parameters is given by (πk,β0k,βk,σk),k = 1, . . . ,K. The

expectation-maximization algorithm (EM) [4] is an iterative technique that is traditionally used

to find the maximum likelihood estimate (MLE). It is by far the most commonly used method to

estimate the parameters of a FMR model. McLachlan and Peel [17] provides a comprehensive

treatment of FMR models.

Estimating the parameters and clustering the data are common goals with FMR, but predicting

the response for new subjects can also be of interest. However, using a single point prediction in

the context of a FMR model is not always useful nor meaningful. Indeed, a single point prediction

could be a weighted average of the estimated subpopulation means, but this prediction may end

up very far away from any individual subpopulation, for instance in the case of a well separated

bimodal distribution. Alternatively, assigning the subject to a given subpopulation and using its

estimated mean as the point prediction does not make sense either.

This is why using a prediction interval (PI) is a meaningful way of providing information about

38

the likely location of the response for a new subject. To be clear, we will use the term prediction

interval in this paper, even though the reported set of likely values may be formed by more than

one subinterval, which is expected in the case of a well separated multi-modal distribution.

Once the FMR model (2.1) is fit, building a PI for a new observation can easily be done,

for instance using the highest density region method [11]. However, the performance, that is the

coverage probability and length, of the PIs built with the basic FMR model relies on how well it

fits the data.

One way to improve the basic FMR model, especially when many covariates are present, is to

use shrinkage methods. For instance, Khalili and Chen [12], Galimberti et al. [5], Khalili et al. [13],

Städler et al. [23] propose lasso-type approaches for FMR models. Another way to improve basic

FMR model is to relax the rigid parametric assumptions and use nonparametric or semiparametric

methods. In recent years, several authors have suggested such approaches for FMR models. Huang

and Yao [10] propose a semiparametric method where the regression functions are estimated in

a linear fashion but the mixing proportions are nonparametric, using smoothing functions of a

covariate. Huang et al. [9] develop a nonparametric approach where the estimation procedure

is done using kernel regression. They also propose a modified EM algorithm. Xiang [24] also

introduces a semiparametric approach similar to Huang et al. [9] but where the mixing proportions

and variances are constants, while the component regression functions are also smooth functions

of a covariate. The author also presents two related modified EM algorithms. This author as

well as Huang et al. [9] present a methodology and results solely in the univariate context. Both

publications state that the methodology can be extended to a multivariate context, but that the curse

of dimensionality [6] limits its usefulness. Huang et al. [8] propose another semiparametic FMR

estimation procedure, this time in the context of functional data. It uses in combination, kernel

regression, functional principal component analysis and the EM algorithm.

Ahonen et al. [1] is the first work to propose and investigate a flexible way to build PIs with

FMR models. They introduce the flexible finite mixture regression (FMRFLEX), a semiparametric

method that combines random forests [3] and FMR variable selection techniques with the classi-

cal FMR model. Basically, this method expands the set of covariates by adding dummy variables

extracted from the terminal nodes of trees in random forests fit using the original covariates x and

the outcome y. These additional variables are used to model deviations from linearity. Since this

39

adds many new variables, a penalized FMR regression is then fit on the combination of the origi-

nal covariates and the additional dummy variables to select the most important ones and perform

shrinkage. Once the model is fit, PIs can be build with the highest density region method [11]. They

compare their FMRFLEX method with one-class models, the classical finite mixture model and

the fmrlasso of Städler et al. [23] in extensive simulation studies. They show that their proposed

method achieves equal performance with the other FMR methods when the true model is linear

and superior performance in nonlinear cases. They also obtain a superior performance with a real

data set where important relationships and/or interactions between variables were likely nonlinear.

Although FMRFLEX performs well in the settings considered in Ahonen et al. [1], the com-

puting time can become an issue in some circumstances. Moreover, other promising ways to build

PIs with a random forest (RF) were recently proposed in Roy and Larocque [20] in the general

supervised learning setting. Inspired by both papers, the goal of this paper is to propose and inves-

tigate other ways to build PIs with RF for FMR. We propose a way to build a mixture of RFs that

can model nonlinear multivariate relationships, and five ways to build PIs with it. We then study

these methods with a simulation study that includes challenging settings with small samples and

heteroscedastic data.

In section 2, we present the methods. The results from the simulation study are presented in

section 3. Section 4 concludes and provide avenues for further research.

2.2 Methodology

In this section, we provide a detailed description of the proposed methods. Their goal is to provide

a PI for the value of y for a new observation xnew.

Random Forests

Random forests, that are now part of the essential toolbox of any data analyst, is a very powerful

prediction method that can be used for both classification, regression and many other problems

including survival data. One of its main appeal is its ability to effectively capture nonlinear de-

pendencies and interactions between covariates. We will focus on the regression context. Random

forests are formed by an ensemble of B regression trees. Each tree is grown with a bootstrap sam-

40

ple of the observations and with randomly selected covariates. More precisely, at each node of a

tree, rather than choosing the best split among all covariates, it chooses among a randomly selected

subset of covariates. The basic RF method takes the average predictions from the terminal nodes

of the B trees to predict new data.

Finite Mixture Models using Random Forests

To model nonlinear dependencies between the response and the covariates, we relax the linear

assumption in (2.1) and consider the model

f (y|x) =
K

∑
k=1

πkφ(y;hk(x),σ
2
k), (2.2)

where hk(·) : R p→R is an arbitrary unknown function of the covariates, and where the other

quantities are defined as in (2.1). We use random forests to approximate the functions hk(·), for

all k = 1, . . . ,K. To achieve this, we modify the traditional EM algorithm used to fit a FMR model

by replacing linear models in the M step by K random forests. This leads to a nonparametric

estimation of the FMR. Here is a description of the modified EM algorithm, followed by more

details about some key steps.

2.2.1 The modified EM algorithm

Initialization

In what follows, i is the index of the observation, k of the component (class) in the mixture, and

j is the index of the iteration number. We denote by pik the probability that observation i belongs

to class k.

Find initial classification probabilities p(0)ik using a linear FMR model. We use the package

flexmix [14] for this purpose. Find initial mixture proportions π
(0)
k = 1

n ∑
n
i=1 p(0)ik . Set the number

of trees in a forest to B. Set iteration index j to 0.

The random forest EM algorithm for a mixture iterates between the following E and M steps,

starting with the M-step.

E-step

41

Increment j by 1. Update the classification probabilities pik.

p(j)
ik =

π
(j)
k φ(yi; ĥk(xi),σ

2(j)
k)

∑
K
k=1 π

(j)
k φ(yi; ĥk(xi),σ

2(j)
k)

, i = 1, . . . ,n;k = 1, . . . ,K.

M-step

for each k = 1, . . . ,K {

1. Perform a weighted least squares linear regression on response vector y using covariates x

and weights set equal to the classification probabilities p(j)
ik , to obtain an estimated linear

model l̂k(x). Obtain the linear predictions ŷik = l̂k(xi) and residuals rik = yik− ŷik. This is

done to remove the linear part. The residuals will be used to build the RF.

2. Train a random forest using the residuals ri j as the response and the covariates x.

2.1 a) Set sampling probabilities to p(j)
ik . Generate B weighted bootstrap samples from the

data. For each sample draw, with replacement,
⌈

nπ
(j)
k

⌉
observations out of n.

b) As in the classic RF algorithm a tree is build for each of these samples, building a

complete random forest.

c) The RF predictions are obtained from averaging predictions from all B trees. Let

ĝk(x) denote this forest.

d) For any x, the final prediction is ĥk(x) = ĝk(x)+ l̂k(x).

2.2 a) Obtain predictions for the out-of-bag observations for each tree.

b) Gather out-of-bag predictions from the B out-of-bag samples. Compute the aver-

age for each observation that belongs to Ok, the ensemble of the observations that

were present in a out-of-bag sample at least once. There are n′k averaged out-of-bag

predictions ĝoob
ik , for i ∈ Ok.

c) From the n′k out-of-bag predictions, update σ2
k .

σ
2(j+1)
k =

1
n′k

∑
i∈Ok

p(j)
ik (yi− (ŷik + ĝoob

ik))2.

}

42

3. Update πk,

π
(j+1)
k =

1
n

n

∑
i=1

p(j)
ik .

The algorithm stops when the observed log-likelihood ∑
n
i=1 log(f̂ (yi|xi)) stabilizes, where

f̂ (y|x) is the density (2.2) evaluated with the current values of πk, σ2
k , and ĥk(x).

It is well-known that a RF will not capture a linear link as fast as a linear model. This is why, in

step 1 of the M-step, a weighted linear model is fit for each class, with observations weights equal

to the classification probabilities, in order to detect such a link, if present. The residuals from these

linear fits are used as responses to build the RFs, one per class, in step 2.1. The idea is to let the

RF detect the remaining signal. But we cannot use the classical RF algorithm and simply take

ordinary bootstrap samples because we have to account for the classification probabilities of the

observations. This is why, for each class, a weighted bootstrap sample with
⌈

nπ
(j)
k

⌉
observations

is generated with the sampling probabilities set to p(j)
ik . Then, classical RFs are built with these

samples, allowing to extract the out-of-bag samples, which will be used to estimate the variance

parameters σ2
k in step 2.2.

Note that the prior removing of the linear effect in step 1 of the M-step is optional. In fact,

it is only performed for the first PI building method presented below because preliminary results

showed that it improved the results. Because of the way they are designed, it should not be used

for the other four PI building methods. If the prior removing of the linear effect is not required, we

can just set l̂k(x) = 0, then ŷik = 0 and the residuals are the original observations rik = yik. This

way forests are built with the original observations and the algorithm remains the same.

Once the finite mixture model using RF is fit, we can use it to compute PIs. Five different

approaches will be presented. The first one is a fully parametric approach, adapted from Ahonen

et al. [1]. The four other approaches are inspired by Roy and Larocque [20]. Two of them are

nonparametric and two semiparametric. The next subsection describes these methods.

2.2.2 Prediction Intervals

Some of the methods use the concept of highest density region (HDR). For completeness, the

definition of a HDR from [11] is reproduced here.

43

Definition. Let f (x) be the density function of a random variable X . Then the (1−α)100% HDR

is the subset R(fα) of the sample space of X such that R(fα) = {x : f (x) ≥ fα} where fα is the

largest constant such that Pr(X ∈ R(fα))≥ 1−α .

The HDR is the smallest region, with the desired coverage (1−α)100%, such that the density

of every point inside it is at least as large as the density of every point outside it. Thus the region

R(fα) forms a PI with confidence level 1−α . In practice, the density f (x) is unknown. If a

parametric model is assumed, then the parameters can be estimated and the HDR can be obtained

from the estimated density either exactly or by simulation. Alternatively, a nonparametric approach

can be used with a density estimator like the kernel [11, 21]. The HDR can be obtained also by

simulation from the estimated density.

PI method 1: HDR1 (Adaptation of the Ahonen et al. [1] method)

This method is the one that is the most closely related to the Ahonen et al. [1] approach. Once the

model is fit with the random forest EM algorithm for a mixture, we have estimated values π̂k and

σ̂2
k , for k = 1, . . . ,K. To build a PI for a new observation xnew, we also have the predicted values

for each class, ĥk(xnew). Hence, we could simply plug-in these values in (2.2) and compute the

PI with the HDR method. However, it was found in Ahonen et al. [1] that this provides PIs that

tend to be liberal because they are not taking into account the uncertainty related to the estimation

of the parameters. This is why Ahonen et al. [1] proposed a bootstrap adjustment to estimate this

variability, and thus to calibrate the PIs. This bootstrap adjustment is explained in section 3.2 of

Ahonen et al. [1]. We are using the same approach, only the way we get the estimated parameters

of the mixture distributions is different. We identify this PI method as HDR1.

2.2.3 Four PI methods based on the Bag of Observations for Prediction

(BOP)

These four PI methods also use the random forest EM algorithm for a mixture to build the model.

However, as mentioned previously, the prior removing of the linear part in step 1 of the M-step is

not performed. This amounts to setting l̂k(x) = 0. These PI use the concept of “Bag of Observa-

tions for Prediction" (BOP), introduced under this name in [20] but already used in Moradian et al.

44

[18] and Moradian et al. [19]. This concept is very similar to the nearest neighbor forest weights

of Hothorn et al. [7] and Lin and Jeon [16]. The main idea is to see a RF as a way to generate a set

of local observations that will be used to compute the prediction. In general, assume we have a RF

and we want to get a prediction (of any kind) for a new observation xnew. The Bag of Observations

for Prediction for this new observation, BOP(xnew), is the combined set of training observations

that fall in the same terminal nodes as xnew in the trees of the forest. Note that the same observation

can appear multiple times in the BOP, as it can be in the same terminal node as xnew for many trees

and also since it can appear more than once even in a single tree if it was resampled more than once

by the bootstrap. Once we have BOP(xnew), we can compute any desired summary using this set

of observations.

In the current setting, we have K forests, one per class. Hence, we have K BOP for each

observation. Denote by BOPk(xnew) the BOP for class k, k = 1, . . . ,K. For three of the next four

PI methods, we need also to combine these BOPs to get a single BOP per observation. We can

not simply pool BOP1(xnew), . . . ,BOPK(xnew) together because it would not necessarily reflect the

right mixture proportions. Instead, we take subsamples of the BOPk(xnew) in such a way that,

when pooled, the resulting BOP will have the largest amount of observations while having the

right proportion of observations from each forest. We call this BOP, the adjusted BOP and denote

it by BOPa(xnew). Hence, BOPa(xnew) contains a proportion of π̂k observations from BOPk(xnew),

for k = 1, . . . ,K.

One key feature of this general approach is that it lends itself to an automatic calibration method

for the PI, based on the OOB information. This will be explained later. Moreover, an important

characteristic of the next four methods is that they rely on local estimations of the variability.

Hence, they can handle heteroscedasticity, that is, error variances that can be a function of the

covariates. This aspect will be investigated in the simulation study.

PI method 2: NP1 (Nonparametric - BOP with Unrestricted Number of Intervals)

This method was introduced in [20]. Let ĤDRα(D) be an estimation of the HDR, for a given α ,

for a data set D. With this method, the PI is ĤDRα(BOPa(xnew)). Hence it is the HDR computed

with the adjusted BOP.

The estimated HDR can be formed by multiple intervals, and we expect it to be the case in the

45

context of mixture models. If we assume that there are K components, then the number of intervals

should be at most K in theory. However, in this version no restriction on the number of intervals is

imposed. If a too small bandwidth is used with a kernel density estimate, then it is possible that the

estimated HDR contains more than K intervals. This may or may not be important and depends on

the application. The next version is a slight modification of this one, allowing restrictions on the

number of intervals.

PI method 3: NPK (Nonparametric - BOP with at most K Segments)

This approach is the same as the previous one but adds an interval combination step at the end to

obtain at most K intervals. Compute ĤDRα(BOPa(xnew)), the PI from the previous (NP1) method.

If the number of intervals is less or equal than K, then it is the final PI. If not, try every possible

(there is a finite number of possibilities) way to fill the gaps between the intervals to get K intervals,

and select the PI with the shortest total length. This in a simple extension of the method used in

[20]. In that paper, it was required to bring down the number of intervals to one, and the only

way to do it was to fill the gaps between all intervals. To fix ideas, assume ĤDRα(BOPa(xnew))

is formed by three intervals [5,10], [12,13], [15,22], and that we want two intervals. There are

two ways to fill the gaps to get two intervals. The first one is to consider the two intervals [5,13],

[15,22], and the second one is [5,10], [12,22]. Since the total length of the PI [5,13], [15,22] is

shorter, it would be the final PI.

PI method 4: SP1 (Semiparametric - BOP parameters from each class)

For this semiparametric method (SP1), we use the individual class BOPs, BOP1(xnew), . . . ,BOPK(xnew),

to estimate the mixture parameters in (2.2). First of all, the estimated mixing proportions π̂k are

readily available from the fit model. The mean and variances parameters are obtained directly from

the BOPs. For the mean parameters, ĥk(xnew) is the average of the observations in BOPk(xnew).

For the variance parameters, σ̂2
k is the variance of the observations in BOPk(xnew). With these

estimated parameters, the conditional mixture distribution (2.2) for xnew is fully known. The PI

is the HDR of this distribution. It is important to note that we are using local estimations of the

variance and not the global ones coming from the fit model. As mentioned earlier, this allows the

46

method to handle heteroscedasticity. This is in contrast with PI method 1 (HDR1), which uses the

global estimated variances, and only the ĥk(xnew) vary with xnew.

PI method 5: SP2 (Semiparametric - BOP with mixture)

The previous method takes the global mixing proportions, and estimates the mean and variances

of each component separately using their respective BOP. The SP2 method uses the adjusted BOP,

BOPa(xnew), and estimates the whole mixture distribution from it. In this study, we use the mix-

tools package [2] to achieve this. The initial parameters given to the EM algorithm in mixtools are

the ones from SP1. The PI is the HDR of this estimated distribution. Hence, not only the variance

parameters can vary with xnew, but the mixing proportions too since they are re-estimated as well.

2.2.4 Calibration for the four BOP methods

If we apply the PI building methods based on BOPs described above using the desired coverage

level, then the resulting PIs will sometimes be too conservative and sometimes too liberal. In order

to reliably attain the desired 1−α level, we must use a calibration procedure. The one we use

in this paper is essentially the one proposed in Roy and Larocque [20]. A shorter description is

given here and we point out a modification we made to it. This calibration uses the BOPs that are

collected from the predictions of the OOB observations for all trees. Basically, for a given training

sample observation, we can obtain the individual class BOPs and adjusted BOP in the same way

as for a new observation, except that we only use the trees where this observation is OOB. Once

we have these BOPs, we can construct the PIs for the training data in the same way as for the new

observations. These OOB PIs are then used for the calibration. The calibration is done through

the parameter 1−α . Let 1−α be the target coverage level and let αw be the “working" value

of α . The idea is to find the value of αw such that the coverage level computed with the training

observations is close enough to the target level. Once found, 1−αw becomes the level used to

build the PI for the new observations. In the simulation study, the target 1−α is .95 and αw is

selected such that the OOB coverage level lies in the interval [.94, .95]. This calibration method

always worked in Roy and Larocque [20]. But in the simulation study of this paper, in some cases,

the target coverage level was not reached even when a 1−αw was close to 1 for the NP1 and NPK

47

methods. In those cases, we calibrated the PIs by varying the bandwidth used in the kernel density

estimate.

2.3 Simulation Study

2.3.1 Simulation Design

To assess the performance of the proposed methods, we conduct a simulation study. The study

is composed of 48 scenarios which are variations of the four Data Generating Processes (DGPs)

presented in Ahonen et al. [1]. These four DGPs have 2 or 3 components and are described next,

but see Ahonen et al. [1] for a graphical representation of them.

DGP A

The first DGP is composed of two components. In both, the outcome is linearly dependent

on the covariates. The setting serves as a benchmark to compare the predictive performance of

the proposed methods in a simple linear setting. We have a p-dimensional covariate vector x =

(x1, . . . ,xp)
′ where xi, for i = 1, . . . , p, are sampled from the uniform distribution between 0 and 10

with pairwise expected Pearson correlations set to 0.2. The mixture distribution of the outcome is:

f (y|x) = π1φ(y;β01 +β
′
1x,σ

2)+π2φ(y;β02 +β
′
2x,σ

2)

where π1 = π2 =
1
2 , β01 = 0, β

′
1 = 1/p(2, . . . ,2), β02 = 5, and β

′
2 = 1/p(−1, . . . ,−1).

DGP B

DGP B is made of one component with a quadratic relationship to the outcome and a second

linear component. The settings are the same as DGP A, with one exception. To create a quadratic

relationship in the second component, the following transformation is applied to the covariate

vector to yield xB = (x2
1−10x1, . . . ,x2

p−10xp)
′.

DGP C

The third DGP has three components. The first two are the two components of DGP B, where

we have a linear and a nonlinear component. The third component is created with the transformed

covariate xC = (sin(1/2x1), . . . ,sin(1/2xp))
′. The outcome has a mixture distribution with three

densities:

48

f (y|x) = π1φ(y;β01 +β
′
1x,σ

2)+π2φ(y;β02 +β
′
2x

B,σ2)+π3φ(y;β03 +β
′
3x

C,σ2),

where π1 = π2 = π3 =
1
3 , β03 = 60, and β

′
3 = (−10,0, . . . ,0).

DGP D

In the fourth DGP, we introduce an outcome that is a function of interaction terms in the two

components. These interaction terms are presented as the new covariatexD =(x1x2,x2x3, . . . ,xp−1xp)
′.

The mixture distribution of the outcome is :

f (y|x) = π1φ(y;β03 +β
′
3x

D,σ2)+π2φ(y;β04 +β
′
4x

D,σ2),

where π1 = π2 =
1
2 , β03 =−20, β

′
3 = (1/2, . . . ,1/2), β04 = 0, and β

′
4 = (−1/2, . . . ,−1/2).

Error Variance, Sample Size, and Dimension

For each DGP, we consider three training sample sizes, n = 100, 250, and 1000. We also consider

the two cases p = 2 and p = 5. Finally, we consider the constant variance case and a heteroscedas-

tic pattern. In the basic scenarios with a constant error variance pattern, we set σ2 = 1. In the

heteroscedastic scenarios, we set σ2 = 1 if β′1x ≤ 5 and σ2 = 9 if β′1x > 5. The combination of

all these variations produces 48 scenarios (4 DGPs × 3 sample sizes × 2 values of p × 2 variance

patterns). Note that only scenarios with n = 1000 for DGPs A, B, C, and n = 1500 for DGP D,

along with constant variance patterns were considered in Ahonen et al. [1]. The reason we include

heteroscedastic cases is because four of the five new proposed methods, the ones based on the

BOP, can handle heteroscedasticity. This is because each PI is built separately using a BOP with-

out the need of global estimates of the variability. Investigating the impact of heteroscedasticity on

the performance is thus worthwhile. Moreover, we include smaller sample sizes to investigate the

ability of all methods to maintain the prescribed confidence level under more difficult situations.

The OOB calibration method used by the four BOP methods performed well in Roy and Larocque

[20], even with small sample sizes, but here we want to see if it remains the case with mixture data.

All forests were built with the randomForest package [15]. For each forest, 500 trees were

grown and the minimum number of observations in the terminal nodes was kept to the default

number of 5 observations.

49

In addition to the five proposed methods we include two existing methods in our simulation

study. The first is FMRLASSO, the L1-penalization method for mixture models of Städler et al.

[23], that was also included in the simulation in Ahonen et al. [1]. We use the package fmrlasso

[22]. The second is FMRFLEX proposed in [1]. The same code as in that paper is used here.

Throughout this study, the prescribed coverage for the PIs was set to .95 for all methods and

scenarios. The random forest EM algorithm for a mixture was run for 10 iterations for each data

set, since preliminary simulations showed that it tends to stabilize after 3 to 5 iterations. The

performance was evaluated with independent test data of size 1000, and the results are based on

100 simulation runs.

2.4 Results of the Simulation Study

The detailed results from the simulation study are presented in Table 2.1. The table provides the

mean coverage of the PIs, and the mean length of the PIs on the test set, over the 100 runs, for all 48

scenarios. To be clear, for an individual run, we compute the mean coverage and the mean length

with a test set of size 1000. Then we average these values over the 100 runs. The most important

property of a PI, whether it is in a mixture model context or not, is its ability to attain and maintain

the prescribed coverage. In Table 2.1, whenever the mean coverage value is less than .93, the

values of the coverage, mean length and standard deviation of the length for that method/scenario

are shown in gray. For the following discussion, in such a case, we say that the method was not

able to maintain its prescribed level for that scenario. The first striking finding is that the four BOP

based PI methods are able to provide the right coverage. These four methods were able to maintain

the prescribed coverage in all the 48 scenarios. Since it was also the case in Roy and Larocque

[20], this calibration procedure shows to be very stable and reliable. All other methods, including

the other one proposed in this paper, have encountered problems maintaining their level especially

with small sample sizes. Since HDR1 and FMRFLEX use the same bootstrap adjustment method,

it comes to no surprise that if one of them has difficulty maintaining its level, than the other one will

have problems too. When n = 1000, FMRFLEX is able to maintain its level in all cases but one.

The sample sizes used in the simulation study of Ahonen et al. [1] were equal or greater than 1000,

and the method performed well. This is why the bootstrap adjustment method was not investigated

50

further there. But the new results presented here show that further refinements of this method

seem to be required for smaller samples. The FMRLASSO method is taken “off-the-shelf". These

results show that additional calibration measures are also required for it to achieve more reliability,

especially for smaller samples. If we dig a little further on this aspect, we see that the three methods

that had problems maintaining their level had even more trouble with the heteroscedastic scenarios.

Indeed for FMRLASSO, among the 24 scenarios where it did not maintain the level, 11 of them

were constant variance scenarios and 13 were heteroscedastic scenarios. For HDR1, among the 25

scenarios where it did not maintain the level, 8 of them were constant variance scenarios and 17

were heteroscedastic scenarios. For FMRFLEX, among the 14 scenarios where it did not maintain

the level, 5 of them were constant variance scenarios and 9 were heteroscedastic scenarios. But

without further investigations, we can not conclude whether this is due to the specific fact that we

have heteroscedasticity or simply because there is just more noise in the heteroscedastic scenarios.

Indeed, in the constant variance scenarios, the error variance is always 1, whereas it is sometimes

1 and sometimes 9 in the heteroscedastic scenarios, hence there is more noise. Interestingly, even

though HDR1 and FMRFLEX are using the same bootstrap adjustment method, the latter was

better at maintaining its level.

51

Ta
bl

e
2.

1:
C

om
pl

et
e

re
su

lts
of

th
e

si
m

ul
at

io
n

st
ud

y
ag

gr
eg

at
ed

by
D

G
P,

sa
m

pl
e

si
ze

an
d

er
ro

r
va

ri
an

ce
se

tu
p.

T
he

co
lu

m
n

‘c
ov

’
sh

ow
s

th
e

m
ea

n
co

ve
ra

ge
of

th
e

PI
s,

‘m
l’

th
ei

r

m
ea

n
le

ng
th

an
d

‘s
d’

,t
he

st
an

da
rd

de
vi

at
io

n
of

th
e

PI
le

ng
th

s.
Fo

rt
he

er
ro

rv
ar

ia
nc

e
se

tu
p,

‘v
ar

’=
1

is
th

e
co

ns
ta

nt
va

ri
an

ce
ca

se
an

d
‘v

ar
’=

2,
th

e
he

te
ro

sc
ed

as
tic

pa
tte

rn
.G

ra
ye

d
ou

t

ce
lls

in
di

ca
te

m
ea

n
co

ve
ra

ge
va

lu
e

is
le

ss
th

an
.9

3.

FM
R

-

L
A

SS
O

H
D

R
1

N
P1

N
PK

SP
1

SP
2

FM
R

-

FL
E

X

n
D

G
P

p
va

rc
ov

m
l

sd
co

v
m

l
sd

co
v

m
l

sd
co

v
m

l
sd

co
v

m
l

sd
co

v
m

l
sd

co
v

m
l

sd

n
D

G
P

p
va

rc
ov

m
l

sd
co

v
m

l
sd

co
v

m
l

sd
co

v
m

l
sd

co
v

m
l

sd
co

v
m

l
sd

co
v

m
l

sd

10
0

A
2

1
0.

89
7

6.
81

6
0.

67
9

0.
93

3
7.

67
6

0.
59

3
0.

94
4

12
.3

59
1.

14
0

0.
94

3
12

.0
18

0.
99

6
0.

94
5

10
.8

34
1.

22
1

0.
94

4
10

.8
30

1.
21

9
0.

93
9

7.
57

7
0.

67
9

2
2

0.
89

3
14

.4
19

1.
83

2
0.

92
2

15
.9

58
1.

36
4

0.
94

5
19

.3
82

2.
14

7
0.

94
1

18
.7

44
2.

20
7

0.
93

9
17

.7
60

1.
69

2
0.

93
9

17
.7

65
1.

77
7

0.
90

9
15

.3
63

1.
81

5

5
1

0.
85

2
6.

71
4

0.
90

5
0.

92
5

7.
75

9
0.

65
1

0.
94

5
12

.9
76

0.
92

4
0.

94
8

12
.9

17
0.

84
0

0.
94

8
12

.5
50

0.
94

5
0.

94
8

12
.5

49
0.

94
9

0.
71

8
7.

08
3

2.
27

8

5
2

0.
85

0
14

.3
31

2.
16

3
0.

90
5

15
.4

56
1.

15
0

0.
93

9
19

.5
55

1.
97

9
0.

93
8

19
.2

78
1.

94
6

0.
94

1
18

.7
07

1.
55

7
0.

94
1

18
.7

22
1.

48
4

0.
80

5
14

.1
27

3.
14

3

B
2

1
0.

90
8

19
.2

62
2.

02
8

0.
93

3
12

.9
78

0.
80

7
0.

94
0

18
.3

21
1.

73
6

0.
94

0
17

.9
90

1.
52

8
0.

94
5

15
.8

33
1.

52
3

0.
94

4
15

.8
35

1.
51

9
0.

94
0

16
.6

83
2.

61
9

2
2

0.
89

6
22

.4
92

2.
30

3
0.

90
8

18
.7

85
2.

37
4

0.
93

4
21

.7
63

2.
29

7
0.

93
1

21
.4

67
2.

04
6

0.
93

3
20

.0
59

1.
89

9
0.

93
3

20
.0

78
1.

92
0

0.
91

2
20

.4
18

2.
66

4

5
1

0.
87

7
14

.8
16

2.
20

7
0.

92
6

13
.8

86
1.

81
8

0.
94

4
18

.0
27

1.
17

1
0.

94
7

18
.0

08
1.

14
0

0.
95

0
17

.4
63

1.
27

9
0.

94
9

17
.3

93
1.

31
9

0.
83

4
14

.4
77

3.
30

3

5
2

0.
87

7
19

.1
61

2.
23

9
0.

89
8

18
.8

97
2.

11
4

0.
93

9
20

.8
97

1.
58

9
0.

93
7

20
.8

43
1.

66
7

0.
94

0
20

.4
45

1.
49

3
0.

94
0

20
.4

59
1.

50
3

0.
81

7
16

.8
94

3.
21

1

C
2

1
0.

89
2

55
.5

50
7.

25
3

0.
91

4
50

.2
96

8.
57

2
0.

94
0

46
.4

83
6.

34
1

0.
94

1
46

.2
97

6.
25

0
0.

94
2

49
.5

84
8.

43
7

0.
94

3
49

.8
13

8.
50

6
0.

96
5

53
.3

82
6.

51
3

2
2

0.
89

0
58

.6
55

6.
70

7
0.

91
1

54
.3

17
6.

64
9

0.
93

9
50

.7
27

6.
43

9
0.

93
8

50
.1

36
5.

79
6

0.
94

0
54

.7
98

7.
27

8
0.

94
1

54
.7

86
6.

95
1

0.
95

9
57

.4
65

5.
62

6

5
1

0.
87

5
51

.0
24

8.
03

0
0.

85
6

54
.0

84
6.

32
7

0.
94

0
52

.3
68

5.
95

4
0.

94
0

52
.2

42
6.

28
5

0.
94

2
53

.4
56

5.
32

4
0.

94
2

53
.4

15
5.

32
2

0.
93

4
51

.0
38

6.
84

3

5
2

0.
89

0
54

.2
52

7.
68

1
0.

85
4

55
.7

38
5.

05
0

0.
93

6
54

.6
22

5.
51

8
0.

93
5

54
.3

23
5.

24
7

0.
94

3
56

.4
26

4.
89

7
0.

94
4

56
.5

01
4.

81
3

0.
93

5
53

.5
41

6.
47

1

D
2

1
0.

87
2

23
.0

68
2.

85
6

0.
89

3
20

.4
94

1.
46

9
0.

93
8

29
.7

59
3.

78
8

0.
93

7
28

.8
65

3.
09

7
0.

94
1

25
.7

41
2.

22
1

0.
94

2
25

.7
89

2.
15

6
0.

95
7

26
.9

03
2.

90
8

2
2

0.
88

4
24

.9
48

2.
84

1
0.

90
1

22
.9

20
1.

57
9

0.
93

6
30

.6
87

3.
80

1
0.

93
5

29
.9

51
3.

15
4

0.
94

1
27

.8
01

2.
28

9
0.

94
2

27
.8

17
2.

28
7

0.
95

6
27

.8
51

2.
42

8

5
1

0.
83

8
50

.3
91

5.
35

0
0.

90
5

55
.4

45
4.

60
4

0.
94

8
14

0.
97

6
11

.9
50

0.
95

0
13

7.
91

8
12

.5
46

0.
95

5
12

5.
33

8
10

.8
92

0.
95

5
12

5.
35

6
10

.5
02

0.
81

7
63

.0
81

17
.6

76

5
2

0.
83

3
51

.6
83

6.
47

0
0.

90
5

57
.7

06
5.

72
1

0.
95

1
14

2.
62

3
12

.0
37

0.
95

5
14

0.
25

3
12

.6
33

0.
95

6
12

5.
07

4
11

.3
15

0.
95

6
12

5.
27

3
11

.1
74

0.
80

7
63

.2
33

18
.4

78

52

Ta
bl

e
2.

1
co

nt
in

ue
d

fr
om

pr
ev

io
us

pa
ge

FM
R

-

L
A

SS
O

H
D

R
1

N
P1

N
PK

SP
1

SP
2

FM
R

-

FL
E

X

n
D

G
P

p
va

rc
ov

m
l

sd
co

v
m

l
sd

co
v

m
l

sd
co

v
m

l
sd

co
v

m
l

sd
co

v
m

l
sd

co
v

m
l

sd

25
0

A
2

1
0.

93
6

7.
25

1
0.

46
4

0.
94

3
7.

75
7

0.
38

7
0.

94
5

9.
91

1
0.

51
9

0.
94

4
9.

84
1

0.
55

2
0.

94
6

9.
40

1
0.

55
1

0.
94

6
9.

41
0

0.
55

2
0.

95
3

7.
69

7
0.

35
6

2
2

0.
92

5
15

.1
75

0.
95

6
0.

93
2

16
.0

21
0.

83
9

0.
95

1
18

.2
34

1.
70

0
0.

94
6

17
.6

59
1.

61
6

0.
94

3
16

.9
69

1.
07

4
0.

94
4

17
.0

07
1.

07
7

0.
93

1
15

.4
12

0.
89

5

5
1

0.
91

6
7.

30
0

0.
45

1
0.

94
4

7.
94

8
0.

33
9

0.
94

8
11

.5
17

0.
55

5
0.

95
0

11
.3

80
0.

56
7

0.
94

9
11

.0
45

0.
56

5
0.

94
9

11
.0

34
0.

56
6

0.
86

0
8.

37
9

1.
95

2

5
2

0.
90

9
15

.2
41

1.
18

8
0.

92
0

15
.6

04
0.

65
3

0.
93

9
18

.2
50

1.
06

8
0.

93
9

18
.1

18
1.

00
6

0.
94

1
17

.7
17

0.
94

5
0.

94
0

17
.6

93
0.

95
4

0.
85

1
14

.1
34

2.
47

3

B
2

1
0.

93
7

20
.2

15
1.

30
7

0.
94

1
11

.4
43

2.
41

0
0.

94
5

14
.3

24
1.

03
2

0.
94

5
14

.0
39

1.
10

7
0.

94
4

12
.4

23
1.

60
7

0.
94

4
12

.3
91

1.
57

5
0.

95
5

13
.9

89
1.

77
3

2
2

0.
93

5
23

.5
81

1.
08

7
0.

91
9

18
.3

13
2.

57
7

0.
94

5
19

.4
00

1.
27

7
0.

94
3

19
.3

07
1.

26
2

0.
94

0
18

.1
47

1.
41

4
0.

94
0

18
.1

47
1.

37
1

0.
92

8
18

.7
66

1.
57

8

5
1

0.
93

3
15

.9
63

1.
33

3
0.

94
0

12
.5

72
1.

40
0

0.
94

5
15

.8
76

0.
74

2
0.

94
6

15
.6

86
0.

71
4

0.
94

4
14

.9
46

0.
80

7
0.

94
5

14
.9

68
0.

83
4

0.
84

8
10

.9
42

3.
07

1

5
2

0.
92

4
20

.3
57

1.
34

3
0.

92
3

18
.2

88
1.

35
9

0.
94

3
19

.7
10

1.
02

9
0.

94
3

19
.6

79
1.

03
8

0.
94

2
19

.1
96

1.
00

2
0.

94
2

19
.1

79
1.

01
0

0.
87

4
16

.3
09

2.
41

2

C
2

1
0.

95
1

60
.5

45
5.

80
1

0.
93

2
42

.5
36

10
.5

37
0.

94
3

34
.2

48
4.

00
1

0.
94

4
34

.1
62

4.
43

9
0.

94
5

40
.4

47
8.

91
7

0.
94

5
40

.5
28

8.
86

6
0.

98
2

48
.4

24
7.

98
0

2
2

0.
94

7
63

.6
82

4.
62

8
0.

93
4

46
.5

03
7.

50
9

0.
94

6
41

.1
49

4.
22

0
0.

94
5

40
.9

10
4.

39
3

0.
94

2
45

.1
62

7.
21

4
0.

94
2

45
.0

88
7.

25
4

0.
97

4
50

.9
33

6.
91

4

5
1

0.
94

2
57

.1
98

4.
71

8
0.

94
1

52
.9

51
3.

84
1

0.
94

2
44

.0
19

2.
69

6
0.

94
2

43
.5

05
2.

88
0

0.
93

8
46

.2
94

2.
78

0
0.

94
0

46
.4

21
2.

73
1

0.
96

9
46

.9
82

6.
67

9

5
2

0.
94

0
59

.3
48

4.
47

1
0.

93
7

55
.0

31
3.

86
5

0.
94

5
48

.8
21

3.
27

8
0.

94
6

48
.8

73
3.

15
7

0.
94

3
50

.3
33

3.
12

2
0.

94
3

50
.3

82
2.

94
8

0.
96

3
49

.7
27

6.
31

5

D
2

1
0.

92
3

24
.9

51
1.

52
2

0.
90

9
17

.5
32

0.
88

7
0.

94
9

22
.0

48
1.

45
2

0.
94

7
21

.3
45

1.
50

8
0.

94
6

19
.1

28
0.

92
1

0.
94

5
19

.0
76

0.
90

8
0.

96
4

23
.2

44
2.

50
3

2
2

0.
93

4
26

.9
67

1.
56

9
0.

91
6

21
.1

69
0.

99
1

0.
94

4
23

.8
18

1.
41

3
0.

94
1

23
.6

76
1.

40
1

0.
94

3
22

.1
32

1.
14

7
0.

94
3

22
.1

46
1.

13
3

0.
96

0
25

.9
06

2.
33

2

5
1

0.
90

7
56

.8
69

4.
18

7
0.

92
5

53
.2

34
2.

69
7

0.
95

0
11

2.
55

9
7.

06
8

0.
95

0
10

7.
05

4
6.

47
2

0.
94

9
95

.4
64

4.
88

6
0.

94
9

95
.4

69
5.

09
5

0.
93

5
59

.4
36

11
.3

08

5
2

0.
91

0
59

.2
51

4.
34

2
0.

92
6

55
.2

98
2.

98
9

0.
94

7
11

3.
11

7
7.

26
3

0.
94

8
10

8.
65

8
6.

85
4

0.
94

8
96

.4
58

4.
95

5
0.

94
7

96
.2

91
4.

87
7

0.
93

2
61

.9
05

12
.5

31

53

Ta
bl

e
2.

1
co

nt
in

ue
d

fr
om

pr
ev

io
us

pa
ge

FM
R

-

L
A

SS
O

H
D

R
1

N
P1

N
PK

SP
1

SP
2

FM
R

-

FL
E

X

n
D

G
P

p
va

rc
ov

m
l

sd
co

v
m

l
sd

co
v

m
l

sd
co

v
m

l
sd

co
v

m
l

sd
co

v
m

l
sd

co
v

m
l

sd

10
00

A
2

1
0.

94
8

7.
42

8
0.

24
6

0.
94

7
7.

74
2

0.
19

7
0.

94
8

8.
50

6
0.

27
2

0.
94

8
8.

51
1

0.
29

4
0.

94
6

8.
48

5
0.

22
8

0.
94

6
8.

47
7

0.
23

5
0.

95
7

7.
66

3
0.

16
3

2
2

0.
93

2
15

.4
00

0.
58

3
0.

93
3

15
.9

28
0.

46
9

0.
95

0
16

.9
17

1.
22

6
0.

94
8

16
.7

02
1.

00
4

0.
94

4
16

.2
89

0.
68

2
0.

94
4

16
.3

19
0.

66
3

0.
93

7
15

.6
67

0.
46

4

5
1

0.
94

3
7.

62
9

0.
23

4
0.

94
9

7.
88

8
0.

18
7

0.
95

1
9.

92
1

0.
27

0
0.

95
0

9.
79

0
0.

28
0

0.
95

0
9.

61
5

0.
24

7
0.

95
0

9.
60

6
0.

25
2

0.
95

3
8.

48
9

0.
55

5

5
2

0.
92

8
15

.8
28

0.
56

9
0.

92
6

15
.7

15
0.

38
4

0.
94

5
17

.4
49

0.
62

9
0.

94
5

17
.4

05
0.

60
6

0.
94

7
17

.2
42

0.
53

3
0.

94
6

17
.2

01
0.

54
9

0.
93

0
16

.8
34

0.
69

6

B
2

1
0.

95
1

20
.7

42
0.

58
5

0.
94

1
9.

33
1

1.
43

4
0.

94
5

10
.3

75
0.

41
7

0.
94

6
10

.3
05

0.
40

9
0.

94
8

9.
93

1
0.

98
0

0.
94

8
9.

94
2

0.
99

9
0.

95
0

9.
39

7
1.

25
6

2
2

0.
95

1
24

.2
02

0.
72

9
0.

92
0

16
.8

28
2.

12
5

0.
94

4
16

.3
55

0.
74

1
0.

94
5

16
.4

02
0.

71
2

0.
94

2
15

.9
16

1.
34

9
0.

94
2

15
.9

27
1.

33
9

0.
93

5
17

.4
44

0.
92

4

5
1

0.
95

1
16

.3
47

0.
57

3
0.

94
8

11
.3

52
1.

64
5

0.
95

0
13

.3
00

0.
49

3
0.

94
9

13
.0

15
0.

48
0

0.
94

8
12

.7
02

0.
85

9
0.

94
8

12
.6

95
0.

85
4

0.
94

5
10

.1
23

1.
08

5

5
2

0.
94

3
21

.0
00

0.
56

6
0.

92
8

17
.2

15
0.

61
8

0.
94

7
18

.1
50

0.
55

1
0.

94
7

18
.1

89
0.

55
6

0.
94

5
17

.8
34

0.
59

2
0.

94
6

17
.8

46
0.

58
7

0.
92

9
17

.0
32

0.
81

1

C
2

1
0.

97
1

64
.5

72
3.

86
8

0.
94

4
33

.1
56

12
.7

43
0.

94
6

20
.8

25
2.

87
6

0.
94

7
21

.6
00

3.
76

3
0.

94
6

29
.4

58
9.

68
9

0.
94

6
29

.3
76

9.
64

9
0.

98
9

34
.2

45
5.

61
9

2
2

0.
97

0
67

.3
98

2.
59

2
0.

94
3

39
.3

35
8.

27
1

0.
94

5
31

.4
76

3.
29

6
0.

94
6

31
.9

62
3.

70
9

0.
94

5
38

.5
98

7.
59

1
0.

94
5

38
.6

90
7.

56
0

0.
97

1
37

.4
44

3.
49

1

5
1

0.
97

2
60

.3
22

3.
07

4
0.

96
6

46
.1

22
4.

86
3

0.
94

8
33

.8
85

2.
43

8
0.

94
9

34
.1

11
2.

43
5

0.
94

4
39

.5
06

2.
12

3
0.

94
5

39
.5

62
2.

14
2

0.
99

0
37

.5
92

2.
44

9

5
2

0.
96

9
62

.7
45

2.
71

1
0.

95
9

49
.8

43
4.

31
7

0.
94

5
40

.7
08

3.
00

1
0.

94
6

40
.7

52
3.

07
3

0.
94

5
44

.2
78

2.
38

3
0.

94
5

44
.2

70
2.

35
3

0.
97

8
40

.6
77

2.
64

9

D
2

1
0.

94
8

25
.7

87
0.

80
7

0.
94

1
12

.4
07

0.
45

9
0.

94
7

13
.6

66
0.

71
6

0.
94

7
13

.5
70

0.
74

6
0.

94
9

13
.1

11
0.

44
1

0.
94

9
13

.1
18

0.
44

9
0.

97
4

16
.1

89
2.

87
5

2
2

0.
95

5
27

.8
38

0.
83

5
0.

92
4

18
.0

62
0.

51
5

0.
94

5
18

.1
83

0.
79

1
0.

94
5

18
.4

09
0.

86
9

0.
94

8
17

.9
45

0.
65

8
0.

94
8

17
.9

73
0.

69
9

0.
95

2
20

.4
98

2.
02

5

5
1

0.
93

9
61

.4
13

2.
51

7
0.

93
5

45
.2

29
1.

19
4

0.
95

1
78

.9
02

3.
17

0
0.

95
0

75
.0

48
2.

41
8

0.
95

0
69

.3
29

2.
18

4
0.

95
0

69
.3

31
1.

89
9

0.
95

1
25

.6
42

3.
61

5

5
2

0.
94

0
62

.8
35

2.
33

9
0.

93
7

47
.4

89
1.

23
4

0.
95

1
79

.8
55

3.
25

2
0.

95
0

76
.3

18
2.

51
1

0.
95

0
70

.3
22

1.
75

8
0.

95
0

70
.2

80
1.

69
4

0.
94

9
32

.8
79

3.
74

9

54

Once we have ensured that the methods produce PIs that attain the desired coverage, the best

way to compare their performance is to look at the lengths of the intervals, the shorter the better.

Table 2.1 includes the mean lengths. But to visually compare results of how the methods measure

to one another and also make the results more comparable across scenarios, we present Figures 2.1

to 2.12. The measure used is the percentage increase in PI length of a method with respect to the

best performer for a given run. This measure provides an easy and straightforward way to compare

as well as aggregate results across all scenarios. For a given run, we have the mean length (on the

test set) of the PIs for each method. Let MLm be the mean length of method m, m = 1,2, . . . ,7, for

this run. Let minm{MLm} be the smallest mean length for this run. The percentage increase in PI

length of method m with respect to best performer for this run is defined to be

100
(MLm−minm{MLm})

minm{MLm}
.

Hence, for a given run, one method will be a percent increase of 0 (the best performer for

this run), and all other methods will have a positive percent increase. Hence, the smaller it is,

the better is the method. Figures 2.1 to 2.12 present the distribution, across the 100 runs, of this

measure for all 48 scenarios. The box-plots show, in order, the distribution of this measure for

FMRLASSO, HDR1, NP1, NPK, SP1, SP2, and FMRFLEX. However, to make the comparisons

fair and meaningful, in these figures, whenever the mean coverage of the method did not reach

.93 for a given scenario, the box-plot representing it was removed. In fact, the methods that did

not maintain their level in a given scenario were removed right from the start and were not used

to compute the percent increase measure. Hence, the best performer is always a method that

maintained its level for the specific scenario.

Looking at the figures, we can see that there is no one clear winner. Each method performs

well in some scenarios, and not as well in others. As expected, when it is able to maintain its

level, FMRLASSO is the best method for DGP A, where we have a mixture of linear models.

The other DGPs either involve non-linear components or components with interactions. Either

way, FMRLASSO, that uses only the main effects, can not be well specified, and this hurts its

performance with longer PIs in most cases, even though it can be close to some of the RF based

methods in some scenarios. The four BOP methods offer as good or better performances than the

others in a vast majority of scenarios. They are not performing as well as the FMRLASSO, HDR1

55

●

●

●
●

●

●

1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

A 100 − p2 sd1

●●

●
●●

●

1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

 p2 sd2

●
●

●
● ●

●
●

●
●

1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

 p5 sd1

●

●

●
●
● ●

●●

●●
● ●

●

●

●
●

●
●

●

●

●

1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

 p5 sd2

1−FMRLASSO
2−HDR1

3−NP1
4−NPK

5−SP1
6−SP2

7−FMRFLEX

Figure 2.1: Distributions of the percentage increase in PI length with respect to best performer for each run for DGP
A, training sample size n = 100.

56

●

●
●
●●

●

●●●●

●

●

●

●

●

●

●

●

●

1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

B 100 − p2 sd1

●

●

●

● ●

1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

 p2 sd2

●
●

●

●

●●●

●

●●

●

●
●

●

●

1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

 p5 sd1

●

●

●

●

●

●

●

●
● ●

●

●●

●

●

●

● ●

●
●

●

●

● ●

●

●

●

●

●

1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

 p5 sd2

1−FMRLASSO
2−HDR1

3−NP1
4−NPK

5−SP1
6−SP2

7−FMRFLEX

Figure 2.2: Distributions of the percentage increase in PI length with respect to best performer for each run for DGP
B, training sample size n = 100.

57

●

●

●●

●

●

●

● ●
●

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

C 100 − p2 sd1

●

●●●

●

●

●

●

●

●●●

●

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

 p2 sd2

●

●
●●

●

● ●

●

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

 p5 sd1

●

●

●
●
●

●

●

●

●

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

 p5 sd2

1−FMRLASSO
2−HDR1

3−NP1
4−NPK

5−SP1
6−SP2

7−FMRFLEX

Figure 2.3: Distributions of the percentage increase in PI length with respect to best performer for each run for DGP
C, training sample size n = 100.

58

●
●
●

●
●

1 2 3 4 5 6 7

0.
0

1.
0

2.
0

3.
0

D 100 − p2 sd1

●
●● ●●●●

●

1 2 3 4 5 6 7

0.
0

1.
0

2.
0

3.
0

 p2 sd2

●

●

●

●

●
●

●●

●

●

●

●

●
●
●

●

●

●

●

●●
●

1 2 3 4 5 6 7

0.
0

1.
0

2.
0

3.
0

 p5 sd1

●●
●

●

●

●

●●

●
●

●

●

●

●

1 2 3 4 5 6 7

0.
0

1.
0

2.
0

3.
0

 p5 sd2

1−FMRLASSO
2−HDR1

3−NP1
4−NPK

5−SP1
6−SP2

7−FMRFLEX

Figure 2.4: Distributions of the percentage increase in PI length with respect to best performer for each run for DGP
D, training sample size n = 100.

59

●●
●
●●●●●●●●●●●●●
●

●

●●
●

●●
●

●

1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

2.
0

A 250 − p2 sd1

●
●

●●●

● ●●●

1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

2.
0

 p2 sd2

●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●●

●
●
●
●

●

●
●

●
●
●

●

●
●

●●

●●
●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●

1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

2.
0

 p5 sd1

●

●● ●●

1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

2.
0

 p5 sd2

1−FMRLASSO
2−HDR1

3−NP1
4−NPK

5−SP1
6−SP2

7−FMRFLEX

Figure 2.5: Distributions of the percentage increase in PI length with respect to best performer for each run for DGP
A, training sample size n = 250.

60

●
●●

●

●

●
●
●●

●

●●●
●
●
●●
●

●

●

●●●

●

●

●
●

●

●

●

●

1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

B 250 − p2 sd1

●

●

1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

 p2 sd2

●

1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

 p5 sd1

●

●

● ●

●

●

●

●

●

●●
●

●

●

●●

1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

 p5 sd2

1−FMRLASSO
2−HDR1

3−NP1
4−NPK

5−SP1
6−SP2

7−FMRFLEX

Figure 2.6: Distributions of the percentage increase in PI length with respect to best performer for each run for DGP
B, training sample size n = 250.

61

●

●●

●
●
●

●●●●●
●

●

●●

●
●

●

●

●

●
●●

●

●

1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

C 250 − p2 sd1

●

●

●

●●●
●
●●

●

●
●●●
●
●
●
●
●●●

●

●

●

●
● ●

●
●

1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

 p2 sd2

●●●

●

●

●
●

●
●●

●

●●
●

●

●
●

●

●●
●●●

●

●●●
●●
●
●

1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

 p5 sd1

●●

●

●

●

●

●

●●

●

●
●
●
●

●

●●●
●

●

●
●
●
●

●

●●

●

●

●●
●
●

●

●
●

●
●
●●

●
●

●

●
●

1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

 p5 sd2

1−FMRLASSO
2−HDR1

3−NP1
4−NPK

5−SP1
6−SP2

7−FMRFLEX

Figure 2.7: Distributions of the percentage increase in PI length with respect to best performer for each run for DGP
C, training sample size n = 250.

62

●●

●

●
●●●

●

●
●

●● ●●

1 2 3 4 5 6 7

0.
0

1.
0

2.
0

3.
0

D 250 − p2 sd1

●●●

●●●

● ●●

1 2 3 4 5 6 7

0.
0

1.
0

2.
0

3.
0

 p2 sd2

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

1 2 3 4 5 6 7

0.
0

1.
0

2.
0

3.
0

 p5 sd1

●
●

●

●●

●●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5 6 7

0.
0

1.
0

2.
0

3.
0

 p5 sd2

1−FMRLASSO
2−HDR1

3−NP1
4−NPK

5−SP1
6−SP2

7−FMRFLEX

Figure 2.8: Distributions of the percentage increase in PI length with respect to best performer for each run for DGP
D, training sample size n = 250.

63

●

●

●

●●
●
●●●●
●

●

●
●●●●

●

●

1 2 3 4 5 6 7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

A 1000 − p2 sd1

●
●

●●
●●●
●●●●
●●
●●●●
●

●●

●
●
●

●

●
●

●

●

●

●
●

1 2 3 4 5 6 7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

 p2 sd2

●
●●●
●

●

●

●

●
●

●●

●

● ●

1 2 3 4 5 6 7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

 p5 sd1

●●● ●●

●

●

1 2 3 4 5 6 7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

 p5 sd2

1−FMRLASSO
2−HDR1

3−NP1
4−NPK

5−SP1
6−SP2

7−FMRFLEX

Figure 2.9: Distributions of the percentage increase in PI length with respect to best performer for each run for DGP
A, training sample size n = 1000.

64

●

●

●
●

●
●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

B 1000 − p2 sd1

●

●
●

● ●
●●
●●

●

●

●
●●

1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

 p2 sd2

●

●
●

●

●

●

●
●

●
● ●

●●

●

1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

 p5 sd1

●
●
●●
●●

●● ●●
● ●●●

1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

 p5 sd2

1−FMRLASSO
2−HDR1

3−NP1
4−NPK

5−SP1
6−SP2

7−FMRFLEX

Figure 2.10: Distributions of the percentage increase in PI length with respect to best performer for each run for
DGP B, training sample size n = 1000.

65

●●●●●●●●

●

1 2 3 4 5 6 7

0.
0

1.
0

2.
0

3.
0

C 1000 − p2 sd1

●

●

●●●●●
●●●●●●●●●●

●●●●

●●

1 2 3 4 5 6 7

0.
0

1.
0

2.
0

3.
0

 p2 sd2

●●
●●

●

●●●●

●

● ●
●
●●●●
●
●● ●

●
●●●
●

●● ●

1 2 3 4 5 6 7

0.
0

1.
0

2.
0

3.
0

 p5 sd1

●

●●●

●●

●

●

●●●●●●
●
● ●●●●●●●●

●

●

●●●● ●●●
●●●

1 2 3 4 5 6 7

0.
0

1.
0

2.
0

3.
0

 p5 sd2

1−FMRLASSO
2−HDR1

3−NP1
4−NPK

5−SP1
6−SP2

7−FMRFLEX

Figure 2.11: Distributions of the percentage increase in PI length with respect to best performer for each run for
DGP C, training sample size n = 1000.

66

●

●
●
●●●●●●●●
●
●●●●●●●●●●●●
●

● ●●● ●
●●●●●

●
●●●

1 2 3 4 5 6 7

0.
0

1.
0

2.
0

3.
0

D 1000 − p2 sd1

●●

● ●●●●●● ●●●

1 2 3 4 5 6 7

0.
0

1.
0

2.
0

3.
0

 p2 sd2

●

1 2 3 4 5 6 7

0.
0

1.
0

2.
0

3.
0

 p5 sd1

●

●

●

●
●

●

●
●

● ●

1 2 3 4 5 6 7

0.
0

1.
0

2.
0

3.
0

 p5 sd2

1−FMRLASSO
2−HDR1

3−NP1
4−NPK

5−SP1
6−SP2

7−FMRFLEX

Figure 2.12: Distributions of the percentage increase in PI length with respect to best performer for each run for
DGP D, training sample size n = 1000.

67

or FMRFLEX, in the two larger sample sizes with DGPs A, p = 2, and p = 5 and in the same

sample sizes with DGP D and p = 5. HDR1 and FMRFLEX show very good performances in

most of the scenarios where they reach the desired coverage.

If we look more closely at the four BOP methods, we see that SP1 and SP2 offer a very similar

performance for all scenarios. These two methods build PI with a parametric HDR. SP1 estimates

the parameters of the mixture from the individual class BOPs, while SP2 re-estimates the mixture

distribution altogether from the adjusted (combined) BOP. Consequently, SP1 uses always the same

estimated mixing proportions (the global ones), while SP2 re-estimates the mixing proportions for

each adjusted BOP. In this simulation study, both approaches provided similar results. In a case

where the mixing proportions are also a function of the covariates, we may expect SP2 to pick it

up and use this information to provide better PIs. However, such settings were not considered in

this study. The other two BOP methods, NP1 and NPK, performed similarly to each other. Both

are based on a nonparametric HDR and the only difference is that NPK is limited to K intervals,

whereas the number of intervals is not bounded with SP1. At first glance, one might have thought

that SPK would produce longer PIs because it simply fills the gaps in the SP1 intervals to reach the

maximum allowed number of intervals. But the OOB calibration procedure provides the necessary

adjustment and both methods perform similarly. A similar conclusion was reached in Roy and

Larocque [20]. In fact, SPK even performs slightly better than SP1 in some scenarios (e.g the two

lower plots in Figure 2.12). We might conjecture that bounding the number of intervals performs

some sort of regularization that improves the performance. If we compare the two nonparametric-

HDR BOP methods (NP1, NPK) with the two parametric-HDR ones (SP1, SP2), then we see a bit

more differences, with no winner. In most scenarios, they are close, and in a few ones NP1/NPK

is better than SP1/SP2 and in some it is the other way around.

2.4.1 Computational Efficiency

Another important aspect of performance to investigate is computational speed. To measure this,

we used the computational time of the FMRLASSO as the benchmark. Figure 2.13 shows how

many times more, on average, a method takes to compute compared to the FMRLASSO. We

computed this for the five proposed methods and for the FMRFLEX by averaging computational

time for the methods for all scenarios of each sample size belonging to a DGP.

68

From this figure we can clearly see that the FMRFLEX and SP2 require more computational

time than the other methods even with small sample sizes and they both become quite computation-

ally intensive as the sample size grows. For FMRFLEX, the reason is that the fmrlasso becomes

computationally demanding when the number of covariates is large, which is the case with FMR-

FLEX because a large number of dummy covariates are added. For SP2, the reason is that we have

to fit a mixture model separately for each observation. On the other hand, the four other methods

we propose maintain reasonable computational requirements for all sample sizes. In fact, they are

only slightly more demanding than the FMRLASSO.

2.5 Conclusion

Finite mixture models are a useful and flexible tool for statistical modeling when there is hetero-

geneity in the data. In a general predictive context, a predictive interval is often more informative

about the possible location of the response for a new subject, compared to a single point prediction.

For FMR, this is even more the case because it is not clear that a single point is a meaningful pre-

diction, especially for a well separated multi-modal distribution. A classical FMR based on linear

models can be used to build PIs, but the a priori assumed parametric link between the covariates

and the response needs to be well specified for the method to reach its full potential. A very flexible

PI building method, called FMRFLEX, based on random forests was proposed in Ahonen et al. [1].

FMRFLEX worked very well in the settings studied in the original paper. In the basic non-mixture

case, other promising PI building methods based on RF were proposed in Roy and Larocque [20].

The goal of this paper was thus to pursue the investigation of the use of RF to build PIs with FMR

by 1) proposing a general way to build a mixture of RFs, 2) extending the Roy and Larocque [20]

methods to mixture data, 3) studying the behavior of FMRFLEX and the new methods in more

challenging settings, including smaller sample sizes and heteroscedastic data. A special attention

was devoted to the computational time since it can become an issue with mixture data.

Here are some of the general findings. The four new methods based on the BOPs, used in

conjunction with the OOB calibration method, are very reliable at maintaining the prescribed level.

In fact, they were able to do it in all the 48 simulation scenarios considered, including sample sizes

as low as 100 and with heteroscedastic data. The fmrlasso method, used without any adjustment,

69

and the FMRFLEX and the new HDR1 methods, with the bootstrap adjustment of Ahonen et al.

[1], all had more difficulties maintaining the prescribed level, especially with the smaller sample

sizes and with heteroscedastic data. With respect to the lengths of the PIs, no method dominated

the others. Each individual methods achieved a very good performance in many or a few scenarios.

As expected, fmrlasso was especially good in the scenarios involving linear mixtures, but the RF

based alternatives were very close to it. The FMRFLEX and the new HDR1 methods are generally

good when they are able to maintain the prescribed confidence level. The four methods based on

the BOPs, in addition to reliably maintaining the level, were also generally good. Moreover, four

out of the five proposed methods (all but SP2), showed to have great computational efficiency, and

were only slightly more time consuming than FMRLASSO and many times faster than FMRFLEX

in many scenarios.

At the moment, all RF based methods can be recommend with large sample sizes. For smaller

sample sizes, the four BOP methods should be used because they are able to reliably calibrate the

PIs. However, among these four methods, we would recommend NPK and SP1. The reason is

that NP1 and NPK are closely related and achieved a similar performance in the simulation, with

perhaps a slight edge for NPK. Moreover, NPK controls the number of intervals in the PI, while

NP1 does not. SP1 and SP2 are also closely related methods that achieved a similar performance,

but SP2 is a lot more computationally demanding.

There are several interesting avenues for future research. First, the number of components in

the mixture was assumed known in this work. It would be interesting to let the data select this

number automatically. One obvious way to do it would be to build PIs for many different values

of K and select one according to a criterion, for example, the value that produces the shorter PIs.

Obviously this would need to be done carefully in order to avoid overfitting and to still maintain

the prescribed level. A calibration method based on the OOB information similar to the one used

in this paper could be designed for this problem. Second, since the FMRFLEX and HDR1 methods

can be very good when they maintain the level, it would be interesting to investigate a better way

to calibrate them. The current bootstrap adjustment used by them works well for large sample

sizes but had problems with smaller ones. Since these two methods are not based on the BOPs,

it is not obvious if it is possible to use the same calibration method based on the OOB BOP

information, that works so well for the BOP methods. Third, it could be interesting to investigate

70

even more challenging settings. In this paper we studied the performance for small samples and

heteroscedastic data. But in addition to the error variances, the mixing proportions could also be a

function of the covariates. In this case, the NP2 method, which re-estimates the mixing proportions

for each new observation could provide an improvement that would justify its higher computational

cost.

References

[1] Ahonen, I., Nevalainen, J., and Larocque, D. (2018). Prediction with a flexible finite mixture-

of-regressions. Computational Statistics & Data Analysis.

[2] Benaglia, T., Chauveau, D., Hunter, D. R., and Young, D. (2009). mixtools: An R package for

analyzing finite mixture models. Journal of Statistical Software, 32(6):1–29.

[3] Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

[4] Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete

data via the em algorithm. Journal of the royal statistical society. Series B (methodological),

pages 1–38.

[5] Galimberti, G., Montanari, A., and Viroli, C. (2009). Penalized factor mixture analysis for

variable selection in clustered data. Computational Statistics & Data Analysis, 53(12):4301–

4310.

[6] Hastie, T., Tibshirani, R., and Friedman, J. (2009). Unsupervised learning. In The elements of

statistical learning, pages 485–585. Springer.

[7] Hothorn, T., Lausen, B., Benner, A., and Radespiel-Tröger, M. (2004). Bagging survival trees.

Statistics in medicine, 23(1):77–91.

[8] Huang, M., Li, R., Wang, H., and Yao, W. (2014). Estimating mixture of gaussian processes

by kernel smoothing. Journal of Business & Economic Statistics, 32(2):259–270.

[9] Huang, M., Li, R., and Wang, S. (2013). Nonparametric mixture of regression models. Journal

of the American Statistical Association, 108(503):929–941.

71

[10] Huang, M. and Yao, W. (2012). Mixture of regression models with varying mixing

proportions: a semiparametric approach. Journal of the American Statistical Association,

107(498):711–724.

[11] Hyndman, R. J. (1996). Computing and graphing highest density regions. The American

Statistician, 50(2):120–126.

[12] Khalili, A. and Chen, J. (2007). Variable selection in finite mixture of regression models.

Journal of the american Statistical association, 102(479):1025–1038.

[13] Khalili, A., Chen, J., and Lin, S. (2010). Feature selection in finite mixture of sparse normal

linear models in high-dimensional feature space. Biostatistics, 12(1):156–172.

[14] Leisch, F. (2004). FlexMix: A general framework for finite mixture models and latent class

regression in R. Journal of Statistical Software, 11(8):1–18.

[15] Liaw, A. and Wiener, M. (2002). Classification and regression by randomforest. R News,

2(3):18–22.

[16] Lin, Y. and Jeon, Y. (2006). Random forests and adaptive nearest neighbors. Journal of the

American Statistical Association, 101(474):578–590.

[17] McLachlan, G. and Peel, D. (2004). Finite mixture models. John Wiley & Sons.

[18] Moradian, H., Larocque, D., and Bellavance, F. (2017a). L_1 splitting rules in survival

forests. Lifetime data analysis, 23(4):671–691.

[19] Moradian, H., Larocque, D., and Bellavance, F. (2017b). Survival forests for data with de-

pendent censoring. Statistical Methods in Medical Research, page 0962280217727314.

[20] Roy, M.-H. and Larocque, D. (2018). Prediction intervals with random forests.

[21] Samworth, R. J. and Wand, M. P. (2010). Asymptotics and optimal bandwidth selection for

highest density region estimation. The Annals of Statistics, 38(3):1767–1792.

[22] Städler, N. (2010). fmrlasso: Lasso for finite mixture of regressions. R package version 1.0.

72

[23] Städler, N., Bühlmann, P., and Van De Geer, S. (2010). l−1 penalization for mixture regres-

sion models. Test, 19(2):209–256.

[24] Xiang, S. (2014). Semiparametric mixture models. Kansas State University.

73

6
8

10
12

14

DGP A

sample size

tim
es

100 250 1000

2−HDR1
3−NP1
4−NPK
5−SP1
6−SP2
7−FMRFLEX

10
15

20

DGP B

sample size

tim
es

100 250 1000

5
10

15
20

DGP C

sample size

tim
es

100 250 1000

20
40

60
80

DGP D

sample size

tim
es

100 250 1000

Figure 2.13: Number of times, on average, a method takes to compute compared to the FMRLASSO.

74

Chapter 3

High-Dimensional Variable Screening using

a Robust Ensemble Method

Marie-Hélène Roy, Denis Larocque & Debbie Dupuis

Abstract

We propose a robust variable screening method for large high-dimensional data. The method

is based on the very fast and robust variable selection technique by Dupuis and Victoria-Feser

(2013). To produce a variable screening method, we combine this technique in an iterative ensem-

ble scheme where we proceed to a safe and gradual elimination of covariates. This strategy insures

the survival of the true model covariates through the procedure and into the final subset. The per-

formance of the method is assessed in a simulation study on both clean and contaminated data and

includes scenarios with a number of covariates up to 100,000. It is also applied to a real data set.

The results show very good and consistent performance on both clean and contaminated data even

with a very large number of covariates. Furthermore, the method offers built-in automatic final

subset size determination. This constitutes an innovative feature for a variable screening method.

3.1 Introduction

Great advances in computing and technology in the last decade have facilitated the collection of

data sets of ever growing size. Research in various fields such as health sciences, engineering,

computer sciences as well as business and finance can benefit from these newly available data.

The analysis of these large data sets also comes with statistical challenges. They are often high-

dimensional and sparse, where the number of covariates p greatly exceeds the number of observa-

tions n and only very few of these covariates are considered to be truly relevant [5, 2]. In such cases,

performing effective dimension reduction before pursuing further analysis is of foremost impor-

tance. Large data sets are also more susceptible to data contamination. The use of robust methods

helps insure a better reliability of results. However, these methods often come at a computation-

ally high cost [14], which makes it extra challenging to apply them to very large data sets. In this

context, the need for dimension reduction methods that can be applied to large high-dimensional

data sets and that are robust to data contamination is becoming increasingly important.

To facilitate variable selection when the number of covariates is very large, especially when

p >> n, a preliminary major dimensionality reduction should be performed. This step is called

variable screening. The main purpose of variable screening is to reduce the number of variables at

least below sample size without discarding any true covariates. Thereafter, if needed, traditional

model selection techniques can be readily applied.

In recent years, several variable screening methods for high-dimensional data have been pro-

posed. Fan and Lv [6] initiate the screening approach with a novel proposal called Sure Indepen-

dence Screening (SIS). SIS focuses on a quick dimensionality reduction with the use of “correlation

learning". The marginal correlation between each covariate and the response, computed using the

Pearson coefficient, is employed to rank the covariates. Subsequently the dimensionality is reduced

to a prespecified size d. The authors suggest using a subset size d = n− 1 or d = n/log(n). The

procedure is shown to achieve the sure screening property under certain conditions. This property

implies that all the important variables survive after the screening step with a probability tending

to 1. That is, the probability of including the true model in the final subset tends to 1 as n→ ∞ .

76

Various SIS extensions have been proposed, for example, for the generalized linear and additive

models [7, 8, 15]. Other extensions are screening via distance correlation learning [17], using the

ranks of the generalized empirical correlations [13], model-free screening [28] and pairwise sure

independence screening for linear discriminant analysis [23].

Among other popular approaches, Wang [27] shows that forward regression, when combined

with the Extended BIC of Chen and Chen [1], can also be an interesting alternative for ultra-high

dimensional screening. Mai and Zou [21] propose an innovative nonparametric method using the

fused Kolmogorov filter to screen variables.

Although a number of methods can be used to perform high dimensional variable screening,

the number of robust alternatives remains limited.

Gather and Guddat [10] suggest a simple robustification of SIS by replacing non robust esti-

mators by their robust counterparts. That is, replacing the sample mean by the sample median,

the standard deviation by the median absolute deviation and the correlation estimator with the

Gnanadesikan-Kettenring (GK) robust correlation estimator [11]. They show that this simple ro-

bustified version of SIS improves performance in the presence of outliers in the response. The

computational load of the GK estimator is however considerably higher than its non robust coun-

terpart [22].

A second robust SIS variation, MCD-RoSIS, was proposed by Guddat et al. [12]. The method

uses the Minimum Covariance Determinant (MCD) estimator by Rousseeuw [24] to provide a

robust estimation of the correlation. In their simulation study, where both contamination in the

response and in the covariates are introduced, the MCD is shown to be more robust than the corre-

lation estimated with the GK.

Li et al. [17] introduce the Robust Rank Correlation Screening (RRCS). To provide robustness,

their procedure uses the Kendall τ correlation coefficient. They show that their method possesses

the sure screening property for linear regression models under the assumptions of Fan and Lv

[6]. They also show through a simulation study that their method provides robustness against

contamination in the response.

77

Mu and Xiong [22] propose two new robust screening methods based on SIS. The first replaces

the sample correlation in SIS by the bivariate winsorized correlation estimator (BW). The second

introduces a new measure called median of component-wise products (MCP). Like the original

SIS, both methods rank variables and establish final selection according to a pre-specified thresh-

old. BW and MCP show a better overall performance when compared to the GK estimator and the

original non-robust SIS. Mu and Xiong [22] also compare computational times. The comparison

includes the original sample correlation used by SIS, the GK correlation estimator, the BW cor-

relation estimator and the MCP. Their two proposed methods, the BW and MCP, are shown to be

faster than the GK correlation estimator used in Gather and Guddat [10] but, as expected, not as

efficient in computation as the (non robust) original sample correlation in SIS.

Ma and Zhang [20] also propose a robust SIS variable screening procedure (QCS). The method

is based on quantile correlation. Sun [26] introduces the Spearman correlation screening procedure

and presents a simulation study that compares this method with the SIS, the RRCS and QCS in

normally distributed scenarios as well as contaminated scenarios. He shows that the SIS and the

QCS have the best performances in terms of variable screening in the non-contaminated scenarios

and that his proposed method, the RRCS and the QCS had the best performances in contaminated

scenarios.

All of these methods are based on ranking the variables and selecting the final subset according

to a prespecified threshold. None offer a data-driven or automatic way to establish the size of the

final subset. The choice of d = n−1 or d = n/log(n) suggested by Fan and Lv [6] and used and

recommended by other authors can be problematic. Because it is a function of the sample size,

it can lead to an excessively small or large final subset size regardless of the initial number of

covariates or their relative importance. Our method presents itself as an innovative robust variable

screening alternative that does not require the choice of a prespecified final subset size.

We propose major dimensionality reduction by using the very fast and robust variable selection

method of Dupuis and Victoria-Feser [4] in an ensemble scheme. This method, the robust vari-

ance inflation factor regression (robVIF), is a robust version of the variance inflation factor (VIF)

regression of Lin et al. [19]. The VIF regression uses a streamwise regression approach. It sweeps

78

through all covariates, testing each potential true covariate for inclusion in the model according to

a test statistic based on the VIF. This one-pass search allows one to quickly identify and select the

covariates that reduce a statistically sufficient part of the variance in the predictive model. One of

the drawbacks of streamwise approaches is the impact of the covariate order of entry. To address

this issue we combine the robVIF with an ensemble approach.

Our method, named Screening Ensemble Robust VIF (SERVIF), performs a gradual but mas-

sive elimination of spurious variables. To do that, we use what we call the Two-step Elimination

procedure in an iterative fashion. For each iteration, the first step is to use the robVIF in an en-

semble scheme. A robVIF is performed B times on the data thus allowing the procedure to be

parallelized. Each time, the order of entry of the covariates in the streamwise procedure is per-

muted. This permutation has the advantage of offsetting robVIF’s sensitivity to the covariates’

order of entry. The results of the B robVIF trials are aggregated. These results provide valuable

information on the relative importance of each covariate. We use this information to perform a

first (for this iteration) conservative elimination of covariates as well as for ranking purposes. The

second step of each iteration consists of a one-pass robVIF where a more stringent elimination of

covariates is done.

Another important feature of the SERVIF is that each iteration is performed independently on

subsets of covariates. At the beginning of each iteration, the active set of covariates (comprised of

the initial or surviving covariates) is partitioned in R sets and the two-step elimination procedure is

performed separately on every set. At the end of an iteration the surviving covariates are regrouped.

At the last iteration, this subset of covariates represents the final selection. Thus, by selecting the

final number of covariates according to their survival through the iterative process we remove the

need for the delicate prior choice of d.

With this iterative framework, we obtain a robust variable screening method for sparse large

high-dimensional datasets. By using a partitioning scheme, our method has the ability to work with

a ultra-high number of covariates, reaching 100,000 or more, while maintaining good performance

even in the presence of data contamination.

79

The remainder of the paper is organized as follows. Section 2 contains the methodology. The

method’s good performance is then showed in a simulation study in Section 3. Section 4 provides

results for real data. Discussion and closing remarks are presented in Section 5.

3.2 Methodology

Let us consider a classical linear model,

y= β0 +Xβ+ε, (3.1)

with n observations y = (y1, ...,yn)
′. For each observation there are p potential true covariates

(x1, ...,xp)
′ = x and X = [x1, ...,xp] is the np design matrix. The vector of coefficients is β =

(β1, ...,βp)
′ and the error ε∼ N(0,σ2In).

The method is based on the robVIF. Accordingly, an overview of the key elements of the

robVIF are presented.

3.2.1 Robust VIF Regression

The robust VIF is a forward streamwise regression method. It evaluates one covariate xk, k =

1, ..., p, at a time for addition to the model, and then moves on to the next covariate. The decision

to add xk to the model or not is based on a rejection quantile that follows an α-investing rule.

An α-investing rule is an adaptive sequential procedure for multiple hypotheses testing [9].

For robVIF, the α-investing procedure starts with an initial wealth a0 and test level αk is set at

αk = ak(1+ k− f) where f has an initial value of 0 and represents the last step k at which a

covariate was included. When a covariate is added to the model, a pay-out ∆a is given and added

to the current wealth ak. When a covariate is not added to the model, the current wealth ak is

reduced by αk/(1−αk). The procedure continues until ak ≤ 0.

80

To limit the influence of outliers, robVIF uses a weighted LS estimator of the form

β̂= (XwTXw)−1XwTyw (3.2)

where Xw and yw represent respectively a weighted design matrix and a weighted response

vector. These weights are computed using Tukey’s redescending biweight weights. Marginal

weights, obtained by fitting p marginal models y = β01 + x1β1 + ε1, ...,y = β0p + xpβp + εp, are

also computed. For these, for better computational efficiency, Dupuis and Victoria-Feser [4] have

chosen to use Huber’s weights. The purpose of the two types of weights is to limit the influence of

extreme observations in the response and/or in the covariates on the value of the coefficients β̂.

For clarity purposes, we will divide the robVIF procedure into two main parts. The first part

begins by computing the marginal weights necessary for the evaluation procedure of each covariate.

The second part begins by testing all covariates one at a time through a robust evaluation procedure.

If xk is not added to the model, the method moves on to the next covariate. When a covariate is

added to the model, the method performs additional computation to find the new coefficients of

the revised model as well as update the value of the current wealth ak before moving on to the next

covariate. The procedure ends when all covariates have been tested or if ak ≤ 0.

81

Part 1 Initialize and Weight

Input data y,x1,x2, ... (standardized)

Set f=0, initial wealth a0 and pay-out ∆a

Get All marginal weights using Huber’s weights by fitting p marginal models y = β01 + x1β1 +

ε1, ...,y = β0p + xpβp + εp with the weighted LS estimator in (2).

Part 2 Testing and Computation Loop

repeat for k = 1, ..., p

set αk = ak/(1+ k− f)

obtain p-value for xk from marginal model.

test xk for inclusion

if xk is entered

then

Compute new β̂0 and β̂ for the updated model with the weighted LS estimator in (3.2)

using Tukey’s biweights.

update ak+1 = ak +∆a

update f = k

else ak+1 = ak−αk(1−αk)

end if ak ≤ 0

k = k+1

3.2.2 The SERVIF Algorithm

We can now describe the proposed method. The algorithm is described first, then detailed expla-

nations of the major steps are given.

The Algorithm

1. Input data y,x1,x2, ... (standardized), set iteration i = 1 and qi = p the number of active

covariates (the initial or surviving covariates). Let Ii be the index set of active covariates at

iteration i. Set value of the partition size c. If qi < c then c = qi.

82

2. Carry out Part 1: Initialize and Weight of the robVIF on all covariates to obtain marginal

weights.

While qi > c and qi < qi−1

{

3. Randomly partition the qi covariates in Ri near-equal sets of size c or less, where Ri = dqi/ce.

Let Ii, j be the index set of the qi, j covariates contained in the jth set, j = 1, ...,Ri.

4. Perform the following Two-step Elimination procedure independently on each set of covari-

ates.

I - Ensemble step

a) Generate B classic bootstrap samples (n-out-of-n observations with replacement) and

randomly permute covariates in each sample. One also has the option to only permute

the covariates and use the original sample. That is B permutations are considered and

no bootstrap is performed. The index set of the bth permuted sample is Ib
i, j.

b) Perform Part 2: Testing and Computation Loop of the robVIF on each sample.

c) Compute the inclusion frequencies, that is the number of times each covariate is re-

tained as a potential true covariate throughout the B samples.

d) Eliminate covariates with inclusion frequency equal to 0. The index set of the q∗i, j

surviving covariates is I∗i, j.

e) Compute mean of p-values over the B samples on the surviving covariates, p̄i, j =

(p̄i, j1 , ..., p̄i, jq∗i, j
).

f) Rank the q∗i, j covariates according to mean p-value, p̄i, jk , k = 1, . . . ,q∗i, j, in ascending

order.

II - RobVIF step

a) Perform a one pass robVIF model selection on the q∗i, j ranked covariates. The index set

of the q∗∗i, j selected covariates is I∗∗i, j .

83

5. Regroup covariates selected from the Ri sets. The total number of active covariates is now

qi+1 = ∑
Ri
j=1 q∗∗i, j and the index set of active covariates is ∪Ri

j=1I∗∗i, j = Ii+1.

6. Set i = i+1

}

7. Perform a partial Ensemble Step once on the covariates in the final active set Ii = {i1, . . . , iqi}.

a) Generate B classic bootstrap samples (n-out-of-n observations with replacement) and

randomly permute covariates in each sample.

b) Perform Part 2: Testing and Computation Loop of the robVIF on each sample.

c) Compute mean of p-values over the B samples, to get p̄ik , k = 1, . . . ,qi.

d) Rank covariates according to mean p-value, p̄ik , in ascending order.

More detailed explanations of the algorithm are now provided. To gradually eliminate un-

wanted covariates without discarding any true covariates, our screening approach uses an iterative

procedure. Additionally, in each iteration the covariates are partitioned. This partitioning of co-

variates allows the method to handle a very large p while maintaining a good performance. It also

diminishes computational time.

The first step of the algorithm is to carry out Part 1-Initialize and Weight of the robVIF on

all covariates to obtain marginal weights. For computational efficiency, the marginal weights are

calculated only once for each covariate and will be used throughout the procedure.

The Two-step Elimination procedure consists of the Ensemble Step followed by the robVIF

Step. Both steps are performed independently on each set of covariates in the partition.

The first step of the Ensemble Step is to generate B samples from the data. Each sample

is generated by resampling (with replacement) the n observations and randomly permuting the

84

covariates. The original sample can also be used B times with randomly permuted covariates in

each instance. In this ensemble scheme, presenting the covariates in a different order B times has

the advantage of offsetting robVIF’s sensitivity to the covariates’ order of entry.

The second part of the robVIF, Testing and Computation Loop is performed on each sample.

We use the inclusion frequency of each covariate to perform a first elimination. Covariates that

have not been retained at least once throughout the B samples are discarded.

Step II of the The Two-step Elimination procedure, the robVIF Step, consists of performing a

unique robVIF model selection on the q∗i, j surviving covariates ordered according to their respec-

tive mean p-values, p̄i, jk , obtained in 4(e). Ranking the covariates according to the mean p-value

helps insure that the potential true covariates are tested first, at the highest α levels, and therefore

have a higher probability of being added to the model. This robVIF step leads to a considerable

elimination of covariates.

After this elimination, the surviving covariates from all sets in the partition are regrouped. Steps

3 to 6 are repeated until either one of the following two conditions (the while loop conditions) is

not met: The size of the active set of covariates is greater than the partition size, qi > c or at least

one covariate is eliminated at iteration i, qi < qi−1. When a condition is not met, the procedure

moves on to its final step.

The last step of the proposed method consists of doing a partial Ensemble Step on the covariates

in the final set. Its objective is to rank the final selection in order of importance according to the

mean p-value.

Wealth Attribution

The pay-out ∆a is fixed to 0 throughout the procedure. The rationale is simple, the ensemble

framework with the random permutation for covariates in each sample gives multiple opportunities

for every covariate to be presented in different positions, thus at various α test levels. A positive

pay-out ∆a, which leads to a momentary increase of the test level α , is not justified and thus ∆a is

set to 0 throughout the procedure.

85

The wealth attribution structure in the Ensemble Step has been slightly modified from the orig-

inal streamwise setup of the robVIF. We wanted to ensure that each covariate had 95% probability

of being tested for inclusion as a potential true covariate at the initial α test level in at least one of

the B samples. Recall that when pay-out ∆a = 0, if xk is included, ak+1 = ak, the current wealth

does not change, otherwise, if xk is not included, ak+1 = ak−αk/(1−αk), the current wealth de-

creases. Hence, to ensure the 95% probability of being tested for inclusion at the initial α level for

each xk, the wealth has been fixed for the dp ∗ ge first covariates. The choice of g was done fol-

lowing the binomial distribution. If S is the number of times that a covariate is tested at the initial

α level over the B samples, then S ∼ Bin(B,g), and we want to obtain a minimum of one success

(i.e. S ≥ 1) with cumulative probability of 95%. Thus the wealth ak is fixed for the first dp ∗ ge

covariates. Thereafter, at k = dp∗ge+1 we resume the wealth attribution original streamwise setup

of the robVIF with αk = a0/(1+ k− f).

3.3 Simulation Study

To assess the performance of the proposed screening method we carry out a simulation study.

We compare the performance of the SERVIF with the original SIS, the robustified version of the

SIS using Kendall tau (SIS-Kendall) proposed by Li et al. [17] and the robust version (SIS-BW)

proposed by Mu and Xiong [22].

For the implementation of our method, the R language code for the robVIF was obtained from

the authors. The main structure of their code is a for loop that sweeps through all covariates, one at

a time. This code is computationally very fast, especially when considering a sole pass. However,

considering our methods’ iterative structure that is moreover combined in an ensemble scheme,

a modification is required to make our method computationally efficient. The code, except for

the initialization, is converted to the more efficient Fortran programming language. This resulted

in substantial gains in computational speed. We use this implementation of the method for the

simulations presented in this section. Regarding the implementation of the competing methods, we

86

use functions obtained from the “SIS” CRAN package [25]. The two robust competitor methods

included in our study, SIS-Kendall and SIS-BW, are easily integrated into the SIS package code as

they only require a different calculation for the correlation. For each of these correlation estimators,

the Kendall τ correlation coefficient and the bivariate winsorized correlation estimator, the fastest

available R function at the moment of the study are used for this simulation.

The Data Generating Process (DGP) used is the linear model employed in Dupuis and Victoria-

Feser [3] and Dupuis and Victoria-Feser [4]. We have

y = X1 +X2 + ...+Xk +σε (3.3)

where X1,X2, ...,Xk are multivariate normal (MVN) with E(Xi)= 0, Var(Xi)= 1, corr(Xi,X j)=

θ , i 6= j, i, j = 1, ...,k and ε an independent standard normal variable. The covariates X1, ...,Xk are

our k target covariates.

θ was chosen to produce a theoretical R2 = (Var(y)−σ2)/Var(y) = 0.20. The value of σ was

chosen to give t values for the target regressors of about 6 under normality according to Khan et al.

[16]. Let ek+1, ...,ep be independent standard normal variables.

The next 2k are noise covariates that are correlated with our target covariates:

Xk+1 = X1 +λek+1,Xk+2 = X1 +λek+2,

Xk+3 = X2 +λek+3,Xk+4 = X2 +λek+4,

...

X3k−1 = Xk +λe3k−1,X3k = Xk +λe3k;

where λ = 3.18 so that corr(X1,Xk+1)= corr(X1,Xk+2)= corr(X2,Xk+3)= ...= corr(Xk,X3k)=

0.3.

87

The last p−3k covariates are independent noise covariates

Xi = ei, i = 3k+1, ..., p. (3.4)

Samples with and without contamination are generated. In the non-contaminated case ε ∼

N(0,1).

For the samples with contamination we introduce 5% of contaminated cases. These cases are

contaminated with both outliers and high leverage X-values. These samples are generated with

ε ∼ 95%N(0,1)+ 5%N(30,1) and for the contamination in the X direction, X1, ...,Xk follows a

MVN as before except that Var(Xi) = 5, i = 1, ...,k.

We run simulations for n = 1000, k = 5, and p ranging from 100 up to 100,000 for both non-

contaminated and contaminated settings.

The partition size c is chosen to be 100 in all instances. The final number of covariates selected,

d, has to be chosen for the SIS and the two robust SIS variations. The value of d is chosen to

be d = n/log(n) as suggested by Fan and Lv [6]. In all instances the results are based on 200

simulations.

In the non-contaminated setting, our method and its three competitors all succeed in selecting

the five target covariates for all p dimensions. The only difference between the methods is the

value of d. For the SIS and the two robust SIS versions, with d = n/log(n) being a function of n

only, for all scenarios the final number of variables with these three methods is d = 144.

For the contaminated scenarios, as expected, the original SIS performs poorly. It misses most

target covariates for the majority, if not all, simulations. Thus, for the contaminated scenarios only

SIS-Kendall and SIS-BW are considered as competitors.

For the contaminated scenarios, our method has no missing target covariates in any of the sim-

ulations for p = 1000 and 10,000. With p = 25,000, our method has one missing target covariate

in 1% of the simulations. For the p = 50,000 scenario, we have one missing target covariate in 3%

88

of the simulations. The SIS-Kendall and SIS-BW variations have no missing target covariates in

all cases.

The most significant difference between the methods is the number of covariates selected. Our

method only retains the covariates that are identified as meaningful according to their p-value. As

the number of spurious covariates highly correlated with the response increases with the number

of initial covariates, the size of the final subset selected by our method also increases.

The results are presented in Figures 3.1 and 3.2, and Tables 3.1 and 3.2. Tables 3.1 and 3.2

present the average number of covariates in the final subset for non-contaminated and contaminated

scenarios. Figures 3.1 and 3.2 show the distribution of the number of covariates included in the final

subset for the SERVIF and the number of covariates included in the final subset for its competitors.

Table 3.1: Mean number of covariates in the final subset - non-contaminated scenario, n = 1000, p = 1000

to 100,000 for 200 simulations.

Mean number of covariates in the final subset

p 1000 10,000 25,000 50,000 100,000

SERVIF 20.11 58.29 82.86 98.58 128.25

SIS and robust SIS variations 144 144 144 144 144

Table 3.2: Mean number of covariates in the final subset - contaminated scenario, n = 1000, p = 1000 to

100,000 for 200 simulations.

Mean number of covariates in the final subset

p 1000 10,000 25,000 50,000 100,000

SERVIF 27.27 71.92 85.13 89.11 92.61

SIS and robust SIS variations 144 144 144 144 144

89

●

● ●●●
●●●●

●

●
●●
●●
●
●
●●●
●

●

●

●

●
●

●●●●●

Initial number of covariates

N
u

m
b

e
r

o
f

c
o
va

ri
a

te
s
 i
n

 f
in

a
l
s
u

b
s
e

t

1000 10,000 25,000 50,000 10,0000

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

1
6

0

● ● ● ● ●

Final Subset Size − Non−Contaminated Scenarios

Figure 3.1: Number of selected covariates for non-contaminated scenarios for n = 1000, p = 1000 to
100,000, for 200 simulations. The boxplots show the distribution of the number of covariates for the SERVIF
and the line, the number of selected covariates by the SIS and the two robust SIS variations.

90

●

●

●

●
●
●
●

●

●

●

●●●

●
●
●

●●●
●
●
●

●

●●
●
●●●●
●

●

●●

●

●
●
●

●

●●●
●●●●

●

●

●●

●

●

Initial number of covariates

N
um

be
r

of
 c

ov
ar

ia
te

s
in

 fi
na

l s
ub

se
t

1000 10,000 25,000 50,000 100,000

0
20

40
60

80
10

0
12

0
14

0
16

0

● ● ● ● ●

Final Subset Size − Contaminated Scenarios

Figure 3.2: Number of selected covariates for contaminated scenarios for n = 1000, p = 1000 to 100,000,
for 200 simulations. The boxplots show the distribution of the number of covariates for the SERVIF and the
line, the number of selected covariates by the SIS and the two robust SIS variations.

3.4 Real Data

In this section we illustrate the use of the SERVIF on a real data set also used in Dupuis and

Victoria-Feser [4]. We consider the Communities & Crime data set from the UCI Machine Learn-

ing Repository [18]. The data set has 1994 observations, which are split into n = 1000 for the

91

training set and n = 994 for the test set. The response variable of the data set is the per capita

violent crimes rate. The dependant variables are economic, demographic, community and law en-

forcement variables. After removing text variables as well as variables with missing data, we have

99 covariates. To test our screening method we use the data set with these 99 covariates and their

second-order interactions terms. Removing those that are constant, p rises to 4077. The variables

are standardized.

The SIS, the SIS-Kendall and the SIS-BW are used for comparative purposes. For these meth-

ods the size of the final subset with the training data is set to d = n/log(n) = 144.

Our method selects a total of 77 covariates. Among these covariates, 29 are also found among

the 144 in the SIS final subset, 32 are in the final subset of the SIS-Kendall method and 24 are also

found in the SIS-BW final subset.

The true model covariates are unknown for this dataset, hence an evaluation of the selected

covariates provides very limited insight on the quality of the selection. To provide a more effective

comparison of the methods, we compare the predictive power of the subset of covariates selected

by each method. We obtain a robust fit of the linear regression model using M-estimation with the

four respective selected subsets using the training set.

Each fitted model then does prediction on the test set. Table 3.3 shows the mean squared error

(MSE) and the mean absolute error (MAE) for the predictions.

Table 3.3: The predictive error estimated by the MSE and the MAE for the SERVIF and its three competi-

tors.

Predictive Error Estimation

Method Number of covariates MSE MAE

SERVIF 77 0.357 0.251

SIS 144 0.374 0.242

SIS-Kendall 144 1.674 0.531

SIS-bw 144 2.071 0.602

92

While, as noted earlier, we can’t have a verdict on which method selected the best set of co-

variates, the predictive accuracy presented in Table 3 provides some insight into the quality of

this selection. Despite having a much smaller subset, with 77 covariates versus 144 for the other

methods, SERVIF shows very competitive predictive power. It has the lowest MSE and the second

lowest MAE, surpassed only by its non-robust competitor, the original SIS. The robust competi-

tors, SIS-Kendall and SIS-BW, are relatively far behind, both yielding fairly high MSE and MAE

values. We can conclude that in spite of keeping a much smaller set of covariates, our method does

not seem to eliminate any important covariates as it keeps good predictive accuracy.

3.5 Concluding remarks

Variable screening methods for large high dimensional data that are robust to data contamination

and computationally efficient are becoming increasingly important. The existing methods require

the sensitive choice of a final subset size. We present a method that automatically chooses the final

subset size by choosing the most important covariates with regards to the response variable. In

the simulation study SERVIF shows very good performance with regards to the inclusion of all

true model covariates in the absence or presence of data contamination. Moreover, the automatic

built-in subset size determination method selects much fewer covariates then the ad-hoc n/log(n)

rule used by the other methods presented in this study.

Possible avenues for future research include testing the method’s sensitivity to the initial wealth

parameters as well as its sensitivity to the size of the partitions. Moreover, extensions of the method

to other models such as the generalized linear models, additive models or Cox proportional hazards

models would also be of great interest.

References

[1] Chen, J. and Chen, Z. (2008). Extended Bayesian information criteria for model selection with

large model spaces. Biometrika, 95(3):759–771.

93

[2] Donoho, D. L. (2000). High-dimensional data analysis: The curses and blessings of dimen-

sionality. AMS Math Challenges Lecture, 1:32.

[3] Dupuis, D. J. and Victoria-Feser, M.-P. (2011). Fast robust model selection in large datasets.

Journal of the American Statistical Association, 106(493):203–212.

[4] Dupuis, D. J. and Victoria-Feser, M.-P. (2013). Robust VIF regression with application to

variable selection in large data sets. The Annals of Applied Statistics, 7(1):319–341.

[5] Fan, J. and Li, R. (2006). Statistical challenges with high dimensionality: Feature selection in

knowledge discovery. arXiv preprint math/0602133.

[6] Fan, J. and Lv, J. (2008). Sure independence screening for ultrahigh dimensional feature space.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(5):849–911.

[7] Fan, J., Samworth, R., and Wu, Y. (2009). Ultrahigh dimensional feature selection: beyond

the linear model. Journal of Machine Learning Research, 10(Sep):2013–2038.

[8] Fan, J. and Song, R. (2010). Sure independence screening in generalized linear models with

np-dimensionality. The Annals of Statistics, 38(6):3567–3604.

[9] Foster, D. P. and Stine, R. A. (2008). α-investing: a procedure for sequential control of ex-

pected false discoveries. Journal of the Royal Statistical Society: Series B (Statistical Method-

ology), 70(2):429–444.

[10] Gather, U. and Guddat, C. (2008). Discussion on “Sure independence screening for ultra-

high dimensional feature space" by J. Fan and J. Lv. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 70(5):893–895.

[11] Gnanadesikan, R. and Kettenring, J. R. (1972). Robust estimates, residuals, and outlier de-

tection with multiresponse data. Biometrics, 28:81–124.

[12] Guddat, C., Gather, U., and Kuhnt, S. (2010). MCD-RoSIS – A robust procedure for variable

selection, volume Volume 7 of Collections, pages 75–83. Institute of Mathematical Statistics,

Beachwood, Ohio, USA.

94

[13] Hall, P. and Miller, H. (2009). Using generalized correlation to effect variable selec-

tion in very high dimensional problems. Journal of Computational and Graphical Statistics,

18(3):533–550.

[14] Hubert, M., Rousseeuw, P. J., and Van Aelst, S. (2008). High-breakdown robust multivariate

methods. Statistical Science, 23(1):92–119.

[15] Ke, T., Jin, J., and Fan, J. (2014). Covariance assisted screening and estimation. Annals of

Statistics, 42(6):2202.

[16] Khan, J. A., Van Aelst, S., and Zamar, R. H. (2007). Robust linear model selection based on

least angle regression. Journal of the American Statistical Association, 102(480):1289–1299.

[17] Li, G., Peng, H., Zhang, J., and Zhu, L. (2012). Robust rank correlation based screening. The

Annals of Statistics, 40(3):1846–1877.

[18] Lichman, M. (2013). UCI Machine Learning Repository.

[19] Lin, D., Foster, D. P., and Ungar, L. H. (2011). VIF regression: a fast regression algorithm

for large data. Journal of the American Statistical Association, 106(493):232–247.

[20] Ma, X. and Zhang, J. (2016). Robust model-free feature screening via quantile correlation.

Journal of Multivariate Analysis, 143:472–480.

[21] Mai, Q. and Zou, H. (2015). The fused Kolmogorov filter: A nonparametric model-free

screening method. The Annals of Statistics, 43(4):1471–1497.

[22] Mu, W. and Xiong, S. (2014). Some notes on robust sure independence screening. Journal

of Applied Statistics, 41(10):2092–2102.

[23] Pan, R., Wang, H., and Li, R. (2016). Ultrahigh-dimensional multiclass linear discriminant

analysis by pairwise sure independence screening. Journal of the American Statistical Associa-

tion, 111(513):169–179.

[24] Rousseeuw, P. J. (1984). Least median of squares regression. Journal of the American Sta-

tistical Association, 79(388):871–880.

95

[25] Saldana, D. F. and Feng, Y. (2018). SIS: An R package for sure independence screening in

ultrahigh dimensional statistical models. Journal of Statistical Software, 83(2):1–25.

[26] Sun, J. (2016). Robust Feature Screening Procedures for Mixed Type of Data. PhD thesis,

Virginia Tech.

[27] Wang, H. (2009). Forward regression for ultra-high dimensional variable screening. Journal

of the American Statistical Association, 104(488):1512–1524.

[28] Zhu, L.-P., Li, L., Li, R., and Zhu, L.-X. (2011). Model-free feature screening for ultrahigh-

dimensional data. Journal of the American Statistical Association, 106(496):1464–1475.

96

General Conclusion

This thesis proposed innovative methods of building prediction intervals and a robust variable

screening method for high-dimensional data.

The first chapter explored two aspects: The splitting rule and the method used to build the

prediction interval. Fifteen method combinations were proposed, thoroughly investigated, and

compared to four alternative methods through simulation studies and with real data. The results

showed that the proposed methods are very competitive. They outperform commonly used methods

in both in simulation settings and with real data.

The second chapter extended the investigation of prediction intervals to finite mixture regres-

sion models. We proposed a new nonparametric regression method for finite mixture models that

capture nonlinear dependencies links between the response and the covariates. The performance of

the methods were assessed in an extensive simulation study. The results showed equal performance

to existing finite mixture regression models methods when the true underlying functions are lin-

ear and greatly improved performance in the presence of nonlinearity and heteroscedasticity. The

method calibration method also showed to be very reliable in attaining the prescribed coverage.

Moreover, four out of the five methods also showed very good computational efficiency.

The third chapter proposed a robust variable screening method for large data sets. The method

uses an iterative ensemble scheme for safe and gradual elimination of spurious covariates. An

innovative feature of the method is its built-in automatic final subset size determination. The

performance of the method was assessed in a simulation study with both clean and contaminated

data and with a real data set. The results showed very good and consistent performance on both

clean and contaminated data.

Many interesting avenues for future research ar possible. Extending the random forest based

prediction intervals to censored survival data would be interesting and useful. In the case of mix-

ture distributions, exploring ways to select the number of components automatically would be

interesting. Improving the bootstrap adjustment/calibration method of Ahonen et al. (2018), for

smaller sizes, would be useful. Generalizing the method to more challenging settings like the case

of covariates dependent mixing proportions would be interesting. Finally, extending the robust

variable screening to other models in the generalized linear models family would also be worthy

of investigation.

98

Appendix A

Table A: Complete results of the simulation study aggregated by DGP and sample size. The column ‘cov’ shows the

mean coverage of the PIs, ‘ml’ their mean length and ‘sd’, the standard deviation of the PI lengths. The 15 proposed

method combinations are presented in a matrix format where the line (LS, L1, SPI) represent the splitting rule and

the column (HDR, CHDR, Quant, SPI, LM) represent the method used to build the interval. The 4 competitors (QRF,

CI-jack, CI-split, IF-jack) are presented right under the proposed methods.

ntrain DGP

* HDR CHDR Quant SPI LM

cov ml sd cov ml sd cov ml sd cov ml sd cov ml sd

150 1 LS 0.946 8.059 1.04 0.947 10.42 1.52 0.940 17.60 2.12 0.938 13.63 1.908 0.947 10.80 0.84

L1 0.949 7.959 0.93 0.946 9.522 1.26 0.942 18.68 1.90 0.942 13.44 1.124 0.947 11.91 0.77

SPI 0.947 7.747 0.89 0.946 9.515 1.19 0.941 17.82 1.82 0.941 13.26 1.248 0.949 11.55 0.85

QRF CI-jack CI-split IF-jack

0.975 30.30 0.72 0.945 15.85 1.12 0.960 21.99 2.85 0.953 16.10 1.171

ntrain DGP

HDR CHDR Quant SPI LM

cov ml sd cov ml sd cov ml sd cov ml sd cov ml sd

150 2 LS 0.941 8.367 1.54 0.948 10.88 1.69 0.941 17.57 1.88 0.939 13.00 1.692 0.948 11.14 1.01

L1 0.945 8.200 1.38 0.948 9.902 1.44 0.941 18.51 1.93 0.943 13.05 1.063 0.947 12.05 0.83

SPI 0.944 7.974 1.29 0.947 9.776 1.25 0.940 17.72 1.89 0.942 12.76 1.200 0.948 11.69 0.92

QRF CI-jack CI-split IF-jack

0.974 30.24 0.71 0.946 15.87 1.12 0.959 21.96 3.22 0.954 16.15 1.125

ntrain DGP

HDR CHDR Quant SPI LM

cov ml sd cov ml sd cov ml sd cov ml sd cov ml sd

150 3 LS 0.943 11.29 0.74 0.944 11.25 0.73 0.944 12.15 0.81 0.943 11.94 0.872 0.943 11.23 0.67

L1 0.945 12.09 0.81 0.945 12.06 0.82 0.944 12.90 0.80 0.943 12.64 0.914 0.944 12.11 0.72

SPI 0.944 11.97 0.78 0.945 11.94 0.77 0.942 12.83 0.80 0.943 12.65 0.877 0.945 12.05 0.71

i

ntrain DGP

QRF CI-jack CI-split IF-jack

0.973 15.59 0.64 0.948 10.87 0.66 0.962 13.39 1.47 0.948 10.85 0.650

ntrain DGP

HDR CHDR Quant SPI LM

cov ml sd cov ml sd cov ml sd cov ml sd cov ml sd

150 4 LS 0.943 679.8 62.21 0.943 681.7 61.97 0.942 788.4 80.54 0.941 737.0 69.479 0.944 679.6 57.90

L1 0.944 684.9 53.40 0.944 684.5 53.08 0.942 781.7 67.47 0.941 731.1 67.932 0.946 695.7 47.45

SPI 0.943 679.5 54.64 0.943 679.2 54.29 0.942 781.6 76.51 0.941 723.8 67.647 0.947 692.1 50.98

QRF CI-jack CI-split IF-jack

0.965 1120 44.86 0.944 800.7 64.72 0.960 1046 171.4 0.942 784.8 62.345

ntrain DGP

HDR CHDR Quant SPI LM

cov ml sd cov ml sd cov ml sd cov ml sd cov ml sd

150 5 LS 0.946 0.719 0.08 0.941 0.667 0.07 0.941 0.711 0.07 0.943 0.692 0.065 0.940 0.654 0.06

L1 0.942 0.734 0.08 0.939 0.679 0.06 0.941 0.745 0.07 0.940 0.701 0.061 0.941 0.674 0.05

SPI 0.944 0.731 0.08 0.942 0.672 0.06 0.941 0.722 0.07 0.943 0.692 0.055 0.942 0.661 0.05

QRF CI-jack CI-split IF-jack

0.955 0.900 0.06 0.944 0.776 0.09 0.964 1.146 0.27 0.939 0.724 0.089

ntrain DGP

HDR CHDR Quant SPI LM

cov ml sd cov ml sd cov ml sd cov ml sd cov ml sd

150 6 LS 0.944 15.11 1.45 0.949 12.69 1.08 0.939 17.66 0.60 0.952 11.80 0.894 0.948 12.97 0.57

L1 0.942 17.09 1.55 0.948 14.02 1.13 0.940 19.73 0.61 0.951 13.50 1.032 0.949 15.03 0.61

SPI 0.942 16.08 1.42 0.948 13.44 1.21 0.940 18.80 0.57 0.952 13.02 0.978 0.948 14.03 0.61

QRF CI-jack CI-split IF-jack

0.968 21.19 0.30 0.943 14.02 0.64 0.962 17.03 1.35 0.952 14.31 0.665

ntrain DGP

HDR CHDR Quant SPI LM

cov ml sd cov ml sd cov ml sd cov ml sd cov ml sd

500 1 LS 0.945 5.693 0.41 0.945 7.506 0.58 0.945 10.86 0.78 0.945 8.110 0.633 0.955 6.889 0.34

L1 0.950 5.599 0.36 0.949 7.054 0.50 0.944 10.75 0.77 0.945 7.845 0.514 0.953 7.264 0.33

SPI 0.949 5.550 0.38 0.948 7.193 0.54 0.944 10.47 0.74 0.947 7.900 0.543 0.954 7.152 0.34

QRF CI-jack CI-split IF-jack

0.984 25.44 0.67 0.950 9.865 0.44 0.955 13.57 1.32 0.960 10.08 0.472

ntrain DGP

HDR CHDR Quant SPI LM

ii

ntrain DGP

cov ml sd cov ml sd cov ml sd cov ml sd cov ml sd

500 2 LS 0.947 5.902 0.80 0.945 7.441 0.61 0.946 10.59 0.76 0.944 7.346 0.653 0.953 7.050 0.46

L1 0.948 5.745 0.65 0.951 7.218 0.60 0.946 10.89 0.72 0.947 7.261 0.571 0.952 7.433 0.41

SPI 0.948 5.617 0.65 0.949 7.165 0.62 0.946 10.48 0.77 0.949 7.346 0.541 0.953 7.302 0.46

QRF CI-jack CI-split IF-jack

0.984 25.33 0.62 0.950 10.05 0.48 0.953 13.40 1.28 0.959 10.26 0.537

ntrain DGP

HDR CHDR Quant SPI LM

cov ml sd cov ml sd cov ml sd cov ml sd cov ml sd

500 3 LS 0.944 8.971 0.29 0.944 8.955 0.29 0.942 9.371 0.37 0.943 9.339 0.382 0.944 8.989 0.26

L1 0.944 9.683 0.32 0.944 9.677 0.31 0.943 10.22 0.36 0.942 10.043 0.398 0.944 9.786 0.28

SPI 0.946 9.573 0.32 0.946 9.571 0.32 0.943 10.14 0.35 0.941 9.904 0.385 0.946 9.702 0.31

QRF CI-jack CI-split IF-jack

0.986 13.84 0.28 0.947 8.769 0.32 0.950 10.07 0.66 0.945 8.732 0.323

ntrain DGP

HDR CHDR Quant SPI LM

cov ml sd cov ml sd cov ml sd cov ml sd cov ml sd

500 4 LS 0.943 588.1 30.0 0.943 588.9 29.9 0.944 627.9 32.3 0.944 620.1 33.6 0.942 581.5 29.2

L1 0.943 584.6 29.3 0.943 584.5 29.3 0.943 620.9 27.6 0.943 610.9 28.4 0.941 579.8 24.0

SPI 0.943 581.1 27.5 0.943 581.1 27.3 0.943 616.3 28.5 0.944 607.8 28.5 0.942 575.2 24.4

QRF CI-jack CI-split IF-jack

0.974 992.2 25.0 0.948 650.4 26.3 0.951 752.3 64.3 0.947 642.8 23.6

ntrain DGP

HDR CHDR Quant SPI LM

cov ml sd cov ml sd cov ml sd cov ml sd cov ml sd

500 5 LS 0.948 0.582 0.03 0.946 0.577 0.03 0.947 0.598 0.03 0.947 0.592 0.027 0.945 0.565 0.03

L1 0.946 0.598 0.03 0.944 0.592 0.03 0.944 0.620 0.03 0.945 0.608 0.029 0.944 0.577 0.03

SPI 0.946 0.585 0.03 0.945 0.580 0.03 0.945 0.606 0.03 0.945 0.595 0.026 0.944 0.565 0.02

QRF CI-jack CI-split IF-jack

0.965 0.789 0.03 0.949 0.625 0.03 0.951 0.748 0.10 0.947 0.597 0.033

ntrain DGP

HDR CHDR Quant SPI LM

cov ml sd cov ml sd cov ml sd cov ml sd cov ml sd

500 6 LS 0.955 10.65 0.95 0.950 9.127 0.48 0.948 14.56 0.30 0.951 8.471 0.382 0.952 9.927 0.26

L1 0.954 12.83 1.08 0.951 10.675 0.50 0.944 16.75 0.32 0.950 9.715 0.449 0.951 11.70 0.31

SPI 0.955 12.06 0.97 0.950 10.208 0.49 0.946 15.88 0.29 0.951 9.512 0.492 0.950 11.05 0.32

iii

ntrain DGP

QRF CI-jack CI-split IF-jack

0.979 18.62 0.24 0.949 11.02 0.32 0.952 12.88 0.75 0.957 11.27 0.325

ntrain DGP

HDR CHDR Quant SPI LM

cov ml sd cov ml sd cov ml sd cov ml sd cov ml sd

1000 1 LS 0.947 5.111 0.28 0.946 6.543 0.45 0.946 8.425 0.54 0.947 6.614 0.440 0.958 6.072 0.25

L1 0.948 4.947 0.26 0.947 6.093 0.39 0.946 8.264 0.46 0.947 6.233 0.367 0.955 5.998 0.23

SPI 0.948 4.964 0.26 0.948 6.256 0.41 0.946 8.058 0.48 0.947 6.334 0.398 0.957 6.122 0.27

QRF CI-jack CI-split IF-jack

0.985 21.24 0.78 0.950 7.549 0.28 0.951 9.922 0.71 0.959 7.681 0.341

ntrain DGP

HDR CHDR Quant SPI LM

cov ml sd cov ml sd cov ml sd cov ml sd cov ml sd

1000 2 LS 0.948 4.851 0.39 0.944 6.195 0.45 0.947 8.191 0.53 0.946 5.716 0.431 0.955 6.007 0.39

L1 0.947 4.653 0.37 0.948 5.937 0.46 0.947 8.281 0.48 0.946 5.470 0.388 0.954 5.984 0.29

SPI 0.948 4.634 0.36 0.948 6.021 0.44 0.947 7.991 0.51 0.947 5.605 0.402 0.954 6.045 0.36

QRF CI-jack CI-split IF-jack

0.984 21.15 0.79 0.948 7.672 0.32 0.952 10.16 0.76 0.956 7.809 0.351

ntrain DGP

HDR CHDR Quant SPI LM

cov ml sd cov ml sd cov ml sd cov ml sd cov ml sd

1000 3 LS 0.946 8.048 0.20 0.946 8.043 0.20 0.944 8.298 0.21 0.945 8.330 0.240 0.948 8.113 0.19

L1 0.947 8.750 0.22 0.948 8.750 0.22 0.944 9.087 0.19 0.944 8.952 0.238 0.948 8.839 0.23

SPI 0.949 8.615 0.22 0.949 8.614 0.22 0.946 9.026 0.19 0.944 8.839 0.219 0.947 8.665 0.22

QRF CI-jack CI-split IF-jack

0.990 12.85 0.18 0.949 7.944 0.19 0.949 8.867 0.48 0.946 7.879 0.223

ntrain DGP

HDR CHDR Quant SPI LM

cov ml sd cov ml sd cov ml sd cov ml sd cov ml sd

1000 4 LS 0.946 559.7 18.7 0.946 559.9 19.0 0.947 587.5 23.4 0.947 578.7 21.5 0.944 553.5 16.9

L1 0.945 556.5 17.5 0.946 556.6 17.8 0.946 577.0 20.3 0.948 577.3 18.8 0.944 551.2 16.2

SPI 0.945 553.9 16.8 0.945 553.8 16.7 0.945 573.4 17.1 0.946 568.8 19.5 0.944 546.0 16.1

QRF CI-jack CI-split IF-jack

0.976 906.5 20.4 0.951 597.9 15.9 0.953 664.3 39.4 0.948 586.7 17.6

ntrain DGP

HDR CHDR Quant SPI LM

iv

ntrain DGP

cov ml sd cov ml sd cov ml sd cov ml sd cov ml sd

1000 5 LS 0.947 0.535 0.02 0.946 0.537 0.02 0.946 0.551 0.02 0.947 0.548 0.02 0.945 0.528 0.02

L1 0.946 0.547 0.02 0.944 0.549 0.02 0.945 0.572 0.02 0.946 0.565 0.02 0.944 0.538 0.02

SPI 0.945 0.537 0.02 0.945 0.540 0.02 0.945 0.559 0.02 0.946 0.554 0.02 0.944 0.529 0.02

QRF CI-jack CI-split IF-jack

0.97 0.73 0.02 0.9487 0.55 0.02 0.95 0.6359 0.06 0.95 0.5287 0.02

ntrain DGP

HDR CHDR Quant SPI LM

cov ml sd cov ml sd cov ml sd cov ml sd cov ml sd

1000 6 LS 0.954 8.760 0.59 0.950 7.940 0.32 0.950 12.89 0.34 0.951 7.357 0.24 0.953 8.596 0.18

L1 0.954 10.60 0.78 0.949 9.404 0.38 0.949 15.42 0.24 0.951 8.657 0.30 0.951 10.44 0.20

SPI 0.954 10.05 0.71 0.949 9.013 0.38 0.950 14.62 0.26 0.950 8.412 0.31 0.951 9.875 0.20

QRF CI-jack CI-split IF-jack

0.984 17.38 0.214 0.950 9.544 0.227 0.951 11.07 0.425 0.959 9.859 0.247

v

	Résumé
	Abstract
	List of Tables
	List of Figures
	Acknowledgements
	General Introduction
	Prediction Intervals with Random Forests
	Abstract
	Introduction
	Methodology
	Splitting Rules
	Methods for Building a Prediction Interval
	Calibration
	Implementation

	Simulation Study
	Simulation Design
	Competing Methods
	Parameters and calibration for the Simulation Study

	Results of the Simulation Study
	Performance with Real Datasets
	Conclusion
	References

	Prediction Intervals for Finite Mixture of Regressions Based on Random Forests
	Abstract
	Introduction
	Methodology
	The modified EM algorithm
	Prediction Intervals
	Four PI methods based on the Bag of Observations for Prediction (BOP)
	Calibration for the four BOP methods

	Simulation Study
	Simulation Design

	Results of the Simulation Study
	Computational Efficiency

	Conclusion
	References

	High-Dimensional Variable Screening using a Robust Ensemble Method
	Abstract
	Introduction
	Methodology
	Robust VIF Regression
	The SERVIF Algorithm

	Simulation Study
	Real Data
	Concluding remarks
	References

	General Conclusion
	Appendix A

