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RÉSUMÉ

Dans cette thèse, nous étudierons les problèmes liés aux problèmes de prédiction. En particu-

lier, nous considérons la prédiction des événements récurrents. Pour cela, nous développons

différents modèles de prédiction lorsque ces événements peuvent être modélisés en utilisant

des processus de Poisson homogènes et non-homogènes. Parmi ces modèles, on s’intéresse

à ceux qui utilisent des effets aléatoires car ils possèdent des caractéristiques intéressantes.

Nous proposons des modèles prédictifs utilisant des techniques bayésiennes empiriques et le

principe du maximum d’entropie afin de modéliser les effets aléatoires avec des distributions

régissant la distribution inconnue des paramètres. Nous montrerons que pour la prédiction

des événements récurrents notre premier modèle qui utilise comme loi a priori la loi d’entropie

maximum à deux moments qui correspond à la loi normale tronquée se compare favorable-

ment au modèle classique de la négative binomiale qui utilise comme loi a priori la loi gamma.

On présente ensuite une extension de l’approche développée dans notre premier modèle. En

effet, en raison de la condition sur l’utilisation de la loi a priori d’entropie maximum à deux

moments, notre premier modèle est contraint à considérer seulement les cas où le coefficient

de variation était inférieur ou égal à 1. Ici, nous enlevons cette restriction par l’utilisation des

lois d’entropie maximum avec un nombre de moments d’ordre plus élevé et nous l’appliquons

dans la prédiction des événements récurrents tout en utilisant des processus de Poisson ho-

mogènes et non-homogènes. Nous évaluons la performance de nos modèles par des études de

simulation approfondies et par quelques ensembles de données.

Mots clés : Modèles de Poisson mixtes, Événements récurrents, Principe du maximum d’en-

tropie, Processus de Poisson homogène et non–homogène, Méthode des moments, Maximum de

vraisemblance.

Méthodes de recherche : Méthode mixte, modélisation mathématique, recherche quantitative.



ABSTRACT

In this thesis, we will study issues related to prediction problems. In particular, we consider the

prediction of recurrent events. For this, we develop different prediction models when these events

can be modeled using homogeneous or nonhomogeneous Poisson processes. Amongst these models,

we are interested in those using random effects because they possess interesting features. We propose

a predictive model using empirical Bayes techniques and the maximum entropy principle in order

to model the random effects for the unknown parameters. We will show that for the prediction of

recurrent events, our first model using as a prior the two moments maximum entropy distribution,

which is equivalent to the truncated normal distribution, compared very favorably to the negative

binomial model that uses as a prior the gamma distribution. We also present an extension of the ap-

proach developed in our first model: because of the two moment condition on our maximum entropy

priors, we were restricted to considering only cases where the coefficient of variation was less than

or equal to 1. We remove this restriction by the use of higher moment maximum entropy priors in

the prediction of recurrent events using homogeneous and nonhomogeneous Poisson processes. We

assess the performance of such models through extensive simulation studies and some real data sets.

Keywords: Recurrent events; The maximum entropy principle; Mixed-Poisson; Homogeneous

and Nonhomogeneous Poisson process; Moment matching; Maximum likelihood.

Research methods: Mixed methods; mathematical modeling; quantitative research.
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INTRODUCTION

Dans cette thèse, nous étudierons les problèmes liés aux problèmes de prédiction. En particulier,

nous considérons la prédiction des événements récurrents, événements qui se produisent à répétition

au fil du temps. La prédiction des événements récurrents a été discutée dans plusieurs contextes

comme par exemple dans les réclamations de garantie des véhicules (Fredette et Lawless, 2007) ou

les réclamations dans le domaine des assurances (England et Verrall, 2002), où les prédictions sont

utilisées, par exemple, pour la planification fiscale.

Les modèles de Poisson mixtes ont été trouvés utiles lorsque les événements récurrents présentent

une surdispersion avec l’utilisation du modèle de Poisson, c’est-à-dire quand la variance est plus

grande que la moyenne. Cette surdispersion est souvent attribuée à l’hétérogénéité inobservée entre

les événements. Cette surdispersion peut être comptabilisée en utilisant des intensités différentes

pour chaque processus, et ainsi utiliser une distribution a priori pour ces intensités inconnues.

Nous avons l’intention d’utiliser des techniques bayésiennes empiriques et le principe du maximum

d’entropie afin de modéliser cette distribution a priori.

Tout d’abord, la notion d’entropie apparait dans de nombreux domaines, comme par exemple en

physique, où l’entropie est une grandeur thermodynamique associée à un système de particules.

En théorie de l’information, où l’entropie quantifie le manque d’information, la maximisation de

l’entropie se comprend comme une“diminution de l’information”ou une“augmentation du désordre”.

L’entropie d’une distribution de probabilité finie π pour une variable aléatoire contenue X est une

fonction définie par :

H = −
∫
x
π(x) ln(π(x))dx.

Cette fonction a été introduite en premier par Shannon (Shannon (1948)). Il est possible de fournir

à l’entropie de Shannon une interprétation en terme d’information moyenne. En effet, dans le cas

discret, l’information au sens de Shannon apportée par une réalisation x du variable aléatoire dis-

crète X est − ln(px). L’information moyenne est donc donnée par −px ln(px), qui est l’expression



de Shannon dans le cas discret. À la base de l’utilisation de cette entropie de Shannon, la réal-

isation d’un événement rare apporte plus d’information sur le phénomène que la réalisation d’un

événement fréquent. Le principe de maximum d’entropie (PME) choisit en premier lieu les quantités

statistiques que l’on juge essentielles pour résumer l’information apportée par un jeu de données.

La loi de probabilité décrivant le phénomène aléatoire, n’apparâıt qu’après et doit vérifier des con-

traintes mettant en jeu ces quantités statistiques essentielles.

La recherche d’un modèle mixte par application du PME suppose en premier lieu de modéliser

l’incertitude par une loi qui maximise l’entropie de Shannon parmi les lois qui vérifient les con-

traintes imposées par un jeu de données. Donc le PME choisit en premier lieu les quantités statis-

tiques que l’on juge essentielles pour résumer l’information apportée par ce jeu de données. Ce qui

fait que la loi de probabilité décrivant le phénomène aléatoire, n’apparâıt qu’après et doit vérifier

des contraintes mettant en jeu ces quantités statistiques essentielles.

Pour cela et afin de modéliser la distribution a priori qui tient compte d’une possible hétérogénéité

inobservée entre les événements en utilisant le PME, nous développons dans cette thèse différents

modèles de prédiction lorsque ces événements récurrents peuvent être modélisés en utilisant des

processus de Poisson homogènes et non-homogènes.

Dans le premier chapitre, nous proposons un modèle prédictif permettant de prédire les événements

récurrents en utilisant des processus de Poisson homogènes lorsque la distribution régissant la dis-

tribution des paramètres est inconnue. Nous avons l’intention d’utiliser des techniques bayésiennes

empiriques et le PME afin de modéliser l’information a priori. Cette approche a également été mo-

tivée par le succès de l’utilisation de la loi a priori gamma pour ce type de problème. Le choix

de la loi a priori gamma dans les modèles Poisson mixtes a été motivé par ses belles propriétés

mathématiques lorsqu’elle est utilisé avec les processus de Poisson. Ici, nous proposons d’appliquer

la méthode des moments pour estimer les paramètres de la loi a priori d’entropie maximum, c’est-

à-dire maximiser l’entropie soumise à seulement deux contraintes que les deux premiers moments

soient égaux aux moments empiriques et ainsi obtenir comme solution la loi normale tronquée

(tronquée au-dessous de zéro). Nous avons montré que pour la prédiction des événements récurrents

notre modèle à effets aléatoires qui utilise comme loi a priori la loi normale tronquée se compare

favorablement au modèle classique de la négative binomiale utilisant la loi a priori gamma pour

les effets aléatoires. Le chapitre 2 présente une extension de l’approche développée dans le premier

chapitre. En effet, en raison de la condition sur l’utilisation de la loi a priori d’entropie maximum à

deux moments, nous avons été contraint à considérer seulement les cas où le coefficient de variation

était inférieur ou égal à 1. Dans ce chapitre, nous enlevons cette restriction par l’utilisation des lois

d’entropie maximum avec un nombre de moments d’ordre plus élevé et nous l’appliquons dans la

2



prédiction des événements récurrents tout en utilisant des processus homogènes de Poisson. Nous

évaluons la performance de nos modèles par des études de simulation approfondies et par quelques

ensembles de données. Dans le troisième chapitre, l’hypothèse de l’homogénéité dans le temps est

relaxée et nous proposons un nouveau modèle prédictif à effets aléatoires permettant la prédiction

des événements récurrents toute en utilisant des processus de Poisson non-homogènes. De plus,

l’hétérogénéité possible entre les unités a été modélisée en utilisant des lois d’entropie maximum

avec un nombre de moments d’ordre plus élevé au lieu de la loi a priori gamma. Nous appliquons

notre modèle sur un ensemble de données réel provenant d’un programme de fidélisation et nous

comparons son adéquation au modèle classique qui utilise comme loi a priori la loi gamma.

3



Chapter 1

The Poisson Maximum Entropy

Model for Homogeneous Poisson

Processes

Abstract

Our main interest is parameter estimation using maximum entropy methods in the

prediction of future events for a Homogeneous Poisson process (HPP) when the dis-

tribution governing the distribution of the parameters is unknown. We intend to use

empirical Bayes techniques and the maximum entropy principle to model the prior in-

formation. This approach has also been motivated by the success of the gamma prior

for this problem, since it is well known that the gamma maximizes Shannon entropy

under appropriately chosen constraints. However, as an alternative, we propose here

to apply one of the often used methods to estimate the parameters of the maximum

entropy prior. It consists of moment matching, that is, maximizing the entropy subject

to the constraint that the first two moments equal the empirical ones and we obtain the

truncated normal distribution (truncated below at the origin) as a solution. We also

use maximum likelihood estimation (MLE) methods to estimate the parameters of the

truncated normal distribution for this case. These two solutions, the gamma and the

truncated normal, which maximize the entropy under different constraints are tested as

to their effectiveness for prediction of future events for homogeneous Poisson processes

by measuring their coverage probabilities, the suitably normalized lengths of their pre-



diction intervals and their goodness-of-fit measured by the Kullback-Leibler criterion

and a discrepancy measure. The estimators obtained by these methods are compared

in an extensive simulation study to each other as well as to the estimators obtained

using the completely noninformative Jeffreys’ prior and the usual frequency methods.

We also consider the problem of choosing between the two maximum entropy methods

proposed here, that is, the gamma prior and the truncated normal prior, estimated both

by matching of the first two moments and, by maximum likelihood, when faced with

data and we advocate the use of the sample skewness and kurtosis. The methods are

also illustrated on two examples: one concerning the occurrence of mammary tumors

in laboratory animals taking part in a carcinogenicity experiment and the other, a war-

ranty data set from the automobile industry.

Keywords: Recurrent events; mixed-Poisson; Jeffreys’ prior; moment matching;

maximum likelihood estimation, skewness, kurtosis.

1.1 Introduction

This paper investigates the prediction of recurrent events, events which occur repeatedly over

time. A considerable amount of such data is seen in a number of different subject areas, for example,

in marketing (Wang et al. (2007)), in finance (Zellner and Tobias (2001) and Ximing (2003) and in

engineering and reliability contexts (Fredette and Lawless (2007)). Mixed Poisson models have been

found useful where recurrent events display extra-Poisson variation, that is, where the variance is

usually larger than the mean. Such overdispersion is often attributed to unobserved heterogeneity

between events. This overdispersion may be accounted for by using different rates for each process

and then using a prior distribution on these unknown rates.

Let N(s, t) be the random variable representing the number of events occurring for a subject in

the time interval [s, t]. For convenience we write N(t) for N(0, t). We will only consider continuous

time processes where two events cannot occur simultaneously. Many different types of such processes

are discussed in the literature (see Cook and Lawless (2007)), but the Poisson process (PP) is a

popular one used by statisticians to model such recurrent events. The intensity function satisfies:

λ(t|H(t)) = lim
4t→0

P [N(t, t+4t) = 1|H(t)]

4t
,
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where H(t) denotes the history of the process up to time t.

For the Homogeneous Poisson processes (HPPs), considered here, the rates are the unknown

parameters. Suppose that we have n subjects and Ni(t) denotes the number of events occurring for

a subject i up to time t. The model is defined by:

Ni(t)|λi ∼ PP (λi),

λi ∼ π(λi), (1.1)

where i = 1, ..., n, the processes are independent, and, the rates λi have an unknown distribu-

tion whose density is denoted by π(λi). We also suppose here that each process is observed up

to a fixed time t1i and that we are interested in finding a point predictor or a prediction in-

terval for the Ni(t1i, t2i)|N(t1). Throughout this article, (λ1, λ2..., λn), (N1(t11), ...,Nn(t1n)) and

(N1(t11, t21), ...,Nn(t1n, t2n)) will be denoted by λ, N(t1) and N(t1, t2) respectively.

The entropy of a probability distribution π(λ), first introduced by Shannon (1948), is a measure

of the amount of information contained in the distribution which can be written as follows:

H = −
∫
λ
π(λ) ln(π(λ))dλ. (1.2)

The larger the entropy, the less information is provided by the distribution. It has been largely pop-

ularized by Jaynes (1957, 1968, 1982), Good (1963), Zellner (1977) and Skilling (1989) among others.

Many authors have worked on the problem of maximizing H subject to various side conditions

(e.g., Zellner and Highfield (1988) and Mohammad-Djafari (1991), Jaynes (1982), Lisman and Van

Zuylen (1972), Rao et al. (1973). As shown in Mohammad-Djafari (1991), the maximum entropy

prior allows us to determine the optimal probability distribution π(λ) from a finite set of equations

involving expectations of some known functions. Usually, these known functions φk(λ) are either

the powers of λ or its logarithm. Wragg and Dowson (1970) gave a procedure for fitting maximum

entropy distributions subject to the constraint that the first K moments of this distribution are

equal to the empirical moments.
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The priors that we compare for the prediction of recurrent events for a homogeneous Poisson

process here have at most two parameters. We use the maximum entropy gamma prior where the

gamma prior is found by solving the equations involving expectations of 1, λ and log(λ) as well as

the prior from the Poisson maximum entropy model (MaxEnt) where the prior is found by solving

the equations involving expectations of 1, λ and λ2. This yields a truncated normal distribution

(truncated below at the origin). Henceforth it will be simply be called the truncated normal prior

or the MaxEnt prior.

We focus on comparing by simulation the performance of these priors to the Jeffreys’ prior (Jef-

freys, 1946, 1961) and the usual frequency methods for HPP. In order to achieve a fairer comparison

with the maximum entropy gamma prior where the usual parameter estimators are the maximum

likelihood ones (MLE), we also propose to use maximum likelihood methods for estimating the two

parameters in the truncated normal distribution prior. It will be shown that for HPP’s, this differs

from the usual MLE method for exponential family distributions when the constraints are the first

two moments and the MLE and moment matching methods give the same estimates (Mohammad-

Djafari and Idier(1991)). We also consider the gamma model with the parameters estimated by

matching the first two moments and compare all four methods with the Jeffreys’ prior and the

frequency methods.

The remainder of this paper is organized as follows. In Section 2, we introduce our Poisson-

MaxEnt model and show that for matching on the first two theoretical moments, the MaxEnt prior

distribution corresponds to the truncated normal prior(truncated below at the origin). Section 3

develops the two methods of estimation for the parameters of this model: moment matching (MM)

and the MLE parameter estimation method for the truncated normal. In Section 4, the perfor-

mances of the proposed matching moment approach and its comparison with the use of the gamma

conjugate prior using MLE for the parameters, the noninformative Jeffreys’ prior, the prior obtained

using moment matching for the gamma, the prior obtained using the MLE method of parameter

estimation for the truncated normal and the usual frequentist methods are studied through Monte

Carlo simulations. The performance is evaluated by the Kullback-Leibler divergence, a discrepancy

measure and the coverage probability and the suitably normalized length of the prediction intervals.

This simulation study indicates that the MaxEnt prior with a HPP is preferable to the noninfor-

mative Jeffreys’ prior for the prediction of recurrent events studied here. Moreover, we also show

that the MaxEnt model is an interesting alternative in some cases to the classical negative binomial
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(NB) model obtained with the conjugate gamma prior. We also indicate the conditions under which

the maximum entropy matching moment and the MLE method for the truncated normal entropy

methods perform better than the classical negative binomial model and vice versa. We also show

how the empirical skewness and kurtosis estimates can be used to choose between the gamma and

the truncated normal priors when faced with real data. These methods are also illustrated on two

real examples, one of them concerning the occurrence of mammary tumors in laboratory animals

taking part in a carcinogenicity experiment and the other one, a warranty data set from the au-

tomobile industry. A general discussion and possible extensions of these methods with concluding

remarks are presented in Section 5.

1.2 A Poisson Maximum Entropy model

1.2.1 Maximum Entropy Prior

The goal is to find the density function π(λ) that maximizes the entropy H given by (1.2), subject

to ∫
R+

φk(λ)π(λ)dλ = µ̂k k = 0, 1, 2. (1.3)

where φ0(λ) = 1, φ1(λ) = λ and φ2(λ) = λ2 and µ̂0 = 1 and µ̂1 and µ̂2 the two non-central

empirical moments of the distribution respectively.

Following the same procedure for fitting maximum entropy distributions used by Zellner and

Highfield (1988) to find the function π(λ) that maximizes the entropy by solving the nonlinear

problem (1.3), we apply the Lagrange multiplication method (Weinstock, 1952) which yields the

following maximum entropy distribution:

π(λ|α0, α1, α2) = exp (−α0 − α1λ− α2λ
2),

with normalization constant defined by:

eα0 =

∫
R+

exp (−α1λ− α2λ
2)dλ

=

√
π

√
α2

Φ(− α1√
2α2

)e
α21
4α2 ,
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where Φ(.) is the distribution function of the standard normal distribution.

This maximum entropy density over [0,∞) is not always of the above form. Indeed, Wragg and

Dowson (1970) have shown that when fitting the first two moments for distributions over [0,∞)

this maximum entropy approach is not appropriate if the centred moments satisfy (µ
′
2) > 2(µ1)2

or equivalently the coefficient of variation > 1, because all densities of the form π(λ) = exp(−α0 −

α1λ− α2λ
2) with α2 > 0 have the property that µ

′
2 ≤ 2µ1

2.

However, any law whose density is proportional to exp (−α0 − α1λ− α2λ
2) for λ ≥ 0 takes the

form of a left truncated normal law with mean µ and variance σ2 and with α1 = − µ
σ2 and α2 = 1

2σ2 .

Two main reasons have lead us to consider situations where the first two moments are known

and thus to use the MaxEnt prior with two parameters: first, this is because the NB model which

will serve as one of the models for comparison also uses the maximum entropy gamma prior with

two parameters; secondly, for the simulation study in Section 4, the different distributions used to

generate the unknown parameters λ are also distributions with at most two parameters.

1.2.2 Model specifications

If we let the λi’s be truncated normal random variables, then model (1) becomes an empirical Bayes

model given by:

Ni(t)|λi ∼ PP (λi),

π(λi;µ, σ
2) =

e
−(λi−µ)

2

2σ2

√
2πσ2(1− Φ(−µσ ))

. (1.4)

For the Poisson-Maximum Entropy model (1.4), the joint posterior distribution of all the unknown

parameters λ|N(t) is given by

π(λ|N(t1);µ, σ2) =
P
[
N(t1) = N(t1)|λ

]
π(λ;µ, σ2)∫

λ P
[
N(t1) = N(t1)|λ

]
π(λ;µ, σ2)dλ

=
n∏
i=1

λ
Ni(t1i)
i e−

(λi−(µ−σ2t1i))
2

2σ2∫
λi
λ
Ni(t1i)
i e−

(λi−(µ−σ2t1i))2

2σ2 dλi

. (1.5)
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Given π(λ|N(t1);µ, σ2), the parameters of interest λ|N(t1) can be estimated from this poste-

rior distribution. Unfortunately, direct mathematical derivation of π(λ|N(t1);µ, σ2) usually in-

volves a high-dimensional integration to obtain the normalizing constant which is a product of∫
λi
λ
Ni(t1i)
i e−

(λi−(µ−σ2t1i))
2

2σ2 dλi and although recursion formulas are avaiblable, this derivation is not

mathematically tractable. In this case, the posterior distributions will not have a known closed form,

but rather complicated high dimensional densities, which makes direct inference almost impossible.

The problem of estimating the mean and variance of the posterior distribution can be solved by

generating a large number of samples from the posterior distribution using Markov chain Monte

Carlo (MCMC) implemented in WinBUGS (Spiegelhalter et al.(2003)), and from these samples, we

can obtain appropriate parameter estimates of (λ|N(t1);µ, σ2).

1.3 Estimating unknown Poisson Maximum Entropy parameters

The most popular prior distribution used with the Poisson is the gamma distribution which is

the maximum entropy prior and also the conjugate one and also maximizes Shannon entropy. The

parameters are usually estimated by the maximum likelihood method. The usual maximum entropy

estimation method, denoted by(MaxEnt) here, uses matching moments (MM). Thus, as mentioned

in Section 2, we also introduce the use of maximum likelihood methods for estimating the param-

eters of an HPP. This is called Pseudo-MaxEnt here. Thus we have two different empirical Bayes

methods for estimating the parameters of the Poisson-Maximum Entropy model to compare with

the maximum entropy gamma model where its parameters are estimated both by MLE and MM

methods.

The objective of both estimation approaches in the Poisson-Maximum Entropy case is to choose

the probability distribution π(λi;µ, σ
2) = e

−(λi−µ)
2

2σ2√
2πσ2(1−Φ(−µ

σ
))

for the unknown parameter λi which best

represents the observed data N(t).

1.3.1 Maximum Entropy Method

Henceforth the maximum entropy method which uses the matching moments (MM) estimation

method for the parameters in the empirical Bayes Poisson-Maximum Entropy model (1.4) will be

called the MaxEnt method. We can show that the expectation and variance of a left truncated

normal distribution with truncation below at 0 for an unknown parameter λi are defined by

E[λi | λi ≥ 0] = µ + g(µ, σ)σ and Var[λi | λi ≥ 0] = σ2
[
1 − g(µ, σ)

(
g(µ, σ) + µ

σ

)]
, where
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g(µ, σ) =
φ(−µ

σ
)

(1−Φ(−µ
σ

))
and φ(.) is the density function of the standard normal distribution.

Letting Ri = Ni(t1i)
t1i

, the first two central moments of λi are:

E[Ri] = E[λi] = µ+ g(µ, σ)σ

and

Var[Ri] = Var[λi] + E[λi](t1i)
−1.

Note that because the variance of Ri is different for each observation, (t1i)
−1 will be replaced with

its average value when considering the vector N(t1). This approach has been used before to deal

with the same kind of data (e.g. Gaver and O’Muircheartaigh, 1987). Our own simulations suggest

that this approach provides accurate estimates even when the t1i’s vary greatly from one process to

another.

Thus we have to solve the following non-linear system of equations:

µ+ g(µ, σ)σ = R,

σ2
[
1− g(µ, σ)

(
g(µ, σ) +

µ

σ

)]
= s2

R −Rt−1
1i , (1.6)

where t−1
1i is the sample average of 1

(t1i)
’s, while R and s2

R are respectively the sample mean and

variance of the Ri’s. The lack of a closed-form solution means that the MaxEnt estimators must be

found using an iterative approach. For this we use the “nleqlsv” R package.

It is important to mention here that we cannot apply directly the methods presented in Mohammad-

Djafari and Idier(1991) because our situation is more complex. Indeed, our method must take into

account that the process Ni(t) depends on time t1i since these counts are generated from a Poisson

distribution with rates λit1i and therefore the first two central moments of λi are given by their

empirical estimates R and s2
R−Rt

−1
1i which differ from those given by Mohammad-Djafari and Idier

(1991) for other problems.
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1.3.2 The Pseudo-Maximum Entropy Method

We introduce the pseudo-maximum entropy (Pseudo-MaxEnt) method using MLE instead of MM

for the empirical Bayes MaxEnt model (1.4). Thus to obtain the Pseudo-MaxEnt estimators of the

parameters we construct the marginal likelihood L of the empirical Bayesian Poisson-Maximum

Entropy model (1.4)

L(µ, σ2|N(t1)) =

∫
λ
P [N(t1) = N(t1)|λ]π(λ;µ, σ2)dλ

=
n∏
i=1

t
Ni(t1i)
1i

Ni(t1i)!

1

(1− Φ(−µσ ))
√

2πσ2
Ii(Ni)

with

Ii(Ni) =

∫ ∞
0

λ
Ni(t1i)
i e

−(λi−µ)
2

2σ2
−t1iλidλi. (1.7)

The log-likelihood is

l(µ, σ2|N(t1)) ∝
n∑
i=1

[
− 0.5ln(σ2)− ln

(
1− Φ(

−µ
σ

)
)

+ ln
(
Ii(Ni)

)]
. (1.8)

Using Lebesgue’s Dominated Convergence Theorem, Talvila (2001) gave necessary and sufficient

conditions to interchange the order of differentiation and integration which are verified for I(Ni)

here. Interchanging differentiation and integration, the first derivatives of (1.7) with respect to µ

and σ2 are given by the following recurrent equations

∂Ii(Ni)

∂µ
=

1

σ2

[
Ii(Ni + 1)− µIi(Ni)

]
.

∂Ii(Ni)

∂σ2
=

1

2σ4

[
Ii(Ni + 2)− 2µ Ii(Ni + 1) + µ2 Ii(Ni)

]
.

Using the derivatives above, the first partial derivatives of (1.8) are

∂l(µ, σ2|N(t1))

∂µ
= −n

σ

φ(−µ
σ )

(1− Φ(−µσ ))
+

n∑
i=1

[ ∂Ii(Ni)
∂µ

Ii(Ni)

]
,

∂l(µ, σ2|N(t1))

∂σ2
= − n

2σ2
+

nµφ(−µ/σ)

2σ3 (1− Φ(−µ/σ))
+

n∑
i=1

∂Ii(Ni)

∂σ2

/
Ii(Ni). (1.9)

12



Using the second derivatives of (1.9), the Hessian matrix of (1.8) is

H =

 d11 d12

d21 d22

 ,

where

d11 =
n

σ2

(
φ′(−µ/σ) (1− Φ(−µ/σ)) + φ2(−µ/σ)

)/
(1− Φ(−µ/σ))2 +

+
n∑
i=1

(
∂2Ii(Ni)

∂µ2

/
Ii(Ni)−

(
∂Ii(Ni)

∂µ

)2
/

(Ii(Ni))
2

)
,

d12 =
nµ

2σ4

(
(σ/µ)φ(−µ/σ)− φ′(−µ/σ)

1− Φ(−µ/σ)
− φ2(−µ/σ)

(1− Φ(−µ/σ))2

)
+

+
n∑
i=1

(
∂2Ii(Ni)

∂µ ∂σ2

/
Ii(Ni)−

(
∂Ii(Ni)

∂µ

∂Ii(Ni)

∂σ2

)/
(Ii(Ni))

2

)
,

d22 =
n

2σ4
+
nµ2

4σ6

(
φ′(−µ/σ)− (3σ/µ)φ(−µ/σ)

1− Φ(−µ/σ)
+

φ2(−µ/σ)

(1− Φ(−µ/σ))2

)
+

+

n∑
i=1

(
∂2Ii(Ni)

∂σ4

/
Ii(Ni)−

(
∂Ii(Ni)

∂σ2

)2
/

(Ii(Ni))
2

)
.

The analytic solutions to equations (1.9) are extremely difficult to obtain; thus it is natural to

use the Newton-Raphson algorithm or any of its variants to estimate the parameters µ and σ2 .

We have chosen to use the Quasi-Newton algorithm (also known as a variable metric algorithm),

published in Broyden et al. (1970) for the solution.

In order to know how the maximum likelihood estimation method performs in practice for the

Pseudo-MaxEnt model, we conducted an additional simulation study to measure the performance

of this method. For this, we used different values of µ and σ2 and calculated the bias, the mean

squared error(MSE), the mean, the standard deviation, the minimum and the maximum for both

estimators µ̂ and σ̂2. We also did an analogous study using the score function for the gamma to

estimate µ and σ2 using the same efficiency scores and found that the results were very comparable.

As the existence and the uniqueness of the maximum likelihood solution for the estimator of

the truncated normal mean and variance is an important question we designed another simulation

study to compare the sign changes of the truncated normal and the gamma score functions. Fixing

µ and varying σ2 we studied the behavior of the score function based on the first partial derivative
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of the likelihood function with respect to µ from equation (1.9) and in the gamma score function.

We were interested in the sign changes in the score function and classified them into 3 categories:

more than one sign change, one sign change (from positive to negative) and no sign changes. We

performed an analogous simulation study by fixing σ2 and varying µ. Although the gamma score

function never had more than one solution, the percentage of multiple crossings for the truncated

normal score function was very low (usually less than 3%) except for small µ and small σ2 where the

results were somewhat more problematic. The percentage of times when the gamma and truncated

normal score functions were never zero were very comparable, although the gamma percentages

were usually slightly lower. The results of these studies were encouraging for the use of the method

of solving equations(1.9) here.

1.4 Simulation study and Data applications

1.4.1 Simulation Study

The performance of the maximum entropy methods with the MM and MLE methods for prediction

in homogeneous Poisson processes was evaluated in the simulation study described below, based on

the following criteria: the Kullback-Leibler criterion, a discrepancy measure, point prediction and

finally coverage probability and length of the prediction interval.

The effects of both the model and the estimation method were studied. Different pairs of param-

eter constraints were arbitrarily chosen to reflect different orders of heterogeneity and magnitude.

There are six pairs of constraints of interest in our simulation study for the unknown parameters λ

(see Table 1.1).

Pairs E[λi] Var[λi] Coefficient of Variation (CV) Estimated Truncation
1 1 0.1 0.32 0.08%
2 1 0.3 0.56 3.80%
3 1 0.8 0.89 13.00%
4 5 2.5 0.32 0.08%
5 5 7.5 0.56 3.80%
6 5 20 0.89 13.00%

Table 1.1 Different pairs of parameters using in the simulation study.

In this section, we present the results for the pairs 2 and 4 of the constraints presented in Table

1.1. These two pairs are chosen in order to reflect different orders of heterogeneity and magnitude.
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The results for the other four pairs are presented in the Supplemental Material.

Our aim here is to compare the effectiveness of the gamma and the truncated normal priors, as

well as the Jeffreys prior and the usual frequentist methods for prediction in homogeneous Poisson

processes in different situations. Therefore, in our simulation study, we have chosen several different

priors as well as the gamma and the truncated normal to represent the unknown prior distribu-

tion for the Poisson process: the binomial, the uniform, the Weibull, the lognormal and the Inverse

Gaussian. The idea behind the use of different distributions is that we want to study which model

presented in this paper is more robust to the real distribution of the random effects.

As mentioned in the previous section, the posterior distribution is a complex function and diffi-

cult to compute. Our choice, therefore is to perform a simulation study to compute its parameters

such as the mean, the variance etc. The study can be described as follows. For each set of pairs in

Table 1.1, we generate b = 2000 samples from n = 20 HPP’s and assumed that these processes are

observed up to the times t1 = {5, 5.5, ..., 9.5, 10, ..., 14.0, 14.5} and that we want to predict the num-

ber of occurrences for each process up to the times t2 = {12.5, ..., 12.5, 17.5, ..., 17.5} respectively.

The idea behind this choice is to represent different values of (t2i− t1i). More precisely, in this sim-

ulation study we start by generating a vector of the unknown parameter λ from the prior π0(λ) and

then for each sample j we generate the counts N∗j (t1) and N∗j (t1, t2) having a Poisson distribution

with a vector of rates λt1 and λ(t2− t1) respectively. Note that we use both continuous and discrete

distributions for π0 such as the gamma, truncated normal(truncated below at the origin), Weibull,

lognormal, inverse Gaussian and binomial to generate the unknown parameters λ.

The MaxEnt and the Pseudo-MaxEnt methods of estimation are compared to four others: two

non-Bayesian plug-in methods assuming Poisson processes with identical and different fixed rates

and both of them estimated by the MLE method, the method based on the noninformative Jeffreys’

prior and the method based on the maximum entropy gamma prior where the parameters are

estimated using both the MLE and MM methods. Table 1.2 presents these methods and gives

the point predictor N̂i(t1i, t2i) and the predictive density f̃p(Ni(t1i, t2i|N(t1i))) for each estimation

method used and with the data described by the model generated as indicated in the previous

paragraph. Note that the posterior distribution of λ for the maximum entropy methods was obtained

using an MCMC of 100, 000 realizations after a burn-in of 1000 iterations.
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Table 1.2 Point predictor and predictive density for each method.

Kullback-Leibler criterion

In attempting to judge the goodness-of-fit of a given predictive approach, we require some overall

measure of the divergence between each derived parameter-free predictive density f̃p(N(t1, t2)|N(t1)))

obtained from each of the methods mentioned in Table 1.2 and the true one denoted by fπ0(N(t1, t2)|N(t1);λ).

An appropriate measure for this is the average Kullback-Leibler (1951) divergence, DIVKL,

between these two predictive densities defined by

DIVKL

(
fπ0 ; f̃p

)
= E

[ ∫
log
{fπ0(N(t1, t2)|N(t1);λ)

f̃p(N(t1, t2)|N(t1))

}
π0(λ)dλ

]
.
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where the expectation is taken over all possible values of the (N(t1), N(t1, t2)) and π0 is the

true distribution of λ used in the simulation.

If we have two contenders, say f̃p1(N(t1, t2)|N(t1)) and f̃p2(N(t1, t2)|N(t1)), for the role of

estimate then we define the average Kullback-Leibler difference in distance, (DKL):

DKL

(
f̃p1 ; f̃p2

)
=

{
DIVKL

(
fπ0 ; f̃p1

)
−DIVKL

(
fπ0 ; f̃p2

)}
= E

[ ∫
log
{ f̃p2(N(t1, t2)|N(t1))

f̃p1(N(t1, t2)|N(t1))

}
π0(λ)dλ

]
.

If this difference is negative, then f̃p1 is said to be a better estimate than f̃p2 . We use the sim-

ulation study just described to estimate DKL. In fact, the average KL difference in divergence

will be estimated by simulating b = 2000 samples of n = 20 HPPs using

D̂KL

(
f̃p2 , f̃p1

)
=

b∑
j=1

log
{ f̃p2(N∗j (t1, t2)|N∗j (t1))

f̃p1(N∗j (t1, t2)|N∗j (t1))

}
,

where N∗j (t1) and N∗j (t1, t2) are the counts generated with the Poisson distribution having

rates λj,it1i and λj,i(t2i − t1i) respectively for the jth sample, j = 1, ..., b and for the ith

process, i = 1, ..., n and each parameter vector λ is generated from the prior π0.

We note that in Table 1.3 the MaxEnt method is used as the reference in calculating the

difference in KL divergence, which will be called the average KL distance, and thus plays the

role of f̃p1 . Thus a negative value of the average KL distance D̂KL means that the approach

considered perform better than the MaxEnt method.

The results given in Table 1.3 indicate that when the amount of truncation and the co-

efficient of variation are not very large, the MaxEnt and the Pseudo-MaxEnt methods of

estimation perform better than the method based on a noninformative Jeffreys’ prior, what-

ever the distribution used to generate the unknown parameters λ. Also, these methods have
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slightly better results than the method based on the maximum entropy gamma prior when

the unknown parameters are generated with truncated normal, Weibull, uniform or binomial

priors. These maximum entropy methods are slightly less efficient than the method based

on the maximum entropy gamma prior for the cases where the unknown parameters λ are

generated using the gamma, lognormal, or inverse Gaussian distributions. We see from the

simulation results that, although the maximum entropy methods do not always provide the

predictive density closest to the true one, it is always very close. This is not the case for the

method based on the Jeffreys’ prior. From this simulation study, we also note that both the

non-Bayesian plug-in methods assuming Poisson processes with identical and different fixed

rates are usually the furthest from the true predictive density. The MaxEnt method is the

closest one if all other distances are positive.

Table 1.3 Comparison of the average KL distance with the MaxEnt method (with MM) as
reference method. This method is the closest one if all distances are positive.
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Point prediction

To compare the adequacy of each point prediction method for N̂(t1, t2) obtained from one of

the seven methods used in this simulation study, we analyzed the following discrepancy

D =

√√√√∑n
i=1

(
Ni(t1i, t2i)− N̂i(t1i, t2i)

)2

n
, (1.10)

where N̂i(t1i, t2i) is the point predictor provided by the method chosen (cf. Table 1.2). The

value of D represents, for a given sample of n processes, the root mean square error between

the real value of Ni(t1i, t2i) and its prediction.

The results from our simulation study are presented in Table 1.4. Each cell contains the

average value obtained from (1.10) over the 2000 samples. The last column “True” contains

results assuming the full knowledge of λi i.e N̂i(t1i, t2i) = (t2i − t1i)E[λi|Ni(t1i)]. We give the

true value as a means of showing that the error of the these point predictions is mainly due

to the fact that the random variables are predicted and not because the true parameters are

unknown. It should be noted that the “True” value is calculated assuming we know the origi-

nal model and its parameters. Thus it represents an absolute minimum value for the average

discrepancy. We note that the smallest average discrepancy excluding the ”True” column in

this table for a given distribution of λ is written in bold font.

The first thing we notice in Table 1.4 is that both the MaxEnt and the pseudo-MaxEnt

priors and the methods based on the maximum entropy gamma prior outperform the method

based on the noninformative Jeffreys’ prior and the two plug-in methods assuming HPPs with

either identical or different rates. We expected this result for the two plug-in methods since

all others methods treat λ as a random vector. Neither the MaxEnt nor the Pseudo-MaxEnt

methods nor the method based on the maximum entropy gamma prior performs equally well

for all the different distributions of the random effects. The MaxEnt or the Pseudo-MaxEnt

methods give slightly better results than the maximum entropy gamma method when the

unknown parameters λ are generated with the truncated normal, Weibull, uniform and bi-
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Table 1.4 Comparison of the discrepancies using different distributions for the unknown
parameters λ with ”True” representing the full knowledge of λ.

nomial distributions. These are the same distribution where the maximum entropy methods

had smaller average KL differences in divergence. However these methods are less efficient

than the maximum entropy gamma method in the case where the distributions are gamma,

lognormal or inverse Gaussian. Nevertheless, even when our methods do not provide the

smallest average discrepancy, their values are always close to the smallest one.

We can say that our MaxEnt and pseudo-MaxEnt methods, compared to other methods,

seem to predict well when the amount of truncation and coefficient of variation are not

very large. It is interesting to see that when we increase the expectation of λi to 5, both

the MaxEnt method and the method based on the maximum entropy gamma prior with

matching moments (MM) are often slightly more efficient than the same methods using

maximum likelihood estimation.
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Coverage probability and length of the prediction interval criteria

Although we may be interested in the goodness-of-fit of the method, one of the main preoccu-

pations for recurrent event processes is prediction. If predictive densities and point prediction

are of interest, the effectiveness of a method in finding adequate prediction intervals should

also be assessed by checking their ability to have the desired coverage probability and a rea-

sonable length. Here we seek to construct prediction intervals for a future random variable

Ni(t1i, t2i), given observed data N(t1).

To estimate the actual coverage probability of the prediction intervals, we used the sim-

ulated 2000 samples of the n = 20 HPP’s. For each process, we calculated a one-sided 95%

prediction interval of the form [0, U(N(t1))] for each of the seven methods considered. Since

the quantity to predict is discrete, we randomized each interval. For each interval of the form

[0, U(N(t1))] the length was normalized by dividing by (t2i−t1i) in order to render the interval

lengths comparable, so that the average length becomes a meaningful measure. The results

of these simulations are presented in Table 1.5. Note that each cell of this table contains the

proportion of the 2000 × 20 = 40000 counts that were included in the corresponding 95%

prediction interval and the number in parentheses corresponds to the average length of these

intervals. Note that since the predictive densities used ignore the uncertainty between the

estimated and the true parameters, we expect to obtain prediction intervals with coverage

proportions below the nominal level of 95%. This problem can be corrected by calibrating

the prediction intervals (Fredette and Lawless, 2007).

For the empirical Bayes methods, we notice how close to 0.95 the coverage probabilities

are. The coverage probabilities given by these methods are never smaller than 94%. Also,

it is interesting to note that MaxEnt and pseudo-MaxEnt methods, the methods based on

the maximum entropy gamma prior and the method based on Jeffreys’ prior yield similar

coverage probabilities whatever the distribution used. However, the plug-in method assum-

ing Poisson processes with different rates seems to use shorter intervals but fails to reach the

desired coverage probability compared to the empirical Bayes methods. But with coverage
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Table 1.5 Coverage proportions and length of 95% prediction intervals.

probability close to 0.95 and shorter prediction intervals, the Pseudo-MaxEnt method seems

to be the most parsimonious method.

From these simulations, we can draw three conclusions regarding the MaxEnt and pseudo-

MaxEnt methods: first, they are efficient methods for point or interval prediction; secondly,

they are very robust to the rate homogeneity/heterogeneity assumption when the amount of

truncation and the empirical coefficient of variation are not very large; thirdly, the predictive

model based on the maximum entropy methods performs better than the method based on

the noninformative Jeffreys’ prior and also performs slightly better than the method based

on the maximum entropy gamma prior when the unknown parameters λ are generated with

the truncated normal, Weibull or uniform distributions. However, these proposed methods

are usually slightly less efficient than or equivalent to the maximum entropy gamma prior
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method in the other cases.

To explain why the MaxEnt and pseudo-MaxEnt methods performed better for some dis-

tributions but not for others we examined the skewness and kurtosis for all these distributions.

Using one of the pairs of parameter constraints used in this simulation study (E[λi] = 5 and

Var[λi] = 2.5), we see in Table 1.6 that the value of skewness and kurtosis are divided into

two groups according to the distribution used. The first set of distributions that contains the

truncated normal, Weibull, uniform and binomial and where the maximum entropy methods

performed better than other methods have kurtosis values less than 3 and very small skewness

values. For the second group which has kurtosis values greater than 3 and larger skewness

values containing the gamma, lognormal and inverse Gaussian distributions, the maximum

entropy gamma method performed better than the other methods.

Another restriction on the use of the maximum entropy methods is that if the coefficient

Moments for λi Random effects Skewness Kurtosis

E[λi] = 5 and Var[λi] = 2.5

TruncNormal 0.030 2.94
Binomial 0.000 2.80
Uniform 0.000 1.80
Weibull 0.024 2.71

Gamma 0.632 3.60
LNormal 0.980 4.76
InvGauss 0.949 4.50

Table 1.6 Skewness and kurtosis indicators for different unknown parameters distributions
and parameter combination defined with E[λi] = 5 and Var[λi] = 2.5.

of variation > 1 then the system of equations (1.6) has no solution so another method must

be found (Wragg and Dowson, 1970). In this case, we would propose to use the maximum

entropy gamma prior method as it is the most commonly used method for HPP’s and based

on our simulation results it performs well in these situations.
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1.4.2 Data applications

In this section, we apply the maximum entropy methods to two examples. The first one

concerns the occurrence of mammary tumors in laboratory animals taking part in a carcino-

genicity experiment and the second one, a warranty data set from the automobile industry.

Mammary tumors in a carcinogenicity study

We consider the data presented in Gail et al. (1980) on the time to development of mammary

tumors for n = 48 female rats. Rats were exposed to a carcinogen and 60 days later were

randomized to receive either a treatment (23 animals) or to be part of a control group (25

animals). The data show the days on which new tumors occurred for each animal over a time

period of 122 days. For this data set, we limited our interest to the treatment group which

consists of 23 observations in order to have a sample size comparable to the sample size (n =

20) used in our simulation study. The main objective of this study here is the prediction of

tumor occurrence for the 23 female rats in the treatment group using the maximum entropy

methods and the comparison of the results obtained with those using the other methods

studied.

Let Ni(t) be the number of distinct tumors occurring up to time t for the ith subject

(i = 1, ..., n); time is elapsed time since the start of the study. To ensure that the MaxEnt

and pseudo-MaxEnt methods and the other methods are adaptable to these data, we treat

the occurrence times as continuous, as Gail et al.(1980) did. We find point predictors for

Ni(t1i, t2i) for different values of t1i increasing towards t2i using the methods described here.

Table 1.7 presents the average distance between the actual value of Ni(t1i, t2i) and its pre-

diction, for t2i = 122, using the different values of t1i = 10, 20, ..., 120. It should be noted

that for this data the estimated coefficient of variation (σ̂/µ̂) is always less than 1 and the

smallest average discrepancy appears in bold font in Table 1.7. From this table, we can see

the disadvantage of using the method based on the Jeffreys’ prior and that the maximum

entropy methods have a better performance. The Pseudo-MaxEnt gives the best prediction

with few exceptions, followed closely by the empirical Bayes method using the maximum

entropy gamma prior with MM and MLE estimation methods. We also note that most of the
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time, the estimators using MM for gamma and MaxEnt priors were less efficient than those

obtained by MLE methods.

t1i(in days) Jeffreys Gamma Gamma MaxEnt PseudoMaxEnt

(âmm, b̂mm) (âmle, b̂mle) (µ̂mm, σ̂
2
mm) (µ̂mle, σ̂

2
mle)

10 9.4324 2.1150 2.0796 2.1257 2.0782
20 4.5697 1.7352 1.7326 1.7356 1.7306
30 3.2929 2.8665 1.5762 1.5762 1.5768
40 2.8895 2.5810 1.5695 1.5695 1.5431
50 2.3072 1.3563 1.3547 1.3565 1.3534
60 1.6611 1.1715 1.1721 1.1717 1.1801
70 1.3013 1.1178 1.1237 1.1170 1.1196
80 1.2540 0.9183 0.9088 0.9070 0.8939
90 1.0108 0.8161 0.8140 0.8168 0.8101
100 0.7710 0.6606 0.6609 0.6600 0.6614
110 0.4619 0.3789 0.3779 0.3798 0.3775
120 0.2280 0.1699 0.1695 0.1699 0.1695

Table 1.7 Absolute error discrepancy of point predictors with different values of t1i for the
mammary tumors in a carcinogenicity data set (Treatment group).

Automobile Warranty Claims Study

Now we apply the same methods to a warranty data set from the automobile industry to

predict the eventual number of warranty claims using the data already observed. This data

set which describes warranty claims contains warranty information on 42188 cars which were

sold over a period of 171 weeks. Each car had a three year or 36000 mile warranty, whichever

came first. The following times were recorded for each car: production time, time of sale and,

claim time(s) if any. This prediction of the number of claims is important for many reasons

such as comparisons across production years or when interest centers on extrapolating the

data to forecast the total cost of repairs.

Let Ni(−∞, t) be the total number of warranty claims for the ith car t days after it was

sold. We note that some claims could occur between the production day and the day of sale

and that’s why Ni(−∞, 0) is not necessarily equal to 0. Since Ni(−∞, 0) and Ni(0, t) often
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have to be modeled differently (Fredette and Lawless, 2007), we will focus here, without loss

of generality, on the prediction of Ni(0, 365), the total number of warranty claims for each

car i the first year after its sale. The range of the number of claims for each car was 0 to 22

claims and the total number of claims was 33438. We note here that in order to make this

data set adaptable to a homogeneous Poisson process and therefore suitable for our methods,

we prefer to use cars only during the first year of their three year warranty since the rate of

occurrence of claims is almost constant throughout this time period. After one year, the rate

of occurrence usually decreases because of mileage dropout. Table 1.8 shows the distribution

of total claims amongst all the cars.

Number of claims Number of cars
0 26.693
1 7, 911
2 3, 421
3 1, 773
4 939
5 555
6 380
7 188
8 112
9 84

10+ 129

33, 438 42, 188

Table 1.8 Frequency Distribution of all Warranty Claims.

We can see that 63% of the cars never had a warranty claim, 19% of the cars had only

one claim and only 18% of the cars had 2 or more claims before the end of the warranty.

Figure 1.1 gives a histogram of the occurrence times of claims during the year where each car

is potentially under warranty. It appears that, except maybe for the first 50 days, the rate of

occurrence of claims appears homogenous over the warranty claims time period.

In order to study this warranty data set from the automobile industry using the methods

described here for point prediction, we will find predictors and the actual coverage probability
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Figure 1.1 Histogram of the occurrence times.

of the prediction intervals for Ni(t1i, t2i) with different values of t1i converging towards t2i.

Table 1.9 presents the average distance between the actual value of Ni(t1i, t2i) and its

prediction, where t2i = 365 and with the different values of t1i = (45, 85, ..., 365). From this

table, we can see the disadvantage of using the method based on the Jeffreys’ prior. In fact

using either of the MaxEnt and pseudo-MaxEnt methods usually gives the best prediction,

followed closely by the empirical Bayes method using the maximum entropy gamma prior

with the MLE method. We note that the MM estimators for the maximum entropy gamma

method produced results less efficient than the MaxEnt and Pseudo-MaxEnt methods.

t1i(in days) Jeffreys Gamma Gamma MaxEnt PseudoMaxEnt

(âmm, b̂mm) (âmle, b̂mle) (µ̂mm, σ̂
2
mm) (µ̂mle, σ̂

2
mle)

45 9.5166 6.6803 4.8853 4.8840 4.8802
85 4.7006 3.4990 2.5209 2.5198 2.5205
125 2.9445 2.3051 1.7251 1.7243 1.7237
165 2.0343 1.6734 1.3182 1.3176 1.3181
205 1.4567 1.2505 1.0467 1.0462 1.0466
245 1.0570 0.9482 0.8384 0.8380 0.8376
285 0.7340 0.6835 0.6352 0.6350 0.6349
325 0.4533 0.4382 0.4249 0.4249 0.4250
365 0.0000 0.0000 0.0000 0.0000 0.0000

Table 1.9 Absolute error of point predictors with different values of t1i for the automobile
warranty claims data sets.
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As both maximum entropy priors, the gamma and the truncated normal introduced here

perform well for prediction in homogeneous Poisson processes but in different cases one

performs better than the other we are faced with the question of which one to choose. The

first test is to calculate the empirical centred moments of the data and determine whether

µ
′
2 ≤ 2µ1

2. If this answer is negative, then we must choose the gamma. If positive, then Table

1.6 in Section 4 indicates to us that the empirical skewness and kurtosis can be calculated and

compared to the skewness and kurtosis calculated based on the gamma prior or truncated

normal prior. We propose that this could be used as a decision aid. We illustrate this concept

with the 2 data sets.

Skewness Kurtosis
Empirical Hypothetical 0.4566984 2.136324

Hypothetical truncated normal 1.653976 3.002978
Hypothetical gamma 2.005476 9.032898

Table 1.10 Theoretical and empirical skewness and kurtosis values for the mammary tumors
in a carcinogenicity data set (Treatment group).

Skewness Kurtosis
Empirical Hypothetical 1.388075 3.624457

Hypothetical truncated normal 1.646746 3.001122
Hypothetical gamma 1.99911 8.994664

Table 1.11 Theoretical and empirical skewness and kurtosis values for the automobile war-
ranty claims data sets.

The results in Tables 1.10 and 1.11 allow us say that for both data sets it is advantageous to

use the truncated normal prior rather than the gamma prior since both hypothetical skewness

and kurtosis values using the truncated normal prior for this prior are much closer to the

empirical ones. This is especially true for the warranty data.

1.5 Concluding Remarks and Extensions

For recurrent event data modeled by homogeneous Poisson processes, we propose maxi-

mum entropy methods matching for the first and second moments for prediction of recurrent

events and we show that the resulting truncated normal prior when it exists is an interesting

alternative in many cases to the method using the maximum entropy gamma prior resulting
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in the NB posterior distribution. The existence of the truncated normal prior as the solution

requires that the empirical µ
′
2 ≤ 2µ1

2. Provided this solution exists, we use both matching

moments and maximum likelihood to estimate the parameters for the truncated normal prior.

Moreover, it has been shown that the truncated normal prior using either matching moments

or maximum likelihood estimation methods is preferable to a totally noninformative Jeffreys’

prior for the prediction of recurrent events studied here. A possible reason for this may be

that maximum entropy methods allow us to make use of information that is available and

find a prior that is as noninformative as possible using this minimal level of information. It

is also superior to the usual frequency methods studied here.

In the comparison between the truncated normal prior and the gamma prior for prediction

of future events in the homogeneous Poisson processes, the first criterion to check is whether

the empirical µ
′
2 ≤ 2µ1

2 so that we can be more certain that the solution as a truncated

normal prior exists. It should also be noted that the MaxEnt and the Pseudo-MaxEnt meth-

ods in the simulation study seem to predict well for the set of pairs of constraints on the

unknown parameter vector λ when the amount of truncation and the coefficient of variation

for the λi are not very large. Although both priors perform well, in some cases one method

appears superior to the other and vice versa. To help in this choice when analysing data, we

propose to compare the empirical skewness and kurtosis to the hypothetical skewness and

kurtosis obtained by assuming that the data were generated by either the truncated normal

prior or the gamma prior.

Both methods of estimation, the MaxEnt and Pseudo-MaxEnt, produce very good results

in terms of the comparison criteria we used. Although the method of Pseudo-MaxEnt does

not offer a major improvement over the MaxEnt (matching moments) method, it is a promis-

ing technique which requires further study.

Finally, we conjecture that the MaxEnt and Pseudo-MaxEnt methods could provide more

flexibility for modeling various recurrent events distributions with heavy tails and various

shapes by matching higher moments. This will be the subject of our future research for

homogeneous Poisson processes and also for nonhomogeneous Poisson processes.

29



Acknowledgements

The research of the first author was partially supported by a fellowship from Université
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Chapter 2

Choosing between higher moment

maximum entropy models and its

application to homogeneous point

processes

Abstract

Using random effects in the modeling of homogeneous Poisson processes (HPP) has

proved effective (Cook and Lawless (2007) and Gongjun et al. (2015)). We (Khribi et

al. (2015)) compared the truncated normal prior (truncated at 0) to the usual gamma

prior in the prediction for homogeneous Poisson processes and we concluded that the

truncated normal prior (which is equivalent to the 2-moment maximum entropy prior)

compared very favorably to the gamma one. This method was called the general Poisson-

MaxEnt model. Unfortunately, because of the 2-moment condition on our maximum

entropy prior, we were restricted to considering only cases where the coefficient of vari-

ation was less than or equal to 1 (Wragg and Dowson (1970)). Here we remove this

restriction by the use of the k-moment maximum entropy prior (k > 2). The effective-

ness of the general Poisson-MaxEnt model with this k-moment prior for prediction in

HPP was measured by two goodness-of-fit criteria: Kullback-Leibler divergence and a

discrepancy measure. The estimators obtained by these methods are compared to the

estimators obtained with the two moment maximum entropy prior and the gamma prior



used by (Khribi et al. (2015)). The likelihood ratio test is used in order to determine

when to stop adding higher order moments. We also illustrated on two examples: one

concerning the occurrence of mammary tumors in laboratory animals taking part in

a carcinogenicity experiment and the other, a warranty data set from the automobile

industry.

Keywords: Recurrent events; mixed-Poisson; the maximum entropy principle; mo-

ment matching; maximum likelihood estimation; discrepancy measure; Kullback-Leibler

divergence; likelihood ratio test; mean square prediction error.

2.1 Introduction

In the study of the prediction problem for homogeneous Poisson processes (HPP), the

recurrent events often display extra-Poisson variation. This occurs in various fields such as

biomedicine (Gongjun et al. (2015)), marketing (Brijs et al. (2004)) and reliability (Fredette

and Lawless (2007)). Such variation is usually handled in an empirical Bayesian fashion and

the gamma prior is the most common choice. In Khribi et al. (2015) we compared the perfor-

mance of the two moment maximum entropy prior to other common ones such as the gamma

prior in this prediction problem. We also compared two different estimation methods: the

commonly used matching moments used by Aroian (1948), Wragg and Dowson (1970), Zell-

ner and Highfield (1987), Mohammad-Djafari (1991, 1992), Ximing Wu (2003) and Khribi et

al. (2015) as well as maximum likelihood (ML), as suggested by Mohammad-Djafari (1992),

to estimate the moments in the two moment problem. The maximum likelihood estimation

method did as well as the moment matching method and often outperformed it. Unfortu-

nately, the Wragg and Dowson (1970) result implies that only cases where the coefficient of

variation is less than one can be considered with this entropy prior. This has led us to con-

sider higher moment maximum entropy priors here for this problem of prediction of recurrent

events.

To the best of our knowledge, the maximum entropy prior with more than two moments

has not previously been used in the prediction of recurrent events. Our aim here is to use

the general Poisson-maximum entropy (Poisson-MaxEnt) model for this problem, where the

heterogeneity between events is taken into account by the use of the prior obtained by maxi-
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mizing the entropy. Given the excellent performance of the MLE method for the two moment

problem and its ease of computation compared to matching moments especially when the

number of moments is greater than 2, we chose to use MLE here. This will be called the

MLE-MaxEnt method. The maximum entropy density with k-moments (k > 2) is of excep-

tional interest because it covers a wide variety of possibilities. For example, these densities

have the possibility of bimodality, an important property which has been discussed in the

literature (e.g., Eisenberger(1964) and Broadbent (1966)). We compare the k-moment max-

imum entropy prior distribution for the Poisson process with the two moment maximum

entropy prior and the gamma prior which is popular among the conjugate priors and results

in the negative binomial (NB) posterior distribution. It should be noted that the gamma

distribution can also be considered as a maximum entropy distribution under different con-

straints (Mohammad-Djafari (1991)).

The remainder of this paper is organized as follows. In Section 2, we describe the maximum

entropy principle and we recall the definition of a homogeneous Poisson process (HPP) and

then we introduce the Poisson-MaxEnt model. Section 3 discusses the maximum likelihood

approach to estimate the vector of parameters of this general Poisson-MaxEnt model. In

Section 4, the performance of the k-moment maximum entropy priors for different values of

k proposed here and their comparison with the use of the gamma conjugate prior are studied

through Monte Carlo simulations. In order to test our methods we used many different priors

to generate the original random effects including the k-moment maximum entropy priors,

the gamma, the generalized gamma, the Weibull, the lognormal, the uniform and the inverse

gaussian.

The performance of the k-moment maximum entropy priors is evaluated by the Kullback-

Leibler criterion (Kullback-Leibler (1951)) and a discrepancy measure equal to the root mean

square prediction error between the predicted value obtained using a specific prediction model

and the estimator obtained here using our methods. Discrepancy is a general term usually

measuring differences between an empirical value and the theoretical one. It is used in many

different types of applications (for example, Chen et al. (2008) and Dick and Pillichshammer
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(2014)).

The method is also illustrated using two real examples modelled by homogeneous Poisson

processes, one of them concerning the occurrence of mammary tumors in laboratory animals

taking part in a carcinogenicity experiment and the other one, a warranty data set from the

automobile industry. Here we propose several different prediction models using k-moment

priors with different values for k . We study the performance of such prediction models us-

ing the absolute error discrepancy equal to the absolute difference between point predictors

calculated with different models for the random effects. We also assess the adequacy of these

prediction models for these data sets on the basis of the likelihood ratio test. A general

discussion with concluding remarks is presented in Section 5.

2.2 The Maximum Entropy Principle and The Homogeneous Poisson Process

Here we describe the maximum entropy principle and we introduce the homogeneous

Poisson process (HPP) and the Poisson-MaxEnt model.

2.2.1 The Maximum Entropy principle

As we saw in our study (Khribi et al. (2015)), the entropy of a probability density π(λ) is

a measure of the amount of information contained in the density and was first defined by

Shannon (1948) as

H = −
∫
λ

π(λ) ln(π(λ))dλ.

The goal is to maximize H subject to certain side conditions. The usual choice to determine

π(λ) is to use a finite set of expectations µj = E[φj(λ)] of known functions φj(λ), j = 0, ..., k

and to match these empirical moments. This is called the matching moment (MM) estima-

tion method. These known functions φj(λ) are often the arithmetic non-central moments of

the form φj(λ) = λj, j = 0, ..., k. In this simple case, using the arithmetic non-central mo-

ments, maximizing the likelihood yields the same estimates as the matching moment method

(Mohammad-Djafari (1992)).
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To find the function π(λ) that maximizes the entropy of this nonlinear problem using

matching moments, we form the Lagrangian

L =
k∑
j=0

αj

(∫
R+

λjπ(λ)dλ− µj
)
.

where α is a vector of Lagrange multipliers. Applying the Lagrange’s multiplication method

(Weinstock (1952)), the following k-moment maximum entropy prior distribution is defined

by:

π(λ|α) = A exp (−
k∑
j=1

αjλ
j), (2.1)

where α = (α1, α2, ..., αk) and with normalization constant defined by:

A =
1∫

R+ exp (−
∑k

j=1 αjλ
j)dλ

.

Clearly the k-moment maximum entropy distribution given k non-central moments that

maximizes the entropy is of interest for modeling data. For example, to specify a mixture

consisting of a linear combination of two normal distributions, we need five independent

parameters. This case has been treated in detail by several authors (e.g., Cohen (1967) and

Gridgeman (1970)), and it can clearly give rise to a bimodal probability distribution. However,

unless we can readily identify the existence of two component distributions, it would seem

beneficial if we use a model requiring fewer than five parameters, if available; the maximum

entropy prior given four non-central moments is just such a model.

2.2.2 Homogeneous Poisson Process

We let N(s, t) represent the number of events occurring for a subject in the time interval

(s, t] with N(t) representing N(0, t). To model such recurrent events, many different types

of processes are discussed in the literature (see Cook and Lawless (2007)) where the Poisson

process (PP) is one of the most popular ones. We will consider here only continuous time

processes where two events cannot occur simultaneously. The number of events can be defined
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through the intensity function,

λ(t|H(t)) = lim
4t→0

P [N(t, t+4t) = 1|H(t)]

4t
,

where H(t) denotes the history of the process up to time t.

Here the intensity function we use to model these events is the one corresponding to a

HPP where the rates are the unknown parameters. Suppose that we have n subjects and

that Ni(t) denotes the number of events occurring for a subject i up to time t. When these

processes are time-homogeneous, the model is defined by:

Ni(t)|λi ∼ PP (λi),

λi ∼ π(λi), (2.2)

where the processes are independent and i = 1, ..., n. We also suppose here that each

process is observed up to a fixed time t1i and that the interest is to find a point predic-

tor or a prediction interval for Ni(t1i, t2i)|N(t1i)’s for i = 1, ..., n. Throughout this article,

(λ1, λ2..., λn), (N1(t11), ..., Nn(t1n)) and (N1(t11, t21), ..., Nn(t1n, t2n)) will be denoted by λ,

N(t1) and N(t1, t2) respectively.

2.2.3 Model specification of the Poisson-MaxEnt model

The general Poisson-MaxEnt model with k-moments that we develop is then given by:

Ni(t)|λi ∼ HPP (λi),

π(λi;α) = A exp (−
k∑
j=1

(αjλ
j
i )), (2.3)

where A = 1∫
R+ exp (−

∑k
j=1 αjλ

j)dλ
is a normalization constant and α = (α1, α2, ..., αk) is a vector

of parameters. Clearly, αk must be positive.
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For the general Poisson-Maximum Entropy model (2.3), the joint posterior distribution of

all the unknown parameters λ|N(t1) is given by

π(λ|N(t1);α) =
P [N(t1) = N(t1)|λ]π(λ;α)∫

λ
P [N(t1) = N(t1)|λ]π(λ;α)dλ

=
n∏
i=1

λ
Ni(t1i)
i exp

(
− λi(α1 + t1i)−

∑k
j=2 αjλ

j
i

)
∫
λi
λ
Ni(t1i)
i exp

(
− λi(α1 + t1i)−

∑k
j=2 αjλ

j
i

)
dλi

. (2.4)

Hence, using this conditional density, the density function for Ni(t1i, t2i)|Ni(t1i) is then

given by

P [Ni(t1i, t2i) = n|Ni(t1i);α] =
(t2i − t1i)n

n!
∫
λi
λ
Ni(t1i)
i exp

(
− λi(α1 + t1i)−

∑k
j=2 αjλ

j
i

)
dλi

×
∫
λi

λ
(Ni(t1i)+n)
i exp

(
− λi(α1 + t2i)−

k∑
j=2

αjλ
j
i

)
dλi. (2.5)

We note that the posterior distribution (2.4) will not have a known closed form, but

includes rather complicated high dimensional densities, which makes direct inference almost

impossible because direct mathematical derivation of these posterior distributions involves

high-dimensional integration which is not mathematically tractable to obtain the normalizing

constant. For this reason, we generate from this posterior distribution a large number of

samples using Markov chain Monte Carlo (MCMC) implemented in WinBUGS (Spiegelhalter

et al.(2003)), and from these samples, we can obtain appropriate parameter estimates such

as the posterior mean of λ|(N(t1);α), where α is estimated by the methods described in the

next section.

2.3 Estimating unknown Poisson-Maximum Entropy parameters

The objective of both estimation approaches, matching moments and maximum likelihood

estimation, in the general Poisson-Maximum Entropy model is to choose the probability dis-

tribution π(λi;α) = A exp (−
∑k

j=1(αjλ
j
i )) for the unknown vector of parameters α which

best represents the observed data N(t).
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In this section, we discuss ways to estimate the vector of the k parameters α of the general

Poisson-MaxEnt model. In the study (Khribi et al. (2015)) for the k = 2 problem, the param-

eters of the maximum entropy distribution with only two moments in the Poisson-MaxEnt

model were estimated by two methods, the usual maximum entropy estimation method which

uses matching moments (MM) and the maximum likelihood method, referred to as the MLE-

MaxEnt here. However, the MLE-MaxEnt method seemed more promising than the MaxEnt

method. Here, we favour the MLE-MaxEnt method because it is computationally less com-

plex than MM method when k > 2. For completeness the matching moment (MM) method

for the MaxEnt-Poisson model will be described in appendix A.

2.3.1 The MLE-Maximum Entropy Method for the Poisson-MaxEnt Model

Here we introduce the MLE-maximum entropy (MLE-MaxEnt) method using MLE for es-

timating the parameters of the empirical Bayes MaxEnt model (2.3). To obtain them, we

construct the marginal likelihood L of the empirical Bayes general Poisson-Maximum En-

tropy model (2.3)

L(α|N(t1)) =

∫
λ

P [N(t1) = N(t1)|λ]π(λ;α)dλ

=
n∏
i=1

t
Ni(t1i)
1i

Ni(t1i)!
Ii(Ni),

with

Ii(Ni) =

∫ ∞
0

λ
Ni(t1i)
i exp

[
−
( k∑
j=1

αjλ
j
i + t1iλi

)]
dλi. (2.6)

Ignoring the terms that do not depend on α, the log-likelihood is given by

l(α|N(t1)) ∝
n∑
i=1

[
ln
(
Ii(Ni)

)]
. (2.7)

One method to find the maximum of (2.7) is to take the partial derivatives and set them

equal to 0 (Zellner and Highfield (1987)). Using Lebesgue’s Dominated Convergence The-
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orem, Talvila (2001) gave necessary and sufficient conditions to interchange the order of

differentiation and integration which are verified for I(Ni) here. Interchanging differentiation

and integration, the first derivatives of (2.7) with respect to α1, α2, ..., αk are given by the

following equations

∂l(Ni)

∂αj
=

n∑
i=1

[− ∫∞
0
λ

(Ni(t1i)+j)
i exp

[
−
(∑k

j=1 αjλ
j
i + t1iλi

)]
∫∞

0
λ

(Ni(t1i))
i exp

[
−
(∑k

j=1 αjλ
j
i + t1iλi

)] ]
= 0, j = 1, 2, ..., k(2.8)

The analytic solutions to the equations in (2.8) are difficult to obtain; thus it is natural to

use a numerical method to estimate directly the vector of parameters α that maximize the

log-likelihood (2.7).

We have chosen MATLAB “fminsearchbnd”, a nonlinear optimization method which is

derivative-free and allows bounds on the variables for this MLE problem. Under our model

(2.3) for HPP, matching moments and the MLE-maximum entropy methods for Poisson-

MaxEnt model will not yield the same estimates. This differs from the simple case without

Poisson processes considered by Mohammad-Djafari (Mohammad-Djafari (1992)).

2.4 Simulation studies and data applications

2.4.1 Simulation Studies

Through extensive simulation studies presented in this section, we will study and compare

the performance of our general Poisson-MaxEnt model with this k-moment prior (k > 2) to

the models using the two moment maximum entropy prior or the gamma prior where the

parameters were estimated using the MLE method. For comparison, we use the following

goodness-of-fit criteria: Kullback-Liebler distance and a discrepancy measure for point pre-

dictions equal to the root mean square prediction error.

Throughout this study, we know that the advantage of using the general Poisson-MaxEnt

model with this k-moment prior (k > 2) for prediction in HPP is that it can be used regard-
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less of the values of the coefficient of variation. This allows us to reflect different orders of

heterogeneity in the data. Among all results obtained with different values of the coefficient

of variation, we only present here the results for two of them in order to be concise: the first

one represents a case where the value of the coefficient of variation is less than 1 and the

second where it is greater than 1. The latter case is used in order to show the benefit of

using the general Poisson-MaxEnt model with this k-moment prior when k > 2 and thus re-

moving the restriction of Wragg and Dowson (1970) that we have in this situation when k ≤ 2.

In order to study which models among those presented in this paper are more robust to

the real distribution of λ, we have chosen several different priors to represent the unknown

prior distribution for the HPP, such as the maximum entropy distributions given 2, 4 and

6 non-central moments, the gamma, the Weibull, the lognormal, the inverse Gaussian, the

generalized gamma and the continuous uniform distribution, to generate the unknown pa-

rameters λ.

Moreover for each value of the coefficient of variation used for these simulation studies, we

generate b = 2, 000 samples from n = 20 HPP’s and assume that these processes are observed

up to the times t1 = {5, 5.5, ..., 9.5, 10, ..., 14.0, 14.5} and we want to predict Ni(t1i, t2i) for

each process i up to the times t2 = {12.5, ..., 12.5, 17.5, ..., 17.5}. The idea behind this choice

is to represent different values of (t2i − t1i).

Kullback-Liebler divergence

One method which allows us to compare the performance of these models is to use their

predictive distributions for Ni(t1i, t2i). Such a comparison can be done by evaluating how

close each predictive density f̃p(y|x) is to the true density f(y|x; θ) where θ is a vector of

unknown parameters. In the literature, to judge the goodness-of-fit of a given predictive

method (e.g. Vidoni (1995) and Komaki (1996)), a common approach has been to assess this

relative closeness with the average Kullback-Liebler (KL) divergence (Kullback and Leibler
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(1951)) which is defined by

DKL

[
f̃p(y|x); f(y|x; θ)

]
= E

[
log
{f(Y|X; θ)

f̃p(Y|X)

}]
=

∫
f(y|x; θ) log

(f(y|x; θ)

f̃p(y|x)

)
dy,

where X and Y represent an actual and a future random variable respectively. We note also

that this divergence is positive unless f̃p(y|x) always coincides with f(y|x; θ).

If the real distribution of Ni(t1i, t2i) is known, we can compare the distance between these

predictive densities and the real density of Ni(t1i, t2i). This should give us an indication of

the ability of these methods to provide adequate prediction of Ni(t1i, t2i)|Ni(t1i).

We measure which predictive density considered is closer to the true one, f(N(t1, t2)|N(t1); θ),

as follows. If we have two contenders, for example, f̃MLE−MaxEnt(N(t1, t2)|N(t1)) and f̃p(N(t1, t2)|N(t1)),

for the role of estimates of the true one, f(N(t1, t2)|N(t1); θ), then f̃MLE−MaxEnt(N(t1, t2)|N(t1))

is closer in terms of KL divergence than f̃p(N(t1, t2)|N(t1)) if

DKL

[
f̃p(N(t1, t2)|N(t1)); f(N(t1, t2)|N(t1); θ)

]
−DKL

[
f̃MLE MaxEnt(N(t1, t2)|N(t1)); f(N(t1, t2)|N(t1); θ)

]
= DKL

[
f̃MLE MaxEnt(N(t1, t2)|N(t1)), f̃p(N(t1, t2)|N(t1))

]
is positive.

Here, the average KL divergence will be estimated by simulating b = 2, 000 samples of

n = 20 HPP and will be defined by

D̂KL

[
f̃MLE−MaxEnt(N(t1, t2)|N(t1)), f̃p(N(t1, t2)|N(t1))

]
=

1

b

b∑
j=1

log
{ f̃MLE−MaxEnt(N

∗
j (t1, t2)|N∗j (t1))

f̃p(N∗j (t1, t2)|N∗j (t1))

}
, (2.9)

where N∗j (t1) and N∗j (t1, t2) are the counts generated for the jth sample, j = 1, ..., b and and

f̃p(N
∗
j (t1, t2)|N∗j (t1)) is the predictive density obtained from the other model to which we are

comparing our estimator.

The results of these simulations are presented in Table 2.1. We use the priors in the first

column of Table 2.1 to generate the “true” random effects and we estimate, using MLE, these

random effects from our four chosen models: the gamma, the 2-moment, the 4-moment and

the 6-moment maximum entropy prior. Each cell of this table contains the value of the average

KL divergence given by (9) between the predictive density f̃MLE−MaxEnt(N
∗
j (t1, t2)|N∗j (t1))
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Table 2.1 Comparison of the average KL distance with the general Poisson-MaxEnt model
with the 6-moment prior as reference model with different values of the coefficient of variation
(c.v.). To render the table more readable, the values of the KL distances have been multiplied
by 1000.

for the general Poisson-MaxEnt model with the 6-moment reference prior and the other pre-

dictive densities f̃p(N
∗
j (t1, t2)|N∗j (t1)) for the other models. We note that a negative value

on a line in this table for a given distribution of λ is written in bold font and it indicates

that the predictive model in that column performs better than our reference model in terms

of KL divergence. Therefore, the absence of negative values on a given line indicates that

our reference method is the most suitable for this distribution of λ. It is also noted that the

higher this value is for the other models, the better the performance of our reference model

compared to the other models.

We note first that the table indicates that the general Poisson-MaxEnt model with this

6-moment prior (as a reference model) performs well compared to the other models: the val-

ues are always positive except for some cases where the true distribution of λ corresponds

perfectly to the method used (Gamma, MaxEnt2MM or MaxEnt4MM). Indeed, when the

value of the coefficient of variation is ≤ 1 and the random effects are neither generated by

the gamma or a MaxEnt prior, we note that the Poisson-MaxEnt model with the 2-moment
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prior and the NB model (gamma prior estimated with the MLE method) are similar in terms

of performance where their predictive densities are closest to the true predictive density

f(N(t1, t2)|N(t1)). Our reference model performed clearly better than the Poisson-MaxEnt

models with the 2-moment and slightly outperformed the 4-moment prior. However, when

the value of the coefficient of variation is > 1, the NB model performs much better than

the Poisson-MaxEnt model with 2 moments. Nevertheless, our reference model performs is

still clearly better than the NB model and the Poisson-MaxEnt model with 2 or 4 moments

except when the random effects are generated by the gamma or the 4-moment prior. Except

the few exceptions mentioned above where the true distribution of λ corresponds perfectly

to the method used, we see that our reference model always provide the closest predictive

density. Moreover, whatever the value of the coefficient of variation used for these simulation

studies, our reference model has a better performance compared to the other models and

thus exhibits a robustness to the type of distribution of λ.

Finally we note that when the value of the coefficient of variation is greater than 1 the

Poisson-MaxEnt model with the maximum entropy 2-moment prior gives a positive value

of (2.9) (=11.8) for the KL divergence in spite of the fact that theoretically the coefficient

of variation must be ≤ 1 in order for this prior to be defined (Wragg and Dowson (1970)).

The use of this approach is therefore not recommended in this case; however, the results are

presented here as well for illustrative purposes.

Discrepancy measure

We also compare the adequacy of each point prediction method for Ni(t1i, t2i) obtained from

one of the four models for the random effects used in this simulation study. We used the

following discrepancy measure, defined here as follows:

D =

√√√√∑n
i=1

(
Ni(t1i, t2i)− N̂i(t1i, t2i)

)2

n
, (2.10)

where N̂i(t1i, t2i) is the point predictor provided by the model chosen and estimated using

maximum likelihood estimation. The value of D represents, for a given sample of n processes,
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the root mean square prediction error between the true value of Ni(t1i, t2i) and its predictor.

The above discrepancy measure is called the root mean square prediction error. Discrepancy

is a term often used to describe a method which compares an empirical value to a theoretical

one.

The results of these simulations are presented in Table 2.2. We use the priors in the first

column of Table 2.2 to generate the “true” random effects and we estimate, using MLE, these

random effects from our four chosen models: the gamma, the 2-moment, the 4-moment and

the 6-moment maximum entropy prior.

We begin by generating the 20 λi’s (i = 1, ..., 20) using one of the models in the first

column of Table 2.2. From this we can obtain Ni(t1i) = Poisson(t1iλi), i = 1, ..., 20 and

Ni(t1i, t2i) = Poisson((t2i − t1i)λi), i = 1, ..., 20. We then estimate λi|Ni(t1i) by the method

suggested in Section 2.3, that is, the Markov Chain Monte Carlo method of Spiegelhalter et

al. (2003) implemented in WinBUGS. The predictor of Ni(t1i, t2i) will equal (t2i − t1i) times

the posterior mean of λi|Ni(t1i) and it will be denoted by N̂i(t1i, t2i). These values are then

put into equation (2.10) to obtain the discrepancy. Table 2.2 consists of the value over 1 of

the ratio of two discrepancy measures where the denominator is calculated using the true

random effects distribution and the numerator is calculated using one of our four chosen

models. We note that in Table 2.2 the smallest value in this table for a given distribution of

λ is written in bold font and it corresponds to the most suitable model. A value close to 0

means that the point predictor N̂i(t1i, t2i) provided by the model chosen is very close to the

true value and thus that model performs very well. For example, a value of 1.11 in the first

line of Table 2.2 means that a prediction based on this model (the NB model) would be on

average 1.11% off from the best possible prediction measured by our discrepancy measure

when all the true parameters are known.

From the results in this table, the first thing we can say is that the general Poisson-MaxEnt

model with the 6-moment prior distribution has the best performance in term of our discrep-

ancy measure when predicting Ni(t1i, t2i). Even when our model does not provide the smallest

value , its value is always very close to the smallest one. It is also robust to the type of distri-

bution used to generate the random effects. That means, the real distribution of the rates λ
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Table 2.2 Comparison using our discrepancy measures, the root mean square prediction error,
for the gamma and the general Poisson-MaxEnt model with k = 2, 4 or 6 moments versus the
best possible prediction assuming full knowledge of λi that is, where the λi are generated by
one of the models listed in the column of random effects. We note that the smallest percentage
of error prediction in this table for a given distribution of λ is written in bold font.

seems to have a small influence on our method. Our model give us the smallest value (value

written in bold font) whatever the distribution used to generate the unknown parameters

λ with the exception of the cases where the random effects were generated by the gamma

or MaxEnt priors and this corresponds to the same pattern observed using the KL divergence.

When the value of the coefficient of variation is greater than 1, the Poisson-MaxEnt model

with the 2-moment prior give us the largest value of the ratio (=1.45) although we used the

2-moment maximum entropy distribution to generate the random effects for the unknown

parameters λ. Again we refer to the Wragg and Dowson result concerning all densities of the

form π(λ) = Ae−(α1λ+α2λ
2) require that the coefficient of variation ≤ 1 and although we do

not recommend this approach in this case, we have added the results for illustrative purposes.

It appears from these simulations that the general Poisson-MaxEnt model with the 6-

moment prior distribution is more effective than the other models in finding point predictors

of Ni(t1i, t2i), the number of events of a HPP.
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Finally, we conclude that although that the NB model can be used in the prediction

problem for HPP whatever the value of coefficient of variation, so can the maximum entropy

prior with k > 2 moments. However, these simulation studies indicate that the general

Poisson-MaxEnt model with higher moments gives us a better performance than the NB

model in the case where the value of coefficient of variation is ≤ 1. When k = 2, the Poisson-

MaxEnt with 2 moments and the NB models are similar in term of performance. On the

other hand, when k > 2 and the value of the coefficient of variation is greater than 1, then

the general Poisson-MaxEnt model with the k-moment prior (k = 4 or 6) truly outperforms

the classical NB model.

2.4.2 Data applications

In this section, we apply the general Poisson-MaxEnt model with the k-moment prior using

the MLE-MaxEnt estimation method to two examples. The first one concerns the time to

occurrence of mammary tumors in laboratory rats in a carcinogenicity experiment using data

from Gail et al. (1980) and the second one, a warranty data set from the automobile industry

using data from Kalbfleisch et al.(1991). These two examples have been previously analysed

using 2-moment priors in Khribi et al. (2015). For these two examples, we propose a suitable

prediction model and study the performance of such model through the discrepancy measure

given by (10). But first, we propose an approach to determine an adequate value for k in

practical applications.

Likelihood Ratio Tests

The likelihood ratio test (LRT) is a hypothesis test that helps us to determine when to stop

adding higher order moments. Using the log-likelihood functions for two models, let us say the

null model with the k-moment maximum entropy prior with k = 2 or 4 and the alternative

model, the model with the (k+ 2)-moment maximum entropy prior, then the test statistic is

the ratio of the log-likelihood of the null model to the alternative model:

Γ = −2 log
( l(α1|N(t1))

l(α2|N(t1))

)
(2.11)
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where l(α1|N(t1)) and l(α2|N(t1)) are the log-likelihood of the null and alternative models

respectively.

This is a statistical test for nested models which rejects the null hypothesis with a given

significance level based on the chi-square distribution (Wilks (1938)). Through successive

testing using the LRT, we determine the number of moments necessary for the k-moment

prior.

Mammary tumors in a carcinogenicity study

We consider the data presented in Gail et al. (1980) on the time to development of mammary

tumors for n = 48 female rats. Rats were exposed to a carcinogen and 60 days later were

randomized to receive either a treatment or no treatment. The data consisted of the days on

which new tumors occurred for each animal over a time period of 122 days. We limited our

interest to the 23 observations in the treatment group in order to have a sample size compa-

rable to the sample size (n = 20) used in our simulation study. We studied these using the

MLE-MaxEnt estimation method for the general Poisson-MaxEnt model with the k-moment

prior and the comparison of the results obtained with models which are defined with the two

moment maximum entropy prior and the gamma prior using the MLE method.

Let Ni(t) (t = time elapsed since the start of the study) be the number of distinct tu-

mors occurring up to time t for the ith subject (i = 1, ..., n) and n = 23. To ensure that

the general Poisson-MaxEnt model and the NB model are adaptable to these data, we treat

the occurrence times as continuous, as Gail et al.(1980) did. We find point predictors for

Ni(t1i, t2i)|Ni(t1i) at times t1i = 10, 20, ..., 120 and t2i = 122 for all i = 1, ..., 23 of this 122

day long longitudinal process. We first determine the value of k by comparing the model

based on a (k+2)-maximum entropy prior for the random effects versus the one based on the

k-moment one using the likelihood ratio test (Wilks (1938)). Then we study the performance

of our model through our discrepancy measure.

For each time t1i, Table 2.3 presents the likelihood ratio test (LRT) results where the last

three columns indicate respectively the p-values of the k-moment maximum entropy prior
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with k=2, 4 and 6 as the null models versus the (k + 2)-moment maximum entropy prior as

the alternative models. Note that the last column shows us the number of moments suggested

for our model.

Based on the results in Table 2.3 with a significance level equal to 5%, we can say that the

LRT always rejects the general Poisson-MaxEnt model with the 8-moment prior. Therefore,

it supports our model with the 6-moment maximum entropy prior as the adequate prediction

model when the maximum entropy prior is used. This means adding other moments does not

allow us to reject our 6-moment predictive model; thus, the LRT provides a stopping rule.

However, we should note that there is one exception, when t1i = 120 the LRT suggest k = 2.

Table 2.3 The likelihood ratio test for the mammary tumors in a carcinogenicity data set.

Table 2.4 presents the absolute error difference between the real value of Ni(t1i, t2i) and

its predictor N̂i(t1i, t2i)|N̂i(t1i) defined in Section 4.1.2. For example, a value of 1.86 in the

first line of Table 2.4 means that a prediction based on this model (the general Poisson-

MaxEnt model with the 6-moment prior) would be on average 1.86 from the real value of

Ni(t1i, t2i). The likelihood ratio test appears to be an appropriate stopping rule, since its
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corresponding average discrepancy values (values in bold font) are always very close to the

smallest absolute error discrepancy. Furthermore, the most interesting result in Table 2.4 is

that Poisson MaxEnt model suggested by the LRT always outperforms the NB model.

Table 2.4 Absolute error discrepancy of point predictors with different values of t1i for the
mammary tumors in a carcinogenicity data set with MLE-MaxEnt estimation method.

Automobile Warranty Claims Study

Now we apply the same methods to a warranty data set from the automobile industry pre-

sented in Kalbfleisch et al.(1991) and Fredette and Lawless (2007)) to predict the eventual

number of warranty claims using the data already observed. This data set which describes

warranty claims contains warranty information on 42 188 cars which were sold over a period

of 171 weeks.

Here Ni(t) represents the number of claims at time t since the day of sale. We are inter-

ested in predicting Ni(365), the total number of warranty claims for each car i during the

first year after its sale. The range of the number of claims for each car was 0 to 22 claims

and the total number of claims was 33 438. Table 2.5 shows the distribution of total claims
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amongst all the cars.

Number of claims Number of cars
0 26.693
1 7, 911
2 3, 421
3 1, 773
4 939
5 555
6 380
7 188
8 112
9 84

10+ 129

33, 438 42, 188

Table 2.5 Frequency Distribution of Warranty Claims during the first year after the day of
sale (Khribi et al. (2015)).

Figure 2.1 (Khribi et al. (2015)) gives a histogram of the occurrence times of claims during

the year where each car is potentially under warranty. Except possibly for the first 50 days,

the rate of occurrence of claims appears homogenous over the warranty claims time period.

Figure 2.1 Histogram of the occurrence times (Khribi et al. (2015)).

Here, we calculate point predictors for Ni(t1i, t2i) with different values of t1i converging

towards t2i = 365 with these predictive models. For every time t1i, Table 2.6 present the LRT
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results where the last three columns indicate respectively the p-values of the k-moment maxi-

mum entropy prior with k=2, 4 and 6 as the null models versus the (k+2)-moment maximum

entropy prior as the alternative models. Note that the last column shows us the number of

moments required for our model. Moreover, Table 2.7 presents the absolute error discrepancy

measure as t2i converges towards 365, using the different values of t1i = (45, 85, ..., 365).

Based on the results in Table 2.6 and with a significance level equal to 5%, we can say

that the LRT supports the model with the 6-moment maximum entropy prior as adequate for

prediction and thus we do not need to add other moments. This validates the results we see

in Table 2.7, where the average absolute error discrepancy for the general Poisson-MaxEnt

model with the 6-moment maximum entropy prior (values in bold font) are always very close

to the lowest one. The only exception occurs when t1i equals 365, where the LRT supports

the MaxEnt prior with only 2-moments.

Table 2.6 The likelihood ratio test for the automobile warranty claims data sets.

Finally, we note from these two examples that when k = 2, the Poisson-MaxEnt with

2-moments and the NB models are similar in terms of performance. On the other hand, when

k > 2, the general Poisson-MaxEnt predictive model suggested by the LRT is clearly more

adequate than the classical NB model using the conjugate gamma prior.

2.5 Concluding Remarks and Extensions

In this paper we have outlined a model, the general Poisson-MaxEnt model with the k-

moment prior for prediction problem for HPP. This model is tested as to its effectiveness for

prediction measured by different goodness-of-fit criteria. We note that the use of this prior
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Table 2.7 Absolute error discrepancy of point predictors with different values of t1i for the
automobile warranty claims data sets with MLE-MaxEnt estimation method.

with more than two moments allows us to remove the restriction of Wragg and Dawson that

the coefficient of variation must be less than one.

We used maximum likelihood estimation method to estimate the parameters in the gen-

eral Poisson-MaxEnt model because it is computationally less complex than the matching

moments procedure when k > 2. The use of the k-moment maximum entropy prior produced

very good results in terms of the comparison criteria (KL divergence and a discrepancy mea-

sure) we used here with different values of the coefficient of variation in our simulation studies.

Finally, we have shown using two data sets the effectiveness of the general Poisson-MaxEnt

model for prediction problems. The LRT was used in the analysis of the two data sets as a

stopping rule for adding more moments.

We know that the classical NB model obtained with the conjugate gamma prior is the

usual choice for prediction problems. This model can be used whatever the value of coef-

ficient of variation. Through these simulation studies and the two data sets, we have seen

that the Poisson-MaxEnt model with k > 2 has generally a better performance than the NB

model whether the value of coefficient of variation is smaller or greater than one.

In our future research, it will be very interesting to use these methods allowing prediction

of recurrent events using flexible nonhomogeneous Poisson processes with priors that have
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heavy tails and various shapes and with possible heterogeneity amongst the individual units

modeled with higher moment maximum entropy priors.

Appendix A: Moment Matching Estimation for the Poisson-MaxEnt Model

Here we illustrate how to use the moment matching (MM) estimation for the Poisson-

MaxEnt method.

We consider the maximum entropy method for the empirical Bayes general Poisson-

MaxEnt model with moment matching (MM). This involves matching the first k uncon-

ditional moments with k > 2 with their corresponding empirical non-central moments.

Letting Ri = Ni(t1i)
t1i

, we can show that the first k unconditional moments for an unknown

parameter λi truncated at 0 are defined by:

E[λi] = E[Ri] = µ1; E[λ2
i ] = E[R2

i ] − 1
t1i
µ1 = µ2 and for j > 2, we have the following

recurrence formula

µj = E[Rj
i ]−

j−1∑
s=1

ts−j1i µs

[ 1

s!

s∑
m=0

(−1)s−m
(
s

m

)
mj−1

]
j = 3, 4, ..., k.

Then we have to solve the following nonlinear system of equations∫
R+

λjiπ(λ|α)dλi = µ̂j j = 1, 2, ..., k. (2.12)

with π(λ|α) = A exp (−
∑k

j=1(αjλ
j
i )) with A = 1∫

R+ exp (−
∑k
j=1 αjλ

j)dλ
and µ̂1 = R; µ̂2 =

R2 − t−1
1i µ̂1; and the following recurrence formula for µ̂j

µ̂j = Rj −
j−1∑
s=1

ts−j1i µ̂s

[ 1

s!

s∑
m=0

(−1)s−m
(
s

m

)
mj−1

]
j = 3, 4, ..., k.

where t−j1i is the sample average of 1

tj1i
, while Rj is the sample average of the Rj

i ’s.

One way to solve this problem is to transform the nonlinear system of equations (2.12)

into an unconstrained optimization problem and then use a numerical integration and the
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“fminsearchbnd” MATLAB function described earlier to obtain an exact density

π(λ|α) = A exp (−
k∑
j=1

(αjλ
j
i )) for k > 2. (2.13)

Here we note that Mohammad-Djafari (1991), has implemented his numerical method in

MATLAB which allows us to estimate the vector of parameters in the maximum entropy

distribution.

Another way is to specify the k-moment prior completely. For that, we substitute (2.13)

into (2.12) and solve this highly nonlinear set of equations for the α in terms of the k known

empirical moments.

For given µ̂1, µ̂2,...,µ̂k the corresponding values of α1, α2,...,αk are obtained by solving

the set nonlinear equations

∫
R+

λjie
−
[∑k

j=1 αjλ
j
i

]
= µ̂j

∫
R+

e
−
[∑k

j=1 αjλ
j
i

]
j = 1, 2, ..., k. (2.14)

We see that this is not an easy problem as it involves, among other things, the integration of

an exponential function in which the exponent is of degree k and also that no general analytic

solution exist for this highly nonlinear set of equations. That’s why we adopt a numerical

method that should lead to good approximate solutions for the vector α.

Let α0 = (α0
1, α

0
2, ..., α

0
k) is a vector of initial values of α and let ε the vector defined by the

equations

εj = αj − α0
j j = 1, 2, ..., k. (2.15)

By linearizing (2.14) we see that the εj approximately satisfy k simultaneous equations of

the form

(Wi+j − µ̂iWi)εi = Wi − µ̂iC0 i, j = 1, 2, ..., k (2.16)
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where

Wt =

∫
R+

λtie
−
[∑k

j=1 αjλ
j
i

]
dλi t = 1, 2, ..., 2k.

Thus, given a sufficiently good initial approximation (α0
1, α

0
2, ..., α

0
k), the system (2.16) is

solved for α = α0 +ε, which becomes our new vector of trial α, and iterations continue until

ε becomes appropriately small.

We note that for t < k a numerical calculation with MATLAB has to be performed, but

for t ≥ k recurrence relations of the form

Wt =
1

kαk

[
(t+ 1− k)W(t−k) −

k−1∑
j=1

αjW(t+j−k)

]

can be used.
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Chapter 3

A Nonhomogeneous Poisson process

predictive model using maximum

entropy prior random effects with

application to predict purchases

Abstract

Using a higher order maximum entropy prior for the random effects in the prediction

of future events for a homogeneous Poisson process compared favorably to the usual

gamma prior (Khribi et al., 2016). In this paper the time homogeneity assumption is

relaxed and we propose a predictive model for recurrent events using flexible nonho-

mogeneous Poisson processes (NHPP). In addition, possible heterogeneity amongst the

individual units is modeled using higher moment maximum entropy priors instead of

the gamma prior. We assess the performance of such a model with a real data set from

a loyalty program and compared its adequacy to the negative binomial model using the

conjugate gamma prior.

Keywords: Recurrent events; mixed-Poisson; Nonhomogeneous Poisson process;

maximum entropy principle; maximum likelihood; forecasting.



3.1 Introduction

This paper deals with prediction problems, specially problems when recurrent events are

concerned. In many settings, it is important for example to predict the numbers of events

that will occur in future time periods. The motivation for our work lies in the prediction

of individual activity level based on the data already observed or other events that occur

for individual units or subjects in a population. The database at hand was obtained from a

loyalty program at a major commercial airline.

The prediction of recurrent events has been discussed in specific contexts such as war-

ranty claims (e.g. Khribi et al., 2016 and Fredette and Lawless, 2007), insurance claims (e.g.

England and Verrall, 2002) where predictions are used, for example, for fiscal planning or for

taxation purposes and often in software reliability (e.g. Amin et al., 2013) where decisions

about the time to stop testing and releasing software are influenced by predictions of the

number of new bugs that would be found if testing were to continue. In these situations,

the recurrent events often display extra-Poisson variation usually handled by an empirical

Bayesian model using a gamma prior. To relax the time homogeneity assumption, we develop

a model allowing finite-horizon prediction of recurrent events using flexible nonhomogeneous

Poisson processes with higher moment maximum entropy priors random effects as a predic-

tive model. Such a model has not previously been used in the prediction of recurrent events.

According to our two previous articles (Khribi et al., 2015) and (Khribi et al., 2016), we

have seen the importance of using the higher moment maximum entropy prior instead of

the gamma prior when we deal with problems when recurrent events are concerned. For this

reason, the main idea of our article is to compare the performance of the proposed predic-

tive model using the higher moment maximum entropy prior for the random effects with the

negative binomial (NB) model used for example by (Fredette and Lawless, 2007) to forecast

automobile warranty claims which uses a gamma prior for the random effects. The choice of

a gamma prior was motivated by its nice mathematical properties when used with Poisson

processes.
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The remainder of this paper is organized as follows. In Section 2, we outline the assump-

tions relative to the use of mixed nonhomogeneous Poisson models for predicting recurrent

events. Then, we describe the maximum entropy principle before providing details on the

development and estimation of our model. In Section 3, the performance of the proposed

approach is studied in a particular data setting from a major airline company and its com-

parison with the NB model using the conjugate gamma prior. We finally conclude with a

discussion of our results, limitations, and avenues for future research in Section 4.

3.2 Prediction of Recurrent Events with Mixed Poisson Models

Here we present the nonhomogeneous Poisson processes, then we recall the maximum

entropy principle used to take account the possible heterogeneity amongst the individuals

and presented for example in our studies (Khribi et al., 2015 and Khribi et al., 2016), finally

we define the Poisson-maximum entropy model.

3.2.1 Mixed Nonhomogeneous Poisson Processes

The motivation for our work lies in the prediction of a real data set from a loyalty program

or other events that occur for individual units or subjects in a population. That is, there is

a finite population of units i = 1, . . . , n and we wish to predict the total number of events,

for an individual or the whole population over a specified time period (0, T ] on the basis of

events that have already occurred up to given times ti ≤ T for the units in the population.

In practice, this interval (0, T ] would typically refer to a calendar or fiscal year time period,

and the various ti’s would usually take the same value for all units.

Let t represent the number of days elapsed since the beginning of the calendar year, and

let Ni(u, v) denote the number of events in the age interval u < t ≤ v. The objective is then

to predict Ni(0, T ) the total number of events associated with unit i up until time T , where T

could possibly represent the end of the year. Of course, as an added benefit, it may eventually

be useful to predict the total number of events during the whole year by predicting

N+ (0, T ) =
n∑
i=1

Ni (0, T ) . (3.1)
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Of course, Ni(0, T ) will ultimately be known for each i once the calendar year is over.

However, in several situations, it might be useful to predict this value on the basis of pre-

vious experience with this unit but also on the basis of events that have already occurred

during that calendar year. Because Ni(0, ti) is known for each i = 1, . . . , n where 0 ≤ ti ≤ T ,

prediction of Ni(0, T ) is equivalent to predicting Ni(ti, T ).

For convenience, we consider continuous time processes where two events cannot occur

simultaneously. From this point on, we also write N(t) for N(0, t). Different types of recurrent

events processes are discussed in the literature on point processes (Grandell, 1997). These

are all characterized by an event intensity function

λ(t|H(t)) = lim
∆t→0

P [N(t, t+ ∆t) = 1|H(t)]

∆t
(3.2)

where H(t) denotes the history of the process up to time t. Poisson processes are Markovian

because (3.2) depends only on t. The intensity, or rate, function is then simply denoted by

λ(t), and

N(t) ∼ PP (λ(t))

means that N(t) is a nonhomogeneous Poisson process (NHPP) with rate function λ(t).

It is well known that in a Poisson process, the total number of events over any interval

has a Poisson distribution, and that the number of events N(s1, t1) and N(s2, t2) in two

nonoverlapping time intervals (s1, t1] and (s2, t2] are independent. These two properties make

Poisson processes easy to use with prediction problems involving recurrent events. However,

in populations with heterogeneous units, it is generally necessary to extend the models by

including unit-specific random effects. Such models are termed random-effects, or mixed,

Poisson processes (e.g., Lawless, 1987; Grandell, 1997).

We model the rate function for a single process with parametric forms λ(t;α, β) = αf(t; β),

where α is a scalar and β is a vector of low dimension. This parameterization is convenient

because f(t; β) and α measure different aspects of a NHPP; the function f(t; β) describes the

shape of the rate function, and α represents the overall event frequency. In the finite-horizon

problems, it is convenient to choose α so that E[N(0, T )] = α, in which case
∫ T

0
f(t; β)dt = 1.
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That is, f(t; β) has the form of a probability density function over (0, T ].

3.2.2 The Maximum Entropy principle

As we saw in our studies (Khribi et al., 2015 and Khribi et al., 2016), the entropy of a

probability density π(α) is a measure of the amount of information contained in the density

which was first defined by Shannon (1948) as

H = −
∫
α

π(α) ln(π(α))dα.

The goal is to maximize H subject to certain side conditions. The usual choice to determine

π(α) is to use a finite set of expectations µj = E[φj(α)] of known functions φj(α), j = 0, ..., k.

This is called the matching moment (MM) estimation method. These known functions φj(α)

are often the arithmetic non-central moments of the form φj(α) = αj, j = 0, ..., k. In this

simple case using the arithmetic non-central moments maximizing the likelihood yields the

same estimates as the matching moment method (Mohammad-Djafari (1992)).

To find the function π(α) that maximizes the entropy of this nonlinear problem using

matching moments we form the Lagrangian

L =
k∑
j=0

γj

(∫
R+

αjπ(α)dα− µj
)
.

where γ is a vector of Lagrange multipliers. Applying the Lagrange’s multiplication method

(Weinstock, 1952). The following k moment maximum entropy prior distribution is defined

by:

π(α|γ) = A exp (−
k∑
j=1

γjα
j), (3.3)
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where γ = (γ1, γ2, ..., γk) and with normalization constant defined by:

A =
1∫

R+ exp (−
∑k

j=1 γjα
j)dα

.

3.2.3 Model specification of the general Poisson-maximum entropy model

To consider scenarios in which heterogeneity is observed among the processes for different

units, we incorporate unobservable iid random effects in our model by using the k moment

maximum entropy distribution given k non-central moments. The general Poisson-MaxEnt

model considered in this article is

Ni(t)|αi ∼ PP (αif(t; β)), (3.4)

π(αi;γ) = A exp (−
k∑
j=1

γjα
j
i ),

where i = 1, . . . , n and γ = (γ1, ..., γk) and with normalization constant defined by:

A =
1∫

αi
exp (−

∑k
j=1 γjα

j
i )dαi

.

We will propose later an efficient criterion which allows us to determine the number of mo-

ments necessary for the k-moment priors in the model (3.4). And for our particular data set

studied here it will be seen further that the model (3.4) performs very well when the number

of moments k is equal to 4.

3.2.4 Prediction

We seek to construct prediction intervals for a future random variable Y , given observed data

X = x. Such intervals are of the form (L(x), U(x)), and we attempt to find intervals where

P [L(X) ≤ Y ≤ U(X)] equals some specified fixed value 1− ζ, in which case (L(x), U(x)) is

called a 1 − ζ prediction interval (e.g., Lawless and Fredette, 2005) and 1 − ζ is called its

coverage probability.
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In the context discussed in this article, we wish to use the information regarding the n

processes that are available at a certain given time to make predictive statements about the

remaining number of events that would be observed. As it is the focus of our article, only

the prediction of a single count Ni(ti, T ) is discussed here. It is easy to make the extension

to predict the sum of all counts (1).

For each process, the information available to make our prediction consists of the total

number of events, Ni(ti), and the set of occurrence times, τ i(ti) = {τ i1, . . . , τ iNi(ti)}. The

conditional distribution π(α|(N(t), τ);γ,β) of the random effects is defined by:

π(α|(N(t), τ);γ,β) =
L(α,β|(N(t), τ))π(α;γ)∫

α
L(α,β|(N(t1), τ))π(α;γ)dα

=
n∏
i=1

α
Ni(ti)
i exp

(
− αi(γ1 + F (ti;β))−

∑k
j=2 γjα

j
i

)
∫
αi
α
Ni(ti)
i exp

(
− αi(γ1 + F (ti;β))−

∑k
j=2 γjα

j
i

)
dαi

(3.5)

where

L(α,β|(N(t), τ)) =
n∏
i=1

(
Ni(ti)∏
j=1

αif(τ ij;β)

)
e−αiF (ti;β)

and N(t) = (N1(t), . . . , Nn(t)).

Then for each process i the αi|(N(t), τ) has a distribution defined by:

π(αi|(N(t), τ);γ,β) =
α
Ni(ti)
i exp

(
− αi(γ1 + F (ti; β))−

∑k
j=2 γjα

j
i

)
∫
αi
α
Ni(ti)
i exp

(
− αi(γ1 + F (ti; β))−

∑k
j=2 γjα

j
i

)
dαi

where F (t; β) =
∫ t

0
f(u; β)du.

Hence, using this conditional density, the density function for Ni(ti, T )|Ni(ti;γ,β) is given

by

P [Ni(ti, T ) = n|Ni(ti);γ,β] =
(F (T ;β)− F (ti;β))n

n!
∫
αi
α
Ni(ti)
i exp

(
− αi(γ1 + F (ti;β))−

∑k
j=2 γjα

j
i

)
dαi

×
∫
αi

α
(Ni(ti)+n)
i exp

(
− αi(γ1 + F (T ;β))−

k∑
j=2

γjα
j
i

)
dαi. (3.6)
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Note that the occurrence times do not appear in this distribution; only knowledge of Ni(ti) is

needed to determine this conditional distribution. However, the occurrence times will enter

into the estimation of the model parameters β.

3.2.5 Discrepancy measure

In order to compare the adequacy of the point prediction method for Ni(ti, T ) obtained from

our model, we calculate the prediction error between the real value of Ni(ti, T ) and its pre-

dictor N̂i(ti, T ).

For this, we used a discrepancy measure. Discrepancy is a general term usually measuring

differences between an empirical value and its expected one. It is used in many different types

of applications (Chen et al., 2008). Our discrepancy measure is defined as follow:

D =

√√√√∑n
i=1

(
Ni(ti, T )− N̂i(ti, T )

)2

n
. (3.7)

where the point predictor N̂i(ti, T ) is defined by N̂i(ti, T ) = E[Ni(ti, T )|N(t1);γ,β] =

(F (T ;β)−F (ti;β))E[αi|N(t1);γ,β] with E[αi|N(t);γ,β] is the posterior mean of αi|(N(t);γ,β)

given by (3.5) and where all the unknown parameters are replaced by their estimations (see

Section 2.6).

As we saw in our studies (Khribi et al., 2015 and Khribi et al., 2016), the posterior

distributions (3.5) will not have a known closed form, but it is a rather complicated high

dimensional density, which makes direct inference almost impossible. For this reason, we

can generate from this posterior distribution a large number of samples using Markov chain

Monte Carlo (MCMC) implemented in WinBUGS (Spiegelhalter et al., 2003), and from

these samples, we can obtain appropriate parameters estimate like the posterior mean of

α|(N(t1);γ,β), where γ and β are estimated by the method described in the next section.
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3.2.6 Estimating unknown Poisson-Maximum Entropy parameters

In this section, we will discuss ways to estimate the vector of the parameters γ and β in the

general Poisson-MaxEnt model (3.4). These estimates will then substitute for the real pa-

rameters in the point prediction and prediction intervals previously mentioned. In the study

(Khribi et al., 2015) where the predictive model for the prediction of recurrent events uses

homogeneous Poisson processes, the parameters of the maximum entropy prior distribution

were estimated by two methods, the usual maximum entropy estimation method which uses

matching moments (MM) and the maximum likelihood method, referred to as the Pseudo-

MaxEnt. Because we have seen in Khribi et al., (2016) that the MLE-MaxEnt method is

computationally less complex than MM method when k > 2, we use in this study the MLE-

MaxEnt method to estimate the parameters γ and β.

The MLE-Maximum Entropy Method for the Poisson-MaxEnt Model

For the empirical Bayes MaxEnt model (3.4), we introduce the MLE-maximum entropy

(MLE-MaxEnt) method using MLE for estimating the vector of the parameters γ and β. We

start by construct the marginal likelihood L of the empirical Bayes general Poisson-Maximum

Entropy model (3.4)

L(γ,β|(N(t), τ )) =

∫
α

L(α,β|(N(t), τ ))π(α;γ)dα

=

∫
α

[
n∏
i=1

(
Ni(ti)∏
j=1

αif(τ ij;β)

)
e−αiF (ti;β)

](
n∏
i=1

e(−
∑k
j=1 γjα

j
i )∫

αi
e(−

∑k
j=1 γjα

j
i )dαi

)
dα

=
n∏
i=1

[(∏Ni(ti)
j=1 f(τ ij;β)

)
∫
αi
e(−

∑k
j=1 γjα

j
i )dαi

∫
αi

α
Ni(ti)
i e

(
−αi(γ1+F (ti;β))−

∑k
j=2 γjα

j
i

)
dαi

]

=
n∏
i=1

[(∏Ni(ti)
j=1 f(τ ij;β)Ii(Ni(ti))

)
∫
αi
e(−

∑k
j=1 γjα

j
i )dαi

]
(3.8)
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with

Ii(Ni(ti)) =

∫
αi

α
Ni(ti)
i e

(
−αi(γ1+F (ti;β))−

∑k
j=2 γjα

j
i

)
dαi. (3.9)

The log-likelihood is given by

l(γ,β|(N(t), τ )) =
n∑
i=1

[
log
(∫

αi

e(−
∑k
j=1 γjα

j
i )dαi

)
+

Ni(ti)∑
j=1

log
(
f(τ ij;β)

)
+ log

(
Ii(Ni(ti))

)]
.(3.10)

Using Lebesgue’s Dominated Convergence Theorem, (Talvila, 2001) gave necessary and

sufficient conditions to interchange the order of differentiation and integration for (3.10)

which are verified here. We can find the estimate of the vector of the parameters γ and β by

solving the score equations,

∂l(γ,β|(N(t), τ ))

∂γj
=

n∑
i=1

[∫
αi
αjie

−
∑k
j=1 γjα

j
idαi∫

αi
e−

∑k
j=1 γjα

j
idαi

− Ii(Ni(ti) + j)

Ii(Ni(ti))

]
= 0,

∂l(γ,β|(N(t), τ ))

∂β
=

n∑
i=1

[
∂f(τ ij ;β)

∂β

f(τ ij;β)
− ∂F (ti;β)

∂β

Ii(Ni(ti) + 1)

Ii(Ni(ti))

]
= 0,

The analytic solutions to these score equations are impossible to obtain; we thus use a

numerical method to estimate directly the vector of the parameters γ and β that maximize

the log-likelihood (3.10). As we did in Khribi et al. (2016), we have chosen MATLAB “fmin-

searchbnd”, a nonlinear optimization method which is derivative-free and allows bounds on

the variables.

3.2.7 Plug-in Prediction Intervals

A prediction interval for Ni(ti, T ) is an interval [L(N(t), τ(t)), U(N(t), τ(t))] such that

P [L(N(t), τ(t)) ≤ Ni(ti, T ) ≤ U(N(t), τ(t)); γ, β] = 1− ζ.
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Such an interval is called an exact 1− ζ prediction interval for Ni(ti, T ). In most settings

(including the one considered in this paper), one cannot find exact prediction intervals when

the parameters γ, and β are unknown. This is analogous to the non-existence of exact confi-

dence intervals for parameters in most statistical models. The alternative is to find an interval

with an approximate coverage probability of 1− ζ. This can be accomplished in one way by

finding an interval [L,U ] such that

P [L ≤ Ni(ti, T ) ≤ U ; γ̂, β̂] = 1− ζ, (3.11)

where only Ni(ti, T ) is treated as a random variable, and where γ̂ and β̂ are the MLE es-

timates obtained from the likelihood function based on the observed data and defined by (3.8).

The interval (3.11) is called a “plug-in” 1− ζ prediction interval. Essentially, our method

assumes that (3.6) is the true distribution and that the true parameter values are in fact

(γ̂, β̂) and thus ignores completely the uncertainty in (γ̂, β̂) relative to (γ,β). When the ob-

served data set is very large, so that (γ̂, β̂) can be assumed close to (γ,β), then the coverage

probability of this interval will be close to 1-ζ. However, in the case were the observed data

set is not very large, our method can be improved by“calibrating” the plug-in intervals as was

done by Fredette and Lawless (2007). We note that the calibration procedure still provides

an approximate coverage probability for the prediction interval (3.11).

Plug-in prediction intervals with an approximate coverage probability of 1−ζ can easily be

obtained from the ζ/2 and the 1− ζ/2 quantiles based on the predictive probability function

P [Ni(ti, T ) = n|Ni(ti); γ̂, β̂] given by (3.6).

3.3 Predicting the number of flights taken by frequent flyers

The context of this research is frequent flyer status within a specific airline loyalty program.

Frequent flyer programs involve the systematic collection of detailed information regarding

members’ flying activities, thus allowing prediction of individual activity level based on the

data already observed. The database at hand was obtained from the loyalty program of a

major American commercial airline. It includes information on individual top-tier frequent
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flyers for a period of 3 years starting January 1st, 2004 and provides, for each frequent flyer,

a unique identifier along with the various dates that flights have been flown. To qualify for

top-tier “Gold” membership, each frequent flyer had to fly at least 20 times over the first

calendar year—that is, between January 1st, 2004 and December 31st, 2004 inclusively.

The quantities we wish to predict are Ni(366, 731) for each frequent flyer i—that is, the

number of flights taken by each frequent flyer between the first and last day of the second

calendar year. The dataset contains such data for 5,000 frequent flyers. In the second year,

each of them had actually flown between 0 and 158 flights. Table 3.1 gives the distribution of

total number of flights in year 2 for those who had qualified for top-tier membership at the

end of year 1.

Number of flights Total

0 94
1∼10 721
11∼19 1112
20+ 3073

Table 3.1 Distribution of the number of flights taken over year 2 by frequent flyers who had
qualified for top-tier status by the end of year 1.

During a given year, the managers want to estimate, for the new year in progress, the

eventual number of flights to be flown by each frequent flyer according to past data. Here we

show how the methods in Section 2 can be used to predict the number of flights to be flown

by each member, or the total flights to be flown for a group of, or all, frequent flyers.

Figure ?? provides a plot of the number of flights each day for the first 3 years considered,

for those with top-tier frequent flyer membership after the first year. This graph clearly shows

the seasonal (that is, nonhomogeneous) character of the flying habits of top-tier frequent

flyers. It also shows that a number of flights flown daily diminishes with time as members

from this top-tier cohort leave the program and/or the company, or diminish flying habits.

We now propose to use model (3.4) to predict the total number of flights by a given

top-tier frequent flyer over a calendar year. Fredette and Lawless (2007) proposed a similar

prediction model for forecasting automobile warranty claims, but instead of using a higher

order maximum entropy prior for the random effects he uses the gamma prior and Laguerre
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Figure 3.1 Total number of purchases per day over 3 years

polynomials function for f(t; β). The choice of a suitable parametric form for f(t; β) in (3.4)

is crucial, because our predictions necessarily involve extrapolation into the future. Ideally,

the shape of this function would be the same every year to reflect the periodicity of flying

habits of frequent flyers. In addition, we would like to allow for a potential reduction of the

amplitude of this function to reflect the fact that the number of flights usually diminishes

over time.

We thus consider the function

f(t; β) = p(t− 366; β1, β2)× exp{C(dt; β3, . . . , βK+3)},

where:

• dt is the number of the day of the year. For example, d1 = d366+1 = d366+365+1 = 1 (the

first year was a leap year). This will allow the function to retain the same shape year

after year.
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• At the beginning of the second year, we incorporate a decreasing proportion p(.; β1, β2)

to reflect the fact that some customers are likely to leave the program over time. Because

of the obvious relationship between this phenomenon and a survival problem, we opted

for a survival function p(t−366, β1, β2) = S(t; β1, β2) such that S(0; β1, β2) = 1 and de-

creases thereafter. We used the Weibull survival function S(t; β1, β2) = exp{(−tβ1)β2}
which is probably, along with the log-normal survival function, the most popular dis-

tribution for survival problems.

• C(t; β) is a cubic spline. Cubic splines are continuous piecewise cubic polynomials used

in curve fitting. They have been found to have nice properties with good ability to fit

sharply curving shapes (Harrel, 2001). In order to use a cubic spline, we first have to

determine an appropriate number of knots. Between each of these knots, the continuous

function C(t; β) is a cubic polynomial. Based on the data available after the first year, we

found out that it was sufficient here to use K = 4 knots. In order to have approximately

the same number of recurrent events between consecutive knots, the knots are the 20%,

40%, 60%, and 80% quantiles of all the occurrence times observed that 1st year (i.e., 70,

140, 220, and 300 days). The explicit form of this piecewise cubic polynomial is given

by:

C(t; β3, . . . , β9) =β3t+ β4t
2 + β5t

3 + β6(t− 70)3
++

β7(t− 140)3
+ + β8(t− 220)3

+ + β9(t− 300)3
+

where (.)+ is the positive part of what is inside the parenthesis.

As Figure ?? shows, the use of splines in this case does allow for our model to follow rather

well the bimodal distribution of flying behaviour among the top-tier frequent flyers over the

first year of data, used to estimate our model.

Our approach improves in three ways the one proposed by Fredette and Lawless (2007)

for the problem at hand.

• The use of the higher moment maximum entropy prior instead of the gamma prior as

a random effects when we have a possible heterogeneity amongst the individual units

73



Figure 3.2 Adequacy of the nonhomogeneous process

in accordance with our two previous articles (Khribi et al., 2015) and (Khribi et al.,

2016).

• The use of spline function instead of Laguerre polynomials for the non-negative function

f(t; β) which represents the shape of the rate function. It is important to use a function

that is very flexible and that would be decreasing quickly as we approach the end of the

year and spline function have nice properties with good ability to fit sharply curving

shapes.

• The use of the Weibull survival function to reflect the fact that some customers are

likely to leave the program over time.

3.3.1 Empirical Tests of the Prediction Model Proposed

In this section, we apply the general Poisson-MaxEnt model using higher moment maximum

entropy prior and compared its adequacy to the NB model using the gamma prior proposed

by Fredette and Lawless (2007). For this, we explore the performance of our approach by
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predicting the number of flights at the end of each month in year 2 to be flown by 5,000

members of such a cohort of top-tier frequent flyers within this loyalty program.

Likelihood Ratio Tests

As suggested in Khribi et al., (2016), the likelihood ratio test (LRT) to determine the value

of k in (3.4). Let say we want to compare the 2-moment maximum entropy and the 4-moment

maximum entropy priors on the 4-moment and 6-moment maximum entropy priors, then the

test statistic is the ratio between the log-likelihood of the null model to the alternative model:

Γ = −2 log
( l(α1|N(t))

l(α2|N(t))

)
(3.12)

where l(α1|N(t)) and l(α2|N(t)) are the log-likelihood of the null and alternative models

respectively. This is a statistical test for nested models which reject the null hypothesis with

a given significance level based on the chi-squared distribution. Through successive testing

using the likelihood ratio test (Wilks, 1938), we can determine the number of moments nec-

essary for the k-moment prior in the general Poisson-MaxEnt model.

Table 3.2 present the likelihood ratio test (LRT) results where the last two columns in-

dicate respectively the p-values using 2 and the 4-moment maximum entropy prior model

as the null models versus the alternative models with 4 and 6 moments. Note that the last

column shows us the number of moments required for our predictive model.

Based on the results in Table 3.2 with a significance level equal to 5%, we can say that the

LRT always rejects the model (4) with 6 moments compared with the one with 4 moments.

However, it always supports the model (3.4) with 4 moments against the model with 2

moments. This means that the LRT always recommends the use of 4 moments at the end of

each month in year 2.

Table 3.3 presents the discrepancy between the real value of Ni(ti, T ) and its predic-

tor N̂i(ti, T ) defined by (3.7), where T = 731 (the end of 2), using the different values of

ti = (366 + 31, 366 + 31 + 28, ..., 731) where ti is the number of days at the end of each month
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Table 3.2 The likelihood ratio test (p-value=.05) using data from the loyalty program.

i in year 2. For example, a value of 11.03 in the first line of Table 3.3 means that a prediction

for the end of the first month in year 2 based on this model (the general Poisson-MaxEnt

model with the 4-moment prior) would be on average 11.03 flights from the real value of

Ni(ti, T ). The likelihood ratio test stopping rule, that is, to stop at 4 moments result is con-

firmed in Table 3.3, where the average discrepancy values for the general Poisson-MaxEnt

model with the 4-moment maximum entropy prior (values in bold font) are always very close

to the smallest absolute error discrepancy given by the model using the 6-moment maximum

entropy prior.

Table 3.3 Discrepancy of point predictors with different values of ti using data from the
loyalty program.
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As a another example of the usefulness of this approach, let us consider a scenario in

which, as she prepares her marketing activities for the fall season, a customer relationship

manager of this loyalty program is concerned about deploying extra effort to retain those

Gold customers that are in danger of not qualifying for Gold status the next year. In order

to target the right customers with a costly special offer, this manager wishes to target those

with a moderate chance of actually qualifying for top-tier membership as assessed using data

available on August 1st of 2004. For each of these “gold” customers, our model returns the

probability that these customers will remain top-tier members in 2006—that is, the proba-

bility that they will fly 20 flights or more during 2005. Of course, those frequent flyers having

already flown these 20 flights have a probability of 100%. Table 3.4 shows these probabilities

for 11 segments according to how likely they are to remain “gold” customers for both pre-

dictive models: the model (3.4) using 4-moment maximum entropy prior and the NB model

using the gamma prior proposed by Fredette and Lawless (2007). From this table, we notice

that the values of the probability of being Gold for customers define by the general Poisson-

MaxEnt predictive model with the 4-moment maximum entropy prior (values in bold font)

are always closest to the actual proportion of customers who retained top-tier membership

by Dec. 31st, 2005. Hence, our predictive model with the 4-moment maximum entropy prior

performs better when we compare it to the NB model using the gamma prior where the

parameters were estimated using the MLE method.

Probability intervals Probability of being Gold Probability of being Gold Actual proportion of
for customers for customers for customers customers who retained

already qualified with gamma prior with 4-moment prior top-tier membership by
Dec. 31st, 2005

[0-10%[ 1.63% 2.89% 3.31%
[10-20%[ 13.17% 15.87% 16.40%
[20-30%] 19.89% 28.03% 29.61%
[30-40%[ 30.48% 33.79% 33.33%
[40-50%[ 41.03% 46.93% 48.51%
[50-60%[ 56.82% 52.02% 50.00%
[60-70%[ 67.36% 60.51% 56.00%
[70-80%[ 77.34% 71.29% 69.39%
[80-90%[ 86.29% 76.47% 71.71%
[90-100%[ 99.05% 93.33% 91.76%

[100%] 100% 100% 100%

Table 3.4 Models Fit According to Likelihood of Retaining Top-Tier Frequent Flyer Status.
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To further assess the predictive performance of our model compared to the NB model us-

ing the gamma prior proposed by Fredette and Lawless (2007), we use the data available up

to August 1st, 2005 to extrapolate the rate function of our nonhomogeneous Poisson process

between August 1st, 2005 and December 31th, 2005. As Figure 3.3 shows, our model allows

rather precise prediction past August 1st. This analysis demonstrates the high degree of va-

lidity of using our nonhomogeneous mixed Poisson model for the purposes of forecasting a

customer’s future purchasing, conditional on his past buying behaviour and his activity to

date.

Figure 3.3 Accuracy of the forecasting based on the data available on August 1st (t = 578)

Finally, we present a last example of the usefulness of this approach for various scenarios.

We can imagine our customer retention manager is interested in predicting the likelihood of

remaining top-tier customers at the beginning of each month. Let us consider the example

of two Gold customers who both flew 26 flights over the first year. They both have an 86.2%

likelihood of remaining Gold customers at the beginning of the second year. Ultimately, Cus-

tomer A will fly 23 qualifying flights this year thus conserving his top-tier status, whereas

Customer B will fly only 19, meaning he will loose his top-tier status at the end of the year.
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Figure 3.4 and Figure 3.5 provide the 12 monthly 95% prediction intervals for Customers A

and B. The dotted lines on both graphs indicate the total numbers of flights actually flown

by the end of the year while the increasing solid curve represents the total number of flights

taken at that point in time. As can be seen, and as an additional demonstration of the predic-

tive ability of our model, the forecasted intervals always contain the actual, final number of

flights taken for each of those two customers. Of course, the prediction interval also becomes

smaller with time, as data accrue regarding both customers’ actual behaviour.

Figure 3.4 95% prediction intervals for customers A

Figure 3.5 95% prediction intervals for customer B

On the basis of their respective flying activities, our model allows us to estimate at any

point in time the probability that each of these two customers will take at least 20 flights.

For instance, a monthly review would provide the probabilities of taking at least 20 flights

before the end of the year for each member (see Table 3.5).
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Customer A
(23 flights

actually taken

at the end of

the year)

.862 .698 0.798 0.520 0.819 0.963 0.995 0.975 0.999 0.996 1.000 1.000

Customer B
(19 flights

actually taken

at the end of

the year)

.862 .698 .485 .074 .097 .502 .562 .308 .332 .630 .428 .122

Table 3.5 Probabilities of taking 20 flights or more during this year, assessed at the beginning
of each month based on historical data to date.

As can be seen in Table 3.5, while the probability of Customer A retaining his top-tier

status by the end of the year remains high—above 69.8%—throughout the year except for

one month, Customer B can be identified as potentially losing his top-tier status as early

as April. Considering that only 1 flight actually made the difference in the end, the airline

company could have used such approaches as reminding Customer B of the value of his Gold

membership as an incentive to fly more in order to retain top-tier benefits into the next year.

Adopting such “corrective” actions early on during the year would have likely left enough

time for Customer B to better plan his flying activities for the remainder of the year.

According to the results of the different empirical tests applied to our prediction model for

the data setting from a major airline company, we can say that the general Poisson-MaxEnt

model using 4-moment maximum entropy prior and a spline function for the non-negative

function f(t; β) with a Weibull survival function S(t; β1, β2) clearly outperformed the NB

model proposed by Fredette and Lawless (2007) as a predictive model.

3.4 Summary and Discussion

In this study, we have proposed a predictive model allowing prediction of recurrent events

using flexible nonhomogeneous Poisson processes with higher moment maximum entropy pri-

ors to model possible heterogeneity amongst the individual units modeled. The motivation for

our work lies in the prediction of individual activity level using the data already observed or
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other events that occur for individual units or subjects in a population. The database at hand

was obtained from the loyalty program of a major commercial airline where the behaviour is

observed and stored for each customer. The efficiency of our predictive model is compared to

the NB model using the conjugate gamma prior. Also, we have seen throughout this paper

that an accurate prediction depends on choosing a satisfactory model for f(t; β)) in (3.4)

representing the shape of event rate functions for individual units or processes. Using the

spline functions for f(t; β)) also makes our approach especially well suited for situations with

irregular purchase behaviour, such as seasonal or cyclical products or services. It has been

shown that for the database at hand the use of 4-moment maximum entropy prior provides

us a realistic prediction model than the one given by the NB model proposed by Fredette

and Lawless (2007).

Finally, though some detailed development remains to be done, our predictive model con-

sidered here can be extended to others situation where there are costs or other values asso-

ciated with events and we may wish to predict future costs.
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CONCLUSION

Dans cette thèse, nous avons proposé de nouveaux modèles prédictif permettant la prédiction

des événements récurrents en utilisant des processus homogène et non homogène de Poisson

et une possible hétérogénéité entre les unités individuelles modélisées par des effets aléatoires.

Nous avons proposé des modèles prédictifs utilisant des techniques bayésienne empiriques et

le principe du maximum d’entropie afin de modéliser ces effets aléatoires avec des distribu-

tions a priori. Nous avons utilisé un premier modèle utilisant des processus homogène de

Poisson, avec comme loi a priori la loi d’entropie maximum à deux moments qui correspond

à la loi normale tronquée et nous avons montré qu’elle se compare favorablement au modèle

classique de la négative binomiale qui est généralement utilisé pour ce genre de problème

utilisant comme loi a priori la loi gamma.

En raison de la condition sur l’utilisation de la loi a priori d’entropie maximum à deux mo-

ments, dans notre premier modèle nous avons été contraint à considérer seulement les cas où

le coefficient de variation était inférieur ou égal à 1. Ce qui engendre une certaine restriction

à l’utilisation de ce premier modèle. Nous avons enlevé cette restriction par l’utilisation des

lois d’entropie maximum avec un nombre de moments d’ordre plus élevé et nous l’appliquons

dans la prédiction des événements récurrents tout en utilisant des processus de Poisson ho-

mogènes et non-homogènes.

Enfin, nous avons évalué la performance de nos modèles par des études de simulation ap-

profondies et par quelques ensembles de données. En particulier, nous avons appliqué notre

dernier modèle prédictif sur un ensemble de données réel provenant d’un programme de fidéli-

sation. Nous avons trouvé que notre modèle se compare favorablement en terme d’adéquation

au modèle classique de la binomiale négative qui utilise comme loi a priori la loi gamma.

Même si un certain développement beaucoup plus détaillé reste à faire dans nos modèles pré-



dictifs, ces modèles peuvent être étendus à d’autres situations où il y a des coûts ou d’autres

valeurs associées à ces événements dans le but de prédire par exemple les coûts futurs.
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