
HEC MONTRÉAL
École a¢ liée à l�Université de Montréal

Essays on the valuation and the management of counterparty risk

par

Oussama Marzouk

Thèse présentée en vue de l�obtention du grade de Ph. D. en administration

(option Ingénierie �nancière)

Juin 2017

c
 Oussama Marzouk, 2017



HEC MONTRÉAL
École a¢ liée à l�Université de Montréal

Cette thèse intitulée :

Essays on the valuation and the management of counterparty risk

Présentée par :

Oussama Marzouk

a été évaluée par un jury composé des personnes suivantes :

Érick Delage

HEC Montréal

Président-rapporteur

Michèle Breton

HEC Montréal

Directrice de recherche

Chantal Labbé

HEC Montréal

Membre du jury

Damiano Brigo

Imperial College, London

Examinateur externe

Valérie Bélanger

HEC Montréal

Représentante du directeur de HEC Montréal



Résumé

Cette thèse concerne l�évaluation et la gestion du risque de contrepartie. Dans le premier essai,

nous introduisons une nouvelle approche pour évaluer le risque de contrepartie en se basant sur une

formulation récursive du credit valuation adjustment (CVA) d�un produit dérivé exotique. Nous

tenons compte de la relation entre le CVA et le mécanisme d�exercice lorsque ce mécanisme est à

la discrétion de l�une des parties dans le contrat. En particulier, nous montrons que le CVA pour

les produits o¤rant l�exercice anticipé ne peut pas être réduit à une perte espérée, en raison du

changement dans la stratégie de l�exercice causé par la présence du risque de contrepartie. Notre

formulation donne lieu à un algorithme de programmation dynamique (PD) qui peut être utilisé

pour évaluer le risque de contrepartie correspondant à n�importe quelle stratégie d�exercice ou

temps d�arrêt exogène. Lorsque la dimension de l�espace d�états n�est pas grande, cet algorithme

est beaucoup plus e¢ cace que les méthodes actuellement disponibles, fournissant une évaluation

précise sans qu�il soit nécessaire de faire des simulations coûteuses. L�approche est �exible et

incorpore facilement le risque de corrélation et divers modèles pour les facteurs sous-jacents.

Dans le deuxième essai, nous proposons une méthode e¢ cace pour estimer la valeur à risque

du CVA (CVA VaR). L�algorithme d�évaluation suggéré dans le premier essai fournit plus qu�une

estimation ponctuelle: il donne le CVA pour tous les états et toutes les dates en une seule exécution.

En d�autres termes, l�algorithme permet de caractériser le CVA comme une fonction connue des

facteurs de risque, et ce pour di¤érentes dates. Cette propriété puissante permet d�éviter le recours

à des simulations imbriquées et permet d�estimer la CVA VaR en une seule simulation. Nous

présentons des expériences numériques illustratives dans lesquelles nous appliquons la procédure

proposée. En particulier, nous montrons que les hypothèses ad-hoc utilisées par les praticiens

peuvent sous-estimer fortement la CVA VaR. De plus, nous analysons les e¤ets non-linéaires qui



découlent de la nature de la fonction du CVA, et nous relions ces e¤ets aux sensitivités du CVA.

Nous examinons aussi dans quelle mesure une distorsion entre les mesures de probabilité risque-

neutre et physique peut a¤ecter la CVA VaR, et nous étudions l�impact du risque de corrélation.

Dans le troisième essai, nous étudions l�impact de deux types de corrélation sur le risque de cor-

rélation dans le marché du taux d�intérêt. La première corrélation quanti�e la dépendance entre

le niveau du taux d�intérêt et la probabilité de défaut, tandis que la seconde introduit une dépen-

dance entre la volatilité du taux d�intérêt et la probabilité de défaut. Nous considérons un modèle

du taux d�intérêt avec volatilité stochastique cachée a�n d�analyser les e¤ets des corrélations sur

les produits insensibles à la volatilité tels que les swaps de taux d�intérêt et sur les instruments

sensibles à la volatilité tels que les options sur taux. Nous étudions également les e¤ets des cor-

rélations sur les instruments collatéralisés où le risque d�écart devient pertinent. Nous constatons

que, dans l�ensemble, l�e¤et de la corrélation entre la volatilité du taux d�intérêt et l�intensité du

défaut n�est pas signifcatif, et il est largement dominé par celui de la corrélation entre le niveau

du taux d�intérêt et l�intensité du défaut pour les instruments non-collatéralisés.

Mots clés: Risque de contrepartie, CVA, Exercice anticipé, Programmation dynamique, CVA

VaR, Risque de corrélation

Méthodes de recherche: Recherche quantitative, Modélisation mathématique, Analyse numérique
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Abstract

This thesis deals with the pricing and the management of counterparty risk. In the �rst essay,

we introduce a new approach to price counterparty risk based on a recursive formulation for

the credit valuation adjustment (CVA) of a derivative security with early-exercise features. We

account for the relation between the CVA and the exercise mechanism when this mechanism is

at the discretion of one of the parties in the contract. In particular, we show that the CVA for

early-exercise products cannot be reduced to a standard expected loss, because of the change

in the exercise strategy as a result of the presence of counterparty risk. Our formulation gives

rise to a dynamic programming (DP) algorithm that may be used to evaluate counterparty risk

corresponding to any exercise strategy or exogenous stopping time. When the dimension of the

state space is low, this algorithm is much more e¢ cient than presently available methods, providing

an accurate evaluation without the need for costly simulation. The approach is �exible and can

account for wrong-way risk (WWR) and various models for the underlying factors.

In the second essay, we propose an e¢ cient method to estimate the CVA VaR. The pricing al-

gorithm suggested in the �rst essay provides more than a point estimate: it yields the CVA for

all states and all dates in just one execution. In other terms, the algorithm yields the CVA as a

known function of the market risk factors for di¤erent future dates. Such powerful property allows

to avoid nested simulations and makes it possible to estimate the CVA VaR in just one simula-

tion. We present illustrative numerical experiments in which we apply the suggested procedure.

In particular, we show that ad-hoc assumptions used by practitioners can strongly misestimate

the CVA VaR. Moreover, we analyze the non-linearity e¤ects that arise as a consequence of the

nature of the CVA function, and we link these e¤ects to the CVA sensitivities (the CVA greeks).

We also examine to which extent a distortion between the risk-neutral and the physical probability

v



measures can a¤ect the CVA VaR, and we investigate the impact of right-way/wrong-way risk.

In the third essay, we investigate the impact of two kinds of correlation on the right-way/wrong-way

risk in the interest-rate market. The �rst correlation depicts the dependence between the interest-

rate level and the default probability, while the second introduces the dependence between the

interest-rate volatility and the default probability. We consider an interest-rate model featuring

unspanned stochastic volatility (USV) behavior in order to analyze the e¤ects of correlations on

both volatility-insensitive products such as interest-rate swaps and volatility-sensitive instruments

such as interest-rate caps and �oors. We also investigate the e¤ects of correlations on collateralized

instruments where gap risk becomes relevant. We �nd that, overall, the wrong-way e¤ect of the

correlation between the interest-rate volatility and the default intensity is not signifcant, and it

is largely dominated by that of the correlation between the interest-rate level and the default

intensity for non-collateralized instruments.

Key words: Counterparty risk, CVA, Early-exercise, Dynamic programming, CVA VaR, Wrong-

way risk

Research methods: Quantitative research, Mathematical modeling, Numerical analysis
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Chapter 1

General introduction

The �nancial crisis of 2007-2008 highlighted a number of shortcomings in the regulation of �nancial

institutions. One of these was the misestimation of counterparty risk, de�ned as the risk of incur-

ring losses in mark-to-market derivative positions at a counterparty default event. In other words,

it is the risk that a counterparty would not ful�ll her future payment obligations. Counterparty

risk has been a hot topic in both academic and professional environments since the �nancial crisis.

The magnitude of systemic credit risk that exploded during the �nancial crisis has led researchers

and practitioners to rethink the very basic foundations of derivative pricing and risk management.

Counterparty risk is particularly relevant in over-the-counter markets, which are not subject to

the same tight regulatory requirements as for exchange markets. It is a hybrid type of risk, that

can be seen as a complex combination of default risk and market risk. Default risk is related to

default probabilities, while market risk is related to the movements of market factors. The potential

amount that can be lost is random due to market risk, while the likelihood of a counterparty default

is driven by default risk. Intuitively, what is relevant as a market risk is only the positive part

of the future mark-to-market value. This is what we call the exposure, which is de�ned in most

common situations as the maximum between the mark-to-market value and zero. This introduces

non-linearities and a kind of optionality when it comes to pricing counterparty risk.

There are two common ways of mitigating counterparty risk. The �rst one is netting. Rather

than considering counterparty risk at a single trade level, it is interesting to consider the aggregate

exposure over all trades with a given counterparty through a netting agreement. In more colloquial



terms, in the event of a counterparty default, outstanding trades are not treated separately. A

positive mark-to-market value would cancel a negative one, resulting in an overall exposure that

is less than the sum of individual exposures. Thus, netting can be an important mitigant of

counterparty risk. However, netting makes the pricing and management of counterparty risk a

real conceptual and technological challenge, as the overall exposure would depend on too many

risk factors driving a large set of trades with a given counterparty. The second way of mitigating

counterparty risk is the use of collateral. Collateral is a security (cash in general) that is posted by

the party whose mark-to-market is negative as a guarantee for the party whose mark-to-market is

positive. Collateral may be the most e¢ cient way of reducing counterparty risk. However, even if

collateral is posted very frequently, there could be still a good probability that the mark-to-market

value moves so quickly in a short period of time that the most recently posted collateral would

not cover the new mark-to-market value. This is what we call gap risk, which can be particularly

relevant during turbulent periods.

The credit valuation adjustment (CVA) is the price of counterparty risk. It is a positive adjustment

which is subtracted from the default-free value of a derivative position in order to have a fair value

that accounts for the possible default of the counterparty. The CVA is a complex hybrid product,

that is sensitive to the counterparty default probability and to the underlying market risk factors.

In general situations, it can be equated to a zero-strike call option on the default-free value with a

random maturity corresponding to the counterparty default date, or equivalently to an expected

discounted loss. The optionality arises from the fact that only positive mark-to-market values

contribute to the exposure pro�le. Hence, pricing the CVA of an instrument is at least as complex

as pricing the instrument itself. For very simple vanilla products such as bonds or european options,

the CVA computation is generally straightforward, making use of analytical formulas. However,

for exotic instruments and netted portfolios, the CVA computation is a challenging task. Exotic

instruments introduce path-dependency, while the number of risk factors can be too high for large

netting sets. In particular, for products having early-exercise features, the computation of the

CVA is problematic, since the presence of counterparty risk may alter the exercise strategy; and

in such a case, the CVA can not be equated to a simple expected loss. In most practical cases, the
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CVA is calculated using simulation-based methods.

Wrong-way Risk (WWR) is the additional risk induced by a dependence between the default

probability and the underlying risk factors. The presence of a correlation between the exposure

and the default probability can signi�cantly change the price of counterparty risk. On one hand,

a positive correlation would result in an increase in the CVA, since the exposure is higher in

scenarios with defaults. In such a case, we talk about wrong-way risk. On the other hand, a

negative correlation would decrease the CVA. In this situation, we talk about right-way risk.

Wrong-way risk can be particularly signi�cant in periods of systemic credit risk, where default risk

becomes contagious. Besides, wrong-way risk makes the valuation of the CVA a more challenging

task, because of the additional complexity introduced by correlations.

The CVA pricing charge was advocated by regulators since the second installment of the Basel

Accords (Basel II). However, during the �nancial crisis, the major losses were caused by CVA

movements rather than actual defaults. In more colloquial terms, the volatility of the price of

counterparty risk caused much more damage than default risk itself. This led the third installment

of the Basel Accords (Basel III) to introduce a capital charge against CVA variability. From a

practical point of view, this implies the computation of a risk measure for the CVA process; we talk

about a Value at Risk of the CVA (CVA VaR). The computation of the CVA VaR is extremely

challenging, since the calculation of just one instance of the CVA is already intensive. Such

numerical complexity led regulators and practitioners to consider very simplifying assumptions for

the computation of the CVA VaR.

This thesis provides various contributions on the evoked topics of counterparty risk, and it is com-

posed of three essays. In the �rst essay, we propose a new approach to compute the CVA for

derivatives with early-exercise features. This new method is based on a recursive formulation of

the CVA, and it is implemented using dynamic programming (DP) techniques. In particular, the

suggested method takes into account the alteration of the exercise strategy caused by counterparty

risk, in contrast to standard simulation methods which do not account for it. Moreover, it easily

accomodates a variety of market models as well as wrong-way risk. Numerical experiments show

the e¢ ciency of the proposed DP algorithm with comparison to standard simulation approaches.
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In the second essay, we capitalize on a powerful property of the DP algorithm developed in the

�rst essay to signi�cantly reduce the computational burden of computing the CVA VaR. In fact,

the DP algorithm yields the CVA for all states and all dates in just one execution. This prop-

erty allows to compute the CVA VaR by running only one simulation and without making any

simplifying assumptions. We present several numerical experiments in which we show that the

CVA VaR presents complex patterns and that the ad-hoc assumptions adopted by practioners

may underestimate the CVA VaR. In the third essay, we investigate the impact of a correlation

between the interest-rate volatility and the default probability on the right-way/wrong-way risk in

the �xed-income market. We study the e¤ect of this correlation on both collateralized and non-

collateralized instruments and we compare it to the e¤ect of a correlation between the interest-rate

level and the default probability, which is the common way of considering right-way/wrong-way

risk in the interest-rate derivative market.

The rest of this thesis is divided in 4 chapters. Chapter 2 presents our �rst essay on the valuation

of counterparty risk for derivatives with early-exercise features. Chapter 3 presents our second

essay on the estimation of the CVA VaR. Chapter 4 presents our third essay on the investigation

of right-way/wrong-way risk in the interest-rate market. Finally, Chapter 5 is a general conclusion.
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Chapter 2

Evaluation of counterparty risk for

derivatives with early-exercise features

2.1 Introduction

The credit valuation adjustment (CVA) is the market value of counterparty risk. It is a pricing

adjustment applied to the default-free value of the contract in order to obtain a fair value that

accounts for the possible default of the counterparty. This adjustment can di¤er signi�cantly when

considering wrong-way risk (WWR), which is the risk faced when the underlying risk factors and

the default of the counterparty are correlated. For a broad introduction on counterparty risk and

CVA computation, we refer Brigo et al. (2013).1

The CVA caught the attention of researchers in quantitative �nance due to the complexity under-

lying its evaluation. Brigo and Masetti (2006) give a general pricing formula for the CVA, which

can be seen as a call option on the derivative portfolio value with a random maturity corresponding

to the counterparty default date, or equivalently as an expected discounted loss from counterparty

default. While the computation of the CVA is generally straightforward for European-style deriv-

atives, this is not the case for derivatives with early-exercise opportunities, because the CVA is

then path-dependent (for instance, the exposure of a Bermudan option falls to zero after exer-

1Speci�cally, Chapter 1 in Brigo et al. (2013) is a set of questions and answers reviewing current issues in
counterparty risk and CVA valuation.



cise). Complexity is again increased when considering WWR, that is, when allowing correlation

between the default process and the derivatives�underlying risk factors to exist (see Gregory (2012)

(Chapter 15) for an overview and Brigo et al. (2013) for instances in various asset classes).

A number of approaches have been developed to incorporate the impact of credit risk on the value

of derivatives. These approaches can be divided into two major categories, according to the way

the default event is modeled, that is, either using structural or intensity models. In structural

models, the default event for a given �rm is related to the evolution of some of its structural

variables, while in intensity models default is governed by an exogenous Poisson (or Cox) process

(the hazard-rate process). The structural approach originated with Merton (1974), where a �rm

defaults if the value of its assets is below the value of its liabilities at the debt maturity. Although

a structural framework is intuitive, its calibration for pricing needs is challenging (see for instance

Brigo et al. (2011) for applications using structural models illustrating the calibration approach

using credit default swap (CDS) rates). On the other hand, an intensity-based approach is more

direct and calibration of intensity models is straightforward, since default probabilities can be

easily extracted from the observed CDS premiums (see for instance Brigo and Masetti (2006) and

Gregory (2012)). The literature on credit risk intensity models include Lando (1998), Du¢ e and

Singleton (1999) and Brigo and Alfonsi (2005), among others.

CVA evaluation has been addressed under both frameworks and leads to analytical expressions

for European options (e.g. Klein (1996) in the structural model case and Lando (1998) in the

intensity model case). However, the issue of CVA evaluation is much more complicated for options

with early-exercise opportunities. Simulation-regression approaches (see Tilley (1993), Carriere

(1996), Tsitsiklis and Van Roy (2001) and Longsta¤ and Schwartz (2001)), commonly known

as least-squares Monte-Carlo (LSMC) methods, are extensively used in the �nancial industry

to approximate the exposure of an exotic derivative (see for instance Cesari et al. (2009) for

a description of the use of LSMC to compute exposure pro�les). While LSMC can be useful

to approximate the optimal early-exercise strategy, it may introduce large statistical errors, as

outlined for instance in Svenstrup (2005), and is generally recognized not to be very accurate for

the estimation of the continuation value, which de�nes the exposure of the derivative contract.
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Moreover, simulation-based approaches that are presently used involve two separate steps: the

default-free derivative value is �rst evaluated independently from any counterparty default concern,

and then used in a Monte-Carlo setting, involving the simulation of the default process along with

the market risk factors, in order to estimate the expected loss (Brigo and Pallavicini (2007), Cesari

et al. (2009) and Gregory (2012)). Such an approach can only work under the assumption that

counterparty risk does not alter the exercise mechanism, which is an unrealistic simpli�cation since

the default driver is generally an observable market process (either a set of structural variables or

a hazard-rate process). Klein and Yang (2013) show that the presence of counterparty risk can

signi�cantly a¤ect the exercise boundary of an American option.

In this chapter, we introduce a new approach to price counterparty risk, possibly under WWR,

based on a recursive formulation for the CVA of a derivative security with path-dependent features.

We consider a general recovery function that may incorporate many counterparty risk features and

we account for the relation between the CVA and the exercise strategy for contracts with early-

exercise opportunities. In particular, we show that the CVA for early-exercise products can not be

reduced to an expected loss, because of the change in the exercise strategy as a result of the presence

of counterparty risk. Our formulation gives rise to a dynamic programming (DP) algorithm that

may be used to evaluate counterparty risk corresponding to any exercise strategy or stochastic

stopping time. When the dimension of the state space is low, this algorithm is much more e¢ cient

than the currently available methods, thereby providing an accurate evaluation without the need

for costly simulation. Moreover, the algorithm provides more than a point estimate: it yields the

value of a vulnerable derivative and its CVA for all possible values of the underlying variables

and of time-to-maturity in a single execution. The CVA pricing model is implemented using an

intensity model for counterparty default; however, it can be easily adapted to structural models.

Numerical implementations are based on e¢ cient DP interpolation techniques, as described in

Breton and de Frutos (2012).

The chapter is organized as follows. Section 2.2 proposes a general model for the computation of

the CVA in a default-intensity framework. Section 2.3 illustrates the application of the CVA model

to various types of contracts. Section 2.4 provides details about the numerical implementation.
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Section 2.5 reports on numerical experiments. Section 2.6 is a conclusion.

2.2 Credit Valuation Adjustment Model

In this section, we develop a general model and a recursive characterization of the CVA that can

be used for defaultable derivative contracts, with or without early-exercise opportunities.

2.2.1 Notation

Consider a defaultable contract between an investor and a counterparty with inception date t = 0

and maturity T . Denote by (Yt)0�t�T the (possibly multidimensional) process of the underlying

factors, including the short interest rate, denoted by (rt)0�t�T . Let � be the default time of

the counterparty. � is assumed to represent the �rst jump time of a Cox process with intensity

process (�t)0�t�T , also called the hazard-rate process. We assume that the process of all market

quantities (Xt)0�t�T = (Yt; �t)0�t�T is Markovian and denote by (Ft)0�t�T the �ltration generated

by the process (Xt)0�t�T . In what follows, the notation Et [�] represents the expectation, under the

risk-neutral measure, conditional on no prior default and on Ft.

For a given u � t, denote by

�t(u) � exp

�
�
Z u

t

�sds

�
;

�t(u) � exp

�
�
Z u

t

rsds

�
:

The conditional risk-neutral default probability in (t; u] is then given by

Dt(u) = 1� Et [�t(u)] :

It will be useful to recall that Z u

t

�s�t(s)ds = 1� �t(u);
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and that, for a given function f ,

Et[1l(t;u](�)f(�)] = Et
�Z u

t

f(s)�s�t(s)ds

�
; (2.1)

where the function 1lI(�) is de�ned by

1lI(x) =

8><>: 1 if x 2 I

0 otherwise.

We consider contracts with an exercise feature; the exercise event may lead for instance to imme-

diate cash-�ows (e.g. the payo¤ of an option) or to a physical contract (e.g. an interest-rate swap).

In a general setting, the exercise event date can be exogenous (deterministic or stochastic, e.g. as

in the case of respectively European options or barrier options), or it can be at the discretion of

one of the parties (e.g. as in the case of Bermudan or American options). In the sequel, we assume

that the investor has a terminating option that leads to a �nal cash-�ow and revokes the contract,

but all developments can easily be adapted to the case where the exercise date is exogenous or

where the exercise event leads to a subsequent contract.

For three given dates u 2 [0; T ] ; s 2 [0; T ] and t 2 [0; u], we denote by F u(t; s) the random variable

representing the sum of the cash-�ows promised by the contract to the investor in the time interval

[t; s], discounted back at t, if the terminating option is exercised at date u. The amount that is

recovered (or paid) by the investor in case of default is often expressed as a �xed proportion of the

claim; for the moment however we do not assume any particular form and simply de�ne a general

recovery process, denoted Rt(x); where R� (x) is the (possibly negative) amount recovered at t = �

if the default event happens at � � u when X� = x.

We then de�ne

Vt(x;u) = Et [F u(t; T )] ;

V D
t (x;u) = Et

�
1l(T;1](�)F

u(t; T )
�

+Et
�
1l(t;T ](�) (F

u(t; �) + �t(�)R� (X� ))
�
: (2.2)
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Vt(x;u) represents, at a given date t 2 [0; T ] where Xt = x, the expected sum, under the risk-

neutral measure, of discounted net cash-�ows to the investor if the terminating option is exercised

at date u 2 [t; T ] for a counterparty-risk-free claim with the same characteristics as the defaultable

claim. Similarly, conditional on no prior default at (t; Xt = x); V D
t (x;u) represents the expected

sum of discounted cash-�ows of the defaultable claim if the terminating option is exercised at date

u. If default happens after maturity T , then all the promised cash-�ows are earned (�rst term);

but in case of early default, only cash-�ows between t and � are received, along with the amount

recovered at the time of the default event.

The notation Vt(x;�) and V D
t (x;�) will be used to represent the expected cash-�ows correspond-

ing to a given �; where � is a stopping time with respect to Ft: According to the risk-neutral

pricing principle, conditional on no prior default, the value of a defaultable claim and that of the

corresponding risk-free claim, denoted by V D
t (x) and Vt(x) respectively, are then given by

V D
t (x) = sup

t���T

�
V D
t (x;�)

	
; (2.3)

Vt(x) = sup
t���T

fVt(x;�)g : (2.4)

At a given date t 2 [0; T ] ; conditional on no prior default or exercise, and assuming an optimal

exercise strategy exists for each contract, we denote by ��t the stopping time corresponding to the

optimal exercise strategy of the defaultable claim and by b�t the stopping time corresponding to
the optimal exercise strategy of the corresponding counterparty-risk-free claim.

2.2.2 General pricing formula

The CVA is de�ned as the di¤erence between the value of a risk-free claim and the value of the

corresponding defaultable claim. Conditional on no prior default at a given date t 2 [0; T ] where

Xt = x, we then have

CVAt(x) � Vt(x)� V D
t (x): (2.5)

On the other hand, we de�ne the expected potential loss from a derivative contract at (t;Xt = x) as

the di¤erence between the expected discounted cash-�ows for the default-free and the defaultable
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claims when the same exercise strategy is used for both contracts, resulting in the same stopping

time �:

Ct(x;�) � Vt(x;�)� V D
t (x;�): (2.6)

We then have, using (2.3)-(2.4) and (2.6),

CVAt(x) = Vt(x; b�t)� Vt(x;�
�
t ) + Ct(x;�

�
t ):

When the contract has an early-exercise feature, the CVA can be decomposed into two parts;

the �rst part, Vt(x; b�t) � Vt(x;�
�
t ), is due to the change in the optimal exercise strategy when a

contract is subject to counterparty risk, while the second part, Ct(x;��t ), is the expected loss under

the exercise strategy that is optimal for the defaultable claim.

Notice that for contracts with no early-exercise feature (u = T ), the CVA pricing formula (2.5)

reduces to

CVAt(x) = Et
�
1l(t;T ](�)

�
F T (t; T )� F T (t; �)� �t(�)R� (X� )

��
= Et

�
1l(t;T ](�)�t(�) (V� (X� )�R� (X� ))

�
: (2.7)

When Rt(x) = Rmax fVt (x) ; 0g +min fVt (x) ; 0g, where R 2 [0; 1] is a constant recovery factor,

we recover the CVA pricing formula of Brigo and Masetti (2006):

CVAt(x) = (1�R)Et[1l(t;T ](�)�t(�)max fV� (X� ) ; 0g]:

In the following section, we propose a recursive characterization of the CVA that can be used for

contracts with a �nite number of early terminating opportunities.

2.2.3 Recursive pricing formula

To this end, we de�ne the set T = ftm;m = 0; :::;Mg of discrete evaluation dates, where tM � T .

The set T includes all the dates where a cash-�ow is promised in the contract, all possible exercise

dates for the terminating option, which we assume to be �nite in number, and any other date where
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the CVA needs to be evaluated. In this setting, the characterization of an exercise strategy reduces

to a discrete collection of stopping sets H = fHm;m = 1; :::;Mg ; such that the investor should

exercise the terminating option at the �rst time tm such that Xtm 2 Hm: An exercise strategy

characterized by a collection H = fHm;m = 1; :::;Mg generates an increasing discrete sequence of

stopping times de�ned by

�i = min ftm 2 T : tm � ti and Xtm 2 Hmg ; i = 1; :::;M:

We denote by CHtm (x) � Ctm(x;�m) the expected potential loss at tm for a given exercise strat-

egy characterized by H. To simplify notation, we also denote by Vtm(x;H) (resp. V D
tm(x;H))

the expected sum at (tm; Xtm = x) of discounted cash-�ows corresponding to a given strategy

characterized by H, conditional on no prior default and given no prior exercise.

The set T of evaluation dates coincides with the set of early-exercise opportunities without loss

of generality, since it su¢ ces to set Hm = ? when terminating the contract is not allowed at tm.

De�ne

�m � exp

�
�
Z tm+1

tm

�sds

�
= �tm(tm+1); m = 0; :::;M � 1;

�m � exp

�
�
Z tm+1

tm

rsds

�
= �tm(tm+1); m = 0; :::;M � 1:

Conditional on no prior default and given no prior exercise at date tm; we now compute the expected

loss corresponding to a given exercise strategy characterized by H = fHm;m = 1; :::;Mg :
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For x =2 Hm (i.e., �m = �m+1 � tm+1), we have using (2.1)

CHtm (x) = Vtm(x;H)� V D
tm(x;H)

= Etm [1l(tm;�m+1](�)�tm(�) (V� (X� ;H)�R� (X� ))]

= Etm
�Z tm+1

tm

�tm(s) (Vs(Xs;H)�Rs(Xs))�s�tm(s)ds

�
+Etm

�Z �m+1

tm+1

�tm(s) (Vs(Xs;H)�Rs(Xs))�s�tm(s)ds

�
= Etm

�Z tm+1

tm

�tm(s) (Vs(Xs;H)�Rs(Xs))�s�tm(s)ds

�
+Etm

�
�m�m

Z �m+1

tm+1

�tm+1(s) (Vs(Xs;H)�Rs(Xs))�s�tm+1(s)ds

�
= BH

m(x) + Etm
�
�m�mC

H
tm+1

�
Xtm+1

��
;

where

BH
m(x) � Etm

�Z tm+1

tm

�tm(s) (Vs(Xs;H)�Rs(Xs))�s�tm(s)ds

�
: (2.8)

On the other hand, for x 2 Hm (i.e., �m = tm), we have CHtm (x) = 0:

We therefore obtain a recursive de�nition of the expected loss corresponding to a given exercise

strategy characterized by H, conditional on no prior default and given no prior terminating at date

tm:

CHtm (x) = 1lHm(x)
�
BH
m(x) + Etm

�
�m�mC

H
tm+1

�
Xtm+1

���
; m = 0; :::;M � 1; (2.9)

CHT (x) = 0: (2.10)

Equations (2.9)-(2.10) apply to any exercise strategy, as long as there is a �nite number of possible

terminating dates. The limiting case where the terminating option can be exercised at any time is

obtained by letting M !1. In practice, the number of possible terminating dates is constrained

by the observation frequency.

When the contract o¤ers no early-exercise opportunities, the superscript H can be dropped and

CVAtm (x) = Ctm (x). We then obtain a recursive characterization of the CVA that can be inter-
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esting in many cases, for instance, when the CVA of a contract maturing at a near deterministic

date (the term Bm(x)) is relatively easy to evaluate� as illustrated for instance in Section 2.3.3.

This recursive formulation can also be used for contracts with stochastic maturities, for example

involving deactivating barriers; in that case, the direct valuation used in (2.7) infeasible, but it is

straightforward to adapt the recursive formulation (2.9)-(2.10) by identifying Hm with the set of

states, speci�ed in the contract, that trigger a terminating event at date tm. Besides, the recursive

formulation can be easily adapted to �rst-passage structural models (see Appendix 1 for details).

2.2.4 Optimal exercise strategy

We now characterize the optimal exercise strategy of a defaultable claim with a �nite number of

exercise opportunities. Denote by qem(x) the exercise payo¤ at tm when Xtm = x; m = 0; :::;M

and by qcm(x) the contractual payo¤ at (tm; Xtm = x) when the option is not exercised. Without

loss of generality, we can assume that the set of exercise opportunities coincides with T by setting

qem(x) = �1 when exercise is not allowed at tm.

Let H� = fH�
m;m = 1; :::;Mg represent the collection of stopping sets characterizing the optimal

exercise strategy of the defaultable claim. Accordingly, V D
tm(x) = V D

tm(x;H�) denotes the value of

the defaultable claim at tm when Xtm = x, obtained by using the optimal exercise strategy for this

defaultable claim, and Vtm(x;H�) denotes the expected payo¤ of the corresponding risk-free claim

under the same exercise strategy.

At a given exercise date tm 2 T , m = 0; :::;M � 1, de�ne an auxiliary strategy, indexed by C, that

consists of holding the claim until the next exercise date and of using the optimal exercise strategy

of the defaultable claim from then on. From (2.9) and (2.6), the expected loss due to counterparty

risk resulting from using this strategy is given by

CCtm (x) = BC
m(x) + Etm

�
�m�mC

H�

tm+1

�
Xtm+1

��
� Vtm(x; C)� V D

tm(x; C):

Recall that T contains all the dates where contractual cash-�ows are possible; we then have using
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the property of iterated expectations and (2.8)

Vtm(x; C) = Etm
�
�mVtm+1

�
Xtm+1 ;H���+ qcm(x);

BC
m(x) = Etm

�
(1� �m)�mVtm+1

�
Xtm+1 ;H���� Etm �Z tm+1

tm

�tm(s)Rs(Xs)�s�tm(s)ds

�
:

As a consequence, given that CH
�

tm+1
(x) = Vtm+1(x;H�)� V D

tm+1
(x;H�), we obtain

V D
tm(x; C) = Etm

�
�mVtm+1

�
Xtm+1 ;H���+ qcm(x)�BC

m(x)� Etm
�
�m�mC

H�

tm+1

�
Xtm+1

��
= Etm

�Z tm+1

tm

�tm(s)Rs(Xs)�s�tm(s)ds

�
+ qcm(x) + Etm

�
�m�mV

D
tm+1

(Xtm+1)
�
:

Now consider an alternative strategy, indexed by E , which consists of exercising at date tm. The

expected loss at tm resulting from using this strategy is zero, yielding

V D
tm(x; E) = qem(x):

We then have at tm; conditional on no prior default and given no prior exercise,

V D
tm(x) = max

�
V D
tm(x; E);V

D
tm(x; C)

	
(2.11)

= max

�
qem(x);

Etm
�Z tm+1

tm

�tm(s)Rs(Xs)�s�tm(s)ds

�
+ qcm(x) + Etm

�
�m�mV

D
tm+1

(Xtm+1)
��
;(2.12)

H�
m = fx : V D

tm(x) = qem(x)g: (2.13)

Since Equations (2.11)-(2.13) are valid for any m = 1; :::;M � 1, we obtain a characterisation of

the optimal exercise of a vulnerable claim. Equation (2.12) for m = 1; :::;M � 1 along with the

terminal condition

V D
T (x) = qeT (x) (2.14)

yield a recursive expression for the (optimal) value of a defaultable claim. It is important to notice

that the function V D
tm(x) is continuous in x, which is not the case for the expected payo¤ under a
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stopping strategy that is suboptimal at tm.

2.2.5 Naive strategy

Denote by N = fNm;m = 1; :::;Mg the collection of stopping sets characterizing the strategy that

maximizes the default-free value of the contract, so that Vtm(x;N ) = Vtm(x). This strategy, which

we call the naive strategy, is characterized by the following dynamic program:

Vtm(x) = maxfqem(x);Etm
�
�mVtm+1

�
Xtm+1

��
+ qmc (x)g; m = 0; :::;M � 1; (2.15)

VT (x) = qeT (x); (2.16)

Nm = fx : Vtm(x) = qem(x)g: (2.17)

Using similar calculations as in the previous section, the expected payo¤ of a defaultable claim

under the naive strategy is, for m = 0; :::;M � 1,

V D
tm(x;N ) = 1lNm(x)q

e
m(x)

+1lNm(x)

�
Etm

�Z tm+1

tm

�tm(s)Rs(Xs)�s�tm(s)ds

�
+qmc (x) + Etm

�
�m�mV

D
tm+1

(Xtm+1 ;N )
��
:

It is clear therefore that, in general, the naive strategy is not optimal, that is, V D
t (x;N ) � V D

t (x).

Hence, we have the following result:

CVAt(x) = Vt(x)� V D
t (x) � Vt(x)� V D

t (x;N ) = CNt (x) ;

where it is clear that the CVA is not necessarily equal to the expected loss associated with the

naive strategy. It is interesting to note that approximating the CVA by the expected loss associated

with the naive strategy is a common practice. However, the CVA cannot be expressed as a simple

expected loss for early-exercise products, because of the change in the exercise strategy. In this

sense, the computation of the CVA for early-exercise instruments cannot be done directly and
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involves the computation of the (optimal) value of the defaultable contract and the associated

exercise strategy, as provided by the DP recursion (2.12)-(2.14). Note also that when the naive

strategy is suboptimal, the value of a vulnerable claim under the naive strategy is discontinuous

at the exercise barrier, which results in arbitrage opportunities. This will be illustrated through a

numerical example.

2.3 Application Examples

In this section, we illustrate the application of Equations (2.7), (2.9)-(2.10) and (2.12)-(2.14) for the

computation of the CVA and the evaluation of vulnerable contracts, for various types of contracts

and loss functions, and we show how to account for WWR in this general framework.

2.3.1 European options

Consider a European option paying qe(YT ) at maturity T; so that Vt(x) = Et [�t(T )qe(YT )] and

suppose that Rt(x) =RVt(x) where R 2 [0; 1] is a constant recovery factor. Because there is no

stopping feature in this case, we have CVAt(x) = Ct(x): From (2.7), we then have, at (t;Xt = x) ;

CVAt(x) =

Z T

t

Et [�t(s) (1�R)V s(Xs)�s�t(s)] ds

= (1�R)Et [�t(T )qe(YT ) (1� �t (T ))] (2.18)

and

V D
t (x) = Et [�t(T )qe(YT ) (1� (1�R) (1� �t (T )))] : (2.19)

Notice that in order to compute the expectation Et[�] in (2.18) and (2.19), we need to specify the

correlation between the hazard rate and the market factors. If such a correlation exists, we are in

the presence of the right-way/wrong-way risk. If, however, we assume that the default intensity is
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independent from the other market factors, we obtain

CVAt(x) = (1�R)Et [�t(T )qe(YT )]Et [(1� �t (T ))]

= (1�R)Dt(T )Vt(x):

If default probabilities Dt(T ) can be expressed in closed form (for instance if we adopt an a¢ ne

term-structure model for the hazard rate), then the CVA of a defaultable European option is easily

obtained as a fraction of the value of an equivalent risk-free option.

2.3.2 Bermudan options

Consider a Bermudan option that can be exercised at any date tm 2 T where the exercise payo¤ is

qem(Xtm): As in the European option case, we assume that Rt(x) =RVt(x); where R is a constant

recovery factor and where Vt(x) is the default-free value of the option at (t;Xt = x) under the

optimal exercise strategy for the default-free option (the naive strategy).

We then have

Etm
�Z tm+1

tm

�tm(s)Rs(Xs)�s�tm(s)ds

�
= Etm

�
�m (1� �m)RVtm+1(Xtm+1)

�
;

so that Equation (2.12) yields

V D
tm(x) = max

�
qem(x);Etm

�
�m
�
(1� �m)RVtm+1(Xtm+1) + �mV

D
tm+1

(Xtm+1)
���

;

where V D
tm(x) is the value of the defaultable option (i.e., under the optimal exercise strategy char-

acterized by H�). If the option is not exercised, the �rst term involves the amount recovered if

default happens before tm+1, while the second term involves the value of the defaultable option

conditional on no prior default and given no prior exercise at tm+1. If R = 0, this reduces to

V D
tm(x) = max

�
qem(x);Etm

�
�m�mV

D
tm+1

(Xtm+1)
��
:
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The CVA of a Bermudan option at (t; x) is obtained by computing the di¤erence between Vt(x) and

V D
t (x); it therefore requires the determination of both value functions and associated strategies.

2.3.3 Interest-rate swaps

Consider an interest-rate payer swap, where the principal is normalized to 1 and the swap rate

is 
. Assume that the �xed and �oating payments are exchanged on the same dates, denoted

by tm; m = 1; :::;M , where �m = tm � tm�1 is the length of period m: In that case, Xt =

(rt; �t) and Vt (x) denotes the default-free market value of the swap at (t;Xt = x). Assume that

Rt(x) =Rmax fVt (x) ; 0g+min fVt (x) ; 0g ; where R 2 [0; 1] is a constant recovery factor.

If the exchange of payments starts at ti, then the value of the swap at some date t � ti is

Vt(x) = Et [�t(ti)]� 

MX

m=i+1

�mEt [�t(tm)]� Et [�t(T )] :

If zero-coupon bond prices Pt(x; T ) = Et [�t(T )] at (t; rt = r) can be obtained in closed form, which

is the case for most popular interest-rate models, then the swap value Vt can also be expressed in

closed form:

Vt(x) = Pt(x; ti)� 

MX

m=i+1

�mPt(x; tm)� Pt(x; T ): (2.20)

The CVA of an interest-rate swap with constant recovery factor is de�ned by

CVAt(x) = (1�R)

Z T

t

Et [�t(s)max fVs (x) ; 0g�s�t(s)] ds:

Equivalently, since there is no stopping feature in this case, CVAt(x) = Ct(x); and using the

recursive expression (2.9), we get

Bm(x) = (1�R)Etm
�Z tm+1

tm

�tm(s)max fVs (x) ; 0g�s�tm(s)ds
�

(2.21)

CVAtm(x) = Bm(x) + Etm
�
�m�mCVAtm+1

�
Xtm+1)

��
; m = 0; :::;M � 1 (2.22)

CVAT (x) = 0: (2.23)
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Clearly, the recursive formulation is much easier to evaluate. If the �i are su¢ ciently small, one

can make either one of the commonly used approximations (see, for instance, Brigo and Masetti

(2006)):

Bm(x) ' (1�R)Dtm (tm+1)max fVtm (x) ; 0g (anticipated default);

Bm(x) ' (1�R)Etm
�
�m�mmax

�
Vtm+1

�
Xtm+1

�
; 0
	�
(postponed default).

The value of a defaultable swap is then given by

V D
tm(x) = Vtm(x)� CVAtm(x): (2.24)

2.3.4 Interest-rate Bermudan swaptions

A swaption is an option to enter into a swap contract. We consider a Bermudan swaption with a

set T = ftm;m = 0; :::;Mg of discrete dates at which the option holder has the right to enter a

payer swap resetting at the same date, and with the remaining subsequent dates as payment dates.

Denote by Vtm(x) the (default-free) value of this swap at (tm; x = Xtm). The default-free value of

the swaption at (tm; x = Xtm), denoted by Utm(x); is given by the following dynamic program:

Utm(x) = maxfVtm(x);Etm
�
�mUtm+1(Xtm+1)

�
g; m = 0; :::;M � 1; (2.25)

UT (x) = 0: (2.26)

To compute the swaption value under counterparty risk, the CVA of the swap itself should be

taken into account because, when the swaption is exercised, the investor enters into a new contract

that promises future cash �ows. Accordingly, we de�ne two recovery processes, where Rb� (x) is the

(possibly negative) amount recovered at t = � if the default event happens before or at exercise,

and Ra� (x) is the (possibly negative) amount recovered at t = � if the default event happens after
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exercise, when X� = x. Equation (2.2) then becomes

V D
t (x;u) = Et

�
1l(T;1](�)F

u(t; T )
�
+ Et

�
1l(t;T ](�)F

u(t; �)
�

+Et
�
1l(t;u](�)�t(�)R

b
� (X� ) + 1l(u;T ](�)�t(�)R

a
� (X� )

�
:

When exercise does not terminate the contract, the recursive de�nition of the expected loss cor-

responding to a given exercise strategy characterized by H, the optimal exercise strategy, and the

value of the defaultable claim are obtained similarly as in Sections 2.2.3 and 2.2.4 (see Appendix

2 for details).

Assume that the recovery value of the swaption if default occurs before exercise is Rbt(x) =RuUt(x),

while the recovery value for the underlying swap, that is, if default happens after exercise, is

Rat (x) =Rmax fVt (x) ; 0g + min fVt (x) ; 0g ; where Ru and R are the recovery rates of the swap-

tion and the swap respectively, and where Vt(x) is the default-free market value of the swap at

(t;Xt = x).

The value of a defaultable swaption, conditional on no prior default and given no prior exercise, is

then given by

UDtm(x) = max

�
V D
tm(x);

Etm
�
�m
�
(1� �m)RuUtm+1(Xtm+1) + �mU

D
tm+1

(Xtm+1)
���

; (2.27)

m = 0; :::;M � 1;

UDT (x) = 0; (2.28)

where V D
tm(x) is the value of the defaultable swap at (tm; Xtm = x). To compute the CVA of a

swaption, the DP recursion (2.21)-(2.23) is �rst used, yielding the value of the defaultable swap

for all dates as a function of x = (r; �) using (2.24). The recursion (2.25)-(2.28) is then used to

compute the default-free and defaultable values of the swaption. The CVA of the swaption is the

di¤erence CVAUtm (x) = Utm(x)� UDtm(x):
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2.3.5 Wrong-way risk

Wrong-way risk (WWR) is the additional risk implied by a dependence between counterparty

credit quality and market factors. The general formulations (2.7) and (2.9)-(2.10) in the present

paper allow for the existence of a correlation between market risk factors and default intensity.

One simple way to model WWR is to specify a relationship between default-free risk variables and

the hazard rate. For instance, one may assume that

�t = f(t; Yt); (2.29)

where f is some deterministic positive function of time and risk factors, and where the dependence

upon time is helpful for calibration purposes. This encompasses prevailing models where the hazard

rate is a function of the exposure. For instance, Hull andWhite (2012) propose the following model:

�t = exp(g(t) + hVt(Yt));

where h is a constant and g is a deterministic function of time that can be calibrated to the

observed term structure of credit spreads.

In any case, under (2.29), the hazard rate is fully speci�ed by the process Yt so that the compu-

tation of the CVA does not require an additional state variable, and the computational burden

of evaluating the CVA is the same as that of evaluating a default-free contract. This makes the

choice of the above model interesting in a DP context; moreover, it allows for the incorporation of

WWR into the pricing procedure without increasing its numerical complexity.

2.4 Implementation

In this section, we describe the numerical implementation of the dynamic program used for the

numerical experiments. We also explain the implementation of the classic simulation method whose

performance will be compared to the performance of the DP approach in these experiments.
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2.4.1 Dynamic program

The recursive approach to CVA valuation can be equated to solving the following general dynamic

program:

vm (x) = fm
�
E
�
Gmvm+1

�
Xtm+1

�
jXtm = x

��
; m = 0; :::;M � 1; (2.30)

vM(x) = 0; (2.31)

where fm is a known function and Gm is a random variable, and where we assume that the

joint density of
�
Gm; Xtm+1

�
under the risk-neutral measure, conditional on Xtm = x, is known.

To simplify the exposition, we describe the implementation when the state space is unidimen-

sional, where x 2 [0;1). Suppose that the function vm+1 is known analytically on [0;1). At

a given x, since both the joint density and the function vm+1 are analytical, computation of

E
�
Gmvm+1

�
Xtm+1

�
jXtm = x

�
amounts to evaluating the integral of an analytically known func-

tion.

In order to solve the dynamic program (2.30)-(2.31), we compute vm on a �nite grid and use

a spectral interpolation scheme to obtain an analytical interpolation function v̂m approximating

vm: Starting from the known function vM ; this process yields, by backward induction, analytical

interpolation functions v̂m (x) for all evaluation dates tm.

More precisely, de�ne a set G = fxj; j = 1; :::; ng of n grid points, such that

0 < x1 < x2 < ::: < xn <1;

and a family of n basis functions, denoted by ( j)j=1;:::;n. An interpolation function v̂m (x) is

de�ned by

v̂m (x) =

8><>:
Pn

j=1 c
m
j  j(x) if x 2 [x1; xn]

o(x) if x =2 [x1; xn] ;

where o is an extrapolation function characterizing the behavior of v outside the localization
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interval, and where the coe¢ cients cj satisfy the linear system

vm (xi) =
nX
j=1

cmj  j(xi); i = 1; :::; n:

We use a spectral interpolation scheme with Chebyshev polynomials as basis functions. The use of

these interpolating functions is known to be e¢ cient when combined with Chebyshev interpolation

nodes (Breton and de Frutos (2012)), and is often characterized by an exponential convergence.

The computation of the interpolating coe¢ cients cj can be performed using a fast Fourier transform

(FFT) algorithm.

Moreover, we evaluate the integrand for the computation of the expected value

E
�
Gmvm+1

�
Xtm+1

�
jXtm = x

�
on G and interpolate it using the same spectral interpolation scheme. The integration over the

interval [x1; xn] of the resulting interpolation function is analytic, and corresponds to the Clenshaw-

Curtis quadrature (Clenshaw and Curtis (1960)). Quadrature methods are well known in the

option pricing literature for their e¢ ciency. They were adopted by several authors, including

Sullivan (2000), Andricopoulos et al. (2003), Andricopoulos et al. (2007) and Chen et al. (2014).

The extension of this approach to cases where the state space is multidimensional (corresponding to,

e.g., asset prices, stochastic volatilities, stochastic interest rates) is straightforward and involves a

multidimensional grid and multidimensional Chebyshev interpolation. However, the computational

burden of the recursive approach increases signi�cantly with the dimension of the state space.

The recursive approach to CVA valuation yields M analytical functions, which can be used to

evaluate the CVA at any date tm 2 T , and for any possible value of the market factors and hazard

rate. Each function is completely characterized by the n coe¢ cients cmj ; j = 1; :::; n.

To conclude, it is worth mentioning that, for contracts with early-exercise opportunities, an exercise

barrier divides the state space into two regions (Hm and Hm) at tm. Along this exercise barrier, the

value function may present discontinuities (if the exercise strategy is not optimal) or changes in its

curvature. As a consequence, the interpolation of the value function by a polynomial may be less
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precise near the exercise barrier. In our implementation, we adjusted the localization interval, at

each evaluation date, so that its boundary would coincide with the exercise barrier. We found that

setting a boundary of the localization interval to coincide with the exercise barrier can signi�cantly

improve the accuracy and the convergence of the algorithm.

2.4.2 Simulation

Our simulation experiments are performed assuming that the default-free value and the exercise

strategy of the contracts have already been computed and are available for all exercise dates as

a function of the underlying market variables. For instance, we obtain the default-free value and

the naive strategy by solving the DP (2.15)-(2.17) using spectral interpolation, as described in the

preceding section. We then simulate the default time � and the underlying variable trajectory.

For each sample path, we record the default time � , the corresponding time index j such that

� 2 (tj�1; tj]; and the �rst date tk at which the underlying variable is in the exercise region. On

a given sample path, if j > k, default occurs after the exercise of the contract and the exposure

is set to the non-recovered fraction of the discounted exercise value (for Bermudan options, the

post-exercise exposure is simply 0; while for interest-rate swaptions, it is equal to the underlying

swap residual value). If, however, j � k, default occurs during the time interval (tj�1; tj] while the

option is still alive, and the exposure is set to the non-recovered fraction of the discounted default-

free value. The expected loss of the vulnerable contract is obtained by averaging the exposures on

all sample paths.

It is important to stress that such a simulation scheme needs the exercise strategy as an input, and

therefore cannot solely be used to compute the CVA of contracts with optional early-exercise fea-

tures. We use simulation results as benchmarks to corroborate the accuracy of CVA evaluation for

a given exercise strategy and to illustrate the relative computational burden of both computational

approaches.
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2.5 Numerical experiments

In this section, we report on various numerical experiments that illustrate the e¢ ciency of the DP

approach to CVA valuation. A �rst set of experiments compares the results obtained using the

recursive pricing formula to those obtained using a standard Monte-Carlo approach for a given

exercise strategy. A second set of experiments illustrates features of the CVA for various application

examples and market models. All experiments were done using an AMD A6-6310 APU processor

with 1.8 GHz of power and 8 GB of RAM.

2.5.1 Bermudan options under GBM: Comparative results

This �rst experiment is used to assess the e¢ ciency of the DP approach and to compare the CVA

evaluation to simulation results. Recall that in all simulation experiments, the CPU computing

time does not include the computations required to obtain the exercise strategy and risk-free value

of the contract, whereas DP does provide these results directly.

We assume a geometric Brownian motion (GBM) model for the asset price dynamics and a constant

hazard rate �, Xt = St, where the price dynamics under the risk-neutral measure are described by

St = S0 exp

��
r � �2

2

�
t+ �

p
tZt

�
; (2.32)

where Zt is a standard Brownian motion, r is the risk-free rate and � is the volatility.

We compute the CVA at date t0 of a Bermudan put option with a strike K and a maturity T of

one year o¤ering M = 100 exercise opportunities, with a zero recovery rate (R= 0), under both

the optimal strategy and the naive strategy, as de�ned in (2.3)-(2.4).

We �rst compare the results obtained for the naive strategy in terms of values and computational

burden, using DP andMonte Carlo simulation. Simulation is performed using a sample of 1,000,000

scenarios, requiring around 60 CPU seconds. Table 2.1 reports on the required CPU times and on

the precision reached according to the number of grid points, while using the DP procedure.
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n 50 100 150

CPU time (seconds) 0.187 0.343 0.578
Precision 10�5 10�8 10�9

Table 2.1: Precision and CPU time according to the grid size, DP approach, geometric Brownian
motion model.

Table 2.2 compares the value of the defaultable claim under the naive strategy obtained using DP

to the 95% con�dence intervals obtained by simulation for various parameter values. The length

of these con�dence intervals is of the order of 10�3; all DP prices are inside the intervals. One

can observe the e¢ ciency of our proposed approach in precision, computation time and memory

requirements: while 60 seconds are required to reach a precision of 10�3 by simulation using 106

samples, the DP approach reaches a precision of 10�5 in less than 0.2 seconds using 50 grid points.

� � DP Simulation
0:1 0:2 2:8792 [2:8777; 2:8807]
0:1 0:15 2:0091 [2:0083; 2:0102]
0:1 0:25 3:7595 [3:7576; 3:7615]
0:05 0:2 2:9594 [2:9587; 2:9608]
0:05 0:15 2:0605 [2:0599; 2:0613]
0:05 0:25 3:8699 [3:8682; 3:8711]
0:15 0:2 2:8017 [2:7996; 2:8031]
0:15 0:15 1:9592 [1:9576; 1:9599]
0:15 0:25 3:6528 [3:6501; 3:6547]

Table 2.2: Value of a vulnerable Bermudan put option in the geometric Brownian motion model
under the naive strategy. Parameters are S0 = K = 50, r = 0:05, T = 1, M = 100.

Figure 2.1 compares the CVA in value and in percentage of the default-free value, according to

the exercise strategy and to the moneyness of the option. One can observe that using the optimal

exercise strategy results in a smaller CVA than the one resulting from the naive strategy, and that

the di¤erence is larger near the exercise barrier. Besides, the CVA is highest when the option is

at the money. When the option is in the money, counterparty risk is not very signi�cant since

the investor will generally exercise early. On the other hand, when the option is deep out of the

money, the option value becomes so small that the adjustment eventually vanishes �even if it still

represents a relatively sizeable percentage of the option value.
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Figure 2.1: CVA of a Bermudan option at inception for the optimal and naive strategies, as a
function of moneyness. Lognormal model with constant hazard rate; parameters are r = 0:05;
� = 0:2; � = 0:1; T = 1; M = 100:

Although the di¤erence between the value of the vulnerable option under the naive or the optimal

strategy is generally not very large, the use of the naive strategy results in potential arbitrage

opportunities due to the discontinuity of the value function at the exercise barrier when this

strategy is used, as illlustrated in Figure 2.2. When the asset price is su¢ ciently near the naive

exercise barrier, but still in the detention region, an informed party could borrow to buy the option

from its holder at a price equal to its value adjusted for counterparty risk, and then immediately

exercise it to lock in a strictly positive pro�t.

2.5.2 Impact of WWR

Our second experiment introduces WWR for the Bermudan put option in the GBM model (2.32)

considered in the previous section. We assume that the dependence between the hazard rate and

the asset value is described by two parameters denoted � and h, such that, during the time interval

[tm; tm+1);

�t = � exp(hStm); (2.33)

where h measures the amount of right-way/wrong-way risk (h < 0 indicates WWR2). Clearly, the

introduction of such a dependence does not modify the numerical complexity of either the DP or

2For a put option, a decrease in the price of the underlying asset increases both the exposure and the probability
of default.
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Figure 2.2: Discontinuity of the value function at the level of the exercise barrier when the naive
strategy is used. Parameters are: K = 50; r = 0:05; � = 0:2; � = 0:1; T = 1; M = 1:

simulation approaches.

In order to assess the impact of WWR, we compare the CVA at date 0; obtained using the default

model (2.33), with the one obtained when assuming a constant hazard rate equal to �0. The left

panel of Figure 2.3 shows, as a function of S0; the hazard rate �0 = � exp(hS0) and the additional

CVA when � = 2 and h = �0:06. The right panel of Figure 2.3 shows, as a function of S0; the

factor h satisfying �0 = 0:1 and the additional CVA when � = 2: Finally, Figure 2.4 shows, as a

function of �, the value of h such that �0 = 0:1 at S0 = K; and the additional CVA.

Figure 2.3: Impact of WWR, Bermudan put option. Parameters are K = 50; r = 0:05; � = 0:2;
T = 1; M = 100:
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Figure 2.4: Impact of WWR, Bermudan put option. Parameters are S0 = K = 50; r = 0:05;
� = 0:2; T = 1; M = 100:

It is interesting to note that the presence of WWR may imply a decrease in the CVA for Bermudan

put options. Indeed, when the price of the underlying asset is low, a negative correlation between

the hazard rate and the price of the underlying asset increases the probability of early exercise, and

consequently decreases counterparty risk. This is not the case for European options, as illustrated

in Figure 2.5.

Figure 2.5: Impact of WWR on European and Bermudan put options. Parameters are K = 50;
r = 0:05; T = 1; M = 100; � = 0:2:

2.5.3 Jump-di¤usion model

Our third set of results is obtained by specifying a di¤erent market model, namely, Merton�s (1976)

jump-di¤usion model (the hazard rate remains constant). Accordingly, the price dynamics under
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the risk-neutral measure are described by

St = S0 exp

��
r �

�
e�+

�2

2 � 1
�
�� 1

2
�2
�
t+ �Zt

� NtY
i=1

(Ji + 1) (2.34)

where the jump size log(Ji + 1) is a Gaussian random variable of mean � and standard deviation

�; and where Nt is a Poisson process with intensity �. In turbulent times, when counterparty risk

is present, jumps in the asset price may well be a better assumption than the constant volatility of

the lognormal model. As pointed out previously, the DP algorithm can accommodate any market

model. However, a more complex model and added volatility may require additional processing

time and number of grid points to attain a given level of precision. To assess the accuracy of the

DP procedure, Figure 2.6 shows the convergence of the DP price to the analytical Merton formula

for a European risk-free option, as the number of grid points increases.

Figure 2.6: Log error as a function of the number of grid points in the DP procedure, vulnerable
European put option under Merton�s jump-di¤usion model. Parameters are S0 = K = 50; r = 0:05;
� = 0:2; � = 0:25; � = 0; � = 0:1; � = 0:1; T = 1; M = 100. Benchmark for the European case is
the Merton analytical formula. Benchmark for the Bermudan case (M = 100) is computed with
600 grid points.

Figure 2.6 and Table 2.3 also illustrate the results obtained for the corresponding vulnerable

Bermudan option with a zero recovery rate (optimal exercise strategy) for various grid sizes, using

the DP approach (the benchmark is the value at n = 600). It shows that a precision of 10�4 is

attained with 60 grid points in around 3 seconds.
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n 60 80 100 120 Benchmark
Value 2.9860857 2.9854265 2.9853331 2.9853466 2.9853493
Error 7.3637E-04 7.7167E-05 1.6179E-05 2.7581E-06
CPU seconds 3.125 4 4.8438 5.8281

Table 2.3: Precision and computing time as a function of the number of grid points, vulnerable
Bermudan option under the jump-di¤usion model. Parameters are S0 = K = 50, r = 0:05, � = 0:2,
� = 0:25, � = 0, � = 0:1, � = 0:1, T = 1, M = 100.

Finally, Table 2.4 presents the results obtained using simulation and DP for various parameter

values. Simulation results are presented for both the naive and optimal strategies for comparison

purposes; however, it is important to recall that exercise strategies cannot be obtained by simula-

tion, and must be previously computed using DP. Simulations were performed using 106 samples

and required 78 CPU seconds, with a precision of the order of 10�2. All DP results are within the

con�dence interval and required 3 seconds and 60 grid points to attain a precision of 10�4:

� � DP (optimal) Simulation (optimal) DP (naive) Simulation (naive)
0:1 0:2 2:9853 [2:9832; 2:9860] 2:9796 [2:9776; 2:9806]
0:1 0:15 2:1373 [2:1361; 2:1381] 2:1341 [2:1336; 2:1356]
0:1 0:25 3:8513 [3:8484; 3:8522] 3:8427 [3:8419; 3:8459]
0:05 0:2 3:0646 [3:0634; 3:0655] 3:0631 [3:0619; 3:0641]
0:05 0:15 2:1902 [2:1893; 2:1907] 2:1894 [2:1886; 2:1901]
0:05 0:25 3:9583 [3:9575; 3:9602] 3:9561 [3:9559; 3:9587]
0:15 0:2 2:9109 [2:9097; 2:9130] 2:8989 [2:8959; 2:8995]
0:15 0:15 2:0873 [2:0857; 2:0880] 2:0804 [2:0799; 2:0823]
0:15 0:25 3:7512 [3:7504; 3:7548] 3:7333 [3:7295; 3:7343]

Table 2.4: CVA-adjusted price of a Bermudan put option in the jump-di¤usion model. Parameters
are S0 = K = 50, r = 0:05, � = 0:25, � = 0, � = 0:1, T = 1, M = 100.

2.5.4 Stochastic hazard rate

We now consider a stochastic hazard rate following a Cox-Ingersoll-Ross (CIR) process (Cox et al.

(1985); Schönbucher (2003)):

d�t = �(� � �t)dt+ �
p
�tdWt;

where Wt is a Brownian motion. We assume that St follows a geometric Brownian motion, inde-

pendent from �t, and that R =0: Here, the state vector Xt = (St; �t) is bidimensional, requiring a

two-dimensional discretization grid, where nS and n� are the number of discretization points for
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the underlying asset price and the hazard rate respectively.

In the European case, the value of a vulnerable option can be obtained analytically since the

default intensity is independent from the asset price, and Figure 2.7 illustrates the convergence of

the DP price to the analytical value as the grid size and con�guration change. A precision of 10�4

can be reached in 3 seconds with 60 grid points for the underlying asset and 80 grid points for the

hazard rate.

Figure 2.7: Precision (log error) as a function of grid size and computation time (CPU seconds),
vulnerable European option with stochastic hazard rate. Parameter values are S0 = K = 50,
�0 = 0:1, r = 0:05, � = 0:2, � = 0:1, � = 0:5, � = 0:2, T = 1; M = 12:

Figure 2.8 provides the convergence information for a corresponding Bermudan option with 12

exercise opportunities. In this case, the benchmark is approximated by the value obtained by DP

with nS = 300 and n� = 300: A precision of 10�5 is reached in 10 seconds with a 100�100 grid.

2.5.5 Swaps and swaptions with stochastic hazard rate and WWR

In our last set of results, we consider interest-rate swaps and swaptions, assuming that the evolution

of the interest and hazard rates is described by CIR processes, that is,

drt = �r(�r � rt)dt+ �r
p
rtdW

1
t ; (2.35)

d�t = ��(�� � �t)dt+ ��
p
�tdW

2
t : (2.36)
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Figure 2.8: Precision (log error) as a function of grid size and computation time (CPU seconds),
vulnerable Bermudan option with stochastic hazard rate. Parameter values are S0 = K = 50,
�0 = 0:1, r = 0:05, � = 0:2, � = 0:1, � = 0:5, � = 0:2, T = 1; M = 12:

WWR is present when the two processes are correlated, where � denotes the correlation coe¢ cient

between the Brownian motions W 1
t and W

2
t :

dW 1
t dW

2
t = �dt:

In practice, Equations (2.35) and (2.36) could be shifted by deterministic functions in order to

match the observed term structure of interest rates and credit spreads (see for instance Brigo and

Mercurio (2001)).

Under (2.35)-(2.36), when � = 0, the joint density of the state variable
�
rtm+1 ; �tm+1

�
can be

expressed analytically. When the correlation is not null, no closed-form densities are available. In

this case, the CIR processes can be approximated by Vasicek processes (see for instance Brigo and

Alfonsi (2005) for a similar Gaussian mapping technique):

drt = �r(�r � rt)dt+ �r
p
rtmdW

1
t for t 2 [tm; tm+1] ;

d�t = ��(�� � �t)dt+ ��
p
�tmdW

2
t for t 2 [tm; tm+1] :

Tables 2.5 and 2.6 compare the CVAs (in basis points) of a swap and a Bermudan swaption,

obtained by Monte-Carlo simulation (where the optimal strategy for the swaption is previously

computed using DP) and by the DP recursions (2.21)-(2.23) and (2.27)-(2.28), for various values of
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�, at (t = 0; r0; �0). The DP procedure uses 128� 128 = 16; 384 grid points, while the simulation

uses 500; 000 samples and 180 time-discretization nodes. All DP results are within the simulation

con�dence intervals. The DP procedure requires less memory and computation time to produce

the optimal strategy and the CVA, at all payment dates and for all possible values of the state

vector, than simulation requires to produce a single estimate at (t = 0; r0; �0) for a speci�ed exercise

strategy. The correlation impact is illustrated in Figure 2.9.

� DP Simulation
0 1:6566 [1:6278; 1:6883]
0:25 1:8411 [1:8301; 1:8952]
0:50 2:0315 [2:0163; 2:0855]
0:75 2:2279 [2:2169; 2:2905]

CPU seconds 48 92

Table 2.5: CVA of a swap, CIR model with correlation. Parameters are R = 0, r0 = 0:05, �0 = 0:1,
�r = 0:05, �r = 0:5, �r = 0:1, �� = 0:1, �� = 0:5, �� = 0:2, T = 1, M = 12.

� DP Simulation (optimal)
0 2:4214 [2:3737; 2:4383]
0:25 2:6117 [2:5578; 2:6258]
0:50 2:8078 [2:7479; 2:8199]
0:75 3:0097 [2:9423; 3:0179]

CPU seconds 80 100

Table 2.6: CVA of a Bermudan swaption, CIRmodel with correlation. Parameters areR = Rw = 0,
r0 = 0:05, �0 = 0:1, �r = 0:05, �r = 0:5, �r = 0:1, �� = 0:1, �� = 0:5, �� = 0:2, T = 1, M = 12.

2.6 Conclusion

This chapter proposes a recursive formulation of the CVA that allows its evaluation using a DP

approach. The contribution of the chapter is twofold. First, the DP algorithm can be used to

evaluate the CVA of contracts with optional or exogenous stopping times, and can accommodate a

wide range of market and default models. Illustrative examples are provided to show the �exibility

of the proposed approach, and numerical experiments for various contracts and models illustrate

35



Figure 2.9: Impact of � on the CVAs of a swap and a Bermudan swaption. Parameters are as in
Tables 2.5 and 2.6.

its precision and e¢ ciency. For low state-space dimensions, the DP approach is computationally

much more e¢ cient than Monte-Carlo simulation, providing a complete characterization of the

CVA at all possible stopping dates and for all possible states of the world, and doing so in less

time and using less memory than simulation requires for a single evaluation. This characterization

of the CVA as an analytical function of time and risk factors can be very useful for hedging and

risk management purposes, as it allows the computation of the CVA sensitivities (the Greeks) and

helps assessing the distribution of the future CVA. Second, for contracts with optional exercise

features, the DP approach allows for the computation of the optimal exercise strategy and provides

the corresponding CVA, which is not possible using solely Monte Carlo simulation. The use of the

naive strategy is shown to be theoretically inconsistent and to result in arbitrage opportunities.

The computational burden of the recursive approach increases signi�cantly with the dimension

of the state space, which may be the only drawback of this procedure. Indeed, the CVA is in

general computed for portfolios of derivative products rather than individual instruments. For

large portfolios depending on several risk factors, it may not be possible to use our numerical

approach, which can be seen as a quasi-analytical method, due to the curse of dimensionality.

Yet, parallel computing and other technological solutions can be used to reduce the dimensionality

problem. Moreover, it is important to note that our theoretical formulation is robust and can be

used as a benchmark for heuristic methods based on the partial exploration of the state space,

such as the LSMC algorithm (Longsta¤ and Schwartz (2001)).
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A number of extensions can be made to our dynamic model, such as collateral modelling and

the inclusion of funding costs. It can be also easily be extended to situations where bilateral

counterparty risk is present, or where multiple exercise opportunities exist (e.g. in portfolio of

Bermudan options). We leave these extensions for future research.

Appendix 1

In this appendix, we show how we can adapt the recursive equation to the case of �rst-passage

structural models.

For a given �rm value process Ft, assume that the default time is de�ned as

� = inf
�
t � 0 : Ft � f(t)

	
;

where f(t) is a deterministic time-dependent default barrier. Depending on the observation fre-

quency and for ease of computations, we assume that default can be only observed at the set of

discrete evaluation dates T = ftm;m = 0; :::;Mg. Following this view, the de�nition of � becomes

� = min
�
tm 2 T : Ftm � f(tm) � fm

	
:

In this context, the state vector is Xt = (Yt; Ft). Supposing that � > tm, We can expand CHtm (x)

for x =2 Hm in the following way:

CHtm (x) = Etm [1l(tm;�m+1](�)�tm(�) (V� (X� ;H)�R� (X� ))]

= Etm
�
�m1l(0;fm+1](Ftm+1)

�
Vtm+1(Xtm+1 ;H)�Rtm+1(Xtm+1)

��
+Etm

�
�m1l(fm+1;+1](Ftm+1)1l(tm+1;�m+1](�)�tm+1(�) (V� (X� ;H)�R� (X� ))

�
= BH

m(x) + Etm
�
�m1l(fm+1;+1](Ftm+1)C

H
tm+1

�
Xtm+1

��
;

If the joint density of Xt = (Yt; Ft) is known, then the above expectations can be computed

recursively using Chebyshev interpolation and Clenshaw-Curtis quadrature.
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Appendix 2

In the case where exercise does not terminate the contract, de�ne

BH
m(x) � Etm

�Z tm+1

tm

�tm(s)
�
Vs(Xs;H)�Rbs(Xs)

�
�s�tm(s)ds

�
;

AHm(x) � Etm
�Z T

tm

�tm(s) (Vs(Xs;H)�Ras(Xs))�s�tm(s)ds

�
:

For x =2 Hm (i.e., �m = �m+1 � tm+1), we have

CHtm (x) = Vtm(x;H)� V D
tm(x;H)

= Etm [1l(tm;�m+1](�)�tm(�)
�
V� (X� ;H)�Rb� (X� )

�
]

+Etm [1l(�m+1;T ](�)�tm(�) (V� (X� ;H)�Ra� (X� ))]

= Etm
�Z tm+1

tm

�tm(s)
�
Vs(Xs;H)�Rbs(Xs)

�
�s�tm(s)ds

�
+Etm

�Z �m+1

tm+1

�tm(s)
�
Vs(Xs;H)�Rbs(Xs)

�
�s�tm(s)ds

�
+Etm

�Z T

�m+1

�tm(s) (Vs(Xs;H)�Ras(Xs))�s�tm(s)ds

�
= BH

m(x) + Etm
�
�m�mC

H
tm+1

�
Xtm+1

��
:

On the other hand, for x 2 Hm (i.e., �m = tm), we have

CHtm (x) = Etm [1l(tm;T ](�)�tm(�) (V� (X� ;H)�Ra� (X� ))]

= AHm(x):

The expected loss corresponding to a given exercise strategy characterized by H, conditional on

no prior default and given no prior exercise at date tm is then given by the recursion:

CHtm (x) =
�
BH
m(x) + Etm

�
�m�mC

H
tm+1

�
Xtm+1

���
1lHm(x)

+ AHm(x)1lHm(x); m = 0; :::;M � 1;

CHT (x) = 0:
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The value of a defaultable claim at (tm; Xtm = x) under the exercise strategies C (do not exercise

at tm and then use the optimal strategy) and E (exercise at tm), conditional on no prior default

and given no prior exercise, are then given respectively by

V D
tm(x; C) = Etm

�
�mVtm+1

�
Xtm+1 ;H���+ qcm(x)�BC

m(x)� Etm
�
�m�mC

H�

tm+1

�
Xtm+1

��
= Etm

�Z tm+1

tm

�tm(s)R
b
s(Xs)�s�tm+1(s)ds

�
+ qcm(x) + Etm

�
�m�mV

D
tm+1

(Xtm+1)
�
;

V D
tm(x; E) = Vtm(x; E)� CEtm (x)

= qem(x)� AEm(x):

We then have, for m = 0; :::;M � 1, conditional on no prior default and given no prior exercise at

tm

V D
tm(x) = max

�
qem(x)� AEm(x);

Etm
�Z tm+1

tm

�tm(s)R
b
s(Xs)�s�tm+1(s)ds

�
+ qcm(x) + Etm

�
�m�mV

D
tm+1

(Xtm+1)
��
;

H�
m = fx : V D

tm(x) = qem(x)� AEm(x)g;

with the terminal condition

V D
T (x) = qeT (x):
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Chapter 3

An e¢ cient method to estimate the

CVA VaR

3.1 Introduction

In the �rst chapter, we adressed the problem of computing the CVA which quanti�es the market

risk of a counterparty default. However, during the �nancial crisis, the major losses were caused

by CVA movements rather than actual defaults. Most institutions were hit by accounting mark-

to-market losses rather than real ones. Regulators reported that roughly two thirds of the losses

attributed to counterparty risk resulted from CVA volatility. In more colloquial terms, the volatility

of the price of counterparty risk, as described by a CVA process, was much more harmful than

the risk itself. To respond to such a shortcoming in the regulation, the third installment of the

Basel Accords (Basel III) advocated a capital charge against CVA variability. This implies the

computation of a risk measure for the CVA process, and in this way the Value at Risk of the CVA

(CVA VaR) is introduced.

Generally speaking, the CVA VaR corresponds to a quantile of the distribution of the CVA changes

at a given risk horizon. Hence, we need to assess the probability distribution of the future CVA

movements. This poses both technological and conceptual issues. First, as outlined in the previous

chapter, the valuation of the CVA is done generally with Monte-Carlo methods, especially for exotic

derivatives for which direct calculations are not possible. Because Monte-Carlo simulation produces



a single estimate for just one point in space and time, sampling the future CVA changes would

require nested simulations that naturally exceed standard computational capacities. In practice,

the number of scenarios that are generated in order to assess the distribution of the CVA changes is

generally very low, which makes the credibility of the CVA VaR estimate very questionable (Brigo

et al. (2013)). Alternatively, practitioners would use ad-hoc assumptions to simplify calculations,

for instance the simplifying assumption of a constant credit exposure that eliminates the impact

of the underlying factors changes. Second, the CVA is by nature a pricing component, while

risk measurement concerns real-world pro�t-and-loss. This is why the distribution of the CVA

movements should be assessed under the real (or historical) probability measure denoted by P,

while the CVA itself should be priced under the risk-neutral (or pricing) measure denoted by Q.

The bridge between P and Q then may be considered to some extent, or ignored for practical

reasons, since the estimation of the P-parameters is generally problematic.

In this chapter, we suggest an alternative method for the computation of the CVA VaR, whose

advantage holds when the number of risk factors is not large. In the previous chapter, we have

shown the backward nature of the CVA and suggested an e¢ cient DP procedure to evaluate it.

The proposed pricing algorithm provides more than a point estimate: it yields the CVA for all

states and all dates in just one execution. In other terms, the algorithm yields the CVA as a

known function of the market risk factors for di¤erent future dates. Such powerful property allows

to avoid nested simulations and makes it possible to estimate the CVA VaR in just one simulation.

This chapter is organized as follows. Section 3.2 sets the procedure for estimating the CVA VaR.

Section 3.3 reports on illustrative numerical experiments. Section 3.4 is a conclusion.

3.2 Estimating the distribution of CVA changes

In order to assess adverse changes in mark-to-market CVA, one needs to simulate the risk factors

a¤ecting the derivative portfolio under the real probability measure P and then valuate the CVA

at the risk horizon for each scenario. A sample of the CVA changes is therefore obtained and the

CVA VaR can be estimated. Because the pricing engine is traditionnally a Monte-Carlo simula-

tion, the naive procedure that consists in performing nested simulations becomes computationally
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prohibitve, resulting in non-precise estimates of the CVA VaR. The pricing approach introduced

in the previous chapter clearly overcomes this problem, since one execution of the recursive algo-

rithm yields the CVA for all states and all dates. The following steps would allow to build a robust

sample of the future CVA movements:

1. Run the dynamic programming algorithm, and obtain the current CVA and the CVA function

at the risk horizon. The computation of expectations should be done under the pricing

measure Q.

2. Simulate the risk factors to the risk horizon, under the real measure P.

3. For each scenario, compute the projected future CVA using the approximate function ob-

tained in the �rst step.

4. A sample of simulated CVA changes is therefore obtained. The CVA change is simply

�CVAt = CVAt �CVA0, where CVA0 is the current CVA computed as for today and CVAt

is the projected CVA at the risk horizon t. The CVA VaR for the speci�ed risk horizon can

be estimated as a quantile of this sample.

The DP algorithm generally runs fast, unless the dimension of the state space is high, so that

generating a high number of scenarios would not exceed standard computational capacities. This

would result in much better estimates than the naive approach would handle.

It is worth noting that Basel III suggested two methods to compute the CVA VaR. The �rst

method is a standardized formula that can be equated to a standard variance-covariance method.

The second approach (called advanced approach) consists in simulating only the hazard rates of

the counterparties with the strong assumption of a constant exposure over the risk period, in order

to keep tractability of the CVA computations at the risk horizon. As outlined in Pykhtin (2012),

both approaches do not take into account the sensitivity of the CVA to the underlying market

variables movements. In particular, right-way/wrong-way risk can not be taken into account

using a direct modeling approach. It is accounted for by the use of ad-hoc multipliers with little

signi�cance. As discussed in Gregory (2012), the constant exposure assumption can be justi�ed
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by the fact that default-risk volatility was the main source of CVA volatility during the �nancial

crisis. However, it is important to not forget that counterparty risk is a complex combination of

default risk and market risk. Following this view, eliminating the volatility of market risk may

dramatically underestimate the probability of extreme CVA losses. It seems therefore that the

constant exposure assumption can be justi�ed only by tractability and operational concerns.

An important problem that arises is the need to know the dynamics of the risk factors under

both P and Q. Estimating the Q-dynamics is much easier; it can be done by calibrating the

models to the observed current derivative prices. The only assumption underlying the calibration

procedure is that markets are e¢ cient, so that all available information is embedded in the current

prices. However, estimating the P-dynamics is more di¢ cult and generally goes through historical

estimation. The implicit assumption underlying the historical estimation is that the past predicts

the future. However, it is not clear how such stationarity assumption can hold. In practice, there

is a tradeo¤ concerning the length of the period used for statistical inference. Short periods put

more weight on the most recent observations and stationarity is likely to hold over such short

periods, but statistical inference is less accurate simply because fewer observations are included.

In contrast, long periods produce more accurate estimates if stationarity holds over long horizons,

which is not likely to be true.

In the next section, we present illustrative numerical experiments in which we apply the suggested

procedure to estimate the CVA VaR. In particular, we show that the constant exposure assumption

can strongly underestimate the CVA VaR. Moreover, we analyze the non-linearity e¤ects that

arise as a consequence of the nature of the CVA function, and we link these e¤ects to the CVA

sensitivities (the CVA greeks). We also examine to which extent a distortion between P and Q can

a¤ect the CVA VaR. Finally, we investigate the impact of right-way/wrong-way risk on the CVA

VaR.

3.3 Numerical experiments

In this section, we illustrate the CVA VaR methodology with two fundamental examples. In the

�rst example we focus on Bermudan put options, while in the second we consider interest-rate
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swaps. In both examples, the recovery value is assumed to be null.

3.3.1 Independent CVA of Bermudan put options

In this section, we run numerical experiments on the CVA VaR of Bermudan put options. We

consider monthly-exercisable put options with various maturities and moneynesses. Assume that

the underlying asset price St follows a geometric Brownian motion and that the counterparty

hazard rate �t follows an independent CIR process. Under the risk-neutral probability measure Q,

the dynamics of St and �t are given by

dSt = rStdt+ �StdW
Q
1t ;

d�t = �(� � �t)dt+ �
p
�tdW

Q
2t ;

where WQ
1t and W

Q
2t are two independent Brownian motions under Q, r is the risk-free interest

rate (assumed to be a constant), � is the underlying asset volatility, � is the long-run mean of the

counterparty hazard rate, � is the speed of adjustment to the long-run mean and � is the hazard-rate

volatility. Because switching from the risk neutral measure Q to the physical probability measure

P a¤ects the drifts of the underlying processes but not their volatility components (Girsanov�s

theorem), we also assume that St and �t follow under P

dSt = �Stdt+ �StdW
P
1t;

d�t = �P(�P � �t)dt+ �
p
�tdW

P
2t;

where W P
1t and W P

2t are two independent Brownian motions under P, � is the physical rate of

return of the underlying asset, �P is the physical long-run mean of �t and �
P is the physical speed

of adjustment to the long-run mean.

The benchmark values of the parameters are reported in Table 3.1.
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r; � 0:05
� 0:2

�0; �; �
P 0:1

�; �P 1
� 0:1

Table 3.1: Benchmark values for Bermudan put options

In Table 3.5, we report the current CVA and the CVA VaR at the 99% con�dence level over

short horizons of 10 days and 1 month for di¤erent maturities (T = 2; 3; 4; 5) and moneynesses

(S0=K = 0:5; 1; 1:5 where K is the strike price). Through Table 3.5 and Figure 3.1 in which we

plot the distribution of the 10-day CVA changes, we can analyze the e¤ect of maturity on the tail

of the distribution. For in-the-money options, the maturity has no e¤ect on the CVA estimates.

This is clearly an early-exercise e¤ect. Whatever the maturity is, in-the money-options will be

exercised early, so that concern about losses resulting from a default of the counterparty will be

just over a short period of time. For out-of-the-money options, we can see that the CVA VaR

increases with maturity. This e¤ect can be related to the shape of the CVA function. The slope of

the option exposure in the out-of-the-money region increases with maturity. An increasing slope

enhances the sensitivity of the CVA to the underlying asset movements.

A common practice in the industry is to assume a constant exposure over the risk period in order

to avoid nested simulations. In this way, the CVA VaR is related only to the movements of the

hazard rate and excludes the impact of changes in the underlying market variables. In Table 3.6

and Figure 3.2, we examine the impact of the constant exposure assumption. It is quite obvious

that such assumption a¤ects the tail of the distribution of the CVA movements for all maturities

and all moneynesses, resulting in a lower estimate of the CVA VaR. The e¤ect of neglecting the

volatility of the underlying asset is particularly strong for out-of-the-money options, but much less

pronounced for in-the-money options.

We analyze the sensitivity of the CVA VaR to �0 (the initial guess of the counterparty hazard rate)

in Table 3.7 and Figure 3.3. We compare the benchmark case for which �0 = 0:1 to the cases where

�0 = 0:05 and �0 = 0:15. It is clear that higher values of �0 make the tail of the distribution slightly
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heavier, and thus increase the CVA VaR estimates for all maturities and all moneynesses. This can

be explained by two e¤ects. The �rst is related to the nature of the model considered for the hazard

rate. The volatility of the hazard-rate process is proportional to the square root of the actual level

of the hazard rate. Hence, higher values of �0 are more likely to lead to higher movements of the

hazard rate, and that naturally results in more pronounced CVA movements. The second e¤ect

is related to the CVA function. Given that the CVA can be generally assimilated as the contract

exposure multiplied by the counterparty default probability, the sensitivity of the CVA to the

underlying asset price movements increases with the hazard-rate level. Mathematically, this e¤ect

is related to the greek
@CVA
@S

which increases in absolute value with the default probability, as

reported in Table 3.2. Note that the constant exposure assumption does not capture this behavior,

since it excludes the potential changes in the underlying risk factors.

In-the-money At-the-money Out-of-the-money
�0 = 0:05 0:0043 0:0089 0:0031
�0 = 0:1 0:0083 0:0144 0:0041
�0 = 0:15 0:0123 0:0192 0:0051

Table 3.2:
@CVA
@S

in absolute value for di¤erent values of �0 (Maturity is 2 years)

In Table 3.8 and Figure 3.4, we examine the sensitivity of the CVA VaR to the volatility of the

hazard rate. We compare the benchmark case for which � = 0:1 to the cases where � = 0:2 and

� = 0:3. Higher values of � result in heavier tails of the CVA movements distribution. The e¤ect is

quite pronounced for in-the-money and at-the-money options. This is because the exposure level

in in-the-money and at-the-money regions of the state space is relatively high, thus enhancing

the impact of higher hazard-rate movements that are allowed by a higher hazard-rate volatility.

Technically, this e¤ect is related to the greek
@CVA
@�

which increases with the exposure level, as

reported in Table 3.3. Indeed, for out-of-the-money options the e¤ect of the hazard rate volatility

is negligible, simply because the exposure level in the out-of-money region is relatively low.
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In-the-money At-the-money Out-of-the-money
1:9657 1:8640 0:1722

Table 3.3:
@CVA
@�

for di¤erent moneynesses (Maturity is 2 years)

We now turn to analyze the sensitivity to the underlying asset volatility �. In Table 3.9 and

Figure 3.5, we compare the benchmark results for which � = 0:2 to higher volatility cases implied

by � = 0:25 and � = 0:3. As expected, higher asset volatilities increase the likelihood of higher

movements in the exposure pro�le, thus producing heavier tails of the CVA changes distribution.

The e¤ect is obvious for at-the-money and out-of-the-money options. However, it is relatively small

for in-the-money options. This is again a consequence of early-exercise. Due to early-exercise, the

shape of the option exposure in the in-the-money region is not too sensitive to the volatility

parameter, in contrast to the out-of-the-money region where the volatility a¤ects the slope of the

option value as does the maturity. Intuitively, because in-the-money options will be exercised very

early, concern about market risk is of little relevance in this case. What matters instead is default

risk over the short waiting period. This is why the CVA VaR of in-the-money options is sensitive

to the hazard-rate volatility, but not that sensitive to the underlying asset volatility.

Until here, we have assumed that the risk-neutral and the physical parameters are the same. We

now examine the e¤ect of a distortion between P and Q on the tail of the distribution of CVA

movements. In Table 3.10 and Figure 3.6, we compare the benchmark results for which � = 0:05

to alternative results implied by � = 0:075 and � = 0:1. It is clear that changing � has practically

no impact on the CVA VaR estimates, and this is true for all maturities and all moneynesses.

In Table 3.11 and Figure 3.7, we compare the benchmark results for which �P = 0:1 to cases

associated with �P = 0:05 and �P = 0:15. The center of the distribution is slightly translated as a

consequence of the mean e¤ect resulting from changing the physical long-run mean of the hazard

rate, but the tail and the CVA VaR are not seriously a¤ected, and this holds for all maturities

and all moneynesses. In Table 3.12 and Figure 3.8, we compare the benchmark results for which

�P = 1 to results implied by �P = 0:25 and �P = 1:75. We can see that changing �P has no e¤ect at

all on the distribution of CVA movements for all maturities and all moneynesses. Summing up, we

can say that increasing the distortion between the risk-neutral measure and the physical measure
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does not seem to signi�cantly a¤ect the tail of the distribution, at least for this example. Because

the horizon at which the CVA VaR is computed is short, as it is the practice for standard market

VaR, the role of the drift terms to generate extreme values of the risk factors is not expected to be

relevant with comparison to the role of the volatility components. As discussed in Gregory (2012),

the importance of drift terms arises when dealing with risk measures associated with relatively

long risk horizons, such as the potential future exposure for credit limits concerns.

To conclude, the CVA VaR patterns can be complex mainly due to the non-linearity of the CVA

function and the exotic characteristics of �nancial contracts like early-exercise. Moreover, the

distributional properties of the hazard rate and the underlying factors can be of relevant impor-

tance. The P-Versus-Q problem does not seem to be an important issue from a quantitative

point of view, since the discrepancy between the two measures is driven by drift terms that are

of secondary importance when dealing with short-horizon risk measures. Besides, simplifying as-

sumptions often made in industry practices such as assuming a constant exposure over the risk

period may misestimate the CVA VaR. Note that the aim of such simplifying assumption is to

avoid the computational burden associated with nested simulations. The suggested approach is an

alternative computational methodology that captures all the properties of the CVA VaR without

making any simplifying assumptions.

3.3.2 Right-way/wrong-way CVA of interest-rate swaps

In this section, we report numerical experiments on the CVA VaR of interest-rate swaps. We

consider payer interest-rate swap positions where �xed and �oating payments are exchanged at

each month. Assume that under P and Q, the spot interest rate rt and the counterparty hazard

rate �t follow two correlated CIR processes

drt = �r(�r � rt)dt+ �r
p
rtdW1t;

d�t = ��(�� � �t)dt+ ��
p
�tdW2t;
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where W1t and W2t are two correlated Brownian motions with correlation coe¢ cient �

dW1tdW2t = �dt:

Wrong-way risk (respectively right-way risk) is present when � > 0 (respectively when � < 0).

In fact, the payer swap value is an increasing function of the spot interest rate. If the interest

rate increases, this would increase the value of the payer position, but also the likelihood of a

counterparty default in case of a positive correlation with the counterparty hazard rate.

The benchmark values of the parameters are reported in Table 3.4.

r0; �r 0:05
�r 0:5

�0; �� 0:1
�� 1

�r; �� 0:1

Table 3.4: Benchmark values for interest rate swaps

In Table 3.13, we report the current CVA and the CVA VaR at the 99 % con�dence level over

horizons of 10 days and 1 month for di¤erent swap maturities (T = 2; 3; 4; 5) and correlations

(� = �0:5; 0; 0:5). The CVA estimates are reported in basis points. In Figure 3.9, we compare the

distributions of the 10-day CVA movements implied by the three correlation levels. Even if the

e¤ects are not very material, it is clear that wrong-way risk (respectively right-way risk) increases

(respectively decreases) the CVA VaR estimate for all considered maturities. In case of a positive

correlation, scenarios in which the swap exposure is high imply higher levels of the hazard rate (with

comparison to the zero-correlation case) which results in more pronounced upward movements of

the CVA. The reverse e¤ect happens in the case of right-way risk.

We now investigate the role of the hazard-rate volatility in increasing the right-way/wrong-way

e¤ect. In Table 3.14 and Figure 3.10, we compare the benchmark results to results implied by

increased hazard-rate volatilities (�� = 0:2 and �� = 0:3). We notice that a higher hazard-

rate volatility enhances both the right-way and the wrong-way e¤ects. Particularly, in the case
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of a negative correlation, a higher hazard-rate volatility decreases the CVA VaR estimate. At

�rst glance, this would seem counter-intuitive, since an increased volatility would naturally lead

to more extreme CVA upward movements. However, it is important to note that the CVA is

essentially driven by the contract exposure. This means that high exposure scenarios are the ones

that contribute most to the tail of the distribution, independently from hazard-rate levels. In the

presence of a negative correlation, a higher hazard-rate volatility leads to lower hazard-rate levels

in high exposure scenarios, which decreases the CVA VaR estimate. The reverse e¤ect happens in

the case of wrong-way risk, resulting in a higher CVA VaR. Note that the right-way e¤ect would

not be observed in the case of a higher interest-rate volatility, since the interest-rate volatility

a¤ects the exposure pro�le. In this sense, an increased interest-rate volatility would increase the

CVA VaR whatever the correlation is. The assymetric roles of the interest-rate volatility and the

hazard-rate volatility are a result of the complementary statuses of the exposure and the default

probability. The default probability de�nes the likelihood of a market loss while the exposure

measures the severity of a loss if it occurs.

Summarizing the reported results and interpretations, right-way/wrong-way risk a¤ects not only

the CVA level but also the CVA VaR. The role of the hazard-rate volatility is to increase both the

right-way and the wrong-way e¤ects. In particular, in case of right-way risk, a higher hazard-rate

volatility is bene�cial in that it decreases the CVA VaR.

3.4 Conclusion

This chapter is a straightforward risk management application of the CVA pricing model devel-

oped in the �rst chapter. An interesting property of the dynamic pricing model is that it yields

approximate CVA functions at di¤erent horizons rather than a single CVA estimate as does Monte-

Carlo simulation. This allows to build a robust methodology for estimating the CVA VaR and

overcoming the computational issue associated with nested simulations. We have analyzed the

complex patterns of the CVA VaR through two numerical examples in which we applied the sug-

gested methodology, and we have shown that the ad-hoc assumptions used in industry practices

may result in a substantial misestimation of extreme CVA losses.
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Figure 3.1: E¤ect of maturity on the distribution of the 10-day CVA movements for Bermudan
put options
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Figure 3.2: E¤ect of the constant exposure assumption on the distribution of the 10-day CVA
movements for Bermudan put options
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Figure 3.3: E¤ect of �0 on the distribution of the 10-day CVA movements for Bermudan put
options
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Figure 3.4: E¤ect of � on the distribution of the 10-day CVA movements for Bermudan put options
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Figure 3.5: E¤ect of � on the distribution of the 10-day CVA movements for Bermudan put options
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Figure 3.6: E¤ect of � on the distribution of the 10-day CVA movements for Bermudan put options
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Figure 3.7: E¤ect of �P on the distribution of the 10-day CVA movements for Bermudan put
options
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Figure 3.8: E¤ect of �P on the distribution of the 10-day CVA movements for Bermudan put
options
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Chapter 4

An investigation of wrong-way risk in

the interest-rate market

4.1 Introduction

Right-way/Wrong-way risk is de�ned as the decrease/increase in the quanti�cation of counterparty

risk caused by a correlation between default-free risk factors and the default probability. In the

�xed-income market, the standard framework for the modeling of right-way/wrong-way risk has

been generally relying on correlating the default probability with the level of interest rates (see,

e.g., Brigo and Pallavacini (2007) and Brigo et al. (2009)). For instance, using such a framework

to assess counterparty risk for interest-rate swaps would result in a wrong-way e¤ect for payer

positions and a right-way e¤ect for receiver positions when the correlation between the level of

interest rates and the default probability is positive. These e¤ects are reversed under negative

correlation, i.e., the e¤ect is wrong-way for the receiver positions whilst it is right-way for the payer

positions. Hence, a joint wrong-way behavior for interest-rate-swap positions that may be relevant

during stress periods is precluded under such a standard correlation modeling. An interesting

alternative is to correlate the default probability with the interest-rate volatility instead of the

interest-rate level (Gregory (2012) and Harris et al. (2015)). Intuitively, a positive correlation

between the interest-rate volatility and the default probability would result in a wrong-way e¤ect

whatever the swap position is.



Harris et al. (2015) studied the e¤ect of a correlation between the interest-rate volatility and the

default probability on the expected loss of collateralized interest-rate swaps. They considered an

advanced interest-rate model with stochastic volatility (the model of Trolle and Schwartz (2009))

and they found that the correlation between the volatility factor and the default probability has

a non-negligible wrong-way e¤ect. However, in their study, Harris et al. (2015) have based their

conclusions on the conditional expected loss, that is the average loss considering only defaulted

scenarios, while the price of counterparty risk is de�ned as the unconditional expected loss taking

into account all scenarios. From the numbers they reported, we can see that the correlation

does not have a signi�cant e¤ect on the unconditional expected loss, resulting at maximum in a

variation of only 1 basis point. Moreover, Harris et al. (2015) did not compare the contribution of

the correlation between the interest-rate volatility and the default probability to the contribution

of the correlation between the interest-rate level and the default probability, which is the standard

choice in modeling right-way/wrong-way risk. Furthermore, Harris et al. (2015) did not analyze

the expected loss of non-collateralized instruments, for which counterparty risk is the most relevant.

In this chapter, we investigate in details the role of the correlation between the interest-rate

volatility and the default intensity. To this end, we consider an interest-rate model featuring

stochastic volatility, which is similar to the model considered in Harris et al. (2015). We also

consider a standard default-intensity model. We calibrate both models on December 5, 2008

and we analyze the e¤ects of the correlations on the CVA of interest-rate instruments for eight

counterparties which are the major American banks and �nancial companies. We �nally perform

a sensitivity analysis to validate our conclusions.

The rest of the chapter is organized as follows. Section 4.2 is dedicated to the description of the

interest-rate and the default-intensity models. Section 4.3 reports the results of the calibration of

the interest-rate and the default-intensity models. Section 4.4 presents the results of our empirical

study examining the impact of correlation modeling on counterparty risk. Section 4.5 is devoted

to the numerical results of the sensitivity analysis that we conduct. Section 4.6 is a conclusion.
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4.2 Description of the models

In this section, we describe the interest-rate and the default-intensity models considered in this

study. The �rst sub-section is dedicated to the interest-rate model, while the second one is dedi-

cated to the default-intensity model.

4.2.1 The interest-rate model

We consider the model of Casassus et al. (2005) for the instantaneous spot interest rate, which can

be seen as a stochastic-volatility extension of the well-known Hull-White (Hull and White (1990))

or the Vasicek (Vasicek (1977)) interest-rate models. This model is among the �rst frameworks

that feature unspanned stochastic volatility (USV) behavior, i.e., it is designed in a way that the

stochastic volatility factor does not a¤ect bond prices but drives bond-option prices. In earlier

versions of stochastic-volatility models of interest rates such as Fong and Vasicek (1991) and

Longsta¤and Schwartz (1992), bond prices are functions of both the interest-rate and the volatility

variables, meaning that bonds can serve as building blocks of hedging strategies that span the

universe of interest-rate derivatives. However, empirical evidence on USV was documented in a

number of papers, for instance Collin-Dufresne and Goldstein (2002) show that there are volatility

factors that in�uence interest-rate derivatives but do not a¤ect the bond yield curve. We choose a

model with this fundamental characteristic in order to analyze the e¤ects of the correlation between

the counterparty default and the interest-rate volatility on the CVA of both volatility-insensitive

instruments (interest-rate swaps) and volatility-sensitive products (caps and �oors). For interest-

rate swaps, the volatility plays only a role of uncertainty on the future exposure, while for bond

options, the exposure is directly a¤ected by the volatility factor. This model is also a particular

case of the more general Heath-Jarrow-Morton (HJM, Heath et al. (1992)) stochastic-volatility

framework proposed in Trolle and Schwartz (2009).

The model in its short-rate form is written under the risk-neutral measure as
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drt = �r(�t � rt)dt+
p
VtdW1t;

d�t =

�

(t)� 2�r�t +

Vt
�r

�
dt;

dVt = �V (�V � Vt)dt+ �V
p
VtdW2t;

where W1t and W2t are two independent Brownian motions and 
(t) is a deterministic function

of time. rt is the spot interest-rate level, which is a mean-reverting process with the parameter

�r as the speed of adjustment and the stochastic process �t as the long-run interest-rate level.

Vt is the volatility of the spot rate, which is a square-root process with the parameter �V as the

speed of adjustment, the parameter �V as the long-run volatility level and the parameter �V as

the volatility of volatility. The speci�cation of �t may seem a bit strange; however, it should be

designed in this way, in order for the model to feature USV. Note that although there are two

stochastic factors (the two Brownian processes), the model is Markovian in three state variables

(rt; �t; Vt). Collin-Dufresne and Goldstein (2002) show that in order to exhibit USV in an a¢ ne

framework, at least three state variables are needed.

Through a fast application of Ito�s lemma, zero-coupon bond prices are given by (see Proposition

1 in Casassus et al. (2005))

P (t; T ) = exp(�Br(T � t)rt �B�(T � t)�t � A(t; T ));

where

Br(T � t) =

�
1� e��r(T�t)

�
�r

;

B�(T � t) =

�
1� e��r(T�t)

�2
2�r

;

A(t; T ) =

Z T

t


(s)B�(T � s)ds:
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We can see therefore that bond prices do not depend on the volatility factor Vt (the USV behavior).

The deterministic function of time 
(t) allows to perfectly calibrate the model-implied initial term

structure to the one actually observed, which is therefore an input to the model. Given an observed

initial curve of instantaneous forward rates f(t), the deterministic function of time 
(t) should be

set to


(t) =
1

�r

d2f(t)

dt2
+ 3

df(t)

dt
+ 2�rf(t); (4.1)

so that the model-implied initial forward curve would exactly �t the market forward curve (see

Proposition 2 in Casassus et al. (2005)).

The risk-neutral dynamics of bond prices are described by

dP (t; T ) = rtP (t; T )dt�Br(T � t)
p
VtP (t; T )dW1t;

dVt = �V (�V � Vt)dt+ �V
p
VtdW2t:

In order to price interest-rate derivatives (i.e., caps and �oors), we need to compute for t < T0 < T1

and a given strike K the quantities

Call(t; T0; T1; K) = Et
�
exp

�
�
Z T0

t

rsds

�
(P (T0; T1)�K) 1lP (T0;T1)>K

�
;

Put(t; T0; T1; K) = Et
�
exp

�
�
Z T0

t

rsds

�
(K � P (T0; T1)) 1lP (T0;T1)<K

�
;

where Call(t; T0; T1; K) (respectively Put(t; T0; T1; K)) is the price at date t of a call (respectively

put) option written on the process P (t; T1), having strike K and maturing at T0. To this end,

the Fourier transform  t;T0 ;T1(u) = Et
h
exp

�
�
R T0
t
rsds

�
euP (T0;T1)

i
is introduced (u is a complex

number).  t;T0 ;T1(u) has the following expression (see Proposition 7 in Casassus et al. (2005))

 t;T0 ;T1(u) = exp (M(T0 � t) +N(T0 � t)Vt + uP (t; T1) + (1� u)P (t; T0)) ;
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where M(T0 � t) and N(T0 � t) are two deterministic functions that satisfy the system of ODEs

(� = T0 � t)

dN(�)

d�
=

�2V
2
N(�)2 � �VN(�)

+
1

2

�
(uBr(� + T1 � T0) + (1� u)Br(�))

2 � uBr(� + T1 � T0)
2 � (1� u)Br(�)

2
�
;

dM(�)

d�
= �V �VN(�);

subject to the initial conditions M(0) = N(0) = 0. This system can be solved numerically using

e¢ cient standard techniques. Following the literature on the use of Fourier transform techniques

to price options (Heston (1993) and Du¢ e et al. (2000)), the call and put prices are given by

Call(t; T0; T1; K) =
 t;T0 ;T1(1)

2
+
1

�

Z 1

0

Im
�
 t;T0 ;T1(1 + ix)e

�ix log(K)�
x

dx (4.2)

�K
 
 t;T0 ;T1(0)

2
+
1

�

Z 1

0

Im
�
 t;T0 ;T1(ix)e

�ix log(K)�
x

dx

!
;

Put(t; T0; T1; K) = K

 
 t;T0 ;T1(0)

2
� 1

�

Z 1

0

Im
�
 t;T0 ;T1(ix)e

�ix log(K)�
x

dx

!
(4.3)

�
 
 t;T0 ;T1(1)

2
� 1

�

Z 1

0

Im
�
 t;T0 ;T1(1 + ix)e

�ix log(K)�
x

dx

!
:

These formulas can be evaluated using direct numerical integration or e¢ cient FFT techniques.

The inputs for the model are 
(t), �r and the volatility process parameters V0; �V ; �V and �V . For

a given �r, 
(t) is calibrated using Equation (4.1) to �t the observed initial term structure, while

�r and the volatility process parameters are calibrated to the observed derivative prices (caps and

�oors) using Equations (4.2)-(4.3) .

4.2.2 The default-intensity model

To model the default intensity, we consider the following CIR representation (Cox et al. (1985))

under the risk-neutral measure:
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d�t = ��(�� � �t)dt+ ��
p
�t

�
�r�dW1t + �V �dW2t +

q
1� �2r� � �2V �dW3t

�
;

where W3t is a third Brownian motion independent from W1t and W2t, and �r� (respectively �V �)

is the correlation between the Brownian components of �t and rt (respectively �t and Vt). This

model is the standard choice in modeling the default intensity, because it ensures the positivity

of the process and has desirable mean-reverting properties. Moreover, this model is tractable and

yields closed-form expressions for survival probabilities, which correspond to zero-coupon bond

prices in the CIR model.

The information on the default intensity is embedded in the CDS quotes of the counterparty. In a

CDS contract, the protection buyer pays �xed periodic fees (at discrete dates 0 < t1 < t2 < ::: <

tm = T ) to the protection seller until the maturity of the contract or the default event. In return,

if default happens, the contract seller agrees to pay back the buyer the amount of money lost due

to the default of the reference entity. The standard price of a CDS with maturity T at date 0 is

(as seen from the protection buyer point of view)

CDS = E

"
LGD1l0<��T�0(�)�

mX
i=1

�0(ti)�iR1l�>ti � �0(�)(� � t�(�))R1l0<�<T

#
;

where R is the premium rate, LGD is the loss given default (computed as one minus the recovery

rate), �t(u) is the discount factor for u > t, � is the default time of the reference credit, �i = ti�ti�1,

�(�) is the index of the payment date that precedes the default event, and where the expectation

is taken under the risk-neutral measure. The fair premium rate is chosen as to make the CDS

value nil at the beginning of the contract. Under the default-intensity and the interest-rate models

considered in this study, we can write the value of the CDS as follows

CDS = LGD
Z T

0

E
�
exp

�
�
Z s

0

(ru + �u)du

�
�s

�
ds�

mX
i=1

�iRE
�
exp

�
�
Z ti

0

(ru + �u)du

��
�R

Z T

0

E
�
exp

�
�
Z s

0

(ru + �u)du

�
�s

�
(s� t�(s))ds;
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which does not allow for a closed-form solution because of the correlation between the spot interest

rate and the default intensity. However, it has been shown in the �nancial literature that this

correlation has a minor e¤ect on the CDS value (see, e.g., Brigo and Alfonsi (2005)), so that the

independence between interest-rate and credit risks has become a common assumption in CDS

pricing models. Under independence, the CDS value becomes

CDS = LGD
Z T

0

E
�
exp

�
�
Z s

0

rudu

���
� d

ds
E
�
exp

�
�
Z s

0

�udu

���
ds

�
mX
i=1

�iRE
�
exp

�
�
Z ti

0

rudu

��
E
�
exp

�
�
Z ti

0

�udu

��
�R

Z T

0

E
�
exp

�
�
Z s

0

rudu

���
� d

ds
E
�
exp

�
�
Z s

0

�udu

���
(s� t�(s))ds:

The term E
�
exp

�
�
Z s

0

rudu

��
= P (0; s) is the price of a zero-coupon bond that is obtained in

closed form as we explained in Section 4.2.1, while E
�
exp

�
�
Z s

0

�udu

��
= PCIR(0; s) is the price

of a zero-coupon bond in the CIR model of the default intensity which is also obtained in closed

form. The CDS value can therefore be written analytically as

CDS = LGD
Z T

0

P (0; s)

�
�dP

CIR(0; s)

ds

�
ds�

mX
i=1

�iRP (0; ti)P
CIR(0; ti)

�R
Z T

0

P (0; s)

�
�dP

CIR(0; s)

ds

�
(s� t�(s))ds;

and the fair premium rate satis�es

R =

LGD
Z T

0

P (0; s)

�
�dP

CIR(0; s)

ds

�
dsXm

i=1
�iP (0; ti)PCIR(0; ti) +

Z T

0

P (0; s)

�
�dP

CIR(0; s)

ds

�
(s� t�(s))ds

: (4.4)

The inputs for the model are �0; ��; ��; ��, and the correlations �r� and �V �. The parameters

(�0; ��; ��; ��) can be calibrated to the observed term structure of CDS premia using Equation

73



(4.4). Note that these parameters could also be calibrated to the prices of CDS options. However,

as discussed in Brigo and Alfonsi (2005), this is not empirically consistent because CDS options

are not liquid enough and exhibit a large bid-ask spread. We thus calibrate the parameters using

the observed term structure of CDS spreads. As for the correlations �r� and �V �, it is hard to �nd

an instrument that is critically dependent on these two parameters. Therefore, they have to be

either estimated historically from the joint evolution of interest rates and CDS spreads, or set on

an expert judgement basis.

4.3 Calibration

We calibrate the interest-rate and the default-intensity models using the observed market con-

ditions on December 5, 2008. We choose this date because it belongs to a period of signi�cant

systemic credit risk that immediately followed Lehman�s bankruptcy. First, we calibrate the initial

term structure of interest rates using the Nelson-Siegel-Svensson (NSS) scheme (Nelson and Siegel

(1987), Svensson (1994)). Under the NSS scheme, the curve of instantaneous forward rates is

assumed to have the following parametric form:

f(t) = �0 + �1 exp

�
� t

� 1

�
+ �2

t

� 1
exp

�
� t

� 1

�
+ �3

t

� 2
exp

�
� t

� 2

�
:

The parameters (�0; �1; �2; �3; � 1; � 2) are estimated by minimizing the sum of squared errors be-

tween the NSS model implied rates and the actual observed rates. Included rates are Libor rates

with maturities 3, 6 and 9 months and swap rates with maturities 1, 2, 3, 4, 5, 7, 10, 15, 20 and

30 years. The data on interest rates is obtained from Bloomberg. In Table 4.1, we report the

estimated NSS parameters.

Once the initial term structure is calibrated, we calibrate the remaining interest-rate model para-

meters (V0; �r; �V ; �V ; �V ) by minimizing the sum of squared errors between the model-implied cap

prices and the actual observed cap prices. Included cap prices have maturities of 1, 2, 3, 5, 7 and 10
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�0 0:0254
�1 �0:0023
�2 �0:0453
�3 0:0483
� 1 1:6366
� 2 3:1673

Table 4.1: Estimated NSS parameters on December 5, 2008

years and strike rates of 0.01, 0.02, 0.03, 0.04, 0.05 and 0.06. Actual cap prices are computed from

Bloomberg�s Black log-normal implied-volatility matrix (Black (1976)). The calibrated parameters

of the interest-rate model are reported in Table 4.2.

V0 0:0006
�r 0:0828
�V 0:1152
�V 0:0008
�V 0:0080

Table 4.2: Calibrated parameters of the interest-rate model on December 5, 2008

In our analysis, we consider eight counterparties, which are the major American banks and �nancial

companies. The considered counterparties and their tickers are reported in Table 4.3. We calibrate

the default-intensity parameters (�0; ��; ��; ��) by minimizing the sum of squared errors between

the model implied CDS spreads and actual observed CDS spreads. We consider CDS spreads with

maturities 1, 2, 3, 4, 5, 7 and 10 years. Data on CDS spreads is obtained from Bloomberg. In

Table 4.4, we report the calibrated parameters for the di¤erent counterparties.

At this level, we are left only with the parameters �r� and �V �. As we said before, these parameters

need to be estimated statistically based on historical data. We use the values estimated by Harris

et al. (2015) based on the joint historical evolution of interest rates and default intensities during

the �nancial crisis. The values of �r� and �V � for the di¤erent counterparties are reported in

Table 4.5. Note that �r� is negative and �V � is positive for all counterparties. This is in line with
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Counterparty Ticker
Bank of America BAC
Citi Group Inc C

Goldman Sachs Group Inc GS
JP Morgan Chase & Co JPM
American Express AXP

American International Group Inc AIG
Morgan Stanley MS
Merrill Lynch MER

Table 4.3: Considered counterparties and their tickers

Counterparty �0 �� �� ��
BAC 0:0070 0:0341 1:4851 0:1249
C 0:0535 0:0337 0:2596 0:1973
GS 0:0696 0:0330 0:2495 0:1023
JPM 0:0152 0:0269 1:6085 0:1799
AXP 0:0876 0:0133 0:1517 0:1071
AIG 0:1213 0:0933 0:0506 0:1780
MS 0:1712 0:0464 1:4014 0:1023
MER 0:0839 0:0316 1:5976 0:1989

Table 4.4: Calibrated parameters of the default-intensity model for the di¤erent counterparties on
December 5, 2008

the conditions observed during the �nancial crisis, where the increase in counterparty risk was

accompanied by an increase in interest-rate volatility and a decrease in interest-rate level due to

uncertainty and monetary policy.

Counterparty �r� �V �
BAC �0:4619 0:3859
C �0:5485 0:3247
GS �0:6758 0:6491
JPM �0:4044 0:5576
AXP �0:4284 0:5769
AIG �0:5352 0:6271
MS �0:2751 0:3149
MER �0:4851 0:6677

Table 4.5: Values of correlations for the di¤erent counterparties
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4.4 Impact of correlations on counterparty risk

In this section, we investigate the impact of �r� and �V � on the value of counterparty risk. In all

results, we consider four correlation schemes: In the �rst one, we set �V � = 0 and �r� = 0; in the

second, we consider only �V � and we set �r� = 0; in the third, we consider only �r� and we set

�V � = 0; and �nally in the fourth scheme we consider both correlations. The recovery factor is

assumed to be nil.

In the �rst sub-section, we analyze the CVA of non-collateralized interest-rate swaps, where the

CVA is driven by an exposure that fully corresponds to the defaut-free value of the swap. In this

case, due to the USV nature of the interest-rate model, the volatility plays only a role of uncertainty

on the future exposure. The same exercise is performed for non-collateralized caps and �oors in

the second sub-section. However, interest-rate options are contingent on the volatility state, and

this may make the e¤ect of �V � more relevant. Finally, in the third sub-section, we analyze the

CVA of collateralized interest-rate swaps, where potential losses can result from the so-called gap

risk. In more details, even if the swap is fully collateralized, we assume a replacement period upon

default of two weeks during which the swap value may signi�cantly move; and in such a case, the

interest-rate volatility may play an important role.

For the valuation of the CVA, we use a standard simulation approach to compute the CVA (as

described in the �rst chapter). The simulation results are based on 100000 scenarios and 260

discretization steps for the underlying processes. Moreover, we use the same sample of random

shocks for all situations in order to ensure that comparative results are not a¤ected by sampling

errors.

4.4.1 Impact of correlations on the CVA of non-collateralized interest-

rate swaps

In this sub-section, we compare the CVA of non-collateralized interest-rate swaps implied by the

di¤erent correlation schemes. We consider both payer and receiver positions.

In Tables 4.6-4.10, we report results for maturities ranging from 1 to 5 years. In each table,
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we include the computed CVA for each correlation scheme and the CVA variation in % with

comparison to the no-correlation scheme.

�V � = 0, �r� = 0 �V � 6= 0, �r� = 0 �V � = 0, �r� 6= 0 �V � 6= 0, �r� 6= 0
CVA CVA Variation CVA Variation CVA Variation

BAC Payer 0:54 0:56 +2:81% 0:44 �19:00% 0:45 �16:72%
BAC Receiver 0:60 0:60 +0:17% 0:69 +15:78% 0:70 +16:28%
C Payer 1:26 1:30 +3:12% 0:28 �77:84% 0:30 �76:52%
C Receiver 1:39 1:42 +2:68% 3:25 +134:84% 3:37 +143:52%
GS Payer 1:72 1:72 �0:10% 1:37 �20:30% 1:39 �19:42%
GS Receiver 1:88 1:89 +0:73% 2:28 +21:32% 2:30 +22:30%
JPM Payer 0:59 0:60 +2:37% 0:44 �25:71% 0:45 �22:73%
JPM Receiver 0:61 0:60 �2:15% 0:76 +23:60% 0:75 +21:87%
AXP Payer 1:94 2:06 +6:49% 0:74 �61:97% 0:77 �60:13%
AXP Receiver 2:17 2:23 +2:78% 4:11 +89:65% 4:26 +96:38%
AIG Payer 2:78 2:92 +4:80% 0:88 �68:43% 0:91 �67:38%
AIG Receiver 3:10 3:20 +3:20% 6:21 +100:06% 6:47 +108:35%
MS Payer 3:03 3:02 �0:11% 2:90 �4:35% 2:90 �4:35%
MS Receiver 3:21 3:23 +0:53% 3:36 +4:59% 3:38 +5:27%
MER Payer 1:49 1:50 +0:85% 1:17 �21:26% 1:18 �20:42%
MER Receiver 1:65 1:69 +2:43% 2:05 +24:24% 2:10 +27:13%

Table 4.6: CVA of 1-year swaps for di¤erent correlation schemes. The CVA is reported in basis
points and variations are computed compared to the no-correlation case.
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�V � = 0, �r� = 0 �V � 6= 0, �r� = 0 �V � = 0, �r� 6= 0 �V � 6= 0, �r� 6= 0
CVA CVA Variation CVA Variation CVA Variation

BAC Payer 3:71 3:72 +0:30% 3:09 �16:71% 3:08 �16:90%
BAC Receiver 3:44 3:45 +0:20% 4:13 +19:97% 4:16 +20:79%
C Payer 5:58 5:71 +2:36% 1:08 �80:62% 1:28 �77:00%
C Receiver 5:32 5:57 +4:62% 13:18 +147:46% 13:66 +156:54%
GS Payer 9:00 9:11 +1:31% 6:76 �24:91% 6:82 �24:16%
GS Receiver 8:52 8:66 +1:64% 10:93 +28:21% 11:04 +29:51%
JPM Payer 3:45 3:45 +0:07% 2:74 �20:56% 2:67 �22:56%
JPM Receiver 3:19 3:27 +2:36% 4:07 +27:44% 4:14 +29:55%
AXP Payer 8:15 8:62 +5:84% 2:93 �64:08% 3:18 �60:98%
AXP Receiver 7:92 8:41 +6:18% 15:79 +99:38% 16:95 +114:14%
AIG Payer 11:77 12:64 +7:33% 3:38 �71:28% 3:63 �69:15%
AIG Receiver 11:35 11:99 +5:61% 24:86 +118:92% 26:11 +129:92%
MS Payer 12:45 12:50 +0:39% 11:71 �5:98% 11:76 �5:55%
MS Receiver 11:93 11:99 +0:54% 12:69 +6:37% 12:73 +6:74%
MER Payer 6:94 7:02 +1:06% 5:25 �24:41% 5:34 �23:14%
MER Receiver 6:62 6:71 +1:36% 8:36 +26:27% 8:53 +28:78%

Table 4.7: CVA of 2-year swaps for di¤erent correlation schemes. The CVA is reported in basis
points and variations are computed compared to the no-correlation case.

�V � = 0, �r� = 0 �V � 6= 0, �r� = 0 �V � = 0, �r� 6= 0 �V � 6= 0, �r� 6= 0
CVA CVA Variation CVA Variation CVA Variation

BAC Payer 10:97 10:92 �0:43% 9:34 �14:88% 9:29 �15:31%
BAC Receiver 9:01 9:14 +1:38% 10:93 +21:24% 10:99 +21:98%
C Payer 11:93 12:61 +5:68% 2:73 �77:16% 2:99 �74:93%
C Receiver 10:11 10:84 +7:26% 26:33 +160:46% 27:57 +172:71%
GS Payer 22:34 22:61 +1:19% 16:23 �27:37% 16:42 �26:50%
GS Receiver 19:01 19:31 +1:54% 25:72 +35:26% 26:10 +37:27%
JPM Payer 9:41 9:50 +0:97% 7:53 �19:97% 7:58 �19:43%
JPM Receiver 8:02 8:01 �0:14% 10:19 +27:03% 10:31 +28:61%
AXP Payer 16:68 17:89 +7:23% 5:96 �64:28% 6:37 �61:82%
AXP Receiver 14:68 15:76 +7:33% 29:81 +103:10% 32:38 +120:56%
AIG Payer 24:46 26:05 +6:48% 6:92 �71:72% 7:52 �69:26%
AIG Receiver 20:98 23:25 +10:79% 47:83 +127:95% 50:35 +139:97%
MS Payer 27:68 27:69 +0:05% 26:09 �5:74% 26:08 �5:76%
MS Receiver 24:28 24:36 +0:33% 25:90 +6:68% 25:98 +7:02%
MER Payer 16:24 16:51 +1:64% 12:48 �23:14% 12:45 �23:36%
MER Receiver 13:94 14:07 +0:94% 18:04 +29:41% 18:45 +32:33%

Table 4.8: CVA of 3-year swaps for di¤erent correlation schemes. The CVA is reported in basis
points and variations are computed compared to the no-correlation case.
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�V � = 0, �r� = 0 �V � 6= 0, �r� = 0 �V � = 0, �r� 6= 0 �V � 6= 0, �r� 6= 0
CVA CVA Variation CVA Variation CVA Variation

BAC Payer 22:74 22:88 +0:62% 19:18 �15:65% 19:22 �15:48%
BAC Receiver 17:37 17:60 +1:32% 20:82 +19:90% 21:07 +21:36%
C Payer 20:19 21:30 +5:48% 5:17 �74:38% 5:27 �73:90%
C Receiver 15:96 16:89 +5:81% 40:82 +155:80% 43:47 +172:35%
GS Payer 41:31 42:10 +1:90% 29:21 �29:30% 29:92 �27:59%
GS Receiver 32:31 33:18 +2:70% 45:30 +40:21% 46:48 +43:86%
JPM Payer 19:28 19:25 �0:18% 15:52 �19:53% 15:48 �19:73%
JPM Receiver 14:90 15:25 +2:38% 18:66 +25:24% 19:26 +29:26%
AXP Payer 25:70 27:73 +7:91% 9:42 �63:33% 10:34 �59:76%
AXP Receiver 21:34 23:54 +10:31% 43:96 +105:97% 48:07 +125:25%
AIG Payer 38:10 40:68 +6:78% 10:95 �71:26% 12:19 �68:00%
AIG Receiver 30:77 33:73 +9:63% 70:59 +129:41% 74:17 +141:07%
MS Payer 47:98 48:11 +0:26% 44:98 �6:26% 45:25 �5:70%
MS Receiver 39:13 39:24 +0:29% 41:79 +6:80% 41:90 +7:07%
MER Payer 29:37 29:68 +1:04% 22:69 �22:74% 23:04 �21:56%
MER Receiver 23:42 23:80 +1:65% 30:61 +30:72% 31:03 +32:53%

Table 4.9: CVA of 4-year swaps for di¤erent correlation schemes. The CVA is reported in basis
points and variations are computed compared to the no-correlation case.

�V � = 0, �r� = 0 �V � 6= 0, �r� = 0 �V � = 0, �r� 6= 0 �V � 6= 0, �r� 6= 0
CVA CVA Variation CVA Variation CVA Variation

BAC Payer 39:36 39:34 �0:05% 33:82 �14:07% 33:90 �13:88%
BAC Receiver 28:55 28:69 +0:49% 33:74 +18:18% 33:74 +18:18%
C Payer 29:83 30:72 +2:99% 8:19 �72:55% 8:40 �71:85%
C Receiver 22:59 23:66 +4:74% 57:42 +154:19% 60:03 +165:77%
GS Payer 64:85 66:23 +2:14% 44:40 �31:53% 45:94 �29:15%
GS Receiver 49:20 50:44 +2:51% 70:26 +42:80% 72:46 +47:27%
JPM Payer 32:48 32:64 +0:50% 26:63 �17:99% 26:54 �18:27%
JPM Receiver 23:85 24:34 +2:06% 30:17 +26:50% 30:25 +26:84%
AXP Payer 34:97 37:63 +7:61% 12:87 �63:20% 14:34 �59:00%
AXP Receiver 28:13 31:20 +10:88% 58:23 +106:97% 62:46 +122:00%
AIG Payer 51:56 54:63 +5:96% 15:13 �70:65% 17:06 �66:91%
AIG Receiver 40:23 45:27 +12:55% 93:09 +131:41% 98:96 +146:02%
MS Payer 72:90 73:12 +0:30% 68:62 �5:88% 69:06 �5:26%
MS Receiver 56:65 57:08 +0:75% 60:70 +7:14% 61:14 +7:91%
MER Payer 46:14 46:50 +0:78% 36:04 �21:88% 36:59 �20:71%
MER Receiver 34:67 35:34 +1:91% 45:42 +31:00% 46:52 +34:17%

Table 4.10: CVA of 5-year swaps for di¤erent correlation schemes. The CVA is reported in basis
points and variations are computed compared to the no-correlation case.
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It is clear from Tables 4.6-4.10 that �r� has a right-way e¤ect (a decrease in the CVA) on the

payer position and a wrong-way e¤ect (an increase in the CVA) on the receiver position. This is

expected since �r� is negative. This e¤ect is relatively signifcant, yielding a large variation in the

CVA for most of the cases. The relative variation exceeds 100% in some situations.

On the other hand, except for a few cases, �V � has a wrong-way e¤ect on both the payer and the

receiver positions. This is intuitive since a positive correlation between the uncertainty on the

interest-rate movements and the default probability would increase the CVA in both directions.

However, the magnitude of this wrong-way e¤ect is minor compared to the e¤ect of �r�. The

maximum observed variation of the CVA is only about 10%. When we consider both correlations,

it is always the e¤ect of �r� that predominates the change in the CVA.

These results contrast with the �ndings of Harris et al. (2015), who argue that �V � has a non-

negligible wrong-way e¤ect on the CVA of interest-rate swaps. Moreover, Gregory (2012) suggests

to consider right-way/wrong-way risk by correlating the default intensity with the interest-rate

volatility. In the scope of our results, such suggestion may not be of great practical importance for

interest-rate swaps. First, the increase in the CVA induced by �V � is relatively small to be taken

into consideration. Second, the contribution of �V � is dominated by that of �r�.

The non-critical role of �V � can be explained by the fact that in a USV framework, swap exposures

are not a¤ected by the volatility variable. The latter plays only a role of uncertainty on the future

exposure. In the next section, we examine the e¤ect of �V � on the CVA of interest-rate derivatives

whose exposures depend on the volatility factor, that is, caps and �oors.

4.4.2 Impact of correlations on the CVA of non-collateralized interest-

rate caps and �oors

In this sub-section, we examine the e¤ects of �V � and �r� on the CVA of non-collateralized interest-

rate caps and �oors. CVA results are reported in Tables 4.11-4.15.
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�V � = 0, �r� = 0 �V � 6= 0, �r� = 0 �V � = 0, �r� 6= 0 �V � 6= 0, �r� 6= 0
CVA CVA Variation CVA Variation CVA Variation

BAC Cap 0:69 0:69 +0:65% 0:59 �14:35% 0:59 �13:77%
BAC Floor 0:73 0:73 +0:56% 0:85 +15:71% 0:85 +16:35%
C Cap 1:79 1:86 +3:68% 0:72 �60:05% 0:75 �58:29%
C Floor 1:85 1:89 +2:65% 3:69 +99:72% 3:78 +104:97%
GS Cap 2:44 2:46 +0:80% 2:10 �14:18% 2:11 �13:46%
GS Floor 2:57 2:59 +0:76% 2:96 +15:33% 2:98 +16:13%
JPM Cap 0:76 0:77 +1:36% 0:63 �17:42% 0:64 �16:25%
JPM Floor 0:81 0:82 +1:22% 0:97 +19:55% 0:98 +20:94%
AXP Cap 2:82 2:96 +4:78% 1:52 �46:20% 1:61 �43:02%
AXP Floor 2:92 3:05 +4:41% 4:84 +65:60% 5:03 +72:26%
AIG Cap 4:01 4:20 +4:74% 1:95 �51:22% 2:07 �48:43%
AIG Floor 4:16 4:35 +4:56% 7:27 +74:73% 7:55 +81:37%
MS Cap 4:39 4:40 +0:21% 4:25 �3:26% 4:25 �3:05%
MS Floor 4:59 4:60 +0:20% 4:74 +3:39% 4:75 +3:59%
MER Cap 2:26 2:29 +1:16% 1:93 �14:64% 1:95 �13:61%
MER Floor 2:37 2:39 +1:10% 2:75 +16:18% 2:78 +17:38%

Table 4.11: CVA of 1-year caps and �oors for di¤erent correlation schemes. The CVA is reported
in basis points and variations are computed compared to the no-correlation case.

�V � = 0, �r� = 0 �V � 6= 0, �r� = 0 �V � = 0, �r� 6= 0 �V � 6= 0, �r� 6= 0
CVA CVA Variation CVA Variation CVA Variation

BAC Cap 4:90 4:94 +0:87% 4:25 �13:27% 4:29 �12:49%
BAC Floor 4:62 4:66 +0:86% 5:33 +15:34% 5:38 +16:30%
C Cap 8:38 8:81 +5:08% 3:51 �58:10% 3:75 �55:26%
C Floor 7:98 8:40 +5:30% 15:89 +99:13% 16:43 +105:82%
GS Cap 13:04 13:23 +1:51% 10:79 �17:21% 10:97 �15:86%
GS Floor 12:54 12:73 +1:53% 14:99 +19:56% 15:20 +21:22%
JPM Cap 4:75 4:83 +1:87% 3:96 �16:55% 4:04 �14:92%
JPM Floor 4:51 4:60 +1:85% 5:40 +19:53% 5:49 +21:67%
AXP Cap 12:67 13:60 +7:38% 6:97 �45:00% 7:62 �39:87%
AXP Floor 12:12 13:04 +7:57% 20:16 +66:35% 21:45 +76:95%
AIG Cap 18:31 19:54 +6:72% 9:19 �49:83% 10:01 �45:34%
AIG Floor 17:61 18:84 +6:96% 30:88 +75:34% 32:74 +85:84%
MS Cap 19:92 19:98 +0:35% 19:21 �3:56% 19:27 �3:22%
MS Floor 19:41 19:48 +0:35% 20:15 +3:82% 20:22 +4:18%
MER Cap 10:74 10:93 +1:82% 9:09 �15:34% 9:26 �13:73%
MER Floor 10:42 10:61 +1:84% 12:27 +17:74% 12:48 +19:79%

Table 4.12: CVA of 2-year caps and �oors for di¤erent correlation schemes. The CVA is reported
in basis points and variations are computed compared to the no-correlation case.
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�V � = 0, �r� = 0 �V � 6= 0, �r� = 0 �V � = 0, �r� 6= 0 �V � 6= 0, �r� 6= 0
CVA CVA Variation CVA Variation CVA Variation

BAC Cap 14:80 14:93 +0:92% 13:05 �11:80% 13:18 �10:97%
BAC Floor 12:74 12:87 +1:01% 14:59 +14:50% 14:73 +15:63%
C Cap 18:76 20:00 +6:61% 8:61 �54:10% 9:26 �50:63%
C Floor 17:03 18:04 +5:93% 33:02 +93:91% 34:53 +102:74%
GS Cap 33:54 34:20 +1:97% 27:37 �18:40% 27:96 �16:65%
GS Floor 30:00 30:66 +2:18% 36:67 +22:21% 37:39 +24:62%
JPM Cap 13:48 13:75 +1:98% 11:48 �14:86% 11:71 �13:12%
JPM Floor 11:77 12:02 +2:18% 13:96 +18:61% 14:25 +21:12%
AXP Cap 27:02 29:30 +8:46% 15:72 �41:83% 17:41 �35:57%
AXP Floor 24:81 27:16 +9:45% 40:50 +63:21% 43:80 +76:54%
AIG Cap 39:77 42:85 +7:74% 21:42 �46:14% 23:70 �40:41%
AIG Floor 36:51 39:75 +8:87% 62:98 +72:51% 67:22 +84:13%
MS Cap 46:39 46:58 +0:40% 44:79 �3:45% 44:98 �3:05%
MS Floor 42:70 42:89 +0:44% 44:36 +3:88% 44:55 +4:33%
MER Cap 26:03 26:56 +2:05% 22:26 �14:47% 22:74 �12:65%
MER Floor 23:69 24:22 +2:24% 27:87 +17:68% 28:47 +20:21%

Table 4.13: CVA of 3-year caps and �oors for di¤erent correlation schemes. The CVA is reported
in basis points and variations are computed compared to the no-correlation case.

�V � = 0, �r� = 0 �V � 6= 0, �r� = 0 �V � = 0, �r� 6= 0 �V � 6= 0, �r� 6= 0
CVA CVA Variation CVA Variation CVA Variation

BAC Cap 31:34 31:63 +0:93% 28:03 �10:56% 28:30 �9:71%
BAC Floor 25:56 25:84 +1:09% 29:05 +13:66% 29:37 +14:88%
C Cap 32:01 34:07 +6:46% 15:71 �50:92% 16:91 �47:17%
C Floor 28:52 29:96 +5:05% 53:63 +88:06% 56:36 +97:63%
GS Cap 63:88 65:38 +2:34% 51:86 �18:82% 53:19 �16:74%
GS Floor 54:64 56:12 +2:71% 67:80 +24:09% 69:44 +27:10%
JPM Cap 27:61 28:17 +2:02% 23:91 �13:39% 24:41 �11:59%
JPM Floor 22:87 23:40 +2:34% 26:90 +17:61% 27:51 +20:30%
AXP Cap 43:34 47:48 +9:57% 26:43 �39:02% 29:50 �31:92%
AXP Floor 39:34 43:41 +10:34% 62:88 +59:82% 68:86 +75:01%
AIG Cap 65:01 70:44 +8:35% 37:36 �42:53% 41:37 �36:37%
AIG Floor 58:63 64:26 +9:60% 98:97 +68:81% 106:63 +81:88%
MS Cap 83:24 83:60 +0:43% 80:55 �3:23% 80:91 �2:81%
MS Floor 73:73 74:08 +0:48% 76:55 +3:83% 76:92 +4:33%
MER Cap 48:25 49:29 +2:16% 41:79 �13:39% 42:72 �11:46%
MER Floor 42:04 43:07 +2:45% 49:28 +17:21% 50:44 +19:99%

Table 4.14: CVA of 4-year caps and �oors for di¤erent correlation schemes. The CVA is reported
in basis points and variations are computed compared to the no-correlation case.

83



�V � = 0, �r� = 0 �V � 6= 0, �r� = 0 �V � = 0, �r� 6= 0 �V � 6= 0, �r� 6= 0
CVA CVA Variation CVA Variation CVA Variation

BAC Cap 54:21 54:71 +0:93% 49:01 �9:58% 49:48 �8:72%
BAC Floor 43:16 43:64 +1:13% 48:73 +12:91% 49:27 +14:16%
C Cap 47:04 49:78 +5:83% 24:11 �48:75% 26:17 �44:36%
C Floor 41:44 43:10 +4:01% 76:59 +84:82% 80:76 +94:87%
GS Cap 102:38 105:08 +2:64% 83:10 �18:84% 85:50 �16:49%
GS Floor 85:63 88:31 +3:12% 107:47 +25:50% 110:47 +29:00%
JPM Cap 46:82 47:77 +2:03% 41:11 �12:20% 41:96 �10:37%
JPM Floor 37:82 38:73 +2:41% 44:14 +16:71% 45:18 +19:47%
AXP Cap 59:95 65:89 +9:92% 37:69 �37:12% 42:33 �29:39%
AXP Floor 54:42 60:22 +10:64% 86:16 +58:32% 94:25 +73:18%
AIG Cap 91:58 99:38 +8:53% 55:01 �39:93% 61:12 �33:26%
AIG Floor 81:84 90:29 +10:32% 136:36 +66:62% 147:18 +79:83%
MS Cap 128:77 129:34 +0:44% 124:89 �3:01% 125:45 �2:58%
MS Floor 111:57 112:14 +0:51% 115:75 +3:74% 116:33 +4:27%
MER Cap 76:57 78:25 +2:20% 67:07 �12:40% 68:59 �10:42%
MER Floor 65:11 66:77 +2:55% 75:97 +16:67% 77:85 +19:56%

Table 4.15: CVA of 5-year caps and �oors for di¤erent correlation schemes. The CVA is reported
in basis points and variations are computed compared to the no-correlation case.
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All the remarks on the CVA of swaps remain valid for caps and �oors. �V � has a wrong-way

e¤ect for both positions, �r� has a right-way e¤ect on caps and a wrong-way e¤ect on �oors, and

interestingly, the materiatlity of the �V � e¤ect is still negligible. This may seem surprising since

option exposures are a¤ected by the volatility variable. However, while it is true that the volatility

factor a¤ects the exposure, which is an expectation of discounted future cash-�ows, the realized

cash-�ows do not depend on it. Hence, for a given factor to generate signi�cant right-way/wrong-

way risk, it should directly in�uence the cash-�ows of the derivative product. We can say that the

materiality of right-way/wrong-way risk on the price of counterparty risk is located at the cash-

�ows level, but neither at the exposure level (expectation of cash-�ows), nor at the uncertainty

level (volatility of cash-�ows).

4.4.3 Impact of correlations on the CVA of collateralized interest-rate

swaps

In this sub-section, we examine the CVA of collateralized interest-rate swaps. For fully collateral-

ized swaps and under the assumption that swap positions are replaced only after two weeks upon

default, the risk comes from a potential movement of interest rates during the two-week period.

If the swap value after two weeks becomes greater than the swap value at the default time, the

lastly availabe collateral that is equal to the swap value at the default time cannot cover the new

swap value, hence the di¤erence between the two values is considered as a loss. In this context,

an increase in interest-rate volatility may have a key e¤ect. Hence, we expect a positive �V � to

increase the CVA in this case. However, the role of �r� in this situation is ambiguous, so that we

do not expect it to be relevant. In Table 4.16, we report the CVA of a 5-year collateralized swap

for the di¤erent correlation schemes considered in this chapter.

As we can see from Table 4.16, �V � has a wrong-way e¤ect as expected. However, this e¤ect is not

very signi�cant, reaching at the maximum only 12%. In addition, as expected, �r� has not a clear

e¤ect and the corresponding variation is very small, so that it can be simply caused by sampling
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�V � = 0, �r� = 0 �V � 6= 0, �r� = 0 �V � = 0, �r� 6= 0 �V � 6= 0, �r� 6= 0
CVA CVA Variation CVA Variation CVA Variation

BAC Payer 4:74 4:85 +2:25% 4:91 +3:52% 4:85 +2:22%
BAC Receiver 4:80 4:80 +0:13% 4:85 +1:12% 5:03 +4:93%
C Payer 5:16 5:63 +9:04% 5:66 +9:62% 6:01 +16:41%
C Receiver 5:18 5:61 +8:35% 5:64 +8:89% 5:95 +14:88%
GS Payer 9:74 10:12 +3:83% 9:84 +1:05% 10:29 +5:61%
GS Receiver 9:49 9:93 +4:60% 9:60 +1:14% 10:16 +7:01%
JPM Payer 4:22 4:33 +2:56% 4:31 +2:18% 4:35 +2:94%
JPM Receiver 4:17 4:42 +6:00% 4:16 �0:21% 4:52 +8:29%
AXP Payer 7:06 7:88 +11:75% 7:38 +4:58% 8:19 +16:03%
AXP Receiver 7:04 7:61 +8:12% 7:26 +3:14% 8:11 +15:25%
AIG Payer 10:16 11:31 +11:34% 10:64 +4:73% 11:89 +17:02%
AIG Receiver 10:00 11:07 +10:72% 10:52 +5:19% 11:94 +19:41%
MS Payer 12:83 12:95 +0:93% 12:97 +1:10% 12:90 +0:50%
MS Receiver 12:41 12:47 +0:51% 12:35 �0:41% 12:61 +1:63%
MER Payer 7:22 7:55 +4:60% 7:28 +0:82% 7:72 +6:96%
MER Receiver 7:19 7:56 +5:05% 7:40 +2:95% 7:51 +4:35%

Table 4.16: CVA of 5-year collateralized swaps for di¤erent correlation schemes. The CVA is
reported in basis points and variations are computed compared to the no-correlation case.

errors. In sum, the e¤ect of �V � dominates the picture, but it is still very small to be taken into

consideration, resulting at maximum in a variation of the expected loss of only about 1 basis point.

Note that the numbers we obtained are close to the numbers reported in Harris et al. (2015). Harris

et al. (2015) analyzed the e¤ect of �V � on the expected loss of collateralized swaps with the same

assumptions. However, instead of basing their interpretations on the unconditional expected loss,

they considered the conditional expected loss, which is de�ned as the average loss based only on

defaulted scenarios. Under this metric, they found the e¤ect of �V � to be relevant. Nevertheless, we

deem that any conclusion drawn from such �ndings should be based on the unconditional expected

loss, because it is this loss that de�nes the CVA as a measure for the market price of counterparty

risk. Following this view, �V � has a minor e¤ect on the price of counterparty risk, whether we

consider collateralization or not.
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4.5 Sensitivity analysis

In this section, we perform a sensitivity analysis to validate the interpretations drawn in the

previous section. We stress the parameters of the interest-rate and the default-intensity models in

order to examine to what extent the CVA can be impacted by �V � for all the instruments that we

consider in this analysis. The key parameters to be stressed are the volatility of the interest-rate

volatility process �V and the volatility of the default intensity ��. In fact, these are the parameters

that amplify the joint random shocks caused by the correlations. We put �V equal to 0:03 instead

of 0:008. In order to ensure that the interest-rate volatility variable remains strictly positive all

the time, we further set �V = 0:0009 and �V = 0:51. We keep all the other parameters of the

interest-rate model at their original values. For the default-intensity parameters, we consider a

hypothetical company having a high credit risk pro�le, for which the default-intensity volatility ��

is set equal to 0:4. The stressed parameters of the interest-rate and the default-intensity models

are reported in Tables 4.17 and 4.18.

�V 0:51
�V 0:0009
�V 0:03

Table 4.17: Stressed parameters of the interest-rate model

�0 0:17
�� 0:17
�� 0:5
�� 0:4

Table 4.18: Stressed parameters of the default-intensity model

In Figure 4.1, we can see the incremental e¤ect of �V � and �r� on the CVA of non-collateralized

instruments with a 5-year maturity. In Figure 4.2, we draw the incremental variation of the CVA

in % with comparison to the independent case as a function �V � and �r�. Correlation values range

from �0:9 to 0:9. It is clear that the e¤ect �V � is minor compared to the e¤ect of �r� for all

instruments. The contribution of �V � reaches at maximum around 12% for extreme values, while
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the e¤ect of �r� is much more substantial. This validates the conclusion that the contribution �V �

is in general small in magnitude, and for non-collateralized instruments, it is always dominated by

the contribution of �r�.
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4.6 Conclusion

In this chapter, we investigated the impact of two kinds of correlation on the right-way/wrong-way

risk in the interest-rate market. The �rst correlation depicts the dependence between the interest-

rate level and the default probability, while the second introduces the dependence between the

interest-rate volatility and the default probability. We considered an interest-rate model having

the USV feature in order to analyze the e¤ects of correlations on both volatility-insensitive products

such as interest-rate swaps and volatility-sensitive instruments such as interest-rate caps and �oors.

We also investigated the e¤ects of correlations on collateralized instruments where gap risk becomes

relevant.

We found that a positive correlation between the volatility and the default probability has generally

a wrong-way e¤ect. However, this e¤ect is largely dominated by that of the correlation between the

interest-rate level and the default probability for non-collateralized instruments, and it is barely

contributing to the gap risk for collateralized instruments. This is true for both interest-rate swaps

and options. At �rst glance, this seemed surprising, since option exposures depend on the volatility

state. We thus concluded that right-way/wrong-way risk is material at the very bottom level of

realized cash-�ows, at least for the theoretical setup considered in this study. Our conclusions are

backed by the numerical results we reported.

An interesting line of research would be to investigate the e¤ects of the correlations in other markets

(equity options, FX, etc.) and to consider a variety of other market models. In particular, it would

be interesting to investigate the impact of the volatility correlation on the CVA of timer options,

where the cash-�ows are directly a¤ected by the volatility variable. We let these extensions for

future research.
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Chapter 5

General conclusion

In this thesis, we presented several contributions on the topics of counterparty risk.

In the �rst essay, we suggested a new method to compute the CVA of derivative instruments having

early-exercise features. This method is general and can be also applied to derivatives without

early-exercise features. The proposed approach is based on a recursive formulation of the CVA.

This formulation gives rise to a dynamic programming (DP) algorithm, which is more e¢ cient

than standard simulation techniques when the number of risk factors is not high. Moreover, the

approach accounts for the change in the exercise strategy caused by the presence of counterparty

risk. In particular, we show that the use of the default-free exercise strategy, which keeps the

calculation of the CVA as a simple expected loss, may introduce arbitrage opportunities, and thus

it is not consistent with �nancial theory. The CVA in the context of derivatives with early-exercise

features is recursive, and its computation has to go through a complete re-evaluation of the optimal

value that accounts for counterparty risk. Besides, the major drawback of the dynamic procedure is

the curse of dimensionality. When the number of risk factors is quite high, dynamic programming

methods are not e¢ cient anymore. This may be a serious problem for the application of our

method on the CVA computation for large netted portfolios depending on too many risk factors.

However, it is worth noting that netting sets are in general de�ned at a market level. For instance,

interest-rate positions may be netted together, but not with equity options. In this sense, even if a

netting set is composed of a high number of di¤erent positions, these positions are still depending

on the same risk factors, since they belong to the same market. In this situation, our method



can be an interesting alternative for simulation, in terms of precision and computational e¢ ciency.

Moreover, our method is still very useful to report the incremental CVA of an individual new trade.

In any case, there are still some solutions to overcome the dimensionality problem, by the use of

parallel computing or heuristic techniques. To �nish, an interesting number of extensions can be

made to the suggested dynamic model, such as the inclusion of collateral and funding costs. It

would be also interesting to adapt the formulation to the bilateral CVA when bilateral counterparty

risk is relevant. Another line of research consists in extending the model to cases with multiple

stopping times, for instance a portfolio composed of Bermudan options with di¤erent maturities.

We let these extensions for future research.

In the second essay, we made use of an interesting property of the dynamic algorithm developed

in the �rst essay to build an e¢ cient methodology to estimate the CVA VaR. In fact, the dynamic

algorithm provides the CVA as a known function of the risk factors for all dates, in just one exe-

cution. This property allows to estimate the CVA VaR by performing only one simple simulation.

We studied the complex properties of the CVA VaR through illustrative numerical examples in

which we applied the suggested methodology. We showed in particular that ad-hoc assumptions

used by practitioners may underestimate the CVA capital charge. This essay is a direct and an

elegant risk management application of the �rst essay. The contribution of this essay can be rel-

evant in regulatory and professional environments, since the CVA capital charge is an important

new requirement of the Basel III accords.

Finally, in the third essay, we investigated the role of a correlation between the interest-rate

volatility and the default probability in generating right-way/wrong-way risk in the interest-rate

derivative market. We considered an interest-rate model featuring unspanned stochastic volatility

(USV) in order to analyze, in a �rst step, the correlation e¤ects on derivatives whose exposures are

not a¤ected by the volatility state such as interest-rate swaps, and in a second step, the correlation

impact on derivatives whose exposures depend on the volatility variable such as interest-rate caps

and �oors. We also studied the e¤ects on both collateralized and non-collateralized instruments.

We found that, overall, the volatility correlation has a minor e¤ect on the CVA of interest-rate

derivatives, and that, for non-collateralized instruments, the impact of the volatility correlation
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is largely dominated by the e¤ect of a correlation between the interest-rate level and the default

probability, which is the main driver of right-way/wrong-way risk. This can be explained by the

fact that the cash-�ows are driven only by the interest-rate level. These �ndings can have practical

implications, since volatility modeling may not be very relevant to account for serious e¤ects of

wrong-way risk. Interesting lines of research would be to further investigate the role of the volatility

correlation in other markets, and by considering other models. It would be also interesting to

investigate the CVA of timer options, where cash-�ows directly depend on the volatility state. We

let these extensions for future research.
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