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Résumé 

Cette dissertation cumulative étudie empiriquement les comportements d’algorithmes de 

négociation actifs sur les marchés boursiers. Nous présentons trois papiers examinant 

différentes questions de recherche. Malgré la diversité des contextes, un thème commun 

s'articule autour de l'évaluation de spécificités de la microstructure des marchés sur la 

présence et le comportement des négociateurs algorithmiques. 

Le premier chapitre propose un algorithme de négociation à haute fréquence agissant à 

titre de mainteneur de marché endogène. Les décisions de fournir de la liquidité sont 

basées sur un modèle de gestion dynamique d'inventaire. L'algorithme inclus les 

caractéristiques de gestion de risque. Nous proposons une méthodologie de priorisation 

des ordres adaptée aux spécificités des données publiques de la bourse de Francfort. 

L'évaluation de la performance tient compte du dynamisme du levier financier et de la 

nature asynchrone de l'environnement à haute fréquence. Le comportement de 

l'algorithme lors des événements extrêmes ultra-rapides est analysée. 

Le deuxième chapitre s'intéresse à l'identification d'empreintes algorithmiques à partir 

d'information publique. Notre approche s'articule autour de deux axes. Premièrement, 

nous surveillons les jaillissements d'activités à haute fréquence à l'aide d'une structure de 

données adaptée à un environnement de faible latence. Nous tenons compte de la 

distortion temporelle dynamique. Nous documentons la présence de bruit crypté. 

Deuxièmement, nous identifions la présence de négociateurs informés à partir de 

caractéristiques comportementales. Ceux-ci utilisent des algorithmes à haute et à basse 

latence. Nous associons 25% de tous les événements des enchères par lots à 9 types 

d'algorithmes. 

Dans le troisième chapitre, nous utilisons l'algorithme conceptualisé au Chapitre 1 afin de 

comparer la performance d'un mainteneur de marché endogène sous deux scénarios soit 

la norme internationale de la priorisation temps-prix et la préférence du courtier, une 

spécificité de la microstructure des marchés canadiens. Nous considérons le modèle de 
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marché appliqué par le Toronto Stock Exchange ainsi que les imperfections de marché. 

Nous identifions les variables systématiques et idiosyncratiques influençant les positions 

de l'algorithme. Nous analysons le risque de contagion d'illiquidité, une préoccupation des 

investisseurs institutionnels et des législateurs. 

Nous identifions la présence de certains algorithmes lors des séances d'enchères. Ceux-ci 

ont des comportements hétérogènes qui peuvent avoir des impacts diamétralement 

opposés sur le processus de découverte de prix. La conceptualisation et l'implémentation 

en sol allemand et canadien d'un algorithme destiné à un mainteneur de marché endogène 

permet d'établir la viabilité économique de ce type d'opérations. Malgré l'absence 

d'obligation formelle imposée par les Bourses de fournir de la liquidité, l'examen des 

comportements lors de périodes de forte volatilité ne nous a pas permis de documenter le 

retrait de l'offre de liquidité. 

Mots clés : carnet d'ordres limites, enchère, finance comportementale, négociation 

algorithmique, négociation à haute fréquence, mainteneur de marché, microstructure. 
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Abstract 

This cumulative dissertation empirically studies the behavior of trading algorithms active 

on stock markets. We present three papers examining different research questions. Despite 

the diversity of contexts, a common theme revolves around the assessment of the markets 

microstructure specificities on the presence and behavior of algorithmic traders. 

The first chapter proposes a high-frequency trading algorithm acting as an endogenous 

market maker. The decisions to provide liquidity are based on a dynamic inventory 

management model. The algorithm includes risk management features. We propose a 

methodology of order prioritization adapted to the specificities of the Frankfort stock 

exchange`s public data. The performance assessment considers the leverage dynamism 

and the asynchronous nature of the high-frequency environment. The behavior of the 

algorithm during ultra-fast extreme events is analyzed. 

The second chapter deals with the identification of algorithmic imprints from public data. 

We base our approach on two axes. First, we monitor high-frequency activity bursts using 

a data structure adapted to a low-latency environment and we consider dynamic time 

warping. We document the presence of encrypted noise. Second, we identify the presence 

of informed traders based on behavioral characteristics. These use high and low latency 

algorithms. Overall, we link 25% of all batch auctions events to 9 algorithm types. 

In the third chapter, we use the algorithm conceptualized in Chapter 1 to compare the 

performance of an endogenous market maker under two scenarios: the international 

standard of time-price prioritization and broker preference, a microstructure specificity of 

Canadian markets. We consider the market model applied by the Toronto Stock Exchange 

as well as market imperfections. We identify the idiosyncratic and sytematic variables 

influencing the algorithm positions. We analyze the risk of illiquidity contagion, a 

preoccupation of institutional investors and legislators. 

We identify the presence of some algorithms during the auction sessions. These have 

heterogeneous behaviors that can have diametrically opposite impacts on the price 
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discovery process. The conceptualization and implementation in Germany and Canada of 

an algorithm intended for an endogenous market maker makes it possible to establish the 

economic viability of this type of operations. Despite the absence of a formal obligation 

on the stock exchanges to provide liquidity, examination of the behavior during periods 

of high volatility did not allow us to document the withdrawal of the liquidity offer. 

Keywords : algorithmic trading, auction, behavioral finance, high-frequency trading, 

limit order book, market-making, microstructure. 
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Chapter 1 
Profitability and Behavior of High Frequency Market-

makers: An Empirical Investigation 

Abstract 

Financial markets in contemporary regulatory settings require the presence of high-

frequency liquidity providers. We present an applied study of the profitability and the 

impact on market quality of an individual high-frequency trader acting as a market-maker. 

Using a sample of sixty stocks over a six-month period, we implement the Ait-Sahalia 

and Saglam (2014) optimal quoting policy (OQP) of liquidity provision from  dynamic 

inventory management model. The OQP allows the high-frequency trader to extract a 

constant annuity from the market but its profitability is insufficient to cover the costs of 

market-making activities. The OQP is embedded in a trading strategy that relaxes the 

model’s constraint on the quantity traded. Circuit-breakers are implemented and market 

imperfections are considered. Profits excluding maker-fees and considering transaction 

fees are economically significant. We propose a methodology to adjust the returns for 

asynchronous trading and varying leverage levels associated with dynamic inventory 

management. This allows us to qualify high trade volume as a proxy of informed trading. 

The high-frequency trader behaves as a constant liquidity provider and has a positive 

effect on market quality even in periods of market stress.   

 1.1 Introduction 

Most stock exchanges have removed or have diluted the formal obligation to maintain an 

orderly market once imposed on human market-makers: high-frequency liquidity 

suppliers are major participants in electronic markets (Anand and Venkataraman (2013); 

Menkveld (2013)). Jones (2013) explains the increase in high-frequency market making 

by lower cost structures and more adequate responses to adverse selection. 
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Notwithstanding the importance of high-frequency market-making, very little is known 

about the profitability and individual behavior of high-frequency liquidity providers. 

Menkveld (2013) describes and evaluates the activities of a large high-frequency market 

maker (HFMM) who uses spatial arbitrage as the core of his market-making strategy. He 

asserts that fees are a substantial part of the HFMM’s profit and loss account. Serbera and 

Paumard (2016) argue that maker-fees represent the core profitability of high-frequency 

market-making. Popper (2012) states that profits in American stocks from high-speed 

trading in 2012 are down 74 percent from the peak of $4.9 billion in 2009. This can be 

linked to a decrease in commission and rebates, reported by Malinova and Park (2015). 

To deal with this trend, we assess the economic viability, excluding maker fees, of a 

typical HFMM in two steps: first, we emulate the behavior of an HFMM using Ait-Sahalia 

and Saglam (2014) dynamic inventory management model (the model hereafter). Their 

model mimics the high frequency trading stylized facts. Their setup differs from the 

classical dynamic inventory models (Grossman and Stiglitz (1980); Roll (1984); Glosten 

and Milgrom (1985); Kyle (1985)) in that the strategic variable is whether or not to quote 

rather than change the supply curve. It yields to an optimal quoting policy (OQP) of 

liquidity provision that drives the HFMM’s trading decisions. Second, we embed the OQP 

in a trading strategy that relaxes some of the model’s assumptions and adds risk 

management features.  

Market-making implies asynchronous trades and varying market risk related to the 

dynamic leverage from the model’s OQP and the liquidity demanders’ needs. These 

factors affect the HFMM’s trading performance. We propose a measure, the time-volume 

weighted average return (TVWAR), to cope with both phenomena. It allows us to analyze 

a single stock performance incurring different phases of trading activities and/or liquidity 

depth, and to compare returns of stocks with different idiosyncratic characteristics. 

The emulation provides insights into the implications of high-frequency market-making 

on market quality, a matter that has raised much concern. Duffie (2010) describes the 

importance of monitoring the pattern of response to supply and demand shocks for asset 

pricing dynamics. Foucault, Kadan et al. (2013) develop a model based on an endogenous 
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reaction time to trading activities, and find that algorithmic trading plays an important 

role in monitoring the state of liquidity cycles. Biais, Foucault et al. (2015) and Pagnotta 

and Philippon (2015) analyze competition on speed. They argue that competition should 

have a positive effect on the price discovery process. Finally, market stability is 

documented using Johnson, Zhao et al. (2013) ultrafast extreme events (UEEs). 

The paper is organized as follows. Section 1.2 presents the dynamic inventory 

management model of Ait-Sahalia and Saglam (2014) and its optimal quoting policy. 

Section 1.3 introduces the empirical investigation. Section 1.4 presents the data. Section 

1.5 proposes a measure to determine the returns in a context of asynchronous data and 

dynamic inventory management. Section 1.6 sets out and discusses the results. Section 

1.7 presents robustness tests, and Section 1.8 concludes the paper. 

1.2 Optimal Quoting Policy of Liquidity Provision 

Ait-Sahalia and Saglam (2014) refer to two types of agents: low-frequency traders (LFTs), 

who use market orders only, and a sole HFMM who has exclusive access to the limit order 

book (LOB). The HFMM trades limit orders (LOs) only, and exhibits inventory aversion. 

The bid-ask spread is exogenous. This setup differs from the classical dynamic inventory 

models in that the strategic variable is whether or not to quote and not to change the 

HFMM’s supply curve. The HFMM’s revenue depends on the trade-off between the 

inflows from the bid-ask spread and the outflows from the inventory cost as depicted in 

the following equation: 

 
𝐸(𝜋) = C 2⁄ ∑𝑒−𝐷𝑠𝑚𝑜𝑡 𝐼(𝑙𝑠𝑚𝑜𝑡

𝑏 = 1)

∞

𝑡=1

+ 𝐶 2⁄ ∑𝑒−𝐷𝑏𝑚𝑜𝑡 𝐼(𝑙𝑏𝑚𝑜𝑡
𝑎 = 1)

∞

𝑡=1

− 𝛤∫ 𝑒−𝐷𝑡|𝑥𝑡|
∞

0

𝑑𝑡, 

(1.1) 

where: 

𝐸(𝜋): Quoting policy expected reward. 
𝐶: Bid-ask spread. 
𝐷: Constant discount factor > 0. 
𝑠𝑚𝑜𝑡 (𝑏𝑚𝑜𝑡): Sell (buy) market order by LFTs at time t. 
𝐼: Indicator function. 
𝑏: HFMM bid limit order. 
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𝑎: HFMM ask limit order. 
𝑙𝑠𝑚𝑜𝑡|𝑏𝑚𝑜𝑡
𝑏|𝑎 : Equals 1 if the HFMM is quoting a bid (𝑏) or an ask (𝑎) limit order when a 

LFT sell (buy) market order arrives, 0 otherwise. 
 𝛤: Inventory aversion coefficient. 
𝑥𝑡: Inventory position at time t. 

 
The first term to the right of equation (1.1) is the discounted value of the HFMM’s revenue 

(
𝐶

2
) earned when an incoming LFT’s sell market order hits the HFMM’s limit order while 

he is bidding (𝐼(𝑙𝑠𝑚𝑜𝑡
𝑏 = 1)). The second term is the discounted revenue associated with 

an incoming LFT’s bid market order, and the third term is the discounted value of the 

HFMM’s inventory costs over the period 𝑑𝑡. To keep the model tractable, the HFMM 

always places his LOs at the best bid and/or ask price and does not issue orders larger 

than one contract. 

Apart from observing the arrival of market orders, the HFMM receives a signal 𝑠 about 

the likely side of the next incoming market order: 𝑠 ∈ {1,−1}, where 1 predicts an 

incoming LFT’s buy market order and -1 an incoming LFT’s sell market order. 𝑃 

quantifies the informational quality of the HFMM’s signal. It varies from 0.5 (no prior 

knowledge about the side of the next incoming LFT’s market order) to 1.0 (perfect 

knowledge). In Ait-Sahalia and Saglam (2014) setup, the next event is either 1: the arrival 

of a signal with probability (𝜇 2⁄

𝜆+𝜇
), μ being the arrival rate of a Poisson distribution of the 

HFMM’s signals and λ the arrival rate of a Poisson distribution of the incoming LFTs’ 

market orders; 2: the arrival of a market order in the direction of the last signal with 

probability 𝑃𝜆
𝜆+𝜇

; or 3: the arrival of a market order in the opposite direction of the last 

signal with probability (1−𝑃)𝜆
𝜆+𝜇

. The value of market-making activities for any given event 

assuming an inventory position of 𝑥 (𝑥 ∈ {⋯ ,−2,−1, 0, 1, 2,⋯ })  and a sell signal (-1) 

is: 
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 𝑣(𝑥,−1) =  
−𝛾|𝑥|

+ 𝛿

{
 
 

 
 (

𝜇 2⁄

𝜆 + 𝜇
) (𝑣(𝑥, 1) + 𝑣(𝑥,−1)) +

𝑃𝜆

𝜆 + 𝜇
𝑚𝑎𝑥 (

𝑐

2𝛿
+ 𝑣(𝑥 − 1,−1), 𝑣(𝑥, −1)) +

(1 − 𝑃)𝜆

𝜆 + 𝜇
𝑚𝑎𝑥 (

𝑐

2𝛿
+ 𝑣(𝑥 + 1,−1), 𝑣(𝑥, −1))

}
 
 

 
 

, 

(1.2) 

where: 

𝛾 =
𝛤

𝜆+𝜇+𝐷
;  𝛿 =  

𝜆+𝜇

𝜆+𝜇+𝐷
 ; 𝑐 = 𝛿𝐶;  

Equation (1.2) quantifies the market-making value function. The first term to the right is 

the discounted inventory cost (−𝛾|𝑥| ). The second term is the discounted value of the 

three possible events: the value of the arrival of a signal ((𝜇 2⁄

𝜆+𝜇
) (𝑣(𝑥, 1) + 𝑣(𝑥,−1)) ), 

the value of the arrival of a market order in the direction of the signal 

(
𝑃𝜆

𝜆+𝜇
𝑚𝑎𝑥 (

𝑐

2𝛿
+ 𝑣(𝑥 − 1, −1), 𝑣(𝑥, −1))), and the value of the arrival of a market order 

in the opposite direction of the signal ((1−𝑃)𝜆
𝜆+𝜇

𝑚𝑎𝑥 (
𝑐

2𝛿
+ 𝑣(𝑥 + 1,−1), 𝑣(𝑥, −1)) ). 

Solving equation (1.2) by backward induction using the Hamilton-Jacobi-Belman 

optimality method leads to the optimization of the expected reward trade-off. 

1.2.1 OQP determination 

Theorem 1 of Ait-Sahalia and Saglam (2014) states that there is an optimal quoting policy 

of liquidity provision, based on the expected reward trade-off: 

Theorem 1: The optimal quoting policy of the HFMM consists in quoting at the best bid 

and the best ask according to a threshold policy, i.e., there exists 𝐿∗ < 0 < 𝑈∗ ≤ |𝐿∗| , 

such that: 

𝑙𝑏(𝑥, 1) = {
1 𝑤ℎ𝑒𝑛 𝑥 < 𝑈∗

0 𝑤ℎ𝑒𝑛 𝑥 ≥ 𝑈∗
𝑙𝑎(𝑥, 1) = {

1 𝑤ℎ𝑒𝑛 𝑥 > 𝐿∗

0 𝑤ℎ𝑒𝑛 𝑥 ≤ 𝐿∗

𝑙𝑏(𝑥, −1) = {
1 𝑤ℎ𝑒𝑛 𝑥 < −𝐿∗

0 𝑤ℎ𝑒𝑛 𝑥 ≥ −𝐿∗
𝑙𝑎(𝑥, −1) = {

1 𝑤ℎ𝑒𝑛 𝑥 > −𝑈∗

0 𝑤ℎ𝑒𝑛 𝑥 ≤ −𝑈∗
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Theorem 1 can be interpreted as follows: Suppose the HFMM receives a “buy” signal 

(𝑠 = 1) while being long (𝑥 > 1). He is going to act upon it (𝑙𝑏 = 1) as long as his current 

inventory is not already too high (𝑥 < 𝑈∗). If (𝑥 ≥ 𝑈∗), the HFMM will not quote because 

this could increase his long inventory position beyond the optimal threshold 𝑈∗. 

Symmetrically, if the HFMM receives a “sell” signal (𝑠 = −1), he will quote on the ask 

side (𝑙𝑎 = 1) as long as his inventory position is not already too short (𝑥 > −𝑈∗). 

An algorithm proposed by Ait-Sahalia and Saglam (2014) presented in the Appendix 1.1 

allows us to determine the thresholds based on the expected reward trade-off and Theorem 

1. 

1.2.2 Emulation and OQP 

To determine an optimal quoting policy of liquidity provision, the model requires six 

parameters: 𝐷, 𝛤, 𝜆, 𝜇, 𝐶, 𝑃. All financial instruments use the same and constant 

parameters 𝐷, the discount rate, and 𝛤, the coefficient of inventory aversion. 

The four remaining parameters depend on the idiosyncratic behaviors of the stocks. 𝐶 is 

the observed bid-ask spread and λ, the observed arrival rate of marketable orders. We 

define 𝜇, the HFMM’s arrival rate of signals, as the number of creations, updates, and 

cancellations at the LOB level 1. We constrain the HFMM to react to other market 

participants’ actions. He does not use any private information to modify the observed 

price discovery process and/or the bid-ask spread. The parameter 𝑃 is fixed at 0.50. 

For any given combination of the six input parameters, we obtain an ex-ante OQP of 

liquidity provision based on the algorithm described in the Appendix. The algorithm 

stipulates the sides (bid and/or ask) and respective quantities to quote, i.e. the thresholds. 

1.3 Empirical investigation 

We aim to provide an empirical investigation of the profitability and the impact on market 

quality of an individual high-frequency trader acting as a liquidity provider. The decision 

to quote or to trade, the timing and the management of positions are totally driven by our 

fully automated algorithm. Our approach is fundamentally different from the traditional 
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trading strategy approaches such as Fibonacci ratios, golden ratio, oscillators and pivot 

point strategies that try to forecast the future value of a financial instrument. Our method 

involves using the optimal quoting policy from Ait-Sahalia and Saglam (2014) as a kernel. 

The OQP is independent from the market states and does not require any prediction of 

prices. 

 Data mining and data snooping have been analyzed extensively (Wasserstein and Lazar 

(2016), Bailey, Borwein et al. (2015), Kim and Ji (2015), and Bailey, Borwein et al. 

(2014)). Multiple-testing increases the probability of a false discovery drastically because 

it takes on average as few as 1 𝛼⁄  independent iterations to produce a false discovery 

(Lopez De Prado (2015)). Our results are obtained following a single set of parameter 

values designed ex-ante and therefore do not imply any data mining or data snooping. 

First, we assess the performance of the optimal quoting policy from Ait-Sahalia and 

Saglam (2014). However, we impose the closing of all positions by issuing market orders 

at the end of the day (EOD); the procedure is launched at the beginning of the last three 

minutes of trading.  The appraisal thus represents the results of “pure” market-making as 

accurately as possible. 

Second, we embed the OQP in a trading strategy that considers market imperfections: 

limit orders are not uniquely identified in our database. Usually we cannot know with 

certainty who holds time priority. We apply the worst-case scenario to the HFMM: time 

priority is given to the total quantity available at the best bid (ask), excluding the HFMM 

limit order, one microsecond (μS) before the arrival of a market order. In this way, we 

depart from Ait-Sahalia and Saglam (2014), who assume that the HFMM is the fastest 

trader. 

In practice, trading firms monitor market conditions and integrate pauses in their 

algorithms (Kelejian and Mukerji (2016)). Events like the flash crash of May 2010 and 

the Knight Capital’s algorithm glitch of August 20121 prompted regulators such as the 

Commodity Futures Trading Commission (2013), the U.S. Securities and Exchange 

                                                           
1 http://www.bloomberg.com/bw/articles/2012-08-02/knight-shows-how-to-lose-440-million-in-30-
minutes (Last accessed on November 24, 2016). 

http://www.bloomberg.com/bw/articles/2012-08-02/knight-shows-how-to-lose-440-million-in-30-minutes
http://www.bloomberg.com/bw/articles/2012-08-02/knight-shows-how-to-lose-440-million-in-30-minutes
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Commission (2016), and tThe Government Office for Science London (2012)) to make 

the use of circuit-breakers mandatory. We enforce circuit-breakers by monitoring market 

conditions associated with three of the OQP’s parameters: λ and 𝜇 have an upper bound 

corresponding to 95% of the ranges of values from the reference time interval of one 

minute. 𝐶, the bid-ask spread, has an upper bound of 99% of the reference range. When a 

parameter’s value exceeds its upper bound, we cancel all the quotes on the stock and we 

send a marketable order to liquidate the position. Parameter values are reset to zero at the 

beginning of the next time interval. This induces regular quoting and trading activities. 

This behavior is in line with Chordia, Goyal et al. (2013), who note that market-makers 

are also liquidity takers in their regular activities. 

Within the model of Ait-Sahalia and Saglam (2014), the quantity of each order is fixed at 

one lot. To relax the constraint imposed on profits, we generalize this concept by defining 

κ, a constant quantity. κ is similar in nature to the trading unit of an option contract, e.g. 

100 stocks, and is defined as the maximum quantity from the five most frequently traded 

quantities of a given stock. The fragmentation of orders is a well-established concept 

(Almgren and Chriss (2000); Almgren (2003); Obizhaeva and Wang (2013); Markov 

(2014); Jingle and Phadnis (2013); among others). Choosing κ with the suggested 

methodology reflects the fact that market participants want to mitigate their impact on the 

price discovery process. This is supported by the statistics of Table 1.2, which 

demonstrate that 47.6% (41.2%) of all trades in the DAX (MDAX) do not consume the 

available quantity at level one. 

Trading a quantity larger than 1 could cause a price impact if the available quantity at 

level one is insufficient to liquidate the HFMM’s position. This would force the HFMM 

to walk into the limit order book. Empirical investigations of trading strategies are 

vulnerable to biases if they exhibit price impacts. This could be an indication of an undue 

influence on the price discovery process and it could lead real-time trading results to differ 

significantly from expectations. To avoid HFMM’s market orders and the implied 

illiquidity cost transfer to other market participants that affect prices, the HFMM incurs 

market risk instead of walking up (down) the LOB. The HFMM trades up to the available 

quantity at level one and waits for the next incoming limit order(s) at that level in order 
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to fully liquidate his position if necessary. This amounts to controlling for the 

instantaneous price impact (Cont, Kukanov et al. (2014); Bouchaud, Farmer et al. (2009)). 

Estimating the permanent impact of market orders (Hautsch and Huang (2012); Huh 

(2014); Zhou (2012)) becomes unnecessary. We apply to κ the OQP thresholds associated 

with the contemporary model’s parameters. In case of partial execution of a limit order, 

we cancel the order(s) and submit a new order(s) with the required adjusted quantity(ies). 

Time priority is amended accordingly. 

Speed is important to gain time priority and to avoid being picked up (sniped) while 

displaying stale quotes, so we take into consideration the effect of latency on the trading 

results. We use the latency of 150 μS. This value is representative of the time required by 

our infrastructure and our algorithm to receive, analyze, react to, and send new orders 

following the arrival of new information. We can compete on speed with the other co-

location firms, and we are significantly faster than buy-side investors. 

1.4 Data 

The data come from Xetra, the fully electronic trading platform of the Frankfurt Stock 

Exchange. The raw dataset contains all events (deltas and snapshots) sent through the 

Enhanced Broadcast System, a data feed used by high-frequency traders. Deltas track all 

possible events in the LOB whereas snapshots convey information about the state of a 

given LOB at a specific time. Xetra Parser, developed by Bilodeau (2013), is used to 

reconstruct the real-time order book sequence using Xetra protocol and Enhanced 

Broadcast. Liquidity is provided by market participants posting limit orders in the LOB. 

The stocks of our sample have LOB with twenty levels on both sides of the market. The 

state of the LOB and the arrival of marketable orders (the trades) can be observed by the 

subscribers to the data feed. Time stamps are in μS, trading is anonymous and specific 

order identification is nonexistent. 

Our data set consists of sixty stocks from the DAX index family: thirty stocks in each of 

the DAX and the MDAX. DAX indexes are indicators for the German equity market. The 

DAX characterizes the blue chip segment. Its components are the largest and most 

actively traded German companies. The MDAX is composed of mid-capitalization issues 
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from traditional sectors, excluding technology, that rank immediately below the DAX 

stocks. The ultra-high-frequency data cover six months from February 1, 2013 to July 31, 

2013. The sample covers different market phases as depicted by Figure 1.1: a trading 

range for the entire month of February, a bull trend from the last week of April to mid-

May, 2 bear trends (mid-March to mid-April and the last week of May to the last week of 

June) and high volatility periods: the third week of April and the third week of June. 

Figure 1.1 displays the DAX daily chart for this period. 

[insert Figure 1.1 here] 

Table 1.1 presents the summary statistics from trading and LOB level one quoting 

activities. In Panel A, the DAX largely dominates the MDAX with a market value traded 

of €398.5b (92.57% of total activities) and 17.6 m of transactions (79.47%). Panel B 

exhibits even stronger statistics for the DAX. Quoting based exclusively on level one 

activity overwhelms trading as depicted by the ratio of the number of updates to the 

number of trades (# UTDs/# trades) that is higher than 10 for both indexes. This ratio is 

followed by the SEC (MIDAS, Security and Exchange Commission at 

http://www.sec.gov/marketstructure/midas.html) to monitor high-frequency trading 

activities. 

[insert Table 1.1 here] 

Table 1.2 illustrates the price discovery process. Price impact minimization is the 

dominant trading phenomenon, with 47.6% (DAX) and 41.2% (MDAX) of all trades 

executed at the last tick price. This includes combinations (0,0), (+,0), and (-,0). 

Aggressive orders (+,+ and -,-) induce positive autocorrelations in the price discovery 

process. They represent 14.3% (DAX) and 18.4% (MDAX) of all price moves, less than 

bid-ask bounce trades (+,- and -,+), which are respectively 18.1% (DAX) and 21.0% 

(MDAX). 

[insert Table 1.2 here] 

Table 1.3 exhibits the two-way classification for the thirty stocks from the DAX index. 

The directional trading maxima (+,+ and -,-) are respectively 10.72% and 11.04% for the 

http://www.sec.gov/marketstructure/midas.html
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unique identifier (isix) 1634, and the other aggregated results are representative of all 

stocks. 

[insert Table 1.3 here]  

Results for the thirty stocks from the MDAX are not qualitatively different. They are not 

presented due to space considerations, but are available upon request. 

Johnson, Zhao et al. (2013) proposed the concept of ultrafast extreme events (UEEs). 

UEEs can shed light on the price discovery process and the instabilities of financial 

markets, and help one appraise the HFMM’s risk exposure, and stress-test trading 

algorithms. We define UEEs as an occurrence of a stock price ticking down (up) at least 

five times before ticking up (down), having a price change of at least 0.5% within a 

duration of 1500 milliseconds. We can interpret UEEs as surges for up ticks and mini 

crashes for down ticks. As depicted in Table 1.4, three hundred and thirty-nine UEEs have 

been observed (85 in the DAX and 254 in the MDAX) during the 125 trading days of our 

sample (2.7 events on average per day). The number of events is significantly higher in 

the MDAX. This is consistent with the differences in liquidity and trading interest 

exhibited in Table 1.2. The difference in trading intensity between the DAX and the 

MDAX is also reflected in the higher average repetitions (7.918 vs 6.519).  

[insert Table 1.4 here] 

Figure 1.2 shows the number of UEE occurrences per day. Extreme events happened in 

102 out of 125 trading days (84.30%). UEEs have occurred on the DAX (MDAX) during 

40 (94) days. The higher number of daily UEE occurrences in the MDAX reflects its 

thinner trading and its shallower depth of LOB level one compared to the DAX. Spikes 

in the number of UEEs do not happen simultaneously in both indexes. This suggests that 

their causes are idiosyncratic rather than systematic. 

[insert Figure 1.2 here] 

Figure 1.3 displays the number of UEE occurrences per minute, considering the 510 

minutes of trading on regular days. UEEs exhibit a tendency to occur around the open and 
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the close of the day as the documented smile in trading volume (Hanif and Smith (2012), 

Madhavan (2002)). UEEs can result from induced uncertainty by the market model that 

imposes long lasting suspension of trading. 

[insert Figure 1.3 here] 

The assumption of independent arrivals of HFMM signals and LFTs market orders is 

implicit in the Poisson distributions used by Ait-Sahalia and Saglam (2014). The HFMM 

decision follows the arrival of new information (LFTs marketable orders or signals), so 

we test the independence assumption on the aggregated information. Table 1.5 shows that 

one cannot reject this assumption for any stock in our sample. 

[insert Table 1.5 here] 

1.5 TVWAR: a time- and volume-weighted average return 

Data emulation replicates the stock behavior. The model adapts the OQP dynamically to 

the stock's states by tracking the parameters λ (the arrival rate of LFTs’ market orders), μ 

(the arrival rate of HFMM’s signals), and 𝐶 (the bid-ask spread). This induces dynamic 

management of positions. To evaluate the HFMM’s performance, we propose a measure 

based on realized PnL, which considers the impacts of leverage and asynchronous data. 

Both factors affect the holding period and the discrete time returns. 

Equations (1.3) to (1.6) define the variables required to determine the holding period 

return of a sequence of 𝐸 events. A profit (loss) is realized when an existing position (long 

or short) is unwound. The unwinding quantity comes from two sources: the HFMM’s 

marketable orders due to risk management features and incoming market orders executed 

against the HFMM’s LOs. The unwinding quantity refers to a traded quantity that partially 

or totally offsets a position. 

The unwinding quantity is:  
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 𝑈𝑄𝑒

= 
𝑖𝑓 𝑃𝑜𝑠𝑒−1 > 0 𝑎𝑛𝑑  𝑃𝑜𝑠𝑒−1 > 𝑃𝑜𝑠𝑒 −𝑚𝑖𝑛(𝑃𝑜𝑠𝑒−1 − 𝑃𝑜𝑠𝑒 , 𝑃𝑜𝑠𝑒−1)

𝑖𝑓 𝑃𝑜𝑠𝑒−1 < 0 𝑎𝑛𝑑  𝑃𝑜𝑠𝑒−1 < 𝑃1𝑜𝑠𝑒 −𝑚𝑎𝑥(𝑃𝑜𝑠𝑒−1 − 𝑃𝑜𝑠𝑒 , 𝑃𝑜𝑠𝑒−1)

𝑒𝑙𝑠𝑒 0

, 

 

(1.3)

 

where: 
𝑈𝑄𝑒: unwinding quantity for event e, negative (positive) for buys (sells). 
𝑃𝑜𝑠𝑒: quantity long, short or flat for event e. 
𝑒: event number (an event = a trade). 
𝑒 ∈ [1,2,… , 𝐸]. 

Maximum leverage ensues from two factors: the OQP, which depends on the parameters 

(Γ, D, λ, μ, C, P) of Ait-Sahalia and Saglam (2014) and κ, the reference quantity defined 

in Section 0. Effective leverage, with an upper bound equal to the maximum leverage, is 

influenced by speed (latency, time priority, and market-making competition), HFMM 

LOs, and incoming market orders (quantity and serial correlation). 

The effective leverage value is: 

 
𝛷𝑒 = (

𝑈𝑄𝑒
κ 2⁄

), 
(1.4) 

where 𝛷𝑒 is based on the required capital to trade κ shares considering standard margin 

requirements. An unwinding trade for the HFMM resulting in a partial execution of the 

reference quantity κ has a leverage value smaller than the leverage value of an unwinding 

trade that closes the HFMM position of 2κ. 2κ is possible when the OQP threshold is 2 

and the HFMM carries the maximum inventory. 

The holding period return of event 𝑒 is: 

 𝑟𝑒 = 𝑙𝑛(𝑃𝑒 𝑃𝑒−1⁄ ) ∙ 𝛷, (1.5) 

where 𝑃𝑒 is the trade price for event e. 

Returns are directly impacted by the relative importance of the unwinding trades. All else 

being equal, there is a linear relationship between the leverage measure and the holding 

period return of an event. 

The cumulated return over 𝐸 events is: 
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𝑟𝐸 =∑𝑟𝑒

𝐸

𝑒=1

. 
(1.6) 

Asynchronous events are the norm in microsecond trading environments. Significant 

differences exist in stocks' behavior due to their liquidity and depth, and to the trading 

interest. To facilitate comparison, we use discrete time intervals where the returns are 

time-weighted and volume-weighted within the interval. Equations (1.7) to (1.14) define 

the variables required to determine the discrete time return over 𝐷 time intervals. 

 If a position overlaps two or more time intervals, the return is evenly spread out over the 

holding period. The number of time intervals in a trading day is equal to: 

 𝐷 = ⌈(𝜇𝑆𝑒𝑜𝑑 − 𝜇𝑆𝑏𝑜𝑑) 𝜇𝑆𝑏𝑦𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙⁄ ⌉, (1.7) 

where: 

𝑑 ∈ [1,2, … , 𝐷].  
𝜇𝑆𝑒𝑜𝑑: time stamp of the end of the day in μS. 
𝜇𝑆𝑏𝑜𝑑: time stamp of the beginning of the day in μS. 
𝜇𝑆𝑏𝑦𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙: number of μS in a one-time interval. 

The reference time stamp at the beginning of period 𝑑 is given by: 

 𝜇𝑆𝐵𝑒𝑔𝑅𝑒𝑓𝑑 = 𝜇𝑆𝑏𝑜𝑑 + (𝑑 − 1) ∙ 𝜇𝑆𝑏𝑦𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙. (1.8) 

The reference time stamp at the end of period 𝑑 equals: 

 𝜇𝑆𝐸𝑛𝑑𝑅𝑒𝑓𝑑 = min(𝜇𝑆𝑏𝑜𝑑 + 𝑑 ∙ 𝜇𝑆𝑏𝑦𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙, 𝜇𝑆𝑒𝑜𝑑). (1.9) 

The reference time stamp at the beginning of period 𝑑 for event e solves: 

 μS𝐵𝑒𝑔𝑑,𝑒 = 𝑚𝑎𝑥(𝜇𝑆𝑑,𝑒 , 𝜇𝑆𝐵𝑒𝑔𝑅𝑒𝑓𝑑), (1.10) 

where:  

𝜇𝑆𝑑,𝑒: time stamp of event 𝑒 in time interval 𝑑. 

The reference time stamp of period d for event e is bounded by the end of the time interval 

d, so the reference time stamp at the end of period 𝑑 for event e is: 
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 μS𝐸𝑛𝑑𝑑,𝑒 = 𝑚𝑖𝑛(𝜇𝑆𝑑,𝑒 , 𝜇𝑆𝐸𝑛𝑑𝑅𝑒𝑓𝑑). (1.11) 

Our procedure allows us to consider both the leverage (𝑈𝑄𝑑,𝑒
κ 2⁄

) and the holding period 

(
μSEnd𝑑,𝑒−μSBeg𝑑,𝑒

𝜇𝑆𝐵𝑦𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙
) of positions. The time- and volume-weighted return of event 𝑒 during 

time interval 𝑑 is: 

 
𝑟𝑑,𝑒 = ln(𝑃𝑑,𝑒 𝑃𝑑,𝑒−1⁄ ) ∙

𝑈𝑄𝑑,𝑒
κ 2⁄

∙ (
μSEnd𝑑,𝑒 − μSBeg𝑑,𝑒
𝜇𝑆𝐵𝑦𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙

). 
(1.12) 

The return for time interval 𝑑 is the sum of the time- and volume-weighted returns of the 

E events of period d:  

 
𝑟𝑑 =∑𝑟𝑑,𝑒 .

𝐸

𝑒=1

 
(1.13) 

The cumulated return over 𝐷 time intervals adjusted for leverage and holding periods 

equals: 

 
𝑟𝐷 =∑𝑟𝑑

𝐷

𝑑=1

. 
(1.14) 

 

 1.6 Results 

We emulate the trading and quoting activities of an HFMM under two scenarios: Section 

1.6.1 implements the OQP designed by Ait-Sahalia and Saglam (2014) dynamic inventory 

model. In contrast, we close all positions by issuing market orders before the end of the 

day. In that way, the results are as representative as possible of “pure” market-making 

activities. Whereas Ait-Sahalia and Saglam (2014) show that an HFMM who holds private 

information can exploit it to his advantage, we do not consider this opportunity because 

we do not want to interfere in the price discovery process. A latency of 150 microseconds 

is applied to consider the cycle of reception, analysis and response from our infrastructure. 
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The worst-case scenario is applied to the HFMM time priority as defined in Section 1.6.2. 

In Section 0, we relax the constraint on the quantity of each order fixed at 1 by using κ.  

The HFMM does not optimize on the quantity in each trade because κ is constant. The 

management of positions considers the dynamic nature of the OQP, the trading intensity 

and the liquidity needs of the market participants. Circuit-breakers are implemented and 

are based on the monitoring of market characteristics summarized by the arrival rates of 

new information (trades and quotes) and the behavior of the bid-ask spread. They involve 

the use of market orders. We avoid price impacts by restricting the quantity of market 

orders to the available quantity at level one. This forces the HFMM to incur market risk 

instead of transferring the liquidity risk to the other market participants by walking into 

the LOB. We analyze the impact of circuit-breakers on profitability and market quality. 

Profitability measures are from the Profit and Loss (PnL) report, which is calculated from 

all HFMM orders (limit and market). The approach to assess the PnL meets the 

requirements of the Basel Committee on Banking Supervision (2013). 

1.6.1 Ait-Sahalia and Saglam (2014) model 

Figure 1.4 displays the aggregated cumulative Profit and loss from the quoting and trading 

activities based on Ait-Sahalia and Saglam (2014) dynamic inventory model. Both 

indexes exhibit an upward trend over the entire period without significant drawdowns. 

The OQP allows the HFMM to extract a constant annuity from both indexes. 

[insert Figure 1.4 here] 

Daily and intraday statistics are presented in Table 1.6. Total profits for the six-month 

period are 3,412 € (2,999 €) in the DAX (MDAX). Total profits are 14.8% higher in the 

DAX than in the MDAX. This is the result of a higher number of trades, 181,594 vs 86,199 

for the DAX vs. the MDAX combined with a tiny average profit per trade of 0.019 € vs 

0.034 €. This is characteristic of high-frequency trading (Jones (2013)). Total profits are 

insufficient to maintain the infrastructure costs required by market-making activities. 

[insert Table 1.6 here] 
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1.6.2 Trading strategy 

The dynamic management of the OQP thresholds coupled with the use of κ based on the 

idiosyncratic characteristics of the stocks expose the HFMM’s LOs to partial executions. 

Table 1.7 illustrates the way partial execution of the HFMM’s limit orders against 

marketable orders are handled. The example comes from the emulation of Deutsche Bank 

data from February 1, 2013. It illustrates the way partial executions of the HFMM’s limit 

orders against marketable orders are handled. It works as follow: One μS before 

….054552, the HFMM is short 500 shares. At ….054552, a bid limit order creation for 

1,000 shares at 42.910 is sent to the Exchange. We identify this order with the internal id 

41. Internal ids refer to emulated orders from the trading strategy. At ….139361, an 

incoming market order hits the HFMM bid for a quantity of 169 (internal id 7). 

[insert Table 1.7 here] 

The HFMM position is short 331 shares. This trade is immediately followed by the 

cancellation of the LO with id 41, a creation (id 42) of a bid LO at 42.910 for 831 shares 

and a creation of an ask LO at 42.950 for 169 shares. Considering the HFMM’s position 

(short 331) and his LO quantity of 831 (169) on the bid (ask), a full execution of one of 

his LOs will lead to the HFMM’s κ of 500 shares for Deutsche Bank. This quantity is the 

maximum of the five most traded quantities of Deutsche Bank as defined in Section 1.3. 

The profitability of the strategy is displayed in Table 1.8. Panel A indicates that total 

profits are strongly positive. The average daily profits are economically significant, the 

standard deviations low, and no daily loss has occurred over the 125-day period even if 

the sample includes different kinds of market moods, including some high stress periods 

(See Figure 1.1).  

[insert Table 1.8 here] 

Panel B shows an average profit per trade of 2.32€ (1.73€) for the DAX (MDAX). When 

coupled with the total number of trades of Panel C, we obtain results typical of high-

frequency trading: a high number of trades (1.1m for the DAX and 355.5k for the MDAX) 

paired with a small profit per trade. This highlights the fact that the HFMM is not a 
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directional trader. Using hard information, he benefits from the bid-ask bounces and the 

variability of bid-ask spreads due to varying liquidity levels without assuming the use of 

valuable private information. The lowest part of Panel C displays the distribution of trade 

profit per transaction. Whereas flat trades represent 20.53% (15.75%) of the 1.1 million 

(350k) trades, both distributions are skewed to the right. An HFMM acting as a designated 

sponsor and using the strategy has his transaction fees waived because he fulfills the 

Deutsche Boerse (2015) requirements. 

The HFMM is a liquidity provider when he behaves as a market maker and issues market 

orders (consumes liquidity) for risk management purposes. Table 1.9 divides the 

HFMM’s trade origins into three categories: the execution of the HFMM’s LOs against 

incoming LFTs’ marketable orders (LOB); the intraday liquidation of the HFMM’s 

positions due to circuit-breakers (C.B.); and the closing of positions at the end of the day 

(O/N). This disentangles the liquidity-providing activities (LOB) from the liquidity-

consuming ones (circuit-breakers and closing position at the end-of-day).  

More than 94% (89%) of trades in the DAX (MDAX) originate from LOs. This confirms 

the HFMM’s role as a liquidity provider. The monitoring of market condition has 

triggered 54.4k (28.9k) market orders in the DAX (MDAX). Nevertheless, the average 

profit per trade in both indexes is more than twice that obtained by LOB activities. An 

explanation is linked to the bid-ask spread: as volatility increases with extreme market 

conditions, the bid-ask spread widens. This has a direct and positive impact on the 

profitability of liquidated positions. Closing positions at the end of the day required an 

average of 1.75 (2.0) trades in the DAX (MDAX). 

[insert Table 1.9 here] 

Circuit-breakers (CBs) are important components of the strategy. They have been 

activated a daily average of 14.5 (7.7) times per stock (𝐷𝐴𝑋: 54,462 ÷ 125 ÷ 30). 

Looking at the DAX components, market orders triggered by the circuit-breakers 

represent 4.87% of total trades and they account for 9.94% of the total PnL. Results are 

even more striking when looking at the MDAX: 8.07% of the trades come from the 

circuit-breakers for a contribution exceeding 30% of the total PnL. Avoiding overnight 
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positions comes at a cost: respectively 135,334 € and 15,086 € for the DAX and MDAX 

components. 

Traditionally, informed traders are associated with high-volume transactions: Blume, 

Easley et al. (1994) show that volume provides information on information quality. Wang 

(1994) finds that volume is positively correlated with absolute changes in prices and 

dividends. Chakravarty, Gulen et al. (2004) relate informed trading in both stock and 

option markets to trading volume. However, developments in market structure and 

technological advances led to evidence of dynamic use of limit order strategies by which 

traders manage their positions: Bloomfield, O’Hara et al. (2005) use experimental asset 

markets to analyze make-take decisions in an electronic market. They note that informed 

traders’ aggressive orders are replaced by limit orders as prices move toward fundamental 

values. Hasbrouck and Saar (2009) find evidence consistent with the use of a dynamic 

limit order strategy by which traders manage their positions on INET. 

To investigate the impact of informed traders on HFMM’s performance in this context, 

we compare the returns using a constant leverage to the discrete time returns adjusted for 

leverage and asynchronous trades using Equations (1.7) to (1.14). If large trades convey 

private information, the HFMM’s performance adjusted for leverage should decline to 

reflect the permanent impact on fundamental value of the private information. The results 

in Table 1.10 mitigate this conclusion. In the DAX, the cumulated leveraged return is 

99.9% higher than the cumulated constant return. This can be the result of mixed strategies 

using market and limit orders described by Easley, de Prado et al. (2016). This casts 

doubts on the quality of information obtained from trade volume alone. A contrario, the 

difference between the leveraged and constant return is –19.5% in the MDAX. The trade-

off between market risk and liquidity risk in this segment could explain this phenomenon. 

[insert Table 1.10 here] 

Figure 1.5 displays the discrete time returns per time interval adjusted for leverage and 

asynchronous trades using Equations (1.7) to (1.14). Dynamic management of positions 

is well suited to benefit from UEEs because the best discrete returns are obtained at the 

opening and the closing of the trading session, where the majority of UEEs happen. 
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Moreover, time intervals 330-331 (327-329) and 420-423 (417-418) in the DAX (MDAX) 

coincide with a larger than usual number of UEE occurrences. The Deutsche Boerse 

market model, implying midday auctions, imposes a transfer of wealth between LFTs 

toward the HFMM as seen during period 243 (13h03) in the DAX: it exhibits a significant 

increase in average leveraged return for the HFMM. The same phenomenon is observed 

in the minute following the midday auction in the MDAX (period 246 at 13h06).  

[insert Figure 1.5 here]  

As depicted in Table 1.11, the HFMM would have had a positive impact on the market. 

He has traded €17.7b of market value, more than 90% of which comes from his limit 

orders. 

[insert Table 1.11 here] 

 1.7 Robustness tests 

1.7.1 Speed’s impact on performance 

Latency, the required time to receive, process, and react to new information, is considered 

crucial to the HFMM. Short latencies allow to limit being sniped on stale quotes, to 

aggregate new information rapidly and to gain access to market orders via time priority.  

Testing the effect of latency on performance is equivalent to quantify the impact of 

investments in technological infrastructures and softwares. It can serve as benchmark 

either to compare traders which differ solely by their speed or for capital budgeting 

decisions.  

The treatment time of new information by the HFMM’s strategy is 104 μS. The lower 

bound of the latencies analyzed is 150 μS to allow for order transmissions to the 

Exchange. We consider that the reference HFMM is using colocation facilities. To test 

for the impact of latency on the stragegy, we use latencies of 150, 500, 1 500, 5 000, and 

10 000 μS.  For the sixty stocks over the six-month period, we emulate real-time trading 

to obtain all limit and market orders. We calculate intraday and daily PnL. Finally, we 

aggregate the statistics by index. Results are presented in Table 1.12. 
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[insert Table 1.12 here] 

For the DAX, decreasing latency does not influence the relative risk: 

𝜎(𝝅) 𝝅⁄  is constant throughout all level of latencies. The investment in colocation 

services is fully justified by the augmentation of € 342 000 in total profits generated by 

the strategy between 10 000 μS and 150 μS latencies2. 

1.7.2 Strategy’s features 

The OQP from Ait-Sahalia and Saglam (2014) is the core of the HFMM's quoting 

decisions. It allows the obtaining of positive cash flows throughout the analyzed samples 

(ref. Section 1.6.1). However, their model of dynamic inventory management uses a 

quantity of one. This imposes a constraint on the profitability which is insufficient to cover 

the infrastructure costs required by the market-making activities. We relax this constraint 

using the kappa concept defined in Section 1.3. Furthermore, we analyze the impact of 

circuit-breakers and end-of-day closing of positions on performance. Table 1.13 presents 

the results obtained by emulating the HFMM’s market-making activities for the thirty 

DAX’s components during February to July 2013.  

[insert Table 1.13 here] 

Table 1.13 columns differ by the algorithm’s active features. The Setup 4 performance, 

which includes kappa, the circuit breakers, and the closing position procedure, is the one 

presented throughout the paper. It is the one with maximum profit and minimum volatility. 

Allowing overnight positions (Setup 2) induces a marginal decrease in profits while 

volatility increases marginally. Intraday performances, as depicted by the ratios of average 

win/loss and the number of win/loss, confirms that Setup 4 and Setup 2 exhibit a similar 

behavior.  Circuit breakers play a crucial role. Profitability almost cuts in half when this 

feature is deactivated (Setup 1 and Setup 3). This highlights the importance to react when 

market conditions changes as the bulk of order flow from circuit-breakers are cancellation 

                                                           
2 10 Gbits/s connections are available in data center in Frankfurt/Main, Germany for a monthly fee of € 4 
500 ref: Deutsche Boerse (2015). "Price List for the Utilization of the Exchange EDP of FWB Frankfurt 
Stock Exchange and of the EDP XONTRO." 
 . 
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of limit orders standing at the LOB's level 1. Results are qualitatively the same when 

analyzing the thirty components of the MDAX. 

1.8 Conclusion 

We have implemented the optimal quoting policy of liquidity provision of Ait-Sahalia 

and Saglam (2014) without the assumption of valuable private information. Profits in both 

DAX and MDAX over the six-month period exhibit an upward trend without significant 

drawdowns. The OQP allows the HFMM to extract a constant annuity from the market. 

However, total profits are insufficient to maintain the infrastructure required by market-

making activities.  

We have embedded the OQP in a trading strategy. The trading strategy avoids data mining 

and data snooping. It considers latency and partial executions of limit and market orders. 

Special care has been taken to eliminate the price impact linked to the HFMM’s trading 

and quoting activities. Circuit-breakers have been implemented in response to regulators’ 

concerns. 

The viability of the strategy has been established using an extensive dataset including 

sixty stocks in two market segments. It covers a six-month period where the market has 

encompassed drastically different phases. The strategy exhibits outstanding 

characteristics when risk and profitability are considered. Market-making activities in 

both indexes led to 3.45 million € in profit for the six-month period. This is realized 

through 1.5 million trades, and no daily loss is incurred for either of the indexes. These 

results are the lower bound of the potential HFMM’s performance considering: 1) the 

worst-case scenario applied to his time priority, 2) the way partial executions are handled 

(loss of time priority, delay to cancel and re-enter quotes), 3) the constraint to incur market 

risk when using market orders implying quantities exceeding the available ones at level 

1, 4) no informational advantage, 5) no maker-fee revenues, and 6) no valuable private 

information. We have disentangled the liquidity-providing role from liquidity-consuming 

activities. Whereas the core of the profits comes from quoting activities, the 

implementation of circuit breakers adds to total profits.  
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Ultrafast extreme events have been documented; they occur regularly. They are linked to 

idiosyncratic characteristics and do not exhibit systematic behavior. In a context where 

price impact minimization is a major concern for traders, the prevalence of UEEs deserves 

further research. These high-frequency events could be associated with elusive liquidity, 

predatory behaviors, algorithm glitches, and aggregation of information. 

Because partial executions of orders (limit and market) are possible, we have proposed a 

methodology to determine the returns that simultaneously take into consideration the 

varying leverage and the asynchronous nature of high-frequency trading. This procedure 

lets one quantify the impact of high volume trades often attributed to informed traders. 

The effect of high volume trades on the HFMM’s performance is inconclusive. 

Aggregated results show that the HFMM’s performance increases in the DAX and 

decreases in the MDAX. The HFMM behaves like a constant liquidity provider and has a 

positive effect on market quality. 

As expected, latency affects performance. Investments in infrastructure and software are 

warranted by the increase in profitability and the HFMM can exploit his speed’s 

advantage to economically significant levels. Empirical research must address market 

imperfections as they have considerable impact on both risk and profitability. 

Implementing circuit-breakers is crucial to the economic viability of the HFMM. 

Ait-Sahalia and Sağlam (2016) have recently published an extension to the model 

analyzed in this paper. They endogenize the bid-ask spread which is a function of the 

HFMM’s quoting decisions. These decisions are driven by a signal about the likely type 

of trader (patient or impatient) who will send the next incoming marketable order. To test 

adequately this new setup, one has to quote and trade actively in live markets as it involves 

both liquidity provision and supply curve decisions which are modifying the state of the 

LOB and the price discovery process. No academic financial laboratory is available 

around the world (Lopez De Prado (2015)) to realize that kind of test. 

  



 

24 
 

References 

Ait-Sahalia, Y. and M. Saglam (2014). "High Frequency Traders : Taking Advantage of 
Speed." SSRN Electronic Journal. 

Ait-Sahalia, Y. and M. Sağlam (2016). "High Frequency Market Making." SSRN 
Electronic Journal. 

Almgren, R. (2003). "Optimal Execution with Nonlinear Impact Functions and Trading-
Enhanced Risk." Applied Mathematical Finance 10(1): 1-18. 

Almgren, R. and N. Chriss (2000). "Optimal Execution of Portfolio Transactions." Journal 
of Risk 3(2): 5-39. 

Anand, A. and K. Venkataraman (2013). "Should Exchanges Impose Market Maker 
Obligations?" SSRN Electronic Journal. 

Bailey, D. H., et al. (2014). "Pseudo-Mathematics and Financial Charlatanism: The 
Effects of Backtest Overfitting on Out-of-Sample Performance." Notices of the American 
Mathematical Society 61(5): 458-471. 

Bailey, D. H., et al. (2015). "The Probability of Backtest Overfitting." SSRN Electronic 
Journal. 

Basel Committee on Banking Supervision (2013). "Fundamental Review of the Trading 
Book: A Revised Market Risk Framework." Research Report. 

Biais, B., et al. (2015). "Equilibrium Fast Trading." Journal of Financial Economics 
116(2): 292-313. 

Bilodeau, Y. (2013). "Xetraparser [computer software]." 

Bloomfield, R., et al. (2005). "The “Make or Take” Decision in an Electronic Market: 
Evidence on the Evolution of Liquidity." Journal of Financial Economics 75(1): 165-199. 

Blume, L., et al. (1994). "Market Statistics and Technical Analysis: The Role of Volume." 
The Journal of Finance 49(1): 153-181. 

Bouchaud, J. P., et al. (2009). "How Markets Slowly Digest Changes in Supply and 
Demand." In Handbook of FinancialMarkets: Dynamics and Evolution, edited by T. Hens 
and K.R. Schenk-Hoppé, pp. 57–160. 

Brogaard, J., et al. (2016). "High-Frequency Trading and Extreme Price Movements." 
SSRN Electronic Journal. 

Chakravarty, S., et al. (2004). "Informed Trading in Stock and Option Markets." The 
Journal of Finance 59(3): 1235-1258. 

Chordia, T., et al. (2013). "High-frequency Trading." Journal of Financial Markets 16(4): 
637-645. 

Commodity Futures Trading Commission (2013). "Concept Release on Risk Controls and 
System Safeguards for Automated Trading Environments." Research Report. 



 

25 
 

  
Cont, R., et al. (2014). "The Price Impact of Order Book Events." Journal of Financial 
Econometrics 12(1): 47-88. 

Deutsche Boerse (2015). "Price List for the Utilization of the Exchange EDP of FWB 
Frankfurt Stock Exchange and of the EDP XONTRO." 
  
Duffie, D. (2010). "Presidential Address: Asset Price Dynamics with Slow-Moving 
Capital." The Journal of Finance 65(4): 1237-1267. 

Easley, D., et al. (2016). "Discerning Information from Trade Data." Journal of Financial 
Economics 120(2): 269-285. 

Foucault, T., et al. (2013). "Liquidity Cycles and Make/Take Fees in Electronic Markets." 
Journal of Finance 68(1): 299-341. 

Glosten, L. R. and P. R. Milgrom (1985). "Bid, Ask and Transaction Prices in a Specialist 
Market with Heterogeneously Informed Traders." Journal of Financial Economics 14(1): 
71-100. 

Grossman, S. J. and J. E. Stiglitz (1980). "On the Impossibility of Informationally 
Efficient Markets." American Economic Review 70(3): 393-408. 

Hanif, A. and R. E. Smith (2012). "Algorithmic, Electronic, and Automated Trading." 
The Journal of Trading 7(4): 78-87. 

Hasbrouck, J. and G. Saar (2009). "Technology and Liquidity Provision: The Blurring of 
Traditional Definitions." Journal of Financial Markets 12(2): 143-172. 

Hautsch, N. and R. Huang (2012). "The Market Impact of a Limit Order." Journal of 
Economic Dynamics & Control 36: 501-522. 

Huh, S.-W. (2014). "Price Impact and Asset Pricing." Journal of Financial Markets 19: 1-
38. 

Jingle, L. I. U. and K. Phadnis (2013). "Optimal Trading Algorithm Selection and 
Utilization: Traders' Consensus versus Reality." Journal of Trading 8(4): 9-19. 

Johnson, N., et al. (2013). "Abrupt Rise of New Machine Ecology Beyond Human 
Response Time." Scientific reports 3: 2627. 

Jones, C. M. (2013). "What Do We Know About High-frequency Tading?" Working 
Paper, Columbia University. 

Kelejian, H. H. and P. Mukerji (2016). "Does High Frequency Algorithmic Trading 
Matter for Non-AT Investors?" Research in International Business and Finance 37: 78-
92. 

Kim, J. H. and P. I. Ji (2015). "Significance Testing in Empirical Finance: A Critical 
Review and Assessment." Journal of Empirical Finance 34: 1-14. 

Kyle, A. S. (1985). "Continuous Auctions and Insider Trading." Econometrica 53(6): 
1315-1335. 



 

26 
 

Lopez De Prado, M. (2015). "The Future of Empirical Finance." Journal of Portfolio 
Management 41(4): 140-144. 

Madhavan, A. (2002). "VWAP Strategies." Institutional Investor Journals 1: 32-39. 

Malinova, K. and A. Park (2015). "Subsidizing Liquidity: The Impact of Make/Take Fees 
on Market Quality." The Journal of Finance 70(2): 509-536. 

Markov, V. (2014). "Constant Impact Strategy." Journal of Trading 9(3): 26-33. 

Menkveld, A. J. (2013). "High Frequency Trading and the New-Market Makers." Journal 
of Financial Markets 16(4): 712-740. 

Obizhaeva, A. A. and J. Wang (2013). "Optimal Trading Strategy and Supply/Demand 
Dynamics." Journal of Financial Markets 16(1): 1-32. 

Pagnotta, E. and T. Philippon (2015). "Competing on Speed." SSRN Electronic Journal. 

Popper, N. (2012). "High-speed Trading no Longer Hurtling Forward." The New York 
Times  (October 14). 

Roll, R. (1984). "A Simple Implicit Measure of the Effective Bid-Ask Spread in an 
Efficient Market." The Journal of Finance 39(4): 1127-1139. 

Serbera, J.-P. and P. Paumard (2016). "The Fall of High-frequency Trading: A Survey of 
Competition and Profits." Research in International Business and Finance 36: 271-287. 

The Government Office for Science London (2012). "EIA4: Circuit Breakers." Research 
Report. 

U.S. Securities and Exchange Commission (2016). "Investor Bulletin: Measures to 
Address Market Volatility, Update." 

Wang, J. (1994). "A Model of Competitive Stock Trading Volume." Journal of Political 
Economy 102(1): 127-168. 

Wasserstein, R. L. and N. A. Lazar (2016). "The ASA's Statement on p-Values: Context, 
Process, and Purpose." The American Statistician 70(2): 129-133. 

Zhou, W.-X. (2012). "Universal Price Impact Functions of Individual Trades in an Order-

driven Market." Quantitative Finance 12(8): 1253-1263.  

  



 

27 
 

Appendix 1.1: Threshold calculation: an efficient algorithm 

 
Output: 𝐿∗, 𝑈∗ 
Initialize 𝐿 = 1 and 𝑓𝑙𝑎𝑔 = 0 
 

While 𝑓𝑙𝑎𝑔 = 0 do 
 𝑈 ← 1; 
 While 𝑈 ≤ −𝐿 do 
 Solve for 𝑣(𝐿 − 1,1), 𝑣(𝐿, 1),⋯ , 𝑣(−𝐿, 1), 𝑣(−𝐿 + 1,1); 
        if 
𝑣(𝐿, 1) − 𝑣(𝐿 − 1,1) > 𝐶 2𝛿⁄ , 𝑣(𝐿 + 1,1) − 𝑣(𝐿, 1) ≤ 𝐶 2𝛿⁄ , 𝑣(𝑈, 1) − 𝑣(𝑈 + 1,1)

> 𝐶 2𝛿⁄  , 𝑣(𝑈 − 1,1) − 𝑣(𝑈, 1) ≤ 𝐶 2𝛿⁄  
         Then 
        𝑓𝑙𝑎𝑔 ← 1, 𝐿∗ ← 𝐿 𝑎𝑛𝑑 𝑈∗ ← 𝑈 ; 
      Break; 
𝑈 ← 𝑈 + 1; 
𝐿 ← 𝐿 − 1; 

Where: 

𝐿: Lower bound threshold. 
𝑈: Upper bound threshold. 
𝑣(𝐿|𝑈, 𝑠): Value function at threshold 𝐿 or 𝑈, having a signal 𝑠 
𝑠 ∈ {1,−1}. 1 denotes a buy signal and − 1 denotes a sell signal.   
𝑐 = 𝛿𝐶. 
𝐶: Bid-ask spread. 
𝛿 =  

𝜆+𝜇

𝜆+𝜇+𝐷
. 

𝜆: Arrival rate of LFTs market orders 
𝜇: Arrival rate of HFMM signals 𝑠. 
𝐷: Constant discount factor > 0. 
𝛤: Inventory aversion coefficient. 
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Table 1.1 Market summary statistics, trades and LOB1 

Panel A      
Trades Market Value (MV) %  MV  # Trades  % Trades  
DAX (30) € 398,504,790,578  92.57%     17,637,381  79.47%  
MDAX (30) € 31,986,673,636  7.43%       4,557,183  20.53%  
Total € 430,491,464,214  100.00% 22,194,564  100.00%  
Panel B     # UTD/ 

LOB, level 1 Market Value (MV) %  MV # UTD % UTD # Trades 

DAX (30)  €   11,038,241,222,840  95.48%   207,225,811  80.96% 11.75 

MDAX (30)  €         522,821,561,308  4.52%     48,740,327  19.04% 10.70 

 € 11,561,062,784,148  100.00% 255,966,138  100.00% 11.53  
The data span is from February 2 to July 30,2013. #UTD/#Trades are used to monitor high frequency 
trading activities, as for MIDAS, Security and Exchange Commission (SEC) at 
http://www.sec.gov/marketstructure/midas.html. 

 

Table 1.2 Two-way classification of price movements in consecutive 
intraday trades: summary (,000) 

   +,+   +,0   +,-   0,+   0,0   0,-   -,+   -,0   -,-   Total  

 DAX  
Occ

. 
   
1,253.8  

   
1,776.1  

   
1,599.7  

   
1,781.8  

   
4,824.6  

   
1,770.0  

   
1,594.0  

   
1,775.7  

   
1,261.7  

   
17,637.4  

 % 7.1% 10.1% 9.1% 10.1% 27.4% 10.0% 9.0% 10.1% 7.2% 100.0% 
 
MDA
X  

Occ
. 

      
418.0  

      
445.0  

      
478.6  

      
443.9  

      
988.7  

      
442.3  

      
479.6  

      
441.2  

      
420.0  

     
4,557.2  

 % 9.2% 9.8% 10.5% 9.7% 21.7% 9.7% 10.5% 9.7% 9.2% 100.0% 

Price movements are classified into “up” (+), “unchanged” (0), and “down” (-). Price moves are represented 
by x,y where x is the ith-1 move and y the ith move. % is the relative occurrence of the column’s price 
movement. 
  

http://www.sec.gov/marketstructure/midas.html
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Table 1.3 Two-way classification of price movements in consecutive 
intraday trades DAX (%) 

Isix  +,+   +,0   +,-   0,+   0,0   0,-   -,+   -,0   -,-  

22 8.36% 10.12% 9.63% 10.22% 23.33% 10.12% 9.53% 10.22% 8.47% 

24 8.90% 10.64% 8.81% 10.63% 22.20% 10.58% 8.82% 10.57% 8.86% 

32 9.51% 9.78% 9.47% 9.70% 23.74% 9.56% 9.55% 9.48% 9.23% 

49 7.22% 10.59% 8.80% 10.59% 24.94% 10.84% 8.79% 10.84% 7.38% 

58 8.61% 10.44% 9.40% 10.52% 22.47% 10.32% 9.32% 10.40% 8.53% 

60 9.72% 10.39% 10.17% 10.32% 19.36% 10.13% 10.24% 10.05% 9.63% 

80 3.23% 10.13% 6.04% 10.36% 40.89% 10.01% 5.80% 10.25% 3.28% 

85 3.92% 10.41% 5.97% 10.33% 38.66% 10.36% 6.05% 10.28% 4.02% 

106 5.94% 10.44% 8.16% 10.59% 29.99% 10.43% 8.02% 10.58% 5.85% 

130 4.06% 10.10% 6.98% 10.38% 37.63% 9.88% 6.70% 10.16% 4.11% 

138 2.14% 10.29% 7.66% 10.03% 39.89% 9.99% 7.93% 9.73% 2.34% 

143 5.01% 10.64% 6.83% 10.44% 33.72% 10.74% 7.03% 10.54% 5.06% 

146 1.97% 8.84% 5.42% 8.98% 49.76% 8.80% 5.28% 8.94% 2.02% 

151 3.45% 10.01% 6.25% 10.28% 40.55% 9.90% 5.97% 10.18% 3.41% 

266 7.55% 9.96% 10.34% 10.16% 24.34% 9.79% 10.14% 9.99% 7.74% 

829 8.96% 10.00% 10.11% 9.97% 22.06% 9.98% 10.14% 9.94% 8.83% 

1634 10.72% 9.95% 10.78% 10.01% 17.47% 9.63% 10.72% 9.69% 11.04% 

2451 8.99% 9.65% 10.76% 9.51% 21.45% 9.79% 10.91% 9.64% 9.30% 

2481 5.43% 10.45% 8.01% 10.49% 31.47% 10.37% 7.97% 10.41% 5.39% 

2807 7.30% 10.42% 9.36% 10.22% 25.09% 10.49% 9.56% 10.29% 7.28% 

2841 8.46% 9.92% 10.34% 9.89% 22.13% 10.14% 10.38% 10.10% 8.64% 

3446 8.71% 10.29% 9.63% 10.24% 22.51% 10.12% 9.67% 10.08% 8.74% 

3679 7.33% 9.79% 9.70% 9.75% 26.56% 9.92% 9.74% 9.87% 7.35% 

3744 2.65% 9.60% 6.44% 9.78% 43.44% 9.46% 6.26% 9.64% 2.74% 

4423 8.84% 10.13% 10.25% 10.30% 21.33% 10.03% 10.08% 10.20% 8.84% 

5830 8.86% 10.19% 10.21% 10.16% 21.35% 10.15% 10.24% 10.12% 8.72% 

8669 9.80% 9.92% 10.53% 9.87% 20.13% 9.83% 10.57% 9.78% 9.57% 

9633 7.72% 10.12% 9.98% 10.33% 23.91% 10.10% 9.78% 10.30% 7.77% 

11814 4.58% 10.34% 7.52% 10.40% 35.07% 10.00% 7.46% 10.07% 4.55% 

16753 7.21% 10.24% 9.24% 10.34% 26.09% 10.12% 9.14% 10.22% 7.40% 
Isix: unique stock identifier. Price movements are classified into “up” (+), “unchanged” (0), and “down” 
(-). Price moves are represented by x,y where x is the ith-1 move and y the ith move. % is the relative 
occurrence of the column’s price movement. Each row sums to 1. The data span is from February 2, 
2013 to July 30, 2013. 
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Table 1.4 Ultrafast extreme events (UEEs) summary 

  

UEEs 
up    UEEs down   Total UEEs  

 

# 
occ. 

# 
stocks 

avg. 
rep. 

# 
days 

# 
occ. 

# 
stocks 

avg. 
rep. 

# 
days 

# 
occ. 

# 
stocks 

avg. 
rep. 

# 
days 

DAX 33 18 8.333 23 52 23 7.654 32 85 26 7.918 40 
MDA
X 133 28 6.436 72 121 27 6.653 64 254 30 6.519 94 

Total 166 46 6.813 82 173 50 6.954 76 339 56 6.885 102 

UEEs up: surges in price; UEEs down: mini crashes in price; # occ: number of UEE occurrences; # 
stocks: number of stocks that experienced at least one UEE over the sample; avg. rep.: average number 
of successive tick up (tick down) by UEE; # days: number of days with at least one UEE. 
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Table 1.5 Signal and trade independence: chi-square tests 

 DAX    MDAX   
Isix  𝜲𝟐  p_val #/μS  isix 𝜲𝟐 p_val #/μS 

22    203,937,984  0.496    999,696   39    15,329,466  0.499    851,637  

24    160,914,996  0.496    981,189   54    13,609,928  0.499    800,584  

32    173,733,875  0.496    992,765   63    14,478,948  0.499    804,386  

49    124,653,438  0.497    989,313   68    10,562,100  0.499    704,140  

58    139,181,664  0.497    987,104   86    15,369,156  0.499    853,842  

60    134,565,880  0.497    989,455   95      8,703,645  0.499    580,243  

80      84,408,825  0.497    993,045   98    15,138,738  0.499    841,041  

85      82,746,488  0.497    940,301   112      9,590,670  0.499    639,378  

106    104,942,040  0.497    999,448   117    19,692,002  0.499    895,091  

130    101,905,854  0.497    999,077   177      6,357,416  0.498    489,032  

138      57,920,763  0.497    864,489   661    17,147,576  0.499    902,504  

143    111,044,309  0.497    982,693   1131    10,887,405  0.499    725,827  

146    144,863,120  0.497    999,056   1415    13,654,791  0.499    803,223  

151      92,681,940  0.497    996,580   1429    14,507,892  0.499    805,994  

266      89,374,050  0.497    993,045   1457    15,034,662  0.499    835,259  

829    125,122,410  0.497    993,035   1468      7,207,956  0.498    514,854  

1634    125,912,901  0.497    976,069   1566    16,050,003  0.499    844,737  

2451    156,993,249  0.496    999,957   2323    15,455,538  0.499    858,641  

2481      98,013,663  0.497    990,037   3290      5,190,090  0.498    346,006  

2807      85,972,566  0.497    999,681   3849    11,741,355  0.499    782,757  

2841    143,999,856  0.497    999,999   4035    13,745,027  0.499    808,531  

3446    176,847,628  0.496    993,526   5566    10,716,976  0.499    669,811  

3679    144,857,175  0.497    999,015   8650    11,551,908  0.499    679,524  

3744    131,883,576  0.497    999,118   10658    10,201,716  0.499    728,694  

4423    115,978,239  0.497    991,267   10938    13,980,222  0.499    822,366  

5830    174,965,700  0.496    999,804   11426      9,910,173  0.499    762,321  

8669    131,157,551  0.497    986,147   11475    13,561,136  0.499    847,571  

9633    145,996,204  0.497    999,974   11607      7,284,465  0.498    485,631  

11814    105,096,684  0.497    982,212   11644      7,226,336  0.499    555,872  

16753    133,886,502  0.497    999,153   13469    16,029,576  0.499    890,532  
Isix: unique stock identifier; 𝛸2: chi-square test value; p_val: p_value; #/μS: number of microseconds 
with at least one signal. 
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Table 1.6 Daily and intraday profitability – OQP 

Panel A Daily Statistics 

 DAX (30) MDAX (30) 

Total  €          3,412   €             2,999  

 Avg   €          27.30   €             23.99  

Min  €        (33.49)  €           (29.62) 

Max  €        103.84   €           125.54  

Std. dev.  €          23.77   €             16.39  

Days 125 125 

Panel B Intraday Statistics 

 DAX (30) MDAX (30) 

# trades          181,594                86,199  

Avg π/trade  €          0.019   €             0.034  

Min  €        (13.35)  €           (14.00) 

Max  €            2.00   €             10.90  
Table encompasses results from February 2 to July 30 2013; Total: Total profit; Avg: Average profit; Min: 
Minimum profit; Max: Maximum profit; Std. dev.: standard deviation of daily profit; Days: Number of 
trading days; Avg π/trade: Average profit per trade; # trades: Total number of executed trades by the 
HFMM. 
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Table 1.7 Orders and positions: an example 

Isix: 2481 
      

Date Time Type Price Q Id Pos 

. . .  .  . .   -500 

20130201 32901054552 1    42.910  1000 41   -500 

20130201 32901139361 3    42.910  169 7 -331 

20130201 32901139361 2    42.910  -1000 41 -331 

20130201 32901139361 1    42.910  831 42 -331 

20130201 32901139361 1    42.925  -169 -103 -331 

20130201 32907274679 2    42.910  -831 42 -331 

20130201 32907274679 1    42.890  831 43 -331 

20130201 32907276733 2    42.925  169 -103 -331 
 
Type: 1 = HFMM new limit order, 2 = HFMM limit order cancellation, 3 = incoming LFT market order 
executed against an HFMM limit order; Time stamps are in microseconds; q = order quantity; id: internal 
reference to algorithm activity; pos: HFMM position, negative values representing short positions. 
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Table 1.8 Daily and intraday profitability – trading strategy 

Panel A Daily statistics   

  DAX (30)   MDAX (30)  
Total Profit  €    2,765,462   €   686,726  
Avg  €         22,124    €       5,494   
Min  €           7,396    €       1,035   
Max  €         48,035    €     13,805   
Std. Dev  €           8,314    €       2,349   
No. obs 125   €           125   

 Intraday statistics   
Panel B     
Avg π/trade  €             2.48    €          1.94   
Panel C Distribution of trades per profit  

 # trans % total # trans % total 

Total       1,113,352  100%       353,521  100.00% 

<= -20             34,064  3.06%         17,227  4.87% 

<-10 ; >= -20             51,135  4.59%         18,131  5.13% 

<0 ; <= -10           268,015  24.07%         92,404  26.14% 

0           228,603  20.53%         55,684  15.75% 

>0 ; <= 10           333,731  29.98%       114,007  32.25% 

> 10 ; <= 20           111,497  10.01%         28,545  8.07% 

>20             86,307  7.75%         27,523  7.79% 
 
Table encompasses results from February 2 to July 30 2013; Avg: Average daily profit; Min: Minimum 
daily profit; Max: Maximum daily profit; Std. dev.: standard deviation of daily profit; No. obs.: Number of 
trading days; Avg π/trade: Average profit per trade; Total: Total number of executed trades by the HFMM; 
<= -20, <-10 >-20, …, <=20: bins of number of trades with profit <= -20, <-10 >-20, …, <=20.   
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Table 1.9 HFMM’s trade origins 

   # trades  % trades  MV (000 €)  % MV  P&L  % PL 
DAX Total    1,117,499  100.00%  €   16,021,276  100.00%  €   2,765,462  100.00% 

 LOB    1,056,471  94.54%  €   15,311,005  95.57%  €   2,625,985  94.96% 

 C.B.          54,462  4.87%  €         642,880  4.01%  €      274,811  9.94% 

 O/N            6,566  0.59%  €           67,362  0.42%  €    (135,334) -4.89% 
 MDAX  Total       357,599  100.00%  €     1,696,227  100.00%  €      686,726  100.00% 

 LOB       321,175  89.81%  €     1,575,293  92.87%  €      493,181  71.82% 

 C.B.          28,860  8.07%  €           97,511  5.75%  €      208,631  30.38% 

 

O/N            7,564  2.12%  €           23,399  1.38%  €      (15,086) -2.20% 

# trades: HFMM number of trades; MV (000€): € market value of HFMM trades (in thousands); P&L: 
Profit (loss); LOB: HFMM limit orders executed against incoming LFTs’ market orders; C.B.: circuit-
breakers (HFMM market orders due to real-time monitoring of market conditions); O/N: HFMM market 
orders to flatten position overnight. 
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Table 1.10 Impact of leverage on performance 

DAX Lev. Constant   MDAX Lev. Constant  
Avg 878.8% 778.9% 99.9%  Avg 557.2% 576.7% -19.5% 

Isix Cumul Cumul Diff  isix Cumul Cumul Diff 

22 968.4% 862.7% 105.7%  39  1034.4% 1003.9% 30.6% 

24 408.1% 481.1% -72.9%  54  172.6% 158.3% 14.3% 

32 723.2% 855.8% -132.6%  63  580.7% 542.8% 37.8% 

49 585.3% 552.2% 33.1%  68  381.6% 357.8% 23.9% 

58 690.5% 1053.0% -362.5%  86  380.3% 488.2% -107.9% 

60 625.2% 742.6% -117.4%  95  482.7% 231.6% 251.1% 

80 751.3% 725.5% 25.8%  98  703.5% 813.0% -109.6% 

85 557.4% 413.5% 143.9%  112  549.4% 545.2% 4.1% 

106 1327.3% 1191.0% 136.3%  117  719.9% 738.4% -18.5% 

130 1288.3% 1122.5% 165.8%  177  834.5% 522.9% 311.6% 

138 756.1% 590.4% 165.7%  661  756.6% 698.8% 57.8% 

143 712.4% 495.3% 217.1%  1131  686.9% 760.3% -73.3% 

146 1084.9% 786.9% 297.9%  1415  599.0% 644.5% -45.5% 

151 931.4% 731.3% 200.1%  1429  705.3% 653.2% 52.1% 

266 327.0% 347.1% -20.0%  1457  480.5% 487.4% -6.9% 

829 963.1% 636.5% 326.5%  1468  34.4% 47.3% -12.9% 

1634 520.9% 594.7% -73.8%  1566  874.9% 754.1% 120.8% 

2451 1357.5% 1462.5% -105.0%  2323  479.2% 424.9% 54.3% 

2481 96.7% 104.3% -7.6%  3290  349.5% 582.0% -232.4% 

2807 963.2% 873.6% 89.6%  3849  853.2% 1210.0% -356.8% 

2841 1721.7% 1490.5% 231.2%  4035  239.5% 236.4% 3.1% 

3446 829.4% 771.6% 57.8%  5566  700.3% 768.8% -68.6% 

3679 931.2% 716.5% 214.7%  8650  577.6% 616.9% -39.2% 

3744 1245.4% 834.7% 410.6%  10658  392.0% 288.6% 103.4% 

4423 857.7% 818.4% 39.3%  10938  534.5% 434.5% 100.0% 

5830 1171.5% 566.1% 605.4%  11426  704.9% 795.1% -90.2% 

8669 520.5% 617.9% -97.4%  11475  967.6% 1492.3% -524.6% 

9633 1313.6% 1118.9% 194.7%  11607  298.0% 367.0% -69.0% 

11814 867.9% 753.3% 114.6%  11644  256.9% 260.1% -3.2% 

16753 1266.6% 1057.2% 209.4%  13469  385.2% 375.7% 9.5% 
 
Lev. Cumul: cumulated return adjusted for leverage; Constant cumul: cumulated return with constant 
leverage.  
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Table 1.11 Participation in trades 

    HFMM/ 

  Realized HFMM Realized 

DAX (30) Market Value € 398,504,790,578 €   16,021,291,071 4.02% 

 # Trades 17,637,381 1,117,499 6.34% 

MDAX (30) Market Value € 31,986,673,636 €     1,696,246,094 5.30% 

 # Trades 4,557,183 357,599 7.85% 
 

Realized column presents the summary statistics of realized market activities over the sample period 
(February 2 to July 30 2013). HFMM column presents what would have been the HFMM’s activities over 
the same period. 
 
 
 

Table 1.12 Impact of latency on performance 

 Latency             10,000                 5,000                 2,500                1,000                   500  150 

DAX 𝝅  €   2,578,400   €   2,784,300   €   2,860,600   €   2,898,200   €  2,913,199   €  2,765,462  

 𝝅̅  €         20,628   €         22,274   €         22,885   €         23,816   €        23,305   €        22,124  

 𝒎𝒊𝒏(𝝅)  €           8,182   €            9,239   €           8,799   €           8,987   €          8,952   €           7,396  

        

 𝝈(𝝅)  €           7,609   €            8,115   €           8,420   €           8,582   €          8,635   €           8,314  

 𝝈(𝝅) 𝝅̅⁄  0.37 0.36 0.37 0.36 0.37 0.37 

MDAX 𝝅  €      609,760   €       662,230   €       691,710   €      709,940   €      714,640   €      686,726  

 𝝅̅  €           4,878   €            5,298   €           5,534   €           5,680   €          5,717   €           5,494  

 𝒎𝒊𝒏(𝝅)  €           1,390   €            1,724   €           1,794   €           1,783   €          2,153   €           1,035  

 𝝈(𝝅)  €           1,715   €            1,787   €           1,850   €           1,893   €          1,906   €           2,349  

 𝝈(𝝅) 𝝅̅⁄  0.35 0.34 0.33 0.33 0.33 0.43 

 
π: total profit; 𝝅̅: average daily profit; 𝝈(𝝅): standard deviation of daily profit; 𝒎𝒊𝒏(𝝅): minimum daily 
profit. 
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Table 1.13 Impact from strategy's features 

DAX (30)  Setup 1 Setup 2 Setup 3 Setup 4 
 tot profit 1,421,867 2,722,256  1,435,176     2,765,462 

daily avg 11,375 21,778  11,481           22,124 
 min -10,921 6,400 3,488              7,396 
 max 34,955 53,189 30,258           48,035 
 std dev 9,063 8,439           5,360              8,314 
 # of days 125 125 125 125 

trades  avg  2.07 2.45                2.07                2.48 
 min -7,440 -7,440 -2,610 -1,160 
 max 1,882 1,858              1,866             2,745 
 std dev 42.77 29.90              20.40             17.17 
 # trades           688,087         1,108,920             692,579 1,113,352 
  <= -20              18,878              36,097                22,045               34,064 
  <-10 ; >= -20              23,712              40,538                33,741               51,135 
  <0 ; <= -10            134,850            213,615             177,390            268,015 
 0           217,542            345,738             118,308            228,603 
  >0 ; <= 10            183,213            289,639             217,977            333,731 
 > 10 ; <= 20             53,408              88,207                71,408            111,497 
  >20              56,484              95,086                51,710               86,307 
  avg win  12.87 13.22 10.44          10.94 
  avg loss  -13.25 -12.16 -9.12 -8.64 
 avg w/l 0.97 1.09                   1.15 1.27 
 # win           293,105            472,932             341,095            531,535 
  # loss            177,440            290,250             233,176            353,214 
 # w/l 1.65 1.63                   1.46 1.5 
 

Setup 1: Circuit-breakers: off ; EOD liquidation: off  ; Setup 2: Circuit-breakers: on ; EOD liquidation: off; 
Setup 3: Circuit-breakers: off ; EOD liquidation: on ; Setup 4: Circuit-breakers: on ; EOD liquidation: on. 
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Figure 1. 1 DAX daily quotes - February to July 2013 

 
 

 
Figure 1. 2 Number of UEEs per day: DAX - MDAX 

 
 
Horizontal axis: data sample of 125 trading days; vertical axis: number of occurrences of UEEs per day, 
DAX events are positive and MDAX events are negative for presentation purposes. 
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Figure 1. 3 Number of UEEs per minute: DAX - MDAX 

 
 
Horizontal axis: data sample of 510 minutes of trading per day; vertical axis: number of occurrences of 
UEEs per minute, DAX events are positive and MDAX events are negative for presentation purposes. 
 

 
Figure 1. 4 DAX - MDAX cumulative P&L: OQP 

 
 

Aggregated cumulative Profits & Losses obtained by Ait-Sahalia and Saglam (2014) Optimal Quoting 
Policy over the sample period (February 2 to July 30, 2013). 
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Figure 1. 5 DAX- MDAX leveraged return per time interval 

 
 

One-minute time-volume weighted average returns (TVWAR) obtained by the trading strategy.                                                                                                  
Returns are aggregated by market indexes. 
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Chapter 2 
Identification of algorithmic imprints using public data: an 

application to batch auctions 

Abstract 

We identify and classify algorithmic trading activities with batch auction data from Xetra, 

the electronic platform of the German stock exchange. We pinpoint negative price loops’ 

high-frequency activities by combining Yunyue and Shasha (2003) shifted wavelet tree 

(SWT), a burst detection indicator, and the dynamic time warping (DTW) similarity 

measure of Skutkova, Vitek et al. (2013). Then, with Kirilenko, Kyle et al. (2016) traders 

classification, we link algorithmic activities to their behavioral characteristics. 

Nine types of algorithm imprints are identified. The first five types are negative price 

loops. They exhibit the encrypted noise characteristics (Stiglitz 2014) and they hamper 

the price discovery process. They significantly modify the liquidity information sets. The 

last four types are behavior-based. Informed traders imprints are documented from both 

high and low-frequency traders. The economic value of algorithm detection revolves 

around two axes. Market participants can adapt their trading to the presence of encrypted 

noise by filtering data and clarifying the price discovery process. Deciphering of NPLs 

encrypted noise reveals algorithmic imprints from the informed traders. This can lead to 

significant economic gains. The methodology deployed makes it possible to adapt to 

different environments, including continuous trading. 

Introduction 

Batch auctions (the auctions hereafter) are widely used at the opening and closing of stock 

markets. Adopted by almost all stock exchanges around the world, they are crucial trading 

mechanisms. The beneficial effect of auctions on market quality is well documented by 

means of event studies associated with the inauguration of auctions on various stock 

exchanges. The Paris stock exchange implemented them on two segments successively, 

one in 1996 and the other in 1998. Pagano and Schwartz (2003) determine that auctions 

lower execution costs for participants. The Singapore Exchange enforced opening and 
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closing auctions in August 2000. Comerton-Forde, Ting Lau et al. (2007) and Chang, 

Rhee et al. (2008) conclude to an improvement in market quality and a decrease in end-

of-day price manipulation. Closing auction started at the London Stock Exchange in May 

2000. Chelley-Steeley (2008) notices an improvement in market quality at the exchange. 

Pagano, Peng et al. (2013) analyze the impact on bid-ask spread and price volatility of 

auctions introduced in 2004 on NASDAQ. Their results suggest positive spillovers on the 

price formation dynamic behavior. In June 2009, Nasdaq-OMX launches index futures 

auctions. Hagströmer and Nordén (2014) conclude that they improve closing price 

accuracy and end-of-day liquidity. 

Algorithmic trading (AT), of which high-frequency trading is a subset, is defined as a 

trading system whose decision-making process does not involve human intervention 

(Bates (2017)). It is the expression of a fundamental trend centered on technological 

development. The nature of competition evolves as high-frequency traders change speed 

into information (O'Hara (2015)). J.P. Morgan (2017) notes that for short-term trading, 

humans already play a very small role. During continuous time sessions, Bouveret, 

Guillaumie et al. (2014) estimate the value traded by high-frequency traders to 24% in 

Europe and 21% on Xetra. AT accounts for approximately 50% of liquidity demand and 

supply on the Deutsche Boerse (Hendershott and Riordan (2011)). Despite its importance, 

research papers focusing on AT during continuous trading are scarce. Menkveld (2016) 

identifies two papers using public data. Hendershott, Jones et al. (2011) define the 

message rate as a proxy of AT activities and do not differentiate between high and low-

frequency traders. Latza, Marsh et al. (2014) subdivide trades according to their reaction 

times. They classify an aggressive order as “fast” if it matches against a standing limit 

order that is less than 50 milliseconds old. It is “slow” otherwise. They conclude that fast 

trades have smaller execution costs than slow trades. To the best of our knowledge, no 

study documents the AT presence and its behavior during auctions.  

We identify and classify trading algorithm activities from the Frankfurt stock exchange 

auction data. Information opacity is more important than that of continuous time. We 

present a methodology to infer the orders characteristics. Our algorithmic imprints 

recognition exploits two approaches. First, we focus on Abrol, Chesir et al. (2016) 
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negative price loops (NPLs). Public information flow is monitored to detect high-

frequency activity bursts. Yunyue and Shasha (2003) shifted wavelet tree (SWT) 

structures the data and we apply a burst indicator to reveal activity eruptions. Skutkova, 

Vitek et al. (2013) dynamic time warping (DTW) compares the burst sequence to a pre-

defined NPL sequence to determine their similarity. We identify five types of NPLs: 

456,772 events are uncovered representing more than 11% of all auction events. The 

NPLs users can either be informed traders or proprietary firms. NPLs exhibit the Stiglitz 

(2014) encrypted noise characteristics and they blur the price discovery process. NPLs 

significantly influence the liquidity information sets. Second, we classify algorithm types 

according to Kirilenko, Kyle et al. (2016) behavioral characteristics. Four algorithm types 

are identified. They differ by their impact on the price discovery process, the 

aggressiveness of their orders, and their position management. These behavioral 

sequences account for 596,220 events and represent more than 14% of all activities. A 

strong concern to minimize the impact on indicative price, the type of position 

management, and the temporal cyclicity documented denote the presence of informed 

traders using high and low-frequency infrastructures. 

The paper structure is as follows: Section 2.1 presents a review of the literature. Section 

2.2 characterizes the institutional context of trading on Xetra, the electronic platform of 

the German stock exchange. Section 2.3 defines the concept of algorithmic sequences and 

develops the methodologies allowing their identification. Section 2.4 presents the data 

and transaction costs. Section 2.5 and Section 2.6 outline and discuss the results. Section 

2.7 concludes. 

2.1 Literature review 

2.1.1 Behavior 

Numerous studies investigate the behavior of high-frequency traders (HFTers) during 

continuous double auctions. Brogaard, Carrion et al. (2016) conclude that HFTers supply 

liquidity during extreme price movements. Subrahmanyam and Zheng (2016) note the 

ability of HFTers to manage limit orders in anticipation of short-term price movements. 

Goldstein, Kwan et al. (2016) find that HFTers provide liquidity on the thick side of the 
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order book and demand liquidity on the thin side. Hirschey (2016) states that HFTers can 

anticipate the order flow from other investors. Menkveld and Yueshen (2016) emphasize 

the importance of inter-market arbitrage as a behavioral characteristic. These studies 

allow a better understanding of the industry aggregate behavior but do not distinguish 

between specific traders activities who may exhibit heterogeneous behaviors (Carrion 

(2013))3. There are exceptions: Menkveld (2013) highlights the positive contribution of a 

high-frequency market maker (HFMM) arrival on Chi-X Europe, and Yergeau (2016) 

analyzes the behavior of an endogenous liquidity provider using the dynamic inventory 

management model of Ait-Sahalia and Saglam (2014). 

Kirilenko, Kyle et al. (2016) propose a trader behavioral classification based on their 

activities and inventory management type. The authors benefit from a complete 

observation of all market participants` activities from a Commodity Futures Trading 

Commission audit database. Table 2.1 describes the types of active traders on the E-mini 

S&P 500 futures contract of the Chicago Mercantile Exchange. 

[insert Table 2.1 here] 

They observe that intraday intermediaries share common characteristics. Positions are 

small relative to the limit order volumes and inventories exhibit mean reversion. The 

authors distinguish two types of traders in this category. The HFMMs have inventories 

negatively correlated to stock prices while inventories are positively correlated to stock 

prices for HFTers. Fundamental traders trade large quantities of which a minimum of 15% 

remains in inventory. Their positions are directional. 

2.1.2 Machine learning 

Yang et al. (2012) utilize machine learning to identify the Kirilenko, Kyle et al. (2016) 

categories of traders. Variables at the origin of all decisions are the inventory position 

(Kyle (1985); Glosten and Milgrom (1985); Huang and Stoll (1997); among others) and 

                                                           
3 A review of the high-frequency trading industry: Chung, K. H. and A. J. Lee (2016). "High-frequency 
Trading: Review of the Literature and Regulatory Initiatives around the World." Asia-Pacific Journal of 
Financial Studies 45(1): 7-33. 
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the imbalances at the first and third levels of the order book (Cont, Kukanov et al. (2014)). 

The authors wish to obtain trader categories reward functions from inverse reinforcement 

learning. Eighteen simulations of approximately 300,000 E-Mini S&P 500 LOB activities 

serve as learning. Simulations come from Hayes, Paddrik et al. (2012) agent-based model. 

They show a clear connection between the traders classification from Kirilenko, Kyle et 

al. (2016) and the results from their machine learning approach. 

2.2 Institutional context: trading on Xetra 

Table 2.2 shows that a hybrid market model with three auctions and two continuous 

trading periods are in effect for the DAX and MDAX segments. During auctions, traders 

can submit limit and market orders. At auction's end, matching orders are executed at a 

single price and unexecuted orders transferred to the next trading stage. 

[insert Table 2.2 here] 

[insert Table 2.3 here] 

Table 2.3 shows the available public information during auctions. Public information 

consists of eight elements: the stock identifier, the date, the timestamp in microseconds, 

the status of the auction (opening, intraday or closing), the indicative price, the quantity 

matched at the indicative price, the side of the surplus (imbalance) and its quantity. The 

identity of the trader, the type of event (creation, modification, or cancellation), and the 

quantity associated with each event are not published. They are deduced from public 

information with interpretations in Table 2.4. 

[insert Table 2.4 here] 

Any matched quantity variation represents the order`s quantity. If the matched quantity 

increases and the indicative price increases (decreases), it is a buy (sell) order. If the 

matched quantity decreases and the indicative price increases (decreases), this is a 

cancellation of a sell (buy) order. In absence of a matched quantity change, the surplus 

variation corresponds to the event quantity. An increase in the surplus variation is due to 
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a limit order creation on the side of the marginal variation whereas a decrease is due to a 

cancellation. 

Since our data does not identify orders specifically, our methodology no doubt introduces 

noise in the association of activity sequences to a given source. This bias could originate 

from the aggregation of two or more orders reported during the same event. Even if 

possible, microsecond timestamps suggest that our methodology can infer related 

algorithmic sequences. 

2.3 Algorithmic sequences 

Our goal is to link algorithmic sequences to algorithm types. Hasbrouck and Saar (2013) 

correlate same quantity limits and/or market orders with short duration to high-frequency 

algorithms. We apply this concept to auctions. First, we identify algorithmic sequences 

with the SWT tree structure (Yunyue and Shasha (2003)) and a burst detection indicator. 

DTW (Skutkova, Vitek et al. (2013)) measures the similarity of these sequences to 

reference sequences exhibiting NPLs’ characteristics documented in the literature. 

Second, we classify the algorithmic sequences using the behavioral characteristics of 

Kirilenko, Kyle et al. (2016). We focus on two attributes. Orders’ aggressiveness 

determined by their impact on the indicative price and orders’ cancellation rates which 

reveal real intention to trade. 

2.3.1 Negative price loops (NPLs) 

Yunyue and Shasha (2003) propose a tree structure, the SWT, to monitor bursts of real-

time activities from a data stream. The tree aggregates the time intervals while preserving 

the original structure of the data. The main contribution of Yunyue and Shasha (2003) is 

the reduction in the number of windows necessary to monitor events. Their structure 

shrinks from 𝑂(𝑛2) by considering the set of all possible combinations to 𝑂(𝑛) where n 

is the number of windows of the smallest time interval of the sample considered. Figure 

2.1 illustrates the structure of the SWT which exploits the half-overlap of time windows. 

[insert Figure 2.1 here] 
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 Equation (2.1) uses the duration and number of SWT levels to obtain the basic time 

interval of the tree, i.e. the level 0 time interval:  

 
𝑆𝑊𝑇𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑙𝑒𝑣𝑒𝑙0 =

𝑡𝑖𝑚𝑒𝑒𝑛𝑑 − 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑟𝑡
2𝑙

, (2.1) 

   

where: 𝑙= number of SWT levels; 𝑙 ∈ [1. . 𝐿]; 𝐿 ∈ ℤ+. 

For a closing auction with a total duration of five minutes, we use a 14-level tree with 

16,384 windows (214). The time interval at level 0 is 0.0183 second 

((5 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 ∗ 60) 16,384⁄ ). The tree reduces the number of windows to supervise from 

268,435,456 (16,3842) to 16,384 windows. Burst detection of abnormal activities in a 

timely manner becomes feasible. Their identification depends on the intraperiod 

cumulative value of the burst indicator 𝐹(∙) and a threshold: 

 𝐹(𝑥𝑖,𝑗) > 𝑓(𝑤𝑖), (2.2) 

where: 

𝑥𝑖,𝑗 = time interval of SWT level i, window j, 
𝑓(𝑤𝑖)= time interval threshold of SWT level i. 
𝑓(𝑤𝑖), the alarm’s domain, is equal to 𝑚𝑖𝑛(6, 2𝑖), i being the SWT level monitored. 

When an alarm comes from a higher level, efficient streaming algorithms (online and 

batch) are available from Yunyue and Shasha (2003) Lemma 3. This makes it possible to 

precisely locate the level 0 sequence involved. 

In order to link the events of activity bursts to a specific type of algorithm, we compare 

them to reference sequences identified using stylized facts (quote stuffing: Egginton, Van 

Ness et al. (2014); Ye, Yao et al. (2013); Crédit Suisse (2012); Brogaard (2010), and 

phantom liquidity: Blocher, Cooper et al. (2016); Korajczyk and Murphy (2016)). 

We quantify the similarity between reference sequences and sequences from alarms with 

the DTW’s distance. DTW finds an optimal alignment between two data sequences. It 
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minimizes time shift and distortion effects. It can measure the similarity between two 

series that may differ in length. This similarity measure is the best in pattern recognition 

(Petitjean, Forestier et al. (2014); Ding, Trajcevski et al. (2008)). We perform data 

mapping ∈ {−1,1} so that the temporal similarity has a meaning (Keogh and Kasetty 

(2003)). 

2.3.2 Behavior-based strategies 

We use the percentage of activities at the indicative price and the orders cancellation rate 

to define four categories presented in Table 2.5. The categories qualify behavior 

(aggressive or conservative), impact on price discovery process (positive or neutral), and 

type of position management (directional or not) that the algorithmic sequences exhibit.  

[insert Table 2.5 here] 

During auction, two types of activity affect public information: bid and ask orders (created 

or canceled) at the indicative price (referred to as locks) and bid (ask) orders created or 

canceled whose price is higher (lower) than the indicative price (referred to as crosses). 

Moshirian, Nguyen et al. (2012) link the aggressiveness of an order with the probability 

that the order submitted is executed if the market opened at the event arrival time. In this 

sense, all activities generating public information during the auction are aggressive. 

However, Cao, Ghysels et al. (2000), Ranaldo (2004) and Anagnostidis, Kanas et al. 

(2015) precise the nature of these activities: crosses, by their impact on prices, imply more 

aggressive signals than locks. We define an algorithmic sequence as aggressive if fewer 

than 70% of its events occur at the indicative price. Otherwise, the sequence is 

conservative. 

The orders cancellation rate identifies activities issued by high-frequency traders 

(Paddrik, Haynes et al. (2016); O'Hara (2015); Aitken, Cumming et al. (2015)). A low 

cancellation rate indicates real intention to execute orders, a characteristic attributed to 

informed traders in the sense of Glosten and Milgrom (1985)4. Behavioral-based 

                                                           
4 “The informed trader may be speculating based on private information or superior analysis, or he may 
simply have a ‘liquidity’ reason for trading, but in any event, his decision to buy, sell or leave is based on 
his information.” p. 77. 
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algorithmic sequences (behavioral sequences hereafter) include high and low-frequency 

activities. They are limit and/or market orders of similar quantities which meet the 

following criteria:  

1) A minimum number of 4 events per auction. Institutional investors5 use algorithms to 

implement their strategies (BlackRock (2014)). They are considered as informed traders 

in the literature (Choi, Jin et al. (2016)). The low number of repetitions is intended to 

preserve the ability to identify this type of traders.  

2) Sequence median duration is less than one second.  

3) Maximum duration is shorter than five seconds. An event at time t having duration 

greater than the maximum duration followed at t + 1 by an event whose duration is less 

than the maximum duration causes a new sequence creation. 

2.4 Data 

Data comes from Xetra, the electronic platform of the Frankfurt Stock Exchange. The 

database contains all events relative to auctions sent via the Enhanced Broadcast System, 

an information flow used by high-frequency traders. Xetra Parser, developed by Bilodeau 

(2013), allows to reconstruct the events sequence. The timestamps are in microseconds 

and trading is anonymous. 

Our sample has sixty components: thirty from the DAX index, the stocks with the highest 

market capitalization and thirty from the MDAX index, the stocks having an average 

market capitalization and excluding technology. Hereinafter, we refer to the thirty DAX 

(MDAX) components as DAX (MDAX). The sample covers the period from February to 

July 2013. It accounts for about 15% of all activities, i.e. 4 094 751 events. The other 85% 

essentially occurs during continuous trading sessions.  

Table 2.6 shows the statistics by auction. 

                                                           
5 Brogaard, J., et al. (2014). "High-Frequency Trading and the Execution Costs of Institutional Investors." 
Financial Review 49(2): 345-369. 
 : “Institutional investors refer to buy-side institutions such as pension plans and money managers.” 
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[insert Table 2.6 here] 

Closing auctions trigger most activities with 71% (69%) of the DAX (MDAX) events. 

The relative importance of the three auctions are qualitatively the same in both indexes. 

The bulk of activities happen during closing auctions. Differences between average and 

median matched quantities is due to the presence of frequent extreme values. 

Table 2.7 classifies events according to their impact on matched quantity. 15.03% 

(35.52%) of DAX (MDAX) events increase the matched quantity. This is the result of 

limit orders decreasing the existing surplus size, a conservative strategy, or aggressive 

limit orders affecting the indicative price. Quantity additions to existing surplus represent 

the majority of events: 52.78% (DAX) and 51.05% (MDAX). This reflects a concern to 

minimize orders impact on indicative price, an institutional traders characteristic. 

Cancellation of previously matched orders accounts for 1 062 314 (106 576) DAX 

(MDAX)`s events. 

[insert Table 2.7 here] 

Easley, Lopez de Prado et al. (2012) link temporal cyclicity to institutional traders. Figure 

2.2 shows the behavior of DAX closing auctions event numbers by 5-second time 

intervals. Six bursts in the number of orders occur at the same time for all components of 

the Index6. This is a clear evidence of institutional imprints. The very low activity 

observed during the auctions' last thirty seconds (periods 61 to 66) meaning that random 

time period addition at auctions' end has, at best, a mixed economic contribution. These 

behaviors are also seen for other auctions and the MDAX. 

[insert Figure 2.2 here] 

2.4.1 Transaction costs 

There are many types of traders. Hedgers and institutional investors have heterogeneous 

investment horizons (Cespay and Vives (2016)). Some may use brokers for their orders 

execution. If so, Battalio, Corwin et al. (2016) identify US brokers who maximize their 

                                                           
6 We obtain the same cyclicity pattern when we split the sample in shorter subsamples. 
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revenues by the rebates granted by trading venues to the detriment of their customers. 

Deutsche Boerse (2015) states that under the Designated Sponsor Program (Section 

2.2.3.2) and the Top Liquidity Provider Program (Section 2.2.3.3), the stock exchange 

does not charge transaction fees to participants to these programs and grants them rebates 

for executed orders (limit and marketable). Top liquidity providers earn a rebate of 0.20 

basis point on their traded market value cap to 375k euros per order per day. Other hedgers 

and institutional investors can benefit from direct market access (DMA). Some of them 

may use co-location (Malinova and Park (2016); Malinova, Park et al. (2016)). Direct 

access allows the management of limit and marketable orders strategically using several 

prices (Upson and Van Ness (2017); Easley, de Prado et al. (2016)). If these investors are 

billed directly by the Deutsche Boerse, the Section 2.2.1.1, Table 6 (Deutsche Boerse 

(2015) op.cit.) establishes for the DAX a fee model based on three activity levels referred 

to as high volume, medium volume and low volume levels. The cost of the medium 

volume category is 0.378 basis points based on the market values capped to 1.5m euros 

per order per day. This model does not qualify for rebates. In the case of billing by the 

broker, Cappon and Mignot (2014) estimate costs at 1.5 cents per share, while Menkveld 

(2016) estimates the cost of executing a marketable order at 7 basis points. 

The data during auction is opaque. The orders issuers and their characteristics are not in 

the public domain. We do not identify the exact status of the traders behind the algorithmic 

activities. 

2.5  Results 

2.5.1 Negative price loops 

NPLs lock the indicative price in a range. They prevent the price discovery process and 

hamper the disclosure of supply and demand (Abrol, Chesir et al. (2016)). NPLs may 

create phantom liquidity, a source of additional costs imposed on investors (BMO Capital 

Markets (2009)). They are associated to quote stuffing, a cause of latency’s arbitrage 

(Brogaard (2010)) and stale quotes (Foucault, Kozhan et al. (2015); Menkveld and Zoican 

(2017)). 
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SWT and DTW identify five types of NPL algorithms whose characteristics are presented 

in Table 2.8. All NPL algorithms share a common structure. An uninterrupted creation 

and cancellation sequence of identical orders (price and quantity) implying cancellation 

rates which converge to 100%. They use limit or market orders. They set the indicative 

price in a constant range. We categorize NPLs algorithms by their impact on information. 

The impact depends on heterogenous (LOB's depth and granularity) and endogenous 

(order's price and quantity) factors. Types 1 and 2 have the smallest effect. Limit orders 

are inside the bid-ask spread on the surplus side and they don't modify the matched 

quantity, i.e. they don't match with the LOB's opposite side. Types 3 and 4 have a greater 

impact as they change the matched quantities. The imbalance (surplus quantity) stays on 

the same side of the market. This can be the result of a marketable order with a quantity 

smaller than the surplus. Type 5 influences all variables. 

[insert Table 2.8 here] 

NPLs execution speed does not allow humans to perceive their activities. A graphic 

presentation whose paradigm is event-driven rather than temporal is revealing. Figure 2.3 

displays Deutsche Bank closing auction events on 12 February 2013. The graphs show 

clockwise: the indicative price, the matched quantity, the surplus quantity, and the 

duration between events. We identify four NPL sequences. As previously defined, the 

indicative price is within a constant range. Indicative price volatility changes with 

sequences. Duration is significantly shorter during these NPLs than on average and 

confirm activities related to high-frequency algorithms. 

[insert Figure 2.3 here] 

Figure 2.4 illustrates the analyzed variables for NPLs identification. An identical order 

(price and quantity) is created and canceled six times (twelve events) during a time 

interval of 0.08 seconds without any other activity intervening. We link the sequence to 

Table 8 type 1 algorithm: indicative price and sell side surplus vary while the matched 

quantity remains the same. Duration between events range from 0.4 to 2.0 milliseconds. 

To act at this speed, the algorithm is probably operated from a collocation site. DTW 

determines the similarity between reference sequences and the potential NPL sequence. 
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[insert figure 2.4 here] 

403,746 DAX events are due to NPLs (Table 2.9). These mainly arise at the closing 

auction where they represent more than 17% of events. These high-frequency events occur 

at the first SWT levels: 61.71% of the activities are detected at level 2 where the time 

interval is 0.08 seconds. Each increase in one SWT level doubles the preceding time 

interval. The MDAX behavior is qualitatively similar. 

[insert Table 2.9 here] 

[insert Table 2.10 here] 

Table 2.10 summarizes the NPLs characteristics. We identify 2,595 DAX NPLs 

sequences. They average 143 repetitions and have a median duration of 0.012 seconds. 

Sequences are mainly arising during closing auction. MDAX has 134 NPL sequences 

affecting eight index components. These sequences occur at the end of the day and exhibit 

357 repetitions on average. 

[insert Figure 2.5 here] 

Figure 2.5 shows the NPLs distributions during the DAX and MDAX closing auctions. 

NPLs are present from the second to the penultimate minute of these auctions. Figure 2.6 

displays the distribution of NPLs events for the five algorithm types of Table 2.8. They 

differ significantly. For the DAX, all types are used and almost one third of the NPLs 

(129,823 events) are generated by algorithm 5. This algorithm is by far the most 

aggressive by its characteristics. It implies a change in the surplus side as well as 

variations in the indicative price and the matched quantity. For the MDAX, only types 1 

and 2 are used. These types place limit orders inside the bid-ask spread. 

[insert Figure 2.6 here] 

2.5.2 NPLs and liquidity 

To determine whether the NPLs significantly influence the liquidity information set, we 

examine their effects on the liquidity distributions including and excluding the NPLs. We 
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define the available liquidity at event i as the positive (negative) value of the imbalance if 

the surplus is on the buyer (seller) side. 

The stable distributions family adequately defines asymmetric and leptokurtic 

distributions using parameters λ for stability, β for skewness, γ for scale, and δ for location 

(Vidyasagar (2014); Barany, Varela et al. (2012); Sewell (2011)). As no closed form 

exists for the pdfs and the cdfs except for the Gaussian (λ = 2), the Cauchy (λ = 1,  𝛽 =

0) and the Levy (λ = 0.5,  𝛽 = 1) distributions (Cizek, Härdle et al. (2011)), we fit the 

four parameters to the empirical characteristic function using the regression-type method 

from Koutrouvelis (1980). Matlab programmation is from Li (2015).  

Table 2.11 contains the estimated parameters of the stable family distributions for the 

DAX components. α and β determine the shape of the distributions (Nolan (2015)). The 

presence of NPLs has the following implications on the shape of liquidity distributions: α 

variations are in the range 2.31% to 38.39%. The liquidity distributions without NPLs 

have lower peak and lower tails. β variations fluctuate widely with values between -

347.29% and 3,328.68%. HFTers implement a large span of strategies. The 

aggressiveness and the LOB side of the strategy dictate the NPLs effect on skewness. 

[insert Table 2.11 here] 

Table 2.12 shows the results from a Kolmogorov-Smirnov two samples nonparametric 

test. The similarity between the empirical cumulative distributions with and without NPLs 

is rejected at the 1% confidence level for all stocks. NPLs significantly modify the 

liquidity information set. NPLs are algorithmic sequences of creations and cancellations 

of similar orders whose durations are ultra-short. Although the initial order creation and 

cancellation sequence can provide information about the hidden order book depth and its 

granularity, the subsequent repetitions are redundant. 

[insert Table 2.12 here] 

Similar results are obtained for the MDAX components. 
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2.5.3 Behavioral-based strategies 

Table 2.13 presents the behavior-based sequences statistics. They represent a minimum 

of 12.45% of the DAX events. For the MDAX, behavioral sequences account for 23.15% 

of closing auction events. Overall, NPLs depict 596,220 events.  

[insert Table 2.13 here] 

Table 2.14 groups the behavioral sequences by market segments and by algorithm types. 

For the DAX, 412,782 events, or more than 90% of the 457,864 events associated with 

behavioral sequences, occur at the indicative price (types 6 and 8). Of these, 119,740 

orders have a cancellation rate smaller than 70% (type 8). This suggests the presence of 

informed traders managing their positions with algorithms. This characteristic is also true 

for the MDAX where 91.4% of behavioral sequences are of type 8. 

[insert Table 2.14 here] 

Table 2.15 and Table 2.16 identify the characteristic that predominantly differentiates the 

behavioral types. The percentage of limit orders at the indicative price (types 6 and 7) is 

greater than 90% for all DAX and MDAX auctions. Operators of these algorithm types 

exhibit a strong concern to minimize their orders' impact on the stock fundamental value. 

[insert Table 2.15 here] 

Position management imprints (types 8 and 9), also associated with informed traders, are 

present during all DAX auctions. 132,852 events are identified. Here again, the highly-

privileged strategy is to minimize the impact on the indicative price (type 8): it represents 

more than 90% of total position management activities. For the MDAX, nearly 97% of 

the 138,356 events identified are of Type 8. They occur during the closing auction. 

[insert Table 2.16 here] 

2.6 Discussion 

Orders anticipation is an integral part of the strategies commonly used by high-frequency 

traders. Baldauf and Mollner (2016) show that high-frequency liquidity providers use 
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order identification to avoid adverse selection by canceling mispriced quotes. 

Brunnermeier and Pedersen (2005) describe as predatory the exploitation of orders from 

institutional investors having to liquidate their positions. Clark-Joseph (2013) documents 

the behavior of HFTers that probe liquidity in order to obtain information about large 

incoming orders. Yang and Zhu (2016) introduce the concept of back-running in which 

fast traders compete with the institutional investors large orders after recognizing their 

imprints. Thus, each participant has an economic incentive to make it more difficult for 

other traders to extract information from public data (the Stiglitz (2014) data encryption 

hypothesis).  

SWT and DTW allow to reveal NPLs. They abound during auctions. NPLs are a by-

product of low-latency trading as they are characterized by short durations. Position 

management is not their goal, their cancellation rates converge to 100%. They are 

conceptualized to generate redundant information that does not improve market quality. 

They blur the price discovery process and significantly modify the liquidity information 

set. NPLs are consistent with Stiglitz (2014) data encryption hypothesis. Institutional 

investors and proprietary firms use AT (Hasbrouck and Saar (2013); Yang and Zhu 

(2016)). As we cannot identify the order's originator, we must consider that the presence 

of NPLs is due to either of two scenarios. First, the informed trader wish to conceal his 

trading intention. Second, the proprietary firms induce delays in information processing 

justified by their desire to take advantage of information extracted from the informed 

traders. Figure 2.7 shows a histogram of the NPL sequences transaction costs. Transaction 

cost per sequence is 56.70 euros maximum7 by NPL sequence. These costs do not deter 

traders to encipher the price discovery process. Moreover, if the NPLs' generators are part 

of the designated sponsor or top liquidity provider programs (Deutsche Boerse (2015), 

Section2.4.1), they do not incur transaction costs. They earn rebates. 

[insert Figure 2.7 here] 

                                                           
7 1.5m euros multiplied by 0.378 basis point as we refer to medium volume activities fees from Deutsche 
Boerse (2015). "Price List for the Utilization of the Exchange EDP of FWB Frankfurt Stock Exchange and 
of the EDP XONTRO." 
 . 
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The regulators face numerous challenges with encrypted noise. The stock exchange 

encourages their use by high-frequency traders with its fee and rebate structure. Encrypted 

noise ban may hamper low-latency informed traders to execute their trades with a 

minimum of price impact. Designing regulations to forbid encrypted noise by constraining 

orders submission can be difficult because it opens up opportunities for regulatory 

arbitrage (Stiglitz (2014)). Tackling the problem by reducing trading speeds would also 

affect liquidity takers (Shorter and Miller (2014)). If regulatory bodies target specific 

behaviors, quants can modify the algorithms. 

NPLs have cancellation rates converging to 100%. For both DAX and MDAX, the main 

concern of the identified sequences is to limit the orders impact on the indicative price, a 

characteristic of large investors during continuous time trading (Duffie and Zhu (2017)). 

Figure 2.8 embodies this preoccupation. A time weighted average price (TWAP) 

algorithm is active during the 15 May 2015 closing auction on Volkswagen stock 

(identifier 130). Seven events occur in a 0.073 second timeframe. We comment the 

graphics clockwise. None of the seven trades modifies the indicative price. No surplus on 

the offer side. The short position increases steadily by a quantity of 20 to end at -140. It 

is the result of seven marketable orders sent against the bid surplus quantity. All duration 

is in the 0.011 - 0,015 second range. Such regularities require a low latency infrastructure. 

This behavior is in line with Menkveld (2016) who documents patterns of liquidity-

demanding tradebots from high and low-frequency traders. 

[insert Figure 2.8 here] 

The criteria for identifying behavioral algorithms are based upon the aggressive orders 

use of lock and cross types (Section 2.3.2). The analysis of behavioral algorithmic 

sequences suggests that dynamic order management is identical to that used in continuous 

time. The informed traders are concerned about the impact of their orders on the indicative 

price and they resort to fragmentation. For example, a repositioning in the order book on 

the side of the surplus is done by mean of cancellation and creation of new orders of types 

lock or cross. Another behavior implies the use of crosses orders consuming part of the 
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surplus followed by locks or crosses on the same side of the surplus for identical or greater 

quantities following indicative price variations.  

The opacity of the available information prevents the tractability of the orders which 

would allow to quantify the economic impact obtained by the algorithms. However, the 

economic value of algorithm detection revolves around two axes. First, market 

participants can adapt their trading to the presence of encrypted noise. By defining 

appropriate burst indicators and targeting specific timeframes, SWT and DTW can 

accustom themselves to monitor encrypted noise evolution in streaming and batch 

environments. Filters can be implemented to mitigate data congestion while clarifying the 

price discovery process. Second, deciphering of NPLs encrypted noise reveals algorithmic 

imprints from the informed traders. This can lead to significant economic gains. 

2.7 Conclusion 

In this study, we present the first direct evidence of algorithmic imprints during auctions. 

Our sequential approach makes it possible to recognize algorithm types. They account for 

more than one million events (a quarter of the total). While NPL algorithms informational 

content varies, they all hamper the information processing speed and significantly modify 

the liquidity information set. The identification of NPLs facilitates the isolation of 

behavior-based sequences exhibiting real intent to trade. A strong concern to minimize 

the impact of orders on the indicative price, position management features and the sudden 

and periodic burst of activities suggest the presence of informed traders who leave 

identifiable imprints. Comparing the two indexes, position management differs. A greater 

trading intensity coupled with hedging operations and arbitrage opportunities between the 

DAX components and the very liquid DAX futures may be at the origin of this difference. 

The economic value of algorithm detection revolves around two axes. Market participants 

can adapt their trading to the presence of encrypted noise by filtering data and clarifying 

the price discovery process. Deciphering of NPLs encrypted noise reveals algorithmic 

imprints from the informed traders. This can lead to significant economic gains. The 

methodology deployed makes it possible to adapt to different environments, including 

continuous time trading. 
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Table 2. 1 Classification of traders 

 
 Position Inventory Types 

Intraday 

intermediairies 

Small relative to 

volume 

Mean-reverting HFTers’ inventories are positively correlated 

to stock prices  

HFMMs’ inventories are negatively 

correlated to stock prices 

Fundamental 

traders 

More than 15% of 

total trading 

volume 

Long 

Short 

Buyer 

Seller 

Small traders Small Small if any Less than 10 contracts per day 

This table shows the classification of traders of Kirilenko, Kyle et al. (2016) inferred from the CFTC audit data of the 
Chicago Mercantile Exchange E-mini S & P 500 futures contract for the period May 3 to 6, 2010. Abbreviations: 
HFTers: high-frequency traders; HFMMs: high-frequency market makers. 
 

Table 2. 2 Xetra market model 

 Opening  Intraday  Closing 

 auction  auction  auction 

DAX 8:50-9:00 Continuous 13:00-13:02 Continuous 17:30-17:35 

MDAX 8:50-9:02 trading 13:05-13:07 trading 17:30-17:35 
Regular auction periods are followed by a random end of 30 seconds maximum. 
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Table 2. 3 Auctions: public information 

Stock     Indicative Surplus Surplus 

ID Date Time stamp Status Matched Q Price Ask Bid 

2841 20130201 31800142084 5     20,286   €      37.925  - 5100 

2841 20130201 31800827109 5     25,286   €      37.925  - 100 

2841 20130201 31802184578 5     25,973   €      37.910  - 413 

2841 20130201 31805024087 5     32,291   €      38.000  - 427 

2841 20130201 31805026280 5     32,321   €      38.100  - 2274 

2841 20130201 31810379770 5     33,266   €      38.200    1,365  - 

Stock ID: Stock identifier; Status: 5: opening auction. 

 

Table 2. 4 Interpretation of auction's public information 

Δ I. Q. Δ I.P. Δ Ask Surp. Δ Bid Surp. Code Interpretation 

+ +   1 Marketable order buy 

+ -   1 Marketable order sell 

- -   2 Cancellation buy 

- +   2 Cancellation sell 

0 - ≠ 0  1 Sell limit order < indicative price and > best bid  

0 +  ≠ 0 1 Buy limit order > indicative price and < best ask  

0 + ≠ 0  2 Sell limit order cancellation < indicative price 

0 -  ≠ 0 2 Buy limit order cancellation > indicative price  

0 0  (Δask-Δbid)>0  1 Buy (Sell) limit order if Δbid>Δask (Δask>Δbid) 

0 0 (Δask -Δbid)<0  2 
Cancellation buy (sell) limit order if Δbid<Δask 
(Δask<Δbid) 

Code 1: creation; Code 2: cancellation; Δ I.Q.: variation in the indicative quantity; Δ I.P.: variation in the 
indicative price; Δ Ask Surp.: Variation in the ask surplus; Δ Bid Surp.: vin the bid surplus. 
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Table 2. 5 Behavior-based types of algorithm 

 >= 70% at indicative price < 70% at indicative price 

Cancellation >= 70% Type 6 : Conservative, PDPn, not 
directionnal 

Type 7 : Aggressive, PDP+, not 
directionnal 

Cancellation < 70% Type 8 : Conservative, PDPn, 
directionnal 

Type 9 : Aggressive, PDP+, 
directionnal 

PDPn: neutral effect on the price discovery process; PDP+: positive effect on the price discovery process. 
 

Table 2. 6 Statistics - all auctions 

    % of  Mean E.O.A. Median E.O.A. 

  

# 
Stocks 

#    Events 
total 

events 
Matched Q Matched Q 

DAX Open 30 582,330 17.64% 50,731 18,636 

 Midday 30 370,963 11.24% 63,488 8,609 

 Close 30 2,347,037 71.12% 264,939 32,484 

 # Events 30 3,300,330 100.00%             

MDAX Open 30 185,020 23.29% 3,235 1,102 

 Midday 30 58,384 7.35% 2,273 523 

 Close 30 551,017 69.36% 16,935 1,315 

 # Events  794,421 100.00%   

# Stocks: total number of stocks in the sample; # events: total number of events; Mean E.O.A. Matched Q: 
Mean end of auction matched quantity; Median E.O.A. Matched Q: Median end of auction matched 
quantity. 
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Table 2. 7  Indicative quantity - all auctions 

 Variation in # events % events Mean Median 

 Matched Q I.Q. I.Q. I.Q. I.Q. 

DAX = 0 1,741,847 52.78%   

 > 0 496,199 15.03% 3,815 430 

 < 0 1,062,314 32.19% - 3,061 -       302 

 Total 3,300,360 100.00%   
MDAX = 0 405,631 51.06%   

 > 0 282,214 35.52% 764 152 

 < 0 106,576 13.42% -524 -136 

 Total 794,421 100.00%   
# events I.Q.: number of events affecting the indicative quantity; % events I.A.: percentage of total number 
of events for the category;  Mean I.Q.: average indicative quantity; Median I.Q.: median indicative quantity. 
 
 

Table 2. 8 NPLs algorithm types 

Type of 

algorithm 

Matched 

quantity 

Surplus 

bid 

Surplus 

ask 

1 0 0 < > 

2 0 < > 0 

3 < > < > 0 

4 < > 0 < > 

5 < > < > < > 

< > : a positive or negative variation in the variable; 0: no impact. 
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Table 2. 9 Negative price loops and SWT levels 

SWT levels 2 3 4 5 NPL  All  % all 

Open                  170                 268                 788                 -            1,226        582,330  0.21% 

Midday                     -                      -                       9                11                20        370,963  0.01% 

Close          248,974           56,826           96,700                 -       402,500     2,347,037  17.15% 

NPL          249,144           57,094           97,497                11     403,746     3,300,330  12.23% 

% by level 61.71% 14.14% 24.15% 0.00%    
SWT levels: shifted wavelet tree level at which algorithmic sequences have been identified. A measure  of 
latency. 
 
 

Table 2. 10 NPLs algorithmic sequences 

DAX  Total Open Midday Close 

Sequences       2,595                   79                  2          2,514  

Stocks   30/30   17/30   2/30   30/30  

Repetition Mean    143               9            8       147  

 Median      61               8            8          65  

Duration (sec.) Mean    21.150             0.479          0.169       21.818  

 Median      2.230             0.097          0.169          2.422  

Duration (sec.) Mean      0.460             0.040          0.022          0.473  

Between events Median      0.020             0.012          0.022          0.020  

MDAX      

Sequences           134                     1                 -               133  

Stocks   8/30   1/30                 -     7/30  

Repetition Mean    355             52                 -         357  

 Median    144             52                 -         144  

Duration (sec.) Mean    22.656             2.108                 -      22.719  

 Median      3.535             2.108                 -         3.616  

Duration (sec.) Mean      0.186             0.041                 -         0.187  

Between events Median      0.018             0.041                 -         0.018  

Sequences: algorithmic sequences from NPL; Repetition: Number of repetitions during the sequence; 
Duration (sec.): duration in second of a sequence; Duration (sec.) mean, median: average (median) duration 
between events in a sequence. 
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Table 2. 11 Stable family parameters February – July 2013 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 alpha   beta    gamma    delta   

id w/o with diff (%) w/o with diff (%) w/o with w/o with 

22 0.974 0.886 9.02% -0.143 -0.1349 5.40%       2,908      2,419      9,684      1,545  

24 1.053 0.985 6.48% -0.113 -0.1265 -12.35%       1,808      1,585  -   2,271      8,713  

32 0.944 0.582 38.39% -0.084 -0.2422 -189.94%       1,304         644         636         170  

49 1.284 1.209 5.79% -0.078 -0.0365 53.09%       3,892      3,630  -   1,520  -   1,154  

58 0.827 0.690 16.55% -0.018 -0.0007 95.93%       1,515      1,086           97  -        20  

60 0.826 0.721 12.72% 0.055 0.1207 -120.08%       1,314      1,023  -      110  -      222  

80 1.118 0.965 13.63% -0.001 0.0466 3328.68%       1,857      1,482           39  -   1,251  

85 0.915 0.844 7.69% -0.127 -0.0161 87.31%       1,089         970      1,163           94  

106 1.072 1.042 2.78% -0.030 0.4028 1440.98%       5,803      5,458  -   1,356    30,727  

130 1.100 1.046 4.87% -0.053 -0.0138 74.00%       1,846      1,678  -      491  -      224  

138 0.600 0.586 2.31% 0.095 0.0204 78.41%     52,972    49,900  -   2,535         333  

143 0.875 0.815 6.85% -0.056 -0.0435 22.79%       7,790      6,698      1,848         644  

146 1.139 1.083 4.91% -0.017 -0.0430 -154.55%       3,797      3,530  -      338  -   1,290  

151 0.969 0.931 3.96% -0.054 0.0090 116.69%       1,734      1,569      2,206           94  

266 0.493 0.410 16.73% -0.039 -0.1230 -219.35%       1,335         964             8           14  

829 0.729 0.486 33.38% -0.113 -0.0819 27.33%     10,454      5,749      2,731           78  

1634 0.914 0.817 10.63% 0.003 -0.0171 711.05%       1,233         985  -        12           67  

2451 0.978 0.941 3.80% -0.175 -0.1608 8.36%       5,222      4,511    25,654      7,189  

2481 0.764 0.481 36.98% -0.268 -0.2975 -10.93%       6,210      3,465      3,248         407  

2807 1.195 1.157 3.23% -0.061 -0.0233 62.07%       3,900      3,659  -      593  -      199  

2841 1.045 0.954 8.73% -0.546 -0.2626 51.94%       7,534      6,787  - 54,551    25,411  

3446 0.873 0.737 15.51% -0.058 -0.0517 11.05%       1,847      1,569         718         267  

3679 0.956 0.880 7.92% -0.076 -0.0227 70.14%     23,884    19,706    25,938      1,572  

3744 1.266 1.150 9.13% -0.076 -0.0297 60.95%     25,672    22,063  -   3,030  -   2,053  

4423 0.710 0.523 26.26% -0.103 -0.0421 59.03%       1,350         883         352  -          4  

5830 0.955 0.909 4.83% 0.013 0.0587 -347.29%       2,650      2,308  -      260  -      803  

8669 0.455 0.414 8.98% -0.008 0.0203 349.50%          864         551           51  -        31  

9633 1.072 0.994 7.25% -0.047 0.0000 100.00%       3,751      3,167  -   1,799  -      283  

11814 0.977 0.828 15.24% -0.010 0.0709 820.50%       9,623      7,215      4,148  -   1,112  

16753 0.984 0.915 6.97% 0.112 0.0965 13.58%       5,310      4,704  - 22,055  -   2,475  

𝜆 ∈ (0,2]: stability parameter; 𝛽 ∈ [−1,1]: skewness parameter; 𝛾 ∈ (0,∞): scale parameter; 𝛿 ∈
(−∞,+∞): location parameter. 
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Table 2. 12 Kolmogorov-Smirnov, two-sample tests 

Stock   Stock   
id p-value k-s stat id p-value k-s stat 

22 0.00000  0.06491  829 0.00000  0.05155  

24 0.00000  0.09367  1634 0.00000  0.02561  

32 0.00000  0.22691  2451 0.00000  0.03294  

49 0.00001  0.01345  2481 0.00000  0.08661  

58 0.00000  0.03625  2807 0.00000  0.01545  

60 0.00000  0.07546  2841 0.00000  0.09443  

80 0.00000  0.03203  3446 0.00000  0.03616  

85 0.00000  0.06835  3679 0.00784  0.00861  

106 0.00000  0.12032  3744 0.00000  0.01923  

130 0.00000  0.02870  4423 0.00000  0.07555  

138 0.00000  0.04474  5830 0.00000  0.01706  

143 0.00002  0.01547  8669 0.00000  0.07345  

146 0.00000  0.03958  9633 0.00000  0.06727  

151 0.00000  0.03059  11814 0.00000  0.02252  

266 0.00000  0.04727  16753 0.00000  0.05977  

p-value: Kolmogorov-Smirnov p-value;  k-s stat: Kolmogorov-Smirnov statistic. 
 
 

Table 2. 13 Behavior-based algorithmic events 

  # # % 

  events identified identified 

DAX Open 582,330 72,514 12.45% 

 Midday 370,963 53,023 14.29% 

 Close 2,347,037 332,327 14.16% 

 
 3,300,330 457,864 13.87% 

MDAX Open 185,020 6,106 3.30% 

 Midday 58,384 4,677 8.01% 

 Close 551,017 127,573 23.15% 

 
 794,421 138,356 17.42% 

 Total 4,094,751 596,220 14.56% 
# events: total number of auctions events; # identified: number of events identified as algorithmic sequences; 
% identified: total events’ percentage due to identified algorithms. 
 
  



 

72 
 

 
Table 2. 14 Behavior-based types of algorithm 

 Algorithm # % 

 Type identified identified 
DAX 6      293,042  64.00% 

 7        31,970  6.98% 

 8      119,740  26.15% 

 9        13,112  2.86% 

 Total      457,864  100.00% 
MDAX 6          9,319  6.74% 

 7          1,966  1.42% 

 8      126,463  91.40% 

 9               608  0.44% 

 Total      138,356  100.00% 
Algorithms characteristics: Type 6: conservative, neutral effect on the price discovery process, positions 
not directional; type 7: aggressive, positive impact on the price discovery process, positions not directional; 
type 8: conservative, neutral effect on the price discovery process, positions directional; type 9: aggressive, 
neutral effect on the price discovery process, positions directional; # identified: number of events identified 
as algorithmic sequences; % identified: total events’ percentage due to identified algorithms. 
 

Table 2. 15 DAX Behavior-based sequences : statistics by auction 
February – July 2013 

   % # % 

 Type # orders identified stocks at i.p. 

Open 6      41,032  56.58% 30 93.23% 

 7        4,926  6.79% 30 93.26% 

 8      24,212  33.39% 30 27.42% 

 9        2,344  3.23% 30 31.78% 

Midday 6      21,062  39.72% 30 93.56% 

 7        2,834  5.34% 30 90.08% 

 8      27,887  52.59% 30 14.86% 

 9        1,240  2.34% 29 49.68% 

Close 6    230,948  69.49% 30 98.16% 

 7      24,210  7.28% 30 95.14% 

 8      67,641  20.35% 30 10.13% 

 9        9,528  2.87% 30 39.35% 

 Open     72,514  15.84%   

 Midday     53,023  11.58%   

 Close   332,327  72.58%   

 ALL   457,864  100.00%   
Type: 6: conservative, neutral effect on the price discovery process, not directional; type 7: aggressive, 
positive effect on the price discovery process, not directional; type 8: conservative, neutral on the price 
discovery process, directional; type 9: aggressive, positive on the price discovery process, directional; # 
orders: total number of orders (creation and cancellation); % identified: percentage of identified sequences 
of type x; # stock: number of stocks with at least one algorithmic sequence; % at i.p.: percentage of orders 
at the indicative price. 
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Table 2. 16 MDAX Behavior-based sequences : statistics by auction 
February – July 2013 

MDAX   % # % 

 Algo. # orders idendified stocks at i.p. 

Open 6        2,807  45.97% 26 99.00% 

 7          511  8.37% 29 96.67% 

 8        2,645  43.32% 20 10.78% 

 9          143  2.34% 24 39.16% 

Midday 6        4,455  95.25% 5 99.98% 

 7            88  1.88% 13 94.32% 

 8          119  2.54% 6 22.69% 

 9            15  0.32% 2 53.33% 

Close 6        2,057  1.61% 19 99.37% 

 7        1,367  1.07% 28 96.34% 

 8    123,699  96.96% 22 0.14% 

 9          450  0.35% 20 30.22% 

 Open       6,106  4.41%   

 Midday       4,677  3.38%   

 Close   127,573  92.21%   

 ALL   138,356  100.00%   
Type: 6: conservative, neutral effect on the price discovery process, not directional; type 7: aggressive, 
positive effect on the price discovery process, not directional; type 8: conservative, neutral on the price 
discovery process, directional; type 9: aggressive, positive on the price discovery process, directional; # 
orders: total number of orders (creation and cancellation); % identified: percentage of identified sequences 
of type x; # stock: number of stocks with at least one algorithmic sequence; % at i.p.: percentage of orders 
at the indicative price.  



 

74 
 

 
 
 
 
 
 
 
 
 

Figure 2. 1 Shifted wavelet tree - structure 

 

A graphical representation of SWT data structure. Level 0 contains aggregates from the smallest discrete 
time interval. Level 1 highest row is the pairwise sum of each level 0 two consecutive data, starting with 
the first time interval of level 0. The level 1 lowest row is the pairwise sum of each level 0 two consecutive 
data, starting with the second time interval of level 0. This creates the observed overlapping. Process is 
repeated for higher levels. 
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Figure 2. 2 DAX components - closing auctions 

 

Cyclicity in the number of events affecting all stocks: institutional investors imprints (Easley, Lopez de 
Prado et al. (2012)). 
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Figure 2. 3 Deutsche Bank  20130212 closing auction 

 
Indicative Q: matching quantity at the indicative price; Indicative price: price maximizing the matching 
quantity; Surplus Q: imbalance; Duration: time lapse between two events; A graphical representation of 
four NPLs labeled from 1 to 4. We comment the graphics clockwise. Indicative price`s volatility changes 
with sequences. They influence marginally the indicative quantities. NPLs' aggressiveness and/or LOB 
depth have significantly different impacts on imbalances (surplus quantities). All NPLs are executed via 
ultra high-frequency algorithms. 
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Figure 2. 4 Identification parameters for negative price loops 

 

Mapped surplus q ∈ (−1,1); mapped indicative q ∈ (−1,1); 0: no variation in mapped variable; mls: 
milisecond; Following a burst indicator's alarm from a SWT tree, characteristics from a potential NPL are 
graphed. Events come from a time interval of 0.08 second (SWT level 2). We interpret clockwise. The 
indicative price's logarithmic returns and the surplus quantities vary symmetrically confirming the NPLs' 
creations-cancellations sequence characteristics. Limit orders involved are inside the bid-ask spread on the 
offer side as matched (indicative) quantities do not fluctuate. Duration requires high-frequency 
technologies. DTW compares the sequence to pre-identified ones and diagnoses NPL existence. 
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Figure 2. 5 NPL events by 5-second interval - closing auctions : 
aggregated statistics February – July 2013 

 

Period number: number of 5-second periods elapsed since the beginning of the auction; total number of 
events: index's total number of events for a given 5-second interval. 
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Figure 2. 6 NPL events by 10-second interval – closing auctions : type 
of algorithms February – July 2013 

 

 
x axis: number of 10-second time intervals elpased since the beginning of the auction; y axis: algorithmic 
sequence type; z axis: total number of algorithmic imprints occurences. 
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Figure 2. 7 Transaction cost of NPL sequences 

 
 

Figure 2. 8 TWAP example - Volkswagen 

 
Stock id: unique stock identifier; auction=7: closing auction; TWAP: time weighted average price 
algorithm. 
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Chapter 3 
Performance and behavior of endogenous liquidity providers 

Abstract 

We evaluate the impact of broker preference, a Canadian market microstructure 

specificity, on the performance of endogenous liquidity providers (ELPs). Using the 

international standard of price-time prioritization as a benchmark and the characteristics 

of two brokers with a significantly different clientele, we analyze the performance of 

ELPs with a parsimonious model that avoids data mining, considers transaction fees and 

rebates, and accounts for market imperfections. Special care is given to respect the price 

and quotes discovery processes. Profitability is high, even excluding discounts to liquidity 

providers. P&Ls volatility is low and no significant drawdown occurs.  

The ELPs positions are positively correlated with the intensity of trades and quotes and 

the bid-ask spread. Increases in volatility create an incentive to participation, a sign of 

ELP’s presence in volatile environments. Liquidity imbalances and the market 

momentum do not significantly influence their positions. We analyze the behavior of 

ELPs in extreme situations. Although a detailed analysis of critical events shows that the 

ELPs did not withdraw from the market during the period covered by our sample, we 

cannot exclude illiquidity contagion in the future.  

Introduction 

Broker preference is a method of prioritizing the allocation of marketable orders unique 

to Canada. At a given price, the Stock Exchange matches the incoming marketable orders 

identified to a broker with that broker's limit orders, notwithstanding its time priority in 

the limit order book (LOB). We assess the impact of this particularity by comparing the 

performances of endogenous liquidity providers using two scenarios. First, we apply the 

price-time prioritization international standard. Second, we enforce broker preference and 

we trade successively as two brokers having a significantly different clientele basis. In 

order to assess the economic impact of these prioritization scenarios, an endogenous 

liquidity provider (ELP) having as main activity to supply liquidity, uses an algorithm 
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conceptualized by Yergeau (2016). The ELP is not obligated to supply liquidity or 

otherwise facilitate trading. Quoting decisions come from Ait-Sahalia and Saglam (2014) 

dynamic inventory management model. We embed the model in a strategy that includes 

circuit breakers, considers market imperfections and closes positions at the end of the day. 

No trade nor quote prices are modified by the ELP. This reflects a preoccupation to respect 

the trade and quote discovery processes as realised. We estimate ex-ante the Ait-Sahalia 

and Saglam (2014) model parameters with a methodology applied uniformly to all stocks. 

As no data mining is used, we limit the possibility of false discovery (Lopez De Prado 

(2015)). Simulations are possible through the use of a proprietary database containing 

identifiers for all creations, cancellations, modifications, and executions of limit and 

marketable orders received by the Stock Exchange on the S&P/TSX 60 components 

between March 1, 2015 and August 31, 2015. This information allows to follow all orders 

life cycle.  

ELPs play an important role in stock markets (Malinova, Park et al. (2016)). Their 

importance is due to the development in information technology and direct market access 

(DMA) that allow anyone to act as a liquidity provider (Baldauf and Mollner (2016)). 

ELPs’ economic viability is sine qua non for effective financial intermediation, since 

without this profitability they withdraw. Despite their importance, few studies assess the 

viability of their operations. A new market maker on Chi-X Europe generated an average 

profit of € 9,500 per day between January 1, 2007, and June 17, 2008 (Menkveld (2013)). 

Yergeau (2016) simulates the activities of an ELP who trades 60 stocks from the Frankfurt 

Stock Exchange during March to July 2013. The ELP operations lead to a net profit of 3 

million euros. Other studies target only a portion of liquidity provider operations and have 

mixed results. Korajczyk and Murphy (2016) focus on the profitability of ELPs facing 

large orders issued by institutional investors on the Toronto Stock Exchange (TSX) from 

January 1, 2012, to June 30, 2013. Economic viability is exclusively due to the collection 

of liquidity discounts from the Stock Exchange's maker-taker model. On the American 

side, Sofianos and Xiang (2013) analyze Goldman Sachs's agency trades. They pinpoint 

that high-frequency traders struggle to make their operations profitable when they act as 

counterparts. Brogaard, Hendershott et al. (2014) delve into the aggregated performance 
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of high-frequency traders. They find that their activities in large-cap stocks are lucrative.8 

Our analysis contributes to the existing literature as we evaluate the ELPs viability. In all 

scenarios, profits are economically significant without the rebates and justify the 

algorithm implementation. No significant drawdown occurred. Under broker preference, 

the two brokers obtain trading profits appreciably different. The broker with the highest 

customer base earns lower trading profits of $ 553k over the six-month period. The maker-

taker model compensates for this by equating the performances of both brokers. If we add 

trading fees charged to their respective clientele, the most active broker obtains the highest 

net revenue. The algorithm respects the stylized facts about the high-frequency market 

makers behavior. We identify the conditions that influence the ELPs positions. The ELPs 

react to variation in trade and quotes intensities and bid-ask spreads. Their positions are 

positively correlated with stocks’ idiosyncratic risk and are not influenced by variations 

in liquidity imbalances and market momentum. 

Even in the presence of profitability, the absence of formal obligations to provide liquidity 

is of concern to both the regulators (U.S. Securities and Exchange Commission (2010); 

Basel Committee on Banking Supervision (2013)), and the institutional investors (Hope 

(2013); Swedroe (2016)). The main discomforts are related to the coordinated fluctuations 

in ELPs activities, a potential cause of systemic illiquidity. The same worries apply on the 

Canadian side. IIROC  gave access to audit databases to investigate ELPs behaviors. 

Korajczyk and Murphy (2016) note that HFT liquidity provision is significantly reduced 

when facing large trades. Anand and Venkataraman (2016) analyze the covariations of 

the liquidity supply of ELPs. They observe a synchronous shrinkage that periodically 

decreases liquidity. We analyze the illiquidity contagion risk in extreme situations by 

examining the cross-correlation coefficients of ELP’s relative participation to the bid and 

offer at LOB level 1. The cross-correlation matrix distribution is centered around a value 

slightly below +0.20, which implies positively correlated behavior of ELP’s liquidity 

from both sides of the market. Detailed analysis of critical situations reveals eight time 

intervals where the ELP has completely stopped providing liquidity. Of these, seven occur 

                                                           
8 Chung, K. H. and A. J. Lee (2016). "High-frequency Trading: Review of the Literature and Regulatory 
Initiatives around the World." Asia-Pacific Journal of Financial Studies 45(1): 7-33. 
  present a literature review of the aggregate profitability from the high-frequency trading industry. 
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in the last two minutes of trading and are due to a risk management feature closing 

positions. The last one occurred on August 25, 2015, at 10:27. It cannot be dissociated 

from the fundamental information content that caused a starting market downturn. 

The paper is organized as follows. Section 3.1 describes the characteristics of trading on 

the TSX. Section 3.2 presents the data. Section 3.3 describes the functioning of the 

algorithm. Section 3.4 presents the methodology applied to the simulation of ELP 

activities. Section 3.4 discusses the results. Section 3.6 concludes. 

3.1 Trading on the TSX 

Per the Investment Industry Regulatory Organization of Canada (IIROC), the Canadian 

stock market structure has twelve entities active in January 2015. Of the total $ 220.5 

billion traded in the country, 56.6% is traded on the Toronto Stock Exchange (TSX). Their 

closest competitor is the Nasdaq CXC with 16.4% (IIROC (2016)). Despite 

fragmentation, financial intermediation remains focused on the TSX. Trading on the TSX 

takes place over the four sessions described in Table 3.1. The market on close session 

overlaps the session in continuous time and its activities are handled separately. We focus 

on the continuous time session of the TSX which represents more than 95% of the 

activities. Every stock has a designated market maker (DMM). The DMM ensures a fair 

and orderly market by maintaining price continuity and reasonable liquidity. The DMM 

is responsible for quoting on both sides of the market according to volume and spread 

requirements. Concurrently, ELPs can participate in the LOB.  

[insert Table 3.1 here] 

The TSX enforces a maker-taker fee model for more than a decade. It was implemented 

to encourage and reward liquidity provision (TMX Group (2015)). The maker-taker 

model has been modified on June 1, 2015 (see Table 3.2). It resulted in a 38.7% (34.4%) 

decrease in the maker rebate (taker fee). IIROC imposes monitoring fees based on the 

number of order creations and cancellations at $ 0.00022 per unit (Malinova, Park et al. 

(2016); IIROC (2014)). 

[insert Table 3.2 here] 



 

85 
 

3.2 Data 

We use proprietary data from a Canadian bank which includes the S&P/TSX 60 

components. These stocks have the highest market capitalization. Our sample 

encompasses from March 2015 to August 2015 inclusively. All limit and marketable 

orders are available for the four trading sessions of Table 3.1. All orders have a unique 

identifier (ID). It is therefore possible to monitor their evolution over time (creation, 

cancellation, modification and execution). The identification of brokers issuing limit 

orders and brokers on both sides of marketable orders is available but not the traders ID. 

The order and brokers IDs lead to a LOB's reconstruction which allows to evaluate the 

impact of different prioritization scenarios. The LOB’s reconstruction is possible thanks 

to Bilodeau (2016)9. Seven dates were excluded from the sample due to problems 

associated with the processing of messages issued by the Stock Exchange10. Events are 

timestamped in microseconds. 

The six major Canadian banks dominate trading on the TSX. They account for more than 

50% of all trades. Brokers have the option of not revealing their identity by codifying the 

orders as anonymous. In this case, price-time prioritization applies (TMX Group (2015)). 

Brokers with a large customer base tend not to use anonymous orders to benefit from 

broker preference (Anand and Venkataraman (2016)). Other brokers could use 

anonymous orders to conceal their intentions. 

Table 3.3 summarizes the monthly S&P/TSX 60 activities between March and August 

2015. The stocks are liquid: more than 35 million trades (Col. 3) and 540 million quotes 

on both sides of the LOB first level (Col. 4) took place. A regime shift in the quote to 

trade ratio (Col. 5) occurred in June. This regime shift involving a sharp decline in the 

ratio coincided to the modification of the maker-taker model (Table 3.2). The depth of the 

market (Col. 7) and the number of orders at the LOB’s first level (Col. 8) remained 

constant. 

                                                           
9 Yann Bilodeau developed TSXParser to process data from the Toronto Stock Exchange. 
10 The missing dates are March 31, May 6, May 7, May 15, May 28, May 29, and July 16. 
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[insert Table 3.3 here] 

Traders interest decreased from March to May: the market values (Col. 1) and the number 

of trades (Col. 3) decreased significantly. Adjustments to the statistics for the missing 

dates mitigate these effects. For example, in May the adjusted number of trades is 4.9 m 

or 83.5% of the observed average. Activity returned in June and peak in August 2015 with 

more than 50.5 billion $ of market values traded (Col. 1). Many factors led to the 

beginning of a market correction of August 2015: the long-term monetary deficit in 

Greece, the slowdown in Chinese economic activity, and concerns about the prospect of 

an imminent end to the US Federal Reserve's quantitative easing policy. These factors led 

to the collapse of stock markets around the world (Shan Li, Chang et al. (2015); Irwin 

(2015)). Figure 3.1 illustrates the impact of the onset of this crisis on the S&P/TSX 60 

VIX Futures, a market risk indicator based on the intraday price of two S&P/TSX 60 

Index short-term options (S&P Indices (2010)). From an average smaller than 15 from 

March up to 20 August 2015, it rises to an average of 27 from August 21 to August 31. 

[insert Figure 3.1 here] 

3.3 Endogenous liquidity provider 

Our ELPs utilize the optimal quoting policies (OQPs) of Ait-Sahalia and Saglam (2014)’s 

dynamic inventory management model to decide whether or not to provide liquidity on 

one or both sides of the LOB’s first level. An algorithm embeds the model. It includes 

circuit breakers whose importance is documented in the literature (Jain, Jain et al. (2016); 

Chung and Lee (2016); Black Rock (2015); The Government Office for Science London 

(2012)). The algorithm uses as a risk management feature a uniform closing procedure at 

the end of the day. The simulations consider market imperfections and the specificities of 

the Stock Exchange. The latency, the time required to receive, process and respond to new 

information, is 50 microseconds. 

 3.3.1 Optimal quoting policy and circuit-breakers 

OQP’s estimation procedures are presented in Appendix 3.1. Succinctly, we define the 

ex-ante values of the six model parameters before the simulations. The parameters D, the 
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discount rate, Γ, the inventory aversion coefficient, and P, a measure of signal quality, 

apply uniformly to all stocks. In Ait-Sahalia and Saglam (2014) model, market states 

governing the OQPs are conditioned on parameters λ, the Poisson distribution arrival rate 

of the incoming low-frequency traders market orders, μ, the Poisson distribution arrival 

rate of the ELP’s signals, and C, the bid-ask spread. We obtain the parameters value from 

one-minute time interval activities using the first five days of March 2015. Results are 

presented in Tables A3.2. 1 (λ), A3.2. 2 (μ) and A3.2. 3 (C) of Appendix 3.2. The 

algorithm uses the thresholds of an OQP (the decisions to quote or not and the quantities 

implied) as long as the values for every of the parameters λ, μ and C are equal to or less 

than their respective quantile values of 95%. When a parameter exceeds this quantile 

value, the algorithm activates a circuit breaker: the ELP cancels its limit orders and 

liquidates its position conditionally to the provisions set out in Section 0. The ex-ante 

OQPs are obtained from Equation (3.1). 

 𝑚𝑖𝑛𝑗 = 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒𝑗(95%) 4⁄ ; 𝑠𝑡𝑒𝑝𝑗 = 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒𝑗(95%) 4⁄ ;𝑚𝑎𝑥𝑗

= 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒𝑗(95%), 

 

(3.1)  

where: 

𝑚𝑖𝑛𝑗  : Minimum value of parameter j during interval t. 
𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒𝑗: Quantile of the parameter j during interval t. 
𝑠𝑡𝑒𝑝𝑗: Value of the variation of the parameter j during interval t. 
𝑚𝑎𝑥𝑗: Maximum value of parameter j during interval t. 

For an ELP to quote on a stock while using Ait-Sahalia and Saglam (2014) model, the 

combination of parameters λ, μ and C must obtain a positive expected reward. This is the 

case for all stocks except CSU.  Intuitively, 10 trades per minute (Table A1.1, col. 7) 

seems insufficient to compensate the market risk inherent to intraday positions. 

During the simulations, the algorithm monitors market conditions and adjusts the OQPs 

accordingly. Using ABX as an example, the values of 81 trades (Table A1.1, Col.7), 1,172 

signals (Table A1.2, Col.7) and a bid ask-spread of $ 0.02 (Table A1.3, Col.8) are the 

OQPs parameters’ upper limits. If the number of ABX trades exceeds 81 during a given 

time interval, the algorithm activates a circuit breaker which cancels all ABX limit orders 
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and issues a marketable order to liquidate the existing position. Regular quoting activities 

are induced when parameter values are reset. Chordia, Goyal et al. (2013) note that market 

makers are also liquidity takers in their regular activities. 

3.3.2 Closing of positions and market imperfections 

The algorithm closes positions at the end of the day by issuing marketable orders from 

the last three minutes of trading. This is consistent with the definition of high-frequency 

traders from the U.S. Securities and Exchange Commission (2010).  IIROC (2014) also 

considers inventory management dymamics and net positions in the traders classification. 

These closures ensure that ELP's performance is as close as possible to the activities of a 

liquidity provider as they avoid directional positions after the market close.  

Empirical verification is subject to bias when they fail to comply with the price discovery 

process and the LOB’s activities as they occur. We compel the ELP to abide by them: it 

limits itself to react to marketable and limit orders modifying the level 1 prices generated 

by the other participants. If the liquidation of a position induced by a circuit breaker or 

the end-of-day procedure involves walking in the LOB, the ELP trades up to the quantity 

available at the first level. If required, the ELP waits for the next limit order to trade at 

level 1 in order to completely liquidate its position. This is tantamount to controlling the 

instantaneous impact on prices (Cont, Kukanov et al. (2014); Bouchaud, Farmer et al. 

(2009)). The permanent impact of the ELP's trades and quotes (Hautsch and Huang 

(2012); Huh (2014); Zhou (2012)) is in this way mitigated. 

3.3.3 Scenarios 

The simulations quantify the impact on performance of two prioritization scenarios. The 

first scenario applies price-time priority, the international standard. The second scenario 

applies the Canadian prioritization: when a marketable order originates from a reference 

broker, its counterpart is allocated to the reference broker's limit orders according to their 

time priorities. If the marketable order’s quantity exceeds the total quantity of the 

reference broker's limit order(s), the excess quantity is allocated according to time priority 

of the other LOB’s limit orders. 
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3.4 Simulation of activities 

To limit the probability of false discoveries, we use a single methodology designed ex 

ante. Continuous time session begins with the transfer of orders not executed during the 

market on open session defined in Table 3.1. The Stock Exchange adds the unrestricted 

limit orders from previous days and those created at the beginning of the current session. 

The simulation reproduces the arrival of limit and marketable orders. Each stock can have 

different OQPs during a given time interval: during the asynchronous arrivals of 

information of a time interval, the OQPs are based on the cumulated values of the 

parameters λ and μ, and the observed value of parameter C. The OQP corresponding to 

the combination of the contemporaneous parameters generates the decisions to provide 

liquidity or not and the quantities to be quoted. 

The arrival of a marketable order entails the reconstruction of the LOB’s first level to the 

opposite side to the arrival of the marketable order. One of the prioritization scenarios 

from Section 3.3.3 (price-time or broker preference) determines the ELP’s participation 

to the new marketable order. This induces a dynamic position management due to 

variations in the quantities of the marketable orders and of the OQP’s bid and offer limit 

orders. A circuit breaker triggering or the third minute before the end of the session cause 

the cancellation of the ELP’s limit orders and the liquidation of its positions conditionally 

to the respect of the price discovery process and of the quotes in accordance to the 

provisions of Section 3.3.2. 

3.5 Results 

The cornerstone of the ELP's activities is derived from the OQPs determined by the Ait-

Sahalia and Saglam (2014) model. This model formalizes the behavior of a single stock 

and does not take into account the effects of diversification and arbitrage (spatial and 

cross-stocks). Simulations respect these two constraints: decisions about one stock are 

independent from the positions and limit orders of the other stocks from the sample. 

The Canadian and US stock markets share many characteristics. Their volatility is 

strongly correlated (Malinova, Park et al. (2014)). The average trading cost is roughly 
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similar in both markets (Frijns, Indriawan et al. (2014)). More than 2/3 of the S&P/TSX 

60 components trade in US markets. US activities account for approximately 50% of the 

total trade volume of the Canadian constituents of the index (Malinova and Park (2016)). 

Market makers and ELPs have an interest in being simultaneously active on both markets. 

These characteristics allow us to assume that the US price-time prioritization scenario, 

widely used at the international level, reflects itself in the Canadian price and quote 

discovery processes. 

To evaluate the economic impact of broker preference, we simulate the algorithm 

activities by applying the price-time prioritization rule in a first step. The broker 

preference is then applied to Brokers A and B, whose customers have significantly 

different transaction volumes. We analyze the viability of performances under the two 

prioritization scenarios and evaluate the influence of the maker/take model in Section 

3.5.1. Section 3.5.2 compares the ELP`s role as a liquidity provider to the stylized facts. 

We evaluate the influential market and stock characteristics on ELP's positions in Section 

3.5.3. We study the ELP's behavior to determine the illiquidity contagion risk in Section 

3.5.4. 

3.5.1 Sustainability of performances 

At any time, we can determine the exact contents of the LOB including the broker issuing 

the limit order, its quantity and, its timestamp. This information is also available for all 

marketable orders. The provisions of Section 3.3.1 and Section 3.3.2 respect the quotes 

and price discovery processes and we use the same latency for all scenarios. We do not 

use data mining technics. For these reasons, we are confident that the results of the 

simulations minimize the gap between our out-of-sample simulations and real-time 

trading. Figure 3.2 shows the cumulative profits excluding fees and rebates for the price-

time scenario and the broker preference rule applied to Brokers A and B. Profits are 

economically significant and are obtained without high volatility. No significant 

drawdown is observed. 

[insert Figure 3.2 here] 
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Table 3.4 displays the three simulations aggregated statistics. The price-time prioritization 

simulation achieves the highest profit at 4.9 m$ (3.8m$ without fees and rebates). This is 

expected as the ELP has a full access to the incoming marketable orders: no privilege is 

granted to competitors. Broker A obtains the smallest average daily profit of $25,646. It 

is nonetheless economically significant. His worst daily loss is $3,422 even though the 

maximum one-minute trading loss is $14,211. This illustrates the algorithm capacity to 

quickly recover from adverse positions. This characteristic holds for the other two 

simulations. 

[insert Table 3.4 here] 

Table 3.5 details the monthly characteristics. The 3.9m trades for A and 2.5m trades for 

B (Col. 5) reflects the difference in the size of their customers. A provides more liquidity 

than B and adjusts its quotes more frequently as reflected in the #LO/#trades ratio of 4.89 

for A and 3.73 for B. These remain significantly lower than the market ratio of 15.4 (Table 

3.3, col. 5). The algorithm conceptualization is at the origin of this result. As we compel 

the ELP to respect the price and quote discovery processes, he is strictly reacting to other 

participants induced moves. Moreover, he does not manage orders from other LOB levels 

as his quoting activities are restricted to the first level.    

[insert Table 3.5 here] 

Monthly profits are all economically significant. Broker A trading profit is $ 553k lower 

than broker B's, despite a 57% higher trading volume. The explanation could be associated 

with the degree of sophistication of broker A's clients. The ELP faces a more severe 

adverse selection cost in the sense of Glosten and Milgrom (1985) under broker preference 

if the broker`s clientele have a greater proportion of informed traders. The monthly order-

to-trade ratios (Table 3.5, Col. 6) are systematically higher for Broker A than Broker B. 

This is an indication of a greater presence of HFTers when Broker A modify his liquidity 

providing positions. Brogaard, Hendershott et al. (2014) note that HFTers trade in the 

direction of permanent price changes through their liquidity demanding orders, a informed 

traders characteristic. The maker-taker model mitigates the gap in net profits by leveling 

the total compensation of both brokers to ≈ 4 million $ over the six-month period. Broker 
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A and Broker B brokerage revenues are not available. Considering the large discrepancy 

in the number of transactions of their clientele, Broker A undoubtedly has a more 

substantial income. Throughout the stock market correction of August 2015, the algorithm 

obtains its best performances from all simulations. It is a sign of efficiency from its 

activities in volatile environments. The price time and broker A performance are more 

exposed to future declines in profitability as their share of total earnings coming from the 

maker/taker model (Col. 4) is almost twice that of broker B. Future decreases in the 

maker/taker fees are already planned by the Toronto Stock Exchange. Concurrently, the 

brokers experienced their record levels of quotes (Col. 5* Col. 6) and trades (Col. 5). This 

confirms their presence during high uncertainty periods. Their behaviors are further 

analyzed in Section 3.5.4.  

The parameters of the brokers A and B empirical distributions of P&Ls are also 

comparable as shown in Table 3.6. 

[insert Table 3.6 here] 

3.5.2 Stylized facts 

To assess the ELPs role as liquidity providers, we refer to a methodology proposed by 

Malinova, Park et al. (2016) which examines the impact of submission and cancellation 

fees on market quality. To identify traders who act as market makers, they set a critical 

threshold to less than 0.20 for the activity index of Equation (3.2).  

 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑚𝑎𝑟𝑘𝑒𝑡 𝑚𝑎𝑘𝑒𝑟 𝑖𝑛𝑑𝑒𝑥

= |
𝑝𝑎𝑠𝑠𝑖𝑣𝑒 𝑏𝑢𝑦 𝑜𝑟𝑑𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒 − 𝑝𝑎𝑠𝑠𝑖𝑣𝑒 𝑠𝑒𝑙𝑙 𝑜𝑟𝑑𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒

𝑝𝑎𝑠𝑠𝑖𝑣𝑒 𝑏𝑢𝑦 𝑜𝑟𝑑𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒 + 𝑝𝑎𝑠𝑠𝑖𝑣𝑒 𝑠𝑒𝑙𝑙 𝑜𝑟𝑑𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒
|, 

(3.2) 

Table 3.7 contains the volume of limit orders from brokers A and B and the market maker 

index. During the six months of activity, the algorithm maintains a median ratio smaller 

than 0.20. 

[insert Table 3.7 here] 
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Malinova, Park et al. (2016) note that high-frequency market makers account for 44% of 

limit orders and 34% of trades. The monthly activities of brokers A and B are compared 

to actual ones in Table 3.8. Although they represent a high volume of activity, all results 

are well below the benchmarks.  

[insert Table 3.8 here] 

3.5.3 Influential market and stocks characteristics 

High-frequency market making is of concern to IIROC, the Canadian financial markets 

regulatory instance (IIROC (2015)). Their request to investigate the liquidity provision by 

high-frequency market makers resulted in Malinova and Park (2015) paper. The paper 

confirms the importance of endogenous liquidity providers in Canada. This section 

focuses to complement the existing (and scarce) literature in the Canadian settings by 

analyzing the impact of market states on ELP behavior. 

The information known at the time the algorithm makes its quoting decisions include the 

traded market value, the stock idiosyncratic risk, the bid-ask spread, the number of quotes, 

the imbalance, and the stock price trend. The ELP’s positions and their variations are 

generated by incoming marketable orders and level 1 market states observed. Recent 

empirical evidence shows that a number of high-frequency variables are affected by 

persistence: momentum and contrarian regimes (Andersen, Cebiroglu et al. (2017)), order 

flow (Tóth, Palit et al. (2015)), and volatilities (Patton and Sheppard (2015); Gatheral, 

Jaisson et al. (2016)). Salighehdar, Liu et al. (2017) find clusters in high-frequency 

liquidity measures and Yang and Zhu (2016) in limit orders.  We use first differences with 

market values, bid-ask spreads, limit orders, and imbalances to get weakly dependent 

processes integrated of order zero. We apply a percentage of change 

((𝑥𝑡 − 𝑥𝑡−1) 𝑥𝑡−1⁄ ) to standard deviations and momentum measures (Wooldridge (2005), 

p.406). 

We assess the market states influencing the variation in ELP’s position for stock i, on day 

t, from time interval 𝑡 − 1 to time interval 𝑡 (𝑑𝑖𝑓𝑓𝑀𝑉𝑒𝑙𝑝𝑖,𝑑,𝑡) using several specifications 

of Equation (3.3) applied to brokers A and B. 
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 𝑑𝑖𝑓𝑓𝑀𝑉𝑒𝑙𝑝𝑖,𝑑,𝑡 = 𝛽1𝑑𝑖𝑓𝑓𝑀𝑉𝑖,𝑑,𝑡 + 𝛽2𝑝𝑐𝑡𝜎𝑖,𝑑,𝑡 + 𝛽3𝑑𝑖𝑓𝑓𝑆𝑝𝑟𝑑𝑖,𝑑,𝑡 +

𝛽4𝑑𝑖𝑓𝑓#𝑄𝑢𝑜𝑡𝑒𝑠𝑖,𝑑,𝑡 + 𝛽5𝑑𝑖𝑓𝑓𝐼𝑚𝑏𝑎𝑙𝑖,𝑑,𝑡 + 𝛽6𝑝𝑐𝑡𝑀𝑜𝑚𝑚,𝑑,𝑡 + 𝜀𝑖,𝑑,𝑡. 

(3.3) 

 

 

On the right-hand side 𝑑𝑖𝑓𝑓𝑀𝑉𝑖,𝑑,𝑡 is the first difference in total market value traded for 

stock 𝑖 on day d from time interval 𝑡 − 1 to time interval 𝑡, a measure of trade 

intensity. 𝑝𝑐𝑡𝜎𝑖,𝑑,𝑡 is the percentage of change of stock 𝑖 standard deviation on day d from 

time interval 𝑡 − 1 to time interval 𝑡, a measure of relative variation in idiosyncratic risk. 

𝑑𝑖𝑓𝑓𝑆𝑝𝑟𝑑𝑖,𝑑,𝑡 is the first difference in bid-ask spread for stock 𝑖 on day d from time 

interval 𝑡-1 to time interval 𝑡, a measure of ELP remuneration. 𝑑𝑖𝑓𝑓𝐼𝑚𝑏𝑎𝑙𝑖,𝑑,𝑡 is the first 

difference in LOB level 1 imbalance on day d from time interval 𝑡 − 1 to time interval 𝑡, 

a liquidity imbalance measure. 𝑑𝑖𝑓𝑓#𝑄𝑢𝑜𝑡𝑒𝑠𝑖,𝑑,𝑡 is the first difference in the number of 

quotes for stock 𝑖 on day d from time interval 𝑡 − 1 to time interval 𝑡, a measure of 

liquidity competition. 𝑝𝑐𝑡𝑀𝑜𝑚𝑚,𝑑,𝑡 is the percentage of change in S&P/TSX 60 index 

momentum on day d from time interval 𝑡 to time interval 𝑡 − 1. Momentum is defined as 

𝑎𝑏𝑠 ((𝑢𝑝 𝑣𝑜𝑙𝑚,𝑑,𝑡 𝑡𝑜𝑡 𝑣𝑜𝑙𝑚,𝑑,𝑡⁄ ) − 0.50) . It indicates the S&P/TSX 60 index directional 

intensity. We apply Cameron, Gelbach et al. (2011) procedure which cluster the standard 

errors at the firm and time interval to account for time-series and cross-sectional 

dependence. Matlab codes are from Gow, Ormazabal et al. (2010). 

Table 3.9 presents the results of multiple specifications from Equation (3.3) for Brokers 

A and B. As expected, trading intensity measured by 𝑑𝑖𝑓𝑓𝑀𝑉𝑖,𝑑,𝑡, is positively correlated 

to the ELP position variations. This relation is statistically significant for all regression 

specifications and brokers. We find a linear, positive and significant relationship between 

changes in equity price volatility and ELP positions. Increases in volatility create an 

incentive to participation, a sign of ELP’s presence in volatile environments for all model 

specifications and both brokers. ELP positions are positively correlated to the variations 

in liquidity premiums (𝑑𝑖𝑓𝑓𝑆𝑝𝑟𝑑𝑖,𝑑,𝑡). Increases in remuneration appear sufficient to 

compensate for illiquidity risk. Coefficients of 𝑑𝑖𝑓𝑓#𝑄𝑢𝑜𝑡𝑒𝑠𝑖,𝑑,𝑡 are positive and 

statistically significant. With the Ait-Sahalia and Saglam (2014) model, the algorithm 
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increases (decreases) the optimal quoting quantities according to the increase (decrease) 

in the number of quote updates, a main component of ELP signals.  Temporary liquidity 

desequilibrium does not affet broker positions as variations in imbalances 

(𝑑𝑖𝑓𝑓𝐼𝑚𝑏𝑎𝑙𝑖,𝑑,𝑡) are not statistically significant. Acknowledging statistically non-

significant loadings, the algorithm exhibit a weak contrarian strategy as ELP positions are 

negatively correlated to 𝑝𝑐𝑡𝑀𝑜𝑚𝑚,𝑑,𝑡. All Equation () idiosyncratic variables are taken 

into consideration while determining the OQPs, except volatility. An extension to Ait-

Sahalia and Saglam (2014) model including this variable should improve its performance. 

[insert Table 3.9 here] 

3.5.4 Illiquidity contagion risk 

The aim of this section is to study ELP’s behavior to determine the risk of withdrawal 

under stressful market conditions. In order to minimize market risk, the ELPs target zero 

inventory. Liquidity providers are under pressure when stock prices are strongly 

directional and trading intensity high. These situations limit bid-ask bounces, and result 

in high inventory levels and market risk for the liquidity providers. That could prompt 

ELPs to temporary cease their activities, increasing the probability of illiquidity 

contagion.  

Market states are monitored with two characteristics: the number of trades and the 

absolute logarithmic return. Critical situations are those where the value of these 

characteristics is greater than their quantile values at 90%. 38 272 one-minute time 

intervals have one or more stocks with high trend intensity and directional movement 

(≈1.4% of the total). The risk of contagion is exacerbated when several stocks meet these 

two criteria simultaneously. In order to focus on extreme events, the critical threshold we 

use is fifteen stocks, i.e. at least 25% of the stocks from our sample must exceed 

simultaneously their 90% quantile values. 

[insert Figure 3.3 here] 

 Figure 3.3 visualizes the distribution of the 572 intervals having between fifteen and 

forty-nine stocks exceeding the 90% thresholds. 92.8% of occurrences involve between 
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15 and 30 stocks simultaneously. Unsurprisingly, the bulk of critical market states occurs 

in August as depicted by Figure 3.4. 

[insert Figure 3.4 here] 

Liquidity providers learn information about a stock from the behavior of other stocks. 

According to Cespa and Foucault (2014), this generates self-reinforced feedback loops 

that cause illiquidity contagion. Our measure of liquidity is the average quantity displayed 

on a given side at level one. Since we do not want to influence our liquidity measures due 

to trend in prices, we use quantities rather than market values. Figure 3.5 presents market 

statistics for the ask by one-minute time intervals during April 2015. The minimum 

quantity occurs at the opening of the session. It reaches a peak after about 45 minutes, 

drops to 10,000 units and remains there until 30 minutes before the close, while supply 

increases significantly. The bid statistics of August 2015 depicted in Figure 3.6 exhibit 

the same behavior. 

[insert Figure 3.5 here] 

[insert Figure 3.6 here] 

To take into account the presence of liquidity cyclicity, we use Equation (3.4) as a measure 

of the relative ELP participation to liquidity:  

 
𝐸𝐿𝑃𝑏𝑖𝑑𝑖𝑛𝑡,𝑑,𝑖 =

𝑏𝑖𝑑𝑖𝑛𝑡,𝑑,𝑖

𝑚𝑒𝑎𝑛(𝑏𝑖𝑑𝑖𝑛𝑡,𝑖)
, 

 

(3.4)  

where: 

𝐸𝐿𝑃𝑏𝑖𝑑𝑖𝑛𝑡,𝑑,𝑖: Relative ELP participation to bid liquidity over interval int on day d for 
stock i. 
𝑏𝑖𝑑𝑖𝑛𝑡,𝑑,𝑖: ELP’s quantity on the bid over interval int on day d for stock i. 
𝑚𝑒𝑎𝑛(𝑏𝑖𝑑𝑖𝑛𝑡,𝑖): ELP’s average quantity on the bid over interval int for stock i. 

The relative ELP participation to the ask is calculated the same way. Table 3.10 presents 

the cross-correlation matrix of the relative ELP participation to liquidity when he is acting 

as broker B during the 575 extreme situations identified. The upper part of the diagonal 
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matrix displays the cross-correlation coefficients of the relative bid quantities while the 

lower part contains the cross-correlation coefficients of the relative offer quantities. The 

last row and the last column include their respective averages.  

[insert Table 3.10 here] 

Values of the cross-correlation coefficients range from -0.1090 to 0.5522 and 97.8% are 

positive. We note that the cross-correlation matrix distribution is centered around a value 

slightly below +0.20, which implies positively correlated behavior of ELP’s liquidity 

from both sides of the market (Figure 3.7).  

[insert Figure 3.7here] 

There are no significant differences between bid and ask. Detailed analysis of critical 

situations reveals eight time intervals where the ELP has completely stopped providing 

liquidity. Of these, seven occur in the last two minutes of trading in continuous time. They 

are due to risk management features to close positions before the end of the day. The last 

one occurred on August 25, 2015, at 10:27. It cannot be dissociated from the fundamental 

information content that caused a starting market downturn during the previous day. 

Quoting activities are back to normal as of the following period. 

3.6. Conclusion 

With an algorithm conceptualized by Yergeau (2016), we evaluate the impact of broker 

preference on the performance of endogenous liquidity providers. Using the international 

standard of price-time hierarchy as a benchmark and the characteristics of two brokers 

with a significantly different clientele, we establish the economic viability of ELPs. 

Profitability is high, even excluding rebates to liquidity providers. P&Ls volatility is low 

and no significant drawdown occurs. While comparing with the price-time benchmark, 

Brokers A and B obtain smaller revenues including rebates, fees, and commissions under 

the Canadian broker preference feature. An explanation to this result is the ELPs 

unconstrained access to all marketable orders under price-time priority. This prioritization 

induces the speed arms race invoked by Budish, Cramton et al. (2015), Schwartz and Wu 

(2013), and Wah, Hurd et al. (2015). As broker preference gives priority over other 
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brokers' limit orders, incentive to invest in latency reduction is strongly mitigated, thus 

reducing the gap between the two scenarios. Analyzing performance under broker 

preference, gross trading profits of Broker B are higher than Broker A, even though 

Broker B have a smaller clientele. This is inversed after considering fees and rebates from 

the maker/taker model and broker commissions.  Analysis of the monthly statistics shows 

that the best performance arises in August during a stock market correction, a sign of the 

algorithm efficiency in volatile environment. August is also the month when ELPs provide 

the most liquidity. This mitigates the worries of evasive liquidity. 

The analysis of stylized facts shows that the algorithm exhibits the characteristics of 

endogenous liquidity providers. The ELP positions are positively correlated with the 

intensity of trades and quotes, and the bid-ask spread. His activities are also positively 

correlated with the idiosyncratic risk of stocks, a hint to ELP presence during volatile 

markets. Liquidity imbalances and market momentum do not significantly influence their 

positions. We analyze the behavior of ELPs in extreme situations. The risk of illiquidity 

contagion is quantified using a cross-correlation matrix. The coefficients are centered 

slightly below +0.20. Although a detailed analysis of the critical events shows that ELPs 

did not withdraw from the market during the period covered by our sample, we cannot 

exclude such a situation in the future. 
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Appendix 3.1 Optimal quoting policy11 

 
Ait-Sahalia and Saglam (2014) modelize two types of agent. Low-frequency traders 

(LFTers) use exclusively market orders. One ELP exhibits inventory aversion and focuses 

specifically on liquidity supply. Decisions to provide liquidity depend on the trade-off 

between the inflows from the bid-ask spread and the outflows associated with inventory. 

Equation (A3.1.1) describes the expected reward function: 

 
E(π) = C 2⁄ ∑e−Dsmot I(lsmot

b = 1)

∞

t=1

+ C 2⁄ ∑e−Dbmot I(lbmot
a = 1)

∞

t=1

− Γ∫ e−Dt|xt|
∞

0

dt, 

(A3.1.1) 

where: 

𝐸(𝜋): Quoting policy expected reward. 
𝐶: Bid-ask spread. 
𝐷: Constant discount factor > 0. 
𝑠𝑚𝑜𝑡 (𝑏𝑚𝑜𝑡): Sell (buy) market order by LFTs at time t. 
𝐼: Indicator function. 
𝑏: ELP bid limit order. 
𝑎: ELP offer limit order. 
𝑙𝑠𝑚𝑜𝑡|𝑏𝑚𝑜𝑡
𝑏|𝑎

: Equals 1 if the ELP is quoting a bid (𝑏) or an offer (𝑎) limit order when a LFT sell 

(buy) market order arrives, 0 otherwise. 
 𝛤: Inventory aversion coefficient. 

𝑥𝑡: Inventory position at time t. 
 
The first term to the right of Equation (A3.1.1) is the discounted value of the ELP’s 

revenue (𝐶
2
) earned when an incoming LFT’s sell market order hits the ELP’s limit order 

while he is bidding (𝐼(𝑙𝑠𝑚𝑜𝑡
𝑏 = 1)). The second term is the discounted revenue associated 

with an incoming LFT’s bid market order, and the third term is the discounted value of 

the ELP’s inventory costs over the period 𝑑𝑡. To keep the model tractable, the ELP always 

places his LOs at the best bid and/or offer price and does not issue orders larger than one 

contract. 

                                                           
11 This Appendix is based on Yergeau, G. (2016). "Profitability and Market Quality of High Frequency 
Market-Makers: An Empirical Investigation." SSRN Electronic Journal. 
 , Section 2. 
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Apart from observing the arrival of market orders, the ELP receives a signal 𝑠 about the 

likely side of the next incoming market order: 𝑠 ∈ {1,−1}, where 1 predicts an incoming 

LFT’s buy market order and -1 an incoming LFT’s sell market order. 𝑃 quantifies the 

informational quality of the ELP’s signal. It varies from 0.5 (no prior knowledge about 

the side of the next incoming LFT’s market order) to 1.0 (perfect knowledge). In Ait-

Sahalia and Saglam (2014) setup, the next event is either 1: the arrival of a signal with 

probability (𝜇 2⁄

𝜆+𝜇
), μ being the arrival rate of a Poisson distribution of the ELP’s signals 

and λ the arrival rate of a Poisson distribution of the incoming LFTs’ market orders; 2: 

the arrival of a market order in the direction of the last signal with probability 𝑃𝜆
𝜆+𝜇

; or 3: 

the arrival of a market order in the opposite direction of the last signal with probability 
(1−𝑃)𝜆

𝜆+𝜇
. The value of market-making activities for any given event assuming an inventory 

position of 𝑥 (𝑥 ∈ {⋯ ,−2,−1, 0, 1, 2,⋯ })  and a sell signal (-1) is: 

 𝑣(𝑥,−1) =  
−𝛾|𝑥|

+ 𝛿

{
 
 

 
 (

𝜇 2⁄

𝜆 + 𝜇
)(𝑣(𝑥, 1) + 𝑣(𝑥,−1)) +

𝑃𝜆

𝜆 + 𝜇
𝑚𝑎𝑥 (

𝑐

2𝛿
+ 𝑣(𝑥 − 1,−1), 𝑣(𝑥, −1)) +

(1 − 𝑃)𝜆

𝜆 + 𝜇
𝑚𝑎𝑥 (

𝑐

2𝛿
+ 𝑣(𝑥 + 1,−1), 𝑣(𝑥, −1))

}
 
 

 
 

, 

(A3.1.2) 

where: 

𝛾 =
𝛤

𝜆+𝜇+𝐷
;  𝛿 =  

𝜆+𝜇

𝜆+𝜇+𝐷
 ; 𝑐 = 𝛿𝐶.  

Equation (A3.1.2) quantifies the market-making value function. The first term to the right 

is the discounted inventory cost (−𝛾|𝑥| ). The second term is the discounted value of the 

three possible events: the value of the arrival of a signal ((𝜇 2⁄

𝜆+𝜇
) (𝑣(𝑥, 1) + 𝑣(𝑥,−1)) ), 

the value of the arrival of a market order in the direction of the signal 

(
𝑃𝜆

𝜆+𝜇
𝑚𝑎𝑥 (

𝑐

2𝛿
+ 𝑣(𝑥 − 1, −1), 𝑣(𝑥, −1))), and the value of the arrival of a market order 

in the opposite direction of the signal ((1−𝑃)𝜆
𝜆+𝜇

𝑚𝑎𝑥 (
𝑐

2𝛿
+ 𝑣(𝑥 + 1,−1), 𝑣(𝑥, −1)) ). 
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Solving Equation (A3.1.2) by backward induction using the Hamilton-Jacobi-Belman 

optimality method leads to the optimization of the expected reward trade-off. 

According to Ait-Sahalia and Saglam (2014)’s Theorem 1, the OQP consists in quoting 

the best bid and/or ask price(s) according to a threshold policy: 

𝑙𝑏(𝑥, 1) = {
1 𝑤ℎ𝑒𝑛 𝑥 < 𝑈∗

0 𝑤ℎ𝑒𝑛 𝑥 ≥ 𝑈∗
𝑙𝑎(𝑥, 1) = {

1 𝑤ℎ𝑒𝑛 𝑥 > 𝐿∗

0 𝑤ℎ𝑒𝑛 𝑥 ≤ 𝐿∗

𝑙𝑏(𝑥, −1) = {
1 𝑤ℎ𝑒𝑛 𝑥 < −𝐿∗

0 𝑤ℎ𝑒𝑛 𝑥 ≥ −𝐿∗
𝑙𝑎(𝑥, −1) = {

1 𝑤ℎ𝑒𝑛 𝑥 > −𝑈∗

0 𝑤ℎ𝑒𝑛 𝑥 ≤ −𝑈∗

 

where 𝑈∗, 𝐿∗ are respectively the bid and offer optimal quantities. 

Theorem 1 can be interpreted as follows: Suppose the ELP receives a “buy” signal (𝑠 =

1) while being long (𝑥 > 1). He is going to act upon it (𝑙𝑏 = 1) as long as its current 

inventory is not already too high (𝑥 < 𝑈∗). If (𝑥 ≥ 𝑈∗), the ELP will not quote because 

this could increase its long inventory position beyond the optimal threshold 𝑈∗. 

Symmetrically, if the ELP receives a “sell” signal (𝑠 = −1), he will quote on the offer 

side (𝑙𝑎 = 1) as long as its inventory position is not already too short (𝑥 > −𝑈∗). 

An algorithm proposed by Ait-Sahalia and Saglam (2014) presented in their Appendix 

allows us to determine the thresholds based on the expected reward trade-off and Theorem 

1. 
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Appendix 3.2 Observed parameters value 

 
A3.2. 1 Trades by minute first 5 days, March 2015 

(1) (2) (3) (4) (5) (6) (7) 

 avg. std. dev. median min. max. 95% 

Ticker # # # # # quantile 

ABX 15 18 11 - 282 81 

AEM 11 14 7 - 247 60 

AGU 6 7 4 - 122 33 

ARX 13 13 10 - 162 58 

ATD.B 14 15 10 - 199 69 

BAM.A 11 13 8 - 166 63 

BB 14 18 9 - 359 85 

BBD.B 12 25 3 - 481 105 

BCE 18 18 13 - 270 86 

BMO 20 19 16 - 243 92 

BNS 25 24 18 - 427 119 

CCO 9 11 5 - 137 52 

CM 15 16 11 - 234 75 

CNQ 26 25 19 - 359 119 

CNR 17 16 13 - 248 78 

CP 6 8 4 - 101 35 

CPG 22 22 16 - 353 99 

CSU 1 2 - - 32 10 

CTC.A 3 5 1 - 63 24 

CVE 21 21 15 - 285 103 

DOL 4 6 1 - 88 28 

ECA 18 22 12 - 503 100 

ELD 11 16 6 - 473 69 

EMA 5 8 2 - 110 36 

ENB 19 19 14 - 284 89 

FM 20 22 14 - 275 102 

FNV 7 8 5 - 129 39 

FTS 11 12 7 - 157 55 

G 20 22 14 - 356 101 

GIB.A 10 11 7 - 149 52 

GIL 5 6 2 - 75 30 

HSE 12 13 8 - 183 59 

IMO 11 12 8 - 171 56 

IPL 10 11 7 - 127 50 

K 7 13 1 - 147 61 

L 8 10 6 - 104 44 

MFC 16 17 11 - 244 78 
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(1) (2) (3) (4) (5) (6) (7) 

 avg. std. dev. median min. max. 95% 

Ticker #  # # # quantile 

MG 7 10 5 - 329 41 

MRU 8 10 5 - 169 42 

NA 13 14 9 - 198 65 

POW 9 11 6 - 184 50 

PPL 13 13 10 - 222 58 

QSR 6 8 3 - 103 38 

RCI.B 11 12 8 - 141 56 

RY 26 25 19 - 412 122 

SAP 5 8 2 - 104 38 

SJR.B 8 12 5 - 196 57 

SLF 14 16 10 - 269 71 

SLW 16 17 11 - 239 80 

SNC 9 12 5 - 217 49 

SU 27 26 19 - 451 127 

T 14 16 10 - 270 78 

TCK.B 20 31 13 - 1,103 121 

TD 26 26 19 - 318 125 

TRI 10 11 6 - 143 55 

TRP 14 15 10 - 191 71 

VRX 7 9 4 - 170 42 

WN 2 4 - - 63 19 

YRI 9 15 3 - 176 71  

All statistics refer to 1-minute time intervals; Avg. # : average number of trades; std. Dev.: standard 
deviation of the number of trades; median # : median number of trades; min. # : minimum number of trades; 
max. # : maximum number of trades; 95% quantile : 95% quantile value of the number of trades. 
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A3.2. 2 Signals by minute, first 5 days, March 2015 

(1) (2) (3) (4) (5) (6) (7) 

 avg. std. dev. median min. max. 95% 

Ticker # # # # # quantile 

ABX 297 644 250 13 50,013 1,172 

AEM 160 86 145 35 2,586 470 

AGU 234 55 240 - 1,136 384 

ARX 149 89 145 - 3,901 398 

ATD.B 175 121 161 - 8,859 448 

BAM.A 179 76 169 66 5,179 343 

BB 311 320 264 11 10,013 1,277 

BBD.B 778 1,380 319 2 41,844 5,010 

BCE 205 134 188 53 8,579 469 

BMO 211 55 199 75 1,148 409 

BNS 214 79 199 62 2,883 463 

CCO 162 110 152 17 1,756 519 

CM 223 66 206 91 1,193 473 

CNQ 220 165 198 36 9,672 563 

CNR 216 62 203 83 1,574 434 

CP 328 56 336 - 1,044 476 

CPG 192 106 170 27 2,214 560 

CSU 370 200 437 - 2,038 634 

CTC.A 193 66 228 - 1,129 338 

CVE 202 333 179 21 27,482 592 

DOL 144 129 163 - 6,865 505 

ECA 280 269 230 14 5,340 1,176 

ELD 329 617 223 - 26,373 1,921 

EMA 118 72 141 - 1,216 316 

ENB 186 67 176 57 3,636 361 

FM 195 127 186 - 3,052 571 

FNV 161 66 163 - 1,671 360 

FTS 151 131 148 - 10,099 340 

G 226 153 196 23 5,607 694 

GIB.A 165 70 155 - 1,554 379 

GIL 154 67 175 - 1,775 327 

HSE 152 90 142 - 2,816 428 

IMO 162 66 155 - 2,071 350 

IPL 154 101 145 - 4,153 467 

K 318 649 103 - 25,904 2,795 

L 170 88 164 - 4,063 392 

MFC 290 228 247 21 5,021 1,141 
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RCI.B 159 119 150 42 9,428 359 

RY 231 106 212 75 3,932 488 

SAP 122 93 135 - 1,553 412 

SJR.B 147 168 145 - 12,946 384 

SLF 184 94 172 38 3,976 440 

SLW 183 85 170 23 2,127 456 

SNC 147 109 141 - 4,015 459 

SU 222 87 204 - 1,673 537 

T 177 111 161 41 4,829 464 

TCK.B 223 178 203 17 7,817 694 

TD 237 124 214 53 5,833 564 

TRI 169 83 165 49 3,829 368 

TRP 183 139 170 53 9,817 396 

VRX 353 57 355 - 1,747 507 

WN 139 65 104 - 1,177 301 

YRI 312 436 188 4 6,393 2,005  

All statistics refer to 1-minute time intervals; Avg. # : average number of signals; std. Dev.: standard 
deviation of the number of signals; median # : median number of signals; min. # : minimum number of 
signals; max. # : maximum number of signals; 95% quantile : 95% quantile value of the number of signals. 
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A3.2. 3 Spreads by minute first 5 days, March 2015 

(1) (2) (3) (4) (5) (6) (7) (8) 

  #  avg.  avg.  avg. std. dev. median 95% 

Ticker  spreads  price  q  spread spread spread quantile 

ABX       722,340  15.383      3,421  0.0109 0.0058 0.0100 0.0200 

AEM       435,530  38.770          299  0.0255 0.0220 0.0200 0.0700 

AGU       256,611  141.770          140  0.1001 0.0851 0.0800 0.4000 

ARX       225,848  23.967          429  0.0174 0.0191 0.0100 0.0600 

ATD.B       200,087  47.407          259  0.0301 0.0243 0.0300 0.1000 

BAM.A       291,756  68.264          263  0.0332 0.0321 0.0300 0.1100 

BB       709,952  13.721      3,782  0.0114 0.0051 0.0100 0.0200 

BBD.B       177,388  2.394    72,591  0.0105 0.0027 0.0100 0.0200 

BCE       823,474  54.826          729  0.0140 0.0099 0.0100 0.0300 

BMO       672,780  76.345          408  0.0200 0.0157 0.0200 0.0600 

BNS       670,748  65.442          540  0.0158 0.0166 0.0100 0.0400 

CCO       369,196  18.760      1,035  0.0125 0.0086 0.0100 0.0300 

CM       347,743  94.480          252  0.0339 0.0253 0.0300 0.1100 

CNQ       871,422  37.234          770  0.0148 0.0129 0.0100 0.0400 

CNR       443,546  85.971          267  0.0297 0.0277 0.0300 0.1000 

CP       308,822  236.901          124  0.2124 0.1706 0.1800 0.7600 

CPG       490,697  30.066          591  0.0140 0.0097 0.0100 0.0400 

CSU          49,977  429.620          114  2.1045 1.2625 1.9000 6.6600 

CTC.A          89,941  129.621          136  0.1911 0.1192 0.1800 0.5600 

CVE       593,058  21.898      1,819  0.0116 0.0065 0.0100 0.0200 

DOL          50,195  62.966          155  0.0638 0.0495 0.0600 0.2600 

ECA       470,251  15.303      3,920  0.0113 0.0082 0.0100 0.0200 

ELD       366,051  6.478      5,663  0.0109 0.0057 0.0100 0.0200 

EMA       119,025  41.342          256  0.0310 0.0299 0.0300 0.1100 

ENB       424,323  58.151          336  0.0218 0.0202 0.0200 0.0800 

FM       384,943  15.503      1,122  0.0131 0.0145 0.0100 0.0400 

FNV       210,013  63.923          157  0.0534 0.0572 0.0400 0.2000 

FTS       227,001  39.183          440  0.0183 0.0183 0.0100 0.0600 

G       983,751  25.703      1,363  0.0123 0.0099 0.0100 0.0200 

GIB.A       258,471  53.082          255  0.0353 0.0377 0.0300 0.1200 

GIL       159,675  75.017          180  0.0570 0.0481 0.0500 0.2300 

HSE       292,722  27.617          495  0.0151 0.0129 0.0100 0.0500 

IMO       183,889  47.851          221  0.0311 0.0337 0.0300 0.1000 

IPL       155,419  33.107          370  0.0205 0.0183 0.0200 0.0800 

K       165,979  3.387    25,579  0.0103 0.0044 0.0100 0.0200 

L       128,899  62.279          166  0.0507 0.0464 0.0500 0.1600 

MRU       108,904  34.918          256  0.0294 0.0289 0.0200 0.1100 

NA       306,859  47.759          350  0.0205 0.0162 0.0200 0.0700 

POT       828,646  43.772      1,003  0.0132 0.0101 0.0100 0.0400 

POW       262,498  33.415          456  0.0156 0.0132 0.0100 0.0500 
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(1) (2) (3) (4) (5) (6) (7) (8) 

 # avg. avg. avg. std. dev. median 95% 

Ticker spreads price q spread spread spread quantile 

PPL       314,884  41.260          320  0.0216 0.0194 0.0200 0.0600 

QSR       130,894  53.571          176  0.0559 0.0675 0.0400 0.2600 

RCI.B       274,561  43.782          376  0.0173 0.0157 0.0200 0.0600 

RY       951,518  77.353          503  0.0170 0.0120 0.0200 0.0400 

SAP       122,412  36.370          276  0.0274 0.0233 0.0200 0.0900 

SJR.B       265,632  28.904          926  0.0132 0.0115 0.0100 0.0400 

SLF       479,332  38.870          809  0.0141 0.0120 0.0100 0.0400 

SLW       736,470  24.906      1,006  0.0128 0.0101 0.0100 0.0300 

SNC       121,149  38.308          242  0.0380 0.0472 0.0300 0.1500 

SU       879,353  37.174      1,053  0.0129 0.0093 0.0100 0.0300 

T       381,194  43.813          397  0.0172 0.0129 0.0200 0.0500 

TCK.B       639,717  19.105      1,798  0.0119 0.0096 0.0100 0.0300 

TD    1,196,194  54.290          943  0.0132 0.0078 0.0100 0.0300 

TRI       353,478  49.415          514  0.0174 0.0318 0.0100 0.0600 

TRP       329,070  55.213          394  0.0206 0.0256 0.0200 0.0700 

VRX       509,542  253.025          126  0.1868 0.1559 0.1600 0.6400 

WN       125,027  103.903          134  0.2016 0.1584 0.1900 0.5800 

YRI       183,665  5.115      9,102  0.0107 0.0048 0.0100 0.0200 

All statistics refer to 1-minute time intervals and level 1 quotes; # spreads: total number of spreads; avg. 
price: average ((bid+ask)/2); avg. q: average (minimum bid-ask quantity; avg. spread: average value of the 
spread; std. dev. spread: standard deviation of the spread; median spread : median value of the spread; 95% 
quantile : 95% quantile value of the spreads.  
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Table 3. 1 Sessions on the TSX 

Time Session 

7:00 AM – 9:30 AM Pre-Open – Orders may be entered, but will not be executed. The calculated opening 

price is displayed and continuously updated. 

9:30 AM Market On Open (MOO) – All tradable orders are executed at a single opening trade 

price with any remaining orders to carry through to the continuous trading session. 

9:30 AM – 4:00 PM Continuous trading – All regular order types are accepted. 

3:40 PM – 4:00 PM Market On Close – MOC Market and Limit on Close (LOC) orders are accepted without 

restriction until 3:40 PM. The MOC imbalance is published at 3:40 PM, after which only 

LOC orders opposite to the imbalance side are accepted. Accepted trades will be executed 

and published at 4:00 PM unless a Price Movement Extension is required when additional 

offsetting liquidity is solicited, in which case trades are published at 4:10 PM. 

4:10 PM – 4:15 PM Post Market Cancellation Session – During this session, open orders may be canceled by 

the dealer. 

4:15 PM – 5:00 PM Extended Trading Session – Orders at the last sale price are accepted, but the trades may 

only occur at the last sale price. Day orders participate in this session. The Must Be Filled 

(MBF) session for option expiry takes place during Extended Trading once per month, 

in the evening before an option expiry day. 

Ref.:TMX Group (2015), p.8. 
 
 

Table 3. 2 TSX: maker-taker rebate and fee levels 

 Before 
  

After 
  

June 1,2015 June 1,2015 

  Taker fee 
Maker 
rebate 

Taker fee 
Maker 
rebate 

Equities priced ≥ 1$           
(per share traded) 

$0.0035 $0.0031 $0.0023 $0.0019 

Ref.: TMX Group (2015), p. 3. 
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Table 3. 3 Trades and quotes : March - August 2015 

 

 (1) 
Trades M.V.   

(2) 
M.V. 

 (3) 
Trades  

(4) 
Quotes 

 (5) 
Quotes/  

 (6) 
Trades  

(7) 
Level 1 

(8) 
Avg. # 

  (,000$)  (%)  (,000)   (,000)  Trades  Avg. Q.   Avg. Q.  orders 

March      47,345,942  18.5% 6,244    107,670  17.2 216 3,526 7 

April      44,183,491  17.3% 5,570      99,615  17.9 222 3,799 8 

May      28,227,624  11.0% 3,682      61,021  16.6 211 3,473 8 

June      43,097,374  16.8% 5,744      82,006  14.3 203 3,588 7 

July      42,274,678  16.5% 6,118      84,090  13.7 226 3,400 7 

August      50,691,069  19.8% 7,687    106,356  13.8 226 3,396 7 

    255,820,179  100.0% 35,045    540,758  15.4 217 3,530 7 

This table supplies a summary of market statistics. All quotes statistics are based on LOB level 1 only; M.V. 
stands for market values; column (1) is the total market value traded; column (2) is the percentage of the 
total market value traded for a given month over the total market value traded over the full sample; column 
(3) is the number of trades; column (4) is the number of quotes; column (5) is column (4) over column (3); 
column (6) is the trade average quantity; column (7) is the average level 1 quantity; column (8) is the average 
number of orders at LOB's level 1. 
 

 

Table 3. 4 Global performance, price-time priority vs broker 
preference  March-August 2015 

 Profitability   Trades   

 P-T Broker A Broker B P-T Broker A Broker B 

Total  $    4,868,587   $    3,956,693   $    4,082,885    4,248,460    3,942,358    2,516,189  

Trading  $    3,831,375   $    3,077,551   $    3,631,226    4,248,460    3,942,358    2,516,189  

Dly avg.  $         31,928   $         25,646   $         30,260         35,404         32,853         20,968  

Dly Stddev.  $         19,057   $         18,073   $         15,349           9,098           8,772           6,555  

Dly Median  $         29,698   $         23,776   $         27,369         34,164         31,980         19,676  

Dly min. -$          3,513  -$          3,422  -$              480           8,492           7,487           4,126  

1-min avg.  $           82.50   $           66.27   $           78.19  91 85 54 

1-min stddev.  $         485.48   $         561.58   $         460.96  56 55 38 

1-min median  $           40.65   $           28.65   $           38.99  77 70 44 

1-min min. -$     7,846.67  -$   14,210.84  -$    13,870.98  4 2 0 

This table shows aggregated statistics on the two prioritization scenarios: price time (P-T), the international 
standard, and broker preference applied to Brokers A and B. Total profitability is the cumulative trading 
profit including fees and rebates over the full sample. Trading excludes fees and rebates. Total trade is the 
number of trades executed by the ELP. The abbreviation significance is: dly: daily, avg: average, stddev: 
standard deviation, min: minimum, and 1-min: one-minute time interval. 
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Table 3. 5 Monthly performance : price-time and Brokers A and B 

   (1)   (2)   (3)  (4)  (5)   (6)  

 Month  Trading   Rebate   Net  (2)/(3)  # trades   # LO/# tr  

P.T. March  $        722,265   $        242,182   $            964,447  25.1%       777,643  5.56 

P.T. April  $        521,544   $        222,620   $            744,163  29.9%       693,597  5.81 

P.T. May  $        315,995   $        134,555   $            450,550  29.9%       434,733  5.68 

P.T. June  $        697,936   $        126,600   $            824,536  15.4%       706,331  5.62 

P.T. July  $        672,249   $        136,907   $            809,156  16.9%       734,707  5.44 

P.T. August  $        901,387   $        174,348   $        1,075,735  16.2%       901,449  5.33 

   $    3,831,375   $    1,037,212   $        4,868,588  21.3%    4,248,460          5.57  

A March  $        530,897   $        217,526   $            748,423  29.1%       741,070          5.14  

A April  $        358,125   $        190,386   $            548,512  34.7%       635,199          5.20  

A May  $        214,780   $        116,620   $            331,400  35.2%       405,375          4.96  

A June  $        570,076   $        105,555   $            675,631  15.6%       644,849          4.89  

A July  $        521,699   $        110,389   $            632,088  17.5%       667,103          4.62  

A August  $        881,973   $        138,667   $        1,020,640  13.6%       848,762          4.54  

   $    3,077,551   $        879,142   $        3,956,693  22.2%    3,942,358          4.89  

B March  $        663,623   $        102,112   $            765,735  13.3%       439,007          3.71  

B April  $        474,864   $          89,431   $            564,295  15.8%       372,434          3.75  

B May  $        307,986   $          54,014   $            362,000  14.9%       240,863          3.58  

B June  $        645,858   $          56,356   $            702,214  8.0%       429,835          3.76  

B July  $        663,220   $          62,612   $            725,832  8.6%       449,343          3.68  

B August  $        875,674   $          87,135   $            962,809  9.1%       584,707          3.90  

   $    3,631,226   $        451,659   $        4,082,885  11.1%    2,516,189          3.73  

This table provides monthly statistics from price time (P.T.) and Brokers A and B activities. Column (1) 
shows the gross profit from trading; column (2) is the net result of maker rebates, taker fees and IIROC 
fees; column (3) is column (1) minus column (2); column (4) is the number of ELP trades; column (5) is 
the ratio of the number of ELP limit orders executed against incoming marketable orders over the number 
of ELP executed marketable orders. 
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Table 3. 6 Stable distribution parameters : Brokers A and B profits & 
losses March – August 2015 

 A B 

Alpha 1.2823 1.2615 

Beta 0.2779 0.2185 

Gamma 148.4979 178.3119 

Delta 117.7321 108.4078 

This table supplies the parameters value from the P&L distributions for Brokers A and B under the broker 
preference scenario. The stable family distributions are described by four parameters: 𝛼 ∈ (0,2]: a stability 
parameter; 𝛽 ∈ [−1,1]: a skewness parameter; 𝛾 ∈ (0,∞): a scale parameter; 𝛿 ∈ (−∞,+∞): a location 
parameter. 
 
 
Table 3. 7 Market maker index: Brokers A and B 

 # buy limit order # sell limit order ratio 

A    13,395,789,249     18,902,619,467  0.1666 

B    12,145,242,039     18,129,883,345  0.1986 

This table provides statistics concerning the Brokers A and B buy and sell limit orders. # is the abbreviation 
of number. The ratios are the absolute value of market maker index obtained from Equation (). 
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Table 3. 8 Quotes and trades : Brokers A and B 

   (1)   (2)  (3)  (4)   (5)  (6) 

   Quotes     Trades    

   Actual   ELP  %  Actual   ELP  % 

March A       107,670,190              18,224,935  16.93%         6,244,119           741,070  11.87% 

April A         99,615,388              15,342,662  15.40%         5,569,695           635,199  11.40% 

May A         61,020,594              10,165,434  16.66%         3,682,179           405,375  11.01% 

June A         82,540,777              15,109,659  18.31%         5,743,586           644,849  11.23% 

July A         84,090,062              14,707,922  17.49%         6,118,321           667,103  10.90% 

August A       106,355,892              19,745,589  18.57%         7,687,282           848,762  11.04% 

        541,292,903              93,296,201  17.24%       35,045,182        3,942,358  11.25% 

March B       107,670,190              18,197,298  16.90%         6,244,119           439,007  7.03% 

April B         99,615,388              15,427,856  15.49%         5,569,695           372,434  6.69% 

May B         61,020,594              10,090,060  16.54%         3,682,179           240,863  6.54% 

June B         82,540,777              14,853,049  17.99%         5,743,586           429,835  7.48% 

July B         84,090,062              14,505,654  17.25%         6,118,321           449,343  7.34% 

August B       106,355,892              19,614,464  18.44%         7,687,282           584,707  7.61% 

        541,292,903              92,688,381  17.12%       35,045,182        2,516,189  7.18% 

This table compares ELP to actual (observed) trades and quotes. Column (3) and column (6) are the 
percentages of ELP activities during the simulation over the actual ones. 
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Table 3. 9 Regressions on factors determining ELP's variations of 

position 

Broker A  (1)   (2)   (3)   (4)   (5)   (6)  

diffMVi,d,t  0.09***   0.09***   0.09***   0.07***   0.07***   0.07***  

  (3.13)   (3.29)   (3.29)   (2.67)   (2.67)   (2.68)  

𝒑𝒄𝒕𝝈𝒊,𝒅,𝒕 
  404,347***   353,761***   353,761***   353,761***   353,765***  

 
  (6.10)  (5.98)  (6.10)   (6.10)   (6.10)  

diffSpreadi,d,t    34,561**   33,302**   33,302**   33,302**  

 
  (2.32) (2.25) (2.25) (2.25) 

diff#Quotes i,d,t    61.43*** 61.43*** 61.43*** 

 
   (6.24) (6.24) (6.24) 

diffImbal i,d,t     0.00 0.00 

 
    (0.85) (0.85) 

𝒑𝒄𝒕𝑴𝒐𝒎𝒎,𝒅,𝒕 
      -0.05  

 
     (0.11) 

R2 3.95% 4.60% 4.69% 5.44% 5.44% 5.46% 

N. obs. 2,725,800 2,725,800 2,725,800 2,725,800 2,725,800 2,725,800 

Broker B  (1)   (2)   (3)   (4)   (5)   (6)  

diffMVi,d,t  0.05***   0.04***   0.04***   0.04***   0.04***   0.04***  

  (4.31)   (4.29)   (4.30)   (3.43)   (3.43)   (3.43)  

𝒑𝒄𝒕𝝈𝒊,𝒅,𝒕   153,545***   151,254***   125,911***   125,911***   125,930***  

 
  (4.07)  (4.01) (4.14) (4.14) (4.14) 

diffSpreadi,d,t   
 15,647***   14,946***   14,946***   14,946***  

 
   (3.14)   (3.05)   (3.05)   (3.05)  

diff#Quotes i,d,t   
  34.20***   34.20***   34.20***  

 
  

  (6.77)   (6.77)   (6.77)  

diffImbal i,d,t     
 0.00   0.00  

 
     (0.50)   (0.50)  

𝒑𝒄𝒕𝑴𝒐𝒎𝒎,𝒅,𝒕 
     

 -0.19  

 
      (1.20)  

R2 3.82% 4.18% 4.26% 5.16% 5.16% 5.16% 

N. obs. 2,725,800 2,725,800 2,725,800 2,725,800 2,725,800 2,725,800 

The table represents the results from estimating Equation () for the full sample of the S&P/TSX 60 
Composite securities. This panel regression is based on per stock and one-minute time intervals. 𝑑𝑖𝑓𝑓𝑀𝑉𝑖,𝑑,𝑡 
is the first difference in total market value traded for stock 𝑖 on day d during time interval 𝑡, a measure of 
trading intensity. 𝑝𝑐𝑡𝜎𝑖,𝑑,𝑡  is the stock 𝑖 standard deviation relative performance on day d during the time 
interval 𝑡, a relative measure of idiosyncratic risk direction. 𝑑𝑖𝑓𝑓𝑆𝑝𝑟𝑑𝑖,𝑑,𝑡 is the first difference in bid-ask spread 
for stock 𝑖 on day d at the end of the time interval 𝑡, a measure of ELP remuneration. 𝑑𝑖𝑓𝑓𝐼𝑚𝑏𝑎𝑙𝑖,𝑑,𝑡 is the first 
difference in LOB level 1 imbalance for stock 𝑖 on day d at the end of the time interval 𝑡, a liquidity 
disequilibrium measure. 𝑑𝑖𝑓𝑓#𝑄𝑢𝑜𝑡𝑒𝑠𝑖,𝑑,𝑡 is the first difference in the number of quotes for stock 𝑖 on day 
d during time interval 𝑡, a measure of liquidity competition. 𝑝𝑐𝑡𝑀𝑜𝑚𝑚,𝑑,𝑡 is the relative performance of the 
maximum between the proportion of up and down volume for the market on day d at the end of interval 𝑡, 
a measure of relative momentum. The underlying regressions include stock standard errors double-clustered 
by security and time interval. *, **, *** indicate significance at 10%, 5%, and 1% levels; the table shows 
the t-statistic. Variations of position for Brokers A and B are analyzed. 
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Table 3. 10 Broker B Level 1 bid (upper part of) and offer (lower part 
of) cross correlation matrix during the extreme events 

 

This table presents the cross-correlation matrix of the relative participation of the Broker B to liquidity from 
Equation () during the extreme events. The upper part of the diagonal matrix displays the cross-correlation 
coefficients of relative bid quantities while the lower part contains the cross-correlation coefficients of 
relative offer quantities. The last row and the last column include their respective averages. 
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Table 3. 11 Broker B Level 1 bid (upper part of) and offer (lower part 
of) cross correlation matrix during the extreme events 

 

 
This table presents the cross-correlation matrix of the relative participation of the Broker B to liquidity from 
Equation () during the extreme events. The upper part of the diagonal matrix displays the cross-correlation 
coefficients of relative bid quantities while the lower part contains the cross-correlation coefficients of 
relative offer quantities. The last row and the last column include their respective averages. 
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Figure 3. 1 VIX S&P/TSX 60, XIU.TO : March - August 2015 

This graph supplies the behavior of the implicit volatility from the VIX S&P/TSX 60 (left scale) and the 
prices from XIU.TO, an ETF tracking the S&P/TSX60 (right scale). 
 

 

Figure 3. 2 Cumulative profit excluding rebates: broker preference 
with Brokers A and B vs. time-price priority 

 

This graph presents the cumulative trading profit excluding fees and rebates. It compares the broker 
preference with results obtained by Brokers A (the lower line) and B (the middle line) to the international 
standard in prioritization based on price and time. Time intervals are of one minute. Profits are aggregated 
over the traded S&P/TSX60 components. 
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Figure 3. 3 Critical market states: repartition by number of stocks 

involved : March – August 2015 

 
This histogram reports the number of occurrences of critical market states grouped by the number of stocks 
that the absolute logarithmic return and the number of trades exceed simultaneously their quantile values of 
90%. 
 
 

Figure 3. 4 Critical market states: repartition by monthly occurences : 
March – August 2015 

This histogram depicts the number of monthly occurrences of critical market states. The market is in a 
critical state when a minimum of 15 stocks simultaneously exceeds the quantile values of 90% for their 
absolute logarithmic return and their number of trades. 
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Figure 3. 5 Average level 1 offer quantity 

The Y axis of the histogram shows the average offer quantity at level one during April 2015. The X axis 
splits the continuous trading session in one-minute time intervals. 

 

Figure 3. 6 Average level 1 bid quantity 

The Y axis of the histogram shows the average bid quantity at level one during August 2015. The X axis 
splits the continuous trading session in one-minute time intervals.  
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Figure 3. 7 Cross-correlation matrix distribution 

This histogram shows the empirical distribution of cross-correlation coefficients from ELP relative 

participation to liquidity during the 572 extreme events identified in Section 3.5.  

 

 


