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École affiliée à l’Université de Montréal
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Président-rapporteur

Hatem Ben Ameur
HEC Montréal
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RÉSUMÉ

Cette thèse présente trois essais portant sur l’évaluation des produits financiers

à deux dimensions. Notre méthodologie est basée sur un programme dynamique à

deux dimensions couplé aux éléments finis. Augmenter la dimension du problème

rend cette procédure coûteuse en termes de temps d’exécution. Pour cette raison,

nous utilisons le calcul parallèle pour améliorer l’efficacité.

Dans le premier essai, nous proposons un modèle d’évaluation pour les options

américaines à deux dimensions. Notre modèle est flexible puisqu’il permet de consi-

dérer une large famille d’options écrites sur deux actifs qui suivent un processus

lognormal. Nos investigations numériques montrent la convergence et l’efficience

de notre méthodologie, ce qui la rend une alternative viable aux méthodologies

traditionnelles.

Dans le second essai, nous développons un modèle structurel général à deux

facteurs pour évaluer les dettes corporatives. La valeur des actifs de la firme suit

un processus lognormal et le taux d’intérêt selon processus gaussien. Notre modèle

permet une structure de dette flexible, plusieurs classes de séniorité, les économies

de taxes ainsi que les coûts de faillite. Les résultats obtenus sont cohérents avec les

effets empiriques documentés dans la littérature.

Dans le troisième essai, nous proposons un modèle structurel pour l’évaluation

des obligations échangeables. Nous développons un modèle à deux dimensions où

la valeur des actifs de la compagnie émettrice et la valeur des actions sous-jacentes

représentent les deux variables d’état. Notre modèle permet une structure de dette

arbitraire, les économies de taxes et les coûts de faillite. Notre investigation numé-

rique souligne les principales caractéristiques des obligations échangeables.

Mots clés : Espace état à deux dimensions ; Programme dynamique ; Éléments

finis ; Calcul Parallèle ; Options Américaines ; Risque de crédit ; Modèle structurel ;

Taux d’intérêt stochastique ; Dettes échangeables.

Méthodes de recherche : Modélisation mathématique ; Recherche quantita-

tive ; Calcul bivarié ; Méthodes numériques.



ABSTRACT

This thesis presents three essays on valuing two-dimensional financial securities.

Our methodology is based on a two-dimensional dynamic program coupled with

finite elements. As we have two state variables, this procedure is time consuming.

Thus, we use parallel computing to enhance the efficiency.

In the first essay, we propose a valuation model for two-dimensional American-

style options. Our model is flexible because it accommodates a large family of

option contracts signed on two underlying assets that move according to a lognor-

mal vector process. Our numerical experiments show convergence and efficiency

which positions our method as a viable alternative to traditional methodologies.

In the second essay, we develop a general structural model for valuing risky cor-

porate debts that takes into account both default and interest rate risk. We propose

a two-dimensional model in which the state variables are the value of the firm’s

assets and the short-term interest rate. The former follows a lognormal process

and the latter a mean-reverting Gaussian process. Our model accommodates flex-

ible debt structure, multiple seniority classes, tax benefits, and bankruptcy costs.

The results we obtain are consistent with empirical evidence documented in the

literature.

In the third essay, we propose a model to value exchangeable bonds, which is a

debt that is convertible into shares of a firm’s equity other than the bond’s issuer.

We propose a two-dimensional structural model, where the assets’ value of the

bond’s issuer and the underlying equity value are the state variables. Our model

accommodates arbitrary debt portfolio, bankruptcy costs, and tax benefits. Our

numerical investigation highlights the main characteristics of exchangeable bonds.

Keywords: Two-dimensional state spaces; Dynamic programming; Finite el-

ements; Parallel computing; American options; Credit risk; Structural model;

Stochastic interest rate; Exchangeable bond.

Research methods: Mathematical modeling; Quantitative research; Bivariate

calculation; Numerical methods.
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naissance à mes professeurs et directeurs de recherche Hatem Ben Ameur et Bruno

Rémillard pour leur encadrement, leur patience, leur soutien et leur confiance.
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INTRODUCTION

Modeling complex situations in finance usually requires several factors to be

taken into account to most accurately reproduce the observed effects. In particu-

lar, multi-factor models are popular in financial engineering, for instance valuing

derivative contracts written on several underlying assets. Multi-assets options are

used for hedging market risk related to financial assets, natural resources, and

commodities. Examples include rainbow, quanto, and basket options. In credit

risk modeling, multi-factor models are also used since credit risk usually depends

on firm-specific factors but also on economy-specific factors such as interest rate

or exchange rate for foreign companies. Other examples include specific finan-

cial products naturally involving more than one factor, such as reverse convertible

bonds or exchangeable bonds.

For most cases, when increasing the problem dimension, closed-form solutions

are no longer available, and using numerical procedures becomes inevitable. In

this thesis, we focus on dynamic programming coupled with finite elements. This

methodology performs well for one-dimensional problems and has proved its ef-

ficiency, especially for American-style contracts. The extension of dynamic pro-

gramming to higher dimensions is natural, as long as the transition parameters

can be computed in closed form. Since execution times become too long, parallel

computing is used to avoid this problem and enhance efficiency. In fact, several

computational tasks in dynamic programming, including the calculation of transi-

tion parameters and the evaluation of the value function on the grid, are not se-

quential and thus can be parallelized. These independent tasks are then executed

simultaneously, which makes it possible to reduce the calculation times drastically,

going from more than 24 hours of calculations to a few seconds.

In this thesis, we propose a two-dimensional dynamic program coupled with fi-

nite elements where we use parallel computing to enhance efficiency. The three

essays propose different applications of the use of our methodology in a two-

dimensional setting.



The first essay proposes a dynamic program for valuing two-dimensional American-

style options. Our numerical experiments show convergence and efficiency, and puts

forward our methodology as a competitive alternative in comparison to traditional

approaches. In addition, our model is flexible because it accommodates a large

family of option contracts signed on two underlying assets that move according to

a lognormal vector process. The same procedure can be adapted to accommodate

a larger family of derivative contracts and state-process dynamics.

The second essay presents a general structural model for valuing risky corporate

debts when the interest rates are stochastic. Our two-factor model takes into

account both credit default risk and interest rate risk. The two factors are the

firm’s assets value that moves according to a lognormal process, and the short-term

interest rate that follows a mean-reverting Gaussian process. Our model is flexible

as it accommodates an arbitrary debt structure, multiple seniority classes, tax

benefits and bankruptcy costs. Our results are consistent with empirical evidence

stipulating that modeling interest rate risk can explain observed credit spreads, in

particular, credit spread differences for similarly rated bonds.

In the third essay, we focus on the valuation of exchangeable bonds which are

debts that are convertible into shares of a firm’s equity other than the bond’s issuer.

These structured bonds gained popularity in recent years and are discussed widely

in corporate finance but less attention has been paid to their evaluation, on which

we focus in this paper. We propose a two-dimensional structural model where

the issuer’s assets value and the underlying equity shares are the state variables

and follow a lognormal vector process. Our model accommodates an arbitrary debt

structure including an exchangeable bond, tax benefits as well as bankruptcy costs.

Our results highlight the main characteristics of exchangeable bonds.

2



CHAPTER 1

DYNAMIC PROGRAMMING AND PARALLEL COMPUTING FOR

VALUING TWO-DIMENSIONAL AMERICAN-STYLE OPTIONS

Malek Ben-Abdellatif, 1 Hatem Ben Ameur, 2 Bruno Rémillard 3

Abstract

We propose a dynamic program coupled with finite elements for

valuing two-dimensional American-style options. To speed-up our pro-

cedure, we use parallel computing at every step of the recursion. Our

model is flexible because it accommodates a large family of option con-

tracts signed on two underlying assets that move according to a lognor-

mal vector process. The same procedure can be adapted to accommo-

date a larger family of derivative contracts and state-process dynamics.

Our numerical experiments show convergence and efficiency, positioning

our method as a viable alternative to traditional methodologies based

on trees, finite differences, and Monte Carlo simulation.

Keywords: American options; Two-dimensional state spaces; Dy-

namic programming; Finite elements; Parallel computing.

1.1 Introduction

We propose a dynamic program for valuing two-dimensional American-style

options. Parallel computing is used to reduce its running time and enhance its

efficiency. Two-dimensional options are traded over the counter (OTC). Examples

1. Malek Ben-Abdellatif is a Ph.D. student at HEC Montréal.
2. Hatem Ben-Ameur is a Professor at HEC Montréal in the Department of Decision Sciences,

and member of the GERAD.
3. Bruno Rémillard is a Professor at HEC Montréal in the Department of Decision Sciences,

and member of the CRM and GERAD.
Partial funding in support of this work was provided by the Natural Sciences and Engineering

Research Council of Canada, the Fonds pour la formation de chercheurs et l’aide à la recherche
du Gouvernement du Québec, and the Institut de Finance Mathématique du Québec.



include rainbow, quanto, and basket options. According to the Bank of Interna-

tional Settlements (BIS), the gross market value of total OTC options was 438

billion US dollars in 2015. These options are used for hedging market risk related

to financial assets, natural resources, and commodities.

American-style options cannot be evaluated in closed form and must be approx-

imated in some way. The literature discusses several methodologies based on Monte

Carlo simulation, trees, and finite differences. This holds for one-dimensional as

well as multidimensional state spaces.

The multidimensional lattice approach assumes a discrete model that usually

converges to a continuous counterpart. It runs in two steps. The first step, which

is the most challenging, is forward and used for the lattice construction (the overall

state space). The second step is backward and is used for evaluation purposes

(Boyle, 1988, Boyle et al., 1989, Kamrad and Ritchken, 1991).

Finite differences (FD) is a backward methodology that assumes state and time

discretizations. At each step of the recursion, one solves a partial differential equa-

tion with boundary conditions, which characterizes the option’s value. While Dock-

endorf and Paxson (2015) use FD for valuing multidimensional European-style op-

tions, Hartley (2000) and Berridge and Schumacher (2008) use FD for valuing their

American counterparts.

Simulation-based methodologies run in two steps. The first step is forward, and

involves simulating a random sample of the underlying assets’ trajectories, which

can be seen as a random lattice. The second step, which is the most challenging,

is backward and evaluates the option contract and identifies its optimal exercise

strategy. At any given decision date, the simulated trajectories do not intersect

(almost surely), which weakens the evaluation step via the fundamental theorem

of asset pricing in no-arbitrage markets. The solution proposed in the literature is

threefold: bundling methods (Tilley, 1993, Barraquand and Martineau, 1995, Boyle

et al., 1997, Raymar and Zwecher, 1997, Jin et al., 2007, 2013, Broadie and Glasser-

man, 1997, Bally and Pages, 2003a,b, Bally and Printems, 2005), regression and/or

global approximations (Carriere, 1996, Tsitsiklis and Van Roy, 1999, Longstaff and

4



Schwartz, 2001, Broadie and Glasserman, 1997), and duality methods (Haugh and

Kogan, 2004, Rogers, 2002, Andersen and Broadie, 2004, Del Moral et al., 2012).

Dynamic programming (DP) coupled with finite elements has been used with

success for valuing one-dimensional American-style options in pure-diffusion models

(Ben-Ameur et al., 2002) and jump-diffusion models (Ben-Ameur et al., 2016).

Design-wise, one-dimensional DP can be naturally extended to higher dimensions

and combined with parallel computing in order to reduce computation time.

DP starts running at the option’s maturity, where the option’s value function

is known. The option’s value is computed on a given grid of points. Then, DP

alternates between interpolation at step n + 1 and evaluation at step n, and moves

backward from maturity down to the origin. At each step of the recursion, DP

acts as follows: one first uses a piecewise polynomial and interpolates the option’s

value function from the grid points to the overall state space; then one uses no-

arbitrage pricing and approximates the option’s value function at the previous

step on (possibly) the same grid points. These last computational tasks are not

sequential and, thus, can be parallelized.

This paper is organized as follows. While Section 1.2 presents the model, Sec-

tion 1.3 describes our dynamic program and discusses parallel computing. Sec-

tion 1.4 is a numerical investigation, and Section 1.5 concludes.

1.2 The model

We consider a frictionless market in which two stocks, S1 and S2, are traded

continuously and move according to a bivariate log-normal process. The risk-free

rate, r, is assumed to be constant. This market is known to be arbitrage free

and complete. Thus, there exists a unique risk-neutral probability measure Q

under which the state process (S1,S2) moves according to the following stochastic

differential equation:

dSi
t

Si
t

= (r−di)dt + σidW i
t , for i = 1,2, (1.1)
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where di is the continuous dividend rate of stock i, σi is its log-return volatility,

and (W 1, W 2) is a bivariate correlated Brownian motion with

Cor(W 1
t ,W

2
t ) = ρ, for all t > 0.

The solution of (1.1) can be written as

Si
u = Si

t exp

(r−di−
σ2

i
2

)
(u− t)+ σi

(
W i

u−W i
t

) , for 0≤ t ≤ u. (1.2)

An American option on (S1,S2) with maturity T is defined by its cash-flow

process, κ(t,x,y)≥ 0, for 0≤ t ≤ T , x > 0, y > 0, where x = S1
t and y = S2

t . This is

the option’s value under exercise. Its European counterpart is characterized by

κ(t,x,y) = 0, for 0≤ t < T.

Examples include the exchange option:

κ(t,x,y) = max(x− y,0),

the call-on-max option:

κ(t,x,y) = max(max(x,y)−K,0),

and the put-on-min option:

κ(t,x,y) = max(K−min(x,y),0),

where K is the the option’s strike price. The exchange option gives the option

holder the right to exchange S2 for S1; the call-on-max option gives the right to

purchase the higher-priced asset at the strike price K; and the put-on-min gives the

right to sell the lower-priced asset at the strike K.
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This setting is described in detail in Stulz (1982) and Johnson (1987) where

closed-form solutions for the above-mentioned European options are given. We

report them in Appendix 1.A.

1.3 Dynamic programming and parallel computing

First, we describe the dynamic programming approach where the assets are

modeled by a general Markov process. Then, we present the use of parallel com-

puting to improve efficiency.

1.3.1 Dynamic programming

We consider a two-dimensional Bermudan option, characterized by its exercise

value ve
t (x,y) = κ(t,x,y) and N + 1 exercise opportunities, t0 = 0, t1, . . . , tN = T .

Let G be a set of grid points {(a1,b1),(a1,b2), . . . ,(ap,bq)} such that max(∆ak,∆bl)

→ 0 and Q[(S1
t ,S

2
t ) ∈ [ap,∞)×R∗+ ∪R∗+× [bq,∞)]→ 0, when p and q→ ∞. Let

a0 = b0 = 0 and ap+1 = bq+1 = ∞. The rectangle [ai,ai+1)× [b j,b j+1) is designated

by Ri j.

For simplicity, assume that the state process (S1,S2) is Markov and homoge-

neous, tn+1−tn = ∆t a positive constant, the grid points G fixed along the recursion,

and κ(t,x,y) = κ(x,y). To reach the pure American option, let ∆t→ 0.

Define the transition tables T 00,T 10,T 01, and T 11 as follows:

T νµ

kli j = E∗
[
(S1

tn+1
)ν(S2

tn+1
)µI
(

(S1
tn+1

,S2
tn+1

) ∈ Ri j

)
|

(S1
tn,S

2
tn) = (ak,bl)

]
, for ν and µ ∈ {0,1}. (1.3)

For example, T 00
kli j represents the transition probability that the Markov process

(S1,S2) moves from (ak,bl) at tn and visits the rectangle Ri j at tn+1. These transition

parameters, which are at the heart of the dynamic-programming approach, can be

considered a fixed cost as long as the Markov state process is homogeneous, tn+1−tn

is a positive constant, and the grid points G do not depend on time. We derive
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and provide closed-form solutions for them in Appendix 1.B.

Assume that an approximation of the option’s value function is available at

a future decision date tn+1 on G , indicated by ṽn+1(ak,bl), for k = 1, . . . , p and

l = 1, . . . ,q. This is not really a strong assumption since the option’s value function

is known at maturity in closed form, that is, ṽN = vN = ve
N . DP acts as follows:

1. Use a bilinear piecewise polynomial (as illustrated in Figure 1.1) and interpo-

late the option’s value function ṽn+1 at tn+1 from G to the overall state space

[0,∞)2 by setting

v̂n+1(x,y) =
p

∑
i=0

q

∑
j=0

(
α

n+1
i j + β

n+1
i j x + γ

n+1
i j y + δ

n+1
i j xy

)
×

I
(
(x,y) ∈ Ri j

)
, (1.4)

where the local coefficients α
n+1
i j , β

n+1
i j , γ

n+1
i j , and δ

n+1
i j , for i = 1, . . . , p− 1

and j = 1, . . . ,q− 1, are obtained in closed form from the system of linear

equations: 

v̂n+1(ai,b j) = ṽn+1(ai,b j)

v̂n+1(ai+1,b j) = ṽn+1(ai+1,b j)

v̂n+1(ai,b j+1) = ṽn+1(ai,b j+1)

v̂n+1(ai+1,b j+1) = ṽn+1(ai+1,b j+1)

(1.5)

and the rest of them are set to their adjacent counterparts;

2. Use non-arbitrage pricing and approximate the option’s holding value func-

tion at tn on G :

ṽh
n(ak,bl) = E∗

[
e−r∆t v̂n+1(S1

tn+1
,S2

tn+1
) | (S1

tn,S
2
tn) = (ak,bl)

]
= e−r∆t

∑
i, j

(
α

n+1
i j T 00

kli j + β
n+1
i j T 10

kli j + γ
n+1
i j T 01

kli j + δ
n+1
i j T 11

kli j

)
;(1.6)
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Figure 1.1: Illustration of the bilinear interpolation

3. Approximate the option’s value function at tn on G :

ṽn(ak,bl) = max(ve
n(ak,bl), ṽh

n(ak,bl)); (1.7)

4. Go to step 1 and repeat until n = 0.

These steps are illustrated in Figure 1.2. Eq. (3.2) splits the option’s holding

value into two parts: the local coefficients are related to the option contract and the

transition parameters to the dynamics of the state process. All in all, the option’s

holding value is a sum of local future-value pieces, times their associated transition

parameters, discounted back at the risk free-rate. The same equation shows that

DP assumes a space discretization, but not a time discretization, and does respect

the true dynamics of the state process as long as the transition parameters in

eq. (3) are known in closed form. Finally, eq. (4) shows that DP ends up with

an interpolation of v0 (x,y), defined on the overall state space. Thus, the first and

second derivatives of v0 (x,y) with respect to x and y then become available, among

other sensitivity coefficients. In particular, the deltas are obtained, at each time

step, as follows:

∂ v̂n+1(x,y)

∂x
=
(

β
n+1
i j + δ

n+1
i j y

)
I
(
(x,y) ∈ Ri j

)
,
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and
∂ v̂n+1(x,y)

∂y
=
(

γ
n+1
i j + δ

n+1
i j x

)
I
(
(x,y) ∈ Ri j

)
,

where the couple (x,y) is assumed to be inside the rectangle Ri j.

Higher-order two-dimensional piecewise approximations are more accurate but

require a higher computing time, and vice versa. We find that the bilinear piecewise

interpolation of eq. (1.4) is an acceptable compromise.

Figure 1.2: Two-dimensional dynamic programming steps

1.3.2 Parallel computing

Parallel computing uses multiple central processing units (CPUs) simultane-

ously to speed-up complex computations. For C programming, used herein to

achieve our numerical experiments, there are two libraries used for parallel com-

puting: MPI and OpenMP.

The Message Passing Interface (MPI) library allows the computing process to

exchange information between the running CPU environments in order to achieve
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a given job. Each CPU has access to a certain memory space. MPI requires case-

sensitive programming changes from the serial code to its parallel version.

Parallel computing can also run when all CPUs share the same memory space.

Open Multi Processing (OpenMP) is a library that allows one to implement parallel

computing with a minimal change to the serial code. However, shared-memory

supercomputers are extremely expensive, and thus somewhat inaccessible.

MPI and OpenMP are compatible with Fortran and C languages. Parallel

computing is also feasible under other software packages, e.g., Graphics Processing

Unit (GPU) for Matlab and R.

Parallel computing using the MPI library acts as described in Figure 1.3. The

code usually starts with a serial code until we have independent tasks that can

be executed simultaneously. We can then call the parallel computing environment

and divide the work between the available CPUs. We choose a master CPU, which

will be responsible for collecting and assembling the total work. The other CPUs

are called slaves. When these tasks are done, we proceed with the exchange of

information between the master and the slaves, which ends the parallel part of the

code. We can then go back to serial code. The information transfers have to be

minimal for efficiency purposes.

Figure 1.3: Parallel computing using MPI

The easiest way to parallelize DP is to submit the computation tasks associated

to a given grid point (ak,bl), for k = 1, . . . , p and l = 1, . . . ,q, to a single CPU. Our
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parallel code acts as follows.

1. This single CPU computes once and locally stores the overall grid points

(ai,b j) and the exercise values κ(ai,b j), for i = 1, . . . , p and j = 1, . . . ,q.

2. Following eq. (3), it also computes once and locally stores the 4×(p+1)(q+1)

transition parameters T 00
kli j, T 10

kli j, T 01
kli j, and T 11

kli j, for i = 0, . . . , p and j = 0, . . . ,q.

3. Following eq. (4)-(5), it computes and stores at step n+1 the local coefficients

α
n+1
i j , β

n+1
i j , γ

n+1
i j , and δ

n+1
i j , for i = 0, . . . , p and j = 0, . . . ,q.

4. Following eq. (6)-(7), it computes and stores at step n the option’s holding

value ṽh
n(ak,bl) then the overall value ṽn(ak,bl).

5. The same CPU exports ṽn(ak,bl) to a selected CPU, the so-called master

CPU.

6. The master CPU collects ṽn(ak,bl), for k = 1, . . . , p and l = 1, . . . ,q, and sends

them back to all running CPUs.

7. Go to step 3 and repeat until n = 0.

Since the number of CPUs available to the analyst is usually less than the grid

size pq, we submit the same number of grid points to each CPU as described in

figure 1.4. Fixing this number for each grid size pq is a question of efficiency.

Assume the same program is run twice with n and kn CPUs, where n and k ∈ N∗.

Figure 1.4: Dynamic programming tasks’ parallelization
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Let τ1 and τ2 be the computing times of the first and second run, respectively. In

the best case scenario, the expected computing time declines by the same factor k,

that is,

E [τ2] =
E [τ1]

k
,

which results in a relative efficiency ratio

E [τ1]/E [τ2]

k
= 1.

In fact, this ratio is usually lower than one, since the running CPUs exchange some

information during the computing process, as in steps 5-6, and the parallel code

behaves partially as the serial code, as in step 1. A relative efficiency ratio higher

than 75% is highly desirable.

We use the supercomputer Briarée managed by Calcul Québec and Compute

Canada 4; it is equipped with 8064 CPUs (cores). These 8064 cores are divided

in 672 computing nodes, each equipped with two six-core processors running at a

speed of 2.667 GHz. Thus, each computing node includes 12 cores. The number

of computing nodes, n̄, called for parallel computing must be specified by the

programmer (n̄ ≤ 672), which results in 12× n̄ cores. Briarée has a total memory

space of 26.72 TB, split between the computing nodes. Given the architecture of

Briarée’s hardware (Figure 1.5), the number of grid points submitted to each core

is
pq

12× n̄
∈ N∗.

The code lines are written in C and compiled with GCC. We use the MPI library

to access parallel computing.

4. The operation of this supercomputer is funded by the Canada Foundation for Innovation
(CFI), Ministère de l’Économie, de la Science et de l’Innovation du Québec (MESI) and the Fonds
de recherche du Québec - Nature et technologies (FRQ-NT).
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Figure 1.5: Briarée’s architecture

1.4 Numerical investigation

1.4.1 European options

Table 1.1 compares DP to Boyle (1988), who uses a two-dimensional trinomial

tree for valuing European put-on-min options. The closed-form solution for this

contract is given in Stulz (1982) (see also Appendix 1.A). Set S1
0 = S2

0 = 40, d1 =

d2 = 0, σ1 = 0.2, σ2 = 0.3, ρ = 0.5, r = 5% (effective) ≡ 0.04879 (continuously

compounded), T = 7 months ≡ 0.58333 years. Following the constraints of Calcul

Québec and Compute Canada, we select n̄ as the highest integer lower than 200

that ensures an efficiency ratio higher than 75%, where pq/(12n̄) ∈ N∗.

As explained in Section 3, DP does not need a time discretization. For compar-

ison purposes, however, we run DP with the same number of time steps as assumed

in Boyle (1988). As expected, when the number of time steps is low, DP behaves

almost perfectly, whereas the binomial tree is less accurate. For high number of

time steps, the binomial tree converges and becomes as accurate as DP. It is worth

noticing that DP over-evaluate the true value and approaches it as the grid size

increases. This can be explained by the fact that the bilinear interpolation always

over-approximates the true value function as the latter is convex.

Boyle (1988) does not report his computing times. Each DP’s CPU time (in

seconds) can be split into a fixed cost, associated to the transition parameters, and
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DP with a grid size pq

722 1442 3002 Boyle
Closed
form

K = 35 1.411 1.392 1.388 1.425 1.387

40 3.837 3.805 3.800 3.778 3.798

45 7.543 7.508 7.501 7.475 7.500

12×n̄ 576 1728 1800

Total CPU 0.93 5.40 34.48

Linear CPU 0.65 4.11 11.99 10 time steps

K = 35 1.504 1.410 1.391 1.392 1.387

40 3.970 3.832 3.805 3.795 3.798

45 7.694 7.537 7.507 7.499 7.500

12×n̄ 576 1728 1800

Total CPU 2.14 10.29 67.01

Linear CPU 1.83 8.85 46.91 50 time steps

Table 1.1: European put-on-min options
DP vs. Boyle (1988)
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a linear cost, associated to the backward recursion. Our numerical experiments

show that the fixed cost accounts for an important portion of the total CPU time.

The relevant DP’s computing time is the linear CPU time, since the transition pa-

rameters can be computed only once or twice a day, following the model-estimation

step.

1.4.2 American options

We compare DP to alternative methodologies for valuing American-style op-

tions, that is, the lattice approach, finite differences, and Monte Carlo simulation,

among other ad hoc procedures.

DP with a grid size pq

S2
0 S1

0 722 1442 3002 Lower
bound

Upper
bound

90

90 0.893 0.799 0.782 0.63 0.97

100 1.691 1.560 1.536 1.27 1.88

110 2.526 2.364 2.335 1.92 2.77

120 3.177 2.984 2.950 2.49 3.37

100

100 3.392 3.233 3.205 2.62 3.98

110 5.341 5.174 5.145 4.26 6.36

120 6.680 6.608 6.576 5.51 7.58

130 7.639 7.402 7.361 6.36 7.95

110

110 9.455 9.362 9.348 10.00 13.66

120 12.225 12.118 12.098 10.37 14.50

130 13.511 13.335 13.304 11.58 14.53

140 14.147 13.912 13.869 12.51 14.44

12×n̄ 576 1728 1800

Total CPU 2.93 15.25 81.88

Linear CPU 2.89 15.05 78.76 100 time steps

Table 1.2: American call-on-min options
DP vs. Detemple et al. (2003)

Detemple et al. (2003) consider an American call-on-min option. They propose

several approximations of the option’s exercise frontier at each decision date, which
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results in a lower and an upper bound for the option’s value. These bounds are

then estimated by Monte Carlo simulation of size 50,000. Table 1.2 reports DP

values versus Detemple et al. (2003). The parameters are K = 100, d1 = d2 = 0.05,

ρ = 0, σ1 = σ2 = 0.2, T = 1, and r = 0.06. DP values are always between their

lower and upper counterparts.

Table 1.3 compares DP to Boyle’s (1988) trinomial tree. The parameters are

given in Section 4.1. All in all, DP values are close to Boyle’s (1988) values. Consis-

tent with the analysis of Section 4.1, the gap between the competing approximations

is larger when the number of exercise opportunities is low; DP is expected to be

more accurate. In addition, figure 1.6 plots the exercise region of a put-on-min

option at date 4 for the same parameter as table 1.3 with strike price K = 35 and

10 decision dates.

Figure 1.6: Optimal policy for a put-on-min option

While Monte Carlo simulation is combined with a dual approach by Rogers

(2002), it is combined with a bundling approach by Jin et al. (2007). Their random

samples are of size 10,000 and 60,000, respectively. We report their respective

95% confidence intervals. Hartley (2000) uses finite differences. The parameters

are K = 100, d1 = d2 = 0, ρ = 0, σ1 = σ2 = 0.6, r = 0.06, and T = 0.5.
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DP with a grid size pq

722 1442 3002 Boyle

K = 35 1.436 1.416 1.413 1.450

40 3.918 3.887 3.881 3.870

45 7.713 7.678 7.671 7.645

12×n̄ 576 1728 1800

Total CPU 1.01 5.79 36.63

Linear CPU 0.67 4.51 13.75 10 time steps

K = 35 1.535 1.440 1.422 1.423

40 4.064 3.926 3.899 3.892

45 7.880 7.727 7.697 7.689

12×n̄ 576 1728 1800

Total CPU 1.96 9.94 66.45

Linear CPU 1.71 8.46 46.43 50 time steps

Table 1.3: American put-on-min options
DP vs. Boyle (1988)

DP with a grid size pq

(S1
0, S2

0) 722 1442 3002 Rogers Jin et al. Hartley

(80, 80) 37.938 37.416 37.312 [37.35, 37.65] [37.1000, 37.4022] 37.30

(80, 100) 32.775 32.205 32.091 [32.12, 32.26] [31.8421, 32.1451] 32.08

(80, 120) 29.826 29.265 29.152 [29.18, 29.32] [28.8860, 29.2434] 29.14

(100, 100) 25.889 25.205 25.066 [24.93, 25.23] [24.8296, 25.1576] 25.06

(100, 120) 21.779 21.067 20.920 [20.89, 21.09] [20.6850, 20.9932] 20.91

(120,120) 16.864 16.102 15.942 [15.99, 16.19] [15.6737, 16.0017] 15.92

12×n̄ 576 1728 1800

Total CPU 1.66 8.70 46.72 180 24

Linear CPU 1.60 8.41 43.58 51 time steps

Table 1.4: American put-on-min options – DP vs. Rogers (2002), Jin et al.
(2007), and Hartley (2000)
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DP values, obtained with p = q = 300, almost always belong to their associated

95% confidence intervals and compare extremely well with Hartley’s (2000) values,

which are described by Rogers (2002) as extremely accurate.

Table 1.5 compares DP to the algorithm of Jin et al. (2007) for Bermudan

call on max options on two assets (JTS). BG stands for Broadie and Glasserman

(1997) who propose two Monte Carlo estimators, one biased low and the other

biased hight. We report a 95% confidence intervals (CI) for the true values. Set

K = 100, d1 = d2 = 0.1, ρ = 0.3, σ1 = σ2 = 0.2, T = 1 (year), and r = 0.05. All

procedures run with four evenly exercise dates. True values are reported from

Broadie and Glasserman (1997) and are approximated using Kamrad and Ritchken

(1991). Their are based on a two-point Richardson extrapolation of the lattice

value with 600 time steps and with a 1200 time steps.

DP with a grid size p

(S1
0, S2

0) 72 144 300
Broadie and
Glasserman

Jin et al. True

(70, 70) 0.244 0.239 0.238 [0.231, 0.266] [0.2224, 0.2436] 0.237

(80, 80) 1.296 1.273 1.269 [1.191, 1.287] [1.2159, 1.2865] 1.259

(90, 90) 4.179 4.119 4.108 [3.923, 4.216] [4.0141, 4.1365] 4.077

(100, 100) 9.522 9.442 9.427 [9.046, 9.673] [9.2672, 9.4302] 9.361

(110, 110) 17.216 17.072 17.040 [16.516, 17.504] [16.8415, 17.0037] 16.924

(120, 120) 26.449 26.237 26.161 [25.471, 26.643] [25.8637, 26.1471] 25.980

(130, 130) 36.537 36.176 36.033 [35.161, 36.646] [35.6321, 35.9155] 35.763

12×n̄ 576 1728 1800

Total CPU 1.28 7.35 118.78 1.06

Linear CPU 0.45 2.55 14.45 4 time steps

Table 1.5: American call-on-max options – DP vs Broadie and Glasserman (1997)
and Jin et al. (2007)

Table 1.6 compares DP to Raymar and Zwecher (1997), who use a simulation

based algorithm. Their procedure runs with 200.000 paths and 10 time steps and

their prices are noted (RZ). Set d1 = d2 = 0.1, ρ = 0.3, σ1 = σ2 = 0.2, T = 1 (year)
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DP with a grid size p

(S1
0, S2

0) K 72 144 300
Raymard and

Zwecher
Binomial

(100, 110)

70 40.998 40.940 40.931 [40.852, 40.986] 40.930

100 14.037 13.959 13.946 [13.923, 14.075] 13.945

130 2.152 2.106 2.097 [2.173, 2.263] 2.093

(100, 100)

70 34.601 34.537 34.526 [34.453, 34.605] 34.525

100 9.632 9.559 9.547 [9.542, 9.694] 9.543

130 1.100 1.071 1.065 [1.125, 1.187] 1.062

(100, 90)

70 30.838 30.786 30.777 [30.698, 30.824] 30.776

100 7.237 7.172 7.160 [7.169, 7.303] 7.158

130 0.706 0.684 0.680 [0.732, 0.786] 0.677

12×n̄ 576 1728 1800

Total CPU 1.25 5.09 105

Linear CPU 0.29 1.20 18.04 10 time steps

Table 1.6: American call-on-max options – DP vs Raymar and Zwecher (1997)

and r = 0.05. Binomial prices are taken from Raymar and Zwecher (1997) and

based on 10 time steps.

DP shows competitive CPU times. These could have been further drastically

reduced with access to the overall hardware capabilities. These results reinforce

DP as a viable alternative for valuing two-dimensional American options.

1.5 Conclusion

We propose a dynamic program coupled with piecewise bilinear approximations

for valuing two-dimensional American options. We use parallel computing to speed

up efficiency. This methodology presents two major advantages with respect to its

competitors, giving that it assumes a space but not a time discretization, and a

numerical but not a statistical error. Our investigation shows that DP competes

well against its alternative methodologies in terms of accuracy. Although DP’s

CPU times are competitive, they can be further drastically reduced through access

20



to the overall hardware capabilities.

This paper paves the way for a few useful extensions. The same DP procedure

can accommodate a larger family of derivative contracts, such as Asian options

and barrier options, and more complex state processes, such as two-dimensional

jump diffusions and GARCH processes, as long as the transition parameters can

be computed efficiently. The extension to higher dimensions is challenging but

feasible. Monte Carlo simulation is certainly required for valuing option contracts

in high state-space dimensions, but DP can firstly be combined with quasi–Monte

Carlo simulation in moderate state-space dimensions, where the latter deterministic

approach is known to be more efficient than the former random approach.
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APPENDIX

1.A Closed-form solutions for European options

The closed-form solutions given below are taken from Stulz (1982).

1.A.1 Exchange option

The price of an European exchange option giving the right to exchange S2

against S1 at maturity date T , evaluated at date t, is given by

E(S1
t ,S

2
t ,T − t) = S1

t e−d1(T−t)
Φ(d+)−S2

t e−d2(T−t)
Φ(d−),

where

d± =
ln(S1

t /S2
t )− (d1−d2±σ2/2)(T − t)

σ
√

(T − t)
,

σ =
√

σ2
1 + σ2

2 −2σ1σ2ρ,

and Φ(·) is the cumulative density function of the univariate standard normal

distribution.

1.A.2 Call-on-max option

The price of an European call-on-max option with maturity date T and strike

price K, evaluated at date t, is given by

Cmax(S1
t ,S

2
t ,K,T − t) = S1

t e−d1(T−t)
Φ(d1

1 ,d12,ρ12)+

S2
t e−d2(T−t)

Φ(d2
1 ,d21,ρ21)−

Ke−r(T−t)(1−Φ(−d1
2 ,−d2

2 ,ρ)),



where

σ = σ
2
1 + σ

2
2 −2ρσ1σ2,

di j =
log(Si

t/S j
t )+(d j−di + σ2/2)(T − t)

σ
√

(T − t)
,

ρi j =
σi−ρσ j

σ
,

di
2 =

log(Si
t/K)+(r−di−σ2

i /2)(T − t)
σi
√

T − t
,

di
1 = di

2 + σi
√

T − t,

and Φ(·, ·,ρ) is the cumulative density function of the bivariate standard normal

distribution with correlation coefficient ρ .

1.A.3 Put-on-min option

The price of a European put-on-min option with maturity T and strike price

K, evaluated at date t, is given by

Pmin(S1
t ,S

2
t ,K,T − t) = e−r(t−t)K−Cmin(S1

t ,S
2
t ,0,T − t)+

Cmin(S1
t ,S

2
t ,K,T − t),

where Cmin(S1
t ,S

2
t ,K,T − t) is the price of the European call-on-min option with

strike price K and maturity T , evaluated at date t as follows.

Cmin(S1
t ,S

2
t ,K,T − t) = S1

t e−d1(T−t)
Φ(d1

1 ,d
′
12,−ρ12)+

S2
t e−d2(T−t)

Φ(d2
1 ,d
′
21,−ρ21)−

Ke−r(T−t)
Φ(d1

2 ,d
2
2 ,ρ)),
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where

d′i j =
log(Si

t/S j
t )+(d j−di−σ2/2)(T − t)

σ
√

(T − t)
.

1.B Transition parameters

The transition parameters T νµ

kli j for ν and µ ∈ {0,1}, k ∈ {1, . . . , p}, l ∈ {1, . . . ,q},
i ∈ {0, . . . , p}, and j ∈ {0, . . . ,q} are calculated as follows.

T 00
kli j = E∗

[
I
(

(S1
tn+1

,S2
tn+1

) ∈ Ri j

)
| (S1

tn,S
2
tn) = (ak,bl)

]
= Q

[
(S1

tn+1
,S2

tn+1
) ∈ Ri j | (S1

tn,S
2
tn) = (ak,bl)

]
=
∫ xk,i+1

xk,i

∫ yl, j+1

yl, j

φ(z1,z2,ρ)dz1dz2

= Φ(xk,i+1,yl, j+1,ρ)−Φ(xk,i,yl, j+1,ρ)−

Φ(xk,i+1,yl, j,ρ)+ Φ(xk,i,yl, j,ρ),

where

xk,i =

(
log
(
ai/ak

)
−
(

r−δ1−σ
2
1/2
)

∆t
)
/
(

σ1
√

∆t
)

yl, j =

(
log
(
b j/bl

)
−
(

r−δ2−σ
2
2/2
)

∆t
)
/
(

σ2
√

∆t
)
.

The functions φ(·, ·,ρ) and Φ(·, ·,ρ) are respectively the density and the cumula-

tive density functions of the bivariate standard normal distribution with correlation

coefficient ρ . The function Φ(·, ·,ρ) is computed according to Genz (2004).
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T 10
kli j = E∗

[
S1

tn+1
I
(

(S1
tn+1

,S2
tn+1

) ∈ Ri j

)
| (S1

tn,S
2
tn) = (ak,bl)

]

=
∫ xk,i+1

xk,i

∫ yl, j+1

yl, j

ak exp
(

(r−d1−σ
2
1/2)∆t + σ1

√
∆tz1

)
×

φ(z1,z2,ρ)dz1dz2

= w1
k

∫ xk,i+1−σ1
√

∆t

xk,i−σ1
√

∆t

∫ yl, j+1−ρσ1
√

∆t

yl, j−ρσ1
√

∆t
φ(u1,u2,ρ)du1du2

= w1
k

[
Φ(xk,i+1−σ1

√
∆t,yl, j+1−ρσ1

√
∆t,ρ)−

Φ(xk,i−σ1
√

∆t,yl, j+1−ρσ1
√

∆t,ρ)−

Φ(xk,i+1−σ1
√

∆t,yl, j−ρσ1
√

∆t,ρ)+

Φ(xk,i−σ1
√

∆t,yl, j−ρσ1
√

∆t,ρ)
]
,

where w1
k = ak exp

(
(r−d1−σ2

1/2)∆t + σ2
1 ∆t/2

)
.

T 01
kli j = E∗

[
S2

tn+1
I
(

(S1
tn+1

,S2
tn+1

) ∈ Ri j

)
| (S1

tn,S
2
tn) = (ak,bl)

]

=
∫ xk,i+1

xk,i

∫ yl, j+1

yl, j

bl exp
(

(r−d2−σ
2
2/2)∆t + σ2

√
∆tz2

)
×

φ(z1,z2,ρ)dz1dz2

= w2
l

∫ xk,i+1−ρσ2
√

∆t

xk,i−ρσ2
√

∆t

∫ yl, j+1−σ2
√

∆t

yl, j−σ2
√

∆t
φ(u1,u2,ρ)du1du2

= w2
l

[
Φ(xk,i+1−ρσ2

√
∆t,yl, j+1−σ2

√
∆t,ρ)−

Φ(xk,i−ρσ2
√

∆t,yl, j+1−σ2
√

∆t,ρ)−

Φ(xk,i+1−ρσ2
√

∆t,yl, j−σ2
√

∆t,ρ)+

Φ(xk,i−ρσ2
√

∆t,yl, j−σ2
√

∆t,ρ)
]
,
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where w2
l = bl exp

(
(r−d2−σ2

2/2)∆t + σ2
2 ∆t/2

)
.

T 11
kli j = E∗

[
S1

tn+1
S2

tn+1
I
(

(S1
tn+1

,S2
tn+1

) ∈ Ri j

)
| (S1

tn,S
2
tn) = (ak,bl)

]

=
∫ xk,i+1

xk,i

∫ yl, j+1

yl, j

ak exp
(

(r−d1−σ
2
1/2)∆t + σ1

√
∆tz1

)
×

bl exp
(

(r−d2−σ
2
2/2)∆t + σ2

√
∆tz2

)
φ(z1,z2,ρ)dz1dz2

= w1
kw2

l exp(ρσ1σ2∆t)×

∫ xk,i+1−(σ1+ρσ2)
√

∆t

xk,i−(σ1+ρσ2)
√

∆t

∫ yl, j+1−(ρσ1+σ2)
√

∆t

yl, j−(ρσ1+σ2)
√

∆t
φ(u1,u2,ρ)du1du2

= w1
kw2

l exp(ρσ1σ2∆t)×[
Φ(xk,i+1− (σ1 + ρσ2)

√
∆t,yl, j+1− (ρσ1 + σ2)

√
∆t,ρ)−

Φ(xk,i− (σ1 + ρσ2)
√

∆t,yl, j+1− (ρσ1 + σ2)
√

∆t,ρ)−

Φ(xk,i+1− (σ1 + ρσ2)
√

∆t,yl, j− (ρσ1 + σ2)
√

∆t,ρ)+

Φ(xk,i− (σ1 + ρσ2)
√

∆t,yl, j− (ρσ1 + σ2)
√

∆t,ρ)
]
.
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CHAPTER 2

A TWO-FACTOR STRUCTURAL MODEL FOR VALUING

CORPORATE SECURITIES

Malek Ben-Abdellatif, 1 Hatem Ben Ameur, 2 Bruno Rémillard 3

Abstract

We develop a general structural model for valuing risky corporate

debts that takes into account both default and interest rate risk. We

propose a two-dimensional model in which the state variables are the

value of the firm’s assets and the short-term interest rate. The former

follows a lognormal process and the latter a mean-reverting Gaussian

process. Our methodology is based on dynamic programming and finite

elements. We use parallel computing to enhance its efficiency. Our

model accommodates flexible debt structure, multiple seniority classes,

tax benefits, and bankruptcy costs. The results we obtain are consistent

with empirical evidence documented in the literature.

Keywords: Credit risk; Structural model; stochastic interest rate;

dynamic programming; finite elements; parallel computing.

2.1 Introduction

We propose a structural model for valuing risky debts when the interest rate is

stochastic. Our methodology is based on two-dimensional dynamic programming

coupled with finite elements. We use parallel computing to enhance our procedure’s
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efficiency. Classical structural models assume a fixed interest rate, but this assump-

tion is too simplistic as interest rates are stochastic in practice, particularly since we

observe long maturities for corporate debts. Empirical evidence suggests that the

interest rate and credit risk are negatively correlated (Litterman and Scheinkman,

1991, Collin-Dufresne et al., 2001). The activity of the underlying company and

its capital structure policy can be sensitive to the term structure of interest rates.

The empirical work of Longstaff and Schwartz (1995) shows that bonds with sim-

ilar credit ratings, but in different industries, have widely varying credit spreads.

Theses differences are explained by the manifold correlations with interest rates.

Contrary to the traditional approach, which implies that credit spreads depend only

on an asset-value factor, Longstaff and Schwartz (1995) show that credit spreads

for corporate bonds are driven by an asset-value factor and an interest-rate factor;

the dependence between the two factors plays a crucial role in determining credit

spreads. It is thus important to include interest rate uncertainty in the credit risk

modeling framework.

Structural models are based on the pioneer work of Merton (1974) who consid-

ered the firm’s assets to follow geometric-Brownian motion. Default occurs if the

firm’s assets are insufficient to pay the debt at maturity. Considering the debt to

be a pure bond, he uses option-pricing theory; the firm’s equity is evaluated as a

European call option on the firm’s assets, with the same maturity as the bond, and

a strike price equal to the principal amount. Although simple and unrealistic, this

work has generated several developments in credit risk modeling and is the basis

for more general models.

Black and Cox (1976) propose a barrier-triggered default which allows for de-

fault to happen before maturity of the debt. Several authors consider more complex

debt structures or include frictions (Ericsson and Reneby, 1998, Collin-Dufresne and

Goldstein, 2001, Hsu et al., 2010, Geske, 1977), endogenous default barriers (Le-

land, 1994, Anderson and Sundaresan, 1996, Leland and Toft, 1996, Mella-Barral

and Perraudin, 1997, François and Morellec, 2004), and jumps in the firm’s asset

process (Zhou, 2001, Chen and Kou, 2009).
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To incorporate interest rate risk in the corporate debt valuation, various articles

include a stochastic interest rate in structural models. Shimko et al. (1993) add a

stochastic short-term interest rate that evolves according to Vasicek’s (1977) model

to Merton’s (1974) model. In this case, a closed-form solution is available as the

problem becomes equivalent to pricing an European call option on a stock under

the stochastic interest rate.

Kim et al. (1993) and Longstaff and Schwartz (1995) extend the Black and

Cox (1976) model. The former considers a CIR dynamic following Cox et al.

(1985) for the short-term interest rate while the latter uses Vasicek’s (1977) model;

both derive a quasi-closed form for the debt value. Cathcart and El-Jahel (1998)

and Briys and De Varenne (1997) propose some corrections to the Longstaff and

Schwartz’s (1995) model. The first adds a CIR process for the short-term rate

to avoid having positive probability that the interest rate becomes negative. The

second corrects for weaknesses such as bondholders recovering an amount that, in

case of default, does not depend on the remaining firm’s asset value. All these

models consider very simple settings regarding the firm’s capital structure and the

default mechanism. Allowing endogenous default barriers or more general debt

structures requires using a numerical approach to solve the problem.

We extend Altieri and Vargiolu (2001) and Ayadi et al. (2016) by adding a

stochastic interest rate to a general structural model which allows for a flexible debt

structure with multiple seniority classes, and accounts for bankruptcy costs and

tax benefits. We use a mean-reverting Gaussian process for the short-term interest

rate as proposed by Vasicek (1977). The proposed methodology is based on a two-

dimensional dynamic program coupled with finite elements. As this procedure is

time demanding, we use parallel computing to expedite our procedure and improve

its efficiency. Our results demonstrate convergence and remain consistent with

empirical evidence documented in the literature.

This paper is organized as follows: Section 2.2 presents our model, Section 2.3

describes our dynamic program, Section 2.4 shows our numerical investigation, and

Section 2.5 concludes our paper.
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2.2 Model and notations

We propose a structural model for valuing risky debt by allowing for both

default risk and interest rate risk. The stochastic short-term interest rate rt evolves

according to a mean-reverting Gaussian process as in Vasicek’s (1977) model

drt = α(β − rt)dt + σrdZ1
t , (2.1)

where β is the long-term mean level, α is the speed of reversion to this level, and

σr is the instantaneous volatility. The firm’s assets value Vt moves according to

geometric-Brownian motion

dVt

Vt
= (rt−δ )dt + σV (ρdZ1

t +
√

1−ρ2dZ2
t ), (2.2)

where δ is the firm’s payout rate and σv is its assets volatility. Both dynamics

are under the risk neutral measure Q. Z1
t and Z2

t are two independent Brownian

motions and ρ represents the correlation between the two processes.

Consider that the firm’s capital structure contains a portfolio of senior and

junior bonds and a common stock. The firm makes coupon payments to the bond-

holders which results in collecting tax benefits. The firm also pays bankruptcy costs

in case of default. The model assumes that the stockholders determine the time

of default by maximizing the firm’s total value subject to the limited liability con-

straint. Let P = {t0, t1, . . . , tn, . . . , tN} be a set of payment dates, and let (Ω,Ft ,P)

be a complete probability space. For each n ∈ {0, . . . ,N}, k ∈ {0, . . . ,N + 1}, where

k is the bankruptcy time, set rk
n =−

∫ tk
tn rsds; the discount factor is then e−rk

n . The

case k = N + 1 means that the firm survives until date tN . The value functions, in

terms of the bankruptcy time k, are expressed as follows:

Bankruptcy costs: The costs connected to default are equal to wVτ , where
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w ∈ (0,1) is a fixed fraction. The value of bankruptcy costs at time tn is given by

BC(n)
k =

 0, k < n or k = N + 1,

we−rk
nVk, n≤ k ≤ N.

Debt: At each date tn, the firm is committed to pay d(sen)
n + d( jun)

n = dn to its

creditors, where d(sen)
n and d( jun)

n are the payments due to the senior and junior

bondholders, respectively. These payments include interest as well as principal

payments. The interest payment is denoted dint
n . The last payment dates of the

senior and junior debts are indicated by T s and T j, with 0 ≤ T s ≤ T j = T . The

senior and junior debts are

DS(n)
k =


0, k < n,

e−rk
n min

{
(1−w)Vk,d

(sen)
k

}
+ ∑

k−1
j=n e−r j

nd(sen)
j , n≤ k ≤ N,

∑
N
j=n e−r j

nd(sen)
j , k = N + 1,

and

DJ(n)
k =


0, k < n,

rk
n max

{
(1−w)Vk−d(sen)

k ,0
}

+ ∑
k−1
j=n e−r j

nd( jun)
j , n≤ k ≤ N,

∑
N
j=n e−r j

nd( jun)
j , k = N + 1.

where ∑
n−1
j=n = 0, by convention.

The total debt at time tn is then

D(n)
k =


0, k < n,

(1−w)e−rk
nVk + ∑

k−1
j=n e−r j

nd j, n≤ k ≤ N,

∑
N
j=n e−r j

nd j, k = N + 1.

Tax benefits: The tax benefits associated with the cost of debt are propor-
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tional to the interest payment dint
n . Let rc

n ∈ [0,1] be the periodic corporate tax rate

over [tn, tn+1] and tbn = rc
ndint

n . The tax benefits are then

T B(n)
k =


0, k < n,

∑
k−1
j=n e−rk

ntb j, n≤ k ≤ N + 1.

The total value of the firm: The total value of the firm represents the assets’

value increased by the tax benefits, net of the bankruptcy costs,

W (n)
k = Vn + T B(n)

k −BC(n)
k

=


0, k < n,

Vn + ∑
k−1
j=n e−r j

ntb j−we−rk
nVk, n≤ k ≤ N,

Vn + ∑
N
j=n e−r j

ntb j, k = N + 1.

Equity value: In case of survival at date tn, the stockholders receive the total

value of the firm minus the total debt value

E
(n)
k = W (n)

k −D(n)
k .

Let T be the set of stopping times with values in {0, . . . ,N + 1}. As a result, for

any stopping time τ ∈T with τ ≥ n, one obtains

E
(
E

(n)
τ |Fn

)
= B

(τ)
n 1(τ > n),

where B
(τ∨N)
N = BN = VN + tbN−dN and

B
(τ)
n = Vn + tbn−dn−E

(
e−rn+1

n Vn+1|Fn

)
+ E

(
e−rn+1

n E
(n+1)
τ∨(n+1)

|Fn

)
,

for all n ∈ {0, . . . ,N−1}.
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Definition 1.

Tn =

{
τ ∈T ;τ ≥ n, {τ > k} ⊂

{
E
(
E

(k)
τ∨k|Fk

)
> 0
}
, for k ≥ n

}
.

Finally, define J(n)
τ = T B(n)

τ −BC(n)
τ , and set

J̄n = sup
τ∈Tn

E
(

J(n)
τ

∣∣∣Fn

)
,

for all n ∈ {0, . . . ,N}. Note that supτ∈Tn
E
{

W (n)
τ

∣∣∣Fn

}
= Vn + J̄n.

The main aim is to find a sequence of stopping times τ?n ∈Tn, corresponding to

optimal bankruptcy times, so that the total expected wealth at time n is maximized,

that is Vn + J̄n = E
{

W (n)
τ?n
|Fn

}
. The solution is provided by Ben-Abdellatif et al.

(2016) in the following theorem.

Theorem 1. Set EN = max(VN + tbN−dN ,0). For any k ∈ {0, . . . ,N−1}, set

Ek = max
{

Vk + tbk−dk−E
(

e−rk+1
k Vk+1|Fk

)
+ E

(
e−rk+1

k Ek+1|Fk

)
,0
}
.

Next, define

τ
?
k =

 N + 1, if E j > 0 for all j ∈ {k, . . . ,N},
min{k ≤ j ≤ N;E j = 0}, otherwise.

Then

J̄N = E
(

J(N)
τ?N
|FN

)
=−αVN1(EN = 0)+ bN1(EN > 0),

and for all k ∈ {0, . . . ,N−1},

J̄k = E
(

J(k)
τ?k
|Fk

)
= −αVk1(Ek = 0)+

{
tbk + E

(
e−rk+1

k J̄k+1|Fk

)}
1(Ek > 0).

The proof of Theorem 1 is given in Ben-Abdellatif et al. (2016). Now suppose
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that Vn = V (tn). Further, set Fn = σ{r(u),V (u);0≤ u≤ tn}.
Note that our model satisfies the Markovian hypothesis, meaning that there

is an expectation operator Tn so that for any integrable function Ψ on R× [0,∞),

E
[

e−
∫ tn+1

tn r(u)du
Ψ{r(tn+1),V (tn+1)}|Fn

]
= TnΨ{r(tn+1),V (tn + 1)}. (2.3)

In our setting, this expectation operator is calculated as follows

TnΨ{r(tn+1),V (tn+1)}= B(tn, tn+1)E∗
[
Ψ{r(tn+1),V (tn+1)}|Fn

]
,

where E∗ is the expectation under the forward measure, and B(tn, tn+1) is the price

of a zero-coupon bond with maturity tn+1 at time tn. The change of measure using

the forward measure is done according to Jamshidian (1989) and is described in

Appendix 2.A. For this setting, the following proposition from Ben-Abdellatif et al.

(2016) gives the expression of the value functions.

Proposition 1. Set r = r(tn) and v = V (tn). Under the Markovian hypothesis, for

k = N, one has

EN(r,v) = max(v + tbN−dN ,0), (2.4)

DN(r,v) = (1−w)v1{EN(r,v) = 0}+ dN1{EN(r,v) > 0},

DSN(r,v) = min
{

(1−w)v,d(sen)
N

}
1{EN(r,v) = 0}+

d(sen)
N 1{EN(r,v) > 0}, (2.5)

DJN(r,v) = max
{

(1−w)v−d(sen)
N ,0

}
1{EN(r,v) = 0}+

d( jun)
N 1{EN(r,v) > 0}, (2.6)

T BN(r,v) = tbN1{EN(r,v) > 0}, (2.7)

BCN(r,v) = wv1{EN(r,v) = 0}, (2.8)
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and for any k ∈ {0, . . . ,N−1}

Ek(r,v) = max
{

bk−dk + TkEk+1(r,v),0
}
, (2.9)

Dk(r,v) = (1−w)v1{Ek(r,v) = 0}+{
dk + TkDk+1(r,v)

}
1{Ek(r,v) > 0},

DSk(r,v) = min
{

(1−w)v,d(sen)
k

}
1{Ek(r,v) = 0}+{

d(sen)
k + TkDSk+1(r,v)

}
1{Ek(r,v) > 0}, (2.10)

DJk(r,v) = max
{

(1−w)v−d(sen)
k ,0

}
1{Ek(r,v) = 0}+{

d( jun)
k + TkDJk+1(r,v)

}
1{Ek(r,v) > 0}, (2.11)

T Bk(r,v) = {tbn + TkT Bk+1}1{Ek(r,v) > 0}, (2.12)

BCk(r,v) = αVn1{Ek(r,v) = 0}+ TkBCk+11{Ek(r,v) > 0}. (2.13)

2.3 Dynamic programming

The implementation of the optimal stopping time problem presented in Sec-

tion 2.2 is done by using dynamic programming coupled with finite elements and

bilinear interpolations. Parallel computing is used to accelerate the execution time

of our program and enhance its efficiency.

Let G be a set of grid points {(a1,b1), (a1,b2), . . . ,(ap,bq)} such that max(∆ak,∆bl)

→ 0 and Q[(Vt ,rt) ∈ [ap,∞)×R∗+ ∪R∗+× [bq,∞)]→ 0, when p and q→ ∞. Let

a0 = b0 = 0 and ap+1 = bq+1 = ∞. The rectangle [ai,ai+1)× [b j,b j+1) is designated

by Ri j.

Dynamic programming acts as follows.

1. At date tN = T , the value functions are known in closed form and are computed

following Eq. (2.4), (2.6), (2.5), (2.7) and (2.8).

2. At each date tn, suppose that an approximation of each value function is

available at a future decision date tn+1 on G , indicated by Ψ̃n+1(ak,bl), for

k = 1, . . . , p and l = 1, . . . ,q, where Ψn represents T Bn, BCn, DSn, DJn, or En.

Use a bilinear piecewise polynomial, and interpolate each value function Ψ̃n+1
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from G to the overall state space [0,∞)2 by setting

Ψ̂n+1(x,ey) =
p

∑
i=0

q

∑
j=0

(
α

n+1
i j + β

n+1
i j x + γ

n+1
i j ey + δ

n+1
i j xey

)
I
(
(x,y) ∈ Ri j

)
.

The local coefficients of each value function fn+1, α
n+1
i j , β

n+1
i j , γ

n+1
i j , and δ

n+1
i j ,

for i = 0, . . . , p and j = 0, . . . ,q, are those of the bilinear interpolation.

3. Approximate every expected discounted value function at tn on G

E
[

e−
∫ tn+1

tn rsds
Ψ̂n+1(Vtn+1,rtn+1) | (Vtn,rtn) = (ak,bl)

]
= B(tn, tn+1)E∗

[
Ψ̂n+1(Vtn+1 ,rtn+1) | (Vtn,rtn) = (ak,bl)

]
= B(tn, tn+1)∑

i, j

(
α

n+1
i j T 00

kli j + β
n+1
i j T 10

kli j + γ
n+1
i j T 01

kli j + δ
n+1
i j T 11

kli j

)
,

(2.14)

where the transition tables T 00,T 10,T 01, and T 11 are defined by

T νµ

kli j = E∗
[
(Vtn+1)

ν(ertn+1 )µI
(
(Vtn+1 ,rtn+1) ∈ Ri j

)
|

(Vtn,rtn) = (ak,bl)
]
, for ν and µ ∈ {0,1}.

For example, T 00
kli j represents the transition probability that the Markov pro-

cess (V,r) moves from (ak,bl) at tn and visits the rectangle Ri j at tn+1. Closed-

form solutions for the transition parameters are given in Appendix 3.2.

4. Compute the value functions at tn on G following Eq. (2.9), Eq. (2.11),

Eq. (2.10), Eq. (2.12) and Eq. (2.13), using Eq. (2.14).

5. Go to step 2 and repeat until n = 0.

2.4 Numerical investigation

Parallel computing uses multiple central processing units (CPUs) simultane-

ously to accelerate complex computations. The Message Passing Interface (MPI)
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library allows the computing process to exchange information between the run-

ning CPUs in order to achieve a given job. We parallelize our dynamic program

by submitting the computation tasks associated to a given number of grid points

to each available CPU. The algorithm used to parallelize our dynamic program is

described in detail in appendix 3.B. This approach allows us to drastically reduce

computation times to a reasonable level. Our numerical investigation presented in

this section are based on a grid size of 3002. A price calculation takes in average

two minutes using parallel computing.

We use the supercomputer Briarée managed by Calcul Québec and Compute

Canada 4. The code lines are written in C and compiled with GCC. We use the

MPI library to access parallel computing.
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Figure 2.1: Credit spreads for an 8% bond for different leverage ratios. The parameters used are
r = 0.04,α = 1,β = 0.06,σr = 0.03,ρ =−0.25,σv = 0.2,w = 0, and rc = 0.

We consider similar parameters to those in Longstaff and Schwartz (1995) for

the interest rate dynamic as plausible parameter values. Figure 2.1 presents the

term structure of credit spreads when the firm’s leverage ratio (debt principle/firm’s

4. The operation of this supercomputer is funded by the Canada Foundation for Innovation
(CFI), Ministère de l’Économie, de la Science et de l’Innovation du Québec (MESI) and the Fonds
de recherche du Québec - Nature et technologies (FRQ-NT).
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Figure 2.2: Credit spreads for an 8% bond for different leverage ratios. The parameters used are
r = 0.04,α = 1,β = 0.06,σr = 0.03,ρ =−0.25,σv = 0.2,w = 0.3, and rc = 0.35.

assets) is changed, but without tax benefits and bankruptcy costs. Credit spreads

are greater for a higher leverage ratio, which corresponds to more risky debt. We

also observe that credit spreads increase with maturity. Figure 2.2 considers the

case with bankruptcy costs and corporate taxes. The term structure of credit

spreads is monotone increasing for firms with a low leverage ratio associated with

good rated bonds. Conversely, the credit spreads’ term structure is hump shaped

for firms with higher leverage ratios, thus corresponding to bonds with low ratings.

This is consistent with empirical evidence, as explained by Sarig and Warga (1989)

and Kim et al. (1993).

Figure 2.3 plots the term structure of the credit spread for various levels of

the current interest rate r, and shows a negative relation between credit spreads

and the level of the short-term interest rate. An increase in r tends to reduce the

default probability as it affects the drift on the firm’s assets dynamic, reducing the

yield spread. However, the magnitude of decrease in the credit spread depends

on the correlation between asset returns and changes in the interest rate. As

shown in Figure 2.4, the credit spread increases when the correlation increases. As
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Figure 2.3: Credit spreads for an 8% bond for different values of r. The parameters used are
α = 1,β = 0.06,σr = 0.03,ρ =−0.25,σv = 0.2,w = 0.3,rc = 0.35, and leverage ratio = 0.5.

explained by Longstaff and Schwartz (1995), differences in the duration of bonds

across industries is related to the differences in correlation with the interest rate

level.
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Figure 2.4: Credit spreads for an 8% bond for different values of ρ. The parameters used are
r = 0.04,α = 1,β = 0.06,σr = 0.03,σv = 0.2,w = 0.3,rc = 0.35, and leverage ratio = 0.5.

42



Maturity
0 2 4 6 8 10 12 14 16 18 20

Y
ie

ld
 s

p
re

a
d

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

σ
v
= 0.2

σ
v
 = 0.3

σ
v
 = 0.4

Figure 2.5: Credit spreads for an 8% bond for different values of σv. The parameters used are
r = 0.04,α = 1,β = 0.06,σr = 0.03,ρ =−0.25,w = 0.3,rc = 0.35, and leverage ratio = 0.5.

Figure 2.5 plots the credit spread for different values of volatility for the firm’s

assets σr. As the latter increases, the credit spread increases. The term structure

of credit spreads is monotone increasing for firms with low risk activities, while it

is hump shaped for more risky firms.

Our paper does not address the estimation problem but it is interesting to notice

that under the structural credit model, it remains an issue. The main difficulty of

the estimation problem is that the firm’s assets value cannot be directly observed.

This is further complicated by the fact that the data samples only comprise of

surviving firms. Several approaches were proposed to tackle the estimation prob-

lem. We briefly discuss the main two methodologies; the first one is based on a

transformed-data-maximum likelihood method. Duan (1994, 2000) was the pioneer

and proposes a likelihood function based on the observed equity prices. He views

them as a sample of transformed data using the equity pricing equation. Later,

and under the same spirit, the transformed-data MLE method was also applied

in credit risk analysis by Ericsson and Reneby (2004), Wong and Choi (2004) and

Duan et al. (2004). The latter derive maximum likelihood estimators for parameters
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under deterministic and stochastic interest rates. Under Longstaff and Schwartz’s

(1995) model they propose a two-stage estimation procedure that first analyzes a

reduced version of the model by setting the interest rate to a constant. Finally,

they address the full version of Longstaff and Schwartz’s (1995) structural model.

The second estimation methodology KMV, as is called in the financial industry, is

based on an iterated algorithm. Interestingly, Duan et al. (2005) proved that the

KMV method is somewhat equivalent to the transformed-data MLE method that

he proposed in earlier research (Duan, 1994, 2000). As a future research avenue,

we will conduct an empirical analysis based on our valuation algorithm and oppose

it to real data.

2.5 Conclusion

We propose a general model for valuing risky corporate debt that incorporates

both default risk and interest-rate risk. Our methodology is based on a dynamic

program coupled with piecewise bilinear approximations where we use parallel com-

puting to enhance efficiency. The proposed model allows for any debt structure with

different seniority classes and takes into account tax benefits and bankruptcy costs.

Our methodology is flexible and general, and can easily be used to perform realistic

empirical credit-risk studies.

We examine the theoretical effect of interest rate uncertainty on the valuation of

corporate debt by incorporating a mean-reverting process to model the short-term

interest rate. As expected, our results are consistent with empirical evidence doc-

umented in the literature. In fact, the interest-rate risk affects the credit spreads’

level, and both are negatively correlated. In addition, the correlation between the

interest rate and the firms’ economic activities explains the observed different credit

spreads for bonds with the same rating but in various industries.

Future research avenues include considering a reorganization process for this

framework, and the valuation of options embedded in corporate bonds, such as

exchangeable convertible bonds. Moreover, one can extend this two-dimensional
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dynamic program to higher dimensions by including an additional factor to the

valuation framework. For example, one could consider a corporate debt for which

coupon payments are due in a foreign currency; then, the exchange rate thus be-

comes the third factor of the model. The extension is challenging but feasible as

we can rely on parallel computing to control the computing times, and we can

combine the dynamic program with quasi-Monte Carlo simulations instead of finite

elements.
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APPENDIX

2.A Forward measure

The forward measure PTF for any date TF is the measure associated with taking

the bond B(t,TF) as a numeraire asset. Under the forward measure, the ratio

B(t,T )/B(t,TF) is a martingale for T ≤ TF . From Girsanov’s Theorem, it follows

that the process W TF defined by

dW TF
t = dZ1

t +
σr

α
(1− e−α(TF−t)),

is standard Brownian motion under PTF . Thus, the dynamic of the interest rate

becomes

drt =

(
θ −αrt−

σ2
r

α
(1− e−α(TF−t))

)
dt + σrdW TF

t ,

with θ = αβ and the dynamic of Xt = ln(Vt) is

dXt =

(
rt−δ −

σ2
V
2
− ρσV σr

α
(1− e−α(TF−t))

)
dt + σV

(
ρdW TF

t +
√

1−ρ2dZ2
t

)
.

The solutions are given by

rt = rue−α(t−u) +

(
θ

α
− σ2

r
α2

)(
1− e−α(t−u)

)
+

σ2
r

2α2

(
e−α(TF−t)− e−α(TF +t−2u)

)
+

σr

∫ t

u
e−α(t−s)dW TF

s ,

Xt = Xu + β (u, t)−

(
σ2

V
2

+
ρσV σr

α

)
(t−u)+

ρσV σr

α2

(
e−α(TF−u)− e−α(TF−u)

)
+

∫ t

u

(
ρσV +

σr

α

(
1− e−α(t−s)

))
dW TF

s , for 0≤ u≤ t,



with

β (u, t) =
ru

α

(
1− e−α(t−u)

)
+

(
θ

α
− σ2

r
α2

)(
−1− e−α(t−u)

α
+ t−u

)
+

σ2
r

2α3

(
e−α(TF−t)−2e−α(TF−u) + e−α(TF +t−2u)

)
.

Under the forward measure, the pair (Xt ,rt) follows a bivariate normal distribution

with

E[Xt |Xu] = Xu + β (u, t)−

(
σ2

V
2

+
ρσV σr

α

)
(t−u)+

ρσV σr

α2

(
e−α(TF−t)− e−α(TF−u)

)
,

Var[Xt |Xu] =

(
σ

2
V +

2ρσV σr

α
+

σ2
r

α2

)
(t−u)− 2ρσV σr

α2

(
1− e−α(t−u)

)
−

σ2
r

2α3

(
3−4e−α(t−u) + e−2α(t−u)

)
,

E[rt |ru] = rue−α(t−u) +
θ

α

(
1− e−α(t−u)

)
− σ2

r
α2

(
1− e−α(t−u)

)
+

σ2
r

2α2

(
e−α(TF−t)− e−α(TF +t−2u)

)
,

Var[rt |ru] =
σ2

r
2α

(
1− e−2α(t−u)

)
,

Cov[Xt ,rt |Xu,ru] =

(
ρσV σr

α
+

σ2
r

α2

)(
1− e−α(t−u)

)
− σ2

r
2α2

(
1− e−2α(t−u)

)
.
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2.B Transitions parameters

The transition parameters T νµ

kli j for ν and µ ∈ {0,1}, k ∈ {1, . . . , p}, l ∈ {1, . . . ,q},
i ∈ {0, . . . , p}, and j ∈ {0, . . . ,q} are calculated as follows:

T 00
kli j = E∗

[
I
(
(Vtn+1,rtn+1) ∈ Ri j

)
| (Vtn,rtn) = (ak,bl)

]
= Q∗

[
(Vtn+1,rtn+1) ∈ Ri j | (Vtn,rtn) = (ak,bl)

]
=
∫ xk,i+1

xk,i

∫ yl, j+1

yl, j

φ(z1,z2,ρ)dz1dz2

= Φ(xk,i+1,yl, j+1,ρ)−Φ(xk,i,yl, j+1,ρ)−Φ(xk,i+1,yl, j,ρ)+ Φ(xk,i,yl, j,ρ),

where

xk,i =
(

log
(
ai/ak

)
−η1

)
/
√

δ1

yl, j =
(
b j−η2

)
/
√

δ2,

η1 = βl−

(
σ2

V
2

+
ρσV σr

α

)
∆t +

ρσV σr

α2

(
1− e−α∆t

)
,

δ1 =

(
σ

2
V +

2ρσV σr

α
+

σ2
r

α2

)
∆t− 2ρσV σr

α2

(
1− e−α∆t

)
−

σ2
r

2α3

(
3−4e−α∆t + e−2α∆t

)
,

η2 = ble−α∆t +
θ

α

(
1− e−α∆t

)
− σ2

r
α2

(
1− e−α∆t

)
+

σ2
r

2α2

(
1− e−2α∆t

)
,

δ2 =
σ2

r
2α

(
1− e−2α∆t

)
,

βl =
rl

α

(
1− e−α∆t

)
+

(
θ

α
− σ2

r
α2

)(
−1− e−α∆t

α
+ ∆t

)

+
σ2

r
2α3

(
1−2e−α∆t + e−2α∆t

)
.

E∗ is the expectation under the forward measure to the time tn+1. The functions

φ(·, ·,ρ) and Φ(·, ·,ρ) are the density and cumulative density functions, respectively,
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of the bivariate standard normal distribution with correlation coefficient ρ . The

function Φ(·, ·,ρ) is computed according to Genz (2004).

T 10
kli j = E∗

[
Vtn+1I

(
(Vtn+1,rtn+1) ∈ Ri j

)
| (Vtn ,rtn) = (ak,bl)

]
= w1

k

∫ xk,i+1−
√

δ1

xk,i−
√

δ1

∫ yl, j+1−ρ

√
δ1

yl, j−ρ

√
δ1

φ(u1,u2,ρ)du1du2

= w1
k

[
Φ(xk,i+1−

√
δ1,yl, j+1−ρ

√
δ1,ρ)−Φ(xk,i−

√
δ1,yl, j+1−ρ

√
δ1,ρ)

−Φ(xk,i+1−
√

δ1,yl, j−ρ

√
δ1,ρ)+ Φ(xk,i−

√
δ1,yl, j−ρ

√
δ1,ρ)

]
,

where w1
k = ak exp

(
η1 + δ1/2

)
.

T 01
kli j = E∗

[
ertn+1 I

(
(Vtn+1,rtn+1) ∈ Ri j

)
| (Vtn,rtn) = (ak,bl)

]
= w2

l

∫ xk,i+1−ρσ2∆t

xk,i−ρσ2∆t

∫ yl, j+1−σ2∆t

yl, j−σ2∆t
φ(u1,u2,ρ)du1du2

= w2
l

[
Φ(xk,i+1−ρ

√
δ2,yl, j+1−

√
δ2,ρ)−Φ(xk,i−ρ

√
δ2,yl, j+1−

√
δ2,ρ)

−Φ(xk,i+1−ρ

√
δ2,yl, j−

√
δ2,ρ)+ Φ(xk,i−ρ

√
δ2,yl, j−

√
δ2,ρ)

]
,

where w2
l = exp

(
η2 + δ2/2

)
.
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T 11
kli j = E∗

[
Vtn+1ertn+1 I

(
(Vtn+1,rtn+1) ∈ Ri j

)
| (Vtn,rtn) = (ak,bl)

]
= w1

kw2
l exp

(
ρ

√
δ1δ2

)∫ xk,i+1−
√

δ1−ρ

√
δ2

xk,i−
√

δ1−ρ

√
δ2

∫ yl, j+1−ρ

√
δ1−
√

δ2

yl, j−ρ

√
δ1−
√

δ2

φ(u1,u2,ρ)du1du2

= w1
kw2

l exp
(

ρ

√
δ1δ2

)[
Φ(xk,i+1−

√
δ1−ρ

√
δ2,yl, j+1−ρ

√
δ1−

√
δ2,ρ)−

Φ(xk,i−
√

δ1−ρ

√
δ2,yl, j+1−ρ

√
δ1−

√
δ2,ρ)−

Φ(xk,i+1−
√

δ1−ρ

√
δ2,yl, j−ρ

√
δ1−

√
δ2,ρ)+

Φ(xk,i−
√

δ1−ρ

√
δ2,yl, j−−ρ

√
δ1−

√
δ2,ρ)

]
.

2.C Parallel computing algorithm

Parallel computing uses multiple central processing units (CPUs) simultane-

ously to speed-up complex computations. The Message Passing Interface (MPI)

library allows the computing process to exchange information between the running

CPU environments in order to achieve a given job. Each CPU has access to a

certain memory space. MPI requires case-sensitive programming changes from the

serial code to its parallel version.

The easiest way to parallelize DP is to submit the computation tasks associated

to a given grid point (ak,bl), for k = 1, . . . , p and l = 1, . . . ,q, to a single CPU. Our

parallel code acts as follows.

1. This single CPU computes once and locally stores the overall grid points

(ai,b j) and each value function values ΨN(ai,b j), for i = 1, . . . , p and j =

1, . . . ,q.

2. It also computes once and locally stores the 4× (p + 1)(q + 1) transition pa-

rameters T 00
kli j, T 10

kli j, T 01
kli j, and T 11

kli j, for i = 0, . . . , p and j = 0, . . . ,q.
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3. It computes and stores at step n + 1 the local coefficients α
n+1
i j , β

n+1
i j , γ

n+1
i j ,

and δ
n+1
i j , for each value function Ψn+1, for i = 0, . . . , p and j = 0, . . . ,q.

4. It computes and stores at step n every value function Ψ̃n(ak,bl).

5. The same CPU exports Ψ̃n(ak,bl) to a selected CPU, the so-called master

CPU.

6. The master CPU collects Ψ̃n(ak,bl), for k = 1, . . . , p and l = 1, . . . ,q, and sends

them back to all running CPUs.

7. Go to step 3 and repeat until n = 0.

Since the number of CPUs available to the analyst is usually less than the grid

size pq, we submit the same number of grid points to each CPU.
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CHAPTER 3

A STRUCTURAL MODEL FOR VALUING EXCHANGEABLE

BONDS

Malek Ben-Abdellatif, 1 Hatem Ben Ameur, 2 Bruno Rémillard 3

Abstract

An exchangeable bond is a debt that is convertible into shares of a

firm’s equity other than the bond’s issuer. We evaluate an exchange-

able bond within a two-dimensional structural model, where the assets’

value of the bond’s issuer and the underlying equity value are the state

variables. Our model, based on dynamic programming, finite elements,

and parallel computing, accommodates arbitrary debt portfolio includ-

ing an exchangeable bond, several seniority classes, bankruptcy costs

and tax benefits. We conduct a numerical investigation that highlights

the main characteristics of exchangeable bonds and their distinction

from a straight bond.

Keywords: Credit risk; Structural model; Exchangeable bond; Dy-

namic programming; Finite elements; Parallel computing.

3.1 Introduction

The main aim of this paper is to value exchangeable bonds. Unlike a convertible

debt whose the payoff is associated with the performance of the issuer’s stock, the

payoff of an exchangeable debt depends on the stock of a different firm. Specifically,
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a firm that issues an exchangeable debt gives bondholders the option to exchange

their bonds for shares of another firm’s equity. The exercise decision is also closely

related to the issuer’s financial situation, in particular its credit risk default.

Exchangeable debt has been offered by firms since the early 1970s. The Associ-

ation of Convertible Bonds Management reported that, in 2001, about one third of

the European convertible bond market was made of exchangeable bonds. Accord-

ing to Grimwood and Hodges (2002), this proportion represents 14% of the total

bond market in the US.

Assume a company holds equity shares of another public company and makes

the decision to divest of this intercorporate holding because of negative expec-

tations regarding its future prospects. Divesting strategies include block sales,

secondary distributions or issuing exchangeable debt. As documented in corporate

finance (Barber, 1993), the latter is preferred over the other two alternatives. In

fact, announcing a secondary distribution (Mikkelson and Partch, 1985) or block

sales (Holthausen et al., 1987) can provoke a negative price reaction, which can be

avoided by issuing an exchangeable debt. Jones and Mason (1986) discuss also tax

advantages as motivation for exchangeable debt issues.

Many articles address the valuation of ordinary convertible bonds, see, e.g.

Ingersoll (1977) and Brennan and Schwartz (1977), to cite a few. Despite the

relevance of exchangeable debts, less attention has been given to their theoretical

valuation. Realdon (2004) proposes a structural valuation model for these bonds

and uses the Hopscotch finite difference method to solve the problem. He considers

the case of an exchangeable bond when the issuer owns the underlying shares and

when the issuer does not own these shares. He explains however that the latter case

is not realistic. He also discusses some features and distinctions of the exchangeable

bond. Moreover, Guo and Ren (2009) present a pricing model for exchangeable debt

under the least-squares regression approach proposed by Longstaff and Schwartz

(2001).

In this paper, we extend Realdon (2004) by presenting a two-factor structural

model and incorporating the exchangeable debt as part of the debt portfolio of the
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firm under a setting comparable to Ayadi et al. (2016). Our model accounts for tax

benefits, bankruptcy costs and an arbitrary debt portfolio, allowing our model to

be flexible and able to accommodate any financial structural. The two factors are

the value of the issuer’s assets and the value of the equity shares against which the

bond can be exchanged. Our methodology is based on a two-dimensional dynamic

program coupled with bilinear interpolations and parallel computing. We suppose

that the issuer owns the shares of the underlying equity, which are pledged to the

bondholders of the exchangeable bond. This is to ensure that the exchange option

is not lost in case of default. We start the evaluation at maturity of the debt where

we can assess the debt in closed form. Next we proceed backward and evaluate the

bond at every payment date. On the one hand, the firm survives in each step if it

can meet its financial commitments to pay coupons and principal amounts to the

bondholders. In this case, bondholders of exchangeable bond will compare what

they receive to the value of the underlying shares, and exercise the exchange option

if it is beneficial. If the option is exercised, the firm again reassess its situation:

the total value drops if it no longer owns the underlying shares, and default occurs

if senior bondholders cannot be paid. On the other hand, the firm defaults if it

cannot honor its commitments to the bondholders. Those of the exchangeable bond

will then compare their recovered amount to the value of the underlying shares and

exercise, if favorable to them. Upon exercise, the firm can still survive if it can pay

the senior bondholders and avoid default.

The paper is organized as follows: Section 3.2 presents our valuation frame-

work, Section 3.3 describes our dynamic program, Section 3.4 shows our numerical

investigation, and Section 3.5 concludes our paper.
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3.2 Valuation framework

The issuer credit risk is modeled using a structural model. We consider that

the assets’ value Vt moves according to geometric-Brownian motion

dVt

Vt
= (r−δ1)dt + σV dW 1

t ,

where r is the constant risk-free rate, δ1 is the payout rate and σV is its volatility.

The capital structure of the issuer contains a portfolio of a straight debt and an

exchangeable debt, as well as a common stock. The straight debt is a senior debt.

The firm is committed to making coupon payments to the bondholders which results

in collecting tax benefits. Let P = {t0, t1, . . . , tn, . . . , tN} be a set of payment dates.

At each date tn, the firm is committed to pay dn = de
n + d ē

n to its creditors, where

de
n and d ē

n are the payments due to the bondholders of the exchangeable bond and

to the other bondholders respectively. These payments include principal as well as

coupon payments. The interest payments are noted Ce
n and Cē

n respectively. The

last payment dates for the debts are indicated by T ē ≤ T e = T . The tax benefits at

each payment date tn are denoted by tbn = tbe
n + tbē

n where tbe
n = rcCe

n, tbē
n = rcCē

n,

and rc ∈ [0,1] is the corporate tax rate. The firm also pays bankruptcy costs in

case of default proportional to the remaining assets’ value, i.e. wV , where w ∈ [0,1]

is a constant fraction.

The model assumes that the stockholders determine the time of default by

maximizing the firm’s total value subject to the limited liability constraint. In

addition, the bondholders of the exchangeable debt have the possibility to exchange

their bond for a set number of another company’s shares at any date until maturity

and in case of default. These shares move according to geometric-Brownian motion

as follows:
dSt

St
= (r−δ2)dt + σSdW 2

t ,

where δ2 is a continuous dividend rate, σS is the shares’ volatility, and (W 1, W 2)
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is a bivariate correlated Brownian motion with

Cor(W 1
t ,W

2
t ) = ρ, for all t > 0.

We suppose that the shares are pledged to the bondholders of the exchangeable

bond, which prevents the exchange option from being lost. We assume the strict

priority rule under default. The non-exchangeable bondholders are paid before the

exchangeable bondholders unless the later exercise their right. We also suppose

that the shares underlying the exchangeable bond are protected against bankruptcy

costs.

The balance-sheet equality at time tn is then

v + s + T Bn(v,s)−BCn(v,s) = Dē
n(v,s)+ De

n(v,s)+En(v,s), (3.1)

where Vn = v and Sn = s. The functions T Bn(v,s) and BCn(v,s) are the value of the

tax benefits and the value of the bankruptcy costs at date tn, respectively. Dē
n(v,s)

is the value of the straight bond, De
n(v,s) is the value of the exchangeable bond, and

En(v,s) is the equity value of the issuer at date tn. These corporate securities are

seen as financial derivatives on the firm’s assets value and the exchangeable bond’s

underlying shares.

At each payment/decision date, several scenarios can happen, depending on

the exchange option holder’s decision (holding/exercise) and the firm’s status (sur-

vival/default). We indicate by Fe+ē the firm under holding with its overall ex-

changeable and non-exchangeable debt and by F ē the firm just after exercise with

its remaining non-exchangeable debt. The scenarios at maturity are as follows:

Case 1: Holding under survival

The holding condition is

s≤ De
N(v,s) = de

N .
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The balance-sheet equality of Fe+ē is

v + s + tbN−0 = de
N + d ē

N +(v + s + tbN−dN),

which results in the survival condition

v + s + tbN−dN > 0.

The value functions are

T BN(v,s) = tbN ,

BCN(v,s) = 0,

Dē
N(v,s) = d ē

N ,

De
N(v,s) = de

N ,

EN(v,s) = v + s + tbN−dN .

Case 2: Holding under default

The default condition of Fe+ē is

v + s + tbN−dN ≤ 0,

as explained in case 1, while its balance-sheet equality is

v + s + 0−wv = min((1−w)v + s,d ē
N)+ max((1−w)v + s−d ē

N ,0)+ 0,
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and the value functions are

T BN(v,s) = 0,

BCN(v,s) = wv,

Dē
N(v,s) = min((1−w)v + s,d ē

N),

De
N(v,s) = max((1−w)v + s−d ē

N ,0),

EN(v,s) = 0,

which result in the holding condition

s≤ De
N(v,s) = max((1−w)v + s−d ē

N ,0)

All in all, one has

Dē
N(v,s) =d ē

N ,

De
N(v,s) =(1−w)v + s−d ē

N ,

The straight bondholders are fully paid and the exchangeable bondholders are

partially paid, while exercising the option is suboptimal.

Case 3: Exercise: Fe+ē and F ē survive

The survival condition of Fe+ē is

v + s + tbN−dN > 0,

as explained in case 1, while the exercise condition is

De
N(v,s) = s > de

N .

After exercise, the exchangeable debt no longer belongs to the firm’s debt portfolio.
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The balance-sheet equality for the F ē becomes

v + tbē
N−0 = d ē

N +(v + tbē
N−d ē

N)

The survival condition of F ē is then

v + tbē
N−d ē

N > 0.

The value functions are

T BN(v,s) = tbē
N ,

BCN(v,s) = 0,

Dē
N(v,s) = d ē

N ,

De
N(v,s) = s,

EN(v,s) = v + tbē
N−d ē

N .

Case 4: Exercise: Fe+ē survives and F ē defaults

The survival condition of Fe+ē is

v + s + tbN−dN > 0,

as explained in case 1, while the exercise condition is

De
N(v,s) = s > de

N .

After exercise, the exchangeable debt no longer belongs to the firm’s debt portfolio.

The firm F ē defaults if

v + tbē
N−d ē

N ≤ 0,

as explained in case 3, and its balance-sheet equality becomes

v + 0−wv = (1−w)v + 0.
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It’s worth noticing that d ē
N ≥ v + tbē

N ≥ v≥ (1−w)v. The value functions are

T BN(v,s) = 0,

BCN(v,s) = wv,

Dē
N(v,s) = (1−w)v,

De
N(v,s) = s,

EN(v,s) = 0.

Exchanging the bond provokes default.

Case 5: Exercise: Fe+ē defaults and F ē survives

The firm Fe+ē would have defaulted if the exchange option has not been exercised.

The default condition is

v + s + tbN−dN ≤ 0.

and the exercise condition is

De
N(v,s) = s > (1−w)v + s−d ē

N ,

as explained in case 2. After exercise, the exchangeable debt no longer belongs to

the firm’s debt portfolio. The balance-sheet equality of F ē becomes

v + tbē
N + 0 = d ē

N +(v + tbē
N−d ē

N),

and the survival condition is

v + tbē
N−d ē

N > 0.
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The value functions are

T BN(v,s) = tbē
N ,

BCN(v,s) = 0,

Dē
N(v,s) = d ē

N ,

De
N(v,s) = s,

EN(v,s) = v + tbē
N−d ē

N .

Exercising the exchange option prevents the firm from default.

Case 6: Exercise: Fe+ē and F ē default

The default condition of Fe+ē is

v + s + tbN−dN ≤ 0.

and the exercise condition is

De
N = s > (1−w)v + s−d ē

N ,

as explained in case 2. After exercise, the exchangeable debt no longer belongs to

the firm’s debt portfolio. The firm F ē defaults if

v + tbē
N−d ē

N ≤ 0,

as explained in case 5, and its balance-sheet equality becomes

v + 0−wv = (1−w)v + 0.
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The value functions are

T BN(v,s) = 0,

BCN(v,s) = wv,

Dē
N(v,s) = (1−w)v,

De
N(v,s) = s,

EN(v,s) = 0.

At any decision date tn, we apply a similar reasoning. The firm defaults if it

cannot meet its financial commitments. The exchangeable bondholders will exercise

the exchange option whenever the value of the underlying shares is greater than the

promised payments in case of survival, or the recovered amount in case of default.

The scenarios at any date tn are as follows:

Case 1: Holding under survival

The holding condition is

s≤ De
n(v,s) = de

n +E
[
De

n+1(Vn+1,Sn+1)|Fn
]
.

The survival condition for Fe+ē is

E
[
En+1(Vn+1,Sn+1)|Fn

]
+ tbn−dn > 0.

The value functions are

T Bn(v,s) = tbn +E
[
T Bn+1(Vn+1,Sn+1)|Fn

]
,

BCn(v,s) = E
[
BCn+1(Vn+1,Sn+1)|Fn

]
,

Dē
n(v,s) = d ē

N +E
[
Dē

n+1(Vn+1,Sn+1)|Fn

]
,

De
n(v,s) = de

n +E
[
De

n+1(Vn+1,Sn+1)|Fn
]
,

En(v,s) = E
[
En+1(Vn+1,Sn+1)|Fn

]
+ tbn−dn.
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Case 2: Holding under default

The default condition of Fe+ē is

E
[
En+1(Vn+1,Sn+1)|Fn

]
+ tbn−dn ≤ 0

The holding condition is

s≤ De
n(v,s) = (1−w)v + s−d ē

n−E
[
Dē

n+1(Vn+1,Sn+1)|Fn

]
.

The value functions are

T Bn(v,s) = 0,

BCn(v,s) = wv,

Dē
n(v,s) = d ē

n +E
[
Dē

n+1(Vn+1,Sn+1)|Fn

]
,

De
n(v,s) = (1−w)v + s−d ē

n−E
[
Dē

n+1(Vn+1,Sn+1)|Fn

]
,

En(v,s) = 0.

Case 3: Exercise: Fe+ē and F ē survive

The survival condition of Fe+ē is

E
[
En+1(Vn+1,Sn+1)|Fn

]
+ tbn−dn > 0.

while the exercise condition is

De
n(v,s) = s > de

n +E
[
De

n+1(Vn+1,Sn+1)|Fn
]
.

After exercise, the exchangeable debt no longer belongs to the firm’s debt portfolio.

The survival condition of F ē is

E
[
En+1(Vn+1,Sn+1)|Fn

]
+ tbē

n−d ē
n > 0.
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The value functions are

T Bn(v,s) = tbē
n +E

[
T Bn+1(Vn+1,Sn+1)|Fn

]
,

BCn(v,s) = E
[
BCn+1(Vn+1,Sn+1)|Fn

]
,

Dē
n(v,s) = d ē

n +E
[
Dē

n+1(Vn+1,Sn+1)|Fn

]
,

De
n(v,s) = s,

En(v,s) = E
[
En+1(Vn+1,Sn+1)|Fn

]
+ tbē

n−d ē
n.

Case 4: Exercise: Fe+ē survives and F ē defaults

The survival condition of Fe+ē is

E
[
En+1(Vn+1,Sn+1)|Fn

]
+ tbn−dn > 0.

while the exercise condition is

De
n(v,s) = s > de

n +E
[
De

n+1(Vn+1,Sn+1)|Fn
]
.

After exercise, the exchangeable debt no longer belongs to the firm’s debt portfolio.

The default condition of F ē is

E
[
En+1(Vn+1,Sn+1)|Fn

]
+ tbē

n−d ē
n ≤ 0.

The value functions are

T Bn(v,s) = 0,

BCn(v,s) = wv,

Dē
n(v,s) = (1−w)v,

De
n(v,s)s,

En(v,s) = 0.
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Exchanging the bond provokes default.

Case 5: Exercise: Fe+ē defaults and F ē survives

The firm Fe+ē would have defaulted if the exchange option has not been exercised.

The default condition of Fe+ē is

E
[
En+1(Vn+1,Sn+1)|Fn

]
+ tbn−dn ≤ 0

The exercise condition is

s = De
n(v,s) > (1−w)v + s−d ē

n−E
[
Dē

n+1(Vn+1,Sn+1)|Fn

]
.

After exercise, the exchangeable debt no longer belongs to the firm’s debt portfolio.

The survival condition of F ē is

E
[
En+1(Vn+1,Sn+1)|Fn

]
+ tbē

n−d ē
n > 0.

The value functions are

T Bn(v,s) = tbē
n +E

[
T Bn+1(Vn+1,Sn+1)|Fn

]
,

BCn(v,s) = E
[
BCn+1(Vn+1,Sn+1)|Fn

]
,

Dē
n(v,s) = d ē

n +E
[
Dē

n+1(Vn+1,Sn+1)|Fn

]
,

De
n(v,s) = s,

En(v,s) = E
[
En+1(Vn+1,Sn+1)|Fn

]
+ tbē

n−d ē
n.

Exercising the exchange option prevents the firm from default.

Case 6: Exercise: Fe+ē and F ē default

The default condition of Fe+ē is

E
[
En+1(Vn+1,Sn+1)|Fn

]
+ tbn−dn ≤ 0
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The exercise condition is

s = De
n(v,s) > (1−w)v + s−d ē

n−E
[
Dē

n+1(Vn+1,Sn+1)|Fn

]
.

After exercise, the exchangeable debt no longer belongs to the firm’s debt portfolio.

The default condition of F ē is

E
[
En+1(Vn+1,Sn+1)|Fn

]
+ tbē

n−d ē
n ≤ 0.

The value functions are

T Bn(v,s) = 0,

BCn(v,s) = wv,

Dē
n(v,s) = (1−w)v,

De
n(v,s) = s,

En(v,s) = 0.

This model can be studied under the assumption that the issuer of the ex-

changeable bond does not own the equity shares against which the debt can be

exchanged. In this case, if the bondholders decide to exercise the option, the firm

has to purchase the shares to deliver them. The exchange option can thus be lost if

the firm is in distress and cannot deliver the shares. Under this hypothesis, the is-

suer’s default probability increases and the exchangeable bond is less valuable than

the previous case as the bondholders are taking more risk. This case is treated

in Realdon (2004) but we do not consider it because, as explained in the latter,

the issuance of exchangeable bonds when the issuer does not own the underlying

shares is discouraged. This supports the affirmation that the issuer usually owns

the shares and issues exchangeable bonds as a divesting strategy to dispose of the

underlying shares in his possession.
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3.3 Dynamic programming

Let G be a set of grid points {(a1,b1), (a1,b2), . . . ,(ap,bq)} such that max(∆ak,∆bl)

→ 0 and Q[(Vt ,rt) ∈ [ap,∞)×R∗+ ∪R∗+× [bq,∞)]→ 0, when p and q→ ∞. Let

a0 = b0 = 0 and ap+1 = bq+1 = ∞. The rectangle [ai,ai+1)× [b j,b j+1) is designated

by Ri j. Let ∆t = tn+1− tn a constant.

Dynamic programming acts as follows:

1. At date tN = T , the value functions are known in closed form and are computed

as described in Section 3.2.

2. At each date tn, suppose that an approximation of each value function is

available at a future decision date tn+1 on G , indicated by f̃n+1(ak,bl), for

k = 1, . . . , p and l = 1, . . . ,q, where fn represents T Bn, BCn, Dē
n, De

n, or En. Use

a bilinear piecewise polynomial and interpolate each value function f̃n+1 from

G to the overall state space [0,∞)2 by setting:

f̂n+1(x,y) =
p

∑
i=0

q

∑
j=0

(
α

n+1
i j + β

n+1
i j x + γ

n+1
i j y + δ

n+1
i j xy

)
I
(
(x,y) ∈ Ri j

)
,

where the local coefficients of each value function fn+1, α
n+1
i j , β

n+1
i j , γ

n+1
i j ,

and δ
n+1
i j , for i = 0, . . . , p and j = 0, . . . ,q, are the coefficients of the bilinear

interpolation.

3. Approximate the expectation of every value function at tn on G :

= E
[
e−r∆t f̂n+1(Vtn+1,Stn+1) | (Vtn,Stn) = (ak,bl)

]
= e−r∆t

∑
i, j

(
α

n+1
i j T 00

kli j + β
n+1
i j T 10

kli j + γ
n+1
i j T 01

kli j + δ
n+1
i j T 11

kli j

)
,

where the transition tables T 00,T 10,T 01, and T 11 are defined as follows:

T νµ

kli j = E
[
(Vtn+1)

ν(Stn+1)
µI
(
(Vtn+1,Stn+1) ∈ Ri j

)
|

(Vtn,Stn) = (ak,bl)
]
, for ν and µ ∈ {0,1}.
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For example, T 00
kli j represents the transition probability that the Markov pro-

cess (V,S) moves from (ak,bl) at tn and visits the rectangle Ri j at tn+1. Closed-

form solutions for these transition tables are given in Appendix 3.A.

4. Compute the value functions at tn on G as described in Section 3.2.

5. Go to step 2 and repeat until n = 0.

This procedure is time consuming as we have a two-dimensional problem. There-

fore, it makes sense to try to use parallel computing to accelerate the procedure.

We parallelize our dynamic program by submitting the computation tasks associ-

ated to a given number of grid points to each available CPU. The algorithm used

to parallelize our dynamic program is described in details in Appendix 3.B. This

approach allows us to drastically reduce the computation time to a reasonable level.

We use the supercomputer Briarée managed by Calcul Québec and Compute

Canada 4. The code lines are written in C and compiled with GCC. We use the

MPI library to access parallel computing.

3.4 Numerical investigation

In this section, we examine some characteristics of the exchangeable debt. For

comparison purposes, we consider an exchangeable bond with the same parameters

as in Realdon (2004). Considering an ordinary debt and an exchangeable bond

both with a 5 year maturity and principal amount P = 1. The annual coupon rate

is 3% for the ordinary debt and 4.7% for the exchangeable bond. Our numerical

investigation presented here are based on a grid size of 3002. A price calculation

takes in average two minutes using parallel computing.

Figure 3.1 plots the value of the exchangeable bond as a function of the initial

shares’ level S0 and the initial assets’ value V0. The exchangeable bond value is

an increasing function of both variables. In fact, high values for the firm’s assets

represent less risky firms making the exchangeable bond more valuable. We also

4. The operation of this supercomputer is funded by the Canada Foundation for Innovation
(CFI), Ministère de l’Économie, de la Science et de l’Innovation du Québec (MESI) and the Fonds
de recherche du Québec - Nature et technologies (FRQ-NT).
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Figure 3.1: Exchangeable debt value as a function of the shares’ value and the firm’s assets value.
The parameters used are r = 0.04,δ1 = 0.3,σV = 02,δ2 = 0,σS = 0.3,ρ = 0,w = 0.2, and rc = 0.35.

notice that the increase in the shares’ value has more significant impact on the

exchangeable bond value than the increase in the firm’s assets value. In fact, as S0

increases, the bondholders are more likely to exercise the exchange option and the

exchangeable bond value increases.

Figure 3.2 presents the exchangeable bond value as a function of the initial

shares’ value S0 as the volatility of the firm’s assets σV is changed. The exchange-

able bond value decreases when the latter increases since the firm is more risky. For

low values of the shares, the exchangeable bond value is more sensitive to changes

in the firm risk-level; when the shares’ value is low, the exchange option is less

likely to be used and the bondholders are more exposed to the issuer risk.

Figure 3.3 illustrates that the exchangeable bond increases in the shares’ volatil-

ity σS as the exchange option becomes more valuable. Figure 3.4 shows that the

exchangeable bond rises when correlation rises. In fact, as explained by Realdon

(2004), for negative values of ρ , high values of the issuer’s assets are most likely

associated to low values of the underlying shares, and vice versa. This situation

is most valuable for the exchangeable bond. As correlation becomes positive, high
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values of the issuer’s assets are most likely associated with high values of the un-

derlying shares, and vice versa. The first scenario is beneficial to the bondholders,

but the second drives down the exchangeable bond value. Besides, increasing the

the proportional bankruptcy costs and the nominal amount of the issuer’s other

outstanding debt decrease the value of the exchangeable bond as it increases the

the loss given default.

3.5 Conclusion

In this paper, we propose a valuation framework for a hybrid-form of convert-

ible debt, namely the exchangeable bond. This structured contract continues to

gain popularity in corporate finance but is still less studied in terms of valuation

purposes. Hence, we propose a general structural model for valuing exchangeable

bonds in a setting that accounts for flexible debt structures, presence of bankruptcy

costs and tax benefits. The model is solved using two-dimensional dynamic pro-

gramming coupled with finite elements and parallel computing. The relevance of
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our methodology is that it can accommodate other styles of two-dimensional struc-

tured financial contracts such as reverse convertible bonds.
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APPENDIX

3.A Transition parameters

The transition parameters T νµ

kli j for ν and µ ∈ {0,1}, k ∈ {1, . . . , p}, l ∈ {1, . . . ,q},
i ∈ {0, . . . , p}, and j ∈ {0, . . . ,q} are calculated as follows:

T 00
kli j = E∗

[
I
(
(Vtn+1 ,Stn+1) ∈ Ri j

)
| (Vtn,Stn) = (ak,bl)

]
= Q

[
(Vtn+1,Stn+1) ∈ Ri j | (Vtn,Stn) = (ak,bl)

]
=
∫ xk,i+1

xk,i

∫ yl, j+1

yl, j

φ(z1,z2,ρ)dz1dz2

= Φ(xk,i+1,yl, j+1,ρ)−Φ(xk,i,yl, j+1,ρ)−Φ(xk,i+1,yl, j,ρ)+ Φ(xk,i,yl, j,ρ),

where

xk,i =

(
log
(
ai/ak

)
−
(

r−d1−σ
2
V/2

)
∆t
)
/
(

σV
√

∆t
)

yl, j =

(
log
(
b j/bl

)
−
(

r−d2−σ
2
S/2
)

∆t
)
/
(

σS
√

∆t
)
.

The functions φ(·, ·,ρ) and Φ(·, ·,ρ) are respectively the density and the cumulative

density functions of the bivariate standard normal distribution with correlation

coefficient ρ . The function Φ(·, ·,ρ) is computed according to Genz (2004).



T 10
kli j = E∗

[
Vtn+1I

(
(Vtn+1,Stn+1) ∈ Ri j

)
| (Vtn,Stn) = (ak,bl)

]
=
∫ xk,i+1

xk,i

∫ yl, j+1

yl, j

ak exp
(

(r−d1−σ
2
V/2)∆t + σV

√
∆tz1

)
φ(z1,z2,ρ)dz1dz2

= w1
k

∫ xk,i+1−σV
√

∆t

xk,i−σV
√

∆t

∫ yl, j+1−ρσV
√

∆t

yl, j−ρσV
√

∆t
φ(u1,u2,ρ)du1du2

= w1
k

[
Φ(xk,i+1−σV

√
∆t,yl, j+1−ρσV

√
∆t,ρ)−

Φ(xk,i−σV
√

∆t,yl, j+1−ρσV
√

∆t,ρ)−

Φ(xk,i+1−σV
√

∆t,yl, j−ρσV
√

∆t,ρ)+

Φ(xk,i−σV
√

∆t,yl, j−ρσV
√

∆t,ρ)
]
,

where w1
k = ak exp

(
(r−d1−σ2

V/2)∆t + σ2
V ∆t/2

)
.

T 01
kli j = E∗

[
Stn+1I

(
(Stn+1,Stn+1) ∈ Ri j

)
| (Stn,Stn) = (ak,bl)

]
=
∫ xk,i+1

xk,i

∫ yl, j+1

yl, j

bl exp
(

(r−d2−σ
2
S/2)∆t + σS

√
∆tz2

)
φ(z1,z2,ρ)dz1dz2

= w2
l

∫ xk,i+1−ρσS
√

∆t

xk,i−ρσS
√

∆t

∫ yl, j+1−σS
√

∆t

yl, j−σS
√

∆t
φ(u1,u2,ρ)du1du2

= w2
l

[
Φ(xk,i+1−ρσS

√
∆t,yl, j+1−σS

√
∆t,ρ)−

Φ(xk,i−ρσS
√

∆t,yl, j+1−σS
√

∆t,ρ)−

Φ(xk,i+1−ρσS
√

∆t,yl, j−σS
√

∆t,ρ)+

Φ(xk,i−ρσS
√

∆t,yl, j−σS
√

∆t,ρ)
]
,
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where w2
l = bl exp

(
(r−d2−σ2

S/2)∆t + σ2
S ∆t/2

)
.

T 11
kli j = E∗

[
Vtn+1Stn+1I

(
(Vtn+1,Stn+1) ∈ Ri j

)
| (Vtn,Stn) = (ak,bl)

]
=
∫ xk,i+1

xk,i

∫ yl, j+1

yl, j

ak exp
(

(r−d1−σ
2
V/2)∆t + σV

√
∆tz1

)
×

bl exp
(

(r−d2−σ
2
S/2)∆t + σS

√
∆tz2

)
φ(z1,z2,ρ)dz1dz2

= w1
kw2

l exp(ρσV σS∆t)×

∫ xk,i+1−(σV +ρσS)
√

∆t

xk,i−(σV +ρσS)
√

∆t

∫ yl, j+1−(ρσV +σS)
√

∆t

yl, j−(ρσV +σS)
√

∆t
φ(u1,u2,ρ)du1du2

= w1
kw2

l exp(ρσV σS∆t)×[
Φ(xk,i+1− (σV + ρσS)

√
∆t,yl, j+1− (ρσV + σS)

√
∆t,ρ)−

Φ(xk,i− (σV + ρσS)
√

∆t,yl, j+1− (ρσV + σS)
√

∆t,ρ)−

Φ(xk,i+1− (σV + ρσS)
√

∆t,yl, j− (ρσV + σS)
√

∆t,ρ)+

Φ(xk,i− (σV + ρσS)
√

∆t,yl, j− (ρσV + σS)
√

∆t,ρ)
]
.

3.B Parallel computing algorithm

Parallel computing uses multiple central processing units (CPUs) simultane-

ously to speed-up complex computations. The Message Passing Interface (MPI)

library allows the computing process to exchange information between the running

CPU environments in order to achieve a given job. Each CPU has access to a

certain memory space. MPI requires case-sensitive programming changes from the

serial code to its parallel version.

The easiest way to parallelize DP is to submit the computation tasks associated

to a given grid point (ak,bl), for k = 1, . . . , p and l = 1, . . . ,q, to a single CPU. Our

parallel code acts as follows.

1. This single CPU computes once and locally stores the overall grid points
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(ai,b j) and each value function values fN(ai,b j), for i = 1, . . . , p and j =

1, . . . ,q.

2. It also computes once and locally stores the 4× (p + 1)(q + 1) transition pa-

rameters T 00
kli j, T 10

kli j, T 01
kli j, and T 11

kli j, for i = 0, . . . , p and j = 0, . . . ,q.

3. It computes and stores at step n + 1 the local coefficients α
n+1
i j , β

n+1
i j , γ

n+1
i j ,

and δ
n+1
i j , for each value function fn+1, for i = 0, . . . , p and j = 0, . . . ,q.

4. It computes and stores at step n every value function f̃n(ak,bl).

5. The same CPU exports f̃n(ak,bl) to a selected CPU, the so-called master

CPU.

6. The master CPU collects f̃n(ak,bl), for k = 1, . . . , p and l = 1, . . . ,q, and sends

them back to all running CPUs.

7. Go to step 3 and repeat until n = 0.

Since the number of CPUs available to the analyst is usually less than the grid

size pq, we submit the same number of grid points to each CPU.
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CONCLUSION

In this thesis, we propose a two-dimensional dynamic program coupled with

finite elements and parallel computing for valuing two-dimensional financial deriva-

tives. In the first essay we present a model for valuing two-dimensional American-

style options. In the second essay, we propose a structural model for valuing risky

debt that takes into account both default risk and interest rate risk. Finally, in

the third essay, we present a valuation framework for exchangeable bond within a

structural model.

Our methodology, based on dynamic programming, presents two major advan-

tages with respect to its competitors, given that it assumes a space but not a time

discretization, and a numerical but not a statistical error. Our investigation shows

that dynamic programming competes well against its alternative methodologies in

terms of accuracy.

Future research avenues include extending our dynamic program to more com-

plex state processes, such as two-dimensional jump diffusions and GARCH pro-

cesses, as long as the transition parameters can be computed efficiently. Dynamic

programming can also be extended to higher dimensions, which is challenging but

feasible. We will still be using parallel computing, but dynamic programming can

firstly be combined with quasi-Monte Carlo in moderate state-space dimensions.

Applications in this context can be valuing multi-dimensional derivatives as well

as adding additional factors to our credit risk model.
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