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RESUME

Cette thèse se concentre sur l'évaluation de contrats financiers dans le cadre

d'un processus de Lévy. Elle se compose de trois essais.

Le premier essai propose une méthode numérique pour l'évaluation d'options

bermudiennes lorsque le sous-jacent est modélisé selon un processus mixte de diffu

sions avec sauts de fréquences et amplitudes décrites selon un processus de Poisson

composé. Notre modèle repose sur la programmation dynamique couplée avec des

éléments finis. Nous proposons une preuve de convergence uniforme et présentons

une étude numérique et empirique qui confirment la convergence et l'efficience de

notre méthodologie.

Le deuxième essai se penche sur le problème d'évaluation d'options bermu

diennes lorsque le sous-jacent est décrit selon un processus de sauts purs, plus

particulièrement, le processus de variance gamma. Nous présentons une méthode

numérique basée sur la programmation dynamique. Nous exposons une étude em

pirique sur des options américaines écrites sur un future sur S&P 500. Nos résultats

confirment l'efficience de l'approche proposée.

Le troisième essai propose un modèle structurel pour l'évaluation de dettes cor

poratives risquées lorsque la valeur des actifs de la firme suit un processus de Lévy.

Notre méthodologie est basée sur la programmation dynamique couplée avec des

éléments finis. Notre modèle accommode le principe d'égalité de bilan, un porte

feuille de dettes corporatives arbitraires, plusieurs classes de séniorité, les écono

mies de taxes, ainsi que les coûts de faillite. Nos résultats confirment que la prise

en compte du risque associé à d'éventuels sauts combinée à un défaut endogène a
un impact significatif sur les écarts de crédits.

Mots clés : Évaluation d'options ; Programmation dynamique ; Éléments finis ;
Processus de Lévy ; Calibration ; Maximum de vraisemblance ; Modèle structurel ;

Actifs corporatifs ; Risque de crédit.

Méthodes de recherche : Modélisation mathématique ; recherche quantita

tive ; Méthodes statistiques et numériques.



ABSTRACT

This thesis focuses on valuing financial derivatives under Lévy processes. It

comprises of three essays.

The first essay proposes a numerical methodology for valuing Bermudan options

under Gaussian and double exponential jumps. Under an extended version of these

processes, the pricing problem is addressed with dynamic programming coupled

with finite éléments. We also provide a proof of uniform convergence, and présent

numerical and empirical experiments that confirm this convergence and show the

efîiciency of our methodology.

The second essay focuses on valuing options under pure-jump Lévy processes,

spccifically the variance-gamma model. Under this sctting, explicit solutions for

complex dcrivativo prices are unavailable, for instance for the valuation of Bermu

dan options. We develop a numerical approach based on dynamic programming

under an extended version of the variance-gamma model. We also conduct a nu

merical investigation on American-style options on the S&P 500 futures contracts.

Our numerical experiments show the efîiciency of our methodology.

The third essay proposes a Lévy-type model for crédit risk modeling and présents

a général structural model for valuing corporate securities under varions Lévy pro
cesses. We work with a flexible framework which accommodâtes the balance-sheet

equality, arbitrary corporate debts, multiple seniority classes, tax; benefits, and
bankruptcy costs. While our approach applies to several Lévy processes, we com-

pute the values of equity, debt, firm, and credit-spreads under Gaussian, double

exponential, and variance-gamma-jump models. Our results show that jump risk

and endogcnous default have a significant impact on crédit spreads.

Keywords: Options valuation; Dynamic programming; Finite éléments; Lévy

processes; Calibration; Maximum likelihood; Structural model; Corporate securi

ties; Crédit risk.

Research methods: Mathematical modeling; Quantitative research; Statisti-

cal and numerical methods.
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INTRODUCTION

In 2016, the International Monetary Fund (IMF) downgraded its global growth

forecasts, warning against the Chinese slowdown and its impact on the global econ-

omy. Many experts predict that the global economy may soon collapse due to the

chaotic state of the stock market. Thus, are we on the brink of a major new stock

market crisis?

In light of these concerns, it is évident that modeling under continuons geometric-

Brownian motion for stock returns is not realistically représentative of the market.

Indeed, the Gaussian model assumes that the probability of occurrence of jumps

is zéro. This modeling is therefore incapable of taking into account the possibility

of a stock crash. Neglecting such a situation when modeling price processes will
undoubtedly lead to évaluation errors and to poor risk management.

The idea of this thesis is to take into account these discontinuities in the returns

dynamics and to model them according to a Lévy process. This class of processes
has been met with great success, and bas been validated by empirical investiga
tions that consolidate its relevance and confirm the weaknesses of Brownian-type

financial models. This success results in several theoretical developments in vari-

ous financial and actuarial applications, including the valuation of derivatives and
financial contracts such as options contracts. Varions types of options contracts

are extensively traded on the financial market; their complexity is closely linked to
the offered clauses in the contract. In addition to European-style options, which

are often easily evaluated, we are also interested in American-style options whosc
évaluation is complex even under the assumption of geometric-Brownian motion.

In this thesis, we are interested in the évaluation of financial products where the

underlying assets are described according to an exponential Lévy process. To do

this, we use dynamic programming coupled with finite elements approximations.

The principle of this recursive approach states that the solution of a global problem

can be obtained by dismantling the problem into sub-problems that are easier to

solve.



A common way to incorporate discontinuities in the asset returns is to add

a Poisson process to Brownian motion; such a modeling design is called jump-

diffusion process. Examples from this class of finite-activity Lévy processes are

Merton's (1976) and Kou's (2002) models, under which we présent an extended
version and value Bermudan options.

Secondly, we pursue the same aim, namely the pricing of Bermudan options,

but we consider a time-changed Brownian motion, in particular the variance-gamma

model belonging to the infinite-activity pure jump Lévy process. Unlike the previ-

ous process, the variance-gamma model generates purely discontinuons paths made

by an infinité number of small jumps. The économie interprétation of the gamma

time change is the passage from a calcndar time to an économie activity time.

Hence, this stochastic time change can have two effects: it can speed up calen-

dar time and subject the market to turbulence, or slow down calendar time and

maintain an unperturbed market.

Finally, in the situation of an économie crisis, the bondholders and sharehold-

ers are subject to significant losses in value, leading to the downgrading or the

bankruptcy of the company. Given that crédit risk assessment is a décisive task in

risk management, we address the problem of valuing corporate securities when the

firm's asset dynamic is described by a Lévy process. As we try to reproduce the ob-

served features on the market, we value corporate debts and study the contribution

of jumps to explain crédit spreads within a structural model.



CHAPTER1

AMERICAN-STYLE OPTIONS IN JUMP-DIFFUSION MODELS:

ESTIMATION AND EVALUATION

Hatem Ben Ameur, ̂  Rim, Chérif, ̂  Bruno Rémillard ̂

Abstract

We propose a dynamic programming coupled with finite elements for valuing

American-style options under Gaussian and double exponential jumps à la Merton

(1976) and Kou (2002), and we provide a proof of uniform convergence. Our
numerical experiments confirm this convergence resuit and show the efhciency of
the proposed methodology. We also address the estimation problem and report an

empirical investigation based on Home Dépôt. Jump-diffusion models outperform
their pure-diffusion counterparts.

Keywords: American options; Jump-diffusion process; Dynamic program

ming; finite elements, Calibration; Maximum likelihood.

1.1 Introduction

Pure diffusion models, like that of Black and Scholes (1973), fail to capture

stylized facts of the financial market, such as over/under-reactions, fat tails, and
discontinuities in the underlying-asset returns. One way of solving this problem is

to introduce a hybrid process made up of a Gaussian continuons component and a
composite-Poisson-type discontinuons component.

While Gaussian jumps go back to Merton (1976), double-exponential jumps
go back to Kou (2002). Both authors use Lévy processes, extend the géométrie

1. Hatem Ben-Ameur is a Professer at HEC Montréal in the Department of Décision Sciences,
and inember of the GERAD.

2. Rim Chérif is a Ph.D. student at HEC Montréal.
3. Bruno Rémillard is a Professer at HEC Montréal in the Department of Décision Sciences,

and member of the CRM and CERAD.



Brownian motion used in Black and Scholes (1973), and under certain financial as-

sumptions, provide closed-form solutions for European vanilla options. We consider

their extended versions in this paper.

Valuing American-style options under Lévy models is challenging due to their

associated early exercise stratégies. Several méthodologies are proposed in the lit-

erature: the quasi-analytical approach (Bâtes, 1991, Gukhal, 2001, Kou and Wang,
2004), the binomial tree (Amin, 1993, Hilliard and Schwartz, 2005), partial integro-

differential équations (Zhang, 1997, Andersen and Andreasen, 2000, Matache et al.,

2003, 2005, Cont and Voltchkova, 2005, Almcndral and Oosterlee, 2005, Toivanen,

2008, Mayo, 2008, Chiarella and Ziogas, 2009, Chockalingam and Muthuraman,

2010, Chan and Hubbert, 2014, Salmi and Toivanen, 2014), the Markov chain ap

proximation (Simonato, 2011), and Monte-Carlo simulation (DiCesare and Mcleish,

2008, Levendorskii, 2004).

We propose a numerical procédure for valuing American-style options in jump-

difîusion models. Our approach is based on dynamic programming coupled with

finite éléments. The value function under considération is approximated by a piece-

wise polynomial at each décision date. We experiment with piecewise-constant, lin-

ear, and quadratic approximations. Higher-order polynomials are more accurate,

but are also more time consuming. A compromise between accuracy and Comput

ing time must be found. Dynamic programming, coupled with piecewise quadratic

interpolations, shows the highest degree of efficiency and competes well against

alternative méthodologies reported in the literature.

Under jump diffusions, the distribution of the underlying-asset return is a mix

ture, which rcsults in a likclihood function with several modes. Press (1967), Bâtes

(1991), Ait-Sahalia (2004), and Hanson and Zhu (2004) use a parametric approach
(historical); while Bâtes (1991), Andersen and Andreasen (2000), He et al. (2006),
and Cont and Tankov (2004b) use calibration. We use maximum likelihood to
estimate Merton (1976) and Kou (2002) models and maximum likelihood coupled

with calibration to estimate their extended versions.

The rest of this paper is organized as follows. Section 1.2 présents a général



jump-diffusion model and outlines Merton (1976) and Kou (2002) settings as spécial

cases. While Section 1.3 describes the dynamic programming, Section 1.4 présents

a numerical investigation, Section 1.5 reports an empirical investigation. Section 6

concludes.

1.2 The jump-diffusion model

Let ^ be a frictionless market with a risk-free asset and a risky asset, a stock

whose price S expériences jumps at random times, and let (H, yl,P) be a complété

probability space. Define a standard Brownian motion (VVi),>o, a Poisson process

(77j)f>o with a constant intensity A, and a sériés of independent random variables

{^n)n>l with distribution v and density /(•), such that k: = Ep e^" — l is finite.
The random variables t/„ = — 1 = (5t„ — Sx„-)/Sr„- £ ] — l,o°[ represent the
jumps' relative amplitudes at random jump times T„, for n > 1.

The processes W, N, and ^ are assumed to be independent under P. They are

used to model the continuons part of the stock-price trajectory, the jump times,

and the jump amplitudes, respectively. Further, dénoté by the sigma-algebra

gencrated by {W„, A^„, ,..., , for 0 < w < t}.
The stock-price process S is defined by

St = Soe^', for t > 0,

where the stock log-return X is a Lévy process (with stationary independent incré

ments) defined by

aXt= \ li-d- — -XK]t + C7W,+ y^n, fort>0, 1.1
n=\

where [l is the instantaneous stock return, d the proportional dividend rate, <y the

stock-return volatility conditional on no jumps, and Nt the number of jumps till

time t e [0, T]. Set the convention Ln=i = 0. The process X is discontinuons at
jump times.



The jump-diffusion model in eq. (1.1) is arbitrage free but incomplète. There
exist several équivalent martingale probabilities measures that provide multiple
rational values for a given option contract, ail of which are consistent with the

no-arbitrage principle. We provide herein a simple change of probability measure.

Let h{-) be a positive function such that a = Ep[/r(^„)] < oo and define

^  ̂ > g. (1.2)
n=\

The process is a positive P-martingale and has an expectation of one. The

risk-neutral probability measure associated to the constant b and the function

/i(-), is defined by the Radon-Nikodym derivative

dF

From Cont and Tankov (2004a, Proposition 9.8), Wt = Wt —ht is a Brownian motion,

Nt = A/f is a Poisson process of intensity A = Aa, and has the law v with
density /(•) = ja under Let k = — \ G E. One has

e~'^St+d [ e~'^^Siidu
JO

is a Q^'''-martingale if, and only if,

r- fi - (Xk- Xk)
G  '

where r is the risk-free rate. Given eq. (1.2), the dynamics of S under the martingale
probability measure Q = is

St =5o^',



where X is still a Lévy process represented by

(1.3)r — d—-—Aie W-\-aWt-\- ^ for t >0.Xt
n=l

It's worth noting that the process is a Q-martingale with respect to the

filtration

The function h{-) is often chosen so that the law of jumps remains in the same
family, both under the objective and martingale probabilities measures. To this
end, we set

h{x) = for a: G M, (1-4)

where a G IR+ and j3 G E. See (Rémillard, 2013). Appendix l.A provides the
density function /(■).

For extended Gaussian jumps, the random variables for n > 1, follow (y, ô^)
under P, and follow under Q, where a = ^ Â = aX, y =
y+j35^, ô = Ô, and k = _ y Merton's (1976) model is obtained with
a = 1 and j3 = G, which results in b = {r — [i) /a, a= 1, À = A, y=y, ô = ô, and
k = — 1. To justify this particular choice of parameters, the author daims
that jump risk is not systemic and can be offset through portfolio diversification.

For extended double-exponential jumps, the parameter /3 G ]—T72îffl[- The ran
dom variables for n > 1, follow an asymmetric double-exponential distribution

with a density function under P;

f{^)=Pi 1 >0,

where pi >0 and /72 > 0 represent the probability of an upward and a downward
jump and verify p\-\- P2 — F The parameters Tji and r\2 represent the mean sizes

of an upward and a downward jump, respectively. The distribution of the random

variables for n > 1, remains in the same family under Q, where a = api 171/(771 —

j3) + ap2ff2/(n2 + j8), À =aA, fji = t7i-j8, f72 = T72 + j3, pi = pir]ifi2/ipiriiÎ2 +



Pifhm), P2=l-Pi, and K = Pif7i/(fîi - l)+p2n2/(%+1) - 1- Kou's (2002)
model is obtained with a = 1 and j3 = 1, which results in b = {r — ji) /a, a — pirfif
(t7, -1)+/?2T?2/(TÎ2+1), à = Afl, fji =TÎ1-1, f72 = TÎ2+l, Pi = Pi Hl (t]2 + 1)/
(pi77i(r72 + 1) + î72P2(^i — 1}}) P2 = 1 —Pi, and k = a— 1. In support of its choice,
the authors relies on the expected utility theory and shows that a rational price

can be obtained via this particular change of parameters.

While Merton (1976) dérivés his formula directly from an arbitrage argument,

Kou (2002) considers an equilibrium model to provide option values that are (also)

consistent with the no-arbitrage principle.

1.3 Valuing American-style options

1.3.1 The option contract

An American option on a stock with a maturity T is characterized by its known

exercise value vf(s), where s = St is the stock price at time t E [0,r]. For example,
an American vanilla option is defined by

I  {s — K)'^ for a call option
I  {K — s) for a put option

where K is the option's exercise price and (x)"*" = max(0,x). We consider its
Bermudan version, which admits a finite number of exercise opportunities, given

by tQ — 0,... ... ,tM = T. For simplicity, assume that t,n+i — t,n = Ai is a fixed

constant.

By the no-arbitrage évaluation principle, the option's holding value at is

v«(j) = EqI^c '■'^V;„+i(5(„^,) |5r„, - j
for m = 0,..., Af,

(1.5)

where is the conditional expectation under Q. Set the convention

that v^(-) = 0 to say that the option must be exercised at maturity tM = T. The



option's overall value at time is

v^(5) = max(^v^(5),v^(5)), for j > 0. (1.6)

The associated European version is characterized by (•) = 0, for m = 0,... ,M — 1.

1.3.2 The dynamic program

Let ^ = {a\,...,ap} be the grid points, where 0 = ao < «i < ... < Cp < +<»
and Aa," = a,- — fl,_i, i = The grid must be selected so that mesh(^) =

maxi<,<pAa/, Q(5; < ai) and Q{St > Up) ail converge to 0 as p —>■ «>, for t £
{fi,... We Select the grid points to be the quantiles of Sj-

Suppose that an approximation Vm-\-i{-) of the value function Vm+i(-) is available
at a given future date on the grid This is not a strong assumption since

the value function va/(-) = v^(-) is known in closed form.
We use a piecewise polynomial and extend the approximation v^+i (•) from ^

to the overall state space that is,

fm+l W = L to + ft' J + --- + A^ A I(o, < î < a(+l). (1-7)
i=0 ^

for j' > 0,

where d is the degree of the piecewise polynomial, whose local coefficients dépend

on the time step m + 1. Eq. (1.5) and eq. (1.7) resuit in

tW) = Ei}[e-"^v-„+t(4„,)|S,.=at] (1.8)
= "-'^^(a- TS+ ' +A/îi';).



where

< «'+0T,^i =

for V = 0,..., J.

For example, 7^9 is the conditional probability that the stock price at t,„+i falls in
the interval [a,-,a,-|-i) given that the stock price at time is aiç. Key ingrédients
for the dynamic program (DP) to run are the transition tables , for V = 0,... ,d.

Wc dérivé , for v G {0,1,2}, in closed form undcr Merton's (1976) setting (see
Appendix l.B) and Kou's (2002) setting (see Appendix l.C). We find that the

piecewise-quadratic interpolation {d = 2) is the most efficient. To reach the pure

American option, set At as small as possible. Ben-Ameur et al. (2002) use DP for
valuing Asian options in the Black and Scholes' (1973) model.

The formula in eq. (1.8) separates the option holding value in two parts. The

first is related to the dynamics of the state process (the transition parameters) and
the second to the option contract (the interpolation coefficients). The transition

parameters are a fixed cost for the DP procédure as long as the time step and

the model's parameters remain constant. For a given experiment and a set of the

model's parameters, about 90% of CPU time is used to compute the transition

parameters. Thus, the effective CPU time to run a DP experiment is about 10%

of what is reported in our tables. Unlike finite differences-based methods, DP does

not need a time discretization since the transition parameters do respect the true

dynamics of the state process. AU components of eq. (1.8) are computed in closed

form.

From eq. (1.6), the approximate value function at tm is

v^(cfc) = max^v{„(a^),v(|j(afc)), for G , (1.9)

and the approximate exercise policy at is characterized by

< Vmiak), for G

10



The local coefficients of the piecewise-quadratic interpolation v,„+i (•) in eq. (1.7)

verify v^+i (•) = Vm+i (•) on
The dynamic program works as follows :

1. For m = M - 1, set v,„+i (■) = v„+i (•) = (.) on

2. Use a piecewise-quadratic interpolation as in eq. (1.7), and extend v^+i (•),
defined on êf, to v^+i (•), defined on the overall state space 1R+;

3. By eq. (1.8), compute v^(-)i defined on

4. By eq. (1.9), compute V/„(-)) defined on

5. Exercise the option at {tm,ak) if

6. If m = 0, stop; else set m = m — 1, and go to step 2.

The next theorem, whose proof is given in Appendix LE, shows that the pro-

posed methodology provides uniformly convergent approximations of the real prices

over any given compact set at each time step. Before stating the resuit, we need

to define the Lipschitz norm.

On a given interval [a, c], the Lipschitz norm of a continuons function / is defined

by
I/W-/WI

Xi^y^,ye[a,c]
\f\u,=

It is easy to check that max(x —^",0) and max(A' —x,0) are both Lipschitz with
norm 1. Finally, for any closed interval /, set ||/||/ = sup^ç; |/(x)|.

The following assumption on the interpolation method is essential in the proof;

Définition 1.3.1. An interpolation method J' satisfies Assumption Q) if there

exists a constant D so that for any compact set I, any Lipschitz function g, and

any grid ̂  of I, one has \\y^g — g\\i < D\g\^pmesh{^). Here, ^c^g stands for the
interpolation of g over grid

Remark 1.3.1. It is shown in Appendix l.D that Assumption ^ is met for the

linear and quadratic interpolations we used in this paper.
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Theorem 1.3.2. Suppose that the interpolation method satisfies Assumption ^.

Suppose also that are Lipschitz for ail k G {0, Set âêo = [0,/?o] and let
£>0 be given. Then one can find intervais — [0,/?i Mn-\ =
grids generating respectively so that

Wn-VkWâgi, < for allke{0,...,n}.

1.4 Numerical investigation

The code is written in C, compiled with GCC, and executed under a standard

laptop computer running Windows 7. For each set of results, we report the highest

total CPU time in seconds. Our results are based on DP coupled with piecewise

quadratic interpolations. Our CPU times cannot be directly compared to CPU

times reported in the literature. Both are obtained under différent hardware char-

acteristics, opération Systems, and programming languages. Despite this, we report

them for général guidance purposcs.

1.4.1 Gaussian jumps

To start with, Table 1.1 compares DP to the binomial tree of Amin (1993) for

European put options, both with 200 time steps. It also reports Merton's values

(Merton, 1976). Set 5o = $ 40, d = 0, cr^ = 0.05, T = 0.25 (years), r = 0.08,
A = 5 (jumps per year), f= —0.025, and = 0.05. DP shows convergence and

efiiciency. It ensures accuracy to the fourth digit within a few seconds. DP agréés

almost perfectly with Merton's values. Amin (1993) does not report his CPU times

and provides only three digits of accuracy.

12



DP with a grid size p

K 50 100 200 400
Merton

(1976)
Amin
(1993)

30 0.6560 0.6711 0.6695 0.6697 0.6697 0.669

35 1.6875 1.6756 1.6728 1.6727 1.6727 1.674
40 3.5544 3.5857 3.5916 3.5920 3.5920 3.594

45 6.6251 6.6505 6.6550 6.6547 6.6547 6.656

50 10.5273 10.5413 10.5447 10.5445 10.5445 10.545

CPU (0.00) (0.00) (0.03) (0.08)

Table 1.1: European put options

DP with a grid size p

K 50 100 200 400
Bâtes Amin Gukhal

T (1991) (1993) (2004)

.25 30 0.6608 0.6759 0.6743 0.6744 0.685 0.674 0.672

.25 35 1.7030 1.6902 1.6874 1.6873 1.708 1.688 1.680

.25 40 3.5811 3.6221 3.6281 3.6283 3.663 3.630 3.610

.25 45 6.7028 6.7277 6.7320 6.7318 6.787 6.734 6.695

.25 50 10.6797 10.6926 10.6957 10.6955 10.776 10.696 10.634

1 30 2.6826 2.7124 2.7175 2.7176 2.790 2.720 2.661

1 35 4.5434 4.5930 4.6000 4.6001 4.692 4.603 4.501

1 40 7.0471 7.0308 7.0249 7.0244 7.131 7.030 6.867

1 45 9.9715 9.9411 9.9477 9.9482 10.063 9.954 9.714

1 50 13.3252 13.3062 13.3123 13.3119 13.430 13.318 12.981

CPU (0.00) (0.01) (0.03) (0.11)

Table 1.2: Bermudan put options

Next, Table 1.2 compares DP to Bâtes (1991), Amin (1993), and Gukhal (2004)
for Bermudan put options. Their méthodologies are based on quadratic approxi

mations, binomial trees, and compound options, respectively. Both DP and Amin

(1993) run with 200 time steps. Set Sq = $ 40, d = 0, C7^ = 0.05, r = 0.08, Â = 5
(jumps per year), f= —0.025, and 5^ — 0.05.

DP shows convergence and efhciency. DP values are always between the ap

proximations of Batcs (1991), Amin (1993), and Gukhal (2004). They are perfectly
in line with the literature. These authors report only three digits of accuracy and

do not report their CPU times.
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Finally, Table 1.3 and Table 1.4 compare DP to Chiarella and Ziogas (2009)
and Simonato (2011). Their méthodologies are based on finite différences and on
the Markov chain approximation, respectively. Chiarella and Ziogas (2009) use

10,000 time steps and 5,000 space steps. Both DP and Simonato (2011) run with a
daily time step. While Simonato (2011) uses 10,001 space steps, DP uses at most

p = 400 space steps.

The parameters of Table 1.3 are 5o = $ 50, d = Q, K = % 50, cr^ = 0.04, r = 0.05,
Â = 5 (jumps per year), 7= —0.105, and = 0.01. Those of Table 1.4 are d = 0.05,
K = % 100, CT^ = 0.0136, T = 0.5 (years), r = 0.03, Â = 1 (jump per year), y =0.0192,
and = 0.04.

Again, DP is in line with the literature. More importantly, DP reaches the same

level of accuracy with a limited number of space steps and, consequently, exhibits

very compétitive CPU times.

DP with a grid size p

50 100 200 400
Merton Simonato

T (1976) (2011)

10/365 1.0214 1.0222 1.0224 1.0224 1.0224 1.0224
30/365 2.0421 2.0475 2.0473 2.0474 2.0474 2.0474
60/365 3.0780 3.0899 3.0895 3.0895 3.0895 3.0896

90/365 3.8725 3.8849 3.8847 3.8847 3.8847 3.8847
270/365 7.0897 7.1263 7.1299 7.1299 7.1299 7.1302

CPU (0.00) (0.00) (0.02) (0.06)

Table 1.3: European call options

1.4.2 Double-exponential jumps

Table 1.5 compares DP to Kou's (2002) formula for European call options. Set

5o = $ 100, <i = 0, (7^ = 0.0256, T = 0.5 (years), r = 0.05, Â = 1 (jump per year),
f\\ = 10, 772 = 5, and p\ = 0.4. Again, DP shows convergence and efficiency. It
ensures accuracy to the fourth digit within few seconds. Kou and Wang (2004)

adapt the binomial tree of Amin (1993) and evaluate Amcrican-style options. DP

and the binomial tree run with 1600 time steps. They also use the approximation

14



DP with a grid size p Chiarella
„  Simonato

So 50 100 200 400
Zjiogas

(2009) (2011)

80 0.9717 0.9664 0.9650 0.9649 0.9648 0.9647

90 2.3178 2.3041 2.3065 2.3065 2.3063 2.3062

100 5.4076 5.3560 5.3603 5.3603 5.3603 5.3602

110 11.5481 11.5113 11.5073 11.5074 11.5079 11.5073

120 20.1237 20.1304 20.1323 20.1324 20.1333 20.1322

CPU (0.00) (0.00) (0.02) (0.09) (25.169)

Table 1.4: Bcrmudan call options

DP with a grid size p

K 50 100 200 400
xvuu

(2002)

90 14.7530 14.8060 14.8116 14.8119 14.8119

95 11.1737 11.1041 11.1131 11.1133 11.1133

98 9.0386 9.1574 9.1469 9.1473 9.1473

100 8.0465 7.9694 7.9598 7.9594 7.9594

105 5.3778 5.4606 5.4521 5.4518 5.4518

110 3.5276 3.5915 3.5998 3.5996 3.5996

CPU (0.02) (0.08) (0.33) (1.26)

Table 1.5: European call options - Kou (2002)

of Barone-Adesi and Whaley (1987) (BAW). Table 1.6 compares DP to Kou and
Wang (2004) (KW) for Bermudan put options. Set Sq = $ 100, (J = G, (T^ =
0.04, T = 0.25 (years), r = 0.05, and p\ = 0.6. While DP remains very accurate,

the results provided by Kou and Wang (2004) are not, especially for out-of-the-

money options. Some European-option values exceed their Bermudan counterparts.

This abnormality might be due to the approximation of Barone-Adesi and Whaley

(1987), which seems to give an error larger than the option's early exercise premium.
Table 1.7 (EL) compares DP to Feng and Linetsky (2008), who use partial integro-
differential équations and an extrapolation scheme based on sparse space steps for

options valuation. Both procédures run with 252 time steps. Set d = 0.02, K — %

100, = 0.01, T = 1 (year), r = 0.05, X = 3 (jumps per year), f/i = 40, 7)2 = 12,
and p\ = 0.6. They report a CPU time of 28 seconds for their second-order IMEX
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DP with a grid size p KW (2004)

K A m 42 50 100 200 400 BAW Tree Europ.

110 3 25 25 10.5517 10.5698 10.5733 10.5738 10.43 10.48 10.1785

110 3 25 50 10.5451 10.5244 10.5193 10.5185 10.38 10.42 10.1146

110 3 50 25 10.4312 10.4517 10.4461 10.4465 10.31 10.36 9.9808

110 3 50 50 10.3771 10.3903 10.3943 10.3937 10.26 10.31 9.9151

110 7 25 25 10.9001 10.9366 10.9278 10.9287 10.79 10.81 10.6222

110 7 25 50 10.8255 10.7848 10.7912 10.7904 10.64 10.68 10.4758

110 7 50 25 10.6464 10.6203 10.6144 10.6136 10.47 10.51 10.1892

100 7 50 50 10.4634 10.4777 10.4807 10.4813 10.34 10.39 10.0337

90 3 25 25 0.7301 0.7571 0.7639 0.7746 0.76 0.75 0.7633
90 3 25 50 0.6599 0.6779 0.6823 0.6828 0.66 0.65 0.6739

90 3 50 25 0.7397 0.7044 0.7105 0.7098 0.69 0.68 0.6960

90 3 50 50 0.6468 0.6126 0.6185 0.6179 0.60 0.59 0.6067

90 7 25 25 1.0249 1.0668 1.0594 1.0603 1.04 1.03 1.0487

90 7 25 50 0.8228 0.8488 0.8552 0.8546 0.83 0.82 0.8474

90 7 50 25 0.8636 0.8951 0.8993 0.9000 0.88 0.87 0.8826

90 7 50 50 0.6589 0.6971 0.6911 0.6918 0.67 0.66 0.6589

CPU (0.03) (0.09) (0.37) (1.50) (0.03) (4029)

Table 1.6: Bermudan put options - Kou and Wang (2004)

midpoint method, and 1.5 seconds for their extrapolation scheme. DP niust be

compared to the second-order IMEX midpoint method.

1.5 Empirical investigation

1.5.1 Estimation

We use maximum likelihood to estimate Merton (1976) and Kou (2002) mod-

els and maximum likelihood coupled with calibration to estimate their extended

versions.

Let Rf = log {^th/^(t-\)l^ be the daily stock log-return, for f = 1,... ,M, where
T = Mh is the last observation date. By eq. (1.1) and the properties of Lévy

processes, the returns are independent and stationary, and they have the same

distribution as
Nh

Rl= ilh+(7Wh+Y,^n,
n=l
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European DP with a grid size p

5o 50 100 200 400
Kou

(2002)

85 13.6377 13.6349 13.6455 13.6462 13.6462

90 10.4557 10.4636 10.4527 10.4518 10.4518

95 7.9318 7.9051 7.9201 7.9223 7.9223

100 5.9855 5.9573 5.9788 5.9800 5.9801

105 4.5057 4.4927 4.5115 4.5132 4.5133

110 3.3841 3.3979 3.4119 3.4137 3.4137

115 2.5635 2.5993 2.5921 2.5909 2.5909

CPU (0.01) (0.06) (0.25) (1.12)
Bermudan DP with a grid size p

So 50 100 200 400
FL

(2008)

85 15.0843 15.0638 15.0663 15.0693 15.0695

90 11.3726 11.3656 11.3626 11.3661 11.3662

95 8.5604 8.5469 8.5476 8.5476 8.5479

100 6.4335 6.4160 6.4168 6.4169 6.4171

105 4.8314 4.8215 4.8223 4.8223 4.8225

110 3.6153 3.6338 3.6345 3.6348 3.6347

115 2.7374 2.7505 2.7504 2.7504 2.7505

CPU (0.02) (0.08) (0.28) (1.17)

Table 1.7: Put options - Feng and Linetsky (2008)

where p-= Il —d — cr^fl — XK. The parameters to be estimated in Merton's (1976)
model are p, o, X, y, and ô. The parameters to be estimated under Kou's (2002)
model are p, a, X, Tji, 772, and p\.

The log-Iikelihood of the random sample under Merton's (1976)
model is

M  [ ^

n„(p (Rt;ph + ny,o^h + nô^]
M

^ £ log
7=1 n=0

where 7r„ = P{Nh = n) — e~^^{Xh)"/nl, (p{x-,a,b) is the probability density function
of a normal distribution with mean a and variance b, evaluated at x.

The log-likelihood of the random sample Ri,...,Rm under Kou's (2002) model

is ^
.if = £log (^/(i?,|/l,C7,A,T7i,T]2,Pl)) ,
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where

/(/?,|jÛ,(T,A,TJi,rÎ2,Pl) = j=Y^Knl,Pn,k[<y^hr]xj
Oy/lTlh

X

+

X

^{a^2fh|l ^ n , yk
7== L L ô«,;fc cy V/IÎ72<TV27r/i ,;ti ;tti ^ '

(^^^^ + ctv^î72^
+ —7f<P -av^ \ Oy/h

and the function <p(-) is the normal density function. The functions Pn,k{-) and

Qn^ki') are reported in Appendix l.C, as defined in Kou (2002). The function Hh{-),
which can be viewed as a generalization of the cumulative normal distribution

function, is defined in Abramowitz and Stegun (1972).

1.5.2 Case study: Home Dépôt

We consider a set of American-put options on Home Dépôt, issued on 01-21-

2011 (évaluation date) and expiring on 05-21-2011. The initial stock level is Sq =

$ 36.51 and the risk-free rate is the one-month Libor rate, r = 0.48% (per year)
on 01-21-2011. We use daily stock returns from 01-13-2009 to 01-21-2011 as an

estimation time window. We use the test of randomness of Genest and Rémillard

(2004) with four consécutive values and we cannot reject the i.i.d structure of the

random sample /?i,... iRm at the level of 5%.

Figure 1 reports the time sériés of daily stock returns. It shows fréquent peaks,

which suggest a jump-diffusion dynamics for the underlying asset. We use maxi

mum likelihood to estimate pure diffusion and conventional jump-diffusion models,

while we use maximum likelihood coupled with calibration to estimate their ex-

tended versions. We start with maximum likelihood estimâtes in the conventional

jump-diffusion setting, select some liquid option contracts, use calibration to ap-
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Figure 1.1: Home Dépôt log-returns

proximate a and /3, and revise the maximum likelihood estimâtes, as explained in

Section 2. Table 1.8 provides maximum-Iikelihood estimâtes. Their standard errors

are indicated in brackets. Calibration results in (a,j3) = (1,0.228) for Merton and
(a,j3) = (0.9074,-0.8234) for Kou.

The estimated models présent a key différence, that is, a low intensity and a

high volatility for Merton's (1976) model and a high intensity and a low volatility
for Kou's (2002) model. This illustrâtes the complexity to discern in between the
pure component and the jump component of a jump-diffusion dynamics. Kou's

model shows a small asymmetry between upward and downward jump amplitudes

(l/îî, ~ l/î]2).
Tables 1.9-1.11 show that conventional jump-diffusion models outperform their

pure diffusion counterparts. Moreover, extended jump-diffusion models further

improve the final results.
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Model

BS

Merton

Kou

M

0.2720

m 12 Pl

0.3472

(0.0209)
0.2554 7.5066 0.0474 3.10"^

(0.0191) (0.0098) (3.2955) (0.0068) (0.0053)
-0.4901 0.0430 641.8961 _ 132.0057 119.1263 0.5904
(0.0568) (0.0118) (93.6113) (15.0636) (12.5161) (0.0467)

Table 1.8: Maximum likelihood estimâtes

DP with a grid size p Markct Relative

K 50 100 200 400 price error

32 1.0182 1.0270 1.0273 1.0273 0.630 0.6306

33 1.3477 1.3393 1.3392 1.3391 0.830 0.6134

34 1.7187 1.7063 1.7065 1.7065 1.075 0.5874

35 2.1218 2.1300 2.1304 2.1304 1.395 0.5272

36 2.5987 2.6113 2.6109 2.6109 1.790 0.4586
37 3.1605 3.1465 3.1466 3.1468 2.265 0.3893

Table 1.9: American put options - BS (1973)

DP with a grid size p Market Relative

K 50 100 200 400 price error

Merton (1976)

32 0.6446 0.6495 0.6496 0.6496 0.6300 0.0311

33 0.9085 0.9138 0.9138 0.9138 0.8300 0.1010

34 1.2367 1.2422 1.2424 1.2424 1.0750 0.1557

35 1.6429 1.6383 1.6384 1.6384 1.3950 0.1745
36 2.1092 2.1029 2.1030 2.1030 1.7900 0.1749
37 2.6419 2.6350 2.6350 2.6351 2.2650 0.1634

Extended Merton

32 0.6372 0.6421 0.6422 0.6422 0.6300 0.0194

33 0.8997 0.9052 0.9051 0.9051 0.8300 0.0905

34 1.2268 1.2323 1.2325 1.2325 1.0750 0.1465
35 1.6322 1.6274 1.6276 1.6276 1.3950 0.1667
36 2.0979 2.0914 2.0915 2.0915 1.7900 0.1685

37 2.6303 2.6232 2.6233 2.6233 2.2650 0.1582

Table 1.10: American put options - Merton (1976)
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DP with a grid size p Market Relative

K 50 100 200 400 price error

Kou (2002)

32 0.6661 0.6605 0.6608 0.6608 0.6300 0.0490

33 0.9319 0.9229 0.9234 0.9235 0.8300 0.1126

34 1.2590 1.2499 1.2494 1.2494 1.0750 0.1622

35 1.6259 1.6427 1.6423 1.6424 1.3950 0.1773

36 2.1211 2.1019 2.1034 2.1035 1.7900 0.1751

37 2.6526 2.6303 2.6319 2.6320 2.2650 0.1620

Extended Kou

32 0.5808 0.5881 0.5878 0.5878 0.6300 -0.0669

33 0.8284 0.8385 0.8380 0.8381 0.8300 0.0098

34 1.1651 1.1539 1.1535 1.1535 1.0750 0.0731

35 1.5545 1.5373 1.5385 1.5385 1.3950 0.1029

36 1.9749 1.9962 1.9948 1.9947 1.7900 0.1143

37 2.5435 2.5193 2.5216 2.5216 2.2650 0.1133

Table 1.11: American put options - Kou (2002)

1.6 Conclusion

We build a tractable framework for options pricing, where the underlying asset

price follows a jump-diffusion process à la Merton (1976) and Kou (2002). Our
construction is based on dynamic programming combined with finite elements.
Our numerical investigation shows convergence and efficiency, and competes well
against alternative méthodologies. For the model estimation, we experiment with
the maximum-likelihood approach alone and maximum likelihood combined with
calibration. The latter outperforms the former.

Dynamic programming coupled with finite elements can be extended to handle
two-dimensional jump-diffusion models. This is feasible as long as the transition

tables can be computed in closed form and stored in the computer. For higher di-
mensional jump-diffusion models, dynamic programming coupled with Monte Carlo

simulation is recommended. The statc space becomes too large for a systematic

split through regular hyper rectangles; rather, its is visited through random sam-

ples. Examples include the least squares Monte Carlo of Longstaff and Schwartz

(2001) and Bally et al. (2005).
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APPENDIX

l.A Change of measure

Recall that h{x) = where a G and j3 G IR. For Merton's (1976), a =
E[/i(a:)] = and the density f{x) of V, under Q, is

f{x) = h{x)f{x)

(x-r)--2/îa^;i —
= ake 2«- /{V2k5),

(x-r-ps^)^ —
= Ae 2«2 l{\/2n5) for ^ G M,

where, under Q, k = ak, 7=7+^35^, 8 = 8, and k = -\.

For Kou's (1976) model, JS g]-ti2,tïi[, a = E[h{x)] = ap\T]:/{r]i-P) + ap2r]2/iri2 + P), and

the density f{x) of v, under Q, is

f{x) = h{x)f{x)
aA(T7,-^)/2.T7. ak(ri2 + P)p2ri2 jr,.+su,

a{ni-P) aim+P)
^  kp,71,(71, -P)

^pimim+P)
in2+P)& + ̂ )

=  Pl^l(^2 + P) („ ^pini('n2+P)+P2m(-ni-P) '
P'h2(hi -P) (n2 + B)e~^''^'^^^h m

P22i2('ni -P)+Pi'ni(v2+P) h<}'
= piiiie"^'''I{x>0}+P2fÏ2e^^'^I{x<0}- for G M,

where, under Q, k = ak, fi, =71, -JS, fi2^7i2+P, p, =/2iT?im/(/'ihih2+/'2tiin2), P2 = \-p\,

and S: = pifii/(fji-l) + p2r?2/(î?2 + l)-l.



l.B Transition tables - Merton (1976)

The transition parameters 7^^-, for V G {0,1,2}, â: G {1,... ,p}, and «G {0,... ,p}
are

oo ? r

= L Q (AW = n) 1)1 4> (ct,,-+i («) - c(n)) - ̂  - c (n))
n=0

where N/^j is the number of jumps over [tm,tm+i], c{n) = v<7„\/S, and

Q (A/at = n) = e'
ni

a^ = a^ + !L§2
"  ̂ ^ At '

rik(n) = fl̂ e('-^'-^'^-'^„V2)Ar+«(y+5V2)^
log (ai/ak) - (^r- d - ÀK- <7,^/2^ At ~ n(y+ ô^/2)

CkA") =

and <!>(•) is the standard normal distribution function.

l.C Transition tables - Kou (2002)

The transition parameters for v G {0,1,2}, k G {1,.. • ,p}, and i G {0,... ,p}
are

T°. = T(iuo,(y,À,pi,T]i,T]2,Xi+i,At)-r(^,a,X,pi,r]ur]2,Xi,'^),

7^1 = [T(;Ui,(7,Â,PI,^1,fj2,A^,+i,A/) -T(/X|,(T,À,PI,^1,î72,jc,-,A/)],

'rki = ̂ p~^^kP'(^^2,^A,pi,'nun2,Xi+i,At)-r(^2,2a,X,pi,'ni,î2,xi,At)],

where IXo = r- ja'^-XK,Xi = log{ai/ak),p = exp{-{r-d)At),^i = r+ }cy^-Aif,Â = Â(1 + K:),pi ^
pr]l/(l + K)(r]i - l),fii =T}i-l,flz = n2+l,Ô = 2a,K = /7i(T]i/2fii) + (1 - p,)(T]2/2fi2) - 1,^2

2r + - A!C,Â = A(H- ic),fji = tji/2- l,7i2 = T]2/2+l,b = exp(cr^ + A((C-2ff)A/),and i,- =Xi

log(b). The function T(.) is defined by
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g(<TTji)'A//2 ~ n , .k
T(jU,(7,A,T}i,Tj2,Pl,JC,-,Ar) = j==^Y,^nl,PnAoVAtr]ij

asflTthî „ti fc=i ^ >

X  //t_i ^Xi-^Af;-T]i,--^,-cyT7i\/ÂF
g(cyi?2)^A(/2 ~ ^ . A

+  L L Qn,k ( C7 VArr/2 )(tV^ „=i ^ti ^ ^

X  Ik.l(xi-^lAt■,T]2,-^^,-CTr]2VÂt

and

In{c;a,j5,5) = e"^Hhn {^x- 5)dx,

for arbitrary constants a, c, j3 G M, and n G N.

l.D Validity of Assumption ^

Here we show that Assumption ^ holds true for linear and quadratic interpo

lations. One can guess that higher order polynomial interpolations also satisfy the

assumption.

l.D.l Linear interpolation

Suppose / is linearly interpolated on / = [a, c] at points a, c by

' f{c)-f {a)
f{x)= f{a) + {x-a)
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Then /-/ <  — In fact,

f(x) - f(x) = //W-/(^) _ fi.x)-f{c)c—a \ x—a x—c

As a resuit, if A" — |/|/^,p, then for any x G [fl,c],

.{c — x){x — d) K
f{x)-f{x) = 2K'~ <-{c-a),

c — a 2

since - jc)(x - a) = As a by-produet, one obtains that if / is
linearly interpolated on / = [xi,X2],..., [xn-1,a:„] at points (xi,a:2),..., [xn-\,Xn), and
the length of each interval is less or equal than h, then

/-/ = sup
I  xel

f{x)-f{x)

where is the Lipschitz norm of / on / =

1.D.2 Quadratic interpolation

Suppose / is interpolated by a quadratic polynomial on [fl,c] at points a,b,c by

f(x)=f{a) + {x-a){-''-i y-q+'- y; [■""..l""'im-m m-.
\  b — a

f-f < 4|/|^-^(c —a), since \b — x\<{c — a), forIt is then easy to check that

any x G [a,c].
As a by-product, one obtains that if / is interpolated by a quadratic polynomial

on I =[xi,Xn] at points (;ci,X2,X3), (;r3,X4,X5),..., (A:rt_2,-rn-l>-''^n)) with n odd, and the
length of each interval is less or equal than h, then

f-f ^ MflLipJ^-
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The constant 4 is a little crude but it suffices for our purposes. Note that the

smoother the function, the faster the convergence. In fact if / is differentiable

and < °°i then there is a constant C independent of /, such that

c l/ll,

/-/ <
I

l.E Proof of Theorem 1.3.2

For a given filtration F and a Markov process S adapted to the filtration, the

value vo(j!:) at period 0 of the "Bermudan" option, with exercise values and 5o —x,
is given by

voW= sup E{j5rv'^{Sr)\So=x),
rG^o,n

where stands for the set of ail F stopping times with values in {k,...,n}, 0 <
k<n. Here is the discounted factor at /c-th period, po = l, and Pk/Pk-l =

k ^ {1,... ,n}. The sequence of functions

Vk{x)= sup E{py^{Sr)\Sk=x)/pk, ke{0,...,n},

is called the Snell envelope. It is well-known, e.g. Neveu (1975), that the Snell

envelope can be computed in a recursive way. In fact, v„ = v®, and for k = n —

Vkix) = e"'''^+'F{vfe+i(5A:+i)|5jt=x}, (1.10)

v,t(x) = max|vf(x),vJ(jc)|. (1.11)

In our model, Sk = Sk-\Zk = nk{Sk-\iZk)^ where the log(Z,t) = ~^tk-\ ^■re
incréments of a Lévy process. Set

Pkg{x) = E [g{Tlk{x,Zk)}].
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The approximation algorithm can be summarized as follows;

vj_i = PkVk on
v„ = v^and Vi = J on^k-\, k = n,...,\,

Vk-l =

whcre dénotes the interpolation of g over the interval R assoeiated with grid

The proof of the following proposition is easy. This resuit also appears in Bally

et al (2005).

Proposition l.E.l. For any real numbers x,y,z,w,

|max(x,z) —max(y,w)| < maxdx —y|, |z —w|).

In particular, | max(x,z) — max(jc, w)| < |z — w|.

From now on, Sk = Sk-iZk, with E{Zk) = e~^'< < 1, where 4 is the dividend
faetor period k.

We are now in a position to complété the proof.

Proof: First, note that since each is Lipschitz over [0,oo), it follows that each
v|(x) < v|(0) is bounded by a linear function in x. It also follows easily
that Vk and are Lipschitz over [0,°°), and \vk\iip < maxk<j<n
Proposition l.E.l, for any

Lip
.  In fact, by

I^-jI
< max ^H{x)-vl{y)\/\x-y\, 4{x)-v'l{y) /|jc-y||

.)

27



Next,

vHx)-vi{y)
k->'l

< {Iv/t+1 ixZk+1 ) - V^+1 {yZk+1 )I}
^  \'^k+\ \up^i^k+'i) ^l'^k+llup-

Lip

The, for any â: G {0, 1},

\vk\up<max^^\vl\Lip '

As a resuit, for any â: G {0,... ,n — 1}, \vk\pip < maxk<j<n
For simplicity set ^k-i = f^k-i = niesh(?fjt-i)- To begin, one bas, for any

k= 1,... ,n,

Vk-l-Vk-l = (Vfc_i - J^k-lVk-l) + {^k-\Vk-l - ̂k-lVk-l) ■

Then, using Proposition l.E.l, one obtains

\\vk-i-Vk-l\\Mk-i ^ Dmk-\ \vk-i\up + hk-l-h-\h,_^
< Dmk-i \vk-i\up + .,h

^k-l -^k-\

< Dnik-i \vk-i\up + Ikit-Mâ?!

+ Pk{iVk-Vk)^âê'J
^k-l

< Dnik-i In-ilup + hk - h\\^,

+ Pkin'^.wJ + Pk

Rk = XkRk-i, The aim is to show that if Ai,..., A„ are large enough, then the terms

Pkin^âgi) and
k-l

Pkih^âê?)
'^k-\

can be arbitrarily small, for all \ < k < n.

For a put, one can take A^ = 1 and 'î^k = with nik = m. In this case, by

construction. Pk{h^^^) = 0. Also, it follows from Del Moral et al. (2012)
t-i
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that Vk is decreasing and convex. Therefore, ^ < VkiRo)- Next,
%-x

choose Rq > K. Then for any x > Rq, v„_i(x) = v^_,(x) < KFn{K/x), where Fk
is the distribution function of Z^, k£ n}. Now, suppose that \'i x>K, then

Vn-k{x) < KTfj=n-k+l Thîs is obviously true for /: = 1. Then

Vn-k-l{x) = v'^_,^_^{x) + Pn-kVn-k{x) =E{Vn-k{xZn-k)^{Z„^^<y}}
-\-E {Vfi—k{xZn-k) 1 {z„_k>y}

< KFn-k{y) + v„-k{xy)

< KF„_t(y) + K £ Fj[(Klxyfl''].
j=n—k+1

Taking y = {K/xY/^^'^^\ one gets xy>K,so

yn-k-i{y)<K f
j=n-k

Hence, for k G {0,... ,n — 1}, and for any x>K,

n{x)<K £ Fj{{k/x)"^"-'^}<k'£Fj(k/x),
j=k+\ ^ ^ j=l

which tends to 0 as x —>• oo. As a resuit,

\\vk-Vk\\^f,<in-k)Dm+ Vj{Ro) < {n-k)Din +{n-k-\)K Y, Ej (E/Rq) ■
j=k+l 7=1

It then sufiices to take Rq large enough so that (n— l)A'£'j^2 Fj (^K/Rq) < e/2, and
then choose a grid of ^q = [0,Rq] with m = mesh(i^) < e/{2nD).
For a call, note first that since is Lipschitz with |vfc|7,jp < 1, and since Vkifi) = 0,
one gets Vk{x) < x, for any x > 0. Also, using results in Del Moral et al. (2012), Vk
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is convex and increasing. It then follows that

< E ̂ ^Vk{Rk-iZk)^Zk>Xk]
< Rk-iEt^Zkl{z,>Xk}}-

Since, by construction, Pfc(v^l^)
^k-

■ 0, one ends up with

n-l

\vk-vk\\^, < £ Rj-iElZj\{Zj>Xj}]
j=k j=k+\

< D'^mj+Y, Rj-1E |Zj 1 {Zj>Xj}} •
7=0 7=1

In order to complété the proof, first choose successively Ai,..., An so that /?y_ i
E |Zyl|2y>A;}| < e/{2n). This is possible since each Zk is positive and integrable.
Next, recall that Rk — Rk-i^k: ^ ^ {!)• ••»«}• Then choose a grid of
with mesh m<ef{2nD). Finally, set Wk — 'i^nMk- It then follows that mk<m and

I^A: ~ for 3-11 ^ € {0,... ,rt}. Q.E.D.
In Bally et al. (2005), only the point convergence of vo('^o) to vo(5o) is shown.

Here we can prove uniform convergence on every finite interval = [0,iîo]-

Remark l.E.l. The œndition on the interpolation method is verified for the linear

interpolation with D= 1/2 and the quadratic interpolation, for which one can take
D = 4, even if it is a crude estimate. We needed that bound only to prove the

convergence. The fact that we find a smaller D for the linear interpolation does not

imply that its convergence is faster. In fact, it is quite the contrary, as shown in

the numerical experiments.
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CHAPTER 2

DYNAMIC PROGRAMMING FOR VALUING AMERICAN

OPTIONS UNDER THE VARIANCE-GAMMA PROCESS

Abstract

Hatem Ben Ameur, ̂  Rim, Chérif, ̂  Bruno Rémillard ̂

Lévy processes provide a solution to overcome the shorteomings of the lognor-

mal hypothesis. A growing literature proposes the use of pure-jump Lévy processes
such as the variance-gamma model. In this setting, explicit solutions for deriva-
tive prices are unavailable, for instance for the valuation of American options. We

propose a dynamic programming approach coupled with finite clcments for valuing
American-style options under an extended variance-gamma model. Our numeri-
cal experiments confirm the convergence and show the efïiciency of the proposed
methodology. We also conduct a numerical investigation that focuses on American
options on the S&P 500 futures contracts.

Keywords: American options; Variance Gamma process; Dynamic program

ming; finite elements, Calibration; Maximum likelihood.

2.1 Introduction

A spécial class of diffusion processes, specifically the generalized hyperbolic dis
tributions, have straightforward parallels with Lévy processes. They have become

extremely relevant in mathematical finance as they provide tools to accurately

consider enough of the desired properties of asset returns, both in the real and the

risk-neutral worlds. One member of the generalized hyperbolic family, and one of

1. Hatem Ben-Ameur is a Professer at HEC Montréal in the Department of Décision Sciences,
and member of the GERAD.

2. Rim Chérif is a Ph.D. student at HEC Montréal.
3. Bruno Rémillard is a Professer at HEC Montréal in the Department of Décision Sciences,

and member of the CRM and GERAD.



the most popular Lévy processes used in financial modeling, is the variance-gamma

process that, in itself, synthesizes several desired movement types for the asset price.

On the one hand, it allows an infinité number of low-amplitude jumps that behave

like diffusion and, on the other, permits a finite number of high-amplitude jumps

whose intensity decreases as amplitude increases.

The variance-gamma model is unique in that Brownian motion varies according

to a stochastic time scale given by the gamma process. With this connection,

price fluctuations are expressed according to a business time scale rather than

calendar time. Thus, a stochastic time change can havc two cfïects: it can speed

up calendar time and subject the market to turbulence, or slow down calendar

time and maintain an unpcrturbed market. The variance-gamma process cnablcs

accurate financial applications in, for example, modeling oil price dynamics (Askari

and Krichene, 2008), crédit risk (Fiorani et al., 2010), options on stocks, energy
and currency prices (Pinho and Madaleno, 2011), (Daal and Madan, 2005). The
variance-gamma process' flexibility is confirmed by Stein et al. (2007) and leveraged
by the Bloomberg system through the implementation of the SKEW function,

which compares option pricing under Black and Scholes (1973) and variance-gamma

settings. The SKEW function inadvertently led to an even greater popularity for

this process within the financial industry. AU of this suggests the practical and

theoretical relevance for further exploring the variance-gamma model to develop

efficient numerical methods for financial applications.

The symmetrical version of variance-gamma was introduced by Madan and

Seneta (1990) and Madan and Milne (1991), and then extended to the asymmetrical

case by Madan et al. (1998). These authors havc proposed a formula to value

European options. However, given that solutions are only available for European-

style options, a great deal of research is being dcdicated to implementing efficient

numerical methods to evaluate other types of options, such as Bermudan options.

Several algorithms have been developed to assess Bermudan options under the

variance-gamma model. The most common are based on Monte Carlo methods

in plain or enhanced form by using control and antithetic variâtes, quasi-Monte
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Carlo methods, and importance sampling (Avramidis and L'Écuyer, 2006, Kaishev
and Dimitrova, 2009, Becker, 2010, Dingeç and Hôrmann, 2012). Other methods
include the lattice models (Këllezi and Webber, 2004, Maller et al., 2006), partial-

integro-differential équations (Fiorani, 1999, Hirsa and Madan, 2004, Almendral

and Oosterlee, 2007a,b, Mayo, 2009), Fourier transforms (Carr and Madan, 1999,
Wong and Guan, 2011, Haslip and Kaishev, 2014), and Markov chains (Konikov

and Madan, 2002).

We evaluate options under the variance-gamma model in line with Ben-Ameur

et al. (2016). Our approach is based on dynamic programming coupled with finite

éléments. The value function under considération is approximated by a piecewise

polynomial at each décision date. High-order polynomials are accurate but are

time consuming. We are therefore looking for a compromise between accuracy and

Computing time. We compare piecewise-constant, -linear, and -quadratic approxi

mations, and conclude this last one to be most efficient.

The remainder of this paper is organized as follows: Section 2.2 présents an ex

tension of the variance-gamma model by Madan et al. (1998), Section 2.3 describes

a stochastic dynamic program that solves the optimal Markov décision process em-

bedded in the American-option valuation problem. Sections 2.4 and 2.5 présent

our numerical investigation and empirical study on S&P 500 futures contracts, and

finally. Section 2.6 concludes our analysis.

2.2 The variance-gamma process

Let ̂  be a frictionless market with a constant instantaneous interest rate r and

risky asset S experiencing jumps at random times, and let be a complété

probability space. Let the variance-gamma process be defined as a process obtained

by evaluating a Brownian motion, with a drift at a random time given by a gamma

process. Let B = {B{t;6,<T) — dt + <yWt,t > 0} be the Brownian motion with drift
parameter 0 G R and volatility parameter CT > 0, where W is standard Brownian

motion and Bq = Wq — 0, for ail t > 0. Let G = {Gt ,t> 0} be a Gamma process
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with unit mean rate and variance parameter V > 0, indicated by G ~ GAMMA{y)
and independent of B with indépendant incréments, where Gq = 0. For t > 0, the
density of Gt is given by

xv-^exp(-i)
ft,v {x) = ^—/x , for X > 0,vir(^

where r(-) is the gamma function. The parameter I/v controls the intensity of
jumps of ail sizes simultaneously and captures the decay rate of large jumps. We

provide the variance-gamma process moments in Appendix 2.A.

More precisely, a variance-gamma process X with parameters (0,(T,v), indi

cated by X ~ yG(0,(7, v), is a Lévy process defined by X{t) = B{Gt), where t >0,
and where B and G were previously defined. By examining the four moments of

the variance-gamma process (see Appendix 2.A), the parameters 0 and V can be

interpreted as indirectly capturing the skewness and the kurtosis of stock returns.

The procédure for evaluating Brownian motion at a positive non-decreasing

Lévy process is called subordination. Hence, the variance-gamma process is a time-

changed (subordinated) Brownian motion, where the subordinator is a gamma
process. This subordinated time process may be interpreted as market activity

time, refiecting the random speedups and slowdowns of real-time business activity.

The Lévy process can be viewed as a continuous-time analog of a sequence of

partial sums of independently and identically distributed random variables; its dis

tribution is characterized by the Lévy-Khintchine représentation given by Theorem

2.2.1.

Theorem 2.2.1. Every Lévy process (Xj) is characterized by a triplet {a,û^^k)
where a G R, t? G M"*", and k is a measure satisfying k ({0}) = 0 and ^1 k{dx)
< oo, determining its characteristic exponent as

f / ■ \yf{u) = iua h J — 1 — j k{dx),
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i.e., E JuXt =  jor ail u E

Thus, Lévy processes can be parameterized using the triplet {a,û^,k), where
a is the drift, is the variance of Brownian motion, and k is the so-called Lévy

measure or jump measure, which characterizes the size and frequency of the jumps.

In fact, if A is a closed interval not containing zéro, then Na (t) = ^ ■^)
is a Poisson process with intensity k(A). As a resuit, if this measure is infinité,
then the process has an infinité number of jumps of very small sizes in any small
interval. Unlike Brownian motion B with characteristics ^0, <7^,0^, the variance-
gamma process is a Lévy process with characteristics (a,0,k) and with a Lévy
measure associated with X having a density i

.  exp(0x/cT^)£(jc) = ; ^exp
V V

(

\

Il , 02V v + ̂ i
\

(2.1)

where a = jc/c(djc) and where the infinité activity of the process is observed in
the Lévy density, which has the behavior of (l/|x|) near zéro. The intégral of the
Lévy density is therefore infinité. The spécial case of 0 = 0 in eq. (2.1) yields a
Lévy measure that is symmetrical around zéro, a case initially used by Madan and
Seneta (1990) and Madan and Milne (1991). Furthermore, the density Xt ~ (0, tT, v)
of the variance-gamma model characterized by (0,0", v) is given by

//^(v;cT,0,v) =
2exp ^0A:/(T^j
v'/Vv^ar(f) +
Kl_x_ ,

X

(2.2)

where is the modified Bessel function of the second kind of index z-

Interestingly, the variance-gamma process may also be expressed as the différ
ence of two independent increasing gamma processes Y\, Y2, viz., Xt = PiYi t —
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with Yi ~ GAMMA{y), i e {1,2}, where j3i and ^ are defined by

j3i = ̂ \/2c5-2v + 02y2_|_^ ^nd j32 = ̂ \/2(72v + 02v2--^.
Using these results, one may conclude that the density of the Lévy measure asso-

ciated with X can aiso be written as

It is thus évident that expressions (2.1) and (2.3) are indeed the same.

In général, when the log-price is modeled by a Lévy process, the market is

arbitrage free but incomplète, that is, there is an infinité number of équivalent

martingale measures. This is mainly due to the presence of jumps, and is certainly

true for the pure-jump model considered here. Based on Cont and Tankov (2004),

we présent a général change of measure for Lévy processes. To this end, let </> be a

positive function satisfying the integrability condition

= jW/2 _ 1 }2 < oo. (2.4)
Theorem 2.2.2. LetX be a Lévy process with characteristics {a,û^,k}. For every
Z? € K and 0 satisfying (2.4), there exists an équivalent probability measure so
that, under Q^''^, X is a Lévy process with characteristics {â,d-^,k}, with

â = a + bû + J — l^'k^dx), (2.5)
û = û, and the Lévy measure k having density with respect to k.

In particular, its cumulant function, provided it exists in the neighborhood of 0,

is given by

c{u) = â + ̂ d-F J (e"^ — l — k{dx). (2.6)
Remark 2.2.1. Given Theorem 2.2.2, it is easy to verify that the discounted value

is a martingale underQ^'^ if and only if c given by (2.6) is finite for ail
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M G [0,1], and c{l) = r — q. Here, q is the continuously compounded dividend yield.

Even if Theorem 2.2.2 gives a général change of measure for Lévy processes,

it does not guarantee that under the change of measure, the process stays in the

same family, which is a désirable property in practice. For example, in our case,

we would like to concentrate on changes of measure determined by (p so that the

process remains a variance gamma, possibly with new parameters ^0,0', V^. To
this end, we propose to use the function (Rémillard, 2013, Remark.6.5.2)

^{x) = (x > G) + ̂ 2x1 (jc < 0), for X G M, (2.7)

where < l/j3i and ^2 > — 1/i^i so that the integrability condition (2.4) is met.
In this case, the density l of the associated Lévy measure is given by

l{x) = 1(«0)

■I{x>o} + ";;prI{;c<o}î for x G M,
vx ^ vjc

where j3i = j8i/(l - i^ijSi), +^2^2)1 with v = v, 0 = (^1 -^)/y, and
à = -^ZjSij^/v. This is our extended variance-gamma model.

It follows from Remark 2.2.1 that under this change of measure,

= 5oexp{(r —ç + w)t + Xf}, for t > G, (2.8)

where r > G is the risk-free rate of interest, q is the asset's continuously compounded

dividend yield, w — In(l - 0V - â^v/2)/v, and X is still a Lévy process represcnted
byX, ~yG(^â,0,v).

Madan et al. (1998) developed a risk-neutral valuation setting based on a

general-equilibrium economy where the représentative agent has a constant-relative

risk-aversion utility function. Their equilibrium model corresponds to the simple

case ^ =0, i.e, (^1 = ̂ 2 = 0-
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2.3 Valuing American-style options

2.3.1 The option contract

An American option on a stock with maturity T is characterized by its known

exercise value vf(5), where s = St is the stock price at time t G [0,7]. For example,
an American vanilla option is defined by

{(s — K)~^ for a call option
,

(K — s)'^ for a put option

where K is the option's exercise price and (x)"*" = max(0,x). We consider its
Bermudan version which admits a finite number of exercise opportunities given

by tQ = 0,. .. JmT ■ ■ ,tM — T. For simplicity, assume that t,„+\ — = At is a fixed

constant. By the no-arbitrage évaluation principle, the option's holding value at

is

v^(5) = Eq^e
for m = 0,. .. ,M,

(2.9)

where Eq[- = s] is the conditional expectation under Q. With the convention
that v^(-) = 0, the option must be exercised at maturity = T. The option's
overall value at time tm is

v,„{s) = max , for ^ > 0. (2.10)

The associated European version is characterized by (•) = G, for m = G,... ,M — 1.

2.3.2 The dynainic program

Let ^ = {ai,.. .,ap} be the grid points, where 0 = ao < ai < ... < Up < -|-oo
and Aa,- = a,- — a/_i, i = 1,...,p. The grid must be selected so that mesh($f) =

maxi<,<pAa/, Q(5, < ai) and Q(5/ > Up) ail converge to 0 as oo, for t 6
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. ,/Af}- We Select the grid points to be the quantités of Sj-
Suppose that an approximation Vm+i(0 of the value function Vm+i{-) is available

at a given future date t,n+i on the grid This is not a strong assumption since

the value function vm(-) = v|^(-) is known in closed form.
We use a piecewise polynomial and extend the approximation v^+i (•) from ^

to the overall state space MlJ., that is, for j > 0,

Vm+\{s) =Y, (P? + Pi ^ + Pl (2-11)
(=0 ^

where the local coefficients dépend on the time step m+l. Next, (2.9) and (2.11)
yield

i4(at) = EQ[e-'^v„+,(S,.„)|5,.=oj] (2.12)
=  f (ft° + ft' îil + Sif ,

where for l G {0,1,2}

■^L+l^ — ^'m+l ^i+l) ~4 =E(

These transition matrix are derived and computed in Appendix 2.B. As is évident,

we end up with several components: a number of explicit calculations and few

valuations of intégrais using Gauss-Legendre approximations.

Prom (2.10), the approximate value function at is

Vm(ak) = max ^vf„(a;t), Vm(«A:)) 1 for flfc G (2.13)
and the approximate exercise policy at is characterized by

< v^(ak), for ttk G
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The local coefficients of the piecewise-quadratic interpolation v,„+i (•) in eq. (2.11)
verify = v^+i (•) on ^• Following Ben-Ameur et al. (2016), the dynamic
program works as follows:

1. For m = M-l, set v,„+i (■) = V;„+i (•) = (.) on

2. Use a piecewise-quadratic interpolation as in eq. (2.11), and extend Vm+\ (•)>
defined on to v^+i (•), defined on the overall state space

3. By eq. (2.12), compute v^(-)i defined on êf;

4. By eq. (2.13), compute v,n{-), defined on

5. Exercise the option at if

6. If m = 0, stop; else set m = m — 1, and go to step 2.

Ben-Ameur et al. (2016) show that the proposed methodology provides uniformly
convergent approximations of the real prices over any given compact set at each

time step.

2.4 Numerical investigation

The code lines is written in C, compiled with GCC, and executed using a stan

dard laptop computer running Windows 7. For each set of results, we report the

highest total CPU time in seconds. Our CPU times cannot be directly compared

to the CPU times reported in the literature because they are obtained using dif

férent hardware characteristics, opération Systems, and programming languages;

regardless, we report them for information purposes.

To begin with. Tables 2.1 and 2.2 compare dynamic programming (DP) to the
lattice method of Këllezi and Webber (2004) for European call options and Bermu-

dan put options, respectively, both with 10 time steps. Table 2.1 also reports true

values computed with the formulas proposed by Madan et al. (1998). Set =

$100, q = 0, ô = 0.12, T = l (year), r = 0.1, 0 = —0.14, and V = 0.2. Dynamic pro

gramming is capable of reproducing benchmark call prices and shows convergence

and efficiency. It ensures accuracy to the fourth digit within a few seconds. As
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we investigate the prices of Bermudan put options, dynamic programming appears

to be accurate to the third digit at the finest grid size. It is also consistent with

the prices proposed by Këllezi and Webber (2004), but with a greater compétitive

CPU time.

DP with a grid size p

K 75 150 300

Madan
et al.
(1998)

Lévy
lattice

90 19.0996 19.0996 19.0994 19.0994 19.0994
95 15.0694 15.0706 15.0705 15.0705 15.0705

100 11.3669 11.3701 11.3700 11.3700 11.3700

105 8.1181 8.1190 8.1198 8.1198 8.1198

110 5.4276 5.4296 5.4296 5.4296 5.4296

115 3.3615 3.3648 3.3653 3.3654 3.3654

120 1.9203 1.9188 1.9210 1.9211 1.9211

CPU (4.20) (17.13) (21.37) (204.20)

Table 2.1: European call options - Af = 10
DP versus Këllezi and Webber (2004)

DP with a grid size p

K 75 150 300
Lévy
lattice

90 0.7625 0.7613 0.7613 0.7612

95 1.5221 1.5258 1.5259 1.5257

100 2.8774 2.8814 2.8816 2.8815

105 5.1585 5.1690 5.1705 5.1704

110 9.0417 9.0411 9.0406 9.0406

115 13.8754 13.8762 13.8762 13.8762

120 18.8097 18.8097 18.8097 18.8097

CPU (4.29) (18.05) (20.01) (188.80)

Table 2.2: Bermudan put options - Af = 10
DP versus Këllezi and Webber (2004)

Tables 2.3 and 2.4 compare dynamic programming to the lattice method of

Këllezi and Webber (2004) for European call options and Bermudan put options,

with the same set of parameters, but with 20 time steps over time to maturity of
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DP with a grid size p

Madan . .
K  75 150 300 et al. ,

(1998)
90 11.9719 11.9715 11.9717 11.9716 11.9715
95 7.4154 7.4205 7.4210 7.4210 7.4209

100 3.4379 3.4354 3.4381 3.4380 3.4379
105 0.8375 0.8320 0.8293 0.8292 0.8292
110 0.1464 0.1497 0.1496 0.1496 0.1496
115 0.0289 0.0291 0.0291 0.0291 0.0291
120 0.0060 0.0061 0.0061 0.0061 0.0061

CPU (4.17) (16.74) (28.07) (425.50)

Table 2.3: European call options - M = 20
DP versus Këllezi and Webber (2004)

0.2 years to consider a small time step of 0.01. Again, dynamic programming shows

consistency with the priées computed by Këllezi and Webber (2004).

DP with a grid size p

K 75 150 300
Lévy
lattice

90 0.2110 0.2126 0.2128 0.2125

95 0.6064 0.6121 0.6129 0.6128

100 1.6829 1.6861 1.6901 1.6899

105 4.9026 4.9156 4.9159 4.9159
110 9.8920 9.8921 9.8921 9.8921

115 14.8853 14.8853 14.8853 14.8853

120 19.8801 19.8801 19.8801 19.8801

CPU (5.12) (15.87) (33.98) (508.90)

Table 2.4: Bermudan put options - M = 20
DP versus Këllezi and Webber (2004)

Furthermore, Table 2.5 reports option pricing with the above set of parameters,

maturing in T = 0.2 (years) and computed with 40 time steps. Option values

computed with dynamic programming and with A/ = 40 time steps are consistent

with those computed with M = 20 time steps. It is worth noting that Këllezi and

Webber (2004) experienced problems in incrcasing the number of time steps higher
than 40. In fact, under their setting, option values with 40 time steps are lower
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than those of 20 time steps, especially for the out-of-the-money options.

DP with a grid size p

K 75 150 300
Lévy

lattice

90 0.2113 0.2133 0.2133 0.2112

95 0.6070 0.6139 0.6149 0.6128
100 1.6857 1.6906 1.6960 1.6940

105 4.9454 4.9574 4.9576 4.9575

110 9.9459 9.9460 9.9460 9.9459

115 14.9426 14.9426 14.9426 14.9426

120 19.9400 19.9400 19.9400 19.9400

CPU (5.24) (16.68) (38.91) (650.20)

Table 2.5: Bermudan put options - M = 40
DP versus Këllezi and Webber (2004)

Tables 2.6 and 2.7 compare dynamic programming to the multinomial model

of Maller et al. (2006) for European (E-MN) and Bermudan put options (A-MN).
Their procédure can be viewed as generalizing the binomial tree.

K

DP with a grid size p

E-FFT E-MN75 150 300

90 0.2264 0.2307 0.2310 0.2304 0.2280

95 0.6098 0.6210 0.6221 0.6218 0.6212

100 1.5445 1.5716 1.5710 1.5708 1.5720

105 3.6924 3.6929 3.6922 3.6925 3.6974

110 7.5567 7.5589 7.5578 7.5572 7.5594

CPU (4.18) (23.75) (53.02)

Table 2.6: Bermudan put option -
DP versus Maller et al. (2006)

European option prices obtained under a multinomial schéma and under dy

namic programming are compared to those obtained from the fast Fourier trans-

form solution (E-FFT) reported in Maller et al. (2006). Set Sq = $100, ^ = 0,
ô" = 0.12, T = 0.25 (years), r = 0.1, Ô = —0.14, and V = 0.2. Both methods run
with 800 time steps. Here again, dynamic programming shows consistency and

better convergence to the European prices, even with an increasing number of time
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K

DP with a grid size p

A-MN75 150 300

90 0.2620 0.2659 0.2667 0.2651

95 0.7156 0.7263 0.7284 0.7270

100 1.8651 1.8806 1.8832 1.8836

105 4.9918 4.9976 4.9975 5.0000

110 9.9966 9.9966 9.9966 10.0000

CPU (3.04) (19.75) (54.12)

Table 2.7: Bermudan put options -
DP versus Mallcr et al. (2006)

steps. Maller et al. (2006) do not report their computation time.
Next, Tables 2.8 and 2.9 compare dynamic programming to the fast Fourier

transform (FFT) network of Wong and Guan (2011) where both schémas run with
100 time steps. Set 5o = $100, K = 100, ç = 0, à = 0.3, T = \ (year), r = 0.05,

0 = 0.01, and V = 0.01. Both Tables report option prices under Gaussian-Brownian

motion (GBM) and variance-gamma settings, and the Monte Garlo (MG) prices are
reported from Wong and Guan (2011) as a benchmark. Keeping in mind that the

value of a Bermudan call option which pays no dividend is equal to the value of

its European counterpart; we show that FFT method does not converge (unless a

typo in the dividend parameter q), while DP shows a clear convergence.

FFT DP

N price CPU P price CPU

2« 14.2059 (0.19) 75 14.2382 (0.01)
14.2076 (1.04) 150 14.2311 (0.03)

2io 14.2082 (7.08) 300 14.2313 (0.19)
MC 14.2 (25.07) Exact 14.2313 (0.01)

Table 2.8: Bermudan call options (GBM) -
DP versus Wong and Guan (2011)

Rambeerich et al. (2011) examine the pricing of Bermudan options under an

infinite-activity GGMY model. They use exponential time intégration (ETI) to

solve the System of ordinary differential équations resulting from spatial discretiza-
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FFT DP

N price CPU P price CPU

2« 14.0763 (0.19) 75 14.2972 (1.57)
2^ 14.2354 (1.07) 150 14.2226 (6.16)
210 14.1364 (7.38) 300 14.2187 (16.82)
MC 14.1391 (38.8), Exact 14.2188 (0.03)

Table 2.9: Bermudan call options (VG) -
DP versus Wong and Guan (2011)

tion of PIDE. The variance-gamma model is a spécial case of the GGMY process,

but with finite variations. Thus, in Table 2.10, we compare dynamic programming

to the ETI-based method for pricing Bermudan put options. Set 5o = $100, K —

$100, q = Q, à = 0.2041, T = 1 (year), r = 0.06, 0 = 0.0417, and V= 1. Rambeerich

et al. (2011) use p spatial nodes, which settles the number of temporal steps to
be set at p/A. We run our dynamic program with the same parameters p and

M = p/A, since the grid size and the number of type steps are flexible.
The error term in Table 2.10 refers to the benchmark value taken from Ram

beerich et al. (2011) and were computed using extreme size parameters. The au-
thors report an average GPU time of 30 seconds for grid size of p = 2'®. Given their
CPU time of 30 seconds and their benchmark value, DP cuts their error by a factor

of 2. It is important to note that the values for American options computed with

BIT DP

P price P price CPU

2^ = 256 0.49527 75 0.49577 (7.08)
2^ =512 0.49573 150 0.49572 (19.44)
2'" = 1024 0.49584 300 0.49589 (30.76)
Error 7.058E-05 Error 3.696E-05

Table 2.10: Bermudan put options - Rambeerich et al. (2011)

dynamic programming, coupled with finite-element approximations, are highly ac-

curate for p = 300. In addition, the computational time is only about 30 seconds

for generating 300 option prices.
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2.5 Empirical Investigation

2.5.1 Case study: American options on futures contracts on S&P 500

Futures on stock indices have become an important and growing part of most

financial markets. Today, you can buy or sell futures on Dow Jones, S&P 500,

NASDAQ, and Value Line indices. An index futures entitles the buyer to any

appréciation in the index over and above the index futures' price, and entitles the

seller to any dépréciation in the index from the same benchmark.

We use dynamic programming to value American options on the S&P 500 fu

tures which were traded on the Chicago Mercantile Exchange (CME) in 2014. The
futures contracts are cash settled and listed on a quarterly expiration cycle.

In addition to using dynamic programming, our empirical investigation adopts

the following procédure: we gather the daily closing prices of the options and their

underlying contracts along with the issue and maturity dates from Datastream.

Moreover, we use the discount yields on Treasury bills provided by the Fédéral

Reserve historical data as a proxy for the annual risk-free rate r. We compare

dynamic programming prices to the corresponding closing prices quoted on CME,

and considcr futures options contracts that were issued on 22-04-2014 (évaluation
date) and expired 14-08-2014. Hence, the initial futures level is Fq = $1873.9 and

r = 0.11%.

Parameters 6 (7 V

VG estimâtes 0.1169 0.1422 0.0023

Standard errors 0.1637 0.009 0.0074

Table 2.1: Maximum likelihood estimâtes

To estimate the variance-gamma parameters, we collected the daily futures

returns from 03-01-2011 to 22-04-2014, and used a mixed moment-maximum likeli

hood method, as proposed in Rémillard (2013). Given thèse estimated parameters,

we then select a number of liquid Eurppean option contracts on E-mini S&P 500
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futures traded in 2014, and apply calibration on the quoted implied volatilities

obtained from the Bloomberg system to approximate and ^2? as explained in
Section 2.2.

DP with a grid size p

K 75 150 300
Market

price
Relative
error

1865 60.4838 60.4613 60.4623 54.6 -10.74%
1870 62.9371 62.9694 62.9698 56.7 -11.06%
1875 65.5184 65.5350 65.5373 58.8 -11.46%
1880 68.1994 68.1683 68.1682 60.9 -11.93%
1885 70.8845 70.8584 70.8578 63.1 -12.29%
1890 73.5765 73.6069 73.6104 65.4 -12.55%
1895 76.3994 76.4209 76.4216 67.8 -12.72%

CPU (0.01) (0.06) (0.19)

Table 2.2: American put options on the S&P 500 futures - BS (1973)

DP with a grid size p

K 75 150 300
Market
price

Relative
error

1865 56.5412 55.0200 54.8698 54.6 -0.49%
1870 56.2779 57.2015 57.3711 56.7 -1.18%
1875 58.6764 59.7638 59.9146 58.8 -1.90%
1880 61.2098 62.4193 62.5411 60.9 -2.69%
1885 63.8789 65.3506 65.2431 63.1 -3.40%
1890 66.6856 68.1456 67.9854 65.4 -3.95%
1895 69.6302 68.1456 70.8109 67.8 -4.44%

Extended Variance Gamma

1865 56.2536 54.7404 54.5905 54.6 0.02%
1870 56.0030 56.9217 57.0903 56.7 -0.69%
1875 58.4005 59.4830 59.6332 58.8 -1.42%
1880 60.9337 62.1379 62.2590 60.9 -2.23%
1885 63.6031 65.0677 64.9607 63.1 -2.95%
1890 66.4108 67.8622 67.7031 65.4 -3.52%
1895 69.3566 70.6533 70.5295 67.8 -4.03%

CPU (3.78) (10.07) (35.83)

Table 2.3: American put options on the S&P 500 futures - Variance Gamma

Table 2.1 provides the mixed-moment-maximum likelihood estimâtes and their

51



associated standard errors. Our calibration results in (1^1,1^2) = (—0.2723,1.8293),
thus Ô = 0.1313 and à = 0.1415.

In Tables 2.2 and 2.3, the options' values are computed under the Black and Sc-

holes (1973) model with Ôbs = 0.1556, the variance-gamma model, and the extended
variance-gamma model, which are then compared to market priées. Tables 2.2 and

2.3 show that the variance-gamma model outperforms the conventional diffusion

model; it significantly decreases the absolute value of the relative error computed

on behalf of the observed market price. Moreover, the extended variance-gamma

model further improves the Hnal results.

2.6 Conclusion

We build a tractable framework for options pricing where the underlying process

is of a variance-gamma type. Our numerical method is mainly based on dynamic

programming combined with finite elements. Our numerical investigation shows

convergence and efficiency and competes well against alternative méthodologies.

We also conduct a numerical investigation that focuses on comparing the pricing

performance of our extended variance-gamma model on American options on the

S&P 500 futures contracts with the geometric-Brownian motion model. We find

that our extended model better represents the options market.

Dynamic programming coupled with finite elements can accommodate larger

familles of derivative contracts, such as Asian options and barrier options, and

extend to multidimensional Lévy-like models, such as two-dimensional jump diffu

sions and GARCH processes, as long as the transition parameters can be computed

efficiently.
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APPENDIX

2.A Variance-Gamma moments

Given a variance-gamma process X with parameters (0,cr, v), and using the

moment of a gamma distribution with mean t and variance Vt, one has [it

E [x (t)] = et, E X (t) - ju/ = ^e^v + (7^ j t, E ̂ X (t) - pif — + 3a^dv^ t,
and E = ^3<j'^v +12(7^0^ t + + 6<j^0^v + Se'^v^^ t^.

2.B Transition tables — Variance Gamma - Madan et al. (1998)

From Madan et al. (1998), we define the degenerate hypergeometric function of
two variables T(a,Zj, 7) in terms of the modified Bessel function of the second kind
K{.) as

= c'-^iexp^Wc)(l+u)r
y(2i)r(r)r

1 - 7,1 + 7; -sign(a)c(l +«))-

.  c^+3exp(sign(a)c)(l+M)'+i' .sign(a) 1 (c) X\/(^r(7)(i + 7) ^ 2
^(1 + 7,1 - 7,2 + 7; ̂ ^,-sign(fl)c(l+M))+

,(c)x
V(2S)r(r)r

<I>(7,1 - 7,1 + 7; - sign(a)c(l +m)).

where c = \a\ V2 + b^, u = 6/v2+^, and where the degenerate hypergeometric
function of two variables <ï> has the intégral représentation

^{a,p,y-x,y) - r(«)n7- a) L «""^1



Let X = A = 2sign(a)c, so that c = |A| /2, and set

|;L|')'+5g^/2;çy

2Vir(r)r ^r+i
lAI'+ie^/V /'zr-i(i_jj)r-i^-torfj_

2V^r(7) ^+2 Vo

n 17+5^/2 y+1^2{xX,r) = ̂ r(y)(y+1) Vi M^C + y' i-r,2+r.x,-ix)
13 |y+2e^/2rr+l /•! , ,

=  v/3rr(r) "-iz.

If A > 0, let t — À.XZ, set

■*' t'""' (' -1)''
and set /i (j:,A,7) = (' ~ x) e~'dt. Integrating by parts,

hixX.r) = \-'d,

Xy

Set /ii(jc,A,7) = — e~'dt and h2{x,X,y) = /o^^t^^l~x)^ e~'dt,
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where h\ and hi are evaluated by Gauss-Legendre quadrature. Then

gA/2 pXx /

^ V^~â) ^
.a/2

=  (a/2)/il (x, A,7),

and *P3(x,A,7) = (A/2)/i (x,A,y), hence

(x, A, 7) = 4^1 (x, A, 7) - sign {a) ̂ 2 (jc, A, 7) + sign (a) T3 (x, A, 7).

If A < 0, let t = —Axz, let

./ZT.A/2 f-Xx /(^, A,7) = 20^r(7) Vè i (^^â)
( V J
1 + j j édt. Integrating by parts,

Set /i3(x,A,7) = + x)^ and /i4(x,A,7) = (l + x)^ ^dt,
where /13 and /14 are evaluated by Gauss-Legendre quadrature. Then

/73TT.A/2

= 27îr%r^'-i (-A/2)/2(A:,A,r).
As a resuit,

*î'(x,A,7) = ̂ Fi (x,A,7) -sign(a)*F2(x,A,7)-|-sign(fl)T'3(x,A,7).
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The transition parameters T^^, for y G {0,1,2}, A: G {1, - ,p}, and i G {0,.. .,p}
are

ro. = ̂ (xo, Af -^(xo,

Tk\i = P (1)

Wix2,X[^\dt/v)-T(x2,?i^tvd(/v)(2)

whevep=exp{-{r-q)dt},xo = ̂ , uq = bo = ^2 = ̂ , « = C^,
with C = "T s = —7=2—==. Thus = 2sign(ao)co, with cq = [aol ^2 + ̂q

V'+(^) ^
ûo = di\l^^, ̂ 1 = , and

0'

</<•» = i,  /afc\ , dt, /1 — ^1in ( — \+rdt-\ In { ^
.  \ai) V VI-^2

Next, xi = Ml = b\ = + A/'^ = 2sign(fli)ci, with ci =
|ai I ^2 + b], ai = dj^^

Further, let r2 = 2r, 02 = 2c7, 02 = 26, q2 = 2q, «2 = C2'S'2) with ^2 = "% and

■^2 =
1+(I)

=. Then X2 = U2 = ^2 = («2 + ̂2) with (2) _

v(«2+^2) _ Xhus, A/^^ = 2sign (a2)c2, with C2 = |a2| yj2-\-b\, «2 =

(2)

(
and

2)./lzl2!l,^(2) =
V  ' *52

df>=1̂
2

-, , ait \ j 1 I 1 ~ ̂ 12 In I — ) + r2dt +172 H In | z:,,.'a, y V 1 1-,^(2)

where 7)2 = 2wi - W2, wi = ̂  In ( jr|j), and W2 = y in •
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Thus, for j >3

Tl, = e^ip-'4 'V{xj,4'\dt/v)-'V(xj,4i\,dt/v)(Jl

w 'where rj = jr, Oj = ja, Oj = jd, qj = jq, Œj = Çjsj, with = -^andsj

1+M; b
—  L II — !Hence, xj =

and = 2sign {aj)cj, with cy = |ay| ^2 + &y, ay = , and7? „, ̂  Aj) \ / Ui:(;)

bj = («j + Sj) y^ïIpT, "i'h , li"' =

fit / 1 — f

where Hj = y»! - Wj, W| = ̂ In (fij;), and Wj = ̂ In i j eW
~^1
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CHAPTER 3

A DYNAMIC PROGRAM UNDER LÉVY PROCESSES FOR

VALUING CORPORATE SECURITIES

Hatem Ben Ameur, ̂  Rim, Chérif, ̂  Bruno Rémillard ̂

Abstract

Most structural models for valuing corporate securities assume a geometric-Brow-

nian motion to describe the firm's assets value. However, this does not reflect

market-stylized features; the default is more often conducted by sudden informa

tions and shocks, which are not captured by the Gaussian model assumption. To

remedy this, we propose a dynamic program for valuing corporate securities under
various Lévy processes. Specifically, we study two jump diffusions and a pure-jump

process. Under these settings, we build and experiment with a flexible framework,
which accommodâtes the balance-sheet equality, arbitrary corporate debts, mul

tiple seniority classes, tax benefits, and bankruptcy costs. While our approach
applies to several Lévy processes, we compute and détail the equity's, debt's, and

firm's total values, as well as the debt's credit-spreads under Gaussian, double

exponential, and variance-gamma-jump models.

Keywords: Lévy processes; Dynamic programming; Finite éléments; Gredit
risk; Corporate securities; Equity options.

3.1 Introduction

According to the Securities Industry and Financial Markets Association (SIFMA),
the size of the U.S. corporate debt issuance reached $1.25 trillion at the end of 2016.
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Public corporate debt is traded through a dealer-based System. Market signais are

partially inaccurate since part of public corporate debt is not heavily traded, and

there is a complété lack of information for private corporate debt. Hence, there is

a great need for a rational modeling framework for valuing corporate securities.

The structural approach enables the valuation of various corporate securities,

including corporate debt portfolio, related by the balance-sheet equality. Corpo

rate securities are seen as derivatives on the firm's assets value and interpreted as

the state process. Default is triggered when that state variable crosses a default

barrier. Despite their great succcss, several empirical studies havc been critical of

the structural approach developed under geometric-Brownian motion. The major

drawbacks of such an approach are that it does not reflect data from the bond mar

ket; instead, it over-evaluates the debt, and thus, under-evaluates crédit spreads.

It generates a zéro crédit spread when the maturity of the debt approaches zéro.

However, several money-market debt instruments, such as commercial paper, trade

at significant spreads above zéro. Moreover, an ongoing issue bas been to explain

the crédit spreads of bonds belonging to high investment-grade firms. Huang and

Huang (2012) state that even firms with low default risk still have crédit spreads

that are sizable and positive. Tauchen and Zhou (2011) conclude that firms are

exposed to large sudden movements and unexpected information, which confirms

the existence of jumps in financial markets. Geske and Delianedis (2001) have also

confirmed this daim and sate that jumps are one of the most important components

of crédit risk.

Our aim in this paper is to build and experiment with a flexible structural model

where the value of the Hrm's assets is dcscribed by a Lévy process. We propose

this as a solution to some of the major drawbacks under the geometric-Brownian

motion model. Spccifically, our model allows for significant crédit spreads over

short maturities. Lévy processes effectively model the firm's assets vaine, offering

realistic financial features and enriching the structural modeling framework. While

it initially allows for the leptokurtic feature observed in the financial market, it

also introduces unexpected components that allow for low-leverage companies to
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default, even over short time intervais, without compromising économie intuition.

In fact, we combine the unpredictability of the default event generated by reduced-

form models with the économie background of structural models.

Merton (1974) pioneered the structural approach by considering a firm that

has a trivial capital structure (zéro coupon) with a possibility of defaulting only

upon maturity of the debt. The proposed model is based on options theory and

links to the évaluation of corporate debt when the firm's assets follow geometric-

Brownian motion. Many other researchers have worked on extending Merton's

(1974) model to achicve higher levels of realism, eithcr by proposing a more complex
capital structure, by incorporating frictions, or by experimenting with alternative

Markov stochastic processes. Under geometric-Brownian motion modeling, some

researchers have proposed exogenous-barrier models (Black and Cox, 1976, Erics-

son and Reneby, 1998, Collin-Dufresne et al., 2001), while others have opted for
endogenous barriers (Geske, 1977, Leland, 1994, Leland and Toft, 1996, Anderson
and Sundaresan, 1996, François and Morellec, 2004, Nivorozhkin, 2005).

Several researchers have developed work on crédit modeling under Lévy pro

cesses; however, some shortcomings still remain. Zhou (1997) generalizes Merton's

(1974) work by considering Gaussian jumps for the firm's assets. Hilberink and
Rogers (2002) work under a perpétuai debt structure and use a négative spectral
Lévy process that only allows for négative jumps. Cariboni and Schoutens (2007)
présent a structural model and price credit-default-swap under the variance-gamma

process using integro-differential équations. Le Courtois and Quittard-Pinon (2008)
propose an extension of the Hilberink and Rogers (2002) model using spécifie stable

Lévy processes that also consider upward and downward jumps. Chen and Kou

(2009) use a jump-diffusion model with double-exponential-type jumps à la Kou
(2002), and also gcneralize the models of Leland (1994) and Leland and Toft (1996).
These méthodologies make it possible to solve some of the structural models' prob-

lems, but they ail work under restrictive hypothèses: a simple debt structure, a

predefined, often exponential, debt-maturity structure, and fixed coupons. In ad

dition, they do not allow for seniority classes.
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We extend the flexible framework of Altieri and Vargiolu (2000) and Ayadi et al.

(2016) to Lévy processes for valuing corporate securities. Our setting is based
on dynamic programming coupled with flnite éléments and accommodâtes arbi-

trary corporate debts, market frictions, and multiple seniority classes. Moreover,

our research considers three types of Lévy processes: symmetric Gaussian jumps,

asymmetric double-exponential jumps, and a pure-jump process, speciflcally, the

variance-gamma process.

Our paper is organized as follows: Section 3.2 provides a theoretical background

on Lévy processcs and présents two finite-activity Lévy models (Mcrton, 1976, Kou,

2002) and an infinite-activity Lévy process, namely Madan et al.'s (1998) variance-
gamma model. Section 3.3 dcfines the optimal stopping problcm and présents

the structural model under Lévy processes. Section 3.4 describes our dynamic

programming. Section 3.5 présents our numerical investigation which discusses the

impact of jumps in the crédit structure, and flnally. Section 3.6 concludes the paper.

3.2 The Lévy process

We assume that the firm's assets value follows an exponential Lévy process.

On the one hand, our attention is focused on flnite-activity-flnite-variation Lévy

processes (i.e. Lévy jump-diffusions), speciflcally Merton's (1976) model where the
jump size has normal distribution, and the double exponential jump model of Kou

(2002). On the other hand, we work with a spécial case of inflnite-activity-finite-
variation Lévy process to describe the flrm's assets value, which is the variance-

gamma process.

We describe the asset value of the firm by a stochastic process V = {Vt,0<t>T}
of the for m

Vj = Vbexp(LO,

where L = {Lt,t > 0} is an exponential Lévy process.
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3.2.1 Finite-activity Lévy processes

Pure-jump Lévy processes of finite activity are characterized as compound Pois

son processes and referred to as jump-diffusion processes. We provide some the-

oretical background to define finite-activity-Lévy processes in Appendix S.A. For

our default model, we consider Merton's (1976) and Kou's (2002) models, where
jumps are considered rare events so that there are a finite number of jumps in any

given finite interval. Under this setting, the firm's assets value described with Lévy

process U is
N,

Lf — ut -\- crWt S" Jn — t^K,
n=l

where a G M is the drift , (7 > 0 is the volatility, W = {Wt,t > 0} is a standard
Brownian motion, N = {Nt,t > 0} is a Poisson process with parameter A, and
J={Jn,n G N*} is an i.i.d sequence of random variables with probability distribution
F. It describes the jumps that arrive according to a Poisson process, where E[e^'' —
1] = jc < oo. The processes W, A, and J are assumed to be independent under P.
Under Merton's (1976) model, jumps are supposed to be normally distributed and
thus symmetric, whereas under Kou's (2002) setting, the distribution of jumps are
assumed to be double exponential and, as a resuit, asymmetric.

3.2.2 Infinite-activity Lévy processes

For infinite-activity Lévy processes, the Lévy measure has infinité mass, im-

plying that there are an infinité number of jumps in a finite time interval. We

provide some theoretical background to define infinite-activity Lévy processes in

Appendix S.A. Many of these models can be obtained with Brownian subordination

W = {WG,,t > 0} where G is called a subordinator. The subordinator is an increas-
ing Lévy process that has no diffusion component. For instance, if the subordinator

G is a gamma process, then Wg, leads to the variance-gamma model upon which
we base our default model. The firm's assets value at time t, under the risk-neutral
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measure Q, is assumed to follow a Lévy process of the variance-gamma type Lt

Lt = {r-q-[-w)t-\-X (r;CT,v,6),

where r is the constant riskless rate, q is the dividend rate, and w is a compensator

that makes the risk neutral return on V equal to r — q. Define E[exp(X,)] =
—  — ^ , we set

w = log - 0 V - »

and X(r;(T, v,0) is a variance-gamma process with parameters <7, V and 0. The

advantage behind the variance-gamma-structural-default model is that the firm's

value process becomes asymmetric and that the jump structure allows for random

default times.

3.3 Problem Formulation

We consider a market with risky asset V which represents the total asset value of

thefirm. Let (n,.^,,P) be a complété probability space and ̂  . .tn,... ,1^ =

r} be a set of payment dates. We assume that the interest rate r„, for n G

are known from the beginning. For each k ^ {0,... 1}, where
k is the bankruptcy time, set the discount factor j3o = 1 and The

case k = N + \ means that the firm survives until time We assume that the

stochastic process V = (Vr),e[o7] describing the firm's asset value is modeled as a
Lévy process with Vq > 0. In this setting, the firm is financed by debt and equity.

More precisely, the firm's capital structure is characterized by senior and junior

bonds and a common stock. The firm distributes a coupon payment by which the

firm receives tax benefits. The model assumes that shareholders détermine the

time to default by maximizing the firm's equity value which is subject to limited

liability constraints. We assume herein the strict priority rule. The value functions,

in terms of the bankruptcy time /c, are expressed as follows:
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Bankruptcy costs

We assume that on default, a fraction w G [0,1] of the firm's asset value is due
to cover the bankruptcy costs, at time defined by

0, k<noxk = N-\-\.,

n<k<N.
Pn

Debt

At each date tn, the firm undertakes to pay a total outflow indicated by =
dn""^ + dn^"^ to its bondholders, where dn^'^^ and dn'*'^^ refers to the senior and
junior bondholders respectively. These payments include principal as well as in-
terest payments. The latter are indicated by d'^. At the beginning of the con-
tracts, the payment structure are known to ail investors. Define the total debt
by +Djj^"\ where and are referring to senior and junior
debt evaluated at date The last payment dates for senior and junior debts are

indicated by and with 0 < = T. For each n G {0,..., A}
and G {0,..., A + 1}, the senior, junior and total debts are defined as follows;

^ = <
0,

1  yrN o j{sen)P^Lj=nPj^j '

k <n,

n <k <N,

k = N+l,

Djf = 1
0. k<n,

^max{(l n<k<N,

If the firm defaults at time t„, the senior bondholders receive min|(l —
^(jch) I ,vhile the junior bondholders receive max|{l — wjVj, — so that
the bondholders receive, in total, (1 — w)V„. If the firm survives at time t„, then
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the senior bondholders receive while the junior bondholders reçoive dn^*"\ for
a total of dn^"^ +dn'^"^ = d„. and

Z)W = ) "• k <n,

i;I.%.l}jdi, k = N+\,

where Ly=n = 0 by convention.

Tax benefits

The firm benefits from the tax shield from debt financing as long as it survives.

In case of default, tax benefits cannot be claimed. Let G [0,1] be the periodic

corporate tax rate over time [t„,tn+l] thaf is considered as a known constant. The
tax benefit is seen as a security that pays a coupon tb„ = r^d'^. The tax benefit is
indicated by 75^"^ and given by

TB(«) 0, k < n,

jL'jZlPjtbj, n<k<N+l.

The total value of the firm

The total value of the firm is the sum of the firm's assets Vn, and the tax

shield of interest payment TB^^\ minus the bankruptcy costs Bcj^\ That is

=Vn + Tb["^ - =
0, k < n,

+  n<k<N,

k = N+l.
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Equity

In the case that the firm survives survival to date the stockholders receive

the total value of the firm minus the total debt dcfincd by

Now, let ^ be the set of stopping times with values in {0,... ,A'^+ 1}. As a resuit,
for any stopping time X E 3^ with x > n, we obtain

where + tb^ — and

=Vn+ tbn - d„ - E (^"'•'■+1 Vn+i |^„) + E (^-''"+1 '
for ail rt e {0, 1}.

Since only dépends on TV(n+ 1), it follows that the définition is sound.

Définition 1.

< T G 3^-,x> n, {x >k}C^E[4yk\^l)>^\ forÂ:>nl.
Finally, define and set

Jn = SUp F ( ^n] ,

for ail n G {0,... ,N}. Note that sup^^^^ E ̂  + ̂ .
The main aim is to find a sequence of stopping times T* G corresponding to

optimal bankruptcy times, so that the total expected wealth at time n is maximized;

that is Vn+Jn=E The solution follows.
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Theorem 1. Set

= mà\{yt^+ tbN — dMiO), (3.1)

and for any k G {0, 1}, set

4 = max|vjfc + %-4-£: +£ (^e"''^+'4+i|^;t) ,o|. (3.2)
Next, define

^  , A^+1, if 4 > 0 for ail 7 G {^,...
'^k , min{A: < j <N-, 4 = 0}, otherwise.

Then

In^E (4^1-^^) = -H'Vivl(4v = 0) +t&Nl(4r > 0),
and for ail k G

= -wni(4 = 0) + \^k) 11(4 > 0).
The proof of Theorem 1 is provided in Ben Abdellatif et al. (2016).

Remark 1, If {^kyk)^=Q is a martingale, then

4 = max|E (^e~''"+'4+]|.^„) +tè„-d„,o|. (3.3)
3.3.1 Expressions for the debts and equity

Using Theorem 1 from Ben Abdellatif et al. (2016), we bave the following

expressions for the debt; for any n G {0,..., A}, set Dn = E , DSn =
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E (pS^^)\^n) ,DJn = E (pj[f . Then

S'n — max{Vi^ + tbN — df^,0), (3.4)

Dn = {l-w)VNl{S'N = 0)+dNl{<^M>0), (3.5)

DSn = min<[(l-w)v,4''"^}l((^;v = 0)+JNl(^iV>0), (3.6)
DJn = max|(l-H')V;v-4"'"^0}l('^^ = 0)+4'""^l(^Af >0), (3.7)

and for any n G {0,..., — 1},

(^n = max|£ +f&„-rf„,o|. (3.8)
Dn = (1-W)y„l(<^„ = 0)+|4+ (e~''"+'^«+l|^n)|l(^n>0), (3.9)

DSn = min{(l-w)V„,4''"^}l((^„ = 0)
+ jd/r' +£ (e-'"«+'D5„+i\^n) 11(^« > 0), (3.10)

DJn = max|(l-w)V„-di^®"\ojl(<fn = 0)
+ +E (e-'-«+'D/„+i\^n) } 1(^« > 0). (3.11)

3.3.2 Expressions for tax benefits and bankruptcy costs

Using Theorem 1 from Ben Abdellatif et al. (2016), we have the following ex

pressions for the tax benefits and bankruptcy costs: for any n G {0,...,A}, set

TBn = E and set 5Q = E , and v = V„. Then

TBm = îbN\{<^N>^), (3.12)

BCn = wVn\{<^n = 0), (3.13)
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and for any «G {0,..., — 1},

TBn = |?è„ + £(e-''''+'r5„+,|^„)|l((r„>0), (3.14)
BCn = wV„l((?„ = 0)+£(e-''«+'5C„+i|^„)l(4,>0). (3.15)

Note that under our Markovian case and for any integrable function ^ on

M X [0,oo), one has

' -'■«+'^{V(r„+i)}|^„] =^{V(t„)},

where = y{tn) and = cr{k'(w);0 <u < r„}.

3.4 Dynamic programming approach

The implementation of the optimal stopping time problem presented in Section

3.3 is performed by using dynamic programming coupled with finite éléments. Let

'^ = {vi,-- - ,Vp} be a mesh of grid points for the firm's assets value, wliere 0 = vq <
V] < ...<Vp< +00 and Av,- = v,- — v,_i, / = 1,..., p. The grid ̂  must be selected so

that mesh(^5f) = maxi<,<pAv,-, Q(yf < vi) and Q(V; > v^) ail converge to 0 as p ̂  c»,
for t G {b,..., în}- We use the quantile of the state process {T} at time = T for
grid construction; however, the optimal choice of ^ is not addressed in this paper.

For simplicity, we assume constant annual interest rate r and dt = tn-\-\ —tn^ positive

constant. The dynamic program works as follows:

1. At maturity the value functions are known in closed form and computed using

Eq. (3.4), Eq. (3.5), Eq. (3.6), Eq. (3.7), Eq. (3.12), and Eq. (3.13).

2. Suppose that an approximation of the value functions are available at a given

future décision date tn+\ on the grid 'îf, indicated by (v/t), for A: = 1,... ,p.

This is not a strong assumption since the value functions are known in closed

form at maturity. We use a piecewise polynomial interpolation for each value

72



function at tn+\ from ̂  to the overall state space by setting

5'»+l(v)=t + V + + v'')l(v, <i<v,+i),
1=0 ^

for V > 0,

where d is the degree of the piecewise polynomial, whose local coefficients

dépend on the time step /„+i.

3. Approximate every expected discounted value function on ^ by

Eff (V,„, ) IV,, = Vi] = e-'"' t (ft° + ■ ■ • + I3f n'i) , (3.16)
1=0

where the transition tables of order j are defined as

T^. ^ E, {vi < < Vi+i) = Vfe

for j = 0,...,d.

For example, T^- is the conditional probability that the firm's assets value at
falls in the interval [v,-, Vj+i), given that the firm's assets value at time

tn is v^. We présent the computation of the transition tables under Merton's

(1976), Kou's (2002), and Madan et al.'s (1998) models in Appendices 3.B.1,
3.B.2, and 3.B.3.

4. Compute the value functions at on ̂  following Eq. (3.8), Eq. (3.9), Eq. (3.10),
Eq. (3.11), Eq. (3.14), and Eq. (3.15), using Eq. (3.16).

5. Go to step 2 and repeat until n = G.

3.5 Numerical investigation

In this section, we study the overall impact of introducing jumps in the dynamic

of the firm's assets value. For our numerical investigation, we first focus on Kou's

(2002) model and then report some results for the pure-jump crédit model of Madan
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et al. (1998). These settings lead to several scénarios for the crédit structure. Under
the double-exponential jump model, we concentrate on the scénario of infrequent

large jumps. We omit the case of a moderate numher of small jumps since it is

akin to the pure-diffusion case, especially for short-maturity bonds.

Figure 3.1 examines the impact of jump volatility versus diffusion volatility on

crédit spreads when fixing the total volatility for both asset processes. We found

that the large infrequent jumps scénario reduces crédit spreads for long-maturity

bonds while increasing crédit spreads for short-maturity bonds. Thus, we over-

come the major drawbacks of structural models based on pure diffusion which are

incapable of producing significant crédit spreads for short-maturity bonds. Hence,

by including jumps, our results remain consistent with the empirical work of Sarig

and Warga (1989) and Fons (1994), and are also consistent with Chen and Kou

(2009). But, unlike Chen and Kou (2009), our framework does not suppose an ex-

ponential maturity profile for the debt, rather, it enables arbitrary debt structure,

accommodating multiple seniority classes, for instance, senior and junior debt.

«10

1=0.21,(!=0i
1=026,5=0.1
1=0,5=0.4

3
Year

Figure 3.1; The impact of jump volatility versus diffusion volatility on crédit spreads. The debt is
a 10% bond with a maturity of 6 years. We use a leverage ratio (debt principal over firm's assets)
of 30%. Set F — 35% (per year) and w = 0.25. The diffusion parameters are given by r = 8% (per
year), and the jump parameters by T}i =3, T]2 = 2, and p„ = 0.5.
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Figure 3.2 shows that our model can produce upward, humped and downward

shapes for term structures of crédit spreads depending on the financial situation of

the firm. These crédit spreads are observable in bond markets and documented in

the empirical work of Sarig and Warga (1989). In fact, the authors find a downward

slope for bonds rated B or C, a hump shape for rating class BB, and an upward slope

for the investment grade classes. Chen and Kou (2009) argue that the crédit spread

is normally upward sloping and, as the firm's financial situation worsens, it becomes

humped and even downward. Moreover, Fons'(1994) empirical paper suggests that

spéculative bonds may have humped or downward crédit spread curves.

0.24

LeyerageLeïel=90%10% LeïerageLevel=50%
0,22

0.18

tiO.16

"0.140.07

ï  5
" 0.12

0.06

0.05

0.06

0.040.04
2  4 6 8 100  2 4 60  2 4 6

rear

Figure 3.2: Several shapes of yield spread for a 20% bond for différent leverage ratio. Set Vq = lOb»
= 35% (per year), and w = 0.5. The diffusion parameters are given by r = 8% (per year) and

CT = 0.2, and the jnmp parameters by îji = 3, î]2 = 2, A = 0.2 (per year) and with probability of
upward jumps = 0.75.

Figure 3.3 shows that our credit-Lévy model is able to generate an upward shape

for spéculative bonds with a leverage level of 50%. This feature is pointed ont in

the empirical work of Helwege and Turner (1999) who daim that spéculative bonds
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can have upward-shaped. Figure 3.3 also shows that the pure-diffusion model is

unable to produce a significant crédit spread for very short maturity and tends to

approach zéro as maturity reaches zéro. Collin-Dufresne et al. (2001) and Chen

and Kou (2009) generate a similar upward crédit curve for spéculative bonds. With
greater flexibility, our model agréés with Chen and Kou's (2009) model. However,

Collin-Dufresne et al. (2001) work with diffusion models and are unable to generate

non-zero crédit spreads as the maturity approaches zéro.

ow.

0.04

0.030

0.03

T1

S 0.025
a
a

1 0.02
u

0JI15

0.01

0.005

0

-BS model
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Figure 3.3: Upward crédit spread for high-risk bonds. The debt is a 20% bond with a maturity
of 10 years and a principal amount of 50$. Set Vq = 100, r^' = 35% (per year), and w = 0.25. The
jump parameters are T]i = 3, T72 = 2, = 0.5, A = 0.2062 (per year), and with cr = 0.1, for a total
volatility of 0.4. Under the pure-diffusion case, the volatility CT = 0.4.

Figure 3.4 shows that our setting reproduces the négative relation between the

risk-free rate and the crédit spreads discussed in empirical papers. Hence, it shows

that as the interest rate increases, crédit spreads decrease. This feature is discussed

in Longstaff and Schwartz (1995) who point ont that a higher spot rate increases

the risk-neutral drift of the Lévy-value process. Consequently, this reduces the

probability of default and further decreases the crédit spread.

Figures 3.5 and 3.6 highlight the effect of diffusion volatility and of the jump's

frequency on crédit spreads. In fact, crédit spreads increase with (7 and with A.
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? 7

r=0.07

Year

Figure 3.4: The effect of the risk-free rate on crédit spreads. The debt is a 10% bond with a
maturity of 6 years, and with a principal amount of 50$. Set Vq = 100, and = 35% (per year),
and w = 0.25. The jump parameters are given by T]i =3, r]2 = 2, pu = 0.5, A = 0.2 (per year), and
with a = 0.2.

Figure 3.5 shows that the effect of diffusion volatility on crédit spreads increases

with maturity. In other words, diffusion volatility <7 has a significant impact on

default for long-maturity bonds. Our findings remain consistent with Chen and

Kou (2009) results on médium to long maturity bonds.

We still work under the exponential-jump diffusion model and also compute a

call-equity option and obtain the implied volatility by inverting the Black-Scholes

formula. While Chen and Kou (2009) évaluâtes equity option by Monte Carlo

simulation, we consider equity options as an additional derivative on the Lévy's

assets value and use dynamic programming for valuing ail these contingent daims.

Thus, we suppose a numerical error, but not a statistical one. Figures 3.7 and

3.8 show how default and jumps can, together, generate significant volatility smile,

and suggest that the implied volatility and crédit spreads tend to be positively

correlated. We illustrate the effect of diffusion volatility a and jump frequency À

on the implied volatility of 1 year maturity call options. Essentially, the implied

volatility seems to be increasing in <J and A. These findings are in line with Chen
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Figure 3.5: The effect of diffusion volatility on crédit spreads. The debt is a 10% bond with a
maturity of 6 years, and a principal amount of 50$. Set Vq = 100, r = 8% (per year), = 35%
(per year), and w = 0.25. The jump parameters are given by t}i = 3, = 2, = 0.5, and A = 0.2
(per year).
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Figure 3.6: The effect of junip frequency on crédit spreads. The debt is a 10% bond with a
maturity of 6 years, a principal amount of 50$. Set Vq = 100, r = 8% (per year), a = 0.2, = 35%
(per year), and w = 0.25. The jump parameters are given by t]i = 3, tj2 = 2, and pu = 0.5.

and Kou (2009).

As a final investigation, we examine the impact of jumps on crédit spreads when
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Figure 3.7: Implied volatility versus crédit spreads. The senior debt is a 10% bond with a maturity
of 1 year. We use a leverage ratio of 30%, r = 8% (per year), = 35% (par year), and w = 0.25.
The jump parameters are given by ijj = 3, T}2 = 2, = 0.5, and A = 0.2.

1=0.3

U0.5

i=1

■0.8
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Figure 3.8: The effect of jump's frequcncy on implied volatility. The senior debt is a 10% bond
with a maturity of 1 year. We use a leverage ratio of 30%, r — 8% (per year), cr = 0.2, = 35%
(per year), and w = 0.25. The jump parameters are given by Tji = 3, Tjj = 2, and Pu = 0.5.

modeling the Lévy's assets value with the variance-gamma process. Cariboni and
Schoutens (2007) calibrate the variance-gamma model to the credit-default-swaps
term structure and found a set of estiniated parameters for several companies.
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We selected a Lévy process with the following estimated parameters; o = 0.3553,

V = 2.8132, and 6 — —0.0824, for a total variance = 0.3812. Under this

setting, we can see that the variance-gamma raodel generates a positive short-term

crédit spread. Conversely, for the same total volatility, the geometric-Brownian-

motion model fails to capture this main feature observed in actual bond markets.

Furthermore, as shown in Figure 3.9, the impact of jump volatility is limited on

longer-term spreads.

Figure 3.10 reports a crédit spread under the variance-gamma process with sev-

eral total volatility. The applied parameters are also from Cariboni and Schoutens

(2007) for two différent companies with varying credit-risk ratings. Set the first
Lévy's parameters as a = 0.2041, v = 0.9644, and 6 = —0.0851, for a total vari

ance of (Ttotal = 0.2205 and with rating Baa3, relying on Moody's database. Set the

second estimated Lévy's parameters as (7 = 0.3553, V = 2.8132, and 6 = —0.0824,

for a total variance of Ototai = 0.3812, and with rating A3. From Figure 3.10, we see

that this rating is consistent with the crédit spreads generated by our structural

Lévy model under the variance-gamma process.

For non-redundancy, we do not report ail crédit spread figures based on the

variance-gamma process. We emphasize that several features discussed under Kou's

(2002) model are also confirmed under the variance-gamma model. As we provide

ail the detailed calculations under the three-Lévy-type models, one can under-

take an empirical study and work with the most suitable process by conducting a

goodness-of-fit test.

3.6 Conclusion

We propose a dynamic program that introduces Lévy-structural-credit models.

Our setting accommodâtes arbitrary corporate debt, several classes of seniority, tax

benefits, and bankruptcy costs. We focus on the contribution of jumps by correcting

the shortcomings of modeling the firm's assets under geometric-Brownian motion.

In fact, Lévy processes are important in financial modeling as they can mimic the
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Figure 3.9: The impact of jump volatility versus diffusion volatility on crédit spreads. The senior
debt is a 10% bond with a maturity 6 years. We use a leverage ratio of 30%. Set r = 8% (per
year), = 35% (per year), and w = 0.25, and with a total variance (Ttotai — 0.3812.
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Figure 3.10: Crédit spreads under the variance-gamma process. The debt is a 10% bond with a
maturity of 6 years. We use a leverage ratio of 30%. Set r = 8% (per year), = 35% (per year),
and w = 0.25.

stylized feature observed in bond markets discussed in empirical papers such as in
Sarig and Warga (1989). By adding jumps in the firm's assets dynamic, we capture

the impact of uncxpected components.
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Future research avenues that could be explored consist in: working under a

reorganization process, valuing bonds with erabedded options under Lévy processes,

handling structural Lévy frameworks for multidimensional corporate securities, and

finally, introducing a default framework under non-Markovian state process.
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APPENDIX

3.A Finite versus infinite-activity-Lévy-processes

Proposition 3.A.I. From Rémillard (2013), let L be a Lévy process with charac-

teristics {a,b,k), where k is the Lévy measure defined on M such that ^({0}) = 0
and A|x|^^ k{dx) <oo. In a finite time interval, the number of jumps of Lévy
process can be finite or infinité, according as <°° or.

Proposition 3. A.2. From Rémillard (2013), let L be a Lévy process with charac-

teristics {a,b,k), where k is the Lévy measure defined on R such that /:({0}) = 0

and k(dx) < oo. A Lévy process has jumps of finite variation if and

only if b = 0 and \x\k{dx) < oo.

3.B Transition tables

3.B.1 Transition tables - Merton (1976)

The transition parameters for v € {0,1,2}, kE {1,.. •,/?}, and i e {0,...
are

TL= L
n=0

= «) Ik {ck,i+\ («) - c (n)) - <î> (ckfin) - c (n))

where is the number of jumps over [tmdm+\]i c(n) = vanV^, and

Q(Ni, = n) =
I  '

2  2 , ^ s2

rik{n) =

log {ai/afi) — ^r —d —Afc—<7, A —n(7+5^/2)
Ck,i{n) =

and <î>(-) is the standard normal distribution function.



3.B.2 Transition tables - Kou (2002)

The transition parameters for V G (0,1,2}, A: G {1,...,/?}, and / G (0,...
are

Tk,i = ̂ i^io,(^,^,P\,'nh'n2,Xi+\,At)-T{^,o,X,purii,r(2,Xi,At),

= P~^«'t[T(jUi, <7, À, Pi, ni, fi2,^/+i, A/) - T()Ui, CT, Â, Pi, î7i, î72,xi, A/)],

where = = log(a,/afc),p =exp(-(r-d)A/),jUi = r+jO"^-Ak:,Â =
A(1 + k),pi = pr]i/{l + K){r]i - l),f7i = 771 - 1,% = t]2 + l,â = 2c7,ic = pi(t7i/
2fii) + (l -pi)(T]2/2fj2)- 1,P2 = 2r+iâ2-Ajc,Â = A(l + ic),f7i = r]if2-1,7)2 =
772/2+1,& = exp((7^ +A(fC-2K:)At),and X; =x,'-log(&). The function ï(.) is de-
fined by

^{ar^^)-Atl2 ~ n . x jfeT(p,(7,A,77i,772,Pi,X/,A7) = — ^^7r„2^P„,A:[<7VAr77ij
X 4_1 -771,--^,-<7771 VÂtj
'  , fTtnfa\/2KAt ^1

X 4_i ^x, -pAt;T72,^^^,-c7r72VAt^
Xi- pAt
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and by

o.,-Ea' i Il ■ 1 f^rïjî^rVwi-k )\i Kn^ + nij \m + r]2

/„(c;a,j3,5) = e^'^HhniPx- 5)dx,

for arbitrary constants a, c, j8 G M, and n G N.

3.B.3 Transition tables — Variance Gamma - Madan et al. (1998)

From Madan et al. (1998), we define the degenerate hypergeometric function of

two variables T(a,£»,7) in terms of the modified Bessel function of the second kind

K{.) as

crtiexp^(a)c)(l+»)r
y(2S)r(r)r

^{ï, 1 - 7:1 + r; " sign(a)c(l + m))-

.  c^+2exp(sign(a)c)(l+m)'+^
sign(a) , i(c)x

y(^r(7)(i + 7)
^>( 1 + 7,1 - 7,2 + 7; sign(a)c( 1 + «))+

.  c^+2exp(sign(a)c)(l+m)^
sign(a) ; ° ^ ^ i(c)x^  ̂ v^r(7)7
*î>(7,1 - 7,1 + r; - sign(a)c(l + m)),

where c = |a| V2 + b^, u = + and where the degenerate hypergeometric
function of two variables bas the intégral représentation

<î.(a./S,r.^.y) = r(a)r(y- a) i' " "''"""'C "
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Let X = A = 2sign(fl)c, so that c = |A| /2, and set

Il |7+î a/2 y
'i'i(xX,r)= 2^r(y)y Vj (<;)*(r. 1 - r. 1+r.

«„i(c) / z^-'(i-zxy-'e-^''dz|^|7+2
2v^r(7)

Il 1^+2 a/2_;cr+'4-2 (X, A, r) = ^ ^ V ^
lll'Z+â ̂ ■^/2^7+1 / n /"' y/1 xy-l -A^ÏJ

- ^r(r) ^

If A > 0, let r = Axz, set

" 2^r«'^1'+! Z '' '('" î) ^
y 2

1 - j-j e~^dt. Integrating by parts,

i,(x,x,r) = ''''■'+y,''

Set h\{x,X,y) = /o^''t^(l-x)^ ^ and h2{x,X,y) = (l -x)^ ^

86



where h\ and hi are evaluated by Gauss-Legendre quadrature. Then

a/2 fXx / .\r-i

e^/2
K  i {X/2)hi(x,k,r),

VkX ^ 2

and ^3{x,X,Y) = {^/2)h (^,A,y), hence

(.X, A, 7) = Ti (x, A, y) - sign (a) *^2 (•*, , y) + sign (a) (.x, A, y),

If A < 0, let t = —Ajcz, let

r'" y-lf. . ty~'

( V y I
1 + I j édt. Integrating by parts,

h{xX,r) = (1 -x)'-' - i 1''",^ (l + Ç^"e-dt

Set %(x,A,y) = /q + hA{x,X,y) = Jq +
where /13 and /î4 are evaluated by Gauss-Legendre quadrature. Then

^2(x,x,y) = '

^  V è (-^ /^) ̂ 2 (^, A, y).
As a resuit,

^ (jr, A, y) = *Fi (jc, A, y) - sign (a) T2 (j:, A, y) + sign (a) T3 (x, A, y).
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The transition parameters for _/ G {0,1,2}, A: 6 {1,... ,p}, and t G {0,...
are

rO. = »P(xo, , dt/v) - Wixo, , dt/v),(0)

Tk\i = p ^ixu?i^'\dt/v)-nx,A^i[,dt/v)(1)

Tl = e^^p-^al ^'{x2,X^\dt/v)-^{x2,lll\,dt/v)(2)

wherep=exp{-(r-9)dt},X0 = -^, mq = ;^7^, ^2 = ̂ , « = C^,
with Ç = -^ and s = —p=2— Thus = 2sign(ao)co, with cq = |ao| +

0'
1+ â  1

«0 =  = "^"2^'* . and

df = i
S

In (—^ -\-rdt + — \n(^
.  V«// V VI-<^2.

Next, XI = u\ = , bi = (« + 'S)y''T^, A/'^ = 2sign(ai)ci, with c\ =
\a\ I ^2+^, fli = \f^-

Further, let r2 = 2r, 02 = 2c7, 02 = 20, q2 — 2q, «2 = C2'^2, with C2 =" "% and

^2 =^. Then X2 = -^,U2 = ^^2 = («2 + ̂2) with (2) _

Yi£!2.±22L_ Thus, = 2sign(02)02, with 02 = la2| J2^b\, 02 = V =
and

dp' = î
2

, ot \ dt I l —21n ( — I + r2£?t + Î72 H fa | .
ai J V \ 1 (2)1-^

where 772 = 2h'i - W2, wi = y In f pj} ), and W2 = v.  Vlnf^
2/' V

(

(

2)

2) /•
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Thus, for j >3

Tli^e^^p jai U)

0 'where rj = jr, Gj = ja, dj = jd, qj = jq, Œj - Çjsj, with Ç,j = and sj =

Hence, xj =

1+15/ 7
2«y = -^2 ̂ bj = {ocj + sj) with ^ W =

and a/''^ = 2sign {aj)cj, with cj — \cij\ ^Jl + bj, aj — d\^''\j — and:(;)

d^=i O-k_/ In ( — 1 ^ 3~ Tij -\ Inai/ ' ' V
1-^iU)

l i-^W

where r]j = jwi -wj, wi^^ln (jrjj), and Wj = fln(- 1̂-^or

iO)
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CONCLUSION

In financial mathematics, Lévy processes have gained increasing popularity be-

cause of their ability to replicate the observed empirical features of the financial

market. The aim of this thesis fias been to présent a framework for the évaluation

of financial products whose underlying assets are described according to exponen-

tial Lévy processes. For this purpose, we propose a numerical methodology based

on dynamic programming coupled with finite éléments approximations.

In the first two experiments, we developed a framework for evaluating derivative

products for différent types of Lévy processes, namely under two jump-diffusion

models belonging to finite activity Lévy process and then under infinite-activity

pure jump model. Our methodology may be applicable to other types of exotic

options and generalizable to multidimensional settings. We can also consider other

schemes of interpolations, such as spectral methods, and study their efficiencies.

Apart from evaluating complex derivative contracta, dynamic programming also

provides us hedging parameters. We do not report these résulta in this thesis, but

they will be considered in the future.

In the last essay, we propose a structural model under Lévy process. The algo-

rithm is based on dynamic programming and incorporâtes a flexible debt structure,

several classes of seniority, tax savings, and bankruptcy costs. The aim was to an-

alyze the ability to reproduce several observed features on the bond market when
describing the firm's asset value by Lévy processes. In future research, it would

be interesting to study a rcorganization process when a firm is unable to honour
its commitments and is placed under chapter 11 bankruptcy protection. Other

avenues of research can be considered, namely the évaluation of corporate bonds

with embedded options, the development of a multidimensional crédit model under

a Lévy process, and the extension of our structural model under a non-Markov
state process.


