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Résumé

Cette thèse se concentre sur quelques applications des méthodes de filtrage en finance.
Elle est divisée en quatre essais.

Dans le premier essai, les primes de swaps de défaillance sont étudiées avant, pen-
dant et après la crise financière à l’aide d’un modèle de risque de crédit flexible. Il
comprend un régime statistique propre à chaque firme qui capte les changements dans
la volatilité du ratio d’endettement. La relation négative entre les taux de recouvre-
ment et les probabilités de défaut est modélisée à l’aide d’un recouvrement endogène
qui dépend de la santé financière de la firme. Une méthode de filtrage est adaptée
pour le présent problème d’estimation: nous généralisons l’algorithme de détection-
estimation de Tugnait (1982) afin de tenir en compte la non-linéarité des équations de
la représentation état-espace. Le modèle est utilisé pour montrer l’importance de la
liquidité spécifique à une émission obligataire dans la différence entre les rendements
des obligations et des swaps de défaillance.

Dans le second essai, le risque de crédit est analysé dans le secteur financier. Ceci né-
cessite un modèle complexe capturant les différents déterminants du risque de crédit
(et plus particulièrement, des crises financières). Le modèle utilisé généralise celui
proposé dans le premier essai en permettant aux différentes firmes d’être corrélées.
Une méthode d’estimation en deux étapes basée sur des méthodes de filtrage est pro-
posée. Nos résultats empiriques démontrent une augmentation de la corrélation durant
la dernière crise financière. De plus, une mesure du risque systémique est calculée et
ce risque est analysé dans deux sous-secteurs: les banques et les assureurs.

Dans un autre ordre d’idée, la littérature récente propose des conclusions empiriques
contradictoires sur la relation entre le risque idiosyncratique et les rendements d’acti-
ons. Le troisième essai investigue les primes de risque sur actions. Un modèle discret
à volatilité stochastique avec sauts est construit; les composantes gaussienne et de
sauts de chaque firme dépendent de composantes systématiques. Le modèle est estimé



sur 260 firmes en utilisant les rendements et les prix d’options du marché, ainsi que
les rendements et les prix d’options pour chacune de ces firmes. Une estimation en
deux étapes basée sur des méthodes de filtrage est accomplie. Tel qu’espéré, le risque
systématique est un déterminant clé expliquant 60% des primes de risque en moyenne,
alors que le risque idiosyncratique explique plus de 40%. Nous montrons aussi que ce
risque idiosyncratique provient exclusivement de la composante de sauts.

Dans le quatrième essai, une nouvelle mesure basée sur des prix d’options à haute
fréquence est développée. Analogue aux mesures de variance réalisée pour les rende-
ments, les séries chronologiques de prix d’options peuvent être utilisées pour calculer
la variance réalisée d’une option (ORV). Un filtre particulaire inspiré de l’algorithme
d’échantillonnage avec rééchantillonnage par importance (Gordon et al., 1993) est
spécifiquement construit pour tenir compte des différentes sources d’information. Se-
lon une étude de simulation, les ORV sont non-redondantes puisqu’elles contiennent
de l’information sur la taille et le moment des sauts dans la variance. Dans une étude
empirique, les données du S&P 500 sont employées pour estimer un modèle diffusif
avec sauts.

Mots clés: filtrage; filtres déterministes; filtres particulaires; risque de crédit; risque
systémique; secteur financier; primes de risques; risque idiosyncratique; risque systé-
matique; évaluation d’options; données à haute fréquence.

Méthodes de recherche: économetrie; modélisation mathématique; recherche quan-
titative; analyse multivariée
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Abstract

This thesis focuses on applications of filtering methods in finance. It is divided in four
essays.

In the first essay, credit default swap (CDS) premiums are investigated before, during
and after the last financial crisis with a flexible credit risk model. It includes a firm-
specific statistical regime that accommodates for changes in the leverage uncertainty.
The negative relationship between default probabilities and recovery rates is modelled
with an endogenous recovery rate that depends on the firm’s financial health. A fil-
tering method tailored for the issue at hand is implemented. Using the term structure
of CDS premiums for 225 companies, a firm-by-firm estimation is performed. Based
on regression tests and yield-to-maturity spreads implied by our credit risk model, we
find that bond-specific liquidity is an important driver of the bond-CDS basis and its
contribution is even more significant during the past crisis.

In the second essay, firm-specific credit risk is analyzed in the financial services sector.
This requires an elaborate model that captures the main determinants of credit risk (and
more specifically, financial crises). It extends the model proposed in the first essay by
allowing for linkages between co-movements of firm leverages. To estimate the model,
we develop a two-stage filtering procedure. We find evidence of larger correlations
between firm leverage co-movements during the high-volatility regime which suggests
the existence of greater interconnectedness during the last crisis. Finally, systemic
risk measures of two subsectors, namely insurance and banking, are computed and
compared.

In another vein, the recent literature provides conflicting empirical evidence on the
relationship between idiosyncratic risk and equity returns. In the third essay, equity
risk premiums are investigated. A discrete-time jump-diffusion model is developed
in which a firm’s Gaussian and jump innovations have systematic components. The
model is estimated on 260 firms, based on market returns and option prices, as well
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as returns and option prices for each of these firms. A two-step estimation based on
stochastic filtering techniques is implemented. First, we find that systematic risk fac-
tors explain close to 60% of the risk premium on average, while idiosyncratic factors
explain more than 40%. Second, we show that the contribution of idiosyncratic risk
to the equity risk premium arises exclusively from the jump risk component. Tail risk,
interpreted as jumps, thus plays a central role in the pricing of idiosyncratic risk.

In the fourth essay, the information content of high frequency option prices is studied.
A measure of option price variation, the option realized variance, is proposed as an
observable source that summarizes information from intraday option prices. A parti-
cle filter inspired from the sequential importance resampling method (Gordon et al.,
1993) is specifically constructed to account for the various model inputs. We conduct
an extensive simulation study of this new variable and document empirically its incre-
mental information content. Our results show that the information contained in these
variances improves the inference of latent variables such as the instantaneous variance
and jumps. In our empirical study, we employ data from the S&P 500 index to docu-
ment several properties of the option realized variance.

Keywords: filtering; deterministic filters; particle filters; credit risk; systemic risk;
financial sector; risk premiums; idiosyncratic risk; systematic risk; option valuation;
high frequency data.

Research methods: econometrics; mathematical modeling; quantitative research;
multivariate analysis.
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Chapter 1

Introduction

Financial modelling often prescribes fundamental nonlinear relationships between mo-
del variables. A number of these variables are not directly observed, but are rather
inferred through a mathematical model from other variables that are observed, or di-
rectly measured. Finding “best estimates” for the unobserved variables often relies
on filters. Filtering methods are well-suited for the inference of the model variables’
posterior probability distribution as they are efficient and intuitive.

Even though this technology was historically used in engineering applications1, nowa-
days a large number of financial practitioners and academics see in these methods a
proper way of dealing with unobservable quantities (or so-called latent variables). In-
deed, a great deal of latent variables are present in financial modelling: default inten-
sity in credit risk models, instantaneous volatility in asset models, short rate in interest
rate models, regime in regime-switching models and convenience yield in commodity
futures models to name a few. Creal’s (2012) survey reviews and introduces some of
the most standard methods to deal with latent variables.

State-space representations are convenient means for studying dynamic systems. This
representation consists of two equations: the observation (or measurement) equation
and the transition equation.

Definition 1.1. (State-Space Representation).
Let xt be the latent variables at time t and yt the observations at time t. The observation

and transition equations are respectively given by

yt = mt (xt, εεεt) (1.1)

1Guidance, navigation and control of vehicles, especially spacecraft and aircraft, signal processing,
robotic motion planning and control and trajectory optimization to name a few.



Chapter 1. Introduction

xt = st (xt−1, ηηηt) (1.2)

where the functions mt and st are possibly nonlinear, but known. The sequences {εεεt}t∈N

and {ηηηt}t∈N are two sequences of independent random variables. Generally, we can to

write in closed-form both observation and transition densities denoted by f (yt | xt;ΘΘΘ)
and f (xt | xt−1;ΘΘΘ), respectively. The two densities also typically depend upon a vector

of unknown parameters ΘΘΘ.

The filtering problem consists in estimating the latent states x0:t = {x0, ..., xt} in dy-
namical systems when partial observations are made, and random perturbations are
present. Uncertainty on the state variable is formulated as a joint conditional probabil-
ity distribution f (x0:T | y1:T ;ΘΘΘ) known as the joint smoothing distribution. The latter is
defined as

f (x0:T | y1:T ;ΘΘΘ) =
f (x0:T , y1:T ;ΘΘΘ)

f (y1:T ;ΘΘΘ)
. (1.3)

Filtering methods give us practical ways to compute such posterior distributions.

Most filtering methods are recursive, as the posterior distribution of x0:t−1 is explicitly
used to find the posterior distribution of x0:t. Indeed, it is easy to show that

f (x0:t | y1:t;ΘΘΘ) =
f (yt | x0:t, y1:t−1;ΘΘΘ) f (x0:t | y1:t−1;ΘΘΘ)

f (yt | y1:t−1;ΘΘΘ)

=
f (yt | x0:t, y1:t−1;ΘΘΘ) f (xt | x0:t−1, y1:t−1;ΘΘΘ)

f (yt | y1:t−1;ΘΘΘ)
f (x0:t−1 | y1:t−1;ΘΘΘ)

=
f (yt | xt;ΘΘΘ) f (xt | x0:t−1;ΘΘΘ)

f (yt | y1:t−1;ΘΘΘ)
f (x0:t−1 | y1:t−1;ΘΘΘ).

Therefore, we can find an approximation of the time t posterior density f (x0:t | y1:t;ΘΘΘ)
from f (x0:t−1 | y1:t−1;ΘΘΘ).

In some applications, deterministic filters can be applied. For instance, the Kalman
(1960) filter is a recursive algorithm that builds on the linearity and the Gaussianity of
the state-space representation. If mt and st are nonlinear functions, we could use de-
terministic extensions of the Kalman filter: the extended Kalman filter (EKF), the un-
scented Kalman filter (UKF), etc. However, a more robust and general approach uses
Monte Carlo simulation: the so-called particle filters or the sequential Monte Carlo
(SMC) methods. Particle filtering methodology uses a genetic type mutation-selection
sampling approach, with a set of particles to represent the posterior distribution of
some stochastic process given some partial observations.

2
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The state-space representation typically depends upon a vector of unknown parameters
ΘΘΘ that need to be estimated from the observed data y1:T = {y1, ..., yT }. Even though ΘΘΘ

is unknown, it is common in the literature to run filtering algorithms assuming a fixed
value of the parameter vector. Thus, as a by-product of the filter and given a value
of ΘΘΘ, we are able to compute a likelihood function . Therefore, this output can be
used to estimate ΘΘΘ by maximizing the likelihood function. Simply put, we change the
parameter vector recursively until we reach Θ̂ΘΘ, the maximum likelihood estimator of
ΘΘΘ (i.e. the parameter vector associated with the highest likelihood estimation).

The conditional density of the observations at time t given the past observations is
written as an integral:

f (yt | y1:t−1;ΘΘΘ) =

∫
f (yt | xt, y1:t−1;ΘΘΘ) f (xt| y1:t−1;ΘΘΘ) dxt (1.4)

where xt are the state variables at time t and yt are the observations at time t. For
most models, such integrals cannot be solved analytically. Fortunately, most filtering
methods can compute these integrals numerically as a by-product of the filter, allowing
us to obtain an estimation of the likelihood function.

In this thesis, I rely heavily on such filter-based likelihood estimations to find Θ̂ΘΘ. I
propose four different applications of filters in finance: two in the credit risk literature,
one in the option pricing literature, and a final contribution in the high frequency
literature. The purpose of this introduction is not to detail each chapter; each essay
has its own introduction explaining the relevant research questions and the different
methods used to answer them. Rather, this introduction gives an overview of the essays
of this thesis.

The first essay is about credit risk. A firm-by-firm estimation of a regime-switching
hybrid credit risk model is achieved using a generalization of Tugnait’s (1982) detec-
tion-estimation algorithm (DEA). The DEA is designed to filter a state and a regime
simultaneously in the context of linear state-space representations. In this essay, the
DEA is generalized to account for nonlinearities by running the UKF of Julier and
Uhlmann (1997) instead of the classic Kalman (1960) filter. Credit default swaps are
used as inputs. Some interesting results regarding the bond-CDS basis are given. For
instance, liquidity was an important driver of the basis during the past crisis.

In the second essay, a multivariate generalization of the credit risk model proposed
in the first essay is implemented. Using weekly credit default swap premiums for
35 financial firms, we analyze the credit risk of each of these companies and their

3
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statistical linkages, placing special emphasis on the 2005–2012 period. Moreover, we
study the systemic risk affecting both the banking and insurance subsectors.

The third essay focuses on equity risk premiums. A discrete-time stock price model
is estimated. The latter allows for firm-specific Gaussian and jump components to
be related to systematic components. A two-step estimation is performed. First, the
index parameters are inferred using a particle filter similar to the one of Gordon et al.
(1993). Then, each firm’s parameters are estimated using a similar stochastic filter.

In the fourth essay, a novel measure based on high frequency option prices is proposed.
Analogous to realized variance measures for returns, high frequency option time series
permits the calculation of the option realized variance (ORV). A continuous-time
jump-diffusion model is estimated using a particle filter. The latter is inspired by
Gordon et al.’s (1993) sequential importance resampling scheme. A simulation-based
study shows that out-of-the-money ORVs contain new information about jump sizes
and times. Estimation using real data from the S&P 500 index is done.

4
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Firm-Specific Credit Risk Modelling
in the Presence of Statistical Regimes
and Noisy Prices

Abstract*

Security prices are important inputs for estimating credit risk models. Yet, to ob-
tain an accurate firm-specific credit risk assessment, one needs a reliable model and
a methodology that filters all elements unrelated to the firm’s fundamentals from ob-
served market prices.

We first introduce a flexible hybrid credit risk model defined in a Markov-switching
environment. It captures firm-specific changes in the leverage uncertainty during
crises as well as the negative relationship between creditworthiness and recovery rates.
Second, estimation is performed using maximum likelihood by accounting for latent
regimes and unobserved noise included in security prices.

Using CDS premiums for 225 firms of both CDX North American IG and HY indices,
we present two different empirical applications. The effects of stochastic recovery and
the presence of regimes on theoretical credit spread curves are investigated. We also
apply the model to corporate bond credit spreads to assess the importance of bond-
specific liquidity in the bond-CDS basis.

Keywords: risk analysis; credit risk; maximum likelihood estimation; regime-swit-
ching; filtering.

*Joint work with Mathieu Boudreault and Geneviève Gauthier. Boudreault is affiliated with UQAM
and Gauthier with HEC Montréal.
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2.1 Introduction and Literature Review

The Global Financial Crisis of 2008 is considered by various economists as the worst
crisis since the Great Depression. Worldwide, one hundred and one corporate issuers
rated by Moody’s defaulted on a total of $281.2 billion of debt in 2008 (Moody’s,
2009). For the sake of comparison, only 18 issuers defaulted in 2007 on a total of $6.7
billion of debt. Also, the year 2008 included the largest defaulter in history: Lehman
Brothers.

Indeed, defaults are rare events and the lack of direct observations brings an additional
challenge to estimating credit risk. To overcome this challenge, a common practice is
to use credit ratings as a proxy for firm-specific credit risk. However, in the aftermath
of the crisis, credit ratings were criticized and many stakeholders started advocating
for market-based valuation of credit risk.

Although market prices are forward-looking measures that are updated frequently by
market participants, observed prices can diverge from their theoretical values as risks
unrelated to their fundamentals could be priced (e.g. illiquidity, asymmetric infor-
mation, price discreteness). These additional risks are hereafter referred to as market
noise. Filtering techniques are powerful tools for extracting fundamental values from
noisy security prices.

In the literature of credit risk, some recent estimation procedures allow for noisy obser-
vations. Indeed, Duan and Fulop (2009) propose an estimation technique for Merton’s
(1974) model that allows for trading noise in observed equity prices. The maximum
likelihood estimation (MLE) is carried out by a particle filter. It is argued that ig-
noring noise could non-trivially inflate one’s estimate of the asset volatility. Huang
and Yu (2010) introduce an alternative estimation technique based on Markov-chain
Monte Carlo (MCMC) methods for the same credit risk framework. According to the
authors, noises are positively correlated with firms’ values. Finally, in a hybrid credit
risk framework, Boudreault et al. (2013) use the unscented Kalman filter (UKF) to
extract the latent creditworthiness from credit default swap (CDS) premiums.1

Firm-specific estimation of credit risk in the previously cited papers is simplified be-
cause these frameworks are based on single-factor models. As the last financial cri-
sis showed, credit spreads and other solvency indicators exhibit structural changes.

1More recently, Kwon and Lee (2015) use MCMC to estimate the Black and Cox (1976) model,
whereas Guarin et al. (2014) propose a filtering technique to extract the time-varying default risk from
CDS premiums.

6
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Regime-switching dynamics are able to capture behaviour changes similar to those
associated with a crisis by allowing for dynamic levels of uncertainty. Such regime-
switching approaches are also very intuitive in the context of crises; in its most sim-
plistic form, one could have a regime associated with “good” times and another with
“bad” times. However, firm-specific MLE in the presence of regimes and noisy market
prices is complicated because both regimes and noises are not directly observed.

This paper contributes to the current credit risk literature by proposing a Markov-
switching model and a consistent estimation technique for the assessment of credit
risk. We design a flexible model that is able to capture the desired empirical facts.
Our hybrid credit risk model includes a firm-specific statistical regime variable that
accommodates for changes in the leverage uncertainty. The endogenous random re-
covery rates are negatively related to default probabilities as they both depend on the
firm’s financial health. Finally, the framework accounts for the presence of noise as
market prices potentially include measurement errors.

Continuous-path structural models have failed to appropriately represent short-term
credit spreads, mainly because the default is a predictable stopping time. To solve this
issue, structural models with incomplete information were proposed; the presence of
a surprise element that adds randomness to the default trigger is an important feature
of these models. For instance, Duffie and Lando (2001) suppose that bond investors
cannot observe the issuer’s assets directly and receive periodic and imperfect account-
ing reports instead. Jarrow and Protter (2004) show that the incomplete knowledge of
the firm’s assets and liabilities leads to an inaccessible default time.

Other solutions combine ideas from both structural and reduced-form approaches to
obtain hybrid models: firms’ liabilities and assets are modelled as stochastic processes
and the default time is given by the first jump of a Cox process for which the intensity
depends on the firm’s fundamentals. In this spirit, Madan and Unal (2000) use a two-
factor hazard rate model which links the intensity to the value of the firm; this leads to
a non-predictable default time. Bakshi et al. (2006a) use Duffie and Singleton’s (1999)
reduced-form framework with factors modelled as Vasicek (1977) processes; one of
these processes is the firm’s leverage. We use a similar approach: the default intensity
of a firm is a convex function of its leverage.

As documented by various authors, CDS premium dynamics and credit spreads change
during financial crises. It thus makes sense to include this risk in our framework,

7
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especially as our sample period includes the last crisis. The dynamics of CDS pre-
miums are investigated by Huang and Hu (2012) during the 2008 crisis by apply-
ing a smooth-transition autoregressive model. Maalaoui Chun et al. (2014) study
regimes by applying a regime-detection technique that distinguishes between level
and volatility regimes in credit spreads and show that most breakpoints occur around
economic downturns, thus linking the statistical regimes to financial crises. Further-
more, Alexander and Kaeck (2008) show that CDS premiums display pronounced
regime-specific behaviour.

The negative correlation between the firm’s leverage and the recovery rate is also of
paramount importance: as the firm’s financial health becomes precarious (i.e. the
firm’s leverage rises), its probability of default increases and the recovery rate de-
creases, respectively. According to Altman et al. (2005) and Acharya et al. (2007),
a negative correlation between probabilities of default and recovery rates exists, and
both variables seem to be driven by the same factor. Other contributions show the
importance of the negative relationship between probabilities of default and recovery
rates. Using BBB-rated corporate bonds, regression analyses and the information on
all companies that have defaulted between 1981 and 1999, Bakshi et al. (2006b) find
that, on average, a 4% increase in the risk-neutral hazard rate is associated with a 1%
decline in risk-neutral recovery rates. Further, an econometric model developed by
Bruche and González-Aguado (2010) tries to assess by how much one underestimates
credit risk if the negative relationship between probabilities of default and recovery
rates is ignored. Using a simple structural model, Bade et al. (2011) find that default
and recovery are highly negatively correlated; the recovery is modelled as a stochastic
quantity that depends on observable risk factors and a systematic random variable.

The contributions of this paper are manifold. First of all, as stated above, we propose
a hybrid credit risk model that includes a firm-specific statistical regime, among other
realistic features.

Second, the model is estimated by maximum likelihood using a filtering approach
that we design for the issue at hand: two latent variables (i.e. leverage and regime)
shall be filtered simultaneously in addition to the model’s parameters, which need to
be estimated for each firm. The proposed filter has numerous advantages. First, it is
possible to use multiple data sources to help disentangle some effects that cannot be
separated using a single product.2 Second, using time series of derivatives captures the
dynamics under both objective and risk-neutral probability measures simultaneously.

2For instance, liquidity issues in some tenors, recovery rate uncertainty, default risk, etc.

8
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Finally, its numerical implementation is fast and efficient because it is deterministic,
as opposed to particle filters and MCMC approaches. Since the estimation procedure
is based on security prices, we also propose a numerical scheme based on trinomial
lattices that allow an efficient pricing in the framework.

The model is then estimated with CDS premiums for each of the 225 firms of both
CDX North American IG and HY indices. The estimated results are used in two
empirical illustrations.

First, the effects of stochastic recovery and the presence of regimes on theoretical
credit spread curves are investigated before, during and after the financial crisis. We
find that recovery uncertainty and its negative relationship with default probability
have a major impact on mid- and long-term credit spreads. In addition, the presence
of regimes modifies the short-term shape of the average credit spread curves during
the financial turmoil, especially for highly rated firms.

Second, hedging credit risk using CDSs is at the mercy of basis risk as different risk
factors could impact bonds and CDS premiums. For instance, factors such as bond-
specific liquidity could have an effect on bond spreads making the hedging strategy
less effective. Therefore, using credit risk inferred from CDS premiums, we analyze
the bond-CDS basis during the 2008 financial crisis. Based on regression tests and
yield-to-maturity spreads implied by our credit risk model, we find that bond-specific
liquidity is an important driver of the bond-CDS basis and its contribution is even
more significant during the past crisis.

The rest of this paper is organized as follows. The joint default and loss model is
presented in Section 2.2. Section 2.3 explains the model estimation approach and the
pricing methodology. The estimation results are discussed in Section 2.4. In Section
2.5, the impact on spreads of endogenous random recovery and regime-switching risks
is analyzed. The bond-CDS basis is investigated during the last crisis in Section 2.6.
Finally, Section 2.7 concludes.
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Chapter 2. Firm-Specific Credit Risk Modelling in the Presence of Statistical Regimes

2.2 Credit Risk Model

In this paper, the shell approach of Boudreault et al. (2013) is extended to capture
the time-varying nature of the leverage volatility.3 The shell is essentially an intensity
process that depends on the firm’s leverage, which is modelled by Markov-switching
dynamics in this study. This flexible approach allows for an endogenous recovery
rate that is both stochastic and negatively correlated with the firm’s probability of
default. Even though the extension looks straightforward, the estimation and CDS
pricing procedures under the new Markov-switching generalization are cumbersome
and require the implementation of sophisticated numerical methods.

Let Lt and At be the time t market value of the firm’s liabilities and assets respectively.
The leverage ratio is defined as the quotient of these two values.4 Because the asset
volatility is not constant in time, the model should be flexible enough to capture the
changes in the state variable dynamics. Hence, the market value of the firm’s log-
leverage is characterized by the following regime-switching dynamics:

log
(

Lt

At

)
≡ xt = xt−1 +

(
µPst
−

1
2
σ2

st

)
∆ + σst

√
∆εPt , (2.1)

where st is the regime prevailing during the time interval ((t − 1)∆, t∆], ∆ is the time
step between two consecutive observations, {εPt }

∞
t=1 is a sequence of independent stan-

dardized Gaussian random variables under the statistical probability measure P, and
µP1 , ..., µPK , σ1, ..., σK are parameters that drive the leverage dynamics under the K

possible regimes. The information structure is captured with the filtration {Gt}
∞
t=0 gen-

erated by the noise series {εPt }
∞
t=1 and the regimes {st}

∞
t=0.

Because the leverage ratio is one of the potential drivers of default, it is incorporated
in an intensity process {Ht}

∞
t=0 that characterizes the potential default:

Ht = β +

(
Lt/At

θ

)α
(2.2)

where α, β and θ are positive constants. The default intensity increases with the lever-
age ratio, making the default more likely to happen. The intensity used in this study
generalizes assumptions made by others. For instance, Bakshi et al. (2006a) use an

3Volatility is important in credit risk models. For instance, Zhang et al. (2009) show that volatility
risk predicts 48% of the variation in the CDS spreads using a Merton-type structural model and a
calibration approach.

4The leverage ratio Lt/At is not constrained to lie within the unit interval since Lt is the liabilities
value and not the debt value. The liabilities value Lt could thus be larger than At.
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intensity that depends linearly on the firm’s leverage. In Doshi et al. (2013), the inten-
sity is modelled as a quadratic function of the leverage.5 As usual in intensity-based
models, the default time arises as soon as the intensity accumulation reaches a ran-
dom level determined by an exponentially distributed random variable E1 of mean 1
independent of {Gt}

∞
t=0:

τ = inf

t ∈ {1, 2, ...} :
t−1∑
u=0

Hu∆ > E1

 . (2.3)

The recovery rate is determined by the firm’s assets and liabilities at default. Follow-
ing the intuition of structural models, it is characterized by the amount recovered by
the creditors divided by the amount available upon default. At default, the creditors
receive the amount the firm owe them (i.e. Lτ) or the asset value, minus legal and
restructuration fees (i.e. (1 − κ)Aτ), depending on how much each quantity is worth.
Thus, the recovery rate at default time is proxied by

Rτ =
min ((1 − κ)Aτ; Lτ)

Lτ
= min

(
(1 − κ)

Aτ

Lτ
; 1

)
= min

(
(1 − κ)e−xτ; 1

)
, (2.4)

where κ represents the legal and restructuration fees, expressed as a proportion of
the asset value at default time. Consequently, an endogenous random recovery rate
negatively correlated to default probabilities is implied by Equation (2.4).

The unobserved regime is modelled as a time-homogenous Markov chain with transi-
tion probabilities

pi j = P(st = j | st−1 = i), i, j ∈ {1, 2, ...,K}. (2.5)

The market model is incomplete, implying that there is an infinite number of pricing
measures. Among these measures, we restrict the choices to those preserving the
model structure:

xt = xt−1 +

(
µQst
−

1
2
σ2

st

)
∆ + σst

√
∆εQt (2.6)

and
qi j = Q(st = j | st−1 = i), i, j ∈ {1, 2, ...,K} (2.7)

where {εQt }∞t=1 is a sequence of independent standardized Gaussian random variables
under Q.

5The quadratic intensity case is a specific case of Equation (2.2) where α = 2.
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2.3 Estimation Method and Pricing Technique

The model introduced in Section 2.2 is estimated on a firm-by-firm basis using MLE.
The estimation is far from being straightforward since each firm’s leverage ratios and
statistical regimes are unobservable and should be inferred from observed quantities.
Also, noisy observations lay additional stress upon the estimation procedure. To solve
the problem at hand, a well-chosen combination of numerical methods and determin-
istic filters is employed.

First, a filtering method that simultaneously infers both latent quantities is needed.
Theoretically, it would be possible to compute the filtered leverages given a regime
path; however, this approach suffers from the curse of dimensionality. We extend
Tugnait (1982) by allowing for non-linearities in the state-space representation, while
considering only the most likely regime paths at each time step.

Second, the filter uses complex derivative prices (i.e. CDS) as measurements. Hence,
a fast-pricing scheme must be implemented to ensure the feasibility of the estimation
step.

2.3.1 Estimation Technique

A state-space representation is commonly used to define a model for which the state
is a Markov process and observed quantities (i.e. CDS premiums) are related to the
state variable. The log-leverage dynamics is given by Equation (2.1):

xt = xt−1 +

(
µPst
−

1
2
σ2

st

)
∆ + σst

√
∆εPt .

The measurement equation becomes

y(i)
t = log

(
g(i) (xt, st)

)
+ ν(i)

t , (2.8)

with y(i)
t the observed i-year credit default swap log-premium, ν(i)

t being a Gaussian
random variable (having a standard deviation δ(i)) independent across maturities and
g(i) the theoretical premium of an i-year credit default swap (in basis points). To reduce
the number of parameters to be estimated, independence in the pricing error between
each CDS has been assumed. Note that the CDS pricing formula (i.e. function g(i)) is
a nonlinear function of the log-leverage xt. To maintain positive premiums, a logarith-
mic transformation is applied.
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2.3.1.1 Unscented Kalman Filter-Based Method

If leverage time series were observable, the regimes could be painlessly filtered (for
a review of classic methods, see Elliott et al., 1995). However, it is not the case and
filtering regimes based on a latent time series is not straightforward.

Tugnait (1982) considers the problem of state estimation and system structure detec-
tion for discrete stochastic systems with parameters that may change among a finite
set of values. His detection-estimation algorithm (DEA) is designed to filter a state
and a regime simultaneously in the context of linear state-space representations. In
this paper, the DEA is generalized to account for nonlinearities by running the UKF
of Julier and Uhlmann (1997) instead of the classic Kalman (1960) filter.6 According
to Christoffersen et al. (2014), the UKF may prove to be a good approach for a variety
of problems in fixed income pricing. Moreover, for some applications in finance, it
seems to significantly outperform the extended Kalman filter and behaves well when
compared to the much more computationally intensive particle filter. To the best of
our knowledge, this study is the first using the DEA coupled with the UKF.

The rationale behind the method is quite intuitive: if one could observe the regime
path, the UKF could be applied directly. However, since it is not the case, the filtered
value of the log-leverage would require the computation of a sum over each possible
regime path. The number of terms in the summation would increase exponentially
making its calculation futile. Since the regime process is Markovian and tends to for-
get its origin, a good approximation considers the most likely regime paths, which is
Tugnait’s (1982) idea. Precisely, we collapse from KM to KM−1 regime paths by keep-
ing the paths that yield the most likely sequences in terms of a posteriori probabilities.
This would lead to minimum probability of error according to van Trees (1968).

This method is similar to the one proposed by Kim (1994). The main difference be-
tween the DEA and Kim (1994) is the collapsing scheme. The latter proposes to take
averages across the different regime paths to reduce the number of sequences instead
of keeping the most likely ones. Another related method would be the one of Fearn-
head and Clifford (2003). They propose an optimal procedure in which all paths with
probability greater than some cutoff are kept and the others are resampled (as in a
conventional particle filter). However, since Fearnhead and Clifford (2003) rely on

6The parameters of the UKF technique have been assumed to be κUKF = 2, αUKF = 0.1, and
βUKF = 0.
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particle filtering, the estimation using this stochastic filter would be more cumber-
some.7

Suppose that at stage t − 1, KM−1 regime paths are available. At stage t and given the
KM−1 paths, all possible extensions of these regime sequences shall be considered. For
instance, all the possible extensions s j

0:t ≡ {s
j
0, s

j
1, ..., s

j
t } of the ath path sa

0:t−1 are given
by

s j
0:t = {sa

0:t−1, s}, s ∈ {1, 2, ...,K}.

Doing this for each of the KM−1 paths shall create KM new regime paths. Then, using
the UKF, it is possible to compute the filtered value of xt based on the first t observa-
tions and the regime path s j

0:t:

x j
t|t ≡ E

P(xt| y1:t, s
j
0:t)

where y1:t ≡ {y1, y2, ..., yt} and yt is a size n vector containing log-premiums y(i)
t . More-

over, the posterior probability of observing this specific regime path based on the first
t observations is

P(s j
0:t | y1:t) =

f (yt|s
j
0:t, y1:t−1)P(s j

t |s
j
0:t−1, y1:t−1)P(s j

0:t−1|y1:t−1)∑KM

k=1 f (yt|sk
0:t, y1:t−1)P(sk

t |sk
0:t−1, y1:t−1)P(sk

0:t−1|y1:t−1)

where P(s j
t | s

j
0:t−1, y1:t−1) can be computed using pi j of Equation (2.5) and sk

0:t is the kth

extended path. In addition,

f (yt | s
j
0:t, y1:t−1) = exp

(
−

1
2

log(det V j
t ) −

1
2

(e j
t )
>(V j

t )
−1(e j

t ) −
n
2

log(2π)
)
,

e j
t = yt−y j

t|t−1 is the difference between the observations and the forecasted value of the
observations at stage t, and V j

t = E
[
(e j

t )(e
j
t )>

∣∣∣ s j
0:t, y1:t−1

]
. This leads to the following

state estimate:

xt|t =

KM∑
k=1

xk
t|tP(sk

0:t| y1:t).

Finally, we collapse the KM regime paths at time t to obtain KM−1 new regime paths
according to Tugnait’s (1982) idea. Simply put, we select the KM−1 regime paths
yielding the highest posterior probabilities P(s j

0:t | y1:t) across the KM remaining paths.

7Indeed, a change in the parameters can cause the filter to select a different set of particles inducing
discontinuity in the likelihood function. The discontinuity is created from the resampling stage within
the update state of the particle filter. For more details, see Creal (2012).
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The quasi-likelihood function is given as a by-product of running the unscented Kal-
man filter:

T∏
t=1

 KM∑
k=1

f (yt | sk
0:t, y1:t−1)P(sk

t | s
k
0:t−1, y1:t−1)P(sk

0:t−1 | y1:t−1)

 .
In our application, quasi-likelihood means that the first two moments of the posterior
distribution are matched and a posterior Gaussian distribution has been assumed.

A simulation study (see Section 2.B) concludes that the DEA-UKF method yields vir-
tually no differences between estimated and true parameter values on average. More-
over, the filtered values recovered by the filter are very close to their true values, with
no differences between the two.

2.3.2 Credit-Sensitive Derivative Pricing

The derivative securities priced within this model take into consideration default, re-
covery and regime risks. However, stochastic recovery rates and regime-switching
dynamics prevent us from using closed-form solutions for CDS premiums and cor-
porate coupon bond prices. Even though Monte Carlo methods could be applied,
lattice-based methods are more suited for the problem at hand since these yield accu-
rate prices in a timely fashion.

The use of lattice methods in Markov-switching environment dates back to Bollen
(1998) who proposes a pentanomial lattice. However, more recently, Yuen and Yang
(2010) use a different idea: they adopt identical trinomial lattices across every regime,
but change the risk-neutral weights as the regime state shifts. This would allow the
trinomial trees to recombine across the different regimes. It works for many kinds of
options, but credit-sensitive derivatives could not be priced directly using this method-
ology. Yuen and Yang’s (2010) method is thus extended to price credit-sensitive secu-
rities (i.e. bond and CDS). An additional branch is added at each node to account for
the potential default of the firm. This idea is similar to the one proposed by Schön-
bucher (2002). Details about the pricing scheme are provided in Section 2.A.
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2.4 Estimation Results

Even though the question of whether CDS premiums include liquidity effects or coun-
terparty risk is controversial (see Arora et al., 2012, Brigo et al., 2011, Bühler and
Trapp, 2009b, Qiu and Yu, 2012, Tang and Yan, 2007), a large number of authors
still use them to capture credit risk. Longstaff et al. (2005) argue that CDSs are of a
contractual nature that affords relative ease of transacting large notional amounts com-
pared to the corporate bond market. Moreover, an investor can liquidate a position by
entering into a new swap in the opposite direction instead of selling his current posi-
tion. Therefore, liquidity is less relevant given the ability to replicate swap cash flows
using another CDS. Moreover, Mahanti et al. (2008), Dionne and Maalaoui Chun
(2013) and Guarin et al. (2014) use CDS premiums as pure measures of credit risk.

We follow this literature and use CDS premiums since they are good proxies for credit
risk. Moreover, the filtering approach adopted in this paper allows for potential lack
of liquidity in specific tenors to be absorbed by the noise terms. Thus, the selected
methodology would help to reduce the impact of illiquidity in our dataset, if ever there
is any. Also, to minimize the impact of such risk, the study also focuses on firms that
are part of the widely followed CDX indices.

2.4.1 Data

The investigation is performed on 225 firms of the CDX North American Investment
Grade (IG) and High Yield (HY) indices provided by the Markit Group on September
20, 2013.8 The indices span multiple credit ratings and sectors. The weekly term
structure of CDS premiums from January 5, 2005, to December 25, 2013, is also
provided by Markit for a maximum of 469 weeks. CDS premiums up to the end of
2012 are used in the estimation; the last year of data (i.e. 2013) is kept for an out-of-
sample analysis. We use Wednesday CDS premiums.9 Prices for maturities of one,
two, three, five, seven and ten years are available for most firms (125 IG and 100
HY).10 This yields a grand total of 487,796 observations in our final sample of CDS

8CDS.NA.IG.21.V1 and CDS.NA.HY.21.V1 respectively.
9We focus on Wednesday CDSs because it is the least likely day to be a holiday and it is least likely

to be affected by weekend effects. For more details on the advantages of using Wednesday data, see
Dumas et al. (1998).

10However, 15 firms (4 IG and 11 HY) were removed from the sample since there were not enough
observations for the estimation procedure (i.e. less than 100 observations per maturity).
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Figure 2.1: Evolution of the mean five-year CDS premiums and of the difference
between the average ten-year CDS premiums and the average one-year CDS pre-
miums.
The CDS premiums were taken from both CDX.NA.IG.21.V1 and CDS.NA.HY.21.V1 portfolios, be-
tween January 2005 and December 2012. The grey surface corresponds to the financial crisis (July
2007 to March 2009).

premiums. The ‘No Restructuring’ clause is selected to capture only the credit risk of
the firm.

To illustrate how CDS premiums move over time, the first panel of Figure 2.1 shows
the evolution of the mean five-year CDS premium taken across firms for both IG and
HY portfolios. Premiums were more or less stable during the pre-crisis era. They
increased during the financial crisis: the mean five-year premiums jumped to a high of
321 basis points (bps) for IG firms and 1,422 bps for HY firms. In the post-crisis era,
the premiums decreased, but did not reach their pre-crisis levels.

The second panel of Figure 2.1 shows the evolution of the average slope proxied by
the difference between the average ten-year CDS premiums and the average one-year
CDS premiums taken across firms for both IG and HY portfolios. The slope of the
CDS premiums’ term structure became negative during the crisis for IG and HY firms
on average. According to Figure 2.1, both the level and the slope of the CDS premiums
change during the financial crisis. The regime-switching component of the proposed
framework is required to capture these important changes in behaviour.

The initial state value x0 has been set to the book value of the log-leverage using
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Compustat.11 Also, to price CDS, we follow standard industry practice as well as Carr
and Wu (2010) and we use the interest rate curve defined by the LIBOR and swap
rates. One-, two-, three- and six-month LIBOR are selected as well as one-, two-,
three-, four-, five-, seven- and ten-year swap rates.12

Saunders and Allen (2010) decompose the recent financial crisis in three periods. The
first period corresponds to the credit crisis in the mortgage market (June 2006 to June
2007), the second one covers the period of the liquidity crisis (July 2007 to August
2008) and the third period covers the default crisis period (September 2008 to March
2009). This study focuses on the second and the third periods; thus, the financial crisis
started in July 2007 and finished in March 2009 throughout this paper. Notice that
these deterministic sample’s subperiods are not related to the firm-specific regimes
anyhow.

2.4.2 Estimated Parameters

The leverage model used hereafter is a simplified version of Equation (2.1); we only
consider two regimes. Considering more regimes is theoretically feasible; however,
the number of parameters increase drastically and the numerical optimization of the
firm-specific likelihood function becomes unmanageable. We also consider the same
drift parameter across both regimes (µP = µP1 = µP2 and µQ = µQ1 = µQ2 ). Indeed,
the drift parameter estimators of the latent variable is rather inaccurate and create
numerical instability due to the short span of the time series used.13 Besides this
caveat, the regime-switching framework still captures the variation of volatility across
the different regimes (i.e. uncertainty).

The parameters are estimated using a quasi-MLE on a firm-by-firm basis. Overall, the
parameters to be estimated for each company are φ = {µP, µQ, σ1, σ2, p12, q12, p21, q21,

11Initial leverages are approximated using their book values. More precisely, total liabilities divided
by total assets is taken. Both quantities are acquired by Compustat, which is available from Wharton
Research Data Services (WRDS). The fourth quarter of 2004’s accounting data is selected to compute
the proxy since Q4 of 2004 predates January 2005 (the beginning of our sampling period). In the
database, the total liabilities are identified by LTQ and the total assets by ATQ. In addition, the firm’s
ticker symbol is matched to that of Markit’s CDS premiums through the reference entity’s name to
ensure that the right information for each firm is used. For one firm, no data is available; this firm is
thus removed from the sample.

12These rates are provided by the Federal Reserve of St. Louis website via FRED (Federal Re-
serve Economic Data). The series IDs are USD1MTD156N, USD2MTD156N, USD3MTD156N,
USD6MTD156N, DSWP1, DSWP2, DSWP3, DSWP4, DSWP5, DSWP7 and DSWP10.

13Even in a ‘one-regime’ framework where the log-leverage is assumed to be observed, the precision
of the drift parameter estimate is proportional to the square root of the sampling period length. Hence,
long-time series are required to pin down these parameters.
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α, β, θ, κ, δ(1), δ(2), δ(3), δ(5), δ(7), δ(10)}. Thus, a single set of parameters is used for each
firm to explain the default risk and loss given default; this contrasts with calibration
techniques where the credit default swap term structure is fitted at every available
period.

Table 2.1 shows descriptive statistics on firm-specific estimated parameters. All the
firms have a positive intensity process since β is always positive. The parameter α
is always greater than 1.67, confirming the convex relationship between the intensity
process and the leverage ratio. The volatility parameters σ1 and σ2 are very different
one from another, on average. The low-volatility regimes normally correspond with
the end of the pre-crisis era and the post-crisis period; its average value is around 11%.
The dispersion across the different σ1 is rather small (i.e. 4%). For most of the firms,
the high-volatility regimes correspond to the financial crisis. The volatility is roughly
36% on average. The dispersion of the second regime volatility parameter is higher
(i.e. 8%), which means that this parameter is quite dependent on the firm’s condition
during turmoil. The regimes are persistent since both P− and Q−transition probability
matrices are concentrated over the main diagonal.

Noise term standard errors for mid- and long-term tenors are small on average: for
instance, 13.2% for two-year maturity and 3.4% for five-year. It is the highest for
the one-year CDS on average. Two reasons can explain this result: elements not
necessarily related to the entity’s true default and recovery risks, as well as fitting
error due to model misspecification. Credit default swaps with a maturity of five years
are the ones with the smallest noise standard errors on average. This makes sense
empirically: five-year is known to be the most liquid tenor for CDS.

2.4.3 In- and Out-of-Sample Performances

The regime-switching hybrid default model (RS) is compared to three other models:
the “one-regime” (1R) equivalent of our model, a regime-switching structural version
(SA) of the proposed framework, and a regime-switching reduced-form model (RFA).

The so-called 1R model is the one introduced in Boudreault et al. (2013); the main
difference between this model and ours is that we use regime-switching dynamics to
model the firm’s leverage.
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Table 2.1: Descriptive statistics on the distribution of firm-specific parameters
and noise terms across the portfolio of firms of the CDX indices.

Panel A: Descriptive statistics on leverage dynamics parameters (under P) and fees κ.

µP p12 p21 σ1 σ2 κ Obs.

Mean 0.0169 0.0128 0.0190 0.1147 0.3572 0.6099 210
SD 0.0485 0.0161 0.0223 0.0376 0.0806 0.1728

10% -0.0087 0.0028 0.0048 0.0738 0.2526 0.4159
25% -0.0012 0.0038 0.0075 0.0934 0.3253 0.5000
50% 0.0000 0.0083 0.0110 0.1111 0.3541 0.5819
75% 0.0144 0.0149 0.0203 0.1351 0.3773 0.7126
90% 0.0709 0.0274 0.0459 0.1614 0.4656 0.8474

IG 0.0084 0.0132 0.0194 0.1089 0.3738 0.5825 121
HY 0.0285 0.0123 0.0184 0.1226 0.3346 0.6471 89
Panel B: Descriptive statistics on leverage dynamics parameters (under Q) and intensity.

µQ q12 q21 α θ β Obs.

Mean 0.0165 0.0061 0.0397 11.4807 1.4385 0.0088 210
SD 0.0302 0.0064 0.0287 7.9199 0.3090 0.0225

10% -0.0050 0.0016 0.0081 6.0294 1.0724 0.0002
25% -0.0002 0.0028 0.0136 7.5511 1.3113 0.0007
50% 0.0104 0.0046 0.0382 9.9483 1.4823 0.0029
75% 0.0258 0.0074 0.0579 12.2609 1.5215 0.0083
90% 0.0447 0.0123 0.0760 17.1065 1.7277 0.0170

IG 0.0034 0.0060 0.0547 12.3016 1.3643 0.0066 121
HY 0.0342 0.0062 0.0193 10.3646 1.5394 0.0117 89
Panel C: Descriptive statistics on error terms.

δ(1) δ(2) δ(3) δ(5) δ(7) δ(10) Obs.

Mean 0.2503 0.1318 0.0810 0.0339 0.0470 0.0762 210
SD 0.0647 0.0362 0.0297 0.0263 0.0400 0.0460

10% 0.1749 0.0904 0.0420 0.0002 0.0003 0.0282
25% 0.2049 0.1063 0.0665 0.0138 0.0095 0.0366
50% 0.2446 0.1300 0.0817 0.0353 0.0457 0.0690
75% 0.2972 0.1559 0.1023 0.0452 0.0661 0.1001
90% 0.3442 0.1763 0.1152 0.0706 0.1061 0.1425

IG 0.2310 0.1253 0.0768 0.0335 0.0657 0.0964 121
HY 0.2765 0.1407 0.0867 0.0345 0.0217 0.0487 89

For each of the 210 firms, the parameters of the model are estimated using weekly CDS premiums of
maturities one, two, three, five, seven and ten years, using the DEA-UKF filtering technique. The mean,
standard deviation (SD) and quantiles are computed across firms. The last two rows compute the mean
across firms of CDX.NA.IG.21.V1 and CDX.NA.HY.21.V1 portfolios. The δs represent the standard
deviation of the noise terms present in the observation equation of the filter. IG refers to Investment
Grade and HY means High Yield.

Letting β = 0 and α → ∞, the hybrid approach leads to a pure structural framework
in which the log-leverage ratio is modelled by a regime-switching discretized version
of an arithmetic Brownian motion. The structural model is nested in the hybrid frame-
work; thus, its overall in-sample performance is expected to be weaker than the full
model. However, it is possible that local performances dominate those of the full
model.

The pure reduced-form version of the model (i.e. θ → ∞) is not the one used in this
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paper since this model would have constant intensity and this is obviously too restric-
tive. Instead, the log-intensity process is modelled by a regime-switching discretized
version of an arithmetic Brownian motion under the Q measure:

log (Ht) =

 log (Ht−1) +
(
µQH −

1
2σ

2
H,1

)
∆ + σH,1

√
∆εQt if st = 1

log (Ht−1) +
(
µQH −

1
2σ

2
H,2

)
∆ + σH,2

√
∆εQt if st = 2

where µQH is the drift parameter and σH,1 and σH,2 are volatility parameters for regimes
1 and 2, respectively. Moreover, {εQt }∞t=1 is a sequence of independent standardized
Gaussian random variables under Q. Since endogenous recoveries no longer make
sense in the context of this model, we opt for a constant exogenous recovery rate
Rt = R ∈ [0, 1]. This new parameter is estimated among all other parameters in the
filtering procedure.

The models’ performances are compared using the sum of squared errors:

SSE =

t2∑
t=t1

Nt∑
i=1

(mt,i − ot,i)2 (2.9)

where mt,i is the theoretical i-year CDS premium at time t, ot,i is the observed i-year
CDS premium at time t, and Nt is the number of CDSs considered at time t. The
parameter estimates are obtained using the entire sample and are kept fixed at any
point in time. To standardize these fitting performances, the SSE is divided by the
total variation of the observed CDS premiums:

SST =

t2∑
t=t1

Nt∑
i=1

(ot,i − ō)2 where ō =
1∑t2

t=t1 Nt

t2∑
t=t1

Nt∑
i=1

ot,i. (2.10)

Consequently, the performance measure is the ratio SSE/SST. Better models have
ratios closer to zero.14

2.4.3.1 In-Sample Performance

The in-sample study is performed over 417 weeks, starting in January 2005 and ending
in December 2012.

14We also apply a loose criterion to eliminate outliers: if the absolute difference between the model
premium and the observed premium is more than 5 times the observed premium, it is considered an
outlier: | mt,i − ot,i |> 5ot,i. For the in-sample analysis, seven observations out of 489,796 observations
are removed. Thus, we remove 0.0014% of our initial CDS sample.
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Figure 2.2: SSE/SST: Evolution of the in-sample performance for IG and HY.
These figures show the evolution of the SSE/SST ratio calculated by week. For each firm, a single set
of parameters is estimated using CDS premiums with maturities 1, 2, 3, 5, 7, and 10 years between
January 2005 and December 2012. IG stands for Investment Grade and HY for High Yield. RS stands
for regime-switching hybrid model, 1R means ‘one-regime’ equivalent of our model, SA is the regime-
switching structural model and RFA refers to the regime-switching reduced-form model. Notice that on
September 17, 2008, the three benchmark models seem to yield large pricing errors on IG firms. This is
mainly caused by errors on AIG’s credit default swap premiums (on September 15, 2008, AIG’s credit
rating was downgraded from AA- to A-; the downgrade had an important impact on CDS premiums).

Figure 2.2 shows the evolution of the SSE/SST ratio calculated by week. The mea-
sure used in these figures combines the six tenors. The in-sample performance of
the full model is very good with an average SSE/SST of 3.33%. It is better when
compared to the other models: indeed, the performance measure of the full model is
1.83 times lower than the one of the reduced-form approach, 2.05 than the structural
model, and 3.45 than the ‘one-regime’ equivalent. During the financial crisis of 2008,
the SSE/SST ratio spikes when we consider the three benchmark models. However,
the full model does well during these turbulent times: there are no apparent spikes in
SSE/SST for RS during the crisis era.

Panels A, B and C of Table 2.2 shows the ratio calculated by maturity and by period.
The performance of the regime-switching hybrid model remains good, even during the
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crisis era. Systematically, the full model outperforms the other ones which means that
each risk involved in the full model is important to capture credit risk. For IG firms,
the performance is sound, even for one-year CDS premiums.

Table 2.2: SSE/SST: in- and out-of-sample performance for IG and HY.

Panel A: Pre-crisis (in-sample)

IG HY

RS 1R SA RFA RS 1R SA RFA

1 0.089 0.176 0.171 0.162 0.023 0.065 0.081 0.051
2 0.023 0.053 0.050 0.045 0.014 0.030 0.029 0.026
3 0.007 0.019 0.022 0.016 0.005 0.011 0.010 0.013
5 0.003 0.012 0.012 0.008 0.002 0.004 0.008 0.006
7 0.001 0.008 0.010 0.008 0.001 0.006 0.014 0.007
10 0.004 0.018 0.021 0.017 0.004 0.014 0.029 0.017
Panel B: Crisis (in-sample)

IG HY

RS 1R SA RFA RS 1R SA RFA

1 0.046 0.091 0.098 0.103 0.142 0.527 0.263 0.233
2 0.021 0.045 0.037 0.043 0.084 0.274 0.189 0.162
3 0.009 0.020 0.017 0.022 0.022 0.067 0.050 0.043
5 0.001 0.007 0.004 0.017 0.002 0.007 0.007 0.006
7 0.005 0.022 0.010 0.026 0.001 0.004 0.005 0.007
10 0.013 0.051 0.027 0.051 0.005 0.014 0.015 0.017
Panel C: Post-crisis (in-sample)

IG HY

RS 1R SA RFA RS 1R SA RFA

1 0.055 0.150 0.197 0.118 0.089 0.176 0.171 0.162
2 0.024 0.064 0.076 0.051 0.023 0.053 0.050 0.045
3 0.014 0.033 0.041 0.030 0.007 0.019 0.022 0.016
5 0.004 0.010 0.015 0.011 0.003 0.012 0.012 0.008
7 0.002 0.009 0.015 0.012 0.001 0.008 0.010 0.008
10 0.011 0.030 0.038 0.034 0.004 0.018 0.021 0.017
Panel D: 2013 (out-of-sample)

IG HY

RS 1R SA RFA RS 1R SA RFA

1 2.017 5.156 1.974 2.183 0.139 0.189 0.129 0.156
2 0.679 0.949 0.885 0.722 0.080 0.125 0.100 0.099
3 0.261 0.259 0.349 0.289 0.045 0.066 0.075 0.051
5 0.032 0.084 0.028 0.021 0.038 0.046 0.040 0.046
7 0.072 0.203 0.061 0.054 0.041 0.062 0.043 0.053
10 0.100 0.288 0.092 0.110 0.050 0.081 0.060 0.070

This table shows the SSE/SST ratio calculated by maturity and period (i.e. pre-crisis, crisis, post-crisis,
2013). For each firm, a single set of parameters is estimated using CDS premiums with maturities of 1,
2, 3, 5, 7 and 10 years between January 2005 and December 2012. IG stands for Investment Grade and
HY for High Yield. RS stands for regime-switching hybrid model, 1R means ‘one-regime’ equivalent
of our model, SA is the regime-switching structural model and RFA refers to the regime-switching
reduced-form model.

2.4.3.2 Out-of-Sample: Forecasting 2013

In our out-of-sample study, the parameters are estimated using CDS premiums from
January 2005 to December 2012. Then, CDS premiums observed in 2013 are used to
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evaluate the out-of-sample fit of the model. The out-of-sample measures are calculated
for every CDS premium observed in 2013.15

Panel D of Table 2.2 shows that our new model produces adequate one-week-ahead
forecasts. The full model’s curves are lower than the other ones for most maturities
and risk classes, which is good. For IG, SSE/SST ratios are higher for short maturities.
The main reason for this behaviour is that 1-year SST is much smaller than the other
SSTs, even though the 1-year SSE is somewhat smaller than those computed for other
maturities. Therefore, it is natural to observe high SSE/SSTs for 1-year credit default
swaps in 2013.

2.4.4 Most Likely Statistical Regimes Through Time

The approach of Viterbi (1967) is adapted to the context of a hidden regime and a
latent variable to extract the most probable regime path for each firm. The regime path
that maximizes the likelihood function given the estimated parameters is constructed
recursively. At this point, we find relevant to stress that the filtered statistical regimes
depend on firm-specific information and shall not only be related to financial or eco-
nomic cycles. Therefore, one should not misinterpret the notion of filtered regime:
these are computed for each firm and are solely related to the firm’s financial health.
By taking the average proportion of firms in the high-volatility regime, we hope to find
a systematic trend across the firms, although it is possible that some companies were
only sparsely affected by the crisis or that some were in precarious positions during
pre- and post-crisis eras.

Figure 2.3 shows the proportion of firms considered in the high-volatility regime for
each week and for each risk class. In our context, being in the second (high-volatility)
regime is synonymous with more uncertainty in the firm’s leverage. The fast transi-
tion from the first (low-volatility) regime to the second (high-volatility) regime during
2007 and 2008 is obviously very natural due to the financial conditions at that time. At
the beginning of the sample, many HY firms are in the high-volatility regime, meaning
that the filtered leverage is more uncertain for these firms. Note that uncertainty is typ-
ically related to the slope of the CDS term structure; for instance, in a study based on
sovereign CDS, Augustin (2012) argues that slopes tend to be positive in good times
and invert during economic distress. We compare the slopes of the term structure of

15As before, observations satisfying the rejection criterion are removed from the analysis. Overall,
41 out of 67,373 observations are discarded since they are considered to be outliers by at least one of
the four models.
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CDS premiums (i.e. ten-year minus one-year CDS premiums) during the pre-crisis
era and find that they tend to be smaller when firms are in the second regime. There-
fore, the filtered statistical regimes are consistent with this observation. Moreover, the
beginning of our sample corresponds to a period of general widening in yield spreads
in debt markets due to the downgrade of General Motors and Ford’s ratings (Saldías,
2013).
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Figure 2.3: Proportion of firms in the high-volatility statistical regime.
Each week, the proportion of firms considered in the second regime is computed for the 121 IG and the
89 HY ones. The grey surface corresponds to the financial crisis (July 2007 to March 2009).

For HY firms, the moment when the proportion of firms in the second regime increased
corresponds to the beginning of the financial crisis (i.e. July 2007). During the first
six months of the crisis, the proportion of firms in the high-volatility regime goes
from 8% to almost 60%. For IG firms, the transition happens a little later and is
consistent with the beginning of the NBER economic recession in the United States
(i.e. December 2007). At the end of the financial crisis (or the recession), both IG
and HY firms remain in the high-volatility regime for several weeks. These results are
in line with the recent literature. Indeed, using a different approach, Maalaoui Chun
et al. (2014) detect some persistence in the volatility regimes of credit spreads. They
are also consistent with those of Garzarelli (2009) and Mueller (2008). These authors
document that credit spread levels increase before the onset of the NBER recession
and somehow persist until long after the recession is over.
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2.5 Term Structure Comparison: Recovery Rate Ver-
sus Regime-Switching

This section assesses the relative importance of recovery rate and regime-switching
risks in credit spread curves. Essentially, we compare the difference between risky
and riskless zero-coupon yields for various model specifications of the model.

The time t value of risky zero-coupon bond (see Section 2.A.2) is given by V(t,T, x̂t,

ŝt; Rτ, 0) where x̂t is the time t filtered log-leverage and ŝt is the most probable regime
at time t.16

To compare the relative importance of recovery-rate risk and regime-switching risk,
four different formulations of the model are estimated. The first one (RS-ENDR) is
described in Section 2.2. The second model (RS-EXOR) is a variation of the full
model: instead of using endogenous recovery rates, a constant exogenous recovery
rate Rt = R ∈ [0, 1] is incorporated into the set of parameters to be estimated. The third
model is the “one-regime” equivalent with endogenous recovery rates (1R-ENDR)
presented in Boudreault et al. (2013). The last model (1R-EXOR) is a ‘one-regime’
equivalent of the full model with a constant exogenous recovery rate to be estimated.

In this section, the results are broken down by credit rating. These ratings are attributed
by Standard and Poor’s between January 31, 2005, and December 31, 2012, and are
available from Compustat in WRDS. The rating used is identified as ‘S&P Domestic
Long Term Issuer Credit Rating’ (SPLTICRM) in the database.17

Figure 2.4 shows average credit spreads across credit ratings and models.18 There has
been an important rise in average credit spreads during the financial turmoil that affects
mainly the short and mid terms. According to any of the tested models, the two-year
average credit spread of A-rated firms is about 10 times larger during the crisis period
than before. For riskier firms rated BBB, BB and B, the average credit spread is about
4 times larger. When considering the five-year credit spread, it is 4 times larger for

16Normally, we would need to take a weighted average of the different prices, given the regime at
t; the weights correspond to Q(st = s | y1:t), the risk-neutral probability of being in regime s at time t
conditional on y1:t. However, these probabilities cannot be computed readily, and this is why we use
the most probable regime at time t as a proxy. We could also use the probability under the physical
measure as a proxy; however, this shall lead to the same estimate since the probability of being in a
regime is most of the time in the neighbourhood of 1 or 0.

17The firm’s ticker symbol is matched to the data in Compustat. For two firms, no rating is available,
leaving a sample of 208 firms whenever results are presented by credit rating.

18Curves obtained from AAA- and AA-rated firms are not shown in the figure since the number of
firms with such rating is too small to be representative.
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the A-rated firms and about 2.5 times larger for the credit ratings BBB, BB and B.
There is a reduction of the credit spread in the post-crisis period, yet it never reaches
the pre-crisis levels.

Recovery uncertainty and its negative relationship with default probability have a ma-
jor impact on mid- and long-term credit spreads. Indeed, in a regime-switching en-
vironment, the five-year credit spread increases by 11% (from 23 to 34%) with the
endogenous recovery assumption when compared to an equivalent model with a con-
stant recovery rate during the crisis. On a longer horizon, the effect is even more
significant, ranging between 12% and 69% depending on the credit rating or the pe-
riod considered. The dependence between default probabilities and recovery rates
have been documented empirically (i.e. lower-rated firms have lower recovery rates),
but most modelling approaches neglect the accrued risk associated with this negative
relationship. Thus, assuming constant recovery rates seriously impacts credit spread
curves, especially over the long run.

The presence of regimes has a second-order effect on average credit spread curves and
is mainly attributed to how these averages are constructed. The parameters of the ‘one-
regime’ model capture the behaviour during good and bad times. Unlike the previous
approach, the two-regime model allows for a distinct set of parameters for each state.
However, the curves presented in Figure 2.4 are constructed by averaging all weekly
curves on a given period and correspond to a mix of various firms and regime weights.
Even then, the presence of regimes affects the long-term credit spread of highly rated
firms in the pre- and post-crisis periods. During the financial turmoil, the presence of
regimes modifies the short-term shape of the average credit spread curves, especially
for highly rated firms.

2.6 Bond-CDS Basis

Many investors, such as insurers and pension funds, were considerably affected by the
last crisis as their liabilities mainly comprise long-term commitments funded by long-
term fixed income instruments like corporate bonds. According to a NAIC19 special
report on the insurance industry’s use of derivatives, credit risk is hedged primarily
with credit default swaps (NAIC, 2015). Generally, one would buy some single-name

19National Association of Insurance Commissioners.
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CDSs that hedge against default of a reference entity.20 However, this scheme is sub-
ject to basis risk as distinct risk constituents could impact bond and CDS spreads.

The bond-CDS basis measures the extent to which these two spreads differ from one
another. Broadly speaking, the basis is computed as the difference between measures
of the CDS spread and the bond spread, both with the same maturity dates. Therefore,
a deeper understanding of the bond-CDS basis starts with a better understanding of
credit risk and how the latter is involved in the pricing of both bonds and CDSs. As
noted in Section 2.4, the proposed model outperforms classic benchmarks and yields
small errors on CDS premiums. In this section, we use the proposed model (along
with the estimated parameters) to adequately capture CDS credit risk and compute
accurate estimates of credit spreads.

In the literature, most researchers focused on market-wide and firm-specific factors.
Fontana (2010) finds that the basis is time-varying and negatively correlated with the
LIBOR–OIS21 spread and OIS–Treasury bill spread, which are proxies for the in-
creased funding costs and flight-to-liquidity, respectively. Bühler and Trapp (2009a)
explore the impact of bond-specific liquidity measures by using an indirect proxy. As
a matter of fact, they use the bond yield volatility of a specific portfolio as a proxy for
the portfolio’s liquidity.

Yet, direct bond-specific drivers have not been investigated much. Bai and Collin-
Dufresne (2011) use the bond yield bid-ask spread, bond liquidity beta and bond
liquidity market beta as measures of the bond-specific liquidity. They find that the
negative basis is mainly explained by bond trading liquidity risk during the crisis. In
this spirit, we propose to evaluate the importance of bond-specific liquidity in the ba-
sis. However, unlike Bai and Collin-Dufresne (2011), we use different bond-specific
liquidity and bond-CDS basis measures.

2.6.1 Measuring the Basis

As stated in Elizalde et al. (2009), the three most common bond spreads to compute
the bond-CDS basis are the Z-spread, the par asset swap spread (ASW) and the par
equivalent CDS spread (PECS). The first two have features that make them difficult to
compare properly to CDS premiums. As a matter of fact, they do not take into account

20Fabozzi and Mann (2012) state that credit derivatives are mainly used to transfer and hedge credit
risk.

21Overnight indexed swap.
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expected recovery rates and the term structure of the probabilities of default, while
PECS does.

These three measures take the CDS premiums as-is and subtract a computed bond
spread, given some assumptions. However, to benefit from our credit risk model, we
need to compute the basis the other way around. Actually, using the model intro-
duced above, bond-specific theoretical YTM spreads can readily be obtained.22 Since
the model is estimated exclusively on CDS premiums, this would give us a bond-
equivalent of the risk embedded in the firm’s CDSs, while using the exact bond matu-
rity date. To obtain a measure of the bond-CDS basis, we subtract the bond observed
YTM spread from the model’s bond-equivalent YTM spread:

Bond-CDS basis = Bond-equivalent YTM spread︸                                 ︷︷                                 ︸
From the model

−Bond YTM spread︸                  ︷︷                  ︸
From the market

(2.11)

This measure of the bond-CDS spread obviously accounts for recovery rates and the
term structure of the default probabilities as does our credit risk model.

2.6.2 Data

We obtain bond information from Bloomberg and from Mergent Fixed Income Se-
curities Database (FISD). The same 225 firms are considered. In order to find the
right firms that match our CDS premiums, the tickers are manually matched. The
selected bonds are senior, non-callable, non-putable bullet bonds with fixed coupon
rates. Then, the trading data are acquired by the Trade Reporting And Compliance
Engine (TRACE). We keep issues with at least 100 trades during the period consid-
ered (i.e. from 2005 to 2012).

Dick-Nielsen’s (2009) algorithm is used to filter out the errors in TRACE. Omitting
this step might result in high liquidity biases: if TRACE data are not cleaned up before
use, the number of transactions will be too high.23 Our final bond subsample contains
1,046 issues from 97 firms (66 IG and 31 HY), for a total of 2,264,566 observations.

22The difference between a yield-to-maturity of the corporate bond and the linearly interpolated
maturity-matched risk-free rate calculated on the same day.

23The filter is divided into three steps. First, true duplicates are deleted (i.e. intra-day trades with the
same unique message sequence number). Then, reversals (a trade cancellation for a trade report that
was originally submitted to TRACE on a previous date) are also deleted. Finally, same-day corrections
are deleted. These are identified using the report’s trade status.
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To obtain the spreads (in percent) from our bond sample, LIBOR and swap rates are
used. We use one-, two-, three- and six-month LIBOR as well as one-, two-, three-,
four-, five-, seven-, ten- and 30-year swap rates. We linearly interpolate the different
rates to obtain the corresponding rate.24 These rates are provided by the Federal Re-
serve of St. Louis website via FRED. Dick-Nielsen et al. (2012) also use swap rates to
proxy risk-free rates.

Bond YTMs are computed on clean prices from which the corresponding maturity-
matched risk-free rate is removed. Then, the daily spreads are averaged over each
month. Note that we winsorize the 0.5% higher and lower values of observed YTM
spreads.

Bond-equivalent YTM spreads are obtained using the regime-switching hybrid credit
risk model. One spread is computed for every week (since the time step of our estima-
tion method was ∆ = 1/52) and the monthly theoretical spread is the average of the
weekly ones. Like CDS premiums, bond prices are numerically computed using the
trinomial lattice (see Subsection 2.3.2).

Table 2.3: Descriptive statistics on the bond-CDS basis and the bond-specific liq-
uidity measure λ.

Basis λλλ

All IG HY All IG HY

Mean -0.7483 -0.6689 -1.1839 -0.0178 -0.0162 -0.0261
SD 1.6004 1.2754 2.7325 3.0399 3.0138 3.1736

5% -2.8854 -2.4519 -6.1766 -3.1579 -3.1709 -3.0787
10% -1.9839 -1.8242 -3.6912 -2.7747 -2.7887 -2.7214
25% -1.1719 -1.1283 -1.6904 -1.9154 -1.9080 -1.9506
50% -0.6284 -0.6265 -0.6419 -0.7667 -0.7449 -0.8687
75% -0.1686 -0.1807 -0.1103 0.9018 0.9198 0.7994
90% 0.4202 0.3993 0.5945 3.4023 3.4081 3.3875
95% 1.3282 1.2464 1.7583 5.7441 5.6507 6.1544

This table shows statistics for the bond-CDS basis (in percent) and the bond-specific liquidity measure
λ. The two quantities are calculated monthly for each bond from January 2005 to December 2012. The
mean, standard deviation (SD) and quantiles are computed across firms. IG refers to Investment Grade
and HY means High Yield.

The leftmost columns of Table 2.3 show the descriptive statistics for the bond-CDS
basis as computed by Equation (2.11). The average basis is negative for both IG and
HY bonds. The standard deviation is greater for HY bonds than for IG. Top panels of
Figure 2.5 exhibits the average monthly bond-CDS basis for both IG and HY bonds.
The basis is negative for IG firms throughout the sample; there is a decrease in the
basis during the 2005–2012 period, although this decline is somewhat small. For HY

24The rate that matches the product’s maturity.
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bonds, the basis is also negative for most months. There is a strong decrease in the
basis during the crisis, on average. At the end of the crisis, the bond-CDS basis tends
to increase to reach pre-crisis levels in 2011.
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Figure 2.5: Time series of the average bond-CDS basis (in percent) and the aver-
age composite λ measure for IG and HY.
For each month, the average over each variable is computed across our dataset of 1,046 bond issues
(paying no attention to the maturity of the bonds). To proxy the bond-specific liquidity, we use Dick-
Nielsen et al. (2012)’s λmeasure in the study. The latter is a construction made of four different liquidity
proxies: the Amihud (2002) measure, the Amihud risk, the imputed round-trip cost (IRC) and the IRC
risk. The liquidity proxy is computed on a monthly basis from January 2005 to December 2012.

2.6.3 Bond-Specific Liquidity as a Driver of the Basis

Liquidity is usually vaguely defined as the degree to which an asset or security can be
bought or sold in the market quickly without affecting the asset’s price (Tang and Yan,
2007). However, it has multiple facets and cannot be defined efficiently by a single
statistic. There are three oft-cited dimensions of the liquidity risk. The first one is
tightness: if the bid-ask spread is small, it is assumed that the market is liquid. The
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second dimension is depth: it is related to the amount of security that can be traded
without affecting the price. Finally, the third dimension is called resiliency: a market
is liquid in this specific dimension if price recovers quickly after a demand or supply
shock.

Many recent papers focus on liquidity issues in the bond market. Using a reduced-
form approach, Longstaff et al. (2005) use credit default swap premiums to measure
the size of the default component in corporate spreads. The authors find that the ma-
jority of the spread is due to default risk and that the non-default component is time
varying and strongly related to measures of bond-specific illiquidity. Dick-Nielsen
et al. (2012) analyze corporate bond spreads during 2005–2009 using a new robust
illiquidity measure based on four different proxies. They show that the spread con-
tribution from illiquidity increases dramatically with the onset of the subprime crisis.
This effect is slow and persistent for investment-grade bonds while it is stronger but
shorter-lived for speculative-grade bonds.

To proxy the bond-specific liquidity, we use Dick-Nielsen et al.’s (2012) λ measure
in the study. The latter is a construction made of four different liquidity proxies: the
Amihud (2002) measure, the Amihud risk, the imputed round-trip cost (IRC) and the
IRC risk. To be precise, each proxy is normalized and then summed to create the new
λ measure. Note that the liquidity proxy is computed on a monthly basis.

To be certain that this measure is robust, seven different liquidity proxies used in Dick-
Nielsen et al. (2012) are computed and a principal component analysis is applied on
these variables.25 The first component explains 77% of the variation and is positively
correlated with Dick-Nielsen et al.’s (2012) λ measure (i.e. 55%). Therefore, it seems
fair to use this variable as a liquidity proxy.

The rightmost columns of Table 2.3 show the descriptive statistics of the liquidity
proxy λ. The composite λ measure has a zero mean by construction; however, its
distribution seems highly asymmetrical. The 5th percentile is around -3.18 and the
95th percentile is at 5.74. Note that the same asymmetric behaviour is true for the four
constituents of the λ measure. Bottom panels of Figure 2.5 shows the average value
of the liquidity proxy through time for both IG and HY bonds. For both risk classes,
the average λ increases during the crisis, although the increase for HY is much more
severe. The increase for HY bonds is consistent with the decrease of the basis on
average: as the average basis decreases, the bond-specific liquidity measure increases.

25The Amihud (2002) measure, the Amihud risk, the imputed round-trip cost (IRC), the IRC risk,
the Roll (1984) measure, the turnover rate of a bond and the proportion of zero trading days. For more
details on these variables, see Dick-Nielsen et al. (2012) and Section 2.C.
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For IG, the relationship is less clear when we aggregated issue-specific bases and
proxies.

To assess the importance of bond-specific liquidity, a dummy variable regression using
monthly observations is run. In the latter, we regress the liquidity proxy on the bond-
CDS basis by issue:

(Bond-CDS basis)it = γ(i)
0 I{Pre-crisis}(t) + γ(i)

1 I{Pre-crisis}(t)λit + γ(i)
2 I{Crisis}(t) + γ(i)

3 I{Crisis}(t)λit

+ γ(i)
4 I{Post-crisis}(t) + γ(i)

5 I{Post-crisis}(t)λit + εit, (2.12)

where γ(i)
j are the issue-specific regressors. We only consider issues for which there

are at least three data points in each era.

We report the average and the standard deviation of the regression estimates as well as
the average R-squared in Table 2.4. For the three periods, the average coefficients are
negative and statistically significant at a significance level of 5%. The liquidity proxy
average coefficient is –0.0080 in the pre-crisis era, when liquidity was less important
in general. Then, in the crisis era, the average liquidity proxy coefficient jumped to
–0.2369, which is 30 times higher than the pre-crisis average coefficient. In the post-
crisis period, the coefficient increases, but does not reach pre-crisis levels meaning that
liquidity is an important determinant of the bond-CDS spread. The R-squared values
of these regressions are around 39% on average. Therefore, the unique liquidity factor
accounts for a little less than half of the variations, on average.

Table 2.4: Bond-CDS basis regression results.

Pre-crisis Crisis Post-crisis

Intercept Liquidity Intercept Liquidity Intercept Liquidity

Average coefficient -0.6228 -0.0080 -0.9389 -0.2369 -1.3437 -0.0788
SD 0.0281 0.0040 0.0972 0.1087 0.1621 0.0281

Average R2 0.3942
Number of regressions 268

Using our dataset of bond issues, the regressions

(Bond-CDS basis)it = γ(i)
0 I{Pre-crisis}(t) + γ(i)

1 I{Pre-crisis}(t)λit + γ(i)
2 I{Crisis}(t) + γ(i)

3 I{Crisis}(t)λit

+ γ(i)
4 I{Post-crisis}(t) + γ(i)

5 I{Post-crisis}(t)λit + εit,

are estimated for each bond issue. The conclusions of the statistical test H0 : γ (i)
j = 0 against H1 :

γ (i)
j , 0, j = 0, 1, ..., 5, are reported. Estimates in bold are significant at a confidence level of 95%.

On average, 60 data points are used in each regression (on a maximum of 84 months). The averages
and SD are based on 268 regressions. These regressions needed at least 3 data points in each era to be
considered.
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Figure 2.6: Histogram of the regressions’ R-squared values.
For each issue, we run the regression of Equation (2.12). The R-squared are then computed from these
regressions. The basis and liquidity proxy are computed on a monthly basis from January 2005 to
December 2012.

A histogram of the regressions’ R-squared values is given in Figure 2.6. About 60%
of the regressions have an R-squared of more than 30% while using only the liquidity
factor as a regressor (along with some dummies). Indeed, this is consistent with the
idea that liquidity is a major determinant of the bond-CDS basis.

To conclude this section, our regression-based tests are rather clear: bond-specific liq-
uidity is an important driver of the bond-CDS basis and bond hedgers should account
for this additional risk when hedging their positions. Every coefficient is statistically
and economically significant, meaning that bond-specific liquidity was (and probably
still is today) an important determinant of the basis. This result is consistent with Bai
and Collin-Dufresne (2011), as their liquidity proxies are highly significant during the
crisis.

2.7 Concluding Remarks

Regime-switching dynamics are able to capture behaviour changes similar to those
associated with a crisis. However, firm-specific MLE in the presence of regimes and
noisy prices is problematic as both regimes and noises are not directly observed.

This paper contributes to the present credit risk literature by proposing a Markov-
switching model and a filter-based estimation technique. A flexible credit risk model
is designed to capture empirical evidences observed during the last decade. A regime-
switching variable is included to accommodate behaviour changes during the financial
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crisis. A negative dependence between the endogenous recovery rates and the firm’s
default probability addresses the Altman et al. (2005) empirical findings.

A firm-by-firm estimation procedure based on a filtering method and the principle of
maximum likelihood deals with latent variables and noise. Tugnait (1982) is extended
to allow for nonlinearities in the state-space representation and a fast lattice-based
pricing scheme is implemented to ensure the feasibility of the estimation step.

The in-sample performance of the model reveals that it is flexible enough to adjust to
various firms and financial cycles. An out-of-sample study concludes that the model
is reliable and outperforms other benchmarks.

The negative dependence between the default probabilities and the recovery rates
greatly impacts mid- and long-term credit spreads. Indeed, in a regime-switching
environment, the five-year credit spread increases with the endogenous recovery as-
sumption when compared to a model with a constant recovery rate. Also, during the
financial turmoil, the short-term shape of the average credit spread curves is changed
by the presence of regimes.

Based on model-implied yield-to-maturity spreads and regression tests, bond-specific
liquidity appears to be a significant driver of the bond-CDS basis. For instance, during
the crisis era, the average liquidity proxy coefficient reached -0.2369, which is 30
times higher than the pre-crisis average coefficient. This conclusion is consistent with
our prior belief that bond hedgers must account for additional basis risk when hedging
their positions in fixed income markets. The exact way bond-specific liquidity would
change the hedging strategy is a question by itself and is left for future research.

2.A Derivative Pricing

2.A.1 Trinomial Lattice Approach

Yuen and Yang (2010) propose a trinomial lattice approach for Markov-switching dy-
namics. A “up-across-down” branching structure is chosen with xu = xeσ

√
∆, xm = x,

and xd = xe−σ
√

∆ where x is the actual value of the log-leverage process at a typi-
cal node. Moreover, when the number of regimes is K, the value of σ is given by
σ = max1≤i≤K σi + (

√
1.5− 1)σ where σ is the arithmetic mean of σi. This suggestion

is based on the values used in the binomial and trinomial trees in the literature.
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Figure 2.7: The branching to default at a typical node in the tree when the number
of regimes is set to two.

The weights for the ith regime are

πi
m = 1 −

1
λ2

i

, πi
u =

eµ
Q
i ∆ − e−σ

√
∆ − (1 − 1/λ2

i )(1 − e−σ
√

∆)

eσ
√

∆ − e−σ
√

∆
,

πi
d =

eσ
√

∆ − eµ
Q
i ∆ − (1 − 1/λ2

i )(eσ
√

∆ − 1)

eσ
√

∆ − e−σ
√

∆
,

where λi = σ
σi

. These weights are different for each regime. Schönbucher’s (2002)
lattice that deals with credit-sensitive instruments is adapted in the trinomial lattice ap-
proach for Markov-switching dynamics by adding an additional branch at each node.
According to Equations (2.2) and (2.3), the default probability is

p = 1 − exp
(
−

(
β +

(
ex

θ

)α)
∆

)
,

if the log-leverage value at this typical node is x.

Figure 2.7 shows the different branches to be considered to use this numerical scheme
when K = 2. Note that even if the figure contains two different trees, these trees
represent the same lattice: only the weights change across the different regimes.
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2.A.2 Coupon Bond Prices

To price coupon bonds on a single firm, recovery specifications are crucial. Again,
the endogenous recovery of Subsection 2.2 is utilized. Bond investors will recover a
fraction Rτ of an equivalent Treasury bond at default time τ. Given a coupon rate of c,
a maturity T , an initial log-leverage of xt, an initial regime of st, and a face value of 1,
the coupon bond price is given by

V(t,T, xt, st; Rτ, c)

=EQ

c
2

∑
t∗i

P(t, t∗i )I{t≤t∗i <τ} + P(t,T )I{τ>T } + P(t, τ)RτP(τ,T )I{t<τ≤T }

∣∣∣∣∣∣∣∣Ft


=EQ

c
2

∑
t∗i

P(t, t∗i ) exp

− ∑
t≤u<t∗i

Hu∆


∣∣∣∣∣∣∣∣Gt

 I{τ>t} + E
Q

P(t,T ) exp

− ∑
t≤u<T

Hu∆


∣∣∣∣∣∣∣Gt

 I{τ>t}

+EQ
 ∑

t≤k<T

RkP(t,T ) exp

− ∑
t≤u<k

Hu∆

 (
1 − exp (−Hk∆)

)∣∣∣∣∣∣∣Gt

 I{τ>t} (2.13)

where P(t,T ) is the time t value of a risk-free zero-coupon bond maturing at T and
t∗i are coupon payment dates. Note that a zero-coupon bond can be computed by
replacing the coupon rate c by zero in Equation (2.13).

2.A.3 Credit Default Swap Premiums

A CDS is a credit derivative that compensates the buyer in the event of a default (or
other credit events). In the most basic type of CDS, the protection seller provides a
payment of par-minus-recovery (settled in cash) on default. This shall cover the loss
incurred by a typical bondholder. In exchange, the protection buyer pays a periodic
premium that ceases if a default occurs. Normally, these premiums are paid four times
per year. The premium of such a contract is fixed by setting the expected present value
of losses equal to the expected present value of the premiums.

The endogenous recovery rate defined in Section 2.2 introduces a negative relation
between recovery and default risks. Given that the CDS matures at time T and that
P(t,T ) is the time t value of a risk-free zero-coupon bond maturing at T , the protection
leg (expected present value of the losses) is

EQ
[
P(t, τ)(1 − Rτ)I{t<τ≤T } | Ft

]
=
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EQ
 ∑

t≤k<T

(1 − Rk)P(t, k) exp

− ∑
t≤u<k

Hu∆

 (1 − exp (−Hk∆)
)∣∣∣∣∣∣∣Gt

 I{τ>t}, (2.14)

where the filtration {Ft}
∞
t=1 is defined as Ft = σ(Gt,Ht) andHt = σ(I{τ≤s} : s ≤ t).

To simplify the presentation, assume that a premium of 1 is paid. In this case, the
premium leg (expected present value of the premiums) is given by

EQ

∑
t∗i

P(t, t∗i )I{t≤t∗i <τ}

∣∣∣∣∣∣∣∣Ft

 = EQ

∑
t∗i

δ∗i P(t, t∗i ) exp

− ∑
t≤u<t∗i

Hu∆


∣∣∣∣∣∣∣∣Gt

 I{τ>t} (2.15)

where t∗i are premium payment dates and δ∗i = t∗i − t∗i−1. The periodic premium is the
ratio of (2.14) over (2.15).

The numerical scheme explained in Section 2.A.1 shall come in handy to compute
credit default swap premiums in the proposed framework. To price credit default
swaps, a time step of 1 week (i.e. ∆ = 1/52) is used in the tree.

2.B Simulation Study for the DEA-UKF Method

The efficiency of the method is assessed by two simulation studies.26 The first Monte
Carlo experiment compares the filtered leverages and regimes to their true values. To
this end, 500 paths of 500 leverage observations are simulated. Then, we compute
the logarithm of the CDS premiums for six tenors and add Gaussian random noises
as stated in Equation (2.8).27 To each path, we apply the DEA-UKF and compare
the extracted filtered states to their true values, which are known because the data are
simulated.

Panel A of Table 2.5 exhibits the summary statistics for the true and filtered states.
Relative to the true states, the DEA-UKF filtered values of leverages are close to the
true state values. Even for higher moment behaviour, the filtered states are virtually
identical to the true ones. The root mean square error (RMSE) on filtered leverages
(with respect to their true values) is 0.0034. With respect to the most probable regime,
the DEA-UKF is capturing the right one 98.3% of the time.

26In this paper, M is set to 5. This choice appears to be a good compromise between accuracy and
efficiency. Moreover, the results seem to be robust to different choices of M greater than 4.

27As in our dataset, we use 1-, 2-, 3-, 5-, 7- and 10-year CDS premiums.
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Table 2.5: Simulation studies on the DEA-UKF methodology.

Panel A: Summary statistics for the true and filtered states.

True DEA-UKF

Filtered leverage
Mean 0.6560 0.6561
SD 0.2092 0.2091
Skewness 0.5443 0.5448
Kurtosis 3.3402 3.3430

Panel B: Comparison of true and estimated parameters.

True Mean SD t CR t (CR)

µP 0.0100 0.0098 0.0025 -2.0340 0.9700 2.0520
µQ 0.0100 0.0101 0.0004 3.1893 0.9480 -0.2052
σ1 0.0800 0.0802 0.0048 0.9666 0.9440 -0.6156
p1,2 0.0500 0.0493 0.0131 -1.1558 0.9520 0.2052
q1,2 0.0500 0.0499 0.0021 -1.1614 0.9340 -1.6416
σ2 0.3000 0.3000 0.0033 -0.1028 0.9420 -0.8208
p2,1 0.0500 0.0495 0.0140 -0.7612 0.9580 0.8208
q1,2 0.0500 0.0497 0.0033 -2.1076 0.9160 -3.4883
α 10.0000 9.9955 0.3133 -0.3184 0.9520 0.2052
θ 1.2000 1.2010 0.0090 2.4801 0.9400 -1.0260
β 0.0100 0.0100 0.0010 -0.6704 0.9540 0.4104
κ 0.5000 0.5000 0.0002 0.9253 0.9660 1.6416
δ(1) 0.1500 0.1496 0.0052 -1.9237 0.9480 -0.2052
δ(2) 0.1000 0.0998 0.0035 -1.0133 0.9340 -1.6416
δ(3) 0.0500 0.0501 0.0022 0.6300 0.9440 -0.6156
δ(5) 0.0300 0.0299 0.0017 -1.7315 0.9500 0.0000
δ(7) 0.0500 0.0498 0.0018 -2.0463 0.9540 0.4104
δ(10) 0.1000 0.0999 0.0031 -0.3991 0.9480 -0.2052

For each path, leverage paths were generated using Equation (2.1). The experiment consisted of 500
paths of 500 weekly observations. Mean corresponds to the mean estimated parameter. SD stands
for standard deviation of the parameter sample. The column labeled t represents the t-statistics of the
following hypothesis testing: H0 : φ − φ = 0, H1 : φ − φ , 0. The columns labeled CR exhibit the
coverage ratio of the 95% confidence interval of each individual parameters. The last column labeled t
(CR) shows the t-statistics of the following hypothesis testing: H0 : CR = 0.95, H1 : CR , 0.95.

In a second test, we investigate potential parameter estimation issues. The parameters
are estimated with the DEA-UKF leading to a sample of 500 estimates.

Panel B of Table 2.5 reports true values, averages and standard deviations of parameter
estimates for the DEA-UKF estimation method. The filter yields virtually no differ-
ences between estimated and true parameter values on average. The difference for
each parameter is also inside the 99% margin of error constructed from the sample
standard deviation for most parameters, except for µQ.

Table 2.5 also exhibits the coverage rate (CR) of the 95% confidence interval for each
parameter and their t-statistics. The CR corresponds to the proportion of 95% con-
fidence intervals containing the true parameter value. Confidence intervals for the
DEA-UKF method are in line with theory (i.e. close to 95%). Also, most CR are not
statistically different of 0.95 at a significance level of 5%.

Finally, a multivariate confidence region is constructed by inverting the likelihood ratio
statistic. Let U(y) = {φ̂ : 2L(φ̂; y) − 2L(φ0; y) < Fcrit}, where L is the log-likelihood
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Table 2.6: Descriptive statistics for the liquidity proxies.

Panel A: Summary statistics for liquidity proxies and the theoretical yield spread.

λ Amihud A. risk IRC IRC risk Roll Turnover Zero Spread

Mean 0.011 0.483 0.713 0.007 0.005 0.015 0.032 0.712 1.785
SD 3.250 1.756 2.362 0.007 0.006 0.018 0.101 0.283 2.660

1% -3.560 0.000 0.000 0.000 0.000 0.001 0.000 0.043 0.080
5% -3.158 0.002 0.000 0.000 0.000 0.003 0.000 0.091 0.134
25% -1.915 0.043 0.039 0.003 0.001 0.007 0.001 0.545 0.423
50% -0.767 0.158 0.225 0.005 0.004 0.012 0.012 0.818 1.066
75% 0.902 0.403 0.627 0.009 0.007 0.019 0.035 0.952 1.917
95% 5.744 1.733 2.812 0.018 0.014 0.037 0.111 1.000 6.403
99% 13.010 5.566 7.785 0.031 0.026 0.069 0.299 1.000 12.361

Panel B: Correlation matrix for liquidity proxies and the theoretical yield spread.

λ Amihud A. risk IRC IRC
risk

Roll Turnover Zero Spread

λ 1.000
Amihud 0.317 1.000
A. risk 0.539 0.425 1.000
IRC 0.418 0.094 0.118 1.000
IRC risk 0.528 0.032 0.196 0.589 1.000
Roll 0.275 0.204 0.206 0.391 0.357 1.000
Turnover -0.022 -0.058 -0.026 0.007 0.008 -0.026 1.000
Bond zero 0.013 0.169 0.016 -0.024 -0.168 0.027 -0.132 1.000
Spread 0.161 0.059 0.154 0.291 0.281 0.300 0.057 -0.207 1.000

This table shows statistics for corporate bond liquidity proxies. The proxies are calculated monthly for
each bond from January 2005 to December 2012. Panel A shows quantiles for the proxies. Panel B
reports correlation among the proxies. Amihud means Amihud measure, A. risk stands for Amihud
risk, IRC corresponds to IRC measure, Roll means Roll measure, Zero is for bond zero-trading days,
and Spread stands for theoretical YTM spread in percentage.

function, φ̂ is an estimator, y denotes the data and Fcrit is the critical value given by a
chi-square distribution with 18 degrees of freedom (i.e. for a 95% confidence region,
Fcrit = 28.86). Notice that for the MLE, U should contain the true parameter vector
95% of the time asymptotically, under usual regularity conditions. According to our
tests, the coverage rate is 94.4% for the filter. Therefore, the results obtained using the
DEA-UKF are consistent with the theory.

2.C Liquidity: Additional Material

In the spirit of Dick-Nielsen et al. (2012), eight different liquidity measures are pre-
sented: Amihud (2002) measure, Amihud risk, imputed roundtrip cost (IRC), IRC
risk, Roll’s (1984) measure, turnover rate of a bond, proportion of zero trading days,
and Dick-Nielsen et al.’s (2012) λ measure. Each measure is computed on a monthly
basis; moreover, these measures are calculated for each bond considered in the sub-
sample.
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Amihud (2002) constructs an illiquidity measure based on a model proposed by Kyle
(1985). The measure ascertains the price impact of a trade per unit traded. It is defined
as the daily average of absolute returns r j divided by the trade size Q j (in million of
dollars) of consecutive transactions:

Amihudt =
1
Nt

Nt∑
j=1

|r j|

Q j

where Nt is the number of returns on day t, r j = (P j − P j−1)/P j−1, and P j is the price
jth trade of the day. The monthly Amihud measure is defined by taking the median of
the daily measures.

Amihud risk is simply the standard deviation of the daily Amihud measure over one
month.

Feldhütter (2012) proposes an alternative measure of transaction costs based on the
so-called Imputed Roundtrip Trades (IRT). Often, a corporate bond is traded two or
three times within a very short period of time; this is likely to occur because a dealer
matches a buyer and a seller and collects the bid-ask spread as a fee. If two or three
trades in a given bond with the same trade size take place on the same day, and there
are no other trades with the same size on that day, it is assumed that the transactions
are part of an IRT. The imputed roundtrip cost is then defined as

IRC =
Pmax − Pmin

Pmax

where Pmax is the largest price in the IRT and Pmin is the smallest one. A daily estimate
of roundtrip costs is the average of roundtrip costs on that day. In addition, the monthly
IRC is simply the average of daily roundtrip costs.

IRC risk is the standard deviation of the daily IRC measure over one month.

Roll (1984) suggests that, under certain assumptions, the percentage bid-ask spread
equals two times the square root of minus the covariance between two consecutive
returns:

Rollt = 2
√
−cov(ri, ri−1)

where t is the time period for which the measure is calculated. If the covariance is
negative, this measure is not well-defined; the negative values are therefore discarded.
A daily Roll measure is calculated on days with at least one transaction using a rolling
window of 28 days. The monthly Roll measure is computed by taking the median
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within the month. The intuition behind Roll’s (1984) measure is that the bond price
bounces back and forth between the bid and the ask prices and higher bid-ask spread
shall lead to a higher negative correlation.

The monthly turnover rate of bonds is defined by the ratio of the total trading volume
during the month divided by the amount outstanding:

Turnovert =
Total trading volumet

Amount outstanding

where t is the considered month.

The proportion of zero-trading days is the percentage of days during a month where
the bond did not trade.

Finally, Dick-Nielsen et al.’s (2012) λ measure is a composite factor that loads evenly
on Amihud measure, Amihud risk, IRC measure, and IRC risk. Precisely, each mea-
sure L j

t is normalized (i.e. L̃ j
t = (L j

t − µ
j)/σ j) and then added up to obtain

λt =

4∑
j=1

L̃ j
t .

This is also done on a monthly basis.

Panel A of Table 2.6 shows a summary of the distribution of the considered liquidity
proxies. The composite λ measure has a zero mean by construction; however, its
distribution seems highly asymmetrical. The first percentile is around -3.6 and the 99th

percentile is at 13.0. The same asymmetric behaviour is true for the four constituents
of the λ measure.

The median Amihud measure is 0.158. This means that a trade of 300,000 dollars
implies a median move in the bond price of 4.7%. This value is somewhat larger than
the one obtained by Dick-Nielsen et al. (2012): they found roughly 0.13%. However,
they consider different firms and a different period; they also remove small trades.
Han and Zhou (2008) find that a trade of 300,000 dollars moves the price by 10.2%
on average. The median roundtrip cost in percentage of the price is 0.5% according to
the IRC measure. The roundtrip costs for the 5% most liquid bonds is 0.03%, which is
coherent with the results of Dick-Nielsen et al. (2012). The average number of bond
zero-trading days is 71.2%. This is consistent with popular thinking: corporate bond
market is an illiquid market. Moreover, Dick-Nielsen et al. (2012) find similar figures
for the bond zero-trading days proxy. The average monthly turnover rate is 3.2%,
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meaning that for the average bond in our sample it takes between 2 and 3 years to turn
over once.

In Panel B of Table 2.6, a correlation matrix for the different liquidity proxies and the
theoretical YTM spread is presented. Some of the liquidity proxies do not seem to be
highly correlated with one another. Nonetheless, some others are mildly correlated.
Note that the λ measure is a construction based on the Amihud measure, the Amihud
risk, the IRC measure, and the IRC risk, therefore it is natural that the λ measure is
moderately correlated with the other four. The theoretical YTM spread is somehow
related with some of our measures: for instance, the correlation between the Roll
measure and the YTM spread is 30%. The liquidity measure is construction made
from bond prices; thus, it is very intuitive to have moderate correlation between the
liquidity measures and the yield spread.
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We develop a portfolio credit risk model that includes firm-specific Markov-switching
regimes as well as individual stochastic and endogenous recovery rates. Using weekly
credit default swap premiums for 35 financial firms, we analyze the credit risk of each
of these companies and their statistical linkages, putting emphasis on the 2005–2012
period. Moreover, we study the systemic risk affecting both the banking and insurance
subsectors.
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3.1 Introduction and Review of the Literature

The financial crisis of 2008 shed light on how the interconnectedness of large financial
institutions can seriously affect their solvency. Yet, even if the financial crisis is behind
us, we still need to comprehend its aftereffects. In this spirit, we assess the evolution
of major determinants of financial crises during the 2005–2012 period, namely the
roles of leverage, losses and linkages.

This paper offers new insights into the role of credit and systemic risks affecting both
insurance and banking subsectors. Among others, we investigate the changes in corre-
lation through time and the contribution of insurance and banking firms in the risk of
collapse of an entire financial system. To this end, we construct a multivariate credit
risk model that accounts for firm-specific financial health. The framework embeds
oft-cited stylized facts such as leverage volatility (modelled via statistical regimes), re-
covery rates negatively related to default probabilities, and pairwise regime-dependent
correlations. We also propose a consistent and reliable method to estimate within the
multivariate framework.

Various credit risk models have been proposed in the literature. They have been histor-
ically divided into two categories: structural and reduced-form models.1 Even though
the reduced-form approach provides a better fit to market data than the structural ap-
proach does, it lacks the economic and financial intuition of the structural framework.
To overcome the limitations of both traditional approaches while retaining the main
strengths of each, hybrid credit risk models have emerged in the literature.2 In this pa-
per, we adopt a credit risk framework that belongs to this last class of models, linking
the default intensity to the capital structure of the firm through its leverage ratio. More
precisely, to model the leverages, losses and linkages adequately, a regime-switching
extension of the multivariate hybrid credit risk model of Boudreault et al. (2014) is
proposed: it allows for firm-specific statistical regimes that accommodate for changes
in the leverage volatility and an endogenous stochastic recovery rate that is negatively
related to the default probabilities, and therefore impacts the loss distribution. Regime-
switching dynamics are required to capture the various changes in behaviour through

1Structural models link the credit events to the firm’s economic fundamentals by assuming that
default occurs when the firm’s value falls below some boundary. Reduced-form models consider the
surprise element of the default trigger exogenously given through a default intensity process.

2For instance, Duffie and Lando (2001), Çetin et al. (2004), Giesecke and Goldberg (2003) and
Giesecke (2006) use incomplete information models in a way that firm assets and the default barrier are
not observable by investors. Another segment of the literature focuses on modelling the default time as
the first jump of a Cox process for which the intensity depends on the firm’s fundamentals (e.g. Madan
and Unal, 2000).
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time, and more particularly during crises.

Generally, studies of individual firms’ solvency have mostly focused on balance sheet
information (Allen et al., 2002), credit ratings (Gupton et al., 2007), or distance to
default (Bharath and Shumway, 2008). The financial services sector is no exception
to the rule. Indeed, Harrington (2009) employs, among other things, balance sheet
information to assess the role of AIG and the insurance subsector in the recent cri-
sis. Milne (2014) uses the distance to default to investigate the solvency of European
banks, concluding that the distance to default measure performs poorly as a market-
based signal for bank risk. In our study, we employ weekly single-name credit default
swap (CDS) premiums of 35 major financial institutions over 2005–2012. The use of
market data are worthwhile: CDS premiums contain forward-looking information and
are frequently updated by market participants as the information becomes available.
Accordingly, they are more appropriate to detect sudden changes in solvency or oc-
currence of crises.3 In particular, we find that AIG’s 1-year default probability (PD)
spikes to 42% on September 10, 2008, a week before its near-default. On average, the
banking subsector’s 1-year PD increases from 0.5% to 4.6% during the crisis, while
the insurance subsector’s PD increases from 0.4% to 4.2%.

Although numerous single-firm approaches exist for measuring credit risk, financial
institutions are intertwined and, therefore, credit risk assessment of the financial ser-
vices sector requires an examination of the interconnectedness of its institutions. There
are several ways to look at the interconnectedness of companies: correlation in the
firm’s assets or default intensity through copulas or common factors (e.g. Frey and
McNeil, 2003, Hull et al., 2010, Li, 2000, Meine et al., 2016), exposure to other com-
mon risks such as jumps (e.g. Duffie and Gârleanu, 2001) or other contagion mecha-
nisms (e.g. Davis and Lo, 2001) such as network approaches (e.g. Billio et al., 2012,
Markose et al., 2012, Nier et al., 2007). This study models dependence through pair-
wise regime-dependent correlations of leverage co-movements. We link the regimes
to the firm-specific correlation coefficients as one of our main goals is to capture the
increase in pairwise correlation during the last financial crisis. Our empirical results
show that linkage varies over time. We find evidence of larger correlations between
firm leverage co-movements during the high-volatility regime which suggests the ex-
istence of greater interconnectedness during the last crisis. Moreover, the regime-
dependent linkage structure varies across subsectors.

3Moreover, these are superior to ratings-based methods because rating revisions tend to lag behind
the market and default probabilities based on the latter depend on aggregated default counts (i.e. not
firm-specific).
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Since the financial crisis, many multivariate credit risk frameworks have been used
to investigate systemic risk in the financial sector. Notably, Huang et al. (2009) and
Huang et al. (2012) construct a systemic risk measure inferred from CDS spreads and
equity price co-movements.4 Using a network approach, principal component analy-
sis and Granger-causality networks, Billio et al. (2012) quantify the interdependence
among four groups of financial institutions during the recent crisis. Their empirical re-
sults suggest that the banking and insurance subsectors are more important sources of
interconnectedness than other financial institutions. Another contribution in that field
is the systemic expected shortfall proposed by Acharya et al. (2010) that measures the
expected loss to each institution conditional on the undercapitalization of the entire fi-
nancial system. Other measures of systemic risk applied to financial institutions have
been proposed by Adrian and Brunnermeier (2009) and Saldías (2013).5

With respect to systemic risk in the insurance subsector, Weiß and Mühlnickel (2014)
use the Systemic Risk Index measure developed by Acharya et al. (2012) and find
that the contribution of insurers to systemic risk is only determined by the insurer’s
size, whereas Cummins and Weiss (2014) show that non-core activities of U.S. insur-
ers may pose systemic risk.6 Finally, closer to our systemic risk study, Chen et al.
(2014) discuss systemic risk in the insurance and banking subsectors using Huang
et al.’s (2009) measure along with CDS premiums and high-frequency equity returns.
They find a unidirectional causal effect from banks to insurers when accounting for
heteroskedasticity.

In our study, as the proposed model captures firm-specific credit risk and dependence
across the firms, it serves as a building block to construct a systemic risk measure
inspired from Acharya et al. (2010). We find increases in systemic risk contributions
for both insurance and banking subsectors during the crisis period. In line with Chen
et al. (2014) and Billio et al. (2012), we also detect a unidirectional causal effect
from banks to insurers when accounting for heteroskedasticity. Therefore, even if our
methodology differs and our data extends over the aftermath of the crisis, our results
suggest that the direction of the causal relationship is robust.

4Huang et al. (2009) propose the use of the so-called “distress insurance premium.” This theoretical
price of insurance against distressed losses is calculated as the risk-neutral expectation of portfolio
credit losses that equal or exceed a minimum share of the sector’s total liabilities.

5Adrian and Brunnermeier (2009) introduce the concept of CoVaR that measures the value at risk
(VaR) of the financial system conditional on the distress of a specific firm. Saldías (2013) develops a
forward-looking measure based on the gap between portfolio and average distance to default series to
monitor systemic risk in Europe.

6Core activities refer to insurance underwriting, reserving, claims settlement and reinsurance. Non-
core activities are associated with banking activities engaged in by some insurers.
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The contributions of this paper are threefold. First, firm-specific credit risk is modelled
in the financial services sector by the means of a multivariate credit risk model which
captures the main determinants of credit risk (and more specifically, financial crises).
Second, we provide a consistent estimation method for the multivariate model. Esti-
mation of the model’s parameters is a crucial step to adequately measure both credit
and systemic risks. Indeed, as defaults are rare events, a lack of direct observations
brings an extra challenge when firm-specific credit risk needs to be estimated.7 Fi-
nally, new insights into the financial services sector’s credit and systemic risks are
provided, especially regarding sector-wide linkages and systemic risk in the insurance
and banking subsectors during the last financial crisis.

The remainder of this paper is organized as follows: Section 3.2 explains the mul-
tivariate credit risk model used. In Section 3.3, the CDS dataset is described. The
firm-specific credit risk results are discussed in Section 3.4. Section 3.5 shows the
results regarding the linkages between firms. Section 3.6 provides an assessment of
the systemic risk in both the insurance and banking subsectors. Finally, Section 3.7
concludes.

3.2 Multivariate Credit Risk Model

As discussed in the introduction, to adequately capture credit and systemic risks re-
quires the incorporation of some desired features, namely the “L”s of financial crises:
leverage, losses and linkages. In this spirit, the proposed multivariate Markov-swit-
ching model combines the regime-switching univariate framework of Bégin et al.
(2016) and the portfolio hybrid default risk approach of Boudreault et al. (2014).

We use regime-switching dynamics in this study as crises are the type of events that oc-
cur suddenly and cannot be well captured by a highly persistent autoregressive frame-
work such as DCC-type processes (see Engle, 2002, for more details on the dynamic
conditional correlation framework).

7Numerous studies construct proxies for default probabilities, recovery rates and other models’
inputs based on aggregated information across ratings, balance sheet data and equity returns. More
recently, a number of authors have implemented filtering approaches to deal with the latent nature of
some models’ variables and the presence of noise in the market data. For instance, see Duan and Fulop
(2009), Huang and Yu (2010) and Boudreault et al. (2013).
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3.2.1 Markov-Switching Dynamics

As a starting point to the model, the time t market value of the ith firm’s assets and the
present value of the ith firm’s liabilities are denoted by A(i)

t and L(i)
t respectively. To

capture changes in the asset and liabilities dynamics, a regime-switching variable is
incorporated. This would allow for the flexibility needed to model periods of turmoil.
Hence, s(i)

t is the hidden state of the regime prevailing at time t. As emphasized by the
notation, the regime dynamics are firm-specific.

The leverage ratio X(i)
t = L(i)

t /A
(i)
t follows a first-order two-state Markov-switching

process such as

log
(
X(i)

t

)
= log

(
X(i)

t−1

)
+

(
µ(i) −

1
2
(
σ(i)

s(i)
t

)2
)
∆t + σ(i)

s(i)
t

√
∆tε(i)

t , i ∈ {1, 2, ...,N} (3.1)

where ∆t represents the time between two consecutive observations, and {ε(i)
t }
∞
t=1 is a

standardized Gaussian noise series. The drift µ(i) as well as regime diffusions σ(i)
1 and

σ(i)
2 are firm-specific parameters to be estimated. Note that {s(i)

t : i = 1, 2, ...,N} are
independent first-order Markov chains. If p(i)
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(
s(i)
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t−1 = 1

)
and p(i)
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(
s(i)
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)
, the regime state s(i)

t has the following transition matrix:

P(i) =

 p(i)
11 1 − p(i)

11

1 − p(i)
22 p(i)

22

 . (3.2)

When it comes to a portfolio approach, one must consider the interrelation among
firms that can lead to clusters of defaults and may significantly impact the future
value distribution of the portfolio. To this end, the model captures the firms’ inter-
connections through the correlation between noise terms of log-leverage described in
Equation (3.1), i.e.

ρ
(i, j)
st = CorrP(ε(i)

t , ε
( j)
t ) (3.3)

with st ∈
{
s(i)

t , s
( j)
t

}
, or st ∈ {(1, 1), (1, 2), (2, 1), (2, 2)}. Thus, four correlation values

have to be estimated for each pair of firms depending on their specific regimes, i.e.
ρ

(i, j)
st = (ρ(i, j)

1,1 , ρ
(i, j)
1,2 , ρ

(i, j)
2,1 , ρ

(i, j)
2,2 ).

Depending on the modelling objective, the log-leverage dynamics evolve either under
risk-neutral pricing measure Q, or under physical measure P for risk management pur-
poses. The market model is incomplete, implying that there are an infinite number of
pricing measures. Among these measures, we restrict the choices to those preserving
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the model structure by having different µ(i), p(i)
11 and p(i)

22 under both measures P and Q,
meaning that the regime risk is priced.

3.2.2 Default Intensity

The multivariate Markov-switching model is based on a hybrid default risk framework
that combines features of both structural and reduced-form approaches. The model
also features an endogenous stochastic recovery rate that depends on the firm’s default
probability.

More precisely, the model first relies on the assumption that default is driven by an
intensity process Ht that depends on the leverage ratio Xt such that

H(i)
t = β(i) +

X(i)
t

θ(i)

α(i)

(3.4)

where α(i) > 0, β(i) > 0 and θ(i) > 0 are firm-specific constants to be estimated.
Furthermore, the intensity process allows the default time to be defined as a reduced-
form default trigger, that is, the first jump of a Cox process:

τ(i) ≡ inf

t ∈ {1, 2, ...} :
t−1∑
u=0

H(i)
u ∆t > E(i)

1

 (3.5)

where E(i)
1 is an independent exponential random variable with mean 1. Since α(i), β(i)

and θ(i) are positive constants, the likelihood of default tends to increase with the lever-
age ratio. Notice that parameters α and θ gauge the sensitivity of the firm’s survival
against its leverage ratio. The convexity of the default intensity is guided by α, while
the critical leverage threshold is defined by θ. The parameter β captures a portion of
the default drivers, and ensures that Ht is a positive function when β > 0. With all
other variables being the same, the larger the β, the greater the intensity and default
probability.

This framework allows for an endogenous recovery rate that depends on the capital
structure of the firm at the time of default. Considering liquidation and legal fees as
a fraction κ(i) of the market asset value at default, the debtholders receive the smallest
amount between the value of liabilities and what remains from the liquidation of as-
sets: min

(
(1 − κ(i))A(i)

τ ; L(i)
τ

)
. Given the leverage dynamics, the random behaviour of
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the recovery rate at the time of default is

R(i)
τ = min

( (
1 − κ(i)

) 1

X(i)
τ

; 1
)
. (3.6)

The endogenous recovery rate distribution is consistent with the empirical literature,
as it is a decreasing function of the leverage ratio, meaning that default probability is
negatively correlated with the recovery rate at the moment of default.8 The stochastic
behaviour of the recovery rate as well as regime-switching dynamics imply that CDS
premiums cannot be calculated in closed form. Therefore, a numerical method based
on a trinomial lattice approach is used. Details on the method used to price CDS are
available in Chapter 2 of this thesis.

3.3 Data and Assumptions

Since the late 1990s, the credit risk market has substantially grown and the CDS has
become a new instrument for investors to manage and measure their risk. Consider-
ing that the CDS premium is directly linked to the credit quality of the bond issuer,
it is expected to reflect an adequate measure of credit risk. In the recent literature,
many authors challenge this argument (see Bielecki et al., 2011, Friewald et al., 2012,
among others). However, empirical studies suggest that credit risk is one of the most
important risks involved in the CDS spread and therefore, provides a good proxy for
studying a firm’s credit risk.9 In this study, CDS premiums are used as inputs in a
filtering procedure to estimate the Markov-switching hybrid credit risk model.

CDS premiums are provided by Markit for tenors of 1, 2, 3, 5, 7, and 10 years. As
our model embeds two latent variables (the leverage and the hidden regime), more
information is needed to adequately infer both these unobservable quantities. There-
fore, we will use all the available tenors, even though most authors only use 5-year
premiums.

We select the companies listed under the “Financial” classification in the database.
Further selection is performed by keeping only insurance and banking firms with at
least two years of data; this step is accomplished using each firm’s Standard Industrial
Classification (SIC) main code. This study is thus based on 35 financial sector firms.

8For instance, see Altman et al. (2005).
9Ericsson et al. (2009), Tang and Yan (2007) and Longstaff et al. (2005) show that a significant

portion of CDS spreads can be directly attributed to credit risk.
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Table 3.1: Insurance and banking firms.

Insurance firms Banking firms

ACE Limited (ACE) American Express Company (AXP)
Allstate Corporation (ALL) Bear Stearns Companies, Inc (BSC)
American International Group, Inc (AIG) Bank of America Corporation (BACORP)
Aon Corporation (AOC) Capital One Financial Corporation (COF)
Berkshire Hathaway, Inc (BRK) Charles Schwab Corporation (SCH)
Chubb Corporation (CB) Citigroup, Inc (C)
Genworth Financial, Inc (GNWTH) Deutsche Bank AG (DB)
Hartford Financial Services Group (HIG) Federal Home Loan Mortgage Corporation (FHLMC)
Liberty Mutual Insurance Company (LIBMUT) Federal National Mortgage Association (FNMA)
Lincoln National Corporation (LNC) Goldman Sachs Group, Inc (GS)
Loews Corporation (LTR) JPMorgan Chase & Co (JPM)
Marsh & Mclennan Companies, Inc (MMC) Lehman Bros Holdings, Inc (LEH)
MetLife, Inc (MET) Merrill Lynch & Co, Inc (MER)
Prudential Financial, Inc (PRU) Morgan Stanley (MWD)
Safeco Corporation (SAFC) SunTrust Banks, Inc (STI)
XL Capital Limited (XL) US BanCorp (USB)

WA Mut, Inc (WM)
Wachovia Corporation (WB)
Wells Fargo & Co (WFC)

The weekly term structure of CDS data starts on January 5, 2005, and ends on Decem-
ber 26, 2012, for a maximum of 417 observations. Premiums correspond to Wednes-
day data as it is the least likely day to be a holiday and is also less likely to be affected
by weekend effects.10 The CDS’s tier is chosen as senior and refers to the level of debt
in the capital structure of the reference entities. Furthermore, the selected restructuring
clause is XR, meaning that all restructuring events are excluded as trigger events.

Throughout the paper, firms are divided into two categories: insurance firms and bank-
ing companies.11 Table 3.1 lists these various companies, including 16 insurance com-
panies and 19 banking firms. The majority of these institutions are large publicly
traded companies.

Figure 3.1 exhibits the weekly average 5-year CDS premiums for both subsectors, and
the weekly average CDS term structure slope where, for a given firm, the slope is
proxied by the difference between the 10-year and 1-year CDS premiums. Among the
firms, AIG, Lincoln National and Washington Mutual have the largest average premi-
ums, reaching maximum values of 3,336.2 basis points (bps), 2,695.5 bps and 5,207.8
bps for 5-year tenors respectively. During the sample period, the market considered
AIG, Lincoln National and Washington Mutual the riskiest firms. This is consistent
with the near-collapse of AIG, Lincoln National’s stock drop and the failure of Wash-
ington Mutual, which was the largest commercial bank failure in American history.
Conversely, Fannie Mae and Freddie Mac, for which CDSs data were considered up

10For more details on the advantages of using Wednesday data, see Dumas et al. (1998).
11The range of SIC codes for insurance firms is between 6300 and 6499. The banking subsector’s

SIC code ranges from 6000 to 6299.
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to September 2008, have the narrowest average premiums. Although the CDS holders
triggered the default clauses for both entities, the debt was implicitly guaranteed by
the U.S. government which mitigated the risk associated with these firms in the CDS
market.

In addition to CDS data, the model requires other inputs such as the risk-free interest
rate and the firms’ initial leverages. The risk-free interest rate is assumed to be constant
over time at 1.75%.12 The leverages as of January 2005 are approximated from the
total liabilities divided by the total assets of each firm in the sample.13
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Figure 3.1: Evolution of the average CDS level in basis points and of the average
CDS slope in basis points for both subsectors.
The CDS premiums were taken from Markit for the 16 insurance firms and 19 banking companies
selected, between January 2005 and December 2012. The grey surface corresponds to the financial
crisis (July 2007 to March 2009). The CDS level is proxied by the weekly average of 5-year CDS
premiums. The CDS slope is proxied by the average difference between the 10-year CDS premiums
and the 1-year CDS premiums.

Saunders and Allen (2010) break the recent financial crisis into three periods. The
first period corresponds to the credit crisis in the mortgage market (June 2006 to June
2007), the second one covers the period of the liquidity crisis (July 2007 to August
2008), and the third the default crisis period (September 2008 to March 2009). This
study focuses on the second and the third periods; thus, the financial crisis started in
July 2007 and finished in March 2009 throughout this paper.

12This value represents the average rate of the daily 1-month and 3-month Treasury constant maturity
series obtained from the Federal Reserve Bank of St. Louis (via FRED).

13More specifically, the firms’ financial information is extracted from the Wharton Research Data
Services (WRDS) Compustat database. In the database, the total liabilities are identified by LTQ and
the total assets by ATQ.
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3.4 Firm-Specific Credit Risk

Since leverage ratios and Markov regimes are unobservable variables, a filtering pro-
cedure is needed. We infer the latent variables from observable CDS premiums. How-
ever, estimating all firms simultaneously is not numerically feasible. The estimation
is thus broken down into two stages. First, the firm-specific parameters are estimated.
The second stage then focuses on the interrelation between firms while keeping the
firm-specific parameters fixed. This approach is similar to the Inference Function for
Margin (IFM) estimator proposed by Joe (2014). Also, an unreported Monte Carlo
study shows that the two-stage approach produces unbiased estimators for all param-
eters.

If leverage time series were observable, the regimes could easily be filtered (for a re-
view of classic methods, see Elliott et al., 1995). However, this is not the case and
filtering regimes based on a latent time series is not straightforward. An extension
of Tugnait’s (1982) detection-estimation algorithm (DEA) is designed to filter both
unobserved variables simultaneously.14 In addition to being adequate from a statisti-
cal point of view, this filter provides firm-specific model parameters based on maxi-
mum likelihood estimators. For more information on the method, refer to Bégin et al.
(2016).

The set of Markov-switching parameters to be estimated for each firm in the first stage
is

φ1 = (µP, µQ, σ1, σ2, pP11, pP22, pQ11, pQ22, α, β, θ, κ, δ
(1), δ(2), δ(3), δ(5), δ(7), δ(10))

where δ(1), δ(2), δ(3), δ(5), δ(7), and δ(10) are standard errors of the noise terms for tenors
of 1, 2, 3, 5, 7 and 10 years, respectively. The filter-based methodology allows us to
recover both real probability P and risk-neutral Q parameters. Descriptive statistics of
the model parameters are presented in Table 3.2.15

The regime variable is an important feature of our model.16 Empirical results show

14To account for nonlinearities in the state-space representation, the unscented Kalman filter (UKF)
of Julier and Uhlmann (1997) is applied instead of the classic Kalman (1960) filter.

15Note that we consider the same drift parameter across both regimes in our model. Indeed, the drift
parameter estimators of the latent variable are rather inaccurate and create numerical instability due to
the short span of the time series used. Even in a “one-regime” framework where the log-leverage is
assumed to be observed, the precision of the drift parameter estimate is proportional to the square root
of the sampling period length.

16We illustrate the advantages of the regime-switching model over the “one-regime” equivalent (i.e.
the model proposed by Boudreault et al., 2014) in the Section 3.D. Overall, the regime-switching model
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Table 3.2: Descriptive statistics on the distribution of firm-specific parameters
and noise terms.

µQ(%) µP(%) σ1 σ2 pQ11 (%) pP11(%) pQ22(%) pP22(%) κ

Average -0.074 0.008 0.070 0.347 99.570 97.675 93.987 96.617 0.565
SD 0.169 0.261 0.015 0.015 0.194 1.699 1.663 3.222 0.065
Minimum -0.905 -0.242 0.032 0.306 98.932 90.481 89.098 87.055 0.443
10% -0.163 -0.136 0.054 0.328 99.338 96.146 92.328 92.082 0.475
25% -0.073 -0.085 0.058 0.339 99.462 96.765 92.936 95.036 0.517
50% -0.039 -0.035 0.069 0.352 99.617 98.105 93.861 97.675 0.554
75% -0.008 0.011 0.080 0.359 99.685 98.633 95.160 99.011 0.629
90% 0.027 0.071 0.088 0.360 99.795 99.207 96.178 99.548 0.646
Maximum 0.086 1.385 0.099 0.362 99.885 99.994 96.466 99.999 0.669

Insurance
Average -0.027 -0.065 0.075 0.352 99.537 97.864 93.759 96.157 0.579
SD 0.058 0.082 0.014 0.010 0.150 0.992 1.823 2.483 0.065

Banking
Average -0.114 0.069 0.065 0.343 99.598 97.516 94.179 97.004 0.553
SD 0.219 0.338 0.014 0.017 0.224 2.138 1.539 3.758 0.065

α θ β(%) δ(1) δ(2) δ(3) δ(5) δ(7) δ(10)

Average 10.724 1.349 0.088 0.244 0.142 0.086 0.052 0.035 0.063
SD 2.543 0.103 0.212 0.059 0.037 0.025 0.018 0.023 0.021
Minimum 7.260 1.166 0.000 0.143 0.062 0.036 0.009 0.006 0.034
10% 8.370 1.211 0.000 0.180 0.102 0.056 0.034 0.008 0.037
25% 8.780 1.269 0.000 0.198 0.120 0.072 0.041 0.017 0.046
50% 10.191 1.346 0.022 0.237 0.140 0.083 0.050 0.037 0.062
75% 11.864 1.411 0.092 0.284 0.161 0.100 0.059 0.044 0.071
90% 15.341 1.507 0.176 0.330 0.202 0.120 0.072 0.065 0.099
Maximum 17.648 1.574 1.238 0.349 0.215 0.145 0.104 0.103 0.120

Insurance
Average 10.148 1.365 0.057 0.251 0.136 0.084 0.043 0.032 0.059
SD 1.482 0.109 0.073 0.061 0.038 0.027 0.012 0.016 0.015

Banking
Average 11.209 1.336 0.114 0.239 0.147 0.088 0.059 0.038 0.066
SD 3.138 0.099 0.281 0.058 0.036 0.023 0.019 0.028 0.026

For each of the 35 firms, the parameters of the model are estimated using weekly CDS premiums with
maturities 1, 2, 3, 5, 7 and 10 years, using the DEA-UKF filtering technique. The mean, standard
deviation (SD) and quantiles are computed across firms. The last four rows compute the mean and SD
across insurance and banking sectors. The δs represent the standard deviation of the noise terms present
in the filter’s observation equation.

strong persistence for both low- and high-volatility regimes. Indeed, transition prob-
abilities pP11 and pP22 are greater than 87% for all firms, with the majority exceeding
97%. In particular, Fannie Mae, Freddie Mac and Merrill Lynch transition probabili-
ties pP22 reach virtually 100%, suggesting permanent regime changes during the crisis.
This is because CDS data are truncated at the effective acquisition date, which corre-
sponds to the high-volatility regime. Both the insurance and banking subsectors tend
to have similar transition probabilities on average.

The average uncertainty parameters related to the first and second regimes (σ1 and
σ2) are about 7% and 35%, respectively, implying a large difference between the two

is statistically superior to its “one-regime” equivalent. For instance, the relative root mean square error
of the “one-regime” model is 29% higher than the one of the regime-switching framework.

62



Chapter 3. Credit and Systemic Risks in the Financial Services Sector

regimes. The univariate step procedure also allows the firm-specific constants α, β and
θ, which define the intensity process of Equation (3.4), to be estimated. All firms have
positive values for each constant. The estimated α has minimum and maximum values
of 7.3 and 17.7, respectively, implying that the intensity process is strongly convex
with the leverage ratio. The convexity of the relationship is higher on average for
banking firms when compared with insurance companies. Finally, the critical leverage
value θ lies between 1.17 and 1.57, which is realistic given that a portion of the default
risk is captured by parameter β and the leverage ratio affects the default intensity in a
nonlinear fashion.

Table 3.2 also shows the descriptive statistics of parameter κ, which is related to liqui-
dation and legal fees. The estimated value across firms ranges between 44% and 67%,
and represents a fraction of the market asset value at default.

Standard errors of the trading noise are relatively low for tenors of longer than two
years with an average value lying between 3.5% and 8.6%. However, short tenors
have higher variations that may be related to lower trading frequency of 1- and 2-year
CDS contracts. One can also mention the very high-volatility period during which
the analysis is performed, implying higher standard errors than a stable period would
generate. The average standard errors are comparable across both subsectors.

Figure 3.2 depicts the proportion of firms in the high-volatility (turbulent) regime
across both insurance and banking subsectors. This proportion raises rapidly at the
onset of the crisis for banking firms: it goes from 21% to 84% in the first six months
of the crisis, with a sizable increase in the week following the credit crunch (A).
The transition for insurance companies happens later in early 2008: the proportion of
firms in the high-volatility regime is virtually 100% from March 2008 to September
2008. For both subsectors, there is some persistence in the proportion during the post-
crisis era. This observation is consistent with volatility regime persistence noted in
Maalaoui Chun et al. (2014), Garzarelli (2009) and Mueller (2008). Interestingly, the
banking subsector’s proportion of firms in the high-volatility regime increases during
the European debt crisis (from 2009 to 2012). For the same years, the insurance sub-
sector’s proportion remains at zero. Finally, even though the filtered statistical regimes
depend only on firm-specific information, they suggest a rather important link with the
crisis, on average.

63



Chapter 3. Credit and Systemic Risks in the Financial Services Sector

Date
2006 2008 2010 2012

0

0.2

0.4

0.6

0.8

1

A B C D E

Insurance Banking

Figure 3.2: Time series of the proportion of firms in the high-volatility regime
across both insurance and banking subsectors.
Based on the firm-specific parameters, the most probable regimes are extracted and aggregated across
the two sectors. The different letters correspond to major events during the crisis: (A) The credit crunch
begins in earnest (August 1, 2007). (B) The Federal Reserve Board approves the financing arrangement
between JPM and BSC (March 14, 2008). (C) LEH files for Chapter 11 bankruptcy protection. MER is
taken over by the BACORP. AIG almost defaulted the next day (September 15, 2008). (D) Three large
U.S. life insurance companies seek TARP funding: LNC, HIG and GNWTH (November 17, 2008). (E)
The U.S. Treasury Department, Federal Reserve, and FDIC announce a package of guarantees, liquidity
access, and capital for BACORP (January 16, 2009).

3.4.1 Default Probabilities

The evolution of PDs estimated by the model is investigated (hereafter PDmodel). This
quantity is related to the first “L” of financial crises: leverage. The credit risk frame-
work links default probabilities to firms’ leverage ratios through the intensity process
described in Equation (3.4). Since the firm’s leverage is not directly observable from
market data, CDS premiums are used to infer the model’s latent variables (i.e. hidden
regimes and leverages). Therefore, the model estimates a forward-looking measure of
the firm-specific default probability.17

Throughout this subsection, we compare the model’s estimates with PD computed
using a default count approach (PDDC). The latter are based on historical data rather
than current market conditions. Default counts are aggregated over time by rating
categories across the banking, finance and insurance industries from January 2002 to
December 2012 in transition matrices, which can be compounded for multiple periods
to produce n-year default probabilities.18 Finally, Moody’s ratings, extracted for the

17The model estimates are computed using the trinomial lattice approach and the estimated parame-
ters under the physical measure P.

18A generator estimation approach with a window length of three years ex ante data is used. See
Dionne et al. (2010) for more details.
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35 firms on a monthly basis from January 2005 to December 2012, allow us to readily
obtain the PDDC. Default probabilities computed using this approach are not firm-
specific, but depend on aggregated information across firms with the same rating.
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Figure 3.3: One-year default probabilities computed using the credit risk model
and the default count approach and filtered regimes for AIG and LEH.
This figure shows the time series of 1-year default probabilities over the period of time 2005–2012. The
time series of the model are inferred from CDS premiums market data. The default count approach time
series are obtained from monthly transition matrices for banking, finance and insurance industries using
the generator estimation approach with window length of three years ex ante default data. The letter (C)
corresponds to a major event during the crisis: LEH files for Chapter 11 bankruptcy protection. MER
is taken over by the BACORP. AIG almost defaulted the day after (September 15, 2008).

Below, we examine the time-varying behaviour of PDmodel by focusing our analysis on
a few important firm-specific events of the last crisis. The results for AIG and LEH
are given in Figure 3.3 and firm-specific averages across the three periods are shown
in Table 3.3. Let us first take the case of AIG, which almost defaulted on September
16, 2008. One month prior to that date, the model derives 1-year PD of approximately
6% for AIG. Then, the estimate reaches 10% on September 10, followed by a spike
of 42% one week later. A similar behaviour is observed for Lehman Brothers prior
to its collapse on September 15, 2008. Indeed, high levels are reached four months
prior to the bankruptcy event (9% for the 1-year PDmodel), followed by a jump in the
probability of default of approximately 11% on September 10, 2008. When it comes
to acquired firms such as Bear Stearns, Merrill Lynch, Wachovia and Washington Mu-
tual, the same characteristic jump pattern is displayed close to major events preceded
by relatively large PDs. Moreover, one can observe higher estimates when examining
PD measures of firms that have been acquired during the crisis and distressed firms in
comparison to the others in the sample.

In opposition, PDDC suffers from two main caveats. First, as it is computed using a
rolling window and past data, it tends to lag behind the market, which explains why the
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probabilities are smaller during the crisis than in its aftermath (see Table 3.3). Second,
it does not reflect firm-specific default probabilities, given that it is based on sector-
wide aggregated data. This is another reason why many firms have the same PDDC in
Table 3: firms tend to have the same credit rating during that period. Contrarily, the
CDS-implied default probabilities are forward looking and strongly reacts at the onset
of the financial crisis and during the European crisis of 2012.

Figure 3.4 exhibits persistence of high PDs in the aftermath of the Great Financial
Crisis. It also shows PDmodel and PDDC for 1-year horizons, averaged across both
subsectors and various events that happened during the sampling period. Before the
crisis, the average PDmodel of both banking and insurance subsectors are at the same
level. The average PDmodel of the banking sector starts to rise just before the onset of
the crisis and jumps at the credit crunch (Event A in Figure 3.4). The average levels
of insurance subsector PDmodel have been less affected at the beginning of the crisis,
but strongly react halfway through, reaching levels higher than those of the banking
subsector. Indeed, between September 3, 2008 and October 8, 2008, the insurance
subsector’s average PDmodel increased by 6.5%, while the banking sector’s average
only increased by 2.7%. During that month (C in Figure 3.4), Lehman Brothers went
bankrupt, Bank of America bought Merrill Lynch and the Federal Reserve Board au-
thorized the Federal Reserve Bank of New York to lend up to $85 billion to AIG; these
events could explain this increase to some extent. Also, other insurance firms such as
Genworth, Lincoln National, Hartford Financial Services and XL Capital have a large
PDmodel in the second half of the crisis period.19 Note that these firms were rather com-
promised at the end of the crisis, bringing the average to higher levels. On November
17, 2008 (D in Figure 3.4), three large U.S. life insurance companies seek TARP fund-
ing; accordingly, the insurance subsector’s PDs decrease for a couple of months. There
is modest persistence in the aftermath of the crisis as PDmodel slowly reverts back to a
level still above that measured at the beginning of the sampling period. Then, by mid-
2009, both subsectors had similar 1-year PDmodel; however, the banking subsector’s
probabilities slightly increase during the European debt crisis.

On average, the insurance subsector 1-year levels of PDmodel are lower than those of
the banking subsector: the difference between the two subsectors is 0.17% in the pre-
crisis era, 0.40% during the crisis, and 0.34% afterwards. Even though some insurance
firms are quite exposed during the crisis (e.g. companies selling bond insurance and
CDS), some are less affected by the turmoil (e.g. property and casualty insurers).

19Average increases of 32%, 14%, 8% and 10%, respectively, from the first to the second half of the
crisis period for 1-year PDs.
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Table 3.3: Descriptive statistics of one-year default probability estimates across
periods.

Pre-crisis Crisis Post-crisis

Firm Filtered Default count Filtered Default count Filtered Default count

ACE 0.570 0.000 1.529 0.144 1.708 0.353
ALL 0.249 0.000 1.502 0.144 1.069 0.353
AXP 0.307 0.000 4.807 0.144 2.382 0.353
AIG 0.139 0.000 7.458 0.144 6.498 0.548
AOC 0.499 0.004 0.905 0.269 1.474 0.792
BSC 0.668 0.000 6.486 0.001 - -
BRK 0.394 0.000 3.674 0.000 3.812 0.051
BACORP 0.280 0.000 2.158 0.059 4.889 0.474
COF 1.035 0.003 8.860 0.144 3.593 0.790
SCH 0.318 0.000 1.315 0.144 0.972 0.353
CB 0.211 0.000 1.199 0.144 0.944 0.353
C 0.226 0.000 3.257 0.080 4.582 0.401
DB 1.233 0.000 1.494 0.000 - -
FHLMC 0.121 0.000 1.434 0.000 - -
FNMA 0.085 0.000 0.614 0.000 - -
GNWTH 0.542 0.000 17.912 0.239 11.438 0.792
GS 0.297 0.000 2.662 0.086 3.045 0.353
HIG 0.139 0.000 3.974 0.179 3.822 0.792
JPM 0.550 0.000 3.807 0.009 3.821 0.053
LEH 0.257 0.000 4.918 0.135 - -
LIBMUT 0.329 0.004 2.092 0.269 2.102 0.792
LNC 0.205 0.000 6.237 0.149 4.328 0.792
LTR 0.438 0.003 1.283 0.144 1.676 0.353
MMC 0.771 0.004 1.537 0.269 1.667 0.792
MER 0.695 0.000 6.407 0.139 6.567 0.474
MET 0.283 0.000 3.207 0.144 3.050 0.353
MWD 0.934 0.000 9.841 0.144 7.985 0.401
PRU 0.174 0.000 5.322 0.149 3.321 0.792
SAFC 0.183 0.004 1.057 0.269 2.386 0.792
STI 0.197 0.000 2.122 0.144 3.127 0.783
USB 0.201 0.000 1.450 0.009 1.574 0.052
WM 1.753 0.000 17.147 0.975 - -
WB 0.199 0.000 3.020 0.084 - -
WFC 0.284 0.000 0.921 0.009 1.038 0.353
XL 0.459 0.000 7.696 0.268 4.917 1.040

Insurance 0.348 0.001 4.161 0.183 3.294 0.586
Banking 0.514 0.000 4.561 0.151 3.631 0.403

This table shows descriptive statistics for 1-year default probabilities for each firm, across the different
periods. Model time series are inferred from CDS premium market data. The default count approach
time series are obtained from monthly transition matrices for the banking, finance and insurance indus-
tries using the generator estimation approach with a window length of three years ex ante default data.
For some firms, no default probabilities are available during the post-crisis era. These are firms that
either defaulted or were acquired prior to the end of the crisis. All values are reported as a percentage.

3.4.2 Recovery Risk

The second “L” of financial crises is losses. It is modelled implicitly in the credit risk
framework through the endogenous recovery rate of Equation (3.6) and depends on
the firm’s financial health. Thus, the recovery rate changes over time and from one
firm to another.

Figure 3.5 exhibits the average 1-year expected recovery rate for both subsectors. In
general, the expected recovery rate is lower for insurance firms over a 1-year time
horizon. The average 1-year expected rate for insurance and banking subsectors is
43.6% and 49.3%, respectively. Across both subsectors, there is a decrease in the
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Figure 3.4: Average one-year default probabilities computed using the credit risk
model and the default count approach.
This figure shows the time series of 1-year average default probabilities across the portfolio over the
2005–2012 period. Model time series are inferred from CDS premium market data. The default count
approach time series are obtained from monthly transition matrices for the banking, finance and insur-
ance industries using the generator estimation approach with a window length of three years ex ante
default data. The different letters correspond to major events during the crisis: (A) The credit crunch
begins in earnest (August 1, 2007). (B) The Federal Reserve Board approves the financing arrangement
between JPM and BSC (March 14, 2008). (C) LEH files for Chapter 11 bankruptcy protection. MER is
taken over by the BACORP. AIG almost defaults the day after (September 15, 2008). (D) Three large
U.S. life insurance companies seek TARP funding: LNC, HIG and GNWTH (November 17, 2008). (E)
The U.S. Treasury Department, Federal Reserve, and FDIC announce a package of guarantees, liquidity
access, and capital for BACORP (January 16, 2009).

recovery rate over time: from 54.6% in the pre-crisis era to 41.9% during the crisis,
on average.

Lastly, note that the average recovery rate calculated in this study is consistent with
those of Altman et al. (2005) and Vazza and Gunter (2012). Indeed, Altman et al.
(2005) find an average recovery at default of 53% and 35% for senior secured and
unsecured bonds, respectively. Also, in Vazza and Gunter (2012), senior secured and
unsecured bonds have an average discounted recovery rate of 56.4 and 42.9%, respec-
tively, during the 1987–2012 period.

3.5 Dependence

Through the regime-dependent leverage correlation, we account explicitly for poten-
tial linkage between the various firms investigated. This dimension is important in
modelling financial crises.
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Figure 3.5: Time series of the average one-year expected recovery rate for insur-
ance and banking companies.
Based on filtered regimes, we compute the average one-year expected recovery rate each week for each
firm from Equation (3.6). We then take the sample average across both sectors.

At this point, we consider it relevant to stress that the linkage between the firms in
our framework has two dimensions. In a direct manner, the correlation induces links
between the firm’s leverages, and ergo, their default probabilities. This would increase
the likelihood of default clusters for positively correlated firms in periods of turmoil.
Also, in an indirect way, the potential losses are also correlated, as they depend on
the firms’ financial health. Therefore, troubled firms that are highly linked (i.e. large
positive correlation) would have recovery rates that decrease at the same time.

Below, we discuss some of the results obtained from the multivariate extension of the
univariate Markov-switching framework. As a starting point to the multivariate step,
suppose that we have N firms across the portfolio and correlations are recovered from
leverage ratios of all possible pairs of firms (i, j), with 1 ≤ i, j ≤ N. Thus, the number
of estimated values is N(N − 1)/2 for each regime state leading to 2N(N − 1) total
values. The set of parameters for the bivariate estimation stage is

φ2 = (ρ(i, j)
1,1 , ρ

(i, j)
1,2 , ρ

(i, j)
2,1 , ρ

(i, j)
2,2 )

for each pair of firms. Since the leverage ratio time series are inferred from the set
of CDS premiums by the DEA-UKF methodology, recovering a correlation from
smoothed leverage data would result in underestimated coefficients. Therefore, de-
pendence among firms must be captured endogenously or prior to the filtering pro-
cess. Details on the estimation of endogenous correlation coefficients are presented in
Section 3.A.
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At this moment, we feel the need to stress that the estimated correlation coefficients
might be larger than the levels typically seen in credit risk models. Three reasons
explain these differences: the rather challenging sampling period, the fact that we use
CDS premiums instead of equity returns to estimate the coefficients and an estimation
technique that accounts for the presence of noise in market prices.20

The heat maps of Figure 3.6 summarize ρ1,1, ρ1,2, ρ2,1 and ρ2,2 for each pair of firms.21

The results highlight positive pairwise correlations when both firms are in the same
regime, with some minor exceptions for Charles Schwab and Deutsche Bank (i.e.
seven coefficients out of 1,190 coefficients estimated are negative). In the stable
regime (top left panel), the top left 16 × 16 correlations suggest a higher degree of
interconnectedness in the insurance subsector. Regarding the banking firms, the bot-
tom right 19 × 19 coefficients display more heterogeneity. Also, Freddie Mac and
Fannie Mae strongly move together, but are not significantly connected to the rest of
the subsector.

Results also display a higher degree of leverage interdependence when the regime
switches from stable to volatile regimes for both entities: accordingly, the bottom-
right panel of Figure 3.6 (volatile regime) is much darker than the top-left one (stable
regime).

Correlation coefficients are lower for pairs of firms that are not in the same regime
(top-right and bottom-left panels of Figure 3.6). As one of the two firms is more
uncertain than the other, it makes sense for this pair to be less interconnected.

For the rest of this section, we break the sample down into three categories: correla-
tions between the leverages of two insurance firms (Insurance/Insurance), correlations
between the leverages of two banking firms (Banking/Banking) and correlations be-
tween the leverages of one insurance firm and one banking company (Insurance/Bank-
ing).

20In a one-regime framework, Boudreault et al. (2015) compare correlation coefficients obtained
using filtering schemes to the ones based on equity returns. The authors conclude that equity return
correlations could be different from the ones inferred from filtering methods while using CDS premiums
as inputs.

21In some specific cases, CDS premiums dynamics as well as univariate parameter estimates are
such that the joint probability of pairwise firms to be in different regimes is too low. Consequently,
the estimation procedure is unable to adequately recover the coefficients leading to missing values in
the correlation matrix (white squares in the heat maps). We were to unable to adequately recover 42
coefficients out of 2,380, which is less than 2% of all the correlation coefficients. As an example,
one can see that during the period of time Fannie Mae and Freddie Mac are in the first regime, few
institutions belong to the second one. Conversely, when both government-sponsored entities are in the
high-volatility regime, the model is able to estimate correlations for almost all pairwise combinations.
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Figure 3.6: Heat maps of ρ1,1, ρ1,2, ρ2,1 and ρ2,2 for the 35 firms.
This figure shows ρ1,1, ρ1,2, ρ2,1 and ρ2,2. The first 16 rows and columns correspond to the insurance
subsector and last 19 ones to banks. Values in white are correlation coefficients that could not be
estimated (i.e. not enough data).

Figure 3.7 shows the histogram of ρ1,1, ρ1,2, ρ2,1 and ρ2,2 for the three categories:
Insurance/Insurance, Banking/Banking and Insurance/Banking. For the three cate-
gories, there is an increase in the average correlation when both firms move from the
stable to the volatile regimes. For correlation coefficients between two insurance firms,
the average goes from 60% for both firms being in the first regime to 80% in the second
one, for an increase of about 20%. For banking firms’ correlation coefficients, the av-
erage increase is about 26%, from 54% to 79%. As shown in Section 3.4, this regime
is associated with the last financial crisis for most firms. The correlation between the
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leverages of one insurance firm and one banking company is lower in general, with
averages of 45% and 74% for the stable and volatile regimes, respectively.

Interestingly, if one firm is in the first regime and the other is in the second, correlations
seem lower than if both firms are in the same regime. Therefore, if firms are in different
regimes, it means that one is going worse than the other and their comovements should
be less related (i.e. firms should be less interconnected).

Roughly speaking, firms become much more interconnected in the high-volatility
regime. Also, the general shape of the empirical distribution of correlation coefficients
also changes considerably from one regime to the other.

For insurance firms (i.e. Insurance/Insurance), the stable regime correlation coeffi-
cients are distributed around its average and the empirical distribution is unimodal.
For the turbulent regime, the distribution becomes left-skewed and its mode shifts to
the right, meaning that the majority of insurance firms are highly correlated.

For banking firms (i.e. Banking/Banking), the low-volatility regime empirical distri-
bution displays bimodality. This could be explained by two clusters of banking compa-
nies. The top-left panel of Figure 3.6 shows that the first-regime correlations is much
more heterogeneous for financial institutions: some banks are largely correlated, while
others exhibit lower levels of dependence. This dependence behaviour could be the
very consequence of a bank’s primary activities. To verify this conjecture, we further
divide the banking subsector into two categories: correlations between two investment
banks and correlations between two commercial banks. We find that the average corre-
lation is about 44% when both firms are commercial banks and 57% when both firms
are investment banks. These averages are consistent with the clustering mentioned
above. In calm times, commercial banks are less interconnected whereas investment
banks are more correlated. This result is a consequence of the riskier nature of activ-
ities carried out by investment banks, when compared to commercial banks. During
the high-volatility regime, even firms that have low correlation in the stable regime are
now highly interconnected. The empirical distribution of turbulent regime correlation
coefficients is unimodal and left-skewed (Figure 3.7).

For correlation coefficients between the leverages of insurance and banking companies
(i.e. Insurance/Banking), the first regime distribution displays lower correlation than
the two other categories. However, during the turbulent regime, correlation increases
and the distribution is also left-skewed. Interestingly, this would mean that firms less
interconnected in the stable regime could be highly correlated in the turbulent one.
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Figure 3.7: Histogram of ρ1,1, ρ1,2, ρ2,1 and ρ2,2 for three categories: correla-
tions across insurance firms’ leverages (Insurance/Insurance), correlations across
banking companies’ leverages (Banking/Banking), and correlations between in-
surance and banking firms’ leverages (Insurance/Banking).
These figures show the empirical distribution of the ρ1,1, ρ1,2, ρ2,1 and ρ2,2 for three groups. The hori-
zontal bar represents the sample mean.

Figure 3.8 exhibits the time series of median leverage correlation coefficients across
firms and for the three categories of subsectors.22 As expected, the median correlation
increases during the crisis, and decreases afterwards. Over 2005–2012, the banking
subsector’s correlations are larger, with a median about 3% higher than the insurance
subsector correlations on average. The Insurance/Insurance and Banking/Banking
curves are similar in the pre-crisis era. However, at the onset of the crisis, the Bank-
ing/Banking median correlation increases rapidly as the Insurance/Insurance curve
remains somewhat similar. Then, at the beginning of 2008, the Insurance/Insurance

22We take the median since it is less influenced by extreme values. The average would produce a
similar pattern, however the series would be more volatile.
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Figure 3.8: Time series of median leverage correlation coefficients for three
groups: correlations across insurance firms (Insurance/Insurance), correlations
across banking companies (Banking/Banking), and correlations between insur-
ance and banking firms (Insurance/Banking).
Based on filtered regimes, we compute the median correlation coefficients across the three groups.

median correlation coefficient starts rising as the crisis becomes much more systemic.
Note that there is some persistence in the post-crisis era for the three time series.

In summary, empirical results show that firms’ leverages are more correlated during
the high-volatility regime, suggesting more dependence within both subsectors during
the last crisis. These results present major implications for risk management prac-
tices since the increased dependence could lead to important consequences in credit-
sensitive portfolios. They would also have a major impact on systemic risk measures.

3.6 Systemic Risk

The model of Section 3.2 coupled with estimated parameters of Sections 3.4 and 3.5 is
able to adequately grasp the systemic risk embedded in the financial services firms, as
it was carefully constructed to capture three of Billio et al.’s (2012) “L”s: leverage, loss
and linkage. In this study, the systemic risk measure is defined as the expected value
of a loss over a period of three months given that it is higher than the 99th percentile
of the loss distribution.23 It is related to the systemic risk measure of Acharya et al.
(2010), which is a function of the marginal expected shortfall. Our measure is also
related to the one adopted by Huang et al. (2009) and Chen et al. (2014); however,
in their respective studies, the conditional expectation threshold is determined by a

23This systemic risk measure is analogous to the concept of expected shortfall or conditional tail
expectation.
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fraction of the total liabilities. Moreover, their prices of insurance against distressed
losses are computed under the risk-neutral measure. In this study, we use the physical
probabilities, as we focus on real-life expected losses. Similarly to Huang et al. (2009)
and Chen et al. (2014), our measure is forward-looking as it is based on CDS data and
does not require a large sample of firms.24

We further divide our systemic risk measure into two components: the contribution of
insurance and banking firms, respectively. These components correspond to the notion
of marginal expected shortfall and could be described as the subsector’s losses when
the whole financial service sector is doing poorly.

To this end, we construct a theoretical debt portfolio that includes the total liabilities
of each financial firm. The value of the total liabilities (i.e. LTQ) is extracted from
the Compustat database; it is available for each quarter, in millions. Therefore, we use
linear interpolation to obtain the total liabilities value for each week. The sum of all
firm’s liabilities is about $ 1.9 ×107 millions, on average.

As the framework is rather complicated, we rely on a Monte Carlo procedure to calcu-
late the measures of systemic risk (SR). Section 3.B provides the steps to compute the
systemic risk measure along with the systemic risk contributions for each subsector
which represent the subsector’s respective expected losses given that the whole sec-
tor’s losses are higher than the 99th percentile. Intuitively, it informs us about each
subsector’s systemic risk importance.

The relative contributions RSR are scaled versions of the nominal price measures.
Practically, we simply divide the contributions by the sum of the total liabilities for
each respective subsector. This allows us to compare the relative systemic risk contri-
butions of each subsector readily as they share the same scale.

3.6.1 Systemic Risk Measures

Before commenting on each subsector’s systemic risk contributions, we assess the im-
portance of the loss and correlation assumptions made in the framework of Section

24In fact, the evolution of our measure is very similar to the price of financial distress (DIP) of
Huang et al. (2009) even if both measures are based on somewhat different quantities. Our measure
is also highly correlated with the DIP; the correlation between RSR and the DIP at 5% is 79.5% and
91.2% for insurance and banking subsectors, respectively.
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3.2. To do so, the systemic risk measure SR is computed using different modelling as-
sumptions such as independence betweem firms’ leverage ratios and constant recovery
rates.25

For each modelling assumption stated above, Table 3.4 exhibits the average systemic
risk contribution across different eras. Before the crisis, the expected loss, given that
the 99% VaR has been reached, is estimated at $ 23,846 billion which corresponds
to 0.9% of the total liabilities across the 35 firms. During the crisis, the conditional
expected loss rose to $ 113,959 billion of dollars, or 3.9% of the total liabilities.

During the pre-crisis period, using an endogenous recovery rate increases the measures
by 6% on average.26 Using the regime-dependent correlations have only minor im-
pacts on the systemic risk contributions during this period: when the sector is healthy
as a whole, correlation should not have large repercussions on loss distributions as
defaults rarely occur.

During the crisis era, the regime-dependent correlations and the endogenous recovery
rate both have a major impact on the systemic risk measure: on average, they increase
the systemic risk contributions by factors of 14% and 11%, respectively. The depen-
dence assumption has important consequences on the insurance subsector, increasing
the risk contributions by 23% on average. For the same subsector, the endogenous
recovery assumption increases the measures by 3%. For the banking subsector, en-
dogenous recovery has a major impact on RSR with an average rise of 18%. Regime-
dependent correlation increases the measure by a factor of 6% on average.

During the post-crisis period, the correlation assumption has the most significant effect
on the insurance subsector’s measures, with increases of 7% on average. For the
banking subsector, the endogenous recovery assumption is the most significant one:
the contributions increase by a factor of 9% on average.

In summary, it is now clear that linkages and losses are essential in explaining the rise
of systemic risk during the last financial crisis. These two financial crises’ “L”s have
important ramifications on the measures for both subsectors. For instance, indepen-
dence completely underestimates the tail risk in general, and especially in periods of
turmoil. Thus, regime-dependent correlation is important in explaining systemic risk
during periods of crisis.

25In practice, we use the average recovery rate instead of the endogenous recovery rate of Equa-
tion (3.6), which varies with the leverage ratio. It removes the negative correlation between default
probabilities and recovery rates.

26This is found by taking 1
4 (0.902/0.842 − 1 + 0.902/0.843 − 1 + 0.906/0.862 − 1 + 0.905/0.862

−1) = 0.0605.
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Table 3.4: Average systemic risk measures on three different periods (i.e. pre-
crisis, crisis and post-crisis) using different modelling assumptions.

Panel A: Insurance subsector

Pre-crisis Crisis Post-crisis

Nominal Unit (%) Nominal Unit (%) Nominal Unit (%)

Regime correlation, endogenous recovery 23,846.2 0.902 113,959.0 3.976 64,550.8 2.301
Regime correlation, exogenous recovery 22,256.4 0.842 107,442.7 3.737 63,126.4 2.250
Independence, endogenous recovery 23,849.9 0.902 91,074.6 3.150 59,771.0 2.126
Independence, exogenous recovery 22,273.8 0.843 90,886.8 3.137 59,308.5 2.111
Panel B: Banking subsector

Pre-crisis Crisis Post-crisis

Nominal Unit (%) Nominal Unit (%) Nominal Unit (%)

Regime correlation, endogenous recovery 101,571.4 0.906 782,154.6 6.166 961,985.4 9.789
Regime correlation, exogenous recovery 96,387.0 0.862 659,127.7 5.188 880,730.0 8.955
Independence, endogenous recovery 101,468.7 0.905 735,895.8 5.790 952,787.0 9.694
Independence, exogenous recovery 96,373.3 0.862 631,118.2 4.964 875,675.5 8.903

The theoretical debt portfolio includes the total liabilities of each financial firm. The value of the total
liabilities (i.e. LTQ) is extracted from the Compustat database. The systemic risk measures are com-
puted using Monte Carlo methods and 5 × 105 paths over a span of three months. Each systemic risk
measure is computed for four different scenarios: regime-dependent correlation with endogenous re-
covery rates (full model), regime-dependent correlation with endogenous recovery rates, independence
assumption with endogenous recovery rates, and independence assumption with exogenous recovery
rates. Systemic risk measures in nominal units are given in millions.

Now focusing on the contributions given by the model described in Section 3.2, we
display the time series of nominal and unit price contributions in Figure 3.9. The top
panel represents the systemic risk contributions in nominal terms. The banking sub-
sector contribution always lies above the insurance subsector’s time series: not sur-
prisingly, the banking subsector’s total liabilities are larger than those of the insurance
subsector, implying larger marginal expected shortfalls.

The unit price contributions are given in the bottom panel of Figure 3.9. The two sub-
sectors’ contributions are similar during the pre-crisis era. However, at the beginning
of the crisis, the banking contribution rises quickly, capturing the increase in systemic
risk for this subsector. Halfway through the crisis, the insurance contribution jumps
from 1% to almost 20%: this rise is consistent with AIG’s near-default and the in-
creased credit risk in Lincoln National, XL and Genworth. In the post-crisis era, the
banking systemic risk remains high and increases from 9% to 15% during the Eu-
ropean debt crisis. The insurance subsector’s contribution slowly decreases to reach
pre-crisis levels at the end of the sample.

The sample correlation between the relative systemic risk contribution of insurers and
banks, RSRIns

t and RSRBnk
t , respectively, is about 30% for the 2005–2012 period, which

is rather low. When we consider only the crisis era, this sample correlation escalates
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to 69%, implying large comovements in both subsectors’ contributions. For the re-
mainder of the paper, we focus on the unit price contributions.
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Figure 3.9: Time series of the systemic risk measure contribution and the relative
systemic risk measure contribution using the full model.
The systemic risk measures are computed using Monte Carlo methods and 5× 105 paths over a span of
three months. The theoretical debt portfolio that includes the total liabilities of each financial firm.

3.6.2 Granger Causality Tests

At this point, it would be interesting to look at causality: as in Chen et al. (2014),
we would like to test whether a subsector’s contribution could be used to forecast
the other’s systemic risk. As a starting point, linear Granger (1969) causality tests are
employed. The latter involves F-tests to determine whether lagged data on a variable Y

provides any statistically significant information on another variable X in the presence
of lagged values of X. In this spirit, the null hypothesis of this statistical test should
read: Y does not Granger-cause X.

Even though this test is very popular in the empirical literature, the linear Granger
causality test does not capture nonlinear and higher-order causal relationships. To
grasp these nonlinear effects, we also use nonlinear Granger causality tests. A general
version of the nonlinear causality tests was first developed by Baek and Brock (1992)
and then modified by Hiemstra and Jones (1994). However, Diks and Panchenko
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(2006) show that the Hiemstra and Jones’s (1994) statistical test could overreject the
null hypothesis given that the rejection probabilities may tend to one as the sample
size increases. They also propose a new nonparametric test for nonlinear Granger
causality that avoids the over-rejection issue. Therefore, in this paper, we use Diks
and Panchenko’s (2006) (hereinafter DP) statistic to test causality in the nonlinear
case.

Granger causality tests require stationary time series; however, the subsector systemic
risk measures are both non-stationary. By visual inspection of Figure 3.9, it is explicit
that these series are not stationary.27 Therefore, we difference both series. ADF tests
are done on the differenced time series and the null hypothesis is rejected for both
series this time.28

Also, as noted in Hiemstra and Jones (1994), heteroskedasticity could lead to a sub-
stantial bias. By visually inspecting the autocorrelation functions of squared differ-
enced contributions (top panels of Figure 3.10), we conclude that there is conditional
hetereoskedasticity in both time series. We follow Chen et al. (2014) and deal with it
by using a generalized autoregressive conditional heteroskedasticity (GARCH) model.
For insurance and banking subsectors’ contributions, we estimate a GARCH(1,1)
model and extract the Gaussian noise processes. To assess if there is any residual
heteroskedasticity, we plot the autocorrelation functions of the squared noise terms
(bottom panels of Figure 3.10). It seems that the GARCH(1,1) model sufficiently
accounts for the conditional heteroskedasticity in the original time series.

Using the noise process for both subsectors’ contributions (i.e. post-GARCH filter-
ing), we run the linear and nonlinear Granger causality tests. Table 3.5 shows the
various results for both causality tests and for both subsectors.29

In terms of linear Granger tests, the systemic risk of banking firms causes the systemic
risk of insurance companies. For the opposite relationship, we cannot reject the null
hypothesis: we cannot conclude that the systemic risk of insurers Granger-causes the
systemic risk of banks.

For the nonlinear case, the banking subsector’s systemic risk only Granger-causes the
insurance subsector’s systemic risk when the lag length is equal to one (at a confidence

27Indeed, augmented Dickey-Fuller (ADF) tests fail to reject the null hypothesis for both systemic
risk contributions.

28For the insurance subsector: ADF-statistic of -26.45 and a p-value below 0.1%. For the banking
subsector: ADF-statistic of -24.24 and a p-value below 0.1%.

29Section 3.C provides results for linear and nonlinear Granger tests based on differenced time series
(i.e. before GARCH filtering).
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Figure 3.10: Sample autocorrelation functions for squared differenced systemic
risk contributions and squared GARCH noise terms.
The systemic risk measure contributions are computed using Monte Carlo methods and 5 × 105 paths
over a span of three months. The theoretical debt portfolio that includes the total liabilities of each
financial. The GARCH noise terms are computed by fitting a GARCH(1,1) model to the differenced
systemic risk contributions and by extracting the Gaussian noise terms.

level of 95%). However, the insurer’s systemic risk does not Granger-cause the bank’s
systemic risk for any lag length.

These results are in line with Chen et al. (2014): there is a unidirectional causal effect
from banks to insurers when accounting for heteroskedasticity while the opposite rela-
tionship (from insurers to banks) is not statistically significant. Therefore, even if our
methodology differs and our data extend over the aftermath of the crisis, our results
suggest that the direction of the causal relationship is robust. The systemic risk results
are also consistent with Billio et al. (2012) who find that banks tend to have a much
more important role in the transmission of shocks.30

3.7 Concluding Remarks

Unlike conventional empirical studies of credit risk, this paper focuses on the financial
services sector. To adequately model three financial crises “L”s, a Markov-switching
extension of the hybrid credit risk model of Boudreault et al. (2014) is proposed. The
latter allows for firm-specific statistical regimes that accommodate for changes in the
leverage uncertainty, an endogenous stochastic recovery rate that is negatively related

30As a robustness test, we use a GJR-GARCH instead of a GARCH(1,1) model. We find that the
unidirectional relationship from banks to insurers in terms of Granger-causality is robust to this change
of the conditional variance dynamics.
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Table 3.5: Linear and nonlinear Granger causality tests after GARCH filtering.

Panel A: Linear Granger causality.

X = Insurance, Y = Banking X = Banking, Y = Insurance

LX LY F p-value LX LY F p-value

1 1 4.991 0.026 1 1 1.464 0.227
Panel B: Nonlinear Granger causality using Diks and Panchenko (2006).

X = Insurance, Y = Banking X = Banking, Y = Insurance

LX LY DP p-value LX LY DP p-value

1 1 1.745 0.040 1 1 0.789 0.215
2 2 1.418 0.078 2 2 1.382 0.084
3 3 0.892 0.186 3 3 0.239 0.406
4 4 0.826 0.204 4 4 0.649 0.258
5 5 0.866 0.193 5 5 0.106 0.458
6 6 0.783 0.217 6 6 0.408 0.342
7 7 0.828 0.204 7 7 0.638 0.262
8 8 0.636 0.262 8 8 0.545 0.293

This table provides the various statistics and p-values associated with Granger causality tests after
GARCH filtering. Broadly speaking, the null hypothesis is H0 : Y does not Granger-cause X. Therefore,
the leftmost columns show whether the systemic risk of banks does Granger-cause systemic risk of
insurers. Moreover, the rightmost columns show whether the systemic risk of insurers does Granger-
cause systemic risk of banks. LX and LY are the number of lags of X and Y , respectively. For the
linear case, they are determined using the Bayesian information criterion. Values in bold denote a
significance level of 5%. We use a lead length of 1 and a bandwidth of 0.5 in Diks and Panchenko
(2006). The GARCH noise terms are computed by fitting a GARCH(1,1) model to the differenced
systemic risk contributions and by extracting the Gaussian noise terms. F stands for F-statistic and DP
for DP-statistic.

to the default probabilities, and pairwise correlations of leverages’ co-movements. The
firm-by-firm estimation of the model is based on the entire term structure of single-
name CDS premiums of 35 major financial institutions and uses a two-stage filtering
technique.

The model provides a framework that reacts quickly to new information and is well
adapted to measure firm-specific credit risk, even during financial turmoil. We find
that the banking subsector’s default probabilities are higher during the first half of the
crisis era. Halfway through the crisis period, the insurance subsector’s average PDs
are tremendously affected.

Our results indicate an increase in correlation during the high-volatility regime in com-
parison with the stable regime for 33 out of the 35 firms within the portfolio. It sug-
gests the existence of a strong linkage among many financial institutions under study
during the last crisis.

Finally, the empirical study presented in this paper finds supportive evidence of in-
creased systemic risk within the financial services sector during the last global crisis.
There is a unidirectional causal effect from banks to insurers when accounting for
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heteroskedasticity. However, the opposite relationship (from insurers to banks) is not
statistically significant.

Possible extensions of the framework would account for a fourth financial crises’ “L”:
liquidity. This would obviously require the incorporation of an efficient liquidity proxy
that captures this dimension. The inclusion of this aspect is not trivial. We leave this
question for further research.

3.A Endogenous Correlation Coefficients

To obtain endogenous correlation estimates, correlation coefficients are introduced
into the covariance matrix of the augmented state vector on which the unscented trans-
formation is performed. As a starting point, one can write the second order moment
of the augmented state vector as

Pa
t|t =


Pt|t 0 0
0 Σst 0
0 0 R


2(D+2)×2(D+2)

where [Pt|t]2×2 is the covariance matrix of predicted state variables (x̂(i)
t|t , x̂

( j)
t|t ) updated at

each time step, [Σst]2×2 is the covariance matrix of leverage noise terms associated with
regimes st = (s(i)

t , s
( j)
t ), and [R]2D×2D is the trading noise variance matrix. Furthermore,

dimension D refers to the number of CDS maturities available for each firm. More
precisely, covariance and variance matrices can be expressed as

Σst =

 (σ(i)
st )2 σ(i)

st σ
( j)
st ρ

(i, j)
st

σ(i)
st σ

( j)
st ρ

(i, j)
st (σ( j)

st )2

 × ∆t and R = diag(δ2).

Note that diag(δ2) is the operator that creates a square matrix with diagonal elements
corresponding to δ2, and δ = [δ(i,1), δ(i,2), δ(i,3), δ(i,5), δ(i,7), δ(i,10), δ( j,1), δ( j,2), δ( j,3), δ( j,5),

δ( j,7), δ( j,10)] is the vector of the noise terms’ standard deviation. By maximizing the
joint bivariate log-likelihood function, one obtains the correlation coefficient esti-
mates.

According to Hamilton (1994) and considering M parallel UKF in the bivariate frame-
work, the (quasi-) log-likelihood function based on observations yt = (y(i)

t , y
( j)
t ) up to
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time step T for all possible paths M is computed by

T∑
t=1

M∑
l=1

log
(
f (yt | Yt−1; φ2)

)
where φ2 = {ρ

(i, j)
(1,1), ρ

(i, j)
(1,2), ρ

(i, j)
(2,1), ρ

(i, j)
(2,2)}, and the conditional likelihood f (yt | Yt−1; φ2)

given Yt−1 = {y(i)
1 , ..., y(i)

t−1, y
( j)
1 , ..., y

( j)
t−1} is the probability density function of a 2D-

variate Gaussian distribution valued at (y(i)
t , y

( j)
t ) with mean and covariance obtained

from the filtering procedure. More specifically, the mean (ŷ(i)
t|t−1, ŷ

( j)
t|t−1) is a (1 × 2D)

vector obtained from E[(y(i)
t , y

( j)
t ) | Yt−1], and the covariance matrix of dimension (2D×

2D) is Pyy = Cov[(y(i)
t , y

( j)
t ), (y(i)

t , y
( j)
t ) | Yt−1].31 By using Bayes’ rule, one can express

the conditional likelihood function as

f (yt | Yt−1; φ2) =

∑
st

f (yt, st,Yt−1; φ2)
f (Yt−1; φ2)

=
∑

st

f (yt | st,Yt−1; φ2) × f (st | Yt−1; φ2).

The conditional likelihood of yt = (y(i)
t , y

( j)
t ) is computed analytically using the 2D-

variate Gaussian density function. From the Markov property, the likelihood function
given yt−1 = (y(i)

t−1, y
( j)
t−1) and the actual regimes st = (s(i)

t , s
( j)
t ) of firms i and j can be

expressed as

f (yt | st,Yt−1; φ2) = f (yt | st, yt−1; φ2) =
1

(2π)D
∣∣∣∣Pyy

∣∣∣∣1/2 exp
(
−

1
2

e>st
P−1

yy est

)

where est is the error between observations and their forecast values. Second, the
conditional likelihood of st = (s(i)

t , s
( j)
t ) given Yt−1 is obtained recursively. Let η>t =

f (yt | st,Yt−1; φ2) and ξt|t−1 = f (st | Yt−1; φ2) be two vectors of size 4 × 1. Then, one
can use the following recursion equations

ξt+1|t = P(i, j)>ξt|t and ξt|t =
ηt(×)ξt|t−1

η⊥t ξt|t−1

where (×) refers to the element-by-element multiplication and P(i, j) is the following
transition matrix

P(i, j) =


p(i)

11 p( j)
11 p(i)

11 p( j)
12 p(i)

12 p( j)
11 p(i)

12 p( j)
12

p(i)
11 p( j)

21 p(i)
11 p( j)

22 p(i)
12 p( j)

21 p(i)
12 p( j)

22

p(i)
21 p( j)

11 p(i)
21 p( j)

12 p(i)
22 p( j)

11 p(i)
22 p( j)

12

p(i)
21 p( j)

21 p(i)
21 p( j)

22 p(i)
22 p( j)

21 p(i)
22 p( j)

22

 .
31The two moments are computed as a by-product of the UKF methodology.
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An estimate of φ2 is obtained by maximizing the log-likelihood function:

φ̂2 = argmax
{ T∑

t=1

M∑
l=1

∑
st

ln(ξt|t−1) − Dln(2π) −
1
2

ln
∣∣∣∣Pyy

∣∣∣∣ − 1
2

e>st
P−1

yy est

}
.

3.B Calculation of Systemic Risk Measures

Algorithm 1 (Calculation of systemic risk measures). .

1. Generate 500,000 log-leverage paths of three months (i.e. 13 weeks), along with
default indicators and losses given default.

(a) For each firm i, generate the time t + u log-leverage such that

log
(
X(i)

t+u

)
= log

(
X(i)

t+u−1

)
+

(
µ(i) −

1
2

(
σ(i)

s(i)
t+u

)2
)
∆t +

N∑
j=1

R(i, j)
st+u

√
∆tε( j)

t+u

where R(i, j)
st+u is the (i, j)th entry of the (lower triangular) Cholesky decompo-

sition of the regime-dependent covariance matrix and ε( j)
t+u are standardized

Gaussian random variables.32

(b) Determine if the remaining firms default. This step is performed using the
model’s PD over the next week:

PD(i)
t+u−1,t+u = 1 − exp

−∆t

β(i) +

X(i)
t+u−1

θ(i)

α
(i)

 .
Firm i defaults if U (i)

t+u ≤ PD(i)
t+u−1,t+u where U (i)

t+u is a uniformly distributed
random variable U (i)

t+u on [0, 1].

(c) For each firm i, compute the loss given default

LGD(i)
t+u =


T L(i)

t+u

(
1 −min

[
1

X(i)
t+u

(
1 − κ(i)

)
; 1

])
if the firm defaults

0 otherwise

where T L(i)
t+u is the ith firm total liabilities at time t + u. The ith firm is

removed from the set of active companies if it defaults.
32Since the correlation coefficients are estimated in a pairwise manner, it is possible that the full cor-

relation matrix is not positive-definite. Following the literature, we find the closest correlation matrices
in the Frobenius norm. In this paper, Qi and Sun’s (2006) method is applied. The nearest symmetric
correlation matrix is the closest to the estimated correlation matrix in the sense of the Frobenius norm.
Qi and Sun’s (2006) method is highly efficient and converges readily.
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2. Aggregate each firm’s losses and compute the total losses across the firms:

L(i)
t,t+13 =

13∑
u=1

LGD(i)
t+u and Lt,t+13 =

N∑
i=1

L(i)
t,t+13.

3. Compute the systemic risk measure (SR) for the financial service sector as the
sample average across the 500,000 log-leverage paths of

Lt,t+13I
(
Lt,t+13 > VaR0.99(Lt,t+13)

)
,

where VaR0.99(Lt) represents the 99th percentile of the total losses distribution
and I(·) the indicator function.

4. Finally, calculate the systemic risk contribution (so-called nominal price, in mil-
lions) for each subsector (i.e. the marginal expected shortfall). This is the sam-
ple average across the 500,000 log-leverage paths of∑

i∈SS

L(i)
t,t+13

 I (Lt,t+13 > VaR0.99(Lt,t+13)
)
,

where SS ∈ {Ins,Bnk}. Also, compute the relative systemic risk contribution
RSRSS

t (so-called unit price, as a percentage) for each subsector by dividing each
systemic risk contribution by the subsector’s total liabilities.

3.C Systemic Risk Measures: Additional Results

3.C.1 Linear Granger Causality Tests

First, let us focus on whether the systemic risk of banking firms Granger-causes the
systemic risk of insurance companies. The results of this statistical test is given in
Panel A of Table 3.6. As usual, we search for the optimal number of lags based on the
Bayesian information criterion (BIC).33 The statistical test reports whether the coeffi-
cients of the lagged RSRBnk are jointly significantly different from zero. The F-statistic
has a value of 6.199 and the null hypothesis is rejected at a level of 1%, meaning that

33For the restricted model (i.e. the one using only insurance subsector contributions’ lagged values),
we find one lag for insurers. Then, using the unrestricted model (i.e. the one that includes banking
subsector contributions’ in lagged values), we detect five lags for banks.
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Table 3.6: Linear and nonlinear Granger causality tests before GARCH filtering.

Panel A: Linear Granger causality.

X = Insurance, Y = Banking X = Banking, Y = Insurance

LX LY F p-value LX LY F p-value

1 5 6.199 0.000 5 3 5.013 0.002
Panel B: Nonlinear Granger causality using Diks and Panchenko (2006).

X = Insurance, Y = Banking X = Banking, Y = Insurance

LX LY DP p-value LX LY DP p-value

1 1 3.369 0.000 1 1 1.981 0.024
2 2 2.785 0.003 2 2 1.559 0.060
3 3 2.528 0.006 3 3 1.076 0.141
4 4 1.957 0.025 4 4 0.251 0.401
5 5 1.888 0.030 5 5 0.251 0.401
6 6 1.617 0.053 6 6 -0.309 0.621
7 7 1.589 0.056 7 7 -0.216 0.585
8 8 1.596 0.055 8 8 -0.677 0.751

This table provides the various statistics and p-values associated with Granger causality tests. Broadly
speaking, the null hypothesis is H0 : Y does not Granger-cause X. Therefore, the leftmost columns
show whether the systemic risk of banks does Granger-cause systemic risk of insurers. Moreover,
the rightmost columns show whether the systemic risk of insurers does Granger-cause systemic risk
of banks. LX and LY are the number of lags of X and Y respectively. For the linear case, they are
determined using the Bayesian information criterion. Values in bold denote a significance level of 5%.
We use a lead length of 1 and a bandwidth of 0.5 in Diks and Panchenko (2006). The results are robust
to other choices. F stands for F-statistic and DP for DP-statistic.

the banking subsector systemic risk Granger-causes the insurance subsector systemic
risk.

For the opposite relationship (i.e. systemic risk of insurers Granger-causes the sys-
temic risk of banks), the F-statistic is 5.013 and the null hypothesis is again rejected
with a p-value lower than 1%.34 This statistical conclusion would imply that the in-
surance subsector systemic risk Granger-causes that of the banking subsector.

In summary, our results show a compelling interconnectedness between both subsec-
tors. This conclusion is similar to the findings of Chen et al. (2014).

3.C.2 Nonlinear Granger Causality Tests

The Diks and Panchenko (2006)’s Granger causality test requires the user to select
some values such as the lead length, lag lengths LX and LY , and bandwidth. Unfor-
tunately, there is no method to define their optimal values. Following Hiemstra and
Jones (1994) and Diks and Panchenko (2006), we set the lead length at 1 and LX = LY ,
using a maximum of eight common lags. The bandwidth is set to 0.5.

34We find five lags for banks and three for insurers using the same procedure as above.
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Panel B of Table 3.6 shows the results of the nonlinear Granger causality tests. If we
focus first on whether the systemic risk of banking firms Granger-causes the systemic
risk of insurance companies, we find that we reject the null hypothesis for lag lengths
below six at a confidence level of 5%. For the opposite relationship, we reject the null
hypothesis for a lag length of one only.

Again, this would imply interconnectedness between both subsectors; however, con-
nections from the banking subsector to the insurance subsector are somewhat stronger
using the nonlinear statistical tests since we reject more often (i.e. for more lags).

3.D Advantages of the Regime-Switching Framework
over the “One-Regime” Equivalent

In this section, we investigate the benefits of using a regime-switching framework in
terms of fit, default probabilities, recovery rates and systemic risk measures.

3.D.1 Parameter Estimates

Table 3.7 exhibits the firm-specific parameters for each of the 35 companies consid-
ered in this study using “one-regime” equivalent model of Boudreault et al. (2013).
A comparison with Table 2 of the main paper shows that the noise terms’ standard
deviations are larger for short and long maturities, meaning that the overall fitting of
the CDS term structure deteriorates when the regime-switching feature is removed.
Parameter σ of the “one-regime” equivalent model is always between σ1 and σ2.

3.D.2 Fit

We now consider the difference between the model and the observed CDS premiums.

Tables 3.8 and 3.9 show the relative root mean square errors (RRMSEs) in percentage
for each tenor and each firm considered. In general, the regime-switching model yields
smaller RRMSEs for most tenors. Overall, the RRMSE of the “one-regime” equivalent
is 29% higher than the one of RS. The regime-switching model is doing better in
terms of fitting the whole term structure of CDS premiums. For instance, for 5-year
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Table 3.8: Relative root mean square errors in percentage: comparison between
the regime-switching model and the “one-regime” equivalent of Boudreault et al.
(2013).

1-year 2-year 3-year 5-year 7-year 10-year All

ACE 1R 22.81 11.63 2.39 8.73 12.43 14.11 13.48
RS 19.48 14.69 9.37 4.46 1.00 3.62 10.93

ALL 1R 38.37 23.44 13.17 1.03 5.89 8.87 19.62
RS 26.47 21.82 14.23 3.60 0.63 4.11 15.33

AXP 1R 35.92 20.67 12.82 0.35 5.68 9.46 18.27
RS 18.58 10.50 6.15 5.67 6.15 10.41 10.58

AIG 1R 39.29 15.50 5.74 9.89 15.31 20.67 20.72
RS 33.18 14.30 7.26 3.17 3.24 6.47 15.39

AOC 1R 31.18 19.30 11.02 0.16 6.46 9.74 16.34
RS 18.06 10.70 5.80 3.21 3.78 6.85 9.54

BSC 1R 23.67 13.15 5.98 12.60 14.80 19.98 16.05
RS 19.44 13.50 7.76 4.58 0.96 3.89 10.47

BRK 1R 26.94 11.73 5.85 5.71 8.85 11.20 13.75
RS 24.57 13.60 7.81 5.15 3.15 6.68 12.45

BACORP 1R 41.37 16.73 5.27 6.26 10.07 13.11 19.71
RS 44.76 22.48 11.28 5.19 1.29 3.85 21.13

COF 1R 32.33 20.31 12.55 2.00 5.65 10.31 17.11
RS 25.59 17.49 11.84 5.52 0.64 4.38 13.85

SCH 1R 29.61 15.99 7.74 7.74 8.23 9.34 15.32
RS 23.95 15.19 6.34 7.14 5.45 7.75 12.81

CB 1R 42.10 22.95 13.61 1.74 5.95 8.32 20.78
RS 21.74 13.40 7.69 4.46 2.25 4.43 11.22

C 1R 29.97 11.92 2.53 7.36 10.54 12.74 15.13
RS 39.14 22.04 11.81 4.44 1.41 3.68 19.11

DB 1R 17.64 7.60 3.76 5.71 3.38 5.08 8.69
RS 19.00 8.47 4.73 6.77 3.99 7.14 9.73

FHLMC 1R 30.66 11.40 5.22 6.59 10.90 18.56 16.35
RS 22.66 14.69 10.38 7.11 2.41 5.91 12.44

FNMA 1R 33.69 15.34 7.54 6.46 8.37 13.95 17.00
RS 21.14 17.33 10.27 4.49 2.42 6.28 12.37

GNWTH 1R 31.54 9.39 1.62 11.46 16.89 22.22 18.24
RS 57.09 26.23 15.77 4.63 1.18 5.31 26.61

GS 1R 33.53 13.72 4.67 7.98 12.41 15.24 17.24
RS 24.95 13.63 7.81 2.86 3.08 5.90 12.40

HIG 1R 33.21 12.68 5.36 5.92 8.98 13.15 16.23
RS 20.16 11.55 8.33 3.71 3.54 6.76 10.66

JPM 1R 52.32 28.35 15.51 0.92 7.19 10.83 25.66
RS 26.32 21.05 11.94 5.40 1.39 5.31 14.93

LEH 1R 25.78 11.97 3.52 11.22 13.32 19.14 15.76
RS 18.53 9.92 5.35 2.32 3.58 5.73 9.32

LIBMUT 1R 33.39 16.55 9.73 1.76 5.42 8.80 16.30
RS 18.91 10.72 6.71 2.96 2.37 5.65 9.69

LNC 1R 31.54 12.30 5.30 4.72 6.41 9.95 14.92
RS 16.54 8.03 3.14 4.86 3.87 6.06 8.40

LTR 1R 29.52 19.49 10.72 0.32 6.88 11.57 16.06
RS 17.36 10.61 4.90 3.99 3.73 8.10 9.43

MMC 1R 25.56 10.01 2.07 9.60 15.26 19.22 15.56
RS 19.75 10.41 8.31 0.71 4.86 8.04 10.46

MER 1R 62.83 28.83 15.07 1.01 5.90 10.27 29.29
RS 42.66 20.78 11.84 4.89 0.44 4.09 20.14

MET 1R 51.86 22.87 12.06 2.03 6.02 9.53 24.12
RS 27.61 16.52 9.26 3.24 2.95 4.01 13.88

MWD 1R 51.70 25.87 13.57 2.15 6.47 10.30 24.76
RS 29.54 15.23 7.35 2.75 3.83 6.09 14.25

PRU 1R 50.66 23.53 12.36 1.92 6.05 11.44 23.96
RS 40.38 20.14 11.06 4.70 0.25 4.63 19.16

The table shows RRMSEs obtained by comparing model’s prices to CDS data from January 2005 to
December 2012. 1R stands for the “one-regime” equivalent model of Boudreault et al. (2013) and RS
means the regime-switching model.

premiums, the RS model yields a RRMSE of 4.92%, which is 1.56% lower than the
one obtained with the one-regime equivalent (i.e. a relative gain of about 32%).

89



Chapter 3. Credit and Systemic Risks in the Financial Services Sector

Table 3.9: Relative root mean square errors in percentage: comparison between
the regime-switching model and the “one-regime” equivalent of Boudreault et al.
(2013), continued.

1-year 2-year 3-year 5-year 7-year 10-year All

SAFC 1R 25.29 11.81 1.78 9.45 13.17 17.54 15.02
RS 20.59 14.63 8.28 4.13 3.36 6.15 11.35

STI 1R 30.58 30.38 10.36 6.46 10.39 8.35 19.08
RS 32.22 30.50 10.45 8.18 9.16 6.87 19.47

USB 1R 26.93 21.91 12.34 8.21 9.56 13.31 16.80
RS 23.95 20.81 12.99 9.73 7.76 11.63 15.63

WM 1R 22.11 11.02 3.49 9.10 11.14 14.78 13.21
RS 17.57 16.33 7.21 6.24 1.20 4.75 10.73

WB 1R 22.63 11.33 5.52 3.38 6.05 8.77 11.52
RS 21.28 13.82 7.77 5.98 1.99 4.39 11.28

WFC 1R 28.23 13.03 0.16 11.88 15.58 18.08 16.72
RS 20.15 14.91 7.84 4.15 5.38 9.12 11.68

XL 1R 24.41 14.79 8.77 2.32 4.24 8.32 12.81
RS 18.74 12.45 7.70 2.84 3.54 6.26 10.21

All firms 1R 35.91 18.45 9.21 6.48 9.79 13.23 18.39
RS 27.79 16.77 9.34 4.92 3.75 6.38 14.26

The table shows RRMSEs obtained by comparing model’s prices to CDS data from January 2005 to
December 2012. 1R stands for the “one-regime” equivalent model of Boudreault et al. (2013) and RS
means the regime-switching model.
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A B C D EFigure 3.11: Average one-year default probabilities computed using the regime-
switching credit risk model and its “one-regime” equivalent.
This figure shows the time series of 1-year average default probabilities across the portfolio over the
2005–2012 period. Model time series are inferred from CDS premium market data. The different
letters correspond to major events during the crisis: (A) The credit crunch begins in earnest (August
1, 2007). (B) The Federal Reserve Board approves the financing arrangement between JPM and BSC
(March 14, 2008). (C) LEH files for Chapter 11 bankruptcy protection. MER is taken over by the
BACORP. AIG almost defaults the day after (September 15, 2008). (D) Three large U.S. life insurance
companies seek TARP funding: LNC, HIG and GNWTH (November 17, 2008). (E) The U.S. Treasury
Department, Federal Reserve, and FDIC announce a package of guarantees, liquidity access, and capital
for BACORP (January 16, 2009).

3.D.3 Default Probabilities

Figure 3.11 exhibits the average one-year default probabilities computed using the
regime-switching credit risk model and its “one-regime” equivalent. In general, prob-
abilities computed from the regime-switching framework are slightly higher during
the crisis and during the European debt crisis for the banking subsector.

90



Chapter 3. Credit and Systemic Risks in the Financial Services Sector

3.D.4 Recovery Rates

Recovery rates given by both models are highly correlated. The time series of 1-year
expected recovery rates have a correlation of 96.37% in between both models, on
average. Figure 3.12 shows comparison between “one-regime” and regime-switching
one-year expected recovery rates. It seems that the one given by the “one-regime”
equivalent are higher (and inconsistent with the current literature). The “one-regime”
equivalent is not flexible enough to allow changes in both the level and the slope of
the CDS term structure. Therefore, the filtered leverage is rather imprecise as it tries
to account for these two effects simultaneously.

Indeed, Altman et al. (2005) find an average recovery at default of 53% and 35% for
senior secured and unsecured bonds, respectively. Also, in Vazza and Gunter (2012),
senior secured and unsecured bonds have an average discounted recovery rate of 56.4
and 42.9%, respectively, during the 1987-2012 period. These numbers are much more
closer to the averages obtained with the regime-switching framework, when compared
to what is obtained with the “one-regime” equivalent.

This difference could be explained by the fact that the regime-switching framework is
much more flexible as it has two latent variables instead of only one. The additional
flexibility allows us to capture more adequately the term structure of recovery rates
(along with expected recovery over various horizons).

3.D.5 Dependence

The heat maps of Figure 3.13 summarize ρ for each firm. It also shows the correla-
tion coefficients if both firms are in regime 1 and 2, respectively (while using the RS
model). Generally speaking, it seems that ρ1,1 < ρ < ρ2,2. Figure 3.14 exhibits the
time series of median leverage correlation coefficients across firms and for the three
categories of subsectors. The slight variation observed in the “one-regime” median
correlation arises as the set of available firms change through time (i.e. defaults or ad-
ditions). The variation observed for the regime-switching median correlation reflects
the regime variations as well. Figure 3.15 shows the histogram of ρ for the three cate-
gories: Insurance/Insurance, Banking/Banking and Insurance/Banking. A comparison
with Figure 7 of the paper shows that important variations in the correlation dynamics
cannot be captured by the “one-regime” equivalent model.
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Figure 3.12: Average one-year expected recovery rates using the regime-switching
credit risk model and its “one-regime” equivalent.
This figure shows the time series of one-year expected recovery rates across the portfolio over the
2005–2012 period. Model time series are inferred from CDS premium market data.
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Figure 3.13: Heat map of ρ for the 35 firms using “one-regime” equivalent model
of Boudreault et al. (2014) along with the correlation coefficients if both firms are
in regime 1 and 2, respectively.
This figure shows ρ. The first 16 rows and columns correspond to the insurance subsector and last 19
ones to banks.
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Figure 3.14: Time series of median leverage correlation coefficients for three
groups: correlations across insurance firms (Insurance/Insurance), correlations
across banking companies (Banking/Banking), and correlations between insur-
ance and banking firms (Insurance/Banking).
The correlation coefficients are estimated for each pair of firms using the two-step approach based on
the DEA-UKF methodology. Based on filtered regimes of both regime-switching and “one-regime”
equivalent models, we compute the median correlation coefficients across the three groups. Note that
median correlation in “one-regime” equivalent model slightly fluctuates over time as firms enter and
leave our sample.
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Figure 3.15: Histogram of ρ or three categories: correlations across insurance
firms’ leverages (Insurance/Insurance), correlations across banking companies’
leverages (Banking/Banking), and correlations between insurance and banking
firms’ leverages (Insurance/Banking).
The correlation coefficients are estimated for the “one-regime” equivalent model of Boudreault et al.
(2014). These figures show the empirical distribution of the ρ for three groups. The horizontal bar
represents the sample mean.

The regime-switching model is able to capture the changing nature of correlation,
especially during the past financial crisis. The “one-regime” equivalent model has a
median correlation that remains virtually constant in time.35
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Figure 3.16: Time series of the systemic risk measure contribution and the rela-
tive systemic risk measure contribution using both regime-switching and “one-
regime” equivalent models.
The systemic risk measures are computed using Monte Carlo methods and 5× 105 paths over a span of
three months. The theoretical debt portfolio that includes the total liabilities of each financial.

35Note that median correlation in “one-regime” equivalent model slightly fluctuates over time as
firms enter and leave our sample.
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3.D.6 Systemic Risk Measures

We display the time series of nominal and unit price contributions in Figure 3.16 for
both regime-switching and “one-regime” equivalent models. It seems that pre- and
post-crisis contributions are high for the “one-regime” model. Not capturing ade-
quately the changing behaviour of both volatility and correlation have an impact on
the systemic risk measures.
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Chapter 4

Idiosyncratic Jump Risk Matters:
Evidence from Equity Returns and
Options

Abstract*

The recent literature provides conflicting empirical evidence on the relationship be-
tween idiosyncratic risk and equity returns. This paper sheds new light on this rela-
tionship by exploiting the richness of option data. We disentangle four risk factors
that potentially contribute to the equity risk premium: systematic Gaussian risk, sys-
tematic jump risk, idiosyncratic Gaussian risk, and idiosyncratic jump risk. First, we
find that while systematic risk factors explain the greater part of the risk premium on
a stock, idiosyncratic factors explain more than 40% of the average premium. Second,
we show that the contribution of idiosyncratic risk to the equity risk premium arises
exclusively from the jump risk component. Tail risk thus plays a central role in the
pricing of idiosyncratic risk.

Keywords: risk premiums; tail risk; idiosyncratic risk; systematic risk; option valu-
ation; GARCH.

*Joint work with Christian Dorion and Geneviève Gauthier. Dorion and Gauthier are both affiliated
with HEC Montréal.
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4.1 Introduction

An investor should be rewarded for bearing systematic risk. One of the key insights
of Sharpe (1964) and Lintner’s (1965b) CAPM, building on the seminal work of
Markowitz (1952), is that idiosyncratic risk, however, should not carry a risk premium
as it can be diversified away. Since the CAPM, numerous asset pricing models have
been developed building on the premise that idiosyncratic risk is not priced.1 How-
ever, the recent literature has strongly challenged this notion.2 Although the channel
through which idiosyncratic risk could be priced is still a matter of debate, it is now
widely accepted that, given market incompleteness, idiosyncratic risk can be priced.3

While previous studies are informative about the relative importance of idiosyncratic
risk in explaining expected stock returns, they do not attempt to identify whether the
importance of idiosyncratic risk arises from its diffusive or tail components. Thus, lit-
tle is known on the relative contribution of systematic and idiosyncratic diffusive and
tail risk in explaining the equity premium.

Our study departs from existing work by decomposing stocks’ systematic and idiosyn-
cratic shocks into a Gaussian and a jump components. Our approach offers an ideal
framework to study the relative importance of each factor in explaining expected ex-
cess returns on equity. In particular, our study is the first to uncover the central role
of idiosyncratic tail risk in explaining expected stock returns. Indeed, we find that id-
iosyncratic risk explains more than 40% of expected excess equity returns and, more
importantly, that this is exclusively due to the jump risk component. Idiosyncratic
Gaussian risk is not priced. This finding is consistent with the idea that investors have

1Notably, Merton’s (1973) ICAPM extends the insights of the CAPM to an intertemporal setup. The
arbitrage pricing theory of Ross (1976) shows that any common return factor is a potential asset pricing
factor. Fama and French (1992, 1993, 2015) and Carhart (1997), for instance, identify such potential
factors, but diversifiable idiosyncratic risk is still assumed not to carry any risk premium.

2Concerns about the pricing of idiosyncratic risk dates back to Douglas (1969) and Lintner (1965a).
Goyal and Santa-Clara (2003) contributed to putting this debate back at the forefront of the asset pricing
pricing literature by providing empirical evidence that idiosyncratic matters. Among others, Ang et al.
(2006) find that stocks with high idiosyncratic volatilities had “abysmally” low average returns, lower
than what could be explained by their exposure to aggregate volatility.

3Goyal and Santa-Clara (2003) highlight that a possible channel is background risk; investors hold
nontraded assets (e.g. human capital or private businesses) which add background risk to their traded
portfolio decisions. Jacobs and Wang (2004) provide evidence that idiosyncratic consumption risk is a
priced factor in the cross section of stock returns. Hence, the average idiosyncratic stock variance being
a proxy for idiosyncratic consumption risk could explain why idiosyncratic risk is priced. Consistent
with this insight, Herskovic et al. (2016) provide evidence linking the average idiosyncratic volatility
to income risk faced by households. Alternatively, Stambaugh et al. (2015) argue that the negative
relationship between idiosyncratic volatility and stock returns could be driven by arbitrage asymmetry,
as buying could be easier than shorting for many equity investors.
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a hard time to hedge idiosyncratic tail risk and, thus, require a premium to bear their
exposure to this risk.

We exploit the richness of stock option data to extract the expected risk premium as-
sociated with each risk factor, thereby avoiding the exclusive use of noisy realizations
of historical equity returns. To this end, we develop a GARCH-jump model in which
a firm’s systematic and idiosyncratic risk have both a Gaussian and a tail component.

Our pricing kernel is such that each risk factor can potentially be priced. The model
offers quasi-closed form solutions for the price of European options. We estimate the
model on 260 firms that are or were part the S&P 500 index between 1996 and 2015,
using equity returns and option prices of the market index and of each individual firm.4

To our knowledge, this is the most comprehensive joint estimation analysis of option-
pricing models conducted in the literature.

Our empirical analysis highlights three new results. First, systematic risk accounts for
only 59.8% of the average equity risk premium (ERP) on a stock, only one third of
which is due to systematic normal risk.

Second, and most importantly, we find that the 40.2% contribution of idiosyncratic
risk to the ERP is essentially due to idiosyncratic jump risk only. That is, the Gaussian
component of idiosyncratic risk, which is easily diversifiable, is not priced once other
sources of risk are accounted for.5 Consistent with Bates (2008), jump and normal
risks are priced differently by investors. While the results of Christoffersen et al.
(2012) and Ornthanalai (2014) already supported this view at the market level, our
results document that both sources of risk have drastically different impact on the
expected return of individual stocks.

When estimating a nested version of the model in which idiosyncratic jump risk is
omitted, idiosyncratic normal risk appears to be priced. For the great majority of
stocks, the nested variant of the model appears to be misspecified, however, because
it offers a significantly worse fit to equity returns and options than the model with
idiosyncratic jumps.

This result is of significant interest as most of the literature on idiosyncratic risk as-
sumes conditional normality. Our third empirical finding is that idiosyncratic jump

4We considered all 1,000 stocks that were part of the index during this period; neglected stocks
were set aside only because not enough options were liquidly traded over at least a consecutive 5-year
window.

5Note that, while the expected stock return is not affected by idiosyncratic Gaussian risk, an option’s
vega is still positive and affected by total volatility.
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risk shares a strong commonality across firms. Herskovic et al. (2016) document that
idiosyncratic (total) variances have a strong factor structure. Based on the idiosyn-
cratic volatilities of 20,000 CRSP stocks over 85 years, they document that a single
factor explains 35% of the time variation firm-level idiosyncratic risk. In light of these
results, our model of stock variance allows for two sources of commonality: one aris-
ing from commonality in idiosyncratic normal risk, the other from commonality in
idiosyncratic jump risk. Over the 20 years in our sample, 260 firm-by-firm regres-
sions of total idiosyncratic variance on these two sources of commonality yield an
average R2 of 73.4%; regressing on the commonality in idiosyncratic jump risk yields
an average R2 of 31.8%.

Our results thus extend the findings of Herskovic et al. (2016) in that we document
that idiosyncratic tail risk explains a large fraction of the commonality in idiosyncratic
variance. Already hard to hedge by nature, tail risk becomes virtually undiversifiable
in times of turmoil, which justifies the risk premium attached to it.

Our study is the first to conduct a joint estimation, based on equity returns and op-
tions, of an option-valuation model to disentangle the four risk premiums associated
with systematic and idiosyncratic, normal and tail (jump) risk. It is, however, closely
related to several contemporaneous papers.

Christoffersen et al. (2013) document a strong factor structure in equity options. Con-
sequently, building on Heston (1993), they develop a stochastic volatility model in
which a firm’s total variance is decomposed into a systematic and an idiosyncratic
component. The authors study the effect of firm beta and market variance to explain
the cross-sectional variations of equity options. Among others, their model predicts
that stocks with higher betas have higher implied volatilities and steeper smiles, con-
sistent with the empirical findings of Duan and Wei (2009).

Our framework extends that of Christoffersen et al. (2013) in that we allow for a jump
component both in market returns and in the idiosyncratic part of stock returns. More-
over, our joint estimation methodology builds on those of Christoffersen et al. (2012)
and Ornthanalai (2014), and allows us to quantify how the equity risk premium is af-
fected by the four sources of risk affecting stocks in our setup. Our model and pricing
kernel nest those of Elkamhi and Ornthanalai (2010) who complement the analysis
in Christoffersen et al. (2013) and quantify the impact of market jump risk on equity
options. They find that firms with a larger return compensation for systematic nor-
mal risk have a higher option-implied volatility level, while firms with a larger return
compensation for systematic jump risk have steeper option-implied volatility slope.
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However, stocks in their framework do not exhibit idiosyncratic jump risk, and they
do not study the pricing of idiosyncratic risk. Along the same lines, Babaoğlu (2015)
further document that a “jump beta” is needed to adequately explain equity returns,
market risk exposures, and equity option prices.

Boloorforoosh (2014) extends the Christoffersen et al. (2013) model by allowing for
idiosyncratic normal risk to be priced. He finds strong empirical support for the hy-
pothesis that idiosyncratic risk is indeed priced. Boloorforoosh (2014) also documents
that idiosyncratic volatilities exhibit a factor structure virtually as strong as that of to-
tal volatilities, consistent with Herskovic et al. (2016). Using a similar model, Xiao
and Zhou (2014) study the same four risk factors as we do, but relying exclusively on
realizations of historical equity returns.

Closer to our study, Gourier (2014) further extends Christoffersen et al. (2013) and
estimates a continuous-time jump-diffusion model using a two-stage estimation pro-
cedure based on equity returns, options and intraday data observed on 29 stocks be-
tween 2006 and 2012. Gourier’s (2014) framework allows her to study the important
role played by total (normal and jump) idiosyncratic risk in the equity and, most im-
portantly, the variance risk premium. She finds that compensation for idiosyncratic
risk represents, on average, 50% of the equity risk premium and 80% of the variance
risk premium.

Although the models, datasets and estimation methods in our studies differ along sev-
eral dimensions, the results that are common to our two studies are consistent and
our analyses complement one another. In particular, Gourier (2014) provides strong
empirical evidence that idiosyncratic risk is a key determinant of the equity risk pre-
mium; we provide strong empirical evidence that tail risk is actually at the core of the
relationship between idiosyncratic risk and the equity risk premium.

This paper is organized as follows. Section 4.2 presents our model for the market
and the individual stocks. Section 4.3 presents the data and discusses the estimation
methodology. Then, Section 4.4 presents our empirical analysis. Section 4.5 con-
cludes.

4.2 Model

We develop a model in which, in the spirit of the CAPM, stocks are exposed to system-
atic risk. Unlike the traditional one-factor CAPM, however, market and stock return
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are not solely driven by a diffusive component. The market can crash, or more gen-
erally jump, and the stocks in our model are exposed to this systematic jump risk, as
well as to idiosyncratic normal and jump risk. As such, our model falls under the
framework of Kraus and Litzenberger (1976), but extends it in various directions.

4.2.1 Stock Returns

Returns on the market index, Mt, and a given stock, S t, are modeled as follows:

RM,t+1 ≡ log
(

Mt+1

Mt

)
= µM,t+1 − ξ

P
M,t+1 + zM,t+1 + yM,t+1, (4.1)

RS ,t+1 ≡ log
(
S t+1

S t

)
= µS ,t+1 − ξ

P
S ,t+1 + βS ,zzM,t+1 + βS ,yyM,t+1 + zS ,t+1 + yS ,t+1 (4.2)

where stock returns are driven by the stock’s exposure to systematic Gaussian and
jump risk, zM,t+1 and yM,t+1, as well as stock-specific innovations zS ,t+1 and yS ,t+1, re-
spectively capturing idiosyncratic normal and jump risk.

For u ∈ {M, S }, ξPu,t+1 is the convexity correction associated with the Gaussian, zu,t+1,
and the normal-inverse Gaussian (NIG) innovations, yu,t+1.6 Hence,7

EPt [Mt+1] = Mt exp
(
µM,t+1

)
and EPt [S t+1] = S t exp

(
µS ,t+1

)
.

That is, µu,t+1 − rt+1 can be interpreted as the instantaneous equity risk premium on the
index and the stock, given the risk-free rate rt+1.

8

Before discussing the exact form of the instantaneous risk premiums (Subsection
4.2.2), we further characterize the distribution of the shock processes. The Gaussian
innovations are given by

zu,t+1 =
√

hu,z,t+1εu,t+1, u ∈ {M, S }

6 The convexity correction, ξPM,t = ξPzM,t
(1) + ξPyM,t

(1), is based on the cumulant generating function

of zM and yM (cf. Section 4.A). The same holds for ξPS ,t+1 = ξPzM,t

(
βS ,z

)
+ ξPyM,t

(
βS ,y

)
+ ξPzS ,t

(1) + ξPyS ,t
(1) .

7The filtration is generated by the market noise terms as well as the stock noise terms, that is F St =

σ
{
zM,τ, yM,τ, zS ,τ, yS ,τ; S ∈ S

}t
τ=1. EPt [S t+1] is a shorthand for EP

[
S t+1| F

S
t

]
. Since all innovation time

series are independent, EP
[

Mt+1| F
S

t

]
= EP

[
Mt+1| F

M
t

]
where FMt = σ

{
zM,τ, yM,τ

}t
τ=1 and we still use

EPt [ · ] to represent both conditional expectations.
8Over a short period of time, µM,t+1 and rt+1 are close to zero, such that

EPt [Mt+1/Mt] − E
Q
t [Mt+1/Mt] = exp

(
µM,t+1

)
− exp (rt+1) ' µM,t+1 − rt+1.
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where the εu,t+1 are serially independent standard normal random variables and the
conditional variance of zu,t+1 follows GARCH dynamics. Indeed, the market condi-
tional variance is

hM,z,t+1 = wM,z + bM,zhM,z,t +
aM,z

hM,z,t

(
zM,t − cM,zhM,z,t

)2

= σ2
M,z + b′M,z

(
hM,z,t − σ

2
M,z

)
+

aM,z

hM,z,t

(
z2

M,t − hM,z,t − 2cM,zhM,z,tzM,z,t

)
, (4.3)

where σ2
M,z =

wM,z+aM,z

1−b′M,z
, is the unconditional level of the market variance, and b′M,z =

bM,z + aM,zc2
M,z, is the variance persistence.

The specification of the stock’s conditional variance is inspired from the literature on
component volatility models,9 that is

hS ,z,t+1 = qS ,z,t+1 + bS ,z
(
hS ,z,t − qS ,z,t

)
+

aS ,z

hS ,z,t

(
z2

S ,t − hS ,z,t − 2cS ,zhS ,z,tzS ,t

)
= κS ,zhM,z,t+1 + bS ,z

(
hS ,z,t − κS ,zhM,z,t

)
+

aS ,z

hS ,z,t

(
z2

S ,t − hS ,z,t − 2cS ,zhS ,z,tzS ,t

)
. (4.4)

However, rather than varying around a long-run volatility component of its own, the
conditional variance of a particular stock loads on market variance through κS ,zhM,z,t+1,
while the idiosyncratic variance in excess of this central tendency, h′S ,z,t+1 = hS ,z,t+1 −

κS ,zhM,z,t+1, has a GARCH structure. In the spirit of Martin and Wagner (2016), we
refer to h′S ,z,t+1 as the excess idiosyncratic variance.10

The jumps, yu,t+1, have a NIG distribution with location parameter set at 0, a tail heav-
iness parameter αu and an asymmetry parameter δu. Following Ornthanalai (2014),
the time-homogeneous scale parameter of the distribution is allowed to vary and is
denoted by hu,y,t+1.11 We refer to hu,y,t+1 as the jump intensity process.12 The jump

9On GARCH component models, see, among others, Engle and Lee (1999), Christoffersen et al.
(2008), Engle and Rangel (2008), and Engle et al. (2013).

10The variance process in Gourier (2014) has a similar structure and she refers to the analogue of
h′S ,z,t+1 as residual idiosyncratic variance.

11Earlier drafts of this paper featured Poisson rather than NIG jumps. While the main results were
qualitatively similar, the estimated jump parameters were much less stable. In particular, the Poisson-
jump version of the model had a harder time accommodating the positive jumps during and after the
Great Recession.

12Strictly speaking, hu,y,t+1 is not an intensity as it does not parameterize the number of jumps ob-
served over a period ∆t. However, the normal-inverse Gaussian distributions is closed under convolution
in the sense that, given αu and δu, the sum of two NIG shocks with scale parameters h1 and h2 would
have a scale parameter of h1 + h2. Hence, the NIG jump as specified here is observationally equivalent
to a compound Poisson process with i.i.d. NIG increments whose intensity would be time-varying (cf.
Appendix A.1).
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intensities of the market and the stock exhibit GARCH dynamics like those of their
variance counterparts, but with separate parameters:13

hM,y,t+1 = wM,y + bM,yhM,y,t +
aM,y

hM,z,t

(
zM,t − cM,yhM,z,t

)2
, (4.5)

hS ,y,t+1 = κS ,yhM,y,t+1 + bS ,y

(
hS ,y,t − κS ,yhM,y,t

)
+

aS ,y

hS ,z,t

(
z2

S ,t − hS ,z,t − 2cS ,yhS ,z,tzS ,t

)
. (4.6)

As for the variance of Gaussian shocks, idiosyncratic jump intensity has a central
tendency κS ,yhM,y,t+1 and excess idiosyncratic intensity h′S ,y,t+1 = hS ,y,t+1 − κS ,yhM,y,t+1.

Conditional moments of the market and stock returns are derived in the Appendix
A.1.2. In particular, total market and stock variances are given by

VarPt
[
RM,t+1

]
= hM,z,t+1 +

(
α2

M
(α2

M−δ
2
M)3/2

)
hM,y,t+1 , (4.7)

VarPt
[
RS ,t+1

]
= β2

S ,zhM,z,t+1 + β2
S ,y

(
α2

M
(α2

M−δ
2
M)3/2

)
hM,y,t+1︸                                   ︷︷                                   ︸

Total systematic variance

+ hS ,z,t+1 +
(

α2
S

(α2
S−δ

2
S )3/2

)
hS ,y,t+1︸                       ︷︷                       ︸

Total idiosyncratic variance

. (4.8)

Following the literature, we define idiosyncratic variance as the variance of the residu-
als obtained after accounting for systematic risk factors, here normal and jump market
risk. In sum, our model of market returns is essentially the NIG variant of the model
considered in Ornthanalai (2014).14 We simply extend his framework to allow stocks
(i) to have systematic normal and jump risk exposure and (ii) to exhibit idiosyncratic
normal and jump risk. In particular, our model remains in the affine class of models,
which is key to obtaining a closed-form solution for the price of European options on
the market index and individual stocks (cf. Subection 4.2.3). This solution generalizes
those of Elkamhi and Ornthanalai (2010) and Babaoğlu (2015) by adding idiosyncratic
jumps in stock returns.

4.2.2 Pricing Kernel and Risk Premiums

In an incomplete market setup, the pricing kernel, mt+1, is potentially affected by un-
traded sources of risk. As highlighted in the literature on modelling the pricing kernel,

13 Christoffersen et al. (2012) compare, on market data, a model in which a single factor drives
normal variance and jump intensity to a model akin to ours. They find the model with separate variance
and intensity dynamics to dominate its counterpart in terms of fitting the data.

14In Ornthanalai’s (2014) study, the NIG variant of the model offers the best fit to market data when
compared to variants with Merton jumps, variance gamma jumps, or CGMY jumps (Carr et al., 2002).
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in our context, it suffices to work with the projection of the pricing kernel on the ob-
served sources of risk. Indeed, if pt is the time t price of an asset with a time t + 1 cash
flow xt+1 that depends on the realization of

{
zM,t+1, yM,t+1, zS ,t+1, yS ,t+1

}
,15 then

pt = EPt [mt+1xt+1] = EPt
[
EPt

[
mt+1xt+1

∣∣∣zM,t+1, yM,t+1, zS ,t+1, yS ,t+1

]]
= EPt

[
m̃t+1xt+1

]
where m̃t+1 = EPt

[
mt+1

∣∣∣zM,t+1, yM,t+1, zS ,t+1, yS ,t+1

]
. If zS ,t+1 and yS ,t+1 are orthogonal to

the pricing kernel, then they do not matter in the pricing and the projection is simply
m̃t+1 = EPt

[
mt+1

∣∣∣zM,t+1, yM,t+1

]
.

The recent literature, however, highlights that firm-specific (or idiosyncratic) risk can
be correlated with risk factors that do enter the pricing kernel. In line with much of
the option pricing literature, we take a reduced-form approach to modelling the pricing
kernel and assume an exponentially affine Radon-Nikodym derivative (RND)

ert+1m̃t+1 =

dQ
dP

∣∣∣
F St+1

dQ
dP

∣∣∣
F St

=
exp

(
−ΛMzM,t+1 − ΓMyM,t+1 −

∑
S∈SΛS zS ,t+1 −

∑
S∈S ΓS yS ,t+1

)
EP
F St

[
exp

(
−ΛMzM,t+1 − ΓMyM,t+1 −

∑
S∈SΛS zS ,t+1 −

∑
S∈S ΓS yS ,t+1

)] , (4.9)

where S is the set of firms in the economy. Implicitly, ΛS and ΓS are related to the
projection of the pricing kernel on zS ,t+1 and yS ,t+1. In particular, if the firm-specific
risk factors are not priced, that is ΛS = ΓS = 0, then our RND is equivalent to the one
used by Christoffersen et al. (2012). As they point out, their RND is consistent with
the pricing kernel studied by Bates (2008).16

As in Christoffersen et al. (2012) and Ornthanalai (2014), the pricing kernel in (4.9)
yields an equity risk premium, µM,t − rt, which admits a decomposition in terms of a
normal and a jump risk premium, that is

µM,t − rt = λMhM,z,t + γMhM,y,t (4.10)

where the mappings between λM and γM and their pricing kernel counterparts ΛM and
ΓM are given in Section 4.C. Note that if a market price of risk in the RND is zero (that
is ΓM = 0), then the associated risk premium is zero (e.g. γM = 0).

15See, for instance, Rubinstein (1975), Brennan (1979), Aït-Sahalia and Lo (1998), Jackwerth (2000)
and Bakshi et al. (2010) for analyses of pricing kernels dependent on market returns.

16Similar pricing kernels are studied in continuous-time setups by, among others, Bates (1991, 2006),
Liu et al. (2005), and Eraker (2008).
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Section 4.C further establishes that the equity risk premium on a stock, µS ,t − rt, can
be decomposed in four risk premiums: the normal and jump market risk premiums, as
well as the idiosyncratic normal and jump premiums:

µS ,t − rt = βS ,z λMhM,z,t + γM,S
(
βS ,y

)
hM,y,t︸                                ︷︷                                ︸

Systematic

+ λS hS ,z,t + γS hS ,y,t︸              ︷︷              ︸
Idiosyncratic

(4.11)

Once again, if a market price of risk in the RND is zero (e.g. ΓS = 0), then the
associated risk premium is zero (e.g. γS = 0). Besides, note that although the model is
affine, the premium associated with systematic jump depends non-linearly on the jump
beta, βS ,y, and the market price of jump risk, γM, through function γM,S ( · ), which has
a single root at 0. More details are provided in Section 4.C.

To illustrate the difference between our framework and a standard conditional CAPM
framework, consider the familiar

βcapmS ,t+1 =
CovPt

(
rS ,t+1, rM,t+1

)
VarPt

(
rM,t+1

) ≡
CovPt

(
eRS ,t+1−rt+1 , eRM,t+1−rt+1

)
VarPt (eRM,t+1−rt+1)

. (4.12)

In the context of our model, a first-order approximation of this total beta yields

βcapmS ,t+1 '
CovPt

(
βS ,zzM,t+1 + βS ,yyM,t+1, zM,t+1 + yM,t+1

)
VarPt

(
zM,t+1 + yM,t+1

)
=
βS ,zhM,z,t+1 + βS ,y

(
α2

M
(α2

M−δ
2
M)3/2

)
hM,y,t+1

hM,z,t+1 +
(

α2
M

(α2
M−δ

2
M)3/2

)
hM,y,t+1

(4.13)

and, in a CAPM setting, the risk premium on the stock would be

µcapmS ,t+1 − rt+1 = βcapmS ,t+1
(
µM,t − rt

)
= βcapmS ,t+1

(
λMhM,z,t+1 + γMhM,y,t+1

)
. (4.14)

Contrasting Equations (4.14) and (4.11) highlights two features of our model. First,
in our model, stocks can have different sensitivities to normal and jump risk. Second,
λS and γS are not assumed to be null, but are jointly estimated from past returns and
option data.

4.2.3 Option Prices

The model, once risk-neutralized, remains within the affine class of models (see Sec-
tion 4.D). Hence, we build on the work of Heston and Nandi (2000) and obtain
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a closed-form solution for the price of European index and stock options.17 For
ut ∈ {Mt, S t}, the price of an European call option is

Ct (ut,K,T ) = utP1,t,T − Ke−rt,T (T−t)P2,t,T (4.15)

where rt,T = 1
T−t

∑T−1
j=1 rt+ j, in which rt+ j is the deterministic risk-free rate at time t + j.

The conditional probabilities P1,t,T and P2,t,T are given by

P1,t,T =
1
2

+
1
π

∫ ∞

0
Re

[
1
φi

exp
(
−iφ log K̃t,T

)
ϕQt,T (φi + 1)

]
dφ

P2,t,T =
1
2

+
1
π

∫ ∞

0
Re

[
1
φi

exp
(
−iφ log K̃t,T

)
ϕQt,T (φi)

]
dφ

where i is the imaginary number,

K̃t,T =
Ke−rt,T (T−t)

ut

and the conditional moment generating function ϕQt,T (φ) = EQt
[
exp

(
φ
∑T−t

j=1 R̃u,t+ j

)]
of

the aggregated excess returns
∑T−t

j=1 R̃u,t+ j =
∑T−t

j=1

(
Ru,t+ j − rt+ j

)
over the period ]t,T ]

satisfies

ϕQt,T (φ) = exp

 Au,T−t (φ) + Bu,T−1 (φ) h∗M,z,t+1 + Cu,T−1 (φ) h∗M,y,t+1

+Du,T−1 (φ) h∗S ,z,t+1 + Eu,T−1 (φ) h∗S ,y,t+1

 .
The deterministic functions Au, Bu, Cu, Du, Eu are calculated based on the recursion
in Section 4.E. In particular,DM,T−1 = EM,T−1 = 0.

4.3 Joint Estimation Using Returns and Option Prices

Relying on a joint estimation procedure is of particular importance to our study. In-
deed, the risk premium parameters we aim to study are relatively poorly identified
under the physical measure. However, these parameters play a crucial role in the pric-
ing kernel and, as such, are key to reconcile the price of the options and the underlying
returns.18 Moreover, in the absence of jumps, a deep out-of-the-money option would
be almost worthless, especially if the option is relatively short-dated. These options

17Heston and Nandi (2000) relies on an inversion similar to the one of Gil-Pelaez (1951).
18See, among others, Chernov and Ghysels (2000), Pan (2002), Chernov (2003), Eraker (2004),

Santa-Clara and Yan (2010), Christoffersen et al. (2012), and Ornthanalai (2014).
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will thus improve our ability to estimate the likelihood of jumps. Hence, the rich-
ness of stock option data plays a key role in allowing us to extract the expected risk
premium associated with each risk factor.

4.3.1 Data

To estimate the model, we use the returns and prices of options on the S&P 500,
as proxy for the market, and on 260 stocks that are or were part of the index since
1996. These stocks were selected based on whether their options had been actively
traded over at least a consecutive 5-year window. Daily index and stock returns, from
January 1996 to August 2015, are obtained from the Center for Research in Security
Prices (CRSP).19 To compute the corresponding daily excess log-returns (henceforth,
returns), we use the one-month Treasury bill rate (from Ibbotson Associates) as ex-
tracted from Kenneth French’s data library.

The prices of options on the SPX and the stocks, between January 1996 to August
2015, are obtained from OptionMetrics.20 We restrict our analysis to out-of-the-money
monthly options with at least one week and at most one year to maturity. Observations
for which the ask price is lower than the bid price are excluded. The price of the
option is defined as the mid point between the ask and the bid, and options with a
price lower than the bid-ask spread are excluded. Moreover, the open interest and the
volume must be strictly positive. We further remove options that violate the common
arbitrage conditions. For options on individual stocks, we follow Broadie et al. (2007)
and de-Americanize the option prices.21 Finally, among the remaining options, we
select the three most liquid puts and three most liquid calls on each Wednesday, for
each maturity available.22 This leaves us with a total of 44,267 option prices on the

19In fact, we extract returns starting from January 1986. Returns between January 1986 and De-
cember 1995 are used to warmup the variance process; their likelihood, however, does not impact the
estimation of the parameters. A similar procedure is used for individual stocks.

20The zero-coupon term structure is also extracted from OptionMetrics and used for option pric-
ing. The rate corresponding to an option’s maturity is obtained through linear interpolation whenever
necessary.

21Specifically, for each American option, OptionMetrics uses a Cox et al. (1979) binomial tree to de-
rive the option’s implied volatility, accounting for dividends. Given this implied volatility and dividends
extracted from OptionMetrics, we compute the price of the corresponding European option.

22We follow the literature and use Wednesday data because it is the least likely day to be a holiday
and it is least likely to be affected by weekend effects. For more details on the advantages of using
Wednesday data, see Dumas et al. (1998). If markets are closed on a given Wednesday (e.g. Christmas,
January 1, Independence day or 9/11) we use the previous business day.
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Chapter 4. Idiosyncratic Jump Risk Matters

SPX, and 2,975,839 on the 260 stocks.23 Tables 4.1 and 4.2 summarize the option data
sets. Figure 4.1 provides an overview of how implied volatilities vary through time
as the S&P 500 evolves. As evidenced in the lower panel of the figure, while implied
volatilities on stocks comove with implied volatilities on S&P 500 options, the former
are significantly larger than the latter.

4.3.2 Joint Estimation

Following Christoffersen et al. (2012) and Ornthanalai (2014), the model’s parameters
are estimated by maximizing the weighted joint log-likelihood function

Lu (Θu) =
Tu + Nu

2

(
Lu,returns (Θu)

Tu
+

Lu,options (Θu)
Nu

)
, (4.16)

where, u ∈ {M, S }, Tu is the number of index returns observed, Nu is the total number
of option observations, and Θu represents the parameter set of the model.

We opt for a two-stage estimation approach. That is, we first maximize the joint like-
lihood LM with respect to ΘM and then, turn to maximizing LS for each stock taking
the results for the market as given. Although it has inconvenient, this approach is
crucial to keeping the estimation procedure tractable in our settings. Indeed, in oppo-
sition to typical GARCH processes in which the noise term is fully determine once we
condition on observed returns and the initial variance, the presence of jumps implies,
focusing on the market model, that the Gaussian component zM,t and the jump part yM,t

of time t innovation cannot be separated. Consequently, as pointed out by Durham
et al. (2015), the conditional variance hM,z,t and intensity hM,y,t remain uncertain, even
with the observed returns up to time t.24 However, both hM,z,t+1 and hM,y,t+1 can be
fully recovered from the initial conditions hM,z,1, hM,y,1, the returns RM,1:t = {RM,s}

t
s=1

and the jump innovations yM,:t = {yM,s}
t
s=1. In this spirit, we propose a particle filter

that infers the average (filtered) zM,t, yM,t, hM,z,t and hM,y,t, while accounting for the un-
certainty with respect to the conditional variance and the jump intensity. Section 4.F
further describes the particle filter used to compute the log-likelihood LM,returns(ΘM).

23In total, we considered options on the 1,000 different firms that were part of the S&P 500 at any
point in our sample. Our selection procedure discarded 738 firms. Two additional firms (tickers BEN
and NEE) were further discarded because they experimented very extreme returns that caused numerical
problems in the particle filter; we are currently working on improving the importance sampling step in
order to reintroduce these firms.

24Technically speaking, GMt = σ
{
RM,τ

}t−1
τ=1 is the σ−field generated by the returns process which is

coarser than the σ−field FMt = σ
{
zM,τ, yM,τ

}t−1
τ=1 generated by the innovation terms. The conditional

variance hM,z,t and the jump intensity hM,y,t are both FMt−1 measurable, but they are not GMt−1−measurable.
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Figure 4.1: S&P 500 and ATM implied volatilities.
The upper panel of this figure presents the level of the S&P 500 index between January 1996 to August
2015; gray-shaded regions highlight NBER-dated recessions. The middle panel reports S&P 500 index
excess returns over the same period. The lower panel reports the weekly at-the-money implied volatility
from the nearest-to-maturity SPX options as extracted from OptionMetrics, along with the average of
the weekly at-the-money implied volatility across the firms.
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The same procedure is applied to each stock in a second estimation stage, keeping the
market parameters and latent variables fixed. Conceptually, the particle filter could be
extended to deal with a one-stage estimation of the market and the 260 firms; numeri-
cally, however, this would be absolutely intractable. Our alternative is computationally
efficient and, given the richness of the index option data, we are confident that the two-
stage estimation procedure yields parameter estimates for the market model that are
more accurate than the ones that could be obtained from a poorly behaved one-stage
procedure.

Following the option-pricing literature, the option fit’s log-likelihood, Lu,options (Θu), is
based on relative implied volatility pricing errors.25 In particular, if IVmkt

u,k is the Black
and Scholes (1973) implied volatility associated with the market price of option k on
underlying u ∈ {M, S } and IVmodel

u,k the implied volatility inverted from the correspond-
ing model price, then the relative implied volatility error is

eu,k =
IVmodel

u,k − IVmkt

u,k

IVmkt

u,k

.

Assuming that the relative implied volatility error is normally distributed, and uncor-
related with shocks in returns, eu,k ∼ N(0, σ2

e), we obtain

Lu,options (Θu) = −
1
2

N∑
k=1

log(2πσ2
e) +

e2
u,k

σ2
e

 .
Note that σe is identified using the sample standard deviation of

{
eu,k

}Nu
k=1 .

4.4 Empirical Results

4.4.1 Market

Although the focus of our study is the pricing of idiosyncratic risk, we first briefly dis-
cuss results obtained at the market level. Overall, these results are very close to those

25This criterion, or variants thereof, is used by Bakshi et al. (2008), Christoffersen et al. (2012), and
Ornthanalai (2014). Renault (1997) offers an interesting discussion on the benefits of using IVRMSE
when comparing option pricing models. Alternatively, some authors will consider vega-weighted
RMSE (VWRMSE) since VWRMSE and IVRMSE take very similar value, while the former have
the advantage of being faster to compute than the latter. See for instance Carr and Wu (2007) and
Trolle and Schwartz (2009). Note that using relative implied volatility errors has the advantage of not
assigning excessive weighting to option prices observed during the financial crisis.
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Table 4.3: Index parameters estimated using returns and option data.

Normal Jump

λM / γM 0.824 0.701
(2.40E–10) (3.55E–10)

wM,v -1.63E–06 -4.05E–07
(2.50E–08) (1.88E–08)

aM,v 2.42E–06 4.44E–06
(3.36E–09) (7.83E–09)

bM,v 0.940 0.934
(6.94E–10) (4.58E–09)

cM,v 144.19 140.50
(2.86E–11) (1.30E–11)

αM 11.856
(1.31E–08)

δM -7.018
(3.01E–10)

Average risk premium 2.33 3.85
Median risk premium 1.72 3.04
Persistence 0.991
Percent of annual variance 74.0 26.0
Avg. Vart−1[hS ,·,t+1] 6.61E–11 3.79E–10

Average volatility (%) 18.01
Average skewness -6.25
Average excess kurtosis 383.70
Skewness of innovations, εM,t -0.12
Ex. kurtosis of innovations, εM,t -0.07

Return log-likelihood 78,395
Option log-likelihood 12,788
Total log-likelihood 91,183
RIVRMSE 14.39

The index parameters are estimated using daily index returns and weekly cross-sections of out-of-the-
money options, from January 1996 to August 2015. Parameters are estimated using multiple simplex
search method optimizations (fminsearch in Matlab). Robust standard errors are calculated from the
outer product of the gradient at the optimal parameter values.

in the option pricing literature. In particular, our results are much in line with those
reported by Ornthanalai (2014) for the NIG variant of his model, which is essentially
our market model. Parameters, reported in Table 4.3, are largely similar, except maybe
for aM,y, the parameter governing the variance of jump intensity, which is much larger
for us than it was for Ornthanalai. This difference could be due to our sample covering
more of the Great Recession and its aftermath.

For each subset of option O, Table 4.4 reports two metrics

IVRMSE =

√
1
N

∑
k∈O

(
IVmodel

k − IVmkt

k

)2
and (4.17)

RIVRMSE =

√√
1
N

∑
k∈O

(
IVmodel

k − IVmkt

k

IVmkt

k

)2

.

The first, IVRMSE, provides an absolute measure of the implied-volatility pricing er-
rors. The latter, a relative measure that is probably more informative when comparing
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pricing errors through time. By both measures, our market fit to the option data, as de-
tailed in Panel A of Table 4.4 compares favourably to the results in the option-pricing
literature. This is true through time and across maturities and moneyness levels. As
documented by Ornthanalai, the NIG jumps in our model allow for particularly large
levels of (negative) skewness and excess kurtosis (cf. Table 4.3). This theoretical
feature of the model explains its particularly good fit across maturities and money-
ness levels. Moreover, the NIG jumps properly capture, empirically, the nonnormal
innovations in returns; consequently, the filtered conditionally standard normal inno-
vations, εM,t, have skewness and excess kurtosis that are close to zero, as should be.
Figure 4.2 plots the filtered normal innovations zM,t (top panel), jumps (middle panel)
and volatility components (bottom panel). Again, results are qualitatively similar to
those of Ornthanalai.

Table 4.3 also reports risk premiums based on the average and median level of normal,
λMhM,z,t, and jump, γMhM,y,t components of the conditional equity risk premium (ERP).
The median levels of the premiums are respectively 1.72% and 3.04%, for a median
ERP of 4.76%. These numbers are comparable to those of Ornthanalai, who reports
an annualized normal risk premium of 1.43% and a jump risk premium of 3.22%,
for a total of 4.65%, based on the unconditional level of variance and jump intensity.
Hence, although Table 4.3 reports that the jump component of variance, hM,y, explains
on average only 26.7% of total variance, hM,z +

(
α2

M
(α2

M−δ
2
M)3/2

)
hM,y, the jump risk premium

outweighs its normal counterpart.

The average ERP is higher than the median at 6.17%, and decomposes into an average
normal premium of 2.32% and an average jump premium of 3.85%. Naturally, the
average is more sensitive than the median (or any measure based on unconditional
GARCH levels) to extreme values of the premiums observed during periods of turmoil.
The top panel of Figure 4.3 reports how the premium unfolds through time. At its
peak, in November 2008, the estimated ERP reaches 40.16%. While this number
may appear high, Martin (2016) measure of the ERP, as extracted from one-month-to-
maturity options alone, rises to more than 50% around the same time, while its three-
month counterpart flirts with the 40% level. Using a panel of options with median
time-to-expiration of 14 business days, Bollerslev and Todorov (2011) find that the
jump component of the ERP rises above 40% during the same period.

The bottom panel of Figure 4.3 reports, on a daily basis, the ratio of the ERP that
is explained by the jump component. This ratio is at its lowest during periods of
turmoil, when the normal risk carries a higher than usual premium. When the ERP
is particularly low, which coincides with periods of low volatility on the market, the
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Table 4.4: Valuation errors on the options used for the estimation.

Panel A: Valuation errors on the options used for the estimation of the market model

Overall IVRMSE and RIVRMSE Sorting by year

IVRMSE RIVRMSE IVRMSE RIVRMSE
All 3.086 14.391 1996 2.326 15.834

1997 3.844 17.178
Sorting by maturity 1998 5.318 20.129

1999 4.625 17.786
IVRMSE RIVRMSE 2000 2.419 10.508

DTM ≤ 30 3.364 16.185 2001 2.756 11.757
30 < DTM ≤ 90 3.108 14.606 2002 2.192 9.345
90 < DTM ≤ 180 2.936 13.590 2003 2.313 11.214
180 < DTM ≤ 270 3.016 13.607 2004 1.260 8.067
270 < DTM ≤ 365 3.076 14.137 2005 2.307 17.593

2006 2.327 17.721
Sorting by moneyness 2007 2.002 14.031

2008 5.086 13.635
IVRMSE RIVRMSE 2009 4.018 15.546

0.80 < K/F ≤ 0.85 3.815 11.663 2010 3.724 17.210
0.85 < K/F ≤ 0.90 3.533 11.818 2011 3.416 13.978
0.90 < K/F ≤ 0.95 3.334 12.543 2012 2.615 13.138
0.95 < K/F ≤ 1.00 3.006 13.421 2013 1.255 8.961
1.00 < K/F ≤ 1.05 2.684 16.316 2014 1.543 11.914
1.05 < K/F ≤ 1.10 2.729 16.577 2015 2.018 16.756
1.10 < K/F ≤ 1.15 2.808 15.384
1.15 < K/F ≤ 1.20 3.037 15.134
Panel B: Average valuation errors on the options used for the estimation of the firm model

Overall average IVRMSE and RIVRMSE Sorting by year

IVRMSE RIVRMSE IVRMSE RIVRMSE
All 6.241 13.483 1996 3.914 11.750

1997 4.492 11.879
Sorting by maturity 1998 5.669 11.865

1999 5.627 11.229
IVRMSE RIVRMSE 2000 7.343 12.146

DTM ≤ 30 9.195 17.130 2001 6.411 11.793
30 < DTM ≤ 90 6.296 13.720 2002 6.638 13.457
90 < DTM ≤ 180 5.253 12.125 2003 4.624 11.786
180 < DTM ≤ 270 5.201 12.355 2004 3.131 9.881
270 < DTM ≤ 365 5.307 12.719 2005 3.473 12.214

2006 3.482 11.293
Sorting by moneyness 2007 4.315 12.787

2008 10.121 14.176
IVRMSE RIVRMSE 2009 8.138 14.595

0.80 < K/F ≤ 0.85 7.359 12.184 2010 4.097 11.882
0.85 < K/F ≤ 0.90 6.837 12.252 2011 4.656 11.911
0.90 < K/F ≤ 0.95 6.249 12.670 2012 4.149 11.888
0.95 < K/F ≤ 1.00 5.948 14.023 2013 3.062 10.215
1.00 < K/F ≤ 1.05 5.613 14.239 2014 3.595 12.737
1.05 < K/F ≤ 1.10 5.925 13.469 2015 3.718 12.907
1.10 < K/F ≤ 1.15 6.318 13.413
1.15 < K/F ≤ 1.20 6.982 13.826

We use the joint MLE estimates of Tables 4.3 and 4.5 to compute implied volatility root mean squared
errors (IVRMSE) and relative implied volatility root mean squared errors (RIVRMSE) for various
moneyness, maturity, and year bins. We then average IVRMSE and RIVRMSE for each moneyness,
maturity and year bin across firms. IVRMSEs and RIVRMSEs are given in percentage.
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Figure 4.3: Annualized normal and jump risk premiums for the market model.
The top panel of this figure reports the annualized equity risk premium, 252(λMhM,z,t + γMhM,y,t) , and
the component due to jump risk, 252γMhM,y,t . The lower panel reports, on a daily basis, the proportion
of the total premium explained by the jump component.

jump risk premium explains up to 80% of the total ERP. Hence, while Figure 4.2
documents that as Bates (2008) pointed out, jump risk is countercyclical, the relative
importance of jump risk in the ERP appears to be mildly cyclical.

In sum, our results at the market level are consistent with the literature.

4.4.2 Idiosyncratic Jump Risk Matters

We now turn to our paper’s main empirical contribution. Namely, while our results are
consistent with the literature highlighting that idiosyncratic does matter for the equity
risk premium, we provide evidence that idiosyncratic jump risk is at the center of this
empirical phenomenon.

Table 4.5 reports summary statistics on the parameters associated with the 260 stocks
under consideration. While there is substantial cross-sectional variation, the average
value of the parameters of the variance and intensity processes are comparable to the
parameters obtained for the market model. Remarkably, more than 75% of the firms
exhibit less negative skewness and excess kurtosis than the market. This is consistent
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with Bakshi et al. (2003), who document that the option-implied skewness of individ-
ual stocks is typically much less negative than that of the market index.26

Of particular interest, the normal and jump betas are on average 0.914 and 1.090 re-
spectively. The normal beta ranges from 0.206 to 1.770, but 50% of firms under con-
sideration have a normal beta between 0.688 and 1.120. In comparison, the jump beta
ranges from 0.202 to 3.942, while 50% of firms under consideration have a normal
beta between 0.815 and 1.291. Interestingly, the correlation between firms normal and
jump beta is only of 0.195 (cf. Table 4.6). That is, there is a positive correlation, but
firms with large normal betas do not necessarily have large jump betas, and the other
way around.

Table 4.6 further reports the correlation between βS ,v, v ∈ {z, y}, and the firm-by-firm
time series average of the systematic normal, βS ,z λMhM,z,t, and jump, γM,S

(
βS ,y

)
hM,y,t,

risk premiums. Unsurprisingly, the correlation between βS ,v and the corresponding
systematic premium is high but imperfect.27 Consistent with the modest correlation
between βS ,z and βS ,y, the correlation between the normal (jump) beta and the sys-
tematic jump (normal) premium are positive but modest at 0.191 (0.190). These re-
sults highlight the importance of accounting for separate systematic premiums on both
types of risk, as emphasized by Elkamhi and Ornthanalai (2010) and Babaoğlu (2015).

Figure 4.4 decomposes, for each of the 260 stocks in our sample, the stock’s equity
risk premium in terms of the premiums associated with the four different risk factors
in the model: (i) systematic normal, βS ,z λMhM,z,t, (ii) systematic jump, γM,S

(
βS ,y

)
hM,y,t,

(iii) idiosyncratic normal, λS hS ,z,t, and (iv) idiosyncratic jump, γS hS ,y,t. Making this
decomposition possible is the key econometric contribution of our paper. The empiri-
cal results are striking. First, consistent with financial theory, we find that systematic
risk is priced and explains an important part (59.8%) of the equity risk premium. Nor-
mal systematic risk explains 20.3% of the total equity risk premium; systematic jump
risk, 39.5%. Consistent with the discussion on the betas, the proportion of the system-
atic premium explained by its jump component

(
(ii)

(i)+(ii)

)
, varies largely, from 14.7% to

67.7%.
26Albuquerque (2012) develops and empirically supports a model in which conditional asymmet-

ric stock return correlations and negative skewness in aggregate returns are caused by cross-sectional
heterogeneity in firm announcement events.

27 For the normal premium, the time series average

1
TS

∑
t∈TS

βS ,z λMhM,z,t = βS ,z λM h̄M,z,TS , S ∈ S, (4.18)

is linear in βS ,z which makes the imperfect correlation puzzling at first sight. However, the firm-specific
window of available data, TS , introduces cross-sectional variation in h̄M,z,TS .
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ĨV

A
R

S
,z

ĨV
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Figure 4.4: Decomposition of the equity risk premium by firm.
This figure presents, for each of the 260 stocks, the decomposition of its equity risk premium in terms
of the premiums associated with the four different risk factors in the model: (i) systematic normal,
(ii) systematic jump, (iii) idiosyncratic normal, and (iv) idiosyncratic jump. On average, systematic
normal risk accounts for 20.3% of the total premium, systematic jump risk for 39.5%, and idiosyncratic
jump risk 40.2%. Firms are grouped by industry, based on the Global Industry Classification Standard
(GICS). Results for telecommunication services and utilities are not reported since they concern only
five firms.
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However, the most striking result illustrated in Figure 4.4 is that the premium as-
sociated with idiosyncratic risk accounts for a 40.2% fraction of the total premium(

(iii)+(iv)
(i)+(ii)+(iii)+(iv)

)
. Moreover, and perhaps most importantly, the normal component of id-

iosyncratic risk, which is easily diversifiable, is not priced once other sources of risk
are accounted for. This is consistent with the average value of λS being very small at
5.079 × 10−5; Figure 4.4 shows that this leads to idiosyncratic normal risk premium
that are economically insignificant. While it is now widely accepted that, given market
incompleteness, idiosyncratic risk can be priced, we find that idiosyncratic jump risk,
alone, matters in the equity risk premium. As shown in Figure 4.4, the proportion of
the equity risk premium explained by the premium on the jump idiosyncratic risk fac-
tor varies significantly from firm to firm, but idiosyncratic normal risk virtually does
not matter for any of the 260 firms in our sample.

4.4.2.1 Averages Across Industries

Figure 4.5 presents, for the eight largest Global Industry Classification Standard in-
dustries (GICS) covered by our sample, the evolution through time of the component
of the industry’s average firm’s equity risk premium that is due to exposure to id-
iosyncratic jumps.28 Note that all firms load, through their normal and jump betas, on
the systematic risk premiums reported in Figure 4.3. Hence, the idiosyncratic jump
risk premium (solid line) reported in Figure 4.5 adds to the premium arising from the
firms’ exposure to systematic risk factors (grey ’+’ marks).

For all industries, jump risk premiums increase around both recessions in our sample.
In fact, the increase is relatively mild around the first recession for all industries, except
Information Technology who had just been hit by the burst of the dot-com bubble. On
the other hand, idiosyncratic jump risk premiums increase markedly for all industries
around the Great Recession. Interestingly, the crisis peak in idiosyncratic jump risk
premium for Financials is not as high as that experienced by Consumer Discretionary
or Materials, for instance. However, as reported Table 4.7, firms from the Financial
sector are, on average, the ones exhibiting the second highest normal beta and the
second highest jump beta. Hence their total premium (summing the solid line with the
grey ’+’) raises significantly during the crisis.

28We do not report results for Telecommunication Services (2 firms) and Utilities (3 firms) as we do
not have enough firms from these sectors.
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Table 4.7: Firm parameters estimated using returns and option data for each of
the eight largest GICS industries.

Average S.D. Min Q1 Median Q3 Max

Consumer Discretionary (based on 42 firms)
βS ,z 0.937 0.241 0.477 0.762 0.963 1.092 1.421
βS ,y 1.025 0.321 0.500 0.779 0.983 1.259 1.945
κS ,z 1.095 0.727 0.226 0.616 0.847 1.411 4.062
κS ,y 0.617 0.379 0.185 0.378 0.511 0.754 2.212

Consumer Staples (based on 16 firms)
βS ,z 0.567 0.181 0.289 0.435 0.541 0.711 0.851
βS ,y 0.832 0.215 0.582 0.647 0.780 0.946 1.338
κS ,z 0.920 1.040 0.167 0.477 0.639 0.877 4.665
κS ,y 0.341 0.156 0.143 0.201 0.300 0.482 0.575

Energy (based on 32 firms)
βS ,z 0.735 0.263 0.326 0.576 0.695 0.930 1.472
βS ,y 1.331 0.442 0.536 1.069 1.248 1.619 2.503
κS ,z 1.355 0.642 0.360 0.891 1.253 1.645 3.228
κS ,y 0.529 0.230 0.097 0.422 0.529 0.650 1.155

Financials (based on 36 firms)
βS ,z 1.015 0.266 0.445 0.849 1.007 1.176 1.756
βS ,y 1.206 0.578 0.495 0.898 1.179 1.378 3.926
κS ,z 0.713 0.391 0.124 0.466 0.649 0.865 1.886
κS ,y 0.441 0.152 0.175 0.351 0.442 0.500 1.011

Health Care (based on 30 firms)
βS ,z 0.734 0.282 0.206 0.576 0.662 0.904 1.400
βS ,y 0.996 0.283 0.500 0.862 1.018 1.090 1.913
κS ,z 0.660 0.510 0.130 0.326 0.584 0.832 2.880
κS ,y 0.419 0.253 0.091 0.273 0.345 0.512 1.352

Industrials (based on 32 firms)
βS ,z 0.896 0.189 0.516 0.749 0.868 1.039 1.316
βS ,y 0.985 0.304 0.202 0.802 0.984 1.146 1.661
κS ,z 0.785 0.483 0.197 0.483 0.682 1.011 2.766
κS ,y 0.472 0.273 0.140 0.329 0.419 0.542 1.444

Information Technology (based on 50 firms)
βS ,z 1.184 0.218 0.765 0.999 1.199 1.326 1.568
βS ,y 1.083 0.423 0.275 0.814 0.987 1.282 2.416
κS ,z 1.018 0.869 0.083 0.389 0.706 1.409 3.503
κS ,y 0.635 0.330 0.125 0.423 0.565 0.777 1.674

Materials (based on 17 firms)
βS ,z 0.864 0.208 0.430 0.732 0.864 1.035 1.236
βS ,y 1.173 0.440 0.435 0.856 1.159 1.545 1.943
κS ,z 1.215 0.661 0.463 0.743 1.013 1.615 3.086
κS ,y 0.550 0.290 0.091 0.359 0.569 0.698 1.134

The index parameters are estimated using daily index returns and weekly cross-sections of out-of-the-
money options, from January 1996 to August 2015. Parameters are estimated using multiple simplex
search method optimizations (fminsearch in Matlab). Robust standard errors are calculated from the
outer product of the gradient at the optimal parameter values. For firms, we report statistics on the
joint MLE estimates obtained for the 260 individual stocks in our sample across the eight largest GICS
industries covered in our sample. Q1 and Q3 report the 25th and 75th percentiles of the estimates.

4.4.3 Commonality in Idiosyncratic Jump Risk

Following the literature, we defined idiosyncratic variance as the variance of the resid-
uals obtained after accounting for risk factors, here normal and jump market risk. In
particular, a stock’s idiosyncratic variance and jump intensity are defined as (Equa-
tions (4.4) and (4.6))

hS ,z,t+1 = κS ,zhM,z,t+1 + bS ,z
(
hS ,z,t − κS ,zhM,z,t

)
+

aS ,z

hS ,z,t

(
z2

S ,t − hS ,z,t − 2cS ,zhS ,z,tzS ,t

)
,

hS ,y,t+1 = κS ,yhM,y,t+1 + bS ,y

(
hS ,y,t − κS ,yhM,y,t

)
+

aS ,y

hS ,z,t

(
z2

S ,t − hS ,z,t − 2cS ,yhS ,z,tzS ,t

)
.
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In order to account for the documented strong commonality in idiosyncratic variances
(Herskovic, Kelly, Lustig, and Van Nieuwerburgh (2014), henceforth HKLV), each
process evolves around a dynamic level κS ,vhM,v,t+1, v ∈ {z, y}. Table 4.5 report that the
normal kappa is on average 0.971, further supporting the commonality documented in
HKLV. Our results extend those of HKLV by documenting a strong commonality in
jump risk: the average jump kappa is 0.513. Hence, the commonality in jump risk is
less important than that documented in variances, but is still sizable.

Firm-by-firm regressions (untabulated) of total idiosyncratic variance (cf. Equation
(4.8)) on κS ,zhM,z,t and κS ,yhM,y,t yield an average R2 of 73.4%; regressing on the κS ,yhM,y,t

alone yields an average R2 of 31.8%. Our results thus extend the finding of Herskovic
et al. (2016) in that we document that idiosyncratic tail risk explains a large fraction of
the commonality in idiosyncratic variance. As such, tail risk, which is already hard to
hedge by nature, becomes virtually undiversifiable in times of turmoil, which justifies
the risk premium attached to it.

Interestingly, Table 4.6 reports that the three significant components of risk premiums
are positively correlated with the firms’ average level of total idiosyncratic variance
(IVAR). The same holds for the excess idiosyncratic components of normal, ĨVARS ,z,
and jump risk, ĨVARS ,y, which are respectively the average of the following time se-
ries: hS ,z,t − κS ,zhM,z,t, and hS ,y,t − κS ,yhM,y,t. This result is consistent with the results of
Martin and Wagner (2016), who find that stocks exhibiting higher (lower) than average
idiosyncratic volatility command higher (lower) expected excess returns.

4.4.4 On the Importance of Accounting for Equity-Specific Jumps

Financial theory tells us that diversifiable risk should not be priced. In most models,
idiosyncratic risk is simply normal risk. As this normal risk should be easily diver-
sified away, conditionally normal models imply that idiosyncratic risk should not be
priced. Our results confirm that idiosyncratic normal risk indeed is not priced. Id-
iosyncratic jump risk, on the other hand, is difficult to diversify by nature. As such, it
can bear a risk premium, and it does.

When one estimates a conditionally normal model on actual returns, the filtered “nor-
mal” innovations are all but normal. They typically have a very large kurtosis; in
a misspecified normal model, the supposedly normal innovations are also capturing
jumps. Given the importance of the premium on these idiosyncratic jumps in our
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model, we conjecture that, in conditionally normal models, the risk premium on id-
iosyncratic normal risk originates from the model’s misspecification.

To validate this conjecture, we estimate a nested version of our model in which the
market model remains unchanged, but the stock model does not exhibit idiosyncratic
jump risk. That is,

RS ,t+1 = µS ,t+1 − ξ
P
S ,t+1 + βS ,zzM,t+1 + βS ,yyM,t+1 + zS ,t+1 , (4.19)

µS ,t+1 − rt+1 = βS ,z λMhM,z,t+1 + γM,S
(
βS ,y

)
hM,y,t+1 + λS hS ,z,t+1 ,

ξPS ,t+1 = ξPzM,t

(
βS ,z

)
+ ξPyM,t

(
βS ,y

)
+ ξPzS ,t

(1) ,

where market innovations have separate normal variance and jump intensity, as spec-
ified in Section 4.2, and zS ,t+1 is simply assumed to be conditionally normal, with
GARCH variance as specified in Equation (4.4).

Figure 4.6 shows that the composition of the total risk premium is drastically different
once idiosyncratic jumps are neglected. The systematic components are very similar
to those reported in Figure 4.4. The premium associated with idiosyncratic normal
risk, however, is now more important that the sum of premiums associated with sys-
tematic risk. The expected excess return on an average stock (not tabulated) rises
significantly, from 10.3% (5.9% systematic and 4.4% idiosyncratic) in the full model
to 13.3% (6.8% and 6.5%, respectively) in the nested model of Equation (4.19). Both
Christoffersen et al. (2012) and Ornthanalai (2014) document, at the market level, that
the equity risk premium levels implied by conditionally normal model are unreason-
ably high.29 The difference is not as marked at the stock level, perhaps due to the
presence of systematic jump risk. Yet, it appears that ignoring idiosyncratic jump risk
also leads to a severe misspecification at the stock level.

Panel A of Table 4.8 provides further evidence of this mispecification. In particular,
the filtered εS ,t, which are supposed to be conditionnaly standard normal innovations
under the model of Equation (4.19), exhibit levels of excess kurtosis that are much too
high. While the theoretical level should be 0, the median level reported in Panel A
of Table 4.8 is 9.14. In comparison, the corresponding median is 0.74 in Table 4.5.
While the filtered “normal” innovations exhibit skewness and kurtosis, they theoret-
ically don’t, which reduces the ability of the stock model to properly fit the stocks’
implied volatility smile through time. Indeed, the entire RIVRMSE distribution re-
ported in Panel A of Table 4.8 is shifted to the right when compared with the full

29Christoffersen et al. (2012) find 22.15% (Table 6) and Ornthanalai (2014) obtains 15.50% (Table
3).
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Figure 4.6: Decomposition of the equity risk premium by firm.
This figure presents, for each of the 260 stocks, the decomposition of its equity risk premium in terms
of the premiums associated with the three different risk factors in the nested model of Equation (4.19):
(i) systematic normal, (ii) systematic jump, and (iii) idiosyncratic normal. On average, systematic
normal risk accounts for 15.0% of the total premium, systematic jump risk for 36.1%, and idiosyncratic
normal risk 48.9%. Firms are grouped by industry, based on the Global Industry Classification Standard
(GICS). Results for telecommunication services and utilities are not reported since they concern only
five firms.
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model’s RIVRMSE in Table 4.5. That is, although the model of Equation (4.19) still
allows for relatively high levels of (negative) skewness and kurtosis, thanks to system-
atic jumps, the normality assumption at the idiosyncratic level clearly deteriorates the
fit to options.

In sum, the contrast between the results obtained when considering or neglecting id-
iosyncratic jumps highlights the importance of accounting for these equity-specific
jumps.

4.4.5 Realized Premium based Portfolios of Stocks

In a typical study of factor models, the market prices associated with the different risk
factors are estimated from the panel of returns. Here, they are identified from returns
and option prices. A potential issue, if stock and option markets are partly segmented,
is that the estimated risk premiums might reflect, for instance, option market makers’
shadow price of equity. While this concern is partly mitigated by the use of stock
returns in the joint estimation, it still might affect the estimated magnitude of the
premium. This criticism applies to any study using options prices to learn about the
equity risk premium or even the physical distribution.30

To appraise whether this criticism indeed points to a weakness of our framework, we
here analyze portfolios formed according to the model-implied risk premium associ-
ated with idiosyncratic jump risk. First, on each day t out of the 4,951 days in our
sample, we sort available stocks according to the expected excess return associated to
idiosyncratic jumps:

RPS ,y,t = EPt
[
exp

(
γS hS ,y,t+1 − ξ

P
yS ,t+1

+ yS ,t+1

)]
= eγS hS ,y,t+1 . (4.20)

We then divide these stocks in five quintile portfolios P1 to P5, from lowest to high-
est expected return; stocks within a portfolio are weighted according to their market
capitalization on day t. Finally, we create a long-short portfolio with a long position
in the portfolio with the highest expected return, P5, and a short position in that with
the lowest expected return, P1. For comparison, the same procedure is used to create
a long-short portfolio on the basis of RPS ,z,t = eλS hS ,z,t+1 .

30For instance, Martin (2016) and Martin and Wagner (2016) infer the equity risk premium directly
from option prices. Ross (2015) and Jensen et al. (2016) infer the P distribution from the evolution of
the Q distribution.

133



Chapter 4. Idiosyncratic Jump Risk Matters

Ta
bl

e
4.

8:
Fi

rm
pa

ra
m

et
er

se
st

im
at

ed
us

in
g

re
tu

rn
sa

nd
op

tio
n

da
ta

:N
eg

le
ct

in
g

id
io

sy
nc

ra
tic

ju
m

ps
.

A
ve

ra
ge

S.
D

.
M

in
Q

1
M

ed
ia

n
Q

3
M

ax

β
S
,z

0.
90

8
0.

33
5

0.
10

1
0.

68
4

0.
90

8
1.

14
1

2.
05

1
β

S
,y

1.
36

5
0.

55
0

0.
00

0
0.

98
5

1.
39

8
1.

69
8

3.
96

1
λ

S
0.

76
5

0.
44

0
0.

03
0

0.
39

7
0.

72
7

1.
01

6
2.

24
2

κ S
, z

0.
87

4
0.

87
4

0.
04

5
0.

30
9

0.
64

9
1.

20
0

5.
69

0
a S

,z
2.

66
E

–0
6

2.
25

E
–0

6
9.

29
E

–0
8

1.
12

E
–0

6
2.

12
E

–0
6

3.
63

E
–0

6
2.

30
E

–0
5

b S
,z

0.
99

5
0.

01
4

0.
90

6
0.

99
7

0.
99

8
0.

99
9

1.
00

0
c S

,z
53

.3
0

84
.7

6
-2

82
.8

2
7.

99
52

.3
7

95
.8

9
43

7.
76

A
vg

.v
ol

at
ili

ty
(%

)
36

.5
6

9.
50

18
.3

3
29

.4
1

35
.1

0
43

.2
4

64
.3

2
A

vg
.s

ke
w

ne
ss

-2
.9

2
2.

33
-1

3.
32

-4
.2

6
-2

.4
5

-1
.0

3
0.

00
A

vg
.e

xc
es

s
ku

rt
os

is
14

9.
03

15
0.

39
0.

00
35

.0
4

10
7.

46
21

6.
51

10
14

.6
6

Sk
ew

ne
ss

of
in

no
va

tio
ns

,ε
S
,t

-0
.3

7
1.

20
-9

.3
4

-0
.5

0
-0

.0
8

0.
12

2.
97

E
x.

ku
rt

os
is

of
in

no
va

tio
ns

,ε
S
,t

16
.7

8
31

.9
6

0.
69

5.
00

9.
14

15
.3

4
34

9.
03

R
IV

R
M

SE
15

.5
7

6.
42

9.
94

12
.2

4
14

.1
9

17
.0

1
80

.6
2

T
he

in
de

x
pa

ra
m

et
er

s
ar

e
es

tim
at

ed
us

in
g

da
ily

in
de

x
re

tu
rn

s
an

d
w

ee
kl

y
cr

os
s-

se
ct

io
ns

of
ou

t-
of

-t
he

-m
on

ey
op

tio
ns

,f
ro

m
Ja

nu
ar

y
19

96
to

A
ug

us
t2

01
5.

Pa
ra

m
et

er
s

ar
e

es
tim

at
ed

us
in

g
m

ul
tip

le
si

m
pl

ex
se

ar
ch

m
et

ho
d

op
tim

iz
at

io
ns

(f
m

in
se

ar
ch

in
M

at
la

b)
.

R
ob

us
ts

ta
nd

ar
d

er
ro

rs
ar

e
ca

lc
ul

at
ed

fr
om

th
e

ou
te

rp
ro

du
ct

of
th

e
gr

ad
ie

nt
at

th
e

op
tim

al
pa

ra
m

et
er

va
lu

es
.

Fo
r

fir
m

s,
w

e
re

po
rt

st
at

is
tic

s
on

th
e

jo
in

tM
L

E
es

tim
at

es
ob

ta
in

ed
fo

r
th

e
26

0
in

di
vi

du
al

st
oc

ks
in

ou
r

sa
m

pl
e.

Q
1

an
d

Q
3

re
po

rt
th

e
25

th
an

d
75

th
pe

rc
en

til
es

of
th

e
es

tim
at

es
.

134



Chapter 4. Idiosyncratic Jump Risk Matters

Table 4.9 reports regressions of the returns of these long-short portfolios on some of
the most prevalent factors in empirical asset pricing. First, the regression labelled
FF3 is based on the Fama and French (1993) 3-factor models: market (MKT), small
minus big (SMB), high minus low (HML). The regression labelled FF5 extends the
set of regressors to those of weak (RMW), and conservative minus aggressive (CMA)
factors. The regression labelled CF4 considers the Carhart (1997) 4-factor model,
essentially adding a momentum (MOM) factor to FF3. The regression labelled AHXZ
is inspired by the work of Ang et al. (2006) and extends FF3 by adding the innovation
on the CBOE Volatility Index (VIX) to the set of regressors.31 Finally, we consider a
kitchen sink regression, labelled All, in which we control for all the aforementionned
factors, that is:

rP5−P1
t = α + βmktMKTt + βsmbSMBt + βhmlHMLt

+ βrmwRMWt + βcmaCMAt + βmomMOMt + β∆vix∆VIXt + εt, (4.21)

where rP5−P1
t is the day-t simple excess return on the long-short portfolio formed on

the basis of the model-implied risk premiums, RPS , · ,t, and ∆VIXt = VIXt - VIXt−1 is
the innovation on the VIX. The alphas of the regressions are reported in annualized
percentage terms.

Table 4.9 is divided in two panels. In the first five columns of Panel A, the long-
short porfolio is formed according to the quintiles of the risk premium associated with
idiosyncratic Gaussian risk in our model, RPS ,z,t. Regression coefficients are in bold
whenever they are significant at the 5% level or in italics if they are at the 10% level;
t-statistics are based on robust Newey and West (1987) standard errors. In particular,
only two of the alphas in these five regressions are significant at the 10% level. Panel A
contains a second set of regressions. In these regressions, the long-short portfolio is
constructed considering the risk-premium in excess of the common component. That
is, to obtain the long-short portfolio used in the last five columns of Panel A, we
sort stocks into quintiles of RP′S ,z,t = eλS h′S ,z,t+1 , where h′S ,z,t+1 is the predicted excess
idiosyncratic Gaussian variance introduced in Subsection 4.2.1. None of the alphas in
these five regressions are significant. Consistent with our results in Subsection 4.4.2,
idiosyncratic Gaussian risk does not appear to be priced.

In Panel B, we repeat the same analysis, but forming the long-short porfolio on the
basis of the risk premiums associated with (excess) idiosyncratic jump risk, RPS ,y,t

31This regression is akin to their ex post Regression (6), with the difference that we use ∆VIX rather
than a factor mimicking aggregate volatility risk.
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(RP′S ,y,t). The alphas of the first five regressions are highly significant, both statistically
and economically. They vary between 8.3% to 17.8% annually, depending on the
regression considered. It is worth noting that, while the metric used to sort stocks into
portfolios is inferred in part from option prices, the alphas reported here are obtained
trading only stocks. These results thus confirm that idiosyncratic jump risk is priced
in stock markets.

Besides, the alphas on the RP′S ,y,t long-short portfolios are just as significant, statisti-
cally and economically, as the alphas on the portfolio based on the total idiosyncratic
jump risk premium. These results show that idiosyncratic jump risk is not just priced
through its common component; excess idiosyncratic jump risk matters. This result
is consistent with the intuition one could build from the theoretical analysis in Martin
and Wagner (2016). Unfortunately, to the best of our knowledge, it is not possible to
assign different prices of risk to the common and excess components of idiosyncratic
jump risk and remain in an affine option-pricing framework.

4.4.5.1 Characteristics of the Quintile Portfolios and Double-Sort Portfolios

In our model, the only systematic risk factors are the Gaussian and jump innovations
on the market. Accounting for more factors, like the Fama and French (2015) or
Carhart (1997) factors in the option-pricing model would have required postulating a
dynamics for each of the factors, introducing many more parameters. It further would
have forced estimation only from returns, at least for these factors, as options are not
traded on these factors.

Yet, in Table 4.9, the loadings on these factors are almost all significant. One can
thus conjecture that neglecting these factors in the model led to idiosyncratic risk
proxies that are partly driven by these factors. Consistent with this intuition, Table
4.10 shows that the quintile portfolios obtained based on the idiosyncratic jump risk
premium display near monotonic market betas, market capitalizations (ME), book-
to-market ratios (BE/ME), operating profitability (OP) investment levels, trailing 12-
month returns, and the volatility betas.32 See Section 4.G for more details on these
variables.

32 The market and volatility betas here are obtained by performing the following regression

rS ,t−k = α+βmkt,tMKTt−k + β∆vix,t∆VIXt−k + εt−k, k = 0, . . . , 252.

This regression corresponds to the pre-formation regression of Ang et al. (2006), over the past year
(rather than month, as in AHXZ) of data.
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The alphas in Panel B of Table 4.9 are significant even after linearly controlling for
the factors corresponding to these variables. The patterns observed in Table 4.10 could
nonetheless raise concerns that the alphas are somehow nonlinearly related to the fun-
damentals of the stocks in the top and bottom quintile porfolios used in the long-short
strategy. To alleviate these concerns, we perform a double sort. On each day t, we
first sort stocks into quintiles (Q1 to Q5) based on their market beta over the past year.
Then, within each market-beta quintile, we sort stocks into terciles based on RPS ,y,t

(first five columns; the last five columns are based on RP′S ,y,t). We then take a long
position in a cap-weighted portfolio of the top-tercile stocks, and a short position in
a cap-weighted portfolio of the bottom-tercile stocks. This leaves us with five long-
short portfolios, each of which is composed of stocks with homogenous market betas.
The first row of Table 4.11 reports the alphas of Regression (4.21) for each of these
long-short portolios. The procedure is repeated for the other six variables in Table
4.10.

The alphas on the long-short portfolios built from (excess) idiosyncratic jump risk pre-
miums are positive and significant, both statistically and economically, in 30 (31) of
the 35 regressions. When they are not statistically significant, they are still positive;
the lack of significance is mainly due to the large standard errors on some of these
portfolios. There are no clear patterns in the alphas across the quintiles of most vari-
ables, the exception potentially being volatility betas. In sum, no single one of these
seven variables appears to be driving the main result of our paper: idiosyncratic jump
risk carries a positive risk premium.

4.5 Conclusion

In this study, we shed new light on the relationship between idiosyncratic risk and
equity returns. We develop a model allowing us to disentangle the contribution of four
different risk factors to the equity risk premium: systematic and idiosyncratic risk are
both decomposed in their normal and jump components. Using 20 years of returns
and options on the S&P 500 and more than 250 stocks, we find that normal and jump
risk have a drastically different impact on the expected return on individual stocks.

While our pricing kernel is such that each risk factor can potentially be priced, we find
that the normal component of idiosyncratic risk, which is easily diversifiable, is not
priced once other sources of risk are accounted for. Firm-specific jump risk, however,
is priced and justifies more than 40% of the expected excess return on an average
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Table 4.9: Excess returns of portfolios based on idiosyncratic jump risk premi-
ums.

Panel A: Idiosyncratic jump risk premium

Idiosyncratic diffusive risk premium In excess of the common component

FF3 FF5 MOM AHXZ All FF3 FF5 MOM AHXZ All

Cst 1.748 4.220 2.599 1.534 4.449 1.287 3.559 2.082 1.011 3.657
(0.71) (1.74) (1.05) (0.63) (1.83) (0.53) (1.46) (0.84) (0.41) (1.50)

MKT 0.119 0.049 0.097 0.144 0.048 0.089 0.024 0.069 0.122 0.034
(6.80) (2.50) (5.57) (6.28) (2.05) (5.10) (1.22) (3.89) (5.24) (1.39)

SMB 0.095 0.053 0.103 0.093 0.058 0.085 0.051 0.092 0.082 0.055
(3.72) (2.25) (3.88) (3.63) (2.46) (3.25) (2.02) (3.44) (3.13) (2.18)

HML -0.542 -0.374 -0.587 -0.538 -0.405 -0.561 -0.396 -0.603 -0.556 -0.422
(-18.22) (-12.03) (-18.76) (-18.32) (-11.59) (-18.93) (-11.37) (-18.97) (-19.07) (-11.14)

RMW -0.202 -0.192 -0.167 -0.157
(-4.97) (-4.67) (-4.14) (-3.88)

CMA -0.424 -0.399 -0.426 -0.404
(-7.46) (-6.95) (-6.99) (-6.57)

MOM -0.094 -0.045 -0.087 -0.039
(-4.29) (-2.31) (-3.96) (-1.93)

∆VIX 0.023 0.005 0.030 0.013
(1.76) (0.34) (2.22) (0.95)

Adj. R2 22.0% 26.2% 22.9% 22.0% 26.4% 21.1% 25.0% 21.9% 21.2% 25.1%

Panel B: Idiosyncratic jump risk premium in excess of the common component

Idiosyncratic jump risk premium In excess of the common component

FF3 FF5 MOM AHXZ All FF3 FF5 MOM AHXZ All

Cst 8.412 16.317 11.070 8.294 17.840 9.513 16.201 12.148 9.488 17.807
(2.28) (4.54) (3.06) (2.25) (4.97) (2.50) (4.35) (3.31) (2.52) (4.91)

MKT 0.473 0.259 0.406 0.487 0.179 0.487 0.299 0.421 0.490 0.214
(15.59) (11.92) (15.76) (10.79) (5.96) (14.76) (12.29) (14.80) (9.72) (6.56)

SMB 0.401 0.231 0.424 0.399 0.253 0.285 0.173 0.309 0.285 0.196
(10.16) (6.09) (10.84) (10.06) (6.95) (6.76) (4.38) (7.11) (6.75) (5.05)

HML -0.428 0.044 -0.568 -0.426 -0.073 -0.115 0.346 -0.254 -0.115 0.223
(-5.25) (1.00) (-7.04) (-5.28) (-1.56) (-1.34) (5.87) (-3.38) (-1.34) (4.06)

RMW -0.756 -0.731 -0.536 -0.510
(-12.90) (-13.87) (-9.41) (-8.71)

CMA -1.142 -1.057 -1.170 -1.082
(-11.39) (-11.96) (-12.70) (-12.14)

MOM -0.292 -0.161 -0.290 -0.168
(-5.52) (-4.01) (-5.92) (-4.17)

∆VIX 0.013 -0.049 0.003 -0.053
(0.52) (-2.41) (0.10) (-2.21)

Adj. R2 29.1% 44.2% 32.6% 29.1% 45.2% 24.1% 37.4% 27.7% 24.0% 38.6%

Each day, the model-implied risk premium associated with idiosyncratic jump risk, RPS ,y, is computed
for each firm. Firms are then sorted into quintile portfolios from the lowest (1) to the highest (5) level
of RPS ,y; portfolios are weighted according to market capitalization. A “top minus bottom” portfolio
is created from taking long position in (5) and a short position in (1). The daily returns of the quintile
portfolios and of the long-short portfolio are then regressed on (subsets of) the following seven vari-
ables: the Fama-French market (MKT), small minus big (SMB), high minus low (HML), robust minus
weak (RMW), and conservative minus aggressive (CMA) factors, the momentum (MOM) factor, and
returns on the CBOE volatility index (∆VIX). The regression constant (Cst) is reported in annualized
percentage points (∆t = 1/252).
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Table 4.10: Description of quintile portfolios.

Idiosyncratic Jump Risk Premium In Excess of the Common Component

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5

Market beta 0.97 1.00 1.06 1.11 1.26 0.98 0.99 1.05 1.09 1.21
[0.11] [0.09] [0.12] [0.15] [0.25] [0.13] [0.12] [0.11] [0.14] [0.23]

log(ME) 25.40 24.96 24.61 24.30 23.79 25.14 25.17 24.86 24.49 23.99
[0.28] [0.38] [0.46] [0.52] [0.54] [0.38] [0.40] [0.42] [0.45] [0.51]

BE/ME 1.76 1.42 1.47 1.24 1.20 1.43 1.54 1.53 1.55 1.56
[0.53] [0.56] [0.75] [0.83] [1.08] [0.58] [0.55] [0.93] [1.33] [1.90]

OP (%) 5.74 5.46 5.93 6.10 5.42 5.80 5.79 5.58 5.74 5.70
[1.30] [1.35] [1.36] [1.60] [1.85] [1.54] [1.40] [1.45] [1.50] [1.71]

Investment (%) 14.63 15.86 19.31 26.96 35.51 20.46 16.30 15.37 18.98 28.43
[18.44] [19.06] [19.78] [45.46] [77.07] [33.20] [15.94] [16.53] [23.66] [49.08]

12-month return (%) 15.25 15.72 17.84 19.27 20.11 19.11 16.57 15.12 14.79 16.73
[15.54] [16.84] [18.21] [19.74] [29.61] [16.43] [15.81] [17.32] [19.20] [27.06]

Volatility beta (%) 0.29 0.50 0.53 -1.11 -2.65 -0.32 0.46 0.83 -0.06 -2.37
[3.07] [3.44] [4.30] [6.29] [9.71] [3.97] [3.44] [4.16] [5.44] [9.13]

This table describes the quintile porftolios obtained in Table 4.9. Each day, the following variables are
recorded for the firms in each quintile portfolio: market beta, log of market capitalisation, book-to-
market ratio, operating profitability (OP), investment, trailing 12-month return, and the volatility beta.
This table reports the time-series average of these variables for each of the quintile porfolios obtained
using the total idiosyncratic risk premium (first five columns) or its component in excess of the common
component (last five columns). Standard deviations are reported within square brackets.

Table 4.11: Double sort: Excess returns of portfolios based on idiosyncratic jump
risk premiums.

Idiosyncratic Jump Risk Premium In Excess of the Common Component

Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

Market beta 10.408 8.957 16.837 15.242 10.024 11.783 11.368 20.495 15.627 10.759
(2.71) (2.44) (4.43) (3.62) (1.43) (3.23) (3.04) (5.35) (3.60) (1.89)

log(ME) 11.629 7.435 8.791 17.906 10.027 11.283 9.990 9.429 18.620 8.780
(2.46) (2.05) (2.73) (5.77) (3.80) (2.30) (2.57) (2.84) (5.99) (3.02)

BE/ME 20.747 13.477 9.252 14.811 14.381 15.653 18.488 12.847 17.991 15.290
(4.63) (2.89) (2.21) (3.50) (3.47) (2.66) (3.92) (3.12) (4.33) (3.72)

OP (%) 9.027 10.796 11.430 7.035 24.957 18.828 12.194 14.171 10.364 13.506
(1.61) (2.26) (2.46) (1.47) (5.02) (3.46) (2.71) (3.03) (2.15) (2.70)

Investment (%) 13.785 12.780 15.409 23.275 11.985 16.072 11.650 22.329 16.914 5.305
(2.97) (3.39) (3.98) (5.13) (2.36) (3.42) (3.07) (5.86) (3.64) (1.01)

12-month return (%) 17.567 5.529 12.164 14.953 12.720 14.197 13.406 13.994 13.975 4.232
(3.42) (1.46) (3.36) (3.66) (2.57) (2.85) (3.46) (3.89) (3.40) (0.88)

Volatility beta (%) 3.451 12.885 14.973 14.183 15.743 7.568 14.425 12.403 16.668 16.876
(0.68) (2.97) (3.95) (3.67) (3.18) (1.49) (3.27) (3.39) (4.35) (3.21)

On each day t, we first sort stocks into quintiles (Q1 to Q5) based on their market beta over the past year.
Then, within each market-beta quintile, we sort stocks into terciles based on RPS ,y (first five columns;
the last five columns are based on RP’S ,y). We then take a long position in a cap-weighted portfolio of
the top-tercile stocks, and a short position in a cap-weighted portfolio of the bottom-tercile stocks. This
leaves us with five long-short portfolios, each of which is composed of stocks with homogenous market
betas. The first row of this table reports the alphas of Regression (4.21) for each of these long-short
portolios. The procedure is repeated for six other variables: log of market capitalisation, book-to-market
ratio, operating profitability (OP), investment, trailing 12-month return, and the volatility beta.
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stock. Given the recent conflicting empirical evidence regarding how idiosyncratic
risk affects expected returns, these findings might provide new guidance for future
studies.

Our focus in this paper is on the relationship between jump risk and the equity risk
premium. Given the strong links between the equity risk premium and the variance
risk premium, it is natural to wonder whether our findings extend to the variance risk
premium; the results of Gourier (2014) certainly suggest they do. Hence, it appears
that properly accounting for jump risk is crucial in any attempts to study the risk
premiums associated with idiosyncratic risk.

4.A Innovations’ Cumulant Generating Functions

4.A.1 Continuous Component

For any zu,t ∈
{
zM,t, zS ,t : S ∈ S

}
, the conditional cumulant generating function of zu,t

satisfies
ξPzu,t

(φ) = logEP
F St−1

[
exp

(
φzu,t

)]
=
φ2

2
hu,z,t.

4.A.2 Jump Component

The conditional cumulant generating function of yu,t ∈
{
yM,t, yS ,t : S ∈ S

}
is

ξPyu,t
(φ) = logEP

F St−1

[
exp

(
φyu,t

)]
= Πu (φ) hu,y,t

where
Πu (φ) =

(√
α2

u − δ
2
u −

√
α2

u − (δu + φ)2
)
. (4.22)
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4.B Innovations’ Risk Neutral Cumulant Generating
Functions

Lemma 4.1. For any εu,t ∈
{
εM,t, εS ,t : S ∈ S

}
, the conditional cumulant generating

function of εu,t under Q is

ξQεu,t
(φ) = logEQt−1

[
exp

(
φεu,t

)]
=

1
2
φ2 − Λu

√
hu,z,tφ

which corresponds to the cumulant generating function of a Gaussian random vari-

able of expectation −Λu
√

hu,z,t and variance 1. To obtain a risk neutral sequence of

standard normal innovations, we must set

ε∗u,t = εu,t + Λu

√
hu,z,t. (4.23)

Sketch of the proof.

ξQεu,t
(φ) = logEQt−1

[
exp

(
φεu,t

)]
= logEPt−1

[
exp

(
−ΛMzM,t − ΓMyM,t −

∑
S∈SΛS zS ,t −

∑
S∈S ΓS yS ,t

)
EPt−1

[
exp

(
−ΛMzM,t − ΓMyM,t −

∑
S∈SΛS zS ,t −

∑
S∈S ΓS yS ,t

)] exp
(
φεu,t

)]
= ξPεu,t

(
φ − Λu

√
hu,z,t

)
− ξPεu,t

(
−Λu

√
hu,z,t

)
.

Note that, given that hu,z,t is F St−1−measurable, the conditional cumulant generating
function of zu,t under Q can easily be show (by replicating the above) to be that of a
normal variable of expectation −Λuhu,z,t and variance hu,z,t. In other words, consistent
the results in Christoffersen et al. (2010), the risk-neutral F St−1−conditional variance of
zu,t, h∗u,z,t, is equal to its physical counterpart, hu,z,t.

Lemma 4.2. For any yu,t ∈
{
yM,t, yS ,t : S ∈ S

}
, the conditional cumulant generating

function of yu,t under Q is

ξQyu,t
(φ) = logEQt−1

[
exp

(
φyu,t

)]
= Π∗u (φ) h∗u,y,t (4.24)

where

Π∗u (φ) =

√
α2

u − (δu − Γu)2
−

√
α2

u − (δu − Γu + φ)2 (4.25)

The proof uses a similar argument as for ξQεu,t (φ) . Details are provided in the Appendix
A.2.
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The risk neutral jump component is still a NIG random variable with no location pa-
rameter, the tail heaviness parameter α∗u = αu is not affected by the change of measure,
the asymmetry parameter becomes δ∗u = δu − Γu and the scale variable is h∗u,y,t = hu,y,t.

4.C Risk Premiums

Lemma 4.3. The mappings between λM and γM and their pricing kernel counterparts

ΛM and ΓM are

λM = ΛM and γM = Πu (1) − Π∗u (1) .

For the stock parameters λS and γS , the relation is

λS = ΛS , γM,S

(
βS ,y

)
= ΠM

(
βS ,y

)
− Π∗M

(
βS ,y

)
, γS = ΠS (1) − Π∗S (1)

where Πu (·) and Π∗u (·) are defined at Equations (4.22) and (4.25).

Proof of Lemma 4.3. Since the proof for the market component is similar, the focus
is put on the stock specific parameters. More details are available in Appendix A.

Since the discounted stock price should behave as a Q−martingale,

1 = EQt−1

[
exp (−rt) S t

S t−1

]
= EPt−1

[
exp

(
−ΛMzM,t − ΓMyM,t −

∑
S∈SΛS zS ,t −

∑
S∈S ΓS yS ,t

)
EPt−1

[
exp

(
−ΛMzM,t − ΓMyM,t −

∑
S∈SΛS zS ,t −

∑
S∈S ΓS yS ,t

)] exp
(
RS ,t − rt

)]
.

Replacing the excess return using (4.2) and the cumulant generating functions, we get

1 = exp


µPS ,t − rt − ξ

P
zM,t

(
βS ,z

)
− ξPyM,t

(
βS ,y

)
− ξPzS ,t

(1) − ξPyS ,t
(1)

+ξPzM,t

(
βS ,z − ΛM

)
+ ξPyM,t

(
βS ,y − ΓM

)
+ ξPzS ,t

(1 − ΛS ) + ξPyS ,t
(1 − ΓS )

−ξPzM,t
(−ΛM) − ξPyM,t

(−ΓM) − ξPzS ,t
(−ΛS ) − ξPyS ,t

(−ΓS )

 .
Because,

−ξPzM,t

(
βS ,z

)
+ ξPzM,t

(
βS ,z − ΛM

)
− ξPzM,t

(−ΛM) = −ΛMβS ,zhM,z,t,

−ξPzS ,t
(1) + ξPzS ,t

(1 − ΛS ) − ξPzS ,t
(−ΛS ) = −ΛS hS ,z,t,

−ξPyM,t

(
βS ,y

)
+ ξPyM,t

(
βS ,y − ΓM

)
− ξPyM,t

(−ΓM) = −hM,y,tγM,S (βS ,y)

−ξPyS ,t
(1) + ξPyS ,t

(1 − ΓS ) − ξPyS ,t
(−ΓS ) = −hS ,y,tγS ,
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we conclude that

1 = exp
(
µPS ,t − rt − ΛMβS ,zhM,z,t − hM,y,tγM,S (βS ,y) − ΛS hS ,z,t − hS ,y,tγS

)
.

Therefore,

µPS ,t = rt + ΛMβS ,zhM,z,t + hM,y,tγM,S (βS ,y) + ΛS hS ,z,t + hS ,y,tγS .

�

4.D Risk Neutral Conditional Variances and Jump In-
tensities

Lemma 4.4. Let

η∗t =

[
1 h∗M,z,t h∗M,y,t h∗S ,z,t h∗S ,y,t

(
ε∗M,t

)2 √
h∗M,z,tε

∗
M,t

(
ε∗S ,t

)2 √
h∗S ,z,tε

∗
S ,t

]′
.

Then, for any u ∈ {M, S } and v ∈ {z, y},

h∗u,v,t+1 = πu,vη
∗
t (4.26)
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where πu,v is a 1 × 9 vector of constants satisfying

πM,z,1 = wM,z πM,z,7 = −2aM,z
(
cM,z + ΛM

)
πM,z,2 = bM,z + aM,z

(
cM,z + ΛM

)2 πM,z,i = 0 for i ∈ {3, 4, 5, 8, 9}
πM,z,6 = aM,z

πS ,z,1 = κS ,zπM,z,1 − aS ,z πS ,z,6 = κS ,zπM,z,6

πS ,z,2 = κS ,z
(
πM,z,2 − bS ,z

)
πS ,z,7 = κS ,zπM,z,7

πS ,z,4 = bS ,z + aS ,z
(
2cS ,z + ΛS

)
ΛS πS ,z,8 = aS ,z

πS ,z,i = 0 for i ∈ {3, 5} πS ,z,9 = −2aS ,z
(
cS ,z + ΛS

)
πM,y,1 = wM,y πM,y,6 = aM,y

πM,y,2 = aM,y

(
cM,y + ΛM

)2
πM,y,7 = −2aM,y

(
cM,y + ΛM

)
πM,y,3 = bM,y πM,y,i = 0 for i ∈ {4, 5, 8, 9}

πS ,y,1 = κS ,yπM,y,1 − aS ,y πS ,y,6 = κS ,yπM,y,6

πS ,y,2 = κS ,yπM,y,2 πS ,y,7 = κS ,yπM,y,7

πS ,y,3 = κS ,y

(
πM,y,3 − bS ,y

)
πS ,y,8 = aS ,y

πS ,y,4 = aS ,y

(
2cS ,y + ΛS

)
ΛS πS ,y,9 = −2aS ,y

(
cS ,y + ΛS

)
πS ,y,5 = bS ,y

Proof of Lemma 4.4. The risk neutral market conditional variance h∗M,z,t+1 and jump
intensity variable h∗M,y,t+1 are obtained by replacing (4.23) in (4.3) and (4.5).

In the case of the stocks, for any v ∈ {z, y},(
ε2

S ,t − 1 − 2cS ,v

√
hS ,z,tεS ,t

)
=

(
ε∗S ,t − ΛS

√
h∗S ,z,t

)2
− 1 − 2cS ,v

√
h∗S ,z,t

(
ε∗S ,t − ΛS

√
h∗S ,z,t

)
=

(
2cS ,v + ΛS

)
ΛS h∗S ,z,t +

((
ε∗S ,t

)2
− 1 − 2

(
cS ,v + ΛS

) √
h∗S ,z,tε

∗
S ,t

)
. (4.27)

where the first equality arises from (4.23). Replacing back in the conditional variance
(4.4) and the jump intensity process (4.6) leads to their risk neutral versions. �
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4.E Moment Generating Function of Risk-Neutral Ex-
cess Returns

Lemma 4.5. For u ∈ {M, S }, the conditional moment generating function of the excess

returns satisfies

ϕQ
R̃,t,T

(φ) = exp
(
Au,T−t (φ) + Bu,T−t (φ) h∗M,z,t+1

+ Cu,T−t (φ) h∗M,y,t+1 +Du,T−t (φ) h∗S ,z,t+1 + Eu,T−t (φ) h∗S ,y,t+1

)
where the coefficients are found using a backward recursion over time. Indeed, ϕQu,0(φ)
= 1 implies that

Au,0 (φ) = Bu,0 (φ) = Cu,0 (x) = Du,0 (φ) = Eu,0 (φ) = 0.

For i ∈ {0, 1, ..., 9}, let

ζu,T−t−1,i (φ) = Bu,T−t−1 (φ) πM,z,i+Cu,T−t−1 (φ) πM,y,i+Du,T−t−1 (φ) πS ,z,i+Eu,T−t−1 (φ) πS ,y,i,

where the π· are as provided in Section 4.D. If ζs,6 (φ) < 1
2 and ζs,8 (φ) < 1

2 for any

s ∈ {t + 1, ...,T }, then

Au,T−t (φ) = Au,T−t−1 (φ) + ζu,T−t−1,1 (φ) −
1
2

log
(
1 − 2ζu,T−t−1,6 (φ)

)
−

1
2

log
(
1 − 2ζu,T−t−1,8 (φ)

)
,

Bu,T−t (φ) = ζu,T−t−1,2 (φ) −
1
2
β2

u,zφ +
1
2

(
ζu,T−t−1,7 (φ) + βu,zφ

)2

1 − 2ζu,T−t−1,6 (φ)
,

Cu,T−t (φ) = ζu,T−t−1,3 (φ) − Π∗M

(
βu,y

)
φ + Π∗M

(
βu,yφ

)
,

Du,T−t (φ) = ζu,T−t−1,4 (φ) −
1
2

(β′u,z)
2φ +

1
2

(
ζu,T−t−1,9 (φ) + β′u,zφ

)2

1 − 2ζu,T−t−1,8 (φ)
,

Eu,T−t (φ) = ζu,T−t−1,5 (φ) − Π∗S

(
β′u,y

)
φ + Π∗S

(
β′u,yφ

)
.

where for the market case, βM,z = βM,y = 1 and β′M,z = β′M,y = 0 while for the stock,

β′S ,z = β′S ,y = 1.

As the proof in strongly inspired from the existing literature, we refer the reader to
Appendix A.5.
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4.F Particle Filter

In the following, whenever the subscript M and S have been dropped, the approach is
applicable to both market and stock data.

The filter is based on pure jump particle paths y(i)
1:T = {y(i)

1 , y
(i)
2 , ...y

(i)
T }, i ∈ {1, ...,N} and

the sequential importance resampling (SIR) of Gordon et al. (1993) is implemented.33

A single step of the SIR is now described.

Assume that N jump paths y(i)
1:t−1, i ∈ {1, 2, ...,N} are available up to time t − 1. As a

by-product, the conditional variance h(i)
z,t and the jump scale variable h(i)

y,t are recovered.

1. For i ∈ {1, 2, ...,N}, the time t jump y(i)
t is simulated from the proposal distribu-

tion34

f
(
·

∣∣∣ y(i)
1:t−1,R1:t−1

)
= fNIG

(
· ;α, δ, h(i)

y,t

)
.

2. For i ∈ {1, 2, ...,N}, update the importance weights (up to a normalizing con-
stant) to reflect how likely the simulated particules are with respect to the time t

information Rt :
ω̄(i)

t = f
(
Rt

∣∣∣ R1:t−1, y
(i)
1:t

)
.

More precisely, from Equations (4.1) and (4.10), the market returns satisfy35

RM,t = rt +

(
λM −

1
2

)
hM,z,t + (γM − ΠM (1)) hM,y,t + zM,t + yM,t.

33Throughout the paper, N = 25, 000 particles are used.
34More precisely,

fNIG (x;α, δ, h) =
αhK1

(
α
√

h2 + x2
)

π
√

h2 + x2
exp

(
h
√
α2 − δ2 + δx

)
K1 (x) =

∫ ∞

0
exp (−x cosh (t)) cosh (t) dt.

35Similarly, for the stock returns, we have

f
(
RS ,t

∣∣∣∣ RS ,1:t−1, y
(i)
S ,1:t, h̃M,z,1:t, h̃M,y,1:t, z̃M,1:t+1, ỹM,1:t+1

)
= φ

(
RS ,t; m(i)

S ,t, h
(i)
S ,z,t

)
with

m(i)
S ,t = rt +

(
βS ,zλM −

1
2
β2

S ,z

)
h̃M,z,t +

[
γM,S

(
βS ,y

)
− ΠM

(
βS ,y

)]
h̃M,y,t + βS ,z̃zM,t+1 + βS ,yỹM,t+1

+

(
λS −

1
2

)
h(i)

S ,z,t +
[
γS − ΠS (1)

]
h(i)

S ,y,t + y(i)
S ,t+1

and variance h(i)
S ,z,t.
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Therefore, conditionally on a simulated path y(i)
M,1:t and on the past returns RM,1:t−1,

the time t market return RM,t is normally distributed with expectation

m(i)
M,t = rt +

(
λM −

1
2

)
h(i)

M,z,t + (γM − ΠM (1))h(i)
M,y,t + y(i)

M,t

and variance h(i)
M,z,t,

f
(
RM,t

∣∣∣ RM,1:t−1, y
(i)
M,1:t

)
=

1√
2πh(i)

M,z,t

exp

−1
2

(
RM,t − m(i)

M,t

)2

h(i)
M,z,t

 .

3. For i ∈ {1, 2, ...,N}, compute the normalized weights

ω(i)
t =

ω̄(i)
t∑N

k=1 ω̄
(k)
t

.

4. For i ∈ {1, 2, ...,N}, update the conditional variance and the jump scale variable.
For the market, based on (4.3)and (4.5),

h(i)
M,z,t+1 = wM,z + bM,zh

(i)
M,z,t +

aM,z

h(i)
M,z,t

(
z(i)

M,t − cM,yh
(i)
M,z,t

)2

h(i)
M,y,t+1 = wM,y + bM,yh

(i)
M,y,t +

aM,y

h(i)
M,z,t

(
z(i)

M,t − cM,yh
(i)
M,z,t

)2

where z(i)
M,t = RM,t − m(i)

M,t.
36

5. From normalized importance weights, compute the filtered variables

z̃M,t =
∑N

i=1 z(i)
M,tω

(i)
t , h̃M,z,t+1 =

∑N
i=1 h(i)

M,z,t+1ω
(i)
t ,

ỹM,t =
∑N

i=1 y(i)
M,tω

(i)
t , h̃M,y,t+1 =

∑N
i=1 h(i)

M,y,t+1ω
(i)
t .

6. Resample the particles using the continuous sampling of Malik and Pitt (2011).37

36For the stock,

h(i)
S ,z,t+1 = κS ,z̃hM,z,t+1 + bS ,z

(
h(i)

S ,z,t − κS ,z̃hM,z,t

)
+ aS ,z

((
h(i)

S ,z,t

)−1 (
z(i)

S ,t

)2
− 1 − 2cS ,zz

(i)
S ,t

)
h(i)

S ,y,t+1 = κS ,yh̃M,y,t+1 + bS ,y

(
h(i)

S ,y,t − κS ,yh̃M,y,t

)
+ aS ,y

((
h(i)

S ,z,t

)−1 (
z(i)

S ,t

)2
− 1 − 2cS ,yz(i)

S ,t

)
where z(i)

S ,t = RS ,t − m(i)
S ,t.

37As argued in Creal (2012), basic resampling methods are ill-suited for maximum likelihood esti-
mation.
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(a) Draw N particles from the current particle set from a smoothed empirical
cdf as proposed in Malik and Pitt (2011) and let

{
h( ji)

M,z,t+1

}N

i=1
and

{
h( ji)

M,y,t+1

}N

i=1
denotes the resulting conditional variances and the jump intensity variables
once the resampling is accomplished.38

(b) Replace the current conditional variance and jump intensity with their re-
sampled values:

h(i)
M,z,t+1 ← h( ji)

M,z,t+1, and h(i)
M,y,t+1 ← h( ji)

M,y,t+1.

The log-likelihood is obtained as a by-product of the particle filter. Indeed,

LM,returns(ΘM) =

T∑
t=1

log

 N∑
i=1

ω̄(i)
t

 .
4.G Stock Fundamentals

The market and the volatility betas are obtained by regressing a stock’s excess returns
on the S&P 500 excess returns and daily changes on the VIX using the past year of
data:

rS ,t−k = α+βmkt,tMKTt−k + β∆vix,t∆VIXt−k + εt−k, k = 0, . . . , 252.

The betas are considered missing if less than 63 data points are available over the past
year.

The market equity (ME) is obtained by multiplying the number of outstanding shares
by the close price for each stock.

The book equity (BE) is computed as the difference between the total assets of a firm
(ATQ in Compustat) and its liabilities. The latter are defined as the sum of the debt
in current liabilities (DLCQ) and half of the long-term debt (DLTTQ) as in Bharath
and Shumway (2008). Both the debt in current liabilities and the long-term debt are
linearly interpolated between quarterly data points to obtain daily estimates. BE is
considered missing when negative.

38Note that when the number of resampled particles is small, we use importance sampling to increase
it. To this end, the jump intensity variable is artificially increased and a weight correction is applied
accordingly.
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The operating profitability (OP) is defined as the quarterly revenue at time t (REVTQ),
minus the cost of goods sold at time t (COGSQ), the interest expense at time t (XINTQ)
and selling, general, and administrative expenses at time t (XSGAQ), divided by book
equity for the last year (i.e. at t minus 1 year). All the fundamental values used to
compute OP were linearly interpolated from quarterly data.

The investment level is obtained from the book value of assets. Specifically, it is
computed as the change in total assets over the previous year (from t minus 1 year
to t), divided by the total assets at the end of the previous year (i.e. at time t minus
1 year). The values of the assets are also linearly interpolated from quarterly data to
obtain daily estimates.

Finally, the trailing twelve-month return is obtained by taking the sum of daily excess
returns over the last year (i.e. 252 previous business days, when available).
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Extracting Latent States with High
Frequency Option Prices

Abstract*

We propose the option realized variance as a new observable covariate that integrates
high frequency option prices in the inference of option pricing models. Using several
simulation and empirical studies, this paper documents the incremental information
offered by this variable. Our empirical results show that the information contained in
this new covariate improves the inference of model variables such as the instantaneous
variance, return jumps, and variance jumps of the S&P 500 index. Parameter estimates
indicate that the risk premium breakdown between jump and diffusive risks is affected
by the omission of this information.

Keywords: high frequency data; option realized variance; options; jump-diffusions;
particle filter.
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Chapter 5. Extracting Latent States with High Frequency Option Prices

5.1 Introduction

The existing literature on option pricing has almost exclusively focused on model
specification1 and estimation2, but has not given much regard to the incremental infor-
mation offered by observable variables. This paper addresses this issue by enlarging
the set of observable covariates with the option realized variance (ORV). This novel
source of information parsimoniously integrates high frequency option prices into the
list of observable covariates.

Identification of model components relies on time series of observable variables. The
first set of observable covariates corresponds to the time series of underlying as-
set prices, which contain information about physical measure dynamics. Traditional
discrete-time models such as those studied in Engle (1982) and Bollerslev (1986) em-
ploy these prices directly to infer volatility process dynamics. In continuous-time
models, these prices have been used to analyze the role of jumps on returns and their
volatility (Eraker et al., 2003). Advances in econometrics have allowed researchers
to estimate different characteristics of the return variation using measures such as the
realized variance and bipower variation (Andersen et al., 2001, Barndorff-Nielsen and
Shephard, 2004, among others). In the context of option pricing, Christoffersen et al.
(2014) and Christoffersen et al. (2015) show that these realized measures reduce op-
tion pricing errors significantly, providing evidence of the economic value of high
frequency asset prices.

A second important source of information comes from the rich cross section of op-
tion prices. These prices not only provide information about the dynamics under the
risk-neutral measure, but also about the parameters that govern the conditional return
distribution. For instance, Bates (2000) uses option contracts on the S&P 500 in-
dex to extract implicit distributions of competing jump-diffusion models. Combining
both underlying asset returns and option prices, Eraker (2004) conducts an empirical
analysis of jump-diffusion models by looking at their ability to simultaneously fit op-
tion and return data. Johannes et al. (2009) propose a filtering methodology based
on return and option datasets to disentangle jumps and diffusive components. More

1In the recent literature, few model features have been considered: jumps in volatility (Eraker et al.,
2003, Pan, 2002, Todorov and Tauchen, 2011), co-jumps (Broadie et al., 2007, Chernov et al., 2003,
Eraker, 2004), jump arrival intensities (Bates, 2000), and multifactor stochastic volatility with jumps
(Bardgett et al., 2015), among others.

2A non-exhaustive list of methods for the estimation of these models includes Markov chain Monte
Carlo methods (Eraker, 2001, Jones, 1998), nonparametric approaches (Aït-Sahalia and Lo, 1998), the
simulated method of moments (Duffie and Singleton, 1993, Gallant and Tauchen, 2010), the generalized
method of moments (Pan, 2002), and approximate maximum likelihood (Bates, 2006), among others.
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recently, the emergence of derivative contracts on these options has allowed studies
such as Cont and Kokholm (2013) and Bardgett et al. (2015) to extract information
about the expected future realized variance.

To understand the information content of option realized variances, we employ a
model of stock returns that exhibits stochastic volatility, jumps in returns with stochas-
tic intensity, and independent jumps in variance using the general framework of Duffie
et al. (2000). These characteristics are similar to those studied in Pan (2002), Eraker
et al. (2003), Broadie et al. (2007) and Johannes et al. (2009), among others. We
favour this specification over more sophisticated ones because it is flexible enough to
capture dynamic properties of stock returns while providing analytical tractability to
conduct empirical analysis with time series of option panels.

Jumps in the variance process are generally difficult to infer as the contributions to
diffusive and jump components of the variance process are hard to disentangle. The
inclusion of option realized variances in the inference process circumvents this issue
because it brings in non-redundant information. Contrary to Andersen et al. (2015b),
we use a parametric approach to characterize model components from high frequency
option prices. A distinctive characteristic of ORV is that, depending on its moneyness,
specific features of the underlying processes can be isolated. For instance, deep out-
of-the-money options have very low deltas and vegas, so most of the variability in
option prices comes from discontinuous sample paths generated by jumps in returns
and volatility.

The paper conducts simulated and empirical studies on the incremental information
content of several information sources. In addition to returns and a panel of daily
option implied volatilities (IV), we add measures of the index return variance such as
realized variance and bipower variation. We complement this sample with the newly
proposed option realized variance, which is available every day for each option in
the panel. An extensive Monte Carlo study that relies on an extension of Johannes
et al.’s (2009) filter shows that option realized variances contribute significantly to the
identification of variance jumps.

In our empirical study, we employ intraday data from options on the S&P 500 index
and from futures prices on the E-mini S&P 500 to document several properties of
the option realized variance.3 Using a sample of daily observations that extends from
July 2004 to December 2012, we analyze the large cross section of option data by

3Recently, we have been made aware that Audrino and Fengler (2015) have developed, indepen-
dently, a competing measure of the option realized variance similar to ours. Whereas they use option
log-prices to compute their measure, we employ option prices. We privilege the use of option prices
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constructing ORV surfaces across moneynesses and maturities. We find that there is
an important level of commonality between ORVs and the realized variance of index
returns, especially when large, sporadic shocks happen.4 This degree of commonality
is expected as a result of intense trading activity in both markets (Stephan and Whaley,
1990). We also assess the economic relationship between ORVs and index return
variations with predictive regressions: lagged values of selected ORVs predict the
one-day ahead realized variance and jump variation activity.5

The paper then investigates several empirical implications of adding ORVs as addi-
tional observable covariates in the estimation of option pricing models. We first ob-
serve that the addition of ORV produces less frequent larger jumps in the variance
process and more frequent smaller negative jumps in the price process. Next, we find
that the addition of this new covariate increases the compensation for bearing price
jump risk (i.e. 0.1% without ORV vs 1.6% with ORV , on average) and decreases the
compensation for diffusive risk premium (i.e. 4.4% when ORV is excluded and 1.8%
when ORV is used). Thus, in total, the average risk premium that results from using
both information sets is similar, but the risk premium breakdown between diffusive
and jump risks is different. Third, regarding the uncertainty around the estimation
of latent quantities, posterior standard deviations show that adding ORV to the infor-
mation set decreases this uncertainty. The most staggering decrease is observed for
variance jumps, which experience approximately a fivefold decrease. Finally, in- and
out-of-sample analyses show that the inclusion of all information sources produces
smaller forecasting errors of implied volatilities.

Several studies in the literature on asset pricing employ non-parametrical methods to
infer the underlying structure of stock returns and their volatilities from high frequency
prices.6 We focus on a parametrical approach to study the incremental information

because the variance measure resulting from these prices does not depend on the price of the option
itself, which is important for large-scale optimizations in empirical option pricing studies.

4Events such as the financial crisis of 2008, the flash crash episode of 2010, or the downgrade of the
U.S. debt in 2011 have common spikes in all time series.

5The jump variation activity is measured as the positive difference between realized variance and
bipower variation.

6Todorov and Tauchen (2011) find evidence of discontinuous co-movements between the instan-
taneous volatilities and returns using high frequency data of VIX and the S&P 500 index. Andersen
et al. (2015a) employ a nonparametric framework to infer latent instantaneous volatilities and jump
intensities with intraday Black-Scholes implied volatilities. Using the rich information embedded in
option prices, the authors find that the dynamics for IV of deep OTM puts behave as a pure jump pro-
cess, whereas those of near-the-money are better characterized by a diffusive process. Bandi and Reno
(2016) use high frequency data for the S&P 500 index to estimate its realized variance over intraday
intervals. Using a novel moment-based procedure, the authors find support for the existence of inde-
pendent jumps in the instantaneous volatilities and co-jumps between the price process and that of the
volatility.
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offered by intraday prices. Our results suggest that not all sources give the same in-
formation and that there is unique information about specific features of the model in
each source. Our paper also contributes to the literature with a parsimonious measure
that summarizes intraday information from option prices. In line with Andersen et al.
(2015a), we document that the cross section of option high frequency prices, summa-
rized by the option realized variance in this study, contains relevant information about
the discontinuous part of the variance process.

This paper is also related to studies that deal with the filtering of continuous-time
jump-diffusion models.7 Our paper differs from this literature in several ways. First,
we propose a filter based on the sequential importance resampling (SIR) algorithm
(Gordon et al., 1993) that, in addition to index returns and option prices, employs real-
ized variance, bipower variation, and option realized variances as observable sources.
Second, contrary to Johannes et al. (2009), we estimate the proposed model using the
filter, which requires special attention to the way the likelihood function is approxi-
mated and provides a less computationally intensive procedure than the one employed
in Eraker (2004).

The rest of this paper is organized as follows. Section 5.2 describes the model and
provides insights about the information content of observable variables. Section 5.3
presents the estimation methodology of the model. Simulated-based results are given
in Section 5.4. Section 5.5 conducts a nonparametric study of option realized vari-
ances. Section 5.6 presents the option pricing implications of adding ORVs in the
estimation set. Finally, Section 5.7 concludes.

5.2 Framework

The goal of this section is to present a model that captures different properties of
asset prices. The building block is the square root stochastic volatility specification
of Heston (1993). To adequately model fat tails of return distributions, a compound
Poisson process with Gaussian jumps is added to the price process.8 Although both
stochastic volatility and jumps in the price process can generate rich dynamics, Bakshi

7Johannes et al. (2009) and Bardgett et al. (2015) use an optimal filtering methodology that com-
bines time-discretization schemes with Monte Carlo methods to obtain latent states. Eraker (2004)
employs Markov chain Monte Carlo simulation to estimate the posterior distribution of parameters, as
well as volatility and jump processes.

8This kind of jump process is used by Bates (1996), Bakshi et al. (1997), Duffie et al. (2000), Pan
(2002), Eraker et al. (2003), Johannes et al. (2009) to name a few.
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et al. (1997), Bates (2000) and Pan (2002) find that volatility dynamics resulting from
this specification tend to be misspecified. As explained by Andersen et al. (2001)
and Alizadeh et al. (2002), two factors generate volatility: a rapidly changing factor
and a highly persistent slowly moving one. The latter could be modelled by jumps
in variance process. Therefore, exponentially distributed jumps are also added to the
variance process.9

We deliberately focus our attention on a model with the following latent factors: diffu-
sive stochastic volatility, log-equity jumps, and instantaneous variance jumps. These
three risk factors induce different behaviour in the asset price and hence can be iden-
tified from an econometric perspective, given the right amount of data (Eraker et al.,
2003). This insight is explored in the second part of this section, in which we discuss
the list of available data sources and link these quantities to different features of the
data generating process.

5.2.1 Model

The model is part of the family of stochastic volatility models with jumps (SVJ). This
affine jump-diffusion model yields semi-closed form solutions for option pricing as
shown in Duffie et al. (2000). Under the objective measure P, the process governing
the dynamics of the log-equity price, Y , and its instantaneous stochastic variance, V ,
are

dYt =αPt−dt +
√

Vt−dWY,t + dJY,t, (5.1)

dVt = κ (θ − Vt−) dt + σ
√

Vt−dWV,t + dJV,t, (5.2)

WY,t = ρWV,t +
√

1 − ρ2W⊥,t,

JY,t =

NY,t∑
n=1

ZY,n, ZY,n ∼ N(µY ;σ2
Y)

JV,t =

NV,t∑
n=1

ZV,n, ZV,n ∼ Exp(µV)

9Among others, Duffie et al. (2000), Eraker et al. (2003), Johannes et al. (2009) and Andersen et al.
(2015b) use exponentially distributed variance jumps. Note that Bates (2000), Duffie et al. (2000),
Pan (2002), Eraker et al. (2003) and Todorov and Tauchen (2011) provide evidence for the presence of
positive jumps in volatility.
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where
{
WV,t

}
t≥0 and

{
W⊥,t

}
t≥0 are two independent standard P-Brownian motions and{

αPt−
}

t≥0
is a predictable process such that

αPt− = r − q +

(
ηY −

1
2

)
Vt− +

(
γY −

(
ϕPZY

(1) − 1
))
λY,t− . (5.3)

The risk-free interest rate is given by r and the instantaneous dividend yield by q. The
parameters ηY and γY capture the diffusive and jump risk premiums, respectively.10

The function ϕPZY
(1) is the cumulant generating function of ZY evaluated at 1. The drift

process αPt− is a by-product of the Radon-Nikodym derivative used in this study. We
refer the interested reader to Subsection 5.B.1 for more details.

Log-equity jumps are generated by a Poisson process
{
NY,t

}
t≥0 with stochastic intensity

that depends on the instantaneous variance: λY,t− = λY,0 + λY,1Vt− . The size of these
jumps are given by Gaussian random variables with mean µY and standard deviation
σY .11 Regarding jumps in volatility, these are governed by a Poisson process

{
NV,t

}
t≥0

that has a constant intensity λV,t− = λV,0. Variance jump sizes
{
ZV,n

}∞
n=1 are given by

independent exponentially distributed random variables with mean µV .

5.2.2 Links Between Theoretical and Empirical Quantities

We now analyze variables commonly used to conduct inference of models displaying
latent characteristics, such as those embedded in Equations (5.1) and (5.2).

The first group of observables corresponds to time series of index prices, which con-
tain information under the physical measure. In principle, high frequency prices are
sufficient to extract all the information required for inferring latent components. In
practice, however, parametric estimation from these prices would require the use of a
very large sample set. The realized variance and bipower variation help reduce this di-
mensionality problem by keeping important information about the price and variance
processes.

10Our Radon-Nikodym derivative explained in Subsection 5.A.1 includes four equivalent martingale
measure coefficients: ΛY,u− , ΛV,u− , ΓY and ΓV . The process ΛY,u− is ηY

√
Vu− , as in Heston (1993) among

others. ΛV,u− is defined analogously. Moreover, γY is a nontrivial function of ΓY . Even though ηV and
ΓV are not involved directly in our P-measure modelling, these two parameters deal with the change of
measure of the variance diffusive and jump components.

11For this model, the jump convexity correction is given by ϕPZY
(1) − 1 = exp

(
µY +

σ2
Y

2

)
− 1.
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The second group is composed of options written on the S&P 500 index.12 Option im-
plied volatilities capture the wedge between the physical and the risk-neutral measure,
which should provide more precise estimates of model parameters. In addition to this
variable, we consider the variance of the option price as a complementary information
source.

5.2.2.1 Index Prices as a First Source of Information

Log-prices constitute the fundamental source of information available under the phys-
ical measure:

Observable #1: Yt. (5.4)

One of the interesting properties of these prices, as pointed out in Merton (1980), is
that information about volatility can be obtained by arbitrarily increasing the sample
frequency. Moreover, as discussed in nonparametric studies (see Barndorff-Nielsen
and Shephard, 2004), this source not only provides information about the volatility
process, but also about jumps in asset prices.

The fundamental variable that links intraday log-prices with price volatility is the
quadratic variation (QV). This variable employs intraday log-prices over the inter-
val [0, t] in the following way:

QVt = [Y,Y]t = lim
N→∞

N∑
j=1

(
Yt j/N − Yt( j−1)/N

)2

where N is the number of elements in an equidistant grid dividing the interval [0, t].
Under the proposed jump-diffusion model, the quadratic variation is composed of the
integrated variance and the log-price jump induced variation:

QVt =

∫ t

0
Vs− ds +

NY,t∑
n=1

(ZY,n)2.

In the model considered in Equation (5.1), the quadratic variation depends explicitly
on log-equity price jumps sizes ZY,n, the number of price jumps NY,t, and the path

12An interesting extension would be to consider the VIX index and its derivatives within a joint
framework as the one proposed in Bardgett et al. (2015). We leave for future research the question of
identifying the value added by these derivatives and choose to explore in detail what options written on
the S&P 500 contribute in terms of information.
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followed by the volatility process through
∫ t

0
Vs−ds. The impact of jumps on the in-

stantaneous variance is implicitly captured in the integrated variance over time. Over
a time interval of length ∆ (e.g. one day), the increments of the quadratic variation are
given by:

∆QVt−∆,t = QVt − QVt−∆ =

∫ t

t−∆

Vs− ds +

NY,t∑
n=NY,t−∆+1

(ZY,n)2. (5.5)

As argued by Andersen et al. (2001), estimates of these increments can be obtained
with the realized variance (RV), which is computed from intraday log-prices in the
following way:

Observable #2: RVt−∆,t =

N∑
j=1

(
Yt−∆+ j∆/N − Yt−∆+( j−1)∆/N

)2
. (5.6)

In general, if N is large enough, ∆QVt−∆,t and RVt−∆,t should be similar.13

Whereas the quadratic variation provides an overall measure of price volatility, the
integrated variance, defined by

It =

∫ t

0
Vs− ds

depends only on the diffusive component of the variance process and its jumps. Incre-
ments of the integrated variance over a time period of length ∆ are given by:

∆It−∆,t = It − It−∆ =

∫ t

t−∆

Vs− ds, (5.7)

which can be estimated using the realized bipower variation:

Observable #3: BVt−∆,t =
π

2

N∑
j=2

∣∣∣Yt−∆+ j∆/N − Yt−∆+( j−1)∆/N

∣∣∣
×

∣∣∣Yt−∆+( j−1)∆/N − Yt−∆+( j−2)∆/N

∣∣∣ . (5.8)

In general, if N is large enough, ∆It−∆,t and BVt−∆,t should be similar.14 Thus, in order
to identify log-price jump activity, it is necessary to combine the information contained
in RV and BV .

13Protter (2004) shows that RVt−∆,t converges uniformly in probability to ∆QVt−∆,t as the number of
intraday observations increases.

14In a similar class of models, Barndorff-Nielsen and Shephard (2004) prove that BVt−∆,t converges
to ∆It−∆,t as the number of intraday observations increases.
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5.2.2.2 Option-Based Information

Option prices provide an additional source of information because they are sensitive
to changes in price and volatility. Under usual conditions, the price of an option is
given by

Ot = EQt
[
e−r(T−t)F(YT ,K)

∣∣∣ Yt,Vt

]
,

where F(YT ,K) is the payoff at time T , K the strike price of the option, and Q a
risk-neutral probability measure. Several authors highlight different advantages of
adding these prices to the information set. First, these prices are conditional func-
tions of stock returns, which allows researchers to estimate parameters governing the
shape of these distributions (Dumas et al., 1998, Jackwerth and Rubinstein, 1996).
Second, option prices help capture the wedge between the measures P and Q, thus
providing information about volatility and jump risk premiums (Chernov and Ghy-
sels, 2000, Christoffersen et al., 2012, Eraker, 2004, Pan, 2002, Santa-Clara and Yan,
2010). Third, option prices are highly informative about the instantaneous variance
level (Broadie et al., 2007).15

Rather than using option prices directly, we employ the implied volatility (IV) result-
ing from the Black-Scholes formula:16

Observable #4: σBS
t,i , t ∈ {1, 2, ..., nt}. (5.9)

This change of variable does not only provide measures that are invariant to price lev-
els, but also ones that can be characterized with OTM call and put options of different
maturities (the so-called IV surface). We digress from the pure common calibration
approach and use a time series of cross sections of options to capture the links between
physical and risk-neutral parameters.

The literature in option pricing has relied almost exclusively on end-of-day option
prices. With the availability of high frequency option prices, we now explore how to
construct variables that capture information from fine grids. To this end, we extend
the well-established concept of realized variance of log-prices to option prices and
compute what we call the option realized variance (ORV).

15Within the proposed framework, semi closed-forms for option prices exist and are provided in
Subsection 5.A.3.

16There is indeed a bijection between option prices and implied volatilities. See Renault (1997) for
the benefits of using implied volatilities over option prices.
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To understand ORV , we need to first look at the quadratic variation of the option price,
as the former quantity corresponds to an approximation of the latter. In the proposed
framework, we can characterize this variation for a European option as17

[O,O]t =

∫ t

0

(∂Ou

∂y
(Yu− ,Vu−)

)2

+ 2σρ
∂Ou

∂y
(Yu− ,Vu−)

∂Ou

∂v
(Yu− ,Vu−)

+σ2
(
∂Ou

∂v
(Yu− ,Vu−)

)2 Vu−du +
∑

0<u≤t

{Ou (Yu,Vu) − Ou (Yu− ,Vu−)}2 . (5.10)

The last term of Equation (5.10) is associated with the jump variation contribution and
can be rewritten as:∑

0<u≤t

{Ou (Yu,Vu) − Ou (Yu− ,Vu−)}2

=
∑

0<u≤t

{Ou (Yu,Vu) − Ou (Yu− ,Vu)}2 +
∑

0<u≤t

{Ou (Yu,Vu) − Ou (Yu,Vu−)}2 ,

where the first term relates to log-equity jumps and the second one to variance jumps.

The realized equivalent of the change in option quadratic variation

∆OQVt−∆,t = [O,O]t − [O,O]t−∆

is the option realized variance. This variable is computed from intraday option prices
according to the following expression:

Observable #5: ORVt−∆,t,i =

N∑
j=1

(
Ot−∆+ j∆/N − Ot−∆+( j−1)∆/N

)2
, t ∈ {1, ..., nt}.

(5.11)

Several properties of option realized variances can be characterized from Equation
(5.10). Notice first that the option realized variance depends on the delta of the option
through

∂Ot

∂y
=
∂Ot

∂S
S

and the variance vega ∂Ot
∂v . Accordingly, the moneyness of the option will determine

which aspects of the data generating process drive the option realized variance. If
we consider a deep in-the-money (ITM) call option, its delta is close to one and the

17Since the option price is a smooth function of Y and V , Itō’s lemma can be applied to determine
its quadratic variation. Details are available in the Subsection 5.B.2. Appendix B.2.2.1 provides a
description on how to compute the derivatives used in Equation (5.10).
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sensitivity to the instantaneous variance close to zero, so the option quadratic variation
for this option will be approximately equal to:

[O,O]ITM
t �

∫ t

0
exp(2Yu−)Vu−du +

∑
0<u≤t

(∆Ou)2.

In this case, we would expect the quadratic variance of this option to be “perfectly
elastic” to the integrated variance and jump induced variation (in a day without jumps
we should expect the option quadratic variance for such a derivative to be proportional
to the integrated variance of the underlying).18 Therefore, information obtained using
ITM option quadratic variance is somewhat redundant when one has already included
realized variance as a source of information. If we consider an ATM option, the vari-
ance vega is at its highest value and delta should be close to 1

2 , so Equation (5.10) is
approximated to:

[O,O]ATM
t �

∫ t

0

exp(2Yu−)
4

+ ρσ
∂Ou

∂v
+ σ2

(
∂Ou

∂v

)2 Vu−du +
∑

0<u≤t

(∆Ou)2.

For this level of moneyness, we would expect that the option quadratic variation re-
sponds more than proportionally to changes in the integrated variance. Finally, for
deep OTM options, delta and variance vega should be close to zero, so most of the
option quadratic variation comes from jump-induced variation. In this case we have:

[O,O]OTM
t �

∑
0<u≤t

(∆Ou)2.

The behaviour of this type of option is not new to the finance literature; Andersen
et al. (2015a) show nonparametrically that OTM put options behave like a pure-jump
process. In this paper we show that the quadratic variation of OTM and deep OTM
options captures this information, which helps to identify jump activity in variance and
log-price processes by bringing an alternative variable to the existing list of observable
covariates.

We end this section by summarizing how realized moments and other observed quan-
tities can be combined to identify different risk sources. First, the difference between

18Empirically, we could look at this by running log-regressions of ORV over RV for different money-
ness (controlling with a variable related to jumps, or excluding days with detected jumps). We should
observe that coefficients for ATM are higher than those of ITM, and that the latter should be higher than
those of OTM. Subsection 5.4.2 shows examples of these regressions using simulated data.
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the realized variance and the bipower variation,

RVt−∆,t − BVt−∆,t �

NY,t∑
n=NY,t−∆+1

(ZY,n)2,

provides information about the presence and importance of log-equity price jumps;
however, this difference does not give enough information to identify the sign of the
jump. To this end, deep out-of-the-money (OTM) call (put) options are contracts
that capture, to some extent, the sign of price jumps since their prices change quite
drastically as soon as there is a substantial increase (decrease) in the underlying price.

Second, OTM option realized variations, combined with realized measures of log-
equity prices, help to identify jumps in the volatility process. As discussed before, the
OTM option realized variance can be approximated by

ORVOTM
t−∆,t �

∑
t−∆<u≤t

(Ou (Yu,Vu) − Ou (Yu− ,Vu))2 +
∑

t−∆<u≤t

(Ou (Yu,Vu) − Ou (Yu,Vu−))2.

In the absence of log-equity price jumps, RVt−∆,t−BVt−∆,t is close to zero, so ORVOTM
t−∆,t

becomes
ORVOTM

t−∆,t �
∑

t−∆<u≤t

(Ou (Yu,Vu) − Ou (Yu,Vu−))2.

The previous equation shows that ORVOTM
t−∆,t encompasses information about the pres-

ence of variance jumps.

5.3 Filtering and Estimation

This section provides details about the implementation of a SIR-type filter following
Gordon et al. (1993). Our approach differs from the current literature in two ways.
First, we propose a filter based on the SIR that employs realized variance, bipower
variation and option realized variances as observable sources. Second, we show how
to estimate the model using the filter, which requires special attention to the way the
likelihood function is computed.
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5.3.1 Filtering Algorithm

The filter is constructed over samples of daily observations19, so we define the elapsed
time between two consecutive time steps by ∆ = 1/252 and denote the observed
sample by {zk∆}

T
k=1, where

zk∆ =
[
Yk∆,RV(k−1)∆,k∆, BV(k−1)∆,k∆,σσσ

BS
k∆ ,ORV(k−1)∆,k∆

]
,

σσσBS
k∆

=
[
σBS

k∆,1, ..., σ
BS
k∆,nk∆

]
being the implied volatility vector of the nk∆ options consid-

ered that day and ORV(k−1)∆,k∆ =
[
ORV(k−1)∆,k∆,1, ...,ORV(k−1)∆,k∆,nk∆

]
the corresponding

vector of option realized variances.

As it is the case for any particle filter, the first step is to simulate particles for the
latent variables. The interconnection between instantaneous variance and log-price
processes requires the generation of the complete model. More precisely, assuming
that the log-price Y(k−1)∆ and its instantaneous variance V(k−1)∆ are known at the end
of day k − 1, the variables are simulated based on a time discretization of Equations
(5.1) and (5.2). Intraday steps are required to capture the possibility of having multiple
jumps in a single day and to ensure that the Euler discretization scheme is not too far
away from the original model. Subsection 5.B.2.1 provides a detailed description of
the simulation step.

The calculation of option realized variances requires the generation of intraday latent
quantities. In this regard, an aggregation step is proposed. Specifically, we use the
simulation method of Subsection 5.B.2.1 to generate paths on a fine grid (i.e. M intra-
day values per day). To obtain end-of-day quantities, we aggregate the M simulated
values as explained in Subsection 5.B.2.2.

The aggregation produces daily simulated particles:

xk∆ =
[
Yk∆,Vk∆,∆I(k−1)∆,k∆,∆QV(k−1)∆,k∆, IVk∆ (Yk∆,Vk∆) ,∆OQV(k−1)∆,k∆

]
where ∆I(k−1)∆,k∆ is the integrated variance generated as a by-product of the simu-
lation stage, ∆QV(k−1)∆,k∆ is the simulated quadratic variation derived from the inte-
grated variance and the simulated jumps, IVk∆ (Yk∆,Vk∆) represents the vector of the
nk∆ model implied volatilities based on the simulated log-price and variance values,

19There is a vast literature on how many intraday data points should be used to avoid the microstruc-
ture noise effect and what procedures can be implemented to get rid of it. This will be discussed in
the empirical study section. For now, we assume that realized variance, bipower variation and option
realized variance have been measured adequately.
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and ∆OQV(k−1)∆,k∆ is the vector of the corresponding option quadratic variation calcu-
lated from Equation (5.10).

Further distributional assumptions about the measurement errors are required to con-
nect the observed variables to the state variables. Since the realized variance is based
on a finite sample of returns, it has not converged to its limit. Hence, the relative error
in the realized variance follows20

∆QV(k−1)∆,k∆ − RV(k−1)∆,k∆

RV(k−1)∆,k∆

∼ N
(
0, η2

1

)
. (5.12)

Similarly, the relative error between bipower variation and integrated variance is as-
sumed to be normally distributed:

∆I(k−1)∆,k∆ − BV(k−1)∆,k∆

BV(k−1)∆,k∆

∼ N
(
0, η2

2

)
. (5.13)

The relative implied volatility error of the ith option of the sample is assumed to have
a Gaussian distribution:

IVk∆,i (Yk∆,Vk∆) − σBS
k∆,i

σBS
k∆,i

∼ N
(
0, η2

3

)
(5.14)

where IVk∆,i (Yk∆,Vk∆) is the model IV and σBS
k∆,i is the market implied volatility.

Finally, as shown in Protter (2004), ORV(k−1)∆,k∆,i converges to ∆OQV(k−1)∆,k∆,i. Again
the relative error is presumed to be Gaussian:

∆OQV(k−1)∆,k∆,i − ORV(k−1)∆,k∆,i

ORV(k−1)∆,k∆,i
∼ N

(
0, η2

4

)
. (5.15)

All these relative errors are assumed to be independent.

5.3.2 Estimation

In the SIR method, the proposal distribution depends on the most recent values of
state variables. To ensure that the joint estimation is not dominated by one particular
source, the likelihood associated with each observation receives a weight inversely

20We are aware of Barndorff-Nielsen and Shephard’s (2002) asymptotic results as the number M of
intraday observations tends to infinity. However, the time discretization of our empirical implementa-
tion is too coarse to pretend that the asymptotic distribution has been reached. In fact, the goal here
is to get an estimation procedure as efficient as possible and a large M makes the simulation step very
time consuming. The Monte Carlo study shows that good precision is attained with quite small M.
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proportional to the number of sources of a given type. That is, log-equity price, RV ,
and BV receive a weight of 1, and σBS and ORV a weight of one over nk∆.21 Based
on Assumptions (5.12), (5.13), (5.14) and (5.15), the weighted contribution to the
likelihood function at time k∆ for particle xk∆ is

f (zk∆| xk∆) = φ
(
Yk∆; µk∆, σ

2
k∆

)
φ

(
∆QV (k−1)∆,k∆ − RV(k−1)∆,k∆

RV(k−1)∆,k∆

; 0, η2
1

)
× φ

(
∆I(k−1)∆,k∆ − BV(k−1)∆,k∆

BV(k−1)∆,k∆

; 0, η2
2

)  nk∆∏
i=1

φ

 IVk∆,i(Yk∆,Vk∆) − σBS
k∆,i

σBS
k∆,i

; 0, η2
3

1/nk∆

×

 nk∆∏
i=1

φ

(
∆OQV(k−1)∆,k∆,i − ORV(k−1)∆,k∆,i

ORV(k−1)∆,k∆,i
; 0, η2

4

)1/nk∆

,

where φ(· ; m, s2) is the density function of a Gaussian variable with mean m and vari-
ance s2. The conditional expectation µk∆ and standard deviation σk∆ are defined in
Subsection 5.B.1. Let

f (zk∆) =
1

Nx

∑
xk∆

f (zk∆| xk∆)

be the average likelihood at time k∆ across particles and the log-likelihood function
up to time k∆ to be defined recursively:

L (z∆:k∆) ∝ L
(
z∆:(k−1)∆

)
+ log f (zk∆) .

As usual in the SIR filter, particles are resampled according to their weights before
handling the information of the following day. More precisely, the path x∆:(k+1)∆ is
resampled proportionally to its likelihood, that is,22

ω (x∆:k∆) ∝ ω
(
x∆:(k−1)∆

)
f (zk∆| xk∆) .

Although the particle filter approximation of the likelihood function at any point is
asymptotically consistent in the number of particles, the log-likelihood function is not
a continuous function of the parameters. Indeed, particle filters are known for being
ill-suited for maximum likelihood estimation when using naive resampling method-
ologies. The likelihood function is not a continuous function of the model parameters
and this could cause problems for gradient-based optimizers (e.g. Hürzeler and Kün-
sch, 2001). To circumvent the issue, we use the continuous resampling of Malik and

21This idea is similar to the weighted likelihood estimator. Hu and Zidek (2002) study the properties
of the weighted likelihood estimator and show that the key asymptotic results continue to hold.

22Because of our particular resampling strategy, ω
(
x∆:(k−1)∆

)
= 1/Nx, Nx being the number of parti-

cles, and the weight reduces to ω(xk∆) ∝ f ( zk∆| xk∆) .
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Pitt (2011) which allows for continuous likelihood as a function of the unknown pa-
rameters under rather general conditions.

5.4 Simulation-Based Results

This section provides simulated-based results using the model proposed in Section
5.2. Section 5.4.1 studies the performance of the filter introduced in Section 5.3 with
respect to the information provided by different sources. Section 5.4.2 analyzes the
information conveyed in ORV . Finally, Section 5.4.3 conducts a robustness test on the
approximation employed by the filter in order to compute ORV from intraday option
prices.

Table 5.1 shows the parameters employed in the tests of this section. These parameters
are qualitatively consistent with the ones estimated in the current literature, e.g. Eraker
et al. (2003) and Eraker (2004), among others.23,24

Table 5.1: Model parameters used in the simulation study.

Log-price process Variance process Standard deviations of error terms

ηY 0.500 ηV -0.500 η1 0.050
γY 0.005 ΓV 1.000 η2 0.050
r 0.010 κ 4.000 η3 0.050
q 0.010 θ 0.020 η4 0.050
ρ 0.000 σ 0.500
λY,0 15.000 λV,0 15.000
λY,1 40.000 µV 0.030
µY –0.020 V0 0.020
σY 0.020
Y0 log(1000)

The long-term expected variance θ = 0.02 corresponds to about
√

0.02 = 14% an-
nualized volatility. The parameter ρ is constrained to zero to reduce the signal to
noise ratio, making it more difficult to estimate the volatility. The average log-price
jump intensity is 15.8%, meaning that about 16 jumps per year are expected. The
log-equity price jumps are on average negative, with an average magnitude of −2%
and standard deviation of 2%. The average variance jump is about 3%. The theoret-
ical average diffusive risk premium is given by ηYθ = 1%. The jump risk premium
is about γY

(
λY,0 + λY,1θ

)
= 7.9%. Our results are robust to other choices of ηY and

23They are also consistent with the ones estimated in Subsection 5.6.1.
24A few other specifications have been tested and results were qualitatively robust to these other

parameters.
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γY . Consistent with most econometric studies, ηV is negative: the Q-measure vari-
ance persistence is thus lower than its P counterpart (3.75 vs. 4, respectively) and the
long-term expected variance is higher under the risk-neutral measure (0.0213 vs. 0.02,
respectively). Finally, since ΓV is higher than zero, the average variance jump size un-
der the Q-measure is slightly higher (0.0309) than the one under the physical measure
(0.03). Throughout the simulation experiments, we use 50,000 particles in the filter.

5.4.1 Filter’s Performance as a Function of Information

We simulate 100 sample paths of the data generating process (DGP) using the Broadie
and Kaya (2006) drift-interpolation scheme of van Haastrecht and Pelsser (2010). The
sampling frequency is set at 1/1, 560 of a day (one sample every 15 seconds during
a 6.5 hour trading day) and the length of a path is set to one year. Based on a path
of the DGP, quantities such as integrated variance and realized variance are computed
over a daily frequency. Additional to a path of the DGP, we also compute samples
of intraday option prices. Our sample is composed of short-term options (30 days to
maturity) with call-equivalent deltas of 0.20, 0.35, 0.50, 0.65, and 0.80, and a sample
of long-term options (90 days to maturity) with same call-equivalent deltas. Intraday
option prices are used to compute option realized variances for each day, while im-
plied volatilities are deduced from end-of-the-day option prices. To take into account
measurement errors, all end-of-day quantities include error terms as defined in As-
sumptions (5.12) to (5.15). These observations constitute our set of observables, from
which the filter is run for different data aggregation periods of M = 1, 2, 3, 5, and 10.
We regard M = 15 as the true filter that avoids discretization errors.

We start with a graphical illustration of how different sources of information impact
estimates from the filter. Figure 5.1 compares the true instantaneous variance with five
different densities for a randomly selected day during which a variance jump occurred.
Each density corresponds to the posterior instantaneous variance density function ob-
tained from running the filter with a specific set of variables (i.e. the information set).
When only returns are employed in the filter, we observe that the filter lacks precision
as values are highly dispersed on the left of the true value. When BV is included,
the distribution exhibits a mode closer to the true value with a heavy tail on the right.
However, the main mode still exhibits a downward bias. This shift in the distribu-
tion is evidence of the valuable information that BV adds about the presence of return
jumps in the total variation. An interesting impact in the distribution is observed when
option prices are included in the data set, since the data points cluster closer to the
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Figure 5.1: Example of instantaneous variance densities using different data sour-
ces.
Y means daily log-equity value, RV means realized variance, BV means bipower variation, IV means
implied volatility here, and ORV means option realized variance. The parameters of Table 5.1 are used.
The vertical line represents the true instantaneous variance value. The density are constructed by using
Gaussian kernels along with simulated particles obtained using the SIR-based methodology.

true variance value producing a distribution that is noticeably more peaked, that is,
the variability of the estimator is reduced, but the downward bias is still present. Fi-
nally, the inclusion of option realized variances centers the distribution around the true
value.

We now turn to a more detailed analysis of the filter performance with different infor-
mation sources. This time we employ the root mean square error (RMSE) to compare
the approximate filtered mean with the true filtered one. We also look at the perfor-
mance of the filter by comparing the approximate filtered mean with the true simulated
variable.

Table 5.2 summarizes the performance of the information source and the filter for
different quantities of interest. Consider first the case of the instantaneous variance in
Panel A. Notice that no matter which information set is employed, increasing M has
little effect on the performance of the filter for this variable. This effect comes as no
surprise due to the low discretization bias present at daily frequencies. On the other
hand, we do observe large differences depending on the source of information. The
most important case corresponds to a fourfold decrease when RV is combined with
log-returns. We still observe improvements of about 10% each time other observable
variables are included in the information set, which goes in line with the patterns
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Table 5.2: RMSE for instantaneous variance, integrated variance, quadratic vari-
ance, log-equity jump, and instantaneous variance jump across 100 simulated
paths.

Panel A: Instantaneous variance

RMSE (true) RMSE (filtered)

M 1 2 3 5 10 1 2 3 5 10

Y 45.372 45.308 45.295 45.402 45.213 44.572 44.500 44.487 44.590 44.403
Y and RV 13.0213 12.750 12.688 12.806 12.780 10.739 10.376 10.317 10.425 10.405
Y , RV and BV 9.422 9.246 9.233 9.186 9.182 6.033 5.743 5.680 5.568 5.596
Y , RV , BV and IV 8.5055 7.853 7.531 7.516 7.478 5.389 4.626 4.012 4.001 3.940
Y , RV , BV , IV and ORV 7.496 6.256 6.131 6.085 6.078 4.819 2.147 1.828 1.773 1.713
Panel B: Quadratic variation increment

RMSE (true) RMSE (filtered)

M 1 2 3 5 10 1 2 3 5 10

Y 0.3121 0.3116 0.3120 0.3125 0.3118 0.3082 0.3074 0.3079 0.3085 0.3077
Y and RV 0.0304 0.0304 0.0311 0.0313 0.0310 0.0249 0.0245 0.0254 0.0255 0.0256
Y , RV and BV 0.0278 0.0282 0.0283 0.0291 0.0286 0.0210 0.0203 0.0209 0.0218 0.0212
Y , RV , BV and IV 0.0287 0.0278 0.0278 0.0287 0.0279 0.0214 0.0202 0.0202 0.0216 0.0212
Y , RV , BV , IV and ORV 0.0292 0.0203 0.0202 0.0216 0.0208 0.0259 0.0147 0.0157 0.0164 0.0148
Panel C: Integrated variance increment

RMSE (true) RMSE (filtered)

M 1 2 3 5 10 1 2 3 5 10

Y 0.1753 0.1752 0.1752 0.1758 0.1750 0.1738 0.1737 0.1737 0.1742 0.1734
Y and RV 0.0363 0.0351 0.0350 0.0353 0.0351 0.0325 0.0311 0.0310 0.0314 0.0311
Y , RV and BV 0.0173 0.0169 0.0170 0.0170 0.0169 0.0096 0.0091 0.0090 0.0090 0.0090
Y , RV , BV and IV 0.0209 0.0162 0.0159 0.0159 0.0158 0.0142 0.0085 0.0079 0.0079 0.0078
Y , RV , BV , IV and ORV 0.0271 0.0129 0.0119 0.0116 0.0114 0.0234 0.0060 0.0044 0.0042 0.0040
Panel D: Log-equity jump

RMSE (true) RMSE (filtered)

M 1 2 3 5 10 1 2 3 5 10

Y 6.2694 6.2618 6.2613 6.2577 6.2576 5.9798 5.9723 5.9721 5.9718 5.9724
Y and RV 2.2770 2.2232 2.2296 2.2608 2.2431 1.5404 1.4689 1.4931 1.5001 1.5047
Y , RV and BV 1.8560 1.8554 1.8715 1.9002 1.8427 0.9038 0.8786 0.9379 0.9998 0.9654
Y , RV , BV and IV 1.9777 1.8463 1.8800 1.8820 1.8203 1.0732 0.8666 0.9402 0.9799 0.9765
Y , RV , BV , IV and ORV 3.9788 1.9680 1.8765 1.9214 1.8785 3.5345 1.0410 1.0325 0.9730 0.9531
Panel E: Instantaneous variance jump

RMSE (true) RMSE (filtered)

M 1 2 3 5 10 1 2 3 5 10

Y 9.8003 9.7880 9.7880 9.7862 9.7837 9.3859 9.3742 9.3746 9.3737 9.3705
Y and RV 9.8022 9.1877 9.1002 9.0421 9.0619 9.3878 8.7586 8.6670 8.6477 8.6606
Y , RV and BV 9.8147 8.6952 8.4181 7.9956 7.9411 9.4020 8.2883 7.9502 7.5375 7.4418
Y , RV , BV and IV 9.0258 6.2434 5.8524 5.7860 5.7234 8.5814 5.7711 5.3274 5.2712 5.2238
Y , RV , BV , IV and ORV 4.5677 2.0562 1.9963 1.9173 1.9068 4.2681 0.9991 0.9616 0.9880 0.9240

Y means daily log-equity, RV means realized variance, BV means bipower variation, IV means implied
volatility, and ORV means option realized variance. Quantities were multiplied by 1,000. Filtered
values are computed as the mean of resampled particles obtained via a SIR particle filter with M = 15
and using Y , RV , BV , IV and ORV .
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observed in Figure 5.1. This result complements the findings of Johannes et al. (2009),
in which the authors report similar gains when daily option prices are included in
addition to asset returns. The large improvement offered by RV is also observed when
filtering other measures of variance such as the quadratic variation (Panel B) and the
integrated variance (Panel C).

Concerning the performance of jump estimation, Panel D shows results regarding log-
equity jump sizes and Panel E does so for volatility jumps. The results indicate that
data augmentation benefits the identification of log-equity jump sizes when RV is
added to the information set, but it has little effect when other sources are employed.
Most of the gains in RMSE come from the inclusion of RV and to some extent from
BV . There is little or no benefit when option prices and ORVs are added. These results
contrast with those of volatility jumps, where there is little benefit from including
RV in the filter and the largest RMSE gains are observed when ORV is included,
yielding an almost threefold decrease in RMSE for M = 10. Notice also how data
augmentation helps reduce RMSE for volatility jump size estimation, which shows
how difficult it is to estimate jumps in volatility at the daily level even if parameters
are known. If we look at the sum of the RMSE for both types of jumps, we observe
that the information content of ORV is very useful for volatility jump estimation, even
with no data aggregation (M = 1).

Previous results about jump size estimation are complemented with jump detection re-
sults from Table 5.3. The focus of this set of results is on the ability of a given source
to identify the occurrence of jumps. A jump is detected when the filtered jump proba-
bility is greater than 50%. This statistic, when compared with a true simulated jump,
provides an idea of the general performance of the filter. On the other hand, when
the statistic is compared with the filtered jump (a jump detected with the filter using
M = 15), it quantifies the ability of a given source to identify the occurrence of a jump
despite the discretization bias. According to Panel A, the log-equity price jump times
are filtered adequately when log-equity values and realized variance are included, with
a level of concordance of about 96.9% (98.7% with the discretization bias). This level
is slightly improved when more sources are employed. As observed with jump sizes,
the detection of volatility jumps is improved when ORV are employed, with concor-
dance levels of 97.3% (99.7% with the discretization bias).
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Table 5.3: Average jump times in percentages.

Panel A: Average log-equity jump times

Hit (true) Hit (filtered)

M 1 2 3 5 10 1 2 3 5 10

Y 93.61 93.63 93.64 93.65 93.65 95.30 95.33 95.34 95.35 95.35
Y and RV 96.85 96.97 96.97 96.97 96.96 98.65 98.77 98.78 98.76 98.76
Y , RV and BV 97.90 97.90 97.90 97.89 97.86 99.77 99.76 99.77 99.76 99.74
Y , RV , BV and IV 97.94 97.92 97.92 97.92 97.89 99.78 99.78 99.77 99.78 99.77
Y , RV , BV , IV and ORV 98.29 98.00 97.95 97.95 97.91 99.87 99.85 99.81 99.82 99.82
Panel B: Average log-equity jump times

Hit (true) Hit (filtered)

M 1 2 3 5 10 1 2 3 5 10

Y 94.08 94.08 94.08 94.08 94.08 96.53 96.53 96.53 96.53 96.53
Y and RV 94.08 94.15 94.29 94.41 94.48 96.53 96.60 96.73 96.88 96.94
Y , RV and BV 94.08 94.47 94.79 95.03 95.12 96.53 96.91 97.24 97.48 97.58
Y , RV , BV and IV 94.31 95.21 95.33 95.37 95.38 96.76 97.67 97.79 97.83 97.85
Y , RV , BV , IV and ORV 97.60 97.33 97.29 97.31 97.33 99.74 99.80 99.78 99.80 99.79

In this table, we show the average number of times a jump has been adequately filtered (i.e. whether
the probability of having a jump on a given day is higher than 0.5). Hit reveals the proportion of time
that jumps are adequately filtered. Y means daily log-equity, RV means realized variance, BV means
bipower variation, IV means implied volatility, and ORV means option realized variance. Filtered
values are computed as the mean of resampled particles obtained via a SIR particle filter with M = 15
and using Y , RV , BV , IV and ORV .

5.4.2 Information Embedded in ORV

The previous tests highlight the benefit of using ORV as a source for disentangling
jumps and volatility in the filtering process. The tests conducted in this section study
the link between ORV and information contained in RV and jumps.

The first experiment consists of simulating 1,000 paths of one day for which there
are no jumps in the DGP. Each path is generated at a frequency of 1/1, 560 of a day
using the Broadie and Kaya (2006) drift-interpolation scheme of van Haastrecht and
Pelsser (2010). Each time a path is simulated, the parameters of a 30-day European
call option are simulated so that ORV can be computed along the path. The option’s
delta is uniformly simulated between 0.1 and 0.9 and the initial spot variance between
0.01 and 0.10.

The simulated data produces daily values of RV and ORV for a random sample of
options, which allows us to measure the degree of redundancy between these two
variables with the following regression:

ORVi = γ1

(
∂Oi

∂y

)2

RVi + γ2

(
2
∂Oi

∂y
∂Oi

∂v

)
RVi + γ3

(
∂Oi

∂v

)2

RVi + εi. (5.16)

This regression model comes from fixing the option derivatives in Equation (5.10)

176



Chapter 5. Extracting Latent States with High Frequency Option Prices

to their beginning-of-the-day values, so that the impacts of changes in RV are only
modulated by option parameters from sample to sample.

Table 5.4: Information content of ORV when jumps are absent.

Coefficient Standard error

γ1 1.0136 0.0156
γ2 -0.0234 0.0674
γ3 0.4356 0.2552

R2 0.9891

The following regression is applied to ORV:

ORVi = γ1

(
∂Oi

∂y

)2

RVi + γ2

(
2
∂Oi

∂y
∂Oi

∂v

)
RVi + γ3

(
∂Oi

∂v

)2

RVi + εi.

The derivatives are computed based on beginning-of-the-day information. Values in bold are statisti-
cally different (at a confidence level of 95%) from their theoretical values (i.e. 1, 0, and 0.25 respec-
tively). We use a simulated sample of 1000 observations.

Table 5.4 reports estimate results of the regression. The R-squared close to one re-
veals that, in the absence of jumps, ORV is redundant with respect to the information
embedded in RV . That is, ORV only amplifies or attenuates values of RV depend-
ing on the parameters of the option. Regarding regression estimates, we observe that
the individual hypothesis that γ1 = 1, γ2 = 2σρ = 0, and γ3 = σ2 = 0.25 cannot
be rejected with a confidence level of 95%, suggesting that this specification follows
Equation (5.10) closely with the assumption of constant option derivatives. This last
remark supports the sampling technique used in the filter to compute particles of ORV

with few intraday samples, as option derivatives vary little between days.

We now proceed to analyze the impact that jumps in the underlying process might have
on the information content of ORV . The experiment is run this time by taking into
account the specificity of the option contract. To do this, we fix in advance the option
type (call or put) and the call-equivalent delta (0.20, 0.35, 0.50, 0.65, and 0.8), and
then the daily ORV is computed from the path generated by the simulation algorithm.
The following regression is run separately for each type of contract and moneyness:

log(ORVi) = β0 + β1 log(RVi) + β2∆NY,i + β3∆NV,i + εi (5.17)

where ∆NY,i and ∆NV,i are variables that capture the number of log-equity price jumps
and variance jumps during day i, respectively.

Table 5.5 presents two specifications of the previous regression model. The first one
includes information about log-return jumps and the second one adds to this specifica-
tion information about volatility jumps. Taking R-squared as a measure of redundancy,
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we observe that RV and ORV are more redundant when the option is in-the-money
(delta higher than 0.5 for calls and lower than 0.5 for puts). As the option becomes
out-of-the-money, redundancy decreases. A closer look at the coefficients in this re-
gression show the sensitiveness of ORV to different types of information. Whereas
the coefficient associated to RV increases with the moneyness of the option, those as-
sociated with jump activity do so (in absolute value) when the moneyness decreases.
These two pieces of evidence show that the ORV of OTM options provides comple-
mentary information not contained in RV .

Table 5.5: Information content of ORV when jumps are present.

Call Put

∆e (1) (2) (1) (2)

Coefficient SE Coefficient SE Coefficient SE Coefficient SE

0.20 β0 13.945 (0.383) 11.161 (0.327) β0 14.149 (0.080) 13.811 (0.080)
β1 1.333 (0.041) 1.045 (0.035) β1 1.079 (0.008) 1.044 (0.008)
β2 -1.064 (0.086) -0.582 (0.071) β2 -0.111 (0.018) -0.052 (0.017)
β3 1.067 (0.045) β3 0.129 (0.011)

R2 0.627 0.763 R2 0.978 0.981

0.35 β0 13.796 (0.285) 11.805 (0.249) β0 14.757 (0.138) 14.018 (0.132)
β1 1.199 (0.030) 0.994 (0.026) β1 1.187 (0.015) 1.111 (0.014)
β2 -0.726 (0.064) -0.382 (0.054) β2 -0.265 (0.031) -0.137 (0.029)
β3 0.763 (0.034) β3 0.283 (0.018)

R2 0.742 0.829 R2 0.943 0.954

0.50 β0 13.681 (0.215) 12.278 (0.194) β0 15.303 (0.192) 14.177 (0.179)
β1 1.119 (0.023) 0.974 (0.020) β1 1.297 (0.020) 1.181 (0.019)
β2 -0.497 (0.048) -0.255 (0.042) β2 -0.426 (0.043) -0.231 (0.039)
β3 0.538 (0.026) β3 0.432 (0.024)

R2 0.833 0.882 R2 0.903 0.926

0.65 β0 13.548 (0.141) 12.740 (0.133) β0 15.910 (0.258) 14.272 (0.235)
β1 1.048 (0.015) 0.964 (0.014) β1 1.448 (0.027) 1.278 (0.025)
β2 -0.282 (0.031) -0.142 (0.029) β2 -0.648 (0.058) -0.364 (0.051)
β3 0.310 (0.018) β3 0.628 (0.032)

R2 0.922 0.940 R2 0.853 0.894

0.80 β0 13.470 (0.083) 13.079 (0.082) β0 16.273 (0.323) 14.136 (0.288)
β1 1.004 (0.009) 0.964 (0.009) β1 1.596 (0.034) 1.375 (0.030)
β2 -0.131 (0.019) -0.064 (0.018) β2 -0.883 (0.072) -0.514 (0.063)
β3 0.150 (0.011) β3 0.819 (0.039)

R2 0.972 0.976 R2 0.806 0.865

The following regression is applied to ORV:

log(ORVi) = β0 + β1 log(RVi) + β2∆NY,i + β3∆NV,i + εi

where ∆NY,i is the number of log-equity price jumps jump during day i and ∆NV,i is the number of
variance jumps jump during day i. We estimate two versions of Equation (5.17): Regression (1) we
force β3 = 0, and Regression (2) we let β3 be different than zero. R2 and Newey and West (1987)
standard errors (SE, in parentheses) are reported. All coefficients estimated are statistically significant
at a confidence level of 95%.
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5.4.3 Option Quadratic Variation Increments Approximation

One of the key features of the filter proposed in Section 5.3 is that very few number of
intraday prices are required to compute ORV . We test this approximation by studying
the impact of M on the computation of ORV .

Using the parameters given in Table 5.1, we simulate 500 paths at a frequency of
1/1, 560 over a day and compute the option realized variance for a call along each path.
Next, the simulated ORV is compared to approximations of this quantity, denoted
by ∆OQV , which are computed with a lower number of intraday observations M ∈

{1; 2; 3; 5; 10; 1, 560}. The maturity of the options used in this exercise is 30 days. As
a measure of the quality of the approximation, we compute the RMSE and relative
RMSE that result from comparing the ORV computed at the highest frequency with
that of the approximation. We also regress ∆OQV on ORV and employ the R-squared
of this regression as a measure of the quality of the fit.25

Table 5.6 shows the root mean square errors (RMSE), relative RMSE, and regression
R-squareds for different levels of moneyness. As expected, we find that errors de-
crease as M becomes larger and that with as few as M = 5 observations per day the
approximation provides satisfactory results. Note that the presence of jumps has an
apparent impact on the performance of the approximation, which is not surprising as
these rare events introduce more variation in the estimation.

To visualize the performance of the approximation, Figure 5.2 plots ORV and their
approximations ∆OQV for days without (top panels) and with jumps (bottom pan-
els), respectively. If ∆OQV constitutes a good approximation of ORV , all the points
should be aligned on the diagonal, as it is the case for M = 1, 560. Note that ∆OQV

approaches to ORV for values of M = 3 and higher.

5.5 Exploring Option Realized Variances Empirically

In this section, we first present our datasets. Next, we analyze nonparametrically the
information contained in option realized variances. This is done by constructing sur-
faces of these variations. We complement this investigation with a principal compo-
nent analysis (PCA) of option realized variances. Finally, we provide evidence of the

25We run the following regression: ∆OQVi = β0 +β1ORVi +εi and compute the R-squared associated
with it. The higher the R-squared, the better the quality of the approximation.
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Figure 5.2: Option realized variance against option quadratic variance incre-
ments for a call-equivalent delta of 0.50 and a maturity of 30 business days, on
days without (top panels) and without jumps (bottom panels).
This figure is generated using 500 simulated paths of one day and a European call option that has a call-
equivalent delta of 0.50 and a maturity of 30 business days. These paths contain no jump. ORVs are
compared to six different values for which various M are used (i.e 1, 2, 3, 5, 10 and 1,560). Parameters
of Table 5.1 are used.
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Table 5.6: RMSE, relative RMSE and regression R-squared for ∆OQV approxi-
mation across 500 days.

Panel A: RMSE

Days without jumps Days with jumps

∆e 0.2 0.35 0.5 0.65 0.8 0.2 0.35 0.5 0.65 0.8

1 0.867 1.851 2.794 1.295 0.563 21.925 35.893 55.659 62.941 30.808
2 0.458 1.006 1.599 0.713 0.295 16.286 28.140 45.653 58.119 28.371
3 0.311 0.711 1.191 0.560 0.220 14.131 22.775 32.613 37.994 20.383
5 0.232 0.559 0.987 0.449 0.169 11.956 15.303 20.103 20.851 12.772
10 0.172 0.462 0.855 0.381 0.137 8.960 13.258 18.675 19.392 11.282
1560 0.146 0.433 0.806 0.348 0.126 0.725 1.714 2.924 1.890 0.787
Panel B: Relative RMSE

Days without jumps Days with jumps

∆e 0.2 0.35 0.5 0.65 0.8 0.2 0.35 0.5 0.65 0.8

1 0.205 0.151 0.121 0.141 0.175 0.289 0.240 0.205 0.176 0.199
2 0.109 0.081 0.068 0.076 0.089 0.209 0.179 0.158 0.144 0.159
3 0.077 0.058 0.052 0.059 0.065 0.141 0.118 0.103 0.108 0.120
5 0.057 0.046 0.043 0.046 0.049 0.111 0.091 0.077 0.077 0.089
10 0.043 0.039 0.038 0.040 0.040 0.091 0.079 0.069 0.070 0.078
1560 0.038 0.038 0.036 0.037 0.038 0.026 0.027 0.027 0.025 0.024
Panel C: Regression R-squareds

Days without jumps Days with jumps

∆e 0.2 0.35 0.5 0.65 0.8 0.2 0.35 0.5 0.65 0.8

1 0.439 0.475 0.532 0.585 0.573 0.915 0.892 0.864 0.916 0.918
2 0.867 0.861 0.855 0.889 0.899 0.953 0.935 0.910 0.926 0.928
3 0.944 0.933 0.922 0.930 0.941 0.964 0.957 0.952 0.960 0.956
5 0.967 0.957 0.946 0.954 0.963 0.977 0.981 0.981 0.988 0.981
10 0.978 0.968 0.958 0.965 0.973 0.987 0.985 0.984 0.989 0.985
1560 0.981 0.970 0.960 0.969 0.976 1.000 1.000 1.000 1.000 1.000

The real ORV value is computed using option prices at a frequency of 1/1,560. The error corresponds
to the difference between ∆OQV and ORV . 0.20, 0.35, 0.50, 0.65 and 0.80 correspond to the different
call-equivalent deltas considered. The OTM option maturity is 30 business days. ORVs are compared
to six different values for which various M are used (i.e. 1, 2, 3, 5, 10 and 1,560). To compute the
R-squared, we run the following regression: ∆OQVi = β0 + β1ORVi + εi.

economic relationship between option realized variances and index return variability
using predictive regressions.

5.5.1 Data

The sample period employed in this study is from July 2004 to December 2012. This
period offers several empirical features such as periods of high economic uncertainty,
which makes it appealing for studying different empirical features of equity index
returns and volatility.
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We start by constructing a time series measure of the option realized variance at the
daily level. We employ tick-by-tick Level I quote data provided by Tick Data for Eu-
ropean options written on the S&P 500 index. Tick Data prices come from the Options
Price Reporting Authority (OPRA), the national market system that provides informa-
tion about last sale reports and quotation information. We employ midquote prices
instead of trade prices to mitigate the effect of bid-ask spread bounces in the total vari-
ation of the option price. For each trading day, we start with 390 one-minute prices
from 9:30 AM to 4:00 PM. Next, we construct five different grids with five-minute
prices and compute the daily variation according to Equation (5.11) over each grid.
The average of these five values provides an estimate of the option daily variation.
This procedure helps to mitigate the presence of microstructure noise, as suggested
by Zhang et al. (2005) for the case of realized volatility estimation. For a quote to be
included in the dataset, we require its bid price to be higher than zero and the quote not
to have any condition code or be eligible for automatic execution.26,27 Each day, we re-
strict our attention to a representative sample set composed of OTM and ATM options
with maturities closest to 30 and 90 business days. As was argued in Section 5.2.2,
ORVs for ITM options yield equivalent information to that of RV , so we exclude these
options from our sample. Only options with positive volume and bid prices are in-
cluded in the sample, as well as those satisfying the no-arbitrage conditions of Bakshi
et al. (1997).

Additional to the option’s price variation, we compute several variables that cap-
ture different aspects of market activity for each day in the sample. The first is the
daily Black-Scholes implied volatility (IV), which is computed for the option with a
forward-to-strike ratio closest to 1 (ATM option) and a maturity closest to 30 business
days. The second is the realized variance RV of index returns, constructed from one-
minute returns of the E-mini S&P futures contract prices. Finally, the third variable
is the bipower variation BV , which accounts for the variability of the diffusive com-
ponent governing the return process. These last two variables are constructed with
five sub-grids, following Zhang et al. (2005) sub-sampling methodology. Descriptive
statistics about these variables and the panel of option realized variances are provided
in the Appendix B.4.

Figure 5.3 presents the time series associated with some of these variables. It shows
in the first three panels the daily time series of the previous three variables and in the

26Our final ORV dataset contains 682,380 data points, for an average of 286 option realized variance
per day.

27Errors in the option quote dataset could artificially increase the computed ORV . To discard such
outliers, the last permille (0.1%) of the ORV sample (i.e. largest values) is removed.
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last panel the option realized variance time series for the ATM option with a maturity
of 30 business days. We observe that all series increase during the financial crisis
period and exhibit sporadic spikes across the sample following the flash crash episode
(May 6, 2010) and the downgrade of U.S. debt (August 5, 2011). This commonality
shows the degree of interdependence across different markets in response to important
events. We now proceed to explore in more detail the full panel of option realized
variances.

5.5.2 Understanding Option Realized Variances

The surfaces (indexed by time) constitute a parsimonious way to study and understand
the behaviour of option prices, as shown in Andersen et al. (2015b). In opposition to
previous authors who studied implied volatilities, we analyze the behaviour of option
realized variances. To interpret the large cross section of option data that spans dis-
tinct maturities and moneynesses, we construct a sequence of option realized variance
surfaces across these two dimensions. For a given day, we collect the ORVs for all
the ATM and OTM options in our dataset and perform a locally weighted scatter plot
smoothing across moneynesses and maturities.28 Figure 5.4 shows the surface induced
by option realized variances on July 6, 2004. As it is clear from the figure, the surface
has an inverted U-shape, in which the highest values are observed for options that are
at-the-money and the lowest for those that are out-of-the-money.

Following Andersen et al. (2015b), Figure 5.5 presents specific ORV surface charac-
teristics such as its level, term structure, skew, and skew term structure across time.
The ORV level comes from the ATM option (∆e = 0.5) with 30 days to maturity. The
ORV term structure (TS) is defined as the difference between the ORV of the ATM
with 90 days to maturity minus the ORV of the ATM option with 30 days to maturity.
The ORV skew represents the difference between shorter dated OTM put options (i.e.
∆e = 0.9) and OTM call options (i.e. ∆e = 0.1), both with 30 days to maturity. Finally,
the ORV skew term structure (Skew TS) is the difference between longer and shorter
dated skew, with the longer dated (i.e. 90 business days) skew defined analogously to
the shorter one.

The surface level presents sporadic spikes that generate some persistence after their
occurrence (top-left panel of Figure 5.5). ATM options exhibit realized variations that

28The locally smoothing quadratic regression is performed using Matlab procedure Lowess on
log(ORV), and then transformed back to ORV . The Matlab procedure performs a local regression
using weighted linear least squares with a second order polynomial model.
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Figure 5.3: Realized volatility, square root of the bipower variation, ATM option
implied volatility for options with maturity closest to 30 business days and ATM
option realized volatility (square root of ORV) for options with maturity closest
to 30 business days.
Annualized realized variance and bipower variation are computed from intraday S&P futures prices.
Since futures are quarterly contracts, we build a time series from these data by rolling contracts two
weeks before expiration. We follow Zhang et al. (2005) and compute a microstructure-noise robust
estimate of the daily realized variance as the average of RV and BV estimates based on different subsets
of prices. To compute the daily realized variance of an option, we employ tick-by-tick Level I quote
data from options provided by Tick Data. From the data, we construct one-minute midquote series and
compute the daily variation according to Equation (5.11). We again follow Zhang et al. (2005) and
compute a microstructure-noise robust estimate of the daily option realized variance. Each time series
is displayed from July 2004 to December 2012.
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Figure 5.4: Option realized variances and fitted surface as a function of both
the option Black and Scholes (1973) call-equivalent delta and business days to
maturity.
Option realized variances are computed using the daily variation according to Equation (5.11). The
example is given for July 6, 2004. The fitted surface uses the locally smoothing quadratic regression
method.

mimic the behaviour of the underlying realized variance (top-left and bottom-middle
panels of Figure 5.5, as well as Table 5.7 showing that the correlation coefficient be-
tween the level and RV is 92%). Consequently, ATM option realized variance brings
little new information when RV or BV are part of the sample. The sporadic spikes are
also observed at the same times in the other characteristics of the surface (top-middle,
top-right and bottom-left panels of Figure 5.5), showing a level of commonality as-
sociated with large shocks. Since the other surface characteristics present no sign of
persistence and fluctuate around zero, this behaviour reveals that these characteristics
are particularly elevated during turbulent market periods. More precisely, ORV term
structure (top-middle panel of Figure 5.5) shows that shocks are more important for
short-dated options. Its low correlation with RV and JV = max(RV − BV, 0) (see Ta-
ble 5.7) indicates that the ORV term structure is a non-redundant information source.
Regarding the ORV skew (top-right panel of Figure 5.5), this characteristic generally
takes positive values, which means that OTM puts are more responsive to shocks than
OTM calls. This type of responsiveness is observed more for short dated options than
for longer dated ones, as evidenced from the negative sign associated with values of
the skew term structure (bottom-left panel of Figure 5.5).

Figure 5.5 also presents realized volatility and realized jump variation, defined as
JV = max(RV − BV, 0), of index returns. Realized jump variation captures the vari-
ability induced by discontinuous activity in the index return, which explains its erratic
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Figure 5.5: Option realized variance surface characteristics and realized mea-
sures.
The option realized variance level is the option realized volatility for ATM options (i.e. ∆e = 0.5 and
30 business days). The option realized volatility term structure is the difference between long- and
short-dated ATM options (i.e. 90 and 30 business days in our case). The option realized variance skew
is the difference between short-dated OTM put options (i.e. ∆e = 0.9, 30 business days) and OTM
call options (i.e. ∆e = 0.1, 30 business days). The option realized volatility skew term structure is
the difference between long- and short-dated skew, with the long-dated (i.e. 90 business days) skew
defined analogously to the short one. The realized volatility and the bipower variation are computed
using Zhang et al.’s (2005) microstructure-noise robust estimate. RV stands for realized variance and
JV for realized jump variation.

spikes and less persistent behaviour. Increases in different characteristics of the ORV

surface are associated with shocks to realized variance and jump activity of the op-
tion’s underlying asset (Figure 5.5 and Table 5.7).

We now employ the principal component analysis (PCA) of the ORV surface to look
more closely at different aspects of the commonality among ORV surface character-
istics, realized variance, and jump activity of the S&P index. We extract from the
ORV surface 18 values per day and conduct a PCA over these values for the full sam-
ple. More precisely, we take nine equally spaced points over the call-equivalent delta
dimension between 0.1 and 0.9 for maturities of 30 and 90 business days.

Figure 5.6 shows the first six in-sample principal components (PCs) of the option
realized variance surface. Similar to what is observed for the implied volatility surface
in Andersen et al. (2015b), the ORV surface displays a dominant level type effect, as
the first PC accounts for 94.44% of the total variation and displays a high degree of
commonality with the surface level (top-left panel of Figure 5.6). The second PC

186



Chapter 5. Extracting Latent States with High Frequency Option Prices

Table 5.7: Correlation matrix for option realized variance characteristics and
realized measures.

Level TS Skew Skew TS RV JV

Level 1.000
TS -0.260 1.000
Skew 0.630 0.049 1.000
Skew TS -0.384 -0.098 -0.763 1.000
RV 0.920 -0.099 0.675 -0.390 1.000
JV 0.626 -0.008 0.423 -0.217 0.703 1.000

The option realized variance level is the option realized variance for ATM options (i.e. ∆e = 0.5).
The option realized variance term structure (TS) is the difference between longer and shorter dated
ATM options (i.e. 90 and 30 business days in our case). The option realized variance skew is the
difference between shorter dated OTM put options (i.e. ∆e = 0.9, 30 business days) and OTM call
options (i.e. ∆e = 0.1, 30 business days). The option realized variance skew term structure (Skew
TS) is the difference between longer and shorter dated skew, with the longer dated (i.e. 90 business
days) skew defined analogously to the shorter one. The realized variance and the bipower variation are
computed using Zhang et al.’s (2005) microstructure-noise robust estimate and are multiplied by 1000.
JV is the jump variation and is computed as the positive difference between the realized variance and
the bipower variation, i..e max(RV − BV, 0).

captures 4.73% of the total variation, while the following ones account for 0.32%,
0.18%, 0.11%, and 0.05%, respectively (all the panels of Figure 5.6, except for the
top-left panel).

We now turn to the question of how much information is shared between ORV surface
characteristics (or variations of the index returns) and the principal components. The
aim of this exercise is to determine whether the ORV surface can be summarized in
one simple specification (e.g. the first component of a PCA) or whether different ORV

measures are needed to appropriately capture the nonlinear changes in the surface.
Indeed, we have no guarantee that extracted PCs would represent the whole surface
adequately as nonlinear behaviour cannot be captured efficiently by a few summaries
of the said surface.

This analysis is performed by computing in-sample regressions of these variables on
PCs as follows:

Chart = β0 + β1PC1,t + β2PC2,t + β3PC3,t + β4PC4,t + β5PC5,t + β6PC6,t + εt,

where Chart is the characteristic of interest at time t (i.e. Level, TS, Skew, Skew TS,
RV and JV) and PCn,t represents the nth principal component at time t. Newey and
West (1987) regressions are run to account for heteroskedasticity and autocorrelation.

Table 5.8 displays regression coefficients, standard errors, R-squareds, and autocorre-
lations in the residuals. Observe that PCs are associated with surface characteristics
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Figure 5.6: Principal components of the option realized volatility surface.
The figure shows the first six principal components extracted from the S&P 500 option realized variance
surface from July 2004 to December 2012. On each day, option realized variances are interpolated from
a locally smoothing quadratic regression surface estimated on every available option realized volatility.
Over the call-equivalent delta dimension, we use the grid of values 0.1, 0.2, ..., 0.9; over the tenor
dimension, we employ maturities of 30 and 90 business days. These partitions require a total of 18
option realized volatilities per day.

and index return variations, as well, providing further evidence of the commonality
existing between these two sets of variables. This commonality effect is largely driven
by the first PC, as other PCs are not always statistically significant at explaining index
return variations. Notice also that PCs are successful at capturing the behaviour of in-
dex return variations, as evidenced from R-squared values of 90% for realized variance
and 45% for realized jump variation. However, PCs impact these variables differently,
suggesting that the information contained in the surface is impounded differently in
these variations. This difference is also evidenced by looking at the persistence of re-
gression residuals, which have different autocorrelation patterns. Persistent residuals
in the realized variance regression suggest that either the relation is nonlinear, or that
there are missing factors in the model (e.g. lag values of RV). On the other hand, the
jump realized variation regression exhibits low persistent residuals.

What can we learn from these results? First, option realized variations are intertwined
with measures of index return variation, revealing an important degree of commonal-
ity that is useful for analyzing index return dynamics such as variances and sporadic
shocks. Notwithstanding, option realized variations also exhibit information that is
not shared with index return variations, suggesting their pertinence as an alternative
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Table 5.8: Option realized volatility characteristics, realized measures, and prin-
cipal component regressions.

Level TS Skew Skew TS RV JV

PC1 0.395 -0.009 0.029 -0.011 0.515 0.025
(0.001) (0.002) (0.002) (0.002) (0.036) (0.003)

PC2 0.268 -0.072 -0.107 0.051 -0.060 0.004
(0.005) (0.006) (0.007) (0.007) (0.074) (0.010)

PC3 -0.434 0.938 -0.014 -0.005 0.697 0.070
(0.016) (0.034) (0.046) (0.043) (0.358) (0.041)

PC4 -0.360 0.230 0.048 -0.066 -0.536 -0.088
(0.016) (0.028) (0.031) (0.046) (0.445) (0.057)

PC5 0.027 -0.126 -0.028 0.170 1.203 0.079
(0.029) (0.045) (0.032) (0.044) (0.575) (0.086)

PC6 -0.427 0.375 0.101 -0.050 0.988 0.207
(0.043) (0.057) (0.050) (0.056) (0.642) (0.111)

R2 1.000 0.950 0.928 0.537 0.901 0.445
AC(1) 0.065 0.234 0.129 0.051 0.623 0.025
AC(2:10) 0.053 0.109 0.070 0.038 0.479 0.074
AC(11:20) -0.009 0.000 0.036 0.015 0.320 0.051

The following linear regressions are performed:

Chart = β0 + β1PC1,t + β2PC2,t + β3PC3,t + β4PC4,t + β5PC5,t + β6PC6,t + εt,

where Chart is the characteristic of interest at time t (i.e. Level, TS, Skew, Skew TS, RV and JV)
and PCn,t represents the nth principal component at time t. R2 and Newey and West (1987) standard
errors (in parentheses) are reported. Values in bold are statistically significant at a confidence level of
95%. The first six principal components extracted from the S&P 500 option realized volatility surface
from July 2004 to December 2012. The first sample autocorrelation coefficient and the average sample
autocorrelation over two to ten and eleven to twenty lags of the regression residuals are exhibited. The
values of RV and JV are multiplied by 1000 in the regressions. JV is the jump variation and is computed
as the positive difference between the realized variance and the bipower variation, i..e max(RV −BV, 0).

source of information about the dynamics of the underlying generating process. Sec-
ond, the fact that different characteristics of the ORV surface cannot be summarized in
one simple specification of PCs suggests that various option realized variances should
be used in parametric studies; given the large number of options available at a given
point in time, a well-selected subset of option realized variance should be employed
for empirical analyses.

5.5.3 Predicting Index Return Variations

The economic relationship between option realized variations and index return varia-
tions is now studied with predictive regressions. The motivation behind this exercise
is to look at the role of option realized variations as economic variables that predict
different types of index return variability.

The first model consists of explaining one-day ahead index return realized variances.
We employ the logarithm of realized variance as a dependent variable and estimate the
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Table 5.9: Correlation matrix of realized values used in the predictive regressions.

log(RV) JV log(IVATM) log(ORV∆e=0.1) log(ORV∆e=0.9)

log(RV) 1.0000
JV 0.4876 1.0000
log(IVATM) 0.8511 0.4121 1.0000
log(ORV∆e=0.1) 0.8470 0.3961 0.7116 1.0000
log(ORV∆e=0.9) 0.8691 0.3993 0.7202 0.8194 1.0000

JV is the jump variation and is computed as the positive difference between the realized variance and
the bipower variation, i..e max(RV − BV, 0).

following model:

log(RVt+1) = β0 + β1 log(RVt) + β2JVt + β3IVATM
log,⊥,t

+ β4ORV∆e=0.1
log,⊥,t + β5ORV∆e=0.9

log,⊥,t + εt (5.18)

The variables of interest in this model are lagged values of realized jump variation
(JVt), ATM implied volatility (IVATM), and option realized variances of OTM options
with call-equivalent deltas (∆e) of 0.1 and 0.9. The maturity of all options is 30 days.
To remove potential collinearity issues across the regressors (see Table 5.9), we em-
ploy the orthogonal component that results from the projection of a given measure on
RV in our regressions.

Panel A of Table 5.10 presents estimates and t-statistics of six specifications of the
regression in Equation (5.18). The first four specifications show that only the orthog-
onal components of IVATM and ORV∆e=0.1 are statistically significant explaining the
one-day ahead realized variation of index returns after controlling for the lagged value
of the dependent variable. They enter in the regression model with positive signs,
which confirms the forward-looking nature of IVATM. Interestingly, it is the residual
component of ORV associated with OTM calls that predicts the subsequent realized
variance, even after controlling for IVATM. As discussed in Subsection 5.2.2, the ORV

for an OTM option is related to jump activity in the log-equity price and variance pro-
cesses. Thus, the explanation power of this variable might come from two sources.
The first one is the high persistence of the variance process, so that volatility jumps
lead to higher activity in subsequent periods. The second possibility is that positive
jumps induce future variability by arriving in clusters or by increasing the volatility
directly. Fulop et al. (2014) provide evidence of self-exciting jump clustering during
turbulent market periods.
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Table 5.10: Predictive regressions.

Panel A: Logarithm of realized variance

Regression β0 β1 β2 β3 β4 β5 R2

(1) -0.5493 0.8733 -3.2276 0.7490
(0.0981) (0.0199) (3.6529)

(2) -0.2279 0.9425 -2.9616 0.9432 0.7839
(0.0932) (0.0193) (3.2157) (0.0705)

(3) -0.8316 0.8128 -2.8130 0.1197 0.7515
(0.1101) (0.0228) (3.6017) (0.0257)

(4) -0.3872 0.9081 -3.4894 -0.0438 0.7494
(0.1391) (0.0289) (3.6881) (0.0238)

(5) -0.5424 0.8750 -2.4922 0.9529 0.1347 0.7871
(0.1003) (0.0216) (3.1548) (0.0723) (0.0280)

(6) -0.1785 0.9531 -3.0435 0.9408 -0.0136 0.7839
(0.1270) (0.0269) (3.2375) (0.0705) (0.0238)

Panel B: Jump variation (Positive difference between realized variance and bipower variation)

Regression β0 β1 β2 β3 β4 β5 R2

(1) 0.0102 0.0019 0.0963 0.1885
(0.0019) (0.0004) (0.0460)

(2) 0.0110 0.0021 0.0969 0.0023 0.1963
(0.0019) (0.0004) (0.0457) (0.0004)

(3) 0.0100 0.0019 0.0966 0.0001 0.1885
(0.0020) (0.0004) (0.0462) (0.0003)

(4) 0.0126 0.0024 0.0924 -0.0007 0.1921
(0.0024) (0.0005) (0.0455) (0.0002)

(5) 0.0107 0.0020 0.0974 0.0023 0.0001 0.1964
(0.0020) (0.0004) (0.0460) (0.0004) (0.0003)

(6) 0.0131 0.0026 0.0934 0.0022 -0.0006 0.1992
(0.0024) (0.0005) (0.0453) (0.0004) (0.0002)

Variations of following linear regression are performed:

Xt+1 = β0 + β1 log(RVt) + β2JVt + β3IVATM
log,⊥,t + β4ORV∆e=0.1

log,⊥,t + β5ORV∆e=0.9
log,⊥,t + εt,

where Xt+1 ∈ {RVt+1, JVtt + 1}, RVt is the realized variance at time t, JVt is the jump variation at time
t, IVATM

log,⊥,t is the residual of the following regression

log
(
IVATM

t

)
= α1 log(RVt) + IVATM

log,⊥,t,

where IVATM
t is the ATM implied volatility (with maturity of 30 days). The variables ORV∆e=0.1

log,⊥,t and
ORV∆e=0.9

log,⊥,t are computed similarly from the option realized variance for OTM calls with call-equivalent
delta of 0.1 and the option realized variance for OTM calls with call-equivalent delta of 0.9. We compute
Newey-West standard errors. These are in parentheses in the above table. Values in bold are statisti-
cally significant at a confidence level of 95%. Results for bipower variation are both qualitatively and
quantitatively similar to those of realized variance.

The second model we consider consists of explaining one-day ahead jump activity on
the index return realized variances. This time we run the regression:

JVt+1 = β0 + β1 log(RVt) + β2JVt + β3IVATM
log,⊥,t

+ β4ORV∆e=0.1
log,⊥,t + β5ORV∆e=0.9

log,⊥,t + εt. (5.19)

Panel B of Table 5.10 shows that lagged values of RV and jump realized variance have
explanatory power over future jump activity. This relationship provides evidence in
favour of the parametric model we are considering in Section 5.2, since the intensity of
the counting process governing jump returns is a function of volatility. Regarding IV ,
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its residual component also has a positive effect on jump realized variance. Contrary
to what was observed in the RV regression, it is the ORV of the OTM put that now has
a significant relation with the dependent variable. However, this time, the coefficient
of the relationship is negative. Given that jump activity is measured as the difference
between total and diffusive variance, the negative sign might indicate that the jump
activity driving the ORV of OTM puts exerts more influence over future diffusive
variance than return jumps. Notwithstanding, if we compare the magnitude of this
coefficient with the one of OTM calls in Equation (5.18), we note that the significance
of the relationship is more important in the latter case.

Lastly, we emphasize that the regression models (5.18) and (5.19) are of predictive
nature, so our analysis focuses on the identification of variables that are important in
the determination of future realized variances. The fact that R-squareds in Panel A are
higher than those reported in Panel B just shows how much easier it is to predict future
total variance than to predict variance induced by jump activity.

5.6 Option Pricing Implications

This section provides empirical results using the model introduced in Section 5.2. We
start by analyzing parameter estimates of the model with different sets of information.
We then use these parameters to disentangle latent variables and analyze the informa-
tion content of option realized variances. Finally, we look at the fitting performance
using in- and out-of-sample analyses.

5.6.1 Parameter Estimates

We obtain model parameters using the estimation procedure described in Subsection
5.3.2. As explained in Subsection 5.2.2, this procedure combines several observables
into a likelihood function that is computed using a Monte Carlo based approximation.
The first set of observable variables are related to S&P 500 returns. We use daily
log returns, realized variance, and bipower variation.29 The second set is composed
of daily option prices and their realized variances (ORVs). Option prices come from
OptionMetrics and correspond to European S&P 500 index option contracts. As ar-
gued in Bates (2000), the daily overabundance of option data becomes a hurdle for
estimation routines, so we use a representative sample of options by restricting our

29The computation of these last two variables is explained in Subsection 5.5.1.
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Table 5.11: S&P 500 parameter estimates.

Panel A: With ORVORVORV

Log-price process Variance process Standard deviations of error terms

ηY 0.7635 (0.000230) ηV -0.2199 (0.000013) η1 0.2160 (0.000023)
γY 0.0058 (0.000010) ΓV 0.5811 (0.000019) η2 0.2296 (0.000023)
ρ -0.4336 (0.000011) κ 5.7808 (0.000061) η3 0.2471 (0.000018)
λY,0 2.1530 (0.000498) θ 0.0085 (0.000177) η4 0.4600 (0.000028)
λY,1 29.0744 (0.000682) σ 0.8935 (0.000007)
µY -0.0050 (0.000018) λV,0 7.6498 (0.000090)
σY 0.0163 (0.000129) µV 0.0214 (0.000101)

V0 0.0118 (0.000174)
Panel B: Without ORVORVORV

Log-price process Variance process Standard deviations of error terms

ηY 1.8734 (0.000311) ηV -1.5870 (0.000033) η1 0.2407 (0.000034)
γY 0.0009 (0.000004) ΓV 0.7061 (0.000016) η2 0.2288 (0.000022)
ρ -0.3912 (0.000015) κ 4.7614 (0.000107) η3 0.2453 (0.000018)
λY,0 0.0045 (0.025987) θ 0.0030 (0.000825) η4 - -
λY,1 30.0106 (0.000992) σ 0.9121 (0.000010)
µY -0.0062 (0.000049) λV,0 11.4438 (0.000065)
σY 0.0189 (0.000464) µV 0.0174 (0.000041)

V0 0.0114 (0.000242)

The index parameters are estimated using daily index returns, realized variances, bipower variations,
daily option prices, and option realized variances (in the first case), from July 2004 to December 2012.
Parameters are estimated using multiple simplex search method optimizations (fminsearch in Matlab).
Robust standard errors are computed from the outer product of the gradient at optimal parameter values.
Each day, we restrict our attention to OTM or ATM options with maturities closest to 30 and 90 days,
and call-equivalent deltas closest to 0.2, 0.35, 0.5, 0.65 and 0.8.

attention to OTM or ATM options with maturities closest to 30 and 90 days, and call-
equivalent deltas closest to 0.2, 0.35, 0.5, 0.65 and 0.8. Options with positive volume
and bid price are included in the sample, as well as those satisfying the no-arbitrage
conditions of Bakshi et al. (1997).30 Thus, the final sample of options is composed of
a panel of 21,400 contracts.

To assess the information contained in ORVs, we first estimate the model excluding
these variables from the set of observables and then re-estimate it using the complete
set. Table 5.11 reports parameter estimates and standard errors (in parentheses) ob-
tained with and without information from option realized variances. We first consider
parameters governing the jump process intensities. We observe a decrease in the inten-
sity of the jump process governing volatility jumps, λV,0, when ORVs are introduced,
but an increase in the parameter governing the size of the jumps, µV . This suggests that
ORV is detecting less frequent jumps with higher magnitudes in the volatility process.
Regarding jumps in the log-equity price process, we observe an increase in the base
intensity, λY,0, as well as in the average size of jumps, µY , in absolute value. These

30Option realized variances are computed following the procedure explained in Subsection 5.5.1.
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values show that ORV is favouring more frequent negative jumps with lower magni-
tudes, which is also observed from the average intensity – 0.0112 for the estimation
with ORV and 0.0028 without.

We now look at compensation for bearing different types of risk. Jump return risk, or
crash risk, is captured in this model by the parameter γY times λY,t− , as shown in Equa-
tion (5.3). Since ORV is favouring more frequent negative jumps, compensation for
bearing this type of risk increases with the addition of this new source of information
(i.e. 0.06% without ORV vs. 1.63% with ORV , on average). The diffusive risk pre-
mium parameter ηY captures the risk premium associated with diffusive shocks when
multiplied by Vt− . To find the compensation for this type of risk, we multiply the fil-
tered instantaneous variance by ηY and observe that this value is higher when ORV is
not included in the estimation, on average (4.41% when ORV is excluded and 1.75%
when ORV is used). Therefore, in total, the average risk premiums calculated using
both models are similar, although the breakdown between diffusive and jump risks is
different. These findings suggest that the risk premiums of discontinuous risk is under-
estimated when information about intraday evolution of option prices is not accounted
for during the estimation. Estimates for jump risk are close but somewhat lower than
those reported in Broadie et al. (2007), Christoffersen et al. (2012), and Ornthanalai
(2014).31

5.6.2 Informativeness of Data Sources

Next, we focus on the informativeness of ORV about different latent variables of the
model. Using the set of parameters estimated in Table 5.11, we filter different latent
quantities using all data sources and compare the average standard deviations of these
quantities with those obtained when filtering without ORV . Table 5.12 shows the
posterior standard deviation (PSD) of these latent quantities under the two filtering
procedures.32 The PSD of variance jumps decreases approximately five times when
ORVs are added. This dramatic decrease confirms our simulated results that show how
ORV embeds vital information about the presence of variance jumps. Note also, as it is
the case in the simulation results, the PSDs of the instantaneous variances, quadratic
variations, and integrated variances also fall when ORVs are included. Regarding
the slight increase in the PSD for log-return jumps, this could be associated with the

31Variations in the sampling period or the datasets could also explain these small differences, to some
extent.

32The posterior standard deviation is the standard deviation of the posterior density (as given by the
particle filter). It allows us to assess the uncertainty around estimated latent variables.
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Table 5.12: Posterior standard deviation of filtered values with and without ORV .

With ORV Without ORV

Instantaneous variance 4.821×10−03 5.961×10−03

Quadratic variation 1.252×10−05 1.410×10−05

Integrated variance 1.088×10−05 1.255×10−05

Log-equity price jumps 2.886×10−04 1.804×10−04

Variance jumps 7.038×10−04 3.297×10−03

The posterior standard deviation is calculated from the particles generated in the particle filtering
scheme. Parameters from Table 5.11 are used to infer the filtered values and their posterior standard
deviation.

fact that these jumps are less frequent than jumps in volatility, which increases the
estimation uncertainty about this value.

We next provide visual evidence of the informativeness of ORVs for disentangling
jumps. Figure 5.7 displays filtered price jumps and variance jumps excluding ORVs
(first row) and with all data sources (second row). The dynamics of both jump pro-
cesses consistently differ across sources, showing that jumps for log-prices are spo-
radic and largely negative on average and that jumps in volatility are more frequent
and tend to be small on average. ORV plays an important role identifying jumps in
volatility. Note the striking decrease in the number and sizes of volatility jumps when
ORV is employed in the filtering process. This result, coupled with the fact that jump
risk premiums vary depending on the data source employed, show the economic gains
from including intraday option prices in the analysis of option pricing models.

5.6.3 In- and Out-of-Sample Assessment

We now investigate the goodness of fit of the two parameter sets under analysis. We
start with an in-sample analysis that employs data over the same period the parameters
were estimated. Then, we employ the parameters obtained over the period from July
2004 to December 2012 to perform out-of-sample comparisons using 2013 option
data.

5.6.3.1 In-Sample

We first asses the ability of both parameter sets to fit historical implied volatilities.
To perform this exercise, we use the relative implied volatility root mean square error
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Figure 5.7: Filtered log-equity price jumps (left panels) and variance jumps (right
panels).
The figure shows the log-equity price jumps (left panels) and variance jumps (right panels). The top
panels show the filtered jumps based on returns, option implied volatilities, realized variances and
bipower variations. The bottom panels also include option realized variances as a new source of infor-
mation.

(RIVRMSE), defined as follows:

RIVRMSE =

√√√(
1∑
k Ok

)∑
k

Ok∑
i=1

 IVk∆,i(Y∆k, V̂∆k) − σBS
k∆,i

σBS
k∆,i

2

, (5.20)

where IV is the model implied volatility, V̂∆k is the filtered instantaneous variance on
day k, and Ok represents the number of options in a subset of all the options available
on day k. Here, σBS denotes the Black-Scholes implied volatility associated with the
observed option price.

The leftmost columns of Panel A (Table 5.13) show the RIVRMSE for the panel of
21,400 options employed in the estimation. We observe that the fit provided by the pa-
rameter set without ORVs is more accurate on average than the one that includes these
variances – an RIVRMSE of 24.56 with ORV vs. 23.45 without. This result stems
from the fact that maximization of the likelihood in the former case backs parameters
that better fit IVs. However, the average fit is not that different, so the addition of
ORVs does not substantially deteriorate the overall fit of option prices.

In order to identify which contracts would benefit more from the inclusion of ORVs,
we assess the goodness of fit of both parameter sets for these variances. To this end, we
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use a criterion similar to the RIVRMSE in Equation (5.20) and compute the relative
option realized variance root mean square error (RORVRMSE), defined as:

RORVRMSE =

√√√(
1∑
k Ok

)∑
k

Ok∑
i=1

(
∆OQV(k−1)∆,k∆,i − ORV(k−1)∆,k∆,i

ORV(k−1)∆,k∆,i

)2

,

where ∆OQV is the option quadratic variation increment computed from the model
and ORV is the observed option realized variance.

Rightmost columns of Panel A (Table 5.13) exhibit the RORVRMSE by moneyness
and maturity. As expected, the average fit of these quantities is lower when ORVs
are included in the information set. Nonetheless, it is remarkable to observe that the
overall RORVRMSE is about 3 times lower when ORV is included and that there are
significant differences across contracts. Whereas error differences for call options are
almost fourfold, those differences for put options are about twofold. The differences
across contracts suggest that ORVs bring more information from OTM calls than from
OTM puts, which goes in line with the importance of the coefficient associated with
call contracts in explaining future index variation as discussed in Subsection 5.5.3.

We continue with the in-sample analysis by looking at one-day ahead predicted option
prices from both sets of parameters. To analyse the fit of implied volatilities, we
enlarge our estimation sample of 21,400 options to include all OTM options available
for the S&P 500 index in OptionMetrics between July 2004 and December 2012.33

We restrict our analysis to maturities of at least one week and at most one year. As
before, observations violating no-arbitrage restrictions are excluded. Our new sample
is composed of a total of 401,081 contracts. Option prices are converted to implied
volatilities with the Black and Scholes’s (1973) pricing formula. To compute model-
predicted implied volatilities on day t, we calculate one-day ahead expectations of
model variables for day t using the filter’s predictive distribution resulting from day
t − 1. Using observed and predicted implied volatilities, we compute RIVRMSEs
according to maturity, moneyness, and year, which provides a better picture of the fit
associated with each parameter set.

The overall RIVRMSEs (leftmost columns of Panel B in Table 5.13) are very close
on average for both parameter sets, with lower values of RIVRMSE observed when
ORVs are included (32.79 against 32.87). We use the Diebold and Mariano (1995,

33We continue using OTM options to keep a comparable sample with that employed in our previous
analyses.
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Table 5.13: In-sample performance (2004–2012).

Panel A: In-sample option pricing and option realized variance performances

RIVRMSE RORVRMSE

With ORV Without ORV With ORV Without ORV

DTM = 30, ∆e = 0.20 19.13 17.62 50.17 152.95
DTM = 30, ∆e = 0.35 25.05 23.04 36.29 103.59
DTM = 30, ∆e = 0.50 28.51 27.93 41.81 90.90
DTM = 30, ∆e = 0.65 27.27 25.94 55.26 106.11
DTM = 30, ∆e = 0.80 25.03 23.16 61.43 95.19
DTM = 90, ∆e = 0.20 21.97 26.01 61.02 272.48
DTM = 90, ∆e = 0.35 23.37 22.90 40.78 145.63
DTM = 90, ∆e = 0.50 25.23 23.16 40.77 101.02
DTM = 90, ∆e = 0.65 25.17 22.40 44.92 122.24
DTM = 90, ∆e = 0.80 23.57 20.69 53.56 137.20

All 24.56 23.45 49.34 142.17
Panel B: One-day ahead in-sample performances

RIVRMSE RORVRMSE

With ORV Without ORV With ORV Without ORV

DTM < 60 26.78 25.39 233.08 286.97
60 ≤ DTM < 120 26.20 24.24 230.46 337.40
120 ≤ DTM < 180 26.07 25.08 203.42 335.05
180 ≤ DTM 51.76 55.28 180.71 270.46

∆e < 0.20 23.25 28.56 358.69 512.51
0.20 ≤ ∆e < 0.35 29.55 31.11 216.98 302.68
0.35 ≤ ∆e < 0.50 34.52 35.51 152.92 198.51
0.50 ≤ ∆e < 0.65 41.42 41.24 188.62 239.69
0.65 ≤ ∆e < 0.80 37.41 36.83 200.04 267.02
0.80 ≤ ∆e 31.74 29.62 210.69 285.87

2004 25.73 28.52 204.64 268.17
2005 28.44 33.71 270.87 348.78
2006 26.58 32.05 316.43 407.00
2007 29.29 31.87 220.31 290.46
2008 31.17 30.56 77.09 92.51
2009 38.47 35.74 79.21 93.69
2010 34.99 33.49 188.20 284.60
2011 35.33 34.38 193.82 274.96
2012 31.68 31.39 314.55 437.40

All 32.79 32.87 221.94 303.31

In Panel A, only options used for estimation are employed. In Panel B, the sample of S&P 500 options
is acquired via OptionMetrics. Options violating arbitrage conditions were discarded. In Panel C, the
sample of S&P 500 options is acquired via Tick Data. Options violating arbitrage conditions were
discarded. Model prices and ORVs are calculated by using the parameters of Table 5.11. The relative
implied volatility root mean square error (RIVRMSE) is computed as follows:

RIVRMSE =

√√√(
1∑
k Ok

)∑
k

Ok∑
i=1

 IVk∆,i(Y∆k, V̂∆k) − σBS
k∆,i

σBS
k∆,i

2

,

where IV is the model implied volatility, V̂∆k is the filtered instantaneous variance on day k, and Ok

represents the number of options in a subset of all the options available on day k. The relative op-
tion realized variance root mean square error (RORVRMSE) is computed similarly: IVk∆,i(Y∆k, V̂∆k) is
replaced by ∆OQV(k−1)∆,k∆,i and σBS

k∆,i by ORV(k−1)∆,k∆,i. RIVRMSEs and RORVRMSEs are given in
percentage.
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henceforth DM) test to see if the apparent predictive superiority of ORV-based fore-
casts is not particular to this sample. Using both RIVRMSE time series, we compare
their forecasting accuracy and test for:34

H0 : E [dt] = 0, ∀t H1 : E [dt] > 0, ∀t

where dt = RIVRMSEwithout,t − RIVRMSEwith,t is the time-t loss differential between
the forecast produced without ORV and the one including it. The DM test statistic is
5.32 and is significant at a 1% level, confirming that there exists a differential between
the two forecasts and that the one based on ORV information produces more accurate
results on average. A closer scrutiny of the data reveals that including ORVs is espe-
cially helpful in the pricing of options with long maturities, OTM calls, and options
for the years before 2008.

Finally, we carry out a similar exercise with option realized variances and analyse one-
day ahead forecasts for both parameter sets. For this exercise, we restrict our enlarged
sample to those options for which ORV data is available in the TickData database. Out
of 401,081 options, 282,534 contracts were included in our analysis. As reported in
the rightmost columns of Panel B, Table 5.13, we observe again that, across different
option characteristics and years, RORVRMSE are lower for the parameter set that was
obtained with ORVs. Similar to the RIVRMSE case, we apply the DM test to both
RORVRMSE series and obtain a value of 13.63, confirming statistically the important
differences between the two sets of parameters.35

5.6.3.2 Out-of-Sample

We provide further evidence on the forecast differences of both parameter sets by con-
structing out-of-sample errors. We employ the parameters obtained over the sample
period between July 2004 and December 2012, and use daily information between
January 2013 and December 2013 to compute one-day ahead forecast errors. As in
the previous section, we employ the filter’s predictive distribution resulting from day
t − 1 to compute expectations for day t. Regarding the sample, we employ all OTM
options available in OptionMetrics for 2013 to compute RIVRMSE, yielding a total of

34The lag in the Diebold and Mariano (1995) is selected as the first partial autocorrelation that is
within confidence bounds. The estimated lag in this exercise is 2.

35We repeated our analysis of RIVRMSE with the sample of 282,534 contracts and found similar
results.
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77,310 contracts. To compute RORVRMSEs, we employed a dataset of 68,857 OTM
options for which ORVs were available.

Table 5.14 shows RIVRMSE and RORVRMSE by moneyness and maturity. The pa-
rameter set based on ORVs produces the lowest forecast errors, as shown by the aver-
age means for the whole sample. This is also confirmed with the DM test, which gives
a value of 8.09 for RIVRMSE and 16.17 for RORVRMSE, both significant at a 1%
level. When we look at the RIVRMSE across maturities, we observe that ORV-based
forecasts consistently outperform those forecasts that do not employ the information
of ORVs. Regarding performance by type of contract, it is still the case that the largest
gains are obtained for OTM calls. Nonetheless, OTM puts that are close to the money
also exhibit lower RIVRMSE.

The above evidence is consistent with the view of ORV as a new source of information
to disentangle jumps in volatility and prices. The parameter set obtained with the
addition of ORV supports a variance process that has less frequent jumps with higher
magnitudes and a price process that has more frequent negative jumps with lower
magnitudes. This set also has a different attribution of risk premiums between diffusive
and discontinuous innovations. It seems most likely that these features are important in
the pricing of options, as they consistently produce lower forecasting errors of implied
volatilities in-sample and out-of-sample.

Table 5.14: One-day ahead out-of-sample performances, in terms of RIVRMSE
and RORVRMSE (2013).

RIVRMSE RORVRMSE

With ORV Without ORV With ORV Without ORV

DTM < 60 18.85 19.09 512.96 635.93
60 ≤ DTM < 120 18.62 20.75 559.93 810.20
120 ≤ DTM < 180 22.50 27.59 431.52 691.71
180 ≤ DTM 50.14 55.54 390.10 585.19

∆e < 0.20 34.97 45.40 871.92 1214.42
0.20 ≤ ∆e < 0.35 33.16 39.70 465.52 617.28
0.35 ≤ ∆e < 0.50 36.38 41.39 275.85 361.76
0.50 ≤ ∆e < 0.65 37.38 38.37 357.39 464.95
0.65 ≤ ∆e < 0.80 30.85 31.08 526.85 701.61
0.80 ≤ ∆e 21.18 19.61 433.91 573.80

All 28.94 31.95 504.30 680.05

The sample of S&P 500 options is acquired via OptionMetrics. Options violating arbitrage conditions
were discarded. The IVsample size is 77,310. The sample of S&P 500 options is acquired via Tick
Data. Options violating arbitrage conditions were discarded. The ORV sample size is 68,857. Model
prices and ORVs are calculated by using the parameters of Table 5.11. RIVRMSEs and RORVRMSEs
are given in percentages.
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5.7 Concluding Remarks

The observable variables used in this paper provide a portrait of the incremental infor-
mation of these variables for the identification of latent features governing dynamics
of asset prices. The paper proposes the option realized variance as a new observable
quantity. This variable provides evidence of the usefulness of high frequency option
prices to infer characteristics such as instantaneous variance, as well as jumps in re-
turns and the variance process.

One of the reasons behind the information gains of this measure is its ability to capture
different properties of the DGP depending on the moneyness of the option employed.
Whereas ITM and OTM options provide ORVs that are responsive to discontinuous
and diffusive innovations, the ORV of OTM puts are sensitive to changes in the dis-
continuous part of the variance and the return process.

The paper empirically documents how option realized variance behaves for options
on the S&P 500 and studies its relationship with the realized variance of the index.
For instance, using a principal component analysis for the surface of option realized
variances, we find that ORV contains additional information when compared to the one
embedded in realized variance. The paper further explores the economic implications
of not using high frequency option prices for model estimation. Model parameters
estimated without this information are not able to correctly disentangle diffusive and
discontinuous innovations, which produces an incorrect attribution of risk premiums
among these two competitive sources of risk.

5.A Pricing

5.A.1 Radon-Nikodym Derivative

Let Ft = σ
{
WV,u,W⊥,u, JY,u, JV,u

}
0≤u≤t be the σ−field generated by the past and actual

noise terms. The market being incomplete, there are infinitely many equivalent mar-
tingale measures. We restrict the choice among those that have a Radon-Nikodym
derivative of the form

dQ
dP

∣∣∣∣∣
Ft

=
exp

(
−

∫ t

0
ΛV,u−dWV,u −

∫ t

0
Λ⊥,u−dW⊥,u + ΓY JY,t + ΓV JV,t

)
EP

[
exp

(
−

∫ t

0
ΛV,u−dWV,u −

∫ t

0
Λ⊥,u−dW⊥,u + ΓY JY,t + ΓV JV,t

)] , (5.21)
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the latter being an extended version of the Girsanov theorem. The predictable pro-
cesses

{
ΛV,t−

}
t≥0 and

{
Λ⊥,t−

}
t≥0 and the constants ΓY and ΓV characterize the risk premi-

ums embedded in this framework by linking the P− and Q−parameters together.

This approach is different from the one proposed in Duffie et al. (2000), Pan (2002),
and Broadie et al. (2007) in which the P− and Q− parameters are allow to vary in-
dependently. However, it shares similarities to Christoffersen et al. (2012) and Orn-
thanalai (2014) that consider GARCH models with jumps. It is also related to Bates
(2000): in the latter, the author restricts the value of certain parameters to be consistent
with the time series behaviour of returns.

Building on the properties of exponential martingales,36

EP
[
exp

(
−

∫ t

0
ΛV,u−dWV,u −

∫ t

0
Λ⊥,u−dW⊥,u + ΓY JY,t + ΓV JV,t

)]
= exp

(
1
2

∫ t

0

(
Λ2

V,u− + Λ2
⊥,u−

)
du +

(
ϕPZY

(ΓY) − 1
) ∫ t

0
λY,u−du

+
(
ϕPZV

(Γv) − 1
) ∫ t

0
λV,u−du

)
where ϕPZY

(ΓY) and ϕPZV
(ΓV) represent the moment generating functions of the log-

equity price and variance jump size,37

ϕPZY
(ΓY) = exp

(
µYΓY +

1
2
σ2

YΓ2
Y

)
and ϕPZV

(ΓV) =
(
1 − ΓVµV

)−1 . (5.22)

5.A.2 Model Under the Risk-Neutral Measure Q

For the diffusion components of the model, the risk-neutral Brownian motion are con-
structed in the usual way:

WQ
V,t = WV,t +

∫ t

0
ΛV,u−du, WQ

⊥,t = W⊥,t +

∫ t

0
Λ⊥,u−du (5.23)

and WQ
Y,t = ρWV,t+

√
1 − ρ2W⊥,t = WY,t+

∫ t

0
ΛY,u−du where ΛY,u− = ρΛV,u−+

√
1 − ρ2Λ⊥,u− .

The risk-neutral jump components are obtained from a direct comparison of the P−
and Q−versions of the moment generating functions of the jump increments (JY,t − JY,s

36It is required that EP
[∫ t

0 Λ2
V,u−du

]
< ∞ and EP

[∫ t
0 Λ2

⊥,u−du
]
< ∞. Details are provided in Lemmas

B.4 and B.6 of Appendix B.
37Provided that ΓV <

1
µV
.

202



Chapter 5. Extracting Latent States with High Frequency Option Prices

and JV,t − JV,s).38 Indeed, the change of measure affects the parameters:

JQY,t =

NQY,t∑
n=1

ZQY,n, and JQV,t =

NQV,t∑
n=1

ZQV,n,

where
(
NQY,t

)
t≥0

is a Cox process with predictable intensity
(
λY,t−

)
t≥0,

(
NQV,t

)
t≥0

is a Pois-
son process of intensity λQV,0 and

λQY,t− = ϕPZY
(ΓY) λY,t− , µQY = µY + ΓYσ

2
Y , σQY = σY ,

λQV,0 = ϕPZV
(ΓV) λV,0, µQ

V
= ϕPZV

(ΓV) µV .

The risk-neutral dynamics of the log-price process is established by imposing the dis-
counted price process

{
exp ((q − r) t) exp (Yt)

}
t≥0 to be a Q−martingale where r is the

risk-free rate and q is the dividend rate.39 To get a semi-closed form for option prices,
the risk-neutral stochastic differential equation (SDE) of the variance process is as-
sumed to have a mean reverting behaviour, as in Heston (1993) among others. Implic-
itly, it constrains 40

ΛV,t− = ηV

√
Vt− (5.24)

and the model under the risk-neutral measure is thus

dYt =αQt−dt +
√

Vt−dWQ
Y,t + dJQY,t, (5.25)

dVt = κQ
(
θQ − Vt−

)
dt + σ

√
Vt−dWQ

V,t + dJQV,t, (5.26)

38Lemma B.8 of Appendix B shows that

ϕPJY,t−JY,s
(a) = EP

Fs

[(
exp

(
µYa +

1
2
σ2

Ya2
)
− 1

)
exp

(∫ t

s
λY,u−du

)]
,

ϕQJY,t−JY,s
(a) = EP

Fs

[(
exp

((
µY + ΓYσ

2
Y

)
a +

1
2

a2σ2
Y

)
− 1

)
exp

(
ϕPZY

(ΓY )
∫ t

s
λY,u−du

)]
,

ϕPJV,t−JV,s
(a) = EP

Fs

[
exp

(((
1 − aµV

)−1
− 1

) ∫ t

s
λV,u−du

)]
,

ϕQJV,t−JV,s
(a) = EP

Fs

[
exp

(((
1 − aϕPZV

(ΓV ) µV

)−1
− 1

)
ϕPZV

(ΓV )
∫ t

s
λY,u−du

)]
.

39Details are provided in Lemma B.9 of Appendix B.
40Indeed,

dVt = κ (θ − Vt− ) dt + σ
√

Vt−dWV,t + dJV,t

= κ (θ − Vt− ) − σ
√

Vt−ΛV,u−dt + σ
√

Vt−dWQV,t + dJQV,t

= (κ + σηV )
(

κθ

κ + σηV
− Vt−

)
dt + σ

√
Vt−dWQV,t + dJQV,t.
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where the correspondence between the P− and Q− parameters is

αQt− = r − q − 1
2Vt− −

(
ϕPZY

(1) − 1
)
λQY,t− , κQ = κ + σηV ,

λQY,t− = ϕPZY
(ΓY) λY,t− , θQ = κθ

κ+σηV
.

5.A.3 Pricing

The price of a European call option with strike price K and maturity T is

Ct(Yt,Vt) = exp(Yt) exp (−q(T − t)) P1(Yt,Vt) − K exp (−r(T − t)) P2(Yt,Vt) (5.27)

where

P1(y, v) =
1
2

+
1
π

∫ ∞

0
Re

exp (−iuk − y)ϕQYT |Yt ,Vt
(ui + 1, y, v)

ui

 du

P2(y, v) =
1
2

+
1
π

∫ ∞

0
Re

exp (−iuk)ϕQYT |Yt ,Vt
(ui, y, v)

ui

 du

and ϕQYT |Yt ,Vt
(u, y, v) = EQt

[
exp (uYT ) |Yt = y,Vt = v

]
is the moment generating function

of YT conditional on time t information. More precisely,

ϕQYT |Yt ,Vt
(u,Yt,Vt) = exp (A (u, t,T ) + uYt + C (u, t,T ) Vt)

where

C (u, t,T ) =
2C0(exp (−C2(T − t)) − 1)

C2(exp (−C2(T − t)) + 1) −C1(exp (−C2(T − t)) − 1)
, (5.28)

C0 = λQY,1

(
ϕQZY

(1) − 1
)

u − λQY,1
(
ϕQZY

(u) − 1
)

+
u − u2

2
,

C1 = κQ − ρσu,

C2 =

√
C2

1 + 2σ2C0,

and

A(u; t,T ) = D0(T − t) + θQκQg1(t,T ) + λQV,0g2(t,T ), (5.29)

D0 = −r + (r − q)u + λQY,0

(
ϕQZY

(u) − 1
)
− λQY,0

(
ϕQZY

(1) − 1
)

u,

g1(t,T ) = −
1
σ2

(
2 log(2C2) − 2 log

(
C1

(
eC2(T−t) − 1

)
+ C2

(
eC2(T−t) + 1

))
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+(C1 + C2)(T − t)
)
,

g2(t,T ) =
µQV

2C0

(
µQV

)2
+ 2C1µ

Q
V − σ

2

(
2 log(2C2)

−2 log
(
C1

(
eC2(T−t) − 1

)
+ C2

(
eC2(T−t) + 1

)
+ 2C0µ

Q
V

(
eC2(T−t) − 1

))
+2C0µ

Q
V + C1 −C2(T − t)

)
.

The approach is inspired from Heston (1993) that relies on an inversion similar to
the one of Gil-Pelaez (1951). The explicit form of the moment generating function
is similar to the ones found by Filipovic and Mayerhofer (2009) and Duffie et al.
(2000).41

5.B Estimation

5.B.1 Drift Term

The drift term process of Equation (5.1) is

αPu− = r − q −
1
2

Vu− +
√

Vu−ΛY,u− +
(
ϕPZY

(ΓY) − ϕPZY
(1 + ΓY)

)
λY,u−

= r − q −
1
2

Vu− +
√

Vu−ΛY,u− +
(
γY −

(
ϕPZY

(1) − 1
))
λY,u−

where the moment generating functions, ϕPZY
(ΓY) and ϕPZV

(ΓV) , of the log-equity price
and variance jump size are defined at Equation (5.22). To obtain a drift term that
depends on the instantaneous variance only, it is assumed that

Λ⊥,u− = η⊥
√

Vt− . (5.30)

Consequently, letting ηY = ρηV +
√

1 − ρ2η⊥ yields ΛY,u− =
(
ρηV +

√
1 − ρ2η⊥

) √
Vt−

and
αPu− = r − q +

(
ηY −

1
2

)
Vu− +

(
γY −

(
ϕPZY

(1) − 1
))
λY,u− . (5.31)

41Details are available in Appendix B.2.

205



Chapter 5. Extracting Latent States with High Frequency Option Prices

Sketch of the proof. Let

Zt =

 −
∫ t

0
ΛV,u−dWV,u −

∫ t

0
Λ⊥,u−dW⊥,u − 1

2

∫ t

0

(
Λ2

V,u− + Λ2
⊥,u−

)
du

+ ΓY JY,t −
(
ϕPZY

(ΓY) − 1
) ∫ t

0
λY,u−du + ΓV JV,t −

(
ϕPZV

(ΓV) − 1
) ∫ t

0
λV,u−du


be associated to the Radon-Nikodym derivative of (5.21) and Dt = exp (−(r − q)t) be
the combination of the discount factor and the dividend yield. Since the discounted
price has to be a Q−martingale, then for all 0 < s < t,

1 = EQs

[
Dt exp (Yt)
Ds exp (Ys)

]
= EPs

[
Dt exp (Yt + Zt)
Ds exp (Ys + Zs)

]
,

which means that {Dt exp(Yt + Zt)}t≥0 is a P−martingale. The computation of this last
expectation leads to the final result.42 �

5.B.2 Filtering Procedure

5.B.2.1 Intraday Simulation

In what follows, h is set to ∆/M implying that the path simulation is performed with M

steps per day. Assuming that Yt and Vt are known, Vt+h, ∆It,t+h and Yt+h are generated
as follows:

1. The jump indicator functions 1{NY,t+h−NY,t=1} and 1{NV,t+h−NV,t=1} are generated from
independent Bernouilli random variables with a success probabilities of λY,th

and λV,th respectively.43

2. If needed, ZY,t+h ∼ N(µY ;σ2
Y) and ZV,t+h ∼ Exp (µV) are simulated.

3. Time t + h variance Vt+h is simulated according to

Vt+h �Vt + κ (θ − Vt) h + σ
√

Vt
(
WV,t+h −WV,t

)
+ ZV,t+h1{NV,t+h−NV,t=1}. (5.32)

= V(t+h)− + ZV,t+h1{NV,t+h−NV,t=1}

where 1{NV,t+h−NV,t=1} is an indicator function that is worth 1 if there is a jump
during the interval and 0 otherwise. Indeed, it corresponds to the Euler approx-
imation of the variance process (5.2).

42Lemma B.10 of Appendix B provides all details.
43Because of the Poisson process properties, the probability of observing a single jump is approxi-

mately λ·,t when h is small.
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4. The integrated variance increment ∆It,t+h =
∫ t+h

t
Vu− du is simulated condition-

ally on Vt and V(t+h)− . More precisely, the cumulant generating function of ∆It,t+h

is

log
(
EP

[
exp

(
a∆It,t+h

)
|Vt,V(t+h)−

])
= log

1 +

∞∑
m=1

EP
[
(∆It,t+h)m|Vt,V(t+h)−

] am

m!


�EP

[
∆It,t+h|Vt,V(t+h)−

]
a + VarP

[
∆It,t+h|Vt,V(t+h)−

] a2

2
,

which is the cumulant generating function of a Gaussian distribution. The con-
ditional density function of ∆It,t+h is approximated by

1√
2πVarP

[
∆It,t+h|Vt,V(t+h)−

] exp

−1
2

(
x − EP

[
∆It,t+h|Vt,V(t+h)−

])2

VarP
[
∆It,t+h|Vt,V(t+h)−

]
 .

The first two centred moments of ∆It,t+h are available in closed form in Tse and
Wan (2013).

5. The log-price is simulated according to 44,45,46

Yt+h = Yt + c1h + c2∆It,t+h + ρσ−1 (
V(t+h)− − Vt

)
+

√
1 − ρ2

∫ t+h

t

√
Vu− dW⊥,u −

ρ

σ

 NV,t+h∑
n=NV,t+1

ZV,n

 +

NY,t+h∑
n=NY,t+1

ZY,n. (5.33)

where

c1 = r − q +
(
ϕPZY

(ΓY) − ϕPZY
((1 + ΓY))

)
λY,0 −

ρκθ

σ
,

c2 = ηY −
1
2

+
(
ϕPZY

(ΓY) − ϕPZY
((1 + ΓY))

)
λY,1 +

ρ

σ
κ.

44Again, for small h > 0, the two last terms may be approximated with

−
ρ

σ
ZV,t+h1{NV,t+h−NV,t=1} + ZY,t+h1{NY,t+h−NY,t=1}.

45As in Broadie and Kaya (2006),
∫ t+h

t

√
Vu− dW⊥,u is approximated with a Gaussian distribution of

mean zero and variance ∆It,t+h. Indeed, since the instantaneous variance is stochastic, the distribution
of

∫ t+h
t

√
Vu− dW⊥,u is not truly Gaussian. Though, it would have been the case if the variance was a

deterministic function of time. The variance of
∫ t+h

t

√
Vu−dW⊥,u is EPt

[∫ t+h
t Vu−du

]
= EPt [∆It,t+h].

46Note that the log-prices are simulated intraday but the observed log-price is used whenever it is
available, that is at the end of each day. These intermediary log-prices are required in the computation
of ∆OQVt−h.
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In fact, from the integral version of Equation (5.2),

∫ t+h

t

√
Vu− dWV,u = σ−1

V(t+h)− − Vt − κθh + κ

∫ t+h

t
Vu− du −

NV,t+h∑
n=NV,t+1

ZV,n

 .
Replacing back in the integral form of the log-equity price (5.1), substituing the
drift term of Equation (5.31) and noting that λY,t− = λY,0 + λY,1Vt− completes the
construction.

5.B.2.2 Time Aggregation

Let t = (k − 1) ∆. Once Steps 1 to 5 of Appendix 5.B.2.1 have been executed for each
intraday periods {t + jh}Mj=1, the integrated variance and quadratic variation increments
are approximated by the aggregation of the simulated variables:

∆It,t+∆ �
M∑
j=1

∆It+( j−1)h,t+ jh and ∆QVt,t+∆ � ∆It,t+∆ +

M∑
j=1

ZY,t+ jh1{NY,t+ jh−NY,t+( j−1)h=1}.

Note that a time aggregation of Equation (5.33) suggests the approximation

Yt+∆ − Yt =

M∑
j=1

(
Yt+ jh − Yt+( j−1)h

)
� µt+∆ + σ2

t+∆εt+h

where εt+h is a standard normal random variable,

µt+∆ = c1∆ + c2∆It,t+∆ +
ρ

σ
(Vt+∆ − Vt)

−
ρ

σ

M∑
j=1

ZV,t+ jh1{NV,t+ jh−NV,t+( j−1)h=1} +

M∑
j=1

ZY,t+ jh1{NY,t+ jh−NY,t+( j−1)h=1} (5.34)

and σ2
t+∆

=
(
1 − ρ2

)
∆It,t+∆. The model option implied volatility IVt+∆(Yt+∆,Vt+∆) is

calculated based on Equation (5.27).47 Finally, the Euler discretization of Equation

47IVt+∆(Yt+∆,Vt+∆) is the Black-Scholes implied volatility obtained from the model option price
O(i)

t,t+∆
(Yt,t+∆,Vt,t+∆).
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(5.10) provides an approximation of the option quadratic variation:48

∆OQVt,t+∆ = h
M−1∑
j=0

(∂Ot+ jh

∂y

(
Yt+ jh,Vt+ jh

))2

+ σ2
(
∂Ot+ jh

∂v

(
Yt+ jh,Vt+ jh

))2

+2σρ
∂Ot+ jh

∂y

(
Yt+ jh,Vt+ jh

) ∂Ot+ jh

∂v

(
Yt+ jh,Vt+ jh

))
∆It+( j−1)h,t+ jh

+

M∑
j=1

{
Ot+ jh

(
Yt+ jh,Vt+ jh

)
− Ot+ jh

(
Y(t+ jh)− ,V(t+ jh)−

)}2
. (5.35)

Appendix B.2.2.1 provides details about how these derivatives are computed. At the
end of this stage, a simulated vector

xt+∆ =
(
Yt+∆,Vt+∆,∆It,t+∆,QVt,t+∆,O(i)

t+∆
(Yt+∆,Vt+∆),∆OQV (i)

t,t+∆
: i ∈ {1, 2, ..., nt}

)
is obtained at the end of the day.
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Chapter 6

Concluding Remarks

Filtering methods are extremely powerful as they allow us to understand the behaviour
of latent variables which cannot be directly observed. This thesis presents a few appli-
cations of filtering methods in finance. The first two essays focus on credit risk. In the
first essay, credit risk is investigated before, during and after the last financial crisis
with a flexible credit risk model. A filtering method based on the work of Tugnait
(1982) is tailored for the issue at hand. The filter is extended in the second essay to
account for co-movements of firm leverages. Systemic risk in both the banking and
the insurance subsectors is also analyzed.

In the third essay, a particle filter is used to estimate a discrete time GARCH-type
jump-diffusion model. This filter is an adaptation of Gordon et al.’s (1993) sequential
importance resampling (SIR) methodology. Based on the estimation results of 260
firms, we find that systematic risk factors explain close to 60% of the risk premium
on average, while idiosyncratic factors explain more than 40%. We also show that tail
risk plays a central role in the pricing of idiosyncratic risk.

In the fourth essay, the SIR is generalized to incorporate high frequency option in-
formation in the estimation of posterior distribution of latent variables. This is done
through the introduction of a novel quantity: the option realized variance. Our results
show that the information contained in these variances improves the inference of the
latent variables such as the instantaneous variance and jumps.

As shown in the present thesis, filtering methods are of paramount importance in fi-
nance as most modelling framework embed these latent variables. These techniques
are getting more efficient, reliable and flexible with time, making their potential appli-
cations virtually limitless.



Chapter 6. Concluding Remarks

Yet, a major obstacle to getting better and faster filtering methods is related to their
numerical burdens. Fortunately for us, computers are getting faster every year. Break-
throughs such as parallel computing and GPU computing already allow us for more
efficient schemes. However, it is hard to foresee the technology of the future; for
instance, twenty years ago, today’s technology was beyond most people’s wildest
dreams. Nonetheless, one thing is certain: we will see more of these methods in
the years to come.
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Appendix A

Appendices of Idiosyncratic Jump Risk
Matters: Evidence from Equity Returns
and Options

A.1 Normal-Inverse Gaussian Distribution

The jumps yu,t+1 have a NIG distribution with location parameter 0, a scale parameter
hu,y,t+1, an asymetry parameter δu and a tail heaviness parameter αu. The first standard-
ized moments are

EPt
[
yu,t+1

]
=

δu√
α2

u − δ
2
u

hu,y,t+1,

VarPt
[
yu,t+1

]
=

α2
u( √

α2
u − δ

2
u

)3 hu,y,t+1,

SkewPt
[
yu,t+1

]
=

3δu

αu
(
α2

u − δ
2
u
) 1

4

1√
hu,y,t+1

and the excess kurtosis is

ExKurtPt
[
yu,t+1

]
= 3

(
1 +

4δ2
u

α2
u

)
1√

α2
u − δ

2
u

1
hu,y,t+1

.

The moment generating function is

ϕyu,t+1 (φ) = exp
((√

α2
u − δ

2
u −

√
α2

u − (δu + φ)2
)

hu,y,t+1

)
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A.1.1 Interpretation of the Jump Intensity Parameter

For comparison, let Nt+1 be a Poisson random variable of intensity λt+1, and consider
the compound Poisson random variable

∑Nt
j=0 J j where the jumps J j are independent

NIG(0, h′, δ′, α′) random variables. The moment generating function of
∑Nt

j=0 J j is

ϕ∑Nt
j=0 J j

(φ)

= exp (−λt)

+

∞∑
j=1

exp
(

j
(√

(α′)2
− (δ′)2

−

√
(α′)2

− (δ′ + φ)2
)

h′
)

exp (−λt)
λ

j
t

j!

= exp (−λt)
∞∑
j=0

[
λt exp

((√
(α′)2

− (δ′)2
−

√
(α′)2

− (δ′ + φ)2
)

h′
)] j 1

j!

= exp
(
λt

[
exp

((√
(α′)2

− (δ′)2
−

√
(α′)2

− (δ′ + φ)2
)

h′
)
− 1

])
� exp

(
λt

(√
(α′)2

− (δ′)2
−

√
(α′)2

− (δ′ + φ)2
)

h′
)

where the last approximation holds from a first order Taylor expansion, provided
that h′ is close to zero. Letting α′ = α2

u, and δ′ = δu, a direct comparison between
ϕ∑Nt

j=0 J j
(φ) and ϕyu,t+1 (φ) implies that

hu,y,t+1 � λth′,

that is hu,y,t+1 may be interpreted as a scaled version of the jump intensity.

A.1.2 Returns’ Conditional Moments

The conditional moment generation function of azM,t+1 + byM,t+1 + c
(
zs,t+1 + yS ,t+1

)
is

EPt
[
exp

(
φ
(
azM,t+1 + byM,t+1 + c

(
zS ,t+1 + yS ,t+1

)))]
= EPt

[
exp

(
φazM,t+1

)]
EPt

[
exp

(
φbyM,t+1

)]
EPt

[
exp

(
φczS ,t+1

)]
EPt

[
exp

(
φcyS ,t+1

)]
= exp

(
a2φ2

2
hM,z,t + ΠM (bφ) hM,y,t +

c2φ2

2
hS ,z,t + ΠS (cφ) hS ,y,t

)
where

Πu (φ) =

√
α2

u − δ
2
u −

√
α2

u − (δu + φ)2.
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Note that
∂Πu
∂φ

(φ) =
(δu+φ)

√
α2

u−(δu+φ)2

∂2Πu
∂φ2 (φ) =

α2
u

(α2
u−(δu+φ)2)

3
2

∂3Πu
∂φ3 (φ) = 3 α2

u(δu+φ)

(α2
u−(δu+φ)2)

5
2

∂4Πu
∂φ4 (φ) = 3α2

u
α2

u+4(δu+φ)2

(α2
u−(δu+φ)2)

7
2

The cumulant generating function is therefore

ξ (φ; a, b, c) =
a2φ2

2
hM,z,t + ΠM (bφ) hM,y,t +

c2φ2

2
hS ,z,t + ΠS (cφ) hS ,y,t

Note that

∂ξ
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∂ΠS

∂φ
(cφ) hS ,y,t,

∂2ξ

∂φ2
(φ; a, b, c) = a2hM,z,t + b2∂

2ΠM

∂φ2
(bφ) hM,y,t + c2hS ,z,t + c2∂

2ΠS

∂φ2
(cφ) hS ,y,t,

∂3ξ

∂φ3
(φ; a, b, c) = b3∂

3ΠM

∂φ3
(bφ) hM,y,t + c3∂

3ΠS

∂φ3
(cφ) hS ,y,t,

∂4ξ

∂φ4
(φ; a, b, c) = b4∂

4ΠM

∂φ4
(bφ) hM,y,t + c4∂

4ΠS

∂φ4
(cφ) hS ,y,t.

The first moment of the market and stock returns are

EPt
[
RM,t+1

]
= µPM,t+1 − ξ

P
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∂ξ
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(0; 1, 1, 0) ,

EPt
[
RS ,t+1

]
= µPS ,t+1 − ξ

P
S ,t+1 +

∂ξ

∂φ

(
0; βS ,z, βS ,y, 1

)
.

Their variances correspond to

VarPt
[
RM,t+1

]
= VarPt
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.

Similarly, since the third cumulant corresponds to the third centered moment, the third
standardized moment are respectively

SkewPt
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Finally, the excess kurtosis are

EPt
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))2 .

A.1.3 Conditional Variance and Jump Intensity Variable Moments

Lemma A.1.

VarPt−1
[
hM,z,t+1

]
= 2a2

M,z

(
1 + 2c2

M,zhM,z,t

)
,

VarPt−1

[
hM,y,t+1

]
= 2a2

M,y

(
1 + 2c2

M,yhM,z,t

)
,

VarPt−1
[
hS ,z,t+1

]
= κ2

S ,zVarPt−1
[
hM,z,t+1

]
+ 2a2

S ,z

(
1 + 2c2

S ,zhS ,z,t

)
,

VarPt−1

[
hS ,y,t+1

]
= κ2

S ,yVarPt−1

[
hM,y,t+1

]
+ 2a2

S ,y

(
1 + 2c2

S ,yhS ,z,t

)
.

Proof. Recall that the market conditional variance is

hM,z,t+1 = wM,z + bM,zhM,z,t + aM,z

(
εM,t − cM,z

√
hM,z,t

)2
.

Therefore, EPt−1
[
hM,z,t+1

]
= wM,z + bM,zhM,z,t + aM,z

(
1 + c2

M,zhM,z,t

)
and

VarPt−1
[
hM,z,t+1

]
= a2

M,zE
P
t−1

[((
εM,t − cM,z

√
hM,z,t

)2
−

(
1 + c2

M,zhM,z,t

))2
]

= a2
M,zE

P
t−1

[
ε4

M,t − 4cM,z

√
hM,z,tε

3
M,t + 2

(
2c2

M,zhM,z,t − 1
)
ε2

M,t + 4cM,z

√
hM,z,tεM,t + 1

]
= a2

M,z

(
3 + 2

(
2c2

M,zhM,z,t − 1
)

+ 1
)

= 2a2
M,z

(
1 + 2c2

M,zhM,z,t

)
.

The market jump scale parameter is

hM,y,t+1 = wM,y + bM,yhM,y,t + aM,y

(
εM,t − cM,y

√
hM,z,t

)2
.
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Hence, EPt−1

[
hM,y,t+1

]
= wM,y + bM,yhM,y,t + aM,y

(
1 + c2

M,yhM,z,t

)
and

VarPt−1

[
hM,y,t+1

]
= a2

M,yE
P
t−1

[((
εM,t − cM,y

√
hM,z,t

)2
−

(
1 + c2

M,yhM,z,t

))2
]

= 2a2
M,y

(
1 + 2c2

M,yhM,z,t

)
.

The stock conditional variance satisfies

hS ,z,t+1 = κS ,zhM,z,t+1 + bS ,z
(
hS ,z,t − κS ,zhM,z,t

)
+ aS ,z

(
ε2

S ,t − 1 − 2cS ,z

√
hS ,z,tεS ,t

)
.

Therefore, EPt−1
[
hS ,z,t+1

]
= κS ,zE

P
t−1

[
hM,z,t+1

]
+ bS ,z

(
hS ,z,t − κS ,zhM,z,t

)
and

VarPt−1
[
hS ,z,t+1

]
= EPt−1

[(
κS ,z

(
hM,z,t+1 − E

P
t−1

[
hM,z,t+1

])
+ aS ,z

(
ε2

S ,t − 1 − 2cS ,z

√
hS ,z,tεS ,t

))2
]

= κ2
S ,zE

P
t−1

[(
hM,z,t+1 − E

P
t−1

[
hM,z,t+1

])2
]

+ a2
S ,zE

P
t−1

[(
ε2

S ,t − 1 − 2cS ,z

√
hS ,z,tεS ,t

)2
]

+2κS ,zaS ,zE
P
t−1

[(
hM,z,t+1 − E

P
t−1

[
hM,z,t+1

]) (
ε2

S ,t − 1 − 2cS ,z

√
hS ,z,tεS ,t

)]
= κ2

S ,zVarPt−1
[
hM,z,t+1

]
+ 2a2

S ,z

(
1 + 2c2

S ,zhS ,z,t

)
+2κS ,zaS ,zE

P
t−1

[(
ε2

M,t − 1 − 2cM,z

√
hM,z,tεM,t

) (
ε2

S ,t − 1 − 2cS ,z

√
hS ,z,tεS ,t

)]
= κ2

S ,zVarPt−1
[
hM,z,t+1

]
+ 2a2

S ,z

(
1 + 2c2

S ,zhS ,z,t

)

+2κS ,zaS ,z


EPt−1

[(
ε2

M,t − 1
)]
EPt−1

[(
ε2

S ,t − 1
)]

−2cS ,z
√

hS ,z,tE
P
t−1

[(
ε2

M,t − 1
)]
EPt−1

[(
εS ,t

)]
−2cM,z

√
hM,z,tE

P
t−1

[(
εM,t

) (
ε2

S ,t − 1
)]
EPt−1

[(
εM,t

) (
ε2

S ,t − 1
)]

+4cM,zcS ,z
√

hM,z,t
√

hS ,z,tE
P
t−1

[
εM,t

]
EPt−1

[
εS ,t

]


= κ2

S ,zVarPt−1
[
hM,z,t+1

]
+ 2a2

S ,z

(
1 + 2c2

S ,zhS ,z,t

)
.

Finally,

hS ,y,t+1 = κS ,yhM,y,t+1 + bS ,y

(
hS ,y,t − κS ,yhM,y,t

)
+ aS ,y

(
ε2

S ,t − 1 − 2cS ,yzS ,t

)
implies that EPt−1

[
hS ,y,t+1

]
= κS ,yE

P
t−1

[
hM,y,t+1

]
+ bS ,y

(
hS ,y,t − κS ,yhM,y,t

)
and

VarPt−1

[
hS ,y,t+1

]
=EPt−1

[(
κS ,y

(
hM,y,t+1 − E

P
t−1

[
hM,y,t+1

])
,+aS ,y

(
ε2

S ,t − 1 − 2cS ,y

√
hS ,z,tεS ,t

))2
]

= κ2
S ,yVarPt−1

[
hM,y,t+1

]
+ 2a2

S ,y

(
1 + 2c2

S ,yhS ,z,t

)
.
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A.2 Detailed Proofs of Section 4.B’s Results

Proof of Lemma 4.1. The conditional cumulant generating function of εu,t under Q is

ξQεu,t
(φ)

= logEQt−1
[
exp

(
φεu,t

)]
= logEPt−1

[
exp

(
−ΛMzM,t − ΓMyM,t −

∑
S∈SΛS zS ,t −

∑
S∈S ΓS yS ,t

)
EPt−1

[
exp

(
−ΛMzM,t − ΓMyM,t −

∑
S∈SΛS zS ,t −

∑
S∈S ΓS yS ,t

)] exp
(
φεu,t

)]
= logEPt−1

[
exp

(
−Λuzu,t

)
EPt−1

[
exp

(
−Λuzu,t

)] exp
(
φεu,t

)]
= ξPεu,t

(
φ − Λu

√
hu,z,t

)
− ξPεu,t

(
−Λu

√
hu,z,t

)
=

(
1
2

(
φ − Λu

√
hu,z,t

)2
−

1
2

(
−Λu

√
hu,z,t

)2
)

=

(
1
2
φ2 − Λu

√
hu,z,tφ

)
.

�

Proof of Lemma 4.2. For any yu,t ∈
{
yM,t, yS ,t : S ∈ S

}
, the conditional cumulant

generating function of yu,t under Q is

ξQyu,t
(φ)

= logEQt−1
[
exp

(
φyu,t

)]
= logEPt−1

[
exp

(
−ΛMzM,t − ΓMyM,t −

∑
S∈SΛS zS ,t −

∑
S∈S ΓS yS ,t

)
EPt−1

[
exp

(
−ΛMzM,t − ΓMyM,t −

∑
S∈SΛS zS ,t −

∑
S∈S ΓS yS ,t

)] exp
(
φyu,t

)]
= logEPt−1

[
exp

(
−Γuyu,t

)
EPt−1

[
exp

(
−Γuyu,t

)] exp
(
φyu,t

)]
= ξPyu,t

(φ − Γu) − ξPyu,t
(−Γu)

= Πu (φ − Γu) hu,y,t − Πu (−Γu) hu,y,t

=

(√
α2

u − (δu − Γu)2
−

√
α2

u − (δu + φ − Γu)2
)

hu,y,t

which is the cumulant generating function of a NIG of parameter µ∗u = µu = 0, α∗u = αu,
δ∗u = δu − Γu and h∗u,y,t = hu,y,t. �
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A.3 Detailed Proofs of Section 4.C’s Results

A.3.1 Market Drift Under P

Recall that
log

(
Mt

Mt−1

)
= RM,t = µPM,t − ξ

P
M,t + zM,t + yM,t

Since the discounted stock price should behave as a Q−martingale,

1 =EQt−1

[
exp (−rt) Mt

Mt−1

]
=EQt−1

[
exp

(
RM,t − rt

)]
=EPt−1

[
exp

(
−ΛMzM,t − ΓMyM,t −

∑
S∈SΛS zS ,t −

∑
S∈S ΓS yS ,t

)
EPt−1

[
exp

(
−ΛMzM,t − ΓMyM,t −

∑
S∈SΛS zS ,t −

∑
S∈S ΓS yS ,t

)] exp
(
RM,t − rt

)]
=EPt−1

[
exp

(
−ΛMzM,t − ΓMyM,t

)
EPt−1

[
exp

(
−ΛMzM,t − ΓMyM,t

)] exp
(
µPM,t − ξ

P
M.t + zM,t + yM,t − rt

)]

=EPt−1

exp
(
µPM,t − rt − ξ

P
M,t + (1 − ΛM) zM,t + (1 − ΓM) yM,t

)
EPt−1

[
exp

(
−ΛMzM,t − ΓMyM,t

)] 
= exp

 µPM,t − rt − ξ
P
zM,t

(1) − ξPyM,t
(1)

+ξPzM,t
(1 − ΛM) + ξPyM,t

(1 − ΓM) − ξPzM,t
(−ΛM) − ξPyM,t

(−ΓM)

 .
Because,

− ξPzM,t
(1) + ξPzM,t

(1 − ΛM) − ξPzM,t
(−ΛM)

= −
1
2

hM,z,t +
1
2

hM,z,t (1 − ΛM)2
−

1
2

hM,z,tΛ
2
M = −ΛMhM,z,t

and
−ξPyM,t

(1) + ξPyM,t
(1 − ΓM) − ξPyM,t

(−ΓM) = −hM,y,tγM

where

γM =

√
α2

M − δ
2
M −

√
α2

M − (δM + 1)2 +

√
α2

M − (δM + 1 − ΓM)2

−

√
α2

M − (δM − ΓM)2

= ΠM (1) − Π∗M (1) ,

we conclude that
1 = exp

(
µPM,t − rt − ΛMhM,z,t − hM,y,tγM

)
.
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Therefore,
µPM,t = rt + ΛMhM,z,t + γMhM,y,t.

A.3.2 Stock Drift Under P

Recall that

log
(

S t

S t−1

)
= RS ,t = µPS ,t − ξ

P
S .t + βS ,zzM,t + βS ,yyM,t + zS ,t + yS ,t

Since the discounted stock price should behave as a Q−martingale,

1

=EQt−1

[
exp (−rt) S t

S t−1

]
=EQt−1

[
exp

(
RS ,t − rt

)]
=EPt−1

[
exp

(
−ΛMzM,t − ΓMyM,t −

∑
S∈SΛS zS ,t −

∑
S∈S ΓS yS ,t

)
EPt−1

[
exp

(
−ΛMzM,t − ΓMyM,t −

∑
S∈SΛS zS ,t −

∑
S∈S ΓS yS ,t

)] exp
(
RS ,t − rt

)]

=EPt−1


exp

 −ΛMzM,t − ΓMyM,t −
∑

S∈SΛS zS ,t −
∑

S∈S ΓS yS ,t

+µPS ,t − ξ
P
S .t + βS ,zzM,t + βS ,yyM,t + zS ,t + yS ,t − rt


EPt−1

[
exp

(
−ΛMzM,t − ΓMyM,t −

∑
S∈SΛS zS ,t −

∑
S∈S ΓS yS ,t

)]


=EPt−1


exp

 µPS ,t − rt − ξ
P
S .t +

(
βS ,z − ΛM

)
zM,t

+
(
βS ,y − ΓM

)
yM,t + (1 − ΛS ) zS ,t + (1 − ΓS ) yS ,t


EPt−1

[
exp

(
−ΛMzM,t − ΓMyM,t − ΛS zS ,t − ΓS yS ,t

)]


= exp


µPS ,t − rt − ξ

P
zM,t

(
βS ,z

)
− ξPyM,t

(
βS ,y

)
− ξPzS ,t

(1) − ξPyS ,t
(1)

+ξPzM,t

(
βS ,z − ΛM

)
+ ξPyM,t

(
βS ,y − ΓM

)
+ ξPzS ,t

(1 − ΛS ) + ξPyS ,t
(1 − ΓS )

−ξPzM,t
(−ΛM) − ξPyM,t

(−ΓM) − ξPzS ,t
(−ΛS ) − ξPyS ,t

(−ΓS )

 .
Because,

−ξPzM,t

(
βS ,z

)
+ ξPzM,t

(
βS ,z − ΛM

)
− ξPzM,t

(−ΛM) = −
1
2

hM,z,tβ
2
S ,z +

1
2

hM,z,t
(
βS ,z − ΛM

)2

−
1
2

hM,z,tΛ
2
M

= − ΛMβS ,zhM,z,t,
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−ξPzS ,t
(1) + ξPzS ,t

(1 − ΛS ) − ξPzS ,t
(−ΛS ) = −

1
2

hS ,z,t +
1
2

hS ,z,t (1 − ΛS )2
−

1
2

hS ,z,tΛ
2
S

= − ΛS hS ,z,t,

−ξPyM,t

(
βS ,y

)
+ ξPyM,t

(
βS ,y − ΓM

)
− ξPyM,t

(−ΓM) =

(
− ΠM

(
βS ,y

)
+ ΠM

(
βS ,y − ΓM

)
− ΠM (−ΓM)

)
hM,y,t

= Π∗M

(
βS ,y

)
− ΠM

(
βS ,y

)
= − γM,S

(
βS ,y

)
hM,y,t

−ξPyS ,t
(1) + ξPyS ,t

(1 − ΓS ) − ξPyS ,t
(−ΓS ) = Π∗S (1) − ΠS (1)

= − γS hS ,y,t,

we conclude that

1 = exp
(
µPS ,t − rt − ΛMβS ,zhM,z,t − hM,y,tγM,S

(
βS ,y

)
− ΛS hS ,z,t − hS ,y,tγS

)
.

where
γM,S

(
βS ,y

)
= ΠM

(
βS ,y

)
− Π∗M

(
βS ,y

)
and γS = ΠS (1) − Π∗S (1) .

Therefore,

µPS ,t = rt + ΛMβS ,zhM,z,t + hM,y,tγM,S

(
βS ,y

)
+ ΛS hS ,z,t + hS ,y,tγS .

A.4 Calculation Associated with Section 4.D

Replacing (4.27) in the market conditional variance leads to

hM,z,t+1 = wM,z + bM,zhM,z,t + aM,z

(
εM,t − cM,z

√
hM,z,t

)2

= wM,z + bM,zhM,z,t + aM,z

((
ε∗M,t − ΛM

√
hM,z,t

)
− cM,z

√
hM,z,t

)2

= wM,z + bM,zhM,z,t + aM,z

(
ε∗M,t −

(
cM,z + ΛM

) √
hM,z,t

)2

= wM,z + bM,zhM,z,t + aM,z

((
ε∗M,t

)2
− 2

(
cM,z + ΛM

) √
hM,z,tε

∗
M,t +

(
cM,z + ΛM

)2 hM,z,t

)
= wM,z +

(
bM,z + aM,z

(
cM,z + ΛM

)2
)

hM,z,t + aM,z

(
ε∗M,t

)2
− 2aM,z

(
cM,z + ΛM

) √
hM,z,tε

∗
M,t.

A similar argument leads to the stock conditional variance:

hS ,z,t+1 = κS ,zhM,z,t+1 + bS ,z
(
hS ,z,t − κS ,zhM,z,t

)
+ aS ,z

(
ε2

S ,t − 1 − 2cS ,zzS ,t

)
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= κS ,zh∗M,z,t+1 + bS ,z

(
h∗S ,z,t − κS ,zh∗M,z,t

)
+aS ,z

((
2cS ,z + ΛS

)
ΛS h∗S ,z,t +

((
ε∗S ,t

)2
− 1 − 2

(
cS ,z + ΛS

) √
h∗S ,z,tε

∗
S ,t

))
= κS ,zh∗M,z,t+1 + bS ,z

(
h∗S ,z,t − κS ,zh∗M,z,t

)
+ aS ,z

(
2cS ,z + ΛS

)
ΛS h∗S ,z,t

+aS ,z

(
ε∗S ,t

)2
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(
cS ,z + ΛS

) √
h∗S ,z,tε

∗
S ,t

= πS ,z,1 + πS ,z,2h∗M,z,t + 0h∗S ,y,t + πS ,z,4h∗S ,z,t + 0h∗S ,y,t

+πS ,z,6

(
ε∗M,t

)2
+ πS ,z,7

√
h∗M,z,tε

∗
M,t + πS ,z,8

(
ε∗S ,t

)2
+ πS ,z,9

√
h∗S ,z,tε

∗
S ,t.

The risk-neutral market jump scale parameter is

hM,y,t = wM,y + bM,yhM,y,t + aM,y

(
εM,t − cM,y

√
hM,z,t

)2

= wM,y + aM,yc2
M,yhM,z,t + bM,yhM,y,t + aM,y

(
ε2

M,t − 2cM,y

√
hM,z,tεM,t

)
=

 wM,y + aM,yc2
M,yhM,z,t + bM,yhM,y,t

+aM,y

((
ε∗M,t − ΛM

√
hM,z,t

)2
− 2cM,y

√
hM,z,t

(
ε∗M,t − ΛM

√
hM,z,t

)) 
= wM,y + aM,y

(
cM,y + ΛM

)2
hM,z,t + bM,yhM,y,t

+ aM,y
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ε∗M,t
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− 2

(
cM,y + ΛM

) √
hM,z,tε

∗
M,t

)
= wM,y + aM,y

(
cM,y + ΛM

)2
h∗M,z,t + bM,yh∗M,y,t

+ aM,y
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ε∗M,t

)2
− 2

(
cM,y + ΛM

) √
h∗M,z,tε

∗
M,t

)
= πM,y,1 + πM,y,2h∗M,z,t + πM,y,3h∗M,y,t + 0h∗S ,z,t + 0h∗S ,y,t

+ πM,y,6

(
ε∗M,t

)2
+ πM,y,7

√
h∗M,z,tε

∗
M,t + 0

(
ε∗S ,t

)2
+ 0

√
h∗S ,z,tε

∗
S ,t.

Similarly, the risk-neutral stock jump scale parameter is

hS ,y,t =κS ,yhM,y,t+1 + bS ,y

(
hS ,y,t − κS ,yhM,y,t

)
+ aS ,y

(
ε2

S ,t − 1 − 2cS ,yzS ,t

)
= κS ,yh∗M,y,t+1 + bS ,y

(
h∗S ,y,t − κS ,yh∗M,y,t

)
+ aS ,y

((
2cS ,y + ΛS

)
ΛS h∗S ,z,t +

((
ε∗S ,t

)2
− 1 − 2

(
cS ,y + ΛS

) √
h∗S ,z,tε

∗
S ,t

))
= κS ,yh∗M,y,t+1 − aS ,y − bS ,yκS ,yh∗M,y,t + bS ,yh∗S ,y,t + aS ,y

(
2cS ,y + ΛS

)
ΛS h∗S ,z,t

+ aS ,y

(
ε∗S ,t

)2
− 2aS ,y

(
cS ,y + ΛS

) √
h∗S ,z,tε

∗
S ,t

= πS ,y,1 + πS ,y,2h∗M,z,t + πS ,y,3h∗M,y,t + πS ,y,4h∗S ,z,t + πS ,y,5h∗S ,y,t

+ πS ,y,6

(
ε∗M,t

)2
+ πS ,y,7

√
h∗M,z,tε

∗
M,t + πS ,y,8

(
ε∗S ,t

)2
+ πS ,y,9

√
h∗S ,z,tε

∗
S ,t.
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A.5 Detailed Proofs of Section 4.E’s Results

Lemma A.2. if ε represents a standard normal random variable, then

E
[
exp

(
aε2 + bε

)]
= exp

(
−

1
2

log (1 − 2a) +
1
2

b2

(1 − 2a)

)
provided that a < 1

2 .

Proof of Lemma A.2.

E
[
exp

(
aε2 + bε

)]
=

∫
exp

(
aε2 + bε

) 1
√

2π
exp

(
−

1
2
ε2

)
dε

=

∫
1
√

2π
exp

(
−

(1 − 2a)
2

(
ε2 − 2

b
(1 − 2a)

ε

))
dε

= exp
(
1
2

b2

(1 − 2a)

) √
1

(1 − 2a)

∫
1
√

2π

1√
1

(1−2a)

exp

−1
2

(
ε − b

(1−2a)

)2

1
(1−2a)

 dε.

If 1− 2a > 0, then the integral is one since it corresponds to the area under the density
function of a N

(
b

(1−2a) ,
1

(1−2a)

)
random variable. Hence,

E
[
exp

(
aε2 + bε

)]
= exp

log

√
1

(1 − 2a)
+

1
2

b2

(1 − 2a)

 .
A.5.1 Moment Generating Function

For u ∈ {M, S }, The risk neutral returns process is

log
(
ut+1

ut

)
= Ru,t+1 = rt+1 − ξ

Q
u,t+1 + βu,zz∗M,t+1 + βu,yy∗M,t+1 + β′u,zz

∗
S ,t+1 + β′u,yy

∗
S ,t+1

z∗u,t+1 =
√

h∗u,z,t+1ε
∗
u,t+1, ε

∗
u,t+1 ∼ N (0, 1)

y∗u,t+1 ∼ NIG
(
0, α∗u, δ

2
u, h

∗
u,z,t+1

)
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where the convexity correction1 is

ξQu,t = ξQz∗M,t

(
βu,z

)
+ ξQy∗M,t

(
βu,y

)
+ ξQz∗S ,t

(
β′u,z

)
+ ξQy∗S ,t

(
β′u,y

)
.

For the market case, βM,z = βM,y = 1 and β′M,z = β′M,y = 0. For the stock, β′S ,z = β′S ,y = 1.

Proof of Lemma 4.5. For u ∈ {M, S }, let R̃u,t+ j denotes the excess return. Its risk
neutral dynamics is

R̃u,t+ j = Ru,t+ j − rt+ j

= −
1
2
β2

u,zh
∗
M,z,t+ j − Π∗M

(
βu,y

)
h∗M,y,t+ j −

1
2

(
β′u,z

)2
h∗S ,z,t+ j − Π∗S

(
β′u,y

)
h∗S ,y,t+ j

+βu,zz∗M,t+ j + βu,yy∗M,t+ j + β′u,zz
∗
S ,t+ j + β′u,yy

∗
S ,t+ j.

For the market case, βM,z = βM,y = 1 and β′M,z = β′M,y = 0. For the stock, β′S ,z = β′S ,y = 1.
The proof is based on a backward recursion over time. Indeed, the moment generating
function of

∑T−t
j=1 R̃u,t+ j given F S

t is

ϕQ
R̃,t,T

(φ)

=EQt

exp

φ T−t∑
j=1

R̃u,t+ j




=EQt

exp
(
φR̃u,t+1

)
EQt+1

exp

φ T−t−1∑
j=1

R̃u,t+1+ j





=EQt


exp

φ

− 1

2β
2
u,zh

∗
M,z,t+1 − Π∗M

(
βu,y

)
h∗M,y,t+1 −

1
2

(
β′u,z

)2
h∗S ,z,t+1

−Π∗S

(
β′u,y

)
h∗S ,y,t+1 + βu,zz∗M,t+1 + βu,yy∗M,t+1 + β′u,zz

∗
S ,t+1

+β′u,yy
∗
S ,t+1




× exp

 Au,T−t−1 (φ) + Bu,T−t−1 (φ) h∗M,z,t+2 + Cu,T−t−1 (φ) h∗M,y,t+2

+Du,T−t−1 (φ) h∗S ,z,t+2 + Eu,T−t−1 (φ) h∗S ,y,t+2




from the induction hypothesis. Therefore,

ϕQ
R̃,t,T

(φ)

1Section 4.B shows that

ξQz∗u,t
(φ) =

φ2

2
h∗u,z,t and ξQy∗u,t (φ) = Π∗u (φ) h∗u,y,t

where Π∗u (φ) = exp
(

1
2δ

2
uφ

2 + α∗uφ
)

and α∗u = αu − δ
2
uΓu.
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=EQt



exp

φ
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(
βu,y

)
h∗M,y,t+1 −

1
2

(
β′u,z
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

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
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
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 .

But the moment generating function of the risk-neutral jump component Equation
(4.24) gives EQ

F S
t

[
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(
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)
. Therefore,
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Moreover, Lemma A.2 implies that
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provided that ζu,T−t−1,8 (φ) < 1

2 . Therefore,
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= exp
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A comparison with

ϕQ
R̃,t,T

(φ) = exp

 Au,T−t (φ) + Bu,T−t (φ) h∗M,z,t+1 + Cu,T−t (φ) h∗M,y,t+1

+Du,T−t (φ) h∗S ,z,t+1 + Eu,T−t (φ) h∗S ,y,t+1


leads to the recursive formulation of the coefficients.

A.5.2 European Call Option Price

Given the moment generating function (mgf) ϕQ
R̃,t,T

(φ) of the risk-neutral excess re-
turns, we build on the work of Heston and Nandi (2000) and obtain a closed-form
solution for the price of European index and stock options. More precisely, for ut ∈

{Mt, S t}, the price of an European call option is

Ct (ut,K,T ) = e−rt,T (T−t)EQt [max (uT − K, 0)]

= e−rt,T (T−t)
(
EQt [uTI{uT > K}] − KEQt [I{uT > K}]

)
,

where rt,T = 1
T−t

∑T−1
j=1 rt+ j, in which rt+ j is the deterministic risk-free rate at time t + j

and I{A} is the indicator function that worth 1 if the event A is realized and 0 other-
wise. Since

uT = ut exp
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 ,
then

P2,t,T = EQt [I{uT > K}]
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ut
, and FQ
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is the cumulative distribution function associated

with the MGF ϕQ
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(φ). Using results from Feller (1971) and Kendall and Stuart
(1977),
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Moreover,
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where f Q
R̃,t,T

is the density function of the excess returns and the last equality stands by
letting p̃(x) = exp (x) f Q
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(x). Note that p̃ is a well-defined distribution since exp (x)

is always positive and∫ ∞

−∞

p̃(x) dx =

∫ ∞

−∞

exp (x) p(x) dx = ϕQ
R̃,t,T

(1) = 1,

given that f Qt,T (1) is the gross expected excess return under Q, that is

∫ ∞

−∞

p̃(x) d x =EQt

exp

 T−t∑
j=1

R̃u,t+ j


 = EQt

[
exp

(
−rt,T (T − t)

)
uT

∣∣∣ ut = 1
]

= 1.

Hence, following Heston and Nandi (2000), we note that mgf corresponding to p̃ is
simply

ϕ̃Qt,T (φ) =

∫ ∞

−∞

exp (φx) p̃(x) d x =

∫ ∞

−∞

exp (φx) exp (x)ϕQ
R̃,t,T

(x) d x = ϕQt,T (φ + 1)
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and thus

P1,t,T =
1
2

+
1
π

∫ ∞

0
Re

[
1
φi

e−iφ log K̃ϕ̃Qt,T (φi)
]

dφ.

=
1
2

+
1
π

∫ ∞

0
Re

[
1
φi

e−iφ log K̃ϕQt,T (φi + 1)
]

dφ.

Finally, we have that

Ct (ut,K,T ) = uT P1,t,T − Ke−rt,T (T−t)P2,t,T .
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Appendix B

Appendices of Extracting Latent States
with High Frequency Option Prices

B.1 Model Construction

B.1.1 General Properties of Moment Generating Functions

The jumps component are model using Cox processes. Moment generating function
for such processes are involved in many proofs.

Lemma B.1. Let ϕPX (a) = EP
[
exp (aX)

]
be the moment generating function of the

random variable X. Assume that {Xk}
∞
k=1 is a sequence of independent and identically

distributed random variables. Then

ϕP∑n
i=1 Xi

(a) =

n∏
i=1

EP
[
exp (aXi)

]
=

(
ϕPX1

(a)
)n
. (B.1)

If N is a Poisson distributed random variable of expectation λ, then the law of iterated

expectation implies that

ϕP∑N
i=1 Xi

(a) = EP
EP exp

a N∑
k=1

Xi


∣∣∣∣∣∣∣ N


=

∞∑
n=0

(
ϕPX1

(a)
)n

exp (−λ)
λn

n!
= exp

(
λ
(
ϕPX1

(a) − 1
))
. (B.2)
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If {Nt}t≥0 is a Cox process with predictible intensity {λt}t≥0, then

ϕP∑Nt
i=1 Xi

(a) = EP
EP exp

a Nt∑
i=1

Xi


∣∣∣∣∣∣∣
∫ t

0
λudu


= EP

[
exp

((∫ t

0
λudu

) (
ϕPX1

(a) − 1
))]

. (B.3)

Lemma B.2. If X ∼ N
(
µ, σ2

)
, then ϕPX (a) = exp

(
µa + 1

2a2σ2
)
.

Lemma B.3. If X is exponentially distributed of expectation µ, then ϕPX (a) = (1 − aµ)−1

provided that a < 1
µ
.

B.1.2 Exponential Martingales

Many proofs are based on properties of exponential martingales. The following three
lemmas are the key ingredients of many proofs.

Lemma B.4. If EP
[∫ t

0
Λ2

V,u−du
]
< ∞ and EP

[∫ t

0
Λ2
⊥,u−du

]
< ∞, then{

exp
(
−

∫ t

0
ΛV,u−dWV,u −

∫ t

0
Λ⊥,u−dW⊥,u −

1
2

∫ t

0

(
Λ2

V,u− + Λ2
⊥,u−

)
du

)}
t≥0

is a P−martingale of expectation 1.

Lemma B.5. For Z ∈ {Y,V},
{
JZ,t − µZ

∫ t

0
λZ,s−ds

}
t≥0

is a P−martingale.

Lemma B.6. For X ∈ {Y,V},
{
exp

(
ΓX JX,t −

(
ϕPZX

(ΓX) − 1
) ∫ t

0
λX,u−du

)}
t≥0

is a P−mar-

tingale where ϕPZX
is the moment generating function of the jump size ZX.

B.1.2.1 Proofs

Proof of Lemma B.4. The continuous process {Xt}t≥0 where

Xt = −

∫ t

0
ΛV,u−dWV,u −

∫ t

0
Λ⊥,u−dW⊥,u

is a P−martingale. Its quadratic variation is [X, X]t =
∫ t

0

(
Λ2

V,u− + Λ2
⊥,u−

)
du. Using Itō’s

lemma,

d exp
(
Xt −

1
2

[X, X]t

)
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= exp
(
Xt −

1
2

[X, X]t

) (
dXt −

1
2

d[X, X]t

)
+

1
2

exp
(
Xt −

1
2

[X, X]t

)
d[X, X]t

= exp
(
Xt −

1
2

[X, X]t

)
dXt.

Because exp
(
Xt −

1
2 [X, X]t

)
is a stochastic integral with respect to a martingale,{

exp
(
Xt −

1
2

[X, X]t

)}
t≥0

is a P−martingale. Since X0 = 0, then

EP
[
exp

(
Xt −

1
2

[X, X]t

)]
= EP

[
exp

(
X0 −

1
2

[X, X]0

)]
= 1.

�

Proof of Lemma B.5.

EP
Fs

[
JZ,t − JZ,s − µZ

∫ t

0
λZ,u−du

]
=EP

Fs

[
EP
Fs

[
JZ,t − JZ,s − µZ

∫ t

0
λZ,u−du

∣∣∣∣∣∣
∫ t

0
λZ,u−du

]]

=EP
Fs

EPFs

 NZ,t∑
n=NZ,s+1

ZY,n − µZ

∫ t

0
λZ,u−du

∣∣∣∣∣∣∣∣
∫ t

0
λZ,u−du




=EP
Fs

EPFs

EPFs

 NZ,t∑
n=NZ,s+1

ZY,n

∣∣∣∣∣∣∣∣
∫ t

0
λZ,u−du,NZ,t − NZ,s

 − µZ

∫ t

0
λZ,u−du

∣∣∣∣∣∣∣∣
∫ t

0
λZ,u−du




=EP
Fs

EPFs

 ∞∑
n=0

nµZ exp
(
−

∫ t

0
λZ,u−du

) (∫ t

0
λZ,u−du

)n

n!
− µZ

∫ t

0
λZ,u−du

∣∣∣∣∣∣∣∣
∫ t

0
λZ,u−du




=EP
Fs

[
EP
Fs

[
µZ

∫ t

0
λZ,u−du − µZ

∫ t

0
λZ,u−du

∣∣∣∣∣∣
∫ t

0
λZ,u−du

]]
= 0.

�

Proof of Lemma B.6. From the moment generating function of a compound Poisson
process with stochastic jump intensity of Equation (B.3),

EP
Fs

[
exp

(
ΓX

(
JX,t − JX,s

)
−

(∫ t

s
λX,u−du

) (
ϕPZX

(ΓX) − 1
))]

= EP
Fs

exp

ΓX

 NX,t∑
n=NX,s+1

ZX,n

 − (∫ t

s
λX,u−du

) (
ϕPZX

(ΓX) − 1
)

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= EP
Fs

[
exp

((∫ t

s
λX,u−du

) (
ϕPZX

(ΓX) − 1
)
−

(∫ t

s
λX,u−du

) (
ϕPZX

(ΓX) − 1
))]

= 0.

For the log-equity price jumps,

ϕPZY
(ΓY) − 1 = exp

(
µYΓY +

1
2
σ2

YΓ2
Y

)
− 1,

while for the variance jumps,

ϕPZV
(ΓV) − 1 =

(
1 − ΓVµV

)−1
− 1

provided that ΓV < µ
−1
V

. �

B.1.3 Risk-Neutral Innovations

Lemma B.7 justifies Equation (5.23). Lemma B.8 determines the jump dynamics
under Q. These are components of the risk-neutral version of the model presented in
Section 5.A.1 and 5.A.2.

Lemma B.7. For X ∈ {Y,⊥}, the risk-neutral moment generating function of the Brow-

nian increments WX,t −WX,s satisfies

ϕQWX,t−WX,s
(a) = EP

Fs

[
exp

(
−a

∫ t

s
ΛX,u−du +

a2 (t − s)
2

)]
which is the moment generating function of a Gaussian distribution of expectation

EP
Fs

[
−a

∫ t

s
ΛX,u−du

]
and variance t − s.

Lemma B.8. For X ∈ {Y,V}, the risk-neutral moment generating function of the jump

increments JY,t − JY,s is given by

EQ
Fs

[
exp

(
a
(
JX,t − JX,s

))]
= EP

Fs

[
exp

((
ϕPZX

(a + ΓX) − ϕPZX
(ΓX)

) ∫ t

s
λX,u−du

)]
.

In particular

ϕQJY,t−JY,s
(a)

=EQ
Fs

[
exp

(
a
(
JY,t − JY,s

))]
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=EP
Fs

[
exp

((
exp

(
µY (a + ΓY) +

1
2

(a + ΓY)2 σ2
Y

)
− exp

(
µYΓY +

1
2

Γ2
Yσ

2
Y

) ) ∫ t

s
λY,u−du

)]
and

ϕQJV,t−JV,s
(a) = EQ

Fs

[
exp

(
a
(
JV,t − JV,s

))]
= EP

Fs

[
exp

(((
1 − (a + ΓV) µµV

)−1
−

(
1 − ΓVµµV

)−1
) ∫ t

s
λY,u−du

)]
provided that ΓV < µ

−1
µV

and a + ΓV < µ
−1
µV
.

Here is a comparison of the P− and the Q−versions of the model generating functions
of JY,t − JY,s and JV,t − JV,s:

ϕPJY,t−JY,s
(a) =EP

Fs

[
exp

(∫ t

s
λY,u−du

(
exp

(
µYa +

1
2
σ2

Ya2
)
− 1

))]
,

ϕQJY,t−JY,s
(a) =EP

Fs

[
exp

(
exp

(
µYΓY +

1
2

Γ2
Yσ

2
Y

) ∫ t

s
λY,u−du

(
exp(µY (a+ΓY )+ 1

2 (a+ΓY )2σ2
Y)

exp(µY ΓY + 1
2 Γ2

Yσ
2
Y) − 1

) )]
=EP

Fs

[
exp

(
exp

(
µYΓY +

1
2

Γ2
Yσ

2
Y

)
×

∫ t

s
λY,u−du

(
exp

((
µY + ΓYσ

2
Y

)
a +

1
2

a2σ2
Y

)
− 1

) )]
,

ϕPJV,t−JV,s
(a) =EP

Fs

[
exp

(∫ t

s
λV,u−du

((
1 − aµV

)−1
− 1

))]
,

ϕQJV,t−JV,s
(a) =EP

Fs

[
exp

((
1 − ΓVµV

)−1
∫ t

s
λY,u−du

(
1 − ΓVµV

1 − (a + ΓV) µV

− 1
))]

=EP
Fs

exp
(1 − ΓVµV

)−1
∫ t

s
λY,u−du

(1 − a
µV

1 − ΓVµV

)−1

− 1
 .

B.1.3.1 Proofs

Proof of Lemma B.7. The moment generating function of WX,t −WX,s under Q is

ϕQWX,t−WX,s
(a)

=EQ
Fs

[
exp

(
a
(
WX,t −WX,s

))]
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=EP
Fs


exp

(
a
(
WX,t −WX,s

))
exp



−
∫ t

s
ΛV,u−dWV,u −

∫ t

s
Λ⊥,u−dW⊥,u

− 1
2

∫ t

s

(
Λ2

V,u− + Λ2
⊥,u−

)
du

+ ΓY
(
JY,t − JY,s

)
−

(
exp

(
µYΓY + 1

2σ
2
YΓ2

Y

)
− 1

) ∫ t

s
λY,u−du

+ΓV
(
JV,t − JV,s

)
−

(
(1 − µVΓV)−1

− 1
) ∫ t

s
λV,u−du




.

Because the variance jump intensity is independent of the other components inside the
exponential function, the last expression is equal to

EP
Fs

exp
(
a
(
WX,t −WX,s

))
exp


−

∫ t

s
ΛV,u−dWV,u −

∫ t

s
Λ⊥,u−dW⊥,u

− 1
2

∫ t

s

(
Λ2

V,u− + Λ2
⊥,u−

)
du

+ ΓY
(
JY,t − JY,s

)
−

(
exp

(
µYΓY + 1

2σ
2
YΓ2

Y

)
− 1

) ∫ t

s
λY,u−du




× EP

Fs

[
exp

(
ΓV

(
JV,t − JV,s

)
−

(
(1 − µVΓV)−1

− 1
) ∫ t

s
λV,u−du

)]
.

Lemma B.6 implies that the last expectation is 1. Using the tower property of con-
ditional expectations, conditioning on the log-equity price intensity, the previous ex-
pression becomes

EP
Fs


EP
Fs


exp

(
a
(
WX,t −WX,s

))
× exp

(
−

∫ t

s
ΛV,u−dWV,u −

∫ t

s
Λ⊥,u−dW⊥,u

)
× exp

(
− 1

2

∫ t

s

(
Λ2

V,u− + Λ2
⊥,u−

)
du

)
∣∣∣∣∣∣∣∣∣∣
∫ t

s
λY,u−du

×
EP
Fs

[
exp

(
ΓY

(
JY,t − JY,s

)
−

(
exp

(
µYΓY + 1

2σ
2
YΓ2

Y

)
− 1

) ∫ t

s
λY,u−du

)∣∣∣∣ ∫ t

s
λY,u−du

]


=EP
Fs

EPFs


exp

(
a
(
WX,t −WX,s

))
exp

(
−

∫ t

s
ΛV,u−dWV,u −

∫ t

s
Λ⊥,u−dW⊥,u

)
exp

(
− 1

2

∫ t

s

(
Λ2

V,u− + Λ2
⊥,u−

)
du

)
∣∣∣∣∣∣∣∣∣∣
∫ t

s
λY,u−du


 .

Finally, from Lemma B.4,

ϕQWX,t−WX,s
(a)

=EP
Fs

[
exp

(
a
(
WX,t −WX,s

))
exp

(
−

∫ t

s
ΛX,u−dWX,u −

1
2

∫ t

s
Λ2

X,u−du
)]

=EP
Fs

[
exp

(∫ t

s

(
a − ΛX,u−

)
dWV,u −

1
2

∫ t

s
Λ2

X,u−du
)]

=EP
Fs

[
exp

(∫ t

s

(
a − ΛX,u−

)
dWV,u −

1
2

∫ t

s

(
a − ΛX,u−

)2 du

−
1
2

∫ t

s
Λ2

X,u−du +
1
2

∫ t

s

(
a − ΛX,u−

)2 du
)]
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=EP
Fs

[
exp

(
−a

∫ t

s
ΛX,u−du +

a2 (t − s)
2

)]
.

�

Proof of Lemma B.8.

EQ
Fs

[
exp

(
a
(
JX,t − JX,s

))]

= EP
Fs

exp


a
(
JX,t − JX,s

)
−

∫ t

s
ΛV,u−dWV,u −

∫ t

s
Λ⊥,u−dW⊥,u − 1

2

∫ t

s

(
Λ2

V,u− + Λ2
⊥,u−

)
du

+ ΓX
(
JY,t − JY,s

)
−

(
ϕPZY

(ΓY) − 1
) ∫ t

s
λY,u−du

+ΓV
(
JV,t − JV,t

)
−

(
ϕPZY

(ΓV) − 1
) ∫ t

s
λV,u−du



 .

Using the tower property of conditional expectations, the last expression becomes

EP
Fs

[
EP
Fs

[
exp

(
−

∫ t

s
ΛV,u−dWV,u −

∫ t

s
Λ⊥,u−dW⊥,u

−
1
2

∫ t

s

(
Λ2

V,u− + Λ2
⊥,u−

)
du

)∣∣∣∣∣∣
∫ t

s
λY,u−du

]]

×EP
Fs

EPFs


exp

(
a
(
JX,t − JX,s

))
exp

 + ΓX
(
JY,t − JY,s

)
−

(
ϕPZY

(ΓY) − 1
) ∫ t

s
λY,u−du

+ΓV
(
JV,t − JV,t

)
−

(
ϕPZY

(ΓV) − 1
) ∫ t

s
λV,u−du


∣∣∣∣∣∣∣∣∣∣
∫ t

s
λY,u−du


 .

Lemma B.4 implies that the first term vanishes. Therefore,

EQ
Fs

[
exp

(
a
(
JX,t − JX,s

))]
=EP

Fs

[
exp

(
(a + ΓX)

(
JX,t − JX,s

)
−

(
ϕPZX,1

(ΓX) − 1
) ∫ t

s
λX,u−du

)]
=EP

Fs

exp

 (a + ΓX)
(
JX,t − JX,s

)
−

(
ϕPZX

(a + ΓX) − 1
) ∫ t

s
λX,u−du

+
(
ϕPZX

(a + ΓX) − 1
) ∫ t

s
λX,u−du −

(
ϕPZX

(ΓX) − 1
) ∫ t

s
λX,u−du


=EP

Fs

E
P
Fs

exp


(a + ΓX)

(
JX,t − JX,s

)
−

(
ϕPZX

(a + ΓX) − 1
) ∫ t

s
λX,u−du

+
(
ϕPZX

(a + ΓX) − 1
) ∫ t

s
λX,u−du

−
(
ϕPZX

(ΓX) − 1
) ∫ t

s
λX,u−du



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∫ t

s
λX,u−du




=EP

Fs

[
exp

((
ϕPZX

(a + ΓX) − ϕPZX
(ΓX)

) ∫ t

s
λX,u−du

)]
.

�
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B.1.4 Log-Equity Price Drift

This section provides a detailed proof of the log-equity price drift term described in
Section 5.B.1.

Lemma B.9. Under the risk-neutral measure, the log-equity price is characterized by

dYt = αQt−dt +
√

Vt−dWQ
Y,t + dJQY,t,

αQt− = r − q −
1
2

Vt− − ξ
Q
Y λ
Q
Y,t− ,

ξQY = ϕQZY
(1) − 1 = exp

(
µQY +

1
2
σ2

Y

)
− 1,

λQY,t− = ϕQZY
(ΓY) λPY,t− = exp

(
µYΓY +

1
2

Γ2
Yσ

2
Y

)
λPY,t− .

Proof of Lemma B.9. Using Itō’s lemma,

exp (Yt) − exp (Y0) =

∫ t

0
exp (Yu−) dYu +

1
2

∫ t

0
exp (Yu−) d [Y,Y]c

u

+
∑

0<u≤t

{
exp (Yu) − exp (Yu−) − exp (Yu−) ∆Yu

}
.

The last term is equal to∑
0<u≤t

exp (Yu−)
{
exp (Yu − Yu−) − 1

}
−

∑
0<u≤t

{
exp (Yu−)

(
JQY,u − JQY,u−

)}
=

∑
0<u≤t

exp (Yu−)
{
exp

(
JQY,u − JQY,u−

)
− 1

}
−

∑
0<u≤t

{
exp (Yu−)

(
JQY,u − JQY,u−

)}
=

∑
0<u≤t

exp
(
Yu− − JQY,u−

) {
exp

(
JQY,u

)
− exp

(
JQY,u−

)}
−

∑
0<u≤t

{
exp (Yu−)

(
JQY,u − JQY,u−

)}
.

Therefore, by substituing Equation (5.25) in the first term of exp (Yt) − exp (Y0), we
obtain

exp (Yt) − exp (Y0)

=

∫ t

0
exp (Yu−)α

Q
u−du +

∫ t

0
exp (Yu−)

√
Vu−dWQ

Y,u +

∫ t

0
exp (Yu−) dJQY,u

+
1
2

∫ t

0
exp (Yu−) Vu−du +

∫ t

0
exp

(
Yu− − JQY,u−

)
d exp

(
JQY,u

)
−

∫ t

0
exp (Yu−) dJQY,u

=

∫ t

0
exp (Yu−)

(
αQu− +

1
2

Vu−

)
du +

∫ t

0
exp (Yu−)

√
Vu−dWQ

Y,u
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+

∫ t

0
exp

(
Yu− − JQY,u−

)
d exp

(
JQY,u

)
.

Lemma B.6 states that
{
exp

(
JQY,t −

(
ϕQZY

(1) − 1
) ∫ t

0
λQY,u−du

)}
t≥0

is aQ−martingale, where
ϕQZY

is the moment generating function of the log-equity price jump size. Therefore, if

ξQY = ϕQZY
(1) − 1 = exp

(
µQY +

1
2
σ2

Y

)
− 1,

then

exp (Yt) − exp (Y0)

=

∫ t

0
exp (Yu−)

(
αQu− +

1
2

Vu−

)
du +

∫ t

0
exp (Yu−)

√
Vu−dWQ

Y,u

+

∫ t

0
exp

(
Yu− − JQY,u−

)
d
(
exp

(
JQY,u − ξ

Q
Y

∫ u

0
λQY,s− ds

)
exp

(
ξQY

∫ u

0
λQY,s− ds

))
=

∫ t

0
exp (Yu−)

(
αQu− +

1
2

Vu−

)
du +

∫ t

0
exp (Yu−)

√
Vu−dWQ

Y,u

+

∫ t

0
exp

(
Yu− − JQY,u−

)
exp

(
ξQY

∫ u

0
λQY,s− ds

)
d exp

(
JQY,u − ξ

Q
Y

∫ u

0
λQY,s−

)
+

∫ t

0
exp

(
Yu− − JQY,u−

)
exp

(
JQY,u− − ξ

Q
Y

∫ u

0
λQY,s−du

)
ξQY λ

Q
Y,u− exp

(
ξQY

∫ u

0
λQY,s−ds

)
du

=

∫ t

0
exp (Yu−)

(
αQu− +

1
2

Vu− + ξQY λ
Q
Y,u−

)
du +

∫ t

0
exp (Yu−)

√
Vu−dWQ

Y,u

+

∫ t

0
exp

(
Yu− − JQY,u−

)
exp

(
ξQY

∫ u

0
λQY,s−du

)
d exp

(
JQY,u − ξ

Q
Y

∫ u

0
λQY,s−du

)
.

Note that the last two terms are martingales. Because the discount factor and the
dividend correction are both continuous, i.e.

Dt = exp (−(r − q)t) , (B.4)

integration by part implies that

Dt exp (Yt) − D0 exp (Y0)

=

∫ t

0
Dud exp (Yu) −

∫ t

0
(r − q)Du exp (Yu−) du

=

∫ t

0
Du exp (Yu−)

(
αQu− +

1
2

Vu− + ξQY λ
Q
Y,u− − r + q

)
du

+

∫ t

0
Du exp (Yu−)

√
Vu−dWQ

Y,u

241



Appendix B. Appendices of Extracting Latent States

+

∫ t

0
Du exp

(
Yu− − JQY,u−

)
exp

(
ξQY

∫ u

0
λQY,s−du

)
d exp

(
JQY,u − ξ

Q
Y

∫ t

0
λQY,u−du

)
.

The pricing theory implied that {Dt exp(Yt)}t≥0 must be a Q-martingale. Therefore, the
drift component must be nil, that is

αQu− = r − q −
1
2

Vu− − ξ
Q
Y λ
Q
Y,u− .

�

Lemma B.10. Under the P−measure, the returns’ are characterized by

dYt = αPt−dt +
√

Vt−dWY,t + dJY,t,

αPu− = r − q −
1
2

Vu− +
√

Vu−ΛY,u− +
(
ξPY − ζ

P
Y

)
λY,u− +

(
ξPV − ζ

P
V

)
λV,u−

= r − q −
1
2

Vu− +
√

Vu−ΛY,u− +
(
ϕPZY

(ΓY) − ϕPZY
(1 + ΓY)

)
λY,u− ,

ξPY = ϕPZY
(ΓY) − 1,

ξPV = ϕPZV
(ΓV) − 1,

ζPY = ϕPZY
(1 + ΓY) − 1,

ζPV = ϕPZV
(ΓV) − 1,

Proof of Lemma B.10. Let

Zt =

 −
∫ t

0
ΛV,u−dWV,u −

∫ t

0
Λ⊥,u−dW⊥,u − 1

2

∫ t

0

(
Λ2

V,u− + Λ2
⊥,u−

)
du

+ ΓY JY,t − ξ
P
Y

∫ t

0
λY,u−du + ΓV JV,t − ξ

P
V

∫ t

0
λV,u−du


be associated to the Radon-Nikodym derivative (5.21) and Dt exp (−(r − q)t) be the
combination of the discount factor and the dividend yield. Since the discounted price
must be a Q−martingale,

1 = EQs

[
Dt exp (Yt)
Ds exp (Ys)

]
= EPs

[
Dt exp (Yt + Zt)
Ds exp (Ys + Zs)

]
which means that {Dt exp(Yt + Zt)}t≥0 is a P−martingale. Note that

Yt + Zt = Y0 + Z0 +

∫ t

0

(
αPu− −

1
2

(
Λ2

V,u− + Λ2
⊥,u−

)
− ξPYλY,u− − ξ

P
VλV,u−

)
du

+

∫ t

0

(
ρ
√

Vu− − ΛV,u−
)

dWV,u +

∫ t

0

( √
1 − ρ2

√
Vu− − Λ⊥,u−

)
dW⊥,u

+ (1 + ΓY)
∫ t

0
dJY,u + ΓV

∫ t

0
dJV,u.
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Itō’s lemma implies that

exp (Yt + Zt) − exp (Y0 + Z0) =

∫ t

0
exp (Yu− + Zu−) d (Yu + Zu)

+
1
2

∫ t

0
exp (Yu− + Zu−)

(
Vu− − 2

√
Vu−ΛY,u− + Λ2

V,u− + Λ2
⊥,u−

)
du

+
∑

0<u≤t

{
exp (Yu + Zu) − exp (Yu− + Zu−) − exp (Yu− + Zu−) ∆ (Yu + Zu)

}
.

Replacing the first expression in the second one leads to

exp (Yt + Zt) − exp (Y0 + Z0)

=

∫ t

0
exp (Yu− + Zu−)

(
αPu− −

1
2

(
Λ2

V,u− + Λ2
⊥,u−

)
− ξPYλY,u− − ξ

P
VλV,u−

)
du

+

∫ t

0
exp (Yu− + Zu−)

(
ρ
√

Vu− − ΛV,u−
)

dWV,u

+

∫ t

0
exp (Yu− + Zu−)

( √
1 − ρ2

√
Vu− − Λ⊥,u−

)
dW⊥,u

+

∫ t

0
exp (Yu− + Zu−) (1 + ΓY) dJY,u +

∫ t

0
exp (Yu− + Zu−) ΓVdJV,u

+
1
2

∫ t

0
exp (Yu− + Zu−)

(
Vu− − 2

√
Vu−ΛY,u− + Λ2

V,u− + Λ2
⊥,u−

)
du

+
∑

0<u≤t

{
exp (Yu + Zu) − exp (Yu− + Zu−) − exp (Yu− + Zu−) ∆ (Yu + Zu)

}
.

The last term can be rewritten as∑
0<u≤t

exp (Yu− + Zu−)
{
exp (∆Yu + ∆Zu) − 1 − ∆ (Yu + Zu)

}
=

∑
0<u≤t

exp (Yu− + Zu−)
{
exp

(
(1 + ΓY) ∆JY,u + ΓV∆JV,u

)
− 1 − (1 + ΓY) ∆JY,u − ΓV∆JV,u

}
=

∑
0<u≤t

 exp
(
Yu− + Zu− − (1 + ΓY) JY,u− − ΓV JV,u−

)
×

{
exp

(
(1 + ΓY) JY,u + ΓV JV,u

)
− exp

(
(1 + ΓY) JY,u− + ΓV JV,u−

)} 
−

∑
0<u≤t

exp (Yu− + Zu−)
{
(1 + ΓY) ∆JY,u + ΓV∆JV,u

}
=

∫ t

0
exp

(
Yu− + Zu− − (1 + ΓY) JY,u− − ΓV JV,u−

)
d exp

(
(1 + ΓY) JY,u + ΓV JV,u

)
−

∫ t

0
exp (Yu− + Zu−) (1 + ΓY) dJY,u −

∫ t

0
exp (Yu− + Zu−) ΓVdJV,u.
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Therefore,

exp (Yt + Zt) − exp (Y0 + Z0)

=

∫ t

0
exp (Yu− + Zu−)

(
αPu− − ξ

P
YλY,u− − ξ

P
VλV,u− +

1
2

Vu− −
√

Vu−ΛY,u−

)
du

+

∫ t

0
exp (Yu− + Zu−)

(
ρ
√

Vu− − ΛV,u−
)

dWV,u

+

∫ t

0
exp (Yu− + Zu−)

( √
1 − ρ2

√
Vu− − Λ⊥,u−

)
dW⊥,u

+

∫ t

0
exp

(
Yu− + Zu− − (1 + ΓY) JY,u− − ΓV JV,u−

)
d exp

(
(1 + ΓY) JY,u + ΓV JV,u

)
.

We need to construct a martingale out of the last term. From Lemma B.6, {Mt}t≥0 is a
P−martingale where

Mt = exp
(
(1 + ΓY) JY,t + ΓV JV,t − ζ

P
Y

∫ t

0
λY,u−du − ζPV

∫ t

0
λV,u−du

)
.

Indeed,

EP
Fs

[
exp

(
(1 + ΓY)

(
JY,t − JY,s

)
+ ΓV

(
JV,t − JV,s

)
− ζPY

(∫ t

s
λY,u−du

)
− ζPV

(∫ t

s
λV,u−du

))]
=EP

Fs

EPFs

exp

 (1 + ΓY)
(
JY,t − JY,s

)
+ ΓV

(
JV,t − JV,s

)
−ζPY

(∫ t

s
λY,u−du

)
− ζPV

(∫ t

s
λV,u−du

) 
∣∣∣∣∣∣∣
∫ t

s
λY,u−du,

∫ t

s
λV,u−du


= 1.

Moreover,

d exp
(
(1 + ΓY) JY,t + ΓV JV,t

)
= dMt exp

(
ζPY

∫ t

0
λY,u−du + ζPV

∫ t

0
λV,u−du

)
= Mt−d exp

(
ζPY

∫ t
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λY,u−du + ζPV

∫ t

0
λV,u−du

)
+ exp

(
ζPY

∫ t

0
λY,u−du + ζPV

∫ t

0
λV,u−du

)
dMt

=
(
ζPYλY,t− + ζPVλV,t−

)
Mt− exp

(
ζPY

∫ t

0
λY,u−du + ζPV

∫ t

0
λV,u−du

)
dt

+ exp
(
ζPY

∫ t

0
λY,u−du + ζPV

∫ t

0
λV,u−du

)
dMt

=
(
ζPYλY,t− + ζPVλV,t−

)
exp

(
(1 + ΓY) JY,t− + ΓV JV,t−

)
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+ exp
(
ζPY

∫ t

0
λY,u−du + ζPV

∫ t

0
λV,u−du

)
dMt.
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Therefore,

exp (Yt + Zt) − exp (Y0 + Z0)

=

∫ t

0
exp (Yu− + Zu−)

(
αPu− − ξ

P
YλY,u− − ξ

P
VλV,u− +

1
2

Vu− −
√

Vu−ΛY,u−

)
du

+

∫ t

0
exp (Yu− + Zu−)

(
ρ
√

Vu− − ΛV,u−
)

dWV,u

+

∫ t

0
exp (Yu− + Zu−)

( √
1 − ρ2

√
Vu− − Λ⊥,u−

)
dW⊥,u

+

∫ t

0

(
ζPYλY,u− + ζPVλV,u−

)
exp (Yu− + Zu−) du

+

∫ t

0
exp

(
Yu− + Zu− − (1 + ΓY) JY,u− − ΓV JV,u− + ζPY

∫ u

0
λY,s−ds + ζPV

∫ u

0
λV,s−ds

)
dMu

=

∫ t

0
exp (Yu− + Zu−)

(
αPu− − ξ

P
YλY,u− − ξ

P
VλV,u− +

1
2

Vu− −
√

Vu−ΛY,u− + ζPYλY,u− + ζPVλV,u−

)
du

+

∫ t

0
exp (Yu− + Zu−)

(
ρ
√

Vu− − ΛV,u−
)

dWV,u

+

∫ t

0
exp (Yu− + Zu−)

( √
1 − ρ2

√
Vu− − Λ⊥,u−

)
dW⊥,u

+

∫ t

0
exp

(
Yu− + Zu− − (1 + ΓY) JY,u− − ΓV JV,u− + ζPY

∫ u

0
λY,s−ds + ζPV

∫ u

0
λV,s−ds

)
dMu.

Since

Dt exp (Yt + Zt) − D0 exp (Y0 + Z0)

=

∫ t

0
Dud exp (Yu + Zu) +

∫ t

0
(q − r) Du exp (Yu− + Zu−) du,

then

Dt exp (Yt + Zt) − D0 exp (Y0 + Z0)

=

∫ t

0
Du exp (Yu− + Zu−)

 αPu− − ξPYλY,u− − ξ
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VλV,u− + 1

2Vu− −
√

Vu−ΛY,u−

+ζPYλY,u− + ζPVλV,u− + q − r

 du

+

∫ t

0
Du exp (Yu− + Zu−)

(
ρ
√

Vu− − ΛV,u−
)

dWV,u

+

∫ t

0
Du exp (Yu− + Zu−)

( √
1 − ρ2

√
Vu− − Λ⊥,u−

)
dW⊥,u

+

∫ t

0
Du exp

(
Yu− + Zu− − (1 + ΓY) JY,u− − ΓV JV,u− + ζPY

∫ u

0
λY,s−ds

+ζPV

∫ u

0
λV,s−ds

)
dMu.
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Finally, as
{
Dt exp (Yt + Zt)

}
t≥0 needs to be a P−martingale, the drift term must be nil,

implying that

αPu− = r − q −
1
2

Vu− +
√

Vu−ΛY,u− +
(
ξPY − ζ

P
Y

)
λY,u− +

(
ξPV − ζ

P
V

)
λV,u− .

�

Corollary B.11.

EPt
[
exp (YT )

]
= exp (Yt)EPt

[
exp

(∫ T

t
mPu−du

)]
where

mPu− =αPu− +
1
2

Vu−du +
(
ϕPZY

(1) − 1
)
λY,u−

=r − q +
√

Vu−ΛY,u− +
(
ξPY − ζ

P
Y

)
λY,u− +

(
ϕPZY

(1) − 1
)
λY,u−

=r − q +
√

Vu−ΛY,u− +
(
ϕPZY

(ΓY) − ϕPZY
(1 + ΓY) + ϕPZY

(1) − 1
)
λY,u− .

Proof of Corollary B.11. Starting from Equation (5.1),

EPt
[
exp (YT )

]
= exp (YT )EPt

[
exp

(∫ T

t
αPu−du +

∫ T

t

√
Vu−dWY,u +

∫ T

t
dJY,u

)]

= exp (YT )EPt

exp


∫ T

t
αPu−du + 1

2

∫ T

t
Vu−du +

(
ϕPZY

(1) − 1
) ∫ T

t
λY,u−du

+
∫ T

t

√
Vu−dWY,u −

1
2

∫ T

t
Vu−du

+
∫ T

t
dJY,u −

(
ϕPZY

(1) − 1
) ∫ T

t
λY,u−du




= exp (YT )

× EPt

EPt
exp


∫ T

t
αPu−du + 1

2

∫ T

t
Vu−du +

(
ϕPZY

(1) − 1
) ∫ T

t
λY,u−du

+
∫ T

t

√
Vu−dWY,u −

1
2

∫ T

t
Vu−du

+
∫ T

t
dJY,u −

(
ϕPZY

(1) − 1
) ∫ T

t
λY,u−du


∣∣∣∣∣∣∣∣∣∣
∫ T

t
λY,u−du




= exp (YT )EPt

[
exp

(∫ T

t

(
αPu− +

1
2

Vu−du +
(
ϕPZY

(1) − 1
)
λY,u−

)
du

)]
= exp (YT )EPt

[
exp

(∫ T

t
mPu−du

)]
.

Therefore,

mPu− = αPu− +
1
2

Vu−du +
(
ϕPZY

(1) − 1
)
λY,u−
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= r − q −
1
2

Vu− +
√

Vu−ΛY,u− +
(
ξPY − ζ

P
Y

)
λY,u− +

(
ξPV − ζ

P
V

)
λV,u−

+
1
2

Vu−du +
(
ϕPZY

(1) − 1
)
λY,u−

= r − q +
√

Vu−ΛY,u− +
(
ξPY − ζ

P
Y + ϕPZY

(1) − 1
)
λY,u− +

(
ξPV − ζ

P
V

)
λV,u−

= r − q +
√

Vu−ΛY,u−

+
(
ϕPZY

(1) − ϕPZY
(1 + ΓY) + ϕPZY

(1) − 1
)
λY,u− +

(
ϕPZV

(1) − ϕPZV
(ΓV)

)
λV,u− .

�

B.2 Option Pricing

B.2.1 Moment Generating Function of Log-Equity Price Variati-
on

Lemma B.12. The risk-neutral moment generating function of YT satisfies

ϕQYT |Yt ,Vt
(u,Yt,Vt) = EQ

[
exp (uYT ) |Yt,Vt

]
= exp (A (u, t,T ) + uYt + C (u, t,T ) Vt)

where C (u, t,T ) and A(u; t,T ) are provided at Equations (5.28) and (5.29) respec-

tively.

Proof of Lemma B.12. The proof is based on Filipovic and Mayerhofer (2009) and
Duffie et al. (2000).

According to Duffie et al. (2000), A(u; t,T ), B(u; t,T ) and C(u; t,T ) satisfy the com-
plex valued ordinary differential equations (ODEs)

A′(u; t,T ) = r −

r − q − λQY,0
(
ϕQZY

(1) − 1
)

κQθQ

> B(u; t,T )
C(u; t,T )

 − λQY,0 (
ϕQZY

(B(u; t,T )) − 1
)

− λQV,0

(
ϕQZV

(C(u; t,T )) − 1
)
, (B.5)

B′(u; t,T ) = 0,

C′(u; t,T ) =

1
2 + λQY,1

(
ϕQZY

(1) − 1
)

κQ

> B(u; t,T )
C(u; t,T )


−

1
2

B(u; t,T )
C(u; t,T )

>  1 σρ

σρ σ2

 β(u; t,T )
C(u; t,T )

 − λQY,1 (
ϕQZY

(u) − 1
)
,
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with initial conditions A(u; T,T ) = 0, B(u; T,T ) = u and C(u; T,T ) = 0. The second
ODE is obvious: since B(u; T,T ) = u and B′(u; t,T ) = 0, it means that B(u; t,T ) =

u. Then, from this equation, we can try to find the solution to the third ODE (i.e.
C(u; t,T )). As in Filipovic and Mayerhofer (2009), the solution to this ODE is given
by Equation (5.28). Finally, the expression for A(u; t,T ) provided at Equation (5.29)
is obtained from a simple integration since there are no A in the right hand side of
Equation (B.5). �

B.2.2 Quadratic Variation of Option Prices

The option price is a function of time, returns and variance: Ot = Ot (Yt,Vt) . Assume
that O is twice continuously differentiable. Itō’s formula implies that

Ot (Yt,Vt) − O0 (Y0,V0)

=

∫ t

0

∂Ou

∂u
(Yu− ,Vu−) du +

∫ t

0

∂Ou

∂y
(Yu− ,Vu−) dYu +

∫ t

0

∂Ou

∂v
(Yu− ,V) dVu

+
1
2

∫ t

0

∂2Ou

∂y2
(Yu− ,Vu−) d [Y,Y]c

u +
1
2

∫ t

0

∂2Ou

∂v2
(Yu− ,Vu−) d [V,V]c

u

+

∫ t

0

∂2Ou

∂v∂y
(Yu− ,Vu−) d [Y,V]c

u

+
∑

0<u≤t

{Ou (Yu,Vu) − Ou (Yu− ,Vu−)} −
∑

0<u≤t

{
∂Ou

∂y
(Yu− ,Vu−) (Yu − Yu−)

}
−

∑
0<u≤t

{
∂Ou

∂v
(Yu− ,Vu−) (Vu − Vu−)

}
.

Replacing Equation (5.1) in the latter leads to

Ot (Yt,Vt) − O0 (Y0,V0)

=

∫ t

0

∂Ou

∂u
(Yu− ,Vu−) du +

∫ t

0

∂Ou

∂y
(Yu− ,Vu−)αu−du +

∫ t

0

∂Ou

∂y
(Yu− ,Vu−) ρ

√
Vu−dWV,u

+

∫ t

0

∂Ou

∂y
(Yu− ,Vu−)

√
1 − ρ2

√
Vu−dW⊥,u +

∫ t

0

∂Ou

∂y
(Yu− ,Vu−) dJY,u

+

∫ t

0

∂Ou

∂v
(Yu− ,Vu−) κ (θ − Vu−) du +

∫ t

0

∂Ou

∂v
(Yu− ,Vu−)σ

√
Vu−dWV,u

+

∫ t

0

∂Ou

∂v
(Yu− ,Vu−) dJV,u +

1
2

∫ t

0

∂2Ou

∂y2
(Yu− ,Vu−) Vu−du

+
1
2

∫ t

0

∂2Ou

∂v2
(Yu− ,Vu−)σ2Vu−du +

∫ t

0

∂2Ou

∂v∂y
(Yu− ,Vu−)σρVu−du
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+
∑

0<u≤t

{Ou (Yu,Vu) − Ou (Yu− ,Vu−)} −
∫ t

0

∂Ou

∂y
(Yu− ,Vu−) dJY,u

−

∫ t

0

∂Ou

∂v
(Yu− ,Vu−) dJV,u.

Then,

Ot (Yt,Vt) − O0 (Y0,V0)

=

∫ t

0

 ∂Ou
∂u (Yu− ,Vu−) + αu−

∂Ou
∂y (Yu− ,Vu−) + ∂Ou

∂v (Yu− ,Vu−) κ (θ − Vu−)

+
(

1
2
∂2Ou
∂y2 (Yu− ,Vu−) + 1

2
∂2Ou
∂v2 (Yu− ,Vu−)σ2 + ∂2Ou

∂v∂y (Yu− ,Vu−)σρ
)

Vu−

 du

+

∫ t

0

(
ρ
∂Ou

∂y
(Yu− ,Vu−) + σ

∂Ou

∂v
(Yu− ,Vu−)

) √
Vu−dWV,u

+

∫ t

0

∂Ou

∂y
(Yu− ,Vu−)

√
1 − ρ2

√
Vu−dW⊥,u +

∑
0<u≤t

{Ou (Yu,Vu) − Ou (Yu− ,Vu−)} .

Finally, the quadratic variation is

[O,O]t

=

∫ t

0

(
ρ
∂Ou

∂y
(Yu− ,Vu−) + σ

∂Ou

∂v
(Yu− ,Vu−)

)2

Vu−du

+

∫ t

0

(
∂Ou

∂y
(Yu− ,Vu−)

)2 (
1 − ρ2

)
Vu−du +

∑
0<u≤t

{Ou (Yu,Vu) − Ou (Yu− ,Vu−)}2

=

∫ t

0

(∂Ou

∂y
(Yu− ,Vu−)

)2

+ 2σρ
∂Ou

∂y
(Yu− ,Vu−)

∂Ou

∂v
(Yu− ,Vu−)

+ σ2
(
∂Ou

∂v
(Yu− ,Vu−)

)2 Vu−du +
∑

0<u≤t

{Ou (Yu,Vu) − Ou (Yu− ,Vu−)}2 .

B.2.2.1 Derivative Calculation for ∆OQV

Starting from Equation (5.27),

∂

∂y
Ct(y, v) = exp (y − q(T − t))

(
P1(y, v) +

∂P1

∂x
P1(y, v)

)
− K exp (−r(T − t))

∂P2

∂y
(y, v)

and

∂

∂v
Ct(y, v) = exp (y − q(T − t))

∂P1

∂v
P1(y, v) − K exp (−r(T − t))

∂P2

∂v
(y, v).
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The derivatives ∂
∂y P1(y, v, k; t,T ) and ∂

∂y P2(y, v, k; t,T ) can be calculated by computing
the derivative of the integrand.1 For x ∈ {y, v},

∂P1

∂x
(y, v) =

∂

∂x

[
1
2

+
1
π

∫ ∞

0
Re

(
1
ui

exp (−iuk − y)ϕQYT |Yt ,Vt
(ui + 1, y, v)

)
du

]
=

1
π

∫ ∞

0

∂

∂x
Re

(
1
ui

exp (−iuk − y)ϕQYT |Yt ,Vt
(ui + 1, y, v)

)
du

=
1
π

∫ ∞

0

∂

∂x
Re

 1
ui

exp (−iuk − y) exp

 A (ui + 1, t,T ) + (ui + 1) y

+C (ui + 1, t,T ) v

 du

where the last expression comes from the specific shape of the moment generating
function. Because exp (a + ib) = exp (a)×(cos b + i sin b), the last expression becomes

1
π

∫ ∞

0

∂

∂x
Re

 1
ui

exp


Re [A (ui + 1, t,T )] + Re [C (ui + 1, t,T )] v

+i Im [A (ui + 1, t,T )] + i Im [C (ui + 1, t,T )] v

+iu (y − k)


 du

=
1
π

∫ ∞

0

∂

∂x

1
u

 exp (Re [A (ui + 1, t,T )] + Re [C (ui + 1, t,T )] v)

× sin (Im [A (ui + 1, t,T )] + Im [C (ui + 1, t,T )] v + u (y − k))

 du.

If x = y, then

∂P1

∂y
(y, v)

=
1
π

∫ ∞

0

 exp
(
Re [α (ui + 1, t,T )] + Re

[
γ (ui + 1, t,T ) v

])
× cos

(
Im [α (ui + 1, t,T )] + Im

[
γ (ui + 1, t,T ) v

]
+ u (y − k)

)  du

For x = v,

∂P1

∂v
(y, v)

=
1
π

∫ ∞

0



1
u


Re [C (ui + 1, t,T )]

× exp (Re [A (ui + 1, t,T )] + Re [C (ui + 1, t,T ) v])

× sin (Im [A (ui + 1, t,T )] + Im [C (ui + 1, t,T ) v] + u (y − k))


+ 1

u


Im [C (ui + 1, t,T )]

× exp (Re [A (ui + 1, t,T )] + Re [C (ui + 1, t,T ) v])

× cos (Im [A (ui + 1, t,T )] + Im [C (ui + 1, t,T ) v] + u (y − k))




du.

1Note that Leibniz integral rule is used here. One should verify that the integrand is a Lebesgue-
integrable function of x for each u, that for almost all x, the derivative of the integrand (w.r.t. x) exists

for all x, and that there is an integrable function θ such that
∣∣∣∣∣ ∂∂y Re

(
e−iuk−y f (ui+1,v;t,T )

iu

)∣∣∣∣∣ ≤ θ(u) for all x and

almost every u.
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B.3 Simulation-Based Results: Additional Results

B.3.1 Filtering Tests

Figures B.1 to B.5 show an example of the filtered values based on different data
sources. For this experiment, M is set to 5. In general, using the five different data
sources yields accurate filtered values (with narrower confidence intervals). Instanta-
neous variance and log-equity jumps are more precisely filtered when using the option
realized variance. When only log-equity values are used, the various filtered values
are very imprecise. This observation is consistent with Table 5.2: the error measures
are higher when we only consider the log-equity values in the filtering step.

B.3.2 Option Data: How Much Is Enough?

We use the simulation experiment of Section 5.4.1, but this time, fifteen implied
volatilities are observed on each day. These European OTM options have a matu-
rity of 30, 90 and 150 business days, and call-equivalent deltas of 0.20, 0.35, 0.50,
0.65 and 0.80 respectively. The filter is run using M = 5.

The idea behind this test is to only use part of the option data available and select a
limited number of maturities or call-equivalent deltas. From this subsample, we apply
the filter and compare filtered values to real simulated values and to filtered values
computed using the whole dataset.

Table B.1 shows RMSE for various filtered values. These error measures are computed
with respect to true values and filtered means again.

Regarding the option maturity, it has a marginal impact on the results. However, ac-
cording to Panel A, it seems that the use of two maturities is better than one. Therefore,
adding more options helps the filtering of latent quantities, regardless of the maturity
of the option. According to Panel B of Table B.1, OTM put options filter the jump
components more adequately.
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Figure B.1: Filtered instantaneous variance using various data sources.
Variance path’s means obtained by the particle filters, true spot variance path, and 95% and confi-
dence intervals computed using empirical quantiles (from particle filters) are shown in this figure using
different data sources. The mean of the filtered density (obtained using particle filters) is taken as the
filtered instantaneous variance. Y means daily log-equity value, RV means realized variance, BV means
bipower variation, IV means implied volatility here, and ORV means option realized variance.
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Figure B.2: Filtered quadratic variation using various data sources.
Quadratic variation path’s means obtained by the particle filters, true quadratic variation path, and 95%
and confidence intervals computed using empirical quantiles (from particle filters) are shown in this
figure using different data sources. Y means daily log-equity value, RV means realized variance, BV
means bipower variation, IV means implied volatility here, and ORV means option realized variance.
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Figure B.3: Filtered integrated variance using various data sources.
Integrated variance path’s means obtained by the particle filters, true integrated variance path, and 95%
and confidence intervals computed using empirical quantiles (from particle filters) are shown in this
figure using different data sources. Y means daily log-equity value, RV means realized variance, BV
means bipower variation, IV means implied volatility here, and ORV means option realized variance.
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Figure B.4: Filtered log-equity jumps using various data sources.
Return jump path’s means obtained by the particle filters and true return jump path are shown in this
figure using different data sources. Y means daily log-equity value, RV means realized variance, BV
means bipower variation, IV means implied volatility here, and ORV means option realized variance.
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Figure B.5: Filtered variance jumps using various data sources.
Variance jump path’s means obtained by the particle filters and true variance jump path are shown in
this figure using different data sources. Y means daily returns, RV means realized variance, BV means
bipower variation, IV means implied volatility here, and ORV means option realized variance.
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Table B.1: RMSE for various quantities across 100 simulated paths when using
only a limited number of options.

Panel A: Maturities

RMSE (true) RMSE (filtered)

V ∆QV ∆I ZY ZV V ∆QV ∆I ZY ZV

DTM = 30 5.9196 0.0212 0.0116 1.8850 2.2890 3.9730 0.0238 0.0135 0.7718 1.0889
DTM = 90 6.3944 0.0202 0.0122 1.8452 1.8596 4.0821 0.0226 0.0140 0.7283 0.9411
DTM = 150 6.6394 0.0198 0.0126 1.9275 1.9132 4.1860 0.0229 0.0143 0.7591 0.8998
DTM = 30, 90 6.0780 0.0201 0.0116 1.8852 1.9806 3.8558 0.0226 0.0133 0.7273 0.8593
DTM = 30, 150 6.1739 0.0188 0.0118 1.8551 2.0669 3.8661 0.0232 0.0135 0.7240 0.8453
DTM = 120, 150 6.4748 0.0194 0.0122 1.8500 1.8894 3.9892 0.0224 0.0137 0.7676 0.7847
Panel B: Moneynesses

RMSE (true) RMSE (filtered)

V ∆QV ∆I ZY ZV V ∆QV ∆I ZY ZV

∆e = 0.20 6.7777 0.0271 0.0147 1.8839 2.3313 4.6669 0.0290 0.0158 0.8560 1.2977
∆e = 0.35 6.8674 0.0265 0.0149 1.9021 2.6694 4.7140 0.0286 0.0158 0.7991 1.7129
∆e = 0.50 6.9247 0.0246 0.0150 1.9514 3.1289 4.8637 0.0272 0.0162 0.8819 2.1768
∆e = 0.65 6.8310 0.0244 0.0149 1.8926 2.4371 4.9126 0.0298 0.0167 0.9845 1.5027
∆e = 0.80 6.7287 0.0263 0.0145 1.9438 2.0052 4.7973 0.0307 0.0163 0.9010 1.2448
∆e = 0.20, 0.35 6.6490 0.0250 0.0144 1.8983 2.3443 4.4762 0.0266 0.0154 0.8107 1.3127
∆e = 0.65, 0.80 6.6995 0.0244 0.0146 1.8956 2.1555 4.7616 0.0292 0.0164 0.8497 1.2778

Quantities were multiplied by 1,000. Filtered values are computed as the mean of resampled particles
obtained via a SIR particle filter with M = 5 using Y , RV , BV , I and ORV and every maturities and
moneynesses. A maximum of fifteen implied volatilities are observed on each day: these European
OTM options have a maturity of 30, 90 and 150 business days, and call-equivalent deltas of 0.20, 0.35,
0.50, 0.65 and 0.80 respectively. In the table, DTM means day to maturity and ∆e = 0.20 represents
call-equivalent delta.

Table B.2: Descriptive statistics of realized variance, bipower variation and option
realized variance.

Mean S.D. Skewness Kurtosis 10% 90%

RV × 1000 27.523 75.247 13.846 320.527 3.990 53.757
BV × 1000 25.783 72.283 13.371 294.644 3.591 49.767

ORV , DTM = 30, ∆e = 0.20 24.001 83.350 8.827 104.327 0.792 55.478
ORV , DTM = 30, ∆e = 0.35 33.794 87.637 8.314 92.257 2.832 68.863
ORV , DTM = 30, ∆e = 0.50 33.373 68.679 8.518 104.435 6.387 65.347
ORV , DTM = 30, ∆e = 0.65 29.858 67.238 9.305 130.376 4.279 59.223
ORV , DTM = 30, ∆e = 0.80 19.484 46.732 6.753 66.278 1.307 44.229
ORV , DTM = 90, ∆e = 0.20 17.434 78.232 9.779 119.597 0.695 22.679
ORV , DTM = 90, ∆e = 0.35 26.705 77.032 10.151 141.495 2.510 53.110
ORV , DTM = 90, ∆e = 0.50 34.453 74.512 8.202 97.525 5.806 66.649
ORV , DTM = 90, ∆e = 0.65 25.184 53.298 8.336 109.830 3.671 47.970
ORV , DTM = 90, ∆e = 0.80 15.027 55.173 16.408 363.312 1.272 30.695

S.D. stands for standard deviation. 10% and 90% represent the 10% and 90% quantiles of empirical
samples respectively. RV and BV are given on an annualized basis.

B.4 Descriptive Statistics of Realized Variations

Table B.2 exhibits descriptive statistics of realized variance, bipower variation and
option realized variance.

257





Bibliography

Acharya, V., R. Engle, and M. Richardson. 2012. Capital shortfall: A new approach
to ranking and regulating systemic risks. American Economic Review 102:59–64.

Acharya, V., L. H. Pedersen, T. Philippon, and M. P. Richardson. 2010. Measuring
systemic risk. Working paper .

Acharya, V. V., S. T. Bharath, and A. Srinivasan. 2007. Does industry-wide distress
affect defaulted firms? Evidence from creditor recoveries. Journal of Financial

Economics 85:787–821.

Adrian, T., and M. K. Brunnermeier. 2009. CoVaR. Working paper .

Aït-Sahalia, Y., and A. Lo. 1998a. Nonparametric estimation of state-price densities
implicit in financial asset prices. Journal of Finance 53:499–547.

Aït-Sahalia, Y., and A. W. Lo. 1998b. Nonparametric estimation of state-price densi-
ties implicit in financial asset prices. Journal of Finance 53:499–547.

Albuquerque, R. 2012. Skewness in stock returns: Reconciling the evidence on firm
versus aggregate returns. Review of Financial Studies 25:1630–1673.

Alexander, C., and A. Kaeck. 2008. Regime dependent determinants of credit default
swap spreads. Journal of Banking & Finance 32:1008–1021.

Alizadeh, S., M. W. Brandt, and F. X. Diebold. 2002. Range-based estimation of
stochastic volatility models. Journal of Finance 57:1047–1091.

Allen, M., C. B. Rosenberg, C. Keller, B. Setser, and N. Roubini. 2002. A balance
sheet approach to financial crisis. Working paper .

Altman, E. I., B. Brady, A. Resti, and A. Sironi. 2005. The link between default and
recovery rates: Theory, empirical evidence, and implications. Journal of Business

78:2203–2228.

259



Bibliography

Amihud, Y. 2002. Illiquidity and stock returns: Cross-section and time-series effects.
Journal of Financial Markets 5:31–56.

Andersen, T. G., T. Bollerslev, F. X. Diebold, and H. Ebens. 2001. The distribution of
realized stock return volatility. Journal of Financial Economics 61:43–76.

Andersen, T. G., O. Bondarenko, V. Todorov, and G. Tauchen. 2015a. The fine struc-
ture of equity-index option dynamics. Journal of Econometrics 187:532–546.

Andersen, T. G., N. Fusari, and V. Todorov. 2015b. The risk premia embedded in
index options. Journal of Financial Economics 117:558–584.

Ang, A., R. J. Hodrick, Y. Xing, and X. Zhang. 2006. The cross-section of volatility
and expected returns. Journal of Finance 61:259–299.

Arora, N., P. Gandhi, and F. A. Longstaff. 2012. Counterparty Credit Risk and the
Credit Default Swap Market. Journal of Financial Economics 103:280–293.

Audrino, F., and M. R. Fengler. 2015. Are classical option pricing models consistent
with observed option second-order moments? Evidence from high-frequency data.
Journal of Banking & Finance 61:46–63.

Augustin, P. 2012. The term structure of CDS spreads and sovereign credit risk.
Working paper .
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