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RÉSUMÉ

Alors que l’algorithme du simplexe primal (PS) fonctionne remarquablement bien pour
une grande quantité de scénarios, ce dernier souffre du phénomène de dégénérescence à de
nombreux égards. Parmi ces faiblesses se retrouvent les opérations de calculs effectuées sur les
variables entrantes à pas nuls. L’algorithme du simplexe primal amélioré (Improved Primal
Simplex ) (IPS) vise à combattre la dégénérescence pendant la résolution.

La revue de littérature prend du recul par rapport à IPS et cherche à mieux comprendre
le contenu du problème de tarification. Celle-ci est séparée en deux parties chacune ayant
donné le jour à un article à part entière. La première partie résume les connaissances autour
de l’algorithme du Minimum Mean Cycle-Canceling (MMCC). Dans la foulée de cet effort
de synthèse apparaît par ailleurs un nouveau résultat de complexité fortement polynomiale
dont la construction est incidemment également utile en pratique. Quant à la deuxième
partie, nous espérons éliminer toute confusion qui puisse survenir entre IPS et un autre
outil développé pour combattre la dégénérescence sur les problèmes de partitionnement :
Agrégation de Contraintes Dynamique (Dynamic Constraint Aggregation) (DCA).

Le cœur de la thèse construit sur ces acquis et s’articule autour de trois axes. Le premier
axe généralise des résultats établis pour les problèmes de flots à la programmation linéaire, et
introduit des conditions d’optimalité nécessaires et suffisantes pour ces derniers. Nous avons
constaté qu’il est possible d’établir de nombreuses connexions entre les principes régissant
MMCC et ceux d’IPS dans le cadre des problèmes de réseaux. C’est ainsi que le deuxième axe
accompagne la naissance d’un algorithme fortement polynomial de Contraction-Expansion à
une étude computationnelle. Le troisième axe place IPS, PS, DCA et MMCC dans un unique
cadre permettant en outre d’autres variantes algorithmiques.

Mots-clé : Programmation linéaire, Dégénérescence, Algorithme primal, Décomposition
Dantzig-Wolfe, Conditions d’optimalité nécessaires, Problème réduit en lignes, Combinaison
de variables entrantes, Base du sous-espace vectoriel, Problèmes de flots, Minimum mean
cycle-canceling, Cancel-and-Tighten, Contraction-Expansion, Analyse de complexité.

Méthodes de recherche : La programmation linéaire renferme des problèmes mathé-
matiques bien définis. Ce qui préoccupe les chercheurs est plutôt la résolution desdits
problèmes. La revue de littérature rassemble l’état des connaissances autour du phénomène
de dégénérescence lequel pose des embûches à l’une des plus populaires méthodes de résolution,
à savoir le simplexe. Nous explorons des algorithmes alternatifs de façon théorique, et menons
des expériences numériques qui implémentent les idées avancées dans cette thèse.





ABSTRACT

While the traditional primal simplex algorithm (PS) does work wonders in several scenarios, it
suffers from degeneracy in more ways than one. The computational effort wasted on pivoting
entering variables with null step sizes is one such concern. The Improved Primal Simplex
algorithm (IPS) aims to fight degeneracy during the solving process.

The literature review takes a step back from IPS and aims to better understand the
content of the pricing problem. It is separated in two parts both of which finding home in
independent papers. In the first part, a survey examines the Minimum Mean Cycle-Canceling
algorithm (MMCC) and further contributes a new strongly polynomial complexity result
whose construction incidentally also brings practical improvements. In the second part, we
hope to dissolve the confusion that often arises between IPS and another tool designed to
fight degeneracy in set partitioning problems: Dynamic Constraint Aggregation (DCA). The
paper contains three degeneracy fighting tools: IPS, DCA and the Positive Edge rule (PE),
devised for different applications.

The dissertation’s core builds upon this knowledge on three axes. The first axis generalizes
results from network flows to linear programming, and introduces necessary and sufficient
optimality conditions for these problems. As it turns out, the principles behind MMCC
have several connections with those of IPS when applied to network problems. Such is the
content of the second axis from which emanates a so-called Contraction-Expansion strongly
polynomial algorithm along with a computational study. The third axis generalizes IPS, PS,
DCA and MMCC under a unique framework while allowing other variants.

Keywords: Linear programming, Degeneracy, Primal algorithm, Dantzig-Wolfe decom-
position, Necessary optimality conditions, Row-reduced problem, Combination of entering
variables, Vector subspace basis, Network flows, Minimum mean cycle-canceling, Cancel-and-
Tighten, Contraction-Expansion, Complexity analysis.

Research methods: Linear programming houses well defined mathematical problems.
The resolution of these problems is typically what interests researchers. The literature review
brings together degeneracy related topics causing havoc in the simplex algorithm, one of
the most prominent resolution method used today. We explore alternative algorithms on
theoretical grounds, and conduct computational experiments implementing ideas put forward
in this dissertation.
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1. INTRODUCTION (FR)

Si la programmation linéaire dispose du simplexe primal (Dantzig 1963) pour parvenir à ses
fins, nombreux sont les problèmes pour lesquels cet outil de résolution de prédilection doit
composer avec la dégénérescence, voire le cyclage. Le simplexe primal poursuit ses opérations
de pivotage jusqu’à la vérification d’un critère d’arrêt affichant les couleurs d’une condition
suffisante, mais non nécessaire. En présence de dégénérescence, ce fonctionnement itératif
réunit justement les éléments pour mener droit vers un imbroglio. La robustesse du pivotage
est compromise et, par suite, l’efficacité de l’outil. Il est d’ailleurs notoire que la famille des
problèmes de réseau affiche dans une très large mesure ce phénomène de dégénérescence.
Malgré que celui-ci reçoive de l’attention depuis la création de la programmation linéaire,
la possibilité d’éradiquer les embûches qu’il cause demeure encore aujourd’hui une question
ouverte.

Il n’est pas surprenant que les premières réflexions sur la dégénérescence attaquent de
front les opérations de pivotage. Que ce soit les travaux de Bland (1977) ou Fukuda (1982)
ou encore Terlaky and Zhang (1993), toutes ces règles de pivot constituent des astuces pour
accélérer la convergence pratique du simplexe primal sans pour autant apporter de réponse
théorique. Il en est de même pour la perturbation du membre droit de Charnes (1952) qui
modifie de manière infinitésimale les hyperplans du polyèdre.

Retenons surtout que toutes ces astuces portent sur le problème global et ne sont plus en
mesure, à elles seules, de faire face à la taille sans cesse grandissante des problèmes abordés.
Les plus fécondes des nouvelles méthodes proposent de décomposer le problème original pour
mieux orienter sa résolution. L’algorithme du simplexe primal amélioré (Improved Primal
Simplex (IPS) appartient justement à cette classe de méthodes (Elhallaoui et al. 2005, 2008,
2010). Si ce dernier tente de tirer profit de la dégénérescence, plusieurs questions théoriques
demeurent sans réponses et tracent le travail accompli dans cette thèse.
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1.1 Aperçu

La revue de littérature prend du recul par rapport à IPS et cherche à mieux comprendre
le contenu du problème de tarification. Celle-ci est séparée en deux parties chacune ayant
donné le jour à un article à part entière. La première partie résume les connaissances autour
de l’algorithme du Minimum Mean Cycle-Canceling (MMCC). Dans la foulée de cet effort
de synthèse apparaît par ailleurs un nouveau résultat de complexité fortement polynomiale
dont la construction est incidemment également utile en pratique. Quant à la deuxième
partie, nous espérons éliminer toute confusion qui puisse survenir entre IPS et un autre
outil développé pour combattre la dégénérescence sur les problèmes de partitionnement :
Agrégation de Contraintes Dynamique (Dynamic Constraint Aggregation) (DCA). Nous avons
envisagé la nécessité de cette revue de littérature détaillée en vertu de la récupération des
idées éparpillées tous azimuts.

Le cœur de la thèse construit sur ces acquis et s’articule autour de trois axes. Le premier
axe généralise le problème résiduel, traditionnellement associé aux problèmes de flots, aux
problèmes linéaires. Des conditions nécessaires et suffisantes pour la programmation linéaire
sont ainsi exposées. Nous avons constaté qu’il est possible d’établir de nombreuses connexions
entre les principes régissant MMCC et ceux d’IPS dans le cadre des problèmes de réseaux.
C’est ainsi que le deuxième axe accompagne la naissance d’un algorithme fortement polynomial
de Contraction-Expansion à une étude computationnelle. Le troisième axe place IPS, PS,
DCA et MMCC dans un unique cadre permettant en outre d’autres variantes algorithmiques.
C’est en utilisant une base du sous-espace vectoriel que cet algorithme générique prend forme.
Voilà l’aperçu de la thèse lequel est revisité de manière plus détaillée dans la prochaine section.
Chaque paragraphe résume la contribution du travail publié (ou soumis pour publication) ce
qui d’office caractérise le statut par articles de cette thèse.

1.2 Contribution

Revue de littérature

Dans About the minimum mean cycle-canceling algorithm, nous résumons plusieurs articles
qui ont chacun contribué à l’analyse de l’algorithme du minimum mean cycle-canceling afin de
réunir les connaissances sous un seul numéro. Ce processus nous a permis d’établir certaines
preuves avec des arguments connus de la programmation linéaire. En outre, le Thèoreme 6
est un aboutissement inattendu qui révèle un nouveau résultat de complexité fortement
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polynomiale. Ce dernier est obtenu grâce à la combinaison de résultats précédemment établis
et l’élaboration d’une mesure heuristique qui permet d’accéder à un facteur de saut plus
important dans un laps de temps plus court. Cet article est publié dans Discrete Applied
Mathematics, (Gauthier et al. 2015b, voir List of Papers 1).

Dans Tools for primal degenerate linear programs: IPS, DCA, and PE, le lecteur trouvera
une littérature abondante traitant de la dégénérescence. Nous nous intéressons également à
une forme plus générale d’IPS. L’aspect algèbre linéaire qui ressort de cette étude permet
d’ailleurs de tracer des parallèles entre ce dernier et l’agrégation de contraintes dynamique
ainsi que la règle du Positive Edge. Chacun de ces trois outils convient au final à différentes
applications. Cet article est publié dans EURO Journal on Transportation and Logistics,
(Gauthier et al. 2015c, voir List of Papers 2).

Decomposition theorems for linear programs

Dans Decomposition theorems for linear programs, le problème résiduel, la pierre angulaire
de MMCC, est généralisé aux problèmes linéaires permettant ainsi une éventuelle analyse
de complexité d’un algorithme basé sur ces spécifications. En particulier, des conditions
nécessaires et suffisantes pour la programmation linéaire en découlent. Ces résultats sont
obtenus par le biais d’une décomposition Dantzig-Wolfe dont le sous-problème est à la
recherche de soi-disant cycles pondérés. Le contenu de cet article est de façon surprenante le
fruit d’une question ouverte faisant partie de mon examen de synthèse. Cet article est publié
dans Operations Research Letters, (Gauthier et al. 2014, voir List of Papers 3).

A strongly polynomial Contraction-Expansion algorithm for network flow
problems

La façon la plus simple de décrire cet algorithme est en faisant appel au réseau résiduel.
Dans MMCC, chaque arc ayant un flot dont la valeur ne correspond pas à l’une des bornes
est dédoublé. Notre proposition consiste à cacher certains arcs du réseau résiduel de telle
manière que des arbres indépendants sont identifiés et remplacés par des nœuds uniques dans
un réseau alternatif. Cette mécanique est appelée contraction. Le réseau contracté ainsi
produit est beaucoup plus dense que l’original; il contient moins de nœuds et drastiquement
moins d’arcs. Cette perte d’information ne compromet ni l’existence de cycles négatifs ni le
coût unitaire qui leur est associé. En revanche, l’évaluation de leur coût moyen est modifié
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puisque certains arcs ne font plus partis du décompte. En comparaison avec MMCC, l’ordre
d’annulation des cycles négatifs est forcément bouleversé.

Les outils utilisés pour construire l’analyse de complexité dans MMCC nous permettent
d’énoncer certaines propriétés concernant cette gymnastique de contraction. En témoigne
la stratégie Cancel-and-Tighten : ce qui ressort de notre étude sur MMCC est que le
comportement sur les phases prime devant celui sur les itérations. Les cycles de Type 3
sont désormais introduits pour justement insister sur l’aspect du saut qui est désiré entre
les phases. Ceux-ci peuvent être observés dans cet article lorsqu’une contraction partielle
est utilisée afin d’imiter le comportement vu dans MMCC assurant ainsi une déclinaison
fortement polynomiale. Cette contraction partielle est obtenue en modifiant le choix des arcs
cachés au fur et à mesure que l’algorithme progresse. La sélection est faite de telle sorte
qu’il s’agit au final d’une expansion du réseau contracté. La nécessité de cette expansion
pour obtenir ce résultat de complexité demeure pour l’instant sans réponse. Il est par contre
intéressant de noter que la contraction partielle peut effectivement être omise pour des
applications spécifiques, en particulier celles qui se présentent sous un format binaire comme
le problème d’affectation, de plus court chemin ou de flot maximal avec capacité unitaire.
L’étude computationelle compare le comportement de l’algorithme de Contraction-Expansion
avec ceux de MMCC et Cancel-and-Tighten. Cet article soumis pour publication sous le nom
de A strongly polynomial Contraction-Expansion algorithm for network flow problems adresse
ces points (Gauthier et al. 2016, voir List of Papers 4).

Vector space decomposition for linear and network flow problems

Le but de Vector Space Decomposition for linear programs est de renforcer les liens entre
plusieurs algorithmes existants. Gracieuseté d’une présentation constructive de l’algorithme
de Contraction-Expansion, l’article précédent ne contient aucune décomposition matricielle
et le rend en l’occurence plus accessible. Les liens entre MMCC et PS sont en revanche
cristallisés. Il s’avère que ceux-ci sont diamétralement opposés dans l’univers qui met en
lumière un vaste champ de variantes intermédiaires. Également inspiré par le deuxième
article en revue de littérature Tools for degenerate linear programs, un format générique de
décomposition algorithmique est dévoilé.

Puisque différentes propriétés sont avancées pour chacun des cas, nous espérons pouvoir les
exploiter au besoin durant la résolution. L’idée principale de cette décomposition de l’espace
vectoriel est que la base du sous-espace vectoriel est aussi flexible que l’on désire. Elle peut
bien sûr correspondre à une base type simplexe ou bien évoquer l’ensemble des variables libres
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ou bien encore décrire l’ensemble vide puis au final tout autre variante. La décomposition
de l’espace vectoriel dissocie la base du simplexe des colonnes constituant la solution. Dans
tous les cas, un problème de tarification identifiant une direction est appelé. Une famille qui
renvoit des directions induisant des pivots non-dégénérés est identifiée ainsi qu’une autre qui
trouve naturellement des directions intérieures. IPS est la seule variante appartenant aux
deux familles simultanément. Une version préliminaire de l’article est disponible dans Les
Cahiers du GERAD (Gauthier et al. 2015a, voir List of Papers 5).

Sujets divers

Voici sans ordre particulier plusieurs routes d’exploration. Une analyse de complexité pour les
problèmes linéaires reposant sur le paradigme du problème résiduel nécessite une transposition
des éléments de preuves vues dans l’analyse de MMCC. En outre, Tardos (1990) montre que
tout problème linéaire peut être réduit à un problème de 2-commodités généralisé en temps
fortement polynomial. C’est pour ainsi dire qu’il serait assurément plus facile d’aborder ce
dernier sans perte de généralité. En effet, le problème de multi-commodités généralisé est
similaire à un problème de réseau à plusieurs égards notamment par son support visuel qui
contribue largement à mieux comprendre ce qui se passe pendant la résolution.

En ce qui concerne l’implémentation du simplexe, CPLEX favorise largement le régime dual.
Inutile de se poser en faux devant le leader de l’industrie ce qui nous amène évidemment à
considérer une extension dite du simplexe dual amélioré. Le vaste domaine de l’optimisation
convexe pourrait également bénéficier des propriétés dérivées dans VSD. L’incorporation de
la stabilisation des variables duales est une autre stratégie méritant d’être étudiée dans ce
cadre. Une autre observation particulièrement à propos, qui ne semble d’ailleurs jamais avoir
été relevée, est que le fonctionnement de Cancel-and-Tighten fait en sorte que les variables
duales sont amenées à une valeur optimale de manière non-décroissante.

Tout ceci est retenu au niveau de la programmation linéaire, mais des extensions visant
la programmation en nombres entiers sont également à l’étude. Pensons par exemple aux
travaux de Zaghrouti et al. (2014) ainsi que Rosat et al. (2014) traitant du Integral Simplex
Using Decomposition (ISUD) dont les résultats préliminaires publiés dernièrement sont très
positifs. Pour l’instant mis en œuvre autour des problèmes de partitionnement, le problème
de tarification est d’autant plus manipulé afin d’extraire des directions améliorantes menant
vers des solutions entières. L’intégration de ces connaissances dans un contexte de génération
de colonnes est un enjeu prioritaire.
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Finalement, ISUD est un algorithme très axé sur l’efficacité pratique. La structure du
problème résolu semble être un facteur déterminant puisque ISUD hérite pour l’instant de
la même complexité exponentielle que la méthode de séparation et évaluation progressive.
Il s’avère ainsi difficile d’imaginer à quel point ISUD est en mesure de s’appliquer hors du
contexte des problèmes de partitionnement. Il est cependant remarquable que le problème
standard de 2-commodités affiche une relaxation linéaire dont les valeurs fractionnaires se
comportent un peu comme dans le problème de partitionnement. Si tout problème linéaire
peut être réduit à un problème de 2-commodités, nous disposons en ce moment uniquement
d’une réduction en temps polynomial proposée par Itai (1978).
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Degeneracy can greatly affect the resolution process of the primal simplex algorithm (PS)
going as far as jeopardizing the convergence of the latter. It is in fact the only phenomenon
which questions the efficiency of this algorithm. The presence of degeneracy across a broad
range of linear programs makes this phenomenon worth studying. This is especially true
for network flow problems which are well known for very high level of degenerate pivots. It
has drawn attention since the fifties alongside the birth of linear programming. As it stands
today, the possibility of eradicating the drawbacks attributed to degeneracy is still an open
question.

The primal simplex pursues optimality using pivoting operations until a sufficient stopping
criterion is met. When facing degeneracy, this iterative process suffers from null step
operations. The robustness of the pivot operation is compromised and, by extension, the
efficacy of the resolution tool. It is not surprising that a plethora of pivot rules have fed the
content of several papers (Bland 1977, Fukuda 1982, Terlaky and Zhang 1993). Unfortunately,
while practical concerns have sometimes been met, none of these rules have provided theoretical
answers. The same is true for the work of Charnes (1952) which introduces right-hand side
perturbation to modify the way the polyhedron’s hyperplanes intersect.

All of these tricks are intended to be used on the global problem and are unable to
tackle the problems unceasingly increasing in size. The more successful methods propose to
decompose the original problem in order to better guide the resolution. The Improved Primal
Simplex algorithm (IPS) is one such method (Elhallaoui et al. 2005, 2008, 2010). While the
latter aims to capitalize on degeneracy, several theoretical questions remain unanswered and
lay the work to be done in this dissertation.

1.1 Outline

The literature review takes a step back from IPS and aims to better understand the content
of the pricing problem. It is separated in two parts both of which finding home in inde-
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pendent papers. In the first part, a survey examines the Minimum Mean Cycle-Canceling
algorithm (MMCC) and further contributes a new strongly polynomial time complexity result
whose construction incidentally also brings practical improvements. In the second part, we
hope to dissolve the confusion that often arises between IPS and another tool designed to
fight degeneracy in set partitioning problems: Dynamic Constraint Aggregation (DCA). We
argue for the need of this extensive review on the grounds of the necessity of many ideas that
were used previously to accomplish the work ahead.

The dissertation’s core builds upon the literature review on three axes. First, we introduce
a generalization of the residual problem, traditionally seen in network flow problems, for linear
programs. Incidentally, necessary and sufficient optimality conditions for linear programs
are also derived from the residual problem. In the second axis, we concentrate on network
flow problems and design a strongly polynomial algorithm that uses concepts from both IPS
and MMCC. Then again, as we opted for a constructive presentation, this paper omits the
ties with IPS altogether and concentrates on the computational study instead. The so-called
contraction mechanism is flexible and allows one to go from MMCC to PS depending on the
contraction choice. This overarching framework is formally shown in the third axis where
this generic algorithm makes use of a vector space decomposition. Such is the dissertation’s
outline which is revisited in the following section. Each paragraph synthesizes the published
(or submitted) work of the contribution officially sealing the by publication nature of this
dissertation.

1.2 Contribution

Literature review

In About the minimum mean cycle-canceling algorithm, we survey different papers which
analyze the minimum mean cycle-canceling algorithm to recuperate all the ideas under one
roof. This process allows us to establish some of the proofs using a new line of arguments,
that is, with linear programming tools. Ultimately, it even leads to an unexpected improved
strongly polynomial result stated in Theorem 6. The latter is obtained via a mixture of
previous results and the elaboration of a heuristic measure which allows the generalization
for a higher jump factor in a smaller time period. This paper is published in Discrete Applied
Mathematics, (Gauthier et al. 2015b, see List of Papers 1).

In Tools for primal degenerate linear programs: IPS, DCA, and PE, the reader shall find
extensive degeneracy related literature. We are additionally interested about a more general
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form of IPS. The linear algebra framework that emanates from the study actually allows us to
draw connections between the latter and Dynamic Constraint Aggregation as well as Positive
Edge. Each of these three degeneracy fighting tool is suitable for different applications. This
paper is published in EURO Journal on Transportation and Logistics, (Gauthier et al. 2015c,
see List of Papers 2).

Decomposition theorems for linear programs

In Decomposition theorems for linear programs, the residual problem, MMCC’s core, is
generalized to linear programs and provides for a solid building block for an eventual
complexity analysis of an algorithm based on these specifications. Necessary and sufficient
optimality conditions for linear programs are also derived. These results are obtained using
a Dantzig-Wolfe decomposition which issues a subproblem angled towards finding so-called
weighted cycles. Surprisingly enough, the article’s content is born from an open question
raised in my comprehensive exam. This paper is published in Operations Research Letters,
(Gauthier et al. 2014, see List of Papers 3).

A strongly polynomial Contraction-Expansion algorithm for network flow
problems

The easiest way to describe this algorithm is with respect to the residual network. In MMCC,
every arc for which the current solution displays a flow that is not at its bound is doubled.
Our proposal hides some of the arcs from the residual network. In doing so, independent
trees are identified and replaced by single nodes in an alternative network. This mechanic is
called contraction. The resulting so-called contracted network is much more dense than the
original one, it contains less nodes and drastically less arcs. This loss of information does
not compromise the existence of negative cycles nor their unit cost. It does however modify
the average evaluation of this cost since some arcs are no longer accounted for. The order in
which the negative cycles are canceled is thus modified when one compares it with MMCC.

The tools provided by the complexity analysis of MMCC allow us to state certain properties
regarding this contraction gymnastic. The most important behavior noted with MMCC is
that of phases as seen in the Cancel-and-Tighten strategy. In fact, the paper also introduces
a so-called Type 3 cycle which insists on the measurable jump aspect we wish for between
phases. It can also be observed in this framework when using partial contraction to mimic the
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behavior of MMCC thus ensuring a strongly polynomial algorithm. This partial contraction
is obtained by modifying the choice of hidden arcs as the algorithm progresses. The selection
is made in such a way that it actually corresponds to an expansion of the contracted network.
Whether this expansion is required to achieve strongly polynomial properties is still an open
question. Although, it is interesting to note that strongly polynomial time complexity is
indeed verified without partial contraction for special applications, namely those in binary
format (assignment, shortest path, maximum flow with unit capacities). The computational
study compares the behavior of the Contraction-Expansion with those of MMCC and Cancel-
and-Tighten. The submitted paper titled A strongly polynomial Contraction-Expansion
algorithm for network flow problems aims to address these points (Gauthier et al. 2016, see
List of Papers 4).

Vector space decomposition for linear and network flow problems

The purpose of Vector space decomposition for linear and network flow problems is to further
establish the different ties that exist among several algorithmic variants we have faced this
far including IPS. Indeed, the Contraction-Expansion algorithm is presented in a constructive
manner thus eliminating any involved matrix decomposition and maybe even becoming more
accessible as such. The ties with MMCC and PS are however made clear, and it appears
that MMCC and PS sit diametrically opposed to one another yet a whole range of variants
in between is brought to light. Also inspired by the second literature review paper Tools
for degenerate linear programs, a generic format for algorithmic decomposition is ultimately
presented.

Since different properties are established for each of these cases, the hope is that it will be
possible to exploit these properties as needed during the resolution process. The fundamental
idea of this vector space decomposition is that the vector subspace basis is as flexible as one
wishes. It can correspond to a simplex basis or evoke the set of free variables or even be the
null-space and in fact just about everything in between. The vector space decomposition
dissociates the simplex basis from the column components of the solution. In all cases, a
pricing problem which identifies a direction is called upon. A family which fetches directions
that induce nondegenerate pivots is identified as well as another that naturally finds interior
directions. IPS is the only variant that belongs to both families simultaneously. A preliminary
version is available in Les Cahiers du GERAD (Gauthier et al. 2015a, see List of Papers 5).
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Miscellaneous subjects

We list in no particular order several paths of study that remain to be explored. A complexity
analysis for linear programs within the paradigm of the residual problem requires a translation
of the necessary elements of MMCC’s analysis. As a matter of fact, Tardos (1990) shows that
any linear program can be reduced to a 2-commodity generalized flow problem in strongly
polynomial time. For all intents and purposes, this also means that it might be much more
interesting to work on this particular problem. Indeed, the multi-commodity generalized
flow problem is similar to network flow problems on a variety of points including the visual
support which highly contributes to a better understanding.

CPLEX swears by its dual simplex implementation. Fair enough, it’s hard to argue with
the measuring stick of the industry, it therefore seems only natural to work on an improved
dual simplex extension. The broad field of convex optimization might also benefit from
the properties derived in VSD. The incorporation of dual variables stabilization is another
strategy worth considering in this framework. On this subject, Cancel-and-Tighten also
features a nondecreasing property of the dual variables which does not seem to have been
mentioned anywhere.

All of this remains true the field of linear programming but integer programming extensions
are also in the works. In this respect, a great deal of work has been done on the Integral
Simplex Using Decomposition (ISUD). Applied on set partitioning problems, the pricing
problem is further manipulated to extract improving directions that also maintain integrality
of the solution. Many promising results, such as those of Zaghrouti et al. (2014) and Rosat
et al. (2014), have been published in the recent years. The underlying goal is to integrate
this knowledge in column generation applications.

Furthermore, ISUD is a very practical algorithm for which the problem’s structure seems
to be of considerable importance. Indeed, alike branch-and-bound methods, it too features
exponential time complexity. How well ISUD extends outside the scope of set partitioning
problems is unclear. Then again, it is the noteworthy to observe that the standard 2-
commodity flow problem features a linear relaxation that sports fractional values similar to
those of the set partitioning problem. Moreover, all linear programs can be reduced to a
2-commodity flow problem, although only a transformation in polynomial time due to Itai
(1978) is available today.
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ABSTRACT

This paper focuses on the resolution of the capacitated minimum cost flow problem on
a network comprising n nodes and m arcs. We present a method that counts impervi-
ousness to degeneracy among its strengths, namely the minimum mean cycle-canceling
algorithm (MMCC). At each iteration, primal feasibility is maintained and the objective
function strictly improves. The goal is to write a uniform and hopefully more accessible paper
which centralizes the ideas presented in the seminal work of Goldberg and Tarjan (1989) as
well as the additional paper of Radzik and Goldberg (1994) where the complexity analysis is
refined. Important properties are proven using linear programming rather than constructive
arguments.

We also retrieve Cancel-and-Tighten from the former paper, where each so-called phase
which can be seen as a group of iterations requires O(m log n) time. MMCC turns out to
be a strongly polynomial algorithm which runs in O(mn) phases, hence in O(m2n log n)

time. This new complexity result is obtained with a combined analysis of the results in both
papers along with original contributions which allows us to enlist Cancel-and-Tighten as an
acceleration strategy.

Keywords: Network flow problem, residual network, flow decomposition, minimum mean
cycle, complexity analysis, strongly polynomial algorithm.



2. About the minimum mean cycle-canceling algorithm

2.1 Introduction

This paper addresses the resolution of the capacitated minimum cost flow problem (CMCF)
on a network defined by n nodes and m arcs. We present the minimum mean cycle-canceling
algorithm (MMCC). The seminal work of Goldberg and Tarjan (1989), as presented in the
book of Ahuja et al. (1993), as well as the paper of Radzik and Goldberg (1994), where the
complexity analysis is refined, are the underlying foundations of this document. The current
literature states that MMCC is a strongly polynomial algorithm that performs O(m2n)

iterations, a tight bound, and runs in O(m3n2) time.

While Goldberg and Tarjan (1989) present Cancel-and-Tighten as a self-standing algorithm,
we feel it belongs to the realm of acceleration strategies incidentally granting the reduction
of the theoretical complexity. Our understanding is that this strategy can be shared at
any level of the complexity analysis. Indeed, its very construction aims to assimilate the
so-called notion of phase which can be seen as a group of iterations. This strategy exploits
an approximation scheme to manage this assimilation and as such nevertheless necessitates a
careful analysis. We propose a new approximation structure which allows us to reduce the
global runtime to O(m2n log n). It is namely the product of a refined analysis that accounts
for O(mn) phases, each one requiring O(m log n) time.

The reader should view this work as much more than a synthesis. It is the accumulation
of years of research surrounding degeneracy that led us to realize the ties with theories
drafted some forty years ago. We not only hope to clarify the behavior of the minimum
mean cycle-canceling algorithm but also provide strong insights about the ins and outs of
its idiosyncrasies and more importantly establish a solid unified framework against which
we can rest current and future work. On that note, let us underline the linear programming
mindset which simplifies the construction of one of the most important part of the algorithm,
namely the pricing problem. The justification of some of its properties also benefit from
straightforward implications provided by that mindset. Some fundamental properties of
network problems are also incorporated throughout the text which sometimes facilitate if
not, certainly enlighten, the comprehension of the proofs presented by the listed authors.

The paper is organized as follows. The elaboration of MMCC takes place in Section 2.2
where the combination of the so-called residual network along with optimality conditions give
birth to a pricing problem which is put to use in an iterative process. Section 2.3 analyzes its
complexity which is decomposed in two parts: the outer loop and the bottleneck. Although the
latter comes at the very last, it acts as the binding substance of the whole paper. It is indeed
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2. About the minimum mean cycle-canceling algorithm

where the behavior of the algorithm can be seen at a glance alongside the justification for the
significance of the aforementioned phases. This is followed by the conclusion in Section 2.4.

2.2 Minimum mean cycle-canceling algorithm

Consider the formulation of CMCF on a directed graph G = (N,A), where N is the set
of n nodes associated with an assumed balanced set bi, i ∈ N , of supply or demand defined
respectively by a positive or negative value such that

∑
i∈N bi = 0, A is the set of m arcs of

cost c := [cij](i,j)∈A, and x := [xij](i,j)∈A is the vector of bounded flow variables:

z∗ := min
∑

(i,j)∈A

cijxij

s.t.
∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = bi, [πi] ∀i ∈ N (2.1)

0 ≤ `ij ≤ xij ≤ uij, ∀(i, j) ∈ A,

where π := [πi]i∈N is the vector of dual variables, also known as node potentials. When
right-hand side b := [bi]i∈N is the null vector, formulation (2.1) is called a circulation problem.

Let us enter the world of network solutions with a fundamental proposition whose omitted
proof traditionally relies on a constructive argument. It is so rooted in the network design
that, case in point, straightforward derivatives are used throughout this document.

Proposition 1. (Ahuja et al. 1993, Theorem 3.5 and Property 3.6) Any feasible solution x

to (2.1) can be represented as a combination of paths and cycles flows (though not necessarily
uniquely) with the following properties:
(a) Every directed path with positive flow connects a supply node to a demand node; at
most n+m directed paths and cycles have non-zero flow among which at most m cycles.
(b) In the case of a circulation problem, by definition there are no supply nor demand nodes,
which means the representation can be restricted to at most m directed cycles.

This section derives MMCC, devised to solve instances of CMCF, in the following manner.
Section 2.2.1 defines the corner stone of the resolution process, namely the residual network.
Whether its inception goes back to the optimality conditions or its usage came as an
afterthought is an enigma for which we have no answer. Either way, the latter are introduced
thereafter and pave the way for the pricing problem in Section 2.2.2. Section 2.2.3 exhibits
the algorithmic process which is ultimately information sharing between a control loop and a
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pricing problem. The former ensures primal feasibility while the latter provides a strictly
improving direction at each iteration. Section 2.2.4 illustrates the behavior of the algorithm
on the maximum flow problem.

2.2.1 Residual network and optimality conditions

The residual network takes form with respect to a feasible flow x0 := [x0
ij](i,j)∈A and is

denoted G(x0) = (N,A(x0)). As eloquently resumed in Figure 2.1, each arc (i, j) ∈ A is
replaced by two arcs representing upwards and downwards possible flow variations:

• arc (i, j) with cost dij = cij and residual flow 0 ≤ yij ≤ r0
ij := uij − x0

ij;

• arc (j, i) with cost dji = −cij and residual flow 0 ≤ yji ≤ r0
ji := x0

ij − `ij.

xij

yij
yji

dji = −cij
dij = cij

uij`ij
x0
ij

Fig. 2.1: A change of variables

Denote A′ := {(i, j) ∪ (j, i) | (i, j) ∈ A} as the complete possible arc support of any
residual network. The residual network G(x0) consists of only the residual arcs, i.e., those
with strictly positive residual capacities, that is, A(x0) := {(i, j) ∈ A′ | r0

ij > 0}. The
combination of the current solution x0 along with the optimal marginal flow computed on
the residual network is optimal for the original formulation. Indeed, the residual network
with respect to x0 corresponds to the change of variables xij = x0

ij + (yij − yji), ∀(i, j) ∈ A.
Observe that traveling in both directions would be counterproductive and can be simplified
to the net flow in a single direction. This means that the marginal flow must be such
that yij yji = 0, ∀(i, j) ∈ A, which is naturally verified by any practical solution.

Letting z0 = cᵀx0 means that CMCF can be reformulated as:

z∗ := z0 + min
∑

(i,j)∈A(x0)

dijyij (2.2)

s.t.
∑

j:(i,j)∈A(x0)

yij −
∑

j:(j,i)∈A(x0)

yji = 0, [πi] ∀i ∈ N (2.3)

0 ≤ yij ≤ r0
ij, ∀(i, j) ∈ A(x0). (2.4)
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Take a moment to consider an optimal solution of (2.2)–(2.4) on the residual network G(x0).
Mathematically speaking, it corresponds to a circulation problem. The right-hand side in (2.3)
is zero everywhere, we are thus looking for a solution that respects the equilibrium already
present in the current solution x0. Verifying that a directed cycle in G(x0) exists as a cycle
in G is as straightforward as applying the flow conservation principle, that is, we use the
forward direction of arc (i, j) when yij > 0 or the backward direction when yji > 0.

Suppose that x and x0 are any two feasible solutions to formulation (2.1). Therefore
some feasible circulation y in G(x0) satisfies the property that x = x0 + y, and the cost of
solution x is given by cᵀx = cᵀx0 +dᵀy, where d := [dij ](i,j)∈A(x0). Moreover, Proposition 1(b)
means that there exists a way to decompose y in at most m cycles. We can therefore think
of an optimal solution of (2.2)–(2.4) on G(x0) as a collection of intertwined cycles. This is
stated in the following proposition.

Proposition 2. (Ahuja et al. 1993, Theorem 3.7) Let x and x0 be any two feasible solutions
of a network flow problem. Then x equals x0 plus the flow on at most m directed cycles
in G(x0). Furthermore, the cost of x equals cᵀx0 plus the cost of flow on these augmenting
cycles.

Hence, there exists a way to move between any two feasible solutions in at most m cycles!
It is quite a testament to how trivial reaching x∗, granted it is actually known. The fact of
the matter is that the residual network problem (2.2)–(2.4) is not easier to solve than the
original problem (2.1). Nevertheless, there exists at least one sequence of transitions which
constructs a series of residual networks allowing to move from x0 to an optimal solution x∗

in a finite number of iterations.

It is indeed possible to think of the cycles contained in the residual network as transitioning
possibilities. Consider the marginal changes instilled in x0 with respect to some negative (or
improving) cycle and repeat this step until no such cycle remains. As simple as it may sound,
we have stated the generic cycle-canceling algorithm as proposed by Klein (1967), which
ultimately amounts to a line search optimization method. Showing finiteness, at least as far as
today’s computer tractability is concerned (Ford and Fulkerson (1962) show that pathological
instances with irrational data could misbehave indefinitely or even worse converge to a bad
solution), is as trivial as realizing this procedure performs a strict improvement in the objective
function at each iteration until optimality is reached. However, it turns out that the order in
which these cycles are identified has tremendous impact on the performance of this generic
algorithm. Given integer data, denote the greatest absolute cost value by C := max(i,j)∈A |cij|
and the greatest interval range value by U := max(i,j)∈A uij − `ij. Then the number of
iterations of the generic algorithm ranges anywhere from O(m) to O(mCU).
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Optimality conditions. With respect to π, the reduced cost of variable xij, (i, j) ∈ A, is
given by c̄ij := cij−πi+πj . Let the reduced cost d̄ij of variable yij, (i, j) ∈ A(x0), be computed
in the same way, i.e., d̄ij := dij−πi+πj . For a feasible flow x0, we distinguish three equivalent
necessary and sufficient optimality conditions. With respect to linear programming vocabulary,
the first two can be qualified of primal and dual nature on the residual network G(x0) while
the third is that of complementary slackness on network G, see Ahuja et al. (1993, Theorems
9.1, 9.3, and 9.4):

Primal: G(x0) contains no negative cycle.

Dual: ∃π such that d̄ij ≥ 0,∀(i, j) ∈ A(x0).

Complementary slackness: ∃π such that, for every arc (i, j) ∈ A,

x0
ij = `ij if c̄ij > 0; x0

ij = uij if c̄ij < 0; c̄ij = 0 if `ij < x0
ij < uij. (2.5)

We underscore that if feasible flow x0 is actually optimal, all these conditions are verified
simultaneously. Observe that the primal and dual conditions are only verifiable on the
residual network G(x0). The complementary slackness conditions however are verified on G
by the combination of the current primal solution and the information gathered by the dual
vector.

2.2.2 Pricing step: maximizing the minimum reduced cost

The pricing step elaborated in this section is derived from the residual network by capturing
the rationale of the optimality conditions. According to the dual optimality condition, x0

is optimal if and only if there exists a vector π such that dij − πi + πj ≥ 0, ∀(i, j) ∈ A(x0).
This can be verified by maximizing the smallest reduced cost, denoted µ0, and formulated as
the following linear program:

µ0 := max µ (2.6)

s.t. µ+ πi − πj ≤ dij, [yij] ∀(i, j) ∈ A(x0). (2.7)

Observe that π is not fixed but optimized in formulation (2.6)–(2.7). Its dual is expressed
in terms of flow variables [yij](i,j)∈A(x0):

µ0 := min
∑

(i,j)∈A(x0)

dijyij (2.8)
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s.t.
∑

j:(i,j)∈A(x0)

yij −
∑

j:(j,i)∈A(x0)

yji = 0, [πi] ∀i ∈ N (2.9)

∑
(i,j)∈A(x0)

yij = 1, [µ] (2.10)

yij ≥ 0, ∀(i, j) ∈ A(x0), (2.11)

where π is associated with the flow conservation constraints (2.9) while µ is a dual scalar
associated with the convexity constraint (2.10). We already know optimality conditions
provide alternative ways to prove the optimality status of feasible solution x0. It might not be
all that surprising that if pricing problem (2.6)–(2.7) expresses the dual optimality condition
on G(x0), formulation (2.8)–(2.11) echoes the verification of the primal optimality condition
on the residual network. Indeed, the latter is known as the minimum mean cycle problem,
arguably giving all meaning to the algorithm’s name. The following paragraphs contain the
explanation and a word of justification that allows it to stand on its own.

The convexity constraint (2.10) produces a scaling in the y-variables which is echoed in
the objective function. As a matter of fact, problem (2.8)–(2.11) no longer belongs to the
family of network problems. Nevertheless, that scaling does not compromise the existence of
a cycle in G(x0), but it does create a distortion of the cost associated with said cycle. The
meaning of this distortion resides in the fact that (2.8)–(2.11) finds a single directed cycle
with the smallest average cost, the average being taken over the number of arcs (or nodes) in
the cycle. Notice the use of the word cycle against formulation (2.8)–(2.11) which we have
explicitly excluded from the network family. The concept is so important, we take the time
to break the flow of the text to carry an explanation.

Define W 0 := {(i, j) ∈ A(x0) | y0
ij > 0} as the set of active variables in an optimal solution

y0 to formulation (2.8)–(2.11). Granted W 0 describes a single cycle, constraint set (2.9)
guarantees that the value is the same for all the variables that are actually present in that
selected cycle. Therefore, we must have y0

ij = 1/|W 0|, ∀(i, j) ∈ W 0. Furthermore, we say W 0

is directed with respect to the orientation of the arcs in G(x0) corresponding to the selected
positive variables in y0. While the notation is abusive, the burden of an additional variable
for values so closely related is not worthwhile. In any single cycle, at most one of y0

ij or
y0
ji may be positive which in turn satisfies the flow condition yijyji = 0. Fortunately, the
expectancy of this particular kind of solution is not a strong restriction as it is synonymous of
an extreme point solution of the linear program (2.8)–(2.11). There is one notable exception
to this one-way rule which can only happen when x0 is optimal. Since the identified cycle
can be discarded for lack of improvement, so can the exception. From now on, a solution to
the pricing step is assumed to honor the design of the minimum mean cycle problem meaning
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that W 0 is a single directed cycle. Furthermore, we can interchangeably speak of cycle W 0

on G(x0) or A(x0). Finally, note that in the dual formulation, one can additionally impose
µ ≤ 0. As a consequence, the associated convexity constraint in (2.8)–(2.11) becomes a less
than or equal inequality and the primal pricing problem is always feasible even if the residual
network is acyclic (in which case µ = 0). Observe that if the obtained cycle has a negative
mean reduced cost, x0 is not optimal for (2.1). The solution of the pricing step can therefore
be seen as a direction. By definition of the residual network, it even qualifies as a strictly
improving direction.

Remark. The justification for the validity of the primal version of the pricing step might
go as follows. We are looking to improve current solution x0 using the concept of negative
cost cycles. More specifically, we are looking for the existence of such a cycle, say W 0

on G(x0). Observe that the residual capacities are not relevant in the cycle identification
process. Then again, omitting these quantities from formulation (2.2)–(2.4), that is, removing
yij ≤ r0

ij, ∀(i, j) ∈ A(x0), creates an unbounded circulation problem. The silver lining comes
from the realization that this new problem is a cone for which the unique extreme point
solution y = 0 reflects status quo. Non linear optimization has an impressive inventory of
choices to search among improving directions. These choices all have their rationalization but
ultimately mean that the cone is cut according to some metric. One of the recognized choice
is the convexity constraint imposed on the selection. Indeed, for any non-zero solution in the
cone, there exists a scaled one such that 1ᵀy = 1. Historically speaking, the pricing step is
reported as an abstract form of its interpretation, that is, minW

∑
(i,j)∈W dij/|W |. Whether

Goldberg and Tarjan (1989) accidentally built the minimum mean cycle-canceling algorithm
according to these principles or it was meticulously devised is unclear, the conclusion is all
the same: the convexity constraint is indeed enlisted in (2.8)–(2.11).

2.2.3 Algorithmic process

MMCC is initialized with a feasible flow x0. At every iteration k ≥ 0, the pricing step solution
yk identifies a minimum mean cost cycle W k := {(i, j) ∈ A(xk) | ykij > 0} taking value µk

in G(xk). Flow units are sent along this cycle according to a control mechanism which relies
solely on the residual capacities rk. A new solution xk+1 is obtained and G(xk+1) is updated
accordingly. This process is repeated until the residual network contains no negative cycle.

Let us take a look at some computations that can be done regarding the transition between
two iterations. The flow of every arc in the negative cost cycle W k can be augmented by the
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smallest residual capacity on the cycle δk := min
(i,j)∈Wk

rkij, hence the new solution becomes

xk+1
ij = xkij + δk|W k|(ykij − ykji),∀(i, j) ∈ A, (2.12)

and the improvement ∆zk of the objective function in (2.1) is given by

∆zk := δk|W k|µk = δk
∑

(i,j)∈Wk

dij < 0. (2.13)

Notice that both δk and ∆zk evaluate to integers if certain conditions are verified. The
former requires the integrality of the bounds as well as the demands/supplies while the latter
depends on the integrality of the costs.

It stands to reason that MMCC is already in the works with Ford and Fulkerson (1956)
providing the concept of augmenting paths between solutions while Edmonds and Karp (1972)
show that a particular selection of augmenting paths would be more efficient on the maximum
flow problem. While we use the latter to present an application of MMCC, the reader is
invited to appreciate the narrative description as a tribute to the aforementioned papers.
The illustrative example also serves to get a feel for the subsequent complexity analysis.

2.2.4 Illustrative example: the maximum flow problem

The maximum flow problem is a particular instance of network optimization in which a
source s and a sink t are connected through a capacitated subnetwork. The goal is to
maximize the outgoing flow of the source under the restriction of the usual flow conservation
constraints. One should realize the null cost structure of all the arcs except xts ≥ 0 for
which cts = −1. Let us apply MMCC and assume lower bounds are null for all arcs, meaning
that x0 = 0 is feasible.

It is worthwhile to notice that the cycle found on the residual network at any iteration k ≥ 0

is constructed in two parts: a path from s to t and the lone variable yts. Let W k be the
negative cycle identified at iteration k, hence µk = −1/|W k|. The pricing step sequentially
favors the smallest paths (in number of arcs) from s to t starting from length 1 to n− 1 until
optimality is reached. The sequence of µk is non-decreasing and takes its values from the finite
set
{−1

2
, −1

3
, −1

4
, . . . , −1

n

}
. When the path length changes from 2 to a longer one, the increase

factor of µ takes a value among range {2
3
, 2

4
, . . . , 2

n
}. Observe that higher values of the increase

factor induce smaller jumps on µ. Therefore, the minimal increase factors
{

2
3
, 3

4
, . . . , n−1

n

}
of

µk, for each length level, are computed using adjacent values of µ, the smallest possible one
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being attained when going from level −1
n−1

to −1
n
and measured by (1− 1/n). Figure 2.2 depicts

the behavior of µk, k ≥ 0, on a network comprising 502 nodes and 10,007 arcs: only four
levels of µ are required within 188 iterations at which point µ = 0 thus proving optimality
and discarding the associated cycle defined by variables y188

st = y188
ts = 1/2. Observe that in

this particular example, the increase factors are 5
6
, 6

7
and 7

8
all of which producing a bigger

increase on µ than would have 501
502

.

0 20 40 60 80 100 120 140 160 180 200

−1/5

−1/6

−1/7
−1/8

0

Iteration k

µ

Fig. 2.2: Smallest reduced cost µ for a maximum flow problem

We draw the reader’s attention on solving the pricing step. We are looking, on the residual
network, for the shortest path (in number of arcs) from s to t. This can be done in O(m)

using a breadth-first-search algorithm. Next, we derive from the previous paragraph that
there are at most n−1 increases of µ, and since every iteration identifies a path through which
at least one arc is saturated with the step size, each increase is attained within m iterations,
hence O(mn) iterations. In total, Goldberg and Tarjan (1989) realize that applying MMCC
to the maximum flow problem exactly corresponds to the strongly polynomial algorithm of
Edmonds and Karp (1972) which runs in O(m2n) time.

2.3 Complexity analysis

The complexity analysis is implicitly decomposed in two parts: the outer loop and the
bottleneck. Obtaining the global runtime is then a matter of factoring out these complexities.
In MMCC, the natural definition of the bottleneck relates to the pricing step and we therefore
study the upper bound on the number of calls made to the latter. For the sake of argument,
one can think of the bottleneck as a group of calls which, in the end, is purely cosmetic. Yet,
an efficacy gain is made if solving for a group can be done more efficiently than would the
sequential operations. That is where lies the significance of the so-called phases.
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Although this paper recruits its inspiration from the very fine presentation of the minimum
mean cycle-canceling algorithm proposed by Goldberg and Tarjan (1989) and described in
Ahuja et al. (1993), the presentation is reorganized to first thoroughly discuss the outer loop
analysis (Sections 2.3.1 to 2.3.4) and then spend time on the bottleneck management (Sec-
tion 2.3.5). We also rapidly divert to phase-wise results in accordance with our understanding
of the Cancel-and-Tighten strategy. The latter is presented in the bottleneck management
section opposite the traditional pricing problem. Ultimately, we consolidate all complexity
results in the summary (Section 2.3.6). The latter also points out different practical aspects
of the algorithm by using computational results.

We start with basic properties of the algorithm which lead to the actual complexity
analysis. The first proposal of Goldberg and Tarjan (1989) is a weakly polynomial behavior
of O(mn log(nC)) iterations for integer arc costs while the second establishes the strongly
polynomial result of O(m2n log n) iterations for arbitrary real-valued arc costs. Radzik and
Goldberg (1994) refine it to O(m2n) iterations and also show this bound to be tight. The
concept of phase is strategically positioned after the first complexity result expressed in terms
of iterations to allow the reader to appreciate the similarity. The bottleneck management
brings the Cancel-and-Tighten strategy into play and reduces the global runtime complexity
to O(m2n log n), our new complexity result for the minimum mean cycle-canceling algorithm.

2.3.1 In embryo

Let us recall a fundamental network flow property before dwelling in the algorithmic analysis.
It examines the relationship with the cost and the reduced cost of a cycle.

Cycle cost. For any vector π of node potentials, the cost and the reduced cost of a directed
cycle W in G(xk), k ≥ 0, are equal. Finding a minimum mean cost cycle W k in G(xk) is
therefore equivalent to finding a minimum mean reduced cost cycle W k in G(xk). Hence, the
optimal value of the objective function in pricing problem (2.8)–(2.11) computes

µk =
∑

(i,j)∈Wk

dijy
k
ij =

∑
(i,j)∈Wk

dij
|W k| =

∑
(i,j)∈Wk

d̄ij
|W k| . (2.14)

The first equality sums over the optimal cycle, the second uses the fact that we know all
strictly positive y-variables are equal to one another, and the last recalls the equivalence
between the cost and the reduced cost of a cycle.
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Optimality parameter µ. The mechanics of the minimum mean cycle-canceling algorithm
do not require the use or computation of reduced costs. Indeed, MMCC relies solely on
the primal optimality condition to achieve optimality. The complexity analysis however
exploits the dual and complementary slackness conditions using the equivalences provided
by (2.14). Ultimately, the idea is to study the convergence towards zero of µk, the current
most negative reduced cost. The synonymy is granted as a side effect of Proposition 3, for
which the proof is given using linear programming tools, and is the reason we interchangeably
use the expression optimality parameter. With respect to πk := [πki ]i∈N at iteration k ≥ 0,
let c̄kij := cij − πki + πkj , (i, j) ∈ A, be the reduced cost of variable xij. In the same way,
d̄kij := dij − πki + πkj is the reduced cost of variable yij, (i, j) ∈ A(xk). Observe that the
superscript is understood to mean the computation is done with the corresponding vector πk

of node potentials.

Proposition 3. (Goldberg and Tarjan 1989, Theorem 3.3) Given a non-optimal solution xk,

k ≥ 0, there exists some vector πk such that the optimality parameter is equal to the most
negative reduced cost, i.e., µk = min

(i,j)∈A(xk)
d̄kij. Moreover all arcs of the identified cycle W k

share that same value, i.e., d̄kij = µk,∀(i, j) ∈ W k.

Proof. At iteration k, constraint set (2.7) can be written as µ ≤ dij − πi + πj,∀(i, j) ∈ A(xk).
At optimality, µk ≤ d̄kij,∀(i, j) ∈ A(xk) and the objective function (2.6) pushes µk to the
smallest reduced cost. Furthermore, the complementary slackness conditions guarantee that
the equality holds in (2.7) for all ykij > 0, that is, µk = d̄kij,∀(i, j) ∈ W k.

ε-optimality conditions. The complexity analysis is born out of a chain of arguments that
is bound by a series of equivalences. Many strongly polynomial algorithms for CMCF use the
concept of ε-optimality obtained by relaxing the complementary slackness constraints, see
for example, Bertsekas (1979), Röck (1980), Tardos (1985), Fujishige (1986), Goldberg and
Tarjan (1989), Radzik and Goldberg (1994). Ultimately, it turns out that parameters ε and
µ are linked by an equality expression, that is, ε = −µ. We argue that it all comes together
with the linear programming formulation of the pricing problem’s dual. This line of thoughts
allows us to discard the ε-parameter and is indeed the reason we cannot say with certainty
it was understood as such. In the spirit of the coined expression, a µ-optimal solution xk

can be understood in the same way as its ε-counterpart, that is, relaxed complementary
slackness conditions which provide approximate optimality, see Ahuja et al. (1993, relations

25



2. About the minimum mean cycle-canceling algorithm

(10.1)–(10.2)). Feel free to compare (2.5) with the following relaxed conditions:

xkij = `ij if c̄ij > −µ; xkij = uij if c̄ij < µ; `ij ≤ xkij ≤ uij if µ ≤ c̄ij ≤ −µ. (2.15)

It should come as no surprise that solution xk is µk-optimal. The reader may want to
verify that the equivalent condition on the residual network G(xk) questions whether there
exists π such that d̄ij ≥ µ, ∀(i, j) ∈ A(xk).

The following propositions stand outside the scope of complexity theorems for several
reasons. The first is that they are very strong results for MMCC. The second is that their
validity is independent of any assumptions regarding problem data. The third is that we
ascertain the comprehension of the transitive mechanics between two solutions.

Proposition 4. (Goldberg and Tarjan 1989, Lemma 3.5) For any two consecutive iterations k
and k + 1, the value of µ is non-decreasing, that is, µk ≤ µk+1, k ≥ 0.

Proof. The proof consists of examining the effect of canceling cycle W k in light of the new
solution xk+1 and more specifically the marginal modifications incurred in G(xk+1). There are
only four possibilities as displayed in Figure 2.3. First off, either the residual network G(xk)

contains arcs in both directions or only one between nodes i and j. Secondly, either the flow
that passes on an arc of cycle W k saturates it (arcs in bold) or not.

G(xk) G(xk+1)

i j

i j

i j

i j

a) Remove

b) Nothing

c) Add/Remove

d) Add

i j

i j

i j

i j

Fig. 2.3: Aftermath of cycle-canceling in the residual network
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By Proposition 3, vector πk ensures that d̄kij ≥ µk inG(xk) such that d̄kij = µk, ∀(i, j) ∈ W k.
In G(xk+1), the saturated arcs in cycle W k are removed and new arcs appear in the reverse
direction with a reduced cost equal to −µk > 0. Therefore, by construction, every arc
of G(xk+1) has a reduced cost d̄kij ≥ µk computed with respect to πk. Since the mean cost of
a cycle is at least as great as the minimum cost of any of its terms, µk+1 ≥ µk.

We take the time to stress the fact that MMCC is an iterative algorithm. Even though
the previous proposition is true of any two consecutive iterations, the proof still uses a point
of reference. The following proofs base their arguments on a sequence of iterations and it is
imperative to take a step back to appreciate the global picture.

Proposition 4 is not sufficient to provide convergence properties. It is indeed mandatory
for µ to strictly increase sporadically towards zero. Define a jump on the optimality parameter
as the situation where there exists some factor 0 ≤ τ < 1 such that µk+1 ≥ τµk > µk, for k ≥ 0.
Recall Figure 2.2 which exhibits this behavior for the maximum flow problem.

Proposition 5. (Goldberg and Tarjan 1989, Lemma 3.6) Given a non-optimal solution xk,
k ≥ 0, a sequence of no more than m iterations allows µ to jump by a factor of at least (1− 1/n).

Proof. Recall that the cost and the reduced cost of a cycle take the same value. Hence, the
reduced costs can be computed with any set of potentials. In order to show the statement,
we use vector π0 found at iteration 0, hence d̄ 0

ij ≥ µ0, ∀(i, j) ∈ A(x0). At iteration k ≥ 1, we
distinguish two types of cycles according to the following definitions. A cycle W k of Type 1
contains only arcs of strictly negative reduced costs, i.e., d̄ 0

ij < 0, ∀(i, j) ∈ W k, while a cycle of
Type 2 contains at least one arc with a non-negative reduced cost, i.e., ∃(i, j) ∈ W k | d̄ 0

ij ≥ 0.

We prove that within m iterations, the algorithm finds a Type 2 cycle otherwise the
optimal solution to (2.1) has been reached. The same reasoning used in Proposition 4 allows
us to realize two things regarding Type 1 cycles. First, there is at least one saturated arc of
strictly negative reduced cost that is removed in the next residual network. Second, reversed
arcs added all have strictly positive reduced costs with respect to π0. Since there are no more
than m arcs with strictly negative costs, optimality is reached after at most m consecutive
Type 1 cancellations.

For l ≤ m, assume a Type 2 cycle W l is found, then at least one of its arcs has a non-
negative reduced cost. The worst case scenario in terms of mean reduced cost is to pass

through |W l| − 1 ≤ n − 1 arcs of cost µ0 and one of zero. As such, µl ≥ (|W l| − 1) µ0

|W l| ≥
(n− 1) µ0

n
=

(
1− 1

n

)
µ0.
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Proposition 6. Given a non-optimal solution xk, k ≥ 0, a sequence of no more than mn
iterations allows µ to jump by a factor of at least 1/2.

Proof. Basic calculus shows that (1− 1/n)n < 1/2, ∀n ≥ 2 as it converges to 1/e. This means
that every mn iterations, the value of µ increases by a factor of at least 1/2.

2.3.2 Integer costs: O(n log(nC)) phases

This section contains the first installment regarding the actual complexity of MMCC. The
only assumption is that all cost data are integers. Recall that C := max

(i,j)∈A
|cij|.

Theorem 1. (Goldberg and Tarjan 1989, Theorem 3.7) Given a capacitated network with
integer arc costs, MMCC performs O(mn log(nC)) iterations.

Proof. Let us consider the values of µ obtained for each iteration as a sequence. This sequence
may be bounded below because no mean cycle can cost less than −C. It is also bounded above
by the highest strictly negative reduced cost cycle computed as (−1)+(n−1)0

n
= −1/n. In light

of Proposition 6, it is possible to construct a geometric progression of reason at least 1/2 with
some elements of the sequence {µk}. As it stands, solving for the power of −C

(
1
2

)κ
= −1/n,

the geometric system that prevails every mn iterations, one obtains κ = log(nC). Therefore,
the image of the objective function can always be traversed in O(mn log(nC)) iterations.

Markers. Let us revisit Proposition 5 in order to extract what, in retrospect, seems like a
key property. Indeed, Goldberg and Tarjan (1989) use a Type 2 cancellation as a marker for
the jump factor on the optimality parameter µ. We stress that while it is an elegant (read
sufficient) condition, it is certainly not necessary. Type 1 cancellations can indeed run into
jumps however we still do not know how to measure them. Type 2 cancellations are thus
markers for measurable jumps. It is probably what prompts Radzik and Goldberg (1994) to
define a phase with a definition that is much closer to the spirit of Proposition 5.

Definition 1. A phase is a sequence of iterations terminated by a Type 2 cycle. A phase
solution xh, h ≥ 0, is understood as the solution at the beginning of phase h.

We stress that while the two phase numbers h and h+ 1 are consecutive, by Proposition 5,
the number of cycles canceled within phase h is at most m. Let l ≤ m be that length. For
the remainder of this article, the notations k and h are respectively reserved for iteration
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2. About the minimum mean cycle-canceling algorithm

and phase based operations. The notation l is used to refer to the last cycle identified in the
phase, that is, the Type 2 cycle.

Proposition 7. Given a non-optimal phase solution xh, h ≥ 0, the optimality parameter
obtained on the following phase solution strictly increases by a factor of least (1− 1/n) and
increases by a factor of at least 1/2 every n phases.

Proof. The proof is immediate from the definition of a phase. Indeed, a Type 2 cycle implies
a measurable jump on µ and means that the relation of the optimality parameter between two
consecutive phases is µh+1 ≥ (1− 1/n)µh > µh. Moreover, µh+n ≥ (1− 1/n)n µh > 1

2
µh.

Assuming a mechanism that allows the resolution to terminate a phase under the same
conditions, we can make abstraction of the Type 1 iterations and express the outer loop
in terms of phases instead of iterations. For instance, the weakly polynomial complexity
of O(mn log(nC)) iterations obtained in Theorem 1 can be rewritten as O(n log(nC)) phases.
While one might argue that this change is purely cosmetic, Section 2.3.5 holds the key to
the justification. In a nutshell, the implementation choice dictates the actual complexity
depending on whether a phase is solved in an integrated manner or not.

Although the following idea is already present in the proof of Proposition 5, we feel it
warrants a repetition. The same node potentials πh can be used throughout the whole phase.
As such, in the adaptation to a phase-wise analysis, the reduced costs of each arc is also
unchanged during the phase. Consider a sequence of iterations consisting of consecutive Type 1
cycles starting from phase solution xh. Solving the pricing step at every iteration implicitly
associates the minimum mean cycle found with a tight vector of node potentials along with
the optimality parameter in accordance with the primal-dual formulations. However, by
definition the very first vector of node potentials, πh, validates the Type 1 condition of the
cancellations throughout the series of residual networks traversed. In other words, while πh

might not be the tightest vector of node potentials for every residual networks associated
with this sequence, it is sufficient to allow the identification of these cycles. Let it be clear
that the existence of this sustainable vector πh, valid until a new vector πh+1 is required, is
irrelevant to the solving process of MMCC. What is important to retain is that the node
potentials can have a lasting effect of at most m iterations, the maximal length of a phase
during the resolution process.
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2.3.3 Arbitrary costs: O(mn log n) phases

So far, we have shown that MMCC runs in weakly polynomial time from two different per-
spectives: the strictly decreasing objective function and the sequence of strictly increasing µh

which can, in some way, be interpreted as a subsequence of {µk}. In order to speak of strongly
polynomial time, a new angle is required. That angle is named arc fixing. The idea is to
tag an arc as being fixed at one of its bounds. In line with the complementary slackness
optimality conditions (2.5), this tagging occurs when the reduced cost associated with an arc
is sufficiently far from zero, that is, positively large enough for fixing a variable at its lower
bound or negatively small enough for fixing it at its upper bound.

The following proposition states the arc fixing rule. The argument is based on the logical
implication of the complementary slackness conditions (2.5) to create a correspondence
between the current value of the optimality parameter µk and the flow value of certain arcs.

Proposition 8. (Goldberg and Tarjan 1989, Theorem 3.8) Let k ≥ 0 denote a non-optimal
iteration number. Arc fixing occurs for arc (i, j) ∈ A if and when |c̄kij| ≥ −2nµk. Expressed
in terms of G(xk), we have: arc (i, j) ∈ A(xk) is fixed at zero if and when d̄kij ≥ −2nµk.

Proof. The proof establishes a contradiction with the previous properties when a fixed arc
is used. Assume, without loss of generality, that arc (i, j) ∈ A has reached c̄kij ≥ −2nµk at
iteration k. According to Proposition 3, A(xk) must contain arc (i, j) and not (j, i) because
its reduced cost would be less than µk, which means that xkij = `ij and d̄kij = c̄kij ≥ −2nµk.

Assume xs, s > k, values xsij > 0. By Proposition 2, xs equals xk plus the flow on at
most m directed cycles in G(xk), and vice versa. Hence, there exists a cycle in G(xk), sayW+,
using arc (i, j). The mean reduced cost of this cycle, denoted µ(W+), could even be valued
by

µ(W+) ≥ −2nµk + (|W+| − 1) µk

|W+| ≥ −2nµk + (n− 1) µk

|W+| =
−(n+ 1)

|W+| µk.

The existence of cycleW+ inG(xk) means that the reverse cycle denotedW− exists inG(xs)

with a mean reduced cost of µ(W−) = −µ(W+) ≤ n+1
|W+|µ

k < µk, which is a contradiction
with Proposition 4 on the fact that the optimality parameter µ is non-decreasing.

The correspondence between the original and the residual arcs is subtle. Arc (i, j) ∈ A
is fixed at `ij because d̄kij ≥ −2nµk such that arc (i, j) ∈ A(xs), s > k is fixed at zero. The
proof for arc (i, j) ∈ A being fixed at its upper bound uij when c̄kij ≤ 2nµk or equivalently for
arc (j, i) ∈ A(xk) being fixed at 0 when d̄kji ≥ −2nµk is similar.
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This proof assumes the non-decreasing property of the optimality parameter over the itera-
tions which is lost when using the Cancel-and-Tighten strategy. A careful yet straightforward
adaptation can be made using the following proposition.

Proposition 9. Let h ≥ 0 denote a non-optimal phase number. Arc fixing occurs for
arc (i, j) ∈ A if and when |c̄hij| ≥ −2nµh. Expressed in terms of G(xh), we have: arc (i, j) ∈
A(xh) is fixed at zero if and when d̄hij ≥ −2nµh.

This proposition holds exactly the same value for the complexity analysis because the
second installment of the theoretical complexity only uses phases to capture the concept of
arc fixing. Let us define a block accordingly.

Definition 2. A block is a sequence of phases terminated by the fixing of at least one arc. A
block solution is understood as the solution at the beginning of a block.

Theorem 2. (Goldberg and Tarjan 1989, Theorem 3.9) Given a capacitated network with
arbitrary real-valued arc costs, MMCC performs O(mn log n) phases.

Proof. This proof relies on the concept of arc fixing. The idea is to show that at least one new
arc is fixed within a limited number of phases. We show this bound to be n(dlog ne+ 1) ≡
O(n log n) phases. As such, consider this particular sequence of phases as a block.

For phase number h, let x◦ = xh and x• = xh+n(dlogne+1) be respectively the solutions
prior to the first and after the last iteration of any given block. By Proposition 7, we know µ

increases by a factor of at least 1/2 every n phases, so the increase in a block is

µ• = µ◦+n(dlogne+1) ≥ 1

2dlogne+1
µ◦ ≥ 1

2n
µ◦.

Found on G(x◦), consider cycle W ◦ with mean reduced cost µ◦, a value independent of
the potentials used. Therefore, with respect to π•, the arc reduced costs in W ◦ cannot all be
greater than µ◦. Hence, there exists a variable, say yji, (j, i) ∈ W ◦, with a reduced cost d̄•ji at
most equal to µ◦, that is, d̄•ji ≤ µ◦ ≤ 2nµ•. On G(x•), variable yij appears with a reduced
cost of d̄•ij = −d̄•ji ≥ −2nµ•. By Proposition 8, the value of variable yij does not change
anymore and the corresponding variable xij is fixed at its lower bound. Moreover, as part of
the optimal cycle W ◦, the algorithm modifies the value of xij in the very first iteration of
the block. In retrospective, arc (j, i) ∈ G(x◦) must have saturated the residual capacity and
it is quite interesting to note that the confirmation of the flow value comes later than the
time at which it is established. The proof for arc fixing at upper bound is a straightforward
adaptation.
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Let it be clear that x• is a block solution in that it becomes x◦ in the following block. All
in all, each block fixes a different arc. Since there are m arcs, the proposed complexity is
achieved.

2.3.4 Arbitrary costs: O(mn) phases

The final piece of the complexity puzzle comes much later than the seminal paper of Goldberg
and Tarjan (1989) which elaborates all the propositions we have seen thus far. Although
they utilize properties of the complementary slackness conditions (2.5) at every iteration,
Radzik and Goldberg (1994) make use of the properties of an optimal primal-dual pair in
their complexity analysis, establishing the best possible strongly polynomial result for the
minimum mean cycle-canceling algorithm.

Radzik and Goldberg (1994) obviously have such a good understanding of MMCC that it
really allows them to think outside the box. While an optimal vector of node potentials π∗ is
unknown, we can use the fact that it does exist. Denote the reduced costs computed using
such a set of optimal potentials by c̄∗ij := cij − π∗i + π∗j , ∀(i, j) ∈ A.

Proposition 10. (Radzik and Goldberg 1994, Lemma 9) Let k ≥ 0 denote a non-optimal
iteration number. Implicit arc fixing occurs for arc (i, j) ∈ A if and when |c̄∗ij| > −nµk.
Expressed in terms of G(xk), we have: arc (i, j) ∈ A(xk) is implicitly fixed at zero if and
when d̄∗ij > −nµk.

Proof. If c̄∗ij > −nµk > 0, then x∗ij = `ij by the complementary slackness optimality condi-
tions (2.5). Now assume arc (i, j) ∈ A has reached c̄∗ij > −nµk at iteration k but xkij > `ij.
By Proposition 2, x∗ equals xk plus the flow on at most m directed cycles in G(xk), and
vice versa. Hence there exists a cycle W+ in G(xk) using variable yji to push the flow back
towards `ij. The reverse cycle W− exists in G(x∗) using arc (i, j) with d̄∗ij = c̄∗ij > −nµk.
Because optimal arc reduced costs on G(x∗) are greater than or equal to zero, µ(W−) > −nµk

|W−| .

Therefore µ(W+) = −µ(W−) < nµk

|W−| < µk, a contradiction on the optimality of µk at
iteration k. The proof for an arc (i, j) ∈ A being implicitly fixed at its upper bound uij

when c̄∗ij < nµk is similar.

Once again, the following analysis still revolves around phases. Using the Cancel-and-
Tighten strategy modifies the statement of the previous proposition without compromising
its value. The comparison must be done against the optimality parameter computed at each
phase h.
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Proposition 11. Let h ≥ 0 denote a non-optimal phase number. Implicit arc fixing occurs
for arc (i, j) ∈ A if and when |c̄∗ij| > −nµh. Expressed in terms of G(xh), we have: arc (i, j) ∈
A(xh) is implicitly fixed at zero if and when d̄∗ij > −nµh.

The third and last installment of the complexity analysis is at hand. The avid reader might
even recall the introductory complexity proposition. With a statement so closely matching
that of Theorem 2, the expectation of an analogous proof is annihilated from the start. While
the previous proof bounds the length of each block against a uniquely defined value, the
following propositions show that the more subtle kind of implicit arc fixing of Propositions 10
and 11 happens in a unpredictable manner. Nevertheless, Radzik and Goldberg (1994) are
able to prove by a global analysis that the whole implicit arc fixing process is itself bounded.
The first step towards this result is to bind the number of phases to the number of arcs
contained in the cycles identified within these phases. The latter in turn grants a tighter
measurable jump factor for the optimality parameter according to the following observation.

Tighter jump factor. Given a non-optimal phase solution xh, h ≥ 0, the impact of the
jump factor for a phase of length l ≤ m can be tightened by the size of the Type 2 cycle W l.
This is evaluated by

µh+1 ≥
(

1− 1

|W l|

)
µh ≥

(
1− 1

n

)
µh. (2.16)

The proof of Proposition 5 can be trivially modified to accommodate this observation by
using, for the Type 2 cycle, |W l|−1 instead of n−1. Yet, this new tighter jump factor strongly
endorses the empirical behavior of cycle sizes much smaller than n. The parameter, L(xh),
used to bind these values together emerges from the following construction.

Let e ∈ A denote an arc of network G with optimal reduced cost c̄∗e. For the purpose
of the complexity analysis, the arcs are sorted in decreasing order of their absolute optimal
reduced cost values, that is, 0 ≤ |c̄∗m| ≤ . . . ≤ |c̄∗2| ≤ |c̄∗1|. While the notation is introduced
hereafter, the rightmost part of Figure 2.4 visually explains the sort.

0 |c̄∗1||c̄∗2||c̄∗3|. . .|c̄∗m(x)||c̄∗m(x)+1|. . .|c̄∗p|

Fig. 2.4: Optimal absolute arc reduced costs on the axis

For a given solution x, let m(x) := min {e ∈ A : |c̄∗e| ≤ −nµ(x)} be the smallest index
for which arcs e ≥ m(x) have not yet been implicitly fixed and Sm(x) :=

∑m
e=m(x) |c̄∗e| be the

sum of their absolute reduced costs.
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As optimality parameter µ increases towards zero, |c̄∗1| > −nµ and arc e = 1 is the first
arc implicitly fixed. Next implicit fixing occurs for arc e = 2, and so forth for the remaining
arcs. Arc variable xe with an index value e < m(x) cannot be part of an improving cycle
for a non-optimal solution x because, by Proposition 10, its value does not change anymore.
Therefore, index m(x) increases towards m whereas largest absolute reduced cost |c̄∗m(x)| and
sum Sm(x) decrease towards zero. When Sm(x) = 0, every variable with an optimal reduced
cost different from zero has been implicitly fixed while any free variable lies within its interval
domain with a zero-value optimal reduced cost, hence satisfying the necessary and sufficient
complementary slackness optimality conditions (2.5). As such, let p ≤ m denote the largest
arc index for which the optimal absolute reduced cost is strictly positive. The latter is the
last arc variable which can answer to the implicit arc fixing rule. Observe that this means
that Sm(x) :=

∑m
e=m(x) |c̄∗e| =

∑p
e=m(x) |c̄∗e|.

The complexity analysis is based on ratio value Sm(x)

|LBµ| computing, for the unfixed variables,
the sum of their absolute reduced cost values over |LBµ|, where LBµ is a lower bound on µ(x).
Given a non-optimal phase solution xh, h ≥ 0, a lower bound on the optimality parameter
is LBµ = −|c̄∗

m(xh)
|. The next proposition determines how many phases are required to

increase this lower bound by a factor greater than 1/2. The same question is then answered
for 1/n in the following proposition. In both cases, the number of phases required to reach
their respective jumps is established as a function of ratio value

S
m(xh)

|c̄∗
m(xh)

| .

Proposition 12. (Radzik and Goldberg 1994, Lemma 12) Let h ≥ 0 denote a non-optimal

phase number. A sequence of no more than L(xh) := min

{⌊
2S
m(xh)

|c̄∗
m(xh)

|

⌋
, n

}
phases allows µ to

jump by a factor over 1/2.

Proof. For non-optimal phase solution xh, we have µ(xh) ≥ −|c̄∗
m(xh)

|. Suppose some Type 2

cycle W l at the end of phase l ≤ L(xh) has cardinality |W l| > 2S
m(xh)

|c̄∗
m(xh)

| . Then,

µL(xh) ≥ µl ≥ −Sm(xh)

|W l| >
−Sm(xh)

2S
m(xh)

|c̄∗
m(xh)

|

=
−|c̄∗

m(xh)
|

2
.

Otherwise, all phase cycles in these L(xh) phases have cardinalities at most L(xh) arcs.
Therefore, by (2.16),

µL(xh) ≥ µ(xh)

(
1− 1

L(xh)

)L(xh)

≥ −|c̄∗m(xh)|
(

1− 1

L(xh)

)L(xh)

>
−|c̄∗

m(xh)
|

2
.
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Proposition 13. (Radzik and Goldberg 1994, Lemma 13) Let h ≥ 0 denote a non-optimal

phase number. A sequence of no more than O
(
nS

m(xh)

|c̄∗
m(xh)

|

)
phases allows µ to jump by a factor

over 1/n.

Proof. For non-optimal phase solution xh, we have µ(xh) ≥ −|c̄∗
m(xh)

|. As long as vari-

able xm(xh) is not fixed, Sm(xh) remains the same. By Proposition 12, we have µ >
−|c̄∗

m(xh)
|

2
af-

ter
⌊

2S
m(xh)

|c̄∗
m(xh)

|

⌋
phases, µ >

−|c̄∗
m(xh)

|

4
after

⌊
2S
m(xh)

|c̄∗
m(xh)

|/2

⌋
new phases, µ >

−|c̄∗
m(xh)

|

8
after

⌊
2S
m(xh)

|c̄∗
m(xh)

|/4

⌋
additional phases, and so on for the following steps increasing each time the lower bound by
a factor greater than one half. The number of steps t such that 2t ≥ n is t = dlog ne, so that
the total number of phases during these t steps is given by

dlogne−1∑
t=0

⌊
2Sm(xh)

|c̄∗
m(xh)

|/2t

⌋
≤ dlog ne+

dlogne−1∑
t=0

2Sm(xh)

|c̄∗
m(xh)

|/2t ≤ dlog ne+
2Sm(xh)

|c̄∗
m(xh)

|

dlogne−1∑
t=0

2t

= dlog ne+
2Sm(xh)

|c̄∗
m(xh)

|
(

2dlogne − 1
)
≤ dlog ne+

2Sm(xh)

|c̄∗
m(xh)

| (2n− 1).

(2.17)

Hence, the number of phases needed to increase µ(xh) by a factor of over 1/n is O
(
nS

m(xh)

|c̄∗
m(xh)

|

)
.

The following theorem brings all these elements together. The idea is that it does
not require the same amount of phases for each variable to be implicitly fixed. For some
variables, the jump provided by Proposition 12 is sufficient while others must wait for that of
Proposition 13.

Theorem 3. (Radzik and Goldberg 1994, Theorem 1) Given a capacitated network with
arbitrary real-valued arc costs, MMCC performs O(mn) phases.

Proof. Starting with x1 followed by x2, . . . , xp, these variables are (implicitly) fixed one by
one as µ increases. The fixing of xe, 1 ≤ e ≤ p, the yet unfixed variable with the largest
absolute reduced cost value, to its lower or upper bound is done with Proposition 11. Observe
that until xe+1 is fixed, Se = |c̄∗p|+ · · ·+ |c̄∗e+2|+ |c̄∗e+1|+ |c̄∗e| does not change.

The fixing of xe is fast if |c̄
∗
e−1|
2
≤ |c̄∗e| ≤ |c̄∗e−1|, that is, the successive absolute reduced cost

values are relatively close to each other. Otherwise, the fixing of xe is slow.

By Proposition 12, for every variable xe for which the fixing is fast, the number of phases
to do so is at most n. Thus, the total number of phases of fast fixing for at most p ≤ m

variables is O(pn) ≡ O(mn).
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Regarding the slow fixing process of a variable xe+1, we have |c̄∗e+1| < |c̄∗e |
2
, hence |c̄

∗
e+1|
|c̄∗e |

< 1
2
.

If the fixing process of xe+2 is also slow, we have |c̄
∗
e+2|
|c̄∗e+1|

< 1
2
, hence |c̄

∗
e+2|
|c̄∗e |

=
|c̄∗e+2|
|c̄∗e+1|

× |c̄
∗
e+1|
|c̄∗e |

< 1
22
.

In the worst case, the fixing process is slow for at most p variables. By Proposition 13, the
number of phases is bounded above by

p∑
e=1

O

(
nSe
|c̄∗e|

)
= O

(
n

p∑
e=1

Se
|c̄∗e|

)
= O

(
n

p∑
e=1

|c̄∗e|+ |c̄∗e+1|+ |c̄∗e+2|+ . . .+ |c̄∗p|
|c̄∗e|

)

= O

(
n

p∑
e=1

(
1 +
|c̄∗e+1|
|c̄∗e|

+
|c̄∗e+2|
|c̄∗e|

+ . . .+
|c̄∗p|
|c̄∗e|

))

< O

(
n

p∑
e=1

(
1 +

1

2
+

1

22
+ . . .+

1

2p−e

))

< O

(
n

p∑
e=1

(1 + 1)

)
= O(pn) ≡ O(mn).

(2.18)

Whether it is fast or slow, the total implicit fixing process takes O(mn) phases.

Remark. The beauty of the slow analysis is that while the current candidate variable, xe,
may take longer to fix, it also implies that the optimal reduced cost distribution of the
remaining non-fixed variables is skewed towards zero exponentially faster than the current
candidate’s optimal reduced cost. In other words, the higher number of phases required to
implicitly fix xe is eventually amortized by the much faster implicit fixing of the remaining
xe+1, . . . , xp variables.

Radzik and Goldberg (1994) also show this bound is tight by using certain minimum cost
flow examples that behave as bad as the worst case complexity would have it. This means
that the absolute reduced cost spread is such that arcs are implicitly fixed precisely at the
bounds computed previously.

2.3.5 Bottleneck management

Although we have presented the complexity analysis in terms of phases, each of these can
be seen as a group of iterations. As such, this section is separated in two parts. The first
is reserved to the actual resolution of the pricing step while the second considers the phase
as a whole, that is, using the Cancel-and-Tighten strategy. Several plots are presented to
help grasp some of the ideas as well as appreciate the empirical behavior on a relatively large
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2. About the minimum mean cycle-canceling algorithm

capacitated network flow problem comprising 1,025 nodes and 91,220 arcs. We refer to the
latter as Instance 1.

Iteration base

Solving the pricing step at every iteration corresponds to the traditional form of MMCC.
Figure 2.5 depicts the behavior of µk, k ≥ 0, on Instance 1: 1,937 iterations are performed to
reach optimality at µ = 0. As expected, values of µ are non-decreasing satisfying Proposition 4.
In Figure 2.6, we see that the optimal cycle size |W | however exhibits no pattern, a behavior
quite different from the one observed for the maximum flow problem in Figure 2.2.
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Fig. 2.5: Optimality parameter µ for Instance 1 [iteration base]

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
0

50

100

Iteration k

|W
|

Fig. 2.6: Cycle size |W | for Instance 1 [iteration base]

For the purpose of the complexity analysis, the dynamic programming approach devised
by Karp (1978) runs in O(mn) time. The proof of complexity is actually more simple than its
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design. While it is true that the first layer of the algorithm is based on dynamic programming,
finding the optimal solution µ requires an additional layer of computations which break an
important feature of the strategy matrix, that is, the knowledge of optimal strategies for each
action state. If that is not enough, extracting the associated optimal cycle requires additional
computations.

We also state without proof that it is a best-case complexity making the resolution of the
pricing step systematically expensive. From a practical point of view, a word of caution is
therefore in order. In fact, this problem is at the heart of many industrial challenges, see
Dasdan et al. (1999), Dasdan (2004), or Georgiadis et al. (2009) for in-depth experimental
analysis of different algorithms. Ahuja et al. (1993, Chapter 5) also review several of
them. While practice shows that the two algorithms of Howard (1960) (as specialized by
Cochet-Terrasson et al. (1998)) and Young et al. (1991) are top performers, their theoretical
complexities are higher than that of Karp’s.

Theorem 4. Goldberg and Tarjan (1989, Theorem 3.10) and Radzik and Goldberg (1994).
MMCC runs in O(m2n2 log n log(nC)) time for integer arc costs and O(m3n2) time for
arbitrary real-valued arc costs.

Proof. The proof is immediate from the runtime complexity O(mn) of each iteration combined
with either Theorem 1 or Theorem 3 depending on the data type. Note that the theorems
must first be translated back to iteration results.

Regardless of the algorithm selected to solve the pricing step, it is still no match to the
better design of Cancel-and-Tighten. In order to support this claim, we argue that the
performance of the iteration based algorithm is vulnerable to the starting solution. We have
launched the resolution process using x0 as the optimal solution of the maximization problem.
The reader is now invited to consider the markings on Figure 2.5. These markings indicate
the starting point of each phase. Both cases traverse roughly the same number of phases,
namely 90 and 87. The second launch actually requires 31,231 iterations to reach optimality
at µ = 0, yet the first 4 phases contain over 90% of the total iterations. Let us move on to a
more integrated approach.

Phase base

We have already underlined the importance of the node potentials πh established at the
beginning of phase h for their ability to determine several Type 1 cycles. To appreciate
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the validity of alternative strategies, we underline that the complexity analysis addresses
only the behavior of the optimality parameter; the actual path of resolution along with
the corresponding primal solutions are irrelevant. There is in fact absolutely no reason for
any two implementations to reach the same phase solution. From this rationale emanates
what is fundamentally important in the complexity analysis: the phases. The importance
of Proposition 4, the non-decreasing optimality parameter µ, is discarded along with the
order of cancellation in favor of the strict increase from one phase to the next. This means
that any strategy falling under the premises of a phase can benefit from the outer loop
complexity analysis. The remainder of this section is dedicated to one such approach, namely
Cancel-and-Tighten (Goldberg and Tarjan 1989, Section 4). Of course, the latter is subtle
by nature as it aims to analyze the complexity of the whole phase using an efficient system
carefully designed to ensure a phase is indeed delivered.

The name of Cancel-and-Tighten is self-explanatory of its two main steps: the cycle
cancellations and the adjustment of node potentials. This strategy shines by the way these
two steps are carried out. Recall that a phase is a group of sequential iterations defined by
consecutive Type 1 cycles and terminated by a Type 2 cycle. The idea of the first step defers
to the first part whereby only cycles of Type 1 are canceled. While the cliffhanger is not
intentional, the repercussion of the Type 2 cycle is handled in the second step which refines
the node potentials using the measurable jump property. Since the Cancel step focuses on
Type 1 cycles, the idea of working on a subgraph that does the same is quite natural. Before
moving to the technical aspects of the steps, let us describe the so-called admissible network.

Admissible network. Given π, the nature of Type 1 cycles is to contain only negative
reduced cost arcs with respect to these node potentials. Let us define the admissible network
with respect to solution x accordingly: G(x,π) := (N,A(x,π)), where A(x,π) := {(i, j) ∈
A(x) | d̄ij < 0}, that is, a residual arc is admissible if its reduced cost is strictly negative.

Cancel step. Let h ≥ 0 denote a non-optimal phase number, xh the solution at the beginning
of the phase, and π some dual vector. By definition of the admissible network G(xh,π),
any and all cycles it contains are of Type 1. This means that by sequentially eliminating
at most m Type 1 cycles, however arbitrary the order, one reaches some solution x which
can be substantially different than the input xh. As the Cancel step progresses, the content
of the admissible network becomes difficult to describe in mathematical terms because the
notation looses track of the current solution. Nevertheless, recall that the reduced cost of
every arc stays the same during the whole phase regardless of the cycles canceled because
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the node potentials are fixed to π throughout the step. In other words, as Type 1 cycles are
canceled, only the residual capacities are modified and the admissible network is updated
accordingly. The update is actually simpler to carry out than in the residual network. Indeed,
by definition of admissibility, an arc and its reverse cannot be admissible simultaneously.
This also means that the admissible network G(x,π) gets sparser because at least one new
arc is saturated each time a Type 1 cycle is canceled.

Regardless of how the Cancel step is performed, one eventually reaches a solution xh+1

such that G(xh+1,π) is acyclic. Of course, we have yet to prove optimality. In fact, we have
yet to actually terminate the phase since the Type 2 cycle is still unconsidered. Let us see
how this last operation is handled in the Tighten step.

Tighten step. Assume optimal values [πh, µh] are known and that the admissible network
G(xh+1,πh) is acyclic. By definition of a phase, we know the would be following iteration,
say l, induces a Type 2 cycle W l in the residual network G(xh+1). By Proposition 3, we also
know that there exists some optimal vector of node potentials πl such that all arcs on this
cycle have the same negative reduced cost evaluated at µl. Observe that W l is a Type 2
cycle with respect to selected π = πh but, by considering a new phase and modifying the
node potentials to πl, this same cycle is a Type 1 cycle in G(xh+1,πl). Let us rephrase this.
The admissible network G(xh+1,π) is defined by the current solution xh+1 and the reduced
costs which are themselves defined by the selected vector π of node potentials. A solution
xh+1 can induce different admissible networks depending on the selection of π. The latter
therefore sits at the top of the chain of command.

The Tighten step can be seen as the last operation that must be completed to start a new
phase. Solving the pricing step effectively fetches the wanted information, that is, the best
µh+1 along with an optimal dual vector πh+1 which can be used for the duration of the next
phase. This can of course be done with the dynamic programming approach of Karp (1978).
Figure 2.7 shows the result of the experiment we have carried on Instance 1. The resolution
process requires 88 phases. Even though the node potentials are updated under one hundred
times, the truth of the matter is that this approach is still too expensive. Nevertheless, the
reader should think of this result as a reference convergence performance for Instance 1.

The alternative is to estimate both the new node potentials and the optimality parameter.
However, in order for Cancel-and-Tighten to benefit from the complexity analysis, one must
have a valid combination of such estimates at the beginning of each phase. Goldberg and
Tarjan (1989) call this the explicit maintenance of a price function [π̂h, µ̂h], h ≥ 0. Recall the
dual version of the pricing problem (2.6)–(2.7). Once the node potentials are fixed, there is
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Fig. 2.7: Optimality parameter µ for Instance 1 [phase base - Optimal]

actually little room for µ̂h. Indeed, µ̂h := min(i,j)∈A(xh) d̂
h
ij, where d̂hij := dij − π̂hi + π̂hj , which

means that µh ≥ µ̂h.

Given that µh+1 would be the optimal solution to the pricing step at the current state
of the algorithm (canceling a Type 2 cycle W l), the goal is simple: establish [π̂h+1, µ̂h+1]

such that µ̂h+1 = µh+1. Of course the latter is only wishful thinking but fortunately we still
have one card up our sleeve. Assume µh+1 is a valid lower bound for µh+1. The new node
potentials π̂h+1 must therefore be such that

µ̂h+1 ≥ µh+1 ≥ (1− 1/n) µ̂h. (2.19)

The right-hand side inequality ensures that µ̂h+1 > µ̂h within the minimalist specifications
of the (1− 1/n) jump property. The importance of the lower bound lies in its ability to
transfer additional information to the node potentials in a constructive manner. As such,
this lower bound not only aims to lift the optimality parameter as much as possible, it must
also sport some intrinsic value with respect to the definition of a measurable jump obtained
at the end of a phase. We provide a new approximation structure influenced by the tighter
jump factor seen in (2.16).

In the spirit of the leading premise of the Tighten step, assume estimates [π̂h, µ̂h] are
readily available. Let us establish what we do know about the next minimum mean cycle.
Since G(xh+1, π̂h) is acyclic, it is possible to associate a level, Lhi , i ∈ N, to each node using
a topological ordering. These levels are recursively defined as

Lhj := max
(i,j)∈A(xh+1,π̂h)

Lhi + 1,
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with Lhi := 0 if node i has no incoming admissible arcs. By construction of the ordering, if an
arc (i, j) ∈ A(xh+1) is still admissible with respect to π̂h then the levels Lhi and Lhj are such
that Lhj > Lhi . All other arcs have Lhj ≤ Lhi .

Proposition 14. The marginal update π̂h+1
i := π̂hi − Lhi

Lh+1
µ̂h, ∀i ∈ N , yields a valid estimation

for µ̂h+1. Three possible values for Lh are

Lh(a) := n− 1, Lh(b) := max
i∈N

Lhi , Lh(c) := max
(i,j)∈A(xh+1)|Lhi >Lhj

Lhi − Lhj .

Proof. Since the levels start at 0, the value Lh can be seen as the length of a path in the
admissible network. Update Lh(a) is the first of two implementations proposed by Goldberg
and Tarjan (1989) and obviously extracts nothing from the level values. Update Lh(b) can be
seen as the length of the longest path in terms of the number of arcs. Update Lh(c) refines this
value by checking in the residual network for the existence of an arc capable of inducing a
cycle on the longest path. In order to show that all options for Lh induce valid lower bounds
for µh+1, it suffice to realize that any arc added to create a cycle on the path referred by Lh

has a non-negative reduced cost. Observe that these arc length values can be ordered as
Lh(a) ≥ Lh(b) ≥ Lh(c).

The proof that the transformation is valid is reminiscent of (2.19) and shows that the
inequality is indeed verified. The modified reduced costs are evaluated by

d̂h+1
ij := dij −

(
π̂hi −

Lhi
Lh + 1

µ̂h
)

+

(
π̂hj −

Lhj
Lh + 1

µ̂h

)
= d̂hij −

Lhj − Lhi
Lh + 1

µ̂h, ∀(i, j) ∈ A(xh+1).

(2.20)

In the case of admissible arcs, we have 1 ≤ Lhj − Lhi ≤ Lh. Therefore,

d̂h+1
ij ≥ µ̂h − Lhj − Lhi

Lh + 1
µ̂h =

(
1− Lhj − Lhi

Lh + 1

)
µ̂h ≥

(
1− 1

Lh + 1

)
µ̂h.

In the case of non-admissible arcs, we have 0 ≤ Lhi − Lhj ≤ Lh. We also know that these arcs
have a non-negative reduced cost. Therefore,

d̂h+1
ij ≥ 0− Lhj − Lhi

Lh + 1
µ̂h =

Lhi − Lhj
Lh + 1

µ̂h ≥
(

1− 1

Lh + 1

)
µ̂h.

Since µh+1 =
(

1− 1
Lh+1

)
µ̂h is an acceptable lower bound for µh+1, the proof is concluded.
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Remark. Although we did not include the second implementation proposed in Goldberg and
Tarjan (1989), call it Update (d), we have carried out experiments using all four. The reasons
for this omission are twofold. First, it does not perform as well as our two new update proposals
Lh(b) and Lh(c). Second, it does not land itself naturally to our presentation with value Lh

which is needed to reduce the complexity. The update is as follow: π̂h+1
i := π̂hi − qLhi , ∀i ∈ N ,

where q := min
(i,j)∈A(xh+1)|Lhi >Lhj

d̂hij − µ̂h
Lhi − Lhj + 1

. Observe that using value 0 instead of d̂hij delivers

Update Lh(c).

Initialization. Notice that while optimal values [πh, µh] do exist, the point of the approx-
imation scheme is to carry out the computations with the approximation values [π̂h, µ̂h]

instead. As such, the explicit price function can be trivially initialized to π̂0
i := 0, ∀i ∈ N ,

and µ̂0 := min
(i,j)∈A(x0)

dij.

The importance of properly updating the node potentials is capital to the speed of
convergence. Indeed, the systematic computations over approximation values means that the
associated errors are cumulative. Intuitively, a poor update of the node potentials induces a
new admissible network that is not sufficiently altered to reveal new Type 1 cycles. Figures 2.8
to 2.10 illustrate the point. Each figure contains three elements: two plots and a marking.
The top level plot is the optimal value of µh retrieved for the sake of evaluating the quality of
the estimate µ̂h as seen in the lower level plot. The marking indicates the phase number at
which the optimal solution is reached although without proving it. Figure 2.8 uses Update Lh(a)

and suffers from an extremely poor convergence rate. There are in fact over 7,000 additional
phases required to prove optimality. In Figure 2.9, we see that Update (d) performs much
better than Update Lh(a). However, as can be seen in Figure 2.10, it is still outperformed by
Update Lh(b). These approximations require respectively 464 (343) phases to prove optimality.
The results for Update Lh(c) are omitted because they are almost the same as those of Update
Lh(b). As expected by the update mechanism, the estimate µ̂h is a lower bound for the optimal
value µh. The quality of the update clearly influences how fast this bound is increased.

Proposition 15. (Goldberg and Tarjan 1989) The combination of the Cancel and Tighten
steps runs in O(m log n) time.

Proof. The Tighten step consists of a succession of basic operations on the arcs or the nodes,
the most complex one being the topological ordering which runs in O(m) time. The proof
that the Cancel step terminates in O(m log n) time, making it the dominant method, is
influenced by the works of Sleator and Tarjan (1983). The key lies in the realm of computer
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Fig. 2.8: Optimality parameter µ and estimate µ̂ for Instance 1 [phase base - Update Lh(a)]
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Fig. 2.9: Optimality parameter µ and estimate µ̂ for Instance 1 [phase base - Update (d)]

science whereby the sophisticated splay tree data structure allows for an efficient way to
exhaustively search the admissible network.

Using this strategy transcends the bottleneck incarnated by the pricing step with a
convoluted approach. The bottleneck operation is now the completion of a phase which
effectively allows the complexity analysis to trade the initial O(m2n) time per phase in favor
of an amortized O(m log n) time. The improvement provided by the Cancel-and-Tighten
strategy is the fruit of careful design. It is obtained by shedding another light on the
iteration-wise analysis.

While it is possible to fetch optimal node potentials at the end of every phase, this measure
brings the global complexity to O(n log(nC))× [O(m log n) +O(mn)] ≡ O(mn2 log(nC)) for
integer arc costs and O(mn) × [O(m log n) + O(mn)] ≡ O(m2n2) for arbitrary real-valued
arc costs.
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Fig. 2.10: Optimality parameter µ and estimate µ̂ for Instance 1 [phase base - Update Lh(b)]

The following two theorems present the global runtime complexity of MMCC when the
Cancel-and-Tighten strategy is incorporated along with the approximation scheme. Although
we have separated these theorems to highlight our new proposal in the second one, the reader
is invited to read them as one. The idea behind their proofs is to place the resolution process
in the same conditions as the complexity analysis of the outer loop. Since µ̂h ≤ µh, it is
conceivable to rewrite Propositions 9 and 11 using approximation values [π̂h, µ̂h] instead.
Indeed, arc fixing than occurs in a more conservative fashion.

Theorem 5. (Goldberg and Tarjan 1989, Theorem 4.3) MMCC accompanied by the Cancel-
and-Tighten strategy runs in O(mn log n log(nC)) time for integer arc costs and O(m2n(log n)2)

time for arbitrary real-valued arc costs.

Proof. With respect to integer arc costs, the adaptation is straightforward. It turns out that
the approximation values µ̂ follow the same geometric progression as the optimal ones. Indeed,
the construction of the proof of Theorem 1 also holds with the approximation values. This
means that µ̂ > −1/n is a valid stopping criterion and O(n log(nC)) phases are performed.

In the case of arbitrary real-valued arc costs, we consider here the point of view of
Theorem 2. It is therefore sufficient to have a measurable jump of (1− 1/n) at the end of each
phase to obtain the wanted complexity. In the Tighten step, irrespectively of whether these
phases are approximated or not, this same property is verified by construction, see (2.19).
The approximation values therefore still follow the same behavior as the optimal ones.
Hence, the number of phases using the Cancel-and-Tighten strategy is also O(mn log n).
As far as the stopping criterion is concerned, polling for the optimal value of µ every n-th
phase to assert the optimality certificate can effectively be done without compromising
the complexity result. Indeed, the O(mn) runtime of this operation can be discarded
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with respect to the amortization against the runtime of the n − 1 previous approximated
phases, i.e., O((n− 1)m log n+mn) ≡ O(mn log n).

Since each phase runs in O(m log n) time, the proof is brought to terms with its statement.

Theorem 6. MMCC accompanied by the Cancel-and-Tighten strategy runs in O(m2n log n)

time for arbitrary real-valued arc costs.

Proof. From the point of view of Theorem 3, the use of the explicit price function [π̂, µ̂] in
accordance with Proposition 14 commands another look at Proposition 12. The following
modified version of the proof basically suggests that a valid size indicator, say Lh + 1, for the
jump is sufficient, the actual size of the Type 2 cycle is not really needed.

Assume all update coefficients Lh + 1 ≤ L(xh) in these L(xh) phases. Then, by (2.16),

µ̂L(xh) ≥ −|c̄∗m(xh)|
(

1− 1

L(xh)

)L(xh)

>
−|c̄∗

m(xh)
|

2
.

Otherwise, some coefficient Ll + 1 at the end of phase l ≤ L(xh) has cardinality Ll + 1 >
2S
m(xh)

|c̄∗
m(xh)

| . Then,

µ̂L(xh) ≥ µ̂l ≥ Ll µ(xh)

Ll + 1
≥ −Sm(xh)

Ll + 1
>
−Sm(xh)

2S
m(xh)

|c̄∗
m(xh)

|

=
−|c̄∗

m(xh)
|

2
.

Combine this with Proposition 13 and the O(mn) result of Theorem 3 still stands. The
global complexity ensues once the per phase runtime of O(m log n) is accounted for. The
polling argument for the optimal value of µ is still applicable for the stopping criterion.

Remark. While the original intent of Update (d) is not aligned with that of the approximation
structure proposed, a value Lh(d) could still be extracted from the determination of the value
q and therefore would still have the same complexity as the other updates listed.

2.3.6 Summary and observations

The first part of this section assembles all the complexity results we have seen while the
second raises several worthy observations about technical and mechanical aspects of the
algorithm.
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Table 2.1 summarizes the content of the complexity analysis. The first two columns display
the complexity of the outer loop of MMCC depending on whether one thinks in terms of
O(m2n) iterations or O(mn) phases. An implementation which uses the Cancel-and-Tighten
strategy grants a better theoretical complexity by consolidating several bottleneck operations.
The last two columns show the global complexity of MMCC depending on whether or not it
is incorporated.

Outer loop Global runtime complexity
Cancel-and-Tighten strategy

Point of view No. of iterations No. of phases Without With

Theorem 1 O(mn log(nC)) O(n log(nC)) O(m2n2 log(nC)) O(mn log n log(nC))

Theorem 2 O(m2n log n) O(mn log n) O(m3n2 log n) O(m2n(log n)2)

Theorem 3 O(m2n) O(mn) O(m3n2) O(m2n log n)

Tab. 2.1: Complexity analysis summary

Observe that the better complexity achieved by the integration of the Cancel-and-Tighten
strategy within the MMCC framework is not a contradiction with the tight complexity of
Radzik and Goldberg (1994). It is rather a testament to the importance of careful design.
Indeed, the tight bound of O(m2n) iterations is superseded by the equivalent one of O(mn)

phases.

Aside from the theoretical improvements, the very essence of Cancel-and-Tighten exudes
efficiency on several fronts. First, its conception allows for a more straightforward approach
to the identification of negative cycles which further benefits from running on a sparser
graph, that is, A(xh+1, π̂h) ⊆ A(xh, π̂h) ⊆ A(xh). Second, the data structure allows better
redundancy control than the iteration base approach which systematically restarts from
scratch. Third, the ability to reuse information regarding the node potentials is not only
appealing but also proves to be useful. Finally, its design matches the critical component of
the complexity analysis and only aims to reach these important Type 2 cycle checkpoints as
fast as possible.

Explicit arc fixing. The strongly polynomial complexity is obtained by introducing the
concept of arc fixing. Truth be told, the bidirectional verification of the alternative statement
for Proposition 8 can actually be carried out in any vanilla implementation of MMCC without
compromising the resolution process nor the theoretical complexity. Fixed arcs can be
removed from the system thus giving the rule a very practical effect. The arc fixing rule
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provided by Proposition 8 (or Proposition 9, extended to phases) can be, for all intent and
purposes, explicit. Furthermore, observe that arc fixing is reserved for non-free variables.
When µ = 0, optimality is achieved. Post applying Proposition 8 would imply all variables
get fixed regardless of their status. We underscore the fact that, in Proposition 10 (or
Proposition 11, extended to phases), arc fixing is invariably implicit because it depends on
an unknown optimal set of node potentials.

Cancellations. Recall that the iteration base necessitates 1,937 iterations to terminate
(Figure 2.5). This means that the same number of cycles are canceled. Whether the phase
base contains more or less cancellations is matter of resolution course but it is possible to give
meaning to what we have observed. Let us speak numbers. In the optimal update method
(Figure 2.7), 4,176 Type 1 cycles are canceled while in the three approximations (Figures 2.8
to 2.10), these numbers are respectively 2,192 and 5,202 and 4,417. The first approximation
is strikingly different from the rest and actually is much closer to the iteration base number.
Let us address this case first. With a poor update of the node potentials, the content of the
admissible network is limited to a small fraction of arcs. This means that although we are
not looking expressly for it, the minimum mean cycle is more likely to be identified. In other
words, the Cancel-and-Tighten strategy behaves similarly to the iteration base. In the other
two approximations, the admissible network contains a lot of negative arcs and Type 1 cycles
are identified in a random manner. It appears natural that more cycles are identified in this
way than does the meticulous process of finding the best ones sequentially. What comes out
of this interpretation is that it is more important to identify negative cycles fast than it is
identifying the best one.

Tailing-off. The iteration base suffers from a tailing-off effect which can be explained by
the nature of line search optimization and also that of MMCC. Regardless of the quality of
the solution, all the little improvements must be accounted for before granting the optimality
certificate. Since the optimality parameter is a gage for the expected improvement and that
it converges to zero from below, the end of the resolution process is very much like a quest
for crumbs. In the phase base, notice that all three approximation updates also suffer from a
tailing-off effect which is even present in the optimal update method. Since the optimality
parameter still intervenes, the same explanation holds as well for this approach. But there is
more. The quality of the update plays a great role in shortening the tail. Indeed, the latter
dictates both the content of the admissible network and the distance to optimality.
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Switch offs. In practice, the tailing-off effect leads to believe that, when the optimality
parameter reaches a very small value, it might be worthwhile to switch off to the iteration
base. Indeed, as the process nears the optimal solution, the number of negative cycles becomes
very small which makes the content of the admissible network even more limited in terms
of Type 1 cycles. Furthermore, the important graph reduction induced by the arc fixing
dramatically reduces the computational penalty of the iteration base. On another note, the
usefulness of Update Lh(c) is still unclear but the otherwise lack of tractable benefit suggests
it might be wise to postpone its usage until the first variables get fixed in order to limit the
impact of the additional O(m) time it requires.

Dantzig-Wolfe decomposition. The decomposition of the residual problem (2.2)–(2.4)
using a Dantzig-Wolfe decomposition scheme (Dantzig and Wolfe 1960) brings yet another
perspective to Cancel-and-Tighten. Let k ≥ 0 denote a non-optimal iteration number. At
every iteration, define the master problem as the set of upper bound constraints yij ≤
rkij, (i, j) ∈ A(xk), and formulate the subproblem for maximizing the minimum reduced
cost. This results in the proposed pricing step defined by the primal-dual pair of linear
programs (2.6)–(2.7) and (2.8)–(2.11). Its solution provides an improving cycle for which the
maximum step size is computed using the master problem constraints. Therefore, Cancel-and-
Tighten corresponds to heuristic solutions of that pricing problem, indeed a partial pricing
devoted to Type 1 cycles only. An optimal solution to the residual problem (2.2)–(2.4) can
only be guaranteed by solving the pricing subproblem to optimality and finding µ = 0.

2.4 Conclusion

This paper aims to present the minimum mean cycle-canceling algorithm in its entirety
by regrouping the knowledge from different sources. Ranging from the objective function
to implicit arc fixing, a key component which traverses most of the proofs is a line of
rationalization which questions the existence of admissible solutions. This admissibility defers
to a fundamental piece of network theory, namely the flow decomposition principle. In the end,
the same algorithm has been studied under numerous angles, each one providing theoretical
breakthroughs. A very interesting point is that better bounds are obtained via very practical
observations such as tighter jump factors or well conditioned admissible networks.

The original purpose of this work was a literature review preliminary to further researches,
but we have come to see it as more than a summary. First of all, we harness the power of
duality to simplify one of the building blocks of the algorithm. Secondly, the new way to look
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at the analysis directly in terms of O(mn) phases is elegant in itself. We feel that we have
integrated Cancel-and-Tighten to the minimum mean cycle-canceling framework under a new
perspective and even contributed to its performance with new update approximations in the
Tighten step. This in turn grants the reduction of the global runtime to O(m2n log n) and
speaks volume about the importance of thinking in terms of phases. This third contribution
is made possible by the generalization of Proposition 12. Finally, the computation results
are enlightening of the resolution course of the minimum mean cycle-canceling algorithm.
The different observations which come out of this study serve the practical side of things by
reducing the wall-clock time of any generic implementation.

As a final note, this work is part of a much broader plan which includes generalizations to
linear programming as well as understanding the ramifications with the Improved Primal
Simplex method (Elhallaoui et al. 2011, Raymond et al. 2010b) in order to extract necessary
adjustments required to recuperate some of the properties established herein.
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ABSTRACT

This paper describes three recent tools for dealing with primal degeneracy in linear pro-
gramming. The first one is the Improved Primal Simplex (IPS) algorithm which turns
degeneracy into a possible advantage. The constraints of the original problem are dynamically
partitioned based on the numerical values of the current basic variables. The idea is to work
only with those constraints that correspond to nondegenerate basic variables. This leads
to a row-reduced problem which decreases the size of the current working basis. The main
feature of IPS is that it provides a nondegenerate pivot at every iteration of the solution
process until optimality is reached. To achieve such a result, a negative reduced cost convex
combination of the variables at their bounds is selected, if any. This pricing step provides a
necessary and sufficient optimality condition for linear programming. The second tool is the
Dynamic Constraint Aggregation (DCA), a constructive strategy specifically designed for set
partitioning constraints. It heuristically aims to achieve the properties provided by the IPS
methodology. We bridge the similarities and differences of IPS and DCA on set partitioning
models. The final tool is the Positive Edge (PE) rule. It capitalizes on the compatibility
definition to determine the status of a column vector and the associated variable during the
reduced cost computation. Within IPS, the selection of a compatible variable to enter the
basis ensures a nondegenerate pivot, hence PE permits a trade-off between strict improvement
and high reduced cost degenerate pivots. This added value is obtained without explicitly
computing the updated column components in the simplex tableau. Ultimately, we establish
tight bonds between these three tools by going back to the linear algebra framework from
which emanates the so-called concept of subspace basis.

Keywords: Primal simplex, degeneracy, combination of entering variables, Positive Edge
rule, nondegenerate pivot algorithm, dynamic Dantzig-Wolfe decomposition, vector subspace.
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3.1 Introduction

When solving a linear program with the primal simplex (PS) algorithm (see Dantzig 1963),
degeneracy comes in two flavors: degenerate solutions and degenerate pivots. The first case
is a question of observation, it is a dichotomous state of the solution which either exhibits
degenerate basic variables or not. A basic solution is degenerate if at least one of its basic
variables is degenerate, that is, at its lower or upper bound. Geometrically speaking, it
corresponds to an over-represented vertex meaning that several equivalent bases are associated
with the same solution. The second case is the algorithm’s culprit in more ways than one.
In fact, it is the only phenomenon which jeopardizes its convergence both theoretically and
empirically. Degeneracy questions PS’ efficiency and creates ambiguity in the post-analysis.
On the one hand, degeneracy can affect the efficiency in obtaining an optimal solution because
it creates redundant work. More specifically, a degenerate pivot amounts to trading one
degenerate basic variable for a nonbasic one. Since no gain is made with respect to the
objective function, it is in the aftermath of the computations that one ultimately realizes the
wasted effort. It is even possible to cycle meaning that PS moves through a series of bases
eventually returning to an already visited one. If this happens indefinitely, PS may not even
converge (Schrijver 1986). On the other hand, a by-product of PS is the sensitivity analysis
done after the optimization. Each constraint is associated with a dual variable whose value
depends on the chosen basis. Since an optimal degenerate basis is not uniquely defined, it
can mislead the interpretation of two otherwise equivalent solutions.

It should be noted that column generation, used to solve linear programs with a huge
number of variables (Barnhart et al. 1998, Lübbecke and Desrosiers 2005), is a natural
extension of PS, and as such suffers from degeneracy as well. With that being said, degener-
acy is a phenomenon encountered particularly often for linear programming relaxations of
combinatorial optimization problems. Set partitioning and set covering models are prominent
examples of practical relevance: vehicle routing and crew scheduling problems (and many
related problems in transportation and logistics) are most successfully formulated this way
(Desrosiers et al. 1995, Desaulniers et al. 1998).

Degeneracy has been under scrutiny for practically as long as linear programming. We
distinguish two lines of studies from the literature. The first aims to eliminate degeneracy
altogether and the other provides guidelines to alleviate its impact. On the first count,
think of the work of Charnes (1952) which revolves around modifying the polytope of the
whole solution space in such a way that no two solutions ever share the same vertex. The
concept amounts to right-hand side perturbations thus creating slight variations in the way
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the hyperplanes intersect. While the idea of eradicating degeneracy altogether is appealing,
today’s simplex codes use a more ad hoc strategy which sends us to the second count. The
contributions of Wolfe (1963) and Ryan and Osborne (1988) are abundant evidence that
applying this strategy as necessary is highly effective. The perturbations are now applied in
an adaptive manner and on a more local scale. Stabilization extends the idea of perturbation
by incorporating dual information. Penalty functions, trust regions and expansion strategies
are among the instrumental concepts of stabilization as described in the papers of du Merle
et al. (1999) and Ben Amor et al. (2009). Column generation benefits from the latter as it
tackles the particular sensitivity to the values of dual variables during the resolution process.

Numerous pivot rules have also been proposed to avoid performing degenerate pivots.
In this regards, the work of Terlaky and Zhang (1993) is enlightening in many respects.
Indeed, while many of these rules share common properties and sometimes even correspond to
special cases of one another, they are distinguished according to certain properties: feasibility
maintenance, anti-cycling feature and recursive nature. While there might have been hope
about the performance of many of these rules, even nondegenerate instances can be difficult
to optimize as supported by Klee and Minty (1972). The performance of a pivot rule may
therefore be considered as a trade-off between its complexity and the savings it procures with
respect to the number of iterations. The state of the art in terms of degenerate problems
seems to be the Devex rule of Harris (1973), see Terlaky and Zhang (1993). We underline
that regardless of their intricacies, all of these rules have a limited gain with respect to the
absence of guaranteed efficiency. That is, zero step size pivots could still ensue from the
chosen direction. The anti-cycling feature present in Bland (1977) or Fukuda (1982) ensures
this behavior does not happen indefinitely. It is however generally accepted that taking
expensive measures to protect against cycling is not worthwhile.

A new trend appears in the late nineties with the paper of Pan (1998) who formulates
a generic basis for degenerate solutions. Embedding this concept in a column generation
scheme led to the Dynamic Constraint Aggregation (DCA) algorithm of Elhallaoui et al.
(2005, 2008) for the set partitioning problem. This problem lends itself particularly well
to such a concept because of its peculiar structure. Indeed, it is this very structure that
allows DCA to heuristically harness the power of a generic basis and quite often find strictly
improving pivots. The paper of Elhallaoui et al. (2011) extends the algorithmic methodology
with the Improved Primal Simplex (IPS). As its name would have it, this extension takes
place with regards to any linear programming problem. In a nut shell, the structure of a
solution is preemptively taken into account in order to drive the next pivot in a strictly
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improving direction. That structure is dynamically updated with respect to the current
solution.

The methodological paper at hand describes three tools for dealing with primal degeneracy.
At the heart of this framework lies the search for so-called compatible column vectors and
associated variables. Whether such a column exists as is in the original problem or is
constructed as a convex combination of these, it corresponds to a direction in a polytope
induced by a transformation of the original simplex. As such, we believe that IPS provides a
better starting point from which the other two tools can benefit in terms of presentation. The
second tool is of course DCA (which was incidentally designed prior to IPS) and the third is
the Positive Edge (PE) rule (Raymond et al. 2010a, Towhidi et al. 2014). It is safe to say
that DCA is a method steered by practical imperatives. Yet, explaining the reason behind its
performance can now also be done in a straightforward manner in light of the IPS framework.
PE is yet another example of benefits obtained from a higher level of abstraction. Indeed,
while manipulating the set of compatible vectors can be computationally efficient, identifying
said set can be time consuming for large problems. PE aims to simplify this verification by
extracting the compatibility status during the reduced cost computation using the original
column data.

The paper is organized as follows. Section 3.2 first exposes the theory of IPS with several
hints to PS. By casting the linear algebra framework on our study, Section 3.3 presents
another perspective of IPS. Section 3.4 addresses the more practical side with regards to
several implementation choices. The importance of compatibility in the design of specialized
applications is highlighted in Section 3.5. The similarities and differences between IPS and
DCA are examined in Section 3.6 while Section 3.7 reveals PE. Various results from the
literature are reported at the end of Sections 3.4, 3.6 and 3.7 depending on the context of
the underlying tool. Our conclusions end the paper in Section 3.8.

Motivation. In the words of Perold (1980), a great many degenerate iterations is usually the
resulting observation of degeneracy. As a matter of fact, it is not unusual to see that when an
average of 20% of basic columns are degenerate, 50% of the iterations are degenerate. While
the former statement gives a feel for the negative impact of degeneracy, the second statement
rapidly frames it within a quantitative measure. The degenerate variables percentage of
each basic solution encountered during the resolution process is averaged over the number of
iterations. As such, it is certainly possible to characterize a linear program as degenerate if
some basis exhibits such a quality, yet it is much more interesting to measure the extent of
this pathology. The latter is based on empirical evidence. A linear program is thus said to
have a degeneracy level of β%, where β = 20 corresponds to the average in Perold’s example.
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In the same vein, a whole class of linear programs can be qualified in the same manner
by computing the mean of these values. For instance, assignment network problems have
a degeneracy level of 50%, or even 100% if upper bounds are explicit. We do not know of
any guidelines to state that family classes are degenerate, but it is fair to say that the level
should be at least 20%. In vehicle routing, it is immediate how degeneracy occurs: The
constraints represent tasks (often large numbers) to be covered by relatively few vehicles or
crew members, that is, only few variables assume a positive value, especially in an integer
solution.

Notation and terminology. Vectors and matrices are written in bold face. We denote
by I` the `× ` identity matrix and by 0 (resp. 1) a vector/matrix with all zeros (resp. ones)
entries of contextually appropriate dimension. For a subset I ⊆ {1, . . . ,m} of row indices and
a subset J ⊆ {1, . . . , n} of column indices, we denote by AIJ the sub-matrix of A containing
the rows and columns indexed by I and J , respectively. We further use standard linear
programming notation like AJxJ , the subset of columns of A indexed by J multiplied by
the corresponding sub-vector of variables xJ . The lower case notation is reserved for vectors
and uses the same subset index rules. In particular, the matrix A := (aj)j∈{1,...,n} contains
n column vectors. Finally, there is one notable exception: The set N does not denote the
nonbasis but rather the set of basic and nonbasic variables at their lower or upper bounds.
Hence, for a linear program in standard form, xN represents the vector of null variables.

The pricing step in the seminal IPS papers refers to solving a complementary problem
whereas it was later shown that IPS can be seen as a dynamic Dantzig-Wolfe decomposition
at every iteration. As a survey paper, we use a unifying terminology and choose to define the
pricing step as solving a pricing problem.

3.2 Improved Primal Simplex

This section first exposes the theory of IPS in the context of a linear program with lower
and upper bounded variables. It is based on the original papers of Elhallaoui et al. (2011),
Raymond et al. (2009, 2010b), Metrane et al. (2010) and its generalization to row-reduced
column generation (Desrosiers et al. 2014). However, contrary to the original presentation,
the choice of using a bounded linear program in the description of IPS is becoming of its
purpose. For instance, in set partitioning problems, degenerate upper bounds are exploited
for a faster resolution. Moreover, the change of variables utilized for the row partition also
becomes more apparent with upper bounds.
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We present in Section 3.2.1 the algorithmic steps of IPS. Section 3.2.2 provides the proof
of a necessary and sufficient optimality condition derived from the improved pricing step.
Section 3.2.3 presents a simplified version of IPS for linear programs in standard form. For a
better understanding of the concepts, an illustrative example is given in Section 3.2.4 on a
small linear program.

Consider a linear program (LP) with lower and upper bounded variables:

z? := min cᵀx

s.t. Ax = b, [π]

l ≤ x ≤ u,

(3.21)

where x, c, l,u ∈ Rn, b ∈ Rm, A ∈ Rm×n, and m < n. We assume that A is a matrix of full
row rank and that LP is feasible and bounded. Finally, π ∈ Rm is a vector of dual variables
associated with the equality constraints.

3.2.1 Algorithmic steps

The main idea in IPS is to reduce the number of constraints from m to f , the number of
nondegenerate or free variables in a basic solution. The advantage of this row reduction is a
smaller working basis of dimension f ×f rather than the usual larger one of dimension m×m.
This comes at the expense of a more involved pricing step which solves a linear program of
row size m− f + 1 to select an improving subset of columns, that is, a convex combination
of columns with two properties: this selection is compatible with the current row-reduced
problem (see Definition 3) and its reduced cost is negative. If such a combination exists,
a strict improvement in the objective function value occurs, otherwise the current solution
is optimal. Figure 3.11 contains an overview of the main steps of IPS. The initialization
contains the change of variables, the input basic solution x0, and the associated column
partition with the null variables set N . The main loop provides: (1) the construction of a
generic basis and the resulting linear transformation and row partition; (2) the definition of
compatibility; (3) the development of an improving pricing step; (4) the exchange mechanism
from a solution x0 to the next x1 which incidentally brings an inspiring twist to the pivoting
rule; (5) the update of the column partition.

Initialization Let x0, represented by (x0
F ; x0

L; x0
U), be a basic solution where the three

sub-vectors are defined according to the value of their variables: x0
L at their lower bounds, x0

U

at their upper bounds, and free variables lF < x0
F < uF . Free variables are basic and they
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Initialization : basic solution x0;
change of variables;
column partition {F,L, U} and N := L ∪ U ;

1 Generic basis B, transformation B−1, row partition {P,Z} of AF ;
2 Compatibility with the row partition {P,Z} of AF <optional>;
3 Improved pricing step: maximize the minimum reduced cost µ;
4 Exchange mechanism from x0 to x1;
5 Set x0 := x1, update the column partition {F,L, U} and goto Step 1;

Fig. 3.11: IPS algorithmic steps

can move below or above their current value which obviously makes them nondegenerate. Let
there be f := |F | such free variables, 0 ≤ f ≤ m. Partition the matrix A = [AF ,AL,AU ]

and cost vector cᵀ = [cᵀF , c
ᵀ
L, c

ᵀ
U ] accordingly. Although the change of variables is blindly

applied, IPS retains only those pertinent to the construction:

yL := xL − x0
L, yL ≥ 0

yU := x0
U − xU , yU ≥ 0.

(3.22)

Let N := L ∪ U to form yN = (yL; yU), the vector of currently null y-variables, bounded
above by rN , where rj := uj− `j, ∀j ∈ N . Let dᵀN := [cᵀL,−cᵀU ] and define A0

N := [AL,−AU ],
that is, a0

j = aj, ∀j ∈ L, and a0
j = −aj, ∀j ∈ U . Given the adjusted right-hand side b0 :=

b−ALx0
L −AUx0

U , LP becomes:

z? = cᵀLx0
L + cᵀUx0

U + min cᵀFxF + dᵀNyN

s.t. AFxF + A0
NyN = b0, [π]

lF ≤ xF ≤ uF , 0 ≤ yN ≤ rN .

(3.23)

1 – Generic basis B, transformation B−1, row partition {P,Z} of AF . The current
solution being basic, the columns of AF are linearly independent. When f = m, there is no
row reduction but the current solution is nondegenerate, and so is the next pivot. Assume that
f < m such that the basis associated with x0 contains degenerate variables. Let us call basis
completion the process of selecting m− f variables taking value zero which complement AF

by forming a nonsingular basis matrix. Since any and all combinations of degenerate variables
which may complete the basis is as good as the next one, let us construct a generic m×m
basis denoted B. Such a basis is readily available using the f free variables associated with
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the columns of AF together with m− f artificial variables. The selection of an appropriate
set of artificial variables can be done by solving a restricted primal simplex phase I problem
over columns of AF and those of the identity matrix Im with the corresponding vector of
artificial variables here denoted λ:

min 1ᵀλ

s.t. AFxF + Imλ = b0,

xF ≥ 0, λ ≥ 0.

(3.24)

Solving this problem is undoubtedly successful in accordance with the fact that AFx0
F = b0.

Furthermore, this restricted phase I differs from a cold start phase I on one key point: only
the former can guarantee a basis in which all degenerate basic variables are artificial ones. Let
it be clear that this construction process identifies some subset APF of exactly f independent
rows from matrix AF . This provides the row partition {P, P̄} of AF , where we use Z := P̄

for notational convenience. The generic basis B and its inverse B−1 are as follows:

B =

[
APF 0

AZF Im−f

]
and B−1 =

[
A−1
PF 0

−AZFA−1
PF Im−f

]
, (3.25)

where the matrix APF of dimension f×f is the working basis. The basis B is one of the many
bases available to identify the over-represented vertex x0. As such, observe the sensitivity of
the dual vector πᵀ := cᵀBB−1 with respect to the choice of basis completion. LP becomes

z? = cᵀLx0
L + cᵀUx0

U + min cᵀFxF + dᵀNyN

s.t. APFxF + A0
PNyN = b0

P , [πP ]

AZFxF + A0
ZNyN = b0

Z , [πZ ]

lF ≤ xF ≤ uF , 0 ≤ yN ≤ rN .

(3.26)

Let b̄0 := B−1b0 and

Ā0
N := B−1A0

N =

[
Ā0
PN

Ā0
ZN

]
=

[
A−1
PFA0

PN

A0
ZN −AZFA−1

PFA0
PN

]
. (3.27)

The new LP formulation obtained after the change of y-variables and left-multiplication
by the linear transformation B−1 of the set of equality constraints (which incidentally also
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transforms the dual variables) makes degeneracy more evident:

z? = cᵀLx0
L + cᵀUx0

U + min cᵀFxF + dᵀNyN

s.t. xF + Ā0
PNyN = b̄0

P , [ψP ]

Ā0
ZNyN = 0, [ψZ ]

lF ≤ xF ≤ uF , 0 ≤ yN ≤ rN .

(3.28)

The current solution is given by xF = x0
F = A−1

PFb0
P = b̄0

P while yN = 0. Observe that
the constraints of LP are divided according to the actual values of b̄0: for the row set P ,
b̄0
P > 0; for the remaining rows in the set Z, b̄0

Z = 0. The dual vector π can be retrieved
from the above transformed dual vector ψ using the expression πᵀ = ψᵀB−1:

πᵀP = ψᵀPA−1
PF −ψᵀZAZFA−1

PF (3.29)

πᵀZ = ψᵀZ . (3.30)

2 – Compatibility with the row partition {P,Z} of AF . Observe that any solution
to (3.28), optimal or not, must satisfy Ā0

ZNyN = 0. This leads us to the first definition of
compatibility.

Definition 3. A vector a ∈ Rm (and the associated variable, if any) is compatible with the
row partition {P,Z} of AF if and only if āZ := aZ −AZFA−1

PFaP = 0.

One can derive from the formulation (3.28) that the column vectors of AF are compatible
(hence the free variables xj, j ∈ F ) as well as the transformed right-hand side vector b0

(with no associated variable) but degenerate basic variables are not.

3 – Improved pricing step: maximize the minimum reduced cost µ. The variables xF

are basic in the row set P , hence the reduced cost vector c̄F = cF − ψP = 0 which
means that ψP = cF . With respect to the values of ψZ , we recall the basis completion
paradigm whereby the selection of degenerate variables that complete the basis influences the
values of their associated dual variables. In other words, it is possible to capitalize on this
freedom and consider them undetermined. The current solution x0 = (x0

F ; x0
L; x0

U ) is optimal
for (3.21), or equivalently (xF ; yN) = (x0

F ;0) is optimal for (3.28), if there exists some dual
vector ψZ such that the reduced cost d̄j of every variable yj, j ∈ N, is nonnegative, that is,
d̄j := dj − cᵀF ā0

Pj −ψᵀZ ā0
Zj ≥ 0, ∀j ∈ N.
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Let µ := min
j∈N

d̄j be the smallest reduced cost for yN given ψP = cF but optimized over ψZ .

Finding µ can be formulated as a linear program:

max µ

s.t. µ ≤ dj − cᵀF ā0
Pj −ψᵀZ ā0

Zj, [yj] ∀j ∈ N,
(3.31)

where yj ≥ 0, j ∈ N, is the dual variable associated with the corresponding inequality
constraint. Let d̃j := dj − cᵀF ā0

Pj be the partial reduced cost of yj computed by using the
dual vector ψP = cF , or equivalently d̃ᵀN := dᵀN − cᵀF Ā0

PN in vector form. Therefore, (3.31)
becomes

max µ

s.t. 1µ + ψᵀZĀ0
ZN ≤ d̃N , [yN ].

(3.32)

Taking the dual of (3.32), the pricing problem is written in terms of yN , the vector of
currently null variables to price out:

µ = min d̃ᵀNyN

s.t. 1ᵀyN = 1, [µ]

Ā0
ZNyN = 0, [ψZ ]

yN ≥ 0.

(3.33)

The pricing problem (3.33) can be solved by the dual simplex algorithm because only
the convexity constraint 1ᵀyN = 1 is not satisfied by the current value yN = 0. For a more
recent analysis of the resolution of the pricing problem, Omer et al. (2014) explore ways to
warm start the basis notably with the use of more elaborate coefficients for the convexity
constraints. Alternatively, specialized algorithms can be used in some applications. This
is the case for LP defined as a capacitated minimum cost network flow problem where the
pricing problem (3.33) corresponds to a minimum mean cost cycle problem which can be
solved in O(mn) time by dynamic programming (Karp 1978). What ultimately matters is
that we are looking for extreme point solutions to (3.33) (see Gauthier et al. 2015b).

The number of positive variables in an optimal solution y0
N to (3.33) is at most m− f + 1,

the row dimension of the pricing problem. The solution x0 is optimal for LP if µ ≥ 0.
Otherwise, µ < 0 and y0

N identifies a convex combination of columns such that Ā0
ZNy0

N = 0.
Observe that by Definition 3, the vector A0

Ny0
N ∈ Rm is compatible with the row partition

{P,Z} of AF . Let Ω be the set of all such compatible convex combinations of columns.
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4 – Exchange mechanism from x0 to x1. The solution y0
N is utilized to move from x0

to x1. Let the compatible column A0
Ny0

N be associated with a surrogate variable θω, ω ∈ Ω,
nonexistent from the original formulation. The parameters of θω relative to the formula-

tion (3.28) are as follows: ā0
w =

[
ā0
Pw

ā0
Zw

]
=

[
Ā0
PNy0

N

0

]
, reduced cost µ, cost dᵀNy0

N , and y0
N 6= 0.

With the addition of the variable θω to the LP model in (3.28), we have the following relations,
where the relevant parameters are indicated within brackets:

xF + [ā0
Pω] θω = b̄0

P ,

lF ≤ xF ≤ uF , 0 ≤ [y0
N ] θω ≤ rN .

(3.34)

Regardless of its solution, observe that the pricing problem finds a partial improving
direction y0

N of negative reduced cost value µ, if one exists, uniquely completed by y0
F , the

impact in the row set P : [
y0
F

y0
N

]
=

[
−ā0

Pω

y0
N

]
=

[
−Ā0

PNy0
N

y0
N

]
∈ Rn. (3.35)

The step size ρ is governed by the usual pivot rule. In (3.34), the entering variable θω
can increase up to the maximum change for yN , that is, y0

Nθω ≤ rN , or according to the
maximum change for xF , that is, lF ≤ b̄0

P − ā0
Pωθω ≤ uF . The step size ρ on θω is given by

ρ := min

{
min

j∈N |y0j>0

{
rj
y0
j

}
, min
i∈P |ā0iw>0

{
b̄0
i − li
ā0
iw

}
, min
i∈P |ā0iw<0

{
ui − b̄0

i

−ā0
iw

}}
. (3.36)

A nondegenerate pivot occurs (ρ > 0) and the objective function strictly improves by

∆z = ρµ = ρ d̃ᵀNy0
N . (3.37)

The solution x0 is updated to x1 according to the direction expression in (3.35):

x1
F := x0

F − ρ ā0
Pω

x1
L := x0

L + ρy0
L

x1
U := x0

U − ρy0
U .

(3.38)
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The number of free variables in x1 is at most f + (m− f + 1)− 1 = m, that is, the new
solution can be more degenerate but it can also be less degenerate when several variables of
the convex combination become free.

Regardless of the manner in which one updates the current solution, the aftermath is
the result of an exchange mechanism. Even the ratio test performed to identify the exiting
variable in PS echoes this notion. Indeed, the exchange always happens in a one-to-one
fashion, while we have just seen that it can be more involved. Given the current solution, the
exchange mechanism provided in (3.38) starts in the pricing problem (3.33) for the rows in
the set Z by finding in Ā0

ZNyN = 0, yN ≥ 0, which induces the partial directions y0
L and

−y0
U for the vectors xL and xU , respectively. The exchange process is afterward completed

by using the rows in the set P and interval constraints in (3.34): the partial direction for the
vector xF is given by −ā0

Pω = −Ā0
PNy0

N and the step size is derived in expression (3.36). In
the latter, it occurs between xF and the entering variable θω, ω ∈ Ω.

5 – Update column partition {F,L, U} In the midst of obtaining the new solution x1,
every variable affected by the direction is identified. It is therefore easy to modify the status
of each of these variables if necessary. Notice that the generic basis B is inspired by the
column partition F .

Special case: y0 = ej, j ∈ N . The reader is invited to contemplate the special case where
the convex combination contains a single variable y0

j = 1, for some j ∈ N . The repercussions
are many in terms of mathematical simplifications but we are most interested in the following
one. The surrogate variable actually exists as is in the original formulation (3.28) which
means that some existing variables in the set N are compatible with the row partition {P,Z}
of AF . In that case, the column a0

j , j ∈ N , enters the basis B, µ = d̃j, and the step size ρ
is computed according to the maximum increase of variable yj. From (3.28), we have the
following relations:

xF + ā0
Pjyj = b̄0

P ,

lF ≤ xF ≤ uF , 0 ≤ yj ≤ rj.
(3.39)
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The step size ρ on yj can increase up to the upper bound rj , or according to the maximum
change in the vector of free variables lF ≤ b̄0

P − ā0
Pjyj ≤ uF :

ρ := min

{
rj, min

i∈P |ā0ij>0

{
b̄0
i − li
ā0
ij

}
, min
i∈P |ā0ij<0

{
ui − b̄0

i

−ā0
ij

}}
> 0 . (3.40)

The objective function z improves by ∆z = ρd̃j = ρµ. Either j ∈ L (xj is at its lower
bound) or j ∈ U (xj is at its upper bound) and x0 is updated to x1 as

x1
F := x0

F − ρ ā0
Pj

x1
L := x0

L + ρy0
L

x1
U := x0

U − ρy0
U .

(3.41)

The number of free variables in x1 is at most f , that is, the new solution can be more
degenerate. If ρ < rj, f decreases if more than one of the free variables reach their bounds.
Otherwise ρ = rj , the corresponding xj variable changes bound and therefore stays degenerate
in the new solution; the number of free variables decreases if at least one free variable reaches
a bound.

3.2.2 Characterization of linear programming optimality

In summary, when µ ≥ 0, the current solution x0 is optimal. Otherwise, µ < 0 and we obtain
a strict improvement of the objective function, update the current solution from x0 to x1,
and the process is repeated until the following necessary and sufficient optimality condition
is met.

Proposition 16. A basic feasible solution x0 = (x0
F ; x0

L; x0
U) is an optimal solution to the

linear program (3.21) if and only if there exists a dual vector ψZ such that µ ≥ 0, as optimized
by the primal-dual pair (3.32)–(3.33) of the pricing problem.

Proof. The formulations (3.21) and (3.28) are equivalent. Because c̄F = 0, if there exists
some dual vector ψZ such that dᵀN −cᵀF Ā0

PN −ψᵀZĀ0
ZN ≥ 0ᵀ, N := L∪U , then (c̄F , d̄N ) ≥ 0.

Therefore, ψᵀ = (cᵀF ,ψ
ᵀ
Z) provides a feasible dual solution to (3.28). Since ψᵀP b̄0

P = cᵀFx0
F ,

the primal and dual objective functions are equal and the current feasible solution x0 is
optimal for (3.21).

To show the converse, let x0 be an optimal solution to (3.21) and assume that µ < 0. An
optimal solution to the pricing problem (3.33) identifies a convex combination of variables
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such that a nondegenerate pivot occurs (ρ > 0) and the objective function strictly improves
by ρµ < 0. This contradicts the optimality of x0 and completes the proof.

All simplex derivatives work according to the presumption of innocence. Optimality is
indeed assumed until proven otherwise. It is no different in IPS, yet it is an amazing feat
that the content of the pricing problem be reminiscent of the no more, no less punch line.
The sufficient condition answers to the first part, while the necessary condition to the second.

3.2.3 IPS for a linear program in standard form

The reader may recall that incorporating lower and upper bounds in PS adds a plethora of
intricacies in the algorithmic analysis. Although the same is true of IPS, we assumed the
reader was sufficiently accustomed with the traditional algorithm. In the spirit of conveying
the general idea of IPS, it might be worthwhile to present a simpler version. This basically
amounts to removing the dimension U from the formulation. The simplifications are threesome
and correspond to the main steps of IPS: creating the column and row partitions, building
the pricing problem, and modifying the current solution. Given LP in standard form

z? := min cᵀx

s.t. Ax = b, [π]

x ≥ 0,

(3.42)

and a feasible solution x0 = (x0
F ; x0

N), the column partition step distinguishes between the
currently nondegenerate (or free) basic vector x0

F and null vector x0
N :

z? = min cᵀFxF + cᵀNxN

s.t. AFxF + ANxN = b, [π]

xF ≥ 0, xN ≥ 0.

(3.43)

Recall the previous change of variables in (3.22). Since N now only contains variables at
their lower bounds, xN could be used interchangeably with yN . We maintain the general
presentation to underscore that the construction aims to find an improving direction induced
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by yN . It should also be clear that A0
N = AN , and b0 = b.

z? = min cᵀFxF + cᵀNyN

s.t. xF + ĀPNyN = b̄P , [ψP ]

ĀZNyN = 0, [ψZ ]

xF ≥ 0, yN ≥ 0.

(3.44)

Once again, the linear transformation B−1 performed on the original system underlines
the degeneracy of the current solution. Furthermore, any solution must satisfy ĀZNyN = 0
in (3.44). Therefore, the pricing problem can be written in terms of the vector of null variables
to price out, and the current partial reduced cost vector c̃ᵀN := cᵀN −ψᵀP ĀPN = cᵀN − cᵀF ĀPN :

µ := min c̃ᵀNyN

s.t. 1ᵀyN = 1, [µ]

ĀZNyN = 0, [ψZ ]

yN ≥ 0.

(3.45)

The solution x0 = (x0
F > 0; x0

N = 0) is optimal for LP in (3.42) if µ ≥ 0. Otherwise µ < 0

and an optimal solution y0
N to (3.45) identifies a convex combination of variables such

that ĀZNy0
N = 0. The convex combination established by the pricing problem may once

again contain one or several y-variables. Let θω, ω ∈ Ω, be the entering variable with the

following parameters: reduced cost µ, cost cᵀNy0
N , and āω =

[
āPω

āZω

]
=

[
ĀPNy0

N

0

]
. What

matters is that the ratio test (3.36) is now computed with a single component:

ρ := min
i∈P |āiω>0

{
b̄i
āiω

}
> 0. (3.46)

A nondegenerate pivot occurs and LP’s objective in (3.42) strictly improves by ∆z = ρ µ.
Finally, x0 is updated to x1 as follows:

x1
F := x0

F − ρ āPω

x1
N := ρy0

N .
(3.47)
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3.2.4 Numerical example

Table 3.2 depicts a linear program in standard form comprising eight x-variables and six
constraints. The degenerate solution x0 is already presented in the simplex tableau format:
(x0

1, x
0
2, x

0
3) = (30, 25, 50) are the positive (or free) basic variables and the basis has been

completed with artificial λ-variables in rows 4, 5 and 6. The cost of this solution is z0 = 185.

x1 x2 x3 λ4 λ5 λ6 x4 x5 x6 x7 x8 θω
c 2 3 1 10 17 -20 14 -4 -5

1 2 2 1 -5 7 = 30 1
1 4 3 -5 10 -10 = 25 -2

1 -3 1 2 3 11 = 50 5
1 0 0 6 5 -13 = 0 0

1 0 0 3 4 -8 = 0 0
1 0 0 3 -4 0 = 0 0

x0 30 25 50 z0 = 185
c̃ -3 3 -9 -9 1 -6

Tab. 3.2: The simplex tableau at x0

The vector cᵀF =
[
2, 3, 1

]
, equal to the dual vector for the top rows, is used for computing

the partial reduced cost vector c̃ᵀN =
[
-3, 3, -9, -9, 1

]
. By inspection, we see that x4 and

x5 are compatible with the row partition derived from the right-hand side values. One can
observe that the associated columns are (trivial) combinations of the (unit) vectors of the
free variables x1, x2 and x3.

Both compatible variables would provide a nondegenerate pivot if chosen as entering
variables but only x4 has a negative partial reduced cost value c̃4 = -3 (which is also equal to
its reduced cost c̄4). The incompatible variables x6 and x7 possess a negative partial reduced
cost value of -9 whereas c̃8 = 1. The selection of incompatible variable x6 or x7 would result
in a degenerate pivot while that of x8 would increase the objective function by 1× (30

7
).

However, solving the pricing problem (3.45) over the last three rows results in a combination
of the incompatible vectors with the following weights: (y0

6, y
0
7, y

0
8) = (0.4, 0.3, 0.3). This

provides the compatible vector āᵀω =
[
1 -2 5 0 0 0

]
for the variable θω of reduced cost

µ = -9(0.4) + -9(0.3) + 1(0.3) = -6 and cost -5. The ratio test on the top three rows results
in ρ = min

{
30
1
,−, 50

5

}
= 10. The entering variable θω takes the value 10 and provides a

strict improvement of the objective function of -6 × 10 = -60. As a result, x3 goes out
of the basis, and other free variables x1 and x2 are respectively updated to 20 and 45.
Alternatively, the variables x6, x7 and x8 can be entered one by one in the basis, in any
order, and this produces the same result. In the new solution of cost 125, the positive
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variables are (x1, x2, θω) = (20, 45, 10) or equivalently for x1 in terms of the original variables,
(x1, x2, x6, x7, x8) = (20, 45, 4, 3, 3) while x3, x4 and x5 are null variables.

From the five columns corresponding to the positive variables, the first five rows are
independent and the artificial variable λ6 is basic with a zero value in the last row. The
inverse basis B−1 at x1 appears in Table 3.3 and is used to construct the next degenerate
simplex tableau in Table 3.4.

B =


1 1 -5 7

1 -5 10 -10
2 3 11
6 5 -13
3 4 -8
3 -4 0 1

 B−1 =


1 -0.20 -2.133 4.067

1 0.40 5.600 -9.800
0.08 0.453 -0.627
0.06 -0.327 0.613
0.06 0.007 -0.053

0 0 0 -2.667 4.333 1


Tab. 3.3: The basis B and its inverse at x1

x1 x2 x6 x7 x8 λ6 x3 x4 x5
c 2 3 -20 14 -4 1 10 17

1 -0.20 2.60 1.80 = 20
1 0.40 2.80 3.40 = 45

1 0.08 -0.24 0.08 = 4
1 0.06 -0.18 0.06 = 3

1 0.06 -0.18 0.06 = 3
1 0 0 0 = 0

x1 20 45 4 3 3 z1 = 125
c̃ 1.2 -6.6 4.2

Tab. 3.4: The simplex tableau at x1

A−1
PF , the inverse of the working basis within B−1, is used to compute the dual vector

cᵀFA−1
PF =

[
2, 3, -0.2, -1.133, 0.067

]
of the row set P and partial reduced costs (c̃3, c̃4, c̃5) =

(1.2, -6.6, 4.2). Moreover,

āZj = −AZFA−1
PFaPj + aZj = 0, j ∈ {3, 4, 5},

characterizes column compatibility by computing[
āZ3 āZ4 āZ5

]
= (0, 0, 0, -2.667, 4.333)

[
aP3 aP4 aP5

]
+
[
0 0 0

]
=
[
0 0 0

]
.

The null variables x3, x4 and x5 are compatible with the current row partition, and the
optimal solution to the pricing problem at iteration 1 is y1

4 = 1: x4 enters the basis, being
the only one with a negative reduced cost of -6.6. The ratio test on the top five rows results
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in ρ = min
{

20
2.6
, 45

2.8
,−,−,−

}
= 7.692 and the entering variable x4 provides an objective

function improvement of -6.6× 7.692 = -50.769. The variable x1 goes out of the basis, and
updated free variables x2, x6, x7 and x8 appear in Table 3.5, here presented in terms of the
simplex tableau at x2 before being updated. Observe that the actual combination of variables
x6, x7 and x8 satisfies the last three rows at zero right-hand side. The cost of this solution is
z2 = 74.231.

x4 x2 x6 x7 x8 λ6 x3 x1 x5
c 10 3 -20 14 -4 1 2 17

2 1 -5 7 1 2 = 30
4 1 -5 10 -10 3 = 25
-3 2 3 11 1 1 = 50

6 5 -13 = 0
3 4 -8 = 0
3 -4 0 1 = 0

x2 7.692 23.462 5.846 4.385 4.385 z2 = 74.231
c̃ 0.692 2.538 8.769

Tab. 3.5: The simplex tableau at x2 before being updated

B−1 for x2 appears in Table 3.6 from which cᵀFA−1
PF =

[
-0.538, 3, 0.308, 4.282, -10.256

]
is computed and the partial reduced costs (c̃3, c̃1, c̃5) = (0.692, 2.538, 8.769). Since these are
positive, x2 is optimal.

B−1 =


0.385 -0.077 -0.821 1.564
-1.077 1 0.615 7.897 -14.179
0.092 0.062 0.256 -0.251
0.069 0.046 -0.474 0.895
0.069 0.046 -0.141 0.228

0 0 0 -2.667 4.333 1


Tab. 3.6: The inverse basis B−1 at x2

3.3 Linear Algebra Framework

To appreciate the generality of IPS, the reader is invited to consider its presentation only
borrows from the algebraic manipulations of PS. The linear algebra framework is put forth to
derive another way to look at the row/column partition. Section 3.3.1 introduces the vector
subspace V(AF ) spanned by the column vectors of AF . This is followed in Section 3.3.2
by the practical use of an equivalent subspace basis Λf . In Section 3.3.3, we examine a
different subspace basis, Λr, of possibly larger dimension r ≥ f that is sufficient to span AF .
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Section 3.3.4 discusses the pitfalls of this more general subspace basis and a modified algorithm
is given in Section 3.3.5. For the record, the vector subspace notion is first mentioned in
Benchimol et al. (2012) for the implementation of a stabilized DCA algorithm for the set
partitioning problem.

3.3.1 Vector subspace V(AF )

The concept of compatibility is contextual by nature since it assumes a row partition {P, P̄}
of AF , where P̄ = Z. The reader might have observed that we have taken the liberty to omit
this precision outside the definition of compatibility. It turns out that this omission works
well in our favor. The following result holds the explanation (Desrosiers et al. 2014) whereas
Proposition 18 presents an alternative definition of compatibility which is impervious to the
partition.

Proposition 17. Let APF and AQF be two working bases identifying different row partitions
of AF . If the vector a is compatible with partition {P, P̄} then it is also compatible with
{Q, Q̄}. Hence, we say a is compatible with AF .

Proof. Assume the vector a is compatible with the partition {P, P̄} and consider the following
relation on the set Q:

A−1
PFaP = A−1

QFaQ ⇐⇒ aQ −AQFA−1
PFaP = 0. (3.48)

The right part is verified for every component i ∈ Q: true for i ∈ Q∩ P̄ since the vector a

is compatible whereas for i ∈ Q ∩ P , ai −AiFA−1
PFaP = ai − ai = 0. Hence,

aQ̄ −AQ̄FA−1
QFaQ =

{
ai −AiFA−1

PFaP = ai − ai = 0 ∀i ∈ Q̄ ∩ P
ai −AiFA−1

PFaP = 0 ∀i ∈ Q̄ ∩ P̄ ,
(3.49)

the last equality being true since the vector a is compatible with the partition {P, P̄}.

Proposition 18. A vector a ∈ Rm (and the associated variable, if any) is compatible with
AF if and only if it belongs to V(AF ).

Proof. We first show that if Definition 3 is satisfied for some partition {P,Z} then the
statement rings true. We then show that the converse is also true. Assume that the
vector a is compatible such that āZ = aZ − AZFA−1

PFaP = 0. Let α := A−1
PFaP . Then,
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[
aP

aZ

]
=

[
APFα

AZFα

]
meaning that the vector a indeed belongs to V(aF ). Let us now assume

that there exists some α ∈ Rf such that the vector a is a linear combination of the column
vectors of AF . Since AF is a subspace basis, there exists some row set P such that APF is
invertible. Then, α = A−1

PFaP and compatibility of the vector a follows.

A consequence of Proposition 18 is that every subset Λf of f independent vectors of V(AF )

can be used as a subspace basis for V(AF ). Let us explicitly recall the definition of a vector
basis as a linearly independent spanning set. A simple but important observation is the
following: The set of f independent vectors of AF identified in IPS is therefore a minimal
spanning set capable of representing the current solution, AFx0

F = b0. Indeed, the very
construction of the working basis in B implies that AF spans b0, that is, x0

F = A−1
PFb0

P , see
the system of linear equations in (3.26) or (3.28).

3.3.2 Subspace basis Λf

The identification of the working basis is one of the bottleneck operations of IPS. Furthermore,
as the reader can observe from the formulation (3.28), it is useless to multiply the row set P
by A−1

PF to identify the improving variable θω, ω ∈ Ω, if any. Indeed, only āPω needs to be
computed to perform the ratio test (3.36). An alternative set to AF of f independent vectors
that spans V(AF ) is Λf =

[
If

M

]
, where M = AZFA−1

PF . Together with Λ⊥f =
[

0
Im−f

]
, it

provides the basis T :=
[
Λf ,Λ

⊥
f

]
of Rm and its inverse:

T =

[
If 0

M Im−f

]
and T−1 =

[
If 0

−M Im−f

]
. (3.50)

The LP formulation obtained after the change of variables and the transformation by
the more practical T−1 results in an equivalent system for which only the rows in set Z are
transformed:

z? = cᵀLx0
L + cᵀUx0

U

+ min cᵀFxF + dᵀNyN

s.t. APFxF + A0
PNyN = b0

P , [ψP ]

Ā0
ZNyN = 0, [ψZ ]

lF ≤ xF ≤ uF , 0 ≤ yN ≤ rN ,

(3.51)
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where Ā0
ZN = A0

ZN −MA0
RN . Similarly to (3.29) and (3.30), π can be retrieved from the

dual vector ψ in (3.51) using the expression πᵀ = ψᵀT−1:[
πᵀP ,π

ᵀ
Z

]
=
[
ψᵀP −ψᵀZM, ψᵀZ

]
. (3.52)

When all is said and done, using vector subspace properties enables one to derive a working
basis using any and all efficient methods to extract an equivalent subspace basis. Furthermore,
depending on the application, the inverse is implicitly obtained in M as a by-product of the
decomposition. Of course, having access to the LP solver’s own LU-decomposition would
be quite practical. Note that although B constructed in (3.25) is implicitly considered as
a simplex basis in IPS, T is more generally defined as a basis in Rm, that is, an invertible
linear transformation in Rm.

3.3.3 Subspace basis Λr, r ≥ f

Let us consider the general situation where r, the dimension of the subspace basis Λr spanning
the columns of AF , is larger than or equal to f , the number of free variables. Assume Λr

includes the f columns of AF and r − f ≥ 0 additional columns such that these r columns
are linearly independent. Using a restricted phase I, one identifies r independent rows in the
subset R ⊆ {1, . . . ,m} and the subspace basis can take the form Λr =

[
Ir

M

]
, where M is an

(m− r)× r matrix, whereas Λ⊥r =
[

0
Im−r

]
. Let V(Λr) be the vector subspace spanned by Λr.

At the end of the day, the definition of compatibility can be enlarged to the spanning set of
the chosen subspace basis.

Definition 4. A vector a ∈ Rm (and the associated variable, if any) is compatible with Λr

if and only if it belongs to V(Λr).

3.3.4 Words of caution about compatibility

Once the general form of the subspace basis Λr is retained, it is delicate to still claim this
modified version as IPS. If the latter can be seen as a poorer vector subspace which obviously
includes AF , the added granularity provided by the superfluous columns yields a denser
compatible set.

The danger of over-spanning AF is that a compatible surrogate variable θω, ω ∈ Ω, found
by the pricing problem does not guarantee a strictly improving pivot. Indeed, any value
ā0
iω 6= 0, i ∈ R, corresponding to b̄0

i = 0, i ∈ R, is potential cause for a zero step size, hence
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a degenerate pivot. Observe that the magnitude of the value ā0
iω is irrelevant, what really

matters is its sign. In a very superficial sense, the probability of making a degenerate pivot
thus increases exponentially by one half for every extra row, i.e., 1− (1/2)r−f . When r > f ,
the probability ranges from one half to almost surely very rapidly. For that matter, even an
incompatible variable might induce a nondegenerate pivot with probability (1/2)m−f . The
reader is invited to take a look at the variable x8 in the numerical example of Section 3.2.4
to be convinced of the nondegenerate potential. Of course, a more refined analysis of the
probabilities would include the configuration of matrix A and at this point falls outside the
purpose of this paper.

In most if not all literature surrounding IPS and its derivatives, the concept of compatibility
is associated with a nondegenerate pivot. While it is true that in the purest form of IPS, a
compatible variable necessarily induces a nondegenerate pivot, the implication of the previous
paragraph denies this synonymy for the general form of the subspace basis, as it stands the
implemented version. What does this all mean? The linear algebra framework that surrounds
IPS provides a more robust definition of compatibility. As the latter gains in flexibility, it
loses in certainty. Compatibility provides a way to categorize variables by their capacity to
induce nondegenerate pivots with fair accuracy. We guess researchers have taken the liberty
to address one for the other because of the intent behind the partition scheme. A leap of
faith comes to mind.

To sum up, this larger subspace basis Λr breaks away from the strictly improving pivot con-
struction of IPS. It is however a necessary evil that gives a lot of freedom in the implementation
and, more importantly, closes the theoretical gap between IPS and DCA.

3.3.5 Modified IPS algorithm

Figure 3.12 contains the modifications necessary to include the linear algebra framework to the
vanilla version of IPS. In Step 1, the construction of the working basis uses the representation
T. For Step 2, the compatible set is constructed with the alternative Definition 4. Steps 3
and 4 rely on the modified row partition {R, R̄}, but their essence remains otherwise untouched
and therefore see no particular caveat. Neither does Step 5.

3.4 Aiming for efficiency

This section serves the practical side of an implementation of IPS. The fourth step of IPS,
namely the exchange mechanism, brings the solution of the improved pricing step back to
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1 Generic basis T, transformation T−1, row partition {R, R̄} of Λr;
2 Compatibility with the row partition {R, R̄} of Λr <optional>;
3 Improved pricing step: maximize the minimum reduced cost µ;
4 Exchange mechanism from x0 to x1;
5 Set x0 := x1, update the column partition {F,L, U} and goto Step 1;

Fig. 3.12: Modified IPS algorithmic steps

what can be called a control system. This is indeed where feasibility is maintained by using
the flexibility of the free variables and the interval bounds otherwise omitted from the pricing
step. With that being said, this process of information sharing between the pricing step and
the control system is quite close to a master problem/subproblem paradigm. In fact, with
a better understanding of the pricing step, we argue in Section 3.4.1 that IPS corresponds
to dynamically applying a Dantzig-Wolfe reformulation (Dantzig and Wolfe 1960) at every
iteration, the row partition being done according to the current solution vector x0 given by
[x0
F ; x0

L; x0
U ].

This interpretation of IPS can result in very flexible resolution strategies. Among these
is the usage of the convex combination ω ∈ Ω and its surrogate variable θω opposed to the
column components of ω and their respective original x-variables. We also know from column
generation that generating several columns during one iteration of the pricing step is highly
efficient. In line with this idea also comes that of using heuristics to solve the pricing problem
during the early stage of the resolution process. The fourth and perhaps most important idea
defers to the time consuming task of updating the row partition. Such is the content of the
three subsequent subsections (Sections 3.4.2, 3.4.3 and 3.4.4) which examine these various
ways to accelerate IPS. Section 3.4.5 presents the dynamic Dantzig-Wolfe implementation of
IPS while Section 3.4.6 shares computational results gathered from different papers.

3.4.1 Dynamic Dantzig-Wolfe decomposition

We now present an interpretation of IPS in terms of a decomposition scheme proposed by
Metrane et al. (2010) for standard linear programs. Here is an adaptation for the bounded
case.

Consider a Dantzig-Wolfe decomposition of the previous so-called compact formula-
tion (3.51) which has a block angular structure. The equality constraints in the row set P
together with the interval constraints lF ≤ xF ≤ uF and upper bounds yN ≤ rN stay in the
master problem structure. The equality constraints in the row set Z and the nonnegativity
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constraints yN ≥ 0 form the subproblem domain:

SP := {yN ≥ 0 | Ā0
ZNyN = 0}. (3.53)

The Dantzig-Wolfe decomposition builds on the representation theorems by Minkowski
and Weyl (see Schrijver 1986, Desrosiers and Lübbecke 2011) that any vector yN ∈ SP can
be reformulated as a convex combination of extreme points plus a nonnegative combination
of extreme rays of SP. Moreover, SP is a cone for which the only extreme point is the
null vector yN = 0 at zero cost. Since this extreme point does not contribute to the master
problem constraints, it can as such be discarded from the reformulation. The vector yN can
thus be expressed as a nonnegative combination of the extreme rays {yωN}ω∈Ω:

yN =
∑
ω∈Ω

yωNθω, θω ≥ 0, ∀ω ∈ Ω.

Substituting in the master problem structure, LP becomes:

z? = cᵀLx0
L + cᵀUx0

U + min cᵀFxF +
∑

ω∈Ω[dᵀNyωN ]θω

s.t. APFxF +
∑

ω∈Ω[A0
PNyωN ]θω = b0

P , [ψP ]∑
ω∈Ω[yωN ]θω ≤ rN ,

lF ≤ xF ≤ uF , θω ≥ 0, ∀ω ∈ Ω.

(3.54)

At any iteration of IPS, none of the θ-variables are yet generated and the inequality
constraints in (3.54) are not binding. Therefore, the dual vector for these constraints is null
and the reduced cost of variable θω, ω ∈ Ω, is given by:

[dᵀNyωN ]−ψᵀP [A0
PNyωN ] = (dᵀN −ψᵀPA0

PN)yωN = d̃ᵀNyωN ,

where d̃N is the partial reduced cost vector already used in IPS, see formulation (3.32). Now,
any negative reduced cost ray in SP results in the same subproblem minimum objective
value, that is, −∞. However, observe that for any nonzero solution in the cone defined by SP
in (3.53), there exists a scaled one such that 1ᵀyN = 1. Therefore, without loss of generality,
the domain of the subproblem can be rewritten as

SPN := {yN ≥ 0 | Ā0
ZNyN = 0, 1ᵀyN = 1}. (3.55)
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Hence, an equivalent subproblem in this Dantzig-Wolfe decomposition, searching for a
negative reduced cost column until optimality is reached, is exactly the one defined by the
primal pricing problem (3.33) in IPS:

min d̃ᵀNyN s.t. yN ∈ SPN . (3.56)

The bottleneck of this algorithm is the improved pricing step. Recall that the content of
the latter is a ripple effect of the decomposition choice. These ideas can therefore be separated
in two categories: the first supports the idea that the master problem and the pricing step
are communicating vessels, the second is solely aimed at the pricing step in an effort to find
solutions, not necessarily optimal, faster. Before moving on to the three subsections which
examine the aforementioned various ways to accelerate IPS, let us recall how the master
problem may be fed with surrogate variables or their original column vector content.

Convex combination vs. column components. The weights y0
N dictate the content

of the convex combination ω and ascertain the compatibility requirement of the entering
variable θω. By neglecting these weights, the original column components of the convex
combination can be fed directly to the compact formulation (3.51) along with their associated
original x-variables. While this certainly seems counterproductive for the one direction, let
us go through the mechanics for the sake of argument. Discarding the weights also implies
that the compatible faith of this group of columns is lost. The active constraints in the
pricing problem must therefore also be passed to the compact formulation. The latter can
then obviously be solved to xN = y0

Nθω, a process that leads to the same objective value as
would pivoting θω. The column components mechanics has the potential to shine when one
thinks of a column generation framework where multiple columns are brought back to the
restricted master problem. In this perspective, the original column components fed to the
compact formulation could be arranged with their siblings from other directions at different
levels thus granting more freedom than the surrogate variables provide. Similar techniques
to solve large-scale linear multi-commodity flow problems were previously used by Löbel
(1998) and Mamer and McBride (2000), whereas Valério de Carvalho (1999, 2002) propose
a network-based compact formulation of the cutting stock problem in which the classical
knapsack subproblem is solved as a shortest path problem. In all these applications, the
compact formulation is written in terms of arc flow variables. When a subproblem generates a
path with a negative reduced cost, the arcs of this path are iteratively added to the compact
formulation. This process allows the implicit combination of arcs into paths without having
to generate these. Sadykov and Vanderbeck (2013) describe this in generality.
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3.4.2 Subspace basis update

Postponing the subspace basis update can be taken advantage of on two fronts: before and
after updating to the new solution x1. On the first front, it is indeed a basic idea to harvest
more information from the pricing problem than the one iteration. Let this agenda be known
as multiple improving directions. We present two specific scenarios before the general one.
The first scenario is the particular case of independent improving directions while the second
is the compatible restricted master problem. On the second front, from the Dantzig-Wolfe
mindset, it becomes clear that entering an improving variable θw in the master problem (3.54)
does not necessarily warrant an update of the subspace basis. In either case, it is in effect
a matter of manipulating the dual variables. The price to pay is the possibility of making
degenerate pivots on some of these directions.

Independent improving directions. IPS relies on the strictly improving property of the
algorithm to guarantee that the exchange mechanism goes through the components of θω
with a strictly positive step size, see (3.36). If two variables θω1 and θω2 can be identified from
the pricing problem such that compatibility is obtained from orthogonal vectors of V(AF ),
then ā0

ω1
and ā0

ω2
are independent from each other and can be added to the current solution

in any order both yielding a predictable improvement. Independence constraints need not
be added to the pricing problem in order to carry out this strategy, it suffices to remove
variables that already contribute in the first direction of the variable θω1 . Indeed, the selection
of columns the latter contains should of course be removed from the pricing problem. Among
themselves and variables of xF used to complete the direction, these columns have nonzero
elements on several rows, i.e., they contribute on each of these rows. Any variable that sports
a nonzero value on any of these same rows shares a contribution and can therefore be removed
from the pricing problem. In other words, removing every variable that contributes to the
aforementioned rows amounts, for all intents and purposes, to discarding these constraints as
well.

Compatible restricted master problem (RMPFC). Consider the row partition {R,Z}
of Λr, where Z = R̄. By Definition 4, the columns of AF are compatible with Λr. Denote
by A0

C , C ⊆ N , the columns of A0
N compatible with Λr. Any of these can easily be identified

in O(m) time using PE, see Section 3.7. Let AI be the incompatible columns, I := N \ C.

Using T = [Λr,Λ
⊥
r ] as a basis of Rm and applying the transformation T−1 =

[
Ir 0
−M Im−r

]
on the formulation (3.23), we have ā0

Zj = b̄0
Z = 0, ∀j ∈ F ∪ C. Let Ā0

ZI := A0
ZI −MA0

RI .
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LP becomes

z? = cᵀLx0
L + cᵀUx0

U

+ min cᵀFxF + dᵀCyC + dᵀIyI

s.t. ARFxF + A0
RCyC + A0

RIyI = b0
R, [ψR]

Ā0
ZIyI = 0, [ψZ ]

lF ≤ xF ≤ uF , 0 ≤ yC ≤ rC , 0 ≤ yI ≤ rI .

(3.57)

Restricting the formulation (3.57) to the columns in the set F ∪ C (the compatible
variables) yields the compatible restricted master problem RMPFC defined on the row set R,
much easier to solve than (3.21) as it involves fewer variables and, more importantly, fewer
constraints. As such, it is less subject to degeneracy.

Of course, its optimal solution does not necessarily solve LP. It is equivalent to having
exhausted the pricing step of all improving compatible variables one iteration after another
without having updated the subspace basis. Whether one should update the latter now or
retrieve more directions from the pricing step is arguably the exact same question as one
would face after the first direction is retrieved from the complete pricing step.

Multiple improving directions. To have access to valid combinations of incompatible
columns in A0

I , the Dantzig-Wolfe decomposition obtained from x0 is maintained. Keeping
in the subproblem the equalities from the row set Z, the nonnegativity requirements yI ≥ 0,
and a scaling constraint on yI leads to the following formulation.

min d̃ᵀIyI s.t. yI ∈ SPI :=
{
yI ≥ 0 | Ā0

ZIyI = 0, 1ᵀyI = 1
}
. (3.58)

As previously derived in Section 3.4.1, the substitution of the extreme rays generated
from SPI , yωI , ω ∈ Ω, into the master problem gives

z? = cᵀLx0
L + cᵀUx0

U

+ min cᵀFxF + dᵀCyC +
∑

ω∈Ω[dᵀIy
ω
I ]θω

s.t. ARFxF + A0
RCyC +

∑
ω∈Ω[A0

RIy
ω
I ]θω = b0

R, [ψR]∑
ω∈Ω[yωI ]θω ≤ rN ,

lF ≤ xF ≤ uF , 0 ≤ yC ≤ rC , θω ≥ 0, ∀ω ∈ Ω,

(3.59)
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and similarly to (3.29)–(3.30) or (3.52), the dual vector π can be retrieved using the expression
πᵀ = ψᵀT−1: [

πᵀR,π
ᵀ
Z

]
=
[
ψᵀR −ψᵀZM, ψᵀZ

]
. (3.60)

Ranging from heuristically modifying the dual variables to discarding certain y-variables
or type of solutions, extracting many interesting directions from the pricing problem is then
a matter of creativity. Notice that using all the compatible variables in RMPFC is one such
heuristic.

Postponing subspace basis update past x1. Once again, the row partition is only the
fruit of a linear transformation T−1 at a given iteration. We argue that using surrogate
variables allows to reuse the previous subspace basis because it is simply the result of the
particular Dantzig-Wolfe decomposition partitioning the rows into {R, R̄}. Unfortunately,
when more than one former free variable becomes degenerate, the old subspace basis now
spans degenerate basic variables. It is therefore possible to maintain the old subspace basis
but it implies the use of the more general form Λr. In accordance with Section 3.3.3, we
state that an update is in order when the actual number of free variables |F | is relatively
different from |R|, the row size of the master problem.

3.4.3 Vector subspace flexibility

Given that the vector subspace is defined with respect to the matrix of free variables AF ,
this section shows that it is even possible to play with the set of free variables as we see fit.
The first trick cheats the free status with algebraic manipulations while the other considers a
particular type of upper bounds.

Coerced degeneracy. Another highly important concept is that of coerced degeneracy.
This is used in the capacitated minimum cost network flow problem which can artificially
render any current free variable into two degenerate ones on the residual network, see Ahuja
et al. (1993). Indeed, an arc variable xij taking a value `ij < x0

ij < uij on the original network
formulation can be replaced by two variables representing upward (0 ≤ yij ≤ uij − x0

ij) and
downward (0 ≤ yji ≤ x0

ij−`ij) possible flow variations. The current values of these y-variables
is null and again this can modify the relative row sizes of the master and the pricing problems.
On either count, the choice of the vector subspace results in a degenerate free pricing step.
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Implicit upper bounds. Some applications have a structure that implicitly bounds some
variables by the sheer force of the technological constraints. For instance, the assignment
and the set partitioning models have such a feature. As a matter of fact, all variables in both
of these problems are bounded above by 1, yet the explicit bound needs not be added to the
formulation. That is to say that a variable xj features an implicit upper bound uj if xj > uj

is infeasible regardless of the values of the remaining variables.

Taking upper bounds into account is an obligatory path to guarantee strictly improving
directions. We argue that, in presence of implicit upper bounds, IPS can be applied in two
different manners with respect to the way these upper bounds are taken into account. In
the first case, upper bounds are stated in the formulation whereas the second case omits
them altogether. Assume the variable xj = uj has reached its implicit upper bound. In the
explicit formulation, when an upper bound is reached, it is taken into account thus sending
the variable xj in the pricing problem. In the silenced formulation, a variable xj = uj would
be assumed free.

Since the bound is implicit, it should be obvious that both pricing problems should yield
only nondegenerate directions. It is trivial in the first case since the upper bound is explicitly
taken into account. In the second case, it must be shown that the pricing problem cannot
identify a direction that would increase the variable xj. The fact that xj ≤ uj is implicit
from the set of technological constraints translates into the coefficients of the θω-variables
in (3.34) as these can be derived from the Dantzig-Wolfe reformulation in (3.54), equivalent
to the original formulation. Therefore, one finds the following equality constraint for xj when
it reaches its implicit upper bound:

xj + [ā0
jω]θω = uj,

where θω ≥ 0, ∀ω ∈ Ω. Since xj ≤ uj, the coefficients
[
ā0
jω

]
≥ 0, ∀ω ∈ Ω, and the assumed

free variable xj can only decrease during the exchange mechanism.

The main difference between these two choices echoes the vector subspace V(AF ) and
thus the set of compatible variables, see Proposition 18. Consider the vector subspaces
spanned by AF which contains or not implicitly bounded variables. The distinction lies in
the compatibility set and different AF modify the relative row sizes of the master (f) and
the subproblem (m− f + 1). The added granularity provided by the additional vectors in
the first case creates a denser linear span and thus allows more variable compatibility.

Observe that variables in N are always treated correctly by the pricing problem since they
are observably at one of their bounds. The extension of this result is that a variable in N
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could be assumed to be free, if it can be shown that its current value is an implicit upper
bound. While some very preliminary results are available in Section 3.4.6 with respect to
implicit bounds formulations, both the theoretical and practical implications have yet to be
explored meaningfully. This concept even has an impact within the scope of PS; a variable
at its implicit bound could be either basic or nonbasic in the former case whereas it would
necessarily be basic in the second.

3.4.4 Partial pricing

In this subsection, we discuss possible partial pricing choices to accelerate the resolution
process of the pricing step without compromising optimality. That is, as long as the last
iteration uses the complete model, intermediate pricing steps can use heuristic notions. Partial
pricing strategies become appealing in diversified aspects. For example, one can use various
subsets of compatible and incompatible variables to reduce the density of the pricing problem.
We present three such biases: partial cost, residual capacity, and rank-incompatibility. These
ideas can of course be mixed as deemed worthy.

Partial cost bias. An incompatible variable j ∈ N can be temporarily discarded if its
partial reduced cost d̃j is greater than some threshold value, the most simple one being zero.

Residual capacity bias. The idea of this bias is to guarantee a minimum step size ρ.
One look at the modified ratio test (3.36) suffices to see that the residual capacity bias also
involves free variables. On the one hand, we want to keep the variable j ∈ N if its residual
capacity rj is relatively large. On the other hand, the coerced degeneracy principle must be
used on free variables to keep only those where both values b̄0

i − li and ui − b̄0
i , i ∈ R are

large. Since the ratio test also depends on ā0
iω, it makes this guarantee all the more difficult

to appreciate on arbitrary matrices A. Nevertheless, the idea works well when it is embedded
in the minimum mean cycle-canceling algorithm, an extreme case of row partition where
|F | = 0 since coerced degeneracy is applied on all free variables. Observe that once the
coerced degeneracy is applied, it might be possible to keep one of the coerced free variables
in the pricing problem.

Rank-incompatibility bias. Another possibility is to define the pricing step against rank-
incompatibility. This means that the incompatible variables are attributed a rank according
to the degree of incompatibility they display. The pricing problem sequentially uses lower
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rank incompatible variables. Intuitively, the point is not to stray too far from the current
compatibility definition and thus limit the perturbation caused by modifying it. This concept
is first seen under the name Multi-phase DCA (MPDCA) in the paper of Elhallaoui et al.
(2010).

3.4.5 Dynamic Dantzig-Wolfe algorithm

Figure 3.13 presents the implemented version of IPS inspired by the dynamic Dantzig-Wolfe
construction. The first two steps recuperate the linear algebra work. The biggest modification
thus entails the work done in Step 3 which is now broken down into smaller components. The
first utilizes RMPFC by solving a row-reduced master problem with compatible variables
only. The second calls the pricing problem where the dual multipliers are updated and
only incompatible variables remain. The latter can be solved several times to retrieve many
possibly improving directions using whatever arsenal available to the user to accomplish said
task. Finally, the exchange mechanism in Step 5 can be applied to every predetermined
direction, yet it is simpler to let a PS code create a new working basis using all the gathered
information simultaneously. The reason for this are threefold. First, it ensures that the
solution x1 is basic. Second, it fetches updated dual multipliers for the row set R in case
the generic basis is not updated. Third, it allows for a possibly better solution than the
sequential work. With this new solution x1, the algorithm loops and the partition may (goto
Step 1) or may not (goto Step 3b) (in the surrogate variable environment) be updated. The
pricing step will be influenced by new dual variables either way.

1 Generic basis T, transformation T−1, row partition {R, R̄} of Λr;
2 Compatibility with the row partition {R, R̄} of Λr <optional>;

3a Restricted master problem: solve RMPFC to optimality <optional goto Step 5>;
3b Improved pricing step: maximize the minimum reduced cost µ <optional repeat>;
4 Exchange mechanism from x0 to x1;
5 Set x0 := x1, update the column partition {F,L, U} and goto Step 1 <optional goto

Step 3b instead>;

Fig. 3.13: Dynamic Dantzig-Wolfe algorithmic steps

3.4.6 Computational results for IPS

As the reader might have guessed, these ideas must be meticulously handled in a practical
implementation of IPS for it to be competitive. The computational results for the latter have
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therefore been postponed until this point. Linear programs in standard form have been used
for the comparison between IPS and CPLEX’s PS.

The two main ideas used to obtain these results are the subspace basis update along
with the compatible restricted master problem and the multiple improving directions. On
10 instances involving 2,000 constraints and up to 10,000 variables for simultaneous vehicle
and crew scheduling problems in urban mass transit systems (VCS), IPS reduces CPU times
by a factor of 3.53 compared to CPLEX’s PS (Elhallaoui et al. 2011, Raymond et al. 2010b).
These set partitioning problems have degeneracy levels of about 50%. IPS is also tested on
14 instances of aircraft fleet assignment (FA). These consist in maximizing the profits of
assigning a type of aircraft to each flight segment over a horizon of one week. The content
of the multi-commodity flow formulation for each of these instances can be resumed with
these ballpark figures: a degeneracy level of 65%, 5,000 constraints and 25,000 variables. IPS
reduces CPU times by a factor of 12.30 on average compared to CPLEX’s PS. While both
types of problems are solved by column generation, the IPS methodology is tested by saving
thousands of variables from the generator obviously including the optimal ones.

In these fleet assignment problems, an upper bound of 1 can explicitly be imposed on
arc flow variables (see the discussion in Section 3.4.3). Hence, degeneracy occurs for basic
variables at 0 or at 1. The comparison is still done against CPLEX’s PS but the upper bounds
are explicitly added in both solvers. CPU times are reduced by a factor of 20.23 on average
for these LPs (Raymond et al. 2009). These IPS algorithms have yet to be compared together.

On another note, opposing the convex combination to its column components content
has been tested as follows. Computational experiments conducted with a hybrid algorithm
starting with the classical generated columns (the surrogate variables) for the restricted
master problem and ending with the column components (the original x-variables) for the
compact formulation shows improving average factors of 3.32 and 13.16 compared to CPLEX’s
PS on the previously mentioned VCS and FA problems (Metrane et al. 2010).

3.5 Designing around compatibility

As supported by the vector subspace and the subspace basis flexibility, the compatibility
notion is indeed quite flexible. In fact, when solving particular linear programs, the existing
specialized algorithms, devised within the confines of IPS, that have proved to be successful
share the common trait of being designed around and for compatibility. Sections 3.5.1
and 3.5.2 respectively address network and set partitioning problems.
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3.5.1 Network flow

In the context of the capacitated minimum cost flow problem, one refers to a solution x as a
cycle free solution if the network contains no cycle composed only of free arcs, see Ahuja et al.
(1993). Any such solution can be represented as a collection of free arcs (the nondegenerate
basic arcs forming a forest) and all other arcs at their lower or upper bounds. The column
vectors of the free arcs form AF , see Figure 3.14.
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Fig. 3.14: Forest of free arcs in AF on a residual network

According to Proposition 18 and the flow conservation equations, an arc at its lower or
upper bound is compatible if and only if it can be written in terms of the unique subset of
free arcs forming a cycle with it (Desrosiers et al. 2014). Therefore, a compatible arc simply
links two nodes belonging to the same tree of the forest. By opposition, an incompatible arc
links two nodes of two different trees.

This characterization allows us to better understand the mechanism of improving cycles
in networks. A feasible solution is optimal if and only if there is no negative cost directed
cycle on the residual network. Two types of cycles can result from the pricing problem: a
cycle containing a single compatible arc together with some free arcs of the same tree, or a
cycle containing at least two incompatible arcs together with possibly some free arcs from
different trees of the forest.

In Figure 3.15, the dotted arc (8, 9) is compatible and forms a directed cycle with the free
arcs (9, 10), (10, 11), and (11, 8). Indeed, the associated column in rows 8 through 11 are
such that
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Fig. 3.15: Compatibility characterization of degenerate arcs on a residual network
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The dashed arc (6, 9) links two different trees and is therefore incompatible. This is also
the case for some other arcs, e.g., (8, 12), (3, 4) and (4, 6). The reader may verify that the
sum of the associated four columns is compatible as it can be written as the negated sum of
the columns associated with the free arcs (9, 10), (10, 11), (11, 8) and (12, 13), (13, 3). Indeed,
these nine arcs form a directed cycle in the residual network.

Since IPS only makes nondegenerate pivots, it converges to optimality in a finite number
of iterations on integral data network flow problems. Desrosiers et al. (2013) show that
IPS is strongly polynomial for binary network problems, e.g., assignment, single shortest
path, and unit capacity maximum flow. With a slight modification, it becomes strongly
polynomial for solving the capacitated minimum cost network flow problem. The proposed
contraction-expansion IPS-based algorithm is similar to the minimum mean cycle-canceling
algorithm, see Goldberg and Tarjan (1989), Radzik and Goldberg (1994). On a network
comprising n nodes and m arcs, it performs O(m2n) iterations and runs in O(m3n2) time for
arbitrary real-valued arc costs.
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3.5.2 Set partitioning

The set partitioning problem (SPP) can be formulated as the binary linear program

min cᵀx s.t. Ax = 1, x ∈ Bn, (3.61)

where A ∈ Bm×n. This formulation can be seen as a generic model encountered in various
applications, namely, in vehicle routing and crew scheduling, and many more where the
aim is to perform a clustering of the rows. In such applications, each set partitioning
constraint can be associated with a task i ∈ {1, . . . ,m} that must be covered exactly once.
Such a formulation arises naturally from applying a Dantzig-Wolfe reformulation to a multi-
commodity flow model in which each vehicle or crew member is represented by a separate
commodity, see Desrosiers et al. (1995) and Desaulniers et al. (1998).

In order to express the fundamental exchange mechanism of set partitioning solutions, we
assume that the current vector xF is binary. Figure 3.16 should help demystify the concept
of compatibility on SPP.

AF x4 x5 x6 x7 x8 x9

1 1 1 1
1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1 1

Fig. 3.16: Compatibility characterization for set partitioning binary solution xF

On the left-hand side, we find the binary input solution defined by the three independent
columns of AF . According to Proposition 18, the next column identified by x4 is compatible
with the given partition as it covers exactly the first and third clusters. The third set shows
the two incompatible columns x5 and x6. None can be generated by the columns of AF .
However, their addition is compatible with the given partition as it covers the first and second
clusters of rows. Finally, the right-hand side set exhibits three incompatible columns, x7, x8

and x9: their combination with equal weights of 1/2 is compatible as it covers the second and
third clusters of the row partition. Notice that this combination breaks the integrality of the
next solution.

The compatible columns are readily available using the spanning set AF as per Proposi-
tion 18: a binary column is compatible if and only if it covers some of the clusters. Therefore,
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the interpretation of compatibility can be seen as a question of coverage. When the selected
column is a combination of incompatible columns, the exchange mechanism removes elements
from some clusters to insert them back in other clusters.

When the input solution is fractional, the mathematical definition of compatibility (Def-
inition 3 or Proposition 18) still holds but the interpretation loses practical meaning. In
order to sidestep this unfortunate loss, we can fall back on Λr (Definition 4) and adjust the
subspace basis interpretation with respect to an aggregation/clustering scheme. The idea is
to assume that certain tasks are done together and it is the cornerstone of DCA as described
in the following section. Historically speaking, DCA is a self-standing algorithm devised for
set partitioning models which provides an easy way to define a specialized vector subspace
that often shares the properties of the one designed for IPS. The next section discusses
the differences and similarities that arise between the two methods. We insist that it is in
retrospective that the ties between DCA and IPS have been better understood.

3.6 Dynamic Constraint Aggregation

It is the first time DCA and IPS are studied in parallel. While they share several similarities,
we hope to dissolve the confusion that arises between the two theories by highlighting their
differences. IPS relies on the linear algebra framework to ascertain its faith and is therefore
constructive by nature. It turns out that DCA is also born from a constructive design. This
design is however limited by the embryonic intuition of a reduced basis. Let it be said that
DCA is an intuitive precursor to IPS.

In a nut shell, the differences spring forth from the choice of the vector subspace to
represent the current solution. Recall the subspace basis Λf and the equivalent generic
transformation T−1, DCA disregards this choice and uses the general subspace basis format.
It constructs Λr, r ≥ f , large enough to span AF . Let us see how and why it performs well.

In Section 3.6.1, we derive a row partition using a simple construction. The method is
then applied in Section 3.6.2 on a set partitioning problem. The inexistent pricing step of
DCA is explained in Section 3.6.3. An overview of the algorithm is illustrated in Section 3.6.4.
Section 3.6.5 meditates on the integrality dimension of SPP. Finally, computational results
are summarized in Section 3.6.6.
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3.6.1 Λr derived from the identical rows of AF

The idea behind DCA is similar to the first step of a LU-decomposition for AF . Some of the
rows which can easily be identified as null entries after elimination are actually identical rows.
Of course, such a strategy might propose a set of constraints where some rows are redundant
because linear independence is not thoroughly verified. Nevertheless, the separation between
unique and identical rows induces a partition of the rows. The size of the partition is expressed
as the number of clusters r ≥ f of identical rows in AF . Consider the following generic
example where AF contains six rows distributed into three clusters. The first step (7→)

consists of a permutation of the lines such that the top rows are unique and the bottom rows
are duplicates. The second step (≡) provides a subspace basis Λr where each row cluster
is associated with a unique 1-column identifier. Observe that by construction the top rows
always correspond to Ir in the vector subspace, hence the subspace basis is of the form
Λr =

[
Ir
M

]
:

AF



r1

r1

r2

r3

r3

r3

7→





r1

r2

r3

r1

r3

r3

≡

Λr



1

1

1

1

1

1

The subspace basis Λr may over-span AF if r > f . In other words, when r = f we get
from Proposition 18 that the decomposition is minimal and exactly corresponds to a generic
basis of IPS. When r > f , Λr may lead to degenerate pivots although hopefully less than
with PS.

3.6.2 DCA on set partitioning models

DCA is devised solely for the set partitioning problem. It capitalizes on the compatibility
interpretation and characterization of set partitioning optimal solutions. A binary solution
to (3.61) is usually highly degenerate. Indeed, in typical vehicle routing and crew scheduling
applications, a cluster covers several tasks, say on average m̄, which implies that the number
of variables assuming value one in the basis is of the order m/m̄. The idea of row aggregation
is born.
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Assume for the moment that the linear relaxation of the set partitioning formulation (3.61)
is written in standard form, that is,

z? := min cᵀx s.t. Ax = 1, x ≥ 0. (3.62)

We present three situations that can occur in DCA. The first assumes the current solution
is binary while the second and third consider a fractional input for which the partition is the
same as the IPS decomposition for the former and different for the latter.

If xF is binary, the corresponding columns of AF are disjoint and induce a partition of
the row set into f clusters. From AF , it is easy to construct a reduced working basis: take a
single row from each cluster and therefore, upon a permutation of the columns and rows of A,
matrix APF is If . This is illustrated with the following integer solution (x1, x2, x3) = (1, 1, 1):

AF



1

1

1

1

1

1

1

7→





1

1

1

1

1

1

1

≡

Λf



1

1

1

1

1

1

1

.

If xF is fractional, the row partition is again derived from the number of clusters r ≥ f of
identical rows of AF . If r = f , we can again construct a working basis as in IPS. Take the first
row from each cluster to form APF while them−f rows of AZF are copies of the f independent
rows of APF . Right multiplying AF by A−1

PF provides the subspace basis Λf =
[

If

AZFA
−1
PF

]
.

This alternative subspace basis is similar to the one obtained from a binary solution. This is
illustrated with the following 3-variable fractional solution (x1, x2, x3) = (0.5, 0.5, 0.5):
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AF



1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

7→





1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

≡

Λf



1

1

1

1

1

1

1

1

.

The third example shows a subspace basis Λr with r > f induced by xF = (x1, x2, x3, x4)

= (0.5, 0.5, 0.5, 0.5). AF comprises five clusters of identical rows, hence Λr has a dimension
of r = 5. The row vectors satisfy r1 + r3 = r2 + r5 and IPS would have discarded one of these
to construct APF of dimension f = 4.

AF



1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

7→





1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

≡

Λr



1

1

1

1

1

1

1

1

.

The idea of compatibility steered the research and the implementation of DCA and its
variants. In the context of routing and scheduling, compatibility thus means generating
itineraries or schedules which precisely respect the current clustering into multi-task activities.
Of course, this is in perfect harmony with Definition 4. From the above discussion, we see that
the subspace basis Λr is derived from the solution of the linear relaxation formulation (3.62).
However, the process can be initialized from any partition Λr of the rows: this can be done
in a heuristic manner, even infeasible. This simply results in a linear transformation T−1

applied on the system of equality constraints, updated when needed.
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3.6.3 Resolution process

The resolution process of DCA uses several properties presented in Section 3.4. In fact,
RMPFC is implemented under the name of aggregated restricted master problem by Elhallaoui
et al. (2005). The missing part of the puzzle, now provided by IPS, is the pricing problem (3.58).
Since DCA did not have such a feature when it was originally designed, let us take a look
how it manages to pursue the optimal solution.

Let us go back to basics and consider an optimal basic solution to RMPFC , that is, the
formulation (3.57) restricted to the column set F ∪ C (the compatible variables). From
now on assume F represents the index set of the free variables in this so-called current
solution, where f ≤ r, and ψR is an optimal dual vector. If f = r, the matrix ARF is the
current working basis as in IPS; otherwise f < r and the working basis is the final PS basis
provided with the optimal solution, the one that serves to compute ψR. In any case, we have
c̄F = cF − ψᵀRARF = 0 for basic variables xF and c̄C = cC − ψᵀRARC ≥ 0 by optimality.
The current solution is optimal if

c̄I = cI −ψᵀRARI −ψᵀZĀZI ≥ 0.

While solving RMPFC , the neglected constraints in the row set Z have no dual information
on ψZ . As in IPS, reduced costs c̄I are partial to the chosen partition. Yet, optimality of
current solution is either true or false. The same reduced costs written with respect to the
original dual vector, c̄I = cI − πᵀAI , highlight the possibility of adapting dual vector ψR to
π. The answer appears in (3.60),

[
πᵀR,π

ᵀ
Z

]
=
[
ψᵀR −ψᵀZM,ψᵀZ

]
, which leads us to

πᵀR + πᵀZM = ψᵀR. (3.63)

As every column of the binary matrix M in a set partitioning problem identifies the
remaining rows of a cluster, it means that ψi, i ∈ R, the dual variable of a cluster, must be
distributed across the rows of its cluster, that is, (3.63) reads as

∑
`∈Ri π` = ψi, ∀i ∈ R. Note

that ∀i ∈ R, no matter how the ψi are distributed over their respective clusters, c̄F = 0 and
c̄C ≥ 0 remain satisfied. Therefore, consider the following set of constraints:

πᵀaj ≤ cj, ∀j ∈ I, (3.64)∑
`∈Ri

π` = ψi, ∀i ∈ R. (3.65)
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Notice that the system (3.64)–(3.65) is about feasibility. On the one hand, it is indeed
feasible which means that the existence of acceptable dual variables certifies the optimal
status of the current solution. On the other hand, it is infeasible: some constraints from (3.64)
are removed until one retrieves a vector π. Given those π values, DCA next prices out
variables as in PS. A small selection of negative reduced costs incompatible variables is
presumptuously added to current AF , say columns AI′ , I

′ ⊂ I, such that a new partition is
induced by the identical rows in [AF ,AI′ ], where f + |I ′| ≤ m. This yields a new subspace
basis Λr, r > f , at which point the algorithm proceeds with a new iteration, solving RMPFC

over a new set of constraints and compatible variables.

In DCA, the exercise of distributing the dual multipliers is called dual variable disaggrega-
tion. Since the expectation of an optimal solution to (3.64)–(3.65) can be put on hold, the
system can be preemptively constructed in such a way that the algorithm expects a new
partition. In particular, Elhallaoui et al. (2010) use a low-rank incompatibility strategy. In
this respect, the disaggregation is heuristic by design.

Column generation. The pricing step established in IPS is however now available for DCA.
Furthermore, in the context of column generation, columns of A being unknown and thus
provided by a column generation pricing problem, the transformed matrix Ā needs to be
fabricated just the same. Indeed, the reader can verify that the improved pricing step would
optimally solve by column generation (see Desrosiers et al. 2014) the following problem,
equivalent to (3.58) for a set partitioning problem written in standard form:

max µ

s.t. µ ≤ cj − πᵀaj, [yj] ∀j ∈ I,∑
`∈Ri

π` = ψi, ∀i ∈ R.
(3.66)

In SPP formulations of vehicle routing problems, the column generation pricing problem
is a constrained shortest path. Since Ā carries the information about the chosen parti-
tion {R, S}, modifying the constrained shortest path generator to account for this assumed
partition effectively lightens its computational burden. Coined Bi-dynamic constraint aggre-
gation (BDCA), this strategy is accounted for in the second revision of DCA, see Elhallaoui
et al. (2008). While the idea of transferring the partition information might seem intuitive,
the content of the latter paper is hardly summarizable in a few lines. We therefore insist on
the former idea rather than this one successful application.
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3.6.4 DCA algorithm

Figure 3.17 presents the algorithm for DCA. Let us concentrate on the modifications brought
to Steps 3–5. The dual variable disaggregation replaces the pricing problem in Step 3b. Since
the latter no longer provides an improving direction, Step 4 is skipped altogether. In Step 5,
we move on directly to the column partition update. The small selection of incompatible
variables I ′ ⊆ I accompanies the column set F in Step 1 to create a new row partition.

1 Generic basis T, transformation T−1, row partition {R, R̄} of Λr;
2 Compatibility with the row partition {R, R̄} of Λr <optional>;

3a Restricted master problem: solve RMPFC to optimality <optional goto Step 5>;
3b Fetch a subset I ′ ⊆ I from the dual variable disaggregation;
4 Skip the exchange mechanism;
5 Update the column partition {F,L, U} and goto Step 1;

Fig. 3.17: DCA algorithmic steps

3.6.5 Maintaining integrality

In SPP, wishful thinking unites with practicality. Indeed, the binary structure of the
technological constraints is highly prejudicial to identical appearances in AF represented by
positive variables. Recall the three proposed examples to support this claim. In fact, when
the solution is binary, the master problem of DCA is the same as in IPS. Furthermore, the
nature of the pricing problem is such that it identifies convex combination containing few
number of variables. Researchers such as Zaghrouti et al. (2014) rapidly turned a keen eye
on this feature in an effort to maintain the integrality throughout the resolution process. It
is known as Integral Simplex Using Decomposition (ISUD).

It amounts to verifying that the solution of the pricing problem, finally recuperated from
IPS, yields an improved binary solution, rejecting the associated direction otherwise. In this
respect, the binary restriction is transferred to the pricing problem, yet it is only used on
a needed basis. Of course, the additional work imposed de facto on the pricing problem
makes it more difficult to solve but if an optimal binary solution is obtained, it means the
elimination of the branch-and-bound requirement. That is to say that when we aim to
maintain integrality in the resolution process, it makes it hard not to endorse DCA’s strategy.
The latter exploits a fast partition scheme which works out exactly when the solution is
binary and compatibility is easy to verify without the need of an inverse.
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3.6.6 Computational results for DCA

For the aforementioned VCS problems with some 2,000 constraints together with average
degeneracy levels between 40 and 50%, the combination of these ideas within GENCOL, a
column generation software system, allows a reduction of solution times by factors of 50 to
100 (4.86 DCA × 4.38 BDCA × 4.53 MPDCA). The improvement factors are compounded
as the strategies mix well together. DCA is the original version which is improved upon when
the partition information is exploited in the pricing problem for generating negative reduced
cost columns. Firstly with the modified constrained shortest path problem (BDCA) and
secondly with the use of a low-rank incompatibility strategy (MPDCA).

To overcome degeneracy encountered during the resolution of the restricted master problem,
Benchimol et al. (2012) propose a stabilized DCA (SDCA) that incorporates the above
mentioned DCA into the dual variable stabilization (DVS) method of Oukil et al. (2007).
The rationale behind this combination is that DCA reduces the primal space whereas DVS
acts in the dual space. Combining both thus allows to fight degeneracy from primal and dual
perspectives simultaneously. This method is again designed for solving the linear relaxation of
set partitioning type models only. The computational results obtained on randomly generated
instances of the multi-depot vehicle scheduling problem show that the performance of SDCA
is not affected by the level of degeneracy and that it can reduce the average computational
time of the master problem by a factor of up to 7 with respect to DVS. While this is not
a direct comparison with DCA, the reduction factor would be even greater. Indeed, many
instances solved by DVS could not be solved by DCA alone.

While DCA is implemented in a column generation context, ISUD is still in the early
phase and applies only to known columns. The latest work of Rosat et al. (2014) shows that
the pricing problem can be modified with relatively simple cuts when directions are rejected.
These cuts have a major impact on the mean optimality gap dropping to 0.21% on some
aircrew scheduling problems from 33.92% in the first ISUD paper.

3.7 Positive Edge

The identification of variables compatible with the row set R requires the computation of the
transformed matrix Ā0

ZN = T−1
Z A0

ZN , where T−1
Z :=

[
−M Im−r

]
. For large-scale problems,

this can be time consuming. To overcome this situation, Raymond et al. (2010a) propose the
Positive Edge rule. The latter exploits a creative stochastic argument which in turn allows
the use of matrix multiplication rules to reduce the computational penalty. PE allows to
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determine whether a variable yj, j ∈ N, is compatible or not without explicitly computing the
vector āZj = T−1

Z aj. It is based on the observations put forth in Section 3.7.1. Its statement
is unveiled in Section 3.7.2 which also discusses its scope. Computational results are made
available in Section 3.7.3.

3.7.1 Observations

Recall that if aj is compatible, then āZj = 0. Hence, for any vector v ∈ Rm−r, we must have
vᵀāZj = 0. Otherwise, āZj 6= 0 and

vᵀāZj = 0 if and only if v ⊥ āZj, (3.67)

that is, if and only if v and āZj are orthogonal. Intuitively, this has a probability of zero for
a continuous random vector v. Define wᵀ := vᵀT−1

Z . Then, for any variable yj, j ∈ N ,

vᵀāZj = vᵀT−1
Z aj = wᵀaj. (3.68)

The expression (3.68) is similar to c>Bāj = π>aj in the computation of the reduced cost of
the variable xj , where π is the vector of dual variables associated with the constraints Ax = b.

Computer architecture obliges, the continuous support is traded for a discrete one thus
rendering the orthogonal probability to a nonzero value, although shown to be very small by
Raymond et al. (2010a). We skip the proof and present only the random vector construction
whose elements answer to the following definition.

Definition 5. Within the specifications of a computer with 32-bit words, a nonzero rational
number F ∈ Q0 with a discrete random distribution SEM32 is a single precision floating-point
number whose sign bit S, exponent E, and mantissa M are independent and follow the discrete
uniform distributions S ∼ U [0, 1], E ∼ U [64, 191], and M ∼ U [0, 223 − 1].

The random distribution SEM32 is symmetric around a zero mean (µF = 0) with a huge
dispersion, its standard deviation being σF > 260 (Towhidi et al. 2014). The random vector v ∈
Qm−r

0 is such that all m− r components are independent and identically distributed SEM32.

3.7.2 PE rule

Within the scope of IPS, PE is a compatibility test which identifies nondegenerate improving
pivots. It is a statistical test whereby the null hypothesis assumes the vector a is incompatible
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until sufficient evidence is provided to conclude otherwise. On a more abstract level, PE is a
membership test. In a linear algebra framework, PE indeed amounts to stochastically testing
whether a given vector belongs to a subspace. Two types of error may surface, the vector a is
assumed compatible but it is not or the vector is assumed incompatible when it is.

Positive Edge rule. Let v ∈ Qm−r
0 be a random SEM32 vector and premultiply the

vector wᵀ := vᵀT−1
Z as in (3.68). A vector a ∈ Rm is considered compatible with the vector

subspace V(Λr) if wᵀaj = 0.

Since the operation amounts to a dot product, this means that a compatible variable
is recognized in O(m) time using the original vector aj. Researchers suggested to first
consider compatible variables. Indeed, since these variables exist in the original formulation,
their identification can benefit both the pricing step in IPS as well as provide additional
information for pivot-selection rules in PS. As such, we believe the foremost purpose of PE is
the identification of compatible variables.

With respect to IPS, the pricing problem over compatible variables reduces to minj∈C d̃j

while that over the incompatible ones is identical to (3.33) [or (3.45) for linear programs in
standard form] but with yN replaced by yI . Notice that considering the set C is solely from
a theoretical point of view, while in practice the compatibility test is only performed for
variables with negative reduced costs or a subset of them.

PE has also been tested independently of IPS, that is, by selecting entering variables in PS
among the compatible set in priority. We provide details in the computational results below.

3.7.3 Computational results for PE

The proof of concept is provided in Raymond et al. (2010a) by using two external procedures
within CPLEX’s black box environment. A direct implementation in COIN-OR’s CLP, where it
has been combined with the Devex pricing criterion, is presented in Towhidi et al. (2014).
The proposed implementation uses a two-dimensional rule: for a variable xj, j ∈ N , the first
dimension computes the reduced cost c̄j = cj −πᵀaj , whereas the second evaluates wᵀaj . PE
identifies Cw = {j ∈ N |wᵀaj = 0} and Iw = {j ∈ N |wᵀaj 6= 0}. Let c̄j? , j? ∈ Cw ∪ Iw, be
the smallest reduced cost and c̄jw , jw ∈ Cw, be the smallest one for a compatible variable.
The current solution is optimal if c̄j? ≥ 0. Compatible variables are preferred to enter the
basis except if c̄j? is much smaller than c̄jw . Given a parameter 0 ≤ α < 1, the selection rule
is:

if c̄j? < 0 and c̄jw < αc̄j? , then select xjw else xj? . (3.69)
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Tested with α = 0.5 on 32 problems from Mittelmann’s library (Koch et al. 2011) which
contains instances with a wide range of degeneracy levels, computational results show that
below a degeneracy level of 25%, PE is on average neutral while above this threshold, it
reaches an average runtime speedup of 2.72, with a maximum of 4.23 on an instance with a
75% degeneracy level.

3.8 Conclusions

This paper presents a survey of three recent tools for dealing with primal degeneracy in linear
programming. While DCA appears first in the context of set partitioning models encountered
in many routing and scheduling formulations solved by branch-and-price, IPS extends the
concept to linear programs in general. Both methods partition the set of constraints in two
parts, at every iteration, based on the values taken by the basic variables. This can be seen
as a dynamic application of the Dantzig-Wolfe decomposition principle. More specifically
in IPS, one part of the constraints appears in the pricing problem as a homogeneous linear
system (together with nonnegative variables) while the other part (together with the bound
intervals on the variables) is used in the master problem to complete the exchange mechanism
from one feasible solution to the next.

This paper also unifies IPS and DCA through a new interpretation in terms of the usage of
two different subspace bases spanning the columns of the master problem. On the one hand,
the subspace basis of IPS is made of the column vectors associated with the nondegenerate
(or free) basic variables. As such every iteration of IPS is nondegenerate. On the other hand,
that in DCA is derived from a partition of the rows into clusters, such as the one observed in
any integer solution. This subspace basis has the fundamental property that it at least spans
the free variable vectors. Therefore, the dimension of the subspace basis in DCA may be
sometimes larger rather than equal to the number of free variables and this is the reason why
some degenerate pivots may occur.

PE adds a compatibility test layer, done in polynomial time, to the traditional reduced cost
pricing of nonbasic variables. That is, it identifies those entering variables that belong to the
current vector subspace and are likely to lead to nondegenerate pivots, if any. Otherwise, the
IPS pricing step identifies a convex combination of incompatible ones which also ultimately
leads to a nondegenerate pivot until optimality is reached in a finite number of iterations.

Computational results reported from the literature show a large reduction on CPU times
attributed to the diminution of degenerate pivots. What does the future look like? While
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the theory behind IPS is sound and relatively straightforward, a general implementation is
certainly a major concern. It is however hard to discard the specific structures of different
families of LP problems. In this respect, the reader can think of several specializations of
IPS to well structured problems such as network flows, multi-commodity flows, and linear
relaxations of set partitioning and set covering problems.

The improved pricing step is the bottleneck of the method and needs to be handled
with a great deal of insight. An efficient all-purpose implementation requires a significant
amount of work and forces us to think about the different acceleration strategies that were
presented herein. To name but a few, we have the partial pricing, the flexible subspace basis,
the Dantzig-Wolfe surrogate variable environment and of course the infamous compatibility
concept. The question that remains to be answered is whether trigger points for the usage of
these ideas can be automated.

We are also looking at an implementation of these ideas within column generation, its
adaptation to the dual simplex algorithm and to convex optimization, and its impact on the
right-hand side sensitivity analysis, indeed the interpretation of the dual variables in the
context of optimal degenerate solutions. Finally, the design of a completely efficient Integral
Simplex algorithm for the set partitioning problem is a major goal.

Acknowledgements

Jacques Desrosiers acknowledges the Natural Sciences and Engineering Research Council of
Canada for its financial support.

98



Decomposition theorems for linear programs

Jean Bertrand Gauthier and Jacques Desrosiers

GERAD & HEC Montréal, Canada

3000, chemin de la Côte-Sainte-Catherine
Montréal (Québec) Canada, H3T 2A7

<jean-bertrand.gauthier, jacques.desrosiers>@hec.ca

Marco E. Lübbecke

RWTH Aachen University, Germany

Kackertstraße 7
D-52072 Aachen, Germany

marco.luebbecke@rwth-aachen.de



ABSTRACT

It is well known that any feasible arc-flow solution to a network problem defined on a graph
G = (N,A), where N is the set of nodes whereas A is the set of arcs, can be expressed using
at most |A| + |N | paths and cycles having nonzero flow, out of these, at most |A| cycles.
This existence theorem is used in a number of proofs establishing the complexity of strongly
polynomial algorithms for network flow problems such as the minimum mean cycle-canceling
algorithm. While it is the crucial component of the analysis, the heart of the algorithm is
the residual network upon which are derived two theorems that demonstrate its validity,
the Augmenting Cycle Theorem and the Negative Cycle Optimality Theorem. This paper
generalizes these theorems to linear programming.

Given a linear program (LP ) with m constraints and n lower and upper bounded variables,
any solution x0 to LP can be represented as a nonnegative combination of at most m+ n

so-called weighted paths and weighted cycles, among which at most n weighted cycles. This
fundamental decomposition theorem leads us to derive, on the residual problem LP (x0), two
alternative optimality conditions for linear programming, and eventually, a class of primal
algorithms that rely on an Augmenting Weighted Cycle Theorem.

Keywords: network problems, flow decomposition, linear programming, residual problem,
optimality conditions.



4. Decomposition theorems for linear programs

4.1 Introduction

Network flow problems can be formulated either by defining flows on arcs or, equivalently,
flows on paths and cycles, see Ahuja et al. (1993). A feasible solution established in terms of
path and cycle flow determines arc flows uniquely. The converse result, that is the existence
of a decomposition as a path and cycle flow equivalent to a feasible arc-flow solution x0,
is also shown to be true by the Flow Decomposition Theorem, although the decomposition
might not be unique. This result can be refined for circulation problems, establishing that a
feasible circulation can be represented along cycles only. Originally developed by Ford and
Fulkerson (1962) for the maximum flow problem, the flow decomposition theory intervenes
in various situations, notably on the residual network. It is used to prove, among many
other results, the Augmenting Cycle Theorem and the Negative Cycle Optimality Theorem.
The first allows to build one solution from another by a sequence of cycles. The second
states that arc-flow solution x0 is optimal if and only if the residual network contains no
negative cost cycle therefore providing optimality characterization for network flow problems.
The Flow Decomposition Theorem is a fundamental theorem as it is an essential tool in the
complexity analysis of several strongly polynomial algorithms such as the minimum mean
cycle-canceling algorithm, see Goldberg and Tarjan (1989), Radzik and Goldberg (1994),
and Gauthier et al. (2015b) for an improved complexity result. This paper generalizes these
network flow theorems to linear programming.

The presentation adopts the organization of the introduction as follows. In Section 4.2,
we first present a proof of the Flow Decomposition Theorem on networks based on linear
programming arguments rather than the classical constructive ones. This provides an
inspiration for the general case of linear programming. Section 4.3 establishes our main result
based on a specific application of the Dantzig-Wolfe decomposition principle. This is followed
in Section 4.4 by the proof of an Augmenting Weighted Cycle Theorem used to derive in
Section 4.5 two alternative optimality conditions for linear programs that are based on the
properties of a residual linear problem. We open a discussion in Section 4.6 which addresses
the adaptation to linear programs of the minimum mean cycle-canceling algorithm and the
design of a column generation based algorithm.

Notation. Vectors and matrices are written in bold face characters. We denote by 0 or 1 a
vector with all zero or one entries of appropriate contextual dimensions.
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4. Decomposition theorems for linear programs

4.2 A decomposition theorem for network flow problems

Consider the capacitated minimum cost flow problem (CMCF) on a directed graph G = (N,A),
where N is the set of nodes associated with an assumed balanced set bi, i ∈ N , of supply
or demand defined respectively by a positive or negative value such that

∑
i∈N bi = 0, A is

the set of arcs of cost c := [cij](i,j)∈A, and x := [xij](i,j)∈A is the vector of lower and upper
bounded flow variables. An arc-flow formulation of CMCF, where dual variables πi, i ∈ N,
appear in brackets, is given by

z? := min
∑

(i,j)∈A

cijxij

s.t.
∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = bi, [πi] ∀i ∈ N

0 ≤ `ij ≤ xij ≤ uij, ∀(i, j) ∈ A.

(4.70)

When right-hand side b := [bi]i∈N is the null vector, formulation (4.70) is called a circulation
problem. The Flow Decomposition Theorem for network solutions is as follows.

Theorem 7. (Ahuja et al. 1993, Theorem 3.5 and Property 3.6) Any feasible solution x0 to
CMCF (4.70) can be represented as a combination of directed path and cycle flows —though
not necessarily uniquely— with the following properties:

(a) Every path with positive flow connects a supply node to a demand node.

(b) At most |A|+ |N | paths and cycles have positive flow among which at most |A| cycles.
(c) A circulation x0 is restricted to at most |A| cycles.

Proof. The proof of the above theorem traditionally relies on a constructive argument. We
propose an alternative one based on the application of the Dantzig-Wolfe decomposition
principle (Dantzig and Wolfe 1960). The network problem is first converted into a circulation
problem, partitioning the set of nodes N in three subsets: supply nodes in S := {i ∈ N | bi >
0}, demand nodes in D := {i ∈ N | bi < 0}, and transshipment nodes in N \{S∪D} for which
bi = 0, i ∈ N . Supplementary nodes s and t are added to N for a convenient representation
of the circulation problem together with zero-cost arc sets {(s, i) | i ∈ S}, {(i, t) | i ∈ D},
and arc (t, s). Supply and demand requirements are transferred on the corresponding arcs,
that is, `si = usi = bi, i ∈ S, and `it = uit = −bi, i ∈ D. Let G+ = (N+, A+) be the new
network on which is defined the circulation problem.

102



4. Decomposition theorems for linear programs

Flow conservation equations for nodes in N+ together with the nonnegativity requirements
on arcs in A+ portray a circulation problem with no upper bounds. These define the domain
SP of the Dantzig-Wolfe subproblem whereas lower and upper bound constraints remain in
the master problem. By the Minkowski-Weil’s theorem (see Schrijver 1986, Desrosiers and
Lübbecke 2011), there is a vertex-representation for the domain SP. The latter actually
forms a cone that can be described in terms of a single extreme point (the null flow vector)
and a finite number of extreme rays, see Lübbecke and Desrosiers (2005) for additional
representation applications.

These extreme rays are translated to the original network upon which is done the unit
flow interpretation in terms of paths and cycles. For an extreme ray with xts = 1, we
face an external cycle in G+, that is, a path within G from a supply node to a demand
node, while an extreme ray with xts = 0 implies an internal cycle in G+, that is, a cycle
within G. Furthermore, the extreme ray solutions to SP naturally satisfy the flow conservation
constraints and therefore respect the directed nature of G. Paths and cycles are therefore
understood to be directed even though we omit the precision in the spirit of concision.

Let P and C be respectively the sets of paths and cycles in G. The null extreme point at
no cost can be removed from the Dantzig-Wolfe reformulation as it has no contribution in
the constraint set of the master problem. Any nonnull solution

[
x,xS,xD, xts

]ᵀ
to SP can

therefore be written as a nonnegative combination of the extreme rays only, that is, in terms of
the supply-demand paths

[
xp,xSp,xDp, 1

]ᵀ
, p ∈ P , and internal cycles

[
xc,0,0, 0

]ᵀ
, c ∈ C:


x

xS

xD

xts

 =
∑
p∈P


xp

xSp

xDp

1

 θp +
∑
c∈C


xc

0
0
0

φc, θp ≥ 0, ∀p ∈ P , φc ≥ 0, ∀c ∈ C. (4.71)

Define cp = cᵀxp, p ∈ P , as the cost of a path and cc = cᵀxc, c ∈ C, as the cost of a cycle.
The Dantzig-Wolfe master problem, an alternative formulation of CMCF (4.70) written in
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terms of nonnegative paths and cycles, respectively θ and φ-variables, is given as

z? := min
∑
p∈P

cpθp +
∑
c∈C

ccφc

s.t. l ≤
∑
p∈P

xpθp +
∑
c∈C

xcφc ≤ u∑
p∈P

xSpθp = bS∑
p∈P

xDpθp = −bD

θp ≥ 0, ∀p ∈ P , φc ≥ 0, ∀c ∈ C.

(4.72)

The rest of the proof relies on the dimension of any basis representing a feasible solution
x0 to (4.70). The latter can be expressed in terms of the change of variables in (4.71) and
satisfies the system of equality constraints in (4.72):∑

p∈P

xpθp +
∑
c∈C

xcφc = x0

∑
p∈P

xSpθp = bS∑
p∈P

xDpθp = −bD

θp ≥ 0, ∀p ∈ P , φc ≥ 0, ∀c ∈ C.

(4.73)

Since any basic solution to (4.73) involves at most |A|+ |S|+ |D| nonnegative θ, φ-variables,
there exists a representation for x0 that uses at most |A| + |N | path and cycle variables,
among which at most |A| cycles (φ-variables). In the case of a circulation problem for which
b = 0, there are no paths involved (no θ-variables) and x0 can be written as a combination
of at most |A| cycles.

4.3 A decomposition theorem for linear programs

In this section, we generalize Theorem 7 to the feasible solutions of a linear program (LP ).
Although it is usually frowned upon, we warn the reader that we reuse some of the same
notations previously seen in networks. While the semantics are a little bit distorted, we
wish to retain the ideas attached to them. The proof again relies on a specific Dantzig-
Wolfe decomposition. Consider the following LP formulation with lower and upper bounded
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variables:
z? := min cᵀx

s.t. Ax = b, [π]

0 ≤ l ≤ x ≤ u,

(4.74)

where x, c, l,u ∈ Rn, b ∈ Rm, A ∈ Rm×n, and m ≤ n. Without loss of generality, we also
assume that right-hand side vector b ≥ 0. If b = 0, we face a homogeneous system of
constraints. The vector of dual variables π ∈ Rm associated with the equality constraints
appears within brackets. In order to perform our specific decomposition, we introduce a
vector of nonnegative variables v ∈ Rm and rewrite LP (4.74), splitting the constraints in
two subsets:

z? := min cᵀx

s.t. l ≤ x ≤ u

v = b

Ax− v = 0

x ≥ 0, v ≥ 0.

(4.75)

Let the subproblem domain be the cone defined by SP := {x ≥ 0, v ≥ 0 | Ax− v = 0}
whereas objective function as well as constraint sets l ≤ x ≤ u and v = b remain in the
master problem. With Minkowski-Weil’s theorem in mind, take a look at the possible solution
types of SP . On the one hand, it comprises a single extreme point, the null solution at zero

cost. On the other hand, the extreme rays, indexed by r ∈ R, are of two types:

(
xr

vr

)
, r ∈ R,

with either vr 6= 0 or vr = 0. Discarding the null extreme point from the Dantzig-Wolfe
reformulation as it does not contribute to any constraints of the master problem nor to its
objective function, index set R is exhaustively partitioned in two mutually exclusive subsets
according to the value of vr: P := {r ∈ R | vr 6= 0} and C := {r ∈ R | vr = 0}. Any nonnull

solution

(
x

v

)
∈ SP can therefore be solely expressed as a nonnegative combination of the

extreme rays of SP :(
x

v

)
=
∑
p∈P

(
xp

vp

)
θp +

∑
c∈C

(
xc

0

)
φc, θp ≥ 0, ∀p ∈ P , φc ≥ 0, ∀c ∈ C. (4.76)

Recall that the interpretation of network paths and cycles is done with respect to the
original network. In the LP case, we chose a less intrusive transformation for which the
content of v in the solutions of SP still grants meaning to the concept of paths and cycles.
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Indeed, when v = 0, the homogeneous system Ax = 0 is verified whilst v 6= 0 implies an
impact on the right-hand side b. The directed notion is of course once again implicit to the
nature of the solutions found in SP .

A more subtle concept to pass is the unit in which is measured these paths and cycles.
The essence of an extreme ray is to be malleable by its multiplier. Unfortunately, this does
not translate as well in LP as it does in networks. Indeed, a solution to SP found for
network problems can always be scaled back to a unit flow cycle. In LP , the positive variables
contained in an extreme ray can display different values. It is thus impossible to get rid of
the scaling effect. As such, let an extreme ray ( xp

vp ) , p ∈ P, be called a weighted path and
an extreme ray ( xc

0 ) , c ∈ C, be called a weighted cycle. The cost of these objects is thus
measured in accordance with that scale and not against an arbitrary unit measure. Define
cr = cᵀxr as the cost of an extreme ray, r ∈ R = P ∪ C. Substituting for x and v in (4.75),
the Dantzig-Wolfe master problem (MP), a reformulation of the original LP (4.74), becomes

z? := min
∑
p∈P

cpθp +
∑
c∈C

ccφc

s.t. l ≤
∑
p∈P

xpθp +
∑
c∈C

xcφc ≤ u∑
p∈P

vpθp = b

θp ≥ 0, p ∈ P , φc ≥ 0, c ∈ C.

(4.77)

Let x0 be a feasible solution to LP (4.74), that is, Ax0 = b, l ≤ x0 ≤ u. Therefore, x0

must satisfy the following system derived from the change of variables (4.76) and the equality
constraints in (4.77): ∑

p∈P

xpθp +
∑
c∈C

xcφc = x0

∑
p∈P

vpθp = b

θp ≥ 0, p ∈ P , φc ≥ 0, c ∈ C.

(4.78)

This linear system of equations comprises m+ n constraints for which any basic solution
involves at most m+ n positive variables, among which at most n variables φc, c ∈ C. The
above discussion on the Dantzig-Wolfe reformulation of LP (4.74) constitutes the proof of
our fundamental decomposition theorem for linear programming.
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Theorem 8. Any feasible solution x0 to LP (4.74) can be represented as a nonnegative
combination of weighted paths and cycles —though not necessarily uniquely— with the following
properties with respect to the Dantzig-Wolfe master problem reformulation (4.77) of LP :

(a) Every selected weighted path ( xp
vp ), p ∈ P, contributes to the right-hand side vector b.

(b) At most m + n weighted paths and cycles are selected among which at most n cycles
( xc

0 ), c ∈ C.
(c) For a homogeneous system (b = 0), the representation requires at most n weighted cycles.

4.4 An augmenting weighted cycle theorem

For network problems, Theorem 7 serves to prove the Augmenting Cycle Theorem (Ahuja
et al. 1993, Theorem 3.7) formulated in terms of residual networks. In this section, we
provide the counterpart for linear programs. Let us first start by the definition of the linear
programming residual problem.

Let x0 be any feasible solution to (4.74), that is, a vector x0 ∈ [l,u] satisfying Ax0 = b.
The cost of this solution is denoted z0 := cᵀx0. Perform the following change of variables
(see Figure 4.18):

x := x0 + (~y − ~y), ~yᵀ ~y = 0, ~y, ~y ≥ 0. (4.79)

xj

~yj
~yj

−cj
cj

uj`j
x0
j

Fig. 4.18: A change of variables

We define the residual problem LP (x0) with respect to a given solution x0 as follows. Each
variable xj, j ∈ {1, . . . , n}, in the original LP is replaced by two variables: ~yj ≥ 0 represents
the possible increase of xj relatively to x0

j while ~yj ≥ 0 represents its possible decrease;
moreover, only one can be used with a positive value (~yj ~yj = 0). Variable ~yj ≤ ~r 0

j := uj − x0
j
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whereas ~yj ≤ ~r0
j := x0

j − `j. Equivalent to LP (4.74), a formulation for LP (x0) is as follows:

z? := z0 + min cᵀ(~y − ~y)

s.t. A(~y − ~y) = 0, [π]

0 ≤ ~y ≤ ~r 0

0 ≤ ~y ≤ ~r 0.

(4.80)

Consider now another feasible solution x to (4.74). Regardless of the number of iterations
to reach it, Theorem 9 states that it is possible to move from x0 to the former in at most n
weighted cycles.

Theorem 9. Let x0 and x be two feasible solutions to LP (4.74). Then, x equals x0 plus
the value on at most n weighted cycles in LP (x0). Furthermore, the cost of x equals the cost
of x0 plus the cost on these weighted cycles.

Proof. There exists a correspondence between solution x on the original problem LP (4.74)
and a solution (~y − ~y) on the residual problem LP (x0). This is given by the change of
variables in (4.79). If xj ≥ x0

j , we set ~yj = xj − x0
j and ~yj = 0; otherwise ~yj = −(xj − x0

j)

and ~yj = 0. As x0 and x are feasible, Ax = Ax0 = b, therefore (~y − ~y) satisfies

(~y − ~y) = x− x0

A(~y − ~y) = 0

~y, ~y ≥ 0.

(4.81)

By the Decomposition Theorem 8, the homogeneous system {~y, ~y ≥ 0 | A(~y− ~y) = 0} at
x0 can be decomposed into weighted cycles only, indexed by c ∈ C(x0). Hence,∑

c∈C(x0)

(~yc − ~yc)φc = x− x0, φc ≥ 0, ∀c ∈ C(x0). (4.82)

Therefore, any basic solution to (4.82) comprises at most n positive cycle-variables, proving the
first part of the statement. Regarding the second part, we have cᵀx = cᵀx0 +

∑
c∈C(x0) cᵀ(~yc−

~yc)φc from which we derive the requested result by restricting the cycle cost to the selected
weighted cycles in a basic solution of (4.82).
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4.5 Primal and dual optimality conditions on LP (x0)

Let A = [aj]j∈{1,...,n}. The reduced cost of xj in LP (4.74) is defined as c̄j = cj − πᵀaj.
In addition to the complementary slackness optimality conditions on LP based on the
reduced cost of the x-variables (see Schrijver 1986), we provide two alternative conditions
characterizing optimality for linear programs. These are based on the above Augmenting
Weighted Cycle Theorem 9 which is itself derived from the Decomposition Theorem 8.

Theorem 10. A feasible solution x0 to LP (4.74) is optimal if and only if the following
equivalent conditions are satisfied:

(a) LP (x0) contains no weighted cycle of negative cost.

(b) ∃π such that the reduced cost of every variable of LP (x0) is nonnegative.

(c) ∃π such that ∀j ∈ {1, . . . , n} :

x0
j = `j if c̄j > 0, x0

j = uj if c̄j < 0, c̄j = 0 if `j < x0
j < uj.

Proof. Firstly, we prove that conditions (a) and (b) on the residual problem LP (x0) are
equivalent by providing linear programming models for these. Secondly, we show that the
primal condition (a) characterizes linear programming optimality. Complementary slackness
ones in (c) are only stated for the completeness of the presentation. It should however be
clear that the necessary and sufficient quality of (a) and (b) make them equivalent to (c).

Assume a feasible solution x0 of cost z0 from which are derived the residual upper
bound vectors ~r 0 and ~r0. Recall that π ∈ Rm denotes the dual vector associated with the
homogeneous linear system in LP (x0) (4.80). Fixing to zero all y-variables with null residual
upper bounds, we formulate a problem for maximizing µ ≤ 0, the smallest reduced cost:

max µ

s.t. µ ≤ (cj − πᵀaj), [~yj] ∀j ∈ {1, . . . , n} | ~r 0
j > 0

µ ≤ −(cj − πᵀaj), [ ~yj] ∀j ∈ {1, . . . , n} | ~r0
j > 0

µ ≤ 0.

(4.83)

We underscore that the vector π is also optimized in (4.83). When µ = 0, every variable in
LP (x0) has a nonnegative reduced cost and condition (b) is satisfied. Let the y-variables in
brackets be the dual variables associated with the inequality constraints. The dual formulation
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of (4.83) is
min cᵀ(~y − ~y)

s.t. A(~y − ~y) = 0, [π]

1ᵀ~y + 1ᵀ ~y ≤ 1, [µ]

~y, ~y ≥ 0,

~yj = 0, ∀j ∈ {1, . . . , n} | ~r 0
j = 0

~yj = 0, ∀j ∈ {1, . . . , n} | ~r0
j = 0.

(4.84)

Therefore, finding an improving direction (~y 0 − ~y0) ∈ Rn from x0, a so-called weighted
cycle of negative cost, consists in solving the above pricing problem. These two formulations
form a primal-dual pair for the pricing step. The primal one (4.84) searches for an optimal
weighted cycle (~y 0 − ~y0) of negative cost, if any. Its dual version (4.83) maximizes the
smallest reduced cost µ0 on LP (x0) by an optimization of the dual vector π. By duality,
cᵀ(~y 0 − ~y0) = µ0, hence LP (x0) contains no weighted cycle of negative cost if and only if
∃π0 such that µ0 = 0, that is, the reduced cost of every variable of LP (x0) is nonnegative.
This concludes the equivalence between (a) and (b).

In order to prove (a), suppose x0 is feasible and LP (x0) contains a weighted cycle (~y 0− ~y0)

of negative cost µ0. In that case, x0 can be improved according to the change of variables
in (4.79), that is, x1 := x0 + ρ0 (~y 0 − ~y0) and z1 := z0 + ρ0 µ0, where the maximum step size
ρ0 > 0 is limited in the residual problem LP (x0) (4.80) by ρ ~y 0 ≤ ~r 0 and ρ ~y0 ≤ ~r0. Hence,
x0 cannot be optimal.

To show the converse, assume x0 is feasible and LP (x0) contains no weighted cycle of
negative cost. Let x? 6= x0 be an optimal solution. Theorem 9 shows that the difference
vector x? − x0 can be decomposed into at most n augmenting weighted cycles in LP (x0),
where the total cost on these cycles equals cᵀx? − cᵀx0 =

∑
c∈C(x0) cᵀ(~yc − ~yc)φc ≥ 0, the

costs of all the cycles in LP (x0) being nonnegative. Since the vector x? is optimal, we also
have cᵀx? − cᵀx0 ≤ 0 meaning that cᵀx? = cᵀx0. Ultimately, x0 must also be optimal thus
completing the proof of the theorem.

4.6 Discussion

In this section, we present two lines of research stemming from Theorems 8–10 and the residual
problem LP (x0). Keep in mind that these results are extensions of widely used pieces of theory
all of which necessary to ascertain the validity of some network flow algorithms. The first
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direction of research is reminiscent of the minimum mean cycle-canceling algorithm (MMCC)
of Goldberg and Tarjan (1989) and aims to generalize the latter to linear programming. The
goal is thus to determine analogous results using the linear programming counterparts defined
herein. Some ideas and difficulties ahead are exposed in Section 4.6.1.

The second direction of research refers to Theorem 9 which shows that all weighted cycles
required to reach an optimal solution x? exist on LP (x0). We argue that an algorithmic
process could be explicitly constructed around this observation. The idea presented in
Section 4.6.2 is to insert the process in a column generation scheme and rely on the Dantzig-
Wolfe decomposition provided in (4.76)-(4.77).

4.6.1 Adaptation of MMCC to linear programs

As simple as the statement may be, the Decomposition Theorem 7 acts as a cornerstone to
numerous results in network flows. It is in particular the core idea behind the mechanics
of the minimum mean cycle-canceling algorithm of Goldberg and Tarjan (1989). Given a
feasible solution x0, the algorithm moves to solution x1 by using a cycle of minimum mean
cost on the residual network G(x0). The solution process therefore traverses a series of
residual networks G(xk), k ≥ 0, eventually reaching one that contains no negative cost cycle.
The mechanics of the algorithm limits the search to cycles because of the Augmenting Cycle
Theorem while the Negative Cycle Optimality Theorem further limits this search to negative
cost cycles only.

In theory, it seems like the iterative process of MMCC can be adapted to linear programming
in a relatively straightforward manner using the residual problems LP (xk), k ≥ 0. At iteration
k, one has on hand a feasible solution xk from which are derived the residual upper bound
vectors ~r k and ~rk. Fixing to zero all y-variables in LP (xk) with null residual upper bounds,
one searches in (4.84) for a weighted cycle (~y k − ~yk) of minimum negative cost according
to Theorem 10 until optimality is reached. We have already mentioned the subtlety of
the interpretation of the LP weighted cycle. Once again, notice the construction of the
sentence opposed to that of MMCC: in both cases the cost is weighted and measured against
the convexity constraint but the weights are lifted from the cycle definition in networks.
If such a weighted cycle is found in (4.84), the current solution can be improved, that is,
xk+1 := xk + ρk(~y k − ~yk), zk+1 := zk + ρkcᵀ(~y k − ~yk), where the maximum step size ρk > 0

is limited by ρ ~y k ≤ ~r k and ρ ~yk ≤ ~rk.

Although it remains to be proven, the fact that the objective function is modified at every
iteration bodes well the convergence. Furthermore, whether the theoretical complexity of
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such a process can be established using the same line of arguments as seen in MMCC is an
interesting question which deserves an analysis. This analysis revolves around the behavior of
the minimum reduced cost µ. The measure of the sporadic jumps that can be shown on the
latter poses several challenges in the LP adaptation, most notably by the scaling impact of
the convexity constraint. The quest for polynomial properties, even on part of the algorithm,
is set forth.

4.6.2 On the solution of MP (x0) by column generation

One of the most successful ideas of column generation is to harvest a lot of information
from the subproblem even though some of it might turn out irrelevant (see Lübbecke and
Desrosiers 2005). From this principle, we venture the idea that the Dantzig-Wolfe framework
allows for another algorithmic process that might share several features of MMCC. The idea
is to build the decomposition only once and refine its parameters within a master/subproblem
paradigm. The idea actually comes forth quite naturally when one ponders at strategic ways
to implement the previous algorithm.

Let x0 be a feasible solution to LP (4.74) and apply a Dantzig-Wolfe decomposition on
the residual problem LP (x0) (4.80) while keeping only the (positive) residual upper bound
constraints in the master problem MP (x0). Therefore, the domain of the pricing subproblem
defined in (4.84) is the cone for which we added a convexity constraint. Let C(x0) denote the
set of its weighted cycles. The formulation of MP (x0), with the dual vectors ~ω and ~ω in
brackets, is

z? := z0 + min
∑

c∈C(x0)

cᵀ(~yc − ~yc)φc

s.t.
∑

c∈C(x0)

~ycφc ≤ ~r 0, [~ω]

∑
c∈C(x0)

~ycφc ≤ ~r0, [ ~ω]

φc ≥ 0, ∀c ∈ C(x0).

(4.85)

Given any feasible solution x0 to LP (4.74), we see the optimal solution x? using a
combination of extreme rays derived on the residual problem LP (x0) (the cone located at x0

is a convex set). This means that we can stay at that solution point x0 rather than move at
every iteration, as in simplex type algorithms or even MMCC. In other words, extreme ray
vectors are brought into MP (x0) until optimality is reached.
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Observe that the algorithmic adaptation of MMCC to LP in Section 4.6.1 does not solve
MP (x0) (4.85). It rather performs a single iteration of the Dantzig-Wolfe decomposition
on LP (x0). Indeed, at any iteration k, it brings into MP (xk) a single weighted cycle
(~y k − ~yk) = (~yc − ~yc), c ∈ C(xk), of cost µk, then computes φc = ρk and zk+1 = zk + ρkµk.
The solution moves to xk+1 = xk + ρk(~y k − ~yk) and one reiterates by reapplying the
decomposition procedure on LP (xk+1). Full decomposition at x0 would use dual vectors ~ω
and ~ω in MP (x0) to select by column generation the rays to fill in the master problem. The
pricing problem (4.84) which finds weighted cycles of minimum reduced cost has its objective
function min (c− ~ω)ᵀ~y − (c− ~ω)ᵀ ~y updated over the column generation iterations.

4.6.3 Final remarks

Although the minimum mean cycle-canceling algorithm can be stated within a paragraph,
it is more difficult to capture the depth of its actual ramifications. Case in point, Radzik
and Goldberg (1994) and Gauthier et al. (2015b) improve upon the original complexity
analysis of this algorithm several years apart. These improvements stem on the one hand
from mathematical arguments and on the other hand from the way operations are conducted
within the resolution process. The room for improvement of the seminal work gives hope that
alternative ways of thinking may result in more efficient implementations. Indeed, careful
design choices can be made to improve a white paper algorithm thus showing that even tight
complexities must be interpreted with care.

In this spirit, the study combination of the complexity analysis for linear programs along
with the column generation dimension might instill an emulation environment for these two
lines of research. The adaptation of the three network-based theorems provided herein are
essential components of the analysis that lies ahead. As final remarks, we think the linear
programming proof of the decomposition theorem for networks is an interesting result in
itself. Also, the two alternative necessary and sufficient optimality conditions for LPs drive
the interest of the two proposed algorithms. The first works in the original space of the linear
program whereas the second works in the vertex space where the variables have a richer
content. While the first guarantees degeneracy immunity, the second makes no such promises.
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ABSTRACT

This paper addresses the resolution of the capacitated minimum cost flow problem on a network
containing n nodes and m arcs. Verifying necessary and sufficient optimality conditions can
be done on the residual network although it can be quite time consuming as testified by the
minimum mean cycle-canceling algorithm. We introduce a contracted network which exploits
these conditions on a much smaller network. Since the construction of this contracted network
is very flexible, we study its properties depending on the construction choice. A generic
contraction algorithm is then produced around the contracted network. Interestingly enough,
it turns out it encapsulates both the minimum mean cycle-canceling and primal simplex
algorithms. By guiding the resolution using a particular expansion scheme, we are able to
recuperate theoretical results from the minimum mean cycle-canceling algorithm. As such,
we obtain a strongly polynomial Contraction-Expansion algorithm which runs in O(m3n2)

time. The algorithmic choices stick to very practical observations of the minimum mean
cycle-canceling algorithm’s resolution behavior yet are not exploited by latter, namely that of
phases and jumps on the optimality parameter. The resolution time is ultimately significantly
reduced, even more so as the size of the instance increases.

Keywords: Network flow problem, residual network, contracted network, minimum mean
cost cycle, complexity analysis, strongly polynomial algorithm.



5. A strongly polynomial Contraction-Expansion algorithm for network flow problems

5.1 Introduction

The primal network simplex algorithm performs surprisingly well considering that only a tiny
fraction of iterations induce nondegenerate pivots (see Ahuja et al. 1993, Figure 18.7). In
fact, the network simplex and the cost scaling methods are typically preferred over competing
alternatives for the resolution of network flow problems also known as capacitated minimum
cost flow problems (CMCF). Kovács (2015) suggests the use of the former for smaller networks
and the latter for larger instances.

The minimum mean cycle-canceling algorithm (MMCC) is one such alternative. Introduced
by Goldberg and Tarjan (1989), this algorithm copes with degeneracy at the expense of a
more involved pricing problem able to only identify improving directions with positive step
sizes. Despite its strongly polynomial time complexity, the theoretical behavior of MMCC
is in practice no match for other methods. Radzik and Goldberg (1994) even improve the
complexity some five years later and introduce the concept of phases. Two decades further
down the roads bring another improvement due to Gauthier et al. (2015b) which combines
phases with Cancel-and-Tighten (CT) presented along side MMCC in the initial paper as a
self-standing algorithm.

This paper presents a Contraction-Expansion algorithm (CE) inspired by MMCC and its
complexity proof. Since the visual aid granted by the network flow formulation gives a lot of
perspective to the theoretical analysis, we opt to present algorithmic choices in a constructive
fashion. Furthermore, we adopt the definitions and nomenclature of Ahuja et al. (1993) in
which the reader may find several network flow properties.

The paper is organized as follows. Section 5.2 defines the network problem and exposes the
building block of this paper, namely the so-called contracted network. The contracted network
is a flexible construction which gives rise to a generic contraction algorithm whose properties
are discussed in Section 5.3. A behavioral study of the so-called optimality parameter follows
in Section 5.4. From these observations, an expansion scheme guiding the resolution process
is incidentally drafted in Section 5.5, where the ensuing complexity analysis expands upon
theoretical results from the minimum mean cycle-canceling algorithm. Our final thoughts
can be found in Section 5.6.
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5. A strongly polynomial Contraction-Expansion algorithm for network flow problems

5.2 Network problem

Assume a capacitated directed network G := (N,A), where N is the set of n nodes and A
is the set of m arcs. The arc parametrization is captured by the cost vector c := [cij](i,j)∈A

and nonnegative bounds [`ij, uij],∀(i, j) ∈ A whereas a balanced set bi, i ∈ N of supply or
demand respectively defined by a positive or negative value is associated with the nodes such
that

∑
i∈N bi = 0. Supported by G and the vector of bounded flow variables x := [xij](i,j)∈A,

the formulation of CMCF is given by:

z∗ := min
∑

(i,j)∈A

cijxij

s.t.
∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = bi, [πi], ∀i ∈ N,

`ij ≤ xij ≤ uij, ∀(i, j) ∈ A,

(5.86)

where π := [πi]i∈N is the vector of dual variables, also known as node potentials. We further
assume that G does not contain any multiarc, i.e., arcs sharing the same head and tail.

When right-hand side b := [bi]i∈N is the null vector, the formulation (5.86) is called a
circulation problem. The circulation problem is a cornerstone of network flow problems. Case
in point, it is brought to light within the minimum mean cycle-canceling algorithm where it
justifies the validity of the latter. Indeed, its core component, namely the so-called residual
network is a circulation problem for which upper bounds are eventually neglected.

For the sake of formality, let us recall the path and cycle definitions used by Ahuja et al.
(1993). A path in a directed graph G = (N,A) is a sequence without repetition of nodes and
arcs i1− a1− i2− a2− . . .− ir−1− ar−1− ir, satisfying the property that for all ik, 1 ≤ k ≤ r,
either ak = (ik, ik+1) ∈ A or ak = (ik+1, ik) ∈ A. The sequence is typically given using nodes
only. A directed path is an oriented version of a path in the sense that for any two consecutive
nodes ik and ik+1 on the path, the arc (ik, ik+1) ∈ A. A cycle is a path together with the
arc (ir, i1) or (i1, ir) whereas a directed cycle is a directed path together with the arc (ir, i1).
The cost of a path or a cycle is the total unit cost of traveling on the forward arcs minus that
on the backward arcs. Note there is no backward arc in a directed path nor a directed cycle.

With respect to any dual variable vector π := (πi)i∈N , the reduced cost of xij, (i, j) ∈ A is
defined as c̄ij := cij − πi + πj. Although Ahuja et al. (1993) limit the following fundamental
property to directed cycles, the same telescopic summation argument proves to be enough
regardless of the directed nature.

Proposition 19. The cost and reduced cost of a cycle, directed or not, are equal.
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5. A strongly polynomial Contraction-Expansion algorithm for network flow problems

In the following subsections, we define the traditional residual network which exposes the
improving disposition of the current solution x0 := [x0

ij](i,j)∈A. An optimality certificate is
then provided which indeed amounts to the statement of cycle-canceling algorithms. We
finally move on to a contraction gymnastic which induces a so-called contracted network.

5.2.1 Residual network

The residual network is a marginal construction of the flow that may traverse the network
aside the current flow x0. The principle is simple, the combination of x0 along with the optimal
marginal flow computed on the residual network is optimal for the original formulation. As
eloquently resumed in Figure 5.19, each arc (i, j) ∈ A can be replaced by two arcs representing
upwards and downwards possible flow variations:

• arc (i, j) with cost dij := cij and residual flow 0 ≤ yij ≤ r0
ij := uij − x0

ij;

• arc (j, i) with cost dji := −cij and residual flow 0 ≤ yji ≤ r0
ji := x0

ij − `ij.

xij

yij
yji

dji = −cij
dij = cij

uij`ij
x0
ij

Fig. 5.19: A change of variables

Denoted G(x0) := (N,A(x0)), the residual network with respect to x0 corresponds to
the change of variables yij − yji := xij − x0

ij, ∀(i, j) ∈ A. It is based on the original nodes
in N and the set of residual arcs A(x0). Indeed, among the possible arc support A′ :=

{(i, j) ∪ (j, i) | (i, j) ∈ A} only those arcs with positive residual capacities are of interest, i.e.,

A(x0) := {(i, j) ∈ A′ | r0
ij > 0}. (5.87)

An equivalent formulation of (5.86) states as

z∗ = z0 + min
∑

(i,j)∈A(x0)

dijyij

s.t.
∑

j:(i,j)∈A(x0)

yij −
∑

j:(j,i)∈A(x0)

yji = 0, [πi], ∀i ∈ N,

0 ≤ yij ≤ r0
ij, ∀(i, j) ∈ A(x0),

(5.88)
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5. A strongly polynomial Contraction-Expansion algorithm for network flow problems

where z0 := cᵀx0 is the objective function evaluation of solution x0. Furthermore, observe that
traveling in both directions would be counterproductive and can be simplified to the net flow in
a single direction. This means that the marginal flow must be such that yij yji = 0, ∀(i, j) ∈ A.

Take a look at Figure 5.20 which exhibits the construction of the residual network G(x0).
Figure 5.20a contains arc flow variables x0

ij, (i, j) ∈ A at different values. Each of these can be
attributed a status depending on its actual value: lower when x0

ij = `ij , upper when x0
ij = uij ,

or free when `ij < x0
ij < uij . When a variable is free, the flow can be carried in either direction

thus meaning the presence of two residual arcs. However, when a variable is lower (resp.
upper), this induces only one arc oriented in the forward (resp. backward) direction. Handled
in a very similar fashion, arcs at their lower or upper bound are also said to be restricted,
a generic term which simplifies the text when the differentiation makes no difference. Let
the disjoint sets L(x0) ∪ U(x0) ∪ F (x0) = A respectively echo this status partition of the
original set of arcs at x0. In order to simplify the presentation, this partition is denoted as
{Lk, Uk, F k}, where k ≥ 0 refers to the solution xk.
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(a) Current solution x0
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(b) Residual network G(x0)

Legend

i j
Free

Residual

i j
Lower

Residual

i j
Upper

Residual

Fig. 5.20: Residual network construction
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5.2.2 Optimality conditions

It can be shown that a flow solution x∗ is optimal if and only if the residual network G(x∗)

contains no negative cost directed cycle, shortened to negative cycle, see Ahuja et al. (1993,
Theorem 3.8). By iteratively canceling a negative cycle and updating the residual network
accordingly, one obtains a generic cycle-canceling algorithm which terminates when there
remains no negative cycle (Klein 1967).

For the record, although the notion of cycle cancellation can be seen as an intuitive step
size method, its foremost intention is the elimination of said cycle from the current residual
network. Indeed, passing a positive flow on any directed cycle W in G(x0) obviously permits
a transition between solutions, yet maintaining feasibility is ensured by limiting the flow to
at most the smallest residual capacity of the arcs forming the cycle, say ρ := min(i,j)∈W r0

ij.
A directed cycle is canceled when the step size is equal to ρ such that at least one of the
residual capacity r0

ij, (i, j) ∈ W is saturated.

Since negative cycles are canceled sequentially, a cycle-canceling algorithm is basically
defined by its oracle. The minimum mean cycle-canceling is one such algorithm famous for
its strongly polynomial runtime complexity, see Gauthier et al. (2015b) for a recent survey.
MMCC uses an oracle which dismisses residual capacities from the residual network and only
identifies negative cycles of minimum average cost. Technical aspects of this algorithm are
presented in Section 5.4.2 where we build upon these results to show the runtime complexity
of the proposed Contraction-Expansion algorithm. The contracted network permits the
exploration of alternative oracle constructions hoping to identify negative cycles faster.
Whether these cycles are directed or not on the residual network remains to be seen.

5.2.3 Contracted network

The definition of a cycle free solution can be read in Ahuja et al. (1993) as a solution x0

which contains no cycle of free arcs. In linear programming terminology, such and only such
solutions are basic. By extension, a linearly independent set of arcs cannot form a cycle. Also
recall that a tree T is a connected graph that contains no cycle. With this in mind, if one
assumes a basic solution x0, the set of free arcs F 0 then defines a forest, that is, a collection
of node-disjoint trees.

Consider the following construction. By definition, each of these trees encapsulates a
nonoverlapping set of nodes connected using a subset of arcs in F 0. Let each tree be rooted
by an arbitrary node R(i) = i ∈ N such that any two nodes i 6= j in N belonging to the same
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5. A strongly polynomial Contraction-Expansion algorithm for network flow problems

tree must have the same root node R(i) = R(j). As depicted in Figure 5.21a, root nodes 1, 2
and 3 have been chosen such that R(1) = R(4) = R(5) = R(6) = 1. Let G(F 0,x0) be the
residual network on x0 where the tree-layer defined with respect to the set of free arcs F 0

is superposed. Take notice that the tree-layer appears only as a visual aid such that for all
intents and purposes, G(F 0,x0) ≡ G(x0). In fact, the arcs within the clouds in Figure 5.21a
are bidirectional such that one must imagine the tree-layer with respect to the original
arcs in A. In performing the contraction of every tree to its root node, null variables yij
corresponding to the respective x0

ij, (i, j) ∈ {L0, U0} are also caught in the crossfire. Each arc
(i, j) is rerouted directly to the root nodes associated with its tail and head, that is, R(i) and
R(j) respectively. Contrary to the initial assumption, this contraction gymnastic is likely to
produce multiarcs. For instance, the arcs (2, 6), (7, 4) and (8, 5) have the same head and tail
in the contracted network. Granted the actual costs computation have yet to be addressed,
trivial cost dominance rules can be applied on such multiarcs. The end result appears in
Figure 5.21b where the presence of the two dominated arcs concerns only efficiency matters.
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(a) Tree-layered residual network G(F 0,x0)

1
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3

(b) Contracted network H(F 0,x0)

Legend

i j
Residual

Contracted

i j
Residual

Contracted and dominated

Fig. 5.21: Contracted network based on the set of free arcs

Let us formalize the construction of the contracted network using a general tree-layer
definition. Indeed, while a great deal of attention is given to the set of free arcs F 0, the truth
is that the tree-layer can be defined with respect to an arbitrary although linearly independent
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set of arcs, say P 0 ⊂ A, where the superscript is omitted unless iterate comparisons are
required. The set P is then used to partition the arcs of A(x0) in two categories. As such,
one can think of the sets HP (x0) and VP (x0) as those arcs that are hidden and visible in the
contracted network. These sets are formed by

HP (x0) :=
⋃

(i,j)∈P


(i, j), (j, i), if (i, j) ∈ F 0

(i, j), if (i, j) ∈ L0

(j, i), if (i, j) ∈ U0

(5.89)

VP (x0) := A(x0) \HP (x0). (5.90)

Definition 6. With respect to the set P , the tree-layer identifies root nodes in the set

NP (x0) := {i ∈ N | i = R(i)}, (5.91)

as well as the arc partition HP (x0) and VP (x0) of the residual network G(x0).

The structure of the contracted network H(P,x0) is then obtained by using the sets of
root nodes and visible arcs:

H(P,x0) := (NP (x0), VP (x0)). (5.92)

Furthermore, the arcs of the contracted network could have also been defined with respect
to said root nodes, say with the set AP (x0) := {(R(i),R(j)) | (i, j) ∈ VP (x0)}. Moreover, it
is possible to maintain a bijection between the sets VP (x0) and AP (x0) which might be more
perceivable when omitting dominance.

We present two alternative contraction examples which morally cover all possibilities. The
first example uses a subset of free arcs P ⊂ F 0 while the second combines free arcs with some
restricted arcs such that P ⊃ F 0. In the most general case, one can mix both possibilities by
using some elements of F 0 and some of A \ F 0.

Figure 5.22 covers the first example where the subset of free arcs used is P = F 0 \ {(5, 6)}.
In Figure 5.22a, the free arc (5, 6) has been duplicated in both directions and sent to the
visible set VP (x0). We refer to this kind of manipulation on free arcs as coerced degeneracy.
This yields a larger contracted network since there is now a forest with four trees to handle.
Figure 5.22b portrays the consequent contracted network.

123



5. A strongly polynomial Contraction-Expansion algorithm for network flow problems

5

6 4

1

7

2
8

9
10

3

(a) Tree-layered residual network G(P,x0)
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(b) Contracted network H(P,x0)

Fig. 5.22: Contracted network with coerced degeneracy on the free arc (5, 6)

As additional free arcs are duplicated in both directions, one eventually reaches a point
where the set P ⊆ F 0 is empty, such that no free arcs are hidden at all, hence yielding a
contracted network whose arc set is the same as that of the residual network, i.e., V∅(x0) =

A(x0). The reader is now invited to consider the other extreme case where the tree-layer
consists of a single spanning tree. Such is the content of Figure 5.23 where the set P =

F 0∪{(7, 4), (3, 9)} consists of the union of the free arcs along with two additional independent
arcs at their bound. Without loss of generality, assume these two arcs are basic degenerate
in the simplex sense such that P = B0 ≡ B(x0) corresponds to a set of basic arcs at x0. The
tree-layer G(B0,x0) seen in Figure 5.23a then splits the arcs in two subsets: the nine basic
arcs of the spanning tree and the seven nonbasic arcs. The contracted network H(B0,x0)

appears in Figure 5.23b, where the spanning tree is contracted to the sole root node and
where each nonbasic arc becomes a loop, indeed, a directed cycle on H(B0,x0).

When all is said and done, only two cases are possible for an arc contained in the selected
set P : it is either free or it is not. Bare with us, the arc cost computations of the contracted
network are coming in the midst of the following section where features and properties of the
contracted network are derived according to the choice of the set P , most notably the nature
of the optimality conditions the oracle derived from the contracted network is able to verify.
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(a) Tree-layered residual network G(B0,x0)

1

(b) Contracted network H(B0,x0)

Fig. 5.23: Contracted network with a set of basic arcs (primal network simplex algorithm)

5.3 Contracted network properties

Although the selection of the set P is fairly arbitrary, Section 5.3.1 addresses how easy it
is to meet the linear independence requirement regardless of the nonbasic nature of the
current solution x0. Section 5.3.2 then state that any contracted cycle, a directed cycle
identified on the contracted network, is uniquely extended on the residual network G(x0).
The analysis of the contracted network’s arc costs is performed in Section 5.3.3 which is
followed with the so-called pricing problem and the algorithm in Section 5.3.4. We then
derive in Section 5.3.5 the optimality certificate whose nature depends on the selected set P .
As the set P influences the content of the contracted network, different known algorithms
are referenced in Section 5.3.6 by examining the possible outcomes of the pricing problem.
Finally, Section 5.3.7 shows that once the set P is selected, the remaining arbitrary decisions
that must be made have no impact on the algorithm.

5.3.1 Nonbasic solution

When defined with respect to the set F 0 which in turn trivially verifies the linear independence
assumption when the current solution x0 is basic, we show that the basic status is not restrictive
for the selection of the set P . Figure 5.24a presents a nonbasic solution where a cycle of
free arcs is detected in G. Figures 5.24b and 5.24c handle the issue using two alternative
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mechanisms. With the first mechanism, the cycle of free arcs is canceled, in either direction,
yielding at least one restricted arc within the cycle. Since the cancellation ultimately modifies
the current solution, one may altogether prefer the improving direction, say saturating the
arc (5, 6) to its upper bound. With the second mechanism, the arc (4, 1) is coerced degenerate
in G. This duplicating manipulation does not change the current solution yet provides a
fast way to eliminate the cycles of free arcs thus allowing one to define the set P using only
independent arcs of F 0.
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6 4

1

(a) Cycle of free arcs
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6 4

1

	

(b) Cycle canceled

5

6 4

1

(c) Arc (4, 1) coerced degenerate

Fig. 5.24: Working with a nonbasic feasible solution on network G

Once one lets f := |F 0| ≤ m, Proposition 20 asserts that it is easy to maintain a working
tree-layer regardless of whether x0 is basic or not.

Proposition 20. A linear independent set P can be derived from F 0 by either removing any
cycle of free arcs using at most f cycle cancellations or applying a trivial coerce degeneracy
scheme to at most f arcs.

Proof. It is trivial to verify that rendering at most f arcs coerced degenerate means that
there remains a suitable linearly independent subset of free variables capable of forming a
tree-layer. In fact, one may think of these coerced degenerate variables as super-basics such
that canceling a cycle of free arcs amounts to the recovery of an optimal [or not] basis which
can be done in a straightforward manner according to Marsten et al. (1989).

5.3.2 Uniqueness of the extended cycle

Observe that in the tree-layered residual network, any visible arc (i, j) ∈ VP (x) connects
two root nodes using first a path from R(i) to i followed by arc (i, j) and second a path
from j to R(j). Figure 5.25 portrays such an alternated path-arc-path sequence from now on
called a rooted path. When performing the contraction, it is convenient to let P(i), i ∈ N
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be the path from node i to root node R(i). The rooted path associated with the visible
arc (i, j) ∈ VP (x) can therefore be decomposed as {−P(i), (i, j),P(j)}, where −P(i) is the
reversed path P(i) and the orientation of a free arc is the one given by (i, j).

R(i)

i

j

R(j)

−P(i) P(j)

Fig. 5.25: Rooted path

Several remarks about the rooted path are noteworthy. The two root nodes can eventually
be the same, see the arc compatibility Definition 7. The two distinct paths are formed using
only arcs in HP (x0), that is, hidden arcs in tree structures. Either or both of these paths
could be of null length such that the defining arc (i, j) ∈ VP (x0) could support the rooted
path by itself. Finally, by definition of a tree, any visible arc (i, j) ∈ VP (x0) induces a unique
rooted path. Given the bijection between VP (x0) and AP (x0), the same description holds for
any contracted arc (R(i),R(j)) ∈ AP (x0).

Proposition 21. Any contracted cycle WH obtained on the network H(P,x0) yields a unique
extended cycle WH:G on the residual network G(x0).

Proof. Since only arcs part of the bijection are used to produce contracted cycles, the
uniqueness of rooted paths guarantees the extended cycle uniquely exists in the tree-layered
residual network. Once again, the orientation of the free arcs in the extended cycle is given
by that of the contracted cycle.

Implementation. The remainder of this section is dedicated to describing a contracted
cycle obtained on the contracted network H(P,x0) in more details. Let

WH := {(R(i1),R(j1)) , (R(i2),R(j2)), . . . , (R(i|WH |),R(j|WH |))}

be one such directed cycle on the contracted network. Observe that it produces a sequence of
entry and exit nodes in the tree-layer which ultimately cycle through the same root nodes,
i.e., Rs := R(js) = R(is+1),∀s ∈ {1, . . . , |WH |}, where i|WH |+1 abusively equals to i1. The
extended cycle, seen on the residual network G(x0), can then be expressed as a combination of
rooted paths. Although, while the rooted paths simplify the work of extracting the extended
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cycle via concatenation, we underscore that the latter eventually requires a quick fix whose
goal is to provide an elementary path between js and is+1.

One may take a look at Figure 5.26 should the following explanation require visual
support. Think of the path contained in a given tree, say between the arcs (is, js) and
(is+1, js+1), s ∈ {1, . . . , |WH |}. Notice that both paths P(js) and −P(is+1) have at least
one node in common which is incidentally the root node Rs. A cycle is formed during the
concatenation if and only if there exists some other common node us 6= Rs. Consider for
instance that P(js) follows js  us and then us  Rs while −P(is+1) travels from Rs  us

followed by us  is+1. Since all nodes from us to Rs are common to both paths, an
elementary path is found by detecting the node us ∈ P(js) closest to js thus eliminating any
back and forth play across opposing arcs. At last, the extended cycle WH:G extracted from
the contracted cycle WH is given by

WH:G :=

|WH |⋃
s=1

{(is, js),P(js) \ P(us),−P(is+1) \ −P(us)}, (5.93)

where some of the composing paths P(js) ∪ −P(is+1), ∀s ∈ {1, . . . , |WH |} may be truncated
to obtain an elementary description.

Rs

js

is+1

us

Fig. 5.26: Elementary tree path detection

5.3.3 Arc cost transfer policy

So far, it has been established that any contracted cycle WH exists uniquely as WH:G on
the residual network. In order to extend optimality conditions to the contracted network,
we require a somewhat opposite feature: if the residual network contains a negative cycle
then so must the contracted network. While there are probably many ways to ensure this,
one straightforward way is to manipulate the dual variables such that Proposition 22 is
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true. Recall that with respect to any dual variable vector π := (πi)i∈N , the reduced cost
of xij, (i, j) ∈ A is defined as c̄ij := cij − πi + πj. Let the reduced cost d̄ij := dij − πi + πj of
yij, (i, j) ∈ A(x0) be computed in the same way.

Proposition 22. The reduced cost of the contracted cycle WH is equal to the cost of its
extended counterpart WH:G.

Proof. For i ∈ N , let πi be the cost of the path P(i), that is, from i to R(i) in the tree-layered
residual network. All root nodes are consequently assigned a null dual variable value and
moreover the reduced cost of any arc in the forest is zero, i.e., d̄ij = 0,∀(i, j) ∈ HP (x0),
indeed those arcs that are hidden in the contracted network. Hiding the zero-cost arcs of
WH:G makes the reduced cost of the contracted cycle WH equal to the reduced cost of its
extended version. By Proposition 19, as the reduced cost and the cost of a cycle (directed or
not) are the same, we have the requested result.

5.3.4 Contraction algorithm

As all relevant parameters have been established, we are ready to present a contraction
algorithm. Alike the pricing problem of the minimum mean cycle-canceling algorithm,
residual capacities are omitted (not that we would have a meaningful way to attribute these
values to contracted arcs anyway) and we aim to detect the presence of a negative cycle
using the contracted network H(P,x0) = (NP (x0), VP (x0)) as well as a convexity constraint.
Proposition 23 states the kind of cycles that are identified using the following pricing problem:

µH := min
(i,j)∈VP (x0)

d̄ijyij

s.t.
∑

(i,j)∈VP (x0)|R(i)=`

yij −
∑

(i,j)∈VP (x0)|R(j)=`

yij = 0, [π`], ∀` ∈ NP (x0),

∑
(i,j)∈VP (x0)

yij = 1, [µ],

yij ≥ 0, ∀(i, j) ∈ VP (x0),

(5.94)

where dual variables appear on the right between brackets. Flow conservation constraints
are defined for each root node where the indexes of the summations simply specify all arcs
from VP (x0) that are related to the specified root nodes.

Proposition 23. The pricing problem (5.94) finds a minimum average cost directed cycle
on H(P,x0), averaged over the number of arcs it contains.
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Proof. Charnes and Cooper (1962) show that linear fractional functionals can be equivalently
solved using linear programming under mild conditions, namely a nonempty and bounded
feasible region such that the denominator is either always positive or always negative. Assume
the following linear fractional functional program {min dᵀx/1ᵀx | Ax = 0,x ≥ 0,1ᵀx > 0}
satisfies all conditions such that an equivalent linear program writes as {min dᵀy | Ay =

0,1ᵀy = 1,y ≥ 0} where the change of variables y := x/1ᵀx is performed. Since the convexity
constraint 1ᵀy = 1 implies 1ᵀx > 0 the transformation holds. Flow conservation implies that
the solution vector y∗ sports only two values: 0 or 1/w, where w = |WH | when solving (5.94).
Assuming x = wy, the change of variables is obviously verified since 1ᵀx = w. Finally, the
pricing problem (5.94) optimizes over variable coefficients d̄ᵀ = [dij − πi + πj ](i,j)∈VP (x0). The
straightforward telescopic sum idea used to show the cost and reduced cost of a cycle are the
same applies in the same fashion.

Recall that by using the arc cost transfer policy described in Section 5.3.3, the dual
variables associated with the root nodes are null. Solving (5.94) not only provides an optimal
cycle W 0

H of minimum average reduced cost µ0
H on the contracted network but also a new set

of dual variable values for these root nodes. The following is a direct adaptation of Gauthier
et al. (2015b, Proposition 3):

Proposition 24. When solving the pricing problem (5.94) at iteration k ≥ 0, there exists
some dual variable values πk` , ` ∈ NP (xk) such that d̄ij − πkR(i) + πkR(j) ≥ µkH ,∀(i, j) ∈ VP (xk).
By complementary slackness conditions, the latter in fact holds at equality for all positive
variables, i.e., ∀(i, j) ∈ W k

H .

If the residual network contains a negative cycle, then by Proposition 22, so does the
pricing problem (5.94). By construction, the current solution xk, k ≥ 0 is then optimal when
µkH ≥ 0, that is, when the contracted network does not contain any negative cycle. Otherwise,
given the identified contracted cycle W k

H , one computes the nonnegative step size

ρk := min
(i,j)∈Wk

H:G

rkij ≥ 0, (5.95)

which is zero only if an arc of the extended cycle W k
H:G has a null residual capacity. We then

obtain the solution xk+1 where the flow update, if any, is only performed on the arcs of W k
H:G,
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that is,

xk+1
ij :=


xkij + ρk, ∀(i, j) ∈ W k

H:G | (i, j) ∈ A
xkij − ρk, ∀(i, j) ∈ W k

H:G | (j, i) ∈ A
xkij, otherwise

zk+1 := zk + ρk |W k
H | µkH .

(5.96)

Observe that when ρk = 0, the set P k+1 must be different from P k otherwise a dead-end
is encountered and the algorithm does not terminate. Degeneracy and cycling phenomenons
from the primal simplex come to mind. Indeed, unless rules for null step size cycles are
included, the same minimum mean cycle is identified in the next iteration. A pseudo-code is
elaborated in Figure 5.27 where this process is repeated until optimality is reached.

Initialization : Iteration k := 0;
Feasible solution x0;
Define the set P k ⊂ A;

1 Derive the contracted network H(P k,xk);
2 Solve the pricing problem (5.94) for µkH ,W k

H ;
3 If µkH ≥ 0, terminate with an optimality certificate for xk;
4 Extract the extended cycle W k

H:G;
5 Compute the step size ρk (5.95);
6 Update to solution xk+1 using the system (5.96);
7 Update the set P k+1 ⊂ A;
8 Iterate k := k + 1;

Fig. 5.27: Generic contraction algorithm for network flow problems

The nature of the optimality certificate in the generic Contraction-Expansion algorithm
goes hand in hand with the nondegenerate guarantee provided (or not) by the selected set P
and the induced contracted network. Let us analyze this property.

5.3.5 Optimality conditions

Given that any contracted cycle is uniquely extended, the underlying expectation is that it is
possible to travel on the hidden arcs, i.e., the extended cycle is directed on G(x0). Depending
on the actual status of the arcs in set P , this expectation could be challenged. Verifying
that any set P which consists of only free arcs always provides a contracted cycle WH on
which at least one flow unit can always take place on the extended cycle WH:G is trivial since
all arcs unaccounted for can be used in either directions. As supporting evidence, the first
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three extended cycle extractions illustrated in Figure 5.28 are directed in G(x0). They come
from contracted cycles obtained on a contracted network using only free arcs (Figure 5.21b
or 5.22b). The fourth extended cycle extraction comes from Figure 5.23b and yields an
undirected cycle inducing a zero step size.

Figure 5.28a is obtained from a contracted cycle defined by the arc loop on node 1 in the
contracted network of Figure 5.21b. Figure 5.28b comes from the same contracted network
but the contracted cycle uses more arcs: {(1, 3), (3, 9), (8, 5)}. Figure 5.28c identifies part of
the previous cycle although it is based on the contracted network of Figure 5.22b where more
visible arcs are available. Finally, Figure 5.28d is based on Figure 5.23b used with the primal
network simplex algorithm. The arc (7, 4) is basic degenerate and one of the nonbasic arcs
corresponds to the visible arc (2, 6), a loop on node 1. The corresponding extended cycle
is defined by {(2,6), {}, {(6, 5), (5, 4), (4, 7), (7, 2)}}. Unfortunately, the arc (4, 7) is not a
residual arc and reduces the possible flow on the identified extended cycle to zero. In simplex
terms, pivoting on arc variable x26 induces a degenerate pivot.

The contracted network H(P,x0) is guaranteed to identify a directed extended cycle
when P ⊆ F 0, that is, when the hidden arcs are free, any contracted cycle has a positive step
size on G(x0). On the other hand, when P * F 0 there is no such guarantee since the extended
cycle could use an arc with a null residual capacity. Such is the proof of Proposition 25.

Proposition 25. Given the set P ⊂ A of linearly independent arcs, if

• P ⊆ F 0, the extended cycle WH:G is directed on G(x0) and the step size is positive.
Therefore, the oracle (5.94) provides necessary and sufficient optimality conditions
for (5.86).

• P * F 0, the extended cycle WH:G may be undirected on G(x0) and the step size is
greater than or equal to zero. In that case, the oracle (5.94) provides sufficient optimality
conditions for (5.86).

Regardless of the choice of the set P , a noteworthy observation is that arcs (i, j) ∈ A can
be categorized in two classes: those arcs that link nodes of the same tree, i.e., the head and
tail of the residual arc have the same root node R(i) = R(j) and those that link different
trees, i.e., R(i) 6= R(j). The former class is said to be compatible with P .

Definition 7. An arc (i, j) ∈ A is compatible with P if and only if the head and tail
refer to the same root node in the contracted network, i.e., R(i) = R(j). Otherwise, it is
incompatible.
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(a) Extended cycle from the contracted cy-
cle {(4, 1)} on Figure 5.21
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(b) Extended cycle from the contracted cycle
{(1, 3), (3, 9), (8, 5)} on Figure 5.21
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(c) Extended cycle from the contracted cycle {(1, 3),
(3, 9), (7, 4), (4, 1)} on Figure 5.22
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(d) Extended cycle from the contracted
cycle {(2, 6)} on Figure 5.23

Fig. 5.28: Extended cycle extractions

Examples of compatible arcs can be seen in Figure 5.21a as arcs (4, 1) and (9, 10) or in
Figure 5.21b as contracted arc loops on root nodes 1 and 2. Compatible arcs are sometimes
favored because these loops are easy to identify on the contracted network thus forming
directed cycles on their own.

This also implies that the extended cycle associated with a compatible arc (i, j) ∈ VP (x0)

is not influenced by the content of other trees. The associated cost is therefore the actual
reduced cost of the arc. For incompatible arcs, rooted paths have to be combined to form
cycles in H(P,x0). In this respect, we like to think of the reduced costs d̄ij,∀(i, j) ∈ VP (x0)

as rooted costs. Also recall that the proposed arc cost transfer strategy is indeed used in
the primal network simplex algorithm where a spanning tree and only one root node are
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used. The reader may want to reread the leading statement of this section in light of the
compatibility concept and the primal network simplex reconciliation.

5.3.6 Extremal point solution space

It is straightforward to verify that both extreme cases, P = ∅ and P = B0 respectively
correspond to the minimum mean cycle-canceling algorithm and the primal network simplex
algorithm. In the former case, the contracted network H(∅,x0) has exactly the same structure
as the residual network G(x0) thus yielding a pricing problem equivalent to MMCC’s. In the
latter case, consider the contracted network of Figure 5.23 where the arcs of P are basic arcs
(indeed forming the primal network simplex spanning tree) and all visible arcs are nonbasic.
As each contracted arc is compatible, applying cost dominance trivially results in a single
contender for the pricing problem to identify. Recall that rooted costs are equal to reduced
costs for all compatible arcs such that the entering variable identified by Dantzig’s pivot rule
would be the same.

Let CP be the set of all directed cycles obtainable as extreme points of the pricing
problem (5.94). The cardinality of this set can be measured in two parts, that is, the
compatible and incompatible portions. The first portion is insignificant and reduces to a
single element regardless of the set P while the second grows exponentially as the set P
reduces in size.

Proposition 26. The cardinality of the extremal solution space |CP | of the pricing prob-
lem (5.94) on the contracted network H(P,x0) is O

(
2(n−|P |+1)2

)
.

Proof. For the sake of simplicity, the argument is carried with a dominance scheme applied
on the contracted arcs. Furthermore, we use a worst case type analysis on the density of these
sets. As an extreme point of (5.94) can only identify a single compatible arc, dominance can
be applied across all compatible arcs regardless of their root node association.

The more interesting portion thus concerns incompatible combinations which of course
require at least two incompatible arcs. Using combinatorial enumeration, let us count the
cycles in rough numbers by randomly selecting arcs within the available possibilities VP (x0)

thus forming directed cycles of different sizes ranging from 2 to n− |P |+ 1, the number of

nodes in the contracted network, i.e., |CP | =
n−|P |+1∑
k=2

(|VP (x0)|
k

)
. Then again, once dominance

is applied, the set of contracted arcs vastly overestimates the actual number of arcs remaining
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in the contracted network which for a complete graph amounts to (n− |P |+ 1)2. Since basic

calculus reduces
n∑
k=1

(
n2

k

)
to the dominant term 2n

2 , we obtain |CP | ≡ O
(

2(n−|P |+1)2
)
.

Granted it is possible to order the cardinalities, |C∅| � |CF | � |CB|, the same cannot be
done for the actual sets. Indeed, hidden arcs and dominance rules means that directed cycles
present in a smaller set are not necessarily present in a bigger one. Consider for instance
Figures 5.28b and 5.28c where the cycle uses the nondominated arc (8, 5) for the former and
(7, 4) for the latter.

While this computation tremendously dramatizes the size of the extreme point solution set
of the pricing problem (5.94), it gives the general intuition that some balance can be achieved
between the workload offset transferred to the oracle and the simplicity of obtaining undirected
cycles that may induce null step size. Let us put this in perspective of the contracted networks
seen in Figures 5.21b, 5.22b and 5.23b. The formulation of the pricing problem (5.94) is
always the same, yet the contracted network reminiscing of the primal network simplex
(5.23b) has |CB| = 1 whereas many more cycles are present in the contracted network using
all free variables (5.21b), a number that increases exponentially as the contracted network
gets larger. We are thus expecting that the resolution of the pricing problem (5.94) be harder
as |P | gets smaller.

5.3.7 Root selection

Since the selection of root nodes is arbitrary, the attentive reader might wonder what impact,
if any, a different set of root nodes would have on the oracle and thus the algorithm’s course.
As shown in the proof of Proposition 27, it turns out very little. Indeed, the oracle’s content
is modified on a per component basis yet as a whole it is completely unaffected.

Proposition 27. Root selection has no influence on the compatible set, the extreme point
solution set of the pricing problem (5.94), the average cost evaluation or the nature of the
optimality certificate.

Proof. On the one hand, it is no surprise that, for all nodes i ∈ N , the paths P(i) and their
costs πi are modified when an alternative set of root nodes is used. This means that while
each contracted arc (i, j) of VP (x0) continues to exist on H(P,x0), it is now associated with
a different reduced or rooted cost d̄ij = dij − πi + πj. The first observation is that the set of
extreme point solutions CP corresponding to directed cycles obtained by linear combination of
contracted arcs is unaltered. Furthermore, by Proposition 22 the original cost on each cycle is
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maintained regardless of the root selection. As such, the average cost of every extended cycle
is also maintained which obviously means as much for the nature of the optimality certificate.
Finally, observe that not only is the compatibility status of any arc (i, j) persistent, the
reduced or rooted cost of a compatible arc is also immune to change.

Furthermore, the proof of Proposition 22 makes the same assumption as in Ahuja et al.
(1993, Chapter 11.4), that is, a root node dual variable value is arbitrarily fixed to 0 since
any constant θ can be added to the vector of dual variables without modifying the reduced
costs. More generally, each root node dual variable value can be fixed to a different constant
without any impact on the outcome of the pricing problem (5.94).

Proposition 28. The dual variable of each root node πi, i ∈ NP (x0), can be initialized to
an arbitrary but fixed value. The remaining dual variable values πi, i ∈ N \NP (x0) are then
the cost of the path P(i) plus the root node dual variable value πR(i).

5.4 Behavioral study

Supported with numerical results from a minimum cost flow problem containing 1,025 nodes
and 92,550 arcs referred to as Instance 1, Section 5.4.1 analyzes the behavior of a specific
variant of the contraction algorithm opposite MMCC’s established behavior. This behavioral
study not only serves to grasp some mechanical aspects of these algorithms, but more
importantly draws attention on key points of the theoretical minimum mean cycle-canceling
complexity. Section 5.4.2 connects the dots with Cancel-and-Tighten and digs into more
advanced aspects.

5.4.1 A lower bound on the minimum mean cost

Our analysis opposes the mean cost of negative cycles obtained on the contracted network to
those that would be obtained in the framework of MMCC. At a given iteration k, let µkG be
the minimum mean cost of the directed cycle W k

G on the residual network as obtained by
MMCC. We then denote by µkH the minimum mean cost of the directed cycle W k

H fetched on
the contracted network and

µkH:G = µkH
|W k

H |
|W k

H:G|
(5.97)

the mean cost of the extended cycle where hidden arcs are accounted for. The following
proposition is verified by construction.
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Proposition 29. Let xk be a nonoptimal solution. Given the set P ⊆ F k, the following
ordering of the minimum mean costs always holds:

µkH ≤ µkG ≤ µkH:G. (5.98)

Proof. The cycle W k
H:G is visible as is on the residual network G(xk) which means µkG ≤ µkH:G

trivially holds by the nature of minimizing the mean cost in G(xk). Furthermore, although
contracted, any cycle W k

G that also appears in H(P,xk) is evaluated with a different mean
cycle cost which eventually uses less arcs such that µkH ≤ µkG.

Since we aim to establish complexity results in light of MMCC’s analysis, it is quite
natural to think of W k

G as the reference minimum mean cost cycle. The inequalities can be
interpreted in a straightforward manner: The contracted cycle appears to provide a lower
minimum mean cost µkH yet once the hidden arcs are accounted for, this illusion disappears
and indeed shows that µkG is overestimated by µkH:G. Observe that the ordering (5.98) is equal
throughout if there are no hidden arcs in the contracted cycle, i.e., |W k

H | = |W k
H:G|.

The notion of estimation might be better understood by observing the evolution of the
various µ during the resolution process. For illustrative purposes, we systematically use the
contracted network H(F k,xk) at every iteration, where all and only the free arcs are hidden.
The value of µkH and its counterpart µkH:G are naturally obtained on top of which we also poll
for the value µkG as if to look for the minimum mean cycle. Figure 5.29 shows the evolution
of these measures for Instance 1.
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Fig. 5.29: Comparison of µkH , µ
k
G and µkH:G
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As expected, the plot verifies the aforementioned ordering of Proposition 29. While
all three plots show a general increasing tendency, what is striking is how different the
inequality µkH ≤ µkG is from µkG ≤ µkH:G. The first gap is fairly intuitive and goes back to
basic mathematics: the density of the contracted network produces contracted cycles which
use relatively few arcs compared to their extended counterparts. As the cycle costs remain
the same, the denominator strongly influences the mean evaluation.

The second gap is much more tight and deserves more attention. In this matter, Figure 5.30
zooms on the evolution of the extended mean cycle cost µkH:G and minimum mean cycle
cost µkG. For the record, MMCC both searches and applies the minimum mean cycle at each
iteration yielding an algorithm which features a nondecreasing property on µkG, see Goldberg
and Tarjan (1989, Lemma 3.5) or Gauthier et al. (2015b, Proposition 4). Take a close look
around the 10,000th iteration. This is not a graphical aberration showing that this property
is indeed lost when negative cycles are not canceled in the order suggested by MMCC. What
we think is surprising for this particular instance is how little this phenomenon occurs, only
21 times within 14,258 iterations to be exact.
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Fig. 5.30: Zoom on comparison of µkG and µkH:G

Convergence. As the contraction algorithm identifies a negative cycle at every iteration,
it is evident that convergence of the objective function to optimality is guaranteed. By
default, there are then at most O(mCU) such negative cycles, a weakly polynomial result
referring to the largest absolute cost (C := max(i,j)∈A |cij|) and interval bound values (U :=

max(i,j)∈A uij − `ij).
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Nevertheless, comparing the canceled cycle average cost to that of the minimum mean
cycle cost is an enlightening exercise. Indeed, the chaotic behavior also appears in a strongly
polynomial algorithm, namely Cancel-and-Tighten. Section 5.4.2 recalls some concepts from
the minimum mean cycle-canceling algorithm (Gauthier et al. 2015b) for which strongly poly-
nomial properties are established through the analysis of the so-called optimality parameter.

5.4.2 Optimality parameter analysis

Strongly polynomial runtime complexity certifies that an algorithm performs a bounded
number of operations measured solely by the size of its input (see Cormen et al. (2009)
for further inquiries). For network flow problems, this bound should be a function of m
and n only. In introducing the minimum mean cycle-canceling algorithm, Goldberg and
Tarjan (1989) also provide such a complexity proof which holds in two parts. First, an oracle
capable of producing the minimum mean cost directed cycle in O(mn) time. Second, an
optimal solution is reached by canceling at most O(m2n log n) such negative cycles. The
first part can be seen as the inner loop while the second the outer loop. Their product
then yields a strongly polynomial global complexity. Radzik and Goldberg (1994) refine the
complexity analysis, reducing the number of cycle cancellations to O(m2n). Although they
also introduce the concept of phases to analyze the behavior of the algorithm, Gauthier et al.
(2015b) strongly insist on the latter to further improve the complexity result by combining
the Cancel-and-Tighten strategy introduced in Goldberg and Tarjan (1989) with the original
algorithm.

Type 2 (negative) cycles. Even though the nondecreasing property of µkG across iterations
in the minimum mean cycle-canceling algorithm is interesting, it has been argued by Gauthier
et al. (2015b) that the strictly increasing behavior observed across phases is more enlightening.
The phase definition goes hand in hand with the proof of Gauthier et al. (2015b, Proposition 5)
which distinguishes between Type 1 and Type 2 cycles. It shows that a Type 2 cycle is
attained within m cancellations or optimality is achieved, where a Type 2 cycle is obtained
when there exists at least one variable in the cycle with a nonnegative reduced cost computed
with respect to a set of dual variables established at the beginning of a phase. Given µhG at
the beginning of phase h ≥ 0, such a Type 2 cycle W l then serves to imply a strict increase
on µhG as

µlG ≥ (1− 1/|W l|)µhG ≥ (1− 1/n)µhG (5.99)
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thus marking the end of the phase, i.e., the sequence of iterations leading to this measurable
jump factor.

At the end of the day, since each phase contains at most m cancellations, the number of
cancellations can be interpreted as at most O(mn log n) or O(mn) phases depending on the
complexity point of view (Gauthier et al. 2015b), respectively Theorem 2 using the minimal
increasing factor (1− 1/n) and Theorem 3 rather exploiting the stronger factor (1− 1/|W l|).
Truth be told, while the concept of phases is useful for the complexity analysis of MMCC,
it is not transparent at all in the implementation. Indeed, in MMCC, the phase is purely
a question of theoretical existence; dual variables are never required to advance such that
the resolution process cares not about these cycle Types. The enlightenment comes from
the inclusion of Cancel-and-Tighten (CT) in the analysis where phases are observed in actu.
The latter fixes dual variables and depletes the residual network of Type 1 cycles (those
formed with negative reduced cost arcs only). Once this Cancel-step is terminated, one must
conclude that a Type 2 cycle comes next thus implying a jump with respect to some lower
bound µ̂hCT on the minimum mean cycle on µhG at the beginning of phase h.

Figure 5.31 opposes the mean value µkCT at iteration k of the Type 1 cycles canceled in
the Cancel-and-Tighten implementation with the lower bound value µ̂kCT ≤ µkG proposed
by Gauthier et al. (2015b, Proposition 14). While the chaotic behavior of µkCT can clearly
be observed throughout the resolution, a general pattern of increase can be noted across
the phases. The minimum (i.e., optimal) mean cycle value µkG is once again fetched as
background information. The 4,900th iteration is worth a look: again, a small decrease
for µkG. In total, four such occurrences within 7,294 cancellations contained in 357 phases.
Furthermore, Cancel-and-Tighten maintains strongly polynomial properties despite the usage
of Type 1 cycles going against the nondecreasing property of µkG. The strictly increasing lower
bounds µ̂hCT between phases obtained with the existence of a Type 2 cycle marking the end of
phase h is indeed where the properties are established (Gauthier et al. 2015b, Theorem 6).

Arc fixing. Strongly polynomial time complexity is achieved by keeping track of the number
of phases through the concept of arc fixing as seen in the minimum mean cycle-canceling
algorithm (Gauthier et al. 2015b, Propositions 9 and 11). A relaxation of the arc fixing
condition is used in Proposition 30, where the two different arc fixing conditions are in line
with the complexity point of views, that is, O(mn log n) or O(mn) phases. The proof is
straightforward and recuperates the Cancel-and-Tighten proof adaptation where the lower
bound values µ̂hCT are shown to mimic the behavior of the true value µhG. Indeed, as mentioned
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in Gauthier et al. (2015b, p. 131), it is conceivable to rewrite the arc fixing conditions using
a lower bound µ̂h on µhG instead.

Proposition 30. Assuming µ̂h is a lower bound for µhG at the beginning of phase h.

• Arc fixing for arc (i, j) ∈ A occurs or has already occurred if
∣∣c̄hij∣∣ ≥ −2nµ̂h.

• Implicit arc fixing for arc (i, j) ∈ A occurs or has already occurred if
∣∣c̄∗ij∣∣ > −nµ̂h,

where c̄∗ij is the reduced cost of arc (i, j) computed with an optimal set of dual variables.

Optimality parameter µ̂h. It is at this point important to create separation between µkG
at iteration k and strongly polynomial properties. In MMCC, µkG is coined as the optimality
parameter : it converges without oscillations to 0 from below in strongly polynomial time. It
might however be more appropriate to reserve this name for another value as illustrated by
the Cancel-and-Tighten strategy in the above example. Indeed, whether one looks at µkH or
µkCT or any other cycle-canceling scheme, the minimum mean cycle µkG can always be fetched
as secondary information (recall that µkH ≤ µkG ≤ µkH:G and µ̂kCT ≤ µkG ≤ µkCT ). If strongly
polynomial properties are to be established on oscillating values from one iteration to the
next, it appears mandatory to divert the analysis to a lower bound µ̂h over the phases instead.
In other words, while the portion above µkG (blue) may be unpredictable, it is the portion
below µkG (green) that should be well-behaved. We are ready to propose an adaptation of the
contraction algorithm.

141



5. A strongly polynomial Contraction-Expansion algorithm for network flow problems

5.5 Contraction-Expansion algorithm

Section 5.5.1 introduces a flexible phase definition based on so-called Type 3 cycles that
serve as end-phase markers. This is followed in Section 5.5.2 by a discussion of an expansion
scheme which controls the visible and hidden arc sets, that is the content of the set P , for
the proposed algorithm. Section 5.5.3 argues that applying the contraction on the residual
network and expanding the contracted network using that specific expansion scheme as the
algorithm progresses produces a strongly polynomial algorithm. In Section 5.5.4, we show
that the expansion scheme is not unique such that different strategies can be used to improve
the algorithm. Finally, computational results are presented in Section 5.5.5.

5.5.1 End-phase markers

Our contribution is to revisit the phase definition in order to extract the true pertinent
information which allows convergence in strongly polynomial time. In this respect, the current
phase definition is built upon a weak jump condition which waits for the identification of a
Type 2 cycle as the minimum mean cycle to confirm a jump on µhG at the end of phase h.
Let us propose a more flexible definition.

Definition 8. A phase h ≥ 0 is a sequence of cycle cancellations terminated whenever a
measurable jump is observed in strongly polynomial metrics, that is, both the factor and the
time required to obtain it are expressed in strongly polynomial time. A phase solution xh is
understood as the solution at the beginning of phase h.

The factor proposed in the following cycle Type obviously satisfies the strongly polynomial
requirement whereas the time requirement is shown in Proposition 31.

Definition 9. Let xh be a nonoptimal phase solution. At an iteration t within the phase h,
let us call a cycle W t on G(xt) a Type 3 (negative) cycle if its underestimated mean cost µ̂t

(with µ̂t ≤ µtG ≤ µt) produces the measurable jump

µ̂t ≥
(

1− 1

|W t|

)
µhG. (5.100)

Proposition 31. In MMCC, a Type 3 cycle is identified within at most m cancellations.

Proof. Assume the phase h. The proof is trivial and connects with the existence of a Type 2
cycle, say W l, which must have µlG = µ̂l ≥ (1− 1/|W l|)µhG. Therefore, the iteration t either
happens simultaneously as l or earlier.
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Observe that whether the jump factor is obtained using an actual Type 2 cycle or not is
irrelevant: a phase is completed in accordance with Definition 8. In other words, the only
important aspect of the Type 2 cycle is the measurable jump it procures on µhG, a tactic
which can incidentally also be verified against a lower bound according to Proposition 30,
that is,

µ̂t ≥
(

1− 1

|W t|

)
µ̂h. (5.101)

This is true for µ̂h = µ̂hCT in Cancel-and-Tighten (Gauthier et al. 2015b, Theorem 3) and is
also used with µ̂h = µhH in the proposed Contraction-Expansion algorithm.

5.5.2 Expansion scheme

The focus on phases should by now be realized by the reader. Figure 5.32 presents a pseudo-
code for the Contraction-Expansion algorithm whereas the following paragraphs explain how
the proposed expansion scheme constrains the latter into producing such phases.

Let x0 be a nonoptimal solution at iteration k = 0. Note that x0 is also a nonoptimal
phase solution ensuring a lower bound µ̂0 ≤ µ0

G. Let the set P 0 = F 0. By Proposition 25, the
extended cycle W 0

H:G is directed on the residual network G(x0) and the step size is positive.

When W 0
H:G is canceled, the aftermath is hard to predict but one thing is for certain:

only the arcs part of W 0
H:G are affected. Some arcs that were free in x0 remain free in x1 in

the next iteration while all the other arcs have changed status either from restricted lower
to restricted upper and vice versa, from free to restricted or from restricted to free for a
total of six possibilities. Four of these end up with a new status restricted whereas two end
up with a free status. Intuitively speaking, since the contraction happens around the free
variables and the nondecreasing µkG property is lost when the contraction is systematically
applied, let us concentrate on controlling these newly freed variables in x1, i.e., F 1 \ F 0. By
applying coerced degeneracy on these specific variables, the hidden set then contains only
those variables that were already free in x0 and are still free in x1. This amounts to selecting
the set P 1 = F 1 ∩ F 0 at iteration k = 1.

From there, the idea is simple, repeatedly apply cycle cancellation with the extended
cycleW k

H:G at iteration k and expand the contracted network using the intersection of variables
free in both the previous and new solution until the algorithm reaches a Type 3 cycle, that is,
a negative cycle producing a jump factor of at least (1− 1/|Wk

H:G|). The phase h = 0 is then
terminated and a new phase begins. Since we may at this point reapply the full contraction,
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Initialization : Iteration k := 0;
Phase h := 0, µ̂0 := −max(i,j)∈A |cij|, new phase := true;
Feasible solution x0;

1 if new phase then
2 new phase := false;
3 counter := 0;
4 Eliminate cycles of free arcs from xk;
5 Build partition F k, Lk, Uk;
6 Define the set P k := F k;

7 Derive the contracted network H(P k,xk);
8 Solve the pricing problem (5.94) for µkH ,W k

H ;
9 If µkH ≥ 0, terminate with an optimality certificate for xk;

10 Extract the extended cycle W k
H:G;

11 Compute the positive step size ρk from (5.95);
12 Update to solution xk+1 using the system (5.96);
13 if µkH ≥ (1− 1/|Wk

H:G|) µ̂
h then

14 µ̂h+1 := µkH ;
15 h := h+ 1;
16 new phase := true;
17 else
18 counter := counter + 1;
19 if counter < n then
20 Expand the contracted network with P k+1 := F k+1 ∩ F k;
21 else
22 P k+1 := ∅;

23 Iterate k := k + 1;

Fig. 5.32: Contraction-Expansion algorithm

it is worthwhile to eliminate any cycle of free arcs from the phase solution to maximize the
contraction benefit.

5.5.3 Complexity analysis

The complexity analysis of the Contraction-Expansion algorithm revolves around bringing
the resolution process of the latter to terms with MMCC’s behavior. As testified by Cancel-
and-Tighten, these terms refer to the strictly increasing phase markers. Figure 5.33 might
help to get a feel for this endeavor. It displays the value of µkH using the minimal expansion
scheme P k+1 = F k+1 ∩ F k where each trail corresponds to a phase during the resolution of
Instance 1.
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Fig. 5.33: Evolution of µkH with the Contraction-Expansion algorithm

The upcoming analysis focuses on the outer loop, that is, we examine the time required to
reach the end of a phase and the total number of such phases.

Proposition 32. The Contraction-Expansion algorithm completes a phase in O(m2n) time.

Proof. The proof is threefold with respect to the expansion scheme portion of the algorithm.
We prove that 1) the nondecreasing property of µkH during the phase is maintained, 2)
at most O(n) contracted cycle cancellations are required to reach a contracted network
equivalent to the residual network, and 3) finding the minimum average reduced cost cycle
on the contracted network requires O(mn) time.

Gauthier et al. (2015b, Proposition 4) states that a cycle cancellation on the residual
network G(xk) cannot introduce a minimum mean cycle in G(xk+1) yielding µk+1

G < µkG in the
following iteration. Here is an adaptation for the expansion scheme. Consider the contracted
network H(P k,xk) and an optimal contracted cycle W k

H of average reduced cost µkH along
with an optimal set of dual variables πk` , ` ∈ NP (xk) on the root nodes (Proposition 24).
From there, fix the root nodes dual variables to these new values and update the remaining
dual variables accordingly (Proposition 28). The residual network G(xk) hence satisfies
d̄ij − πkR(i) + πkR(j) ≥ µkH ,∀(i, j) ∈ A(xk) and in particular d̄ij = 0,∀(i, j) ∈ HP (xk). Upon
canceling the expanded cycle W k

H:G and obtaining xk+1, every new residual arcs in G(xk+1)

either has a reduced cost of 0 or −µkH , i.e., d̄ij−πkR(i) +πkR(j) ≥ µkH ,∀(i, j) ∈ A(xk+1). Observe
that every arc in F k ∩ F k+1 already has a reduced cost of 0 such that the arc cost transfer
policy already holds. The contraction is readily available with every remaining visible arc
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evaluated at a reduced cost greater than or equal to µkH . The average cost of the next
contracted cycle is then at least µkH .

Recall that the pricing problem in MMCC can be derived from the pricing problem (5.94)
by making visible all residual arcs, that is, by setting P = ∅. Then, observe that the set P is
updated by intersecting the sets of free variables of the previous solution with the current
one such that its size either stays the same or decreases at each cancellation. Assuming the
initial phase solution x0 is a basic solution, at most |F 0| ≡ O(n) cancellations yielding a
decrease are then obviously required to reach P = ∅. Furthermore, when a cycle is canceled
without modifying the set of free arc variables, it means that some restricted variables changed
from one bound to another. Unfortunately, this kind of pathological phenomenon is what
nightmarish instances are made of. An iteration counter limiting the number of cancellations
prior to reaching the residual network to at most n is put in place to make the move directly
should it be necessary. Trivially, at most n cycle cancellations allows the expansion scheme
to reach a contracted network equivalent to the residual network. From there, a Type 3
cycle is ensured within an additional m cycle cancellations (Proposition 31). To sum up, at
most n+m ≡ O(m) cycle cancellations are required to meet the required jump.

Finally, solving the pricing problem (5.94), which can still be accomplished in O(mn) time
using dynamic programming (Karp 1978), dominates all the other operations performed at
every iteration. Indeed, the data structure is maintained in O(m) time while the extended
cycle extraction, step size computation and solution update is done in O(n) time. A phase is
ultimately completed in at most O(m) iterations each one requiring at most O(mn) for a
total phase runtime of O(m2n).

Theorem 11. The Contraction-Expansion algorithm runs in O(m3n2) strongly polynomial
time.

Proof. We show that at most O(mn) phases can occur in accordance with Gauthier et al.
(2015b, Theorem 3). Since µkH ≤ µkG is indeed a lower bound for the true minimum mean
cycle cost value by Proposition 29, this is also true for any phase solution. As soon as
µkH ≥ µ̂h (1− 1/|Wk

H:G|), the phase h ends and the lower bound is increased to µ̂h+1 := µkH .
By Proposition 30, arc fixing occurs on the lower bound value µ̂h as well such that the
phase time complexities are valid. By Proposition 32, since each phase runs in O(m2n), the
compound time is obtained. An initial valid lower bound for µ0

G can be trivially obtained
with µ̂0 := −max(i,j)∈A |cij|.

The proposed phase definition along with the Type 3 cycle not only satisfy theoretical
properties of the strongly polynomial complexity of MMCC, they also express very practical
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observations. The hope is that not only the Type 3 cycle occurs much faster than m

cancellations, it also happens while the phase still exploits the contracted network.

5.5.4 Alternative end-phase markers and expansion schemes

So long as strongly polynomial phase time is maintained, alternative expansion schemes may
be used. Figures 5.34-5.35 show the evolution of µkH for two simple variations. The first
variation (cycle expansion) updates the set P with a more aggressive reduction, i.e., a faster
expansion. The update writes as

P k+1 =
(
F k+1 ∩ F k

)
\ {(i, j) ∈ A | (i, j) ∈ W k

H:G or (j, i) ∈ W k
H:G} (5.102)

such that all arcs of the expanded cycleW k
H:G that are still free (thus common to F k and F k+1)

are also removed from P k+1. The second variation (cycle expansion & loops) uses the same
update and also uses a post cycle-cancellation heuristic which cancels loops derived from all
compatible variables with negative rooted costs as well.
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Fig. 5.34: Evolution of µkH with cycle expansion

For anyone familiar with successful divide-and-conquer methods, the resolution speed
typically benefits from the decomposition at a higher rate then the cost of the latter. While
postponing the end of a phase with a less aggressive expansion scheme appears to agree with
this statement, expanding the contracted network faster also means that end-phase markers
are reached faster at which point the full contraction is reapplied. It seems that reaching
said end-phase markers as fast as possible is of particular interest.
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Fig. 5.35: Evolution of µkH with cycle expansion and cancellation of negative loops

Speaking of end-phase markers, a measurable jump could be established using alternative
Type 3 cycle definitions. Consider for instance the modification of (5.101) as follows:

µ̂t ≥
(

1− 1

|W t|

)
µ̂h ≥

(
1− 1

maxk∈h |W k|

)
µ̂h ≥

(
1− 1

n

)
µ̂h. (5.103)

where k ∈ h is understood as an iteration k within the phase h. While the last criterion is
reminiscing of Theorem 2 which contents itself with the same jump every time thus obtaining
the O(mn log n) phases, the second criterion also tracks a cycle length and compromises on the
desired jump. The latter is in fact the criterion used in all plots of the Contraction-Expansion
algorithm.

5.5.5 Computational experiments

This section is separated in two parts. The first details computational results with respect to
three specific instances and serves to show CE indeed behaves as expected when identifying
smaller cycles on the contracted network. The second complements intuitive assertions
made in the first part with a computational profile on benchmark instances from DIMACS
(1990–1991). For the record, these results are obtained using an Intel i7-4770K@3.50GHz
with 16GB of RAM.

Table 5.7 resumes the content of plots displayed in Figures 5.33–5.35 along with their
computational times as well as averages of cycle sizes and induced step sizes. The performances
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of MMCC and CT are added for order comparison purposes whereas results regarding CE
also incorporate an average contraction level given by α where αk = |NP (xk)|/n,∀k ≥ 0.

Resolution CPU (sec) k / cycles h |W | ρ α
Instance 1
MMCC 91.52 4,296 90 27.11 1.30 –
CE - minimal expansion 87.59 7,256 151 5.46 1.30 0.32
CE - cycle expansion 63.98 4,686 144 5.19 1.70 0.47
CE - cycle expansion/loops 51.84 3,449/9,499 142 7.40/3.32 1.61/2.23 0.58
CT 0.82 7,294 357 21.62 1.37 –
gridgen_sr_13a
MMCC 15,629.40 20,893 289 72.85 7.45 –
CE - minimal expansion 6,709.96 25,291 301 5.93 9.70 0.56
CE - cycle expansion 2,435.97 9,202 236 4.70 19.18 0.62
CE - cycle expansion/loops 1,906.97 6,034/23,429 224 7.13/2.58 18.53/36.01 0.70
CT 36.17 27,473 1,482 49.80 7.28 –
road_paths_05_WI_a
MMCC 9,552.52 1,119 300 82.27 1.00 –
CE - cycle expansion 10,355.30 1,122 348 82.20 1.00 1.00
CT 2,389.51 3,248 18,647 34.85 1.00 –

Tab. 5.7: Computational results for variations of CE opposite MMCC and CT

First of all, there is no denying that Cancel-and-Tighten is orders of magnitude faster than
MMCC. The proposed Contraction-Expansion algorithm sits somewhere in between although
it is clear that the contraction boosts the speed of fetching negative cycles by a significant
amount even more so as the size of the instance gets larger. The same feel is palpable
across other benchmark instances such as the significantly larger problem gridgen_sr_13a
from the GRIDGEN family which contains 8,191 nodes and 745,381 arcs. It is important
to understand that the benefit of the contraction comes from the degeneracy observed in
encountered solutions. For instance, the problem road_paths_05_WI_a (n = 519, 157 and
m = 1, 266, 876) from the ROAD family is structured with uniform capacities at 1 such that
there are never any free variables, hence no contraction. We therefore just get penalized with
the contraction computational overhead.

The remainder of this section looks at the GRIDGRAPH family and brings further testimonies
to the previous claims. For each of the three categories of problems (long, square, wide)
ranging from sizes 28 to 217, Table 5.8 displays the average contraction level and CPU time
CPUCE for CE. As expected the latter increases with the instance size yet the average
contraction level of about 60% appears stable across this family. The middle columns indicate
the relative CPU time calculated with respect to MMCC’s as β = CPUCE/CPUMMCC . For
instance, CE requires 2,619 seconds to solve grid_square_16 meaning that MMCC took
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2,619/0.21 ≈ 12,471 seconds to terminate. The relative computing times β are plotted in
Figure 5.36. Once again, the relative performance of CE increases with the instance size.

long square wide
n CPUCE (sec) β α CPUCE (sec) β α CPUCE (sec) β α

28 0.01 0.65 0.64 0.01 0.60 0.64 0.01 0.60 0.64
29 0.02 0.44 0.59 0.04 0.43 0.56 0.05 0.50 0.59
210 0.08 0.31 0.56 0.16 0.36 0.58 0.21 0.41 0.61
211 0.18 0.26 0.61 0.64 0.30 0.56 0.93 0.44 0.64
212 0.59 0.19 0.56 2.95 0.29 0.58 4.43 0.38 0.64
213 1.51 0.12 0.50 11.96 0.26 0.57 19.72 0.39 0.64
214 5.45 0.16 0.45 59.18 0.26 0.58 89.83 0.41 0.63
215 8.51 0.08 0.51 325.44 0.22 0.60 476.19 0.38 0.63
216 23.15 0.04 0.45 2,619.07 0.21 0.60 2,911.39 0.31 0.63
217 402.98 0.13 0.45 17,890.40 0.27 0.61 15,944.70 0.34 0.63

Tab. 5.8: Computational results for CE on the GRIDGRAPH family, version A
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Fig. 5.36: Relative CPU time for CE when solving the GRIDGRAPH family, version A

While we certainly did not cover the complete benchmark suite, this paper does not
pretend to a competitive algorithm just yet. Case in point, even larger instances up to 220

nodes are available but MMCC’s resolution proved to be far too demanding. We also believe
the omitted instance versions and/or more results from other families would not significantly
contribute to this framework.
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5.6 Conclusion

We start with a note addressed to users of the primal network simplex algorithm. Observe
that the spirit of the minimum mean cycle-canceling algorithm is tangibly similar to that
of PS. The pricing step is home to the optimality certificate whereby the latter is acquired
unless an improving direction is identified. It turns out this is not all that surprising since it
has been shown that PS and MMCC belong to a more generic contraction algorithm, indeed
extending to both ends of its spectrum.

A variety of special cases inducing positive step sizes is also identified. By combining these
with results from MMCC, a strongly polynomial Contraction-Expansion algorithm which
behaves much better than the former, especially as the instance’s size increases, comes to
life. The reader is carried around this birth process by opposing the behavior of MMCC and
Cancel-and-Tighten in a computational study. Both iteration and phase bases are illustrated,
although a strong emphasis on the latter concept is systematically done thus providing an
alternative way of showing strongly polynomial properties.

Such a property can also be observed in this framework when using partial contraction.
The latter is obtained by modifying the choice of hidden arcs as the algorithm progresses.
The selection is made in such a way that it actually corresponds to an expansion of the
contracted network. Furthermore, the proposed Contraction-Expansion algorithm sticks to
practical observations otherwise overlooked in MMCC. As such, phase markers are verified
algorithmically rather than just existing for theoretical purposes. It even recuperates the
idea that not all jumps are created equal thus underlining the important aspect of Type 2
cycles, namely the measurable jump. The Type 3 cycle is born. The strongly polynomial
argument uses both phases and Type 3 cycles on top of which the convergence of the original
optimality parameter is neglected in favor of a lower bound.

There seems to be some arbitrage to be done between trying to meet optimality conditions
in a more aggressive manner and the work required to do so. By contenting itself with a
sufficient condition, a significant proportion of cancellations performed in PS are degenerate
whereas MMCC uses a rule whose computational footprint is too high. That being said, the
contracted network is closer to the spirit of an oracle than the residual network is. By this,
we mean that it matters not to see all directed negative cost cycles so long as at least one
can be detected thus allowing to improve and repeat.
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ABSTRACT

This paper describes a vector space decomposition algorithmic framework for linear pro-
gramming guided by dual feasibility considerations. The resolution process moves from one
solution to the next according to an exchange mechanism which is defined by a direction and
a post-evaluated step size. A framework for a family of primal algorithms if you will. The
core component of this direction is obtained via a pricing problem devised in primal and dual
forms. From the dual perspective, one maximizes the minimum reduced cost that can be
achieved upon dividing the set of dual variables in two subsets: one being fixed while the
other is optimized. From the primal perspective, one selects a convex combination of the
variables part of this direction which turns out to be incomplete with respect to the original
problem. This direction is however uniquely completed by identifying affected variables, if
any. The degeneracy status of the current solution can be exploited in specific variants.

This unified framework is presented in a generic format although it borrows several
concepts from network flow problems. Different variants can be extracted several of which
corresponding to well known algorithms. The most known special case is the primal simplex
algorithm where all dual variables are fixed: this results in the choice of a single entering
variable commonly leading to degenerate pivots. At the other extreme, we find the so-
called minimum mean weighted cycle-canceling algorithm, a perfect example of network flow
analogies introduced in this paper, for which all dual variables are optimized at every iteration.
Somewhere in between these two extremes lies another special case, the improved primal
simplex algorithm for which one fixes the dual variables associated with the nondegenerate
basic variables and optimizes the remaining dual variables. The two last variants both
bestow a pricing problem providing necessary and sufficient optimality conditions. As a
result, directions yielding positive step sizes are also issued from these pricing steps. These
directions move on the edges of the polyhedron for the latter while the former can identify
interior directions by combining edge directions.

Keywords: primal simplex algorithm, degeneracy, optimized reduced costs, combination
of variables, positive step size algorithms, vector space.
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6.1 Introduction

While Dantzig’s primal simplex algorithm (PS) dates back to the summer of 1947 (Dantzig
and Thapa 1997, p. xxvi), it still commands attention today. The race for shaving seconds off
the resolution process started soon after its birth and indeed remains strong today. Although
researchers keep breaking records, the original simplicity of the algorithm has been traded for
it. In other words, it is hard to deny that PS has stood the test of time, but then again each
one of its steps is invested by mathematical details which make an efficient implementation
nontrivial. Think of the basis matrix factorization maintenance, partial pricing strategies or
primal-dual exploits.

One of the most critical phenomena encountered in practice is degeneracy. The latter
introduces stalling in the resolution process which may even lead to cycling. An important
survey on anti-cycling schemes and pivot-selection rules can be found in Terlaky and Zhang
(1993) where a very large number of these are examined. In the words of Dantzig and Thapa
(2003, p. 167), whether any degeneracy avoiding scheme is needed in practice has never been
settled. It has been observed, however, that even when there is no degeneracy, there is a high
probability of near-degeneracy. This suggests that pivot-selection criteria should be designed
to seek feasible solutions in directions away from degenerate and near-degenerate basic feasible
solutions, or better yet, driven by dual feasibility considerations.

The whole paragraph is the perfect embodiment of a rhetorical question. Although there is
a lot of evidence that suggests accounting for degeneracy one way or another can be profitable,
in no way does it positively asserts the need for such schemes. We therefore acknowledge
these observations and address their final remark whereby pivot-selection rules guided by
dual information seem favorable.

Of course, at the end of the day, all known primal algorithms base their stopping criteria
on the optimality conditions provided by dual variables. Since no two algorithms share the
same iterative process, there must be different levels of exposure that can be harvested from
the realm of dual feasibility. Klotz (1988) extensively studies oracle based pricing methods
for linear programs in an effort to side step degeneracy. The author is keen to observe
that a trade-off between the number of iterations and the computational cost of the pricing
requires significant additional work even when comparing to Dantzig’s pivot-selection rule. As
unfortunate as this may seem, one of the most forthcoming idea is that of variable screening.
By discarding variables from the pricing problem, one hopes to dramatically reduce the
difficulty of solving it. While many of the proposed screening rules try to get a handle on the
problem structure and transfer the information to the pricing problem, we present a design
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for the latter that inherently and dynamically exploits the problem structure. Such concerns
also already appeared within column generation, the extension of PS for linear programs
with a large number of variables, see Lübbecke and Desrosiers (2005). Degeneracy in column
generation has been dealt with using certain dual variable stabilization approaches, see for
example du Merle et al. (1999) and Ben Amor et al. (2009) for a stabilized column generation
framework and the many references therein.

In this paper, we propose an algorithmic framework which, given a feasible basic solution,
fixes the values of a subset of dual variables and optimizes the remaining ones for maximizing
the minimum reduced cost (until one reaches an optimal solution). It turns out that the dual
formulation of this pricing problem selects a convex combination of variables entering the
basis. The way to divide these two subsets of dual variables relies on the choice of a vector
subspace basis and opens a wide spectrum of possibilities thus paving the way for the paper
at hand. Since each dual variable is associated with a constraint, this division also amounts
to a partition of the rows.

Gauthier et al. (2016) propose a generic contraction algorithm for network flow problems
whose elaboration is based on constructive arguments. This generic algorithm can be seen
as a framework for primal network algorithms. At one extreme, the most known special
case, Dantzig’s pivot-selection rule for PS, considers all dual variables fixed and selects a
single entering variable, a myopic strategy commonly resulting in degenerate pivots. At the
other extreme, when none of the dual variables are fixed, we stumble upon the minimum
mean cycle-canceling algorithm (MMCC) devised and shown to be strongly polynomial by
Goldberg and Tarjan (1989). A contraction based on the set of free arcs (i.e., those for
which the associated flow variables are strictly between the bounds) is also presented without
an algorithm correspondence mention. This paper addresses this omission by associating
this specialization with the improved primal algorithm (IPS) (Elhallaoui et al. 2011) and
generalizes that framework to linear programs.

Introduced in Gauthier et al. (2015c), we base this paper on the vector space decomposition
useful to close the theoretical gap between IPS and the dynamic constraint aggregation
method (DCA) of Elhallaoui et al. (2005, 2008). The latter is specifically designed to
overcome degeneracy in the context of solving the linear relaxation of set partitioning models
by column generation. Although DCA is a precursor of IPS, its methodology slightly differs
in that the row partition is deduced using a heuristic design. It works well because the row
partition is in line with the purpose of set partitioning problems. By recovering notations
from Gauthier et al. (2016), the proposed vector space decomposition creates network flow
analogies to support the framework. The latter still extends from PS to MMCC while notably
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including IPS and DCA in the process. With its generalization, simplified notation, and
structure, this paper replaces an earlier version of this research only available as a working
paper (Gauthier et al. 2015a).

The paper is organized as follows. Section 6.2 takes a close look at the essential components
of the framework. Several concepts that partake (or not) in the resolution process of a linear
program are examined such as nondegerate pivots, directions and the so-called residual
problem. Each of these is presented in a separate manner whereas the last subsection
ties everything together. Section 6.3 builds upon these ties and gives birth to the generic
algorithm. In Section 6.4, we demonstrate a few properties, determine a family of algorithms
with nondegenerate pivots at every iteration, and show that some directions are interior
rather than along edges. Moreover, we examine well known special cases. Indeed, by using
vector space decomposition, the paper at hand unifies within the same generic algorithm a
variety of specialized ones for linear and network programs. We conclude in Section 6.5 with
our contribution and some research perspectives.

6.2 The problem

Consider the linear program (LP ) with lower and upper bounded variables:

z? := min cᵀx

s.t. Ax = b [π]

l ≤ x ≤ u,

(6.104)

where x, c, l,u ∈ Rn, b ∈ Rm, A ∈ Rm×n, and m < n. We assume that the matrix A is of
full row rank and that LP (6.104) is feasible such that z∗ is obviously finite. The vector of
dual variables π ∈ Rm associated with the equality constraints appears within brackets on
the right-hand side.

Notation. Vectors and matrices are written in bold face. We denote by Ir the r× r identity
matrix and by 0 (resp. 1) a vector/matrix with all zeros (resp. ones) entries of contextually
appropriate dimension. For an ordered subset R ⊆ {1, . . . ,m} of row indices and an ordered
subset P ⊆ {1, . . . , n} of column indices, we denote by ARP the sub-matrix of A containing
the rows and columns indexed by R and P , respectively. We further use standard linear
programming notation like ABxB, the subset of basic columns of A indexed by B multiplied
by the corresponding vector of basic variables xB. The set of nonbasic columns N is used
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analogously. The lower case notation is reserved for vectors and uses the same subset index
rules. In particular, the matrix A := [aj]j∈{1,...,n} contains n column vectors.

In Section 6.2.1, we formulate the so-called residual problem which allows the construction
of an oracle generating feasible directions in Section 6.2.2. The latter also provides two
alternative primal and dual conditions characterizing optimality for linear programs. Finally,
let us embark upon this generic algorithm in Section 6.2.3 by analyzing a linear transformation,
the goal being to structure the technological constraints.

6.2.1 The residual problem

It is common practice in developing network flow algorithms to use a residual network to
improve upon some intermediate solution by identifying incremental flows, see Ahuja et al.
(1993). In this paper, we do the same with linear programs and recover primal-dual optimality
conditions on the residual problem.

We define the residual problem LP (xk) with respect to a given solution xk at iteration k ≥ 0

as follows. Each variable xj, j ∈ {1, . . . , n}, in the original LP (6.104) is replaced by two
directed variables: the forward variable yj of cost dj := cj represents the possible increase
rkj := uj − xkj of xj relatively to xkj while the backward variable yj+n of cost dj+n := −cj
represents its possible decrease rkj+n := xk−`j ; moreover, only one can be used with a positive
value, i.e., the complementarity condition yj yj+n = 0 holds, ∀j ∈ {1, . . . , n}, see Figure 6.37.

xj

yj
yj+n

−cj
cj

uj`j xkj

Fig. 6.37: Forward and backward variables for the residual problem

Equivalent to LP (6.104), a formulation for the residual problem LP (xk) is given below:

z? = zk + min dᵀy

s.t. Ky = 0 [π]

0 ≤ y ≤ rk,

(6.105)
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where zk := cᵀxk, d := [dj]j∈{1,...,2n} is the cost vector, y := [yj]j∈{1,...,2n} ∈ R2n
+ contains the

forward and backward variables, their residual upper bounds are given by rk := [rkj ]j∈{1,...,2n},
and the matrix K := [A,−A] ≡ [k]j∈{1,...,2n} stands to remind us that the kernel (or nullspace)
of this matrix is the set of solutions to Ky = 0. Since a variable bounded under and above by 0
is useless, the residual problem LP (xk) may be written using only residual variables, that is, y-
variables with positive residual upper bounds within the set Jk := {j ∈ {1, . . . , 2n} | rkj > 0}.

Network flow analogies. Let us propose some linear programming vocabulary in the spirit
of network flows. By neglecting the residual upper bounds from (6.105), one obtains a cone
of extreme rays.

Definition 10. An extreme ray y ∈ {Ky = 0,y ≥ 0} induces an n-dimensional direction
~v := [~vj]j∈{1,...,n}, not necessarily feasible for LP (6.104), by computing the difference

~vj = yj − yj+n, ∀j ∈ {1, . . . , n}. (6.106)

In order to find an improving direction, it suffices to look within this set of directions using
any comparative measure. Then again, since optimizing in a cone proves to be delicate, let
us enlist a normalization constraint wᵀy = 1, where w > 0 is a vector of arbitrary positive
weights associated with the y-variables. This results in a cut cone where every nonnull
extreme point corresponds to an extreme ray and thus captures any scaled direction. This
correspondence is clearly visible on Figure 6.38. Imagine it represents the cone of extreme
rays at xk as expressed in Definition 10 and then consider the normalization constraint with
weights of one all around. Furthermore, by considering a different weight vector w, the cutting
plane of the cone would be slanted differently thus resulting in modified extreme points.
Nevertheless, each of these extreme point would remain associated with the same extreme
ray. Definition 11 introduces a normalized extreme ray which can then be manipulated with
any scalar.

xk

wᵀy = 1

Fig. 6.38: At xk, the cone {y ≥ 0 | Ky = 0} cut by wᵀy = 1
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Definition 11. Let a weighted cycle be a normalized extreme ray y satisfying

y ∈ N k := {Ky = 0,y ≥ 0,wᵀy = 1}⊂ R2n
+ . (6.107)

Observe that the y-values cannot be rid of even if w = 1 as they are inherently dependent
on the structure of the technological constraints. Nevertheless, since these values are unique
for a given weighted cycle, it is often simpler to work solely with the variable support denoted
by W := {j ∈ {1, . . . , 2n} | yj > 0,y ∈ N k}. The cost of a weighted cycle W is then
computed as dW :=

∑
j∈W djyj.

Definition 12. A weighted cycle W is directed if and only if all its composing y-variables
can increase from zero in the suggested direction, i.e.,

rkj > 0, ∀j ∈ W or equivalently W ⊆ Jk. (6.108)

Definition 13. A negative weighted cycle is a directed weighted cycle with a negative cost.

Necessary and sufficient optimality conditions. Under the above nomenclature, neces-
sary and sufficient optimality conditions come together in a straightforward manner. The
reduced cost of variable xj, j ∈ {1, . . . , n} is defined as c̄j := cj−πᵀaj while those of variables
yj and yj+n are respectively

d̄j := cj − πᵀaj = c̄j and d̄j+n := −cj − πᵀ(−aj) = −c̄j. (6.109)

In addition to the complementary slackness optimality conditions on LP (6.104) based on
the reduced cost of the original x-variables (see Schrijver 1986), we provide two alternative
conditions characterizing optimality for linear programs.

Proposition 33. (Gauthier et al. 2014, Theorem 4) A feasible solution xk to LP (6.104) is
optimal if and only if the following equivalent conditions are satisfied:

Complementary slackness: ∃π such that

c̄j > 0⇒ xkj = `j; c̄j < 0⇒ xkj = uj; `j < xkj < uj ⇒ c̄j = 0. (6.110)

Primal: LP (xk) contains no negative weighted cycle, that is,

dW ≥ 0, ∀W ⊆ Jk. (6.111)
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Dual: ∃π such that the reduced cost of every residual variable of LP (xk) is nonnegative,
that is,

d̄j ≥ 0, ∀j ∈ Jk. (6.112)

Proof. Assuming the reader accepts complementary slackness, the equivalence with the dual
conditions is trivial. Depending on the value of xkj , the residual variables are either yj (when
xkj = `j), yj+n (when xkj = uj) or both yj and yj+n (when `j < xkj < uj). Recall the signed
reduced costs of directed variables yj and yj+n in (6.109) such that all residual variables have
a nonnegative reduced cost if and only if complementary slackness is met.

With respect to the primal condition claim, analogously to the cost and reduced cost of a
network cycle being equal, the cost dW and reduced cost d̄W of a weighted cycle W are also
the same. Indeed, the latter satisfies (6.107), hence

∑
j∈W kjyj = 0 and

d̄W =
∑
j∈W

(dj − πᵀkj)yj = dW − πᵀ
∑
j∈W

kjyj = dW . (6.113)

When all residual variables have nonnegative reduced costs, then dW = d̄W ≥ 0, ∀W ⊆ Jk

and a negative weighted cycle cannot exist.

6.2.2 An oracle

In order to prove the optimality of xk, one can derive an oracle relying on the identification
of weighted cycles. It is derived automatically from the domain (6.107) and an objective
function which effectively computes the cost (or the reduced cost) of each weighted cycle
properly as follows

min
y∈N k

dᵀy. (6.114)

By definition of a negative weighted cycle (Definition 13), the oracle (6.114) honors
the necessary portion of the conditions if and only if it uses only residual y-variables,
i.e., the y-variables with null residual capacity are explicitly discarded before removing
the upper bounds. Keeping track of residual variables can also be done by partitioning
the x-variables according to their values. In order to achieve this, let xk be represented
by (xkF ,x

k
L,x

k
U), where the three sub-vectors respectively refer to the set of free variables

F := {j ∈ {1, . . . , n} | `j < xkj < uj}, at their lower bounds L := {j ∈ {1, . . . , n} | xkj = `j},
and at their upper bounds U := {j ∈ {1, . . . , n} | xkj = uj}. Let there be f := |F | such free
variables, 0 ≤ f ≤ n. Observe that if xk is basic then 0 ≤ f ≤ m. Controlling the presence
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of residual variables can then alternatively be achieved by imposing

yj = 0, ∀j ∈ U and yj+n = 0, ∀j ∈ L. (6.115)

It hardly takes any convincing to accept that it is possible to improve intermediate solutions
using negative weighted cycles until an optimal solution is reached. In this respect, the step
size ρ associated with the negative weighted cycle W must satisfy ρ yj ≤ rkj , ∀j ∈ W and
this cycle is canceled when the step size is equal to

ρ := min
j∈W

rkj
yj
> 0. (6.116)

Primal simplex algorithm. Consider a basic solution x0 and the index set of basic
variables B within the primal simplex algorithm. A pivot operation tries to improve the
current solution using a nonbasic entering variable, say x`, ` ∈ N . The aftermath of this
operation is simplified to a properly selected exiting variable and the associated step size ρ
is determined by the ratio-test. The ratio-test is useful on two counts. It maximizes the
exchange potential of the entering variable and it maintains a basic solution for x1. The
mechanic is incredibly simple although it might sometimes render the linear algebra aspect of
the pivot nebulous, especially in the context of degeneracy. In this respect, when PS performs
a nondegenerate pivot at iteration k ≥ 0, it goes from vertex xk represented by a nonoptimal
basis to vertex xk+1 by moving along an edge (Dantzig and Thapa 2003, Theorem 1.7), a
direct consequence of the entering/exiting variable mechanism. In the case of a degenerate
pivot, the basis is modified, but the geometrical solution vertex remains the same. In other
words, the n-dimensional direction (see Definition 10)

~vj =

yj − yj+n, ∀j ∈ B ∪ {`}0, ∀j ∈ N \ {`}
(6.117)

induced by the selected negative reduced cost entering variable x` leads outside the domain
of LP (6.104) and we do not move. One may want to consider the column a` of the entering
variable as part of the linear span of AB, that is, V(AB) = Rm. By definition, any m-
dimensional column belongs to V(AB) meaning in particular that for any nonbasic entering
variable
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∃!λ ∈ Rm such that
∑
j∈B

ajλj = a` which works out to λ = A−1
B a`. (6.118)

It is settled then, the simplex pivot follows a direction which is certainly not the sole
entering variable, nor is it limited to the entering/exiting variable couple. By thinking of
the simplex pivot as a direction (and the associated weighted cycle), we fall back upon the
oracle seen in the residual problem which provides a way to identify these, and many others,
in a general framework. Since the linear combination scalars λ can take any sign, every
column of AB is implicitly expected to have freedom to move in either direction. This could
unfortunately be proven false when the pivot exercise arrives. This possibility can only arise
when a nonbasic variable is defined by a linear combination containing at least one degenerate
variable, that is, a basic variable at one of its bounds. Indeed, the associated weighted cycle
to such an entering variable might include a yj-variable, j ∈ B with a residual upper bound
of 0, i.e., a forward variable yj > 0 | xkj = uj or a backward variable yj+n > 0 | xkj = `j.

The reader may want to compare this with (6.115) to realize that the degeneracy phe-
nomenon takes an equivalent form in the oracle as well. As degenerate pivots can only occur
when the current solution is degenerate, the following section derives a so-called transfor-
mation matrix which capitalizes on the over representation notion attached to degenerate
solutions.

6.2.3 Linear algebra

Recall that the presence of degeneracy in a basic solution xk to LP (6.104) is detected when
only a strict subset F of the basic variables are free, say ∅ ⊆ F ⊂ B. Applying the inverse
of an arbitrary nonsingular matrix T on the equality constraints of LP yields an equivalent
system, i.e., T−1Ax = T−1b ⇔ Ax = b. The goal of the following linear transformation
T−1
P is to structure the technological constraints.

Consider a set P of observed or assumed free variables forming a subspace basis AP with
dimension p := |P |. In that case, a subset of p rows within AP are independent. There must
then exist a row partition of AP such that ARP is a nonsingular matrix of size p× p. For
instance, an optimal basic solution to the following restricted phase I problem (see Gauthier
et al. 2015c)

min{1ᵀθ | APxP + Imθ = b,θ ≥ 0} (6.119)

identifies a set S of rows by associating (m− p) θ-variables with the used rows of the identity
matrix yielding the simplex basis

[
ARP 0
ASP Im−p

]
, hence the row partition

[
ARP
ASP

]
of AP .
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By definition of a subspace basis, this can be equivalently expressed by
[
Ip
M

]
, where

M := ASPA−1
RP . Since completing the basis can be done arbitrarily using artificial variables,

one can in general let TP and T−1
P be given by

TP =

[
Ip 0
M Im−p

]
and T−1

P =

[
Ip 0
−M Im−p

]
, (6.120)

such that applying the linear transformation on the system Ax = b results in Ā := T−1
P A

and b̄ := T−1
P b as follows:

Ā =

[
AR

AS −MAR

]
and b̄ =

[
bR

bS −MbR

]
. (6.121)

The point of the transformation all comes together in the following definition by reminiscing
on the outcome of Gauss-Jordan elimination on linear dependent systems.

Definition 14. (Gauthier et al. 2015c, Proposition 3) A vector a ∈ Rm (and the associated
variable, if any) is compatible with AP if and only if āS := aS −MaR = 0 or, equivalently,
it belongs to V(AP ), the linear span of the vector subspace basis AP .

Recall that V(AP ) := {APλ | λ ∈ Rp} such that verifying the equivalence is straight-
forward when decomposing

[ aR
aS

]
=
[
ARP
ASP

]
λ. The compatibility status of a column vector

can therefore be determined using any and all methods available from the linear algebra
arsenal. Some are more efficient than others depending on the content of matrix A, the most
probing known cases being the network and set partitioning problems which easily permit
the verification of the definition, see the transformation matrix insight paragraph at the end
of this section.

In fact, let Q := {1, . . . , n} \ P contain all the variables outside the set P . This column
partition is represented by the matrix A =

[
AP ,AQ

]
. Altogether, we have the row/column

partition

A =

[
ARP ARQ

ASP ASQ

]
,

where the nonsingular p × p matrix ARP is called the working basis. Applying T−1
P on A

yields

Ā =

[
Ip 0
−M Im−p

][
ARP ARQ

ASP ASQ

]
=

[
ARP ARQ

0 ĀSQ

]
. (6.122)
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In primal simplex terms, if one thinks of TP as the current basis, the ratio-test of an
entering variable x` with null entries in āS` would be performed only on the positive coefficients
of āR` and thus only influence variables related to AP . This means that all variables associated
with AP and the row set R are assumed to be free whereas all variables associated with[ 0
Im−p

]
and the row set S are assumed to be at their bounds. If P indeed corresponds to free

variables only (AP = AF ), the resulting step size would be positive for sure. In this spirit,
the purpose of T−1

P is to induce a partition in Ā to help look for so-called compatible column
vectors.

For the record, compatibility can also be determined using Positive Edge (PE). The
latter is an alternative rule described in Raymond et al. (2010a), Towhidi et al. (2014), and
Gauthier et al. (2015c) which uses a stochastic argument to reduce the matrix multiplication
computational penalty. The rule uses a random vector α 6= 0 ∈ Rm−p and considers a
column vector a compatible with AP if αᵀ[ −M Im−p ]a = αᵀT−1

S a = βᵀa = 0, where the
premultiplication of vector βᵀ = αᵀT−1

S ∈ Rm procures the computational savings. Testing
for compatibility over basis AB can be done in O(m2).

Transformation matrix insight. Ultimately, the transformation matrix produces row
and column partitions intimately binded together. Depending on the application, the row
partition can even be obtained in the midst of selecting the set P by trying to capture
the linear dependence of the technological constraints. Network flow and set partitioning
problems are such applications, see Figures 6.39 and 6.40 respectively.

In network flows, the free arcs forming AF can be visually separated in trees forming a
forest. The latter is expressed in matrix form in Figure 6.39a. One can then associate a root
node to each tree. Each of these root nodes corresponds to a linear dependent row in AF

thus forming the row partition presented in Figure 6.39b. A constructive approach leading to
a contracted network for the identification of negative cycles is presented in Gauthier et al.
(2016).

In set partitioning problems, and more specifically when using DCA, the subspace basis[
Ip
M

]
is obtained on-the-fly while heuristically trying to establish linear independent rows

within AF . This process is sketched in Figure 6.40. In Figure 6.40a, the original matrix AF

is presented whereas Figure 6.40b reorganizes the duplicated rows on the bottom (and this
reorganization then applies to the original system). By associating a unique identifier to each
singled out row in the top portion and replicating these identifiers in the bottom portion,
Figure 6.40b obtains five rows in the set R and three in the set S. Figure 6.40c uses these
identifiers by replacing the matrix content with trivial unity references for each identifier,
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x54 x56 x16 x78 x98 x8,10 x72
5 1 1
4 -1
6 -1 -1
1 1
7 1 1
8 -1 -1 1
9 1
10 -1
2 -1
3

(a) Matrix form of the forest induced by AF

x54 x56 x16 x78 x98 x8,10 x72
5 1 1
4 -1
6 -1 -1

R 7 1 1
8 -1 -1 1
9 1
10 -1
1 1

S 2 -1
3

(b) Row partition {R,S} of AF

Fig. 6.39: Network flow problem row partition

thus obtaining the subspace basis
[
I5
M

]
. One can easily verify that the four columns of AF in

Figure 6.40b belong to the span of that subspace basis. This is also true for another column
from the simplex basis AB, its actual content being irrelevant.





1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

(a) Original matrix AF





1 1 a
1 1 b

1 1 c
1 1 d
1 1 e
1 1 a

1 1 b
1 1 e

(b) Row partition
[
ARF
ASF

]





1
1

1
1

1
1

1
1

(c) Subspace basis
[
I5
M

]
Fig. 6.40: Set partitioning problem row partition

6.3 Vector space decomposition framework

In this section, we look at the essential components of the proposed framework. The algorithm
relies on an oracle to iterate. The latter is dynamically updated with respect to the values
of the current solution xk. As such, we already stated the residual problem which gives
a great deal of insight to the oracle’s solutions. We also define a row/column partition,
based on the transformation matrix, that generates the content of the oracle. In a nutshell,
the portions obtained from this partition communicate with each other in the same way a
master/subproblem would. In practice, we capitalize on the partition by treating its content
like a Dantzig-Wolfe decomposition, see Dantzig and Wolfe (1960).
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The generic algorithm is broken down into eight main steps aside from the initialization.
Figure 6.41 provides an overview of these steps, while the following subsections detail their
content.

Initialization : Iteration k := 0;
Feasible solution x0;
Select the subspace basis AP ;

1 Derive the transformation matrix T−1
P and the row/column partitions {R, S}/{P,Q};

2 Solve the pricing problem (6.129) for µkV ,W k
V ;

3 If µkV ≥ 0, terminate with an optimality certificate for xk;
4 Extract the extended weighted cycle W k

V ∪H from (6.130)-(6.131) and the direction ~vk;
5 Compute the step size ρk (6.132);
6 Update to solution xk+1 := xk + ρk~vk using the system (6.133);
7 Update the subspace basis AP ;
8 Iterate k := k + 1;

Fig. 6.41: Generic vector space decomposition algorithm for linear programs

Initialization. It all starts at iteration counter k = 0 with some basic feasible solution x0

and column partition {F,L, U}. The construction of the residual problem LP (xk) (6.105)
calls for a change of variables: yj − yj+n := xj − xkj , yj yj+n = 0, ∀j ∈ {1, . . . , n}. These
directed variables are bounded by 0 ≤ yj ≤ rkj , ∀j ∈ {1, . . . , 2n}.

6.3.1 The structured residual problem

Once an arbitrary subspace basis AP is selected, the induced transformation matrix T−1
P is

derived along with a row/column partition {R, S} and {P,Q}. The only point we shall insist
on is the structuring effect of the transformation matrix. The same structure can obviously
be observed in the residual problem. Let us divide the y-variables according to the column
partition {P,Q} with the sets

HP ≡ HP (xk) :=
⋃
j∈P

{j, j + n} (6.123)

VP ≡ VP (xk) := Jk \HP , (6.124)

where the residual y-variables are obviously exhaustively considered. However, observe that
while VP contains only residual variables, HP may or may not. That is, if there exists a
j ∈ P such that either j ∈ L or j ∈ U , the variable yj+n or respectively yj has a null residual
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capacity. The residual problem formulation (6.105) can then be rewritten as

z? = zk + min
∑
j∈HP

djyj +
∑
j∈VP

djyj

s.t.
∑
j∈HP

kRjyj +
∑
j∈VP

kRjyj = 0 [ψR]∑
j∈VP

k̄Sjyj = 0 [ψS]

0 ≤ yj ≤ rkj , ∀j ∈ HP , 0 ≤ yj ≤ rkj , ∀j ∈ VP ,
(6.125)

where kj is the j-th column vector of K, K̄ := T−1
P K, and ψᵀ = [ψᵀR, ψ

ᵀ
S] is the vector of

dual variables of the transformed system. The original dual vector π can be retrieved from
ψ using the expression πᵀ = ψᵀT−1

P , that is,

[πᵀR, π
ᵀ
S] = [ψᵀR −ψᵀSM, ψᵀS]. (6.126)

6.3.2 The pricing problem

The pricing problem exploits the structure in (6.125) and derives an oracle based on the
resulting transformation. The oracle is presented in both primal and dual forms, each having
its own interpretation. Let us start with the dual form which is derived by trying to meet
the necessary and sufficient optimality conditions. That is, if the assumed free variables in
the set P are at an optimal value, the dual variables of π, or those of ψ, must impose a null
reduced cost on these variables [complementary slackness conditions]:

0 = c̄ᵀP = cᵀP −ψᵀRARP (= cᵀP − (πᵀR + πᵀSM)ARP = cᵀP − πᵀRARP − πᵀSASP ). (6.127)

This is equivalent to imposing d̄j = dj − ψᵀRkRj ≥ 0, ∀j ∈ HP , that is, d̄j = d̄j+n =

0, ∀j ∈ P . Furthermore, if the current solution xk is also optimal, there should exist a dual
vector ψS such that the smallest reduced cost of the remaining variables in VP , say µV , is
nonnegative [dual condition]. Given the scalars wj > 0, ∀j ∈ VP , this verification can be
done with the program

max µV

s.t. µV ≤
d̄j
wj

=
1

wj
(dj −ψᵀRkRj −ψᵀSk̄Sj) [yj] ∀j ∈ VP ,

(6.128)
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where the vector ψᵀR = cᵀPA−1
RP is fixed by (6.127) whereas the vector ψᵀS is part of the

optimization so as to maximize the minimum reduced cost.

Dualizing (6.128), we obtain the primal form of the oracle which comprises m − p + 1

constraints and writes as

min
∑
j∈VP

d̃jyj

s.t.
∑
j∈VP

k̄Sjyj = 0 [ψS]∑
j∈VP

wj yj = 1 [µV ]

yj ≥ 0, ∀j ∈ VP .

(6.129)

where d̃j := dj − ψᵀRkRj = dj − cᵀPA−1
RPkRj,∀j ∈ VP . The oracle interpretation is done

through the primal/dual pair (6.128)/(6.129). It brings together the negative weighted cycles
and the transformation matrix T−1

P .

Oracle interpretation. First of all, the formulation (6.129) is always feasible unless x0 is
the only feasible solution of LP (6.104) in which case the former is infeasible. Reciprocally, the
formulation (6.128) is always feasible although unbounded in the exception case. Note that
we can ensure that the primal/dual pricing system is feasible/bounded if the normalization
constraint is written as a less-than-or-equal inequality or equivalently one imposes µV ≤ 0.
Furthermore, weight values of w := [wj]j∈{1,...,2n} used for the normalization constraint can
be set in stone or updated dynamically. In the former case, think of the simple one vector
typically used in network flows (see Gauthier et al. 2015b) or the norm based weights such as
wj = wj+n = ‖aj‖, ∀j ∈ {1, . . . , n}, which makes the ratio d̄j/wj impervious to the scaling
of variable xj. In the latter case, dynamic weight choices can also be made to help steer the
pricing problem towards or away from certain solutions, see (Rosat et al. 2016a,b) for several
alternatives which have been particularly successful for solving set partitioning problems
using the integral simplex using decomposition algorithm (Zaghrouti et al. 2014). Finally, it
can also be noted that all other things being equal, a smaller value of wj relatively to the
others favors the selection of variable yj in the pricing problem.

Let µkV and ykV := [ykj ]j∈VP denote an optimal solution to the primal/dual system at
iteration k ≥ 0. If µkV ≥ 0, the dual optimality conditions are satisfied and the algorithm
terminates with an optimal solution xk. Otherwise, µkV < 0 and the current solution might
be improved by following a direction.
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The dual form takes on a very simple form and maximizes the minimum reduced cost by
pricing the listed y-variables. As explained in the next paragraphs, the primal form measures
the minimum mean cost of the directed weighted cycles available using the y-variables in VP .

Observe that an optimal weighted cycle, say W k
V , derived from (6.129) is directed since

only residual variables yj, j ∈ VP are considered. The fact that ykV is built omitting variables
yH means that it only provides a portion of yk. However, by construction of the linear
transformation, these missing components are uniquely determined within (6.125) in the
system of row set R where the free nature of variables in P is assumed, that is,∑

j∈HP

kRjyj +
∑
j∈VP

kRjy
k
j = 0

0 ≤ yj ≤ rkj , ∀j ∈ HP , 0 ≤ ykj ≤ rkj , ∀j ∈ VP .
(6.130)

The solution ykH of this system is determined alike (6.118) by λP := A−1
RP

(
−∑j∈VP kRjy

k
j

)
as follows

ykj =

−λj, if λj < 0

0, otherwise
and ykj+n =

λj, if λj > 0

0, otherwise
for all j ∈ P , (6.131)

and the direction ~vk follows from Definition 10. Observe that the complementarity condition
yj yj+n = 0, ∀j ∈ {1, . . . , n} is taken into account at every stage. First off, by looking for
extreme point solutions to the pricing problem, any negative weighted cycle W k

V cannot
contain both yj and yj+n variables simultaneously. Secondly, ykH is established in (6.131) by
dichotomy on the signs of λP .

All in all, the weighted cycle W k
V found in the pricing problem is the support of incomplete

information about the direction yet, once W k
V is identified, the complete cycle is always

uniquely determined. In this respect, let W k
V be called a contracted weighted cycle whereas

the weighted cycle produced with yk = [ykH , ykV ] is named the extended weighted cycle and
is denoted by W k

V ∪H . One can then think of the variables in the sets HP and VP as those
variables that are hidden and visible in the contracted linear system (6.129). Recall that the
contracted weighted cycle W k

V is always directed. Whether or not its extension W k
V ∪H is itself

guaranteed to be directed over the set of residual variables in Jk is directly related to the
free nature of hidden variables in HP . In other words, whether the step size computed next
is certainly positive depends on the content of P , see Proposition 34.
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6.3.3 Step size and updates

The step size ρk of the extended weighted cycle W k
V ∪H is computed with respect to the

residual capacities of the directed variables forming it divided by their respective contribution
as

ρk := min
j∈Wk

V ∪H

{
rkj
ykj

}
≥ 0 . (6.132)

A new primal solution xk+1 := xk + ρk~vk with cost zk+1 is obtained by computing

∀j ∈ {1, . . . , n} xk+1
j :=


xkj + ρk ykj , if j ∈ W k

V ∪H

xkj − ρk ykj , if j + n ∈ W k
V ∪H

xkj , otherwise

(6.133)

zk+1 := zk + ρk µkV . (6.134)

Depending on the choice of the subspace basis AP , xk+1 represented by [xk+1
F ,xk+1

L ,xk+1
U ]

could be nonbasic. Section 6.4.2 explains how and when this can happen with the conceptu-
alization of interior directions. We simply mention that any nonbasic solution xk+1 can be
rendered basic by solving a restricted problem over the set of free variables:

zk+1 = min cᵀFxF + cᵀLxL + cᵀUxU

s.t. AFxF + ALxL + AUxU = b

lF ≤ xF ≤ uF , xL = xk+1
L , xU = xk+1

U .

(6.135)

This problem identifies directed weighted cycles comprising free variables only, and increases
or decreases the value of these variables until some lower and upper bounds are reached while
possibly improving the overall solution cost. In network flows terminology, one obtains a
cycle free solution, that is, a network solution containing no cycle composed of free arcs only,
see Ahuja et al. (1993). Nonbasic network solutions are handled analogously in Gauthier et al.
(2016, Section 3.1). This small manipulation only reflects that the set P is often selected with
respect to F . Since the former must by definition be a linear independent set of variables
in A, having a basic solution means that no further verification on free variables must be
done.

There only remains to update the residual problem LP (xk+1) with residual capacities rk+1

and column partition {F,L, U} and to select a new subspace basis AP . Another iteration
k → k + 1 then starts in Step 1.
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6.4 Properties

This generic algorithm ultimately depends on a single parameter, that is, the selection of the
set P . Section 6.4 derives two propositions revolving around this selection. In Section 6.4.1,
we underline particular well known variants of this generic framework whereas Section 6.4.2
qualifies the kinds of directions found with the pricing problem.

6.4.1 Special cases

Let us start with a family of variants which perform a positive step size at every iteration. This
section is completed with four specific variants found in the linear programming literature.

Proposition 34. Let xk, k ≥ 0 be a nonoptimal solution to LP (6.104). Given P ⊆ F , the
step size of ~vk is guaranteed to be positive.

Proof. If ∅ ⊆ P ⊆ F or equivalently P ∩ {L∪U} = ∅, then all y-variables in HP are residual
as well as those in VP . Therefore, the primal/dual pair of the pricing problem (6.128)/(6.129)
respectively match the necessary and sufficient primal/dual optimality conditions of Propo-
sition 33. Indeed, the a posteriori extended cycle W k

V ∪H obtained from W k
V trivially only

uses variables in Jk and is as such a negative weighted cycle in LP (xk) meaning that the
associated step size is positive.

Remark. Consider the case P * F from the dual perspective. If there exists a j ∈ P such
that j /∈ F , then the null reduced cost imposed on both yj and yj+n is too stringent with
respect to the dual optimality condition. The reduced cost of the y-variable with a null
residual capacity is irrelevant which would incidentally have granted more freedom to ψR.
In other words, this overly restrictive observation is also echoed in the primal form where a
weighted cycle using such a y-variable is made possible, i.e., the additional column in the
primal form comes from the additional constraint in the dual form.

Case P = ∅. When choosing P = ∅, it amounts to a subspace basis A∅ of dimension zero
which in turn means that V (A∅) = {0}. Since the vector subspace contains only the null
vector, there are no compatible variables basic or otherwise. There is no linear transformation,
that is, T∅ = T−1

∅ =
[
I0 ∅
∅ Im

]
= Im. From a dual point of view, the m-dimensional dual

vector π is fully optimized to maximize the minimum reduced cost µ. From a dual point of
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view, the pricing problem contains only but all the residual variables and guarantees a positive
step size (otherwise the current solution is optimal). When A is a network flow incidence
matrix, this particular case corresponds to the remarkable strongly polynomial minimum mean
cycle-canceling algorithm of Goldberg and Tarjan (1989) devised for capacitated minimum
cost flow problems. With respect to arbitrary linear programs, it appears natural to think of
yet another analogy: minimum mean weighted cycle-canceling algorithm. From a mechanical
point of view, the adaptation is straightforward. However, the extent to which time complexity
properties of MMCC are also portrayed in the latter is left for another paper.

Case P = F . When choosing P = F , it corresponds to the strategy developed by Elhallaoui
et al. (2011) in IPS. The vector subspace V(AF ) includes all columns of AF =

[
ARF
ASF

]
but

none associated with the degenerate basic variables: ∀j ∈ B, aj ∈ V(AF ) ⇔ j ∈ F . The
linear transformation is given by T−1

F =
[

If 0
−M Im−f

]
, where M = ASFA−1

RF . As a special case
of Proposition 34, a positive step size is guaranteed.

Case P = B. When choosing P = B, we have m linearly independent column vectors
with AB and V(AB) = Rm. All variables are compatible whereas the sets P and Q

respectively correspond to all basic and nonbasic variables. The subspace basis induces
TB = T−1

B =
[
Im ∅
∅ I0

]
= Im and there is no transformation. Most importantly, it fixes

πᵀ = cᵀBA−1
B and the generic algorithm becomes PS with Dantzig’s pivot-selection rule.

When B ∩ {L ∪ U} 6= ∅, that is, when at least one basic degenerate variable is present, the
set HP contains y-variables with null residual capacities and a null step size can occur, i.e., a
degenerate pivot.

Case P ⊇ F . When choosing P ⊇ F , we have f ≤ p ≤ m linearly independent column
vectors in AP . This is the strategy used in Elhallaoui et al. (2005, 2008) for solving set
partitioning problems by column generation, see Gauthier et al. (2015c). While the equivalent
form with the columns of AB exists, the subspace basis [ I

M ] is obtained by design, more
precisely heuristic row clustering as seen in Figure 6.40. If P ⊃ F , then the set HP contains
(p− f) y-variables with null residual capacities. This possibly larger than necessary subspace
basis gives a lot of freedom in the implementation of DCA, a method steered by practical
imperatives. Indeed, in typical applications (Desrosiers et al. 1995, Desaulniers et al. 1998),
a vehicle route or a crew schedule covers several tasks, say on average m̄, which implies
that the number of variables assuming value one in the basis is of the order m/m̄. DCA
thus capitalizes on the characterization of set partitioning optimal binary solutions which
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are usually highly degenerate. The compatibility interpretation follows by design, a column
aj, j ∈ {1, . . . , n}, of A is compatible with the row clustering if and only if the itinerary or
schedule respects that clustering into multi-task activities. Computational results also reveal
that there is no inevitable correlation between an algorithm’s inefficiency and degeneracy,
contradicting common belief. See for example Benchimol et al. (2012) for the implementation
of a stabilized DCA on highly degenerate multi-depot vehicle scheduling problems.

6.4.2 Interior directions

Since this paper backtracks on the edge movement induced by a pivot by first considering the
direction of travel, let us add a layer of definition on the resulting impact of this direction.

Definition 15. Let C be a convex polyhedron. Given a vertex x ∈ C and a direction ~v 6= 0,
let x + ρ~v ∈ C for some ρ > 0. The vector ~v is called an edge direction originating from x if
for 0 < δ < ρ, the vector x + δ~v belongs to an edge of C. Otherwise, a nonedge direction is
called an interior direction originating from x.

An important property of the IPS algorithm is its movement on an edge of the polyhedron
defined by the set of constraints of LP (6.104) at every iteration (Elhallaoui et al. 2011). The
main idea of the proof is as follows. Consider a generic basis composed of the columns of
AF completed with m− f artificial variables at zero. Because the index set of the visible
y-variables is V k

P = L ∪ U at iteration k, either a single compatible variable or a combination
of at most m− f + 1 incompatible variables at their lower or upper bounds is selected in the
weighted cycle W k

V . In the former case, it acts as in PS with a nondegenerate pivot, hence a
movement along an edge. In the latter case, the selected incompatible variables can enter the
current basis one by one with degenerate pivots, each pivot removing an artificial variable
thus maintaining the basis status of the solution, whereas the last pivot is nondegenerate,
hence the movement is made along an edge. Let us formalize this result.

Proposition 35. (Elhallaoui et al. 2011, Proposition 4) Let xk, k ≥ 0, be a nonoptimal
basic solution to LP (6.104). For P = F , the direction ~vk is an edge direction.

Proposition 34 shows that the family of algorithms with P ∩ {L ∪ U} = ∅, or equivalently
P ⊆ F , ensures a positive step size at every iteration. This also means that the oracle
associated with any of these variants is able to verify the necessary and sufficient optimality
conditions. While one might rest uneasy about equivalent necessary and sufficient optimality
conditions provided by two different oracles, the following proposition sheds light on their
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content and characterizes improving interior directions originating from a nonoptimal basic
solution xk. In a nut shell, since the case P = F only identifies edge directions by Proposi-
tion 35, it provides the smallest contracted linear system K̄SV yV = 0 able to exhaustively
identify the set of feasible edge directions. Variants using P ⊂ F must then intuitively contain
these edge directions or combinations of these, i.e., interior directions.

For P ⊆ F , any extreme point solution yk to the pricing problem (6.129) is in a one-to-one
correspondence with an extreme ray of the cone defined by removing the normalization
constraint, hence in a one-to-one correspondence with the direction ~vk, see Definition 10 and
Figure 6.38. Let Ωk

P be the set of these directions, where Ωk
F hence corresponds to the set of

edge directions (Proposition 35).

Proposition 36. Let xk, k ≥ 0, be a nonoptimal basic solution to LP (6.104). For P ⊂ F ,
if ~vk /∈ Ωk

F , then it is an interior direction.

Proof. For P ⊂ F , the pricing problem involves more visible y-variables compared to the
case with P = F because VP ⊃ VF . At the same time, it contains (f − p) more constraints
since m− p+ 1 > m− f + 1. Therefore, if ~vk ∈ Ωk

P \Ωk
F , it can be expressed as a nonnegative

combination of the edge directions of Ωk
F by the representation theorems of Minkowski

and Weyl (see Schrijver 1986), and as such, it is an interior direction originating from xk

(Definition 15).

Note that a direction leading to a nonbasic solution can only happen with an interior
direction. As such, observe that the case P = ∅ is one of the variant susceptible to lead to
nonbasic solutions. However, since T−1

∅ = Im and all dual variables are optimized in the
pricing problem, the simplifications applicable to the different steps of the generic algorithm
in Figure 6.41 imply that maintaining the basic nature of the solutions is irrelevant. For all
other cases, fetching a linearly independent set P can be made simple by solving (6.135).

Illustrative example. For illustrative purposes, consider the following linear program with
three variables and four inequality constraints. Let s1, . . . , s4 be the slack variables associated
with each constraint at x0 = (x0

1, x
0
2, x

0
3) = (0, 0, 0) and assume the initial basic solution uses

these slack variables at values s1 = 21, s2 = 8, s3 = 15 and s4 = 32 for a total cost of z0 = 0.
This basic solution is nondegenerate and there are three edge directions according to the
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selected entering variable x1, x2, or x3.

max 130x1 +80x2 +60x3

s.t. 2x1 − x2 + 2x3 ≤ 21

− x1 + x2 − x3 ≤ 8

2x1 − x2 − x3 ≤ 15

− x1 − x2 + 2x3 ≤ 32

x1, x2, x3 ≥ 0

Figure 6.42 details the content of the direction ~v0 found using the pricing problem (6.129)
under the suggested set P and weight vector w = 1. The minimum mean cost of the associated
weighted cycle W 0

V is given by µ0
V and the step size ρ0 can be recovered with (6.132). Finally,

the new solution x1 is obtained with (6.133) whereas the updated objective function z1 comes
from (6.134). As expected, the direction found with the improved primal simplex algorithm
(P = F ) follows an edge and yields an extreme point solution. Notice that since the current
solution is not degenerate, we have F = B and would have found the same direction upon
selecting x1 as the entering variable in the primal simplex algorithm.

However, when P = ∅, the direction so happens to be interior and yields a feasible point
which is not an extreme point (six variables take positive values). The reader can verify
that it is indeed the combination of the three edge directions with weights {1/6, 1/4, 1/12}
(see Figure 6.43). By no means do we imply the set P = ∅ provides all around better
directions than with P = F . In fact, it suffices to modify the coefficients of x1 and x2

in the third constraint to 1 and 3 to get the opposite effect when using the uniform one
weight vector. The last example still is with the set P = ∅ but uses a weight vector whose
every element wj is determined by computing the squared norm ‖aj‖2 of each column, i.e.,
wx1 = 22 + (−1)2 + 22 + (−1)2 = 10. The pricing problem finds a different interior direction
which happens to be within the x1x2-face.

6.5 Conclusion

This paper unites under one generic framework several known algorithms with a broad
spectrum of possibilities whereby both extreme cases correspond to the primal simplex and
minimum mean weighted cycle-canceling algorithms. Several properties are established for
different family members. In particular, a family that provides positive step sizes at every
iteration and another one for which the pricing problems provide edge directions only. The
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cj coefficient 130 80 60
Variant Direction & Solution x1 x2 x3 s1 s2 s3 s4 z1 µ0

V ρ0

P = F
~v0 (edge) 1 0 0 -2 1 -2 1 130 7.5

x1 7.5 0 0 6 15.5 0 39.5 975

P = ∅ ~v0 (interior) wj = 1 1/6 1/4 1/12 -1/4 0 0 1/4 140/3 84
x1 14 21 7 0 8 15 53 3920

P = ∅ ~v0 (face) wj = ‖aj‖2 1/22 1/11 0 0 -1/22 0 3/22 145/11 176
x1 8 16 0 21 0 15 56 2320

Fig. 6.42: Directions found at x0 in pricing for P = F and P = ∅

x1

x2

x3

(1/6, 0, 0)
(0, 1/4, 0)

(0, 0, 1/12)

Fig. 6.43: Three-dimensional interior direction (x1, x2, x3) = (1/6, 1/4, 1/12) with P = ∅ and w = 1

improved primal simplex algorithm is remarkably the only variant which qualifies for both
features.

While interior directions are certainly usual in the realm of nonlinear optimization, it is
not so often that one thinks about such possibilities for simplex-like algorithms. The oracle
for such findings does not require fancy derivatives and in fact remains linear.

It is often noted in column generation that giving more structure to the pricing problem
allows faster retrieval of improving columns. A potentially beneficial avenue might therefore
be the use of dual-optimal inequalities. The idea is to add to the primal formulation some
additional variables and columns for which the corresponding dual inequalities are always
satisfied by an optimal dual solution. These have been used in several applications such as
the cutting stock and the bin packing problems, see Valério de Carvalho (2005), Ben Amor
et al. (2006) and Gschwind and Irnich (2016). Dual-optimal inequalities in these papers must
verify the necessary and sufficient dual optimality conditions of Proposition 33, but we hope
the latter also allows the retrieval of additional such inequalities.

All in all, the implementation of this generic framework is a chapter of its own. While
this paper has no computational study pretension, several ideas have already been suggested
as promising assets. The transformation matrix T−1

P induces structure in the technological
matrix whereas the residual problem automates degeneracy screening. By combining both
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constructions, extensive variable screening in the pricing problem can be done on several
fronts such as compatibility and partial reduced costs to residual upper bounds ratios. The
first kind being easy performed pivots whereas the second kind aims at detecting good cost
to step size pivots.
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7. CONCLUSION (FR)

Plaçons-nous cinq ans plus tôt. Dynamic Constraint Aggregation traduit une préoccupation
pratique : accélérer la vitesse de résolution des problèmes de partitionnement en génération
de colonnes. La fondation est mise en place tant pour l’algorithme du Improved Primal
Simplex que pour la règle du Positive Edge qui apparaîssent peu de temps après. Chacun
de ces trois outils repose sur une transformation linéaire pour mieux capturer les directions
améliorantes. C’est sans doute ce qui se dégage le mieux de notre revue de littérature, mais
nous croyons également que la valeur théorique apporte des réponses quant au succès (ou
non) de certains choix d’implémentation.

Qu’en est-il aujourd’hui ? La présentation d’IPS nous apparaît plus accessible ne serait-ce
que pour l’interprétation visuelle de la dégénérescence qui transparaît dans les exemples
réseaux. L’algorithme du simplexe s’appuie sur la convexité des problèmes linéaires, à tel
point qu’il souffre d’un manque de considérations géométriques induites par les contraintes
technologiques. En effet, du point de vue visuel, la dégénérescence est hors de propos. Le
lecteur est invité à penser aux méthodes de points intérieurs qui sont immunisées en traversant
le polyèdre à l’intérieur. IPS tente de faire un compromis entre la considération explicite
de la dégénérescence et un des avantages non négligeable du simplexe primal qui voyage
uniquement sur des arêtes.

En appliquant IPS aux problèmes de flot, l’étude met en lumière des propriétés intéressantes
qui passent en large partie par l’importance accordée aux phases. Il en découle que des
améliorations peuvent être apportées à des algorithmes comparables en forçant ceux-ci à
épouser le principe des phases. C’est ainsi, qu’en mélangeant une gymnastique de contraction
avec le comportement de l’algorithme du Minimum Mean Cycle-Canceling, une complexité
fortement polynomiale est exposée. Alors qu’une implémentation efficace d’un simplexe primal
repose sur une panoplie de trucs et astuces dont une bonne gestion de la tarification partielle,
l’algorithme de Contraction-Expansion n’utilise pour l’instant aucune technique d’accélération.
Malgré qu’il ne soit donc pas en mesure de compétitionner avec les outils disponibles à ce jour,
la gestion du problème contracté fait en sorte qu’il est possible d’effectuer un arbitrage à la
fois sur la longueur des pas et l’envergure du cycle de coût moyen en écartant temporairement
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des arcs du problème de tarification. Le premier biais insiste sur une longueur de pas désirée
tandis que le second oppose les rooted costs au paramètre d’optimalité.

Sur une autre note, Cancel-and-Tighten est devenu une partie intégrante de la thèse à force
d’afficher des comportements particulièrement fascinants. Notamment, son fonctionnnement
faisant en sorte que les variables duales sont amenées à se fixer à des valeurs optimales de
façon non-décroissante. Celui-ci hérite également intrinsèquement d’une forme de tarification
partielle. Enfin, une des plus jolies contributions renvoie au nouveau résultat de complexité
théorique proposé en combinant MMCC avec Cancel-and-Tighten. Rappelons que nous
introduisons une mesure heuristique qui influence par ailleurs la vitesse de résolution.

Comme la section des sujets divers de l’introduction le suggère, IPS a ouvert le chemin vers
beaucoup d’études. Plusieurs questions se dressent au fur et à mesure que notre compréhension
s’élargit. À titre d’exemples, pensons à la possibilité d’intégrer la stabilisation des variables
duales ou encore un algorithme de type MMCC pour les problèmes linéaires avec sa propre
analyse de complexité. Par ailleurs, une des pistes attrayantes consiste à porter d’autant
plus d’attention au problème de tarification afin d’extraire des directions qui maintiennent
l’intégralité. Voilà le propre du Integral Simplex Using Decomposition dont le prochain
tournant consiste à coordonner son fonctionnement avec la génération de colonnes.

En parlant de génération de colonnes, le problème de cycle moyen minimal (minimum mean
cycle) étant à la base de plusieurs problématiques industrielles, de nombreux algorithmes
dédiés à sa résolution sont disponibles, tout comme des études approfondies sur le sujet.
Ces dernières concluent que malgré sa complexité exponentielle, l’algorithme de Howard
domine en pratique les alternatives. Notre compréhension de MMCC indique cependant
qu’un algorithme capable de dénicher beaucoup de cycles est plus important que sa capacité
de résoudre à l’optimalité rapidement. La méthode de résolution du problème de tarification
mérite donc elle-même un examen autant dans l’esprit du Vector Space Decomposition qu’en
génération de colonnes où cette observation est une des clés de toute bonne implémentation.
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Journey back five years ago. Dynamic Constraint Aggregation is driven by practical concerns:
improve the column generation resolution speed of set partitioning problems. The foundation
is laid for the Improved Primal Simplex algorithm and the Positive Edge rule which surface
shortly thereafter. All three tools rely on a linear transformation to better capture the
improving directions. This much is certainly made clear in our literature review but we
believe it also adds theoretical value by enlightening the reason why certain implementation
choices prove successful while others less so.

Where do we stand today? The presentation of IPS seems more accessible and the reason
behind that might go hand in hand with the visual interpretation of degeneracy. The simplex
algorithm relies on the convex nature of linear programs, so much so it suffers from the lack
of geometrical consideration induced by the technological constraints. Indeed, from a visual
perspective, degeneracy is irrelevant. Consider for instance interior point methods which
are more or less naturally immune to degeneracy by traveling inside the polyhedron. IPS
compromises on one of the most interesting asset of the simplex algorithm which is to travel
around the polyhedron although degeneracy is also taken into account.

By applying IPS to network flow problems, the study shows that interesting properties
can be obtained, and that there is room for improvement on comparable algorithms. Indeed,
largely relying on phases, a strongly polynomial algorithm is devised by mixing the contraction
scheme with the Minimum Mean Cycle-Canceling algorithm. While the most efficient primal
simplex code today rely in very large measure on good partial pricing methods, the Contraction-
Expansion algorithm has yet to incorporate any such acceleration technique. Despite not being
as competitive as existing algorithms, possible partial pricing arbitrages include guaranteed
step sizes and mean cycle cost potential by temporarily discarding contracted arcs from the
pricing problem. The first bias insists on the minimal desired step size while the second
opposes rooted costs to the optimality parameter.

On another note, Cancel-and-Tighten has become an integral part of this dissertation
by recurringly appearing in our discussions with fascinating behaviors. Notably, the dual
variables are guided to optimal values from below. It also inherently benefits from a kind
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of partial pricing. Furthermore, one of the most interesting highlight is the new strongly
polynomial time complexity proposed by combining MMCC with Cancel-and-Tighten. Recall
that we introduce a heuristic scheme to make this possible which incidentally also improves
the performance.

As the miscellaneous subjects section of our introduction suggests, IPS has opened a
very broad field of study. Numerous questions are raised as our understanding deepens.
For instance, whether dual variables stabilization can be integrated or the possibility of an
MMCC like algorithm for linear programs with its own complexity study. Moreover, one
of the promising side product pays more attention to the pricing step in order to maintain
integrality. Such is the purpose of the Integral Simplex Using Decomposition for which the
next milestone is the integration in a column generation framework.

Speaking of column generation, it turns out that several algorithms dedicated to solving
the minimum mean cycle problem are available, and have been studied in-depth because
of their presence in many industrial challenges. The conclusion is that Howard’s algorithm
seems to be most efficient despite its theoretical exponential complexity. However, our
understanding of MMCC tells us that an algorithm capable of providing more cycles might be
more important than the speed at which it finds the optimal one. The resolution method of
the pricing problem thus merits examination in the Vector Space Decomposition framework
as much as in column generation where this observation is paramount to any well designed
implementation.

182



REFERENCES

Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, Upper Saddle River, NJ, USA, 1993.

Cynthia Barnhart, Ellis L. Johnson, George L. Nemhauser, Martin W. P. Savelsbergh, and Pamela H.
Vance. Branch-and-price: Column generation for solving huge integer programs. Operations
Research, 46(3):316–329, 1998. doi:10.1287/opre.46.3.316.

Hatem M. T. Ben Amor, Jacques Desrosiers, and José M. Valério de Carvalho. Dual-Optimal
Inequalities for Stabilized Column Generation. Operations Research, 54(3):454–463, 2006.
doi:10.1287/opre.1060.0278.

Hatem M. T. Ben Amor, Jacques Desrosiers, and Antonio Frangioni. On the choice of explicit
stabilizing terms in column generation. Discrete Applied Mathematics, 157(6):1167–1184, 2009.
doi:10.1016/j.dam.2008.06.021.

Pascal Benchimol, Guy Desaulniers, and Jacques Desrosiers. Stabilized dynamic constraint aggrega-
tion for solving set partitioning problems. European Journal of Operational Research, 223(2):
360–371, 2012. doi:10.1016/j.ejor.2012.07.004.

Dimitri Panteli Bertsekas. A distributed algorithm for the assignment problem. Technical report,
Working paper, Laboratory for Information and Decision Systems, MIT, Cambridge, MA, USA,
1979.

Robert Gary Bland. New finite pivoting rules for the simplex method. Mathematics of Operations
Research, 2(2):103–107, May 1977. doi:10.1287/moor.2.2.103.

Abraham Charnes. Optimality and degeneracy in linear programming. Econometrica, 20(2):160–170,
April 1952. doi:10.2307/1907845.

Abraham Charnes and William W. Cooper. Programming with linear fractional functionals. Naval
Research Logistics Quarterly, 9(3-4):181–186, 1962. doi:10.1002/nav.3800090303.

Jean Cochet-Terrasson, Guy Cohen, Stéphane Gaubert, Michael Mc Gettrick, and Jean-Pierre
Quadrat. Numerical computation of spectral elements in max-plus algebra. In IFAC Conference
on System Structure and Control, Nantes, France, July 8–10 1998.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms. The MIT Press, Cambridge, MA, USA and London, England, 3rd edition, 2009.

George B. Dantzig. Linear programming and extensions. Princeton University Press, Princeton, NJ,
USA, 1963.

http://dx.doi.org/10.1287/opre.46.3.316
http://dx.doi.org/10.1287/opre.1060.0278
http://dx.doi.org/10.1016/j.dam.2008.06.021
http://dx.doi.org/10.1016/j.ejor.2012.07.004
http://dx.doi.org/10.1287/moor.2.2.103
http://dx.doi.org/10.2307/1907845
http://dx.doi.org/10.1002/nav.3800090303


References

George B. Dantzig and Mukund N. Thapa. Linear Programming 1: Introduction. Springer Series in
Operations Research and Financial Engineering. Springer, New York, NY, USA, 1997.

George B. Dantzig and Mukund N. Thapa. Linear Programming 2: Theory and Extensions. Springer
Series in Operations Research and Financial Engineering (Book 2). Springer, New York, NY,
USA, 2003.

George B. Dantzig and Philip Wolfe. Decomposition principle for linear programs. Operations
Research, 8(1):101–111, 1960. doi:10.1287/opre.8.1.101.

Ali Dasdan. Experimental analysis of the fastest optimum cycle ratio and mean algorithms.
ACM Transactions on Design Automation of Electronic Systems, 9(4):385–418, October 2004.
doi:10.1145/1027084.1027085.

Ali Dasdan, Sandy S. Irani, and Rajesh K. Gupta. Efficient algorithms for optimum cycle mean and
optimum cost to time ratio problems. In Design Automation Conference, 1999. Proceedings.
36th, pages 37–42, New Orleans, LA, USA, 1999. IEEE. doi:10.1109/DAC.1999.781227.

Guy Desaulniers, Jacques Desrosiers, Irina Ioachim, Marius M. Solomon, François Soumis, and
Daniel Villeneuve. A unified framework for deterministic time constrained vehicle routing
and crew scheduling problems. In Teodor Gabriel Crainic and Gilbert Laporte, editors, Fleet
Management and Logistics, pages 57–93. Springer, New York, NY, USA, 1998. doi:10.1007/978-
1-4615-5755-5_3.

Jacques Desrosiers and Marco E. Lübbecke. Branch-price-and-cut algorithms. In James J. Cochran,
Louis A. Cox, Pinar Keskinocak, Jeffrey P. Kharoufeh, and J. Cole Smith, editors, Wiley
Encyclopedia of Operations Research and Management Science. John Wiley & Sons, Inc.,
Chichester, West Sussex, England, January 2011. doi:10.1002/9780470400531.eorms0118.

Jacques Desrosiers, Yvan Dumas, Marius M. Solomon, and François Soumis. Time constrained
routing and scheduling. In Michael Ball, Tom Magnanti, Clyde Monma, and George Nemhauser,
editors, Handbooks in Operations Research and Management Science, Vol. 8: Network Routing,
volume 8, chapter 2, pages 35–139. Elsevier, Maryland Heights, MO, USA, October 1995.
doi:10.1016/S0927-0507(05)80106-9.

Jacques Desrosiers, Jean Bertrand Gauthier, and Marco E. Lübbecke. A contraction-expansion
algorithm for the capacitated minimum cost flow problem. Southampton, England, 2013.
Presentation at VeRoLog 2013.

Jacques Desrosiers, Jean Bertrand Gauthier, and Marco E. Lübbecke. Row-reduced column generation
for degenerate master problems. European Journal of Operational Research, 236(2):453–460,
2014. doi:10.1016/j.ejor.2013.12.016.

DIMACS. Network Flows and Matching: First DIMACS Implementation Challenge, 1990–1991.
URL ftp://dimacs.rutgers.edu/pub/netflow.

Olivier du Merle, Daniel Villeneuve, Jacques Desrosiers, and Pierre Hansen. Stabilized column
generation. Discrete Mathematics, 194:229–237, 1999. doi:10.1016/S0012-365X(98)00213-1.

184

http://dx.doi.org/10.1287/opre.8.1.101
http://dx.doi.org/10.1145/1027084.1027085
http://dx.doi.org/10.1109/DAC.1999.781227
http://dx.doi.org/10.1007/978-1-4615-5755-5_3
http://dx.doi.org/10.1007/978-1-4615-5755-5_3
http://dx.doi.org/10.1002/9780470400531.eorms0118
http://dx.doi.org/10.1016/S0927-0507(05)80106-9
http://dx.doi.org/10.1016/j.ejor.2013.12.016
ftp://dimacs.rutgers.edu/pub/netflow
http://dx.doi.org/10.1016/S0012-365X(98)00213-1


References

Jack Edmonds and Richard Manning Karp. Theoretical improvements in algorithmic efficiency for net-
work flow problems. Journal of the ACM, 19(2):248–264, April 1972. doi:10.1145/321694.321699.

Issmail Elhallaoui, Daniel Villeneuve, François Soumis, and Guy Desaulniers. Dynamic aggregation
of set partitioning constraints in column generation. Operations Research, 53(4):632–645, 2005.
doi:10.1287/opre.1050.0222.

Issmail Elhallaoui, Guy Desaulniers, Abdelmoutalib Metrane, and François Soumis. Bi-dynamic
constraint aggregation and subproblem reduction. Computers & Operations Research, 35(5):
1713–1724, 2008. doi:10.1016/j.cor.2006.10.007.

Issmail Elhallaoui, Abdelmoutalib Metrane, François Soumis, and Guy Desaulniers. Multi-phase
dynamic constraint aggregation for set partitioning type problems. Mathematical Programming,
123(2):345–370, 2010. doi:10.1007/s10107-008-0254-5.

Issmail Elhallaoui, Abdelmoutalib Metrane, Guy Desaulniers, and François Soumis. An Improved
Primal Simplex algorithm for degenerate linear programs. INFORMS Journal on Computing,
23:569–577, 2011. doi:10.1287/ijoc.1100.0425.

Lester Randolph Ford, Jr. and Delbert Ray Fulkerson. Maximal flow through a network. Canadian
Journal of Mathematics, 8:399–404, 1956. doi:10.4153/CJM-1956-045-5.

Lester Randolph Ford, Jr. and Delbert Ray Fulkerson. Flows in networks. Princeton University
Press, Princeton, NJ, USA, 1962.

Satoru Fujishige. A capacity-rounding algorithm for the minimum cost circulation problem:
A dual framework of Tardos’ algorithm. Mathematical Programming, 35:298–308, 1986.
doi:10.1007/BF01580882.

Komei Fukuda. Oriented Matroid Programming. PhD thesis, University of Waterloo, Waterloo, ON,
Canada, July 1982.

Jean Bertrand Gauthier, Jacques Desrosiers, and Marco E. Lübbecke. Decomposition theo-
rems for linear programs. Operations Research Letters, 42(8):553–557, December 2014.
doi:10.1016/j.orl.2014.10.001.

Jean Bertrand Gauthier, Jacques Desrosiers, and Marco E. Lübbecke. Vector space decomposition
for linear programs. Les Cahiers du GERAD G-2015-26, HEC Montréal, Montreal, QC, Canada,
March 2015a.

Jean Bertrand Gauthier, Jacques Desrosiers, and Marco E. Lübbecke. About the mini-
mum mean cycle-canceling algorithm. Discrete Applied Mathematics, 196:115–134, 2015b.
doi:10.1016/j.dam.2014.07.005. Advances in Combinatorial Optimization.

Jean Bertrand Gauthier, Jacques Desrosiers, and Marco E. Lübbecke. Tools for primal degenerate
linear programs: IPS, DCA, and PE. EURO Journal on Transportation and Logistics, pages
1–44, 2015c. doi:10.1007/s13676-015-0077-5.

185

http://dx.doi.org/10.1145/321694.321699
http://dx.doi.org/10.1287/opre.1050.0222
http://dx.doi.org/10.1016/j.cor.2006.10.007
http://dx.doi.org/10.1007/s10107-008-0254-5
http://dx.doi.org/10.1287/ijoc.1100.0425
http://dx.doi.org/10.4153/CJM-1956-045-5
http://dx.doi.org/10.1007/BF01580882
http://dx.doi.org/10.1016/j.orl.2014.10.001
http://dx.doi.org/10.1016/j.dam.2014.07.005
http://dx.doi.org/10.1007/s13676-015-0077-5


References

Jean Bertrand Gauthier, Jacques Desrosiers, and Marco E. Lübbecke. A strongly polynomial
Contraction-Expansion algorithm for network flow problems. Les Cahiers du GERAD G-2016-
18, HEC Montréal, Montreal, QC, Canada, March 2016.

Loukas Georgiadis, Andrew V. Goldberg, Robert Endre Tarjan, and Renato F. Werneck. An
experimental study of minimum mean cycle algorithms. In Irene Finocchi and John Her-
shberger, editors, 2009 Proceedings of the Eleventh Workshop on Algorithm Engineering
and Experiments (ALENEX), pages 1–13, New York, NY, USA, January 2009. SIAM.
doi:10.1137/1.9781611972894.1.

Andrew V. Goldberg and Robert Endre Tarjan. Finding minimum-cost circulations by canceling
negative cycles. Journal of the ACM, 36(4):873–886, 1989. doi:10.1145/76359.76368.

Timo Gschwind and Stefan Irnich. Dual inequalities for stabilized column generation revisited.
INFORMS Journal on Computing, 28(1):175–194, 2016. doi:10.1287/ijoc.2015.0670.

Paula M. J. Harris. Pivot selection methods of the Devex LP code. Mathematical Programming, 5
(1):1–28, 1973. doi:10.1007/BF01580108.

Ronald Arthur Howard. Dynamic Programming and Markov Processes. The MIT Press, Cambridge,
MA, USA, 1960.

Alon Itai. Two-commodity flow. Journal of the ACM, 25(4):596–611, October 1978.
doi:10.1145/322092.322100.

Richard Manning Karp. A characterization of the minimum cycle mean in a digraph. Discrete
Mathematics, 23(3):309–311, 1978. doi:10.1016/0012-365X(78)90011-0.

Victor Klee and George J. Minty. How good is the simplex algorithm? In Oved Shisha, editor,
Inequalities, volume III, pages 159–175. Academic Press, New York, NY, USA, 1972.

Morton Klein. A primal method for minimal cost flows with applications to the assignment and
transportation problems. Management Science, 14(3):205–220, November 1967.

Edward Seymour Klotz. Dynamic Pricing Criteria in Linear Programming. PhD thesis, Stanford
University, Stanford, CA, USA, July 1988.

Thorsten Koch, Tobias Achterberg, Erling Andersen, Oliver Bastert, Timo Berthold, Robert E.
Bixby, Emilie Danna, Gerald Gamrath, Ambros M. Gleixner, Stefan Heinz, Andrea Lodi, Hans
Mittelmann, Ted Ralphs, Domenico Salvagnin, Daniel E. Steffy, and Kati Wolter. MIPLIB 2010.
Mathematical Programming Computation, 3(2):103–163, 2011. doi:10.1007/s12532-011-0025-9.

Péter Kovács. Minimum-cost flow algorithms: an experimental evaluation. Optimization Methods
and Software, 30(1):94–127, 2015. doi:10.1080/10556788.2014.895828.

Andreas Löbel. Vehicle scheduling in public transit and Lagrangean pricing. Management Science,
44(12):1637–1649, 1998. doi:10.1287/mnsc.44.12.1637.

Marco E. Lübbecke and Jacques Desrosiers. Selected topics in column generation. Operations
Research, 53(6):1007–1023, 2005. doi:10.1287/opre.1050.0234.

186

http://dx.doi.org/10.1137/1.9781611972894.1
http://dx.doi.org/10.1145/76359.76368
http://dx.doi.org/10.1287/ijoc.2015.0670
http://dx.doi.org/10.1007/BF01580108
http://dx.doi.org/10.1145/322092.322100
http://dx.doi.org/10.1016/0012-365X(78)90011-0
http://dx.doi.org/10.1007/s12532-011-0025-9
http://dx.doi.org/10.1080/10556788.2014.895828
http://dx.doi.org/10.1287/mnsc.44.12.1637
http://dx.doi.org/10.1287/opre.1050.0234


References

John W. Mamer and Richard D. McBride. A decomposition-based pricing procedure for large-scale
linear programs – An application to the linear multicommodity flow problem. Management
Science, 46(5):693–709, 2000. doi:10.1287/mnsc.46.5.693.12042.

Roy E. Marsten, Matthew J. Saltzman, David F. Shanno, George S. Pierce, and J. F. Ballintijn.
Implementation of a dual affine interior point algorithm for linear programming. ORSA Journal
on Computing, 1989. doi:10.1287/ijoc.1.4.287.

Abdelmoutalib Metrane, François Soumis, and Issmail Elhallaoui. Column generation decomposition
with the degenerate constraints in the subproblem. European Journal of Operational Research,
207(1):37–44, 2010. doi:10.1016/j.ejor.2010.05.002.

Jérémy Omer, Samuel Rosat, Vincent Raymond, and François Soumis. Improved Primal Simplex: A
More General Theoretical Framework and an Extended Experimental Analysis. Les Cahiers du
GERAD G-2014-13, HEC Montréal, Montreal, QC, Canada, March 2014.

Amar Oukil, Hatem M. T. Ben Amor, Jacques Desrosiers, and Hicham El Gueddari. Stabilized
column generation for highly degenerate multiple-depot vehicle scheduling problems. Computers
& Operations Research, 34(3):817–834, 2007. doi:10.1016/j.cor.2005.05.011.

Ping-Qi Pan. A basis deficiency-allowing variation of the simplex method for linear program-
ming. Computers & Mathematics with Applications, 36(3):33–53, 1998. doi:10.1016/S0898-
1221(98)00127-8.

André F. Perold. A degeneracy exploiting LU factorization for the simplex method. Mathematical
Programming, 19(1):239–254, 1980. doi:10.1007/BF01581646.

Tomasz Radzik and Andrew V. Goldberg. Tight bounds on the number of minimum-mean cycle
cancellations and related results. Algorithmica, 11(3):226–242, 1994. doi:10.1007/BF01240734.

Vincent Raymond, François Soumis, and Abdelmoutalib Metrane. Improved primal simplex version
3: Cold start, generalization for bounded variable problems and a new implementation. Les
Cahiers du GERAD G-2009-15, HEC Montréal, Montreal, QC, Canada, 2009.

Vincent Raymond, François Soumis, Abdelmoutalib Metrane, and Jacques Desrosiers. Positive edge:
A pricing criterion for the identification of non-degenerate simplex pivots. Les Cahiers du
GERAD G-2010-61, HEC Montréal, Montreal, QC, Canada, 2010a.

Vincent Raymond, François Soumis, and Dominique Orban. A new version of the Improved Primal
Simplex for degenerate linear programs. Computers & Operations Research, 37(1):91–98, 2010b.
doi:10.1016/j.cor.2009.03.020.

Hans Röck. Scaling techniques for minimal cost network flows. In Uwe Pape, editor, Discrete
Structures and Algorithms, pages 181–191. Carl Hanser, Munich, Germany, 1980.

Samuel Rosat, Issmail Elhallaoui, François Soumis, and Andrea Lodi. Integral Simplex Using
Decomposition with Primal Cuts. In Joachim Gudmundsson and Jyrki Katajainen, editors,
Experimental Algorithms, volume 8504 of Lecture Notes in Computer Science, pages 22–33.
Springer International Publishing, Switzerland, 2014. doi:10.1007/978-3-319-07959-2_3.

187

http://dx.doi.org/10.1287/mnsc.46.5.693.12042
http://dx.doi.org/10.1287/ijoc.1.4.287
http://dx.doi.org/10.1016/j.ejor.2010.05.002
http://dx.doi.org/10.1016/j.cor.2005.05.011
http://dx.doi.org/10.1016/S0898-1221(98)00127-8
http://dx.doi.org/10.1016/S0898-1221(98)00127-8
http://dx.doi.org/10.1007/BF01581646
http://dx.doi.org/10.1007/BF01240734
http://dx.doi.org/10.1016/j.cor.2009.03.020
http://dx.doi.org/10.1007/978-3-319-07959-2_3


References

Samuel Rosat, Issmail Elhallaoui, François Soumis, and Driss Chakour. Influence of the normalization
constraint on the integral simplex using decomposition. Discrete Applied Mathematics, 2016a.
doi:10.1016/j.dam.2015.12.015.

Samuel Rosat, Frédéric Quesnel, Issmail El Hallaoui, and François Soumis. Dynamic penalization
of fractional directions in the integral simplex using decomposition: Application to aircrew
scheduling. Les Cahiers du GERAD G-2016-01, HEC Montréal, Montreal, QC, Canada, January
2016b.

David M. Ryan and Michael R. Osborne. On the solution of highly degenerate linear programmes.
Mathematical Programming, 41(1-3):385–392, May 1988. doi:10.1007/BF01580776.

Rusian Sadykov and François Vanderbeck. Column generation for extended formulations. EURO
Journal on Computational Optimization, 1(1-2):81–115, 2013. doi:10.1007/s13675-013-0009-9.

Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, Inc., Chichester,
West Sussex, England, 1986.

Daniel Dominic Kaplan Sleator and Robert Endre Tarjan. A data structure for dynamic trees. Journal
of Computer and System Sciences, 26(3):362–391, June 1983. doi:10.1016/0022-0000(83)90006-5.

Éva Tardos. A strongly polynomial minimum cost circulation algorithm. Combinatorica, 5(3):
247–255, 1985. doi:10.1007/BF02579369.

Éva Tardos. Strongly polynomial and combinatorial algorithms in optimization. volume 1 of
Proceedings of the International Congress of Mathematicians., pages 1467–1478, Kyoto, Japan,
1990.

Tamás Terlaky and Shuzhong Zhang. Pivot rules for linear programming: A survey on recent
theoretical developments. Annals of Operations Research - Annals OR, 46-47(1):203–233, 1993.
doi:10.1007/BF02096264.

Mehdi Towhidi, Jacques Desrosiers, and François Soumis. The positive edge criterion within COIN-
OR’s CLP. Computers & Operations Research, 49(0):41–46, 2014. doi:10.1016/j.cor.2014.03.020.

José M. Valério de Carvalho. Exact solution of bin-packing problems using column gen-
eration and branch-and-bound. Annals of Operations Research, 86(0):629–659, 1999.
doi:10.1023/A:1018952112615.

José M. Valério de Carvalho. LP models for bin-packing and cutting stock problems. European
Journal of Operational Research, 141(2):253–273, 2002. doi:10.1016/S0377-2217(02)00124-8.

José M. Valério de Carvalho. Using extra dual cuts to accelerate convergence in column generation.
INFORMS Journal on Computing, 17(2):175–182, 2005. doi:10.1287/ijoc.1030.0060.

Philip Wolfe. A technique for resolving degeneracy in linear programming. Journal of the Society
for Industrial and Applied Mathematics, 11(2):205–211, 1963. doi:10.1137/0111016.

Neal E. Young, Robert Endre Tarjan, and James B. Orlin. Faster parametric shortest path and min-
imum balance algorithms. Networks, 21(2):205–221, March 1991. doi:10.1002/net.3230210206.

188

http://dx.doi.org/10.1016/j.dam.2015.12.015
http://dx.doi.org/10.1007/BF01580776
http://dx.doi.org/10.1007/s13675-013-0009-9
http://dx.doi.org/10.1016/0022-0000(83)90006-5
http://dx.doi.org/10.1007/BF02579369
http://dx.doi.org/10.1007/BF02096264
http://dx.doi.org/10.1016/j.cor.2014.03.020
http://dx.doi.org/10.1023/A:1018952112615
http://dx.doi.org/10.1016/S0377-2217(02)00124-8
http://dx.doi.org/10.1287/ijoc.1030.0060
http://dx.doi.org/10.1137/0111016
http://dx.doi.org/10.1002/net.3230210206


References

Abdelouahab Zaghrouti, François Soumis, and Issmail El Hallaoui. Integral Simplex Using De-
composition for the Set Partitioning Problem. Operations Research, 62(2):435–449, 2014.
doi:10.1287/opre.2013.1247.

189

http://dx.doi.org/10.1287/opre.2013.1247

	Résumé
	Abstract
	Contents
	List of Papers
	List of Figures
	List of Tables
	List of Abbreviations
	Remerciements
	1. Introduction (fr)
	1.1 Aperçu
	1.2 Contribution

	1. Introduction (en)
	1.1 Outline
	1.2 Contribution

	2. About the minimum mean cycle-canceling algorithm
	Abstract
	2.1 Introduction
	2.2 Minimum mean cycle-canceling algorithm
	2.2.1 Residual network and optimality conditions
	2.2.2 Pricing step: maximizing the minimum reduced cost
	2.2.3 Algorithmic process
	2.2.4 Illustrative example: the maximum flow problem

	2.3 Complexity analysis
	2.3.1 In embryo
	2.3.2 Integer costs: O(n log(nC)) phases
	2.3.3 Arbitrary costs: O(mn log n) phases
	2.3.4 Arbitrary costs: O(mn) phases
	2.3.5 Bottleneck management
	2.3.6 Summary and observations

	2.4 Conclusion

	3. Tools for degenerate linear programs: IPS, DCA and PE
	Abstract
	3.1 Introduction
	3.2 Improved Primal Simplex
	3.2.1 Algorithmic steps
	3.2.2 Characterization of linear programming optimality
	3.2.3 IPS for a linear program in standard form
	3.2.4 Numerical example

	3.3 Linear Algebra Framework
	3.3.1 Vector subspace V(AF)
	3.3.2 Subspace basis Lambda(f)
	3.3.3 Subspace basis Lambda(r)
	3.3.4 Words of caution about compatibility
	3.3.5 Modified IPS algorithm

	3.4 Aiming for efficiency
	3.4.1 Dynamic Dantzig-Wolfe decomposition
	3.4.2 Subspace basis update
	3.4.3 Vector subspace flexibility
	3.4.4 Partial pricing
	3.4.5 Dynamic Dantzig-Wolfe algorithm
	3.4.6 Computational results for IPS

	3.5 Designing around compatibility
	3.5.1 Network flow
	3.5.2 Set partitioning

	3.6 Dynamic Constraint Aggregation
	3.6.1 Lambda(r) derived from the identical rows of A(F)
	3.6.2 DCA on set partitioning models
	3.6.3 Resolution process
	3.6.4 DCA algorithm
	3.6.5 Maintaining integrality
	3.6.6 Computational results for DCA

	3.7 Positive Edge
	3.7.1 Observations
	3.7.2 PE rule
	3.7.3 Computational results for PE

	3.8 Conclusions

	4. Decomposition theorems for linear programs
	Abstract
	4.1 Introduction
	4.2 A decomposition theorem for network flow problems
	4.3 A decomposition theorem for linear programs
	4.4 An augmenting weighted cycle theorem
	4.5 Primal and dual optimality conditions on LP(x0)
	4.6 Discussion
	4.6.1 Adaptation of MMCC to linear programs
	4.6.2 On the solution of MP(x0) by column generation
	4.6.3 Final remarks


	5. A strongly polynomial Contraction-Expansion algorithm for network flow problems
	Abstract
	5.1 Introduction
	5.2 Network problem
	5.2.1 Residual network
	5.2.2 Optimality conditions
	5.2.3 Contracted network

	5.3 Contracted network properties
	5.3.1 Nonbasic solution
	5.3.2 Uniqueness of the extended cycle
	5.3.3 Arc cost transfer policy
	5.3.4 Contraction algorithm
	5.3.5 Optimality conditions
	5.3.6 Extremal point solution space
	5.3.7 Root selection

	5.4 Behavioral study
	5.4.1 A lower bound on the minimum mean cost
	5.4.2 Optimality parameter analysis

	5.5 Contraction-Expansion algorithm
	5.5.1 End-phase markers
	5.5.2 Expansion scheme
	5.5.3 Complexity analysis
	5.5.4 Alternative end-phase markers and expansion schemes
	5.5.5 Computational experiments

	5.6 Conclusion

	6. Vector space decomposition for linear and network flow problems
	Abstract
	6.1 Introduction
	6.2 The problem
	6.2.1 The residual problem
	6.2.2 An oracle
	6.2.3 Linear algebra

	6.3 Vector space decomposition framework
	6.3.1 The structured residual problem
	6.3.2 The pricing problem
	6.3.3 Step size and updates

	6.4 Properties
	6.4.1 Special cases
	6.4.2 Interior directions

	6.5 Conclusion

	7. Conclusion (fr)
	7. Conclusion (en)
	References

