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Résumé

Les méthodes basées sur les arbres sont versatiles et utiles pour 'analyse de données de survie avec
censure a droite. Les foréts de survie, c’est-a-dire des combinaisons ensemblistes d’arbre pour don-
nées de survie, sont des méthodes performantes qui sont populaires aupres des analystes. Les trois
articles de cette thése proposent des solutions a trois limites des implantations actuelles des foréts
de survie. La premiére limite est que la plupart d’entre elles utilisent le test log-rank comme critére
de partitionnement. Ce test perd de l'efficacité lorsque I'hypothese de proportionnalité des fonctions
de risques n’est pas vérifiée. Le premier article propose d’utiliser comme critére de partitionnement
I'intégrale de la différence en valeur absolue entre les fonctions de survie des deux nceuds enfants.
La deuxiéme limite des implantations actuelles des foréts de survie est qu’elles ne fournissent pas de
prévisions dynamiques lorsqu’il y a des variables explicatives qui varient dans le temps. Le deuxieme
article propose différentes facons de faire pour obtenir des estimations dynamiques de la fonction
de risque avec des données de survie a temps discret. Finalement, les implantations actuelles des
foréts de survie sont valides sous I'hypotheése que le temps de survie et le temps de censure sont
indépendants, étant donné les variables explicatives. Le troisiéme article propose deux approches
pour traiter le probléme de censure dépendante avec des foréts de survie. La premiére approche con-
siste & utiliser une estimation finale de la fonction de survie qui corrige pour la censure dépendante.
La deuxiéme consiste a utiliser un critére de partitionnement qui ne dépend pas de I'hypothese de

censure indépendante.
Mots clés: Analyse de survie a temps discret; variables explicatives qui varient dans le temps;
censure dépendante; copula-graphique; données de survie; données censurées a droite; méthodes

ensemblistes; foréts aléatoires; foréts de survie.
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Abstract

Tree-based methods are versatile and useful tools for analysing survival data with right-censoring.
Random survival forests, that are ensembles of trees for time-to-event data, are powerful methods
and are popular among practitioners. The three articles of this thesis propose solutions for three
limitations of current implementations of random survival forests. The first limitation is that most
of them use the log-rank test as the splitting rule which loses power when the proportional haz-
ards assumption is violated. The first article proposes the use of the integrated absolute difference
between the two children nodes survival functions as the splitting rule. The second limitation of cur-
rent random survival forest techniques is that they do not provide dynamic predictions in presence
of time-varying covariates. The second article proposes different ways to obtain dynamic estima-
tions of the hazard function with random forests with discrete-time survival data. Lastly, current
implementations of random survival forests work under the assumption that the event time and the
censoring time are independent, given the covariates. The third article proposes two approaches to
tackle the problem of dependent censoring with random forests. The first approach is to use a final
estimate of the survival function that corrects for dependent censoring. The second one is to use a

splitting rule which does not rely on the independent censoring assumption.
Keywords: Conditional discrete-time survival analysis; time-varying covariates; dependent-censoring;
copula-graphic; survival data; right-censored data; ensemble methods; random forests; survival

forests.

Research methods: Data mining
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Introduction

Survival analysis answers the question of how long it takes for an event of interest to hap-
pen. It studies time-to-event data where the true time is observed for some subjects and
only partial information about the time is available for other subjects, that is these obser-
vations are incomplete since the event has not yet occurred at the time of data collection.
The presence of these censored observations is what distinguishes survival analysis from an
ordinary regression analysis.

In general, there are three types of censoring in survival analysis; right censoring, left
censoring and interval censoring. Left censoring happens when the event of interest has
already occurred before the study begins. Interval censoring happens when the event time
is known only to be within an interval instead of being observed exactly.

Right censoring is the most commonly encountered form of censoring. When a subject
still has not experienced the event of interest at the end of the study, it is said to be right
censored. Survival analysis has become a growing field of interest in many research areas.
The duration of a client-firm relationship in subscription-based businesses and time to a
customer’s next purchase in retails are some examples of application of survival analysis in
business.

To produce valid inference and optimize the prediction model for survival data, we must
adequately incorporate all available information (complete and incomplete). The traditional
methods for analyzing survival data, the parametric (Gamma, Weibull) and semi-parametric
(Cox) models, can be useful and have been discussed in details in the literature (Hosmer Jr
et al., 2011). However, they are restricted to the situation where the link between the covari-

ates and the time response must be specified in advance. Nonparametric models have the



advantage of relaxing the restrictive structure assumptions. These methods are more data-
driven and less assumption-driven and are often preferred as prediction tools. Tree-based
methods are one of the widely popular classes of nonparametric models among practitioners.
Tree-mechanism is mainly a recursive procedure where the tree is recursively partitioned into
homogeneous terminal nodes through binary splits. The original tree—based methods were
developed to model the relation between covariates and either a categorical or a continuous
outcome. The Classification and Regression Tree paradigm (CART) is well-established to-
day (Breiman et al., 1984). Loh (2014) provides a recent and comprehensive survey about
classification and regression trees.

Gordon and Olshen (1985) was the first to adapt the CART paradigm to right censored
data and intro- duced survival trees (Leblanc and Crowley, 1993; Segal, 1988). Many splitting
rules have been suggested so far to find best split that makes the two children nodes the
most different according to a given criterion. First, Gordon and Olshen (1985) explored the
idea of maximizing within-node homogeneity by minizing the Wasserstein distance between
the estimated Kaplan|Meier of each node and a point-mass function. Then, Ciampi et al.
(1988) suggested Wilcoxon-Gehan and Kolmogorov-Smirnov tests as measures to maximize
the heterogeneity between two children nodes. However, the log-rank statistic (Ciampi et
al., 1986) has become the most popular splitting rule.

Single trees are generally powerful descriptive tools. However, it is well-known that
they are unstable predictive tools. Ensemble methods with trees as base learners such as
random forests (Breiman, 2001) often provide better predictive accuracies than a single
tree. Similarly, a combination of survival trees, called a survival forest (e.g., Hothorn et
al., 2006; Ishwaran et al., 2008; Zhu and Kosorok, 2012), is often preferable than a single
survival tree. Bou-Hamad et al. (2011b) present a general overview of the vast literature on
survival trees and forests. In the following, we will focus on survival forests. First, Hothorn
et al. (2006) suggested a random forest method for the log-transformed survival time. In
this survival ensemble, inverse probability of censoring (IPC) are used as the estimated
weights for observations in each bootstrap sample. A regression tree is grown for each

bootstrap sample with log-transformed time as the outcome. Hothorn et al. (2006) used a



“similarity” weighting scheme defined as the number of times each test point falls into the
same terminal node of each tree as the i*"* observation in the training sample. The ensemble
prediction is in the form of the mean log-transformed survival time, obtained as a weighted
average, over all trees. By far, the most popular random forest technique for survival data
is Random Survival Forest (RSF) proposed by Ishwaran et al. (2008). The main output
of this method is an ensemble of cumulative hazard function computed by averaging the
Nelson—Aalen cumulative hazard function of each tree. This technique is implemented in
the R package randomForestSRC (Ishwaran and Kogalur, 2014). The package user has the
option of making a customized splitting rule or using one of the three available splitting rules
for right censored data: the log-rank statistic (Segal, 1988), which is the default one, the log-
rank score (Hothorn and Lausen, 2003) or the random splitting rule (Cutler and Zhao, 2001;
Lin and Jeon, 2006). Some other features available in the package are variable selection
and missing data imputation for covariates and outcomes. Recursively Imputed Survival
Tree (RIST) is a more recent random forest technique proposed by Zhu and Kosorok (2012)
for right-censored data. In this method, information on censored observations is retained
through computation of conditional survival distribution and recursive imputation. The
log-rank test statistic is used as the splitting rule.

As apparent from the above discussion, the current implementations of survival forest
mostly use the log-rank test as the splitting criterion.

However, the log-rank test may have a significant loss of power in situations where the
proportionality assumption is violated that is when the hazard functions or when the survival
functions cross each other in the two compared groups (Lin and Wang, 2004; Lin and Xu,
2010

Therefore, using the log-rank test as the splitting rule may lead to inaccurate estimations
of the conditional survival function. The first article of this thesis provides a solution to this
restraint. We suggest the use of the integrated absolute difference between the two children
nodes survival functions as the splitting rule. The effectiveness of survival forests built with
this rule, that we call L,-forest, is investigated through simulations studies and applications

to real data sets. The results show that L;-forest produces better results compared to



forests built with the log-rank splitting rule in many cases, even when the survival functions
of different subjects do not cross each other.

The first studies on survival trees with time-dependent covariates were done by Bacchetti
and Segal (1995) and Huang et al. (1998). Bacchetti and Segal (1995) proposed a survival
tree method capable of handling time-varying covariates through replacement of each subject
by “pseudo-subjects” and using smooth nonparametric hazard estimates as node summaries.
They used a two-sample rank statistic as the splitting rule. Huang et al. (1998) suggested a
piecewise exponential structure and were the ﬁrsf ones to include time as a time-dependent
covariate in their model. More recently, Bertolet et al. (2012) proposed a method that com-
bines a time-varying Cox model with CART and controls for confounding variables through
time-varying indicators. This method offers two types of splitting procedures: recursive
splitting and forward stepwise splitting. Pointing out that this technique is not able to han-
dle time-dependent covariates that change non-monotonically though time, Wallace (2014)
suggested a technique that overcomes this problem. This method also corrects for the usual
selection bias towards time-varying covariates through permutation test of independence
at each node for each covariate to select the variables with the highest association with
the outcome. This makes computational intensity one of the limitations of this technique.
Furthermore, given the use of a mixed-effects model to create permutations for each time-
dependent covariate, the accuracy of the permutation test depends on the accuracy of the
time-varying covariate(s) prediction model.

The studies presented above assume that the time-to-event is measured continuously. In
many situations however, such as annual surveys or for a truly discrete process, the observed
time is measured on a discrete scale. The reader can refer toTutz and Schmid (2016) for
a recent, in-depth overview on discrete-time survival analysis. Bou-hamad et al. (2009)
proposed a survival-tree method for discrete-time outcomes. They used a splitting rule based
on maximum likelihood that rests on a discrete-time proportional odds model described in
Willett and Singer (1993). This method accommodates time independent covariates with
time-varying effects. Bou-Hamad et al. (2011a) extended this technique to the case of

discrete-time survival forests with time-varying covariates through the person-period data



structure suggested by Willett and Singer (1993) where, for each subject, there is one line
of observation per period for which the subject is at risk. With this method, subjects can
be split across different nodes. The periods where the splitting rule is true would go to one
node and the periods where it is false would go to the other node. This approach is basically
a discrete version of the Bacchetti and Segal (1995) “pseudo-subjects” idea. In case of only
time invariant covariates, their splitting rule reduces to the splitting criterion suggested
by Bou-hamad et al. (2009). The R package DStree (Mayer et al., 2014) implements the
method of Bou-hamad et al. (2009). Schmid et al. (2016) proposed a similar method with
time-varying covariates. The main difference is that they include time itself as a potential
covariate. Hence, subjects can be split apart even if no time-varying covariates (besides time
itself) are used and may produce more accurate estimations in some circumstances.

Unlike the low number of studies on survival-tree techniques capable of handling time-
varying covariate, the literature for non-tree-based methods is rich. “Dynamic predictions”
has become a growing area of interest. As inferred from the term, when some time-varying
covariates are present, estimates of survival probabilities are updated for each subject as
new longitudinal information becomes available. At a certain time ¢ , the goal is to provide
estimates of survival probabilities at time u ( u > ¢ ) using covariates information history
up to t. The two main approaches are joint modeling and landmark analysis. The first one
estimates the survival probabilities through joint modelling of the time-varying covariates
processes and the event time data(Henderson et al., 2000). This approach relies on a correct
specification of the model for time-varying covariates trajectories which can be problematic
when the number of time-varying covariates is large. The reader can refer to Tsiatis and Da-
vidian (2004) and Rizopoulos (2012) for an in-dept treatment of the joint modeling approach.
The second approach is landmark analysis (Anderson et al., 1983; Madsen et al., 1983). The
main idea is to build models, usually Cox, at different landmark times ¢, using the covariate
information available up to ¢ and only the subjects still at risk of experiencing the event at
t. Van Houwelingen (2007) and van Houwelingen and Putter (2011) provide comprehensive
overviews of this approach. Van Houwelingen and Putter (2011) suggest stacking data sets

from many landmark times and fitting a single model to reduce the variability. The land-



mark approach is more appropriate when the number of time-varying covariates is low since
the model gets more complex as their number goes up. One challenge with the landmark
approach is that all subjects must have measurements for the time-varying covariate(s) on all
landmark points (Huang et al., 2016). Two techniques built around the landmark approach
are the partly conditional survival model of Zheng and Heagerty (2005) and the two-stage
approach of Huang et al. (2016). Zheng and Heagerty (2005) pointed out that their tech-
nique overcomes the “lack of parsimony” often assigned to the fully stratified landmarking
approach through explicit modeling of measurement time. Huang et al. (2016) recently
proposed a “two-stage” method for dynamic predictions useful when continuous predictions
over time is desired. As an advantage over joint models, this technique does not model time-
varying covariates trajectories but only the trajectories of their effects. At the first stage,
baseline predictions are made based on baseline covariates information only. At the second
stage, this method provides the conditional hazard function at any future time point. In
this stage, the effect of each time-varying covariate on future survival is the parameter to
be estimated. In order to ensure its smoothness over time, the effect of each time-varying
covariate is assumed to be a fractional polynomial. Despite overcoming some limitations of
the first two approaches, this technique still gets computationally intense when the number
of time-varying covariates goes up since it requires estimating parameters of one polynomial
for each time-varying covariate plus one for each interaction term between covariates if such
interactions are needed. Elgmati et al. (2015) suggested a penalized Aalen additive model
for dynamic predictions for discrete-time recurrent event data, but the method is limited
to one-step ahead predictions. From the above discussion, we see that no tree-based meth-
ods have addressed the problem of dynamic predictions. Indeed, Loh(2014) considers the
problem of dealing with time-varying covariates in the survival context as one of the yet
remaining challenges despite half a century of progress made in tree-based methods.

The second article of this thesis investigates ways to produce dynamic predictions with
discrete-time survival data. When time-varying covariates are present, predictions have to
be updated each time new information becomes available. Assuming that 7" is the largest

event time possible (or available in the data set), if the subject is currently alive at time



t € {0,1,...,T — 1}, then we are interested in estimating its hazard function at time wu for
u=1t+1,...,T. The outcome can be seen as a binary variable y which has a value of 1 if the
event occurred at time u and 0 otherwise. We explore three main approaches where random
forests can be used for dynamic estimation of the hazard function. The first approach uses
only local information builds separate ordinary forests with a binary outcome for each unique
combination of (¢, u). The second approach pools all u values together for a given ¢. That is,
we build one forest for each value of ¢t and get the whole hazard function for u > t at once.
For this approach, two ways of building trees and forests are explored based on the ideas
of Bou-Hamad et al. (2011a) and Schmid et al. (2016). The third approach, inspired by
the super data set used in landmark analysis (van Houwelingen, 2007; van Houwelingen and
Putter, 2011), pools all the information for all combinations of ({, ) at once. This way only
one ordinary forest with binary outcome is built for all combinations of (¢,u). The forest is
fitted to a super person-period data set created by stacking the data sets from all values of .
The results from simulation studies and an application to a real data set show that a simple
average of the estimated hazard functions from all these methods works well in most cases.

All present implementations of survival forests are only valid under the independent
censoring assumption. This means that they either explicitly state that their methods’ un-
derlying assumption is that the true event time and the true censoring time are independent
given the covariates, or implicitly by using a splitting rule (e.g. log-rank test) or an estima-
tion method (e.g. Kaplan-Meier, Nelson-Aalen) that works under the independent censoring
assumption. None of them can properly estimate the survival function in a dependent cen-
soring context. The third article of this thesis addresses this problem and suggests different
ways to build survival forests in this case. Different ways to account for dependent censoring
are proposed and investigated. The first one is to use an appropriate method when comput-
ing the final survival function estimation with the forest. The second one is to modify the
splitting rule. The “copula-graphic” estimator of the survival function introduced by Zheng
and Klein (1995), and its closedform expression provided by Rivest and Wells (2001), are
used as the basis for these adaptations. Further, a new method, called point wise forest or

simply “p-forest”, for building survival forests when dependent censoring is suspected is pro-



posed. This method can also be used as a new survival forest method in general. The results
from a simulation study indicate that these modifications improve greatly the estimation of

the survival forest in situations of dependent censoring.



Chapter 1

L1 Splitting Rules in Survival Forests

1.1 Abstract

The log-rank test is used as the split function in many commonly used survival trees and
forests algorithms. However, the log-rank test may have a significant loss of power in some
circumstances, especially when the hazard functions or when the survival functions cross
each other in the two compared groups. We investigate the use of the integrated absolute
difference between the two children nodes survival functions as the splitting rule. Simulations
studies and applications to real data sets show that forests built with this rule produce very
good results in general, and that they are often better compared to forests built with the

log-rank splitting rule.

Keywords: Survival data; right censored data; ensemble methods; random forests; survival

forests.



1.2 Introduction

There have been numerous studies on time-to-event data in a wide range of research areas.
One important feature of survival data is that some observations are censored, that is, these
observations are incomplete since the event has not yet occurred at the time of data collection.
In these situations, we must adequately incorporate all the available information to optimize
the prediction models. Parametric models (Gamma, Weibull, etc...), and semi-parametric
ones such as the Cox proportional hazard model, can be useful and have been discussed in
details in the literature (Hosmer Jr et al., 2011). However, (semi)parametric models have the
important limitation that the functional link between the survival time and the covariates
must be specified in advance. This is why more flexible nonparametric methods, like survival
forests, that let the data automatically find the structure of the model, are useful alternatives
(e.g., Hothorn et al., 2006a; Ishwaran et al., 2008; Zhu and Kosorok, 2012).

Tree-based methods were originally developed to model the relation between covariates
and either a categorical or a continuous outcome. The Classification and Regression Tree
paradigm (CART) is widely popular (Breiman et al., 1984). Survival trees, introduced by
Gordon and Olshen (1985), are an adaptation of the tree paradigm to right censored data.
A variety of splitting rules have been suggested for survival trees so far. First, Gordon and
Olshen (1985) used the idea of imposing homogeneity in each node through the use of a
Wasserstein distance between the Kaplan—-Meier estimators of the two survival functions.
Even though this test does not require any underling assumption, it has not been used much
in later works. Wilcoxon--Gehan statistics and Kolmogorov-—Smirnov test are other metrics
to maximize the heterogeneity between two children nodes that were proposed (Ciampi
et al., 1988). However, the log-rank statistic proposed by Ciampi et al. (1986) gained the
most popularity. The reader can refer to Bou-Hamad et al. (2011) for a review on various
splitting statistics proposed in the literature.

As is well known, single trees, despite being very powerful descriptive tools, may be
unstable predictive tools. Ensemble methods constructed from trees as base learners such as

random forests (Breiman, 2001) can improve the predictive performance through additional
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randomization. The reader can refer to Siroky (2009) and Verikas et al. (2011) that provided
recent surveys on random forests or to Rokach (2009) for a discussion on ensemble methods,
in general. A similar argument can be applied to the survival data settings; a combination of
survival trees generally leads to higher predictive accuracy. For more in-depth discussions on
survival trees and forests, the reader can refer to Bou-Hamad et al. (2011) for a comprehensive
overview, and to Boulesteix et al. (2012) and Chen and Ishwaran (2012) for an overview of
the subject in genomics and bioinformatics.

Perhaps, the most popular random forest technique for survival data is the one proposed
by Ishwaran et al. (2008), called random survival forest (RSF). It is implemented in their R
package randomForestSRC (Ishwaran and Kogalur, 2014). In this method, an ensemble of
cumulative hazard function is built by averaging the Nelson-Aalen cumulative hazard func-
tion of each survival tree. It uses the log-rank statistic (Leblanc and Crowley, 1993; Segal,
1988) as the default splitting rule. Other available splitting rules in randomForestSRC are
log-rank score (Hothorn and Lausen, 2003) and random splitting rule (Cutler and Zhao,
2001; Lin and Jeon, 2006). According to Ishwaran et al. (2008), RSF is the only survival
forest technique that adheres to all random forest principles introduced by Breiman (2001).
They also provided a built-in new missing data handling algorithm which deals with two
problems not addressed by the previous missing data methods for forests: i) the biasedness
of out-of-bag estimates of prediction error and ii) the inability to predict on test data sets
including missing values. Further, Ishwaran and Kogalur (2010) proved uniform consistency
of RSF under the assumption that all variables are categorical. Ishwaran et al. (2010) came
up with a regularization strategy for RSF, applicable to survival data where the sample
size is small and the number of covariates is large. In their method, the importance of a
covariate is measured by the tree depth at which the first split on that covariate happens,
a concept called “the minimal depth of a maximal subtree”. This technique is useful for
both variable selection and variable importance ranking. Ishwaran et al. (2011) provided
a follow-up for the use of this method through the randomSurvivalForest package, the
older version of randomForestSRC. They discussed ways to select the tuning parameters of

random forest as well as a weighted variable selection technique in order to better regularize
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the forest. Chen and Ishwaran (2013) studied the use of the minimal depth concept through
the randomSurvivalForest package in high-dimensional genomic data for effective pathway
selection and suggested a “pathway hunting” algorithm for extremely high-dimensional data.
Recently, Zhu and Kosorok (2012) proposed a nonparametric regression technique called
recursively imputed survival tree (RIST) suitable for right-censored data. In this method,
through calculation of the conditional survival distribution, censoring information of obser-
vations is retained and then, through recursive imputation and refitting steps, conditional
failure information is constantly updated leading to higher predictive accuracy of the final
model. The authors suggest three to five steps of imputation to get the best performance.
In their implementation, the best split is again obtained through the log-rank test statistic.

From the above discussion, it appears that the log-rank test is routinely used in the
various implementations of survival forests. This means that the best split is chosen as the
one that makes the two children nodes the most significantly different according to this test.
However, it is well known that the log-rank test may have a significant loss of power in
some circumstances, especially when the hazard functions or when the survival functions
cross each other in the two compared groups (Lin and Wang, 2004; Lin and Xu, 2010). This
means that if the goal is to accurately estimate the conditional survival function, then using
the log-rank test as splitting criterion may not be adequate. This is why we propose and

investigate a splitting rule which works directly with the survival function, defined by:

L= (nLnR)/t|5’R(t) Sy (0)ldt, (1.1)

where S'L(t), S’R(t), ng and ny are the Kaplan-Meier survival function estimates and the
number of observations in the left and right node, respectively. We call it [, splitting rule.
The L, splitting rule is related to the test statistic proposed by Lin and Xu (2010).

The rest of the paper is organized as follows. Section 1.3 describes the data setting and
the proposed method. The results from a simulation study are presented in Section 1.4. It
aims at comparing the proposed method to traditional and popular methods. Section 1.5

pursues the comparison with real data sets. Section 1.6 concludes and provides directions
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for further work. Appendices and Supplemental Materials are presented in Section 1.8.

1.3 Survival Forest Approach and Splitting Criterion

We have data on N independent subjects. For subject 7, observations are in the form of (7;,
di, x;) where 7; is the observed survival time, ¢; is the censoring index which takes a value
of 0 if 4 is right censored and a value of 1 if ¢ has experienced the event of interest, and z; is
a vector of covariates. Note that only time-invariant covariates are considered in this paper.
The true time-to-event and the true censoring times for subject ¢ are denoted by U; and V,
respectively. We have 7,=min(U;,V;) and assume that U; and V; are independent given ;.
The survival function for subject i is denoted by S;(t) = P(U; > t). We use this simplified
notation but it should be obvious that 7, 0;, U; and V; depend on ;.

We assume that the reader is familiar with the CART paradigm (Breiman et al., 1984)
and the basic random forest method (Breiman, 2001). Basically, a forest is a collection of
large unpruned trees built on bootstrap samples from the original data. Moreover, at each
node of any tree, a random subset of the predictors are selected at random and the best split
is obtained from them. The final forest prediction is the average of the predictions from the
individual trees.

The main focus of this paper is to investigate the use of a new splitting criterion to build
the trees in the forest. Assume that we are at a given node of a tree and we want to split it in
two children nodes. If z is continuous (or at least ordinal), the possible splits take the form
C = I(zx < ¢). If x is categorical, the possible splits take the form C' =z € {¢y,...,¢,} where
{c1,...,¢,} is a subset of the possible values of z. Once the best split is found, observations
with C' = 0 go to the left node and the ones with C' = 1 go to the right node. We saw in
the introduction that, typically, the log-rank test with the two children nodes acting as the
two samples is used as the splitting criterion. However, the log-rank test has a low power for
detecting differences between the two groups in some situations. For the testing problem,
Lin and Xu (2010) proposed a new method that has greater power than the log-rank test

under a variety of situations. To avoid introducing unnecessary notation, suppose we want
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to test the equality of the survival functions in two children nodes, L (left) and R (right).

Their test is based on

A = /OT|S’L(t)—S’R(t)|dt

= > 15u(t;) — Srlt)|(tix1 — t;)
jltj<t
where Sy and Sg are the Kaplan-Meier estimators of the survival function in nodes L and R,
t; <ty <--- <[l are the pooled distinct event times, and 7 is the last time point by which
the areas under the survival curves can be calculated for both groups. To perform a formal
test, Lin and Xu (2010) use the standardized statistic A* = (A — E(A))/(Var(A))Y/? where
E(A) and \7a\r(A) are suitable estimates of the mean and variance of A. However, since the
splitting criterion has to be evaluated a large number of times when building a forest, we

proceed to a simplification, detailed in the Appendix, to speed up computations. With this

simplification, we consider

LT = /ningA = /ning /|S’,(t) — Sp(t)|dt (1.2)
t

as the splitting criterion, where n; and ng are the left and right node sizes. We call it the
L7 splitting criterion, as opposed to the L; splitting criterion given by L; = (nyng)A and
introduced in (1.1). As we will see in the next sections, both versions provide good results but
the L; criterion was slightly better in the cases considered in this paper. For completeness,
we will report the results for both splitting criteria. A more complete discussion about these
two criteria appears in the concluding remarks section. To use any of these criteria for tree
building, we simply compute it with the two groups formed by the left and right nodes for
each candidate binary split. The one with the maximal value is the best split.

The forest algorithm can be described as follows:
1. Draw B bootstrap samples from the original data.

2. For each bootstrap sample, grow a tree with the L; (or L) splitting criterion. At

each node, randomly select k out of p covariates where k < p and is a user-specified
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parameter. Splitting ends when a stopping criterion is reached; for instance, when a

node has less than a predetermined number of observations. No pruning is performed.

3. To compute the estimated survival function of an observation with covariate vector z,
use a “similarity” weighting scheme as in Hothorn et al. (2006a). More precisely, send
x in all of the B trees and collect all the observations that end in the same terminal
nodes. Note that some observations may appear more than one time. S(t|x) is then

the Kaplan-Meier estimate of this pooled set of observations.

Evaluating the performance of any model on a given data set with survival data is not a
straightforward task because of the censoring. One approach is to use the Brier score (Graf
et al., 1999) and other criteria derived from it. The R package pec (Mogensen et al., 2012)
can be useful for that matter. We will use one of them, the integrated Brier score, in Section

4 when we analyse real data sets.

1.4 Simulation Study

In this section, we investigate the performance of our proposed method through a simulation
study. Nine methods are compared, seven forest methods and two benchmarks. They are:
A forest where trees are build with the proposed L; splitting rule. It is denoted by L;-
forest. A forest where trees are build with the proposed L7 splitting rule. It is denoted by
Li-forest. A forest where trees are build with the log-rank splitting rule. It is denoted by
RFsrcl. A forest where trees are build with the log-rank score splitting rule. It is denoted
by RFsrc2. A forest where trees are build with the random splitting rule. It is denoted by
RFsrc3. A forest built with three-step imputation in the RIST method (Zhu and Kosorok,
2012). It is denoted by RIST3. A forest built with five-step imputation in the RIST method
(Zhu and Kosorok, 2012). It is denoted by RIST5. A Cox model where the covariates are
entered linearly with main effects only. This is the first benchmark. It is denoted by Cox. A
Kaplan-Meier estimator, which does not use the covariates. This is the second benchmark.

It is denoted by KM.
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The L;-forest and Lj-forest are implemented in Fortran and callable from R (R Develop-
ment Core Team, 2014). The R package randomForestSRC (Ishwaran and Kogalur, 2014) was
used for RFsrcl, RFsrc2 and RFsrc3. The R code generously made available by the authors
Zhu and Kosorok (2012) was used for RIST3 and RIST5. Note that in case of no censoring
in the data, no imputation is required with the RIST method. Therefore, a simple forest
was used in these scenarios. We denote it by RIST0O. The R package survival (Therneau,
2014) was used for both the Cox model and the Kaplan-Meier estimator.

In all seven forest methods, 100 trees are grown and the number of covariates tried at
each split is set to the integer part of ,/p, as suggested by Ishwaran et al. (2008). As a
stopping criterion, the minimum number of observations in a terminal node is 3, the default
value in randomForestSRC.

To evaluate the performance of these methods, two commonly used criteria were employed
to measure how well the survival function is estimated. Assume that S is the true survival
function and that S is the estimated survival function. The two criterion are the Integrated

Absolute Error (IAE) and the Integrated Square Error (ISE) defined by:

IAE:/
t

ISE — / (S(t) — S()2dt. (1.4)

t

S(t) — S(t)|dt (1.3)

and

Since the results for the ISE were very similar, only the ones for the IAE are reported.

1.4.1 Simulation Design

In the main simulation study, five Data Generating Processes (DGPs) are used to generate
artificial data. For each DGP, six different censoring proportion ranging from 0% to 50%
are considered, namely, 0%, 10%, 20%, 30%, 40% and 50%. Thus, overall 30 scenarios are
investigated.

Each model is fitted with a training sample of size 500. Then the performance of the

fitted models is evaluated with an independent test set of size 1000. Each simulation is
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repeated 500 times. Here are a detailed description of the DGPs. In all cases, the parameter
a controls the proportion of censoring. The values of a which produce the desired censoring
proportions were found empirically.

DGP 1. The model is a tree with two equally likely terminal nodes with respective
survival functions illustrated in Figure 1.1. Ten iid uniform covariates on the interval (0,1)
are available, X;,..., X0, but the response is only related to X;. The censoring times
are uniformly distributed on the interval (0,«). The hazard function is presented in the

Appendix.

1.0

0.6

survival probability
0.4

0.2

0.0

time

Figure 1.1: The two survival curves in the terminal nodes of the tree for
DGP 1
DGP 2: This DGP is slightly more complex than DGP 1. It is a tree with four equally
likely terminal nodes with respective survival functions illustrated in Figure 1.2. Again, ten
iid uniform covariates on the interval (0,1) are available, X,..., X;o. The response is related
to X; and X,. The censoring times are uniformly distributed on the interval (0,a). The

hazard function is presented in the Appendix.
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Figure 1.2: The four survival curves in the terminal nodes of the tree for
DGP 2

DGP 3. It is an altered version of scenario 2 from section 4.1 of Zhu and Kosorok (2012).
Ten iid uniform covariates on the interval (0,1) are available, X1,..., Xjo. Survival times are
drawn from an exponential distribution with mean p where g = 10| sin(X;7 — 1)| + 3| X, —
0.5] + X3. The censoring times are uniformly distributed on the interval (0,c).

DGP 4. It is adapted from scenario 3 in section 4.1 of Zhu and Kosorok (2012). Twenty-
five covariates X7,..., Xy5 are generated from a multivariate normal distribution with co-
variance matrix o;; = 0.75/"=Jl. The survival time follows a gamma distribution with shape
parameter g = 0.5 + 0.3 321°,, X,| and scale parameter of 2. The censoring times are
uniformly distributed on the interval (0,«).

DGP 5. This is a dependent censoring DGP. It is adapted from scenario 1 in section
4.1 of Zhu and Kosorok (2012). Twenty-five covariates X7,..., Xo5 are generated from a
multivariate normal distribution with covariance matrix o;; = 0.9"=71. The survival time

20

follows an exponential distribution with mean of p = 0.1| > ;_,, Xi|. The censoring times

are drawn from an exponential distribution with mean u/a.
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1.4.2 Simulation Results

We first present a global summary of the results in Table 1.1. For each scenario with some
censoring (that is, excluding the 0% censoring case), we are comparing nine methods. For
each individual data set, we ranked these methods from 1 to 9 with respect to the IAE
criterion (1.3) evaluated on the test set. The rank of one was given to the method with the
lowest value of the IAE, hence the best one for this data set. Table 1.1 reports the average
ranks over all 12,500 simulation runs with censoring. Namely, over the 500 repetitions x 5
proportions of censoring x 5 DGPs. We see that the [, and L7 forests obtained the best
results overall. The L;-forest came in 2.13th place among the nine methods, on average, while
the Li-forest came in 2.78th place. The two RIST methods have the next best average ranks,
followed by RFsrcl. Not surprisingly, the KM method which does not use the covariates,
comes in last.

The detailed results for all DGPs are summarized in Figures 7 to 11 of the Supplementary
Material. As an overall summary, only results for DGP 1, DGP 3 and DGP 4 at 10% and
40% censoring proportions are presented in Figure 1.3. As expected, the L;-type forests are
the best performing method in terms of IAE in the first two DGPs with crossing survival
functions. RIST comes in second place for DGP 1 while RIST and RFsrcl also perform
well for DGP 2. The first two DGPs were designed explicitly to exhibit the advantage
of the proposed methods when the survival functions are crossing. But what is even more
interesting is that the L;-type forests also do very well for the other DGPs, that do not involve
crossing survival functions. For DGP 3, the RFsrcl is the best for censoring proportions up to
20%, then the Li-forest does better when the censoring proportion reaches 40%. For DGP 4
and 5, RIST performs best followed closely by the Li-type forests. Hence the Li-type forests

seem to be generally competitive in a wide variety of situations.

| Name | Cox | KM | RFsrcl | RFsre2 | RFsre3 | RIST3 | RIST5 | Ly-forest | Li-forest ]
| Average rank [ 5.60 [ 780 [ 515 [7.84 [6.66 [3.64 [337 |212 [ 2.78 |

Table 1.1: Average ranks (smaller is better), according to the TAE criterion, of the nine methods
over all individual data sets (12,500) with censoring.
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Figure 1.3: TAE of methods for DGP 1, DGP 3 and DGP 4 at 10% and 40% censoring proportions
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1.4.3 Additional Simulations

We present briefly the results of some additional simulations following reviewers suggestions.
Complete results with seven additional figures are available in the Supplementary Material.

Firstly, the performance of the methods is investigated with a smaller training sample and
with additional noise covariates. The same 30 scenarios are investigated. But the training
sample size is divided by two (hence it is 250) and the number (which depends on the DGP)
of noise covariates is multiplied by 5 in each DGP. The added noise covariates are iid uniform
covariates on the interval (0,1). Table 1.2 presents the average ranks of the nine methods for
these modified DGPs. The results are very similar to before. Again, L, type forests obtained
the best results overall, followed by the two RIST methods and then by RFsrcl.

| Method | Cox | KM [ RFsrcl | RFsrc2 | RFsre3 | RIST3 | RIST5 | Ly-forest | Li-forest
| Average rank [ 7.90 [ 626 | 457 [739 [6.85 [376 [371 |2.26 | 2.30

Table 1.2: Average ranks (smaller is better), according to the IAE criterion, of the nine methods
over all individual data sets (12,500) with censoring, for the modified DGPs (smaller n and larger

D).

Secondly, since all covariates are continuous in the main simulation, a few scenarios with
binary covariates are investigated here. Only DGP 2 is considered. Recall that only two
covariates, X; and X, are related to the response. In the main simulation, X; and X, are
uniformly distributed on (0,1). In the first variation, X5 is still uniformly distributed on (0,1)
but X is now a binary covariate taking values 0 and 1 with probability 1/2. In the second
variation, both X; and X, are binary covariates taking values 0 and 1 with probability 1/2.
Table 1.3 presents the average ranks, as before, for DGP 2 only, for these three situations.
For the original setup where both X; and X, are continuous (top part of the table), the L,
type forests are the best but the Cox model comes in third place, followed by the two RIST
methods. Then, when X is binary and X, continuous (middle part), the Cox model comes
in between the L, type forests, followed again by the two RIST methods. Finally, when both
X, and X, are binary (bottom part), then the Cox model has the best performance followed
by the L;-forest. But this time both RIST perform better than the Lj-forest. Again, more

complete results are presented in the Supplementary Material which suggest that the IAE
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of the forest methods did not really degrade when moving from the continuous to the binary

covariates. Rather, it is the performance of the Cox model that improved.

X1 and Xy continuous (original setup)

Name | Cox | KM | RFsrcl | RFsrc2 | RFsre3 | RIST3 | RISTS | L-forest | Li-forest

Ranking | 3.75 | 7.18 | 5.42 7.58 6.77 5.17 5.19 1.65 2.24
X binary and X5 continuous

Name | Cox | KM | RFsrcl | RFsrc2 | RFsre3 | RIST3 | RISTS | Ly-forest | Li-forest

Ranking | 2.63 | 7.25 | 6.69 7.70 6.39 4.39 4.50 2.39 3.04
X, and X5 binary

Name | Cox | KM | RFsrcl | REsrc2 | RFsre3 | RIST3 | RISTS | Li-forest | Li-forest

Ranking | 2.42 | 6.76 | 7.15 7.57 5.65 4.07 4.08 2.99 4.31

Table 1.3: Average ranks (smaller is better), according to the TAE criterion, of the nine methods
over all individual data sets (2,500) with censoring for DGP 2. The original setup and two variations
are presented.

1.5 Real Data Sets

In this section, we compare the performance of the same methods used in the simulation
study with six real data sets: The Primary Biliary Cirrhosis (PBC) data, the CSL liver
chirrosis data, the German Breast Cancer (GBC) Study Group data, the Wisconsin Breast
Cancer Prognostic (WPBC) data, the Veteran data, and the National Wilm’s Tumor Study
(NWTCO) data. A brief description of these data sets is presented in Table 1.4.

The PBC data is described in the monograph by Fleming and Harrington (1991). We
use all twelve covariates used by Bou-Hamad et al. (2011) plus copper, sgot and stage. The
same 312 patients who participated in the randomized trial are used here. Missing values are
replaced by the median as in Bou-Hamad et al. (2011) and Fleming and Harrington (1991).
The CSL data was obtained by Schlichting et al. (1983) and is provided in the timereg
package (Scheike et al., 2009). In this example, we only use the six time-invariant covariates.
Records are grouped by id variable so the number of observations used is 446. The GBC data
(Schumacher et al., 1994) is obtained from the package mfp (Ambler and Benner, 2014). The
data contains 686 observations and eight covariates. There is no missing data. The WPBC

data is available in the UCI machine learning repository (Bache and Lichman, 2013). There
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| Name | # Covariates | Sample Size | % Censoring | Source |

PBC 15 312 60% (Fleming and Harrington,
1991)

CSL 6 446 39% (Schlichting et al., 1983) in
timereg package (Scheike
et al., 2009)

GBC 8 686 56% (Schumacher et al., 1994) in

mfp package (Ambler and
Benner, 2014)

WPBC 32 198 76% (Bache and Lichman, 2013)
Veteran | 6 137 ™% (Kalbfleisch and Prentice,
1980) in randomForestSRC
package (Ishwaran and Ko-
galur, 2014)

NWTCO | 4 4088 85% (Breslow and  Chatterjee,
1999) in survival package
(Therneau, 2014)

Table 1.4: Description of the data sets

are 198 observations in the data. However, four missing values are replaced by the median
as in the PBC data. Thirty-two covariates are used in this example. The Veteran data
(Kalbfleisch and Prentice, 1980) is obtained from the randomForestSRC package (Ishwaran
and Kogalur, 2014). There are 137 observations with no missing values. It contains six
covariates. Finally, the NWTCO data (Breslow and Chatterjee, 1999) is available in the
package survival (Therneau, 2014). The four relevant covariates, instit, histol, age and
stage, are used here. The data consists of 4088 observations and no missing values.

We use the same parameters as in the simulation section to build the forests. Namely,
100 trees are grown, the number of covariates tried at each split is set to the integer part of
/P, and the minimum number of observations in a terminal node is 3.

Since the true survival function is not known, we can not compute the IAE (or ISE) as
we did with the artificial data sets. Instead, our primary criterion is the integrated Brier
score (Graf et al., 1999). Let S(t|z) denote the estimated survival function, estimated by
any model, at time ¢ for a subject with covariate vector z. Let G denote the Kaplan-Meier

estimate of the censoring distribution. The Brier score at any time ¢ is computed as
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BS(t) = e > ((S(mi)%(n <t and & =1)G () + (1 - 8(tz)) (5 > t)@‘l(t))

i=1
The integrated Brier score is given by

1 mazx(7;)
IBS = —/ BS(t)dt.
(7:) Jo ()

max

Lower values of IBS indicate better performances. Basically, the IBS is an integrated
weighted squared distance between the estimated survival function and the empirical survival
curve. For each subject, censoring time does not depend on the covariate vector. The inverse
weighting scheme is used to adjust for censoring. It is thus similar in spirit to the IAE used

in the previous section.

| Name | Cox | RFsrcl | RFsrc2 [ RFsre3 | RIST3 [ RIST5 | Ly-forest | Li-forest |
PBC 508 |3.73 1255 [889 [1.78 [2.29 [1.66 0.00
Veteran [6.72 039 [247 [338 ]0.00 [077 [1.05 0.22
GBC 012 [392 [426 [458 096 [046 [1.20 0.00
CSL 000 [1372 [11.73 [641 [846 [822 [532 5.43
NWTCO [1.95 [762 [496 [0.62 [1.02 [1.07 [0.00 0.71
WPBC [1930[627 [378 [245 [0.04 [0.00 [0.90 2.33
Average [552 [590 [662 [436 [203 [214 |1.69 1.44

Table 1.5: Ranking of methods based on % increase of median IBS with respect to best method
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Figure 1.4: Integrated Brier score, across 20 runs of 10-—fold cross-validation, for the real data sets
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Figure 1.4 illustrate the results for the IBS across 20 runs of 10-fold cross-validation for
each data set. Note that the results for the Kaplan-Meier method are not included because
it is so much worse than the other methods that the plots would have been distorted. Table
1.6 provides another look at these results by computing the % increase of the median IBS
with respect to best method for each data set. The median here is the one over the 20 runs
of 10-—fold cross-validation. We see in Table 1.5 that the L; type forests are globally the
best according to the average % increase in IBS. Indeed, the IBS of Li-forest is only 1.44%
greater than the IBS of the best method, on average. It is even the best one for two of the six
data sets. Moreover, the IBS of L,-forest is 1.69% greater than the IBS of the best method,
on average. It is also the best method for the NWTCO data. The two RIST methods have
the next best performance with average percent increases just above 2%. Hence, we get the
same top four methods as the ones we obtained with the artificial data sets. The fact that

the L; type forests are always competitive for all data sets is clearly seen in Figure 1.4.

| Name | Cox | RFsrcl | RFsre2 | RFsre3 | RIST3 | RIST5 | Ly-forest | Lj-forest |
PBC 094|121 1.05 0.00 0.35 0.52 1.09 0.86
Veteran | 0.00 | 0.37 1.72 4.22 0.54 0.17 0.92 1.26
GBC 1.81 | 0.36 0.00 0.05 0.15 0.09 0.90 0.07
CSL 0.00 | 4.40 4.17 4.09 4.64 4.46 4.48 4.25
NWTCO | 0.57 | 8.64 7.28 3.83 2.48 2.52 0.00 0.09
WPBC 4.36 | 7.49 0.27 0.00 0.04 1.05 2.80 5.08
Average | 1.28 | 3.74 2.41 2.03 1.37 1.47 1.70 1.94

Table 1.6: Ranking of methods based on % decrease of median C-index with respect to best method
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Figure 1.5: C-index, across 20 runs of 10-—fold cross-validation, for the real data sets
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Another popular criterion to evaluate a model with survival data is the C-index (Harrell
et al., 1982). We use it as a complement measure here because we think the IBS is more
appropriate when the goal is to estimate the survival function. The C-index is a concordance
measure that evaluates if the predictions from a model are ranked in the same way as the
observed times. Following Ishwaran et al. (2008), let H(t|z) denote the estimated cumulative
hazard function, estimated by any model, at time t for a subject with covariate vector z.
Let t; <ty < --+ < t,, be the distinct event times and let H, = L) Fl(t,m). The C-index,

using the usable pairs, is computed as following

Cl — Zi<j([(ti < t])[([:[l > HJ)5 + [(tl > t_;)[([:[l < H])(SJ)
i < tj .

i
D U(t )6i + I(t: > t;)05)

Higher values of CI indicate better performances. Figure 1.5 illustrate the results for the CI
across 20 runs of 10-—fold cross-validation for each data set. Table 1.6 reports the % decrease
of the median CI with respect to best method for each data set. We see in Table 1.6 that
the Cox model has the best performance according to the CI, followed by the two RIST
methods and the L; type forests. The average percent decrease in CI of these methods are
all below 2%. As a matter of fact, all methods do fairly well expect maybe for RFsrcl which
is a bit further apart. Hence, it seems that the CI is a less discriminating criterion compared
to the IBS, for these data sets. Zhu and Kosorok (2012) also report that the C-index is not
as sensitive as other measurements and even that its interpretability is sometimes unclear.
This may be partly explained by the fact that the C-index is uniquely a discrimination
measure. That is, it measures if the predicted survival times are in the right order. The IBS
is a discrimination and calibration measure. The calibration aspect measures the similarity
between the actual and predicted survival curves; see Riccardo et al. (2014). Hence for these
data sets, it seems that all methods do fairly well in terms of discrimination, but the L; type
forests perform better in terms of calibration.

To conclude this section, we will take a closer look at the GBC data analysed in details
in Sauerbrei and Royston (1999). We will refer to this paper by SR for simplicity. After

a careful analysis and using fractional polynomials, SR came up with a seemingly good
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Cox model based on the covariates (X;/50)72, (X;/50)7%% I(X,; > 2), exp(—0.12X3), and
(X6 + 1)%9; see Model III in Table 4 of SR. Still following SR, we divide the sample into
three groups of nearly equal sizes based on the prognostic index PI; = xiﬁ, where B are
the estimates of the parameters in the above Cox model. The 228 subjects with the lowest
PI scores are assigned to the best prognosis group, the following 229 subjects are assigned
to the median prognosis group, and the remaining 229 with the highest PI scores go into
the worse prognosis group. Note however that SR used another simpler model to define the
three groups. But that model had only 27 different covariates patterns which caused the
group sizes to be imbalanced. Figure 4 of SR shows the Kaplan-Meier curves of each group.
Fleming and Harrington (1991) present a similar plot (see their Figure 4.6.13 on page 195) in
their analysis of the PBC data set. However, they also plotted the average estimated survival
curves of each group in order to visually inspect the goodness-of-fit of their model. Figure
6 is such a plot where the average survival curves of the Cox model and of the Lj-forest are
depicted. We can observe that the Cox model seems to fit the data fairly well in all groups.
But strikingly, the Lj-forest seems to fit the data slightly better, even though the groups
are derived from the Cox model. This simple example illustrates the fact that, sometimes,
a good off-the-shelf method like a forest do as well as a carefully crafted parametric model.
When confronted between two models with similar performance, the choice should often be
the one which is easier to interpret. In this case, it would be the Cox model even though
interpreting the effect of the transformed covariates is not straightforward. Thus, a forest
can serve as a benchmark to evaluate if an easier to interpret parametric model fits well

enough.

1.6 Discussion and Concluding Remarks

The log-rank test is commonly used as the splitting rule in the various implementations of
survival forests within the CART paradigm, such as in Ishwaran et al. (2008) and Zhu and
Kosorok (2012). However, the log-rank test is not designed to detect all possible differences

between two survival curves. For instance, the log-rank test is inadequate to detect a differ-
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ence between two groups when the hazard or survival functions cross each other in the two
compared groups. Consequently, if the goal is to accurately estimate the conditional survival
function, then using the log-rank test as splitting criterion may not be optimal. This was
never thoroughly investigated for survival forests. At a time where more refinements and
features are added to existing packages, it seemed that going back to “basics” was in order.
In this paper, it was showed that forests built with a simple splitting rule, based on the
integrated absolute difference between the two children nodes survival functions, are very
competitive compared to forests built with the log-rank splitting rule. Indeed, these forests
often got the best performance in the cases considered, either with simulated data or with
real data sets. Hence, it is certainly worthwhile to consider the proposed methods as poten-
tial competitors. It would certainly be helpful if some well established, very comprehensive
and useful package like randomForestSRC could incorporate L;-type splitting rules.

The two splitting rules investigated are Ly = (nyng)A and L} = /ngngA where A =
I |S(t) — Sg(t)|dt. The factors (nyng) and Vnrng can be seen as penalization factors
that favor splits with children nodes of nearly equal sizes. For instance, if we have two
potential splits with the same value of A, then the one with the largest value of nyng should
be favored because the two S in A are obtained from larger sample sizes. As an extreme
example, assume that n; + ng = 100 and that two splits have an equal value of A. We
would be more confident with a split with n;, = 50 and nr = 50, than one with n;, = 5
and ng = 95 because, in the second case, there is a lot of variability in the estimation of
Sy, which induces a larger variance for A. In fact, the Appendix establishes that, under
some simplifying assumptions, the factor \/nyng is the one producing a test statistic which
is asymptotically normally distributed. The factor /nyng favors more heavily splits with
nearly equal size children nodes than the factor nyng. But in practice, at a given node, we
do not know if the best split is located more towards the center (with respect to the children
nodes sizes) or not. So we do not know how much we should favor splits towards the center.
Even if the factor \/npng has a theoretical justification, the factor nyng had globally a
slightly better performance with the data generating processes considered in the simulation

study. But with the real data sets, the factor /npng had a slightly better performance
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according to the integrated Brier score and was slightly worse according to the C-index. In
practice, one possibility would be to try forests built with both splitting rules and select the
one according to the integrated Brier score under a cross-validation scheme. More research
on this aspect could be interesting.

The scope of this work is limited to traditional forests built within the CART paradigm.
Other paradigms including “unbiased” trees are also available; see Loh (2002) and Loh (2013)
for the GUIDE approach and Hothorn et al. (2006b) for the ctree approach. For example, the
GUIDE approach fits different types of proportional hazards regression models for censored
data. Hence, it would be interesting to investigate the robustness of this method when the
proportionality assumption is not met. Moreover, we saw in the additional simulations that
the covariates’ types can have an impact on the performance. Hence, developing forests
built with unbiased trees using L; types criteria for variable and split selections might be

interesting.
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1.8 Appendix

1.8.1 Hazard functions used in the simulation for DGP 1 and DGP 2

Hazard function formula for DGP 1.

;

0.27t 71 <05, <2

0.2(t—2)+54 x; <05,0>2
4

0.1t 71> 0.5, < 6

k5.5(t —6)+06 z;>0.5,t>6.
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Hazard function formula for DGP 2.

0.27t 2, < 05,25 < 0.5, <2

02(t—2)+54 =z <0525 <0.5,t>2

0.27t 1 <0.5,29>05,t<2
0.1t x> 05,20 <05,t<6

0.2(f —6) +0.6 =z > 05,2, <0.5,t> 6

0.1¢ r1 > 05,29 >05,t <6

(5:5(t = 6) +0.6 21> 0.5, > 0.5, >6.

1.8.2 Simplification of the Lin and Xu (2010) statistic leading to the L}

splitting rule.

For i = L, R, the left and right nodes, denote by 62(t) the estimated variance of S;(t) at t
from Greenwood’s formula. To perform a formal test of the equality of the survival functions

in the left and right nodes, Lin and Xu (2010) propose the statistic

A — E(A)
Var(A)

AY =

where

B(A) =Y [2/n{6d(t) + 63t (i — 1))

jltj<T
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and

Var(A) = Y (i — )21 = 2/m){63(t;) + 6%(t)}

jlty<t

+ Y (b — )t — t)(1—2/7)

j<j’|tj,tj/ LT

x [{62(t;) + 6% () Ho (ty) + 62t}

are estimates of F(A) and Var(A). These estimates arise from a normal approximation for
Sp(t) — Sgr(t), and the test statistic A* is asymptotically normally distributed under the
null hypothesis of equality of the two survival functions. To simplify this statistic in order
to speed up computations for tree building, assume that all observations are from the same
population with survival function S(t), that is we are under the null hypothesis and there is

no censoring. Then Var(S;(t)) = S(t)(1 — S(t))/ni, for i = L, R. In that case,

E(A) = V2/m/(ns +ng)/(ning) Y (SE)(L = S(t)))*(ts1.— ;) = a1/ Vzng

j‘lﬂj<7‘

where ¢; is the same constant for all candidate splits. Similarly, @(A) = cZ/(nyng) where

¢y is the same constant for all candidate splits. Hence,

A—E)  Jamed o
Var(A) 2 =

But using this last expression is equivalent to using /nyngA as the splitting criterion.

1.8.3 Motivating example

In this section, a motivating example is used to illustrate the fact that the log-rank test
may have a significant loss of power when the survival functions cross each other in the two
compared groups. We first investigate the ability of the log-rank splitting rule to identify
the only covariate related with the response. In this example, data are generated according

to DGP 1 in the article without censoring. Hence, there are ten covariates Xj,..., Xjq that
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are independently and identically distributed uniformly on the interval (0,1). Only the first
one is related with the response. The nine others are noise covariates. In this example, there
are only two survival patterns depicted in Figure 1 of the article. If X, < 0.5, then the true
survival function is the smooth exponential one, while it is the one with the sharp drop when
X1 > 0.5. The sample size is 200 and the results are based on 500 simulation runs. For each
sample, we built a tree with a single split by using two different splitting rules. The first
splitting rule is the log-rank test. Strikingly, the log-rank splitting rule could only detect
the right covariate 14.4% of the times, which is just a bit higher than the random selection
probability of 10%. The second splitting rule is the L, splitting rule which was able to detect
the right covariate (X;) 100% of times.

However, in practice, we are not building a single tree with a single split, but a forest.
Forests are well-known to be able to adapt themselves to many situations. It might be the
case that even if the log-rank splitting rule is not able to find the right covariate in the first
split, it could be able to detect the structure somehow deeper in the trees and the forest could
still provide a good performance at the end. But this is exactly what was investigated in the
simulation study and it was found that the forest paradigm is not able to fully compensate
for the fact that the splitting rule is not appropriate. The complete simulation results are

presented in the next two sections.

1.8.4 Complete simulations results

This section provides complete details about the results of the main simulations presented
in Sections 1.4.1 of the thesis. The detailed results for all DGPs are summarized in Figures
1.7 to 1.11 at six different censoring proportion ranging from 0% to 50%. Note that in
computation of the L, and L7 splitting rules, if the survival curve in either right or left
nodes does not take a value of zero at the last observed time, an Exponential tail is glued
to the curve. For fair comparison among methods, the IAE and ISE criteria are computed
over 1001 equidistance (0.001 quantiles plus ¢ = 0) of the true survival function of each point
in the test set where the maximum point at each run is the .999 quantile of this function.

Survival estimates of each method is then interpolated at these 1001 points. The sum is not
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divided by 1001.
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Figure 1.7: IAE for DGP 1 across different censoring proportions
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Figure 1.8: TAE for DGP 2 across different censoring proportions
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Figure 1.9: IAE for DGP 3 across different censoring proportions
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Figure 1.10: TAE for DGP 4 across different censoring proportions
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Figure 1.11: TAE for DGP 5 across different censoring proportions
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1.8.5 Complete results for the additional simulations

This section provides complete details about the results of the additional simulations pre-

sented in Section 1.4.3.

Small sample size and large number of covariates

The main simulations are described in sections 1.4.1 and 1.4.2. Here, using the same DGPs
as for the main simulation, the performance of the methods is investigated with a smaller
training sample (n = 250) and with five times more noise covariates, as explained in Section
1.4.3. The detailed results for this simulation study are summarized in Figures 1.12 to 1.16.
The results are very similar to the ones from the main simulations. As expected, the L;-type
forests are the best performing methods in terms of IAE in the first two DGPs with crossing
survival functions. The only exception is for DGP 1 with 50% censoring where the KM is
the best one. For DGP 3, the RFsrcl performs better but the gap between L;-type forests
and RFsrcl narrows down as the censoring proportion goes up. For DGPs 4 and 5, L;-type
forests and the RIST are very close to each other and perform the best. So again, the L;-type
forests are very competitive in the last three DGPs that does not involve crossing survival

functions.
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Figure 1.12: TAE for DGP 1 across different censoring proportions with small n and large p
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Figure 1.13: TAE for DGP 2 across different censoring proportions with small n and large p
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Figure 1.14: TAE for DGP 3 across different censoring proportions with small n and large p
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Figure 1.16: TAE for DGP 5 across different censoring proportions with small n and large p
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Categorical covariates

Since all covariates are continuous in the main simulation, a few scenarios with binary
covariates are investigated here. As explained in Section 1.4.3, only DGP 2 is considered.
Only two covariates, X; and X5, are related to the response. In the main simulation, X; and
X5 are uniformly distributed on (0,1). In the first variation, X, is still uniformly distributed
on (0,1) but X is now a binary covariate taking values 0 and 1 with probability 1/2. In the
second variation, both X; and X, are binary covariates taking values 0 and 1 with probability
1/2. Figure 1.17 shows the results of the simulation study for the IAE criterion for the first
variation while Figure 1.18 shows the results for the second variation. Figure 1.8 shows the
results for the original simulation (X; and X3, both continuous). We can see that the IAE of
the forests methods are quite similar across the three scenarios. However, the performance
of the Cox model improves when we move from the original scenario, to the one with X,

only binary, and then to the one when both X; and X, are binary.
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Figure 1.17: IAE for DGP 2 across different censoring proportions with binary X; and continuous
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Figure 1.18: TAE for DGP 2 across different censoring proportions with binary X; and X,
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Chapter 2

Dynamic Predictions with Random

Forests for Discrete-Time Survival Data

2.1 Abstract

Time-varying covariates are often available in survival studies and predictions need to be
updated as new information becomes available. In this paper, we investigate different ways
that random forests can be used for dynamic estimation of the hazard function with discrete-
time survival data. The results from a simulation study and from a real data example about
firm bankruptcies indicate that all methods can perform well, that none dominate the others,
and that taking a simple average of the estimated hazard functions is a good way to get good

results in most cases.

Keywords: Discrete-time survival analysis; time-varying covariates; landmark analysis;

random forests; survival forests.



2.2 Introduction

Survival analysis studies with time-to-event data have applications in many research areas.
Typically, the true time is observed only for some of the subjects and only partial information
about the time is available for other subjects. The most common situation is right-censoring,
when only a lower bound on the true time is observed. Many textbooks (e.g., Hosmer Jr et al.,
2011) are dedicated to the modeling of such data. The traditional methods for analysing
continuous survival data rely on parametric (e.g. Weibull) and semi-parametric (e.g. Cox)
models. These models can be efficient if the link between the covariates and the time
response is adequately modeled but this is sometimes a difficult task. Alternatively, more
flexible models can be useful. These models let data automatically find relevant structures
instead of imposing them a priori. One class of such models is tree-based methods which are
now well-established among practitioners.

Tree-based methods were first developed for a categorical or continuous outcome. Breiman
et al. (1984) is the earliest monograph about trees and details the Classification and Regres-
sion Tree (CART) paradigm. However, it is well-known that ensemble of trees often provide
better predictive performance than a single tree. One popular and efficient ensemble method
is the random forest introduced by Breiman (2001). Gordon and Olshen (1985) extended the
tree paradigm to survival data and introduced survival trees (Leblanc and Crowley, 1993;
Segal, 1988). Likewise, ensemble of survival trees called survival forests were proposed by
Hothorn et al. (2006), Ishwaran et al. (2008), and Zhu and Kosorok (2012). There is vast
literature on survival trees and forests and Bou-Hamad et al. (2011b) presents a general
overview.

In many studies, the estimation of the survival curve for a subject is obtained at time 0
using only the covariates information at baseline. However, when some time-varying covari-
ates are present, it is often preferable to update the estimates of survival probabilities as new
longitudinal information becomes available. This is the topic of “dynamic prediction” which
is a growing area of interest. There are mainly two approaches to build dynamic predictions

in this context: 1) landmark analysis, and 2) joint modeling. The basic idea of landmark
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analysis (Anderson et al., 1983; Madsen et al., 1983) is to built models, usually Cox, at differ-
ent landmark times ¢ using the covariates information available up to ¢ and only the subjects
still at risk of experiencing the event at ¢t. Comprehensive treatments of this approach are
given in van Houwelingen (2007) and van Houwelingen and Putter (2011). In order to re-
duce the variability in the estimated parameters by borrowing information from other time
points, one method consists in stacking the data sets from many landmark times and fitting
a single model (van Houwelingen and Putter, 2011). The partly conditional survival model
of Zheng and Heagerty (2005) and the two-stage approach of Huang et al. (2016) are two
related methods. The second approach to dynamic predictions is to estimate the survival
probabilities through joint modelling of the time-varying covariates processes and the event
time data (Henderson et al., 2000). This approach depends on the correct specification of the
model for the time-varying covariates trajectories, and this problem amplifies as the number
of time-varying covariates increases. The reader can refer to Tsiatis and Davidian (2004)
and Rizopoulos (2012) for in-dept treatments of the joint modeling approach.

Most of the research, including the works presented above, assume that the time-to-event
is measured continuously. However, in many cases, it is measured on a discrete scale. This
can happen with grouped data where the event occurs in an interval of time, which are not
necessarily of the same length. For example, in yearly surveys, it may be known that the
event occurred during a specific year but not exactly when. Alternatively, the observed time
may come from a truly discrete process. For example, the number of trials before reaching
a specific goal. Tutz and Schmid (2016) provide a recent and comprehensive treatment of
discrete-time survival analysis. Survival trees and forests designed specifically for discrete-
time responses were developed by Bou-hamad et al. (2009), Bou-Hamad et al. (2011a) and
Schmid et al. (2016). The R package DStree (Mayer et al., 2014) implements the method
of Bou-hamad et al. (2009). Section 2.1 provides a description of these methods since they
are central to this article. Elgmati et al. (2015) propose a penalized Aalen additive model
for dynamic predictions for discrete-time recurrent event data, but the method is limited to
one-step ahead predictions.

From the above discussion, we see that no tree-based methods have addressed the problem
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of dynamic predictions either with continuous or discrete survival responses. This paper will
study the later problem. We investigate different ways that random forests can be used for
dynamic predictions with discrete-time survival data.

The rest of the paper is organized as follows. Section 2.3 describes the data setting and
the proposed methods. The results from a simulation study are presented in Section 2.4. A
real data example with bankruptcy data is presented in Section 2.5. Section 2.6 concludes

and provides directions for future work.

2.3 Description of the methods

We have data on N independent subjects. For each subject 7, observations are in the form of
(73, 0s, ;) where 7y € {1,2,..., T} is the discrete survival time and 7" is the maximum observed
time in the data set, ¢; is the censoring index which takes a value of 0 if subject 7 is right
censored and a value of 1 if subject 7 has experienced the event of interest, and z; is a vector
of covariates, some of which can be time-varying and some time-independent. We will denote
by x4(t) the value of the k' covariate, k € {1,2,...,p}, at time t € {0,1,...,T} for subject
1. Hence, t = 0 corresponds to the baseline values of the covariates. For simplicity, we will use
this notation for all covariates, time-varying or not. Hence x;(#) remains constant for all ¢ for
a time-independent covariate. The values of the true time-to-event and the true censoring
times for subject i are denoted by U; and Vj, respectively. Hence we have 7,=min(U;,V;)
and we assume that U; and V; are independent given x;. The hazard function for subject
i is denoted by h;(t) = P(U; = t | U; > t) for simplicity but it is obvious that =, d;, U;
and V; depend on x;. Similarly, the survival function for subject i is S;(t) = P(U; > t),
and the probability that the event occurs at time ¢ is m;(¢) = P(U; = t). These two
functions can be obtained from the hazard function with the following recursive formulas:
Si(t) = Si(t—1)(1—hi(t)) and m;(t) = S;(t —1) — S;(t), with S;(0) = 1. Hence, it is sufficient
to model the hazard function (or any one of the other two function) to recover the other

ones.
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2.3.1 Description of existing methods for discrete-time survival data

Since they are central to what will follow, we give a description of the tree building methods
for discrete-time survival data of Bou-hamad et al. (2009), Bou-Hamad et al. (2011a) and
Schmid et al. (2016). In general, the log-likelihood function of a discrete-time survival model

can be written as

LL =) " &in(m(n)) + (1 = 6) In(Si(7))- (2.1)

i=1

In this paper, we take the view of estimating the hazard of a subject at a given time ¢

using all the available covariates information up to time ¢ — 1. This is more realistic in a

prediction context where the prediction for time ¢ might be needed as soon as we know that

the subject is alive at time ¢ — 1. This is in contrast with correlational studies where the

relations between the contemporary values of the covariates and the response might be of
interest. One popular model is the discrete-time proportional odds (DTPO) model

lOg <1f1—§f¢)(t).> = (Yll)h‘(t) e aTDTi(t) + Blwli(t — 1) + ...+ 6111';”'([, = 1), (22)

fori =1,...,N and t = 1,...,T, where the D,;(t)’s are indicator variables indexing
the time periods that are defined by D,;(t) = 1 if r = t and 0 otherwise. The intercept
parameters «y, ..., ap define the baseline of hazard in each time period and the [ coefficients
describe the effects of covariates on the baseline hazard function. This model was described
in details in Willett and Singer (1993) and became widely used. The key idea is that the
likelihood function (2.2) is equivalent to the one of an independent Bernoulli trials model
with transformed (augmented) data with a logistic dependence on the covariates (see Willett
and Singer, 1993, p. 171). The augmented data set is often called the “person-period” data
set. It has one line per time period where the subject is at risk of experiencing the event
and the response y equals 1 if the event occurred at that time and 0 otherwise. To fix ideas,
a generic data set with ten observations and two covariates is given in Table 2.1. Assume
X is time-varying and X, is time-independent. For instance, the first subject experienced

the event at period 2 and thus values of the time-varying covariate are only available up to
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period 2, with NA’s for the other periods. The person-period data set obtained from this
generic data set is given in Table 2.2. Only the first six subjects (up to id=6) are shown to
save space. Practically, the equivalence in the likelihood functions mentioned above means
that we can obtain the estimations of the parameters of model (2.2) by fitting a logistic
regression to the person-period data set. '
We assume that the reader is familiar with the CART paradigm (Breiman et al., 1984)
and the basic random forest method (Breiman, 2001). The methods in Bou-hamad et al.
(2009) and Bou-Hamad et al. (2011a) are based on the same idea except that the first one
is limited to time-independent covariates and the second one allows the use of time-varying
covariates. Basically, the idea is to use a splitting rule based on the log-likelihood where the
hazard function in each node is estimated from a saturated model, that is a model where
each time period has its own free parameter. In that case, the maximum likelihood estimator

of the hazard function in a node is

~

ht) = e(t) /r(1), (2.3)

where e(t) is the number of subjects that experienced the event at period t in the node
and r(¢) is the number of subjects at risk of experiencing the event at period ¢ in the node.
These estimators are obtained separately in both children nodes and the best split is the
one such that the sum of the log-likelihood (2.1), in the left and right nodes, is maximum
among all allowable splits. This splitting rule can also be obtained from the DTPO model.
Consider a binary random variable C'(t) € {0, 1} defining an allowable split using one of the
covariates, at time t. The DTPO model with this covariate and all its interactions with the
time indicators is

log (1—%) = alDli(t)+- . -+aTDiT(t)+5lCi(t—l)DU(t)+...+ﬂpCi(t—1)DiT(t). (24)

Fitting this model is equivalent to fitting a saturated model separately in the two nodes
defined by C(t). Hence, one way to build a tree with this approach and easily keep track of

the subjects, is to use the person-period data set. To fix ideas, with the data set in Table 2.2,
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it would mean building a classification tree with the LL-based splitting rule with y as the
response and using the two covariates X;, X,. It is easy to see that when a split occurs on
a time-independent covariate, then all lines corresponding to a given subject in the person-
period data set go into the same node. However, when a split occurs on a time-varying
covariate, then the lines of a given subject may be splitted apart. This is similar to the
“pseudo-subjects” idea of Bacchetti and Segal (1995). The hazards estimates in a terminal
node are given by (2.3). To build a forest, Bou-hamad et al. (2009) proposed to use the
average of these hazard estimates obtained from many trees built from bootstrap samples of
the original data. However, it is also possible to start directly from the person-period data
set and use boostrap samples from it.

Schmid et al. (2016) proposed a similar method. They basically add the period itself as
a new ordinal covariate, on top of the other covariates, and use the Gini splitting rule with
the person-period data set (called augmented data in their paper) with y as the response.
The choice of the Gini criterion is based on the fact that it is asymptotically equivalent
to the Brier score. To fix ideas, with the data set in Table 2.2, it would mean building a
classification tree with y as the response using the three covariates X, X5, and the variable
period. Using the variable period means that the subjects can also be splitted apart even if
no time-varying covariates are present among the original covariates because period itself is
a time-varying covariate. In a terminal node, the estimate of the hazard is the proportion of
1 (events) in the node. Note that Schmid et al. (2016) apply a Laplace correction to these
proportions. Hence, all time periods present in the node receive the same hazard estimate.
But since splits on the variable period are allowed, it is possible to have different hazard
estimates for different periods. To build a forest, it is again possible to bootstrap from the
original data or from the person-period data set. Schmid et al. (2016) use the person-period

data set.

2.3.2 Methods investigated in this paper

Using a training data set, we are interested in deriving dynamic estimations of the hazard

function for current and new subjects. Some subjects barely begin the process, some are
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Table 2.1: A generic data set with ten observations and two covariates

1 211 1‘11(0) :Bll(l) $11(2) NA NA NA 21
2 5 1 .1;12(0) LL’12(1) .’L‘12(2) .1:12(3) .1‘12(4) 5612(5) €I
3 310 1‘13(0) mlg(l) £E13(2) 1‘13(3) NA NA o3
4 110 3314(0) :E14(1) NA NA NA NA T4
) 5 1 .1;15(0) .L15(1) 115(2) 5815(3) .’L']5(4) .’1;15(5) Zon
6 5 0 1‘16(0) Ilg(l) $16(2) x16(3) 1616(4) :L‘16(5) X6
7 210 LL‘17(O) x17(1) 1‘17(2) NA NA NA Wik
8 4 | 3315(0) .’1318(1) $18(2) I18(3) 1:18(4) NA TIog
9 3|1 .7719(0) 5619(1) $19(2) w19(3) NA NA 29
10 [ 4]0 | 2110(0) | z110(1) | 2110(2) | 110(3) | 110(4) | NA Z210

Table 2.2: Person-period data set. Only the first six subjects (up to id=6) are shown to save space.

|id|y|period|D1|D2|D3]D4|D5 X1 |X2|
1 0 1 1 0 0 0 0 .1,'11(0) Il
1 1 2 0 1 0 0 0 1:11(1) 91
2 0 1 1 0 0 0 0 1‘12(0) Io9
2 0 2 0 1 0 0 0 .’1312(1) 992
2 0 3 0 0 1 0 0 .1'12(2) 992
2 014 0 0 0 1 0 LL‘12(3) x99
2 |15 0 |0 |0 |0 |1 [z2@) ]|z
3 0 1 1 0 0 0 0 5613(0) I3
3 012 0 1 0 0 0 3313(1) a3
3103 0 0 1 0 0 x13(2) | z23
4 0 1 1 0 0 0 0 .LM(O) o4
5 0 1 1 0 0 0 0 .7315(0) a5
5 012 0 1 0 0 0 (E15(1) I25
b) 013 0 0 1 0 0 .L15(2) a5
9 014 0 0 0 1 0 1‘15(3) Io5
) 115 0 0 0 0 1 $15(4) Ios5
6 0 1 1 0 0 0 0 1:1(,'(0) 26
6 0 2 0 1 0 0 0 5816(1) o
6 0 3 0 0 1 0 0 2716(2) To6
6 0|4 0 0 0 1 0 11,1(;(3) Iog
6 105 0 0 0 0 1 z16(4) | x26
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still alive at time 1, others are still alive at time 2 and so on up to time 7' — 1. More
precisely, if the subject is currently alive at time ¢ € {0,1,...,7 — 1}, then we are interested
in estimating its hazard function at time u for v = ¢t + 1,...,T. To fix ideas, Table 2.3

illustrates the possible combinations of ¢ and v when T' = 5.

Table 2.3: The 15 different estimating problems when 7' =5

t u

Value | 1 | 2 | 3 | 4| 5
0 VIiVvIiVvIVvIV
1 VIiv I v |V
2 VIV Vv
3 V|V
4 v

For instance, the line ¢ = 0 corresponds to a new subject. Hence we are interested in
estimating its hazard function at times 1,...,5. The line { = 1 corresponds to a subject who
has survived up to time 1. Hence we are interested in estimating its hazard function at times
2,...,5, and so on. The diagonal in Table 2.3 corresponds to the one-step ahead problems,
i.e. given a subject is alive at time ¢, we want to estimate its hazard function at time ¢ + 1.
The cases above the diagonal correspond to more than one-step ahead estimation problems.
Moreover, we assume that measurements for all covariates are available at 0,1,...,¢ and the
models are entitled to use all that information. Hence all covariates information up to time
t is used to derive the estimation of the hazard function at w foru=t+1,...,7T.

We investigate different methods to get these estimations based on random forests. They
can be divided into three main approaches to address the problem.

A first direct approach is to only use local information at each unique combination of (¢, u).
In this case, we build separate forests for each of the 7" x (7' + 1)/2 possible combination
of t and u. For example, when 7" = 5 as in Table 2.3, we would have 15 forests. More
precisely, for a given pair (£, u), we use only the subjects that are still alive and not censored
at time u — 1 to build the forest to estimate the hazard at time w. This way they are at
risk of experiencing the event at time u. However, we only use all the covariates information
available up to time ¢ to build the forest. To illustrate this approach, we use the generic

data set given in Table 2.1. To build the forest for the pair (¢,u) = (2,4), the data set to
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Table 2.4: Data set used with the first approach, separate forests for all combinations of (¢, ), when
(t,u) = (2,4)

d [y [X(0) X0 [XHi(2) [X |

2 0 :Elg(O) :L‘lg(l) $12(2) x99
5 10| 215(0) | x15(1) | 215(2) | w25
6 |0 |716(0) | m16(1) | 216(2) | 726
8 1 3718(0) .'218(1) $18(2) I8
10 | 0 | 2110(0) | z110(1) | Z110(2) | @210

use would be the one given in Table 2.4. Note that only the subjects that are still alive and
not censored at time u — 1 = 3 are included. The outcome y has a value of 1 if the event
occurred at time u = 4 and 0 otherwise. Three potential covariates are available: X;(1),
X1(2), and X,. They are all measurements of the time-varying covariate X; up to ¢t = 2, and
the unique value of the time-independent covariate X5. Each subject appears on at most
one line. An ordinary forest for a binary outcome can then be built using this data set. The
predictions from this forest provide direct estimates of the hazard at time u = 4, using all
the covariates information up to time ¢t = 2. Using separate models might be good if the
hazards at different times are related to different covariate patterns. However, this approach
will likely lose efficiency when the hazards are related to similar covariate patterns because
of the variability induced by using separate models.

The second approach works by pooling all u values together for a given ¢. In this case,
we build one forest for each value of ¢ and get the whole hazard function for u > t at once.
More precisely, for a given ¢, we use all the covariates information available up to time ¢ to
build a forest to get estimations of the hazard function at v =t + 1,¢ + 2,...,T. Overall,
we have to build T forests to get the predictions for all possible combinations of ¢ and w.
Two ways of building trees and forests based on this idea have been proposed by Bou-hamad
et al. (2009) and Bou-Hamad et al. (2011a) on one hand, and by Schmid et al. (2016) on the
other hand, and were presented in the last section. See also chapter 6 of Tutz and Schmid
(2016). We investigate both methods. An illustration of the structure of the data set used
by the Bou-hamad et al. (2009) method for ¢ = 2, again starting with the generic data set

of Table 2.1, is given in Table 2.5. This data set is in person-period format and only the
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Table 2.5: Data set used with the Bou-hamad et al. (2009) and Schmid et al. (2016) method when
=2

| id | y | period [ X1(0) ] X1(1) l X1(2) | Xo |
2 1013 z12(0) | z12(1) | 212(2) | w22
2 0 4 1‘12(0) Ilg(l) 1‘12(2) o9
2 1 5% 5812(0) 3312(1) 1‘12(2) T2
3 [0]3 213(0) | z13(1) | #13(2) | 223
5 013 1‘15(0) 21715(1) 1‘15(2) I25
5 0 4 .1715(0) .’Bls(l) .’1315(2) Io5
5 [1]5 215(0) | #15(1) | 215(2) | @25
6 013 -7:16(0) 5616(1) 3716(2) 26
6 0 4 -TIG(O) IL‘16(1) I16(2) TI26
6 0 5 IL‘]G(O) 1116(1) l16(2) 26
8 013 5618(0) 3718(1) 1718(2) Ios
8 1 4 .’Elg(O) .’L‘lg(l) .’Elg(?) I8
9 1 3 .’1,'19(0) 1'19(1) 1‘19(2) I29
101013 z110(0) | z110(1) | z110(2) | 210
101014 £110(0) | z110(1) | Z110(2) | @210

subjects that are still alive and not censored at time ¢ = 2 are included. The outcome y has
a value of 1 if the event occurred at the corresponding period and 0 otherwise The LL-based
splitting rule described in the last section is used and the covariates are X;(1), X;(2), X5.
An illustration of the structure of the data set used by the Schmid et al. (2016) method
for the same problem is also given in Table 2.5. The same covariates as for the preceding
method are available except that the period itself is also considered as a covariate. This
time, the Gini splitting rule is used. Unlike the first approach which builds separate forests
for all combinations of (¢, ), this one pools all the information from the different estimation
horizons for a given ¢ and may reduce the variability when the hazards are related to similar
covariate patterns.

The third approach is inspired from the supermodel based on stacked data used in land-
mark analysis (van Houwelingen, 2007; van Houwelingen and Putter, 2011). Instead of only
pooling the information from the different estimation horizons for a given ¢, as in the second
approach, we can go a step further and pool all the information for all combinations of (¢, u)
at once. The idea is to borrow information from different values of ¢, in addition to the one

from the different estimation horizons. Consequently, a single forest is built and provides
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estimations of the hazards for all combinations of (#,u). A super person-period data set is
created by stacking the data sets from all values of ¢ in the Bou-hamad et al. (2009) or the
Schmid et al. (2016) method described above. An illustration of the super person-period
data set created for the data in Table 2.1 is given in Table 2.6. Only the first four subjects
(up to id=4) are shown in the table to save space. Each subject has one line for each pair
(t,u) where it was at risk of experiencing the event. This time, both the estimation horizon
u and the value of ¢ are potential covariates, in addition to the two other covariates. Note
that only the current values, at (, of the time-varying covariates are used. An ordinary forest
for a binary outcome with the Gini criterion can be built using this data set. The estimation
of the hazard function for a pair (¢,u) is obtained by getting the prediction from the forest
using the covariate values at time ¢ and the pair (¢, u) itself.

A summary of the four methods is given below. They will be compared in the simulation

study.

1. Separate forests for all combinations of (¢,u). Number of forests=7(T + 1)/2. This

method will be called “Separate” from now on.

2. Separate forests for all values of ¢ with the Bou-hamad et al. (2009) method. The
bootstrap is performed on the original data. Number of forests=7". This method will

be called “BLB” from now on.

3. Separate forests for all values of ¢ with the Schmid et al. (2016) method. The bootstrap
is performed on the person-period data. Number of forests=7. This method will be

called “SKHT” from now on.

4. Super person-period forest. The bootstrap is performed on the stacked data. Number

of forest=1. This method will be called “Superpp” from now on.

A fifth method consisting on taking the simple average of the hazard estimates from the
first four methods, i.e. Separate, BLB, SKHT and Superpp, will also be added. This method

will be called “Average” from now on.
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Table 2.6: Data set used with the third approach, i.e. a super person-period data set used for all
combinations of (t,u). Only the first four subjects (up to id=4) are shown to save space.
ldlylult][Xh [Xo

1 0 1 0 .7311(0) 1
1 1 2 0 IH(O) Tl
1 1 2 1 .’Ell(l) 21
2 0 1 0 le(U) 992
2 0 2 0 Ilg(O) 99
2 012 1 .’Elg(l) 992
2 0 3 0 .1312(0) 992
2 0 3 1 .1‘12(1) x99
2 0 3 2 $12(2) 92
2 014 0 .’,612(0) T2
2 014 1 .’Elg(l) 99
2 014 2 $12(2) 92
2 014 3 .2612(3) 99
2 1 5 0 .CC12(0) 92
2 1 5 1 .Tlg(l) 92
2 1 5 2 T12(2) 992
2 1 5 3 .’E12(3) 99
2 1 514 5612(4) 92
3 0 1 0 '1313(0) 23
3 0 2 0 In(O) x93
3 0 2 1 Ilg(l) 93
3 0 3 0 .1?13(0) 23
3 013 1 5613(1) DX
3 0 3 2 .’1213(2) 93
4 0 1 0 $14(0) T4
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Note that we also investigated a version of methods 1 to 3 where only the last measure-
ment of the time-varying covariates is used. This version was almost always inferior to the
one using the whole covariate history described above. Hence only the results for this version
are reported. Finally, in the simulation study, the following benchmark method that do not
use the covariates at all is also included in the simulation study. At each period, it is the
ratio of the number of events to the total number of subjects at risk of experiencing the

event.

2.4 Simulation Study

The R software (R Core Team, 2014) was used to perform the simulation study. The package
randomForestSRC (Ishwaran and Kogalur, 2014) was used to build the forests for methods 1,
3 and 4 (methods Separate, SKHT and Superpp), i.e., all methods that require a classification
forest. Method 2, the discrete survival forest by Bou-Hamad et al. (2011a) (method BLB),
is implemented in Fortran and callable from R (R Core Team, 2014). The number of trees

in all forests is 100.

2.4.1 Simulation Design

The data generating process (DGP) is inspired by models I and II used in the simulation
study in Huang et al. (2016). The number of periods is 5. Let (8o, 81, 32) = AZ +b, where Z
is a three-dimensional random vector from the multivariate normal distribution with 0 mean
vector and identity covariance matrix, A is a 3 x 3 matrix and b is a three-variate vector. The
parameters A and b are parameters specified below. For ¢ = 1,...,5, the hazard function
for a given subject is h(t) = (1 + exp(—(f(¢)))~" where f(t) = By + Bit + Bot?. Three time-
independent and four time-varying covariates are available. The three time-independent
covariates are generated as (Xi, X2, X3)" = Z + €p where ¢p has a three-variate normal
distribution with a mean vector of 0 and a covariance matrix of ¥y specified below. The
four time-varying covariates are denoted by Xy (t) for k =4,...,7, and t = 0,...,4. They are
generated independently for different values of t. For a given ¢, (X4(t), X5(¢), X¢(t), X7(t))
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is generated from a multivariate normal distribution with mean vector p(t) and covariance
matrix Yy. The matrix ¥y is also specified below and the mean functions are given by, for

t=1,...,5,

h(t) h(t) < 0.4

mt—1)= a
0.4 h(t)>04
(0 h(t) < 0.2
pa(t —1) =< h(t)—0.2 0.2 <h(t) <0.6
| 0.4 h(t) > 0.6
(
0 h(t) <04
ps(t—1) =4 h(t)—04 04<h(t)<08
| 0.4 h(t) > 0.8
0 h(t) < 0.6
pa(t — 1) =

h(t) — 0.6 h(t) > 0.6

Hence, contrarily to the setup in Huang et al. (2016) where a single time-varying co-
variate contains all the information about the hazard function, the seven covariates used
in this DGP all possess only partial information about the hazard function. Finally, ad-
ditional probabilities of censoring were added independently of the covariates. The vector
(c1, o, c3,¢4), with 0 < ¢; < 1, gives the probability of being censored at times 1 to 4. Note
that the censoring occurs after the event. Consequently, if a subject has not experienced
the event at time ¢ (¢ = 1,...,4), then we check if it is censored by generating a Bernoulli
random variable with probability of success ¢;. All subjects that have not experienced the

event at time 5 are automatically censored at 5.
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The parameters we used are b = (—3.0, 1.5, —0.15),

0.7461  0.07571 0.009966

A= 007571 03671 0008611 | .
0.009966 0.008611  0.03511
1.125 0.1687  0.01688
Se=| 001688 02812 0.008437 |,
0.01687500 0.0.008437 0.002813
0.010 0.003 0.003 0.003
0.003 0.010 0.003 0.003
Sy =

0.003 0.003 0.010 0.003
0.003 0.003 0.003 0.010

With this matrix A, the vector (5, 51, 32) has a covariance matrix of

0.5625  0.08437 0.008438
Ya= 0.08437  0.1406  0.004218
0.008438 0.004218 0.001406

The correlation matrices of ¥4, Xr and Xy are all of the equicorrelation type with a
correlation of 0.3. Finally, the probabilities of censoring are (c1, ¢z, ¢3,¢4) = (0.3,0.2,0.1,0.1).
With this DGP, the proportion of censoring is about 42%.

Figure 2.1 shows the typical hazard functions for a sample of 50 subjects generated with
this DGP. The average hazard function is the one with the dots.

Each model is fitted with a training sample of size 1000. Then the performance of the
fitted models is evaluated with five independent test sets of size 1000 each. The first test set
includes only the subjects that are still at risk at u = 1. So it can be used when (¢,u) = (0,1).
The second test set includes the subjects that are still at risk at u = 2. So it can be used

when (¢,u) = (0,2) and (¢,u) = (1,2). The third test set includes the subjects that are still
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Figure 2.1: Hazard functions for a typical sample of 50 subjects

70



at risk at u = 3 and is used when (¢,u) = (0,3) , (t,u) = (1,3) and (¢,u) = (2,3). Similarly,
the fourth and fifth test sets include the subjects that are still at risk at v = 4 and u = 5,
respectively. To ensure that there are 1000 qualified points in each test set, a large sample
is generated first. Then five samples of size 1000 with the mentioned conditions are drawn

from it. Each simulation is repeated 100 times.

2.4.2 Simulation Results

The criterion for evaluating the accuracy of the methods is the absolute log odds ratio
(ALOR) defined by |In((h(1 — h))/((1 — h)h))| where h and h are the estimated and the
true hazards. The ALOR takes a minimum value of 0 when h = h. Note that the absolute
difference ’ib — h| was also used but the conclusions are essentially the same and are not
reported. The ALOR was chosen because it has the advantage of taking the magnitude of
h and h into account. Namely, [0.5 — 0.49| is treated as the same error as |0.02 — 0.01| with
the absolute difference, which can be questionable. The ALOR for the same two situations
are 0.04 and 0.70, respectively.

Figure 2.2 provides the box-plots for the 100 simulations runs of each method for each
combination (¢, ). The first plot on the top left corner is for the case ¢ = 0, the one on the
top right corner is for the case t = 1, and so on. The first finding is that all methods perform
better than the benchmark that does not use the covariates information. The second finding
is that, for a given t (i.e. for a given plot), the performance worsen as w increases. This
is obviously expected since it is more difficult to estimate the hazard for horizons further
away. The third finding is that, for a given u, the performance of the methods get better
as t increases. This is again expected because, as ¢ increases, more information from the
time-varying covariates becomes available. For example, if we look at the case u = 5, the
last part of each plot, we see that the ALOR decreases from around 1.4 (when t = 0) to
around 1.1 (when ¢ = 4).

The four individual methods, Separate, SKHT, BLB and Superpp, have generally similar
performances although there are some differences. It is interesting to see that which one

is the best depends on the combination (¢,u). For example, looking at the upper left plot
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(t = 0), we see that the BLB method is slightly better than the other ones when u = 1, then
SKHT has a slight edge when v = 2,3, then both SKHT and Superpp take the lead when
u = 4, and finally, Superpp ends up on top when v = 5. So even for a given t, the relative
performance of the four methods may depend on the estimation horizon. The SKHT method
seems to do rather well throughout as it is generally the best method or close to the best
one. However, choosing the best one might not be required in practice. Indeed, we see that
using the simple average of the four individual methods (the last box-plot in each subplot)
is generally very good and very close to the best one. It is even the best method in some
cases. Note that we tried using more complex combination methods like stacking (Breiman,

1996; Wey et al., 2015) but the results were worse than the ones of the simple average.

2.5 Data Example

In this section, we revisit the bankruptcy data used in Section 3 of Bou-Hamad et al. (2011a)
about United States firms that conducted IPOs (Initial Public Offerings) between 1990 and
1999. The data comes from COMPUSTAT and each firm is followed yearly starting from its
IPO until 2006. The target variable is the bankruptcy, measured in number of years after the
IPO. All firms that filed for bankruptcy under Chapter 7 or 11 are considered bankrupt. The
data has 1143 firms, of which 189 went bankrupt during the study period. The time-varying

covariates are the following financial ratios collected yearly:
e X, = Current Assets/Current Liabilities
e X, = Net Working Capital/Total Assets
e X3 = Sales/Net Working Capital
e X, = Sales/Net Fixed Assets
e X; = Sales/Total Assets
o X = Total Debt/Total Assets

e X; = Long-Term Debt/(Long-Term Debt-+Total Equity)
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e X3 = Net Income/Total Assets
e Xy = Net Income/Total Equity
e X9 = Market Value of Equity /Book Value of Total Debt.

In Bou-Hamad et al. (2011a), estimations at an horizon of three years were considered and
only aggregate results were reported. This time, to make the investigation more complete
and closer to a real practical application, we incorporate the time factor and include other
estimation horizons. More precisely, we suppose that we are in a given year (here it will
be 1997, 1998, or 1999), and then we want to estimate the hazard function, for the firms
that are still currently alive, for horizons between three to six years. Table 2.7 describe the
scenarios that we investigate.

Table 2.7: The 10 different estimation problems for the data example
Year after IPO | Predictions needed for (u)

Current (t) 31415 6
0 VIVvIY v
1 Vv v
2 v v
3 v

For instance, suppose we are in 1997, then some companies are just starting (0 years after
the initial IPO). We want to estimate their hazard functions for years 3, 4, 5 and 6 after the
IPO, using the initial ratio covariates (i.e., at time 0). Still in 1997, some companies are at
their year 1 after the IPO and still alive. We want to estimate their hazard functions for
yvears 4, 5 and 6 after the IPO, using the ratio covariates at time 0 and 1. The same logic
remains for the companies that are at their year 2 or 3 after the IPO. These 10 pairs form
the test data for 1997. Still for 1997, the training data set is comprised of all the information
up to 1997. This is realistic because if we are in 1997, we do have all the covariates and
outcome informations up to 1997. Hence, the outcomes used for the training data set are
strictly prior to the ones used in the test data set. However, a given company can be into
both the training and test data sets. For example, if a company had its IPO in 1994 and is

still alive in 1997 (year 3 after its IPO), then it is part of the training data set because the
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Table 2.8: Summary of the data over the 30 scenarios

Trainnig data Test data
Number of Number of Proportion of Number of Number of Proportion of
firms at risk | bankruptcies | bankruptcies (%) | firms at risk | bankruptcies | bankruptcies (%)
Mean 315.5 10.6 3.23 131.1 3.53 2.69
Min 95 2 2.10 93 1 0.68
Max 730 23 4.20 163 11 6.75

covariates in 1994 can be used to estimate the hazard in 1997, which is one of the problem
that interests us, ie. it is the ({=0, u=3) problem in table 2.7. The same company is in
the test data set because now we want to estimate its hazard in 2000, which is the problem
(t=3, u=6) in table 2.7. The important issue is that this setup respects the chronological
order and these analyses could all be performed in a real application.

We repeat this process for 1998 and 1999. Consequently, we have 30 scenarios, 3 years X
10 pairs. Table 2.8 presents summary statistics for the number of firms at risk, the number of
bankruptcies, and the percentage of bankruptcies over the 30 scenarios for the training and
test data sets. The fact that bankruptcies is a rare event is clearly apparent which makes
it challenging for both estimating the models and estimating their performances. The same
four forests based methods are used to estimate the hazard functions and their average is
also included as a fifth method. To be clear, for a given year (e.g. 1997), 10 forests are built
for the Separate method (one for each pair (t,u)), four forests are built for the BLB and
SKHT methods (one for each t), and one forest is built for the Superpp method. The same
process is repeated for the three years 1997, 1998, and 1999.

Obviously, the true hazard functions are unknown with these data. Cumulative gains
charts and Area Under the ROC Curve (AUC), obtained from the test data, will be used
to evaluate the performance. A cumulative gains chart (and the related lift chart) provides
more practical insight then a ROC curve. But AUC can still provide a general summary
of the discriminative power of a model in a single number. A cumulative gains chart plots
the percentage of events (here bankruptcies) detected if the p% of the observations with the
highest estimated probabilities are classified as events, as a function of p. Hence it shows

how much more a model is able to detect events compared to random assignment. The
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Table 2.9: Average AUC with respect to the estimation horizon

Method
Horizon | Separate BLB SKHT Superpp Average
3 0.740 0.712 0.738 0.814 0.784
4 or more 0.723 0.735 0.765 0.756 0.764

cumulative gains computed on the test data are computed separately for each methods and
each of the 30 scenarios. Figures 2.3 and 2.4 provide the average cumulative gains curves for
the 12 scenarios with an estimation horizon of 3 on one hand and for the 18 scenarios with a
horizon greater than 3 on the other hand. Table 2.9 provides the average AUC for the same
two groups of scenarios.

When the estimation horizon is 3, Figure 2.3 shows that all methods perform better than
random assignment (the diagonal line), but the Superpp method has a slight edge. For
instance, if we target 20% of the firms with the highest probability of bankruptcies, then
we detect 68.4% of the bankruptcies on average. This is much higher than the best of the
four other methods (the method Average) that detects 51.6% of bankruptcies. Moreover,
the average AUC of the Superpp method is 0.814, again much higher than for the other
methods. When the estimation horizon is 4 or more, again all methods perform better than
random assignment (see Figure 2.4). But this time, no method stands out compared to the
others, as apparent from the plot and the average AUC. The cumulative gains chart indicate
that, overall, the performance of the methods are slightly worse than for the scenarios with a
horizon of 3 since the curves are closer to the diagonal line. This is less apparent by looking

at the AUC since the average AUC is smaller for only three of the five methods.

2.6 Concluding Remarks

This paper provides an investigation of different discrete-time survival forest methods for
dynamic predictions with time-varying covariates. All methods investigated can be easily
implemented using existing R packages, except the Bou-Hamad et al. (2011a) method since
it requires a specific splitting rule. The results show that all methods perform well and none

surpasses the others. Taking the average of the estimated hazard functions from all methods
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provides a simple way to get a good result in most circumstances.

The methods investigated in this paper are basically landmark type analyses, where the
trajectories of the time-varying covariates are not modelled explicitly. One possibility for
future research would be to develop methods based on the joint modelling approach for the
same problem. The challenge would be to have a practical way to handle situations with

many time-varying covariates.
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Chapter 3

Survival Forests for Data with

Dependent Censoring

3.1 Abstract

Tree-based methods are very powerful and popular tools for analysing survival data with
right-censoring. The existing methods assume that the true time-to-event and the censoring
times are independent given the covariates. We propose different ways to build survival
forests when dependent censoring is suspected, by using an appropriate estimator of the
survival function when aggregating the individual trees and/or by modifying the splitting
rule. The appropriate estimator used in this paper is the copula-graphic estimator. We
also propose a new method for building survival forests, called point-wise forest, that may
be used not only when dependent censoring is suspected, but also as a new survival forest
method in general. The results from a simulation study indicate that these modifications

improve greatly the estimation of the survival forest in situations of dependent censoring.

Keywords: Survival data; survival forest; dependent-censoring; ensemble methods; copula-

graphic; right—censored data; random forest.



3.2 Introduction

Analysis of time-to-event data has become a growing field of interest in many research
areas. What makes survival analysis different from ordinary regression analyses is the
presence of censored observations which makes the analysis more complicated. Paramet-
ric (gamma,weibull) and semi-parametric (Cox) models are well developed and very useful
when the functional link between the survival time and the covariates is known or can be ad-
equately specified in advance. However, nonparametric methods like survival forests provide
alternatives that do not need a rigid specification of a model beforehand. These methods
are in a way more data-driven and require less assumptions.

Survival trees, introduced by Gordon and Olshen (1985), are an adaptation of the Classi-
fication and Regression Tree paradigm (CART) to right censored data (Breiman et al., 1984).
Many other tree-building algorithms have been proposed since then; see Bou-Hamad et al.
(2011) for an overview. However, it is now well-known that combining many trees, that is
using an ensemble of trees, often provides a better predictive performance. Breiman (2001)
introduced the random forest (RF) method for the classification problem and it became one
of the most popular ensemble method.

Ensemble of survival trees were first proposed by Hothorn et al. (2006) but the random
survival forest (RSF) method of Ishwaran et al. (2008) is the one which is the most closely
related to the original RF method. The main output of this method is an estimated cumula-
tive hazard function computed by averaging the Nelson—Aalen cumulative hazard function
of each tree. This method is implemented in the R package randomForestSRC (Ishwaran and
Kogalur, 2014; R Core Team, 2014). The log-rank statistic (Segal, 1988) is the default split-
ting rule to built individual trees in this package but other ones are available (e.g. log-rank
score) and the user can even make a customized splitting rule.

Another random forest technique for right-censored data is the recursively imputed sur-
vival tree (RIST) proposed by Zhu and Kosorok (2012). In this method, information on
censored observations is retained through computation of conditional survival distribution

and recursive imputation. The log-rank test statistic is used as the default splitting rule.
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Finally, L,-forest is another random forest method for right-censored data (Moradian et al.,
2016). Using the integrated absolute difference between survival functions’ Kaplan-Meier
estimates of two children nodes as the splitting rule makes this method less sensitive to
the proportional hazards assumption, which is somewhat implicitly made when using the
log-rank test as the splitting rule.

All aforementioned implementations of survival forests either explicitly state that their
methods’ underlying assumption is that the true event time and the true censoring time
are independent given the covariates, or implicitly by using a splitting rule (e.g. log-rank
test) or an estimation method (e.g. Kaplan-Meier, Nelson—Aalen) that works under the
independent censoring assumption. However, this assumption is not always verified. For
example, Li et al. (2007) consider the survival of patients diagnosed with prostate cancer.
Patients dying from other causes are considered censored, with cardiovascular diseases being
the major cause. Since prostate cancer and cardiovascular diseases share common risk factors,
it is reasonable to suspect that the event and censoring times are dependent. None of the
current implementations of survival forests can properly estimate the survival function in
the dependent censoring context. The goal of this paper is to propose different ways to build
survival forests when dependent censoring is suspected. More precisely, we will investigate
the following two aspects of a survival forest to account for dependent censoring: 1) use an
appropriate final estimator, and /or 2) modify the splitting rule. Moreover, we will present
a new method for building survival forests, called point-wise forest or simply “p-forest”, that
may be used not only when dependent censoring is suspected, but also as a new survival
forest method in general.

These modifications will be built around the “copula-graphic” estimator of the survival
function introduced by Zheng and Klein (1995) and using the closed-form expression derived
in Rivest and Wells (2001). A description of this estimator will be given in the next section
for completeness.

This paper is organized as follows. The data setting and the proposed methods are
described in Section 3.3. The results from a simulation study are presented in Section 3.4.

Conclusion and directions for future research are discussed in Section 3.5.
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3.3 Settings and Methods

3.3.1 Data Description

Observations for each subject i (i = 1,...,N) are in the form of (7;, d;, ;) where 7; is the
observed survival time for subject i, d; is the censoring index which takes a value of 0 if it is
right censored and a value of 1 if it has experienced the event of interest, and x; is the vector of
covariates. Only time-invariant covariates are considered. Let U; and V; be the true time-to-
event and the true censoring times for subject i. Hence, the observed time is 7;=min(U;,V;),
and ¢; = [(U; <V;) . Obviously, 7, d;, U; and V; are all conditional on x; but this dependence
is suppressed to simplify the notation. Let S(t|z;) = S;(t) = P(U; > t) = P(U > t|z;) be
the survival function for subject . The goal is to estimate the survival function for a new
subject with vector of covariate x, that is S(t|x).

The assumption of independent censoring is usually made. This means that U; and V; are
independent, i.e. that the true time-to-event and the true censoring time are independent
given the covariates. However, in this paper, we assume that U; and V; may be dependent,
i.e. that the true time-to-event and the true censoring time may be dependent even after

the effect of the covariates is taken into account.

3.3.2 Copula-Graphic Estimator

To estimate the survival function of a sample of survival times without covariates but with
possible dependent censoring, Zheng and Klein (1995) proposed a nonparametric estima-
tor called the “copula-graphic”. It is based on copulas, first introduced by Sklar (1959),
that allows to model the dependence relationship without any particular specification of
the marginal distributions. In this paper, we focus on a special class of copula called the
Archimedean copulas. Let UU and V' be two random variables (think about the time-to-event
and censoring time) with respective marginal distribution functions S(u) and C(v). An
Archimedean copula assumes that the joint distribution of U and V', H(u,v), is constructed

through a ¢-generator and takes the form H(u,v) = ¢ [p(S(u)) + ¢(C(v))], where ¢(.) is a
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decreasing function defined on (0,1] with ¢(1) = 0 and ¢(0) = co. Two well-known families of
Archimedean copulas are the Clayton’s family (Clayton, 1978) with ¢,(t) = (t™*—1)/a,and
Frank’s family (Frank, 1979) with ¢,(t) = —In[{1 — exp(—at)}/{1 — exp(—a)}]. In both
cases, « is the dependence parameter. The reader can refer to Nelsen (1999) for more details
on the generators of Archimedean copulas.

Rivest and Wells (2001) provide the following closed form expression for the estimation

of the survival function with the copula-graphic estimator for Archimedean copulas :

8 _ . . di
Sal) =i (= X Loalitnl) = palitn) - 2)}), 31)
Tlgt,§i=1
where 7(7;) = e (IIV(Tpt)) and d; is the number of observations that experienced the event
at 7;. As stated by Rivest and Wells (2001) with an Archimedean copula for the dependency

between censoring and survival and the dependence function given by ¢(.), (3.1) provides a

net estimate of the marginal survival function.

3.3.3 Modification of Existing Methods

In this subsection, we present different possibilities for modifying existing survival forests
methods to account for dependent censoring. We assume that the reader is familiar with
the CART paradigm (Breiman et al., 1984) and the basic random forest method (Breiman,

2001). As mentioned in the Introduction, if dependent censoring is suspected, we could

1. use an appropriate estimator to compute the final estimator of the survival function

and/or
2. modify the splitting rule to account for dependent censoring.

The easiest practical way to do it is to use a well-established package like randomForestSRC
and only modify the way to combine the trees, that is, only use approach 1) above. This
package allows to easily extract the set of observations ending in each terminal node of each
tree in a forest. Hence, we can build a forest of trees as usual (e.g. with the log-rank

statistic as splitting rule). To estimate the survival function of a new subject, the usual
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way would be to take the average over the trees of the Nelson—Aalen cumulative hazard
function (the output from randomForestSRC) and then deriving the survival function from
it (with S(t) = exp(—A(t)) where A is the cumulative hazard function). But instead of
that, we can also pool together all the observations that end up in the terminal nodes of all
trees for this new observation and compute the copula-graphic estimator with them. This
was the aggregation method used in Hothorn et al. (2006). Note that any given observation
can appear more than once in the pooled set of observations. To make things more formal,
let F' be a survival forest (built with any method) and let x be the covariates vector of the
observation for which we need an estimate of the survival function. Define by T (x) the 1 xn
vector giving the number of times that each observation in the training data set ends up in
a terminal node of I when x is the covariates vector. For example, with n = 5 observations
in the training data set and a forest F formed by 3 trees, T (z) = (3,0,1,2,2) means that
x is in the same terminal node as the first observation in the training set in all 3 trees of
the forest, that it is never in the same terminal node as the second observation, that it is in
the same terminal node as the third observation in one of the 3 trees, and so on. Hence it is
simply a weight vector. The estimated survival function is then the copula-graphic estimator
computed with the set of observations Tr(z). In the above example, it is the copula-graphic
estimator computed with 8 observations (three times the first one, 1 time the third one, 2
times the fourth one and 2 times the fifth one).

Building the forest itself without correcting for dependent censoring and making a cor-
rection at the time of combining the information in the trees, as the method above, will most
likely produce a better estimate of the survival function. However, it may be that using a
modified splitting rule improves things even more. A survival forest that lends itself to this
end is the L,-forest introduced in Moradian et al. (2016). The usual splitting rule used to
build survival forests is based on the log-rank statistic. However, the log-rank test may have
a significant loss of power in some circumstances, for instance when the hazard functions
or when the survival functions cross each other in the two compared groups. This is why

Moradian et al. (2016) proposed using the following L; splitting rule:
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(nom) / 152(8) — Sa(t)ldt, (3.2)

where S’L(t), S’R(t), ny and ng are the Kaplan-Meier survival function estimates and the
number of observations in the left and right node, respectively. This splitting rule is designed
to detect any type of differences between the two nodes. Obviously, if dependent censoring
is present, then using the Kaplan-Meier estimator is not necessarily a good strategy. This is

why we will investigate replacing it by a copula-graphic estimator giving the splitting rule

(gt /t 180r(8) — Sorlb)ldt, (3.3)

where S, is defined in (3.1). To sum up, with this approach, both the splitting rule and the

combination of the trees are modified to account for possible dependent censoring.

3.3.4 Point-Wise Forest

In the last subsection, we describe two approaches for dealing with dependent censoring
with a survival forest. We can build a forest using a common algorithm and only apply a
correction at the end when combining the information from the trees. But we can also apply
a correction at the time of tree building by modifying the splitting rule and proposed to
replace the Kaplan-Meier estimator by a copula-graphic estimator in the L; splitting rule of
Moradian et al. (2016). This approach requires a choice of copula and a choice of dependency
parameter (the a above) at the moment of tree building. If a sensitivity analysis is required
by varying «, then a different forest would be required for each of them and could require
a lot of computation time. In this subsection, we describe another approach that tries to
account for dependent censoring at tree building time while not requiring the choice of a
dependency parameter. This method, that we call the Point-wise forest or just p-forest for
simplicity, uses a splitting rule which is free of the independent censoring assumption.

We can define the status of an observation at a given time point ¢ as follows:
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0 if subject 7 is alive at ¢, that is, if 7; > ¢
Yi(t) = ¢ 1 ifsubject ¢ is dead at ¢, that is, if ; < ¢t and §; = 1

2 if subject ¢ is censored at ¢, that is, if 7, < ¢ and §; =0

The “dead” and “alive” terms are used metaphorically, meaning the subject has observed or
has not observed the event, respectively. The idea behind the p-forest is to build a random
forest using the status Y;(¢) as the outcome. It provides a predictive model for the status
at time ¢ which is free of the independent censoring assumption. The idea is to use the
information from many forests built at different times ¢ to estimate the survival function of

new observations. Here is the detailed description of the p-forest method.

1. Select the number of forests A, the number of trees in a forest B, and the minimal
number of forests required for an observation to count m (m € {1,2,...,M}). In this

paper, we selected M =9, B =100, and m = 5, or 9.

2. Select the points t,%s,...,ty where to compute the forests. In this paper, we use
M = 9 and these points are the quantiles 0.1,0.2,...,0.9 of the Kaplan-Meier estimator

of the survival function of the training data set.

3. Foreach j =1,2,..., M, build a classification forest with the Gini criterion using Y;(¢;)

as the outcome and all the covariates. We have M forests Fy, Fy, ..., Fiy.

4. Let x be the vector of covariates of a new observation. Let I(z,j) be a 1 x n vector of
indicator variable (0-1). The ith element of I(z, ), I(x,j);, is 1 if and only if the ith
observation in the training data is in the same terminal node as the new observation

with vector of covariates x in at least one of the trees of the forest Fj.

5. Let I"™(x) be a 1 x n vector of indicator variable. The ith element of I (zx), I™(x);, is
1 if and only if the ith observation in the training data is in the same terminal node as

the new observation with covariate vector = in at least m forests. That is, I"(z); = 1

if and only if I(x,1); + I(z,2); +--- , [(x, M); > m.
6. Let W™(x) be a 1 xn vector giving the final weight of the training data used to compute

89



the estimate of the survival function for . The it} element of Wm(x), W™ (z);, is 0 if
I'"™(z); = 0. If I'"(x); = 1, it is equal to the number of trees among all Bx M trees in all
forests where the ith observation is in the same terminal node as the new observation

with covariate vector z.

7. Compute the estimate of the survival function (Kaplan-Meier or copula-graphic) for z

using the training data with the weights W™(z).

The idea is that a training observation is used to estimate the survival function of a new
observation x only if it used in enough (m) individual forests, that is if it contributes in
a sufficient part of the time range. Once it is selected, an observation receives a weight to
reflect its relative importance and the estimate of the survival function can be computed with
these weights. Choosing M =9 and m = 5, requires that an observation looks important in
at least more than half the forests, that is more than half the time points selected, in order
to be used. Choosing M =9 and m = 9, requires that an observation looks important in all
the forests in order to be used. Note that the set of observations used and the weights vary
with z, that is, each new observation gets its own weight vector to compute the estimated

survival function.

3.4 Simulation Study

3.4.1 Methods Compared

In this section, we investigate the performance of the proposed methods through a simulation
study. Here is a description of the methods compared in the study. We use the Clayton copula
for all methods. The link function between the dependency parameter a and Kendall’s 7 in
Clayton’s copula is 7 = a/(a+2). In what follows, we abbreviate Kaplan-Meier by KM and
copula-graphic by CG.

Random survival forest (RSF) of Ishwaran et al. (2008) and some modifications

The log-rank test is used as the splitting rule for all RSF methods.

e A first benchmark method is the original RSF. In this case S(t) = exp(—A(t)) where A
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is the estimated cumulative hazard function computed by averaging the Nelson—Aalen

cumulative hazard function of each tree. It is denoted by RSF.

e Instead of that, we can compute an estimated survival curve using the pool of obser-
vations that end up in the terminal nodes of all trees as explained in Section 2.3. The
copula-graphic estimator with a Kendall’s 7 of 0, 0.2, 0.4, 0.6, and 0.8 are used. Note
that the case 7 = 0 reduces to the KM estimator. These five methods are denoted by
RSF-KM, RSF-CG2, RSF-CG4, RSF-CG6 and RSF-CGS.

The forests are built with the randomForestSRC package.
Recursively imputed survival tree (RIST) of Zhu and Kosorok (2012)

This is the second benchmark method. We use it with three imputation steps. The
log-rank test is used as the splitting rule. It is denoted by RIST3. The R code generously
made available by the authors Zhu and Kosorok (2012) is used for RIST3.

Ly-forest of (Moradian et al., 2016) and some modifications

e A third benchmark method is the original L;-forest. In this case, the trees are built
with the L; splitting rule using KM, that is (3.2). The final estimator with the pooled
set of observations is also computed with KM. It is denoted by L1-KM.

e As a first modification, we can still use KM in the splitting rule but use CG for the final
estimator with the pooled set of observations. Again, we use CG with a Kendall’s 7 of
0.2, 0.4, 0.6, and 0.8. These four methods are denoted by L1-CG2, L1-CG4, L1-CG6
and L1-CG8.

e We can go a step further and use CG in the splitting rule, that is (3.3). We then use
CG also for the final estimator, with the same dependency parameter as the one in the
splitting rule. These four methods are denoted by L1-S-CG2, L1-5-CG4, L1-S-CG6
and L1-S-CG8.

These methods are implemented by the authors in Fortran and callable from R.

Point-wise forest
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In all cases we use M = 9 points, that is we build nine forests. They are selected as
equispaced quantiles (0.1,0.2,...,0.9) of the KM of the training data. Two values of m (the
minimal number of forests required for an observation to count in the final estimator) are
used, m = 5 and 9. Finally we use the copula-graphic estimator with a Kendall’s 7 of 0, 0.2,
0.4, 0.6, and 0.8 to compute the final estimate with the pooled set of observations. These 10
methods are denoted by pf5-KM, pf5-CG2, pf5-CG4, pf5-CG6, pf5-CG8, pfo-KM, pf9-CG2,
pf9-CG4, pf9-CG6, and pfo-CGS.

These methods are implemented by the authors in R.

Consequently, there are 26 methods that are investigated. In all forests, 100 trees are
grown and the number of covariates tried at each split is set to the integer part of \/p (p
being the number of covariates), as suggested by Ishwaran et al. (2008). As a stopping
criterion, the minimum number of observations in a terminal node is 3, the default value in

randomForestSRC.

3.4.2 Simulation Design

Three Data Generating Processes (DGPs) are used to generate artificial data. For each DGP,
five different Kendall’s 7 values are used to incorporate a dependence between the true time-
to-event UU and the censoring time V. They are 0, 0.2, 0.4, 0.6, and 0.8. A Kendall’'s 7 of
0 corresponds to the case of independent censoring, given the covariates. Three different
censoring proportions are considered, namely, 20%, 40% and 60%. Overall, 45 scenarios are
investigated. All models are fitted with a training sample of size 500 and their performances
are evaluated with an independent test set of size 1000. Each simulation is repeated 100
times. In all cases, the parameter 3 controls the proportion of censoring. The values of
which produce the desired censoring proportions were found empirically. The description of
the marginal distributions of U and V' are given below. The vector (U, V') is generated with
Clayton’s copula with the aforementioned values of Kendall’s 7.

DGP 1. It is an altered version of scenario 2 from Section 4.1 of Zhu and Kosorok
(2012). Ten independent and uniformly distributed (iid) uniform covariates on the interval

(0,1) are available, X,..., Xjo. The marginal survival time is drawn from an exponential
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distribution with mean py = 10|sin(X 7 — 1)| + 3| X, — 0.5 + X3. The marginal censoring
time is uniformly distributed on the interval (0,5). Hence, only the survival time is related
to the covariates. Moreover, only the first three covariates are related to the survival time
and the others are noise covariates.

In the next two DGPs, the survival and censoring times depend on the same covariates
and are linked to each other and they also follow a joint Clayton’s copula distribution.

DGP 2: It is a tree with four terminal nodes. Ten iid standard normal covariates
are available, X1,..., Xj9. The marginal survival time is generated from the exponential

distribution with mean py given by:

(1 i X, <0,X,<0

1/2 if X, <0,X3 >0
My =
1/3 le1 >O,X3§0

[ 1/4 if X; >0,X3 >0,

The censoring time is generated also from the exponential distribution with mean gy =
B/(1—3)(u). Hence, only the first three covariates are related to the survival and censoring
times and the others are noise covariates.

DGP 3. This is another complex dependent censoring DGP. It is adapted from scenario
1 in Section 4.1 of Zhu and Kosorok (2012). The 25 covariates X, ..., Xy5 are generated
from a multivariate normal distribution with covariance matrix ¢;; = 0.9"77/. The marginal
survival time follows an exponential distribution with mean of py = 0.1] Z?QHXA. The

marginal censoring time also have an exponential distribution with mean py = py /5.

3.4.3 Simulation Results

To evaluate how well the survival function is estimated for each method, we use the Integrated
Absolute Error (IAE). Let S be the true survival function and S be an estimated survival

function. The TAE is defined by:

IAE = /.IS(t) _ S0t (3.4)
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Obviously, smaller values of the TAE are better. The box plots of the TAE for the 100
runs for all methods in all scenarios are provided in figures 3.3 to 3.11. But before looking
at these detailed results, we give an overall view in figures 3.1 and 3.2. There are 4500
simulation runs in all (100 runs x 45 scenarios). In a given run, we can compute the %
increase in [AE with respect to the best performer for this run, for all 26 methods. More
precisely, for a given run, let IAE; (i = 1,2,...,26) be the TAE for the it method and
IAE, )i, = min{IAE,,...,IAEs} be the best (smallest) IAE for this run. Then the %

increase in IAE of method 7 with respect to the best is given by (IAE;/TIAE % 100.

min-1)
Hence, for a given run, if there are no tied IAE, then one and only one method will get a
% increase of 0 (the best one) and the others will get positive values. Using this criterion
makes it possible to compare the methods across all scenarios at once.

In the following discussion, the “working” 7 is the value of Kendall 7 used by the estimation
method and the “true” 7 is the value of Kendall 7 used to generate the data. Figure 3.1
presents the box plots of the % increase in IAE with respect to the best method for the 4500
runs for all methods. But to see more clearly, a zoom in is given at the bottom of Figure
3.1. In complement, Table 3.1 presents the average and median of the % increase in IAE
with respect to the best globally for the 4500 runs. Looking first at the global results with
Figure 3.1 and Table 3.1, we see that RSF-CG6, pf5-CG6, pf5-CG4, and RSF-CGS8 have the
four lowest % increase averages with respective values 14.9%, 16.3%, 16.4%, and 17.3%. The
same four also have the lowest medians but in the different order of 10.4% (pf5-CG4), 10.7%
(RSF-CG8), 11.4% (pf5-CG6), and 11.6% (RSF-CG6). As seen in Figure 3.1, the same four
also have the lowest third quartile. More generally, all methods that use CG as the final
estimator of the survival function also have a good performance and are not that far from the
top four. The globally worst methods are the ones that do not use CG as the final estimator.
These methods are RSF, RIST3, RSF-KM, L1-KM, pf5-KM, and pf9-KM who all use KM
as the final estimator except RSF and RIST3. The method RSF uses an average (over the
trees) of Nelson—Aalen cumulative hazard functions and then we transform it to get the
survival function. Since it is based on imputation and no censored observations remains,

the method RIST3 uses an empirical type estimator (similar to KM) in the terminal nodes
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[ Method | Mean | Median ]

RIST3 68.7 | 49.6
RSF 119.8 | 91.5
RSF-KM | 75.8 | 45.8
RSF-CG2 | 37.6 | 24.0
RSF-CG4 | 19.2 | 13.7
RSF-CG6 | 149 | 11.6
RSF-CG8 | 17.3 | 10.7

L1-KM 51.7 | 36.1
L1-CG2 278 120.3
L1-CG4 216 | 18.1
L1-CG6 25.9 208
L1-CG8 26.0 | 20.7
L1-S-CG2 | 27.8 | 20.3
L1-S-CG4 | 22.5 19.1
L1-S-CG6 | 24.1 | 20.9
L1-S-CG8 | 28.2 | 24.2

pf5KM | 724 | 24.2
pf5-CG2 | 31.9 |12.9
pf5-CG4 | 164 | 104
pf5-CG6 | 16.3 | 11.4
pf5-CG8 | 22.0 |15.1
pfo-KM | 864 | 33.7
pfo-CG2 | 47.1 | 221
pf9-CG4 | 24.6 | 17.0
pfo-CG6 | 19.1 | 15.2
pfo-CG8 | 21.6 | 154

Table 3.1: Global results. Average and median of the % increase in IAE with respect to the best
globally for the 4500 runs.

of each tree and averages them. Thus, like KM, it does not try to account for dependent
censoring. Consequently, the first general finding is that trying to account for dependent
censoring by using CG, even if the dependency parameter is wrong, is much better than
doing nothing.

The second general finding comes by noting that the two approaches L1-CGx and L1-
S-CGx for a given value of x, that is working 7, have a very similar performance. Both
approaches use CG as the final estimator, but L1-S-CGx also uses CG in the splitting rule.
Hence, it seems that modifying the splitting rule to account for possible dependent censoring
is not required if the final estimator does account for it, at least with the L; approach. It is

possible that the biases in the estimation of the survival function in both nodes somewhat
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cancel out and that the basic L, splitting rule with KM does a fairly good job at finding
reasonable splits, at least compared to using the L, splitting rule with CG. This is a nice
finding in practice because it means that we may use existing survival tree building algorithms
as we only need to modify the final estimator of the survival function when combining the
information from the trees in the forest.

The third general finding is the fact that RSF-KM is better than RSF, at least in the sce-
narios considered. This means that, to compute the final estimate of the survival function, it
is preferable to use the pooling method described in Section 2.3 instead of taking the average
of the Nelson—Aalen cumulative hazard function that comes out of randomForestSRC and
transform it. The same trees are built in both cases, only the way to combine the information
in the end changes. A more detail comparison is given below when we look at the different
scenarios separately.

Figures 3.2 to 3.10 present detailed results for the individual scenarios. Each figure
presents the results for one DGP, one proportion of censoring, and for all values of the
true 7. The first finding was expected. For a given method, all things being equal, the
performance worsens as the proportion of censoring increases. We can see that by looking
at the corresponding plots in figures 3.2, 3.3 and 3.4, for DGP 1, at the ones in figures 3.5,
3.6 and 3.7, for DGP 2, and at the ones in figures 3.8, 3.9 and 3.10, for DGP 3. We also see
that the variability between the methods increases as the proportion of censoring increases.

Another finding is that for a given approach (i.e RSFxx, Llxx, L1-Sxx, pf5xx, or pfixx),
the value of the working 7 that produces the best result tends to increase with the true value
of the true 7, all other things being equal. To give a specific example, take Figure 3.4 (DGP
1 with 60% censoring) and look at the pf5 approach in the next to last portion of the plots
(the 5 box plots just before the last 5 box plots in each plot). When the true 7 is 0 (plot in
the upper left corner), then pf5-CG4 is the best among the pf5 methods, that is, the best
one is the one that uses a working 7 = 0.4 to compute the final estimator when the true 7 is
0. When the true 7 is 0.2 (plot in the upper right corner), then pf5-CG6 is the best. When
the true 7 is 0.4 (plot in the middle left), then pf5-CG6 is again the best, followed closely
by pf5-CG8. When the true 7 is 0.6 (plot in the middle right), then pf5-CG8 is the best.
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Finally, when the true 7 is 0.8 (lower plot), then pf5-CG8 is again the best. This tendency
occurs in most cases. This was expected. However, the value of working 7 that produces the
best result has a tendency to be greater or equal than the true 7.

The global results discussed before showed that RSF-KM is better than RSF. In fact, we
see that RSF-KM is better than RSF for 28 of the 45 scenarios and the opposite is true for
the other 17 scenarios. The RSF method does better for DGP 1 while RSF-KM is generally
better for the other two DGPs.

From these 9 figures, we can see that the value of the working 7 used to compute the
estimate of the survival function has generally a much bigger impact on the performance
than the choice of the particular approach (i.e RSFxx, Llxx, L1-Sxx, pfoxx, or pf9xx).
Moreover, as expected, the impact of the choice of the working 7 increases as the proportion
of censoring increases.

For DGP 1, the pfoxx approach is the best when the censoring proportion is 20% (Figure
3.2). When the censoring proportion is 40% (Figure 3.3), the pfoxx approach has a slight
edge over the other, but the RSFxx and pf9xx approaches can be very close to it. When
the censoring proportion is 60% (Figure 3.4), the best method in each plot comes from the
pfoxx approach. However, this method can also have a poor performance if the value of the
working 7 used is not adequate. The L1xx approach is more stable (not the best but never
bad) when the true 7 is greater or equal to 0.2.

For DGP 2, all methods offer a similar performance when the censoring proportion is
20% (Figure 3.5), except RSF and RIST3 which are worse. More differences occur when
the censoring proportion is 40% (Figure 3.6). But when they use the same value of working
7, all methods perform similarly, except RSF and RIST3 which again are worse than the
others. Even more differences occur when the censoring proportion is 60% (Figure 3.7). In
this case, we see that the methods that use KM perform particularly badly and it gets worse
as the true value of 7 increases.

For DGP 3 and 20% of censoring (Figure 3.8), the pfixx approach is the best one up
to a true 7 value of 0.4, then it is joined by the pf9 approach for greater values of the true

7. When the proportion of censoring is 40% or 60% (figures 3.9 and 3.10), we see that the
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value of the working 7 is the most important driver of the performance. Any approach can
do well if the working 7 is well selected.

In all the simulations so far, the methods use Clayton copula (the working copula) and the
data were also generated with the Clayton copula (the true copula). We ran some additional
simulations to investigate how robust are the methods if the working copula is misspecified.
The same three DGPs are used but this time the data are generated with the Frank copula
and only the most extreme case is treated, that is the one with 60% of censoring and a value
of « giving a true 7 of 0.8 for the Clayton copula. Figure 3.11 presents the results. The
plots in the left column are the same as the lower ones in figures 3.4, 3.7, and 3.10 and are
reproduced to ease the comparison. The plots in the right column are the new ones when the
data are generated with the Frank copula. Note that the methods still use Clayton as the
working copula. Comparing the plots line by line in Figure 3.11, we see that the methods
seem robust to the choice of the working copula as the results are very similar. In fact, the
results seem slightly better when the data are generated with the Frank copula, at least for

the methods that use KM or CG with a small working 7 as the final estimator.
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Figure 3.1: % increase in IAE of all methods with respect to the best one over the 4500 runs on the
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Figure 3.2: TAE of methods for DGP 1 at 20% censoring proportion
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Figure 3.3: TAE of methods for DGP 1 at 40% censoring proportion
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Figure 3.4: TAE of methods for DGP 1 at 60% censoring proportion
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Figure 3.5: TAE of methods for DGP 2 at 20% censoring proportion
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Figure 3.6: TAE of methods for DGP 2 at 40% censoring proportion
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Figure 3.7: TAE of methods for DGP 2 at 60% censoring proportion
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Figure 3.8: IAE of methods for DGP 3 at 20% censoring proportion
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Figure 3.9: IAE of methods for DGP 3 at 40% censoring proportion
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Figure 3.10: IAE of methods for DGP 3 at 60% censoring proportion
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Figure 3.11: Comparisons of [AE results for data generated with the Clayton versus the Frank
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3.5 Discussion and Concluding Remarks

In this paper, we proposed different ways to account for dependent censoring given the
covariates when building survival forests. They are: 1) use an appropriate final estimator,
and /or 2) modify the splitting rule. We investigated using the copula-graphic instead of the
Kaplan-Meier as the final estimator, and also use it in the splitting rule. We also proposed a
new way to build survival forests called point-wise forest. The first conclusion is that all these
approaches work. However, the main driver of the performance of the methods is using an
adequate value of Kendall 7 to compute the copula-graphic estimator. The problem is that it
is not possible to estimate the dependency parameter without making stronger assumptions
on the data (Wang et al., 2015). For example, in some situations, a maximum length of
follow-up time is assumed for all subjects. In this case, the censoring time for all subjects is
available making the dependency parameter identifiable.

From the limited simulation study presented here, it seems that using the Clayton copula
with a value of 7 between 0.4 and 0.6 might be a good compromise if dependent censoring
is suspected. Indeed, even when the true 7 is 0, the best method was most often one that
used a value of 7 greater than 0. More generally, the best value of 7 to use was most often
greater or equal than the true value of 7. However, it would be interesting to investigate if it
is possible, by adding minimal assumptions, to get a practical estimator of the dependency
parameter that would lead to an improved final estimator of the survival function.

One interesting finding concerns the method RSF in the package randomForestSRC. By
default, the function rfsrc in the package returns an estimated cumulative hazard function
computed by averaging the Nelson—Aalen cumulative hazard function of each tree. Let
A(t) be this function. Then we can obtain the survival function with S(t) = exp(—A(t)).
Our results show that combining the information from the individual trees by pooling all
the observations ending in the terminal nodes of each tree and computing the Kaplan-Meier
(or another estimator like the copula-graphic) often produces better results. Note that the
same forests are built in both cases. Only the aggregation of the information in the trees

is different. It is straightforward to use this combination method with randomForestSRC.
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Hence we can benefit from all the features available in randomForestSRC and possibly get
an improved estimation of the survival function. This certainly deserves more investigation
and needs to be validated with other simulations studies.

The point-wise forest method introduced in this paper also deserves to be investigated
more deeply. The main idea is to use a splitting rule that accounts for dependent censoring
without committing to a particular value of a dependency parameter at tree-building time.
But our results show that the point-wise forest seems to be a good forest building method in
its own right, and not only for the case of dependent censoring. In this paper, the number
of points (forests) and number of forests needed for an observation to count in the final
estimation were arbitrarily fixed at 9 for the first parameter and 5 or 9 for the second. But
it would be interesting to investigate how the performance is sensible to these parameters
and if it is possible to get an all around good performance by selecting them automatically

with a data-driven procedure.
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Conclusion

The three articles of this thesis propose solutions for three of the limitations of current
implementations of survival forests. The first limitation is that they use the log-rank test
as the splitting rule which only works when the proportionality assumption is met. Due
to the loss of power of log-rank test when the proportional hazards assumption is violated,
that is the hazard (survival) functions in the two compared groups cross each other, the first
article proposes the use of the integrated absolute difference between the two children nodes
survival functions as the splitting rule. The forests built with this splitting rule, the L;-forest,
provide competitive results compared to their counterparts even in general circumstances
where the proportionality assumption is met. The L;-forest often got the best performance
with simulated data and with real data sets. The second limitation of presently available
implementations of random survival forest is that they do not provide dynamic predictions in
presence of time-varying covariates. The second article of this thesis studies settings in which
time-varying covariates are present. We investigate different ways that random forests can
be used for dynamic predictions with discrete-time survival data. The results show that all
considered methods perform well and the average of the estimated hazard functions from all
methods provides a simple way to get a good result in most circumstances. Lastly, available
implementations of survival forest work under the assumption that the event and censoring
times are independent, given the covariates. The third article of this thesis investigates
different ways that random forests can tackle the problem of dependent censoring. The first
one is to use a final estimate of the survival function that corrects for dependent censoring.
The second one is to use a splitting rule which does not rely on the independent censoring

assumption. The results of simulations show that all methods using the copula-graphic as



the final estimator of the survival function have a good performance. So there is no need for
a special splitting rule as long as the dependent censoring is taken care of through the final
estimator. The worst methods are the ones that do not use the copula-graphic as the final
estimator like RSF and RIST3. Another general finding, from the considered scenarios, is
the fact that RSF-KM is better than RSF. This means that, to compute the final estimate
of the survival function, it is preferable to use the pooling method described in the first
article instead of taking the average of the Nelson—Aalen cumulative hazard function that
comes out of randomForestSRC and transform it. We also proposed a new survival forest
technique called point-wise forest or in short p-forest. The main idea is to use a splitting rule
that accounts for dependent censoring without relying on a particular value of a dependency
parameter at tree-building time. The p-forest deserves to be investigated more deeply since
the simulations showed that it is very competitive even in independent censoring scenarios.

This thesis answered many questions about survival forests but also paved the way for
potential future research. The two splitting rules investigated in the first article are L; =
(npnr)A and L = \/apngA where A = [|Sp(t)— Sg(t)|dt. The factors (nyng) and \/npng
can be seen as penalization factors that favor splits with children nodes of nearly equal sizes.
There was no clear winner between the two in the simulation study and with the real data
sets. It is clear that, for a given data set, the choice could be based on cross-validation
with a performance criterion like the Brier score. But it is also possible that the best factor
varies from node to node in a tree. Hence, a method that selects the splitting criterion
adaptively at each node could entail better performance. The drawback would be a higher
computational cost however. The dynamic prediction method in the second article is aimed
at a discrete-time survival response. It would be interesting to develop a similar method for
a continuous response and the “pseudo-subjects” idea of Bacchetti and Segal(1995) could be
adapted to this task. In the third article, given that the main driver of the performance of
the methods is using an appropriate value for the working Kendall 7 to compute the copula-
graphic estimator, one future direction for research would be to find a way to estimate the
dependency parameter by adding minimal assumptions. In all this thesis, CART was the

main paradigm used to build the trees. Other general approaches are available including the
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so-called “unbiased” trees (Hothorn et al., 2006; Loh, 2013). Hence, it would be interesting to
investigate how to implement the methods proposed in this thesis with these tree-building
methods. Finally, the settings of this thesis involved only right-censoring. The general
literature on survival trees and forests is almost entirely aimed at this situation. Hence there
are many opportunities to develop methods for other types of mechanism like left truncated

data and interval censored data.
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