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RÉSUMÉ

Les méthodes d’arbres forment une classe de modèles utiles, polyvalents et populaires au-

près des utilisateurs. De plus, les méthodes d’agrégation d’arbres, comme la forêt aléatoire,

comptent parmi les outils de prévision les plus performants. Dans cette thèse nous considé-

rons une variable réponse de dénombrement, représentant un nombre d’événements récurrents

observés dans une période de temps. Nous développons des méthodes d’arbres et de forêts

dans le cas où la fonction de taux du processus est non–homogène dans le temps et/ou dans

le cas où il y a un nombre de zéro excédentaires. Des études par simulation démontrent que

les méthodes proposées offrent un avantage réel comparativement aux méthodes existantes

dans ces cas.

Mots clés : Processus de Poisson non–homogène, Arbre de Poisson, Forêt aléatoire, Pro-

cessus de Poisson gonflé à zéro, Événements récurrents, Maximum de vraisemblance, Seg-

mentation fonctionnelle.



ABSTRACT

Tree-based methods are a class of useful, versatile and popular models. Moreover, tree

aggregation methods, such as random forests, are among the most powerful prediction tools.

In this thesis, we consider a count response variable, representing the number of recurrent

events observed over a period of time. We develop trees and forests based methods when

the rate function of the process is non-homogeneous and/or when the process has an excess

number of zeros. Simulation studies show that the proposed methods offer a real advantage

over the existing ones in these cases.

Keywords: Non-homogeneous Poisson process, Poisson tree, Random forest, Zero-inflated

Poisson process, Recurrent events, Maximum likelihood, Functional clustering.
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naissance à mon professeur et directeur de thèse, Denis Larocque, pour son encadrement, sa

patience, sa confiance et sa grande disponibilité tout au long de ces années de recherche. J’ai
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INTRODUCTION GÉNÉRALE

Dans cette thèse, nous abordons une classe de méthodes non-paramétriques basées sur le

partitionnement récursif des données, qui sont plus communément appelées les méthodes

d’arbres. Ces méthodes sont très utilisées en pratique pour l’analyse des données car elles

représentent une alternative aux modèles paramétriques, à la fois pour l’estimation et la

prévision. Elles ont été popularisées par le paradigme CART (Classification and Regression

Trees), introduit par Breiman et al. (1984), dans le cadre d’une variable réponse continue ou

catégorielle. Les arbres produisent généralement des règles simples et faciles à interpréter. Un

avantage majeur des arbres est qu’ils peuvent être utilisés sans spécifier d’avance le lien entre

les variables explicatives et la variable réponse. De plus, ils peuvent détecter automatique-

ment certains types d’interaction entre les variables explicatives. Combiner plusieurs arbres

obtenus selon différents mécanismes de perturbations aléatoires de l’algorithme de base of-

fre généralement une meilleure performance prévisionnelle. C’est pourquoi ces méthodes

d’agrégation sont devenues très populaires en pratique et la forêt aléatoire (Breiman, 2001)

est possiblement la méthode la plus connue. Dans cette thèse, nous abordons le cas d’une

variable réponse de dénombrement, c’est-à-dire, une variable qui prend des valeurs parmi les

entiers, incluant 0. Ce type de variable est très fréquent en pratique et est souvent le fruit

d’une étude où on s’intéresse au nombre d’événements se produisant dans un intervalle de

temps. Nous pouvons citer en guise d’exemples le nombre de réclamations d’assurance d’un

client, le nombre de tranches de crédit impayées, le nombre d’accidents sur une autoroute, ou

le nombre de visite à l’urgence par une personne. Il existe une vaste littérature traitant des

modèles paramétriques pour des variables de dénombrement. Un traitement moderne de ces

dernières est présenté dans le livre de Cook et Lawless (2007). Il est également possible de con-

struire un arbre de Poisson avec le package rpart (Therneau et al, 2014) du logiciel R (R Core

Team 2014). Le développement des méthodes d’arbres pour modéliser une variable réponse



de dénombrement est néanmoins limité à certaines situations de base. Dans cette thèse, nous

développons des méthodes d’arbres pour une variable de dénombrement qui généralisent les

méthodes existantes dans différentes directions. Essentiellement, nous allons traiter le cas

d’une fonction de taux non-homogène et le cas d’une variable avec des zéros excédentaires.

Cette thèse est composée de trois articles. Dans le premier article, nous abordons le cas de

processus non-homogènes. En effet, les méthodes d’arbres existantes supposent que le taux

d’apparition des événements est constant dans le temps. Nous proposons un algorithme de

forêt aléatoire pour processus de Poisson non-homogènes. Nous avons nommé cette approche

« Nonhomogeneous Poisson Processes Forests » (NHPPF). L’idée de base consiste à parti-

tionner la période de temps observée en sous-périodes et de permettre aux taux d’événements

d’être différents dans chaque sous-période. Cette approche a une grande flexibilité, car elle

peut s’adapter aux caractéristiques des données (mensuelles, annuelles, etc.). Cette technique

de partitionnement a été utilisée par Lawless et Zhan (1998) pour un modèle paramétrique

particulier. Les résultats des simulations montrent la supériorité de la méthode proposée, en

termes de pouvoir prédictif, en comparaison avec plusieurs compétiteurs, comme la régression

de Poisson et la forêt de Poisson homogène. Le gain prédictif est remarquable lorsque les

processus sont non-homogènes mais la performance de la nouvelle méthode est aussi bonne

dans le cas de processus homogènes. Dans le deuxième article, nous abordons le cas d’une

variable réponse de dénombrement avec des zéros excédentaires. Cette situation survient

fréquemment en pratique lorsque le nombre de zéros observés est grand et ne peut pas être

adéquatement modélisé ni par les modèles courants (Poisson ou binomial négatif), ni par

les variables explicatives disponibles. Seulement Lee et Jin (2006) ont proposé une méthode

d’arbre pour une variable réponse distribuée selon la loi de Poisson gonflée à zéro (« Zero

Inflated Poisson » ou ZIP). Par contre, leur approche utilise un seul modèle et suppose donc

intrinsèquement que les effets des variables explicatives sont les mêmes pour la partie zéro et

la partie Poisson du processus. Ceci est différent des approches paramétriques usuelles qui

utilisent deux modèles. De plus, la méthode de Lee et Jin (2006) est limitée au cas homogène.

C’est pourquoi nous proposons une nouvelle approche qui propose des solutions à ces deux

limites. Notre approche utilise deux forêts, l’une pour la partie zéro et l’autre pour la partie

Poisson. Ainsi, dans le cadre homogène, notre méthode généralise l’approche de Lee et Jin

(2006). Mais nous proposons également une version pouvant s’appliquer au cas de processus

non-homogènes avec zéros excédentaires, généralisant ainsi la méthode NHPPF du premier
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article. Les résultats des simulations montrent un net avantage en faveur de la nouvelle

méthode par rapport à la méthode de Lee et Jin (2006) et par rapport à la méthode NHPPF,

en particulier lorsque le nombre de zéros excédentaires est grand. Dans le troisième article

nous proposons une extension de la méthode NHPPF afin d’obtenir une estimation lisse de

la fonction de taux. En effet, la méthode NHPPF est basée sur l’idée de diviser l’intervalle

du temps en plusieurs sous-intervalles et de supposer que la fonction de taux est constante,

étant donné les variables explicatives, dans chacun d’eux. Parfois, ces sous-intervalles sont

naturellement suggérés par les données ou par les questions de recherche. Mais le choix des

intervalles n’est pas toujours évident. Nous développons ici une méthode où il n’est pas

nécessaire de choisir les sous-intervalles et qui produit une estimation lisse de la fonction de

taux, comparativement à une estimation constante par morceaux pour la méthode NHPPF.

Les résultats des simulations montrent la supériorité de cette méthode lorsque la fonction de

taux est continue. Une illustration d’utilisation de cette méthode avec des données réelles

provenant d’un programme de fidélisation est présentée. Dans cet exemple une technique

d’analyse de regroupement fonctionnelle est utilisée afin de segmenter les clients selon leurs

courbes de taux estimées par notre méthode.
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Chapter 1

Regression Trees and Forests for

Non–homogeneous Poisson Processes

Abstract

We propose tree and random forest methods for non–homogeneous Poisson pro-

cesses. The splitting criterion is derived from a model with a piecewise constant rate

function. A simulation study shows that the new method performs well.

Key Words: Non–homogeneous Poisson Processes, Poisson Tree, Random Forests,

Maximum Likelihood, Recursive Partitioning, Recurrent Events.

1.1 Introduction

Count data, measuring the number of times that an event of interest happens during a

given time period occur frequently in practice. Some examples are the number of warranty

or insurance policy claims by a client, the number of unpaid credit installments, the number

of accidents on a highway and the number of seizures for an epileptic. When the goal is to

relate a set of covariates to the number of events for a sample of subjects, many parametric

models are available, including the Poisson and negative binomial regression models. Cook

and Lawless (2007) provide a nice treatment covering the modeling of count data.

In this paper, we are more interested in a particular class of nonparametric models based

on recursive partitioning also called tree–based models. Tree–based methods, or just trees,



are valuable alternatives to parametric methods and are very popular among practitioners.

Some of their advantages are: no need to specify a parametric form, ability to automatically

detect interactions, and ease of interpretation and visualization. They were first developed

to handle a categorical or a continuous outcome. See Breiman et al. (1984) for the early

developments of the CART (Classification and Regression Tree) paradigm and the earlier

references. This paradigm builds a large tree by selecting the best split among all possible

splits at each intermediate node. In order to avoid over–fitting, a subtree is then selected by

pruning the large tree using cross–validation. Within a similar framework as CART, Poisson

regression trees can be fitted in R (R Core Team 2013) with the package rpart (Therneau et

al. 2014). In this case, the splitting criterion is basically the likelihood ratio test to compare

two Poisson distributions. However, a Bayes estimate of the rate is used in order to avoid

an infinite value of the deviance which occurs when the maximum likelihood estimate of the

rate is 0. See Therneau and Atkinson (2014) for details.

Chaudhuri et al. (1995) proposed another method to build Poisson regression trees. Con-

trarily to the CART approach, this one proceeds by fitting a Poisson loglinear model with

all the covariates in each intermediate node. The adjusted Anscombe residuals of the fitted

model are then obtained. The Levene’s two sample test is then applied to each covariate to

compare the two groups formed by the positive and negative residuals. The selected covariate

for the split is the one with the largest absolute statistic value. The split for the selected

covariate is the average of the two group means along the covariate. Once a large tree is

built, a pruning algorithm can be applied as in CART.

GUIDE (Generalized, Unbiased, Interaction Detection and Estimation) is a general stand

alone program for tree building designed and maintained by Wei-Yin Loh

(http://www.stat.wisc.edu/ loh/guide.html). The GUIDE method has many features that

are described in Loh (2002). See also Loh (2011) for a recent overview. One of its main

feature is that GUIDE performs a test to evaluate the discriminating power of each covariate

separately in each node. The covariate with the smallest p–value is then retained and the

best split is found with this covariate. This two–step split selection is performed in order to

alleviate possible bias in the variable selection. Indeed, with the CART approach, covariates

with more potential splits may have a tendency to be selected more often than covariates

5



with less potential splits. GUIDE can fit Poisson regression trees using the splitting rule of

Chaudhuri et al. (1995).

Extensions of Poisson regression trees into different directions have been proposed. Lee

(2005) generalized the method of Chaudhuri et al. (1995) to the case of multivariate outcomes

with models using GEE (Generalized Estimating Equations). This method can be used to fit

multiple count data responses. In some applications, count data exhibit greater variability

than what is expected from a Poisson model. To handle this, Choi et al. (2005) extended

both the Chaudhuri et al. (1995) and the GUIDE approach to the case of a Poisson outcome

with extra–variation. In other applications, count data exhibit more zeros than what is

expected from a Poisson model. Lee and Jin (2006) proposed a zero–inflated tree model with

the CART approach.

In the last decade, the attention has shifted towards using trees as part of an ensemble.

This is mainly due to the fact that combining many trees has often a better predictive

capability than a single tree. Random forests (Breiman 2001) is such a combination method

among the most popular. The good performance of random forests has been demonstrated

in many empirical studies (e.g., Breiman 2001 and Hamza and Larocque 2005) and their

theoretical properties have also been studied (Biau et al. 2008, Biau and Devroye 2010).

This is why they are now part of the standard practitioners’ toolbox. In order to get into

the literature about random forests and ensemble methods, the surveys by Rokach (2008),

Siroky (2009) and Verikas et al. (2011) are good starting points.

GUIDE has implemented bagging (Breiman 1996) and random forests and thus it is possi-

ble to build ensembles of Poisson regression trees with this software. Boosting, introduced by

Freund and Schapire (1997), is another popular and powerful ensemble method that can be

used with trees as base learners. Borisov et al. (2009) used the gradient–boosting framework

(Friedman 2001) to build ZIP (Zero–Inflated Poisson) trees and ensembles in the case of a

rare event count, i.e., a response with more zeros than a usual Poisson response.

All the methods discussed above work under the basic assumption that the Poisson process

is homogeneous with respect to time. That is, the rate function of the response, given the

covariates, does not vary with time. In this paper, we want to introduce a tree–based method

and a forest based on it for an outcome from a non–homogeneous Poisson process. The basic

6



idea is to partition the total time period and to allow a different rate function in each

subperiod. This approach allows more flexibility as it can adapt to local (in time) features

in the data. Such a piecewise rate function approach is studied in Lawless and Zhan (1998)

but with a parametric model. Moreover, since the number of subperiods is arbitrary, it can

increase with the sample size, allowing a more and more accurate fit.

The paper is organized as follows. Section 1.2 describes the proposed approach, including

the split function, to build trees and forests for non–homogeneous count data. The results

from a simulation study are presented in Section 1.3. This study compares homogeneous

and non–homogeneous benchmark (no covariates), parametric and forests models over many

different data generation scenarios. A real data example is given in Section 1.4. Concluding

remarks and possibilities for future work are given in Section 1.5.

1.2 Non–homogeneous Poisson Process Tree and Forest

In this section, we describe the algorithms to build a non–homogeneous Poisson process

tree (NHPPT) and a non–homogeneous Poisson process forest (NHPPF) using the NHPPT

as base learner.

1.2.1 Non–homogeneous Poisson process model

The basic model that will be used to define a splitting criterion for the tree algorithm is a

piecewise constant Poisson process model. Assume that we have N subjects and that we

observe the number of times an event of interest occurs during a fixed time period T . Let us

assume that this time period is partitioned into K subperiods, T1, . . . , TK , such that

K⋃
k=1

Tk = T and Ti ∩ Tj = ∅ for all i 6= j.

Each subperiod Tk may be an interval or a finite union of disjoint intervals. Let Nik be

the number of events which occurred for subject i in subperiod Tk. We assume that events

occurred according to a homogeneous Poisson process in each subperiod Tk. Each Nik thus

follows a Poisson distribution with expectation µk and all the Nik’s are independent. Hence,

subjects are independent but the number of events in different periods are also independent
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for any given subject. This is a direct consequence of the independent increment property of

a Poisson process.

In many applications, the K subperiods will simply be adjacent time intervals

(a0, a1], (a1, a2], . . . , (aK−1, aK ] of the whole period T = (a0, aK ]. But the above model is more

general than that and the subperiods can represent non–adjacent periods. Some examples

are days (T1=all the Mondays in a year, T2=all the Tuesdays in a year and so on) and months

(T1=all the months of January in a 10–year period and so on).

The log–likelihood of this model is:

N∑
i=1

K∑
k=1

(Nik ln(µk)− µk − ln(Nik!)),

and the maximum likelihood estimators (MLEs) are simply

µ̂k =

∑N
i=1Nik

N
, k = 1, . . . , K.

1.2.2 Splitting criterion for tree building

We assume that the reader is familiar with the mechanics of tree building as described,

for instance, in Breiman et al. (1984). We assume that we have a vector of p covariates

X = (X1, . . . , Xp) per subject. Note that these covariates do not vary with time. They will

usually be measurements available at time 0 for each subject. Let t be the current node of

the tree to be split into two nodes, the left one tL, and the right one tR. For a continuous

(or at least ordinal) covariate x, the possible splits take the form x ≤ c where c is a specified

cutpoint. For a categorical covariate x, the possible splits take the form x ∈ {c1, . . . , cl} where

{c1, . . . , cl} is a subset of the possible values of x. Each possible split with each covariate

(one at a time) is evaluated and the best one is retained according to the criterion described

below. For a candidate split, the subset of observations in node t is partitioned into two

nodes, tL and tR, according to whether or not the splitting condition is true. Let NL and

NR be the sizes of these two nodes. In this two–node model, each node has its own set of
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parameters µLk and µRk and the MLEs are given by:

µ̂Lk =

∑
i∈tL Nik

NL
and µ̂Rk =

∑
i∈tR Nik

NR
.

The total observed log–likelihood for a candidate split is then

LL =
∑
i∈tL

K∑
k=1

(Nik ln(µ̂Lk )− µ̂Lk − ln(Nik!)) +
∑
i∈tR

K∑
k=1

(Nik ln(µ̂Rk )− µ̂Rk − ln(Nik!)).

The best split is the one that maximizes LL among all allowable splits. Note that the ln(Nik!)

terms can be omitted in practical implementations since their total contribution is constant

across splits.

Having defined a splitting criterion, the tree building can then proceed as usual. Starting

from the root node with all the observations, a first split is performed and then the process

is repeated recursively with the two resulting nodes until a stopping criterion is attained.

Typically, when a node has less than a predetermined number of observations, splitting is

stopped and this node becomes a terminal node. If a single tree is needed, then a pruning

algorithm is usually performed to avoid overfitting. We do not describe this since we are

more interested in ensembles of trees in this paper, which are built with unpruned trees.

The interested reader can refer to Breiman et al. (1984) for a cross–validation based pruning

method.

For an observation with covariate vector X = x, an estimation of µ1, . . . , µK can be

obtained as the MLE in the terminal node in which the observation ends up when thrown

down the tree. Namely, if t(x) is the terminal node in which an observation with X = x falls,

then

µ̂k(x) =

∑
i∈t(x)Nik

N t(x)
, k = 1, . . . , K, (1.1)

where N t(x) is the size of node t(x). These quantities can also be used as predictions for the

number of events, in each subperiod, for a subject with X = x, or they can be summed to

obtain a prediction for the total number of events over the whole time period.

Note that the effects of the covariates are assumed to be the same over time (i.e. over the

time periods) in the proposed tree model. This is because when a split occurs, the whole
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time period is split all at once. But the rates of the time periods within each node can differ,

making the model non–homogeneous.

1.2.3 Non–homogeneous Poisson process forest

Random forest is an ensemble method introduced by Breiman (2001). This method consists

of building many trees with a subset of covariates selected randomly in each node and with

bootstrap data sets obtained from the original data set. More specifically, the random forest

algorithm is structured as follows:

1. Draw B bootstrap samples from the original data set.

2. For each bootstrap sample, grow an unpruned NHPPT, with the following modification:

at each node, randomly sample p0 (0 < p0 ≤ p) of the p predictors and choose the best split

among those variables.

Estimations of µ1, . . . , µK , in each subperiods, for a subject with X = x, are obtained by

averaging the estimates (predictions) of the individual trees. Namely,

µ̂Fk (x) =

∑B
b=1 µ̂

b
k(x)

B
, k = 1, . . . , K,

where µ̂bk(x) is the estimation from the bth tree as given by (1.1).

1.3 Simulation Study

In this section, we will compare the proposed NHPPF to different methods, including

parametric models, with artificial data generated from six different processes.

As in Section 1.2, we have N independent subjects and we observe the number of times an

event of interest occurs during a fixed time period T . This time period is partitioned into K

subperiods, T1, . . . , TK . We define Ni to be the total number of events during the whole time

period T , for subject i. Moreover, we define Nik to be the number of events for subject i in

subperiod Tk, k = 1, . . . , K. We assume that xi = (xi1, . . . , xip)
′ is the vector of covariates

for subject i.
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1.3.1 Models compared

Six models are fitted to the generated data sets for the comparison. The first two are

benchmarks models that do not use the covariates, the next two are parametric models using

the covariates and, finally, the last two are forest models. These models are now described.

Model 1: This is simply a homogeneous Poisson process model without covariates. Specifi-

cally, this model assumes that Ni is a Poisson random variable with mean µ.

Model 2: This is a non–homogeneous piecewise constant Poisson process model without

covariates. Specifically, this model assumes that Nik is given by a Poisson random variable

with mean µk and that all the Nik’s are independent.

Model 3: This is the usual Poisson regression model. Specifically, this model assumes thatNi

is a Poisson random variable with mean µi and that µi = µ0 exp(x′iβ), where β = (β1, . . . , βp)
′

is a vector of unknown parameters.

Model 4: This is a piecewise Poisson regression model. Hence it is a non–homogeneous

Poisson regression model. Specifically, this model assumes that Nik is a Poisson random

variable with mean µik and that µik = µk exp(x′iβ).

Model 5: This is a homogeneous forest built with the approach described in Section 1.2.

However, the trees are built using the whole time period T , i.e., a single interval.

Model 6: This is the NHPPF as described in Section 1.2 with the K subperiods.

Models 1 to 4 are fitted using the glm() function in R. Models 5 and 6 were implemented

in C. When building a tree, we set to 30 the minimum number of observations needed in a

node to attempt splitting and any resulting node must have at least 10 observations. Three

out of the nine predictors were randomly selected at each node to find the best split (this

1/3 ratio is typically retained with regression forests). Each forest was built with 500 trees.

1.3.2 Simulation design

We consider six different data generating processes (DGP). They come from three different

functional forms and we consider two cases, homogeneous and non-homogeneous, for each of
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them. In all cases, the nine available covariates X1, . . . , X9, are independent and uniformly

distributed over the interval [0, 10]. The first three variables are related to the outcome and

the last six are noise covariates. The whole time period T is divided into 12 disjoint intervals.

In each interval, the number of events comes from a Poisson distribution with mean µk,

k = 1, . . . , 12. Let µ = (µ1, . . . , µ12).

The first two DGPs are parametric Poisson models with main effects only.

DGP 1H: Homogeneous case

ln(µk) = β0 + β1X1 + β2X2 + β3X3, for all k = 1, . . . , 12, where β0 = −0.8, β1 = 0.1,

β2 = −0.1 and β3 = 0.05. Hence this is a homogeneous Poisson regression model.

DGP 1NH: Non–homogeneous case

ln(µk) = β0k + β1X1 + β2X2 + β3X3, for k = 1, . . . , 12, where β0k = ln(0.1 · k) − 0.3,

β1 = 0.1, β2 = −0.1 and β3 = 0.05. Hence this is a non–homogeneous Poisson regression

model.

The next two DGPs are parametric Poisson models with more complicated effects. Note

that models 3 and 4 of Section 1.3.1 will be fitted using the main effects only. This will

allow to see if a forest can better capture the covariates’ effects compared to a misspecified

parametric model.

DGP 2H: Homogeneous case

ln(µk) = β0 + β1X1X2 + β2X1 ln(X2) + β3X
2
2X3, for all k = 1, . . . , 12, where β0 = −0.15,

β1 = 0.03, β2 = −0.03 and β3 = −0.01.

DGP 2NH: Non–homogeneous case

ln(µk) = β0k + β1X1X2 + β2X1 ln(X2) + β3X
2
2X3, for k = 1, . . . , 12, where β0k = ln(0.1 ·

k) + 0.3, β1 = 0.03, β2 = −0.03 and β3 = −0.01.

The final two DGPs are simple tree models with four leaves.

DGP 3H: Homogeneous case

Leaf 1. If X1 ≤ 5 and X2 ≤ 5 then µ = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1) .
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Leaf 2. If X1 ≤ 5 and X2 > 5 then µ = (0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4) .

Leaf 3. If X1 > 5 and X3 ≤ 5 then µ = (0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9) .

Leaf 4. If X1 > 5 and X3 > 5 then µ = (1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2) .

DGP 3NH: Non–homogeneous case

Leaf 1. If X1 ≤ 5 and X2 ≤ 5 then µ = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2) .

Leaf 2. If X1 ≤ 5 and X2 > 5 then µ = (1.2, 1.2, 1.2, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 1.2, 1.2, 1.2) .

Leaf 3. If X1 > 5 and X3 ≤ 5 then µ = (0.1, 0.1, 0.1, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 0.1, 0.1, 0.1) .

Leaf 4. If X1 > 5 and X3 > 5 then µ = (1.2, 1.1, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1) .

For each DGP, 100 simulation runs are performed. For each run, the training sample size

is 500 and the test sample size is 10,000. The six models are fitted with the training data

and their performance is assessed with the test data using the predictive mean squared error

(PMSE) defined by

PMSE =

12∑
k=1

10,000∑
i=1

(yki − ŷki)2

120, 000
,

where yki and ŷki are the real and predicted responses for the ith test observation in interval

k.

1.3.3 Results

The results of the simulations are presented in Table 1.1. We start with the first DGP,

1H, which is simply a homogeneous Poisson regression model with only main effects for the

covariates. We see that using the covariates improve the predictions since models 3 to 6 all

have a smaller PMSE than the benchmark (no covariates) models 1 and 2. Without surprise,

the best performer is model 3 which is precisely the true model for this DGP. However, we

see that the non–homogeneous, and thus over–specified, model 4 has an almost identical

performance. As for the forests (models 5 and 6), we see that their PMSEs are only slightly

higher than model 3. Thus, they are able to recover almost all of the predictive power of the

covariates without having to guess a specific parametric form beforehand.
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Table 1.1 Simulation results. The first number is the average PMSE over the 100 runs and
the number between parentheses below is the standard deviation. The smallest PMSE for a
given scenario is in bold.

Model

No covariates Poisson regression Random forest
DGP H (1) NH (2) H (3) NH (4) H (5) NH (6)

1H 0.7882 0.7550 0.6673 0.6688 0.6729 0.6894
(0.0078) (0.0063) (0.0051) (0.0052) (0.0053) (0.0062)

1NH 1.0331 0.8422 0.8859 0.7163 0.8924 0.7383
(0.0100) (0.0069) (0.0068) (0.0055) (0.0069) (0.0069)

2H 0.9997 0.9715 0.8305 0.8324 0.6998 0.7175
(0.0186) (0.0166) (0.0173) (0.0175) (0.0122) (0.0124)

2NH 1.2435 1.0902 1.0646 0.9027 0.9315 0.7525
(0.0239) (0.0198) (0.0230) (0.0222) (0.0189) (0.0181)

3H 0.8633 0.8342 0.7191 0.7207 0.6553 0.6703
(0.0102) (0.0075) (0.0075) (0.0075) (0.0064) (0.0069)

3NH 0.8900 0.8615 0.8602 0.8617 0.8628 0.6631
(0.0065) (0.0056) (0.0056) (0.0057) (0.0056) (0.0044)

Looking at the second DGP, 1NH, we see that the models which assume a homogeneous

process do not do well compared to their non–homogeneous counterparts. This is not sur-

prising since this DGP is indeed non–homogeneous. Model 4 is the best one but it is followed

closely by the NHPPF (model 6). Once again, a forest is able to recover almost all of the

predictive power.

The third DGP, 2H, is still a Poisson regression but this time the covariates’ effects are

more complicated than simple main effects and models 3 and 4 are wrongly specified. We

see that the forests are able to use more efficiently the covariates’ predictive power. Hence

even when the right model family is assumed, using a nonparametric approach like a random

forest may be preferable than a wrongly specified parametric model. Moreover, the PMSE

of the NHPPF is only slightly higher than that of the homogeneous forest.

Looking at the fourth DGP, 2NH, we see that the NHPPF clearly outperforms the other

models. It is the only model which is able to adapt simultaneously to the complicated relation

between the covariates and the outcome and to the fact that the process is non–homogeneous.
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The fifth DGP, 3H, is a homogeneous tree. The parametric models 3 and 4 are wrongly

specified and we see that the forests are the two best models (with a slight advantage to the

homogeneous forest).

Finally, the sixth DGP, 3NH, is a non–homogeneous tree. As for DGP 2NH, the clear

winner is the NHPPF. Once again, it is able to make the most of this situation by handling

simultaneously a hard to guess link between the covariates and the outcome and the non–

homogeneous nature of the process. Note that a single (homogeneous and non-homogeneous)

tree should have performed as well as the corresponding random forest for DGP 3H and 3NH

because the underlying DGP is a single tree.

The main conclusion of this study is that the proposed NHPPF is either the best performer

or very close to the best in all situations considered. Moreover, using a method that assumes

a non–homogeneous process when the true DGP is homogeneous is not too harmful. However,

using a method that assumes a homogeneous process when the true DGP is non–homogeneous

leads almost always to a severe deterioration of the performance. Hence, when in doubt it

might be more prudent to use a non–homogeneous model.

1.4 Data example

In this section, we illustrate the use of the proposed method using data from Coop HEC

Montréal, a co-op university store. Coop HEC Montréal provides books, computing equip-

ment, and various supplies to the university community. Details on the transactions made by

the members of the co-op are available for a three year period spanning from June 1st, 2011

to May 31st, 2014. In this example, the response variable is the number of transactions made

by a member. The goal is to predict the response variable for a given year based on the val-

ues of the covariates from the previous year, using each calendar month as a subperiod. We

define year 1 as the one ranging between June 1st, 2011 and May 31st, 2012, year 2 as the one

ranging between June 1st, 2012 and May 31st, 2013, and year 3 as the one ranging between

June 1st, 2013 and May 31st, 2014. The models are estimated with a training sample (of size

3,828) which contains the responses in year 2 and the covariates in year 1. The performance

of the estimated models are then assessed with a test sample (of size 4,076) which contains

the responses in year 3 and the covariates in year 2. The following five covariates are used: 1)

age of the member; 2) total number of transactions during the previous year for the member;
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3) total amount spent during the previous year for the member; 4) time since the person is

a member of the co-op; 5) category of the member (undergraduate student, master student,

PhD student, etc.).
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Figure 1.1 Number of transactions for the training and test samples in the co-op store exam-
ple.

Figure 1.1 provides the monthly number of transactions for the training and test sam-

ples, which suggests clearly that the process is non–homogeneous. Homogeneous and non-

homogeneous Poisson regressions and forests are compared. Here the homogeneous mod-

els simply pool the monthly response data into a single yearly response, while the non-

homogeneous models use the monthly response data. The forests are built with 500 trees

and all 5 covariates are retained at each node to find the best split. The PMSE over the 12

months for the test data set are provided in Table 1.2.

The results show clearly the need to use a non-homogeneous model in this case. In fact,

we have an improvement, in terms of PMSE, of 13% for the forest and of 10% for the Poisson

regression, when comparing the non–homogeneous (NH) model to the respective homoge-

neous (H) model. The best PMSE is obtained by the proposed NHPPF (PMSE=0.392).
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Table 1.2 PMSE for the test data set in the co-op store example.

Model
Poisson regression Random forest

H NH H NH
0.454 0.406 0.453 0.392

However, the difference between the NHPPF and the piecewise Poisson regression model

(PMSE=0.406) is small with an improvement of 3.4%.

1.5 Concluding remarks

In this paper, we introduced a nonparametric approach to model non–homogeneous count

data. A piecewise constant Poisson process model was used to define a splitting criterion to

build a non–homogeneous Poisson process tree (NHPPT) which then served as base learner

to build a non–homogeneous Poisson process forest (NHPPF). The approach is quite flexible

since the partition of the total time period into subperiods can be arbitrary. A simulation

study involving different data generating processes was performed to explore the merits of

the new approach compared to many competitors. The proposed NHPPF was either the best

performer or very close to the best in all situations considered.

The primary use of the methods proposed in this paper is to obtain predictions and we

used predefined subperiods because, in many applications, the chosen subperiods will be the

ones where predictions are needed. For example, if predictions are needed at the monthly

level for next year, then the subperiods will simply be the months and the forest will be built

using the available monthly data in the preceding years. In that case, it is not clear that using

shorter subperiods (e.g. weeks) and then aggregating the predictions at the monthly level

would be beneficial. Indeed, using more subperiods entails more parameters to be estimated

and hence more variability. Even if the process is not homogeneous within the months, the

tree (forest) would still estimate the average expectation of the process over the month, and

the predictions should still be accurate. Nevertheless, it could be interesting to investigate

this aspect further. The subperiods could be selected as those that maximize the predictive

accuracy over a validation sample or by cross–validation.
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However, the focus might be on estimating the, assumed continuous, true rate function.

In this case, the number of subperiods would likely increase with the sample size to get an

increasingly smoother estimate. This problem is currently being investigated by the authors

and will be part of another paper.

As mentioned in the Introduction, the proposed approach uses the CART paradigm of

exhaustively searching for the best split by looking at all possible splits in each node to build

the trees and hence the forest. This method is known to suffer from possible selection bias

when building a single tree. However, it is not clear if the predictive performance of a forest

built under this paradigm is adversely affected compared to that of a forest built with trees

using an unbiased split criterion. It could be worthwhile to investigate this aspect. One

possibility to modify the proposed method to mitigate this potential bias would be to select

the best split at a given node in the following manner. First, we fit the piecewise Poisson

regression models (Model 4 in the simulation study) with one covariate at a time with the

observations of the current node. Second, we select the splitting covariate as the one with

the smallest p-value when testing for no covariate effect. Third, we find the best split by

performing an exhaustive search among all possible splits with the selected covariate only,

and with the split criterion proposed in this paper.

The proposed approach is promising and this paper opens the way to many possible

extensions and further investigations. Firstly, all the DGPs used in the simulation study

were Poisson processes. It would be interesting to study the performance and robustness

of the NHPPF when this no longer holds. Secondly, processes with extra–Poisson variation

arising from clustered data occur often in practice. It would be interesting to generalize our

approach to this setting. In a related direction, processes exhibiting an unusual number of

zeros cannot always be captured appropriately by a Poisson process. Zero–inflated (ZIP)

processes can then be used. It would be interesting to generalize our approach to handle

such a situation. The NHPPF would then be a particular case of such a ZIP–forest. Thirdly,

we only considered covariates that do not vary with time in this paper. Or if they do, we

only considered their baseline values, for instance. It would be interesting to generalize our

approach to be able to include time–varying covariates.
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Chapter 2

Random Forests for Non-homogeneous

Poisson Processes with Excess Zeros

Abstract

We propose a method to build trees and forests when the response is a non-homogeneous

Poisson process with excess zeros, based on two forests. The first one is used to es-

timate the probability of having a zero. The second forest is used to estimate the

Poisson parameter using trees built with a splitting criterion derived from the zero

truncated non-homogeneous Poisson likelihood. Simulation studies show that the pro-

posed method performs well in hurdle (zero-altered) and zero-inflated settings.

Keywords: Hurdle model, Zero-altered Poisson (ZAP), Zero-inflated Poisson (ZIP),

Non-homogeneous Poisson Process, Tree-based Method, Random Forests.

2.1 Introduction

It is often of interest to model the number of times that an event occurs during a given

period of time. Such count data, taking only non-negative integer values are encountered in

many situations. Some examples are the number of visits to the emergency unit in a hospital,

the number or purchases made by a client, and the number of accidents on a road. Many

parametric models are available to study the impact of covariates on the count response,

including the Poisson and negative binomial models; see Cook and Lawless (2007) and Hilbe

(2011). Sometimes, the number of zeros in the response is large and cannot be adequately



accounted by the usual models and the available covariates. Hurdle models, also called zero-

altered models (Mullahy, 1986), and zero-inflated models (Lambert, 1992) were designed to

handle such situations.

In this paper, we are interested in tree-based methods (Breiman et al., 1984) and more

particularly in random forests (Breiman, 2001). The main advantage of these methods is

their flexibility, meaning that they can adapt to the data at hand without having to specify a

parametric form. Within the CART (Classification and Regression Tree) paradigm, Poisson

regression trees can be fitted in R (R Core Team 2015) with the package rpart (Therneau et

al. 2014). The GUIDE approach (Loh, 2002) provides another way to build Poisson trees

using the splitting rule of Chaudhuri et al. (1995). But these methods are not aimed at

handling excess zeros in the response. Lee and Jin (2006) proposed a tree-based method for

the excess zero case. They use the zero-inflated Poisson distribution to derive a splitting

criterion. However, all the methods discussed above work under the basic assumption that

the Poisson process generating these count data is homogeneous with respect to time. That is,

the rate function of the response, given the covariates, does not vary with time. Mathlouthi,

Fredette and Larocque (2015) developed tree-based methods for a response from a non–

homogeneous Poisson process, but their method is not aimed at the excess zero case. In

this paper, we present a method that extends both the Lee and Jin (2006) and Mathlouthi,

Fredette and Larocque (2015) methods. We propose a method to build trees and forests

for a non-homogeneous Poisson response with excess zeros. Hence, the method can handle

simultaneously a non-homogeneous rate function and excess zeros in the response.

The paper is organized as follows. Section 2.2 describes the usual parametric models

for a Poisson response with excess zeros. Section 2.3 describes the basic tree and forest

methodology and the method of Lee and Jin (2006). Section 2.4 presents the proposed

methods. The results from a simulation study are presented in Section 2.5. Concluding

remarks and possibilities for future work are given in Section 2.6.

2.2 Zero-altered Poisson (ZAP) and Zero-inflated Poisson (ZIP) Regression

Model

We are interested in modeling a count response Y with a set of q covariates X = (X1, . . . , Xq)
′.

In Poisson hurdle, or zero-altered Poisson (ZAP), and zero-inflated Poisson (ZIP) models, it
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is assumed that Y follows a Poisson distribution modified to account for an excess number of

zeros. We will denote by λ, the parameter of the Poisson distribution, by p, the probability of

having an excess (with respect to the Poisson distribution) 0, and by θ, the total probability

of having a 0. These parameters can depend on the covariates and it will be clear form

the context whether we are talking about the generic parameters or the covariate dependent

parameters. We note that the Poisson variable used in this Section could also represent the

total number of events obtained from a Poisson process. The parameter λ then represents

the integral of the corresponding rate function over a given time interval.

In the ZAP regression model, it is assumed that Y = 0 with probability θ (0 ≤ θ < 1),

and that Y follows a zero truncated Poisson distribution with parameter λ, (λ > 0), given

that Y > 0. Consequently,

P (Y = y) =

 θ y = 0
(1−θ) exp(−λ)λy
(1−exp(−λ))y! y = 1, 2, . . .

(2.1)

Many possibilities are available to link the covariates to the response, through λ and θ.

The common link functions are given by:

log(λ) = X′β and log

(
θ

1− θ

)
= X′γ, (2.2)

where β, γ are vectors of parameters to be estimated.

In the ZIP regression model, it is assumed that Y = 0 with probability p, (0 ≤ p < 1)

and that Y follows a Poisson distribution with parameter λ, (λ > 0), with probability 1− p.
Hence, there are two sources for the zeros. Consequently,

P (Y = y) =

 p+ (1− p) exp(−λ) y = 0

(1− p) exp(−λ)λy/y! y = 1, 2, . . .
(2.3)
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Again, many possibilities are available to link the covariates to the response. The common

link functions are the same as for the ZAP model:

log(λ) = X′β and log

(
p

1− p

)
= X′γ, (2.4)

where β, γ are vectors of parameters to be estimated. Note that different covariates can be

used for the (excess) zero part and the Poisson part of these models, but we use this notation

for simplicity.

Note that, without covariates, models (2.1) and (2.3) are just two parameterizations of the

same model. The difference between the two approaches lies in the way the covariates are

linked to the parameters. In the ZAP model, the covariates are linked directly to the total

probability of having a 0 while, for the ZIP model, they are linked directly to the probability

of having an excess 0 with respect to the Poisson distribution.

One key observation is that the ZAP model is formed by two models. Consequently, the

covariates can have different effects on the zero and the Poisson parts. The same is true for

the ZIP model, except that this time, the covariates can have different effects on the excess

zero and the Poisson parts.

Assume that a sample of size n is available. Namely, (Yi,Xi), i = 1, . . . , n, where Xi =

(X1i, . . . , Xqi)
′. Then the parameters of the ZAP and ZIP regression models can be estimated

with maximum likelihood. It is straightforward to do it with the ZAP model because the

likelihood for the zero and the zero truncated Poisson parts can be factored. Hence, the two

models can be fitted separately. Things are a slightly more complex with the ZIP model but

Lambert (1992) proposed an estimation method based on the EM algorithm.

2.3 Trees and Forests

2.3.1 Basic Tree and Forest Methodology

We assume the reader is familiar with the CART paradigm (Breiman et al., 1984) as only a

brief description is given here. Tree-based methods partition the covariate space by splitting

it recursively with rules based on covariates. The basic ingredient for building a tree is

the splitting criterion, which is problem dependent. For example, the least-squares splitting
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criterion is the usual one when the response is continuous. Suppose we are at a given node t

and we want to split it into two children nodes, tL (left node) and tR (right node). The best

split is chosen among all possible binary splits obtained from a covariate. If x is continuous

(or at least ordinal), the possible splits take the form I(x ≤ c). If x is categorical, the possible

splits take the form x ∈ {c1, . . . , cs} where {c1, . . . , cs} is a subset of the possible values of

x. The best split is the one maximizing the splitting criterion. If a single tree is required,

then the usual procedure builds a large tree and then uses a pruning algorithm to avoid

over-fitting. However, it is now well-established that using an ensemble of trees is generally

preferable to a single tree. One of the most popular ensemble method is random forests,

introduced by Breiman (2001). Here we describe the generic random forest algorithm that

will be used in this paper:

1. Draw B bootstrap samples from the original data.

2. For each bootstrap sample, grow a tree with the selected splitting criterion. At each

node, randomly select q0 out of q covariates where q0 ≤ q and is a user-specified

parameter. Splitting ends when a stopping criterion is reached; for instance, when a

node has less than a predetermined number of observations. No pruning is performed.

3. To obtain an estimation of a parameter (or a prediction) for a new observation, take

the average estimates (predictions) from the B trees.

2.3.2 Maximum Likelihood Splitting Criterion

A simple method for deriving a splitting criterion is to use the log-likelihood of an adequate

two-node model; see Su, Wang and Fan (2004) and Bou-Hamad et al. (2009) for some

examples. Basically, the best split at a given node is the one that maximizes the observed log-

likelihood, i.e. the one evaluated at the maximum likelihood estimates, among all allowable

splits. Moreover, if the parameters are estimated separately in the two children nodes, then

the best split is the one that maximizes

L̂L(left node) + L̂L(right node), (2.5)
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where L̂L(left node) and L̂L(right node) are the observed log-likelihood in the left and right

nodes, respectively.

2.3.3 ZIP Tree of Lee and Jin (2006)

Lee and Jin (2006) proposed a decision tree method for zero-inflated count data based on

the CART paradigm. They call it a ZIP tree. They basically fit the ZIP distribution (2.3)

separately in the two children nodes, and use (2.5) as the splitting criterion. Let N+ denote

the number of observations such that Yi > 0. The log-likelihood function in that case is

LLZIP = (n−N+) log(p+ (1− p) exp(−λ)) +N+(log(1− p)− λ)

+
∑
Yi>0

Yi log(λ)−
∑
Yi>0

log(Yi!). (2.6)

One crucial observation is that the covariates are used to find the tree structure for both

the excess zero part and the Poisson part jointly. Hence a single model is used to model both

parts and a single tree is built. But as we just saw, the ZIP regression model (2.3) uses two

models, one for the excess zero part and one for the Poisson part. Hence the covariates can

have different effects on both parts. This is why we propose in this paper a new approach,

more in the spirit of the ZIP and ZAP models, where two models are used.

2.4 Random Forests for Poisson Data With Excess Zeros

In the ZAP model, assume that, instead of a rigid parametric model like (2.2), we use a

general nonparametric model given by

θ = fθ(X) and λ = fλ(X), (2.7)

where fθ and fλ are general unknown link functions. Similarly, assume a same general setup

for the ZIP model, given by

p = gp(X) and λ = gλ(X), (2.8)
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where gp and gλ are general unknown link functions. Since θ = gp(X)+(1−gp(X)) exp(−gλ(X)),

we see that in this general nonparametric framework, the ZIP and ZAP models are again

only different parameterizations of the same model. Indeed, we can just define fθ(X) =

gp(X) + (1 − gp(X)) exp(−gλ(X)) in (2.7). Hence, it does not matter whether we specify

model (2.7) or (2.8). Namely, if a general nonparametric and flexible procedure is used to

estimate fθ and fλ in (2.7), it can be used to obtain estimates

θ̂ = f̂θ(X) and λ̂ = f̂λ(X), (2.9)

for a given value of X. But it can also be used to estimate p through the equation θ̂ =

p̂ + (1 − p̂) exp(−λ̂). Solving for p̂ gives p̂ = (θ̂ − exp(−λ̂))/(1 − exp(−λ̂)). However, since

this value can be less than 0, we will use p̂ = max(0, (θ̂ − exp(−λ̂))/(1 − exp(−λ̂))), in this

paper. The key point is that the method proposed in this paper is valid for both the ZAP

and the ZIP settings.

2.4.1 Description of the Basic Method

The basic idea is to fit two random forests, one for the zero part to estimate fθ, and one

for the observations that are greater than 0 to estimate fλ. More specifically, for the zero

part, the response is I(Y > 0), that is the binary variable taking a value of 1 if Y > 0

and the value 0 if Y = 0. This is a standard problem and many implementations are

available in R, for example through the packages randomForest (Liaw and Wiener, 2002) and

randomForestSRC (Ishwaran, Kogalur, Blackstone and Lauer 2008, Ishwaran and Kogalur,

2015). For the observations that are greater than 0, we propose a forest of trees built using a

splitting criterion derived from the zero truncated Poisson likelihood. Only the observations

where Y > 0 are used. Assume there are N+ such observations denoted by Y +
1 , . . . , Y

+
N+ .

The probability mass function from the truncated Poisson distribution is

P (Y + = y) = P (Y = y|Y > 0) =
exp(−λ)λy

y!(1− exp(−λ))
y = 1, 2, . . . (2.10)
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Hence, the log-likelihood function for the sample is

LL+ = −N+ log(1− exp(−λ)) + log(λ)
N+∑
i=1

Y +
i −N+λ−

N+∑
i=1

log(Y +
i !). (2.11)

The estimated λ is obtained by solving ∂LL+/∂λ = 0 which reduces to

∑N+

i=1 Y
+
i

N+
=

λ

1− exp(−λ)
. (2.12)

For a given candidate split, the zero truncated Poisson model is fitted separately in the two

children nodes and the splitting criterion is given by (2.5) with (2.11) as the log-likelihood

function.

2.4.2 Extension to the Non-Homogeneous Case

Mathlouthi, Fredette and Larocque (2015) proposed tree and random forest methods for

non-homogeneous Poisson processes. It was achieved by considering a model with a piecewise

constant rate function. Here we extend this method to the case of a non-homogeneous Poisson

process with excess zeros. We are again interested in a count response but this time we want

to allow the rate function to vary over time. Assume we have a fixed time period T and

assume that it is partitioned into K subperiods, T1, . . . , TK , such that

K⋃
k=1

Tk = T and Ti ∩ Tj = ∅ for all i 6= j.

Each subperiod Tk may be an interval or a finite union of disjoint intervals. Denote by Nk

the number of events in subperiod Tk. We assume that Nk follows a Poisson distribution

with parameter λk and that all the Nk’s are independent. The K subperiods can be adjacent

time intervals (a0, a1], (a1, a2], . . . , (aK−1, aK ] covering the whole period T = (a0, aK ]. But the

above formulation is more general than that and the subperiods can represent non–adjacent

periods. For example, they could represent days (T1=all the Mondays in a year, T2=all the

Tuesdays in a year and so on). The total number of events observed over T is denoted by Y ,
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that is

Y =
K∑
k=1

Nk.

We are interested in allowing Y to have excess zeros with respect to the non-homogeneous

Poisson process described above. Once again, the idea is to fit two random forests, one to

estimate P (Y = 0), that is the probability that no events at all occurred, and one for the

observations with at least one event. For the zero part, the binary response is I(Y > 0), which

can be fitted by standard algorithm as described in the preceding section. For the observations

with at least one event, we propose a forest of trees built using a splitting criterion derived

from a zero truncated non-homogeneous Poisson model likelihood, as described next. Let

(n1, . . . , nK) be non-negative integers such that at least one of them is greater than 0. The

joint probability mass function of (N1, . . . , NK) given that at least one event occurred is

P (N1 = n1, . . . , NK = nk|Y > 0) =
1

(1− exp(−λ))

K∏
k=1

exp(−λk)λnk
k /nk! (2.13)

where λ =
∑K

k=1 λk.

For a sample, (Ni1, . . . , NiK), i = 1, . . . , N , assume we have N+ observations such that

Yi =
∑K

k=1Nik > 0, then the log-likelihood function for those observations is

LL+
NH = −N+ log(1− exp(−λ)) +

K∑
k=1

log(λk)
N+∑
i=1

Nik −N+λ−
K∑
k=1

N+∑
i=1

log(Nik!). (2.14)

Note that if we have a single time period, i.e., K = 1, then Yi = Ni1 and we fall back to

the setting of Section 2.4.1. The estimated λk’s are obtained by solving the K equations

∂LL+
NH/∂λk = 0, giving

N+∑
i=1

Nik

N+
=

λk

1− exp
(
−
∑K

j=1 λj

) , k = 1, . . . , K.

This system can be solved with the Newton-Raphson algorithm. For a given candidate split,

the zero truncated non-homogeneous Poisson model is fitted separately in the two children

nodes and the splitting criterion is given by (2.5) with (2.14) as the log-likelihood function.

29



2.5 Simulation Study

In this section, we investigate the performance of the proposed method compared to various

competitors including parametric models and forests. In the first set of simulations, the

data generating process (DGP) is homogeneous. This will allow comparisons with the usual

parametric ZIP and ZAP models, with a forest of Poisson trees but also with a forest built

with the Lee and Jin (2006) ZIP tree approach. Then, in the second set of simulations,

non-homogeneous DGPs will be considered. This will allow a comparison with the approach

of Mathlouthi et al. (2015).

2.5.1 Description of the Simulation Study

In all cases, nine covariates X1, ..., X9, are available. They are independent and uniformly

distributed over the interval [0, 10] . X1, X2, and X3 are related to the Poisson intensity

parameter, while X1, X4, and X5 are related to the zero part of the model. Hence X6, X7, X8

and X9 are noise covariates unrelated to the outcome.

DGPs from ZAP and ZIP settings with varying proportions of zeros are considered. Con-

sider first the following logistic regression DGP that will be used to generate either the zeros

(ZAP) or excess zeros (ZIP):

DGP zero

log

(
1− τ
τ

)
= c− 3 log(X1 + 0.5) + 0.2(10X4 −X2

4 ) + 0.4X5.

The choices of intercepts c = 2.6, c = 0.55 and c = −1.1 produce approximately 15%, 35%

and 55% of zeros for this DGP. The parameter τ represents either θ, the total probability of

having a 0, for a ZAP DGP or p, the probability of having an excess 0, for a ZIP DGP.

Consider the following three models for the Poisson part of the outcome, governed by the

parameter λ.

DGP A: Poisson model with main effects only

ln(λ) = −0.105 + 0.1X1 − 0.1X2 + 0.1X3.
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DGP B: Poisson model with more complicated effects

ln(λ) = −0.7 + 0.05X1 + 2(X2 > 5) + 0.05(10X3 −X2
3 ) + 0.04(X2 > 5)(X1 − 5)2.

DGP C: Poisson model with a tree structure

Leaf 1. If X1 ≤ 5 and X2 ≤ 5 then λ = 1.5.

Leaf 2. If X1 ≤ 5 and X2 > 5 then λ = 3.0.

Leaf 3. If X1 > 5 and X3 ≤ 5 then λ = 2.5.

Leaf 4. If X1 > 5 and X3 > 5 then λ = 2.0.

Nine scenarios are considered for the ZAP DGPs, by crossing the three Poisson DGPs

with the three different probabilities of zero. For these scenarios, a binary outcome is first

generated from DGP zero. If a 0 is generated, then this is the value of Y . If not, then Y is

generated by using the Poisson model (either A, B or C) but truncated at zero. Indeed, for

a ZAP DGP, the total probability of having a 0 is governed only by DGP zero. Hence, for

these scenarios, the total proportions of zeros are going to be approximately 15%, 35% or

55%.

Nine scenarios are also considered for the ZIP DGPs, again by crossing the three Poisson

DGPs with the three different probabilities of zero. For these scenarios, a binary outcome

is first generated from DGP zero. If a 0 is generated, then this is the value of Y . If not

then Y is generated by using the Poisson model (either A, B or C). This time, a 0 can also

be generated from the Poisson part. The binary outcome model only generates excess zeros

with respect to the Poisson model. Hence, for these scenarios, the total proportions of zeros

are going to be higher than 15%, 35% or 55%.

Nine other scenarios are considered for the non-homogeneous ZAP case. Using the notation

of Section 2.4.2, we have K = 12 subperiods. The probability that no event at all occurred

is still given by DGP zero above. The three following non-homogeneous Poisson DPGs are

used for the Poisson part. This time, 12 parameters, Λ = (λ1, . . . , λ12) are required.
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DGP D: Non-Homogeneous Poisson model with main effects only

ln(λk) = log(0.1 ∗ k)− 0.3 + 0.1X1 − 0.1X2 + 0.1X3, k = 1, . . . , 12.

DGP E: Non-Homogeneous Poisson model with more complicated effects

ln(λk) = −0.5∗k+0.05X1+2(X2 > 5)+0.05(10X3−X2
3 )+0.04(X2 > 5)(X1−5)2, k = 1, . . . , 12.

DGP F: Non-Homogeneous Poisson model with a tree structure

Leaf 1. If X1 ≤ 5 and X2 ≤ 5 then Λ = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2) .

Leaf 2. If X1 ≤ 5 and X2 > 5 then Λ = (1.2, 1.2, 1.2, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 1.2, 1.2, 1.2) .

Leaf 3. If X1 > 5 and X3 ≤ 5 then Λ = (0.1, 0.1, 0.1, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 0.1, 0.1, 0.1) .

Leaf 4. If X1 > 5 and X3 > 5 then Λ = (1.2, 1.1, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1) .

For the homogeneous DGP’s, five models are compared. They are

1. Parametric ZAP model described in (2.1) and (2.2). The nine covariates are used as

main effects only both for the zero and Poisson parts of the model.

2. Parametric ZIP model described in (2.3) and (2.4). The nine covariates are used as

main effects only both for the excess zero and Poisson parts of the model.

3. Poisson forest. A forest of basic Poisson trees is built.

4. Lee-Jin forest. A forest with the ZIP tree approach of Lee and Jin (2006).

5. Proposed approach, the ZAP forest (Section 2.4.1).

For the non-homogeneous DGP’s, two models are compared. They are the NHPPF method

of Mathlouthi et al. (2015), and the proposed non-homogeneous ZAP forest (Section 4.2).

The parametric models were fitted with the R package pcsl (Jackman, 2015, and Zeileis,

Kleiber and Jackman, 2008). The Poisson parts of the forests were implemented in C. How-

ever, the R package randomForest was used to build the forest for the zero part of the

proposed ZAP forest. All forests are built with 500 trees. Three out of the nine covariates
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are randomly selected at each node of each tree. This comes from the value
√
q typically

used to build a regression random forest. Thirty observations are needed to attempt splitting

and the resulting nodes must have at least ten observations. The models are estimated with

a training sample of size 1000. Parameter estimates are then obtained for each observation

in a test sample of size 5000. The number of simulation runs is 100.

The mean absolute error (MAE) is used as the performance criterion. It is defined by

MAE =
1

T

T∑
t=1

|γt − γ̂t|,

where T is the size of the test set (5000 here), γt and γ̂t are the true and estimated values

of the parameter of interest for the tth test observation. Here γ represents one of the three

parameters of interests which are λ, θ and p.

2.5.2 Results

The results are presented in Tables 2.1 to 2.3. Table 2.1 presents the average MAE, over the

100 simulation runs, of all methods for the three parameters of interests, λ, θ, p, for the nine

ZAP DGPs. For each line in the table, the value of the best (smallest) MAE is in bold. The

values between parentheses are the standard deviations of the MAE over the simulation runs.

It is striking that the proposed method has the smallest average MAE in all but three of the

27 cases. For DGP A, the Poisson part is a main effect DGP. Hence, the Poisson part of

the parametric ZAP model contains the true effects. It is then not surprising that it has the

smallest MAE for estimating λ whatever the proportion of zeros is. However, the zero part

of the parametric ZAP model is not well-specified and thus the proposed method is better

to estimate both θ and p. The Lee-Jin forest is better than a Poisson forest for estimating λ

and p but the opposite is true for estimating θ.

Table 2.2 presents the MAE for the nine ZIP DGPs. This time, the proposed method

has the smallest average MAE in 20 cases and is close to the best one in four other cases.

Similarly to what we saw with the ZAP DGPs, the parametric model is the best one when

the Poisson part of the model contains main effects only, that is for DGP A. The parametric

ZIP model is then the best one for estimating λ in these three cases (with either 15%, 35%
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and 55% of excess zeros). There are four instances where the Lee-Jin forest is slightly better

than the proposed method. But apart from that, the proposed method is globally the best

one for the DGPs considered.

Table 2.3 presents the results for the non-homogeneous ZAP DGPs. This time only the

proposed method and the NHPPF method of Mathlouthi et al. (2015) are compared. The

NHPPF fits a forest of non-homogeneous Poisson trees but does not account for excess zeros.

The proposed method has the smallest average MAE in all 27 cases. This, combined with

the fact that it is also always better than a Poisson forest in Tables 2.1 and 2.2, clearly shows

the importance of modeling the potential excess zeros.

2.6 Concluding remarks

We proposed a method to build trees and forests for a non-homogeneous Poisson response

with excess zeros, based on two forests. Unlike the ZIP tree proposed by Lee and Jin (2006),

our method has two parts, like the usual parametric ZAP and ZIP models. This allows for

different covariate effects for the zero part and the Poisson part. Any flexible method to

model the probability for a binary response can be used for the zero part. Here we used the

traditional random forest for a binary response. For the Poisson part, we used a forest of

trees built with a splitting criterion derived from the zero truncated non-homogeneous Poisson

likelihood. Our method extends the work of Lee and Jin (2006) in the sense that it can handle

a non-homogeneous rate function. Our method also extends the work of Mathlouthi, Fredette

and Larocque (2015) by allowing for excess zeros.

The results from extensive simulation studies clearly show the merits of the proposed

method. A mix of homogeneous and non-homogeneous ZAP and ZIP models were used to

generate artificial data. The proposed method was compared to parametric ZAP and ZIP

models, to a basic Poisson forest and to a forest built with the Lee and Jin (2006) ZIP tree

approach. The proposed method had the smallest mean absolute error for 71 out of the 81

estimation problems considered, and it was a close second for four others. The six cases

where the proposed method was not the best or a close second was for estimating the Poisson

intensity when the parametric model was correctly specified for this parameter.

Our approach is very general and many extensions are possible. Firstly, if the Poisson

assumption is not appropriate, other models, like the negative binomial, could be used. This

34



could be useful in cases where extra-Poisson variation is observed, for instance with clustered

data. Secondly, we only considered covariates that do not vary with time. It would be

interesting to generalize our approach to be able to include time-varying covariates.
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Table 2.1 Simulation results for the homogeneous ZAP DGPs. The average MAE are reported
for the three parameters of interest: λ, the Poisson intensity; θ, the probability of zero; p,
the probability of an excess zero. Standard deviations of the MAE are reported between
parentheses. The smallest value of the MAE for a given scenario is in bold. In the first
column, the percentage corresponds to the total probability of having a 0.

DGP Parameter Parametric Zap Parametric Zip Poisson forest Lee-Jin forest Zap Forest

λ
0.1304
(0.0295)

0.3984
(0.0365)

0.5222
(0.0261)

0.3989
(0.0315)

0.2703
(0.0244)

A(15%) θ
0.1190
(0.0040)

0.1787
(0.0143)

0.1714
(0.0044)

0.2136
(0.0072)

0.0719
(0.0045)

p
0.0889
(0.0032)

0.0799
(0.0117)

0.0991
(0.0027)

0.0817
(0.0030)

0.0496
(0.0039)

λ
0.1651
(0.0402)

0.3470
(0.0661)

0.7264
(0.0295)

0.4365
(0.0429)

0.3260
(0.0368)

A(35%) θ
0.1741
(0.0032)

0.2163
(0.0084)

0.1994
(0.0078)

0.2303
(0.0066)

0.1016
(0.0055)

p
0.1575
(0.0034)

0.1672
(0.0040)

0.2738
(0.0048)

0.1820
(0.0076)

0.0927
(0.0064)

λ
0.2098
(0.0506)

0.3260
(0.0488)

1.0019
(0.0313)

0.6341
(0.0584)

0.4397
(0.0565)

A(55%) θ
0.1656
(0.0028)

0.1916
(0.0036)

0.1863
(0.0099)

0.2489
(0.0097)

0.1049
(0.0050)

p
0.1653
(0.0030)

0.1772
(0.0037)

0.4689
(0.0054)

0.3285
(0.0134)

0.1165
(0.0081)

λ
0.4748
(0.0167)

0.5919
(0.0220)

0.4672
(0.0261)

0.2994
(0.0343)

0.2857
(0.0249)

B(15%) θ
0.1190
(0.0040)

0.1447
(0.0097)

0.1551
(0.0051)

0.1992
(0.0081)

0.0718
(0.0046)

p
0.0852
(0.0033)

0.0671
(0.0072)

0.0906
(0.0026)

0.0747
(0.0027)

0.0490
(0.0038)

λ
0.4868
(0.0232)

0.5639
(0.0491)

0.6225
(0.0284)

0.3615
(0.0348)

0.3243
(0.0315)

B(35%) θ
0.1741
(0.0032)

0.1848
(0.0181)

0.1729
(0.0078)

0.2043
(0.0067)

0.1015
(0.0055)

p
0.1678
(0.0039)

0.1716
(0.0063)

0.2649
(0.0047)

0.1807
(0.0074)

0.0979
(0.0065)

λ
0.5095
(0.0292)

0.5374
(0.0414)

0.8870
(0.0302)

0.5356
(0.0496)

0.4008
(0.0420)

B(55%) θ
0.1656
(0.0028)

0.1754
(0.0038)

0.1659
(0.0094)

0.2254
(0.0089)

0.1050
(0.0050)

p
0.1813
(0.0035)

0.1885
(0.0089)

0.4682
(0.0054)

0.3314
(0.0116)

0.1233
(0.0084)

λ
0.4748
(0.0167)

0.5919
(0.0220)

0.4672
(0.0261)

0.2994
(0.0343)

0.2857
(0.0249)

C(15%) θ
0.1190
(0.0040)

0.1447
(0.0097)

0.1551
(0.0051)

0.1992
(0.0081)

0.0718
(0.0046)

p
0.0852
(0.0033)

0.0671
(0.0072)

0.0906
(0.0026)

0.0747
(0.0027)

0.0490
(0.0038)

λ
0.4868
(0.0232)

0.5639
(0.0491)

0.6225
(0.0284)

0.3615
(0.0348)

0.3243
(0.0315)

C(35%) θ
0.1741
(0.0032)

0.1848
(0.0181)

0.1729
(0.0078)

0.2043
(0.0067)

0.1015
(0.0055)

p
0.1678
(0.0039)

0.1716
(0.0063)

0.2649
(0.0047)

0.1807
(0.0074)

0.0979
(0.0065)

λ
0.5095
(0.0292)

0.5374
(0.0414)

0.8870
(0.0302)

0.5356
(0.0496)

0.4008
(0.0420)

C(55%) θ
0.1656
(0.0028)

0.1754
(0.0038)

0.1659
(0.0094)

0.2254
(0.0089)

0.1050
(0.0050)

p
0.1813
(0.0035)

0.1885
(0.0089)

0.4682
(0.0054)

0.3314
(0.0116)

0.1233
(0.0084)
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Table 2.2 Simulation results for the homogeneous ZIP DGPs. The average MAE are reported
for the three parameters of interest: λ, the Poisson intensity; θ, the probability of zero; p,
the probability of an excess zero. Standard deviations of the MAE are reported between
parentheses. The smallest value of the MAE for a given scenario is in bold. In the first
column, the percentage corresponds to the probability of having an excess 0.

DGP Parameter Parametric Zap Parametric Zip Poisson forest Lee-Jin forest Zap Forest

λ
0.1469
(0.0348)

0.1467
(0.0480)

0.4248
(0.0326)

0.3067
(0.0234)

0.2857
(0.0263)

A(15%) θ
0.1237
(0.0047)

0.1022
(0.0075)

0.1044
(0.0057)

0.1014
(0.0053)

0.1035
(0.0052)

p
0.1401
(0.0110)

0.1237
(0.0107)

0.1520
(0.0029)

0.1225
(0.0086)

0.1212
(0.0110)

λ
0.1817
(0.0480)

0.1783
(0.0460)

0.7471
(0.0330)

0.4152
(0.0433)

0.3474
(0.0419)

A(35%) θ
0.1565
(0.0028)

0.1398
(0.0044)

0.1470
(0.0083)

0.1511
(0.0053)

0.1082
(0.0059)

p
0.1881
(0.0072)

0.1799
(0.0082)

0.3515
(0.0045)

0.2184
(0.0094)

0.1437
(0.0101)

λ
0.2385
(0.0594)

0.2384
(0.0578)

1.0627
(0.0336)

0.6572
(0.0614)

0.4721
(0.0614)

A(55%) θ
0.1353
(0.0024)

0.1268
(0.0035)

0.1427
(0.0108)

0.1947
(0.0107)

0.0992
(0.0056)

p
0.1729
(0.0054)

0.1710
(0.0064)

0.5493
(0.0048)

0.3715
(0.0141)

0.1485
(0.0102)

λ
0.4999
(0.0296)

0.5015
(0.0277)

0.3880
(0.0270)

0.3002
(0.0236)

0.3062
(0.0252)

B(15%) θ
0.1259
(0.0040)

0.1184
(0.0057)

0.0992
(0.0056)

0.0982
(0.0060)

0.0976
(0.0053)

p
0.1494
(0.0134)

0.1397
(0.0166)

0.1520
(0.0029)

0.1188
(0.0088)

0.1153
(0.0106)

λ
0.5109
(0.0328)

0.5127
(0.0325)

0.6636
(0.0325)

0.3833
(0.0357)

0.3446
(0.0314)

B(35%) θ
0.1544
(0.0026)

0.1472
(0.0031)

0.1363
(0.0092)

0.1458
(0.0055)

0.1059
(0.0058)

p
0.1918
(0.0083)

0.1875
(0.0088)

0.3515
(0.0045)

0.2194
(0.0107)

0.1406
(0.0093)

λ
0.5310
(0.0332)

0.5368
(0.0352)

0.9655
(0.0334)

0.5822
(0.0514)

0.4230
(0.0430)

B(55%) θ
0.1386
(0.0021)

0.1341
(0.0022)

0.1385
(0.0104)

0.1927
(0.0104)

0.1011
(0.0055)

p
0.1750
(0.0051)

0.1731
(0.0052)

0.5493
(0.0048)

0.3741
(0.0145)

0.1454
(0.0115)

λ
0.4124
(0.0124)

0.4158
(0.0183)

0.4583
(0.0322)

0.2988
(0.0271)

0.3210
(0.0265)

C(15%) θ
0.1303
(0.0040)

0.1221
(0.0063)

0.1049
(0.0054)

0.0941
(0.0053)

0.0956
(0.0057)

p
0.1339
(0.0082)

0.1253
(0.0092)

0.1520
(0.0029)

0.1033
(0.0068)

0.0983
(0.0078)

λ
0.4274
(0.0185)

0.4305
(0.0192)

0.8384
(0.0368)

0.4070
(0.0415)

0.3664
(0.0303)

C(35%) θ
0.1660
(0.0026)

0.1596
(0.0030)

0.1630
(0.0103)

0.1535
(0.0051)

0.1082
(0.0061)

p
0.1825
(0.0055)

0.1797
(0.0055)

0.3515
(0.0045)

0.1936
(0.0089)

0.1208
(0.0078)

λ
0.4519
(0.0295)

0.4580
(0.0363)

1.2576
(0.0378)

0.6704
(0.0591)

0.4479
(0.0444)

C(55%) θ
0.1504
(0.0024)

0.1475
(0.0027)

0.1766
(0.0121)

0.2165
(0.0078)

0.1041
(0.0054)

p
0.1695
(0.0040)

0.1692
(0.0040)

0.5493
(0.0048)

0.3363
(0.0136)

0.1214
(0.0067)
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Table 2.3 Simulation results for the non-homogeneous ZAP DGPs. The average MAE are
reported for the parameters of interest: Λ = (λ1, . . . , λ12), the Poisson intensities; θ, the
probability of zero; p, the probability of an excess zero. Standard deviations of the MAE are
reported between parentheses. The smallest value of the MAE for a given scenario is in bold.
Note that in the case of Λ, the average MAE over the 12 parameters are reported. In the
first column, the percentage corresponds to the total probability of having a 0.

DGP Parameter NHPPF Non-homogeneous Zap Forest

Λ
0.2216
(0.0118)

0.1334
(0.0055)

D(15%) θ
0.1511
(0.0037)

0.0721
(0.0040)

p
0.1515
(0.0038)

0.0721
(0.0040)

Λ
0.3962
(0.0135)

0.1462
(0.0073)

D(35%) θ
0.3334
(0.0055)

0.1012
(0.0056)

p
0.3499
(0.0050)

0.1016
(0.0056)

Λ
0.5656
(0.0143)

0.1724
(0.0105)

D(55%) θ
0.4534
(0.0126)

0.1053
(0.0054)

p
0.5476
(0.0057)

0.1059
(0.0054)

Λ
0.2274
(0.0132)

0.1481
(0.0062)

E(15%) θ
0.1517
(0.0038)

0.0721
(0.0041)

p
0.1524
(0.0038)

0.0721
(0.0041)

Λ
0.4131
(0.0141)

0.1627
(0.0063)

E(35%) θ
0.3363
(0.0055)

0.1011
(0.0056)

p
0.3512
(0.0051)

0.1011
(0.0056)

Λ
0.6093
(0.0143)

0.1885
(0.0096)

E(55%) θ
0.4682
(0.0114)

0.1053
(0.0055)

p
0.5490
(0.0057)

0.1054
(0.0055)

Λ
0.1414
(0.0072)

0.0923
(0.0043)

F(15%) θ
0.1492
(0.0037)

0.0721
(0.0040)

p
0.1522
(0.0038)

0.0721
(0.0040)

Λ
0.2496
(0.0082)

0.1079
(0.0045)

F(35%) θ
0.3182
(0.0066)

0.1012
(0.0056)

p
0.3510
(0.0051)

0.1012
(0.0056)

Λ
0.3677
(0.0087)

0.1376
(0.0079)

F(55%) θ
0.4164
(0.0128)

0.1052
(0.0055)

p
0.5489
(0.0058)

0.1053
(0.0055)
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Chapter 3

A Smooth Forest–Based Model for

Nonhomogeneous Poisson Processes

Abstract

This paper proposes a nonhomogeneous Poisson process forest which provides a

smooth estimate of the intensity function. Instead of using a fixed time partition, as in

Mathlouthi et al. (2015a), we vary the intervals from one tree to another. This results

in a smoother estimate of the intensity function.

Keywords: Nonhomogeneous Poisson Process, Poisson tree, random forest, smooth

intensity function, clustering functions.

3.1 Introduction

In this article, we are interested in data where individuals experience repeated events.

More precisely, we model the number and occurrence times of events. Such data are seen

in several areas such as marketing, reliability, medicine, and actuarial field. For instance, in

marketing, the redemptions made by customers member of a loyalty program will be used as

an illustration in this paper.

Many parametric models have been proposed in the literature to deal with count data.

Poisson regression models were proposed in Frome et al. (1973). But the basic models were

developed to handle count data with a time-homogeneous intensity function. Lawless (1987)



designed a parametric model for non-homogeneous count data by adopting a time depen-

dent intensity function with a polynomial form. Zaho an Xie (1992) proposed a maximum

likelihood estimation methodology for non-homogeneous Poisson processes.

In this paper, we are concerned with tree-based methods, in particular random forests

(Breiman, 2001). Random forests consists in growing an ensemble of trees based on boot-

strapped data samples by injecting randomness in the tree growing process. Random forests

are non-parametric and flexible, in that they can automatically adapt to many data struc-

tures.

Mathlouthi et al. (2015a), introduced an algorithm to build a Non–Homogeneous Poisson

Process Tree (NHPPT) and a Non–Homogeneous Poisson Process Forest (NHPPF). The

NHPPF works basically by partitioning the total time period into subperiods and by treating

the number of events in each subperiod as a homogeneous Poisson processes. The partitioning

can be quite general and can be applied to a wide variety of situations. In the end, the tree (or

forest) produces a piecewise constant estimation of the intensity function. The use of a fixed

partition might be reasonable when predictions are needed for a specified partition of time

(e.g. days, weeks, months). However, it is not always clear how to choose the partition, and

the estimated intensity function can be highly influenced by the chosen partition. In order

to diminish the impact of selecting one specific partition, we propose to build a forest by

varying the partition from tree to tree. Averaging the resulting trees will provide a smoother

estimation of the intensity function, compared to a piecewise constant estimator.

The paper is organized as follows. Section 3.2 describes the proposed approach. Section

3.3 presents the results of a simulation study to evaluate the performance of the method. This

study compares homogeneous and non–homogeneous benchmarks (no covariates), as well as

parametric and forest models over different data generation scenarios. Section 3.4 illustrates

the application of the method with a real data set. Concluding remarks and possibilities for

future research are given in Section 3.5.

3.2 Smooth non-homogeneous Poisson process forest

Mathlouthi et al. (2015a) proposed a tree model with a piecewise constant intensity

function. Consider a fixed horizon T that is partitioned into K subperiods T1, T2, . . . , TK
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such that:
K⋃
k=1

Tk = T and Ti ∩ Tj = ∅ for all i 6= j.

Let Nik be the number of events observed in the subperiod Tk for subject i. Assume that Nik

follows a Poisson distribution with parameter λk and that all the Nik’s are independent. In

this paper, the K subperiods will be adjacent time intervals (a0, a1], (a1, a2], . . . , (aK−1, aK ]

covering the whole period T = (a0, aK ]. The maximum likelihood estimators (MLEs) of λk,

k = 1, . . . , K are:

λ̂k =

∑N
i=1Nik

N
, k = 1, . . . , K,

where N is the number of subjects.

Now we assume that we have a vector of p covariates X = (X1, . . . , Xp) per subject.

For tree building, using the well-known CART paradigm described in Breiman et al. (1984),

Mathlouthi et al. (2015a) proposed to fit the above model separately in the candidate children

nodes and to use the observed log–likelihood as the splitting rule. The best split is then the

one that maximizes the observed log–likelihood among all allowable splits. Tree building can

then proceed recursively as usual. Once a final tree is selected, an estimation of the intensity

function can be obtained, for an observation with covariate vector X = x, as the MLE in the

terminal node in which the observation ends up. Namely, if t(x) is index set of the (training)

observations in the terminal node in which the observation with X = x falls, then

λ̂k(x) =

∑
i∈t(x)Nik

N t(x)
, k = 1, . . . , K, (3.1)

where N t(x) is the size of node t(x). This method is called Non–Homogeneous Poisson Process

Tree (NHPPT). It is clear that, by construction, the intensity function is a piecewise constant

function over T .

Mathlouthi et al. (2015a) also proposed to build a forest of trees with the above method.

To do this, they applied the classical forest algorithm (Breiman, 2001) by using the same

partition of T for each tree in the forest. Thus, the forest estimate of the intensity function

is also a piecewise constant function on the same subperiods.

In this paper, we are interested in producing a smooth estimation of the intensity function.

The key idea is to vary the partition, both in the number of subperiods and their lengths,
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from one tree to another in the forest. Averaging them will then produce a smoother estimate

of the intensity function.

The algorithm proceeds as follows:

1. For b = 1, . . . , B, draw a bootstrap sample from the original data set.

2. For the bth bootstrap sample, grow an unpruned NHPPT using the intervals

(ab0, a
b
1], (a

b
1, a

b
2], . . . , (a

b
Kb−1, a

b
Kb ], where ab0 = 0 < ab1 < ab2 · · · < ab

Kb = T . Moreover, at each

node of the tree, randomly sample p0 (0 < p0 ≤ p) of the p predictors and choose the best

split among those variables.

The superscript b used in the definition of the intervals indicates that both the number

and placement of the intervals can vary from one tree to another.

The estimation of the intensity function λ(t|x), for a subject with covariate vector X = x,

can then proceed as follows. Let λ̂
b
(t|x) be the estimate of λ(t|x) for the bth tree. It is

piecewise constant function given by λ̂
b
(t|x) =

Kb∑
k=1

1(t ∈ [abk−1, a
b
k])λ̂

b

k(x), where λ̂
b

k(x) is the

estimate of λk for the bth tree. The forest estimate of λ(t|x) is given by

λ̂F (t|x) =

∑B
b=1 λ̂

b
(t|x)

B
.

We call this general method Smooth Non-Homogeneous Poisson Process Forest (SNHPPF).

One key aspect of this method is the choice of intervals from tree to tree. Many methods

to vary the intervals from tree to tree are possible. In this paper, the following method was

used to select the intervals in a tree. We first randomly generate the number of intervals

from a Poisson random variable with mean log2(N) + 1, where N is the total number of

events experienced by all subjects during the whole time period T . This number is generated

independently for each tree. The average of the Poisson variable is motivated by Sturges’

rule which is often used to determine the number of intervals in a histogram. Indeed, the

MLEs of the λ parameters are the proportions of events in each interval, which is the same as

the proportions used to build a histogram. Secondly, we calculate the limits of the intervals
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by imposing the constraint that each of them contains the same number of events, to avoid

having intervals that are empty or with very few events.

We shall use simulations to study the merits of the proposed approach in the next section.

3.3 Simulation Study

The simulations are designed to compare the SNHPPF to different competitors, with artifi-

cial datasets generated from three different data generating processes (DGPs). In particular,

we want to see how the variation of intervals from tree to tree allows us to estimate a smooth

rate function.

We consider n independent subjects and we observe the times of events that occur during

the whole period T. We define ti the vector of occurrence times during the whole time period

T , and xi = (xi1, ..., xip)
′ the vector of covariates for subject i = 1, 2, ..., n.

3.3.1 Models compared

Twelve competing models are used in the comparison, including the models used in Math-

louthi et al. (2015a). They come from the five different approaches.

Approach 1: A non–homogeneous Poisson process model without covariates. This model

assumes that Nik, the number of events which occurred for subject i in subperiod Tk, is given

by a Poisson random variable with mean λk and that all the Nik’s are independent. The

three models used from this approach are the ones with 1, 10 and 50 intervals.

Approach 2: A piecewise Poisson regression model. Hence, it is a non–homogeneous Poisson

regression model. This model assumes that Nik is given by a Poisson random variable with

mean λik and that λik = λk exp(x′iβ). Again, the three models with 1, 10 and 50 intervals

are considered.

Approach 3: A non-homogeneous Poisson process regression model. This model assumes

that λ(t|x) is a polynomial, specifically that λ(t|x) = δtδ−1 exp(β0 + β1X1 + ...+ βpXp), see

Lawless (1987). This model is the true one for DGP 1 below.
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Approach 4: The NHPPF as described in Mathlouthi et al. (2015a). The four models with

1, 10, 18 and 50 intervals are considered.

Approach 5: The proposed SNHPPF as described in the preceding section.

For the first three approaches, the models with 1 interval reduces to a homogeneous model.

Moreover, for the models with more than one interval, they are selected to have equal length

while covering the whole period. The NHPPF model with 18 intervals is used because, on

average, the number of intervals used for the SNHPPF (i.e. log2(N) + 1) is approximately

18 over all simulations.

3.3.2 Simulation design

We consider three different DGPs. For each DGP the rate λ(t|x) has a different functional

form. The simulations design uses nine independent covariates, X1, ..., X9, uniformly dis-

tributed on the interval [0, 10]. Only X1, X2, and X3 are related to λ(t|x) and the others are

noise. The period of interest is [0,12].

DGP 1: A non-homogeneous Poisson regression model with main effects only:

λ(t|x) = 1.2t0.2 exp (0.01 + 0.02X1 − 0.03X2 + 0.01X3).

DGP 2: A non-homogeneous Poisson regression model with more complicated effects:

λ(t|x) = 1.5t0.5 exp (0.01 + 0.01X1X2 + 0.03X1 log(X2)− 0.006X3X
2
2 ).

DGP 3: A tree model with four leaves:

Leaf 1. If X1 ≤ 5 and X2 ≤ 5 then λ(t|x)= 0.5 sin (2t) + 1.5.

Leaf 2. If X1 ≤ 5 and X2 > 5 then λ(t|x)= 3 exp(− t
10

)
√
|t− 2π|.

Leaf 3. If X1 > 5 and X3 ≤ 5 then λ(t|x)= 1.5 + 2−2t−0.2t2
120

= 182−2t−0.2t2
120

.

Leaf 4. If X1 > 5 and X3 > 5 then λ(t|x)= 0.7 + 2t+0.2t2

50
= 35+2t+0.2t2

50
.

The tree structure was chosen to include several types of intensity functions. They are

depicted in Figure 3.1.
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Figure 3.1

The simulations were performed with 100 runs. For each run, the training sample size is

1, 000 and the test sample size is 5, 000. All forests are built with 500 trees and 30 observations

are needed to attempt splitting any node. Three out of the nine predictors were randomly

selected at each node to find the best split. In order to compare the different models, we

use the L1 as the criterion for comparison. It is the integral of the difference between the

true and the estimated intensity function. It can also be seen as the area between the two

functions and is defined by:

L1 =

T∫
0

|λ(t|x)− λ̂(t|x)|dt,

where λ(t|x) and λ̂(t|x) are the true and estimated intensity functions. The average over

the test sample and all simulation runs gives the final performance criterion for a given model.

Note that the trapezoid rule is used to approximate the integral.

3.3.3 Results

The simulation results are presented in Table 3.1. First, we can see that using the covariates

improves the estimation of the intensity function for all DGPs. Second, the proposed method

(SNHPPF) is always better than a forest with a fixed number of intervals (NHPPF), at

least for the number of intervals selected. Third, increasing too much the number of intervals

always deteriorates the performance of both the parametric and forest based methods. Hence,
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using many intervals is not a good way of achieving a smoother estimation of the intensity

function.

Let us now examine each DGP individually. The polynomial Poisson regression is well-

specified for DGP 1, and thus has the best performance. Looking at the second DGP, the

true model is still a polynomial parametric one but with more complicated effects including

interactions. In this case the estimated polynomial parametric model is not well-specified.

We see that the forest based methods can more easily, and automatically, detect this more

complicated signal. The proposed method is the best one in this case, albeit only slightly

better than taking 18 intervals with the NHPPF. Finally, the third DGP is a tree model. As

we can see, forest models are generally better than parametric approaches. Moreover, the

new method again performs better than the other forest methods.

Table 3.1 Simulation results. The first number is the L1 criterion and the number between
parentheses is its standard deviation.

Model DGP1 DGP2 DGP3

No covariates
1 interval
10 intervals
50 intervals

4.418/(0.121)
4.419/(0.122)
15.20/(0.048)

21.52/(0.268)
21.51/(0.267)
27.56/(0.266)

10.63/(0.278)
10.62/(0.279)
15.77/(0.142)

Piecewise Poisson regression
1 interval
10 intervals
50 intervals

3.924/(0.150)
3.923/(0.150)
15.20/(0.041)

16.63/(0.256)
16.63/(0.257)
26.46/(0.249)

9.284/(0.191)
9.284/(0.191)
15.78/(0.120)

Polynomial Poisson regression 0.390/(0.087) 11.04/(0.168) 6.884/(0.083)

NHPPF

1 interval
10 intervals
18 intervals
50 intervals

2.649/(0.028)
1.308/(0.053)
1.454/(0.055)
1.879/(0.051)

12.24/(0.129)
7.003/(0.177)
6.830/(0.181)
7.191/(0.177)

6.438/(0.108)
2.367/(0.091)
2.235/(0.092)
2.595/(0.091)

SNHPPF (proposed method) 1.178/(0.051) 6.811/(0.176) 1.896/(0.094)

3.4 An example

In this section, we provide an example to illustrate how our approach can be used along

with a curve clustering method to perform market segmentation. We consider redemption

data coming from a rewards program and ranging from January 1st, 2005 to December 31st,

2005. Customers belonging to this data have made at least two redemptions in 2004. The

outcome is the time in days of the claims in 2005. Therefore, the values of the outcome range

from 0 to 365. We have 4, 424 customers having between 0 and 46 redemptions.
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We will use the SNHPPF to obtain a smooth estimate of the intensity curve for each

customer. Then a curve clustering method will be applied to segment them.

We consider 28 predictors: 20 continuous and 8 categorical. Some of these variables

measure the number of points earned with different partners during the year 2004. Other

variables measure the number of different types of transactions during 2004. Another set of

predictors includes demographic characteristics.

Figure 3.2 Intensity functions of all subjects in the data.

Figure 3.2 illustrates the estimated intensity functions of all the customers present in the

data that were obtained with SNHPPF. We can clearly see that different patterns are present.

Giacofci et al. (2013) have proposed a method for the clustering of functional data, called

model-based clustering. This method assumes a probabilistic model on scores of functional

principal component analysis, or on the coefficients of the approximations of the curves into

a basis of this function. This technique is available through the R package “curvclust”. Using

the default settings of the function “getFCM”, three clusters of sizes 3,887, 480 and 57 are

obtained. They are cluster 1 to 3, respectively, in Figure 3.3. The red curve in each plot is

the mean curve of the cluster.
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Cluster 1 has two main characteristics: low intensity and little time variations. The

intensity is relatively low and practically constant over time. Cluster 2 presents also a fairly

constant intensity over time, perhaps slightly decreasing, but with a higher rate. In contrast,

the curves in Cluster 3 exhibit more variations with the highest intensities. Looking at the

mean curve, we observe a first positive shift at the beginning of the year followed by an

abrupt decrease. A second positive peak with lower magnitude occurs around April. The

mean rate then remains almost constant until the end of the year when a third positive shift

happens.

Figure 3.3 The intensity functions of the three clusters. The red curves are the mean curve
for each cluster.

3.5 Concluding remarks

In this paper, we have proposed a random forest algorithm which provides a smooth estima-

tion of the intensity function associated with non-homogeneous count data. The smoothness

is obtained by using a forest of non–homogeneous Poisson process trees by varying the parti-

tion of the piecewise intensity function from one tree to another. This approach bypasses the

non-trivial choice of the intervals in a piecewise constant approach. The proposed smooth

non-homogeneous Poisson process forest performed well in a simulation study compared to

parametric and other forests based approaches. An original application of the estimated

intensity curves produced by our method for market segmentation was presented.

Many possibilities for future work and investigation are available. In this paper, we only

used a simple method to select the number and placement of the intervals in the partition.

Even though the results were good, it would be interesting to investigate other ways to

generate random partitions and see how the final performance is sensible to that aspect.
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Mathlouthi et al. (2015b) extended the non–homogeneous Poisson process forest method

of Mathlouthi et al. (2015a) to handle excess zeros. However, the estimated intensity function

is still piecewise constant. Hence, it would be interesting to extend the current method to be

able to account for excess zeros while producing a smooth estimate of the intensity function.

Finally, our method can only handle baseline covariates. Hence, it would be interesting to

generalize it to be able to include time-varying covariates.
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CONCLUSION GÉNÉRALE

Dans cette thèse, nous avons proposé des nouvelles méthodes d’arbres et de forêts aléatoires

généralisant dans deux directions les méthodes existantes : pour le cas de processus non-

homogènes et pour le cas de processus avec zéros excédentaires. Les nouveaux algorithmes ont

été codés en C et R. Les performances des nouvelles méthodes ont été étudiées par simulations,

qui ont démontré les avantages qu’elles offrent par rapport aux méthodes existantes. Un

exemple original d’utilisation des courbes de taux pour segmenter les clients d’un programme

de fidélisation a également été présenté. Les différentes méthodes proposées dans cette thèse

sont prometteuses et ouvrent la voie à de nombreuses généralisations. Premièrement, les

critères de partitionnement utilisés sont basés sur l’hypothèse que le processus est Poisson.

Il serait alors intéressant d’étudier d’autres critères basés sur d’autres hypothèses. En effet,

il arrive parfois en pratique qu’il y ait sur-dispersion dans le processus. Dans ce cas, utiliser

un critère de partitionnement basé sur la loi binomiale négative pourrait être plus adéquat.

Deuxièmement, nous avons considéré seulement le cas où les variables explicatives ne varient

pas dans le temps ou, à tout le moins, nous avons seulement considérés leurs valeurs initiales

au temps 0. Par conséquent, il serait intéressant de généraliser nos méthodes afin de pouvoir

incorporer des variables explicatives qui varient dans le temps.
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