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Résumé

Cette thèse traite de la théorie des jeux dynamiques et stochastiques. Elle est constituée
de trois essais, dont l’objet est le développement et l’application de cette théorie. Tout au
long de la thèse, nous supposons que des joueurs interagissent dans le temps faisant face à
des aléas représentés par un processus stochastique défini sur un arbre d’évènements, donné
d’une manière exogène. Ainsi, la transition entre des nœuds successifs est l’œuvre de la
nature et ne peut être influencée par les joueurs.

Dans le premier essai, intitulé "S -Adapted Equilibria in Games Played Over Event Trees
with Coupled Constraints", nous analysons un jeu non coopératif à n joueurs où certains
paramètres sont aléatoires et où les joueurs font faces à des contraintes couplées. Un tel
cadre s’applique par exemple à un secteur industriel compétitif faisant face à une demande
incertaine et à une régulation limitant les émissions sectorielles de produits polluants. Ainsi,
bien que le jeu soit non-coopératif, il comporte quelques éléments de jeu coopératif dans la
mesure où les joueurs doivent se coordonner pour satisfaire la contrainte commune à leur
activité, et ce, durant chaque période et à chaque nœud de l’arbre d’évènement. La nature
mixte d’un tel exercice implique des difficultés tant conceptuelles que computationnelles.
Pour résoudre ce problème, nous utilisons le concept d’équilibre de Nash normalisé. L’apport
principal de cet article est ainsi la caractérisation d’un tel équilibre pour la classe des jeux
dynamiques joués sur un arbre d’évènements (JDAE).

Dans le deuxième essai, "Incentive Equilibrium Strategies in Dynamic Games Played
over Event Trees", nous concevons des stratégies incitatives afin d’assurer la durabilité de
la coopération à travers le temps. Nous caractérisons l’équilibre en stratégies incitatives pour
la classe des JDAE, nous assurant ainsi que chaque joueur respectera sa part de l’accord
à chaque nœud de l’arbre d’évènements. Nous démontrons que la solution coordonnée
maximisant la somme des gains individuels est réalisable en tant qu’équilibre en stratégies
incitatives. Nous prêtons une attention particulière à deux classes de jeux très usitées, les
jeux dynamiques linéaire dans l’état et les jeux dynamiques qui sont linéaire-quadratiques.

Dans le troisième essai, "Cost-Revenue Sharing in a Closed Loop Supply Chain Played
over Event Trees", nous appliquons les JDAE à une chaîne logistique formée d’un manu-



facturier et d’un détaillant. Nous analysons en particulier les stratégies de recyclage des
produits usagés par le producteur. En effet, dans la mesure où l’on considère qu’il est in-
téressant de produire un bien en utilisant des produits recyclés, le manufacturier investit
dans un programme environnemental afin d’encourager les consommateurs à retourner les
produits usagés en fin de cycle de vie. Nous analysons et comparons deux scenarios. En
premier lieu, le détaillant ne s’implique pas dans le programme. Dans le second scenario,
ce dernier s’implique en assumant une partie des frais. En échange, le producteur est prêt
à baisser son prix de vente en fonction du taux de retour des produits usagés. Les deux
scénarios se jouent à la Stackelberg (le détaillant étant le meneur et le manufacturier le
suiveur) avec une demande incertaine.

Mots clés: Jeux dynamiques, Arbre d’évènement, Incertitude, Équilibre de Nash nor-
malisé, Contraintes joints, Stratégies incitatives, Coopération, Chaîne logistique, Contrôle
de pollution.
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Abstract

In this dissertation, presented in three essays, we develop and apply the theory of dynamic
games played over event trees. In such games, the stochastic process is exogenously given
as an event tree, that is, the transition from one node to another is nature’s decision and
cannot be influenced by the players’ actions.

In the first essay, entitled "S-Adapted Equilibria in Games Played Over Event Trees
with Coupled Constraints", we consider a game where a set of players are engaged in a
non-cooperative game over time, with some parameters being stochastic while the players
face joint or coupling constraints. An example of such setting is an industry formed of a set
of firms competing in a market described by a stochastic demand law, where a regulator is
imposing a global cap on emissions of some pollutants by the industry. This setting presents
some conceptual as well computational difficulties, which are due to mixed nature of the
problem. Indeed, whereas the game is non-cooperative in its market competition aspect, it
has a cooperative flavor as the players need to coordinate to satisfy the joint constraints at
each period and each node of the event tree. The relevant solution concept in this context
is the so-called normalized, or generalized Nash equilibrium. The main contribution of this
essay is in the characterization of this equilibrium in the class of dynamic games played over
event trees (DGPET).

The second essay addresses the main issue in cooperative dynamic games on how to
sustain cooperation over time, that is, how to ensure that each player will indeed implement
her part of the agreement as time goes by. In this article entitled "Incentive Equilibrium
Strategies in Dynamic Games Played over Event Trees", we design incentive strategies to
sustain cooperation. We characterize incentive equilibrium strategies and outcomes for the
class of DGPET. We show that the coordinated solution that optimizes the joint payoff can
be achieved as an incentive equilibrium, and therefore is self supporting. We focus on two
popular classes of dynamic games in applications, namely, linear-state and linear-quadratic
games.

In the third essay, entitled "Cost-Revenue Sharing in a Closed Loop Supply Chain Played
over Event Trees", we consider a supply chain formed of one manufacturer and one retailer.
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As producing with used parts is more efficient than producing with exclusively new material,
the manufacturer invests in green activities (GA) to encourage consumers to bring back their
used products at the end of their useful life. Two scenarios are analyzed and compared,
namely, a scenario where the retailer is not involved in GA, and a second where the retailer
pays part of the GA cost. In return, the manufacturer reduces the wholesale price by
an amount that depends on the return of used products. Both games are played non-
cooperatively à la Stackelberg, with the retailer acting as leader and the manufacturer as
follower. Also, in both games, we assume that the demand is stochastic.

Keywords: Dynamic games, Event tree, Uncertainty, Normalized equilibrium, Coupled
constraint, Incentive equilibria, Cooperation, Closed-Loop supply chain, Pollution control.
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Chapter 1

Introduction

Many problems in management science, economics and engineering involve the following
features:

1. Few agents (firms, countries, automata, etc.) having interdependent payoffs, that is,
each agent’s outcome does not depend only on her own decisions, but also on other
agents’ actions.

2. The payoffs depend on current as well as on previous decisions. For instance, a pro-
duction decision is constrained by production capacity, which is the result of some
previous investment decisions. This intertemporal aspect of both decisions and pay-
offs, requires to distinguish in the model between flow (control, action or decision)
variables and state (or stock) variables. State variables allow to represent in an
adequate way any cumulative processes such as brand reputation, pollution stocks,
knowledge, etc., which greatly influence the decision-making process.

3. Some data is not known with certainty. For instance, future demand or cost param-
eters may vary with the (future) state of the economy or weather conditions. They
may also depend on the availability or not of some new technologies.

The first two features invite quite naturally to use dynamic game theory as the method-
ological framework to model the problems at hand and predict the outcomes that the players
may achieve. The three features together require to use stochastic dynamic games to prop-
erly account for the inherent uncertainties.

Throughout this thesis, we shall assume that the stochastic process describing the un-
certain parameters can be captured by a discrete and finite event tree. This modeling
approach is highly intuitive and practical as decision makers attempt to figure out future
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values following a tree representation of the uncertain quantity. For instance, we may think
about future oil prices as being low, medium or high and put a probability on the occurrence
of each of these values. Once the model is developed and an algorithm for solving it is
available, we can vary at will these probabilities and what is meant by a low or a high price,
and simulate the impact of these parameters on the equilibrium strategies and outcomes.

The idea of dynamic games played over event trees was initially put forward by Zaccour
[1] and Haurie et al. [2] to determine the equilibrium quantities and prices in the European
gas markets, where four producers compete à la Cournot in nine markets. These authors
introduced the concept of S-adapted strategies and equilibrium, meaning that decision
variables (e.g., quantities, investments in production capacities) are indexed over the nodes
of the event tree. Early contributions in this area include [3] and [4] where it was shown
that this solution concept is related to the concept of stochastic variational inequality.
Haurie and Zaccour in [5] provided a stochastic-control formulation of this class of games,
characterized the S-adapted equilibria through maximum principles, and established a link
with the theory of open-loop multistage games; see, also [6]. Application wise, the formalism
of games played over event trees has been used to study equilibria in energy markets in [7],
[8], [9] and [10]. Recently, Reddy et al. in [11] and Parilina and Zaccour in [12] considered
dynamic cooperative games played over event trees and defined a node-consistent Shapley
value and node-consistent imputations in the core for this class of games.

This three-essay thesis uses and further develops the theory of dynamic games played
over event trees (DGPET).

In the first essay, we are interested in characterizing non-cooperative equilibria in DG-
PET in the context where the players face coupled (or joint) constraints. A coupled con-
straint involves the decision variables of more than one player, thus players’ action spaces
become interdependent. Coupling constraints are quite natural in many applications in
global environmental problem, energy markets, networks with common capacities, etc. For
instance renewable portfolio standard policy which requires electricity supply companies to
produce a specified fraction of their electricity from renewable (sustainable) energy sources
such as wind, solar, biomass, marine and geothermal power involve coupled constraint.
Renewable portfolio standards are legislated in 76 countries, states and provinces around
the world including three Canadian provinces (40% by 2020 in both Nova Scotia and New
Brunswick and 93% in British Columbia) [13].1 Another example would be the problem
of the firms (producers) in a given industry which must collectively reduce their pollutant
emissions by a certain percentage. Government of Canada announces 2030 emissions target

1From http://cansia.ca/, accessed online on 2015-06.
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to reduce its greenhouse gas (GHG) emissions by 30% below 2005 levels by 2030 [14].2 An-
other example is when a group of countries, say the European Union, collectively negotiates
in a first step its share of pollutant emissions reductions at a global level, and at a second
step let the countries decide how to share the total burden.

The problem of dealing with coupled constraint is highly complex because even if the
game is played non-cooperatively, the players need to somehow cooperate to enforce the
constraints imposed by a regulator. Rosen in [15] dealt with the problem of determining
coupled-constraint Nash equilibria in a static context and introduced the concept of nor-
malized equilibrium, which is also known as generalized equilibrium in the literature; see,
[16]. In a nutshell, Rosen shows that satisfying the coupled constraints can be achieved
by introducing an appropriate weighting scheme that decentralizes the common Lagrange
multipliers appended to these coupling constraints.

More specifically, the first essay entitled "S-Adapted Equilibria in Games Played Over
Event Trees with Coupled Constraints", deals with a policy coordination model where a
supranational agent has to induce a set of countries competing on an oligopolistic market
to achieve a common global constraint. A game of multiple players (countries) producing
a homogeneous good is considered while there is an uncertain fluctuation in the price of
nonrenewable resource, i.e., natural gas, commonly used by the agents in their production
process. At the same time, the players must keep the total pollutant emissions less than a
certain level. The concept of normalized equilibrium is used to solve the problem. Existence
and uniqueness conditions for this equilibrium are provided, as well as a stochastic-control
formulation of the game and a maximum principle. The problem is also solved through
introducing penalty tax rates for the violation of the coupled constraint.

The motivation for the next part of this thesis arises from the widely observed fact
that players (firms, union and management, countries, spouses, etc.) commit to long-
term agreements. One interesting question is why economic and social agents sign long-
term contracts, instead of keeping all of their options open by committing for only one
period at the time? A first answer is that negotiation to reach an acceptable arrangement
is costly in terms of dollars, time, emotions and feelings, etc. and therefore, it makes
sense to avoid frequent renegotiation whenever this is feasible. Second, some problems are
inherently dynamic. For instance, curbing polluting emissions in the industrial and transport
sectors requires investments in cleaner technologies, changes in consumption habits, etc.,
which clearly cannot be achieved overnight. If the players have short-planning horizons
when they perform their cost-benefit analysis, they may end up constantly postponing
relevant decisions concerning the future, and nothing would ever be achieved. This explains

2From http://ec.gc.ca/, accessed online on 2015-06.
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why the parties (countries, provinces, regions, etc.) typically seek long-term environmental
agreements.

In this fashion, the players agree to cooperate over a certain period of time, i.e., the
parties agree to coordinate their strategies in view of optimizing a collective performance
index (profit, cost, welfare, happiness, etc.). Although coordination may induce some loss of
freedom to the parties in terms of their choice of actions, its rationale stems, on balance, from
the collective and individual gains it generates compared to noncooperation. In this setting,
a common observation is that some cooperative programs are abandoned before reaching
their maturity. In a dynamic setting, if an agreement breaks down before its intended end
date, it is said to be time inconsistent. This means that some parties prefer, payoff-wise,
to switch at an intermediate instant of time to non-cooperative mode of play, rather than
sticking to the agreement. To put it differently, breakdowns of long-term agreements before
their maturity will occur if, either all the parties agree, at an intermediate instant of time,
to replace the initial agreement by a new one for the remaining periods, or if one of the
players finds it (individually) rational to deviate, that is, to switch to her non-cooperative
strategy from that time onward [17]. However, the interest in dealing with such instabilities
is not in explaining why they may occur, but in attempting to design mechanisms, schemes,
side payments, etc., that would help prevent breakdowns from taking place.

In the second essay of this thesis, we address sustainability in cooperative dynamic games,
that is, how to ensure that each player will indeed implement her part of the agreement
as time goes by. In the literature, one may find different options to tackle this problem.
In some special structural formalism, the cooperative solution may be embodied with an
equilibrium property. Hence, the rational players play their cooperative strategy since it
is self supported and the issue of durability of the agreement issue is emptied. However,
this situation rarely happens unless some special structure is assumed for the game under
consideration; see [18], [19], and [20].

To endow the cooperative solution with an equilibrium property, one approach is to
use trigger strategies that punish credibly and effectively any player who deviates from the
agreement; see [21], [22] and [23]. Trigger strategies may embody large discontinuities, i.e.,
a slight deviation from an agreed path triggers harsh retaliation generating a very different
path than the agreed one. One may also assume a binding agreement. This concept has
been used in some early works in cooperative differential games such as in [17].

Another approach is to design a time-consistent cooperative agreement. A cooperative
agreement is time consistent at initial date and state, if at any intermediate instant of time
the cooperative payoff-to-go of each player dominates, at least weakly, her non-cooperative
payoff-to-go; see [24], [25], [26],[27], [28]. To ensure time-consistency of the agreement, the
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cooperative and non-cooperative payoffs-to-go should be compared along the cooperative
state trajectory. A stronger concept is agreeability, which requires the cooperative payoff-
to-go to dominate the non-cooperative payoff-to-go along any state trajectory; see e.g., [29],
[30], [31], [32]. For a survey of time consistency see [33].

In a two-player game setting, another possible option is to support the cooperative agree-
ment by incentive strategies, which is the approach used in this essay; see [34], [35], [36],
[37]. Informally, the incentive strategy of each player is a function of possible deviation of
the other player with respect to the coordinated solution, i.e., the cooperative agreement.
An incentive equilibrium has the property that when both players implement their incen-
tive strategies, the cooperative outcome is realized as an equilibrium. On the contrary, if
any player deviates from the coordinated solution, the other player also deviates from the
coordinated solution and uses his incentive strategy instead. Therefore, no player should
be tempted to deviate from the agreement during the course of the game, provided that
incentive strategies are credible. An incentive strategy is credible if it is better for a player
who has been cheated to use her strategy rather than sticking to the coordinated solution.
Ehtamo and Hämäläinen in [36] and [38] used linear incentive strategies in a dynamic re-
source game and demonstrated that such strategies are credible when deviations are not too
large.

More precisely, in the second essay entitled "Incentive Equilibrium Strategies in Dynamic
Games Played over Event Trees", we characterize incentive equilibrium strategies and out-
comes for the class of dynamic games played over event trees. We show that the coordinated
solution that optimizes the joint payoff can be achieved as an incentive equilibrium. We
focus on two popular classes of dynamic games in applications namely, linear-state and
linear-quadratic games, as they admit closed-form solutions; see, e.g., the books by Engw-
erda [39] and Haurie et al. [6] and a survey of some applications in [40]. Martín-Herrán and
Zaccour in [41] and [42] characterized incentive strategies and their credibility for linear-state
and linear-quadratic dynamic games (LQDG), but in a deterministic setting.

In the third part of this thesis, we move slightly from the theoretical to an applied
context through an application of dynamic game theory in Supply Chain Management
(SCM). SCM was defined as the strategic coordination of the business processes within a
company and across different units in the supply chain which includes both forward and
backward activities [43]. A precise set of actions from the members of the chain are required
to reach optimal performance while self serving focus of each member often results in poor
performance. However, optimal performance is achievable through implementing some kind
of contract which makes members’ objective in line with the chain’s objective. One may
find a variety of these contracts in the literature, such as revenue sharing contract, lease
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contract, pay back, etc.; see [44] and [45].
Revenue Sharing Contract (RSC) was defined as a contract under which, in addition to

a per unit wholesale price, a retailer pays the manufacturer a percentage of his revenues
[46]. In this setting a precise information system is required to ensure the effectiveness
of the contract and overcome the complexities of it’s implementation and administration.
Tirole [47] mentioned mitigation of the double-marginalization effect as the main strength
of implementing RSC. The Reverse Revenue Sharing Contract (RRSC), a modified version
of RSC, differs from the traditional RSC as the manufacturer is the one who transfers a
part of his revenues to the retailer in order to affect his strategy. For some examples of this
type of contract see [48], [49], [50] and [51].

Continuing the investigation of the games played over the event trees, in the third part
of this thesis, we develop a dynamic game of Closed-Loop Supply Chain (CLSC) played
over uncontrolled event trees through introducing a cost-revenue sharing (CRS) program
along with a reverse revenue sharing contract (RRSC). In a CLSC forward and reverse
activities are combined into a unique system to increase economic, environmental, and
social performance [52]. The economic benefits of the CLSC lies in the cost reduction that
results from producing by means of used components instead of only with new materials.
But management of returned products is known as the most challenging aspect of reverse
logistics [53].

Usually in a CLSC the manufacturer is the one who is interested in closing the loop
as he appropriates the returns’ residual value while other members of the supply chain are
excluded from the benefits [54]. On the other hand, Savaskan et al. in [55] mentioned
the retailer as the key member of the chain in creating the environmental knowledge and
convincing the costumers to return the products. However clearly, the retailer does not find
it in his preference to contribute in this process unless he is offered an attractive economic
incentive by the manufacturer through an appropriate contract [56]. This reasoning implies
that there is room for a two-way incentive scheme in a CLSC, i.e., sharing both revenues
and costs. This is the line of thought pursued in this part of the thesis.

In the third essay of this thesis, entitled "Cost-Revenue Sharing in a Closed Loop Supply
Chain Played over Event Trees", we add the flavor of uncertainty to the game of a CLSC
consisting of a manufacturer and a retailer by assuming that the parameters of the model
are not fixed over time and vary based on a predetermined event tree. We assume that
the manufacturer can influence the return of used products by conducting some "green"
activities (GA) such as advertising and communications campaigns about the recycling
policies, logistics services, monetary and symbolic incentives, employees-training programs,
etc. We characterize and compare strategies and outcomes in two non-cooperative scenarios
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played à la Stackelberg, where the retailer acts as leader and the manufacturer as follower.
In the first scenario, which plays the role of a benchmark, the retailer does not participate
financially in the GA program and the manufacturer does not offer any discount on the
wholesale price. In the second scenario, the two members of the supply chain implements a
cost-revenue sharing contract.

Each essay in this thesis is supported by a numerical example for more elaboration and
to provide more insight about the problem under study.
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Over Event Trees with Coupled
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abstract

This article deals with the general theory of games that are played over uncontrolled event
trees, i.e., games where the transition from one node to another is nature’s decision and
cannot be influenced by the players’ actions. The solution concept for this class of games
was introduced under the name of S -adapted equilibrium where S stands for sample of
realizations of the random process. In this paper, it is assumed that the players also face
a coupled constraint at each node. The concept of normalized equilibrium is used to solve
the problem. Necessary conditions for optimality of the normalized S -adapted equilibrium

1This paper is accepted for publication by Journal of Optimization Theory and Applications.



are presented and the problem is also solved through introducing the penalty tax rates
for the violation of the coupled constraint. Furthermore, a simple illustrative example in
environmental economics is presented for more elaboration.

Keywords: Dynamic games, Event tree, Normalized equilibrium, Coupled constraint,
Pollution control.

2.1 Introduction

This article deals with dynamic games played over uncontrolled event trees, that is, games
where the transition from one node to another is nature’s decision and cannot be influenced
by the players’ actions. Zaccour [1] and Haurie et al. [2] introduced S -adapted equilibrium
as the solution to this class of games, and it was shown later in [3] and [4] that this solution
concept is related to the concept of stochastic variational inequality. Haurie and Zaccour [5],
see also [6], provided a stochastic-control formulation of this class of games, characterized the
S -adapted equilibria through maximum principles, and established a link with the theory
of open-loop multistage games. Haurie and Roche [57] compared S -adapted information
structure with piecewise open-loop information structure. The formalism of games played
over event trees has been used to study equilibria in energy markets in [7], [8], [9] and [10].
Recently, Reddy et al. in [11] considered dynamic cooperative games played over event trees
and defined a time-consistent Shapley value for this class of games.

The main contribution of this paper is in extending, in a straightforward manner, the
existence and uniqueness results of S -adapted equilibria to a setting where the players face
coupled constraints, that is, their action spaces are interdependent. Coupling constraints
are quite natural in many applications in, e.g., networks with common capacities, energy
markets and global environmental problems. Rosen [15] dealt with the problem of deter-
mining coupled-constraint Nash equilibria in static context and introduced the concept of
normalized equilibrium, which is also known as generalized equilibrium in the literature (see
[16]). In a nutshell, Rosen shows that satisfying the coupled constraints can be achieved
by introducing an appropriate weighting scheme that decentralizes the common Lagrange
multipliers appended to these coupling constraints. The existence of normalized equilib-
rium in infinite-horizon dynamic games has been studied in [58], [59], and [60]. Carlson
also extended the Rosen’s idea to a Hilbert space setting in [61], and considered the same
problem in [62], with the dynamics of the game being described by a set of control systems
and allowing for more general spaces.

The rest of the paper is organized as follows: In Section 2.2, we recall the general theory
of games played over event trees and extend the existence and uniqueness theorems of S -
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adapted equilibrium to the case where the players face a coupled constraint. In Section 2.3,
we extend the stochastic-control formulation to include a coupling constraint and charac-
terize the S -adapted equilibrium through a maximum principle. In Section 2.4, we provide
an illustrative example in environmental economics, and briefly conclude in Section 2.5.

2.2 Normal form, existence and uniqueness of equilib-

rium

In this section, we recall the main ingredients of dynamic games played over event trees.2 Let
T = {0, 1, . . . , T} be the set periods, and denote by (ξ (t) : t ∈ T ) the exogenous stochastic
process represented by an event tree. This tree has a root node n0 in period 0 and has a
set of nodes N t in period t = 0, 1, . . . , T . Each node nt ∈ N t represents a possible
sample value of the history ht of the ξ (.) process up to time t. We introduce the following
notations:

1. a(nt) ∈ N t−1 is the unique predecessor of node nt ∈ N t on the event-tree graph for
t = 0, 1, . . . , T ;

2. S(nt) ∈ N t+1 is the set of all possible direct successors of node nt ∈ N t for
t = 0, 1, . . . , T − 1;

3. A path from the root node n0 to a terminal node nT is called a scenario. Each scenario
has a probability and the probabilities of all scenarios sum up to 1. We denote by
π(nt) the probability of passing through node nt, which corresponds to the sum of
the probabilities of all scenarios that contain this node. In particular, π(n0) = 1 and
π(nT ) is equal to the probability of the single scenario that terminates in (leaf) node
nT ∈ N T .

Let M = {1, . . . , m} be the set of players, and denote by unt

j ∈ Unt

j ⊆ R
mj the

decision variables of player j at node nt, where Unt

j is the control set. For each node
nt, t = 1, . . . .T , we introduce a transition reward function for player j ∈ M

Lnt

j

(
unt

, ua(nt)
)
, (2.1)

where Lnt

j (., .) is assumed to be twice continuously differentiable.

2We heavily draw on Haurie et al. (2012) for the description of this class of games.
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Remark 1. The rewards depend on the decision made at antecedent node a (nt) in the
preceding period, and on the decision made in the current period at node nt. Therefore,
Lnt

j (., .) is a transition reward that should be associated with time period t − 1 and, hence,
discounted by factor βt−1

j if a discount factor βj ∈ [0, 1] were used by player j. However, we
will not introduce discounting in our formalism, in order to keep the presentation as simple
as possible.

At each terminal node nT a terminal reward ΦnT

j (unT
) is defined, and is also supposed to

be twice continuously differentiable.
The control set Unt

j of player j at node nt ∈ N t, is described by the following two groups
of “regular” constraints for each player, namely:

fnt

j

(
unt

j

)
≥ 0, j = 1, . . . ,m,

gnt

j

(
unt

j , u
a(nt)
j

)
≥ 0, j = 1, . . . ,m. (2.2)

Additionally, we introduce a coupling constraint at each node, which is defined as a
proper subset Untof Unt

1 × · · · × Unt

j × · · · × Unt

m by a K−vector function hnt where K ≥ 1,
that is,

hnt
(
unt

1 , . . . , u
nt

j , . . . , u
nt

m

)
≥ 0

hnt

= hnt

k , k = 1, . . . , K. (2.3)

We assume that fj, gj and hk (∀j, k) are twice continuously differentiable mappings from
Euclidean spaces to Euclidean spaces and are concave functions of unt

j , for j = 1, . . . , m.
Further, we suppose that the constraint sets (2.2) and (2.3) lead to the set K with nonempty
interior. Note that each players’ decision (unt

j ) might be multidimensional, which would
result in a multidimensional action space (Unt

j ) for each player.

Remark 2. The coupling constraints in (2.3) can be generalized to include ancestors of the
current node nt. Again, for the sake of simplicity, we restrict ourselves to the above simple
formulation.

To state the game in normal form, we define the set of admissible strategies and the
payoffs in terms of these strategies. Next, we define the S -adapted Nash equilibrium.

An admissible S -adapted strategy under coupled constraint for player j is a vector
γj = {unt

j : nt ∈ N t, t = 0, . . . , T − 1} that satisfies the constraint sets (2.2) and (2.3).
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We call Γj the set of all admissible S -adapted strategies of player j. It follows from the
concavity of the functions fj , gj and hj that Γj is convex. Associated with an admissible
S -adapted strategy vector γ = {γj}j∈M are the following payoffs:

Vj (γ) =
∑

t=1, ..., T−1

∑
nt∈ N t

π(nt)Lnt

j

(
unt

, ua(nt)
)

+
∑

nT∈ NT

πnT

ΦnT

j

(
unT
)
.

An S -adapted equilibrium is an admissible S -adapted strategy vector γ∗ such that

Vj

([
γj, γ

∗
−j

])
≤ Vj (γ∗) , j = 1, . . . , m,

where [
γj, γ

∗
−j

]
= (γ∗1 , . . . , γj, . . . , γ

∗
m)

represents the unilateral deviation of player j.
In the above game, clearly the payoff function for the jth player,

Vj (γ) = Vj

(
γ1, . . . , γi, . . . , γm

)
, depends on the strategies of all players. To be able to

use directly the results in Rosen [15] for concave games, we make the following assumption:

Assumption: For γj ∈ Γj, Vj (γ) is continuous in γ and is concave in γj for each fixed value
of (γ1, . . . , γi−1, γi+1, . . . , γm).

Assume that players are playing
[
γj, γ

∗
−j

]
,which means that all players, except player

j, use their equilibrium strategies γ∗i , ∀i ∈ M\{j} while player j is using γj. So, we are
dealing with a single agent optimization problem with concave objective function. If the
constraint qualification conditions [63] are satisfied, then there exists a vector of multipliers

µj = (µjk) , k = 1, . . . , K, (2.4)
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and multipliers ηj ≥ 0 and νj ≥ 0 such that the Lagrangian is given by

Lj

(
µj, ηj, νj,

[
γj, γ

∗
−j

])
=Ln0

j (un0) +
T−1∑
t=1

∑
nt∈ N t

π
(
nt
) {

Lnt

j

(
[unt

j , u
∗nt

−j ], [u
a(nt)
j , u∗

a(nt)
−j ]

)
+ µj

(
nt
)
hnt
(
u∗

nt

1 , . . . , unt

j , . . . , u
∗nt

m

)
+ ηj

(
nt
)
fnt

j

(
unt

j

)
+ νj(n

t)gnt

j

(
unt

j , u
a(nt)
j

)}
+

∑
nt∈ NT

π(nT )
{
τ iΦnT

j

(
[unT

j , u∗
nT

−j ]
)

+ µj

(
nT
)
hnT

(
u∗

nT

1 , . . . , unT

j , . . . , u∗
nT

m

)
+ ηj

(
nT
)
fnT

j

(
unT

j

)
+ νj(n

T )gnT

j

(
unT

j , u
a(nT )
j

)}
, (2.5)

and the first-order optimality conditions are as follows:

∂

∂uj

Lj

(
µj, ηj, νj,

[
γ∗j , γ

∗
−j

] )
≤ 0,

unt

j ≥ 0µj ≥ 0, ηj ≥ 0, νj ≥ 0,

hnt
(
u∗

nt

1 , . . . , unt

j , . . . , u
∗nt

m

)
≥ 0, fnt

j

(
unt

j

)
≥ 0, gnt

j

(
unt

j , u
a(nt)
j

)
≥ 0,

µj

(
nt
)
hnt
(
u∗

nt

1 , . . . , unt

j , . . . , u
∗nt

m

)
= ηj

(
nt
)
fnt

j

(
unt

j

)
= νj

(
nt
)
gnt

j

(
unt

j , u
a(nt)
j

)
= 0,

unt

j .
∂

∂unt

j

Lj

(
µj, ηj, νj,

[
γ∗j , γ

∗
−j

] )
= 0. (2.6)

Generally, the values of the nonnegative multipliers µnt

j , j = 1, . . . , m, given by the
Karush-Kuhn-Tucker conditions at an equilibrium point will not be related to each other.
If there exists a common vector µ0 (nt) such that the vector of multipliers for the coupled
constraint µj (nt) has the form of

µj

(
nt
)

=
µ0 (nt)

rj

, (2.7)

for some rj > 0, j = 1, . . . , m, then we call the optimum point a normalized equilibrium.

Theorem 1. Assume the functions Lnt

j

(
unt

, ua(nt)
)

and gnt

j

(
unt

j , u
a(nt)
j

)
are concave in(

unt

j , u
a(nt)
j

)
, assume the functions fnt

j

(
unt

j

)
and hnt

j

(
unt

1 , . . . , u
nt

j , . . . , u
nt

m

)
are concave
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in unt

j ,∀j, and assume the functions ΦnT

j

(
unT

j

)
are concave in unT

j . Assume that the set
of admissible strategies is compact. Then for any vector r > 0, there exists a normalized
equilibrium.

Proof. The result follows from Rosen [15], which is based on Kakutani’s fixed point theorem.

To characterize the conditions under which the normalized S -adapted equilibrium is
unique, we define the pseudo-gradients

Gnt

(unt

) =

(
r1
∂Lnt

1

(
unt)

∂unt

1

, . . . , rj

∂Lnt

j

(
unt)

∂unt

j

, . . . , rm

∂Lnt

m

(
unt)

∂unt

m

)
, t = 1, . . . , T − 1,

GnT

(unT

) =

r1 ΦnT

1

(
unT
)

∂unT

1

, . . . , rj

ΦnT

j

(
unT
)

∂unT

j

, . . . rm,
ΦnT

m

(
unT
)

∂unT

m

 ,

and the Jacobian matrices, which are defined for any fixed r > 0 as follows:

J nt
(
unt
)

=
∂Gnt (

unt)
∂unt , t = 1, . . . , T − 1,

J nT
(
unT
)

=
∂GnT

(unT
)

∂unT .

Theorem 2. If for all unt, the matrices

Qnt
(
unt
)

=
1

2

[
J nt

(
unt
)

+ (J nt
(
unt
)
)
′ ]

,

QnT
(
unT
)

=
1

2

[
J nT

(
unT
)

+ (J nT
(
unT
)
)
′ ]

are negative definite, then the normalized equilibrium is unique.

Proof. Based on Theorem 6 in [15], negative definiteness ofQnt (
unt) andQnT

(
unT
)

implies
strict diagonal concavity3 of the function

∑m
j=1 rjVj (γ), in which rj > 0, j = 1, . . . , m.

This implies uniqueness of normalized equilibrium.
3The function

∑m
j=1 rjVj (γ) is strictly diagonal concave if the Jacobian of the pseudo-gradient, for the

given game, is negative definite [15].
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2.3 Stochastic-control formulation

In this section, we formulate as a stochastic-control problem the game played over event
tree with coupling constraints. This formulation is useful for modeling non-cooperative
multistage games, where it is natural to distinguish between flow (input or control) variables
and stock (output or state) variables.

Let X ⊆ Rq, with q a given positive integer, be a state set. For each node nt ∈ N t,
t = 0, . . . , T , define the control set Unt as a proper subset of Unt

1 × . . . × Unt

j × . . . × Unt

m

defined by the coupled constraint given by the K−vector,

hnt
(
unt

1 , . . . , u
nt

j , . . . , u
nt

m

)
≥ 0. (2.8)

This constraint implies that each player’s strategy space may depend on the strategy of the
other players. A transition function fnt

(., .) : X × Unt → X ⊆ Rq is associated with each
node nt, and the state equations are given by

x
(
nt
)

= fa(nt) (x (a (nt
))
, u
(
a
(
nt
)))

, (2.9)

u
(
a
(
nt
))
∈ Ua(nt), nt ∈ N t, t = 1, . . . , T. (2.10)

At each node nt, t = 0, . . . , T − 1, the reward to player j is a function of the state and of
the controls of all players, given by Lnt

j (x (nt) , u (nt)). At a terminal node nT , the reward to
Player j is given by the function ΦnT

j (x
(
nT
)
). Now, we can define the following multistage

game where x = {x (nt) : nt ∈ N t, t = 0, . . . , T} and u = {u (nt) : nt ∈ N t, t = 0, . . . , T − 1}
and Jj (x, u) is the payoff to player j:

Jj (x, u) = max
uj(nt)

T−1∑
t=0

∑
nt∈N t

π
(
nt
)
Lnt

j

(
x
(
nt
)
, u
(
nt
))

+
∑

nt∈N t

π
(
nT
)
ΦnT

j

(
x
(
nT
))
, j ∈M,

(2.11)
subject to (2.8), (2.9) and (2.10).

As for open-loop multistage games, we can formulate the necessary conditions for an
S -adapted equilibrium, in the form of a maximum principle. For each player j, we form the
Lagrangian

15



Lj (λj, µj, x, u) = Ln0
j (xn0 , un0) +

T−1∑
t=1

∑
nt∈N t

π
(
nt
){

τ iL
nt

j

(
x
(
nt
)
, u
(
nt
))

+ λj

(
nt
) (
fa(nt) (x (a (nt

))
, u
(
a
(
nt
)))

− x
(
nt
))

+ µj

(
nt
)
hnt
(
unt

1 , . . . , u
nt

j , . . . , u
nt

m

)}
+
∑

nt∈NT

π(nT )
{
τ iΦnT

j

(
x
(
nT
))

+ λj

(
nT
) (
fa(nT ) (x (a (nT

))
, u
(
a
(
nT
)))

− x
(
nT
))

+ µj

(
nT
)
hnT

(
unT

1 , . . . , unT

j , . . . , unT

m

)}
, (2.12)

where λj(n
t) is the costate variable of the same dimension of x (denoted by q), and µj(n

t) is
the Lagrange multiplier of player j associated with the coupled constraint with dimension
K, with both being indexed over the event tree.

Theorem 3. If (x∗(nt), u∗(nt)) is a Nash equilibrium, and if the convex sets Xq and Unt

have nonempty interiors, then there exists a real number τ j ≥ 0, an element λj(n
t) ≥ 0 and

µj (nt) ≥ 0 for j = 1, . . . ,m, not all zero, satisfying

−λj(n
t) =

T−1∑
t=1

∑
nt∈N t

π
(
nt
)
τ j∂xL

nt

j

(
x
(
nt
)
, u
(
nt
))

+
∑

nt∈NT

π(nT )τ j∂xΦ
nT

j

(
x
(
nT
))

+
T−1∑
t=1

∑
nt∈N t

π
(
nt
)
λj

(
nt
) (
∂xf

a(nt) (x (a (nt
))
, u
(
a
(
nt
)))

− 1
)

+
∑

nt∈NT

π(nT )λj

(
nT
) (
∂xf

a(nT ) (x (a (nT
))
, u
(
a
(
nT
)))

− 1
)
,

µj

(
nt
)
hj

nt
(
unt

1 , . . . , u
nt

j , . . . , u
nt

m

)
= 0,

T−1∑
t=1

∑
nt∈N t

π
(
nt
) {
τ j∂uj

Lnt

j

(
x
(
nt
)
, u
(
nt
))

+ λj

(
nt
)
∂uj

fa(nt) (x (a (nt
))
, u
(
a
(
nt
)))

+ µj

(
nt
)
∂uj

hnt
(
unt

1 , . . . , u
nt

j , . . . , u
nt

m

)}
+
∑

nt∈N t

π
(
nT
) {
τ jΦnT

j

(
x
(
nT
))

+ λj

(
nT
)
∂uj

fa(nT ) (x (a (nT
))
, u
(
a
(
nT
)))

+ µj

(
nT
)
∂uj

hnT
(
unT

1 , . . . , unT

j , . . . , unT

m

)}
= 0.

Proof. See Theorem 1 in [64] or in [62].

The above necessary conditions introduce a set of Lagrange multipliers (µj) for each
player with no relationship between the multipliers of the different players. Intuitively, to
extend the idea of normalized equilibrium à la Rosen [15] to games played over event trees,
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we need to define a relationship between the set of Lagrange multipliers of the different
players.

Let us start by defining the combined payoff function Lnt

r : Xnt × Unt × Unt → R at
node nt and ΦnT

r : XnT → R at node nT using a set of positive weights rj ≥ 0, j = 1, . . . ,m

as

Lnt

r (x
(
nt
)
, u
(
nt
)
, v
(
nt
)
) =

m∑
j=1

rjL
nt

j

(
x
(
nt
)
, v−j

(
nt
)
, uj

(
nt
))
,

ΦnT

r

(
x
(
nT
))

=
m∑

j=1

rjΦ
nT

j

(
x
(
nT
))
.

The optimization is performed subject to (2.9) and (2.10). Note that in the above
formulation, the payoff function of player j, (Lnt

j or ΦnT

j ), depends on the jth element of
vector u ∈ Unt , and on the fixed controls for all other players v ∈ Unt .

Theorem 4. If (x∗(nt), u∗(nt), v∗(nt)) is a Nash equilibrium, and if the convex sets Xq and
Unt have nonempty interiors, there exists a real number τ ≥ 0, an element λ(nt) ≥ 0 with
dimension q and µ (nt) ≥ 0, not all zero, satisfying

− λ(nt) =
T−1∑
t=1

∑
nt∈N t

π(nt)τ∂xL
nt

r

(
x
(
nt
)
, u
(
nt
)
, v
(
nt
))

+
∑

nT∈NT

π(nT )τ∂xΦ
nT

r

(
x
(
nT
))

+
T−1∑
t=1

∑
nt∈N t

π
(
nt
)
λ
(
nt
) (
∂xf

a(nt) (x (a (nt
))
, u
(
a
(
nt
)))

− 1
)

+
∑

nT∈NT

π(nT )λ
(
nT
) (
∂xf

a(nT ) (x (a (nT
))
, u
(
a
(
nT
)))

− 1
)
,

µ
(
nt
)
hnt
(
unt

1 , . . . , u
nt

j , . . . , u
nt

m

)
= 0,

T−1∑
t=1

∑
nt∈N t

π
(
nt
) {
τ∂uL

nt

r

(
x
(
nt
)
, u
(
nt
)
, v
(
nt
))

+ λ
(
nt
)
∂uf

a(nt) (x (a (nt
))
, u
(
a
(
nt
)))

+ µ
(
nt
)
∂uh

nt
(
unt

1 , . . . , u
nt

j , . . . , u
nt

m

)}
+
∑

nT∈NT

π
(
nT
) {
τ∂uΦ

nT

r

(
x
(
nT
))

+ λ
(
nT
)
∂uf

a(nT ) (x (a (nT
))
, u
(
a
(
nT
)))

+ µ
(
nT
)
∂uh

nT
(
unT

1 , . . . , unT

j , . . . , unT

m

)}
= 0,
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with hnt and µ (nt) being K-vectors.

Proof. See Theorem 3 in [62].

The objective function is now defined as the weighted sum of the m-player objective
functions, that is, Lnt

r (it was Lnt

j in Theorem 3). Using the following coordinates:

−λk(n
t) =

T−1∑
t=1

∑
nt∈N t

π
(
nt
)
τrk∂xk

Lnt

k

(
x
(
nt
)
, u
(
nt
))

+
∑

nt∈N t

π(nT )τrk∂xk
ΦnT

j

(
x
(
nT
))

+
T−1∑
t=1

∑
nt∈N t

π
(
nt
)
λk

(
nt
) (
∂xk

fa(nt) (x (a (nt
))
, u
(
a
(
nt
)))

− 1
)

+
∑

nt∈N t

π(nT )λk

(
nT
) (
∂xk

fa(nT ) (x (a (nT
))
, u
(
a
(
nT
)))

− 1
)
,

µ
(
nt
)
hnt
(
unt

1 , . . . , u
nt

j , . . . , u
nt

m

)
= 0,

T−1∑
t=1

∑
nt∈N t

π
(
nt
) {
τrj∂uj

Lnt

j

(
x
(
nt
)
, u
(
nt
))

+ λk

(
nt
)
∂uj

fa(nt) (x (a (nt
))
, u
(
a
(
nt
)))

+ µ
(
nt
)
∂uj

hnt
(
unt

1 , . . . , u
nt

j , . . . , u
nt

m

)}
+
∑

nt∈N t

π
(
nT
) {
τrj∂uj

ΦnT

j

(
x
(
nT
))

+ λ
(
nT
)
∂uj

fa(nT ) (x (a (nT
))
, u
(
a
(
nT
)))

+ µ
(
nT
)
∂uj

hnT
(
unT

1 , . . . , unT

j , . . . , unT

m

)}
= 0,

allows us to construct the normalized equilibrium. Indeed, dividing the second group of
the above equations by rj ≥ 0, we have the set of multipliers µj = µ

rj
, j = 1, . . . ,m,

which satisfy the conditions in Theorem 3. Now, the relationship between the Karush-
Kuhn-Tucker multipliers, µj(n

t), shows that (x∗ (nt) , u∗ (nt)) defined in Theorem 4 is a
normalized equilibrium. Once we obtain the value of the multiplier µ (nt) associated with
the coupled constraint at node nt ∈ N t, t = 1, . . . , T , the determination of an S -adapted
Rosen equilibrium can be achieved by solving the decoupled game defined as follows:

Jj (x, u) =
T−1∑
t=0

∑
nt∈N t

π
(
nt
)
{Lnt

j

(
x
(
nt
)
, u
(
nt
))
− µ (nt)

rj

hnt
(
unt

1 , . . . , u
nt

j , . . . , u
nt

m

)
}

+
∑

nt∈N t

π
(
nT
)
{ΦnT

j

(
x
(
nT
))
−
µ
(
nT
)

rj

hnT
(
unT

1 , . . . , unT

j , . . . , unT

m

)
}, j ∈M
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subject to (2.9) and (2.10). Observe that the additional term in player j’s objective func-

tion, namely,
µ(nt)

rj
hnt (

unt

1 , . . . , u
nt

j , . . . , u
nt

m

)
, plays the role of a penalty term. Thus, the

normalized equilibrium of the game in which the players satisfy the coupled constraints can
be implemented by a taxation scheme. This is done by setting the taxes at the appropriate
levels, i.e., by choosing them equal to the common Karush-Kuhn-Tucker multipliers while
adjusted for each player j by his weighting factor 1/rj. To wrap up, solving for a normalized
equilibrium requires the determination of the solution of the combined optimization prob-
lem, and next to solving, for a given vector of weights r = (r1, . . . , rm), the above uncoupled
m-player game. Similar approach (enforcement through taxation) has been used widely in
the literature. In [65], the regulator calculates Rosen coupled-constraint equilibrium (nor-
malized Nash), and then uses the coupled-constraint Lagrange multiplier to formulate a
threat, under which the agents will play a decoupled Nash game. Carlson and Haurie [58]
also used the equilibrium of the relaxed game as a penalizing term for the coupled constraint
in the main game. See [66, 67, 68] and [69] for more applications of normalized equilibrium
to define penalty tax in environmental games.

2.4 Illustrative example

Coupled constraint games are well suited to study pollution control problems, where there is
a cap on the total pollution emitted by firms in an industry. This problem involves a coupled
constraint set in the combined strategy space of all agents. To implement a normalized
equilibrium, the assumption is that there is an external authority (e.g., a regulator) that
can select a particular vector of weights r = (r1, . . . , rm). In international pollution control,
such an authority does not exist and the players (countries) need then to agree on a particular
vector of weights. In this sense, [66] stated that a game with coupled constraints cannot
be considered as a purely non-cooperative game.

The normalized equilibrium concept to deal with environmental games has been first
recognized by Haurie [67] and further explored by Haurie and Zaccour [66], Haurie and
Krawczyk [68] and Krawczyk [65], [70]. Tidball and Zaccour in [71] and [72] studied a game
with environmental constraint in a static and dynamic context, respectively. Conceptually
similar studies have been explored in [69], [73], [74], [75], [76], and [77]. The common feature
of these studies is that they all deal with games in which the competitive agents maximize
their utility functions subject to coupled constraints, which define their joint strategy space.

To illustrate the coupled S -adapted equilibrium, we consider an oligopoly with three
players competing à la Cournot in a four-period game. Players must jointly obey a given
environmental standard. Denote by qj(t, st) and Ij (t, st) player j’s rate of production and

19



investment decisions in production capacity, respectively, j = 1, 2, 3 at stage t, where st is
the sample value at t of a random perturbation of the demand. Similarly, denote by ej(t, s

t)

the rate of emissions resulting from the production of each player. For simplicity, we assume
that

qj
(
t, st

)
= ej

(
t, st

)
.

The stochastic inverse demand law in the market is given by

p
(
t, st

)
= P

(
q1
(
t, st

)
+ q2

(
t, st

)
+ q3

(
t, st

)
, st
)
, (2.13)

where p (t, st) is the market price at stage t for the realization st of the random per-
turbation. The function P (., .) is assumed to be affine and decreasing in total output
Q (t, st) =

∑3
j=1 qj (t, st), and the random perturbation is described by an event tree.

Denote by Kj(t, s
t) player j’s production capacity and by S(t, st) the pollution stock

at node st, st ∈ N t, t = 0, 1, 2, 3. The evolution of these state variables is described by
the following difference equations:

Kj

(
t, st

)
= (1− µ)Kj

(
t− 1, a(st)

)
+ Ij(t− 1, a(st)), Kj

(
0, s0

)
= K0

j ,

S
(
t, st

)
= (1− δ)S

(
t− 1, a

(
st
))

+
3∑

j=1

ej

(
t, st

)
, S

(
0, s0

)
= S0,

where µ > 0 is the depreciation rate of production capacity, and δ > 0 is nature’s absorption
rate of pollution.

Denote by Cj (qj (t, st)) the production cost function, and by Fj(Ij (t, st)) the invest-
ment cost function of player i. We suppose that both functions are convex, increasing and
twice continuously differentiable. Assuming profit-maximization behavior, the objective
function of player j ∈M is given by

Jj (S,K, q, I) =
T−1∑
t=0

∑
nt∈ N t

π
(
nt
) [
p
(
t, st

)
qj
(
t, st

)
− Cj

(
qj
(
t, st

))
− Fj(Ij

(
t, st

)
)
]

+
∑

nT∈ NT

π
(
nT
)
{Φj

(
Kj

(
nT
))
}, (2.14)

where
K = (K1, K2, K3) , q = (q1, q2, q3) , I = (I1, I2, I3) ,

and ΦnT

j

(
Kj

(
nT
))

is the salvage value, assumed to be concave, increasing and twice con-

20



tinuously differentiable. The constraints are given by

Pollution accumulation constraint : S
(
t, st

)
≤ S, st ∈ N t, t = 0, ..., 3(2.15)

Capacity constraint : qj
(
t, st

)
≤ Kj

(
t, st

)
, st ∈ N t, t = 0, ..., 3 (2.16)

Non-negativity of production : qj
(
t, st

)
≥ 0, st ∈ N t, t = 0, ..., 3(2.17)

Non-negativity of investment : Ij
(
t, st

)
≥ 0, st ∈ N t, t = 0, 1, 2 (2.18)

where S is a positive parameter corresponding to the maximum accumulated pollution
tolerated by a regulating agency. Note that the coupling constraint in (2.15) must be
satisfied at each node of the event tree.

To illustrate the S -adapted equilibrium concept with coupling constraints, we retain the
following parameter values and functional forms:

S = 2, S0 = 0, µ = 0.3, δ = 0.2,

K0
1 = 0.5, K0

2 = 0.3, K0
3 = 0.1,

C1 (q1) = 3q2
1, C2 (q2) = 7q2

2, C3 (q2) = 11q2
3,

F1 (I1) = 8I2
1 , F2 (I2) = 5I2

2 , F3 (I2) = 3I2
3 ,

Φ1

(
K1

(
nT
))

=
7

2
K2

1

(
nT
)
, Φ2

(
K2

(
nT
))

= 5K2
2

(
nT
)
, Φ3

(
K3

(
nT
))

= 4K2
3

(
nT
)
.

The stochastic inverse demand law introduced in (2.13) is specified as follows:

p
(
t, st
)

= a
(
t, st
)
− b
(
q1
(
t, st
)

+ q2
(
t, st
)

+ q3
(
t, st
))
,

i.e., assumed to be linear in its parameters, with fixed slope (b = 10) and stochastic intercept.
In each node of the event tree, a (t, st) goes up or down by 40% with given probabilities and
a (0) = 25. The random demand laws in the market are given as the event tree in Figure
2.1.

We solve the equilibrium problem in three different scenarios, namely:

Benchmark scenario: The players choose production and investment levels without con-
sidering the pollution cap (2.15). The results are given in Table 2.1.

Equal weights: The players must satisfy the coupling constraint and are given equal
weights by the regulator r = (1/3, 1/3, 1/3). The results are provided in Table
2.2.

Different weights: The players must satisfy the coupling constraint and are given unequal

21



Figure 2.1: Random demand laws in the market

weights by the regulator r = (0.58, 0.30, 0.12). The results are exhibited in Table
2.3. Here the weights are calculated based on each player’s relative contribution
to the overall pollution level in the benchmark scenario, i.e., rj corresponds to the
proportion of weighted average (by the probabilities) of pollution stock produced by
player j to the total weighted average of pollution level (produced by all the players)
in the benchmark scenario.

The reported numerical experiments were conducted using different modules in MAT-
LAB programming environment. More technically, using MATLAB symbolic toolbox, the
associated complementarity problem has been defined. Finally, LCP and Lemke functions
are used to derive the numerical results (See [78]). To illustrate, we provide in the Appendix
the details of the linear-complementarity problem for one player. Table 2.4 gives the con-
tribution of the players to the pollution stock at all final nodes, and Table 2.5 summarizes
the expected payoffs at the same terminal nodes.

The numerical results can be summarized as follows:

1. The main contributor to the stock of pollution is Player 1, followed by Player 2 and
next by Player 3. This is consistent with the ordering of their unit production costs.

2. The highest pollution accumulation is observed in the benchmark scenario, where the
players do not face any environmental constraints. A comparison of the two other
scenarios shows that the pollution stock is only slightly lower in scenario 3, where the
players are assigned different weights, than in scenario 2.
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3. The players have lower payoffs in the two constrained scenarios than in the benchmark
scenario, which is somehow expected. This is due to a loss in output, which leads to
higher price in nodes where the constraint is binding.

4. Player 1, who is punished more (higher r1) than the two other players in scenario 3,
sees his payoff decreasing in that scenario with respect to the equal-weight scenario.
The reverse is observed for the two other players, who would surely then argue that
an equal weight is not fair in view of the individual contribution to the pollution stock
in the benchmark.

2.5 Conclusion

In this study, we extended in a straightforward manner the framework of dynamic games
played over event trees to the setting where the players face coupled constraints. The
main interest of this class of games lies in its wide range of application in economics and
management science, where it is quite natural to assume that some of the problem’s data are
stochastic. The present paper gives directions for future research. The main challenge for
future developments is to compute the more conceptually appealing feedback equilibrium for
this class of games. Also, one may seek to compute the S -adapted normalized equilibrium
as solution to an extended variational inequality, for which we have shown the existence
and uniqueness conditions. This has been already done for uncoupled-constraint S -adapted
equilibrium in, e.g., [3] and [4].
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Table 2.4: Contribution of each player to the pollution stock at the final nodes
Benchmark scenario

Node (n7) (n8) (n9) (n10) (n11) (n12) (n13) (n14)
Player 1 1.554 1.331 1.415 1.240 1.366 1.012 0.852 0.746
Player 2 0.678 0.567 0.636 0.571 0.742 0.541 0.457 0.406
Player 3 0.359 0.282 0.337 0.286 0.296 0.175 0.194 0.160
Total 2.592 2.181 2.388 2.098 2.405 1.729 1.503 1.312

Coupled constraint with equal weights
Node (n7) (n8) (n9) (n10) (n11) (n12) (n13) (n14)

Player 1 1.196 1.161 1.175 1.134 1.127 0.890 0.812 0.706
Player 2 0.541 0.526 0.552 0.537 0.621 0.496 0.455 0.404
Player 3 0.262 0.252 0.272 0.263 0.251 0.175 0.194 0.160
Total 1.999 1.938 1.999 1.935 1.999 1.561 1.462 1.271

Coupled constraint with different weights
Node (n7) (n8) (n9) (n10) (n11) (n12) (n13) (n14)

Player 1 1.096 1.117 1.099 1.101 1.045 0.856 0.803 0.697
Player 2 0.590 0.539 0.589 0.551 0.675 0.519 0.457 0.406
Player 3 0.314 0.269 0.311 0.278 0.279 0.175 0.194 0.160
Total 1.999 1.926 1.999 1.931 1.999 1.550 1.454 1.264

Table 2.5: Total expected payoffs at terminal nodes
Benchmark scenario

Node (n7) (n8) (n9) (n10) (n11) (n12) (n13) (n14)
Player 1 17.252 16.231 16.483 15.829 12.967 10.958 9.691 9.487
Player 2 8.082 7.591 7.832 7.552 7.435 6.390 5.711 5.613
Player 3 3.267 2.935 3.122 2.921 2.734 2.103 2.029 1.965
Total 28.600 26.758 27.437 26.302 23.137 19.452 17.431 17.065

Coupled constraint with equal weights
Node (n7) (n8) (n9) (n10) (n11) (n12) (n13) (n14)

Player 1 15.869 15.371 15.708 15.327 12.468 10.789 9.723 9.519
Player 2 7.732 7.509 7.735 7.552 7.185 6.348 5.779 5.681
Player 3 2.991 2.847 3.007 2.890 2.659 2.153 2.056 1.992
Total 26.592 25.728 26.451 25.770 22.313 19.292 17.559 17.193

Coupled constraint with non-equal weights
Node (n7) (n8) (n9) (n10) (n11) (n12) (n13) (n14)

Player 1 15.430 15.117 15.373 15.116 12.088 10.644 9.703 9.499
Player 2 7.925 7.590 7.875 7.626 7.461 6.487 5.806 5.708
Player 3 3.191 2.938 3.151 2.968 2.791 2.159 2.061 1.997
Total 26.546 25.645 26.399 25.711 22.339 19.290 17.571 17.204
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2.6 Appendix

2.6.1 LCP to find the normalized equilibrium4

Each player j ∈M is maximizing his objective function given by

Jj (S,K, q, I) =
T−1∑
t=0

∑
nt∈ N t

π
(
nt
) [
p
(
nt
)
qj
(
nt
)
− Cj

(
qj
(
nt
))
− Fj(Ij

(
nt
)
)
]

+
∑

nT∈ NT

π
(
nT
)
{Φj

(
Kj

(
nT
))
}, (2.19)

where

K = (K1, K2, K3) , q = (q1, q2, q3) , I = (I1, I2, I3) ,

p
(
nt
)

= a
(
nt
)
− b
(
q1
(
nt
)

+ q2
(
nt
)

+ q3
(
nt
))
,

subject to
Kj

(
nt
)

= (1− µ)Kj

(
a
(
nt
))

+ Ij(a
(
nt)
)
, Kj

(
n0
)

= K0
j , (2.20)

S
(
nt
)

= (1− δ)S
(
a
(
nt
))

+
3∑

j=1

ej

(
nt
)
, S

(
n0
)

= S0, (2.21)

and
S
(
nt
)
≤ S, nt ∈ N t, t = 0, 1, 2, 3, (2.22)

qj
(
nt
)
≤ Kj

(
nt
)
, nt ∈ N t, t = 0, 1, 2, 3, (2.23)

qj
(
nt
)
≥ 0, nt ∈ N t, t = 0, 1, 2, 3, (2.24)

Ij
(
nt
)
≥ 0, nt ∈ N t, t = 0, 1, 2. (2.25)

Solving (2.20) recursively, we have the following equations for the capacity of player j at
each node,

Kj(n
0) = k0

j , (2.26)

4In this section, for reasons of simplicity, we have replaced (t, st) by the appropriate node number to
show the position on the event tree.
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Kj

(
n1
)

= Kj

(
n2
)

= (1− µ) k0
j + Ij

(
n0
)
,

Kj

(
n3
)

= Kj

(
n4
)

= (1− µ)2 k0
j + (1− µ) Ij

(
n0
)

+ Ij
(
n1
)
,

Kj

(
n5
)

= Kj

(
n6
)

= (1− µ)2 k0
j + (1− µ) Ij

(
n0
)

+ Ij
(
n2
)
,

Kj

(
n7
)

= Kj

(
n8
)

= (1− µ)3 k0
j + (1− µ)2 Ij

(
n0
)

+ (1− µ) Ij
(
n1
)

+ Ij
(
n3
)
,

Kj

(
n9
)

= Kj

(
n10
)

= (1− µ)3 k0
j + (1− µ)2 Ij

(
n0
)

+ (1− µ) Ij
(
n1
)

+ Ij
(
n4
)
,

Kj

(
n11
)

= Kj

(
n12
)

= (1− µ)3 k0
j + (1− µ)2 Ij

(
n0
)

+ (1− µ) Ij
(
n2
)

+ Ij
(
n5
)
,

Kj

(
n13
)

= Kj

(
n14
)

= (1− µ)3 k0
j + (1− µ)2 Ij

(
n0
)

+ (1− µ) Ij
(
n2
)

+ Ij
(
n6
)
.

Similarly, solving (2.21) recursively, we have the following equations for the pollution stock
at each node,

S(n0) = q1(n
0) + q∗2(n

0) + q∗3(n
0), (2.27)

S
(
n1
)

= S
(
n2
)

= (1− δ)
(
q1(n

0) + q∗2(n
0) + q∗3(n

0)
)

+
(
q1(n

i) + q∗2(n
i) + q∗3(n

i)
)
,

S
(
n3
)

= S
(
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)
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0) + q∗3(n

0)
)
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)

+
(
q1(n
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)
,

S
(
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0) + q∗2(n
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0)
)
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2)
)

+
(
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)
,

S
(
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)

= S
(
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= (1− δ)3
(
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0) + q∗2(n
0) + q∗3(n

0)
)

+ (1− δ)2
(
q1(n

1) + q∗2(n
1) + q∗3(n

1)
)

+ (1− δ)
(
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)

+
(
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i) + q∗3(n
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)
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(
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= S
(
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(
q1(n

0) + q∗2(n
0) + q∗3(n

0)
)
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(
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,
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)
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S
(
n13
)

= S
(
n14
)

= (1− δ)3
(
q1(n

0) + q∗2(n
0) + q∗3(n

0)
)

+ (1− δ)2
(
q1(n

2) + q∗2(n
2) + q∗3(n

2)
)

+ (1− δ)
(
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6) + q∗2(n
6) + q∗3(n

6)
)

+
(
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i)
)
.

We have assumed quadratic functional form for the production and investment cost func-
tions, and for the salvage value,

Cj

(
qj
(
nt
))

= cjq
2
j

(
nt
)
, Fj

(
Ij
(
nt
))

= fjI
2
j

(
nt
)
, Φj

(
Kj

(
nT
))

=
vj

2
K2

j

(
nT
)
.
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Consequently, the Lagrangian for player 1 is

L1 =
i=6∑
i=0

π(ni)
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∑
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∑
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∑
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∑

i=11,12

1

2
π(ni)v1

[
(1− µ)3k1(n

0) + (1− µ)2I1(n
0) + (1− µ)I1(n

2) + I1(n
5)
]2

+
∑

i=13,14

1

2
π(ni)v1

[
(1− µ)3k1(n

0) + (1− µ)2I1(n
0) + (1− µ)I1(n

2) + I1(n
6)
]2

where mc
1(n

i) and m1(n
i) are Lagrange multipliers associated with the coupled constraint

(2.22) and capacity constraint (2.23) at each node, respectively, taking into account the
expanded forms for Kj(n

t) (2.26) and S(nt) (2.27).
The linear complementarity conditions for the above problem are of the following form:

∂L1

∂I1(ni)
≤ 0, I1(ni) ≥ 0, I1(ni).

∂L1

∂I1(ni)
= 0, i = 0, ..., 6, (2.28)

∂L1

∂q1(ni)
≤ 0, q1(ni) ≥ 0, q1(ni).

∂L1

∂q1(ni)
= 0, i = 0, ..., 14, (2.29)

∂L1

∂mc
1(ni)

≤ 0, mc
1(ni) ≥ 0, mc

1(ni).
∂L1

∂mc
1(ni)

= 0, i = 0, ..., 14, (2.30)
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∂L1

∂m1(ni)
≤ 0, m1(ni) ≥ 0, m1(ni).

∂L1

∂m1(ni)
= 0, i = 0, ..., 14. (2.31)

Similarly, we can obtain the linear complementarity conditions for other two players. Im-
posing the normalized equilibrium condition

mc
i(n

j) =
mc

1(n
j)× r1
rj

, (2.32)

leads to a system of 126 equations and 126 unknowns.5

5Condition (2.32) is used to omit the set of conditions (2.30) for players 2 and 3 and their associated
Lagrange multipliers (mc

2(n
j) and mc

3(n
j) where j = 0, ..., 14). Hence, we have a reduction in the size of

the system (from 156 to 126). This elimination is necessary, as skipping it results in a nonsingular matrix
in LCP.
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abstract

We characterize incentive equilibrium strategies and their credibility conditions for the class
of linear-quadratic dynamic games played over event trees. In such games, the transition
from one node to another is nature’s decision and cannot be influenced by players’ actions.
Assuming that two players wish to optimize their joint payoff over a given planning horizon,
we show that this outcome can be achieved as an incentive equilibrium, and hence ensures
that cooperation will continue from one node onward. A simple example illustrates these
strategies and the credibility conditions.
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3.1 Introduction

A main issue in cooperative dynamic games is how to sustain cooperation over time, that
is, how to ensure that each player will indeed implement her part of the agreement as
time goes by. The breakdown of long-term agreements before their maturity has been
empirically observed. Schematically, a breakdown will occur either if all the parties agree
at an intermediate instant of time to replace the initial agreement by a new one for the
remaining periods, or if one of the players finds it (individually) rational to deviate, that
is, to switch to her noncooperative strategy from that time onward [17]. The literature in
(state-space) dynamic games suggests mainly three approaches to sustain cooperation over
time.

Time consistency: A cooperative agreement is time consistent at an initial date and
state if, at any intermediate instant of time, the cooperative payoff-to-go of each player
dominates, at least weakly, her noncooperative payoff-to-go; see, e.g., [24]. Note that a time-
consistent payment schedule always exists, and that the cooperative and noncooperative
payoffs-to-go are compared along the cooperative state trajectory, which implicitly assumes
that the players have so far played cooperatively. A stronger concept is agreeability, which
requires the cooperative payoff-to-go to dominate the noncooperative payoff-to-go along any
state trajectory; see, e.g., [29]. For a survey of time consistency, see [33].

Cooperative equilibrium: If the cooperative solution is an equilibrium, then it is self-
supported, and the durability of the agreement issue is emptied. To endow the cooperative
solution with an equilibrium property, one approach is to use trigger strategies that credibly
and effectively punish any player deviating from the agreement; see, e.g., [21], [22] and [23].

Incentive equilibrium: Trigger strategies may embody large discontinuities, i.e., a
slight deviation from an agreed-upon path triggers harsh retaliation, generating a very
different path from the agreed-upon one. An alternative approach, which will be followed
here, is to use incentive strategies that are continuous in the information. An incentive
equilibrium has the property that when both players implement their incentive strategies,
the cooperative outcome is realized as an equilibrium. Therefore, no player should be
tempted to deviate from the agreement during the course of the game, provided that the
incentive strategies are credible. An incentive strategy is credible if it is better for a player
who has been cheated to use her strategy than to stick to the coordinated solution. Ehtamo
and Hämäläinen in [36] and [38] used linear incentive strategies in a dynamic resource game
and demonstrated that such strategies are credible when deviations are not too large.

The concept of incentive strategies has of course been around for a long time in dy-
namic games (and economics), but it was often understood and used in a leader-follower
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(or principal-agent) sense. The idea is that the leader designs an incentive to induce the
follower to reply in a certain way, which is often meant to be (only) in the leader’s best
interest, but may also be in the best collective interest (see the early contributions by [79]
and [80]). In such a case, the incentive is one sided. Here, we focus on two-sided incentive
strategies, with the aim of implementing the joint optimization solution.

The objective of this paper is to characterize incentive equilibrium strategies and out-
comes for the class of dynamic games played over event trees (DGET). In these games, the
transition from one node to another is nature’s decision and cannot be influenced by the
players’ actions. For a detailed description of DGET, see [6]. We focus on linear-quadratic
dynamic games, a popular class in applications because it admits closed-form solutions (see,
e.g., the books by Engwerda [39] and Haurie et al. [6]). Martín-Herrán and Zaccour
([41] and [42]) characterized incentive strategies and their credibility for linear-state and
linear-quadratic dynamic games (LQDG), but in a deterministic setting.

The rest of the paper is organized as follows. In section 3.2, we briefly recall the in-
gredients of DGPET and derive the coordinated solution. In Section 3.3, we define the
incentive equilibrium strategies and provide a numerical illustration in Section 3.4. We
briefly conclude in Section 3.5.

3.2 Linear-quadratic DGPET

Let T = {0, 1, . . . , T} be the set periods, and denote by (ξ (t) : t ∈ T ) the exogenous
stochastic process represented by an event tree, with a root node n0 in period 0 and a set
of nodes N t in period t = 0, 1, . . . , T . Each node nt ∈ N t represents a possible sample
value of the history ht of the ξ (.) process up to time t. Let a(nt) ∈ N t−1 be the unique
predecessor of node nt ∈ N t for t = 0, 1, . . . , T , and denote by S(nt) ∈ N t+1 the set of
all possible direct successors of node nt ∈ N t for t = 0, 1, . . . , T − 1. We call scenario
any path from node n0 to a terminal node nT . Each scenario has a probability, and the
probabilities of all scenarios sum up to 1. We denote by πnt the probability of passing
through node nt, which corresponds to the sum of the probabilities of all scenarios that
contain this node. In particular, πn0

= 1, and πnT is equal to the probability of the single
scenario that terminates in (leaf) node nT ∈ N T . Also,

∑
nt∈N t πnt

= 1,∀t.

Denote by ui(n
t) ∈ Unt

i ⊆ Rmnt

i the decision variable of player i at node nt, where
Unt

i is the control set, and mnt

i is the dimension of the decision variable for player i,

i = 1, 2. Let u(nt) denote the vector of decision variables for both players at node nt,
i.e., u(nt) = (u1(n

t), u2(n
t)). Let X ⊆ Rq, with q being given positive integer, be a
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state set. Denote by x(nt) the state vector at node nt. An admissible S -adapted strat-
egy for player i (where S stands for sample, as in the terminology of [6]), is a vector
ui = {ui(n

t) : nt ∈ N t, t = 0, ..., T − 1}, that is, a plan of actions adapted to the history of
the random process represented by the event tree.

Assuming a linear-quadratic game structure,2 the optimization problem of player i is as
follows:

max
ui

Vi(x,u) = max
ui

T−1∑
t=0

∑
nt∈N t

πnt
(1

2
x′(nt)Qi(n

t)x(nt)

+ p′i(n
t)x(nt) +

1

2

2∑
j=1

u′j(n
t)Rij(n

t)uj(n
t)
)

(3.1)

+
∑

nT∈NT

πnT
(1

2
x′(nT )Qi(n

T )x(nT ) + p′i(n
T )x(nT )

)
,

subject to

x(nt) = A(a(nt))x(a(nt)) +
2∑

j=1

Bj(a(n
t))uj(a(n

t)), (3.2)

x(n0) = x0,

where Qi(n
t) ∈ Rq×q , Rij(n

t) ∈ Rmnt

j ×mnt

j , pi(n
t) ∈ Rq, A(nt) ∈ Rq×q and Bj(n

t) ∈ Rq×mnt

j

for all nt ∈ N t, t ∈ T .

Assumption 1: The matrices Qi(n
t) are symmetric and Rii(n

t) is negative definite. Addi-
tionally, the matricesRij(n

t), i 6= j are such that Rii(n
t)+Rji(n

t) are negative definite
as well.

By Assumption 1, the objective function in (3.1) will be strictly concave in the control
variables.

3.2.1 Cooperative solution

Suppose that the two players agree to cooperate and maximize their joint payoff, that is,
maxui

∑2
i=1 Vi (x,u) subject to (3.2). The Lagrangian associated with the joint optimization

2For the linear state game, see the Appendix B.

37



problem is given by:

LC =
T−1∑
t=0

∑
nt∈N t

πnt

(
1

2
x′(nt)

(
Q1(n

t) +Q2(n
t)
)
x(nt) +

(
p1(n

t) + p2(n
t)
)′
x(nt)

+
1

2

[
u1(n

t)

u2(n
t)

]′ [
R11(n

t) +R21(n
t) 0

0 R12(n
t) +R22(n

t)

][
u1(n

t)

u2(n
t)

]
+
∑

nT∈NT

πnT
(1

2
x′(nT )

(
Q1(n

T )+Q2(n
T )
)
x(nT )+

(
p1(n

T )+p2(n
T )
)′
x(nT )

)
+
(
λC(n0)

)′
(x(n0)−x0)

+
T∑

t=1

∑
nt∈N t

πnt(
λC(nt)

)′(
x(nt)− A(a(nt))x(a(nt))−

2∑
j=1

Bj(a(n
t))uj(a(n

t))
)
. (3.3)

This is a standard dynamic optimization problem with the following optimality conditions:

∂LC

∂unt

i

= πnt

u′i(n
t)

2∑
j=1

Rji(n
t) + λC(S(nt))Bnt

i = 0,

⇒ uC
i (nt) = − 1

πnt

( 2∑
j=1

Rji(n
t)

)−1

Bnt

i λ
C(S(nt)). (3.4)

λC(nt) =
∂LC

∂xnt = πnt
2∑

j=1

(Qnt

j x
nt

+ pnt

j ) + Ant

λC(S(nt))− πnt

λC(nt),

λC(nT ) =
∂LC

∂xnT = πnT
2∑

j=1

(QnT

j xnT

+ pnT

j ), (3.5)

where λC(S(nt)) =
∑

ν∈S(nt) π
νλC(ν). Let us define knt and αnt recursively as follows:

knt

=
1

1 + πnt

(
πnt

2∑
j=1

Qj + Ant

kν(I +
2∑

j=1

Snt

j k
ν)−1Ant

)
,

αnt

=
1

1 + πnt

(
πnt

2∑
j=1

pj + Ant(
αν − kν(I +

2∑
j=1

Snt

j k
ν)−1

2∑
j=1

Snt

j α
ν)
)
, (3.6)

where

Snt

i =
1

πntBi(n
t)(

2∑
j=1

Rnt

ij )−1B′
i(n

t), (3.7)

and kν and αν are, respectively, the values of knt and αnt at the successor nodes of nt.

Assumption 2: The set of all matrices (I +
∑2

j=1 S
nt

j k
ν), ∀nt, t = 0, ..., T − 1 are invert-
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ible.3

Proposition 1. Under Assumptions 1 and 2, the cooperative (joint optimization) solution
is given by

uC
i (nt) = − 1

πnt

( 2∑
j=1

Rji(n
t)

)−1

Bnt

i

(
kν(I +

2∑
j=1

Snt

j k
ν)−1(Ant

xC(nt)−
2∑

j=1

Snt

j α
ν) + αν

)
,

(3.8)

where xC is the associated state trajectory determined by

xC(ν) = (I +
2∑

j=1

Snt

j k
ν)−1(Ant

xC(nt)−
2∑

j=1

Snt

j α
ν). (3.9)

Proof. See Appendix A.

Remark 3. Assumption 1 guarantees an interior solution (control variable as a function of
costate variable). Further, using Assumption 2, we obtain the cooperative solution (control
variable as a function of state variable). Thus, assumptions (1) and (2) are sufficient to
guarantee the existence of a cooperative solution.

Denote by uC
i = {uC

i (nt) : nt ∈ N t, t = 0, ..., T − 1} the cooperative solution.

3.3 S -Adapted incentive equilibria

As mentioned in the introduction, our aim is to design incentive equilibrium strategies to
support the cooperative (or coordinated) solution uC(nt) = (uC

1 (nt) , uC
2 (nt)) ∈ Unt

1 × Unt

2 .
Denote by

Ψi = {ψi|ψi : Uj → Ui} , i, j = 1, 2; i 6= j,

the set of admissible strategies over the event tree.

Definition 5. A strategy ψi ∈ Ψi, i = 1, 2 is an incentive equilibrium at uC , if

V1(u
C
1 , u

C
2 ) ≥ V1(u1, ψ2(u1)), ∀u1 ∈ U1,

V2(u
C
1 , u

C
2 ) ≥ V2(ψ1(u2), u2), ∀u2 ∈ U2,

ψ1(u
C
2 (nt)) = uC

1 (nt),

ψ2(u
C
1 (nt)) = uC

2 (nt), nt ∈ N t, t = 0, . . . , T − 1.

3The satisfaction of this assumption clearly depends on the parameter values.
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The above definition states that if a player implements her part of the agreement, then
the best response of the other player is to do the same. In this sense, each player’s incentive
strategy represents a threat to implement a different control than the optimal one if the
other player deviates from her optimal strategy. To determine these incentive strategies, we
need to solve two optimal control problems, in each of which one player assumes that the
other player is using her incentive strategy. The optimization problem of Player i is given
by (3.1)-(3.2) with the additional constraint stating that Player j is using her incentive
strategy, that is,

uj(n
t) = ψj(ui(n

t)), i, j = 1, 2 , i 6= j.

To show how it works, let us introduce the following corresponding Lagrangian to Player
i’s optimization problem, i, j = 1, 2, i 6= j:

Li(λi, x, ui) =
1

2

{
x′(n0)Qn0

i x(n
0) + 2p

′n0

i x(n0)

+ u′i(n
0)Rn0

ii ui(n
0) + ψ′j(ui(n

0))Rn0

ij ψj(ui(n
0))
}

+
T−1∑
t=1

∑
nt∈N t

πnt

2

{
x′(nt)Qnt

i x(n
t) + 2p

′nt

i x(nt)

+ u′i(n
t)Rnt

ii ui(n
t) + ψ′j(ui(n

t))Rnt

ij ψj(ui(n
t))
}

+
∑

nT∈NT

πnT

2

{
x′(nT )QnT

i x(nT ) + 2p
′nT

i x(nT )
}

+ λi(n
0)(x0 − x(n0)) +

T∑
t=1

∑
nt∈N t

πnt

λi(n
t)
{
Aa(nt)x(a(nt))

+B
a(nt)
i ui(a(n

t)) +B
a(nt)
j ψj(ui(a(n

t)))− x(nt)
}
,

where λi (·) represents the vector of Lagrange multipliers. The first-order optimality con-
ditions are

∂Li

∂unt

i

= πnt

(u′i(n
t)Rnt

ii + ψ′j(ui(n
t))
∂ψj

∂ui

Rnt

ij ) +
∑

ν∈S(nt)

πνλν
i (B

nt

i +Bnt

j

∂ψj

∂ui

) = 0, (3.10)

⇒ ui(n
t) = − 1

πnt (R
nt

ii )−1(Bnt

i +Bnt

j

∂ψj

∂ui

)λi(S)− (Rnt

ii )−1ψ′j(ui(n
t))
∂ψj

∂ui

Rnt

ij ,

λi(n
t) =

∂Li

∂xnt = πnt

(Qnt

i x(n
t) + pnt

i ) + Ant

λi(S)− πnt

λi(n
t),

λi(n
T ) = πnT

(QnT

i x(nT ) + pnT

i ), (3.11)

where λi(S) =
∑

ν∈S(nt) π
νλi(ν). The proposition below states the conditions to be satisfied
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by incentive strategies.

Proposition 2. To be an incentive equilibrium at uC, a pair of strategies (ψ1, ψ2) ∈ Ψ1×Ψ2

must satisfy the following conditions:

(R1i(n
t) +R2i(n

t))−1Bnt

i (kνxC(nt) + αν)

= R−1
ii (nt)(Bnt

i +Bnt

j

∂ψj

∂ui

)(kν
i x

C(ν) + αν
i )

+ πnt

R−1
ii R

nt

ij

∂ψj

∂ui

ψ′j(ui(n
t)), i, j = 1, 2, i 6= j,

with all functions evaluated at (uC
1 , u

C
2 ), and where knt

i and αnt

i are recursively defined by

knt

i =
1

1 + πnt

(
πnt

Qnt

i + Ant

kν
i (I +

2∑
j=1

(Snt

j + ln
t

j )kν
i )−1Ant

)
, (3.12)

αnt

i =
1

1 + πnt

(
πnt

pnt

i + Ant
{
αν

i

− kν
i

(
I +

2∑
j=1

(Snt

j + ln
t

j )kν
i

)−1
2∑

j=1

(
(Snt

j + ln
t

j )αν
i +mnt

i

)})
,

where

Snt

i =
1

πntB
nt

i (Rnt

ii )−1Bnt

i , (3.13)

ln
t

i =
1

πntB
nt

i (Rnt

ii )−1B′nt

j

∂ψj

∂ui

,

mnt

i = Bnt

i (Rnt

ii )−1ψ′j(ui(n
t))
∂ψj

∂ui

Rnt

ij , i, j = 1, 2, i 6= j.

Proof. See Appendix A.

One important concern with incentive strategies is their credibility. These strategies are
said to be credible if it is in each player’s best interest to implement her incentive strategy
upon detecting a deviation by the other player from the agreed-upon solution. Otherwise,
the threat is not believable, and a player can freely cheat on the agreement without being
punished. A formal definition of credibility follows.

Definition 6. The incentive equilibrium strategy (ψnt

i ∈ Ψi, ∀i) is credible at uC ∈ U1 × U2
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if the following inequalities are satisfied:

V1(ψ1(u2(n
t)), u2(n

t)) ≥ V1(u
C
1 (nt), u2(n

t)), ∀u2 ∈ U2,∀nt,

V2(u1(n
t), ψ2(u1(n

t))) ≥ V2(u1(n
t), uC

2 (nt)), ∀u1 ∈ U1,∀nt. (3.14)

Note that the above definition characterizes the credibility of the equilibrium strategies
for any possible deviation in the set U1 × U2. To give additional insight, let us retain the
following functional forms, where game parameters may vary in different nodes:

Lnt

i (x(nt),u(nt)) =
1

2

{
rnt

i ui(n
t)2 − dnt

i x(n
t)2 − cn

t

i x(n
t)

}
,

ΦnT

i = −1

2

{
dnT

i x(nT )2 + cn
T

i x(nT )

}
,

x(nt) =
2∑

j=1

g
a(xnt

)
j uj(a(x

nt

)) + ka(xnt
)x(a(xnt

)); x(n0) = x0, (3.15)

where Lnt

i and ΦnT

i are the instantaneous payoff for player i at node nt ∈ N t, t = 0, ..., T − 1

and terminal node nT , respectively. In this linear-quadratic game, Player i’s optimal payoff
under cooperation is given by

Vi(u
C) =

T−1∑
t=0

∑
nt∈N t

πnt

2

{
rnt

i u
C
i (nt)2 − dnt

i x
C(nt)2

− cn
t

i x
C(nt)

}
−
∑

nT∈NT

πnT

2

{
dnT

i xC(nT )2 + cn
T

i xC(nT )

}
, (3.16)

where uC
i (nt) and xC(nt) are given by (3.8) and (3.9), respectively.

Proposition 3. Consider the game defined by (3.15). Denote by (uC) its cooperative so-
lution. The incentive equilibrium strategy (ψi ∈ Ψi) at uC

i (nt) for i = 1, 2, is credible in
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U1 × U2 if the following conditions hold:

1

2
rn0

1 (uC
1 (n0)

2 − ψ1(u2(n
0))

2
)

+
T−1∑
t=1

∑
nt

πnt

2

(
rnt

1 (uC
1 (nt)

2 − ψ1(u2(n
t))

2
)

− dnt

1 [x
(
uC

1 (nt), u2(n
t)
)2 − x

(
ψ1(u2(n

t)), u2(n
t)
)2

]

− cn
t

1 [x
(
uC

1 (nt), u2(n
t)
)
− x
(
ψ1(u2(n

t)), u2(n
t)
)
]
)

−
∑
nT

πnT

2

(
dnT

1 [x
(
uC

1 (nT ), u2(n
T )
)2 − x

(
ψ1(u2(n

T )), u2(n
T )
)2

]

+ cn
T

1 [x
(
uC

1 (nT ), u2(n
T )
)
− x
(
ψ1(u2(n

T )), u2(n
T )
)
]
)
≤ 0,

∀u2 ∈ U2,

1

2
rn0

2 (uC
2 (n0)

2 − ψ2(u1(n
0))

2
)

+
T−1∑
t=1

∑
nt

πnt

2

(
rnt

2 (uC
2 (nt)

2 − ψ2(u1(n
t))

2
)

− dnt

2 [x
(
u1(n

t), uC
2 (nt)

)2 − x
(
u1(u

t), ψ2(u1(n
t))
)2

]

− cn
t

2 [x
(
u1(n

t), uC
2 (nt)

)
− x
(
u1(n

t), ψ2(u1(n
t))
)
]
)

−
∑
nT

πnT

2

(
dnT

2 [x
(
u1(n

T ), uC
2 (nT )

)2 − x
(
u1(n

T ), ψ2(u1(n
T ))
)2

]

+ cn
T

2 [x
(
u1(n

T ), uC
2 (nT )

)
− x
(
u1(n

T ), ψ2(u1(n
T ))
)
]
)
≤ 0,

∀u1 ∈ U1,

where xC(nt) is the cooperative state variable defined in (3.9).

Proof. It suffices to compute the expressions of the different payoffs in the inequalities (3.14)
taking into account the expression of Player i’s payoff along a given decision established in
(3.16).

Up to now, we have not assumed any particular functional form for the incentive strate-
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gies. For illustrative purpose, let us consider the following simple linear form:

ψi(uj(n
t)) = uC

i

(
nt
)

+ bi
(
nt
) (
uC

j

(
nt
)
− uj(n

t)
)
, (3.17)

i, j = 1, 2 , i 6= j,

where bi (nt) is the penalty coefficient to be determined optimally.

Remark 4. Although the adoption of linear strategies is standard in LQDG, this does not
exclude the possibility of using nonlinear strategies. In some instances, such nonlinear
strategies can be attractive, as they lead to (i) higher payoffs for at least one player (see,
e.g., [81] in the context of the design of incentive games); (ii) a Pareto solution under
some conditions (see [82] for an example in environmental economics), or credible incentive
strategies in linear-state deterministic differential games (see [41]).

Assuming an interior solution, solving the necessary optimality conditions given in (3.10)
and (3.11) yields the values of the incentive control and costate variables, that is, uI

i (n
t) and

λI
i (n

t), on which we impose the equality uI
i (n

t) = uC
i (nt). This implies that uC

i (nt) must
satisfy its associated condition given in (3.10), and moreover we have

ψi(u
C
j (nt)) = uC

i (nt), for i = 1, 2,

which simplifies the arguments in condition (3.10). Additionally, uC satisfies the condition
in (3.4) that characterizes the cooperative solution. Using equations (3.4) and the simplified
(3.10), one may establish the necessary conditions that must be satisfied by the incentive
equilibrium strategies. In the following section, these necessary conditions will be derived
for LQDG.

3.4 Numerical illustration

The credibility conditions involve overlong expressions to be amenable to a qualitative analy-
sis. To visualize the set of credible incentive strategies, we shall resort to a simple numerical
example. The event tree is depicted in Figure 1, and the parameter values are given in
Table 1, with the last line specifying the variation of each parameter value with respect to
its value at the preceding node. In other words, each parameter increases (decreases) in
its upper (lower) child node according to its variation level. Note that in a k-level binary
tree, each of the two conditions defined in the above proposition contains 2k−1−1 variables;
therefore, three in this example. Again, we assume that the incentive strategies are linear,
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Table 3.1: Parameter values

Parameters r1 r2 c1 c2 d1 d2 g1 g2 k

Value at n0 −5 −6.5 0.7 1 0.3 0.5 1 1.5 −0.3
Variation ±0.1 ±0.15 ±0.03 ±0.08 ±0.01 ±0.05 ±0.04 ±0.09 ±0.1

Table 3.2: Control and penalty values

Controls Penalty parameters
Node u1 u2 b1 b2

n0 0.0512 0.0591 0.9317 1.0731
n1 0.0293 0.0338 0.9189 1.0874
n2 0.0381 0.0441 0.9486 1.0553

with their expressions being given in (3.17). Table 2 provides the optimal control values as
well as the penalty terms at the different nodes. We note that in this example the product
of the penalty terms at each node is equal to one, i.e., b1 (nt)× b2 (nt) = 1 for all nt. Also,
each of the credibility conditions defined in Proposition 3 corresponds to the area inside a
polyhedron, as shown in Figures 2 and 3. Lower and upper bounds for the decision variables
may be found based on the drawn polyhedrons.

Figure 3.1: Event tree

3.5 Conclusion

We determined incentive equilibrium strategies for linear-quadratic dynamic games played
over event trees, and characterized the conditions under which these strategies are credible.
We illustrated the implementation of such equilibria on a simple example, where we obtained
non-empty regions for credibility. Two extensions of this work are worth considering. First,
the results were obtained under the assumption of linear incentive strategies. As mentioned
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Figure 3.2: Credibility conditions for Player 1.

Figure 3.3: Credibility conditions for Player 2.

in Remark 2, using other forms is clearly possible, and it would be of interest to see the
impact of having non-linear strategies on the credibility regions. Second, extending the
formalism of incentive strategies to more than two players is a challenging and relevant
research question.
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3.6 Appendix A

3.6.1 Proof of Proposition 1

Due to strict concavity of the objective function, we have the unique relation given by (3.4)
for all nt. If Snt

i is defined by (3.7),

xC(ν) = Ant

xC(nt)−
2∑

i=1

Snt

i λ
C(S(nt));

xC(n0) = x0; ν ∈ S(nt); nt ∈ N t; t = 1, ..., T

Let us suppose that the costate variables are linear in the state (see [39]), that is,

λC(nt) = knt

xC(nt) + αnt

; nt ∈ N t;∀t

which leads to

xC(ν) = Ant

xC(nt)−
∑

ν∈S(nt)

πν

2∑
i=1

Snt

i k
νxC(ν)−

∑
ν∈S(nt)

πν

2∑
i=1

Snt

i α
ν .

The right-hand side of the above equation contains the expected value of the terms evaluated
at the successor nodes ν ∈ S(nt). We know that

xC(ν1) = xC(ν2); ∀ν1, ν2 ∈ S(nt),∑
ν∈S(nt)

πνxC(ν) = xC(ν).

Since the matrix (I +
∑2

i=1 S
nt

i k
ν) is assumed to be invertible, we have

xC(ν) = (I +
2∑

i=1

Snt

i k
ν)−1(Ant

xC(nt)−
2∑

i=1

Snt

i α
ν), (3.18)

λC(ν) = kνxC(ν) + αν (3.19)

= kν(I +
2∑

i=1

Snt

i k
ν)−1(Ant

xC(nt)−
2∑

i=1

Snt

i α
ν) + αν .
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From the optimality conditions given in (3.5), we have

−λC(nt) =
∂LC

∂xnt = πnt
2∑

j=1

(Qnt

j x
nt

+ pnt

j ) + Ant

λC(S(nt))− πnt

λC(nt).

Substituting (3.19) in the above equation yields the following equation:

(1 + πnt

)(knt

xC(nt) + αnt

)

= πnt
(
(Qnt

1 +Qnt

2 )xC(nt) + (pnt

1 + pnt

2 )
)

+ Ant
(
kν(1 +

2∑
i=1

Snt

i k
ν)−1(Ant

xC(nt)−
2∑

i=1

Snt

i α
ν) + αν

)
=
(
πnt

(Qnt

1 +Qnt

2 ) + Ant

kν(1 +
2∑

i=1

Snt

i k
ν)−1Ant

)
xC(nt)

+ πnt

(pnt

1 + pnt

2 ) + Ant
(
αν − kν(1 +

2∑
i=1

Snt

i k
ν)−1

2∑
i=1

Snt

i α
ν
)
.

Collecting the coefficients of xC(nt), the relations in (3.6) follow. The remaining statements
follow from using the terminal conditions.
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3.6.2 Proof of Proposition 2

Using the optimality conditions defined in (3.10)

xC(ν) = Ant

xC(nt)

−Bnt

1

{ 1

πnt (R
nt

11)
−1(Bnt

1 +Bnt

2

∂ψ2

∂u1

)λ1(S(nt))

− (Rnt

11)
−1ψ′2(u1(n

t))
∂ψ2

∂u1

Rnt

12

}
−Bnt

2

{ 1

πnt (R
nt

22)
−1(Bnt

2 +Bnt

1

∂ψ1

∂u2

)λ2(S(nt))

− (Rnt

22)
−1ψ′1(u2(n

t))
∂ψ1

∂u2

Rnt

21

}
.

Using the definitions in (3.13), we can simplify the above relation as follows:

xC(ν) = Ant

xC(nt)−
2∑

i=1

(
(Snt

i + ln
t

i )λi(S(nt)) +mnt

i

)
.

Now define
λi(n

t) = knt

i x
C(nt) + αnt

i ; nt ∈ N t;∀t,

which leads to

xC(ν) = Ant

xC(nt)−
∑

ν∈S(nt)

πν

2∑
i=1

(Snt

i + ln
t

i )kν
i x

C(ν)

−
∑

ν∈S(nt)

πν

2∑
i=1

(
(Snt

i + ln
t

i )αν
i +mnt

i

)
.

Since xC(ν1) = xC(ν2); ∀ν1, ν2 ∈ S(nt) and
∑

ν∈S(nt) π
νxC(ν) = xC(ν), and the matrix

(I +
∑2

i=1(S
nt

i + ln
t

i )kν) is assumed to be invertible, we have

xC(ν) = (I +
2∑

i=1

(Snt

i + ln
t

i )kν)−1(Ant

xC(nt)−
2∑

i=1

(Snt

i + ln
t

i )αν +mnt

i ),
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and

λi(ν) = kν
i x

C(ν) + αν
i (3.20)

= kν
i (I +

2∑
i=1

(Snt

i + ln
t

i )kν)−1

(
Ant

xC(nt)−
2∑

i=1

(
(Snt

i + ln
t

i )αν
i +mnt

i

))
+ αν

i .

From the optimality conditions given in (3.10), we have

−λi(n
t) =

∂Li

∂xnt = πnt
2∑

i=1

(Qnt

i x(n
t) + pnt

i ) + Ant

λi(S(nt))− πnt

λi(n
t).

Substituting (3.20) in the above equation, we obtain the following equation:

(1 + πnt

)(knt

i x
C(nt) + αnt

i ) = πnt
(
Qnt

i x(n
t) + pnt

i

)
+ Ant

{
kν

i (I +
2∑

i=1

(Snt

i + ln
t

i )kν
i )−1

(
Ant

xC(nt)−
2∑

i=1

(
(Snt

i + ln
t

i )αν
i +mnt

i

))
+ αν

i

}

=
(
πnt

Qnt

i + Ant

kν
i (I +

2∑
i=1

(Snt

i + ln
t

i )kν
i )−1Ant

)
xC(nt)

+ πnt

pnt

i + Ant
{
αν

i − kν
i (I +

2∑
i=1

(Snt

i + ln
t

i )kν
i )−1

2∑
i=1

(
(Snt

i + ln
t

i )αν
i +mnt

i

)}
.

Collecting the coefficients of xC(nt) leads to the relations in (3.12). The remaining state-
ments directly follow from using the terminal conditions.
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3.7 Appendix B

3.7.1 Linear-state DGPET

In a linear-state dynamic game the payoff functions and the state dynamics are polynomial
of degree one in the state variables and there are no cross terms between the state and the
control variables. Consider the game defined as follows,

Vi

(
u, x0

)
= max

ui

T−1∑
t=0

∑
nt∈N t

πnt

Lnt

i

(
x
(
nt
)
,u(nt)

)
+
∑

nT∈NT

πnT

ΦnT

i

(
x
(
nT
))
, i = 1, 2,

(3.21)
subject to:

x
(
nt
)

= fa(nt) (x (a (nt
))
,u(a

(
nt
)
)
)
, x (n0) = x0 (3.22)

u(a
(
nt
)
) ∈ Ua(nt), nt ∈ N t, t = 1, . . . , T.

where Lnt

i (x(nt),unt
), Φi(x

nT
) and fnt

(x(nt),unt
) satisfy the property of linear-state

games. In particular, this implies that

∂2Li

∂unt

j ∂x
nt

= 0, i = 1, 2, j = 1, 2, t = 0, ..., T − 1, nt ∈ N t, (3.23)

∂2Li

∂xnt2
= 0, i = 1, 2, t = 0, ..., T, nt ∈ N t, (3.24)

which shows that the optimality conditions

∂Li

∂unt

i

(λi, x,u) = 0, t = 0, 1, ..., T − 1, nt ∈ N t,

are independent of the state, and that the costate equations

λi(n
t) =

∂Li

∂x(nt)
, t = 0, 1, ..., T, nt ∈ N t,

do not include the state variables. In turn, this implies that the costate and control
trajectories may be computed independently from the initial state, which yields the well-
known result that an open-loop equilibrium is Markov perfect for this class of games. In
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this context, it is easy to show that λC(nt) =
∑2

i=1 λi(n
t).45 Optimality conditions for the

cooperative game implies that for each player i = 1, 2 at uC(nt), ∀nt, t = 0, ..., T − 1 we
have

∂LC

∂uk(nt)
=πnt

(
∂ui
Lnt

1 + ∂ui
Lnt

2

)
+ ∂ui

fnt
∑

ν∈S(nt)

πνλC(ν) = 0,

which together with λC(nt) =
∑2

i=1 λi(n
t), ∀nt imply,

πnt

∂u1L
nt

1 + ∂u1f
nt
∑

ν∈S(nt)

πνλ1(ν) = −πnt

∂u1L
nt

2 − ∂u1f
nt
∑

ν∈S(nt)

πνλ2(ν), (3.25)

πnt

∂u2L
nt

2 + ∂u2f
nt
∑

ν∈S(nt)

πνλ2(ν) = −πnt

∂u2L
nt

1 − ∂u2f
nt
∑

ν∈S(nt)

πνλ1(ν). (3.26)

The proposition below states the conditions to be satisfied by incentive strategies.

Proposition 4. To be an incentive equilibrium at uC, a pair of strategies (ψ1, ψ2) ∈ Ψ1×Ψ1

must satisfy the following conditions:6

∂ψ1

∂u2

(uC
2 (nt))× ∂ψ2

∂u1

(uC
1 (nt)) = 1, (3.27)

and

ψ′1(u
C
2 ) = −

πnt
∂u2L

nt

2 + ∂u2f
nt ∑

ν∈S(nt) π
νλ2(ν)

πnt∂u1L
nt

2 + ∂u1f
nt
∑

ν∈S(nt) π
νλ2(ν)

, (3.28)

ψ′2(u
C
1 ) = −

πnt
∂u1L

nt

1 + ∂u1f
nt ∑

ν∈S(nt) π
νλ1(ν)

πnt∂u2L
nt

1 + ∂u2f
nt
∑

ν∈S(nt) π
νλ1(ν)

, (3.29)

where
πnt

∂uj
Lnt

i + ∂uj
fnt

∑
ν∈S(nt)

πνλi(ν), i, j = 1, 2, i 6= j,

are assumed to be nonzero.

Proof. In a linear-state game, optimality conditions for the non-cooperative game can be
4The proof is straightforward simply because of (3.23), (3.24) and the condition uI

i = uC
i ,∀i.

5This condition directs us to,

∑
ν∈S(nt)

πνλC(ν) =
∑

ν∈S(nt)

πν
2∑

i=1

λi(ν).

6All functions evaluated at (uC
1 , uC

2 ).
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simplified to7

[πnt

∂unt

i L
nt

i + ∂unt

i f
nt
∑

ν∈S(nt)

πνλi(ν)]

+
∂ψj

∂ui

[πnt

∂unt

j L
nt

i + ∂unt

j f
nt
∑

ν∈S(nt)

πνλi(ν)] = 0, i, j = 1, 2, i 6= j. (3.30)

Replacing the equations (3.25) and (3.26) in (3.30) for i = 2, j = 1, we get,

[πnt

∂unt

2 L
nt

1 + ∂unt

2 f
nt
∑

ν∈S(nt)

πνλ1(ν)] +
∂ψ1

∂u2

[πnt

∂unt

1 L
nt

1 + ∂unt

1 f
nt
∑

ν∈S(nt)

πνλ1(ν)] = 0.

(3.31)
Besides, from (3.30) for i = 1, j = 2, we have,

[πnt

∂unt

1 L
nt

1 +∂unt

1 f
nt
∑

ν∈S(nt)

πνλ1(ν)] = −∂ψ2

∂u1

[πnt

∂unt

2 L
nt

1 +∂unt

2 f
nt
∑

ν∈S(nt)

πνλ1(ν)]. (3.32)

Substituting the right-hand side of the last equation in (3.31) and arranging the terms, we
obtain

[πnt

∂unt

2 L
nt

1 + ∂unt

2 f
nt
∑

ν∈S(nt)

πνλ1(ν)][1−
∂ψ1

∂u2

× ∂ψ2

∂u1

] = 0

Since [πnt
∂unt

2 L
nt

1 + ∂unt

2 f
nt ∑

ν∈S(nt) π
νλ1(ν)] is assumed to be nonzero, we have condition

(3.27). Moreover, (3.28) and (3.29) are direct results of (3.30) for i = 2, j = 1 and
i = 1, j = 2 respectively assuming πnt

∂unt

j L
nt

i + ∂unt

j f
nt ∑

ν∈S(nt) π
νλi(ν) is nonzero for

i, j = 1, 2, i 6= j.

To get more insight into the results, let us assume the following specific functional forms
for the 2-player linear-state game under consideration:

Lnt

i (x(nt),u(nt)) =
1

2
rnt

i ui(n
t)

2 − dnt

i x(n
t), (3.33)

ΦnT

i = −dnT

i x(nT ),

xnt

=
2∑

i=1

g
a(nt)
i ui(a(n

t)) + ka(nt)x(a(nt)); x(n0) = x0.

Note that in the above formulation, the parameters vary in different nodes. Denoting by
uC

i (nt) the cooperative strategy of player i at node nt, the optimality conditions for the
7To keep the notation simple, the arguments of all functions are omitted.
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cooperative and non-cooperative games can be rewritten as follows:

∂LC

∂unt

i

= πnt

rnt

i u
C
i (nt) + gnt

i

∑
ν∈S(nt)

πνλC(ν) = 0 ⇒ uC
i (nt) = − gnt

i

πntrnt

i

∑
ν∈S(nt)

πνλC(ν),

∂Li

∂unt

i

= πnt

rnt

i ui(n
t) +

(
gnt

i + gnt

j

∂ψj(ui(n
t))

∂ui

) ∑
ν∈S(nt)

πνλi(ν)

 = 0,

⇒ ui(n
t) = −

∑
ν∈S(nt) π

νλi(ν)

πntrnt

i

(
gnt

i + gnt

j

∂ψj(ui(n
t))

∂ui

)
; i, j = 1, 2, i 6= j.

The associated cooperative costate variables are given by

λC(nt) = − 1

1 + πnt

πnt
2∑

i=1

dnt

i − knt
∑

ν∈S(nt)

πνλC(ν)

 , t = 0, ..., T − 1,

λC(nT ) = −π
nT ∑2

i=1 d
nT

i

1 + πnT ,

and their non-cooperative counterparts by

λi(n
t) = − 1

1 + πnt

πnt

dnt

i − knt
∑

ν∈S(nt)

πνλi(ν)

 , t = 0, ..., T − 1,

λi(n
T ) = − πnT

dnT

i

1 + πnT .

We collect the results for the cooperative case in the following proposition.

Proposition 5. If the players optimize their joint payoffs, then the optimal control is con-
stant and given by

uC
i (nt) = − gnt

i

πntrnt

i

∑
ν∈S(nt)

πνλC(ν),

where the costate variables are obtained by solving recursively the following equations:

λC(nt) = − 1

1 + πnt

πnt
2∑

i=1

dnt

i − knt
∑

ν∈S(nt)

πνλC(ν)

 , t = 0, ..., T − 1,

λC(nT ) = −π
nT ∑2

i=1 d
nT

i

1 + πnT .
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The cooperative state trajectory xC(nt) is given by

xC(nt) =
2∑

i=1

g
a(nt)
i uC

i (a(nt)) + ka(nt)xC(a(nt)), (3.34)

and Player i’s optimal payoff by

Vi(u
C) =

T−1∑
t=0

∑
nt∈N t

πnt

(
1

2
riu

C
i (nt)2 − dnt

i x
C(nt)

)
−
∑

nT∈NT

πnT

dnT

i xC(nT ). (3.35)

To fully characterize incentive strategies and the credibility conditions, we need to as-
sume a certain functional form for these strategies. Consider the linear strategies given
by

ψ1(u2(n
t)) = uC

1 (nt) + bn
t

1 (u2(n
t)− uC

2 (nt)), (3.36)

ψ2(u1(n
t)) = uC

2 (nt) + bn
t

2 (u1(n
t)− uC

1 (nt)). (3.37)

The node-varying parameter bnt

i represents the penalty that player i imposes on the other
player deviation from cooperation at node nt. Of course, the idea is to have no deviation
so that the penalty becomes immaterial. Note that under the linearity assumption of the
incentive strategies, it is easy to verify that the conditions in (3.28)-(3.29) and (3.27) become

ψ′1(u2) = bn
t

1 , ψ′2(u1) = bn
t

2 , bn
t

1 × bn
t

2 = 1.

The following proposition characterizes the conditions under which these incentive strate-
gies are credible.

Proposition 6. Consider the game defined by (3.33) and denote by (uC) its cooperative
solution. The incentive equilibrium strategy (ψi ∈ Ψi) at uC

i (nt) for i = 1, 2, is credible in
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Table 3.3: Parameter values

Node r1 r2 d1 d2 g1 g2 k

n0 −5 −6.5 0.7 1 1 1.5 −0.3
Variation ±0.1 ±0.15 ±0.03 ±0.08 ±0.04 ±0.09 ±0.1

U1 × U2 if the following conditions hold:

1

2
rn0

1 (uC
1 (n0)

2 − ψ1(u2(n
0))

2
) +

T−1∑
t=1

∑
nt

πnt
(1

2
rnt

1 (uC
1 (nt)

2 − ψ1(u2(n
t))

2
)

− dnt

1 [g
a(nt)
1 (uC

1 (a(nt))− ψ1(u2(a(n
t)))) + ka(nt)

(
x1(a(n

t))− x2(a(n
t))
)
]
)

−
∑
nT

πnT

dnT

1 [g
a(nT )
1 (uC

1 (a(nT )− ψ1(u2(a(n
T ))))

+ ka(nT )
(
x1(a(n

T ))− x2(a(n
T ))
)
] ≤ 0, ∀u2 ∈ U2,

1

2
rn0

2 (uC
2 (n0)

2 − ψ2(u1(n
0))

2
) +

T−1∑
t=1

∑
nt

πnt
(1

2
rnt

2 (uC
2 (nt)

2 − ψ2(u1(n
t))

2
)

− dnt

2 [g
a(nt)
2 (uC

2 (a(nt))− ψ2(u1(a(n
t)))) + ka(nt)

(
x3(a(n

t))− x4(a(n
t))
)
]
)

−
∑
nT

πnT

dnT

2 [g
a(nT )
2 (uC

2 (a(nT ))− ψ2(u1(a(n
T ))))

+ ka(nT )
(
x3(a(n

T ))− x4(a(n
T ))
)
] ≤ 0, ∀u1 ∈ U1.

where x1(n
t), x2(n

t), x3(n
t), and x4(n

t) are state variables defined by (3.34) at (uC
1 (nt), u2(n

t)),
(ψnt

1 (u2), u2(n
t)), (u1(n

t), uC
2 (nt)), and (u1(n

t), ψnt

2 (u1)) respectively.

Proof. It suffices to compute the expressions of the different payoffs in the inequalities (3.14)
taking into account the expression of player i’s payoff in (3.35).

3.7.2 Numerical illustration

The event tree is depicted in Figure 3.1, and the parameter values are given in Table 3.3.
The values of the control variables and the penalties at the different nodes are given in

Table 3.4. Observe that b1 (nt)× b2 (nt) = 1 for all nt.
The credibility conditions defined in Proposition 6 correspond to the polyhedron regions,

which are not necessarily with flat faces and straight edges, shown in Figures 3.4 and
3.5. This representation holds true for any set of parameters in the linear-state game with
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Table 3.4: Control and penalty values

Controls Penalty parameters
Node u1 u2 b1 b2

n0 0.0535 0.0617 0.9202 1.0843
n1 0.0303 0.0351 0.9205 1.0886
n2 0.0394 0.0456 0.9546 1.0504

linear-incentive strategies, that is, the credibility conditions correspond to the area inside a
polyhedron. Further, for any set of parameters, we may find the lower and upper bounds
for the decision variables for which the polyhedrons are drawn.

Figure 3.4: Credibility conditions for Player 1.
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Figure 3.5: Credibility conditions for Player 2.

58



Chapter 4

Cost-Revenue Sharing in a Closed Loop
Supply Chain Played Over Event Trees

Elnaz Kanani Kuchesfehani

GERAD, HEC Montréal, Canada
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abstract

This article deals with a game of closed-loop supply chain (CLSC) with a single manufacturer
and a single retailer played over an event tree, i.e., a tree where the transition from one
node to another is nature’s decision and cannot be influenced by the players’ actions. We
characterize and compare strategies and outcomes in two non-cooperative scenarios played
à la Stackelberg, where the retailer acts as leader and the manufacturer as follower. In the
benchmark scenario, we assume that there is no collaboration between the two players and
the manufacturer pays the cost of green activity (GA) efforts which aims at increasing the
product return. In the second scenario, namely cost-revenue sharing (CRS) program, the
retailer contributes in the cost of GA efforts incurred by the manufacturer and the latter
transfers a part of his revenues to the former in return. In both scenarios, the event tree is
defined based on the fluctuations in the demand law parameters. Furthermore, a numerical
illustrative example in environmental economics is presented for more elaboration.

Keywords: Closed-loop supply chain, Cost-revenue sharing, Dynamic games, Event
tree, Return rate.



4.1 Introduction

In a Closed-Loop Supply Chain (CLSC), forward and reverse activities are combined into a
unique system to increase economic, environmental, and social performance [52]. In particu-
lar, reverse activities include collecting back previously sold products when they reach their
end of life. The interest in doing so lies in the cost reduction that results from producing
by means of used components instead of only with new materials. It is then not surprising
to see that the manufacturer is the agent who is most interested in closing the loop and
appropriating the returns’ residual value, while other members of the supply chain are ex-
cluded from the benefits [54]. At the same time, as retailers are close to the customers, they
can be highly effective in creating awareness about the environmental benefit of recycling,
and therefore play a key role in a CLSC [51], [55]. Intuitively, the retailer will participate
in closing the loop only if she gets some of the savings that the manufacturer realizes when
producing with material extracted from used products [56]. One straightforward way of
sharing this benefit is in reducing the wholesale price. On the other hand, the retailer may
find it optimal to pay part of the manufacturer’s cost incurred to increase the return of
products by consumers at the end of their useful life. This reasoning implies that there is
room for a two-way incentive scheme in a CLSC, i.e., sharing both revenues and (some)
costs. This is the line of thought pursued in this paper.

In a revenue sharing contract (RSC), the retailer pays the manufacturer a percentage of
the total revenues. The rationale for a RSC is the mitigation of the double-marginalization
effect, i.e., a RSC leads to a lower price and higher demand than in a standard wholesale
price contract, see, e.g., [47] and [46]. In a Reverse Revenue Sharing Contract (RRSC), it is
typically the manufacturer who transfers part of her revenues to the retailer. For examples
of RSC and RRSC, see [44], [45], [48], [49], [50] and [51].

In this article, assuming that the data of the problem is stochastic, we want to check
whether the manufacturer should rely on her own or financially involve the retailer in the
remanufacturing process through implementing a RRSC. Also, we investigate under which
conditions RRSC is a Pareto improving solution with respect to the traditional wholesale
pricing model. Furthermore, we run a sensitivity analysis to assess the impact of main
model’s parameters on the results. In order to answer the above questions, we develop
a dynamic game of CLSC played over an uncontrolled event tree, that is, a game where
the transition from one node to another is nature’s decision and cannot be influenced by
the players’ actions, and design a RRSC that adapts to the realization of the stochastic
demand at each node of the tree. The dynamic feature of the game stems naturally from
the fact that the purchase and return of the product take place at different moments in time.
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We assume that the manufacturer can influence the return of used products by conducting
some “green” activities (GA) such as advertising and communications campaigns about the
recycling policies, logistics services, monetary and symbolic incentives, employees-training
programs, etc.

We characterize and compare strategies and outcomes in two non-cooperative scenarios
played à la Stackelberg, where the retailer acts as leader and the manufacturer as follower.
In the first scenario, which plays the role of a benchmark, the retailer does not participate
financially in the GA program and the manufacturer does not offer any discount on the
wholesale price. In the second scenario, the two members of the supply chain implement
a cost-revenue sharing contract. To account for the stochastic process evolving over time,
we use the formalism of dynamic games played over event trees, which was introduced in
Zaccour [1] and Haurie et al. [2].

The rest of the paper is organized as follows. In Section 4.2, we state the dynamic
game model played over the event tree followed by analytical solutions of the benchmark
(non-collaborative) and cost-revenue sharing (CRS) scenarios. In Section 4.4, we discuss an
illustrative example in environmental economics. Section 4.5 contains the conclusion.

4.2 The model

The CLSC is formed of one (re)manufacturer (player M) who sells her product through a
retailer (player R). To account for the return by (some) consumers of previously purchased
products at the end of their useful life, we naturally retain a dynamic model. The planning
horizon is finite and let T = {0, 1, . . . , T} be the set of periods. We suppose that the
demand is random and described by a stochastic process defined by an event tree. We denote
the root node by n0 in period 0 and consider a set of nodes N t in period t = 1, . . . , T . Let
a(nt

l) ∈ N t−1 be the unique predecessor of node nt
l ∈ N

t for t = 1, . . . , T , and denote by
S(nt

l) ∈ N t+1 the set of all possible direct successors of node nt
l ∈ N

t for t = 0, 1, . . . , T−1.
In what follows, the dependence on a node nt

l ∈ N t in period t = 1, . . . , T is shown as
a superscript for parameters and as an argument for variables. We denote by πnt

l the
probability of passing through node nt

l . In particular, we have πn0 = 1 and πnT
l is equal

to the probability of the single scenario that terminates in (leaf) node nT
l ∈ N T . Also,∑

nt
l∈N t πnt

l = 1,∀t.1

Denote by p(nt
l) the price-to-consumer chosen by the retailer in node

nt
l ∈ N t, t = 1, . . . , T . At each node, the demand Q(nt

l) is a decreasing function of
1 See [6] for an introduction to this class of games and [83] for the extension to the case where the players

face coupling constraints.
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price. Following a long tradition in economics, we retain the following linear form:2

Q
(
nt

l

)
= αnt

l − βnt
lp(nt

l), (4.1)

where αnt
l > 0 is the market potential, and βnt

l > 0 represents consumer’s sensitivity to
price at node nt

l ∈ N t for t = 0, 1, . . . , T . Note that both parameters’ values are node-
dependent. To have nonnegative demand and positive margin for the retailer, the condition
w < p(nt

l) ≤ αnt
l

β
nt

l
must be satisfied at all nodes where w is the fixed wholesale price.

The manufacturer can use either new materials or old materials extracted from the
returned (past-sold) products in the production process. Assuming away inventories in
production and in consumer’s basement, we shall refer to the number of product units that
come back as returns and denote them by r (nt

l), at node nt
l ∈ N t in period t = 1, . . . , T .

In the CLSC literature, the rate (or quantity) of returned products has been modeled
following essentially three approaches. A first group of authors assumed that the return
rate is exogenous (see, e.g., [84], [85], [86], [87], [88]). The second stream also adopted a
passive approach, but modeled the return rate as a random variable, e.g., an independent
Poisson (see, e.g., [89], [90], [91]). The third group of studies considered an active approach,
with the return rate being a function of players’ strategies (see, e.g., [55], [92]). In this paper,
we follow this active approach. More specifically, we suppose that the life duration of a
product is one period. At the end of this period, some used products will be returned to the
manufacturer for recycling, while some others will end-up in the landfield. The quantity
of returned units at node nt

l depend therefore on demand Q(a(nt
l)), and on the investment

G(nt
l) in the GA program at that node, that is,

r(nt
l) = fnt

(Q(a(nt
l)), G(nt

l)), r(n0) = r0. (4.2)

To solve the model, we retain the following form for the above state dynamics:

r(nt
l) = G(nt

l)Q(a(nt
l))− δr(a(nt

l)), r(n0) = r0, (4.3)

where δ is a decay rate. This specification assumes that the GA program targets only
the customers who bought the product in antecedent node. This amounts at assuming
that products bought more than one period before have either already been returned to the
manufacturer or disposed of in the environment. This is clearly a simplifying assumption as
nothing precludes a consumer to wait a number of periods before returning a used product.

2To be more rigorous, we should write the demand function as Q(p(nt)), but to simplify the notation,
we write it as Q(nt).
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The decay term δr(a(nt)) is capturing the idea, in albeit a crude manner, that a product
cannot be recycled infinitely many times.

Remark 5. To account for the fact that the node a (n0) cannot materialize, we impose
αa(n0) = βa(n0) = r(a(n0)) = 0.

Denote by d(G(nt)) the manufacturer’s investment cost in the GA program. We suppose
that d(G(nt

l)) is convex increasing, with d (0) = 0, that is, there is no fixed cost. For
simplicity, we shall assume in the sequel that this cost is quadratic and given by

d(G(nt
l)) =

k(G(nt
l))

2

2
, (4.4)

where k > 0 is a scaling parameter.
The rationale for returns can be purely environmental. For instance, to avoid hav-

ing used products being dispersed in the environment, the government may request the
manufacturer to collect back these products and store them in an appropriate site. As
mentioned before, here we additionally suppose that there is a cost advantage in recycling,
namely, that producing with used parts is cheaper that manufacturing with exclusively new
material. Denote by c(r(nt

l)) the unit production cost. As using old material is intuitively
subject to marginal decreasing return, we assume c(r(nt

l)) to be convex decreasing. For
mathematical tractability, we follow [50] and adopt the following linear functional form:

c(r(nt
l)) = c0 − crr(n

t
l), (4.5)

where c0 > 0 is the unit production cost when using only new material, and cr > 0 represents
the marginal reduction in cost due to returns. We assume that the parameters are such
that the unit cost is positive at all nodes. Instead of formally imposing this constraint, we
shall check ex-post for its fulfillment.

Remark 6. The returns r(nt
l) constitute a measure of environmental performance at node

nt
l, and the term crr(n

t
l) gives the associated economic gain.

We shall characterize and compare the equilibrium solutions in two scenarios.
Benchmark: The two members of the supply chain do not share the cost of the GA

program, nor the revenues. The game is played non-cooperatively, that is, the manufacturer
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and the retailer maximize their individual profits given by

max
G(nt

l)>0
JM(G, p, r) =

T∑
t=0

∑
nt

l∈N t

πnt
l

(
(w − c(r(nt

l)))Q(nt
l)− d(G(nt

l))
)
, (4.6)

max
p(nt)≥0

JR(p) =
T∑

t=0

∑
nt

l∈N t

πnt
l

(
p(nt

l)− w
)
Q(nt

l), (4.7)

where w is the fixed wholesale price and the returns are given by (4.2).
Cost-Revenue Sharing (CRS): In this case, the retailer pays a share B (nt

l) , 0 ≤
B (nt

l) ≤ 1, of the manufacturer’s GA cost, and the manufacturer discounts the wholesale
price by an amount I(r(nt

l)) to compensate the retailer for sharing the cost of the GA
program. Therefore, the wholesale price in this scenario is given by w − I(r(nt

l)). Note
that the reduction in the wholesale price depends on the returns; it is a way of incentivizing
the retailer to contribute at a higher rate in the cost of GA program, whose objective is
to increase the returns. The manufacturer’s net margin at node nt

l∈ N t, t = 0, ..., T is
therefore w − c(r(nt

l))− I(r(nt
l)). As noted before, the non-cooperative game is played à la

Stackelberg with the retailer as the leader and the manufacturer as the follower, that is, the
retailer first decides the support rate and the price to consumer, and next the manufacturer
the investment in the GA program.

Following [46], [44] and [93], we retain the following form for the incentive function:

I(r(nt
l)) = φ(w − c(r(nt

l))) = φ
(
w − c0 + crr(n

t
l)
)
, (4.8)

where φ ∈ [0, 1] is the sharing parameter and stands for the percentage of manufacturer’s
profit margin transferred to the retailer. In the benchmark scenario, φ = 0 as well as
B (nt

l) = 0 for all nt
l∈ N t, t = 0, ..., T .
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In this cost-revenue sharing scenario, the optimization problems are as follows

max
G(nt

l)>0
JM(G, p,B, r)

=
T∑

t=0

∑
nt

l∈N t

πnt
l

((
w − c(r(nt

l))− I(r(nt
l))
)
Q(nt

l)− (1−B(nt
l))d(G(nt

l))
)
, (4.9)

max
p(nt

l)>0

B(nt
l)>0

JR (G, p,B, r)

=
T∑

t=0

∑
nt

l∈N t

πnt
l

((
p(nt

l)− w + I(r(nt
l))
)
Q(nt

l)−B(nt
l)d(G(nt

l))
)
, (4.10)

subject to the returns dynamics in (4.2). Notice that in this scenario, the two players are
strategically linked, as their payoffs depend on both players’ actions and on the returns.

Remark 7. The reason for having a fixed wholesale price w, which may appear counter
intuitive, is to have a meaningful comparison between the two scenarios. If w were a
decision variable, then the manufacturer can manipulate its level in both scenarios rendering
the incentive I(r(nt

l)) meaningless.

To wrap up, we have defined a two-player dynamic game played over an event tree,
with one decision variable for the manufacturer (G(nt

l) ≥ 0) and two decision variables for
the retailer (p(nt

l) ≥ 0 and 0 ≤ B(nt
l) ≤ 1). In the following section, we characterize the

equilibrium solutions in the two scenarios and draw some comparisons.

4.3 Equilibrium solutions

In this section, we characterize equilibrium strategies and outcomes for both scenarios.
First, we solve for the benchmark scenario in which the retailer does not participate in
the green efforts undertaken by the manufacturer and the manufacturer does not discount
the wholesale price to the retailer, i.e., B(nt

l) = I(r(nt
l)) = 0, ∀nt

l . Second, we solve for
the cost-revenue sharing (CRS) scenario in which the retailer, as the leader, sets first her
support rate and the price, and next the manufacturer, as the follower, decides about her
GA efforts. Next, we compare the two equilibrium results.

4.3.1 Benchmark scenario

In this scenario, the retailer’s optimization problem is independent of the manufacturer’s
control variable G and of the state variable r. Consequently, the retailer optimizes, at

65



each node, a static problem without any regard of what the manufacturer is doing. The
implication of this structure is that it does not matter if the game is played simultaneously
à la Nash or sequentially à la Stackelberg, the result would be the same.

Introduce the manufacturer’s Hamiltonian

HM =
T∑

t=0

∑
nt

l∈N t

πnt
l

{(
αnt

l − βnt
lp(nt

l)
) (
w − c0 + crr(n

t
l)
)
− k

2
(G(nt

l))
2

+ λ(nt
l)
(
G(nt

l)
(
αa(nt

l) − βa(nt
l)p(a(nt

l))
)
− δr(a(nt

l))
)}

,

where λ = (λ (nt
l))nt

l∈N t,t=1,...,T , is the costate variable appended by the manufacturer to
the state variable r. The value at node nt

l corresponds to the shadow price or marginal
value of the returns at that node. The following proposition characterizes the equilibrium
strategies (superscripted with ∼) in this scenario.

Proposition 1. Assuming an interior solution, the equilibrium GA and price values at
node at node nt

l ∈ N tfor t = 0, 1, . . . , T are as follows:

G̃(nt
l) =

(αa(nt
l) − βa(nt

l)w)

2k

πnt
lcr
2

(αnt
l − βnt

lw)− δ
∑

ν∈S(nt
l)

πνλ̃(ν)

 , (4.11)

p̃(nt
l) =

αnt
l + βnt

lw

2βnt
l

, (4.12)

where λ̃ (·) is governed by the following difference equation:

λ̃(nt
l) = πnt

lcr

(αnt
l − βnt

lw

2

)
− δ

∑
ν∈S(nt

l)

πνλ̃(ν)

λ̃(nT+1
l ) = 0

Proof. See Appendix.

The results deserve the two following comments:

1. As expected, the retail price is increasing in the market potential αnt
l and decreasing in

consumer sensitivity to price given by βnt
l . Note that p(nt

l) is increasing in the whole-
sale price w, a result that has a strategic complementarity flavor, that is, increasing
the value of one strategic variable leads to an increase in the other one. Of course,
the interpretation here is stretched a bit as w is given and is not a decision variable.
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2. The equilibrium GA value is determined by the familiar rule of marginal cost equals
marginal revenue. Indeed, observing that

Q̃
(
nt

l

)
=
αnt

l − βnt
lw

2
, (4.13)

it is then easy to see from the Appendix that

kG̃(nt
l) = λ̃(nt

l)Q̃
(
a
(
nt

l

))
.

The left-hand side is d′
(
G̃ (nt

l)
)
, while the right-hand side gives the marginal revenue,

which is the product of demand at antecedent node multiplied by the shadow price of
returns.

4.3.2 Cost-revenue sharing scenario

In this scenario, at node nt
l ∈ N t for t = 0, 1, . . . , T , the manufacturer transfers a part

of her revenues φ (w − c0 + crr(n
t
l)), where φ is a given parameter, and the retailer pays

a percentage B(nt
l) of manufacturer’s GA cost, where B(nt

l) is a strategic variable. The
implication is that now the returns influence the retailer’s payoff and therefore become a
relevant variable.

Denote by µr is the retailer’s costate variable appended to the returns dynamics. Recall
that λ is the costate variable appended by the manufacturer to the state dynamics, and
let µλ be the costate variable appended by the retailer to the state equation describing
the evolution of λ, which becomes an additional state variable for her (see Appendix for
details). The following proposition characterizes the equilibrium strategies in the leader-
follower dynamic game.

Proposition 2. Assuming an interior solution, the Stackelberg equilibrium values at node
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nt
l ∈ N tfor t = 0, 1, . . . , T are given by

G(nt
l) =

(1 + φ)

2k

(
αa(nt

l) − βa(nt
l)p(a(nt

l))
){

πnt
lcr(α

nt
l − βnt

lp(nt
l)) (4.14)

− δ

1− φ

∑
ν∈S(nt

l)

πνλ(ν)
}
,

p(nt
l) =

kπnt
l

(
αnt

l + βnt
l

(
φ (c0 − crr(n

t
l)) + (1− φ)

(
w − πnt

lcrµλ(n
t
l)
)))

− αnt
lβnt

lΓ

βnt
l

(
2kπnt

l − βnt
lΓ
) ,

(4.15)

B(nt
l) =

3φ− 1

φ+ 1
, (4.16)

where

Γ =
∑

ν∈S(nt
l)

πν

(
1

2
λ(ν) + µr(ν)

)2

,

and the costate and state variables are governed by the following difference equations:

µr(n
t
l) = πnt

lcrφ(αnt
l − βnt

lp(nt
l))− δ

∑
ν∈S(nt

l)

πνµr(ν), (4.17)

µr(n
T+1
l ) = 0,

µλ(n
t
l) =

(1 + φ)πnt
lQ2(a(nt

l))

4k (1− φ)2

(
2µλ(n

t
l) (1− φ))− λ(nt

l) (3φ− 1)
)

+ πnt
lπa(nt

l)µr(a(n
t
l)),

(4.18)

µλ(n
T+1
l ) = 0,

λ(nt
l) = πnt

lcr(1− φ)(αnt
l − βnt

lp(nt
l))− δ

∑
ν∈S(nt

l)

πνλ(ν), (4.19)

λ(nT+1
l ) = 0,
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r(nt
l) =

(1 + φ)λ(nt
l)Q

2(a(nt
l))

2k (1− φ)
− δr(a(nt

l)), (4.20)

r(n0) = r0.

Proof. See Appendix.

In order to find the exact values of the variables at each node, we need to solve (4.14),
(4.15), (4.17), (4.18), (4.19) and (4.20) as a set of simultaneous equations because of their
interdependency owing to the recursive form of equations over the event tree. Clearly,
retailer’s support rate, B, can be specified independently by (4.16).

The main result is that the support provided by the retailer to the manufacturer is
constant over nodes, and only depends on the sharing-revenue parameter φ. For this
support to be interior, that is, 0 < B(nt

l) < 1 rate, we must have

1

3
< φ < 1.

We shall assume from now on that the parameter φ satisfies the above bounds. Further,
this support rate in increasing in φ. Indeed,

dB(nt
l)

dφ
=

3 (φ+ 1)− (3φ− 1)

(φ+ 1)2 =
4

(φ+ 1)2 > 0.

It is not easy to derive conditions on the parameter values that guarantee positivity of the
price. We shall check in the numerical examples that the price is indeed interior.

To interpret G(nt
l), we have from (4.19) that

λ(nt
l) =

∂HM

∂r(nt
l)

= πnt
lcr(1− φ)(αnt

l − βnt
lp(nt

l))− δ
∑

ν∈S(nt
l)

πνλ(ν).

Using the above expression, we can rewrite the expression of G(nt
l) as

kG(nt
l) =

(1 + φ)

2(1− φ)
Q
(
a
(
nt

l

))
λ(nt

l).

Using B(nt
l) = 3φ−1

φ+1
, we get

kG(nt
l)(1−B(nt

l)) = λ(nt
l)Q

(
a
(
nt

l

))
. (4.21)

As in the previous scenario, the equilibrium GA effort is determined by the familiar rule of
marginal cost equals marginal revenue. Observe that the marginal cost now includes the
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term (1−B(nt
l)), which is the share of the cost taken by the manufacturer.

4.4 Illustrative examples

As no more insight can be obtained analytically, especially in terms of comparing strategies
and outcomes in the two scenarios, we shall run some numerical simulations. We increase
the realism and complexity of the problem by assuming a two part planning horizon. In the
first part, t = 0, ..., τ , we have the regular binary event tree representing the uncertainty in
the parameters while in the second part, t = τ+1, ..., T , there is no uncertainty involved and
hence there exists 2τ scenarios, prolonging from each of the nodes at t = τ . In other words,
the parameters in the second period are fixed and equal to the their levels at t = τ . We
assumed that we have equal probabilities for each of the two branches stemmed from node
nt, t = 0, ..., τ − 1. The event tree is depicted in Figure (4.1) and table (4.1) summarizes
some useful information in this structure.

Figure 4.1: General event tree

Although we can solve for any finite event tree, we provide the results for only two
planning horizons.3 More specifically, we shall discuss in details the results for a short
planning horizon (T = 7) and show some results for a longer planning horizon (T = 18).
To start, let us consider an eight-period planning horizon (τ = 3, T = 7 and t = 0, . . . , 7).

3Other results can be obtained from the author upon request.
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Table 4.1: Important numbers of the extended tree

Number of stochastic nodes 2τ+1 − 1
Number of nodes in the last stochastic stage

= Total number of scenarios 2τ

Number of deterministic nodes 2τ × (T − τ)
Total number of nodes 2τ × (T − τ + 2)− 1

In this case, there are in total eight scenarios emanating from the initial (root) node and
terminating in one of the node nT

l ∈ N T .
The model has 8 parameters, namely:

Stochastic demand parameters : α, β

Cost parameters : c0, cr, k

Wholesale price : w

Sharing parameter : φ

Decay parameter : δ

In the sequel, we shall fix once and for all the values of three parameters, namely,
c0, k and δ, whose impact on the results is expected to be purely quantitative, without
much qualitative insight.4 More precisely, we normalize the two cost parameters at one
(c0 = k = 1) and set the decay parameter δ = 0.2.

The stochastic demand parameters evolve as follows along the tree:

αnt
l = (1± rα) · α

(
a
(
nt

l

))
, α0 = 3, rα = 0.1, t = 1, 2, 3,

βnt
l = (1± rβ) · β

(
a
(
nt

l

))
, β0 = 1, rβ = 0.05, t = 1, 2, 3.

The positive variation rate is applied to upward pointing successor nodes, and the negative
rate to downward pointing successor nodes, for t = 0, . . . , 3. For t = 4, . . . , 7, the values of
α and β stay fixed and equal to their associated levels at t = 4. In the following simulations,
we shall consider the event tree made of 8 periods and the demand parameters are as given
in Table (4.2).

In the base case, we fix three parameters cr = 0.5, w = 2, and φ = 0.6 and solve both
benchmark and the CRS scenarios. The results are given in Table (4.3). For the next three
sets of simulations, the aim is to investigate the impact of different values of φ,w, and cr on

4See Appendix C for the related simulations.
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Table 4.2: Demand parameters over the tree
Parameters α β

Value at root 3 1
Variation rate 0.1 0.05

the expected payoffs separately. More precisely, in the second run we investigate the impact
of changing φ on the expected payoffs and similarly in the third and forth run we aim at
studying the impact of w and cr, respectively. In each simulation, the idea is to take two
values below the base case and two others above for the parameter under study while the
other two parameters are kept fixed and set at their levels in the base case. Thus, we have
φ ∈ {0.4, 0.5, 0.6, 0.7, 0.8}, w ∈ {1.5, 1.75, 2.0, 2.25, 2.5}, and cr ∈ {0.3, 0.4, 0.5, 0.6, 0.7}.
The results are given in Tables (4.4), (4.5), and (4.6) respectively.

For each set of simulations, we draw two different comparisons. First, we analyze the
impact of changing the parameter under study on the payoffs in the CRS scenario (sensitivity
analysis). Second, we check whether for any level of the parameter under study, we reach to
a Pareto improving result for which the expected payoff of each player should be compared
with his associated benchmark payoff. Clearly, the benchmark results for the second case
(impact of φ) is the same as the benchmark in the first run (base case). For the other two
simulations the benchmark results are given in two bottom rows of Tables (4.5) and (4.6).

Sensitivity analysis (payoff wise comparisons) leads to the following immediate observa-
tions based on the simulations results:

1. In the benchmark scenario, the parameter cr does not affect retailer’s payoff which is
expected as it does not appear in his objective function.

2. In the benchmark scenario, higher cr results in higher payoff for the manufacturer.

3. In the CRS scenario, higher cr results in higher payoff for both players.

4. In both scenarios, benchmark and CRS, lower w leads to higher payoff for the retailer.

5. In the benchmark scenario, the manufacturer has his highest payoff for w = 2.

6. In the CRS scenario,the manufacturer has higher payoff for higher levels of w.

7. In the CRS scenario, higher sharing parameter, φ results in higher payoff for the
retailer.

8. In the CRS scenario, the manufacturer has higher payoff for lower levels of φ.
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Table 4.3: Base case
Scenario CRS Benchmark

parameters cr = 0.5, w = 2, φ = 0.6, c0 = 1, k = 1, d = 0.2
Manufacturer 2.6240 4.0217

Retailer 5.2850 2.1017

Table 4.4: Impact of φ on the expected payoff for each player
parameters cr = 0.5, w = 2, c0 = 1, k = 1, d = 0.2

φ 0.4 0.5 0.6 0.7 0.8
Manufacturer 3.4070 3.0566 2.6240 2.1068 1.5010

Retailer 4.0452 4.6412 5.2850 5.9796 6.7291

Table 4.5: Impact of w on the expected payoff for each player
parameters cr = 0.5, φ = 0.6, c0 = 1, k = 1, d = 0.2

w 1.5 1.75 2 2.25 2.5
CRS

Manufacturer 1.5204 2.1122 2.6240 3.0560 3.4083
Retailer 6.6813 5.9615 5.2850 4.6512 4.0599

Benchmark
Manufacturer 3.0940 3.7981 4.0217 3.7582 3.0023

Retailer 4.6017 3.2267 2.1017 1.2267 0.6017

Table 4.6: Impact of cr on the expected payoff for each player
parameters w = 2, φ = 0.6, c0 = 1, k = 1, d = 0.2

cr 0.3 0.4 0.5 0.6 0.7
CRS

Manufacturer 2.5823 2.6003 2.6240 2.6542 2.6919
Retailer 5.2439 5.2616 5.2850 5.3145 5.3510

Benchmark
Manufacturer 4.0078 4.0139 4.0217 4.0313 4.0427

Retailer 2.1017 2.1017 2.1017 2.1017 2.1017
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Looking closer to the players’ payoff function at each node in the benchmark scenario,
we have,

∂JB
M(nt

l)

∂cr
=r(nt

l)Q(nt
l) ≥ 0,

∂JB
R (nt

l)

∂cr
=0.

Similarly, for the CRS scenario, we have,

∂JCRS
M (nt

l)

∂cr
=(1− φ)r(nt

l)Q(nt
l) ≥ 0,

∂JCRS
R (nt

l)

∂cr
=φr(nt

l)Q(nt
l) ≥ 0.

Above derivations analytically confirm players’ preferences with respect to cr, i.e., the
retailer is indifferent about changes of cr in the benchmark scenario while the manufacturer
benefits from higher cr as his marginal profit with respect to cr is non-negative at each node.
Similarly, marginal increase of profit for both players in the CRS scenario show that higher
cr results in higher payoff for them. Note that marginal increase of the manufacturer’s
profit due to a unit of increment in cr is higher in the benchmark scenario compare to CRS
scenario. This result is expected as the manufacturer is transferring a part of her revenues
(due to the cost saving effect of the return volume) to the retailer under CRS contract.

Now, considering the outcomes of the sensitivity analysis, we go one step further and use
above result to run the next set of simulations. The objective is to find Pareto improving
solutions. As both players’ perspectives regarding cr are in line and hence setting cr at a
higher level would be appealing for the manufacturer and the retailer, from now on we fix
cr to its higher level, i.e., 0.7. On the contrary, since the ideal level of w and φ for the
manufacturer is not the same as those of the retailer, for two different levels of w namely
1.5 and 2.5, we run a set of simulations for various levels of the sharing parameter, φ. The
results are shown in Tables (4.7) and (4.8).

Table 4.7: Impact of φ on the expected payoff for each player for low w

parameters w = 1.5, cr = 0.7, c0 = 1, k = 1, d = 0.2
Scenario CRS Benchmark

φ 0.34 0.4 0.5 0.6 0.7 0.8 0.9 N/A
Manufacturer 2.3586 2.2010 1.9184 1.6085 1.2679 0.8917 0.4729 3.1844

Retailer 5.7565 5.9806 6.3717 6.7877 7.2332 7.7143 8.2405 4.6017

The results show that when w is fixed at a low level, i.e., w = 1.5, the players do not
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Table 4.8: Impact of φ on the expected payoff for each player for high w
parameters w = 2.5, cr = 0.7, c0 = 1, k = 1, d = 0.2
Scenario CRS Benchmark

φ 0.34 0.4 0.5 0.6 0.7 0.8 0.9 N/A
Manufacturer 4.0368 4.0092 3.8296 3.4582 2.9102 2.1676 1.2104 3.0052

Retailer 2.1538 2.5410 3.2709 4.0989 5.0479 6.1299 7.3725 0.6017
B(nt) 0.0149 0.1428 0.3333 0.5 0.6470 0.7778 0.8947 N/A

find it optimal to commit to CRS contract while for the higher wholesale price, w = 2.5,
we have appealing results for both players if the sharing parameter is not very high. The
bold entries in table (4.8) show these Pareto improving solutions. To put it differently,
both players find it in their interest to abandon the benchmark scenario in which they play
independently and commit to the CRS contract for high wholesale price and low sharing
parameter which intuitively makes sense. When the wholesale price is high enough, the
retailer finds it worthwhile to financially support the manufacturer’s GA efforts to receive
discount on the wholesale price. Clearly, the higher her support is, the more the discount
will be. On the other hand, the manufacturer commits to CRS contract when the discount
is not so high, i.e., the manufacturer does not find it rational to condone a huge share of his
profit even when he is charging the retailer a high wholesale price and the latter is paying
a significant portion of GA efforts’ cost.

4.4.1 Short vs. long planning horizon

In this section, we are interested in studying the impact of the length of the planning horizon
on values of the variables in the model. We keep the previously used formalism and run
the simulation for two cases, namely, short and long planning horizon. First, we solve the
problem with τ and T as in the previous part, i.e., τ = 3 and T = 7 and then we extend
the planning horizon by keeping τ equal to its previous level, 3, and increasing the length
of the second period from 4 to 15, i.e., we set T = 18. The demand parameters are as given
in Table (4.2). We fix c0 = 0, k = 1, δ = 0.2 as before and we set cr = 0.7, w = 2, and
φ = 0.7. Full results of the two scenarios, benchmark and CRS over short and long planning
horizons, are given in Tables (4.9), (4.10), (4.11) and (4.12) of appendix B respectively.

The first look at the results shows that regardless of the length of the planning horizon,
the price is always lower in the CRS scenario compared to the benchmark scenario which
leads to higher demand in the CRS scenario. We always have significantly higher return
rate in the CRS scenario which is expected. In order to visualize the difference between the
level of the variables in different scenarios, we use the top scenario of the complete event

75



tree, i.e., the scenario which starts at root node and terminates at node n127. As shown
in the graphs of Figure (4.2), we have lower price in CRS scenario at each node compared
to the price at the same node in benchmark scenario. This relation is reverse for G, Q,
and r, i.e., level of G, Q and r at each node is higher in CRS scenario compared to the
same node in benchmark scenario. The results are qualitatively the same for any other
complete scenario over the event tree. The graphs are drawn for the top scenario over the
long planning horizon. All the variables follow the same trend over short planning horizon
as well.

Figure 4.2: p, G, Q and r in the top scenario of the event tree

Getting closer to the end of planning horizon, under CRS contract regardless of the
length of the planning horizon, we have lower demand in the last stage which is due to
setting higher prices. Note that in short planning horizon we have lower demand (higher
price) in stage t = 7 (the last stage) compared to the demand (price) in the same stage in
long planning horizon (an intermediate stage).

4.5 Conclusion

This paper is the first attempt to show how to implement CRS contract in a closed loop
supply chain in the class of games played over an event tree. We introduced a game with two
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players, one manufacturer and one retailer, played over an event tree which is specified by the
fluctuations in demand law parameters. We have characterized the equilibrium strategies
in two different structures, namely benchmark and CRS scenarios with a dynamic return
volume level that serves to decrease the unit production cost. In the benchmark scenario
in which the players play simultaneously, we characterized the price and GA efforts as the
control variables of the retailer and the manufacturer respectively. In CRS scenario, the
retailer acts as the leader and sets the retail price and the level of his contribution in GA
efforts executed by the manufacturer and then the latter as the follower sets his GA efforts
level.

In the first scenario, we came up with strategies that are state independent, which is
a result of the linear structure of the game while in the CRS scenario, we obtained time
dependent optimal price and GA efforts and constant support rate. In the CRS scenario, we
always observed higher demand level due to the lower price set by the retailer. Furthermore,
the return volume turned to be higher in the CRS scenario. We could also show that under
a specific parameter setting, the CRS scenarios leads to a Pareto-improving solution and
hence is appealing to both players.

In any modeling effort, some restrictive assumptions are required for mathematical
tractability. Thus, we believe that some extensions in terms of modeling are worth con-
ducting. We assumed that cost saving is the main purpose of the supply chain. It has been
shown in the literature that the customers who return a product, usually purchase a new
one [51]. One interesting extension would be to assume demand enhancing as the other
purpose of closing the chain by letting the return volume to influence the demand level. In
that case, current return volume will also appear in the demand function.

Furthermore, we assumed that a product can be reused in the manufacturing process
for infinite number of times without any limitation. Another crucial assumption is that
the returned products are remanufactured and sold as new product and the customers do
not distinguish between the two versions of the product, i.e., there is no secondary market.
Investigating the results without these simplifying assumptions would be interesting though
challenging.

The other avenue for the research is to investigate the effect of offering some monetary
incentives to the costumers to return the product. Differently, a penalty can be added per
non-returned product. Clearly, the latter needs major modeling modifications in order to
induce customers to buy the product at the first place.

Finally, competition might be another interesting factor to investigate. One may consider
a situation with more than one CLSC whose decisions influence each other. In addition to
demand level, they may compete in the collection of end-of-use products.
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4.6 Appendix A

4.6.1 Proof of Proposition 1

The retailer’s optimization problem is given by

max
p(nt

l)≥0
JR (p) = Q(n0)

(
p(n0)− w

)
+

T∑
t=1

∑
nt

l∈N t

π
(
nt

l

){
Q(nt

l)
(
p(nt

l)− w
)}
,

which is independent of the manufacturer’s decision variable G and of the state variable r.
Assuming an interior solution, the first-order optimality condition at node nt

l reads

dJR

dp(nt
l)

= πnt
l

(
αnt

l − 2βnt
lp(nt

l) + βnt
lw
)

= 0,

which yields

p(nt
l) =

αnt
l + βnt

lw

2βnt
l

, ∀nt
l ∈ N

t
, t = 0, ..., T.

Clearly, p(nt
l) > 0 and as JR (p) is concave in p(nt

l), we have an interior maximum.
Introduce the manufacturer’s Hamiltonian

HM = (αn0 − βn0

p(n0))(w − c(r(n0)))− k

2
(G(n0))2 (4.22)

+
T∑

t=1

∑
nt

l∈N t

πnt
l

{(
αnt

l − βnt
lp(nt

l)
)(
w −

(
c0 − crr(n

t
l)
))
− k

2
(G(nt

l))
2

+ λ(nt
l)
(
G(nt

l)
(
αa(nt

l) − βa(nt
l)p(a(nt

l))
)
− δr(a(nt

l))
)}
,

where λ (·) is the vector of costate variables.
Differentiating HM with respect to G(nt

l) and equating to zero, we get

∂HM

∂G(nt
l)

= πnt
l

(
λ(nt

l)
(
αa(nt

l) − βa(nt
l)p(a(nt

l))
)
− kG(nt

l)
)

= 0,

⇔ G(nt
l) =

λ(nt
l)
(
αa(nt

l) − βa(nt
l)p(a(nt

l))
)

k
, ∀nt

l , t = 1, ..., T. (4.23)
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The costate variables are derived using the following system of equations,

λ(nt
l) =

∂HM

∂r(nt
l)

= πnt
lcr

(αnt
l − βnt

lw

2

)
− δ

∑
ν∈S(nt

l)

πνλ(ν), ∀nt
l ∈ N

t
, 0 = 1, ..., T − 1 (4.24)

λ(nT
l ) = πnT

l cr

(
αnT

l − βnT
l p(nT

l )
)

= πnT
l cr

(αnT
l − βnT

l w

2

)
The transversality condition is λ (v) = 0,∀v ∈ S(nt), meaning that returns after period T

have no value to the manufacturer.
Substituting for (4.24) in G(nt

l) leads to the results in the proposition.

4.6.2 Proof of Proposition 2

To compute a Stackelberg equilibrium, we first determine the reaction function of the man-
ufacturer to the announcement of the retailer of a retail price p(nt

l) and a support rate
B(nt

l), ∀nt
l∈ N t, t = 1, ..., T . The manufacturer’s Hamiltonian is as follows:

HM =
T∑

t=0

∑
nt

l∈N t

πnt
l

{(
αnt

l − βnt
lp(nt

l)
)

(1− φ)
(
w − c0 + crr(n

t
l)
)

− k

2

(
1−B(nt

l)
)
(G(nt

l))
2 + λ(nt

l)
(
G(nt

l)Q(a(nt
l))− δr(a(nt

l))
)}

,

where λ (·) is the costate variable appended by the manufacturer to the state dynamics in
(4.3). Maximizing with respect to G(nt

l), we get

∂HM

∂G(nt
l)

= πnt
l

{
−k(1−B(nt

l))G(nt
l) + λ(nt

l)Q(a(nt
l))
}

= 0,

which yields

G(nt
l) = λ(nt

l)
Q(a(nt

l))

k(1−B(nt
l))
, ∀nt

l ∈ N
t
, 0 = 1, ..., T.

Note that under the assumptions of an interior solution and positive demand, λ(nt
l) must

be positive to have a positive G(nt
l). The conditions with respect to λ(nt

l) are given by

λ(nt
l) =

∂HM

∂r(nt
l)

= πnt
lcr(1− φ)(αnt

l − βnt
lp(nt

l))− δ
∑

ν∈S(nt
l)

πνλ(ν), ∀nt
l ∈ N

t
, 0 = 1, ..., T,

λ(nT+1
l ) = 0.
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This costate variable will play the role of an additional state variable in the retailer’s prob-
lem.

Substituting for G(nt
l) in the state dynamics, we get

r(nt
l) = λ(nt

l)
Q2(a(nt

l))

k(1−B(nt
l))
− δr(a(nt

l)), r(n0) = r0. (4.25)

The retailer’s Hamiltonian is given by

HR =
T∑

t=0

∑
nt

l∈N t

πnt
l

{(
αnt

l − βnt
lp(nt

l)
) (
p(nt

l)− w + φ
(
w − c0 + crr(n

t
l)
))

− λ2(nt
l)B(nt

l)Q
2(a(nt

l))

2k(1−B(nt
l))

2
+ µr(n

t
l)

(
λ(nt

l)Q
2(a(nt

l))

k(1−B(nt
l))

− δr(a(nt
l))

)

+ µλ(n
t
l)

πnt
lcr(1− φ)

(
αnt

l − βnt
lp(nt

l)
)
−
∑

ν∈S(nt
l)

πνλ(ν)

}

where µr and µλ are the associated costate variables to the state variables r and λ, respec-
tively.

Assuming an interior solution, the first-order optimality conditions for all
nt

l ∈ N t, t = 0, ..., T are given by

∂HR

∂p(nt
l)

= πnt
l

(
αnt

l − βnt
l

(
2p(nt

l)− w + φ
(
w − c0 + crr(n

t
l)
)

+ πnt
lcr(1− φ)µλ(n

t
l)
))

+
βnt

l (αnt
l − βnt

lp(nt
l))

k

∑
ν∈S(nt

l)

πν

(
λ2(ν)B(ν)

(1−B(ν))2
− 2µr(ν)λ(ν)

(1−B(ν))

)
= 0, (4.26)

∂HR

∂B(nt
l)

= πnt
l

(
−λ

2(nt
l)Q

2(a(nt
l))(1 +B(nt

l))

2k(1−B(nt
l))

3
+
µr(n

t
l)λ(nt

l)Q
2(a(nt

l))

k(1−B(nt
l))

2

)
= 0, (4.27)

µr(n
t
l) =

∂HR

∂r(nt
l)

= πnt
lcrφ(αnt

l − βnt
lp(nt

l))− δ
∑

ν∈S(nt
l)

πνµr(ν), (4.28)

µr(n
T+1
l ) = 0, (4.29)
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µλ(n
t
l) =

∂HR

∂λ(nt
l)

=
πnt

lQ2(a(nt
l))

k(1−B(nt
l))

2

(
µλ(n

t
l)(1−B(nt

l))− λ(nt
l)B(nt

l)
)

+ πnt
lπa(nt

l)µr(a(n
t
l)), (4.30)

µλ(n
T+1
l ) = 0, (4.31)

λ(nt
l) =

∂HM

∂r(nt
l)

= πnt
lcr(1− φ)(αnt

l − βnt
lp(nt

l))− δ
∑

ν∈S(nt
l)

πνλ(ν), (4.32)

λ(nT+1
l ) = 0. (4.33)

We first prove that

B(nt
l) =

3φ− 1

φ+ 1
, for nt

l ∈ N
t
, 0 = 1, ..., T,

Straightforward manipulations allow to simplify the expression of B(nt
l) to

B(nt
l) =

2µr(n
t
l)− λ(nt

l)

2µr(nt
l) + λ(nt

l)
. (4.34)

Let us define Sm(nt
l) as the set of mth level children of node nt

l .5 Clearly, in the case of a
binary tree, we have |Sm(nt

l)| = 2m. Let us assume that nt
l is a node at stage k of the event

tree, 0 ≤ k ≤ T . A direct observation is that members of ST−k(nt
l) are 2T−k nodes from the

last stage, T .6 We start by computing values of the multipliers µr(n
t
l) and λ(nt

l) not in a
5S1(nt

l) = S(nt
l) is the set of the children of nt

l and S2(nt
l) is the set of the grand children of nt

l .
6Number of nodes at stage T is equal to 2T .
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recursive form7 as follows:

µr(n
t
l) = πnt

lφcrQ(nt
l)− δ

∑
ν1∈S(nt)

(πν1)2φcrQ(ν1)

+ δ2
∑

ν2∈S2(nt
l)

∑
ν1∈S(nt

l)

πν1(πν2)2φcrQ(ν2)

− δ3
∑

ν3∈S3(nt
l)

∑
ν2∈S2(nt

l)

∑
ν1∈S(nt

l)

πν1πν2(πν3)2φcrQ(ν3)

+ δ4
∑

ν4∈S4(nt
l)

∑
ν3∈S3(nt

l)

∑
ν2∈S2(nt

l)

∑
ν1∈S(nt

l)

πν1πν2πν3(πν4)2φcrQ(ν4)

+ ...+ (−1)kδk
∑

ν1∈S(nt
l)

...
∑

νk∈ST−k(nt
l)

πν1 ...(πνk)2φcrQ(νk)

= φcr

{
πnt

lQ(nt
l)− δ

∑
ν1∈S(nt

l)

(πν1)2Q(ν1)

+ ...+ (−1)kδk
∑

ν1∈S(nt
l)

...
∑

νk∈ST−k(nt
l)

πν1 ...(πνk)2Q(νk)
}
,

and,

λ(nt
l) = πnt

l (1− φ)crQ(nt
l)− δ

∑
ν1∈S(nt

l)

(πν1)2(1− φ)crQ(ν1)

+ δ2
∑

ν2∈S2(nt
l)

∑
ν1∈S(nt

l)

πν1(πν2)2(1− φ)crQ(ν2)

+ ...+ (−1)kδk
∑

ν1∈S(nt
l)

...
∑

νkinST−k(nt
l)

πν1 ...(πνk)2(1− φ)crQ(νk)

= (1− φ)cr

{
πnt

lQ(nt
l)− δ

∑
ν1∈S(nt

l)

(πν1)2Q(ν1)

+ ...+ (−1)kδk
∑

ν1∈S(nt
l)

...
∑

νk∈ST−k(nt
l)

πν1 ...(πνk)2Q(νk)
}

Now, let us compute the numerator and denominator of the expression of B(nt) :

7There is no µr(.) or λ(.) at the right-hand side of the equations.
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2µr(n
t
l)− λ(nt

l) = 2φcr

{
πnt

Q(nt)− δ
∑

ν1∈S(nt)

(πν1)2Q(ν1)

+ ...+ (−1)kδk
∑

ν1∈S(nt)

...
∑

νkinST−k(nt)

πν1 ...(πνk)2Q(νk)
}

− (1− φ)cr

{
πnt

Q(nt)− δ
∑

ν1∈S(nt)

(πν1)2Q(ν1)

+ ...+ (−1)kδk
∑

ν1∈S(nt)

...
∑

νkinST−k(nt)

πν1 ...(πνk)2Q(νk)
}

= cr

(
2φ− (1− φ)

){
πnt

Q(nt)− δ
∑

ν1∈S(nt)

(πν1)2Q(ν1)

+ ...+ (−1)kδk
∑

ν1∈S(nt)

...
∑

νkinST−k(nt)

πν1 ...(πνk)2Q(νk)
}

2µr(n
t
l) + λ(nt

l) = 2φcr

{
πnt

lQ(nt
l)− δ

∑
ν1∈S(nt

l)

(πν1)2Q(ν1)

+ ...+ (−1)kδk
∑

ν1∈S(nt
l)

...
∑

νk∈ST−k(nt
l)

πν1 ...(πνk)2Q(νk)
}

+ (1− φ)cr

{
πnt

lQ(nt
l)− δ

∑
ν1∈S(nt

l)

(πν1)2Q(ν1)

+ ...+ (−1)kδk
∑

ν1∈S(nt
l)

...
∑

νk∈ST−k(nt
l)

πν1 ...(πνk)2Q(νk)
}

= cr

(
2φ+ (1− φ)

){
πnt

lQ(nt
l)− δ

∑
ν1∈S(nt

l)

(πν1)2Q(ν1)

+ ...+ (−1)kδk
∑

ν1∈S(nt
l)

...
∑

νk∈ST−k(nt
l)

πν1 ...(πνk)2Q(νk)
}

Simplifying for the common factors in the fraction, we end up having

B(nt
l) =

2µr(n
t
l)− λ(nt

l)

2µr(nt
l) + λ(nt

l)
=

2φ− (1− φ)

2φ+ (1− φ)
=

3φ− 1

φ+ 1
.

Substituting for B(nt
l) in the expressions of the control variables and costate and state

variables, lead to the expressions in the Proposition.
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4.7 Appendix B

4.7.1 Numerical results: short planning horizon

Table 4.9: Benchmark scenario: short planning horizon

Description Node p G α β Q r
root node 0 2.5 0 3 1 0.5 0

1 2.5714 0.0999 3.3 1.05 0.60003 0.04995
end of stage 1 2 2.4211 0.0666 2.7 0.95 0.399955 0.0333

3 2.6463 0.073 3.63 1.1025 0.712454 0.033812
4 2.4887 0.0499 2.97 0.9975 0.487522 0.019951
5 2.4887 0.0333 2.97 0.9975 0.487522 0.006659

end of stage 2 6 2.3463 0.0213 2.43 0.9025 0.312464 0.001859
last stochastic stage 7 2.7247 0.051 3.993 1.1576 0.838887 0.029573

8 2.5596 0.0356 3.267 1.0474 0.586075 0.018601
9 2.5596 0.0244 3.267 1.0474 0.586075 0.007905
10 2.4104 0.0162 2.673 0.9476 0.388905 0.003908
11 2.5596 0.0244 3.267 1.0474 0.586075 0.010564
12 2.4104 0.0162 2.673 0.9476 0.388905 0.006566
13 2.4104 0.0104 2.673 0.9476 0.388905 0.002878

last stochastic node 14 2.2754 0.0063 2.187 0.8574 0.236072 0.001597
15 2.7247 0.0601 3.993 1.1576 0.838887 0.044503
16 2.5596 0.0293 3.267 1.0474 0.586075 0.013452
17 2.5596 0.0293 3.267 1.0474 0.586075 0.015591
18 2.4104 0.0129 2.673 0.9476 0.388905 0.004235
19 2.5596 0.0293 3.267 1.0474 0.586075 0.015059
20 2.4104 0.0129 2.673 0.9476 0.388905 0.003704
21 2.4104 0.0129 2.673 0.9476 0.388905 0.004441

end of stage 4 22 2.2754 0.0048 2.187 0.8574 0.236072 0.000814
23 2.7247 0.0601 3.993 1.1576 0.838887 0.041517
24 2.5596 0.0293 3.267 1.0474 0.586075 0.014482
25 2.5596 0.0293 3.267 1.0474 0.586075 0.014054
26 2.4104 0.0129 2.673 0.9476 0.388905 0.00417
27 2.5596 0.0293 3.267 1.0474 0.586075 0.01416
28 2.4104 0.0129 2.673 0.9476 0.388905 0.004276
29 2.4104 0.0129 2.673 0.9476 0.388905 0.004129

end of stage 5 30 2.2754 0.0048 2.187 0.8574 0.236072 0.00097
31 2.7247 0.0601 3.993 1.1576 0.838887 0.042114
32 2.5596 0.0293 3.267 1.0474 0.586075 0.014276
33 2.5596 0.0293 3.267 1.0474 0.586075 0.014361
34 2.4104 0.0129 2.673 0.9476 0.388905 0.004183
35 2.5596 0.0293 3.267 1.0474 0.586075 0.01434
36 2.4104 0.0129 2.673 0.9476 0.388905 0.004162
37 2.4104 0.0129 2.673 0.9476 0.388905 0.004191

end of stage 6 38 2.2754 0.0048 2.187 0.8574 0.236072 0.000939
39 2.7247 0.0601 3.993 1.1576 0.838887 0.041994
40 2.5596 0.0293 3.267 1.0474 0.586075 0.014317
41 2.5596 0.0293 3.267 1.0474 0.586075 0.0143
42 2.4104 0.0129 2.673 0.9476 0.388905 0.00418
43 2.5596 0.0293 3.267 1.0474 0.586075 0.014304

Continued on next page
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Table 4.9 – continued from previous page
Description Node p G α β Q r

44 2.4104 0.0129 2.673 0.9476 0.388905 0.004185
45 2.4104 0.0129 2.673 0.9476 0.388905 0.004179

end of stage 7 46 2.2754 0.0048 2.187 0.8574 0.236072 0.000945

Table 4.10: CRS scenario: short planning horizon

Description Node p G B Q r
root node 0 2.1201 0 0 0.8799 0

1 2.1512 0.259746 0.647019 1.04124 0.2286
end of stage 1 2 2.0223 0.194458 0.647059 0.778815 0.1711

3 2.2591 0.172221 0.646917 1.139342 0.1336
4 2.1147 0.130103 0.647059 0.860587 0.0897
5 2.127 0.095911 0.646772 0.848318 0.0405

end of stage 2 6 1.9901 0.07169 0.646931 0.633935 0.0216
last stochastic stage 7 2.3461 0.10556 0.647059 1.277155 0.0935

8 2.1913 0.080381 0.647059 0.971832 0.0648
9 2.1989 0.060198 0.646891 0.963872 0.0338
10 2.0542 0.045353 0.647059 0.72644 0.0211
11 2.1968 0.059425 0.647395 0.966072 0.0424
12 2.052 0.044834 0.646168 0.728525 0.03
13 2.0552 0.033345 0.646388 0.725492 0.0168

last stochastic node 14 1.9222 0.024787 0.647059 0.538906 0.0114
15 2.3361 0.119414 0.647059 1.288731 0.1338
16 2.1941 0.06832 0.647226 0.9689 0.0535
17 2.1928 0.067905 0.646558 0.970261 0.0587
18 2.0535 0.038283 0.647059 0.727103 0.0236
19 2.1931 0.068011 0.647727 0.969947 0.0572
20 2.0539 0.038393 0.647059 0.726724 0.022
21 2.0534 0.038306 0.647727 0.727198 0.0244

end of stage 4 22 1.9228 0.021071 0.647059 0.538391 0.0091
23 2.3375 0.120367 0.646681 1.28711 0.1283
24 2.1936 0.068114 0.647226 0.969423 0.0554
25 2.1938 0.068209 0.647226 0.969214 0.0545
26 2.0537 0.038318 0.647059 0.726914 0.0232
27 2.1938 0.068187 0.647226 0.969214 0.0547
28 2.0536 0.038298 0.647059 0.727009 0.0235
29 2.0537 0.038323 0.647059 0.726914 0.023

end of stage 5 30 1.9227 0.021051 0.647059 0.538477 0.0095
31 2.3371 0.120216 0.646681 1.287573 0.129
32 2.1936 0.06815 0.647226 0.969423 0.055
33 2.1935 0.068136 0.647226 0.969528 0.0552
34 2.0536 0.038308 0.647059 0.727009 0.0232
35 2.1935 0.068136 0.647226 0.969528 0.0551
36 2.0536 0.038313 0.647059 0.727009 0.0232
37 2.0536 0.038308 0.647059 0.727009 0.0233

end of stage 6 38 1.9227 0.021054 0.647059 0.538477 0.0094
39 2.3421 0.122706 0.647429 1.281785 0.1322
40 2.1957 0.069702 0.646732 0.967224 0.0566
41 2.1957 0.069709 0.646732 0.967224 0.0566
42 2.0545 0.039295 0.646623 0.726156 0.0239
43 2.1957 0.069709 0.646732 0.967224 0.0566
44 2.0545 0.039295 0.646623 0.726156 0.0239
45 2.0545 0.039295 0.646623 0.726156 0.0239

end of stage 7 46 1.923 0.021566 0.64794 0.53822 0.0097
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4.7.2 Numerical results: long planning horizon

Table 4.11: Benchmark scenario: long planning horizon

Description Node p G α β Q r
root node 0 2.5 0 3 1 0.5 0

1 2.5714 0.0999 3.3 1.05 0.60003 0.04995
end of stage 1 2 2.4211 0.0666 2.7 0.95 0.399955 0.0333

3 2.6463 0.073 3.63 1.1025 0.712454 0.033812
4 2.4887 0.0499 2.97 0.9975 0.487522 0.019951
5 2.4887 0.0333 2.97 0.9975 0.487522 0.006659

end of stage 2 6 2.3463 0.0213 2.43 0.9025 0.312464 0.001859
last stochastic stage 7 2.7247 0.051 3.993 1.1576 0.838887 0.029573

8 2.5596 0.0356 3.267 1.0474 0.586075 0.018601
9 2.5596 0.0244 3.267 1.0474 0.586075 0.007905
10 2.4104 0.0162 2.673 0.9476 0.388905 0.003908
11 2.5596 0.0244 3.267 1.0474 0.586075 0.010564
12 2.4104 0.0162 2.673 0.9476 0.388905 0.006566
13 2.4104 0.0104 2.673 0.9476 0.388905 0.002878

last stochastic node 14 2.2754 0.0063 2.187 0.8574 0.236072 0.001597
15 2.7247 0.0601 3.993 1.1576 0.838887 0.044503
16 2.5596 0.0293 3.267 1.0474 0.586075 0.013452
17 2.5596 0.0293 3.267 1.0474 0.586075 0.015591
18 2.4104 0.0129 2.673 0.9476 0.388905 0.004235
19 2.5596 0.0293 3.267 1.0474 0.586075 0.015059
20 2.4104 0.0129 2.673 0.9476 0.388905 0.003704
21 2.4104 0.0129 2.673 0.9476 0.388905 0.004441

end of stage 4 22 2.2754 0.0048 2.187 0.8574 0.236072 0.000814
23 2.7247 0.0601 3.993 1.1576 0.838887 0.041517
24 2.5596 0.0293 3.267 1.0474 0.586075 0.014482
25 2.5596 0.0293 3.267 1.0474 0.586075 0.014054
26 2.4104 0.0129 2.673 0.9476 0.388905 0.00417
27 2.5596 0.0293 3.267 1.0474 0.586075 0.01416
28 2.4104 0.0129 2.673 0.9476 0.388905 0.004276
29 2.4104 0.0129 2.673 0.9476 0.388905 0.004129

end of stage 5 30 2.2754 0.0048 2.187 0.8574 0.236072 0.00097
31 2.7247 0.0601 3.993 1.1576 0.838887 0.042114
32 2.5596 0.0293 3.267 1.0474 0.586075 0.014276
33 2.5596 0.0293 3.267 1.0474 0.586075 0.014361
34 2.4104 0.0129 2.673 0.9476 0.388905 0.004183
35 2.5596 0.0293 3.267 1.0474 0.586075 0.01434
36 2.4104 0.0129 2.673 0.9476 0.388905 0.004162
37 2.4104 0.0129 2.673 0.9476 0.388905 0.004191

end of stage 6 38 2.2754 0.0048 2.187 0.8574 0.236072 0.000939
39 2.7247 0.0601 3.993 1.1576 0.838887 0.041994
40 2.5596 0.0293 3.267 1.0474 0.586075 0.014317
41 2.5596 0.0293 3.267 1.0474 0.586075 0.0143
42 2.4104 0.0129 2.673 0.9476 0.388905 0.00418
43 2.5596 0.0293 3.267 1.0474 0.586075 0.014304
44 2.4104 0.0129 2.673 0.9476 0.388905 0.004185
45 2.4104 0.0129 2.673 0.9476 0.388905 0.004179

end of stage 7 46 2.2754 0.0048 2.187 0.8574 0.236072 0.000945
47 2.7247 0.0601 3.993 1.1576 0.838887 0.042018

Continued on next page
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Table 4.11 – continued from previous page
Description Node p G α β Q r

48 2.5596 0.0293 3.267 1.0474 0.586075 0.014309
49 2.5596 0.0293 3.267 1.0474 0.586075 0.014312
50 2.4104 0.0129 2.673 0.9476 0.388905 0.004181
51 2.5596 0.0293 3.267 1.0474 0.586075 0.014311
52 2.4104 0.0129 2.673 0.9476 0.388905 0.00418
53 2.4104 0.0129 2.673 0.9476 0.388905 0.004181

end of stage 8 54 2.2754 0.0048 2.187 0.8574 0.236072 0.000944
55 2.7247 0.0601 3.993 1.1576 0.838887 0.042013
56 2.5596 0.0293 3.267 1.0474 0.586075 0.01431
57 2.5596 0.0293 3.267 1.0474 0.586075 0.01431
58 2.4104 0.0129 2.673 0.9476 0.388905 0.004181
59 2.5596 0.0293 3.267 1.0474 0.586075 0.01431
60 2.4104 0.0129 2.673 0.9476 0.388905 0.004181
61 2.4104 0.0129 2.673 0.9476 0.388905 0.004181

end of stage 9 62 2.2754 0.0048 2.187 0.8574 0.236072 0.000944
63 2.7247 0.0601 3.993 1.1576 0.838887 0.042014
64 2.5596 0.0293 3.267 1.0474 0.586075 0.01431
65 2.5596 0.0293 3.267 1.0474 0.586075 0.01431
66 2.4104 0.0129 2.673 0.9476 0.388905 0.004181
67 2.5596 0.0293 3.267 1.0474 0.586075 0.01431
68 2.4104 0.0129 2.673 0.9476 0.388905 0.004181
69 2.4104 0.0129 2.673 0.9476 0.388905 0.004181

end of stage 10 70 2.2754 0.0048 2.187 0.8574 0.236072 0.000944
71 2.7247 0.0601 3.993 1.1576 0.838887 0.042014
72 2.5596 0.0293 3.267 1.0474 0.586075 0.01431
73 2.5596 0.0293 3.267 1.0474 0.586075 0.01431
74 2.4104 0.0129 2.673 0.9476 0.388905 0.004181
75 2.5596 0.0293 3.267 1.0474 0.586075 0.01431
76 2.4104 0.0129 2.673 0.9476 0.388905 0.004181
77 2.4104 0.0129 2.673 0.9476 0.388905 0.004181

end of stage 11 78 2.2754 0.0048 2.187 0.8574 0.236072 0.000944
79 2.7247 0.0601 3.993 1.1576 0.838887 0.042014
80 2.5596 0.0293 3.267 1.0474 0.586075 0.01431
81 2.5596 0.0293 3.267 1.0474 0.586075 0.01431
82 2.4104 0.0129 2.673 0.9476 0.388905 0.004181
83 2.5596 0.0293 3.267 1.0474 0.586075 0.01431
84 2.4104 0.0129 2.673 0.9476 0.388905 0.004181
85 2.4104 0.0129 2.673 0.9476 0.388905 0.004181

end of stage 12 86 2.2754 0.0048 2.187 0.8574 0.236072 0.000944
87 2.7247 0.0601 3.993 1.1576 0.838887 0.042014
88 2.5596 0.0293 3.267 1.0474 0.586075 0.01431
89 2.5596 0.0293 3.267 1.0474 0.586075 0.01431
90 2.4104 0.0129 2.673 0.9476 0.388905 0.004181
91 2.5596 0.0293 3.267 1.0474 0.586075 0.01431
92 2.4104 0.0129 2.673 0.9476 0.388905 0.004181
93 2.4104 0.0129 2.673 0.9476 0.388905 0.004181

end of stage 13 94 2.2754 0.0048 2.187 0.8574 0.236072 0.000944
95 2.7247 0.0601 3.993 1.1576 0.838887 0.042014
96 2.5596 0.0293 3.267 1.0474 0.586075 0.01431
97 2.5596 0.0293 3.267 1.0474 0.586075 0.01431
98 2.4104 0.0129 2.673 0.9476 0.388905 0.004181
99 2.5596 0.0293 3.267 1.0474 0.586075 0.01431
100 2.4104 0.0129 2.673 0.9476 0.388905 0.004181
101 2.4104 0.0129 2.673 0.9476 0.388905 0.004181

end of stage 14 102 2.2754 0.0048 2.187 0.8574 0.236072 0.000944
Continued on next page
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Table 4.11 – continued from previous page
Description Node p G α β Q r

103 2.7247 0.0601 3.993 1.1576 0.838887 0.042014
104 2.5596 0.0293 3.267 1.0474 0.586075 0.01431
105 2.5596 0.0293 3.267 1.0474 0.586075 0.01431
106 2.4104 0.0129 2.673 0.9476 0.388905 0.004181
107 2.5596 0.0293 3.267 1.0474 0.586075 0.01431
108 2.4104 0.0129 2.673 0.9476 0.388905 0.004181
109 2.4104 0.0129 2.673 0.9476 0.388905 0.004181

end of stage 15 110 2.2754 0.0048 2.187 0.8574 0.236072 0.000944
111 2.7247 0.0601 3.993 1.1576 0.838887 0.042014
112 2.5596 0.0293 3.267 1.0474 0.586075 0.01431
113 2.5596 0.0293 3.267 1.0474 0.586075 0.01431
114 2.4104 0.0129 2.673 0.9476 0.388905 0.004181
115 2.5596 0.0293 3.267 1.0474 0.586075 0.01431
116 2.4104 0.0129 2.673 0.9476 0.388905 0.004181
117 2.4104 0.0129 2.673 0.9476 0.388905 0.004181

end of stage 16 118 2.2754 0.0048 2.187 0.8574 0.236072 0.000944
119 2.7247 0.06 3.993 1.1576 0.838887 0.04193
120 2.5596 0.0293 3.267 1.0474 0.586075 0.01431
121 2.5596 0.0293 3.267 1.0474 0.586075 0.01431
122 2.4104 0.0129 2.673 0.9476 0.388905 0.004181
123 2.5596 0.0293 3.267 1.0474 0.586075 0.01431
124 2.4104 0.0129 2.673 0.9476 0.388905 0.004181
125 2.4104 0.0129 2.673 0.9476 0.388905 0.004181

end of stage 17 126 2.2754 0.0048 2.187 0.8574 0.236072 0.000944
127 2.7247 0.0616 3.993 1.1576 0.838887 0.043289
128 2.5596 0.0301 3.267 1.0474 0.586075 0.014779
129 2.5596 0.0301 3.267 1.0474 0.586075 0.014779
130 2.4104 0.0132 2.673 0.9476 0.388905 0.004297
131 2.5596 0.0301 3.267 1.0474 0.586075 0.014779
132 2.4104 0.0132 2.673 0.9476 0.388905 0.004297
133 2.4104 0.0132 2.673 0.9476 0.388905 0.004297

end of stage 18 134 2.2754 0.0049 2.187 0.8574 0.236072 0.000968

Table 4.12: CRS scenario: long planning horizon

Description Node p G B Q r
root node 0 2.1201 0 0 0.8799 0

1 2.1512 0.259746 0.647019 1.04124 0.2286
end of stage 1 2 2.0223 0.194458 0.647059 0.778815 0.1711

3 2.2591 0.172221 0.646917 1.139342 0.1336
4 2.1147 0.130103 0.647059 0.860587 0.0897
5 2.127 0.095911 0.646772 0.848318 0.0405

end of stage 2 6 1.9901 0.07169 0.646931 0.633935 0.0216
last stochastic stage 7 2.3461 0.10556 0.647059 1.277155 0.0935

8 2.1913 0.080381 0.647059 0.971832 0.0648
9 2.1989 0.060198 0.646891 0.963872 0.0338
10 2.0542 0.045353 0.647059 0.72644 0.0211
11 2.1968 0.059425 0.647395 0.966072 0.0424
12 2.052 0.044834 0.646168 0.728525 0.03
13 2.0552 0.033345 0.646388 0.725492 0.0168

last stochastic node 14 1.9222 0.024787 0.647059 0.538906 0.0114
15 2.3361 0.119414 0.647059 1.288731 0.1338
16 2.1941 0.06832 0.647226 0.9689 0.0535
17 2.1928 0.067905 0.646558 0.970261 0.0587

Continued on next page
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Table 4.12 – continued from previous page
Description Node p G B Q r

18 2.0535 0.038283 0.647059 0.727103 0.0236
19 2.1931 0.068011 0.647727 0.969947 0.0572
20 2.0539 0.038393 0.647059 0.726724 0.022
21 2.0534 0.038306 0.647727 0.727198 0.0244

end of stage 4 22 1.9228 0.021071 0.647059 0.538391 0.0091
23 2.3375 0.120367 0.646681 1.28711 0.1283
24 2.1936 0.068114 0.647226 0.969423 0.0554
25 2.1938 0.068209 0.647226 0.969214 0.0545
26 2.0537 0.038318 0.647059 0.726914 0.0232
27 2.1938 0.068187 0.647226 0.969214 0.0547
28 2.0536 0.038298 0.647059 0.727009 0.0235
29 2.0537 0.038323 0.647059 0.726914 0.023

end of stage 5 30 1.9227 0.021051 0.647059 0.538477 0.0095
31 2.3373 0.120216 0.646681 1.287342 0.1291
32 2.1937 0.06815 0.647226 0.969319 0.055
33 2.1936 0.068136 0.647226 0.969423 0.0552
34 2.0536 0.038308 0.647059 0.727009 0.0232
35 2.1937 0.068136 0.647226 0.969319 0.0551
36 2.0537 0.038313 0.647059 0.726914 0.0232
37 2.0536 0.038308 0.647059 0.727009 0.0233

end of stage 6 38 1.9227 0.021054 0.647059 0.538477 0.0094
39 2.3373 0.120238 0.646681 1.287342 0.129
40 2.1937 0.068143 0.647226 0.969319 0.0551
41 2.1937 0.06815 0.647226 0.969319 0.0551
42 2.0536 0.038313 0.647059 0.727009 0.0232
43 2.1937 0.068143 0.647226 0.969319 0.0551
44 2.0536 0.038308 0.647059 0.727009 0.0232
45 2.0536 0.038313 0.647059 0.727009 0.0232

end of stage 7 46 1.9227 0.021054 0.647059 0.538477 0.0094
47 2.3373 0.120238 0.646681 1.287342 0.129
48 2.1937 0.068143 0.647226 0.969319 0.0551
49 2.1937 0.068143 0.647226 0.969319 0.0551
50 2.0536 0.038313 0.647059 0.727009 0.0232
51 2.1937 0.068143 0.647226 0.969319 0.0551
52 2.0536 0.038313 0.647059 0.727009 0.0232
53 2.0536 0.038313 0.647059 0.727009 0.0232

end of stage 8 54 1.9227 0.021054 0.647059 0.538477 0.0094
55 2.3373 0.120238 0.646681 1.287342 0.129
56 2.1937 0.068143 0.647226 0.969319 0.0551
57 2.1937 0.068143 0.647226 0.969319 0.0551
58 2.0536 0.038313 0.647059 0.727009 0.0232
59 2.1937 0.068143 0.647226 0.969319 0.0551
60 2.0536 0.038313 0.647059 0.727009 0.0232
61 2.0536 0.038313 0.647059 0.727009 0.0232

end of stage 9 62 1.9227 0.021054 0.647059 0.538477 0.0094
63 2.3373 0.120238 0.646681 1.287342 0.129
64 2.1937 0.068143 0.647226 0.969319 0.0551
65 2.1937 0.068143 0.647226 0.969319 0.0551
66 2.0536 0.038313 0.647059 0.727009 0.0232
67 2.1937 0.068143 0.647226 0.969319 0.0551
68 2.0536 0.038313 0.647059 0.727009 0.0232
69 2.0536 0.038313 0.647059 0.727009 0.0232

end of stage 10 70 1.9227 0.021054 0.647059 0.538477 0.0094
71 2.3373 0.120238 0.646681 1.287342 0.129
72 2.1937 0.068143 0.647226 0.969319 0.0551

Continued on next page
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Table 4.12 – continued from previous page
Description Node p G B Q r

73 2.1937 0.068143 0.647226 0.969319 0.0551
74 2.0536 0.038313 0.647059 0.727009 0.0232
75 2.1937 0.068143 0.647226 0.969319 0.0551
76 2.0536 0.038313 0.647059 0.727009 0.0232
77 2.0536 0.038313 0.647059 0.727009 0.0232

end of stage 11 78 1.9227 0.021054 0.647059 0.538477 0.0094
79 2.3373 0.120238 0.646681 1.287342 0.129
80 2.1937 0.068143 0.647226 0.969319 0.0551
81 2.1937 0.068143 0.647226 0.969319 0.0551
82 2.0536 0.038313 0.647059 0.727009 0.0232
83 2.1937 0.068143 0.647226 0.969319 0.0551
84 2.0536 0.038313 0.647059 0.727009 0.0232
85 2.0536 0.038313 0.647059 0.727009 0.0232

end of stage 12 86 1.9227 0.021054 0.647059 0.538477 0.0094
87 2.3373 0.120238 0.646681 1.287342 0.129
88 2.1937 0.068143 0.647226 0.969319 0.0551
89 2.1937 0.068143 0.647226 0.969319 0.0551
90 2.0536 0.038313 0.647059 0.727009 0.0232
91 2.1937 0.068143 0.647226 0.969319 0.0551
92 2.0536 0.038313 0.647059 0.727009 0.0232
93 2.0536 0.038313 0.647059 0.727009 0.0232

end of stage 13 94 1.9227 0.021054 0.647059 0.538477 0.0094
95 2.3373 0.120238 0.646681 1.287342 0.129
96 2.1937 0.068143 0.647226 0.969319 0.0551
97 2.1937 0.068143 0.647226 0.969319 0.0551
98 2.0536 0.038313 0.647059 0.727009 0.0232
99 2.1937 0.068143 0.647226 0.969319 0.0551
100 2.0536 0.038313 0.647059 0.727009 0.0232
101 2.0536 0.038313 0.647059 0.727009 0.0232

end of stage 14 102 1.9227 0.021054 0.647059 0.538477 0.0094
103 2.3373 0.120238 0.646681 1.287342 0.129
104 2.1937 0.068143 0.647226 0.969319 0.0551
105 2.1937 0.068143 0.647226 0.969319 0.0551
106 2.0536 0.038313 0.647059 0.727009 0.0232
107 2.1937 0.068143 0.647226 0.969319 0.0551
108 2.0536 0.038313 0.647059 0.727009 0.0232
109 2.0536 0.038313 0.647059 0.727009 0.0232

end of stage 15 110 1.9227 0.021054 0.647059 0.538477 0.0094
111 2.3373 0.120238 0.646681 1.287342 0.129
112 2.1937 0.068143 0.647226 0.969319 0.0551
113 2.1937 0.068143 0.647226 0.969319 0.0551
114 2.0536 0.038313 0.647059 0.727009 0.0232
115 2.1937 0.068143 0.647226 0.969319 0.0551
116 2.0536 0.038313 0.647059 0.727009 0.0232
117 2.0536 0.038313 0.647059 0.727009 0.0232

end of stage 16 118 1.9227 0.021054 0.647059 0.538477 0.0094
119 2.3371 0.120238 0.646681 1.287573 0.1289
120 2.1936 0.068143 0.647226 0.969423 0.0551
121 2.1936 0.068143 0.647226 0.969423 0.0551
122 2.0536 0.038313 0.647059 0.727009 0.0232
123 2.1936 0.068143 0.647226 0.969423 0.0551
124 2.0536 0.038313 0.647059 0.727009 0.0232
125 2.0536 0.038313 0.647059 0.727009 0.0232

end of stage 17 126 1.9227 0.021054 0.647059 0.538477 0.0094
127 2.3421 0.122706 0.647429 1.281785 0.1322

Continued on next page
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128 2.1957 0.069702 0.646732 0.967224 0.0566
129 2.1957 0.069702 0.646732 0.967224 0.0566
130 2.0545 0.039295 0.646623 0.726156 0.0239
131 2.1957 0.069702 0.646732 0.967224 0.0566
132 2.0545 0.039295 0.646623 0.726156 0.0239
133 2.0545 0.039295 0.646623 0.726156 0.0239

end of stage 18 134 1.923 0.021566 0.64794 0.53822 0.0097
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4.8 Appendix C

4.8.1 Effect of k, c0 and δ

Table (4.13) presents the expected payoff for each player over the short planning horizon
for different values of the sharing parameter, φ.

Table 4.13: Expected payoff for each player for different sharing parameters
parameters w = 2, cr = 0.7, c0 = 1, k = 1, δ = 0.2
Scenario CRS Benchmark

φ 0.9 0.8 0.7 0.6 0.5 0.4 0.34 N/A
Manufacturer 0.852858 1.57178 2.180285 2.6919 3.114845 3.454346 3.619371 4.04252808

Retailer 7.798791 6.895269 6.085199 5.35098 4.681337 4.068695 3.726233 2.10173035

Tables (4.14)-(4.16) show how changing parameter k, c0, δ affect the expected payoff for
the players in different scenarios. Comparing the numerical results in these tables with
those of table (4.13) provides more insight about the model. Increasing k, does not change
the expected payoff for the retailer in the benchmark scenario as expected while reduces
the manufacturer’s expected payoff. This change leads to a slightly lower expected payoffs
for both players in the CRS scenario. Increasing c0 is not in manufacturer’s interest as
he faces significantly lower expected payoff in both scenarios. Although the retailer is not
affected in the benchmark scenario, he is highly penalized for higher c0 in the CRS scenario.
Decreasing δ leads to a negligible increase in both players’ expected payoff.

Table 4.14: Effect of k on the expected payoff for each player for different φ
Scenario CRS Benchmark

parameters w = 2, cr = 0.7, c0 = 1,k = 3, δ = 0.2
φ 0.7 0.4 N/A

Manufacturer 2.082615 3.390384 4.014169
Retailer 5.944443 4.036965 2.10173

Table 4.15: Effect of c0 on the expected payoff for each player for different φ
Scenario CRS Benchmark

parameters w = 2, cr = 0.7, c0 = 2, k = 1, δ = 0.2
φ 0.7 0.4 N/A

Manufacturer 0.011484 0.018462 0.042759
Retailer 2.12916 2.115438 2.10173
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Table 4.16: Effect of δ on the expected payoff for each player for different φ
Scenario CRS Benchmark

parameters w = 2, cr = 0.7, c0 = 1, k = 1, δ = 0.1
φ 0.7 0.4 N/A

Manufacturer 2.195456 3.46373 4.047214
Retailer 6.108875 4.073544 2.10173
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Chapter 5

Conclusion

In this thesis, composed of three essays, dynamic games are used to study the strategic
interactions between independent agents where the data of the problem are stochastic. We
take into account the uncertainty involved in the problem by means of a class of dynamic
games with the particularity of being played over the event trees, that is, trees where the
transition from one node to another is nature’s decision and cannot be influenced by the
players’ actions. In other words, the agents’ expectation about the uncertainty involved in
the problem is given beforehand as an event tree. The main interest of this class of games
lies in its wide range of application in economics and management sciences, where it is quite
natural to assume that some of the problem’s data are stochastic.

In the first essay entitled "S-Adapted Equilibria in Games Played Over Event Trees with
Coupled Constraints", we extend the framework of dynamic games played over event trees
(DGPET) to the setting where the players face coupled constraints. This essay deals with
a policy coordination model where a supranational agent has to induce a set of countries
competing on an oligopolistic market to achieve a common global constraint. A game of
multiple players (countries) producing a homogeneous good is considered while there is an
uncertain fluctuation in the price of a commonly used nonrenewable resource. At the same
time, the players must keep the total pollutant emissions less than a certain level. The
concept of normalized equilibrium is used to solve the problem. Existence and uniqueness
conditions for this equilibrium are provided, as well as a stochastic-control formulation of
the game and a maximum principle. The problem is also solved through introducing the
penalty tax rates for the violation of the coupled constraint.

This essay gives directions for the future research. The main challenge for future devel-
opments is to compute the more conceptually appealing feedback equilibria for this class of
games. Also, one may seek to compute the S-adapted normalized equilibrium as solution to
an extended variational inequality, for which we have shown the existence and uniqueness
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conditions.
The second essay of this thesis addresses sustainability in cooperative dynamic games,

that is, how to ensure that each player will indeed implement her part of the agreement
as time goes by. In the second essay entitled "Incentive Equilibrium Strategies in Dynamic
Games Played over Event Trees", we characterize incentive equilibrium strategies and out-
comes for the class of dynamic games played over event trees. We show that the coordinated
solution that optimizes the joint payoff can be achieved as an incentive equilibrium. We
determined incentive equilibrium strategies for two popular classes of dynamic games in
applications namely, linear-state and linear-quadratic games, and characterize the condi-
tions under which these strategies are credible. We illustrate the implementation of such
equilibria on a simple example, where we obtained non-empty regions for credibility.

Two extensions of this essay are worth considering. First, the results have been obtained
under the assumption of linear incentive strategies. Using other forms is clearly possible and
it would be of interest to see the impact of having non-linear strategies on the credibility
regions. Second, extending the formalism of incentive strategies to more than two players
is a challenging and relevant research question.

Continuing the labor of investigating the games played over the event trees, in the third
part of this thesis, we develop a dynamic game of Closed-Loop Supply Chain (CLSC) played
over uncontrolled event trees through introducing a cost-revenue sharing (CRS) program
along with a reverse revenue sharing contract (RRSC). In the third essay of this thesis,
entitled "Cost-Revenue Sharing in a Closed Loop Supply Chain Played over Event Trees",
we add the flavor of uncertainty to the game of a CLSC consisting of a manufacturer
and a retailer by assuming that the parameters of the model are not fixed over time and
vary based on a predetermined event tree. As producing with used parts is more efficient
than producing with exclusively new material, the manufacturer invests in different green
activities (GA) to encourage consumers to bring back their used products at the end of
their useful life. Two scenarios are analyzed and compared, namely, a scenario where the
retailer is not involved in GA, and a second where the retailer pays part of the GA efforts’
cost. In return, the manufacturer reduces the wholesale price by an amount that depends
on the return of used products. Both games are played non-cooperatively à la Stackelberg,
with the retailer acting as leader and the manufacturer as follower. Also, in both games, we
assume that the demand is stochastic.

In this essay, some extensions in terms of modeling are worth conducting. One interesting
extension would be to assume demand enhancing as the other purpose of closing the chain (in
addition to cost saving) by letting the return volume to influence the demand level. Besides,
relaxing the simplifying assumption on reusability of the products for infinite number of
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times and assuming the existence of a secondary market would be of great interest. The
other avenue for the research is to investigate competition in this setting. One may consider
a situation with more than one CLSC whose decisions influence each other. In that setting,
in addition to demand level, they may compete in the collection of end-of-use products.
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