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Résumé
Une approche de couverture de risques de type globale est développée dans différents

contextes de marchés incomplets. Une telle méthode utilise l’optimisation stochastique afin

de minimiser une mesure de risque appliquée à l’erreur terminale de couverture. La présente

thèse est séparée en trois articles. L’article «Optimal hedging when the underlying asset fol-

lows a regime-switching Markov process» illustre l’application de la couverture globale dans

le contexte d’un sous-jacent suivant un modèle à changements de régime. La programmation

dynamique est utilisée afin de minimizer l’espérance d’une fonction de pénalité quelconque

appliquée à l’erreur de couverture. Le second article, «Minimizing CVaR in global dynamic

hedging with transaction costs», considère la présence de frais de transactions dans l’optimi-

sation de la stratégie de couverture et minimise la Valeur-à-Risque conditionnelle (CVaR)

de l’erreur de couverture. Finalement, le troisième article «Short-term hedging for an elec-

tricity retailer» applique le concept de couverture global au contexte concret des marchés

de l’électricité afin de réduire les risques de prix et de volume d’un détaillant du marché

scandinave Nord Pool. La dynamique stochastique de la consommation d’électricité et du

prix des contrats à termes sur l’électricité est modélisée dans l’article.

Mots clés : Gestion de risques, couverture de risques, ingénierie financière, changements de

régime, électricité, programmation dynamique, modélisation du risque, coûts de transaction,

modélisation mathématique, recherche quantitative.



Summary
A global risk hedging approach in different incomplete market contexts is developed.

This approach uses stochastic optimization to minimize a risk measure applied to terminal

hedging errors. This thesis is separated into three articles. The article «Optimal hedging when

the underlying asset follows a regime-switching Markov process» applies the global hedging

methodology in a regime-switching context. Dynamic programming is used to minimize the

expectation of a penalty function applied to hedging errors. The second article, «Minimizing

CVaR in global dynamic hedging with transaction costs» considers the presence of transaction

costs during the optimization of the hedging strategy and minimizes the hedging conditional

Value-at-Risk (CVaR). The third article, «Short-term hedging for an electricity retailer»,

applies the global hedging methodology to the concrete context of electricity markets in

order to mitigate price and load risks of a retailer operating in the Nord Pool Scandinavian

market. The stochastic dynamics of electricity consumption and electricity futures prices is

modeled in the article.

Keywords : Risk management, hedging, financial engineering, regime-switching, electricity,

dynamic programming, risk modeling, transaction costs, mathematic modeling, quantitative

research.
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Chapitre 1

Introduction générale

La crise financière de 2008 a démontré l’importance de la gestion des risques au sein des

institutions financières. Une manière de réduire les risques associés à la possession de produits

dérivés est de couvrir ceux-ci en achetant d’autres actifs financiers qui contrebalancent le

risque encouru. Il est important de pouvoir réaliser cette tâche de manière optimale afin

d’éliminer le mieux possible la portion de risque que l’institution financière ne désire pas

garder.

L’avènement du modèle de Black-Scholes (1973) en finance a amené un large pan de la

litérature à considérer les modèles de marchés complets où n’importe quel actif contingent

peut être répliqué à l’aide d’un portefeuille dynamique contenant les actifs transigés au

marché. Ceci permet la neutralisation complète des risques associés à n’importe quel produit

dérivé en utilisant la stratégie de couverture auto-financée qui mène à la réplication de celui-

ci.

Or, dans la réalité, la réplication exacte de produits dérivés est entravée par plusieurs

caractérisques des marchés réels : présence de coûts de transaction, rebalancements en temps

discret plutôt qu’en temps continu, sauts dans la trajectoire du prix des actifs financiers, etc.

L’impossibilité de répliquer certains produits dérivés est ce qui caractérise les marchés dits

incomplets, et les articles de la présente thèse s’inscrivent dans un tel contexte. Dans cette

situation, faute de pouvoir complètement éliminer le risque, il est souhaitable de pouvoir le

réduire de manière optimale.

Différents critères sont proposés dans la littérature afin de déterminer ce en quoi consiste

une stratégie de couverture optimale. La plupart des méthodes se basent sur des critères de



type local. La méthode la plus connue, le delta-hedging, permet d’obtenir un portefeuille dont

les variations de valeur répliquent approximativement celles du prix du produit dérivé couvert

lorsque de petites variations du sous-jacent se produisent. Cette méthode peut être étendue

en recherchant un portefeuille de couverture qui réplique la sensibilité du produit dérivé par

rapport à d’autres facteurs de risque tels que les taux d’intérêt (rho-hedging), la volatilité

sur les marchés (vega-hedging) ou le temps (theta-hedging). Ces méthodes sont dites locales

par rapport au mouvement (move-based) ; elles cherchent à répliquer le mieux possibles les

mouvements du prix du produit dérivé lorsque de petits variations des facteurs de risque se

produisent. D’autres méthodes sont dites locales par rapport au temps (time-based). Elles

cherchent à minimiser une mesure de risque appliquée aux pertes dues au produit dérivé

et au portefeuille de couverture d’ici le prochain rebalancement de ce dernier (i.e. pour la

période de temps courante).

Un problème associé aux méthodes de couverture locales est qu’elles sont myopes : elles

ignorent tout ce qui peut se passer après que l’incrément de temps ou le léger mouvement du

sous-jacent se soient produits. L’approche de couverture globale vient corriger cette lacune :

le critère utilisé par celle-ci est la minimisation d’une mesure de risque appliquée à l’erreur

terminale de couverture i.e. à l’écart entre le paiement à maturité d’un produit dérivé et la

valeur du portefeuille de couverture à cette date. La présente thèse développe cette méthode

dans différentes situations : lorsque le sous-jacent suit un modèle à changement de régime,

lorsque des frais de transactions sont encourus lors des rebalancements du portefeuille de

couverture et dans le cadre des marchés de l’électricité.

Le développement d’un algorithme de couverture global pour couvrir les risques associés

à un produit dérivé donné nécessite la réalisation des étapes suivantes :

– Sélection des actifs à utiliser pour la couverture,

– Modélisation de la dynamique stochastique des actifs utilisés dans la couverture et des

variables d’états caractérisant le paiement à maturité du produit dérivé,

– Développement de l’algorithme théorique identifiant la stratégie de couverture opti-

male,

– Développement de l’algorithme numérique calculant la stratégie de couverture opti-

male.

La présente thèse illustre la réalisation de chacune de ces étapes dans différents contextes.

De plus, dans chacun des articles, la performance de la méthode de couverture globale est

2



comparée avec celle d’autres méthodes alternatives proposées dans la litérature à l’aide de

simulations numériques. La méthode de couverture globale se compare avantageusement aux

autres méthodes en terme de capacité à réduire les risques associés au produit dérivé qui est

couvert.

Cette thèse est séparée en trois chapitres principaux qui présentent le contenu de trois

articles de recherche. Le chapitre 2 traite de la couverture globale dans le cadre des modèles

à changement de régime. Le chapitre 3 illustre la minimisation de la mesure de risque CVaR

dans un contexte de couverture globale en présence de frais de transaction. Le chapitre

4 illustre la situation d’un détaillant du marché d’électricité Nord Pool qui effectue une

couverture globale de ses risques de prix et de volume à l’aide de contrats à terme. La

section 5 conclut.
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Chapitre 2

Couverture et changements de régime

Optimal hedging when the underlying asset
follows a regime-switching Markov process 1

By Pascal François 2, Geneviève Gauthier 3 and Frédéric Godin 4

Abstract
We develop a flexible discrete-time hedging methodology that minimizes the expected value of

any desired penalty function of the hedging error within a general regime-switching framework.

A numerical algorithm based on backward recursion allows for the sequential construction of an

optimal hedging strategy. Numerical experiments comparing this and other methodologies show

a relative expected penalty reduction ranging between 0.9% and 12.6% with respect to the best

benchmark.
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2.1 Introduction and literature review

For a derivatives trading and risk management activity to be sustainable, hedging is

paramount. In practice, portfolio rebalancing is performed in discrete time and the market

is typically incomplete, implying that most contingent claims cannot be replicated exactly.

Thus, to implement a hedging policy, the challenge is twofold : a model must be specified

and hedging strategy objectives must be set.

From a modelling perspective, this article adopts a regime-switching environment. One

widely studied class of regime-switching models views log-returns as a mixture of Gaussian

variables. These models, introduced in finance by Hamilton (1989), have been shown to

improve the statistical fit and forecasts of financial returns. They reproduce widely docu-

mented empirical properties such as heteroskedasticity, autocorrelation and fat tails. In this

framework, the option pricing problem must deal with incomplete markets and requires the

specification of a risk premium. Among significant contributions, Bollen (1998) presents a

lattice algorithm to compute the value of European and American options. Hardy (2001)

finds a closed-form formula for the price of European options. The continuous-time version

of the Gaussian mixture model is studied by Mamon & Rodrigo (2005) who find an explicit

value for European options by solving a partial differential equation. Elliott et al. (2005)

price derivatives by means of the Esscher transform under the same continuous-time mo-

del. Buffington & Elliott (2002) derive an approximate formula for American option prices.

Beyond the Gaussian mixture models, extensions address GARCH effects (Duan et al., 2002)

and jumps (Lee, 2009a), for example.

Several authors study the problem of hedging an underlying asset with its futures under

regime-switching frameworks. Alizadeh & Nomikos (2004) and Alizadeh et al. (2008) base

their hedging strategy on minimal variance hedge ratios. Lee et al. (2006), Lee & Yoder

(2007), Lee (2009a) and Lee (2009b) extend the dynamics of the underlying asset in Ali-

zadeh & Nomikos (2004) to incorporate a time-varying correlation between the spot and

futures returns, GARCH-type feedback from returns on the volatilty, jumps and copulas for

the dependence between futures and spot returns. Lien (2012) provides conditions under

which minimal variance ratios taking into account the existence of regimes overperform their

unconditional counterparts.
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Option hedging under regime-switching models has recently raised interest in the lite-

rature. Rémillard & Rubenthaler (2013) adapt the work of Schweizer (1995) to a regime-

switching framework and identify the hedging strategy that minimizes the squared error of

hedging in both discrete-time and continuous-time for European options. The implementa-

tion of this methodology is present in Rémillard et al. (2010). Rémillard et al. (2012) extend

the hedging procedure to American options.

Another strand of literature discusses self-financing hedging policies 5 under general model

assumptions. A widely known methodology is delta hedging. It consists in building a portfo-

lio whose value variations mimick those of the hedged contingent claim when small changes

in the underlying asset’s value occur. In continuous-time complete markets, delta hedging is

the cornerstone of any hedging strategy since it allows for perfect replication. Based on the

first derivative of the option price with respect to the underlying asset price, it requires a

full characterization of the risk-neutral measure. Many authors discuss the implementation

of delta hedging in discrete-time and/or incomplete markets (Duan, 1995, among others). It

should be stressed, however, that delta hedging is subject to model misspecification. Never-

theless, it stands as a relevant benchmark when it comes to assessing the performance of a

hedging strategy.

Another approach is super-replication (e.g. El Karoui & Quenez, 1995, and Karatzas

1997). It identifies the cheapest trading strategy whose terminal wealth is at least equal to

the derivative’s payoff. Since the option buyer alone carries the price of the hedging risk,

the initial capital required is often unacceptably large. Eberlein & Jacod (1997) show that,

under many models, the initial capital required to super-replicate a call option is the price

of the underlying asset itself.

An alternative to super-replication is Global Hedging Risk Minimization (GHRM), which

consists in identifying trading strategies that replicate the derivative’s payoff as closely as

possible, or alternatively, minimize the risk associated with terminal hedging shortfalls. Xu

(2006) proposes to minimize general risk measures applied to hedging errors. Several authors

choose more specific risk measures : quantiles of the hedging shortfall (Föllmer & Leukert,

1999, Cvitanić & Spivak, 1999), expected hedging shortfall (Cvitanić & Karatzas, 1999),

5. By contrast, local risk-minimization, which considers hedging strategies that are not self-financing,

selects one that minimizes a measure of the costs related to non-initial investments in the portfolio (Schweizer,

1991).
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expected powers of the hedging shortfall (Pham, 2000), Tail Value-at-Risk (Sekine, 2004),

expected squared hedging error (Schweizer, 1995, Motoczyński, 2000, Cont et al., 2007 and

Rémillard & Rubenthaler, 2013) and the expectation of general loss functions (Föllmer &

Leukert, 2000). Theoretical existence of optimal hedging strategies under those risk measures

and their characterization are studied in a general context. However, explicit solutions exist

only for some particular cases of market setups and risk measures. The implementation of

the preceding methodologies in the case of incomplete markets is often not straightforward,

and tractable algorithms computing the optimal strategies have yet to be identified. The

presence of regimes adds an additional layer of difficulty in applying those methods.

This paper’s contributions are twofold. First, on a theoretical level, we develop a discrete-

time hedging methodology with the GHRM objective that miminizes the expected value of

any desired penalty function of the hedging error within a general regime-switching fra-

mework (possibly including time-inhomogeneous regime shifts). This methodology is highly

flexible and generalizes the quadratic hedging approach. It incorporates a large class of pe-

nalty functions encompassing usual risk measures such as Value-at-Risk and expected short-

fall. The proposed framework can accommodate portfolio restrictions such as no short-selling.

Portfolios can be rebalanced more frequently than the regime-switch timeframe. Second, from

an implementation perspective, a numerical algorithm based on backward recursion allows for

the sequential construction of an optimal hedging strategy. Numerical experiments challenge

our model with existing methodologies. The relative expected penalty reduction obtained

with this paper’s optimal hedging approach, in comparison with the best benchmark, ranges

between 0.9% and 12.6% in the different cases exposed.

This paper is organized as follows. In Section 2.2, the market model and the hedging

problem are described. In Section 2.3, the hedging problem is solved. Section 2.4 presents a

numerical scheme to compute the solution to the hedging problem. Section 2.5 presents the

market model used for the simulations and provides numerical results. Section 2.6 concludes

the paper.
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2.2 Market specifications and hedging

2.2.1 Description of the market

Transactions take place in a discrete-time, arbitrage-free financial market. Denote by ∆t

the constant time elapsing between two consecutive observations. Two types of assets are

traded. The risk-free asset is a position in the money market account with a nominal amount

normalized to one monetary unit. The time−n price of the risk-free asset is

S(1)
n = exp (rn∆t) , n ∈ {0, 1, 2, ...}

where r is the annualized risk-free rate. The price of the risky asset, starting at S(2)
0 , evolves

according to

S(2)
n = S

(2)
0 exp (Yn) ,

where Yn is the risky asset’s cumulative return over the time interval [0, n]. ~Sn denotes the

column vector
(
S

(1)
n , S

(2)
n

)>
and ~S0:n stands for the whole price process up to time n.

The financial market is subject to various regimes that affect the dynamics of the risky

asset’s price. These regimes are represented by an integer-valued process {hn}Nn=0 taking

values in H = {1, 2..., H} where hn is the regime prevailing during time interval ]n, n + 1].

The joint process (Y, h) has the Markov property 6 with respect to the filtration {Fn}Nn=0

satisfying the usual conditions, where

Fn = σ
(
~S0:n, h0:n

)
= σ (Y0:n, h0:n) ,

meaning that the distribution of (Yn+1, hn+1) conditional on information Fn is entirely de-

termined by Yn and hn. 7 This assumption is consistent with Hamilton (1989) and Duan et

al. (2002), among others. Transition probabilities of the regime process h are denoted by

P
(n)
i,j (y) = P(hn+1 = j|hn = i, Yn = y) i, j ∈ H.

Because regimes h are not observable, a coarser filtration {Gn}Nn=0 modelling the infor-

mation available to investors is required, that is, Gn = σ (Y0:n).
6. A stochastic process {Xn} has the Markov property with respect to filtration F if ∀n, x,

P(Xn+1 ≤ x|Fn) = P(Xn+1 ≤ x|Xn).

7. Equivalently, the process (~S, h) has the Markov property with respect to filtration F .
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2.2.2 The hedging problem

A market participant (referred to as the “hedger”) wishes to replicate (or “hedge”) the

payoff φ(S
(2)
N ) of a European contingent claim written on the risky asset and maturing at

time N , where φ (·) is some positive Borel function φ : [0,∞)→ R. Alternatively, the payoff

can be written as a function of the risky asset return

φ(S
(2)
N ) = φ̃(YN),

for some function φ̃ (·).

To implement the replication, the hedger adopts G−predictable self-financing 8 hedging

strategies θ =
{
~θn

}N
n=1

with time−n value 9 Vn(v0, Y0:n, ~θ1:n) := ~θ>n ~Sn and initial value

V0 := v0 = ~θ>1 ~S0. This ensures that all trading decisions are made based on up-to-date

price information, regardless of the unobserved regime. Below, θ(k)
n represents the number of

shares of asset k held during period ]n− 1, n] and ~θn is the column vector
(
θ

(1)
n , θ

(2)
n

)>
that

characterizes the hedging portfolio.

Definition 2.2.1 The set of all G−predictable self-financing hedging strategies satisfying

possible additional requirements (such as no short-selling constraints 10) is denoted by Θ. We

refer to Θ as the set of admissible hedging strategies.

Unobservable regimes and discrete-time trading make perfect replication of the European

contingent claim impossible to achieve. The hedger therefore aims to best replicate the payoff

φ̃(YN) according to a certain metric. This justifies the use of a penalty function that sanctions

departure of the hedging portfolio’s terminal value VN from φ(S
(2)
N ). Let g (·) be a Borel

function g : R→ R representing a penalty function. For a given amount of initial wealth v0,

the hedger wishes to find an admissible hedging strategy solving

min
θ∈Θ

E
[
g(φ(S

(2)
N )− VN)

]
. (2.1)

The solution is referred to as the optimal hedging strategy. Admittedly, g, φ, θ and S(2) need

to be well-behaved and integrable enough for this expectation to exist.

Defining the hedging problem at the terminal date does not require a pricing function for

the derivatives, and in particular a characterization of the risk premium. By contrast, hedging

8. θ =
{
~θn

}N
n=1

is a self-financing hedging strategy if ∀n ≥ 1, ~θ>n ~Sn = ~θ>n+1
~Sn.

9. To ease notation, Vn(v0, Y0:n, ~θ1:n) is denoted by Vn.
10. Or a weaker version of it asking for Vn to be positive.
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strategies considering intermediate dates (option tracking) rely on additional assumptions

about the martingale measure.

Schweizer (1995) and Rémillard & Rubenthaler (2013) work with the quadratic penality

function g(x) = x2. However, this specification entails that gains and losses on the hedge are

penalized equally. In practice, the hedger might be interested in treating gains and losses on

the hedge differently. Among asymmetric penalty functions, Pham (2000) investigates the

case g(x) = xp1{x>0} for a positive constant p, where 1{·} denotes the indicator variable.

Another possibility is to choose g(x) = 1{x≥z} where z is a constant. Such a penalty function

induces the minimization of the probability that the hedging shortfall is greater than z.

Föllmer & Leukert (1999) and Cvitanić & Spivak (1999) study the hedging problem in

continuous time with a similar hedging goal. In this paper, we opt for a general asymmetric

penalty function of the form

g(x) = α1|x|p1{x≤γ1} + α2|x|q1{x>γ2}, (2.2)

for some constants α1, α2, γ1, γ2, p ≥ 0 and q ≥ 0. This specification encompasses both

symmetric and asymmetric penalties and allows different penalty weights to be put on the

under- and over-replication of the terminal payoff. If q = α1 = 0 and α2 = 1, the penalty

reduces to a Value-at-Risk type of measure. If q = α2 = 1 and α1 = 0, the penalty becomes

an Expected shortfall type of measure. The case p = q = 2, α1 = α2 = 1 and γ1 = γ2 = 0

leads to the quadratic penalty.

2.3 Solving the hedging problem

2.3.1 From path-dependence to the Markov property

The tools of dynamic programming and the Bellman equation are tailor-made to solve

problems of the Equation (2.1) type if one can invoke the Markov property for the state

variables process. However, the observable process Y does not necessarily have the Markov

property with respect to the filtration G, because the cumulative returns depend on the

regimes. Indeed, all past values of the cumulative returns path Y give information about

the current value of the unobservable regime h. This obstacle is circumvented by defining

additional state variables that summarize all the relevant information of Y ’s previous path.

Those variables allow for the definition of a process that has the Markov property with

respect to information flow G.
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Below, f ~X(~x) denotes the joint probability density function (pdf) of a random vector
~X. In some cases, if some components of ~X are discrete-type random variables, f ~X(~x) is a

mixed pdf. Similarly, f ~X|~Y (~x|~y) denotes the pdf of ~X conditional upon ~Y = ~y. All proofs

are provided in Appendix 2.7.

Definition 2.3.1 The conditional probability ηi,n of being in regime i at time n given the

cumulative returns Y0:n is the Gn−measurable function

ηi,n := P (hn = i|Gn) = fhn|Y0:n (i|Y0:n) , i ∈ H.

As a special case, ηi,0 = P(h0 = i) = fh0(i). The Gn−measurable vector ~ηn = (η1,n, ..., ηH,n)

denotes the set of conditional probabilities at time n.

Those η are the state variables required in the construction of a Markov process with

respect to filtration G. Theorem 2.3.1 provides a recursion formula allowing for an efficient

computation of those probabilities. 11

Theorem 2.3.1 The conditional probabilities are given recursively by

ηi,n+1 =

∑H
j=1 fhn+1,Yn+1|hn,Yn (i, Yn+1 |j, Yn ) ηj,n∑H

j=1

∑H
`=1 fhn+1,Yn+1|hn,Yn (j, Yn+1 |`, Yn ) η`,n

.

Moreover, if Yn+1 and hn+1 are conditionally independent upon Fn, then

fhn+1,Yn+1|hn,Y0:n (i, Yn+1 |j, Y0:n ) = P
(n)
j,i (Yn)fYn+1|hn,Y0:n (Yn+1 |j, Y0:n ) .

Corollary 2.3.1 states that those conditional probabilities are the natural extension for

the cumulative returns to retrieve the Markov property.

Corollary 2.3.1 {Yn, ~ηn}Nn=0 has the Markov property with respect to G.

Finally, the next corollary extends the previous one to include the hedging portfolio value.

In the general case of predictable hedging strategies, this inclusion unfortunately destroys

the Markov property. However, if asset reallocation is solely determined by the information

about current cumulative return and portfolio value as well as the recursive conditional

probabilities (as defined in Theorem 2.3.1), then the Markov property can be retrieved. This

property is crucial, from a numerical point of view, to obtaining an implementable algorithm.

11. An alternative recursion formula is presented in Rémillard et al. (2010). However, the current formula

is preferred for two main reasons. First, ηi,n lying in [0, 1] makes it numerically more stable. Second, it

benefits from a dimension reduction since ηH,n = 1−
∑H−1
j=1 ηj,n.
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Corollary 2.3.2 For any admissible hedging strategy θ ∈ Θ , the conditional distribution

of (Yn+1, ~ηn+1, Vn+1) given Gn is the same as if it is conditioned upon σ
(
Yn, ~ηn, Vn, ~θn+1

)
.

Moreover, if the condition that ~θn+1 is σ (Yn, ~ηn, Vn)−measurable for any n is added, then

{Yn, ~ηn, Vn}Nn=0 has the Markov property with respect to G.

2.3.2 A recursive construction

In this section, an optimal hedging strategy is constructed. Let Ψ∗N be the hedging penalty

at time N,

Ψ∗N := g
(
φ̃(YN)− VN

)
(2.3)

and for any n ∈ {0, 1, ..., N − 1}, let Ψ∗n be the smallest possible expected hedging penalty

Ψ∗n := min
~θn+1:N

E [Ψ∗N |Gn] (2.4)

where ~θn:N =
(
~θn, ..., ~θN

)
.

Remark 2.3.1 One assumes sufficient regularity in g, φ and the distribution of {Yn}Nn=0

such that, for all n, the minimum in (2.4) is attained.

Equation (2.4) is stated as a minimization over N − n portfolio vectors. Theorem 2.3.2

presents a way to optimize these portfolios one at a time.

Theorem 2.3.2 For any n ∈ {0, 1, ..., N − 1} , the smallest expected penalty at time n may

be computed using a recursive argument :

Ψ∗n = min
~θn+1

E
[
Ψ∗n+1

∣∣Gn] . (2.5)

Furthermore, let ~θ∗(n+2):N denote one of the possible admissible hedging strategies that mini-

mize the expected penalty at time n+ 1, that is,

~θ∗(n+2):N = arg min
~θn+2:N

E[Ψ∗N |Gn+1].

Then,

~θ∗(n+1):N :=

(
arg min
~θn+1

E
[
Ψ∗n+1

∣∣Gn] , ~θ∗(n+2):N

)
, (2.6)
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is a solution to the following equation :

~θ∗(n+1):N = arg min
~θn+1:N

E[Ψ∗N |Gn].

This means that the optimal admissible hedging strategy may be built up using a backward

induction construction.

Equations (2.5) and (2.6) involve conditional expectations with respect to all past return

realizations. Theorem 2.3.3 shows that it is possible to remove path-dependence and appeal

only to conditional expectations with respect to the current state variables {Yn, ~ηn, Vn}Nn=0.

Theorem 2.3.3 Assume that for all n, constraints on the portfolio ~θn+1 depend only on the

value of (Yn, ~ηn, Vn). Then, ∀n ≤ N, Ψ∗n is σ(Yn, ~ηn, Vn)−measurable. Moreover, there exists

an optimal self-financing hedging strategy
{
~θ∗n

}
that solves (2.1) such that ∀n ≥ 1, ~θ∗n+1 is

σ(Yn, ~ηn, Vn)−measurable. Furthermore,

~θ∗n+1 = arg min
~θn+1∈σ(Yn,~ηn,Vn)

E
[
Ψ∗n+1 |Yn, ~ηn, Vn

]
. (2.7)

Since Ψ∗n is σ(Yn, ~ηn, Vn)−measurable, one can write Ψ∗n = Ψn(Yn, ~ηn, Vn). Finally, the next

theorem combines Theorems 2.3.2 and 2.3.3 to optimize one portfolio vector at a time, sear-

ching on the space of hedging strategies for which {Yn, ~ηn, Vn}Nn=0 has the Markov property

with respect to G. These two features make the algorithm numerically tractable.

Theorem 2.3.4 The Bellman Equation There exists a self-financing hedging strategy{
~θ∗n

}
that solves problem (2.1) and the following set of recursive equations :

∀n, ~θ∗n+1 = arg min
~θn+1∈σ(Yn,~ηn,Vn)

E
[
Ψn+1(Yn+1, ~ηn+1, Vn+1(~θn+1) )

∣∣Yn, ~ηn, Vn] .
Furthermore, the minimal expected penalty can be computed as follows :

ΨN (YN , ~ηN , VN ) = g(φ(S
(2)
N )− VN ) = g(φ̃(YN )− VN ) (2.8)

Ψn(Yn, ~ηn, Vn) = min
~θn+1

E
[
Ψn+1(Yn+1, ~ηn+1, Vn+1(~θn+1) )

∣∣Yn, ~ηn, Vn] , n ∈ {0, 1, ..., N − 1} (2.9)

Finally, min
{~θn}∈Θ

E
[
g(φ(S

(2)
N )− VN(~θ1:N) )

]
= Ψ0(Y0, ~η0, V0).

The proof of Theorem 2.3.4 is a direct consequence of Theorems 2.3.2 and 2.3.3 and the

definition of Ψn.
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2.4 Lattice implementation

Analytical solutions to Theorem 2.3.4’s equations are unlikely to be found for general

penalties. Therefore, numerical approximations must be considered in order to implement

the algorithm. The numerical application of the hedging algorithm is discussed in this section.

2.4.1 Dimensionality reduction

Since
∑H

j ηj,n = 1, the variable ηH,n provides no additional information. Therefore, ~ηn =

(η1,n, ..., ηH,n) can be replaced with ~ηn := (η1,n, ..., ηH−1,n) in Theorem 2.3.4. This reduces

the dimension of the problem, which is an important numerical issue. Similarly, since for

self-financing strategies
∑2

k=1 θ
(k)
n+1S

(k)
n = Vn, the optimization over ~θn+1 is in fact equivalent

to optimizing only over θn+1 := θ
(2)
n+1.

2.4.2 Grid values

To compute the minimal expected penalty Ψn and optimal portfolio position ~θn+1 from

Theorem 2.3.4, one resorts to a grid whose nodes correspond to a discrete subsample of all

possible values of (Yn, ηn, Vn). For each state variable, the largest and smallest values in the

grid must be set. One can use the [0, 1] bounds for ~η since it contains probabilities. Variables

Vn and Yn are unbounded. Therefore, grid bounds for Vn and Yn are found numerically using

a Monte-Carlo simulation. To this end, 105 sample paths of cumulative returns Y0:N are

simulated. This yields the approximate distribution of Yn for all n. The case of the portfolio

value Vn is different since the optimal hedging strategy is not yet known. However, a proxy

V
(BS)
n is built for Vn using the Black-Scholes delta hedging as described in Section 2.5.4. Let

Yn,α, and V
(BS)
n,α be the αth sample quantiles. Define

Yn,mid :=
1

2
(Yn,0.25% + Yn,99.75%) and V (BS)

n,mid :=
1

2
(V

(BS)
n,0.25% + V

(BS)
n,99.75%)

as the mid-points of two extreme quantiles. For some positive stretching factors (λ
(small)
Y ,

λ
(large)
Y , λ

(small)
V , λ

(large)
V ), the largest and smallest values for the grid at time n are set

Y (small)
n := (1 + λ

(small)
Y )(Yn,0.25% − Yn,mid) + Yn,mid

Y (large)
n := (1 + λ

(large)
Y )(Yn,99.75% − Yn,mid) + Yn,mid

V (small)
n := (1 + λ

(small)
V )(V

(BS)
n,0.25% − V

(BS)
n,mid) + V

(BS)
n,mid

V (large)
n := (1 + λ

(large)
V )(V

(BS)
n,99.75% − V

(BS)
n,mid) + V

(BS)
n,mid.
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2.4.3 Algorithm solving the Bellman equation

A numerical algorithm allowing for the computation of the minimal expected penalty

and the optimal portfolio position at each time step is given in this section. First, define two

grids of different sizes (one finer and one coarser) containing a discrete subset of values for

(Yn, ~ηn, Vn).

On the coarse grid

Assume that (Yn, ~ηn, Vn) = (y, ~η, v) . According to Theorem 2.3.4, the goal is to evaluate

Equation (2.9) at each node (y, ~η, v) of the grid :

Ψy,~η,v
n = min

~θn+1

E
[

Ψn+1

(
Yn+1, ~ηn+1, Vn+1(~θn+1)

) ∣∣∣ (Yn, ~ηn, Vn) = (y, ~η, v)
]
.

From Theorem 2.3.1, ~ηn+1 is a function of (Yn+1, Yn, ~ηn). Seen from node (y, ~η, v), it may

be denoted ~ηy,~ηn+1 (Yn+1) . Because the amount invested in the riskless asset is the value of

the portfolio minus the investment in the risky asset, the time-(n + 1) value of the hedging

portfolio, seen from the grid point (Yn, ~ηn, Vn) = (y, ~η, v), is

Vn+1

(
~θn+1

)
= θ

(1)
n+1 exp (r (n+ 1) ∆t) + θ

(2)
n+1S

(2)
0 exp (Yn+1)

= exp (r∆t)
(
v − θ(2)

n+1S
(2)
0 exp (y)

)
+ θ

(2)
n+1S

(2)
0 exp (Yn+1)

= V y,v
n+1

(
~θn+1, Yn+1

)
.

Therefore, the expected penalty at time n and at grid point (y, ~η, v) satisfies

Ψy,~η,v
n = min

~θn+1

E
[

Ψn+1

(
Yn+1, ~η

y,~η
n+1 (Yn+1) , V y,vn+1

(
~θn+1, Yn+1

))∣∣∣ (Yn, ~ηn, Vn) = (y, ~η, v)
]

= min
~θn+1

H∑
j=1

ηj,nE
[

Ψn+1

(
Yn+1, ~η

y,~η
n+1 (Yn+1) , V y,vn+1(~θn+1, Yn+1)

)∣∣∣ (hn, Yn, ~ηn, Vn) = (j, y, ~η, v)
]

(from Equation (2.20))

= min
~θn+1

H∑
j=1

ηj,n

∫ ∞
−∞

Ψy,~η,v
n+1

(
~θn+1, z

)
fYn+1|Yn,~ηn,Vn,hn

(z|y, ~η, v, j) dz

= min
~θn+1

H∑
j=1

ηj,n

∫ ∞
−∞

Ψy,~η,v
n+1

(
~θn+1, z

)
fYn+1|Yn,hn

(z|y, j)dz (Markov property and Lemma 2.7.1)

where

Ψy,~η,v
n+1

(
~θn+1, z

)
= Ψn+1

(
z, ~ηy,~ηn+1 (z) , V y,v

n+1

(
~θn+1, z

))
.

In general, there is no closed-form solution for this integral and it is evaluated numerically.

Therefore, the support of Yn+1 is partioned in M intervals with boundaries −∞ = z0 < z1 <

15



... < zM−1 < zM =∞ and z∗i ∈ [zi−1, zi] acts as a representative of the interval [zi−1, zi] . Let

ωy,j,ni be the following quadrature weights :

ωy,j,ni = FYn+1|Yn,hn (zi |y, j )− FYn+1|Yn,hn (zi−1 |y, j ) ,

FYn+1|Yn,hn being the cumulative distribution function of Yn+1 given (Yn, hn). Then,

∫ ∞
−∞

Ψy,~η,v
n+1

(
~θn+1, z

)
fYn+1|Yn,hn (z |y, j ) dz =

M∑
i=1

∫ zi

zi−1

Ψy,~η,v
n+1

(
~θn+1, z

)
fYn+1|Yn,hn (z |y, j ) dz

∼=
M∑
i=1

Ψy,~η,v
n+1

(
~θn+1, z

∗
i

)∫ zi

zi−1

fYn+1|Yn,hn (z |y, j ) dz

=
M∑
i=1

Ψy,~η,v
n+1

(
~θn+1, z

∗
i

)
ωy,j,ni (2.10)

In general, the approximation (2.10) is good if the distances between the zi are small and

the Ψn+1 function is relatively smooth. The zi are chosen to be quantiles of the conditional

distribution FYn+1|Yn,hn . To better capture the impact of extreme events, particular attention

is paid to the tails of the distribution. The left (right) tail is defined as the smallest (largest)

5% values of the distribution. The M(1) smallest zi’s correspond to quantiles of level k 5%
M(1)

,

k ∈
{

1, 2, ...,M(1)

}
. The central part of the distribution is proxied by M(2) quantiles of level

k 90%
M(2)

+ 5%, k ∈
{

1, 2, ...,M(2)

}
, while the right tail is represented by M(3) quantiles whose

level lies in ]95%, 100%] . Consequently, the weights ωy,j,ni are 5%
M(1)

, 90%
M(2)

or 5%
M(3)

depending

on which part of the distribution zi belongs to. Among possible specifications, z∗i are chosen

as quantiles whose level is the mean between the levels of zi−1 and zi.

Because the maximization is time-consuming, especially if it must be done at all nodes

of the lattice, the research area is reduced to a discrete set O of values :

Ψn(y, ~η, v) ∼= min
~θn+1∈O

M∑
i=1

Ψy,~η,v
n+1

(
~θn+1, z

∗
i

)
ωy,~η,ni . (2.11)

Since the backward induction on time leads to a numerical approximation Ψ̂n+1 of Ψn+1, the

latter is replaced by former in Equation (2.11) in applications.

Step 1 : Rough estimate of optimal hedging strategy

A rough estimate of the optimal hedging strategy is

θ̂y,~η,vn+1 = arg min
θn+1∈O

M∑
i=1

Ψ̂y,~η,v
n+1

(
~θn+1, z

∗
i

)
ωy,~η,ni .
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By construction, the z∗i do not match the grid’s discretization of next period return Yn+1.

For this reason, interpolation is required to evaluate each of the Ψ̂y,~η,v
n+1

(
~θn+1, z

∗
i

)
whose

arguments most likely lie between the grid nodes. This step proceeds with multivariate

linear interpolation. 12

On the finer grid

Step 2 : Smoothing of the hedging strategy

From step 1, one gets an approximate portfolio position θ̂∗n+1 for every node of the coarse grid

at time n. For every value of (y, ~η, v) on the finer grid, one computes the hedging portfolio

position ϑ̂y,~η,vn+1 using smoothing splines based on θ̂n+1. ϑ̂n+1 is now used as the final estimation

of the optimal hedging portfolio position.

Step 3 : Recalculation of the value function

A finer partition of the distribution of Yn+1 and the corresponding weights, denoted by z̃∗i
and ω̃i, i = 1, ..., M̃ , serve for the approximation of the minimal expected penalty function

with the new portfolio position ϑ̂n+1. Thus, mimicking Equation (2.11),

Ψ̂n(y, ~η, v) =
M̃∑
i=1

Ψ̂y,~η,v
n+1

(
ϑ̂y,~η,vn+1 , z̃

∗
i

)
ω̃y,~η,ni .

The subsequent iteration of the three-step algorithm will call this new approximation for Ψ̂n.

Thus, to minimize the accumulation of errors, the interpolation is performed with natural

splines. 13

2.5 Numerical results

2.5.1 The model

As in Hamilton (1989), the regime process is assumed to be a Markov chain, implying

that the conditional distribution of hn+1 given Fn is the same as if it were conditioned upon

hn. The model can accomodate a regime shift timeframe which is coarser than the reba-

lancing schedule. In that context, τ represents the number of periods between two possible

12. This approximation of Ψ̂n+1 is not involved in further iterations. Therefore, while high precision is not

a crucial issue at this step, computational speed is.
13. Natural splines in three dimensions are implemented through the interp3 matlab function.
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regime transitions and {hn}Nn=0 becomes a time-inhomogeneous Markov chain with probabi-

lity transition matrix

P (n)(y) =

P if (n+ 1) mod τ = 0

IH×H otherwise,

where IH×H is the identity matrix.

A basic model based on two regimes (H = 2) serves as benchmark to test the proposed

algorithm. Conditioned on the actual regime hn = i, the one-period log-return εn+1 = Yn+1−

Yn has a Gaussian distribution with mean µi∆t and variance σ2
i ∆t.

The application of Theorem 2.3.4 relies on the following relations :

Yn+1 = Yn + εn+1

Vn+1 = Vne
r∆t + θn+1S0e

Yn(eεn+1 − er∆t)

η1,n+1 =

∑H
j=1 P

(n)
j,1 ηj,n fεn+1|hn(εn+1|j)∑H

u=1

∑H
j=1 P

(n)
j,u ηj,n fεn+1|hn(εn+1|j)

,

where η2,n = 1− η1,n and fεn+1|hn(εn+1|j) is the Gaussian density function

fεn+1|hn(εn+1|j) =
1√

2π∆tσj
exp

(
−1

2

(εn+1 − µj∆t)
2

σ(j)2
∆t

)
. (2.12)

The conditional distribution of εn+1|(Yn, ηn, Vn) is a mixture of two Gaussian distribu-

tions :

P(εn+1 ≤ x|Yn, ηn, Vn) = P(εn+1 ≤ x|hn = 1)η1.n + P(εn+1 ≤ x|hn = 2)(1− η1,n)

= Φ

(
x− µ1

σ1

)
η1,n + Φ

(
x− µ2

σ2

)
(1− η1,n),

where Φ is the standard normal cumulative distribution function.

Moreover, the following boundaries can be used for η in the algorithm of Section 2.4 :

Proposition 2.5.1 For all j, n, min
i∈H

P
(n)
i,j ≤ ηj,n+1 ≤ max

i∈H
P

(n)
i,j .

The proof is in Appendix 2.7.
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2.5.2 Estimation

Regime switches potentially occur each week and rebalancing is performed weekly (∆t =

1/52, τ = 1) or daily (∆t = 1/260, τ = 5). Maximum likelihood with the Baum-Welch algo-

rithm (Baum et al., 1970), a particular case of the EM algorithm of Dempster et al. (1997),

is applied to a sample of S&P 500 weekly log-returns from January 1, 2000 to December 31,

2010. Parameter estimates are reported in Table 2.1.

A p-value of 34.4% for the Cramer-Von-Mises parametric bootstrap goodness-of-fit test

(see Genest & Rémillard, 2008) for the regime-switching process indicates that the model

is not rejected. The first (second) regime represents an economy in expansion (recession) :

returns exhibit a positive (negative) mean with a low (high) volatility. The risk-free rate is

set to r = 2%.

Table 2.1 – Estimated parameters of the Gaussian regime switching model

Parameter Regime 1 Regime 2

µj .0718 −.2884

σj .1283 .3349

Pj,j .9736 .9091

2.5.3 Hedging strategies

The option to be hedged is a European at-the-money call option with payoff φ(SN) =

max(0, SN −E). The initial index value is S0 = 1,257.64, which is the value of the S&P 500

on December 31, 2010. The option strike is E = 1,257. The maturity of the option is 12

weeks. 14

The initial probability of being in regime 1 is set to η0 = 0.2318. This value is chosen

instead of the estimated value on the S&P 500 time series because it leads to the same

call option price under the Black-Scholes and Hardy models (see Sections 2.5.4 and 2.5.4,

respectively). Thus, both these hedging methodologies use the same initial capital, which

makes the numerical results comparable. The initial hedging capital, which is the option

price under those models, is V0 = 62.4316.

14. That is, N = 60 periods for daily rebalancing and N = 12 for weekly rebalancing.
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The following penalty functions are under consideration :

g(x) = x2 quadratic, (2.13)

g(x) = x21{x>0} short quadratic, (2.14)

g(x) = x21{x<0} long quadratic, (2.15)

where x represents the hedging error φ̃(YN)−VN . The quadratic penalty sanctions departures

from the option payoff. The short (long) quadratic penalty is designed for the option seller

(buyer), since it does not penalize profits ; only losses are sanctioned.

The restrictions considered on the portfolio positions are that ∀n, θn ∈ [0, 1], thereby

preventing short sales and excessive leverage.

2.5.4 Benchmarks

In order to compare the hedging model presented in this paper, benchmarks must be

set. In the following, the optimal hedging strategy presented in Section 2.3 is referred to as

"minimal expected penalty hedging" (MEPH).

The most common hedging strategy relies on delta hedging. 15 In this case, a pricing

kernel is required to compute the deltas. The first two benchmarks examine two pricing

models.

Black-Scholes delta hedging (BSDH)

The classic Black-Scholes delta with a modified volatility determines the position held in

the underlying asset : 16

θ
(BSDH)
n+1 = Φ

(
log(Sn/E) + (r + .5ζ2)∆t(N − n)

ζ
√

∆t(N − n)

)
,

where ζ is the asymptotic stationary volatility of log-returns εn in the case τ = 1 :

ζ =

√√√√( H∑
j=1

P ∗j (σ(j)2
+ µ(j)2

)

)
+

(
H∑
j=1

P ∗j µ
(j)

)2

, (2.16)

15. The empirical performance of delta hedging under different option pricing models is investigated by

De Giovanni et al. (2008).
16. Black-Scholes delta hedging under model misspecification is studied in Augustyniak & Boudreault

(2012).
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P ∗ is the stationary distribution associated with the transition matrix P . In the case τ > 1,

the stationary distribution for the regimes does not exist in general because of the cyclical

nature of the Markov chain transition probabilities. Nevertheless, Equation (2.16) is used as

the presumed market volatility. The characterization of the hedging position is explicit and

does not require a lattice approximation.

The initial capital used for hedging is the option price given by the Black-Scholes formula

with the volatility given by (2.16). The Black-Scholes hedging methodology can be seen as

a naive benchmark that would be applied by a hedger who ignores the presence of regimes

in the market.

Hardy delta hedging (HDH)

In Hardy (2001)’s two-regime model, the risk-neutral dynamics of one-period log-returns

εn+1 follow a mixture of Gaussian distributions. The delta hedging strategy commands that :

θ
(HDH)
n+1 =

2∑
j=1

ηQj,n

N−n∑
R=0

Φ

(
log(Sn/E) + (N−n)r∆t + (Rσ2

1/2 + (N−n−R)σ2
2/2)∆t)√

(Rσ2
1 + (N − n−R)σ2

2)∆t

)
f jn(R),

where f jn(R) is the probability, given current regime i, that the number of periods between

times n and N spent in the first regime is R. Probabilities f jn(R) can be computed recursively

(see Hardy, 2001). ηQj,n is the risk-neutral probability of being in regime j during time interval

]n, n+ 1] given the current partial information Gn. With this benchmark, the initial capital

used for hedging is the option price. The hedger acknowledges the existence of regimes, but

assigns an arbitrary risk premium to price options.

Forecast regime quadratic hedging (FRQH)

Besides delta hedging, Rémillard & Rubenthaler (2013) propose a global hedging risk

minimization approach. The hedging strategy θ minimizes the expected terminal squared

error of hedging with respect to complete information F . This implies perfect knowledge of

the current and all past regimes. Since in practice the states h are not observable, Rémillard

et al. (2010) forecast them with the most likely regime.

Let Θ̄ be the set of all F -predictable self-financing strategies. 17 The FRQH strategy

solves

min
θ∈Θ̄

E
[
(φ(SN)− VN)2

]
.

17. By contrast, the MEPH strategy is G-predictable.
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With this benchmark, the hedging problem is based on the terminal date. Therefore, no

assumption related to the risk premium is needed, which implies in particular that this

strategy works with any initial capital. However, it comes at the price of using a lattice ap-

proach to compute the strategy. The hedger acknowledges the existence of regimes. However,

the hedging objective is restricted to the quadratic penalty. Furthermore, the uncertainty

surrounding regime forecasts is not taken into account.

2.5.5 Lattice parameters

The grid’s stretching factors are (λ
(small)
Y , λ

(large)
Y , λ

(small)
V , λ

(large)
V ) = (.6, .6, 1, 1). For step

1 of the algorithm in Section 2.4.3, M(1) = M(3) = 100 and M(2) = 200. For step 3, M̃(1) =

M̃(3) = 200 and M̃(2) = 300. Putting more points near the tails is used to better capture the

extreme events which contribute more heavily to the hedging penalty. The discrete set O

over which the θn are optimized in step 1 of the algorithm is O = {j/99 | j = 0, ..., 99}.

The number of grid nodes for each variable on the finer grid (step 3) is :

(#Yn,#ηn,#Vn) =

(200, 100, 200) if n = N − 1

(150, 100, 150) otherwise
(2.17)

More nodes are put on the first step of the recursion as it can be computed faster because

of explicit formulas. 18 For the coarse grid in step 1, only a subset of the nodes of the finer

grid in step 3 are retained. The proportion of nodes kept in the coarse grid from the finer

grid across dimensions Yn, ηn and Vn is 1/3, 1/3 and 1/4.

2.5.6 A simulation study

The numerical efficiency of the current paper’s hedging algorithm is validated by means

of Monte-Carlo simulations. The MEPH and FQRH strategies are implemented through a

lattice. Hedging errors φ̃(YN) − VN and hedging penalties g(φ̃(YN) − VN) are computed for

I = 106 simulated paths of the underlying returns.

Table 2.2 reports estimates of the expected penalty and their standard error for each

hedging methodology. Note that only the MEPH strategy is affected by the choice of pe-

nalty function. For the three benchmarks, the hedging strategy remains the same, but the

18. An explicit expression for ΨN−1 exists for the quadratic penalty. For the short (long) quadratic penalty,

an explicit expression for E[Ψ∗N (θN )|GN−1] also exists. Details are available on request.
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calculated penalty differs.

A first observation is that the MEPH grid estimate is relatively close to the simulated

expected penalty. This confirms the accuracy of the numerical implementation.

Table 2.2 – Estimated expected penalties

MEPH BSDH HDH FRQH MEPH BSDH HDH FRQH

Rebalacing frequency weekly weekly weekly weekly daily daily daily daily

Quadratic Penalty

Grid Estimate 622.57 - - - 417.88 - - -

Expected Penalty 622.70 662.13 669.10 664.87 418.77 457.16 442.28 422.57

Standard Error 1.010 1.082 1.051 1.148 0.5804 0.5605 0.4555 0.5191

Short Quadratic Penalty

Grid Estimate 325.15 - - - 191.01 - - -

Expected Penalty 325.39 372.16 391.15 374.75 193.71 222.15 220.21 202.90

Standard Error 0.9493 1.065 1.064 1.149 0.5321 0.4980 0.4343 0.4726

Long Quadratic Penalty

Grid Estimate 268.11 - - - 214.87 - - -

Expected Penalty 267.35 289.97 277.95 290.12 211.62 235.01 222.07 219.66

Standard Error 0.4365 0.5043 0.4346 0.4640 0.3577 0.4129 0.3416 0.3678

In all six cases considered, the MEPH strategy significantly reduces the expected penalty.

The magnitude of the penalty dispersion is comparable across all hedging strategies.

As for the quadratic penalty, the MEPH reduces the expected penalty by 6.0% in the

weekly case and by 0.9% in the daily case with respect to the best benchmark, namely BSDH

for weekly and FRQH for daily. The short (long) quadratic penalty is specifically designed for

the call option seller (buyer). The MEPH reduces the expected penalty by 12.6% (3.8%) in

the weekly case and by 4.5% (3.7%) in the daily case with respect to the best benchmark. The

latter differs across penalties and rebalancing frequencies. For the weekly case, the second

best strategy is HDH for the long quadratic penalty and BSDH otherwise. In the daily case,

as regime forecasts are more accurate, the FRQH method performs better than the other

two benchmarks.

Hedging errors drive hedging penalties and are therefore worthy of investigation. However,

descriptive statistics about hedging errors should not be the sole basis on which to judge the
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performance of hedging strategies. Nevertheless, analyzing those quantities sheds light on

how the penalty performance is achieved. Figure 2.1 displays the hedging error distributions

for the quadratic MEPH and the three benchmarks. All distributions exhibit bimodality with

similar mode locations but different frequencies.

Figure 2.1 – Density plot of hedging errors for MEPH versus benchmarks

The distribution behaviour, especially in the tails, is better described by Tables 2.3 and

2.4. In terms of RMSE, the quadratic MEPH strategy slightly dominates all other bench-

marks for both weekly and daily rebalancing. This is consistent with the quadratic objective

of reducing the occurrence of large deviations of the hedging portfolio from the derivative.

As far as Value-at-Risk (VaR) and Tail Value-at-Risk (TVaR) are concerned, the picture is

not as clear. The short quadratic MEPH used by a call seller performs slightly better than

the other hedging strategies. 19 For the call option buyer, MEPH is the second best behind

HDH for both VaR and TVaR risk measures.

Hedgers using the short quadratic penalty perceive the left tail as positive outcomes.

Therefore, it is not surprising that left tail VaRs and TVaRs are smaller for the HDH than

for the short quadratic MEPH. Furthermore the quadratic MEPH aims at shrinking both

tails, but it does not imply that it should beat the HDH on the two tails simultaneously. The

right tail is much slimmer for the quadratic MEPH than for the HDH. Therefore the HDH

can have a slimmer left tail on the extremes and still be beaten by the quadratic MEPH

when the symmetric penalty is considered.

More interestingly, the HDH also displays a lower TVaR than the MEPH with long

19. The 95th and 99th percentiles and TVaR are smaller than those of all benchmarks (except for the 99%

TVaR of the HDH with daily rebalancing).
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quadratic penalty (although the difference is rather small). This may sound surprising since,

by construction, the MEPH with long quadratic penalty aims at reducing the left tail of the

hedging error. However, inspection of Figure 2.1 reveals that this phenomenon is due to the

presence of a hump in the left tail of the HDH hedging errors. Although this hump represents

negative outcomes for the hedger using the long quadratic MEPH, it is not located in the

extreme part of the left tail and is therefore not taken into account by the VaR and TVaR

measures.

Table 2.3 – Descriptive statistics for hedging errors (weekly rebalancing)

MEPH MEPH MEPH BSDH HDH FRQH

(Quadratic) (Long) (Short)

Mean −0.6787 0.2152 −0.7834 0.1199 0.1492 −0.7741

Standard Deviation 24.945 31.543 25.686 25.732 25.867 25.774

RMSE 24.954 31.544 25.698 25.732 25.867 25.785

Skewness 0.5824 2.3438 0.2844 0.5479 0.6516 0.7566

Excess Kurtosis 0.6937 9.7892 0.4501 0.6640 0.4505 1.0720

99th Percentile 67.595 128.67 65.117 70.887 71.283 72.869

95th Percentile 41.431 58.540 40.272 43.762 45.252 44.219

Median −0.9649 −3.7258 0.7948 −0.0248 −1.4879 −2.7079

5th Percentile −36.555 −35.124 −42.559 −38.133 −34.734 −36.428

1st Percentile −43.988 −42.834 −50.357 −46.463 −41.938 −43.614

Upper TVaR 99% 84.481 163.48 81.574 87.608 86.821 91.001

Upper TVaR 95% 57.768 98.176 55.795 60.591 61.370 62.128

Lower TVaR 5% −41.047 −39.790 −47.352 −43.183 −39.056 −40.840

Lower TVaR 1% −46.788 −45.883 −52.414 −49.051 −44.941 −46.575

If a specific risk measure is the ultimate objective, the penalty function should be designed

accordingly. Indeed, our methodology precisely permits to adapt the hedging strategy to the

desired performance criterion. To illustrate this flexibility, Figure 2.2 shows the effect of the

penalty choice on the MEPH hedging error distribution.
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Table 2.4 – Descriptive statistics for hedging errors (daily rebalancing)

MEPH MEPH MEPH BSDH HDH FRQH

(Quadratic) (Long) (Short)

Mean −0.6067 0.7418 −0.8713 −0.0877 0.0025 −0.6306

Standard Deviation 20.455 31.951 22.800 21.381 21.031 20.547

RMSE 20.464 31.960 22.816 21.381 21.031 20.557

Skewness 0.1459 3.5405 −0.5902 0.0477 0.0771 0.1436

Excess Kurtosis −0.0621 20.905 0.8132 −0.4963 −0.9394 −0.4742

99th Percentile 46.337 139.87 44.619 49.132 45.309 47.335

95th Percentile 31.617 50.569 31.011 33.540 32.554 32.138

Median 2.1453 −2.0499 3.3012 3.1464 2.5206 1.6114

5th Percentile −32.851 −32.322 −45.839 −34.544 −30.522 −32.475

1st Percentile −37.966 −37.809 −62.017 −41.267 −34.508 −38.363

Upper TVaR 99% 55.126 195.84 53.215 57.680 52.190 55.742

Upper TVaR 95% 40.850 105.89 39.585 43.142 40.413 41.529

Lower TVaR 5% −36.063 −35.801 −55.737 −38.626 −32.949 −36.182

Lower TVaR 1% −39.745 −39.767 −68.407 −43.477 −36.396 −41.247

Figure 2.2 – Density plot of hedging errors for MEPH
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2.6 Conclusion

A flexible and tractable methodology is presented for the hedging of contingent claims

in the presence of regimes. It accommodates various hedging objectives through the penalty

function specification. Constraints on trading strategies, such as no short-selling, can be

incorporated.

Path dependency issues are tackled by the addition of a state variable, making the hedging

problem suitable for dynamic programming. The approach is implemented with the standard

Gaussian two-regime model estimated from weekly S&P 500 returns. Based on the hedging

of an at-the-money call option, the current methodology compares favourably with three

relevant alternatives.

Since the current paper’s algorithm involves lattices, the curse of dimensionality prevents

the use of a large number of underlying assets and regimes. The addition of a single dimension

(transaction costs, a three-regime model or stochastic interest rates) remains feasible at a

substantial numerical cost.

The modeling design voluntarily avoids the identification of the pricing measure. Never-

theless, if one wishes to determine the pricing kernel (at the cost of a specification error),

several extensions become feasible : option tracking, hedging American options and hedging

with other derivatives.

2.7 Appendix

Lemma 2.7.1 is used in the proofs of Corollaries 2.3.1 and 2.3.2.

Lemma 2.7.1 Let I ⊆ J ⊆M be sigma-algebras and Z be a random variable.

If E [Z|I] = E [Z|M] , then E [Z|J ] = E [Z|M] = E [Z|I] .

Proof of Lemma 2.7.1

E [Z|J ] = E
[
E [Z|M]

∣∣J ] (Law of iterated expectations)

= E
[
E [Z|I]

∣∣J ]
= E [Z|I] . (Law of iterated expectations)

QED
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Proof of Theorem 2.3.1

ηi,n+1 = fhn+1|Y0:n+1 (i |Y0:n+1 )

=
fhn+1,Y0:n+1 (i, Y0:n+1)

fY0:n+1 (Y0:n+1)

=

∑H
j=1 fhn+1,hn,Y0:n+1 (i, j, Y0:n+1)∑H

k=1

∑H
`=1 fhn+1,hn,Y0:n+1 (k, `, Y0:n+1)

=

∑H
j=1 fhn+1,Yn+1|hn,Y0:n (i, Yn+1 |j, Y0:n ) fhn|Y0:n (j |Y0:n ) fY0:n (Y0:n)∑H

k=1

∑H
`=1 fhn+1,Yn+1|hn,Y0:n (k, Yn+1 |`, Y0:n ) fhn|Y0:n (` |Y0:n ) fY0:n (Y0:n)

=

∑H
j=1 fhn+1,Yn+1|hn,Y0:n (i, Yn+1 |j, Y0:n ) ηj,n∑H

k=1

∑H
`=1 fhn+1,Yn+1|hn,Y0:n (k, Yn+1 |`, Y0:n ) η`,n

.

The Markov property of (Y, h) and Lemma 2.7.1 complete the proof since

fhn+1,Yn+1|hn,Y0:n (i, Yn+1 |j, Y0:n ) = fhn+1,Yn+1|hn,Yn (i, Yn+1 |j, Yn ) .

QED

Proof of Corollary 2.3.1. Applying the Law of iterated expectations,

P (hn = i |~ηn ) = E (P (hn = i|Gn) |~ηn ) = E (ηi,n |~ηn ) = ηi,n = P (hn = i|Gn) . (2.18)

By Lemma 2.7.1, since σ(~ηn) ⊆ σ(Yn, ~ηn) ⊆ Gn,

P
(
hn = i

∣∣Gn) = P
(
hn = i

∣∣Yn, ~ηn) . (2.19)

Moreover, since {Yn, hn, ~ηn}Nn=0 has the Markov property with respect to F , then for any

Borel set D ⊆ R×[0, 1]H ,

P [ (Yn+1, ~ηn+1) ∈ D| Gn]

= E [P [ (Yn+1, ~ηn+1) ∈ D|Fn]| Gn] (Law of iterated expectations)

= E [P [ (Yn+1, ~ηn+1) ∈ D|Yn, hn, ~ηn]| Gn] (Markov property)

=
H∑
j=1

P [ (Yn+1, ~ηn+1) ∈ D|Yn, hn = j, ~ηn]P [hn = j| Gn]

=
H∑
j=1

P [ (Yn+1, ~ηn+1) ∈ D|Yn, hn = j, ~ηn]P [hn = j|Yn, ~ηn] (Eq. (2.19))

= P [ (Yn+1, ~ηn+1) ∈ D|Yn, ~ηn] (Bayes’ Law).
QED
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Proof of Corollary 2.3.2. For any admissible strategy, because of the self-financing res-

triction, its time-(n+ 1) value satisfies

Vn+1 = Vn + ~θ>n+1

(
~Sn+1 − ~Sn

)
= Vn + θ

(1)
n+1 (exp(r(n+ 1)∆t)− exp(rn∆t)) + θ

(2)
n+1S

(2)
0 (exp(Yn+1)− exp(Yn)) .

Hence, Vn+1 is σ
(
Yn+1, Yn, Vn, ~θn+1

)
−measurable. Furthermore, by Equation (2.18), Lemma

2.7.1 and the fact that σ(~ηn) ⊆ σ(Yn, ~ηn, Vn, ~θn+1) ⊆ Gn,

P
(
hn = i

∣∣Gn) = P
(
hn = i

∣∣Yn, ~ηn, Vn, ~θn+1

)
. (2.20)

Therefore, for any Borel set D ⊆ R× [0, 1]H × R,

P
[
(Yn+1, ~ηn+1, Vn+1) ∈ D

∣∣Gn]
= E [P [ (Yn+1, ~ηn+1, Vn+1) ∈ D|Fn]| Gn] (Law of iterated expectations)

= E
[
P
[

(Yn+1, ~ηn+1, Vn+1) ∈ D|Yn, hn, ~ηn, Vn, ~θn+1

]∣∣∣Gn] (Corollary 2.3.1)

=
H∑
j=1

P
[

(Yn+1, ~ηn+1, Vn+1) ∈ D|Yn, hn = j, ~ηn, Vn, ~θn+1

]
P [hn = j| Gn]

=
H∑
j=1

P
[

(Yn+1, ~ηn+1, Vn+1) ∈ D|Yn, hn = j, ~ηn, Vn, ~θn+1

]
P
[
hn = j|Yn, ~ηn, Vn, ~θn+1

]
(Eq. (2.20))

= P
[

(Yn+1, ~ηn+1, Vn+1) ∈ D|Yn, ~ηn, Vn, ~θn+1

]
(Bayes’ Law).

QED

Proof of Theorem 2.3.2. In the following, all minimizations are performed over the set of

admissible hedging strategies Θ. The hedging penalty Ψ∗N depends on the initial prices ~S0,

the initial portfolio value V0, the cumulative returns Y1:N , and the portfolio position ~θ1:N ,

that is,

Ψ∗N = g(φ(~SN)− VN) = Ψ∗N

(
~S0, V0, Y1:N , ~θ1:N

)
.

For any n ∈ {0, ..., N − 2}, define

~ϑ(n+2):N := arg min
~θn+2:N

E
[

Ψ∗N

(
~S0, V0, Y1:N , ~θ1:N

)∣∣∣Gn+1

]
, (2.21)

implying that

Ψ∗n+1 = min
~θn+2:N

E
[

Ψ∗N

(
~S0, V0, Y1:N , ~θ1:N

)∣∣∣Gn+1

]
= E

[
Ψ∗N

(
~S0, V0, Y1:N , ~θ1:n+1, ~ϑ(n+2):N

)∣∣∣Gn+1

]
. (2.22)
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First direction. For any admissible strategy ~θ1:N ,

Ψ∗n+1 = E
[

Ψ∗N

(
~S0, V0, Y1:N , ~θ1:n+1, ~ϑn+2:N

)∣∣∣Gn+1

]
≤ E

[
Ψ∗N

(
~S0, V0, Y1:N , ~θ1:N

)∣∣∣Gn+1

]
.

Consequently, by monotonicity of the conditional expectation operator,

min
~θn+1

E
[
Ψ∗n+1

∣∣Gn] ≤ min
~θn+1

E
[
E
[

Ψ∗N

(
~S0, V0, Y1:N , ~θ1:N

)∣∣∣Gn+1

]∣∣∣Gn]
= min

~θn+1

E
[

Ψ∗N

(
~S0, V0, Y1:N , ~θ1:N

)∣∣∣Gn] (Law of iterated expectations).

Because the left-hand side of the previous inequality does not depend on ~θn+2:N , then

min
~θn+1

E
[
Ψ∗n+1

∣∣Gn] = min
~θn+1:N

E
[
Ψ∗n+1

∣∣Gn] ≤ min
~θn+1:N

E
[

Ψ∗N

(
~S0, V0, Y1:N , ~θ1:N

)∣∣∣Gn] = Ψ∗n

where the last equality arises from Definition (2.4).

Second direction.

Ψ∗n = min
~θn+1:N

E
[

Ψ∗N

(
~S0, V0, Y1:N , ~θ1:N

)∣∣∣Gn] (Definition (2.4)) (2.23)

= min
~θn+1:N

E
[
E
[

Ψ∗N

(
~S0, V0, Y1:N , ~θ1:N

)∣∣∣Gn+1

]∣∣∣Gn] (Law of iterated expectations)

≤ min
~θn+1

E
[
E
[

Ψ∗N

(
~S0, V0, Y1:N , ~θ1:n+1, ~ϑn+2:N

)∣∣∣Gn+1

]∣∣∣Gn] (Reducing optimization domain)

= min
~θn+1

E
[
Ψ∗n+1

∣∣Gn] (Definition (2.22)).

Therefore, Ψ∗n = min
~θn+1

E
[
Ψ∗n+1

∣∣Gn], establishing Equation (2.5).

Furthermore, define ~θ∗n+1 for any n ∈ {0, ..., N − 1} as a solution of

~θ∗n+1 := arg min
~θn+1

E
[
Ψ∗n+1

∣∣Gn] . (2.24)

Then,

Ψ∗n = min
~θn+1

E
[
Ψ∗n+1|Gn

]
(Equation (2.5))

= E
[
Ψ∗n+1(~θ∗n+1)

∣∣Gn] (Equation (2.24))

= E
[
E
[

Ψ∗N

(
~S0, V0, Y1:N , ~θ1:n, ~θ

∗
n+1,

~ϑ(n+2):N

)∣∣∣Gn+1

]∣∣∣Gn] (Equation (2.22))

= E
[

Ψ∗N

(
~S0, V0, Y1:N , ~θ1:n, ~θ

∗
n+1,

~ϑ(n+2):N

)∣∣∣Gn] (Law of iterated expectations).

Therefore, by Equation (2.4),

~ϑ(n+1):N :=

(
arg min
~θ(n+1)

E
[
Ψ∗n+1

∣∣Gn] , ~ϑ(n+2):N

)
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is a solution (possibly not the only one) to the following equation :

~ϑ(n+1):N := arg min
~θn+1:N

E [Ψ∗N | Gn] . (2.25)

Hence, if Equation (2.24) is satisfied ∀n ∈ {0, ..., N − 1}, a recursive argument implies that

θ∗ :=
(
~θ∗1, ...,

~θ∗N

)
solves Problem (2.1).

QED
Proof of Theorem 2.3.3.

The proof hinges on a backward induction over time. Clearly, Ψ∗N = g
(
φ̃(YN)− VN

)
is

σ (YN , ~ηN , VN)−measurable. Assume that Ψ∗n+1 is σ (Yn+1, ~ηn+1, Vn+1)−measurable. From

Corollary 2.3.2 , there is a Borel-measurable function ϕ such that

Ψ∗n = min
~θn+1∈Gn

E
[
Ψ∗n+1

∣∣Gn] (Equation (2.5))

= min
~θn+1∈Gn

E
[
Ψ∗n+1

∣∣∣Yn, ~ηn, Vn, ~θn+1

]
(Corollary 2.3.2)

= min
~θn+1∈Gn

ϕ
(
Yn, ~ηn, Vn, ~θn+1

)
.

Therefore, a necessary and sufficient condition for ~θ∗n+1 = arg min
~θn+1

E
[
Ψ∗n+1|Gn

]
is to minimize

ξ (·) := ϕ (Yn, ~ηn, Vn, ·) which only depends on (Yn, ~ηn, Vn). Consequently, there exists ~θ∗n+1

which is σ (Yn, ~ηn, Vn)−measurable. Hence, Ψ∗n = ϕ
(
Yn, ~ηn, Vn, ~θ

∗
n+1

)
is also σ (Yn, ~ηn, Vn)−measurable

and
~θ∗n+1 = argmin

~θn+1∈σ(Yn,~ηn,Vn)

E
[
Ψ∗n+1 |Gn

]
= argmin

~θn+1∈σ(Yn,~ηn,Vn)

E
[
Ψ∗n+1 |Yn, ~ηn, Vn

]
,

that is, the set of admissible hedging strategies Θ may be restricted to keep only strategies

that also satisfy that θn+1 is σ (Yn, ~ηn, Vn)−measurable.
QED

Proof of Proposition 2.5.1.
ηj,n+1 = P(hn+1 = j|Gn)

= E
[
P(hn+1 = j|hn)

∣∣Gn]
=

H∑
i=1

P(hn+1 = j|hn = i)P(hn = i|Gn)

=
H∑
i=1

P
(n)
i,j ηi,n ≥

H∑
i=1

min
u∈H

P
(n)
u,j ηi,n = min

u∈H
P

(n)
u,j

The case ηj,n+1 ≤ max
u∈H

Pu,j is similar.
QED
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2.8 Technical Report (not part of the paper)

2.8.1 Explicit formulas for the last time step

Theorem 2.8.1 Let the market dynamics be those described in Section 2.5. Let also the

penalty be g(x) = x2 and the payoff be the one of a call option : φ(SN) = max{SN −K, 0}.

Suppose there are no constraints on θ∗N . Then, in theorem 2.3.4, θ∗N and ΨN−1 are given by :

θ∗N =

∑2
j=1 ηj,N−1

[
er∆tVN−1(Q

(1)
j − er∆t) + er∆tECj − ESCj/SN−1

]
SN−1

∑2
j=1 ηj,N−1

[
2er∆tQ

(1)
j −Q

(2)
j − e2r∆t

]
ΨN−1 =

2∑
j=1

ηj,N−1

[
EV 2

j − 2ECVj + EC2
j

]
,

where

ECVj = θ∗NESCj + er∆t(VN−1 − θ∗NSN−1)ECj

ESCj = Q
(4)
j −KQ

(3)
j

ECj = Q
(3)
j −KQ

(5)
j

EC2
j = Q

(4)
j − 2KQ

(3)
j +K2Q

(5)
j

EV 2
j = (θ∗NSN−1)2Q

(2)
j + e2r∆t(VN−1 − θ∗NSN−1)2 + 2θ∗NSN−1e

r∆t(VN−1 − θ∗NSN−1)Q
(1)
j

Q
(1)
j = exp(µj∆t + .5σ2

j∆t)

Q
(2)
j = exp(2µj∆t + 2σ2

j∆t)

Q
(3)
j = SN−1 exp(µj∆t + .5σ2

j∆t)Φ

(
log(SN−1/K) + µj∆t + σ2

j∆t

σj
√

∆t

)
Q

(4)
j = S2

N−1 exp(2µj∆t + 2σ2
j∆t)Φ

(
2 log(SN−1/K) + 2µj∆t + 2σ2

j∆t

σj
√

2∆t

)
Q

(5)
j = Φ

(
log(SN−1/K) + µj∆t

σj
√

∆t

)
Proof of Theorem 2.8.1 : Define Let CN := max(SN −K, 0). For an arbitrary θN ,

E
[
(CN − VN)2|GN−1

]
= E

[
C2
N |GN−1

]
− 2E [CNVN |GN−1] + E

[
V 2
N |GN−1

]
=

H∑
j=1

ηj,N−1

(
E
[
C2
N |hN−1 = j

]
− 2E [CNVN |hN−1 = j] + E

[
V 2
N |hN−1 = j

])
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E
[
V 2
N |hN−1 = j

]
= E

[
(θNSN + (VN−1 − θNSN−1)er∆t)2|hN−1 = j

]
= θ2

NS
2
N−1E

[
e2ε|hN−1 = j

]
+ (VN−1 − θNSN−1)2e2r∆t

+2θNSN−1(VN−1 − θNSN−1)er∆tE [eε|hN−1 = j]

= θ2
NS

2
N−1Q

(2)
j + (VN−1 − θNSN−1)2e2r∆t

+2θNSN−1(VN−1 − θNSN−1)er∆tQ
(1)
j

E
[
C2
N |hN−1 = j

]
= E

[
max (SN−1e

ε −K, 0)2 |hN−1 = j
]

= E
[
(SN−1e

ε −K)2 1{SN−1eε>K}|hN−1 = j
]

= E
[
S2
N−1e

2ε1{S2
N−1e

2ε>K2}|hN−1 = j
]
− 2KE

[
SN−1e

ε1{SN−1eε>K}|hN−1 = j
]

+K2P (SN−1e
ε > K|hN−1 = j)

= Q
(4)
j − 2KQ

(3)
j +K2Q

(5)
j

E [CNVN |hN−1 = j]

= E
[
CN(θNSN + (VN−1 − θNSN−1)er∆t)|hN−1 = j

]
= θNE [SNCN |hN−1 = j] + (VN−1 − θNSN−1)er∆tE [CN |hN−1 = j]

= θNE
[
SN(SN −K)1{SN>K}|hN−1 = j

]
+ (VN−1 − θNSN−1)er∆tE

[
(SN −K)1{SN>K}|hN−1 = j

]
= θNE

[
S2
N1{S2

N>K
2}|hN−1 = j

]
−KθNE

[
SN1{SN>K}|hN−1 = j

]
+(VN−1 − θNSN−1)er∆t

(
E
[
SN1{SN>K}|hN−1 = j

]
−KP (SN > K|hN−1 = j)

)
= θN

(
Q

(4)
j −KQ

(3)
j

)
+ (VN−1 − θNSN−1)er∆t

(
Q

(3)
j −KQ

(5)
j

)
To obtain the optimal θN , one applies the first order condition :

dE [(CN − VN)2|GN−1]

dθN
= 0

⇔
H∑
j=1

ηj,N−1

[
−2
(
Q

(4)
j −KQ

(3)
j + SN−1e

r∆t

(
Q

(3)
j −KQ

(5)
j

))]
+

H∑
j=1

ηj,N−1

[
2θNS

2
N−1Q

(2)
j − 2SN−1(VN−1 − θNSN−1)e2r∆t

]
+

H∑
j=1

ηj,N−1

[
2SN−1VN−1e

r∆tQ
(1)
j − 4θNS

2
N−1e

r∆tQ
(1)
j

]
= 0

⇔ θ∗N =

∑2
j=1 ηj,N−1

[
er∆tVN−1(Q

(1)
j − er∆t) + er∆t(Q

(3)
j −KQ

(5)
j )− (Q

(4)
j −KQ

(3)
j )/SN−1

]
SN−1

∑2
j=1 ηj,N−1

[
2er∆tQ

(1)
j −Q

(2)
j − e2r∆t

]
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Define now

ECVj = θ∗NESCj + er∆t(VN−1 − θ∗NSN−1)ECj

ESCj = Q
(4)
j −KQ

(3)
j

ECj = Q
(3)
j −KQ

(5)
j

EC2
j = Q

(4)
j − 2KQ

(3)
j +K2Q

(5)
j

EV 2
j = (θ∗NSN−1)2Q

(2)
j + e2r∆t(VN−1 − θ∗NSN−1)2 + 2θ∗NSN−1e

r∆t(VN−1 − θ∗NSN−1)Q
(1)
j

Therefore, we get

Ψ∗N−1 = E
[
(CN − VN(θ∗N))2|GN−1

]
=

2∑
j=1

ηj,N−1

[
E
[
C2
N |hN−1 = j

]
− 2E [CNVN(θ∗N)|hN−1 = j] + E

[
V 2
N(θ∗N)|hN−1 = j

]]
=

2∑
j=1

ηj,N−1

[
EC2

j − 2ECVj + EV 2
j

]
QED

Theorem 2.8.2 Let the market dynamics be those described in Section 2.5. Let also the

penalty be g(x) = x21{x>0} or g(x) = x21{x<0}. Define events F (1) := {φ(SN) > VN}, F (2) :=

{φ(SN) < VN}. Define F := F (1) if g(x) = x21{x>0} and F := F (2) if g(x) = x21{x<0}. Define

also A := {SN > K} Let the payoff be the one of a call option : φ(SN) = max{SN −K, 0}.

Then, ρXN−1
(θN) := E

[
ΨN(θN)

∣∣YN−1, ηN−1, VN−1

]
is given by :

ρXN−1
(θN) =

2∑
j=1

ηj,N−1

[
EV 2

j − 2ECVj + EC2
j

]
,

where

EV 2
j = S2

N−1θ
2
NE

j[e2ε1F ] + 2SN−1θNe
r∆t(VN−1 − SN−1θN)Ej[eε1F ]

+e2r∆t(V 2
N−1 − 2VN−1SN−1θN + S2

N−1θ
2
N)Ej[1F ]

EC2
j = S2

N−1E
j[e2ε1F1A]− 2KSN−1E

j[eε1F1A] +K2Ej[1F1A]

ECVj = S2
N−1θNE

j[e2ε1F1A] + SN−1(VN−1e
r∆t − SN−1θNe

r∆t −KθN)Ej[eε1F1A]

+Ker∆t(SN−1θN − VN−1)Ej[1F1A]
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G(1) = K/SN−1

G(2) = K + (VN−1 − SN−1θN)er∆t

G(3) =
K + (VN−1 − SN−1θN)er∆t

SN−1(1− θN)

G(4) =
K −G(2)

SN−1θN

Define ζ(x, y, z) := exp(x+ .5y2)Φ
(
− log(z)+x+y2

y

)

Ej [1A] = Φ

(
− log(G(1)) + µj∆t

σj
√

∆t

)
Ej [eε1A] = ζ(µj∆t, σj

√
∆t, G

(1))

Ej [e2ε1A] = ζ(2µj∆t, 2σj
√

∆t, (G
(1))2)

For the case of the short quadratic penalty :

If θN < 0,

Ej [1F (1)1A] = Φ

(
− log(max(G(1), G(3))) + µj∆t

σj
√

∆t

)
Ej [eε1F (1)1A] = ζ(µj∆t, σj

√
∆t,max(G(1), G(3)))

Ej [e2ε1F (1)1A] = ζ(2µj∆t, 2σj
√

∆t,max(G(1), G(3))2)

Ej [1F (1) ] = E[1F (1)1A] + max

(
0,Φ

(
− log(G(4)) + µj∆t

σj
√

∆t

)
− Φ

(
− log(G(1)) + µj∆t

σj
√

∆t

))
Ej [eε1F (1) ] = Ej[eε1F (1)1A] + max(0, ζ(µj∆t, σj

√
∆t, G

(4))− ζ(µj∆t, σj
√

∆t, G
(1)))

Ej [e2ε1F (1) ] = Ej[e2ε1F (1)1A] + max(0, ζ(2µj∆t, 2σj
√

∆t, (G
(4))2)− ζ(2µj∆t, 2σj

√
∆t, (G

(1))2))

If θN = 0,

Ej [1F (1)1A] = Φ

(
− log(max(G(1), G(3))) + µj∆t

σj
√

∆t

)
Ej [eε1F (1)1A] = ζ(µj∆t, σj

√
∆t,max(G(1), G(3)))

Ej [e2ε1F (1)1A] = ζ(2µj∆t, 2σj
√

∆t,max(G(1), G(3))2)

Ej [1F (1) ] = E[1F (1)1A] + 1{VN−1<0}Φ

(
log(G(1) − µj∆t

σj
√

∆t

)
Ej [eε1F (1) ] = Ej[eε1F (1)1A] + 1{VN−1<0}(exp(µj∆t + .5σ2

j∆t)− Ej[eε1A])

Ej [e2ε1F (1) ] = Ej[e2ε1F (1)1A] + 1{VN−1<0}(exp(2µj∆t + 2σ2
j∆t)− Ej[eε21A])
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If 0 < θN < 1,

Ej [1F (1)1A] = Φ

(
− log(max(G(1), G(3))) + µj∆t

σj
√

∆t

)
Ej [eε1F (1)1A] = ζ(µj∆t, σj

√
∆t,max(G(1), G(3)))

Ej [e2ε1F (1)1A] = ζ(2µj∆t, 2σj
√

∆t,max(G(1), G(3))2)

Ej [1F (1) ] = E[1F (1)1A] + Φ

(
log(min(G(1), G(4)))− µj∆t

σj
√

∆t

)
Ej [eε1F (1) ] = Ej[eε1F (1)1A] + exp(µj∆t + .5σ2

j∆t)− ζ(µj∆t, σj
√

∆t,min(G(1), G(4)))

Ej [e2ε1F (1) ] = Ej[e2ε1F (1)1A] + exp(2µj∆t + 2σ2
j∆t)− ζ(2µj∆t, 2σj

√
∆t,min(G(1), G(4))2)

If θN = 1,

Ej [1F (1)1A] = 1{G(2)<0}E
j[1A]

Ej [eε1F (1)1A] = 1{G(2)<0}E
j[eε1A]

Ej [e2ε1F (1)1A] = 1{G(2)<0}E
j[e2ε1A]

Ej [1F (1) ] = E[1F (1)1A] + Φ

(
log(min(G(1), G(4)))− µj∆t

σj
√

∆t

)
Ej [eε1F (1) ] = Ej[eε1F (1)1A] + exp(µj∆t + .5σ2

j∆t)− ζ(µj∆t, σj
√

∆t,min(G(1), G(4)))

Ej [e2ε1F (1) ] = Ej[e2ε1F (1)1A] + exp(2µj∆t + 2σ2
j∆t)− ζ(2µj∆t, 2σj

√
∆t,min(G(1), G(4))2)

If θN > 1,

Ej [1F (1)1A] = max

(
0,Φ

(
− log(G(1)) + µj∆t

σj
√

∆t

)
− Φ

(
− log(G(3)) + µj∆t

σj
√

∆t

))
Ej [eε1F (1)1A] = max(0, ζ(µj∆t, σj

√
∆t, G

(1))− ζ(µj∆t, σj
√

∆t, G
(3)))

Ej [e2ε1F (1)1A] = max(0, ζ(2µj∆t, 2σj
√

∆t, (G
(1))2)− ζ(2µj∆t, 2σj

√
∆t, (G

(3))2))

Ej [1F (1) ] = E[1F (1)1A] + Φ

(
log(min(G(1), G(4)))− µj∆t

σj
√

∆t

)
Ej [eε1F (1) ] = Ej[eε1F (1)1A] + exp(µj∆t + .5σ2

j∆t)− ζ(µj∆t, σj
√

∆t,min(G(1), G(4)))

Ej [e2ε1F (1) ] = Ej[e2ε1F (1)1A] + exp(2µj∆t + 2σ2
j∆t)− ζ(2µj∆t, 2σj

√
∆t,min(G(1), G(4))2)
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For the case of the long quadratic penalty :

Ej [1F (2)1A] = Ej[1A]− Ej[1F (1)1A]

Ej [eε1F (2)1A] = Ej[eε1A]− Ej[eε1F (1)1A]

Ej [e2ε1F (2)1A] = Ej[e2ε1A]− Ej[e2ε1F (1)1A]

Ej [1F (2) ] = 1− Ej[1F (1) ]

Ej [eε1F (2) ] = exp(µj∆t + .5σ2
j∆t)− Ej[eε1F (1) ]

Ej [e2ε1F (2) ] = exp(2µj∆t + 2σ2
j∆t)− Ej[e2ε1F (1) ]

Proof of Theorem 2.8.2 :

Define CN := φ(SN). Then, {g(CN − VN) > 0} = F .

Therefore,

ρXN−1
(θN) =

H∑
j=1

ηj,nE
[
g(CN − VN(θN))

∣∣SN−1, VN−1, hN−1 = j
]

=
H∑
j=1

ηj,nE
[
(CN − VN(θN))21F

∣∣SN−1, VN−1, hN−1 = j
]

=
H∑
j=1

ηj,nE
[
C2
N1F − 2CNVN(θN)1F + V 2

N(θN)1F
∣∣SN−1, VN−1, hN−1 = j

]
Define

EV 2
j := E

[
C2
N1F

∣∣SN−1, VN−1, hN−1 = j
]

ECVj := E
[
CNVN(θN)1F

∣∣SN−1, VN−1, hN−1 = j
]

EV 2
j := E

[
V 2
N(θN)1F

∣∣SN−1, VN−1, hN−1 = j
]

Denote A := {CN > 0} = {eεN > K/SN−1}. Therefore, CN = (SN−1e
εN − K)1A. Also,

VN(θN) = VN−1e
r∆t + θNSN−1(eεN − er∆t). Combining the above formulas yields and using

notation shortcuts Ej[•] := E
[
•
∣∣SN−1, VN−1, hN−1 = j

]
and ε := εN , one gets :

EV 2
j = S2

N−1θ
2
NE

j[e2ε1F ] + 2SN−1θNe
r∆t(VN−1 − SN−1θN)Ej[eε1F ]

+e2r∆t(V 2
N−1 − 2VN−1SN−1θN + S2

N−1θ
2
N)Ej[1F ]

EC2
j = S2

N−1E
j[e2ε1F1A]− 2KSN−1E

j[eε1F1A] +K2Ej[1F1A]

ECVj = S2
N−1θNE

j[e2ε1F1A] + SN−1(VN−1e
r∆t − SN−1θNe

r∆t −KθN)Ej[eε1F1A]

+Ker∆t(SN−1θN − VN−1)Ej[1F1A].
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Define

ζ(x, y, z) :=

exp(x+ .5y2)Φ
(
− log(z)+x+y2

y

)
if z > 0

exp(x+ .5y2) if z ≤ 0.

(2.26)

Since

εN |hN−1 = j is Gaussian(µj∆t, σj
√

∆t), (2.27)

one gets that

Ej[eε1{eε>Z}] = ζ(µj∆t, σj
√

∆t), Z) if Z > 0 (2.28)

Ej[e2ε1{eε>Z}] = ζ(2µj∆t, 2σj
√

∆t), sign(Z)Z2) (2.29)

Define

G(1) = K/SN−1

G(2) = K + (VN−1 − SN−1θN)er∆t

G(3) =
K + (VN−1 − SN−1θN)er∆t

SN−1(1− θN)

G(4) =
K −G(2)

SN−1θN

The rest of the proof is a direct consequence of (2.27), (2.28)-(2.29), 1F (1) +1F (2) = 1 and

the following equations :

A = {eε > G(1)}

A ∩ F (1) =


{eε > max(G(1), G(3))} if θN < 1

{eε > G(1)} ∩ {G(2) < 0} if θN = 1

{eε ∈ [G(1), G(3)]} if θN > 1

F (1) = (A ∩ F (1)) +


{eε ∈ [G(4), G(1)] if θN < 0

{eε ≤ G(1)} ∩ {VN−1 < 0} if θN = 0

{eε < min(G(1), G(4)) if θN > 0

with [a, b] = ∅ if a > b, and the + operation between sets denoting disjoint union.

QED
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2.8.2 The tight hedging extension

Assume one seeks a replicating portfolio that not only replicates the final derivative’s

payoff accurately, but that also remains close to the contingent claim’s price Cn at all times

during the hedging period (i.e. a tight hedging). Then, one could search for a hedging strategy

which minimizes E[
∑N

n=1 gn(Cn−Vn)] where {gn} is a set of penalty functions. Problem (2.1)

is the particular case gN = g and gn ≡ 0∀n < N .

Assume the price Cn of the derivative only depends on (Yn, ~ηn, Vn). This assumption

encompasses many option pricing methodologies (c.f. amongst others Rémillard (2009)).

Then, instead of having a Bellman equation of the form given in Theorem 2.3.4, one gets an

equation of the form

Ψn(Yn, ~ηn, Vn) = gn(Cn − Vn) + min
~θn+1

E
[
Ψn+1(Yn+1, ~ηn+1, Vn+1)

∣∣Yn, ~ηn, Vn] .
For this methodology, an arbitrary martingale measure must be selected to compute Cn. In

conclusion, solving the tight hedging problem is not harder than solving (2.1), provided one

has an efficient way of computing Cn given (Yn, ~ηn, Vn).
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Chapitre 3

Couverture avec des coûts de transaction

Minimizing CVaR in global dynamic hedging
with transaction costs 1

By Frédéric Godin 2

Abstract
This study develops a global derivatives hedging methodology which takes into account the

presence of transaction costs. It extends the Hodges & Neuberger (1989) framework in two ways.

First, to reduce the occurrence of extreme losses, the expected utility is replaced by the conditio-

nal Value-at-Risk (CVaR) coherent risk measure as the objective function. Second, the normality

assumption for the underlying asset returns is relaxed : general distributions are considered to im-

prove the realism of the model and to be consistent with fat tails observed empirically. Dynamic

programming is used to solve the hedging problem. The CVaR minimization objective is shown to

be part of a time-consistent framework. Simulations with parameters estimated from the S&P 500

financial time series show the superiority of the proposed hedging method over multiple benchmarks

of the literature in terms of tail risk reduction.

JEL classification : G32, C61

Keywords : Hedging, risk management, risk measures, Value-at-Risk, Tail Value-at-Risk,

Conditional Value-at-Risk, dynamic programming, transaction costs.
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3.1 Introduction

The complete market paradigm has become widespread across the financial literature

since the development of the Black & Scholes (1973) option pricing framework and the se-

minal work of Harrison & Pliska (1981). The possibility of perfectly replicating contingent

claims in this context leads to a natural procedure for pricing and hedging derivatives. Ho-

wever, several properties of financial markets prevent achieving exact replication in practice,

which results in market incompleteness. Amongst them are transaction costs, discrete-time

portfolio rebalancing and jumps in stock price paths. To improve the performance and ac-

curacy of financial models, it is desirable that they take these features into account.

In incomplete markets, the total removal of risk can be achieved through super-replication.

However, this procedure often requires an amount of capital that is prohibitively large and

alternative hedging methods must therefore be considered. 3 Most of the alternative methods

can be classified into the local hedging and global hedging subcategories.

Local hedging procedures can be move-based or time-based. Delta-hedging falls into the

first category since it neutralizes the risks associated with a portfolio for small movements

of the underlying asset price. Time-based local hedging strategies involve minimizing the

risk associated with a portfolio until the next time step. Local variance minimization, as

suggested by Ederington (1979), falls into this category.

A flaw associated with local hedging procedures is their myopia ; they only consider

outcomes for small increments of price or time and disregard the results over the full hedging

period. The global hedging methodology, which aims at optimizing the risk associated with

the terminal hedging error, does not share this drawback. This approach is therefore pursued

in the current study.

For global hedging procedures, several objective functions are proposed in the literature.

Some papers choose to maximize the expected utility of the hedger, as in Hodges & Neuberger

(1989). This leads to the identification of an optimal trade-off between risk and return.

Another possibility is to minimize the risk. Global quadratic hedging, pioneered by Schweizer

(1995), follows this objective and attempts an optimal replication of derivatives. A drawback

3. For example, Jacod & Eberlein (1997) show that when the underlying asset follows a purely disconti-

nuous process, the super-replication portfolio price for a European call option is generally the price of the

underlying asset itself.
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of using the quadratic penalty function is that it sanctions both gains and losses. Föllmer

& Leukert (2000) and François et al. (2014) suggest using general expected penalties as

the objective function, including the semi-quadratic penalty that only penalizes losses and

therefore does not share the pitfall associated with the quadratic penalty. Other studies

use objective functions which focus on the tail of the hedging loss distribution. Föllmer &

Leukert (1999) propose the quantile hedging scheme which maximizes the probability that

the hedging loss does not exceed a certain threshold. Under certain conditions, this problem

is equivalent to the minimization of the Value-at-Risk (VaR) of the hedging loss. Several

pitfalls are associated with the use of such an objective. The most severe one is that the VaR

completely disregard the most extreme losses i.e. those which occur with a probability lesser

than the VaR confidence level. Such a feature is not consistent with the prime concern in

hedging which is to avoid extreme losses. Using the CVaR instead of the VaR as the objective

function allows the magnitude of the most extreme losses to be taken into account.

The CVaR risk measure described in Rockafellar & Uryasev (2002) possesses many desi-

rable properties and resolves many problems associated with the use of the VaR risk measure.

The CVaR averages all worst-case losses beyond a certain threshold and therefore considers

all extreme losses. Furthermore, it is a coherent risk measure, which makes it convenient

to use in risk management frameworks. Because of its favorable properties, the CVaR risk

measure is used in the current paper to measure risk. Several papers use this risk measure

in global risk management problems. The first to propose a dynamic global CVaR minimi-

zation scheme were Boda & Filar (2006) ; they minimize the CVaR of the terminal value of

an investment portfolio. Melnikov & Smirnov (2012) minimize the terminal hedging error’s

CVaR in continuous-time by adapting a technique applied in statistical hypothesis testing

previously used in Föllmer & Leukert (1999) for quantile hedging. CVaR minimization is

also studied in the context of static hedging with multiple assets by Alexander et al. (2003).

Boda & Filar (2006) raise the issue that using a sequence of conditional CVaR risk

measures as objective functions for the hedging procedure yields time-inconsistency, which

means that the optimal solution identified initially becomes suboptimal with respect to

the sequence’s other risk measures as time passes and additional information is received.

Fortunately, the CVaR risk-measure can be included in a time-consistent framework, as

shown herein.

Considering transaction costs in a global hedging framework is important because this
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feature reduces the efficacy of high-frequency portfolio rebalancing procedures which are

typical of many hedging schemes found in the literature. The seminal paper by Hodges

& Neuberger (1989) tackles the problem of hedging in the presence of transaction costs

by presenting a continuous-time global hedging framework where the hedger maximizes its

utility by offsetting a derivatives payoff with a self-financing hedging portfolio. Hodges &

Neuberger (1989) assume that the underlying asset follows a geometric Brownian motion.

The Hamilton-Jacobi-Bellman partial differential equation is solved to obtain the optimal

hedging strategy.

Various authors propose approximations or simplifications of the solution to the problem

defined in Hodges & Neuberger (1989), still in the context of assets being represented by

a geometric Brownian Motion. For instance, Zakamouline (2006) proposes a parametric re-

presentation of the no-transaction region in the presence of proportional transaction costs.

The no-transaction region is an interval surrounding the option delta such that it is optimal

not to rebalance the portfolio when its delta lies within this interval. Whalley & Wilmott

(1997) and Barles & Soner (1998) provide an asymptotic description of the no-transaction

region when transaction fees are small. A strategy described in Martellini & Priaulet (2002)

assumes a constant width for the no-transaction region.

The normality assumption for log-returns of the underlying asset in Hodges & Neuberger

(1989) can be improved. It is well documented fact that returns of financial markets are

often non-Gaussian and exhibit semi-heavy tails ; for example, see Fama (1965) and Eberlein

& Keller (1995). Allowing fat tail distributions instead of the Gaussian distribution for the

underlying asset returns adds realism to the model and better represents the reality of

financial markets. Global hedging problems in the absence of transaction costs have been

solved for general models of the underlying asset allowing for the presence of regimes and

jumps (Rémillard & Rubenthaler, 2013). Log-returns under such models exhibit fail tails,

and such a feature should also be applied to hedging procedures that consider transaction

costs.

We modify the Hodges & Neuberger (1989) framework for global hedging in the presence

of transaction costs and incorporate two novel features into their model. First, the expected

utility objective function is replaced by the CVaR risk measure, which is better suited for risk

management purposes since it tracks extreme losses. The second added feature is to allow

non-Gaussian asset returns that better match the fat tails observed on financial market

47



return data. To keep our model tractable for general return distributions, the model is

developed in discrete-time. Another contribution of the current paper is to show that the

CVaR minimization objective can be incorporated into a time-consistent framework. Finally,

the performance of the hedging method presented here is compared to the performance

achieved by several literature benchmarks through simulation experiments.

The paper is structured as follows. Section 3.2 describes the market in which the current

work takes place and defines the hedging problem. A rigorous proof guaranteeing the exis-

tence of a solution and an algorithm allowing its computation are then given. The relationship

between the time-consistency property and the CVaR minimization objective is discussed in

Section 3.3. Section 3.4 illustrates the application of the proposed global hedging scheme in

a numerical example and compares its performance to several literature benchmarks. Section

3.5 concludes.

3.2 The global hedging methodology

3.2.1 Market setup

The market is in discrete time and time steps are denoted by t = 0, 1, . . . , T . There are two

liquid and tradable assets on the market. The first one is a deterministic risk-free asset and

its non-decreasing price at time t is denoted by Bt. The second asset is risky and stochastic.

Its non-negative price at time t is denoted by St. The filtration F driving the information

on the market contains all observations about past asset prices : Ft = σ (Su|u ≤ t).

Consider a European-type derivative maturing at time T whose payoff is given by CT =

C(ST ). A financial institution, referred to as the hedger, seeks to hedge this derivative with a

self-financing investment strategy involving the traded assets. A hedging strategy is denoted

by θ = θ1:T , 4 where θt =
(
θ

(B)
t , θ

(S)
t

)
represents the number of shares of each respective asset

contained in the portfolio within the time interval (t−1, t] for t ≥ 1. θ0 is the initial allocation

of assets in the portfolio at time t = 0 before the first trade is applied. Transaction costs

Kt incurred at time t for trades on the risky asset are composed of a fixed and a variable

component proportional to the total transaction amount :

Kt = k1I{θ(S)t+1 6=θ
(S)
t }

+ k2|θ(S)
t+1 − θ

(S)
t |St

4. The shorthand notation θt1:t2 = {θt| t = t1, . . . , t2} is used.

48



with k1, k2 ≥ 0. 5 For any self-financing hedging strategy θ, 6 the portfolio value at time t

(before transaction costs at time t are incurred) is given by :

V
(θ)
t = V0 +

t∑
i=1

θ
(B)
i (Bi −Bi−1) + θ

(S)
i (Si − Si−1)−Ki−1

=
Bt

Bt−1

(V
(θ)
t−1 −Kt−1) + θ

(S)
t

(
St − St−1

Bt

Bt−1

)
(3.1)

where the initial portfolio value V0 is a given constant. 7 The portfolio is completely invested

in the risk-free asset at the initial time : θ(S)
0 = 0 and θ(B)

0 = V0
B0

.

The set of admissible strategies, Θ, contains all self-financing trading strategies that the

hedger is allowed to use. Trading strategies must be predictable : θt is Ft−1−measurable for

all t. The current paper uses the following admissible strategies :

Θ =
{
F -predictable, self-financing θ that satisfy ∀t, θ(S)

t ∈ Bt
}

(3.2)

where Bt ⊆ R. Sets Bt allow constraints to be put on trading strategies. For example, using

Bt = [0,∞) prevents short sales.

To avoid path-dependence issues in the hedging framework to be described in a subsequent

section below, the risky asset price process is assumed to be Markovian.

Assumption 3.2.1 S has the Markov property with respect to the filtration F .

3.2.2 The global hedging problem

To perform the hedge, the hedger must select a particular hedging strategy from among

all admissible strategies. Global hedging procedures minimize a suitable risk measure applied

to the terminal hedging error. In the current paper, the CVaR is considered :

min
θ∈Θ

CVaRα

(
CT − V (θ)

T

)
. (3.3)

The CVaR is defined and discussed in Rockafellar & Uryasev (2002). The CVaR is shown by

Kusuoka (2001) to be the smallest law-invariant coherent risk measure that is larger than

the VaR.

5. Transaction fees of the form Kt = k1I{θ(S)
t 6=θ(S)

t−1}
+ k2|θ(S)t − θ(S)t−1| whose variable component is propor-

tional to the number of shares traded could also be considered.

6. A hedging strategy θ is self-financing if ∀t, Stθ(S)t+1 +Btθ
(B)
t+1 +Kt = Stθ

(S)
t +Btθ

(B)
t .

7. Since V (θ)
t does not depend on θt+1:T , the notation V (θ1:t)

t = V
(θ)
t is used.
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Defining the CVaR requires the definition of the VaR. The VaR of any random variable Y

corresponds to a quantile of its distribution :

VaRα(Y ) = min
y
{y |P[Y ≤ y] ≥ α}

= min
y
{y |E[I{Y≤y}] ≥ α}. (3.4)

The value of α is typically 0.95 or 0.99. The CVaR of an integrable random variable Y is

defined as the expectation of its conditional tail distribution whose cumulative distribution

function (cdf) is h(α)(y) :

CVaRα(Y ) =

∫
R
y dh(α)(y), where (3.5)

h(α)(y) =


P[Y≤y]−α

1−α if y ≥ VaRα(Y ),

0 otherwise.
(3.6)

Rockafellar & Uryasev (2002) give the following useful characterization of the CVaR :

Theorem 3.2.1 Define the following auxiliary function :

f (CV aR)
c,α (Y ) = c+

1

1− α
(Y − c)I{Y >c}. (3.7)

Then the CVaR at level α of Y is given by

CVaRα(Y ) = min
c∈R

E[f (CV aR)
c,α (Y )]. (3.8)

The existence of such a representation is helpful since the problem of dynamically mini-

mizing the expectation of some random variable is well understood and can be solved with

the Bellman Equation of dynamic programming.

3.2.3 Solving the hedging problem

This section describes the conditions guaranteeing the existence of a solution to problem

(3.3). The theoretical algorithm allowing for the computation of the solution is also described.

All proofs are presented in Appendix 3.6.

Equation (3.8) provides an alternative representation of the CVaR minimization problem,

which is also used in Boda & Filar (2006) :

inf
θ∈Θ

CVaRα(CT − V (θ)
T ) = inf

θ∈Θ
min
c∈R

E
[
f (CV aR)
c,α (CT − V (θ)

T )
]

(3.9)

= inf
c∈R

inf
θ∈Θ

E
[
f (CV aR)
c,α (CT − V (θ)

T )
]
. (3.10)
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Solving (3.9) therefore requires solving the problem

inf
θ∈Θ

E
[
f (CV aR)
c,α (CT − V (θ)

T )
]

(3.11)

for different values of c. Lemma 3.2.1 provides sufficient conditions for the minimum to

be attained in (3.11). Lemma 3.2.2 provides the algorithm to compute the minimum and

minimizing arguments. Those Lemmas are adapted from François et al. (2014) to take into

account transaction costs. The minimum attainable expected penalty conditioned upon avai-

lable information at time t is

Definition 3.2.1

Ψ∗,CV aRT,c (θ) = f (CV aR)
c,α (CT − V (θ)

T )

∀t < T, Ψ∗,CV aRt,c (θ1:t)= inf
θt+1:T

{
E
[
f (CV aR)
c,α (CT − V (θ1:t,θt+1:T )

T )
∣∣Ft] : (θ1:t, θt+1:T ) ∈ Θ

}
(3.12)

where f (CV aR)
c,α is defined by (3.7).

The function Ψ∗ is known as the value function within the dynamic programming termino-

logy. The following lemma states certain properties of the value function :

Lemma 3.2.1 Assume that

∀t, Bt are compact, (3.13)

CT and St are integrable for all t. (3.14)

Then for all t ≤ T, θ1:t,

• If t < T , the infimum in (3.12) is attained (the infimum is a minimum). (3.15)

•There exist functions ΨCV aR
t,c such that Ψ∗,CV aRt,c (θ1:t) = ΨCV aR

t,c (St, θt, V
(θ1:t)
t )(3.16)

•ΨCV aR
t,c (St, ϑ, v) is continuous with respect to (c, ϑ, v) (3.17)

Remark 3.2.1 Equation (3.16) indicates that given (θt, V
(θ1:t)
t ), Ψ∗,CV aRt,c (θ1:t) does not de-

pend on θ1:t−1.

The compactness of sets Bt implied by (3.13) is not restrictive in practice because financial

institutions do not have unlimited access to credit. The following theorem, known as the

Bellman Equation, gives a recursive scheme to compute the value function at all time steps

and identify the optimal hedging strategy that solves the hedging problem (3.9).
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Lemma 3.2.2 (The Bellman Equation) Assume (3.13)-(3.14) hold. Define

SFt =
{

(θ
(B)
t , θ

(S)
t ) | θ(S)

t ∈ Bt and St−1θ
(S)
t +Bt−1θ

(B)
t +Kt−1 = V

(θ1:t−1)
t−1

}
. (3.18)

Then,

ΨCV aR
t,c (St, θt, V

(θ1:t)
t ) = min

θt+1∈SFt+1

E
[
ΨCV aR
t+1,c (St+1, θt+1, V

(θ1:t,θt+1)
t+1 )

∣∣St, θt, V (θ1:t)
t

]
. (3.19)

Moreover, define for all t,

θ∗t+1(θ1:t) = arg min
θt+1∈SFt+1

E
[
ΨCV aR
t+1,c (St+1, θt+1, V

(θ1:t,θt+1)
t+1 )

∣∣St, θt, V (θ1:t)
t

]
, (3.20)

which is (St, θt, V
(θ1:t)
t )-measurable. 8 Then θ∗ =

(
θ∗1, . . . , θ

∗
T (θ∗1:T−1)

)
solves (3.11).

Lemmas 3.2.1 and 3.2.2 lead to the following characterization of the solution to problem

(3.9).

Theorem 3.2.2 If (3.13)-(3.14) hold, then

min
θ∈Θ

CVaRα

(
CT − V (θ)

T

)
= min

c∈R
ΨCV aR

0,c (S0, θ0, V0) = ΨCV aR
0,c∗ (S0, θ0, V0) (3.21)

for some c∗ ∈ R. Furthermore, there exists a solution θ∗,CV aR to (3.21) which also solves

θ∗,CV aR ∈ arg min
θ∈Θ

E
[
f

(CV aR)
c∗,α (CT − V (θ)

T )
]
. (3.22)

Theorem 3.2.2 indicates that minimizing the hedging CVaR involves calculating ΨCV aR
0,c (S0, θ0, V0)

for multiple values of c. However, the following result indicates that it is sufficient to evaluate

that function for a single c but for multiple V0, which can be done through a single run of

the dynamic program solving (3.11) :

Theorem 3.2.3 ∀x, c ∈ R, ΨCV aR
0,x (S0, θ0, V0) = x− c+ ΨCV aR

0,c (S0, θ0, V0 + (x− c) B0

BT
).

3.3 Time-consistency of the CVaR

Solutions to problem (3.3) minimize the CVaR measure at the initial time step. However,

it is relevant to ask whether or not those solutions will remain optimal through time, in the

sense that they continue minimizing a similar version of the same risk measure at further

8. If many θt+1 solve (3.20), any of the solutions can be used in defining θ∗t+1(θ1:t).
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time steps. Indeed, one may argue that there is no point in identifying an optimal solution

at a particular point in time if it becomes non-optimal later on and is therefore not pursued.

Boda & Filar (2006) investigate this question by introducing the time-consistency principle

for sequences of risk measures. Informally, a sequence of risk measures is said to be time-

consistent if the solution obtained by minimizing one of the risk measures also minimizes

all other risk measures of the sequence, each one associated with one of the time steps. The

current section recalls the definition of time-consistency found in Boda & Filar (2006). It is

also shown how CVaR minimizing strategies can be incorporated in a sequence of consistent

risk measures.

3.3.1 Defining time-consistency of risk measures

Definition 3.3.1 A Ft−risk measure ρt is a mapping that takes a random variable as input

and outputs a Ft−measurable random variable.

Definition 3.3.2 A random variable Y is the minimal element of a set Y if ∀ Ỹ ∈Y, Y ≤

Ỹ a.s.

Definition 3.3.3 The projection operator Pi,j selects a subset of any trading strategies :

∀θ ∈ Θ,Pi,j(θ) = (θi, . . . , θj) . (3.23)

Let {ρt}T−1
t=0 be a sequence of Ft−risk measures (each one can be thought of as a hedging

objective at time t). The hedger therefore seeks the solutions to the following set of problems

(one problem for each t and past trading positions θ1:t) :

min
θt+1:T

ρt

(
V

(θ)
T − CT

)
, θ ∈ Θ, θ1:t given. (3.24)

Denote the set of solutions to problems (3.24) by Θ̃∗t (θ1:t) and define the following set of

optimal trading strategies :

Θ∗t = {θ1:t × Θ̃∗t (θ1:t)| ∃θ ∈ Θ such that P1,t(θ) = θ1:t} (3.25)

where × is the cartesian product. Therefore, Θ∗t ⊆ Θ for all t.

The following defines the time-consistency property for a set of risk measures. The de-

finition is based on Boda & Fillar (2006), but adapted to account past policies which can

influence endogenous variables. They base their definition on the principle of optimality of

dynamic programming (see Bellman & Dreyfus, 1962).
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Definition 3.3.4 The sequence of risk measures {ρt}T−1
t=0 is said to be time-consistent if all

the following conditions are satisfied :

– Θ∗0 6= ∅,

– ∀t, ∀θ∗ ∈ Θ∗0, θ
∗ ∈ Θ̃∗t (P1,t(θ

∗)),

– If θ∗ = (θ∗1, . . . , θ
∗
T ) is any hedging strategy which satisfies

∀t, θt+1 ∈ arg min
θt+1

{
ρt

(
V

(θ∗1:t,θ
∗
t+1,θ

∗
t+2:T )

T − CT
) ∣∣ (θ∗1:t, θt+1, θ

∗
t+2:T ) ∈ Θ

}
,

then θ∗ ∈ Θ∗0.

3.3.2 Time-consistency and the CVaR

This section defines a conditional version of the CVaR. Furthermore, the current paper

demonstrates that CVaR minimizing solutions can be encompassed in a time-consistent

framework.

Define the conditional VaR and CVaR, which are Ft−risk measures, by

VaRt,α(Y ) = min
y
{y |P[Y ≤ y|Ft] ≥ α}, (3.26)

CVaRt,α(Y ) =

∫
R
y dh(t,α)(y), where (3.27)

h(t,α)(y) =


P[Y≤y|Ft]−α

1−α if y ≥ VaRt,α(Y ),

0 otherwise.
(3.28)

Boda & Fillar (2006) give a counter-example to show that the sequence of Ft−risk mea-

sures

{ρt} = {CVaRt,α} (3.29)

is not time-consistent in general. Their example, in an investment framework, only considers

open loop solutions i.e. solutions where the portfolio choice only depends on information

F0. An example in a hedging context showing that the set of conditional CVaRs is not

time-consistent in general even when feedback policies are considered is given in Appendix

3.8.

However, assume (3.13)-(3.14) hold and let c∗(α) = arg min
c∈R

ΨCV aR
0,c (S0, θ0, V0). Then, from

the optimality principle of dynamic programming, the sequence of Ft−risk measures

{ρt} =

{
E
[
f

(CV aR)
c∗(α),α (•)|Ft

]}
(3.30)
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is time-consistent 9, which leads to the following result :

Corollary 3.3.1 The sequence characterized by

ρt :=

CVaR0,α if t = 0,

E
[
f

(CV aR)
c∗(α),α (•)|Ft

]
if t > 0

(3.31)

is time-consistent.

Proof of Corollary 3.3.1 : From Theorem 3.2.2

arg min
θ∈Θ

CVaRα

(
CT − V (θ)

T

)
= arg min

θ∈Θ
E
[
f

(CV aR)
c∗(α),α

(
CT − V (θ)

T

)]
,

which means that sequence (3.30) remains time-consistent if its first element is substituted

by CVaR0,α. �

In summary, the hedging strategy which minimizes the hedging CVaRα will not neces-

sarily minimize its conditional version of the CVaRt,α at later time steps t > 0. However, it

will minimize the expected penalties E
[
f

(CV aR)
c∗(α),α (•)|Ft

]
at all further time steps. This time-

consistency property of the sequence (3.31) illustrates that CVaR minimizing solutions of

hedging problems can be incorporated in a time-consistent framework and can therefore be

considered suitable for hedging, this even if the sequence (3.29) is not time-consistent in

general.

3.4 A numerical example

In this section, the performance of hedging procedures obtained by solving the global

hedging problem (3.3) is assessed by comparing them with benchmarks on simulated data.

3.4.1 Market specifications

An at-the-money European call option (CT = max[0, ST −K]) is hedged with a portfolio

rebalanced at every time step, each one corresponding to a week. The maturity of the option

is T = 12 weeks. The initial price of the stochastic asset and the option strike price are both

S0 = K = 1000. The two tradable assets have the following dynamics :

Bt = ert/52 (3.32)

St = S0e
∑t
k=1 zk (3.33)

9. See Theorem 3.2 in François et al. (2014) for a proof.
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where r = 2% is the annualized risk-free rate and where z is a strong white noise. The

Gaussian distribution might not be the most appropriate one to represent financial returns

because of the fat tails and the asymmetry they exhibit. The Normal Inverse Gaussian (NIG)

distribution is a natural extension of the Gaussian distribution which allows for positive ex-

cess kurtosis and skewness. For the current example, log-returns z have the NIG distribution

with parameters (α(NIG), β(NIG), δ(NIG), µ(NIG)). A random variable has a NIG(α, β, δ, µ) dis-

tribution if its density function (pdf) is given by

f(x) =
αδK1

(
α
√
δ2 − (x− µ)2

)
π
√
δ2 − (x− µ)2

eγδ+β(x−µ)

where γ =
√
α2 − β2, α > 0, β ∈ (−α, α), δ > 0, µ ∈ R and Kν is the modified Bessel

function of the second kind :

Kν(y) =
1

2

∫ ∞
0

uν−1e−
1
2
y(u+u−1)du, y > 0.

This distribution, introduced by Barndorff-Nielsen (1977), is part of the generalized hy-

perbolic distribution family. This family has been recently successfully applied to model

stock returns : see Eberlein & Keller (1995), Rydberg (1997), Prause (1999) and Rydberg

(1999). Barndorff-Nielsen & Halgreen (1977) show the infinite divisibility of this family of

distributions, and consequently the existence of Lévy processes having NIG distributed in-

crements.

From a statistical perspective, additional features could be added to the geometric ran-

dom walk model (3.33) to increase its realism, such as the presence of regimes, a stochastic

volatility or autocorrelation of returns. However, this would increase the number of dimen-

sions in the hedging problem, severely increasing the numerical burden associated with its

solution and hindering the feasibility of the hedging approach described in this paper.

Under model (3.33), the market is incomplete. Incompleteness is caused by three fea-

tures. The first is discrete-time rebalancing. The second is the presence of transaction costs.

This feature severely penalizes high-frequency portfolio rebalancing which is characteristic

of typical derivatives replication algorithms. The third is the risky asset’s returns model.

The continuous-time version of the NIG geometric random walk (3.33) is the exponential of

a pure-jump Lévy process with NIG-distributed increments. Trajectories of the NIG Lévy

process contain an infinite number of small jumps, which cause market incompleteness.
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To obtain realistic parameters, model (3.33) was estimated on a time series of weekly

S&P 500 closing prices between January 1, 2000, and August 20, 2013. The estimation

was performed by maximum likelihood with the EM algorithm for NIG random variables

described in Karlis (2002). The estimated parameters are presented in Table 3.1.

Table 3.1 – Estimated parameters for weekly NIG log-returns

α(NIG) β(NIG) δ(NIG) µ(NIG)

Estimate 35.7 −10.8 2.04× 10−2 6.7× 10−3

Standard error 6.6 3.7 0.23× 10−2 1.6× 10−3

Estimated parameters and standard errors for weekly NIG log-returns. Estimation performed by maximum

likelihood with the EM algorithm on weekly closing of the S&P 500 between January 1, 2000, and August

20, 2013. Standard errors are obtained by simulation.

Figure 3.4.1 illustrates the kernel estimator of the S&P 500 log-returns distribution and

compares it to fitted NIG and Gaussian distributions. This figure shows that the NIG dis-

tribution captures the peakedness and asymmetry better than its Gaussian counterpart.

Cramer-Von-Mises tests with simulated p-values, which are described in Genest & Rémillard

(2008), were run to assess the distribution’s goodness-of-fit. The null hypothesis of this test

is that log-returns are independent, identically distributed and Gaussian or NIG-distributed.

The p-value is smaller than 0.01% for the Gaussian distribution whereas it is 63.2% for the

NIG, confirming the superiority of the latter in terms of model adequacy.

Figure 3.1 – S&P 500 returns distribution

Distribution of weekly S&P 500 log-returns between January 1, 2000, and August 20, 2013 and compa-

rison with the NIG and Gaussian distribution.
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3.4.2 Benchmarks

In this section, the different benchmarks with which the hedging methodology presented

herein are compared are given. The strategy solving (3.3) is called MCVaR (minimizing

CVaR). The constraint θ(S)
t ∈ [0, 1] for all t is imposed to prevent short sales and excessive

leverage.

Black-Scholes delta-hedging (BSDH)

This benchmark uses delta-hedging where the Black-Scholes formula is used to price the

option. It consists in setting

θ
(S)
t+1 =

∂CBS
t

∂St
= Φ

(
ln
(
S0

K

)
+ (r/52 + σ2

BS/2) (T − t)
σBS
√
T − t

)
, (3.34)

where CBS
t is the Black-Scholes option price at time t and Φ is the standard Gaussian cdf.

The weekly volatility used the compute the option price is the standard deviation of the

weekly log-returns : σBS = δ(NIG)α(NIG)2

(α(NIG)2−β(NIG)2)3/2
= 0.0263. This hedging method is used by a

hedger who presumes that log-returns are normally distributed.

Delta move-based hedging (DMBH)

A strategy described in Martellini & Priaulet (2002) involves rebalancing the hedging

portfolio every time its delta gets outside a certain interval surrounding the derivative’s delta.

The portfolio is then rebalanced so that its delta is brought back to the interval bound ; if

the portfolio delta is larger (smaller) than the higher (lower) bound of of the interval, it is

brought back to the higher (lower) bound. The motivation for such a strategy is that the

solution to the Hodges & Neuberger (1989) problem under proportional transaction costs

has this form. As in Martellini & Priaulet (2002), the size of the interval b is kept constant

through time. In the current study, the selected b is the value that yields the lowest possible

hedging error semi-RMSE, as defined by (3.42). This value is identified through simulation.

NIG delta-hedging (NDH)

This benchmark is a version of delta-hedging in which the hedger takes into account that

log-returns have the NIG distribution. Because the market is incomplete in that case, several

risk-neutral measures are available to price the option (Schoutens, 2003). A natural extension
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of the Girsanov transform to the case of exponential Lévy processes is the mean-correcting

measure, which only shifts the mean of returns in a risk-neutral world. Godin et al. (2012)

give the closed-form option price under that risk-measure. The NIG delta-hedging therefore

consists in setting

θ
(S)
t+1 =

∂CNIG
t

∂St
= 1− ΦNIG

(
ln

(
K

St

)
; (α(NIG), β(NIG) + 1, δ(NIG)(T − t), µ̃(T − t))

)
,

(3.35)

where CNIG
t is the option price at time t obtained through the mean-correcting measure,

ΦNIG is the cdf associated with the NIG distribution and

µ̃ = r/52 + δ(NIG)

(√
α(NIG)2 − (β(NIG) + 1)2 −

√
α(NIG)2 − β(NIG)2

)
.

Global quadratic hedging (GQH)

This benchmark uses the semi-explicit formulas found in Schweizer (1995) to obtain the

solution to problem min
θ∈Θ

E
[
(CT − V (θ)

T )2
]
. A drawback of the quadratic penalty is that it

penalizes gains and losses equally. Semi-explicit formulas accelerate the computation of the

solution. However, they do not allow transaction costs to be taken into account.

Global Semi-Quadratic Hedging (GSQH)

This benchmark provides the solution to problem min
θ∈Θ

E
[
g(CT − V (θ)

T )
]
where g(x) =

x2I{x>0}. The solution is obtained by the Bellman Equation, as in Lemma 3.2.2, using the

terminal condition ΨT (ST , θT , VT ) = g(C(ST )− V (θ)
T ). This benchmark is proposed by Fran-

çois et al. (2014).

Minimizing VaR (MVaR)

Despite of the drawbacks associated with the VaR measure, it can still be used as the

objective function to be minimized. The MVaR benchmarks solves the problem

min
θ∈Θ

VaRα

(
CT − V (θ)

T

)
. (3.36)

The procedure to obtain the solution to this problem is analogous to the CVaR case. Define

Ψ∗,V aR0,c = inf
θ∈Θ

E[f (V aR)
c (CT − V (θ)

T )] (3.37)

f (V aR)
c (x) = I{x>c}. (3.38)
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Problem (3.37) 10 can be solved with Lemma 3.2.2 by using the terminal condition ΨV aR
T,c (θ) =

f
(V aR)
c (CT − V (θ)

T ). The VaR minimization problem is linked to Problem (3.37) :

Theorem 3.4.1 If

∀t, Bt is compact, (3.39)

the infimum is attained by some θ in (3.36) for all c, (3.40)

Ψ∗,V aR0,c is continuous with respect to c, (3.41)

then

min
θ∈Θ

VaRα

(
CT − V (θ)

T

)
= minC

where C = {c|Ψ∗,V aR0,c = 1 − α}. Furthermore, trading strategies solving (3.36) are those

solving (3.37) with c = minC :

arg min
θ∈Θ

VaRα

(
CT − V (θ)

T

)
= arg min

θ∈Θ
E[f

(V aR)
minC (CT − V (θ)

T )]

Proofs for these results are found in Appendix 3.7.

Risk-free hedging (RFH)

In this benchmark, the totality of the capital allocated for hedging is invested in the

risk-free asset : θ(S)
t = 0 for all t.

3.4.3 Numerical algorithm for global hedging procedures

For the MCVaR, MVaR and GSQH hedging strategy, a numerical algorithm is required

to compute the solution of the Bellman Equation. The François et al. (2014) backward

induction algorithm based on a set of three-dimensional lattices and splines interpolation

is used herein. A modification to their algorithm is applied to account for the presence of

transaction costs and the possibility that, for some nodes of the grid, it might be suboptimal

to rebalance the portfolio.

10. This problem is studied in continuous-time in Föllmer & Leukert (1999) and is known as quantile

hedging.
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3.4.4 Performance assessment

This section reports the results of the simulation study performed to compare the MCVaR

hedging method to several literature benchmarks. To isolate the impact of the presence of

the transaction costs from the choice of hedging methodology, two different experiments are

performed : transaction costs are applied only in the second experiment and are set to zero

in the first.

In each experiment, 106 paths of the underlying asset are simulated, and each hedging

method is applied on all paths. The hedging errors CT − V (θ)
T are calculated for each path,

and descriptive statistics about those errors are provided. Note that the Semi-RMSE of a

sample x1, . . . , xn is given by

Semi-RMSE =

√√√√n−1

n∑
i=1

x2
i I{xi>0} (3.42)

The MCVaR and MVaR are calculated at the α = 95% level. In the second experiment,

proportional transaction fees are applied : k1 = 0 and k2 = 1%. 11 The initial portfolio value

is set to the Black-Scholes price of the option : V0 = 38.63. This choice is made to give a

chance to delta-hedging to perform properly. However, our method does not prescribe this

choice and other initial portfolio values could have been chosen.

Simulation without transaction costs

In this experiment, no transaction fees are applied, and the optimal hedging solutions are

computed by taking that assumption into account. Table 3.2 gives the simulation results.

Results show that the hedging performance is greatly affected by the hedging methodo-

logy (which includes the choice of the risk measure to minimize in global hedging schemes).

As expected the MCVaR gives the lowest hedging CVaR, achieving the best risk reduction

in tails at both the 95% and 99% levels. It reduces the CVaR95% by 5.1% with respect to

GSQH, the best benchmark. The MCVaR also exhibits the third best semi-RMSE behind

the GQH and GSQH, meaning that the MCVaR also has a respectable performance outside

the tail. The GSQH also performs well ; it is the second best at minimizing the CVaRs and as

expected the best for the semi-RMSE minimization. Delta-hedging-based procedures (BSDH

11. The case of proportional transaction costs under the Hodges & Neuberger framework is studied in

Whalley & Wilmott (1997), Barles & Soner (1998), Davis et al. (1993) and Zakamouline (2006).

61



and NDH) perform worse than the global MCVaR, GSQH and GQH procedures in terms of

both the CVaRs and the semi-RMSE. It is somewhat surprising that the NDH gives higher

CVaRs and semi-RMSE than the BSDH, as the former takes into account that returns are

NIG-distributed while the latter assumes that returns are Gaussian.

Table 3.2 – Descriptive statistics on simulated hedging errors without transaction costs.

Model MCVaR MVaR BSDH NDH GQH GSQH RFH

Mean −1.436 −1.501 −1.536 -1.547 −1.467 −1.455 −0.6814

RMSE 15.52 18.75 14.40 14.91 13.78 14.26 53.92

Semi-RMSE 10.74 15.76 11.19 11.79 10.34 9.996 45.93

VaR95% 21.00 18.86 23.72 25.28 21.72 20.64 112.1

VaR99% 36.76 82.84 48.72 51.62 44.18 41.34 178.3

CVaR95% 32.10 57.01 39.65 41.96 36.07 33.84 153.0

CVaR99% 56.58 120.0 67.87 71.24 61.69 57.52 215.0

Descriptive statistics on 106 simulated hedging errors CT − VT for each hedging method. Transaction fees

are not applied in simulations. Best results are in boldface. MCVaR and MVaR minimize the 95% CVaR and

95% VaR of hedging errors. BSDH and NDH are delta-hedging procedure using the Black-Scholes price and

the NIG price with the mean-correcting measure, respectively. GQH and GSQH minimize the RMSE and

Semi-RMSE of hedging errors, respectively. RFH invests the totality of the hedging capital in the risk-free

asset.

A striking result is the atrocious performance of the MVaR method. It is successful at

minimizing the VaR at 95%, which is its objective. However, the CVaRs and the semi-

RMSE are much bigger than for all other benchmarks (except the no-hedging case). This

can be explained by the fact that the MVaR encourages gambling when it expects to be

unsuccessful ; when VT−1 � C(ST−1), using a I{CT−V (θ)
T >c} penalty encourages increasing the

volatility of the hedging portfolio to maximize the probability that CT − V (θ)
T < c. In those

cases, extremely high losses become highly probable. Such a phenomenon is contrary to what

a hedger tries to achieve : minimizing extreme losses.

The expected hedging error are close for all hedging methods, except it is slightly higher

for the RFH (which involves no hedging). This implies a negative cost for hedging a short

position on the option.
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Simulation with transaction costs

The first step consists in understanding the importance of taking into account transaction

costs in global hedging strategies. To achieve this objective, global strategies MCVaR, MVaR

and GSQH are computed twice ; first with transaction fees set to their real value and then by

setting fees to zero. MCVaR*, MVaR* and GSQH* denote the strategies where transaction

fees were set to zero in the optimization scheme of Lemma 3.2.2. All those strategies are

then applied to simulations with the presence of transaction fees. The MCVaR, MVaR and

GSQH methods are therefore aware that transaction fees occur whereas MCVaR*, MVaR*

and GSQH* are not. The performance of both sets of strategies are compared in Table 3.3.

Table 3.3 – Simulated hedging errors, taking vs not taking into account transaction costs.

Model MCVaR MCVaR* MVaR MVaR* GSQH GSQH*

Mean 7.992 11.00 8.394 16.23 7.764 12.12

RMSE 18.84 19.50 21.64 32.98 17.51 19.18

Semi-RMSE 17.39 18.88 20.54 32.71 16.40 18.82

VaR95% 32.68 33.34 29.87 75.92 33.63 37.37

VaR99% 48.73 60.37 91.78 139.1 54.25 60.59

CVaR95% 43.50 51.20 67.38 113.2 46.96 52.16

CVaR99% 68.63 87.77 127.2 169.4 71.20 78.15

Descriptive statistics on 106 simulated hedging errors CT − VT for each hedging method. Transaction fees

are applied in simulations. MCVaR, MCVaR*, MVaR and MVaR* use the α = 95% confidence level. GSQH

and GSQH* minimizes the hedging error Semi-RMSE. MCVaR, MVaR and GSQH take into account that

transaction costs will be incurred, while MCVaR*, MVaR* and GSQH* do not.

We notice that not taking transaction costs into account in global hedging procedures

provokes a systematic deterioration of the hedging performance (for example, the MCVaR

reduces the CVaR95% by 15% when compared to the MCVaR*). For all presented metrics in

Table 3.3, the hedging version which takes transaction costs into account outperforms their

counterpart that does not consider those costs.

As a second step, all hedging benchmarks are compared with the global hedging strategies

that take transaction costs into account. The results are presented in Table 3.4.
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Table 3.4 – Descriptive statistics on simulated hedging errors with transaction costs.

Model MCVaR MVaR BSDH DMBH NDH GQH GSQH RFH

Mean 7.992 8.394 13.02 7.575 13.51 12.52 7.764 -0.6814

RMSE 18.84 21.64 20.13 18.06 21.01 19.28 17.51 53.92

Semi-RMSE 17.39 20.54 19.96 16.84 20.88 19.06 16.40 45.93

VaR95% 32.68 29.87 40.74 35.12 43.20 38.21 33.63 112.1

VaR99% 48.73 91.78 66.51 56.10 70.24 61.76 54.25 178.3

CVaR95% 43.50 67.38 57.19 48.57 60.33 53.19 46.96 153.0

CVaR99% 68.63 127.2 85.96 72.81 89.99 79.49 71.20 215.0

Descriptive statistics on 106 simulated hedging errors CT − VT for each hedging method. Transaction fees

are applied in simulations. Best results are in boldface. MCVaR and MVaR minimize the 95% CVaR and

95% VaR of hedging errors. BSDH and NDH are delta-hedging procedure using the Black-Scholes price

and the NIG price with the mean-correcting measure respectively. DMBH rebalances the portfolio when the

distance between its delta and the derivative delta is larger than a given constant. GQH and GSQH minimize

respectively the RMSE and Semi-RMSE of hedging errors. RFH invests the totality of the hedging capital

in the risk-free asset.

Once again, the MCVaR outperforms all other methods in reducing the CVaRs (the

CVaR95% and CVaR99% are respectively reduced of 7.4% and 3.6% with respect to GSQH,

the best benchmark), which is expected. It is the second best at minimizing the semi-RMSE,

which implies that the CVaR performance is good even away from the error distribution tail.

The GSQH also performs well, being the second best at reducing CVaRs and the best at

minimizing the Semi-RMSE. For the same reason as explained above, the performance of the

MVaR is disastrous and yields extremely large CVaRs (an increase of 46% in the CVaR99%

with respect to the MCVaR). The RMSE is smaller for the GSQH than for the GQH, which is

explained by the fact that the semi-explicit solution used to compute the quadratic hedging

does not take transaction costs into account. Once again delta-hedging-based procedures

under-perform the global hedging methods. It is worth noting that the difference in the mean

error between the no-transaction cost case in Table 3.2 and the transaction cost case in Table

3.4. The negative impact of transaction costs on the hedging performance is apparent : the

mean error for the MCVaR ranges from −1.43 to 7.99 when transaction costs are added. The

DMBH method, which can be seen as an adaptation of the delta-hedging when transaction
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costs are present, only slightly under-performs the global GSQH hedging (the semi-RMSE

is 16.84 for the former and 16.40 for the latter).

Kernel plots representing the hedging error distribution across the different hedging mo-

dels are shown in Figures 3.2 and 3.3, which indicate that, of all methods considered, the

MCVaR strategy yields the thinnest hedging error distribution tail.

Figure 3.2 – Hedging error distribution for global hedging methods

Kernel plots of hedging errors for the MCVaR, MVaR and GSQH global hedging methods.

Figure 3.3 – Hedging error distribution for benchmarks

Kernel plots of hedging errors for the MCVaR, MCVaR*, BSDH and GQH methods.

3.5 Conclusion

This paper presents a discrete-time global hedging methodology which takes into account

transaction costs. It adapts the work of Hodges & Neuberger (1989) to consider non-Gaussian

returns and replace the expected utility metric by the CVaR, a coherent risk measure that

allows for the reduction of risk associated with all worst-case outcomes. A rigorous proof
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of the existence of the solution and a dynamic programming algorithm to compute such

a solution are given. The CVaR risk measure is shown to be the first element of a time-

consistent sequence of risk measures, implying that the solution to the hedging problem with

the CVaR objective function remains optimal through time with respect to that sequence of

risk measures. Simulation experiments show the presented hedging methodology compares

favorably with other literature benchmarks in terms of risk reduction.

Some aspects of our approach could be improved in further work. Possible alternative

numerical schemes based on simulation, spectral interpolation or parametric approximations

of the value function could be investigated to ease the numerical burden associated with the

computation of the solution to the hedging problem. Such an improvement would accelerate

computations and potentially allow for additional dimensions in the hedging problem such

as regimes, a stochastic volatility, a stochastic interest rate or additional hedging assets.

Moreover, a continuous-time version of our model could be developed, using the Hamilton-

Jacobi-Bellman equation to solve the problem.

3.6 Appendix : Proofs for the CVaR minimization pro-

blem

Lemma 3.6.1 Let f : Rn × K → R be a continuous function where K ⊂ Rd is compact.

Then f̃ defined by f̃ := min
θ∈K

f(v, θ) is continuous.

Proof of Lemma 3.6.1 : Let v0 ∈ Rn, θ0 ∈ K, ε > 0. Since f is continuous, it is uniformly

continuous on the compact subdomain B(v0, 1) × K where B(x, y) is the closed ball of

radius y around the point x. Therefore ∃δ < 1 such that ∀v ∈ B(v0, 1), θ ∈ K satisfying

||(v, θ) − (v0, θ)|| < δ then |f(v, θ) − f(v0, θ)| < ε. In other words, if ||v − v0|| < δ, then

∀θ, f(v0, θ) − ε < f(v, θ) < f(v0, θ) + ε. This implies by continuity that if ||v − v0|| < δ,

min
θ∈K

f(v0, θ)− ε ≤ min
θ∈K

f(v, θ) ≤ min
θ∈K

f(v0, θ) + ε, which is |f̃(v)− f̃(v0)| ≤ ε. �

Lemma 3.6.2
V

(θ)
T

BT

=
V

(θ)
t

Bt

+
T∑

j=t+1

θ
(S)
j

(
Sj
Bj

− Sj−1

Bj−1

)
− Kj−1

Bj−1

Proof of Lemma 3.6.2 :
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By (3.1),

VT
BT

=
VT−1

BT−1

+ θ
(S)
T

(
ST
BT

− ST−1

BT−1

)
− KT−1

BT−1

(3.43)

The proof is completed by repeating the previous iteration T − t− 1 more times. �

Lemma 3.6.3 If assumption (3.13) holds, ∃M1,M2 > 0 such that ∀t, θ, |V (θ)
T | ≤ V̄

(θ1:t)
t a.s.,

where

V̄
(θ1:t)
t :=

BT

Bt

|V (θ1:t)
t |+M1 +M2

T∑
i=0

Si. (3.44)

Proof of Lemma 3.6.3 : From (3.13), ∃M̃ ∈ R such that max
t

(|θ(S)
t |) < M̃ a.s. From

Lemma 3.6.2,

|V (θ)
T |
BT

≤ |V (θ1:t)
t |
Bt

+
T∑

i=t+1

M̃(
Si
B0

+
Si−1

B0

) +
Ki−1

B0

≤ |V (θ1:t)
t |
Bt

+
1

B0

T∑
i=0

M̃(Si + Si−1) + k1 + k22M̃Si−1 (3.45)

≤ |V (θ1:t)
t |
Bt

+
1

B0

T∑
i=0

M̃(Si + Si−1) + (k1 + k22M̃Si−1).� (3.46)

Corollary 3.6.1 If assumption (3.13)-(3.14) hold, there exists M1,M2 ∈ R such that

|Ψ∗,CV aRt,c (θ1:t)| ≤
|c|(2− α)

1− α
+
E[CT |Ft] + BT

B0
V0+M1+M2

∑T
j=0 E[Sj|Ft]

1− α
a.s., (3.47)

which is integrable.

Proof of Corollary 3.6.1 : By Lemma 3.6.3, ∃M1,M2 ∈ R

|f (CV aR)
c,α (CT − V (θ)

T )| ≤ |c|
(

1 +
1

1− α

)
+
|CT |+ BT

B0
V0+M1+M2

∑T
j=0 E[Sj|Ft]

1− α
.�

Proof of Lemmas 3.2.1 and 3.2.2 :

The first objective is to show that (3.15)-(3.17) hold for all t ≤ T . The proof proceeds by

induction. When, t = T , (3.15)-(3.17) are trivially satisfied because of the continuity of

f
(CV aR)
c,α . Assume (3.15)-(3.17) hold for t = n+ 1. We show that they also hold for t = n.

∀θ1:n, ∀θn+1 ∈ SFn, ΨCV aR
n+1,c (Sn+1, θn+1, vn+1) is a non-decreasing function of vn+1. Thus,

Ψ̃∗,CV aRn,c,θ1:n
:= inf

θn+1∈SFn+1

E
[
ΨCV aR
n+1,c (Sn+1, θn+1, Vn+1(θ1:n+1))

∣∣Fn] (3.48)

= min

{
inf

θt+1∈SFt+1

ρ̃(1)
n , ρ̃(2)

n

}
(3.49)
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where

ρ̃(1)
n := E

[
ΨCV aR
n+1,c (Sn+1, θn+1,V(1)

n+1(Vn(θ1:n), θn, θn+1, Sn, Sn+1))
∣∣Fn]

ρ̃(2)
n := E

[
ΨCV aR
n+1,c (Sn+1, θn+1,V(2)

n+1(Vn(θ1:n), θn, Sn, Sn+1))
∣∣Fn]

V(1)
n+1(Vn(θ1:n), θn, θn+1, Sn, Sn+1)

:=
Bn+1

Bn

(Vn(θ1:n)−k1−k2|θ(S)
n −θ

(S)
n−1|Sn−1) + θ

(S)
n+1

(
Sn+1 − Sn

Bn+1

Bn

)
,

V(2)
n+1(Vn(θ1:n), θn, Sn, Sn+1) :=

Bn+1

Bn

Vn(θ1:n) + θ(S)
n

(
Sn+1 − Sn

Bn+1

Bn

)
.

V(1)
n+1 represents the next-period value of the portfolio if the fixed transaction fees k1 are

applied, even if no rebalancing occurs. V(2)
n+1 represents the next-period value of the portfolio

if no rebalancing occurs.

From Assumption 3.2.1, ρ̃(1)
n = ρ

(1)
n (c, Vn(θ1:n), θn, θn+1, Sn) and ρ̃(2)

n = ρ
(2)
n (c, Vn(θ1:n), θn, Sn).

Because of the continuity of V(1)
n+1(vn, ϑn, ϑn+1, Sn, Sn+1) with respect to (vn, ϑn, ϑn+1) and be-

cause ΨCV aR
n+1,c (Sn+1, ϑn+1, vn+1) is continuous with respect to (c, ϑn+1, vn+1) by the induction

hypothesis,

lim
(v̄n,c̄,θ̄n,θ̄n+1)→(vn,c,θn,θn+1)

E
[
ΨCV aR
n+1,c̄

(
Sn+1, θn+1,V(1)

n+1(v̄n, θ̄n, θ̄n+1, Sn, Sn+1)
) ∣∣Fn]

= E
[

lim
(v̄n,c̄,θ̄n,θ̄n+1)→(vn,c,θn,θn+1)

ΨCV aR
n+1,c̄

(
Sn+1, θn+1,V(1)

n+1(v̄n, θ̄n, θ̄n+1, Sn, Sn+1)
) ∣∣Fn]

By dominated convergence with bound (3.47)

= E
[
ΨCV aR
n+1,c

(
Sn+1, θn+1,V(1)

n+1(vn, θn, θn+1, Sn, Sn+1)
) ∣∣Fn] . by continuity

This implies ρ(1)
n (c, vn, θn, θn+1, Sn) is continuous with respect to (c, vn, θn, θn+1). Similarly,

ρ
(2)
n (c, vn, θn, Sn) is continuous with respect to (c, vn, θn). The compacity of Bt+1 implies that

the minimum is attained in

ρ̃(1)

n
:= inf

θn+1∈SFn+1

ρ̃(1)
n = min

θn+1∈SFn+1

ρ(1)
n (c, Vn(θ1:n), θn, θn+1, Sn)

From Lemma 3.6.1, ρ̃(1)

n
= ρ(1)

n
(c, Vn(θ1:n), θn, Sn) is continuous with respect to (c, vn, θn).

This implies from (3.49) that the minimum is attained in (3.48)

Ψ̃∗,CV aRn,c,θ1:n
= min

θn+1∈SFn+1

E
[
ΨCV aR
n+1,c (Sn+1, θn+1, Vn+1(θ1:n+1))

∣∣Fn] , (3.50)

This and (3.49) prove Ψ̃∗,CV aRn,c,θ1:n
is σ(Sn, V

(θ1:n)
n , θn)-measurable. This, combined with the fact

that θ1:t−1 are not used in the computation of ρ(1)
n and ρ(2)

n , implies that

Ψ̃∗,CV aRn,c,θ1:n
= Ψ̃CV aR

n,c (Sn, V
(θ1:n)
n , θn) (3.51)
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for some functions Ψ̃CV aR
n,c .

From the well-known principle of optimality of dynamic programming (Bellman & Dreyfus,

1962),

Ψ∗,CV aRn,c (θ1:n) = Ψ̃∗,CV aRn,c,θ1:n
. (3.52)

Furthermore, denote

θ∗n+2:T (θ1:n+1) := arg min
θn+2:T

{
E
[
f (CV aR)
c,α (CT − V (θ1:n+1,θn+2:T )

T )
∣∣Fn+1

]
: (θ1:n+1, θn+2:T ) ∈ Θ

}
,

θ∗n+1(θ1:n) := arg min
θn+1∈SFn+1

E
[
ΨCV aR
n+1,c (Sn+1, θn+1, Vn+1(θ1:n+1))

∣∣Fn]
Then, from the principle of optimality,(

θ∗n+1(θ1:n), θ∗n+2:T (θ1:n, θ
∗
n+1(θ1:n))

)
= arg min

θn+1:T

{
E
[
f (CV aR)
c,α (CT − V (θ1:n+1,θn+2:T )

T )
∣∣Fn] : (θ1:n, θn+1:T ) ∈ Θ

}
(3.53)

We refer to Theorem 3.2 of François et al. (2014) for a proof of statements (3.52) and (3.53)

in the hedging context. This proves Lemma 3.2.2. Moreover, combining (3.50), (3.51) and

(3.52) proves that (3.15)-(3.17) hold for t = n. �

Lemma 3.6.4 ΨCV aR
0,c , which is defined in Lemma 3.2.1, satisfies lim

c→−∞
ΨCV aR

0,c (S0, θ0, V0) =

∞.

Proof of Lemma 3.6.4 :

Let J > 0. For all θ,

f (CV aR)
c,α (CT − V (θ)

T ) = c+
1

1− α
(CT − V (θ)

T − c)I{CT−V (θ)
T >c}

≥ c− c

1− α
I{CT−V (θ)

T >c} −
(CT + |V (θ)

T |)
1− α

≥ c− c

1− α
I{CT−V (θ)

T >c} −
(
CT + V̄0

)
1− α

(3.54)

where V̄0 is defined in Lemma 3.6.3.

Define E := 1
1−αE

[
CT + V̄0

]
<∞.

Let c̃ < −2(J + E) < 0 be small enough such that

P[CT − V̄0 > c̃] > (1− α)/2. (3.55)

This gives ∀θ ∈ Θ, ∀c ≤ c̃,

P[CT − V (θ)
T > c] ≥ P[CT − V (θ)

T > c̃] ≥ P[CT − V̄0 > c̃]. (3.56)
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Thus for all θ, for all c ≤ c̃,

E
[
f (CV aR)
c,α (CT − V (θ)

T )
]
≥ c

(
1− P[CT − V (θ)

T > c]

1− α

)
− E from (3.54)

≥ c̃

(
1− P[CT − V̄0 > c̃]

1− α

)
− E from (3.55) and (3.56)

≥ c̃

(
1− (1− α)/2

1− α

)
− E from (3.55)

= − c̃
2
− E ≥ J .

We have thus shown that ∀J ∈ R, ∃c̃ < 0 such that ∀c < c̃, ΨCV aR
0,c (S0, θ0, V0) ≥ J . �

Proof of Theorem 3.2.2 :

From Lemma 3.2.1,

min
θ∈Θ

{
E
[
f (CV aR)
c,α (CT − V (θ)

T )
]}

= ΨCV aR
0,c (S0, θ0, V0)

is continuous with respect to c. Since f (CV aR)
c,α (•) ≥ c, ΨCV aR

0,c (S0, θ0, V0) ≥ c. This implies

lim
c→∞

ΨCV aR
0,c (S0, θ0, V0) =∞. Furthermore, Lemma 3.6.4 shows that lim

c→−∞
ΨCV aR

0,c (S0, θ0, V0) =

∞. Since ΨCV aR
0,c (S0, θ0, V0) is continuous with respect to c and converges to infinity when

|c| → ∞, its minimum is attained at some point c∗. Thus,

inf
θ∈Θ

CVaRα(CT − V (θ)
T ) = inf

c∈R
inf
θ∈Θ

E
[
f (CV aR)
c,α (CT − V (θ)

T )
]
.

= inf
c∈R

ΨCV aR
0,c (S0, θ0, V0)

= ΨCV aR
0,c∗ (S0, θ0, V0).

Furthermore

arg min
θ∈Θ

CVaRα(CT − V (θ)
T ) = arg min

θ∈Θ
E
[
f

(CV aR)
c∗,α (CT − V (θ)

T )
]

(3.57)

which exists due to Lemma 3.2.1. �

Proof of Theorem 3.2.3 :

For all θ, define

Ṽ0 := V0 + (x− c)B0

BT

, (3.58)

ṼT (θ) := BT

[
Ṽ0

B0

+
T∑
j=1

θ
(S)
j

(
Sj
Bj

− Sj−1

Bj−1

)
− Kj−1

Bj−1

]
. (3.59)
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As can be seen from Lemma 3.6.2, ṼT (θ) is the terminal value for the self-financing portfolio

invested through the hedging strategy θ and starting with the initial value Ṽ0. Using Lemma

3.6.2,

f (CV aR)
x,α (CT − VT (θ))

= x+
1

1− α
(CT − VT (θ)− x)I{CT−VT (θ)>x}

= x+
1

1− α

(
CT −

[
BTV0

B0

+
T∑
j=1

BT θ
(S)
j

(
Sj
Bj

+
Sj−1

Bj−1

)
− BTKj−1

Bj−1

]
− x

)
× I{

CT−
[
BT V0
B0

+
∑T
j=1BT θ

(S)
j

(
Sj
Bj

+
Sj−1
Bj−1

)
−
BTKj−1
Bj−1

]
>x

} by Lemma 3.6.2

= (x− c) + c+
1

1− α
(CT − ṼT (θ)− c)I{CT−ṼT (θ)>c}

= (x− c) + f (CV aR)
c,α (CT − ṼT (θ)). �

3.7 Appendix : Proofs for the VaR minimization problem

Consider the problem of minimizing the V aRα of the hedging error :

inf
θ∈Θ

VaRα(CT − V (θ)
T ) = inf

θ∈Θ
min
c
{c |E[I{CT−V (θ)

T ≤c}] ≥ α} (3.60)

= inf
θ∈Θ

min
c
{c |E[I{CT−V (θ)

T >c}] ≤ 1− α}

= inf{c
∣∣∃θ ∈ Θ such that E[f (V aR)

c (CT − V (θ)
T )] ≤ 1− α}(3.61)

where f (V aR)
c is defined by (3.38). In order to solve (3.60), one must therefore solve Pro-

blem (3.37) for different values of c. The latter problem can be solved through dynamic

programming.

Definition 3.7.1

Ψ∗,V aRT,c (θ) := f (V aR)
c,α (CT − V (θ)

T ) (3.62)

∀t < T, Ψ∗,V aRt,c (θ1:t) := inf
θt+1:T

{
E
[
f (V aR)
c,α (CT − V (θ1:t,θt+1:T )

T )
∣∣Ft] : (θ1:t, θt+1:T ) ∈ Θ

}
(3.63)

where f (V aR)
c,α is defined by (3.38).

Results analogous to Lemmas 3.2.1 and 3.2.2 can be derived.
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Lemma 3.7.1 (The Bellman Equation) If (3.39)-(3.41) hold, then for all t < T, θ1:t,

There exists functions ΨV aR
t,c such that Ψ∗,V aRt,c (θ1:t) = ΨV aR

t,c (St, θt, V
(θ1:t)
t ) a.s.

ΨV aR
t,c (St, θt, V

(θ1:t)
t ) = min

θt+1∈SFt+1

E
[
ΨV aR
t+1,c(St+1, θt+1, V

(θ1:t,θt+1)
t+1 )

∣∣St, θt, V (θ1:t)
t

]
.

The proof is similar to the proof of one of the latter theorems and is therefore not repeated.

The following result gives the asymptotic behavior of ΨV aR
0,c when |c| goes to infinity, which

is required in order to ensure the existence of a solution to problem (3.36).

Lemma 3.7.2 If Bt are compact for all t, ΨV aR
0,c which is defined in Lemma 3.7.1, satisfies

lim
c→−∞

Ψ0,c(S0, θ0, V0) = 1 and lim
c→∞

Ψ0,c(S0, θ0, V0) = 0.

Proof of Lemma 3.7.2 :

Let ε > 0. Select any θ ∈ Θ, and choose c̄1 such that P(CT − V (θ)
T > c̄1) < ε. This implies

∀c > c̄1, Ψ0,c(S0, θ0, V0) < Ψ0,c̄1(S0, θ0, V0) < ε.

Furthermore, define V̄0 as in Lemma 3.6.3. Choose c̄2 such that P
[
CT − V̄0 > c̄2

]
≥ 1− ε.

By Lemma 3.6.3, ∀θ ∈ Θ, ∀c < c̄2,

Ψ0,c(S0, θ0, V0) = inf
θ∈Θ

P
[
CT − V (θ)

T > c
]
≥ P

[
CT − V̄0 > c̄2

]
≥ 1− ε. �

Lemmas 3.7.1 and 3.7.2 lead to the following characterization of the solution to problem

(3.60).

Theorem 3.7.1 If (3.39)-(3.41) hold, then

min
θ∈Θ

VaRα

(
CT − V (θ)

T

)
= c∗ (3.64)

where c∗ = min{c|ΨV aR
0,c (S0, V0) = 1− α}. Furthermore, all solutions θ∗,V aR to

θ∗,V aR ∈ arg min
θ∈Θ

E
[
f

(V aR)
c∗,α (CT − V (θ)

T )
]
, (3.65)

which exist, also solve (3.64).

Proof of Theorem 3.7.1 :

From Lemma 3.7.1 and assumption (3.40),

min
θ∈Θ

E
[
f (V aR)
c (CT − V (θ)

T )
]

= ΨV aR
0,c (S0, V0)

72



is continuous with respect to c. Define C := {c|ΨV aR
0,c (S0, θ0, V0) = 1−α}. From Lemma 3.7.2,

lim
c→∞

Ψ0,c(S0, θ0, V0) = 0 and lim
c→−∞

Ψ0,c(S0, θ0, V0) = 1. This implies that C is not empty. Since

ΨV aR
0,c (S0, θ0, V0) is continuous with respect to c by (3.41), C is closed. Define c̃ := minC.

Define θ∗(c) := arg min
θ∈Θ

E
[
f

(V aR)
c (CT − V (θ)

T )
]
which exists from Lemma 3.7.1. First, since

VaRα(CT − V (θ∗(c̃))
T ) = c̃, inf

θ∈Θ
VaRα(CT − V (θ)

T ) ≤ c̃. Second, by the definition of c̃, ∀c < c̃,

ΨV aR
0,c (S0, θ0, V0) > 1− α. This implies that ∀c < c̃, inf

θ∈Θ
VaRα(CT − V (θ)

T ) ≥ c.

These two inequalities imply that min
θ∈Θ

VaRα(CT − V
(θ)
T ) = c̃ and that the minimum

strategy is attained by the hedging strategy θ∗(c̃). �

As in the CVaR case, a single run of the dynamic programming leads to the calculation

of ΨV aR
0,c all c simulaneously :

Theorem 3.7.2 ∀x, c ∈ R, ΨV aR
0,x (S0, θ0, V0) = ΨV aR

0,c (S0, θ0, V0 + (x− c) B0

BT
).

Proof of Theorem 3.7.2 :

For all θ, define Ṽ0 and ṼT (θ) by (3.58)-(3.59).

f (V aR)
x (CT − VT (θ)) = I{CT−VT (θ)>x}

= I{
CT−

[
BT V0
B0

+
∑T
j=1BT θ

(S)
j

(
Sj
Bj
−
Sj−1
Bj−1

)
−
Kj−1
Bj−1

]
>x

} by Lemma 3.6.2

= I{
CT−

[
BT Ṽ0
B0

+
∑T
j=1BT θ

(S)
j

(
Sj
Bj
−
Sj−1
Bj−1

)
−
Kj−1
Bj−1

]
>c

}
= I{CT−ṼT (θ)>c}
= f (V aR)

c (CT − ṼT (θ)). �

3.8 Appendix : Non-time-consistency conditional VaRs

and CVaRs

This section shows by means of a simple counter-example that the set of conditional VaR

and CVaR risk measures are not necessarily time-consistent.

Consider the case of a two period market : t = 0, 1, 2. For simplicity, the risk-free rate is

null and the risk-free asset value is therefore constant. The dynamics of the risky asset is

represented by an arbitrage-free tree where its log-return between times t and t+1 is denoted
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by εt+1 = log St+1

St
. The following values for log-return are possible :

ε1 = −0.1 or 0.1, each with probability p1 = 0.5, (3.66)

ε2 = −0.1,−0.05, 0, 0.05 or 0.1, each with probability p2 = 0.2. (3.67)

Log-returns ε1 and ε2 are independent. The initial value of the stock is S0 = 100. Assume the

hedged derivative is a European call option with strike E = 105 : C2 = max{0, S2−E}. The

admissible strategies are Θ := {(θ1, θ2)|∀i, θi ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}}. Discrete admissible

strategies make the illustration of the case easier. Denote by θ2(u) the portfolio position in

the upper node, i.e. when ε1 = −0.1, and by θ2(d) the portfolio position in the lower node

(ε1 = 0.1). For this simple market, consider the following sets of risk measures ∀t, ρt = VaRt,α

(the VaR case) and ∀t, ρt = CVaRt,α (the CVaR case). Table 3.5 gives the optimal solutions

for problem (3.24). The risk levels considered are α = 0.7 for the VaR case and α = 0.6 for

the CVaR case.

Table 3.5 – Optimal trading strategies in the simple tree market

Risk measure Unique solution at t = 0 Solution at t = 1

VaRt,0.7 (θ1, θ2(u), θ2(d)) = (0, 0, 0) ∀θ1, (θ2(u), θ2(d)) = (1, 0)

CVaRt,0.6 (θ1, θ2(u), θ2(d)) = (.4, .8, 0) ∀θ1, (θ2(u), θ2(d)) = (1, 0)

Optimal trading strategies in the simple tree market when the two following risk measures are considered :

conditional VaRt,0.7 and CVaRt,0.6.

As seen in Table 3.5, in both the VaR and CVaR cases,
⋂1
t=0 Θ∗t = ∅. Therefore, the set

of conditional VaRs and CVaRs are time-inconsistent in this example.

3.9 Technical report (not part of the paper)

3.9.1 Additional result on minimizing the CVaR

The following theorem guarantees that the c that minimizes ΨCV aR
0,c is unique.

Theorem 3.9.1 Define

C :=

{
c∗
∣∣∣∣ΨCV aR

0,c∗ (S0, θ0, V0) = min
c∈R

ΨCV aR
0,c (S0, θ0, V0)

}
.

If ∀c∗ ∈ C,∃θc∗ such that θc∗ ∈ arg min
θ∈Θ

E
[
f

(CV aR)
c∗,α (CT − V (θ)

T )
]
and CT −V (θc

∗
)

T has a strictly

increasing cdf, then C contains a unique point.
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Proof of Theorem 3.9.1 :

Since ΨCV aR
0,c (S0, θ0, V0) is continuous with respect to c, C is closed. Define c1 := minC.

Suppose there exists c2 ∈ C such that c2 > c1. Let θc2 be the hedging strategy that minimizes

E
[
f

(CV aR)
c2,α (CT − V (θ)

T )
]
which is such that CT − V (θc2 )

T has a strictly increasing cdf. Then,

(CT − V (θc2 )
T − c1)I{CT−V (θc2 )

T >c1}
− (CT − V (θc2 )

T − c2)I{CT−V (θc2 )
T >c2}

≤ (c2 − c1)I{CT−V (θc2 )
T >c1}

I{CT−V (θc2 )
T >c2}

+ (CT − V (θc2 )
T − c1)I{CT−V (θc2 )

T >c1}
I{CT−V (θc2 )

T ≤c2}

≤ (c2 − c1)I{CT−V (θc2 )
T >c1}

I{CT−V (θc2 )
T >c2}

+ (c2 − c1)I{CT−V (θc2 )
T >c1}

I{CT−V (θc2 )
T ≤c2}

= (c2 − c1)I{CT−V (θc2 )
T >c1}

Therefore,

E
[
f (CV aR)
c1,α

(CT − V (θc2 )
T )

]
−min

c∈R
ΨCV aR

0,c (S0, θ0, V0)

= E
[
f (CV aR)
c1,α

(CT − V (θc2 )
T )

]
− E

[
f (CV aR)
c2,α

(CT − V (θc2 )
T )

]
≤ (c1 − c2) +

1

1− α
(c2 − c1)P[CT − V (θc2 )

T > c1]

= (c2 − c1)

(
P[CT − V (θc2 )

T > c1]

1− α
− 1

)
. (3.68)

Since c2 = VaRα(CT − V (θc2 )
T ) from (Theorem 10 of Rockafellar & Uryasev, 2002), P[CT −

V
(θc2 )
T > c2] = 1−α. Furthermore P[CT−V (θc2 )

T ∈ (c1, c2] ] > 0, otherwise VaRα(CT−V (θc2 )
T ) ≤

c1. This implies

P[CT − V (θc2 )
T > c1] > 1− α. (3.69)

Plugging (3.69) in (3.68) implies that

E
[
f (CV aR)
c1,α

(CT − V (θc2 )
T )

]
< min

c∈R
ΨCV aR

0,c (S0, θ0, V0),

which contradicts that c1 ∈ C. �

3.9.2 Additional result on minimizing the VaR

Theorem 3.9.2 Assume (3.39)-(3.41) hold. Let θ∗(c) := arg min
θ∈Θ

E
[
f

(V aR)
c (CT − V (θ)

T )
]
which

exists from Lemma 3.7.1. Define C := {c|ΨV aR
0,c (S0, θ0, V0) = 1 − α} and c̃ := minC. If, the

distribution CT − V (θ∗(c̃))
T has no atom, then C contains a unique point.
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Proof of Theorem 3.9.2 :

The non-emptiness of C is proved by Theorem 3.7.1. Define c̃ := minC. Let c2 ∈ C > c̃

such that c2 > c̃. From the definition of θ∗(c̃) and since c̃ ∈ C, P
[
CT − V (θ∗(c̃))

T > c̃
]

= 1−α.

Since the distribution of CT − V (θ∗(c̃))
T has no atoms, P

[
CT − V (θ∗(c̃))

T > c2

]
< 1 − α, which

contradicts that c2 ∈ C.

3.9.3 More on defining time-consistency of risk measures

It could be argued that definition 3.3.4 can be relaxed, and that the existence of one

solution which remains optimal through time (instead of the necessity of all solutions to

remain so) is sufficient for consistence. This inspires the following more general version of

consistency.

Definition 3.9.1 The set of risk measures {ρt}T−1
t=0 are said to be weakly time-consistent if⋂T−1

t=0 Θ∗t 6= ∅.

In other words, risk measures are time-consistent if there exists a common solution θ which

solves problems (3.24) for all t = 0, . . . , T − 1. Trivially, time-consistency implies weak

time-consistency. Furthermore, weak time-consistency and the existence and uniqueness of

solutions to all problems (3.24) imply time-consistency.

Remark 3.9.1 Even in simple cases, the existence of a solution might not exist. Such a si-

tuation is illustrated for the expected squared hedging error measure in Example 4 of Schweizer

(1995). Section 3.9.4 give a simple example where the VaR cannot be minimized.

3.9.4 Example of non-existence of an optimal strategy with VaR

The following example illustrates a situation where the existence of a solution minimizing

the hedging VaR does not exist.

Consider the case of a European call option with strike K = 2 with maturity T = 2 on

a stock following a binomial tree. The initial value of the stock is S0 = 3 and its dynamics

are characterized by P[St+1 = St + 1|St] = P[St+1 = St − 1|St] = 1/2. The risk-free asset has

a constant value of Bt = 1 for all t. The market is therefore complete and arbitrage-free in

this case. The initial capital is the arbitrage-free price of the option (V0 = 1.25) and perfect
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replication can therefore be achieved. The distribution of the hedging error CT − VT is

3− θ(S)
1 − θ(S,u)

2 with probability 1/4,

1− θ(S)
1 + θ

(S,u)
2 with probability 1/4,

1 + θ
(S)
1 − θ(S,d)

2 with probability 1/4,

0 + θ
(S)
1 + θ

(S,d)
2 with probability 1/4,

(3.70)

since VT = V0 + θ1(S1 − S0) + θ2(S2 − S1). θ(S,u)
2 and θ

(S,u)
2 are the number of stocks in

the portfolio at the respective nodes S1 = 5 and S1 = 3. The set of admissible strategies

is set to Θ = {(θ(S)
1 , θ

(S,u)
2 , θ

(S,d)
2 ) ∈ R3}. Perfect replication can be achieved by choosing

(θ
(S)
1 , θ

(S,u)
2 , θ

(S,d)
2 ) = (0.75, 1, 0.5).

Consider the risk measure ρ = V aR0.75 to solve problem (3.3). By choosing θ(S,u)
2 = 1

and θ(S,d)
2 = 2θ

(S)
1 − 1, (3.70) becomes2− θ(S)

1 with probability 3/4,

3θ
(S)
1 − 1 with probability 1/4,

(3.71)

and therefore V aR0.75(CT − VT ) = 2 − θ
(S)
1 . Therefore, V aR0.75(CT − VT ) → −∞ when

θ
(S)
1 → ∞ and there exists no solution θ that minimizes ρ(CT − VT ). Furthermore, the

hedging strategy allowing perfect replication is not optimal according to the V aR0.75 risk

measure.

Remark 3.9.2 In the previous example, the exact replication of the derivative is sub-optimal.

To ensure that exact replication is always optimal if it is achievable in a global hedging pro-

blem, the following conditions are sufficient : the risk measure to be minimized is ρ where

ρ(0) = 0 and min ρ(CT − VT ) ≥ 0. Using a ρ such that ∀X, ρ(X) ≥ 0 assures the latter

condition is satisfied.

3.9.5 Formulas for the global quadratic hedging

The general solution to the problem min
θ∈Θ

E
[
(CT − V (θ)

T )2
]
when Bt = R for all t can

be obtained by applying a recursive scheme. Define the following quantities, starting with
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νT+1 := 1 and C̃T := CT :

∆t := B−1
t St −B−1

t−1St−1 (3.72)

At := E
[
∆2
tνt+1|Ft−1

]
(3.73)

bt := A−1
t E [∆tνt+1|Ft−1] (3.74)

αt := A−1
t E

[
B−1
t C̃t∆tνt+1|Ft−1

]
(3.75)

νt := E[(1− bt∆t)νt+1|Ft−1] (3.76)

C̃t−1 :=
E
[
B−1
t (1− bt∆t)C̃tνt+1|Ft−1

]
B−1
t−1νt

. (3.77)

Then, the solution of the problem is obtained by setting

θ
(S)
t+1 = αt+1 −B−1

t Vtbt+1. (3.78)

Rémillard (2013) give more explicit expressions for coefficients (3.73)-(3.77) in the case of

geometric random walks, which is the model used for simulations in the current paper. Indeed,

assume (3.32)-(3.33) hold with log-returns zk being i.i.d. Define D = e−r/52, µ(1) = DE[ezk ]

and µ(2) = D2E[e2zk ]. Then,

a = 1−
µ2

(1) − 2µ(1) + 1

µ(2) − 2µ(1) + 1
, (3.79)

At = B2
t−1S

2
t−1(µ(2) − 2µ(1) + 1)aT−t, (3.80)

bt =
µ(1) − 1

Bt−1St−1

(
µ(2) − 2µ(1) + 1

) , (3.81)

νt = aT−t+1. (3.82)

3.9.6 The numerical algorithm

The numerical algorithm of François et al. (2014) relies on three steps performed for each

time step :

1. Compute the optimal portfolio choice on a coarse grid,

2. Interpolate the optimal portfolio choice on all nodes of the finer grid,

3. Compute the value function Ψ on all nodes of the finer grid, using the interpolated

portfolio choice of step 2.

A fourth step is added to the algorithm in the current paper. In the presence of tran-

saction costs, it might be suboptimal to rebalance the portfolio. However, the interpolation
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approximation of the optimal portfolio choice on the fine grid in step 2 can suggest in some

cases a light rebalancing of the portfolio. When the rebalancing suggested by the algorithm

is very small, it might generate transaction costs that are more harmful than the benefit

obtained by the rebalancing. 12

The current paper adds a fourth step to the algorithm. The value function approximation

obtained in step 3 and the one obtained without rebalancing the portfolio are compared. The

optimal strategy then involves rebalancing the portfolio only if the value function obtained

from step 3 is lower than the one obtained without rebalancing.

Lattice parameters

Some parameters of the François et al. (2014) algorithm must be specified. The no-

tation for parameters is borrowed from the latter article. The grid stretching factors are

(λ
(small)
Y , λ

(large)
Y , λ

(small)
V , λ

(large)
V ) = (.6, .6, 1, 1). For the step 1 of the algorithm, the number

of quadrature points for the three regions of the distribution are M(1) = M(3) = 100 and

M(2) = 200. For the step 3, M̃(1) = M̃(3) = 200 and M̃(2) = 300. Putting more points near

the tails is used to better capture the extreme events which contribute more heavily to the

hedging penalty. The discrete set O over which θt+1 is optimized in step 1 of the algorithm

is O = {j/99 | j = 0, ..., 99}. The number of grid nodes for each variable on the finer grid

(step 3 of the algorithm) is

(#Yt,#θt,#Vt) =

(200, 100, 200) if n = N − 1

(150, 100, 150) otherwise
(3.83)

More nodes are put on the first step of the recursion since it can be computed faster because

of explicit formulas. 13 For the coarse grid in step 1, only a subset of the nodes of the finer

grid in step 3 are retained. The proportion of nodes kept in the coarse grid from the finer

grid across dimensions Yt, θt and Vt is 1/3, 1/3 and 1/4.

12. As described in Zakamouline (2006), the solution to the hedging problem of Hodges & Neuberger

(1989) involves a no-rebalancing region i.e. a subset of state variable values for which the optimal solution

is to not rebalance the portfolio.
13. An explicit expression for E[Ψ∗,CV aRT,c |FT−1] exists.
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Chapitre 4

Couverture sur les marchés d’électricité

Short-term hedging for an electricity retailer
By Debbie Dupuis 1, Geneviève Gauthier 2 and Frédéric Godin 3

Abstract

A dynamic global hedging procedure making use of futures contracts is developed for a retailer of

the electricity market facing price, load and basis risk. Statistical models reproducing stylized facts

are developed for the electricity load, the day-ahead spot price and futures prices in the Nord Pool

market. These models serve as input to the hedging algorithm, which also accounts for transaction

fees. Backtests with market data from 2007 to 2012 show that the global hedging procedure provides

considerable risk reduction when compared to hedging benchmarks found in the literature.

JEL classification : G32, L94, C61

Keywords : Risk management, power markets, energy, load modeling, futures contracts.

4.1 Introduction

With the recent liberalization of electricity markets and the disentanglement of the ver-

tical integration in the electricity supply chain in Nordic countries, continental Europe and
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North America, new risks have arisen for some of the participants of the electricity markets.

One such risk-facing participant is the retailer buying from wholesalers to sell to end-users.

These retailers 4 sign contracts giving them the obligation to supply electricity to consumers.

Retailers often need to supply a quantity of electricity at a fixed price while acquiring it at

a variable market price (Von der Fehr & Hansen, 2010 and Johnsen, 2011), exposing the

retailers to price risk. Furthermore, as the quantity of electricity which must be supplied to

consumers is uncertain, retailers also face load (or volumetric) risk (Deng & Oren, 2006).

Electricity is not easily storable and retailers cannot build up electricity reserves upon

which to draw to cover an unexpectedly high load demand or an electricity price increase.

The non-storability of electric power fuels extreme price volatility as highly inelastic demand

can cause spot prices to skyrocket when shortages occur. For retailers, the volatility can

affect profitability since an unexpected high cost of electricity can lead to major losses. The

profit margin for a retailer is so small in relation to the price risk that the profit margin

can quickly disappear if the price risk is not hedged (NordREG, 2010). In some cases, there

was eventual bankruptcy as with the Pacific Gas and Electric Company in 2001 and Texas

Commercial Energy in 2003. To prevent such events, some government regulatory initiatives

were even implemented to force retailers to hedge their obligation to serve electricity loads.

For example, the California Public Utility Commission now requires load serving entities

(LSE) to use forward contracts and options (with mandatory physical settlement) to reduce

their risk exposure State of (California, 2004).

It is clear that deficient risk management can lead to financial hardship for retailers and

developing effective hedging methodologies in the electricity market has become paramount.

Different approaches, using different electricity derivatives, have been proposed in the lite-

rature. Deng & Oren (2006) survey available derivatives and list the papers that implement

methods pertaining to each. Hedging procedures can be divided into two main categories :

(i) static, and (ii) dynamic. For static hedging, hedging instruments are bought at one point

in time and the hedging portfolio is never rebalanced. For dynamic hedging, the composition

of the hedging portfolio is adjusted through time as additional information becomes avai-

lable. Dynamic hedging procedures can be divided into two sub-categories, which we refer

to as local and global hedging. Local hedging procedures minimize the risk associated with

4. Retailers is the term used on Nord Pool for these participants. On the US market, they are referred to

as load serving entities.
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the portfolio until the next rebalancing whereas global hedging procedures minimize the risk

related to the terminal cash flow.

Several papers apply static hedging without considering load uncertainty. Stoft et al.

(1998) describe simple hedging strategies with vanilla derivatives. Bessembinder & Lemmon

(2002) identify the optimal position in forward contracts for electricity producers and retai-

lers through an equilibrium scheme. Fleten et al. (2010) optimize the static futures contract

position of a hydro-power electricity producer in Nord Pool. Other papers studying sta-

tic hedging incorporate load uncertainty in their model. Wagner et al. (2003) and Woo et

al. (2004) investigate static hedges with forward and futures contracts under different risk

constraints. Deng & Xu (2009) examine hedging strategies using interruptible contracts in

a one-period setting. In a series of papers, Oum et al. (2006), Oum & Oren(2009) and Oum

& Oren(2010) propose a static hedging procedure maximizing the expected utility of a LSE

using a portfolio of derivatives. Kleindorfer & Li (2005) optimize the expected return of an

electricity portfolio corrected by a risk measure (either variance or Value-at-Risk).

To the authors’ best knowledge, there exists no paper on dynamic hedging which incor-

porates load uncertainty. The literature on dynamic hedging strategies includes some local

procedures. For example, Ederington (1979) suggests to hedge an underlying asset with its

futures in a way to minimize the one-period variance of the total portfolio. Byström (2003),

Madaleno & Pinho (2008), Zanotti et al. (2010), Liu et al. (2010), and Torro (2012) adapt

this procedure to the electricity market, but with different model specifications for the spot

and futures prices. Byström (2003) applies one-week horizon hedges on Nord Pool, comparing

conditional and unconditional hedge ratios. The unconditional version of hedge ratios outper-

forms the conditional models. Madaleno & Pinho (2008) and Zanotti et al. (2010) compare

different correlation models for the spot and futures prices to compute optimal hedge ratios

on European electricity markets. Liu et al. (2010) use copulas to represent the relationship

between the spot and futures prices. Torro (2012) studies the case of early dismantlement of

the hedging portfolio in the Nord Pool market.

Alternative dynamic hedging schemes are discussed in Eydeland & Wolyniec (2003). For

example, there is delta hedging, a method which consists in building a portfolio with value

variations that mimic those of the hedged contingent claim. Eydeland & Wolyniec (2003)

apply delta hedging to achieve perfect replication when a LSE hedges the price of a fixed

amount of load to be served. When perfect replication cannot be achieved, they propose
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local mean-variance optimization to tackle hedging problems.

Local procedures are attractive because they are simple to implement. Local risk minimi-

zation procedures are myopic however as they do not necessarily minimize the risk through

the entire period of exposure (see Rémillard 2013). Global hedging procedures remedy this

drawback by taking into account the outcomes of all future time periods at any point in

time ; they evaluate the adequacy of a hedge by looking at the terminal hedging error, i.e. at

the maturity of the hedged contingent claim. The following is a non-exhaustive list of papers

which study this methodology in general financial contexts. Schweizer (1995) minimizes the

global quadratic hedging error in a discrete-time framework for European-type securities.

Rémillard et al. (2010) extend his work for American-type derivatives. Föllmer & Leukert

(1999) minimize the probability of incurring a hedging shortfall. Föllmer & Leukert (2000)

minimize an expected function of the terminal hedging error. To the authors’ best know-

ledge, developing global dynamic hedging procedures in electricity markets has not yet been

attempted.

The current paper therefore seeks to fill the gap in the literature concerning global hedging

procedures for electricity markets and offers three main contributions. First, a dynamic global

hedging methodology is developed for a retailer trying to hedge itself with futures contracts

by considering both its price and load risks. Obtaining global solutions to hedging problems

is non-trivial and it often requires advanced numerical schemes. This could explain why this

avenue has not yet been explored in electricity markets. We not only show that the approach

is feasible, but present the first dynamic hedging strategy to account for load risk, and one of

very few to account for transaction costs. Second, as our global hedging algorithm uses weekly

futures, we develop the required weekly load model. We also present a statistical model for

the joint dynamics of the spot and futures prices. A statistical approach using multivariate

time series analysis is applied. Third, an empirical study which compares the performance

of different hedging procedures on the Nord Pool market is presented.

The non-quadratic global hedging procedure developed outperforms the benchmarks in

reducing the risk borne by the retailers. Hedging backtests show a significant reduction in

several risk metrics applied to the weekly hedging error. Considering the case of a retailer

serving 1% of the Nord Pool load, the TVaR1% is reduced from 172,900 Euros to 161,900

Euros if our load-basis model is used in the delta hedging procedure (see Table 4.7). When

our global hedging procedure is applied, the TVaR1% is further shrunk by a considerable
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amount to 133,100 Euros.

The remainder of the paper is organized as follows. Section 4.2 presents the price and

volumetric risks faced by retailers and describes the hedging procedure. Section 4.3 describes

the data used for modeling purposes and presents the models for the electricity load, the

spot price and futures prices. Section 4.4 describes the numerical experiments which test the

efficacy of the hedging methodology. Section 4.5 presents concluding remarks. Some technical

results, estimation details and goodness-of-fit tests are relegated to Appendices.

4.2 Risk exposure and hedging for retailers

In this section, we describe the risks faced by a retailer and the hedging procedure it can

undertake to hedge its exposure with futures contracts.

4.2.1 Risks faced by retailers

Consider the case of a retailer forced to supply a quantity of electricity at a fixed price

to end-users while buying it at a variable price on the market. Market conditions for a

retailer might differ across different electricity markets and we look specifically at the Nordic

electricity market Nord Pool. This market is chosen since it is one of the first to operate in a

liberalized setup, and the mature markets provide some historical data less likely to include

structural changes.

Assume all electricity purchases occur on the day-ahead market. In this market, the spot

price is set on an hourly basis by balancing supply and demand. Suppose the retailer needs

to serve the load Lt,d,h during hour h of day d in week t, while St,d,h is the Nord Pool system

spot price for the corresponding period. The total load to be served during week t is thus

Lt =
7∑
d=1

24∑
h=1

Lt,d,h. (4.1)

The mean price paid by a retailer for the purchase of each unit of load during week t is

S∗t =

∑7
d=1

∑24
h=1 Lt,d,hSt,d,h
Lt

, (4.2)

the load-weighted average of all hourly prices during the week. Assume the retailer charges

a constant price Π for each unit of load. If no hedging is implemented, the retailer cash flow
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for weekly operations during week t is

Lt(Π− S∗t ). (4.3)

A retailer thus faces revenue uncertainty due to (i) price risk caused by the variability of the

spot price St,d,h, and subsequently of S∗t , and (ii) volumetric risk caused by randomness in

the total volume Lt of electricity to be served.

4.2.2 Electricity futures contracts

A retailer wishes to hedge its exposure to both price and volumetric risks with derivatives

on the electricity markets. Different derivatives are available to hedge those risks : forward

and futures contracts, options, weather derivatives and interruptible contracts. With the

exception of forward and futures contracts, most derivatives on the Nord Pool market are

traded over-the-counter, are illiquid, and are not well-suited for dynamic hedging methodo-

logy as they may be unavailable when they are required. More liquid futures and forwards

are better suited for dynamic hedging procedures.

For the Nord Pool market, futures and forward contracts are traded on the NASDAQ

OMX. Futures contracts provide hedging for shorter horizons (daily and weekly), while for-

wards cover longer periods (months, quarters and years). The current paper focuses on

short-term hedging. Tables 4.1 and 4.2 present the percentage of trading days on which non-

null trading volumes occur for weekly and daily base load futures. 5 Liquidity is much higher

on weekly contracts with 1−, 2− and 3−week maturities. These derivatives will be used in

this paper.

Table 4.1 – Liquidity of weekly futures

Weeks-to-maturity 1 2 3 4 5

Percentage 96% 90% 61% 29% 16%

Percentage of trading days between January 1st, 2007 and December 31th, 2012 with non-null trading volume

of Nord Pool weekly futures on NASDAQ OMX.

Futures on Nord Pool are cash-settled ; no exchange of the underlying commodity occurs.

The underlying asset ST of a weekly futures maturing at week T is the arithmetic average

5. Base load means that the contracts deliver electricity during all hours of the day, in opposition to peak

load contracts that only deliver electricity between 8 :00 a.m. and 8 :00 p.m.
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Table 4.2 – Liquidity of daily futures

Days-to-maturity 1 2 3 4 5

Percentage 64% 16% 8.8% 2.6% 2.0%

Percentage of trading days between January 1st, 2007 and December 31th, 2012 with non-null trading volume

of Nord Pool daily futures on NASDAQ OMX.

of the Nord Pool system spot price observed during week T :

St =
1

7× 24

7∑
d=1

24∑
h=1

St,d,h, (4.4)

where a week starts on Monday and ends on Sunday. Contracts are traded on NASDAQ

OMX during weekdays until the Friday of week T − 1. The futures is thus not traded during

its maturity week.

There is a slight mismatch between the average weekly electricity price paid by the

retailer, given by (4.2), and the underlying asset of weekly futures given by (4.4). The basis

ratio

ηt =
S∗t
St

(4.5)

links the former and the latter. 6 The basis ratio represents an additional source of risk which

must be taken into account by the hedging procedure.

Futures contracts are marked-to-market. This means that (i) their cash flows do not occur

strictly at maturity (in opposition to forward contracts) and (ii) the variation of their quote

(referred to as the futures price) is reflected by the continuous transfer of funds between

the margin accounts of the long and short position holders. Using futures contracts implies

having to pay transaction fees and the cost of these will be accounted for in our methods. 7

6. As shown in Appendix 4.6, the basis ratio η usually evolves between 1 and 1.05. This is explained by

a higher spot price during peak hours when electricity consumption is more important.
7. Transaction fees are described at http ://www.nasdaqomx.com/commodities/Marketaccess/feelist/.

Fixed annual fees for membership to the Exchange are disregarded in the current study. Variable fees which

are proportional to the volume of futures transactions include Exchange fees (for trading positions) and

Clearing fees (for clearing positions). Exchange fees are 0.004 EUR/MWh. Clearing fees depend on the

volume of futures cleared in the most recent quarter, but they range from 0.0035 EUR/MWh to 0.0085

EUR/MWh. For illustrative purposes, a 0.004 EUR/MWh rate is used. Combining Exchange and Clearing

fees, entering or clearing any long or short position is therefore approximated to cost 0.004 EUR/MWh.
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4.2.3 Hedging procedure

Throughout this section, the retailer hedges its week T exposure. A self-financing invest-

ment portfolio containing a risk-free asset 8 and futures with maturity week T is set up at

t0 and rebalanced weekly until T − 1. Since futures are traded during weekdays only, reba-

lancing occurs on Fridays at closing time. The closing price on Friday of week t (or Sunday

if t = T ) of the risk-free asset is Bt = exp(rt), and the closing price of the futures is Ft,T ,

t = t0, . . . , T−1. Since futures are cash-settled, the last futures quote on Sunday of week T is

automatically set by the clearing house to FT,T = ST . The hedging procedure is summarized

by the following algorithm :

At week t0. An initial amount of capital Vt0 is allocated for hedging purposes. The retailer

enters into θt0+1 long positions on the futures contract. A portionMt0 of the initial capital

is placed in the margin account required by the clearing house. Another part is used to pay

transaction fees Ct0 . The remainder Bt0 is invested in the risk-free asset. If Vt0 is insufficient

to cover the margin call and fees, the money is borrowed. Since entering positions on futures

contracts involves no immediate cash flows besides the amount placed in the margin,

Vt0 =Mt0 + Bt0 + Ct0 .

CapitalMt0 +Bt0 = Vt0−Ct0 (both inside and outside the margin) is invested (or borrowed)

at the risk-free rate r. 9

At week t+ 1, t ∈ {t0, . . . , T − 2}. The total capital available for hedging (the sum of the

amount placed in the margin account and in the risk-free asset) at week t before transaction

costs are paid is Vt. This capital accrues interest up to week t+ 1 and is now worth

(Vt − Ct)
Bt+1

Bt

.

The futures margin account of the retailer is adjusted from marking-to-market, 10 the amount

θt+1(Ft+1,T − Ft,T ) is deposited (withdrawn if negative) in the margin account. The total

8. Since this paper focuses on short-term hedging, a constant weekly risk-free rate r is assumed.
9. It is assumed that the retailer can always borrow capital at the risk-free rate. Such an assumption has

a limited impact ; hedging errors are very insensitive to interest rates because of the short term horizon of

the hedge.
10. To simplify calculations, it is assumed that the futures are marked-to-market weekly. On NASDAQ

OMX, marking-to-market is in reality performed daily. However, because maturities are short-term (and

therefore accumulation of interest is small), such an approximation has only a minor impact.
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capital available for hedging at week t+ 1 is therefore

Vt+1 = (Vt − Ct)
Bt+1

Bt

+ θt+1(Ft+1,T − Ft,T ).

The retailer modifies its portfolio to hold θt+2 long positions on the futures contract. Tran-

sactions fees Ct+1 are paid. A margin call might be made, but it does not affect the total

amount Vt+1 − Ct+1 invested at the risk-free rate.

At week T . The terminal hedging capital is

VT = (VT−1 − CT−1)
BT

BT−1

+ θT (ST − FT−1,T )− CT ,

where CT are clearing fees. Transaction costs are computed following CT = 0.004|θT | (final

clearing costs) and Ct = 0.004|θt+1 − θt| if t < T with θt0 = 0.

The retailer is at risk of bearing losses when the price it pays to purchase electricity

is higher than the price it charges to its customers. To avoid this situation, the hedging

algorithm proposed in this paper aims at minimizing risks related to electricity procurement

costs incurred by the retailer. Having reliable procurement costs stabilizes the retailer’s

profitability. 11 Weekly futures, which are used by the retailer to hedge its exposure, allow

locking in the payoff of the variable contingent claim ST to Ft0,T (see Appendix 4.7). 12

However, the retailer has short positions on S∗T (instead of ST ) because it needs to buy

electricity at that price. Since S∗T = ηTST , the electricity procurement target price for each

unit of load bought by the retailer during week T is set to (S∗T/ST )Ft0,T = ηTFt0,T . The

retailer’s cash flow at time T , given by Equation (4.3), can be separated into an unhedged cash

flow LT (Π−ηTFt0,T ), the baseline profit margin, and a more risky component LT (ST−Ft0,T ),

the procurement costs risk :

LT (Π− S∗T ) = LT (Π− ηTFt0,T )− LT (S∗T − ηTFt0,T )

= LT (Π− ηTFt0,T )− LT (ST − Ft0,T )

where the load-basis LT is the product of the load and the basis factor :

Lt = ηtLt. (4.6)

11. Hedging procurement costs does not remove all risks ; profits are still proportional to the load. Adequate

hedging of procurement costs will however prevent extreme losses.
12. This is true if transaction fees are disregarded.
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The procurement costs risk can cause large losses when the price ST peaks way above the

futures price Ft0,T . The hedging strategy aims at offsetting the variation of the quantity

ΨT = LT (ST − Ft0,T ) (4.7)

while the retailer determines the fixed price Π to extract an expected but uncertain profit.

Considering the load-basis L (instead of the load L and the basis factor η separately) is

convenient since only a single model is required for the former quantity (instead of two

models for the latter).

Two main reasons motivate the decision to hedge procurement cost risk instead of the

full cash flow of the retailer given by Equation (4.3). The first one is the design of futures

contracts which allow locking the spot price ST to the initial futures price Ft0,T . It is thus

more natural for futures contracts to hedge the procurement cost term in (4.7) which is based

on the difference between those two quantities than the full cash flow which is driven by the

retail selling price Π. The second reason is that the selling price Π is constant through the

year whereas the spot price S∗T exhibits seasonality. Hedging the full cash flow would imply

that the target would be in average larger (smaller) than what is expected to be gained from

the futures portfolio at times of the year when Ft0,T is larger (smaller) than Π. Hedging the

procurement cost risk term solves this problem since the initial futures price Ft0,T should

reflect the seasonal trend of the spot price S∗T .

The retailer would like the terminal value of the hedging portfolio VT to be bigger than

the target ΨT (or at least as close as possible to it) to offset the procurement costs risk. The

global hedging problem that must be solved is thus

min
(θt0+1,...,θT )∈Θ

E [G(ΨT − VT )|Gt0 ] , (4.8)

where VT = VT (θt0+1, . . . , θT ), G = {Gt|t = t0, ..., T} is the filtration that defines the in-

formation available to the retailer, 13 Θ is the set of all trading strategies available to the

retailer 14 and G is a penalty function which weights and sanctions losses. Some integrability

and regularity conditions might need to be satisfied to ensure that the solution exists.

13. The retailer is assumed to consider information G relative to past and contemporaneous load-basis,

spot prices and futures prices : Gt = σ{Lu, Su, Fu,u+j
∣∣0 ≤ u ≤ t, j = 1, 2, 3}.

14. In the current paper, this consists of all G−predictable trading strategies, meaning that θt+1 is

Gt−measurable for all t.
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There are numerous possibilities for the penalty function G. A standard choice in the

literature is the quadratic function, G(x) = x2, since it conveniently leads to semi-analytical

formulas [36] and therefore enhances the tractability and the computational speed of the

solution. This approach has two principal caveats : (i) the semi-analytical formulas do not

take transaction fees into account ; (ii) the quadratic penalty is symmetric, such that gains

and losses are equally penalized. 15 To remedy the problem of penalized gains, we also consider

a semi-quadratic penalty 16

G(x) = x2I{x>0}. (4.9)

A retailer using this penalty tries to remove losses as much as possible and disregards gains.

A drawback of using this penalty is that it leads to a substantial increase in the numerical

burden. The computations are however still feasible for the current framework. The com-

putation of solutions for problem (4.8) with penalty (4.9) is discussed in Appendix 4.8. A

simulation-based algorithm is proposed to solve the Bellman equation. This algorithm can

accommodate a wide class of penalty functions.

4.3 Models for the state variables

To compute the optimal trading strategy, the dynamics of the state variables Lt and Ft,T ,

the key components in the hedging problem, must be modeled. The proposed models are

constructed from historical data.

4.3.1 Load-basis

We assume that the load the retailer must supply is proportional to the entire system

load on the Nord Pool spot market. 17 This proportionality assumption, which is justified

by a high correlation between firm load and market load, is also found in [8] for the Texas

electricity market.

15. Ni et al. (2012) add a linear term to the quadratic penalty which makes it asymmetric.
16. This penalty is also considered in a hedging problem by François et al. (2012).
17. If the internal load data of the retailer do not support this assumption, the load model should be

reworked. For differences between the load consumption patterns across the four countries that are part of

the Nord Pool market, see Huovila (2003).
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Load forecasting has been studied in the literature. Weron (2006) surveys different load

forecasting methods and divides them in two classes : artificial intelligence models (neural

networks, fuzzy logic, support vector machines) and statistical models (regression models,

exponential smoothing, Box-Jenkins type time series models). Load forecasting methods are

split into three different segments : short-term load forecasting (STLF), medium-term load

forecasting (MTLF) and long-term load forecasting (LTLF). STLF is interested in hourly

forecasts up to one week ahead, MTLF considers forecasts from one week to one year ahead

and LTLF considers even longer horizons. The vast majority of the load forecasting litera-

ture considers STLF (Hahn et al., 2009), but MTLF has attracted more attention recently.

Gonzalez et al. (2008) use a combination of neural networks and Fourier series to represent

respectively the trend and the cyclical fluctuation of the monthly load in the Spanish mar-

ket. In their paper, Fourier series outperform neural networks in their predictive ability for

the cyclical load fluctuations. Abdel-Aal (2008) compares the use of neural and abductive

networks to forecast the monthly load supplied by a power utility based in Seattle. Abdel-

Aal & Al-Garni (1997) compare the use of univariate ARIMA process, abductive networks

and multivariate regression models incorporating demographic, economic and weather rela-

ted covariates to forecast the monthly domestic energy consumption in the Eastern province

of Saudi Arabia. ARIMA processes outperformed their competitors in their study. Barakat

& Al-Qasem(1998) propose a regression model with time and temperature as covariates to

forecast the weekly load on the Riyadh system (Saudi Arabia).

To the authors’ best knowledge, no MTLF has been attempted in the literature for the

weekly load in Nord Pool. A parametric statistical model for load dynamics on Nord Pool,

that supports our hedging methodology, is now presented.

Load-basis data

Time series of hourly load (in MegaWatt-hours, MWh) and hourly day-ahead spot price

(in Euros) on Nord Pool for the January 1st, 2007 to July 29th, 2012 period are obtained

through the Nord Pool FTP server. 18 The hourly load is aggregated as shown in (4.1) and

yields 291 weekly load observations. The resulting load series L and basis ratio series η

defined by Equation (4.5) are then combined to obtain the load-basis series L in (4.6).

18. Nord Pool uses the expression “turnover" to designate the load.
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The most salient feature of the load time series is a seasonal pattern, both in the mean

and in the variance. Autocorrelation between consecutive load departures from its trend is

also present. The model chosen for the dynamics of the load-basis L (observed in Figure 1)

is thus :

Lt − g(t) = γ(Lt−1 − g(t− 1)) +
√
v(t)ε

(L)
t (4.10)

g(t) = β0 +
P∑
j=1

βjC
(sin,j)
t +

P∑
j=1

βj+PC
(cos,j)
t (4.11)

log v(t) = α0 +

Q∑
j=1

αjC
(sin,j)
t +

Q∑
j=1

αj+QC
(cos,j)
t (4.12)

where ε(L) is a strong standardized Gaussian white noise. The g function represents the

seasonal trend of the load-basis level and its fitted value is represented by the dashed line

in Figure 1. The v function characterizes the trend in the variance of seasonally corrected

load-basis observations and the square root of its fitted value is represented by the dashed

line in Figure 4.2. Terms of a Fourier expansion

C
(sin,j)
t = sin

(
3π

2
+

2πjt

365.25/7

)
, C

(cos,j)
t = cos

(
3π

2
+

2πjt

365.25/7

)
are used to capture yearly cycles (see also Gonzalez et al., 2008). The γ parameter in Equa-

tion (4.10) represents the autocorrelation in seasonally corrected load-basis observations. To

preserve the Markov property, only one lag is considered. 19 γ, β0, . . . , β2P , α0, . . . , α2Q are

the parameters to be estimated.

Estimation of model parameters

The model estimation is performed in two steps 20. The first consists in estimating γ

and β0, . . . , β2P by quasi-maximum likelihood under the assumption that v(t) is constant.

The optimal number P = 3 of Fourier terms in the mean trend is chosen using the cross-

validation procedure described in Appendix 4.9.1. Table 4.3 gives estimated parameters

and their standard errors for this step. Figure 1 shows the load series L, the load-basis

series L and the estimated load-basis seasonality trend g. Even if the variance v is presumed

19. Otherwise each additional lag would have to be included as a state variable.
20. Results in Appendix 4.9.2 show that the fitted model is good and a more numerically challenging

single-step estimation was thus not attempted.

95



constant during the estimation of the trend parameters 21, the overall trend seems reasonably

captured. The corrected load is much larger in winter than in summer ; this is expected given

the winter heating requirements for Scandinavian countries. The autocorrelation parameter

γ is estimated at 0.68, this large value indicating a high persistence in load deviations from

the trend.

Table 4.3 – Load-basis seasonality trend parameters

Parameter γ β0×10−6 β1×10−6 β2×10−6 β3×10−6 β4×10−6 β5×10−6 β6×10−6

Estimated Value 0.68 5.70 −1.13 −0.15 0.06 0.24 0.10 0.11

Standard Error 0.04 0.04 0.06 0.05 0.04 0.06 0.05 0.04

Estimated parameters and their standard error for the load-basis seasonality trend g defined by Equation

(4.11). Observations between January 1st, 2007 and July 29th, 2012. Estimated parameter variance is

obtained through the inverse of the observed Fisher information matrix.

Figure 4.1 – Load-basis seasonality trend curves

Observed total weekly load on the Nord Pool market as defined by (4.1), corresponding load-basis L and

fitted seasonality trend g(t). Observations between January 1st, 2007 and July 29th, 2012. Load data before

2007 are also included to show the shift in the overall system load level and justify the use of data starting

from January 2007.

Once the trend parameters are estimated, proxy values for
√
v(t)ε

(L)
t , denoted

√
v̂(t)ε̂

(L)
t ,

can be computed using Equation (4.10). Those proxies serve as input in the second step which

consists in estimating α0, . . . , α2Q by maximum likelihood (ML). The optimal number Q = 2

21. At this step, the constant estimated volatility is
√
v̂ = 2.264× 105.
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of Fourier terms in the variance trend is selected through the cross-validation procedure

described in Appendix 4.9.1. Table 4.4 presents the estimated parameters for the variance

model (4.12). Figure 4.2 shows the estimated standard deviation trend
√
v̂t (dashed curve)

and the absolute value of the
√
v̂(t)ε̂

(L)
t proxies (full curve). The peak in volatility occurs in

the beginning of winter, while the lowest volatility is observed during the end of the summer.

Goodness-of-fit tests that confirm the adequacy of the load model are found in Appendix

4.9.2.

Table 4.4 – Load-basis variance trend
Parameter α0 α1 α2 α3 α4

Estimated Value 24.40 −0.72 −0.38 0.49 −0.32

Standard Error 0.08 0.11 0.11 0.11 0.12

Estimated parameters and their standard error for the load-basis variance trend v defined by Equation (4.12).

Observations between January 1st, 2007 and July 29th, 2012. Estimated parameter variance is obtained

through the inverse of the observed Fisher information matrix.

Figure 4.2 – Load-basis standard deviation trend curves

Realized absolute load-basis volatility
√
v̂(t)|ε̂(L)t | and fitted standard deviation trend

√
v̂ as defined by

Equation (4.12). Data between January 1st, 2007 and July 29th, 2012.

Load-basis forecasting from incomplete information

The selection of θt+1, the number of futures shares detained in the portfolio from the

Friday of week t until the Friday of week t+ 1, is based on Lt, the weekly load-basis on week
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t. However Lt is only observed at midnight on Sunday of week t, and not at the closing time

of markets on Friday. What is observed at the latter time is the sum of hourly loads from

the beginning of week t to 4 :00 p.m. on Friday :

L̃t =
4∑
d=1

24∑
h=1

Lt,d,h +
16∑
h=1

Lt,5,h.

When θt+1 is selected, the value of Lt must thus be forecast using L̃t. The accuracy of several

forecasting models were compared through a cross-validation test and the model

L̂t = L̃t ×

(
`+ c

q∑
j=1

Lt−j
L̃t−j

)
(4.13)

produced the lowest out-of-sample forecasting RMSE. The out-of-sample mean absolute per-

centage error (MAPE) is 1.12%. 22 The parameter ` drives the long-term average of the ratio

Lt/L̃t, while the autoregressive coefficient c characterizes the dependence of the current ra-

tio on previous ratios. The estimated parameters obtained when re-estimating with the full

dataset are ˆ̀= 0.716, ĉ = 0.171 and q̂ = 3. The long-term average of the Lt/L̃t ratio is given

by ˆ̀/(1− q̂ĉ) = 1.47. 23

4.3.2 Futures and spot price

In this section, time series of futures prices are modeled. Modeling the relation between

the spot and futures prices in the context of electricity markets is complicated by the fact

that electricity is not storable. This prevents the use of the usual cash-and-carry scheme to

price futures contracts.

Solving problem (4.8) requires a model that completely specifies the stochastic dynamics

of futures prices. An important strand of the literature studies the risk premium on elec-

tricity futures contracts. 24 Although these papers provide relevant information concerning

the relation between the spot and futures prices, their models do not directly fit our needs

22. The out-of-sample MAPE obtained by using the naive benchmark L̂t := `L̃t is 1.21%. Obtaining good

load forecasts is crucial to the success of the hedging procedure and the small improvement of model (4.13)

over the naive method justifies its use.
23. This is consistent with what is expected ; since L and L̃ are respectively approximately the sum of 168

and 112 hourly loads, the long-term average of the ratio should revolve around 168/112 = 1.5.
24. For example, Lucia & Torro (2011) study the behavior of the risk premium on Nord Pool weekly futures

with an ex-post econometric model taking into account hydropower reservoir levels.
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since they do not characterize the futures prices dynamics. Several approaches are however

proposed in the literature for this purpose and they will now be discussed.

Despite the fact that electricity is not storable and not openly traded, some authors

follow the risk-neutral approach commonly used in finance. The dynamics of the spot price

are modeled and a martingale measure is selected to compute futures prices as an expectation

of the discounted cash flows. Benth et al. (2008) use a linear combination of non-Gaussian

Ornstein-Uhlenbeck processes to represent the stochastic variability of the spot. They use

the Esscher transform to compute futures prices. Coulon et al. (2012) propose a structural

factor model encompassing natural gas price and electricity load to characterize spot price

dynamics on the ERCOT electricity market. They use the Girsanov transform to compute

derivatives prices.

Besides the non-storability of electricity, there is another potential pitfall with the risk-

neutral approach to price futures. On the Nord Pool market, a principal component analysis

applied to weekly futures returns shows that the spot price might be driven by factors

different than those driving futures prices Benth et al. (2008). The martingale measure

approach discounting the expected spot price to obtain the futures price might thus be

inappropriate. This result is consistent with the study of Koekebakker & Ollmar(2005) who

uses principal component analysis to propose a multi-factor model for forward returns. They

find that the number of factors necessary to represent the full forward curve is much larger

for electricity futures on the Nord Pool market than for other commodities ; the correlation

between short-term and long-term electricity forward prices is smaller than in other markets.

Benth et al. (2008) also suggest adapting the Heath-Jarrow-Morton framework to elec-

tricity markets. Under such a methodology, the dynamics of forward prices that deliver an

infinitesimal volume of electricity are directly specified. However, futures prices, which are

really swap prices in the context of electricity markets, suffer from severe intractability issues

under this model and we did not retain this approach.

The third method proposed in Benth et al. (2008) is to find a statistical model that

reproduces the dynamics of the observed futures returns. This approach is followed in the

current paper since it better suits our need to fully specify the distribution and the stochastic

dynamics of futures and spot prices of electricity. Furthermore, this approach reproduces

stylized facts.

Daily prices of futures on NASDAQ OMX are provided by Bloomberg. Since futures
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prices vary during the day, closing prices are used.

Our model

For a market participant hedging the cost of electricity at maturity week T , the sequence

of observed futures prices that must be modeled is {FT−j,T |j = 3, 2, 1, 0}. We propose a

multivariate time series model for the joint dynamics of the spot and futures prices. As with

financial assets, futures price returns are modeled (instead of the futures prices) as they are

more likely to be stationary. Futures returns defined by

εt,T = log(Ft,T/Ft−1,T ) (4.14)

are shown in Figure 3 for t = T, T − 1, T − 2.

Figure 4.3 – Futures price returns for different times-to-maturity

Time series for NASDAQ OMX electricity weekly futures returns (on Nord Pool day-ahead spot price) as

defined by (4.14) between January 1st, 2007 and July 29th, 2012. The trivariate time series illustrated

contains 290 observations.

Futures price returns exhibit autocorrelation, volatility clustering and fat tails. These

features suggest a multivariate AR-GARCH process with innovations drawn from a fat-tail

distribution. For the latter, we choose a Normal Inverse Gaussian (NIG) distribution. More

specifically, for i = 0, 1, 2, the trivariate AR(1)-GARCH(1,1) with NIG innovations is

εt,t+i = µi + ai εt−1,t−1+i + σi,tzi,t (4.15)

σ2
i,t+1 = min{ς2, κi + γiσ

2
i,t + ξiσ

2
i,tz

2
i,t} (4.16)

where zt = (z0,t, z1,t, z2,t) has the following properties :
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if s 6= t, zt and zs are independent ;

zi,t are drawn from a standardized 25 NIG(αi, βi) distribution ;

z0,t, z1,t and z2,t are linked by the Gaussian copula.

A bound ζ is used on the volatility to ensure that futures prices are square-integrable. 26 The

ai parameter represents autocorrelation of futures returns while µi adjusts their long-term

expected level. The κi parameter adjusts the long-term level of futures return volatility, the

γi characterizes the persistence in returns volatility, and ξi determines how shocks associated

with current returns affect the current volatility. The NIG parameter αi drives the tail

thickness in the distribution of the futures return while the βi drives its asymmetry.

Model estimation

A two-step procedure is applied. First, the parameters for the three marginal AR(1)-

GARCH(1,1) processes (εt,t+1, εt,t+2 and εt,t+3) are estimated by ML. 27 Plugging the estima-

ted parameters in (4.15)-(4.16) yields proxy values ẑt for zt. Then, the proxies are used to

estimate the parameters of the Gaussian copula. Letting FNIG denote the cdf associated with

the NIG distribution and applying the Rosenblatt (1952) transform to the proxy ẑt yields a

series of approximatively independent uniformly distributed observations

Ut =
(
FNIG(α̂0,β̂0)(ẑ0,t), FNIG(α̂1,β̂1)(ẑ1,t), FNIG(α̂2,β̂2)(ẑ2,t)

)
drawn from the Gaussian copula. ML is used and the closed-form solution is

ρ̂i,j = corr(Φ(−1)(Ui,t),Φ
(−1)(Uj,t)),

where corr is the sample correlation and Φ(−1) is the inverse cdf of a standard Gaussian

variable.
25. A standardized NIG is a NIG distribution with mean 0 and variance 1. Such a distribution only has

two free parameters : α and β. Note that these α and β should not be confused with those used in the

load-basis model in Section 3.1.1.
26. More precisely, the condition

σi,t <
αi − βi

2
a.s. (4.17)

is necessary and sufficient to obtain E
[
e2εt,t+i

]
< ∞. Thus, the volatility bound ς combined with the

additional constraints αi > ς, and βi ∈ (−αi, αi − 2ς] assure (4.17) is satisfied.
27. The proxy for the initial value for the volatility σ̂i,0 is its long-term stationary average. The bound is

set at ς = 0.6 since such a constraint is not numerically binding with the available data.
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Parameter estimates are shown in Tables 4.5 and 4.6. The negative mean parameters µi

indicate the futures market is in contango. The GARCH parameters γi and ξi are highly

significant, confirming the presence of volatility clustering in futures returns. The autocor-

relation parameters ai are also all significant and positive, indicating that futures returns

are partially predictable. The αi parameters are all low (smaller than 2) so the kurtosis of

futures returns is more pronounced than in a Gaussian distribution (which corresponds to

an infinite α). The correlation parameters of the Gaussian copula are all higher than 0.65,

indicating a somewhat high correlation between futures returns across the time-to-maturity

dimension.

Goodness-of-fit tests that confirm the adequacy of the futures return model are found in

Appendix 4.9.3. Futures returns and load-basis innovations are assumed to be independent.

Statistical tests in Appendix 4.9.4 validate this assumption.

Table 4.5 – Futures return parameters

Parameter i = 1 i = 2 i = 3

µi × 102 −0.722 (0.001) −1.566 (0.003) −1.265 (0.002)

ai 0.215 (0.005) 0.143 (0.005) 0.073 (0.004)

κi × 102 0.177 (3×10−5) 0.124 (3×10−5) 0.106 (2×10−5)

γi 0.282 (0.018) 0.577 (0.008) 0.603 (0.010)

ξi 0.500 (0.027) 0.373 (0.009) 0.340 (0.010)

αi 1.097 (0.009) 1.270 (0.089) 1.236 (0.022)

βi −0.108 (0.001) −0.056 (0.099) 0.009 (0.006)

Estimated parameters (standard error) for futures returns model defined in (4.15)-(4.16). Observations bet-

ween January 1st, 2007 and July 29th, 2012 for futures with i = 1, 2 and 3 weeks to maturity.

4.4 Performance assessment

We carry out numerical experiments to assess the performance of the hedging strategy

given by solutions of problem (4.8). We propose two different hedging procedures : (i) the

hedging methodology which solves problem (4.8) with G(x) = x2 is referred to as quadratic

dynamic global hedging (QDGH) ; (ii) the methodology solving that same problem but wi-

thout penalizing the gains, i.e. using (4.9), is called semi-quadratic dynamic global hedging
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Table 4.6 – Futures return copula parameters

Parameter ρ0,1 ρ0,2 ρ1,2

Estimate (Standard Error) 0.76 (0.03) 0.67 (0.04) 0.88 (0.01)

Estimated parameters (standard errors) for the Gaussian copula linking futures returns. ρi,j links returns

on futures with respectively i+ 1 and j + 1 weeks to maturity. Observations between January 1st, 2007 and

July 29th, 2012.

(SQDGH). The benchmarks are described in Section 4.4.1 while the backtests are explained

in Section 4.4.2.

4.4.1 Benchmarks

Delta Hedging.

If the load to be served by the retailer is known with certainty and no transaction fees

exist, the delta hedging strategy proposed by Eydeland & Wolyniec (2003) completely elimi-

nates the price risk borne by the retailer by locking in the spot price to Ft0,T (see Appendix

4.7). This strategy is adapted to the case of a stochastic load by hedging the expected

load-basis, i.e. the retailer enters into

θt+1 =
Bt+1

BT

E [LT |Gt] (4.18)

long positions in the futures contract at time t to cover its exposure at time T . Improved

delta hedging (IDH) uses the load-basis model (4.10)-(4.12) to compute E [LT |Gt] in (4.18).

To quantify the impact of using the (4.10)-(4.12) load-basis model in the hedging algo-

rithm, alternative load-basis models are also proposed to compute E [LT |Gt]. For example,

one may state that a good prediction of the expected load-basis in a near future is the last

observed load-basis. This points to the first alternative, the naive delta hedging (NDH),

which uses the naive prediction model

E[L(NDH)
t+1 |Gt] = L(NDH)

t .

The second alternative, referred to as delta hedging (DH), uses a load-basis model inspired

from [41] where the latent variable found in their model is removed for simplicity. Their
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model specifies the load dynamics, but is applied here to the load-basis. More specifically,

the load-basis model for DH is

L(DH)
t+1 = L(DH)

t + γ(DH)(L̄mt+1 − L
(DH)
t ) + Et+1

where E is a Gaussian white noise, L̄m is the mean value of the load-basis during the mth

month of the year (m = 1, . . . , 12) in the estimation set, mt+1 is the month associated with

the week t+ 1 and γ(DH) is estimated by ML. We find γ̂(DH) = 0.3477.

Local Minimal Variance Hedging (LMVH).

The objective of this strategy, which is based on the Ederington (1979) scheme, is to

construct a portfolio of futures whose variation mimics the variation of the spot price as

closely as possible for the current period. More precisely, for each unit of load to serve, the

retailer would detain ϑt+1 units of futures at time t, where ϑt+1 minimizes

Var [(St+1 − St)− ϑt+1(Ft+1,T − Ft,T )|Gt] .

This yields the solution ϑt+1 = Cov [St+1, Ft+1,T |Gt]/Var [Ft+1,T |Gt]. To adapt this scheme to

the case of stochastic load, the retailer hedges its expected load-basis by detaining at time t,

θ
(LMVH)
t+1 = E [LT |Gt]

Cov [St+1, Ft+1,T |Gt]
Var [Ft+1,T |Gt]

(4.19)

long positions in the futures contract to cover its exposure at time T . Many different models

are used in the literature to compute the conditional variance and covariance in (4.19). We

compute these quantities with the futures model (4.15) for consistency and refer to the

approach as local minimal variance hedging (LMVH).

Static Hedging.

Since many papers are devoted to static hedging procedures, we include them in our

study. To apply static hedging (SH), the retailer identifies the solution to problem (4.8)

under the constraint θt0+1 = . . . = θT . We use the semi-quadratic penalty (4.9) and identify

the optimal trading strategy through simulation.
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4.4.2 Backtests

In all tests, the initial value of the portfolio Vt0 is set to 0 and the annualized continuously

compounded risk free rate is r = 0.0193 28. The case of a retailer serving 1% of the Nord

Pool load is considered.

In-sample backtest

In this experiment, our global hedging and the benchmarks are applied to historical data

during the 287 weeks over the January 29th, 2007 to July 23th, 2012 period. Hedging errors

ΨT − VT are recorded at the end of week T and the performance of the various approaches

are compared through the following metrics :

RMSE =

√√√√ 1

287

287∑
T=1

(ΨT − VT )2, (4.20)

Semi-RMSE =

√√√√ 1

287

287∑
T=1

(
(ΨT − VT )I{ΨT>VT }

)2
, (4.21)

TVaRα =

∑287
T=1(ΨT − VT )I{ΨT−VT≥q(1−α)}∑287

T=1 I{ΨT−VT≥q(1−α)}
. (4.22)

where VaRα = q(1−α) is the quantile of level 1 − α of hedging errors ΨT − VT . Results are

reported in Table 4.7.

The main result is that the semi-quadratic SQDGH outperforms all other methods in

terms of risk reduction ; it reduces the semi-RMSE, the TVaR5% and the TVaR1% by 2,420

Euros, 9,340 Euros and 28,800 Euros , respectively (i.e. by 9.3%, 9.4% and 17.8% in

relative measurement), with respect to IDH, the best benchmark. Those improvements can be

attributed to using global hedging procedures instead of delta hedging since both approaches

share the same load model. To put these numbers in context, the mean weekly procurement

costs of electricity (the average of LTST for the January 2007 to August 2012 period) for

the considered retailer is 2.35M Euros. Von der Fehr & Hansen (2010) identify a retail price

mark-up ranging between 7.2% and 13% over the wholesale price for fixed-price contracts

in Norway. Using a 10% mark-up for ballpark calculations, this leaves the retailer with an

average weekly margin of 235, 000 Euros to cover expenses and profit ; average profits will be

28. The average overnight EURO LIBOR rate between January 1st, 2007 and July 29th, 2012.
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Table 4.7 – In-sample backtest results

Model SQDGH QDGH IDH DH NDH STAH LMVH NOH

Mean 6.107 7.641 7.696 8.176 7.069 8.240 −18.95 −70.73

RMSE 26.20 27.65 27.36 31.37 35.03 28.05 274.8 474.1

Semi-RMSE 23.68 26.30 26.10 29.75 32.15 26.99 208.4 319.5

VaR5% 48.97 52.41 54.53 60.56 73.85 52.93 414.0 688.7

VaR1% 115.4 130.3 129.2 142.7 153.5 146.9 1206 1471

TVaR5% 89.97 100.3 99.31 115.3 121.0 103.5 784.5 1201

TVaR1% 133.1 163.1 161.9 172.9 180.9 159.2 1273 1831

Hedging error risk metrics for the in-sample backtest (in 1000 Euros). Semi-quadratic dynamic global

hedging (SQDGH), quadratic dynamic global hedging (QDGH), Delta Hedging (DH), Improved Delta

Hedging (IDH), Naive Delta Hedging (NDH), Static Hedging (STAH), Local Minimal Variance Hedging

(LMVH) and No hedging (NOH), i.e. θ(NOH)
t = 0 for all t.

a fraction of that amount. SQDGH reduces the 1% worst-scenarios average loss with respect

to IDH by 28, 800 Euros, a substantial fraction of average profits.

Note that IDH benefits from our load-basis model (4.10)-(4.12). The added value of the

latter model is isolated by comparing IDH with DH and NDH. The TVaR1% is reduced from

180, 900 Euros for the NDH to 172, 900 Euros for the DH, and further reduced to 161, 900

Euros for the IDH. This illustrates the importance of having an accurate load-basis model

and the benefits provided by the model (4.10)-(4.12) in terms of risk reduction.

The combined reduction in TVaR1% due to methodology presented in this paper obtained

by comparing SQDGH and NDH is 47, 800 Euros, with a combined reduction in semi-RMSE

of 8, 470 Euros.

It is also interesting that the mean hedging error is lower for SQDGH than for all other

models except LVMH and NOH. This indicates the risk reduction yielded by the SQDGH

method is not obtained at the expense of a lesser profitability. The LMVH and NOH methods

are the two most profitable on average, but they yield extremely poor results in terms of risk.

The poor performance of the LMVH method is explained by positions in the futures that are

significantly too low. Indeed, since the cash-and-carry relationship of futures price and the

spot price does not hold in this market, the correlation between spot price and futures price
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variations are much lower than in other markets. This reduces the θ(LMVH) position and

produces under-hedging. Because the Nord Pool electricity futures market is in contango, 29

under-hedging produces higher average profits than full hedging.

In terms of semi-RMSE, STAH underperforms IDH, QDGH and SQDGH, showing the

benefits of dynamic hedging over a static procedure.

Out-of-sample backtest

This experiment is a rolling-window out-of-sample test. This replicates more realistic

application conditions where future observations cannot be used to estimate state variable

models. The three-week hedging procedure is applied weekly between December 28, 2009 and

July 23, 2012. For each iteration of the test (an iteration corresponds to the starting point of

the hedging procedure), all load and futures price models are estimated with the historical

data contained in the three previous years (the estimation set). The hedging algorithm is

then applied out-of-sample on the three weeks following the estimation set, and the terminal

hedging error is recorded. There are 132 iterations in total. Descriptive statistics and risk

metrics (4.20)-(4.22) applied to hedging errors for the out-of-sample backtest are given Table

4.8.

Once again, SQDGH outperforms all the benchmarks, reducing the Semi-RMSE by 7.0%,

the TVaR5% by 9.6% and the TVaR1% by 20.0% with respect to the best competitors (res-

pectively IDH, IDH and STAH). The SQDGH is therefore the best hedging method among

all the proposed methods in both the in-sample and the out-of-sample backtests.

4.5 Conclusion

A dynamic global hedging methodology involving futures contracts is developed to allow

retailers to cover their exposure to price and load risk. Global hedging procedures have

received little or no attention in the electricity markets literature because they often yield

solutions which are computationally more complex than their local counterparts. We show

that the approach is not only feasible but easily allows us to account for load uncertainty,

basis risk and transaction costs when seeking the optimal trading strategy.

29. The average 3-weeks futures price is 7.7% higher than the arithmetic average spot price for the January

2007 to July 2012 period.
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Table 4.8 – Out-of-sample backtest results

Model SQDGH QDGH IDH DH NDH STAH LMVH NOH

Mean 13.12 13.88 13.68 14.82 11.29 15.22 −0.608 −59.94

RMSE 34.02 35.64 35.15 42.04 42.64 37.45 347.5 585.5

Semi-RMSE 31.79 34.62 34.19 40.10 40.15 36.52 275.4 409.0

VaR5% 82.94 88.76 92.51 104.7 97.51 103.9 678.7 907.9

VaR1% 113.9 121.7 121.5 150.7 155.5 119.9 1208 1633

TVaR5% 105.1 118.9 116.3 137.0 134.9 121.4 1040 1483

TVaR1% 119.0 149.1 150.0 166.1 168.8 148.7 1311 2005

Hedging error risk metrics for the out-of-sample backtest (in 1000 Euros). Semi-quadratic dynamic global

hedging (SQDGH), quadratic dynamic global hedging (QDGH), Delta Hedging (DH), Improved Delta

Hedging (IDH), Naive Delta Hedging (NDH), Static Hedging (STAH), Local Minimal Variance Hedging

(LMVH) and No hedging (NOH), i.e. θ(NOH)
t = 0 for all t.

Statistical models were proposed for the load to be served by the retailer, the electricity

spot price and futures contract prices on the Nord Pool market. Those models were built from

weekly historical data and reproduce their stylized facts. The load basis model accounts for

seasonality in the mean and the variance, as well as autocorrelation in seasonally corrected

shocks. The proposed model for futures price returns, a multivariate AR(1)-GARCH with

NIG innovations, exhibits stochastic volatility, partially predictable returns and fat tails.

Multiple goodness-of-fit tests validate the adequacy of all models developed.

Backtests using historical market data show the superiority of the semi-quadratic glo-

bal hedging procedure compared to various benchmarks of the literature in terms of risk

reduction.

4.6 Appendix : basis ratio

The weekly average price S∗t paid for electricity differs from the weekly arithmetic average

price St, which is the underlying asset of weekly futures. The extent to which S∗t and St differ

is represented by basis ratio ηt in (4.5). Figure 4 shows the observed ratio over the January

1st, 2007 and July 23th, 2012 period.

108



Figure 4.4 – Basis ratio time series

Observed ratio of the load weighted mean spot price to the arithmetic mean spot price as defined by (4.5).

Observations between January 1st, 2007 and July 23th, 2012.

As ηt is larger than one in all but one instance, S∗t overestimates St. Such a departure

has not yet been considered in the literature. This departure is due to the fact that more

electricity is consumed during peak hours when its price is higher.

4.7 Appendix : delta-hedging with futures

If transaction costs are disregarded, the terminal value of the self-financing hedging port-

folio with an initial value of 0 is given by VT =
∑T

j=t0+1 θj(BT/Bj)(Fj,T − Fj−1,T ). Setting

θj = Bj/BT , the terminal value of the portfolio becomes

VT =
T∑

j=t0+1

(Fj,T − Fj−1,T ) = FT,T − FT,t0 = ST − FT,t0 .

Therefore, holding one unit of this portfolio for each unit of load sold (in the case where the

load to serve is known with certainty) permits to lock in the price of electricity to FT,t0 .

4.8 Appendix : Solving the global hedging problem

The optimal trading strategy (θ∗T−2, θ
∗
T−1, θ

∗
T ) solving problem (4.8) with the semi-quadratic

penalty (4.9) is obtained through dynamic programming (Bertsekas, 1995) :

ψt,T = min
θt+1

E [ψt+1,T |Gt] with the terminal conditionψT,T = G(ΨT − VT ), (4.23)

θ∗t+1 = arg min
θt+1

E [ψt+1,T |Gt] . (4.24)
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This optimization problem is tackled using backward induction over time. The traditional

approach used for solving (4.23) is based on a lattice which includes all state variables of

the problem ; these include the current value of the load-basis and futures prices, current

futures return volatilities, the current hedging portfolio value, lagged futures returns and

the past portfolio composition. Such an approach is not viable due to its large dimension.

Our approach is a stochastic tree which is feasible because the hedging portfolio is only

rebalanced three times. The optimization of the trading position θt is performed numerically

by discretizing its possible values.

4.8.1 Simulation of the stochastic tree

Since the terminal condition ψT,T = G(ΨT − VT ) = G(LT (FT,T − FT−3,T )− VT ) depends

on the state variables (the load-basis L and the futures contracts related variables) and some

endogenous variables (the portfolio value VT and consequently the corresponding portfolio

positions θT−1, θT−2, and θT−3), the random tree must account for all these dimensions.

At time T − 3, MT−3 scenarios for the state variables are simulated from Equations

(4.10)-(4.12) and (4.15)-(4.16). 30 These scenarios are combined with all the possible port-

folio positions 31 θT−2 ∈ ΘT−2 to generate NT−3 = MT−3Card{ΘT−2} simulated values for

endogenous variables (VT−2, θT−2).

At time T−2, these NT−3 scenarios for the state and endogenous variables are subdivided

intoNT−2 = MT−2Card{ΘT−1} branches corresponding to all combinations of simulated state

variables and possible portfolio positions. A similar iteration occurs at time T − 1, leading

to NT−3 ×NT−2 ×NT−1 terminal nodes.

30. Simulating a scenario at time t involves simulating the values of the load-basis and futures price

innovations, respectively ε(L)t+1 and εt+1,t+j , j = 1, 2, 3.
31. A discretize subset ΘT−2 of the possible positions is considered. Card{ΘT−2} represents the number

of elements it contains.

110



4.8.2 Backward induction

The algorithm solving (4.23) starts by computing the final hedging penalty at each ter-

minal node 32 of the tree :

ψ̂T

(
mT−3,mT−2,mT−1

θT−2,θT−1,θT

)
= G

(
LT
(
mT−3,mT−2,mT−1

θT−2,θT−1,θT

)
(FT,T (mT−3,mT−2,mT−1)− FT−3,T )− VT

(
mT−3,mT−2,mT−1

θT−2,θT−1,θT

))
.

Equations (4.23)-(4.24) are then approximated using the following backward recursion for

each node of the tree :

θ̂∗T

(
mT−3,mT−2

θT−2,θT−1

)
= arg min

θ∈ΘT

1

MT−1

MT−1∑
m=1

ψ̂T

(
mT−3,mT−2,m
θT−2,θT−1,θ

)
,

ψ̂T−1

(
mT−3,mT−2

θT−2,θT−1

)
= min

θ∈ΘT

1

MT−1

MT−1∑
m=1

ψ̂T

(
mT−3,mT−2,m
θT−2,θT−1,θ

)
,

θ̂∗T−1

(
mT−3

θT−2

)
= arg min

θ∈ΘT−1

1

MT−2

MT−2∑
m=1

ψ̂T−1

(
mT−3,m
θT−2,θ

)
,

ψ̂T−2

(
mT−3

θT−2

)
= min

θ∈ΘT−1

1

MT−2

MT−2∑
m=1

ψ̂T−1

(
mT−3,m
θT−2,θ

)
,

θ̂∗T−2 = arg min
θ∈ΘT−2

1

MT−3

MT−3∑
m=1

ψ̂T−2 (mθ ) ,

ψ̂T−3 = min
θ∈ΘT−2

1

MT−3

MT−3∑
m=1

ψ̂T−2 (mθ ) .

In the experiments of Section 4.4, the number of scenarios are MT−3 = MT−2 = 1000 and

MT−1 = 100 . Fewer scenarios are required at the final step since the conditional expectations

can partially be solved analytically. More precisely, Equations (4.23)-(4.24) involve double

integrals (one over the load innovation and the other over the futures return innovation with

a one-week maturity). Fortunately, the load innovation is Gaussian, so the first integral can

be computed analytically. Therefore, instead of using a regular Monte-Carlo simulation for

the futures innovation, a quadrature in a single dimension is applied.

32. The terminal nodes are identified with the set of indices corresponding to the branches constituting

the path : (
mT−3,mT−2,mT−1

θT−2,θT−1,θT

)
.
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The discrete sets of portfolio positions are ΘT−2 = {0.96, 0.965, . . . , 1.04} and ΘT−1 =

ΘT = {0.93, 0.94 . . . , 1.07}, implying that Card{ΘT−2} = 17 and Card{ΘT−1} = Card{ΘT} =

15.

Variance reduction techniques improve the precision of the Monte Carlo estimates and

compensate for small sample sizes. Antithetic variables are used in the simulation for load-

basis innovations ε(L). The first half of scenarios are simulated by regular Monte-Carlo me-

thods. In the last half of scenarios, the futures return innovations are identical to the ones

in the first half. Load innovations are however set equal to their antithetic counterparts.

4.8.3 Re-simulation

The previous algorithm determines the optimal hedging strategy
(
θ∗T−2, θ

∗
T−1, θ

∗
T

)
as seen

from time T − 3. At time T − 2, the retailer holds θ∗T−2 long futures positions and has to

select θ∗T−1 to perform the rebalancing. The realization of the state variables at time T − 2

will not exactly fall on one particular node of the random tree. The standard approach

used to solve this issue is to interpolate between the nodes of the tree to determine the

optimal hedging position θ∗T−1. We opted for a re-simulation to obtain simulated data which

incorporates the newly observed realization of state variables. More precisely, a two-period

random tree is simulated from time T − 2 up to time T to update the optimal hedging

strategy
(
θ∗T−1|T−2, θ

∗
T |T−2

)
. Since this tree is smaller than the previous one, we opted for a

thinner discretization of the portfolio positions : ΘT−1 = {0.93, 0.9325 . . . , 1.07}, and ΘT =

{0.93, 0.94 . . . , 1.07} while keeping MT−2 = 1000 and MT−1 = 100.

Finally, at time T − 1, a one-period random tree with ΘT = {0.900, 0.901 . . . , 1.100} is

simulated to update the final hedging position θ∗T |T−1.

4.9 Appendix : load-basis model estimation

4.9.1 Cross-validation procedure for load model selection

To determine the number P of Fourier terms in step 1 of the load-basis model estimation

(or Q in step 2), a cross-validation procedure is implemented. The load-basis data are from

2007 to 2012. Data from year y are removed and retained as out-of-sample, while remaining

data are in-sample. For each value of P (or Q), the model is estimated in-sample. Denote
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J y
1,P = (γ, β0, ...β2P+1) and J y

2,Q = (α0, ...α2Q+1). f denotes the pdf function.

Ĵ y
1,P = argmax

J y1,P

∑
t,year(t)6=y

log fLt|Lt−1(Lt|Lt−1) (under assumption that v(t) is constant)

Ĵ y
2,Q = argmax

J y2,Q

∑
t,year(t)6=y

log fvt(J y2,Q)εt(
√
ṽ(t)ε̃

(L)
t )

where g̃(t) and ṽ(t) are obtained by respectively plugging Ĵ y
1,P in (4.11) and J y

2,Q in (4.12).

The ε̃(L)
t are calculated by replacing g(t) and v(t) by g̃(t) and ṽ(t) in (4.10).

Then, a test statistic assessing the goodness-of-fit (MSE for P , log-likelihood for Q) is

calculated out-of-sample :

MSEPy =
1

ny

∑
t,year(t)=y

(Lt − Pred(Lt, Ĵ y
1,P ))2 (4.25)

log-lQy =
∑

t,year(t)=y

log f√
vt(Ĵ y2,Q)ε

(L)
t

(
√
v̂(t)ε̂

(L)
t ) (4.26)

where ny is the number of observations in year y. ĝ(t) and v̂(t) are obtained by respectively

plugging Ĵ y
1,P in (4.11) and Ĵ y

2,Q in (4.12). The ε̂(L)
t are calculated by replacing g(t) and v(t)

by ĝ(t) and v̂(t) in (4.10). The predicted load-basis is Pred(Lt, Ĵ y
1,P ) = ĝ(t)+γ̂(Lt−1−ĝ(t−1))

where ĝ is calculated by plugging Ĵ y
1,P in (4.11) and γ̂ is the first component of Ĵ y

1,P . The

prediction is obtained by applying a conditional expectation on (4.10). This operation is

repeated for all years y and the test statistic is aggregated across all years :

RMSEPtotal =

√√√√∑2012
y=2007 nyMSEPy∑2012

2007 ny
or log-lQtotal =

2012∑
y=2007

log-lQy .

Parameters P̂ and Q̂ are selected to optimize the corresponding test statistic

P̂ = argmin
P

RMSEPtotal and Q̂ = argmax
Q

log-lQtotal.

Results are shown in Tables 9 and 10 and suggest P̂ = 3 and Q̂ = 2.

4.9.2 Goodness-of-fit for the load model

In this section, the properties of the standardized residuals ε̂(L)
t are analyzed to determine

the adequacy of the load-basis model (4.10)-(4.12). Figure 5 shows a boxplot of residuals by

quarter of the year, a QQ-plot and a kernel density plot. Residuals look reasonably uniform

across quarters ; there is thus no obvious evidence that the seasonal trend is not properly
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Table 4.9 – Cross-validation test results for the load-basis seasonality trend

Value for P 1 2 3 4 5

Cross-validation RMSE (×105) 2.386 2.376 2.360 2.364 2.367

Out-of-sample cross-validation prediction root-mean-square-error for the load-basis model with different

numbers of Fourier terms P in the load-basis seasonality trend g defined by (4.11).

Table 4.10 – Cross-validation test results for the load-basis variance trend
Value for Q 1 2 3 4 5

Cross-validation log-likelihood (×10−3) −3.973 −3.967 −3.973 −3.974 −3.976

Out-of-sample cross-validation log-likelihood for the load-basis model with different numbers of Fourier terms

Q in the load-basis variance trend v defined by (4.12).

being captured. The Gaussian distribution seems to be a suitable candidate for residuals,

even if the empirical left tail of the load residuals is slightly heavier. A bootstrap Cramer-

Von-Mises goodness-of-fit test (Genest & Rémillard, 2008) for the adequacy of the Gaussian

distribution is applied to the residuals and the p-value is 27%, not rejecting the Gaussian

distribution. A Ljung-Box test for autocorrelation of residuals has a p-value of 92% and does

not reject ε̂(L)
t as white noise. The presence of a GARCH effect in the residuals is tested

through the McLeod-Li test (p-value of 18%) and Lagrange Multiplier test (p-value of 16%) ;

there is no significant presence of a GARCH effect. Therefore, the ε(L) load-basis innovations

are modeled by a strong Gaussian white noise.

Figure 4.5 – Load-basis model residuals

Boxplot, Gaussian QQ-plot and kernel plot for load-basis residuals ε̂(L) between January 1st, 2007 and July

29th, 2012.
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4.9.3 Goodness-of-fit of futures return model

Ljung-Box and McLeod-Li tests for strong white noise are carried out on the scaled

residuals ẑj,t, j = 0, 1, 2. P -values are obtained through simulation (usual p-value formulas

incorrectly assume Gaussianity). P -values are given in Table 11 and none of the tests reject

the white noise hypothesis.

Table 4.11 – Autocorrelation tests for futures return innovations
Series z0,t z1,t z2,t

Ljung-Box p-value 0.36 0.35 0.41

McLeod-Li p-value 0.97 0.33 0.72

Bootstrapped p−values for the Ljung-Box and McLeod-Li tests applied on futures return innovations. Ob-

servations between January 1st, 2007 and July 29th, 2012 for futures with 1, 2 and 3 weeks to maturity.

The choice of the NIG distribution for the innovations must be validated. Figure 6 com-

pares the kernel density of the ẑi,t, its fitted NIG distribution and a corresponding Gaussian

distribution. The NIG distribution represents more adequately the shape of the empirical

residuals distribution than the Gaussian distribution, the latter is unable to capture the

peakedness of the empirical futures returns distribution. Cramer-Von-Mises tests with simu-

lated p-value (Genest & Rémillard, 2008) are applied to assess the adequacy of the fit of the

NIG distribution for the zi,t innovations. P -values are found in Table 12 for each univariate

zi,t, i = 0, 1, 2 series. The p-value for the joint trivariate series is 0.82. The NIG distribution

thus provides an acceptable fit.

Table 4.12 – Goodness-of-fit of the futures return distribution
Series z0,t z1,t z2,t

p-value 0.09 0.88 0.65

Bootstrapped p−values for the Cramer-Von-Mises goodness-of-fit test on the NIG distribution for futures

return. Observations between January 1st, 2007 and July 29th, 2012 for futures with 1, 2 and 3 weeks to

maturity.

To validate the choice of the copula, Cramer-Von-Mises goodness-of-fit tests are applied

for the Gaussian copula on the three following pairs of processes : (z0,t, z1,t), (z0,t, z2,t) and
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Figure 4.6 – Futures return distribution

Kernel density plots of futures return innovations and fitted NIG and Gaussian distributions. Observations

between January 1st, 2007 and July 29th, 2012 for futures with 1, 2 and 3 weeks to maturity.

(z1,t, z2,t). 33 The p-values for the three tests are given in Table 13. Since p-values are all high,

the Gaussian copula provides an acceptable fit.

Table 4.13 – Goodness-of-fit of the futures return copula

Innovation Pair (z0,t, z1,t) (z0,t, z2,t) (z1,t, z2,t)

p-value 0.90 0.67 0.97

Bootstrapped p−values for the Cramer-Von-Mises goodness-of-fit test applied to the Gaussian copula linking

futures returns. Tests are applied on pairs of returns instead of the triplet (z0,t, z1,t, z2,t). Observations

between January 1st, 2007 and July 29th, 2012 for futures with 1, 2 and 3 weeks to maturity.

4.9.4 Independence of futures return and load-basis innovations

Independence tests for load-basis residuals ε̂(L)
t and futures return innovation proxies ẑt,i

are applied for each of the three futures return maturities : i = 0, 1, 2. We use a Cramer-Von-

Mises goodness-of-fit test on the independence copula (Rémillard, 2013). The p-values are

33. The test was not carried on the triplet (z0,t, z1,t, z2,t). The numerical burden associated with such a

test is very high.
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obtained through simulation and are given in Table 14. Large p-values allow us to assume

that the load-basis residuals and the futures return innovations are independent.

Table 4.14 – Independence test for load-basis and futures return innovations

Futures Returns Series i = 0 i = 1 i = 2

p-value 0.28 0.66 0.50

Bootstrapped p−values for the Cramer-Von-Mises goodness-of-fit test applied to the independence copula

linking the load-basis observations and futures returns. Three tests are applied separately for the three

maturities of futures returns. Observations between January 1st, 2007 and July 29th, 2012 for futures with

1, 2 and 3 weeks to maturity.

4.10 Technical report (not part of the paper)

4.10.1 Trading Volume by Year

Table 4.15 – Trading days with non-nul trading volume each year on Nord Pool weekly

futures.
Year/Weeks to maturity 1 2 3 4 5

2007 97% 88% 71% 34% 18%

2008 96% 90% 63% 26% 13%

2009 94% 93% 46% 17% 10%

2010 95% 93% 69% 37% 24%

2011 96% 86% 58% 28% 13%

2012 97% 91% 60% 30% 19%

Percentage of trading days between January 1st, 2007 and December 31th, 2012 on which a non-null trading

volume on weekly futures with different maturities occured on NASDAQ OMX.

4.10.2 Out-of-sample tests for the load-basis model

Table 4.16 illustrates the value of RMSEPy :=
√

MSEPy and Table 4.17 illustrates the

value of
√

log-lQy defined in (4.25) and (4.26) for out-of-sample years y = 2007, . . . , 2012 and
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different values of P,Q.

Table 4.16 – Cross-validation RMSE (×105) for parameter P

Value for P/Year 2007 2008 2009 2010 2011 2012

1 2.488 1.930 2.101 3.000 2.033 2.734

2 2.442 2.150 2.057 2.935 2.013 2.631

3 2.428 2.213 2.018 2.935 1.959 2.548

4 2.412 2.196 2.046 2.927 1.949 2.621

5 2.402 2.177 2.116 2.941 1.941 2.582

Cross-validation root-mean-square-error for all out-of-sample years for the load-basis model with different

numbers of Fourier terms P in the load seasonality trend g defined by (4.11). The smallest RMSE for each

out-of-sample year is in boldface.

Table 4.17 – Cross-validation Log-likelihood for parameter Q

Value for Q/Year 2007 2008 2009 2010 2011 2012

1 −708.90 −704.22 −704.24 −740.71 −702.12 −413.06

2 −707.64 −704.08 −701.05 −739.76 −702.11 −412.75

3 −707.20 −705.88 −702.36 −742.54 −702.11 −413.29

4 −707.18 −705.67 −702.11 −741.77 −704.30 −413.36

5 −707.90 −706.93 −701.92 −740.76 −703.93 −414.19

Cross-validation log-likelihood for all out-of-sample years for the load-basis model with different numbers of

Fourier terms Q in the load volatility trend v defined by (4.12). The largest log-likelihood for each out-of-

sample year is in boldface.
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4.10.3 Incomplete information load-basis forecast models

To forecast weekly load from its partial observation as described in Section 4.3.1, the

following models were compared :

L̂t := L̃t

(
q∑
j=1

cj∑q
i=1 c

i

Lt−j
L̃t−j

)
, (ES) (4.27)

L̂t := L̃t

(
`+ a

q∑
j=1

cj
Lt−j
L̃t−j

)
, (CES) (4.28)

L̂t := L̃t

(
`+

q∑
j=1

cj
Lt−j
L̃t−j

)
, (RR) (4.29)

L̂t := L̃t

(
`+ c

q∑
j=1

Lt−j
L̃t−j

)
, (CMA) (4.30)

L̂t := `L̃t, (CR) (4.31)

L̂t := g(t) + γ̂(Lt−1 − g(t− 1)). (PL) (4.32)

Their forecasting ability were compared in a cross-validation experiment similar to the one

described in Section 4.9.1. The out-of-sample forecasting RMSE and MAPE are given in

Table 4.18.

Table 4.18 – Cross-validation load-basis forecast from partial observation of load

Model RMSE×10−5 MAPE

ES 9.29 1.22%

CES 8.84 1.12%

RR 8.90 1.13%

CMA 8.82 1.12%

CR 9.48 1.21%

PL 22.59 2.86%

Cross-validation load-basis forecast statistics. Load-basis forecasts are made from the partial observation of

the load in the same week. Models (4.27)-(4.32) are compared. The best results are in boldface.

4.10.4 More on futures returns diagnostics

Figure 4.7 presents QQ-plots comparing the empirical futures return innovation quantiles

and those of the fitted Gaussian and NIG distribution.
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Figure 4.7 – QQ-plots for futures returns : empirical distribution vs Gaussian and NIG

QQ-plots comparing the empirical futures return innovation quantiles and those of the fitted Gaussian and

NIG distribution. Observations between January 1st, 2007 and July 23, 2012 for futures with 1, 2 and 3

weeks to maturity.

4.10.5 Seasonal volatility for futures

Benth et al. (2008) propose to use Fourier terms to model the variance seasonality of

futures returns. 34 Such a regression is applied to the current futures dataset to see if some

seasonality pattern can be extracted. Figure 4.8 presents the variance term and realized

variance of the scaled futures returns as described in the step 1 of the estimation procedure

in Benth et al. (2008). This approach does not seem to work in the present case. The volatility

clusters seem to occur at different times through the year without any regular pattern. This

is an advantage of the GARCH feature of the model of the current paper ; volatility clusters

occur unexpectedly at random times.

34. Section 8.6
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Figure 4.8 – QQ-plots for futures returns : empirical distribution vs Gaussian and NIG

The variance trend and realized variance of futures returns obtained through the market model of Benth et

al. (2008) applied to the dataset of futures returns used in the rest of this paper.

4.10.6 The volatility bound on futures returns

In order to assess the degree to which the bound on volatility ς in (4.16) is binding,

1000 paths of futures returns, each one lasting 200 weeks, were simulated with the estimated

parameters found in Tables 4.5 and 4.6. The percentage of volatility observations exceeding

ς = 0.6 is given in table 4.19. Those percentages are low enough to consider that the bound

ς = 0.6 has only minor implications.

Table 4.19 – Futures volatility bounds hit rates

Time-to-maturity 1 2 3

Hit rate 0.073% 0.45% 0.27%

Percentage of futures returns volatility observations hitting the bound ς = 0.6 in the simulation experiment.

1000 paths of 200 periods each were simulated.

4.10.7 Information on NIG distribution

This appendix presents relevant information about the Normal Inverse Gaussian (NIG)

distribution. A random variable has a NIG(α, β, δ, µ) distribution if its density function (pdf)

is given by

f(x) =
αδK1

(
α
√
δ2 − (x− µ)2

)
π
√
δ2 − (x− µ)2

eγδ+β(x−µ)
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where γ =
√
α2 − β2, α > 0, β ∈ (−α, α), δ > 0, µ ∈ R and Kν is the modified Bessel

function of the second kind :

Kν(y) =
1

2

∫ ∞
0

uν−1e−
1
2
y(u+u−1)du, y > 0.

If X has a NIG(α, β, δ, µ) distribution, then aX + b has the NIG(α/a, β/a, aδ, aµ + b)

distribution. Furthermore, if X1 and X2 are two independent variables respectively from

distributions NIG(α, β, δ1, µ1) and NIG(α, β, δ2, µ2), the sum X1 + X2 has a NIG(α, β, δ1 +

δ2, µ1 + µ2) distribution.

The moment generating function of a NIG(α, β, δ, µ) variable X is

φ(z) = E
[
ezX
]

= e
µz+δ

(
γ−
√
α2−(β+z)2

)
.

which exists at z if α2 − (β + z)2 > 0.

The first four moments are characterized by

E [X] = µ+
δβ

γ

Var[X] =
δα2

γ3

Skewness[X] =
3β

α
√
δγ

Excess Kurtosis[X] =
3
(

1 + 4β
2

α2

)
δγ

.

The NIG distribution is flexible since it can exhibit asymmetry and excess kurtosis to various

degrees depending on parameters.

Standardized NIG

A standardized NIG distribution is a NIG distribution with mean 0 and variance 1.

Therefore, µ = − δβ
γ

and δ = γ3

α2 . The only two free parameters left are (α, β).

Definition 4.10.1 A standardized NIG(α, β) distribution is a NIG(α, β, γ
3

α2 ,−γ2β
α2 ) distribu-

tion with γ =
√
α2 − β2.

4.10.8 Remark on futures price integrability

For p > 0, all expectations E [epεt,t+i ] , t = 0, 1, . . . exist if and only if E [epςzi,t ] exists. This

last expectation exists if and only if α2 − (β + p)2 ≥ 0.
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Combining α2 − (β + p)2 ≥ 0 with the domain constraint |β| < α, we obtain the following

constraints on parameters :

α >
pς

2

β ∈ (−α, α− pς)

In the current paper, values used are p = 2.

4.10.9 The quadratic penalty case

The solution to problem (4.8) when G(x) = x2 is obtained by Schweizer (1995). This

methodology disregards transactions costs : it assumes ∀t, Ct = 0. Define the following

quantities : starting with νT+1 := 1 and CT := ΨT ,

∆t := B−1
t (Ft,T − Ft−1,T ) (4.33)

At := E
[
∆2
tνt+1|Gt−1

]
(4.34)

bt := A−1
t E [∆tνt+1|Gt−1] (4.35)

αt := A−1
t E

[
B−1
t Ct∆tνt+1|Gt−1

]
(4.36)

νt := E[(1− bt∆t)νt+1|Gt−1] (4.37)

Ct−1 :=
E
[
B−1
t (1− bt∆t)Ctνt+1|Gt−1

]
B−1
t−1νt

. (4.38)

Theorem 4.10.1 If G(x) = x2, the solution to problem (4.8) is given by :

θt = αt −B−1
t−1Vt−1bt. (4.39)

Proof of Theorem 4.10.1

The problem solved in Schweizer (1995) is the following. LetX be a G−adapted stochastic

process. Define the following discrete stochastic integral : Mt := Mt0 +
∑t

j=t0+1 θj(Xj −

Xj−1). Let Y be a GN−measurable random variable. It is shown that the trading strategy
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(θt0+1, . . . , θT ) that minimizes E [(Y −MT )2|Gt0 ] is given by θt = αt −Mt−1bt where

∆t := Xt −Xt−1 (4.40)

At := E
[
∆t∆

>
t Pt+1|Gt−1

]
(4.41)

bt := A−1
t E [∆tPt+1|Gt−1] (4.42)

αt := A−1
t E [Y∆tPt+1|Gt−1] (4.43)

Pt :=
T∏
j=t

(1− b>j ∆j) (4.44)

In the problem of the current paper, (4.6) directly leads to

B−1
t+1Vt+1 = B−1

t Vt + θt+1B
−1
t+1(Ft+1,T − Ft,T ). (4.45)

Consequently,

B−1
t Vt = B−1

t0
Vt0 +

t∑
j=t0+1

θjB
−1
j (Fj,T − Fj−1,T ). (4.46)

Since B−1
T is deterministic, minimizing E [(ΨT − VT )2|Gt0 ] is equivalent to minimizing

E
[
(B−1

T ΨT −B−1
T VT )2|Gt0

]
. By posing Xt :=

∑t
j=t0+1B

−1
j (Fj,T −Fj−1,T ) andMt0 := B−1

t0 Vt0 ,

one gets thatMt = B−1
t Vt and ∆t = B−1

t (Ft,T −Ft−1,T ). The solution to the latter problem is

therefore θt = αt −B−1
t Vtbt where Y := B−1

T ΨT in (4.41)-(4.44). For a demonstration of the

equivalence between (4.41)-(4.44) and (4.34)-(4.38), see Rémillard & Rubenthaler (2013).

Remark 4.10.1 The definition of ∆t is a bit different than the definition found in Schweizer

(1995). This is due to the fact that futures contracts are used instead of stocks, and therefore

the dynamics of the hedging portfolio are slightly different.

4.10.10 Computing Quadratic Hedging Factors

Theorem 4.10.2

∀t, j ≥ 0, E [Lt|Gt−j] = g(t) + γj (Lt−j − g(t− j)) (4.47)

Proof of Theorem 4.10.2 :

The proof uses induction. Let t be an integer. The initial step j = 0 is trivial. Assume (4.47)

124



holds for j. Then,

E
[
Lt|Gt−(j+1)

]
= E

[
E [Lt|Gt−j] |Gt−(j+1)

]
= E

[
g(t) + γj (Lt−j − g(t− j)) |Gt−j−1

]
= g(t) + γjE

[
γ(Lt−j−1 − g(t− j − 1)) +

√
v(t− j)ε(L)

t−j|Gt−j−1

]
by (4.10)

= g(t)− γj+1(Lt−j−1 − g(t− j − 1)).�

Theorem 4.10.3

∀t ∈ {t0, . . . , T}, Ct = E [LT |Gt]B−(T−t)
1 (Ft,T − Ft0,T ) (4.48)

Proof of Theorem 4.10.3 :

The proof uses backward induction. The initial step t = T is trivial since CT = ΨT . Assume

(4.48) holds for t. Define B−1 := B−1
1 = e−r. Then,

Ct−1 :=
E
[
B−1
t (1− bt∆t)Ctνt+1|Gt−1

]
B−1
t−1νt

by (4.38)

= B−1
E
[
(1− bt∆t)E [LT |Gt]B−(T−t)

1 (Ft,T − Ft0,T )νt+1|Gt−1

]
νt

by induction hypothesis

= B−(T−(t−1))E [LT |Gt−1]
E [(1− bt∆t)(Ft,T − Ft0,T )νt+1|Gt−1]

νt
by independence (4.49)

In (4.49),

E [(1− bt∆t)(Ft,T − Ft0,T )νt+1|Gt−1]

νt
=

E [(1− bt∆t)Ft,Tνt+1|Gt−1]

νt
− Ft0,T

E [(1− bt∆t)νt+1|Gt−1]

νt
(4.50)

Notice first, that E [(1− bt∆t)νt+1|Gt−1] = νt by (4.37). Furthermore, since Ft,T∆t =
∆2
t

B−1
t

+

Ft−1,T∆t,
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E [(1− bt∆t)Ft,Tνt+1|Gt−1]

νt

=
E
[(
Ft,T − bt ∆2

t

B−1
t

− btFt−1,T∆t

)
νt+1|Gt−1

]
νt

=
E [Ft,Tνt+1|Gt−1]− bt

E[∆2
t νt+1|Gt−1]
B−1
t

− btFt−1,TE [∆tνt+1|Gt−1]

νt

=
E [Ft,Tνt+1|Gt−1]− E[∆tνt+1|Gt−1]

B−1
t

− btFt−1,TE [∆tνt+1|Gt−1]

νt
by (4.35)

=
E [Ft,Tνt+1|Gt−1]− E [(Ft,T − Ft−1,T )νt+1|Gt−1]− btFt−1,TE [∆tνt+1|Gt−1]

νt
by (4.33)

=
Ft−1,TE [(1− bt∆t)νt+1|Gt−1]

νt
= Ft−1,T by (4.37) (4.51)

The proof is completed by putting (4.51) in (4.50), and then putting the result in (4.49). �

Closed formulas for the last time step

Theorem 4.10.4 Let φα,β(z) := E
[
ezX
]
be the moment generating function of a standardi-

zed NIG(α, β) distributed variable X. Therefore,

bT =
1

B−1
T FT−1,T

eµ1+a1εT−1,T−1φα1,β1(σ0,T )− 1

e2µ1+2a1εT−1,T−1φα1,β1(2σ0,T )− 2eµ1+a1εT−1,T−1φα1,β1(σ0,T ) + 1

νT = 1− e2µ1+2a1εT−1,T−1 [φα1,β1(σ0,T )]2 − 2eµ1+a1εT−1,T−1φα1,β1(σ0,T ) + 1

e2µ1+2a1εT−1,T−1φα1,β1(2σ0,T )− 2eµ1+a1εT−1,T−1φα1,β1(σ0,T ) + 1

αT = E [LT |GT−1]
e2µ1+2a1εT−1,T−1φα1,β1(2σ0,T )− eµ1+a1εT−1,T−1φα1,β1(σ0,T )

e2µ1+2a1εT−1,T−1φα1,β1(2σ0,T )− 2eµ1+a1εT−1,T−1φα1,β1(σ0,T ) + 1

+E [LT |GT−1]
Ft0,T
FT−1,T

(1− eµ1+a1εT−1,T−1φα1,β1(σ0,T ))

e2µ1+2a1εT−1,T−1φα1,β1(2σ0,T )− 2eµ1+a1εT−1,T−1φα1,β1(σ0,T ) + 1
.

Proof of Theorem 4.10.3 :

For bT and νT is suffice to notice that

E [∆T |GT−1] = B−1
T FT−1,T

[
eµ1+a1εT−1,T−1φα1,β1(σ0,T )− 1

]
,

E
[
∆2
T |GT−1

]
= (B−1

T FT−1,T )2
[
e2µ1+2a1εT−1,T−1φα1,β1(2σ0,T )− 2eµ1+a1εT−1,T−1φα1,β1(σ0,T ) + 1

]
.
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For αT ,

αT = A−1
T E

[
B−1
T ΨT∆T |GT−1

]
= A−1

T B−2
T FT−1,TE [LT (ST − Ft0,T )(eεT,T − 1)|GT−1]

= A−1
T B−2

T FT−1,TE [LT |GT−1]E [(FT,T − Ft0,T )(eεT,T − 1)|GT−1]

=
E [LT |GT−1]

E [∆2
T |GT−1]

B−2
T FT−1,T

(
FT−1,TE

[
e2εT,T |GT−1

]
− (FT−1,T + Ft0,T )E [eεT,T |GT−1] + Ft0,T

)
= E [LT |GT−1]

e2µ1+2a1εT−1,T−1φα1,β1(2σ0,T )− eµ1+a1εT−1,T−1φα1,β1(σ0,T )

e2µ1+2a1εT−1,T−1φα1,β1(2σ0,T )− 2eµ1+a1εT−1,T−1φα1,β1(σ0,T ) + 1

+E [LT |GT−1]
Ft0,T
FT−1,T

(1− eµ1+a1εT−1,T−1φα1,β1(σ0,T ))

e2µ1+2a1εT−1,T−1φα1,β1(2σ0,T )− 2eµ1+a1εT−1,T−1φα1,β1(σ0,T ) + 1
.�

4.10.11 Explicit formula for the Bellman Equation at the last time

step

In the Bellman Equation (4.23)-(4.24), a part of the expectation can be computed expli-

citly when t = T − 1 if the semi-quadratic penalty (4.9) is used. Indeed,

E [ψT,T |GT−1] = E [g(ΨT,T − VT )|GT−1]

= E [g(LT (FT,T − Ft0,T )− VT )|GT−1]

= E
[
(LT (FT,T − Ft0,T )− VT )2I{LT (FT,T−Ft0,T )>VT }|GT−1

]
=

∫
F̄

∫
L̄

(L̄(F̄ − Ft0,T )− VT )2I{L̄(F̄−Ft0,T )>VT }fLT (L̄)fFT,T (F̄ )dL̄dF̄

≈
MT−1∑
m=1

∫
L̄

(L̄(F
(m)
T,T − Ft0,T )− VT )2I{L̄(F

(m)
T,T −Ft0,T )>VT }

fLT (L̄)dL̄ (4.52)

where F (m)
T,T is the simulated value of FT,T in the mth path of a quadrature and fX(x) denotes

the pdf of the variable X at the point x conditional on GT−1. The integral in (4.52) can be

computed exactly. Recall from (4.10) that LT = µLT + σLT ε
(L)
T where

µLT := g(T ) + γ(LT−1 − g(T − 1)) (4.53)

σLT :=
√
v(T ). (4.54)

Therefore,

LT (F
(m)
T,T − Ft0,T )− VT = (µLT + σLT ε

(L)
T )(F

(m)
T,T − Ft0,T )− VT (4.55)

= ε
(L)
T σLT (F

(m)
T,T − Ft0,T ) + µLT (F

(m)
T,T − Ft0,T )− VT (4.56)
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Denote

K :=
VT − µLT (F

(m)
T,T − Ft0,T )

σLT (F
(m)
T,T − Ft0,T )

.

This yields

χ(ε
(L)
T ) := I{LT (FT,T−Ft0,T )>VT } =


I{ε(L)T >K}, if F (m)

T,T > Ft0,T

I{ε(L)T <K}, if F (m)
T,T < Ft0,T

I{VT<0}, if F (m)
T,T = Ft0,T

(4.57)

Furthermore,

(LT (F
(m)
T,T − Ft0,T )− VT )2 =

(
ε

(L)
T

)2 (
σLT (F

(m)
T,T − Ft0,T )

)2

+ ε
(L)
T 2σLT (F

(m)
T,T − Ft0,T )

(
µLT (F

(m)
T,T − Ft0,T )− VT

)
+
(
µLT (F

(m)
T,T − Ft0,T )− VT

)2

(4.58)

Plugging (4.57) and (4.58) into (4.52),∫
L̄

(L̄(F
(m)
T,T − Ft0,T )− VT )2I{L̄(F

(m)
T,T −Ft0,T )>VT }

fLT (L̄)dL̄

=
(
σLT (F

(m)
T,T − Ft0,T )

)2
∫
ε̄∈R

ε̄2χ(ε̄)f
ε
(L)
T

(ε̄)dε̄

+2σLT (F
(m)
T,T − Ft0,T )

(
µLT (F

(m)
T,T − Ft0,T )− VT

)∫
ε̄∈R

ε̄χ(ε̄)f
ε
(L)
T

(ε̄)dε̄

+
(
µLT (F

(m)
T,T − Ft0,T )− VT

)2
∫
ε̄∈R

χ(ε̄)f
ε
(L)
T

(ε̄)dε̄ (4.59)

The three integrals in the right side of (4.59) can be computed analytically by Theorem

4.10.5 since ε(L)
T has the standard Gaussian distribution.

Theorem 4.10.5 Let Y be a standard Gaussian random variable, φ be its pdf and Φ be its

cdf. Let a be a constant. Then,

E
[
Y I{Y >a}

]
= φ(a), (4.60)

E
[
Y 2I{Y >a}

]
= 1− Φ(a) + aφ(a). (4.61)

4.10.12 Linear-quadratic penalty

The quadratic penalty is symmetric and therefore it sanctions gains and losses equally.

To alleviate this problem, an incentive to obtain gains could be incorporated in the penalty.
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Such an alternative is to consider the linear-quadratic penalty used in Ni et al. (2012) that

offers a trade-off between upside and downside risk :

g(x) = x+ ζx2 (4.62)

for some constant ζ characterizing the risk aversion of the hedger. This penalty is asymmetric

and permits to penalize losses and gains unequally. Another advantage of this penalty is its

flexibility : it permits to calibrate the risk aversion of the hedger by varying the ζ parameter.

However large gains will still be penalized in this case, which is not a desirable property.

Computing the solution

The next theorem implies that the linear-quadratic penalty can be seen as an extension

of the quadratic one :

Theorem 4.10.6 Define g(x) := x2 and g̃ := x + ζx2. Then, the two following problems

yield the same solution :

arg min
(θt0+1,...,θT )∈Θ

E [g̃(ΨT − VT )|Gt0 ] (4.63)

arg min
(θt0+1,...,θT )∈Θ

E
[
g(Ψ̃T − VT )|Gt0

]
where Ψ̃T := ΨT + 1

2ζ
.

Proof of Theorem 4.10.6 : x+ ζx2 = ζ
(
x+ 1

2ζ

)2

− 1
4ζ
. �

Thus, using the linear-quadratic penalty is equivalent to using the quadratic one where

the target ΨT is shifted by some constant. This therefore allows using the semi-explicit

formulas of Schweizer (1995) to solve Equation (4.63). Some criterion should be used to

select an appropriate value for ζ.

From (4.39), the two factors that must be computed to identify the optimal portfolio

solving problem (4.63) are "α" and "b" factors. Let b̃t be the "b" coefficient solving problem

(4.63) and bt be the one solving problem (4.8). Similarly, let α̃t be the "α" coefficient solving

problem (4.63) and αt be the one solving problem (4.8). Since the "b" does not depend on

the payoff ΨT , Theorem 4.10.6 implies that b̃t = bt. Furthermore, αt and α̃t can be linked
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through a simple relationship. From results of Section 4.10.9,

α̃t := A−1
t E

[
B−1
T Ψ̃T∆tPt+1|Gt−1

]
= A−1

t E
[
B−1
T ΨT∆tPt+1|Gt−1

]
+ A−1

t E
[
B−1
T

1

2ζ
∆tPt+1|Gt−1

]
= αt +B−1

T

1

2ζ
bt (4.64)

From (4.39), the solution to problem (4.63) is

θt = α̃t −B−1
t−1Vt−1b̃t (4.65)

= αt −
(
B−1
T

1

2ζ
+B−1

t−1Vt−1

)
bt (from (4.64)) (4.66)

= αt −B−1
t−1Ṽt−1bt (4.67)

where Ṽt−1 = Vt−1 +
B−1
T

B−1
t−1

1
2ζ
. The solution to problem (4.63) can therefore be obtained simply

by using the αt and bt solving (4.8). Thus, by solving (4.8), one simultaneously solves (4.63)

for all ζ, avoiding additional calculations.

4.10.13 Numerical results for the linear-quadratic penalty

The in-sample experiment with real data of Section 4.4.2 is repeated with the linear-

quadratic benchmark characterized by the problem (4.63). Instead of fixing the risk-aversion

parameter ζ, various choices are attempted and the impact of this parameter is observed.

Define Tol := 1
2ζ

to be the risk tolerance. The case Tol = 0 is the quadratic penalty case

given by problem (4.8) with G(x) = x2. The mean and semi-RMSE of hedging errors are

computed for the various choices of ζ and compared to the semi-quadratic hedging method

SQDGH. The results are found in Figure 4.9.

The risk-reward trade-off offered by varying ζ is clearly illustrated in Figure 4.9 ; as the

risk tolerance increases, the mean error decreases and the semi-RMSE increases. However,

the semi-RMSE is lower for the semi-quadratic SQDGH than for the linear-quadratic hedging

with any value of ζ. The former method is therefore more efficient in reducing risk than its

counterpart. However, if the LSE hedger desires to achieve some risk-reward trade-off instead

of only minimizing risk, the linear-quadratic penalty could be considered. Those observations

indicate that the linear semi-quadratic penalty g(x) = x + ζx2I{x>0} could also be used to

achieve a risk-reward trade-off.
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Figure 4.9 – Linear-quadratic hedging in the in-sample experiment

Comparing the linear-quadratic hedging and the semi-quadratic hedging SQDGH in the in-sample hedging

back-test.

4.10.14 Further extensions

The models used in the current paper could be refined by means of several following

extensions. A first possibility would be to re-balance the hedging portfolio daily instead

of weekly to see it the hedging performance is improved. Models for the daily load, spot

and futures price would be required in that case. Also, as indicated in Lucia and Torro,

hydropower reservoir level can affect the relationship between the spot and futures price of

electricty. Using reservoir levels as an additional explanatory variable could improve the spot

and futures price predictive distribution. Weather related variables could also be incorporated

in the model to improve the prediction distribution of the load variable. Concerning the

futures price model, a time-varying mean in returns, which would represent a time varying

risk premium as identified in Lucia & Torro (2011), could be implemented.

Additional risks faced by LSE could also be considered. The risk that a LSE pays a

spot price that differs from the system price, due to grid congestions, might be considered.

This risk can be at least partially hedged through contracts for difference (CfD) available on

NASDAQ OMX. Moreover, LSE can bear a currency risk if it uses another currency than

Euros to report its profit since the futures contracts are quoted in Euros. Currency exchange

rates movements could be considered.

Finally, the short term horizon of hedges described in this paper could be increased to
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implement monthly, quarterly and yearly hedges with forward contracts.
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Chapitre 5

Conclusion générale

La présente thèse illustre le développement et l’implémentation de la méthode de couver-

ture globale de risques dans différents marchés incomplets, dont les marchés à changement

de régime, les marchés où des frais de transaction sont encourus et les marchés de l’électri-

cité. Tout d’abord, les problèmes de couverture sont définis rigoureusement dans chacun des

articles. Ensuite, des algorithmes théoriques et numériques sont proposés afin de résoudre

ceux-ci. Dans certain cas, comme par exemple dans l’article traitant du marché de l’électri-

cité, des modèles sont bâtis pour représenter la dynamique des variables d’état impliquées

dans le problème. Des simulations numériques ou des expériences avec des données réelles

ont été réalisées dans chacun des articles pour évaluer l’efficacité des méthodes qui ont été

proposées.

La performance de la méthode de couverture globale se compare avantageusement à

d’autres méthodes utilisées dans la littérature, dont le delta-hedging, les méthodes de cou-

verture locale et les stratégies de couverture statique ; les estimations des mesures de risques

appliquées aux erreurs de couverture obtenues lors de simulations numériques sont moindres

pour les méthodes de couverture globale que pour les autres. On peut donc considérer que

celles-ci sont plus efficaces pour réduire les risques associés à l’usage de produit dérivés.

Le principal obstacle pratique à l’implémentation d’algorithmes de couverture globale

des risques est leur lourdeur numérique. Il sera donc nécessaire d’identifier des méthodes

numériques plus efficaces afin de résoudre plus rapidement les problèmes d’optimisation

stochastique, dont l’équation de Bellman de la programmation dynamique. Les méthodes

d’interpolation spectrale ou de simulation et régression sont de bons candidats potentiels
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pour l’accomplissement d’une telle tâche. Les outils d’apprentissage automatique (machine

learning) pourraient aussi être à considérer. Le développement de méthodes numériques plus

efficaces pourrait aussi permettre d’ajouter des dimensions aux problèmes de couverture et

ainsi de considérer par exemple une volatilité stochastique, un taux d’intérêt sans-risque sto-

chastique, de l’auto-corrélation dans les innovations ou même l’ajout d’autres actifs financiers

dans le portefeuille de couverture.

Étant donné que les procédures de couverture globale ne sont pas encore répandues dans

la littérature, il serait aussi souhaitable d’effectuer plusieurs tests avec des données réelles de

différents marchés pour vérifier si l’efficacité de la méthode par rapport aux autres méthodes

persiste. Il serait aussi nécessaire d’évaluer la robustesse de la méthode par rapport au

risque de modèle i.e. lorsque le modèle présumé par l’algorithme de couverture diffère de la

dynamique réelle du sous-jacent.

Bref, plusieurs travaux de recherche sont probablement encore nécessaires avant de voir

les méthodes de couverture globale se répandre à travers la littérature et dans l’industrie

financière. Cependant, les résultats obtenus dans la présente thèse par rapport à cette mé-

thode de couverture sont très prometteurs, et cette dernière pourrait devenir un puissant

outil de gestion des risque si elle est bien développée.

137




