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Résumé 

L'essor récent des avancées technologiques appelle à la conception d'interfaces 

conviviales avec une capacité d'apprentissage substantielle, un aspect crucial de l'expérience 

de l'utilisateur. La facilité d'apprentissage peut être définie comme la mesure dans laquelle les 

produits et services numériques permettent aux utilisateurs de se familiariser rapidement avec 

eux et de faire bon usage de toutes leurs fonctionnalités et capacités. Son rôle est crucial, car 

elle peut avoir un impact sur la capacité de l'utilisateur à comprendre et à utiliser une plateforme 

numérique. Le présent article vise à identifier les heuristiques de l'oculométrie qui sont 

associées à une interface intuitive, offrant ainsi la possibilité de quantifier la facilité 

d'apprentissage d'une interface à l'aide de données en temps réel. Trente-trois participants ont 

regardé une vidéo d'instruction et ont ensuite tenté de reproduire la tâche démontrée sur une 

nouvelle interface afin d'évaluer la capacité d'apprentissage de la première utilisation de 

l'interface. Les mesures de suivi du regard - y compris l'entropie de transition du regard (GTE), 

le coefficient K, la distance de Levenshtein et la longueur des trajets du regard - ont été 

analysées en même temps que le taux de réussite de la tâche et le temps d'achèvement de la 

tâche. Les résultats suggèrent que la condition de participation active a donné lieu à des 

modèles de regard moins prévisibles, mais plus concentrés et plus efficaces. En outre, les 

personnes performantes affichent systématiquement des comportements de regard plus 

concentrés et moins chaotiques. Ensemble, ces résultats appellent à la conception d'interfaces 

qui encouragent l'exploration naturelle de l'utilisateur et suggèrent que l'intégration des mesures 

du regard dans les évaluations de l'utilisabilité pourrait fournir une évaluation plus nuancée et 

objective de l'apprenabilité en se concentrant sur les mesures de l'attention visuelle. 

Mots-clés : Entropie de transition du regard, Attention visuelle, Dispersion de l'attention, 

Apprenabilité, Eye-tracking, Conception d'interface  
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Abstract 

Recent surge in technological advances calls for the design of user-friendly interfaces 

with substantiated learnability, a crucial aspect of user experience. Learnability can be referred 

to as the extent to which digital products and services allow users to quickly become familiar 

with them and make good use of all their features and capabilities. Its role is crucial, as it can 

impact user’s ability to understand and use a digital platform. The present paper aims to identify 

eye-tracking gaze heuristics that are associated with an intuitive interface, offering the 

possibility to quantity the learnability of an interface with real-time data. Thirty-three 

participants watched an instructional video and subsequently attempted to replicate the 

demonstrated task on a novel interface in an attempt to evaluate the first-use learnability of the 

interface. Eye-tracking metrics — including gaze transition entropy (GTE), coefficient K, 

Levenshtein distance, and gaze path lengths — were analyzed alongside task success rate and 

task completion time. Results suggest that the active participation condition yielded less 

predictable, yet more focused and effortful gaze patterns. Additionally, high performers 

consistently exhibited more focused and less chaotic gaze behaviors. Together, these findings 

call for the design of interfaces that encourage natural user exploration and suggest that 

integrating gaze metrics into usability assessments could provide a more nuanced and objective 

evaluation of learnability by focusing on visual attentional measures.  

Keywords: Gaze Transition Entrop, Visual Attention, Attention Dispersion, Learnability, Eye-

tracking, Interface Design 
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Chapter 1: Introduction 

1.1 Context of thesis 

Learnability research has emerged as a subset of user experience studies. This field 

investigates how users acquire proficiency with increasingly complex new interfaces, 

applications, and technological systems. In the past few years, the importance of learnability 

has gained significance due to the rapid digitalization of services and products has made digital 

interfaces and integral part of daily life. New technologies such as artificial intelligence, 

augmented reality, and complex software systems all require users to continuously adapt and 

learn, making user adoption and interface learnability crucial factors in product success or 

failure.  

Among many sectors, business has seen the digital transformation by the adoption and 

implementation of new and emerging digital technology. Successful interactions with these 

interfaces directly impact user productivity, satisfaction, and overall streamlines business 

operations. With current interfaces becoming more complex with their expanding feature sets, 

users are expected to learn and adopt new systems more frequently and require users to learn 

independently. Research has found that every dollar invested in ease of use returns $10 to $100, 

highlighting the economic impact of learnability (Pressman, 2009). In the context of enterprise 

software, a report by Forrester Research revealed that improved user experience, including 

learnability, can increase conversion rates by up to 400% (Forrester, 2019). Additionally, good 

learnability leads to adequate productivity during the learning phase, thus ensuring better 

satisfaction among new users (Rafique et al., 2012). Increases in labour productivity are 

integral to long run improvements in living standards. Among others, improvements in labour 

productivity comes from growth in multifactor productivity, which are improvements in 

business efficiency that are attributed to innovation and technological change (Gellatly & Gu, 

2024).  

In recent years, learnability research incorporated diverse and mixed methodologies. 

From traditional usability metrics to more advanced eye-tracking technology, these tools were 

used to gather deeper insights into how users develop mental models and acquire new skills 

(Tullis & Albert, 2008). However, despite recent advances, there are still challenges in 

learnability research, such as the lack of standardized methods for evaluating learnability across 

different types of interfaces. Developing standardized methods for evaluating learnability is 
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crucial for advancing both the theoretical and practical application of user experience design 

(Unsöld, 2018). While subjective methods like surveys and think-aloud protocols provide 

valuable insights, they often fail to capture subtle cognitive processes and unconscious user 

behaviours that are key for understanding learnability. Therefore, as interfaces become more 

complex and incorporate emerging technologies like AI, the need for sophisticated objective 

measurement tools becomes increasingly critical for understanding how users adopt a novel 

interface.  

One emerging tool in HCI research is eye-tracking, a method that offers insight into 

users’ attentional and cognitive processes (Carter & Luke, 2020; Krejtz et al., 2015). By 

recording where users look during a task, thus generating the patterns of their visual exploration, 

eye-tracking technology provides quantifiable data that helps identify usability issues that 

traditional methods might miss. For example, Apple, the giant of technology has recently made 

many advances with its forward-thinking gaze-analytic assistive technology, allowing 

physically impaired individuals to enjoy their products. Their human-centered strategy reduces 

user frustration and support needs and provides a competitive advantage in the digital 

marketplace. As technology continues to evolve at an unprecedented pace, understanding and 

improving learnability becomes not just a design consideration but a crucial factor in ensuring 

digital inclusion and effective technology adoption across diverse user populations. 

As such, eye-tracking technology offers valuable benefits when used in HCI studies. 

Based on the eye-mind hypothesis (Just & Carpenter, 1976) —which suggests that there is a 

relationship between visual scanning behavior and one’s cognitive activity— eye-tracking is a 

non-invasive and objective method that uncovers visual behaviours of individuals, allowing 

inferences related to psychological processes, such as attention or cognitive load (Molina et al., 

2024). As evidenced by literature, eye-tracking captures multiple physiological and behavioral 

indicators, including fixation patterns, saccadic movements, gaze transitions, and pupil dilation. 

Among these metrics, pupil dilation has emerged as a well-established proxy for measuring 

cognitive load, with research consistently demonstrating that increased pupil diameter 

correlates with higher mental effort and processing demands (Just & Carpenter, 1976). 

Similarly, gaze transition patterns reveal attentional allocation strategies, while fixation 

duration and spatial distribution provide insights into information processing sequences. Thus, 

this comprehensive suite of gaze metrics can provide detailed insights into how users visually 
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interact with interfaces and content, which can help practitioners and researchers to create more 

tailored experiences (Molina et al., 2024). 

 Although eye-tracking technology offers valuable insights into user gaze behaviors, it 

also presents some limitations when evaluating interface learnability. For instance, while eye-

tracking can capture users attentional processes, it does not capture the participant’s thought 

process or emotional state, calling for the need of supplementary methods, such as 

psychometric questionnaires to interpret the cognitive and emotional responses that gaze data 

alone cannot provide (Asan & Yang, 2015). Additionally, the validity of eye-tracking data in 

learnability studies faces both technical and interpretative challenges. Technical limitations 

encompass data loss and calibration issues, while the interpretation of extensive raw data 

requires robust theoretical grounding to avoid misattribution of cognitive processes (Poole & 

Ball, 2006). Furthermore, individuals have idiosyncratic temporal and spatial patterns of eye 

movements, which can introduce a layer of complexity when interpreting eye-tracking data 

(Andrews & Coppola, 1999). 

1.2 Research Question 

Thus, given the benefits and limitations of eye-tracking identified, our research 

leverages eye-tracking to identify common gaze behaviors associated with a highly learnable 

interface. By focusing on multiple eye-tracking metrics, including gaze transition patterns, gaze 

entropy measures, and pupil dilation as a proxy for cognitive load, we aim to establish objective 

indicators of interface learnability. This study shifts from traditional subjective methods to 

data-driven metrics that quantify user learning and navigation. Our multi-metric approach 

allows us to capture different dimensions of interface learnability: gaze patterns reveal 

attentional strategies and navigation behaviors, entropy measures quantify the predictability 

and efficiency of visual exploration, while pupil dilation provides insights into the cognitive 

effort required during task performance. Additionally, psychometric questionnaires will be 

employed to infer users' cognitive processes, providing a more nuanced interpretation of gaze 

behavior and enhancing the depth of our findings. As such, this research aims to explore the 

following research question: 

RQ – To what extent can gaze transition heuristics assess the learnability of an 

interface?  

1.3 Contributions 
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From a methodological standpoint, this thesis contributes to the development of 

learnability assessment methods in HCI research by introducing eye-tracking technology as a 

prospective tool. Eye-tracking offers significant advantages for assessing interface learnability 

by providing non-invasive, cost-effective means to collect objective data (Asan & Yang, 2015). 

This technology captures real-time measurements of users' visual attention and gaze behavior, 

revealing their cognitive processes and information-seeking strategies as they learn new 

interfaces (Carter & Luke, 2020). Such direct insights into user behavior during system 

familiarization address the limitations of traditional evaluation methods. Furthermore, this 

study also contributes to the larger body of literature on using novel gaze analytic methods such 

as gaze transition entropy values and k-coefficient values to evaluate and quantify multimedia 

visual scenes. The implementation of these novel gaze analytic methods will provide a more 

comprehensive assessment framework of interface learnability.  

From a theoretical standpoint, this research extends existing frameworks in cognitive 

science and human-computer interaction. It builds upon foundational work in scanpath theory 

(Noton & Stark, 1971) by providing empirical evidence of how visual attention patterns evolve 

during interface learning. By examining these patterns within multimedia learning 

environments, this study advances our understanding of the relationship between visual 

behavior, cognitive processing, and task performance (Krejtz et al., 2016). This integration of 

theoretical perspectives offers new insights into how users develop systematic viewing 

strategies while learning novel interfaces.  

1.4 Thesis Structure 

This thesis is structured into one scientific article addressed to the HCI community, and 

a managerial article addressed to the wider User Experience (UX) research and practitioner 

community. Chapter 1 will cover the first article and address the methodological aspect of this 

research and answer the research questions related to this problematic. Chapter 2 will address 

the managerial article, where one can find recommendations for designing systems that 

prioritize usability for accessibility. The following paragraphs will provide a summary of each 

article.  

The second chapter of this thesis provides literature background on the current methods 

and tools that are used to assess learnability, and the metrics that will be used to quantify 

learnability. A controlled laboratory experiment involving 33 participants is conducted to 
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establish the gaze heuristics that are relevant in effective interface design. This chapter is being 

prepared for submission to the journal International Journal of Human-Computer Studies.  

The third chapter of this thesis provides a managerial article addressed to practitioners 

and professionals across various industries who are interested of using gaze methods to analyze 

their systems. Additionally, this article provides guidance on how to design better interfaces 

who aim to ease user adoption. This chapter is being prepared for submission to ACM SIGCHI.  

1.5 Student Contributions and Responsibilities 

The following table conveys my personal intellectual contribution in each aspect of the thesis. 

The following student was conducting in the Tech3Lab. According to the standards of the lab, 

an overall level of 50% in contribution is expected by the student. For dimensions where my 

personal contribution exceeds 50%, it suggests leadership and ownership of the corresponding 

phase (see table 1).  

Stage in the process Contribution 

Research Question Identified gaps in the current literature and defined the research problem 

and its implications [55%] 

- Tech3Lab co-directors helped refine the research problems 

- Defined research questions and identified the constructs to be 

tested. 

Literature review Conduct relevant research, reading scientific articles related to the topic 

[90%] 

- Tech3Lab co-directors provided feedback and comments 

Experimental 

design 

Designing and development of the experimental protocol [50%] 

- Tech3Lab members helped design the experimental protocol 

Determining the operational stimuli [80%] 
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- Thesis supervisors and Tech3Lab research team approved the 

operational stimuli 

Applying to the CER [50%] 

- Tech3Lab members helped prepare the documentation related to 

the submission of the application to the CER 

Data Collection Recruitment of participants [30%] 

- Tech3lab recruited all participants through Panelfox 

- Provided the criteria for participation for the study 

Pre-testing and data collection operations management [50%] 

- Recruited and pre-tested with 10 participants with the assistance 

of Tech3Lab research assistants 

- Designed and tested experiment conditions 

Collecting data [50%] 

- Oversaw the entire data collection process and operations 

- Tech3Lab research team moderated the study and distributed the 

compensation to participants 

Statistical Analysis Performing statistical analysis [55%] 

- Extraction and treatment of the data to synchronize all instruments 

by Tech3Lab Statistician Shang Lin 

- Programming of statistical analyses on SAS revised and approved 

by the Tech3Lab Statistician Shang Lin 

- Interpretation and synthesis of the results by the student 

Thesis writing Redaction of thesis and articles [80%] 

- Thesis co-supervisors provided comments and corrections to my 

drafts 
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Table 1.Student contributions and related responsibilities in this thesis. 
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Chapter 2: Methodological Study 

Gaze Transition Analysis: An Implementation of Gaze Analytic Methods to Evaluate Users’ 

Performance and Interface Learnability 

Jia Xuan Zheng, Alexander-John Karran, Constantinos K. Coursaris, Pierre-Majorique Léger, 

and Sylvain Sénécal 

Abstract 

The recent surge in technological advances calls for the design of user-friendly interfaces with 

substantiated learnability, a crucial aspect of user experience. Learnability can be referred to as the 

extent to which digital products and services allow users to quickly become familiar with them 

and make good use of all their features and capabilities. Its role is crucial, as it can impact user’s 

ability to understand and use a digital platform. The present paper aims to identify eye-tracking 

gaze heuristics that are associated with an intuitive interface, offering the possibility to quantity 

the learnability of an interface with real-time data. Thirty-three participants watched an 

instructional video and subsequently attempted to replicate the demonstrated task on a novel 

interface in an attempt to evaluate the first-use learnability of the interface. Eye-tracking metrics 

— gaze transition entropy (GTE), coefficient K, Levenshtein distance, and gaze path lengths — 

were analyzed alongside task success rate and task completion time. Results suggest that the active 

participation condition yielded less predictable, yet more focused and effortful gaze patterns. 

Additionally, high performers consistently exhibited more focused and less chaotic gaze behaviors. 

Together, these findings call for the design of interfaces that encourage natural user exploration 

and suggest that integrating gaze metrics into usability assessments could provide a more nuanced 

and objective evaluation of learnability by focusing on visual attentional measures.  

Keywords: Gaze transition entropy, Visual Attention, Attention Dispersion, Learnability, Eye-

tracking, Interface Design 
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2.1 Introduction 

In today's fast-paced digital world, the need for easily learnable interfaces has become more 

crucial than ever. Modern users navigate through an unprecedented number of digital tools and 

applications daily, from workplace software to social media platforms and essential services like 

online banking and healthcare portals. As such, the rapid technology evolution requires users to 

constantly adapt to new ways of interacting with novel interfaces. Since user interfaces serve as 

the primary point of interaction between humans and technology, learnability, a critical aspect of 

interface design, directly influences how quickly and efficiently users can perform a task on a 

platform after initial exposure (Nielsen, 1993). Enhanced learnability in user interfaces can 

significantly reduce user frustration, accelerate technological adoption, and boost productivity 

(World Bank, 2024).  

The methods used so far in the measurement of interface learnability consists mostly of 

psychometrics and behavioural measures (Unsöld, 2018). However, recent developments in the 

field of Human-Computer Interaction (HCI) suggest that eye-tracking technology is a potential 

tool to use by capturing real-time data on user interactions with an interface through gaze heuristics 

(Eckstein et al., 2017). Tracking user gaze behaviours can provide detailed insight into where users 

allocate their attention and their cognitive processes while they navigate through an interface. 

Additionally, it may also be possible to infer the characteristics of gaze behaviors that are 

associated with a learnable interface and provide a guideline for better interface design.  

Thus, this study proposes a novel method of assessing interface learnability, utilizing eye-

tracking technologies to provide rich gaze behaviour data to provide insight into the cognition of 

users while they are interacting with a novel interface.  

2.2 Research objective 

The increasing complexity of digital interfaces demands a more systematic approach to 

evaluating learnability. Our study explores how eye-tracking metrics, particularly gaze patterns, 

could provide objective measures for assessing interface learnability. Through this exploratory 

research, we aim to investigate whether gaze entropy and related metrics can serve as reliable 
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indicators of how easily users can learn and navigate an interface. This approach introduces a shift 

from traditional subjective evaluation methods toward quantifiable, data-driven measurements of 

interface learnability. 

RQ – To what extent can gaze transition heuristics assess the learnability of an interface? 

We conducted a laboratory study with 33 participants to examine their gaze patterns while 

interacting with a novel interface. Going beyond traditional eye-tracking measures like saccades, 

fixations, and scan paths, we implemented a novel matrix analysis technique to generate more 

comprehensive eye movement metrics. 

2.3 Literature review 

2.3.1 Learnability 

Definitions 

The core of a good user experience (UX) is usability and utility (Bergstrom & Schall, 2014). 

While utility refers to “whether the functionality of the system in principle can do what is needed 

[...], usability is the question of how well users can use that functionality” (Nielsen, 1993).  

 

Figure 1. Model of the attributes of system acceptability, adapted from Nielsen (1993). 
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Usability itself is divided into multiple components and is traditionally associated with the 

following five usability features (see Figure 1): Learnability, efficiency, memorability, errors, and 

satisfaction (Nielsen, 1993). There seems to be a lack of a universally accepted definition of 

learnability within the Human-Computer Interaction (HCI) community. There are several broad 

categories of definition, ranging from definitions based on initial user learning, extended learning, 

to learning as a function of experience (Grossman et al., 2009).  

Within the field of UX, learnability is often referred to as the extent to which digital 

products and services allow users to quickly become familiar with them and make good use of all 

their features and capabilities. While some definitions focus on initial learning “how quickly users 

learn to operate the software (Shneiderman et al., 2009), other definitions includes both initial and 

long-term learning “the ease with which new users can begin effective interaction and achieve 

maximal performance” (Dix et al., 2004), or “minimally useful with no formal training, and should 

be possible to master the software” (Rieman, 1996). One study surveyed articles published in CHI 

and TOCHI, in an attempt to demonstrate the differing definitions of learnability and out of the 88 

papers dating from 1982 to 2008, they highlighted more than eight different categories of 

learnability definitions (Grossman et al., 2009).  

It would also be relevant to discuss the definitions of organizations such as the International 

Organization for Standardization (ISO), which refer learnability as “capability of a product to have 

specified users learn to use specified product functions within a specified amount of time” ([ISO], 

2023). This definition is slightly different from its previous version that defined learnability as “the 

degree to which a product or system can be used by specified users to achieve specified goals of 

learning to use the product of system with effectiveness, efficiency, freedom from risk and 

satisfaction in a specified context of use” ([ISO], 2011).  

While researchers typically customize their definitions to align with the specific aspects 

they're investigating, all these varying interpretations share a common goal: understanding what 

makes a system easy for users to learn.  

For the purpose of this study, we have chosen to adopt the ISO’s 2011 definition of 

learnability for its comprehensive nature and its alignment with our objective to determine 

pertinent eye-tracking metrics related to learnability through measuring user performance.  
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2.3.2 Learnability vs. Discoverability 

Similar to the concept of learnability is discoverability, a recent term that emerged in HCI 

research (Mackamul et al., 2024). While learnability focuses on specific aspects related to 

performance while also covering some period beyond initial interactions (Grossman et al., 2009), 

discoverability has an emphasis on the initial intuitive perception and understanding, answering 

the question “is it possible to even figure out what actions are possible and where and how to 

perform them?” (Norman, 2013). In the context of HCI research, system discoverability is focused 

on whether potential users notice the overall system and recognize it as something they can interact 

with, rather than getting familiar with how to use them.  

While discoverability shapes initial user interactions, learnability is crucial for the long-

term adoption of a system. Highly discoverable features might not be relevant if users fail to adopt 

them, directly impacting user satisfaction and sustained engagement with the system. Given its 

significance for user adoption and system success, this study focuses on learnability as the primary 

focus for evaluation. 

2.3.3 The role of learnability 

The role of learnability is crucial, as it can impact user’s ability to understand and use a 

digital platform. Learnability is the most fundamental usability attribute since all users need to 

learn how to use a new system for the first time, which implies that most systems need to be easy 

to learn (Nielsen, 1993). In other words, the easier it is to learn a system, the more “intuitive” it is. 

In the domain of UX, the goal is to reduce the effort, time and training users need to start using an 

interface. A system or a software that is difficult to learn can lead to user frustration. All in all, as 

the world becomes increasingly digital, the demand for intuitive, user-friendly interfaces has never 

been greater. A deeper understanding of learnability can lead to insights on how users process 

information and acquire new skills in a multimedia environment and contribute to the design of 

digital tools that are optimized for diver user groups.  

2.3.4 Existing methods of learnability evaluation 

Usability evaluations can be either formative or summative (Nielsen, 1994). While 

formative assessments focus on the process leading to the completion of a product, summative 
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assessment considers the final product. This distinction can also be made for learnability 

evaluations, where formative evaluations should expose learnability issues, while summative 

evaluations should assess a system’s overall learnability (Grossman et al., 2009). In the category 

of formative learnability evaluation methodologies, there are subjective methods such as the Diary 

method, Think Aloud Protocol, or the Questions-Suggestion Protocol which gives insights into 

participants’ cognitive processes but are also prone to high levels of subjectivity (Ericsson & 

Simon, 1984).  

As for the summative learnability evaluation methodologies, there are performance-based 

measurements, which can be made by using the following learnability metrics that are most 

relevant to the system interface (see table 2). Observations are also frequently employed to conduct 

summative evaluations of interface learnability. For example, techniques such as Data logging, C-

INCAMI framework, with a combination of several other methodologies like expert evaluations 

and user tests are used to investigate different aspects of usability (Rafique et al., 2012). 

Task Metrics: Metrics based on task performance  

T1. Percentage of users who complete a task optimally (Linja-aho, 2005). 

T2. Percentage of users who complete a task without any help (Linja-aho, 2005). 

T3. Ability to complete task optimally after certain time frame (Butler, 1985).  

T4. Decrease in task errors made over certain time interval (Michelsen et al., 1980)  

T5. Time until user completes a certain task successfully (Nielsen, 1994) 

T6. Time until user completes a set of tasks within a time frame (Nielsen, 1994).  

T7. Quality of work performed during a task, as scored by judges (Davis & Wiedenbeck, 1998).  

Command Metrics: Metrics based on command usage  

C1. Success rate of commands after being trained (Carroll et al., 1985). 

C2. Increase in commands used over certain time interval (Michelsen et al., 1980).  
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C3. Increase in complexity of commands over time interval (Michelsen et al., 1980). 

C4. Percent of commands known to user (Baecker et al., 2000).  

C5. Percent of commands used by user (Baecker et al., 2000). 

Mental Metrics: Metrics based on cognitive processes  

M1. Decrease in average think times over certain time interval (Michelsen et al., 1980). 

M2. Alpha vs. beta waves in EEG patterns during usage (Stickel et al., 2007) 

M3. Change in chunk size over time (Santos & Badre, 1995). 

M4. Mental Model questionnaire pretest and post test results (Paymans et al., 2004) 

Subjective Metrics: Metrics based on user feedback  

S1. Number of learnability related user comments (Michelsen et al., 1980).  

S2. Learnability questionnaire responses (Lin et al., 1997) 

S3. Twenty-six Likert statements (Elliott et al., 2002) 

Documentation Metrics: Metrics based on documentation usage  

D1. Decrease in help commands used over certain time interval (Michelsen et al., 1980). 

D2. Time taken to review documentation until starting a task (Michelsen et al., 1980). 

D3. Time to complete a task after reviewing documentation (Michelsen et al., 1980). 

Usability Metrics: Metrics based on change in usability  

U1. Comparing “quality of use” over time (Bevan & Macleod, 1994) 

U2. Comparing “usability” for novice and expert users (Bevan & Macleod, 1994) 

Rule Metrics: Metrics based on specific rules  

R1. Number of rules required to describe the system (Howes & Young, 1993) 

Table 2. Categories of learnability metrics, adapted from Grossman et al. (2009) 
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Evaluating learnability remains a significant challenge due to limitations in existing 

methods. Many current methods are either costly, invasive, or too reliant on subjective self-reports, 

which might not capture individuals’ actual thoughts and cognitive processes. For example, 

performance-based measurements, though quantifiable, provide only surface-level insights and 

fail to uncover the underlying cognitive mechanisms driving these outcomes. More advanced tools 

like electroencephalogram answer this problem, and can provide insights into cognitive processes, 

but are costly, invasive and require trained experts to analyze the data (Frey et al., 2014). These 

limitations become more pronounced in multimedia environments, where it is required to test users’ 

performance while they navigate complex systems and experience frequent shifts in attention 

(Marrella & Catarci, 2018).  

As such, current methods lack to provide a non-invasive, cost-effective approach that 

captures objective, real-time data on individuals’ cognitive processes, and attention allocation 

strategies while they familiarize themselves with a novel system. The next section will be 

dedicated to introducing eye-tracking technology as a promising solution that will address these 

limitations.  

2.3.5 Eye-tracking in HCI research 

Eye-tracking is a rich experimental method that has recently surged in popularity over the 

last few years (Carter & Luke, 2020). Being able to track individuals’ eye movements can help 

HCI researchers understand visual and display-based information processing and the factors that 

have an influence on the usability of system interfaces (Poole & Ball, 2006). In fact, eye-tracking 

makes it possible to detect where users look at any point in time, how long they look at an object, 

and the path that their eyes follow. It can also directly capture how individuals allocate their visual 

attention while performing a task (Carter & Luke, 2020). By monitoring eye movements, 

researchers can infer real-time cognitive load, decision-making, and information processing 

strategies (Duchowski, 2007). This method is particularly relevant for tasks involving complex 

visual stimuli, allowing for a detailed analysis of how visual attention supports cognitive functions 

like memory, problem-solving, and learning (Eckstein et al., 2017). In UX research, eye-tracking 

helps researchers understand the complete user experience, which often users themselves cannot 
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describe (Schall & Romano Bergstrom, 2014). Eye-tracking reveals patterns of focus, gaze 

duration, and saccadic movements, which correlate with underlying mental activities.  

In modern eye-tracking technologies, gaze behaviours are tracked through an array of 

infrared or near-infrared light sources and cameras (Holmqvist et al., 2011). It relies on a method 

called corneal reflection, which detects and track the location of the eye as it moves. Corneal 

reflection uses a light source to illuminate the eye, which then causes a reflection of the light source 

on the cornea and in the pupil. Advanced image processing algorithms are then used to establish 

the point of gaze related to the eye and the stimuli (Bergstrom & Schall, 2014). Eye-tracking has 

been applied to many fields including human factors, cognitive psychology, marketing, and the 

broad field of human-computer interaction. In user experience research, eye tracking helps 

researchers understand the complete user experience, even that which users cannot describe 

(Bergstrom & Schall, 2014). Across all fields of research using eye-tracking as a research method, 

areas of interest (AOIs) are used to link eye-movement measures to parts of the stimulus used 

(Hessels et al., 2016).  

Applications of the eye-tracker within HCI research include but does not limit to usability 

evaluations, understanding user behavior during interactions with systems, interface design or 

accessibility studies among many others (Poole & Ball, 2006). For examples, some researchers 

have used the eye-tracker to analyze web reading behavior, and some others to understand 

neurodivergent students’ thought patterns (Beymer & Russell, 2005; Wong et al., 2023).  

2.3.6 Eye movements and the brain 

The preceding discussion highlighted numerous applications of eye-tracking, which 

generate a diverse array of eye-tracking metrics based on eye movements. However, questions 

remain regarding the interpretation of these metrics and the extent to which eye movement patterns 

correspond to underlying cognitive processes. An emerging area of research focuses on the use of 

the eye as window to changes occurring in the brain (Nguyen et al., 2021) The relationship between 

visual experiences and cognition emerges from complex interaction between the eyes, the brain, 

and the surrounding environment (Burr, 2011). According to the eye-mind hypothesis (EMH), 

there is a close relationship between what a person fixates on, and what their mind processes (Just 
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& Carpenter, 1976). Similarly, it has been suggested that eye movements provide a dynamic trace 

of where attention is being directed (Just & Carpenter, 1980). This relationship is particularly 

pertinent when evaluating individuals’ gaze patterns while performing a task on a novel interface 

where visual attention is a key factor in understanding the cognition of users while assessing 

interface learnability. As such, in the context of eye-tracking research, the EMH hypothesis means 

that eye-movement recordings can provide a dynamic trace of where a person’s attention is being 

directed in relation to a visual display (Poole & Ball, 2006). Eye movements thus provide a non-

intrusive window into how the brain processes information during sophisticated cognitive 

activities.  

Prior research has suggested that part of perception is also about trying to understand how 

preconceived concepts or mental models can influence what is going to be perceived, a 

phenomenon known as top-down cognitive processing (Rai & Le Callet, 2018). In this cognitive 

processing model, the brain’s ability to guide behaviour is based on prior knowledge, expectations 

and goals, rather than reacting purely to external stimuli (Grondin, 2016). Top-down, also known 

as goal-directed attentional control is the result of the observer’s deliberate state of attentional 

readiness (Egeth & Yantis, 1997) 

The eyes and brain are closely interconnected, primarily through the optic nerve, which 

transmits visual information from the retina to the brain's visual cortex (Zakiniaeiz, 2016). Based 

on neural pathways that convey higher order information to antecedent cortical structures, top-

down signals from the brain conveys rich information that helps the individual process and 

interpret the visual scene before them (Gilbert & Li, 2013). Beyond basic visual processing, eye 

movements are controlled by cognitive mechanisms in the brain that manage attention, decision-

making, and memory (Wolf & Lappe, 2021). By analyzing patterns like fixations, saccades, and 

pupil dilation, we can infer aspects of cognitive load, emotional state, and how the brain allocates 

attention (Wolf & Lappe, 2021). This provides insights into mental effort, stress, and decision-

making processes during complex tasks, revealing how individuals prioritize visual information 

and shift their attention (Najemnik & Geisler, 2005; Yarbus, 2013). Brain regions like the frontal 

eye fields and the prefrontal cortex modulate this voluntary, goal-driven eye-behaviour, allowing 

individuals to direct their gaze towards task-relevant information while filtering distractions (Treue, 
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2003). These areas coordinate the selection and execution of eye movements based on attentional 

and goal-driven demands. For instance, voluntary saccades are controlled by top-down cognitive 

processes, allowing the eyes to shift focus to relevant stimuli (Treue, 2003). Moreover, the basal 

ganglia and cerebellum help fine-tune and regulate these movements (Kellermann et al., 2012). 

For example, in a visual search task, top-down control enables selective attention, prioritizing 

important features based on goals (Posner & Petersen, 1990). These processes are crucial in 

controlling eye movements and support efficient task performance by optimizing visual attention 

and decision-making. By analyzing these eye movements, it is possible to infer how cognitive 

control and decision-making operate in real-time (Duchowski, 2007). 

2.3.7 Attention: Stimulus-driven and goal-oriented 

Another interesting cognitive process to highlight in the study of visual interactions with a 

novel interface is visual attention, another important component of higher-level cognition, which 

refers to attentional processes that allows for the selective processing of day-to-day information 

(Stevens & Bavelier, 2012). William James (1890) made an important distinction in how attention 

works. He identified two main types of attention: passive and active attention. In more recent terms, 

passive attention is referred to as “bottom-up” or “stimulus-driven” attention, whereas active 

attention is referred to as “top-down” or “goal-directed” attention. It has been suggested that visual 

perception is consisted of three parts, the foveal, parafoveal, and the peripheral vision for which 

acuity decreases respectively (Liversedge et al., 2011). Since the capacities of the perceptual 

system are limited, focusing on a certain aspect of the visual field enables us to prioritize relevant 

information and ignore irrelevant information (Klatt & Memmert, 2021).  

Visual selective attention is thought to be both goal directed when attentional priority is 

given to only those objects and events that are in line with the current goals of the observer; and 

(2) stimulus-driven when, irrespective of the intentions or goals of the observer, objects and event 

involuntarily receive attentional priority, a phenomenon referred to as “attentional capture” 

(Monsell & Driver, 2000). The dwell time of attention in visual search. The movement of attention: 

it is widely accepted that attention can be shifted from one location to another in the visual field 

without any concomitant movements of the eyes (Egeth & Yantis, 1997). Several investigators 

have obtained the results that they took to support the idea that, like a spotlight, attention moves 
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continuously through space (Shulman et al., 1985). Pattern recognition and target detection (Posner 

& Petersen, 1990).  

2.3.8 Relevant gaze heuristics generated through eye-tracking 

Eye-trackers reveals many different types of gaze heuristics, allowing for the 

understanding and interpretation of many cognitive processes (Holmqvist et al., 2011). Among 

many others, eye-trackers can track traditional eye-tracking metrics ranging from saccades, 

fixations, pupil dilation, to smooth pursuits, vergence, and tremors (Goldberg & Kotval, 1999).  

However, these measures have several limitations when trying to understand deeper 

insights about cognitive processes and visual scanning strategies in novel interface user 

interactions. Studies have shown that, traditional metrics do not account for sequential information, 

thus limiting information about the temporal order, or pattern of visual exploration (Hayes et al., 

2011). Additionally, simple metrics cannot reveal participants’ cognitive processes, such as 

information about their intent, nor can they distinguish between exploratory versus focused 

viewing behaviors. They also do not capture how one’s viewing strategy might evolve over time, 

especially during the course of a visual search task with different stimuli. Finally, traditional 

metrics experience integration limitations, which reveals little about how different aspects of 

perception behaviours work together and form insightful patterns that might indicate individuals’ 

cognitive state.  

From instructional design (De Bruyne et al., 2024), to visual scanning strategies (Nahlik & 

Daubenmire, 2022), recent studies in different fields have suggested that advanced eye-tracking 

methods may provide richer, and more complex information than traditional eye-tracking metrics 

(Krejtz et al., 2016). 

Gaze transition matrix: 

Gaze transition matrix (GTM) is a fundamental component in calculating gaze transition 

entropy (GTE) and analyzing eye movement patterns. It represents the probability distribution of 

eye movements between predefined Areas of Interest (AOIs) in a visual interface, revealing 

insights about the randomness or systematicity of scanning patterns. Krejtz et al. (Krejtz et al., 
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2015) introduced this method, which consists of first creating a transition matrix that captures the 

sequential pattern of eye fixations of a participant while performing a task. The core components 

of the transition matrix structure include: 

𝒾 = 𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠	𝑒𝑎𝑐ℎ	𝑟𝑜𝑤	𝑜𝑓	𝑡ℎ𝑒	𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝐴𝑂𝐼	𝑏𝑒𝑖𝑛𝑔	𝑣𝑖𝑒𝑤𝑒𝑑 

𝑗 = 𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠	𝑒𝑎𝑐ℎ	𝑐𝑜𝑙𝑢𝑚𝑛	𝑜𝑓	𝑡ℎ𝑒	𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙	𝑛𝑒𝑥𝑡	𝐴𝑂𝐼 

The formula that allows for the calculation of entropy values is as follows: 

𝐺𝑇𝐸 = 	−∑!"#$ 𝑝!∑%"#$ 𝑝!%𝑙𝑜𝑔&𝑝!% 

𝑖 ≠ 𝑗 

Where n represents the number of AOIs, and Pi is the simple probability of viewing the ith 

AOI, pij is the conditional probability of viewing the jth AOI given the previous viewing of the ith 

AOI (Krejtz et al., 2015). These matrix cells contain transition probabilities (pij) from one AOI to 

another, which are derived from observed eye movements during task performance. Each fixation 

sequence is then modeled as a Markov chain, where the state space S consists of all defined AOIs, 

numbered 1 to s and all transition probabilities (pij) remain constant over time. It is important to 

note that each transition depends only on the current state, not previous states. The next step 

involves probabilities calculations, where each cell value (pij) represents the likelihood of the eye 

moving from AOI i to AOI j, within a specified time interval. The matrix thus allows for the 

calculation of gaze transition entropy (GTE), a metric used in eye-tracking research to 

quantitatively describe visual behavior by analyzing the transitions between different areas of 

interest (AOIs) on a visual display (Krejtz et al., 2015). It is “the rate of fixations transitions 

between defined spatial regions”, which indicates an overall estimation for the level of complexity 

or randomness in the patterns of visual scanning relative to stationary entropy.  

While considering the overall spatial dispersion of gaze, we can interpret higher entropy 

being associated with less predictability (Shiferaw et al., 2019). The scanning patterns of 

individuals can be analyzed with gaze entropy analysis, which allows for the quantification of 

attention distribution, and the extent of exploration (Krejtz et al., 2015). Calculating transition 

entropy values for individual subjects’ transition matrices is an approach that allows the 

measurement of the extent to which the temporal sequence of eye movements is ordered or random 
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during a computer-based task. When applied to eye-tracking data, gaze transition entropy describes 

the amount of information required to describe the visual strategies followed by a user of a 

computer application interface.  

Previously, GTE has been applied in various domains to analyze group gaze behaviours 

(Lanini-Maggi et al., 2021). For example, using GTE to compare participants’ gaze transitions 

from viewing paintings from different classical periods helped reveal participants’ curiosity and 

subjective attractiveness can be captured by transition entropy (Krejtz et al., 2015). The optimal 

range in gaze transition entropy can be considered the ideal level of scanning complexity that 

results from modulation of the underlying bottom-up influence by top-down prediction, and where 

gaze transition entropy is expected to increase with greater top-down engagement. Gaze transition 

and stationary entropy can provide more precise insights into the viewer’s state (Shiferaw et al., 

2019).  

Lower GTE values represent higher systematic and structured scanning patterns, and 

higher GTE values represent more random and exploratory scanning. Higher transition entropy 

values denote more randomness and more frequent switching between AOIs. Our modification of 

Krejtz’s method involves using an N-by-N matrix to automatically define AOIs on an interface, 

which is time saving and allows us to use 36 AOIs to calculate the GTE, providing a more granular 

analysis.  

Attention dispersion (Coefficient K) 

Another advanced metric of interest is Coefficient K, first introduced in eye-tracking 

research by Krejtz et al. (Krejtz, 2016), which serves to distinguish between ambient and focal 

attention. It is calculated based on the velocity of eye movements, specifically saccades, and the 

duration of fixations. The coefficient helps identify the type of attention being employed: ambient 

attention, characterized by faster saccades and shorter fixations, is typically used for scanning a 

scene, while focal attention, marked by slower saccades and longer fixations, is associated with 

detailed examination of specific areas of interest. By quantifying these patterns, Coefficient K 

provides a means to assess the attentional state of an individual, enabling researchers to 

differentiate between broad, exploratory behavior and more concentrated, focused attention. This 
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metric has been used in various contexts, such as understanding visual behavior in dynamic 

environments and in tasks requiring different levels of cognitive load (Krejtz, 2016).  

The calculation of coefficient K, involves the transformation of fixation durations (dwells) and 

saccade amplitudes into a standard score (z-score), allowing computation of an ambient/focal 

attentional coefficient per individual scan path. More specifically, the transformation of raw data 

from saccade amplitude and fixation duration into standard scores, representing the distance 

between the raw score and the mean in standard deviation units, allows for a direct mathematical 

comparison of both measures. K is derived, through the calculation, for each participant, of the 

mean difference between standardized values (z-scores) for each saccade amplitude (ai+1) and its 

preceding ith fixation duration (di): 

𝐾! =	
𝑑! −	𝜇'
𝜎'

−	
𝑎!(# −	𝜇)

𝜎)
 

𝑆𝑢𝑐ℎ	𝑡ℎ𝑎𝑡 

𝐾 =	
1
𝑛	I𝐾!

$

 

 

The statistical parameters encompass the means (μd, μa) and standard deviations (σd, σa) 

of fixation durations and saccade amplitudes, respectively, computed across all n fixations 

recorded during the complete stimulus presentation, resulting in n distinct Ki coefficients over the 

entire duration of stimuli presentation (Krejtz et al., 2012). Application of the K-coefficient as a 

parametric scale in eye-tracking research has been used in analyzing eye movement patterns during 

packaging usability studies, or in visual exploration during website-based task among 

others(Carbonell et al., 2019; Wals & Wichary, 2023). 

Scanpath analysis: Levenshtein distance and scan paths length 

According to the Scanpath Theory by Noton and Stark (Noton & Stark, 1971), individuals 

perceiving a scene store both the scene features and the gaze sequence that was used to inspect 

that scene. This theory has been supported by many experimental eye-tracking studies, whose 

results supported the idea that individuals’ scanpath patterns were more similar within an 

individual and between individuals. This evidence supports the hypothesis that internal cognitive 
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structures control not only eye-movements, but also the perception process itself. Using the 

scanpaths generated by the GTM, it is possible to compare two scanpaths by computing the 

Levenshtein distance, a string-based that allows for the comparison between two sets of strings 

(Privitera, 2000).  

The discriminative power of this method stems from its ability to map on series of fixations 

using alphabetic characters (Fahimi & Bruce, 2021). Additionally, using this method will generate 

Levenshtein distances that will reveal information about group gaze behaviours, such as the length 

of participants’ scanpaths (Davies et al., 2018).  The transformation of participants’ scanpaths into 

quantifiable measures involves several sequential steps, based on Davies’ method (Davies et al., 

2018). First, individual scanpaths are calculated for each subject based on their eye movement 

recordings, and from these individual trajectories, the average scanpath length is computed per 

subject to establish their typical viewing pattern. This generates the average scanpath length 

according to each participant.  

To assess individual deviation from group behaviour, which will provide a measure of 

individual viewing behaviour relative to the group norm, scanpath lengths were aggregated across 

the entire subject population to derive population-level metrics. Finally, the Levenshtein distance 

is calculated between each subject’s scanpath and the population average, quantifying the degree 

of dissimilarity between individual and group-level scanning patterns. This method will reveal 

information about how closely a user’s interaction aligns with an optimal path, gauging how 

learnable an interface is. Altogether these real-time, objective data allows for a quantitative 

assessment of learnability, offering insights beyond what traditional methods can provide. 

Proposed Approach 

In this study, we will introduce a novel method of evaluating interface learnability based 

on Krejtz et al.’s work on gaze transition entropy (2015). The primary objective of this study is to 

evaluate interface learnability through the analysis of users' gaze heuristics during interaction with 

novel interfaces. Specifically, we examine gaze transition entropy values generated from automatic 

Areas of Interest (AOIs) using an N-by-N grid system. This methodology aims to identify specific 

gaze metrics that correlate with highly learnable interfaces. To validate our approach and provide 

deeper insights, we tested the following hypotheses: 
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H1: Participants will exhibit higher k-coefficient values, lower GTE values, and shorter 

path lengths in the passive conditions than in the active condition.   

H2: High task performers, as defined by higher success rates and shorter completion times, 

will exhibit higher K-coefficient values, shorter path lengths and lower GTE values during 

their task performance. 

2.4 Materials and methods 

2.4.1 Participants 

Thirty-three participants (aged 19-64, x̅ = 29.30, σ = 10.50, 17 males) participated in the 

current study. Six participants’ data were removed due to signal errors, leaving twenty-seven 

participants at the analysis stage. All participants were recruited via a research panel and were 

screened-in to be at least 18 years old and not to be susceptible to certain conditions (Epilepsy, 

astigmatism, cataracts, Lasik surgery or skin sensitivities). Additionally, participants must have 

had no previous experience with the software that we used for the study. All participants were 

compensated $30 for their participation in the study.  

2.4.2 Ethics statement 

The study was approved by the HEC Research Ethics Board (REB) under certificate 

number 2024-5919. Participants signed an informed consent form prior to the start of the 

experiment and were informed of their right to stop their participation at any time during the study.  

2.4.3 Apparatus and instruments 

The study was conducted in an experimental laboratory setting (see figure 2). In the 

observation room, there were three monitors (23.8-inch HP EliteDisplay E243m with a 1920 x 

1080 resolution) that showed respectively, the participant’s screen (mirrored), the moderator screen, 

and the cobalt capture screen. Both participant’s and the moderator screen were connected to the 



   
 

43 
   

 
 

      

PC that ran the Tobii eye-tracking software, Tobii Pro Lab version 1.241 (Tobii Technology Inc. 

Stockholm, Sweden), while the cobalt capture screen was connected to the capture PC. 

In an adjacent room, the experimental room contained one participant screen that was 

connected to the Tobii PC. The moderator and research assistants were in the observation room, 

where the Tobii computer, the moderator screens, and the capture computer were installed. The 

participant will be in a separate experimental room, where they viewed the stimulus on one screen. 

One microphone system was connected between the two rooms to allow the moderator to give 

instructions to the participants. Additionally, participants gaze data was recorded using Tobii Pro 

Lab (Tobii Technology Inc. Stockholm, Sweden), which was connected with the Tobii Pro Fusion 

120 Hz eye-tracker (Tobii Technology Inc. Stockholm, Sweden).  

An eye tracker, consisting of cameras, illuminators and algorithms was installed on the 

participant’s screen. The illuminators within the eye tracker create a pattern of near-infrared light 

on the eyes, while the cameras take high-resolution images of the user’s eyes and the patterns. 

Next, the image processing algorithms find specific details in the user’s eyes and reflections 

patterns. Finally, based on these details, the eyes’ position and gaze points are calculated using a 

sophisticated 3D eye model algorithm (Tobii, 2022). Self-perceived measures of learnability were 

completed on Qualtrics. Participants’ facial expressions were recorded with “Cobalt Capture 

version 2”, using the software Facereader 8.0 (Noldus Information Technology, 2017). This 

allowed us to gather precise and temporal gaze data. The following synchronization figure shows 

how the equipment and instruments were connected to ensure valid data synchronization. 
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Figure 2. Study Set-up  
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2.4.4 Data collection Procedure 

Participants were then presented with a consent form that clearly detailed the ensuing study 

(see Figure 5). Once the participant had consented and agreed to participate in the study, they were 

guided to the test room, where they proceeded with the calibration of the eye tracker.  

Participants were randomly assigned to one of two experimental conditions using 

counterbalanced task ordering: Condition A (Task 1: Gradient replication task followed by Task 2: 

Pen tracing task) or Condition B (Task 2: Pen tracing task followed by Task 1: Gradient replication 

task). This counterbalancing design controlled for potential order effects and ensured equal 

representation of task sequences across participants. Each task commenced with participants 

viewing a standardized video tutorial demonstrating the required procedure, after which they were 

instructed to reproduce the demonstrated technique using the designated software tools. 

While both tasks required visual-motor coordination within the same software environment, 

they differed fundamentally in their attentional demands, subsequently making them ideal for 

comparing how different eye movement patterns affect viewing outcomes under controlled 

conditions. During Task 1, the participant was asked to use a color gradient tool to replicate an 

example design (See Figure 3). The task itself required users to engage in back-and-forth eye 

movement motions as participants have to repeatedly shift attention between the gradient tool 

interface, the color selection panels, and the target design area to match chromatic values and 

spatial distributions to replicate what they saw during the tutorial. During Task 2, the participant 

was asked to use a pen tracing tool to complete a drawing (See Figure 4). In contrast, this second 

task required linear eye movement patterns as participants tracked and replicated the actions 

demonstrated in the video tutorial. Both tasks were performed on the same software, under the 

same standardized conditions. 
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Figure 3. Stimuli for task 1 

 

 

Figure 4. Stimuli for task 2 
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Following the completion of each task, participants were asked to answer self-reported 

questions on the perceived learnability of the digital interface on which the task was performed. 

Participants were allowed to leave at any time with no given reasons. After the completion of both 

tasks, participants were compensated with an amount of $30. 

 

 

Figure 5. Study Protocol 
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2.4.5 Statistical analysis 

The initial decoding of the eye-tracking data is performed on Python (version 3.7), allowing 

us to obtain the following data: Gaze transition entropy, K-coefficient, and pupil dilation 

measurements. Next, the clustering of the gaze paths based on the Levenshtein distances were 

calculated in R (version 4.3.2). Finally, regular statistical tests were performed on SAS (version 

9.4). Due to technical problems with the eye tracking device, the eye tracking data of 7 participants 

were removed from the analysis. There was a total of 26 valid recordings. Statistical significance 

was defined at a p-value of below .05.  

To study the gaze behaviours of participants across conditions and to ensure the 

comparability of gaze transition entropy (GTE) across participants and tasks, we normalized the 

entropy values. Next, we calculated the average transition entropy values and the k-coefficient 

values of participants in each condition, and across tasks. Additionally, Levenshtein distances were 

obtained by subtracting the average path lengths of all participants in each condition with each 

participant. Finally, we extracted participants’ scores of the learnability dimension of the SUS 

according to standard practices and created group averages according to two clusters participant 

performance: high performers and low performers. Participant performance was determined on the 

basis of whether or not they succeeded in completing he task and their task completion time.  

We tested the effect of engagement condition on gaze heuristics (GTE, K-coefficient, gaze 

path length, and Levenshtein distance) using Wilcoxon signed-rank tests for paired data. To 

account for repeated measures, we used mixed-effects linear regression with participants as 

random effects when modeling the relationship between gaze heuristics and perceived learnability. 

Mixed-effects logistic regression with random intercepts for participants was applied to binary 

performance outcomes (success vs. failure), and linear mixed-effects models were used for 

continuous outcomes such as task time. To account for type I error from multiple comparisons, 

Bonferroni correction was applied. 

2.5 Results 

Gaze heuristics among video engagement conditions 
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Length of the gaze path: 

A Wilcoxon signed-rank test was conducted to compare the length of gaze paths in the two 

video tutorial engagement conditions (see figure 4): passive (M=176.62, SD= 254.111) and active 

(M=203.096, SD=146.769). The results of the analysis showed that there were no significant 

differences between the two conditions (p=0.4625, S=28). 

 

Figure 6. Average gaze path length (mm) according to the video engagement condition during task 

performance in both tasks. 

However, if we were to look at the task level (see figure 5), the length of gaze paths in task 

2 were significantly longer in the active condition (p=.003, S= -112) than the passive condition, 

while there were no significant differences for task 1 (p = .58, S= -22.5).  
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Figure 7. Average path length (mm) according to the video engagement condition by task. Level 

of significance: * = 0.05; ** = 0.01; *** = <0.001. 

Normalized GTE: 

A Wilcoxon signed-rank test was conducted to compare the gaze transition entropy of users 

in the two video tutorial engagement conditions (see figure 6): passive (M=0.42, SD=0.09) and 

active (M=0.45, SD= 0.09). The result of the analysis showed that there were no significant 

differences between the two conditions (p=0.1877, S= -52.5). 
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Figure 8. Average normalized gaze entropy values according to the video engagement condition. 

More specifically, if we were to look at the task level (see figure 7), the gaze transition 

entropy of users was significantly higher during the active condition in task 2 (p=.04, S= -78.5), 

while there were no significant differences for task 1 (p = .58, S= -22.5) 
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Figure 9. Average normalized gaze transition entropy values according to the video engagement 

condition. There was a significant difference in task 2 (p=.04). Level of significance: * = 0.05 ** 

= 0.01 *** = <0.001. 

K-coefficient: 

A Wilcoxon signed-rank test was conducted to compare the k-coefficient of users in the 

two video tutorial engagement conditions (see figure 8): passive and active. The k-coefficients of 

users in the active condition were significantly higher than those in the passive condition, (p=.0017, 

S= -115.5). 
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Figure 10.  Average k-coefficient values according to the video engagement condition. 

More specifically, if we were to look at the task level (see figure 9), k-coefficient of users 

were significantly higher during the active condition in task 2 (p=.004, S= -106.5), while there 

were no significant differences for task 1 (p = .50, S= -27.5) 
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Figure 11. Average k-coefficient values according to the video engagement conditions by task. A 

significant difference was observed in task 2 (p=.004). Level of significance: * = 0.05 ** = 0.005 

*** = <0.001.  

Mediators 

Cognitive load: 

A Wilcoxon signed-rank test was conducted to compare the pupil dilation of users in the 

two video tutorial engagement conditions: passive and active. The pupil dilation of users in the 

active condition was significantly greater than those who were in the passive condition (p=<.0001, 

S=-161.5). This significant difference was replicated in the task level where the pupil dilation of 

users in the active condition were greater than those in the passive condition for both T1 (p=<.0001, 

S=-159.5) and T2 (p=<.0001, S=-154.5). 
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Task Performance Results 

K-coefficient and task success rate 

A logistic regression was conducted to investigate the effect of k-coefficient on success 

rates. It was found that higher participants' k-coefficient values were associated with higher 

success rate (B=2.5346, SE B=1.1126, 95% CI [0.24, 4.83], p = .0158). 

Normalized GTE and task success rate 

A logistic regression was conducted to investigate the effect of GTE on success rates. It 

was found that higher GTE values were associated with lower success rate (B=-13.6735, SE 

B=5.9874, 95% CI [-26.0047, -1.3422], p = .0156). 

Path length and task success rate 

A logistic regression was conducted to investigate the effect of path length on success rates. 

It was found that longer path lengths were associated with lower success rate (B=-0.00428, SE 

B=.001685, 95% CI [-0.00764, -.00092], p = .0066). 

Distance and task success rate 

A logistic regression was conducted to investigate the effect of Levenshtein distance on 

success rates. It was found that longer Levenshtein distance were associated with lower success 

rates (B=-0.00901, SE B=.003005, 95% CI [-0.01520, -0.00282], p = .0030). 

Perceived learnability and task success rate 

A logistic regression was conducted to investigate the effect of perceived learnability on 

success rates. It was found that higher perceived learnability scores were associated with lower 

success rates (B= -0.6467, SE B= .2356, 95% CI [-1.1272, -0.1662], p = .005). 

K-coefficient and task completion time 
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A linear regression was conducted to investigate the effect of k-coefficient on time on task. 

It was found that higher k-coefficient values were associated with shorter time on task (B= -

76.1938, SE B= 23.1181, 95% CI [-123.91, -28.4805], p = .0015).  

Normalized GTE and task completion time 

A linear regression was conducted to investigate the effect of normalized GTE on time on 

task. It was found that higher GTE values were associated with longer time on task (B= 824.73, 

SE B= 156.28, 95% CI [502.18, 1147.27], p = <0.0001).   

Path length and task completion time 

A linear regression was conducted to investigate the effect of path length on time on task. 

It was found that longer path lengths were associated with longer time on task (B= .1618, SE 

B= .03562, 95% CI [.09083, .2327], p= <.0001). 

Distance and task completion time 

A linear regression was conducted to investigate the effect of Levenshtein distance on time 

on task. It was found that longer Levenshtein distances were associated with longer time on task 

(B= .4314, SE B= .06834, 95% CI [.2903, .5724], p = <.0001). 

Perceived learnability and task completion time 

A linear regression was conducted to investigate the effect of perceived learnability on time 

on task. It was found that higher self-reported perceived learnability scores were associated with 

longer time on task (B= .0076 SE B= .0013, 95% CI [.005, .0102], p = <.0001). 

 

2.6 Discussion 

This study examined how participants direct their visual attention and employ scanning 

strategies while interacting with software, with the goal of identifying gaze metrics that contribute 

to a learnable interface. Revisiting Schnotz & Bannert’s (Schnotz & Bannert, 2003) cognitive 



   
 

57 
   

 
 

      

model of multimedia learning, the design of the study incorporates notions of cognitive load into 

task performance on a multimedia platform. The research model was based on the works of works 

of Krejtz et al. (Krejtz et al., 2015), employing advanced eye metrics to analyze in thirty-three 

participants across different task scenarios and viewing conditions. The study examined how active 

versus passive conditions influenced participants' visual attention patterns during interface 

interaction tasks. Findings revealed that participants in the passive condition exhibited more 

concentrated gaze patterns, while scanpath lengths remained consistent across conditions. Those 

in the passive condition also showed reduced focal processing based on k-coefficient values. In 

the active condition, participants demonstrated more varied visual behavior with higher GTE. 

Across conditions, high-performing participants across both conditions displayed more efficient 

visual patterns, characterized by shorter paths, lower Levenshtein distances, higher k-coefficients, 

and lower GTE. Interestingly, participants who struggled with task performance, as defined by 

successful task completion and short time on task, reported higher perceived learnability scores. 
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2.6.1 Video tutorial engagement and gaze heuristics 

Passive Condition 

Aligned with the hypothesis predicting lower GTE values in the passive condition, the 

results demonstrated that participants in this condition, who were primarily engaged in observing 

and processing information, indeed exhibited reduced GTE values. This finding reinforces the 

notion that passive engagement, characterized by focused observation rather than active task 

performance, is associated with diminished gaze transitions between elements. These gaze patterns 

indicate more concentrated and predictable gaze patterns, which are generally associated with 

better comprehension and a more efficient learning process (Krejtz et al., 2015). This finding is 

consistent with that of Nahlik & Daubenmire (Nahlik & Daubenmire, 2022), who found that when 

students carefully scan through chemistry problems are more likely to experience lower transition 

entropy than instructors, who viewed the problem more randomly. As such, there seems to be an 

association between the amount of intent one processes visual information, with more intent 

resulting in lower GTE. However, it is important to note that significant differences were also only 

observed for task 2 of the study. A possible explanation for this might be due to the nature of the 

two different tasks. Task 1 required users to engage in back-and-forth eye movement motions to 

replicate the actions shown in the video tutorial, whereas Task 2 required involved rather linear 

eye movement motions for the same purpose. Consequently, it is more challenging to distinguish 

between the active and passive condition within Task 1, due to the chaotic nature of the task stimuli, 

which might have interfered with the results.  

Furthermore, our results suggest that there are not significant differences in participants’ 

scanpath lengths between the active and passive conditions, which align with Scanpath theory, 

suggesting that individuals store both scene features and the gaze sequence used to inspect that 

scene when perceiving their environment (Noton & Stark, 1971). Indeed, similarities of scanpaths 

within individuals validates the notion that each participants’ visual patterns are characteristic of 

individuals themselves due to their unique cognitive mental models. These results reflect previous 

research that have shown the idiosyncratic nature of scanpaths, based on the assumption that 

human visual perception is mainly seen as a top-down process, where internal cognitive models 

control what we perceive rather than external factors (Stark & Choi, 1996).  
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Contrary to expectations, the k-coefficient values were significantly lower in the passive 

condition, demonstrating less focal processing than the active condition (Krejtz, 2016). This 

finding broadly supports the work of other studies in this area linking higher focal processing, 

characterized by smaller saccades and longer fixations, with visual search behaviours for object 

recognition (Guo et al., 2022). Since k-coefficient acts as a dynamic indicator of fluctuation 

between ambient and focal visual scanning, these results capture participants’ visual attention in 

the perception, recognition and identification of complex visual stimuli, the novel interface (Krejtz, 

2016). 

Active condition 

Conversely, those in the active condition, who were engaged in applying what they had 

learned, demonstrated higher GTE and longer paths, reflecting more exploratory and varied visual 

behavior as they interacted with the interface (Krejtz et al., 2017). Higher GTE values are 

associated with disorder, meaning high entropy, will indicate a highly “disordered” visual behavior 

of a subject. Potentially, this disorder stems from the nature of their gaze patterns, which switches 

between various AOIs. This suggests that these participants had an unclear understanding of where 

to focus their attention, not efficiently locating the information that they needed. In contrast, during 

active task performance, participants displayed higher GTE, reflecting a more exploratory visual 

behavior necessary for recreating the tutorial content on a new interface. This reflects the findings 

of previous studies which associated lower average transition entropy with focused attention and 

high curiosity (Krejtz et al., 2015).  

By combining both GTE data and K-coefficient data, it is made possible to infer that that 

while participants were watching the video tutorial, they were more engaged in focal attention as 

demonstrated by significantly higher k-coefficient values in the passive condition, as they had to 

concentrate on the quick adoption of features on the software. As such, it would be relevant to 

consider a combination of higher k-coefficient values (attentional focus) and lower GTE values 

(disordered gaze patterns) as an indication of a desirable state in terms of interface learnability.  

2.6.2 Task Performance data and Gaze Heuristics 
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As hypothesized, high performers—defined by higher success rates and shorter task 

completion times—consistently showed shorter path lengths, lower Levenshtein distances, higher 

k-coefficient values and lower GTE across both passive and active conditions. This pattern 

suggests that efficient learners, regardless of their engagement mode, exhibit more focused and 

structured visual behavior, which aligns with the notion that effective learnability should lead to a 

rapid and effortless attainment of proficiency.  

Specifically, lower GTE and shorter path lengths may be indicative of better learnability, 

as they reflect more efficient visual processing and attention allocation. Similarly, shorter 

Levenshtein distances may signify that users are following a more optimal visual path, closely 

aligning with the intended sequence of interactions, which is a hallmark of a well-designed, 

learnable interface. 

2.6.3 Perceived learnability 

The system usability scale (SUS) is a ten-item attitude Likert scale that measures a global 

view of subjective assessments of usability (Brooke, 1995). More specifically, there are two 

specific questions of the scale (see figure 10), item 4 and 10, that are considered to be the 

learnability dimension of the SUS questionnaire (Lewis & Sauro, 2009):  

Learnability dimension of the SUS questionnaire 

4. I think that I would need the support of a technical person to be able to use this system 

10. I needed to learn a lot of things before I could get going with this system 

Figure 12. Learnability dimension of the SUS questionnaire, adapted from Brooke (1995). 

According to previous research on top-down, or goal-directed attentional processes, it is 

possible to infer that a proper attentional control allows for efficient task performance (Egeth & 

Yantis, 1997). In the context of the current study, it was found that higher performers exhibited 

more focused attentional patterns regardless of which condition they were in. Interestingly, these 

same high performers reported lower scores on the SUS scale, indicating that they felt they needed 

less support while interacting with the novel interface. These results align with the results of their 

eye movement patterns, where participants who successfully completed the task were reported 

experiencing significantly lower GTE, shorter path lengths, shorter Levenshtein distances, and 
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higher k-coefficient values across tasks. These results mean that these participants’ gazes were 

more predictable, more focused, and they had more efficient visual search patterns overall (Krejtz 

et al., 2015; Krejtz, 2016).  

Altogether, these results demonstrate that participants who had higher attentional control 

throughout the experiment felt more confident in their ability to use the interface independently. 

While these results suggest that we cannot directly measure interface learnability using eye-

tracking metrics alone, the combination of these behavioural measures and user feedback together 

can provide nuanced insights into how effectively users are engaging with an interface. These 

findings highlight the potential of leveraging eye-tracking metrics to advance interface design. By 

examining the relationship between eye movements, performance, and perceived learnability, 

designers can create intuitive interfaces that foster natural exploration and reduce reliance on 

tutorials. Behavioral measures, such as focused attention patterns and efficient visual search 

behaviors correlate with improved user performance and reduced need for support. This 

knowledge informs two key applications: designing interfaces that naturally guide users through 

tasks and developing interactive tutorials that minimize cognitive load. Furthermore, these metrics 

could enable adaptive interfaces that provide real-time support by detecting user difficulties 

through gaze patterns and offering tailored assistance, transforming user support into a dynamic 

and personalized experience. 

2.6.4 Cognitive Load 

The findings of this study align with the cognitive model of multimedia learning proposed 

by Schnotz and Bannert (Schnotz & Bannert, 2003), which suggests that effective multimedia 

learning requires the integration of information from different modalities, such as textual and 

pictorial, early on in the perceptual process. We based our hypothesis on this theory, which 

suggests that participants will experience a higher amount of cognitive load during task doing, as 

they will be concentrating on the task at hand. Although the tasks in this study are strictly not 

learning tasks, they share similarities with underlying processes that help users become familiar 

with a new interface. Empirically, while learning refers to the broader, general process of acquiring 

new knowledge, learnability on the other hand, is a property of an interface that describes how an 

individual gets acquainted with a system (Nielsen, 1993; Rafique et al., 2012). Our results support 
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this idea, with participants experiencing significantly higher cognitive load during the active 

engagement condition, where they were asked to replicate the task within the video tutorial.  

Cognitive load and perceived learnability 

As mentioned previously, users must simultaneously process multiple information streams 

while managing their cognitive resources when interacting with multimedia interfaces, 

necessitating effective allocation of their cognitive resources (Schnotz & Bannert, 2003). To recall, 

our results suggest that cognitive load was significantly higher during the active condition, where 

participants independently attempted tasks after viewing a tutorial video. According to top-down 

cognitive processing, perceived learnability is likely related to the alignment between users’ 

expectations that were shaped by the video tutorial and the actual behavior of the system (Egeth 

& Yantis, 1997; Rai & Callet, 2018). This might explain why successful participants evaluated the 

system as more learnable when they successfully completed tasks that aligned with their mental 

models derived from the tutorial. Conversely, misalignments between expected and actual system 

interactions led to lower perceived learnability.  

Cognitive load and eye-tracking metrics 

The relationship between cognitive load and perceived learnability is further supported by 

previously established eye-tracking metrics during task performance and provides additional 

insights into the cognitive processes of participants during their interaction with the system. During 

the active condition, participants’ focused gaze behaviours, as demonstrated by the higher k-

coefficient values might suggest that participants were really concentrated on the task at hand, 

combined with less spontaneous exploration paired with higher cognitive load can be a sign that 

they are really concentrated on “getting it right” for their task. However, although they are focused, 

the higher GTE values indicate more random and less structured visual search patterns, suggesting 

that they struggled to establish an efficient scanning strategy, supported by a clear mental model 

of the task requirements since they had never experienced with the interface. This interpretation is 

supported by the longer scanpath lengths during the active condition, which also reveals more 

extensive and less efficient visual search patterns. Altogether, these results support the top-down 

model of information processing based on prior knowledge and expectations (Egeth & Yantis, 

1997). 
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Impact of Research 

This study contributes to our understanding of user engagement with interactive media 

interfaces by providing a nuanced analysis of gaze behavior patterns. The findings reveal that while 

eye-tracking metrics do not directly measure learnability, they offer valuable behavioral indicators 

of user performance and interaction with interfaces. These insights underscore the potential for 

integrating eye-tracking methodologies into comprehensive frameworks for assessing learnability. 

Such an approach could advance our capacity to evaluate and refine interface designs, ultimately 

enhancing the overall user experience. 

Limitations 

Nonetheless, this exploratory study is subject to some limitations that should be considered 

when interpreting the results. The technical sensitivity of the eye-tracking equipment led to the 

exclusion of multiple participants from the final analysis due to connection errors, which reduced 

the overall sample size. This smaller sample may have constrained our ability to detect significant 

relationships within the data. Additionally, the generalizability of these findings to broader 

contexts is uncertain, highlighting potential concerns regarding external validity. Future research 

should aim to address these limitations by implementing more robust technical protocols and 

expanding participant recruitment, thereby enhancing the reliability and applicability of the 

findings. 
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2.7 Conclusion 

The current study addressed the possibility of using gaze behaviours to quantify the 

learnability of an interface. Our results confirmed that while watching a video tutorial, participants 

experience lower GTE, shorter gaze paths and lower k-coefficient, which is indicative of a focused 

mode of processing. On the other hand, while performing the task themselves, participants 

experienced the opposite, which suggests a more exploratory behaviour. While these gaze 

behaviors show promise as quantitative measures of learnability, further research is needed to 

refine these metrics and fully understand their implications.  

The findings of this study highlight the need for a more nuanced approach to defining and 

evaluating learnability, considering the complex interplay between different types of gaze 

behaviours and user engagement modes. The results of this study contribute to the body of 

literature on eye-tracking, and user experience research and reaffirm the possibility of using 

empirical methods to assess user experience. By integrating these gaze metrics into usability 

assessments, researchers and designers can develop more effective strategies for enhancing the 

learnability of interfaces, thus reducing software onboarding time and reducing technology 

adoption times. Additionally, our results can also be useful for practitioners and researchers in 

other fields such as education, human-computer interaction, assistive technology and virtual reality.  
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Chapter 3: Managerial article 

“Through the User’s Eyes: What Eye-tracking Reveals About Better Interface Design” 

Summary: As businesses race toward digital transformation, the importance of intuitive interface 

design has never been greater. This article will introduce a study that uses eye-tracking technology 

to unveil crucial insights into how humans naturally interact with digital interfaces. The 

implications extend beyond corporate settings. As technology becomes increasingly more present 

to our daily lives, these findings could revolutionize how we design interfaces for everyone, from 

young professionals to aging populations. The results of the study suggest a shift to interfaces that 

encourage natural exploration while minimizing error. By designing systems that work with, rather 

than against, our innate visual processing patterns, organizations can create more accessible, 

efficient, and user-friendly digital environments.  

3.1 Why User Experience Makes or Breaks Digital Transformation (Introduction) 

Digital transformation is fundamentally reshaping how businesses operate, with 

organizations increasingly adopting digital systems to streamline workflows and drive operational 

efficiency (World Bank, 2024). This technological revolution promises significant benefits, from 

cost savings to enhanced productivity, as companies adapt to an increasingly digital marketplace. 

However, amid this rapid transformation, a critical success factor often remains overlooked: 

user adoption (Taherdoost, 2018). While organizations invest substantially in cutting-edge digital 

solutions, the reality is that not all systems are intuitive to navigate, creating a significant impact 

on training requirements and change management strategies. Complex interfaces and inadequate 

training programs can lead to concerning outcomes: reduced productivity, escalating user 

frustration, and in worst-case scenarios, complete system abandonment (Gellatly & Gu, 2024).  

Therefore, the key to successful digital transformation lies not just in implementing new 

technologies, but in ensuring their learnability through intuitive interface design and 

comprehensive training programs. By prioritizing the user experience, organizations can better 

guarantee the adoption of their digital investments and secure the promised benefits of their 

transformation initiatives. 
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3.2 Tracking Glances: How Gaze Patterns Analysis Reveal About Interface Learnability (The 

Research) 

To address these challenges, we turned to advanced eye-tracking technology to decode the 

fundamental question plaguing digital transformation efforts: What makes an interface truly 

intuitive? Eye-tracking technology captures where, when, and how users look at an interface, 

revealing patterns in their gaze and areas that attract attention or cause confusion (Schall & 

Romano Bergstrom, 2014). By analyzing these gaze behaviors, it is possible to uncover insights 

about user behavior when interacting with a new interface. 

Thus, our study explored the factors that play a key role in interface learnability, from user 

attention to human cognitive processes. We studied the gaze movements of 33 participants using 

cutting-edge eye-tracking tools in a controlled laboratory setting.  

3.3 Lessons from Gaze Analysis: Translating Insights into Interface Design 

Our research generated these evidence-based approaches in the design of a good user 

interface: 

Discovery 101: Scaffolded Exploration:  

Allow users to immerse themselves within the interface, allowing them to explore and 

discover the features with minimal mistakes. How to achieve that? By incorporating elements such 

as visual aids—think arrows, guiding lines, flashing icons, allow users to understand where to look, 

while maintaining a sense of control over the interface. For example, it would be relevant to 

incorporate eye-trackers in the design of interfaces, to determine when and where to incorporate 

tooltips that might appear when users’ gaze linger on complex features. Another good rule would 

be to create visual hierarchies that will match users’ natural scanning patterns.  

Make it flexible: Considering different users 

The study also suggests that some people might not require as much help as others, 

considering they might have had prior experience with similar systems, or they are just in general 

more comfortable with technology. Considering this information, it will be wise to not offer 
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unnecessary support for those who do not need it, by for example, allowing users to turn off help 

or slightly reduce the intensity of the help. 

During users’ initial experience, companies could offer a full guide by default, while 

simultaneously present clear opt-out options for those who might not need it, setting expectations 

about available support levels. It would also be relevant to offer different configurable versions of 

the interface, that would be adjustable according to the expertise level, and the type of tasks users 

would need to accomplish on the interface.  

Lessons from this study: Main takeaways for practitioners 

Eye-tracking technologies have the potential to offer a direct view into the brain and how 

we process the information around us. After all, our eyes are what allows us to observe information 

and process it. Therefore, user perception is also important in the consideration of interface design. 

The system could be easy to use, but if it looks complicated it can also defeat the user.  

Our results suggest that we should start looking beyond the traditional success metrics like 

error rates, time on task, and start incorporating more advanced practices into the field of user 

experience. Attention is something that is crucial during interface design. Knowing what are the 

elements that can capture users’ attention is important. Therefore, incorporating this tool in the 

design of user interface can be a wise decision.  

3.4 Conclusion 

Designing intuitive interfaces is not just about user experience, it’s about future-proofing 

your digital strategy. Consider Apple’s new gaze-control feature, it exemplifies how thoughtful 

design using eye-tracking technology can drive innovation and inclusivity. Embracing new tools 

will not only advance inclusivity, but also ensure that organizations remain flexible and adaptable. 

The implications ripple far beyond the world of tech. Across sectors, every industry that 

requires users to engage with new systems, from aviation to healthcare to finance, stands to gain 

from interfaces that adapt to users’ needs. As digital transformation accelerates, the demand for 

accessible, learnable systems is only growing. Thus, learnable design is not just a technological 

advantage, it is a strategic imperative for the future.  
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Chapter 4: Conclusion 

This exploratory study aimed to develop a method to objectively assess interface 

learnability. More specifically, the objective was to establish objective indicators of interface 

learnability by focusing on eye-tracking metrics, particularly gaze patterns, and pupil sizes, as well 

as task performance. Thirty-three participants participated in a controlled laboratory study that 

aimed to uncover the gaze behavior of users using eye-tracking technology. Through an approach 

that integrated gaze data, performance metrics and psychometrics assessments, we aimed to bridge 

the gap between interface design and a better user experience. This concluding chapter examines 

the methodological approach used to derive key findings, exploring practical implications, 

theoretical contributions, and the limits and future avenues of this research.  

4.1 Methodological Approach 

In the domain of attentional behavior in computer tasks, eye tracking has emerged as the 

primary method for recording user interactions with computer interfaces. While traditional 

approaches rely on manually defined Areas of Interest (AOIs), our research introduces an 

innovative solution based on gaze transition matrices, gaze transition entropy (GTE), and 

attentional focus dispersion. We proposed a modification of Krejtz et al.'s (2015) approach by 

developing an automatic AOI generation method that dynamically divides the interface into an 

N×N grid of coordinates. This approach eliminates the manual AOI definition stage, allowing for 

a more flexible and adaptable analysis across different interface formats. More specifically, the 

N×N matrix of dynamically allocated AOIs by taking the screen's full resolution, dividing it into a 

grid, assigning a unique identifier to each grid square, and creating a comprehensive gaze transition 

matrix. By automatically customizing the number of AOIs to match the specific interface, our 

approach enables a more granular and precise analysis of participants' gaze behaviors, offering a 

significant methodological advancement in eye-tracking research. 

4.2 Key Findings 

Our results suggest that participants in the passive video viewing state exhibited 

concentrated, and predictable gaze patterns, characteristic of better comprehension and more 

efficient information processing. On the other hand, participants during active task performance 
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demonstrated disordered, yet highly focused gaze patterns, suggesting exploratory visual 

behaviours in the context of applying what they had just learned previously in the video tutorial.  

High performers—defined by higher success rates and shorter task completion times—

consistently exhibited more focused and structured visual search strategies across both passive and 

active conditions. This systematic visual behavior pattern provides evidence that effective interface 

learnability is fundamentally characterized by cognitive efficiency, effective attentional allocation, 

and adaptable information processing strategies. It would also be relevant to highlight those high 

performers also rated interface learnability higher, suggesting a relationship between participants’ 

cognition and their performance. However, it might also be the case that subjective complexity 

perception influenced the rating of the learnability of an interface, regardless of the participants’ 

performance. This entails that failed participants might have interpreted their failure as inherent 

system complexity, externalizing failure by rating the interface as complex rather than 

acknowledging personal limitations.  

Our findings also align with Schnotz & Bannert’s cognitive model of multimedia learning 

(2003), who stipulated that continuous and systematic switching between different learning 

material modalities require high working memory resources, suggesting higher cognitive efforts. 

In fact, higher average cognitive efforts were related to lower average interface learnability ratings, 

suggesting an inverse relationship between cognitive load and perceived learnability. This inverse 

relationship suggests that interfaces requiring substantial attentional resources and complex 

information processing strategies are perceived as less learnable, even when successfully 

navigated. 

4.3 Theoretical Contributions & Practical Implications 

This study contributes to the body of work on visual behavior data processing to understand 

eye-tracking data. By providing a way to quantify learnability through real-time eye-tracking data, 

this study offers a novel approach to understanding how users interact with and learn from digital 

interfaces. This contributes to a more precise and objective understanding of learnability, allowing 

researchers to capture nuances of user behaviour. 
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For industry practitioners, the results of this study demonstrate how eye-tracking can be a 

valuable tool to provide insights into how interface design can be optimized to enhance learnability. 

This will reduce the need for extensive user training and can lead to faster adoption of new systems, 

ultimately saving time and resources, while improving key performance indicators (KPIs). This 

study introduces several methodological innovations that can benefit future research. Firstly, the 

integration of eye-tracking metrics with traditional performance-based measures provides a more 

comprehensive approach to evaluating learnability. The use of GTE, Coefficient K, and 

Levenshtein distance in combination offers a multi-dimensional view of user interaction, capturing 

not only the outcomes but also the underlying cognitive processes involved in learning an interface. 

Eye movements can also be captured and used as control signals to enable people to interact with 

interfaces directly without the need for mouse or keyboard input, which can be a major advantage 

for certain populations of users such as disabled individuals (Poole & Ball, 2006). 

4.4 Limitations and Future Research 

This research is not without limitations. The relationship between perceived complexity, 

cognitive load, and interface learnability remains underexplored, leaving room for future 

investigations to establish how these dimensions interact. Additionally, the size and density of 

AOIs significantly shape the interpretation of entropy measures, influencing the granularity of 

visual transitions. This might have influenced the sensitivity of Coefficient K, particularly in 

dynamic contexts such as motion pictures, requiring further scrutiny. Future research could adopt 

a multi-modal approach, combining eye-tracking data with complementary physiological 

measures, to capture a richer understanding of cognitive load and emotional responses during 

learning. Another interesting avenue to explore are longitudinal studies, that may further illuminate 

how gaze behaviors evolve across various stages of software mastery, while expanding the 

application of these methods to diverse contexts, including mobile interfaces, augmented reality, 

and virtual reality environments. By addressing these gaps, future studies could contribute to a 

more holistic and nuanced understanding of learnability, advancing both theoretical insights and 

practical applications in human-computer interaction. 
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