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Abstract

Inspired by Ramos-Pérez et al. (2021), our goal with this study is to compare the
versatility and then the performance of recent machine learning models on volatility
forecasting and assess their superiority over econometric benchmarks.
To have 2 axes of comparisons, we performed our experiment on 5 different assets,
and for 5 forecasting horizons. For each asset, we studied the models’ performance
for forecasting the volatility for 5, 10, 15, 20, and 60 days ahead. We also studied
the performance gains from combining each of our machine learning models with a
Component GARCH model.
According to our evaluation framework, our results suggest that the extreme gradient
boosting model is the most versatile model for forecasting volatility, closely followed by
the natural gradient boosting model. Both boosting models are particularly the best-
performing models on the equity indices at every horizon, with the extreme gradient
boosting outperforming the natural gradient boosting on these indices. The extreme
gradient-boosting model is also one of the best models for forecasting oil volatility. The
Long-Short-Term Memory and the transformer neural network turned out to be the
best models for forecasting gold volatility for any horizon. Moreover, we found no sig-
nificant forecasting gain in combining all our models in an ensemble, or in augmenting
the machine learning models with a component GARCH.
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1 Introduction

This study evaluates the versatility and performance of recent machine learning models
on the problem of volatility forecasting and compares them with classical state-of-the-art
econometric models. We study the performance along two axes, which are the forecasting
horizon (for which we have 5), and the asset on which the forecast is performed (of which
we have 5).

We also study the benefits of enhancing these machine learning models with a component
GARCH model (Lee and Engle (1993)), as well as combining all of them in an ensemble ap-
proach. The machine learning architectures (referred to as vanilla models) considered here
are the transformer network, the Long Short Term Memory Network, the Natural gradient
boosting model, and the extreme gradient boosting model. The proposed methodologies
integrate the strengths of the component GARCH, which captures conditional heteroskedas-
ticity, and the four machine learning architectures which excel in capturing long-range de-
pendencies. Particularly, the LSTM and transformer architectures were purposely created
for sequence modeling and forecasting. The boosting models as far as they are concerned,
represent some of the most ingenious and flexible architectures in the machine learning world,
in the sense that they are swarms of weak models iteratively trained to reduce the mistakes
of their predecessors. These combinations leverage the ability of the models to effectively
learn complex patterns, different features and dependencies in the volatility time series data.

To evaluate the performance of the proposed approaches, a comprehensive and rigorous em-
pirical study is conducted using a dataset comprising daily realized volatility and returns
from our 5 assets. The realized volatility time series were obtained from intra-day prices
of our 5 assets. Since this is an auto-regressive point forecasting study, the inputs to our
machine learning models consisted of lags of this realized volatility. For every forecasting
problem, the dataset is divided into training, validation, and test sets, with no overlap over
them. The final evaluation metrics and tests presented in the result tables were computed
on the test set. The developed models are compared against two benchmark models, namely
the Component GARCH and the HAR model.

We use an extensive evaluation framework to ensure the rigor of our analysis. First, we com-
pute some classic model evaluation metrics, which are the root mean square error (RMSE),
Overvaluation Frequency (OF), and Quasi Likelihood (Q-LIKE). For the RMSE and Over-
valuation Frequency, lower values are desirable, while higher values are desirable for the
Quasi Likelihood. Then, we use the Multivariate Giacomi-White test (MGW), which is also
a statistical test that allows us to assess if two models have the same forecasting abilities
on a particular problem. We finish by using the model confidence set methodology, which
allows us, with a statistical test on forecasted values, to determine the best subset of models
for a forecasting problem with a given confidence level (see Annex A). The two latter are
very useful tools to complement our analysis of model versatility.

To be more precise, we define model versatility as the ability of a model to outperform other
models on multiple assets and horizons. In our case specifically, leveraging our evaluation
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framework, we use the following set of criteria that must be met for a model to be considered
versatile:

• The model must outperform all other models according to at least one scoring
metric (RMSE or Quasi-Likelihood), on every horizon for at least 3 assets

• On the assets for which the model is superior according to a scoring metric, the model
must pass the statistical difference test against both benchmarks (MGW test).

• According to the Model Confidence Set methodology, the model must belong to the
best set of models for forecasting the 3 assets’ volatility at every horizon.

After determining the most versatile models, we then focus on specific asset volatility fore-
casting problems. This means that on the assets for which the versatile models performed
poorly, we see if another particular model demonstrates superiority for forecasting this sin-
gle asset’s volatility according to a scoring metric, MGW test, and the model’s confidence
set. We do the same on the horizon dimension, trying to determine if there is a model that
outperforms all others for only one forecasting horizon across assets.

Essentially, we try to find empirical answers to such questions as: Is there a specific model
that demonstrates complete superiority along both axes, meaning forecasting superiority
across horizons and assets? Are there some models that demonstrate superiority in a par-
ticular horizon or a specific asset? Is there a clear benefit across assets and/or horizon
to enhancing our machine learning models with CGARCH or to combining all of them as
an ensemble model? This thesis addresses and answers these questions through a rigorous
empirical study.
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2 Litterature review

In a comprehensive literature review of multi-horizon volatility forecasting models enhanced
by machine learning techniques, it’s essential to trace the evolution from traditional econo-
metric models to the integration of advanced machine learning algorithms. One challenge in
studying volatility models’ literature is to have a comprehensive enough classification frame-
work. Previous studies by Engle and Patton (2001) have attempted this exercise and classify
volatility models in two parent categories: models that formulate conditional volatility as a
function of observables, and latent volatility models, often coined stochastic volatility mod-
els. All of the models explored in this study fall into the first category with respect to
this classification. A subsequent seminal classification framework was proposed in Poon and
Clive (2003) and Poon and Granger (2005) in their Review of volatility forecasting models,
in which they classify volatility models in the following families: time series models based
on past realization of standard-deviation family, the ARCH models family, the stochastic
volatility family, the non-parametric model’s family, the options-based models family, and
the machine learning models family.
Ge et al. (2023a) conducted a systematic review, highlighting the efficacious deployment
of neural networks in financial volatility forecasting, emphasizing the nuanced ability of
these models to approximate both linear and nonlinear dynamics without prior knowledge of
the data-generating process. Their study provides an in-depth analysis and comprehensive
examination of the advances in Neural Network (NN) applications for financial volatility
forecasting. The study examines 35 publications post-2015, identifying issues like the dif-
ficulty in meaningful comparisons between models due to a lack of standardization and
the disparity between contemporary machine learning (ML) and financial forecasting mod-
els. The review identifies several key issues prevalent in the current landscape of neural
network-based volatility forecasting. One of the primary challenges noted is the difficulty in
conducting easy and meaningful comparisons between different models. This challenge stems
from the diverse range of approaches and methodologies employed across studies, making it
hard to directly compare their effectiveness or draw conclusive insights. Another challenge is
the mere definition of volatility, which varies vastly from one study to another. The review
reveals a preference for using historical volatility (HV) over theoretically more robust alter-
native proxies like implied volatility (IV) or realized volatility (RV) in the literature, partly
due to the ease of access to necessary data and the simplicity of the models.
Initially, volatility forecasting was dominated by econometric models, with the Autoregres-
sive Conditional Heteroskedasticity (ARCH) model introduced by Engle (1982) pioneering
the field. The generalized ARCH (GARCH) model by Bollerslev (1986) further refined this
approach by allowing past conditional variances to influence current estimates, addressing
the persistence often observed in financial volatility. The literature then expanded to include
models that account for asymmetries and leverage effects, such as the Exponential GARCH
(EGARCH) model proposed by Nelson (1991) and the Glosten-Jagannathan-Runkle (GJR)
GARCH model (Glosten et al. (1993)). These models capture the phenomenon where nega-
tive shocks induce greater volatility than positive shocks of the same magnitude, a reflection
of the leverage effect.
With the advent of high-frequency trading and intraday data, realized volatility measures
and proxies using high-frequency returns were proposed, enhancing the accuracy of volatil-
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ity estimation. Andersen et al. (2003) were instrumental in this development, leading to a
variety of realized measures such as realized variance and realized range. The subsequent
development of realized volatility estimation and forecasting can be attributed to a series
of papers by Barndorff-Nielsen and Shephard, Bandi and Russel, and Ait-Sahalia in which
they extensively establish best practices in terms of estimating, sampling, and forecasting
realized volatility.
In the landscape of volatility forecasting, the Heterogeneous Autoregressive (HAR) model
stands out due to its effectiveness and simplicity in capturing the dynamics of realized
volatility. The HAR model can be viewed as a specific autoregressive application of the
Ghysels et al. (2007) MIDAS (Mixed Data Sampling) approach, where daily, weekly, and
monthly volatilities are harmoniously integrated into a single forecasting model. It emerged
from the need to address the limitations of existing models in capturing the long mem-
ory and multi-scale nature of volatility. Traditional models like ARCH and GARCH, while
effective in many contexts, often fell short in accurately representing the persistence and
heterogeneous market behaviors influencing volatility. First introduced in Corsi (2008), it
presented a novel approach to volatility modeling, allowing capturing the strong persistence
observed in realized volatility at multiple scales (usually daily, weekly, and monthly ) within
a single framework. Its versatility is further evidenced by the introduction of logarithmic
transformations of realized volatility or exogenous regressors, enhancing its compatibility
with standard time series procedures. Empirical evidence from various markets, including
equity, bond, and commodity markets, consistently underscores the HAR model’s superior
forecasting performance compared to traditional ARCH-family models. This versatility in
application underscores the model’s adaptability and robustness. Furthermore, recent ad-
vancements have seen the integration of machine learning techniques with HAR models,
opening new avenues for enhancing forecasting accuracy.
As machine learning started to reshape many domains, its applications in volatility fore-
casting gained traction. The literature reveals a shift towards leveraging machine learning’s
ability to handle non-linearities and complex interactions within data. Initial efforts to fore-
cast volatility with neural networks were made by Miranda and Burgess (1997) , who used
them to predict intraday volatilities for the Spanish stock market or Tino et al. (2001) to show
how they outperform ARCH models in predicting the volatility of the Austrian stock mar-
ket. Additionally, an influential study by Hamid and Iqbal (2004) found that ANN’s realized
volatility forecasts on the S&P500 outperform implied volatility from the Barone-Adesi and
Whaley model in anticipating future realized volatility. More recently, deep learning mod-
els, particularly Long Short-Term Memory (LSTM) networks, have been employed for their
ability to capture long-term dependencies in time series data. Works by Fischer and Krauss
(2018) demonstrated the potential of LSTMs to outperform traditional GARCH models in
forecasting volatility. Comparative studies, such as those by Hansen and Lunde (2005), have
evaluated the effectiveness of these models against traditional GARCH-type models. While
machine learning models often outperform in capturing complex market dynamics, they also
pose challenges in interpretability and computational intensity. This prompted finance aca-
demics to develop hybrid models that combined the strengths of econometric models and
machine learning. For instance, incorporating GARCH-based features into neural networks
or SVMs can yield models that are both interpretable and powerful in forecasting. Hybrid
models that combine machine learning with traditional GARCH-type models have emerged,
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seeking to fuse econometric rigor with machine learning’s flexibility.
Moreover, the literature reflects an interest in ensemble methods for volatility forecasting.
These methods pool predictions from a collection of different models, capitalizing on the
strength of each. The blend of various machine learning models into an ensemble, as pro-
posed by Ramos-Pérez et al. (2021), can often yield more accurate and robust forecasts than
individual models alone. One of the first studies to try to combine a GARCH model with ar-
tificial neural networks for return volatility forecasting was Donaldson and Kamstra (1997),
followed by Hu and Tsoukalas (1999). Another notable study was conducted by Malliaris
and Salchenberger (1996) to forecast an index Implied volatility for risk management pur-
poses using an ANN. Dunis and Huang (2002) experimented somewhat similar to what we
intend to do: They explored the relevancy of Recurrent neural networks and neural network
regressions for forecasting and trading currency volatility (using options straddles), as well
as combinations of these models with GARCH models. They find very promising results
from the RNN-based volatility trading strategy. A recent study by Christensen et al. (2022)
finds evidence of the superior predictive ability of neural networks and regression trees over
HAR models, especially over long horizons. They attribute the forecast gains to higher per-
sistence captured by the ML models. Lu et al. (2016) demonstrates the outperformance of a
stacked EGARCH-ANN model over traditional GARCH models for forecasting the Chinese
energy markets’ log returns volatility. Similarly, Kristjanpoller and Minutolo (2015) and
Kristjanpoller and Minutolo (2016) respectively show the superiority of GARCH-enhanced
ANN in forecasting gold and oil price volatility. A recent attempt to use XgBoost models
for volatility forecasting was made by Teller et al. (2022). They find evidence of Xgboost
models outperforming HAR models for different forecasting horizons. They also find that us-
ing non-linear specifications for base learners performs better than non-linear ones on longer
horizon forecasts.
More recently, transformers, first introduced in the seminal paper “Attention is All You
Need” by Vaswani et al. (2017), revolutionized the field of deep learning by eschewing the
traditional recurrent structures in favor of self-attention mechanisms. In a groundbreaking
study, Liu et al. (2023) put forth a transformer model leveraging mixed-frequency data to
forecast stock volatility. Their application further illustrates the versatility of Transformer
architectures in finance across a spectrum of assets. As reported in research covered by Ge
et al. (2023b) , the temporal fusion transformer Lim et al. (2021), a variant of the canonical
Transformer, has been applied to forecast the volatility of diverse assets such as S&P500,
NASDAQ100, gold, silver, and oil and outperforms RNNs, MLPs, and GARCH models for
each of these assets.
Closest to our study, Ramos-Pérez et al. (2021) found empirical evidence for the outperfor-
mance of an extended transformer architecture called the multi-transformer in generating
more accurate one-day ahead forecasts of the S&P500 log returns volatility over GARCH,
LSTM, ANN, and traditional transformer. They also found evidence of the outperformance
of the GARCH-enhanced versions of these models. Ge et al. (2023a) conducted a system-
atic review, highlighting the efficacious deployment of neural networks in financial volatility
forecasting, emphasizing the nuanced ability of these models to approximate both linear and
nonlinear dynamics without prior knowledge of the data-generating process.
In the context of multi-horizon forecasting, literature underscores the challenges of predict-
ing volatility over different time frames. The inherent uncertainty of the market and the
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impact of external economic events make multi-horizon forecasting particularly complex.
Researchers have investigated models that can simultaneously provide short, medium, and
long-term volatility forecasts, with mixed success.

3 Data

3.1 Volatility stylized facts

Market volatility, as a measure of risk, uncertainty, or market gauge, is one of the most
documented and researched subjects of modern finance. It has been explored both from the
forecasting angle and the measuring angle. A couple of stylized facts are universally rec-
ognized when it comes to volatility, given the extensive and mathematically sound research
that went into proving them.

The stylized facts of financial market volatility are rich and complex, intertwining various
phenomena like the leverage effect, the impact of outliers, the influence of news, forecasta-
bility issues, non-stationarity, and long memory. These factors are interrelated, each con-
tributing to the intricate behavior of financial markets.
Starting with the leverage effect, this phenomenon highlights a key asymmetry in how mar-
kets respond to information. Typically, negative news tends to have a more pronounced
impact on volatility compared to positive news of a similar magnitude. According to Black
(1976) this asymmetric response can be partly explained by the leverage hypothesis, which
suggests that negative market movements increase the leverage of firms (debt-to-equity ra-
tio), thereby raising the risk and volatility. The leverage effect appears to not just be a
theoretical construct but a practical consideration in volatility modeling, as it challenges the
notion of symmetry in market responses and necessitates the use of models like GJR-GARCH
and EGARCH that can account for this asymmetry.
Closely linked to the leverage effect is the impact of news on market volatility. Financial
markets are highly sensitive to new information, and the arrival of news can lead to sudden
and significant changes in volatility. According to Engle and Ng (1993) and Maheu and
McCurdy (2004), the relationship between news and volatility is complex and often depends
on the nature of the news, market conditions, and investor sentiment. Positive news might
lead to a moderate increase in volatility due to increased trading activity, whereas negative
news can cause a sharp spike in volatility, reflecting panic selling or rapid changes in investor
sentiment.
The impact of outliers is another critical aspect of financial market volatility. Outliers, which
can be caused by extraordinary events such as financial crises, geopolitical tensions, or major
economic announcements, can disproportionately affect volatility. These outliers often lead
to a heavy-tailed distribution of returns, meaning that extreme changes in prices are more
common than would be expected in a normal distribution. This heavy-tailed characteristic of
financial returns complicates risk management and forecasting, as standard models based on
normal distribution assumptions may underestimate the probability and impact of extreme
market movements.
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Forecastability of volatility is an ongoing challenge in financial econometrics. Volatility is
inherently difficult to predict due to its dynamic non-stationary nature and sensitivity to a
wide range of factors. Non-stationarity implies that the statistical properties of volatility,
such as the mean and variance, change over time, making it difficult to model and forecast
using traditional time series approaches. It may arise from various factors including changing
macroeconomic conditions, evolving market structures, or the impact of regulatory changes.
Some studies (Perry and R (1982) and Pagan and Schwert (1990) ) even find some evidence
for a unit root in the volatility time series. While models like GARCH and its variants have
been developed to improve volatility forecasting, the accuracy of these predictions can vary
significantly depending on the model specification, time period, and market conditions.
The concept of long memory in volatility refers to the persistence of shocks in financial mar-
kets over time. Long memory implies that the effects of past market movements, especially
large shocks, can influence volatility for an extended period. These characteristics challenge
the assumption of short memory in traditional time series models and have led to the devel-
opment of long-memory models like FIGARCH which captures the decaying influence of past
shocks over time but at a slower rate compared to short-memory models, or the component
GARCH model. The latter was explicitly designed to allow a separate long-term component
in its specification, to accurately capture the persistence shocks in the series. Long memory
is a critical concept for understanding the temporal dependencies in financial markets and
for developing effective risk management strategies.
Contrasting with long memory (persistence) is the concept of mean reversion, which posits
that despite short-term fluctuations, volatility tends to revert to a long-term average over
time. This phenomenon indicates that high or low periods of market volatility are tempo-
rary and will eventually move back toward a historical average. Mean reversion is a key
consideration in risk management and financial modeling, as it implies that extreme market
conditions are not permanent and that forecasts should account for this reversion to the
mean over the long term.
Volatility clustering, another critical aspect, refers to the tendency of high-volatility peri-
ods to be followed by high-volatility periods and low-volatility periods to be followed by
low-volatility periods. This phenomenon, observable in financial time series, suggests that
volatility exhibits a serial correlation – large changes in prices are often clustered together,
followed by periods where prices change minimally. This clustering effect is a crucial fac-
tor in volatility forecasting, as it necessitates models that can account for these changing
regimes in market conditions. Tackling volatility clustering is what originally motivated the
inception and design of GARCH models by Engle and Bollerslev.
These concepts are deeply interrelated. Long memory in volatility suggests the persistence
of the effects of market shocks, implying that past market events can influence future volatil-
ity for a prolonged period. However, the presence of mean reversion within this framework
indicates that while these effects are persistent, they don’t last indefinitely, with volatility
eventually returning to its long-term average. Meanwhile, volatility clustering reflects how
these phenomena can manifest in actual market behavior, with periods of persistent high or
low volatility, followed by eventual reversion to mean levels. The interplay of these factors
complicates the task of volatility modeling and forecasting. Traditional econometric models
have been augmented with features to capture long memory and mean reversion. Yet, accu-
rately capturing these dynamics with a single parametric model remains a challenge due to
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the inherent complexity and evolving nature of financial markets.
Overall, the financial market volatility landscape is marked by asymmetry, exogenous factors,
and a delicate balance between persistence and mean reversion, with volatility clustering pro-
viding observable evidence of these dynamics, making it a challenging yet fascinating subject
for study in financial economics.

3.2 Data exploration

This study focuses on forecasting the volatility of 5 assets that have been selected for spe-
cific reasons because they have different degrees of sensitivity to each of the aforementioned
stylized facts. We attempt to forecast the volatility of the S&P500, the NASDAQ100, the
RUSSEL 2000, gold prices, and oil prices.
As one of the most mainstream and followed gauges for the health of the american stock
market, the S&P500 has historically been impacted by market sentiment, geopolitical events,
and macroeconomic data. It has historically demonstrated high cyclicality, due to its inclu-
sion of the biggest companies of the most cyclical industries.
As per the NASDAQ, it has historically proven much more volatile and fat-tailed than the
S&P500 according to Inc (2018) and our descriptive statistics table below, due to the highly
uncertain nature of technology businesses and their characteristics: the highly innovation-
driven industry, the constant evolution of business conditions, and the relatively low barriers
to entry. Some of these companies, although very successful, are often in the early stages of
their growth and have not yet established a track record of profitability. Additionally, tech-
nology companies are often more reliant on a small number of products or services, which
can make them more susceptible to market fluctuations. Finally, the technology industry
is subject to rapid changes, which can lead to increased uncertainty and volatility in stock
prices.
Similarly, in our analysis period, as per the daily volatility series descriptive statistics table
below, the RUSSEL 2000 has historically exhibited more volatility due to the leverage effect
and its longer memory, mainly due to the high sensitivity of smaller companies to market and
economic conditions, especially to interest rates. It can be seen by remarking how smaller
companies perform worse than average in a recession or high interest rate environment, and
above average in an expanding economy. They have more debt on their balance sheets,
and can therefore better leverage a favorable market environment, but are less resilient to
economic shocks.
Concerning oil prices, it is a well-documented fact that they exhibit extreme volatility clus-
tering or severe fat tails around major supply disruption ( Kang et al. (2009)), as well as slow
mean reversion and very quick reaction to random shocks. On top of supply and demand
shifts, oil prices are very sensitive to geopolitical events, instability, weather, and natural
disasters, as well as any minor disruption in the highly fragmented chain of production.
Gold, as an asset, has a long history of being a reserve of value, and has historically been
the prime vehicle of wealth protection for being inflation-proof. Additionally, just like oil
prices, gold prices are driven by supply and demand dynamics, as well as geopolitical shocks,
interest rates, and most importantly, inflation and investor behavior. Gold prices are very
prone to behavioral drivers like herding or panic, and also display a strong asymmetry be-
cause negative shocks tend to increase volatility more than positive shocks.
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What makes the attempted exercise of forecasting the volatility of these assets interesting is
the different degrees in which we find the documented stylized facts in each of them. Addi-
tionally, despite acknowledging the influence of the mentioned exogenous factors impacting
the volatility of our assets, our endeavor here is an auto-regressive forecasting study: We
focus on harnessing the most predictive power and capturing the stylized facts exclusively
from volatility lags.

We can see a display of some descriptive statistics of our returns and volatility series in
Table 1, illustrated on Figure A.1 and Figure A.2. The descriptive statistics table also shows
us the p-values from the ADF and Jarque-Berra tests. On the considered sample window
for all 5 assets, both tests return very small p-values, which is in line with what has been
documented so far in most of the literature. This means that for each asset studied here,
at a threshold of 1%, the realized volatility series are non-gaussian and non-stationary (and
might contain a unit root), as can be visualized on Figure A.2. Except for gold, as per the
left panel of Figure A.3, the volatility series exhibit strong auto-correlations at shorter lags
(1 to 5), as well as moderate to strong auto-correlation until approximately lags 25 to 30.
All the volatility series also exhibit strong partial auto-correlation for short lags, but mostly
nonexistent partial auto-correlation after lag 10, as per the right panel of Figure A.3.

Another relevant metric that can be observed in the table below is the Hurst exponent.
This metric is used as a measure of long-memory of time-series. First introduced in Hurst
(1951), it relates to the auto-correlation of time-series and is an additional tool that helps us
quantify the degree of randomness present in a time series. As shown in Mandelbrot and Ness
(1968) and explained in Gatheral et al. (2018), it informs us on the memory of a time series
by quantifying its tendency to either revert to the mean or to persist in a direction. It is
therefore an ideal tool to assess the degree of mean-reversion or persistence present in a series.
A value of the exponent between 0.5 and 1 indicates a long-term positive auto-correlation,
suggesting that our series is persistent. A value between 0 and 0.5 is indicative of anti-
persistence (mean reversion), with a lower value meaning stronger mean reversion. A value
of exactly 0.5 characterizes a series with pure randomness (brownian motion). Famously
introduced by Hurst (1951) in the domain of hydrology, it was popularized in finance by
Mandelbrot and Ness (1968) to introduce their notion of fractional brownian motion which
later led to the concept of rough volatility from Comte and Renault (1998), Gatheral et al.
(2018) and Calvet and Fisher (2002). In this study, we use the hurst exponent only to
assess the long-term properties of our series. The presented results suggest that all of our
assets’ volatility exhibit some degree of mean-reversion, with the NASDAQ being the ”most”
mean-reverting and oil being the closest to being a random series, with a hurst exponent of
0.47.
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3.3 Realized Volatility

As demonstrated by Barndorff-Nielsen and Shephard (2002), realized volatility is a uni-
versally accepted and used proxy for the quadratic variation of a semi-martingale (in this
case our return process). Assuming that our price process is described by the simple jump-
diffusion process:

dSt = µtdt + σtdWt + dJt

where:

• St is the stock price at time t,

• µt is the drift coefficient (representing the rate of return),

• σt is the diffusion (volatility) coefficient,

• Wt is a Wiener process (or Brownian motion),

• Jt is a Jump process assumed to be defined by Jt =
∑Nt

i=1 Yi, with {Yi}i∈N the jump
sizes and N a counting process (Cox or Poisson)

The quadratic variation of this stochastic process is a measure of the cumulative variance of
the process over a time interval, consisting of the variance from jumps and the integrated
variance. For a stochastic process St represented by the stochastic differential equation
above, the quadratic variation over an interval [0, T ] is given by:

[S]T =

∫ T

0

σ2
t dt︸ ︷︷ ︸

Integrated variance

+

NT∑
i=1

Y 2
i︸ ︷︷ ︸

Sum of the squared jumps

= lim
n→∞

n∑
i=1

(Sti − Sti−1
)2

if the limit exists. This represents the cumulative variance of the stock price process over
the time interval [0, T ]. In a series of papers, Barndorff-Nielsen and Shephard propose using
the realized volatility as a proxy for the quadratic variation of a semi-martingale. Let us
denote the intraday return as:

Rt+i τ
n

= log(St+i τ
n
) − log(St+(i−1) τ

n
)

The realized variance RVt,t+τ is defined as:

RVt,t+τ =
n∑

i=1

(
Rt+i τ

n

)2
where where τ = 1

252
is the length (in years) of a business day and n is the number of

periods per day. There are 6.5 hours of trading activities per day, meaning that n = 390
if we sample every minute, and n = 78 if we sample every 5 minutes. The daily quadratic
variation satisfies:

QVt,t+τ = lim
n→∞

n∑
i=1

(
log(St+i τ

n
) − log(St+(i−1) τ

n
)
)2

= lim
n→∞

n∑
i=1

(
Rt+i τ

n

)2
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Hence, as n tends to infinity:
QVt,t+τ ≈ RVt,t+τ

For a given n ∈ N, the realized volatility is a proxy for the daily quadratic variation.
Using realized volatility to model variance grants us the ability to bypass reliance on theo-
retical models by directly utilizing a variable that can be observed. This approach presents
a clear benefit; however, challenges arise when it comes to the actual application of this
method. Research indicates that micro-structure noise, which stems from various factors
like bid-ask spreads and the discrete nature of price formation, exists within financial mar-
kets. This noise, as discussed in works by Amihud and Mendelson (1987), Harris and Raviv
(1991), and Madhavan (2000), has the potential to skew the accurate estimation of realized
volatility.

3.4 Collection, construction and preprossessing

The data used in this study is extracted from the Trades and Quotes (TAQ) database. Since
our assets of interest were not directly observable on the market, we used the following ETFs
as proxies:

Asset Proxy’s ticker Proxy’s name

S&P500 SPY SPDR S&P 500 ETF
NASDAQ IYW iShares US Technology ETF
RUSSEL 2000 IWM iShares Russell 2000 ETF
GOLD IAU iShares Gold Trust
OIL USO United States Oil ETF

For each ETF, we extracted a series of millisecond intraday trade prices between December
2005 and December 2021. The raw data consisted, for each ETF, of nationwide aggregated
trade data at each millisecond of the day. Following the findings of Aı̈t-Sahalia et al. (2011),
Bandi et al. (2008) and Bandi and Russell (2008) proposing that it is reasonably safe to treat
five-minutes sampled returns as noise-free on most liquid assets in the recent years, we chose
to extract prices at five-minute intervals, from which intraday returns are computed, which
are then summed as per the formula above to obtain our daily realized volatility series.
Data cleaning and standardization are crucial steps in preparing time-series data for fore-
casting with machine learning. Machine learning algorithms often require data to be on
a similar scale, typically achieved through normalization or standardization. To effectively
improve the training of our models, we chose to re-scale each volatility time series using a
z-score normalization often referred to as standardization. This method transforms the data
to have a zero mean and a standard deviation of one. For a data point xt, the standardized
value zt is:

zt =
xt − µ

σ
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where µ is the mean and σ is the standard deviation both estimated only on the training
set of each series. In other words, for each time-series we estimate the mean and standard-
deviation of the training set, which are used to re-scale the whole dataset. The purpose of
proceeding this way is to prevent data leakage, meaning to prevent information from unseen
data (test or validation set) to impact or training set.

4 Forecasting models

We present every [A-M-H] model final architecture in the results section.
We use the following nomenclature throughout the study to refer to our models:

• [A-M-H] : Model M for H steps ahead forecasts on asset A

• [M-H] : Group of models M for H steps ahead forecasts

• [A-M] : Group of models M applied on Asset A ,

• [A-H] : H steps ahead foresting problem on asset A ,

With

• A ∈ [ S&P500, NASDAQ 100, RUSSEL 2000, OIL, GOLD ]

• M ∈ [ CGARCH, HAR, XgBoost, NgBoost, LSTM, Transformer, XG CGARCH,
NG CGARCH, LSTM CGARCH, TRANS CGARCH, X-N-L-T, X-N-L-T CGARCH ]

• H ∈ [5, 10, 15, 20, 60]

4.1 Benchmarks

4.1.1 HAR

The Heterogeneous Autoregressive (HAR) model, introduced by Corsi (2008) primarily for
modeling and forecasting financial volatility, stands out for its ability to encapsulate different
components of volatility operating at varying time scales. This approach is particularly
adept at capturing the multi-scale nature of financial market volatility, making it highly
suitable for multi day ahead forecasting. The HAR model is built upon the concept that
volatility can be influenced by factors operating at different time horizons. It typically
includes daily, weekly, and monthly volatility components, allowing it to capture the varying
effects of information arriving at different frequencies. The purpose of the HAR model is to
account for the long memory and persistent nature of volatility. It integrates different time
scales (daily, weekly, monthly) into the volatility forecasting process, reflecting the varying
investment horizons and information-processing speeds of market participants. This multi-
scale approach allows the HAR model to capture both short-term fluctuations and long-term
trends in volatility, making it particularly useful for forecasting over multiple horizons. The
mathematical representation of the HAR model for daily data is typically as follows:
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RVt+1|t = α + βdRVt + βwRV
(w)
t + βmRV

(m)
t + ϵt+1

Here, RVt+1|t is the forecasted realized volatility at time t + 1, given information up to time
t. The model includes three key terms:

• RVt : The daily realized volatility.

• RV
(w)
t : The weekly realized volatility, often calculated as the average of daily volatil-

ities over the past week.

• RV
(m)
t : The monthly realized volatility, typically the average of daily volatilities over

the past month.

The parameters α, βd, βw, and βm are estimated using a simple ordinary least-squares
technique, and ϵt+1 is the error term.
The HAR model assumes that variance is a continuous, integrable function over the chosen
period (daily, weekly, monthly), and that the aggregated volatilities are representative of
different market participant horizons. For the HAR model to provide reliable forecasts,
the time-series data must satisfy certain statistical properties. Ideally, the data should be
ergodic, ensuring that time averages converge to ensemble averages, which is vital for the
consistency of the estimated parameters. The model assumes a linear relationship between
past realized volatility and future volatility. The error term ϵt+1 is generally assumed to be
normally distributed with mean zero and constant variance. The coefficients βd, βw, and βm

are estimated using ordinary least squares regression.
For multi-day ahead forecasting, the HAR model leverages its ability to incorporate informa-
tion from various time horizons. The forecasting process can be iteratively applied to predict
future volatilities. For instance, a k-day ahead forecast is iteratively computed following the
algorithmic expression:

RVt+i|t+i−1 = α + βdRVt+i−1 + βwRV
(w)
t+i−1 + βmRV

(m)
t+i−1 + ϵt+i for i = 1, 2, . . . , k

4.1.2 Component GARCH

The Component GARCH model represents a significant evolution in volatility modeling,
offering a nuanced understanding of the dynamics of financial market volatility, particularly
suited to capture the nuanced behavior of volatility. As detailed by Lee and Engle (1993),
the model decomposes the conditional variance of asset returns into two distinct elements: a
permanent component qt that captures the long-term variance, and a transitory component
that captures short-term fluctuations. The permanent component is envisioned as a highly
persistent process, potentially following a random walk, which is indicative of its stability and
influence over extended periods. This is mathematically characterized by an autoregressive
parameter ρ close to one, as empirically demonstrated in their paper for the S&P 500 and
NIKKEI indices, suggesting the presence of a unit root and hence a non-reverting process
that embeds the impact of new information over time.
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The original GARCH(1,1) process as per Bollerslev (1986) is expressed as:

rt = mt + ϵt

ht = ω + αϵ2t−1 + βht−1

Mathematically, the Component GARCH model modifies the GARCH(1,1) representation of
ht and can be expressed with the following equations from the Lee and Engle (1993) paper:
The conditional variance equation:

ht = qt + α(ϵ2t−1 − qt−1) + β(ht−1 − qt−1)

The equation for the permanent component:

qt = ω + ρqt−1 + ϕ(ϵ2t−1 − ht−1)

where:

• ht is the conditional variance at time t,

• qt is the permanent component of the variance at time t,

• ϵt−1 is the innovation or shock from the previous time period,

• α and β are parameters capturing the responsiveness of the conditional variance to the
innovation and the lagged variance, respectively,

• ω, ϕ, and ρ are parameters specific to the permanent component, with ρ close to one
indicating the non-reverting characteristic of qt.

The transitory component, represented by α(ϵ2t−1−qt−1)+β(ht−1−qt−1), captures the short-
term fluctuations, typically reverting to the long-term trend.
For the Component GARCH model to be meaningful and for its forecasts to be reliable,
certain stationarity and convergence conditions must be met. The stationarity condition for
the Component GARCH model can be formulated as:

(α + β)(1 − ρ) + ρ < 1

This condition implies that both the permanent component (captured by ρ) and the transi-
tory component (captured by α + β) must be covariance-stationary
A key requirement of any volatility model is that the volatility estimate should remain
non-negative over time. This is crucial for the model’s practical applicability and inter-
pretability. The Component GARCH model maintains this property under certain param-
eter constraints. Specifically, the parameters must satisfy certain inequality constraints to
guarantee non-negative conditional variances.
Engle and Lee’s empirical analysis using daily stock indices demonstrated the model’s ef-
ficacy in capturing both the short-term and long-term dynamics of market volatility. The
model’s parameters were found to be significant, indicating the presence and importance
of both permanent and transitory components in the conditional variance. This empirical
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validation underscores the model’s utility in practical applications, particularly in financial
risk management and strategic investment planning.
For forecasting volatility multiple days ahead, we focus on predicting ht+k for k > 0, where
k is the number of days ahead of the forecast. The forecasting involves the following steps:

• For the permanent component qt, the forecast qt+k is given by:

qt+k = [(1 − ρk)/(1 − ρ)]ω + ρkqt

where ρ is the autoregressive root introduced in the trend equation.
If ρ = 1, which indicates a unit root, the equation simplifies to a linear trend:

qt+k = kω + qt

• The forecast of ht+k involves predicting the difference between the conditional variance
and its trend:

ht+k − qt+k = (α + β)k(ht − qt)

As k → ∞, this difference converges to zero, indicating that in the long run, the
conditional variance aligns with its trend.

• The final forecast for the conditional variance ht+k is obtained by combining the fore-
casts of qt+k and ht+k − qt+k:

ht+k = qt+k + (α + β)k(ht − qt)

For large k, as (α + β)k approaches zero, the forecast converges to the permanent
component:

ht+k ≈ qt+k

4.2 Single models

4.2.1 Transformer

The transformer model, introduced by Vaswani et al. (2017), marked a departure from recur-
rent neural network architectures. Its key innovation, the self-attention mechanism, allows
it to process input sequences in parallel, leading to significant improvements in training
efficiency and model performance. Unlike RNNs, which process sequences iteratively, Trans-
formers use self-attention mechanisms to weigh the importance of different parts of the input
data, processing the entire sequence simultaneously and allowing for parallel computation.
The original architecture comprises an encoder and a decoder, each consisting of multiple
layers. The encoder maps an input sequence of data into a continuous representation, and
the decoder generates an output sequence. Each data point in the input sequence is referred
to as a token. For our use case, each past observation of realized volatility RVt−k is a to-
ken. In this study, as per Ramos-Pérez et al. (2021), we only use the encoder part of the
transformer’s architecture, represented on Figure 3. A more mathematical intuition of the
encoder’s architecture borrowed from Thickstun (2019) is demonstrated in Annex B.
Key components of the encoder include:
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• Embedding Layers: Converts input data points into vectors of fixed dimensionality.

• Positional Encoding: Adds information about the position of each token in the
sequence.

• Self-Attention: Most important part innovation of the transformer architecture. It
allows the model to consider other tokens in the input sequence when encoding a token.

• Multi-Head Attention : Extends self-attention by running it through multiple at-
tention ”heads”, capturing different aspects of token relationships.

• Layer Normalization and Feed-Forward Networks : Each sub-layer (self-attention,
feed-forward) in the Transformer has a normalization step and is followed by a feed-
forward network. The Transformer’s ability to handle sequences in parallel provides
a significant performance advantage over sequential models, leading to its adoption in
various state-of-the-art domains.

• Input embedding and Positional encoding: As mentioned earlier, Transformer
layers lack any recurrence mechanism. Consequently, it becomes essential to incorpo-
rate information regarding the relative positioning of observations in the time series
into the model. This is achieved by augmenting the input data with positional encod-
ing. In our study, we build on the work of Ramos-Pérez et al. (2021) by using a wave
function as a positional encoder.

First, the transformer converts input tokens into vectors of fixed dimensionality,

Ei = Embed(xi)

Where:

• xi is the i-th element of the input sequence.

• Ei is its embedding representation.

Then, the Positional Encoding is computed:

Pi = cos

(
π

pos

Npos − 1

)
= sin

(
π

2
+ π

pos

Npos − 1

)
where pos = (0, 1, . . . , Npos 1) is the position of the observation within the time series
and Npos maximum lag
The final input representation for each item in the sequence is:

Z0 = E + P

Where Z0 represents the input to the first encoder layer.
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Self-attention and Multi-head attention: The self-attention mechanism (See Figure 1)
in transformers is a pivotal component and the main innovation driving the success of this
architecture across domains. It allows the model to weigh the significance of different parts
of the input differently. Also known as intra-attention, it is a mechanism that equips a
model to weigh the importance of different parts of the input data. It is a form of attention
mechanism that computes the representation of a sequence by relating all positions of the
sequence to each other. Unlike previous attention mechanisms that focused on aligning two
different sequences (e.g., in sequence-to-sequence models), self-attention focuses on deriving
relationships within a single sequence. The fundamental idea is to compute a representation
of a sequence by relating different positions of the same sequence. For example, in a sentence,
the meaning of a particular word might depend on the context provided by other words in the
sentence. For a volatility series, a particular daily value of RV might indicate a completely
different signal depending on whether we’re in a tumultuous market, a directional trend, or
a stable market.
Self-attention provides a way for each RV lag input to consider the entire input sequence
when establishing its context. It involves three key components: Queries (Q), Keys (K),
and Values (V). These components are learnable vectors derived from the input data but
represent different aspects of that data:

• Queries (Q): These are representations of the input used to score how much focus each
element of the input sequence should have with respect to other elements. It can be
thought of as a request issued by an element to decide which other elements to focus on

• Keys (K): Keys are used in tandem with queries to compute attention scores. Each
key is paired with an input element and is used to determine the amount of attention
an element of the sequence should get.

• Values (V): Values are the actual representations of the input elements. Once the
attention scores are computed using queries and keys, these scores are used to weigh
the values, resulting in a weighted sum that represents the output of the self-attention
layer for each element

These vectors are not handcrafted; they are learned during the training process. Each query,
key, and value is generated by multiplying the input vector by their respective weight matri-
ces, which are parameters learned by the model. Let’s consider an input sequence represented
by a matrix X, where each row of X corresponds to an element in the sequence (like a past
realization of realized volatility):

First, we perform linear transformations on the input matrix X to obtain the query, key,
and value matrices. This is done using trainable weight matrices WQ, WK , and W V :

Q = XWQ

K = XWK
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V = XW V

Here, Q, K, and V are the resulting query, key, and value matrices, respectively.
Next, we compute attention scores. These scores determine how much focus should be put
on other parts of the input sequence when encoding a particular element. The attention
score between a query and a key is usually computed using the dot product, although other
methods like cosine similarity can also be used.
The raw attention scores indicate the compatibility between queries and keys and are com-
puted as follows:

Score = QKT

Since the magnitude of the dot product grows with the dimensionality of the input, which
could lead to very large values and, in turn, push the softmax function into regions where it
has extremely small gradients, it is common practice to scale the scores by the square root
of the dimensionality of the keys (dk) :

Score =
QKT

√
dk

To turn the scores into probabilities, the softmax function is applied to each row of the
scaled attention scores. This step ensures that the weights sum up to 1, thus forming a
proper probability distribution.

Attention Weights = softmax(Score)

Finally, attention weights are used to create a weighted sum of the values. The result is a
matrix where each row represents the output of the self-attention layer for each element of
the sequence:

Output = Attention Weights × V

The final output of a self-attention unit is summarized as :

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V

The key-value-query concepts are borrowed from information retrieval systems. An intuitive
understanding can come by drawing a comparison with how a search engine works: When
researching a particular subject and trying to retrieve research papers related to it in a
scientific repository, we input a couple of keywords (query), which the search engine maps
against a set of keys (paper title, keywords in the abstract, etc) by computing a similarity
score. The engine will then present you with the best-matching articles (values), meaning
the ones having the highest similarity score. The innovations of the self-attention over a
retrieval system can be summarized by the following:

• The query, key, and value are obtained by weighting the initial input sequence by
learned parameters

19



• In the attention scores or query-key product described above, every re-weighted step
(query) in the sequence is compared to all the steps in the sequence (keys) via dot
product, and attributed a score telling how relevant this step is to the information
contained in the whole sequence. The scores obtained for each step are then used as
weights for the values vectors that go the the final attention.

Essentially, what this attention score result will tell us can be seen in our context as: his-
torically, when this consecutive sequence of RVs (or a very similar one) was encountered in
the past, how relevant was each step (each lag) of the sequence in predicting future realiza-
tions, or what is the informativeness of each step when put in the context of this particular
sequence. In terms of intuitive resemblance to econometric models, the self-attention mecha-
nism seems to be closer to a regime-switching HAR model. The essence of self-attention is to
be able to contextualize each token in the input sequence by using the same input sequence
as a context filter. It uses similarity scoring to find what is the context and then determines
which weight to put on each token for this context. A regime-switching HAR would also try
to switch the weight attributed to each input conditional on the current regime (context).

Multi-head Self Attention : In practice, self-attention is often implemented through a
mechanism known as multi-head attention (Figure 2). This involves running multiple self-
attention operations in parallel, each with its own set of linear transformations (i.e., its own
WQ, WK , W V ). The outputs of these multiple attention heads are then concatenated and
linearly transformed again to produce the final output. This allows the model to jointly
attend to information from different representation subspaces, capturing various aspects of
the input sequence.
If h is the number of heads, the multi-head attention can be represented as:

MultiHead(Q,K, V ) = Concat(head1, head2, . . . , headh)WO

where each head is defined as:

headi = Attention(QWQ
i , KWK

i , V W V
i )

and WO is the weight matrix for the linear transformation applied after concatenation.
One of the key advantages of self-attention is its ability to handle long-range dependencies
with ease. Unlike RNNs, which process sequences step by step, self-attention processes an
entire sequence at once, allowing it to consider the full context in one step. This leads to
significantly improved training times since parallelization becomes feasible.
Moreover, self-attention provides an interpretability aspect to the neural network’s decision-
making process, as the attention weights can be analyzed to understand which parts of the
input sequence are deemed important when processing a particular element.
In most versions of the transformer architecture, the output of the attention mechanism is
passed through a feed-forward network, which is applied to each position separately and
identically. This can be represented as:

FFN(x) = ReLU (xW1 + b1)W2 + b2
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Figure 1: Self-attention mechanism as presented in Vaswani et al. (2017)

The mechanism takes as input three representations of the sequence, which are typically referred to
as queries (Q), keys (K), and values (V). These representations are produced through matrix multiplication
of the input embeddings with trainable weights. In practice, Q, K, and V might be identical in self-attention,
as they come from the same previous layer output. The first step in the self-attention mechanism is to
calculate the dot product of the queries with the keys. This operation measures the compatibility or
similarity between different positions in the input sequence. The result is a weight matrix where each
element represents the attention score from one element to another. The attention scores are then scaled
down by dividing them by the square root of the dimension of the keys. This scaling helps in stabilizing
the gradients during training, as it prevents the dot products from becoming too large and leading to
very small gradients. An optional masking step can be applied, which is typically used in contexts where
certain positions should not be attended to, such as padded elements or, in the case of the decoder, to
prevent attending to future tokens (for causality) ; The scaled attention scores are passed through a softmax
function, which converts them into probabilities. The softmax operation is performed on each row of the
matrix, so each row sums up to 1. This step ensures that the attention weights across the sequence add
up to 1, forming a probability distribution ; The output of the softmax function is then used to weight the
values (V). The attention probabilities are multiplied with the values to produce a weighted sum, which
represents the output of the attention mechanism for each position ; Finally, the results of the weighted
sum are combined (typically through another matrix multiplication) to produce the final output of the
self-attention layer, which then goes to subsequent parts of the Transformer model.
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Figure 2: Multi-Head Self-Attention as presented in Vaswani et al. (2017)

This figure depicts us the Multi-Head Self-Attention. Initially, the input vectors are linearly trans-
formed into queries (Q), keys (K), and values (V) for each attention head ; For each head, scaled
dot-product attention is computed just as in the single-head case (as illustrated in the previous image). The
queries are dotted with the keys, scaled, and then a softmax function is applied to determine the attention
weights. These weights are then used to compute a weighted sum of the values ; The output from each head
is then concatenated, effectively combining the different learned representations; Finally, this concatenated
output is again linearly transformed. This step integrates information from all the heads to produce
the final output for the multi-head attention layer. By comparing it to the previous single self-attention
mechanism, multi-head attention can be thought of as running several instances of self-attention in parallel
(each ’head’ being an instance), with the concatenated result capturing a multi-faceted representation of
the input sequence. This allows the model to pay attention to different parts of the sequence in varied ways
simultaneously, offering a more complex and nuanced understanding than the single-head self-attention

4.2.2 Long-Short Term Memory Network (LSTM)

Long Short-Term Memory (LSTM) network, introduced in 1997 by Hochreiter and Schmid-
huber (1997), represents a significant advancement in the field of deep learning, particularly
for tasks involving sequential data such as time series analysis and natural language process-
ing. Their unique architecture allows them to remember long-term dependencies, addressing
the vanishing gradient problem common in traditional recurrent neural networks (RNNs).
The key innovation in LSTM is its ability to maintain a long-term state or memory, which
is adjusted through structures called gates.
An LSTM unit consists of a cell (which carries the state across sequence steps, see Figure 4)
and three types of gates that regulate the flow of information: the input gate, the forget
gate, and the output gate. The ability of the LSTM to maintain memory is provided by
the cell state, which is the horizontal line running through the top of the cell. The cell
state runs through the entire cell with minor linear transformations performed by the gates.
These gates control the extent to which new input should be incorporated into the memory,
the degree to which the existing memory should be forgotten, and how much of the memory
should contribute to the output, respectively.
The central concept in LSTM is the cell state, denoted as Ct, which runs straight down the
entire chain of the network. It can carry relevant information throughout the processing of
the sequence. Because of the gated mechanism, information can be added or removed from
the cell state.
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Figure 3: Image from Del-Pra (2023) showing the original encoder architecture as proposed
by Vaswani et al. (2017)

The encoder maps an input sequence to a sequence of continuous representations. For each input,
embeddings are summed with positional encodings to inject sequence order information. The encoder
consists of N identical layers, each with two sub-layers: a multi-head self-attention mechanism and a
position-wise feed-forward network, both followed by an add & norm step which applies residual connections
and normalization.
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• Forget Gate ( ft ): As illustrated on Figure 5, this gate decides what information
should be discarded from the cell state. It looks at ht−1 (the previous hidden state) and
xt (the current input) and outputs a number between 0 and 1 for each number in the
cell state Ct−1. A 1 represents “completely keep this” while a 0 represents “completely
get rid of this”.

• Input Gate ( it ) and Candidate Cell State ( C̃t ): The input gate decides which
values to update, and a candidate layer creates a vector of new candidate values that
could be added to the state, as seen on Figure 6 and Figure 7

• Output Gate ( ot ): As seen on Figure 8, the output gate decides what the next
hidden state ht should be. The hidden state contains information about previous inputs
and is used for predictions.

The operations within an LSTM unit can be formulated as follows:

• Forget Gate:
ft = σ(Wf · [ht−1, xt] + bf )

• Input Gate:
it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)

• Cell State Update:
Ct = ft ∗ Ct−1 + it ∗ C̃t

• Output Gate and Hidden State:

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

Where:

• σ represents the sigmoid function.

• W and b terms denote weight matrices and bias vectors, respectively.

• [ht−1, xt] denotes the concatenation of the previous hidden state and the current input.

Training LSTM networks involves backpropagation through time (BPTT), a process similar
to back-propagation in other neural networks, but with the unrolled sequence of states.
It requires careful handling of gradients, as they can grow or decay exponentially over long
sequences (the problem LSTM was designed to address). It is interesting to note that at their
core, both classical RNNs and LSTMs draw from the same ideas as GARCH and CGARCH
models, which is auto-regression. The two main differences reside in how each model treats



lags of the target variable, and the non-linearities present in RNNs and LSTMs.
Essentially, considering the basic simplified LSTM cell gives the following output:

ht = σ(Wo·[ht−1, xt]+bo)∗tanh(σ(Wf ·[ht−1, xt]+bf )∗Ct−1+σ(Wi·[ht−1, xt]+bi)∗tanh(WC ·[ht−1, xt]+bC))

with the only three inputs being xt, ht−1, and Ct−1.

The GARCH model gives the following output:

σ2
t = ω +

p∑
i=1

αiϵ
2
t−i +

q∑
j=1

βjσ
2
t−j

Making abstraction of the non-linearities in the LSTM, we can see that both models output
a latent variable at step t, by using as input lags of this latent variable, and new ”exogenous”
inputs (x for LSTM and ϵ for GARCH ). On top of these inputs, the LSTM uses a third
input which is the previous cell state Ct−1. The previous cell state can be interpreted as
a fine-tuned ”long memory” or permanent component added to account for longer lags. In
this capacity, this third input makes the LSTM architecture very similar to a Component
GARCH.
The long memory contained in the cell state is considered fine-tuned since at each step it is
selectively modified by the three gates to determine which long-term information is worth
propagating to the next steps. The gates used for the cell update also take as only inputs
x and h. In this sense, the cell update function plays the role of a more flexible version of
the ω, ϕ, and ρ parameters in the permanent component equation in the CGARCH model.
Consequently, we can roughly consider that an LSTM is an unconstrained Component
GARCH with non-linearities.
Despite the similarity, it’s important to point out that these two models are very different
in terms of their initial design purpose and the methods used to find their parameters.
An LSTM is a non-parametric model with no distributional assumption which is trained
by minimizing a loss function, meanwhile a model of the GARCH family is a statistical
parametric model built on a distributional assumption, and estimated through maximizing
a likelihood function.

4.2.3 Extreme Gradient Boosted tree (XgBoost)

Weak Learners
Boosting starts with a base learning algorithm to build weak learners. A weak learner is a
simple model (like a decision tree or a linear regressor), but it could be any machine learning
algorithm that provides better than random predictions.
Decision trees
A decision tree is a widely used non-parametric machine learning algorithm that can be
used for both classification and regression tasks. In the context of regression, a decision tree
predicts the value of a target variable by learning simple decision rules inferred from the
feature data.
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(a) Unrolled Cells

(b) Single Cell

Figure 4: LSTM Cells computational flow from Olah (2015):

Subfigure (a) : The forget gate utilizes a sigmoid (σ) activation to regulate the retention of infor-
mation from the previous cell state c. Simultaneously, the input gate determines potential new information
to be added via a sigmoid activation and a tanh-generated vector of candidate values. The cell state is then
updated by an element-wise multiplication of the forget gate’s output with the old state and an addition
of the input gate’s scaled new candidate values x, allowing the cell to maintain and modify its memory.
Lastly, the output gate, through another sigmoid function, filters the updated cell state via a tanh function
to produce the next hidden state, which captures the relevant temporal information for the sequence being
processed. Both the new hidden state h and the updated cell state c are forwarded to the next time step in
the sequence.
Subfigure (b) : The horizontal line running through the top illustrates how the previous cell’s state is
modified by the current input and propagated to the next cell.
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Figure 5: Forget gate from Olah (2015)

Figure 6: Input gate from Olah (2015)

Figure 7: Cell state update from Olah (2015)

Figure 8: Output gate from Olah (2015)
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The model is structured like an inverted tree with a series of binary splits or decisions. Each
internal node of the tree represents a decision on a certain feature, each branch represents
the outcome of the decision, and each leaf node represents a final output value (the predicted
value for regression tasks). A decision tree splits the data starting from the root node and
makes decisions that lead to leaf nodes, where the final continuous output is given.
The entire dataset starts at the root of the tree. The algorithm selects a feature and a split
point on that feature to divide the data into two subsets.
The choice of which feature to split on and where to split it is typically based on minimizing
a cost function like the Mean Squared Error (MSE) or the Residual Sum of Squares (RSS).
The algorithm considers every feature and every possible value of that feature to determine
the best split.
This process is recursively applied to each derived subset. The tree continues to grow until a
stopping criterion is met (like a maximum depth of the tree, a minimum number of samples
required to split a node, etc.). The goal of the process is to be performed multiple times
recursively during the training process until only homogeneous nodes are left.
For making a prediction, a new data point is passed down the tree. At each node, a decision
is made based on the value of the corresponding feature until a leaf node is reached. The
value at the leaf node gives the predicted output.

Regression trees
As a more specialized decision tree, regression trees (Figure 9), a pivotal element in the realm
of machine learning, stand out for their efficacy in managing regression problems through a
structured, tree-based approach. The origins and evolution of regression trees are intertwined
with the development of decision trees. Breiman et al. (1984) CART algorithm forms the
conceptual basis for regression trees. It operates by systematically dividing the predictor
space into distinct segments, forming a binary tree structure. Just like a general decision
tree, this structure is characterized by its internal nodes, which correspond to the input
features, and branches, which represent the decisions or splits made based on these features.
The culmination of these branches is the terminal nodes or leaves, which hold the predicted
values or leaf weights. These leaf weights are essentially the outcomes of the regression tree
for the various partitions of the input space. As explained in Teller et al. (2022), for a given
input element xi in a data set S of size n, the regression tree delineates the input space into
K distinct regions R1, ..., RK . The model assigns a predicted value ŷi to each input element,
calculated as the sum of the estimated leaf weights ŵk for the region to which xi belongs,
expressed through the equation:

ŷi =
K∑
k=1

ŵkI(xi ∈ Rk)

Here, I represents the indicator function, determining whether the input element falls within
a specific region Rk. The estimation of leaf weights ŵk for each region is achieved by min-
imizing a loss function, typically a squared error loss, across the data points within that
region.
The process of determining the best way to split the input space and form these regions is
a critical aspect of the CART algorithm. It employs a method known as recursive binary
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splitting, combined with least squares optimization, to minimize the residual sum of squares
(RSS). This optimization is pivotal in the context of regression trees as it guides the algorithm
in evaluating all possible combinations of input variables and their respective threshold split
candidates. The RSS is calculated by the equation:

RSS =
n∑

i=1

K∑
k=1

(yi − ŵk)2I(xi ∈ Rk)

This equation reflects the greedy nature of regression trees, as the algorithm at each step of
tree growth makes locally optimal choices aiming to find the most effective global solution,
meaning the split and number of regions that minimize the RSS.

In the broader context of machine learning, ensemble models have built upon and enhanced
the basic structure of regression trees. Ensemble methods, recognized for their superior per-
formance over single-algorithm approaches, combine multiple weak learners, often decision
trees, to create a more robust model. As stated above, Boosting, a key ensemble technique,
iteratively adds new learners to previously fitted ones, focusing on improving predictions,
especially for data points that earlier models did not accurately predict.

Figure 9: Regression tree for predicting log salary from hits and years played as seen in
Steorts (2017)

At each internal node, we ask the associated question, and go to the left child if the answer is
“yes”, to the right child if the answer is “no”.
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Boosting and Extreme Gradient Boosting
Boosting is a machine learning ensemble technique that aims to create a strong classifier
from several weak classifiers. With boosting, base learners are estimated sequentially, and
each base learner aims to reduce the error of its predecessors. The first base learner is trained
on the entire dataset and its predictions are used to evaluate its performance using a loss
function. In each subsequent iteration, the boosting algorithm adjusts the weight of training
instances based on the performance of the previous model. Instances that were misclassified
or had higher errors are given more weight, making the algorithm focus more on these in
the next iteration. A new model is then trained on the reweighted data. The goal is for
this new model to perform better on the instances that the previous model got wrong. The
predictions from all models are then combined to make a final prediction. This is typically
done through a weighted vote or average, where more accurate models have a bigger influence
on the final prediction. As the process continues, the boosting algorithm iteratively improves
the accuracy of the overall model. The process is repeated, and new models are added until
either a preset number of models are added or no further improvements can be made. The
ensemble of weak learners evolves into a single strong learner. To avoid overfitting, recent
boosting algorithms usually include regularization techniques, such as limiting the number
of weak learners or shrinking the contribution of each through a learning rate.
Extreme Gradient Boosting (XGBoost) , recently intoduced by Chen and Guestrin
(2016), is an advanced implementation of gradient boosting algorithm. It has gained pop-
ularity due to its efficiency and effectiveness in solving various classification and regression
problems. Its main innovation lies in its introduction of row and column sub-sampling to
prevent over-fitting and reduce training time, and shrinkage for regularized learning. In the
most common implementation of XgBoost as well as for our study, the base learners are
regression trees.
In each iteration, Xgboost finds the best split by choosing the features and split points
that yield the highest gain. After growing a tree, XgBoost prunes it using the concept of
’depth-first’ approach, where splits that provide negative or non-significant gain are removed.
Xgboost introduces a shrinkage factor to slow down the learning in each step, adding robust-
ness to the model. It also uses feature sampling to prevent overfitting, similar to random
forests. Xgboost effectively combines decision trees, gradient boosting, and regularization,
making it a powerful tool for time-series forecasting.
Essentially with XgBoost, at each new iteration, the regularized errors of the previous tree
are used as an input to the currently trained tree. Since the model produces a point forecast
of our volatility, the closest intuitive parallel to one of our benchmark models would be to
view XgBoost as a genetic swarm of HAR models each trained on the unexplained residuals
of its predecessor. In this analogy, each new HAR model would use the same conventional
RVs inputs, but would also add the last HAR’s residual as input.

4.2.4 Natural Gradient Boosted tree (NgBoost)

Natural Gradient Boosting, proposed in 2020 in Duan et al. (2020), is an ensemble model
for probabilistic prediction via gradient boosting. The main innovation of this model is
to generalize gradient boosting to probabilistic regression by treating the output variable
conditional distribution parameters as targets for a boosting algorithm. It therefore comes
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inherently with a straightforward way to compute confidence intervals. Its attractiveness
relies upon its great flexibility, in the sense that it can be used with any base (weak) learner,
any family of parametric probability distributions, and any scoring criteria. Knowing the
dynamic, jump-displaying non-gaussian nature of most assets realized volatility, the NgBoost
model appeared to be an interesting candidate for modeling this variable. This study is the
first in the literature to attempt to use NgBoost for volatility forecasting.
The three key elements of the NGBoost algorithm are The base learner, the parametric
probability distribution, the scoring rule.
Base Learners: NGBoost can use any regression algorithm as its base learner. Common
choices include decision trees and linear models.

Parametric Probability Distributions: The method assumes a parametric form for the
conditional probability distribution P (y|x). It estimates the parameters of this distribution
as functions of the input features x.

Proper Scoring Rules: NGBoost uses scoring rules to compare the estimated probability
distribution to the observed data. The scoring rule must be proper, meaning it assigns the
best score to the true distribution. Common scoring rules include the Logarithmic Score
for Maximum Likelihood Estimation (MLE) and the Continuous Ranked Probability Score
(CRPS), often considered a more robust alternative to MLE.

The key innovation in NGBoost is the use of the natural gradient rather than the con-
ventional gradient for parameter updates. The natural gradient takes into account the
information geometry of the parameter space (the curvature of the function to optimize),
leading to more efficient and stable learning.
The natural gradient ∇̃ is defined as:

∇̃S(θ|y) ∝ IS(θ)−1∇S(θ|y)

where

• IS(θ) is the Fisher Information Matrix for the scoring rule S

• ∇S(θ|y) is the standard gradient of the scoring rule with respect to the parameters θ.

In essence, NgBoost predicts y|x in the form of a probability distribution Pθ for which
the parameters θ represent the outputs obtained from our base learners. For example,
if we consider the conditional distribution of y|x to be normal with θ = (µ, σ), we will
train our base learners at each stage to forecast the parameters θ by minimizing a scoring
rule. The twist with NgBoost is that instead of using the classical ordinary gradient for
finding the direction of steepest descent, we use the natural gradient. The argument invoked
by the model’s creators Duan et al. (2020) is that the ordinary gradient is not invariant
to reparametrization. This essentially means that the ”distance” between two values for
a parameter does not correspond to an appropriate ”distance” between the distributions
characterized by these two values. The natural gradient gives us the invariant direction of
steepest descent.
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Figure 10: NgBoost learning loop as illustrated by Duan et al. (2020)

In summary, NgBoost learns the parameters sequentially, where each base learner is trained
to correct the residuals (errors) of the ensemble so far. The use of the natural gradient makes
the updates more efficient and invariant to the choice of parametrization, leading to better
training dynamics and performance.
The NgBoost model provides an interesting extension to XgBoost in the sense that it al-
lows for probabilistic forecasting using the same theoretical architecture as XGBoost. The
only two differences between them are that NgBoost uses natural gradient descent instead
of ordinary gradient descent, and NgBoost tries to maximize a similarity score on the dis-
tribution instead of minimizing an error function on point forecasts. Because of the latter,
our NgBoost trained with RV lags inputs to forecast RV is intuitively similar to a genetic
swarm of AR-GARCH models for which the AR mean process is the volatility.

4.3 Ensemble models

Ensemble learning in machine learning is a robust methodology that involves combining
multiple models to improve the overall performance, accuracy, and robustness of predic-
tions. The core idea behind ensemble learning is that a group of already trained learners can
come together to form a stronger learner, thereby improving the model’s predictions. This
approach is particularly beneficial in reducing errors that might arise from a single model
misspecification as well as the risk of overfitting, in enhancing the accuracy of predictions,
and in dealing with the bias-variance trade-off more effectively.
The development of ensemble models stems from the realization that different models cap-
ture different patterns in the data, and thus, combining these models can lead to more
comprehensive and accurate predictions. There are primarily three types of ensemble learn-
ing methods: Bagging, Boosting, and Stacking, each with its unique mechanism and purpose.
As mentioned above, two of the models already covered (XgBoost and NgBoost) are Boosting
Ensemble models.
Stacking, or Stacked generalization, is a technique that involves training multiple models
on the same data and then using another model, often referred to as a meta-learner, to
combine their predictions. The base learners are typically different kinds of algorithms,
making stacking a heterogeneous approach. The meta-learner, which could be a different
algorithm, is trained on the outputs of the base learners, learning how to best combine their
predictions to improve accuracy. Stacking is particularly effective when the base models
are significantly diverse, as the meta-learner can effectively capture the different aspects of
the data represented by each base model. There exist numerous ways to construct a meta-
learner or to combine models’ predictions using Stacked generalization, the most common
being averaging, weighted averaging, or feeding the Single models’ outputs to a subsequent
machine learning model.
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In comparing these methods, bagging is known for its simplicity and effectiveness in reducing
overfitting, especially in the case of complex models like decision trees. Boosting, while more
complex, is generally more powerful in terms of performance, capable of improving both bias
and variance but at the cost of being more sensitive to noise and outliers. Stacking, being
the most sophisticated, can yield even better results by optimally combining diverse models,
but it comes with the complexity of training and tuning multiple layers of models. In this
study, we chose to make use of stacking by using single-layer feed-forward neural networks as
meta-learners, because of the flexibility provided by these architectures. (See Hornik et al.
(1989))

4.3.1 X-N-L-T

Our first ensemble model consists of a combination of the four previous ones with a single
layer 4 neurons feed-forward network as an ensembling method. We chose to have a Feed-
Forward aggregation instead of the averaging aggregation frequently encountered in the
literature to allow for more flexibility. We especially try to account for the fact that models’
forecast performance is often conditional on market conditions by letting the Feed-Forward
Network learn the weight to attribute to models’ forecasts depending on market conditions.
Essentially, the X-N-L-T model is as follow:

σt+k = FFN(Xt) = ReLU(w1Transformer(Xt)+w2LSTM(Xt)+w3XgBoost(Xt)+w4NgBoost(Xt))

4.3.2 CGARCH enhanced models

This category of models consists of combinations of each of the 5 previous models with our
CGARCH model using a 2-neuron single-layer Feed-Forward network, which is essentially a
multi-linear regression with a non-linearity (Figure A.5). For each of the 5 ML models, the
FFN takes as input the output forecasts from the ML model and the CGARCH model.

CGARCH enhanced Transformer

σt+k = FFN(Xt) = ReLU(w1Transformer(Xt) + w2CGARCH(Xt))

CGARCH enhanced Long-Short Term Memory Network

σt+k = FFN(Xt) = ReLU(w1LSTM(Xt) + w2CGARCH(Xt))

CGARCH enhanced Extreme Gradient Boosted tree

σt+k = FFN(Xt) = ReLU(w1XgBoost(Xt) + w2CGARCH(Xt))

CGARCH enhanced Natural Gradient Boosted tree

σt+k = FFN(Xt) = ReLU(w1NgBoost(Xt) + w2CGARCH(Xt))
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X-N-L-T - CGARCH (Figure A.6)

σt+k = FFN(Xt) =

ReLU(w1Transformer(Xt)+w2LSTM(Xt)+w3XgBoost(Xt)+w4NgBoost(Xt)+w5CGARCH(Xt))

5 Empirical methodology

As stated above, our study’s goal is to compare the versatility and the performance of various
learning algorithms on 20 forecasting problems. The problems differ on two axes: Assets
and horizon. It essentially comes down to producing a point forecast for an asset’s realized
daily volatility at t+h. We outline below how we built our datasets for the machine-learning
models.

5.1 Rolling window

For this experiment, since our explanatory variables consist of lags of our target variables,
we adopt a static sliding rolling window method for building our input and target pairs
dataset. The sliding step size is 1. The sliding rolling window methodology, illustrated in
(Figure A.7), takes m lags of the realized volatility in order to forecast our target horizon.
Let’s denote the time series as {Xt}, where t = 1, 2, . . . , T , and T is the total number of
observations. For a rolling window of size m, the training data at time t (for t > m) would
be {Xt−m, Xt−m+1, . . . , Xt−1}. The model uses this data to predict Xt+h.
At each time step t, with t > m, the model is trained on the window of observations:

Wt = {Xt−m, Xt−m+1, . . . , Xt−1}

Based on the training data in Wt, the model predicts the next value X̂t+h, which is then
compared to the actual observed value Xt+h to compute the prediction error.
After the prediction at time t, the window is updated by including the next observation Xt

and excluding the oldest observation Xt−m, and the model moves to the next time step t+1.
The updated window Wt+1 becomes:

Wt+1 = {Xt−m+1, Xt−m+2, . . . , Xt}

This process continues until the end of the time series.

At T0 we use the values between [T0−m , T0 ] as input to As discussed, the number of
lags m was a hyperparameter for each [A-H-M] model. Because of computing resource
constraints, we estimate all the hyperparameters only on the 60-day-ahead forecasting version
of each asset class for each model. We then use the same architecture for the N-days ahead
forecasting problems.
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5.2 Dataset partitioning

An important part of our research consists in estimating and selecting among a substantial
set of models varying by hyperparameters. We adopt a variation of a popular model selec-
tion methodology used by Kelly and Xiu (2023), the fixed training-validation split. Since
we evaluate and compare the performance of both single and ensemble models, for each
forecasting horizon and each asset, we divide our dataset into four parts : a training set
D1 for the single models (50% of dataset), a validation set D2 for the single models(10%
of dataset), a training set D3 for the ensemble models(20% of our dataset), and a final test
set D4 (20% of dataset), on which we test both the single and ensemble models. Our main
concern with proceeding with such a split was to prevent data leakage between the ensemble
models and the single models since the ensemble model’s inputs consist of outputs from the
single models. The splits are temporally ordered, meaning that historically, D1 occurs before
D2, which occurs before D3, which occurs before D4. We proceed in such a way to prevent
information leakage backward in time (See Kelly and Xiu (2023)). The final test set D4
was only visited once at the end for generating the results tables after all models had been
trained on their respective training and validation sets. This means that none of the models
(either simple or ensemble) had seen the data in D4 during training or validation, only at
the end for generating evaluation and comparison metrics.

5.3 Hyperparameter tuning

In Table 2, we detail all the hyperparameters tested on the [A-60] forecasting models. The
tuning is performed by grid-search.

6 Results, comparison, and discussion

6.1 Final models architectures

In this section, we see the final values found by our grid-search hyper-parameters tuning
process on the [A-60] models. The results are displayed in Table 3:

6.2 Results and discussion

In this section, we discuss and compare the final out-of-sample performance of our models.
First of all, the out-of-sample performance measured by RMSE, Quasi-likelihood, and Over-
valuation Frequency of each model grouped by assets are found in Tables 4 to 8.
Secondly, in order to provide rigorous statistical backing for our discussions, we display the
results of models vs benchmarks MGW tests for equivalent predictive abilities for each [A-H]
problem, which can be found in Table 9. The displayed value in each cell of the table gives
us the answer to the MGW test’s question: Does the model in row have a statistically
different predictive ability than the Benchmark in Column ?.
Finally, we display the results of the MCS test at α = 0.01 for [A-H] groups in Table 10.
This essentially tells us what’s the smallest best set of superior models for each [A-H] prob-
lem with a 99% confidence level. Framed differently, it shows us the set of models for which
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predictive ability is superior to the rest, but not differentiable among themselves at a 99%
confidence level.

To evaluate and compare our model’s predictive ability, we use this extensive framework
to ensure the robustness of our findings. First, we review the more classical out-of-sample
performance metrics displayed in tables 4 to 8. Then we discuss the MGW predictive ability
comparative test results against the benchmarks, displayed in table 9. Subsequently we
undertake an extensive review of the results displayed in table 10 which allows us to perform
a multidimensional comparison of our models: It provides us with the direct answer, for
every [A-H] problem, to the question: What is the best set of models for this forecasting
problem?

Models Out-of-Sample performance metrics (Tables 4 to 8)

Following the results of Patton (2011) on the robustness of the Quasi-Likelihood and the
MSE (RMSE) to volatility proxies for model comparison, we chose to use these two metrics
as performance metrics to compare our models in this section. The overvaluation frequency
is also displayed but only for additional informative purposes, and is not used to rank our
models. For all the models, regardless of asset and horizon.

Analyzing the 4 tables, here are the most important conclusions to be drawn:
For the equity indices, on every single forecasting horizon, the boosting models outperform
all other models (including benchmarks) in terms of RMSE, including the benchmarks. Also
for these indices, the CGARCH-enhanced models have in general a higher RMSE than the
single models. On gold volatility at every horizon, the transformer and LSTM models are
dominant in terms of RMSE. On oil volatility, XgBoost is the most dominant model at every
horizon except at h-20 in terms of RMSE and is tied by the LSTM at h-60. The LSTM
CGARCH and TRANS CGARCH models are in general the worst-performing models in
terms of RMSE, for all the assets.
An interesting thing to note is that aside from a few occurrences, there are only a few models
that beat both benchmarks on the Quasi-Likelihood, and this superiority is not robust to
asset and horizon. In general, the CGARCH-enhanced models demonstrate superiority over
single models according to the Quasi-Likelihood. This result is in line with what is expected
from a machine learning auto-regressive model enhanced with a statistical model designed
and trained by maximizing its likelihood to fit the distribution of the data. This outlines the
gain in terms of goodness of fit from augmenting machine learning models with statistical or
econometric ones. These results are nonetheless contradictory with the ones obtained from
RMSE, which point towards a dominance of the single boosting models.

In terms of Over-valuation Frequency, there was no significant pattern worth mentioning
across assets and horizons. We however deem it valuable to have the information as an
additional decision-making metric when deciding between two models that are tied on other
metrics for a specific forecasting problem. Overvaluation of volatility forecasts can turn out
to be extremely costly depending on the application. Among the single models in general,
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aside from a few exceptions, the LSTM and the Transformer display the lowest overvaluation
frequency.
In summary, regarding the RMSE, the most striking result appears to be that XgBoost and
NgBoost consistently outperform all other models for every horizon for the equity indices.
XgBoost is also the best-performing model on oil volatility, except on the 20-day horizon.
When comparing the two boosting models against each other on all assets, it seems like for
every horizon, Ngboost is almost always outperformed by XgBoost on RMSE, but consis-
tently outperforms XgBoost in terms of Quasi Likelihood and Overvaluation Frequency. In
other terms, NgBoost demonstrates a better fit to the conditional distribution of the realized
volatility than XgBoost and overestimates less often than the latter. The transformer and
LSTM networks are consistently outperforming other models on gold volatility forecasting
at every horizon in terms of RMSE.

MGW equivalent predictive ability test against benchmarks (Table 9)

To rigorously evaluate the predictive power of the various models, we delve into an analysis
based on the MGW test for equivalent predictive ability. The p-values obtained from these
tests are critical indicators, with lower values suggesting that a model’s predictive perfor-
mance is statistically different from the benchmark model’s. We set a significance threshold
at 0.01 to delineate models that meaningfully outperform the benchmarks.

The first thing we can point out from analyzing this table is that almost none of our models
is simultaneously dominant over both horizons and assets in terms of being statistically dif-
ferent from the benchmarks. The only models to breach this are the boosting models, which
demonstrate statistically different predictive ability from the benchmarks on every asset and
horizon except at h-60 on oil for XgBoost.

On the S&P500 volatility, the single models, as far as they are concerned, display some mixed
performance across the different horizons. Most models demonstrate different predictive
abilities against the CGARCH model. The most consistently different single models for
forecasting S&P500 volatility on multiple horizons seem to be both boosting models, and
the most consistently different of the enhanced models is the Trans CGARCH model. For
the NASDAQ, similar to the S&P 500, some various performance is recorded for the single
models, with the boosting-based models (and their enhanced versions) demonstrating the
absolute statistical difference for all horizons, and most models being statistically different
from CGARCH on h-10, h-20, and h-60. On the RUSSEL 2000 volatility nonetheless, aside
from the boosting models discussed above, their is no clear pattern emerging in terms of
different predictive ability against the benchmarks. The MGW results for GOLD tell us that
the boosting models are also unequivocally different from both benchmarks, and all models
beat the CGARCH models except for LSTM-CGARCH and NG-CGARCH respectively at
h-5 and h-15. Nonetheless, both the results for gold also inform us that both the LSTM and
transformer network are statistically different from both benchmarks at every horizon. This
strengthens what was observed on the RMSE for gold regarding the LSTM and transformer
outperforming other models on this asset. Oil is the only asset for which one of the boosting
models (XgBoost) is not statistically different from a benchmark (CGARCH).
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Finally, the forecasting problems on which our models have demonstrated the least different
predictive ability against the benchmarks are: the RUSSEL at h-5, the RUSSEL at h-15,
and oil at h-60.
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Additional results

Model Confidence Set Best: models at 99% Confidence level (Table 10)

This section analyzes the model confidence sets constructed for each [A-H] problem. Before
delving into the comparative analysis, we tabulate the frequency of each model’s appearance
in the MCS results across assets and horizons to discern the most dominant performers:

• XgBoost : Contained in 100% of Model Confidence Sets

• NgBoost : Contained in 100% of Model Confidence Sets

• Transformer : Contained in 100% of Model Confidence Sets

• LSTM : Contained in 92% of Model Confidence Sets

The MCS results, when viewed in totality, reveal the dominance of certain models that are
robust across horizons and assets. Surprisingly, the 4 models that happen to appear the most
are our 4 single models. The two boosting models model particularly stand out again for their
adaptability and resilience, indicating that they encapsulate a balance of responsiveness and
structural understanding that applies different market conditions, asset-specific conditions,
regimes, and forecasting windows. Both boosting models appear in virtually every set of
best models.
Their dominant presence across all assets and horizons is indicative of their robustness. The
model’s ability to leverage the predictive power of boosted weak learners likely contributes
to their wide applicability, specifically to this auto-regressive forecasting endeavor.

The transformer model also appears in all the best model sets. This suggests the effectiveness
of the underlying self-attention mechanism in extracting relevant features in diverse market
conditions, and its ability to do so without being augmented by an econometric model.
In terms of versatility in both dimensions, we also notice the recurrence of the LSTM model
in the best sets of 92% of our [A-H] problems. This result is in line with what we would
expect from a model that was purposely engineered for sequence modeling. Its absence from
a set of best models only happens for forecasting the NASDAQ’s volatility at h-60.

We also note that oil is the one with the most models in its model confidence sets across
horizons, especially at h-60 where all our models are included in the MCS. This is informative
of the fact that the test was unable to distinguish our models from one another in terms of
forecasting power. This result is to be expected from a time series that exhibits a unit-root
or pure randomness., as there is no trend or mean-reversion to be learned from lagged values.
As discussed in the data exploratory section, the oil volatility series on the considered period
was the closest to being random, as measured by its 0.47 Hurst exponent.
The MCS results pointed us toward believing that our single models are the most versatile
across the two dimensions considered for this task.
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Discussion

Overall, the extensive evaluation framework solicited in this study didn’t point us toward
a unanimously superior model demonstrating absolute versatility across our two analysis
dimensions according to every single metric. Nonetheless, there was a distinctive tendency
for the boosting models to stand out. These models were able to:

• Score lower RMSE than all other models (including benchmarks) for almost every
asset, the only exception being the commodities (mainly gold).

• Demonstrate statistically different predictive ability against the benchmarks on every
asset and horizon with a single exception for XgBoost on oil.

• Be included in the set of best forecasting models with a 99% confidence level for every
asset and horizon

The only relevant metric on which our boosting models don’t dominate unequivocally is
the Quasi-Likelihood. Even without scoring high on Q-LIKE, based on their performance
demonstrated from the RMSE and MGW test backed by the MCS test, it seems reasonable
to consider that our main finding is that in the context of our analysis, XgBoost and NgBoost
are the most versatile models for volatility forecasting. This result is not surprising given
the fact both models come down to a stacked ensemble of weak learners. The use of multiple
learners to extract different features from our models is very similar to what is done by the
attention layers in the transformer, or a convolution layer in a convolutional neural network.
In this sense, it is not surprising that the transformer would also appear in 100% of model
confidence sets.
Additionally, it is worth mentioning that although they both emerge as superior models, a
deeper dive into the results shows us the superiority of NgBoost over XgBoost in terms of
goodness of fit, which is not surprising given that NgBoost is trained to forecast the param-
eters of a distribution.
We know that the superiority of XgBoost over HAR and LSTM for 1 day ahead realized
volatility forecasting on multiple stocks was already established by Teller et al. (2022); Sim-
ilarly, the superiority of GARCH enhanced transformers over GARCH, LSTM, ANN, trans-
former, and GARCH enhanced LSTM and Transformer for 1 day ahead S&P500 historical
volatility forecasting was established by Ramos-Pérez et al. (2021).
The results also pointed us towards the superiority of the LSTM and transformer networks
for forecasting gold volatility at any horizon. Those two sequence models appear well-suited
for capturing the seasonality from supply and demand, geopolitical and macro influences in
gold’s volatility.
There was also no model that specifically outperformed the others for a particular value of
the horizon dimension, meaning that there was no model that was superior to others on one
specific horizon regardless of the asset.
Moreover, it turned out that there was no clear edge or advantage from aggregating all our
models together using a Feed-Forward Network for ensembling, with or without a compo-
nent GARCH enhancement. Neither the X-N-L-T nor the X-N-L-T CGARCH demonstrated
versatile superiority on any dimension. This result is hardly surprising; The literature sug-
gests that there is rarely an edge to be gained from merely combining outputs from different

40



specialized architectures without infusing any domain knowledge or intelligently leveraging
each architecture’s strength on a different part of the problem. Besides, when comparing
the single models to their enhanced versions, enhancing any single model with a CGARCH
only results in goodness-of-fit gains (Quasi-likelihood), and does not provide generally more
accurate forecasts according to RMSE or MGW/MCS tests.
Reflecting on our study, our results for the non-boosting models do not seem conclusive or
clear-cut enough to extract any valuable or trustworthy findings regarding the versatility of
these models. Nonetheless, the most interesting and trustworthy results we find are: Xg-
boost and NgBoost shine the best in terms of versatility and forecasting power; Aside from
occasional goodness of fit gains, there is no added forecasting value to enhancing our single
models with a component GARCH model; The LSTM and transformer networks are the
best at forecasting gold volatility.
The superiority of a boosting model is in line with what we’ve been seeing in the last two
biggest time-series forecasting competitions, the Makridakis et al. (2020) M4 and Makridakis
et al. (2022) M5 competitions, where boosting models have come out in the top most robust
models for forecasting more than 40000 time-series.

7 Conclusion and directions for future work

The undertaking of this thesis was to compare and explore the versatility and performance of
different machine learning architectures in forecasting the realized volatility of 5 popular and
liquid assets. We used intraday prices sampled at a 5mn frequency from the TAQ database
collected from 2005 to 2021 for 5 assets proxied by ETFs. The versatility was tested along
two axes, the forecasting horizon, and the asset on which we performed the forecast.
Besides, we also studied the added value from enhancing our plain machine learning models
with a component GARCH model in a stacked ensemble manner using a single-layer feed-
forward neural network. We adopted rigorous processing and partitioning of our data to
make sure that the final evaluation was made on a subset (D4, or test set) that was never
seen during training. In order to obtain sound and trustworthy results from our study, we
used an extensive evaluation framework comprising the classical performance metrics encoun-
tered in academia (RMSE, QLIKE), as well as two statistical tests to assess and differentiate
forecasting power among models.
The main result was that the best models regardless of asset or horizon were the boosting
models. The LSTM and Transformer networks were found to be the best models for fore-
casting gold volatility. There was also no material added-value in enhancing our models with
a Component GARCH or to combining them all together.
Nonetheless, several avenues for improvement could be undertaken from our results. First
of all, a major shortcoming of the study is that it compared only the pure auto-regressive
forecasting power of the architectures, in the sense that we didn’t include any exogenous
regressor than lags of our response variable, not even the returns series. A more complete
and thorough study could investigate the robustness of these architectures when enhanced
with exogenous regressors such as macroeconomic variables or other market variables related
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to the assets. Secondly, the number of assets and horizons could be easily extended in order
to have a more comprehensive assessment of robustness.
Furthermore, given that the state-of-the art econometric models for volatility forecasting
are most of the time regime-switching hidden markov models, it would be interesting to
explore whether or not regime-switching versions of our architectures demonstrate superior
robustness and predictive ability against regime-switching benchmarks. It would also be
interesting to explore the extent to which the current version of these architectures (non
regime switching) are inherently able to capture the different volatility regimes filtered by
a state-of-the-art state-space filter (like the Hamilton filter). Also, this study could be ex-
tended to look at the multiple assets’ volatility forecasting problem as an actual multivariate
forecasting problem.
Besides, we only studied point forecasting, which means we’re only forecasting the volatility
of one point in time into the future; a more useful variation would be to study how well the
models perform in terms of range forecasting, which is forecasting the volatility of every day
between today and the forecasting horizon.
Another shortcoming of our study is the lack of confidence intervals around our forecasts,
or for our parameters. Since most applications using volatility forecasts as input are heavily
sensitive to the uncertainty around the forecasts, it is critical to have a statistical assessment
of the uncertainty around a model’s parameters and forecasts in the form of confidence inter-
vals. To this effect, a relatively new framework for ML forecasts uncertainty quantification
known as conformal prediction has emerged. This framework allows us to produce confidence
intervals for any forecasting model, even non-parametric and non-statistical ones. Quanti-
fying uncertainty would also allow us to more rigorously benchmark our models against
bayesian forecasting models like Gaussian processes.
Since our models are very data-hungry deep learning models that have been proven to get
asymptotically better with more training data, another critical improvement to the study
that may alter the results is to augment the size of the training data by going further in
the past to gather more volatility clusters and long-term behavior. We were limited in this
capacity by the hardware constraints that come with treating high-frequency data and the
availability of historical intraday series on our source database.
Also, exploring more alternative training frameworks, loss functions, or switching to a quasi-
likelihood maximizing framework instead of loss minimization might have given more inter-
esting results. An interesting avenue in this regard is to experiment with other kinds of weak
learners in the boosting models instead of only focusing on trees and linear regressors. More-
over, we could improve the ensemble models built from our single models by experimenting
with more ensembling schemes that allow to leverage each architecture’s strength instead of
the naive non-linear weighted averaging we used here.
Lastly one of the most promising avenues is to extend the number of architectures studied to
include the state-of-the-art models for time series forecasting. The most promising direction
would be to experiment with the following novel architectures which currently constitute the
state of the art: state space models like the N-BEATS by Chapados, Bengio, Oreshkin et al.
(2020), the N-HITS by Challu et al. (2022), Physics Informed Neural Networks (Cuomo et al.
(2022)), the attentional copulas transformer by Ashok et al. (2023) from ServiceNow and
MILA, or more recently, the mamba model by Gu and Dao (2023) which is recognized, as of
our final submission, as the current frontier in ML time-series forecasting.
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Transformer: A New Neural Network-Based Architecture for Forecasting S&P Volatility.
Mathematics, 9(15):1–18, July 2021.

Steven L Salzberg. C4.5: Programs for machine learning by j. ross quinlan. morgan kaufmann
publishers, inc., 1993. Machine Learning, 16:235–240, 09 1994.

Hugo Gobato Souto and Amir Moradi. Forecasting realized volatility through financial
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A Training, testing, and evaluation process

A.1 Loss functions and evaluation metrics

We used 2 loss functions in the training process: the Huber-Loss function on the training
set, and the MSE on the validation set. We evaluate and compare each [A-H-M] model
variant with 2 loss functions: the RMSE loss and the Quasi Likelihood (Q-LIKE) function.
We also use the Overvaluation frequency additional metrics to inform us on a different view
of model performance.

Huber Loss function Because of its superior robustness, we use the Huber Loss function
as a loss function on the training set. The Huber loss function integrates both linear and
quadratic scoring approaches. It uses hyperparameter delta δ which is tuned according to
the data. The computed loss is linear (L1 loss) for values superior to δ, and quadratic (MSE
Loss) for values inferior to δ. Huber Loss is particularly useful in regression tasks where data
may contain outliers or non-standard distributions, ensuring stable and robust training of
the model.

Lδ(y, f(x)) =

{
1
2
(y − f(x))2 for |y − f(x)| ≤ δ

δ|y − f(x)| − 1
2
δ2 otherwise

Mean Squared Error (MSE) MSE measures the average of the squares of the errors. It
is more sensitive to larger errors compared to MAE and is defined as:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

where yi is the actual value, ŷi is the predicted value, and n is the number of observations.
It is particularly useful when large errors are more significant than smaller ones.

Quasi Likelihood Function This metric is often used in statistical models to approximate
the likelihood when the exact likelihood is either unknown or difficult to compute. In a
machine learning context, it serves as a means to assess the likelihood of the model forecasts
given the data :

QLIKE = n−1

n∑
t=1

(
log

(
ŷ2t
)

+ y2t ŷ
−2
i

)
where yt is the actual value, ŷt is the predicted value, and n is the number of observations.

Overvaluation Frequency function This metric helps us in evaluating the proportion
of forecasts that were above the actual realized values for each model. It is defined as :

OFt,T̄ =
1

T

T∑
t=1

Iŷt>yt

where yt is the actual value, ŷt is the predicted value, and n is the number of observations.
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A.2 Over-fitting prevention

In machine learning, over-fitting occurs when a model learns the training data too well, in-
cluding its noise and outliers, which reduces its ability to perform well on unseen data. To
prevent over-fitting, several techniques are used, such as dropout regularization, batch nor-
malization, and weight decay. In machine learning, over-fitting is a common problem where
a model performs well on training data but poorly on unseen data. Regularization tech-
niques are essential for preventing over-fitting, allowing models to generalize better from the
training data to unseen data. We will discuss three fundamental regularization techniques:
dropout regularization, batch normalization, and weight decay.

Dropout Regularization Dropout regularization is a stochastic technique to prevent
over-fitting in neural networks. It works by randomly deactivating a subset of neurons in a
layer during each training iteration, which forces the network to learn more robust features
that are useful in conjunction with many different random subsets of the other neurons.
For a fully connected layer with input vector x and output vector y, without dropout, the
relationship is given by:

y = ϕ(Wx + b)

where ϕ is the activation function, W is the weight matrix, and b is the bias vector. When
dropout is applied, this becomes:

y = ϕ((W ⊙D)x + b)

where D is a diagonal matrix where each diagonal element Dii is an independent Bernoulli
random variable with probability p of being 1.
During training, dropout is applied, and during testing, it is not used but the weights are
scaled by p to account for the reduced number of active neurons, which ensures that the
expected sum of the inputs remains the same.

Batch Normalization Batch normalization (BN) is a technique to normalize the inputs
of a layer to mitigate the problem of internal co-variate shift. BN standardizes the outputs
of the previous layer by subtracting the batch mean and dividing by the batch standard
deviation.
For a given feature x, BN transforms it as:

µB =
1

m

m∑
i=1

xi

σ2
B =

1

m

m∑
i=1

(xi − µB)2

x̂i =
xi − µB√
σ2
B + ϵ

yi = γx̂i + β
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where

• m is the size of the mini-batch

• µB is the mini-batch mean

• σ2
B is the mini-batch variance

• ϵ is a small constant for numerical stability

• γ and β are learnable parameters of the model.

Batch Normalization allows for higher learning rates and reduces the strong dependence
on initialization.

Weight Decay Weight decay is a form of L2 regularization that discourages large weights
in the model through a penalty on the loss function proportional to the sum of the squares
of the weights. This leads to a simpler model and helps to prevent over-fitting.
The loss function with weight decay is given by:

Lnew = Loriginal +
λ

2N

N∑
i=1

w2
i

where

• Loriginal is the original loss without regularization

• wi are the weights of the model

• N is the total number of weights

• λ is the regularization parameter.

During training, this has the effect of updating the weights as if they are decaying towards
zero, hence the name weight decay.
We use these three techniques in combination to mitigate the risk of over-fitting and improve
the model’s generalization to new, unseen data.

A.3 Training and testing

Each [A-H-M] with different hyper-parameters was trained on the first training set D1
(with Huber loss), and then used to produce forecasts on the validation set D2. The final
specification of each [A-H-M] model was selected based on the forecast performance on the
validation set (with MSE), which are considered pseudo-out-of sample forecasts (Kelly and
Xiu (2023)). For each [A-H-M] model, we find the best model through the tuning on D1
and D2, which is then re-trained on the full D1 + D2 set (60% of data). The training is done
by minimizing the Huber Loss on D1, and using the MSE to compare and validate results on
D2. We chose to use the Huber loss function on the training set because of its flexibility and
adaptability in terms of scoring, in the sense that it provides us with the benefits of both an
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L1 (MAE) and an L2 (MSE) scoring function. In particular, the flexibility provided by its δ
hyper-parameter is well-suited for volatility series because they exhibit non-stationary, auto-
correlation, and idiosyncratic jumps. The δ parameter is a way to allow the loss function
itself to adapt to the volatility regime by switching from linear to quadratic scoring depending
on the size of the error. The choice of using the MSE on the validation set was driven by
its status as a standard for model evaluation on validation and test sets in the deep learning
literature. Subsequently, we proceed to build the ensemble dataset as explained above, by
making forecasts on the D3 dataset using the trained single models. The outputs from
the single model’s forecasts on D3 are then used as input for the ensemble models training
(with Huber loss) on D3 with the actual realized values as the target. The final comparison
of all our models evaluated on the (never seen by any model during training) D4 test set
is performed using two functions that have been proved by Patton (2011) to be robust to
volatility proxies: the Quasi Likelihood and the (Root) Mean-Squared Error function. Our
choice of these two was purely motivated by a need for an unbiased and robust ranking of
our models which demonstrates robustness to proxies, sampling frequency, or signal-to-noise
ratio (Patton (2011)). Additionally, it seemed appropriate to use the Q-LIKE to have better
comparability since one of our benchmarks is a statistical distribution likelihood maximizing
model (CGARCH). It also allowed us to have a preliminary assessment of how well our
models fitted the volatility distributions without directly being optimized or trained to do
so.

A.4 Evaluation

To evaluate and compare our final models forecasting accuracy across assets and horizons, we
supplement our performance metrics with 2 evaluation frameworks: the Model Confidence
Set method from Hansen et al. (2003). As suggested by Brownlees et al. (2011) and the
Multivariate Giacomini-White test from Borup et al. (2024). We succinctly discuss the two
frameworks in this section.

Model Confidence set The MCS is a statistical method for model comparison. It pro-
vides a set of models from a larger collection, with a certain level of confidence that the set
includes the best model according to a chosen loss function.
Given a set M0 containing a finite number m0 of models, indexed by i = 1, . . . ,m0, the loss
associated with model i in period t is denoted by Lit. The relative performance of models i
and j in period t is given by:

dijt = Lit − Ljt

where E[dijt] is assumed to be finite and constant over t for all i, j ∈ M0.
The set of superior models, denoted by M∗, is defined as:

M∗ = {i ∈ M0 : µij < 0 for all j ∈ M0}

where µij = E[dijt]. The MCS algorithm determines M∗ through a sequence of significance
tests, eliminating significantly inferior models.
The hypotheses tested are of the form:
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HM
0 : µij = 0 for all i, j ∈ M

where M ⊆ M0, against the alternative HM
A : µij ̸= 0 for some i, j ∈ M . The MCS

procedure aims to construct a subset M∗
α ⊆ M0 that contains all of M∗ with a pre-specified

coverage probability 1 − α, based on an equivalence test θM and an elimination rule eM .
The equivalence test θM tests HM

0 for different M . The elimination rule eM removes models
statistically inferior, reducing M until it only contains indistinguishable models in terms
of performance. The test statistic for this test is the well-known test used in Diebold and
Mariano (2002) :

tij =
µij√

var(dij)

Where var(dij) is the estimate variance of dij.

The final set M∗
α is a model confidence set containing the best-performing models with high

probability 1 - α , offering a statistically robust selection method. In other words, the MCS
contains all superior models with a given probability (its coverage probability) under certain
assumptions. Bootstrap methods are often employed for practical implementation of the
MCS procedure, especially when the number of models is large.

Multivariate Giacomini-White The Multivariate Giacomini-White test extends the
framework of Giacomini and White (2006) to a multivariate setting for real-time assessment
and identification of state dependencies in predictability. This test compares the predictive
ability of multiple forecasting methods under varying conditions.
Consider a setting with p + 1 forecasting methods (p ≥ 1), indexed by i = 1, . . . , p + 1. The
forecast of the target variable yt+τ at time t using the i-th method is denoted as:

fti+τ = αti + βitxit

where αti and βit are parameters estimated from the data, and xit is the vector of predictors.
A rolling window forecasting scheme is assumed for estimation.
The Multivariate Giacomini-White test statistic assesses whether these p + 1 methods have
equal predictive ability. It does this by evaluating the forecasting performance of each
method against a loss function Lt+τ , which measures the prediction error for the forecast
fti+τ . The test can be seen as a generalization of the Diebold-Mariano test that measures the
Conditional Predictive Ability instead of the Unconditional Predictive Ability. The test, like
the Diebold-Mariano variant, measures the statistical significance of the differences between
the two models’ forecasts. It is an asymptotic 2 test.
The test statistic in the Multivariate Giacomini-White test plays a crucial role in determin-
ing the statistical significance of differences in predictive abilities across various forecasting
methods.

• Loss Function: A loss function L is defined to quantify the prediction error of each
forecast. This could be mean squared error, absolute error, or any other metric appro-
priate for the analysis.

55



• Forecast Error: The forecast error at time t for the horizon τ is the difference between
the forecast fti+τ and the actual observed value yt+τ .

• Loss Differential: The loss differential for methods i and j at time t is computed as
dijt = L(yt+τ , fti+τ ) − L(yt+τ , ftj+τ ).

• Test Statistic Computation: Aggregate these differentials over time to form the
test statistic. This involves creating a vector of loss differentials and using it to form
a multivariate statistic.

• Statistical Significance: Perform hypothesis testing using the test statistic to deter-
mine if there is a statistically significant difference in predictive performance between
the forecasting methods.

B Mathematical intuition behind the Transformer

As seen in Thickstun (2019), a transformer’s encoder block as used in this study is a param-
eterized function class fθ : Rp×d → Rp×d. If x ∈ Rp×d then fθ(x) = z where

Q(h)(xi) = W T
h,qxi, K(h)(xi) = W T

h,kxi, V (h)(xi) = W T
h,vxi, Wh,q,Wh,k,Wh,v ∈ Rd×k,

α
(h)
ij = softmax

(
Q(h)(xi)

TK(h)(xj)√
k

)
,

u′
i =

H∑
h=1

W T
c,h

p∑
j=1

α
(h)
ij V (h)(xj), Wc,h ∈ Rk×d,

ui = LayerNorm(xi + u′
i; γ1, β1), γ1, β1 ∈ R

z′i = W T
2 ReLU(W T

1 ui), W1 ∈ Rd×m, W2 ∈ Rm×d,

zi = LayerNorm(ui + z′i; γ2, β2). γ2, β2 ∈ R

The notation softmaxj indicates we take the softmax over the d-dimensional vector indexed
by j. The LayerNorm function is defined for z ∈ Rk by

LayerNorm(z; γ, β) = γ
(z− µz)

σz

+ β, γ, β ∈ Rk.

where

µz =
1

k

k∑
i=1

zi, σz =

√√√√1

k

k∑
i=1

(zi − µz)2.

The parameters θ to be learned from our data consist of the values contained in the weight
matrices W along with the LayerNorm parameters γ and β, all indicated on the right-hand
side. The input x ∈ Rp×k is a collection of d time-series (features) of length p. In our case,
d = 1 since we only use a series of past realized volatilities as input.



Table 1: Descriptive statistics of annualized returns and volatility series

S&P 500 NASDAQ RUSSEL 2000 GOLD OIL
Series Statistic

Volatility

count 4532 4532 4532 4262 3961
mean 1.98 2.15 3.03 1.83 3.70
std 2.22 1.54 3.86 2.00 3.33
min 0.24 0.21 0.48 0.05 0.40
25% 1.06 1.29 1.69 1.08 2.41
50% 1.45 1.77 2.21 1.46 3.20
75% 2.20 2.53 3.20 2.04 4.25
max 75.09 25.75 165.24 75.64 170.427
median 1.45 1.78 2.21 1.46 3.21
range 74.85 25.54 164.76 75.58 170.02
skew 12.46 4.52 20.54 19.10 32.35
kurtosis 308.08 38.13 743.94 601.57 1585.86
Hurst Exponent 0.40 0.35 0.43 0.42 0.47
Range 1990 - 2023 1990 - 2023 1990 - 2023 2000 - 2023 2000 - 2023
ADF test < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
JB test < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

Returns

mean 0.08 0.11 0.076 0.09 0.07
std 3.01 3.41 3.86 2.80 6.60
min -32.16 -33.13 -38.80 -24.74 -71.11
25% -1.06 -1.37 -1.78 -1.23 -3.14
50% 0.18 0.24 0.22 0.12 0.29
75% 1.44 1.83 2.11 1.59 3.35
max 27.61 28.12 22.62 21.78 80.54
median 0.17 0.25 0.22 0.12 0.29
range 59.78 61.25 61.42 46.52 151.66
skew -0.51 -0.40 -0.57 -0.34 0.05
kurtosis 12.94 7.40 7.78 5.22 17.68

Here we see the relevant descriptive statistics of the two kinds of series used in this study:
Annualized realized volatility and returns



Table 2: Hyperparameters tested

(a) Model Hyperparameters tested

Tested values
Model Hyperparameter

Transformer

Attention Heads 2 – 4 - 8
Hidden dimension size 1 – 4 – 8 – 16 – 32 – 64 – 128 – 256 – 512 - 1024
Query, Key and Value Dimension 8 – 16 – 32 – 64
Activation functions ReLu, tanH, sigmoid

LSTM

Hidden Size 1 – 2 – 4 – 8
Input Feed Forward dimensions 1 – 4 – 8 – 16 – 32 – 64 – 128 – 256 – 512 - 1024
LSTM layers 1 – 2 – 4 – 8
Activation functions ReLu, tanH, sigmoid

XGBOOST

max depth 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10
max leaf nodes 2 - 4 - 8 - 16 - 32
num estimators 50 - 60 - 70 - 80 - 100 - 200 - 150 - 500
base learner linear regressor, tree
criterion gini, entropy, log loss

NGBOOST

Gradient Natural gradient - Ordinary Gradient
Distribution Normal - Student T
num estimators 50 - 60 - 70 - 80 - 100 - 200 - 150 - 500
base learner linear regressor, tree
criterion gini, entropy, log loss

(b) Training procedure hyperparameters tested

Tested values
Hyperparameter

Learning Rate 0.0001 – 0.001 – 0.01 – 0.1 – 1
Gradient Clipping value 0.5 – 1 – 2 - 5 – 10 – 25 – 50
Batch size 16 – 32 – 64 - 128
Optimizers Adam, SGD
Scheduler’s step size 1 – 3 – 5
L1 Weight Regularization 0 - 0.01
L2 Weight Regularization 0 - 0.01
Weight decay 0.0001 - 0.000001
Num Epochs 100 - 200 - 500 - 1000 - 5000
Input Sequence Length 5 - 10 - 20 -30
Optimization Algorithm Adaptive Moment Estimation - Stochastic Gradient Descent

Subfigure (a) of this table shows us all the hyperparameters tested for every architecture studied.
The first column displays the architectures in each cell, the second column shows the name of the
hyperparameters tested, and the third column shows us the values tested. Subfigure (b) shows
us all the training hyperparameters that we tested on all our models.



Table 3: Final hyperparameters retained for A-60 models after grid-search

S&P500 NASDAQ RUSSEL GOLD OIL
Model Hyperparameter

Transformer

Attention Heads 8 8 8 4 4
Hidden dimension size 256 256 128 128 128
Query, Key and Value Dimension 32 32 32 32 32
Activation functions sigmoid sigmoid sigmoid sigmoid sigmoid

LSTM

Hidden Size 8 8 8 4 4
Input Feed Forward dimensions 1 1 1 1 1
LSTM layers 1 1 1 1 1
Activation functions ReLu ReLu ReLu ReLu ReLu

XGBOOST

max depth 5 5 5 5 5
max leaf nodes 8 8 8 8 8
num estimators 500 500 500 500 500
base learner Tree Tree Tree Tree Tree
criterion Entropy Entropy Entropy Entropy Entropy

NGBOOST

Gradient 4 4 4 4 4
Distribution Student T Student T Student T Student T Student T
num estimators 500 500 500 500 500
base learner Tree Tree Tree Tree Tree
criterion gini gini gini gini gini



Table 4: Out of sample forecasting results across different horizons for the S&P500

RMSE Quasi- OF
Horizon Model in bps likelihood in %

h-5

HAR 35.5 13.7 53.5
CGARCH 42.9 33.0 78.2
XgBoost 30.0 10.7 62.4
NgBoost 30.8 16.5 54.5
LSTM 37.6 11.8 48.5
Transformer 37.5 11.7 47.5
X-N-L-T 62.6 45.8 57.4
XG CGARCH 114.3 51.5 0.0
NG CGARCH 54.9 50.8 80.2
LSTM CGARCH 161.2 216.2 98.0
TRANS CGARCH 76.9 83.7 93.1
X-N-L-T CGARCH 106.0 44.1 0.0

h-10

HAR 33.2 14.4 55.4
CGARCH 43.8 37.6 80.2
XgBoost 27.8 11.9 61.4
NgBoost 28.3 13.0 57.4
LSTM 33.5 11.1 46.5
Transformer 31.9 14.2 62.4
X-N-L-T 33.6 11.4 46.5
XG CGARCH 58.3 45.5 35.6
NG CGARCH 40.4 17.5 31.7
LSTM CGARCH 36.0 14.1 42.6
TRANS CGARCH 33.5 14.3 55.4
X-N-L-T CGARCH 39.8 16.6 29.7

h-15

HAR 33.0 15.0 61.0
CGARCH 47.0 43.2 84.0
XgBoost 22.0 12.8 67.0
NgBoost 21.4 21.9 66.0
LSTM 33.1 12.8 52.0
Transformer 31.1 14.5 67.0
X-N-L-T 36.9 28.9 30.0
XG CGARCH 36.4 13.8 40.0
NG CGARCH 50.6 36.0 28.0
LSTM CGARCH 144.2 56.3 3.0
TRANS CGARCH 39.4 18.4 47.0
X-N-L-T CGARCH 51.7 36.5 85.0

h-20

HAR 30.4 15.1 63.6
CGARCH 48.1 45.9 86.9
XgBoost 25.5 12.3 70.7
NgBoost 21.6 17.0 63.6
LSTM 31.6 12.9 53.5
Transformer 30.0 11.7 54.5
X-N-L-T 34.7 23.5 25.3
XG CGARCH 29.7 16.6 78.8
NG CGARCH 43.5 34.1 89.9
LSTM CGARCH 77.6 68.6 86.9
TRANS CGARCH 26.8 12.4 50.5
X-N-L-T CGARCH 95.6 80.3 53.5

h-60

HAR 36.8 37.3 84.9
CGARCH 78.3 110.4 96.8
XgBoost 26.7 22.1 79.6
NgBoost 25.3 30.7 74.2
LSTM 30.3 22.8 64.5
Transformer 27.9 19.4 67.7
X-N-L-T 35.0 25.8 74.2
XG CGARCH 50.5 54.2 63.4
NG CGARCH 40.0 42.8 88.2
LSTM CGARCH 73.6 84.0 94.6
TRANS CGARCH 45.3 49.5 94.6
X-N-L-T CGARCH 43.3 44.2 47.3

This table shows us, for the S&P500, the out-of-sample performance metrics scored by our models for
every horizon. The displayed metrics from left to right are : the Root-Mean Square Error, the
Quasi Likelihood, and the Overvaluation Frequency



Table 5: Out of sample forecasting results across different horizons for NASDAQ

RMSE Quasi- OF
Horizon Model in bps likelihood in %

h-5

HAR 35.2 8.6 51.5
CGARCH 36.9 11.6 66.3
XgBoost 31.9 7.5 51.5
NgBoost 30.9 10.9 50.5
LSTM 34.8 7.3 43.6
Transformer 35.5 7.9 49.5
X-N-L-T 40.0 10.4 54.5
XG CGARCH 42.2 13.0 58.4
NG CGARCH 41.3 13.1 55.4
LSTM CGARCH 38.3 10.2 56.4
TRANS CGARCH 49.2 21.6 49.5
X-N-L-T CGARCH 57.5 28.8 25.7

h-10

HAR 36.5 9.3 54.5
CGARCH 38.7 13.5 69.3
XgBoost 32.1 7.8 52.5
NgBoost 35.4 11.0 49.5
LSTM 36.2 8.3 48.5
Transformer 36.0 7.9 47.5
X-N-L-T 40.2 9.9 46.5
XG CGARCH 42.6 15.5 67.3
NG CGARCH 41.1 16.0 73.3
LSTM CGARCH 39.1 14.5 71.3
TRANS CGARCH 44.1 19.8 77.2
X-N-L-T CGARCH 50.3 19.2 37.6

h-15

HAR 36.0 9.4 59.0
CGARCH 39.1 14.9 74.0
XgBoost 30.7 7.3 53.0
NgBoost 34.9 8.7 50.0
LSTM 37.4 7.9 40.0
Transformer 35.5 7.8 47.0
X-N-L-T 40.1 10.7 35.0
XG CGARCH 30.2 6.9 55.0
NG CGARCH 50.4 19.6 46.0
LSTM CGARCH 33.0 10.0 71.0
TRANS CGARCH 45.5 20.4 77.0
X-N-L-T CGARCH 34.5 10.9 51.0

h-20

HAR 34.2 8.9 62.6
CGARCH 39.0 15.7 78.8
XgBoost 31.3 7.9 58.6
NgBoost 31.2 10.6 54.5
LSTM 32.8 7.8 61.6
Transformer 33.3 7.1 49.5
X-N-L-T 64.0 77.4 1.0
XG CGARCH 30.4 7.7 59.6
NG CGARCH 30.8 7.0 57.6
LSTM CGARCH 70.2 41.0 94.9
TRANS CGARCH 50.4 25.0 87.9
X-N-L-T CGARCH 117.2 84.0 98.0

h-60

HAR 35.0 13.5 72.0
CGARCH 59.0 35.0 91.4
XgBoost 31.1 9.2 61.3
NgBoost 33.1 14.0 58.1
LSTM 37.7 14.5 68.8
Transformer 33.2 10.4 55.9
X-N-L-T 35.5 14.1 73.1
XG CGARCH 54.5 30.9 89.2
NG CGARCH 62.9 38.6 95.7
LSTM CGARCH 112.3 82.7 98.9
TRANS CGARCH 55.4 62.0 35.5
X-N-L-T CGARCH 67.0 62.8 12.9

This table shows us, for the NASDAQ, the out-of-sample performance metrics scored by our models

for every horizon. The displayed metrics from left to right are: the Root-Mean Square Error, the

Quasi Likelihood, and the Overvaluation Frequency



Table 6: Out of sample forecasting results across different horizons for the RUSSEL

RMSE Quasi- OF
Horizon Model in bps likelihood in %

h-5

HAR 58.2 10.4 61.4
CGARCH 63.1 9.2 37.6
XgBoost 53.7 8.3 64.4
NgBoost 56.5 14.7 57.4
LSTM 64.6 9.7 38.6
Transformer 59.0 8.7 40.6
X-N-L-T 58.1 9.4 57.4
XG CGARCH 57.8 8.6 53.5
NG CGARCH 58.9 12.3 72.3
LSTM CGARCH 58.8 9.2 54.5
TRANS CGARCH 58.2 8.8 52.5
X-N-L-T CGARCH 58.3 9.2 55.4

h-10

HAR 59.1 10.1 58.4
CGARCH 63.9 9.5 36.6
XgBoost 57.2 12.0 61.4
NgBoost 57.1 12.4 48.5
LSTM 62.6 8.6 37.6
Transformer 60.6 8.8 34.7
X-N-L-T 56.4 7.7 50.5
XG CGARCH 82.7 15.5 66.3
NG CGARCH 59.5 11.8 66.3
LSTM CGARCH 61.3 12.9 67.3
TRANS CGARCH 57.4 11.0 69.3
X-N-L-T CGARCH 154.5 52.0 12.9

h-15

HAR 58.8 10.1 60.0
CGARCH 60.7 8.4 42.0
XgBoost 54.0 9.6 63.0
NgBoost 54.6 13.9 58.0
LSTM 60.8 8.6 42.0
Transformer 59.3 8.2 42.0
X-N-L-T 58.5 7.3 44.0
XG CGARCH 54.9 11.2 77.0
NG CGARCH 60.2 9.3 60.0
LSTM CGARCH 83.7 29.0 23.0
TRANS CGARCH 58.4 9.9 63.0
X-N-L-T CGARCH 61.4 13.8 79.0

h-20

HAR 52.6 9.1 63.6
CGARCH 53.1 7.3 47.5
XgBoost 49.6 8.2 66.7
NgBoost 51.5 13.2 58.6
LSTM 54.5 7.3 41.4
Transformer 56.6 8.4 33.3
X-N-L-T 51.5 10.3 75.8
XG CGARCH 63.2 18.9 83.8
NG CGARCH 77.4 27.5 88.9
LSTM CGARCH 76.7 27.4 87.9
TRANS CGARCH 82.2 31.6 90.9
X-N-L-T CGARCH 62.3 15.5 65.7

h-60

HAR 52.0 14.8 75.3
CGARCH 50.9 13.8 73.1
XgBoost 42.4 8.5 72.0
NgBoost 45.4 18.1 60.2
LSTM 50.1 10.7 50.5
Transformer 51.9 7.6 45.2
X-N-L-T 40.9 7.1 64.5
XG CGARCH 74.0 28.2 93.5
NG CGARCH 49.9 13.2 74.2
LSTM CGARCH 49.9 13.8 84.9
TRANS CGARCH 58.3 18.6 92.5
X-N-L-T CGARCH 78.7 28.7 92.5

This table shows us, for the RUSSEL, the out-of-sample performance metrics scored by our models for
every horizon. The displayed metrics from left to right are: the Root-Mean Square Error, the
Quasi Likelihood, and the Overvaluation Frequency



Table 7: Models out-of-sample forecasting results across different horizons for gold

RMSE Quasi- OF
Horizon Model in bps likelihood in %

h-5

HAR 31.0 10.8 74.7
CGARCH 43.2 28.7 90.5
XgBoost 31.1 10.5 70.5
NgBoost 33.5 11.1 65.3
LSTM 29.8 7.0 58.9
Transformer 30.1 6.1 43.2
X-N-L-T 30.7 7.3 50.5
XG CGARCH 36.2 16.5 21.1
NG CGARCH 30.7 8.8 55.8
LSTM CGARCH 43.5 45.2 7.4
TRANS CGARCH 30.0 8.8 65.3
X-N-L-T CGARCH 31.8 7.8 45.3

h-10

HAR 31.7 11.6 73.4
CGARCH 40.4 25.5 92.6
XgBoost 31.4 10.6 74.5
NgBoost 43.3 20.2 67.0
LSTM 30.8 8.2 63.8
Transformer 30.5 6.7 48.9
X-N-L-T 32.4 8.3 39.4
XG CGARCH 32.1 6.6 34.0
NG CGARCH 38.2 18.4 19.1
LSTM CGARCH 33.3 8.3 25.5
TRANS CGARCH 33.8 8.2 27.7
X-N-L-T CGARCH 43.8 39.7 7.4

h-15

HAR 32.2 12.4 78.7
CGARCH 41.4 27.0 93.6
XgBoost 31.8 11.2 75.5
NgBoost 37.0 16.9 71.3
LSTM 30.9 7.2 55.3
Transformer 30.9 10.0 72.3
X-N-L-T 32.9 7.3 33.0
XG CGARCH 34.7 9.0 21.3
NG CGARCH 43.5 29.7 0.0
LSTM CGARCH 32.4 6.8 39.4
TRANS CGARCH 36.4 11.4 10.6
X-N-L-T CGARCH 30.5 10.3 72.3

h-20

HAR 32.5 12.8 81.7
CGARCH 43.6 28.6 93.5
XgBoost 32.2 11.2 71.0
NgBoost 41.9 19.6 71.0
LSTM 30.7 6.4 54.8
Transformer 30.8 9.5 71.0
X-N-L-T 30.4 7.4 61.3
XG CGARCH 38.6 15.2 5.4
NG CGARCH 31.2 10.2 67.7
LSTM CGARCH 36.5 10.8 14.0
TRANS CGARCH 36.5 11.1 18.3
X-N-L-T CGARCH 31.1 7.2 51.6

h-60

HAR 31.6 18.0 88.5
CGARCH 58.6 49.7 95.4
XgBoost 32.2 13.1 77.0
NgBoost 71.9 17.0 72.4
LSTM 26.7 9.6 65.5
Transformer 25.1 9.4 74.7
X-N-L-T 34.3 19.8 78.2
XG CGARCH 49.1 33.7 82.8
NG CGARCH 109.7 105.3 93.1
LSTM CGARCH 75.4 64.6 93.1
TRANS CGARCH 27.0 6.8 40.2
X-N-L-T CGARCH 183.8 168.0 92.0

This table shows us, for gold, the out-of-sample performance metrics scored by our models for every
horizon. The displayed metrics from left to right are: the Root-Mean Square Error, the Quasi
Likelihood, and the Overvaluation Frequency



Table 8: Models out-of-sample forecasting results across different horizons for oil

RMSE Quasi- OF
Horizon Model in bps likelihood in %

h-5

HAR 64.8 5.9 63.6
CGARCH 91.7 13.6 6.8
XgBoost 62.3 5.7 65.9
NgBoost 65.0 7.9 59.1
LSTM 67.4 5.4 48.9
Transformer 67.9 5.8 53.4
X-N-L-T 92.4 26.0 39.8
XG CGARCH 82.1 11.4 54.5
NG CGARCH 67.1 6.4 52.3
LSTM CGARCH 70.5 6.8 61.4
TRANS CGARCH 73.4 8.0 53.4
X-N-L-T CGARCH 88.6 26.5 45.5

h-10

HAR 64.7 5.8 58.0
CGARCH 92.0 14.1 5.7
XgBoost 57.8 5.3 65.2
NgBoost 65.6 7.4 62.5
LSTM 68.8 5.9 40.9
Transformer 67.3 5.7 44.3
X-N-L-T 71.7 8.2 63.6
XG CGARCH 73.2 6.9 44.3
NG CGARCH 70.6 6.1 42.0
LSTM CGARCH 73.5 6.6 35.2
TRANS CGARCH 71.2 6.1 35.2
X-N-L-T CGARCH 80.7 10.0 44.3

h-15

HAR 65.5 6.1 57.5
CGARCH 88.5 12.1 11.5
XgBoost 60.9 5.7 64.4
NgBoost 70.4 7.7 56.3
LSTM 69.1 5.9 43.7
Transformer 67.0 5.8 51.7
X-N-L-T 83.5 13.7 55.2
XG CGARCH 81.4 12.3 69.0
NG CGARCH 65.2 6.5 56.3
LSTM CGARCH 72.7 6.3 33.3
TRANS CGARCH 66.1 5.7 48.3
X-N-L-T CGARCH 82.8 12.6 49.4

h-20

HAR 66.8 6.3 61.6
CGARCH 84.4 10.2 11.6
XgBoost 105.8 10.0 69.3
NgBoost 299.9 24.9 65.1
LSTM 70.2 5.8 41.9
Transformer 66.1 5.9 57.0
X-N-L-T 68.9 5.6 43.0
XG CGARCH 73.6 7.6 53.5
NG CGARCH 74.5 7.2 33.7
LSTM CGARCH 70.4 8.2 57.0
TRANS CGARCH 73.8 6.5 37.2
X-N-L-T CGARCH 68.7 8.0 57.0

h-60

HAR 47.7 7.6 77.5
CGARCH 44.9 4.3 42.5
XgBoost 43.0 5.7 63.7
NgBoost 56.5 8.4 60.0
LSTM 43.0 5.3 60.0
Transformer 44.7 6.0 68.8
X-N-L-T 47.8 7.2 65.0
XG CGARCH 52.4 8.2 45.0
NG CGARCH 96.4 23.9 95.0
LSTM CGARCH 53.4 8.6 71.2
TRANS CGARCH 44.8 4.0 45.0
X-N-L-T CGARCH 103.4 23.7 75.0

This table shows us, for Crude Oil, the out-of-sample performance metrics scored by our models for
every horizon. The displayed metrics from left to right are : the Root-Mean Square Error, the
Quasi Likelihood, and the Overvaluation Frequency



Table 9: MGW different predictive ability test results against benchmark

S&P500 NASDAQ RUSSEL GOLD OIL
HAR CGARCH HAR CGARCH HAR CGARCH HAR CGARCH HAR CGARCH

Horizon

h-5

XgBoost YES YES YES YES YES YES YES YES YES YES
NgBoost YES YES YES YES YES YES YES YES YES YES
LSTM NO YES YES YES NO NO YES YES NO YES
Transformer NO YES NO NO NO NO YES YES NO YES
X-N-L-T YES NO NO NO NO NO NO YES YES NO
XG CGARCH YES YES YES NO YES YES YES YES YES NO
NG CGARCH YES YES NO YES YES NO YES YES YES YES
LSTM CGARCH YES YES NO NO NO NO YES NO NO YES
TRANS CGARCH YES YES NO NO NO NO NO YES NO YES
X-N-L-T CGARCH YES YES YES NO NO NO NO YES YES NO

h-10

XgBoost YES YES YES YES YES YES YES YES YES YES
NgBoost YES YES YES YES YES YES YES YES YES YES
LSTM NO YES YES YES NO YES YES YES NO YES
Transformer NO YES NO YES NO NO YES YES NO YES
X-N-L-T NO YES NO NO YES YES NO YES YES YES
XG CGARCH YES NO YES YES YES YES YES YES YES YES
NG CGARCH NO NO YES YES YES YES NO YES YES YES
LSTM CGARCH NO YES YES NO YES NO NO YES NO YES
TRANS CGARCH NO YES YES YES NO NO NO YES NO YES
X-N-L-T CGARCH NO YES YES YES NO NO YES YES YES NO

h-15

XgBoost YES YES YES YES YES YES YES YES YES YES
NgBoost YES YES YES YES YES YES YES YES YES YES
LSTM NO YES NO YES NO NO YES YES NO YES
Transformer NO YES NO YES NO NO YES YES NO YES
X-N-L-T NO YES NO NO YES NO NO YES YES NO
XG CGARCH YES YES YES YES NO YES YES YES YES YES
NG CGARCH YES YES YES NO NO YES YES NO YES YES
LSTM CGARCH YES YES NO YES YES YES NO YES NO YES
TRANS CGARCH NO YES YES NO NO NO NO YES NO YES
X-N-L-T CGARCH YES NO NO NO NO NO YES YES YES NO

h-20

XgBoost YES YES YES YES YES YES YES YES YES YES
NgBoost YES YES YES YES YES YES YES YES YES YES
LSTM NO YES YES YES NO NO YES YES NO YES
Transformer NO YES NO YES NO YES YES YES NO YES
X-N-L-T NO YES YES YES NO NO YES YES NO YES
XG CGARCH NO YES NO YES YES YES YES YES YES NO
NG CGARCH YES YES YES YES YES YES NO YES YES YES
LSTM CGARCH YES YES YES YES YES YES NO YES YES NO
TRANS CGARCH NO YES YES YES YES YES NO YES NO YES
X-N-L-T CGARCH YES YES YES YES NO NO YES YES NO NO

h-60

XgBoost YES YES YES YES YES YES YES YES YES NO
NgBoost YES YES YES YES YES YES YES YES YES YES
LSTM YES YES YES YES NO NO YES YES YES NO
Transformer YES YES NO YES NO NO YES YES NO NO
X-N-L-T NO YES NO YES YES YES NO YES NO NO
XG CGARCH YES YES YES YES YES YES YES YES NO YES
NG CGARCH YES YES YES YES YES YES YES YES YES YES
LSTM CGARCH YES NO YES YES NO NO YES YES NO NO
TRANS CGARCH YES YES YES NO YES YES YES YES NO NO
X-N-L-T CGARCH NO YES YES NO YES YES YES YES YES YES

In this table, we’re able to see for each forecasting horizon (first column) and each model at each horizon
(second column), what is the answer to the question: ”Does the model in row have a different
predictive ability than the benchmark at this horizon?” obtained from the p-value of the MGW
test. With a threshold at 1%, we’re able to say for example that for the h-5 horizon, the XgBoost
model has a statistically different predictive ability than both our benchmarks for the S&P500.



Table 10: Model confidence set : best models at 99.9% confidence level

S&P500 NASDAQ RUSSEL 2000 GOLD OIL

h-5

HAR
XgBoost
NgBoost
LSTM

Transformer
NG CGARCH

HAR
XgBoost
LSTM

Transformer
X-N-L-T

NG CGARCH

CGARCH
XgBoost
NgBoost

Transformer
LSTM CGARCH

TRANS CGARCH
X-N-L-T CGARCH

XgBoost
NgBoost
LSTM

Transformer
X-N-L-T

TRANS CGARCH
X-N-L-T CGARCH

HAR
XgBoost
NgBoost
LSTM

Transformer
NG CGARCH

LSTM CGARCH

h-10

XgBoost
NgBoost
LSTM

Transformer
X-N-L-T

NG CGARCH

HAR
XgBoost
NgBoost
LSTM

Transformer
X-N-L-T

HAR
CGARCH
XgBoost
NgBoost
LSTM

Transformer
X-N-L-T

NG CGARCH

XgBoost
NgBoost
LSTM

Transformer
X-N-L-T

XG CGARCH

HAR
XgBoost
NgBoost
LSTM

Transformer
XG CGARCH
NG CGARCH

TRANS CGARCH

h-15

HAR
XgBoost
NgBoost
LSTM

Transformer
XG CGARCH

XgBoost
NgBoost
LSTM

Transformer
XG CGARCH
NG CGARCH

CGARCH
XgBoost
NgBoost
LSTM

Transformer
X-N-L-T

NG CGARCH
TRANS CGARCH

XgBoost
NgBoost
LSTM

Transformer
X-N-L-T

NG CGARCH
LSTM CGARCH

HAR
XgBoost
NgBoost
LSTM

Transformer
NG CGARCH

LSTM CGARCH
TRANS CGARCH
X-N-L-T CGARCH

h-20

HAR
XgBoost
NgBoost
LSTM

Transformer
XG CGARCH
NG CGARCH

TRANS CGARCH

HAR
XgBoost
NgBoost
LSTM

Transformer
XG CGARCH
NG CGARCH

HAR
CGARCH
XgBoost
NgBoost
LSTM

Transformer
X-N-L-T

NG CGARCH

XgBoost
NgBoost
LSTM

Transformer
X-N-L-T

NG CGARCH
X-N-L-T CGARCH

HAR
XgBoost
NgBoost
LSTM

Transformer
X-N-L-T

NG CGARCH

h-60

XgBoost
NgBoost
LSTM

Transformer
X-N-L-T

NG CGARCH

HAR
XgBoost
NgBoost

Transformer
X-N-L-T

NG CGARCH

XgBoost
NgBoost
LSTM

Transformer
X-N-L-T

NG CGARCH

XgBoost
NgBoost
LSTM

Transformer
TRANS CGARCH

NG CGARCH

HAR
CGARCH
XgBoost
NgBoost
LSTM

Transformer
X-N-L-T

XG CGARCH
NG CGARCH

LSTM CGARCH
TRANS CGARCH

Table 10 shows us, for every [A-H] problem , the set of models for which the predictive abilities are
not only the best, but also statistically indistinguishable from each other with a 99% confidence level
according to the MCS test. For example, the MCS results tells us that for forecasting the 15 days
ahead realized volatility of GOLD, the subset of best models with identical predictive
ability is composed of the XgBoost, The NgBoost, LSTM, the Transformer, the X-N-L-T,
the NG GARCH, and the LSTM GARCH with a 99% confidence level



Figure A.1: Historical daily returns



Figure A.2: Historical realized volatility of daily returns



Figure A.3: Realized Volatility Auto-correlation and Partial Auto-correlation functions



Figure A.4: Image from Ge et al. (2023a) showing the types of volatility definitions used by the
papers in their literature review



Figure A.5: CGARCH enhanced single models



Figure A.6: X-N-L-T and CGARCH enhanced X-N-L-T



Figure A.7: Rolling Window procedure
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